HEWLETT

_ ﬂﬂ PACKARD

HP 82484A

Curve Fitting Pac

Owner’s Manual
For the HP-71

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the key-
stroke procedures and program material offered or their merchantability or their fitness for
any particular purpose. The keystroke procedures and program material are made avail-
able solely on an “as is” basis, and the entire risk as to their quality and performance is
with the user. Should the keystroke procedures or program material pfove defective, the
user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of
all necessary correction and all incidental or consequential damages. Hewlett-Packard
Company shall not be liable for any incidental or consequential damages in connection
with or arising out of the furnishing, use, or performance of the keystroke procedures or
program material.

A iciano

Curve Fitting Pac

Owner’s Manual

For Use With the HP-71

March 1984

82484-90001

Printed in Singapore © Hewlett-Packard Company 1984

e A

Introducing the Curve Fitting Pac

The HP 82484A Curve Fitting Pac is a powerful tool that enables you to perform functions that are not
common to portable computing devices. The Curve Fitting Pac permits you to:
¢ Fit a general model function (linear or non-linear) to a set of data using the CF I T program.

® Determine local maxima and minima of a large class of real-valued functions using the
OFTIMIZE program.

** The Curve Fitting Pac allows you to quickly and easily choose a model, fit a curve to your data, choose

another model, and fit the curve again—all in a matter of.seconds.

Features of the pac include:
e A matrix editor that makes entering and editing data easy.
¢ A built-in library of commonly-used fit models.
e The ability to store data and then retrieve it for later use.

e The ability to direct all intermediate and final results to a peripheral printer.

Contents

How to Use This Manual 9
Section 1: Getting Started 1
Installing and Removing the Curve Fitting Module 11
What the Curve Fitting Pac Does e 12
Using CFIT P 12
OV BIVIBW . .. 12
Flow Chart of CFIT MenuUs i i e 13
CFIT Example: Stock Predicting 14
Using OF T IM I ZE e e e e 20
VIV W . . L e 20
Flow Chart of DFTIMIZE Menus e 20
OFTIMIZE Example: ABig Box e 22
Section 2: Curve Fitting 27
It OTUCHION . . . e e 27
Running the Curve Fit Program 28
Working with Dot a . 28
The Data Format 29
Giving Weights to Data 29
Entering Data From the Keyboard (kb)) 29
Loading Data From a File (Load) e e 30
Saving Datato a File (Sawe) .. . 30
Printing the Data (F L rit) ... e e e 31
Editing the Data 31
Editing an Element e 32
Moving Around the Array 32
Fitting the Curve e S 36
Specifying the Model 37
Editing the Parameters 37
Options From the Fit Menu P 37
Performing the Fit S O 39
Gettingthe Results PP 40

Contents 5

A CF LT EXample ... 40

Setting Up the Problem 41
Entering the Data 42
Savingthe Datac.uuuiiii e 44
Specifying the Model Subprogram 44
Editing the Controls 46
Getting the Results 47
Evaluating the Model 51
Interpreting the Results e 53
Section 3: Optimizing a Function 55
I OdUCHION 55
Creating the Function Subprogram 55
Running the OFTIMIZE Program e e 55
Specifying the Subprogram 56
Editing the Variables 56
Options From the Optimize Menu i, 56
Testing the Function 57
Editing the Controls e 57
Performing the Optimization 58
Getting the Results 60
AWord on Gradient 61
Appendix A: Owner’s Information 63
Limited One-Year Warranty i 63
CBIVICE . .. 64
When You Need Help 67
Appendix B: Error and Status Messages 69
BASIC Error MeSSAgeSttt it e 69
Binary Error MESSAOESt 70
Appendix C: Numerical Methods 75
Fletcher-Powell Method 75
Line SearCh 76
Function Optimization 80
Gradient ApproXimation 81
Application t0 LF I T 84
Minimizing Chi Square 84
Difficut Cases e e e 84

~ The Inability to Meet Convergence Criteria . :........c.o.... 85
Sampling Outside the Intended Domain i, 85

Constrained Optimization F 85

6 Contents

Appendix D: User-Accessible Routines 87
Subprogram Description and Calling Syntax 87
The FP Subprogram 87
The GRADF SUDPrOGram [, 88
The FIT Subprogramt e e 89
The CSE SUDPrOgram e 91
The GRADM Subprogram e e e 92
The Pl SUDPrOgram e 93
The LIHM Subprogram 93
The FCEMTCHI Subprogram e 94
Calling Relationships i i B 97
Subprograms Called by FF e 97
Subprograms Called by F I T e 98
Memory Requirements 98
Buffer and Calling Overhead i 98
Variable Memory 99
Y WIS . . . e e e 100
N A L T 100

A T T 100
Appendix E: Library Subprograms 101
Appendix F: Applications File Format (HPAF) 105
Header Information 106
Data Records 106
Descriptor BloCK 106
The Curve Fitting Files 107
Appendix G: Creating Your Own Model or Function Subprogram 109
Writing a Model or Function Subprogram 109
Standard Subprogram Syntax e e 110
Speed and ACCUFACYttt ittt e e e e e e et e et e e e e e 111
Important Interface AsSUMPHiONS 111
Example Subprogram for OF TIM I ZE i e e 113
Example Subprogram for LF LT e e 114
Appendix H: File Names Used in This Pac i ... 117
Appendix It Glossary 119
Index .. 123

How to Use This Manual

The information in this manual assumes that you have read sections 1, 6, 8, 9, and 11-14 in your HP-71
Owner’s Manual and that you are familiar with the following HP-71 operations: keyboard operation,
file operations, writing and running simple subprograms, manipulating data, using flags, and correcting
error conditions. In addition, if you plan to use a printer with this pac, you should know how to install
"~ and use a printer using the HP 82401A HP-IL Interface.

This manual is both a learning and reference tool. Read through section 1, “Getting Started,” for an
--overview of what the Curve Fitting Pac can do. Then read section 2, “Curve Fitting,” or section 3,
- “Optimizing a Function,” depending on which application you want to use first. Later, if you need
. descriptions or reminders on how parts of the programs work, you can use these sections for reference.
At the end of section 2, you will find “A CF I T Example.” This is a comprehensive example for you to
- key in to get familiar with the main program features.

There are also several appendixes for your reference:
o Appendix A, “Owner’s Information,” includes warranty and service information.

e Appendix B is “Error and Status Messages.” If CFIT or OFTIMIZE cannot carry out an opera-
tion, an error message will be generated. Refer to this appendix for an explanation of the messages
the Curve Fitting Pac can generate.

e Appendix C, “Numerical Methods,” describes the mathematics used in this pac and discusses situa-
tions that are difficult for the program to handle.

e Appendix D is “User-Accessible Routines.” Here you will find the subprograms in the pac that you
can access and how they interface with the main programs and each other.

e Appendix E is “Library Subprograms.” CF IT provides a library of model subprograms for some
commonly used models. Refer to this appendix for a list of these subprograms.

¢ Appendix F, “Applications File Format (HPAF),” describes the special format that this HP-71
application uses to store fit data.

e Appendix G is “Creating Your Own Model or Function Subprogram.” You’ll find information on
syntax, calling relationships, and memory requirements, plus two examples of typical user-written
subprograms here.

¢ Appendix H is a list of the file names used by the programs in this pac.

o Appendix I is a short glossary of terms used in this manual.

At the end of the manual is a complete subject index.
9

Section 1

Getting Started

Installing and Removing the Curve Fitting Module

The curve fitting module can be plugged into any of the four ports on the front edge of the HP-71.

CAUTIONS
* Be sure to turn off the HP-71 (press (f] [ON]) before installing or removing any module.

* Whenever you remove a module to make a port available for another module, be sure to turn the
HP-71 on and then off while the port is empty before installing the new module.

* Do not place fingers, tools, or other foreign objects into any of the ports. Such actions could result
in minor electrical shock hazard and interference with pacemaker devices worn by some persons.
Damage to port contacts and internal circuitry could also result.

To insert the curve fitting module, orient it so that the label is
right-side up, hold the HP-71 with the keyboard facing up, and
push in the module until it snaps into place. During this operation
be sure to observe the precautions described above.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the
module and pull the module straight out of the port. Install a blank module in the port to protect the
contacts inside.

11

12 Section 1: Getting Started

What the Curve Fitting Pac Does

The Curve Fitting Pac provides two main capabilities:

¢ The ability to fit a general model function (linear or non-linear) with up to 20 unknown parameters -
to a set of data.

e The ability to determine local minima (or maxima) of a large class of real-valued functions with up
to 20 variables.

Both of these applications are based on the implementation of a powerful algorithm introduced by R.
Fletcher and M.J.D. Powell. The method is known as the Fletcher-Powell Method (hereafter referred to
as the FP Method) and is explained in detail in appendix C.

A printer or a video display is not required to use this pac since all data and output can be directed to
the HP-71 display. You probably will find a printer or video display useful, however, for viewing large
amounts of stored data as well as intermediate and final results. If you have an HP 82401A HP-IL
Interface and a compatible printer or video display, the programs will print (or display) the output in
an easily understood format. If you want a printer or video display and don’t have one, contact your
authorized Hewlett-Packard dealer for information on printers, video displays, and the HP 82401A
HP-IL Interface.

Using mF 1T

Overview

When you run the program C:F I T, there are six main steps to go through to fit a curve to your data:
1. Create a model subprogram (or select one from the built-in library of model subprograms).
2. Enter the data points and optionally save them in a file.
3. Specify the name and location of your model subprogram.
4. Specify an initial guess for the model parameters.
5. Optionally do one or more of the following:
e Compute the Chi Square value using the current model parameters.
* Edit the model parameters.
o Edit the program control values.
6. Fit the curve.

Flow Chart of “F I T Menus

What follows is a flow chart of the steps involved in and the menus associated with the curve fitting

procedure.

Section 1: Getting Started

MAIN MENU
Data Edit Fit Guit
DATA MENU Suberosran ”a'"”]
L Kbd Load Save

} i

1

Frint
File Name?

LSRUE: File name?l

T

[M. of indpt varsq Clear Data"_]

J _Ne. af Model Parw

| Ne. of dats rointse | LLOHD: File name?

|

Edit

Edit Parameters

PLIITLPIRI?.

FIT MENU

M1

J

Prus Fit Buit

(”g‘.

i

;)
e [om] Devaan] [

Edit Parameters T

Edit Controls Y N3?
N K]

{7 Results |

O

flinChiSe esvimare?

[Approx, grad (Y)T
—

7

|Canst, or Fercent (CP37|
o ——

C
Percentage?

[
[eonerans
o

it
Lc radient Limt ‘j

Line search tries?
Iter tons

T T Q
LProgress report (YNEF”"‘ﬂ

N ¥

| Fause onresults (VoN>7

——

{__cobaten _]

cquEpssﬂ ITERATION LINIT
I Fause on rasults <Y HI? F‘ause on results CvoMIT]

| " Fina report 1

o roport Fioa roport_|

[oreseerans
N

L ons \\’,rN)’r]
- T Y

i —)

14

Section 1: Getting Started

ZF IT Example: Stock Predicting

Without worrying too much about the meaning of all the keystrokes, key in this example and see how
easily CF I T fits a curve to a set of data. What you will do in this example is:

1.

Enter a set of data into a working array.

2. Enter an additional row of data to be evaluated but not used for the fit.
3. Save the data in a file.

4,
5

. Evaluate the model to predict the value of the unknown dependent variable corresponding to the

Fit the curve and get the results.

data entered in step 2.

Example: The asking price for three stock issues was recorded at the close of trading on six successive
Fridays and is given in the following table. Assuming the linear relationship Y = aA + bB + ¢ between
the stock prices, what value can you expect for the price Y when A = 42.5 and B = 287

Week | Stock A | Stock B ;| Stock Y | Weight
1 37.125 24.0 73.25 1
2 34.0 26.5 63.0 1
3 40.0 27.375 72.5 1
4 39.625 29.0 71.0 1
5 38.0 29.0 66.875 1
6 41.0 30.875 72.0 1
7 42.5 28.0 ? Inf

* This row is the interpolate row. The weight of “Inf” causes this
row to be ignored in the fit process.

Input/Result
RUM CFIT

Oagta Edit Fit uit? The main menu.

You need to enter data from the keyboard, so
press [D] to access the Data menu.

Eid Load Save Print? The Data menu.

Press {K] to select keyboard entry.

Input/Result

Mo,

o f

indpt wars*R

B,

af

data pointz?R

T [END LINE

xX]
o

37,125 [ENDLINE

f
[

Section 1. Getting Started 15

In this example there are two independent vari-
ables (A and B).

There are seven data points, including the
interpolate.

»

The program branches to the editor and displays
the first element of the first row of the array. All
the values in the array default to O (except the
weights, which default to 1).

Enter the correct value of the first element from
the table—stock A, week 1.

The next element of the same row of the array is
displayed. You can accept the default by pressing

24 [ENDLINE

Tl

7
3 .I

—
it

T3, 2% (END LINE

Mil,4n=1
{0F, 1 =0

END LINE], or you can enter another value.

Enter the value of the second element from the
table—stock B, week 1.

The program steps through the array one element
at a time.

Enter the value of the third element from the ta-
ble—stock Y, week 1.

The last element in this row of the array (the
weight) is displayed for editing.

Press to select the default weight of 1.

The first element in the second row of the array is
displayed. '

16 Section 1: Getting Started

Input/Result
Z4 (END LINE]

26 . 5 [END LINE

&% [END LINE

Wiz, 43=1
(END LINE]
MOT,10=0

42, 5 [END LINE

r
i}
A

=& [END LINE

i
I
bix]

(END LNE]

WivF, do=1

(8] irf [ENDLINE]

Enter the value for stock A, week 2.

The program will continue to step through each
element of the entire array.

Enter the value for stock B, week 2.

Enter the value for stock Y, week 2.

The weight for the second row is displayed.

Use the default weight of 1. Continue to enter the
values from the table as the program calls for
them.

The program prompts for the first element in the
last row (the interpolate row).

The value of stock A to be used to solve for the
unknown value of stock Y.

The value of stock B to be used to solve for the
unknown value of stock Y.

This is the unknown value we are looking for.
Let it default to zero.
The weight for the interpolate is displayed.

While holding down the (3] key, type in inf¥.
This gives this row a weight of infinity, thus effec-
tively eliminating it from the fit process.

Input/Result

Data Edit Fit Guit?

Ebd Load Save Print?

AYE: File rname?B

STOCE [END LINE

Sawving. . .
Data Edit Fit Guit?

Subprogram nameTE
L. IH [(END LINE

File mnams?R

FITLIE [ENDLINE]

Section 1: Getting Started 17

The program has gone through the entire array
and wraps back to the first element.

Press this key to exit the editor and return to the
main menu.

Select the =t a option to display the Data
menu.

Press to start the process for saving data to a
file.

The program prompts for the file name to save
the data into.

Save it into a file called =Tk,

The program displays a message while the file is

being created and the data copied to it. Then the
main menu reappears.

Press to start the fitting process.

The program prompts for the name of the model
subprogram.

L.IH is the built-in linear model subprogram.
Now CF IT asks for the name of the file that the
subprogram is in.

LIH is in the library file FITLIE.

18

Section 1: Getting Started

Input/Result

Mo, of

Model Farm=YR

Z (ENDLINE]

Fola?B
(END LINE}

Fezarn

FeZaea

Czq Mdl Prms Fit Guit?

Eddit Controls oY -HI?
(N

Frogress report CYHREXT
(N

The model has three parameters (a, b, and c).
Asks for a guess for the value of the first
parameter.

Since you probably have no idea, use the default
of 0. Do the same for the other parameters.

After the last guess is entered, the program dis-
plays the Fit menu.

Press [F] to fit the curve.

For this example you do not need to edit the pro-
gram controls; you can use the defaults.

The program asks if you want to view an itera-
tion-by-iteration progress report.

Press [N] for no.

Input/Result
Morkinag. ..
1 IGrdi:
2 IGrdl:
COMVERGED
Fause on resultsiy Hao

ChiSg: 3.43

=
e}
ot
m
+
fax]
3]
A
=

Fercant
IGrdl

iy
|

N m
[xx]

Do I N
Scommmmmm
I
U I 0 I)

..,_
A
-
X1
Ty
e}

+ + +

)
=)
T T T T
LAOU R B B o I

T 0T
Pix]
A
[

T T
B oy B B

R N S I

=
-
~~

Fow # Cor A1I7N

v [END LINE

Section 1: Getting Started 19

Assuming you don’t have a printer or video dis-
play attached, the norm of the gradient at each
iteration is displayed. (If you do have a printer or
video display attached, the results are output as
shown in the example in section 2, on pages
47-49.)

After the program converges, press to

continue and see the results.

Press to pause between each result. This al-
lows you to scroll through the results at a

comfortable pace. Just press when you
want to go on to the next one.

As you scroll through the results, notice that
Fela, Po2r,and Fo3y give you the values for
a, b, and ¢ in your linear model. v 1 A, GCR,
and ¢33 are the partials of Chi Square with re-
spect to the model parameters. The other
information will be described later.

Since your ultimate goal is to get the predicted
value for stock Y, press (M] to begin evaluating the
model at your interpolate.

The program asks if you want to evaluate one row
or all rows.

Evaluate row 7, the row with your unknown stock
price.

20 Section 1: Getting Started

Input/Result
Fow 7: F = F7.2472359455 The model predicts 77.85 for stock Y.

Czq Mdl Frm=s Fit Quit?

(@] Exit the curve fitting routine.

Dats Edit Fit Quit?

(@] Quit the program.

Oone

So, assuming a linear relationship Y = aA + bB + ¢ between stock prices, and given a price for stock
A of 42.5 and stock B of 28, you can predict the price of stock Y to be 77.85, or 777%.

Using 0iFT IMIZE

Overview
When you run the OFTIMIZE program to find local minima or local maxima, you go through a pro-
cess similar to that for CF I T. You must:

1. Create a subprogram for the function you want to optimize.

2. Specify the name and location of the function subprogram.

3. Make an initial guess for the variables.

4, Test your guess (optional).

5. Optimize the function.

Flow Chart of OFTIMIZE Menus

What follows is a flow chart of the steps involved in and the menus associated with the optimizing
procedure.

Section 1: Getting Started

RUN BPTIMIZE

Subprogaram name?®

File name?

VOLT w2
OPTIMIZE MENU
[Test Edit Opt Quit? —I-‘—ﬁ

F=ddd Edit Cantrols 2¥.H37]

AppProx. grad (Y -N2?

Const. or Fercent (CPa%

i° I

Constahl’?] LF’er’cen!age?

: J

Gradient Limit?

Line search tries?

Iterations?

Q
[Progress report (YNQO? [

Pause on resul tiy NI?]

L

Caleulation

[CONUEPGED I l ITERATION LIMIT]

LPause anresults(Y¥-N>?] l:ause chresultsiY -H2? l

i {
L Final report —I [Finat report —I

Mare iterations (V,'N)’.’_]

N &

21

22 Section 1: Getting Started

OFTIMIZE Example: A Big Box

Key in this iF TIHIZE example in the same way that you did for the ZF I T example. In running this
example, you will go through the five steps as outlined above.

Example: You are designing a box that will be used to mail widgets. You want the box to have dimen-
sions that yield the largest volume while still being acceptable to your local carrier. The postal restric-
tions stipulate that the sum of the length and girth (perimeter of cross section) cannot exceed 100
centimeters. What is the maximum volume for your box and what are the dimensions?

w

Considering the postal restrictions and since you have maximum volume when the length and girth
sum to 100, you can use these equations:

L + 2W + 2H) < 100
V = WHL

V(W.H) = WH(100 — 2H — 2W)
= 100WH — 2WH? — 2W?2H

All dimensions must be greater than 0, so you can impose the additional constraints

O<W+H<50,W>0H>0

Section 1: Getting Started 23

First, type EDIT EXAMFLES and press (ENDLINE]), and then enter the following subprogram called
Ed and store it in a file named ExAMFLES. (For information on writing and storing subprograms,
review section 12, “Subprograms and User-Defined Functions,” in your HP-71 Owner’s Manual.)

o
ey

SUE BOSCP O, G, W, 20
W=Fi1l» @ H=P:{2» @ EEEF
V=l HE (1 B8-S %W -Z24H
GUla=24HECS8-H-2%W>
GOo2i=2FNE(SA--2%H>
EHD ZUE

,_,..
tar S

sl

,...,_
LU %
-
AU

Ty b e) [o=

Now enter the following keystrokes and see how easy OFTIMIZE is to use.

Input/Result
RUM OFTIMIZE Run the program.
Subprogaram nams Tl The program prompts for the name of your
subprogram.
B
File nams=T7N Prompts for the file where the subprogram is
found.
EXAMFLES
How many wa r: iablaes®? OFTIMIZE prompts for the number of variables
in your function.
Use the default of 2. Line 30 of the subprogram

B shows that W and H are the two variables.

Wilanm The program prompts for an initial guess for the
value of W. Line 20 of the subprogram identifies
W as the first variable, '/ 1 2, and H as the sec-

ond variable, '/ &,

) You don’t know what the value is, but go ahead
and guess 5.
Wizl) Prompts for a guess for H.
& Guess 6 for H.

24 Section 1: Getting Started

Input/Result’

Test Edit

Ot

Guit?®

Test Edit Opt

Huit?

Edit Contraols

LT

MIM or

MAMimize¥MIHM

MAH

Bound eztimate?A
2808 [END LINE
H FRFOX, dra x| oM

After you enter the last guess, IFTIMIZE dis-
plays the Optimize menu.

Press to evaluate V(5,6). Evaluating the func-
tion at the current guess gives you the associated
value of the function at that point.

Return to the Optimize menu to prepare to enter
the optimization routine.

Select the optimization routine.

Asks if you want to edit the controls.

Yes. You must edit the controls for this problem
and all maximization problems because the pro-
gram defaults to minimization.

Asks if you want to minimize or maximize (the
default is to minimize).

Prompts for the bound estimate.

It’s at least 2340, so guess 3000.
The program asks if you want to have the gradi-
ent approximated for you.

Lines 40 and 50 in your subprogram do this for
you, so you don’t need the program to do it.

Input/Result

Gradient limit?.001

Line search triesz?14

Iterations?2s

Frogrezss report (YHRXT?
(N)

1 1GROF: 3.2 "4 E+8al

2 IGRED!: 1.31281 E+861

F2OIGROI: 1.81895 E-B861

4 TGEDI:y 1.11935 E-Aa83

COMVERGED

Section 1: Getting Started 25

Use the default limit to stop iterating.

Use the default.

Use the default to set the upper limit on the num-
ber of iterations.

The program asks if you want a progress report
for each iteration ([Y] or [N]) or if you want to
return to the Optimize menu ([Q@)).

When you press or [N] the program starts it-

erating. You hear a beep every time the sub-
program is accessed from the main program.

At this point, you see the norm of the gradient for
each iteration followed by the COIMUWERGED
message, displayed when the program converges.

Press [END LINE] to continue.

The program asks if you want to pause between
each result.

Press so you can scroll through the results at a
comfortable pace using [ENDLINE], assuming you
don’t have a printer or display monitor attached.
(If you do have a printer or video display at-
tached, you won’t see this prompt. Printed results
for this problem are shown on page 61.)

26 Section 1. Getting Started

Input/Result

Fuwal: HZEE+AA3
| Grdl SeE-H8a4
erE+BE1
SRSE+BEal
d4E-804
44E-B@4

wit?

Oorne

Scroll through the output by pressing
after each result. F«wal is the maximum volume,
I 5rd 1l is the norm of the gradient (used in the
determination by the program to stop iterating),
Wi 1 is the value of W, V£ 21 is the value of H,
Gl and G023 are the partials of V with re-
spect to W and H. After the last item is displayed,
you return to the Optimize menu.

Press (@] to quit the program.

When you take the results for V, W and H, and then solve for L in the equation V = WHL, you have
all the dimensions for your box. Your desired box size is 16.6667 by 16.6667 by 33.3333 centimeters

with a volume of 9259.259 cubic centimeters.

Section 2

Curve Fitting

Introduction

The CF I T program allows you to enter your data into an array, store the array in a DATA file, retrieve
the array from the file, and edit the data. Then, you can fit the data to a curve, examine the results,
and optionally choose another model for another fit. Many common fit models reside in built-in library
files, making specification of your model as simple as providing the name of the subprogram and the
name of the built-in library file in which it resides. (Refer to appendix E for information on the library
files. If you find that you need to write the model subprogram yourself, refer to appendix G, “Creating
Your Own Model or Function Subprogram.”)

CFIT permits you to fit a model function (specified in a subprogram) to a set of data. The program
uses the FP Method* to minimize the Chi Square function associated with your model and the data set
(for details of the FP method, refer to appendix C, page 75). The number of independent variables (n)
and the number of data points in your data set (m) is limited only by the amount of available memory
in your system. The number of parameters (k) in your model is limited to 20.

The model function you specify is represented by F = F(X(),P()) where X() is a vector of length n
and P() is a vector of length k for which there are k unknown parameters. For example, the model
function might be a simple third-order polynomial. In this case, you can represent the unknown param-
eters (coefficients) by a vector of length 4 and the vector of independent variables reduces to a simple
scalar value (in this case there is only 1 independent variable).

Model: P, + PyX + PyX? + P,X3
F

2NEE + POZNRETZ o+ PO40EH3

If you make 12 observations (collect 12 data points) for the above example, your data array will be 12
by 3 (with 3 being derived from n + 2), and the 4 parameters to be determined are the coefficients of
the polynomial model.

* As mentioned in section 1, the method used is the “Fletcher-Powell Method,” abbreviated here and throughout the remainder of
the manual as the “FP Method.”

27

28 Section 2: Curve Fitting

Running the Curve Fit Program
When you first run CF I T, by typing UM CFIT [ENDLINE], the main menu is displayed:
Data Edit Fit Ouit?

The curve fit program is divided into three major parts. They are accessed from the main menu and are
entitled Data, Edit, and Fit. The other option available in the main menu (7w i t) allows you to
quit the program.

Note: If you exit the program by any means other than the &iu i t option, certain system functions
are not maintained (for example, flag settings, rounding mode, and option base).

The [tz t = part of the CF I T program contains commands for entering data points from the keyboard
or from a file, saving entered data to a file, and printing the data array. The Edi ¢ part contains an
editor for examining or modifying the data points. The F it part contains the procedure for curve
fitting. Each part is called from and returns to the main menu. The material that follows describes
each of the three parts.

Working With |

Ozt 2 allows you to enter data points from either the keyboard or a data file. You can also save the
data points in a file and, using the Fr irit option, print the data points.

* From the main menu you press [D] to display the Data menu:
Ebd Load Zawe Print?
All of the [iat a options are selected from this menu.

If you don’t want to use any of the [la t = options, you can press [Q] to return to the main menu.

i
;

3

Section 2: Curve Fitting 29

The Data Format

The data items consist of n independent variables, a dependent value, and a weight signifying the
confidence level. These items are stored in an array of m data points (rows) and n + 2 columns.

For example, this 4 by 8 array represents a data set with 4 observations and 6 independent variables.

X1 X1 Xi3 Xig Xy X6 Y7 Wig

Xo1 Xoo Xosz Xoyu Xos Xg6 Yo7 Wog
X31 X2 X33 X34 X35 X6 Y37 Wss

y

Xag Xgo Xuz Xyg Xys Xye Yye7 Wyg

Giving Weights to Data

When CFIT creates a data array, each row has an associated column for the relative weight of that
data. Data points given relatively small weights are considered “reliable,” while those given relatively
large weights are considered less reliable. When you give weights to data points, the value of the
weights should be equal to the standard deviations of the dependent variables.

A reasonable approach to weighting is to use any reliable information you have regarding the true
standard deviation as the weight. In the absence of any such information, use 1.

Note: Do not use 0 as a weight. The Chi Square calculation involves a division by the weight.
Using 0 results in a math error producing either - z=r o or 8- as an error message.

Entering Data From the Keyboard (ki)

If you want to enter a new set of data from the keyboard, follow the instructions below. This set of
instructions, as well as other sets in this manual, follow a format that gives the step number, the
display you will see, and the instructions on what to do to complete the step.

Step Display Instructions
1 Kbd Load Sawve Primt? Press [K] to start the process of creating a data set from
the keyboard.
2 Ho. of indpt warzs7Hh Enter the number of independent variables. Two col-

umns will be added to this number to form the internal
array: one for the dependent variable y; and one for the
weighting factor w;. Any data already in an array will be
destroyed when you create a new array.

3 Mo, of data paoaints?N Enter the number of rows (data points) in the array.

4 “il,1:78a The program branches to the editor and displays the
first element in the data array.

30 Section 2: Curve Fitting

At this point the array has been created with all elements set to zero and the weights set to one. When
you use the keyboard to enter the values of the elements, you simply edit their initial settings. The
procedure for editing an element is shown in “Editing the Data,” starting on page 31.

Loading Data From a File (Lo =)

If the data already exists in a file, you can load the data into an array by following the procedure below.

Step Display Instructions
1 Fbd Load Sawve Print? Press [L] to load a data set from a file.
2 Clear data (Y-HI7T If you have data in the array, the L - ad option can ap-

pend new data items to the existing set. If you wish to
append the new data to the array, press [N]. To clear out
the array, press [Y]. If no data is in the array when the
Load option is selected, this question will not appear.
3 LOAD: File rname7H Enter the name of the data file. The file must be format-
ted as an HPAF file. For detailed information on the
HPAF format, refer to appendix F. If a mass storage de-
vice is used, the file name must include the device
specification (for example FOINTS : THFE).

4 Loadina ., ., The program loads the file and then returns to the main
menu.

‘Saving Data to a File (Zzw=)

Once the data is entered, it is often a good idea to save it to a file for future use. Instructions on how to
do this come next.

Step Display Instructions
1 Fhbd Losd Save Print? Press (S] to save the current array of data in an HPAF
file.
2 SAVE: File rame?h Enter the name of the file to write into. The file may

reside either in RAM or on a mass storage device. If a
mass storage device is used, the file name must include
the device specifier (for example “FOIMHTE : TRFE™),

The program will create an HPAF file with the data in
it.

3 Owerwrite file (%W oH2T If a file already exists with the name you supplied, the
program will ask if you wish to overwrite it. If you press
[n], the program will again prompt for the file name. If
you press (Y], the program overwrites the previous file.

4

1]

witeg . The program saves the data and then returns to the
main menu.

Section 2: Curve Fitting 31

Printing the Data (F+ irit)

Once the data is entered, you can also get a printed copy of the data array (assuming you have a printer
attached). The procedure below explains how.

Step Display Instructions
1 Kbd Load Save Primt? Press [(P] to print the data. The Curve Fitting Pac will
send the data array to the current FRIMTER I%
device.
2 Frimting. .. While printing is in progress, this message is displayed.

If your HP-IL compatible printer is an 80-column printer, the output will be formatted as follows:

This example is a printout of the data used in the comprehensive F I T example starting on page 40.

Note: If your printer pfints using a narrow field, like the HP 82162A Thermal Printer, the printout
~ will be formatted in easily read columns.

After the data has been printed, the program returns to the main menu.

Editing the Data

Edit allows you to enter and modify arrays of data used by ©:F I T. This part of CF I T is selected
from the main menu by pressing [E].

When you enter the array editor, the first display you see contains the value of the first element in the
array:

w01, 1 =nnn

The display consists of three items:

® A letter giving the type of element displayed: % for an independent variable, ' for a dependent
variable, and i for a weight.

® A pair of numbers in parentheses giving you the row and column address of the current element.

¢ The current value of the element.

32 Section 2: Curve Fitting

Editing an Element

All of the HP-71 line editing features (such as (>], [<], (1/R], [BACK], [-CHAR], and the command stack)
are available in the array editor. If you are unfamiliar with how these features are used, refer to section
1, “Getting Started,” in your HP-71 Owner’s Manual.

Any time an element is visible it may be edited and the new value entered into the array. The element
is edited by typing over the current value, and it is entered by pressing [ENDLINE]. All unassigned
elements in a row are displayed as & except for the last one. The last element (the weighting for the
observation) defaults to 1.

When you edit an element, you can use both numbers and numeric expressions for the value of an
element. For instance, © 1 +ZQRE {2523 -2 is just as acceptable as = for an entered value.

Moving Around the Array

When the editor is running, a number of keys have been redefined to help you move about within the
array and to help you insert or delete rows and columns. These keys are broken into the following
groups:

o The direction keys for moving through the array ((w), [0], (X], and [(&]).

¢ The command keys for manipulating columns and rows ({U], [0], (M], and [F)).
o The endline direction keys ({S] in combination with the direction keys).

e The quit key ([Q]).

The following representation of the keyboard shows the keys that are redefined when you are in the
array editor.

JUEEEOMUEOODE

Quit Up
Column

D

JE000EEOHAEE
ojclaizicieli=zlola

BNEUE N

mzzuHr z

Section 2: Curve Fitting 33

The Direction Keys. The direction keys are found in the cross on the keyboard diagram. You can use
the direction keys in combination with the [f] key to move anywhere in the array. Once you get to the

row and column you want, you can examine the contents of the element at that location and/or modify
it.

The (W], (0], (X], and (A] keys are respectively the up, right, down, and left keys. These keys move you
through the array one element at a time in the corresponding direction as shown in the following table.

Starting Element | Key | Direction | Destination

X(3,3) up X(2,3)
X(3,3) [D] right X(3,4)
X(3,3) down X(4,3)
X(3,3) left X(3,2)

You can move to one of the boundaries of the array by pressing the [f] key and a direction key. You can
think of the [f] as standing for the word “far.”

* The (f] (D] and (f] [A] move to the far right and far left boundaries of the array.
e The (1] and move far up and far down to the boundaries of the array.
All the direction keys will move across the boundaries to “wrap around” to the opposite side of the

array. For example, in a 4 by 8 array, if you start at < 1, 1 » and press (B], youwill goto ki, &5
(the far-right side of the array). Then, if you press (D], you will see i 1,1 again.

Note: If you are in the editor and want to enter an expression using letters that have been re-
defined, you must hold down the [g] key while typing the letters. For example, since the key
has been redefined as the =117 command, you can only enter a weight as i+ by holding down
(9] and typing i ¥.

The Command Keys. The command keys can be associated with their gold, shifted functions on the
HP-71 keyboard. The command keys and their functions are as follows:

¢ The key selects the DEFine column command.
e The [0] key selects the AN command.
® The [(M] key selects the DELETE command.
® The (F] key selects the 1T command.
The DEFine column command is used to assign values to the columns. It can be very useful when you

want to enter data with a constant interval between points (for example, every year from 1954 to 1984
or 10-degree steps from 30 degrees to 120 degrees Fahrenheit). To do so:

34 Section 2: Curve Fitting

1. Press (U], at which time the program prompts

o

2. Enter the column to fill, the starting value, and the step size, separated by commas. After the
information has been entered, the program returns to regular editing.

i

Col, Start, St

Like all the keyboard commands, the define command can be used at any time while you are in the
editor, regardless of where you are in the array. Also, if you get into this command accidently, press (Q]
to return to regular editing.
The AL command makes it easy to add a row or column to the array. To do so:
1. Press [0], at which time the program prompts
ADOD: Row or Column®
2. Do one of the following:
e Press [R] to add a row to the array; the program will display
Add new row at?m+1

with one more than the total number of rows (data points) as the default address for the new
TOW.

e Press to add a column to the array; the program will display
Add mew column at?n+7

with one more than the total number of independent variables as the default address for the
new column.

o Press (@] to exit the command. The program will return to regular editing.
3. Enter the address of the new row or column. If the address coincides with an existing row or

column, the array will open to create a space. The new row or column will be filled with default
values.

If you add a row or column at the address of an existing row or column, the existing row or column
address (and all those rows or column addresses beyond it) increases by one. For example, if you enter
a new row at row 3, the old row 3 becomes row 4, row 4 becomes row 5, and so on.
The DELETE command is used to delete a row or column from the array. To do so:
1. Press [M], at which time the program prompts
DELETE: Fow or Columen?

Section 2: Curve Fitting 35

2. Do one of the following:
¢ Press [R] to delete a row from the array; the program will display
Delete row number?n
with the current row as the default.
o Press to delete a column from the array; the program will display
Delete column numberan
with the current column as the default.
e Press (@] to exit the command. The program will return to regular editing.
3. Enter the address of the row or column to delete. The program will display
Oelete row nn (WoH2T
or
Delets ool nn O oHI?
4. Press (Y] for yes to delete, or [N] for no to exit.
After the deletion, the program returns to regular editing at the last displayed element or, if the
corresponding row or column or a row or column before it was deleted, to an element near the pre-
viously displayed element. If all rows or columns are deleted you will return to the main menu.
The G070 command allows you to move directly to a specific element in the array. To do so:
1. Press [F], at which time the program prompts
Fow, ColTR
2. Enter the row and column address of the element in the array. After the address is entered, the

program displays the the element for review or edit.

Endline Direction. After the key is pressed to enter an updated value into an array, the
next array element is displayed for editing. The direction the program moves to display the next ele-
ment is called the endline direction. The endline direction is set with the key, the key in the middle
of the direction keys.

The default direction is to the right, so that when is pressed the next element to the right is
displayed. The first element in the next row is displayed after you enter the value in the right-most
column. Using the default endline direction, you can easily input your data into a matrix by editing

each element and pressing [(END LINE].

36 Section 2: Curve Fitting

There are three possible endline directions:
o To the right: This is set by pressing (S] for set endline direction followed by the right direction key,
(o).
o Down the columpns: This is set by pressing (S] followed by the down direction key, (X].
e No motion: This is set by pressing [S] followed by [§] again. This will cause the same element to be
displayed after pressing [END LINE].
When you press [S], the program will display

Direction: DO,%.5 or GF

At this point, you can press (D], [X], or (S], depending on the endline direction you want. You can also
press (@] if you want to escape the command. When you press one of these endline direction keys, the
program sets the endline direction and returns you to the last element displayed. The following table
summarizes the effects of setting the endline direction.

Direction Endline Current Element After
Keys Direction | Element | Pressing Endline
(5](p] Right. X(3,3) X(3,4)
(5] Down. X(3,3) X(4,3)
(3] No motion. X(3,3) X(3,3)

Exiting the Editor. To exit (quit) the array editor press the [Q] key. This will return you to the main
“menu. This, too, can be used regardless of where you are in the array.

Fitting the Curve

Once your data has been entered and, optionally, saved in a file, you are ready to fit the curve. The
F it procedure involves:

Specifying the model.

Editing the parameters.

Optionally evaluating Chi Square with respect to the current model parameters.

Optionally evaluating the model at one or more points.

Optionally editing the program controls.

o ok W

Performing the fit.

Each of these steps will be described next.

Section 2: Curve Fitting 37

Specifying the Model

The first step in the process is to specify the model subprogram to the ZF I T program. This is done as
shown below: ’

Step Display’ ' Instructions
1 Ozta Edit Fit @uait? From the main menu, press [F] to begin curve fitting.
2 Subprogaram name 7l Enter the model sﬁbprogram name to be called by
CFIT.
3 File name?H Enter the name of the file containing the subprogram.
4 Mo, of Model Parms?H Enter the number of parameters in the model.

Every model, whether preprogrammed in the Curve Fitting Pac or written by you, has a given number
of model parameters (k) and independent variables (n). Make sure that the number entered in step 4
agrees with the actual number in your model subprogram. If the number entered is too small, you will
probably get an error when the model is evaluated. If the number is too large, you will get incorrect
results.

Editing the Parameters

After you enter the number of parameters in your model, the program prompts for the value of the first
parameter in the initial guess. You can edit each parameter as outlined below:

Step Display Instructions
-1 Polrea Enter the first parameter in the initial guess. The first
time you run the program, the parameters default to 0.
2 Fozrra If there are more parameters to be entered, the program
will prompt for them. Edit the remaining parameters as
in step 1.
3 C=q Mdl Prms Fit @uit? Once you have edited the last parameter, the program

displays the Fit menu.

Options From the Fit Menu

Once you access the Fit menu, you can evaluate Chi Square at the current guess by pressing [C], eval-
uate the model by pressing (M], edit the parameters by pressing [P], fit the curve by pressing [F], or
quit and return to the main menu by pressing [@]. The first three of these choices ([C], (M], and [P))
are optional within the curve fitting process.

Evaluating Chi Square. If you press to evaluate Chi Square the program will display
ChiSg=nnn

You then press' [END LINE] to return to the Fit menu.

38 Section 2: Curve Fitting

Evaluating the Model. To evaluate the model at any row (using current model parameters), follow
the instructions detailed below.

Step Display Instructions
1 L=q Mdl Prm=s Fit Buit? Press [M]to evaluate the model.
2 Fow # for ALL1O27NR Enter the row to be evaluated, or enter to evaluate

the model at all points. After the program evaluates the
model at the appropriate row(s), the results will be
printed or displayed and the program will return to the
Fit menu.

Editing the Program Controls. Before a curve is actually fit to your data, you can edit the program
controls as shown below:

Step Display Instructions
1 C=q Mdl Frms Fit 2uwit? Press to start the procedure for fitting the curve.
2 Edit controls Y -Ma7 Press if you want to edit the controls that affect the

numerical calculation, or {N] if you want to proceed with
the calculation using the current controls. If you enter
(n] at this point, the procedure continues at step 10.

3 Mirn ChiSqg estimatesd If you have reason to believe the minimum Chi Square
exceeds a given positive value, enter the value here to
improve program performance. The default estimate is
Zero.

4 Arpros. gradi¥-H)7 If your model subprogram includes the gradient calcula-
) tion (all of the models in the library do), press (N] and
pick up the procedure at step 7. If it’s necessary to
approximate the gradient, press (Y]. (For information on
the gradient and how it is used in this pac, refer to sec-
tion 3, page 61.)
5 Conzt. or Fercent{CP17 Press[P]if you want to use a percentage of the param-
eters for Delta. If you want to use a specific constant for
Delta, press [C]. (If you are unfamiliar with how Delta is
used to approximate the gradient, refer to appendix C,
page 82 for details.)
6a Conzstant?, 8800 Enter the constant for Delta, or use the default value.
- 6b Fercentage?. 00 Enter the percentage for Delta, or use the default value.

7 Gradient Limit?, 0681 Enter the gradient limit, or use the default. This limit,
compared with the norm of the gradient at each iterate,
is the criteria used to determine convergence.

Section 2: Curve Fitting 39

Step Display Instructions

8 Line =zearch tries?ia Enter the maximum number of tries to be made in the
line search routine. The default number of tries is 10.
(For details on the line search routine, refer to appendix
C, page 76.)

9 Iterations725 Enter the maximum number of iterations to be made in
the attempt to converge. The calculation will normally
converge in less than 25 iterations, so, for convenience,
the default is 25.

Performing the Fit

If you chose not to edit the program controls, or if you have completed editing them, you are ready to
have the program perform the actual fit. CF I T makes its fit by finding the local minima of the Chi
Square function. The “absolute best fit” may not be found. Instead, CF I T may converge to a “local
best fit.” (This situation is most likely to occur when you’re using models containing periodic func-
tions.) When the program prompts to determine if you want a progress report, it is ready to fit a curve
to your data.

Step Display Instructions

10 Frogress report CYHRYT At each iteration, Chi Square, the gradient norm, the
parameters, and the gradient of Chi Square can be
output. If this information is desired, press [¥]. This
information is sent to the current FRIMTER 15 de-
vice. The default is to display the iterate number and
the gradient norm on the current DI SFLAY I5 de-
vice. If you get to this point and decide that you don’t
want to go through with the calculation, press [Q] and
the program will return to the Fit menu.

If you don’t want a progress report, press [N]; the program will start iterating and you will see the
display

B& [Grdl: nnpnnnnE nnn
For each iteration, the program will display the iterate number and the norm of the gradient.

If you do want a progress report (if you press {Y]) and don’t have a printer attached, you will see the
display

40 Section 2: Curve Fitting

If you press [Y] in response to this prompt, the program will stop between each result until is
pressed. If you do not want to stop (if you press [N]), you will see the progress report at the current
DELAY rate. Either way, the program starts iterating at this point and, if you have a printer attached,
the progress report will be printed.

For an example of what the printed progress report looks like, refer to pages 47-49.

- Getting the Results

Once the program has completed the required iterations, it will have converged or it will have reached
the iteration limit without converging.

If the program did not converge, you will see the following:

Step Display Instructions
1 ITERATION LIMIT Press to go to the mext display.
2 More itersticomsIyY M7 Press to continue iterating (starting from the last

iteration) with the same number of iterations as speci-
fied in the program controls, or press [N] to print the
results.

Note: You may also see a numeric computation message, such as FIT ERR~~
Tries » Limit.If this happens, press [f) to return to the Fit menu.

If the program did converge, you will see:

Step Display Instructions
1 COHMERGED , Press to continue.
2 Fauze on results(v-sH>7? Press(Y]if you want to use to step through

the results, or press [N] if you want the results output at
the current DELAY rate. You will not see this prompt if
you have a printer attached.

As with the progress report, the final results will be sent to the current FRIMTER 1% device. To see
an example of printed final results, refer to page 49.

After the results have been printed, the program returns to the main menu.

A

The material that follows is a comprehensive CF I T example for you to key in. This example uses many
of the data entry, editing, and function evaluation features available in this pac. It also uses F{iL"¢, one
of the library subprograms available for CF I T. At the end, a discussion is included on interpreting the
results.

There are eight main steps to go through in this example. You will:

Enter data into a working array.
Savé this data into an HPAF DATA file.

Supply control information.
Get the fit results.

Evaluate the model at the extra point.

S L A A o

Interﬁret the results.

Setting Up the Problem

Example: Suppose you have taken the data in the following table.

Add another data point to the array for evaluation.

Supply the name of the model subprogram from the library.

No. | X Y w
1 5| 348 | .85
2 10 | 134.7 | .85

-3 14 | 1593 | .85
4 [18 | 1569 | .85
5 124 (1322 | 85
6 {30]|117.4 | .85
7 |35 (1325 | .85
8 |41 |186.6 | .85
9 |50 |342.2 | .85

Section 2: Curve Fitting 41

What are the coefficients of the fourth degree polynomial that best fit this data, and what is the value

predicted by the model at X = 27?

Notice that the weights have all been given a value of .85. In this example you can assume that the
standard deviation of the dependent variable (Y) is .85 and that it does not vary as a function of the

independent variable (X).

42 Section 2: Curve Fitting

Entering the Data

As the first step in this example, enter the data as follows:

Input/Result)
RUH CFIT

Data Edit Huite
(®]

Ebd Load Frimt?
]

Mo, of indpt wars7ll
1

Ho, of data points7A

t1,1x=8
Yiol,29=08

324, 5 [END LINE

Wil ,3x=1

. 55 [END LINE

Run the program.

The main menu.

You need to enter the data...

from the keyboard.

The program prompts for the number of indepen-
dent variables in the problem.

There is only one dependent variable in this
example, X.

The program prompts for the number of data
points (or rows) in the table.

There nine rows in the table.

The program asks for the value of the first ele-
ment in the first row.

Enter the appropriate value for the element from

the table.

Asks for the value of the second element in the
first row.

Asks for the value of the third element in the first
TOW.

Enter the weight for row 1.

Input/Result

. 25 {END LINE

¥y

[
fl

=1

1 LEND LINE

B
T

L

Fal
1l
[u]

342 .2 [END LINE

Wim, 30=1
+ 3% [END LINE]
01,13=5

Section 2: Curve Fitting 43

Asks for the value of the first element in the sec-
ond row.

Enter the first value in the second row of the pre-
vious table.

Enter the second value in the second row.

Enter the weight for row 2. Continue entering the
data in the same manner for all the rows as the
program prompts for the values.

The program asks for the value of the first ele-
ment in the last row.

Asks for the second value in the last row.

Asks for the weight for the last row.

The editor wraps around from the last element in
the array to the first element in the array.

Press the [Q] key to exit the editor and return to
the main menu.

44 Section 2: Curve Fitting

Saving the Data

The second step in this problem involves saving the data to a file.

Input/Result

flata Edit Fit Suit?
Bl

Kid Load Sawve Frint?
(8]

SAVE: File name®N

FOLYDORTH

Sawirg . .
Data Edit

Fit Quair?

Specifying the Model Subprogram

Go to the Data menu.

Save the data to a file named...

FOLYOATA.

After saving the data to a file, the program re-
turns to the main menu. (A printout of the data
used in this example is shown on page 31.)

The third thing to do is to specify the model subprogram to CFIT.

Input/Result

Subprogr am

riamne TR

F L [END LINE

Start the curve fitting process.

Asks for the name of the model subprogram.

Supply the name FILY since your polynomial
function is covered by this library subprogram.
(FOLY is the built-in model subprogram that
handles all polynomials through degree 19.)

Input/Result

File

rrame "N

FITLIE (ENDUNE)

Ha, of Model Parms?H

= [END LINE

Foliza

Fozaem

Section 2: Curve Fitting 45

Asks for the file where the subprogram can be
found.

FOLY is found in the built-in library file
FITLIE.

Asks for the number of parameters.

There are five coefficients in a fourth-degree
polynomial.

Asks for an initial guess for the first parameter.
The program will go through all five parameters
to allow you to supply an initial guess for each
one.

Enter the default value of 0 since you have no
idea what the true value is. Do the same for the
remaining parameters.

46 Section 2: Curve Fitting

Editing the Controls

Now you need to go through the process of editing the program controls.

Input/Result

C=q Mdl Frms Fit Quit?

Edit contraols (Y- -H»?

Mirh ChisSgqg estimate?@

Approwx, arad oY-H27

[]
s

Gradient limit?, BE

Line search trissz?

]
[,
[xn]

Iterations?25

The Fit menu.

Press (F].

The program asks if you want to edit the controls.

Yes. You need to edit the controls for this problem
because the default gradient limit is unreasonable
and, if used, eventually produces an error con-
dition involving the gradient limit.

Asks for the minimum Chi Square estimate.

You have no idea, so use the default value.

Asks if you want the program to approximate the
gradient.

No, because the subprogram calculates it.

Asks for the gradient limit, which is the criteria
used by the program to determine convergence.
Enter 1.00 as the gradient limit. Do not use the
default here; it is unrealistic for this problem.
Asks for the limit on line search tries per
iteration.

Use the default.

Asks for the limit on the number of iterations.

Use the default.

Section 2: Curve Fitting 47

Input/Result

Froaress report CYMHET Asks if you want an iteration-by-iteration
progress report showing intermediate results.

Getting the Results
When you see the previous display, you are ready to get results.

Input/Result

Press for yes to see a progress report. After
you press (Y], assuming you have a printer at-
tached, the program prints the results. If you
don’t have a printer attached, the results will be
displayed as in the example in section 1, starting
on page 14. Assuming your printer is an 80-col-
umn printer, your intermediate and final results
will be formatted as follows:

Imitial values:

Chi-square = 3I73820.73535484
CGradient Norm = 8383510901.56
No. Farameter Gradient
| 0, QOO00OE+O00 - 6L LE+OOT
‘ 2 0. 0OOO0O0OEA+QO0 -1.181129E+0035
? = Q. OO0OQO0OE+Q0O0 -4 . 455897E+0046
4 Q. DOQQOOE+OQD -1.87695S9E+008

b 0. QOQOOOE+QOO -8, 381408E+009

48

Section 2: Curve Fitting

Iteration: 1

Chi-square = 12043%3,210194

Gradient Norm = 9042007%.83697

No .

o IRV I O

Iterations 2

Farameter
2.787581E-011
B.516494E-010
AL 212909E-004
1. 383373E-006
6. O4T386E-00D

i

Gradient
-1 .878835E+003
~3. 1801 30E+004
-5 . THB2I2E+00T
—Q.021261E+0Q06

2.02ZF21E+005

Chi-square = 83282. 1526088

Gradient Norm = 112017.6

NO.

1

-5

o

4

=

ot}

Iteration: 3

Farameter
1.413609E~004
2.7 E46IBE-O05
4.960367E-004
7. 7587 64E-003%

~1.0581642E-004

32347

Gradient
~-1.140853E+0073
-1.2850&648E+004
~1.110427E+005

7. 14Z391E+003
-1, 008048E+0Q02

Chi-square = 13502.10222046

Gradient Norm = 1074.98139404

NG .

bl R e

Farameter

1.305732E~-002
1.471068E~-Q01
1. 2719Z29E+000
~5.812723E-002

7. 094064E~-004

Gradient
-1.,887295E+002
-1.051068E+003

W 2FZLOZTEHOQL
~4, 1Z21534E+000
Z.215990E-001

Iteration: 4

Chi-square = 4051.30071327

Gradient Norm = 432.40246587344

No.

b by

Farameter
3,101 776E+000
1.735852E+001

-5, 77&6100E-001
8.998385E~004
1.291139E-004

Iteration: 5
Chi-square = 3.64992479158

Gradient Norm =

Na.

1

Farameter
~1.791837E+002
G e 747584E+0Q01
=3. 270084E+0Q00
7. 048445E--0Q02
~4,780977E~-004

Gradient
4,27260ZE+001
~7 . 6H199856E+000
4., 422228E~001
-9.533830E~003
ILEF2280E~Q02

. 852831069542

Gradient
~2.8B17993E~007
—1.082907E~005
—4 . 43Z869FE-004
~1.910917E~0Q2
~-8.526168E-001

Chi-square = J.649792479158

Fercentage goodness of fit = 45,500

Gradient Norm =

Farameter
—-1.721837E+002
5. 747GB4E+001
— R e 270084E4+Q00C
7 . 048645E-—-002
-4.780977E-004

- 852831069542

Gradient
-2.817993E~007
—~1 . 082907E~005
—4 ., 4328699E~-004
~1.910917E-002
-8.526168E-001

Section 2: Curve Fitting

49

50 Section 2: Curve Fitting

For each iteration you are given

e I—the current iteration (guess) number.

e P, ..., Ps—the model parameters (or polynomial coefficients).
9x*/dP;, ..., dx*/0Ps—the gradient vector at (P;, Ps, ..., Pj).
ChiSq—the value of Chi Square at (Py, P,, ..., P;).

|Grd|—the gradient norm (measures the flatness of Chi Square).

Notice that after five iterations the Chi Square value was reduced from the initial value of 373,820.73 to
3.64992479158 (where convergence occurred). The final coefficients make the fourth degree polynomial
look like this:

F(X)=P1+P2X+P3X2+P4X3+P5X4

where
P, = —1.791857 E2
P, = 5.747584 E1
Py = —3.270084 EO
P, = 17.048645 E—2
Py = —4.780977 E—4

The following graph shows the nine data points and the polynomial function determined above.

EEL . R ! L EMAN B T ! i)

zp@ |

168

1aa

Section 2: Curve Fitting 51

With the results, you also get something called percentage goodness of fit, which has the value 45.50.
This number can be used in the interpretation of the results, which is discussed after the model
evaluation.

Evaluating the Model

Now that you have the results of the fit, continue on with the example by adding a row and then
evaluating the model at X = 27 to answer the original question: “What is the value predicted by the
model at X = 27?”.

Input/Result
C=gq Mdl Frms Fit Quits After printing the results, the program returns to
the Fit menu.
@] : Press (@] to return to the main menu.

Data Edit Fit Quit?

(8] Press [(E] to access the data editor.

—
—r
]
[

The program enters the array at the first element.

o] The letter O has been redefined as the AL com-
mand. (Refer to page 32 for a description of the
redefined keys.)

AOD: REow or Column? Asks if you want to add a row or column.
(R] Add a row.
Add mew rFow =t710 Asks where to add the new row. The program de-
faults to one more than the current number of

rows.
Use the default to make the new row number 10.

52 Section 2: Curve Fitting

Input/Result
Morﬁiﬁg.,,
aLldE, 1s=8
YO1@,20=8
Moig,Zr=1

(9] inf [ENDLINE]

A new row is added to the array with default
values.

X =27

Use the default value since this number is not
used in the evaluation.

The default weight.

While holding the [@] key down, type irif. This

gives this row a weight of infinity. With this
weight, the row will not be considered in the curve
fitting process.

@ Exit the editor and return to the main menu.

Data Edit Fit Buit?

Subprogram name T POLY Access the Fit menu by scrolling through the sub-
File rmame7FITLIE program and parameter prompts using the

Mo, llf Moda1 F'ar‘r"_ E] key'

Input/Result

Csq Mdl Prms Fit Buit?
(m]
Fow # Cor RI1XTN
1 & (END LINE]
18 F = 122.687437739¢
2zq Mdl Prms Fit Quit?

3

Data Edit Fit Guit?

3

Oone

Interpreting the Resuits

Section 2: Curve Fitting . 53

Press [M] to start the process for evaluating the
model.

The program asks for the row number to be eval-
uated (or if all rows are to be evaluated).

Row 10.

The function value at X = 27.

Press to return to the Fit menu.

An important point about the program is that achieving convergence does not necessarily mean that the
model you have chosen is appropriate. ZF I T merely tries to come up with the best solution for the
model you have chosen. You can see from the graph on page 50 that the model chosen for this example
is a good one. However, in the general case, where graphs may be inappropriate, statistics, specifically
the Chi Square value, can be used to determine the acceptability of the model.

Assuming the dependent variables are normally distributed with standard deviations equal to the
weights, and assuming the model fits your data well, the value identified by the program as Chi Square
will be x*(») distributed. The degrees of freedom (the number of data points minus the number of

54 Section 2: Curve Fitting

parameters) is ». (The mean value of a x%(v) distributed variable is ».) In this example the Chi Square
value is 3.6499 and there are 4 degrees of freedom (9 data points minus 5 parameters). In general, if the
above assumptions are satisfied, you can expect Chi Square to be close to the mean value ».

Assuming the weights are valid, an unreasonably large value for Chi Square probably means that the
model selected is inappropriate for the data.

The determination of “unreasonable” is usually made beforehand based on how much risk you are
willing to take of rejecting a model when it is truly appropriate. For example, assume you are willing to
take a risk of 10% of rejecting a valid model based on the previous criteria. You would see from Chi
Square tables that 90% of the time a x?(4) (Chi Square with 4 degrees of freedom) distributed variable
will be less than 7.78. Consequently, you would reject the model if the computed value exceeded this.
Since 3.6499 is less than 7.78, you cannot reject the model for this example on that basis. In other
words, the model for this example is reasonable.

Because of the utility of the Chi Square statistic in evaluating the validity of the model, the BASIC
subprogram FZEMTZHI has been built into the Curve Fitting Pac. This program eliminates the need
to refer to Chi Square tables. FCEHTCHI accepts values for U, the upper limit, and V, the degrees of
freedom, and returns P, the probability that a Chi Square distributed variable is less than U.

CFIT calls FCEHTCHI, passing it U (the value identified by CFIT as Chi Square) and V (the num-
ber of data points minus the number of model parameters) and obtaining in return the probability, P.
The value identified by CF I T as the percentage goodness of fit is 100 x (1 — P). This is the percent-
age of time that a Chi Square distributed variable with V degrees of freedom would exceed the CFIT
value. If the percentage goodness of fit is less than your acceptable risk percentage (in this example,
10%), you would reject the model. Since the 45.50 returned by the program in this example is greater
than 10, you have no reason to reject the model at the 10% significance level.

Section 3

Optimizing a Function

Introduction

Optimization is a term used to describe a class of problems in which the objective is to find the mini-
mum or maximum value of a specified function. Often, the interest is focused on the behavior of the
function in a particular region. Thus the goal becomes one of finding a local minimum or maximum.
The OFTIMIZE program uses the FP Method to determine local minima or maxima for real-valued
functions whose gradient vectors can be defined analytically at each point. The functions can have up
to 20 variables.

Remember, the process you go through in QFTIMIZE involves:

1. Creating a subprogram for the function you want to optimize.

2. Running OFTIMIZE and specifying the name and location of your function subprogram to
OFTIMIZE.

3. Making an initial guess for the variables.

4. Optionally:
¢ Evaluating your function at the current variables.
® Editing the current variables.
¢ Editing the program control values.

5. Optimizing the function.

Creating the Function Subprogram

Before you run the program, you need to create a subprogram for your function and have it in memory.
For information on creating the required subprogram, refer to appendix G, “Creating Your Own Model
or Function Subprogram.”

Running the (i - Program

OFTIMIZE may be invoked through either a EiiM command or a CALL command from another
program.

You run OFTIMIZE by typing RUM OFTIMIZE (ENDLINE].

55

56 Section 3: Optimizing a Function

Specifying the Subprogram

Specifying the name and location of your function subprogram is the first step in OF TIMIZE. The set
of instructions that follow, as well as other sets in this section, are formatted to give the step number,
the display you will see, and the instructions on what to do to complete the step.

Step Display Instructions
1 Subprogram rname?l When you run OFTIMIZE, this is the first display you
see. Enter the name of the function subprogram to be
called.
2 File namz"R Enter the name of the file containing the subprogram.
3 How marnd wariables??2 Enter the number of independent variables (the default
is 2).

Make sure that your entry for the number of variables agrees with the number of variables actually in
your function subprogram. If the number entered is too small, you will probably get an error when the
function is evaluated. If the number is too large, you will get incorrect results.

Editing the Variables

After you enter the number of variables, the program displays the first variable for editing. You can
enter (or edit) the values by stepping through each variable. As in CF I T, all the features of line editing
in the HP-71 are available for use. (For more information on the keys used in line editing, refer to
“Keyboard Operation” in section 1 of your HP-71 Owner’s Manual.)

Step Display Instructions
1 Violaea Enter the value of the first variable in the initial guess.
Notice that the variables in the first guess default to
zero.
2 Wiz Enter the second variable. The program will prompt for

the remaining variables in a similar manner. When you
enter the last variable, the program will display the Op-
timize menu.

Options From the Optimize Menu
This is the Optimize menu:
Test Edit Opt [uit?

From it you can evaluate (test) your function at the current guess, edit the variables again, optimize
(minimize or maximize) the function, or quit the program.

Testing the Function

Section 3: Optimizing a Function 57

To test the function using the current variables, follow the steps outlined below.

Step Displéy

1 Tezt Edit Opt Quit?

2 F=nnn

Editing the Controis

Instructions

Press [T].

The program evaluates the function at the current vari-
ables and displays the result. Press to return
to the Optimize menu.

Once you have specified your subprogram, entered your variable values, and optionally tested your
function, you are ready to optimize. Before you actually start the optimization, though, you have the
option of editing the controls that affect the numerical calculations. The steps to do this are shown

next.

Step Display

1 Test Edit Qpt Suit?
2 Edit camtrols (Y.

3 MIM or MAKIimize?MIH

4 Bound eztimate?F

5 Appro=, arad (YesH»?
6 Const,. or PercentiCFa7?
7a Conztant? 00@0

7b FPercertage?, B0

8 Gradient limit?,

Instructions

Press (0].

Press if you want to edit the controls that affect the
numerical calculation, or [N] if you want to proceed with
the calculation using the current controls. If you enter
{N] at this point, the procedure continues at step 11.

Enter f1IH if you want to minimize the*function, or
MAX if you want to maximize it. The default is to mini-
mize it.

Enter the bound estimate (lower bound for minimizing
and upper bound for maximizing). A good estimate of
the bound can help the program to converge sooner than
it otherwise would. The default is to 4.

If your subprogram includes the gradient calculation,
press [N] and pick up the procedure at step 8. If you
want the gradient approximated automatically, press [Y].

Press [P] if you want to use a percentage of the param-
eters for Delta. If you want to use a specific constant for
Delta, press [C]. (Refer to appendix C for details on how
Delta is used to approximate the gradient.)

Enter the constant for Delta, or use the default value.
Enter the percentage for Delta, or use the default value.

Enter the gradient limit, or use the default. This limit,
compared with the norm of the gradient at each iterate,
is the criterion used to determine convergence.

58 Section 3: Optimizing a Function

Step Display Instructions

Enter the maximum number of tries to be made in the
line search routine. The default number of tries is 10.
(For details on the line search routine, refer to appendix
D.)

10 Iterations?25 Enter the maximum number of iterations to be made in
the attempt to converge. The calculation will normally
converge in less than 25 iterations, so, for convenience,
the default is 25.

A

9 Line search tries?ld

Performing the Optimization

If you chose not to edit the program controls, or if you completed editing them, you are ready to have
the program perform the actual optimization. Remember that OF TIMIZE searches for a local mini-
mum (or maximum). The absolute minimum (or maximum) may not be found. This is especially true
for functions which have many critical points.

When the program prompts to determine if you want a progress report, it is ready to optimize your
function.

Step Display Instructions

11 FProaress report (YHE>7 At each iteration, the current value of the variables, the
function value, the gradient of the function, and the
norm of the gradient can be output. If this information
is desired, press [Y]. This information is sent to the cur-
rent FRIMTEF I% device. The default is to display the
iterate number and the gradient norm on the current
ODISPLAY 1% device. If you get to this point and de-
cide that you don’t want to go through with the calcula-
tion, press [@]. The program will return to the Optimize
menu.

If you don’t want a progress report, press [N]; the program will start iterating and you will see the
display

#a |Grdi: n.nnnnnE nnn
For each iteration, the program displays the iterate number and the norm of the gradient.

If you do want a progress report (if you press [Y]), and if you have no printer attached, you will see the
display

Section 3: Optimizing a Function

59

If you press (Y] in response to this prompt, the program will stop between each result until [END LINE] is
pressed. If you do not want to stop, press [N] to see the progress report at the current DEL Y% rate.
Either way, the program starts iterating at this point and, if you have a printer attached, the progress

report will be printed.

The report will look like this if you are using an 80-column printer:

Initial values:

Function value =2340

Gradient Morm =524,
Mo ~Variable
1 = DOOOOOE OO0
- & o QOOOODE +000

Iteratian: 1

313469698

Gradient

080000E+nn“

Function value =9243X,85779216

Gradient Norm =32.22
No. Variable
1 1.733057E4+001
2 1.597326E+001

Iteration: 2

TI66EE2E

Gradient

» Q266B0E+001
1. BOS713E+001

Function value =9258.3446373081

Gradient Norm =173, 1B8BO683955

Na. Variable
i 1. 680509E+001
2 1.671128E+001

Gradient

«O74297E+00 1
=7« H4P422E+O00

60 Section 3: Optimizing a Function

Iteration: 3
Function value =9259.25892476

Gradient Norm =.161895444179

NG Variable Gradient
1 1.666421E+001 4, 526242002
2 1.667023E+001 -1 .554 395001

Iteration: 4

L]~ L] 2

Function value =9259, 25925925

Gradient Norm =1.11934775669E~73

No. Variable Gradient
1 1. 666668E+00] -9, 1931 EZ5E~-004
2 1.666667E4+001 —b. 3BIPIBE-O0O4

This example of a printed progress report is the progress report from “A Big Box,” the OF TIMIZE
example in section 1, starting on page 22.

Getting the Resuits

Once the program has completed the required iterations, two situations can occur. Either the program
will have converged or it will have reached the iteration limit without converging.

If the program did not converge, you will see the following:

Step Display Instructions
1 ITERATION LIMIT Press to go to the next display.
2 More iterationsd ¥ -H37 Press to continue iterating (starting from the last

iteration) with the same number of iterations as speci-
fied in the program controls, or press [N] to return to
the optimize menu.

Note: You may also see a numeric computation message, such as FIT ERRE~~
Tries > Limit. If this happens, press [f] to return to the Optimize menu.

Section 3: Optimizing a Function 61

If the program did converge, you will see:

Step Display Instructions
1 COHVERGED Press to continue.
2 Fauze on results(¥.-H*»? Press[Y]if you want to use to step through

the results, or press [N] if you want the results output at
the current DELAY rate. You will not see this prompt if
you have a printer attached.

As with the progress report, the final results will be sent to the current FRIHTER I% device. The
report will be printed like this if you are using an 80-column printer:

Function value =9259.25925925

Gradient Norm =1.11934775446F9E-73

No. Variable Gradient
1 1. 4666668E+001 ~F.193135E~-Q04
2 1.666667E+00] ~b. 3839IZBE-004

These printed results are the results from “0F TIMIZE Example: A Big Box” starting on page 22.

After the results are printed, the program will return to the. Optimize menu.

A Word on Gradient

Since the gradient is an integral part of the optimizing process, a discussion of what the gradient is and
how it is used in the FP Method is presented here.

For the function
F(X) = F(xl, Xgy X3y oony xk)

the gradient of F, denoted by VF, is defined by
JF, / axl
oF / 6x2
VF(X) = { 3F/dx3

6F/8xk

62 Section 3: Optimizing a Function

Notice that the gradient of F is a vector whose length (number of elements) equals the number of
variables. The components of VF(X) are the partial derivatives of F with respect to each coordinate.
The negative of the gradient vector gives the direction of steepest descent (that is, the way in which X
should be changed in order to cause the most rapid decrease in F(X)).

You might think that the most viable approach for obtaining the next estimate for the location of a
minimum for F is to proceed some distance from the current estimate X = (x;, xo, ..., x) in the direc-
tion indicated by the negative of VF(X). Indeed this technique (Steepest Descent) is in common use.
However, this is not always a good strategy in that it can produce very slow convergence when the
estimates get close to the desired location. The FP Method largely overcomes this difficulty by appro-
priately modifying the gradient vector to obtain a more productive search direction. For additional
details of the FP Method, refer to “Fletcher-Powell Method” in appendix C.

Appendix A

Owner’s Information

Limited One-Year Warranty

What We Will Do

The HP-71 Curve Fitting Pac is warranted by Hewlett-Packard against defects in materials and
workmanship affecting electronic and mechanical performance, but not software content, for one year
from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred
to the new owner and remains in effect for the original one-year period. During the warranty period, we
will repair or, at our option, replace at no charge a product that proves to be defective, provided you
return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIM-
ITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states,
provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above
limitation may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE
LIABLE FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow
the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion
may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state
to state, province to province, or country to country.

Warranty for Consurﬁer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be
determined by statute.

63

64 Appendix A: Owner’s Information

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard
dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please
contact:

e In the United States:

Hewlett-Packard
Personal Computer Group
Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

¢ In Europe:
Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

¢ In other countries:
Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Telephone: (415) 857-1501

Note: Do not send units to this address for repair.
-Service
Hewlett-Packard maintains service centers in most major countries throughout the world. You may

have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit
is under warranty or not. There is a charge for repairs after the one-year warranty period.

Appendix A: Owner's information 65

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt
at any service center. This is an average time and could vary depending upon the time of year and the
work load at the service center. The total time you are without your unit will depend largely on the

shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is lo-

cated in Corvallis, Oregon:

P.O. Box 999

Corvallis, Oregon 97339, U.S.A.

Hewlett-Packard Company

Service Department
or

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

1030 N.E. Circle Blvd.
Corvallis, Oregon 97330, U.S.A.

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

EASTERN EUROPE
Refer to the address listed under Austria.

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

D-6000 Frankfurt 56
Telephone: (611) 50041

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Osio)
Telephone: (2) 17 11 80

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kieinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

ITALY .
HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

FRANCE

HEWLETT-PACKARD FRANCE
Division informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.
Van Heuven Goedhartlaan 121

NL-1181 KK Amsteiveen (Amsterdam)
P.O. Box 667

Telephone: (020) 472021

SWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

$-163 93 Spanga (Stockholm)
Telephone: (08) 750 2000

66 Appendix A: Owner’s Information

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-
able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under Obtaining Repair Service in the United States. A list of
service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable.
All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period
of 90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:
* A completed Service Card, including a description of the problem.

e A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-
chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such
damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the
shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard
designated collection point or service center. Contact your dealer for assistance. (If you are not in the
country where you originally purchased the unit, refer to International Service Information above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery
to the Hewlett-Packard service center.

Appendix A: Owner’s Information 67

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-
of-warranty repairs in the United States and some other countries, the unit is returned C.0.D. (cover-
ing shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to
customers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett-
Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to all of its customers. To this end, our
customer support department has established phone numbers that you can call if you have questions
about this product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call:

(800) FOR-HPPC
(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:
(503) 754-6666
For either product information or technical assistance, you can also write to:

Hewlett Packard
Personal Computer Group
Customer Communications

11000 Wolfe Road

Cupertino, CA 95014

Appendix B
Error and Status Messages

The Curve Fitting Pac programs return certain messages under specific conditions. Some of these are
merely status messages, while others occur in response to an error. An incorrectly typed or constructed
command will produce an error message. An error in a subprogram may produce an error message and
halt execution of the program.

Several of the error messages are related to the amount of available memory. ZFIT and OFTIMIZE
contain tests for low memory conditions—conditions that would otherwise suspend program execution.
If you encounter an error or warning that refers to low memory conditions, you should interrupt the
program by pressing (ATTN], catalog the memory files, and purge unneeded files to make more memory
available. You can then press to proceed with the program.

BASIC Error Messages

The following is a list, in alphabetical order, of the error and status messages produced within the
BASIC programs. Refer to page 117 for a list of the BASIC programs in this pac.

Message and Condition

Oorne
The program has ended. The HP-71 is now ready for the next task.

ERRORE: 1 <= k <= Z@
The number of unknowns must be between 1 and 20.

EEREOR: M < 1
The number of independent variables and data points must be positive.

ERROR: Address
The given array element in a Z3T0 command does not exist.

EREOR: Arrag Too Larae
There is not enough memory to hold the new data array (or eniarge the existing data array).

ERROR: Data Format
The file being read is not a properly formatted HPAF file.

70 Appendix B: Error and Status Messages

Message and Condition

ERRECOR: File Mot Found

The file specified in a load operation or the file containing the named sybprogram could not be found.
ERROR: HFIL

An error was encountered when trying to print to an HP-IL device.

ERROR: Illeaal ChiSq
The given Chi Square estimate is invalid.

ERREOR: Illeqal [O=lta
The given Delta is invalid.

ERROR: Iterastions 4 2
You must allow at least two iterations.
ERROR: Limit <=
The gradient limit must be positive.

=

EREOR: Mo Data
There is no data. Data may be entered with the keyboard or load option.
ERREOR: Ho Printer
There is no printer on HP-IL.
ERREORE: Honmsxistent Col
The given column in the ADD or DELETE command does not exist.
EREOR: Honexistent REow o
The given row in the DELETE command does not exist.
EREOE: Hot Enouah HMem
There is not enough memory to edit the data, or there is not enough memory to run the program.
ERROR: Hot HFAF File '
The data file specified for a IR is not in the HPAF format.
ERREOR: & Of Columns
The file being added to the data array has a different number of columns than the array.
ERROR: FCEMTCHI Failed
The calculation of the percentage goodness of fit failed.

ERROR: SUE Mot Found
The subprogram could not be found.

Appendix B: Error and Status Messages 71

Message and Condition

ERREOR: Triez < Z
You must allow at least two line search tries.
ERROR: Yau Heed 1 Row
The data array must contain at least one row.
EREOR: You Heed 2 Cols
There must be at least three columns in the data array—allowing for one independent variable, the
dependent variable, and the weight.
ERREOR dd SUBPROGEAM
The subprogram cannot be called successfully.
MEM: Dea. Freedom < 1
The PCENTCHI calculation is meaningless for degrees of freedom less than 1.

Binary Error Messages

This next listing is the error messages that can be produced when an error is detected and reported
from within one of the FITL IE binary subprograms that you can call. In addition to displaying the
error or warning message, the subprogram passes back a condition code in the last variable that appears
in the calling statement. The condition code will agree in magnitude with EFFH, but will additionally
indicate whether the exceptional event was treated as a warning or error. A negative condition code
indicates warning and a positive condition code indicates error. The occurrence of such a warning or
error will not be detected by an OH ERROF statement and will not halt a running program. Con-
sequently, it is usually best to test the condition code immediately after a call to any of the binary
subprograms provided in this pac. CFIT and OF TIMIZE do this automatically for you.

If CFIT or OFTIMIZE do encounter an error, the programs pause and the SUSP annunciator ap-
pears. The program can be continued by pressing [f)[CONT].

Note: Normal exits (including warnings and errors) will deallocate the scratch memory (system
buffers) used by the binary subprograms making this memory available for other uses.

However, there are four exceptional events that are treated differently than the description above. If
the subprogram is unable to assign a value to the condition code variable (errors 3015, 3016, and 3017),
the error message is displayed as usual, but you will not be returned to the calling environment. In-
stead, the current file will be FITLIE and the environment will be that of the subprogram that de-
tected the error. These errors are detected before any scratch memory is allocated. To recover, type
EHDOESUE from the keyboard to return to the calling environment.

72 Appendix B: Error and Status Messages

A similar situation occurs if there is an attempt to display an error or warning and there is insufficient
memory to do so. In this case the original error or warning message is replaced by the error message
ERFR: Imnzufficient Memory, Execution is halted with FITLIB as the current file and the lo-
cal environment as that of the subprogram that attempted the error or warning message. In this last
case, any scratch memory currently in use will not automatically be deallocated. You can recapture this
memory by executing the keyword K ILLEIIFF, which explicitly deallocates all three of the system
buffers that are utilized by this application.

These four exceptional events are, in normal use, extremely unlikely. In fact, the OFTIMIZE and
CF IT programs protect you from the condition code errors by internal dimensioning and value check-
ing. The insufficient memory error is not excluded but is unlikely since the error messages are short. If
you are short of memory, it is far more likely that you will see the error FIT ERE~~Hz Foom which
indicates lack of memory to create required system buffers or to execute one of the many calls made by
the binary subprograms to other subprograms.

Binary Error Listing

Errors and warnings detected by the binary subprograms are preceded by “F I T” with a “~~” appearing
where the line number is normally displayed. The following table lists the error messages that can be
produced within the binary subprograms.

Condition

Message and Condition
_Code

3001 FIT ERRE~~HAbor tad
The [ATIN] key was pressed during the execution of FIT, FF, or LS.

3002 FIT ERE~~Fass By Yalues
A parameter that must be passed by reference to one of the binary subprograms has
been passed by value.

3003 FIT ERR~~Mat Mot Sqr
The FP matrix must be a square matrix.

3004 FIT ERR~~Toa Mang Yar
The number of unknowns (k) exceeds 20, or a matrix which should have length k is too
large.

3005 FIT ERRE~~Bad Dimension
At least one of the arrays passed to a binary subprogram has the wrong length.

3006 FIT ERR~~Mo REoom
Insufficient memory to execute the binary subprogram.

Appendix B: Error and Status Messages

73

. Condition Message and Condition
Code
3007 FIT ERR~~Complex Mat
An array passed to one of the binary subprograms is of COMPLEX type.
3008 FIT ERR~~LCaomplex Yar
An argument to one of the binary subprograms is of COMPLEX type.
3009 FIT ERE~~Ho Buffer
An expected system buffer was not found after return from a call.
3010 FIT ERR~~Trie=zs * Limit
The number of attempts within line search exceeded the supplied limit with no detect-
able improvement.
-3010 FIT WREH«~Tries > Limit
: The number of attempts within line search exceeded the supplied limit but with
improvement in the current iterate.’
3011 FIT ERR~~Grad Delta=Q
The parameter used to approximate the gradient in GRALF or GRADM is 0.
3012 FIT ERR~=~Int Tupe \ar
An argument to one of the binary subprograms is of INTEGER type.
3013 FIT ERRE=~Int Tupe Mat
A matrix argument to one of the binary subprograms is of INTEGER type.
—3014 FIT WRH~~Gradient=n
The matrix argument used to pass the current gradient is zero.
3015* FIT ERR~~CC-Int Tupe Var
The condition code variable is of INTEGER type.
3016* FIT ERR~~CC—-Faz=z Bu Walue
The condition code has been passed by value.
3017* FIT ERR~~CC-Complex Mar

The condition code variable is of COMPLEX type.

* These values are not assigned to the condition code variable. However, ERFH will have these values.

74 Appendix B: Error and Status Messages

Condition Message and Condition
Code
3018 FIT ERE~+~HaMH or Inf
A HaH or Inf is encountered as a computed resuit or as an argument where
disallowed.
—3019 FIT MREMH~~Grad P+dP=F
An attempt has been made to approximate the gradient with a value of Delta too small
to effect a change in one of the parameters. In this case, at least one of the partials
being approximated will erroneously be zero because of roundoff error.
3020 FIT ERR~~U=zear
A user function or model subprogram has set the condition code variable to 3020.
—3020 FIT WRH~~U=zer
A user function or model subprogram has set the condition code variable to —3020.

Condition Code Messages 3020 and —3020

The last two messages, 3020 and —3020, need a little more discussion to understand them completely.

These messages provide a mechanism for handling an error or warning detected within a model or
function subprogram you write. If the value of the condition code variable is established as 3020, the
error is displayed and the program halts just as with other error messages generated within the binary
subprograms. (If the value is established as —3020, the warning is displayed and the program

continues.)

If the condition code variable (C) is established as Ha=H, an error (message 3018) is generated. If the
condition code is unchanged by the subprogram, its value upon exit remains zero and the calling pro-
gram assumes normal processing has taken place and continues execution. Other nonzero values for the
condition code variable assume an error if C>0, or warning if C<0, and that a message has already

been displayed.

Appendix C

Numerical Methods

Fletcher-Powell Method

Both CFIT and OFTIMIZE use an algorithm commonly referred to in this manual as the Fletcher-

Powell (FP) Method*. This algonthm accepts a function F(X) = F(x,,x,,...,x,) with k variables and an
initial guess P = (p,,p,,.-., pk) for the location of a local minimum, and then produces the next guess
P = (p/,pys...,0)T. The manner in which this is accomplished is described next.

A k by k square matrix H is first initialized as the identity matrix. The use of the matrix H and the
manner in which it is modified after each new guess distinguishes this method from other similar
methods.

The negative gradient of F at the current iterate (— VF(P)) is computed. This vector gives the direction
of steepest descent at P. A unit search direction S = (sl,sz,...,sk)T is established via

8§’ = —H(VF(P))

This vector is then normalized to the unit vector S via
=S/18|

Notice that initially H is the identity matrix, hence the direction for the first iterate is simply the
direction of steepest descent. In theory it can be shown that the matrix H remains symmetric positive
definite throughout the entire process and, consequently, that the function is always “decreasing” near
P in the direction given by S.t

* R. Fletcher and M.J.D. Powell, “A Rapidly Convergent Descent Method for Minimization,” Computer Journal, July 1963, pages

163-168.
 In practice, the modifications made to H can introduce roundoff errors, thus permitting H to lose these desirable properties and

forcing a “restart” procedure to be employed in which H is reinitialized as the identity.

75

76 Appendix C: Numerical Methods

After a useful direction S from the current iterate P has been established, the next iterate is defined as
P'=P +t x S for some appropriate choice of a positive scalar t. Thus P’ lies on the ray emanating
from P in the direction S.

The task that remains is the determination of an appropriate value for ¢. This task, commonly called
line search, is not part of the FP Method. Various line search techniques are in common use. The one
employed in this pac uses a modified cubic fit along the search ray. Details of the line search algorithm
are given after the FP method is fully described. For now, observe that the value of t should be such
that F is minimized near P in the direction S. This observation implies that line search is equivalent to
minimization of a function of a single variable t. The function to be minimized is

h(t) = F(P + S)

After an appropriate value of ¢ has been obtained, the iterate P’ is computed and the matrix H is
updated as follows: (Notice that the denominators in the expressions for A and B are scalars.)

R=P—-P, R=AP (kbyl)
R=G—-G; Q=A(VF) (kbyl)
H=H+A-B

The k by k matrices A & B are computed as follows:

A = (RRT)/(RTQ)
B = (HQQTH) / (Q"THQ)

Line Search

As previously mentioned, the object of the line search is the minimization of the function h(t). Before
launching into the explanation of the algorithm, you’ll need to know some notational conventions.
Notice again the function to be minimized:

h(t) = F(P + tS)

P is the current iterate and S is the search direction. The algorithm will selectively sample h at various
values of t. Assuming selected values of ¢ at t = tg, ¢;, and ty, let us denote h(ty) by hg, h(ty) by h, and
h(t;) by h,. Similarly, let us denote the slopes h’(ty), h/(t;), and h'(ty) by mg, m;, and ms, respectively.
Observe that given values £, t;, and t,, the determination of hg, h;, and hy can be obtained directly thru
a CALL to the subprogram that represents the function F. The values of mg, m,, and m; are computed
via:

m; = (VF(P + t;8)TS; for i = 0,1,2

What we have on entry to the line search algorithm is P, the current iterate, S, the search direction
(from the FP algorithm), and L, the estimated functional lower bound.

Appendix C: Numerical Methods

The first step in the algorithm is to compute mg and ensure that m, < 0. If this is not the case, the FP
matrix H is reset to the identity and a new search direction S is determined. (This guarantees a new
value of mg such that my < 0 with equality only if the norm of the gradient is 0.)

Then, the algorithm initializes ¢y = 0 (corresponding to P’ = P), and determines a value t, in such a
manner that we expect the interval (¢y,£5) to be a good search interval for the function h. More specifi-
cally, if hy < L (this corresponds to a bad guess at L), L is first reset to hy + (my/2). Notice that my is
less than 0; therefore, the new value of L is less than hy,.

ty = MIN [—2(hg — L)/mg ,1]

This choice for t, deserves some explanation. The value given by ¢ = —2(hy — L)/my is quite reason-
able assuming that we are “close” to the minimum and L is a “good” guess at the minimum functional
value. Near the minimum the second order terms in the Taylor expansion dominate, and h can be
approximated by a quadratic. With these assumptions, ¢ is the location of the minimum of the qua-
dratic that agrees with h (both value and derivative) at 0 and has minimum value L.

However, if the choice of L is not good, or if we are not close to the minimum, the search interval is
restrained to maintain selective sampling near the current iterate by limiting the value of to. The value
of 1 for this restraint is suggested by the literature and seems adequate in practice.

Now h, and my are evaluated (the value of h and h’ at t5).

The four values that we now have, hgy, hy, my, mo, are sufficient to fit a cubic to h, determine the
location of the minimum of the cubic and use this as a guess for ¢.

Roughly speaking that is what the algorithm does. However, in practice it is generally more productive
to move at least one of the endpoints in the search interval (fy,¢5) and try again, unless my > 0
(corresponding to a sign change in the derivative of h). There are various cases to consider that depend
on the sign of my (and the value of h, relative to hy if my < 0). These cases are illustrated by the
following sketches and descriptions of the action of the algorithm in each case.

77

78 Appendix C: Numerical Methods

Case 1: my > 0. This is the desirable case.
In this case the algorithm performs the cu-
bic fit obtaining a value t; that is an es-
timate of the location of the minimum of h.
In the equation

Z= 3(h0 - h2)/(t2 - to) + my + my

the cubic degenerates to a quadratic if
2Z + my + my = 0. In this case:

t1 == to + mo(t2 — to)/(2Z + 2m0)

Otherwise

W =VZ? — mym,
p=(my+ W—2)/2W+ m, — my)
Also

tl = t2 - [l(t2 - tO)

Case 2: my < 0, hy > hy. In this case the
algorithm changes the search interval to
(tg, (8o + t5)/2). This reduces the search
interval by 1/2. Thus, the algorithms resets
t, to (tp+ t;)/2 and repeats from the
evaluation of hy and m.. It also increments a
counter that keeps track of the attempts to
achieve case 1.

X‘

Appendix C: Numerical Methods 79

Case 3: my = 0, hy < hy. In this case, the h
algorithm returns from the line search with
P’ = P 92 = P + t2S

h(t)

Case 4: my < 0, hy < hg. In this case the
algorithm changes the search interval to
(to, ts + 2(ty — tp)). This expands the search
interval by a factor of 2. Thus the algorithm
sets ty = t, and doubles the search interval
size. It also, ‘as in case 2, increments the
counter that keeps track of the attempts to
achieve case 1 and repeats from the
evaluation of hy and m,.

After an attempt at a cubic fit (from case 1), you have a quite reasonable choice ¢; for the location of
the minimum for h.

If the fit was a success, t; is the location where the cubic polynomial, which agrees with k& (in both
value and derivative) at the search interval endpoints, achieves it’s minimum value. If ¢; does not lie
within the search interval, it is reset to the interval midpoint before the process continues
(tl = (to + t2)/2)

You have no guarantee at this point that ¢ is actually an improvement (h; is smaller) over the values
at the endpoints of the search interval. Thus the next step is to evaluate h; and m;.

80 Appendix C: Numerical Methods

If hy < MIN(hg, hy), the algorithm returns from the line search with P’ = P + t;S. Notice here that
the algorithm does not spend time attempting to improve the value of ¢;. In this type of application,
determining the precise location of the minimum of h (especially for early iterations) is not nearly as
impertant as minimizing the number of function evaluations per iteration. Thus, the line search al-
gorithm attempts to produce an improved iterate and return quickly to the FP portion of the algorithm
where a new search direction is selected.

If, however, hy is not less than MIN(hg, hy), the algorithm does one of three things:

e If m; < 0, hy = hq: It contracts the search interval to (to, (to + t3)/2), increments the failure count,
and repeats from the evaluation of hy, m,.

¢ If m; <0, h; < hy: It contracts the search interval to (t;,t,) (sets ty = t;), increments the failure
count, and retries the cubic fit.

e If m; > 0: It contracts the search interval to (£, t;) (sets ty = t), increments the failure count, and
retries the cubic fit.

Throughout the process, the failure count is getting incremented if progress is not being made. This
value is checked against a user-supplied limit (TR IES) each time it is incremented. If it ever exceeds
the limit, and the line search algorithm is unable to return with a new iterate that is “better” than the
one on entry, a fatal error results. Here “better” means that a smaller (assuming the application is
minimization) function value results (or the same function value with a smaller value for the magnitude
of m).

Function Optimization

The FP Method and line search algorithms can be applied directly to the problem of optimizing a
function. Although the FP Method is a minimization algorithm, it can also be used to maximize a
function. This is due to the fact that local minima (maxima) for a function F are local maxima (min-
ima) for the function —F.

Thus one approach to using the GFTIMIZE program to maximize a function would be to provide the
negative of the desired function. This would require you to change the subprogram that encodes the
function during searches for critical points.

MAX or MIM?

However, the user interface to the numerical algorithms is friendlier than that. You need only indicate
that you want to find the maximum when prompted by the program. The interface will then set or clear
the appropriate user flag that is examined at the time that F is evaluated. If appropriate, the value of F
(and it’s gradient) will be negated based on the value in this control flag. This control flag is user flag
number 61.

Appendix C: Numerical Methods 81

Gradient

You can optionally indicate that you want the gradient of your function (or model) approximated. This

is also implemented in the user interface through the use of a user flag that is examined at the time the
function (or model) is evaluated. This flag is user flag number 62. The user interface responds to your
preference by setting or clearing this flag.

However, you should be aware that the use of this friendly feature to approximate the gradient can
make the program run significantly slower. Information on gradient approximation follows.

Gradient Approximation

If you are unable to compute the gradient in the subprogram that you use to specify your function (or
model, if your application is curve fitting), you can have the gradient approximated for you. This can be
very convenient, but has speed and accuracy considerations that you should be aware of.

Speed
Let’s take an example using CF I T, assuming 20 data points and the model function given by
F = FPIESIHCF2¥HEY + PIYESEFPC-H2

If the gradient is to be approximated, at least k + 1 calls (k¥ = number of parameters) to the model
function will be necessary to obtain the value for F and it’s approximated gradient. In the above exam-
ple, kK = 3 and four calls are necessary. One call establishes the function value F. Three additional calls
are necessary to evaluate F near P() in the three coordinate directions. For example, the approxima-
tion of the first coordinate in the gradient requires

F(P, + &P, Py),X) — F

€

dF/oP, =

for some appropriately small non-zero value e. Consequently, féur calls to the model are required where
only one would be required if the gradient were computed in closed form within the subprogram.

If this example is carried a bit further, the impact on speed can be seen more clearly. The function to be
minimized is the Chi Square function that is associated with the model. The Chi Square function needs
to call the model subprogram 20 times, each time obtaining both a model value and the gradient of the
model to produce the Chi Square function value and it’s gradient. If the gradient of F must be approxi-
mated, at least eighty (4 X 20) calls to the model subprogram are required to achieve each value of Chi
Square and it’s gradient. Examination of the line search algorithm shows that generally at least two
functional evaluations will take place (and often more) for each iteration.

At the minimum then, for 20 data points, 160 calls will be made to the model function pér iteration.
This compares to 40 calls if the model gradient is supplied within the subprogram.

82 Appendix C: Numerical Methods

Most of the computation time will be spent within your BASIC subprogram. Consequently, anything
you do within this subprogram to effect speed improvements (including the evaluation of the gradient
in closed form) can have a significant impact on the total speed of the program.

Accuracy

One of the drawbacks to the approximation of the gradient is that the difference quotients can be a
source of significant error. To illustrate, when the values in the numerator of the following equation are
sufficiently close,

F((P; + ¢,P,,P3),X) — F

€

OF/oP, =

their difference can produce 0 when the actual value can be quite large. The value entered in CF I T and
OFTIMIZE as the constant or percentage is referred to here as Delta. If flag 63 is clear (Delta =
constant), the value of ¢ is Delta. If flag 63 is set (Delta = percent), ¢ is the specified percentage of the
parameter P as shown below:

| P x (Delta/100) if P+ 0
€= | Delta/100 if P=0

The main sources of error in the previous equation are the calculation of P; + ¢ and the difference that
appears in the numerator. Both of these sources of error can require special handling to avoid
inaccuracy.

To illustrate these errors, consider the box example on page 22. The first line of the following table
shows the result if VV(W, H) is computed at W = H = 16.66664 within the subprogram by a direct call
to the given box subprogram. The value in line 1 is the exact value of the gradient vector and is useful
for purposes of comparison with the results presented in the lines of the table representing gradient
approximation (lines 2, 3, and 4). These last three lines were obtained by calls to the subprogram
ZRADF with flag 63 (relative approximation) set and with the indicated values for Delta.

VV(W,H) = (9V/dW,0V/oH)"

Delta (%) aV/oW dV/oH
(actual value) 2.66666240000 E—3 2.66666240000 E—3
0.001 —3.06000489601 E—3 —3.06000489601 E—3
0.0001 1.80000288000 E—3 1.80000288000 E—3

0.00001 0 0

Appendix C: Numerical Methods 83

This table illustrates some of the pitfalls that can beset the unwary user of gradient approximation.
The previous equation shows the first coordinate (dV/dW) of VV(W, H) is computed as

V. V(W + ¢H) — V(W,H)
oW €

where ¢ = W x (D/100). In this case the basic problem can be traced to the fact that the point (W, H)
is very close to the local maxima at (W, H) = (50/3,50/3).

Secant Line

=!
i

(W,H) I (W+¢€,H)

v
H

VIW+eH)
V(W,H) T

YA w

The thing to realize here is that the secant line joining the points (W, H, V(W,H)) to (W + ¢
H,V(W + ¢, H)) is being used to approximate the partial of V with respect to W. As in the two-
dimensional case, where a secant is often used to approximate the derivative of a function, the choice
of e can become critical near local minima or maxima.

In fact, if € is too large, the secant line can become a poor approximation and yield unsatisfactory
‘results (as in the second and third lines of the table). If ¢ is too small, the function may be unable to
distinguish between (W, H) and (W + ¢, H) due to roundoff error in the functional evaluation. In this
case, the difference quotient becomes zero (as in the fourth line of the table).

If possible, compute the gradient within your subprogram—especially if you need extremely accurate
results.

84 Appendix C: Numerical Methods

Application to L

The FP Method and line search algorithms described previously can be applied directly to a curve fit
problem. This is true because there is a binary subprogram named CSit in the file FITLIE that
computes Chi Square (and it’s gradient) of the user’s model and data set. This subprogram, as well as
others in the file FITL IE, can be called from the keyboard and called from within user-written pro-
grams. For information on CZ@ and other user-accessible routines, refer to appendix D.

Minimizing Chi Square

CFIT attempts to fit your data by minimizing the Chi Square function associated with your data set
and the specified model.

" The Chi Square function associated with the model F=F(X(),P()) at the current parameter iterate
P() is defined by

X*(P()) = 2‘1 [(F;— Y)/W,P?

(1) Chi Square Function

Where F; denotes F = F(X(),P()) with X() the ith row in the Data Set. Y; is the dependent variable
and W; is the weight.

ax*(P) F,—Y) OF

m
=2 X
oP; i;l W oP;

(2) Gradient Chi Square Function

With equal weights, equation (1) corresponds to the function that is minimized in the usual least
squares method. Equation (2) provides the gradient of the Chi Square function in terms of the gradient
of the model. Observe that there is no requirement that the model be linear. Indeed the model function
may be quite general. :

Difficult Cases

In addition to the difficulties associated with gradient approximation (refer to page 81 for information),
there are areas where you may experience difficulty in obtaining the desired results. In some cases the
difficulty can be avoided or its impact minimized. Three of these situations are described below. The
information is not designed to provide a general solution to all the problems you might encounter, but
to give you some ideas as to how to go about solving problems.

Appendix C: Numerical Methods 85

The Inability to Meet Convergence Criteria

The nature of the function being optimized (or the nature of Chi Square in ZFIT) and the limits of
machine precision can combine to keep the gradient norm from becoming sufficiently small to meet the
convergence criteria used by OF TIMIZE and CFIT.

It is not unusual for the current iterate to be very close to the desired result, yet still have a reasonably
large value for the norm of the gradient. This makes the selection of the limiting value used by CF I T
and OF TIMIZE to detect convergence somewhat arbitrary. For this reason, you are given the ability in
both CFIT and OF TIMI ZE to change the value for the gradient limit by editing the program controls.
A good strategy is to start with the gradient limit large, and, after convergence, reduce the limit and
continue in an attempt to get closer to the desired result.

The error message
FIT ERR~~TRIES > LIMIT

often indicates that, because of machine precision and because of the nature of the function, the cur-
rent iterate cannot be improved.

Sampling Outside the Intended Domain

An attempt to minimize the function F(x, Y)=(x—3%+Vx— y) without special precautions will
almost certainly result in sampling the subprogram for F at some point for which x < y. This, in turn,
will result in the math error @R ¢ 123 *. The solution for this type of problem depends on the nature
of the function. For this example, probably the most simple solution involves the realization that you
“can replace the \/(x — y) with (x — ¥)? without altering the solution.

Constrained Optimization

Some functions are subject to equality and inequality constraints. For example, a function to minimize
such as F(x,y) = (x — 8)> + (y — 2)% can be subject to the constraint G(x,y) =x+y—4 =0 or, pos-
sibly, x +y — 4 < 0.

In simple cases like this the equality constraints can be used to solve for one variable in terms of the
others. Substitution into the object function F will then eliminate one or more variables, and then the
resulting function can be minimized.

Inequality constraints, such as G(x,y) < 0, are often handled by the use of a penalty function. One or
more terms can be added to F to penalize samples taken from the wrong or undesirable region. For
example:

H(x,y) = F(x,y) + R/G(x,y)
=@x—-3"+(—-22+R/(x+y—4)

86 Appendix C: Numerical Methods

A minimum for H when R = 1 can be found using OFTIMIZE. By successively reducing R in small
steps and by using the value obtained from the previous solution as an initial guess, you will obtain
solutions which converge to the answer (x, y) = (2.5,1.5) where F(x,y) = 0.5. This type of procedure
could even be “automated” by storing the updated value of R in a file that would be read by your
subprogram for H.

Appendix D

User-Accessible Routines

This appendix describes the numerical subprograms that are available in the file F I TL I E, their syn-
tax, their calling relationships, and their memory requirements. Also, there is information describing
the BASIC subprogram that produces the value of the Chi Square distribution function as well as
information on two BASIC keywords, KE"“HAIT#$ and K ILLELFF, which reside in FITLEX.

Subprogram Description and Calling Syntax

What is described here is the required syntax in a CHALL statement to the user-accessible subprograms.
Of course, the actual variable names that you choose are immaterial. What is important is that the
number, type and location of the arguments agree with the specifications that follow. In the case of the
array parameters, the dimensions must be consistent with the problem. For example, the length (the

number of elements) of the array B() that appears in the call to &5 must equal the number of un-
known parameters.

While none of the binary subprograms are base option dependent, CF I T and OF T IMIZE require base
option 1.

The FF Subprogram

Functional Description. Performs one iteration of the FP method and the line search (described in
appendix C) upon the function specified by the subprogram Fi1# located in the file A= .

CIHLL FRCRLIF , A2F, B0, 000, DL,E,FO, 2, G,H, I,2> IH FITLIE

Inputs:
A1# - Name of the subprogram encoding the function.
AZ % - Name of the file that contains the subprogram.
E < » - Current iterate.
£ 7 3 - Gradient at the current iterate.
0 - Delta for gradient approximation (if flag 62 set).
E - Function value at the current iterate.
F .- FP matrix.
G - Line search iteration limit.
H - Estimate at functional bound.

87

88 Appendix D: User-Accessible Routines

Control Flags:

61 62 63

Set | MAX Approx dP = %
Clear | MIN | No Approx | dP = Constant

Outputs:

E i » - New iterate.

<1 - Gradient at the new iterate.
E - Function value at the new iterate.

F i, - Updated FP matrix.

H - Updated bound estimate if original “bad.”
1 - Norm of the gradient.
Z - The condition code.

Comments: If the function has k vari- Array Length
ables, the arrays must have dimensions B() k
that produce the lengths shown at c() k
right. F(,) kbyk

The FP subprogram samples the user’s subprogram that encodes the function to be optimized by calls
of the form:

CALL AR1FcBCy, Con,E, 20 IN RZ¥
The subprogram FP uses the results of such calls as described under “Fletcher-Powell Method,” in
appendix C.
The GRALDF Subprogram

Functional Description: Produces an approximate gradient vector C 1 assoc1ated with the function
specified by the subprogram F1# that appears in the file AZ¥.

CALL GRADFCALE,AZ$,B(x, 0oy, 0,E, 2 IN FITLIE

Inputs:
f1% - Name of the subprogram encoding the function.
g% - Name of the file that contains the subprogram.
B¢ » - Current iterate for the unknown parameters.
- Delta for gradient approximation.

Appendix D: User-Accessible Routines 89

Control Flags:

61 62 63

Set not used | not used dP = %
Clear | not used | not used | dP = Constant

- Outputs:

¢ » - Approximated gradient at B« .
E - Function value at B ».
Z - The condition code.

Comments: An error is returned if Array Length
D= 0.) B() k
C() k

" The Jth coordinate, c;, is evaluated by the formula:

_ Flbyby,....b + ¢,...b) — Flby,by,....b,,...b,)

€

F is the function whose gradient is being approximated. ¢ = D if flag 63 is clear. If flag 63 is set,
¢ = b,(D/100) or D/100 if b; = 0.

The CRAROF subprogram is called by FP in the case where the gradient is to be approximated. The
‘function subprogram must have the syntax that corresponds to the following call:

CRLL R1$CBCx, COX, E, 22 IN AZE

The function subprogram F 1% will be called k 4 1 times to accomplish the stated objective.

The FIT Subprogram

Functional Description: Performs one iteration of the FP Method and the line search upon the Chi
Square function associated with the specified model and data set.

CALL FITCRAL1E, AZF, Jo, 0, ¥ox BOr, CO , 0L,E,FC, 3, G,H,I,Z IH FITLIE

90 Appendix D: User-Accessible Routines

Inputs:
A1% - Name of the subprogram encoding the model.
A% - Name of the file containing the model subprogram.
4%, » - Data array.
“ 1 » - Scratch array.
E < 3 - Current iterate for the unknown parameters.
¢ - Gradient at the current iterate.
[l - Delta for gradient approximation (if FLAG &2 set).
£ - Chi Square value at the current iterate.
F <, » - FP matrix.
= - Line search iteration limit.

H - Estimate at functional bound.
- Control Flags:
61 62 63
Set | MAX Approx dP = %
Clear | MIN | No Approx | dP = Constant
Qutputs:

B+ 3 - New iterate.
¢ - Gradient at the new iterate.

E - Chi Square function value at the new iterate.
" F¢,»- Updated FP matrix.
H - Updated bound estimate if original “bad.”
I - Norm of the gradient (usual norm).
Z - The condition code.
Comments: FLAG &1 should be Array Length
clear (set equal to 0) so that the Chi J(,) mby (@ +2)
Square function is minimized. If the X() n+2
model has k parameters, n independent B() k
variables, and there are m data points, C() k
the arrays must have the lengths F(,) k by k
shown at right.
The FIT subprogram calls the 5 subprogram which in turn makes calls to the model subprogram
in order to achieve it’s task—performing one iteration of the FP algorithm applied to the Chi Square
function associated with the user’s model. The calls made by FIT to 5t have the form:
CALL CSRCRlE, AR, JE, p, w0 By, Co 0L ELEY I FITLIE

The subprogram F 1T uses the results of such calls as described in “Fletcher-Powell Method,” in
appendix C.

Appendix D: User-Accessible Routines 91

The CZ i Subprogram

Functional Description: Evaluates the Chi Square function and its gradient associated with the
-gpecified model and data set at B ».

CALL CSOCALE, AZF,J0, 3, 8oy, B0y, 002, 0,E, 22 IN FITLIE

Inputs:
| A1# - Name of the model subprogram.
AZ#% - Name of the file that contains the model subprogram.
¢ . 2 - Data array.
- Scratch array.
[» - Parameter array.
[- Delta for gradient approximation (if FLFAZ &2 set).

Control Flags:

61 62 63

Set | not used Approx dP = %
Clear | not used | No Approx ! dP = Constant

Outputs:
¢+ - The gradient of Chi Square at £ ».
E - The value of Chi Square at E ¢ .
Z - The condition code.

Comments: If the model has k param- Array Length
eters, n independent variables, and B() k
there are m data points, the arrays X() n+2
must have the lengths shown at right. J) mby (n+2)
C() k
The ¢ 2 variable is used by C% @ to successively load in rows of the data array and execute calls to

the user’s model subprogram via:
CALL RAIFCBEC &S0, 000, E. 2% IH RZ2F

The results of each such call are used to update sums kept for the values of Chi Square and it’s gradi-
ent.

92 Appendix D: User-Accessible Routines

The GREADM Subprogram

Functional Description: Produces an approximate gradient vector ¢ » for the model function fil ¥
in file A2 ¥,

CALL CGRADMCAL$E, AZE, S0, B, 0oy, 0,E,E IN FITLIE

Inputs:

il ¥ - Name of the subprogram encoding the model.
FZ#% - Name of the file that contains the model subprogram.
i 3 - Scratch Variable used to pass row data to model.
B¢ » - Current Iterate for the unknown parameters.
[- Delta for gradient approximation.

Control Flags:

61 62 63

Set not used | not used dP = %
Clear | not used | not used | dP = Constant

Outputs:
0 s - Approximated gradient at E . .
E - Model value at B« *.
7 - The condition code.

Comments: An error is returned if Array Length

D =0. X() n+2
B() k
C() k

The jth coordinate, c;, is evaluated by the formula:
F(by,by,...,0; + €...by; X1y Xgy ey %) — Flby,by,..., by 0y Xys Xgyenns X))

€

¢ =

F is the model whose gradient is being approximated. ¢ = D if flag 63 is clear. If flag 63 is set,
e = b(D/100) or D/100 if b; = 0.

The =EFADM subprogram is called by TS in the case where the gradient of Chi Square is to be
approximated. The model subprogram must have syntax corresponding to the CHLL:

CALL AL$CECY,Hcy, 000, E, 22 IH A2

Appendix D: User-Accessible Routines 93

The model subprogram Fi1# will be called k + I times by GFEFLFM to approximate the gradient of the
model at a particular fixed row of the data array. The gradient of Chi Square is approximated by
repeating this process m times (once for each data point or row in the array) and summing the results.
A call to ©5% with the gradient of the model to be approximated will result in m X (k + 1) calls to

the model subprogram.
The FIL'Y Subprogram

Functional Description: Computes E, the polynomial value at x, and = ¢ », the gradient with respeét
to the coefficients. The degree (up to 19) is determined by array sizes, and the evaluation proceeds by

Horner’s method.
CALL POLYCBOD MO, Cox,E, 2 IH FITLIE
Where E and [« » are returned as:
| E=0b,+bx + b+ ... + bx* 1
CO=(@1,x %,2*" Y

Inputs:
E« » - Coefficients (b,,b,,...,b,).
w5l - (x,y,w).
Outputs:
1 » - Gradient with respect to coefficients.
E - Polynomial value.
" Z - The condition code.
Comments: Array Length
X() =1
B() k
C() k

The L IH Subprogram
Functional Description: Contains linear models of up to order 19.
CALL LIMeEBC»,®o»,Co2,E,. 2 IMN FITLIE
Where E and C ¢ » are returned as:
E =byx, + byxg+ ...bp_)X _ 1) + by
C() = (%, %9 oo’ X — 1) 1)

94 Appendix D: User-Accessible Routines

Inputs:
%11 - Independent variables (k- 1 of them), dependent variable (Y), and weight (W).
E 1 - Linear coefficients (k of them).

Outputs:
:{ » - gradient.

E - Linear value E.
Z - The condition code.

Comments: The array x: > is as- Array Length
sumed to contain Y and W even X() k+1
though these values are not used by B() Kk
L. IH. C() k

The FCEMTCHI Subprogram

Functional Description: Evaluates the Chi Square distribution function, P(x,v).
CALL PCEMTCHICHE, W, F,Z2

Inputs:

- Value of Chi Square.
L' - Degrees of freedom. (' must be a positive integer.)

. Outputs:

F' - Percentage of Chi Square distribution less than the given Chi Square value (for the given
degrees of freedom). The value returned is rounded to the third decimal place.
Z - Error code (0 = okay, nonzero = error).

Appendix D: User-Accessible Routines 95

- Comments: The Chi Square density function is really a family of curves—one for each positive degree
of freedom. The cumulative distribution function is the area under the curve from zero to a given value
of Chi Square.

P(x)

If x<0, then P=0.
If v = 40, then the value of P is computed by using a quick approximation.

Let

x =

Let ND be the normal distribution function. Its value at x can be approximated as follows:

p =51+ dix + doyx® + dpx® + dyx* + dex® + dgx®) 16

Where
© dy = 0498673470
dy = 0211410061

dy = 0032776263
d4 = 0000380036
ds = 0000488906
dg = .0000053830

96 Appendix D: User-Accessible Routines

If x>0, ND(x) =p. If x <0, ND(x) =1 — p.
Finally, P(x,v) can be defined as:
P(x,v) = ND(x)

This approximation is derived from the assumption that the Chi Square distribution for large degrees
of freedom can be modeled by the normal distribution function with appropriate mapping of the
domain.*

If v < 40 and x > 80, then P(x,v) = 1 which is accurate to the required three digits.

If v < 40 and x < 80, the value of P is computed using the following finite series:t

If v is odd:

(w-1)/2 v/) (2i-1)
= —_ _ (Vx)
P(x,v) = 2xND(Vx) — 1 + V(2/7) X exp(-x/2) X i=§1 TX3x5. x@-1

Where ND(x) equals the left tail normal distribution computed according to the formula used
previously.

If v is even:

(v-2)/2 2i
RN (V) l
Plw) = 1= explaf2) X 1+ 2 Txaxe. xa [

* For information refer to the Handbook of Mathematical Functions by Abramowitz and Stegun, National Bureau of Standards,
1968, equations 26.2.19 and 26.4.14.

+ Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1968, equations 26.4.4 and 26.4.5.

Appendix D: User-Accessible Routines 97

~ Calling Relationships

- The subprograms in the file FITLIE (FF, FIT, 05, GRADF, GRADM, FOLY, and L IH) are called

from within CFIT and OFTIMIZE and also call each other. The following diagrams show the

 relationships between these subprograms. Arrows pointing down in the diagrams represent calls (mul-

tiple calls where indicated) to the lower level subprograms.

. Subprograms Called by FF

Optimization

Fp *:G 62 SET

FLAG 62 CLEAR GERADF
y
User (k+1 times)
Subprogram

Flags 61, 62, and 63 are inputs acting as control flags, and & is the number of function variables.

The user subprogram computes the function value and the gradient of the target function. If the gradi-
ent is to be approximated, a call to GRADF replaces a call to the user subprogram. The syntax for a
call to the user subprogram is as follows:

CALL HI${BCX ,COY,E,Z2,» IH RAZ#

The variables in the call are described in the discussion of FF, starting on page 87.

98 Appendix D: User-Accessible Routines

Subprograms Called by FIT

Curve Fitting

FIT
cso FLAG 62 SET
(m times)
FLAG 62 CLEAR
GRADM
(m times)
) (k + 1 times) Binary Models
Model e
Subprogram FoOLs |) LIM

Flags 61, 62, and 63 are inputs acting as control flags, k is the number of unknown model parameters,
and m is the number of data points.

The model subprogram (either user-written or provided in ROM) computes the model value and the
gradient of the model with respect to the unknown parameters for a given data point. F I T functions in
much the same way as FF, except that the target subprogram for minimization is not the user sub-

program, but is CS . If the model gradient is to be approximated, calls to ZRALIM replace the calls to
the model. The syntax for any model subprogram is identical to that for FIL"% and L IHM.

Memory Requirements

There are seven binary subprograms in FITL IE. These subprograms are called by the programs
CFIT and OFTIMIZE, but you can also call them from the keyboard or within your own program.
What follows is information on the buffer and calling overhead associated with each routine and
information on memory requirements for variable storage.

Buffer and Calling Overhead

Five of the seven binary subprograms create workspace buffers in main memory at execution time. The
buffers are deallocated on exit, releasing this memory back to your system. Overhead memory is re-
quired by the operating system for each subprogram CHLL. The buffer size (including header) and
calling overhead are provided in the following table. The buffer size is a function of the number of
unknowns (k), and the overhead is a function of the sum of the lengths (j) of the two string arguments
in the call.

AR s e

Appendix D: User-Accessible Routines 99

Buffer and Calling Overhead

. Buffer Size | Call Overhead

Routine Buffer (Nibbles*) (Nibbles*) Total Bytes
FF : bFIT 318 + 189k | 301 + 2j (619 + 189k + 2j)/2
FIT bFIT 318 + 189k | 339 + 2j (657 + 189k + 2j)/2
CER bCHISQ | 108 + 21k 263 + 2f (371 + 21k + 2j)/2
GCRADF bGRAD | 95 + 21k 225 + 2 (320 + 21k + 2j)/2
CRADK bGRAD | 54 + 21k 244 + 2j (298 + 21k + 2j)/2
FOLY, LIH | None 0 179 179/2
and other
CFIT models
OFTIMIZE None 0 160 160/2
subprograms
* One nibble is equal to 2 byte of memory.

Notice that FF and F I T share the same buffer, as do ZFADF and GRADM. Also, more than one buffer
can be active at any given time. After a call to F I T, if the model gradient is to be approximated, all
three buffers will be simultaneously active.

Variable Memory

In addition to the overhead associated with setting up a local environment within the subprogram,
memory is required for the variables that appear as arguments in the calling statement. The amount of
memory required for a numeric variable depends on the number of elements (n) in the variable (n = 1
for a simple numeric variable). The amount of memory required for a string variable depends on the
length (/) of the string. The following table shows the memory requirements for variable storage.

Variable Storage

Type of Variable | Memory Required (Nibbles)

Real 19 + 16(n)
Short 19 + 9(n)
String 23 + 2()

100 Appendix D: User-Accessible Routines

As an example, consider a two-dimensional Real array that is 20 by 5 (has 100 elements). This array
would require -

19 + 16(100) = 1619 nibbles
which is a little less than 810 bytes of memory.

Keywords

There are two keywords in FITLE: KEYWAIT# and KILLEUFF. Torun CFIT and OFTIMIZE
from memory (without the module plugged in), you must have several other files including FITLE®X
and FITLIE in memory as well.

KEYHARITS

When the KEYAIT# function is executed, the HP-71 goes into a low power consumption state until
a key is pressed and then returns the key name. This is similar to KEY ¥.

FILLEUFF

If a binary subprogram does not normally terminate when it encounters a low memory condition, the
scratch memory allocated to it may not be deallocated. In this rare circumstance, the scratch memory
can be reclaimed by executing KILLEUFF.

Appendix E

Library Subprograms

In order to provide easy specification of the more commonly used fit models to ZF I T, a collection of
subprograms that correspond to these models has been placed in built-in library files in this pac. The
functions in the library files cannot be used in the 0FTIMIZE program because JFTIMIZE and
CFIT require different syntax (the number of parameters in the CHLL to the subprograms differ).

If your model corresponds to one of the subprograms in one of the library files, you need not write a
BASIC subprogram for it. When the program prompts you, you need only provide the name of the
model subprogram that already exists. When you use the built-in models, remember that all models
provided in this pac compute the model gradient as well as the model value.

Note: The built-in models with trigonometric functions put your HP-71 into radians mode.

The file FITLIE contains two subprograms, FOL'Y and L IH, that provide all the polynomial and
linear models of one variable that CF I T can handle (a maximum of 20 model parameters). Appendix
D, “User-Accessible Routines,” contains information on FOLY and L IHM, starting on page 93. Also,
there are 46 additional models in the file MJOEL 5. These are described in the following table. In the
model functions, a represents the first parameter (P(1)) in the equation, b the second (P(2)), and so on.

When you are using these models, don’t forget that F I T makes its fit by finding the local minima of
the Chi Square function. The “absolute best fit” may not be found. Instead, CF I T may converge to a
“local best fit.” This situation is most likely when you’re using models containing periodic functions.

101

102 Appendix E: Library Subprograms
Set of Models Supplied in Pac
No. P’:?;"""s Model Name Description Model Function
1 2 ORFAREARE Parabola through origin. y = ax + bx?
2 1 ORELIME Line through origin. y = ax
3 2 HYFER Hyperbola. y = a + bfx
4 3 SHYFER Second-order hyperbola. y = a + b/x + ¢/x?
5 2 FOMER Power. y = ax®
6 3 -~ OFOWER Offset power. y =a+ bx°
7 4 FOWERZ 2 term power. y = ax® + cx?
8 6 FOWERZ 3 term power. y =ax® + cx? + ex'
9 2 MPOMWER Modified power. y = ab®
10 3 OMFOMER Offset modified power. y = a + bc*
1 2 RLIHE Reciprocal line. y = 1/(@@ + bx)
12 3 LOGISTIC Logistic. y = a/(1 + bcY)
13 2 ROOT Root. y = ab{1®
14 2 SUFERGED Super geometric. y = ax®™
15 2 RTGED Root geometric. y = ax®”
16 3 LIMHYFEFR Linear hyperbolic. y=ax+b+c/x
17 2 FHYFER Reciprocal hyperbola. y = x/(a + bx)
18 2 ExF Exponential. y = a exp(bx)
19 2 AE=F Asymptotic exponential. y = a(1 — exp(bx))
20 3 DE®F Double exponential. y = a (exp(bx) — exp(cx))

Appendix E: Library Subprograms

Set of Models Supplied in Pac

103

P':‘:;:'fs Model Name Description Model Function

2 ETE=F Root exponential. y = a exp(b/x)

2 LIMEXF Linear exponential. y = ax exp(bx)

3 LaG Logarithmic. y = a + bIn{cx)
24 3 Loz Reciprocal logarithmic. y = 1/(@ + b In(cx))
25 3 HOERL Hoerl function. y = ab*x°
26 3 FTHOERL Root Hoerl function. y = ab{Mx®
27 3 HIORMD Normal distribution. y = a exp((x — b)’/c)
28 3 LOGHORMD Log-normal distribution. = a exp((In(x)—b)?/c)
29 3 EETAD Beta distribution. y = ax’(1—x)°
30 3 GAMMAD Gamma distribution. y = a(x/b)° exp(x/b)
31 3 CAUCHYD Cauchy distribution. y = 1/(a(x + bj>+c)
32 3 STHLU Sinusoid. -y = asin(b + cx)
33 4 OSTHU Offset sinusoid. y =asin(b +cx)+d
34 3 COSIHU Cosinusoid. y = acos(b + cx)
35 4 OCOSIHU Offset cosinusoid. y=acosb +cx)+d

104

Appendix E: Library Subprograms

Set of Models Supplied in Pac

' No. of - .
No. Params Model Name Description Model Function
36 3 SIMFZ 2 term sine Fourier. y = b + ¢ sin(ax)
37 4 SIMFZE 3 term sine Fourier. y = b + ¢ sin(ax) + d sin(2ax)
38 5 SIHF4 4 term sine Fourier. y = b + ¢ sin(ax) + d sin(2ax) + e sin(3ax)
39 3 COSF2 2 term cosine Fourier. y = b + ¢ cos(ax)
40 4. COsF3 3 term cosine Fourier. y = b + ¢ cos(ax) + d cos(2ax)
41 5 COsF4 4 term cosine Fourier. y = b + ¢ cos(ax) + d cos(2ax)
+ e cos(3ax)
42 4 FOURIERZ 2 term Fourier. y = b/2 + ¢ cos(ax) + d sin(ax)
43 6 FOURIERZ 3 term Fourier. y = b/2 + ¢ cos(ax) + d sin(ax)
+ e cos(2ax) + f sin(2ax)
44 8 FOURIER4 4 term Fourier. y = b/2 + ¢ cos(ax) + d sin(ax)
+ e cos(2ax) + f sin(2ax)
+ g cos(3ax) + h sin(3ax)
45 3 COsSH Hyperbolic cosine. y = a + cosh(b + cx)
46 3 SECH Hyperbolic cosecant. y = a + sech(b + cx)

Suppose you suspect that the data you want to fit a curve to tends to a parabola through the origin.
Rather than immediately setting out to create a model function for a parabola through the origin, you
should look through the table above. The table shows that the model function has been written for you
and is called OFEFARAE in the file MOOEL S, So, you don’t have to write any BASIC routines. Instead,
when the curve fit program asks for the name of the model and the file, you type JEFAFAE and
MODEL S, respectively.

The HP-71 Curve Fitting Pac stores data in files accordin
applications file format (HPAF),

Appendix F

Applications File Format (HPAF)

may make use of and exchange the data.

HPAF files are of type DATA, and may reside in either the HP-71 memory or a mass storage device.

The HPAF files are composed of three major sections—the header, the data records,

descriptor block. An example of such a file is described in the following table.

Record Contents Description
0 “‘HPAFNNS” Type string: two numbers, one string.
1 4 There are four records of data.
2 12 The descriptor block starts at 12.
3 77,9.3,"RED” First data record.
4 78,9.4,“BLUE” Second data record.
5 81.5,10.3,“GREEN” Third data record.
6 82.9,10.4,“GREEN" Last data record.
Empty data records.

. » Empty data records.
12 “TEMP”,1,“KELVIN” Descriptor block.

“COLNAMS” 3,“TEMP”

“VISCOSITY",“COLOR"

105

g to a prescribed format. This format, the
is intended to allow exchange of data between various programs. The

format provides room for information that describes the structure of the data so that various programs

and an optional

106 Appendix F: Applications File Format (HPAF)

Header Information

The header must contain the following items:

Record Description

0 Record 0 contains a type string. The first four characters indicate the file is an HPAF
file. The remaining characters describe the number of data items in each record and
their type. For example, in “HPAFNNS” the characters “NNS” indicate that there are
three items in each record (the first two are numbers and the third a string).

1 Record 1 contains the number of data records that contain information. This number
can be less than the total number of available records (allowing room for additional
records to be added later followed by the optional descriptor block).

2 2 contains the record number of the optional descriptor block. If no descriptor‘block is
present, this number should be zero.

Data Records

The data records start at record 3 and must end before the descriptor block. Note that all data items
for each record must fit within each logical record so that any record can be accessed randomly. To
compute the optimal logical record length for the file, remember that each number written in the
record occupies 8 bytes, and each string occupies 3 bytes plus the number of bytes in the string. For
example, if each record is going to hold two numbers and a ten character string, the record length must
be at least 2 x 8 + 3 + 10, or 29 bytes. For more information about creating data files, refer to “Data
Files,” in section 14 of the HP-71 Owner’s Manual.

Descriptor Block

The descriptor block is optional. If present, the descriptor block must come after the data records, and
record 2 must contain the record number of the first item in the block. Information in the descriptor
block consists of tags, which identify the type of information that follows; followed by the number of
items associated with the tag; followed by the items themselves.

TAG,number of items,item one,item two...

The information in the descriptor block can be written serially, or, if the logical record size is suf-
ficiently large, written one tag to a record. In either case, the descriptor block must be able to be read
serially.

Appendix F: Applications File Format (HPAF) 107

“For example, to describe the names of the columns and the fact that the units are in degrees Kelvin, the
descnptor block for the above file might look like this:

Record | File Contents Comments

67 “COLNAMS",3,“TEMP”,“VISCOSITY”,“DENSITY”, | Column names: Temp, viscosity, dénsity.
“XYOFFSET",2,4, — 3, X-Y offset: (4, — 3).
‘DEGREES”",1,“KELVIN” information on units: Degrees Kelvin.

EOF

The Curve Fitting Files

The HP-71 Curve Fitting Pac can read any HPAF file. String-type data items will be ignored auto-
‘matically. For instance, if a file has a string NSSNSNN, columns 1, 4, 6, and 7 will be considered the
first, second, third, and fourth columns in the data array for the ZF I T program. The first and second
columns would be interpreted as the independent variables, the third column as the dependent variable,
and the fourth column as the weight.

When writing to a data file, CF I T generates no descriptor block, so the record number in record 2 is
set to zero.

Appendix G

Creating Your Own Model or Function Subprogram

This appendix contains information on the use of subprograms that you can write for both function
representation in JFTIMIZE and model representation in CFIT.

Writing a Model or Function Subprogram

The purpose of these subprograms is to compute the value of a function and its gradient given certain
inputs. The inputs vary depending on which program calls your subprogram. If IF TIMIZE calls it, the
input is an array containing the values of the function’s variables. If CF I T calls it, the input is two
arrays, one containing a set of parameters and the other containing data. Because the inputs differ
between the two programs, there are differences in the subprogram each requires. However, in both
cases the output is a function value and gradient vector.

The steps you follow to write a subprogram are the same whether you are writing it for CFIT or
OFTIMIZE. The steps are as follows:

Write the equation describing your function in the form of
dependent variable = function of independent variables and parameters.

If possible, write the partial derivatives with respect to the unknowns. (The unknowns are the
variables in OF TIMIZE and the parameters in CFIT.)

Optionally modify the equations in order to make execution faster.

Associate the symbols in your equation with the variables in the standard subprogram syntax for
your application (either CFIT or OFTIMIZE).

Write the subprogram.
Design and add any special error checking or other features you want.

Check your work and verify your subprogram by using it on a sample problem with known input
and output values for comparison.

109

110 Appendix G: Creating Your Own Model or Function Subprogram

Standard Subprogram Syntax

Here is the standard syntax for user subprograms called by any of the programs in this pac.

For oFTIMIZE:

SUE namev P Gy, F, T
Variables Use
Inputs:
Foo The current value of the variables.
Outputs:
G The gradient of the function at the current variables.
F The function value.
[The condition code.
For CFIT:
SUE pametF s, Ay GO F, OO
Variables Use
Inputs:
Pl The current value of the model parameters.
B The independent variables. (The dimension must also
allow for the dependent variable and the weight.)
Outputs:
G The model gradient with respect to the unknown
parameters.
F The model value.
C The condition code.

Appendix G: Creating Your Own Model or Function Subprogram 111
Speed and Accuracy

Gradient

Including the gradient calculation in your subprogram is optional-—the main programs can approximate
the gradient for you. However, if you can include the gradient calculation in your subprogram, you can
improve performance of your subprogram in terms of both speed and accuracy. For an explanation of
how the FP Method uses the gradient calculation, refer to “A Word on Gradient,” page 61.

Note: ¢ you write your own subprogram for a trigonometric function and include the gradient
calculation, you need to make sure that your subprogram agrees with the machine setting of de-
grees or radians. It's usually best to declare in your subprogram which mode you want. Also, when
you get your results, be sure to interpret them according to the mode the machine is in.

Speed Tricks

Anything you can do to increase the execution speed of your subprogram is helpful (especially on long,
time consuming problems) due to the number of times CF I T and OF TIMIZE call a subprogram in the
iteration process. A list of a few time-saving tricks follows, and, with experience, you may develop your
own techniques to extend the list given here.

® Substitute multiplication for exponentiation when possible (for example, use Fi4H rather than R %),

®Examine the equations for F and G() to see if computing all or part of them in a different order
will reduce the total number of math operations.

®If a group of operations occurs repeatedly in your subprogram, calculate it once and assign it to
some intermediate variable, then use that variable in place of the operations.

Important Interface Assumptions

Condition Code

The condition code variable (C) allows a user-written subprogram to indicate that something has gone
wrong. The programs in this pac always set C equal to zero before calling a user-written subprogram
and always test it on return. If the condition code is found to be zero, it indicates there were no excep-
tional events; if it is found to be positive, it indicates an error; and if it is found to be negative, it
indicates a warning. Refer to appendix B, starting on page 69, for more information on the relationship
between condition codes and error messages.

112

Appendix G: Creating Your Own Model or Function Subprogram

Option Base and Option Round

Both CFIT and OFTIMIZE require you to write your subprogram assuming the base option for
dimensioning arrays is set to 1 and the rounding option is set to TP TI0H ROUMD HERR (the default
rounding mode).

What You Should Not Do

What follows is a short list of items that you should avoid doing in your subprograms.

You should not change the values of inputs to your subprogram unless you restore the original values
on exit.

The gradient approximation routines assume that the point at which‘the gradient is being approxi-
mated does not change -through several calls to your subprogram. If a change to the P() or X()
variables is made within your subprogram, these routines will not return correct results.

You should not change certain flag values unless you restore the original values on exit.

Flags 61, 62, and 63 are inputs to some of the computational routines, specifically GRADF,
GRAOM, CSE, FIT, and FF. Also, flags 57-60 are used by OF TIMIZE and CF IT. (Although flags
57-63 are used by the curve fitting programs, their original values are restored when the programs
end.) If changed within your subprogram and not restored prior to exit, they may give you erro-
neous results.

You should not make certain recursive calls.

Recursive calls are calls to subprograms with passed parameters that will cause it, or something it
calls, to call your subprogram.

Some of the binary subprograms in the file FITLIE are not recursive since they use a dedicated
buffer for intermediate computations. These are GRADF, GRADM, TSR, FF, and FIT. For exam-
ple, it is acceptable for your subprogram to call FOLY to evaluate a polynomial, but your sub-

program (!17 ZLIE) in your file (M¥F ILE) should not execute the call

CALL GRADFC"MYSUE", "MYFILEY,Pod, Gox, F, 23
This recursive situation has no useful value and will eventually result in an insufficient memory
error as the two programs keep calling each other indefinitely.

Appendix G: Creating Your Own Model or Function Subprogram 113

;Example Subprogram for {71 it

“The steps to go through in the process of developing a subprogram for 1F T IM I ZE are outlined next in
the form of an example.

Function
F1(a,b) = a? — 2ab + 2b2

Gradient

T' _ 2(a — b)

VFl{ab) = [4b — 2a]

Subprogram

18 Sub Fl{Po,Goa,F,.Co

28 F=Fold¥Pola-24P Ol P O20+2¥FPO20%FPC2Y | Function Yalue

3B Glla=ERipCL I Zia-b)

48 ! 2h-i2Ca~-ba dm=dhk-2a

5@
Variable Usage

Variable Use

sl

The current value of the variables (a and b).

Gy The gradient of F1 at the current variables.
F The function value.
C The condition code.
Comments

A few comments about the subprogram are listed below:
e The computation in line 40 saves one multiplication over the more straight-forward alternative
(GUSr=ddP 20 -2%F 01 0).
¢ This example does not include error handling within the subprogram. However, even this simple

subprogram can encounter exceptional conditions with certain arguments (for example, overflow
and underflow).

¢ The function F1 achieves its minimum value of 0 at @ = b = 0. (You might want to try this exam-
ple with OJFTIMIZE.)

114 Appendix G: Creating Your Own Mode! or Function Subprogram

Example Subprogram for CFIT

The steps to go through in the process of developing a subprogram for CF I T are outlined next in the
form of an example.

Model
P(V)=Cx VN

PVN = (describes the pressure-volume relationship of a certain system during heating. The model
equation was derived from this equation by rewriting it to get the dependent variable alone on the left.
The independent variable is V, the dependent variable is P, and the values of N and C are model
parameters to be determined based on data collected for P as a function of V.

Gradient
(—N)
_ [epc] _[V
VRGN) = [aP/aN] [— LN(V) x P(V)]
Subprogram
18 Sub FRESSURECFCY, Mod,Gin, F, 00
SR OGOLI=HOLI(=F (20 IERTETSNTY
3@ F=PC1i#Gils I T L R T
48 GOEy=-LH{HC130%F L LMW ER O
5@ ENDSUE
Variable Usage ’
Variable Use

Fi% The current value of the model parameters (C and N).

w¢ 3 The independent variables (V).

3 The model gradient with respect to the unknown parameters.
The model value.
The condition code.

Do I 1

Appendix G: Creating Your Own Model or Function Subprogram 115

Comments

A few comments about the subprogram are listed below:

* The order of computation within the subprogram requires only one exponential evaluation, thus
providing for faster execution.

* This example does not include error handling within the subprogram (with reasonable data, excep-
tional conditions are not likely).

® One approach to minimize the pain of translating your variables into those used by your sub-
program follows:

1. Declare variables you want to use within your subprogram.

2. Assign to your own variables those input values passed in through the parameter list.
3. Perform the necessary computations using your variables.

4. Store the results into the output parameters as required.

For a good example of this approach, refer to the “Big Box” example on page 22. In this example,
the computations were done with the declared variables W and H.

® Because it differs from the previous subprogram only in the sign of P(2), you could have used the
subprogram FOHEFR in the library file MJDEL S for the model. All you would need to do to use it is
negate the value returned for P(2) when you get the results. Don’t forget the built-in models!

® Actually, with two reliable observations, (V{,P;) and (Vs,, P,), this problem can be solved directly
and has the solution shown here:

_ In(Vy/Vy)

=——— C=P, x VYN
In(P,/P,) ! !

Often, however, a good fit over a range of observations will result in a curve that more accurately
reflects your entire data set than that obtained by a direct solution using limited data.

R R BT

Appendix H

File Names Used in This Pac

This appendix contains a list of the file names used in this pac. All of these files except one can be

‘copied to main memory, assuming you have enough memory available. (Curw=Fit is the only file

that cannot be copied.) Most of these files are in ROM and, since your HP-71 searches main RAM first
when it looks for a file name, be sure to not have any files with the following names in main RAM
when you are using the curve fitting module.

File Name
CurweFit
CFIT
OFTIMIZE
MODEL =
FCEHTCHI
FITLE®

FITLIE
CFEEYZ
USERKEY S
CFEETS

File Type
LEX
BASIC
BASIC
BASIC
BASIC

" LEX

BIN

KEY
KEY
KEY

Description
Contains the pac identifier.
Contains the program for curve fitting.
Contains the program for optimizing.
Contains the BASIC curve fitting models supplied by the pac.
Evaluates the left tail of the Chi Square density function.

Contains the keywords KE"HAIT# and KILLEUFF, the message
table used by the binary subprograms, and a routine that saves
scratch memory used by the pac when your machine is turned off.

Contains all binary user-accessible subprograms./

Contains key definitions for the CF I T array editor.

Saves previously user-defined keys while the pac is running.
Contains a copy in RAM of CFEEYZ.

* A reserved file name created in RAM when CFIT is running. If you already have a file with this name in RAM, it will be
destroyed when you run ZFIT.

117

Appendix |

Glossary

AB

'bound estimate: A control input to “FIT and OF TIMIZE that estimates a local minimum or maxi-
mum value for the function to be optimized. This value is used in the line search algorithm, and, if
chosen appropriately, can improve performance.

C

Chi Square (x?: The function whose value is the sum, over all data, of the squares of the weighted
differences (Y — F)/W of the dependent variables Y and the model F. If the Y’s are normally
distributed with mean F and variance W2, then Chi Square is x%(») distributed with » (the number
of data points minus the number of model parameters) degrees of freedom.

condition code: A value assigned to the condition code variable.

condition code variable: A variable passed by reference to a subprogram for the purpose of indicat-
ing to the calling program the nature of any exceptional event encountered during execution of the
subprogram.

controls: The set of inputs used by the computational routines called by CFIT and GFTIMIZE.

converge: The condition in which the graph of the function being optimized is “sufficiently flat” as
measured by the gradient norm to stop the iteration process.

D,E

Delta: A control input to CF I T, used in gradient approximation. It is described in “FIT as a “con-
stant” or “percentage.”

dependent variable: The measured or Y value that depends on the independent variables (X’s) in
the data set.

F

Fletcher-Powell Method: An optimization algorithm introduced by R. Fletcher and M. J. D. Powell.

119

120 Appendix |: Glossary

G

gradient: Given a function F(p,ps,...,Dp), the gradient of F is a vector-valued function whose value
at (p;,pa,...,Dg) is the vector having the partial derivatives of F with respect to the variables
(p1,D92, - --»Pp) as coordinates.

gradient norm: With a gradient vector (g,,&,,-..,8;), the gradient norm is \/(g12 +8°+...+8%.
This value appears in CFIT and OFTIMIZE output identified as |G d|.

H

HPAF format: Hewlett-Packard Application File format. It refers to a standard DATA file format
used by HP-71 application pacs.

LJ,K

independent variable: A variable controlled by the experimenter. It usually represents a variable
whose value is selected rather than measured.

iterate: A value produced by an iterative method.
iteration: The step number in an iterative method (for example, the 12th iteration).

iterative method: A method that determines a succession of values where each successive value is
dependent on one or more of the previous values.

L

line search: The algorithmic attempt to minimize a function of one or more variables restricted to a
particular direction (for example, the attempt to minimize Z = X2 + Y2 4+ (Y — 3)? along the line
Y=X+1).

M,N

model function: A function F = F(x;,xs,...,%,;; P1,D2--.,Pr) Of n + k variables. The p’s are param-
eters to be determined to best fit the data. The x’s are the independent variables in the data. Model
functions are represented in the pac by subprograms.

0]

optimize: The attempt to locate critical points of a function—in particular, local maxima and
minima.

Appendix I: Glossary 121

P,Q,R

parameter: One of the unknown values that determine the model. The task of CFIT is to produce
the “best” values for the model parameters.

percentage goodness of fit: A model evaluation aid equal to 100 X (1 — P) where P is the value
returned by the subprogram FZEMTCHI. Under appropriate conditions this value may be used as
a model rejection criterion.

S, T,U

scalar: A numeric value. It is used to distinguish numeric values from vectors.

scratch memory: The memory used by the numeric computation routines (binary subprograms) to
store arguments and intermediate results during the computations.

v

vector: A vector of length k is an ordered list (1, P2, -..,pp). In this pac, the list elements are scalar
values.

W,X,Y,Z

weight: A value associated with a data point to provide greater or lesser significance to the point in
the curve fit process. Relatively large weights correspond to low significance. In order for percent-
age goodness of fit to have statistical significance, the weights should equal the standard deviations
of the dependent variables.

Index

Page numbers in bold indicate primary reference; page numbers in regular type indicate secondary

references.

A

Add command, 33, 34, 51-52

Applications file format, 105-107
Approximating the gradient, 24, 46, 81-83

B

Base option, 87, 112

BASIC error messages, 69-71
Big box example, 22-26, 60
Binary error messages, 71-74
Bound estimate, 24, 57

Built-in library files. See Library

C

Calling relationships, 97-98
Cautions, 11
CFIT, 8, 12, 27, 84, 117

examples, 14-20, 40-53

menus (flow chart), 13

results, 40, 47-49
Chi Square, 29, 37, 50, 53-54, 81, 84

density function, 95, 117
Command keys, 32, 33
Condition code, 71, 74, 111
Controls. See Program controls
Convergence, 38, 40, 46, 60-61, 62, 85
Creating a subprogram

for CFIT, 109, 114

for AFTIMIZE, 20, 55, 109, 113
" syntax, 110

what not to do, 112
L5 subprogram, 91, 98

123

D

Data
editing, 31
entry
from a file (L= ad), 17, 30
from the keyboard (kkd), 14, 29, 41
format, 29
printing, 31
saving, 17, 30, 44
weighting, 29, 31, 52
Data array, 29, 32
Data menu, 14, 17, 28, 44
Define column command, 33-34
Delete command, 33, 34-35
Delta, 38, 57, 82
Difficult cases, 84-85
Direction keys, 32, 33

E
Editing
elements, 32, 37, 56
parameters/variables. See Editing elements
program controls
for CFIT, 24, 38, 46
for OFTIMIZE, 55, 57-58
Editor, 3, 15, 31
Exiting the, 36
Endline direction, 32, 35
Entering data. See Data entry
Error messages, 69-74)
Evaluating a function, 55, See also Testing a
function
Evaluating a model, 19, 38
Exiting the program, 20, 28, 53

124 Index

F

File names used in pac, 117

Fit menu, 18, 37, 46, 51

Fit procedure, 14, 36, 41

F 1T subprogram, 89-90, 98
FITLEX, 100, 117

FITLIE, 17, 44, 71, 87, 97, 101, 117

Fletcher-Powell Method, 12, 27, 55, 61-62, 75-76, 84

FP Method. See Fletcher-Powell Method
FF subprogram, 87, 97
Function

creation, 55, 109

optimization, 80

testing, 57

G

Goto command, 33, 35

GRADF subprogram, 88, 97

Gradient, 61-62, 81, 83

Gradient approximation, 24, 46, 81-83
Accuracy of, 82, 111
Speed of, 81, 111

Gradient limit, 46, 71

Gradient norm, 38, 50, 58, 85

GRADM subprogram, 92, 98

H-1

Horner’s method, 93

HPAF. See Applications file format
HP-IL connection, 12

HP-71 Owner’s Manual, 9, 23, 32, 56, 106
inf as a weight, 16, 33, 52

Interpreting the results, 53-54

K

EEMAIT$, 100
Keyboard, redefined, 32
EILLEUFF, 72, 100

L

Loading data (Lo ad), 30

Library, 3, 27, 38, 101

L IH subprogram, 17, 93

Line search, 39, 58, 76-77, 84

Local best fit, 101

Local minima/maxima, 20, 39, 55, 80, 101

M

Main menu, 14, 28
Matrix editor. See Editor
Memory requirements, 98-100
Menus,
CFIT, flow chart, 13
OFPTIMIZE, flow chart, 21
Messages, error and status, 69-74
Model evaluation, 19, 38, 51-53
Model specification, 17, 37, 44
MODELS, 101, 117

o)

Optimization of a function, 80
OFTIMIZE, 8, 20, 55
OPTIMIZE example, 22-26
Optimize menu, 24, 56
OFTIMIZE menus (flow chart), 21
Option base, 87, 112
Option round, 112
Output

for CFIT, 40, 47-49

for OFTIMIZE, 25-26, 59-61

P

FCEMTCHI, 54, 94-96, 117
Penalty function, 85
Percentage goodness of fit, 51, 54
FOLY subprogram, 44, 93
Printed output. See Output
Printer connection, 12
Product information, 67
Program controls, 24, 38, 44
Program exit, 20, 28, 53
Progress report

for CFIT, 39

for OFTIMIZE, 58-60

Q-R

Quit key ([@]), 32, 36, 39
Redefined keyboard, 32
Repair services, 65-66

s

Index

T-U-V

125

Saving data (Sawve), 17, 30, 44
Service :
centers European, 65
centers U.S., 65
international, 66
repair charge, 66
shipping instructions, 66
warranty, 66
Speed tricks, 111
Status messages, 69-74
Steepest descent, 62, 75
Subprograms,
Creating,
for CFIT, 109-110
for OFTIMIZE, 20, 55, 109-110
Specifying,
for CFIT, 17, 37, 44
for GFTIMIZE, 20, 23, 56

Technical assistance, 67
Testing a function, 57
User-Accessible routines, 87
Video display connection, 12

w

Warranty, 63
Service, 66
Weights, 29, 31
as inf, 16, 33, 51

How To Use This Manual (page 9)

Getting Started (page 11)

Curve Fitting (page 27)

Optimizing a Function (page 55)

Owner’s Information (page 63)

Error and Status Messages (page 69)
Numerical Methods (page 75)
User-Accessible Routines (page 87)

Library Subprograms (page 101)
Applications File Format (HPAF) (page 105)
vCreating Your Own Function or Model Subprogram (page 109)
FiI e Names Used in This Pac (page 117)
Glossary (page 119)

=FQIMOODP 0op

w HEWLETT
PACKARD

Portable Computer Division
1000 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom
150, Route du Nant-D’Avril (Pinewood)
P.O. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham
Geneva - Switzeriand Berkshire RG11 3LL

82284-90001 English Printed in Singapore 3/84

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

