
FliOW HEWLETT
.:~ PACKARD

HP82441A

FORTH/ Assembler ROM

Owner's Manual
For the HP-71

..... .:1
i
I

I

.. ' "'I

i

Printed in Singapore

FliiiW HEWLETT
~~ PACKARD

HP 82441A

FORTH/Assembler ROM

Owner's Manual

For the HP-71

April 1984

82441-90001

Introducing the FORTH/Assembler ROM

The FORTH/Assembler ROM provides an extended software development environment for the HP-71. It
contains the following major features:

• A FORTH operating system. This system allows you to write application programs for the HP-71 in
FORTH, with a significant advantage in speed over programs written in BASIC. The FORTH operat­
ing system coexists with the native HP-71 BASIC operating system, so you can switch between the

BASIC and FORTH environments without program or data loss and without having to reconfigure
the HP-71. Programs written in either language can execute routines written in the other language.
HP-71 FORTH includes string and floating-point operations.

• An assembler. This assembler, written in FORTH, provides nearly the same command set as the
assembler used to develop the HP-71 operating system. You can use it to create HP-71 binary files,
LEX files to extend the BASIC language, or FORTH primitives.

• A text editor. The editor enables you to create and edit text files, which can be used as source tiles for
BASIC, FORTH, or assembly language programs, or for many purposes unrelated to programming.

• Remote keyboard capability. By using the BASIC keyword i< i:::"" (along with the keyword
C" T ::::; provided in the HP 82401A HP-IL Interface), you can use a terminal as an external

keyboard and display.

3

Contents

How To Use This Manual .. 7

Section 1: Installing and Removing the Module .. 9

Section 2: The HP-71 FORTH System .. 11

Introduction .. 11

References 11

Using FORTH on the HP-71 .. 11

Advanced FORTH and Assembly Language Programming. .. 13

Unique Aspects of HP-71 FORTH ... 13

Twenty-Bit FORTH .. 13

Compilation from Files ... 14

FORTH/BASIC Interaction .. 16

HP-IL Operations .. 17

General Purpose Buffers ... 18

Foreign Language Error Messages ... 19

FORTH Extensions .. 19

Floating-Point Operations ... 19

String Operations ... 22

Vocabularies .. 23

Error Trapping .. 24

FORTH Memory Organization ... 25

HP-71 Memory .. 25

The FORTHRJ\tv1 File .. 26

The FORTH Dictionary ... 31

The HP-71 File System .. 32

File Types .. 32

Structure of the File Chain .. 34

Section 3: The Editor .. 37

Overview of the Editor .. 37

Editor Commands .. 39

The Text (T) and Insert (I) Commands ... 39

The List (L) and Print (P) Commands ... 40

The Copy (C) and Move (t'1) Commands .. 40

The Delete (D) Command ... 41

The Search c:n and Replace (F:) Commands 42

Editor Files .. 44

Section 4: The Assembler .. 45
Using the Assembler .. 45

Running the Assembler .. 45
The Listing File ... 46

Assembler Source Code .. 46

Line Format .. 46

Comments ... 47

Labels ... 47

Expressions .. 47

4

Contents 5

Overview of the CPU 48

Arithmetic Registers .. 48

Control Registers 50

Loading Data from Memory. .. 51

Types of Assembly 51
FORTH Primitives

LEX Files .. .

Binary Files

Assembler Mnemonics

Branching Mnemonics .. .

Test Mnemonics .. .

P Register Mnemonics .. .

Status Mnemonics

System-Control and Keyscan Mnemonics

Scratch Register Mnemonics .. .

Memory-Access Mnemonics

Load-Constants Mnemonics .. .

Shift Mnemonics .. .

Logical Mnemonics
Arithmetic Mnemonics .. .

No-op Mnemonics

Pseudo-ops

Control Pseudo-ops .. .

51

'53
54
55

55

56
57
58
58
59
59
60
60
60
61
61

62

62

Constant-Generating Pseudo-ops ... 62

Macro-Expansion Pseudo-ops for FORTH Words 62
Macro-Expansion Pseudo-ops for LEX Files 63

Macro-Expansion Pseudo-ops for BIN Files. .. 64

Appendix A: Care, Warranty, and Service Information
Care of the Module

Limited One-Year Warranty

Service

When You Need Help .. .

65
65
65
67
70

Appendix B: Error Messages ... 71
FORTH Messages .. . 71
Assembler Messages .. 74

Editor Messages ... 77

Appendix C: BASIC Keywords 79

Appendix D: FORTH Words .. 99
Notation

Errors

FORTH Glossary .. .

100
100
101

Subject Index. 147

BASIC Keywords by Category .. . 151

FORTH Words by Category .. Inside Back Cover

,

How To Use This Manual

This manual assumes that you have some experience with FORTH or with assembly language. It docu­
ments all operations in the FORTH/Assembler ROM in a reference-oriented manner-you can read the
sections that interest you without reading the entire manual.

• If you plan to use FORTH without writing new primitives, read section 2, "The HP-71 FORTH Sys-
tem" and refer to appendix D, "FORTH Words."

• If you plan to create new FORTH primitives, you will also need to read section 4, "The Assembler."

• For an index to FORTH words grouped by function, refer to the inside back cover.

• If you plan to create BIN or LEX files, read section 4, "The Assembler."

• Because both the FORTH system and the assembler use text files for input, read section 3, "The
Editor," to learn how to create and edit text files.

• For reference information about any BASIC keyword m the FORTH/Assembler ROM-whether
involving FORTH, the editor, or the assembler-refer to appendix C, "BASIC Keywords."

7

Section 1

Installing and Removing the Module

You can plug the module into any of the four ports on the front edge of the HP-71.

CAUTIONS

• Be sure to turn off the HP-71 (press [IlION I) before you install or remove any module.

• Whenever you remove one module to make a port available for another module, be sure to turn the
HP-71 on and off while the port is empty before you install the new module.

• Do not place fingers, tools, or other foreign objects into any port. Such actions can cause minor

electrical shocks, interfere with pacemaker devices worn by some persons, and damage port contacts
and internal circuitry.

To insert the module, hold the HP-71 with the keyboard facing up
and the module with the label facing up, and then push the module
into the port until it snaps into place. Be sure to observe the
precautions described above.

To remove the module, use your fingernails to grasp the module by the lip on the bottom of its front edge,
and then pull the module straight out of the port. Install a blank module in the port to protect its
contacts.

9

Section 2

The HP-71 FORTH System

Introduction

The FORTH/Assembler ROM contains a FORTH system tailored to the HP-71. The advantages of
FORTH over BASIC are speed and complete access to the machine. Programs can be written in FORTH,
in BASIC, or in both, making use of the best features of each language/system.

FORTH secondaries (words constructed from existing FORTH words) can be compiled from key­
board input or from text files created by the editor. The editor is discussed in section 3. In addition,
FORTH primitives (wordf. written in machine code) can be created by the assembler, which is discussed in
section 4.

The word set of the HP-71 FORTH kernel is similar to that defined in the FORTH-83 Standard. This
section describes their differences in "Unique Aspects of HP-71 FORTH," which covers enhancements
and methods of implementation that are machine-related, and in "FORTH Extentions," which covers
enhancements not directly tied to the HP-71. For the complete definition of any FORTH word, standard
or nonstandard, refer to appendix D.

References

This section doesn't contain the complete FORTH-83 Standard or tutorial information about FORTH;
you can find such material in the following books. You will need to keep in mind the unique aspects of
HP-71 FORTH as you read these books.

• Brodie, Leo. Starting FORTH. Englewood Cliffs, N.J.: Prentice-Hall, 1981. An effective and entertain­
ing introduction to FORTH.

• FORTH-83 Standard. Mountain View, Ca.: FORTH Standards Team, 1983.

• Haydon, Glen B. All About FORTH: An Annotated FORTH Glossary. Second edition. Mountain View,
Ca.: MouI'tain View Press, 1983. Some definitions in this manual are borrowed from Dr. Haydon's
book.

Using FORTH on the HP-71

Entering and Exiting FORTH. To enter the FORTH environment from the standard HP-71 BASIC
environment, type the BASIC keyword FOP T H and press 1 END LI NE I. The computer then displays the
FORTH sign-on message HF'-71 FOPTH and the version. To exit the FORTH environment, type the
FORTH word E:','[and press 1 END LINE I.

11

12 Section 2: The HP-71 FORTH System

The RAM-based portion of the FORTH system, including user-added dictionary words, is contained in an
HP-71 file named FORTHRAM. When you exit FORTH, either by executing E: 'I' E or by pressing the
[OFF 1 key, the contents of the FORTHRAM file are preserved. Thus the FORTH environment will be in
the same state when you reenter as when you exited. If you turn off the HP-71 from the FORTH environ­
ment, it will return directly to the FORTH environment when you turn it on. If you purge the
FORTHRAM file from the BASIC environment, a new FORTHRAM file will be created when you next
execute FOP T H.

User Prompts. If you press [END LI NE 1 while the H F' - 7 1 FOP T H prompt is displayed, FORTH will dis­
play 0 f< [1::. The 0 f< indicates that FORTH is ready to accept input, and the [1 indicates how many
items are on the data stack. If you then type 1 2 3 [END LINE I, the FORTH system will display
o f::: .~,::. You can suppress the 0 f< message by storing a non-zero value into the user variable
OKFLG.

Line-editing Keys. All of the HP-71 line-editing keys are functional while in the FORTH environment.
Pressing [ATTN 1 while entering a line will clear the display and leave only the blinking cursor.

Key Redefinitions. The FORTH system duplicates the BASIC method of handling redefined keys. You
can switch in and out of user mode while in FORTH, but you must be in the BASIC environment (or use
E: W:: I C ::<) to redefine keys.

The Command Stack. The HP-71 command stack is available in FORTH. It operates just as in BASIC,
except that in FORTH you can enter the Command Stack just by pressing any of the up- or down-arrow
keys-you don't need to press @][END LINE 1 first.

Exceptions and the [ATTN 1 Key. Because the FORTH system can run a program for an indefinite time,
it must occasionally check whether a system exception has occurred. FORTH checks for exceptions when
it executes : (semicolon) in a secondary and before it branches in a loop structure. If an exception has
occured, FORTH issues the exception poll. An exception can be a service request from the HP-71's in­
ternal timers or from other devices, or can result from pressing the I ATTN 1 key.

Pressing [ATTN 1 stops the execution of any FORTH word (except HP-IL words, which require pressing
[ATTN 1 twice). Once the FORTH environment recognizes that [ATTN 1 has been pressed, it executes the
system equivalent of A E: 0 F.: T to reset the data and return stacks and to restart the FORTH outer loop
(the FORTH system user interface).

Errors. If an error occurs in the FORTH system, all files are closed and an error message is displayed.
FORTH error messages sound a tone and preface all errors with F THE P P : . FORTH error numbers and
messages are available through the BASIC keywords E P P t~ and E P F.: rH.

If an error occurs in a BASIC O/S subroutine called by the FORTH system, the error message appears as
E P P: rather than F THE P P : .

Section 2: The HP-71 FORTH System 13

Advanced FORTH and Assembly Language Programming

This manual contains sufficient information for you to write new FORTH primitives and secondaries.
However, if you wish to write FORTH primitives that interact with the native HP-71 operating system, or
write HP-71 LEX or binary files, you will need to refer to the HP-71 Software Internal Design Specifica­
tion (IDS). It comprises three volumes with the following part numbers:

Volume Description Part Number

Detailed Design Description 00071-90068

II Module Interface Documentation 00071-90069

III Source Code Listing 00071-90070

Other detailed documents that you may find useful are:

Twenty-Bit FORTH

Description Part Number

HP-71 Hardware Design Specification 00071-90071

HP-71 HP-IL Detailed Design Description 82401-90023

Unique Aspects of HP-71 FORTH

Most FORTH systems are implemented on byte-oriented machines with 16-bit addresses. The HP-71, in
contrast, is a nibble-oriented machine with 20-bit addresses. To allow access to the entire 1M-nibble ad­
dress space and to achieve maximum speed, FORTH on the HP-71 is a 20-bit implementation. That is,
the data and return stacks are 20 bits wide, and the addresses on those stacks are 20-bit absolute ad­
dresses. All quantities on the stacks are 20-bit quantities, regardless of whether a one-byte or 20-bit
operation is performed. Unused high-order nibbles are zero or are expected to be zero.

HP-71 FORTH conforms to the FORTH-83 Standard in intent but, because of the nature of the HP-71
CPU, not exactly in effect. The funtionality of the Standard required word set, plus selected words from
the extension word sets, are provided in HP-71 FORTH. In most cases, the HP-71 uses the same word
names as the Standard. You can determine the behavior of particular HP-71 words compared with their
Standard counterparts according to the following general guidelines.

14 Section 2: The HP-71 FORTH System

• For operations that deal with bytes (such as C(~, U'lO''}E, and FILL), the Standard names are re­
tained for HP-71 FORTH words. Such words will produce the same result as the corresponding Stan­
dard words. In several cases analogous words that deal with nibble quantities are also provided; they
are listed below in "Nibble and Byte Words."

• For operations that deal with cells (such as +, I~, and COt·j::nAtH), the Standard names are retained
for HP-71 FORTH words. Such words will produce the same result as the corresponding Standard
words, except that the quantities manipulated by the words are 20 bits long instead of 16.

• For operations that don't translate well to the HP-71 (with its continuous memory and multiple-file
system), the Standard names are replaced for HP-71 FORTH words. For example, LOA D (load from a
numbered screen) is replaced by LOA D F (load from a named text file), and Ei< F' E C T (read up to a
specified number of characters) is replaced by Ei:: F' E C T 9 6 (read up to 96 characters).

The table below lists those words that HP-71 FORTH adds to the Standard word set to perform nibble
operations, together with their byte-oriented counterparts.

Nibble and Byte Words

Nibble Word Action Byte Word Action

t4ALLOT Allot n nibbles. ALLOT Allot n bytes.

t·W ILL Fill n nibbles. FILL Fill n bytes.

t41~ Fetch one nibble. CI~ Fetch one byte.

t4 I Store one nibble. CI Store one byte.

t4t'10',,'E Move n nibbles. Ct'iO',,'E Move n bytes.

t'4t'10',,'E> Move up n nibbles. Cr'10',,'E> Move up n bytes.

5+ Increment address by 5 2+ Increment address by
(one cell). 2 (one byte).

5- Decrement address by 2- Decrement address by
5 (one cell). 2 (one byte).

Compilation from Files

FORTH compiles new words into the dictionary from "screens" as well as from the keyboard. In tra­
ditional versions of FORTH, a screen is a lK-byte block on a mass storage device (16 lines of 64 bytes
each).

Screens. In HP-71 FORTH, a "screen" is a standard HP-71 text file. Each text file consists of a series of
text strings of variable length, with each text string preceded by a two-byte length field. The file is ter­
minated by a two-byte marker, FFFF. The editor, described in section 3, can create source screens for
FORTH. The name of a screen must be a legal HP-71 file name. The maximum size line that FORTH will
process is 96 bytes, which corresponds to the logical display size.

LOADF. The Standard word LOAD is replaced in HP-71 FORTH by LOADF. The inputs to LOADF are
two 20-bit numbers: the length of the character string specifying the file to be loaded and the address of
this string. LOA D F calls HP -71 routines to open, read, and close the file. These routines, in turn, inter­
face to the HP-IL module if it is present, so that screens can reside on HP-IL mass storage devices as well
as in HP-71 memory.

Section 2: The HP-71 FORTH System 15

FIB Entries. Executing LOA [I F opens the screen file and creat~s a file information block (FIB) entry in a
system buffer called the FIB general purpose buffer. The FIB entry identifies the file and indicates
whether the file is in RAM or on mass storage. (If the file is on mass storage, the FIB entry is linked to a
system buffer called an I/O buffer that identifies the file.) A file-information-block number (FIB#) identify­
ing the FIB entry is stored into the FORTH user variable ::; C F.: FIE: (screen FIB#) to specify the active
file.

Mass Memory Buffers. When a file is loaded, its FIB# and the first line of the file are read into a mass
memory buffer. There are three mass memory buffers, used in rotation. The contents of the buffer are
interpreted until the null at the end of the line (placed there by the FORTH system) is reached. The
FORTH word ~'l 0 F.: [I then determines whether this is the end of the active file and, if not, reads the next
line from the file into the same mass memory buffer. Each mass memory buffer has the following format.

Format of a FORTH Mass Memory Buffer

FIB# Line# Byte count Data 2 Nulls

1 byte 5 nibbles 2 bytes Up to 96 bytes 2 bytes

L U A [I F can save the information necessary to return to the file it is currently interpreting, so LOA [I F
commands can be nested.

Mass Memory. A user can LOA [I F a file from cassette or disk directly into the FORTH dictionary
without first storing the file in RAM. The file will be interpreted a line at a time by reading the line into
a FORTH mass memory buffer. However, a file stored on a magnetic card must be read into RAM before
it can be loaded into the FORTH dictionary or edited.

File Words

• L.. () !"i [I F accepts input from a specified file rather than the keyboard. Words are executed and defi­
nitions are compiled into the user dictionary. The file may exist in RAM or on mass storage.

• E: L 0 C: t::: reads a specified line of the active file into a mass memory buffer and returns the address of
the first data byte in the mass memory buffer.

• C: l... 0 ::; E F closes a specified file.

• E () F returns a true flag if the end of the active file has been reached, a false flag if not.

• +b i.J F returns the address of the next available buffer.

• U F' E ti F opens a FIB entry for a specified file.

• C:!", 0 ::; E ALL closes all open files.

• F I F: ::::; T is a user variable containing the address of the first mass memory buffer in memory.

• L I f'1 I T is a user variable containing the address of the first byte beyond the mass-memory-buffer
area.

• F' F: E I) is a user variable containing the address of the mass memory buffer last used.

• U ::; E is a user variable containing the address of the mass memory buffer to use next.

16 Section 2: The HP-71 FORTH System

• ::; C P FIE: is a user variable containing the either the FIB# of the active file being interpreted by
LOADF or else o.

• E: L f< is a user variable containing either the line number of the file being interpreted by LOADF or
else 0 (input from keyboard).

• L I tj E # is a user variable containing the line number being loaded from the file specified by SCRFIB.

FORTH/BASIC Interaction

The FORTH/Assembler ROM enables you to temporarily enter the FORTH environment from within the
BASIC environment, and vice versa, to take advantage of features of one system while operating from the
other. If you press I ATTN I while in a temporary environment, you will be returned to the original
environment.

BASIC to FORTH. There are four programmable· BASIC keywords that access the FORTH
environment.

• FOP T H >:: is a BASIC statement, returning no result.

• F 0 F: T H F is a BASIC numeric function that returns the contents of the X-register in the FORTH
floating-point stack.

• FOP T H I is a BASIC numeric function that returns the number on the top of the FORTH data stack,
dropping that value from the stack.

• FOP T H $ is a BASIC string function that returns the string specified by the address and character
count on the top of the FORTH data stack, dropping those two values from the stack.

FOP T H F, FOP T HI, and FOP T H $ read data from the FORTH environment into BASIC variables with­
out executing any portion of the FORTH system (although FOP T H I and F 0 F: T H $ alter the data-stack
pointer). FOPTH>::, however, enables you to transfer BASIC data to the FORTH environment and to
execute any FORTH words before automatically returning to BASIC.

To execute FORTH operations from the BASIC environment, you use the keyword F 0 F: T H ::< followed by
a command string plus up to 14 additional parameters. The optional parameters can be any combination
of strings or numeric quantities. The numeric quantities will be pushed onto the FORTH data stack as
single-length numbers; strings will be specified on the stack by their addresses and character counts.
F 0 F: T H ::< first pushes the optional parameters onto the data stack and then executes the command string.
The command string can contain any sequence of FORTH words and parameters, just like input you
would enter from the keyboard.

Examples.

A$ = FOPTH$

::<2 = FOPTH I

T = TAN (FOPTHF)

FOPTH>:: "DPOP ::;~,jAP T\'PE DEPTH ,".' 1 0.' 20.' ::<2.' "He 11 0 ".' 2t>:: +6

For additional details, refer to appendix C, "BASIC Keywords."

FORTH to BASIC. There are four FORTH words that pass a string (specified on the data stack) to the
BASIC system for execution. The string contains BASIC keywords and parameters. The FORTH words
call the appropriate BASIC routines to parse and execute the string, as if it were typed to BASIC from the
keyboard.

Section 2: The HP-71 FORTH System 17

• E: A ~:; I C ::< passes a string containing BASIC statements to the BASIC system for parsing and execu­
tion. It returns no value to the FORTH environment. E: A ~:; I C ::< can alter the value of BASIC vari­
ables. If the string begins with a line number, it will be added to the current BASIC edit file. The
string can also call BASIC programs. When the BASIC interpreter finishes, it issues a poll that allows
the FORTH system to regain control. If an error occurs, the BASIC system reports the error to the
user, and FORTH runs the system equivalent of the A E: 0 P T word.

• E: A ~:; I C F passes a string containing a numeric expression to the BASIC system for evaluation. It
returns the value of the numeric expression to the X-register in the FORTH floating-point stack.

• [: W:; I C I passes a string containing a numeric expression to the BASIC system for evaluation. It
returns the value of the numeric expression to the FORTH data stack.

• E: A ~::; I C $ passes a string containing a string expression to the BASIC system for evaluation. It re­
turns the resulting string to the PAD area and the address and character count to the data stack. The
resulting string is truncated to 255 characters if it exceeds this length.

Examples.

" W::: .. ···E:4lF' I " E:W:; I CF
"A$" E:A~:;IC$

" A6=T':: 4::' IF' I" E:A~:; I C>::
II 50 [i I ~:;F' A., E:.:" E:A~:; I C>::
II H4" E:A~:;ICF

II ~::;THTIY=;" E:W:; I C I
" Tlr'1E" E:A~:;ICF

The FORTH/BASIC interface is not reentrant. That is, operations in one environment that are called
from the other environment can't exercise the original environment, except to return data. In particular:

• The string passed to the BASIC environment by E: A ~:; I C >: can't contain the keyword FOP T H::<. How­
ever, FOP T H $, FOP T HI, FOP T H F are allowed.

• The FORTH command string that is the first argument of FOP T H ::< can't contain the FORTH word
E: A ~:; I C >::. However, E: A ~:; I C $, E: A ~:; I C I, and E: A ~:; I C F are allowed.

Applications that respect these two rules will work as long as operations in one environment respect the
integrity of the other. For example, don't F' 0 f::: E random data into the FORTHRAM file from BASIC or
write over the BASIC environment pointers from FORTH.

HP-IL Operations

To enable controller applications to take advantage of FORTH's speed, the FORTH kernel includes
FORTH equivalents of the BASIC statements EtHEP and OUTF'UT. Additional HP-IL functionality in
the FORTH environment can be gained by using the FORTH-to-BASIC words. For example,
" ~:::; TAT U ~:;" E: A ~:; I C I returns to the integer data stack a value describing the loop status.

The FORTH word E tH E P instructs the HP 82401A HP-IL Interface to receive data from an HP-IL
device. The HP-IL module puts the bytes received into a temporary location (the HP-71 math stack). The
FORTH system then moves the bytes into an address specified by the user when executing ENTER. The
byte count and the address of the data are always returned to the user.

18 Section 2: The HP-71 FORTH System

If BASIC system flag - 23 is set, E t·~ T E F.: terminates when it receives an End of Transmission message.
Otherwise, E t·~ T E F.: continues to request data until its end condition is satisfied. The end condition can be
either the reception of a specified number of bytes or of a particular byte value.

The FORTH word OUTPUT instructs the HP 82401A HP-IL Interface to send data to an HP-IL device.
The user supplies a byte count and the address of the data to be output.

Two FORTH user variables, P F.: I t'1 A F.: \' and ::; E C 0 t·~ [I A F.: \', specify the intended device for 0 U T PUT and
EtHEF.:. Default contents of the variables are 1 for PF.: I t'1AF.:\' and 0 for ::;ECOt·WAF'";'. The user must
ensure that these variables are properly set up before executing E t·~ T E F.: or 0 U T PUT.

General Purpose Buffers

Large applications may require blocks of temporary storage that are not a part of the FORTH dictionary
space. The HP-71 BASIC O/S provides such temporary storage in the form of general purpose buffers. A
maximum of 512 buffers can each contain a maximum of 4095 nibbles, provided that there is enough
RAM present to allocate to the buffer. The FORTH/Assembler ROM provides five words to make, find,
expand, contract and destory these buffers.

General purpose buffers are maintained at the end of the file chain. The last general purpose buffer is
followed by two zero bytes, signifying the end of the general purpose buffer chain. A general purpose
buffer has a seven-nibble header field followed by the data space.

Update Buffer ID Data length Data

1 nibble 3 nibbles 3 nibbles Up to 4095 nibbles

The update nibble is used by the operating system. Refer to the HP-71 Software IDS for a description.

Temporary buffers are allocated buffer ID's in the range of EOO to FFF. Because memory contents can
move, shifting the position of the buffer, you must use the buffer ID to find the current location of the
buffer each time you use it.

General purpose buffers are normally purged by the operating system at coldstart, power on, and during
execution of F F.: E E PO F.: T and C L A I t'1 PO F.: T. However, you can mark one buffer to be retained even
during these operations by storing its buffer ID into the FORTH user variable VARID. (The assembler
uses this variable to save a buffer.)

The following FORTH words deal with general purpose buffers.

• t'1 A f::: E E: F creates a general purpose buffer of a specified size.

• F I t·~ [I E: F finds the current address of a specified general purpose buffer.

• f:: ILL E: F deletes a specified general purpose buffer.

• E:: P E: F expands a specified general purpose buffer by a specified number of nibbles.

• C 0 t·~ E: F contracts a specified general purpose buffer by a specified number of nibbles.

Section 2: The HP-71 FORTH System 19

Foreign Language Error Messages

FORTH allows a LEX file to substitute alternative error messages (such as foreign language messages) for
its own messages. When a FORTH error occurs, the FORTH system puts together an error number with
its LEX ID (4710) and calls the BASIC O/S warning routine. The warning routine allows insertions into
the error message. For instance, when FORTH cannot find a word typed in by the user, it gives the
message: F THE F.: F.:: >:: ::< >:: nor ~- e C 0':::1 n i zed. A foreign language LEX file can trap the warning
poll and, if the LEX ID of the message is that of the FORTH/Assembler ROM, can substitute its own ID.
This causes the message presented to the user to come from the foreign language LEX file rather than
from the FORTH/Assembler ROM. Refer to the IDS for more information.

FORTH Extensions

Floating-Point Operations

The HP-71 FORTH system includes an HP-RPN-style floating-point stack (X-, Y-, Z-, T-, and LAST X
registers). There are FORTH words to manipulate the stack and to use the HP-71 math routines for
floating-point operations. There are also FORTH words to create floating-point variables and constants,
to fetch and store floating-point numbers, and to display floating-point numbers.

FORTH stores floating-point numbers in the same format as the BASIC system. Each register contains 16
nibbles, as shown below.

... Greater addresses ...
15 14 3 2 o

Mantissa Exponent

Implied decimal point

Sign. The sign nibble (labeled "S" above) contains 0 for a positive number and 9 for a negative number.

Mantissa_ The 12-digit mantissa has an implied decimal point after the most significant digit. The man­
tissa is not necessarily normalized-that is, it can contain leading zeros to effectively extend the range of
the exponent. This field may contain non-numeric data when the register contains an Inf or NaN.

Exponent. The three-digit exponent E is expressed in tens complement, -499 ~ E ~ 499, with the
most significant digit in nibble 2. The exponent field is also used to indicate an Inf or NaN: FOO indicates
Inf (which may be positive or negative), FOI indicates a quiet NaN, and F02 indicates a signaling NaN.

20 Section 2: The HP-71 FORTH System

The following diagram shows how the number -8.23601 E-312 is stored in a register.

15 14 3 2 o

I 9 I 8 2 3 6 0 o 0 0 0 0 0 688

For more information about the formats for floating-point numbers, refer to the HP-71 IDS.

A floating-point number is identified in HP-71 FORTH input by the presence of a decimal point. When
I t·~ T E F: F' F: E T doesn't identify a character sequence in the input stream as a FORTH word, t·~ U r'1 E: E F:

checks the sequence for a decimal point. If there is no decimal point, t·i U t'1 E: E F: treats it as a potential
single- or double-length number. (Many FORTH systems identify double-length numbers by the presence
of "" :" or a non-leading -. HP -71 FORTH uses only" :, and .. to identify double-length
numbers.)

If the sequence contains a decimal point, the entire sequence is passed to the BASIC O/S routine
corresponding to the keyword I.} A L for evaluation. If the sequence can be evaluated, the result is pushed
onto the floating-point stack. "Can be evaluated" means that the character sequence is any valid BASIC
numeric expression, which may include literal numbers and BASIC numeric variables. For example, the
sequence 1 ~:::1l ~:; I t~ 0:: ::3 0 ,) entered in the FORTH environment will return the value 5 to the floating­
point X-register (assuming that the current HP-71 angular mode is degrees). Similarly, ,IT 1 will return
the current value of the BASIC variable T1 to the X-register.

A side effect of the automatic floating-point expression evaluation is that attempted execution or compila­
tion of unrecognized words containing decimal points will result in the BASIC message
EF:F:: D.", t.", T';:Ipe. For example, entering an undefined word ::-:;'/ZAE:C causes the FORTH message
F THE F: F: : ::< '.,.. Z A E: C not t- e C 0':;1 n i zed, but entering the >:: \' Z , A E: C will cause the BASIC message
E F: F: : D.", t", T ';:I P e because of the decimal point.

Floating-point trigonometric functions use the current HP-71 angular mode. FORTH words are provided
to switch the mode between degrees and radians. If the mode is set in FORTH, then subsequent BASIC
operations will use that mode, and vice versa. Similarly, the floating-point display mode is common to
FORTH and BASIC. Floating-point numbers are converted for output (F " FSTF'::t) in decimal according
to the current display mode, which can be set from FORTH or BASIC.

The names of several floating-point operations are prefaced with "F" to distinguish them from operations
with similar names. In the following description, x is the contents of the X-register, y is the contents of
the Y-register, and so on. All floating-point arithmetic operations return the result to the X-register.

Floating-point Words

• F + returns y + x.

• F - returns y x.

• Fl returns y x x.

• F.. returns y x.

Section 2: The HP-71 FORTH System 21

• ::< .'. 2 returns x2•

• ::::; I t·~ returns the sine of x.

• C: U ::; returns the cosine of x.

• T A t·~ returns the tangent of x.

• E:" >:: returns eX.

• 1 /:: returns the reciprocal of x.

• :::; I) F.: T returns the square root of x.

• \"" >:: returns yX.

• L. C; T returns loglO of x.

• L t·~ returns the natural log of x.

• H T !=t t~ returns the arc tangent of x.

• A ::; I t~ returns the arc sine of x

• ~1 CO::; returns the arc cosine of x.

• F.: [H·! rolls down the stack ("down" in the HP-RPN sense).

• F.:!.JF' rolls up the stack ("up" in the HP-RPN sense).

• "<''> \' swaps x and y.

• >::, ''(, Z, T, and L return the address of the corresponding floating-point register.

• L H ::::; T >:: pushes the contents of the LAST X register onto the floating-point stack.

• FE: I··n E: F.: pushes the contents of the X-register onto the floating-point stack.

• PC L fetches a floating-point number from the address on top of the data stack and pushes it onto the
floating-point stack.

• ::; T 0 stores x into the address on top of the data stack.

• F, displays x without altering the floating-point stack.

• F' i,) H P I A E: L E: creates a floating-point variable in the FORTH dictionary.

• F c:: (J t·~ :::; TA t·~ T creates a floating-point constant in the FORTH dictionary.

• >:: c:: 0 '), >:::> \' '~', >=: <: \' '~', ::< = \' '~', ::< # \' '~', >:: <: = \' '~', and >:: '> = \' ,~, perform the specified test and, if true,

push a true flag (-1) onto data stack; or if false, push a false flag (0) onto data stack.

• D F C; P E: E: ::; sets the active angular mode to degrees.

• PH U I Fi t·~ ::; sets the active angular mode to radians.

• :::; T D, F I >::, E H G, and ::; C I set the display format.

22 Section 2: The HP-71 FORTH System

String Operations

HP-71 FORTH includes words to create string constants, string variables, and string arrays; to compare
strings; to manipulate portions of strings (substrings); and to match string patterns. A string is stored in
memory in the following format.

Format of a String in Memory

Maximum Current Character string
length length (left-justified)

1 byte 1 byte Maximum-length bytes

A string in memory is usually represented on the stack by a pair of values: an address and a character
count (count on top). The address is the location of the first character of the string in memory, and the
character count is the current length. This is the format expected by the standard word T \' F' E:.

Occasionally a "counted string" in memory is represented on the stack simply by an address. The address
is the location of the string's length byte, which is followed in memory by the string's characters. This is
the format expected by the standard word t·~ U t'1 E: E F.:.

String constants are created by the word" , which puts the maximum-length byte, the current-length byte,
and the string in the pad (system scratch space). String constants are thus very temporary-don't type in
two string constants followed by a comparison operator, because the second will have been created on top
of the first. String constants are used mainly to set the values of string variables, but you can also use
them with other functions as long as you notice when the pad is being overwritten.

String variables are dictionary entries much like numeric variables. At the PFA are the maximum-length
and current-length bytes followed by the string. The code field contains the address of code that returns
to the stack the address of the first character (PFA + 4) and the current length.

String variable arrays are similar to single variables, but the first two bytes at the PFA indicate the maxi­
mum length of each element and the number of elements in the array. Next come the strings, each in the
format described above: maximum length, current length, string. The nth element is accessed by typing
n array name; the CFA points to code that returns the address and count of this element, which can be
manipulated just like a regular string variable or constant.

String Words

• " creates a temporary string.

• A::='; C returns the ASCII code for the first character in a string.

• C H F.: $ returns a temporary string of length 1 for a specified ASCII code.

• E t·~ [I $ creates a temporary substring from the last part of a string.

• F :::; TFd converts the number in the X-register to a string.

Section 2: The HP-71 FORTH System 23

• L.. EFT $ creates a temporary substring from the first part of a string.

• t'1 f"i >< L E t·j returns the maximum allocated length of a string.

• H 1...1 L L $ creates a temporary string of zero length.

• F' CI ::; returns the position within a string of a substring.

• F: I G H T $ creates a temporary substring of specified length from the last part of a string.

• ::;::: returns a true flag if two strings are equal, a false flag if not.

• ::;:: returns a true flag if string 1 < string2, a false flag if not.

• :::; I stores stringl into string2.

• :::;:: :::., adds a copy of one string to the end of another string.

• ::::;:> :::., adds a copy of one string to the beginning of another string.

• :::; t'! () I,) E stores a string at a specified address.

• :::; T F::t converts a double number into a string.

• ::::; T F: I t·~ C creates a string variable.

• ::::; T F: I t·j C _. A F: F A \' creates a string-array variable.

• ::; U E::$: creates a temporary substring from the middle part of a string.

Vocabularies

The HP-71 FORTH vocabulary structure is a tree-like structure. Every vocabulary contains the word
FCII?TH, which sets the FORTH vocabulary as the CURRENT vocabulary (to which subsequent new
words will be added). This is because F 0 F THis the first word in the FORTH vocabulary, and all vocabu­
laries eventually chain back to the FORTH vocabulary. The following example creates a vocabulary called
NEW.

1,}OC:HE:ULAF:\' tjE~,J

tjE~'J DEF I tj I T I Otj::;

In the first line, I,) 0 CAE: U L A F \' creates a new vocabulary called NEW. This entry, NEW, is entered into
the current vocabulary, which is the FORTH vocabulary. Execution of t~ E ~,J in the second line makes
NEW the CONTEXT vocabulary (in which searches for words begin). DE F I t·~ I T I 0 t·j ::; sets the CUR­
RENT vocabulary to be the same as the CONTEXT vocabulary. To continue the example:

: ~,JClFDl

VOCHE:ULAFY HEWEF
HEWEF DEFIHITIOHS
: ~'WF:D2

24 Section 2: The HP-71 FORTH System

Now three vocabularies exist: FORTH, NEW, and NEWER. Suppose that ~,j 0 F.: D::3 is added to the NEW
vocabulary, and ~,j 0 F.: D 4 is added to the FORTH vocabulary. The diagram below shows the result.

FORTH

V:NEW WORD1

WORD4 V:NEWER WORD2

WORD3

If either NEW or NEWER is the CONTEXT vocabulary, the word search won't find i,j 0 F: D 4 in the
FORTH vocabulary. If NEWER is the CONTEXT vocabulary, the word search won't find ~,~ Cl F.: D::3 in
NEW, but it will find ~,j 0 F.: D 1. In terms of the diagram, the word search proceeds in vocabularies other
than the CONTEXT vocabulary by moving leftward and upward, never rightward or downward.

It is important to realize that, while F 0 F.: T H can be reached from any vocabulary, the converse is not
always true. t·~ E ~,j can be found when FORTH, NEW, or NEWER is the CONTEXT vocabulary, but
t·~ E ~,j E F.: can be found only when NEW or NEWER is the CONTEXT vocabulary.

Whenever an error occurs, FORTH becomes both the CONTEXT and CURRENT vocabulary.

Error Trapping

When an error occurs during execution of a FORTH word, a system routine equivalent to A E: 0 F.: T or
A E: 0 F: T" is executed. Normally, these routines will reset the data and return stacks and return to the
outer interpreter loop for new input. However, HP-71 FORTH provides an error-trapping facility that can
allow FORTH execution to continue after an error.

The user variable ONERR contains the CFA of a word to execute when an error occurs. The system abort
routines check the contents of ONERR; if ONERR contains zero, the routines will exit normally through
o U IT. If the value of ONERR is non-zero, execution will be transferred to the address contained in
ONERR. The stacks are not reset, so the error routine has a chance to recover some or all of the state of
the systerm at the time of the error. (The words A E: 0 F: T and A E: 0 F.: T" don't respect the setting of
ONERR.)

Section 2: The HP-71 FORTH System 25

FORTH Memory Organization

HP-71 Memory

The diagram below shows a map of the HP-71 memory with the FORTH/Assembler ROM installed.

00000 r-I --­

!

i
I
I

Sysb::em ROM

20000 i
I
!

Memory Mapped IIO
and Display RAM

2F 400 - - - - - - - - - - - - - - - - - - -

Operating System RAM
--------------------i
i

i Configuration Buffer
~-------------------

FORTHRAM File
30000

38000 HP-718 Intarnal RAM End

Other User Memory

~-------------------I

I Soft-Configured FORTH ROM
I

~-------------------
!

EOOOO - - - - - - - - - - - - - - - - - - -
Hard-Configured FORTH ROM

Hard-Configured RAM

Soft-Configured
Internal & Plug-in

RAM

IRAM & Plug-in ROM

FilQ BoundariQs
FOOOO - - - - - - - - - - - - - - - - - - - 1 Physical BoundariQs

FFCOO ~ __ ~e~~r~~~ ~~~_ ~e~~~g~~ ___ L-
FFFFF I Conf i ~ura~l __ on _R~~~~~~ __ ~~_~~ HIGH

26 Section 2: The HP-71 FORTH System

The FORTH! Assembler ROM uses addresses in three regions:

• Hard-configured ROM, from EOOOO to EFFFF. The hard-configured ROM contains the FORTH
operating system, the built-in FORTH dictionary, and the assembler.

• Soft-configured ROM. This is a 16K-byte module that contains the editor, all BASIC keywords in the
FORTH! Assembler ROM, and the initialization routines for the FORTH environment.

• The FORTH RAM file. This file is stored in user memory and contains the changeable parts of the
FORTH system-user variables, user dictionary, and so on. When the FORTH system is active,
FORTHRAM will always be the first file in user memory.

The FORTH RAM File

When F: 0 P THor f::' 0 f;: T W-:: is executed, a file called FORTH RAM is created (unless it exists already).
FORTHRAM contains both the FORTH system's status information and all words added by users.
FORTH has been assigned LIF file types E218 and E219. When the FORTH! Assembler ROM is plugged
in and a C H TAL L.. is executed, the FORTH system intercepts the file-type poll and displays F C) 1:;:: T :"'1

instead of the numeric file type for FORTHRAM. Initially FORTHRAM contains about 3K bytes. You
can enlarge the file (to expand the dictionary) or contract the file (at the expense of the dictionary), but
only after the entire 3K-byte file exists.

To re-enter FORTH when FORTHRAM is no longer the first file in memory, 37 bytes are required to
swap the file back into the first position. If there is not enough memory, an error message is displayed.

Copying FORTHRAM. You can rename, copy, and purge FORTH RAM using HP-71 BASIC file com­
mands. This enables you to have multiple versions of the FORTH system, each containing a different user
dictionary. When you have multiple FORTH files, the file currently named FORTHRAM will be the
active FORTH file when you enter the FORTH environment. Also, if you make backup copies of your
FORTH system, you can restore your system following a memory loss (common when programming in
FORTH) by reloading a FORTHRAM file from mass storage rather than by recompiling the dictionary.
The FORTH! Assembler ROM is not required to copy the FORTHRAM file out to mass storage, but it is
required to copy FORTHRAM back into RAM.

Contents of FORTHRAM. The diagram on the opposite page shows the structure of FORTHRAM. At
the beginning of the file are 37 nibbles of system overhead-file name, file type, link to next file, and so
on. Next is the address of the FORTHRAM file; when the FORTH system is re-entered, this address
indicates whether FORTHRAM has been moved. Next is up to 101 bytes of unused space, depending on
FORTHRAM's starting address. Enough space is added to ensure that FORTHRAM's data begins at
2FAFD.

Starting at 2FAFD is the housekeeping information needed to save the FORTH pointers when a system
routine alters all of the CPU registers. At 2FBll starts the block of FORTH system variables called "user
variables." The floating-point stack follows the user variables in the file. The user dictionary space starts
above the floating-point stack. When the FORTH RAM file is created, 2K bytes (the minimum required by
the FORTH standard) are allocated for dictionary entries. The data stack is deep enough to hold a mini­
mum of 40 entries. The return stack and the Terminal Input Buffer share 200 bytes, of which a maximum
of 98 bytes can be used by the Terminal Input Buffer (keyboard entry is limited to 96 characters, and
FORTH appends 2 null characters for its own use). The mass memory buffers are allocated 312 bytes.

ADDRESS

r

2FAFD

2FBll

2FBCO

2FC8D

30D7C

30FOC

3117C

Section 2: The HP-71 FORTH System 27

FORTHRAM File Structure

-----,

FilQ HQadQr (37 nibblQs) I

~~a~~-~~-~~l~ _A~~~S_S _ ~ _n~:b~:s~ _ j
UnusQd SpacQ (up to 202 nibblQs)

I
I
!

-----------------------1

PointQr SaVQ ArQa I
FORTH ActiVQ Flag

----------------------- ~
USQr VariablQs i

POINTER

SPO

-----------------------J~L
I

______ F~:a~~n:~P~~n~ _S~~c~ _____ J

I

I~

Dictionary

I
I

W HERE

PAD (floats aftQr Dictionary) ~ PAD

I~ SP@
I

Data Stack

-----------------------~~ TIB

TQrminal Input BuffQr I

I
'~ RP@

Return Stack
- ~ FIRST

Mass MQmory BuffQrs
(3 @ 208 nibblQs)

28 Section 2: The HP-71 FORTH System

The tables below show the details of a newly created FORTHRAM file. Although the FORTHRAM file is
always the first file in user memory, its starting address varies according to the length of the HP-71
configuration buffers, which precede FORTHRAM in memory. The current address of the start of the file
can be found by executing

ADDP$ 0: 'FOPTHPAt'1' ::0 in BASIC, or
" FOPTHPAt'1" F I t·WF in FORTH.

System Save Area

Address Contents

2FAFD Data-stack pointer save.

2FB02 Return-stack pointer save.

2FB07 Instruction pointer save.

2FBOC FORTH active flag.

User Variables

Address Contents

2FB11 Pointer to bottom of data stack.

2FB16 Pointer to bottom of return stack.

2FB1 B Pointer to TIB.

2FB20 Next buffer.

2FB25 Most recent mass storage buffer.

2FB2A First mass storage buffer.

2FB2F End of FORTH RAM + 1.

Vocabulary link.

Buffer record size.

FORTH Words
To Return Contents

TIE:

2FB34

2FB39

2FB3E

2FB43

2FB48

2FB4D

2FB52

Number of characters in TIB. # TIE: IE'

2FB57

2FB5C

2FB61

2FB66

Maximum word-name length. ~,j I D T H IE'

Warning mode. ~,j A F.: t·j IE'

Enable/disable 0 K in 0 U IT. 0 K F L C IE'

Line number in current LOA D F file. E: L f::: IE'
(Reset when load error occurs.)

Offset in TIB. \ I ti IE'

Number of characters read by E ::< F' E C T 9 6. ~:; F' A t·i IE'

FIB# of active LOA D F file. ~:; C F.: FIE: IE'

Address of CONTEXT vocabulary. CO tH D: T IE'

Section 2: The HP-71 FORTH System 29

User Variables (continued)

Address Contents

2FB6B Address of CURRENT vocabulary.

2FB70 Compilation flag.

2FB75 Current base.

2FB7A

2FB7F

2FB84

2FB89

2FB8E

2FB93

2FB98

2FB9D

2FBA2

2FBA7

2FBAC

2FBB1

2FBB6

2FBBB

Address

2FBCO

2FBDO

2FBEO

2FBFO

2FCOO

2FC10

Number type indicator.

Unused. Available for user programming.

Current position of stack. (Used by compiler.)

Pointer to last character in display string.

F 0 F: C E T boundary.

Next available nibble in dictionary.

Buffer size in nibbles.

Line number in current L 0 8 D F file.
(Preserved after load error.)

Return address for BASIC keywords.

Reserved for HP-IL use.

Secondary HP-IL address.

Primary HP-IL address.

On-error execution address.

Error-occurence flag.

Floating-Point Stack Registers

LAST X register.

X-register.

Y -register.

Z-register.

T -register.

Contents

System use. (Eight bytes for file name.)

FORTH Words
To Return Contents

L I ['1[# (~

F'F' I t'18k'-,-' 12"

FORTH Words
To Return Value

to X-register

L kCL

'/ kC:L

~: F:C:L

T kCL

30 Section 2: The HP-71 FORTH System

Vectored Execution Addresses

Address Contents

2FC20 I t·j T E P P PET

2FC25 CPEATE

2FC2A t·j U t'1 E: E P

2F:C2F, (comma)

2FC34 C.. (c-comma)

2FC39 ALLOT

2FC3E For xxx i sn I t un i que message.

Assembler User Variables

Address Contents

2FC43 ID of buffer to preserve.

2FC48 Page length.

2FC4D Name of listing file.

2FC79- System use.
2FC8C

User Dictionary and Above

Address Contents

2FC8D FORTH word.

2FCB1 Start of first user-defined word. (Addresses
above 2FCB1 are variable.)

2FCB1* End of dictionary. (Next available nibble.)

2FDOB* Pad. (Floats after dictionary.)

30D7C* Top of data stack.

30D7Ct Bottom of data stack = Start of TIB.

30FOCt Bottom of return stack = Start of first mass
storage buffer.

3117Ct First nibble after FORTH RAM.

• Changes when words are compiled or executed.
t Changes when C F: 0 I'~ or ':i H F I tH:: is executed.

FORTH Words
To Return Contents

1,}APID I~

FORTH Words
To Return Contents

I FOPTH 2- -1
TPAi,}EP~:;E :i-

HEPE

PAD

~:; P I~

~:;O, ~:;PO I~, or TIE:

FPO I~

F I p~:n I~

LI t'1I T I~

Section 2: The HP-71 FORTH System 31

The FORTH Dictionary

When you type in a word to be executed or when the system compiles a word from a source file, FORTH
must search through its dictionary to find the word and its execution address. HP-71 FORTH searches
the RAM part of the dictionary first (the user dictionary) and then the ROM part (the built-in FORTH
words). Words in ROM are arranged according to word length to minimize the search time. The length of
the target word is used as an index into a jump table so that, for example, only the list of three-character
words are searched for a three-character word. A test is also made to ensure that the word is not longer
than the longest word in the ROM portion of the dictionary.

As an example of an entry in the dictionary, the structure of a FORTH primitive C 1'1 0 I) E is shown below.
Although this word is in the ROM dictionary, its structure is typical of words in either the ROM or RAM
parts of the dictionary.

Structure of a Word

Field Address Contents

Link LFA = E3AEE E3AA6

Name NFA = E3AF3 5834D4F4655C

Code CFA = E3AFF E3B04

Parameter PFA = E3B04 code

Link Field. The contents of the link field (E3AA6) point to the name field of the previous dictionary
entry.

Name Field. The first byte of the name field, 85, is 10000101 in binary (note that the byte's two nibbles
are reversed, with "5" stored at a smaller address than "8"). The byte's high-order bit is set to indicate the
start of the name field, and the second bit is clear to indicate that the word is not immediate. The third
bit (the smudge bit, set during compilation of a secondary to prevent the word being used in its own
definition) is clear. The five low-order bits have a value of 5 to indicate that the name is five characters
long; the maximum length is 31 characters. The second and subsequent bytes in the name field are the
ASCII representation of the word's name, with the high bit of the last character is set to indicate the end
of the name field. Here the last character is "E" with ASCII value 01000101, so the binary value 11000101
is stored (with nibbles reversed) as 5C.

Code Field. Because ct'W I,} E is a primitive, the code field contains this word's PFA, E3B04, so that the
code in the parameter field will be executed. In a secondary, the code field contains the address of the run­
time code of :, which nests the FORTH program pointer down one level.

Parameter Field. Because C 1'1 0 I.} E is a primitive, the parameter field contains executable code. In a
secondary, the parameter field contains the CF As of the words that make up the secondary.

32 Section 2: The HP-71 FORTH System

The ROM-based dictionary contains all of the built-in FORTH words except FOP T H, which is always the
first word in the RAM-based dictionary. To speed compilation, the FORTH system doesn't search the
entire ROM-based dictionary. The ROM-based dictionary is composed of 13 separate linked lists, with
each list containing words of a specific length, so the FORTH system searches only the list for the appro­
priate word length.

At EOOOO is a jump table with 13 entries. Each entry contains a pointer to the beginning of the word list
for words of a specific length, from 0 through 12 characters. To illustrate this structure, a word I,} L I ::; T

appears below that will display all words in the ROM dictionary. Note that the pointer initially indicates
the list of one-character words.

HE::-=:
: ''}L I ::;T E0005

DiDO
D U F' I:!!

E:EGIt·~ DUF'
COUtn 1 F At·m 1-

DUF' }P 2* SWAF' DUF')P
+ C@ 7F AND P) P)
TYF'E EMIT CP 5- @ 0DUF' 0=

UtnIL
5 + LOOF' DPOF'

The HP-71 File System

The HP-71 contains a 64K-byte operating system kernel that starts at address 00000. The kernel per­
forms various control functions and contains the BASIC interpreter. External software may be added to
the machine in the form of files that the kernal interprets or executes directly. These files may be directly
plugged into the machine through ROM or RAM modules, or copied into the machine from external media
such as cards or tape.

File Types

The following file types are directly supported by the HP-71 mainframe. OEM software developers may
support other file types by first reserving the file type with Hewlett-Packard and then including the
appropriate poll handlers in a LEX file. Each file type is identified by a 16-bit value that conforms to
Hewlett-Packard's Logical Interchange Format for Mass Media.

Section 2: The HP-71 FORTH System 33

When HP-71 files are stored on external media, file security and privacy are encoded, if applicable, in the
numeric file type as shown in the chart below. When files are stored in memory, privacy and security are
encoded in the flags field of the file header, and the file type stored in the file header is always the normal
file type.

Numeric File Type

Type Description Normal Secure Private
Execute

Only

BASIC Tokenized BASIC program. E214 E215 E216 E217
BIN HP-71 machine language. E204 E205 E206 E207
DATA Fixed data. EOFO EOF1 n/a n/a
LEX Language extension. E208 E209 E20A E20B
KEY Key assignment. E20C E20D n/a n/a
SDATA Stream data. EO DO n/a n/a n/a
TEXT ASCII text, in LlF Type 1 format. 0001 EOD5 n/a n/a
FORTH FORTHRAM file. E218 E219 n/a n/a

Four of these file types are program files: BASIC, BIN (Binary), LEX (Language Extension), and
FORTH. BASIC files may be developed on the HP-71 using the built-in BASIC interpreter. BIN, LEX,
and FORTH files may be developed on the HP-71 using the FORTH/Assembler ROM.

Types of Program Files

Type Format Method of Invocation Mode of Execution

BASIC Tokenized BASIC statements. RUN or CALL command. Interpretation.

BIN Machine language (binary). RUN or CALL command. Direct execution.

LEX Language extension file; adds Through its added BA- Direct execution.
BASIC keywords, messages, SIC keywords and by
and functional extensions; polls from operating sys-
written in machine language. tern.

FORTH FORTH vocabulary. Through FORTH inter- Threaded inter-
preter. pretation.

34 Section 2: The HP-71 FORTH System

Structure of the File Chain

The HP-71 maintains a file area in main RAM that is composed of a linked list, or chain, of file entries.
(Each plug-in ROM module and independent RAM contains its own file chain.) At the beginning of each
file entry is a file header. The file header contains identifYing information about the file along with the
link to the next file entry in the chain. The end of the chain is marked by a zero byte. Each file header
contains the following fields:

Fields in a File Header

Field Size

File name 16 nibbles

File type 4 nibbles

Flag 1 nibble

Copy Code 1 nibble

Creation Time 4 nibbles

Creation Date 6 nibbles

Link 5 nibbles

File Name. The file-name field contains the eight-character file name in ASCII, filled with blanks to the
right (high memory).

File Type. The file-type field contains a four-digit hex integer, listed in the "File Types" table above.

Flag. The flag field contains four system flags. The two bits in the low end of the flag field indicate file
protection. When set, the lower of the two bits indicates a file is SECURE; the higher of the two bits
indicates a file is PRIVATE. The remaining two bits of the flag field are unused.

File Header-Flags

Low High

t L P';vate ~ Secure

Copy Code. The copy-code field indicates the file attributes neccessary for external copying.

Section 2: The HP-71 FORTH System 35

Creation Time and Creation Date. The creation-time and creation-date fields represent the time and
date in BCD. The time field contains four nibbles; the minutes are in the low byte, and the hour is in the
high byte. The date field contains six nibbles; the day is represented in the low byte, the month in the
next byte, and the year in the high byte. For example, the internal representation of 03:45 on December
16, 1981, would be as follows:

Time Date
~--~----~\,~--------~------~

Link. The link field contains the offset to the next file (header) in memory.

Section 3

The Editor

The FORTH/Assembler ROM editor enables you to create, modify, copy, list, and print text files. These
files are suitable source files for the FORTH system and the assembler. This section describes the editor's
operation in three parts:

• "Overview of the Editor" describes how to enter and exit the editor, the two types of editor com­
mands, and editor operations other than commands.

• "Editor Commands" describes the specific commands that act on the edit file.

• "Editor Files" describes files used in the editor's operation.

Additional material related to the editor appears in the appendixes. Appendix B, "Error Messages," in­
cludes the error messages generated by the editor. Appendix C, "BASIC Keywords," includes the editor
keywords DEL.. E T E, EDT D:: T, F I L.. E ~:; Z F:, I t·j ~:; E F: T #, r'1 ~:; C :$, F.: E F' L.. ACE #, ~:; C F: 0 L.. L.., and ~:; E H F: C H,

which you can use in your own BASIC programs.

Also in the keyword dictionary is the BASIC keyword f::: E \' E: 0 A F.: D I ~:;. Used in conjunction with
[I I ~:::; F' L.. H \' I ~:;, f:: E \' E: 0 H F: D I ~:; allows almost any terminal (or computer acting as a terminal emulator)
to be an extension of the HP-71 keyboard and display. Although this keyword isn't strictly a part of the
editor, a full-size keyboard can greatly aid text input.

Overview of the Editor

The editor is a BASIC program; when you enter the editor, the HP-71 PF~ C:l"l annunciator appears. You
can enter the editor directly from the FORTH environment by using l::>:';:, " C :::

will run the editor on a file named SCREEN. When you exit the editor, the HP-71 will automatically
return to FORTH. Here is a FORTH word that you might find useful:

r- ;--, T "T"
r.::.!...:':. !

.. ,"' . .'5:::

When you execute ED IT, the editor will open the file SCREEN for editing. When you exit the editor, the
display will show L. c·;;:; d :t n'J ' while the FORTH system compiles the contents of SCREEN into the
dictionary.

To enter the editor from BASIC, type EDT E >:: T filename I END LI NE I. The editor opens that file for
editing or, if filename is a new name, creates a new file with that name. The display then shows
L. 1 n ;;;;' n.' em d : , where line n is the current line in the file. Line numbers, which begin with 1, are for
reference only; they aren't stored in the file. If you're at the end of the file, the current line is indicated by

37

38 Section 3: The Editor

When the em d: prompt is displayed, you can:

Display the Current Line. To temporarily display the current line, hold down the I END LI NE I key. When
you release the key, the C m d: prompt returns.

Move to A Different Line. There are three methods for moving to a different line:

• To move to any line in a file, enter the line number and press I END LINE I. For example, to move to line
2, enter 2 I END LINE I.

• To move to 'the previous line (smaller line number), press ITJ. To move to the following line (larger
line number), press [IJ.

• To move to the beginning of a file, press @]ITJ. To move to the end of a file, press @][IJ.

Display the File Name. If you press ITJ when the line 1 is the current line, the editor will display the
name of the edit file. To display the file name from any place in the file, hold down 11l~. When you
release ~, the em d: prompt returns.

Execute a Command. The editor commands, each of which is described in detail below, fall into two
classes:

• The commands T (Text) and I (Insert) are used for entering text. Once you execute the Text or
Insert command, the editor remains in Text or Insert mode until you press I RUN I or I ATTN I; only then
will the C m d: prompt return.

• All other editor commands perform specific operations, after which the em d: prompt returns
automatically.

Exit the Editor. To end the editing session, enter E I END LI NE I. The editor closes the edit file and
displays [I (I n e: filename. If you decide not to keep this file, purge it following the instructions in sec­
tion 6 of the HP-71 Owner's Manual.

When you call the editor, a copy of your own redefined keyboard is stored and the editor's key redefi­
nitions are added to yours. Unless the editor keys are the same keys you've redefined, your redefined keys
are still available to you while the editor is active. When you exit the editor, the combined redefined
keyboard is purged and your own redefined keyboard is restored.

To override a key assignment, use the @]11 USER I key. This will deactivate USER mode for the next key
pressed. Note that if you enter the editor from FORTH, disable USER mode, and then either press I ATTN I
or cause any error, the HP-71 will immediately return to the FORTH environment, leaving the current
edit file in a corrupted state.

Section 3: The Editor 39

Editor Commands

You can enter the following editor commands whenever the em d: prompt is displayed. Some editor com­
mands require parameters such as line numbers or a file name. These parameters are identified in syntax
diagrams for each command. Any default values for parameters are given after the syntax diagram. In the
syntax diagrams:

• Items [enclosed in square brackets] are optional parameters. Some optional parameters are nested
within others. This indicates that the parameter in the outer pair of brackets must be present before
the parameter in the inner pair can be included.

• Items shown in DOT t'1 A T PI:": text must appear exactly as shown (although either upper or lower
case is acceptable).

• There are two substitute characters that can be used for any line-number parameter. A period (,)
indicates the current line, and the pound sign (#) indicates the last line in the file.

• Tho adjacent numeric parameters must be separated by a space or comma. No separation is required
between a numeric parameter and an alphabetic parameter.

The Text (T) and Insert (1) Commands

[line number] T

[line number] I

Default value: line number = current line

The Text command is your primary means of adding text to the edit file. When you enter Text mode, the
current line appears in the display with the cursor at the beginning of the line. Modify the current line as
desired (using the standard HP-71 editing keys) and then press 1 END LINE I. The editor stores these
changes to the current line and then makes the following line the current line, displaying it to start the
cycle again.

The Insert command permits you to add a line or a series of lines into the middle of a file. When you
enter Insert mode, the current line is displayed until you press a key. Type in the text for the new line
(using the standard HP-71 editing keys) and press 1 END LINE I. The editor inserts the new line into the file,
just before the current line, and then displays the next line number as the new current line. (The text for
the new current line is the same as before; only its line number changes.) Flag one is on to indicate that
you are in Insert mode.

Either Text mode or Insert mode work equally well for entering text at the end of a file. In either mode,
text is stored in the file only when you press 1 END LINE I. If you make changes or enter text and then move
to another line (by using [IJ or [IJ) before you press 1 END LINE I, no changes or text will be stored.

To exit from Text or Insert mode, press 1 RUN 1 or 1 ATTN I.

40 Section 3: The Editor

The List (L) and Print (F') Commands

[beginning line number [ending line number]] L [number of lines][t~]

[beginning line number [ending line number]] F' [number of lines][t·~]

Default values: beginning line number = current line
ending line number = last line

The List and Print commands are similar. List causes the specified lines of text to be displayed consec­
utively on the current display device (usually the display window or a monitor). If you have an HP 82401A
HP-IL Interface installed and a printer assigned, Print causes the specified lines to be printed. When no
printer is present, Print responds like List.

After listing or printing, the current line will be the line after the ending line number. The following
examples show some List and Print commands with parameters:

L

,Ll0

. ~, :3 L t·~

L;:~ 0 t~

p

, P5t·~

1 P t·~

List from the current line to the end of the file.

List from the current line to the end of the file, or just 10 lines, whichever
comes first.

List from line 3 to line 9 with line numbers .

List, with line numbers, the entire file or the first 20 lines, whichever comes
first.

Print from the current line to the end of the file.

Print five lines starting at the current line, with line numbers.

Print the entire file with line numbers.

The Copy (C:) and Move (t'1) Commands

[beginning line number [ending line number]] C [filename]

[beginning line number [ending line number]] t'1 [filename]

Default values (Edit file): beginning line number = current line
ending line number = beginning line number

(Other file): beginning line number = line 1
ending line number = last line

Section 3: The Editor 41

The Copy command permits you to copy one or more lines fr9m one place in the file to another place in
the file. You can also copy part of another file into your edit file. Copy always inserts the copied text
before the current line. The Move command is similar to the Copy command but deletes the text in the
original location.

If no filename is specified, the indicated lines come from the edit file. If a filename is specified, the in­
dicated lines come from the specified file. You can't copy or move a block of text that includes the current
line, unless the current line is the first or last line of the block of text.

The ~'.! 0 t- kin':::! ' , , message is displayed when you copy or move text.

Here are some examples of the Copy and Move commands:
...
I _.

t::. t. -;

::3 9 t'1

C CHT

Duplicate the current line .

Copy line 5 and insert it before the current line.

Move lines 3 through 9 from within the edit file and insert them before the
current line, then delete the original lines 3 through 9.

Copy the file CAT and insert the lines before the current line.

Copy lines 20 through the last line of the file ABC and insert the lines before
the current line in the edit file.

The Delete (D) Command

[beginning line number [ending line number]] D [filename [+]]

Default values: beginning line number = current line
ending line number = beginning line number

The Delete command deletes one or more lines from the edit file. You can place the deleted lines into a
new file or, using the + option, append the lines to an existing file. When you execute Delete with line
number parameters specifying more than one line, the message 0 f::: t 0 del e t '" ,~, \'./ t·i: will appear.
You must answer \' before the editor will complete the deletion. If you answer ti, the Command Prompt
returns.

message is displayed when you use Delete.

The following examples show some uses of the Delete command:

D

4 :3 D CHCHE

2 ;?:l D HPCHI,} +

Delete the current line.

Delete lines 12 through 32.

Delete lines 4 through 9 and store them in a new file called CACHE.

Delete lines 2 through 21 and append them to the end of a file called ARCHV.

You can not purge a file while you are in the editor, but you can delete all of the text and leave an empty
file. Refer to section 6 of the HP-71 Owner's Manual for instructions on how to purge a file.

42 Section 3: The Editor

The Search (::=;) and Replace (F.:) Commands

[beginning line number [ending line number]]['~'] ::;./ string 1 [...]

Default values: beginning line number = current line + 1
ending line number = last line

[beginning line number [ending line number]]['~'] P /string1./string2[.. ··]

Default values: beginning line number = current line
ending line number = beginning line

The Search and Replace commands allow you to search through a file for a certain string of characters
stringl. If you use a Search command, the first line containing stringl becomes the current line. If you use
a Replace command, all occurrences of stringl are replaced by string2, and the last line containing stringl
becomes the current line. If either command can't find string l, it displays t·~ 0 1: F 0 U n d.

These commands search the specified lines in the edit file for the string indicated between the slashes (..).
These slashes act as delimiters, marking the string's boundaries. If you need ./ as a normal character in
your search string, you can use any other character (except a blank space) as the delimiter. The first non­
blank character after the command ::; or P is the delimiter. The last delimiter is optional unless another
command follows this command.

Search and Replace can distinguish between uppercase and lowercase letters. For example, a search for the
stringj .:l C k will not find the string ,J a c k .

The following examples show some Search commands and Replace commands with parameters:

p/ C.:lt / do':::!./

Pl3./4l3/:::

,#F:./mee 1:./

From the next line through the end of the file, search for the first occurrence of
the string "Jack."

From line 3 through line 7, search for the string "Jill."

Replace all occurences of "cat" with "dog" on the current line.

On lines 4 through 7, replace -all occurences of "cat" with "dog."

On the current line, replace all occurences of "3/4" with "3/8." The character l
is used as the delimiter so that slashes may occur in the strings.

From the current line to the end of the file, replace "meet" with the null string
(that is, delete "meet").

If the replacement string2 causes the line to be longer than 96 characters, the editor will redimension
variables, causing a slight delay.

Section 3: The Editor 43

Response Option. You can mo)"e closely control the Search and Replace commands by including the '~'

option in the command string. With this option the editor stops with each match to string1 and waits for
you to respond. The display shows the following information:

• The number of the line containing the matching string.

• The number of the column in which the first letter of the matching string occurs.

• A backslash (....) delimiter.

• Some of the line, beginning with the matching string.

• A slash (.) delimiter.

• A question mark (,~,) indicating that a response is expected.

Responding to a Search command, your options are:

• Press [YJ to stop the search at this match and make this line the current line.

• Press [ill to search for the next occurrence of the string.

• Press [[] to quit the search and return to the previous current line.

Responding to a Replace command, your options are:

• Press [YJ to replace this occurence of string1 with string2 and search for the next occurrence of
string1.

• Press [ill to leave this occurence of string 1 intact and search for the next occurrence of string 1.

• Press [[] to quit the replacement search and make the last line where replacement occured the cur­
rent line (or return to the previous current line if no replacements occurred).

If you press any other key (except 1 ATTN I), the display will show \'. r·i .• 0 ,~, to indicate that only Y, N or
Q are permitted as responses. If you press 1 ATTN I, the Crnd: prompt returns.

The Replace command can result in lines longer than 96 characters. If this occurs while you're using the ,~,

option, you can scroll through only a 96-character substring that contains that search string, not through
the whole line.

Defining Patterns in Strings. Five characters (,' I~, g.:, , and $) can have special meanings when
you're defining strings. To switch these characters to their special meanings, place a backslash C"" as­
signed to [DO) in the string; to return these characters to their normal meanings, place a second
backslash in the string. (The string's final delimiter also returns the characters to their normal meanings.)
Any of these five characters appearing between the two backslashes will be given their special meaning.

The five characters, their special meanings and some examples of their uses are described in the following
paragraphs:

• The period (,) represents any character, and so is called a wild-card character. When the editor
searches for a matching string, any character can be in those positions where you put a period.

Example. F.:. A E: C '. , '. • F.: e c h e c k I [I #. will replace the occurrences of ABC followed by any
three characters, such as AE:C999, AE:Cz'=,z, or AE:C '='Z, with the string F.:echeck 1[1#.
F.: .• A E: C··· .. , .• F.: e c h e c k I [I # has the same effect; the second backslash is not needed because the
end of string1 stops the special-meaning feature, and the ending slash is optional for string2.

44 Section 3: The Editor

• The commercial "at" symbol U~) represents any number of wild-card characters. Because the program
starts searching for the end of the string at the end of the line, the longest match possible is found.

Example. F.: ABC ·· .. I~ ... CD E F.: e c h e c kID # will replace any string that begins with ABC and
ends with CDE, such as ABC 123CDE, ABCCDE, or ABC 12 zzzCDE, with the string
Pecheck I D#.

• The ampersand (:n represents the text that" matches string1; it is used in a Replace command to
insert the actual string that matched string1 (which may include wild cards) into string2.

Example. F.~ A B , ::.: D E F searches for the string ABwildcard and appends the string DEF to it.
If ABC is found, the new string will be ABCDEF.

• The up-arrow (.....) represents the beginning of a line. As the first character in a string, it specifies that
a matching string must be at the beginning of a line. If the up-arrow isn't the first character in the
string, it has its normal meaning.

Example. P ABC C DE will search for the string ABC only at the beginning of a line. If ABC
appears anywhere else in the line, a match will not be made.

Example. Suppose you have loaded a text file from the HP-75 into your HP-71. Now you want to
delete the four-digit line numbers that the HP-75 put at the beginning of every line.
1 # P..... , , , , tells your HP-71 to search, from line 1 to the end of the file, for any four charac­
ters at the beginning of the line, and replace them with nothing (delete them).

• The dollar sign ($) represents the end of a line. As the last character in a string, it specifies that a
matching string must be at the end a line. If the dollar sign isn't the last character in the string, it has
its normal meaning.

Example. P ABC $ CD E will search for the string ABC only at the end of a line. If ABC appears
anywhere else in the line, it will be ignored. A second backslash is not needed after the $ because the
dollar sign is at the end of string 1.

If you need to search for a string containing a backslash character as part of the text, you don't want
Search and Replace to see the backslash as a switch. The solution is to use two sequential backslashes.
The editor will interpret··.. as a single backslash character, not as a switch.

Editor Files

The editor uses several files in its operation. The names of these files must not be used as the names of
files in the HP-71 user memory, because the HP-71 first searches its own memory before searching the
plug-in modules. The following list gives the name of each file in the module, along with a brief descrip­
tion of the file.

ED TE>: T

EDL E>:

EDUf::E'i':::;

The editor BASIC language program.

A LEX file containing the assembly level support for the editor, including the
BASIC keywords.

The editor keys file.

A temporary keys file created by the editor in main memory to store your
user defined keys while the editor is running. When you exit the editor, these
keys again become current.

Section 4

The Assembler

The FORTH/Assembler ROM contains an assembler that enables you to write assembly language exten­
sions to the FORTH system or to the BASIC operating system. The assembler provides access to the
complete HP-71 CPU instruction set through source code mnemonics that are nearly identical to those of
the assembler used to produce the HP-71 BASIC operating system, as listed in the HP-71 IDS.

The assembler is invoked from the FORTH environment by the word A::;::;U1E:LE, which is preceded by a
string specifying the name of the assembler source file. The source file is an HP-71 text file, which you
can create using the editor described in section 3. The output of the assembler can be either new FORTH
words, which are placed directly into the FORTH dictionary, or HP-71 language extension (LEX) or
binary (BIN) files, which are loaded automatically into the HP-71 file chain. The type of assembler output
is specified by pseudo-ops included in the source file. The assembler can also produce an optional assem­
bly listing, which is directed to an HP-71 file or to a listing device on HP-IL.

This section gives the rules for using the assembler, describes the HP-71 CPU, shows some sample source
files for the three types of assembly, and finally describes the assembler's mnemonics and pseudo-ops.

Using the Assembler

Running the Assembler

The assembler is run while in the FORTH system by typing:

" source-file specifier" A::; ::; E t'1 E: L E

The source-file specifier can include a mass storage device specifier. You can't run the assembler from
BASIC (using F [I F.: T W<) because the assembler uses E: A ::; Ie>::.

There is no intermediate link operation. The assembler acts as a loader, creating absolute modules that
are ready to execute. New FORTH primitives go directly into the FORTHRAM dictionary. LEX and BIN
files go directly into the file chain in RAM.

While the assembler is running, the display will show F' A::; ::; 1 . . or F' A::; ::;:::: . , to indi­
cate the assembly's progress. A dot , is added to the display as each source line is processed. If you
press I ATTN I while the assembler is active, the assembler will halt and prompt you with the mes­
sage HE: [I F.: T [: \' ./ t·j] ,~, If you now press [IJ, the assembly will terminate, and the message
.,,! ~:: ::::: I::~ rn b 1 e t- .:l b 0:0 t- ted will be displayed. If you press any other key, the assembly will resume.

45

46 Section 4: The Assembler

The Listing File

There are two variables in the FORTH system that control the listing file. The first variable, LISTING, is
a string variable containing the listing-file specifier. To set this variable, type:

" listing-file specifier" L I ::; T I t·j C ::; I

The listing-file specifier can be the name of an HP-71 text file, the HP-IL device specifier of a printer or
display device, or the null string. If you specify a file name, the listing will be output to a RAM file, which
you can list or -edit using the editor. If you specify an HP-IL device, the listing will be output to that
device as the assembly proceeds. If you specify the null string, no listing is created.

The second variable, PAGESIZE, is a numeric variable containing the number of lines per page in the
listing file. That is, if PAGESIZE contains the value n, a form feed (character code 12) will be sent to the
listing file or device after every n lines. The default value of PAGE SIZE is 56.

Assembler Source Code

The text file containing source code for the assembler, which you create with the editor, must have the
following form:

Output Pseudo-op

Code

END

The output pseudo-op must be FOP T H, L D':, or E: I t·j, to determine whether the assembler output will be
FORTH primitives, a LEX file, or a BIN file. The pseudo-op E t·j [I indicates the end of the source code.

The code portion of the file consists of any number of text lines, each containing one or more of the
following items: label, mnemonic, modifier, pseudo-op, expression, comment. These items and the general
line format are discussed below.

Line Format

The following template is the recommended column alignment for items in a source-file line. However, the
assembler is "free format," requiring only a space to delimit the fields. The maximum length for a label is
6 characters (extra characters are ignored); for a mnemonic, 6 characters; and for a modifier, 50 charac­
ters. To distinguish mnemonics generated by pseudo-ops from your source mnemonics, an assembly listing
will indent the former to column 3.

I label mnemonic modifier comments

• • • • • 8 15 24 80

Section 4: The Assembler 47

Comments

Text that follows a complete instruction-a mnemonic and any required modifiers-is a comment. If the
first non-blank character in a line is a star en, the entire line is a comment. All other text is considered
part of an instruction.

Labels

Labels can contain up to six characters. All alphanumeric characters are allowed, as are all special charac­
ters except commas, spaces, and right parentheses. The first character cannot be sharp (#), single quote
(,), minus sign (-), left parenthesis, star (l), or the digits 0 through 9. Leading equal signs (,-=) are
ignored, so that = F F: E D and F F: E [I are the same label. There is no case folding. A label must begin in
column 1 or 2; otherwise it will be interpreted as a mnemonic. The restricted label F i L e t·~ d is automati­
cally generated after the last line of source in LEX and BIN files; if you enter this label in your source
file, the assembly aborts.

Expressions

Expressions can contain labels, the location-counter value, constants, and operators. Any expression en­
closed in parentheses can be nested within a larger expression, with up to three levels of nesting.

Labels. Legal label names are described above. When a label is used within a larger expression, paren­
theses are required to delineate it: H [11 - 1 0 is a label but 0:: fj [I 1)- 1 Ci is an expression.

Location-Counter Value. A star en in an expression represents the value of the location counter at the
beginning of the current instruction.

Constants. The numeric value of a constant can be expressed in decimal, hexadecimal, or ASCII. Some
instructions require a constant of a particular type; those instructions are listed under the required type of
constant.

• Decimal constants can't exceed 1,048,575. Example: 23434.

• Hexadecimal constants must be preceded by the sharp (#) character and can't exceed FFFFF. Exam­
ple: # IFF o. Hexadecimal constants are required with L C H E>:: and t~ I E: HE>::. (Leading # is optional
when hexadecimal constant is required.)

• ASCII constants must be enclosed within single quotes and can contain one or two characters,
Example: 'HE:' (equals 414216). ASCII constants are required with LCH:::;C and I··~ I E:H::::C.

Operators. There are seven operators, listed below in descending order of precedence. Operators on the
same level of precedence are executed left to right in the expression.

- (Unary minus)

::.: (Logical AND) I (Logical OR).

l (Multiplication) (Integer division)

+ (Addition) - (Subtraction)

48 Section 4: The Assembler

Overview of the CPU

The HP-71 CPU is a proprietary CPU optimized for high-accuracy BCD math and low power consump­
tion. The data path is four bits wide. Memory is accessed in four-bit quantities, called "nibbles" or "nibs."
Addresses are 20 bits, yielding a physical address space of 512K bytes or 1M nibbles.

There are two types of registers on the CPU: arithmetic registers, used for data transfers and arithmetic
operations; and control registers, used for program and system control.

Arithmetic Registers

The arithmetic registers comprise the carry flag, the working registers A, B, C, and D, and the scratch
registers RO, Rl, R2, R3, and R4.

Arithmetic Registers

Name Description Size (bits)

Carry Carry flag, adjusted by calculations and tests. During a 1
calculation the carry flag is set if the calculation overflows
or borrows; otherwise the carry flag is cleared. During a
test the carry flag is set if the test is true; otherwise the
carry flag is cleared.

A Working register, used for shifts, tests, and arithmetic. 64
Also used for memory access and for exchange with
scratch registers and data-pointer registers.

B Working register, used for shifts, tests, and arithmetic. 64

C Most powerful working register, used for shifts, tests, and 64
arithmetic. Also used for memory access, bus access,
loading constants, and exchange with scratch registers,
data-pointer registers, the pointer register, the hardware
return stack, and status bits.

D Least powerful working register, used for shifts, tests, 64
and arithmetic.

RD Scratch register. Used for exchange with A or C register. 64

R1 Scratch register. Used for exchange with A or C register. 64

R2 Scratch register. Used for exchange with A or C register. 64

R3 Scratch register. Used for exchange with A or C register. 64

R4 Scratch register. Used for exchange with A or C register. 64
However, the HP-71 interrupt system uses the five low-
order nibbles, effectively making the entire A field unavail-
able.

Section 4: The Assembler 49

Subfields of the working registers may be manipulated by field selection. The possible field selections
range from the entire register to any single nibble of the register. Certain subfields are designed for use in
BCD calculations; others are used for data access or general data manipulation. The following diagram
shows the seven fixed fields within a I6-nibble working register.

Fixed Fields within a Working Register

~·~---------------------------W ----------------------------~ •
..... 1---- A ------..... ~

115114113112111 110 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 0 1

• • S M

There is a one-nibble CPU pointer (the P register, described under "Control Registers") that can indicate
any nibble in a working register. This allows two variable fields to be defined: the indicated nibble alone,
or that nibble along with all lower nibbles (to the right). This makes a total of nine fields, listed below.

Fields within a Working Register

Name Nibbles Description

B 1-0 Exponent or byte.

X 2-0 Exponent and sign.

XS 2 Exponent sign.

A 4-0 Address.

W 15-0 Full word.

M 14-3 Mantissa.

S 15 Sign.

p p At pointer.

WP p-o Word through pointer.

50 Section 4: The Assembler

Control Registers

The following table describes the CPU's control registers. The two data-pointer registers, DO and Dl,

contain pointers to memory used for all memory access.

Control Registers

Name Description Size (bits)

PC Program counter. 20

RSTK Eight-level subroutine-return stack. 20

ST Program-status flags. 16

SB Sticky bit. 1

SR Service Request bit. 1

MP Module Pulled bit. 1

XM External Module Missing bit. 1

P Pointer register. Points to a nibble in the 4
working registers. Used with field selection
and Load Constant mnemonics.

DO Data-pointer register. Used with register A 20
or C during memory access.

D1 Data-pointer register. Used with register A 20
or C during memory access.

OUT Keyscan/write-only output register. Used 12
by system; other uses limited.

IN Keyscan/read-only input register. Used by 16
system; other uses limited.

Subroutine Return Stack. Return addresses are stored on an eight-level LIFO hardware stack. Sub­
routine call and return instructions automatically push and pop addresses on this stack. If a ninth address
is pushed onto the stack, the oldest address will be lost and will be replaced by zero when it is eventually
popped from the stack. Because the memory-reset code of the operating system resides at address 00000,
excessive nesting of subroutine calls will cause a memory reset.

Note: Because interrupt processing requires one level of the hardware return stack, code that exe­

cutes with interrupts enabled must not use more than seven levels of return addresses on that stack.

Otherwise, an interrupt may eventually result in a memory reset.

Section 4: The Assembler 51

Loading Data from Memory

When memory is read into a register, the CPU places the lowest-addressed nibble in the lowest-order
nibble of the register. The nibbles in a CPU register are numbered right-to-Ieft, from least significant to
most significant. For example, if the data in memory shown below is read into a CPU register, the data in
the register will be arranged as shown.

Address Contents CPU Register

1000

1001

1002

1003

5
6
7

8

I I
15

I 8 I 7 I 6 I 5 I

3 2 o

When data is written to memory from a register, the CPU places the least significant nibble of the register
in the lowest nibble of the addressed memory location. For example, if the data in the register shown
above is written to memory, the data in memory will be arranged as shown.

Types of Assembly

To indicate whether to assemble a FORTH primitive, a LEX file, or a BIN file, the first line of the source
file must contain a FOP T H, L E >::, or E: I t·~ pseudo-op. The sample files below illustrate each type of
assembly.

FORTH Primitives

FORTH primitives must maintain three FORTH-system pointers. These pointers are the instruction
pointer (different from the CPU hardware program counter), the data-stack pointer, and the return-stack
pointer. They are maintained in the following CPU registers.

FORTH-System Pointers in CPU Registers

CPU Register FORTH-System Pointer

DO Instruction Pointer

D1 Data-Stack Pointer

A field in B Return-Stack Pointer

Because the FORTH return stack is a software stack, it isn't limited to the seven levels of the CPU
hardware stack .

52 Section 4: The Assembler

In FORTH, stacks grow down in memory. Therefore, to push an item onto the data stack, you should
decrement the data-stack pointer by 5 before storing the item on the stack:

l ::; t .'lck push:
l

[11=[11- ~

'-' Decrement stack pointer.
[lAT1=C A Store item from A field of the C register onto the

l

l

l

l ::; tack POF':
l

C=[lAT1 A Read top item from data stack into A field of ~

l t- eg is t e r ,
D1=D1 + ~

'-' Increment stack pointer.

End all FORTH primitives with RTNCC (return and clear the carry flag).

Sample FORTH Assembly.

F 0 ~~ T H
~'l 0 ~~ D , +'

l

A=DAT1 A
l

l

D1=D1 + ~ ._'
l

C=DAT1 A
l

A=A +C A
DAT1=A A
~~Tt'1CC

D::;F'Ct1T EC'U #2E3FE
l
:f:

l

~'lORD I , D I ::; F' ,

l
A=DAT1 A
D1=D1 + ~

'-'
F'= D

l
LC(5) D ::; F' C t·1 T

l

CDOE:·:
l

DATO=A
l

CDOE:'<
l

F~Tt'1CC

EtW

Declare an assembly of FORTH primitives.
Create a link field, name field, and code field for

."1 primiti',.Ie called "+."
Copy into the A field of register A the contents of

memory pointed to by D1, This copies the first
parameter on the FORTH data stack.

Increment the Dl data pointer. This increments the
FORTH data-stack pointer,

Copy the second parameter on the FORTH data stack
into the A field of register C,

Add the two parameters,
Copy the result to the stack.
Return to inner loop,
Define a label for the system location that conlrOlS

the display contrast, A nibble D gives minimum
contrast and a nibble 15 gives maximum contrast, as
with the BASIC command CONTRAST,

Create a link field, name field, and code field for
ani fl! r!!'~ d i ate F'r i rn i t i "l e C·;j lIe d !i D I ~:; F : ii

F'op the first parameter into the A field of
t- eg is t e t- A,

Set the pointer register to D for subsequent
Constant instruction,

! - - .1
LUdi.J

Load the A field (low-order five nibbles) of
register C with the system location DSF'CNT,

E::chan'~e the A field of re'~ister- C (. .iith the d.~t.~

pointet- D(1,
COpy one nibble of register A to memory pointed to

b'=, DO,
Exchange the A field of register C and DO back to

or i'~ i n.'ll \"."11 ues .
Return to the inner loop,
Mark the end of the source file (optional),

Section 4: The Assembler 53

LEX Files

Although LEX files usually define new BASIC keywords, they can also answer system polls or define
message tables. After assembling a LEX file you must turn the HP-71 off and then on again. This reg­
isters the LEX file in the system's LEX entry buffer for keyword checking and poll handling. For a full
description of LEX files and their uses, refer to the HP-71 IDS.

Two sample LEX files appear below. The first is a poll handler, the second defines a keyword. Note that
both files begin with the pseudo-ops L D':, I [I, r'1 ::; C, and F' 0 L L; this sequence is required for all LEX
files.

Sample Poll-Handler LEX File. The following LEX file will intercept the configuration poll and save
the general purpose buffer whose ID is #EOl.

LE><
1D
!'l::;C

F'OLL
EtWLT

t

l

I F'DLL I

#5C
o
F'OLHrW

I./OFE':; EC:U
#EOl
#11:::FF

F'COf'~FG EC!U
F'OLHr'~D

#FE:

COr'1F I G

l
::;E THE>:
F'=

t
LC (2::' F,COr·jFG

t
'~'E:=C

GO\'E::; COt·jF I C
FTtj::;:<I'l

t
LC (::3:' E:UFrjUI'l

l
CO::;E',,'L I./Of;:E::;

l

l

F:Hi::;: :1'1

D Eo C 1 ·3 r e .~ n ·3 sse f(iI:) 1 i;:l C! f aLE >:~ f i 1 e n ·:H(! e d II F' D L L :

This LEX file has an 10 of 5C,
There is no message table in this LEX file,
Our poll handler begins at the label POLHND,
Mark the end of the EASIC keyword tables, In this

case there are no tables, but the ENDTXT pseudo-op
is still required,

Define a label for the 10# of the buffer to save,
Define a label for the entry point of a system
routine, This system routine will prevent the
system from reclaiming the buffer indicated in the
X field of register C,

Define,:j label for- the confi,~t~re F>Dll.,

Define a label for the start of the poll-answering
routine:

Set the pointer register to 0 for subsequent Load
Constant instructions,

Load E field (low-order two nibbles) of register C
with the poll we want to handle,

Test whether the current poll is the configure poll,
If so, branch to our routine (carry flag is set)
I f n I) r.' e ::< i t < car r l;:i f 1 ·3'~ is c 1 ear>

Define a label for the start of our routine to
answer the configure poll,

Load X field (low-order three nibbles) of register C
with the 10# of the buffer to save,

Call the system routine to prevent system from
reclaiming this buffer, The routine clears the
C·3rr '::i f 1.3'~,

Exit and set External Module Missing bit,
Mark the end of the source file (OPtional)

54 Section 4: Tl:1e Assembler

Sample Keyword LEX File. The following LEX file defines a BASIC function 0 t·j E that returns the
number 1.

ID
r'1::;C

F'OLL

#5D
~:1

FtlF:H~ 1 EOU
l

o
#DF216

FHCT

l
EtjTP','
CHAF:

l
kE'{
TOkEtj

l

Et~DT::T

FtjCT
#F

'OtjE'

1

tj I E:HE:: l1D

l

C=D
F'=

l

LCHE:·:
l

~,j

14

CD',}Lt·jG Ft·jF:Ttj 1

This LEX file has an ID of 5D,
There is no message table in this LEX file.
There is no poll handler in this LEX file.
Define a label for the entry point of a system
routine, This system routine returns a numeric
parameter to the math stack

This keyword is coded at the label FHCT.
This keyword is a BASIC function, indicated by a
characterization nibble of F.

This ke'"II,.lor-d is c.;;lled "Ot·1E
This keyword has token 1. The LEX ID# and token
uniquely define each BASIC keyword.

Mark the end of the BASIC keyword tables.
The minimum and maximum number of parameters for

this function is zero.
Define a label for the start of the coce for the

k e'"I',.lor d Ot·jE.
F' u r ·3 f 1 (1·3 t i n'~ - F (I i n till II i n t (; ~- e:~ is r e (C:

Clear all digits in register C.
Set the pointer register to the most-significant
digit in the mantissa.

Load the most-significant digit in regiSter L'S
mantissa field with a hex 1.

Send the result back to the system.
Mark the end of the source file (optional)

Note the pseudo-ops EHTF.:\', CHAF.:, f:::E\', and TOKEt·j; these are required for each keyword in a LEX
file. When there are multiple keywords in an assembly, the E t·j T F.: \. and C H A F.: pseudo-ops for the first
keyword come first, followed by the E t·j T F.: \' and C H A F.: pseudo-ops for the second keyword, and so on.
After the E t·j T F.: \' and C H A F.: pseudo-ops for the final keyword come the K E \' and TO f::: E t·j pseudo-ops for
the first keyword, followed by the f::: E 'r' and TO f::: E t·j pseudo-ops for the second keyword, and so on.

Binary Files

Binary files are program files coded in assembly language. They can be executed like BASIC programs by
using F.: U t·j, C H A I t·j, or CAL L. They usually run faster than comparable BASIC programs and, unlike
BASIC programs, can refer to system entry points.

Section 4: The Assembler 55

Sample Binary Program. This binary program displays HE L L (I.

E:It-l 'HELLO' Decl-~re"n -~ssembl'~ of" bin"r'~ file called "HELLO."
CHAIt-l -1

l
8F2DSP EQU #OlCOE

l

l

l

EtlDB I tl EQU
l

l

#07648

GO:::;UE: PDP
l

l

There are no subprograms in this file. Binary
subprograms are described in the HP-71 IDS.

Define a label for the entry point of a system
routine. The system routine displays the string in
memory that starts at DATl and ends with a
ch-~r -~c t e~- #FF.

Define a label for the entry point of the system
routine that ends a binary program.

The code immediately follows the pseudo-ops.
This line, combined with C=RSTK (labeled PDP), puts

the address of the following string into the A
field of register C.

NI8ASC 'HELLO' The string HELLO.
NI8HEX DOAOFF Carriage return, line feed, end-af-string mark

F'OP C = R :::; T f·:

l
[ll=C
GO:::;E:'.,IL E:F2D:::;F'

l

GO',}Lt-1G Et-1D8 I tl
Et-W

Pop the return address (which is the address of the
preceding string) into the A field of register C.

Cop'~ the st~-in'~'s -"ddress to [11.
Call the system routine to display the String

pointed to by Dl.
The correct way to exit a binary program.
Mark the end of the source file (oPtional).

Assembler Mnemonics

The assembler mnemonics are listed below in condensed form, grouped by function. A list of all mnemon­
ics (listed in ASCII order) with their opcodes and cycle times appears in the HP-71 Software IDS.

Branching Mnemonics

GOTO Mnemonics. In the following mnemonics,

• offset is the distance in nibbles to the specified label.

GUlO label

C(JC: label

C U t-j C label

C (I L 0 t-j C label

C (I ,.} L t-j C label

C 0 '-,' E ::: label

Short goto (-2047 ~ offset ~ 2048).

Short goto if carry (-127 ~ offset ~ 128).

Short goto if no carry (-127 ~ offset ~ 128).

Long goto (-32766 ~ offset ~ 32769).

Very long goto (to absolute address).

Short goto if test true (-128 ~ offset ~ 127).
(Used only with test mnemonics.)

56 Section 4: The Assembler

GOSUB Mnemonics. In the following mnemonics,

• offset is the distance in nibbles to the specified label.

GO::; U E: label

GO::; U E: L label

GO::; E: I,} L label

Return Mnemonics.

PH~

PTt·~::;C

PTt·~CC

P T t~ ::;::: t'1

PTI

PTt~C

PTt~t~C

PTt·~\'E::;

Test Mnemonics

Short gosub (-2044 ~ offset ~ 2051).

Long gosub (-32762 ~ offset ~ 32773).

Very long gosub (to absolute address).

Return.

Return and set carry.

Return and clear carry.

Return and set External Module Missing bit.

Return from interrupt (enable interrupts).

Return if carry set.

Return if no carry set.

Return if test true.
(Used only with test mnemonics.)

Each test mnemonic must be followed with aGO \' E S or F.: T t·~ 'y' E S mnemonic. The test mnemonic and the
GO \' E ::; or F.: T t·~ \' E ::; mnemonic combine to generate a single opcode. Each test will set the carry flag if
true, or clear the carry flag if false.

Register Tests. In the following mnemonics,

• (r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).

• is = A, P, WP, XS, X, S, M, B, or W.

~'r=s

'~'r#s

'~'r=O

'~'r#O

'~'r> s

'~'r<s

'~'r> =s

~'r :::=s

fs

fs

fs

fs

fs

fs

fs

fs

Is is field of r equal to is field of s?

Is is field of r not equal to is field of s?

Is is field of r equal to zero?

Is is field of r not equal to zero?

Is is field of r greater than is field of s?

Is is field of r less than is field of s?

Is is field of r greater than or equal to is field of s?

Is is field of r less than or equal to is field of s?

Pointer Tests. In the following mnemonics,

• n is an expression whose hex value is from 0 through F.

Is P register equal to n?

Is P register not equal to n?

Program-Status Tests. In the following mnemonics,

• n is an expression whose hex value is from 0 through F.

Hardware-Status Tests.

Is bit n in ST equal to O?

Is bit n in ST equal to I?

Is bit n in ST not equal to O?

Is bit n in ST not equal to I?

Is the External Module Missing bit clear?

Is the Sticky bit clear?

Is the Service Request bit clear?

Is the Module Pulled bit clear?

P Register Mnemonics

In the following mnemonics,

• n is an expression whose hex value is from 0 through F.

Section 4: The Assembler 57

Note that the C register is the only working register used with the P register. During those operations that
involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry flag
is cleared.

P::::P+l

P:cP···-l

C +.p + 1

CF'E:: n

C=P n

Set P register to n.

Increment P register.

Decrement P register.

Add P register plus one to A field in C. Arithmetic is hexadecimal.

Exchange P register with nibble n in C.

Copy nibble n in C to P register.

Copy P register to nibble n in C.

58 Section 4: The Assembler

Status Mnemonics

In the following mnemonics,

• n is an expression whose hex value is from 0 through F.

:::T= 1 n

C:::TE::::

C=::::T

:::T=C

CU:::::T

t'1F'=O

Set bit n in ST to O.

Set bit n in ST to l.

Exchange X field in C and bits 0 through 11 in ST.

Copy bits 0 through 11 in ST into X field in C.

Copy X field in C into bits 0 through 11 in ST.

Clear bits 0 through 11 in ST.

Clear Sticky bit (SB).

Clear Service Request (SR) bit.

Clear Module Pulled (MP) bit.

Clear External Module Missing (XM) bit.

Clear SB, SR, MP, and XM bits.

System-Control and Keyscan Mnemonics

The first four mnemonics below are useful for most programmers. The remaining mnemonics are used by
the system and have limited general use; for details, refer to the HP-71 IDS and the HP-71 Hardware
Specification.

:::ETHE::

::::ET[lEC

C=P:::TK

P:::Tf=C

COt·jF I C

Ut·jCt·jFC

E: U ::: C C

::: HUT [I t·j

C=l[l

::: PEl) ,~,

I tHDFF

I t·jTOtj

OUT=C

DUT=C:::

A= I tj

C= 1 tj

Set arithmetic mode to hexadecimal.

Set arithmetic mode to decimal.

Pop return stack into A field in C.

Push A field in C onto return stack.

Configure.

Unconfigure.

Send Reset command to system bus.

Send Bus Command C to system bus.

Stop here.

Request ID (A field in C).

Sets service request bit if service has has been requested. Nibble 0 in C
shows what bit(s) are pulled high.

Disable interrupts (doesn't affect ON-key or module-pulled interrupts).

Enable interrupts.

Copy X field in C into OUT.

Copy nibble 0 of C into OUT.

Copy IN into nibbles 0 through 3 in A.

Copy IN into nibbles 0 through 3 in C.

Scratch Register Mnemonics

In the following mnemonics,

• r = A or C.

• ss = RO, Rl, R2, R3, or R4.

rssE >:: Exchange rand ss.

rC"SS Copy ss into r.

ss:::r Copy r into ss.

Memory-Access Mnemonics

Data-Pointer Mnemonics. In the following mnemonics,

• r = A or C.

• ss = DO or Dl.

• n is an expression whose hex value is from 0 through F.

• nnnnn is an expression whose hex value is from 0 through FFFFF.

Section 4: The Assembler 59

During those operations that involve a calculation, the carry flag is set if the calculation overflows or
borrows; otherwise the carry flag is cleared.

rssE ::<

ss:::=r

ss=r::;

ss=ss+ n

ss=ss-- n

ss=: .:: 2::' nnnnn

ss:::: ;:: 4::' nnnnn

ss:= < 5::' nnnnn

Exchange A field in r with ss.

Exchange nibbles 0 through 3 in r with ss.

Copy A field in r into ss.

Copy nibbles 0 through 3 in r into ss.

Increment ss by n.

Decrement ss by n.

Load ss with two nibbles from nnnnn.

Load ss with four nibbles from nnnnn.

Load ss with nnnnn.

Data-Transfer Mnemonics. In the following mnemonics,

• r = A or C.

• is = A, P, WP, XS, X, S, M, B, W (or a number n from 1 through 16).

r::= D H T 0 fs

r=DRT:l fs

DRT 0 =r fs

DAr 1 =r fs

Copy data at address contained in DO into is field in r (or into nibble 0
through nibble n - 1 in r).

Copy data at address contained in Dl into is field in r (or into nibble 0
through nibble n - 1 in r).

Copy data in is field in r (or in nibble 0 through nibble n - 1 in r) to address
contained in DO.

Copy data in is field in r (or in nibble 0 through nibble n - 1 in r) to address
contained in Dl.

60 Section 4: The Assembler

Load-Constants Mnemonics

In the following mnemonics,

• h is a hex digit.

• i is an integer from 1 through 5.

• nnnnn is an expression with hex value from 0 through FFFFF.

• c is an ASCII character.

LCHE>:: h .. . h

LC <i) nnnnn

LCA::;C 'c ... c'

Shift Mnemonics

In the following mnemonics,

• r = A, B, C, or D.

Load up to 16 hex digits into C. The least significant digit is loaded at the
pointer position; more significant digits are loaded into higher positions,
wrapping around from nibble 15 to nibble o.
Load i hex digits from the value of nnnnn into C. The least significant digit
is loaded at the pointer position; more significant digits are loaded into
higher positions, wrapping around from nibble 15 to nibble o.
Load up to eight ASCII characters into C. The least significant nibble of the
low-order character is loaded at the pointer position; more significant nib­
bles are loaded into higher positions, wrapping around from nibble 15 to nib­
ble o. For example, L C A::; C 'A E:; is equivalent to L C H D:: 4 1 42.

• is = A, P, WP, XS, X, S, M, B, or W.

Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a
non-zero nibble or bit from the right end of a register or field, the Sticky bit SB is set. The Sticky bit is
cleared only by a::; E: = [1 or C L PH::; T instruction.

r:;L fs

r::; P fs

Logical Mnemonics

Shift r right by one bit.

Shift r left by one nibble (circular).

Shift r right by one nibble (circular).

Shift is field in r left by one nibble.

Shift is field in r right by one nibble.

These mnemonics are summarized below, using the following variables:

• (r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).

• is = A, P, WP, XS, X, S, M, B, or W.

r=r:~·:s fs

r=r I S fs

is field in r AND is field in s into is field in r.

is field in r OR is field in s into is field in r.

Section 4: The Assembler 61

Arithmetic Mnemonics

Arithmetic results depend on the current arithmetic mode. In hexadecimal mode (set by::; E T H D::), nibble
values range from 0 through F. In decimal mode (set by::; E T [I E C), nibble values range from 0 through 9,
and arithmetic is BCD arithmetic.

There are two groups of arithmetic mnemonics. In the first group (general), almost all combinations of the
four working registers are possible; in the second group (restricted), only a few combinations are possible.
During those operations that involve a calculation, the carry flag is set if the calculation overflows or
borrows; otherwise the carry flag is cleared.

General Arithmetic Mnemonics. In the following mnemonics,

• (r, s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).

• Is = A, P, WP, XS, X, S, M, B, or W.

r=O fs

r=r +r fs

r:"r+1 fs

r":r-'" 1. fs

f''''' "'-r fs

r=>"(-" 1 fs

r=r +s fs

s"'''r+s fs

r""s fs

s''''(fs

rs[:: fs

Set Is field in r to zero.

Double Is field in r (shift left by one bit).

Increment Is field in r by l.

Decrement Is field in r by l.

Tens complement or twos complement, depending on arithmetic mode, of Is
field in r. Clears Carry if argument =0; sets Carry otherwise.

Nines complement or ones complement, depending on arithmetic mode, of Is
field in r. Clears Carry.

Sum Is field in r and Is field in s into Is field in r.
Sum Is field in r and Is field in s into Is field in s.

Copy Is field in s into Is field in r.
Copy Is field in r into Is field in s.

Exchange Is field in r and Is field in s.

Restricted Arithmetic Mnemonics. In the following mnemonics,

• (r, s) = (A, B), (B, C), (C, A), or (D, C).

• Is = A, P, WP, XS, X, S, M, B, or W.

r='(--s fs

r=:s·_·(fs

s'''s'-r fs

No-op Mnemonics

t··1 () F'::::

t·iUF'4

t··1 0 F' ':::.

Difference of Is field in r and Is field in s into Is field in r.
Difference of Is field in s and Is field in r into Is field in r.
Difference of Is field in s and Is field in r into Is field in s.

Three-nibble no-op.

Four-nibble no-op.

Five-nibble no-op.

62 Section 4: The Assembler

Pseudo-ops

Control Pseudo-ops

E,JECT

EtW

label EO U expression

LI:::T Ot~/LI:::T OFF

::: TIT L E subtitle

TIT L E title

Generate a form feed in the assembly listing.

Mark the end of the assembly source file. Any characters in the file
following E t·~ D are ignored by the assembler. This pseudo-op is optional.

Define label to have the value of expression. All references to label will
have this value; label can't be redefined in a later part of the program.

Send/suppress output to the listing file. (Limited RAM may require a
shortened listing file.)

Force a new page and put subtitle at the top of each page of the listing
file, just underneath the title. The text for subtitle can contain up to 40
characters.

Put title at the beginning of each page of the listing file. The text for
title can contain up to 40 characters.

Constant-Generating Pseudo-ops

E: ::: ::: expression

C 0 t·~ .:: i::' expression

t~ I E: fi ::: C 'chars'

t~IE:HE:: h , , , h

PEL':: i::' expression

Evaluate expression and generate that number of zero nibbles.

Evaluate expression and generate an absolute constant of length i nib­
bles, 1 ~ i ~ 5.

Generate the specified ASCII characters, with the two nibbles within
each byte reversed. The modifier field may specify up to eight charac­
ters. (The result is the same if each character is placed in its own
t·~ I E: A::: C pseudo-op.)

Generate up to sixteen hexadecimal nibbles.

Evaluate expression and generate a constant (relative to the current
location-counter value) of length i nibbles, 1 ~ i ~ 5.

Macro-Expansion Pseudo-ops for FORTH Words

FOPTH

l,j 0 P D 'name'

l,j 0 P D I ' name '

Assemble a new FORTH primitive. This pseudo-op must be the first
line in the file.

Define a FORTH primitive called name. The assembly code that defines
name should directly follow the l,j 0 P D pseudo-op.

Define an immediate FORTH primitive called name. The assembly code
that defines name should directly follow the l,j 0 P D I pseudo-op.

Section 4: The Assembler 63

Macro-Expansion Pseudo-ops for LEX Files

L..E>:: 'name'

I [I byte

1'1::;1; label

F' CI L.. 1._ label

E t··I·r F: \' label

CHHF: h

Assemble a new LEX file called name. This pseudo-op must be the first
line in the source file. The LEX file will have the correct header. The
intial data for this file is defined by the I [I, r'1 ::; C, and F' 0 L.. L.. pseudo­
ops, which must be present in that order.

Define the LEX ID of this LEX file. The byte is placed in the appro­
priate data field. This pseudo-op is required when the L.. E:: pseudo-op is
used.

Define the beginning of this LEX file's message table. r'1 ::; C will place
label in the appropriate field. This pseudo-op is required when the L.. E >:
pseudo-op is used. If there is no message table, enter I'E; G Ci.

Define the beginning of this LEX file's poll-handling routine. F' 0 L.. L..
will place label in the appropriate field. This pseudo-op is required when
the L E >:: pseudo-op is used. If there is no poll-handling routine, enter
F'OLL o.
Begin the definition of a BASIC keyword. Each keyword requires four
pseudo-ops: E t·i T F.: \', C H A F.:, f::: E ',', and TO f:: E t·~.

Because of the structure of the LEX file's keyword tables, these pseudo­
ops require a particular order. For example, the following assembly­
language header defines two keywords, 1< E '/ 1 and !< E \' 2.

E t·i T F.: ',' label 1

CHAF: 5

E ti T F.: '/ label2

CHAF.: #F

f:::E\' 'f:::E\' 1 '

TOf:::Eti 1

f:::E'/ 'f:::E\'2'

T 0 f:: E t·i 2

E ti [I T ::< T

The code for the first keyword begins at labell.

The first keyword is legal for keyboard execu-
tion and after THE t'l, ,E L ::; E.

The code for the second keyword begins at
label2.

The second keyword is a function.

The first keyword is invoked with "KEYl" in
BASIC.

The first keyword has token 1.

The second keyword is invoked with "KEY2"
in BASIC.

The second keyword has token 2.

Mark the end of the keyword tables.

Describe the type of BASIC keyword. Each E t·i T F.: \' requires a
corresponding C H A F.:, which places a "characterization nibble" in the
keyword tables. The characterization nibble defines BASIC keywords as
follows.

64 Section 4: The Assembler

f:::E\' I name I

TO f::: E t·~ number

Et'~DT>::T

Values for the Characterization Nibble

Value Type of keyword

1 Keyboard execution.

4 Legal after THE t·~ . . . E l'::; E .

8 Begin BASIC (legal as first keyword in a statement).

15 Function.

Other values for the characterization nibble define combinations of the
above types. For example, a characterization nibble of 5 defines a keyword
that is legal for keyboard execution and after THE t·; . . . E L ::; E. For details
about the characterization nibble, refer to the HP-71 IDS.

Define the name that will evoke the keyword in BASIC. When there are
multiple keywords in one LEX file, the names of the keywords must be in
alphabetic order. There is one exception: the name 'abc' is not before the
name 'abed'. If the first characters are the same, the longer text must come
first. Otherwise, the BASIC operating system will never find the longer
keyword.

Define the token number of the keyword most recently named (by f::: E \').

When there are multiple keywords in one LEX file, their token numbers
must be in ascending order. TO f::: E t·j places the token number in the keyword
tables.

Mark the end of the keyword tables. This pseudo-op follows the E t·; T F.' ';',
C H A F.:, f< E '{, and TO f< E t·j pseudo-ops when a keyword is defined, or it marks
their absence if no keyword is defined.

Macro-Expansion Pseudo-ops for BIN Files
E: I t·j I name I

C H A I t·~ I label I

Assemble a BIN file called name. This pseudo-op must be the first line in
the source file. E: I t·j creates the file header; the user must create the
sub header using the C H A I t·j pseudo-op.

Create a 12-nibble subheader containing a subprogram and label chains. If
there are no subprograms, enter C H A It·; - 1 .

Appendix A

Care, Warranty, and Service Information

Care of the Module

The HP-71 FORTH/Assembler ROM does not require maintenance. However, there are several precau­
tions, listed below, that you should observe.

CAUTIONS

• Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts

and the computer's internal circuitry may result.

• Turn of the computer (press ITJI OFF I) before installing or removing a plug-in module.

• If a module jams when inserted into a port, it may be upside down. Attempting to force it further may

result in damage to the computer or the module.

• Handle the plug-in modules very carefully while they are out of the computer. Do not insert any ob­

jects in the module connector socket. Always keep a blank module in the computer port when a

module is not installed. Failure to observe these cautions may result in damage to the module or the

computer.

Limited One-Year Warranty

What We Will Do

The HP 82441A FORTH/Assembler ROM is warranted by Hewlett-Packard against defects in materials
and workmanship affecting electronic and mechanical performance, but not software content, for one year
from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred to
the new owner and remains in effect for the original one-year period. During the warranty period, we will
repair or, at our option, replace at no charge a product that proves to be defective, provided you return the
product, shipping prepaid, to a Hewlett-Packard service center.

65

66 Appendix A: Care, Warranty, and Service Information

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or
countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not
apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR
CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to
you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to
state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter­
mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer
or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

• In the United States:

Hewlett-Packard
Personal Computer Group

Customer Support
11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

• In Europe:

• In other countries:

Appendix A: Care, Warranty, and Service Information 67

Hewlett-Packard S.A.
150, route du Nant-d'Avril

P.O. Box CH-1217 Meyrin 2
Geneva

Switzerland
Telephone: (022) 83 81 11

Note: Do not send units to this address for repair .

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have
your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under
warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at
any service center. This is an average time and could vary depending upon the time of year and the work
load at the service center. The total time you are without your unit will depend largely on the shipping
time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located
in Corvallis, Oregon:

Hewlett-Packard Company
Service Department

P.O. Box 999
Corvallis, Oregon 97339, U.S.A.

or
1030 N.E. Circle Blvd.

Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

68 Appendix A: Care, Warranty, and Service Information

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer
where you purchased your unit.

AUSTRIA
HEWLETT·PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)
Telephone: (0222) 23 65 11

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100
B-1200 Brussels
Telephone: (02) 762 32 00

DENMARK
HEWLETT-PACKARD A/S
Datavej 52
DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7
SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE
HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A. V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner -Service
Vertriebszentrale
Berner Strasse 117
Postiach 560 140
D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY
HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)
Via G. Di Vittorio, 9
1-20063 Cernusco Sui Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS
HEWLETT-PACKARD NEDERLAND B.v.
Van Heuven Goedhartlaan 121
NL-1181 KK Amstelveen (Amsterdam)
P.O. Box 667
Telephone: (020) 472021

International Service Information

NORWAY
HEWLETT-PACKARD NORGE A/S
P.O. Box 34
Oesterndalen 18
N-1345 Oesteraas (Oslo)
Telephone: (2) 17 11 80

SPAIN
HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3
E-Madrid 16
Telephone: (1) 458 2600

SWEDEN
HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista
Box 19
S-163 93 Spanga (Stockholm)
Telephone: (08) 750 2000

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner -Service
Allmend 2
CH-8967 Widen
Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available
in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett­
Packard service center to see if service is available for it. If service is unavailable, please ship the unit to
the address listed above under Obtaining Repair Service in the United States. A list of service centers for
other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer's local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All
such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials.

Appendix A: Care, Warranty, and Seryice Information 69

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of
90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

• A completed Service Card, including a description of the problem .

• A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase
date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is
not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to
the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec­
tion point or service center. Contact your dealer for assistance. (If you are not in the country where you
originally purchased the unit, refer to "International Service Information" above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to
the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of­
warranty repairs in the United States and some other countries, the unit is returned C.O.D. (covering
shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to cus­
tomers. Should other problems or questions arise regarding repairs, please call your nearest Hewlett­
Packard service center.

70 Appendix A: Care, Warranty, and Service Information

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our customer
support department has established phone numbers that you can call if you have questions about this
product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the
toll-free number below:

(800) FOR-HPPC
(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(503) 764 686f7

?srUK7+
For either product information or technical assistance, you can also write to:

Hewlett-Packard
Personal Computer Group
Customer Communications

11000 Wolfe Road
Cupertino, CA 95014

Appendix B

Error Messages

The error messages listed in the following tables relate only to FORTH/Assembler ROM operations. For
other error or warning messages, refer to the HP-71 Reference Manual.

This appendix contains four listings:

1. An alphabetical listing of FORTH error messages with their corresponding error numbers. You can
use the error's number to look up the error in the next listing.

2. A numerical listing of FORTH error messages with a description of each error condition.

3. An alphabetical listing of assembler messages with a description of each message.

4. An alphabetical listing of editor messages with a description of each message.

FORTH Messages

Alphabetical Listing of FORTH Messages

Message I
inside.;l file

attempted to redefine null
bad parameters .. .
BASIC not re-entrant
c·:jnno t ID.:;je!
compile only
conditionals not paired
C:: () n f i '=.J u t- .;l t ion .. .
definition not finished

empty stack
FORTH not re-entrant
FORTH RAM file not in pl.;lce
full stack .. .
HP-IL error
illegal CASE structure
in protected dictionary..........
Invalid Filespec
no DO before LEAVE .. .
r'!o ~~~nd in':;!

no end i n'~
no endin'=.J

Not Found
n () t in current vocabulary

no"!: reco,=,nized
1.,.1 on 11: fit

71

Number

47043
47006
47011
47046
47063
47055
47009
47017
47052
47007
47008
47014
47064
47018
47015
47010
47060
47013
47019
47059
47005
47004
47003
47002
47054
47016
47053

72 Appendix B: Error Messages

Numerical Listing of FORTH Messages with Descriptions

Error
Number

47002

47003

47004

47005

47006

47007

47008

47009

47010

47011

47013

47014

47015

47016

47017

Message and Condition

__ t·40 ~ Found
The argument to ' (tick) isn't in the dictionary. Check the spelling of the word.

no end in'::) :
The definition being compiled from a text file is unfinished. Put in an ending semicolon.

no end i n'::J '
, ' .. or 0:: isn't matched by an ending parenthesis. Put in an ending parenthesis.

no endin'::J "
" or " isn't matched by an ending double quote. Put in an ending double quote.

.:lr'::) umen ~
A word that expects positive integers finds negative numbers or zero on the stack. Ensure
the proper values on the stack.

definition not finished
The stack's size at the end of a word doesn't equal its size at the start. Review the control
structures and immediate words used in the definition.

d i c t ion.:l t· '::I f u 1 1

The dictionary space in FORTH RAM is used up. Use F 0 F.: C E T or G F.: 0 r,j.

compi le onl'::I
A compile-time word is used at run time. Check word usage in definitions.

HF'- I L er t· Ot·

Something is wrong related to the HP-IL interface. Check that the HP-IL interface is plugged
into the HP-71; check the integrity of the loop.

attempted to redefine null
A colon (starting a colon definition) is the only input received from the keyboard; or
r,w F.: [I "or r,w FW I "appears in a primitive assembly. Fatal to assembly. You can't
redefine the null word in FORTH.

in protected dictionary
The argument for F 0 F.: C E T is below FENCE (or in ROM). Reset FENCE.

emp t '::I s t ·:lck
A word expecting stack parameters finds the stack empty. Provide stack parameters.

full st.:lck
The space in FORTH RAM for the data stack is used up. Use C F.: 0 r,j to enlarge FORTH RAM
or use F 0 F.: GET to make space in FORTHRAM.

__ not reco'::)nized

The input is neither an existing word nor a number. Check the spelling of the word; check
the CONTEXT vocabulary.

conditionals not paired
A control-structure word (such as THE t·n appears without the preceding word (such as
I F). Supply the missing word.

Error
Number

47018

47019

47043

47046

47052

47053

47054

47055

47059

47060

47063

47064

Appendix B: Error Messages 73

Message and Condition

FORTHRAM file not in place
FOR T HI, FOR T H F, or FOR T H $ is attempted when the FORTHRAM file hasn't been cre­
ated or has moved. Use FOR THor FOR T H ::< to enter FORTH and then exit.

Invalid Filespec
The argument to F I t·~ D F is an illegal file specifier. Supply a valid file specifier.

addr~ss not inside a file
AD ,J U ::; T F is given an address not properly within a file, such as the address of a file
header. Check the address of the file.

b.",d p.",t- ·",me t et- s
A string word finds an out-of-range value on the stack, such as a character-position param­
eter of 20 for a string only 10 characters long. Check the stack value.

Con f i'::J Ut-·", t ion
An oversized configuration buffer or an erroneous pointer to that buffer prevents the
FORTH RAM file from occupying its required location. This will never occur under normal
circumstances. Remove a LEX file from RAM or remove a module.

s t t- i n'::J 1 .. .1 0 n't fit
A string is too long for the specified variable. Check the size of the variable.

not in current vocabular~

The argument for FOR C E T isn't in the CURRENT vocabulary. Check the spelling of the
word and the CURRENT vocabulary.

C·3nno 1: 1 o.~d

The file is open, doesn't exist, etc. Check the file's status.

no DO before LEAVE
LEA I,} E is used outside aDO-loop. Use LEA I,} E only inside aDO-loop.

illegal CASE structure
E t·~ DCA ::; E isn't preceded by valid C A::; E ... 0 F ... E t·~ D 0 F structure. Check the com­
plete control structure.

BASIC not re-entrant
B A ::; I C >:: is used in an argument to FOR T H:=<. Eliminate such usage.

FORTH not re-entrant
FORTH>:: is used in an argument to BAS I C::<, or in a program or user-defined function
executed from B A ::; I C >::, B A ::; I C I, or B A ::; I C F. Eliminate such usage.

74 Appendix B: Error Messages

Assembler Messages

assembler aborted
User has aborted the assembler.

attempted to redefine null
A colon (starting a colon definition) is the only input received from the keyboard; or ['W F.: D " or

[,WF.:D I "appears in a primitive assembly. Fatal to assembly. You can't redefine the null word in

FORTH.

cannot open source file
The argument to H:::; ::; E t'm LEis invalid, missing, or the file is open. Fatal to assembly. Check that the

source file is a text file in RAM or on tape.

cannot resolve equate
The evaluation of the equate differs between the first and second passes. Check that all parts of the

expression can be evaluated during the first pass.

dict ion.:lt-'::I full
The dictionary space in FORTH RAM is used up. Use F 0 F.: GET or G F.: 0 [,~.

dupl iC.:lte l.:lbel
An existing label name is used again. Recall that labels of more than six characters are defined by the

first six characters. Rename the duplicate label.

e: :cess ,=h.::tr ·:-:tc t er sin e::<pr ess i on

An expression contains too many characters. Check that the expression is stated correctly.

GOVES or F.:TNVES required
A test instruction isn't followed by a GO\'ES or F.:Hn·'E::; instruction. The test and branch instructions

appear to be separate but combine to form one instruction. Supply the missing GO \' E ::; or F.: T t·j \' E ':;

instruction.

illegal dp arithmetic value
An illegal value is used in data-pointer arithmetic. Check that the value of the modifier field is from

through 16.

illegal expression
An expression has illegal syntax or is too complicated. Check the syntax, the levels of parentheses, and
the number of operations.

illegal pointer position
The pointer register is set to or tested for an illegal value. Check that the value of the modifier field is
from 0 through 15.

illegal status bit
The status bits are set to or tested for an illegal value. Check that the value of the modifier field is from
o through 15.

Appendix B: Error Messages 75

illegal transfer value
An illegal value is used in data transfer. Check that the modifier field contains a valid word select or a

number from 1 through 16.

illegal word select
The modifier field isn't a valid word select. Valid entries are: A, B, M, P, S, W, WP, X, and XS.

invalid filename specifier
The filename specifier following aLE >:: or E: I (.j pseudo-op isn't a valid filename. Fatal to assembly.

Refer to the HP-71 Owner's Manual for valid filenames.

Invalid Filespec
The argument to F I (j [I F is an illegal file specifier. Supply a valid file specifier.

invalid listing argument
The modifier field of L I ::: T is neither 0 (.j nor 0 F F. Check that the modifier is uppercase.

invalid listing file
The contents of LISTING are invalid, or listing file equals source file. Fatal. to assembly. Set LISTING to

(.j U L L $ for no listing, to an HP-IL device for a listing to that device, or to a RAM filename for a listing to

that text file.

invalid quoted string
One or both single quotes are missing from a quoted string or quoted constant.

jump or ~alue too large
A relative jump is too great, or the value of a constant requires more nibbles than the instruction can

generate. Use a mnemonic for a longer jump, or check the value of the constant.

listing file full
There is no space in RAM for more of the listing file. Move the listing and source files out of RAM, or

move other files to external storage.

listing file not TEXT

The file specified in LISTING already exists and isn't an HP-71 text file. Fatal to assembly. Provide a

different file specifier.

mismatched parentheses
A right parenthesis is missing. Supply right parenthesis.

missing/illegal label
Illegal characters appear in a label, or a label required for an EO U instruction is missing. Check that a

legal label is present.

missing/multiple file twpe
The first line in the source file isn't L D::, E: I (j, or F 0 F: T H (fatal to assembly); or one of these pseudo­

ops appears a second time; or any pseudo-op of the wrong type appears (such as ~,J 0 F: [I within a LEX

file). Check that the source file begins with aLE:='::, E: I t·j, or F 0 F.: T H pseudo-op and contains pseudo­

ops suitable for that type of file.

76 Appendix B: Error Messages

needs previous test instruction
A C [I \' E ::; or P T t·j '"!' E ::; instruction appears without a preceding test instruction. The test and branch

instructions appear to be separate but combine to form one instruction. Supply the missing test

instruction.

non-hexadecimal digit present
The modifier field contains illegal characters. Use only hex digits 0 through F.

not enough memory for assembler
There is insufficient space in RAM for the required assembler variables, files, or operations. Fatal to
assembly. Put the listing file to an HP-IL device; move the source file (or other files) to external storage.

pagesize too small
PAGESIZE is set to less than 8. Fatal to assembly. Set PAGESIZE to 8 or greater.

restricted label FiLeNd exists
The user has placed this restricted label in the source file. Fatal to assembly. Choose a different label.

symbol table full
There is no space in RAM for more symbols. Fatal to assembly. Move listing file or source file out of

RAM.

too many ASCII chars present
The modifier field contains more than eight ASCII characters. Use no more than eight ASCII characters.

too many hex digits present
The modifier field contains more than 16 hex digits. Use no more than 16 hex digits.

unk nOI .. .In opcode
The opcode isn't recognized. Check that the opcode is spelled correctly, in uppercase letters, and prop­

erly placed in an opcode field.

unrecognized label
An undefined label appears within an expression. Check whether parentheses are required to separate

the label from an operator.

warning: word not unique
name in ~'WPD I name I is already present in the FORTH dictionary.

Appendix B: Error Messages 77

Editor Messages

[10 [.j E

The editor has been exited.

File E>o:is;s: __

The file specified to receive deleted lines already exists. Use the ± option, or choose a different

filename.

Insufficient Memory

There is insufficient memory for the operation being performed. If other operations requiring less mem­

ory can be performed, the em d: prompt returns to the display. If no further operations are possible, the
editor is exited. Purge a file or execute [I E ~:; T P 0 \' ALL.

In',/.3lid File T'::Ipe: __

The file specified in the command string must be a text file.

I n\"·31 i d P.3t- ·3ft'!:

The editor doesn't recognize the parameter portion of a command string. Review the command's

syntax.

Line Too Lon':::!

The line of text is longer than 96 characters, which is not allowed in text mode.

The editor doesn't recognize the letter as a valid command. The valid commands are c, d, e, f, h, i, I, m,
p, r, s, and t.

L,jot- k i n":J '

The editor is executing a command.

Appendix C

BASIC Keywords

Introduction

This Appendix describes the BASIC keywords added to the HP-71 when the FORTH/Assembler ROM is
plugged in. The keywords fall into three categories:

BASIC-to-FORTH

FOF:TH
FOF:TH$

FOF:THF
FOF:THI
FOF:TH::<

Editor

DELETE#
EDTD::T

F I LE::;ZF:
I t·j::;EF:T#

t'1::;G$

F:EF'LACE#
::;CF:OLL
::;EAF.:CH

Remote Keyboard

E::;CAF'E
KE'!'E:OAF:D I::;

F:E::;ET E::;CAF'E::;

Organization

Entries in this appendix are arranged in alphabetical order. The same format is used for every keyword
entry so that you can quickly find the information you need. The format is similar to that used in the
HP-71 Reference Manual-refer to that manual for additional details.

Each keyword entry provides the following information for the keyword:

• Keyword name. Shows the basic keyword.

• Purpose. Gives a one-line summary of the operation that the keyword performs.

• Keyword type. Identifies the keyword as a statement or as a function. (None of the keywords are
operators.)

• Execution options. Indicates situations in which you can execute the keyword:

• From the keyboard.

• In CALC mode.

• After THEt·j or EL::;E in an IF ... THEt·j ... EL::;E statement.

• While the HP-71 is operating as an HP-IL device (not as controller). This is given only for
HP-IL words.

79

80 Appendix C: BASIC Keywords

• Syntax diagram. Defines the required and optional components within the statement or function
for proper syntax. Parameters shown within brackets are optional. Parameters shown in a vertical
stack are alternatives.

• Examples. Illustrates and explains some ways that the keyword can be used, and shows some pos­
sible syntax variations.

• Input parameters. Defines the parameters used in the syntax diagram, gives their default values (if
applicable), and lists restrictions on parameter values or structure. (This heading isn't included for
keywords that use no parameters.)

• Operation. Gives a detailed description of the keyword's operation and other information that's use­
ful for learning and using the keyword.

• Related keywords. Lists other keywords that either influence the results of the subject keyword or
else are similar in function.

Appendix C: BASIC Keywords 81

DELETE#

Deletes one record from a text file.

• Statement

o Function

o Operator

• Keyboard Execution

o CALC Mode

• IF ... THEN ... ELSE

DEL E T E # channel number.' record number

Example

[lELETE# 5,14

Input Parameters

Item

channel number

record number

Operation

Deletes the 14th record from the text file currently
assigned to channel #5.

Description Restrictions

Numeric expression rounded to an integer. 1 through 255.

Numeric expression rounded to an integer.

The [I E L. E T E # keyword deletes the specified record from the text file assigned to the specified channel
number. Record numbers always begin at 0, so line number 1 is record number 0.

The channel number and the record number can be expressions. [I E LET E # rounds each of the resulting
values to an integer.

[I E LET E # returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

82 Appendix C: BASIC Keywords

EDTEXT

Invokes the text editor .

• Statement

D Function

D Operator

EDT E:: T file specifier[.. command string]

Examples

EDTD:T :::CPEEt·j

EDTD:T :::CPEEtj.. L

Input Parameters

Item

• Keyboard Execution

D CALC Mode

• IF. .. THEN ... ELSE

Runs the editor program, with ::; C PEE t·j as the edit
file.

Runs the editor program, with ::: C PEE t·j as the edit
file. Begins by listing the file to the display device.

Description Restrictions

file specifier String expression or unquoted string. File must be in
RAM or IRAM.

command string See description of editor command strings in section 3.

Operation

The EDT E >:: T keyword starts the editor program. The optional command string permits you to have the
editor begin immediate execution of editor commands that appear in the command string.

An error can cause the editor program to terminate without going through its normal exit path. If you are
running the editor from another BASIC program, or from the FORTH environment, you can check for
this situation by using D I ::: F' $ to read the display contents. If the result is other than
D (0 n e: ::: f i 1 en .:l rIi e:>, then you will know that the editor has encountered a fatal error, the edit file
may be in a corrupt state, and the editor key assignments may still be active. For example, from the
FORTH environment, you can type the sequence

" EDTE>::T :::CPEEt·j" BA::: I C::< " D I :::F' $ " BA::: I c::< DF.:OF' I~ -1025:::::: =

to edit the file ::: C PEE t·j. When the editor terminates, a true flag will be pushed on the stack if the editor
terminated normally (here we are checking the numerical equivalent of the first three characters on the
display to see if they match "Don", which translates to -102588).

Related Keywords

A:::::: I Gt·a, DELETE#, PEF'LACE#, F I LE:::ZP

Appendix C: BASIC Keywords 83

ESCAPE

Adds or modifies an escape-sequence key specification in the current f' E ',' E: 0 A F.: D I ::: key map buffer.

• Statement
0 Function
0 Operator

E :::: C A F' E string .. key number

Example

F:::::C!=iF'F "A", 0

Input Parameters

Item

string String expression.

key number Keycode.

Operation

•
0

• •

Keyboard Execution

CALC Mode

IF. .. THEN ... ELSE

Device Operation

Specifies that the escape sequence (ESC)A received
from the K E \' E: 0 A F.: D I ::::: device will be changed to
key code 43.

Cancels the (ESC)A assignment.

Description Restrictions

Only the first
character is used.

o through 168.

E: :::: C A F' F specifies that a particular one-character escape sequence (the escape character ASCII 27 fol­
lowed by a single character) received by the HP -71 from the current K E \' E: 0 A F.: D I :::: device will be re­
placed by an HP -71 keycode in the key buffer input. E ::: C A F' E requires two parameters, a one-character
string and a numeric keycode. The string specifies the escape sequence; the number indicates the
corresponding keycode.

The first execution of E ::::: C A F' E creates a special HP -71 buffer that specifies the mapping of escape se­
quences received from a KE\'E:OAF.:D I ::::: device to HP-71 keycodes. Each subsequent use of E:::::CAF'E
will add a new character/key code mapping, or modify an existing one, in the buffer. You can clear the
buffer completely by executing F.: E ::::: E T E ::: C A F' E. The buffer will be cleared if you turn on the HP-71
when the FORTH/Assembler ROM is not installed.

84 Appendix C: BASIC Keywords

ESCAPE (continued)

A mapping of an escape sequence created with E :::; C A F' E can be cancelled by assigning keycode 0 to the
character:

E :::; C A F' E " character" .. [1

removes the entry for character from the keymap buffer.

As an example of the use of E:::;CAF'E, suppose that you have connected a terminal to the HP-71 through
the HP 82164A HP-IL/RS232 interface. On many terminals the cursor up, down, right, and left keys
transmit the escape sequences (ESC)A, (ESC)B, (ESC)C, and (ESC)D, respectively. The following pro­
gram will cause these sequences to map to the corresponding cursor keys on the HP-71, when the terminal
is the K E \' E: [I A P D I :::; device:

10 RESET ESCAPE

20 ESCAPE "A",50

30 ESCAPE "B",51

40 ESCAPE "C",48

50 ESCAPE "D",47

60 END

Related Keywords

Purges any former key map buffer.

Maps (ESC)A to cursor-up key (50).

Maps (ESC)B to cursor-down key (51).

Maps (ESC)C to cursor-right key (48).

Maps (ESC)A to cursor-left key (47).

Returns the number of records in a text file.

o Statement

• Function

o Operator

F I L E ~:; Z F.: .:: filename::'

Example

>:;:::F I LE~:;ZF.:':: II ~:;CF.:EEt·i II ::0

Input Parameters

Item

Appendix C: BASIC Keywords 85

• Keyboard Execution

o CALC Mode

• IF. .. THEN ... ELSE

FILESZR

Sets the variable ;:< equal to the number of records in
the text file S C F.: E E t·~.

Description Restrictions

file name String expression or quoted string. Can not include a
device specifier or
CARD.

Operation

The F I L. E ~:; Z F.: keyword returns the number of records in the file specified, if that file exists. If the file
does not exist, or the operation fails for any other reason, a negative number is returned. The absolute
value of the negative number is the error number of the error that caused the function to fail.

Related Keywords

I t~~:;EF.:T#, DELETE#, F.:EF'LACE#

86 Appendix C: BASIC Keywords

FORTH

Transfers HP-71 operation to the FORTH environment.

• Statement • Keyboard Execution

o Function o CALC Mode
o Operator o IF. .. THEN ... ELSE

FOF.:TH

Operation

Keyboard execution of FOF.:TH (it is not programmable) causes the HP-71 to exit the BASIC operating
system environment and transfer control to the FORTH environment. The message H F' - 7 1 F 0 F.: T H 1 A
is displayed. Subsequent keyboard input is interpreted by the FORTH outer interpreter.

If the HP-71 is turned off while FORTH is active, it will automatically reenter the FORTH environment
when the HP-71 is turned back on.

Execution of the FORTH word E:'r'E will return the HP-71 to BASIC.

Because of the complete access to the HP-71 memory space provided by FORTH, it is quite possible for a
FORTH program to store inappropriate data into HP-71 operating system RAM. In many cases, this will
cause a memory lost condition. Following a memory loss, the HP-71 will return to the BASIC
environment.

Related Keywords

FCWTH$, FOF.:THF, FOF.:TH I, FOF.:TH:::

Appendix C: BASIC Keywords 87

FORTH$

Returns to a BASIC string variable the contents of a string defined in the FORTH environment by an
address and character count on the FORTH data stack.

o Statement

• Function

o Operator

FOF.:TH$

Examples

c:t =C:t:::.:F OPT H$

Operation

• Keyboard Execution

o CALC Mode

• IF. .. THEN ... ELSE

Returns the value of the FORTH string to the
BASIC variable A$.

Concatenates the FORTH string to C $.

F UP T H:t reads a string specified by the address and character count on the FORTH data stack and
returns its value to a BASIC string variable. The contents of the FORTH data stack must already have
been established prior to execution of F 0 F.: T H $. If there are fewer than two values on the data stack when
f::· C) P T H $ is executed, an error will occur, producing the message F THE P P : ern p t ':::I s t .:l C k .

When FOP T H $ is executed, two values are dropped from the top of the FORTH data stack. There is no
other effect on the FORTH environment. If the FORTHRAM file does not exist, the message
F THE P P : FOP T H P A r'1 not i n p 1 .:l C e will be displayed.

Related Keywords

F(JF.:TH, FOPTHF, FOPTHI, FOPTH:<

88 Appendix C: BASIC Keywords

FORTHF

Returns the contents of the FORTH floating-point X-register to a BASIC numeric variable.

D Statement

• Function

D Operator

FOPTHF

Examples

:<=FOPTHF

:.:=::; I H':: FOPTHF::'

FOPTH>:: I II A" E:A::; I CF F~'WPD'

E:=FOPTHF

Operation

• Keyboard Execution

• CALC Mode
• IF. .. THEN ... ELSE

Copies the contents of the FORTH X-register to the
BASIC variable :=:.
Computes the sine of the contents of the X-register
and places the result in the BASIC variable >::.

Copies the BASIC variable A to the FORTH
X-register, then executes a FORTH word nWPD,

and returns the resulting value from the X-register
to the BASIC variable E:.

FOP T H F allows floating-point numeric data in the FORTH environment to be accessed from the BASIC
environment. FOP T H F copies the contents of the FORTH floating X-register to a BASIC numeric vari­
able. The contents of the FORTH floating-point stack remain unchanged, and there is no other effect on
the FORTH environment.

The FORTH environment can be configured prior to execution of FOPTHF through the keyword
FOP T H ::<. If the FORTHRAM file does not exist, the message F THE P F.: : FOP T H P A r'1

n 0 ~ i n p 1 .:l C e will be displayed.

Related Keywords

FOPTH, FOPTH$, FOPTHI, FOPTH>::

Appendix C: BASIC Keywords 89

FORTHI

Returns the top value from the FORTH data stack to a BASIC numeric variable.

D Statement

• Function

D Operator

FOPTHI

Examples

I=FOPTHI

I=FOPTHI-2

ForHH:<'" I" BH:::; I C I F~'WP[I'

B=FOPTHI

Operation

• Keyboard Execution

• CALC Mode
• IF. .. THEN ... ELSE

Moves the top value from the FORTH data stack to
the BASIC variable I.

Computes the square of the value on the FORTH
data stack and places the result in the BASIC vari­
able I.

Copies the BASIC variable I to the FORTH data
stack, then executes a FORTH word F~'WP[I, and
returns the resulting top value from the data stack to
the BASIC variable B.

FOP T H I allows values contained on the FORTH data stack to be accessed from the BASIC environment.
FOP T H I moves the value on the top of the FORTH data stack to a BASIC numeric variable. The value is
dropped from the data stack, but there is no other effect on the FORTH environment.

If there are no values on the data stack when FOP T H I is executed, an error will occur, producing the
message F THE P P : em p t '::I :::: t -;j c k. The FORTH environment can be configured prior to execution of
FOP T H F through the keyword FOP T H >::. If the FOP T H P A t'1 file does not exist, the message
F THE P P : FOP T H P A t'1 n 0:0 tin p 1 -;j c e will be displayed.

Related Keywords

FOPTH, FOF.:TH$, FOPTHF, FOPTH>:

90 Appendix C: BASIC Keywords

FORTHX

Executes a FORTH command string.

• Statement

o Function

o Operator

FOP T H ::-0:" command string" [, parameter list]

Example

FOPTH>:: "[lPOP + T\'PE CP",
"Hello",l,2,3

Input Parameters

Item

command string String expression.

• Keyboard Execution

o CALC Mode

• IF. .. THEN ... ELSE

Push onto the FORTH data stack the address and
character count of the string "Hello," and the values
1, 2, and 3; then execute the FORTH words [I POP,
+, " T\'PE, and CPo

Description Restrictions

Contains valid
FORTH words.

parameter list Numeric expressions and string expressions, separated by Maximum of 14
commas. parameters.

Operation

The FOP T H ::.:: keyword allows you to execute FORTH routines from the BASIC environment. The op­
tional parameter list is a list of up to 14 string or numeric expressions, separated by commas. Each item in
the list is pushed onto the FORTH data stack: numbers as single length numbers, and strings each as two
numbers representing the address and character count of the string. After the parameters are placed on
the stack, the sequence of FORTH words specified in the command string is executed, following which
control is returned to the BASIC environment.

E: A ::; I C ::.:: can not be included in the command list-the FORTH/BASIC interface does not permit re­
entrant execution.

The strings passed to FORTH in the parameter list are created in temporary memory. FORTH words can
copy those strings to FORTH string variables, or concatenate them to existing strings, but you should not
attempt to write other strings to the addresses of the temporary FOP T H ::.:: strings.

Related Keywords

FOPTH, FOPTH$, FOPTHF, FOPTH I

Appendix C: BASIC Keywords 91

INSERT#

Inserts one record into a text file .

• Statement

o Function

o Operator

• Keyboard Execution

o CALC Mode

• IF. .. THEN ... ELSE

I if :,,: E:: F: T "* channel number, record number.: new record

Example

Input Parameters

Item

channel number

record number

new record

Operation

Inserts the string "Hello there" into the file cur­
rently assigned to channel #5, as record 14. The for­
mer record 14 becomes record 15.

Description Restrictions

Numeric expression rounded to an integer. 1 through 255.

Numeric expression rounded to an integer.

String expression.

The J: i···i :::: i:::: i? r :i:!: keyword inserts the new record at the record number in the file assigned to the specified
channel number. The new record is an HP-71 string expression. The channel number and the record
number can be expressions. Record numbers always begin at 0, so line number 1 is record number 0.
I ii '::: F!?'r :!:!: rounds each of the resulting values to an integer.

The new record is inserted ahead of the record previously numbered at the record number. The former
record, and all subsequent records, have their records numbers incremented incremented by 1.

.,. , , ':: !:::: !?T :!:i: returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

92 Appendix C: BASIC Keywords

KEYBOARD IS

Assigns one HP-IL device to be used as an external keyboard .

•
0

0

Statement

Function

Operator

device specifier

[:ltWLL
f<E\'BOAPD I::: [: II

Examples

"[: It·WLL''

"[: ll"

f<EYBOAPD IS PS232(2)

f:::E\'BOAPD I::: l

Input Parameters

Item

device specifier See standard
Manual.

Operation

• Keyboard Execution

0 CALC Mode

• IF ... THEN ... ELSE
0 Device Operation

Assigns the second HP-IL/RS232 Interface to be the
f:E\'BOAPD I ::: device.

Deactivates any f< E '!' E: 0 A P [I I ::: assignment.

Description Restrictions

description in HP-IL Interface Owner's None

The f<E\'BOAPD I ::: statement assigns one HP-IL device to act as a remote keyboard for the HP-71.
That is, whenever the HP-71 is expecting keyboard input, it will check the f:::E\'BOAPD I ::: device to
determine if the device has data available. If so, the data will be read into the HP-71 key buffer, and
executed as if it had been entered from the HP-71 keyboard. The HP-71 keyboard continues to function
normally. Input can be mixed from the HP-71 keyboard and the remote keyboard.

f:: E \' B 0 fi P D I ::: is deactivated by either of the statements f E \' BOA P D I::: tj U L L or
f:: F \' E: 0 A P D I ::: l.

While f:::E'iBOfiPD I ::: is active, the HP-71 is continually transmitting on HP-IL. This results in an
increase in power consumption, even while the HP-71 is apparently idle. It is recommended that you
connect the AC adapter to the HP-71 to conserve battery life while you are using f::: E \' E: 0 A P [I I ::: for
remote input.

Appendix C: BASIC Keywords 93

KEYBOARD IS (continued)

If the loop is broken while f:: E \' B [I A P [I I ::; is active, press I ATTN I twice to restore HP-71 operation.
When the loop is restored, execute P E ::; E T H F' I L, reinitialize the keyboard device, and execute
f:: E ',' E: 0 A P [I I ::; again.

By making [I I ::; F' L A \' I ::; and K E ',' BOA P [I I ::; assignments to the same HP -IL device (usually an
interface class device), almost any terminal, or computer acting as a terminal emulator, can be used as an
extension of the HP-71 keyboard and display. Most HP-71 operations can be executed from the terminal
just as if they were keyed in directly on the HP-71. If you set Flag -21, the automatic loop power down
that occurs when the HP-71 turns itself off will be disabled, so that the K E \' BOA P [I I ::; device can turn
the HP-71 on remotely.

For proper operation of K E \' BOA P [I I ::;, the designated device must be enabled to set HP -IL service
requests when it has data available. You can refer to the owner's manual for an HP-IL device to deter­
mine how to enable the device. For example, the following sequence will set up the HP 82164A HP­
IL/RS232 Interface for use as the K E \' BOA P [I I ::; device:

PEr'10TE (~ OUTF'UT P::;232.:" ::;EO.: ::;E3.:" (~ LOCAL I~ [lTH$':: r'10[l':: ::;F'[lLL
(II P~:;232 II::' .' 2·····20::. ::.

The remote mode command SE~ disables any current service request mode on the interface; SE3 sets the
interface for service request on data available. The status read (::; F' 0 L L) shows any error condition-the
[I T H $ formats the device status in hexadecimal. A normal status will show the friendly "AI" as the last
byte.

All characters received from the K E \' E: 0 A F.: [I I ::; device are placed directly into the key buffer, with the
following two exceptions:

1. "Control characters," i.e., characters corresponding to ASCII codes from 0 through 31, are generated
on the HP-71 by pressing the Wi CTRL I combination followed by another character. The latter charac­
ter determines the output character according to its ASCII code: the control character will have the
ASCII value 64 less than the keyed character. For example, character 1 is generated by pressing
Wi CTRL I A (A=ASCII 65). f::E\'BOAP[I I ::; makes the same translation of control characters to
keyboard characters. Control characters received from the f:: E \' BOA F.: [I I ::; device are replaced in the
key buffer by two keycodes-key 158 (Wi CTRL I) plus an additional keycode to specify the control
character according to the mapping just described.

2. One-character escape sequences (the escape character ASCII 27 followed by one additional character),
which can optionally be replaced in the input stream by user-specified HP-71 keycodes. Through use
of the E ::; C A F' E keyword, the user can map such escape sequences into arbitrary HP-71 keys (such as
ON or the command stack) from the remote keyboard. (Notice, however, that remote execution of the
ON key will not interrupt the HP-71 unless it is expecting keyboard input.) For a complete explana­
tion of this feature, refer to the documentation of the E ::; C A F' E keyword.

Related Keywords

I

94 Appendix C: BASIC Keywords

MSG$

Returns the message string corresponding to a specified error number.

o Statement

• Function

o Operator

t'1 ::; G $ 0:: error number::'

Example

A$=t'1::;G$ 0:: 5:::::'

Input Parameters

Item

error number

Operation

Numeric expression.

• Keyboard Execution

o CALC Mode
• IF. .. THEN ... ELSE

Places the message string associated with error #58
into the string variable A $.

Description Restrictions

Valid error number.

The t'1::;G$ keyword provides access to the error message strings generated by the HP-71 operating sys­
tem, the FORTH/Assembler ROM, or any other LEX file. t'1 ::; G $ 0:: n::' returns the string corresponding to
the nth error.

t'1 ::; G $ is a generalization of the keyword E P P tH, which returns the message string associated with the
most recent error.

Related Keywords

Appendix C: BASIC Keywords 95

REPLACE#

Replaces one record in a text file .

• Statement

o Function

o Operator

• Keyboard Execution

o CALC Mode

• IF. .. THEN ... ELSE

FE F' LAC E # channel number.' record number.: new record

Example

F:: E F' LAC E # 5.' 1 4.: "H ell Co 1: h e t- e " Replaces the 14th record in the text file currently as­
signed to channel #5, with the string "Hello there".

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an integer. 1 through 255.

record number Numeric expression rounded to an integer.

new record String expression.

Operation

The FE F' LAC E # keyword replaces a specified record, in the text file assigned to the specified channel
number, with a new record. The new record is an HP-71 string expression. The channel number and the
record number can be expressions. Record numbers always begin at 0, so line number 1 is record number
o. FE F' LAC E # rounds each of the resulting values to an integer.

f;: E F' LAC E # returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

96 Appendix C: BASIC Keywords

RESET ESCAPE

Purges any existing key-map buffer created by the E ~:::; C A F' E keyword .

• Statement • Keyboard Execution

0 Function 0 CALC Mode
0 Operator • IF. .. THEN ... ELSE

• Device Operation

Related Keywords

KE\'BOAF.:D I ~:::;, E~:::;CAF'E

Appendix C: BASIC Keywords 97

SCROLL

Scrolls the display to a position and waits for a key to be pressed .

• Statement

D Function

D Operator

::; C F.: 0 L L position

Example

Input Parameters

Item

position

Operation

• Keyboard Execution

D CALC Mode

• IF ... THEN ... ELSE

Display the string "Hello there," with the fourth
character in the string as the first character in the
display, so that the display shows "10 there."

Description Restrictions

Numeric expression rounded to an integer. 1 through 96.

The :::; C F 0 L L keyword enables you to display a string, under program control, that can be scrolled from
the keyboard. Execution of ::; C F 0 L L causes the current display string to shift so that the character in the
position specified by the numeric expression is the leftmost character in the display. Execution halts, so
that a user can press the left- and right-arrow keys to scroll the display. Execution resumes when any
other key is pressed (the pressed keycode is placed in the key buffer). The number input with ::; C F 0 L L
must be greater than zero.

98 Appendix C: BASIC Keywords

SEARCH

Finds a string in a text file.

o Statement

• Function

o Operator

• Keyboard Execution

o CALC Mode

• IF ... THEN ... ELSE

::; E A F.: C H .:: search string, column number, begin line. end line, channel::'

Example

»::;EAF.:CH':: "Hello", 5,1,99,2) Searches the file assigned to channel #2 for the
string "Hello." The search starts in column 5, line 1,
and extends through line 99.

Input Parameters

Item Description Restrictions

search string String expression. 1 through 9999.

column number Numeric expression rounded to an integer. 1 through 9999

begin line Numeric expression rounded to an integer. 1 through 9999

end line Numeric expression rounded to an integer. 1 through 9999

channel Numeric expression rounded to an integer. 1 through 255

Operation

The ::; E A F.: C H keyword enables you to determine the location of a specified string within an HP -71 text
file. If the search is successful, ::; E A F.: C H returns a value in the format nnn.eeclll, where nnn is the record
number, eee is the column number, and III is the length of the matched string. If the search is unsuccessful,
zero is returned.

The search string can be any string expression, and the other parameters can be any numeric expression.
Each input value is rounded to an integer. A zero is returned for an empty file.

Related Keywords

I t'~::;Ef;:T#, DELETE#, F.:EF'LACE#

Appendix D

FORTH Words

This appendix describes all FORTH words in the FORTH/Assembler ROM. The words appear in ASCII
order. For a discussion of nonstandard FORTH operations, refer to section 2, "The HP-71 FORTH
System." For a listing of all FORTH words grouped by functional category, refer to the inside back cover
of this manual.

Each entry shows the word, its pronunciation, its use of the data stack, and a brief description of the
word's operation. A word E ::< FH'1 F' L E might have the following entry:

EXAMPLE (Example)

Perform the specified operation on nl and n2' replacing them on the data stack with the result n3. (Before
E >:: 1:::1 ['1 F' LEis executed, n2 is on the top of the stack. After E >:: H t'1 F' LEis executed, n3 is on the top of the
stack.)

Some descriptions begin with "COMPILE" or "IMMEDIATE." These indicate the following:

• COMPILE indicates that the word is intended for use only during compilation. Direct execution of
the word can give meaningless or dangerous results; where appropriate, a
F "r H E F' F': c: 0 f!"! P i 1 e .:. n 1 '=' error occurs .

• IMMEDIATE indicates that the word is executed, rather than compiled, when encountered during
compilation.

99

100 Appendix D: FORTH Words

Notation

The stack-use diagrams use the following variables to represent various types of data.

Definition of Stack Variables

Variable Type of Data

n A signed (twos complement) 20-bit integer.

tin An unsigned 20-bit integer.

d A signed (twos complement) 40-bit integer.

ud An unsigned 40-bit integer.

flag A signed (twos complement) 20-bit value, either -1 (true) or 0
(false).

c A 20-bit value whose two low-order nibbles represent an ASCII
character.

addr A 20-bit address.

count A 20-bit value whose two low-order nibbles represent the number
of characters in a string.

str A 40-bit value comprising addr and count. Count is on top and
tells how many characters are to be found at addr.

Errors

Many FORTH words require one or more parameters on the data stack. When a word is executed with too
few parameters on the stack, unpredictable errors will occur. The error message
F THE F.: F.:: em p ~ '::I s ~ .;j c k might be displayed, but only after the operation is carried out on spurious
parameters. These spurious parameters come from the terminal input buffer (TIB), which resides above
the data stack. If a result is returned, it will be written into the TIB, and an error message like
F THE F.: F.:: >:: \' Z'=, t n.:o ~ t- e c c,,=, n i zed occurs when FORTH tries to interpret this result as a
character string containing FORTH words and data.

FORTH is similar to assembly language in its lack of user protection. In most cases FORTH will attempt
to perform the specified operation, even if the operation will cause a Memory Lost condition. For instance,
it is easy to write a FORTH loop that pushes a value onto the data stack 1,000,000 times. Execution of
this loop will overwrite the user dictionary, the FORTH system variables, and the BASIC O/S variables.
Eventually the machine will be too confused to continue and will perform a cold start. In other cases you
might need to perform an I t·j I T 3 to recover normal HP-71 operation.

Appendix D: FORTH Words 101

FORTH Glossary

(Store) n addr ...

Store n at addr.

" (Quote) ... str

Used in the form: "eee"

IMMEDIATE. In execute mode: Take the characters eee, terminated by the next ", from the input
stream, and store them in a temporary string variable at the PAD. The string variable's header shows a
maximum length of 80 characters or the current length, whichever is greater. Any other word that returns
another temporary string will wipe out the first string.

In compile mode: Compile into the dictionary the runtime address of ;;, two bytes for the length of the
string eee (maximum length = current length), and the string itself. A string must be contained on a
single line of a source file.

(Sharp)

Used in the form: <# ### #::

Divide ud1 by E: H :::; E, convert the remainder to an ASCII character, place this character in an output
string, and return the quotient ud2. Used in pictured output conversion; refer to < #.

#> (Sharp-greater) ud ... addr n

End pictured output conversion. #:: drops ud and returns the text address and character count. (These
are suitable inputs for T \' F' E.)

#s (Sharp-s) ud ... 0 0

Convert ud into digits (as by repeated execution of #), adding each digit to the pictured numeric-output
text until the remainder is zero. A single zero is added to the output if ud = O. Used between < # and #::.

#TIB (Number-t-i-b) ... addr

Return the address of the variable #TIB, which contains the number of bytes in the terminal input buffer.
Set by !) U E F.: \'.

102 Appendix D: FORTH Words

(Tick) - addr

Used in the form: 'name

Return the CFA of name.

'STREAM (Tick-stream) - addr

Return the address of the next character in the input stream.

I ((paren)

Used in the form: 0: ccc::O

IMMEDIATE. Consider the characters eee, delimited by ::0, as a comment to be ignored by the text inter­
preter. The blank following 0:: is not part of eee. 0:: may be freely used while interpreting or compiling. A
comment must be contained on a single line of a source file.

* (Times)

Return the arithmetic product of nl and n2'

*/ (Times-divide)

Multiply nl and n2, divide the result by n3' and return the quotient n4' The product of nl and n2 is
maintained as an intermediate 40-bit value for greater precision in the division.

*/MOD (Times-divide-mod)

Multiply nl and n2, divide the result by n3' and return the remainder n4 and the quotient ns. The product
of nl and n2 is maintained as an intermediate 40-bit value for greater precision in the division.

Appendix D: FORTH Words 103

+ (Plus)

Return the arithmetic sum of nl and n2'

+! (Plus-store) n addr -

Add n to the 20-bit value at addr.

+BUF (Plus-Buff) addr1 - addr2 flag

Advance the mass-storage-buffer address (addrl) to the address of the next buffer (addr2)' +[: U!' returns a
false flag if addr2 is the address of the buffer currently pointed to by F' F: [!,}; otherwise, +E: 1...1 F returns a
true flag.

I ' (Comma) n -

Used in the form: 1. ~:::3 4.

Allot five nibbles and store n in the dictionary.

(Minus)

Subtract n2 from nl and return the difference n3'

-TRAILING (Dash-trailing) addr count1 - addr count2

Adjust the character count of the text beginning at addr to exclude trailing blanks.

(Dot) n -

Convert n according to E: A::='; E and display the result in a free-field format with one trailing blank. Display
a minus sign if n is negative.

I

104 Appendix D: FORTH Words

I " (Dot-quote)

Used in the form: ," eee"

COMPILE, IMMEDIATE. Compile the characters eee, delimited by ", so that later execution will trans­
mit eee to the current display device. The blank following "is not part of eee. A string must be con­
tained on a single line of a source file .

• ((Dot-paren)

Used in the form: ,.:: eee)

IMMEDIATE. Display the characters eee, delimited by). The blank following , .:: is not part of eee. A
string must be contained on a single line of a source file .

. 5 (Dot-S)

Print the contents of the stack as unsigned integers, starting with the top of the stack. ,::; doesn't alter
the stack.

(Divide)

Divide nl by n2, and return the quotient n3. Division by 0 always yields o.

[IMOD (Divide-mod)

Divide nl by n2, and return the remainder n3 and quotient n4.

(Zero) - 0

Return the constant o.

(Zero-less) n - flag

Return a true flag if n < 0; otherwise, return a false flag.

I

Appendix D: FORTH Words 105

(Zero-equals) n - flag

Return a true flag if n = 0; otherwise, return a false flag.

(Zero-greater) n - flag

Return a true flag if n > 0; otherwise, return a false flag.

1 (One) 1

Return the constant 1.

1+ (One-plus) n ... n+1

Increment n by 1.

1- (One-minus) n ... n-1

Decrement n by 1.

1/X (Reciprocal-ot-X)

Divide 1.0 by the contents of the X-register. 1/ >: places the result in the X-register and the original value
of x in the LAST X register.

(10-to-the-X)

Raise 10 to the power contained in the X-register. 11::1····-::-:: places the result in the X-register and the
original value of x in the LAST X register.

2 (Two) - 2

Return the constant 2.

106 Appendix 0: FORTH Words

(Two-times) n -+ 2n

Return the product of nand 2.

(Two-plus) n -+ n+2

Increment n by 2.

(Two-minus) n -+ n-2

Decrement n by 2.

(Two-divide) n -+ nj2

Divide n by 2 and return the result. 2 produces n/2 by shifting n one bit to the right and extending the
sign bit.

12DROP (Two-drop) d -+

Drop the double number (or two single numbers) on the top of the data stack.

[2DUP (Two-dup)

Duplicate the double number (or pair of single numbers) on the top of the data stack.

[20VER (Two-over)

Make a copy of the second double number (or third and fourth single numbers) on the data stack.

Appendix D: FORTH Words 107

2SWAP (Two-swap)

Reverse the order of the two double numbers on the top of data stack.

3 (Three) -+ 3

Return the constant 3.

4N@ (Four-n-fetch) addr -+ n

Return the four-nibble (two-byte) quantity located at addr.

5+ (Five-plus) n -+ n+5

Increment n by 5.

5- (Five-minus) n -+ n-5

Decrement n by 5.

(Colon)

Used in the form: : name ...

Create a word definition for name in the compilation vocabulary and set compilation state. The search
order is changed so that the first vocabulary in the search order is replaced by the compilation vocabulary.
The compilation vocabulary is unchanged. The text from the input stream is subsequently compiled. name
is called a colon definition. The newly created word definition for name cannot be found in the dictionary
until the corresponding is successfully processed.

(Semicolon)

Used in the form: : name ...

IMMEDIATE, COMPILE. Stop compilation of a colon definition .. : compiles E:: I T into the dictionary,
clears the smudge bit (so that this colon definition can be found in the dictionary), and sets execute state.

108 Appendix D: FORTH Words

< (Less-than)

Return a true flag if nl < n2; otherwise, return a false flag.

<# (Less-sharp)

Initialize pictured numeric output. The words <: #, #, # ::;, H 0 L [i, ':; I G r'~, and #:> can specify the conver­
sion of a double number into an ASCII-character string stored in right-to-Ieft order.

<> (Not-equal)

Return a true flag if nl *" n2; otherwise, return a false flag.

(Equals)

Return a true flag if nl n2; otherwise, return a false flag.

> (Greater-than)

Return a true flag if nl > n2; otherwise, return a false flag.

>BODY (To-body)

Return the PFA (addr2) of the word whose CFA is addrl. (addr2 addrl + 5.)

>IN (To-in) addr

Return the address of the variable> IN, which contains the current offset within the input stream. The
offset is expressed in nibbles and points to the first position past the first blank.

>R (To-R) n

COMPILE. Transfer n to the return stack.

Appendix D: FORTH Words 109

(Question-mark) addr -+

Used in the form: HE:=-: 2FCC5 ,~,

Display the number at addr using the current E: A':; E and the (dot) format.

?COMP (Query-comp)

COMPILE. Issue aFT H E F' F': c c' r;, F' i 1 e ;:; n 1 '::;l message if not in compile mode.

?DUP

Duplicate n if n =F o.

I ?STACK

Issue aFT H E F F :
issue aFT H E f? F: :

I ?TERMINAL

(Query-dup) n -+ n (n)

(Query-stack)

e f(; F' t '::;l s t .;:j c k message if the stack pointer is above the bottom of the stack; or
f i) 1 1 ::;: t .;:j c k message if the stack pointer has grown into the pad.

(Query-terminal) -+ flag

Return a true flag if a key has been pressed and placed in the key buffer; otherwise, return a false flag.

@ (FetCh) addr -+ n

Return the number stored at addr.

I ABORT (Abort)

Reset the data and return stacks, close all files, set execution mode, set F 0 F: T H as the current and con­
text vocabulary, and return control to the terminal.

110 Appendix D: FORTH Words

I ABORT" (Abort -quote) flag -

Used in the form: : name... R E: [I F.: T" ccc":

COMPILE, IMMEDIATE. If flag is true, display the character string eee (delimited by ") and execute
Fi E: [I F.: T; otherwise, drop the flag and continue execution. The character string must be contained on a
single line of a source file.

(Absolute) n - Inl

Return the absolute value of n.

I ACOS (A-cos)

Calculate the arc cosine of the contents of the X-register, according to the currently active angular mode.
R C [I ::: places the result in the X-register and the original value of x in the LAST X register.

ADJUSTF (Adjust-f) addr n - flag

Adjust a file by n nibbles, starting at addr and moving toward greater addresses, and return a true flag if
successful or a false flag if not. R D ,J U ::::: T F enlarges the file for positive n or shrinks the file for negative n.

I ALLOT (Allot) n -

Add n bytes to the parameter field of the most recently defined word (regardless of the C U F.: F.: E t·j T and
C [I tl T E::-: T vocabularies).

(And)

Return the bit-by-bit AND of nl and n2.

(Ascii) str - n

Return the ASCII value of the first character in the string specified by str.

Appendix D: FORTH Words 111

I ASIN (A-sine)

Calculate the arc sine of the contents of the X-register, according to the currently active angular mode.
We; I t·j places the result in the X-register and the original value of x in the LAST X register.

I ASSEMBLE (Assemble) str -

Assemble the file whose name IS specified by str. fJ::; ::; E t'1 E: L E uses E: A ::; I c: :, so you can't call
H :::; ::::; E: !'1 E: L E: from BASIC.

I ATAN (A-tan)

Calculate the arc tangent of the contents of the X-register, according to the currently active angular mode.
f(fHt·j places the result in the X-register and the original value of x in the LAST X register.

BASE (Base) - addr

Return the address of the variable BASE, which contains the current numeric-conversion base.

BASIC$ (Basic-dollar)

Used in the form: II A $" E: A ::; I C $
"A$[1.3J" E:H::;IC$

Return the current value of a BASIC string expression (specified by strl) to the pad as a FORTH string
(specified by str2.)

BASICF (Basic-f)

Used in the form: "A" E:A::; I CF
" A1 .. ···A6" E:A::;ICF
" A9lF'I" E:H::; I CF
" T H1E" E:H::; I CF

str -

Return the current value of a BASIC numeric expression (specified by str) to the FORTH Xcregister,
lifting the floating-point stack.

112 Appendix D: FORTH Words

I BASICI (Basic-i) str - n

Used in the form: " A" BA::; I C I
" A1 A6" BW::;ICI

Return the current value of a BASIC numeric expression (specified by str). An overflow error occurs if the
variable's value exceeds FFFFF.

I BASICX (Basic-x)

Used in the form: "PUt·j I ,JOE '" BW::; I C><
"BEEF''' BA::;IC>::
"A=F'I" BA::;IC>::
" 10 DI::;F' A" BA::;IC><

str -

Pass a string (specified by str) to the BASIC system for parsing and editing/execution, and then return to
FORTH.

I BEGIN ... UNTIL

Used in the form: ... BEG I t·j actions flag U t·j TIL ...

IMMEDIATE, COMPILE. Execute actions and test flag; if flag is false, repeat; if flag is true, skip to the
word following U t·j TIL.

I BEGIN . .. WHILE . .. REPEAT

Used in the form: ... BEG I t·j actions 1 flag ~,JH I LE actions2 PEF'EAT ...

IMMEDIATE, COMPILE. Execute actions! and test flag; if flag is true, execute actions2 and repeat; if flag
is false, skip to the word following P E F' EAT.

(Blank) - c

Return 3210, the ASCII value for a space or blank.

Appendix D: FORTH Words 113

BlK (B-I-k) -+ addr

Return the address of the variable BLK, which contains the number of the line being interpreted from the
active file. The value of BLK is an unsigned number; if it is zero, the input stream is taken from the
keyboard device.

BLOCK (Block) n -+ addr

Return the address of the first byte in the mass-storage-buffer copy of line n in the active file. If line n
hasn't already been copied from the file (in RAM or on mass storage) into a mass storage buffer, E: L 0 C!<
does so.

BYE (Bye)

Exit the FORTH environment and return control to the BASIC environent.

C! (C-store) n addr -+

Store the two low-order nibbles of n at addr.

C, (C-comma) n -+

H L. L_ C) T one byte and store the two low-order nibbles of n at HE F.: E.

C@ (C-fetch) addr -+ byte

Return the contents of the byte at addr. The three high-order nibbles of the five-nibble stack entry are 0.

C@+ (C-at-plus)

Return c, the first character in the string specified by strl> and str2, where addr2 = addr! + 2 and count2
= count! - 1. If count! = 0, c = ° and str2 = str1.

114 Appendix D: FORTH Words

CASE ... OF ... ENDOF . .. (Case Statements)

ENDCASE

Used in the form: ... CW::;E

nl OF actionsl Et1DOF actions1'

n2 OF actions2 EtWOF actions2'

n3 OF actions3 Et'WOF actions3'

IMMEDIATE, COMPILE. Starting with the first case statement (i = 1):

n -

• If n = ni, drop n, execute actionsi' and skip to the word following E t·W C W::; E .

• If n =1= ni, execute actions/ and examine the next case statement. (If there are no more case state­
ments, drop n and skip to the word following E t·W C A ::; E). Note that each optional actions/ can alter
the value of n (the number on the top of the stack) tested by the next case statement.

I CHR$ (Char-dollar) n - str

Convert the two low-order nibbles of n into an ASCII character and place it in a string specified by str.
The string is a temporary string of length 1, located on the pad.

I CHS (Change-sign)

Replace x, the contents of the X-register, with -x.

I CLOSEALL (Close-all)

Close all open files (that is, files with an open FIB entry).

I CLOSEF (Close-f) n -

Close the file whose FIB# is n.

I CMOVE (C-move) addrl addr2 un -

Move un bytes, first moving the byte at addrl to addr2 and finally moving the byte at addrl + 2(un - 1)
to addr2 + 2(un - 1). If un = 0, nothing is moved.

Appendix D: FORTH Words 115

CMOVE> (C-move-up) addr1 addr2 un -

Move un bytes, first moving the byte at addrl + 2(un - 1) to addr2 + 2(un - 1) and finally moving the
byte at addrl to addr2' If un = 0, nothing is moved.

I COMPILE (Compile)

Used in the form: : name1'" CO r'l F' I L E name2'"

COMPILE. Compile the CFA of name2 when namel is executed. Typically namel is an immediate word
and name2 is not; CO r'l F' I L E ensures that name2 is compiled, not executed, when namel is encountered in
a new definition.

CONBF (Con-buff)

Contract by nl nibbles the general-purpose buffer whose ID# is n2, and return a true flag; or return a false
flag if such a buffer doesn't exist. If the specified buffer contains fewer than nl nibbles, CO ['1 E: F contracts
it to 0 nibbles. nl must not exceed FFF.

CONSTANT (Constant) n -

Used in the form: nCO ['1 ~:::; T A ['1 T name

Create a dictionary entry for name, placing n in its parameter field. Later execution of name will return n.

I CONTEXT (Context) - addr

Return the address of the variable CONTEXT, which specifies which vocabulary to search first during
interpretation of the input stream. (Word searches through successive parent vocabularies are discussed in
section 2.)

CONVERT (Convert)

Accumulate the string of digits beginning at addrl + 2 into the double number dv and return the result d2
and the address addr2 of the next non -digit character. For each character that is a valid digit in E: A ~:; E,
C () I"~ I.} E f;: T converts the digit into a number, multiplies the current double number (initially d1) by
[: H~:: E, and adds the converted digit to the current double number. When C m·n} E P T encounters a non­
digit character, it returns the current double number and the non-digit character's address.

116 Appendix D: FORTH Words

I COS (Cos)

Calculate the cosine of the contents of the X-register, according to the currently active angular mode.
co:::; places the result in the X-register and the original value of x in the LAST X register.

COUNT (Count)

Return the address (addr2) of the first character, and the character count (n), of the counted string begin­
ning at addrl' The first byte at addrl must contain the character count n. The following diagram shows
the parameters for a three-character text string:

Address Contents

addr1 1000 3 '-n

addr2 1002 A

1004 B

1006 C

I CR (C-r)

Send a carriage-return and line-feed to the current display device.

I CREATE (Create)

Used in the form: C PEA T E name

Create a standard dictionary entry for name without allotting any parameter-field memory. Later execu­
tion of name will return name's PFA. Words that use C PEAT E directly are called defining words.

CREATEF (Create-f) str n addr

str n false

Create a text file in RAM whose name is specified by str and that contains n nibbles. If successful,
C PEA T E F returns the address of the beginning of the file header (which contains the file name); other­
wise, it returns a false flag. If the specified string exceeds eight characters, the file name will be the first
eight characters.

Appendix 0: FORTH Words 117

CRLF (C-r-/-f) -+ str

Return str specifying the two-character string constant containing the ASCII characters carriage-return
and line-feed. This string can be concatenated with other strings for use with words such as 0 U T F' U T.

I CURRENT (Current) -+ addr

Return the address of the variable CURRENT, which specifies the vocabulary to receive new word
definitions.

D+ (O-p/us)

Return the arithmetic sum of d1 and d2•

D- (O-minus)

Subtract d2 from d1 and return the difference d3•

D. (O-dot) d -+

Display d according to BASE in a free-field format, with a leading minus sign if d is negative.

D.R (O-dot-R) d n -+

Display d (according to BASE) right-justified in a field n characters wide.

D< (O-/ess-than)

Return a true flag if d1 < d2; return a false flag otherwise.

I DABS (O-abs)

Return the absolute value of d.

118 Appendix D: FORTH Words

I DECIMAL (Decimal)

Set the input-output numeric conversion E: A::; E to ten.

I DEFINITIONS (Definitions)

Set the C U F.: F.: E ~.~ T vocabulary to match the C 0 ~.~ T E :'< T vocabulary.

DEGREES (Degrees)

Select [I E G F.: E E ::; angular mode.

I DEPTH (Depth) -+ n

Return n, the number of items on the data stack (not counting n itself).

I DIGIT (Digit) c n1 -+ n2 true
c n1 -+ false

If c is a valid digit in base nl> return that digit's binary value (n2) and a true flag; otherwise, return a false
flag.

I DLiTERAL (D-literal) d -+

COMPILE, IMMEDIATE. Compile d into the word being defined, such that d will be returned when the
word is executed.

DNEGATE (D-negate) d -+ -d

Return the twos complement of a double number d.

Appendix D: FORTH Words 119

DO ... +LOOP (Do, Plus-loop)

Used in the form: ... [10 actions n +L 0 0 F' ...

COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by n. [10 moves
nl (the loop limit) and n2 (the initial value of the loop index) to the return stack, with n2 on top, and then
executes actions. +L 0 0 F' increments the index by n (which can be negative) and repeats actions, until the
index is incremented across the boundary between n - 1 and n. For example,

:I. 0 1 DO actions 1 +LOOF'

will execute actions nine times, with values of the index from 1 through 9; and

_ ... :1. 0 "'-1 DO actions -1 +LOOF'

will execute actions ten times, with values of the index from -1 through - 10. DO. . . +L 0 0 F' may be
nested within control structures.

DO ... LOOP

Used in the form: ... DO actions L 0 0 F' ...

COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by 1. [10 moves
nl (the loop limit) and n2 (the initial value of the loop index) to the return stack, with n2 on top, and then
executes actions. L 0 0 F' increments the index by 1 and repeats actions, until the index is incremented from
n - 1 to n. DO ... L 0 0 F' may be nested within control structures.

DOES> (Does)

Used in the form: : name ... CFERTE ... DOE:::> ... :

COMPILE, IMMEDIATE. Define the run-time action of a word created by a defining word. DOE ::; >
marks the termination of the defining part of the defining word name and begins the definition of the
run-time action for words that will later be defined by name.

DROP (Drop) n -

Drop the top number from the stack.

DUP (Oup)

Return a second copy of the top number on the stack.

120 Appendix D: FORTH Words

EMIT (Emit) c -

Transmit the character c to the current display device.

ENCLOSE (Enclose)

Examine the string that begins at addr, and return:

• nl, the nibble offset from addr to the first character that doesn't match the delimiter character c.

• n2, the nibble offset from addr to the first delimiter character c that follows non-delimiter characters
in the string.

• n3, the nibble offset from addr to the first unexamined character.

An ASCII null is treated as an unconditional delimiter.

END$ (End-dol/ar)

Create a temporary string (specified by str2) consisting of the nth character and all subsequent characters
in the string specified by strl. (F.: I G H T $ is similar but takes substring length, not character position, for a
parameter.)

ENG (Engineering) n -

Select engineering display mode with n + 1 significant digits displayed, for 0 ~ n ~ 11.

ENTER (Enter) addr n1 - addr n2

addr n1 c 0 - addr n2

Receive up to nl bytes of data from the HP-IL device whose address is specified by F'F: I r'1 A F.: \' and
:::;Ecot·WAF.:\', and store the data at addr and above (greater addresses). EtHEF: leaves addr on the
stack and returns n2, the actual number of characters received. Executing E t·~ T E F.: requires the
HP 82401A HP-IL Interface.

There are two options for termination in addition to the limit of nl characters:

• If system flag - 23 is set, E tH E F.: will terminate when an End Of Transmission message is received.

• If the argument on the top of the stack is 0, E t·~ T E F.: interprets the second argument on the stack to
be a character and will terminate when an incoming character matches this character. This option is
effective only when system flag - 23 is clear.

Appendix D: FORTI:! Words 121

EOF (E-o-f) -+ flag

Return a true flag if there are no more records in the active file; otherwise, return a false flag. EO F
examines the record length of the next record in the file specified by the FIE: # in ::; C F.: FIE:. It assumes
that the current pointer into the file is pointing at the next record length and that the file is a text file.

EXECUTE (Execute) addr -+

Execute the dictionary entry whose CFA is on the stack.

EXIT (Exit)

COMPILE. Terminate execution. Don't use E >': I T within aDO loop.

EXPBF (Expand-buff)

Expand by nl nibbles the general-purpose buffer whose ID# is n2, and return a true flag; or return a false
flag if such a buffer doesn't exist, if the resulting size would exceed 2K bytes, if there is insufficient
memory, or if nl is negative. nl must not exceed FFF.

EXPECT96 (Expect-96) addr -+

Accept 96 characters from the keyboard (or fewer characters followed by I ENDLINE I), append two null
bytes, and store the result at addr and above (greater addresses). D': F' E C T 9 6 also copies the text into the
Command Stack.

E"'X (E-to-the-x)

Raise e to the power contained in the X-register. E·· :'< places the result in the X-register and the original
value of x in the LAST X register.

122 Appendix D: FORTH Words

F* (F-times)

Multiply the contents of the X- and Y -registers. F:j:: drops the stack (duplicating T into Z), then places
the result in the X-register and the original value of x in the LAST X register.

F+ (F-p/us)

Add the contents of the X- and V-registers. F + drops the stack (duplicating T into Z), then places the
result in the X-register and the original value of x in the LAST X register.

F- (F-minus)

Subtract the contents of the X-register from the contents of the Y -register. F - drops the stack (duplicat­
ing T into Z), then places the result in the X-register and the original value of x in the LAST X register.

F. (F-dot)

Display the contents of the X-register according to the currently active display format. F, doesn't alter
the contents of the X-register.

F/ (F-divide)

Divide the contents of the V-register by the contents of the X-register. F./ drops the stack (duplicating T
into Z), then places the result in the X-register and the original value of x in the LAST X register.

FABS (F-abs)

Take the absolute value of the contents of the X-register. FA E: ::: places the result in the X-register and the
original value of x in the LAST X register.

FCONSTANT (F-constant)

Used in the form: floating-point number Fe [I t·j ::: T A t·j T name

Create a dictionary entry for name. When name is later executed, the value that was in the X-register
when name was created is placed in the X-register, lifting the floating-point stack.

Appendix D: FORTH Words 123

FDROP (F-drop)

Copy the contents of the V-register into the X-register, the contents of the Z-register into the V-register,
and the contents of the T-register into the Z-register. The previous contents of the X-register are lost.

FENCE (Fence) - addr

Return the .address of the variable FENCE, which contains the address below which the dictionary is
protected from F 0 F: GET.

FENTER (F-enter)

Copy the contents of the Z-register into the T-register, the contents of the V-register into the Z-register,
and the contents of the X-register into the V-register. The previous contents of the T-register are lost.

FILL (Fill) addr un byte -

Fill memory from addr through addr + (2un - 1) with un copies of byte. F ILL has no effect if un = O.

FIND (Find)

Search the dictionary (in the currently active search order) for the word contained in the counted string at
addrl' If the word is found, F I t·j D returns the word's CFA (= addr2) and either n = 1 (if the word is
immediate) or n = -1 (if the word isn't immediate). If the word isn't found, F I t·j D returns addr2 = addrl
and n = O.

FINDBF (Find-buff) n - addr

n - false

Return the start-of-data address in the general-purpose buffer whose ID# is n, or return a false flag if
such a buffer doesn't exist.

124 Appendix D: FORTH Words

FINDF (Find-f) str addr

str false

Search main RAM for the file whose name is specified by str, and return either the address of the begin­
ning of the file header (if successful) or a false flag (if not). If the specified string exceeds eight characters,
F I t·~ [I F considers only the first eight characters.

FIRST (First) -+ addr

Return the address of the variable FIRST, which contains the address of the first (lowest addressed) mass
storage buffer in the FORTHRAM file.

FIX (Fix) n -+

Select fixed-point display mode with n decimal places, 0 .:;; n .:;; 11.

FLiTERAL (F-literal)

IMMEDIATE, COMPILE. Compile the value x (the contents of the X-register) into the dictionary. When
the colon definition is later executed, x will be placed in the X-register, lifting the floating-point stack.

FLUSH (Flush)

Unassign all mass storage buffers.

FORGET (Forget)

Used in the form: F CI F: GET name

Delete from the dictionary name (which must be in the search order that begins with the C U F: F: E [.j T
vocabulary) and all words added to the dictionary after name (regardless of their vocabulary). Failure to
find name in the search order that begins with the C U F: F: E t·~ T vocabulary is an error condition.

Appendix D: FORTH Words 125

FORTH (Forth)

Set the CONTEXT vocabulary to FORTH, the name of the first vocabulary in RAM. Because all vocabu­
laries ultimately chain to the FORTH vocabulary, the word FOPTH can be found regardless of the CON­
TEXT vocabulary.

FP (F-p)

Take the fractional part of the contents of the X-register. F F' places the result in the X-register and the
original value of x in the LAST X register.

FSTR$ (F-string-dollar) str

Create a string (specified by str) that represents the contents of the X-register.

FTOI (F-to-i) n

Convert x (the contents of the X-register) to an integer and return it to the data stack. If Ixl > FFFFF, an
overflow error occurs. F T 0 I takes the absolute value of x, rounds it to the nearest integer, and converts it
to a five-nibble value. If x was positive, F T 0 I returns this result; if x was negative, F T 0 I returns the
twos complement of this result.

FVARIABLE (F-variable)

Used in the form: F I,} A P I A E: L E name

Create a dictionary entry for name, and allocate eight bytes for its parameter field. Subsequent execution
of name will return name's PFA. This parameter field will hold the contents of the variable, which must
be initialized by the application that creates it.

I GROW (Grow) n flag

Enlarge the user dictionary by n nibbles and return a true flag; or if there is insufficient memory, return a
false flag (without enlarging the dictionary).

126 Appendix D: FORTH Words

(H-dot) un -

Display un in base 16 as an unsigned number with one trailing blank.

! HERE (Here) - addr

Return the address of the next available dictionary location.

(Hex)

Set E: A ~:; E to sixteen.

! HOLD (Ho/d) c -

Insert character c into a pictured numeric output string. Used between <: # and #:>.

(/) - n

Used in the form: ... DO ... I ... LOOP .. ,

COMPILE, IMMEDIATE. Return the current value of the DO-loop index.

!IF . . . THEN flag -

Used in the form: ... I Factions THE t·~ ...

COMPILE, IMMEDIATE. Execute actions if and only if flag is true. IF ... THE t·~ conditionals may be
nested.

!IF ... THEN ... ELSE flag -

Used in the form: ... I Factions, E L ~:; E actions2 THE t·~ ...

COMPILE, IMMEDIATE. Execute actionsl if and only if flag is true; execute actions2 if and only if flag is
false. IF ... E L ~:; E ... THE t·~ conditionals may be nested within control structures.

Appendix 0: FORTH Words 127

IMMEDIATE (Immediate)

Mark the most recent dictionary entry as a word to be executed, not compiled, when encountered during
compilation.

INTERPRET (Interpret)

Interpret the input stream to its end, beginning at the offset contained in :> I [-1. The input stream comes
from the TIB (if E: L to:: contains 0) or from the mass storage buffer containing the nth line of the active file
(if E: U contains n.)

(I-p)

Take the integer part of the contents of the X-register. I F' places the result in the X-register and the
original value of x in the LAST X register.

ITOF (I-to-f) n -+

Convert n into a floating-point number and place it in the X-register, lifting the floating-point stack.

(J) -+ n

Used in the form: _.. [I C! ... [I C ... ,J . _. L Ci C! F' _.. L U Ci F' . __

COMPILE, IMMEDIATE. Return the index of the next outer loop. Used within nested DO ... L 0 0 F'
structures.

KEY (Key) -+ C

Return the low-order seven bits of the ASCII value of the next key pressed. If the key buffer is empty, wait
for a key to be pressed.

KILLBF (Kill-buff) n -+ flag

Delete the general-purpose buffer whose ID# is n, and return a true flag; or return a false flag if no such
buffer exists.

128 Appendix D: FORTH Words

(L) -+ addr

Return the address of the floating-point LAST X register.

ILASTX (Last-x)

Lift the floating-point stack and copy the contents of the LAST X register into the X-register.

I LATEST (Latest) -+ addr

Return the NF A of the most recent word in the C U F.: F.: E t·j T vocabulary.

I LEAVE (Leave) -+

COMPILE, IMMEDIATE. Skip to the word after the next L 0 0 F' or +L 0 C! F'. L E P I) E terminates the loop
and discards the control parameters. Used only within a [10 ... L 0 0 F' or +L 0 0 F' construct.

[LEFT$ (Left-dol/ar)

Create a temporary string (specified by str2) consisting of the first n characters in the string specified by

strl·

I LIMIT (Limit) -+ addr

Return the address of the variable LIMIT, which contains the first address beyond the mass-storage-buffer
area.

I LlNE# (Line-number) -+ addr

Return the address of the variable LINE#, which contains the number of the line being loaded from the
active file (specified by SCRFIB).

Appendix D: FORTH Words 129

LISTING (Listing) -+ str

Return str specifying the contents of the string variable LISTING, which identifies the file or device to
which the assembler will direct its output. L I ::; T I ~.~ G can contain up to 20 characters.

LITERAL (Literal) n -+

COMPILE, IMMEDIATE. Compile n into the word being defined, such that n will be returned when the
word is executed.

LN (Natural log)

Calculate the natural log (base e) of the contents of the X-register. U~ places the result in the X-register
and the original value of x in the LAST X register.

LOADF (Load-f) str -+

Interpret the entire file specified by str. If the file cannot be opened for any reason (doesn't exist, wrong
type, already opened, etc.), LOADF will give the error message FTH EF.:F.:: filename c·,_,nno 1 lO.:;jd.

LGT (Log-ten)

Calculate the common log (base 10) of the contents of the X-register. LeT places the result in the X­
register and the original value of x in the LAST X register.

(Mixed-multiply)

Return the double-number product d of two single numbers nl and n2. All numbers are signed.

M/ (Mixed-divide)

Divide the double number d by the single number nb and return the single-number remainder n2 and the
single-number quotient n3. All numbers are signed.

130 Appendix D: FORTH Words

MIMOD (Mixed-divide-mod)

Divide the double number udl by the single number unl' and return the single-number remainder un2 and
the double-number quotient ud2. All numbers are unsigned.

MAKEBF (Make-buff) n -+ addr 10# true
n -+ false

Create a buffer n nibbles long and return a true flag, the buffer ID#, and the address of the beginning of
data area in the buffer; or if unsuccessful (not enough memory, no free buffer ID#s), return a false flag. n
cannot exceed 409510.

MAX (Max)

Return the greater of nl and n2.

MAXLEN (Max-length) str -+ n

Return the maximum length (that is, bytes of memory allotted in the dictionary) for the string specified
by str.

MIN (Min)

Return the smaller of nl and n2.

MOD (Mod)

Divide nl by n2' and return the remainder n3 with the same sign as nl.

N@ (N-fetch) addr -+ n

Return the contents of the nibble at addr. The four high-order nibbles of n are zeros.

Appendix D: FORTH Words 131

N! (N-store) n addr -+

Store at addr the low-order nibble of n.

I NALLOT (N-allot) n -+

Add n nibbles to the parameter field of the most recently defined word (regardless of the C U F: F: E I~ T and
C: () t·~ T E :'< T vocabularies).

NEGATE (Negate) n -+ -n

Return the twos complement of n.

I NFILL (N-fill) addr un n -+

Fill memory from addr through addr + (un - 1) with un copies of the low-order nibble in n. ! .. ~ F ILL has
no effect if un = O.

I NMOVE (N-move) addr1 addr2 un -+

Move un nibbles, first moving the nibble at addrl to addr2 and finally moving the nibble at addrl + (un
- 1) to addr2 + (un - 1). t·H1O I,j E has no effect if un = o.

NMOVE> (N-move-up) addr1 addr2 un -+

Move un nibbles, first moving the nibble at addrl + (un - 1) to addr2 + (un - 1) and finally moving the
nibble at addrl to addr2. t·~ !'1 0 I,j E:> has no effect if un = o.

(Not)

Return the ones complement (true Boolean NOT) of nl.

132 Appendix D: FORTH Words

NULL$ (Null-dollar) str

Create a temporary string (specified by str) in the pad, with maximum length = 80 and current length =
0.

NUMBER (Number)

Examine the counted string at addr and convert it into a double number d .

addr d

addr

• If the string contains a decimal point, t·j U t'1 E: E F.: tries to convert it into a floating-point number and
place it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is
not a legal floating-point number, a [I at.", T ';:I F' e error occurs .

• If the string does not contain a decimal point, t·j U t'1 E: E F.: tries to convert it into an integer number and
return it to the data stack. If the string isn't a legal integer, a
FTH EF.:F.:: t·Wt'1E:EF.: no t t- eCO'::;i n i zed error occurs.

IOKFLG (Okay-flag) addr

Return the address of the variable OKFLG. If the value of OKFLG is 0, the 0 f::: :: n::- message is shown
when the FORTH system is ready for input; otherwise, the message is suppressed.

ONERR (On-error) addr

Return the address of the variable ONERR, which contains the CFA of the user's error routine. The value
of ONERR is checked when a FORTH-system error occurs. If the value of ONERR is zero, the error is
processed by the system's error routine. If the value of ONERR is not zero, control is transferred instead
to the user's error routine. The stacks are not reset. The BASIC keywords F 0 F.: T Hand F [I F.: T H ::-:; set the
value of ONERR to zero.

IOPENF (Open-f) str t

str str f

Open an FIB for the file whose name is specified by str, and store the FIB# into :::; C F.: FIE:. If successful,
OF' E t·j F returns a true flag. If the file was empty or there was a problem in opening the file, 0 F' E t·j F
returns str and a false flag.

Appendix 0: FORTH Words 133

OR (Or)

Return the bit-by-bit inclusive OR of nl and n2.

OUTPUT (Output) addr n -+

Send n bytes, stored at addr through addr + 2(n - 1), to the HP-IL device whose address is specified by
F' F: I I'Hi F: \' and ::; E C 0 t·WA PO"!'. Executing 0 U T F' U T requires the HP 82401A HP-IL Interface.

OVER (Over)

Return a copy of the second number on the stack.

PAD (Pad) -+ addr

Return the address of the pad, which is a scratch area used to hold character strings for intermediate
processing.

PAGESIZE (Pagesize) -+ addr

Return the address of the variable PAGESIZE, which contains the number of printed lines per page for
the assembler listing. The default value is 56; the minimum value is 8.

PICK (Pick)

Return a copy of the nrth entry on the data stack (not counting nl itself). For example, 1 F'I Cf::: is
equivalent to [I U F', and 2 F' I C f·: is equivalent to 0 I,,' E P.

(Pos) str 1 str2 -+ n

str1 str2 -+ false

Search the string specified by str2 for a substring that matches the string specified by strl, and return the
position of the first character in the matching substring (or a false flag if there is no matching substring).

134 Appendix D: FORTH Words

PREY (Pre v) -+ addr

Return the address of the variable PREY, which contains the address of the most recently referenced mass
storage buffer.

PRIMARY (Primary) -+ addr

Return the address of the variable PRIMARY, which specifies an HP-IL address. The valid range for
PRIMARY is 0 through 31, and the default value is 1. (The contents of PRIMARY and SECONDARY
specify which HP-IL device to use with E tH E F: and 0 U T F' U T. If system flag - 22 is clear, the contents of
PRIMARY alone specify a simple address; if system flag -22 is set, the contents of PRIMARY and
SECONDARY specify an extended address.)

QUERY (Query)

Accept characters from the current keyboard until 96 characters are received or an (END LI NE) character is
encountered, and store them in the TIE. 0 U E F: 't' sets # TIE: to the value of ':; F' p, r·t

I QUIT (Quit)

Clear the return stack, set execution mode, and return control to the keyboard. No message is displayed.

R> (R-from) -+ n

COMPILE. Remove n from the top of the return stack and return a copy to the data stack.

R@ (R-fetch) -+ n

COMPILE. Return a copy of the number on the top of the return stack.

RADIANS (Radians)

Select F: P, [I I A t·j S angular mode.

Appendix D: FORTH Words 135

RCL (Recall) addr -+

Lift the floating-point stack and place in the X-register the floating-point number found at addr.

RON (Roll-down)

Roll down the floating-point stack. F.: [I t·~ copies from the T -register into the Z-register, from the Z-register
into the Y-register, from the Y-register into the X-register, and from the X-register into the T-register.

RIGHT$ (Right -dollar)

Create a temporary string (specified by str2) consisti.Pg of the last (rightmost) n characters in the string
specified by strl' (E t·W $ is similar but takes character position, not substring length, for a parameter.)

ROLL (Roll) n -+

Move the nth entry on the data stack (not counting n itself) to the top of the stack. For example,
~::: I:;:: U L L is equivalent to ~:; [.j A F', and::3 F.: 0 L L is equivalent to F.: C! T.

ROT (Rote)

Rotate the top three entries on the data stack, bringing the deepest to the top of the stack.

RP! (R-p-store)

Reset the return stack to 0 addresses.

RP@ (R-p-fetch) -+ addr

Return the current value of the return-stack pointer.

136 Appendix 0: FORTH Words

RPO (R-p-zero) -+ addr

Return the address of the system variable RPO, which contains the address of the bottom of the return
stack. (The bottom of the return stack has a greater address than the top.)

RUP (Roll-Up)

Roll up the floating-point stack. F.: U F' copies from the X-register into the Y -register, from the Y -register
into the Z-register, from the Z-register into the T-register, and from the T-register into the X-register.

5! (S-store)

Store the contents of the string specified by strl into the string specified by str2'

5->0 (Sign-extend)

Return a signed double number d with the same value and sign as the signed single number n.

50 (S-zero) -+ addr

Return the address of the bottom of the data stack.

(S-Iess)

Return a true flag if the string specified by strl is "less than" the string specified by str2, or a false flag if
not. ::; <: first compares the ASCII values of the first characters; if they are equal, it then compares the
second characters, and so on. ABC is defined to be less than ABC D.

5<& (S -left -concatenate)

Append the contents of the string specified by str2 to the end of the string specified by strl, and return
str3, the address and length of the resulting string. The address of str3 is the address of strl; the length of
str3 is the combined length of strl and str2' If the concatenation would exceed strl's maximum length, no
concatenation occurs and str3 = strl' Either strl or str2 can specify a temporary string in the pad. The <:
sign indicates that the left string will contain the result of the concatenation.

Appendix D: FORTH Words 137

S= (S-equa/s)

Return a true flag if the two strings are equal, or a false flag if not. ::; = compares only the current length
and contents of the strings, not the maximum length or old contents stored beyond current length.

S>& (S-right-concatenate)

Append the contents of the string specified by str2 to the end of the string specified by strl' and return
str3, the address and length of the resulting string. The address of str3 is the address of str2; the length of
str3 is the combined length of strl and str2. If the concatenation would exceed str2's maximum length, no
concatenation occurs and str3 = str2. Either strl or str2 can specify a temporary string in the pad. The :>
sign indicates that the right string will contain the result of the concatenation.

SCI (Scientific) n -

Select scientific display mode with n + 1 significant digits displayed, 0 .:;; n .:;; 11.

SCRFIB (Screen-f-i-b) - addr

Return the address of the variable SCRFIB, which contains the FIB# of the currently active file (or 0 if no
file is being loaded).

SECONDARY (Secondary) - addr

Return the address of the variable SECONDARY, which specifies the extended portion of an HP-IL ad­
dress. The valid range for SECONDARY is from 0 through 31, and the default value is o. (The contents of
PRIMARY and SECONDARY specify which HP-IL device to use with EtHEF.: and OUTPUT. If system
flag - 22 is clear, the contents of PRIMARY specify a simple address; if system flag - 22 is set, the
contents of PRIMARY and SECONDARY specify an extended address.)

SHRINK (Shrink) n - flag

Shrink the user's dictionary space (and consequently the FORTHRAM file) by n nibbles, and return a
true flag; or return a false flag if there are fewer than n free nibbles in the dictionary.

138 Appendix 0: FORTH Words

I SIGN (Sign) n -+

Insert the ASCII minus sign - into the pictured numeric output string if n is negative. Used between <: #
and #>.

SIN (Sine)

Calculate the sine of the contents of the X-register, according to the currently active angular mode. ::; I t·~

places the result in the X-register and the original value of x in the LAST X register.

I SMOVE (S-move) str addr -+

Store at addr and above (greater addresses) the characters in the string specified by str.

I SMUDGE (Smudge)

Toggle the smudge bit in the latest definition's name field.

SP! (S-p-store)

Reset the data stack to 0 items.

I SPO (S-p-zero) -+ addr

Return the address of the system variable SPO, which contains the address of the bottom of the data
stack. (The address of the bottom of the data stack is greater than the address of the top.)

SP@ (S-P-fetch) -+ addr

Return addr, the address of the top of the data stack before ::; F' I~ was executed.

I SPACE (Space)

Transmit an ASCII space to the current display device.

Appendix D: FORTH Words 139

SPACES (Spaces) n ...

Transmit n spaces to the current display device. Take no action for n ~ o.

I SPAN (Span) ... addr

Return the address of the variable SPAN, which contains the count of characters actually read by the last
execution of E >:: F' E C T :3 6. .

SQRT (Square-root)

Calculate the square root of the contents of the X-register. ~:::; 0 F.: T places the result in the X-register and
the original value of x in the LAST X register.

STATE (State) ... addr

Return the address of the variable STATE, which contains a non-zero value if compilation is occurring (or
zero if not).

STD (Standard)

Select the BASIC standard display format.

I STO (Store) addr ...

Store the contents of the X-register at addr.

STR$ (String-dollar) d ... str

Convert the number d into a temporary string in the pad, specified by str.

140 Appendix D: FORTH Words

STRING (String) n -+

Used in the form: n :::n PI t·j G name.

Create a dictionary entry for name, allotting one byte for a maximum-length field (value = n), one byte
for a current-length field (value = 0), and n bytes for the string characters.

STRING-ARRAY (String-array)

Used in the form: n1 n2 ::; T P I t·j G - A P P A \' name

Create a dictionary entry for name, allotting one byte for the maximum-length field (value = nl), one
byte for the dimension field (value = n2), and (nl + 2) bytes each for n2 string-array elements.
::; T PI t·j G - A P PA \' fills in the maximum-length (value = nl) and current-length (value = 0) fields for
each string-array element.

Later execution of n name will return str m the address and current length of the nth element of the string
array.

I SUB$ (Sub-dol/ar)

Create a temporary string (specified by str2) consisting of the nlth through n2th characters in the string
specified by strl.

SWAP (Swap)

Exchange the top two entries on the data stack.

I SYNTAXF (Syntax-f) str -+ flag

Return a true flag if the string specified by str is a valid HP-71 file name, or return a false flag if not. If
the specified string exceeds eight characters, S \' t·j T A ::< F checks only the first eight characters.

(T) -+ addr

Return the address of the floating-point T-register.

Appendix D: FORTH Words 141

(Tan)

Calculate the tangent of the contents of the X-register, according to the currently active angular mode.
T H ! .. ~ places the result in the X-register and the original value of x in the LAST X register.

(T-i-b) -+ addr

Return the address of the terminal input buffer. The terminal input buffer can hold up to 96 characters.

I TOGGLE (Toggle)

Replace n2 (the contents at addr) with the bit-by-bit logical value of (n} XOR nz).

I TRAVERSE (Traverse)

Return the address of the opposite end (length byte or last character) of a definition's name field.

eIfn

eIfn

1, addr} is the address of the length byte, and addr2 is address of the last character.

-1, addrl is the address of the last character, and addr2 is the address of the length byte.

e If n doesn't equal 1 or -1, addr} = addr2'

I TYPE (Type) addr n -+

Transmit n characters, found at addr through addr + (2n - 1), to the current display device. I \' F' E
transmits no characters for n ~ O.

u. (U-dot) un -+

Display un (according to BASE) as an unsigned number in a free-field format with one trailing blank.

u< (U-/ess-than)

Return a true flag if unl < un2, or return a false flag if not.

142 Appendix D: FORTH Words

(U-m-times)

Return the double-number product ud of two single numbers unl and un2. All numbers are unsigned.

UM/MOD (U-m-divide-mod)

Divide the double number udl by the single number unl' and return the single-number remainder un2 and
the single-number quotient un3. All numbers are unsigned.

USE (Use) addr

Return the address of the variable USE, which contains the address of the next mass storage buffer avail­
able for use.

VAL (Val)

Convert the string specified by str into a number .

str -+ d

str -+

• If the string contains a decimal point, I,} A L tries to convert it into a floating-point number and place
it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is not a
legal floating-point number, a [t.;l taT '0:1 F' e error occurs .

• If the string does not contain a decimal point, I,} A L tries to convert it into an integer number and
return it to the data stack. If the string IS not a legal integer, a
FTH EF:F:: I,..'AL no t t- eco'::) n i zed error occurs.

VARIABLE (Variable)

Used in the form: I,} A F: I A E: L E name

Create a dictionary entry for name, allotting five nibbles for its parameter field. Later execution of name
will return name's PFA. This parameter field will hold the contents of the variable, which must be initial­
ized by the application that created it.

VARID (Var-i-d) addr

Return the address of the variable VARID, in which the assembler stores the ID# of the general-purpose
buffer that it uses. If the value of VARID is non-zero, the FORTH system will preserve the buffer with
that ID#.

Appendix D: FORTH Words 143

I VOCABULARY (Vocabulary)

Used in the form: I,} 0 CAE: U L A F.: \' name

Create (in the C U F.: F.: E tH vocabulary) a dictionary entry for name that begins a new linked list of dic­
tionary entries. Later execution of name will select name as the C 0 t·~ T E ::< T vocabulary. (Vocabularies are
discussed in section 2.)

I WARN (Warn) -+ addr

Return the address of the variable WARN. If WARN contains a non-zero value, compiling a new word
whose name matches an existing word causes a name i s n '~ un i que message to be displayed; if
WARN contains 0, the message is suppressed.

I WIDTH (Width) -+ addr

Return the address of the variable WIDTH, which determines the maximum allowable length for the
name of a word. The valid range for WIDTH is from 1 through 31.

I WORD (Word) c -+ addr

Receive characters from the input stream until the non-zero delimiting character c is encountered or the
input stream is exhausted, and store the characters in a counted string at addr. ~,~ U I:;: [I ignores leading
delimiters. If the input stream is exhausted as WORD is called, a zero-length string results.

(X) -+ addr

Return the address of the floating-point X-register.

X<>Y (X-exchange-y)

Exchange the contents of the X- and Y-registers.

144 Appendix D: FORTH Words

X#V?
X<V?
X=V?
X>V?

X<=V?
X=O?
X>=V?

Floating-point Comparisons -+ flag

Compare the contents of the X-and Y -registers, and return a true flag if the test is true or a false flag if
not. The tests don't alter the contents of the X- and Y -registers.

XOR (X-or)

Return the bit-by-bit exclusive OR of nl and n2.

(X-squared)

Calculate the square of the contents of the X-register. ·2 places the result in the X-register and the
original value of x in the LAST X register.

Iv (Y) -+ addr

Return the address of the floating-point Y -register.

(Y -to-the-x)

Raise the contents of the Y-register to the power contained in the X-register. ' . .' .. ::: places the result in the
X-register and the original value of x in the LAST X register.

z (Z) -+ addr

Return the address of the floating-point Z-register.

[(Left-bracket)

IMMEDIATE. Suspend compilation. Subsequent text from the input stream will be executed.

Appendix D: FORTH Words 145

['] (Bracket-tick)

Used in the form: : name1'" [!] name2' ..

COMPILE, IMMEDIATE. Compile the CFA of name2 as a literal. An error occurs if name2 is not found
in the currently active search order. Later execution of name! will return name2's CFA.

[COMPILE] (Bracket-compile)

Used in the form: ... [COr'iF' I LE] name ...

IMMEDIATE, COMPILE. Compile name, even if name is an I t'1 1'1 E D I te, T E word.

] (Right-bracket)

Resume compilation. Subsequent text from the input stream is compiled.

Subject Index

Page numbers in bold type indicate primary references; page numbers in regular type indicate secondary
references.

A

Aborting the assembler, 45
Address space, HP-71, 13
Angular mode, 20
Arithmetic mnemonics, 61
Arithmetic mode, 58
Arithmetic registers in CPU, 48
Arrays, string variable, 22
Assembler

aborting the, 45
comments in source file, 47
constants in expressions, 47
expressions in source file, 47
form of source file, 46
format of source line, 46
labels in source file, 47
listing file for, 46
pagesize of listing, 46
running the, 45
user variables for, 30

Assistance, technical, 70
I ATTN I key

B

aborting the assembler, 45
clearing the display, 12
stopping execution, 12
with remote keyboard, 95

BASIC operating system, reference for, 13
BASIC/FORTH interaction, 16-17, 86-90
Battery life, conserving, 94
Binary (BIN) files, 54, 64
Buffer

C

general purpose, 18
mass memory, 15

Card, magnetic, 15
Carry flag, 48, 57, 59, 61
CFA,31
Characterization nibble, 63-64
Code field, 31
Command stack, 12
Comments, in assembler source, 47
Compilation from files, 14
Compile-only words, 99
Constant-generating pseudo-ops, 62
Constants, in assembler expressiuns, 47
Control characters, 95
Control pseudo-ops, 62
Control registers in CPU, 50
Copy command, 40-41
Counted string, 22
CPU, FORTH use of, 51

147

D

Data-pointer mnemonics, 59
Data-transfer mnemonics, 59
Delete command

in BASIC, 81
in editor, 41

Dictionary, 30, 31-32
ROM-based, 32

Display, scrolling the, 97

E

Editor, 37-44, 82
files used by, 44

Entering the FORTH environment, 11
Entering text, 39
Entry, in FORTH dictionary, 31
Error

messages, 19, 71-77, 92
trapping, 24

Errors, 12, 100
Escape sequences, 83-84, 95
Exiting the FORTH environment, 11
Expressions, in assembler source file, 47
External keyboard, 83-84, 94-95

F

FIB, 15
Fields, in CPU registers, 49
File chain, HP-71, 34-35
File header, 34-35
File information block, 15
File type, HP-71, 32
Files

number of records in, 85
types of, HP-71, 32
used by editor, 44
used as screen, 14

Flag, in FORTH, 100
Flag -21,95
Flag -23, 18
Floating-point operations, 19-21
Floating-point stack registers, 29
Foreign language error messages, 19
Format of assembler source file, 46
FORTH-83 Standard, 13
FORTH/BASIC interaction, 16-17, 86-90
FORTHRAM, 26-30

copying, 26

G

General purpose buffers, 18
GOSUB mnemonics, 56
GOTO mnemonics, 55

148 Subject Index

H ~Q
~~---------------------------------

Hardware-status tests, 57
Header, HP-71 files, 34-35
HP-71

arithmetic registers, 48
control registers, 50
file chain, 34-35
file headers, 34-35
file types, 32
memory map, 25
operating system, reference for, 13

HP-IL, 17, 94-95

I, J

Immediate words, 31, 99
Insert command

in BASIC, 91
in editor, 39

Installing the module, 9
Interrupts, 50

K

Key assignments
in editor, 38
in FORTH, 12

L

Labels, in assembler source file, 47
LEX file, 19, 53-54, 63-64
LFA,31
Line format, for assembler source file, 46
Link field, 31
List command, 40
Listing, assembler, 46
Load-constants mnemonics, 60
Loading data from memory, 51
Logical mnemonics, 60

M

Macro-expansion pseudo-ops
for BIN files, 64
for FORTH words, 62
for LEX files, 63-64

Magnetic card, 15
Mass memory buffers, 15
Mass storage, loading screens from, 14
Memory, loading data from, 51
Memory-access mnemonics, 59
Messages

explanation of, 71-77
corresponding to error number, 92

Move commapd, 40-41

N

Name field, 31
NFA,31
No-op mnemonics, 61
Numeric file types, 33

o
o f/ message, 12
Operators, in assembler expressions, 47

P register, 49-50
mnemonics, 57

Pad, 22, 27, 30
Pagesize, of assembler listing, 46
Parameter field, 31
Patterns in strings, defining, 43
PFA,31
Pointer tests, 57
Port, 9, 65
Power consumption, 94
Primitive, FORTH, 11, 31, 51, 62
Print command, 40
Product information, 70
Program files, types of, 33
Program-status tests, 57
Pseudo-ops, 62-64

R

Records, number in a text file, 85
Registers in CPU

arithmetic, 48
control, 50
fields in, 49
tests on, 56

Remote keyboard, 83-84, 94-95
Removing the module, 9
Repair, 67-69
Replace command

in BASIC, 93
in editor, 42-44

Return mnemonics, 56
Return stack

in CPU, 50
in FORTH, 51

ROM-based dictionary, 32

s
SB (Sticky bit), 50, 58, 60
Scratch register mnemonics, 59
Screen, 14
Scrolling the display, 97
Search command

in BASIC, 98
in editor, 42-44

Secondary, FORTH, 11, 31
Service, 67-69
Shift mnemonics, 60
Shipping, 69
Smudge bit, 31
Stack-use diagrams, 100
Status mnemonics, 58
Sticky bit, 50, 58, 60
String variables, 22
Strings

counted, 22
defining patterns in, 43
operations on, 22-23
represented on the stack, 22

Subroutine return stack, in CPU, 50
Support, technical, 70
System save area, 28

T

Technical assistance, 70
Temporary environment, 16
Test mnemonics, 56-57
Text command, 39
Text editor, 37-44
Text file

number of records in, 85
used as screen, 14

Trigonometric functions, 20

u
User dictionary, 30
User mode

in editor, 38
in FORTH, 12

User variables, 28-29

Subject Index 149

v
Vectored execution addresses, 30
1"ll_ I ~:; T, 32
Vocabularies, 23-24

w, X, Y, Z

Warranty, 65-67
Wild-card character, 43-44
Word, in FORTH dictionary, 31

BASIC Keywords by Category
This list shows all BASIC keywords by functional category. All BASIC keywords and their defininitions
appear in appendix C, in alphabetic order.

Keyword

BASIC to FORTH
FOFTH

FCIFTH:t

FOF:THF

FOFTHI

FOFTH>::

Editor
DELETE#

EDTE::T

F I LE:::;ZF

I tj:::;EF:T#

r'1 :::;Gct

F:EFLACE#

Remote Keyboard
E::::;CAFE

f:::E'/E:OAFD I::;

I Description

Transfers HP-71 operation to the FORTH environment.

Returns to a BASIC string variable the contents of a string in the FORTH
enivronment.

Returns to a BASIC numeric variable the contents of the FORTH floating-point
X-register,

Returns to a BASIC numeric variable the value on the top of the FORTH data
stack.

Executes a FORTH command string.

Deletes one record from a text file.

Invokes the text editor.

Returns the number of records in a text file.

Inserts one record into a text file,

Returns the message string corresponding to a specified error number,

Replaces one record in a text file.

Scrolls the display and waits for a key to be pressed.

Finds a string in a text file.

Adds or modifies an escape-sequence key specification in the key-map buffer.

Assigns one HP-IL device to be used as an external keyboard.

Purges any existing key-map buffer created by the E <::; C A F E keyword.

151

FORTH Words by Category

This list shows all FORTH words by functional category. Some words appear in more than one category.
All FORTH words and their defininitions appear in appendix D, sorted by name in ASCII order.

General

Dictionary Management
ALLOT
COtlTE>':T
CUPF:Et·1T
DEF I tl I T I 011::;
FEtlCE
FIJF:CET
FI)F:TH
CF:Ol·J
HEF:E
HAL LOT
F' A D
:::; H P I tl f
I • .' ClCAE: U L .. I:jP ... ·

System
:> [::OD'"
'~"::;TACk

AE:ClF:T
AE:OF:T"
A::; ::; Et-1E: L. E
E:'y'E
DEC I ~'1AL
DECPEE:::;
DEF'TH
E:·:ECUTE
F Itm
HE::
LATE::;T
OUIT
F:AD I Aty;
TIE:
TCICCL.E
T F: A I • .' E F: :::;E

,BASIC System Access
E: Ii l
E:A F
E:A
E:A I ..

,:<,

Control Structures
E:EC I t·l ... UtH I L.
BEC Itl ... l·JH I L.E

· .. PEF'EAT
CA::;E ... OF .. Et·mOF

· .. EtmCA E
DO ... +LOO
DO ... LOOF'
IF ... THEtl
IF ... THEtl

· .. EL::;E
LEA' . .'E

Memory

+1

4t'11~

'"::'

(~

CI
CI~

CI~ +
C~·10' . .'E
C~·10' . .'E>
FILL
tll
tll~

tlF I LL
tl~·10' . .'E
tl~'10 I • .'E:>
F:CL.
::; 1

::;~·10' . .' E
::;TO

Interpretation

I tHEPF'PET

Return Stack
>P
I
.J

P>
P I~
PF'I
F:F'O
F.: F'I~

Defining Words

COt·l::; TA t·1 T
CPEATE
E>n T
FC 0 t·l ::; TAt'lT
F' ... 'AF: I ABLE
::; T F.: I t·1C
::; T F: I t·lC-AF.:F.: A..,.'
I.} A F.: I ABLE

Compilation

.~. C 0 ['1 F'
C ..
COt·1F' I L.E
DL I TEF.:AL
DOE::;>
FL.ITEF.:AL
I ~'H'1ED I ATE
LITEF.:AL.
::;t'1UDCE
::;TATE
[

[,]

[cm'w I LE]
]

Assembler
A 8['1 B E
L T Itl
F' E::;I E

Files

File Manipulations
+E;UF
Ar:UU::;TF

CLO:::EF
CF'EATEF
EOF
FIHDF
FLU~:;H

LOADF

General Purpose
Buffers

F
E r-

r

F b
t:: E:

1'1 E:

Input/Output

Constants

2

E,L

Numeric-Input
Conversion
E: A::; E
CClr·~i')EF::T

DIGIT

Numeric Output

E:A:e'E
D,

D.F
F.
H:
11

Number Formatting

#>
':;
<#

,- .L,:-:·

Character Input

CO U r'~ T
E t·~ C L 0 ::: E

Character Output

;: F'
E 1'1 I T
':;FACE

T\'FE

HP-IL
t~

U
F: '/

E

Arithmetic

Single Length
y
'r
l !'1(1[I
+.

./ !-'!c! [!
:!. +.
:t

Double Length

L~

[:!!F;HTi:,
,;;- [I

Mixed Length

Floating Point

:i ij" ',.'

,····11,····
' ... ·r .. !::::

F' !:::! E: :::"

F'F'
T i"',
L!""'

; i.1
L...!'·I

::::: I!',,!
,:.:) f';' T
'r H ~"!

.... ' .. .'

Logical
I;;; !~ [I

t! CIT
elF"

(I F'

Stack

Single Length
DF.:DF·
DUF'
D' . .!EF.:
F' I C f<
PDLL
POT
::.0
i:' F' I

i:' F' 0
i=:. F' (~
ie' ~.j A F'

Double Length
2[1POF'
;:~ [I U F'
20' . ..'FF:
2 i:' ~.j H F'

Floating Point
FDF.:OP
FnHFF
LHi:'T::
F: [I [i

PUP
t ,' •••• \'

Comparisons

Single Length

.••. [I U F'

r'lH ::
['1 I t~
U <'

Double Length
D<

Floating Point
;.-.: #'/ .~.
' . .' -'." :-, " --!"

',.' ,-, , .'

' .. '- ' .. ',-,
,",- ! :'

t ... ,-, , '
t ... '" '.,' ,-,
,', " ! "

String

User Variables
#T I E:

Itl
E:Hi:'F
E:lf
CO[1TE::T
CUF:F'Fr'~T

FIF:i:'T
L ..
L .. I f'1 I T
L I t~ E #
L. I i::T I I~C;
OfFLC
Cit,[F:F:
F'HCE:::; I ZE.
F: ~~: E: 1)

f"F: I r-!f'lF:'/
::'CF:F I E:
ie' F C 0 t~ [I H F:'/
ie' F' H i~

! . ..! :::: E:
\,! f~ F~ I D
I·j H F: i1
!"~ I [1 T H

String Words

H:::::C'
C i·1 F*
C:FLF'
L!~ [If

F TF'$
L..FF"T:$:
1"'1 H ;:< L.. E: r·~

!~ i..J L .. L.;$·
F' I) ':;
F;: I CHTl
' ... : .. "

c ...

',;Tf;';$
";liE:l

How To Use This Manual (page 7)

1: Installing and Removing the Module (page 9)
2: The HP-71 FORTH System (page 11)
3: The Editor (page 37)
4: The Assembler (page 45)

A: Care, Warranty, and Service Information (page 65)
B: Error Messages (page 71)
C: BASIC Keywords (page 79)
0: FORTH Words (page 99)

BASIC Keywords by Category (page 151)
FORTH Words by Category (inside back cover)

European Headquarters
150, Route Ou Nant-O'Avrii

P.O. Box, CH-1217 Meyrin 2
Geneva-Switzerland

82441-90001 English

FliDW HEWLETT
a:~ PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Wokingham
Berkshire RG11 3LL

Printed in Singapore 4/84.

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

