HEWLETT-PACKARD

b I/0 ROM

PROGRAMMING TECHNIQUES MANUAL

For the HP-75

Printed in U.S.A.

02 5icicans

HP-75 I/O ROM

Programming Techniques Manual

January 1984

00075-80243

© Hewlett-Packard Company 1984

Contents
How To Use This Manual 5
Section 1: Getting Started 7
nstalling and Removing the ROM Module " 7
Translating LEX File Programs 7 8

The Role of the Hewlett-Packard Interface Loop ... 8
A Brief Review of HP-IL

.. 9
Device Addresses ... 10
Device Codes 11
Syntax Quidelines ... 11
Section 2: 8imple I/O Operations 13
Using Simple OUTFUT Statements 13
Using Simple ENTER Statements 14
Entering Numeric Data 14
Emtering String Data 15

Section 3: Formatted I/O Operations i7

Formatted DUTFUTo . 17

Numeric Image Specifiers 18
Digit Specifiers 18
Sign Specifiers 18
Punctuation Specifiers 19

String Image Specifiers 20

The End-of-Line Sequence Image Specifier 21
Formatted ENTER 22
Data Images 23
Numeric Image Specifiers 23
String image Specifiers 23
Skipping Unwanted Characters 24
Terminator Images ... 25
Eliminating the Statement Terminator Requirement 27
Using the ETO Message As a Statement Terminator 27
There's Always an Exception 27
Changing the Size of the EHTER Buffer 28
A Word of Advice About images 28

Section 4: Sending and Receiving HP-IL Messages
The SEHDOIO Statement
Resuming Data Transmission With SERNDY
SEMDIO Restrictions
The EHTI0F Function
Defining Logical End-of-Record
Enhanced Printing Control
EHTI 0§ Restrictions
The SEHD Statement
Sending Command Group Messages
Sending Ready and Identify Group Messages

Sending Data/End Group Messages 0. e
Application Programs e e e
An HP-75/HP Series 80 INterfacecooooooen.n. DU
An HP-75/Modem Interface i
Obtaining Readings From a Multimeter,

Section 5: Qther HP-IT, Statements and Functions
Assigning The LOODo e e

The RESIGH

LOOF and SUTOLOOP ONH-0OFF Statements

Assigning HP-IL Addresses and Device Cedes to HP-IB Devices
The DEVADDR and DEVHAMES Fungtions oo iiiin
The AODEESS FUNCHION i ettt e e
Remote and Local Control of HP-IL Devices o iiiiiiann

The EEMETE

A BNt e

The LiLRL Statement . .. e e e e e

The LOCAL L.

DR GUT Statement ... e

The TRIGGER Statement i e e
Checking the Device ID or Accessory ID of HP-IL Devices

Device ID ...
Accessory 1D

Polling HP-IL DEVICES o e e

Serial Polling
Paralle! Polling

Appendix A: Owner’s Information

Appendix B: Syntax Reference Guide

Appendix C: HP-IL Commandso

Appendix D: Support Functions and Editing Keys

Appendix E: Errors and Warnings i

Keyword Index

Contents

29
29
a1
32
32
34
35
35
35
36
a8
38
39
39
40
a1

43
43
43
44
45
45
a5
46
46
47
a7
48
48
48
49
49
50

53

59

85

89

21

123

3

How To Use This Manual

Please take a minute to read this introduction so that you can better understand how this manual is
organized, and how to get the most utility from it. The HP-75 I/0 ROM adds many new capabilities to
your portable computer, opening a whole new world of applications. This manual is intended as both a
learning and a reference tool. At first, you may use it to learn the fundamentals of 1/0 programming
with your HP-75, and to become familiar with the many new statements and functions that the ROM

provides. Later, as you develop your own /O application programs, the manual will serve as a reference
source.

Section 1 covers the installation of the ROM in your HP-75 Portable Computer and gives an overview of
the Hewlett-Packard Interface Loop, It is assumed that you are familiar with HP-IL, but you may find the
brief review to be helpful. Section 1 also covers the conventions that are used in defining the syntax of
statements and functions throughout this manual. Please read the subsection “Syntax Guidelines” in sec-
tion 1.

Sections 2 and 3 cover the fundamentals of 1/0 programming, and cover the capabilities of the
QUTFIT, ENTEF, and [MAGE statements. If [/O programming is new to you, sections 2 and 3 will get
you started, and may contain all of the information that you need for most applications, Even if you are
an accomplished I/O programmer, you should at least skim through these sections. The concepts pre-
sented are basic, but you still need to know how they are implemented for the HP-75.

Section 4 covers the SEHDIN, ENT 1%, and SEMD statements. These statements deal with the Hewlett-
Packard Interface Loop on a message level and provide a wide spectrum of capabilities for the advanced
I/O programmer. Section 5 covers several statements and functions that are useful in controlling HP-IE,
devices through the loop. These statements allow you to assign HP-IL addresses and device codes, to set
up devices for remote control, and to identify and poll HP-IL devices.

"The appendices provide some uscful reference materials, Appendix A covers warranty and service informa-
tion. Appendix B provides complete syntax definitions for all of the statements and functions covered in
sections 1 through 5. Appendix C summarizes the HP-TL command mnemonics used in SEHDIO and
ENT ¥ statements. In addition to the primary 1/0 functions covered in sections 1 through 5, the 1/0
ROM provides many useful support functions. Appendix D gives a complete list of these support func-
tions, describing their operation and syntax. A list of errors and warnings is given in appendix E.

Section 1

Getting Started

The HP-75 1/0 ROM gives the HP-75 the capability to communicate with any Hewlett-Packard Interface
Loop (HP-IL) talker or listener device. This manual is for programmers who are experienced with the
HP-75 and with HP-IL. Familiarity with HP-75 and HP-IL commands is assumed. Information on spe-
cific HP-IL commands can be found in the owner’s manuals for HP-1L devices, and also in THE HP-IL
SYSTEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper,
and David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982. The complete
functional, electrical, and mechanical specifications of the HP-IL, interface system are given in The HP-IL
Interface Specification (part number 82166-90017), Hewlett-Packard Company, 1982,

Installing and Removing the ROM Module

CAUTION

Be sure to turn off the HP-75 (press (ATTN]) before installing or removing any module, If there
are any pending appointments, type alarm of ¥ [RIN] in EDIT mode to prevent the arrival of future
appointments (which would cause the computer to turn on). If the computer is on or if it turns itself on
while a module is being installed or removed, it might clear itself, causing all stored information to be
lost.

WARNING
Do not place fingers, tools, or other foreign objects into any of ports. Such actions could result in
minor electrical shock hazard and interference with paceraker devices worn by some persons. Dam-
age to port contacts and internal circuitry could also result. '

The HP-76 1/0 ROM module can be plugged into any of the three ports on the front edge of the com-
puter.

To insert the 1/0 ROM, orient it so that the label is
right-side up {facing toward you}, hold the computer
with the keyboard facing up, and push in the module
until it snaps into place. Be sure to observe the
precautions described above during this operation.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the module
and pull the module straight out of the port. Install a blank module in the port to protect the contacts
inside.

8 Section 1. Getting Started

Note: You may Instalt the HP-75 VisiCalc® ROM and the /0 ROM concurrently, but the VisiCalc ROM
must be installed in the rightmost port.

Translating LEX File Programs

Some of the capabilities of the HP-75 1/0 ROM have been previously available in the form of LEX files.
The I/0 Utilities LEX file has been supplied with the HP-75 10 Utilities Solutions Book (HP part num-
ber 00075-13013). The Autoloop LEX file has been available as the HP-75 Autoloop Users’ Library pro-
gram (HP part number 75-00104-8). The HP-75 I/0 ROM supersedes these LEX files, providing new
versions. of the statements and functions they contain. To avoid conflicts between the old and new ver-

sions of these statements and functions, both LEX files must be purged from your HP-75 hefore you use
the I/O ROM.

If you have written programs using statements and functions from the I/0 utilities LEX file and/or the
Autoloop LEX file, you can translate these programs so that they will run with the I/Q0 ROM versions of
the same statements and functions. The procedure follows:

1. Instali the I/O ROM ({turn off the computer first).
2. Load the LEX file(s) used in your original program.

3. Load the original program, then convert it to a TEXT file (refer to your HP-75 Owner’s Manual).
4. Purge the I.LEX file(s).
5. Transform the program back to BASIC.

The translated program will run just as if it was originally written using the 1/0 ROM.

The Role of the Hewlett-Packard Interface Loop

The HP-75 I/O ROM provides several useful functions that enable your HP-75 Portable Computer to
carry out Input/Output operations. However, an interface or hardware link is needed in order for a com-
puter to communicate with its peripheral devices. The Hewlett-Packard Interface Loop (HP-IL)} provides
the Jink through which your HP-75 can communicate with the growing family of H’-IL devices. The HP-
75 and all devices included in the interface loop are connected together in series, forming a communica-
tions circuil. Any information that is transferred among HP-IL, devices is passed from one device to the
next around the circuit. If the information is not intended for a particular device, the device passes the
information on to the next device in the loop. When the information reaches the proper device, that
device responds as directed. In this way, the computer can send information to and receive information
from each device in the loop, according to the device’s capability. All I/0 operations are carried out
through this interface loop.

VisiCale is a regislered trademark of VisiCorp.

Section 1: Getting Started 9

A Brief Review of HP-IL

Before going further in this manual, you may find it helpful to review the fundamentals of HP-IL,. This
review covers the material necessary to understand the rest of this manual. Previous exposure to HP-IL is
assumined. Users who feel sufficiently comfortable with HP-IL may skip this review

HP-IL is an interface system in which devices are connected in a circular loop. Devices communicate with
each other by sending messages around the loop. When a device sends or sources & message, each device
in the loop examines the message, then passes it on to the next device. The message is passed around the
leop until it returns to the original sender. All messages travel in the same direction around the loop,

HP-IL operates on a master-slave principle. One of the devices in the loop functions as loop controller.
The controlier has the responsibility of transmitting all commands to other devices in the loop. The HP-
75 can function as loop controller. A device that can send data, but not commands, to other devices in the
loop is called a talker. Although a device has talker capability, it will not actually send its data until
commanded to do so by the controller. Listeners are devices with the capability to receive data from the

loop. A listener will not receive data until commanded to do so by the controller.

Each HP-IJ. device can have one or more of the three basic capabilities: controller, talker, and listener.
There can be any number of devices in the loop with controller, talker, or listener capabilities, Only one
controiler may be active at a time, and only one talker may be active at a time, but there may be more
than one active listener. The controller device that was active when the system was turned on is called the
system controller, and is in charge of the whole system. The HP-75 is always the system controller
when used in the HP-IL loop. Figure 1-1 shows a typical HP-1II, configuration:

N

inactive

listener

listenor
fand cantrollar)

Figure 1-1. Hewlett-Packard Interface Loop

10 Section 1: Getting Started

The system controller assigns an address to each device in the loop. It can direct commands to specific

devices by using the device address. The address is a number from 0 to 30 or, with extended addressing,
from 0 to 960,

Data and commands are sent around the loop as 11-bit messages. The first three bits of each message
identify the type, or group, of the message. There are four groups of HP-IL messages: the command
group, the ready group, the identify group, and the data/end group. In this discussion we will consider only
command messages and Data Byte messages. The last eight bits are the actual content of the message,
Thus, to send a command such as IFC (Interface Clear), a message would be sent out as follows: three bits
identifying the message as a command message followed by eight bits with the command code for IFC
(binary “10010000”). A Data Byte message consists of three bits identifying it as a Data Byte message
followed by eight hits of data.

Fach message is examined by every device in the loop. By examining the message, devices determine
whether or not any further action is required. Action is indicated in a number of circumstances. Certain
command messages, such as IFC, indicate action for all devices in the loop. Other command messages,
such as LAD (Listen Address) and TAD (Talker Address), contain a device address. A device acts on the
command only if the address in the command is the same as the address of the device. Some messages are
processed only if the device is in an active state. Data Byte messages and DD, (Device Dependent Lis-
tener) messages are processed only by devices that are in an active listener state. The SDA (Send Data)
message is processed only by a device that is an active talker

An example of how all this works is as follows: Suppose the HP-75 controller wants to print a line on a
printer. Assume that the printer has a device address of 2 and that all devices in the loop have inactive
status. The controller first sends a LAD2 (Listen Address, Device 2) message around the leop. This puts
device 2, the printer, into active listener status. The controtler then sources the Data Byte messages. I the
line to be printed is an 80-character line, 80 Data Byte messages are sent, followed by one message each
for a carriage-relurn and a line-feed character. Once data transmission is complete, the controller
sources the UNL (Unlisten) command message. This deactivates all listener devices in the loap, in this
case, the printer.

Appendix C summarizes the HP-IL. commands and their mnemonics.

Device Addresses

In order to distinguish among devices in the loop, each device must have an address — a number from 0 to
30. The system controlier assumes the 0 address at power on, and then assigns addresses starting with 1
for the device next in order after the controller in the direction of information transfer. Each device in the
loop stores its unique address internally.

Figure 1-2 shows how you can determine the direction of information transfer by noting the differences in
the plugs on the HP-1L cables. It may be helpful to remember that information flows out of the computer
through the large connector, around the loop, and back into the computer through the small connector.
These connectors are labeled IN and OUT as shown in the figure.

."\'

/y“."“*.
&

Section 1: Getting Started 11

[o) |

[
J) N

- Figure 1-2. Connectors

ouT

Device Codes

Once your computer has assigned device addresses to the devices connected in the interface loop, you
should assign a device code to each device. Most I/O operations require you to identify devices with device
codes. Device codes may be one or two letters, a letter and a digit, or a digit and a letter. Examples of
acceptable device codes are T, T4, T1, and 1T. (A space used as the last character of a device code will be
ignored; a space may not be used as the first character) The leiters of device codes may be entered in
lowercase, but are converted internally to uppercase. The HP-75 1/0 ROM provides two functions —
ASSIGH LOOF and AUTOLOOF — that automatically assign device codes to all devices in the loop
(reler 10 section 5). You may also assign device codes manually with the RSS 1 GH 10 command (refer to
your HP-75 Qwner’s Manual). When you specily a device code in a command, it must be preceded by a
colon and enclosed in quotation marks, for example: DISFLAY 15 ' TW'. You may also specify a
device code by using the name of a string variable, for example: D} SFLAY IS M4 where Ag = ' TN,

Syntax Guidelines

Instructions must be typed with proper syntax in order for the computer to understand their meaning.
TFhe following guidelines are used throughout this manual in defining the syntax of commands, state-
menls, and functions:

ooT MATRELE TYFE Words in dot matrix type may be keyed in using either Jowercase or upper-
case letters, but otherwise must he entered exactly as shown. Commands,
statements, and functions entered in 1ower cazw are converled internally
to UFFEECRHEZE.

itatics type Items in italics are the parameters you supply, such as the fifename in the

FUREGE command.

P, Filenames and other character strings can he enclosed with single or double
quetation marks and can be entered in lowercase or uppercase letters.
Quoted filenames are converted to uppercase internally,

[1] Square brackets enclose optional items.
An ellipsis indicates that the optional items within the brackets may be re-
peated. . '

stacked items When twe or more items are placed one above the other, one (and only one)

of them may be used.

or When two or more items are separated by or, one or more instances of ei-
ther or both items may be included.

12 Section 1: Getting Started

Some examples may clarify the use of these symbols. The syntax of the PURGE command ean be repre-
sented as follows:

"tifename [i device code]
FLEGE]l KEYS
AFRET

In this representation fifename stands for the name of the file to be purged; device code for a valid HP-II,
device code. The following statements are all valid:

FURGE "OFATAH: D1
FLIRGE KEYS
FURGE APPT

The brackets around : device code indicate that the colon and device code are hoth optiona! when you are
specifying a filename. The outer set of brackets indicates that you may omit all parameters when using
the FURGE comiand. Thus, the following statements are also valid:

FURGE ‘OATH!

FURGE

Any parameter represented in this manual as a string in quotation marks (such as ' filename '} may be

specified by either a quoted string expression or the name of a string variable that contains the equivalent
expression. The following statements are equivalent to FIUREZEL 'DETH®

L8 A%="0ATH

‘d PURCE A%

‘\

Section 2

Simple I/O Operations

The principal tools for using HP-IL to move data into and out of the computer are the OUTFUT and
EMTER statements. These statements are the core of 1/0 operations. They are usually the fastest and
easlest ways of getting data from the source to the destination in its final form. Many applications require
no more than the proper use of TUTFUT and ENTER, '

Simple OUTFUT and EHTER statements (as described in this section) use ASCII representation for al]
data. ASCII stands for American Standard Code for Information Interchange. It is a commaonly
used code for representing letters, numerals, punctuation, and special characters. The ASCII code provides
& standard correspondence between binary codes that are easily understood by the computer and alpha-
numeri¢ symbols that are easily understood by humans. A complete list of the characters in the ASCII set
and their decimal code values is included in the HP-75 Owner’s Manual,

When special formatting is desired, the CUTFUT 1J5ING and E HTER UZING forms are very convenient.
These forms are discussed in section 3.

Using Simple {1LTFUT Statements

A simple CUTPUT statement may be used anywhere that a simple FRIHT statement is proper. The
OUTFUT statement (like the FR I HT statement) contains a list of items to be output, but it also specifies
one or more destination devices. You may use either the device code or the HP-IL address of a device in
an DUTFUT statement. However, you must use device codes if you are specifying more than one output
device. Only cne device address may he specified in an DUTFUT statement. Here are some examples of
properly syntaxed OUTFIIT statements:

DUTFUT "0 7Y "Helio!

LLUTFLUT & 1A

OUTEIT S14 A3 B+

CGUTRLUT " TV, FREf R Y2

CUTPUT PR GACLD BCIHELE, 71

Notice that a semicolon is used to separate the device code(s) or device address from the output list,
Semicolons are also used to separate items within the output list. [tems in the output list may be numeric
variables, numeric constants, string variables, or string constants. An end-of-line sequence (normally car-
riage-return/line-feed) is output after the last item in the output list unless the list is followed by a
trailing semicolon.

The simple JUTPUT statement (with items in the output list separated by semicolons) uses the same
compact-field output format as the simple PRINT statement. In each numeric output field the digits of a
number are preceded by a space (if positive) or a minus sign (if negative), and followed by one space.
String data is output with no leading or trailing spaces. Each field (numeric or string) is appended to the
field before it. Obviously, compact-field output is inappropriate for many applications. Formatted output,
using output images, is described in section 3.

13

14 Section 2: Simple /0 Operations

Using Simple EHTEF Statements

A simple EMTEFR statement may be used wherever an IHFUT statement is proper. The EMTEFR state-
ment (like the THFUT statement) contains a list of items to he entered, but it also specifies a device as
the source. You may specify either the device code or HP-IL address of the source device in an ENTER

statement, but there can be only one source. Here are some examples of properly syntaxed EMTER state-
ments:

EHTEE '"B1' ;=

EMTER S1$: 8% . BE,C¥
ENTER " :TP'" 18, %, 2
EMTER 3 ;AC1>,BC3Y, HE

Notice that a semicolon is used to separate the device code or device address from the enter list. Commas
are used to separate items within the enter list. Items in the enter list may be nuwmeric variables or string
variables,

To use the EMTER statement effectively, it is important to understand what constitutes the beginning
and ending of an entry into a variable. The simple EHTER statements just shown use a free field for-
mat for processing incoming characters. This format operates differently with string and numeric data,

Entering Numeric Data

The computer enters numeric values by reading the ASCLI represeniations of those values. For example, if
the computer reads an ASCII 1, then an ASCII 2, and finally an ASCII 5, it places the value one hundred
twenty five into a numeriec variable.Understanding the process that the computer uses to read a {ree field
number can help you remove much of the mystery from I/0. Suppose your program has the statement:

EHTER © TR 30,y

Now assume that when this statement is executed, the following character sequence is received through
the interface loop:

TIU!/E|S|D|A]Y D|IE|C 1 1 , 1 8|17 |9 EOL

The computer ignores all leading spaces and non-numeric characters, so the TLESMEY DEC characters
do nothing. Then the 1 1 is read. Once the computer has started to read a number, a space or non-numeric
character signals the end of that number. Therefore, the comma after the 11 causes the computer to place
the value eleven into variable X and start looking for the next value. ‘The space and eomma in front of
computer to place the value nineteen hundred seventy nine into variable Y and terminate the EHTER
statement. The computer goes on to the next program line with X =11 and ¥ =1979.

Note: The HP-75 allows you to change the EOL (end-of-line) sequence with the EMDIL. I HE statement
{refer to the HP-75 Owner's Manual). The default EOL sequence is 2 two-character sequence consist-
ing of a carriage-return followed by a line-teed character. In this manual EQL sequence refers to
the current end-of-line sequence that you have set with the EHIIL IHE statement (unless otherwise
noted}. The symbo! EQL is used to represent the end-of-line sequence in the examples.

Section 2: Simple I/O Operations 15

The process just described can be easily summarized. When entering numeric data using free-field format,
the computer:

L. Ignores leading spaces and non-numeric characters.
2. Uses numeric characters to build a number.
3. Terminates the building of a value when a trailing space or non-riumeric character is encountered.
4. Inputs characters until an EQIL, sequence or End Byte message is encountered,
The discussion so far has referred to numeric and non-numeric characters without being specific. The
digits B through % are always numeric characters, Also, the decimal point, plus sign, minus sign, and the

letter E can be numeric if they occur at a meaningful place in a humber, For example, assume that the
following character sequence is read by an EHTEFR statement:

-|/-|T|EiS8|T 112 (. 5| E{-]3

If a numeric value is being entered, the leading minus signs and the E in TEZT will be ignored. They have
no meaningful numeric value when surrounded by non-numeric characters, However, the characters
12 3E -3 will be interpreted as 12.5 x 10~ 9. In this case, the minus sign and the exponent indicator (E)
oceur in a meaningful numeric order, so they are accepted as numeric characters.

Entering String Data

The computer enters string data hy placing ASCII characters into a string variable. The process used for
free-field entry is straightforward. All characters received are placed into the string until;

1. The string is full, or

2. An EOL sequence or End Byte message is received.

Assume that the computer is executing the statement:

EHTER ' i TE'; A%, B%, 0

The following character sequence is received:

H|E|L|[L]jOI|EBOLIEOL| T{H|E[R |E (EOL

The letters HEL L O are placed into A$ when the first EOL sequence is encountered. Note that the EOL
sequence itself is not placed into A$; it acts only as a terminator for the entry into A$. The entry into B$
begins. However, an TB0L sequence is read immediately. This terminates the entry into B$, and B$ be-
comes the null string. Next, the entry into C$ begins. ‘The characters THERE are placed into C$, ter-
minated by the EOL sequence that follows those characters. With the enter list now satisfied and an EOL
sequence detected at the end of the data, the computer will g6 on to the next program line.

Note: The current EOL sequence {specified with the ENEL THE statement) will act as a terminator
and wili not be entered into the string. If the current EOL. sequence is carriage-return/line-feed, this
sequence will terminate entry into a string variable and will notitself be entered. However, other
potential end-of-line sequences (such as the line-feed character by itself) will not terminate entry and
will be entered into the string. An End Byte message will terminate entry after its character has been
ontered into the string.

16 Section 2: Simple /O Operations

Another example can be used to show termination o
tains the following statements:

)
DIM X$L 3] '

EMTER "1 TP ; us

n a full string. This time, suppose the program con-

The following characters are sent to the computer:

Bifojy|[c|ofT|TIEOL

The computer places the characters gy into X%, which
computer continues to read the incoming characters until
the EHTER statement is completed, and the computer go

fills the dimensioned length of 8. Then the
an EOL sequence is encountered, At that time,
s on to the next program step with X$=B0OY.

!

Section 3

Formatted I/O Operations

~ Although simple DUTFUT and EMTER statements work well for some 1/0 situations, there are times

when more control over format is necessary. Perhaps a column of numbers with the decimal points in line
is desired or an end-of-line sequence terminator is not wanted or eéxpected. There are many reasons for
desiring format controt during IO operations.

The format of information sent or received through interfaces is controlled by the use of image speci-
fiers. These image specifiers can be placed in an IMAGE statement or can be included directly in an
QUTFUT or ENTER statement. This section of the manual provides details on the meaning and uge of
image specifiers.

Formatted CUTHLIT

An output image can control all major characteristics of output data, including spacing, appearance of the
field, form of data representation, and use of end-of-line sequences. The HP-75 uses an output image
when some form of the CLTFUT USING statement is encountered. There are two forms of this
statement;

-~ Simplifiad Syntax

1@ IMRGE output image
28 DUTFUYT ' idevice code' USIHG 18 ;oulpul list

— simplified syntax

WUTRFUT ' idevice code' USIHG 'oulput image’ ; outpul tist

The examples above show the general forms of the OLUTFUT WS IHE statement, Here are some specific
examples:

FROIMAGE "Total =',22.0
28 IMAGE SR, 20,178

GUTREUT "Bl WUSIHG 18;C1,02,03
DEITELT 2 LSING Z8:RE, BE

OUFRLT 2Z% USIHG 'MOGDD. 00" 3 TOLy, TO22
CUTRLIET ':TY,:FE® LSIHG I$:H%.R

TR R A
o T @

17

18 Section 3: Formatted 1/Q Operations

In the general forms, device code represents a list of one or more device codes (one for each output
device). Each device code must be preceded by a colon, Commas separate the successive codes in the list
{for example, ' : (14, (D2, 103"). The device code field can be occupied by the name of a string variable
that contains the list of device codes, The symbol output image represents a proper list of image specifiers,
The image specifier list may be a literal enclosed in quotation marks or the name of a string variable that
contains the specifier list. The specifiers within the Hist must be separated by commas. The list of items to
be output is represented by output list. You may use either commas or semicolons to separate items within
the output list. All spacing is controlled by the image specifiers, so a semicolon has the same effect as a
comma. As with the simple QUTFUT statement, the output fist can contain numeric or string data (vari-
ables or constants), and a trailing semicolon will suppress the output of a final EOL sequence,

Note: You may substitute a valid HP-IL device address for the device code field in an QUTPUT
statement; however, only one device address may be specified. f you want to specify more than one
device, you must use device codes. If the intended destination device has already been addressed to
listen, you may leave the device code field blank. Refer to appendix B for a complete definition of
QUTFUT statement syntax.

Numeric Image Specifiers

The image specifiers in this group are used to control the format of numbers that are output, These image
specifiers are the same as the PR IHT image specifiers that may already be familiar to you. Since there are
many numeric image specifiers, these specifiers are broken down into three categories in the following
discussion. The categories are digit specifiers, sign specifiers, and punctuation specifiers.

Digit Specifiers. These are the image specifiers which form the digits of the number. They ailow you te
determine the number of digits before and after the decimal point, display or suppress leading zeros, and
control the inclusion of exponent information. '

Image Specifier ' Meaning

of, [Causes one digit of a number to be output. If that digit is & leading zero, a space is
output instead. If the number is negative and no sign image has been provided, the
minus sign will occupy one digit place. If any sign is output, the sign will float to a
position just left of the left-most digit.

T, Same as {1, except leading zeros are output.
* Same as £, except leading zeros are replaced by asterisks.

e b Causes the number's exponent information to be output. This is a 5-character se-
guence including the fetter E, the exponent sign, and three exponent digits.

kLK Causes the number to be output in compact format. No leading or traiiing spaces are
output.

Sign Specifiers. These are the image specifiers used to control the output of sign information. Note that
if no sign specifier is included in the image, negative numbers will use a digit position to output the minus
sign.

.

¢

Section 3: Formatted 17O QOperations 19

Image Specifier Meaning
=,5 Causes the output of a leading plus or minus sign to indicate the sign of the number.
i, 1 Gauses the output of a leading space for a positive number or a minus sign for a
negative number.

Punctuation Specifiers. These are the image specifiers used to control the output of punctuation within
a number, such as the inclusion of a decimal point.

Image Specifier Meaning

. Causes an American radix point to be output {a decimal point).
r,RE Causes a European radix point to be cutput (a commay).

g Usually placed between groups of three digits. Causes a comma to be output 10 sepa-
rate the groups of digits {(American convention}.

F,F Same as [T, except a period is used to separate the groups of digits (European
convention). '

It would be unrealistic to attempt examples of all possible combinations of these numeric image specifiers.
The following examples show some of the many ways of combining these specifiers and the resulting
output when numbers are sent to a typical printer. Additicnal examples for many of the specifiers can be
found in the “Display and Printer Formatting” section of the HP-75 Owner’s Manual.

Sample Statements Printed Ouiput
QUTPUT PR USIMG 222 .00 ; 28,336 515 BN 5)
AUTPUT PR USIHG *4Z2.2D' 5 2d 336 HAZE, 34
CUTEUT PR USIHG '4F.20')} 38,3400 —@A, 24
QUTFUT '":PR' USIHG 'ZpCapciIn? 1E% 1,86, 49684
OQUTFUT ' PR USIHE 'I0C300Z0) 1. 224584 12,7245
QUTRUT o FR USTHG 'ZDC3DC30' 1 REXR (Qverflow Error) ' ,
QUTFUT PR WZIdG 52 000Dt =) +E, BEA
QUTPUT '":RR' USING 'HZ.00DY ¢ .5 B, R
GUTRUT o FRY USING 'HO.DOOC 5 L5 LSRG
CGUTFLT PR USIHG 'Z.00E" ; 8B456 4 ALE-AB3

Notice in these examples that the image Z7ZZ and the image 42 mean the same thing. The same is true
for the 0 and ¥ specifiers. You can indicate the number of digits desired by simply placing that number in
front of the specifier. The use of parentheses, as in 30, changes the meaning, The image 311 means
“output one numeric quantity in a three-digit field.” The image 2i[l) means “output three numeric
guantities, putting each in a one-digit field.”

Be careful of overflow conditions when using these image specifiers. An overflow occurs when the number
of digits required to accurately represent a number is greater than the number of digits allowed for in the
image. If this happens, a warning is issued and something is output so that the program can confinue.
However, it is difficult to predict exactly what will be output. The output will prebably bear little or no
resemblance to the number that caused the overflow.

20 Section 3: Formatied /O Operations

String Image Specifiers

The image specifiers in this group deal with the output of string characters. They can also be used in
combination with the numeric image specifiers for spacing and labeling purposes. All of these image speci-

fiers are the same as the FRIMT image specifiers,

which may already be familiar to you,

image Specifier

Meaning

7 Causes the output of one string character. If ail the characters in the current string
have been used already, a trailing blank is output.

"iteral ! A literal is a string constant formed by placing text or in quotes, using a string func-

or tion (such as CHR$), or a combination of the two. The character sequence specified is

" fiteral® output when a literal image is encountered. When the lHeral is enclosed in Guotes, the

quotation marks themselves are not output. Literal images are commonly used for
labeling other output.

Wy H Causes the output of one space. _
kLK Causes the string to be output in compact format. No leading or trailing spaces are
cutput.

The following examples show some of the many ways of using these specifiers and the resulting output
when the characters are sent to a typical printer. Additional examples for these specifiers can be found in
the “Display and Printer Formatting” section of the HP-75 Qwner’s Manual,

Sample Statements Printed Qutput

CDUTELT " FRs USTHE SR, tacb,t “ i
DUITFOT " PR USTHE 1, 38, K TUNCLE!', '3am; LHCLE SAM
CGUTFUT "rFR' USTHG 'E,ZX.E' SELOR, D0 2L G R
18 IMAGE CTOTAL = 50, =5, K

ZE T=125 @ Af='CRARS! _

TEOOUTRUT "PRFEYOUSTHG 18 ;0 T, A% TOTAL = 12% CARS

Notice that the = and 1 image specifiers allow a number before them in the same fashion as the [1, 2, and
 specifiers. The k. specifier works equally well with string data or numeric data. String and numeric
image specifiers may be combined in the same image statement.

Literal images may be enclosed in either single or double quotation marks (' ' or " ") when included in
an [MAGE statement. You may include a literal image directly in an OUTPUT statement provided that
you do not use the same form of quotation marks to enclose both the literal and the whole output inage.
Thus, the following statements could be used:

CGUTFUT PR USIHG ' "Totsl=" SR
DUTEFLT "2 PR USIHG " 'Totals TR
However, the statement QUTFUT ' (FR' USIHG ' *Totsle! W i » results in an error be-

cause the computer is not able to distinguish the nested quotation marks.

)

Section 3: Formatted 1/O Operations 21

@ The End-of-Line Sequence Image Specifier

The end-of-line sequence image specifier controls the output of end-of-line sequences. An end-of-line se-
quence consists of one or more characters that are normally output after the last item in an output list.
The default end-of-line sequence of the HP-75 is a two-character sequence: a carriage-return followed
by a line-feed. You can change the normal carriage-return/line-feed EQOL (end-of-line) sequence to
any desired sequence of up to three characters by using the EMOL IHE statement, This command can be
executed either manually or in -a program and is described in the HP-75 Quner's Manual. If an EOL
sequence is output, it will be the current EOL sequence set by you or your program with the ENEL I HE

statement. The end-of-line sequence image specifier does not alter the EOL sequence, but simply causes
one 1o bhe output.

Note: In this manual EOL sequence refers to the current end-of-ine sequence that you (or your
program) have established with the EHDL IHE statement, unless otherwise noted. The symbol EOL
is used in the examples to indicate the EQL sequence.

Image Specitier Meaning

Causes the output of an EOL sequence. Often used for skipping iines in a printout.

The .- may be placed anywhere in the image list and may have a number before it to indicate how many
EOL sequences are desired. A typical use of the - image is shown by the statement:

CEITPUT o FEY USIHG PR, e, B pE, BF

é'f:::m

If the destination is a printer, A$ is printed, followed by four blank lines, then B$ is printed. If A§=“HI",
B$="JOE", the character sequence is output as follows: '

H | | [EOL|EOL[EOL|EOL 4 | O [E [EOL

You can suppress the output of the final EQOL sequence by ending the GUTFUT statement with a semi-
colon {:). For example, a semicolon could be added at the end of the above statement:

QUTPUT ' FRY USTHG "W, 40 K 1 AF B

The resulting cutput follows:

H | | |[EOL|EOL|EOL|EOL| 4 { O | E

The string H1 is printed and four lines are skipped. The string -IUE is not printed, but is transmitted to
the printer's buffer.

Note: A reference list of all DUTFUT image specifiers is given in appendix B under IMAGE.

22 Section 3: Formatted 1O Operations

Formatted EMTER

Using EMTER statements with image specifiers gives you a high degree of control in two areas:

I. Accurately describing to the computer what the incoming data looks like and what should be done
with it,
2 Irecisely specifying what conditions constitute the end point of the EMTER statement itself.

This discussion deals with data formatting images first, then presents the terminator images. The HP-75

Uses an enter image when some form of EHTER UST MG statement is encountered. There are two forms of
Lhis sintement:

simplified syntax

PRITHRGE enter image

< ITHTER ' idevice code® USIHG 1@ s enter list

r— slipltied syntax

EWIER :device code' USIHE enter image ° : enter fist

The examples above show the general forms of the EHTER LIZIHE statement. Here are some specific
examdes:

TH THAGE 2¢AY LK
SUCCTMAGE 5D, 2%, 30

TOUSTING LE

TR

[b B2 JRE,EE, E

EHTER (TR USRTHG 281,

EHTER S2#% USIHNG '%, B8R, . K':10%,F%
ULOEHTER Y1 TEY OUSIHG [4:MHE,RA

The poneral forms use the same type of symbols that were used to represent the TUTFUT statement. In
the EIITER statement, device code stands for the device code of the device from which the data is to be
enleved, enter image for the list of image specifiers, and enter fist for the list of variables to be entered.
Nolv that the EMTE® statement will accept only one device code, and that you may use string variables in
blace of the device code and/or enter image fields. As with simple EMTER statements, the enter fist must
contain either string or numeric variables. You can’t enter into a constant.

Note: You may substitute a valid HP-IL device address for the device code field in an EHTEF state-
ment. If the intended source device has already been addressed to talk, you may leave the device
code field blank. Refer to appendix B for a complete definition of EHTEFR statement syntax.

Data Images

The image specifiers in this group are used to indicate what the com
stream of data. The basic choices are:

Section 3: Formatted 1I/Q Operations

1. Use characters to build a numeric variable,

2. Place characters into a string variable.

3. Skip over a number of characters.

Note: A reference list of all EMTER image specifiers is given in appendix B under IMRAGE.

Numerte Image Specifiers. These specifiers are used to control the input of numeric characters,

ing digits, sign, exponent, and punctuation. You may precede any of these specifiers (except ¥) with a

number from 1 to 255. In an ENTER image 500 and RDOCD both mean “enter five characters to be used
in huilding a number.”

Image Specifier

Meaning

These specifiers all accept one character to be used in building a number. The incom-
ing characters do not have to follow the specified format, there just has to be the right
number of characters. The six different specifiers are provided so that your program
can document the expected format of the characters, and so that FMTER and
OUTHLIT statements can share the same IFHAGE statement, if desired.

This specifier also accepts one character te be used in building a number. Howevaer, if
a o is present anywhere in a number’s image, all commas will be ignored white the
number is being entered. Without this specifier, a comma would terminate numeric
entry.

Accepts five characters to be used in building a number. The five characters may be
exponent information, but do not have to be.

Enters data into a pumeric variable using free-field format (explained in section 2).

Accepts one digit and treats all commas {,) as radix symbols (to accept numeric input
in European format).

Accepts one digit and ignores all periods (to accept numeric input in European format).

String Image Specifiers. These specifiers are used to enter characters into string variables. You may
precede the A specifier (but not the ¥) with a number from 1 to 255. In an EMTEFR image 4 and FFiFA
both mean “enter four characters into a string variable.”

Image Specifier

Meaning

a,H
{2 o

Enters one character into a string variable.

Enters data into a string variable using free-field format (explained in section 2).

puter should do with the incoming

inelud-

24 Section 3: Formatted /O Operations

Some examples are in order. Suppose the following character sequence is received by the computer:

112 (34 |H|E|JL|L O (EOL|- ﬁ

Either of the following EMTER statements can be used to enter a numeric variable followed by a string
variable:

ENTEE '":iTP' USIHG AL SR ELYE
EHTER ':TF' USIHG "ELDOL, SR H,YE - ‘

Notice that any numeric image that accepts four characters will properly enter the 1234, String data can
be entered with an nR image if vi {the number of characters) is known, or with a ¥ if the number of -

characters is unknown.

Suppose instead that the incoming data was:

11, |23 [4]|H|E|L|L|OI|EOL

The ENTEF image would now have to include.a ©° for the entire 1234 to be entered. For example:
EHTER '"iTP' USIHG 'Cdr, K TRLYE
EHTER ':TP' UEING 'Qoo0Oc, =q¢ S, E

Notice that the T does not have to appear at the same place in the image as the comma does in the
incoming data. However, the comma is counted as a character.

Skipping Unwanted Charaecters. The following specifiers can be used with incoming numeric or string ‘\ {
data to skip over any characters that you do not want to include in the input. You may precede the i
specifier with a rumber from 1 to 255. In an FHTEER image 2 and ¥ both mean “skip three spaces.”

Image Specifier Meaning
L, Causes one character to be skipped.
o Causes the computer to skip characters until the next terminator is received. The nor-

mal terminators are the current EOL sequence (defined with the ERDL IHE state-
ment) or the End Byte message.

The ' specifier should only be used when you have a good understanding of the structure of the incoming .
data, but can be very useful in formatting operations. For example, suppose that text is being entered from
a remote computer that sends a line number at the beginning of every string. You know that the line
number information always appears in the first eight characters of each string, and you don’t want these
line numbers in your data. The following format couid be used to strip off the line numbers:

ENTER " TP UEIHG "8X.K' A%

Section 3: Formatted I/O Operations 25

The - specifier is used to demand a terminator (either the current EQL sequence or an End Byte mes-

sage) before going on to the next variable. To see the effect of this specifier, assume that the incoming
data is as follows:

1123 (H| ! [EOL BIlY|E [EOL

Note: The normal terminators are the current EOL sequence and the End Byte message. The -
specifier wili cause the EHTER statement to skip to whichever terminator occurs first. The operation
of this specifier is affected by the use of terminator images (refer to the following subsection). If you
have used a terminator image to redefine the active terminators, the - specifier will cause a skip to
the first recognized terminator.

Using the statement:
EHTER TR USIHG '20,E'; Y, A%

causes Y to get the value 123 and A$ the value HI. However, if the statement:

EHTEERE ':TF' WESIMG 30, K'Y, RE

is used, then Y gets the value 1232 and A$ becomes BYE. The ~ specifier causes the computer to skip all
characters after Y is satisfied until it receives the EOL sequence. The entry into A% begins with the first
character after the EOL sequence. Without the .- specifier, the entry into A$ begins as soon as the 3l
field is. exhausted.

Terminator Images

Terminators (normally the current EOL sequence and the End Byte message) serve in two roles for the
EHMTER statement. If a terminator is received in a field of data (before the variable is otherwise satisfied),
it will serve as a field terminator and will terminate entry into the variable. The EHTER statement will
begin entry inte the next variable, Once all variables have beer satisfied, a terminator will serve as a
statement terminator and will terminate the EHTEFR statement. Indeed, a statement terminator is noz-
mally required in order to go on to the nexi statement in the program. The terminator that terminates
the EHTER statement can be the same one that satisfied the last variable. Note that terminators are not
required to satisfy a variable, Data entry into a variable can be ended by satisfying an image list, by filling
a dimensioned string variable, or by the {ree-field entry of a trailing blank or non-numeric character into a
numeric variable,

26 Section 3: Formatted |/Q Operations

You can redefine the active terminators by using a terminator image. By using the appropriate termina-
tor image specifier, you may eliminate the current EOL sequence, the End Byte message, or both as
statement terminators. You may also establish the ETO (End Of Transmission — QK) message as a
terminator. The terminator image specifiers, and their various combinations, are listed in the following
table:

Image Specifier Meaning

Eliminates the current EOL seguence as a terminator. When this specifier is present,
the EHTER statement terminates only on an End Byte message.

Eliminates the End Byte message as a terminator. The ENTER statement terminates
only on an EOL sequence.

X Establishes the ETO {End Of Transmission — OK) message as a terminator. The
EHTER statement terminates on an ETO message, End Byte message, or an EQL
sequence.

#! or I # Both the current EOL sequence and the End Byte message are eliminated as termina-

tors. No terminator is required. The EHNTER statement terminates when the iast vark-
able is satisfied.

#X oor X§ Eliminates the current EQL sequence as a terminator, but establishes the ETO mes-
sage. The EMTER statement terminates on an ETO message of an End Byte
message.

L% or %! Eliminates the End Byte message as a terminator, but establishes the ETO message.

The EMTER statement terminates on an ETO message or an EOL sequence.

#Hi Eliminates EOL sequence and End Byte message as terminators. ERTER statement

(any order) terminates only on an ETO message.

Most data entry situations do not require the use of terminator images. If you are entering data from a
device that cutputs the carriage-return and line-feed characters after each data item, the EHTER
statement will terminate on this EOL sequence (provided that carriage-return/line-feed is the current
EOL sequence). In most other cases, the EMTER statement will correctly terminate when an End Byte
message is received. Normally, it is not necessary to specify which terminator to use, since the EHTER
statement will terminate on the first one received. However, terminator images do give you the flexibility
to handle certain specialized applications.

It you want the EHTEFR statement to terminate only on an Knd Byte message, you can suppress the
current EOL sequence as a terminator by including the # specifier at the begining of the image list. The
following statement will terminate only when an End Byte message is received:

EMTER '"SE1° USIHG "#.K,50" 8%, 1

Note: Terminator image specifiers must be listed first in the EHTER image list (before the first
comma). You cannot precede them with a number.

The ! specifier suppresses the Iind Byte message as a terminator. The following statement wil! terminate
only when the current EOQL sequence is received:

EHTEE ":E2' USIHG !, 40,5 ¥, Vs Q

Section 3: Formatted 1/O Operations 27

Eliminating the Statement Terminator Requirement. Normally, the £HTER statement must see the
current EOL sequence or an End Byte message at the end of the incoming data before the program can go
on to the next statement (the ETO message may be specified as an alternative terminator). If there is no
statement terminator at the end of the data, a record overflow error will result. You can use the # ! {or
F4) image specifier to eliminate the requirement for a statement terminator. This specifier eliminates the
FOL sequence and End Byte message as terminators, and causes the EMTER statement to terminate

when the last variable is satisfied, In the following example, the EHTER statement terminates after the
variable Y 'is satisfied.

EHTEE ‘tEL1' USTHG "#1,40, 60" 34, Y

If 10 numeric characters are received, the two variables are satisfied and the statement terminates.

Note: The K and - specifiers override the # ! (or | i) specifier. If a I or - is present in an ENTEFR
image, a terminator is required for that field.

Using the ETO Message As a Statement Terminator. If you are unable to use either an EOL se-
quence or an End Byte message to terminate an EHTER statement, you may use the % specifier to estab-
lish the ETO (End Of Transmission — OK) message as an alternative statement terminator. The

following statement terminates when an EOL sequence, End Byte message, or an ETO message is
received:

EMTER "3 UZING "R K.SA RE BE
You may combine the # or ! specifiers with * to suppress the EOL sequence or End Byte mossage as a

terminator, while establishing the ETO message. The following statement will terminate on either an End
Byte message or an ETO message:

EHTER "3 LSIHG "#X.KE,58° 1A%, BF

If you want enly an ETO message to terminate your statement, specify #! =

EHTER P o[3E USTHG "#HIX.E,SH' (A¥, BF

There’s Always an Exception. Not all terminater problems are a proper job for terminator images.

Consider the example of a name field {string) followed by an age field {(numeric). Suppose that the names

are variable in length and separated from the age by a comma. If the age came first, this would not be a
problem since the comma would end the entry into the numeric variable. But since the string data is
entered first in this example, the task is a bit trickier. You could input the entire record into a temporary
string variable, then use the PO% function and string subscripts to extract the name and age fields. This
hypothetical situation emphasizes the importance of knowing the nature of the data you are trying to
enter. Some problems are handled by terminator images, and some are solved hy different means, but all
require thought by the programmer.

28 Section 3: Formatted 1O Operations

Changing the Size of the EHTEFR Buffer

The EMTER statement receives data into a reserved area in memory called the EMTEFR buffer. This buffer
is also used by other statements that enter data (for example, EMTI# and AOGRESS S, The default size
of this buffer is 256 hytes. Thus, the EMTER statement reads up te 256 bytes into this buffer, then places
this data into the appropriate variables when the statement is terminated. You can change the size of the
EMTER buffer with the 151 ZE statement. If an EHTEF statement receives more than 256 bytes (or the
size set with 1051 ZE) before a terminating condition is reached, an error will resuit.

The TNSIZE statement allows you to set any EMTER buffer size from 1 to 24,575 bytes. The general
form of this statement is:

YTOSIZE buffer size

where buffer size is a number from 0 to 24,575 (a zero or negative value sets the default size of 256 bytes).
You should set I1DSIZE to be at least the maximum expected record size plus one byte.

A Word of Advice About images

Choosing the proper image for your application can often mean the difference between success and failure
for your program. However, considering the wide range of peripheral devices and the near-infinite variety
of possible data formats, it is understandably difficult to pick just the right image. Even experienced
programmers will go through a period of trial-and-error before finding the perfect combination of image
specifiers.

There is an old, but true, saying in the world of computers: “You can’t program a computer to do some-
thing that you den’t know how to do yourself.” This is an appropriate sentiment for formatted 1/0. If you
don’t know exactly what character sequence needs ta be outpul or what an incoming sequence contains, it
is very unlikely that you will know eactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what
data is generated by your program, so all you need to do is pick a desirable form for its output. The
primary caution here is to avoid image overflow conditions.

But how can you determine the exact nature of the incoming data when you can’t get it into the computer
to study? Fortunately, there is a way to inspect a totally unknown character sequence. Any sequence of
hytes, including potential terminators, can be entered with the # ! . hiF image (where r: is the number of
characters to read). For example, the statement:

EHTEER ':[1' USTHG “#1, 1488 'A%

will read 10 bytes as the equivalent ASCIT characters. You may then use the HE%# function (refer to
appendix D) to convert these ASCII charactexs to a hexadecimal representation. Once you know the exact
nature of the incoming data, the job of choosing image specifiers will be much simpler.

¢

Section 4

Sending and Receiving HP-IL Messages

The HP-75 1/0 ROM provides enhanced versions of the SEMOI0 statement and EHT 10# function that
are compatible with the SEHD 10 and EMT I0# of the HP-75 I/O Utilities Solutions Boek. A SEHD state-
ment, similar in syntax to the HP Series 80 SEHD statement, is also provided for software compatibility.
All three instruetions enable you to seurce individual HP-IL messages. The SEHD 0 statement allows
you to send commands and data to specified HP-IL devices. The EMTIO#% function allows you to send
commands to a specified device and return data as the value of the function: The SEHD statement allows
you to send any HP-1L message. To use SEHDIO, EHTINS, and SEND successfully, you must follow
HP-IL protocol. A full discussion of HP-IL protocol is beyond the scope of this manual. Refer to the
following sources for a complete discussion of HP-IL protocol:

e Kane, Gerry, et al. THE HP-IL SYSTEM: An Introductory Guide to the Hewlett-Puckard Interface
Loop. Osborne/McGraw-Hill, Berkeley, California, 1982,

o Hewlett-Packard Company. The HP-IL Interface Specification. HP part number 82166-90017, 1982,

The =EMII0 Statement

The SEM[I10 statement is used to send commands and data to HP-1L devices. ZEHD 10 can be issued
from the HP-75 keyboard or executed in a BASIC program. The general form of this statement is:

simplilied syntax
F:EE-J EI0 idevice code' . 'command list' , 'data list'

The three parameters are string expressions. The device code parameter is a list of one or more device
codes, each representing a device that will receive HP-IL commands or data. The command list is a list of
HP-IL commands to be executed, separated by commas. The commands may be specified in the form of
HP-II: command mnemonics. The commands that you may use in a SENDIQ command fist are listed in
appendix C. The data fist is a character string to be transmitted as data. Any of the three parameters may
be specified with either a literal enclosed in quotation marks or the name of a string variable that contains
the quoted string. A complete definition of the syntax of the SEMIT0 statement is given in appendix B.

29

30 Section 4: Sending and Receiving HP-IL. Messages

Most of the time, SEHD I will be used to activate a device as a listener. The device to be activated can
be specified with either the device code parameter or the command list:

® Use the device code parameter when you know what device code has heen given to the intended
device. You can specify one or more device codes in this parameter (for example: ' :[11' or
"tFR, 0 TW!). You can send a LAD (Listen Address) message to the specified device(s) either by
leaving the command fist null, or hy specifying LAN# in the command list. (Only one |.A0% command
is needed, even if more than one device code is specified.} LAL# ecan be used in comhination with
other HP-IL commands, and it may appear anywhere in the command Jist.

* Use the command Jist when the HP-IL address of the intended device is known. To do this, specify
LPr, where 1 1s the HP-IL. address of the device. This will cause a LAD message to be sent to
device r regardless of what appears in the device code field. You may have any number of LA+

commands within a single SEHD {0 statement, and you may have both .FAEn and LAD# in the same
SEHDTC.

The following %k] £ statement sends the string HELL 0 to the devices named 13 and D&, and also to
the devices with addresses 5 and 6:

SERINIO 201, D2, 'LAD#, LROS, LADE . "HELLD!

It is not necessary to supply values for all three parameters. If you wish {0 omit a parameter, you must,
specify a null string. The following example of SEHFI {1 sends no commands, but sends the string DATH
to any devices in the loop that already have active listener status:

SEMEIO v OATH!
You may substitute the name of a string variable for any of the three parameters, as long as vou have

defined the variable, In the following example, the SEND T statement sends the string ORTA to the
devices named PR and T4. (Leaving the command fist null generates a LADYH command.)

TR = " FR, (T
28 BEHDIO AE, ", "DATRS
The ZEMD I statement processes parameters from left to right, Processing proceeds as follows:

1. If the device code parameter has been specified, SEN{I T determines the HP-IL address of the speci-
fied device. This device address is used when processing the command iist. If more than one device is
specified in the device code field, SEHMD I determines the address of each device. If the device code
field is null, then no action is taken in this step.

2. The command list is processed. Commands are sent one at a time through the loop. RFC (Ready For
Command) messages are sent automatically after each command.

3. After all commands are sent, the data specified in the data list is sent around the loop, one character
at a time. If a listener device sends an NRD (Not Ready For Data) message, transmission of data is
terminated. You can recover from this condition by using the SEMD7T function (refer to the sub-
heading “Resuming Data Transmission With SEHI77),

4. After all commands and data have been sent, the UNT (Untalk) and UNL (Unlisten) messages are
sent around the loop, deactivating all talker and listener devices. If you want the talker and listener
devices to remain active, you can suppress the automatic UNT/UNL by including a TL + anywhere in
the command list.

Section 4: Sending and Receiving HP-IL Messages 31

You can use SEHDTO to gend HP-IL commands around the loop without sending data. For example, you
can use the following SEMDI0 statement to address the loop:

SEMODIS YT, PAAUAADL Y

The AAU (Auto Address Unconfigure} command clears all device addresses in the loop, then the AAD1
{Auto Address) command automatically readdresses the devices in the loop starting with address 1. RAD1
should appear last in the command fist.

Resuming Data Transmission With SEMD®Y

If a device in the loop sends an NRD message while SEMDI O is transmitting data, the transmission
terminates. You can resume transmission from the point of interruption by using the the SEHD?
function.

SEMEB? is a function that requires no parameters. It returns an integer value representing the position in
the data list of the character after the last one that was successfully sourced in the last SEMII 0 state-
ment. If the data list in the last SEMDI T was null; or if the last SEMD IO was successfully completed,
SEHDT? returns a ©. (If a device in the loop sends an NRD message after the last character was sent,
mEMIT will return a value equal to the length of the string plus one).

The following program is an example of how to use SEHD?. The program wili send the characters
T lowve gy HPF =75 to the fourth device in the loop:

19 F$ = '1 love my HP-F5!
EOSENDTO T LD L RE

2@ IF SREHDOY = o8 THEH GOT0 50
G REHOTO L, P LEDG Y CAFESERDYD
S@ BEHD

If the first SEHDIO (statement 20) successlully transmits the entire string, SEHD? will return a value of
zero. This will cause a branch to statement 50, completing the program. Suppose that an NRD message is
received alter the SEMD I in statement 20 sends the m in mw. SEMD I will stop transmitting at this
point. The HEHE% function returns a value of 2, since the m is the eighth character in the data list {and
the last one successfully sent). In this case, statement 40 is executed before the program ends. In state-

HF - 75,

If the SEMEI (1 in statement 20 sﬁccessfully sends the entire string and the device in the loop then sends
an NRD message, the value of SEHD? will be the length of the string plus one. Statement 40 will be
executed, but will send the null s{ring. Thus, the program sends the complete string I }owe mw HP 75

in any event,

32 Section 4: Sending and Receiving HP-IL. Messages

SEHDIO Restrictions

SEMUTO causes the HP-75 to become active as a talker. Therefore, although it is possible to issue TAD
(Talker Address} commands with SEHD I'0, doing so will cause more than one talker to hecome active in

the loop. You should not use SENDID to address devices as talkers since this will result in a deadlock
condition. '

HDISFLAY IS or PRIMTER IS devices have been assigned for the HP.75, the talkers will automati-
cally be deactivated even if TL + is specified in the command Jist. Although TL + will stop ZEHR TN from
automatically deactivating listeners, HP-75 1/0 operations not related to SEMDIN may cause deactiva-
tion when DISFLAY 15 or PRINTER 13 devices are in use.

The ETI0#% Function

The EMTIOF function is used to receive data from other HP-II, devices. In contrast to SEHD1(, which
18 a statement; EMTIOS is a function, and returns a character string value. The string returned is the
data transmitted by the specified HP-IL device. The general form of the EMT I 0% function is:

simplified syntax
l'EZHT 10% (' 1 device code’ , 'command list' 2

The two parameters are string expressions. The device code parameter is a list of one or more device
codes. The command list consists of one or more HP-IL commands, separated by commas. The commands
may be specified in the form of HP-IL command mnemonics. The commands that you may use in an
EHTID® command list are listed in appendix C. Both parameters may be specified with either a literal
enclosed in quotation marks or the name of a string variable that contains the quoted string. You may
specify the null string for either of the parameters, but not both. A complete definition of ENTIO#%
synlax is given in appendix B.

Most of the time, T I3# will be used to activate a device as a talker. The device to be activated can be
specified with either the device code parameter or the command list:

¢ Use the device code parameter when you know what device code has been given to the device, You can
talk or listen address the specified device by including TRI# or LFD# in the command list. If you
leave the command list null, TRO#, S0A is automatically generated. The THI# and LAD# com-
mands may be used in combination with any other HP-IL commands, and may appear anywhere in
the command list. If TRI# is specified in the command fist, only one device code may be specified
{otherwise an error will result).

» Use the command list when the device’s HP-IL address is known. To do this, specify TADOn or LA M,
where ri is the HP-IL address of the device. This will send & TAD or LAD message to device
regardless of what appears in the device code field. Both TADH and Lfilin may be used in conjunc-
tion with other HP-IL commands within a single EHT I 1% instruction. You may also combine TAD#
or TRO# with LADR or LAD# in the same EMT IO,

Section 4: Sending and Receiving HP-IL Messages 33

The following example shows how you might use the EHTIO% function in a BASIC statement;
FE A% = ENTIQ#: 01", " TRGYE, SDA* &

The EHTIO$ function addresseh the device named '] as the talker, then sends an SDA (Send Data)
message. The data sent by device D1 is returned by the EHTIO# function as the value of AS.

With EMTTI0%, either the device code parameter or the command list may be null, but not both. If null
strings are specified for both parameters, an error results (see appendix E).

ENTIO% processes parameters from left to right, as does SEMDI Q. Note, however, that EHTI0% does
not have a data field. This is because EMT I 0§ causes the HP-75 to become active as a controller and a
listerer only; it can transmit commands and receive data, but it cannot send data. Processing proceeds as
follows:

1. If the device codo parameter has been specified, EMTI0$ determines the device addresses in the
loop. These device addresses are used when processing the command fist. If the device code field is
null, then no action is taken in this step.

2. The command list is processed, Commands are sent one at a time through the loop. RFC {Ready For
Command) messages are automatically sent after each command.

3. Data is collected from the loop. The value returned by the EHTI0% function will be the data col-
lected in this step. Data collection terminates when one of the following conditions is met:

¢ An End Of Transmission message is received. The ETO (End Of Transmission — OK) message
will terminate data collection unless an ET-- command is included in the command fist. The ETE
(End Of Transmission — Trror) message will always result in termination.

¢ The number of Data Byte messages exceeds the limit set with the %7 = command. The default
value is either 256 bytes or the value set with 105 TZE. The HP-75 sources an NRD message if
the limit is exceeded.

¢ A logical end-of-record character or sequence is received. If this occurs, an NRD message is
sourced. Refer to the subheading “Defining Logical End-of-Record” for more details.

End-of-line sequences are treated as data by ENTID#. If EOL sequences are received, they are
included in the string returned by the EHTIO#$ {unction.

4. UNT (Untalk) and UNL {(Unlisten) messages are sent around the loop to deactivate ail talker and
listener devices. If you want the talkers and listeners to remain active, you can suppress the automatic
UNT/UNL by including the TL + command in the command fist.

The 5= command is used to set the maximum number of bytes that the EHTI0% function will read. If

no 5Z= command is included in the command Jist, the maximum number of bytes will be the current size
of the ENTER bufler. The default size is 256 bytes. You can set the size of the EMTER buffer to any value

from 1 to 24,575 bytes with the I 051 ZE statement (refer to section 3). If a S7= command is included in -

an EHT 1% command list, the specified size overrides the EHTER buffer size set with 175 17 E for that

EHT I 0% only. The maximum size that you may set with the 5Z= command is 32,767 bytes (unless [1H ~
is also specified in the command list). 'The syntax is SZ=1HXH% where ¥ XX¥ is a decimal number in
the range 1 to 32767.

34 Section 4: Sending and Receiving HP-IL Messages

The DR~ command prevents the EHT I (7% function from reading any data into the computer. EHT 0%
returns the null string if DA~ is included in the command list; however, data will be transmitted from the
talker to any active listeners in the loop. If % 2= is not specified, the maximum number of bytes transmit-
ted will be the current value of I0SITE (default = 256). If both DR~ and 5Z= are included in the
command list, sizes up to 999,999,999 bytes may he set. The syntax is ZE2RRHERERERY where
HEHEERPEAAY is a number in the range 0 to 999999999, If S7=1 ig specified, an unlimited namber of
bytes will be transferred from the talker to any active listeners. ©Z=E& cannot be specified unless Of~ is
also specified.

An example may clarify this. In the following statement EHT I111% addresses device 1 as the talker and
devices 2 and 3 as listeners, then causes the talker to send its bytes to the listeners:

12@ B2 = EHTIOSE ', " TRDL,LADE . LADS, OA ~ SEE=E, 800 D

The 2= command negates the size limit on the number of bytes to be read. The ['fi- command causes
EHTIGF to return no data (the null string is returned for B$). Thus, the S0F command in the ahove
statement causes the talker to send as many bytes as it has to send, and listeners 2 and 3 to receive the
transmitted data.

Defining Logical End-of-Record

You can define a character or sequence of characters to serve as a logical end-of-record during trans-
mission. When the logical end-of-record is received, transmission will be terminated. The data that has
been collected up to the point of termination will be returned by EMTI0#¥. You can define the logical end-
of-record by including one of the following commands in the EMTI04% command list:

TR+ You can specify the current EOL seguence as a logical end-of-record by
including TR#¥ in the command list.

TF: You can specify any ASCII character as a logical end-of-record by includ-
ing Ti ¢ % in the command list, where % is the hexadecimal representa-
tion of the ASCII character number (you cannot specify a nul} value for

FH).

TEL You can specify any desired string of up to six characters as & logical end-
of-record by including TRUstring1 in the command list. Note that the
string is delimited with brackets rather than quotation marks. You can-
not include the 1 character in the string. If the string includes quotation
marks, they must not be the same form (single or double) that is used to
delimit the command fist itself,

T You can use the End Byte message as & logical end-of-record by including
TE! in the command list.

Here is an example of how you might use Jogical end-of-record: Suppose that the data you are receiving
consists of lines of text with a line-feed character separating each line. Rather than having EHTID%
return 256-character strings with embedded line-feed characters, you may wish to treat each text line as
a logical record. To accomplish this, you would simply include T#:9R within the command list. This
command establishes the line-feed character {ASCIT decimal code 10, hexadecimal &) as the logical
end-of-record. Each time EMT I 0% is executed, it will return a string containing just one line of text. The
line-feed character will be included in the string.

@

Section 4: Sending and Receiving HP-IL Messages 35

Enhanced Printing Control

You can have an EOL sequence inserted into the data string automatically each time an End Byte mes-
sage is received from the talker. If you include a TL+ command in the command list, a carriage-
return/line-feed sequence will be inserted after each End Byte message. If you use the EL + command

instead, the current EOL sequence (established with the EMDL I HE statement) will be inserted. Suppose .

that you want to receive readings from an HP-IL device that transmits Data Byte messages followed by
End Byte messages, then print the readings on a printer. If these transmissions were printed as received,
the readings would all be on one line with no spacing. Specifying EL + wil} cause the current EOL se-
quence to be inserted after each reading, thus allowing each reading to be printed on a separate line.

ERT I0% Restrictions

The EHT I O# funetion will return the null string unless either 30R, £57T, S0, ¥ I, AADn, or 1D @G
appears as the last command in the command fist. These commands should not appear in the command list
except as the last command. If one of these commands oceurs as other than the last command, it will
cause the transmission to begin, but the transmission will be terminated after one message is sent.

IfDI=FLAY 12 or PRIMTER 1% devices have been assigned for the HP-75, the talker will automati-
cally be deactivated even if TL + is specified in the command list. Although TL + will stop EMT I (1% from
automatically deactivating listeners, HP-75 I/0 operations not related to EHT I 0% may cause deactiva-
ticn when DT SPLAY 1% or PRIMNTER 1% devices are in use,

The SEHD Statement

Most 1/0 applications can he performed most easily by using either the JUTFUT and EHTER statements,
or “EHDTO and EMNTIOE. However, the HI-75 1/0 ROM also provides the SEHI stalement, which
allows you to send any HIP’-1L message or sequence of messages. This provides enhanced capability for the
advanced user, The syntax of the 3FHD statement appears to be rather complex due to its versatility:

— Simplified syntax

AR Sl o DYt number o byte number .. .y Dyte number ..
sEHD H: o byte string] |:DHTH byte string (EOL]] [EH byte string (EnL]

[10Y byte number] [F‘.D"f byte number} [[}1]. byte number] [LIIT byle number]
[ZA0 byte number] [L. I. STEN byte number} [THLE byte number]

{GTLY [RMO] [MRE) [LLO] [CIF) (LPO] {MLA] (MTAE0OC] [HHL] [I_iHT]]...

The %EHD statement enables the HP-75 to source individual HP-II. messages. You can send any
combination of the bracketed items listed in the above syntax representation, in any order (consider the
representation to be one continuous line). Since the ZEHD statement deals with individual messages, a
discussion of HP-IL messages and how 1o specify them follows.

36 Section 4: Sending and Receiving HP-IL Messages

Each HP-IL message is defined by 11 bits: three control bits and eight data bits. HP-IL messages are
separated into four groups according to their control bits:

* Command group: These messages convey instructions from the controller and are monitored by all
HP-IL devices (including idle devices).

¢ Ready group: These messages provide special-purpose communication between the controller and one
or more devices, and are generally used to coordinate the transfer of instructions and data.

e Identify group: These messages enable devices to request service from the controller. Any device can
modify these messages to indicate a service request condition to the controller,

® Data/end group: These messages convey data between active devices (possibly- including the control-
ler). Any device can modify these messages to indicate & service request condition to the controller,

The SEMD statement allows you to specify messages from each of these four groups by including the
appropriate message indicators and qualifiers. An example of a message indicator is ©:MD, which in-

dicates a command message. Message qualifiers specify a specific message, and include the byte number
and byte string.

Sending Command Group Messages

Certain command message indicators — 5 TL, RMD, MEE, LLO, CIF, LFD, MLA, MTH, “o0, ML, and
UHT — require no qualifiers. You may include any combination of these indicators in a SEMD statement,
and you may include them in combination with other indicators. These indicators {except CIF, RMO,
MLF, and MTf) cause the SEND statement to send the HP-I}, commands with the corresponding
mnemonics {refer to appendix C). The CIF indicator causes SEHI to send the IFC (Interface Clear)
message. The FMD indicator causes ZEHII to send the REN {Remote Enable) message. The MLA in-
dicalor causes HEHMID to send no message, while MTH causes %FEHD to send the UNT message. In the
following example, the ZEMD statement sends the HP-IL command messages UNT {Untalk), UNL
{(Unlisten), and REN (Remote Enable):

SECZEMD UHMT UHL BMO

Note: The HP-75 automatically sends an RFC {Ready For Command) message after each command
message sent by the SEHD statement.

You may specify any HP-IL command message with the Ml message indicator. The specific command is
indicated by either a byte number or byte string. A CH Ef'bya‘e number is a number in the range 0 through
255 (modulo 256) that represents the eight data bits of the command message. The byte number for the
NRE (Not Remote Enable) message is 147, representing the bit pattern “10010011”. The following SEHD
stalement sends the NRE message:

TEOREME CMD 147
You may specify more than one command byte number in a 21D field, separating the successive numbers

with commas. The following statement sends the UNT and UNL messages (UN'T is command number 95
and UNL is command number 63):

20 SEMD CMD 35,53

Section 4: Sending and Recelving HP-IL. Messages 37

; You may also use a byle string to specify a sertes of HP-IL commands in a CHMD field. Each ASCII charac-
'\@ ter in a byte string indicates the command that has the byte nhumber equivalent to its ASCII decimal code.
The following statement also sends the UNT and UNL messages:

116 SEWO Ccmo ' 2!

The underscore {_) has ASCII decimal code 95, representing the UNT message. The question mark (7}
has decimal code 63, representing the UNL message. Note that capital and lower case letters specify
different bytes when used in a byte string. You may use the CHE# function to include characters that
cannot be generated directly from the keyboard.

The NOL and 0T message indicators may be used to specify Device-Dependent Listener and Device-
Dependent Talker messages having number 0 through 31 indicated by byte number (modulo 32). More
than one byte number may be specified in a DIl or DOT field

The SAD message indicator is used to specify a Secondary Address message having an address in the
range 0 through 31 indicated by byte number (modulo 32). More than one byte number may be specified in
an 5H field.

The L ISTECH message indicator is used to specify LADn {(Listen Address) messages. Addresses are in-
I dicated by byte numbers in the range 0 through 31 {modulo 32). The device at the specified address
; beeomes a listener — except that 31 clears all devices from listener status. More than one LADn message
may be specified in a L 1 STEH field. The following SEHI statement sets up the devices at addresses 2, 3,
and 5 to listen:

Se SEMID UNT UML LTSTEM 2.2, 0

@ You can now send the string ABC to these devices with the following DIITFUT statement:
sE OOTREUT 3 P REBCY
The HP-75 automatically becomes the talker when the OLITFUT statement is executed. You need not

specify device codes in the TLITFUT statement since you have already addressed the intended devices to
listen.

The TALY, message indicator is used to specify a TADn (Talk Address) message. The address n is in-
dicated by a byte number in the range 0 through 31 (modulo 32). The device at the specified address
becomes a talker — except that 31 clears all devices from talker status. Only one TADn message may be
specified in a TALE field. The following SEHD statement addresses device 3 as the talker:

I SEHD UHT LML TARLK 3

You may now enter data from device 3 with the EMTEF statement. To enter data as a string:

48 EHMTER k¥

The HP-75 automatically becomes a listener when the EMTEE statement is executed. You need not in-
clude a device code in the EMTEFR statement since the intended device has already been addressed to talk.
Once the EHTEFR statement is completed, you should remove talker status from device 3 with UNT or
MTA.

38 Section 4: Sending and Receiving HP-IL Messages

Note: You should be careful when using the ZEHMI statement to address talkers. The HP-75 wil
automatically become a talker when you execute an THTFUT or PRINT statement. If a device in
the loop has been addressed as a talker with SE M, there will be two active talkers.

Sending Ready and Identify Group Messages

Ready group messages are specified with the 20y message indicator. Identify group messages are specified
with the 1[3%* message indicator. In either case the message sent will have the data bits set according to a

byte number in the range 0 through 256 {module 256). More than one byte number may be specified in an
ERY or T field.

Sehding Data/End Group Messages

Dala/End group messages are specified with the DRTH and EM{ message indicators. You may use either a
byte number field or a byte string to specify the actual Data Byte message or End Byte message. The byte
number field may contain several byte numbers each indicating the ASCII character code of one character
in a string. Byte numbers have the range 0 through 255 (modulo 256). A byte string results in a series of
Data Byte messages that transfer the characters defined by the string. The following statements both send
the Data Byte messages that transfer the string ARG (7, B, and C have the ASCI decimal codes 65, 66,

and 67}
J SEHD DRTRH &5,
FOSEHD PATE AR

-, BT

Iy
- Ty

[

The inclusion of an EOL indicator in a DA TH or £M{ field causes the current EOL sequence (defined
with the EH{Il. I ME statement) to be transmitted as a sequence of Data Byte messages. The following
stalement addresses device 2 as a listener, sends the string HEL.L.11, and sends the current EOL sequence:

3O SEHD UMT UML LISTEN 2 OfTH 'HELLDY EOL

If device 2 is a printer, the EOL sequence will normally cause HEL L0 to be printed (provided the current
EQIL sequence is carriage-return/line-feed),

Appendix B gives a complete definition of the syntax of the SEHE statement.

¢

Section 4. Sending and Receiving HP-IL Messages 39

Application Programs

The following programs exemplify some typical 1/0 applications using OLTFUT, EHTER, SEHP I, and
EHT IO,

An HP-75/HP Series 80 Interface

The following programs allow you to set up an interface between the HP-75 and an HP Series 80 Personal
Computer using HP-IL. The HI* Series 80 computer must have an HP-IL module and an I/O0 ROM
installed. The Series 80 HP-II, module must be set in the non-controller mode and have a select code of 9.
There are two programs involved: cne for the HP-75 and one for the HP Series 80 machine. The programs
assume that the HP Series 80 machine has been assigned the device code 1,

Instructions:

1,

oo »om

7.
8,

Key in each program to the appropriate machine.

. Run the programs conecurrently.

The HP-75 starts out as the talker, the HP Series 80 as the listener.
The prompt MESZAGE will appear on the display of the talker.

Key in the message to be sent and press the return key. The message will appear on the display of the
listener.

To exchange the talker and listener functions, precede the message with a #,
Te stop the programs, precede the message with a -.

(o to step 4 unless the last message began with a -,

HP-75 Program Listing:

OIM AflzE96. ' Dimensions the string.
IHPUT "HMESSHGE + ' AF Inputs message,
CUTELT szl @ FA# Sends 1message.
FEOREDD, 4 0= THEH V& Change talkers?
IF A%C1,1: THEH EHO Terminate communications?
GaTto 28
ERTER '021f 3 AE TFinters message.
Prsr USIHG 126 @ AF Displays message.
Q6 IF RFCL, L0='%' THEHW 28 Change talkers?
TRE IF Ast1,17="~" THEM EHD Terminate communications?
PIB GOTI VE
126 IMAGE "HP SERIFS Sg--xHP-7Z ', K
128 EHD

40 Section 4: Sending and Receiving HP-IL Messages

HP Series 80 Program Listing:

18 OIM AfCzuEs] Dimensions the string. ﬁ
28 EHTEER 9:f# Enters message.

20 DISF USIMG 138 ;A$ Displays message.

48 IF R&CL.11="%" THEH 78 Change- talkers?

YEHCOLF AL 1, 10="~" THEHW EHD ' Terminate communications?
BEOGOTO 2B

?E DISP "MERSAGE 1+ ",

B THFUT Asf Inputs message.

28 DUTPUT 9:R0% Sends message,

198 IF FMECE, 1 3="%" THEHM 2o Change talkers?

118 IF FMEC1, t =" THEHN END Terminate communications?

128 GaTo 7o
138 IMAGE "HP~VS-->HP SERIES 26 ',k
144 EHD

An HP-75/Modem Interface

This program allows communication between the HP-75 and another mainframe through an HP-IL
modem. The HP-75 functions as though il is a terminal while the program is running. The program
assumes that the device cade MO has been assigned to the modem.

Instructions:

1. Turn on the modem. ‘

-

2. Dial the number for the computer on the telephone.
3. Place the phone handset into the modem.
4

- When the carrier Jight comes on, run the program.

5. The HP-75 now functions as a terminal. From this point on, the pracedure depends on the computer

to which you are connected. Do what you would normally do to communicate with the cemputer from
a terminal.

Program Listing:

g HIOTH ITHF Sets large width,

s CLEAR 't Clears the modem buffers.

S8 ZEHDIO [0, THHL REM,LRO% ', ' parameters' Remote enables the modem. ;
B OSEMOTIO M0t PHEEY !

48 EI=KEYE @ IF Ks #'' THEN GUSUE 26 Gets the key. i

VE EFsEHTIOQEC" (M0, CUML, THO#,S0A' Gets input from modem.

s TSP B4 Displays input.

FEOGOTO 4@

HECOSERDIO 'y, CUHE LRDE ' KE Sends the key,

38 EETURM

Section 4: Sending and Receiving HP-IL Messages 41

Note: The parameters field in line 30 of the program is used to specify the parity and protocol for your
apptication. Refer to your modem manual for further information.

Obtaining Readings From a Multimeter

In this program the HP-75 triggers the HP 3468A Multimeter to take 10 voltage readings {one every 10
seconds), receives the data from the multimeter as a string, and outputs each voltage reading to the
printer. The program assumes that the device codes £1 and 1 have been assigned to the multimeter and
the printer, respectively.

Instructions;

1. Turn on the multimeter, printer, and HP-75. Assign the appropriate device codes,
2. Run the program.

Program Listing:

1@ REMOTE ‘':EL1 Sets meter to remote mode.
SEROFOR F = 1 TO 16

EE OSEMHDIC 'sELY,'LADH ,'FIRRTZY Sets meter to read voltage.*
489 AF = EMTIO®O EL', '"TRO# . Z0OR ' 5 Gets reading from meter.
58 OUTPUT *:F3Y URING '"WYoltage = " K'1H#); Qutputs reading to printer.
At MWAIT 14 Wait 10 seconds.

TEOMEST OF

SELOGAE i EL! Returns meter to local mode.
SEEME

The OUTFUT stalement (line 50} ends with a semicolon (:) to suppress the output of a final EQL se-
guence, Without the final semicolon, the printer will skip a line after each reading because the voltmeter
10 and 80) are covered in section 5. These statements leave the multimeter addressed to listen. If this
causes problems in a program, use SENDIO or SEMD to send the UNL (Unlisten) command.

*The string F i RAT2 consists of HP 3468A Multimeter command codes (refer to the HP 34684 Multimeter Operator’s Manual). The
function code F 1 specifies DC Volts. The range code R specifies Autorange. The command code T2 specilies the Single Trigger

e,

®

Section 5

Other HP-IL Statements and Functions

The HP-75 1I/O ROM provides several statements and functions that allow you to automatically assign
the loop, select remote or locat control of HP-IL, devices, check the device ID and accessory ID of HP-IL
devices, and conduct serial and parallel polls. These statements and functions are described in this section.

Assigning the Loop

The I/0 ROM provides two statements — ASS IGH LODP and AUTOLOOR OH-0OFF — that enable you
to automatically assign device codes to all devices in the loop. You need not assign device codes individ-
ually with HSSIGH 10, Two functions — DEVANDE and DEVHNANES — allow you to quickly determine
the device address or device code of a specified device. The FIIIIEESS function addresses the loop and
returns the number of devices in the leop.

The ASSIGH LOOF and ARUTOLOOR OH-0OFF Statements

When you execute the AZZIGH LIDF statement, device codes are automatically assigned to all devices
in the loop. For each HP-IL device Fififi I GH LOOF uses the Accessory 1D to determine its class, then
assigns a two-character device code. Each device code consists of a letter indicating the class of the device
followed by a numeral indicating its occurrence within the class, The characters used 1o indicate the
device classes are:

A Analytical Instrument
B HP-IB Device

€ Controller

Display

Klectronic Instrument

"I > I e}

Graphic Device
Interface

Keyboard Device
Mass Storage Device
General Device
Pr.inter

Unknown. Class
Extended Class

oo o B OR —

43

44 Section 5: Other HP-IL. Statements and Functions

The first display device found would be assigned the device code R 1; the third electronic instrument, E 3,

and so forth, Device codes are assigned in this manner for all classes except “B” (HP-IB Devices), Refer to ﬂi\
“Assigning HP-IL: Addresses and Device Codes to HP-IB Devices” for information ahout this class. !

The AUTOILGOF statement automatically executes RS S IGH LOOF when the HP-75 is turned on. You
may turn this feature on or off by executing AUTOL GOP M or RUTULOOF OFF. When HUTOLONF is
in the on state, device codes are assigned to all devices in the loop each time the computer is turned on.
The computer “beeps” to indicate that the assignment has been made. AUTOLNOF sends the LPD (Loop
Power Down) command when you turn the computer off. AUTOLOOF remains in the on state until you
execute RUTOLI0OP GFF,

Assigning HP-IL. Addresses and Device Codes to HP-IB Devices

When used in “translator” mode, the HP 821694 HP-IL/HP-IB Interface allows you to control HP-IB
devices from HP-IL, and vice-versa. {In “mailbox™ mode, the interface transfers only data between HP-IL,
and HP-IB.) When the HP 821694 HP-IL/HP-IB Interface is connected in the loop with an HP-75 as the
controller, you can assign HP-IL addresses for the HP-IR devices connected to the interface. The inter-
face must be the last device in the loop, must be in “translator” mode, and must use default addressing
(refer to the HP 82169A HP-IL/HP-IB Interface Owner's Manual). When the HP-75 assigns addresses to
the loop, the interface receives its appropriate address, then reserves all higher numbered HP-IL ad-
dresses for the HP-IB devices connected to it. If, for example, the interface is the fifth (and last) device in
the loop, it is assigned HP-IL address 5 and reserves HP-IL addresses 6 through 30 for HP-IB devices.
You must then set the address switches of each HP-IB device to ene of the available addresses.

codes, The FI%% T GH LOOP statement {or HLITD.OOF) assigns a device code to each HP-IL device in the
loop including the HP 82169A HP-IL/HP-IB Interface. The interface is assigned a device code of the “I”
(Interface) class (for example, I 1). Next, HESIGN LOMF assigns a device code for each of the HI-IL,
addresses reserved by the interface for HP-IB devices. The first character of each device code is [(in-
dicating an HP-IB Device). The second character of each device code indicates the corresponding address.
Addresses 2 through 9 are assigned the device codes B2 through B, {There can be no device code Fi i
because the interface itself occupies one address.) Letters are used to represent device addresses above 9,
Device addresses 10 through 30 are assigned the device codes FiF through Bt (address 10 is assigned
device code EF, address 11 is assigned EE, and so forth),

Once device addresses have been assigned, you can use HZSIGH LIUOF or AUTOLONR to assign device O

Now let’s consider a specific configuration. The following devices {in order) are connected in the loop with
the HP-75-as the controller: an HP 82161A Digital Cassette Drive, an HP 82162A Therma!l Printer, an
HP 3468A Multimeter, and the H] 821694 HP-IL/HP-IB Interface. An HP 829058 Printer is connected
to the HP-IB side of the interface. The HP-IL devices are assigned addresses 1 through 4. The interface
reserves addresses 5 through 30 for HP-IB devices, The RSS T GH LOOF statement assigns the device
codes M1, 1, E1, and I 1, respectively, for the cassette drive, thermal printer, multimeter, and interface,
HEELLE LOOF assigns the device codes B through Bl for the reserved addresses (5 through 30), How-
ever, the reserved addresses and device codes do not yet correspond to any device. You must set the ad-
dress switches of the HP 82905B Printer to the address that correspends with the desired device code.
(The owner’s manual of each HP-IB device gives the procedure for setting the address switches.) For
example, if you set the address to 5, the HP-IB printer wil! have the device code B %, If you set the address
to 10, the device code will be EF, Note that each HP-IB device must have a unique address greater than
that of the interface, and that a maximum of 30 devices {HP-IL and HP-IB) may be assigned.

Section 5: Other HP-IL Statements and Functions 45

The DEVALDE and DEVHARE$ Functions

The REVADDR and DEVHAMEF functions operate on the device code or address of a device, allowing you
to determine one if you know the other. The EYRDLE function accepts a device code as its argument
and returns the address of the specified device. The DEVHANME$ function accepts a device address as its

argument and returns the device code as a string. In the following examples assume that the printer has
address 5 and the device code 1.

The DEVADDOR function can be used in the following BASIC statement:
28 AL = DEVAODR ' 'P1'>

OEMANDE will return a value of 5 for Al.

The DEHANE$ function can be used in the following statement:

VE HE = DEVHAMES (5

DEVHAME# will return a value of :Fi for A$.

The HITIEESS Function

The ANDFESS function allows you to quickly determine the number of devices in the loop. The function
addresses all devices in the loop and returns a number. HIIDREESE causes the controller to assume address
0, then addresses the devices in the loop starting with address 1, Once all addresses have been assighed,
the ADRESS function returns a value equal to the number of devices in the loop (the address of the last
device). The FDDRESS function might be used in a BASIC statement as follows:

YH ow o= HODRESS

If there are 15 devices in the loop, the FINIIRE %5 function will address the loop and return the vatue 15
for X.

Note: If you have already assigned device codes for the devices in the loop, use caution when using
the MOLEESS function, ADDKESES will cause no preblems as long as you have not added or re-
moved any devices from the loop. However, if you have added or removed devices, the addresses
assigned by the RTIDIRE %% function will not agree with the original addresses. This will invalidate the
device code assignments.

Remote and Local Contro! of HP-IL Devices

The HP-75 /O ROM provides four statements — REMOTE, LOCAL, LOCAL LOCEOUT, and
TRIGGER — that allow you to select either remote {through the loop) or local {front panel) control of
HP-IL. devices.

46 Section 5: Other HP-L Statements and Functions

The REMITE Statement

With the REMOTE statement you can set up HP-IL devices for remote control. The general form of this
statement is: '

simplified syntax

REMOTE ' i device code!

You may specify one or more device codes in a REHITE statement, or you may omit the device code
parameter. If you do not specify a device code, the REMIITE statement sends a REN (Remote Enable)
message to all devices in the loop.Individual devices will go into the remote state once they are addressed
to listen. If device codes are specified, the REMITE statement sends out-the UNL and REN messages,
then addresses the specified devices to listen. Thus, the devices specified in the davice code parameter are
set up for remote control. Remote mode disables a device’s front panel controls except for the power
switch and the remote-mode override control (the LOCAL button). In remote mode HP-IL data hytes are
interpreted by the device as remote control commands. The following statement sets devices E1 and E &
to remote mode:

28 REMOTE '1EL1, 1E2°
A device will respond to the REN message only if it has been designed with HP-II, remote control capabil-
ity. Once a device has been set up for remote control, the functions that can be controlled remotely by the

HP-IL controller depend on the design of the device. For example, the HP 3468A Multimeter allows you
to control its range settings remotely.

Note: The RPEMITE statement (also the LOCAL and TRIGGER statements) leave HP-IL devices
addressed to listen. You may remove listen-addressed status by sending the UNL. {Unlisten) command
with SEMDTO or SEHD.

The L.0THL. Statement

With the L.OCFI. statement you can return HP-IL devices from the remote state to local control. The
general form of this statement is:

simplitied syntax

LULHL 7 : device code '

'Fhe device code parameter is optional, and one or more device codes may be specified. If device codes are
specified, the LOCAL statement sends out the UNI, message, addresses the specified devices to listen,
then sends the GTL (Go To Local} message. ‘The GTL message returns the devices to local control, but
leaves them remote enabled and addressed to listen. The devices will return to remote mode when next
addressed to listen. The following statement returns £1 and E2 to local control, but leaves them remote
enabled: '

@ LOCHL ' ELlL ' E

Al

If the LOCAL statement is used without parameters, the NRE (Not Remote Enable) message 1s sent. This
removes remote enabled status from all devices in the loop. The following statement returns all devices to
local control and removes remote enabled status:

5E LOCHL

¢

Section 5: Other HP-IL Statements and Functions 47

The L.OCAL LOCEQLT Statement

The LOCAL LOCKQUT statement enables you to lock out the front panel remote-mode override control
{the LOCAL button) on a device that is in the remote state.This prevents an operator from returning to
lacal control at a critical time during remote operation. The statement has no parameters:

LOCAL LOCEQUT

The LOCAL LECKOUT statement sends the LLO (Local Lockout) message. To establish local lockout for
devices £1 and E2 you could use the following sequence of instructions:

Ig REMOTE ":E1, 1E2?
e LoerL LOcKauT

Only those devices that have been designed with local lockout capability will respond to the LLO message.
You can return a device from the local lockout state to local control with the LD CF. statement.

The TRIGGER Statement

You can use the TF ¥ GGEFR statement to initiate operation of devices that are designed to respond to the
GET (Group Execule Trigger) message. The general form of this statement is:

simplified syntax

TRIGGHLRR ' i device code’

You may specify one or more device codes in the device code parameter, or you may leave it blank. If you
do not specify a device code, the GET message is sent. All devices that have already been addressed to
listen will receive the GET message. If device codes are specified, the TR IGGER statement sends the
UNL message, addresses the specified devices 1o listen, then sends the GET message. The following state-
ment causes devices F 1, EZ, and EZ to initiate operation:

9B TRIGCSER '":EL,1E2, E3S

The response of an HP-IL device to the GET message depends on the désign of the device. The
TRICGER statement simply initiates the operation of several devices at (approximately} the same time.
For example, several temperature measuring instruments could be pericdically triggered with this
statement.

The possible remote contro! applications using the EEMOTE, L0OCAL, LOCAL LOCKOUT, and
TRIGGER statements are obviously numerous. However, since the respense of an individual device to
these statements depends on the design of the device, specific applications are beyond the scope of this
manual. The remote contrel characteristics of individual HP-IL devices are covered in the owner’'s man-
vals for those devices. For general information about remote and local control, refer to THE HP-IL 8Y5-
TEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper, and
David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982,

48 Section 5: Other HP-IL Statements and Functions

Checking. the Device ID or Accessory ID of HP-IL Devices

The HP-75 I/0 ROM provides two functions — DEY10% and DEYA I 0% — that enable you to check the
device ID or accessory 1D of HP-IL devices. Only one device at a time may be specified in either function.

Device ID

The QEWVINF function allows you to check the device ID of an HP-IL device. The general form of this
function is: '

DEMIEDE ' 1 device code' 2

DEYIDY¥ addresses the specified device as the talker and sends the SDI (Send Device ID) message. The
device sends its device identificalion, and GEWID#$ returns this identification as a string. The device
identification that a device sends is usually an ASCII string consisting of a two-letter manufacturer’s
code, a five-character model number, model revision, and any additional information included by the
manufacturer of the device. In the following example DEVIL# is used to determine the device identifica-
tion of an HP 3468A Multimeter that has been assigned the device code £ 1.

49 FiE = DEVIDE © T E1

The IEWIE function returns the device identification HF%4 &85 as the value of AS.

Accessory ID

The LEMFIDF function allows you to check the accessory ID of an HP-IL device. The general form of
this function is:

OEVATOE ' device code '

DEVA LD addresses the specified device as the talker and sends the SAI (Send Accessory 1D) message.
The talker sends its accessory identification and DEYVWAIDF returns this identification as a string. The
accessory identification is usually a single byte in which the most-significant four bits designate the device
class (for example, printer, mass-storage device, etc.) and the least-significant four bits indicate a specilic
device. Since HEVAIDE returns a character string, this eight-bit byte is represented as an ASCII charac-
ter. In the following example DEMF TR is used to determine the acessory identification of an HP 82161A
Digital Cassette Drive that has been assigned the device code Mi.

TEHEF = OEVAIDE < ' ;ML

The BEVAIDE function returns the ASCIT character @ as the value of BS.

Note: Certain characters (for example, the Greek letters) may not be printable with your printer. Thus,
the DEVIOE, DEVAIDNE and ZFOLE # functions may return strings that contain characters that do
not appear in a printout. However, all characters will appear on the display.

Section 5: Other HP-IL Statements and Functions 49

Polling HP-IL Devices
The HP-75 I/O ROM provides three functions that enable you to conduct polls of HP-IL: devices. The

SPOLL and SFPOLL# functions are used in serial polis. The FFOLL function is used to conduct parallel
polls.

Serial Polling

The =Pl and SFOLL4 functions both conduct a serial poll of a specified device. These functions
differ in the way they represent the results of the poll.

The general form of the SF0LL. function is:

POl O rdevice code!' »

The 2P0 L function sends the SST (Send Status) message to the specified device. The device responds
by sending back one or more status bytes. The value returned by the SF{11. function is the first status
byte, represented as a number. In the following example SF 0L 1. is used to conduct a serial poll of an HP
821624 'Thermal Printer that has been assigned the device code F 1:

1AR ¥ = sPOLL O P12

I[the printer sends the status bytes “00100000” and “01100000”, SF 0L L returns 32 (the decimal value of
the first byte) as the value of X,

The SPOLL$ function conducts a serial poll of a specified device, like SFil.1., but returns the result as a
character string. The general form of this function is:

SPOLLE ' device code '

The SFGLL$ lunction sends the SS'T' message to the specified device. The device responds by sending
back one or more status bytes. The value returned by the SFOL L% function is a string of ASCII charac-
{ers representing the status bytes. Suppose thal ZFOLLZ, rather than ZFuLL, is used to conduct the
serial poll of the previous example:

196 DF = SFOLLE 0 P12

The SPOLL#E function converts the status bytes “00100000” and “01100000” to the ASCII characters
with the equivalent decimal codes (32 and 96). The string returned for D% is “ *”. Note that the firsi
character in the string is CHRE$ (32>, a blank space.

50 Section §5: Other HP-IL Statements and Functions

Parallel Polling

The FPOLL function conducts a parallel poll of those devices in the loop that have been configured for
parallel polling. The FFOLL function sends the IDY (Identify) message. All devices that are to be polled
must be capable of responding to this message. Each device in the poll sets one bit of the parallel poll
response byte according to its configuration. The PFOLL function has no parameters, and returns a num-
ber represeriting the response byte.

Each device to be polled must be configured for parallel polling before you execute the #F L1 function.
Each device is configured by sending the appropriate PPEn (Parallel Poll Enable) message to the device
with the SEHDI0 statement. The PPEn message configures a device to set the one of the eight data bits
(D0 through D7) of the parallel poll response byte, and also specifies whether the device is to set the bit if
service is requested or if service is not requested.

Note: Normally, each device will specify its own exclusive bit in the response byte, allowing you to
pell up to eight devices at ence. It is possible 10 assign more than one devica to each bit of a parallel
poll response byte. If you do, you can poll more than eight devices. However, if two or more devices
share a bit that has been set, you will not be able to tell which device set it.

The PPEn message enables a device to respond to an IDY message, and defines the response according to

the value of n, an integer from 0 to 15. The following table lisis the configurations set hy PPEn messages
from PPEQ to PPE15, Note that PPPE0O through PPET specify that the configured device is to set the
designated bit of the response byte (DO through D7) if service is not requested. The messages PPES
through PPE15 specify that the device is to set the designated bit if service is requested.

Note: In a parallel poll response, a device will set its assigned bit to a “1” if the condition specified in
the table exists. Otherwise the bit will be left unchanged. Also, control bit CO will be set if service is
requested by any device in the poll.

Paralle! Poll Response to an IDY Message

Enable message: | Designates bit... | Device sets that bit if...
PPEQ Do
PPEY D1
PPE2 D2
PPE3 03 service is not requested.
PPE4 D4
PPE5 D5
PPES D6
PPE7 D7
PPES Y
PPES D1
PPE10 D2
PPE11 03 service is requested.
PPE12 D4
PPE13 D5
PPE14 D&
PPE15 D7

)

Section 5: Other HP-IL Statements and Functions 81

An example will show how to configure the loop. Suppose that there are two devices in the loop, a printer
at address 1, and a digital cassette drive at address 2. You should start hy setting the loop to an initial
condition by executing the following SEHDI D statement:

SEMOIO T, TUNL L PRUY,

The UNL (Unlisten) command prevents unwanted devices from responding to the subsequent commands.
The PPU (Parallel Poll Unconfigure} command resets any existing parallel-polling configuration.
Remember that SEHI IO automatically sends an RFC (Ready For Command) message after each com-
mand. You may now start configuring the devices, one at a time, for the parallel poll. The following
statement will configure the first device {the printer):

SEHDRIO 'L, CLADLPFELE LML Y

The LAD1 command addresses device 1 to listen. PFE 13 specifies that the addressed device should use
bit D5 of the parallel poll response hyte, and should set that bit to a “1” if service is requested. The UNL
command unlistens the printer so that it will ignore further commands.

You may now configure another device. The following statement configures device 2 (the cassette drive) to
set bit D7 of the response hyte to a “1” if service is not requested:

SEHDIO ", 'LADZ L PREFUHLY, !

Once you have configured the desired devices for parallel polling, you may execute the FL.L. function as
often as you want. The IDY message will be sent out each time you execute FF L. L., and each device will
assert one bit of the response byte according to the configuration. The PFOLL function will return a-
number representing the response byte. You could poll devices 1 and 2 {configured above) by executing the
following statement:

4 E = PROLL
Device 1 will set bit D5 of the response byte if it needs service, and device 2 will set bit. D7 if il does not

need service {according to the above conliguration). The value of X will be a number that represents the
response byte. IF the response byte is “101000007, FPOLL will return the value 160.

For further information on parallel polling, refer to THE HP-IL SYSTEM: An Introductary Guide to the
Hewlett-Puckard Interface Loop, by Kane, Harper, and Ushijima.

Appendix A

Owner’s Information

CAUTIONS

Do not place fingers, toots, or other cbjects into the plug-in ports. Damage to plug-in module contacts
and the computer's internal circuitry may result.

Turn off the computer (press (ATTN]) before installing or removing a plug-in module.

If @ module jams when inserted into a port, it may be upside down. Attempting to force it further may
result in damage to the computer or the module.

Handle the plug-in modules very carefuly while they are out of the computer. Do not insert any ohjects in
the module connector socket. Always keep a blank module in the computer's port when a module is not
installed. Failure to observe these precautions may result in damage to the module or the computer.

Limited One-Year Warranty

What We Will Do

The HP-75 1/O ROM is warranted by Hewlett-Packard against defects in materials and workmanship
affecting electronie and mechanical performance, but not software content, for one yvear from the date of
ariginal purchase, If you sell your unit or give it as a gift, the warranty is transferred i.0 the new owner
and remains in effect. for the original one-year period. During the warranty period, we will repair or, at our
option, replace at no charge a product that proves to be defective, provided you return the product, ship-
ping prepaid, to a MMewlett-Packard service centern

What Is Not Covered

This warranty does not apply il the product has been damaged by accident or misuse or as the result of
service or modification by other than an autherized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or
countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not
apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LJABLE FOR
CONSEQUENTIAL DAMAGES. Some states, provinces, or ¢countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to
yOu.

53

54 Appendix A: Owner’s Information

This warranty gives you specific legal rights, and you may also have other rights which vary from state to
state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter-
mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer
or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

e In the United States:

Hewlett-Packard
Personal Computer Group
Customer Support
11000 Wolfe Road
Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

e In Europe:

Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

e In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
US.A.
Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

o AN e e

Appendix A: Owner's Informaticn 55

Service

Hewlett-Packard maintains service centers in most major countries throughout the world, You may have
your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under
warranty or not, There is a charge for repairs after the one-year warranty period,

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at
any service center. This is an average time and could vary depending upon the time of year and the work
load at the service center, The total time you are without your unit will depend largely on the shipping

time,

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is lacated

in Corvallis, Oregon:

Hewlett-Packard Company

Service Department

F.0. Box 999

Corvallis, Oregon 97339, U.S.A.

1030 N.E. Circle Blvd,

or Corvallis, Oregon 97330, U.S.A.

Obtaining Repair Service in Europe

Telephone: (503) 757-2000

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m b H.
Klginrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Wienna)

Telephone: (0222} 23 65 11

BELGIUM -
HEWLETT-PACKARD BELGIUM SAJNY
Woluwedal 100

B8-1200 Brusscls

Telephone: (02} 762 32 00

DENMARK
HEWLETT-PACKARD AfS
Datave) 52

DH-3460 Birkerod {Copenhagen}
Tetephone: (02) 81 66 40

EASTERN EUROPE

Befer to the address listed under Austria,

FINL AND
HEWLETT-PACKARD OY
Hevontulentis 7

SF-02100 Espoo 10 (HelsInki)
Telephone: {90} 455 02 11

FRANCE

HEWLETT-PACKARD FRANGE
Division Informatique Personnelte
5.AN Calculaleurs de Poche
91847 Les Ulis Cedex
Telephona: {6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Servica
Vartriebszentrale

Berner Strazse 117
Postfach 560 140

D-8000 Frankfurt 56
Telephone: (611) 50041

iTALY

HEWLETT-PACKARD ITALIANA S.PA.
Caselfa postale 3645 {Milanc)

Via G. Di Viltorio, &

1-20063 Cernusco Sul Maviglio (Milan)
Telephona: {2) 90 36 91

NETHEALANDS

HEWLETT-PACKARD NEDERLAND B.V.
Van Heuven Goedhartlaan 121

ML-1181 KK Amstelveen {Amsterdam)

"P.Q. Box 867

Telephone: (J20) 472021

NORWAY

HEWLETT-PACKARD NORGE AfS
P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas {Oslo)
Telephone: {2} 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-tadrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SWERIGE AB
Skalholtsgatan 9, Kista

Box 19

S$-163 93 Spanga (Stockholm}
Telephone: ((8) 750 2000

SWITZERLAND
HEWILETT-PACKARD {SCHWEIZ) AG
Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Streot Lane
GB-Winnersh, Wokingham
Berkshire RG11 BAR
Telephone: {0734) 784 774

56 Appendix A: Owner's Information

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you

bought your preduct from an authorized Hewlett-Packard dealer, you can be sure that service is available
in the country where you bought it.

I you happen to be outside of the country where you hought your unit, you can contact the local Hewlett-
Packard service center to see if service is available for it. If service is unavailable, please ship the unit to
the address listed above under Obtaining Repair Service in the United States, A list of service centers for
other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherover applicable. All
such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered hy the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials,

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of
90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:
* A completed Service Card, including a description of the problem,

* A sales receipt or other proof of purchase date if the one-year warranty has not expired.

‘The preduct, the Service Card, a brief description of the problem, and (if required) the proof of purchase
date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is
not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to
the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec-
tion point or service center. Contact your dealer for assistance. {If you are not in the country where you
originally purchased the unit, refer to “International Service Information” above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to
the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of-
warranty repairs in the United States and some other countries, the unit is returned C.0.D. {covering
shipping costs and the service charge).

¢

Appendix A: Owner's Information 57

Further Information.

Service contracts are not available. Circuitry and designs are proprietary to Hewlett-Packard, and service
manuals are not available to customers. Should other problems or questions arise regarding repairs, please
call your nearest Hewlett-Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers, To this end, our customer
support department has established phone numbers that you can call if you have questions ahout this
product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the

‘toll-free number below;

(800) FOR-HPPC
(800 367-4772)

Technical Assistance, For technical assistance with your product, call the number below:

(408) 725-2600

For either product information or technical assistance, you can also write to:

Hewlett-Packard
Personal Computer Group
Customer Support
11000 Wolfe Road
Cupertino, CA 95014

Appendix B

Syntax Reference Guide

This appendix provides syntax definitions for the statements and functions described in sections 1
through 5 of this manual. The syntax representations in this appendix follow the format described in
section 1 (refer to the subheading “Syntax Guidelines”).

ADDRESS

Syntax

FODRESS

Sample Statement

FE A1 = RODRESS

Actions Taken

Addresses all devices in the loop, starting with 1, and returns a value equal to the number of devices (the
address of the last device).

Related Statements

Ao T GH LOOF
FUTRLODF OH-OFF

59

60 Appendix B: Syntax Reference Guide

ASSIGN LOOP

Syntax

ASHIGN LOoOP

Actions Taken

Causes two-character device codes to be assigned to each device in the loop. The first character (a letter)
indicates the class of the device. The second character (a numeral) indicates the occurrence of the device.
The following letters are used to indicate device class;

Analytical Instrument
HP-IB Device
Controller

Display

Electronic Instrument
Graphic Device
Interface

Keyhoard Device
Mass Storage Device
General Device
Printer

Unknown Class .EQ
Extended Class 4

MODTOER=DEo0Om e

Note: Class “B” (HP-IB Devices) is treated differently. Refer 1o “Assigning HP-IL Addresses and De-
vice Codes to HP-1B Devices” in section 5.

Related Statements

Al 5!

FAUETOLOOF O -0FF

Appendix B: Syntax Reference Guide 61

AUTOLOOP ON/OFF

Syntax

LT GoF
ALTEOLOOR .

Actions Taken

Device codes are assigned te all devices in the loop each time the computer is turned on if AUTOLOOF is
in the on state. A “beep” indicates that the assignment has been made. Device codes are assigned follow-
ing the same rules used by A5 5 IGH LUGE, Also, AUTOLOOF sends the LPD (Loop Power Down) mes-
sage when the computer is turned off. ALUTOLOOF remains in the on state until an AUTOLOOF UFF
command is executed.

Related Statements

ROERESS

E
RESIGH LOOP

62 Appendix B: Syntax Reference Guide

DEVADDR

Syntax

OEMVADLE ' device code’

Sample Statements

28 Bl = DEVMARDE <0173
rEox = DEMADDE TAF D

Parameters

device code — a valid HP-IL device code. You may substitufe the name of a string variable that contains
the desired device code. _ ;

Actions_. Taken

Returns the HP-IL address of the specified device.

Related Statements

DEWHAMES @

Appendix B: Syntax Reference Guide 63

DEVAID$

Syntax

UDEVHIDSE £ 1 device code' 2

Sample Statement

4@ BF = DEVARIDE ' 010

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken
Addresses the specified device as the talker and sends the SAT (Send Accessory IID} message. The talker

sends its accessory identification, and DEVRID# returns this identification as a string. The accessory
identification is usually a single byte, and is represented as an ASCII character.

Related Statements

RDEVIDS

DEVID$

64 Appendix B: Syntax Reference Guide . ‘
Syntax i

DERIDG < ! device code ' 2

Sample Statement

A AE = DEVIOY (P30

Parameters

device code — a valid HP-1L device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Addresses the specified device as the talker and sends the SDI (Send Device ID) message. The device
sends its device identification, and DEV [[1# returns this identification as an ASCII character string
(including any carriage-return/line-feed characters sent by the device).

Related Statements @ | (

DEMATDE

Q)|

e

DEVNAMES$

Syntax

Appendix B: Syntax Reference Guide 65

DEVHRMES$ <device address

Sample Statements

0 AF = OQEVHARES (15D
Q8 Cg o= DEVMNHEMEF (A1

Parameters

device address — a valid HP-IL device address (0 through 30).

Actions Taken

Returns the device code of the specified device.

Related Statements

QEMADDE

66 Appendix B: Syntax Reference Guide

ENTER

Syntax

EHTER I:

' davice code' HETHE 'image list'
device address " line number

] [: {variabia][. variabie]...}

Sample Statements

FE OENTER ':TP' USTHG RA$:14,Y,7
58 ENTER [, M(I3,Z$;
120 EMTER ‘00 USIHG 36:6% ?
158 EHTER USIHEC 26;A%
176 ENTER (B%

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

device address — a valid HP-IL device address {0 through 30),

image list — a string expression that contains a valid set of image specifiers. The expression can be either ;

a list of image specifiers enclosed in quotation marks or the name of a string variable that contains a ,
list of image specifiers.)

tine number — the line number of an IMAGE statement that contains a valid set of image specifiers.

variable (numeric or string} — the name of a variable intended as a destination of the F}HTEF operation.

Actions Taken

Inputs bytes from the specified device; uses those bytes to build a numnber or string; places the result into
a BASIC variable,

When LIETHE is not specilied, free-field format is used. A free-field entry into a string places incoming
bytes into the variable until the current EOL {end-of-line) sequence or an End Byte message is receive&l,
or the string is full. Terminating sequences are not placed into the destination string. A free-field entry
into a numeric variable ignores leading blanks and non-numeric characters. Entry into a numeric variable
is terminated by the first trailing blank or non-numeric character.

When LIS MG is specified, input operations are formatited according 1o the image specifiers used. Image
specifiers may be enclosed in quotation marks and placed in the EMTEF statement, contained in a string
variable named in the EMTER statement, or placed in an IMAGE statement referenced by the EMTER
statement. For detailed information on image specifiers, refer to “Formatted FHTER" in section 3.

Appendix B: Syntax Reference Guide 67

EMTER requires either the current EQL sequence or an End Byte megsage to terminate the statement

@ after the variable list has been satisfied. If no EOL sequence or End Byte message is detected, an error
will be issued. This requirement can be removed by using #! as the first image specifier. For more detailed
information on statement terminators, refer to “Formatted EHTER”.

Related Statements

IMAGE

ax

68 Appendix B: Syntax Reference Guide

ENTIOS

Syntax

EHTIOE <[device codef, : device codel...]' , ' [command]. command]...] ' »

Sample Statements

4B RE = EMTIORf ' °,'TRDL,S0R' 2

1B ®% = EHTIOF ¢ 01", "TRD#,SOA'
236 BE = EMTIOE €203, '’
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that containg
the desired device code.

command -— a valid HP-IL command mnemonic (refer to appendix C), You may substitute the name of a
string variable that contains the list of commands.

Actions Taken

EMT I is a function that returns a character string valve. EHT I0# is usually used to address an HP-IL @
device as a talker, then return the data received from that device as the value of the function. Only one
device may he addressed as a talker, but one or more listeners may be addressed.

EHTIO# processes parameters from left to right. If a device code parameter has been specilied, ENT 1 6%
determines the correspending device address in the loop. If THE# is specified in the command field, only
- one device code may be specified. If the device code field is the null string, no action is taken in this step.

Next, the list of HP-IL commands in the command field is processed. A TF# or . AD# command causes
the device specified in the device code field to be addressed as a talker or listener, respectively. If no device
code is specified, TAD# and LAD# are not valid in the command list, The TR and LAD A commands
contain HP-11, device addresses. A THEN or LADn In the command list causes the device with address r
10 be addressed as a talker or listener. EMT I3# returns the null string unless the last command in the
command field is SUR, 857, 501, SAL, ARDr, or 10: @A, The data sent by the active talker in response
to the ready group command is returned as the result of the EHT I 3% function, If the command field is
the null string, EMT I 0% automatically generates TADH , S0OA.

Either the device code field or the command field can be the null string, but not both.

Related Statements

SEHEED

Appendix B: Syntax Reference Guide 69
(@ IMAGE

Syntax

IMAGE specifier |, speacifier]...

Sample Statements

18 IMRGE 'Toval =',40,00
168 JTMAGE #,K,2M,K

Parameters

f. specifier — a valid DUTFUT or EMTER image specifier. These specifiers are listed below. Refer to section
; 3, “Formatted 1/0 Operations”, for detailed descriptions.
[

Summary of OUTFUT Image Specifiers

Image Meaning

3R Output one siring character

A o, G Output a comma separater in a number
{ ({, Output one digit character; blank for leading zero
Output exponent information; five characters
Output a variable in free-field format

Output number's sign if negative, blank if positive

Output a period separator in a number

Output a European radix point {comma}

Output number's sign, plus or minus \
Cutput one blank z

Output one digit character, including leading zeros

) Output a literal (enclosed in guotation marks}
£ Output one digit character; asterisk for leading zero
Qutput an American radix point {decimal point)

s Output the current EOL sequence

70 Appendix B: Syntax Reference Guide

Summary of EHTEE Image Specifiers m {
Image Meaning |
&, H Demand cone string character
o, Demand one character for a numeric field; allows
| commas to be skipped over

e, 00 ' Demand one character for a numeric field
e, I Demand five characters for & numeric field
ENN 4 Enter a variable in free-field format
n, I Demand one character for a numeric field
F,F Bemand one digit and ignore all periods
1,k Demand one digit and treat comma as radix symbol
=5 Demand one character for a numeric field
e Skip one character
o Demand one character for a numeric field

E3 Demand one character for a numeric field

|
i, , Demand one character for a numeric field

Demand the current EQOL sequence

| # Eliminate the current EQL sequence as a terminator _ J
: ! Eliminate the End Byte message as a terminator @) Lo
? {
[?'--; Establish the ETQ {End Of Transmission — OK)

message as an afternative terminator

Related Statements

EHTER..LUZIHG
BATFET. LS THEG

€

Appendix B: Syntax Reference Guidle 71

 10SIZE

Syntax

INZ1ZE buffer size

Sample Statement

TN Z2E oo

Parameters

buffer size — an integer representing the desired buffer size (range: 0 to 24,575 bytes). A zero or negative
value specifies the default value of 256 hytes.

Actions Taken

Sets the size of the EHTER huffer to the specified value. Controls the maximum number of bytes to be
read by a statement or function that causes input of data (FNTER, ENTIO%, AGORESS, ele.) If buffer
size is exceeded, a record overfiow error will result. A 57= command in an EHT I0% command list wili
override the value of {1151 ZE for that EHTI0# statement only.

Related Statements

EHTER
EHTIOS

72 Appendix B: Syntax Reference Guide

LOCAL

Syntax

LOCRAL [' device code|, s device codel..."]

Sample Statements

i8a LocAL

3 OLOcRL !
2R LOCAL "Bl 1B2, 1R3!

=

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

Actions Taken

LAICFIL addresses the specified device(s) to listen and sends the GTL (Go To Local) message. The speci-
fied devices are returned to local mode, but remain remote enabled. 1.OCAL leaves devices addressed to

listen. @
2

If no device code is specified, LOCAL sends the NRE (Not Remote Enable} message. This returns devices
to local control and removes remote enabled status.

Related Statements

LOCAL LOCET
MO TE

ThITGGER

Appendix B: Syntax Reference Guide 73

LOCAL LOCKOUT

| Syntax

LOCAL LOCKCUT

Sample Statements

28 LOCRL LOoKOouT
LOCRL LOCKQUT

Action Taken
Sends LLO (Local Lockout) command. Locks out LOCAL button on front panel of devices in remote

mode. Devices can be returned to local control only by a GTL or NRE message (refer to the L.f5HL
command).

Related Statements

L.
EEMOTE
THEIGGEER

74 Appendix B: Syntax Reference Guide

OUTPUT

Syntax

U ' 1 device code[, : device code]...! 'image fist’
HITEL SIHG
. [[device address] I: HSIHE line number]

[: expression , expression][; expression]...]

Sample Statements

4@ OUTPUT @ A3

FBOOUTPUT ' :TW' USIHG RE : % Y, Z

B DUTPUT Cf ; H<Ix:7$

tEa OUTPUT "D USIHD I3 @ Af
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

device address — a valid HP-IL device address (0 through 30). Only one device address may be specified.
Use device codes if more than one device is to be specified.

image list — a string expression that contains a valid set of image specifiers. The expression can be either
a list of image specifiers enclosed in quotation marks or the name of a string variable that contains a
list. of immage specifiers:

fine number — the line number of an IFFAGE statement that contains a valid set of image specifiers.

expression {string or numeric) -— any string expression or numeric expression intended to be output. Ex-
pressions may he constants or variables and may be separated by commas or semicolons,

Actions Taken
Outpuls bytes to the specified device(s); hytes may be string or numeric.

When HETHE 1s not specified, and cutput items are separated by semicolons, compact format is used. A
compact output of a string expression causes it to be sent with no leading or trailing blanks. A compact
output of a numeric quantity causes it to be sent with one trailing blank and one leading sign character
(blank if positive, minus sign if negative),

When L& THEG is specified, output operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotes and placed in the OUTFLT statement, contained in a string variable
named in the OUTFUT statement, or placed in an IMRGE statement referenced by the NUTPUT state-
ment. For detailed information on image specifiers, refer to “Formatted DUTFLUT® in section 3.

®

Appendix B: Syntax Reference Guide 75

OUTFUT sends the current BOL (end-of-line) sequence after the last item in the OUTFUT List. This
sequence can be changed with the EMDOL [NE statement, and defaults to carriage-return/line-feed. The
EOL sequence can be suppressed by using ; after the last variable. For more detailed information on
statement terminators, refer to “Formatted OUTFUT ",

Related Statements

ITMACE

76 Appendix B: Syntax Reference Guide

PPOLL

Syntax

PROLL.

Sample Statements

A=FPPOLL
FI=PPOLL

Actions Taken

FFOLL is a function that returns the results of a Parallel Poll operation. Sends an IDY (Identify) mes-
sage. Devices capable of responding each assert one bit of the parallel poll response byte.

Related Statements

SPOLL
SROLLE

Appendix B: Syntax Reference Guide 77
(@ REMOTE
5

Syntax

REMOTE {' i device codel, : device codel...']

Sample Statements
S8 REMOTE ‘bl
136 REMOTE 514
198 REMAOTE

Parameters

device code —— a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device cede(s).

Actions Taken

If no device code is given, REMITE sends the REN (Remote Enable) message. Devices do not ge into
remole mode untit they are addressed to listen.

[t If device codes are specified, FEMOTE sends the UNL (Unlisten) and REN messages, then addresses the
specified devices to listen. Devices are lefl addressed to listen,
Related Statements
AL

LOCAL LOoEQuUT
TREIGGER

v

78 Appendix B: Syntax Reference Guide ;

SEND

Syntax

byt .
CEMD [I:L“;MD yie nur.'nber [, byte number}]
byte string

[I‘JHTH byte nur:nber [: byte number]... [EDL]]
byte string

[EH " byte nu:inber [, byte number]... [EE‘JL}]
byte string

(100 byte number [, byte number)...] {RDY byte number [, byte aumber)...}
[DDL byte number [, byte number)...] [DDT byte number |[. byte number]...]
[58D byte number [, byte number]...] [L.15TEH byte number [. byte number]...]

[VRLE byte number] [GTL] [RMO] {HRE) [LLD) [CIF]} [LFD) [MLA]

[MTA} [SDE] [UHL] [E_rz»{'r']]...

Note: The above bracketed items may be included in any order. They may be repeated as many times » ¥
as desired, with one exception: EOL may be included only once in a GRTHA or EMD field.

Sample Statements

Tes SEWD CHOD 'UWPRY BATH ‘Hello!
SEE SEMD DK AF SR 14,12 DATA X%
SEE SEHO MTH LML LISTEN &,1id DAETH HABC!

| Parameters

byte number — a number that specifies the actual message to be sent. Byte numbers for the CME, [IRTH,
EHD, TRY, and R0 message indicators represent bits DO through D7 of the message, and have the
range O through 266 (modulo 256). Byte numbers for the [, (17T, A0, LIS TEH, and THLE mes-
sage indicators have the range (0 through 31 (modulo 32),

byte string — a string of ABCII characters that specify a series of messages. Each character represents a
message having the byte number equivalent to its ASCII character code,

0

Actions Taken

CHE

DHTH

EMD
1oy
By
oo

DET

SR

Appendix B: Syntax Reference Guide 79

Sends list of commands specified by byte number. Each byte nhumber specifies bits DO
through D7 of the command message. A byte string may be substituted for a list of
byte numbers. Each character in the string specifies the command with the byte num-
ber equivalent to its ASCII character code.

Sends iist of Data Byte messages with bits DO through D7 specified by byte number. A
byte string may be substituted for a list of byte numbers. Each character specifies the
bit pattern with the byte number equivalent to its ASCII decimal code. ASCII charac-

ter strings may be sent exactly as specified in quotes. Inclusion of EOL causes the
current EOJI, sequence to be sent.

Sends End Byte message, but otherwise same as DATA.
Sends identify message having bits set according to byte number.
Sends ready message having bits set according to byte number.

Sends Device-Dependent Listener message having number 0 through 31 indicated by
byte numher (modute 32).

Sends Device-Dependent Talker message having number 0 through 31 indicated by
hyte number (modulo 32).

Sends Secondary Address message having address 0 through 31 indicated by byte
number (modulo 32). Associates this secondary address with the primary address of

_the preceding command message, indicating an extended address.

THILE

GTl.
RO
HEL
L L
CIF
LERD
MLA
MY A
SC
LIHL
UHT

Sends LADn (Listen Address) message to device 11, the address specified by a byte
number in the range 0 through 31 (modulo 32). Makes device r a listener, except that
31 clears all devices from listener status.

Sends TADn (Talk Address) message to device 1, the address specified by a byte num-
ber in the range 0 through 31 (modulo 32). Makes device rn a talker, except that 31
clears all devices from listener status.

Sends GTL (Go To Local) message.

Sends REN (Remoctle Enable) message.
Sends NRE (Not Remote Enable} message.
Sends LLO (Local Lockout) message.
Sends IFC (Interface Clear) message.
Sends LPD (Loop Power Down) message.
Sends no message.

Sends UNT {Untalk) message.

Sends SDC (Selected Device Clear) message.
Sends UNL (Unlisten} message.

Sends UNT (Untalk) message.

80 Appendix B: Syntax Reference Guide

R S TRAPEE . SRS A -

SEND?

Syntax

SERDY

Sample Statements

C1 = TEND?
B = RELEZEMDO?]

00
k]

[l

Actions Taken

Returns an integer value representing the position in the string of the character that was unsuccessfully
sourced In the last SEHD I statement. Returns a value of 0.if the SEHD 10 data fist was null, or if the
last SE MO O statement was successfully completed.

Related Statements

]

mEHEE

et

et

Appendix B: Syntax Reference Guide 81

SENDIO

Syntax

SEHDTO '[1device codel, i device code)...]' , * [command], command)...] ' , *[data]"

Sample Statements

38 SEHDIQ i, :D2°, "LADE.LADS !, "DATA "
96 SEMDIO ', LARDL,LADR', "M
g ZEMDIO L TEYES

Parameters

device code — a valid HP-IL device cede. You may substitute the name of a string variable that contains
the desired device code(s).

command — a valid HP-IL command mnemonic {refer to appendix C). You may substitute the name of a
string variable that contains the list of commands.

data — a string expression to be sent out by SENIID,

Actions Taken

SEHDTO sends commands and data to HP-IL devices. SEHD 1 {1 can be executed from the keyboard or in
a program. Listener devices may be addressed by including either device codes or device addresses in a
SEMEIT O statement.

SEHME T processes parameters from left to right. One or more device codes may be included in the device
code field. If device codes are specified, SEND 11 determines the HP-IL address of each specified device.
If the device code field is null, no action is taken.

A single L.30# command in the command field causes all devices specified in the device code Held to be
addressed as listeners. The ILFi# command may be used in combination with other HP-IL commands,
and may appear anywhere in the command field. Listener devices may also be addressed by including
LRDr commands in the command field. Any number of LADM commands may be included, and they may
be used in combination with other HP-IL commands, including L. Fi{1%. SEHE 12 should not be used to
address talkers,

Once all commands in the command field have been sent, the string expression in the dats field is sent cut
over the loop.

One or two of the quoted parameters may be the null string, but not. all three.

Related Statements

EMTINS
SEMDY

82 Appendix B: Syntax Reference Guide

SPOLL
Syntax
SPELL ¢ 1 device code' 2
Sample Statemenis
S8 P o= SPOLL (BED
258G IF SPOLL ¢':01'3 = &3 THEH GOTO 758

Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Polls a device in the Joop by sending the 88T (Send Stiatus) message. Returns a number representing the
first status byle sent by the polled device.

Related Statements

FE L
SEOLLE

a
¢

Appendix B: Syntax Reference Guide 83

SPOLLS

Syntax

SFOLLEF ' rdevice code' 2

Sample Statements

48 S¥F = SFOLLE (BED

30 Ef = SFOLLE (:D1'
Parameters

device code — a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Polls a device in the loop by sending the SS8T message. Returns a string of ASCII characters representing
the status bytes sent by the polled device,

Related Statements

PROLL
SEOLL

84 Appendix B: Syntax Reference Guide

TRIGGER

Syntax

TRIGGER [' : device code [. : device code]...')

Sample Statements

FEOTRTGHER DL, D!
teg TRIGGER S1#
S5 TRIGGER

Parameters

device code — a valid HP-1L device code. You may substitute the name of a string variable that contains
the desired device code(s).

Actions Taken
Sends the Group Execute Trigger command (GET?).

Il no device code is giveﬁ, the GET command is sent. All devices that have already been addressed to
listen will receive the GET command.

If a device code is specified, the UNL, (Unlisten) command is sent, followed by the LAD {Listen Address)
ol the specified device(s). The GET command is then sent. Devices are left addressed to listen.

Related Statements

LOCEE LOEEOLT
REMOTE

Appendix C-

HP-II. Commands

Summary of HP-IL Commands

The following is a list of HP-IL command mnemonics for the commands that you may use in a SEND T 1
or EMTIOF command list. Although ZEME I and ENTIO# do not recognize the mnemonics of other
HP-IL eommands, you may include other commands in a command list by using extended HP-1L com-
mand capability.

MNote: The commands CL +, DA~, EL+ ET—, S2=, TR!, TR¥%, TR:, and TEE may be included in
a command fist for either EMTT 0¥ or SEHDNLCH however, only EMT I 0§ will recognize them,

ki Represents a one byte non-negative integer,
ARDN Auto Address: addresses the loop starting with initial address n (0-30).
HAL Auto Address Unconfigure: resets addresses of the loop to the unassigned state.

AEF Auto Extended Primary: assigns primary address v (0-30) to extended address group.

2 AESH Auto Extended Secondary: assigns secondary address starting with # (0-30).
v AMFn Auto Multiple Primary: assigns primary addresses to all devices starting with r (0-30).
o+ The CL + command inserts carriage-return/line-feed in the incoming string after each

Find Byte message received during EMTI0% data collection.

- The [1F~ command prevents the EMTI 0% function from reading any data into the HP-75.
EHTIO#% returns the null string if [F— is in the command list. However, up to 256 Data
Byle messages (or the number set with I0%I12F) will be transmitted from the talker to any
active listeners in the loop. If a &= command is used to specify a size, that size will take
precedence over [NSIZE, If SZ~8 ig specified, there is no size limit on the number of

Dala Byle messages that the talker can send.
B Device Clear: clears alt devices in the loop.

R Device Dependent Listener: sends the Device Dependent Listener command denoted by n

(0-31).

BT 1 Device Dependent Talker: sends the Device Dependent Talker command denoted by w (-
31).

E0H Enable Device Sourcing NRI): enables devices to source own NRD messages.

ELl+ The El. + command inserts the current EOL sequence in the incoming string after each End
Byte message received during EHTIC0$ data collection (similar to [+)..

BT FThe ET~ command disables EHT I'01# termination by an ETQ (End Of Transmission - OK)

message received from an HP-IL device. EMT I ¥ will terminate only when the logical end-
of-record is detected, size is exceeded, an ETE (End Of Transmission - Error) message is
received, or the key is pressed.

.

85

86 Appendix C: HP-IL Commands

L
Liln

L0

LK
HOF
HED
MRE
I

SHA

S

E0H

TR
TRLN
TET
TL+

Group Execute Trigger: sets listeners to begin device operation.

Go To Local: returns listen addressed devices to local control, but leaves them remote en-
abled. Devices will return to remote mode when next addressed to listen.

Illegal Auto Address: sent to determine if there are too many devices in the loop.
Ilegal Extended Primary: basically a no-op.

Illegal Extended Secondary: sent to determine if there are too many devices in the loop.
Interface Clear: clears the interface loop.

Illegal Multiple Primary: sent to determine if there are too many devices in the loop.
Listen Address: activates listener status of device specified in device code.

Listen Address: activates listener status of device at address n {0-30).

Local Lockout: disables LOCAL button on front panel of device. Device can be returned to
local control only by a GTL or NRE command.

Loop Power Down; puts devices in power down state.
Ne Op command,
Not Ready For Data: controls interrupt of talker.

Not Remote Enable: returns devices to local control and removes remote enabled status.

Parallel Poll Enable: enables listen-addressed devices to respond 1o a parallel poll where ri
(0-15) sets the state of response (refer to section 5), :

Paraliel Poll Unconfigure: disables all devices from responding to PPEn.

Remote Enable: sets devices to remote enabled state. Devices go to remote mode when ad-
dressed to listen.

Secondary Address: enables talkers or listeners with secondary address.
Send Accessory ID: initiates talker to source accessory ID.

Send Data: initliates talker to source data.

Selected Device Clear: clears the active listeners.

Send Device ID: initiates talker to source device I,

Send Status: initiates talker to source status hyte(s).

The 7= command sets the maximum input size for an EMT 1% instruction. The defaull
value is 256 (or the value set with [0%1ZE). If DA~ is not specified in the command list,
the syntax is: S2=Hx¥ XK, KK¥H¥Y is a decimal number (range 1 to 32767) representing the
number of bytes to read. The EMTIO# instruction terminates when size is exceeded. If
01~ is specified, the syntax is: SE =30 HEY where HRRRAKRERA s a number in the
range 0 to 999999999, If 5Z=0 is specified, there is no size limit on the number of bytes to
be read. {57 =0 cannot he specified unless DR~ is also specified.)

Talker Address: activates talker status of device specified in device code.
Falker Address: activates talker status of device at address n {0-30).

Take Control: passes control to next controller in the loop.

A TL + command in a SEHD T or EMT I 0% command fist inhibits the automatic UNT and
UNL feature. Devices addressed as talkers and/or listeners will remain active after the
SEMOIN or EHTIN% operation is completed.

TR

TRH

T

THL

Appendix C: HP-IL Commands 87

A TF ! command in the command fist of an ENTI0# instruction establishes the End Byte
message as a logical end-of-record,

A TRE#% command in the command fist of an EMTI0% instruction establishes the current
EOL sequence (defined with the EHOL IME statement) as a logical end-of-record,

Any ASCII character can be specified ag a logical end-of-record by including TR : ¥ in an
EHTI0% command list, where =¥ is the hexadecimal representation of the ASCII character
number (&2 will be ignored).

Any desired character string (up to six characters) may be specified as a logical end-of-
record by including TRL string? in an EMT I0#% command fist. Note that the string is delim-
ited with brackets rather than quotation marks, and that the 1 character cannot be included
in the string. If the string contains quotation marks, they must not be the same form (single
or double} that is used to delimit the command fist itself,

Unlisten: deactivates all listeners in the leop.
Untalk: deactivates the talker,

Zero Extended Secondary: assigns secondary addresses to devices with multiple address
capability,

Extended HP-IL. Command Capability

Extended HP-IL command capability allows the programmer to send commands for which no mnemonics
exist. The capability can be used with hoth SEHDI and EMT I 0%, This ensures that when new HP-IL
devices and functions are introduced, SEHD I and FHNTI0N% will continue to be usable.

Note: By using extended command capability you can include any HP-IL command in a ZEHITO or
EMT I 4% command list. However, you shoufd be careful when you are including a command that is
not in the "Summary of HP-IL Commands” in this appendix. Certain unlisted commands may cause
problems.

Recall that HI*-IL messages consist of 11 bits: a three-bit prefix that identifies the type of message,
followed by eight bits of message content. Ifight possible prefixes exist, each with its own special meaning.
Extended command capahility provides an easy way for the programmer to construct HI’-T1. messages.

Eight identifiers are supplied, one for each type of HP-IL. message. The types of messages and
corresponding identifiers are lisied below:

HP-IL Message Type Identifier
ComIAand CD
Reatdy . ..ottt RD
|51 7 SR R P DA
B . EN
TAembiEy . e 1)
Data w/Service TeQUESEouorea it i e s
End w/service request e S
Identify w/service request oo i 15

88 Appendix C: HP-IL Gommands

To send a message, simply specify “¥¥ 1 hex value” in the command list, where ¥ is one of the eight
identifiers listed above, and hex value is the content of the message in hexadecimal, Te send an UNL
command using extended HP-IL command capability, you would code:

SENDIO ', LD 3R,

This would send a message with a three-bit prefix identifying the message as a command, and then a
binary “00111111", which is the code for UNL.

Appendix D

Support Functions and Editing Keys

The HP-75 1/0 ROM provides several support functions in addition to the I/O functions and statements
that are covered in sections 1 through 5 of this manual. These support functions are covered in this
appendix under the subheadings “IfO Support Functions,” “Advanced Programming Support Functions,”
and “File Manipulation Functions.” This appendix also covers some additional HP-75 editing keys pro-
vided by the ROM (refer to “Additional Editing Keys”) and a facility for running an autostart program
when the HP-75 comes on {refer to “Running an Autostart Program”).

Note: The syntax representations in this appendix follow the same conventions that are used else-
where in this manual, Refer to the subheading "Syntax Guidelines” in section 1.

/O Support Functions

The following functions are used, in conjunction with the primary I/0 functions and statements described
in sections 1 through 5, to facilitate I/0 cperations.

ASNLOOP$ --- assign loop and return string:

AERL DR £

Assigns device codes to devices in the loop according to the same rules as 8551 GH LOOF {see appendix
R), but returns a string. Fach character in the string corresponds (in order) to a device in the ioop, and
represents the first byte of the Accessory ID response of that device.

DISPLAY$ — list current display devices:

DIsRLAYE

Returns a string listing the device codes of the currently assigned display devices (in order of ascending
address).

ENABLE SRQ — reenable 0H SRQ after-an OH SRl execution:

EMRBLE SR

Resets the active state for an OM SR 12 statement. Programs that include ON SR processing of HP-IL
SR (Service Request) messages must execute FHAELE SRE at the end of the processing to allow an-
other SBRG message to he processed (refer to OH SR),

89

90 Appendix D: Support Functions and Editing Keys

ENDLINE$ — return current endline string:

EMOLIHE#®

Returns the current EOL sequence {established with the ENL:L IHE statement) &as a string.

ESC-I/R ON/OFF — turn modified on or off:

G

E -
DFF

[

I g

This feature defaults to the M state and sends escape sequences to control the cursor of the current
OISFLAY 1% device. When you press the key, ESC Q is sent to change the cursor on the external
display to the insert mode; ESC R is sent to return the cursor to replace mode. Type F&8~ 1 R OFF to
suppress the cutput of ESC Q and ESC R. For some external display devices, you will need to turn this
feature off to aveid getting a false echo on the display in the insert mode,

TOSYZE? — return current 105 1ZE setting:

]
[}
L7

et

TES

Returns the current I3 IZE setling as a number. The value returned represents the number of bytes
that the EHTER buffer will hold —- except that a zero value indicates thal 105 I2E is set to its default
value (256 byles).

KEYBOARD$ — return the device code of the current keyboard device:

FOREDE

Returns the device code of the HP-IL device currently assigned as the keyboard. The null string is re-
turned if no device is assigned.

KEYBOARD IS — assign device for keyhoard entry:

FEYHOARD T ' 1 device code’

device code - the device code of an HP-IL device to be assigned as the keyboard (may be the device code
of an interface to which a keyboard or terminal is connected}.

KEYEOARD 1% can be used to assign an external device as the keyboard. You ean assign any keyboard
device capable of sending ASCII characters as data bytes. If the keyboard device is not HP-IL equiped,
you can connect it to the loop through an appropriate interface. The HP-75 keyboard is not disabled, so
you may enter characters from the external keyboard, from the HP-75 keyboard, or both.

Appendix D: Support Functions and Editing Keys g1

All 256 decimal keycodes may be sent from the external keyboard if it is capable of generating them. Refer
to the manual for your keyboard device to determine which keys generate which keycodes. The standard
ASCII characters (decimal codes 0 through 127) can be transmitted from the external keyboard by simply
pressing the appropriate keys. For these characters, the external keyboard uses the same keycodes as the
HP-175, For other characters, you will have to determine which key on the external keyboard generates the
keycode for the desired HP-75 key. For example, key number 132 on the HP-75 is the key. If the
key on your external keyboard generates keycode 132, it will map directly to the HP-75 (3] key. However,
suppose the roll-up key on your external keyboard generates keycode 132. In this case, roll-up on the
external keyboard maps to on the HP-75 keyhoard.

Most keyboard devices use escape codes to represent editing keys such as the cursor keys, roll-up, roll-
down, etc. The HP-75 ean interpret escape codes by means of a TEXT file named KEYMAP. The
KEYMAP file contains one line for each key to be mapped. Bach line consists of a line number that
corresponds to the desired HP-75 keycode and a character that is used to generate it (comments may be
appended if desired). The following KEYMAF file is given as an example:

T
=

o Lad
o

i

£t bk ek ek
SR N R

When an ESC character is received from the external keyboard, the next character received is “looked-
up” in the KEYMAF file, If the character is found, the corresponding line number is used as a keycode.
Suppose that your ¥ EVEOARD 15 device sends ESC-A when you press its (*] key. The HP-75 looks up
in the KE¥MAF file and finds it in line 132. The keycode 132 is generated from the kE7HAE file, execut-
ing [+] on the HP-75.

You may also send escape codes from the external keyhoard by pressing followed by the desired
character. If you type [ESC] F on the external keyhoard, keycode 132 ([*]) is generated by the HP-75. If
you press B, keycode 133 ([(3]) is generated, and so forth. If you press twice on the external
keyboard, ESC is generated by the HP>-75.

Note: The KEY £ function does not work for an external keyboard defined with KEYE0ARED 1 5. The
(ATIN] key will not stop a program if KEVEDARL 1% is active unless the program receives it as part
of an input statement. 1FF IO will disable EEYROARD IS until a RESTORE 10 is executed.
EEYBODARD IZ will also be disabled if an error ccours while a key is being transmitted. If is
pressed, only the HP-75 keyboard, not the external keyboard, will be atfected. The computer will not
timeout when KEYBORED 1% is active.

You may use DISFLAY IS to define an external display device as well as EFYBORED 1% to define an
external keyboard device. If you are connecting a terminal to your HP-75, you may execute [T SFELAY 1%
and KEYBOARD I3 to the same device code {the device code of the terminal or its interface). The termi-
nal will act as a display when characters are sent to it, and as a keyboard when a character is expected by
the HP-75. If you are using an external display, you should also refer to “ESC-I/R ON OFF” in this
appendix.

92 Appendix D: Support Functions and Editing Keys

LISTIO$ - list HP-IL device codes in string:

LISTIOE

Returns a string Jisting the device codes of all HP-IL devices in the loop in order of ascending address.
Device codes are preceded by _COIons and separated by commas, for example: 1M1, 1P,

OFF SRQ — turn off HP-IL service requesl response:

HFF SRR

Clears the 31 S#1 statement. This should be done bhefore a program stops, and definitely hefore the file is
edited, purged, or renamed. Failure to do so may cause problems.

ON SRQ — respond to HP-IL SRQ messages:

(It SR statement [& statement] ..

statement — any statement valid after a THER,

Similar to OH ERROR and O TIMEE. On receipt of an SRQ (Service Request) message, the program
branches to the QM SEQ statement (after the entire current line has been executed). Once the tH SR
statement is done, execution returns to the line after the one where the SR{ message was received. (1M
SE 1 will not interrupt itself, and must be reenabled with an EMFELE %G statement before it will again
branch. OFF SRE permanently cancels an GH SEE and should be done as part of the end-of-program
cleanup routine.

PRINTER$ — list current printer devices:

PRIMTEES

Returns a string listing the device codes of the currently assigned printer devices (in order of ascending
address). For example: 1 F1 . 1 FZ.

REASSIGN — change device code of an HI-IL device:

REASSICH ' idevl' TO ' idev2:

devi — old device code.
dev? - new device code,

Change the device code of the specified device to new device code.

Appendix D: Support Functions and Editing Keys 93

RIO — read data from an HP-IL register;

K. 10 {register number:

register number — an HP-IL register number (0 through 7).

Reads data from the specified HP-IL register. & TAHLEY must be set to O for 210 to function properly.

WIO — write data to an HP-IL register:

W 11 register number . data

register number — an HP-IL register number (0 through 7).
data — byte of data to be written (MOD 256 is performed).

Writes data byte to specified HP-IL register. STAMOEY must be in the DM state for proper operation.

Advanced Programming Support Functions

The functions that follow are useful not anly in I/0 programming, but in advanced programming applica-
tions in general,

Note: Functions that manipulate ASCII strings will accept any ASCII character in an input string. Up-
per and lower case letters have different ASCH decimal codes and are interpreted as different ASCII
characters. Functians that manipulate hexadecimal strings will accept the characters & through %, H
through F, and = through § in an input string (upper and lower case letters are equivalent in a hexa-
decimal string).

AANDS — AND of two strings:

AAMNDEC "string 17, 'string 2'

string 1 and string 2 — ASCII character strings.

" A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two

strings (the strings are left justified). The cutput string consists of ASCII characters that represent the
resulting bit patterns. The length of the resulting string is equal to the shorter input string.

94 Appendix D: Support Functions and Editing Keys

ADJUST — set adjust factor for clock:

FOJUST ! factor'

factor — a string that starts with a + or - and contains exactly 14 hexadecimal characters that represent
the adjust factor.

Sets the clock adjust factor to the specified value. Specify + to make the clock run faster or — to make the
clock run slower. The string must meet the size and format requirements, and the minimum absolute value
that may be entered is 18@H. A smaller value (except 0) will cause an error. A zero value will negate the
clock adjustment. The value specifes the number of 21 second intervals between 1/4 second adjustments
{+/—) to the system clock. The proper sequence follows:

1. Set the time.
2. BExecute EWACT twice to set the flags.
3. Execute ROJUST to set the factor,

ADJUSTE — show current clock adjust factor:

ADJUET S

Returns a string that starts with + or ~ and contains 14 hexadecimal digits representing the current
adjust factor. + means the clock is slow (adjusting to a faster rate). — means the clock is fast (adjusting to
a slower rate). A zero value means no adjustment is being made (clock running on time).

AORS — OR two strings:

ROMEEC " string 1°, 'string 2'

string 1 and string 2 — ASCII character strings.
A bit-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.

Trailing characters of the longer string are ORed with CHRE$< 3%, The output string consists of ASCII
characters that represent the resulting bit psiterns.

AROTS$ — rotate a string left or right by bit count:

FIFRUT $< " string* , count s

string — ASCII character string to be rotated.
count — number of bits to rotate (to right if 4, to left if —).

Rotates an ASCII string on a bit level, considering the string to be a binary number with a length that is a
multiple of eight hits. Rotates the bits of the given string by the number of bits specified in the bit count.
Bits rotated off one end are added on at the other end. Returns an ASCII character string that represents
the rotated hit pattern. The resulting string will have the same length as the input string.

It

Appendix D: Support Functions and Editing Keys 95

ASC$ - convert hexadecimal string to ASCIL

RSCEC " hex string ' 2

hex string — string of hexadecimal characters.
Converts hexadecimal characters to ASCII decimal codes, then returns the string of ASCH characters.

Note that two hexadecimal characters specify one ASCII character. If the input string does not have an
even number of hexadecimal digits, a leading zero is added.

ASCII$ — return string of ASCII characters in specified range:

HECTII® ‘start’ . 'end' ¥

start — starting ASCII character. The null string specifies CHR$ (83,
end — ending ASCII character. The null string specifies CHREF (2550,

Returns a string of ASCII characters in the specified range (inclusive), If start is greater than end, the
string is reversed.

ASHT$ — shift a string left or right by bit count:

HEHE &< tstring ', count, bit

string — string of ASCII characters to be shifted.
count —— number of bits to shift (to right if -+, to left if—).
bit — value to shift into the bit pattern (1 or 0}

Operates on an ASCII string at a bit level, considering the string to be a binary number with a length that
s a multiple of eight bits. Shifis the bit pattern left or right by the bit count, shifting in 0’s or 1's as
specified by the bit parameter. If count is 4, the bhil patiern is shifted right, and leading 0’s or 1's are
shifted into the pattern. If count is —, the bit pattern is shifted left, and trailing 0's or 1’s are shifted into
the pattern. Returns an ASCII character string that represents the shifted bit pattern. The resulting
string will have the same length as the original string. An example should clarify this:

FISHF$C ", 1,92

The siring 1s the ASCII character 1 (decimal code 87). The bit pattern for W is “011010111", The count is 1,
a positive number, so the bit pattern is shifted to the right cne space. The bit value is “0”, so 0’s are
shifted in to replace the Jeading characters. The resulting bit pattern is “00101011” (note that bits shifted
past the end are lost), The corresponding decimal code is 43, and the returned string is the character +.

a6 Appendix D: Support Functions and Editing Keys

AXORS$ — exclusive OR of two strings:

HEOREC "string 1", 'string 2 >

string 1 and string 2 — ASCII character strings.
Performs a bit-by-bit logical EXOR on the bit patterns of the corresponding characters of the two strings.

Each trailing character of the longer string is EXORed with CHRE4 (2555, The output string consists of
ASCII characters that represent the resulting bit patterns.

BINAND —- bit-by-bit logical AND of two integers:

ETHRHMI Cinteger . integer

integer — range: — 32768 to +32767

Returns the 16-bit logical AND of two integers. Each bit of the result is caleulated using the correspond-
ing bit of each argument.

BINCMP — binary complement of integer:

ETHEMF Cinteger

integer — range: 32768 to +32767

Returns the 16-bit binary complement of an integer. Each hit of the result is the inverse of the
corresponding bit. in the argument. If the argument has less than 16 bits, Jeading zeros are assumed.

BINIOR -~ bit-by-bit exclusive OR of two integers:

B L HEDE < integer | integer)

integer — range: —32768 to + 32767

Returns the 16-bit binary exclusive OR of two integers. Each bit of the result is caleulated using the
corresponding bit of each argument.

BINIOR — bit-by-bit inclusive OR of two integers:

B IHIOR Cinteger, integer

integer - range: —32768 to 4-32767

Returns the 18-bit binary inclusive OR of two integers. Each bit of the result is calculated using the
corresponding bit of each argument.

0

Appendix D: Support Functions and Editing Keys 97

BIT — test bit in integer:

B 1T Cinteger . position

integer — range: —32768 to 32767
position — bit position to be tested (0 to 15). Bit number zero is the rightmost hit.

Returns value of specified bit in an integer argument. Result is “1” if bit is set, “0” if hit is clear.

BREAK — find next position of character in list:

BREAKY "list' | 'target' , start?

list — string of characters to be accepted in search.
target — string to be scanned.
start — position in target string to scan from.

The target string is scanned from the specified starting position unti} a character from the fist string is
found. Returns the position number of that character. If no listed character is found, returns 0.

BTD — convert binary string to decimal number:

BT 'string ' 3

string — string Lo be converted (represents binary number) range “0” to “11111111111111117,

Returns decimal value of hinary representation contained in the string argument,

BUF$ — return contents of specified buffer:

ELHF 4 O buffer '

buffer — 1 (input buffer} or L. (LCD buffer).

The entire contents of the specified buffer are returned. The returned string is 96 characters long.

98 Appendix D: Support Functions and Editing Keys

CALL — call hasic program with parameters:

CRALL ' filenamel : device code]’ | ; }<parameters

filename — name of program. If a string variable is used to name the file, a semicolon must precede the
parameters list. Otherwise the semicolon is eptional.

device code — device code of device where program is located.

parameters — list of actual parameters to pass.

A mainframe extension that allows the passing of variables to and from the subprogram named in a CALL
statement. This statement calls a basic program and passes the variables to it. The results are passed back
through the same variables. The variables may be passed in two forms:

¢ Passed by reference: Provides bidirectional access to the values of the variables. Values of variables
may be updated by the subprogram, and such updates are reflected immediately in the main program,
For example: #, ¥, B#F <, 3, and G) are all passed by reference.

¢ Pagsed by value: Provides unidirectional access to the values of the variables. The values of the vari-
ables in the calling program remain static during the execution of the subprogram. All expressions
and subscripted variables are passed by value. For example: 5#% ~F, A#[1,51, C¢2, 17, and ¥ 3
are all passed by value.

An example of a CALL statement (with parameters) would be:

CRLL ‘Rproa’ (RA.ASSCL,S53,5%01, 10,080

nt

COPY “:BCRIY — recover bad card with missing tracks:

CLEY " filename : EC RO -password]' TE ' fitename’

filename — a valid filename for a BASIC or TEXT file.
password — the password of a private file on the card.

COFY ' ECED ' works just like CORPY ' s 2ARD ' unless you press [ATIN] or [SHIFT) [ATiN | before all of
the tracks of the card have heen read. The filename parameter is required for COFY ' 1 EBCED ', and must
match the name on the card (use AT DARD to determine the proper name). When the copy process is
allowed to go to normal completion, the result will be a normal copy. If there are errors, the partial file is
purged, just as with DOFY ' CRRED ' However, if the copy is aborted with the key, the file copied
up to that point is manipulated into a valid file and retained. The new file will contain as many lines of
Lthe original file as could be recovered, This process only works for BASIC and TEXT files.

Note: If you are using & KEYEOMRD 15 device, you cannot use the external keyboard to abort
COFY ' BCREO'. You must press the [ATTN] key on the HP-75 keyboard.

Appendix D: Suppart Functions and Editing Keys 99

COUNT? — show current length of DISP or FRINT output:

COURT?C flag® »

flag — O (DISP), or F (PRINT),

Returns. the number of characters in the DISF or FRINT buffer (since the last time carriage-return
was sent).

Note: This function will not operate correctly for the DISF buffer if WILDTH is set to INF; for the
FEIHT buffer it FUIOTH is set to INF.

DEFKEY$ — return current key definition:

OEFEEY#C 'character' »

character — character representing key wanted (may be specified with the CHR# funection).

Returns the key definition string for the specified key as stored in the keys file. If the key was defined
with a trailing semicolon, the first character will be & semicolon. Otherwise the first character will be
blank,

"DELAY? — return current delay setting:

DELAYY

Returns the current delay setting. The returned value may not be exact due to some internal round-off
error. For example: JELAY & @ DISP DELAYT relurns | 395575585338

DO ERROR — cause given error:

0 ERRDER [error#]

error# — number of error to cause.

Causes the specified error condition to occur. If the error# field is left blank, the last error is caused.
Program execution is stopped, ERFH is set to the specified error number, and the error message is dis-
played. ROM errors will not display error messages, but ERROR: =rror # will be displayed. Refer-to
appendix E for I/O ROM error definitions.

100 Appendix D: Support Functions and Editing Keys

DTB$ — convert decimal number to hinary string:

DTE${numbers |

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the binary representation as a string.

DTH$ — convert decimal number to hexadecimal string:

UTH#Cnumber)

number — number 1o convert (—32768 to 32787).

Rounds decimal number to the nearest integer and returns the hexadecimal representation as a string.

DTO$ — convert decimal number to octal string:

OTO#ECpumber

number — number to convert (—32768 to 32767).

Rounds decimal number to the nearest integer and returns the octal representation as a string. 0

ESC$ — return siring of escape-character sequences:

ELe#E "string' 2

string — siring to be escaped.

Returns string with ESC added in front of each character.

EXIT — leave a FOR-NEXT loop eatly:

L 1T index variable name

index variable name — the name of the FIF variable to be exited.

Causes program execution to branch to the statement following the HEXT that corresponds to the index

variable name. For example: EX 1T ¥ would cause a branch to the statement following HE«T K. IFEWIT .
is included in a multiple-statement line, statements that precede the ERXIT will be executed, but the '
E¥ 17T will cause an immediate branch, skipping the statements that follow it in the line. If HEXT is in a
multiple-statement line, execution will continue with the statement after the HEXT in that line.

(

Appendix D: Support Functions and Editing Keys 101

FILL$ — fill a string:

FILLEC "Yeft' , 'middie’ , 'right' ,size)

left — left fill string.

middle — string to fill around.

right — right fill string.

size — size of string {o be returned.

Places the middle string in a string of the specified size, and fills in on the left and right sides with the Jeft
and right strings, respectively. Bach fil) string is duplicated (if necessary) to fill the space from the left or
right margin to the middie string. Odd pieces of the fill string will bracket the middle string since the fill is
from the edges in, both sides. If both feft and right strings are specifed, the middle string will be centered
(odd space to the right). If the /left string is null, the middie string will be left justified. If the right string is
null, the middle string will be right justifed. If hoth strings are null, the middle string will be right and left
justifed (spaces will be expanded to fill the size). If the middie string is longer than the size, then the
middie string is returned {runcated to that size.

FIND — find specified occurrence of subsiring in string, with wild eard:

FIMDC subject' , 'target' , ' [wild]' . occur?

subject — substring to find (with wild cards),

target — string to scan for occurrence of subject substring,

wild — character to use as wild card in subject substring.

occur — an integer specilying the desired occurrence of the subject substring.

Finds the specified occurrence of the subject substring in the target string. The wild character (if specified)
will match any character, and overlapping occurrences are counted. If the pattern is not found, the re-
turned value is zero, otherwise it is the position of the first character of the match. For example, in HHHH
the second occurrence of HHH is at position 2 and there is no third occurrence. This match could also be
made with the subject string H——, where — is the declared wild character.

FLAGS$ — set specifed bit to specified value in given string:

FLEGH O ' flag string ' . bit# , value !

flag string — string being used as an array of flag bits.
bit# — number of bit to set (negative numbers default to zero),
vafue — 0 or 1. Set the bit to the specified value,

This will set the specifed bit to the specified value and return the new string. If the bit is outside the
current string length, an error will result. The flag string may be initialized with ASC$, for example:
Fa=fECEs " 9E@FFR' 5, Bit number zero is at the extreme right.

102 Appendix D: Support Functions and Editing Keys

FLAG? — test specified bit in string:

FLAGT "fag string ', bit#

flag string — string being used as an array of flag bits.
bit# — number of the bit to be tested, (negative numbers default to zero}.

Returns 0 if bit is clear, 1 if bit is set. Bit number zerc is at the extreme right.

FOR — FiOR allowed after a THEM or ELSE:
The I/O ROM provides a modified FiIF that works just like the mainframe F [1F, except that it is atlowed

shown in the following two examples:

28 IF F:=2 THEW FOR ¥=1 T 9 @ F=2$F B OISF F @ HEXT X

TEOIF F=2 THEH GOTO 98 ELSE FOR #=1 TO 14 B F=2%F-PL @ DISP F @ HEST ¥

The I/0 ROM is required only while such a statement is being written into a program. Once the program
has been written, it can be run even if the ROM has been remaved.

GOSUBX — LIS1E to a variable as a line number:

G - numeric expression

numeric expression -—— nuineric expression to he evaluated and used as line number. Expression is rounded
to an integer (MOD 10000}, Negative numbers default to zero.

Performs a 50151 to the line number derived from the numeric expression, or the line after that if that
line does not exist.

GOTOX 070 to a variable as a line number:

GOTOY numeric expression

numeric expression — numeric expression to be evaluated and used as line number. Expression is rounded
to an integer (MOD 10000). Negative numbers default o zero.

Performs a G0T0 to the line number derived from the numeric expression, or the line after that if that
line does not exist.

Appendix D: SBupport Functions and Editing Keys 103

HANDS$ — AND of two hexadecimal strings:

HAMOE S "string 7', 'string 2' 2

string 1 and string 2 — two hexadecimal strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two
strings {the strings are left justified). The output string consists of hexadecimal characters that represent
the resulting bit patterns, and is equal in length to the shorter input string. If an input string does not
have an even nunber of hexadecimal digits, a leading 0 is added (before left justification). '

HEX$ — convert ASCII string to hexadecimal:

HE W& ' ASCH string*

ASCIHf string — string of ASCII characters,

Returns string of hexadecimal characters that represent the bit pattern specified by the ASCII string.

HOR$ — OR two hexadecimal strings:

HORSE 'string 1', 'string 2° 1

string 1 and string 2 — hexadecimal character strings.

A bil-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.
Trailing characters of the longer string are ORed (in pairs) with “00”. The output string consists of hexa-
decimal characters that represent the resulting bit patterns. If an input string dees not have an even
number of hexadecimal digits, a leading zero is added to it before the OR is performed.

HIROT$ -—rotate a hexadecimal string left or right by bit count:

HEOT$C "string * . cournt

string — hexadecimal character string to be rotated.
count — number of bits to rotate (to right if +, to left if —),

Rotates a hexadecimal string on a bit level, considering the string to be a binary number with a length
that is a multiple of eight bits. (If the input string does not contain an even number of hexadecimal digits,
a leading zero will be added.) Rotates the bits of the given string by the number of bits specified in the bit
count. Bits rotated off one end are added on at the other end. Returns hexadecimal character string that
represents the rotated bit pattern.

104 Appendix D: Support Functions and Editing Keys

HSHF$ — shift a hexadecimal string left or right by bit count:

HEHF %< "string ' , count, bit

string — string of hexadecimal characters to be shifted.
count — number of bits to shift (to right if +, to left if—).
bit — wvalue to shift into the bit pattern (1 or 0).

Operates on a hexadecimal string at a bit level, considering the string to be a binary number with a length
that is a multiple of eight bits (if the input string does not have an even number of hexadecimal digits, a
leading zero will be added). Shifts the bit pattern lelt or right by the bit count, shifting in 0’s or 1’s as
specified by the bit parameter. If count is +, the bit pattern is shifted right, and leading (’s or 1's are
shifted into the pattern. If count is —, the bit pattern is shifted left, and trailing 0’s or 1’s are shifted into

the pattern. Returns a hexadecimal character string that represents the shifted bit pattern. An example
should clarify this:

MEHEFC ASBY , =3, L2

First, a leading zero is added to make an even number of hexadecimal digits. The string becomes B SR,
The bit pattern for this string is “0000 1010 0101 1011” The count is —3, so the bit pattern is to be
shifted three spaces lelt, with 1’s shifted in on the right. The shifted bit pattern is “0101 0010 1101 1111”.
The hexadecimal string that represents the shifted pattern is %2[1F, and this string is returned by
HEHE &,

HTD — convert hexadecimal string to decimal number:

HTIEC "string*

string — hexadecimal string to convert, range. “0” to “FFFF”. Limited to the characters “0” through “9”,
“A” through “F”, or “a” through “f"

Returns the decimal numeric value of a base 16 representation contained in the string argument.

HXOR$ — FEXOR two hexadecimal strings:

Myl "string 11, 'string 2')

skring 1 and string 2 — hexadecimal character strings.

A bit-by-hit logical EXOR is performed on the hit patterns of the corresponding characters of the two
strings. Trailing characters of the longer string are EXORed (in pairs) with “FF”, The cutput string con-
sists of hexadecimal characters that represent the resulting bit patterns. If an input string does not have
an even number of hexadecimal digits, a leading zero is added to it before the EXOR is performed.

U

Appendix D: Support Functions and Editing Keys 105

INSTALL — load private file from tape (created by M OFEY):

INSTHLL 'flename: device code'’

filename — filename of desired file.
device code — device code of desired tape drive.

Copies a private file {created by MCOPY) from tape to RAM. This is the only way to retrieve a private
MOFY tape file {refer to MCOFY),

LCD ON/OFF — turn LCD on/off:

o

LR e

LI 2 specifies normal LCD operation. LCD £FF prevents anything further from being displayed on
the LCD. LCD ©FF remains in effect until LCC OH is executed or the program stops.

LEFTS$ — return left portion of string:

LLEFT& "string’ . count)

string - inpul siring (left part to be returned).
count — number of characters to be returned.

Returns the number of characters specified, starting from the left end of the string. If count is greater
than the length of the string, the right end is padded with blanks. :

LTRIM$ — left trim a string:

LTRIMES "trim' . "target' s

trim - list of characters to trim.
target —- string to be trimmed.

Trims the listed characters off the left edge of the string until a character is encountered that is not in the
trim list.

LWRCS$ — convert string to lowercase:

LURCEC "string ' »

string — string to be converted.

The characters “A” through “Z” are converted to lowercase. Other characters are not changed.

106 Appendix D: Support Functions and Editing Keys

MAP$ — map “from” characters into “to” characters in target string:

MEFFC 'from' , "to' , "target' o

from -- list of characters to find.
to — list of characters to replace the from characters.
target — siring to operate on.

Scans target string, searching for any from characters. Each from character found is replaced with the
corresponding character from the to list. All other characters are passed through unchanged. For example:
MAPEC "hac', "de', 'sbofde’) will return the string ed £ de. MAF$ maps = into = and b into d.
The 1z goes to null, and § e is passed through. Note that MRF £ differentiates between upper and lower
case characters, For example: HAF£('Aa', '*tc', 'Aardwark ' > returns the string borduor b,

MARGIN? — return current right margin setting:

ARG

Returns the current right margin setting as a decimal number.

MCOPY — duplicate tape onto multiple tapes:

islave(, :slavel...

R L] H [Do
PlE ey f p jimaster' TO ALL

master — device code of source tape drive (H=normal, F =private)},
slave — device code of a destination tape drive (ALL will find all of the drives).

Copies the entire contents of the master tape onto all of the destination tapes. Tapes are first initialized
unless the colon before master is replaced with a pericd. The resulting tapes will be made private if you
specify a P in the MIGOFY statement {only BASIC and LEX files will be private). The files of the MCOFY
tape can be read into memory with the IHSZTHLL command {(see TNSTRLL).

Note: The slave tapes will be exact copies of the master tapes. You cannot use MCEHPY to append
data to an existing tape. You should only specity a period before master if you have already initialized
the destination tapes.

MID$ — return middle portion of string:

MIEEC "string' . start, count

string — string of which to return middle portion.
start — starting position.
count — number of characters to return.

Returns specified number of characters from the given string, starting from the start position. If the count
passes the end of the string, blanks are appended to the end.

Appendix D: Support Functions and Editing Kays 107
NEXT — HEXT allowed after a THEH or ELSE:
The I/0 ROM provides a MEXT that works just like the mainframe MEXT, except that it may be used

after a THEH or EL5F in a multiple-statement line. For more details, refer to FiR.

NSCR$ — remove underscoring:

MSCR$C "string '

string ~- string to be modified.

Removes the underscore bit from all characters in the sfring and returns the string without the
underscoring.

OTD — convert octal string to decimal number:

a7l 'octalt »

octal — string to be converted, range “0” to “177777".

Returns the decimal numeric value of the octal representation contained in the string argument.

PWIDTH? — return current FHIDTH setting:

FRHIDTH?Y

Returns the eurrent PHIDTH setting as a number. Returns 9.99999999999E499 if the setting is IHMF,

REPL$ — replace subsiring in target string with another:

FEPLEC "from' , "to' . "target' , '[wild]' . ocour?

from — old substring to replace.

to — new substring.

target — string to scan.

wild — character to use as a wild card in the from substring.

occur — an integer specifying the occurrence of the from substring to replace.

Scans the target string for the specified occurrence of the from substring. The wild character {if specified)
will match any character, and overlapping occurrences are counted. If a match (with or without a wild
character) is found, the specified occurrence of the from substring will be replaced with the to substring (or
deleted if the to substring is null}. If the from substring is null, the to substring will be inserted in front of
the occur character in the target string. If no match is found, the target string is returned unchanged. For
example: #EFLE(' a--', 'b', 'azasf’, '—' 31 will return the string zab. The first, second,
and third accurrences of &—~ are aaza, aa=, and ;mf respectively. The third occurrence, a=f, is re-
placed with b

108 Appendix D Support Functions and Editing Keys

REV$ — reverse string:

EEWEY "string' 2

String — string to be reversed.

Returns reversed string, (RECD becomes DT ER).

RIGHT$ — return right portion of string:

RIGHTE 'string' . count?

string — string of which right portion is to be returned.
count — number of characters to return.

Returns the specified number of characters at the right end of the string. If the count is greater than the
string length, blanks are added on at the left end.

ROT$ — rotate string by character count:

EIVEEC "string ', count

string — string to be rotated.
count -~ number of spaces to rotate (to right if +, to left if —).

String is rotated right or left by specified count. Characters rotated off one end are added on at the other
end. Returns rotated string, For example: ROT$< 'AECD', =1 ¥ returns the string ECOA,

RPT$ — repeat string,

EPT 0 patternt . count »

pattern — pattern to be repeated.
count — number of times to repeat the pattern.

Concatenates pattern the number of times specified by count and returns the resulting string.
FETECTART) returns the string AEREAR.

HTRIM$ — trim trailing characters:

RTRIMEC "trim' , 'string ' 2

trim — list of characters to trim.
string ~— string to be trimmed.

Trims trailing characters listed in the trim list. All listed characters to the right of the last non-listed
character are trimmed. For example: RTRIM&C', . ', 'abo, de, . ., * ¢ returns the string abr, de,

Appsndix D Support Functions and Editing Keys 109

.

SHELL - automatic run of programs by name:

Gk

SHELL HEE

Turns SHELL mode on or off. If SHEL. L mode is'on, CRLL 'filename' is automatically execuled for any
line that is a valid filename for a BASIC file. For example, if there is a BASIC file named RFROG in
memory, typing RFROG will cause CALL "APROG ' to be executed. SHEL L mode also can be used
to execute a CALL with parameters (refer to CALL *, For example, typing BEFREOG (A, &) will

cause CHLL 'BPFROG' (A, ¥ to be executed. Note that EFROG (R, X5 must be typed with no embed- -

ded blanks.

SKEY$ — wait for significant key:

SEEY %

SKEY#, like KE'Y#, returns the character associated with any pressed key or keystroke combination,
allowing “live” keyboard branching. However, SKEY % does not return a character until a key is pressed
(K EY# will return the null string if no key is depressed white it is being executed). This allows a running
program to “wait” for a pressed key.

There are some keys that do not cause SKE¥ % to return a character. You may press to fetch
an error message if an error occurs before the SKEY # statement. Also, the and keys (and their
variations) are not returned, but scroll the LCD. '

SPAN —- find position of first character not in list:

SERAM ist', target' | start?

fist — list of characters to pass over.
target — string to be scanned.
start — starting position in target string.

Scans target string and returns the position number of the first character found that is not in the fist
string. The scan starts at the specified starf position, and continues to the end of the string. If no unlisted
character is found, zero is returned. The function is inclusive, If the starting character is not listed, the
start position is returned. '

110 Appendix D: Support Functions and Editing Keys

STATUS — set status of system flags:

STHTUS *flagset’

flagset — 12 character string. Characters indicate settings for flags:
1. A = fILARM OH, 2 = ALARH OFF

2. 1. = AUTOLOOP OM, 1 = AUTALOGH OFF

A 1 = ESC~I/R 0N, 1 = ESC~T-F OFF

4. & = SHELL 0, = = SHELL OFF

h, B = BEEF 0OH, b = BEEEF OFF

6. [= DEFALLT O, d = DEFAULT OFF
T8 = STHAMORY OM, x = STANDEY OFF
8. T = TIHEOQUT M, + = TIMEGUT OFF
9. W = VERIFY OH, » = YVERIFY OFF

10. I = DEGHREES, B = EADTAMS

11, T = TRACE FLOMAWARE, F = TRACE FLOH,
W = TERCE WARS, + = TRACE OFF

12, ¥ = HOY mode, I = DY mode
13. A = FAM-PM maedes, ¥ = 24 hour mocde

Any flag may be left in its present stale by including a period (.) as a place holder in the string. Strings
gshorter than 13 characlers do not change trailing flags. For example: STHTUE 'H. . bD' sets AL AEHR
[H, leaves AUTOLOOP, £50-1 <R, and SHELL in their present state, sets BEEF OF F, sets BEFAULT
114, and leaves the trailing flags in their present state.

STATUS$ — show current system [lag settings:

STRTUSE

Returns flag string representing system flag settings as set with ¥ FTUS. The format is the same as for
STHTUE (see abov_e}.

(

Appendix D: Support Functions and Editing Keys 11

STRING ARRAYS — dimensioning and referencing:

The }/O ROM provides the capability to declare string arrays. String arrays may be one or two dimen-
sional, and consist of string elements of specified length. The syntax of the 01 # (dimension) statement is:

GIM H¥Ccol, row:[size}

col — column upper bound.
row — row upper bound.
size — size of element {all elements have the same size).

Dimensioning a string array is similar to dimensioning a numeric array. The column and row upper
bounds are specified in the [T} statement, but the actual number of elements is affected by OFT I 0K
B R 3E just as for numeric arrays. The following O 1M statement would dimension a one-dimensional string
array with six elements, each a string 10 characters long (assuming the default of DFTIGH GASE 8):

1B DIMAFCS2014]

You can reference a dimensioned string array as follows:

BE = [{¥ (cof, row[start, [stop}]

¢ol — column specifier.

row - row specifier,

start -— start position in element.
stop — stop position in element.

If you do not specify a start and stop position, the entire element is copied. For example, £ = A$<1 .52
copies the element £ 1, 5 into B#. If start and/or stop are specified, only the specified portion of the
element is copied. For example, % = A% ¢ 1,532, 4 coples characters two through four of the element
A£01,5 into B4,

SUB — header for subprogram:;

SUE name tformal parameters

name — name of subprogram,
formal parameters — list of parameters to be passed.

Fach subprogram must have a SLE statement as the first line in the file (only one subprogram may be in
a file). SUE defines the beginning of the subprogram and the parameters expected by the subprogram.
Parameters within the subprogram must match the passed parameters in type. Formal parameters must be
used, for example: ¥, F1<, », UF, and F1%4, 1. The name field must match the filename of the sub-
program. The 51§ statement is used in conjunction with CALL.

112 Appendix D: Support Functions and Editing Keys

SUB$ — return middle portion of string:

SUEEC Pstring ', left, right »

string — string to process.
feft — left position.
right — right position.

Returns the portion of the string bounded by the feft and right positions (inclusive). If Jeft is negative,
blanks are added in front. If right is larger than the string, blanks are added at the end.

TCAT$ — CATE of a tape drive:

TURTEC" device code® | file#

device code — device code assigned to tape drive.
file# — number of desired file.

Returns catalog entry for the specified file as a string (like CRAT#). If file does not exist on tape, returns
null string,

TEMPLATES$ — return template string with protected fields:

TEMFLATES ' protect templ* . ' trait*

protect templ — protected template string up 1o 96 characters long.
trail — trailing field Bag (F = protected, 1! = unprotected).

Returns a protected template siring with unprotected fields that the user may change. Specily protected
fields with underlined characters {use [CTL)[77R]). The underlining will not appear in the returned string.
Use characters without undertining to specify unprotected fields. The trailing field may be protected, or
left unprotected, by specifying F or U for trail. For example:

TEMFLATEEC ' Time = _hhimm__Temp = dd F', "'

returns the string Time = hhinm Temp = 2d F, You can change the fields bk, i, and ¢dd, but all
other characters are protected. The trailing field is also protected because F is specified. You can tab right

and left from field to field with [TAB] and [SHIFT) {TAB]. The [€(R] key restores the original template.
When input is terminated with [RTR], the entire 96 character siring (with user changes) is returned.
Termination with any other terminator (such as (ATIN]) causes the null string to be returned.

o

Appendix D: Support Functions and Editing Keys 113

TIMEOUT ON/OFF — set timeout mode:

a
1l
TIMEQUT AFF

O — allow timeout after five minutes.
UFF — prevent timeout after five minutes.

STHHOBY OM.-OFF will affect this setting. If TIMECGUT OM is done after a STAHDEY 1M, the HP-75
will stay fully on for five minutes, then turn itself off. If TIMEGUT 0OFF is done after a STAHOEY OFF,
the HP-75 will go into the partial power down state almost immediately, and will stay in this state indefi-
nitely. Normally you would want to execute STRHEEY UFF first if you are using TIMEQUT Ot -QFF,

TIMER? — return current timer interval setting:

TIMERY{Hmer number?

timer humber — number of timer to be checked.

Returns the value of the specifed timer’s interval. Zero is returned if the timer is not declared.

TOBASE$ — convert number to specified base, return as string:

TOEASE®Cnumber , base?

number — decimal number (floating point format) to be converted.
base — posilive integer {range: 2 through 36).

Convertsg decimal number to the specified base (2 through 36). Returns result as a string. Maximum string
length is 256 characters. Issues warning if the string is toe long.

TODEC — convert string from specified base to decimal number:

TADEC 'string ' , base

string — string representing number to convert. Valid characters are: 0-9, A-Z, and a-z {characters must
be valid for the specified base).
base — positive integer (range: 2 through 36).

Returns decimal number in floating point format equivalent to the string representation in the specified

base.

114 Appendix D: Support Functions and Editing Keys

USCR$ -— underscore string:

USCR# 'string '

string — string to be underscored.

Returns specified string, but with underscored characters.

USERMSG — send message to display and error buffer:

USERMEGE 'message’ L, error number

message — message to be displayed (maximum of 32 characters),
error number — error number to be reported with message.

The specified message is sent to the display and error buffer. The message may be recalled with !
(until the next terminator key is pressed). If error number is non-zero and positive, the error
annunciator will be turned on, ZEEP will sound, and you may recover the number with EEFH. If error
number is zero or negative, the message will be displayed, but the error annunciator, ZEEP, and EREH
will remain unchanged.

VERIFY ON/OFF — set verify mode for card reader:

am "ié

OFF

VERIFY

1M — turr on verify mode for card reader.

WEND? — show current window end:

bl B BT

Returns the current window end column as a number,

WIDTH? — return eurrent HIETH setting:

WIOTH?

Returns the current MINTH setting as a number. Returns & 299939 35395F 499 if the setting was
THF.

Appendix D: Suppert Functions and Editing Keys 115

WINDOW — set the LCD window start, end;

WIHDOW {start], end]]

start — start column: 1 through 32 (defaults to 1).
end — end column: 1 through 32 (defaults to 32)..

Sets the start and end columns ef the LCD window. The window setting remains until reset. When used:
in a program, ¥ I HE0OW may be used to setl up a field within which data may be displayed. Anything that
is outside the window, and that is sent to the display by a DI15%F or PFRIMNT statement before the
HIHDOH statement is executed, will remain “frozen” until the display is cleared by a CR/LF. To avoid
clearing the display, append a semicolon (;}-to all' DISF and PRIMT statements, and set HIDTH and
FIIBTH to I1HF. The following program exemplifies the use of WIH[IL:

18 DISP 'FEdFE £ % 5 & S

28 MIMDOW £,18

3B DISP '12345";

48 ERD

The program displays $#¥+3% 1 23458344 when it is run. You may scroll 123245 with the and
keys. Type HIHOOHM to return the display to normal.

WEKEY$ — wait for key, return any key pressed:

WMEEY#

Works like KEY¥ except that it will not execute until a key is pressed. Unlike SKEY#, it returns a
character for any key that is pressed (including (FET], (€], and [*]).

WSIZE? — show current window size:

M=1ZEY

Returns a number representing the number of columns in the current window.

WSTART? — show current window start:

WETHRET?

Returns number of the starting column of the current window.

116 Appendix D: Support Functions and Editing Keys

File Manipulation Functions

The following functions provide enhanced file manipulation capabilities.

ADVANCE# — advance data item pointer in a file:

FIDYAMCES file number: count . return variable

file number — number of data file (assigned with ASSIGHE).
court — number of items to skip,
return variable — variable to contain the number of items not skipped.

Moves data item pointer forward in the file specified by fite number, Skips the number of data items

specified by count. If the end-of-file marker is encountered before count items are skipped, the number of
items not skipped (count less the number skipped) is returned as the value of return variable.

CAT# — return file number of nth ASSToHE file:

LAT#HIA

n — 0 to 9999 (negative numbers default to zero).

Returns the file number of the nth #55IGH4 file. Returns zero if the nth file does not exist. If file
numbers 1, 5, and 8 have been assigned, CHT#4 1 returns 1, CATHO 2 returns S, and CATHC R
returns . If n = 0 is specified, the next available RS TGH# file number is returned. In the above
example, CAT# ¢ 2 would retura 2. '

CLLEAR ASSIGN# ~- clear all #1155 I GH# assignments.

ELERE ASSTGHH

All Fee

|3 F assignments are cleared, recovering space in memory.

DELETE# — delete data items.

GELETES fife number, count

file number — specifies ASSIGH# file to delete data from.
count — count of items from current position.

Delete specified number of data items from specified ASSIGH# file. Number of items is. specified by
count, beginning at the current position.

Appendix D: Support Funictions and Editing Keys 117

FILE$ — show name of specified ASS I GHE file:

FILE#% {file number?

file number — number of ASSIGH# file (0 specifies the current run file if any reads have been done, a
negative number specifies the current edit file).

Returns the name of the ASS IGH# file specified by file number. Returns the null string if the fife number
does not exist. Returns underlined name if the file has been assigned, but does not exist.

INDEX# - return current data pointer position in file:

INOER# (fila number

file number — number of AZSTGH# file (0 specifies the current run file if any reads have been-done).

This returns the current data pointer position in the specifed file, in terms of the number of items from
the beginning of the file.

INSERT# — insert an item at the current data pointer:

THEERTS® file number ; value

file number — the number of the desired ASS IGHE file.
value — the value to be inserted into the file.

Inserts item into the file in front of the item at the current data pointer position. You can use
ADVAHCE# to position the pointer at the end of the line (after the last iter), then insert an item at the
end of the line.

ITEM# — return pointer position in current line:

I TEM#<fite number

file number — number of ASSIGH# file (0 specifies the current run file if any reads have been done).

Returns the pointer position in the current line, (the number of items {rom the beginning of the line).
Returns an ervor if the file has heen purged. :

LASTLN? — return line number of last line in specified file:

LASTLHT L ! [filename]* 3

filename — name of file to be checked.

Returns the line number of the last line in the specified file, If you specifiy the null string for filename, the
line number of the last line in the current file will be returned.

118 Appendix D: Support Functions and Editing Keys

LINE# — return current line number in specified RSS I GH# file:

L. YHE # © file number » .

file number — number of ASSIGHE file (0 specifies the current run file if any reads have been done, a
negative number specifies the current edit file).

Returns current line number in the file specified by fife number. If the file is not assigned, IMF is re-
turned. If the file has been assigned, but does not exist, a negative line number is returned.

LINELIEN# — return the number of items in a line:

LINELEN#¥ Cfile number , ling number

fite number — number of ASSIGHE file,
line number — number of line in ASS IGH#H file.

Returns the number of items on the specifed line, in the specified file. Text files return the character
count of the line.

PRINT# ... USING — FRIMT# to a TEXT file with LS IHG format;

image fist
FEIMTH file number], line number] UZ THEG g : expression| , expression)... .
line number

fite number —— F55 I GH# file number (must be a TEXT file).

fine number — line number to print to. _

image list or line number — a valid list of image specificrs or the line number of a statement. containing the
image list.

expression — item to print (a8 numeric cr string expression).

FREIMTH ... LIETHG works just like PEIHT ., 113 IMG, except that it “prints” to an RS T GHE file.

REPLACE# - replace a datla ilem in a file;

FEFLACES file number ; value

tile number - RESIGH# file number.
value — value to replace old value,

Replaces item currently pointed to in the specified RS S IGH# file with the new item specified by value.

Appendix D: Support Functions and Editing Keys 119

SEARCH# — search for value in data file:

SERRECHY file number| , start] , end]] ; value

file number — FSSTGH# file number
start — start line number for search.
end — end line number for search.
value — value to search for.

Moves item pointer in specified R%S I GH# file to the first occurrence of the specified value. If start is not

specified, search starts at the current location. If end is not gpecified, search continues to the end of the
file. The pointer does not move and an error is issued if the value is not found.

SEEK# — position item pointer at a given location:

SEEK# file number , [line number , Jitem number

fite number — FSSIGH# file number.
fine number — line to position pointer in (optional).
ftem number — item number (in line if line number is specified; otherwise, in file).

Positions item pointer in the specified RS T TGH# file to the specified position. If line number is specified,
positions pointer to item number in the specified line. If line number is not specified, item number is an
absolute item number, and the pointer is placed at that item, counting from the beginning of the file.

Additional Editing Keys

The HP-75 [/0 ROM provides several additional editing keys. Some of these keys are redefinitions of
existing keys or key sequences, while others are entirely new. These editing keys cannot be reassigned to
other keys or key sequences, and the key sequences that execute these keys cannot be redefined with [EF
EEN.

CTL] [CLR] — clear display devices:

Press [CTL] to clear all current display devices without affecting the contents of the input buffer.
Sends ESC H and ESC J to the current display devices.

— delete to beginning of line:

Press to delete all characters from the beginning of the current edit line to the position just
left of the cursor. If there is a line number adjacent the prompt, the beginning of the line is defined as just
after the line number. Otherwise, the line begins just after the prompt. The remaining characters are
justified left,

— literalize and underscore next key:

Works like (17R], but with the addition of underscoring.

120 Appendix D: Support Functions and Editing Keys

— find next cccurrence of character on line:

Press the {CTL], [(SHIFT), and [*] keys (holding all three down), release all of them, then press a character
key. The cursor will move to the next (right) occurrence of the specified character on the current edit line.
The cursor does not move if no cccurrence of the character is found,

[cTL) (BHIFT —- find previous occurrence of character on line:

Works like the previous funetion, except that the cursor moves to the left instead of to the right.

(TAB] — tah left or right in non-protected field:

enables you to tab from field to field. Press to move right, to move left. Stops on
the first character of the next or previous field {delimited by a space, semicolon, comma, or period). For
example, in the string @b d=§ ;aki, jk1.mno the tab points are &, <, a, I, and m.

Running an Autostart Program

The HP-756 1/0 ROM enables the HP-75 to automatically run a program named fAUTO%T when the
computer is turned on (or turns itself on). This facility operates through the definition of key number 159,
If a program named AUTOZT is present when the power is turned on and key number 159 has not heen
defined, the function executes [NEF KEY CHR$¢1592, “aRUHM 95U TOST'"#%*", then runs the
AUTOST file. If key number 159 has heen defined, its current definition will be execuied when you turn
on the power. You can turn the feature off by executing DFF KEY CHE$ 1535, {establishing a nuil
definitien). To turn the feature back on, execute [FF KEY CHR& 155, » LU "RUOTOST &, If no
FILFT ST program exists and key number 159 has not been defined, the feature remains inactive.

Note: Type to produce . Type to produce %.

The content of the AUTOET program depends on your application. Simply write & program named
RUTOET that causes the HP-75 to do whatever you want it to do when it is turned on. The program will
run the next time the computer is turned on (unless key 159 is defined to do something else). You may
also define key 159 to run any desired program or function. For example, if you execute DEF EEY
CHEFCLE22, "CRTALL Y, CATALL will be executed each time the computer is turned on.

Appendix E

Erxrrors and Warnings

The HP-75 1/0 ROM displays the following error messages when the listed error conditions occur. Other
error messages and warnings are listed in the HP-75 Owner's Manual,

Note: Errors 28, 42, 47, 52, 68, 82, 85, 88, 89, and 91 are HP-75 mainframe error messages. These
error messages have their usual meanings and may also be used by the HP-75 IJO ROM to indicate
the error conditions listed in the following table. Errors 120 through 129 are specific to the 1/O ROM.

Number Message and Condition
28 record over flou
I051ZE is exceeded by the record being entered.
42 gtring too lang
Device code of more than two characters entered in a FERSSIGH statement.
47 Feo matokhing FOR .
No HE T can be found to match the index variable of the Ex 1T statement.
52 inwalid IMAGE
Invalid field in an ERTEE or QUTRLUT image.
68 wrang file tupe
BCRDO used on a file of a type other than BASIC or TEXT.
82 Blring expeoted
EHTER image and variable type do not match {image is a string).
85 expr ton big
Reported on key entry if KEYEOARD Y5 has no room left for entering a key.
B8 bad statement
An unrecognized mnemonic is used in a SEND statement.
89 bad parameter
An 1/O ROM statement or function detects an invalid parameter (form or content).
91 missing paramster
A parameter has been left out for a SEND mnemonic that requires one.
120 rumber swpected
EHTER image and variable type do not match (image is numeric).
121 bad digit
A function that processes base dependent strings (HE =¥, HAND$, etc.) encounters an
invalid digit for the current base.
122 brad template
Reported when TEMFLATE®¥ is given a template with no unprotected field.

121

122 Appendix E: Errors and Warnings

Number Message and Condition

125 data rmot found

A file manipulation function cannot find the data requested.
126 tUpe mismatch

CHLL and S1JE parameters do not match in type.

127 Bad param val ue

CALL value does not match SUE parameter type,

128 invalid subrame

ZUE name does not match filename.

i 129 bad param typs

f:f1l. L. parameter is not of valid type. Numbers must be FEFL (IMTEGER and SHORT
are not allowed}.

. Keyword Index
Keyword Page Description
FIRNDE 23 AND 6f two strings.
HODRESS 45,59 Address the loop and return number of devices.
ADJUET 94 - Set adjust factor for clock.
ROIIZTS o4 Show current clock adjust factor.
FAVEMHCE# 116 Advance data item pointer in file,
AOEE 94 OR two strings.
AROT 94 Rotate string left or right by bit count.
Fa 95 Convert hexadecimal string to ASGH.
ASCIT# 85 Return string of ASCH characters in specified range.
REHEF % 95 Shift string left or right by bit count.
AEHLOORS 89 Assign loop and return string.
HSSIGH Lagp 43,60 Force automatic assignment of loop.
FLPTOLDOF (b -0FF 43,61 Assign loop at power on,
’ Fw R # 96 Exclusive OR of two strings.
EIMNRHD 96 Bit-by-bit logical AND of two integers.
BINCHE 98 Binary complement of integer.
BEIMEDNE 96 Bit-by-bit exclusive OR of two integers.
BINIOR 96 Bit-by-bit inclusive OR of two integers.
BIT 97 Test bit in integer.
ERE M 97 Find next position of character in list.
210 97 Convert binary string to decimal number.
BlUFrs a7 Return contents of specified buffer,
CRLL 98 Call basic program with parameters.
CRTH# 116 Return file number of nth ASSIGH# file.
CLEARE ASSIGHE 116 Clear all RS TGH# assignments. .
DORY UL RCRED 08 Recover bad card with missing tracks. !
COUNT 99 Show current length of DT 5P or FRIHT output. :
119 Clear display devices.
119 Delete to beginning of line.
119 Literalize and underscore next key.
[8HIFT) 120 Find next occurrence of character on line,
’ =] 120 Find previous ocourrence of character on line.
' DEFKEY S 99 Return current key definition,
123

124 Keyword Index

Keyword Page Description
ODELAY? 99 Return current delay setting. .
WELETE# 116 Delete data items,
OEVARODRE 45,62 Return HP-U. address of specified device,
OEWHID® 48,63 Return Accessory ID as a string.
DEVIOS 48,64 Return Device ID as a string.
NDEMHAME$ 45,65 Return device code of specified device.
DIH 111 Dimension string arrays.
OISFEAYE 89 List current display devices.
DG ERRDE 99 Cause given error. |
DT E# 100 Convert decimal number to binary string.
T H & 100 Convert decimal number to hexadecimal string.
Dy 100 Convert decimal number to octal string.
EHARLLE SEQ BS Reenable OGN SR after an 1M SEI execution.
FHOLINE$ 90 Return current endline string.
EHTER 14,2266 Input bytes from specified device; build number or string;
place result in BASIC variable,
EHTIOH 32,68 Send HP-IL commands to specified devices: return data as
a character string,
ES{E 100 Return string of escape-character sequences. &
ESC--1-F OM OFF 80 Turn modified I/R on or off.
EATT 100 Leave a FOR-HEKXT loop early.
FILES 117 Show name of specified ASSIGHE file.
FLlLL# 101 Fill a string.
FIMD 101 Find specified occurrence of substring in string, with wild
card.
FLAGE 101 Set specifed bit to specified value in given string.
FLAG? 102 Test specified bit in string. i
F R 102 FIE allowed after a THEH or FI %5k,
GEIELIE S 102 COSLE to a variable as a fine number.
GOTOE 102 COTE to a variable as a line number.
HFH D 103 AND of two hexadecimal strings.
HE =& ' 103 Convert ASCII string to hexadecimal.
Hiops 103 OR two hexadecimal strings.
HEDT $ 103 Rotate a hexadecimal string feft or right by bit count.
HSHF $ 104 Shift a hexadecimal string féft or right by bit count,
HTH 104 Convert hexadecimal string to decimal number.
MXORS 104 EXOR two hexadecimal strings. Q

IMAGE 17,69 Specify format of EMTER or QUTFUT statement.

Keyword Index 125

. Keyword Page Description .-
IMDOEK# 117 Return current data pointer position in file. Ii
IHSERT# 117 Insert anvitem at the current data pointer.
THSTALL 105 Load private file from tape {created by MEAFT).
IO5IZE 28,71 Set enter buffer size.
TNEIZE? 90 Return current 1051 ZE setting. {
FTEM# 117 Return pointer position in current line,
KENBECRREDS 90 Return device code of current keyboard device.
KEYBOARD IS 90 Assign device for keyboard entry,

3' LASZTLHS 117 Return line number of last line in specified file.
LD GH-DFF 105 Turn LCD onfoff.

LEFTH 105 Return left portion of string.
LIMHES 118 Return current line number in specified ASS 1 GHE file,
LIMELEMY 118 Return the number of items in a fine.
LISTIO%* 92 List HP-IL device codes in string.
LacrL 48,72 Return HP-IL devices to local contral,
LOooAL LOCECGUT 47,73 Lock owt local control of HP-IL devices.
LTRIME - 105 Left trim a string.

. : LURTH 105 Convert string to lowercase,
MAF 106 Map “from” characters into “to” characters in target string. §
MAREIHT 106 Return current right margin setting. |
MCOPY 106 Duplicate tape onto multinle tapes.
MIO% 108 Return middle portion of string.
HEXT 107 HERT allowed after a THEM or ELSE.
HEZCREF 107 Remove underscoring.
OFF SER 92 Turn off HP-IL service request response.
O+ ZRE 92 Respond to HP-IL SRQ messages.
QT 107 Convert octal st?ing_to decimal number.
CUTRUT 13,1774 Output bytes (string or numeric) to specified devices.
FFOLL, 50,76 Return result of paraliel poli.
FRINTH# ... USIHG 118 PRIHNTH# to a TEXT file with U35 IHG format.
PRIMTER% 92 List current printer devices.
PUHIDTH? 107 Return current FW I0TH setting.
REASSIGH 92 Change device code of an HP-IL device.
REMOTE 48,77 Set specified devices to remote mode.
EEFL# _ 107 Replace substring in target string with another.

. REFLACE# 118 Replace a data item in a file.

126 Keyword Index

Keyword Page Description
FEVE 108 Reverse string.
EIGHTE 108 Return right portion of string,
RIn 83 Read data from an HP-IL register.
ROTH 108 Rotate string by character count,
RFTH 108 Repeat string.
ETRIME 108 Trim trailing characters,
SEARCH# 119 Search for value in data file.
HEEE# 19 Pasition item pointer at a given location.
SEHE 35,78 Send HP-IL commands and/or data.
SEMOTY 31,80 Return position in string of character unsuccessfuily
sourced in SEHDI0N data list,
BEMHOIO 29,81 Send HP-IL commands andfor data o specified devices.
SHELL 109 Automatic run of programs by name,
SEEY# 109 Wait for significant key.
SFAH 109 Find position of first character not in list.
SFOLL 49,82 Return result of serial poll as a number.
SROLLE 49,83 Return result of serial poll as a string.
ETHTUE 110 Set status of system flags.
HTATUS# 110 Show current system flag settings.
SRR 111 Header for subprogram (see CHEL).
SLRE 112 Return middle portion of string.
TAB 120 Tab left or right in non-protected field.
TOHT# 112 EHT# of a tape drive.
TEMFLRTE # 112 Return template string with protected fields.
TIMEOUT OH.-0FF 113 Set timecut mode.
TIMER? 113 Return current timer interval setting.
TOERSEF 113 Convert number to specified base, return as string.
TOOED 113 Convert string from specified base to decimal number.
TRIGGER 47,84 Send GET (Group Execute Trigger) command to trigger de-
vice operation.
ERSTISES - 114 Underscore string.
USERMEG 114 Send message tc display and error buffer.
WERTFY OH-0OFF 114 Set verify mode for card reader.
WEH D 114 Show current window end.

Keyword Page Déscription
WIDTH? 114 Return current UIDTH setting.
HIHGON 115 Set the LCD window start, end.
WIG 93 Write data to an HP-IL register.
WEEY # 115 Wait for key, return any key pressed.
WEIZE? 115 Show currert window size,
METART 115 Show current window start.

How To Use This Manual (page 5)
Getting Started (page 7)

Simple 1/O Operations (page 13)
Formatted I/O Operations (page 17)

A I

Other HP-IL Statements and Functions (page 43)

[ﬁ] HEWLETT
)0 PACKARD
Paortable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR §7330, U.5.A.

Furopean Headguarters
150, Route Du Nani-D'Ayril
P.Q. Box, CH-1217 Meyrin 2

Geneva - Swhzerland

00075-90243 English

Sending and Receiving HP-IL Messages (page 29)

HP-Unlted Kingdom
{Pinewoad}
GA-Nine Mile Ride, Wokingham
Berkshira AG11 3LL

Printed in U.5.A. 1/84

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

