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Introducing the Math Pac

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en-
gineering problems. These tools are provided in the convenient and flexible form of BASIC keywords.
Once the Math Pac is plugged into your HP-75 computer, these keywords are instantly available: no
program to load, no waiting. (The Math Pac is a ROM-based LEX file, described in appendix B of the
HP-75 Owner’s Manual.) You can use these keywords in any program as often as needed; you avoid the
restrictions that would apply to program calls and save the memory that subroutines would require.

The Math Pac adds the following capabilities to your HP-75.
e Advanced real- and complex-valued functions.
o Real and complex matrix operations.

e Solutions to systems of equations.

]

Roots of polynomial equations and user-defined functions.
o Numerical integration.

Finite Fourier transform.

(-]
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How To Use This Manual

This manual assumes that you are generally familiar with the operation of your HP-75 computer, espe-
cially how to create, edit, store, and run programs. You should also understand the mathematical basis
for the operations you will be performing. Because the keywords in the Math Pac cover such a wide
range of mathematical subjects, we cannot provide much tutorial information on 'the mathematical
concepts involved. ‘

The keywords in the Math Pac are independent of one another, so you may deal with only the keywords
that specifically interest you. Each section in this manual contains information on keywords of a
particular mathematical type—real-valued functions, matrix algebra operations, and so on. All
keywords described after section 3 (except FHROIIT and IMTEZRFAL) use arrays in their operation. To
become familiar with arrays you should read section 13 of the HP-75 Owner’s Manubl and the general
information at the beginning of section 4 of this manual.

Within each section you will find a description of each keyword name, function, synfax, and operation
in the following format.

Keyword Name Function That the Keyword Performs

Syntax

Legal data types and numeric values for use with this keyword.

Describes the values returned by this keyword and the details of the keyword’s operétion.

Keyword Name. This is the way the keyword will be referenced elsewhere in the manual. It is usually
a mnemonic of the function that the keyword performs. In most cases the name must be embedded in a
longer statement that includes arguments, parentheses, and so on; the name by itself usually isn’t an
acceptable BASIC statement. |

Several keywords have names that are identical to names of keywords already present in your HP-75—
like NI %F, +, and #. The syntax in which such a name is embedded indicates which operation to
perform. All operations available to you in the HP-75 itself are still available, unaffected by the pres-
ence of the Math Pac. ‘

Syntax. This is a description of the acceptable BASIC statements in which the keyword’s name can
be embedded. The following conventions are used throughout the manual in describing the syntax of a
keyword.
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Typographical Item Interpretation

dot matrix Words in dot matrix type may be keyed in using either lower or upper
case letters, but otherwise must be entered exactly as shown.

italic Variables in italic type represent numeric expressions; phrases in
italic type represent a parameter that is defined elsewhere.

boid Variables in bold type represent arrays.

[ 1] Square brackets enclose optional items.

stacked When two items are placed one above the another, one (and only one)
items of them may be used.

An ellipsis indicates that the optional items within the brackets may
be repeated indefinitely.

Legal Data Types and Numeric Values. This information describes the types and ranges of ar-
guments for the keyword that are acceptable to the Math Pac. Use this information to avoid generating
errors and to isolate the cause of those that do occur. This is not a mathematical definition of the
domain of the function that the keyword computes.

Included in each section are a number of examples illustrating the use of the keywords in the section.
Almost all of the examples are given as keyboard calculations so that you can immediately see the
result of using a particular keyword. The effects of using a keyword in a program will be identical
except that in a program you can access only program variables, not calculator variables.

To try an example yourself, type in the commands given in the Input/Result column using either
upper or lower case, ending each line with a [RTN]. After you complete a command, the display of your
HP-75 should look like the display shown in the Input/Result column following the command—pro-
vided that you have set your line width to 32 by entering w i<t ZZ[RIN]. In many cases a single
command will produce a sequence of displays, shown as consecutive lines in the display figure. You can
control the length of time each display remains visible with the DEL & command described in section
2 of the HP-75 Owner’s Manual.

Some sections include additional information to help you make effective use of the more sophisticated
operations. If you would like still more information, you can refer to the HP-15C Advanced Functions
Handbook. Although the Math Pac differs from the HP-15C Advanced Programmable Scientific Cal-
culator in its operation and capabilities, much of the information in the HP-15C Advanced Functions
Handbook applies to the Math Pac. Such information includes techniques to increase the effectiveness
of equation-solving algorithms, integration algorithms, matrix operations, system solutions, and accu-
racy of numerical calculations.



Section 1

Installing and Removing the Module

The Math Pac module can be plugged into any of the three ports on the front edgje of the computer.

CAUTIONS
e Be sure to turn off the HP-75 (press [SHIFT J[ATTN]) before installing or removing any module. If
there are any pending appointments, type al atm of f in EDIT mode to prevent the arrival

of future appointments (which would cause the computer to turn on). If the comppter is on or if it
turns itself on while a module is being installed or removed, it might reset itself, causing all stored
information to be lost.

e Do not place fingers, tools, or other foreign objects into any of the ports. Such act"ions could result
in minor electrical shock hazard and interference with pacemaker devices worn by some persons.
Damage to port contacts and internal circuitry could also result.

To insert the Math Pac module, orient it so that the label
is right-side up, hold the computer with the keyboard fac-
ing up, and push in the module until it snaps into place.
During this operation be sure to observe the precautions
described above.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the
module and pull the module straight out of the port. Install a blank module in the port to protect the
contacts inside.

11/12






Section 2

Real Scalar Functions

Hyperbolic Functions
SINH

Hyperbolic Sine

SIMHHOX

where X is a numeric expression, |X| < 1151.98569368

COSH

Hyperbolic Cosine

COREH X s

where X is a numeric expression, |X| < 1151.

98569368

TANH

I-jlyperbolic Tangent

THHH (X

where X is a numeric expression.

Inver#e Hyperbolic Sine

FIS THH X

where X is a numeric expression.

ACOSH

Inverse Hyperbolic Cosine

15H X

where X is a numeric expression, X = 1.

13




14 Section 2: Real Scalar Functions

ATANH Inverse Hyperbolic Tangent

HTAMHHCX

where X is a numeric expression, —1 < X < 1.

Logarithmic Functions

LOG2 Base :2 Logarithm

LOG2IX:

where X is a numeric expression, X > 0.

LOGZOX2 = logy(X) = IIﬂné)L

LOGA Variable Base Logarithm

LOGROX, B2

where X is a numeric expression, X > 0, and B is a numeric expression, B > 0 and B # 1.

In(X)

LOGATX, Br = logg(X) = o)

Rounding and Truncating Functions
ROUND 1 Round

where X, N are numeric expressions.

If N is positive, rounds X to N digits to the right of the decimal point. If N is negative, rounds X to N digits
to the left of the decimal point.
IHT(X = 107 + .5)

107

EOUMDOX.NY =

where IMT is the standard HP-75 function, and P is N rounded to the nearest integer.
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Note: The rounding convention given above is used only in the FJLIHLD keyword. }In particular,
the EOLUMD keyword rounds numbers “toward positive infinity” so that if 1.5 is rounded to the
nearest integer using FOLIMT, the result is 2. If —1.5 is rounded to the nearest ihteger using
ROURD, the result is —1. Anywhere else a number needs to be rounded, the Méth Pac uses
the same convention as the HP-75 itself: positive numbers are rounded “toward positive infin-
ity”, and negative numbers are rounded “toward negative infinity”. This can onIy%make a dif-
ference when the number to be rounded is negative and lies exactly halfway between the

numbers to which it could be rounded.

TRUNCATE

Truncate

TRUMCATECX, N2

where X, N are numeric expressions.

if N is positive, truncates X to N digits to the right of the decimal point. If N is negative,
digits to the left of the decimal point.

= * P
TRUMHCATECX . NI = L ):0P10

where IF is the standard HP-75 function, P is N rounded to the nearest integer.

truncates X to N

Factorial/Gamma Function

FACT Combined Factorial and Gamma Functions

FACTOX:

where X is a numeric expression not equal to a negative integer,
—254.1082426465 < X < 253.1190554375.

If X equals a non-negative integer, FACT X3 = XI
In general, FACT<X> = [ (X + 1), defined for X > —1 as
@«
X+ 1) = | te at
ro+n= [

and defined for other values of X by analytic continuation.
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Examples

COSH, SINH, ATANH, ACOSH

Input/Result
cosh (8D

e
atarbicl osqr Cwil

CA4ERTIRIACE

gooshtooskh i 2B

LOG2, LOGA

Input/Result
Tomgeos=1?o

Hyperbolic cosine of a numeric constant.

Hyperbolic sine of a numeric expression.

Inverse hyperbolic tangent of a numeric expres-
sion with a numeric variable.

Inverse hyperbolic cosine of a numeric expression.

Logarithm (base 2) of a numeric expression.

Logarithm (base 3) of 81.



ROUND, TRUNCATE

Input/Result
2345, 27 [RTN

trumcateis, 1)

12345,

Ty

trurcateis, B

T

12345
fruncatel s, -8 1
L2Iag
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LOGH of numeric variables.

TRUHCATE “blanks” all the digits rightward of
the digit indicated by the second argument.

FEOLIHD rounds the first argurbent at the digit
indicated by the second argument.

If the second argument is negjative, this 1n-
dicates a digit to the left of the decimal point.

—13.25 is midway between —1;3.2 and —13.3; in

this case the number is rounded in the positive
direction to —13.2. !






Section 3

Base Conversions

Binary, Octal, and Hexadecimal Data Types

The operations in this section allow your HP-75 to recognize and manipulate numbers expressed in
number systems other than decimal (base 10). These functions conform to the ANSI standards de-
scribed in appendix B of the HP-75 Owner’s Manual.

Because the HP-75 assumes that any number stored in a numeric variable or entered from the key-
board is a decimal number, you must enter and store every non-decimal number as|a character string.
In particular, if you store the number in a variable, the variable’s name must end with “$”; if you enter
the number from the keyboard, it must be enclosed in quotes.

In the tables below, S$ will represent a binary, octal, or hexadecimal string or string expression.

e A binary string consists entirely of 0’s and 1’s, and represents a number in tihe base 2 number
system. A binary string expression is a string expression whose value is a binary string.
|

® An octal string consists entirely of 0’s, 1’s, ..., 6’s, and 7’s, and represents a nufnber in the base 8
number system. An octal string expression is a string expression whose value is an octal string.

e A hexadecimal string consists of 0’s, ..., 9’s, A’s, ..., s, and represents a number in the base 16
number system. (Be sure to capitalize the letters A through F, which represent}the decimal values
10 through 15.) A hexadecimal string expression is a string expression whose valye is a hexadecimal
string. |

19



20 Section 3: Base Conversions

Base Conversion Functions

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion

EVAL(S$. N>

where S$ is a binary string expression whose value is not greater than
1110100011010100101001010000111111111111 (binary), and N is a numeric expression whose
rounded integer value is 2;

or S$ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is
a numeric expression whose rounded integer value is 8;

orS$ is a hexadecimal string expression whose value is not greater than E8D4A50FFF
(hexadecimal), and N is a numeric expression whose rounded integer value is 16.

Converts a string expression S$ representing a number expressed in base N into the equivalent decimal
number. The value of the decimal equivalent can’t exceed 999,999,999,999 (decimal).

BSTRS Decimal to Binary, Octal, or Hexadecimal Conversion

SETRECX,ND

where X is a numeric expression, 0 < X < 999,999,999,999.5,
and N is a numeric expression whose rounded integer value is 2, 8, or 16.

Converts the rounded integer value of X (decimal) into the equivalent base N string.

Examples

Input/Result
brwalol@1a®, 25

16 The decimal value of 1010 (binary).

FELE R
bowval ihE, 20

15 The decimal value of the binary string “1111”.




bewaldbFEibs, 20 (RIN

A
N

[EX]

bztr$03, 22 [RIN

11
bztr&072, 20 [RIN

116
betrfibwal ("AFLICE"Y 16, 22 [RIN
1iaglilileanillionlians
betrdibwal 0"147780 8 +bhwal
CrETEY, ey, 20 (RN

155Es

Additional Information
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The decimal value of the blnary string
“11111111”. i

The binary representation of 3 kdecimal).

The octal representation of 72 ddecimal).

The binary representation of AF1C8
(hexadecimal).

The octal sum of 14772 (octal) and 570 (octal).

Three considerations determined the range of acceptable parameters for the base conversion keywords.

e The keywords give the exact answer for any integer in the range of acceptable f)arameters.

e The keywords are inverses of one another, so that composition in either direction is the identity

transformation for integers.

o The integers from 0 through 999,999,999,999 form the largest block of consecutive non-negative
integers that the HP-75 can display in integer format. |






Section 4
Array Input and Output

An array is a variable that is either singly subscripted (a vector) or doubly subscripte

d (a matrix), with a

range of values for the subscripts (dimension) limited only by available memory. Values for array

elements are stored sequentially in memory, in row order:
o From left to right along each row.

e From the top row to the bottom row.

An array can be one of three data types: FEfiL, SHORT, or INTEGER. Operations provided by the

Math Pac will not change the declared type of an array; when the values from

a FREAL array are

assigned to a “HOFT or IHNTEGEFR array, the values are rounded as they are stored into that array.

(Arrays are described in section 13 of the HP-75 Owner’s Manual; FERL, SHORET,
described in section 5.)

and THTEGEF are

Recall that the upper bounds of an array’s subscripts are determined by a dimensioning statement, and

that the lower bound of all subscripts in a program is determined by an OFT1H
e IFTINH EBAZE & sets the lower bound to zero.
o NFTIOH BAZE 1 sets the lower bound to one.

For calculator wvariables, GFTIOH ERSE & is always in effect. However, a

dimensioned under OFTI0OH EASE 1 will continue to have 1 for the lower bou
when the program is interrupted, until the program is deallocated. Note that L' I [, F

EFR=E statement:

program variable
nd of its subscripts
'EFAL, SHORT, and

IHTEGER statements executed in calculator mode will have no effect on program variables even if the
program is interrupted and the program variables are accessible. This is also true for the explicit and

implicit redimensioning implemented by the Math Pac.
Many array operations in the Math Pac are of the form
MFATresult array=operation: operand array(s) :

where the operand arrays are the arguments of the operation and the result array is

the array in which

the results of the operation will be stored. The operation changes only the result array.

|
It is wise to dimension every array before it appears in a Math Pac statement. (Re}

fer to section 13 in

the HP-75 Owner’s Manual for information on default dimensioning of arrays.) If an operation

redimensions an array, the array must have been given at least as many elements in} its original dimen-

sioning statement as there will be in the redimensioned array, but the numbers of rows and columns
|

need not be individually greater. |

23
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The keywords in this section can help you to:
¢ Change the size of an array.
e Fill an array with values.

¢ Display values already in an array.

Redimensioning an Array (}

)

The keyword RED I allows you to rearrange an array without destroying the information in the array.
The values are reassigned according to the new dimensions, and any extra values are inaccessible and
unaffected by operations on the array until you again redimension the array. (Some statements can
redimension an array before performing an operation. In these cases, the extra values will become
accessible when the array is redimensioned and then will be acted on by the operation.)

For example, if you redimension the 2 x 3 array shown below to a 2 X 2 array, you can no longer access
the elements 5 and 6.

1 2 3 1

If 4 5 is redimensioned to AL 5 and 6 become inaccessible.

In some cases a [1IF array statement should be followed by a 4 array statement using the same
parameters. This is necessary only if the array is later redimensioned, either explicitly or implicitly, and
only if the program segment that dimensions and redimensions the array will be executed more than
once under program control. Because the 11! statement is executed the first time that:the program
segment is executed but is skipped each subsequent time, the array won’t be reset to its initial size by
the [1 1M statement. The RE I} statement following the [ I# statement and using the same param-
eters is redundant the first time but properly resets the array to its initial size each subsequent time.
This rule also applies to REAL, SHORET, and IHTELGER statements that dimension an array.

REDIM Redimensioning

Aij Bij:
FEDIM .
Cik.ls Dim.n:

where A, B are vectors, and C, D are matrices, and j, j, k, |, m, n are numeric expressions.

Redimensions arrays and reassigns values in row order. A redimensioning subscript can be a numeric
expression; its rounded integer value becomes the upper bound of the corresponding subscript.

The total number of elements in the redimensioned array can’t exceed the total number of elements the
array was given in a dimension statement.
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Assignments

[
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imple Assignment

MAT A=B

where A, B are both vectors, or A, B are both matrices.

Redimensions A to be the same size as B and assigns to A the corresponding values
number of elements of A must be at least as large as the total number of elements

from B. The total
of B.

=( ) Numeric Expre

ssion Assignment

MAT A=0X2

where A is an array and X is a numeric expression.

Assigns the value of X to every element of A.

ZER

Zero Array

MAT A=ZER[redimensioning subscript(s) ]

where A is an array.

Assigns a value of zero to every element of A. If redimensioning subscripts are presen
just as FELI I would.

t, redimensions A

CON

Constant Array

where A is an array.

just as EEDIM would.

Assigns a value of one to every element of A. If redimensioning subscripts are present, redimensions A
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IDN Identity Matrix

MAT A=I0H
MAT B=I0OHIX, Y2

where A is a square matrix;
or B is a matrix, and X, Y are numeric expressions with the same rounded integer value.

For a square matrix A, assigns a value of one to every element on the diagonal of A and assigns a value
of zero to every other element.

For a matrix B, redimensions B to a square matrix with the upper bound of each subscript equal to the
rounded integer value of X and Y; then assigns a value of one to every element on the diagonal of B and
assigns a value of zero to every other element.

Array Input

READ Assign Values from Data Statements

MBT READ A[, B...

where A, B are arrays.

Assigns values to the specified array(s) by reading from one or more - statements in the same
program as the MAT FERD statement. Operation is similar to the FEAL keyword in the HP-75. For
each array, elements are assigned values in row order; if there is more than one array, they are filled in
the order specified.

This keyword can be used only in a program.
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INPUT Assign Values fro:m Keyboard Input

MAT IHFUT A[, B]...

where A, B are arrays.

Assigns values to the specified array(s) by prompting with the name of an array element and then
accepting a number from the keyboard as the value of that element. For each array, prompts are given
for the elements in row order; if there is more than one array, they are handled in the order specified.

When the name of an array element is displayed, enter its value by typing in the number and then

pressing (RTN]. You can enter values for several consecutive elements by separatinjg the values with

commas. When an array is filled, the remaining values are automatically entered into the next array.

After you press the computer will display the name of the next element to be assigned a value.
|

All values entered must be numbers; you cannot enter numeric variables or expressions.

Array Output

DISP Display in Standard Format

wr orera [ a][ ]

where A, B are arrays.

Displays the values of the elements of the specified arrays. The values are displayed in row order. Each
row begins on a new line; a blank line is displayed between the last row of an array and the first row of
the next array.

The choice of terminator—comma or semicolon—determines the spacing between the elements of an
array.
Terminator Spacing Between Elements

Close: Elements are separated by two spaces. A minus sign, if present, oc-
cupies one of the two spaces.

Wide: Elements are placed in 21-column fields.

If the last array specified doesn’t have a terminator, the array will be displayed with wide spacing be-
tween elements.
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PRINT Print in Standard Format

o wenira || ]

where A, B are arrays.

Prints the values of the elements of the specified arrays. Operation is identical to [M1HT [II=F except
that the output is sent to the FEIMTER I%Z device. (If no FEIMTER 1% device is present, the out-
put is sent to the DIZFLAY I% device.)

DISP USING Display Using Custom Format
format string . .
MET DIEF USITHG A B|..
statement number i :
where A, B, ..., are arrays.

Displays the values of the elements of the specified arrays in a format determined by the format string or
by the specified 1 MAGE statement. (Refer to section 16 of the HP-75 Owner's Manual for a description
of DIk L= IHG, format strings, IMAZE statements, and their results.)

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between
the last row of an array and the first row of the next array.

The terminators between the arrays—commas or semicolons—serve only to separate the arrays and
have no effect on the display format.

PRINT USING Print Using Custom Format

format string .
FIAT FREINT USIHG PA Bj..
statement number ;

where A, B are arrays.

Prints the values of the elements of the specified arrays in a format determined by the format string or
by the specified IMAGE statement. Operation is identical to that of M#T F  +0: except that
the output is sent to the FEIHTER 1% device. (If no F dev1ce is present, the output is
sent to the 11 =FLAY IS device.)




Examples

IDN, DISP USING

Input/Result
clear wars= [RIN
dim o adD, 20
mat a=ildn

mat dizp wzingw,d.dd" ;s

INPUT, REDIM, DISP, ZER, CON

Input/Result
mlear wars (RIN

dim biz, 23

mat input b

[an)
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ut and Output 29

The 3 x 3 identity matrix displayed with one
digit before the decimal point, two digits after the

decimal point, and one space b
displayed.

Dimensions B to be
are in OFTION BA

Prompts for first element’s value.

The values for

etween the values

rray (remember we

Prompts for next value to be assigned.

The values for &

The matrix displayed in close

»and B

formation.
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padim bol, 17
mut dizp b

mat h=Ezer

mat dizp b [RTIN

BB

radin bOZ, 20

mat dizp b

mat b=ooncd, 13

mat dizp kb [RIN

Fadim o2

mat oisp

Redimensions B to a 2 X 2 matrix. !
The values of the redimensioned maﬂrix.
Sets all the elements of B to zero.

The zero matrix.
Redimensions B to its original size. .

The values that were inaccesible are again acces-
sible, unchanged by mat b=zar.

Redimensions B to be a 4 X 2 array:and assigns
the value 1 to all elements.

The 4 X 2 constant array.

The value from the original matrix i$ unchanged.
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MAT READ, MAT DISP

To try this example, key in the program listed below and the program.

10 OPTION BASE 1

20 DIM A(2,3),B(3,1)

30 DATA 1,2,3,4

40 MAT READ A,B

50 MAT DISP A;B;

60 DATA 5,6,7,8,9,10,11

Input/Result

RUN
1 = 3 The array A is given the first
4 5 & data statements.

The remaining values of the [
would be assigned to the next

MAT READ statement, if ther

and Output 31/32

|

six values in the

. And the array B is given the next three values.

FiTH statement
array in a
e were one.
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Matrix Algebra

Arithmetic

The keywords below perform standard arithmetic operations on arrays. Be sure that
the operand arrays are compatible with the particular operation.

the dimensions of

o For addition and subtraction, the operand arrays must both be vectors or bOtl’,‘l be matrices, and
they must have the same number of rows and the same number of columns. In this case we will say

that the arrays are conformable for addition. }

|
o For multiplication, the arrays can be matrices with the number of columns of the first operand

equal to the number of rows of the second operand. You can also multiply a mat
long as the vector is the second operand and the number of columns of the mat
the number of rows of the vector. In either case, we will say that the arrays a
multiplication.

The result array is automatically redimensioned (if possible) to be the correct size.

rix and a vector as
rix is the same as
re conformable for

Negation

where A, B are both vectors or both matrices.

Redimensions A to be the same size as B and assigns to each element of A the ne
responding element of B.

gative of the cor-

+

Addition

MAT A=B+C

where A, B, C are all vectors or all matrices, and B, C are conformable for addition.

Redimensions A to be the same size as B and C, and assigns to each element of
values of the corresponding elements of B and C.

A the sum of the

33
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- Subtraction

MAT A=B-C

where A, B, C are all vectors or all matrices, and B, C are conformable for addition.

Redimensions A to be the same size as B and C, and assigns to each element of A the difference of the
values of the corresponding elements of B and C.

b3 Matrix Multiplication

where B is a matrix, A, C are both vectors or both matrices, and B, C are conformable for multiplication.

Redimensions A to have the same number of rows as B and the same number of columns as C. The
values of the elements of A are determined by the usual rules of matrix multiplication.

( )* Multiplication by a Scalar

FIAT A=CX3%B

where A, B are both vectors or both matrices, and X is a numeric expression.

Redimensions A to be the same size as B and assigns to each element of A the product of the value of
X and the value of the corresponding element of B.

Operations

INV Matrix Inverse

FMET A=THW OB

where A is a matrix and B is a square matrix.

Redimensions A to be the same size as B and assigns to A the values of the matrix inverse of B.
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TRN

Matrix Transpose

MAT A=TEH B2

where A, B are matrices.

Redimensions A to be the same size as the matrix transpose of B, and assigns to A
matrix transpose of B.

the values of the

CROSS

Cross Product

MAT A=CREOSZ2:0B,CH

where B, C are both vectors having three elements, and A is a vector.

Redimensions A to have exactly three elements and assigns to A the values of the cros

s product B x C.

RSUM

Row Sum

MAT A=RELMoB

where A, B are arrays.

If A is a vector, redimensions A to have as many elements as there are rows in B
redimensions A to have as many rows as B and to have exactly one column.

Assigns the sum of the values in each row of B to the corresponding element of A.

if A is a matrix,

CSUmM

Column Sum

MAT A=CSLMOB

where A, B are arrays.

redimensions A to have as many columns as B and exactly one row.

Assigns the sum of the values in each column of B to the corresponding element of

If A is a vector, redimensions A to have as many elements as there are columns in B; if A is a matrix,

A.
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Examples

( )%k, %k, INV, CSUM, RSUM

Input/Result

clear wars (RIN

dim al®, 20, b0Z, 2, 003,30

mat a=coniZ, 1 A is now a 3 X 2 constant matrix.
mat disp = [RIN

The scalar product of a numeric expression and
an array. ‘

15 15 Note that C was redimensioned to be a 3 x 2
1% 15 matrix.

mat input b

Bop,Bay

L& = The matrix B.
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[ The matrix product BA.
I
mET =i b Inverts the matrix B.
mat disge ki |[RIN
- | The matrix inverse of the matrix B.
[ | =
5} Il 1
mat z=kh#c [RIN This should “undo” the earlier multiplication by
B.
mat diszp a3 [RIN
i1
i1
i1
Pt =R
disp o) |RTN
K Sum of each column of A. Note that C was

redimensioned to be a 1 X 2 matrix.

Sum of each row of A. Note that C was
redimensioned to be a 3 X 1 matrix.
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Additional information:

The IHW keyword uses the LU decomposition (described in section 7), together with extended preci-
sion arithmetic, to produce an accurate inverse. Special attention is paid to matrices that are nearly
singular—that is, close to a matrix which is not invertible. Consider the matrix shown below.
1 3 0
0 0 1
666666666667 2 0

Although this matrix is very nearly singular, it can be succesfully inverted using the I keyword:

Input/Result
clear wvars
dim &tz Ey, b0z, 20
mat input @
FOE, BT Prompts for the first element.

Prompts for the next element.

A now represents the matrix given above.

B is now the computed inverse of A

The product of the matrix and its computed in-
R verse is the identity.

If the matrix to be inverted is singular, then the LU decomposition is changed by an amount, which is
usually small in comparison with roundoff error, to yield a nonsingular matrix. It is this nonsingular
matrix which is then inverted.
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Real-Valued Matrix Functions

The keywords in this section are functions that use arrays as arguments and give a real number as a
value. Like other HP-75 functions, they may be used alone or in combination with other functions to
produce numeric expressions.

Determinants

DET Determinant

DETCAY

where A is a square matrix.

Returns the determinant of the matrix A.

DETL Determinant of Last Matrix

Returns the determinant of the last matrix that was:
e Inverted in a MAT . . . ITHY statement.

e Decomposed ina MAT. . . LUFACT statement (described in section 7).

e Used as the first argument of a MAT . . . 5% % statement (described in section 8).

DETL retains its value (even if your HP-75 is turned off) until another

4

L LUFRCT, or MAT . . L 2% S statement is executed.

39
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Matrix Norms

FNORM Frobenius (Euclidean) Norm

FHORMCAD

where A is an array.

Returns the square root of the sum of the squares of all elements of A.

RNORM Infinity Norm (Row Norm)

where A is an array.

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a
row.

CNORM One-Norm (Column Norm)

CHOREMCAR

where A is an array.

Returns the maximum value (over all columns of A) of the sums of the absolute values of all elements in
a column.

SUM Array Element Sum

A

where A is an array.

Returns the sum of the values of all elements in A.
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ABSUM

Array Element A

bsolute Value Sum

ABESLUCAD

where A is an array.

Returns the sum of the absolute values of all elements in A.

AMAX

Array

Element Maximum

AMHSCAY

where A is an array.

Returns the value of the maximum element in A.

AMIN

Array Element Minimum

APMTHCA

where A is an array.

Returns the value of the minimum element in A.

MAXAB Array Element Maxim

um Absolute Value

MHERECAS

where A is an array.

Returns the value of the largest element (in absolute value) in A.

MINAB Array Element Minim

um Absolute Value

MIHAECAY

where A is an array.

Returns the value of the smallest element (in absolute value) in A.
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inner Product

DOT inner (Dot) Product

DOToX, Y32

where X, Y are vectors with the same number of elements.

Returns X - Y, the inner product of X and Y.

Subscript Bounds

UBND Subscript Upper Bound

HEHDCAL N3

where A is an array and N is a numeric expression whose rounded integer value is 1 or 2.

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector,
LHEHD R, 20 = —1.

LBND Subscript Lower Bound

LEHDCA, NG

where A is an array and N is a numeric expression whose rounded integer value is 1 or 2.

Returns the option base in effect when A was dimensioned. If A is a vector, L EMHII ¢ A

Examples

DET, DETL, RNORM, UBND

Input/Result
RTN

;)

o im



mat input a

=4
mat Aa=inwial
det 1 [RIN]
24
mat S=ifw &0
mogt _‘il:l:’ ER RTN
1B & @
1z o@ oo
S O
i1 1 4
F R B A2 |RTN

Section 6: Real-Valued Ma

Entering the elements of a ma
time makes the data entry eas
accurate.

The determinant of A.

Computes the inverse of A.

trix Functions 43

trix one row at a
ier and more

Displays the determmant of the last matrlx in-

verted in a MAT . . . THY, MA
MAT. . LUFACT statement.
the determinant of the matrix

The original matrix A.

T, &Y or
In thlS case, it is
A.

The sum of the absolute Valueg of the elements
in the rows are (in order) 1, 3, 5, 7. The maximum

of these is 7.
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redim ac®, 40
ubmdca, 1y

After redimensioning, the upper bound of the
first subscript of A is 2 ...

Wb e, 2o

4 And the upper bound of the second subscript is
4.

ABSUM, AMIN, DOT

Input/Result

clear wars [RIN

dim =04, gody, a0z, 1
mat inpudt o =.d.a

o R The HP-75 prompts you for the first element to
be assigned ...

DL, B

YR T And when the first array is full, it begins filling
the next matrix in the MAT IHFUT statement.
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-2 [RIN
mat disp wiwia: [RIN
1 The vector X.
5
i The vector Y.
5
1
SR The matrix A.
AT, Ay, absumiyl
12 6 = |1] + [2]| + |3| + |0] + |0}
12 = [3] + |2| + |1| + |—1] +|=2] + |=3]|
6 =10 + 10| +|—=3] + |—2] 4+ |—1]

]
t

w
|

= min {3, 2,1, -1, —2, —
min {1, 2, 3, 0, 0!.

o
I

-3 = min {0, 0, —3, —2, —1}

RTN

Additional Information:

iy

The inner product of X and Y|

The L
and cLE
matrix argument is very nearly singular. This condition can be detected with i
result very close to zero, then the matrix argument in the corresponding operation is
lar and the result should be interpreted accordingly.

Yy

keyword is most useful in direct conjunction with the |

% statements. In each of these, the result of the operatlon is less‘

very nearly singu-
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The DET keyword computes the determinant of a matrix by first decomposing the matrix into its LU
form. (The next section in this manual describes LU decomposition.) If the matrix is singular—that is,
its determinant is equal to zero—it may not have an LU decomposition. This may cause underflow or
overflow warnings to be generated, but it will not affect the result of the OET function.



Section 7

LU Decompositon

A number of operations in the Math Pac, including DET, 5%%, and IHY, use the LU decomposition of
a matrix as an intermediary step. The keyword below gives you access to this powerful operation for
your own use. |

LUFACT LU Decomposition

MAT A=LLUFACTIB:

where A is a matrix and B is a square matrix.

Redimensions A to be the same size as B and assigns to A the values of the LU decomposition of B:
s The elements in A above the diagonal are assigned the value of the corresponding elements in U.

e The elements in A on or below the diagonal are assigned the value of the corresponding elements
in L.

Example

Input/Result

Clear wars |RIN
dim atz.2o
mat input 3

Ho@, @y
1.1,1[RN]
1.8, 1(RN)
Z.1.2|RIN

47
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N | The L part of the LU decomposition of A is
1 -5 @
1 M _2 ]

1 -5 ,

1 .5 0

the U part of the LU decomposition of A is

- -

5 1
01,
B |
so that
2 0 0 1 5 1
L=|1 -5 OlandU =10 1 0
1 b 0 0 0 1

Additional information

The Math Pac LU decomposition factors a square matrix A into the matrix product LU, where
e L is a lower-triangular matrix—it has values of zero for all elements above the diagonal.
e U is a upper-triangular matrix—it has values of zero for all elements below the diagonal—with

values of one for all elements on the diagonal.

For example,
2 1 2 0]1 5

for any pair of lower- and upper-triangular matrices L. and U. However, if rows are interchanged in the
matrix to be decomposed, then any non-singular matrix can be so decomposed. Row interchanges in the
matrix A can be represented by the matrix product PA for some permutation matrix P. Allowing for
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row interchanges, the LU decomposition can be represented by the equation PA =
above example

PA = = = = LU.

Row interchanges can also reduce rounding errors that can occur during the ¢
decomposition.

The Math Pac uses the Crout method with partial pivoting and extended precision
struct the LU decomposition. The LU decomposition is returned in the form

[L U]'

For example, if the result of the MAT A=LLUFAIT R statement is

ecomposition 49

= LU. So, for the

alculation of the

arithmetic to con-

2 3 4 2 0 0 1 3 4
A=|5 6 7|,thenL=|5 6 0|landU=|0 1 7
8 9 2 8 9 2 0 0 1

and PB = LU for some row interchange matrix P.

It is not necessary to store the diagonal elements of U in the result matrix since tﬁe value of each of
these is equal to one. The row interchanges are also recoverable in many cases because, aside from row
interchanges, the first column of L is the same as the first column of the matrix being decomposed.

1 0
For example, if B = 0 and MAT F={ U
1

B+ is executed, then A

2 5
1 -5

The fact that the first column of A is reversed from the first column of B indicates that the rows have

been interchanged, so that

0 1]]1 © 2 1 2 0 1 .5
1 0|2 1 1 0 1-5](0 1
In many cases, the LU decomposition will be correct even if the matrix is singular. T

by remultiplying the L and U matrices and comparing the result to the original m
gives you the ability to find the LU decomposition of matrices that are not square.

his can be checked
atrix. This feature
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For example, to find the LU decomposition of the 3 X 4 matrix

1 2 3 4
1 4 9 16],
1 8 27 64
we will find the decomposition of

—1 2 3 4 T
1 4 9 16

1 8 27 64
00 0 O

instead. From this decomposition, the LU decomposition of the original matrix is easily found. The
keystroke sequence below illustrates the process.

Input/Result
clear wars
dim ! I

mat input =

mat s=lufactiz)

mat disp =: |[RIN
i = 3 4
i i 4 1&
1 & -2 4
G 5] i 5




Therefore

Their matrix product is

so that

This technique works best when the matrix has fewer rows than columns. If your
columns than rows, find the LU decomposition of its transpose by the above techn

transpose of the result.

= DN

8

27
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1 2 3 4
0 1 4 10
and U=
0 0 1 4
0 0 0 1
9 3 4]
8 27 64
4 9 16|
0 0 0
4 1 0 of|lt 2 3 4
16]=|1 6 0]]l0 1 4 10
64 1 2-2[|lo 0o 1 4

mposition 51/52

matrix has fewer
que, and take the






Section 8
Solving a System of Equations

The Math Pac provides you with a quick and accurate way to solve a system of lin

ear equations. The

first step in using this capability is to translate the system of equations into a triple of arrays: the
result array, the coefficient array, and the constant array. The result array corresponds to the variables
in the equations; the coefficient array holds the values of the coefficients of the variables; the constant
array holds the values of the constants in the equations. For example, if you wanted to solve the system

of equations

1llx + 12y + 132 =1
21x + 22y + 232 = 2

3lx + 32y + 332 =3

then the result array would correspond to the array

the coefficient array would be
11 12 13
21 22 23
31 32 33

3

and the constant array would be

53
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If we denote the result array by X, the coefficient array by A, and the constant array by B, then the
system of equations can be written in matrix notation as AX=B. This is the form assumed by the
%Y S keyword.

SYS System Solution

MATX=5YS (A, B

where A is a square matrix, X, B are both vectors or both matrices, and A, B are conformable for
multiplication.

Redimensions X to be the same size as B and assigns to X the values that satisfy the matrix equation
AX=B.

Example

To solve the system of equations given in the introduction, namely,
11x + 12y + 132 =1
21x + 22y + 23z = 2
3lx + 32y + 33z = 3

we could use the following keystrokes.

Input/Result
clesr wars
x
dim w020, bOZy, al2, 20 X will represent | y
2
maat it b
Bopes
1
1,2, 3 (RN B will be | 2

3
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mat input @

11 12 13
11,012,132, 21,82, 2%2,21, 38, 23 [RIN] Awillbe| 21 22 23
31 32 33

mat disp ) |RIN

I
n e

Solving the Steady-State Heat Equation |
A rectangular plate, with a length-to-width ratio of 6 to 5, has its edges held at a constant temperature
of 0.* The plate also has a number of internal heat sources or sinks with the result that these points
are held at constant temperatures, perhaps different from 0. Find the steady-state heat distribution
throughout the plate. |

The Model |

|
The plate will be modeled by a rectangular lattice of points, any number of which can be designated as
sources or sinks of heat. The temperature of a lattice point at location (i, j) will be denoted by T(, j)
(1<i<b, 1<5<6). i

* The equations are independent of the temperature scale used, so that this only represents the zero of this temperature scale.
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The system of equations that models the steady-state heat distribution is derived from the “average of
nearest neighbors” technique:

The given value if (i, j) corresponds to a source or a sink.

76, )= TG+ 1)+ TG = Lj)IT(i,j + D)+ TGJ =1

otherwise, with the

convention that T(m, n) = 0 if (m, n) represents a location outside the lattice.

For example, if (4, 2) is not the location of a source or sink, then

T(,2) +T3,2) + T4, 3 + T4, 1) .

T4, 2) = 4

We can redimension the 5 X 6 array T with elements T'(i, j) to be a 30 X 1 array X with elements
X(k, 1) by the formula

X(k, 1) =T, j) for k=6 —1) +J.
The correspondence between indexes can be defined equivalently by

k—1

[ = int 4+ 1andj=mod (k—1, 6) + 1.

Now the system of equations can be written in the form X = CX + B, where C is the 30 X 30 matrix
given by

.
0 if (i, j) corresponds to a source or sink,

where i = int ©-21 + 1 and j = mod (k — 1, 6) + 1.

c,, = 3 % if (7, ) is a nearest neighbor to (i, j),

wherei’=intng1 4+ 1landj = mod (n — 1, 6) + 1.

L 0 otherwise.

and B is the 30 x 1 matrix given by

The given value if k corresponds to a source or sink.

b, =
1 0 otherwise.

The system of equations can finally be written as the matrix equation AX=B where A=(I—-C) and 1

is the identity matrix. This is the form required by the %% keyword and the form we will use to solve
the equations.



The Program

10 OPTION BASE 1
20 SHORT A(30,30)

30 DIM B(5,6)

40 MAT B=ZER @ MAT A=IDN

50 INPUT“Number of sources/sinks?”;N
60 FOR L=1 TO N

70 INPUTLJ,T(1,J)";1,d,B(1,J)

80 NEXT L
90 DISP “Solving; please wait”
100 REDIM B(30,1)

110 FOR K=1 TO 30

120 IF B(K,1)<>0 THEN GOTO 190

130 I=INT((K-1)/6)+1
140 J=MOD(K-1,6)+1
150 IF J<6 THEN A(K,K+1)=—.25

160 IF J>1 THEN A(K K-1)=—.25
170 IF 1<5 THEN A(K,K+6)=—.25
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Since A will consist of 0’s, 1’s and —%4’s, we can
use this data type to save memory.

B is the source/sink array and will be used to
store the final results.

Gets the locations and temperatures at the
sources and sinks. i

Rearranges B as a one-column array in
preparation for using the system solver.

Begins construction of the matrix A. K
corresponds to that row of A currently under
construction. ‘

We check whether a location is;a source/sink by
checking whether the assigned jt‘emperature is
non-zero.* If it is a source/sink, we go on to the
next location, leaving the entire row of A
unchanged from the correspondﬁng row of the
identity matrix. If it isn’t a source/sink, we
continue the computation of the elements of the
Kth row of A. i

Computes the (I,J) position froﬁ K.
|

If the nearest neighbor isn’t off the edge, assigns
-Y to the corresponding element of A.

* If a source is supposed to have zero as a given temperature, do not enter zero for its value. Instead, enter a very small but non-

zero number; 1E-40 will work.
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180 IF I>1 THEN A(K,K-6)=—.25

190 NEXT K

200 MAT B=SYS(A,B)} Solves the equations and stores the results in B.
210 REDIM B(5,6) Arranges the results in lattice form.

220 MAT DISP USING"x,dd.d";B This will display the results in a compact lattice

form. If your results have more than two digits
to the left of the decimal point, this display will
be inadequate.

Using the Program

Suppose there is one source located at position (2, 3) that maintains a 10-degree temperature dif-
ference. We would run the program and when prompted with rumber of itk =7 we
would respond with 1. When prompted with I ../, T<I,.1%% we would respond with 2,73, 13, The
program would then display

=] e i
ES
[l AR I

o G0 A
Lo A

el 1

WD TG
oy

This is the lattice of temperatures in the plate under these conditions.

Additional information

The %4% keyword solves the matrix equation AX = B for X in several stages. First, the LU de-
composition of A is found to give PA = LU. (LU decomposition is described in section, 7.)

Using PA = LU, the equivalent problem is to solve LUX = PB for X. This is done by solving
LY = PB for Y (forward substitution) and then solving UX =Y for X (backward substitution). This
value for X is used as a first approximation to the desired solution in a process of iterative refinement,
which produces the final result.

In many cases, the Math Pac will arrive at a correct solution even if the coefficient array is singular (so
that the formula X = A7'B is invalid). This feature allows you to use %% % to solve under- and over-
determined systems of equations.
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|
For an under-determined system (more variables than equations), the coefficient array will have fewer
rows than columns. To find a solution using =Y =:

e Append enough rows of zeros to the bottom of your coefficient array to make it square.

e Append corresponding rows of zeros to the constant array.

You can now use these arrays with the %% 5 keyword to find a solution to the original system.

For an over-determined system (more equations than variables), the coefficient arrjay will have fewer
columns than rows. To find a solution using =% =: ‘

o Append enough columns of zeros on the right of your coefficient array to make it square.

e Be sure that your result array is dimensioned to have at least as many rows as the new coefficient
array has columns.

e Add enough zeros on the bottom of your constant array to ensure conformablllty
\

You can now use these arrays with the == keyword to find a solution to the or1g1na1 system. Only
those elements in the result array that correspond to your original variables will be meaningful.

For both under- and over-determined systems the coefficient array is singular, so yo‘u should check the

results returned by %'Y'5 to see if they satisfy the original equation.

The %% keyword can also be used for inverting a square matrix A. A7 MR

the inverse of A if X, A, B are all dimensioned to exactly the same size and if B is chosen to be the
identity matrix. This technique is more accurate and generally faster than MRT H=THW AL, but it

requires more memory for its operation. (Refer to appendix B for information about memory
requirements).







Section 9

Complex Variables

The keywords in this section enable you to perform algebraic operations on complex numbers in a
simple and efficient way. The HP-75 Math Pac can interpret any array with exactly two elements as a
complex number. In particular, a 1 X 2 matrix, a 2 X 1 matrix, and a two-element vector can all repre-
sent complex numbers. If an array Z represents a complex number 2, then the value of the first element
of Z is the real part of z and the value of the second element of Z is the imaginary part of z. For
example, the arrays

[1 2] and

both represent the complex number 1 + 2(—1)”* = 1 + 2i. Throughout this section we will refer to an
array with exactly two elements as a complex scalar.

The operand arrays for these keywords must be complex scalars. However, you need not ensure that the
result array is a complex scalar. If it is not, it will be automatically redimensioned t6 have exactly two
elements. The result array must, therefore, have been given at least two elements in its original dimen-
sioning statement. If the result array is doubly subscripted, it will be redimensioned to be a 1 x 2
matrix. If it is singly subscripted, it will be redimensioned to have exactly two elements. This feature
allows two-element arrays to be used interchangeably for complex operations.

Polar/Rectangular Conversions

Since the Math Pac assumes rectangular (Re + iIm) form for all complex numbers, two operations are
provided to change a pair of numbers representing the magnitude (R) and angle (9) Qf a complex num-
ber into the real and imaginary parts of that complex number, and vice versa. !
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CPTOR Polar to Rectangular Conversion

MAT Z=CFRTORCAD

where A is an array with two elements and Z is an array.

Redimensions Z to be a complex scalar; then assigns to the first element of Z the real part, and to the
second element of Z the imaginary part, of the complex number R exp (i), where R is the value of the
first element of A and 9 is the value of the second element of A.

¢ will be interpreted as degrees or radians, according to the CFTIOH AHGLE in effect.

CRTOP Rectangular to Polar Conversion

MAT A=CRETOFCZ:

where Z is a complex scalar and A is an array.

Redimensions A to be a complex scalar; then assigns to the first element of A the magnitude, and to the
second element of A the angle, of the complex number x + iy, where x is the value of the first element
of Z and y is the value of the second element of Z.

The angle will be given in degrees (—180 < § < 180) or in radians (—= < f < =) according to the
DFTION AMGLE in effect.

Complex Arithmetic Operations

CONJ Complex Conjugation

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to the first element of Z the value of the first
element of W and assigns to the second element of Z the negative of the value of the second element of

w.
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CADD

Complex Addition

MAT Z=CHOD W, U

where W, U are complex scalars and Z is an array.

Redimensions Z to be a complex scalar and assigns Z the values corresponding to the
W+ U

complex number

CcSsuB Complex Subtraction

MAT Z=CSUEBCW, U2

where W, U are complex scalars and Z is an array.

w-u

Redimensions Z to be a complex scalar and assigns Z the values corresponding to the complex number

CMULT Com

plex Multiplication

MAT Z=CHMULTCW, U2

where W, U are complex scalars and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the values correspondin
number Wx*U.

g to the complex

CDIvV

Complex Division

MAT Z=COIWIW, U2

where W, U are complex scalars, U # (0, 0), and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the values correspondin
number W/U.

g to the complex
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CRECP

Complex Reciprocal

MAT Z=CRECEF W32

where W is a complex scalar, W # (0, 0), and Z is an array.

number 1/W.

Redimensions Z to be a complex scalar and assigns to Z the values corresponding to the complex

Examples

CPTOR, CRTOP

Input/Result
mlear war = [RTN

oEption armale deareez [RIN

dim wild, uil, @8, z02, 2 [RIN]

mat lrput

Mo

16, 95 (RIN]

mat TEoptor (wl

mat dizp z: |RTIN

mat input ou

The HP-75 will now use degree measure for the
angle in CETOF and UF TOR conversions.

W and U are dimensioned as two-element arrays
and so are both complex scalars. It will be possi-
ble to redimension Z as a complex scalar, since it
has more than two elements.

W will be used to represent a vector with mag-
nitude 10 and angle 90 degrees.

Z is the complex number 0 + 10i, which is the
rectangular representation of W.

U represents the complex number 3 — 4.



mat diszgp =z [RIN

So-53,13

= .11

T

i

option andle radians
Mat T=Crtoapo?

mat dis=p =z [RIN

n
|
L
[
-1
fal
]
DRI
4
—_
0
(%]
[ax}
%]

CADD, CMULT, CRECP

Input/Result

clear war = [RIN

dim o2, 30 ,wol@, 1y, il
mat input u

doans

1.1
mat wEorecpiul

mat dizp wi [RIN

mat disp =i (RIN

|
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Z now represents the magnitude (5) and the di-
rection (—53.1301023542 degreés) of the vector U.

|
In this case, the direction is given in radians.

U represents the complex number 1 + i,

W represents - ..
i

Which equals .5 — .51.

1 .
Z t: 1 .
represents ——— + 1 +9)

Which equals 1.5 + .5i.
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mat T=omudlti, T Z represents (1 + 1) < 113 + (1 + l)>
1

mat dizp = |RTN

Which equals 1 + 2i.
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Complex Functions

Many useful functions are defined for complex as well as real arguments. The keywords below give you
access to a number of these functions. Since the values of these functions are, in general, complex
numbers, their syntax is closer to that of array operations than to their real- valued counterparts. Al-
though the result array need not be a complex scalar for these keywords, it must have been given at
least two elements in its original dimensioning statement.

These keywords will produce error (or warning) messages if the conditions listed iﬁ their descriptions
are not satisfied. They will also produce error or warning messages if either the real or the imaginary
part of the function’s value cannot be represented in the range [—9.99999999999E499, —1E—499],
[1E-499, 9.99999999999E499] or 0. The two-dimensional nature of these functions precludes giving
more simple bounds for the arguments that will avoid all such error messages. In addition, if either the
real or imaginary part of the value for any of the functions TS IH, CCOE, TEIHM,
CPOMWER is too large to be represented by the computer and so produces a riim T |
sage and returns a value of +9.99999999999E499, it is quite likely that the other part of the value
returned is inaccurate.

Simple Transcendental Functions

All keywords in this section involve trigonometric functions and always take their arguments to be in
radian measure, even if OGFTIOMN AHGLE DECREEES is in effect.

CEXP Complex Exponential

MAT Z=CEAFCWD

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the values of the complex e;xponential of W. If

W represents the complex number x + iy, then Z will represent the complex numbe;r
|

exp (x + iy) = &* (cos y + i siny).
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CSIN Complex Sine

MAT Z=CSIHCW?
where W is a complex scalar, |Im (W)| < 2300.28250791, and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the values of the complex sine of W. If W
represents the complex number x + iy, then Z will represent the complex number

sin {(x + iy) = sinx coshy + i cos x sinh y.

CCOS Complex Cosine

where W is a complex scalar, |Im (W)] < 2300.28250791, and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the values of the complex cosine of W. If W
represents the complex number x -+ iy, then Z will represent the complex number

cos (x + iy) = cos x coshy — i sin x sinh y.

CTAN Complex Tangent

MAT Z=CTHHOW:

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the values of the complex tangent of W. If W
represents the complex number x + iy, then Z will represent the complex number

sin(x +iy) _ sinxcosx + isinhy coshy

cos (x + iy) sinhzy + cos®x

tan (x + iy) =




|
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CSINH Complex Hyperbolic Sine

MAT Z=CSIHHOWD ;
where W is a complex scalar, |Re (W)] < 2300.28250791, and Z is an array. |

sinh (x + iy) = (—i) sin (—y + ix).

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyderbolic sine of W.
If W represents the complex number x + iy, then Z will represent the complex numbjer

CCOSH Complex Hyperbolic Cosine

MAT Z=CCOSHOW X
where W is a complex scalar, |Re (W)| < 2300.28250791, and Z is an array.

cosh (x + iy) = cos (—y + ix).

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic cosine of
W. If W represents the complex number x + Jy, then Z will represent the complex number

CTANH Complex I{Iyperbolic Tangent

MAT Z=CTAHMHHOW

where W is a complex scalar and Z is an array.

tanh (x + iy) = (—i) tan (—y + ix).

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic tangent
of W. If W represents the complex number x + iy, then Z will represent the complex number

Inverse Functions

The keywords in this section give you the ability to compute the principal values of
plex inverse functions. A description of the principal branches and values chosen
functions is given in “Additional Information” at the end of this section.

Although the result array need not be a complex scalar for these keywords, it must
least two elements in its original dimensioning statement.

a number of com-
for these inverse

have been given at
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CSQR Complex Square Root

MAT Z=CS0R CWa

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the square root
of W.

CPOWER Complex Power

MAT V=CFOWERCZ, Wi

where Z, W are complex scalars, Z # (0, 0) if Re (W) < 0, and V is an array.

Redimensions V to be a complex scalar and assigns to V the complex principal value of ZV. 1fZand W
represent complex numbers z and w respectively, then V represents the complex number exp (w In z).

CLOG Complex Logarithm

MAT Z=CLOG W2

where W is a complex scalar, W # (0, 0), and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the logarithm of
W. If W represents the complex number

R (cos 0 + i sin 9)
where —7 < # < = (radian measure), then Z represents the complex number
InR +i6.

CASIN Complex Inverse Sine

MAT Z=CASTH WD

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse sine
of W.
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CACOS Complex Inverse Cosine

where W is a complex scalar and Z is an array. |
|
I

Redimensions Z to be a complex scalar and assigns to Z the complex principal vame of the inverse
cosine of W. ‘

CATN Complex Inverse Tangent

MAT Z=CHTHOW?

where W is a complex scalar, W = (0, 1) or (0, —1), and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse
tangent of W.

CASINH Complex Inverse Hyperbolic Sine

MAT Z=CASIHHOW?

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse
hyperbolic sine of W.

CACOSH Complex Inverse [Hyperbolic Cosine

MBAT Z=CHCOSHIW?

where W is a complex scalar and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse
hyperbolic cosine of W.
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CATANH Complex Inverse Hyperbolic Tangent

MAT Z=CATHMHH W

where W is a complex scalar, W = (1, 0) or (—1, 0), and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse
hyperbolic tangent of W.

Roots of a Complex Number

This keyword allows you to easily and accurately determine the set of all Nth roots of a complex num-
ber, where N is a positive integer. The roots are returned in an N X 2 array where each row represent-
ing a complex root, with the real part of the root in the first column and the imaginary part of the root
in the second column. Successive roots are in order of increasing argument (angle). The result array
must have been given at least 2N elements in its original dimensioning statement.

CROOT Roots of a Complex Number

MAT R=CREOOTCZ, N3

where R is a matrix, Z is a complex scalar, and N is a numeric expression whose rounded integer value
is positive.

Redimensions R to be an P x 2 array (where P is the rounded integer value of N) and assigns to R all
the values of Z'/”.

Examples

CSIN, CTAN, CCOSH, CACOSH

Input/Result

ezl

dim molr, wiZ, 20 Z is dimensioned to be a complex scalar. W is just
an array.

LR R RO D

mat inmput = [RIN

PR Ve




Input/Result

I

mat wEosinizl
mat diszp w: [RTN

2014V eez23

22 1.9265370e213

Mat WwEstapezd

mat dizgp w: [RTN

mat w=cacoszhiz)

mat dizp wi [RIN

mat wEoooshow
mat dizp w [RIN

21 -2
CSQR, CLOG
Input/Result

=lsar warz=|RIN

default on

dim 2101y, 2208, 1, ril, @0

mat input =Tl.zZ |RIN

Sl 0BT
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Z now represents 21 — 2i.

The complex sine of 21 — 2i.

The complex tangent of 21 — 2i.

73

The principal value of the invense hyperbolic co-

sine of 21 — 2i.

The hyperbolic cosine of the principal value of

the inverse hyperbolic cosine of 21 — 2i.

The values we will use will produce error messages

and stop the operation unless we choose the

DEFARULT OH option.

All of these are dimensioned to be complex
scalars.
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mat r=csqr izl Bmat disp RTN
MARMIMNG :ram too =mall
[S|

mat rEocEqr iz EBmat disp RTN
MARMHIHG  num too zmall
]

mat r=clogizlE@mat dizg RTN
MARHIHG i mum too =mall
BOE, 1415226

mat v=Eologdz2iBmat disp RTN

MAHREHIHG (rum too 2mall
[ 3

-3 14150285355

Additional Information

Z1 represents —1 + EF S

And Z2 represents —1 — EF 51,

The warning indicates that the result is so close
to the imaginary axis that its real part is less than
1 E-4%% and so cannot be shown as anything
but zero, even though it is nonzero. The principal
value of the square root of —1 + EF % is thus
very close to 0 + i.

The warning here occurs for the same reason as
the previous warning. The result this time is very
close to 0 — i. The jump between this value and
that of the previous example is the direct con-
sequence of the branch cut along the negative
real axis for the complex square root function.

Again, the jump in value from =i to —xi when
the argument changes from —1 + EF % to

—1 — EF51is a direct result of the branch cut,
this time for the complex logarithm function.

In general, the inverse of a function f(z)—denoted f !(2)—has more than one value for any argument z.
For example, cos™'z has infinitely many values for each argument. However, the Math Pac calculates
the single principal value, which lies in the part of the range defined as the principal branch of the
inverse function f (2). In this discussion, uppercase letters will denote a single-valued inverse function

(like COS™!2) to distinguish it from its multivalued inverse (cos™

12).



For some inverse functions, the definitions of the principal branches are not univer
The branches used by the Math Pac were carefully chosen. They are all analytic in
their real-valued counterparts are defined; that is, the branch cut occurs where the r

Section 10: Compliex Functions

is undefined. In addition, most of the important symmetries are preserved. For example,

SIN Y(—2) = —SIN (2) for all z.

75

sally agreed upon.
the regions where
eal-valued inverse

The illustrations that follow show the principal branches of the inverse functions that the Math Pac
calculates. The left-hand graph in each figure represents the cut domain of the inverse function; the

right-hand graph shows the range of the principal branch. The blue and the black lin
graph are mapped, under the inverse function, to the corresponding blue and black

hand graph.

VZ=\re?tfor —r <0<

/

es in the left-hand
lines in the right-

< M

S5
I
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LN(z) = Inr +ifdfor —n7 <0 <~
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cosh™'(2) = In[z + (22 — 1)"]]

S

| I
f t in ,
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| —1 0 1 | ’
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| N
I
I

|
!
t
|
|
|

z w = COSH™ '(z)

The principal branches in the last four graphs above are obtained from the equations shown, but don’t
necessarily use the principal branches of In z and /z.

The remaining inverse functions may be determined from the illustrations above and the following
equations:

SINH !(z) = —i SIN™ Y(iz)
TANH '(z) = —i TAN 1(jz)
w® = exp (z LN w)

To determine all values of the inverse functions, use the expressions below to derive these values from
the principal values calculated by the Math Pac. In these expressions, k = 0, +1, 2, and so on.

Vz = £SQR(2) In(z) = LN(2) + 2nik W= wf elrik
sin"'(z) = (=1)* SIN " '(2) + =k sinh }z) = (—1)* SINH Y(2) + =ik
cos™!(2) = £COS7(2) + 27k cosh™'(z) = +COSH '(2) + 2rik

tan '(z) = TAN (z) + =k tanh™!(z) = TANH '(2) + ik
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Complex Matrix Operations

The keywords in this section perform complex operations on arrays with complex values. The form in

which complex numbers are stored in an array is similar to the form they are stored

in complex scalars.

The Math Pac can interpret any array with an even number of columns as an airray with complex
values. The first column of the array will represent the real part of the complex array’s first column,

the second column will represent the imaginary part, and so on. For example, the

1 2 3 4 5 6
7 8 9 10 11 12
will represent the complex 2 X 3 matrix

1+2t 3+ 44 5+ 61
7+8 9+100 11 + 12{

2 X 6 matrix

We will say that an array is a complex array if it is doubly subscripted and has an even number of

columns.

The operations of addition, subtraction, and negation are identical for real- and complex-valued arrays,

so these operations are not included in this section. You can use the array addition,

\ .
| array subtraction,

and array negation operations discussed in section 5 in exactly the same manner for both complex and

real arrays.

CMMULT Complex M

atrix Multiplication

MAT A=CHMULTCB, C:

where B, C are complex matrices such that there are twice as many columns in B as th
and A is a matrix.

ere are rows in C,

Redimensions A to have the same number of rows as B and the same number of ¢
assigns to A the values of the complex matrix product BC according to the usual rules
multiplication.

olumns as C, and
of complex matrix

79
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CTRN Complex Conjugate Transpose

MAT A=CTRHIB?

where B is a complex matrix and A is a matrix.

Redimensions A to have half as many rows as B has columns and twice as many columns as B has
rows—if Bis an N x 2P matrix, A will be a P x 2N matrix. A will be assigned the values of the complex

conjugate transpose of the complex matrix represented by B.

CINV Complex Matrix Inverse

MAT A=CTHY OB

where B is a square complex matrix (twice as many columns as rows) and A is a matrix.

Redimensions A to be exactly the same size as B and assigns to A the values of the matrix inverse of
the complex matrix represented by B.

CDET Complex Determinant

MAT Z=COETCAY

where A is a square complex matrix (twice as many columns as rows) and Z is an array.

Redimensions Z to be a complex scalar and assigns to Z the complex value of the determinant of the
complex matrix represented by A.

CIDN Complex Identity Matrix

MAT A=CTOH

where A is a square complex matrix (twice as many columns as rows).

Assigns to A the values of the complex identity matrix. A is not redimensioned.
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|
CSYS Complex System Solution

MAT Z=CSYECA, B

where A is a square complex matrix (twice as many columns as rows), B is a complex matrix with the

same number of rows as A, and Z is a matrix. ;
|

Redimensions Z to be exactly the same size as B and assigns to Z the complex values that solve the
complex matrix equation |

AZ = B. i
Examples
CTRN, CIDN
Input/Result
Zlear war=|[RTN
dim 20l Sy, bi3, 80 Dimensions A to be a 2 x 6 array and B a 4 x 7
array. i
mat input 3 [RTN
FoE, e
1,2.3,4,5,6,7,8,%,18,11,12 A now represents the complex 2 X 3 matrix

14+2 3+ 4 5+ 6i
T+8 9410 11+12 |
mat hEctrnial !

mat disp b [RIN i

]
|

- B now represents the complex conjugate trans-
£ pose of A.

o]
[

fa)

ot

[ 1 B
[

b

P i
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redim adl, 30
mat a=cide

mat dizp a;: [RTN

b
[y B e |
— T
XA ]

o

CINV, CMMULT

Input/Result

dim arz, 3y, bz, S
mat input a

1 1 g B @ @
1 1 2 £ @ @
i 2 & Z =z

EA
XA

I
p

st beEcmmultob, al

The 2 X 2 complex identity matrix:

1+0 0+0:
0+0 1+ 00

A represents the complex 3 X 3 matrix
1+¢ 04+00 0+
1+i 2420 040
1+: 2+20 3+ 3

B represents the complex 3 X 3 matrix

1/2 — i/2 0 + 0i 0 + 0i
—1/4 +i/4  1/4 — if4 0 + 0i
0+ 0i —1/6 +i/6 1/6 — i/6
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mat dizsp b RTN
1 E K 5 K £
[ B & 1 B B o
BB @ B L SES959999993
- HEEREREEEE0 3
I
You can use CTZ¥S to solve a system of equations with several choices of constants all at once. For

example, to solve the systems

(24 80) 2, + (T — i) 29 = 2 + 21

4—-13) 2 +@4+0)2z,=1+3i
and
2+3)u, +(7T—0Du,=0
(4 —1.30) u, + (4 + 0) u, = —3i
and

(24380 w, + (T—i) wy,=9 — .22

(4—13) wy +(4+0) wy=—35+1

we could write the entire system as the complex matrix equation AX = B where

243 T— 1 2 U w
A = . ], X=
4—131 4+ 0 2, U, W,

’

2+21: 04+0r 9 — .22;
and B =
1+ 3t 0—3t —35+1

This is the form that %

% accepts, and the one we will use to solve the system.
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Input/Result

clear war

RTN
dim &0l .32, =01 ,5% , b0l 52
mat input =,k

4,-1.3, 4,8 [RIN Don’t forget to enter both the real and imaginary
parts of each complex number, even if the value
is zero.

B, BT

)
b
-

5,1

dzimg Y, dd.d" s [RTN

4.4 1.4 2 -1 5 ~-z.@ The solution of the matrix equation gives the
4 E el - T Z.4 solution of all three systems:

2y =44+ 1.4
2= —46+ .71
u, =.2—.1

u, = —.1— .6i
w, =.5— 2.0
wy = —.7+ 2.4i.



Section 11: Complex Matri# Operations

Additional Information

85

By combining FEDIM and real array operations with the operations of this section, you have at your
disposal all of the common operations on complex matrices. As already mentioned, addition, subtrac-

tion, and negation of arrays are identical operations for real and complex arrays.

Scalar Multiple of a Complex Array

If you multiply an array B by a real scalar x using

MATA=(x1¥B,

the result is correct whether B represents a real or a complex array. For multiplying a complex array by

a complex scalar, use the following procedure.

If B is an N X 2P array representing an N X P complex matrix, and Z is a 1 X 2 array representing a

complex scalar:

1. Redimension B to be an NP X 2 array. This makes B into a complex column vector.

2. Multiply B on the right by Z using complex matrix multiplication. (You must use complex matrix

multiplication, not real matrix multiplication.)

3. Redimension the result of the multiplication to be an N X 2P array. The result. array is now the
complex product of B with the complex scalar Z. Remember to redimension B if you want it in its

original form.
The following example demonstrates this procedure.

Input/Result
clear wars

dim bBoZ, 30, etz I, ziB, L A and B are dimensioned to be 8 X 4 arrays; Z is

al X 2 array.

mat input b

2

|
L.eg.8. 28,2, 1,8,8,2,8,2 B now represents the complex matrix

1+0i 0+2
0+2 140
0+2 0+ 2

|

radin BOS, 1 B is redimensioned as a complex column vector.
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mat disp b

1 i@

mat input T

g, Z represents 0 + 1.
el A=B.
Z03

mEt a=ommdl i,

Complex Conjugate of a Complex Array

You can use a similar technique to find the complex conjugate of a complex array. For example, if B is
an N X 2P array representing an N X P complex matrix, you can find its complex conjugate as follows.

1. Redimension B to be an NP x 2 array and multiply B on the right by the 2 X 2 array

using real array multiplication.

2. Redimension the result to be an N x 2P array.

The result will then be the complex conjugate of the original. Be sure to redimension B if you want it
in its original form.

Note that combining this complex conjugation with the complex conjugate transpose operation gives
you the complex transpose of a complex matrix.
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Complex Form of a Real Array

As a final example of these operations, note that you can use the following proceduré to create a com-
plex matrix with zero imaginary part and the same real part as a given real matrix. The resulting
matrix then represents the same matrix, but can be used in complex array operations.

If B is a real N X P array you wish to put in complex form:

1.

Dimension the array in which you wish to store the result to be N X 2P and assi
the zero array.

on it the values of

|
Assign the result array the values of B. This also redimensions the result to be N X P, and has no

effect on the inaccessible zero values.

Redimension the result array to be 2 X NP. The result array now consists of t
row contains the values of the B and the second row contains only zeros.

Take the (real) transpose of the result array.

wo rows, the first

Redimension the result array to be N X 2P. The result array now has the valueé of B alternating

with zeros.

The following program will convert a 4 x 3 real array to its corresponding comple& array using the

above procedure.

To create the complex form of the real matrix

type in the program and use the following keystrokes.

10 OPTION BASE 1
20 DIM B(4,3),A(4,6)
30 MAT A=ZER

40 MAT INPUT B
50 MAT A=B

60 REDIM A(2,12)
70 MAT A=TRN(A)
80 REDIM A(4,6)

90 MAT DISP A;

1 2 3
4 5 6
7 8 9|
10 11 12




88 Section 11: Complex Matrix Operations

Input/Result
RUN

1,2,3,4,5,6,7,5,%,168,11, 12 [AIN)

1 s 2 @ I n The complex form of the given real matrix.
4 @B 5 @ & 0

Yo o8 A 3 O

g @ T e 1z @&




Section 12

Finding Roots of Polynomials

|
The keyword in this section finds all solutions—both real and complex—of P(x) = (), where P is a
polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not

necessarily distinct) solutions of this equation, so this keyword resembles an array operation in its
format. ‘

To use this keyword to find the solutions of the equation P(x) = 0, where

Pix)=a, " +a,_, x" '+ ...+ a x+ aq, !

first store the coefficients a,, a,_,, ..., a, in an array with n + 1 elements in all. They should be stored
in the order indicated above, with the coefficient of the highest power first and the constant term last.
Aside from the total number of elements in the array, which indicates to the Math Pac the degree of
the polynomial, the dimensions of the array are irrelevant. For example, the arrays

6 5
6 5 4

[6, 5, 4, 3, 2, 1], ,and |4 3
3 2 1

2 1

all can represent the polynomial

6x° + 5x* + 4x® +3x° + 2x + 1.

The array in which you wish the roots to be stored must be doubly subscripted and must have been
given at least 2n elements in its original dimensioning statement. The degree of the pjolynomial you can
find the roots of is limited only by the amount of memory you have available.

89
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PROOT

Roots of a Polynomial

MAT R=FREOOTCP2

where P is an array with at least two elements, and R is a matrix.

Redimensions R to be an N X 2 array (where P has a total of N + 1 elements) and assigns to R the
(complex) values of the solutions of the equation P(x) = 0 (where P is the polynomial of degree N whose
coefficients are the values of the elements of P). The first column of R will contain the real parts of the
roots and the second column will contain the imaginary parts.

Example

Input/Result

mat irput

LAY

MET WEREr oot OS]
mat diszp w [RIN

-1

1 1

-1 @

= i

DR

i

S will contain the seven coefficients of a sixth de-
gree polynomial, and W will contain its six com-
plex roots.

S now represents the polynomial
5x5 — 45x° + 225x* — 425x°
+ 170x* + 370x — 500.

The roots of this polynomial are 1 — 1, 1 + i,
—1+ 04,2+ 01, 3 —4i, and 3 + 4i.
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Additional Information

|

The Math Pac uses a modified version of Laguerre’s method together with extended precision
arithmetic and a sophisticated scaling and deflation (polynomial division) procedure to find the roots
of polynomials. Ordinarily, an array with n + 1 elements represents a polynomial :of degree n, and
should therefore have n roots. However, if the leading coefficient happens to be zero (so that the poly-
nomial is actually of degree n — 1) this method will calculate that the polynomial has ja root at complex
infinity, and so will report (9.99999999999E499, 9.99999999999E499) as a root. This will normally
produce an error message; if the DEFRULT COH option is in effect, the Math Pac will display a warn-
ing message and then correctly find the roots of the lower degree polynomial.

There are several methods of gauging the accuracy of the calculated roots. The first imethod is to cal-
culate the value of the polynomial at the alleged root, and compare this value with zero. Although quite
straightforward in theory, this has a number of drawbacks in practice. It may easily happen that the
the root calculated is the closest machine-representable number to a true root, but because the polyno-
mial has such a large value for its derivative at this root, the value of the polynomial at the calculated
root is very large. A simple example of this phenomenon is given by the polynomial 1E20x2 — 2E20. A
true root is \/2; a calculated root is 1.41421356237, which is the machine-representable number closest
to V2. However, the value of the polynomial at this approximation to the square root of 2 is
—1,000,000,000, a number which seems very far from zero.

Another drawback of the above method is that because of the limited precision available in any numeri-
cal calculation, the roundoff errors that occur in the calculation of the polynomial’s value may com-
pletely eliminate the significance of the difference between the calculated value and zero. This is
especially true when the polynomial is of large degree, has coefficients widely varying in size, or has
roots of high multiplicity. !

A second method of gauging the accuracy of the calculated roots is to attempt to reconstruct the poly-
nomial from these roots. If the reconstructed polynomial closely resembles the original, the roots are
then judged to be accurate. This technique is less sensitive to the problems that affect the polynomial
evaluation method. Of course, this method does not give information on the accuracy of an individual
root.

The program given below asks you for a polynomial and then calculates the roots of the polynomial and
reconstructs the polynomial from these roots. If you wish, the program continues dnd calculates the
value of the polynomial at a root, or any other real or complex point you choose.

To compute the reconstructed polynomial, this program starts with the polynomial 1, and then succes-
sively multiplies the polynomial by the linear factors (x — r), where r is a calculated real root, or by the
quadratic x> — (r, + ry)x + (r, r,) where r; and r, are a pair of complex conjugate roots.

To compute the value of the polynomial at a complex point 2, the program uses éynthetic division
(synthetic substitution) of the polynomial by the linear binomial (x — z) and the fact that the remain-
der of such a division is the value of the polynomial at the point z. This method of computation has the



92 Section 12: Finding Roots of Polynomials

advantage of avoiding much of the roundoff error that would occur in a more straightforward

calculation.

10 OPTION BASE 1
20 DIM P(51,1),Q(52,2),C(52), T(52),R(50,2)

30 DELAY 1

40 DISP “What degree is the polynomial? (it
must be less that 51)”

50 INPUT D

60 REDIM P(D-+1,1),Q(D+2,2),C(D+2),
T(D+2),R(D,2)

70 DISP “Enter the coeff.s of the polynomial’
80 DELAY 0

90 MAT INPUT P

100 A1=P(1,1)

110 MAT R=PROOT(P)
120 DELAY 1

130 DISP “The roots are”
140 MAT DISP R;

150 DELAY O

160 REM»*»»x %=

170 MAT C=ZER
180 C(2)=1

P will contain the coefficients of the original
polynomial. Q will contain a complex copy of the
coefficients used in the synthetic division. C will
contain the reconstructed coefficients. T is used
as a temporary storage for intermediate steps in
the reconstruction. R will contain the calculated
roots.

Throughout the program we will lengthen the
delay before something is to be displayed, and
shorten it during a calculation.

D is the degree of the polynomial.

Redimensions the variables to the appropriate
sizes for a polynomial of degree D.

P will now contain the coefficients.

The reconstructed polynomial will always have
leading coefficients equal to 1. We will scale the
reconstructed polynomial by A, to make the
leading coefficients match. Note that this will
not work if A; = 0.

Calculates the roots and stores them in R.
Displays the calculated roots.

We now begin the process of reconstructing the
polynomial from the roots found.

C now represents the polynomial 1.



190 MAT T=C
200 F=0

210 FOR J=1TO D

220 IF R(J,2)=0 THEN GOSUB 320 ELSE
GOSUB 380

230 NEXT J
240 MAT C=(A1):C

250 DELAY 1

260 DISP “The reconstructed polynomial is”
270 FOR K=2 TO D+2

280 DISP C(K);“«X"";D—K+2;*+";

290 NEXT K

300 INPUT “Do you wish to evaluate the poly.?
(N will stop the program)”,“Y”;U$

310 IF UPRC$(U$)=“N" THEN STOP ELSE

GOTO 470

320 REM xxsnxxx

330 FOR L=3 TO D+2
340 T(L)=C(L)—R(J,1)«C(L—1)

350 NEXT L
360 MAT C=T
370 RETURN
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This just gives T some values for initialization.

F is a “flag”: if F equals zero, this will indicate
that the previous root was real; if F equals one,
this will indicate that the previous root was
complex. Since a root and its complex conjugate
will be consecutive on our list of roots, when we
find a complex root, we will multiply by the
quadratic and then ignore the next root on the
list.

J represents the number of the ioot we are
currently working with.

If the current root is real, we will multiply by the
linear factor (subroutine starting at 320). If the
current root is complex, we will multiply by the
corresponding quadratic factor, if it hasn’t

already been done (subroutine starting at 380).

Scales the reconstructed polynomial by the
leading coefficient of the original.

Displays the polynomial in standard form.

The leading coefficient is |
ot will always be zero.

ynot DL,

This begins the subroutine to multiply the
polynomial by a linear factor.

During this calculation, T stores the results of the
multiplication. After it’s done, the result is
again stored in C. |
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380 REM LR RS

390 IF F=1 THEN LET F=0 @ RETURN ELSE
LET F=1

400 LET A=2+R(J,1)

410 LET B=R(J,1)"2+R(J,2)"2
420 FOR L=3 TO D+2
430 T(L)=C(L)—A+C(L—1)+B«C(L—2)

440 NEXT L

450 MAT C=T

460 RETURN

470 REM «xxxxxx

480 DIM X(2),Z(2),W(2)

490 INPUT “Evaluate at a root, or some other
value? (R for root)",“ ”;U$

500 IF UPRC$(U$)="R" THEN GOSUB
710@GOTO 550

510 DELAY 1

520 DISP “Enter the real and imaginary parts of
the value”

530 DELAY 0
540 MAT INPUT X
550 REM * K X K KK K

560 DELAY 0O
570 MAT Q=ZER
580 MAT Q=P

590 REDIM Q(2,D+1)
600 MAT Q=TRN(Q)

This begins the subroutine to multiply the
polynomial by a quadratic factor.

If the flag equals one, we have already used the
quadratic corresponding to this root and so we
clear the flag and go on to the next root. If the
flag doesn’t equal one, we set the flag and
continue the process.

1, A, and B are the coefficients of the quadratic
factor.

T stores the results during the multiplication.
The results are again stored in C when we are
done.

This begins the polynomial evaluation routine.

X, Z, and W will be used as complex scalars.

The subroutine starting at 710 looks up the value
of the root.

X contains the value of the point at which the
polynomlal will be evaluated, either from the

I or the from the lookup of the root.

This section assigns to Q the values of the
complex form of P.
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I

610 FOR L=2 TO D+1 ‘

620 Z(1)=Q(L,1) @ Z(2)=Q(L,2) The values of Q are converted to complex scalars
so that the complex arithmetic operations can be
used.

630 W(1)=Q(L—1,1) @ W(2)=Q(L—1,2)

640 MAT W=CMULT(W,X) This calculates the next term in the synthetic
division.

650 MAT Z=CADD(Z w)

660 Q(L,1)=Z(1) @ Q(L,2)=2(2)

670 NEXT L

680 DELAY 1

690 DISP “The value of the polynomial is *;

QD +1,1);“+i=";,Q(D+1,2) The value of the polynomial is the last

(remainder) term. |

700 GOTO 300 Gets another point to use in the evaluation.

710 REM »xxxxs This begins the subroutine to look up the value of
a root. |

720 DISP “Which root? (1,...,”;0;%)

730 INPUT J J 1s the number of the root.

740 X(1)=RJ,1) @ X(2)=R(J,2)

750 RETURN

If we wanted to find and evaluate the roots of the polynomial
B+t P +E Hx+
we would run the program using the following keystrokes.

Input/Result
RUN

RTN

f .=z ot the poluno
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101,

1.1 [RTN]

Th
1 #*
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L |
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the poly

the program?y

wizh 1o evaluates
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4 |RTN
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Evaluatse at a
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Fost o oar AT

sZome

TR Ofor roots

i~ |RTN

[

F
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¢

Do yow wish to swalu
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the
SE4E~13

polunomial 13

e the

P ]_

will stop th =R T= Y I

[73e 2

Any response but “N” or “n
as “yes.”

will be interpreted

Any reponse but “R” or “r” will be interpreted as
“some other value.”

The value of the polynomial at the first com-
puted root.
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Evaluyate at 3 root, oF =ome oth
ar waluse? ¢ B for rootl

ather
Erter the real and imaginard pa
' ot the walus

=
MO1aT

i
L

The walus of the polunomial 1=
CEEZBEE +id 18521

Do dow wish to evaluate the poly
CH o will stop the programs™

f
About the Algorithm

The Math Pac uses Laguerre’s method to find the roots of the polynomial, one root at a time, by
computing a sequence of approximations Z;, Zs, ..., to a root using the formula'Z, , , = Z, + S,,
where S, (called the Laguerre step) is given by the formula |

—n P(Z,) |
P(Z) + [(n — 1D (PUZ))? — n (n— 1) P(Z) P"(Zp)]*

where P, P’, P are the polynomial and its first and second derivatives, n is the degree of the polyno-
mial, and the sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Poly-
nomials of degree 1 or 2 are solved using linear factorization or the quadratic formula. Laguerre’s
method is cubically convergent to simple zeros and linearly convergent to zeros of multiplicity greater
than one.

The operation of FFOOT is global, in the sense that you are not required to supply an initial guess.
FEOOT always attempts to begin its search for a root at the origin of the complex plane. An annulus
that contains the root of smallest magnitude is determined, and the intial step is rejected if it would
lead out of this region. If the initial step is rejected, a spiral search is begun from the inner radius to
the outer radius of the annulus, and continues until an acceptable initial guess is found. Once the
iteration process has begun, a circle known to contain the root is computed around each Z,.The
Laguerre step is modified if it leads outside this circle, or if the value of the polynomial does not
decrease. The roots are thus generally found in order of increasing magnitude, which minimizes the
roundoff errors resulting from deflation.
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FREOOT uses a sophisticated technique to determine when an approximation Z, should be accepted as a
root. As the polynomial is being evaluated at Z,, a bound for the roundoff error for the evaluation is
also being computed. If the polynomial value is less than this bound, Z, is accepted as a root. Z, can
also be accepted as a root if the value of the polynomial is decreasing but the size of the Laguerre step
has become negligible. Before an approximation Z, is used in an evaluation, its imaginary part is set to
zero if this part is small compared to the step size. This improves performance, since real-number
evaluations are faster than complex evaluations. If the Laguerre step size has become negligible but the
polynomial is not decreasing, then the message FRCOOT {31 lure is reported and the computation
stops. This is expected never to occur in practice.

As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or
quadratic factor corresponding to the Z,) are also computed. When an approximation Z, is accepted as
a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins
again.

Multiple Zeros

No polynomial rootfinder, including FETOT, can consistently locate zeros of high multiplicity with
arbitrary accuracy. The general rule-of-thumb for FRI0T is that for multiple or nearly-multiple zeros,
resolution of the root is approximately 12/K significant digits, where K is the multiplicity of the root.

Accuracy

FEOOT’s criterion for accuracy is that the coefficients of the polynomial reconstructed from the cal-
culated roots should closely resemble the original coefficients.

FRI0T’s performance with isolated zeros is illustrated by the 100th degree polynomial x!% — 1. When
FREOOT is used to find the roots of this polynomial, all but eight of the roots are found to 12-digit
accuracy. Of these eight, all but two are accurate to 11 digits, with the 12th digit of either the real or
imaginary part off by 1. The other two calculated roots are 3.27172623763E—14 =+ instead of 0 ..

The polynomial (x + 1)%

calculated roots of:

, which has —1 as a root of multiplicity 20, was solved by FE1liT to yield

—.999954866562 + 0/
—.985568935304 + 0/
—.676467025812 + 0i
—.746641243182 + .203801767293i
—.746641243182 — .203801767293/
—1.04166040212 + .334892343643/
—1.04166040212 — .334892343643i
—.B27370927334 + .278237315935i
—.827370927334 — .278237315935/
—.92857985345 + .323524811701/
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—.92857985345 — .323524811701/ |
—1.35739089743 + 0/ ‘
—1.33261156263 + .128152487571/

—1.33261156263 — .128152487571/

— 694494465769 + .107674717679i

— 694494465769 — .107674717679i

—1.15757200375 + .307382598202/

—1.15757200375 — .307382598202/

—1.26137867921 + 23658285644/

—1.26137867921 — .23658285644]

The computed roots are inaccurate due to the high multiplicity of the true root. From the formula
given previously you would expect no correct digits, or perhaps one, but note that the first pair of
computed roots are more accurate than this. When a polynomial is reconstructed from these roots, its
coefficients resemble the coefficients of the original polynomial to 11 or more digits.






Section 13
Solving f(x) = 0 |

You can use the keywords in this section to help you determine the solutions of an ecj;uation in one real
variable. The first step in using this capability is to rewrite the equation to be solved in the form
f(x) = 0. Even this form, however, is not explicit enough to be used by your Math Pa¢. You must write a
user-defined function F Hfunction name such that FHfunction name(x) calculates f(x). (Refer to section
13 of the HP-75 Owner’s Manual for information about user-defined functions.)

The keyword FHEQOT can be used anywhere inside the program that contains the definition of the
function (except inside the definition itself) to find the values of x for which f(x) is zero.

The keyword FHZIIESE is provided as an aid in interpreting the results of the EHREOOT keyword.
Since they are numeric valued, FHZUES% and FHEOOT can be used alone or in combination with
other functions and variables to form numeric expressions.

FNROOT ‘ Function Root

FHREOOQTCA, B, FHfunction name < X &

where A, B are numeric expressions (not necessarily distinct), FHfunction name is a user-defined
numeric function, and X is a numeric variable.

Returns the first value found (starting with guesses A and B) that is one of the following.
1) An exact root of the specified function. |
2) An approximation to a root of the specified function, correct to 12 digits.
3) An approximation to a local minimum of the absolute value of the specified function.
4) In a region where the specified function is constant. |
5) +9.99999999999E499 if the search for a root led beyond the range of representable numbers.

X is a dummy variable—its inclusion here doesn’t affect the use of this variable name in any other
context.

This keyword can be used only in a program.

101
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FNGUESS Previous Estimate of Function Root

FHGUESS

Returns the next-to-last value tried as a solution in the most recent FHEQIOT statement.

FHEUESS retains its value, even if your HP-75 is turned off, until FHREOOT is again executed.

To help you distinguish among the five possibilities outlined above for FHREIGT, you should always
include a statement in your program that calculates and stores and/or checks the value of the specified
function at the point found by FHEZIDT. Examples of such statements are

LET EZ=FHFO{FHEOODTCAR,EB,FHF {22 and
OIzF FHREOOTCA,E,FHFCH2 Y B DOIESP FHFORESD
where FHF is the specified function.

By checking the values of FHF at the points returned by FHECOOT and FHZUIESS, you can interpret
the result of FHREDIDT as follows.

o If FMF <result of FHREOOT Y = 0, the result of FHEOT is an exact root and the result of

o If the result of FHROOT and the result of FHEGLESS differ only in the twelfth significant digit,
these two numbers surround the exact root.
o If the result of FHRZUT and the result of FHZUESS differ but FHF < result of FHREOOT » and

FHF Cresult of FHGUESES Y are equal, these results lie in a region where FHF is constant.

Example: Solving log (x) = e/x

To solve log (x) = e/x, we first write the equation in the form f(x) = 0. This can be done by subtracting
e/x from both sides of the equation, yielding log (x) — e¢/x = 0. We can rewrite this in the equivalent
but slightly more convenient form xlog (x) — e = 0. Since the left-hand side of this equation is
undefined for x < 0, and we can’t guarantee that the search for a root will not venture into this region,
we will consider instead the equation |x|log |x| — e = 0. This equation has exactly the same positive
solution(s) as the first equation, but this equation makes sense for both positive and negative (but non-
zero) numbers. The program below includes a user-defined function that computes the left-hand side of
this equation, and uses FHETIXT to find a solution of the equation.
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10 DEF FNF(X) This user-defined function computes the left-hand
side of the equation.

20 FNF=ABS(X)«LOG(ABS(X))—EXP(1)

30 END DEF

40 INPUT A,B These will be the initial guesses.
50 R=FNROOT(A,B,FNF(X))

60 DISP “The value found (R) is”;R

70 DISP “FNF(R)=";FNF(R)

80 DISP “FNGUESS=";FNGUESS

To use the program we must decide on initial guesses. Although the initial guesses need not be in
increasing order, or even distinct, a choice of initial guesses that surround a root will produce results
more quickly in general. Noting that if | X| < 1 then FHF X will be negative and if | X| is large (say,
100) then FHF <X will be positive, we can choose .5 and 100 for our initial guesses.

Key in the program and it, and when prompted with % respond with . 5. 18& [RIN], which
supplies the initial guesses. The computer will then display ‘

TRy 1=

Since FHF (R = i, the value given is an exact root for FHF.

Additional Information

Choosing Initial Estimates

When you use FHEQIOT to find roots of equations, the initial estimates determine where the search for
a root will begin. If the two estimates surround an odd number of roots (signified by their function
values having opposite signs), then FHEDOOT w1ll ﬁnd a root between the estimates quite rapidly. If the

T must search for a region
where a root lies. Selecting initial estimates as near a root as poss1ble w111 speed up this search. If you
merely want to explore the behavior of the function near the initial estimates (such as to determine if
there are any roots or extreme points nearby), then specify any estimates you like.

Another thing to consider is the range in which the equation is meaningful. In solving f(x) = 0, the
variable x may only have a limited range in which it is conceptually meaningful as ia solution. In this
case, it is reasonable to choose initial estimates within this range. Frequently an equation that is ap-
plicable to a real problem has, in addition to the desired solution, other roots that are physically mean-
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ingless. These usually occur because the equation being analyzed is appropriate only between certain
limits of the variable. You should recognize this restriction and interpret the results accordingly.

Interpreting Results

When using FHREQOT, always evaluate the function at the value returned, as described above. This
enables you to interpret the results. There are two possibilities: the value of the function at the value
returned by FHREDOT is close to 0; or the value of the function at the value returned by FHREOOT is not
close to 0. It is up to you to decide how close is close enough to consider the value a root.

If the function value is too large, then the information returned by the keyword FHZUE S S, together
with information already considered, is sufficient to determine the general behavior of the function in
the region. For example, suppose that FHEOIOT is used to find a root of a function—say, FHF i« —
and the value returned is r. If [FHF ©r ¥| is too large to consider r a root, then there are several
possibilities.

If FHFor > and FHF CFHEGLIESS » have the same sign, then r is either an approximation to a local
minimum of [FHF ¢ | or in a region where the graph of FtF 31 is horizontal.

In these two cases, FMHFIOT sees no tendency of FHF i ¥ to decrease in absolute value, and so to
cross the x-axis. It will then try to approximate a local extreme point, if any. This approximation can
be resolved to further precision by further executions of FHE{IIT, using r and FHi: . as initial
estimates. Repeated execution of FHEDICUT in this manner will tend to convergence to the extreme
point in many cases. The idea is that FHEOOT can be used to find local extreme points, or the in-
formation about where the extreme points are can be used to re-direct the search elsewhere, in hope of
finding a root. Here is an example program which can be used to find the local minimum and root of
f(x) = |x — 1| Note that x = 1 is both a root and local minimum, which makes it a difficult root to
find. This program takes advantage of the way FHETIT finds minima to find the root.
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10 DEF FNF(X) = SQR(ABS(X—1)) This is the user-defined function.
20 R=FNROOT(5,9,FNF(X)) Tries to find a root. !
30FORI=1TO 20 Iterates 20 times to resolve the minimum to

greater accuracy.
40 R=FNROOT(R,FNGUESS,FNF(X})
50 NEXT |
60 DISP “Root or minimum at”;R

To execute this program, key it in and it. The display will then show:

Foot oF minimum st 1
When |FHF:ir | is too large to consider r a root, another possibility is that FHF{r» and
FHECFHZUESS ) have different signs. In this case it would appear that there is a root between, be-
cause for the function to change signs it should cross the x-axis. Typically, when FMHREDIIT finds two

guesses on opposite sides of the x-axis, it only stops after it has resolved them to two consecutive
machine numbers. In this case there is no machine representable number between r and F MG LIE S5,
Thus, the behavior of the function cannot be determined between r and FHzUE %%, To interpret such
results, you should be aware of these situations.

\

_— / ‘ //

In case 1, r and FHZLUESE are the best approximations to the root which are representable on the
machine. Case 2 looks exactly the same to FHREIIT, but there is no root—there is a jump discontinuity
instead. In case 3 there is a pole, which can look like a root if a guess on each side of the pole is found.

FHEDOOT returns information in FHGUESS and the root to help you isolate situations where conver-
gence is to a pole or jump discontinuity. '
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Decreasing Execution Time

The exponent range of your HP-75 is +499. This allows for sensitive observation of the behavior of a
function, even very close to a root. FHREOIOT takes advantage of this dynamic range by not accepting a
guess as a root until the function value underflows, is zero, or two consecutive machine representable
numbers that bracket a root are found. The cost of this precision is that, occasionally, it may take quite
a while to obtain such precision. If this high degree of sensitivity is not required, then you may wish to
set a smaller tolerance. For example, you may only need to know a place where the function is less than
1E-20. This is accomplished in your function subprogram by checking the value of the function before
assigning it to the function variable and setting the function variable to zero if the computed value is
smaller than the desired tolerance. For example, suppose you wanted to find any roots of f(x) = x*, and
|f(x)] < 1IE—32 is acceptable as a root. Here is a program you can use.

10 DEF FNF(X) Multiline function definition of f(x) = x*.

20 F=X"4

30 IF F<=1E—32 THEN FNF=0 ELSE

FNF=F Checks error tolerance and sets the function
value accordingly.

40 END DEF

50 DISP FNROOT(2,3,FNF(X)) Computes and displays the root.

60 DISP FNF(RES) Displays the function value at the root.

To execute this program, key it in, and press ([RUN]. In the display will appear:

44 ZERIREE-3

In this example, if this tolerance technique were not used, execution would last much longer. This is
because the computed function will not underflow until x is very small, since the root is at zero and the

10T has a lot of

guesses to try before finding one it can accept as a root.
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An alternate approach to decreasing execution time is to translate the function so that the root is not
S0 near zero, compute the root of the translated function, then translate the root back. This will de-
crease the time to find roots of certain functions with roots close to zero, but will generally decrease
the accuracy of the roots found. Here is a sample program for f(x) = x*,

10 DEF FNF(X) = (X—1)"4 This is x* translated by 1.
20 R= FNROOT(3,4,FNF(X)) Computes the root.
30 DISP R—1 Translates the root back and displays the root and

function value.
40 DISP FNF(R)

Finally, there is a technique that may improve the speed and accuracy of FMHEIIT. Any equation is
typically one of an infinite family of equivalent equations with the same roots. However, some may be
easier to solve than others. For example, the two equations f{x) = 0 and exp (f(x)) + 1 = 0 have the
same real roots, but one is almost always easier to solve. When f(x) = x* — 6x — 1, the first is easier;

but when f(x) = In (x* — 6x — 1), then the second is easier. While FHREOT has been designed to pro-
vide accurate results for a wide range of problems, it is worthwhile to be aware of such possibilities.






Section 14

Numerical Integration

The keywords in this section enable you to evaluate the integral of a function between definite limits.
Before you can calculate the integral of a function f(x) you must write a user-defined function that
calculates the values of f(x). (For information about user-defined functions, refer to isection 13 of the
HP-75 Owner’s Manual.)

You can then use the keyword IHTEGEFRL to calculate the integral of the user-defined function. You
can use IHTEGRAL anywhere within the program in which the user-defined function is defined except
within the definition of the user-defined function.

The keywords IECUHD and IWALLE give you additional flexibility in the evaluation of the integrals.
ITHTEGREAL, IBEOUMD, and IWALUE are numeric-valued, so they can be used alone or in combination
with other functions and variables to form numeric expressions.

INTEGRAL Definite Integral

IHTEGRERALCA, B, E, FHfunction name < X : &

where A, B, E are numeric expressions, F Hfunction name is a user-defined numeric function, and X is a
numeric variable.

Returns an approximation to the integral from A to B of F MHfunction name. The relative error E (rounded
to the range 1TE—12 < £ < 1) indicates the accuracy of FHfunction name and is used to calculate the
acceptable error in the approximation to the integral.

IHTEGERL generates a sequence of increasingly accurate approximations to the definite integral. If
three successive approximations are within the acceptable error of each other—the first is close to the
second and the second is close to the third—they are considered to have converged and the third
approximation is returned as the value of the definite integral. If a total of 16 approxlmatlons are cal-
culated without converging, the sixteenth approximation is returned.

X is a dummy variable—its inclusion here doesn’t affect the use of this variable name in any other
context.

This keyword can be used only in a program.

109
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IVALUE Last Result of [MTEGRAL

TVALLE

Returns the last approximation computed by the IMTEGREHL keyword. If the key was pressed
or the operation of IMNTEGRAL was otherwise interrupted, then I'WAHLLUE returns the value of the
current approximation to the integral. Otherwise, 1\/ALIIE returns the same value that IMTEGREAL
last returned.

FYALLUE retains its value {even if your HP-75 is turned off) until another IHTEGFAL is computed.

IBOUND Error Approximation for [ [T

TEOLIMND

Returns the final error estimate for the definite integral most recently computed by IHTEGZRAL.
e A positive value for I EILIHD means that the approximations converged.

e A negative vaiue for TECUHMD means that the approximations didn’t converge completely, so that
the value returned by IMTEZRHAL may not be within the acceptable error of the actual value.

Like TWALUE, IECOLUHD retains its value (even if the HP-75 is turned off) until another IHTEGRFAL is
computed. Unlike I'/ALLIE, the value of IEILIHD has no relation to the current approximation to the
integral if the operation of IMTEZRAL is interrupted.

The operation of THTEGREML and IECGLHD can be described more precisely as follows.

1. Based on a relative error of E for the specified function, the computer calculates an error tolerance
for the integral of the specified function. If f(X) is the “true” function that FHF approximates,
then choose E such that

. [FHF (X) — AX)|
|FHF (X))

for all X in the interval of integration. Your input for E is rounded to the range 1IE—12 < E < 1.
For example, if FHF is derived from experimental data with N significant digits, let E equal 10~".

2. The computer calculates a sequence of approximations I, to the integral of the specified function.
The difference between successive approximations is compared to the error tolerance for the
integral.

3. A value for the integral is returned when:

¢ The approximations I, have converged. Convergence is determined using «J,, defined as the kth
approximation to the integral of 100 18 [FHF1) oyer the same interval of integration. J, repre-
sents the error inherent in the computation of I,.
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The approximations I, are judged to have converged to I, if

I, —I,_{|<E J,
for k = n — 1 and for k£ = n. The value of I is then returned by IHTEGRERL; a positive value
for the error estimate will be returned by IECUIHDO.

or when

e The computer has evaluated I, through I, but the convergence criterion is still not met. I is
then returned by IMTEGEFAL; a negative value for the error estimate ;will be returned
TEQUND.

Examples

INTEGRAL, IBOUND, IVALUE

To find the integral from 0 to 1 of the function
flx) = exp (£* + 42 + x + 1)

you can use the following program.

10 DEF FNF(X)=EXP(X"3+4:X"2+X+1) The user-defined function FHF.

20 INPUT E Gets the relative error we expect in FMF as
compared with f.

30 DISP “Integrating; please wait”

40 X=INTEGRAL(0,1,E,FNF(W)) Remember that W is a dummy wvariable.
50 BEEP

60 DISP “The value of the integral is”; X

70 DISP “The approx. error is”

80 DISP IBOUND

After you key in the program, run it using the following keystrokes.

Input/Result
RUN
The prompt to enter the relative error of the
function.
1E~5 Although our function is accurate to one part in

10'2, we can say that it is less accurate (in this
case, one part in 10°) so that the computation will
finish more quickly.
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Imtegrating; pleaze wait The integral will take about a minute to be
computed.

i= The value of the integral is 104.2911
+3.4 x 1074

184, 221837528 IVALLIE gives the value of the last computed
integral.

INTEGRAL, IBOUND

You can use IMTEGRAL to compute the amount of heat required to heat one gram of gas at a constant
volume from one temperature to another. The amount of heat needed, @, is given by the formula

Q= [ e ar,

where C(T) is the specific heat of the gas as a function of temperature, T1 is the starting temperature,
and T2 is the final temperature.

If C(T)=a+ bT, where a and b are experimentally determined to be a = 1.023E—2 and
b= 2.384E—2 with four significant digits, then we can compute the relative error of C(T) to be
approximately 5E—4. The program below prompts you for the initial and final temperature in degrees
Kelvin and then computes the heat needed to raise the temperature of the gas from the initial to the
final temperature.

10 DEF FNC(T) = .01023+.02384-T The user-defined function that calculates the
specific heat.

20 INPUT “Initial and final temp.s in degrees

Kelvin?”,T1,T2
30 DISP “Integrating”
40 Q=INTEGRAL{(T1,T2,.0005,FNC(T})) Computes the integral.
50 DISP “The amount of heat needed
is”,Q;“+ —";IBOUND Displays the answer and the approximate error.

To find the heat needed to raise the temperature from 300°K to 310°K, type in the program and use the
following keystrokes.
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Input/Result
RUN

and fimal temp.z in o
win'

0
T
(]

ritial
zz kel

IEE, 318

Intearating

The amount of F
TELE143 - 085

Additional Information

The IHTECGRAL keyword has been designed to obtain accurate results rapidly for a wide range of
problems. Without some help from the user, however, no numerical integration scheme can successfully
integrate all functions representable by the computer. This section includes information about numeri-
cal integration in general, the algorithm used by IMTEGEAL, and ways to handle more difficult
problems.

Overview of Numerical Integration

Numerical integration schemes generally sample the function to be integrated at a number of points in
the interval of integration. The calculated integral is simply a weighted average of the function’s values
at these sample points. Since a definite integral is really an average value of a function over an infinite
number of points, numerical integration can produce accurate results only when the points sampled are
truly representative of the function’s behavior.

If the sample points are close together and the function does not change rapidly between two consecu-
tive sample points, then the numerical integration will give reliable results. On the other hand, numeri-
cal integration will not produce good answers on a function whose values vary wildly over a domain
that is small in comparison with the region of integration. Other errors that can affect the result of a
numerical integration include the round-off errors typical of any floating point computation and errors
in the procedure that computes the function to be integrated.

Handling Numerical Error

The IMTEGRFAL keyword requires specification of an error tolerance E for its operation. This error
tolerance is taken to be the relative error of the user-defined function as compared with the “true”



114 Section 14: Numerical Integration

function to be integrated. The error tolerance is used to define a ribbon around the user-defined func-
tion and the “true” function should then lie inside this ribbon. If the “true” function is f(x) and the
computed function is FNF(x), then

FNF(x) — Error (x) < f(x) < FNF(x) + Error (x)

where Error (x) is half the width of the ribbon at x.

We can then conclude that
b b b
[ ) dx~ [" FNF() dx + [ Error (x) dx
a a a

where the third integral is just half the area of the ribbon—that is, integrating the user-defined func-
tion instead of the actual function can introduce an error no greater than half of the area of the ribbon.
IMTEGEFAL estimates this error while computing the integral; [EDIIHD gives you access to the
estimate.

Choosing the Error Tolerance

The accuracy of the computed function depends on three factors:
¢ The accuracy of empirical constants in the function.
e The degree to which the function may accurately describe a physical situation.

¢ The round-off error introduced when the function is computed.
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Functions like cos (x — sinx) are purely mathematical functions. This means that the functions con-
tain no empirical constants, and neither the variables nor the limits of integration represent any actual
physical quantities. For such functions you can specify as small an error tolerance as desired, provided
that the function is calculated within that error tolerance (despite round-off) by the BASIC function.
Of course, due to the trade-off between accuracy and computation time, you may choose not to specify
the smallest possible error tolerance. Any specified error tolerance is rounded to the range [1IE—12, 1].

When the integrand relates to an actual physical situation, there are additional considerations. In these
cases, you must ask yourself whether the accuracy you would like in the computed integral is justified
by the accuracy of the integrand. For example, if the function contains empirical constants which
approximate the actual constants to three digits, then it may not make sense to specify an error toler-
ance smaller than 1E—3.

An equally important consideration, however, is that nearly every function relating to a physical situ-
ation is inherently inaccurate because it is only a mathematical model of an actual process or event. A
mathematical model is typically an approximation that ignores the effects of factors judged to be in-
significant in comparison with the factors in the model.

For example, the equation s = s’ — (.5)gt?, which gives the height s of a falling body when dropped
from an initial height s’, ignores the variation with altitude of g, the acceleration due to gravity. Math-
ematical descriptions of the physical world can provide results of only limited accuracy. If you cal-
culated an integral with an accuracy greater than your model can support, then you would not be
justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error
tolerance that reflects any inaccuracies in the function, or the IHTEGFHAL keyword will waste time
computing to a level of accuracy that may be meaningless. Further, the value returned by I LMD may
not be significant.

If f(x) is a function relating to a physical situation, its inaccuracy due to round-off is typically very
small compared to the inaccuracy in modelling the situation. If f(x) is a purely mathematical function,
then its accuracy is limited only by round-off error. Precisely determining the relative error in the
computation of such a function generally requires a complicated analysis. In practice, its effects are
determined through experience rather than analysis.

Handling Difficult Integrals

Integrating on Subintervals. A function whose values change substantially with small changes in
its argument will likely require many more points than one whose values change only slightly. This is
because the behavior of the function must be adequately represented by the sampling. If a function is
changing more rapidly in some subintervals of the interval of integration than in others, you can sub-
divide the interval and integrate the function separately on the smaller intervals. Then the integral
over the whole interval is the sum of the integrals over all the subintervals, and the error of the in-
tegral is the sum of the errors of the integrals over the subintervals.
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The algorithm used by IHTEZF AL makes a reasonable decision during execution of how many points
to sample, based on the behavior of the specified integrand on a particular interval. When the interval
of integration is split up, each subinterval can be handled according to the function’s behavior on that
subinterval alone. This results in greater speed and precision.

For example, to integrate f(x) = (x> + 1E—12)" from x = —3 to x = 5 using an error tolerance of
1E—12, it speeds up execution to subdivide the interval at x = 0, where f(x) has a sharp bend in its
graph. Because f(x) is very smooth on the subintervals (—3, 0) and (0, 5), the integrals over these
subintervals can be evaluated quickly.

[ o dx= [ f) dx + [ fw) dx
-3 -3 0
The following program computes this integral on the two subintervals and then combines the results.

10 DEF FNF(X) = SQR(X+X+.000000000001) We will use % rather than ™ because x5 is

more accurate. An analogous situation generally
occurs for any integer power of a variable.

20 I=INTEGRAL(—3,0,.000000000001,FNF(X)) Integrate over the first subinterval.
30 E=IBOUND Save the error to add in.
40 DISP “The value of the integral is”
50 DISP
I+ INTEGRAL(0,5,.000000000001,FNF(X)) The sum of the first and second integrals.
60 DISP “The approximate error is
70 DISP E + IBOUND Compute the relative error by adding the two

errors together.

You can run this program by keying it in and then pressing [RUN]. The following will then appear in
the display.

value of the integral iz

mate @rror 1

-1

When the interval is subdivided, IHTEGRAL computes the answer in a few seconds. Without sub-
dividing the interval, execution may take a long time.

Subdividing the interval of integration is also useful for functions with a singularity in the interval.
The singularity may consist of one or more points where the function is undefined or has a sharp
corner point.
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For example, the integral

2 dx o 1 dx 2 dx
fo Pty may be split 1n‘cof0 x — 1) +f1 == 17

to avoid evaluating the function at x = 1, where it is undefined. You can now integrate the function on
each subinterval because x = 1 is an endpoint of each subinterval, and IHTEGREFAL does not sample at
an endpoint.

Similarly, the function \/|x — 1| has a sharp corner point at x = 1.

Ve 1]

T~

Suppose you need to integrate this function from 0 to 2. You can increase the speed and accuracy of the
computation by integrating separately on the subintervals (0, 1) and (1, 2), because the function is
smooth on each of these subintervals.

Transformation of Variables. A second method of handling difficult integrands i$ by transforming
the variable. When the variable in a definite integral is transformed, the resulting definite integral may
be easier to compute numerically. Consider the integral

1
f ( Ve 1 > dx.
0 \x — 1 In x
The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The

substitution x = u? stretches out the x-axis and causes the function to be better behaved, as shown on
the right.
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0.1+~
2u? u

w+ Hu -1 Inu

00—+ X 0

— -

0

—_

0

You can now evaluate the integral that results from this substitution:

J‘1< 2u? u > d
- u.
o \(u+ 1) (u—1) In u
(Do not replace (u + 1) (u — 1) with u?> — 1; as u approaches 1, u? — 1 loses half of its digits to round-
off, yielding a final result that is too large.)

As a second case requiring substitution, consider the following function. Its graph has a long tail
stretching out much farther than the main body (where most of the area is).

I S
¥ 4+ 10710
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Although a very thin tail may be truncated without greatly degrading accuracy, this function has too
wide a tail to ignore when calculating

J" dx
-t x* 4+ 1074

if ¢ is large. In general, the compressing substitution x = b tan u maps the entire real line into (—/2,
7/2) and maps subsets of the real line into subsets of (—=/2, n/2). For b = 1E—5 the substitution
becomes x = 1E—5 tan u and the integral becomes

tan™(¢/b)
10° du,
J;arrl( —t/b)

which is readily computed for very large t.

This compressing substitution is also a standard way to deal with infinite intervals. For example,

o dx 5 /2
’[00 x2 -+ 10710 f w/2 du

In some cases the tail can be chopped off. Consider the function exp (—x?). This functions underflows
(that is, gives a result of zero in machine arithmetic) for x > 34. Thus,

© 2 34 _2
f e “dx = f e “dx .
0 0

Therefore, when dealing with infinite integrals you can cut off the tail if it is insignificant, but you
should use a compressing substitution if it is not.

About the Algorithm

The Math Pac uses a Romberg method for accumulating the value of an integral. Several refinements
make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or
aliasing that produces misleading results when the integrand is periodic, LEFL uses samples
that are spaced nonuniformly. Their spacing can be demonstrated by substituting

_ 3
x=—_—u-—

2

ro |

«* into [ * Hx)dx

and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene-
fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter-
val is so small that points in the interval round to an endpoint. As a result, an integral like

J‘l sin X dx
0 x
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will not be interrupted by division by zero at an endpoint. Second, IHTEZF AL can integrate functions
whose slope is infinite at an endpoint. Such functions are encountered when calculating the area en-
closed by a smooth closed curve like x* + f2(x) =

In addition, IHTEGRAL uses extended precision. Internally, sums are accumulated in 16-digit num-
bers. This allows thousands of samples to be accumulated, if necessary, without losing any more signifi-
cance to round-off than is lost within your function subroutine.

During the computation, IHTEZEFAL generates a sequence of iterates that are increasingly accurate
estimates of the actual value of the integral. It also estimates the width of the error ribbon at each
iterate. THTEGRAL stops only after three successive iterates are within the computed error of each
other or after 16 iterations have been performed without this criterion being met.

In the latter case the function will have been sampled at 65,535 points. The value returned by
ITEOLHD will be the negative of the computed error to signify that the returned value of the IH
TEGRAL is likely not within the error tolerance of the actual value. Typically, you should then split up
the interval of integration into smaller subintervals and integrate the function over each of the
subintervals. The integral over the original interval will then be the sum of the integrals over the
subintervals. In this way, up to 65,535 points can be sampled on each subinterval, thus computing the
integral to greater precision.

In summary, IHTEGFEFAL has been designed to return reliable results rapidly and in a convenient,
easy-to-use fashion. The above theoretical considerations discuss problems with numerical integration
in general. The IMTEGRAL keyword is capable of handling even difficult integrals with their aid.
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Finite Fourier Transform

The finite Fourier transform is a key step in solving many problems in mathematics, physics, and
engineering, such as problems in signal processing and differential equations.

Given a set of N complex data points Z, Z, ..., Zy _,, the finite Fourier transform will return an-
other set of N complex values W, W,, ..., Wy _ |, such that for k=10,1,..., N—1,

N-1 : .
Z,= jgo W, <cos ZWNkJ + i sin 2TNk1> .

The W’s then represent the complex amplitudes of the various frequency components of the signal
represented by the data points. The values for the W’s are given by the formula

N—1 . .
—2wkj . —-21rkj>
W.=1/N Z <COS————+ISIH7 .
J ,2:0 k N N

This formula holds for any number of data points. The Math Pac uses the Cooley-Tukey algorithm and
the internal language of the HP-75 to achieve excellent speed and accuracy in the calculation of the
finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8,
16, 32, 64, and 128 are all acceptable values for the number of complex data points.

To use the finite Fourier transform, store your complex data points Z, ..., Z, _, as successive rows of
an N X 2 array with Z; in the first row, Z, in the second row, and so on. Store these values in the usual
complex form: real parts in the first column, imaginary parts in the second column. The results of the
finite Fourier transform W, ..., Wy _, will be returned with the complex values stored in successive
rows of an N X 2 array—the same form as the data points.

The number of data points you can use is limited only by the amount of available memory and by the
requirement that the number of data points be a non-negative integral power of 2.

FOUR Finite Fourier Transform

MATW=FOURIZ?

where Z is a N x 2 matrix, N a non-negative integer power of 2, and W is a matrix.

Redimensions W to be exactly the same size as Z and assigns to W the complex values of the finite
Fourier transform of the data points represented by Z.

121
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Example

Input/Result

wlear wars

dim zolS, 12, wilS, 10 Z and W are 16 x 2 arrays.

maEt ZEoon Z now represents the complex column vector, each

of whose values is 1 + 1i. Z could be the sam-
pling of a complex constant function, for example.

mat w=foyr izl

mat dizp w;

This is the finite Fourier transform of the con-
stant function. The only frequency that occurs is
the zero frequency—all rows but the first are
Zero.

oy S R I

i 1

e R I R A s B B
I ISt T S B U B 1 TR AT Ao B S Ao 8 B B

T
fnl

Additional Information

Relation Between the Finite and Continuous Fourier Transform

The finite Fourier transform is most often used as an approximation to the continuous (infinite)
Fourier transform. To understand in what sense it is an approximation, and to understand the effects
of various choices to be made in using this approximation, it is most useful to have the direct relation-
ship between the continuous and finite transforms.

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be

wi = [ : Z(x) exp (—2wifx) dx.
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If we have a set of N complex data points Z,, Z,, ..., Zy_; given by sampling the function Z at N
equally spaced points

Z,=2Z(xy+ kAx) for k=0,1,..., N — 1,
and then find the finite Fourier transform W,, W,, ..., W, _, of this data set, we can relate these

values to the values of the continuous Fourier transform W(f) as follows. For k=0,1, ..., N — 1,
W, = (r/N) W(k/Ax) where r = exp (—2nix,).

W is a “smeared” version of the true continuous Fourier transform W. To get W from W, you must
average W in two important but very different ways. The first type of averaging that occurs can be
described by defining a new function A(f) intermediate between W and W.

[ee)
ANy = > W+ k/ax)

= |
This says that the value of A at a point f is equal to the sum of the values of W at all points that are
integer multiples of the limiting frequency 1/Ax away from f. In particular, if W consists of a small
bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/Ax units
apart. This is the aspect of the finite Fourier transform that gives rise to aliasing: any frequency that
occurs in W (that is, W has a non-zero value there) will give rise to a non-zero value for A (and also W)
somewhere in the interval [0, 1/Ax] no matter what the original frequency was. For this reason, you
should choose Ax small enough so that 1/Ax is larger than the distance between the largest and small-
est f’s that you suspect will occur in W. Since most functions occuring in actual situations (and all
real-valued functions) have continuous Fourier transforms which are roughly symmetric about the ori-
gin, if a frequency f, occurs in W, it is likely that —f; also occurs in W. For the finite Fourier transform
to contain both frequencies without aliasing, 1/Ax must be larger than 2f,. If we define the largest
frequency occuring in W as Af, we can express the no-aliasing requirement as AfAx << Y.

The second type of averaging that occurs when going between W and W is much more local in nature
than the first. It results in a loss of frequency resolution in W as compared with W, more precisely,

W() = (Nax) [ sinc (gNAw) A(f-g) dg

1ifa=0,
where sinc (a) = :
Sin (19) otherwise.
Ta

Since sinc (gNAx) consists primarily of a bump with width inversely proportional to NAx, W is more
blurred (compared to W) for smaller values of NAx. This is not a serious problem unless W has a large
value at a frequency that is not a multiple of the fundamental frequency N/Ax. In this case, the “side
lobes” of the sinc function become evident in W. This can be reduced somewhat by multiplying the
data values Z, by a smoothing function G(k) before taking the finite Fourier transform. This results in
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an averaging function that has smaller side lobes than the sinc function. One example of such a func-
tion is the Hanning function G(k) = (*%2)(1 — cos (2wk/N)).

Inverse Finite Fourier Transform

Many applications of the finite Fourier transform involve taking the transform of a set of data points,
operating on the transformed values (for example, increasing or decreasing the amplitudes), and then
retransforming the data using the inverse Fourier transform defined by

Z W; <cos 2mkj + i si QWNkj> .

You can also use the F0LUFE keyword to compute the inverse finite Fourier transform in a simple way. If
W is an N x 2 array for which you wish to take the inverse Fourier transform:

1 0
1. Multiply W on the right by the 2 x 2 array o using real array multiplication.

2. Take the finite Fourier transform of the result.
3. Multiply the result array of the finite Fourier transform by the 2 x 2 array given in step 1.

4. Scalar-multiply the result by N. This will produce the inverse finite Fourier transform of the origi-
nal array.

This application of the finite Fourier transform and the procedure for obtaining the inverse finite
Fourier transform are illustrated in the example below.

Example
Suppose we want to find the steady state solution Z(x) of the inhomogeneous differential equation
Z"(x) + 3Z'(x) + 12Z(x) = P(x)

where P(x) is a function for which we have sampling data. If we denote the (continuous) Fourier trans-
form of any function @ by @, by taking the Fourier transform of the above equation we arrive at

—f22(f) + SifZ(f) + 12Z(f) = P(f).
Solving this equation algebraically, we obtain

506y B(f)
2 (—f%+12) + 3if ~

If we can get a good approximation to P, we can easily calculate the right side of this equation. From
this result we can obtain the solution to the original equation by taking the inverse Fourier transform.
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For simplicity, we will assume that the equation has been scaled so that P(x) has unit period, and that
the highest frequency component of P is (approximately) 30 times the fundamental frequency. Sam-
pling P 64 times in one period will then suffice to avoid aliasing.

Rather than prompt the user for 64 complex data points representing the sampling of P, the program
below uses a relatively simple function for P, although you could use values from any other source

equally well.

10 OPTION BASE 1
20 DIM P(64,2),Q(64,2),2(64,2)

30 DIM C(2,2), T(2), S(2)

40 C(1,1)=1@C(2,2)= —1@C(1,2),C(2,1)=0

50 DISP “Working; please wait”
60 FOR I=1 TO 64

70 P(1,1)=6000+COS(3+PI+1/32)
+SIN(7.5+P1+1/32)+COS(5.5+PI+1/32)

80 P(1,2)=4000~COS(13+PI«1/32) +
3500+SIN(11+Pl+1/32)

90 NEXT |
100 MAT Q=FOUR(P)
110 FOR F=—31 TO 32

120 J=MOD(F,64)+1

130 T(1)= —F2+12@T(2)=3+F
140 S(1)=Q@J,1)@S(2)=Q(J,2)
150 MAT S=CDIV(S,T)

P will contain the data points representing the
sampling of P. Q will represent P and eventually
P/(—Ff% + 12 + 3if). Z will represent the solution
to the differential equation. .

C will be used in the inverse transformation; T
and S are dimensioned to be complex scalars for
use in the complex division.

. . 10
C is now the matrix .
0 -1

This is the sampling routine that assigns to P the
values of the complex-valued function
represented by the right-hand sides of lines 70
and 80, sampled at 64 equally spaced points.

Q now represents P.

F represents the frequency variable and spans the
full range of frequencies, positive and negative,
that we expect to occur in P. |

J represents the number of the row in the Q array
where the amplitude of the frequency F is
stored.

T will be the denominator and
S the numerator in the complex fraction.
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160 Q(J,1)=S(1)@QWJ,2)=S(2)
170 NEXT F Q now represents P/(—f2 + 3if + 12).

180 MAT Q=Q-C This is the procedure that assigns to Z the values
of the inverse finite Fourier transform of Q.

190 MAT Z=FOUR(Q)

200 MAT Z=2-C

210 MAT Z=(64)+Z

220 DISP “THE VALUES ARE’"

230 MAT DISP USING “X,DDDD.D” ; Z The values displayed will represent the complex
values of the steady state solution of the
differential equation, sampled at 64 equally
spaced points in one period.

Fourier Sine/Cosine Series

There is another transform closely related to the finite Fourier transform that is applicable when the
data points Z, are purely real (that is, their imaginary parts are equal to zero). This is the Fourier
series transformation, which takes a set of 2N (real) data points Z,, Z,, ..., Z,5 _ ; and returns a set of
N + 1 real values A, A, ..., Ay, By, ..., By with the property that

4, X omjk . 2mjk
Zk=7+j;1 A]-COSW+B]-SIHW_
If Wy, Wi, ..., Wy _, are the complex values of the finite Fourier transform of the real data points Z,,
..+, Zyy _ 1, then the Fourier series values are given by
Aj=2Re(Wj) forj=0,..., N,

B,= —2Im(W) forj=1,..., N.









Appendix A

Owner’s Information

CAUTIONS

Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts
and the computer’s internal circuitry may resuit.

Turn off the computer (press [SHIFT[ATIN)) before installing or removing a plug-in module.

If a module jams when inserted into a port, it may be upside down. Attempting to force it further may
result in damage to the computer or the module.

Handle the plug-in modules very carefully while they are out of the computer. Do not insert any ob-
jects in the module connecter socket. Always keep a blank module in the computer's port when a
module is not installed. Failure to observe these cautions may result in damage to the module or the
computer.

Limited One-Year Warranty

What We Will Do

The Math Pac is warranted by Hewlett-Packard against defects in materials and workmanship affect-
ing electronic and mechanical performance, but not software content, for one year from the date of
original purchase. If you sell your unit or give it as a gift, the warraaty is transferred to the new owner
and remains in effect for the original one-year period. During the warranty period, we will repair or, at
our option, replace at no charge a product that proves to be defective, provided you return the product,
shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center,

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,

129
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or countries don’t allow limitations on how long an implied warranty lasts, so the above limitation may
not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE
FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu-
sion or limitation of incidental or consequential damages, so the above limitation may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which may vary from
state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be
determined by statute.

Obligation To Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard
dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please
contact:

e In the United States:

Hewlett-Packard Company
Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330
Telephone: (503) 758-1010
Toll-Free Number: (800) 547-3400
(except in Oregon, Hawaii, and Alaska)

e In Europe:

Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send products to this address for repair.
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o In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, CA 94304
U.S.A.
Telephone: (415) 857-1501

Note: Do not send products to this address for repai.

Service

Service Centers

Hewlett-Packard maintains service centers in most major countries throughout the world. You may
have your product repaired at a Hewlett-Packard service center any time it needs service, whether the
unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard computer products normally are repaired and reshipped within five (5) working days
of receipt at any service center. This is an average time and could vary depending on the time of year
and work load at the service center. The total time you are without you product will .depend largely on
the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computatiénal devices is lo-
cated in Corvallis, Oregon:

Hewlett-Packard Company
Service Department
P.O. Box 999
Corvallis, OR 97339, U.S.A.

or

1030 N.E. Circle Blvd.
Corvallis, OR 97330, U:S.A.

Telephone: (503) 757-2000



132 Appendix A: Owner’s Information

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.
Kieinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 Brusseis

Telephone: (02) 762 32 00

DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD QY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartiaan 121
N-1181 KK Amstelveen (Amsterdam)
P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndaien 18

N-1345 Qesteraas (Oslo)
Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

§-163 93 Spanga (Stockholm)
Telephone: (08) 750 20 00

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774
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International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-
able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under Obtaining Repair Service in the United States. A list of
service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax.

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these
cases, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period
of 90 days from date of service.

Shipping Instructions

Should your product require service, return it with the following items:
e A completed Service Card, including a description of the problem.

e A sales receipt or other documentary proof of purchase date if the one-year warranty has not
expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-
chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such
damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the
shipment to the service center. The packaged product should be shipped to the nearest Hewlett-
Packard designated collection point or service center. Contact your dealer for assistance.

Whether the product is under warranty or not, it is your responsibility to pay shipping charges for
delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the product with postage prepaid. On
out-of-warranty repairs in the United States and some other countries, the product is returned C.0.D.
(covering shipping costs and the service charge).
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Further Information

Service contracts are not available. Computer products circuitry and design are proprietary to Hewlett-
Packard, and service manuals are not available to customers. Should other problems or questions arise
regarding repairs, please call your nearest Hewlett-Packard service center.

Technical Assistance

The keystroke procedures and program material in this manual are supplied with the assumption that
the user has a working knowledge of the concepts and terminology used. Hewlett-Packard’s technical
support is limited to explanations of operating procedures used in the manual and verification of an-
swers given in the examples. Should you need further assistance, you may write to:

Hewlett-Packard Company
Portable Computer Division
Customer Support
1000 N.E. Circle Blvd.
Corvallis, OR 97330
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Memory Requirements

The Math Pac reserves 52 bytes of read/write memory for its own uses. In addition to this 52-byte
“overhead” and the memory required to dimension the arrays and variables you use with the keywords
(described in appendix D of the HP-75 Owner’s Manual), certain Math Pac operations use additional
memory during their operation. After the operation is completed, the memory is again available for
your use. The tables below provide you with the memory requirements for those keywords whose oper-
ation requires additional temporary memory.

Item

Memory Required During Operation

EnTESF

DET

LRy

EZTEEOM, M requires:
e One byte if M = 0.

o IMTLLOGACHM, M + 1 bytes otherwise. This is the number of digits needed to

represent M (decimal) in base N.

Requires additional memory only if an operand array is used for the result array. If A is

an M x N matrix and B is R X S matrix:
e MAT FA=H*HA requires T = M* bytes.
e MMAT H=H¥E requires T = M = S bytes.
e MHT H=E*HA requires T + R » N bytes.
8if Ais FEAL.
where T =< 4 if Ais SHIOET,
Bif Ais INTEGER.

i Aisan N x N matrix, MHAT E=IHWIHY requires:
e 4N bytes if B is EEFL.
o AN (2N + 1) bytes if B is “HFET or IH

4N (2N + 4P + 1) bytes.

1 ¥ requires

135
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Item

Memory Required During Operation

LUFHRCT

CFMULT

COET

CIM

FREOOT

Fop

FHEOOT

THTEGRERL

ifAisan N x N matrix, MAT E=LUFACT A requires:
o 2N bytes if B is FEAL.
o 2N (4N + 1) if Bis SHORET or INTEGER.

Same as #.
if Aisan N x 2N array, MAT Z=COET <A requires 16N? bytes.
If Aisan N x 2N array, MAT E=CIHY A requires 8N (4N + 1) bytes.

If Ais an N x 2N array and B is an N x 2P array, MAT C=C5v50H, ED requires
8N (4N + 4P + 1) bytes.

If P is an array with N -+ 1 elements representing a polynomial of degree N,
MAT RE=FEOOTF) requires 22N + 267 bytes.
if Aisan N x 2 array, MAT E=FOUECH> requires:

e No additional memory if B is FEAL.

e 16N bytes if B is SHORET or INTEGEE.
IHTEGERLCH B, E . FMF Cx3 1 requires 333 bytes.

FHEOOTOA, B, FHF <22 requires 87 bytes.
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Error Conditions

Number Error Message and Condition

1 g too =mall

¢ |Result| < 1E—499.

2 fdm too large
o |Result| > 9.99999999999E499.
o MAT U=IHWCW,  MAT UsCIHYOUD,  MAT U=LUFACT WS,
MAT U=Swool We, MAT U=C02yEou, W,
DET WY, MET U=COET W,

The matrix V is singular (that is, its determinant is zero) and the LU decomposition of V
requires division of a non-zero number by zero. This does not always indicate that the
results of the operation are invalid. In particular, the results of IIET and CIET will be
valid. The results of the other operations should be checked when this error occurs.

11 arg ouwt of range

o HIEH =

o MAT Z=CDIWOW, Ve MAT Z=CRECPIUEV = (0, 0).
o MAT E=CPOMERCMW, W W =(0, 0) and Re(V) < 0.

e BESTREEM, Hi: M = 999,999,999,999.5.
o EVALCESE, Ml (value) > 999,999,999,999.

12
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Number Error Message and Condition
13 LOGormeg mumber
o LOGZUHI: X < 0.
e LOGAC®, B: X < O0OorB < 0.
89 bad parameter
o EVALCEF, My, BSTREF M, Hi: rounded integer value of N not equal to 2, 8, or 16.
e BEWAL CE#%, M B$ not a valid number in base N.
e BETREFIM, Hi: M < 0.
e AT FA=10H " redimensioning subscript(s):,
MAT A=C0HCredimensioning subscript(s) &,
MAT A=ZEFR {redimensioning subscript(s):,
FEEDIM Adredimensioning subscript(s)::
rounded integer value of one or both subscripts is less than the option base in effect.
e UEHITH,H», LEHNDCAH, M rounded integer value of N not equal to 1 or 2.
e MAT E=CROOTOF, H3: rounded integer value of N not positive.
201 result dimsension
o MAT A=COMCL, i, MAT A=ZERCL, o, MAT A=TOHCL 13,
FEDIM A<i, .0 A singly subscripted.
o MAT A=COMCLy MAT A=ZERCL, REQDINM AC1 > A doubly subscripted.
e AT HR=operation (operand array(s)): number of subscripts of A not the same as the
number of subscripts required for the result of the operation.
202 Fesgli o Zize
o REIIIHM Fredimensioning subscript(s):,
MAT #A=C0HCredimensioning subscript(s) =,
L E R Credimensioning subscript(s)
MAT H=10Hredimensioning subscript(s) ::
number of elements in the redimensioned array greater than the total number of
elements given to it in a dimensioning statement.
e AT Fi=operation:operand array(s)::
total number of elements in A (as given in its original dimensioning statement) less than
the number of elements needed to store the results of the operation.
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Number

Error Message and Condition

203

204

205

206

207

o AT H=E+LC, MAT H=E-: B and C not conformable for addition (the number of

rows are uneqgual or the number of columns are unequal).

o MAT A=EXC, MAT ==2YSJE, T B and C not conformable for multiplication (the

number of columns of B is not equal to the number of rows of C).

o [T H,E>r: number of elements of A not equal to the number of elements of B.

o MAT RE=CHMMULTIA,EY, MAT
equal to twice the number of rows of B.

niot Equare
o DETIHY, MAT YEOR, BN MAT BE=IHWOAS,
MAT B=LUFACTORY, MAT HA=I10OH:
number of rows of A not equal to the number of columns.

e MAT FA=IDMCL, 37 % |

o MAT FE=CIHVCAY MAT R=CSYEO0A,BY MRT F O, MAT
number of columns of A not equal to twice the number of rows.

Pt wE T

o MAT

S By, DOTOA B A or B not singly subscripted.

H, B A or B not three dimensional.

dimension

o MAT FA=I0MY 1 x: only one redimensioning subscript specified.

A= LIFAL
A== TR

T
B not doubly subscripted.
o MAT R=CHMMULTOA, B, MAT R=C0SYSIA,E!

A or B not doubly subscripted.

L H L B2 number of columns of A not

CHETOR:
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Number Error Message and Condition

]
1T

208 coperand Ziz

o MAT FE=complex function: Z1: Z not a complex scalar.

o MHT F=complex functionZ , 1l : Z or W not a complex scalar.

e MAT RE=CEOOTCZ, M2 Z not a complex scalar.

o MAT E=FEOOTCFX: P contains exactly one element (and so represents a polynomial
of degree zero).

o MAT RE=COETCAY, MAT RE=CIHWIAY, MAT E=CTREHIA:
A doesn’t have an even number of columns.

o MAT R=CHMULTCA, B>, MAT CEYEOR B
A or B doesn’t have an even number of columns.

o MAT H=FOURCE : Bisnotan N x 2 array with N a non-negative integer power of 2.

209 FREOOT failure

o FRIIIT cannot find a root of the specified polynomial.

stimg &rror

o FHREOOTCH B, FHF X2 3 user-defined function FHF uses the FHEDDIT keyword in
its definition.

o ITHMTEGREALCAH, B, E, FHF <X 2 user-defined function FHF uses the IHTE
keyword in its definition.




Keyword Index

Keyword Page Description

AEBSLIM 41 Sum of the absolute values of array elements,

ACOEH 13  Inverse hyperbolic cosine. !

A 41 Largest element of an array.

HMIH 41 Smallest element of an array.

A= ITHH 13  Inverse hyperbolic sine.

ATHMH 14  Inverse hypererbolic tangent.

TE: 20 Decimal to binary/octal/hexadecimal conversion.

20 Binary/octal/hexadecimal to decimal conversion.
71 Complex inverse cosine.
71 Complex inverse hyperbolic cosine.

CHROO 63  Complex scalar addition.

CAHSIHN 70  Complex inverse sine.

CHZIHH 7 Complex inverse hyperbolic sine.

CATAMH 72  Complex inverse hyperbolic tangent.

CHATH 71 Complex inverse tangent.

Cons 68 Complex cosine.

COOSH 69 Complex hyperbolic cosine.

COET 80 Determinant of a complex matrix.

Ccory 63 Complex division.

CEHF 67  Complex exponential.

CI0OH 80 Complex identity matrix.

CTHY 80 Complex matrix inversion.

CLOG 70  Complex logarithm.

CHMULT 79  Complex matrix multiplication.

CRULT 63  Complex scalar multilication.

CHOREM 40  One-norm (column norm) of an array.
25  Constant value array.
62  Complex conjugation.

T 13  Hyperbolic cosine.

CROWER 70  Complex power of a complex number.

CRTOR 62 Polar to rectangular conversion.
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Keyword Index

Keyword Page Description
CREECF 64  Complex reciprocal.
CEOOT 72 Roots of a complex number.
CROSE 35  Vector (cross) product.
CETIF 62  Rectangular to polar conversion.
CEIH 68  Complex sine.
70  Complex square root.
69  Complex hyperbolic sine.
63  Complex scalar subtraction.
35  Column sum of an array.
81 Complex system solution.
68 Complex tangent.
69 Complex hyperbolic tangent.
80 Complex conjugate transpose of a matrix.
45  Determinant of the last matrix.
45  Determinant of a matrix.
LTk 27 Display an array in standard format.
ODISP USIHG 28  Display an array using custom format.
noT 42 Dot product.
FACT 15  Factorial/gamma function.
FOuUE 121 Finite Fourier transform.
FHORM 40  Frobenius norm of a matrix.
FHGUESS 102  Second-best guess to value returned by FHFOT.
FHEOOT 101 Solution of f(x) = 0.
TEOLUHD 110 Uncertainty of last-completed integration.
IRNE 26  Identity matrix.
ITHPUT 27  Assign array values from keyboard entries.
IMTEGREHAL 109  Definite integral of user-defined function.
ITHW 34  Matrix inversion.
TWARLUE 110 Current aproximation to an integral.
LB 42  Lower bound of array subscripts.
: 14 Variable-base logarithm.
LOGE 14  Base-2 logarithm.
LUFRCT 47 LU decomposition.
MAxAR 41 Maximum absolute value of array elements.
FIMAR 41 Minimum absolute value of array elements.
FREIMNT 28  Print an array in standard format.
FEIMT UZIHY 28 Print an array using custom format.
FROOT 90 Roots of a polynomial.
FEAD 26 Read array values from [IATFH statements.
FEEDTM 24 Redimension an array.




Keyword Index

Keyword Page Description
FH O 40  Infinity norm (row norm) of an array.
FOUMD 14  Round.
RS 35 Row sum of an array.
SITHH 13  Hyperbolic sine.
S 40  Sum of array elements.
ShE 54  System solution.
THHH 13 Hyperbolic tangent.
TEH 35 Transpose of a matrix.
TEUHCATE 15  Truncate.
LIEMD 42  Upper bound of array subscripts.
ZER 25  Zero array.
= 25  Simple assignment.
=0 25  Numeric-expression assignment.
= 33  Array negation.
+ 33  Array addition.
- 34  Array subtraction.
¥ 34  Array multiplication.
OO 34  Scalar-array multiplication.
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