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Introducing the Math Pac 

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en­
gineering problems. These tools are provided in the convenient and flexible form of BASIC keywords. 
Once the Math Pac is plugged into your HP-75 computer, these keywords are instantly available: no 
program to load, no waiting. (The Math Pac is a ROM-based LEX file, described in appendix B of the 
HP-75 Owner's Manual.) You can use these keywords in any program as often as needed; you avoid the 
restrictions that would apply to program calls and save the memory that subroutines would require. 

The Math Pac adds the following capabilities to your HP-75. 

" Advanced real- and complex-valued functions. 

OJ Real and complex matrix operations. 

e Solutions to systems of equations. 

" Roots of polynomial equations and user-defined functions. 

" Numerical integration. 

.. Finite Fourier transform. 

3 



Contents 

How To Use This Mamm.aR ..................... . .. ......... 9 

Section 1: InstaHing and Removi.ng Hlle ModuRe . . . . . . . .. 11 

Section 2: Real Scalar Functions ............... . . . . . . . . .... 13 
Hyperbolic Functions C:; I t'lH, CO~:;H, TAtlH, A~:; I t·lH, ACO~:;H, ATAtlH) ...... 13 
Logarithmic Functions (L 0 C 2, L 0 C A) ..................... ........ 14 
Rounding and Truncating Functions (POUt·lD, TF.:Ut·lCATE) .. . ........... 14 
Factorial/Gamma Function (FA C T) .............. 15 
Examples ............................................. . . . . . . . .. 16 

COSH, SINH, ATAHN, ACOSH .................................... 16 
LOG2, LOGA ........... . . . . . . . . . . . . . . . . . . . . . . . . . 16 
ROUND, TRUNCATE . . . . . . . . . . . . . 17 

Section 3: Base Conversions 
Binary, Octal, and Hexadecimal Data Types ............ . 
Base Conversion Functions (E: I,,' A L, E: ~:; T P $) .......... . 

Examples ..................................... . 
Additional Information .......................... . 

Section 4: Array Input and Output ............. . 

................... 19 
19 
20 
20 

. .......... 21 

23 
Redimensioning an Array (F.: E [I I t'1) .................................... 24 
Assignments (=, =<), ZEP, COt'l, I[lt'l) .......... . ......... 25 
Array Input (F.:EA[I, I t'lF'UT) ........................................ . 26 
Array Output ([I I ~:; F', F' F.: I tH, [I I ~:; F' U ':; It··! C, F F I t·n u ':; I t·j en ....... . 27 

29 Examples ........................................ . 
IDN, DISP USING ............................ . 
INPUT, REDIM, DISP, ZER, CON ................... . 
MAT READ, MAT DISP ....................... . 

Section 5: Matrix Algebra ....................... . 
Arithmetic (=-, +, -, l, (:'f) .................... .. 

Operations (I t·n,l, T Hl, CPO ~:; ~:;, F: ~:; U t'!, C: ~:; u t'i) .... . 

29 
29 

. ............ 31 

33 
............... 33 

34 
Examples ......................................... ' .......... . 36 

36 ( l*. *, INV, CSUM, RSUM ........................ . 
Additional Information: I H',,' ........ 38 

4 



Contents 5 

Section 6: Real-Valued Matrix Functilons ........................ ,.... 39 
Determinants ([lET, [lETL) ................................. 39 
Matrix Norms (F t~ 0 F: t'1, F: tl 0 F: t'1, C t·~ 0 F: t'1, ~:; U t'1, A E: ~:; U t'1, A t'1 A>::, 

A t'1 I t~, t'1 A >:: A E:, t'1 I t~ HE: ) .......... . . . . . . . . 40 
Inner Product ([lOT) ...................................... ..... . . . .. 42 
Subscript Bounds (U E: tW, L E: t·W) .................................. ,..... 42 
Examples ................................... . 

DET, DETL, RNORM, UBND 
ABSUM, AMIN, DOT .................... . 

Additional Information: [I E T, [I E T L ...... . 

Section 7: LU Decomposition (L I.Wf~C T) 

Example ....................................... . 
Additional Information ...................... . 

Section 8: Solving a System of Equations ( " 
Example .................................... . 
Solving the Steady State Heat Equation 

The Model ........ . .......... . 
The Program ................... . 
Using the Program ................. . 

Additional Information ........................... . 

Section 9: Complex Variables ............... . 
Polar/Rectangular Conversions (C F' T 0 F:, C F: T 0 F') ........ . 
Complex Arithmetic Operations (C 0 t~.J, C A [I [I, C ~:::; U fe;, C t'11..i L.·r, 

C[I I''), CF:ECF') .............................. . 
Examples ......................................... . 

CPTOR, CRTOP .... .................... . ...... . 
CADD, CMULT, CRECP .................... . ............... . 

Section 10: Complex Functions ............. . 
Simple Transcendental Functions (C [:: F', C ~:: I tl, C C: () ~::::, c T i:~ !.!, 

C:~:::; I !"H-!, CCO~:;H, CTAt'~H) .................... . 
Inverse Functions (C ~:; 0 F:, C F' 0 ~'I E F:, e L 0 C, C H ~::; I t'l, C H C U <:::, 

Cfrrl"~, eWe; I t'~H, C:f:1CO~:;H, CHHHH1) ........... . 

42 
42 
44 
45 

47 
47 
48 

53 
54 
55 
55 
57 
58 
58 

61 
61 

62 
64 
64 
65 

61 

67 

69 
Roots of a Complex Number (CF:OOT) ...................... . . ........ 72 
Examples ................................ . 

CSIN, CTAN, CCOSH, CACOSH ........... . 
CSQR, CLOG ..... . .................... . 

Additional Information .............. . 

72 
72 
73 
74 



6 Contents 

Section 11: Complex Matrix Operations ( L. i, 
i. i 1'·1 l !, I, i .. ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 

Examples ........................................................... 81 
CTRN, CION ........................................................ 81 
CINV, CMMULT ............................. . . . . . . . . . . . . . . . 82 
CSYS ...................................... . ............. 83 

Additional Information: C 1'1 1'1 U l... T, C "T'I? I) ....... . 85 
Scalar Multiple of a Complex Array ........ . . ............... 85 
Complex Conjugate of a Complex Array 86 
Complex Form of a Real Array ......................................... 87 

Section 12: Finding Roots of Polynomials C 
Example .................................... . 
Additional Information 

About the Algorithm 
Multiple Zeros 
Accuracy 

Section 13: Solving f(x) = 0 (I" 
Example .................. " .... . 
Additional Information ................... . 

Choosing Initial Estimates .............. . 
Interpreting Results ............. . 
Decreasing Execution Time .......... . 

Section 14: Numerical Integration ( 
Examples ................................ . 

INTEGRAL, IBOUND, IVALUE ......... . 
INTEGRAL, IBOUND .................... . 

Additional Information ............... . 
Overview of Numerical Integration ....... . 
Handling Numerical Error ........... . 
Choosing the Error Tolerance ........... . 
Handling Difficult Integrals ............. . 
About the Algorithm .................. . 

T) 

Section 15: Finite Fourier Transform ( :.» ... 

Example ......................... . 
Additional Information .......................................... . 

Relation Between the Finite and Continuous Fourier Transform 
Inverse Finite Fourier Transform ........ . 
Example ................ " .......... . 
Fourier Sine/Cosine Series ....... . 

89 
90 
91 
97 
98 
98 

101 
102 
103 
103 
104 
106 

109 
111 
111 
112 
113 
113 
113 
114 
115 
119 

121 
122 
122 
122 
124 
124 
126 



Contents 7/8 

Appendix A: Owner's Information .................... . 129 
Limited One-Year Warranty ................. . ............... . 129 

What We Will Do ...................... . ................. . 129 
What Is Not Covered .. 129 
Warranty for Consumer Transactions in the United Kingdom 130 
Obligation To Make Changes ....... . 130 
Warranty Information ....... . 130 

Service ............. . ...... . 131 
Service Centers .......... . ... '," 131 
Obtaining Repair Service in the United States 131 
Obtaining Repair Service in Europe ......... . 132 
International Service Information 133 
Service Repair Charge ............... . 133 
Service Warranty 133 
Shipping Instructions .. 133 
Further Information 134 

Technical Assistance ......... . 134 

Appendix B: Memory Requirements 135 

Appendix C: Error Conditions 137 

Keyword Index 141 



This manual assumes that you are generally familiar with the operation of your HP-75 computer, espe­
cially how to create, edit, store, and run programs. You should also understand the Il)lathematical basis 
for the operations you will be performing. Because the keywords in the Math Pac cover such a wide 
range of mathematical subjects, we cannot provide much tutorial information on the mathematical 
concepts involved. 

The keywords in the Math Pac are independent of one another, so you may deal with ;only the keywords 
that specifically interest you. Each section in this manual contains information on keywords of a 
particular mathematical type-real-valued functions, matrix algebra operations,' and so on. All 
keywords described after section 3 (except F t·w 0 0 T and I tH E C F.: A L) use arrays in their operation. To 
become familiar with arrays you should read section 13 of the HP-75 Owner's Manual and the general 
information at the beginning of section 4 of this manual. 

Within each section you will find a description of each keyword name, function, syntax, and operation 
in the following format. 

Keyword Name Function That the ,Keyword Performs 

Syntax 

Legal data types and numeric values for use with this keyword. 

Describes the values returned by this keyword and the details of the keyword's operation. 

Keyword N arne. This is the way the keyword will be referenced elsewhere in the manual. It is usually 
a mnemonic of the function that the keyword performs. In most cases the name must be embedded in a 
longer statement that includes arguments, parentheses, and so on; the name by its{llf usually isn't an 
acceptable BASIC statement. 

Several keywords have names that are identical to names of keywords already present in your HP-75-
like D I ::::;P, +, and ::1::. The syntax in which such a name is embedded indicates which operation to 
perform. All operations available to you in the HP-75 itself are still available, unaffected by the pres­
ence of the Math Pac. 

Syntax. This is a description of the acceptable BASIC statements in which the keyword's name can 
be embedded. The following conventions are used throughout the manual in describi;ng the syntax of a 
keyword. 

9 



10 How To Use This Manual 

Typographical Item Interpretation 

d 0 1: ffl3 1: t- i >: Words in dot matrix type may be keyed in using either lower or upper 
case letters, but otherwise must be entered exactly as shown. 

italic Variables in italic type represent numeric expressions; phrases III 

italic type represent a parameter that is defined elsewhere. 

bold Variables in bold type represent arrays. 

[ 1 Square brackets enclose optional items. 

stacked When two items are placed one above the another, one (and only one) 
items of them may be used. 

An ellipsis indicates that the optional items within the brackets may 
be repeated indefinitely. 

Legal Data Types and Numeric Values. This information describes the types and ranges of ar­
guments for the keyword that are acceptable to the Math Pac. Use this information to avoid generating 
errors and to isolate the cause of those that do occur. This is not a mathematical definition of the 
domain of the function that the keyword computes. 

Included in each section are a number of examples illustrating the use of the keywords in the section. 
Almost all of the examples are given as keyboard calculations so that you can immediately see the 
result of using a particular keyword. The effects of using a keyword in a program will be identical 
except that in a program you can access only program variables, not calculator variables. 

To try an example yourself, type in the commands given in the Input/Result column using either 
upper or lower case, ending each line with a 1 RTN I. After you complete a command, the display of your 
HP-75 should look like the display shown in the Input/Result column following the command-pro­
vided that you have set your line width to 32 by entering 1 .. .1 i d 1: !.,.! ~:;: 21 RTN I. In many cases a single 
command will produce a sequence of displays, shown as consecutive lines in the display figure. You can 
control the length of time each display remains visible with the [I E L P 'I' command described in section 
2 of the HP-75 Owner's Manual. 

Some sections include additional information to help you make effective use of the more sophisticated 
operations. If you would like still more information, you can refer to the HP-15C Advanced Functions 
Handbook. Although the Math Pac differs from the HP-15C Advanced Programmable Scientific Cal­
culator in its operation and capabilities, much of the information in the HP-15C Advanced Functions 
Handbook applies to the Math Pac. Such information includes techniques to increase the effectiveness 
of equation-solving algorithms, integration algorithms, matrix operations, system solutions, and accu­
racy of numerical calculations. 



Section 1 

Installing and Removing the Module 

The Math Pac module can be plugged into any of the three ports on the front ed~e of the computer. 

CAUTIONS 

• Be sure to turn off the HP-75 (press I SHIFT II ATTN i) before installing or removing any module. If 
there are any pending appointments, type .:l 1 .:l (r,., <:> f f [RTN I in EDIT mode to p~event the arrival 
of future appointments (which would cause the computer to turn on). If the computer is on or if it 
turns itself on while a module is being installed or removed, it might reset itself, causing all stored 
information to be lost. 

• Do not place fingers, tools, or other foreign objects into any of the ports. Such act,ions could result 
in minor electrical shock hazard and interference with pacemaker devices worn by some persons. 
Damage to port contacts and internal circuitry could also result. 

To insert the Math Pac module, orient it so that the label 
is right-side up, hold the computer with the keyboard fac­
ing up, and push in the module until it snaps into place. 
During this operation be sure to observe the precautions 
described above. 

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the 
module and pull the module straight out of the port. Install a blank module in the port to protect the 
contacts inside. 

11/12 





Section 2 

Real Scalar Functions 

Hyperbolic Functions 

SINH 

::::; I t·~H (X) 

where X is a numeric expression, IXI < 1151.98569368 

COSH 

CO::=';H (X) 

where X is a numeric expression, IXI < 1151.98569368 

TANH 

THHH(X) 

where X is a numeric expression. 

ASINH 

H ::::; I t·~ !.-I ( X ) 

where X is a numeric expression. 

ACOSH 

where X is a numeric expression, X > 1. 

13 

Hyperbolic Sine 

iHyperbolic Cosine 
, 

t:!yperbolic Tangent 

Inver!:le Hyperbolic Sine 
I 

Inverse iHyperbolic Cosine 
I 



14 Section 2: Real Scalar Functions 

ATANH 

where X is a numeric expression, -1 < X < 1. 

Logarithmic Functions 

LOG2 

LOC2'::X) 

where X is a numeric expression, X > o. 

L 0 C 2 .:: X, = log2(X) = :~~;~ 

LOGA 

L .. OCA'::X .. B) 

Inverse Hyperbolic Tangent 

Base 2 Logarithm 

Variable Base Logarithm 

where X is a numeric expression, X > 0, and B is a numeric expression, B > 0 and B *1. 

_ _ In(X) 
L 0 C A .:: X .. B) - 10gB(X) - In(B) 

Rounding and Truncating Flmctions 

ROUND 

F.:IJUt1D .::X .. N) 

where X, N are numeric expressions. 

Round 

If N is positive, rounds X to N digits to the right of the decimal point. If N is negative, rounds X to N digits 
to the left of the decimal point. 

T 'H (X * 1 oP + 5) F.:OUt·W'::X,N) = _!.. P . 
. 10 

where I t1 T is the standard HP-75 function, and P is N rounded to the nearest integer. 



Section 2: Real Scal;ar Functions 15 

Note: The rounding convention given above is used only in the F.: 0 U ~.~ [I keyword. ;In particular, 
the F.: 0 U ~~ [I keyword rounds numbers "toward positive infinity" so that if 1.5 is roynded to the 
nearest integer using F.: 0 U ~~ [I, the result is 2. If -1.5 is rounded to the nearest irlteger using 
F.: 0 U ~.~ [I, the result is -1. Anywhere else a number needs to be rounded, the M*h Pac uses 
the same convention as the HP-75 itself: positive numbers are rounded "toward positive infin-

I 
ity", and negative numbers are rounded "toward negative infinity". This can only: make a dif-
ference when the number to be rounded is negative and lies exactly halfway ~etween the 
numbers to which it could be rounded. 

TRUNCATE Truncate 

T F: U ~.~ CAT E 0: X, N::' 

where X, N are numeric expressions. 

i 

If N is positive, truncates X to N digits to the right of the decimal point. If N is negative, truncates X to N 
digits to the left of the decimal pOint. 

T F.: U t~ CAT E 0: X, N::' = I F'(X 'p 1 Op) 
. 10 

where I F' is the standard HP-75 function, P is N rounded to the nearest integer. i 

, 

iFactoIT'Dal!/Gamm1a1 [FUllIiilC~D©1ril 

FACT Combined Factorial and Gamma Functions 

F"HCT (X> 

where X is a numeric expression not equal to a negative integer, 
- 254.1 082426465 < X < 253.1190554375. 

If X equals a non-negative integer, FA C T .: X, = X! 

In general, FACT <X> = r (X + 1), defined for X > -1 as 

r (X + 1) = 1XJtXe-tdt 

and defined for other values of X by analytic continuation. 



16 Section 2: Real Scalar Functions 

Examples 

COSH, SINH, ATANH, ACOSH 

Input/Result 

c: 0 s h .: 0) I RTN I 

.......... :::, I RTN I .............. 

LOG2, LOGA 

Input/Result 

I l? 

4 

Hyperbolic cosine of a numeric coJ)stant. 

Hyperbolic sine of a numeric expression . 

Inverse hyperbolic tangent of a numeric expres­
sion with a numeric variable. 

Inverse hyperbolic cosine of a numeric expression. 

Logarithm (base 2) of a numeric expression. 

Logarithm (base 3) of 81. 



>': "" 4 [ RTN [ 

IJ==::3 [RTN I 
z == >, .... 'e! [ RTN I 

1. ()'=.;i d < Z .' ::< > [RTN I 

ROUND, TRUNCATE 

Input/Result 

>: '" I ~:: ::3 4 5 , ,; 7 I RTN I 
t t· I.A (, C .~ t e < >':.' 1 > [RTN I 

112::34~::;''; 

.• _ .. "._' t"_ I 1 .::;'"7 ,i C; 

Il;:~::)4~5,? 

····1 :' [RTN I 

,... () I.A I··, d < m •• 1. ::3 , 2 5, 1 > [RTN I 

·-··1:3 , ;;~ 
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L 0 C A of numeric variables. 

I 

T F: U tj CAT E "blanks" all the digits rightward of 
the digit indicated by the sec9nd argument. 

._ I •• 
F.: 1...1 U t·j [I rounds the first argument at the digit 
indicated by the second argu~ent. 

If the second argument is negative, this in­
dicates a digit to the left of the decimal point. 

-13.25 is midway between -13.2 and -13.3; in 
this case the number is round~d in the positive 
direction to -13.2. I 





Section 3 

Base Conversions 

BinarYj Octal, and Hexadecimal iDJata Types 
i 

The operations in this section allow your HP-75 to recognize and manipulate nurbbers expressed in 
I 

number systems other than decimal (base 10). These functions conform to the ANSI standards de-
scribed in appendix B of the HP-75 Owner's Manual. ! 

Because the HP-75 assumes that any number stored in a numeric variable or ent~red from the key­
board is a decimal number, you must enter and store every non-decimal number as la character string. 

I 
In particular, if you store the number in a variable, the variable's name must end with "$"; if you enter 
the number from the keyboard, it must be enclosed in quotes. ! 

I 

In the tables below, S$ will represent a binary, octal, or hexadecimal string or stri~g expression. 
, 

• A binary string consists entirely of O's and l's, and represents a number in the base 2 number 
system. A binary string expression is a string expression whose value is a binary string. 

I 

• An octal string consists entirely of O's, l's, ... , 6's, and 7's, and represents a nutnber in the base 8 
I 

number system. An octal string expression is a string expression whose value isl an octal string. 
i 

• A hexadecimal string consists of O's, ... , 9's, A's, ... , F's, and represents a number in the base 16 
number system. (Be sure to capitalize the letters A through F, which represent ithe decimal values 
10 through 15.) A hexadecimal string expression is a string expression whose val~e is a hexadecimal 
string. 

19 



20 Section 3: Base Conversions 

Base Conversion Functions 

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion 

E: I,} A L .: S$ , N::O 

where S$ is a binary string expression whose value is not greater than 
1110100011010100101001010000111111111111 (binary), and N is a numeric expression whose 
rounded integer value is 2; 

or S$ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is 
a numeric expression whose rounded integer value is 8; 

or S$ is a hexadecimal string expression whose value is not greater than E8D4A50FFF 
(hexadecimal), and N is a numeric expression whose rounded integer value is 16. 

Converts a string expression S$ representing a number expressed in base N into the equivalent decimal 
number. The value of the decimal equivalent can't exceed 999,999,999,999 (decimal). 

BSTR$ Decimal to Binary, Octal, or Hexadecimall Conversion 

B::;TF.:$ ':X, N::O 

where X is a numeric expression, 0 ,,;;; X < 999,999,999,999.5, 
and N is a numeric expression whose rounded integer value is 2, 8, or 16. 

Converts the rounded integer value of X (decimal) into the equivalent base N string. 

Examples 
Input/Result 

I:) \ ... :l :I. .: " 1 0 1 0 " , 2::0 I RTN I 

I 10 The decimal value of 1010 (binary). 

b l "'" " 1 1 1 1. " I RTN I 
b \ .. ·'OJ 1 0:: b $, c::::o I RTN I 

The decimal value of the binary string "1111". 



l- 1 'l-$'l_$ _. ~ l) "/ .", <:. l) . . ::., l) . . .' :0::':< L.!!!!:!J 

b s t ~- $ .:: 3, 2:' I RTN I 

b s t ~- $ .:: 7 2, ::::. I RTN I 

I 110 

b s t ~- $ .:: b ',/.", 1 .:: " A F 1 C ::: " .' 1 6 :. .' 2:' I RTN I 

I 10101111000111001000 

b s t t" $ .:: b \,' '" 1 0:: " 1 4 7 7 2 ", ::: :. +b \,'.'" 1 
< II 5 7 (1 II " ::: ) .' ::: > I RTN I 

Section 3: Base Cohversions 

The decimal value of the binad string 
"11111111". ' 

The binary representation of 3 ~decimal). 

The octal representation of 72 (decimal). 

The binary representation of AF1C8 
(hexadecimal) . 

21/22 

15562 The octal sum of 14772 (octal) ~nd 570 (octal). 

Additional Information 

Three considerations determined the range of acceptable parameters for the base con~ersion keywords. 
I 

• The keywords give the exact answer for any integer in the range of acceptable parameters. 

• The keywords are inverses of one another, so that composition in either directi~n is the identity 
transformation for integers. ' 

• The integers from 0 through 999,999,999,999 form the largest block of consecubve non-negative 
integers that the HP-75 can display in integer format. 





Section 4 

Array Ihmput and Output 

I 
An array is a variable that is either singly subscripted (a vector) or doubly subscriptep. (a matrix), with a 
range of values for the subscripts (dimension) limited only by available memory. Values for array 
elements are stored sequentially in memory, in row order: I 

i 
" From left to right along each row. I 

I 

" From the top row to the bottom row. i 

i 
An array can be one of three data types: PEA L, ::; HOP T, or I tH E G E F.:. Operations provided by the 
Math Pac will not change the declared type of an array; when the values from la PEA L array are 
assigned to a::; HOP T or I t1 T E G E P array, the values are rounded as they are sto~ed into that array. 
(Arrays are described in section 13 of the HP-75 Owner's Manual; F.: E A L, ::; HOP T, ~nd I tn E C E Pare 
described in section 5.) : 

i 

Recall that the upper bounds of an array's subscripts are determined by a dimensioning statement, and 
that the lower bound of all subscripts in a program is determined by an 0 F' T I 0 t'11 E: A::; E statement: 

• U F T I 0 t·1 B A::; E 0 sets the lower bound to zero. ! 

! 

• OFT I Ot1 BA:::;E sets the lower bound to one . 

For calculator variables, 0 F' T I 0 t·1 B A::; E 0 is always in effect. However, a' program variable 
dimensioned under 0 F T I 0 t·1 E: A::; E 1 will continue to have 1 for the lower boupd of its subscripts 
when the program is interrupted, until the program is deallocated. Note that [I I ~'1, REAL, ::::;HClPT, and 

I 
I H T E G E P statements executed in calculator mode will have no effect on program variables even if the 
program is interrupted and the program variables are accessible. This is also true for the explicit and 
implicit redimensioning implemented by the Math Pac. ! 

Many array operations in the Math Pac are of the form 

r'1 AT result array=operation':: operand array(s)::' 

where the operand arrays are the arguments of the operation and the result array is the array in which 
the results of the operation will be stored. The operation changes only the result krray. 

I 

It is wise to dimension every array before it appears in a Math Pac statement. (RJfer to section 13 in 
the HP-75 Owner's Manual for information on default dimensioning of array~.) If an operation 
redimensions an array, the array must have been given at least as many elements iIi its original dimen-

I 

sioning statement as there will be in the redimensioned array, but the numbers of rows and columns 
need not be individually greater. ! 

23 



24 Section 4: Array Input and Output 

The keywords in this section can help you to: 

• Change the size of an array. 

• Fill an array with values. 

• Display values already in an array. 

Redimensioning an Array (F~ ~:::: U I ~.,.~) 

The keyword F.: E D I t'1 allows you to rearrange an array without destroying the information in the array. 
The values are reassigned according to the new dimensions, and any extra values are inaccessible and 
unaffected by operations on the array until you again redimension the array. (Some statements can 
redimension an array before performing an operation. In these cases, the extra values will become 
accessible when the array is redimensioned and then will be acted on by the operation.) 

For example, if you redimension the 2 x 3 array shown below to a 2 x 2 array, you can no longer access 
the elements 5 and 6. 

2 

5 
:] ;, red;men,;oned to [: :], 5 and 6 become ;naoce,,;ble. 

In some cases a D I t'1 array statement should be followed by a!:;:: E: D I f'i array statement using the same 
parameters. This is necessary only if the array is later redimensioned, either explicitly or implicitly, and 
only if the program segment that dimensions and redimensions the array will be executed more than 
once under program control. Because the D I t'1 statement is executed the first time that the program 
segment is executed but is skipped each subsequent time, the array won't be reset to its initial size by 
the [I I t'1 statement. The P E D I t'1 statement following the [) I f'1 statement and using the same param­
eters is redundant the first time but properly resets the array to its initial size each subsequent time. 
This rule also applies to F.: E A L, :::; H 0 !~: T, and I t-~ TEe E: f;:' statements that dimension an array. 

REDIM Redimensioning 

A < i > 

[
B<n ] 

, ... 
D(m,n) 

F.: E [I I t'1 
C<k, I> 

where A, B are vectors, and C, 0 are matrices, and i, j, k, I, m, n are numeric expressions. 

Redimensions arrays and reassigns values in row order. A redimensioning subscript can be a numeric 
expression; its rounded integer value becomes the upper bound of the corresponding subscript. 

The total number of elements in the redimensioned array can't exceed the total number of elements the 
array was given in a dimension statement. 
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S~mple Assignment 

where A, B are both vectors, or A, B are both matrices. 

Redimensions A to be the same size as B and assigns to A the corresponding values Ifrom B. The total 
number of elements of A must be at least as large as the total number of elements of B. 

I 

=( ) Numeric Expreission Assignment 

where A is an array and X is a numeric expression. 

Assigns the value of X to every element of A. 

ZER I 

: 

Zero Array 

r'1 H'r A=:: Z E F: [.:: redimensioning subscript(s)::' 1 

where A is an array. 

Assigns a value of zero to every element of A. If redimensioning subscripts are presenl~, redimensions A 
just as F: E D I r'1 would. I 

! 

CON Constant Array 

r'l H T' A::::: C 0 t·j [.:: redimensioning subscript(s)::' 1 

where A is an array. 
L 

Assigns a value of one to every element of A. If redimensioning subscripts are presen~, redimensions A 
just as F: E D I r'l would. 
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ION Identity Matrix 

r'1A T A = I [I t~ 
r'1 A T B= I [I t~ .: X, Y> 

where A is a square matrix; 
or B is a matrix, and X, Yare numeric expressions with the same rounded integer value. 

For a square matrix A, assigns a value of one to every element on the diagonal of A and assigns a value 
of zero to every other element. 

For a matrix B, redimensions B to a square matrix with the upper bound of each subscript equal to the 
rounded integer value of X and Y; then assigns a value of one to every element on the diagonal of Band 
assigns a value of zero to every other element. 

Array Input 

READ 

r'1 A T F.: E A [I A[, B] ... 

where A, B are arrays. 

Assign Values from Data Statements 

Assigns values to the specified array(s) by reading from one or more U AT H statements .in the same 
program as the r'1 AT F.: E A [I statement. Operation is similar to the F.: E A D keyword in the HP-75. For 
each array, elements are assigned values in row order; if there is more than one array, they are filled in 
the order specified. 

This keyword can be used only in a program. 



INPUT 

t'1AT I t·WUT A[. B] ... 

where A, B are arrays. 
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I 

Assign Values from Keyboard Input 
I 

I 

Assigns values to the specified array(s) by prompting with the name of an array element and then 
accepting a number from the keyboard as the value of that element. For each array, prompts are given 
for the elements in row order; if there is more than one array, they are handled in the order specified. 

When the name of an array element is displayed, enter its value by typing in the Inumber and then 
pressing 1 RTN I. You can enter values for several consecutive elements by separatin~ the values with 

I 

commas. When an array is filled, the remaining values are automatically entered into the next array. 
After you press 1 RTN I the computer will display the name of the next element to be ~ssigned a value. 

I 

All values entered must be numbers; you cannot enter numeric variables or expressions. 
! 

Array OlUlt!PlUl~ 

DISP 
I 

Display irl Standard Format 
I 

t'1AT DE;P A [: BJ. .. ['] ! 

where A, B are arrays. 
I 

I 

Displays the values of the elements of the specified arrays. The values are displayed ih row order. Each 
row begins on a new line; a blank line is displayed between the last row of an array a~d the first row of 

I 
the next array. ' 

The choice of terminator-comma or semicolon-determines the spacing between the elements of an 
I array. ! 

I 
Spacing Between Elements I 

Close: Elements are separated by two spaces. A minus sign, if present, oc-
cupies one of the two spaces. i 

Terminator 

I 
Wide: Elements are placed in 21-column fields. I 

I 

If the last array specified doesn't have a terminator, the array will be displayed with !wide spacing be-
tween elements. I 
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PRINT Print in Standard Format 

t'IHT F'F.:ItH A [:: BJ. .. [::] 

where A, B are arrays. 

Prints the values of the elements of the specified arrays. Operation is identical to t'1 Fi T D I :::: F' except 
that the output is sent to the F' F.: I t·j T E F.: I ::: device. (If no F' F: I tj T E F.: I ::: device is present. the out­
put is sent to the [I I ::: F' L A '/ I ::: device.) 

OISP USING Display Using Custom Format 

format string [] [ ] 

statement number .: A : B... ' 

where A. B ..... are arrays. 

Displays the values of the elements of the specified arrays in a format determined by the format string or 
by the specified I t'1 ACE statement. (Refer to section 16 of the HP-75 Owner's Manual for a description 
of [I I ::::: P 1.1 ::: I t··1 C:. format strings. I t'1 ACE statements. and their results.) 

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between 
the last row of an array and the first row of the next array. 

The terminators between the arrays-commas or semicolons-serve only to separate the arrays and 
have no effect on the display format. 

PRINT USING Print Using Custom Format 

!"! F! "T F' I:::: It··! T I . ..! :=.:: I t·~ G 
format string [] [ ] 

statement number .: A ' B ... 

where A. B are arrays. 

Prints the values of the elements of the specified arrays in a format determined by the format string or 
by the specified I t'1 ACE statement. Operation is identical to that of 1"1 f:! T D I:,::: F' i...i ::::; I r"! I;:: except that 
the output is sent to the P F.: I tj T E F.: I :=.:: device. (If no F' F: I I'; T E: F: I '::,: device is present. the output is 
sent to the [) I :::: F' L fi \' I ::: device.} 



Examples 

ION, OISP USING 

Input/Result 

c 1 e;:j ~- \".;:j t" S I RTN I 
,j i n,;:j 0:: 2, 2' I RTN I 
r,., .;:j 1: .;:j = i ,j n I RTN I 

fl', .,j t ,j i s pus i ~-, ':::I " >:: .' ,j , ,j,j " .: .;:j I RTN I 

DO 0 DO 0 ~:1 0 
0 DO 1 DO 0 ~:1 0 
0 DO 0 DO 1 DO 

INPUT, REOIM, OISP, ZER, CON 

Input/Result 

'::: 1 ~~;:j ~- ',/;:j t" S I RTN I 
din, b':: 2, 2::' I RTN I 

E': (~~, 1· ,:, 

;:::; (~I RTN I 
.' .... 

r,., d '1: d :i. ,::c p b: I RTN I 

I 
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The 3 x 3 identity matrix diSblayed with one 
digit before the decimal point, rwo digits after the 
decimal point, and one space b'etween the values 
displayed. 

Dimensions B to be a 3 x 3 array (remember we 
are in CI F'r lOt··! E: "1 '". E 1:':1). ' 

I 

I 

Prompts for first element's val\1e. 
" 

The values for E:':: I?, I?::', b·:: :..:I!.' i. :, ... , 

I 

Prompts for next value to be ~ssigned. 
I 

I 

The values for E:':: :::'., 1 .! and B '. ,,::: , ,,::: ,:. . 

I 

The matrix displayed in close formation. 
I 
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r' ;;; dim b < 1 .. 1 ::. I RTN I 
d i :=: F' b: I RTN I 

d i :::: F' b.: I RTN I 

1::, ... ';:0 ,~, ", I RTN I 
', ...... ' ,--,' 

rn .::J '1: d i :=: p b.: I RTN I 

I·", ... ';:0 .) ", I RTN I - ', ..... ,' ..... " 

rf! .:::! '1: d :i. ::::: p b.: I RTN I 

Redimensions B to a 2 x 2 matrix. 

, 

The values of the redimensioned matrix. 

Sets all the elements of B to zero. 

The zero matrix. 

Redimensions B to its original size. 

The values that were inaccesible are again acces­
sible, unchanged by rf! .;:! t b:=:z: ':::' I'" • 

Redimensions B to be a 4 x 2 array and assigns 
the value 1 to all elements. 

The 4 x 2 constant array. 

The value from the original matrix is unchanged. 
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MAT READ, MAT DISP 

To try this example, key in the program listed below and I RUN I the program. 

10 OPTION BASE 1 
20 DIM A(2,3),B(3,1) 
30 DATA 1,2,3,4 
40 MAT READ A,B 
50 MAT DISP A;B; 
60 DATA 5,6,7,8,9,10,11 

Input/Result 

IRUNI 

~: .. 

4 co 
~:, .. , 

The array A is given the first ISix values in the 
data statements. ~ 

And the array B is given the hext three values. 
The remaining values of the D:fl T H statement 
would be assigned to the next !array in a 
t'1 H T f;: E 1:::1 [) statement, if thele were one. 

! 





Section 5 

I 
I 

The keywords below perform standard arithmetic operations on arrays. Be sure thatlthe dimensions of 
the operand arrays are compatible with the particular operation. ! 

o For addition and subtraction, the operand arrays must both be vectors or botJ be matrices, and 
I 

they must have the same number of rows and the same number of columns. In this case we will say 
that the arrays are conformable for addition. I 

I 

o For multiplication, the arrays can be matrices with the number of columns of the first operand 
equal to the number of rows of the second operand. You can also multiply a mathx and a vector as 
long as the vector is the second operand and the number of columns of the matrix is the same as 
the number of rows of the vector. In either case, we will say that the arrays a1re conformable for 
multiplication. ! 

The result array is automatically redimensioned (if possible) to be the correct size I 

=- Negation 

where A, B are both vectors or both matrices. 

Redimensions A to be the same size as B and assigns to each element of A the negative of the cor-
responding element of B. I 

I 

+ Addition 

I"! I:::! T A'"'' B +C 

where A, B, C are all vectors or all matrices, and B, C are conformable for addition. 

Redimensions A to be the same size as Band C, and assigns to each element of ~ the sum of the 
values of the corresponding elements of Band C. 

33 
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Subtraction 

t'IHT A=B··-C 

where A, B, C are all vectors or all matrices, and B, C are conformable for addition. 

Redimensions A to be the same size as Band C, and assigns to each element of A the difference of the 
values of the corresponding elements of Band C. 

* Matrix Multiplication 

t"IHT A""BlC 

where B is a matrix, A, C are both vectors or both matrices, and B, C are conformable for multiplication. 

Redimensions A to have the same number of rows as B and the same number of columns as C. The 
values of the elements of A are determined by the usual rules of matrix multiplication. 

( >* Multiplicatiori by a Scalar 

1·"IH·r A"::: (X)lB 

where A, B are both vectors or both matrices, and X is a numeric expression. 

Redimensions A to be the same size as B and assigns to each element of A the product of ,the value of 
X and the value of the corresponding element of B. 

Operations 

INV 

where A is a matrix and B is a square matrix. 

Matrix Inverse 

Redimensions A to be the same size as B and assigns to A the values of the matrix inverse of B. 
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TRN Matrix Transpose 

~'1AT A=TF.:t~(B' 

where A, B are matrices. 

Redimensions A to be the same size as the matrix transpose of B, and assigns to AI the values of the 
matrix transpose of B. 

I , 

CROSS Cross Product 

~'1 A T A = C F.: 0 ::; ::; < B.' C > 

where B, C are both vectors having three elements, and A is a vector. 

i 

Redimensions A to have exactly three elements and assigns to A the values of the cross product B x C. 
! 

RSUM Row Sum 

~'1 AT A= F: ::; U ~'1 < B:' 

I 
where A, B are arrays. 

If A is a vector, redimensions A to have as many elements as there are rows in B; if A is a matrix, 
redimensions A to have as many rows as B and to have exactly one column. 

Assigns the sum of the values in each row of B to the corresponding element of A. 

CSUM Column Sum 
I 

f'1 A T A = C ::; U ~'1 ( B > 

where A, B are arrays. 

If A is a vector, redimensions A to have as many elements as there are columns in ~; if A is a matrix, 
redimensions A to have as many columns as B and exactly one row. I 

I 
Assigns the sum of the values in each column of B to the corresponding element of! A. 

I 
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Examples 

( )*, *, INV, CSUM, RSUM 

Input/Result 
,-.. ],::..:" ,- ',,'.- ,-.=: I RTN I _ ....... " .:::1,_ 

d :i. 1"11 .::t ( 2 " 2 ) .' b ( 2 .' 2 ) .' c < :3 .' :3 ) 

.- .. - _. - r- ,.. .:' 1, I RTN I . :::1"- 1_. LI I " ':'w,' . " 

[ 1 1 
I 

!.,., .~, '1: c ::::: .:: >:: .. :::: _ .. 1 ::. ld I RTN I 

I 

'1 ,_. ·.l ~:.:-; 
:. ~.'::, 1_ 1 ~::; 
1 ~:; 1 ~~:; 

r'-I·::j '1: :i. !"', P ' .. ·1 1: b I RTN I 

:[, ,:::., 3 .. IJ, :[ .. ~~, Ij .. Ij, !. I RTN I 
'l,'::;'1 .:::I:l s p b.: I RTN I 

Ij :[ ;::' 

1,1 Ij !. 

A is now a 3 x 2 constant matrix . 

The scalar product of a numeric expression and 
an array. 

Note that C was redimensioned to be a 3 x 2 
matrix. 

The matrix B. 



rfl·:l1: c=bl:l [RTN I 
rfl·:l 1: dis F' c.: [RTN I 

n'; .:::!'I: I::) := i n "/ 0:: b' I RTN I 
!I! .:::!'I: dis F' b.: I RTN I 

....... :' 

rf! .::j 'I: c ::::: C :::: U f!'! < .;j > I RTN I 

if!::."t d i :::: F' C.: [RTN I 

S
. I. 
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The matrix product BA. 

Inverts the matrix B. 

The matrix inverse of the matqx B . 

This should "undo" the earlier bultiPlication by 
B. 

'. .~~ Sum of each column of A. Note that C was 
redimensioned to be a 1 x 2 m~trix. 

I 

I 

Sum of each row of A. Note thlt C was 
redimensioned to be a 3 x 1 m~trix. 
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Additional Infor mation: I i···1 I,) 

The I tj I.} keyword uses the LU decomposition (described in section 7), together with extended preci­
sion arithmetic, to produce an accurate inverse. Special attention is paid to matrices that are nearly 
singular-that is, close to a matrix which is not invertible. Consider the matrix shown below. 

[6666~666667 
3 

o 

2 

Although this matrix is very nearly singular, it can be succesfully inverted using the I ~i i) keyword: 

Input/Result 

c: :I e·::; I··· \1 .:;j ~- ~:: I RTN I 
,:::I :i. [I! .::j':: ;~: .' ;::: ::. .' b .: ;2 .' ;2::' I RTN I 
n! .:::! ·1: :i. r! F' I) 1: ·:::1 I RTN I 

I:::' <: ;:::.' 0 :' ,~, 

If! .::; .!: b :::: b :* .:::! I RTN I 
If 1 ·:::1 ·1: d i :::: F' I:).: I RTN I 

Prompts for the first element. 

Prompts for the next element. 

A now represents the matrix given above. 

B is now the computed inverse of A. 

The product of the matrix and its computed in­
verse is the identity. 

If the matrix to be inverted is singular, then the LU decomposition is changed by an amount, which is 
usually small in comparison with roundoff error, to yield a nonsingular matrix. It is this nonsingular 
matrix which is then inverted. 
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Real= Valued Matrix Functions 

The keywords in this section are functions that use arrays as arguments and give real number as a 
value. Like other HP-75 functions, they may be used alone or in combination with other functions to 
produce numeric expressions. 

Determinants 

DET Determinant 

DET'A> 

! where A is a square matrix. 

Returns the determinant of the matrix A. 

I DETL Determinant of Last Matrix 
I 

Returns the determinant of the last matrix that was: 

• Inverted in a ~'1 A T . I ~.~ 1,,1 statement. 

• Decomposed in a ~'1 AT , .. L U F ACT statement (described in section 7). 

• Used as the first argument of a t'1 AT, ,:'.:: \' ::: statement (described in section ~). 

D Ef L_ retains its value (even if your HP-75 is turned off) until another r'iI:'!"!"" 
['1 H T, ,L. U F ACT, or t'1 AT ... ::; \' ':; statement is executed. 

i 

39 
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Matrix Nor ms 

FNORM Frobenius (Euclidean) Norm 

where A is an array. 

Returns the square root of the sum of the squares of all elements of A. 

RNORM Infinity Norm (Row Norm) 

where A is an array. 

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a 
row. 

CNORM One-Norm (Column Norm) 

1::: ~.~ 1::1 F: ~'1 0:: A ::. 

where A is an array. 

Returns the maximum value (over all columns of A) of the sums of the absolute values of all elements in 
a column. 

SUM Array Element Sum 

where A is an array. 

Returns the sum of the values of all elements in A. 



I 
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i 

ABSUM ! 
Array Element A~solute Value Sum 

where A is an array. 

Returns the sum of the absolute values of all elements in A. 

AMAX 

Ht'1H::: 'A:' 

where A is an array. 

Returns the value of the maximum element in A. 

AMIN 

nt'1 I t·1':: A) 

where A is an array. 

Returns the value of the minimum element in A. 

MAXAB 

where A is an array. 

Array ,Element Maximum 

Array Element Minimum 
I 

! 

Array Element Maxim~m Absolute Value 

Returns the value of the largest element (in absolute value) in A. 
! 

MINAB Array Element Minimum Absolute Value 

! 

r'1 1 t·~ H E: .:: A :' 

where A is an array. 

Returns the value of the smallest element (in absolute value) in A. 



42 Section 6: Real-Valued Matrix Functions 

Inner Product 

DOT 

[lOTO::X,Y) 

where X, Yare vectors with the same number of elements. 

Returns X . Y, the inner product of X and Y. 

Subscript Bounds 

UBND 

U [: I··j IJ 0:: A. N ) 

Inner (Dot) Product 

Subscript Upper Bound 

where A is an array and N is a numeric expression whose rounded integer value is 1 or 2. 

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector, 
I..JE:I··j[lO::H, ;2) = -1. 

LBND Subscript Lower Bound 

L. [: I',! [) , A, N) 

where A is an array and N is a numeric expression whose rounded integer value is 1 or 2. 

Returns the option base in effect when A was dimensioned. If A is a vector, L .. [: ~.! [I, 11, ;;::: ::. -1. 

Examples 

DE~ DETL, RNORM, UBND 
Input/Result 

"J:" m'" .. :;' '-:;' ", I RTN I ' . .1.111 ':::". ' .. ', ... , .. 



A'D,D:)'~' 

, D, 0, ~=1 [ RTN I 
.' 2, 0 .' 0 [ RTN I 
. 1, ], 0 [ RTN I 
. 1, 1, 4 [ RTN I 

, 

! 

I 
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Entering the elements of a matrix one row at a 
time makes the data entry ea~ier and more 
accurate. 

The determinant of A. 

Computes the inverse of A. 

2.:J Displays the determinant of the last matrix in-
verted 1· n a ~"I 1"1 T . . . T r'~ I) !'''II:::I !I"I" . . . C: '-,' ::::: or 

r(, ·3 t dis F' ·3.: [RTN I 

0 0 ~::1 
,'-, 0 0 .:: 

? 0 -

1 4 

•••••.. .L ••• , •••••••• _ ••• " 

t'1 fi T , L.il F: H cr statement. lIn this case, it is 
the determinant of the matrix: A. , 

The original matrix A. 

The sum of the absolute valuek of the elements 
in the rows are (in order) 1,3,5,7. The maximum 
of these is 7. 
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- ... "j" -,.. .-', 4 ", I RTN I j' I:::' I,. 1 rtl -::I,,':::: . .' " 

u 1:::0 n d 0:: .:;j.. 1 ::0 I RTN I 

I:' .. -

, ' , .. ,- "j ,.. - .::. ", I RTN I .. ~[)III .. "d., ,-,' 

4 

ABSUM, AMIN, DOT 

Input/Result 

0::: :I. e .::; ~- \1 .:;j ~ .. s I RTN I 

oj :i. If! >:: 0:: 4 ::0 .. ':::I 0:: 4 ::0 .. .:;j 0:: 2.. 1 ::0 I RTN I 
n', .:::, 1: :i. n p '...I 1: ::< .. ':::I .. a I RTN I 

\' ( 0 ) ? 

U .. I) .. ···-3 .. " .m 1 I RTN I 

. ', , ::: I RTN I 

..... !. I RTN I 

After redimensioning, the upper bound of the 
first subscript of A is 2 ... 

And the upper bound of the second subscript is 
4. 

The HP-75 prompts you for the first element to 
be assigned ... 

And when the first array is full, it begins filling 
the next matrix in the nAT I r~ F' 1...1 T statement. 



.. 1 

..... 1 

-- ...... :' 

I ' ,i .. ... 

1;2 

..... ':;: 

...... :;: 

I··':; ... 
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The vector X. 

The vector Y. 

The matrix A . 

6 = 111 + 121 + 131 + 101 + 101. 
12 = 131 + 121 + 111 + 1- 11 +' 1- 21 + 1- 31· 

6 = 101 + 101 + 1-31 + 1- 21 1- 11· 

-3 = min 13, 2, 1, -1, -2, -i3} . 
I o = min {I, 2, 3, 0, 0 (. I 

I -3 = min 10,0, -3, -2, -lH 

The inner product of X and Y; 
I 

r
o

,! 1:::" 'T" .1.·.·.·1 .!.:.:.:.' ··.r" .i .•.. i ... ' i.... i 9 

I 

The :~~i E:: T L .. keyword is most useful in direct conjunction with the ,'j , I,"'.), ,'!'! ,::, 'T , L. ' .. .I F',:::, C i , 

and ,"1 P T' , ':::; \' '::; statements. In each of these, the result of the operation is less reliable when the 
matrix argument is very nearly singular. This condition can be detected with I:::: I:::: 'T·I.' ... If I::n::: T 1.. .. gives a 
result very close to zero, then the matrix argument in the corresponding operation id very nearly singu-
lar and the result should be interpreted accordingly. I 



46 Section 6: Real-Valued Matrix Functions 

The [I E T keyword computes the determinant of a matrix by first decomposing the matrix into its LU 
form. (The next section in this manual describes LU decomposition.) If the matrix is singular-that is, 
its determinant is equal to zero-it may not have an LU decomposition. This may cause underflow or 
overflow warnings to be generated, but it will not affect the result of the [I E T function. 
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LV Decompositon 

A number of operations in the Math Pac, including [I E T, ~:; 'y' ~:;, and I t·j I,,', use the LU, decomposition of 
a matrix as an intermediary step. The keyword below gives you access to this powe'rful operation for 
your own use. 

LUFACT l,.U Decomposition 

t'1 A T A= L U F ACT':: B' 
i 

where A is a matrix and B is a square matrix. 

Redimensions A to be the same size as B and assigns to A the values of the LV decomposition of B: 

• The elements in A above the diagonal are assigned the value of the corresponding elements in U. 

• The elements in A on or below the diagonal are assigned the value of the corresponding elements 
in L. 

Example 

Input/Resul t 

c 1 e:lt· ',/.:It- s I RTN I 
d i m:l (. :,:: .. :'::' I RTN I 
rn·:l 1: i n F' U 1: -:l I RTN I 

I A'::O .. O)'~' 

1, 1, 1 I RTN I 

1, 0.' 1 I RTN I 
2, 1,2 I RTN I 

m .:l 1: dis F' .:l.: I RTN I 

47 
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2 5 The L part of the LU decomposition of A is 
- 5 0 

5 C1 

the V part of the LU decomposition of A is 

~ 
.5 

so that 

Additional Information 

The Math Pac LU decomposition factors a square matrix A into the matrix product LV, where 

• L is a lower-triangular matrix-it has values of zero for all elements above the diagonal. 

• V is a upper-triangular matrix-it has values of zero for all elements below the diagonal-with 
values of one for all elements on the diagonal. 

For example, 

A = [2 1] [2 0] [1 .5] LV. 
3 1 3 -.5 ° 1 

Some matrices can't be factored into LV form. For example, 

for any pair of lower- and upper-triangular matrices Land V. However, if rows are interchanged in the 
matrix to be decomposed, then any non-singular matrix can be so decomposed. Row interchanges in the 
matrix A can be represented by the matrix product PA for some permutation matrix P. Allowing for 
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row interchanges, the LU decomposition can be represented by the equation PA =l= LU. So, for the 
above example I 

Row interchanges can also reduce rounding errors that can occur during the calculation of the 
decomposition. 

The Math Pac uses the Crout method with partial pivoting and extended precision arithmetic to con-
struct the LU decomposition. The LU decomposition is returned in the form i 

For example, if the result of the t'11~ T I~ ::: L. U F H c: T 0:: E::' statement is 

A - [: : ; l then L - [: : J and U - [: ~ : ] 

and PB = L U for some row interchange matrix P. 

It is not necessary to store the diagonal elements of U in the result matrix since t~e value of each of 
these is equal to one. The row interchanges are also recoverable in many cases beca~se, aside from row 
interchanges, the first column of L is the same as the first column of the matrix bi~ing decomposed. 

Fo. example, if B - [: I [ ] 

I 2.5 
is executed, then Ai = . 

! 1 -.5 
I 
I 
I 

The fact that the first column of A is reversed from the first column of B indicates that the rows have 
been interchanged, so that 

In many cases, the LU decomposition will be correct even if the matrix is singular. This can be checked 
by remultiplying the Land U matrices and comparing the result to the original m~trix. This feature 

I 

gives you the ability to find the LU decomposition of matrices that are not square! 



50 Section 7: LU Decomposition 

For example, to find the LV decomposition of the 3 x 4 matrix 

[: 
2 3 

:1 4 9 

8 27 64 

we will find the decomposition of 

1 2 3 4 

1 4 9 16 

1 8 27 64 

0 0 0 0 

instead. From this decomposition, the LV decomposition of the original matrix is easily found. The 
keystroke sequence below illustrates the process. 

Input/Result 

c: 1 e .~j r' \ ... :l to S I RTN I 
.:::1 i m ::::.:: ~3 , ::3::' I RTN I 
m .::j tin put s I RTN I 

1,;::,3,4,1.,4,9,16,1,:::,27,64,0,0, 
0, "-1 I RTN I 
rf! .:;j '1: s = 1 u f .:;j C 1: 0:: s::' I RTN I 
rf! ·::i 1: dis F' s.: I RTN I 

2 ':''' 4 
6 4 1 [1 

.:. .. ._ . 2 4 
0 0 0 [1 



I 
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Therefore 

1 0 0 0 1 2 3 4 

1 6 0 0 0 1 4 10 
L= and U= 

1 2 -2 0 0 0 1 4 

0 0 0 0 0 0 0 1 

Their matrix product is 

so that 

1 2 3 4 

1 8 27 64 

1 4 9 16 

o 0 0 0 

[~ ~ ~] [~ : : 1:] = [~ : ~] [~ : : 1:] 
o 1 0 1 8 27 64 1 2 -2 0 0 1 4 

51/52 

This technique works best when the matrix has fewer rows than columns. If your matrix has fewer 
columns than rows, find the LU decomposition of its transpose by the above technique, and take the 
transpose of the result. 
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Solving a System of Equations 
i 

The Math Pac provides you with a quick and accurate way to solve a system of linear equations. The 
first step in using this capability is to translate the system of equations into a tI~iple of arrays: the 
result array, the coefficient array, and the constant array. The result array corresponds to the variables 
in the equations; the coefficient array holds the values of the coefficients of the var~ables; the constant 
array holds the values of the constants in the equations. For example, if you wanted to solve the system 
of equations 

llx + 12y + 13z = 1 

21x + 22y + 23z = 2 

31x + 32y + 33z = 3 

then the result array would correspond to the array 

the coefficient array would be 

and the constant array would be 

[

11 

21 

31 

12 

22 

32 

53 

13l 23 , 

33 
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If we denote the result array by X, the coefficient array by A, and the constant array by B, then the 
system of equations can be written in matrix notation as AX = B. This is the form assumed by the 
:::; \' ::; keyword. 

SYS Syst~m Solution 

where A is a square matrix, X, B are both vectors or both matrices, and A, B are conformable for 
multiplication. 

Redimensions X to be the same size as B and assigns to X the values that satisfy the matrix equation 
AX=B. 

Example 
To solve the system of equations given in the introduction, namely, 

we could use the following keystrokes. 

Input/Result 

") ":" I RTN I ": ... ,' ..... 

llx + 12y + 13z = 1 

21x + 22y + 23z 2 

31x + 32y + 33z 3 



1 1. 1 2. 1 J. 2 1. 2 2. 2 J. J 1. J 2. J J I RTN I 

n! .:j ~ >': = :::: ':! :::: '.: .;:j .' b::O I RTN I 
n!.j 1: dis F' >,:.: I RTN I 

.160424051041 
. 0::::4:::: 1 ~::12D::::: 1 ::::E-2 

3.95759489591E-2 

i 
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I 

[

11 

A will be 21 

31 

= x . 
=y. 
= z. 

12 

22 

32 

I 

13] 
23 . 

33 

Solving the Steady-State Heat Equation 

A rectangular plate, with a length-to-width ratio of 6 to 5, has its edges held at a cob.stant temperature 
of 0.* The plate also has a number of internal heat sources or sinks with the result that these points 
are held at constant temperatures, perhaps different from O. Find the steady-stat¢ heat distribution 
throughout the plate. 

The Model 
i 

The plate will be modeled by a rectangular lattice of points, any number of which can be designated as 
sources or sinks of heat. The temperature of a lattice point at location (i, j) will be denoted by T(i, j) 
(l~i~5, l~j~6). 

* The equations are independent of the temperature scale used, so that this only represents the zero of ~his temperature scale. 
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The system of equations that models the steady-state heat distribution is derived from the "average of 
nearest neighbors" technique: 

{

The given value if (i, j) corresponds to a source or a sink. 

T(i J') = T(i + 1, j) + T(i - 1, j) + T(i, j + 1) + T(i, j - 1) th . 'th th 
' 4 0 erwIse, WI e 

convention that T(m, n) = 0 if (m, n) represents a location outside the lattice. 

For example, if (4, 2) is not the location of a source or sink, then 

T(4, 2) = T(5, 2) + T(3, 2) : T(4, 3) + T(4, 1) 

We can redimension the 5 x 6 array T with elements T(i, j) to be a 30 x 1 array X with elements 
X(k, 1) by the formula 

X(k, 1) = T(i, j) for k = 6(i - 1) + j. 

The correspondence between indexes can be defined equivalently by 

i = int k ~ 1 + 1 and j = mod (k - 1, 6) + 1. 

Now the system of equations can be written in the form X = CX + B, where C is the 30 x 30 matrix 
given by 

o if (i, j) corresponds to a source or sink, 

where i = int k ~ 1 + 1 and j = mod (k - 1, 6) + 1. 

% if (i', j') is a nearest neighbor to (i, j), 

where i' = int n ~ 1 + 1 and j' = mod (n - 1, 6) + 1. 

o otherwise. 

and B is the 30 x 1 matrix given by 

{ O

The given value if k corresponds to a source or sink. 
bk1 = 

otherwise. 

The system of equations can finally be written as the matrix equation AX = B where A == (I - C) and 1 
is the identity matrix. This is the form required by the ',:; \' ::::; keyword and the form we will use to solve 
the equations. 



The Program 

10 OPTION BASE 1 

20 SHORT A(30,30) 

30 DIM B(5,6) 

40 MAT B=ZER @ MAT A=IDN 

50 INPUT"Number of sourcesJsinks?";N 

60 FOR L=1 TO N 

70 INPUT"I,J,T(I,J),,;I,J,B(I,J) 

80 NEXT L 
90 DISP "Solving; please wait" 
100 REDIM B(30,1) 

110 FOR K=1 TO 30 

120 IF B(K,1)<>0 THEN GOTO 190 

1301=INT((K-1)J6)+1 

140 J=MOD(K-1 ,6)+1 

150 IF J<6 THEN A(K,K+1)= -.25 

160 IF J>1 THEN A(K,K-1)=-.25 

170 IF 1<5 THEN A(K,K+6)=-.25 

Section 8: Solving a System of Equations 57 

Since A will consist of O's, l's and -%'s, we can 
use this data type to save membry. 

B is the source/sink array and will be used to 
store the final results. 

Gets the locations and temperatures at the 
sources and sinks. 

Rearranges B as a one-column 'array in 
preparation for using the system solver. 

Begins construction of the matrix A. K 
corresponds to that row of A c\irrently under 
construction. . 

We check whether a location is a source/sink by 
checking whether the assigned temperature is 
non-zero.* If it is a source/sink~ we go on to the 
next location, leaving the entire row of A 
unchanged from the corresponding row of the 
identity matrix. If it isn't a so~rce/sink, we 
continue the computation of the elements of the 
Kth row of A. ' 

Computes the (l,J) position frob K. 

If the nearest neighbor isn't off the edge, assigns 
-% to the corresponding element of A. 

* If a source is supposed to have zero as a given temperature, do not enter zero for its value. Instead, enter a very small but non· 

zero number; lE·40 will work. 
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180 IF 1>1 THEN A(K,K-6)=-.25 

190 NEXT K 

200 MAT B=SYS(A,B) 

210 REDIM B(5,6) 

220 MAT DISP USING"x,dd.d";B 

Using the Program 

Solves the equations and stores the results in B. 

Arranges the results in lattice form. 

This will display the results in a compact lattice 
form. If your results have more than two digits 
to the left of the decimal point, this display will 
be inadequate. 

Suppose there is one source located at position (2, 3) that maintains a IO-degree temperature dif­
ference. We would run the program and when prompted with n u rn b e ( () f :; 0 U ~. >: e s ./ sin k s '~:' we 
would respond with 1. When prompted with I .. ,J .. T .:: I, ,J ::. ,~, we would respond with 2, ~~~, 1 D. The 
program would then display 

Solving: please wai1 

D 2 2 ? 6 2 3 1:2 5 
6 4 :2 10 0 4 4 :2 1 9 

6 
4 

This is the lattice of temperatures in the plate under these conditions. 

Additional Information 

The ~:::: \' ~:: keyword solves the matrix equation AX = B for X in several stages. First, the LU de­
composition of A is found to give PA = LU. (LU decomposition is described in section 7.) 

Using PA = LU, the equivalent problem is to solve LUX = PB for X. This is done by solving 
LY = PB for Y (forward substitution) and then solving UX = Y for X (backward substitution). This 
value for X is used as a first approximation to the desired solution in a process of iterative refinement, 
which produces the final result. 

In many cases, the Math Pac will arrive at a correct solution even if the coefficient array is singular (so 
that the formula X = A -lB is invalid). This feature allows you to use <:: '/ ':: to solve under- and over­
determined systems of equations. 
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For an under-determined system (more variables than equations), the coefficient ar~ay will have fewer 
rows than columns. To find a solution using ::: \' :::: 

.. Append enough rows of zeros to the bottom of your coefficient array to make ,t square . 

.. Append corresponding rows of zeros to the constant array. 

You can now use these arrays with the ::: \' ::: keyword to find a solution to the original system. 

For an over-determined system (more equations than variables), the coefficient arr:ay will have fewer 
columns than rows. To find a solution using ::: ",' :::: I 

.. Append enough columns of zeros on the right of your coefficient array to make it square. 

.. Be sure that your result array is dimensioned to have at least as many rows as the new coefficient 
array has columns. 

I 

• Add enough zeros on the bottom of your constant array to ensure conformabil~ty. 

You can now use these arrays with the ::: ',' ::: keyword to find a solution to the original system. Only 
those elements in the result array that correspond to your original variables will b~ meaningful. 

For both under- and over-determined systems the coefficient array is singular, so you should check the 
results returned by:::: \' ::: to see if they satisfy the original equation. ' 

The ::=: \' ::: keyword can also be used for inverting a square matrix A. !"1 !:::! T "'. '" .:, ,. ::::: I:: !:::! .' E::) will return 
the inverse of A if X, A, B are all dimensioned to exactly the same size and if B +s chosen to be the 
identity matrix. This technique is more accurate and generally faster than j"! !:~ T :i: =" I ti i,'; < H ::., but it 
requires more memory for its operation. (Refer to appendix B for information about memory 
requirements). 
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The keywords in this section enable you to perform algebraic operations on complex numbers in a 
simple and efficient way. The HP-75 Math Pac can interpret any array with exactly!two elements as a 
complex number. In particular, a 1 x 2 matrix, a 2 x 1 matrix, and a two-element vector can all repre­
sent complex numbers. If an array Z represents a complex number z, then the value OJ the first element 
of Z is the real part of z and the value of the second element of Z is the imaginkry part of z. For 
example, the arrays 

both represent the complex number 1 + 2( -1)'/2 = 1 + 2i. Throughout this section we will refer to an 
array with exactly two elements as a complex scalar. ~ 

The operand arrays for these keywords must be complex scalars. However, you need n,ot ensure that the 
result array is a complex scalar. If it is not, it will be automatically redimensioned to have exactly two 
elements. The result array must, therefore, have been given at least two elements in its original dimen­
sioning statement. If the result array is doubly subscripted, it will be redimensioded to be a 1 x 2 
matrix. If it is singly subscripted, it will be redimensioned to have exactly two elements. This feature 
allows two-element arrays to be used interchangeably for complex operations. i 

Since the Math Pac assumes rectangular (Re + iIm) form for all complex numbers, two operations are 
provided to change a pair of numbers representing the magnitude (R) and angle (8) of a complex num-
ber into the real and imaginary parts of that complex number, and vice versa. ' 

61 
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CPTOR Polar to Rectangular Conversion 

t'lAT Z=CF'TOF.: (A) 

where A is an array with two elements and Z is an array, 

Redimensions Z to be a complex scalar; then assigns to the first element of Z the real part, and to the 
second element of Z the imaginary part, of the complex number R exp (iO), where R is the value of the 
first element of A and () is the value of the second element of A, 

() will be interpreted as degrees or radians, according to the 0 F' T I 0 H A t·j C L E in effect. 

CRTOP Rectangular to Polar Conversion 

t'l H T· A"" C F.: T 0 F' ( Z ) 

where Z is a complex scalar and A is an array. 

Redimensions A to be a complex scalar; then assigns to the first element of A the magnitude, and to the 
second element of A the angle, of the complex number x + iy, where x is the value of the first element 
of Z and y is the value of the second element of Z. 

The angle will be given in degrees (-180 < 0 ,;:; 180) or in radians (-71" < () ,;:; 71") according to the 
CI F' ·r I 0 tj A t·j C L. E in effect. 

Complex Arithmetic Operations 

CONJ 

where W is a complex scalar and Z is an array. 

Complex Conjugation 

Redimensions Z to be a complex scalar and assigns to the first element of Z the value of the first 
element of Wand assigns to the second element of Z the negative of the value of the second element of 
W. 
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CADD !Complex Addition 

I 

t'1AT Z=CA[I[I (W, U::O 

where W, U are complex scalars and Z is an array. 

Redimensions Z to be a complex scalar and assigns Z the values corresponding to the complex number 
W + U. 

CSUB Co'mplex Subtraction 

t'1 AT Z= C ::; U E: (W, U::O 

where W, U are complex scalars and Z is an array. 
j 

, 

Redimensions Z to be a complex scalar and assigns Z the values corresponding to th~ complex number 
W - U. 

CMULT COmPlex Multiplication 

t'1AT Z=Ct'WL T (W., U::O 

where W, U are complex scalars and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values correspondin'g to the complex 
number W*U. 

CDIV Complex Division 

t'1 AT Z= C [I I I,,' (W .. U::O 

where W, U are complex scalars, U =1= (0, 0), and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values corresponding to the complex 
number W/U. 
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CRECP Complex Reciprocal 

t'1 A T Z= C PEe F' .:: W::O 

where W is a complex scalar, W -:/= (0, 0), and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values corresponding to the complex 
number 1jW. 

Examples 

CPTOR, CRTOP 
Input/Result 

c:: 1 ~" .::, ~. \1 .::, ~- s [ RTN I 
() p ·t i .:. n .::, n'J 1 e d e'J ~- e e s I RTN I 

d :i. m 1 .. .1':: 1 ::0 .. u < 1 .. 0 ::. .. z .:: 2 .. ::3::' [RTN I 

,n ·:::1 ·t i n p I_~ C 1 .. .1 I RTN I 

I 1 ... 1 <:' ~'1 '.1 ,~, 
• OR •• 

rr', ·:::1 t d i :::: p z.: I RTN I 

The HP-75 will now use degree measure for the 
angle in C F.: T 0 F' and C F' TOP conversions. 

Wand U are dimensioned as two-element arrays 
and so are both complex scalars. It will be possi­
ble to redimension Z as a complex scalar, since it 
has more than two elements. 

W will be used to represent a vector with mag­
nitude 10 and angle 90 degrees. 

1 0 Z is the complex number 0 + 10i, which is the 
rectangular representation of W. 

i n puc u [ RTN I 

;:;:, ... ··4 I RTN I U represents the complex number 3 - 4i. 



rf, .", t d i :=: p z.: I RTN I 

I ~ ~ ~ 1 ~ '-1 1 '-1 .-. ~ '" 4 .-, :' - '_' ''::'' . .::. >c >c "- . .::. '_' "-

Co P t iCon .", ~-"~ 1 e ~-.", d i .", n:=: I RTN I 
rn .", t z = c ~- t Co p 0:: u::O I RTN I 
rn", t d i :=: F' z.: I RTN I 

I 5 -,927295218002 

CADD, CMULT, CRECP 

Input/Result 

c 1 e .", ~- './ :l ~- :=: I RTN I 
d i rn z 0:: 2 .. ::3 ::0 .. ' .. .I 0:: 0.. 1 ::0 .. u 0:: 1 ::0 I RTN I 
r,', .", tin put u I RTN I 

I U 0:: 0:' .~. 

1 .. 1 I RTN I 

rn .", 1: d i :=: p ' .. .I.: I RTN I 

~ ~ 
. "_I - I "_I 

r,.,·", 1: z = c .", d d 0:: '.'.' .. u::O I RTN I 

rf!", t d i :=: p z: I RTN I 

1 , 5 

I 
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Z now represents the magnitude (5) and the di­
rection (-53.1301023542 degre~s) of the vector U. 

I 

In this case, the direction is given in radians_ 

U represents the complex number 1 + i_ 

1 
W represents 1+£ ---

Which equals _5 - _5i_ 

Z represents 1 ~ i + (1 + i) 

Which equals 1.5 + _5i_ 
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Z represents (1 + i) ( 1 ~ i + (1 + i)) ... 

rfl·:;:' t dis p z.: I RTN I 

2 Which equals 1 + 2i. 
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Complex F1UllIllCtioml§ 

Many useful functions are defined for complex as well as real arguments. The keywords below give you 
access to a number of these functions. Since the values of these functions are, in general, complex 
numbers, their syntax is closer to that of array operations than to their real-valued counterparts. Al­
though the result array need not be a complex scalar for these keywords, it must have been given at 
least two elements in its original dimensioning statement. I 

These keywords will produce error (or warning) messages if the conditions listed in their descriptions 
are not satisfied. They will also produce error or warning messages if either the re~l or the imaginary 
part of the function's value cannot be represented in the range [-9.99999999999E499, -lE-499], 
[lE-499, 9.99999999999E499] or O. The two-dimensional nature of these functions precludes giving 
more simple bounds for the arguments that will avoid all such error messages. In addition, if either the 
real or imaginary part of the value for any of the functions C ~:; I t··I, C: C: (J ~:::;, C: ~f; I ! .. ~ !'-I, C C (J ~:::; II, or 
C F' 0 ~.j E F: is too large to be represented by the computer and so produces a r', ' .. ·1 r,.! t () () :I. .:::! I""" '~:I ~::' mes­
sage and returns a value of ± 9.99999999999E499, it is quite likely that the other part of the value 
returned is inaccurate. 

All keywords in this section involve trigonometric functions and always take their 'arguments to be in 
radian measure, even if 0 F' T I 0 t'1 A t'1 G L E [I E C F: E E ~::; is in effect. I 

CEXP Complex Exponential 

r'1AT Z=CE>::F' (W) 

where W is a complex scalar and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex e?<ponential of W. If 
W represents the complex number x + iy, then Z will represent the complex number 

! 

exp (x + iy) = eX (cos y + i sin y). 
! 

67 
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eSIN Complex Sine 

t'1AT Z=C::; I tj 0: W) 

where W is a complex scalar, 11m (W)I < 2300.28250791, and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex sine of W. If W 
represents the complex number x + iy, then Z will represent the complex number 

sin (x + iy) = sin x cosh y + i cos x sinh y. 

eeas Complex Cosine 

where W is a complex scalar, 11m (W)I < 2300.28250791, and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex cosine of W. If W 
represents the complex number x + iy, then Z will represent the complex number 

cos (x + iy) = cos x cosh Y - i sin x sinh y. 

eTAN Complex Tangent 

t'lHT Z=CTAt·j o:W) 

where W is a complex scalar and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex tangent of W. If W 
represents the complex number x + iy, then Z will represent the complex number 

tan (x + iy) = sin (x + iy) 
cos (x + iy) 

sin x cos x + i sinh y cosh y 
sinh2y + cos2x 
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CSINH Compl~x Hyperbolic Sine 
, 

r'1AT Z=C::; I t'~H O::W) 

where W is a complex scalar, IRe (W)[ < 2300.28250791, and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic sine of W. 
If W represents the complex number x + iy, then Z will represent the complex num~er 

sinh (x + iy) = (-i) sin (-y + ix). 

CCOSH Complex Hyperbolic Cosine 

r'1AT Z= CC 0 ::; H 0:: W) : 

where W is a complex scalar, IRe (W)I < 2300.28250791, and Z is an array. 
, 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic cosine of 
W. If W represents the complex number x + iy, then Z will represent the complex number 

cosh (x + iy) = cos (-y + ix). 

CTANH 
! 

Complex Hyperbolic Tangent 

r'1AT Z=CTAt~H O::W) 

where W is a complex scalar and Z is an array. I 

I 
I 

Redimensions Z to be a complex scalar and assigns to Z the values of the complex hyperbolic tangent 
of W. If W represents the complex number x + iy, then Z will represent the comple~ number 

tanh (x + iy) = (-i) tan (-y + ix). 

The keywords in this section give you the ability to compute the principal values ofla number of com­
plex inverse functions. A description of the principal branches and values chosen:, for these inverse 
functions is given in "Additional Information" at the end of this section. I 

I 

Although the result array need not be a complex scalar for these keywords, it must have been given at 
least two elements in its original dimensioning statement. 
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CSQR Complex Square Root 

where W is a complex scalar and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the square root 
of W. 

CPOWER Complex Power 

r'1 H T V=: C F' 0 ~,~ E PO:: Z .. W::' 

where Z, Ware complex scalars, Z =1= (0, 0) if Re (W) ~ 0, and V is an array. 

Redimensions V to be a complex scalar and assigns to V the complex principal value of ZW. If Z and W 
represent complex numbers z and w respectively, then V represents the complex number exp (w In z). 

CLOG Compiex Logarithm 

r'l H T Z= C LOG 0:: W::' 

where W is a complex scalar, W =1= (0, 0), and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the logarithm of 
W. If W represents the complex number 

R (cos 0 + i sin 0) 

where -7r < 0 ~ 7r (radian measure), then Z represents the complex number 

In R + i O. 

CASIN 

r'l H T Z= C l=t ::; I [.j 0:: W::' 

where W is a complex scalar and Z is an array. 

Complex. Inverse Sine 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse sine 
of W. 
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CACOS Compl~x Inverse Cosine 

t'1 A T Z= CAe 0 ::; .:: W::. 

where W is a complex scalar and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the complex principal val~e of the inverse 
cosine of W. 

! 
I 

CATN I 
ComplEix Inverse Tangent 

t'1AT Z=CATt'1 <W::' 

where W is a complex scalar, W =1= (0, 1) or (0, -1), and Z is an array. 

I 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse 
tangent of W. ! 

CASINH 

t'1AT Z=CA::;ItlHlW) 

where W is a complex scalar and Z is an array. 

Complex Inver$e Hyperbolic Sine 
, 

L , 
! 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse 
hyperbolic sine of W. i 

! 

CACOSH Complex Inverse Hyperbolic Cosine 

where W is a complex scalar and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the complex principal va ue of the inverse 
hyperbolic cosine of W. I 

! 
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CATANH Complex Inverse Hyperbolic Tangent 

t'1AT Z=CATAtm o:W::. 

where W is a complex scalar, W *" (1, 0) or (-1, 0), and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the complex principal value of the inverse 
hyperbolic tangent of W. 

This keyword allows you to easily and accurately determine the set of all Nth roots of a complex num­
ber, where N is a positive integer. The roots are returned in an N x 2 array where each row represent­
ing a complex root, with the real part of the root in the first column and the imaginary part of the root 
in the second column. Successive roots are in order of increasing argument (angle). The result array 
must have been given at least 2N elements in its original dimensioning statement. 

CROOT Roots of a Complex Number 

t'1fiT R=CPOOT O:Z, N::' 

where R is a matrix, Z is a complex scalar, and N is a numeric expression whose rounded integer value 
is positive. 

Redimensions R to be an P x 2 array (where P is the rounded integer value of N) and assigns to R all 
the values of Z1fP. 

CSIN, CTAN, CCOSH, CACOSH 

Input/Result 

c: 1 ,:" d t- \1 .:l t· :=.: [ RTN I 

d i. In z 0: 1 ::. , ' .. .I 0: 2 , 2::' [RTN I Z is dimensioned to be a complex scalar. W is just 
an array. 



Input/Result 

21 .. -2 I RTN I 
r,., .;j 1 ' .. .I = C sin':: z::' I RTN I 
m .;j 1 oj i SF" ... '.: I RTN I 

I 3, 14766223::::22 1,9::::653756:::: 13 

r,., .;j 1 ' ... ' = c 1 .;j n .:: z::' I RTN I 
r,., .;j 1 oj i SF' ' .. .I.: I RTN I 

I _. 4~1-~1QOQQ7?=E-? '_', ~_ t, ~_ _' ,_, _' _' ,_, '- ,_I '-

-1,0141::::411496 

m·;j 1 ' .. .I = C .;j cos h .:: z::' I RTN I 
m·;j 1 oj i s F' ' .. .I.: I RTN I 

I 3.7.1632183 •• 
-~ ="1=7~~~7~ =E-~ _' , ,_I ~_ ,_I I _' '-- _' ,_, _' t, ,_I '-

fI'I.;j 1 ' .. .I = ceo s h .:: , .. .I::' I RTN I 
m .;j t oj i SF" ... '.: I RTN I 

I 21 -2 

CSQR, CLOG 
Input/Result 

C 1 e .;j ~- ',i;j t- S I RTN I 
oj e f;j U 1 1 0 n I RTN I 

rn .;j tin F' U 1 z 1 .. z 2 I RTN I 

=1'::D::"~' 

, 

I 
I 
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I 

I 
I 

Z now represents 21 - 2i. I 

The complex sine of 21 - 2i. 

The complex tangent of 21 - 2i. 

73 

The principal value of the inve se hyperbolic co­
sine of 21 - 2i. 

The hyperbolic cosine of the principal value of 
the inverse hyperbolic cosine of 21 - 2i. 

The values we will use will prodpce error messages 
and stop the operation unless we choose the 
[I E F A U L T 0 r'~ option. ! 

All of these are dimensioned t~ be complex 
scalars. i 
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1, 1 >.? - 4 9 9 I RTN I 

• m 1, .. - 1 e .- 4 9 9 I RTN I 

WARNING:num too small 
o 1. 

WARNING:num too small 
~j- 1 

WARNING:num too small 
1;::1 :J, 14159265359 

WARNING:num too small 
Ij .w~J, 141 ::;:::~;?65359 

Additional Information 

Z 1 represents -1 + E F' ::; i . 

And Z2 represents - 1 - E F' ::; i. 

The warning indicates that the result is so close 
to the imaginary axis that its real part is less than 
1 , E - 499 and so cannot be shown as anything 
but zero, even though it is nonzero. The principal 
value of the square root of -1 + E F' ::; i is thus 
very close to 0 + i. 

The warning here occurs for the same reason as 
the previous warning. The result this time is very 
close to 0 - i. The jump between this value and 
that of the previous example is the direct con­
sequence of the branch cut along the negative 
real axis for the complex square root function. 

Again, the jump in value from tri to -7ri when 
the argument changes from - 1 + E F' :::; i to 
- 1 - E F' ::; i is a direct result of the branch cut, 
this time for the complex logarithm function. 

In general, the inverse of a function f(z)-denoted ,l(z)-has more than one value for any argument z. 
For example, cos- 1z has infinitely many values for each argument. However, the Math Pac calculates 
the single principal value, which lies in the part of the range defined as the principal branch of the 
inverse function ,l(Z). In this discussion, uppercase letters will denote a single-valued inverse function 
(like COS- 1z) to distinguish it from its multivalued inverse (cos- 1z). 
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i 
For some inverse functions, the definitions of the principal branches are not univer:sally agreed upon. 
The branches used by the Math Pac were carefully chosen. They are all analytic in ithe regions where 
their real-valued counterparts are defined; that is, the branch cut occurs where the ~eal-valued inverse 
is undefined. In addition, most of the important symmetries are preserved. For example, 

I 
SIN-1( -z) = -SIN-1(z) for all z. 

I 

The illustrations that follow show the principal branches of the inverse functions that the Math Pac 
calculates. The left-hand graph in each figure represents the cut domain of the in~erse function; the 
right-hand graph shows the range of the principal branch. The blue and the black lin~s in the left-hand 
graph are mapped, under the inverse function, to the corresponding blue and black iIines in the right­
hand graph. 
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LN(z) = In r + iO for - 7r < 0 ~ 7r 
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COS- 1(z) = -i In [z + (Z2 - 1)'12] 
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z 

i7ri----.-----------

° 
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,//1111111111111/111111 

w = COSH- 1(z) 

The principal branches in the last four graphs above are obtained from the equations shown, but don't 
necessarily use the principal branches of In z and yz. 

The remaining inverse functions may be determined from the illustrations above and the following 
equations: 

W
Z 

= exp (z LN w) 

To determine all values of the inverse functions, use the expressions below to derive these values from 
the principal values calculated by the Math Pac. In these expressions, k = 0, ± 1, ± 2, and so on. 

yz = ±SQR(z) In(z) = LN(z) + 27rik 
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Complex Matrix Operations 
I 

The keywords in this section perform complex operations on arrays with complex v/ilues. The form in 
I 

which complex numbers are stored in an array is similar to the form they are stored in complex scalars. 
The Math Pac can interpret any array with an even number of columns as an a~ray with complex 
values. The first column of the array will represent the real part of the complex a~ray's first column, 
the second column will represent the imaginary part, and so on. For example, the Q x 6 matrix 

! 

[: 
will represent the complex 2 x 3 matrix 

[

1 + 2i 

7 + 8i 

2 

8 

3 

9 

4 

10 

3 + 4i 

9 + 10i 

5 

11 1
6
2] 

5 + 6i] 
11 + 12i 

i 
We will say that an array is a complex array if it is doubly subscripted and has ~n even number of 
columns. 

, 

i 
The operations of addition, subtraction, and negation are identical for real- and complex-valued arrays, 
so these operations are not included in this section. You can use the array addition,1 array subtraction, 
and array negation operations discussed in section 5 in exactly the same manner fo~ both complex and 
real arrays. 

CMMULT 
I 

Complex M1atrix Multiplication 

r'1 f':1 T A= C f'1 f'11...! L T 0:: B.' C::-

where B, C are complex matrices such that there are .twice as many columns in B as there are rows in C, 
and A is a matrix. I 

Redimensions A to have the same number of rows as B and the same number of celumns as C, and 
assigns to A the values of the complex matrix product BC according to the usual rules lof complex matrix 
multiplication. 

79 
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CTRN Complex Conjugate Transpose 

t'1 A T A= C T F.: t·j .: B::' 

where B is a complex matrix and A is a matrix. 

Redimensions A to have half as many rows as B has columns and twice as many columns as B has 
rows-if B is an N x 2P matrix, A will be a P x 2N matrix. A will be assigned the values of the complex 
conjugate transpose of the complex matrix represented by B. 

CINV Complex Matrix Inverse 

t'l H T A= C I t·j I.} .: B::' 

where B is a square complex matrix (twice as many columns as rows) and A is a matrix. 

Redimensions A to be exactly the same size as B and assigns to A the values of the matrix inverse of 
the complex matrix represented by B. 

COET Complex Determinant 

where A is a square complex matrix (twice as many columns as rows) and Z is an array. 

Redimensions Z to be a complex scalar and assigns to Z the complex value of the determinant of the 
complex matrix represented by A. 

CION Complex Identity Matrix 

where A is a square complex matrix (twice as many columns as rows). 

Assigns to A the values of the complex identity matrix. A is not redimensioned. 
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CSYS Comple* System Solution 

t'1AT Z=C~:;""'~:; 0:: A .. B::' 

where A is a square complex matrix (twice as many columns as rows), B is a complex matrix with the 
same number of rows as A, and Z is a matrix. 

Redimensions Z to be exactly the same size as B and assigns to Z the complex values that solve the 
complex matrix equation 

Examples 

CTRN, CION 

Input/Result 

c 1 e .,;,t" ',,' .;:; t" :=: I RTN I 
d i r,., .:; 0:: 1, 5 ::. .. b 0:: 3 .. 6::' I RTN I 

m·:; tin F' '"~ 1: .:; I RTN I 

I A': 0 .. 0:) ,~, 

1 .-, ~ 4 t:" .- .., ,-, q 1 '-1 1 1 1 .-, I RTN I 
" .:: " .~, .' ",_I " '='.' f " ':' .' _'.' .. ..:..' .,,:::, 

fl', .:; 1: b = c 1: t" nO::.;:;::' I RTN I 
r,., .:; 1: d i :=: F' b.: I RTN I 

- - "7 - : -: c- , : 
"7 - 4 9 - 1 0 
"; - 6 1 1 - 1 2 

AZ = B. 

Dimensions A to be a 2 x 6 array and B a 4 x 7 
array. 

A now represents the complex :2 x 3 matrix 

[ 

1 + 2i 3 + 4i 5' + 6i] 

7 + 8i 9 + 10i 11: + 12i . 

B now represents the complex ~onjugate trans­
pose of A. 
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r- e dim ·3 0:: 1 , 3::0 I RTN I 
m ·3 1 ·3 = C i d n I RTN I 
n, ·3 1 d i :3 P ·3.: I RTN I 

000 
~=1 0 0 

CINV, CMMULT 

Input/Result 

d i. m ·3 0:: 2 .' 5 ::0 , b 0:: 2 , 5::0 I RTN I 
n,·3 1 i n p u 1 ·3 I RTN I 

I A<O,O::O'~' 
1, 1,0,0.,0,0, 1, 1,2,2,l1,~=1, 1, 1, 
2,2,3,3 I RTN I 
m .3 1 d i :3 P .3.: I RTN I 

0 0 0 0 
2 2 0 0 
2 2 j -, 

1"", ·3 1: b = c i n \' 0:: -:l::O I RTN I 
m ·::'1 1: d i :3 P b.: I RTN I 

,5 -,5 0 [1 0 0 
- I 25 ,25 ,25 - I 25 [1 [1 

o 0 -,166666666666 
,166666666667 ,166666666666 
.~- ,166666666667 

The 2 x 2 complex identity matrix: 

[ 
1 + Oi 0 + Oi] 

0+ Oi 1 + Oi 

A represents the complex 3 x 3 matrix 

[ 

1 + i 0 + Oi 0 + Oi J 
1 + i 2 + 2i 0 + Oi 

1 + i 2 + 2i 3 + 3i 

B represents the complex 3 x 3 matrix 

[ 

1/2 - i/2 

-1/4 + i/4 

0+ Oi 

0+ Oi 

1/4 - i/4 

-1/6 + i/6 

0+ Oi J 
0+ Oi 

1/6 - i/6 
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rfi:o. 1: dis F' b.: [RTN I 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 9 9 9 9 :3 :3 9 :3 9 9 :3 :3 
-,000000000003 

CSYS 
You can use C ::: \' ::: to solve a system of equations with several choices of constants all at once. For 
example, to solve the systems 

(2 + 3i) Zl + (.7 - i) Z2 = 2 + 21i 

(4 - 1.3i) ZI + (4 + Oi) Z2 = 1 + 3i 

and 

(2 + 3i) u 1 + (.7 - i) U 2 = 0 

(4 - 1.3i) u1 + (4 + Oi) u2 = -3i 

and 

(2 + 3i) WI + (.7 - i) w2 = 9 - .22i 

(4 - 1.3i) WI + (4 + Oi) w2 = -3.5 + i 

we could write the entire system as the complex matrix equation AX = B where 

[

2 + 3i 
A= 

4 - 1.3i 

[

2 + 21i 0 + Oi 
and B = 

1 + 3i 0 - 3i 

9 - .22i]. 

-3.5 + i 

This is the form that C ::::; \' ::::; accepts, and the one we will use to solve the system. 
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Input/Result 

c: 1 E"~ .OJ t- \ ... OJ t- S I RTN I 

d :i. In .OJ':: 1. .. ::3 ::0 .. >:: .:: 1 .. 5 ::0 .. b .:: 1 .. 5::0 I RTN I 

•.•. m, .. , 1 ~ ,::: .' .. ~'" ' ,.. .. - LBI!'!.J 

I 'i'''' 1 ~'1') ,~, ! . ,'R ... 

4, - 1 , ::3., 4., 0 I RTN I 

2, :::: 1, 0 .. 0, 9, -- , :::::::: I RTN I 

E:(l .. ~:j)'~' 

.. ::;:, 0 ... -:::;: ... ... ::\ , ,::).. 1 I RTN I 

n', .:::,·t ::< =: c: S '::I S 0:: .OJ .. b::O I RTN I 
1'1',.:; 1: d i :=: pus i n'::l ">:: .. d d , d" .: ':.:' I RTN I 

4414 2-1 5 -2 (1 

-4 6 7 - 1 - 6 724 

Don't forget to enter both the real and imaginary 
parts of each complex number, even if the value 
IS zero. 

The solution of the matrix equation gives the 
solution of all three systems: 

ZI = 4.4 + 1.4i 
Z2 = -4.6 + .7i 

u 1 = .2 - .li 
u2 = -.1 - .6i 

WI = .5 - 2.0i 
w2 = -.7 + 2.4i . 
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Additional Information 
By combining F: E D I t'1 and real array operations with the operations of this section, 'you have at your 
disposal all of the common operations on complex matrices. As already mentioned, addition, subtrac­
tion, and negation of arrays are identical operations for real and complex arrays. 

Scalar Multiple of a Complex Array 

If you multiply an array B by a real scalar x using 

t'1ATA= <x::' lB, 

the result is correct whether B represents a real or a complex array. For multiplying a complex array by 
a complex scalar, use the following procedure. I 

If B is an N x 2P array representing an N x P complex matrix, and Z is a 1 x 2 array representing a 
complex scalar: 

i 

1. Redimension B to be an NP x 2 array. This makes B into a complex column v~ctor. 

2. Multiply B on the right by Z using complex matrix multiplication. (You must use complex matrix 
multiplication, not real matrix multiplication.) 

3. Redimension the result of the multiplication to be an N x 2P array. The result array is now the 
complex product of B with the complex scalar Z. Remember to redimension B if you want it in its 
original form. 

The following example demonstrates this procedure. 

Input/Result 

c: 1 e ·:ll·- '., ... ;j r- S I RTN I 
c:1 i I'I! b'::::::., 3 ::. .. a .:: :::: .. 3 ::., z < 0.. :l ::. I RTN I 

n! 0:; tin F' u t b I RTN I 

, U .. 0 .. :::: .. ~=1, 2.. 1, 0 .. 0 .. :::::, 0, :::: I RTN I 

I 

A and B are dimensioned to be p x 4 arrays; Z is 
a 1 x 2 array. ' 

, 

B now represents the complex tpatrix 

[

1 + Oi 

0+ 2i 

0+ 2i 

0+ 2i] 
1 + Oi . 
0+ 2i 

I 

B is redimensioned as a complex column vector. 
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I :?<O,O"~' 

rf! ·:::1 t ·::1 :0:: c: rn rf! 1 .. ·1 :I. t < I:::, .' z) I RTN I 
!.,. ':::' d i. rf! ·:::1 ': 2 .' :::': ) .' f.::, < ;;:: .' :::::' I RTN I 
rf! .:::I·j d :i. ::::: F' a.: I RTN I 

o 0 
CI '::. 

Z represents 0 + i. 
A = B i. 

Complex Conjugate of a Complex Array 

You can use a similar technique to find the complex conjugate of a complex array. For example, if B is 
an N x 2P array representing an N x P complex matrix, you can find its complex conjugate as follows. 

1. Redimension B to be an NP x 2 array and multiply B on the right by the 2 x 2 array 

using real array multiplication. 

2. Redimension the result to be an N x 2P array. 

The result will then be the complex conjugate of the original. Be sure to redimension B if you want it 
in its original form. 

Note that combining this complex conjugation with the complex conjugate transpose operation gives 
you the complex transpose of a complex matrix. 
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Complex Form of a Real Array 
I 

! 

As a final example of these operations, note that you can use the following procedure to create a com-
plex matrix with zero imaginary part and the same real part as a given real mat~ix. The resulting 
matrix then represents the same matrix, but can be used in complex array operations. 

If B is a real N x P array you wish to put in complex form: 

1. Dimension the array in which you wish to store the result to be N x 2P and assi~n it the values of 
the zero array. I 

2. Assign the result array the values of B. This also redimensions the result to be IV x P, and has no 
effect on the inaccessible zero values. i 

3. Redimension the result array to be 2 x NP. The result array now consists of two rows, the first 
row contains the values of the B and the second row contains only zeros. 

4. Take the (real) transpose of the result array. 

5. Redimension the result array to be N x 2P. The result array now has the valueJ of B alternating 
with zeros. ! 

The following program will convert a 4 x 3 real array to its corresponding comple~ array using the 
above procedure. 

10 OPTION BASE 1 
20 DIM B(4,3),A(4,6) 
30 MAT A=ZER 
40 MAT INPUT B 
50 MAT A=B 
60 REDIM A(2,12) 
70 MAT A=TRN(A) 
80 REDIM A(4,6) 
90 MAT DISP A; 

To create the complex form of the real matrix 

123 

456 

789 

10 11 12 

type in the program and use the following keystrokes. 
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Input/Result 

IRUNI 

[:(1.,1)'-::' 

.. 2 .. 3, 4, -::; .. 6 .. 7 .. ::: .. :3., 1 (1.. 1 1 .. 1 2 I RTN I 

1 (:1 .-:. 0 "7 0 '-

4 (:1 '-; 0 6 0 
\:1 ::: 0 9 0 

1 Ij ~-:) 1 1 D 1 2 (1 

The complex form of the given real matrix. 
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Finding Roots of Polynomials 

The keyword in this section finds all solutions-both real and complex-of P(x) =r 0, where P is a 
polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not 
necessarily distinct) solutions of this equation, so this keyword resembles an array operation in its 
format. 

To use this keyword to find the solutions of the equation P(x) = 0, where 

first store the coefficients an' an-I' ... , ao in an array with n + 1 elements in all. They should be stored 
in the order indicated above, with the coefficient of the highest power first and the cpnstant term last. 
Aside from the total number of elements in the array, which indicates to the Math Pac the degree of 
the polynomial, the dimensions of the array are irrelevant. For example, the arrays 

[6, 5, 4, 3, 2, 11, [: 

all can represent the polynomial 

5 

2 

The array in which you wish the roots to be stored must be doubly subscripted and must have been 
given at least 2n elements in its original dimensioning statement. The degree of the polynomial you can 
find the roots of is limited only by the amount of memory you have available. . 

89 
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PROOT Roots of a Polynomial 

r'1AT R=F'POOT(P::O 

where P is an array with at least two elements, and R is a matrix. 

Redimensions R to be an N x 2 array (where P has a total of N + 1 elements) and assigns to R the 
(complex) values of the solutions of the equation P(x) = 0 (where P is the polynomial of degree N whose 
coefficients are the values of the elements of Pl. The first column of R will contain the real parts of the 
roots and the second column will contain the imaginary parts. 

Example 

Input/Result 

c 1 ,,~ .':J 1'" "/ .::t ~- s I RTN I 

d i rfl :,:. ( 6 ::0 .. 1 .. .1 ( 5.. 1 ::0 I RTN I 

~:::; .. 00·-4~:::; .. 2:2'::;, --4~~5 .. 170,370, 
m ':') C1 (:) I RTN I 

rl! d '1: 1 ... 1 "'" F' 1'- .:. (:I t ( s::O [RTN I 

rl! ·::1 '1: d i,,,: F' 1 ... 1.: [RTN I 

S will contain the seven coefficients of a sixth de­
gree polynomial, and W will contain its six com­
plex roots. 

S now represents the polynomial 

5x6 
- 45x5 + 225x4 

- 425x3 

+ 170x2 + 370x - 500. 

._ .. 1 The roots of this polynomial are 1 - i, 1 + i, 
- 1 + Oi, 2 + Oi, 3 - 4i, and 3 + 4i . 

.. _. 1 0 

oo~ 00_.4 

.. ::' 4 
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The Math Pac uses a modified version of Laguerre's method together with e~tended preCISIOn 
arithmetic and a sophisticated scaling and deflation (polynomial division) procedure to find the roots 
of polynomials. Ordinarily, an array with n + 1 elements represents a polynomial of degree n, and 
should therefore have n roots. However, if the leading coefficient happens to be zero (so that the poly­
nomial is actually of degree n - 1) this method will calculate that the polynomial has ;a root at complex 
infinity, and so will report (9.99999999999E499, 9.99999999999E499) as a root. This will normally 
produce an error message; if the [I E F A U L T 0 t·~ option is in effect, the Math Pac will display a warn­
ing message and then correctly find the roots of the lower degree polynomial. 

There are several methods of gauging the accuracy of the calculated roots. The first :method is to cal­
culate the value of the polynomial at the alleged root, and compare this value with ze~o. Although quite 
straightforward in theory, this has a number of drawbacks in practice. It may easily happen that the 
the root calculated is the closest machine-representable number to a true root, but because the polyno­
mial has such a large value for its derivative at this root, the value of the polynomial at the calculated 
root is very large. A simple example of this phenomenon is given by the polynomial lE20x2 

- 2E20. A 
true root is \1'2; a calculated root is 1.41421356237, which is the machine-representable number closest 
to \1'2. However, the value of the polynomial at this approximation to the square root of 2 is 
-1,000,000,000, a number which seems very far from zero. 

Another drawback of the above method is that because of the limited precision available in any numeri­
cal calculation, the roundoff errors that occur in the calculation of the polynomial's value may com­
pletely eliminate the significance of the difference between the calculated value and zero. This is 
especially true when the polynomial is of large degree, has coefficients widely varying in size, or has 
roots of high multiplicity. 

A second method of gauging the accuracy of the calculated roots is to attempt to reconstruct the poly­
nomial from these roots. If the reconstructed polynomial closely resembles the original, the roots are 
then judged to be accurate. This technique is less sensitive to the problems that affect the polynomial 
evaluation method. Of course, this method does not give information on the accuracy of an individual 
root. 

The program given below asks you for a polynomial and then calculates the roots of the polynomial and 
reconstructs the polynomial from these roots. If you wish, the program continues lind calculates the 
value of the polynomial at a root, or any other real or complex point you choose. 

To compute the reconstructed polynomial, this program starts with the polynomial 1, and then succes­
sively multiplies the polynomial by the linear factors (x - r), where r is a calculated real root, or by the 
quadratic x2 

- (r1 + r 2)x + (r1 r 2) where r1 and r 2 are a pair of complex conjugate roots. 

To compute the value of the polynomial at a complex point z, the program uses synthetic division 
(synthetic substitution) of the polynomial by the linear binomial (x - z) and the fact that the remain­
der of such a division is the value of the polynomial at the point z. This method of co~putation has the 
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advantage of avoiding much of the roundoff error that would occur ill a more straightforward 
calculation. 

1 0 OPTION BASE 1 

20 DIM P(51, 1 ),Q(52,2),C(52),T(52),R(50,2) 

30 DELAY 1 

40 DISP "What degree is the polynomial? (It 
must be less that 51)" 

50 INPUT D 

60 REDIM P(D+1,1),Q(D+2,2),C(D+2), 
T(D+2),R(D,2) 

70 DISP "Enter the eoeff.s of the polynomial" 

80 DELAY 0 

90 MAT INPUT P 

100 A1 =P(1 ,1) 

110 MAT R = PROOT(P) 

120 DELAY 1 

130 DISP "The roots are" 

140 MAT DISP R; 

150 DELAY 0 

160 REM······· 

170 MAT C=ZER 

180 C(2)= 1 

P will contain the coefficients of the original 
polynomial. Q will contain a complex copy of the 
coefficients used in the synthetic division. C will 
contain the reconstructed coefficients. T is used 
as a temporary storage for intermediate steps in 
the reconstruction. R will contain the calculated 
roots. 

Throughout the program we will lengthen the 
delay before something is to be displayed, and 
shorten it during a calculation. 

D is the degree of the polynomial. 

Redimensions the variables to the appropriate 
sizes for a polynomial of degree D. 

P will now contain the coefficients. 

The reconstructed polynomial will always have 
leading coefficients equal to 1. We will scale the 
reconstructed polynomial by Al to make the 
leading coefficients match. Note that this will 
not work if Al = O. 

Calculates the roots and stores them in R. 

Displays the calculated roots. 

We now begin the process of reconstructing the 
polynomial from the roots found. 

C now represents the polynomial 1. 



190 MAT T=C 

200 F=O 

210 FOR J=1 TO D 

220 IF R(J,2)=0 THEN GOSUB 320 ELSE 
GOSUB 380 

230 NEXT J 

240 MAT C=(A1)'C 

250 DELAY 1 

260 DISP 'The reconstructed polynomial is" 

270 FOR K=2 TO D+2 

280 DISP C(K);".X"";D-K+2;"+"; 

290 NEXT K 

300 INPUT "Do you wish to evaluate the poly.? 
(N will stop the program)","Y";U$ 

310 IF UPRC$(U$)="N" THEN STOP ELSE 
GOTO 470 

320 REM ••••••• 

330 FOR L=3 TO D+2 

340 T(L)=C(L)-R(J,1).C(L-1) 

350 NEXT L 

360 MAT C=T 

370 RETURN 
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This just gives T some values for initialization. 

F is a "flag": if F equals zero, tHis will indicate 
that the previous root was real; if F equals one, 
this will indicate that the previous root was 
complex. Since a root and its complex conjugate 
will be consecutive on our list of roots, when we 
find a complex root, we will multiply by the 
quadratic and then ignore the next root on the 
list. 

J represents the number of the toot we are 
currently working with. 

If the current root is real, we will multiply by the 
linear factor (subroutine starting at 320). If the 
current root is complex, we will multiply by the 
corresponding quadratic factor, it it hasn't 
already been done (subroutine starting at 380). 

Scales the reconstructed polynomial by the 
leading coefficient of the original. 

Displays the polynomial in standard form. 

The leading coefficient is C: <:: 2 :.:, not C:':: :1. ", 
C 0: 1 ::. will always be zero. 

This begins the subroutine to multiply the 
polynomial by a linear factor. 

During this calculation, T stores the results of the 
multiplication. After it's done, the result is 
again stored in C. 
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380 REM······· 

390 IF F=1 THEN LET F=O @ RETURN ELSE 
LET F=1 

400 LET A=2.R(J,1) 

410 LET B=R(J,1)""2+R(J,2)""2 

420 FOR L=3 TO 0+2 

430 T(L)=C(L)-A.C(L-1)+S.C(L-2) 

440 NEXT L 

450 MAT C=T 

460 RETURN 

470 REM······· 

480 DIM X(2),Z(2),W(2) 

490 INPUT "Evaluate at a root, or some other 
value? (R for root)"," ";U$ 

500 IF UPRC$(U$)="R" THEN GOSUB 
710@GOTO 550 

510 DELAY 1 

520 DISP "Enter the real and imaginary parts of 
the value" 

530 DELAY 0 

540 MAT INPUT X 

550 REM ••••••• 

560 DELAY 0 

570 MAT Q = ZER 

580 MAT Q=P 

590 REDIM Q(2,D+1) 

600 MAT Q=TRN(Q) 

This begins the subroutine to multiply the 
polynomial by a quadratic factor. 

If the flag equals one, we have already used the 
quadratic corresponding to this root and so we 
clear the flag and go on to the next root. If the 
flag doesn't equal one, we set the flag and 
continue the process. 

1, A, and B are the coefficients of the quadratic 
factor. 

T stores the results during the multiplication. 
The results are again stored in C when we are 
done. 

This begins the polynomial evaluation routine. 

X, Z, and W will be used as complex scalars. 

The subroutine starting at 710 looks up the value 
of the root. 

X contains the value of the point at which the 
polynomial will be evaluated, either from the 
1'1 H T I!',; F' U T or the from the lookup of the root. 

This section assigns to Q the values of the 
complex form of P. 



610 FOR L=2 TO D+1 

620 Z(1)=Q(L,1) @ Z(2)=Q(L,2) 

630 W(1)=Q(L-1,1) @ W(2)=Q(L-1,2) 

640 MAT W=CMULT(W,X) 

650 MAT Z=CADD(Z,W) 

660 Q(L,1)=Z(1) @ Q(L,2)=Z(2) 

670 NEXT L 

680 DELAY 1 

690 DISP "The value of the polynomial is "; 
Q(D+ 1 ,1);"+i.";Q(D+ 1 ,2) 

700 GOTO 300 

710 REM •••••• 

720 DISP "Which root? (1, ... ,";D;")" 

730 INPUT J 

740 X(1)=R(J,1) @ X(2)=R(J,2) 

750 RETURN 
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The values of Q are converted to complex scalars 
so that the complex arithmetic operations can be 
used. . 

This calculates the next term in the synthetic 
division. 

The value of the polynomial is the last 
(remainder) term. 

Gets another point to use in the evaluation. 

This begins the subroutine to look up the value of 
a root. 

J is the number of the root. 

If we wanted to find and evaluate the roots of the polynomial 

x6 + x5 + X4 + x3 + x2 + X + 1, 

we would run the program using the following keystrokes. 

Input/Result 

[RUN[ 

What degree is the polynomial Q 

(It must be less than 51) 

Enre!·~ the coet +,:=" of the p()l!:::Inc) 

r!'l i 31 
P ( :I .' 1 " .. ;. 
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1 .. 1 .. 1, 1 .. 1 .. 1 .. 1 I RTN I 

The roots .''It-e 
- I 22252(1933956 
_H I 222520933956 
_. , 90096::::::::67902 
- , 90096:::::::67902 

,6234:::9:::01::::59 
,6234::::9::::01::::59 

,9749279121 ::::2 
- , 9749279121 ::::2 
- , 433::::::::373911 :::: 

,433:::::,::373911 :::: 
- , 7:::: 1 ::::314::::246:::: 

,7:::: 1 ::::314::::246:::: 
The reconstt-ucted pol'=,norni."ll is 

tX~ 6 + ,99999999999 tX A 5 + 
tX~ 4 + ,99999999998 tX 3 + 
tX~ 2 + ,99999999999 tX~ 1 + 
t:'.,;···· 0 + 

Do you wish to evaluate the poly 
? (N will stop the prograrn)Y 

Evaluate at a root or sorne othe 
r value? (R for root) 

Any response but "N" or "n" will be interpreted 
as "yes." 

r I RTN I Any reponse but "R" or "r" will be interpreted as 
"some other value." 

1 I RTN I 

The value of the polynornial is 
U +il 7,~)24E-13 
Do you wish to evaluate the pol 
y,?(N will stop the prograrn)Y 

The value of the polynomial at the first com­
puted root. 



Evaluate at a root, or some oth 
er \1.", lIJe'~' 

o the ~- I RTN I 

Enter the real and imaginar~ pa 
rts of the \I.",lue 
>:: ( 1 .) ,~, 

,2.' 1:3 

The value of the pol~nomial is 
,222523 +i* ,185814 
Do ~ou wish to evaluate the pol~ 
,0 (N will stop the program)Y 

About the Algorithm 
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The Math Pac uses Laguerre's method to find the roots of the polynomial, one root at a time, by 
computing a sequence of approximations Zl' Z2' ... , to a root using the formula Zk + 1 = Zk + Sk' 
where Sk (called the Laguerre step) is given by the formula ' 

-n P(Zk) 

where P, pI, P" are the polynomial and its first and second derivatives, n is the degree of the polyno­
mial, and the sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Poly­
nomials of degree 1 or 2 are solved using linear factorization or the quadratic formula. Laguerre's 
method is cubically convergent to simple zeros and linearly convergent to zeros of multiplicity greater 
than one. 

The operation of F' F: 0 0 T is global, in the sense that you are not required to supply an initial guess. 
r::' F: 0 0 T always attempts to begin its search for a root at the origin of the complex plane. An annulus 
that contains the root of smallest magnitude is determined, and the intial step is rejected if it would 
lead out of this region. If the initial step is rejected, a spiral search is begun from t~e inner radius to 
the outer radius of the annulus, and continues until an acceptable initial guess is found. Once the 
iteration process has begun, a circle known to contain the root is computed around each Zk' The 
Laguerre step is modified if it leads outside this circle, or if the value of the polynomial does not 
decrease. The roots are thus generally found in order of increasing magnitude, which minimizes the 
roundoff errors resulting from deflation. 



98 Section 12: Finding Roots of Polynomials 

F' P 0 (I T uses a sophisticated technique to determine when an approximation Z k should be accepted as a 
root. As the polynomial is being evaluated at Z k' a bound for the roundoff error for the evaluation is 
also being computed. If the polynomial value is less than this bound, Z k is accepted as a root. Z k can 
also be accepted as a root if the value of the polynomial is decreasing but the size of the Laguerre step 
has become negligible. Before an approximation Z k is used in an evaluation, its imaginary part is set to 
zero if this part is small compared to the step size. This improves performance, since real-number 
evaluations are faster than complex evaluations. If the Laguerre step size has become negligible but the 
polynomial is not decreasing, then the message F' P 0 0 T f.", i 1 u r e is reported and the computation 
stops. This is expected never to occur in practice. 

As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or 
quadratic factor corresponding to the Z k) are also computed. When an approximation Z k is accepted as 
a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins 
again. 

Multiple Zeros 

No polynomial rootfinder, including F' P 0 0 T, can consistently locate zeros of high multiplicity with 
arbitrary accuracy. The general rule-of-thumb for F' P 0 0 T is that for multiple or nearly-multiple zeros, 
resolution of the root is approximately 12jK significant digits, where K is the multiplicity of the root. 

Accuracy 

F'F:OOT's criterion for accuracy is that the coefficients of the polynomial reconstructed from the cal­
culated roots should closely resemble the original coefficients. 

F' FUJ 0 T's performance with isolated zeros is illustrated by the 100th degree polynomial XlOO - 1. When 
F' f;:: U 0 T is used to find the roots of this polynomial, all but eight of the roots are found to 12-digit 
accuracy. Of these eight, all but two are accurate to 11 digits, with the 12th digit of either the real or 
imaginary part off by 1. The other two calculated roots are 3.27172623763E -14 ± i instead of 0 ± i. 

The polynomial (x + 1)20, which has -1 as a root of multiplicity 20, was solved by F' F: 0 0 T to yield 
calculated roots of: 

-.999954866562 + Oi 
-.985568935304 + Oi 
-.676467025812 + W 
-.746641243182 + .203801767293i 
-.746641243182 - .203801767293i 
-1.04166040212 + .334892343643i 
-1.04166040212 - .334892343643i 
- .827370927334 + .278237315935i 
-.827370927334 - .27823731593fu 
- .92857985345 + .323524811701i 
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- .92857985345 - .323524811701 i 
-1.35739089743 + Oi 
-1.33261156263 + .128152487571 i 
-1.33261156263 - .128152487571 i 
- .694494465769 + .10767 4717679i 
- .694494465769 - .10767 4717679i 
-1.15757200375 + .307382598202i 
-1.15757200375 - .307382598202i 
-1.26137867921 + .23658285644i 
-1.26137867921 - .23658285644i 

The computed roots are inaccurate due to the high multiplicity of the true root. Prom the formula 
given previously you would expect no correct digits, or perhaps one, but note that the first pair of 
computed roots are more accurate than this. When a polynomial is reconstructed from these roots, its 
coefficients resemble the coefficients of the original polynomial to 11 or more digits. 





Section 13 

Solving f(x) 0 

You can use the keywords in this section to help you determine the solutions of an equation in one real 
variable. The first step in using this capability is to rewrite the equation to be solved in the form 
f(x) = O. Even this form, however, is not explicit enough to be used by your Math Pac. You must write a 
user-defined function F ~Vunction name such that F ~Vunction name(x) calculates f(x). (Refer to section 
13 of the HP-75 Owner's Manual for information about user-defined functions.) 

The keyword F ~1 F.: [I [I T can be used anywhere inside the program that contains the definition of the 
function (except inside the definition itself) to find the values of x for which f(x) is zero. 

The keyword F ~1 G U E ::; ::; is provided as an aid in interpreting the results of the r::'I'H:: I) () T keyword. 
Since they are numeric valued, F ~'1 G U E ::; ::; and F ~'1 F.: 0 [I T can be used alone or in combination with 
other functions and variables to form numeric expressions. 

FNROOT Function Root 

F~·1F.:OOT <A. B. F~·jfunction name<X)::' 

where A, B are numeric expressions (not necessarily distinct), F·I···lfunction name is a user-defined 
numeric function, and X is a numeric variable. 

Returns the first value found (starting with guesses A and B) that is one of the following. 

1) An exact root of the specified function. 

2) An approximation to a root of the specified function, correct to 12 digits. 

3) An approximation to a local minimum of the absOlute value of the specified function. 

4) In a region where the specified function is constant. 

5) ±9.99999999999E499 if the search for a root led beyond the range of representable numbers. 

X is a dummy variable-its inclusion here doesn't affect the use of this variable name in any other 
context. 

This keyword can be used only in a program. 

101 
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FNGUESS Previous Estimate of Function Root 

Returns the next-to-Iast value tried as a solution in the most recent F t·j P 0 0 T statement. 

F t·j CUE ::; ::; retains its value, even if your HP-75 is turned off, until F H P 0 0 T is again executed. 

To help you distinguish among the five possibilities outlined above for F t·j F.: 0 0 T, you should always 
include a statement in your program that calculates and stores andlor checks the value of the specified 
function at the point found by F t·j POD T. Examples of such statements are 

LET Z = F t·j F 0: F t·j POD T 0:: A .. E: .. F tj F 0:: >:: )11 and 

DISP FHPOOTO:A .. E: .. FHF(X» @ DISP FHFCPES) 

where F' t··1 F is the specified function. 

By checking the values of F t·j F at the points returned by F t·j P 0 0 T and F' t·! CUE ::; ::;, you can interpret 
the result of F t·j P 0 0 T as follows. 

€> If F I'j F (result of F t·j P 0 0 T) = 0, the result of F t·~ P 0 0 T is an exact root and the result of 
F tj C; 1 . ..1 E ::; ::; will be a number close to the root. 

o If the result of F tj F.: 0 0 T and the result of F tj CUE ::: ::: differ only in the twelfth significant digit, 
these two numbers surround the exact root. 

" If the result of F t·j F.: DOT and the result of F t·j CUE :::: :::; differ but Ft·; F (result of F tj F.: CI 0 T: and 
F t··1 F 0:: result of F t·j CUE ::; ::;:) are equal, these results lie in a region where F [.j F is constant. 

To solve log (x) = elx, we first write the equation in the form f(x) = 0. This can be done by subtracting 
elx from both sides of the equation, yielding log (x) - elx = 0. We can rewrite this in the equivalent 
but slightly more convenient form x log (x) - e = 0. Since the left-hand side of this equation is 
undefined for x ~ 0, and we can't guarantee that the search for a root will not venture into this region, 
we will consider instead the equation Ixllog Ixl - e = 0. This equation has exactly the same positive 
solution(s) as the first equation, but this equation makes sense for both positive and negative (but non­
zero) numbers. The program below includes a user-defined function that computes the left-hand side of 
this equation, and uses F tj P 0 0 T to find a solution of the equation. 



10 DEF FNF(X) 

20 FNF = ABS(X). LOG(ABS(X)) - EXP(1) 

30 END DEF 

40 INPUT A,B 

50 R = FNROOT(A,B,FNF(X)) 

60 DISP "The value found (R) is";R 

70 DISP "FNF(R)=";FNF(R) 

80 DISP "FNGUESS=";FNGUESS 
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This user-defined function computes the left-hand 
side of the equation. 

These will be the initial guesses. 

To use the program we must decide on initial guesses. Although the initial guesses need not be in 
increasing order, or even distinct, a choice of initial guesses that surround a root will produce results 
more quickly in general. Noting that if IXI < 1 then F t1 F (X:O will be negative and if IXI is large (say, 
100) then F t1F (X, will be positive, we can choose .5 and 100 for our initial guesses. 

Key in the program and I RUN I it, and when prompted with ,) respond with ,',::;.' I. 0 ~:=I I RTN I, which 
supplies the initial guesses. The computer will then display 

The value found (R) is 
2,71 :::2::: 1 :::2:::46 
Ft1F'F:'= ~::1 

FNGUESS= 2,71828182832 

Since F t"1 F ( P :0 = C1, the value given is an exact root for F !""j F" . 

Additional Information 

Choosing Initial Estimates 

When you use F t"1 F: 0 0 T to find roots of equations, the initial estimates determine where the search for 
a root will begin. If the two estimates surround an odd number of roots (signified by their function 
values having opposite signs), then F t"1 P 0 0 T will find a root between the estimates quite rapidly. If the 
function values at the two estimates do not differ in sign, then F" !"""! I:;:: () C:; T must search for a region 
where a root lies. Selecting initial estimates as near a root as possible will speed up this search. If you 
merely want to explore the behavior of the function near the initial estimates (such as to determine if 
there are any roots or extreme points nearby), then specify any estimates you like. 

Another thing to consider is the range in which the equation is meaningful. In solving {(x) = 0, the 
variable x may only have a limited range in which it is conceptually meaningful asa solution. In this 
case, it is reasonable to choose initial estimates within this range. Frequently an equation that is ap­
plicable to a real problem has, in addition to the desired solution, other roots that are physically mean-
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ingless. These usually occur because the equation being analyzed is appropriate only between certain 
limits of the variable. You should recognize this restriction and interpret the results accordingly. 

Interpreting Results 

When using F t·~ P [I [I T, always evaluate the function at the value returned, as described above. This 
enables you to interpret the results. There are two possibilities: the value of the function at the value 
returned by F t·j P [I [I T is close to 0; or the value of the function at the value returned by F t·j P [lOT is not 
close to O. It is up to you to decide how close is close enough to consider the value a root. 

If the function value is too large, then the information returned by the keyword F t~ G U E ::: :::, together 
with information already considered, is sufficient to determine the general behavior of the function in 
the region. For example, suppose that F t·~ P [I [I T is used to find a root of a function-say, F t·~ F 0:: >:: ::.­

and the value returned is r. If I F t·~ F 0:: ~- ::. I is too large to consider r a root, then there are several 
possibilities. 

If F H F 0:: r::' and F t·~ F 0:: F t·~ G U E ::; ::;::. have the same sign, then r is either an approximation to a local 
minimum of I F I·~ F 0:: >:: ::. I or in a region where the graph of Ft··! F· 0:: >::::. is horizontal. 

In these two cases, F t·~ P 0 0 T sees no tendency of F: ~.~ F 0:: i::::' to decrease in absolute value, and so to 
cross the x-axis. It will then try to approximate a local extreme point, if any. This approximation can 
be resolved to further precision by further executions of F 1··1 I:;:: () C)T", using rand F I··~ C !.J E :=.:; ::::; as initial 
estimates. Repeated execution of F· t·~ P [I [I T in this manner will tend to convergence to the extreme 
point in many cases. The idea is that F t1 F: () u·r can be used to find local extreme points, or the in­
formation about where the extreme points are can be used to re-direct the search elsewhere, in hope of 
finding a root. Here is an example program which can be used to find the local minimum and root of 
{(x) = Ix - 11112. Note that x = 1 is both a root and local minimum, which makes it a difficult root to 
find. This program takes advantage of the way F ! .. ! POI] T finds minima to find the root. 



10 DEF FNF(X) = SQR(ABS(X -1)) 

20 R=FNROOT(5,9,FNF(X)) 

30 FOR I = 1 TO 20 

40 R=FNROOT(R,FNGUESS,FNF(X)) 

50 NEXT I 

60 DISP "Root or minimum at";R 
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This is the user-defined function. 

Tries to find a root. 

o 

Iterates 20 times to resolve the >minimum to 
greater accurac~ 
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To execute this program, key it in and I RUN I it. The display will then show: 

I Roo~ or minimum a~ 

When I F t·~ F .:: t- ::' I is too large to consider r a root, another possibility is that r· !···I F:· .:: t··, and 
F: t~ F .:: F t·~ G U E ::; ::;:' have different signs. In this case it would appear that there is a root between, be­
cause for the function to change signs it should cross the x-axis. Typically, when r· t··! I:::: () C) T finds two 
guesses on opposite sides of the x-axis, it only stops after it has resolved them to two consecutive 
machine numbers. In this case there is no machine representable number between rand F t-H; 1 . .1 E ::::; :,::;. 
Thus, the behavior of the function cannot be determined between rand Ft··! G U E ::; :,:,;. To interpret such 
results, you should be aware of these situations. 

'~ 
i I 
: I 

In case 1, rand F t·~ CUE ::; :::; are the best approximations to the root which are representable on the 
machine. Case 2 looks exactly the same to F t~ R 0 U T, but there is no root-there is a jump discontinuity 
instead. In case 3 there is a pole, which can look like a root if a guess on each side of the pole is found. 
F·!~ F:: () U T returns information in F t·~ G U E: ::; ':; and the root to help you isolate situations where conver­
gence is to a pole or jump discontinuity. 



106 Section 13: Solving f(x) = 0 

Decreasing Execution Time 

The exponent range of your HP-75 is ±499. This allows for sensitive observation of the behavior of a 
function, even very close to a root. F t·~ F.: 0 0 T takes advantage of this dynamic range by not accepting a 
guess as a root until the function value underflows, is zero, or two consecutive machine representable 
numbers that bracket a root are found. The cost of this precision is that, occasionally, it may take quite 
a while to obtain such precision. If this high degree of sensitivity is not required, then you may wish to 
set a smaller tolerance. For example, you may only need to know a place where the function is less than 
lE-20. This is accomplished in your function subprogram by checking the value of the function before 
assigning it to the function variable and setting the function variable to zero if the computed value is 
smaller than the desired tolerance. For example, suppose you wanted to find any roots of f(x) = X4, and 
If(x) I < lE - 32 is acceptable as a root. Here is a program you can use. 

10 DEF FNF(X) 

20 F=XA 4 

30 IF F<=1E-32 THEN FNF=O ELSE 
FNF=F 

40 END DEF 

50 DISP FNROOT(2,3,FNF(X)) 

60 DISP FNF(RES) 

Multiline function definition of f(x) = X4. 

Checks error tolerance and sets the function 
value accordingly. 

Computes and displays the root. 

Displays the function value at the root. 

To execute this program, key it in, and press 1 RUN I. In the display will appear: 

I :.3 ••• 25., ••• 0-. 

In this example, if this tolerance technique were not used, execution would last much longer. This is 
because the computed function will not underflow until x is very small, since the root is at zero and the 
distribution of machine-representable numbers is very dense close to zero. So FO H F: !=! 0 T has a lot of 
guesses to try before finding one it can accept as a root. 
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An alternate approach to decreasing execution time is to translate the function so that the root is not 
so near zero, compute the root of the translated function, then translate the root back. This will de­
crease the time to find roots of certain functions with roots close to zero, but will generally decrease 
the accuracy of the roots found. Here is a sample program for {(x) = X4. 

10 DEF FNF(X) = (X_1)A4 

20 R = FNROOT(3,4,FNF(X)) 

30 DISP R-1 

40 DISP FNF(R) 

This is X4 translated by 1. 

Computes the root. 

Translates the root back and displays the root and 
function value. 

Finally, there is a technique that may improve the speed and accuracy of F I··~ F: (J (J T. Any equation is 
typically one of an infinite family of equivalent equations with the same roots. However, some may be 
easier to solve than others. For example, the two equations {(x) = 0 and exp ({(x)) - 1 = 0 have the 
same real roots, but one is almost always easier to solve. When {(x) = X4 - 6x - 1, the first is easier; 
but when {(x) = In (x4 

- 6x - 1), then the second is easier. While F: t·1 F: CI CI T has been designed to pro­
vide accurate results for a wide range of problems, it is worthwhile to be aware of such possibilities. 





Section 14 

Numerical Integration 

The keywords in this section enable you to evaluate the integral of a function between definite limits. 
Before you can calculate the integral of a function f(x) you must write a user-defined function that 
calculates the values of f(x). (For information about user-defined functions, refer to section 13 of the 
HP-75 Owner's Manual.) 

You can then use the keyword I t·j TEe F: A L to calculate the integral of the user-defined function. You 
can use I tj T E G F: A L anywhere within the program in which the user-defined function is defined except 
within the definition of the user-defined function. 

The keywords I E: 0 U t·j [I and I I.} A L U E give you additional flexibility in the evaluation of the integrals. 
I I·j TEe I? A L, I E: 0 U t·j [I, and I I.} A L U E are numeric-valued, so they can be used alone Or in combination 
with other functions and variables to form numeric expressions. 

INTEGRAL Definite Integral 

I t·ITECI?AL (A, B, E, FtUunction name(X':' 

where A, B, E are numeric expressions, F tHunction name is a user-defined numeric function, and X is a 
numeric variable. 

Returns an approximation to the integral from A to B of F t·Uunction name. The relative error E (rounded 
to the range 1 E -12 .s; E .s; 1) indicates the accuracy of F tUunction name and is used to calculate the 
acceptable error in the approximation to the integral. 

I ! .. ~ TEe;!? I::! L generates a sequence of increasingly accurate approximations to the definite integral. If 
three successive approximations are within the acceptable error of each other-the first is close to the 
second and the second is close to the third-they are considered to have converged and the third 
approximation is returned as the value of the definite integral. If a total of 16 approximations are cal­
culated without converging, the sixteenth approximation is returned. 

X is a dummy variable-its inclusion here doesn't affect the use of this variable name in any other 
context. 

This keyword can be used only in a program. 

109 
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IVALUE Last Result of I 1···1 T E: c:; F:: H L 

I',,'ALUE 

Returns the last approximation computed by the I tH E C F.: A L keyword. If the I ATTN I key was pressed 
or the operation of I t·j TEe F.: A L was otherwise interrupted, then I I,) A L U E returns the value of the 
current approximation to the integral. Otherwise, I ,,,, A L U E returns the same value that I tj TEe F.: A L 
last returned. 

I I,} A L U E retains its value (even if your HP-75 is turned off) until another I H TEe F.: f'1 L is computed. 

IBOUND Error Approximation for It··:"T· E: c:; I:;:: ,::, L. 

I E:OI..JljD 

Returns the final error estimate for the definite integral most recently computed by I tj T E G F.: A L . 

• A positive value for I B [I U t·j D means that the approximations converged. 

• A negative value for I B [I U t·W means that the approximations didn't converge completely, so that 
the value returned by I t·j T E G F.: A L may not be within the acceptable error of the actual value. 

Like I '...'fiLUE, I BOUt·W retains its value (even if the HP-75 is turned off) until another I tHEGF.:HL is 
computed. Unlike I I,) H L U E, the value of lE:O U t·~ D has no relation to the current approximation to the 
integral if the operation of I t·j TEe F.: A L is interrupted. 

The operation of I t·~ T E C; F.: FI L and I B 0 U tl D can be described more precisely as follows, 

1. Based on a relative error of E for the specified function, the computer calculates an error tolerance 
for the integral of the specified function, If [(X) is the "true" function that F:· tl F approximates, 
then choose E such that 

,1F_t·l_F_(_X_) ----'--[(_X--C.) I 
E-;?;-

IF tlF (X) I 
for all X in the interval of integration. Your input for E is rounded to the range lE-12 < E < 1. 

For example, if F t·l F is derived from experimental data with N significant digits, let E equal lO-N. 

2. The computer calculates a sequence of approximations Ik to the integral of the specified function. 
The difference between successive approximations is compared to the error tolerance for the 
integral. 

3, A value for the integral is returned when: 

• The approximations Ik have converged, Convergence is determined using J k, defined as the kth 
approximation to the integral of lO(int (log IFtlFI)) over the same interval of integration. J k repre­
sents the error inherent in the computation of I k , 
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The approximations Ik are judged to have converged to In if 

Ilk - Ik _ 11 ~ E J k 

for k = n - 1 and for k = n. The value of In is then returned by I tn E G F.: A L; a positive value 
for the error estimate will be returned by I E: [I U tj [I. 

or when 

• The computer has evaluated II through 116 but the convergence criterion is still not met. 116 is 
then returned by I tn E G F.: A L; a negative value for the error estimate will be returned 
I E:[lUt"~[I. 

Examples 

INTEGRAL, IBOUND, IVALUE 

To find the integral from 0 to 1 of the function 

[(x) = exp (x3 + 4x2 + X + 1) 

you can use the following program. 

10 DEF FNF(X)=EXP(XA 3+4.X"'2+X+1) 

20 INPUT E 

30 DISP "Integrating; please wait" 

40 X=INTEGRAL(0,1 ,E,FNF(W)) 

50 BEEP 

60 DISP "The value of the integral is"; X 

70 DISP "The approx. error is" 

80 DISP IBOUND 

The user-defined function F t"~ F" • 

Gets the relative error we expect in F t"~ F as 
compared with f. 

Remember that W is a dummy variable. 

After you key in the program, run it using the following keystrokes. 

Input/Result 

[RUN[ 

1 E -5 [RTN I 

The prompt to enter the relative error of the 
function. 

Although our function is accurate to one part in 
1012

, we can say that it is less accurate (in this 
case, one part in 105

) so that the computation will 
finish more quickly. 
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The value of the integral is 
104,29109752:::: 
The .:;ppr 0>':, et- t- Ot- is 
::;: , 42::::::::07::::::~::195E-4 

INTEGRAL, IBOUND 

The integral will take about a minute to be 
computed. 

The value of the integral is 104.2911 
±3.4 x 10-4

• 

I 1,,1 A L U E gives the value of the last computed 
integral. 

You can use I t·j T E G F.: A L to compute the amount of heat required to heat one gram of gas at a constant 
volume from one temperature to another. The amount of heat needed, Q, is given by the formula 

Q = rT2 
C(T) dT , JT1 

where C(T) is the specific heat of the gas as a function of temperature, T1 is the starting temperature, 
and T2 is the final temperature. 

If C(T) = a + bT, where a and b are experimentally determined to be a = l.023E-2 and 
b = 2.384E-2 with four significant digits, then we can compute the relative error of C(T) to be 
approximately 5E - 4. The program below prompts you for the initial and final temperature in degrees 
Kelvin and then computes the heat needed to raise the temperature of the gas from the initial to the 
final temperature. 

10 DEF FNC(T) = .01023+.02384-T 

20 INPUT "Initial and final temp.s in degrees 
Kelvin?";T1 ,T2 

30 DISP "Integrating" 

40 Q=INTEGRAL(T1 ,T2,.0005,FNC(T)) 

50 DISP "The amount of heat needed 
is";Q;"+ -";IBOUND 

The user-defined function that calculates the 
specific heat. 

Computes the integral. 

Displays the answer and the approximate error. 

To find the heat needed to raise the temperature from 300 0 K to 3100K, type in the program and use the 
following keystrokes. 



Input/Result 

IRUNI 

In i , i.:;, 1 .:;, n d fin.:;, 1 t e r,., p ,s in d e'::J ~-

ees f<el', ... in'~' 

::3 0 0, ::3 1 0 I RTN I 

The amoun, of hea, needed is 
?:::~ , ::: 143 +- ,00:; 

Additional Information 
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The I t·~ TEe F: A L keyword has been designed to obtain accurate results rapidly for a wide range of 
problems. Without some help from the user, however, no numerical integration scheme can successfully 
integrate all functions representable by the computer. This section includes information about numeri­
cal integration in general, the algorithm used by I t·n E C F.: A L, and ways to handle more difficult 
problems. 

Overview of Numerical Integration 

Numerical integration schemes generally sample the function to be integrated at a number of points in 
the interval of integration. The calculated integral is simply a weighted average of the function's values 
at these sample points. Since a definite integral is really an average value of a function over an infinite 
number of points, numerical integration can produce accurate results only when the points sampled are 
truly representative of the function's behavior. 

If the sample points are close together and the function does not change rapidly between two consecu­
tive sample points, then the numerical integration will give reliable results. On the other hand, numeri­
cal integration will not produce good answers on a function whose values vary wildly over a domain 
that is small in comparison with the region of integration. Other errors that can affect the result of a 
numerical integration include the round-off errors typical of any floating point computation and errors 
in the procedure that computes the function to be integrated. 

Handling Numerical Error 

The I t~ TEe F.: H L keyword requires specification of an error tolerance E for its operation. This error 
tolerance is taken to be the relative error of the user-defined function as compared with the "true" 
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function to be integrated. The error tolerance is used to define a ribbon around the user-defined func­
tion and the "true" function should then lie inside this ribbon. If the "true" function is {(x) and the 
computed function is FNF(x) , then 

FNF(x) - Error (x) .:;; {(x) .:;; FNF(x) + Error (x) 

where Error (x) is half the width of the ribbon at x. 

./ 

/ "-
"-/ 

" / 
/' f(x) 

-" , 
/' 

-" 

---+------~a--------------~b-------.x 

We can then conclude that 

lb {(x) dx :::::; lb FNF(x) dx ± fb Error (x) dx 
a a Ja 

where the third integral is just half the area of the ribbon-that is, integrating the user-defined func­
tion instead of the actual function can introduce an error no greater than half of the area of the ribbon. 
1 ~Ir F G PHI.... estimates this error while computing the integral; I B (J U H [I gives you access to the 
estimate. 

Choosing the Error Tolerance 

The accuracy of the computed function depends on three factors: 

• The accuracy of empirical constants in the function. 

• The degree to which the function may accurately describe a physical situation. 

• The round-off error introduced when the function is computed. 
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Functions like cos (x - sin x) are purely mathematical functions. This means that the functions con­
tain no empirical constants, and neither the variables nor the limits of integration represent any actual 
physical quantities. For such functions you can specify as small an error tolerance as desired, provided 
that the function is calculated within that error tolerance (despite round-off) by the BASIC function. 
Of course, due to the trade-off between accuracy and computation time, you may choose not to specify 
the smallest possible error tolerance. Any specified error tolerance is rounded to the range [lE -12, 1]. 

When the integrand relates to an actual physical situation, there are additional considerations. In these 
cases, you must ask yourself whether the accuracy you would like in the computed integral is justified 
by the accuracy of the integrand. For example, if the function contains empirical constants which 
approximate the actual constants to three digits, then it may not make sense to specify an error toler­
ance smaller than 1E - 3. 

An equally important consideration, however, is that nearly every function relating to a physical situ­
ation is inherently inaccurate because it is only a mathematical model of an actual process or event. A 
mathematical model is typically an approximation that ignores the effects of factors judged to be in­
significant in comparison with the factors in the model. 

For example, the equation s = s' - (.5)gt', which gives the height s of a falling body when dropped 
from an initial height s', ignores the variation with altitude of g, the acceleration due to gravity. Math­
ematical descriptions of the physical world can provide results of only limited accuracy. If you cal­
culated an integral with an accuracy greater than your model can support, then you would not be 
justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error 
tolerance that reflects any inaccuracies in the function, or the I t··1 T [ C F: f'l L. keyword will waste time 
computing to a level of accuracy that may be meaningless. Further, the value returned by 1 E: () 1 . ..1 t~ [I may 
not be significant. 

If f(x) is a function relating to a physical situation, its inaccuracy due to round-off is typically very 
small compared to the inaccuracy in modelling the situation. If f(x) is a purely mathematical function, 
then its accuracy is limited only by round-off error. Precisely determining the relative error in the 
computation of such a function generally requires a complicated analysis. In pract'ice, its effects are 
determined through experience rather than analysis. 

Handling Difficult Integrals 

Integrating on Subintervals. A function whose values change substantially with small changes in 
its argument will likely require many more points than one whose values change only slightly. This is 
because the behavior of the function must be adequately represented by the sampling. If a function is 
changing more rapidly in some subintervals of the interval of integration than in others, you can sub­
divide the interval and integrate the function separately on the smaller intervals. Then the integral 
over the whole interval is the sum of the integrals over all the subintervals, and the error of the in­
tegral is the sum of the errors of the integrals over the subintervals. 
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The algorithm used by I t~ T E G PAL makes a reasonable decision during execution of how many points 
to sample, based on the behavior of the specified integrand on a particular interval. When the interval 
of integration is split up, each subinterval can be handled according to the function's behavior on that 
subinterval alone. This results in greater speed and precision. 

For example, to integrate [(x) = (x2 + lE-12f' from x = -3 to x = 5 using an error tolerance of 
lE-12, it speeds up execution to subdivide the interval at x = 0, where [(x) has a sharp bend in its 
graph. Because [(x) is very smooth on the subintervals (-3, 0) and (0, 5), the integrals over these 
subintervals can be evaluated quickly. 

f 5 [(x) dx = fO [(x) dx + (5 [(x) dx 
-3 -3 Jo 

The following program computes this integral on the two subintervals and then combines the results. 

10 DEF FNF(X) = SQR(X.X+.000000000001) 

20 1= INTEGRAL( -3,0,.000000000001 ,FNF(X)) 

30 E=IBOUND 

40 DISP "The value of the integral is" 

50 DISP 
1+ INTEGRAL(0,5,.000000000001 ,FNF(X)) 

60 DISP "The approximate error is 

70 DISP E + IBOUND 

We will use >:: l ::< rather than ::< ..... :c:: because ::< l::: is 
more accurate. An analogous situation generally 
occurs for any integer power of a variable. 

Integrate over the first subinterval. 

Save the error to add in. 

The sum of the first and second integrals. 

Compute the relative error by adding the two 
errors together. 

You can run this program by keying it in and then pressing 1 RUN I. The following will then appear in 
the display. 

The value of lhe inlegral is 
:I .? 

Thl:? ,::jpp~'. 0:: :i.ln.:j t E' E't- rot·· i ::::. 
5,95809523809E-12 

When the interval is subdivided, I t··1 T E G P F1 1.... computes the answer in a few seconds. Without sub­
dividing the interval, execution may take a long time. 

Subdividing the interval of integration is also useful for functions with a singularity in the interval. 
The singularity may consist of one or more points where the function is undefined or has a sharp 
corner point. 
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For example, the integral 

l 2 dx l1 dx J,2 dx 
may be split into )2 + 2 o (x - 1)2 0 (x - 1 1 (x - 1) 

to avoid evaluating the function at x = 1, where it is undefined. You can now integrate the function on 
each subinterval because x = 1 is an endpoint of each subinterval, and I tl T E c:; F: H I.. does not sample at 
an endpoint. 

Similarly, the function V I x-II has a sharp corner point at x = 1. 

Vlx - 11 

Suppose you need to integrate this function from ° to 2. You can increase the speed and accuracy of the 
computation by integrating separately on the subintervals (0, 1) and (1, 2), because the function is 
smooth on each of these subintervals. 

Transformation of Variables. A second method of handling difficult integrands is by transforming 
the variable. When the variable in a definite integral is transformed, the resulting definite integral may 
be easier to compute numerically. Consider the integral 

- -- dx l 1 ( Vi 1 ) 
o x-I In x . 

The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The 
substitution x = u2 stretches out the x-axis and causes the function to be better behaved, as shown on 
the right. 
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0.1 

0.1 
2u2 

U 
---

(u + 1)(u -1) In u 

x - 1 In x 

o r-----------------------~~--x ~----------------------------~~u 
o 

You can now evaluate the integral that results from this substitution: 

(1 ( __ 2U
2 

_ _ _ U ) du 
Jo (u + 1) (u - 1) In u . 

(Do not replace (u + 1) (u - 1) with u2 
- 1; as u approaches 1, u2 

- 1 loses half of its digits to round­
off, yielding a final result that is too large.) 

As a second case requiring substitution, consider the following function. Its graph has a long tail 
stretching out much farther than the main body (where most of the area is). 

1 
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Al though a very thin tail may be truncated without greatly degrading accuracy, this function has too 
wide a tail to ignore when calculating 

if t is large. In general, the compressing substitution x = b tan u maps the entire real line into (-7r/2, 
7r/2) and maps subsets of the real line into subsets of (-7r/2, 7r/2). For b = lE-5 the substitution 
becomes x = IE - 5 tan u and the integral becomes 

sltan- 1
(llb) 

10 du, 
tan -1( - lib) 

which is readily computed for very large t. 

This compressing substitution is also a standard way to deal with infinite intervals. For example, 

In some cases the tail can be chopped off. Consider the function exp (-x 2
). This functions underflows 

(that is, gives a result of zero in machine arithmetic) for x > 34. Thus, 

lOOe- X2dx ~ l34e-x2dx. 

Therefore, when dealing with infinite integrals you can cut off the tail if it is insigpificant, but you 
should use a compressing substitution if it is not. 

About the Algorithm 

The Math Pac uses a Romberg method for accumulating the value of an integral. Several refinements 
make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or 
aliasing that produces misleading results when the integrand is periodic, I ! .. ~ T· F C F: f:i L. uses samples 
that are spaced nonuniformly. Their spacing can be demonstrated by substituting 

3 1 {b 
x = - u - - u3 into Jo t(x)dx 

2 2 a 

and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene­
fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter­
val is so small that points in the interval round to an endpoint. As a result, an integral like 

sin x d -- x 
x 
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will not be interrupted by division by zero at an endpoint. Second, I [.j T E G F.: A L can integrate functions 
whose slope is infinite at an endpoint. Such functions are encountered when calculating the area en­
closed by a smooth closed curve like x2 + f2(X) = R. 

In addition, I H T E G F.: A L uses extended precision. Internally, sums are accumulated in I6-digit num­
bers. This allows thousands of samples to be accumulated, if necessary, without losing any more signifi­
cance to round-off than is lost within your function subroutine. 

During the computation, I [.j T E G F.: A L generates a sequence of iterates that are increasingly accurate 
estimates of the actual value of the integral. It also estimates the width of the error ribbon at each 
iterate. I Ij TEe F: A L stops only after three successive iterates are within the computed error of each 
other or after 16 iterations have been performed without this criterion being met. 

In the latter case the function will have been sampled at 65,535 points. The value returned by 
11::: (J 1 . ..1 [j [I will be the negative of the computed error to signify that the returned value of the I [j -
T E: C: I:::: l=i 1.... is likely not within the error tolerance of the actual value. Typically, you should then split up 
the interval of integration into smaller subintervals and integrate the function over each of the 
subintervals. The integral over the original interval will then be the sum of the integrals over the 
subintervals. In this way, up to 65,535 points can be sampled on each subinterval, thus computing the 
integral to greater precision. 

In summary, 1 [··1 TEe F.: fi L has been designed to return reliable results rapidly and in a convenient, 
easy-to-use fashion. The above theoretical considerations discuss problems with numerical integration 
in general. The I [.j TEe F: A L keyword is capable of handling even difficult integrals with their aid. 
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Finite Fourier Transform 
The finite Fourier transform is a key step in solving many problems in mathematics, physics, and 
engineering, such as problems in signal processing and differential equations. 

Given a set of N complex data points Zo, Z1' ... , ZN _ 1, the finite Fourier transform will return an­
other set of N complex values Wo, W1, ••• , W N _ l' such that for k = 0, 1, ... , N- 1, 

Z _ N ~ 1 W ( 27rkj +.. 27rkj ) 
k - L j cos -- £ sIn -- . 

j~O N N 

The W's then represent the complex amplitudes of the various frequency components of the signal 
represented by the data points. The values for the W's are given by the formula 

W - liN N~l Z ( -27rkj +.. -27rkj ) 
j - L k cos 1 sm . 

k~O N N 

This formula holds for any number of data points. The Math Pac uses the Cooley-Thkey algorithm and 
the internal language of the HP-75 to achieve excellent speed and accuracy in the calculation of the 
finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8, 
16, 32, 64, and 128 are all acceptable values for the number of complex data points. 

To use the finite Fourier transform, store your complex data points Zo, ... , Z N _ 1 as successive rows of 
an N x 2 array with Zo in the first row, Z1 in the second row, and so on. Store these values in the usual 
complex form: real parts in the first column, imaginary parts in the second column .. The results of the 
finite Fourier transform Wo, ... , W N _ 1 will be returned with the complex values stored in successive 
rows of an N x 2 array-the same form as the data points. 

The number of data points you can use is limited only by the amount of available memory and by the 
requirement that the number of data points be a non-negative integral power of 2. 

FOUR Finite Fourier Transform 

r·1 A T W = F" 0 U P 0:: Z ::. 

where Z is a N x 2 matrix, N a non-negative integer power of 2, and W is a matrix. 

Redimensions W to be exactly the same size as Z and assigns to W the complex values of the finite 
Fourier transform of the data points represented by Z. 

121 
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Example 
Input/Result 

c 1 e .OJ t- "/ .OJ t- :=: I RTN I 
d i rfl Z ( 1 5.. 1 ::. .. 1.,.1 ( 1 5.. 1 ::. I RTN I 
rfld 1: z=con I RTN I 

rfl ·::1 1: 1 .. .1 = f 0 U t- ( z::' I RTN I 
rfI·::I1: di:=:F' 1 .. .1.: 

u (.1 

U 0 
(1 (1 

(.1 ~::1 

0 0 
0 (:) 

(:1 0 
u ~:j 

u 0 
(.1 0 
(1 0 
(1 0 
(1 0 
(.1 0 
0 (:1 

Z and Ware 16 x 2 arrays. 

Z now represents the complex column vector, each 
of whose values is 1 + Ii. Z could be the sam­
pling of a complex constant function, for example. 

This is the finite Fourier transform of the con­
stant function. The only frequency that occurs is 
the zero frequency-all rows but the first are 
zero. 

Relation Between the Finite and Continuous Fourier Transform 

The finite Fourier transform is most often used as an approximation to the continuous (infinite) 
Fourier transform. To understand in what sense it is an approximation, and to understand the effects 
of various choices to be made in using this approximation, it is most useful to have the direct relation­
ship between the continuous and finite transforms. 

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be 

W(f) = Joo Z(x) exp (-27rifx) dx. 
-00 
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If we have a set of N complex data points Zo, ZI' ... , ZN _ I given by sampling the function Z at N 
equally spaced points 

Zk = Z(xo + ktlx) for k = 0, 1, ... , N - 1, 

and then find the finite Fourier transform W o, WI' ... , W N _ I of this data set, we can relate these 
values to the values of the continuous Fourier transform W(f) as follows. For k = 0, 1, ... , N - 1, 

W k = (r/N) W(k/tlx) where r = exp (-27rixo). 

W is a "smeared" version of the true continuous Fourier transform W. To get W from W, you must 
average W in two important but very different ways. The first type of averaging that occurs can be 
described by defining a new function A(J) intermediate between Wand W. 

00 

A(f) = L W(J + k/ tlx) 
k~-oo 

This says that the value of A at a point f is equal to the sum of the values of W at all points that are 
integer multiples of the limiting frequency 1/ tlx away from f. In particular, if W cQnsists of a small 
bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/ tlx units 
apart. This is the aspect of the finite Fourier transform that gives rise to aliasing: any frequency that 
occurs in W (that is, W has a non-zero value there) will give rise to a non-zero value for A (and also W) 
somewhere in the interval [0, 1/ tlx] no matter what the original frequency was. For this reason, you 
should choose tlx small enough so that 1/ tlx is larger than the distance between the largest and small­
est f's that you suspect will occur in W. Since most functions occuring in actual situations (and all 
real-valued functions) have continuous Fourier transforms which are roughly symmetric about the ori­
gin, if a frequency fo occurs in W, it is likely that - fo also occurs in W. For the finite Fourier transform 
to contain both frequencies without aliasing, 1/ tlx must be larger than 2fo. If we define the largest 
frequency occuring in Was tlf, we can express the no-aliasing requirement as tlftlx < 1/2 • 

The second type of averaging that occurs when going between Wand W is much more local in nature 
than the first. It results in a loss of frequency resolution in W as compared with W; more precisely, 

W(f) = (Ntlx) roo sinc (gNtlx) A(J-g) dg 
-00 

{

I if a = 0, 

where sinc (a) = sin (7ra) 
---- otherwise. 

7ra 

Since sinc (gN tlx) consists primarily of a bump with width inversely proportional to N LlX, W is more 
blurred (compared to W) for smaller values of N Llx. This is not a serious problem unless W has a large 
value at a frequency that is not a multiple of the fundamental frequency N / Llx. In this case, the "side 
lobes" of the sinc function become evident in W. This can be reduced somewhat by multiplying the 
data values Zk by a smoothing function G(k) before taking the finite Fourier transform. This results in 
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an averaging function that has smaller side lobes than the sine function. One example of such a func­
tion is the Hanning function G(k) = (112)(1 - cos (27rk/N)). 

Inverse Finite Fourier Transform 

Many applications of the finite Fourier transform involve taking the transform of a set of data points, 
operating on the transformed values (for example, increasing or decreasing the amplitudes), and then 
retransforming the data using the inverse Fourier transform defined by 

Z - N~l W ( 27rkj +. . 27rkj ) 
k - L... j cos -- l SIn -- . 

j=O N N 

You can also use the F 0 U F: keyword to compute the inverse finite Fourier transform in a simple way. If 
W is an N x 2 array for which you wish to take the inverse Fourier transform: 

1. Multiply W on th' tight hy th, 2 x 2 anay [~ 
2. Take the finite Fourier transform of the result. 

0] using real array multiplication. 
-1 

3. Multiply the result array of the finite Fourier transform by the 2 x 2 array given in step l. 

4. Scalar-multiply the result by N. This will produce the inverse finite Fourier transform of the origi­
nal array. 

This application of the finite Fourier transform and the procedure for obtaining the inverse finite 
Fourier transform are illustrated in the example below. 

Example 

Suppose we want to find the steady state solution Z(x) of the inhomogeneous differential equation 

Z"(x) + 3Z'(x) + 12Z(x) = P(x) 

where P(x) is a function for which we have sampling data. If we denote the (continuous) Fourier trans­
form of any function Q by Q, by taking the Fourier transform of the above equation we arrive at 

Solving this equation algebraically, we obtain 

Z - P(f) 
(j) - (-t 2 + 12) + 3it 

If we can get a good approximation to P, we can easily calculate the right side of this equation. From 
this result we can obtain the solution to the original equation by taking the inverse Fourier transform. 
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For simplicity, we will assume that the equation has been scaled so that P(x) has unit period, and that 
the highest frequency component of P is (approximately) 30 times the fundamental frequency. Sam­
pling P 64 times in one period will then suffice to avoid aliasing. 

Rather than prompt the user for 64 complex data points representing the sampling of P, the program 
below uses a relatively simple function for P, although you could use values from any other source 
equally well. 

10 OPTION BASE 1 

20 DIM P(64,2),Q(64,2),Z(64,2) 

30 DIM C(2,2), T(2), S(2) 

40 C(1 ,1)=1@C(2,2)= -1@C(1,2),C(2,1)=0 

50 DISP "Working; please wait" 

60 FOR 1=1 TO 64 

70 P(I,1)=6000·COS(3·PI.lj32) 
• SIN(7.S. PI.lj32). COS(S.S.PI.lj32) 

80 P(I,2)=4000.COS(13.PI.lj32) + 
3S00·SIN(11.PI.lj32) 

90 NEXT I 

100 MAT Q = FOUR(P) 

110 FOR F=-31 TO 32 

120 J=MOD(F,64)+1 

130 T(1)= -FA2+12@T(2)=3.F 

140 S(1)=Q(J,1)@S(2)=Q(J,2) 

150 MAT S=CDIV(S,T) 

P will contain the data points representing the 
sampling of P. Q will represent P and eventually 
p/( _{2 + 12 + 3if). Z will represent the solution 
to the differential equation. 

C will be used in the inverse transformation; T 
and S are dimensioned to be complex scalars for 
use in the complex division. 

C is now the matrix [1 0]. 
o -1 

This is the sampling routine that assigns to P the 
values of the complex-valued fUnction 
represented by the right-hand sides of lines 70 
and 80, sampled at 64 equally spaced points. 

Q now represents P. 
F represents the frequency variable and spans the 
full range of frequencies, positive and negative, 
that we expect to occur in P. 
J represents the number of the TOW in the Q array 
where the amplitude of the frequency F is 
stored. 

T will be the denominator and 

S the numerator in the complex fraction. 
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160 Q(J,1)=S(1)@Q(J,2)=S(2) 

170 NEXT F 

180 MAT Q=Q·C 

190 MAT Z=FOUR(Q) 

200 MAT Z=Z.C 

210 MAT Z=(64).Z 

220 DISP "THE VALUES ARE" 

230 MAT DISP USING "X,DDDD.D" ; Z 

Fourier Sine/Cosine Series 

Q now represents P/( _[2 + 3i[ + 12). 

This is the procedure that assigns to Z the values 
of the inverse finite Fourier transform of Q. 

The values displayed will represent the complex 
values of the steady state solution of the 
differential equation, sampled at 64 equally 
spaced points in one period. 

There is another transform closely related to the finite Fourier transform that is applicable when the 
data points Zk are purely real (that is, their imaginary parts are equal to zero). This is the Fourier 
series transformation, which takes a set of 2N (real) data points Zo, ZI' ... , Z2N _ I and returns a set of 
N + 1 real values Ao, AI' ... , AN' B I, ... , BN with the property that 

Z -_ _ Ao + :z:N A 27rjk + B . 27rjk . cos -- . sm--
k 2 j ~ 1 } 2N } 2N 

If Wo, WI' ... , W2N _ I are the complex values of the finite Fourier transform of the real data points Zo, 
... , Z2N _ l' then the Fourier series values are given by 

Aj = 2Re(W) for j = 0, ... , N, 

B j = -2Im(W) for j = 1, ... , N. 
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Owner's Information 

CAUTIONS 

Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts 
and the computer's internal circuitry may result. 

Turn off the computer (press I SHIFT II ATTN I) before installing or removing a plug-in module. 

If a module jams when inserted into a port, it may be upside down. Attempting to force it further may 
result in damage to the computer or the module. 

Handle the plug-in modules very carefully while they are out of the computer. Do not insert any ob­
jects in the module connecter socket. Always keep a blank module in the computer's port when a 
module is not installed. Failure to observe these cautions may result in damage to the module or the 
computer. 

Limited One-Year Warranty 

What We Will Do 

The Math Pac is warranted by Hewlett-Packard against defects in materials and workmanship affect­
ing electronic and mechanical performance, but not software content, for one year from the date of 
original purchase. If you sell your unit or give it as a gift, the warraaty is transferred to the new owner 
and remains in effect for the original one-year period. During the warranty period, we will repair or, at 
our option, replace at no charge a product that proves to be defective, provided you return the product, 
shipping prepaid, to a Hewlett-Packard service center. 

What Is Not Covered 

This warranty does not apply if the product has been damaged by accident or misuse or as the result of 
service or modification by other than an authorized Hewlett-Packard service center. 

No other express warranty is given. The repair or replacement of a product is your exclusive remedy. 
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED 
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, 
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or countries don't allow limitations on how long an implied warranty lasts, so the above limitation may 
not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE 
FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu­
sion or limitation of incidental or consequential damages, so the above limitation may not apply to you. 

This warranty gives you specific legal rights, and you may also have other rights which may vary from 
state to state, province to province, or country to country. 

Warranty for Consumer Transactions in the United Kingdom 

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a 
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be 
determined by statute. 

Obligation To Make Changes 

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard 
shall have no obligation to modify or update products once sold. 

Warranty Information 

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard 
dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please 
contact: 

• In the United States: 

• In Europe: 

Hewlett-Packard Company 
Portable Computer Division 

1000 N.E. Circle Blvd. 
Corvallis, OR 97330 

Telephone: (503) 758-1010 
Toll-Free Number: (800) 547-3400 

(except in Oregon, Hawaii, and Alaska) 

Hewlett-Packard S.A. 
150, route du Nant-d'Avril 

P.O. Box CH-1217 Meyrin 2 
Geneva 

Switzerland 
Telephone: (022) 83 81 11 

Note: Do not send products to this address for repair. 



'" In other countries: 

Service 

Service Centers 
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Hewlett-Packard Intercontinental 
3495 Deer Creek Rd. 
Palo Alto, CA 94304 

U.S.A. 
Telephone: (415) 857-1501 

Note: Do not send products to this address for repair. 

Hewlett-Packard maintains service centers in most major countries throughout the world. You may 
have your product repaired at a Hewlett-Packard service center any time it needs service, whether the 
unit is under warranty or not. There is a charge for repairs after the one-year warranty period. 

Hewlett-Packard computer products normally are repaired and reshipped within five (5) working days 
of receipt at any service center. This is an average time and could vary depending on the time of year 
and work load at the service center. The total time you are without you product will depend largely on 
the shipping time. 

Obtaining Repair Service in the United States 

The Hewlett-Packard United States Service Center for battery-powered computational devices is lo­
cated in Corvallis, Oregon: 

Hewlett-Packard Company 
Service Department 

P.O. Box 999 
Corvallis, OR 97339, U.S.A. 

or 

1030 N.E. Circle Blvd. 
Corvallis, OR 97330, US.A. 

Telephone: (503) 757-2000 
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Obtaining Repair Service in Europe 

Service centers are maintained at the following locations. For countries not listed, contact the dealer 
where you purchased your unit. 

AUSTRIA 
HEWLETT·PACKARD Ges.m.b.H. 
Kleinrechner-Service 
Wagramerstrasse-Lieblgasse 1 
A-1220 Wi en (Vienna) 
Telephone: (0222) 23 65 11 

BELGIUM 
HEWLETT-PACKARD BELGIUM SA/NY 
Woluwedal 100 
B-1 200 Brussels 
Telephone: (02) 762 32 00 

DENMARK 
HEWLETT-PACKARD A/S 
Datavej 52 
DK-3460 Birkerod (Copenhagen) 
Telephone: (02) 81 66 40 

EASTERN EUROPE 
Refer to the address listed under Austria. 

FINLAND 
HEWLETT-PACKARD OY 
Revontulentie 7 
SF-02100 Espoo 10 (Helsinki) 
Telephone: (90) 455 02 11 

FRANCE 
HEWLETT-PACKARD FRANCE 
Division Informatique Personnelle 
S.A. V. Calculateurs de Poche 
F-91947 Les Ulis Cedex 
Telephone: (6) 907 78 25 

GERMANY 
HEWLETT-PACKARD GmbH 
Kleinrechner-Service 
Vertriebszentrale 
Berner Strasse 11 7 
Postfach 560 140 
0-6000 Frankfurt 56 
Telephone: (611) 50041 

ITALY 
HEWLETT-PACKARD ITALIANA S.P.A. 
Casella postale 3645 (Milano) 
Via G. Di Vittorio, 9 
1-20063 Cernusco Sui Naviglio (Milan) 
Telephone: (2) 90 36 91 

NETHERLANDS 
HEWLETT-PACKARD NEDERLAND B.V. 
Van Heuven Goedhartlaan 121 
N-1181 KK Amstelveen (Amsterdam) 
P.O. Box 667 
Telephone: (020) 472021 

NORWAY 
HEWLETT-PACKARD NORGE A/S 
P.O. Box 34 
Oesterndalen 18 
N-1345 Oesteraas (Oslo) 
Telephone: (2) 17 11 80 

SPAIN 
HEWLETT-PACKARD ESPANOLA S.A. 
Calle Jerez 3 
E-Madrid 16 
Telephone: (1) 458 2600 

SWEDEN 
HEWLETT-PACKARD SVERIGE AB 
Skalholtsgatan 9, Kista 
Box 19 
S-163 93 Spanga (Stockholm) 
Telephone: (08) 750 20 00 

SWITZERLAND 
HEWLETT-PACKARD (SCHWEIZ) AG 
Kleinrechner-Service 
Allmend 2 
CH-8967 Widen 
Telephone: (057) 31 21 11 

UNITED KINGDOM 
HEWLETT-PACKARD Ltd 
King Street Lane 
GB-Winnersh, Wokingham 
Berkshire RG11 5AR 
Telephone: (0734) 784 774 
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International Service Information 

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you 
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail­
able in the country where you bought it. 

If you happen to be outside of the country where you bought your unit, you can ,contact the local 
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship 
the unit to the address listed above under Obtaining Repair Service in the United States. A list of 
service centers for other countries can be obtained by writing to that address. 

All shipping, reimportation arrangements, and customs costs are your responsibility. 

Service Repair Charge 

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and 
materials. In the United States, the full charge is subject to the customer's local sales tax. 

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these 
cases, repair charges will be individually determined based on time and materials. 

Service Warranty 

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period 
of 90 days from date of service. 

Shipping Instructions 

Should your product require service, return it with the following items: 

• A completed Service Card, including a description of the problem . 

• A sales receipt or other documentary proof of purchase date if the one-year warranty has not 
expired. 

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur­
chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such 
damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the 
shipment to the service center. The packaged product should be shipped to the nearest Hewlett­
Packard designated collection point or service center. Contact your dealer for assistance. 

Whether the product is under warranty or not, it is your responsibility to pay shipping charges for 
delivery to the Hewlett-Packard service center. 

After warranty repairs are completed, the service center returns the product with postage prepaid. On 
out-of-warranty repairs in the United States and some other countries, the product is returned C.O.D. 
(covering shipping costs and the service charge). 
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Further Information 

Service contracts are not available. Computer products circuitry and design are proprietary to Hewlett­
Packard, and service manuals are not available to customers. Should other problems or questions arise 
regarding repairs, please call your nearest Hewlett-Packard service center. 

Technical Assistance 
The keystroke procedures and program material in this manual are supplied with the assumption that 
the user has a working knowledge of the concepts and terminology used. Hewlett-Packard's technical 
support is limited to explanations of operating procedures used in the manual and verification of an­
swers given in the examples. Should you need further assistance, you may write to: 

Hewlett-Packard Company 
Portable Computer Division 

Customer Support 
1000 N.E. Circle Blvd. 

Corvallis, OR 97330 
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Memory Requirements 

The Math Pac reserves 52 bytes of read/write memory for its own uses. In addition to this 52-byte 
"overhead" and the memory required to dimension the arrays and variables you use with the keywords 
(described in appendix D of the HP-75 Owner's Manual), certain Math Pac operations use additional 
memory during their operation. After the operation is completed, the memory is again available for 
your use. The tables below provide you with the memory requirements for those keywords whose oper­
ation requires additional temporary memory. 

Item 

DET 

I r"! I,} 

Memory Required During Operation 

E: ~:; T P $ .:: r'1 .' t·~::. requires: 

.. One byte if M = O . 

., I t·~ T 0:: L 0 C A 0:: r'1, t·~:' ! + 1 bytes otherwise. This is the number of digits needed to 
represent M (decimal) in base N. 

Requires additional memory only if an operand array is used for the result array. If A is 
an M x N matrix and B is R x S matrix: 

.. r'1 AT A == A l A requires T • M2 bytes . 

.. r'1AT A=AlE: requires T· M • S bytes . 

.. r'1AT A=E:lA requires T • R • N bytes. 

{

8 if A is PEAL. 
where T = 4 if A is ~::;HOF:T. 

3 if A is I tHE:CEF'. 

If A is an N x N matrix, DE T 0:: H' requires 2N (4N + 1) bytes. 

If A is an N x N matrix, 1'1 ATE: =, I t··! I,} .:: fi' requires: 

.. 4N bytes if B is F: E H L . 

.. 4N (2N + 1) bytes if B is ~:::; H U F T or I i···iT E: C; F i? 

If A is an N x N matrix and B is an N x P matrix, (! 1:::I'r , ........ :::; \' :::; 0:: !:::! , E:! requires 

4N (2N + 4P + 1) bytes. 
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Item 

UJFACT 

Ct'lt'1UL T 

CDET 

C I ~'11,} 

FI'··II?OOr 

Memory Required During Operation 

If A is an N x N matrix, t'1AT B=LUFACT':: A::O requires: 

CD 2N bytes if B is F: E A L , 

o 2N (4N + 1) if B is :::HOF.:T or I tHEGEF.:. 

Same as t. 

If A is an N x 2N array, t'1 AT Z = C D E T .:: A::O requires 16N2 bytes, 

If A is an N x 2N array, t'1 ATE: = C I t'n} .:: A:O requires 8N (4N + 1) bytes. 

If A is an N x 2N array and B is an N x 2P array, t'11'i T C =: C ::: \' ::: .:: A E:::O requires 

8N (4N + 4P + 1) bytes, 

If P is an array with N + 1 elements representing a polynomial of degree N, 
t'1 fi T F.:::: F' F.: 0 0 T .:: F'::O requires 22N + 267 bytes. 

If A is an N x 2 array, t'1AT E:=FOUF.:':: A::O requires: 

.. No additional memory if B is F.: E ti L. 

III 16N bytes if B is ::: H 0 F.: T or I t1 T E 1=; E f:::. 

I t'1 T E G F.: A L 0: A .. [: .. E, F t'1 F 0: >:: ::0::0 requires 333 bytes. 

F t'11? C) 0 TO: A .. B, F t,W 0: >::::0 ' requires 87 bytes. 
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Error Conditions 

Number I Error Message and Condition 

nurl"l too 5rl"l.",11 

• I Result I < 1 E - 499. 

2 n u rl"l t Co Co 1.", ~- '::J e 

• IResultl > 9.99999999999E499. 

• t'1AT U= I t·jl,) < I,)::', t'lAT I..J=C I t··I ',} < I,}::" t'11:::I'r 1..J::::l. .. I..Jf:·HC:: r (I,}::' 

t'1AT 1..1:.=::;\'::; < I,) .. l,j), t'1AT I . .J::::C::;\'::::; < I,} .. 1 ... 1::', 

DET'::',}), t'1AT I..J=:CDET(',}). 

The matrix V is singular (that is, its determinant is zero) and the LU decomposition of V 

requires division of a non-zero number by zero. This does not always ;indicate that the 

results of the operation are invalid. In particular, the results of DE:'r and C: [) E:'r will be 
valid. The results of the other operations should be checked when this error occurs. 

• f"iCO::;H<::-:::': X < 1. 

• ATfitm.:: >::': IXI > 1. 

• LOCA'::::< .. E:): B = 1. 

• t'1 A T Z = C D I 1,,1 < l,j, i) :), t'l H T Z::: C F: E: C: F' .:: ,,): V = (0, 0). 

• t'1HT Z=CF'Ol,n::F:':: l'l, I,}): W = (0,0) and Re(V) < O. 

• E: ::; T F: $I .:: t'1 .. t~ ): M ~ 999,999,999,999.5. 

• E: I,} II:j L .:: [: $I .. t·~ ): (value) > 999,999,999,999. 

12 L.(:)C<O) 

• LI)C:;~::':::): X = O. 

• liJ G H ;: >< .. E: :) : X = 0 or B = O. 

• t'1AT Z:::CLC)C;: ! ... I': W = (0,0). 
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Number I Error Message and Condition 

13 L. 0 G .:: n e<::) n U rf1 b e t- ::0 

• L. 0 G 2':: >:: ::0: X < O. 

• L. 0 GAO: ::<, E: ::0 : X < 0 or B < O. 

• [: I,) A L. ( [: $ .. t·~ ::0, [: ::: T F: $ 0: t'1 .. t·~ ::0: rounded integer value of N not equal to 2, 8, or 16. 

• [: I,} A L. ( E: $, t·~ ::0 : B$ not a valid number in base N. 

• E: ::: T F.: $ .:: t'1 , t~ ::0 : M < O. 

• t'1 AT A == I D t·~ 0: redimensioning subscript(s)::O , 
t'1 AT A:= C 0 t·~ 0: redimensioning subscript(s) , , 
t'l H T H = Z E P .:: redimensioning subscript(s) ::0, 

F.: E D I t'1 A 0: redimensioning subscript(s) ::' : 
rounded integer value of one or both subscripts is less than the option base in effect. 

• U E: t·~ D 0: H .. t·~ ::0, L E: t~ D 0: A, t·~ ::0: rounded integer value of N not equal to 1 or 2. 

• t'1 A T F: = C F.: 0 0 T 0: F' .. t·~ ::0: rounded integer value of N not positive. 

201 r' esu l·t d i fflens :i. on 

• 1"11:iT A==COt·~ 0: i ... j :', t'1FiT Ac-=ZEF: 0: i..'.j::O, !'1fiT A= I Ut4 (:i., i:', 
F: [D I t'1 1=1 0: i. .. ..i ::0: A singly subscripted. 

• t'1 A T A =: C 0 t·~ .:: i ::0, t'1 AT A == ::: E F: ( i ::0, F: [D I t'1 !=i 0: i ::0: A doubly subscripted. 

• 1"11=i T A =:operation (operand array(s)): number of subscripts of A not the same as the 
number of subscripts required for the result of the operation. 

• F: E D I t'1 H':: redimensioning subscript(s) ::0 , 

t'l H T H ::= C () t·~ 0: redimensioning subscript(s) ::0 , 

t'l H T A == Z [F: .:: redimensioning subscript(s) , , 
t'1 HT" H == I [I t··1 0: redimensioning subscript(s) ::0 : 

number of elements in the redimensioned array greater than the total number of 
elements given to it in a dimensioning statement. 

• t'11"1 T I'"i = operation 0: operand array(s)::O : 

total number of elements in A (as given in its original dimensioning statement) less than 
the number of elements needed to store the results of the operation. 
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Number I Error Message and Condition 

203 (::: 0 n f 0 ( m .;j b i 1 i r ';:I 

• 1"1 A T A = E: +C, 1"1 A T A = E: - C: Band C not conformable for addition (the number of 
rows are unequal or the number of columns are unequal). 

• 1"1 A T A = E: l C, 1"1 A T ::< = ~:; \' ~:; 0:: E: .' C :.: Band C not conformable for multiplication (the 
number of columns of B is not equal to the number of rows of C). 

• DOT ( A .' E: ): number of elements of A not equal to the number of elements of B. 

• 1"1 A T F: = C 1"1 1"1 U L T ( A .' E: :., 1"1 H T >:: :": I::: ~::; \' ~:::; ( H, E: :.: number of columns of A not 

equal to twice the number of rows of B. 

204 1", 0 r s q U .;j ~- e 

• DET 0:: A), t'1AT ><,,=~:;'''~:; (H.' [:), 1"1AT [::,," I 1'·1',,' (H:', 
1"1 H T E: := L U F ACT ( fi :., 1"1 A T fi ,,:: I [) ~1 : 
number of rows of A not equal to the number of columns. 

• 1"1 AT H =: I D ~.j 0:: i,j :. : i =1= j. 

• 1"1 A T F: ": C I ~.j',} 0:: fi :., 1"'1 F:I T F' ,,:: C: ":::; \' ~:::; 0:: H .' E: >, !,.! F:I 'r I:::! ",,: C: I [J "'.', r", H T [: == C [J E: 'r ( 1:::1 ) : 

number of columns of A not equal to twice the number of rows. 

• 1"1 A T ::-::::: C F: (J ~:=.; ~:=.; ( fi .' E: :., [lOT ( H, f3 ): A or B not singly subscripted. 

206 n 0 1: ::3 - ',.' e c 1: ;:. t·· 

• !"11=i T :::: C F: (J ~:::; ~:; 0:: A .' [: ::.: A or B not three dimensional. 

• i'1 A T H =: I D ~j 0:: i :.: only one redimensioning subscript specified. 

• DET (: E::', !'lA'"!"" H:::C[lET 0:: E:), !'1H"T' i:: = '=,:;\":::; 0:: [:.' C::', 

t'1HT 1=i"=LI..JF·I:::IC:T 0:: E:), t'lAT i:::I="TF:!"'! 0:: E:), !"'!HT' H"":C:T·!?!···!':: E:::' 
1"'1 H T' I:i ,,= C: It··! ') 0:: F ::., 1"1 FI T 1:::1 ",,: I [.j') .:: E: ::., !"', ,:::, 'r !=i ,,= F (J i..J I:::: 0:: [: ) : 

B not doubly subscripted. 

() !'1AT F:"=C:!'1t'1! . ..!L·r.:: ~::I.' [::., i'1H"T' k"":C:':::;\ ':::: (I"'!.' E: >: 
A or B not doubly subscripted. 
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Number I Error Message and Condition 

208 0 F' o:~ t" .. :; n d s i 2: e 

'" r'1 A T P = complex function':: Z': Z not a complex scalar. 

o r'1 AT P = complex function < Z .' ~,~:;,: Z or W not a complex scalar. 

"r'1AT P=CF.:OOT (: Z.' t·j:;': Z not a complex scalar. 

(0 r'1 A T P = F' F.: 0 0 T , F' :;,: P contains exactly one element (and so represents a polynomial 
of degree zero). 

"r'1FiT P=CDET':: A:', r'1AT P:::C: I t·j',)':: A', r'IHT F:'''CTPt··1 (: H::': 
A doesn't have an even number of columns. 

" r'1 fi T F.: =:: C r'1 r'11..J L.. T .:: H .' E: ::., r'1 H T :'< '" C :::; ',' ::::; , H, E:' : 

A or B doesn't have an even number of columns. 

" r'1 H T H = F U U F: .:: E: ::. : B is not an N x 2 array with N a non-negative integer power of 2. 

209 F' I:::: 0 IJ T f.;:, i. l. u t" e 

" F' P 1:1 0 T cannot find a root of the specified polynomial. 

" F I·j F: 0 1::1 T .:: H .' E: .' F t·j F .:: :'< :;. ::.: user-defined function F ! .. ~ F uses the F 1'·1 F' (J 0 T keyword in 
its definition. 

" I t·j TEe F: H L , H .' E: .' E:. .' F t·j F:' .:: :'< :. :.: user-defined function F:' t··1 F:' uses the I tl T I:::: C: r;:: !::!!.. .. 

keyword in its definition. 



Keyword 

A E: ~:; U t'1 
ACD~::;H 

At'1A:: 
A t'1 I t~ 
A~::; I tm 
ATAt'~H 

E:~:;TF.:$ 

B',}AL 
CACO~:; 

CACO~:;H 

CADD 
CA~:;It~ 

CW::; I t~ H 
CATAt~H 

CATt~ 

CCO~:; 

CCO~::;H 

[DET 
CDI',) 
CE::·::F' 

C I D t~ 
[ I t·~ ',,.I 

CLOG 
Ct'1t'1UL T 
Ct'1I.JL T 
C t~OF.: t'1 
COt~ 

CUI·~,j 

CU~::;H 

CF'O(,jEF.: 

CF'TOF.: 

I Page I Description 

41 Sum of the absolute values of array elements, 
13 Inverse hyperbolic cosine. 
41 Largest element of an array. 
41 Smallest element of an array. 
13 Inverse hyperbolic sine. 
14 Inverse hypererbolic tangent. 
20 Decimal to binary/octal/hexadecimal conversion. 
20 Binary/octal/hexadecimal to decimal conversion. 
71 Complex inverse cosine. 
71 Complex inverse hyperbolic cosine. 
63 Complex scalar addition. 
70 Complex inverse sine. 
71 Complex inverse hyperbolic sine. 
72 Complex inverse hyperbolic tangent. 
71 Complex inverse tangent. 
68 Complex cosine. 
69 Complex hyperbolic cosine. 
80 Determinant of a complex matrix. 
63 Complex division. 
67 Complex exponential. 
80 Complex identity matrix. 
80 Complex matrix inversion. 
70 Complex logarithm. 
79 Complex matrix multiplication. 
63 Complex scalar multilication. 
40 One-norm (column norm) of an array. 
25 Constant value array. 
62 Complex conjugation. 
13 Hyperbolic cosine. 
70 Complex power of a complex number. 
62 Polar to rectangular conversion. 

141 
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Keyword 

CPECF' 
CPOOT 
C F.: 0::;::; 

CF.:TOF' 
C ::; I t·l 
C::; 0 F.: 
C ::; I t·1H 
C::;UE: 
C::;Ut'l 

CTAtl 
C:TAt·1H 
C:TPt·l 
DETL 
DET 
D I :::; F' 
D I ::;F' U:::; I t·le 
DOT 
FACT 
FOI . ..IF: 
FtlUPt'l 
F tl CUE :::; :::; 
FtlF.:OOT 
I B (J 1 . ..1 1·1 [I 
1[11·1 
II·1F'UT 
I tHECPAL. 
I t··I'''! 
I ',,'fiLUE: 
L.. B t·l D 
L .. OCH 
I....UG ~:: 

LUFACT 
t'lA::-:AE: 
t'l I tlAB 
PP I I···IT 
PPIt·1T U:::;IHC 
FPUOT 
PEAD 
P[Dlt'l 

I Page I Description 

64 Complex reciprocal. 
72 Roots of a complex number. 
35 Vector (cross) product. 
62 Rectangular to polar conversion. 
68 Complex sine. 
70 Complex square root. 
69 Complex hyperbolic sine. 
63 Complex scalar subtraction. 
35 Column sum of an array. 
81 Complex system solution. 
68 Complex tangent. 
69 Complex hyperbolic tangent. 
80 Complex conjugate transpose of a matrix. 
45 Determinant of the last matrix. 
45 Determinant of a matrix. 
27 Display an array in standard format. 
28 Display an array using custom format. 
42 Dot product. 
15 Factorial/gamma function. 

121 Finite Fourier transform. 
40 Frobenius norm of a matrix. 

102 Second-best guess to value returned by F H F: 0 [I T . 
101 Solution of f(x) = O. 
110 Uncertainty of last-completed integration. 

26 Identity matrix. 
27 Assign array values from keyboard entries. 

109 Definite integral of user-defined function. 
34 Matrix inversion. 

110 Current aproximation to an integral. 
42 Lower bound of array subscripts. 
14 Variable-base logarithm. 
14 8ase-2 logarithm. 
47 LU decomposition. 
41 Maximum absolute value of array elements. 
41 Minimum absolute value of array elements. 
28 Print an array in standard format. 
28 Print an array using custom format. 
90 Roots of a polynomial. 
26 Read array values from [I F! T H statements. 
24 Redimension an array. 
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Keyword I Page I Description 

p tl 0 P t'1 40 Infinity norm (row norm) of an array. 
PO U t·l D 14 Round. 
P ::; U t'1 35 Row sum of an array. 
::; I tl H 13 Hyperbolic sine. 
::;U t'1 40 Sum of array elements. 
~:; \' ::; 54 System solution. 
TAt·1H 13 Hyperbolic tangent. 
nn·l 35 Transpose of a matrix. 
TPUtlCATE 15 Truncate. 
UBt·1D 42 Upper bound of array subscripts. 
ZEF: 25 Zero array. 

25 Simple assignment. 
:::: ( 

.. , 25 Numeric-expression assignment. .. 

33 Array negation. 
+. 33 Array addition. 

34 Array subtraction. 
l 34 Array multiplication. 
< > :f: 34 Scalar-array multiplication. 
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