
HEWLETT-PACKARD

I/O ROM
PROGRAMMING TECHNIQUES MANUAL

For the HP-75

ic: :4:; :.j< I-I F' -~ 7 5 :~:+-

•

•
Printed in U.S.A.

FhflW HEWLETT a::a PACKARD

HP-75 I/O ROM

Programming Techniques Manual

January 1984

00075-90243

© Hewlett-Packard Company 1984

..

Contents

How To Usc This Manual ...

Section 1: Getting Started "
Installing and Removing the ROM Module
Translating LEX File Programs

The Role of the Hewlett-Packard Interface Loop

A Brief Review of HP-Il .. .

................

Device Addresses
Device Codes

Syntax Guidelines

...

..............................

Section 2: Simple I/O Operations
Using Simple OUTPUT Statements

Using Simple Et-1TEF: Statements

Entering Numeric Data
Entering String Data

........

Section 3: Formatted 110 Operations
Formatted OUTPUT

Numeric Image Specifiers

Digit Specifiers

Sign Specifiers

Punctuation Specifiers

String Image Specifiers

The End-ol-Line Sequence Image Specilier
Formatted E t·j T E F:

Data Images

Numeric Image Specifiers

String Image Specifiers

Skipping Unwanted Characters
Terminator Images

"

Eliminating the Statement Terminator Requirement

Using the ETO Message As a Statement Terminator
There's Always an Exception

Changing the Size of the EtHER Buffer

A Word of Advice About Images

•
5

7
7
8
8
9

10
11
11

13
13 ,.
, .
15

17

17 • 18
18
18

" 20
21
22
23
23
23
2.
25
27
27
27
28
28

•
..

•

{(I.
~ ..

Section 4: Sending and Receiving HP-IL Messages
The S E [,1 D I 0 Statement

Resuming Data Transmission With SEN [I?

S i:=: 1,1 [I I (I Restrictions ..
The EN T I (I $ Function

Defining Logical End-of-Record
Enhanced Printing Control
EN T I (I $ Restrictions , .. .

The ::' E N [I Statement .. ,
Sending Command Group Messages
Sending Ready and Identify Group Messages
Sending Data/End Group Messages

Application Programs
An HP-75jHP Series 80 Interface
An HP-75jModem Interface ,
Obtaining Readings From a Multimeter

Section 5: Other HP-IL Statements and Functions
Assigning The Loop

The A::::S I eN LOOP and AUTOLOOP ON/OFF Statements
Assigning HP-IL Addresses and Device Codes to HP-IB Devices
The DEVADDR and DEl,)~jR~lE$ Functions
The f"iDDRESS Function

Remote and Local Control of HP-IL Devices
The REmlTE Statement
The lIX:RL. Statement
The L.OCRL 1.. .. 0Cf,::OUT Statement
The TRIGGER Statement

Checking the Device 10 or Accessory 10 of HP-IL Devices
Device 10
Accessory 10

Polling HP-1L Devices
Serial Polling
Parallel Polling

Appendix A: Owner's Information

Appendix B: Syntax Reference Guide

Appendix C: HP-IL Commands

Appendix D: Support FUllctions and Editing Keys

Appendix E: Errors and Warnings

Keyword Index

Contents 3

29
29

31
32
32
34
35
35
35
36
38
38
39
39
40
41

43
43
43
44
45
45
45
46
46
47
47
48
48
48
49
49
50

53

59

85

........ 89

121

123

•
How To Use This Manual

Please take a minute to read this introduction so thai you can better understand how this manual is
organized, and how to get the most utility from it. The HP-75 I/O ROM adds many new capabilities to
your portable computer, opening a whole new world of applications. This manual is intended as both a
learning and a reference tool. At first, you may use it to learn the fundamentals of I/O programming
with your HP-75, and to become familiar with the many new statements and functions that the ROM
provides. Later, as you develop your own I/O application programs, the manual will serve as a reference
source.

Section 1 covers the installation of the ROM in your HP-75 Portable Computer and gives an overview of
the Hewlett-Packard Interface Loop. It is assumed that you are familiar with HP-IL, hut you may find the
brief review to be helpful. Section 1 also covers the conventions that are used in defining the syntax of
statements and functions throughout this manual. Please read the subsection "Syntax Guidelines" in sec­
tion 1.

Sections 2 and 3 cover the fundamentals of I/O programming, and cover the capabilities of the
OU TPU T, E tHEF:, and I t'1 ACE statements. If I/O programming is new to you, sections 2 and 3 will get
you started, and may contain all of the information that you need for most applications. Even if you are
an accomplished I/O programmer, you should at least skim through these sections. The concepts pre­
flented are basic, but you still need to know how they are implemented for the HP-75.

Section <1 covers the ::;;E tolD I 0, E NT I 1).$=, and SE H [I statements. These statements deal with the Hewlett­
Packard Interface Loop on a message lovel and provide a wide spectrum of capabilities for the advanced
I/O programmN. Section 5 coverf-l several statements and functions that are useful in controlling HP-IL
devicefl through the loop. These statements allow you to assign HP-IL addresses and device codes, to set
up devicefl for remote control, and to identify and poll Bp·IL devices.

The appendices provide some useful reference materials. Appendix A covers warrant.y and service informa­
tion. Appendix B provides complete syntax definitions for all of the stat.ements and functions covered in
flections 1 through 5. Appendix C summarizes the BP-IL command mnemonics used in ~.Et-1DIO and
EN T I (I :*: statements. In addition to the primary I/O fUllctions covered in sections 1 through 5, the I/O
ROM provides many useful support functions. Appendix D gives a complete list of these support func­
tions, describing their operation and syntax. A list of errors and warnings is given in appendix E.

5

,1&
'V

Section 1

Getting Started

The Hp·75IjO ROM gives the HP-75 the capability to communicate with any Hewlett-Packard Interface
Loop (HP-IL) talker or listener device. Thill manual is for programmers who afe experienced with the
HP-75 and with HP-IL. Familiarity with HP"75 and HP-IL commands is assumed. Information on spe­
cific HP-IL commands can be found in the owner's manuals for HP-IL devices, and also in THE HP-IL
SYSTEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper,
and David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982. The complete
functional, electrical, and mechanical specifications ofthe HP-IL interface system afe given in The HP-/L
Intelface f:i'peci{ication (part number 82166-90017), Hewlett-Packard Company, 1982.

Installing and Removing the ROM Module

CAUTION

Be sure to turn off the HP-75 (press I SHIFT II ATTN)) before installing or removing any module. If there

are any pending appointments, type a I ar n'l 0 f f l RTN I in EDIT mode to prevent the arrival of future

appointments (which would cause the computer to turn on). If the computer is on or if it turns itself on

while a module is being installed or removed, it might dear itself, causing all stored information to be
los\.

WARNING
Do not place fingers, tools, or other foreign objects into any of ports. Such actions could result in

minor electrical shock hazard and interference with pacemaker devices worn by some persons. Dam­

age to port contacts and internal circuitry could also result.

The Hp·75 I/O ROM module can be plugged into any of the three ports on the front edge of the com­
puter.

'Ib insert. the I/O HOM, orient it so that the label is
right-side up (facing toward you), hold the computer
with the keyboard facing up, and push in the module
until it snaps into place. ne sure to observe the
precautions described above during this operation.

rIb remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the module
and pull the module straight out of the port. Install a blank module in the port to protect the contacts
inside.

7

•

8 Section 1: Getting Started

Note: You may Instal! the HP-75 VisiCalc® ROM and the I/O ROM concurrently, but the VisiCalc ROM
must be installed in the rightmost port.

Translating LEX File Programs

Some of the capabilities of the HP-75 I/O ROM have been previously available in the form of LEX files.
The I/O Utilities LEX file has been supplied with the HP-75 I/O Utilities Solutions Book (HP part num­
ber 00075-13013). The Autoloop LEX file has been available as the HP-75 Autoloop Users' Library pro­
gram (HP part number 75-00104-6). The HP-75 I/O ROM supersedes these LEX files, providing new
versions of the statements and functions they contain. 'Ib avoid conflicts between the old and new ver­
sions of these st.atements and functions, both LEX files must be purged from your HP-75 before you use
the I/O ROM.

If you have written programs using statements and functions from the I/O utilities LEX file and/or the
Autoloop LEX file, you can translate these programs so that they will run with the I/O ROM versions of
the same statements and functions. The procedure follows:

L Install the I/O ROM (turn off the computer first).

2. Load the LEX file(s) used in your original program.

3. Load the original program, then convert it to a TEXT file (refer to your HP-75 Owner's Manual).

4. Purge the LEX file(s).

5. Transform the program back to BASIC.

The translat.ed program will run just as if it was originally written using the I/O ROM.

The Role of the Hewlett-Packard Interface Loop

The HP-75 I/O ROM provides several useful funelions that enable your HP-75 Portable Computer to
carry out Input/Output operations. However, an interface or hardware link is needed in order for a com­
puter to communicate with its peripheral devices. The Hewlett-Packard Interface Loop (I·JP-IL) provides
the link through which your HP-75 can cOJlllllunicate with the growing family of HP-IL devices. The HP-
75 and all devices included in the interface loop are connected together in series, forming a communica­
tions circuit. Any information that is transferred among HP-IL devices is passed from one device to the
next around the circuit. If the information is not intended for a particular device, the device passes the
information on to the next device in the loop. When the information reaches the proper device, that
device responds as directed. III this way, the computer can send information to and receive information
from each device in the loop, according to the device's capability. All I/O operations are carried out
through this interface loop.

VisiCale is a regisLered trademark of VisiCorp.

•

•

•
T

•
Section 1: Gelling Started 9

A Brief Review of HP-IL

Before going further in this manual, you may find it helpful to review the fundamentals of HP-IL. This
review covers the material necessary to understand the rest of this manual. Previous exposure to HP-IL is
assumed. Users who feel sufficiently comfortable with HP-IL may skip this review.

HP-IL is an interface system in which devices are connected in a circular loop. Devices communicate with
each other by sending messages around the loop. When a device sends or sources a message, each device
in the loop examines the message, then passes it on to the next device. The message is passed around the
loop until it returns to the original sender. All messages travel in the same direction around the loop.

HP-IL operates on a master-slave principle. One of the devices in the loop function,; as loop controller.
The controller has the responsibility of transmitting all commands to other devices in the loop. The HP-
75 can function as loop controller. A device that can send data, but not commands, to other devices in the
loop is culled a talker. Although a device has talker capability, it will not actually send its data until
commanded to do so by the controller. Listeners are devices with the capability to receive data from the
loop. A listener will not receive data until commanded to do so by the controller.

Each HP-IJ, device can have one or more of the three basic capabilities: controller, talker, and listener.
There can be any number of devices in the loop with controller, talker, or listener capabilities. Only one
controller may be active at a time, and only one talker may be active at a time, but there may be more
than one active listener. The controller device that was active when the system was turned on is called the
system controller, and is in charge of the whole system. The HP-75 is always the system controller
when used in the HP-IL loop. Figure 1-1 shows a typical HP-IL configuration:

j

/
~-----

(

)

~.
talker

inactiva

.}lr\
C:=:::=-=:J

ooooo<>ocmoo"
ooooOOOOOD<>"'O)O

gE,~g'1!:bg~'€,
C>Doooooooc:x:)oo

=
IIstenor

(and controllarl

<-

~ ~'"

inactive

Figure 1-1. Hewlett-Packard Interface Loop

,

. (

listener

10 Section 1: Getting Started

The system controller assigns an address to each device in the loop. It can direct commands to specific
devices by using the device address. The address is a number from 0 to 30 or, with extended addressing,
from 0 to 960.

Data and commands are sent around the loop as ll-bit messages. The first three bits of each message
identify the type, or group, of the message. There are four groups of HP-IL messages: the command
group, the ready group, the identify group, and the data/end group. In this discussion we will consider only
command messages and Data Byte messages. The last eight bits are the actual content of the message.
Thus, to send a command such as IFC (Interface Clear), a message would be sent out as follows: three bits
identifying the message as a command message followed by eight bits with the command code for IFC
(binary "10010000"). A Data Byte message consists of three bits identifying it atl a Data Byte message
followed by eight hits of data.

Each me"sage is examined by every device in the loop. By examining the message, devices determine
whether 01' not any further action is required. Action is indicated in a number of circumstances. Certain
command messages, such as IFC, indicate action for all devices in the loop. Other command messages,
such as LAD (Listen Address) and TAD (Talker Address), contain a device address. A device acts on the
command only if the address in the command is the same as the address of the device. Some messages are
processed only if the device is in an active state. Data Byte messages and DDL (Device Dependent Lis­
tener) messages are processed only by devices that are in an active listener state. The SDA (Send Data)
message is processed only by a device that is an active talker.

An example of how all this works is as follows: Suppose the HP-75 controller wants to print a line on a
printer. Assume t.hat the printer haR a device address of 2 and that all devices in the loop have inactive
status. The controller first sends a LAD2 (Listen Address, Device 2) message around the loop. This puts
device 2, the printer, into active listener status. The c.ontroller then sourees the Data Byte messages. If the
line to be print.ed is an 80-character line, 80 Data Byte messages are sent, followed by one message each
for a carriage-return and a line-feed character. Once data transmissioil is complete, the controller
ROllrccs the UNL (Unlist.en) command message. This deactivates all listener devices in the loop, in this
case, the printer.

Appendix C summarizes the HP-IL commands and their mnemonics.

Device Addresses

In order to distinguish among devices in the loop, each device mLUlt have un address - a number from 0 to
30. The system controHer assumes the 0 address at power on, and then assigns addresses starting with 1
for the device next in order after the controller in the direction of information transfer. Each device in the
loop siores its unique address internally.

Figure 1-2 shows how you can determine the direction of information transfer by noting the differences in
the plugs on the HP-IL cables. It may be helpful to remember t.hat information flows out of the computer
through the large connector, around the loop, and back into t.he computer through the small connector.
These connectors are labeled IN and OUT as shown in the figure.

•

•

Section 1: Getting Started 11

Figure 1·2. Connectors

Device Codes

Once your computer has assigned device addresses to the devices connected in the interface loop, you
should assign a device code to each device. Most I/O operations require you to identify devices with device
codes. Device codes may be one or two letters, a letter and a digit, or a digit and a letter. Examples of
acceptable device codes are T, T \}, T 1, and 1 T. (A space used as the last character of a device code will be
ignored; a space may not be used as the first character.) The letters of device codes may be entered in
lowercase, but are converted internally to uppercase. The HP-75 I/O ROM provides two functions -
ASSIGN LOOP and AUTOLOOf~ - that automatically assign device codes to all devices in the loop
(refer to section 5). You may also assign device codes manually with the fiSS I Gt~ 10 command (refer to
your IIP-75 Owner's Manual). When you specify a device code in a command, it must be preceded by a
colon and enclosed in quotation marks, for example: 0 I .; P L H'/ I:; : T 1.,.1 I. You may also specify a
device code by using the name of a string variable, for example: [II ::;;F'I .. W(I :~; fH~ where A$ ~, I : T\}'.

Syntax Guidelines

Jnstructions must be typed with proper syntax in order for the computer to understand their meaning.
The following guidelines are used throughout this manual in defining the syntax of commands, state­
ments, and functions:

italics type

[[

stacked items

Words in dot mat.rix type may be keyed in using either lowercase or upper­
case letters, but otherwise must he entered exactly as shown. Commands,
statements, and functions entered in 1 0 '.,J Eo t· c·,", -"'~"' are converted internally
to UPPEPCA:~;E.

Items in italics are the parameters you supply, such as the filename in the
PUr.: G E command.

Filenames and other character strings can be enclosed with single or double
quotation marks and can be entered in lowercase or uppercase letters.
Quoted filenames are converted to uppercase internally.

Square brackets enclose optional items.

An ellipsis indicates that the optional items within the brackets may be re­
peated.

When two or more items are placed one above the other, one (and only one)
of them may be used.

When two or more items are separated by or, one or more instances of ei­
ther or both items may be included.

i ________________________ __

12 Section 1: Getting Started

Some examples may clarify the use of these symbols. The syntax of the PURGE command can be repre­
sented as follows:

[

'filename [: device code] 'J
PUPCE KEYS

APPT

In this representation filename stands for the name of the file to be purged; device code for a valid HP-IL
device code. The following statements are all valid:

PUF.:GE '[if:ITFI: 01'

PUr::GE KE)'S

f"'URGE HPPT

The brackets around : device code indicate that the colon and device code are both optional when you arc
specifying a filename. The outer set of brackets indicates that you may omit all parameters when using
the PURGE command. Thus, the following statements are also valid:

PUF:GE 'Of iTA'
F·'URC[

Any parameter represented in this manual as a string in quotation marks (such as 'filename') may be
specified by either a quoted string expression or the name of a string variable that contains the equivalent
expression. The following statements are equivalent to F:'I .. .if<:GE 1. '["I~nli':

lU Fl$='oflTfl'

20 PUF."GE fl:t

••

•
2

•

i

Section 2

Simple I/O Operations

The principal tools for using HP-IL to move data into and out of the computer are the OUTPUT and
EHTEH statements. These statements are the core of I/O operations. They are usually the fastest and
easiest ways of getting data from the source to the destination in its final form. Many applications require
no more than the proper use of OUTPUT and ENTER.

Simple OUTPUT and EtHER statements (as described in this section) usc ASCII representation for all
data. ASCII stands for American Standard Code for Information Interchange. It is a commonly
used code for representing letters, numerals, punctuation, and special characters. The ASCII code provides
a standard correspondence between binary codes that are easily understood by the computer and alpha­
numeric symbols that are easily understood by humans. A complete list of the characters in the ASCII set
and their decimal code values is included in the HP-75 Owner's Manual.

When special formatting is desired, the [I UTPUT US I NG and ENTER US I NG forms are very convenient.
These forms are discussed in section 3.

Using Simple U 1...1 T F' U 'r Statements

A simple OUTPUT statement may be used anywhere that a simple PF:It'~T statement is proper. The
I] U T PUT statement (like the P R I H T statement) contains a list of items to be output, but it also specifies
one or more dest.ination devices. You may use either the device code or the HP-IL address of a device in
an OUTPUT statement. However, you must use device codes if you are specifying more than one output
device. Only one device address may be specified in an OUTPUT statement. Here are some examples of
properly syntaxed OU1'PUT statements:

CWTPUT :T' . .!';'H>?llo'
C".IUTF'UT 2 ; X

OUTPUT Sl:l--.:tit.:E:$

OUTPUT :TV., :F'F:' ;X.:\':~

OUTPUT :PR';A(1::o.:8Cn.:tH·[c:.,7J.:

Notice t.hat a semicolon is used to separat.e the device code(s) or device address from the output list.
Semicolons lire also used to separate items within the output list. Items in the output list may be numeric
variables, numeric constants, string variables, or string constants. An end-of-line sequence (normally car­
riage-return/line-feed) is output after the last item in the output list unless the list is followed by a
trailing semicolon.

The simple OUTPUT statement (with items in the output list separated by semicolons) uses the same
compact-field output format as the simple PR I NT statement. In each numeric output field the digits of a
number are preceded by a space (if positive) or a minus sign (if negative), and followed by one space.
String data is output with .no leading or trailing spaces. Each field (numeric or string) is appended to the
field before it. Obviously, compact-field output is inappropriate for many applications. Formatted. output,
using output images, is described in section 3.

13

14 Section 2: Simple 1/0 Operations

Using Simple [t··nTF: Statements

A simple E H T E F: statement may be used wherever an I H PUT statement is proper. The E H T E R state­
ment (like the I t·1PU T statement) conLains a list of items to be entered, but it also specifies a device as
the source. You may specify either the device code or HP-IL address of the source device in an EHTER

statement, but there can he only one source. Here are some examples of properly syntaxed E~lT E F: state­
ments:

[t'lTE.F' 'B l' ; :,.,:

D'nER :=;1$;A~1-.,8$,C$

EtHEf': ' : TP' ; i<:" Y, Z
EtHEf~ ~~~ ; A(1), 8(J;), H$

Notice that a semicolon is used to separate the device code or device address from the enter list. Commas
are used to separate items within the enter list. Items in the enter list may be numeric variables or string
variables.

'Ib use the [}l1TP statement effectively, it is important to understand what constitutes the beginning
and ending of an entry into a variable. The simple E H T [r;~ statements just shown use a free field for­
mat for processing incoming characters. This format operates differently with string and numeric datu.

Entering Numeric Data

The computer enters numeric values by reading the ASCII representations of those valueg. For example, if
t.he computer reads an ASCII 1, then an ASCII 2, and finally an ASCII 5, it places the value olle hunched
twenty five into a numeric variable. Understanding the process that the computer' Wles to read a I'ree (ield
number can help you remove mLlch of the mygtery from I/O. Suppose your prugratl\ has Uw statement:

LHTCI<: ' : TF" .: ::'::" \'

Now assume t.hat when this statement is executed, the following character sequence is received through
the interface loop:

I T I u I E I s I D A Y D E c 1 1 1 9 7

The computer ignores nl! leading" spaces and nOll-numeric characters, so the "1"1".11.", ",r 1 1'(,-' DI::C characters
do nothing. Then the 11. is read. Once the computer has sturt.ed io read a number, a space or non-numeric
charact.er signals the end of that number. Therefore, the comma after the 1 1 cmlses the computer to place
the value eleven into variable X and start looking for the next value. The space and comma in fl'Ont of
:I. :) '?:) are ignored and the computer reads the 1. 'J? ':!. Final!y, the EOL (end-or-line) sequence causes the
computer to place the valtlC nineteen hundred seventy nine into variable Y and terminate the Et~TER
statement. The computer goes on to the next program line with X = 11 and Y = 1979.

•

Note: The HP-75 allows you to change the EOL (end-of-line) sequence with the EHOi.. I NE statement

(refer to the HP-75 Owner's Manual). The default EOL sequence is a two-character sequence consist­

ing 01 a carriage-return followed by a tine-feed character. In this manual EOL sequence refers to
the current end-ol-line sequence that you have set with the E t..JDL I H E statement (unless otherwise

noted). The symbol EOL is used to represent the end-of-line sequence in the examples.

q & i§b 6 ; ;g

•

•

•

•
Section 2: Simple 110 Operations 15

The process just described can be easily summarized. When entering numeric data using free-field format,
the computer:

1. Ignores leading spaces and non-numeric characters.

2. Uses numeric characters to build a number.

3. Terminates the building of a value when a trailing space or non-numeric character is encountered.

4. Inputs characters until an EOL sequence or End Byte message is encountered.

The discussion so far has referred to numeric and non-numeric characters without being specific. The
digits 0 through 9 are always numeric characters. Also, the decimal point, plus sign, minus sign, and the
letter E can be numeric if they occur at a meaningful place in a number. For example, assume that the
following character sequence is read by an E IH E f': statement:

1 - 1 - 1 T 1 E 1 s 1 T 1 3

If a numeric value is being entered, the leading minus signs and the E in TE:3T will be ignored. They have
no meaningful numeric value when surrounded by non-numeric characters. However, the characters
12, ~tE-~), will be interpreted as 12.5 x 10-3. In this case, the minus sign and the exponent indicator (E)
occur in a meaningful numeric order, so they are accepted as numeric characters.

Entering String Data

The computer enters string data by placing ASCII characters into a string variable. The process used for
free-field entry is straightforward. All characters received are placed into the string until:

1. The string is full, or

2. An EOL sequence or End Byte message is received.

Assume that the computer is executing the stat.ement:

FIHER I :TP';Ht .. B$.,Ct

The following character sequence is received:

1 H 1 E 1 L 1 L 1 0 IEOLIEOLI T H E R

The letters HELLO are placed into A$ when the first EOL sequence is encountered. Note that the EOL
sequence itself is not placed into A$; it acts only as a terminator for the entry into A$. The entry into B$
begins. However, tin HOL sequence is read immediately. This terminates the entry into B$, and B$ be­
comes the llull string. Next, the entry into C$ hegins. The characters THE":RE are placed into C$, ter­
minated by the EOL sequence that follows those characters. With the enter list now satisfied and an EOL
sequence detected at the end of the data, the computer will go on to the next program line.

Note: The current EOl sequence (specilied with the EIWL I I·IE statement) will act as a terminator
and will not be entered into the string. If the current EOl sequence is carriage-return/line-feed, this
sequence will terminate entry into a string variable and will notitself be entered. However, other
potential end-of-line sequences (such as the line-feed character by itself) will not terminate entry and
will be entered into the Siring. An End Byte message will terminate entry after its character has been
entered into the string.

•

16 Section 2: Simple I/O Operations

Another example can be used to show termination on a full string. This time, Suppose the program con­
tains the following statements:

DIM ::<$[.3J

E~nER I : TP '; >,;:t

The foliowing characters are sent to the computer:

The computer places the characters 8 I) Y into X$, which fills the dimensioned length of 3. Then the
computer continues to read the incoming characters until an EOL sequence is encountered. At that time,
the EtHER statement is completed, and the computer goes 011 to the next program step with X$=BOY.

•

i

1

.. _-------

Section 3

Formatted I/O Operations

Although flimple OUTPUT and ENTER statements work well for some I/O situations, there are times
when more control over format is necessary. Perhaps a column of numbers with the decimal points in line
is desired or an end-of-line sequence terminator is not wanted or expected. There are many reasons for
desiring format control during I/O operations.

The format of information sent or received through interfaces is controlled by the use of image speci­
fiers. These image specifiers can be placed in an I j'lAGE statement or can be included directly in an
OUT PUT or EN T E R statement. This section of the manual provides details on the meaning and use of
image specifiers.

F tt d r·'!!··I··I:::'!!-I·· orma e _ ...

An output image can control aU major characteristics of output data, including spacing, appearance of the
field, form of data representation, and use of end-of-line sequences. The HP-75 uses an output image
when some form of the OUTPUT USING statement is encountered. There are two forms of this
statement:

simplified syntax-------------------------___________ _

1 (I I (.j f7l G E output image
;?O OUTPUT' : device code' USING 10; output list

simplified syntax-----_______________________________ _

I~I U T PUT ': device code' US I t-j G ' output image' ; output list

The examples above show the general forms of the 0 U T F' U T U:3 I t-j G statement. Here are some specific
examples:

10 It'lAGE 'Tot-:::.l "" .. 22.0
20 H1AGE ~;A,2::,1?A

60 OUTPUT
70 OUTf:'UT

80 OUTPUT
90 OUTPUT

:E:l' 1,.):3HIG 10;C1,C2,C::::

:::: U:3ING 20;f71$,8$

S3$ IJSIt'lG 'r'lDDD.DD';T(1),T(2>

':H! .. :PR' U:~;ING I$;N$,A

17

18 Section 3: Formatted I/O Operations

In the general forms, device code represents a list of one or more device codes (one for each output
device). Each device code must be preceded by a colon. Commas separate the successive codes in the list
(for example, ' : 01, : 02,. : 03'). The device code field can be occupied by the name of a string variable
that contains the list of device codes. The symbol output image represents a proper list of image specifiers.
The image specifier list may be a literal enclosed in quotation marks or the name of a string variable that
contains the specifier list. The specifiers within the list must be separated by commas. The list of items to
be output is represented by output list. You may use either commas or semicolons to separate items within
the output list. All spacing is controlled by the image specifiers, so a semicolon has the same effect as a
comma. As with the simple OUTPUT statement, the output list can contain numeric or string data (vari­
ables or constants), and a trailing semicolon will suppress the output of a final EOL sequence.

Note: You may substitute a valid HP-IL device address for the device code field in an OUTPUT
statement; however, only one device address may be specified. If you want to specify more than one
device, you must use device codes. If the intended destination device has already been addressed to
listen. you may leave the device code field blank. Refer to appendix 8 for a complete definition of
OUT r:' U T statement syntax.

Numeric Image Specifiers

The image specifiers in this group are used to control the format of numbers that are output. These image
specifiers are the same as the F' r~ I H T image specifiers that may already be familiar to you. Since there are
Illany numeric image specifiers, these specifiers are broken down into three categories in the following
discussion. The categories are digit specifiers, sign specifiers, and punctuation specifiers.

Digit Specifiers. 'These arB the image specifiers which form the digits of the number. They allow you to
det.ermine the number of digits before and after the decimal point, display or suppress leading zeros, and
control t he inclusion of exponent information.

Image Specifier

d,D

Meaning

Causes one digit of a number to be output. If that digit is a leading zero, a space is
output instead. If the number is negative and no sign image has been provided. the
minus sign will occupy one dIgit place. If any sign is output, the sign will float to a
position just left of the felt-most digit.

Same as [I, except leading zeros are output.

Same as Z, except leading zeros are replaced by asterisks.

Causes the number's exponent information to be output. This is a 5-character se·
quence including the fetter E. the exponent sign. and three exponent digits.

k ,K Causes the number to be output in compact format. No leading or trailing spaces are
output.

Sign Specifiers. These are the image specifiers used to control the output of sign information. Note that
if no sign specifier is included in the image, negative numbers will use a digit position to output the minus
sign.

•

Section 3: Formatted 1/0 Operations 19

Image Specifier Meaning

s,S Causes the output of a leading plus or minus sign to indicate the sign of the number.

m,i'l Causes the output of a leading space for a positive number or a minus sign for a
negative number.

Punctuation Specifiers. These are the image specifiers used to control the output of punctuation within
a number, such as the inclusion of a decimal point.

Image Specifier Meaning

Causes an American radix point to be output (a decimal point).

t-,R Causes a European radix point to be output (a comma).

e,C Usually placed between groups of three digits. Causes a comma to be output to sepa-
rate the groups of digits (American convention).

p,P Same as C, except a period is used to separate the groups of digits (European
convention).

It would be unrealistic to attempt examples of all possible combinations of these numeric image specifiers.
The following examples show some of the many ways of combining these specifiers and the resulting
output when numbers are sent to a typical printer. Additional examples for many of the specifiers can be
found in the "Display and Printer Formatting" section of the HP-75 Owner's Manual.

Sample Statements

OUTPUT
OUTPUT
ClUTf:'UT

OUTPUT
OUTPUT
OUTf~UT

(.Ill"I·PUT

OUTPUT
OI...lTPUT
OUTPUT

: PR' ll-:::I~jG 'ZZZZ, [1[1' 30,336

:PF:' USING '42,20' 30,336
:F'R' USHlG '42,2[1' -30.336

:PR' U-::ING '3[1C3[1C30' lE6
: PP' USIt~G '30C3[1("3[1'

: f:'F.:' USIHG '30C3DC3D'

:PR' U::::II·1G '::;:.2,000'

:PR' USING 't'lZ.DDO'
: PF.:' USING 't·W, ODD'

: PR' U-::: I 1·1(; '2. ODE'

,5

1.2345E4

, ;:'E9

,5
,00456

(Overfiow Error)

Printed Output

~j030, :34
O~J30, 34
-030,34

1 .. (n:n:)., 000
12 .. :345

+O,~50Cl

(I , ~~, (n~1

.500
4.561::-003

Notice in these examples that. the image 2222 and the image 4 ~~ mean the same thing. The same is true
for the 0 and l specifiers. You can indicate the number of digits desired by simply placing that number in
fronL of the specifier. The use of parentheses, as in 3 (0), changes the meaning. The image 3 D means
"output one numeric quantity in a three-digit field." The image 3 ([I) means "output three numeric

quantities, putting each in a one-digit field."

Be careful of overflow conditions when using these image specifiers. An overflow occurs when the number
of digits required to accurately represent a number is greater than the number of digits allowed for in the
image. If this happens, a warning is issued and something is output so that the program cun continue.
However, it is difficult to predict exactly what will be output. The output will probably bear little or no

resemblance to the number that caused the overflow.

20 Section 3: Formatted 110 Operations

String Image Specifiers

The image specifiers in this group deal with the output of string characters. They can also be used in
combination with the numeric image specifiers for spacing and labeling purposes. All of these image speci,
fiers are the same as the P R I t~ T image specifiers, which may already be familiar to you.

Image Specifier Meaning

,;:I,A Causes the output of one string character. If all the characters in the current string
have been used already, a trailing blank is output.

, literal'
A literal is a string constant formed by placing text or in quotes, using a string func.

0' tion (such as CHF.:$), or a combination of the two. The character sequence specified is
tI literal" output when a literal image is encountered. When the literal is enclosed in quotes, the

quotation marks themselves are not output. Uteral images are commonly used for
labeling other output.

,,' ".' Causes the output of one space. ,"",-,

k,I __ Causes the string to be output in compact format. No leading or trailing spaces are
output.

The following examples show some of the many ways of using these specifiers and the resulting output
when the characters are sent to a typical printer. Additionul examples for these flpecifiers can be found in
the "Diflplay and Printer Formatting" section of the Hp·75 Owner's Manual.

Sample Statements

n 1",1 T F' 1,.1-1 , f"r;: ,
U:3 J He ,

~5n fI
, ,

OUTPUT' , P f~ , I IS I tole ,
1< :3 i':: 1< , ,

OtITf')UT , PR , IJ ':: J NG ,
K 3)<: K , .

1.j It'lfiGE '''j''CITf'll... _. ',:::;0";'-,:,,1<

20 1~1?5 @ A$;'CARS'
"31;:'1 fJI.lT'f:"UT ': PP' U::, I He 1 n

Printed Output
,

i'~
, , 'OJ' ,
, UNCLE , , SAM , , Ut-1CI... r:: SAM , q'-' , 99 :} .,' Q " ,

T , H :~:: TOTHL - 125 CAPS

Not.ice that the :'-': und n image specifiers ullow a number hefore them in the same fashion as the IJ, :, and
l specifiers. The K specifier works equally well with string data or numeric data. String and numeric
image specifiers may be combined in the same image statement.

Literal images may be enclosed in either single or double quotation marks (' t or " ") when included in
an 11'1ICH~r':' statement. You may include u literal image directly in an OUTPUT statement provided that
you do not use the same form of quotation marks to enclose both the lit.eral and the whole output image.
Thus, the following statement.s could be used:

50 (tUTPUT PF'
, U:::; I HG " To t a I - " f'" ,'"

, , ". .
~~:O UUTFUT , PP

,
US I HG , To I a J = , f' ; :.\ .

However, the statement OUTPUT ':PP' U:::JHG 'Total=",K .:;,:resultsmanerrorbe-
cause the comput.er is not able to distinguish the nested quotation marks.

•

Section 3: Formatted 1j0 Operations 21

The End-of-Line Sequence Image Specifier

The end-of-Iine sequence image specifier controls the output of end-of-line sequences. An end-of-Iine se­
quence consists of one or more characters that are normally output after the last item in an output list.
The default end-of-line sequence of the HP-75 is a two-character sequence: a carriageMreturn followed
hyaline-feed. You can change the normal carriageMreturn/lineMfeed EOL (end-of-line) sequence to
any desired sequence of up to three characters by using the E ~~ 0 l I t·j E statement. This command can be
executed either manually or in·a program and is described in the HP-75 Owner's Manual. If an EOL
sequence is output, it will be the current EOL sequence set by you or your program with the EHDL I t·IE
statement. The end-of-line sequence image specifier does not alter the EOL sequence, but simply causes
one to be output.

Note: In this manual EOL sequence refers to the current end-of-line sequence that you (or your
program) have established with the E H 0 L I t~ E statement, unless otherwise noted. The symbol EOL

is used in the examples to indicate the EOl sequence.

Image Specifier Meaning

..' Causes the output of an EOl sequence. Often used for skipping lines in a printout.

The / may be placed anywhere in the image list and may have a number before it to indicate how many
EOL sequences are desired. A typical use of the / image is shown by the statement:

UUTI-'UT ':PP' LJSIHG 'f~·.,4/,f:::' ;~~I:~~,E:$

If the dest.ination is a printer, A$ is printed, followed by four blank lines, then B$ is print.ed. If A$="HI",
B$=",JOE", tbe character sequence is output as follows:

You can fmppress the output of the final EOL sequence by ending the oln [-·UT statement wit.h a semi­
colon (.:). Por example, a semicolon could be added at t.he end of the above statement:

OUTPUT' :PF:' USIt-IG '1:::.,4.-·'.,1-::' ;A$,8$;

The resulting output follows:

The string H I is printed and four lines are skipped. The string . .1 (I E is not printed, hut is trano;mitted to

the printer's buffer.

Note: A reference list of all OUTPUT image specifiers is given in appendix B under HHiGE.

22 Section 3: Formatted I/O Operations

Formatted E /···/·r E F.:

Ufling- Er-nER statements with image specifiers gives you a high degree of control in two areas;
I. AIO(:urately describing to the computer what the incoming data looks like and what should be done

with it.

~. Precisely specifying what conditions constitute the end point of the niTER statement itself.

This diflcussion deals with data formatting images first, then presents the terminator images. The HP-75
UI-I(!H Hn enter image when some form of Et-HER U::;: I NG statement is encountered. There are two forms of
thi" 1-11 flLement:

:;IIIIIMied syntax ____________________________________ _

.I ~ I J t1 f'l C, L enter image

::'(1 1:'t-1TEP ':devicacode' USINGI0;enferfist

Hllllphlled syntax-___________________________________ _

f,,1111 f:,: ':devicecode' USIHG 'enter image' ,:enterlist

'I'll(' l!xnmpJes above show the general forms of the EtHER 1..1:3 I tlG statement. Here are some specific
eXlltlllJll's:

'III 1~'1HC;f:~ 2(A),K
"II 11'11'1(';[~W,2)<:,:3D

,',II r:JI'I"FF: ':82' USIHG lOjH$,8$,;<
,.'1,,1 r,t'lTEf;,: ':TP' U'3It'IC ~:OjI, . .J
:n,1 I:.HTEI<: 82$ USlt'lG '%,8A,/,K'jQ$,R$
"11 HIT'[P ':TP' U'3H1G Ujt-.i$,A

'I'IH' gl'llCral forms use the same type of symbols that were used to represent the OUTPUT statement. In
II\{' I II I l f;,: statement, device code stands for the device code of the device from which the data is to be
l'I\II'1"I'd, enter image for the list of image specifiers, and enter list for the list of variables to be entered.
Noh' Ihat. the EHlER statement will accept only one device code, and that you may use string variables in
phll'l" 0(' the device code and/or enter image fields. As with simple nlTER statements, the enter list must
eontain either string or numeric variables. You can't enter into a constant.

Note: You may substitute a valid HP-IL device address for the device code field in an EtHER state­
ment. If the intended source device has already been addressed to talk, you may leave the device

Code field blank. Refer to appendix B for a complete definition of E t'l TEl': statement syntax.

•

•

Section 3: Formatted I/O Operations 23

Data Images

The image specifiers in this group are used to indicate what the computer should do with the incoming
stream of data. The basic choices are:

1. Use characters to build a numeric variable.

2. Place characters into a string variable.

3. Skip over a number of characters.

Note: A reference list of all E H T E R image specifiers Is given in appendix B under I t1 A G [.

Numeric Image Specifiers. These specifiers are used to control the input of numeric characters, includ­
ing digits, sign, exponent, and punctuation. You may precede any of these specifiers (except 1<'.) with a
number from 1 to 255. In an E H T E R image 5 D and 0 DOD D both mean "enter five characters to be used
in building a number."

Image Specifier Meaning

d,D These specifiers all accept one character to be used in building a number. The incom-
7:,2 ing characters do not have to follow the specified format, there just has to be the right

:t' number of characters. The six different specifiers are provided so that your program
can document the expected format of the characters. and so that nrrn: and

'0' ,::; OUTf:'I",IT statements can share the same It'1nGE statement. if desired.
n'l,t'1

,::,C This specifier also accepts one character to be used in building a number. However, if
a C is present anywhere in a number's image, all commas wHI be ignored while the
number is being entered. Without this specifier, a comma would terminate numeric
entry.

e,E Accepts five characters to be used in building a number. The five characters may be
exponent information, but do not have to be.

k ,f~ Enters data into a numeric variable using free-field format (explained in section 2).

r ,R Accepts one digit and treats all commas (,) as radix symbols (to accept numeric input
in European format).

r··,F' Accepts one digit and ignores aU periods (to accept numeric input in European format).

String Image Specifiers. These specifiers are llsed to enter characters into string variables. You may
precede the A specifier (but not the K) with a number from 1 to 255. In an F]HEP. image 4A and nnnn
both mean "enter four characters into a string variable."

Image Specifier Meaning

a,R Enters one character into a string variable.

k,K Enters data into a string variable using free-field format (explained in section 2).

24 Section 3: Formatted liD Operations

Some examples are in order. Suppose the foHowing character sequence is received by the computer:

Either of the following nnER statements can be used to enter a numeric variable followed by a string
variable:

EtHEP
EHTER

:TP' USING '4D,5A' ;1,:,Y$
:TP' USING 'Z.DD,5A',:1.:.,Y$

Notice that any numeric image that accepts four characters will properly enter the 1234. String data can
be entered with an nA image if n (the number of characters) is known, or with a K if the number of
characters is unknown.

Suppose instead that the incoming data was:

I, 1 ' 1 2 1 3 1 4 1 HIE 1 L 1 L 1 0 IEOLI
The ENTEF: image would now have to include a C for the entire 1234 to be entered. For example:

EtHER
ENTER

:TP' USIHG 'C4D,I(';X,\'$
\TP' U-=:·ING 'DDDDC,,:,A',:X,\'$

Notice that the C does not have to appear at the same place in the image as the comma does in the
incoming data. However, the comma is counted as a character.

Skipping Unwanted Characters. The following specifiers can be used with incoming numeric or string
data to skip over any characters that you do not want to include in the input. You may precede the ::'::
specifier with a number from 1 to 255. In an EtH[F: image :::~:': and ::':>':.": both mean "skip three spaces."

Image Specifier Meaning

• ,1" Causes one character to be skipped .

" Causes the computer to skip characters until the next term'lUatar is received. The nor-
mal terminators are the current EOL sequence (defined with the Et~DL I tolE state-
ment) or the End Byte message.

The ::':: specifier should only be used when you have a good understanding of the structure of the incoming
data, but can be very useful in formatting operations. For example, suppose that text is being entored from
a remote computer that sends a line number at the beginning of every string. You know that the line
number information always appears in the first eight characters of each string, and you don't want t.hese
line numbers in your data. The following format could be used to strip off" the line numbers:

EtHEf;: ':TP' U:3I~,jC '8>':.,K'_:A$

e

----~-----~---------------------

Section 3: Formatted 110 Operations 25

The / specifier is used to demand a terminator (either the current EOL sequence or an End Byte mes­
sage) before going on to the next variable. Th see the effect of this specifier, assume that the incoming
data is as follows:

1 , 3 H

Note: The normal terminators are the current EOL sequence and the End Byte message. The /
specifier will cause the EtHER statement 10 skip 10 whichever terminator occurs first. The operation

of this specifier is affected by the use of terminator images (refer to the following subsection). If you

have used a terminator image to redefine the active terminators, the / specifier will cause a skip to
the first recognized terminator.

Using the statement:

E~JnEF: ':TP' USH1G '3[1,f(';i',At

causes Y to get the value 123 and A$ the value HI. However, if the statement:

EtHEF: ':TP' USIHG '3D .. ./,f<' ,\',A$

is used, then Y gets the value 123 and A$ becomes Bi'E. The ./ specifier causes the computer to skip all
characters after Y is satisfied until it receives the EOL sequence. The entry into A$ begins with the first
character after the EOL sequence. Without the _____ specifier, the entry into A$ begins as soon as the :~: [I

field is exhausted.

Terminator Ima,ges

Terminators (normally the current EOL sequence and the End Byte message) serve in two roles for the
on ER statement. If a terminator is received in a field of data (before the variable is otherwise satisfied),
it will serve as a field terminator and will terminate entry into the variable. The EtHER statement will
begin entry into the next variable. Once all variables have been satisfied, a terminator will serve as a
statement terminator and will terminate the E H T t~ R statement. indeed, a statement terminator is nor·
mally required in order to go on to the next statement in the program. The terminator that terminates
the EHTEP statement can be the same one that satisfied the last variable. Note that terminators are not
required toO satisfy a variable. Data entry into a variable can be ended by satisfying an image list, by filling
a dimensioned string variable, or by the free-field entry of a trailing blank or non-numeric character into a
numeric variable.

- .. '."1'_'

4

26 Secflon 3: Formatted 110 Operations

You can redefine the active terminators by using a terminator image. By using the appropriate termina­
tor image specifier, you may eliminate the current EOL sequence, the End Byte message, or both as
statement terminators. You may also establish the ETO (End Of Transmission - OK) message as a
terminator. The terminator image specifiers, and their various combinations, are listed in the following
table:

Image Specifier Meaning

Eliminates the current EOl sequence as a terminator. When this specifier is present,
the Et·jTER statement terminates only on an End Byte message.

, Eliminates the End Byte message as a terminator. The EN T E R statement terminates
only on an EOl sequence.

;.; Establishes the ETO (End Of Transmission - OK) message as a terminator. The
EHlER statement terminates on an ETO message, End Byte message, or an EOl
sequence.

#!or!tf Both the current EOl sequence and the End Byte message are eliminated as termina-
tors. No terminator is required. The ENTER statement terminates when the last vari-
able is satisfied.

#.~.; or %# Eliminates the cllrrent EOl sequence as a terminator, but establishes the ETa mes-
sage. The ENTER statement terminates on an ETa message or an End Byte
message.

I ;,~ or \ I Eliminates the End Byte message as a terminator, but establishes the ETa message.
The ENTER statement terminates on an ETO message or an EOl sequence.

H ! ;~ Eliminates EOl sequence and End Byte message as terminators. E t~ T [R statement

(any order) terminates only on an ETO message.

Most data entry situations do not require the use of terminator images. If you are entering data from a
device that outputs the carriage-return and line-feed characters after each data item, the Et·lTER
statement will terminate on this EOL sequence (provided that carriage~return/line~feed is the current
EOL sequence). In most other cases, the Et·nER statement will correctly terminate when an End Byte
message is received. Normally, it is not necessary to specify which terminator to use, since the E WI E f;:
statement will terminate on the first one received. However, terminator images do give you the flexibilit.y
to handle certain specialized applications.

If you want the E 1,1 T E R statement to terminate only on an End Byte message, you can suppress the
current EOL sequence as a terminator by including the # specifier at the begining of the image list. 'rhe
following statement will terminate only when an End Byte message is received:

EHT[f~ ':E1' USH1G '# .. K .. 50'.:A$,,81

Note: Terminator image specifiers must be listed first in the EHTEF: image list (before the first
comma). You cannot precede them with a number.

The ! specifier suppresses the End Byte message 'is a terminator. The following statement will terminate
only when the current EOL sequence is received:

ENTER ': E2' USHlG '!.' 40 .. 5A'; i<., '1'$

•

•

Section 3: Formatted 1/0 Operations 27

Eliminating the Statement Terminator Requirement. Normally, the nnER statement must see the
current EOL sequence or an End Byte message at the end of the incoming data before the program can go
on to the next statement (the ETO message may be specified as an alternative terminator). If there is no
statement terminator at the end of the data, a record overflow error will result. You can use the #! (or
I i~) image specifier to eliminate the requirement for a statement terminator. This specifier eliminates the

EOL sequence and End Byte message as terminators, and causes the E~HER statement to terminate
when the last variable is satisfied. In the following example, the EtHER statement terminates after the
variable Y is satisfied.

[HTEF ':E1' U:::,ItlG '#!,4D"GD'jX,Y

If 10 numeric characters are received, the two variables are satisfied and the statement terminates.

Note: The f< and _____ specifiers override the #! (or I #) specifier. If a f':' or ./ is present in an ENTER

image, a terminator is required for that field.

Using the ETO Message As a Statement Terminator. If you are unable to use either an EOL se­
quence or an End Byte message to terminate an E t'l T E R statement, you may use the % specifier to estab­
lish the ETO (End Of Transmission ~ OK) message as an alternative statement terminator. The
following statement terminates when an EOL sequence, End Byte message, or an ETO message is
received:

:[13' U:::lt-JG ';';,K,5A' ,:n:t;"E:J

YOll may combine the n or ! specifiers with ~~ to suppress the EOL sequence or End Byte message as a
terminator, while establishing the ETO message. The following statement will terminate on either an End
Byt.e message or un ETO message:

If you want only an ETO message to terminate your statement, specify # ! %:

I:H'ILI~ ':IJ~~~' U:~:It-jG '#I:-.,k,':::;A'_:At,Bt

There's Always an Exception. Not all terminator problems are a proper job for terminator images.
Consider the exmnple of a name field (string) followed by an age field (numeric). Suppose that the names
arc variable in length and separated from the age by a comma. If the age came first, this would not be a
problem silH:e the comma would end the entry into the numeric variable. But since the string data is
entered first in this example, the task is a bit trickier. You could input the entire record into a temporary
string variable, then use the POS function and string subscripts to extract the name and age fields. This
hypothet.ical situation emphasizes the importance of knowing the nature of the datu you fire trying to
enter. Some problems are handled by terminator images, and some are solved by different means, but all
require thought by the programmer.

28 Section 3: Formatted 110 Operations

Changing the Size of the E tH E I'~ Buffer

The EtHER statement receives data into a reserved area in memory caBed the E~1TEF: buffer. This buffer
is also used by other statements that enter data (for example, Et~l I 0$ and AD ORE S::;:). The default size
of this buffer is 256 bytes. Thus, the EtHER statement reads up to 256 bytes into this buffer, then places
this data into the appropriate variables when the statement is terminated. You can change the size of the
Et~TE~: bufler with the 10.':; I 2: E statement. If an E t·llER statement receives more than 256 bytes (or the
size set with lOS I ZE) before a terminating condition is reached, an error will result.

The IOSIZE statement allows you to set any EI'lTEF: buffer size from 1 to 24,575 bytes. The general
form of this statement is:

[lOS I ZE buffer size

where buffer size is a number from 0 to 24,575 (a zero or negative value sets the default size of 256 bytes).
You should set lOS I Z E to be at least the maximum expected record size plus one byte.

A Word of Advice About Images

Choosing the proper image for your application can often mean the difference between success and failure
for your program. However, considering the wide range of peripheral devices and the near-infinite variety
of possible data formats, it is understandably difficult to pick just the right image. Even experienced
programmers will go through a period of trial-and-error before finding the perfect combination of image
specifiers.

ThDre is an old, but true, saying in the world of computers: "You can't program a computer to do some­
thing that you don't know how to do yourself." This is an appropriate sentiment for formaUed I/O. If you
don't know exactly what character sequence needs to be output or what an incoming sequence contains, it
is very unlikely that you will know eactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what
data is generated by your program, so all you need to do is pick a desirable form for its output. The
primary caution here is to avoid image overflow conditions.

But how can you determine the exact nature of the incoming data when you can't get it into the computer
to study? Fortunately, there is a way to inspect a totally unknown character sequence. Any sequence of
hytes, including potential terminators, can be entered with the #! ,nfi image (where n is the number of
characters to read). For example, the statement:

EtHER ': [11' USIt-1G '#! _, lOA'; A$

willl'ead 10 bytes as the equivalent ASCII characters. You may then use the HEX$ function (refer to
appendix D) to convert these ASCII characters to a hexadecimal representation. Once you know the exact
nature of the incoming data, the job of choosing image specifiers will be much simpler.

J

Section 4

Sending and Receiving HP-IL Messages

The HP-75 I/O ROM provides enhanced versions of the SEN 0 I 0 statement and nn I 0$ function that
are compatible with the SEt-1D I 0 and E HT I 0$ of the HP-75 I/O Utilities Solutions Book. A 0:::Et-1D state­
ment, similar in syntax to the HP Series 80 S E t·j 0 statement, is also provided for software compatibility.
All three instructions enable you to source individual HP-IL messages. The S Et·l [I I 0 statement allows
yOlt to send 'commands and data to specified HP-IL devices. The E H T I 0 $ function allows you to send
commands to a specified device and return data as the value of the function. The snw statement allows
you to send any HP-IL message. 'Th use 0::: E t-l[I I 0, EHT I 0$ J and SEND successfully, you must follow
HP-IL protocoL A full discussion of HP-IL protocol is beyond the scope of this manual. Refer to the
following sources for a complete discussion of HP-IL protocol:

• Kane, Gerry, et a1. THE HP-IL SYSTEM: An Introductory Guide to the Hewlett-Packard Interface
Loop. Osborne/McGraw-Hill, Berkeley, California, 1982 .

• Hewlett-Packard Company. The HP-IL Interface Specification. HP part number 82166-90017,1982.

The S E 1"·1 [I I () Statement

The ::;: E HOI 0 statement is used to send commands and data to HP-IL devices. ::: E t 1 D I [) can be issued
from the HP-75 keyboard or executed in a BASIC program. The general form of this statement is:

s,mplified syntax --------------------------------------,

'::: E t 1 [I I 0 I : device code I , 'command list' , 'data list'

The three parameters are string expressions. The device code parameter is a list of one or more device
codes, each representing a device that will receive HP-IL commands or data. The command list is a list of
HP-IL commands to be executed, separated by commas. The commands may be specified in the form of
HP-IL command mnemonics. The commands that you may use in a :3END I 0 command list are listed in
appendix C. The data list is a character string to be transmitted as data. Any of the three parameters may
be specified with either a literal enclosed in quotation marks or the name of a string variable that contains
the quoted string. A complete definition of the syntax of the S E ~'l 0 I 0 statement is given in appendix B.

29

30 Section 4: Sending and Receiving HP-IL Messages

Most of the time, S E H D I 0 will be used to activate a device as a listener. The device to be activated can
be specified with either the device code parameter or the command list;

• Use the device code parameter when you know what device code has becn given to the intended
device. You can specify one or more device codes in this parameter (for example: ", [) l' or
, : F'r;:., : T~) '). You can send a LAD (Listen Address) message to the specified device(s) either by

leaving the command list null, or by specifying LAD:M: in the command list. (Only one LAD# command
is needed, even if more than one device code is specified.) LADH can be used in combination with
other HP-IL commands, and it may appear anywhere in the command list .

• Use the command list when the HP-IL address of the intended device is known. To do this, specify
LAD;-r, where n is the HP-IL address of the device. This will cause a LAD message to be sent to
device n regardless of what appears in the device code field. You may have any number of LADn

commands within a single S E H [I I 0 statement, and you may have both l.. R D nand LAD H in the same
SEt-lD I (I.

The following '~; E t·lD I 0 statement sends the string HE L L 0 to the devices named U 1 and 0;:::, and also to
the devices with addresses 5 and 6:

:3Et-iD I I~I ' : D 1. -' : 02 r .' 'UW# -' L RD5 -' LRD6 ' -' 'HEL L (I I

It is not necessary to supply values for all three parameters. If you wish to omit a parameter, you must
specify a null string. The following example of SEN [I I (I sends no commands, but sends the string DR T' H
to any devices in the loop that already have active listener status:

SlNOIO ' " I I, 'DRTA'

You may substitute the name of a string variable for any of the three parameters, as long as you have
defined the variable. In the following example, the SEND I U statement sends the string DtiTA to the
devices named PR and TIJ. (Leaving the command list null generates a l.. f'W:H command.)

10 r·I:·I:· =' :PP-, : ""I"I,.i ,

.~:0 :::;Et-lDIO 1-1$.," .. 'DfHF1'

The ~:; L ~j IJ T U statement processes parameters from left to right. Processing proceeds as follows:

1. If the device code parameter has been specified, :3END I (I determines the HP-IL address of the speci­
/led device. This device address is used when processing the command list. If more than one device is
specified in the device code field, ::;; [~'l [I I CI determines the address of each device. If the device code

field is null, then 110 action is taken in this sLep.

2. The command list is processed. Commands are sent one at. a time through the loop. RFC (Ready For
Command) messages are sent automatically after each command.

:1. After all commands are sent, the data specified in the data list is sent around the loop, one ('.haracter
at a time. If a listener device sends an NRD (Not R{)ady For Data) message, transmission of data is
terminated. You can recover from this condition by using the snm~:' function (refer to the sub­
heading "Resuming Data Transmission With :3 L~: ~·llJ?").

4. After all commands and data have been sent, the UNT (Untalk) and UNL (Unlisten) messages nre
sent around the loop, deactivating all talker and listener devices. If you want the talker and list.ener
devices to remain active, you can suppress the automatic UNT/UNL by including a TL + anywhere in
the command list.

•

)

Section 4: Sending and Receiving HP·IL Messages 31

You can use SEND I 0 to send Hp·IL commands around the loop without sending data. For example, you
can use the following S [tow I 0 statement to address the loop:

SE~j[l I (I , , , 'AAU., RAD 1 ' , ' ,

The AAU (Auto Address Unconfigure) command clears all device addresses in the loop, then the AADI
(Auto Address) command automatically readdresses the devices in the loop starting with address 1. A A D 1
should appear last in the command list,

Resuming Data Transmission With ,,; EfW?

If a device in the loop sends an NRD message while SEND lOis transmitting data, the transmission
terminates. You can resume transmission from the point of interruption by using the the ':;:: [tolD?
function.

';:;:Et-l[I':' is a function that requires no parameters. It returns an integer value representing the position in
the data list of the character after the last one that was successfully sourced in the last .;:;: E H [I I (I state­
ment. If the data list in the last SE~lD I 0 was null, or if the last SEND I (I was successfully completed,
:::; E t·j [I? returns a (1. (If a device in the loop sends an NRD message after the last character was sent,
::::[t·W? will return a value equal to the length of the string plus one).

The following program is an example of how to use 3EtW? The program will send the characters
I 10'.1'-" [«':::I HP-75 to the fourth device in the loop:

10 fI$:::: 'I love my HP-7'::,'

28 SENOIO 'LA04',Af
30 IF SE~ID0 : 0 THEN GOTO 50
41') ::::[t·jD t Cl

50 Ft-iD

'LAD4' ,AfCSEND0]

If the first SEt-iD I 0 (statement 20) successfully transmits the entire string, SEt-W? will return a value of
zero. This will cause a branch to statement 50, completing the program. Suppose that an NRD message is
received after the ::;EHD I I) in stutement 20 sends the r" in 11)'::1. SEHD I 0 will stop transmitting at this
point. The :::: f.:: t·j D"" function returns a value of 9, since the II', is the eighth character in the datu list (and
the last one successfully sent). In this case, statement 40 is executed before the program ends. In state­
ment 40, :::: [NO I (I sends a substring of A$ that star\.s at the ninth position. The substring has the value ':-.1

IW···75.

If the ::.: E H [110 in statement 20 successfully sends the entire string and the device in the loop then sends
an NRD message, the value of :3EHO? will be the length of the string plus one. Statement 40 will be
executed, but will send the null string. Thus, the program sends the complete string I J. 0\'00' [«'"I HP-"?5

in any event.

32 Section 4: Sending and Receiving HP·IL Messages

:3 E H D I (I Restrictions

S E ~'l D I 0 causes the HP· 75 to become active as a talker. Therefore, although it is possible to issue TAD
(Talker Address) commands with SEt~D I 0, doing so will cause more than one talker to become active in
the loop. You should not use SEN 0 IOta address devices as talkers since this will result in a deadlock
condition.

If 0 I SPLAY I S or PR I tHER. I S devices have been assigned for the HP·75, the talkers will automati.
cally be deactivated even if TL + is specified in the command list. Although TL + will stop :;:; END I 0 from
automatically deactivating listeners, HP-75 I/O operations not related to :;:;END I 0 may cause deactiva·
tion when D I SPLA'i I S or PR If HER r:3 devices are in use.

The F:I"·rT I I) ~,: Function

The E t~ T I 0 $: function is used to receive data from other Hp· II, devices. In contrast to S E t·1 0 I 0, which
is a statement; ENT I 0$ is a function, and returns a character string value. The string returned is the
data transmitted by the specified HP-IL device. The general form of the ENT I 0$ function is:

simplified syn\ax-___________________________________ -,

EHT I 0$ (, : device code' , 'command list')

The two parameters are string expressions. The device code parameter is a list of one or more device
codes. The command list conRists of one or more HP-IL commands, separated by commas. 'rhe commands
may be specified in the form of HP-IL command mnemonics. The commands that you may use in an
EtH I O~l command list are listed in appendix C. Both parameters may be specified with either a literal
enclosed in quotation marks or the name of a string variable that contains the quot.ed string. You may
specify the null string for either of the parameters, hut not both. A complete definition of ENT I Ot
syntax is given in appondix B.

Most of the time, EN T I I).t will be used to activate a device as a talker. The device to be activated can be
specified with either the device code parameter or the command list:

• Use the device code parameter when you know what device code has been given to the device. You can
talk or listen address the specified device by including T A [I # or UW # in the command list. If you
leave the command list null, TAD#, SDA is automatically generated. The H"m# and L.AD# com­
mands may be used in combination with any other HP-IL commands, and may appear anywhere in
the command list. If TAD# is specified in the command list, only one device code may be specified
(otherwise an error will result) .

• Use the command list when the device's Hp·IL address is knOWll. 'Ib do this, specify TriOn or LADn,
where n is the HP·IL address of the device. This will send a TAD or LAD message to device n
regnrdless of what appears in the device code field. Both T R [I nand L A [I n may be used in conjunc­
tion with other HP-IL commands within a single EtH I 0$ instruction. You may also combine TAOn

or TAO# with LADn or LAD# in the same EHTII)$.

s

I~~~~~~--~~-------'-~--~-~--~-~-~--~-

)

_£

Section 4: Sending and Receiving HP·IL Messages 33

The following example shows how you might use the Et-1T I 0$ function in a BASIC statement:

70 A:t- = ENTIO$:(' :01', 'TAD#,:::DA')

The E H T I 0 $ function addresses the device named 0 1 as the talker, then sends an SDA (Send Data)
message. The data sent by device 0 1 is returned by the EN T I 0 $ function as the value of A$.

With EtH I 0$., either the device code parameter or the command list may be null, but not both. If null
strings are specified for both parameters, an error results (see appendix E).

E~lT I 0:;: processes parameters from left to right, as does SE HD I O. Note, however, that Et·1T I 0$ does
not have a data field. This is because EHT I 0$ causes the HP-75 to become active as a controller and a
listener only; it can transmit commands and receive data, but it cannot send data. Processing proceeds as
follows:

1. If the device code parameter has been specified, EHT I 0$ determines the device addresses in the
loop. These device addresses are used when processing the command list. If the device code field is
null, then llO action is taken in this step,

2, The command list is processed. Commands are sent one at a time through the loop. RFC (Ready For
Command) messages are automatically sent after each command.

3. Data is collected from the loop. The value returned by the E H T I 0 $ function will be the data col­
lected in this step. Data collection terminates when one of the following conditions is met:

• An End Of Transmission message is received. The ETO (End Of Transmission - OK) message
will terminate data collection unless an ET-- command is included in the command list. The ETE
(End Of Transmission - Error) message will always result in termination.

• The number of Data Byte messages exceeds the limit set with the :::? '" command. The default
value is either 256 bytes or the value set with lOS 1;:-:: [:. The HP-75 sources an NRD message if
the limit is exceeded.

• A logical end·of-record character or sequence is received. If this occurs, an NRD message is
sourced. Refer to the subheading "Defining Logical End-of-Record" for more details.

End-of-line sequences fire treated as data by EHT I Ot. If EOL sequences are received, they are
included in the string returned by the E tn I 0$ function.

4. UN1' (Unlalk) and UNL (Unlisten) messages are sent around the loop to deactivate all talker and
listener devices. If you want the talkers and listeners to remain active, you can suppress the automatic
UNT/UNL by including the TL + command in the command list.

The ..;.:;=:'" command is used to set the maximum number of bytes that the Et'l T I 0$ function will read. If
no :=:;2= command is included in the command list, the maximum number of bytes will be the current size
of the EtHER buffer. The default size is 256 bytes. You CUll set the size of the E IH E F: buffer to any value
from 1 to 24,575 bytes with the 10';;: I ZE statement (refer to section 3). If a :;::2= command is included in
an E 1·1 T I 0 $ command list, the specified size overrides the E 1,1 T E R buffer size set with I 1):3 I ? E for that
E. I,ll J C,I$ only. The maximum size that you may set with the ~::;:: = command is 32,767 bytes (unless [I A­
is also specified in the command list). 'rhe syntax is :32=:":XX::-0< where ::,n'::XXi<: is a decimal number in
the range I to 32767.

34 Section 4: Sending and Receiving HP-IL Messages

The D A - command prevents the E t-j T I o:t function from reading any data into the computer. EN T I 0 $

returns the null string if DA- is included in the command list; however, data will be transmitted from the
talker to any active listeners in the loop. If SZ"" is not specified, the maximum number of bytes transmit­
ted will be the current value of lOS I :2 E (default = 256). If both 0 A - and S Z "" are included in the
command list, sizes up to 999,999,999 bytes may be set. The syntax is 3Z=XX:'<XXX)<XX where
i<i<>;;,;::<;;:·:;;:·;i<>; is a number in the range 0 to 999999999. If 82=:0 is specified, an unlimited number of
bytes will be transferred from the talker to any active listeners. O:::2=:0 cannot be specified unless OA-·· is
also specified.

An example may clarify this. In the following statement E t-j T I 0 ~t addresses device 1 as the talker and
devices 2 and 3 as listeners, then causes the talker to send its bytes to the listeners:

12:i:J 8$:::: E-:tn I 0:1; -: ' I., I TAD!., LAD?, LAD3, DFI-"., :;Z:=;8, SDA')

The O::.~>8 command negates the size limit on the number of bytes to be read. The [IFj- command causes
ENT10J to return no data (the null string is returned for B$). Thus, the SDA command in the above
statement causes the talker to send as many bytes as it has to send, and listeners 2 and 3 to receive the
transmitted data.

Defining Logical End-of-Record

You can define a character or sequence of characters to serve as a logical end-of-record during trans­
mission. When the logical end-of-record is received, transmission will be terminated. The data that has
been collected up to the point of termination will be returned by E Irr I IJ $. You can define the logical end­
of·record by including one of the following commands in the EHT I 0$: command list:

TFU YOll can specify the current EOL sequence as a logical end-of-record by
including TR1_ in the command list.

T r~ : You can specify any ASCII character as a logical end-of-record by includ­
ing TR: :,,:~.; in the command list, where ::,0:: is the hexadecimal representa­
tion of the ASCII character number (you cannot specify a null value for
:':),

T F: r.: YOIl can specify any desired string of up to six characters as a logical end­
of-record by including TRCstringJ in the command list. Note that the
string is delimited with brackets rather than quotation marks. You can­
not include the] character in the string. If the string includes quotation
marb, they must. not he tbe same form (single or double) that is used to
delimit the command list itself.

TF: I You can use the End Byte message as a logical end·of~record by including
TR I in the command list.

Here is an example of how you might use logical end-of-record: Suppose that the data you are receiving
consists of lines of text with a linc~feed character separat.ing each line. Rather than having EtH I 0$
return 256-character strings with embedded lineA feed characters, you may wish to treat each text line as
a logical record. To accomplish this, you would simply include T R : 0 A within the command list. This
command establishes the line-feed character (ASCII decimal code 10, hexadecimal OR) as the logical
end-of-record. Each time E I~ T I (I $ is executed, it will return a string containing just one line of text. The
line-feed character will be included in the string.

•

7

7

Section 4: Sending and Receiving HP-IL Messages 35

Enhanced Printing Control

You can have an EOL sequence inserted into the data string automatically each time an End Byte mes­
sage is received from the talker. If you include a CL + command in the command list, a carriage­
return/line-feed sequence will be inserted after each End Byte message. If you use the E L + command
instead, the current EOL sequence (established with the ENOL I HE statement) will be inserted. Suppose
that you want to receive readings from an HP-IL device that transmits Data Byte messages followed by
End Byte messages, then print the readings on a printer. If these transmissions were printed as received,
the readings would all be on one line with no spacing. Specifying E L + will cause the current EOL se­
quence to be inserted after each reading, thus allowing each reading to be printed on a separate line.

E:l-I T I I] l Restrictions

The E t-j T I 0 $ function will return the null string unless either :3 0 A, :;:;:3 T, :3 0 I, S n I, n A 0 n, or I 0 : 00
appears as the last command in the command list. These commands should not appear in the command list
except as the last command. If One of these commands occurs as other than the last command, it will
cause the transmission to begin, but the transmission will be terminated after one message is sent.

If [I I '~: F' L A'll:;:: or P F: I t'l T E ~": I S devices have been assigned for the HP-75, the talker will automati­
cally be deactivated even if T L + is specified in the command list. Although T L -I- will stop EtH I 0 $ from
automatically deactivating listeners, HP-75 1/0 operations not related to EtH I 0:1': may cause deactiva­
tion when DISPLA'I 1:3 or PRINTER I:;:: devices are in use.

The ::' I::: II II Statement

Most 1/0 applications can be performed most easily by using either the (I U T PUT and U iT [F: statements,
or 'c_:Et-jDIO and EtlTIO$. However, the HP-75 1/0 ROM also provides the ::,EHD statement, which
alluws you to send any HP-IL message or sequence of meRsages. This provides enhanced capability for the
advanced user. The syntax or the :::Et-l[I statement appears tu be rather complex due to its versatility:

Simplified syntax------------------------------------l

[[
C 1'1 D byte number] [[I -T - byte number

byte string "H H byte string
[EUl_1] [EHD bbyte nU~ber

yte strrng
[[OL]

[ID\' byte number] [F'OY byte number] [DOL byte number] [[1['1"1" byte number]

[:::;AO byte number] [L I :::TEN byte number] [l nLK byte number]

leTL.] [RI10] [t~RE] [LLO] [CIF] (I.. .. PO] {r'lLA] [tnA]['~:DC] [UtH_] [I_HH]] ...

]

The :;::[HD statement enables the HP-75 to source individual HP-IL messages. You can send any
combination of the bracketed itemR listed in the above syntax representation, in any order (consider the
representation to be one continuous line). Since the :3Et~O statement deals with individual messages, a
discllssion of HP-IL messages and how to specify them follows.

36 Section 4: Sending and Receiving HP-IL Messages

Each HP-IL message is defined by 11 bits: three control bits and eight data bits. HP-IL messages are
separated into four groups according to their control bits:

• Command group: These messages convey instructions from the controller and are monitored by all
HP-IL devices (including idle devices).

• Ready group: These messages provide special-purpose communication between the controller and one
or more devices, and are generally used to coordinate the transfer of instructions and data.

• Identify group: These messages enable devices to request service from the controller. Any device can
modify these messages to indicate a service request condition to the controller.

• Data/end group: These messages convey data between active devices (possibly including the control­
ler). Any device can modify these messages to indicate a service request condition to the controller.

The SEHD statement allows you to specify messages from each of these four groups by including the
appropriate message indicators and qualifiers. An example of a message indicator is eND, which in­
dicates a command message. Message qualifiers specify a specific message, and include the byte number
apd byte string.

Sending Command Group Messages

Certain command message indicators - GTl, RMO, ~1F:E; LLO, elF, LF'D, r'1U'i, tHfi, SDC, UHL, and
Ut~ T - require no qualifiers. You may include any combination of these indicators in a SEHD statement,
and you may include them in combination with other indicators. These indicators (except elF, RMO,
rlLrl, and 1'1Tfi) cause the :=:Et~O statement to send the HP-IL commands with t.he corresponding
mnemonics (refer to appendix C), The C r F indicator causes BEt-W to send the IFC (Interface Clear)
message. The [doW indicator causes BErW to send the REN (Remote Enable) message. The t1Lfi in­
dicator causes ::n:Jm to send no message, whilo rnA causos ::;)f~:t,.][I to send the UNT message. In the
following example, the :::n~D statemcnt sends the HP-IL command messages UN'l' (Untalk), UNL
(Unlisten), and REN (Remote Enable):

~)I:I :':~[I,jIJ UIH Ut-1L Rrl0

Note: The HP-75 automatically sends an RFC (Ready For Command) message after each command

message sent by the S E t-1 D statement.

You may specify any HP-IL command message with the Ct'1D message indicator. The specific command is
indicated by eit.her a byte number or byte string. A ow byte number is a number in the range 0 through
255 (modulo 256) that represent.s the eight data bits of the command message. The byte number for the
NRE (Not Remote Enable) message is 147, representing tho bit pattern "10010011", The foilowing SEHO

statement sends the NRE message:

7 0 ':::: [: I'W C:i'][I 1 4 ~:'

You may specify more than one command byte number in a eND field, separating the successive numbers
with comm11S. The following statement sends the UNT and UNL messages (UNT is command number 95
and UNL is command number 63):

90 ~::;EHD C 1'1 [I 95,63

I

e\

•
,1

//

1

Section 4: Sending and Receiving HP-IL Messages 37

You may also use a byte string to specify a series of HP-IL commands in a CMD field. Each ASCII charac­
ter in a byte string indicates the command that has the byte number equivalent to its ASCII decimal code.
The following statement also sends the UNT and UNL messages:

110 8EHD CMD ' I)'

The underscore <-) has ASCII decimal code 95, representing the UNT message. The question mark ('7)

has decimal code 63, representing the UNL message. Note that capital and lower case letters specify
different bytes when used in a byte string. You may use the CHf;:$ function to include characters that
cannot be generated directly from the keyboard.

The DOL and DDT message indicators may be used to specify Device-Dependent Listener and Device­
Dependent Talker messages having number 0 through 31 indicated by byte number (modulo 32). More
than one byte number may be specified in a [I [I L or D [I T field.

The 8 A D message indicator is used to specify a Secondary Address message having an address in the
range 0 through 31 indicated by byte number (modulo 32). More than one byte number may be specified in
all S n D field.

The L I 8T E H message indicator is used to specify LADn (Listen Address) messages. Addresses are in­
dicated by byte numbers in the range 0 through 31 (modulo 32). The device at the specified address
becomes a listener - except that 31 clears all devices from listener status. More than one LADn message
may be specified iII a L I 8TEt·j field. The following :::,Et~O statement sets up the devices at addresses 2,8,
and 5 to listen:

.':ill SEt·n:1 UtH Ut~L LI-STEt·j 2,.3,5

You can now send the string ABC to these devices with the following OUTF)UT statement:

The HP-75 automatically becomes the talker when the OUTPUT statement is executed. You need not
specify device codes in the OUTPUT statement since you have already addressed the int.ended devices to
listen.

The TflU< message indicator is used to specify a 'l'ADn (Talk Address) message. The address n is in­
dicated by a byte number in the range 0 through ~n (modulo 32). The device at t.he specified address
becomes a talker - except that 31 clears all devices from talker status. Only one 'I'ADn message may be
specified in a TALK field. The following :=;EHO statement addresses device 3 as the talker:

2:0 SEt-lD LINT !.It·lL TflU(::3

YOLI may now enter data from device 3 with the Et-rITF' stat.ement. To enter data as a string:

40 EtHER .: fi:f

The HP-75 automatically becomes a listener when the EtHEF: st.atement is executed. You need not in­
clude a device code in the EtHER statement since the intended device has already been addressed to talk.
Once the E H T E R statement is completed, you should remove talker status from device 3 with UNT or

MTA.

36 Section 4: Sending and Receiving HP-IL Messages

Note: You should be careful when using the :::;E~m statement to address talkers. The HP-75 wlU
automatically become a talker when you execute an OUTPUT or PRINT statement. If a device In
the loop has been addressed as a talker with :3EHO, there will be two active talkers.

Sending Ready and Identify Group Messages

Ready group messages are specified with the ROl' message indicator. Identify group messages arc specified
with the 1 ["l ',' message indicator. In either case the message sent will have the data bits set according to a
byte number in the range 0 through 255 (modulo 256). More than one byte number may be specified in an
RDY or 1[1\' fwld.

Sending Data/End Group Messages

Dat.a/End group messages me specified with the D AT fi and I::: H D message indicators. You may use either a
byte number field or a byte string to specify the actual Data Byte message or End Byte message. The byte
number field may contain several byte numbers each indicating the ASCII character code of one character
in a string. Byte numbers have the range 0 through 255 (modulo 256). A byte string results in a series of
Data Byte messages that transfer the characters defined by the string. The following statements both send
the Data Byte messages that transfer the string ABC (A, 8, and C have the ASCII decimal codes 65, 66,
and 67):

,1-(1 ::::Et-jO [')flIt"! ~; ~; , 66 , 67
/0 :::;Et-l[i DflTr:! , n[:c ,

The inclusion of an EOL indicator in a [lfnl:~ or END Held causes the current EOL sequence (dGfined
with the Et-HH. II'·H:: statement) to be transmitted as a sequence of Data Byte messages. The following
statement addresses device 2 as a listener, sends the string H[I .L.C.I, and sends the current EOL sequence:

9(1 :·.f. tiD 1.11"·1"1" lIt·n" LI::::TEl-l :::: OnTF1 I H[I..LO' [Ul.

If device 2 is a printer, the EOL sequence will normally cause HE: l... L (I to be printed (provided the current
EOJ, sequence is carriage-return/line-feed).

Appendix B gives a complete definition of the syntax of the ':;[t-lD statement.

•

?

7

Section 4: Sending and Receiving HP-IL Messages 39

Application Programs

The following programs exemplify some typical I/O applications using OUTPUT, EHTER, SEt-j[I I 0, and
EtH 1 O:$:.

An HP-75/HP Series 80 Interface

The following programs allow you to set up an interface between the HP-75 and an HP Series 80 Personal
Computer using HP-IL. The HP Series 80 computer must have an HP-IL module and an I/O ROM
installed. The Series 80 HP-IL module must be set in the non-controller mode and have a select code of 9.

There are two programs involved: one for the HP-75 and one for the HP Series 80 machine. The programs
assume that the HP Series 80 machine has been assigned the device code C 1 .

Instructions:

1. Key in each program to the appropriate machine.

2. Run the programs conculTently.

3. The HP-75 starts out as the talker, the HP Series 80 as the listener.

4. The prompt N E S:3 ~1 G E will appear on the display of the talker.

5. Key in the message t.o be sent and press the return key. rl'he message will appear on t.he display of the

listener.

6. To exchange the talker and list.ener functions, precede the message with a :t.

7. To stop the programs, precede the message with a "'-..

8. Go to step 4 unless the last message began with a',.

HP-75 Program Listing:

1.0 DIt'l ntL?~~16]

;::::U It-1PlJr 't'lESSflGE nt

3~ICIIITr:'UI ':C1' At

40 IF fH--[l,l.:.J""*' THEtl ?~:)

~5('; IF fU[1 .' 1. :I :::: I '. THEt-l Et-lD

(;U GOTO :::~(j

,.'U 1::::HT[f~ ': C1' n$
80 DISP USING 120 ; nt
9li IF rH[1., 1.:1''''*' THEH ,::0
:100 IF fl$[1, 1]0-'-... ' THEH [toW
j j [.j GC,ITO ·~·,O

12(1 U"lfH~["' 'HP SERlE'::: :::IZ)-·""·}HP-75 '., f<
130 EHD

Dimensions t.he string.
Inputs message.
Sends message.
Change talkers?
Terminate communications?

Enters message.
Displays meSSAge.
Change talkers?
Terminate communications?

40 Section 4: Sending and Receiving HP·ll Messages

HP Series 80 Program Listing:

10 DIM A$[:256J

20 EtHEr;:: 9; A$

30 OISP USING 130 ;A$

40 IF A$[l,1J::o"t" THEt·j 70
'50 IF: FHn:l, 1 J::o " " THEN Et-W
60 GO TO 20
70 DISP "t'lES:;;AGE
80 J [-iPUT A$

" ;

Dimensions the string.
Enters message.
Displays message.
Change. talkers?
Terminate communications?

Inputs me-ssage.
90 OUTPUT 9.: At Sends message.
100 IF Ht[l" l.J="t" THEH 20 Change talkers?

1 J 0 I F n:t: [1 .' 1] "" " ---_. "TH E t·1 E 1'1 D Terminate communications?
1 cJl GOTO 70

130 IMAGE "HP-75--)HP SERIES 80 : ",k
140 Ft-iO

An HP-75/Modem Interface

This program allows communication betwe-en the HP-75 and another mainframe through an HP-IL
modem. The HP-75 functions as though it. is a terminal while the program is running. The program
assunws that the device code M 0 has been assigned to the modem.

Instructions:

1. Turn on the modem.

2. Dial the number for the computer on the telephone.

3. Place the phone handset. into the modem.

4. When t.he carrier J ight comes on, run the program.

5. The HP-75 now functions as a terminal. From this point on, the procedure depends on the computer
to which you are connected. Do what you would normally do to communicate with the computer from
a terminal.

Prog-rum Listing:

10 IHDTH li",W

?O Cl...£fll'~ ': ~'10'

;~;O ':::Lt-in I 0 ': 1'1C.l ' " r Ut·1L., REH, l...iiO# ' " 'parameters'
~! ~::I:::,t1D'[0 ': t'1CI' " 't-iRE' , ' ,

40 k*~KEY$ @ IF K$ #" THEN GOSU8 80

~:) 0 E t :::: EtH I 0$ (, : 110 ' " 'UHL, T riD # ! :;::OA ')

,~, 0 [I 1 :~;P E:t

?O COlO 40

CO '3[1,,1010

90 f,:ETURH

;

:t10'! 'Ut'il...,l...AD#' "K:t

Sets large width.

Clears the modem buffers.

Remote enables the modem.

Gets the key.

Gets input from modem.

Displays input.

Sends the key.

·'i .-,

I)
.

'(
'.

Section 5

Other HP-IL Statements:and Functions

The HP-75 I/O ROM provides several statements and functions that allow you to automatically assign
the loop, select remote or local control of HP-IL device.'1, check the device ID and accessory ID of HP-IL
devices, and conduct serial and parallel polls.These statements and functions are described in this section.

Assigning the Loop

The I/O ROM provides two statements - ASS I GH LOOP and nUT 0 L_O 0 r:' Ot-i/O F-" F - that enable you
to automatically assign device codes to all devices in the loop. You need not assign device codes individ­
ually with A:~;'::; I Gt~ 10. 'IWo functions - DE '..!AD D F: and [I E I,) NANE$ - allow you to quickly determine
the device address or device code of a specified device. The F-lDDF.:ESS function addre.'1ses the loop and
returns the number of devices in the loop.

The 1"1::;;:; I G 1"·1 L. CI 01" and 1'11...1 T 0 L. 0 CI F' 01"·1./ CI F F Statements

When you execute the A:=;:=; I G t'J l.. 0 0 r:' statement, devke codes are automatically assigned to all devices
in the loop. For each HP-IL devke W::~::: I Gt'i U)lJP uses the Accessory ID to determine its class, then
assigns a two-character dovice code. Each device code consists of a letter indicating the class of the device
followed by a numeral indicating its occurrence within the class. The characters used to indicate the
device classes are:

A Analytkal Instrument

B HP-IB Device

C Controller

D Display

E Electronic Instrument

G Graphic Device

I Interface

K Keyboard Device

M Mass Storage Device

0 General Device

p Printer

U Unknown Class

X Extended Class

43

I~"""""""""""""""~'

44 Section 5: Other HP·IL Statements and Functions

The first display device found would be assigned the device code 0 1; the third electronic instrument, E 3,
and so forth. Device codes are assigned in this manner for all classes except "B" (HP-IB Devices). Refer to
"Assigning HP-IL Addresses and Device Codes to HP-IB Devices" for information about this class.

The F'IIJTClLOOP statement automat,jeaily executes A:::SI (;t'J LOOP when the HP-75 is turned on. You
nlay turn this feature on or off by executing AUTOLOOP ON or f'lUTI)LOOP OFF. When AUTOLOOP is
in the on state, device codes are assigned to all devices in the loop each time the computer is turned on.
The computer "beeps" to indicate that the assignment has been made. AUTOLOOP sends the LPD (Loop
Power Down) command when you turn the computer off. AUTOLOOP remains in the on state until you
execute AUTOLOOP OF'F.

Assigning HP-IL Addresses and Device Codes to HP-IB Devices

When used in "translator" mode, the HP 82169A HP-IL/HP-IB Interface allows you to control HP-IB
devices from HP·IL, and vice·versa. (In "mailbox" mode, the interface transfers only data between HP-IL
and HP-IB.) When the HP 82169A HP-IL/HP-IB Interface is connected in the loop with an HP·75 as the
controller, you caii assign HP-IL addresses for the HP-IB devices connected to the interface. The inter­
face must be the last device in the loop, most be in "translator" mode, and must use default addressing
(refer to the lIP 82169A HP·IL/HP-IB Interface Owner's Manual). When the HP·75 assigns addresses to
the loop, the interface receives its appropriate address, then reserves all higher numbered Hp·IL ad­
dresses for the Hp·IB devices connected to it. If, for example, the interface is the fifth (and last) device in
the loop, it is assigned HP-IL address 5 and reserves HP-IL addresses 6 through 30 for HP-IB devices.
YOll must then set the address switches of each HP-IB device to one of the available addresses.

Once device addresses have been assigned, you can use n::,::: I GI·j l.. OC)P or f~ U T 0 l_ Cr U f~ to assign device
codes. The n~::: ~::: I (;t-1 LOOP statement (or n IJ T OLOOP) assigns a device code to each HP·IL device in the
loop including the HP 82169A HP·IL/HP.IB Interface. The interface is as~igned a device code of the "I"
(Interface) class (for example, I 1). Next, f~:;:: ~::: I Gli l.. 0 OP assigns a device code for each of the Hp·IL
addresses reserved by the interface for HP-IB devices. The first character of each device code is B (in­
dicating an Hp·IB Device). The second character of each device code indicates the corresponding address.
Addresses 2 through 9 are assigned the device codes 82 through E: ~~. (There can be no device code [: 1.

because the int.erface itself occupies one address.) Letters are used to represent device addresses above 9.
Device addresses 10 through 30 are assigned the device codes UFI through [,:U (address 10 is assigned
device code un, address 11 is assigned BE:, and so forth).

Now let.'s consider a specific configuration. The following devices (in order) are connected in the loop with
the HP·75-as the controller: an HP 82161A Digital Cassette Drive, an HP 82162A Thermal Printer, an
HP 3468A Mu]timeter, and the HP 82169A HP-IL/HP-IB Interface. An HP 82905B Printer is connected
t.o the HP·IB side of the interface. 'rhe HP-IL devices are assigned addresses 1 through 4. The interface
reserves addresses [) through 30 for Hp·IB devices. The AS~:: I 1:,t1 LOOP statement assigns the device
codes ~11, f:' 1, [j ,and I 1, respectively, for the cassette drive, thermal printer, multimeter, and interface.
W':~:: I Gt'l l.OUr~' assigns the device codes B5 through E:U for the reserved addresses (5 through 30). How­
ever, the reserved addresses and device codes do not yet correspond to any device. You must set the ad­
dress switches of the HP 82905B Printer to the address that corresponds with the desired device code.
(The owner's manual of each HP-IB device gives the procedure for setting the address switches.) For
example, if you set the address to 5, the HP-IB printer will have the device code E: '5. If you set the address
to 10, the device code will be BA. Note that. each HP-IB device must have a unique address greater than
that of the interface, and that a maximum of 30 devices (HP-IL and HP-IB) may be assigned.

•

I
7

Section 5: Other HP-IL Statements and Functions 45

The DE\}FIDOr, and Dn.'t~f'H'1E$ Functions

The 0 E~! ADD Rand DE V 1,1 A t'l E $ functions operate on the device code or address of a device, allowing you

to determine one if you know the other. The DE \) ADD F: function accepts a device code as its argument
and returns the address of thn specified device. The DEI,) I~At1E:f· function accepts a device address as its
argument and returns the device code as a string. In the following examples assume that the printer has
address 5 and the device code Pl.

The DE\)ADDR function can be used in the following BASIC statement:

30 A1::: DE\JADDR (' :Pl')

01::. V n D [I F: will return a value of 5 for AI.

The D I:~ I,) 1,1 n t'l E $ function can be used in the following statement:

70 fH '" DE\}NAt'iE$ (~5)

DE\) t~ A ~1 E $ will return a value of : P 1 for A$.

The I1DDr;,E:,::,' Function

The 11 [I U r,: F S~; function allows you to quickly determine the number of devices in the loop. The function
addresses all devices in the loop and returns a number. fl [I [I R E ::::~; callses the controller to aSS\lme address
0, then addresses the devices in the loop starting with address 1. Once all addreRses have been assigned,
the I-j ["I n F: E S S function returns a value equal to the number of devices in the loop (the address of the last
device). The FlDDRES:::: function might be used in a BASIC statement as follows:

'((I ::':: :::: f1 0 [I P E :::: ::::

If there are 15 devices in the loop, the fl D D F: [: ::; :::; function will address the loop and return the value 15

for X.

Note: If you have already assigned device codes for the devices in the loop, use caution when using

the no DPE:::::::: function. ftODI<:F~;:~; will cause no problems as tong as you have not added or re­

moved any devices from the loop. However, if you have added or removed devices, the addresses

assigned by the A [I [J R [:~; S function will not agree with the original addresses. This will invalidate the

device code assignments.

Remote and Local Control of HP-IL Devices

The HP-75 1(0 ROM provides four statements - REt'10T[:, l..OeR!., LOCAL LOU":OUT, and
TR I GGER - that allow you to select either remote (through the loop) or local (front panel) control of

HP-IL devices.

46 Section 5: Other HP-ll Statements and Functions

The P U1D T E: Statement

With the RnlOTE statement you can set up HP-IL devices for remote control. The general form of this
statement is:

You may specify one or more device codes in a REt'lOTE statement, or you may omit the device code

parameter. If you do not specify a device code, the REt-lOTE statement sends a REN (Remote Enable)
message to all devices in the loop.lndividual devices will go into the remote state once they are addressed
to listen. If device codes are specified, the RD10TE statement sends out the UNL and REN messages,
then addresses the specified devices to listen. Thus, the devices specified in the device code parameter are
set up for remote control. Remote mode disables a device's front panel controls except for the power
switch and the remote-mode override control (the LOCAL button). In remote mode HP-IL data bytes are
interpreted by the device as remote control commands. The following statement sets devices Eland E c:
to remote mode:

30 r;,:ErlOTE I : E 1., : E2'

A device will respond to the REN message only if it. haS been designed with HP-IL remote cont.rol capabil­
ity. Once a device has been set up for remote control, the functions that can be controlled remotely by the
HI'-IL controller depend on t.he design of the device, For example, the HP 3468A Multimeter allows you
to control its range settings remotely,

Note: The REt1 0 T E'~ statement (also the LOCAL and TR I (; GER statements) leave HP-Il devices

addressed to listen. You may remove listen-addressed status by sending the UNl (Unlisten) command

with ::-::r: 1m I 0 or ::;; nw.

The L. U C 1"1 L Statement

Wit.h the l oem .. statement you can return BP-IL devices from the remote state to local control.The
general form of this statement is:

~ ;,mp""" ,y",,,

~ .. I"."."J 1".".:.I:·:Il.. ' ~ device code'

The device code parameter is optional, and one or more device codes may be specified, If device codes are
specified, the L.OCAL statement sends out the UNL message, addresses the specified devices to listen,
then sends the GTL (Go rib Local) message. 'rhe GTL message returns the devices to local control, but
leaves them remote enabled and addressed to listen. The devices will return to remote mode when next
addressed to listen. The following statement returns Eland E2 to local control, but leaves them remote

enabled:

~:H3 LOCAL : F 1, : E2'

If the LOCflL statement is used without parameters, the NHE (Not Remote Enable) message is sent. This
removes remote enabled status from all devices in the loop. The following statement returns all devices to
local control and removes remote enabled status:

50 I ... IKAL.

1

.. lA Jl'

n

Section 5: Other HP-IL Statements and Functions 47

The LOCFII_ LOCKOUT Statement

The LOCAL LOCKOUT statement enables you to lock out the front panel remote-mode override control
(the LOCAL button) on a device that is in the remote state.This prevents an operator from returning to
local control at a critical time during remote operation. The statement has no parameters:

I LOCAL LOCf<OUT

The Locm. LOCKOUT statement sends the LLO (Local Lockout) message. To establish local lockout for
devices Eland E 2 you could use the following sequence of instructions:

10 RU'lOTE ':El, :E,::'

20 LOCfiL LOCf<OUT

Only those devices that have been designed with local lockout capability will respond to the LLO message.
You can return a device from the local lockout state to local control with the LOCfll_ statement.

The TI! I C [; E f;: Statement

You can use the T PIG G E P statement to initiate operation of devices that are designed to respond to the
GET (Group Execute '!'rigger) message. The general form of this statement is:

~ ,;mplll;,d ,yo<",

- ~ rr ' . , fh I .. , .. ,ER : deVice code

You may specify one or more device codes in the device code parameter, ur you may leave it blank. If you
do not specify a device code, the GET message is sent. All devices that have already been addressed to
listen will receive the GET message. If device codes are specified, the TR I GC [R statement sends the
UNL message, addresses the specified devices 1.0 listen, then sends the GET message. The following state­
ment causes devices [: 1, E 2, and E:3 to initiate operation:

80 'l"I?IGG[f:' ':Et .. :E2, :E:3'

The response of an HP-IL device to the GET message depends on the design of the device. The
T RIC GE F: slatement simply initiates the operation of several devices at (approximately) the same time.
For example, several temperature measuring inst.ruments could be periodically triggered with this

statement.

The possible remote control applicalions using the I<:Et'1OTE, UJCAL, LOCfH .. LOC:TCII..) I, and
TR I GGER statements are obviously numerous. However, since the respons(' of an individual device to
these statements depends on the design of the device, specific applications are beyond the scope of this
manual. The remote control characteristics of individual lIP-IL devices are covered in the owner's man­
uals for those devices. For general information about remote and local control, refer to THE HP-IL SYS­
TEM: An Introductory Guide to the Hewlett-Packard Interface Loop, by Gerry Kane, Steve Harper, and
David Ushijima, published by OSBORNE/McGraw-Hill, Berkeley, California, 1982.

48 Section 5: Other HP-IL Statements and Functions

Checking the Device ID or Accessory ID of HP-IL Devices

The HP-75 I/0 ROM provides two functions - 0 E I,} I 0 $ and 0 E \} ~l I 0 $ - that enable you to check the
device 10 or aCcessory ID of HP-IL devices. Only one device at a time may be specified in either function.

Device 10

The DEl.} I [1$ function allows you to check the device ID of an HP-IL device. The general form of this
function is:

I [1 [I.} I D:f 0:: ' : device code')

DE'.) I OJ addresses the specified device as the talker and sends the SOl (Send Device ID) message. The
device sends its device identification, and DEI} I 0$ returns this identification as a string. The device
identification that a device sends is usually an ASCII string consisting of a two-letter manufacturer's
code, a five-characler model numher, model revision, and any additional information included by the
manufacturer of the device. In the following example DEIJ I D$ is used to determine the device identifica­
tion of an I-IP 3468A Multimeter that has been assigned the device code E 1.

48 n$:o:: DEVID$ (F :E1')

The D [1,,1 I D $: function returns the device identification H f~:':3 4 (c. E: f'J as the value of A$.

Accessory 10

The IJ[~.lr'lrD$ function allows you to check the accessory ID of an HP-IL device. The general form of
this function is:

I DEVil I 0$ 0:: ' : device code' "

r,I[VF-IID:'!: addresses the specified device as the talker and sends the SAl (Send Accessory 10) message.
The talker sends its accessory identification and UE',,If''1 I [1$ returns this identification as a string. The
accessory identification is usually a single byte in which the most-significant four bits designate the device
claSH (for example, printer, mass-storage device, etc.) and the least-significant four bits indicate a specific
device. Sin~e DE I,! A I 0$ returns a character string, this eight-bit byte is represented as an ASCII charac­
ter. In the following example DE'.Hi I Dt- is used to determine the acessory identification of an HP 82161A
Digital Cassette Drive that has been assigned the device code ~11.

DE'·,'AID$ (' : t'll')

The nEVA I Dt- function returns the ASCII character (1 as the value of B$.

Note: Certain characters (for example, the Greek letters) may not be printable with your printer. Thus,

the [I [I . ..' 1 [i:t, 0 E I.,' A I 0 $ and '0:: F' (I L L:t· functions may return strings that contain characters that do

not appear in a printout. However, all characters will appear on the display.

Section 5: Other HP-IL Statements and FUnctions 49

Polling HP-IL Devices

The HP-75 I/O ROM provides three functions that enable you to conduct polls of HP-IL devices. The
S POL Land S POL L:t functions are used in serial polls. The P POL L function is used to conduct parallel
polls.

Serial Polling

The :3POLl.. and :::POLL$ functions both conduct a serial poll of a specified device. These functions
differ in the way they represent the results of the poll.

The general form of the S P (I L l.. function is:

f ~::POl.l (' : device code')

The SPOlL function sends the SST (Send Status) message to the specified device. The device responds
by sending back one or more status bytes. The value returned by the SPOLL function is the first status
byte, represented as a number. In the following example SPOll is used to conduct a serial poll of an HP
82162A Thermal Printer that has been assigned the device code Pi:

140 X:co ::,f'Oll (' :P!';'

If the print.er sends the status bytes "00100000" and "01100000", -s F' 0 L L returns 32 (the decimal value of
the first byte) as the value of X.

The S POL l $ funclion conducts a serial poll of a specified device, like :S F' 0 L 1..., but returns the result as a
character string. The general form of this function is:

\ SPOLL$ < ' : device code I)

The SPOLUf: function sends the SST message to the specified device. The device responds by sending
back one or more status bytes. The value returned by the SPOl_I_:t function is a string of ASCII charac­
t.ers representing the status bytes. Suppose that ::: F' 0 L L $, rather than "=~ POl .. , 1.. .. , is used to conduct the
serial poll of the previous example:

19(1 D¥ '" :::POlL:t (' : Pi';'

The :3POLL;(.- function convert.s the status bytes "00100000" and "01100000" to the ASCII characters
wit.h the equivalent decimal codes (32 and 96). The string returned for D$ is" ~". Note that the first
character in the string is C H R $ < :3 2), a blank space.

50 Section 5: Other HP-IL Statements and Functions

Parallel Polling

The PPOLL. function conducts a parallel poll of those devices in the loop that have been configured for
parallel polling. The f~ P (I L L function sends the IDY (Identify) message. All devices that are to be polled
must be capable of responding to this message. Each device in the poll sets one bit of the parallel poll
response byte according to its configuration. The PP (I L. L. function has no parameters, and returns a num­
ber representing the response byte.

Each device to he polled must be configured for parallel polling before you execute the PPOLL function.
Each device ifl configured by sending the appropriate PPEn (Parallel Poll Enable) message to the device
with the :::: E t-j D I 0 fltntement. The PPEn message configures a device to set the one of the eight data bits
(DO through D7) of the parallel poll response byte, and also specifiefl whether the device is to set the bit if
service is requested or if service is not requested.

Note: Normally, each device will specify its own exclusive bit in the response byte, allowing you to

poll up to eight devices at once. It is pOSSible to assign more than one device to each bit of a paratlel

poll response byte. If you do, you can poll more than eight devices. However, if two or more devices

share a bit that has been set, you wilt not be able to tell which device set it.

The PPEn message enables a device to respond to an IDY message, and definefl the response according to
the value of n, an integer from 0 to 15. The following table lists the configurations set by PPEn messages
from PPEO to PPE15. Note that PPEO through PPE7 specify that the configured device is to set the
designated bit of the response byte (DO through D7) if service is not requested. The messages PPE8

through PPE15 specify that the device is to set the designated bit if service is requested.

Note: In a parallel poll response, a device will set its assigned bit to a "1" if the condition specified in

the table exists. Otherwise the bit will be left unchanged. Also, control bit CO wilt be set if service is

requested by any device In the poll.

Parallel pon Response to an lOY Message

Enable message: Designates bit ... Device sets that bit if...

PPEQ DO
PPE1 D1
PPE2 D2
PPE3 D3 service is not requested.
PPE4 D4
PPES D5
PPE6 D6
PPE7 D7

PPES DO
PPE9 D1
PPE10 D2
PPEll D3 service is requested.
PPE12 D4
PPE13 D5
PPE14 D6
PPE1S D7

7

Section 5: Other HP-IL Statements and Functions 51

An example will show how to configure the loop. Suppose that there are two devices in the loop, a printer
at address 1, and a digital cassette drive at address 2. You should start by setting the loop to an initial
condition by executing the following:; END I 0 statement:

SEHOIO ", 'Ut~L.,PPU',"

The UNL (Unlisten) command prevents unwanted devices from responding to the subsequent commands.
The PPU (Parallel Poll Unconfigure) command resets any existing parallel-polling configuration.
Remember that SEt'lOIO automatically sends an RFC (Ready For Command) message after each com­
mand. You may now start configming the devices, one at a time, for the parallel poll. The following
statement will configure the first device (the printer):

, ,

The L A [I 1 command addresses device 1 to listen. P P [1 3 specifies that the addressed device should use
bit D5 of the parallel poll response byte, and should set that bit to a "1" if service is requested. The UNL
command unlistens the printer so that it will ignore further commands.

You may now configure another device. The following statement configures device 2 (the cassette drive) to
set bit D7 of the response byte to a "1" if service is not requested:

,:':E[-l[I I 0 ' , , 'LAD2, PPE?, UHL' , ' ,

Once you have configured the desired devices for parallel polling, you may execute the F P 0 I...l... function as
often as you want. The IDY message will be sent out each time you execute pr:'ou", and each device will
assert one hit of the response byte according to the configUration. The P P (I L L function will return a
number representing the response byte. You could poll devices 1 and 2 (configured above) by executing the
following st.atement:

"1,0 X := I":'PULL.

Device 1 will set bit D5 of the response byte if it needs service, and device 2 will set bit. D7 if it does not
need service (according to the above configuration). The value of X will be a number that represents the
response byte. If the response byte is "10100000", f"POLL will return the value 160.

For further information on parallel polling, refer to TflE HP-/L SYSTEM: An Introductory Guide to tile
flewlett-Packard Interface Loop, by Kane, Harper, and Ushijima.

t

~ 1.
Appendix A

Owner's Information

CAUTIONS

Do nol place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts
and the computer's internal circuitry may result.

Turn off the computer (press [SHIFT II ATTN I) before installing or removing a plug-in module.

If a module jams when inserted into a port, it may be upside down. Attempting to force it further may
result in damage to the computer or the module.

Handle the plug-in modules very carefuly while they are out of the computer. Do not insert any Objects in

the module connector socket. Always keep a blank module in the computer's port when a module is not
installed. Failure to observe these precautions may result in damage to the module or the computer.

Limited One-Year Warranty

What We Will Do

The HP-7.5 I/O ROM is warrant.ed by Hewlett-Packard against defects in materials and workmanship
affecting electronic and mechanical performance, but not. software content, for one year from the date of
original purchase. If you sel! your unlt or give it as a gift, the warranty is transferred to the new owner
and remains in effect for the original one-year period. During the warranty period, we will repair or, at our
opt.ion, replace at no charge a product that proves to be defective, provided you return the product, ship­
ping prepaid, to a Hewlett-Packard service centcr.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard sen'ice center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRAN'l'Y OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or
countries do not allow limitations on how long an implied wRrranty lasts, so the above limitation may not
apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR
CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not. allow the exclusion or
limitation of incidental or consequential damages, so the ahove limitation or exclusion may not apply to
you.

53

54 Appendix A: Owner's Information

This warranty gives you specific legal rights, and you may also have other rights which vary from state to
state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be deter­
mined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer
or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

• In the United States:

• In Europe:

• In other countries:

Hewlett-Packard
Personal Computer Group

Customer Support
11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

Hewlett-Packard S.A.
150, route du Nant-d'Avril

P.O. Box CH-1217 Meyrin 2
Geneva

Switzerland
Telephone: (022) 83 81 11

Note: Do not send units to this address for repair.

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

~I
I

o

7

Appendix A: Owner's Information 55

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have
your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under
warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at
any service center. This is an average time and could vary depending upon the time of year and the work
load at the service center. The total time you are without your unit will depend largely on the shipping
time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located
in Corvallis, Oregon:

Hewlett-Packard Company
Service Department 1030 N.E. Circle Blvd.

P.O. Box 999
Corvallis, Oregon 97339, U.S.A.

0' Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not li>lted, contact the dealer
where you purchased your unit.

AUSTRIA
HEWLETT.PACKARD Ges.m b 1-1.
Kleinrechner-Service
Wagramerstrasse-Ueblgasse 1
A-1220 Wien (Vienna)
Telephone: (0222) 23 65 11

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100
B·1200 Brussels
Telephone: (02) 762 32 00

DENMARK
HEWLETT·PACKARD A/S
DatavoJ 52
DK·3460 Birkerod (Copenhagen)
Telephone: (02) 81 6640

EASTERN EUROPE
Reier to the address listed under Austria,

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7
SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE
HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S A.Y. Calculateurs de Poche
F·91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT -PACKARD GmbH
Kleinreclmer·Service
vertriebnentrale
BernDr Strasse 117
postfach 560 140
0·6000 Franklurt 56
Telephone: (611) 50041

ITALY
HEWLETT-PACKARD ITALIANA S.P,A.
Casella postale 3645 (Milano)
Via G. Di Vittorio. 9
1-20063 Cernusco Sui Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS
HEWLETT-PACKARD NEDERLAND e.Y.
Van Heuven Goedhartlaan 121
NL·1181 KK Amstelveen (Amsterdam)
P.O. Box 667
TelepllOne: (020) 472021

NORWAY
HEWLETT-PACKARD NORGE AlS
P,O. Box 34
Oesterndalen 18
N·13~5 Oesteraas (Oslo)
Telephone: (2) 17 11 SO

SPAIN
HEWLETT-PACKARD ESPANOLA SA
Calle Jerel: 3
E-Madrid 16
Telephone: (1) 458 2600

SWEDEN
HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9. Kista
Box 19
S-163 93 Spanga (Stockholm)
Telephone: (08) 750 2000

SWITZERLAND
HEWLETT·PACKARD (SCI-IWEIZ) AG
KI eimech ner-S erviee
Allmend 2
CH-6967 Widen
Telephone: (057) 3121 11

UNITED KINGDOM
HEWLETT·PACKARD Ltd
King Street Lane
GB·Winnersh, Wokingllam
Berkshire RGll 5AR
Telephone, (0734) 784 774

56 Appendix A: Owner's Information

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available
in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local Hewlett­
Packard service center to see if service is available for it. If service is unavailable, please ship the unit to
the address listed above under Obtaining Repair Service in the United Staies. A list of service centers for
other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and cust.oms costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all lab9r and
materials. In the United States, the full charge is subject to the customer's local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All
such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are noi covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of
90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

• A completed Service Card, including a description of the problem .

• A sales receipt or other proof of purchase dale if the one-year warranty has not expired.

The product, the Serviee Card, a brief description of ihe problem, and Of required) the proof of purchase
date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is
not covered by the one-year limited warranty; Hewlett-Packard suggests that. you insure the shipment to
the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collec­
tion point or service cent.er. Contact your dealer for assistance. (If you are not in the country where you
originallY purchased the unit, refer to "International Service Information" above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to

the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-of­
warranty repairs in the Uniled States and some other countries, the unit is returned C.O.D. (covering

shipping costs and the service charge).

., ..
,
'.

Appendix A: Owner's Information 57

Further Information

Service contracts are not available. Circuitry and designs are proprietary to Hewlett-Packard, and service
manuals are not available to customers. Should other problems or questions arise regarding repairs, please
call your nearest Hewlett-Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. 'lb this end, our customer
support department has established phone numbers that you can call if you have questions about this
product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the
toll-free number below:

(800) FOR-HPPC
(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(408) 725-2600

For eithCI' product information or technical assistance, you can also write to:

Hewlett-Packard
Personal Computer Group

Cw;;tomer Support
11000 Wolfe Road

Cupertino, CA 96014

!

o

Appendix B

Syntax Reference Guide

This appendix provides syntax definitions for the statements and functions described in sections 1
through 5 of this manual. The syntax representations ,in this appendix follow the format described in
section 1 (refer to the subheading "Syntax Guidelines"),

ADDRESS

Syntax

I f~~D[lRE::::S

Sample Statement

Actions Taken

Addresses all devices in the loop, starting with 1, and reiurns a value equal to the numher of devices (the
address of the last device),

Related Statements

f'i:3,',:;:;.T G~'l LOOF'

fluor OLOOF' Otl/OFF

59

60 Appendix B: Syntax Reference Guide

ASSIGN LOOP

Syntax

f1S:::: I eN LOOP

Actions Taken

Causes two-character clevi'ce codes to be assigned to each device in the loop. The first character (a letter)
indicates the class of the device. The second character (a numeral) indicates the occurrence of the device.
The following letters are used to indicate device class:

A Analytical Instrument
B HP-IB Device
C Controller
D Display
E Electronic Instrument
G Graphic Device
I Interface
K Keyboard Device
M Mass Storage Device
0 General Device
p Printer
U Unknown Class
X Extended Class

Note: Class "8" (HP-fB Devices) is treated differently. Refer 10 "Assigning HP-IL Addresses and De­

vice Codes to HP-IB Devices" in section 5.

Related Statements

f~D D I:;,: I:::: :~;::;;

(lUTOI...OI-.If" Ot-j/OFF

7

·it· ','I ,

110

Syntax

0" AUTOLOOF'
OFF

Actions Taken

Appendix B: Syntax Reference Guide 61

AUTOLOOP ON/OFF

Device codes are assigned to all devices in the loop each time the computer is turned OIl if AUT 0 L 0 0 F' is
in the on state. A "beep" indicates that the assignment has been made. Device codes are assigned follow­
ing the same rules used by A::;:3 I G t~ L (I (I F'. Also, f1 U T 0 L 0 0 P sends the LPD (Loop Power Down) mes­
sage when the computer is turned off. AUT 0 L 0 (I P remains in the on state until an AUT 0 L 0 0 F' 0 F F

command is executed.

Related Statements

fWDr~ESS

me:'::: I GH LOOP

62 Appendix B: Syntax Reference Guide

Syntax

I [lE'.}RDDF: (' : device code'::-

Sample Statements

:}o 81. '" DEVADOF: (' : 01')

70 X '" DEVAODr:'-: .:: A:t ~I

Parameters

DEVADDR

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Returns the HP-IL address of the specified device.

Related Statements

t

o

Appendix B: Syntax Reference Guide 63

DEVAID$

Syntax

DEI,)fiID$ (' : device code')

Sample Statement

40 Bot: "" DE'JRI[I:~ (' I :D1')

Parameters

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Addresses the specified device as the talker and sends the SAl (Send Accessory In) message. The talker
sends its accessory identification, and DEVA I [I:$: returns this identification as a string. The accessory
identification is usually a single byte, and is represented as an ASCII character.

Related Statements

DEVID$

64 Appendix B: Syntax Reference Guide

DEVID$

Syntax

D[',} I D$ (• : device code')

Sample Statement

40 A$"" DEI.)ID$ (' :F'3')

Parameters

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Addresses the specified device as the talker and sends the SOl (Send Device JD) message. The device
sends its device identification, and [I E 1,.1 I [1 $: returns this identification as an
(including any carriage-return/line-feed characters sent by the device).

Related Statements

DEI,}A I D$

ASCII character string

ec

~) (

Q

Syntax

I D t: v 1·1 A M E $ (device address::'

Sample Statements

60 AS - DEVNAME$ (15)
90 C$ - OEVNAME$ (AI)

Parameters

DEVNAME$

device address - a valid HP-IL device address (0 through 30).

Actions Taken

Returns the device code of the specified device.

Related Statements

[I[VADDR

Appendix B: Syntax Reference Guide 65

66 Appendix B: Syntax Reference Guide

Syntax

EtHEl([
, : device code t]

device address

Sample Statements

ENTER

[
'image fist'] II :=; I H G

- - line number

70 ENTER ':TP' U:;::IHG A$;X,'y',Z

90 ENTER C$;N(I),Z$

1:20 EtHEl(': [11' USIHG 30,: A$

150 ENTEI(USIHG 30;A$

l?O ENTEF~ ,: 8$

Parameters

[.: [variable][" variable].,,]

device code - a valid HP-IL device code, You may substitute the name of a string variable that contains
the desired device code,

device address - a valid HP-IL device address (0 through 30).

image list - a string expression that contains a valid set of image specifiers. The expression can be either
a list of image specifiers enclosed in quotation marks or the name of a string variable t.hat contains a
list of image specifiers.

line number - the line number of an I t'H"lGE statement that contains a valid set of image specifiers.

variable (numeric or string) - the name of a variable intended as a destination of the F H "1" [: f,: operation,

Actions Taken

Inputs bytes from the specified device; uses those bytes to build a number or string; places the result into
a BASIC variable.

When 1...1 ~;; I He is not specified, free-field format is used. A free-field entry int.o a string places incoming
bytes into the variable until the current. EOL (end-of-line) sequence or an End Byte message is receive~l,
or the string is full. Terminating sequences are not placed int.o the destination string. A free-field entry
into a numeric variable ignores leading blanks and non-numeric characters. Entry into a numeric variable
is terminated by the first trailing blank or non-numeric character.

When US I HG is specified, input operatiolls are format.ted according to the image specifiers used. Image
specifiers may be enclosed in quotation marks and placed in the DHEP statement, contained in a string
variable named in the E~'~TEP statement, or placed in an INAGE statement referenced by the ENTER
statement. For detailed information on image specifiers, refer to "Formatted ENTEF.,II in section 3.

15,

o

>

Appendix B: Syntax Reference Guide 67

E ~l T E R requires either the current EOL sequence or an End Byte message to terminate the statement
after the variable list has been satisfied. If no EOL sequence or End Byte message is detected, an error
will be issued. This requirement can be removed by using #! as the first image specifier. For more detailed
information on statement terminators, refer to "Formatted EtHER".

Related Statements

HH'lGE

68 Appendix B: Syntax Reference Guide

ENTIO$

Syntax

EJH I O:t ('[: device codeL : device code] ...]' .' '[command[, command] ...]')

Sample Statements

30 AS ~ ENTIO! ('TA01,SOA')
170 X:f· '" Et-lTIO.t .:: :01', 'TAO#,SOA'":o
230 B$ ~ ENTIO:t: (' :03',"":0

Parameters

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

command .. ~ a valid HP-IL command mnemonic (refer to appendix C). You may substitute the name of a
string variable that contains the list of commands.

Actions Taken

i:Jfl .I. I,H is a function that returns a charact.er string value. [NT I (I:t, is usually used to address an HP-IL
device as a talker, then return the dala received from that device as the value of the function. Only one
device may be addressed as a talker, but one or more listeners may be addressed.

F"'I j T I I~I of- processes parameters from left to right. If a device code parameter has been specified, EN T I 0::\,
determines the corresponding device addreRs in t.he loop. If T I':j 0 If is specified in the command field, only
one device code may be specified. If t.he device code field is the null string, no action is taken in this st.ep.

Next, t.he list of HP-IL commands in the command field is processed. A T Ii [j H or I. .. AO# l'.ommand causes
the device specified in the device code field to be addressed as a talker or list.ener, respectively. If no device
code is specified, TAOlt and UW# are not valid in t.he commund list. The TAUn and U'IDn commands
contain HI'-lL device addresses. A TfWn or UWn in the command list causes the device with address n
to be addressed as a talker or listener. [H T I 0 $ returns the null string unless the last command in the
command field is :::; [I fl, SST, SO I, SA I, AALln, or 10 : 00. The data sent by the active talker in response
to the ready group comllland is returned as t.he result of the E t-n I 0 $ function. If the command field it'!
the null string, [HT I (q: automatically generates TflDU, SOA.

Either the device code field or the command field can be the null string, but not both.

Related Statements

::;,[t'j[l I (I

o

Appendix B: Syntax Reference Guide 69

IMAGE

Syntax

I 1'1 AGE specifier {., specifier] ...

Sample Statements

10 IMAGE 'Tot.:d =',4[1.00
100 IMAGE #,K,2X,K

Parameters

specifier - a valid (I U T PUT or E 1'1 T E R image specifier. These specifiers are listed below. lffifer to section
3, "Formatted I/O Operations", for detailed descriptions.

Summary of OUTPUT Image Specifiers

Image Meaning

.3,A Output one string character

c,C Output a comma separator in a number

d,O Output one digit character; blank for leading zero

e,E Output exponent information; five characters

k,K Output a variable in free-field format

m,t'l Output number's sign if negative, blank if positive

p,P Output a period separator in a number

I",r,: Output a European radix point (comma)

- Output number'S sign, plus or minus '"",:;;"

::-::,X Output one blank

z,Z Output one digit character, including leading zeros

, , " " Output a literal (enclosed in quotation marks) , , Output one digit character; asterisk for leading zero

Output an Amer'lcan radix point (decimal point)

/ Output the current EOL sequence

70 Appendix B: Syntax Reference Guide

Image

.3,A

c,C

d,D

e,E

kY

m,t'l

p,P

1",P

<0
~,~'

x,)-::

z,Z

:J:'

,
,,',

Related Statements

Et-1H::R .. ,\1$111G

I.'IIJ H'I...! f .. ,U:;': 1 t·l(;

Summary of EtHEF: Image Specifiers

Meaning

Demand one string character

Demand One character for a numeric field; allows
commas to be skipped over

Demand one character for a numeric field

Demand five characters for a numeric field

Enter a variable in free-field format

Demand one character for a numeric field

Demand one digit and ignore all periods

Demand one digit and treat comma as radix symbol

Demand one character for a numeric field

Skip one character

Demand one character for a numeric field

Demand one character for a numeric field

Demand one character for a numeric field

Demand the current EOL sequence

Eliminate the current EOL sequence as a terminator

Eliminate the End Byte message as a terminator

Establish the ETO (End Of Transmission - OK)

message as an alternative terminator

Appendix B: Syntax Reference Guide 71

IOSIZE

Syntax

lOS I ZE buffer size

Sample Statement

IOSIZE 500

Parameters

buffer size - an integer reprasenting the dasired buffar size (range: 0 to 24,575 bytes). A r,ero or negative
value specifies the default value of 256 bytes.

Actions Taken

Sets the size of the Et-nEf~ buffer to the specified value. Controls the maximum number of bytes to be
read by a statement or function that causes input of data (EI~TER, ENT I 0 $, FrOD F.:E·3 '0, etc.) If buffer

size is exceeded, a record overflow error will result. A S Z = command in an E I-j T r 0 $ command list will
override the value of I (1:3 I Z E for that E t·l T I 0 $ statement only.

Related Statements

l-:Il T f~:H

EI-jT I 0$

72 Appendix B: Syntax Reference Guide

Syntax

L 0 CAL [' : de'vice code!" : device code] ... ' 1

Sample Statements

leo LOCAL
L::O LOCAL
330 LOCAL

Parameters

: D 1. I

:E:l, :82, :83'

LOCAL

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

Actions Taken

1.." C.II~ 1':'1[", addresses the specified device(s) to listen and sends the GTL (Go Th Local) message. The speci­
fied device>; are returned to local mode, but remain remote enabled. l.. 0 CAL leaves devices addressed t.o
listen.

If no device code is specified, LOCAL sends the NRE (Not Remote Enable) message. This return>; devices
to local control and removes remote enabled status.

Related Statements

l C,II- nl LOCKOUT
I'~ f.;, ~'1 (I r [:'

"I'k r f;(,;FP

•

1 ___________ _

Syntax

1 LOCAL LOCKOUT

Sample Statements

5(,) LOCAL LOCKOUT

LOCAL LOCKOUT

Action Taken

Appendix B: Syntax Reference Guide 73

LOCAL LOCKOUT

Sends LLO (Local Lockout) command. Locks Ollt LOCAL button on fronl panel of devices in remote
mode. Devices can be returned to local control only by a GTL or NRE message (refer to the 1..OCAI...

command).

Related Statements

L CIC.~-11

PEt'1ln E
Tf:_'ICC;Ef<'

74 Appendix B: Syntax Reference GuIde

OUTPUT

Syntax

(I U T F" 1.1 T [
, : device code[, : device code] ... 'J

device address US I NG . [
'image list']

Imo number

[.: expressionL exprassion][; expression] ...]

Sample Statements

40 OUTPUT f1$

('0 OUTPUT :T'..!' USING A$

90 OUTPUT C$; f'f <: I).: Z:l:
120 UUTPUT ':01' USIt'lG 30

Parameters

A$

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

device address - a valid HP-IL device address (O through 30). Only one device address may be specified.
Use device codes if more than one device is to be specified.

image list -- a string expression that contains a valid set of image specifiers. The expression can be either
11 list of image specifiers enclosed in quotation marks or the name of a string viuiable that contains a
list. of image specifiers.

line number - t.he line number of an I t'lAGE statement. that contains a valid set of image specifiers.

expression (string or numeric) -~ any string expression or numeric expression intended to be output. Ex­
pressions may he constants or variables and may be separated by commas or semicolons.

Actions Taken

Outputs bytes to the specified device(s); bytes may be string or numeric.

When 1.1'::; I t-H"~ is not specified, and output it.ems are separated by semicolons, compact format is used. A
compact output of a string expression causes it to he sent with no leading or trailing blanks. A compact
output of a numeric quantity causes it to be sent with one trailing blank and one leading sign character
(blank if positive, minus sign if negative).

When U ~:; J He; is specified, output operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotes and placed in the 0 U T PUT statement, contained in a string variable
named in the CIUTF'UT statement, or placed in an IMRGE statement referenced by the OUTPUT stat.e­
ment. For detailed information on image specifiers, refer to "Formatted OUTPUT" in section 3.

a v

(iii

,

I i(J

Appendix B: Syntax Reference Guide 75

OUTPUT sends the current EOL (end-of-line) sequence after the last item in the OUTPUT list. This
sequence can be changed with the E tl D LIN E statement, and defaults to carriage~return/line-feed. The
EOL sequence can be suppressed by using ; after the last variable. For more detailed information on
statement terminators, refer to "Formatted OUTPUT".

Related Statements

76 Appendix B: Syntax Reference Guide

Syntax

I PPOLL

Sample Statements

31. 0 :'·':=PPOLL
6?U F:j=PpOl...l...

Actions Taken

PPOLL

FPOLL is a function that returns the results of a Parallel Poll operation. Sends an IDY (Identify) mes­
sage. Devices capable of responding el1ch assert one bit of the parallel poll response byte.

Related Statements

SPOLL

SPOLL!

•

! ___________________ ~l

i

t

I (J

h

REMOTE

Syntax

R E ~1 (I T E [F : device code[! : device code J. .. I 1

Sample Statements

;::,0 f"ENOTE ': 01'

130 F:EI"lOTE S1$
J 9(1 PDlOTE

Parameters

Appendix B: Syntax Reference GuIde 77

device code -- a valid HP-IL device code. You may substitute the name of a string variable that contains

the desired device cadets).

Actions Taken

If no device code is given, F:E~'1OTE sends the REN (Remote Enable) message. Devices do not go into

remote !\lode until they are addressed to listen.

If device codes are specified, P.Et10TE sends the UNL (Unlisten) and REN messages, then addresses the

specified devices to listen. Devices arc left addressed to listen.

Related Statements

U)C:AL

LOCAL L.OCKOUT

IF: I GGER

&

78 Appendix B: Syntax Reference Guide

Syntax

:::Et-lD [[CI10

SEND

byte number [., byte nUmber} ...]
byte string

[DATA

[EHD

byte number

byte string

byte number

byte string

[, byte number] .. , (EOl]]

(, byte number] ... (E 0 lJ]

[I D'l byte number [, byte number] ...] [RD'.,. byte number [., byte number] ...]

[DOL byte number L byte numberJ ...] [DDT byte number L byte number] ...]

[':':AD byte number [., byte number] ...] [l I :~: T E t·j byte number [, byte number] ...]

[TALK byte number] [GTL] [RMO] [t'iRE] [LLO] [CIF] [L.F'Dj P'1LA]

[tHt-'l] [SOC] [Ut~Ll [UH"f'l]. ..

Note: The above bracketed items may be included in any order. They may be repeated as many times
as desired, with one exception: EOL may be included only once in a DATA or EHU field.

Sample Statements

1no SEIW elm 'IY'::-;' DFiH-'I 'Hello'
200 SEND CMO A~ SAG 14,18 DATA XS
3~8 SEND MTA UNL LISTEN 6,14 DATA 'ABC'

Parameters

byte number - a number t.hat specifies the actual message to be sent. Byte numbers for the CI"ID, DAn'i,
["~IH\ 1 DY, and I:WY message indicators represent bits DO through D7 of the message, and have the
range 0 through 255 (modulo 256). Byte numbers for the DDL, DDT, ::::AD, l... I :3Tt:~tl, and TFH.Y mes­
sage indicators have the range 0 through 31 (modulo 32).

byte string - a string of ASCII characters that specify a series of messages. Each character represents a
message having the byte number equivalent to its ASCII character code,

•

•

(

u

)

Actions Taken

DFlTA

END

J [I \'

PDY

DDL

DDT

Tf~IX

GTI.. ..

F~t'10

t-iF:E

l .. ,LO

elF
l_ F' [I

r'1lA

t"1 T ri
SDC

UHL

Ut'IT

Appenoix 6: Syntax Reference Guide 79

Sends list of commands specified by byte number. Each byte number specifies bits DO
through D7 of the command message. A byte string may be substituted for a list of
byte numbers. Each character in the string specifies the command with the byte num­
ber equivalent to its ASCII character code.

Sends list of Data Byte messages with bits DO through D7 specified by byte number. A
byte string may be substituted for a list of byte numbers. Each character specifies the
bit pattern with the byte number equivalent to its ASCII decimal code. ASCII charac­
ter strings may be sent exactly as specified in quotes. Inclusion of EOL causes the
current EOL sequence to be sent.

Sends End Byte message, but otherwise same as DATA.

Sends identify message having bits set according to byte number.

Sends ready message having bits set according to byte number.

Sends Device-Dependent Listener message having number 0 through 31 indicated by
byte number (modulo 32).

Sends Device-Dependent Talker message having number 0 through 31 indicated by
byte number (modulo 32).

Sends Secondary Address message having address 0 through 31 indicated by byte
number (modulo 32). Associates this secondary address with the primary address of
the preceding command message, indicating an extended address.

Sends LADn (Listen Address) message to device n, the address specified by a byte
number in the range 0 through 31 (modulo 32). Makes device n a listener, except that
31 clears all devices from listener status.

Sends 'I'ADn (Talk Address) message to device n, the address specified by a byte num­
ber in the range 0 through 31 (modulo 32). Makes device n a talker, except that 31
clears all devices from listener status.

Sends GTL (Go 'fa Local) message.

Sends REN (Remote Enable) message.

Sends NHE (Not Remote Enable) message.

Sends LLO (Local Lockout) message.

Sends IFC (Interface Clear) message.

Sends LPD (Loop Power Down) message.

Sends no message.

Sends UNT (Untalk) message.

Sends SOC (Selected Device Clear) mesHuge.

Sends UNL (Unlisten) message.

Sends UN'I' (Untalk) message.

M4

80 Appendix B: Syntax Reference Guide

SEND?

Syntax

SEHD?

Sample Statements

:30 C 1 " SEND'";'

::::0 8$ - A$[:=;Et~D?]

Actions Taken

Returns an integer value representing the position in the string of the character that was unsuccessfully

sourced in the last S E H D I (I statement. Returns a value of 0 if the -8 E t·l D I 0 data list was null, or if the
last ::; [ND I 0 statement was successfully completed.

Related Statements

•' ,

.'i ;
I
!

d

l'

Appendix B; Syntax Reference GuIde 81

SENOIO

Syntax

::: Et-l[I I 0 I [: device codeL : device code] ...] , , '[commandL command] ...]' , '[data] I

Sample Statements

30 SENDIO
50 SEtmIO
90 ::;:nWIO

Parameters

:[11., :[12', 'l.AO# .. LAD5'., 'DATA'
'LA01,LAD2', 'HI I

, I., I 8\'E'

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s).

command - a valid HP-IL command mnemonic (refer to appendix C). You may substitute the name of a
string variable that contains the list of commands.

data - a string expression to be sent out by snm I O.

Actions Taken

snHJ J (I sends commands and data to HP-IL devices. :;::Et-l[11 0 can be executed from the keyboard or in
a program. Listener devices may be addressed by including either device codes or device addresses in a
SEND I 0 statement.

~3 F N [II 0 processes parameters from left to right. One or more device codes may be included in the device

code field. If device codes are specified, SEHD I I) determines the HP-IL address of each specified device.
If the device code field is nUll, no action is taken.

A single '-.AU# command in the command field causes aU devices specified in the device code field to be
addressed as listeners. The l_r1DH command may he used in combination with other HP-II~ commands,
and may appear anywhere in the command field. Listener devices may also be addressed by including
l.riOt"! commands in the command field. Any number of LADn commands may be included, and they may
be used in combination with other HP-IL commands, including L no u. :::; I:. tj D I (I should not be used to
address talkers.

Once all commands in the command field have been sent, the string expression in the data field is sent out

over the loop.

One or two of the quoted parameters may be the null string, but not all three.

Related Statements

ENTIO$
~3Et-lD?

1.--__________ ---1,

82 Appendix B: Syntax Reference Guide

Syntax

:::;r='OL.L (, : device code ')

Sample Statements

50 P = SPOll (BS)
250 IF SPOll (' :nl')

Parameters

SPOLL

(0,3 THEt-.! GOH) 750

dovice code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code.

Actions Taken

Polls a device in the loop by sending the SST (Send Status) message. Returns a number representing the
first status byt.e sent by the polled device.

Related Statements

PF'Ol...l...
SPOLL:t

• ' c

.1
I
I

• ' \

Appendix B: Syntax Reference Guide 83

SPOLL$

Syntax

SF'Oll$ (, : device code')

Sample Statements

40 S$ - SPOll$ (8$)
98 [$ - SPOll$ (' :01')

Parameters

device code - a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device codG.

Actions Taken

Polls a device in the loop by sGnding the SST message. Returns a string of ASCII characters representing
the st.atus bytes sent by the polled device.

Related Statements

PF'Oll
SPOLl

, ... sw~, __ I r~

84 Appendix B: Syntax Reference Guide

TRIGGER

Syntax

TRIGGER [' : device code [, : device code] .. ,,')

Sample Statements

/[-1 TF:JGC[f:,: ':01, :O?'
1SI(1 TF'ICG[f,: 81$

?:::,('j Tf~'l CCf:"F_:

Parameters

device code ~ a valid HP-IL device code. You may substitute the name of a string variable that contains
the desired device code(s),

Actions Taken

Sends the Group Execut.e Trigger command (GET).

If no device code is given, the GET command is sent. All devices that have already been addressed to
listen will receive the GET command.

If a device code is specified, the UNL (Unlisten) command is sent, followed by the LAD (Listen Address)
of the speciried devlce(I;). The GET command iH then Hent. Devices arc left addressed to liHten.

Related Statements

LOCJ!L ell f,lll.l r

P[t'IOT[

•

.'

·"1 W

d

..• ~

,
! ,

low

Appendix C

HP-IL Commands

Summary of HP-IL Commands

The following is a list of HP-IL command mnemonics for the commands that you may use in a SEND I 0
or E I-j T I [I $ command list. Although ::; E H [I I 0 and EN T I 0 $ do not recognize the mnemonics of other
HP-IL commands, you may include other commands in a command list by using extended HP-IL com­
mand capability.

Note: The commands CL +, [11"1-, EL+, ET-, 8Z=, TR!, TP.*, TP:, and TF:[may be included in
a command list for either E H T I 0 $ or S E t·1 D I 0; however, only EN T I 0 $ will recognize them.

,.,

fifiDn

fifiU

REP,..

F1E::;:;n

lit'lPn

CL ·1·

n 1"1--

uel

liLt T ~ I

Represents a one byte non-negative integer.

Auto Address: addresses the loop starting with initial address n (0-30).

Auto Address Unconfigure: resets addresses of the loop to the unassigned state.

Auto Extended Primary: assigns primary address n (0-30) to extended address group.

Auto Extended Secondary: assigns secondary address starting with n (0-30).

Auto Multiple Primary: assigns primary addresses to all devices starting with n (0-30).

The CL + command inserts carriage~return/line-feed in t.he incoming string after each
End Byte message received during FiH I 0$ data collection.

The DH command prevents the un I O:~ function from reading any data into the HP-75.
Et·1TIO.t returns the null string if D~l- is in the command list. However, up to 256 Data
Byte messages (or the number set with 10:::;; I Z E) will be transmitted from the talker to any
active listeners in the loop. If a ::;:; Z:" command is used to specify a size, that si7.e wiJ] take
precedence over lOS I ZE. If 82=0 is specified, there is no size limit on the number of
Data Byt.e messages t.hat the talker can send.

Device Clear: clears aU devices in the loop.

Device Dependent Listener: sends the Device Dependent Listener command denoted by n
(0-31).

Device Dependent Talker: sends the Device Dependent. 'ralker command denoted by n (0-
31).

ED t·1 Enable Device Sourcing NRD: enables devices to source own NRD messages.

EL + The [l... +. command inserts the current EOL sequence in the incoming string aHer each End
Byte message received during EtH 1 o:t: data collection (similar to CL +).

[T-- The ET- command disables EtH I 0$ termination by an ETO (End Of Transmission - OK)
message received from an Hp·IL device. EtH I 0:'1' will terminate only when the logical end­
of-record is detected, size is exceeded, an ETE (End Of Transmission - Error) message is
received, or the I ATTN I key is pressed.

85

86 Appendix C: HP-1L Commands

GET

eTI.."

IAA

rEP

I F ~:;

IFe

II"1P

l...fl [I H

LADn

LLO

LPD

l'lOP

~',I f;:: [I

~jRL

PF'O

F'f'I.J

f~: [' I"j

·'-.liDn

'::.11 J.

:::;DA

::::; I"~ C

:::;lJ 1

-:." "'"

"I fHHt

TADn

T'eT

TL+

Group Execute Trigger: sets listeners to begin device operation.

Go To Local: returns listen addressed devices to local control, but leaves them remote en­
abled. Devices will return to remote mode when next addressed to listen.

Illegal Auto Address: sent to determine if there are too many devices in the loop.

Illegal Extended Primary: basically a no-op.

Illegal Extended Secondary: sent to determine if there are too many devices in the loop.

Interface Clear: clears the interface loop.

Iilegal Multiple Primary: sent to determine if there are too many devices in the loop.

Listen Address: activates listener status of device specified in device code.

Listen Address: activates listener status of device at address n (0-30).

Local Lockout: disables LOCAL button on front panel of device. Device can be returned to
local control only by a GTL or NRE command.

Loop Power Down: puts devices in power down state.

No Op command.

Not Ready For Data: controls interrupt of talker.

Not Remote Enable: returns devices to local control and removes remote enabled status.

Parallel Poll Disable: causes listen-addressed devices to no longer respond to PF'En.

Parallel Poll Enable: enables listen-addressed devices to respond to a parallel poll where n
(0-1.'5) sets the state of response (refer to section 5).

Parallel PoB Unconfigure: disables all devices from responding to PPEn.

Hemote Rnable: sets devices to remote enabled state. Devices go t.o remote mode when ad­
dressed to listen.

Secondary Address: enables talkers or listeners with secondary address.

Send Accessory ID: initiates talker to source accessory ID.

Send Data: initiates talker to source data.

Selected Device Clear: clears the active listeners.

Send Device ID: initiates talker to source device ID.

Send Status: initiates talker to source status byte(s).

'l'he ~:;?= command sets the maximum input si7:e for an F.:NT I 0$ instruction. The default
value is 256 (or the value set with IOSIZE). If [I f"'1 "'" is not !'>pecificd in the command list,
the syntax is: 8Z=;<>':X>0:)(:~ :",: ;';;-':i-': is a decimal number (range 1 to 32767) representing the
number of bytes to read. The EHT I ot- instruction terminates when size is exceeded. If
[In"'" is specified, the syntax is: ::,~~"'>n,:::'n'::<;<::;-;x:~ where ;<i-':;-;XXXX;::::~; is a number in the
range 0 to 999999999. If :32:=1::) is specified, there is no size limit on the number of bytes to
be read. (S~>O cannot be specified unless DA- is also specified.)

Talker Address: activates talker status of device specified in device code.

Talker Address: activates talker status of device at address n (0-30).

Take Control: passes control to next controller in the loop.

A T L + command in a :~; E 1-1 0 I I] or E H T I 1]:$= command list inhibits the automatic UNT and
UNL feature. Devices addressed as talkers and/or listeners will remain active after the
::;; E I-j 0 I 0 or E I-j T I 0 $ operation is completed.

•

•

•
I~ ____ , _"" ________________ OL' I

1

(~

"
y

,
\ V

TR!

TR*

TH:

Appendix C: HP·IL Commands 87

A T R! command in the command list of an EN T I 0 $ instruction establishes the End Byte
message as a logical end-of-record.

A T R * command in the command list of an E In I 0 $ instruction establishes the current
EOL sequence (defined with the EIWL I NE statement) as a logical end-of-record.

Any ASCII character can be specified as a logical end-of-record by including TR: XX in an
EI'l T I 0$ command list, where XX is the hexadecimal representation of the ASCII character
number (00 will be ignored).

T f,: [Any desired character string (up to six characters) may be specified as a logical end-of­
record by including TR[stringJ in an [HT I 0$ command list. Note that the string is delim­
ited with brackets rather than quotation marks, and that the J character cannot be included
in the string. If the string contains quotation marks, they must not be the same form (single
or double) that is used to delimit the command list itself.

U~lL Unlisten: deactivates all list.eners in the loop.

U H T Untalk: deactivates the talker.

z [~:; Zero Extended Secondary: assigns secondary addresses to devices with multiple address
capability.

Extended HP-IL Command Capability

Extended HP-IL command capability allows the programmer to send commands for which no mnemonics
exist. The capability can be used with both :3EI~D I 0 and ENT I 0::1:. This ensures that when new HP-IL

devices and funct.ions are introduced, 8EI-1O I 0 and [t~T I 0$ will continue to be usable.

Note: By using extended command capability you can include any HP-IL command in a:::; F f,j D I I) or

un I O:*~ command list. However, you should be careful when you are including a command that is

not in the "Summary of HP-IL Commands" in this appendix. Certain unlisted commands may cause

problems.

Recall that HP-IL messages consist of 11 bits: a three-bit prefix that ident.ifies the type of message,
followed by eigbt bits of message content. Eight possible prefixes exist., each with its own special meaning.
Extended command capability provides an easy way for the programmer to construct HP-IL messages.

Eight identifiers are supplied, one for each type of HP-IL message. The types of messages and
corresponding identifiers are listed below:

HP-IL Message Type Identifier

Command
Ready
Data
End
Identify
Data w/service request
End w /service request
Identify w/service request

CD
RD
DA

... EN
ID
DS
ES
IS

88 Appendix C: HP-ll Commands

'lb send a message, simply specify "XX: hex value" in the command list, where XX is one of the eight
identifiers listed above, and hex value is the content of the message in hexadecimal. To send an UNL
command using extended HP-IL command capability, you would code:

SENDIO ", 'CD:3F',"

This would send a message with a three-bit prefix identifying the message as a command, and then a
binary "00111111", which is the code fOr UNL.

•

•

•
7

)

Appendix D

Support Functions and Editing Keys

The HP-75 I/O ROM provides several support functions in addition to the I/O functions and statements
that are covered in sections 1 through 5 of this manual. These support functions are covered in this
appendix under the subheadings "I/O Support Functions," "Advanced Programming Support Functions,"
and "File Manipulation Functions." This appendix also covers some additional HP-75 editing keys pro­
vided by the ROM (refer to "Additional Editing Keys") and a facility for running an autostart program
when the HP-75 comes on (refer to "Running an Autostart Program").

Note: The syntax representations in this appendix follow the same conventions that are used else­
where in this manual. Refer to the subheading "Syntax Guidelines" in section 1.

1/0 Support Functions

The following functions are used, in conjunction with the primary I/O funct.ions and statements described
in secLions 1 through 5, to facilitate I/O operations.

ASNLOOP$ - assign loop and returll string:

Assigns device codes to devices in the loop according to the same rules as A:::; :::; I G t j L (lOP (see appendix
n), but ret.urns a st.ring. Each character in the st.ring corresponds (in order) to a device in the loop, and
represents t.he first byte of the Accessory ID response of that device.

DISPLAY$ - list current display devices:

Returns a string list.ing the device codes of t.he currently assigned display devices (in order of ascending
address).

ENABLE SRQ - reenable OH SRQ after an Ot·j :3RQ execution:

I EHfiBLE SRO

Resets the active st.ate for an OH ~;RO st.atement. Programs t.hat. include OH SRQ processing of HP-IL
SRQ (Service Request) messages must execute Et~A8LE SRO at tbe end of the processing to allow an­
other SRQ message to be processed (refer t.o OH SRG!) .

• 9

90 Appendix D: Support Functions and Editing Keys

ENDLINE$ ~ return current endline string:

I DlDLI HE$

Returns the current EOL sequence (established with the ENDLlt-iE statement) as a string.

ESC-I/R ON/OFF - turn modified OZBJ on or off:

I ESC- r /F'
ON
OFF

This feature defaults to the OH state and sends escape sequences to control the cursor of the current
D I :::: P L A 'y' I ::.\ device. When you press the OZBJ key, ESC Q is sent to change the cursor on the external
display to the insert mode; ESC R is sent to return the cursor to replace mode. 'lype [:'::[-1 /R OFF to
suppress the output of ESC Q and ESC R. For some external display devices, you will need to turn this
feature off to avoid getting a false echo on the display in the insert mode.

IOSIZE? - return current lOS I ZE setting:

Returns the current 10:':: I ZE setting as a number. The value ret.urned represents the number of bytes
t.hat the Et-] TEP buffer wiil hold ~- except tlmt. a zero value indicates that. I (I:':: I Z[is set to its default
value (256 bytes).

KEYBOARD$ - return the device code of the current keyboard device:

net.urns the device code of the HP-IL device currently assigned as the keyboard. The null string is re­
turned if no device is assigned.

KEYBOARD IS -- assign device for keyboard entry:

11
.. [: '--' I' f" Ant) [. :::::

_ .• , .. 1 J,.-, .. , : device code'

device code .. - t.he device code of an BP-IL device to be assigned as the keyboard (may be the device code

of an int.erface t.o which a keyboard or terminal is connected).

I" EYBOAFW I S can be used t.o assign an external device as the keyboard. You can assign any keyboard
device capable of sending ASCII characters as data bytes. If the keyboard device is not. HP-IL equiped,
you can connect it t.o the loop through an appropriate interface. The HP-75 keyboard is not disabled, so

you may enter characters from the external keyboard, from the HP-75 keyboard, or both.

•

•
J

E

Appendix D: Support Functions and Editing Keys 91

All 256 decimal keycodes may be sent from the external keyboard if it is capable of generating them. Refer
to the manual for your keyboard device to determine which keys generate which keycodes. The standard
ASCII characters (decimal codes 0 through 127) can be transmitted from the external keyboard by simply
pressing the appropriate keys. For these characters, the external keyboard uses the same keycodes as the
HP-75. For other characters, you will have to determine which key on the external keyboard generates the
keycode for the desired HP-75 key. F'or example, key number 132 on the HP-75 is the ITJ key. If the ITJ
key on your external keyboard generates keycode 132, it will map directly to the HP-75 [I) key. However,
suppose the roll-up key on your external keyboard generates keycode 132. In this case, roll-up on the
external keyboard maps to [I) on the HP-75 keyboard.

Most keyboard devices use escape codes to represent editing keys such as the cursor keys, roll-up, rolI­
down, etc. The HP-75 can interpret escape codes by means of a TE)<T file named KEyt1AP. The
KEy't'lAP file contains one line for each key to be mapped. Each line consists of a line number that
corresponds to the desired HP-75 keycodc and a character that is used to generate it (comments may be
appended if desired). The following KE\'t'1AF' file is given as an example:

1 ~32 n
133 E)
j:q [)

1 :~: 'S C

When an ESC character is received from the external keyboard, the next character received is "looked­
up" in the KE'f'r'1f1F' file. If the character is found, the corresponding line number is used as a keycode.
Suppose that your KE','80AF:D I::: device sends ESC-A when you press its [I) key. The HP-75 looks up I:~

in the KE'r't1flF' file and finds it in line 132. The keycode 132 is genGrated from the f:.E·-,-"t·lAP Jile, execut­
ing [I) on the HP-75.

You may also send escape codes from the external keyboard by pressing I ESC I followed by the desired
charader. If you type I ESC] ri on the external keybonrd, keycode 132 ([I)) is generated by the HP-75. If
you press I ESC I B, keycode 133 (m) is generated, and so forth. If you press I ESC I twice Oil the external
keyboard, ESC is generated by the Hl'-75.

Note: The KEY:~~ function does not work for an external keyboard defined with f: E-:'"i80FIFW I ::" The

[AnN I key will not stop a program if KE·-,-'80AF.:D I :~: is active unless the program receives it as part

of an input statement. OFF 10 will disable KE\'DOHr~:n I::: until a F:E:::T(lPL 10 is executed.
KE\'80RRD I ::: will also be disabled if an error occurs while a key is being transmitted. If I LOCK I is

pressed, only the HP-75 keyboard, not the external keyboard, will be affected. The computer will not
timeout when KEy'BORF:[1 I:::~ is active.

You may use D I SPUf-(I S to define an external display device as well as KE\'SOAP[I J::': to define an
external keyboard device. If you are connecting a terminal to your HP-75, you may execute [11 :3 F' L R '/ I::;:
and KEYBOARD I :::: to the same device code (the device code orthe terminal or its interface). 'fhe termi­
nal will act as a display when characters are sent to it, and as a keyboard when a character is expected by
the HP-75. If you are using an external display, you should also refer to "ESC-I/R ON OFF" in this

appendix.

92 Appendix D: Support Functions and Editing Keys

LISTIO$ - list HP-IL device codes in string:

I LISTIO:$:

Returns a string listing the device codes of all HP-IL devices in the loop in order of ascending address.
Device codes are preceded by colons and separated by commas, for example: : r·t1 " : Pl.

OF.F SRQ - turn ofT HP-IL service request response:

Ion: SRQ

Clears the CJ t'l :3 R I) statement. This should be done before a program stops, and definitely before the file is
edited, purged, or renamed. Failure to do so may cause problems.

ON SRQ - respond to Hp·IL SRQ messages:

I U H ::;: R (;:I statement [I~ statement 1 on

statement - any statement valid after a T H F H.

Similar to 01,1 ERR 0 Rand Ol·j T I t1 E f~. On receipt of an SRQ (Service Request) message, the program
branches to t.he 1-111 :;:::f;:O statement (after the entire current line has been executed). Once the 01·1 :3RG.!

statement is done, execution returns to t.he line after the one where the SRQ message was received. I) I"j

:-_,f,'I:' will not interrupt itself, and must be reenabled with an FHHE:U:: :3 r,: 0 statement before it will again
branch. CII' f· Sf~Q permanently cancels an 014 :::;fW and should be done as part of the end-of-program
cleanup routine.

PRINTER$ - list current printer devices:

Heturns a string listing the device codes of the currently assigned printer devices (ill order of ascending
address). For example: : r::' 1. : P ::.

REASSIGN - change device code of an HP-IL device:

I F:Efl:;S I GH I : dev1' TO I : dev2'

dev1 -- old device code.
dev2 --- new device code.

Change the device code of the specified device to new device code.

•

•'
" ,

•: ,

,-----------------------------------

\ (.i

,

Appendix D: Support Functions and Editing Keys 93

RIO - read data from an HP·IL register:

I RIO': register number;'

register number - an HP-IL register number (0 through 7).

Reads data from the specified HP-IL register. S T riH D 8,.,. must be set to Ot·j for RIO to function properly.

WID - write data to an HP-IL register:

I ~',I I I) register number -' data

register number - an HP-IL register number (0 through 7).
data - byte of data to be written (MOD 256 is performed).

Writes data byte to specified HP-IL register. STANDBY must be in the ot'l stale for proper operation.

Advanced Programming Support Functions

The functions that follow are useful not only in I/O programming, but in advanced programming applica­
tions in general.

Note: Functions thai manipulate ASCII strings will accept any ASCII character in an input string. Up­
per and lower case letters have different ASCII decimal codes and are interpreted as different ASCII

characters. Functions that manipulate hexadecimal strings will accept the characters (1 through 9, n

through F, and ."l through f in an input string (upper and lower case letters are equivalent in a hexa­

decimal string).

AAND$ - AND of two strings:

I AAND:l: ('string l' .' 'string 2' :.1

string 1 and string 2 - ASCII character strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two
strings (the strings are left justified). The output strinl! consists of ASCII characters that represent the
resulting bit patterns. The length of the resulting string is equal to the shorter input string.

94 Appendix 0: Support Functions and Editing Keys

ADJUST - set ndjust factor for clock:

I flDJUST 'factor'

factor - a string that starts with a + or - and contains exactly 14 hexadecimal characters that represent
the adjust factor.

Sets the clock adjust factor to the specified value. Specify + to make the clock run faster or - to make the
clock run slower. The string must meet the size and format requirements, and the minimum absolute value
that may be entered is 100H. A smaller value (except 0) will cause an error. A zero value will negate the
clock adjustment. The value specifes the number of 2-11 second intervals between 1/4 second adjl1stments
(+ / -) to the system clock. The proper sequence follows:

1. Set the time.

2. Execute E ::.(ACT twice to set the flags.

3. Execute f-j D.J U S T to set the factor.

ADJUST$ - show current clock adjust factor:

Ret.urns a string that starts with +- or - and contains 14 hexadecimal digits representing the current
adjust factor. -f means the clock is slow (adjusting to a faster rate). _. means the clock is fast (adjusting to
a slower rate). A zero value means no adjl1stment is being made (clock running on time).

AOR$ - OR two strings:

I r:IOR$ ('string l' 'string 2')

string 1 and string 2 - ASCII character strings.

A bit·by·bit lugical OR is performed on the bit patterns of the corresponding characters of the two fltrings.
Trailing characters of the longer string are ORed with C H F: $ «()!. The output string consists of ASCII
characters that represent the resulting bit patterns.

ARO'l'$ - rotate a string left or right by bit count:

I f"If:::OT:t('string' ,count)

string - ASCII character string to be rotated.
count - number of bits to rotate (to right if +, to left if -).

Rot.ates an ASCII string on a bit level, considering the string to be a binary number with a length that is a
llluitiple of eight bits. Hotates the bits of the given string by the number of bits specified in the bit count .

Bits rotated off one end are added on at the other end. Returns an ASCII character string that represents
the rotated bit pattern. The resulting string will have the same length as the input string.

•

•
$

)

Appendix D: Support Functions and Editing Keys 95

ASe$ - convert hexadecimal string to ASCII:

I RSC$ ('hex string')

hex string - string of hexadecimal characters.

Converts hexadecimal characters to ASCII decimal codes, then returns the string of ASCII characters.
Note that two hexadecimal characters specify one ASCII character. If the input string does not have an
even number of hexadecimal digits, a leading zero is added.

ASCII$ - return string of ASCII characters in specified range:

I rlSCI I:t·(, 'start' -' 'end')

start - starting ASCII character. The null string specifies CHP.$(O).

end - ending ASCII character. 'rhe null string specifies C H R $ (2 5~;) .

Returns a string of ASCII characters in the specified range (inclusive). If start is greater than end, the
string ill reversed.

ASHF$ - shift a string left or right by bit count:

Ins H F :*: (, string' .' count .' bit)

string -- string of ASCII characters to be shifted.
count -- number of hits to shift (to right if +, to left if-).
bit - value to shift into the bit pattcrn (lor 0).

Operates on an ASCII string at a bit level, considering the string to be a binary numher with a length that
is a multiple of eight bits. Shifts the bit pattern left or right by the bit count, shifting in D's or l's as
specified by the bit parameter. If count is +, the bit pattern is shifted right, and leading O's or l's are
shifted into the pattern. If count is -, the bit pattern is shifted left, and trailing O's or 1's arc shifted into
the pattern. Returns an ASCII character string that represents the shifted bit pattern. The resulting
string will have the same length as the original string. An example should clarify this:

I~I:=;HF$':' H'! 1, li:l)

The string is the ASCII character \,l (decimal code 87). The bit pattern for l~ is "01010111", The count is 1,
a positive number, so the bit pattern is shifted to the right one space. The bit value is "0", so D's are
shifted in to replace the Jeading characters. 'l'he resulting bit pattern is "00101011" (note that bits shifted
past the end are lost). The corresponding decimal code is 43, and the returned string is the character +.

96 Appendix 0: Support Functions and Editing Keys

AXOR$ - exclusive OR of two strings:

I AXOIU ('string l' , 'string 2')

string 1 and string 2 - ASCII character strings.

Performs a bit-by-bit logical EXOR on the bit patterns of the corresponding characters of the two strings.
Each trailing character of the longer string is EXORed with CHR$ (255). The output string consists of
ASCII characters that represent the resulting bit patterns.

BIN AND -- bit-by-bit logical AND of two integers:

\ 8 I 11 ~~ll'l [I (integer .< integer ')

integer - range: -32768 to +32767

Returns the 16-bit logical AND of two integers. Each bit of the result is calculated using the correspond­
ing bit of each argument.

BINCMP - binary complement of integer:

I F: 1 HC f'lP (integer)

integer - range: --·32768 to +32767

Returns the 16·bit binary complement of an integer. Each bit of the result is the inverse of the
conesponding bit in the argument. If the argument has less than 16 hits, leading zeros are assumed.

BINEOR _ ... bit-by-bit exclusive OR of two integers:

j B I I-H.JH;' Unteger , integer)

integer - range: -32768 to +32767

Returns the 16-bit binary exclusive OR of two integers. Each bit of the result is calculated using the
curresponding bit of each argument.

BINIOR - bit-by-bit inclusive OR of two integers:

I H I H I 0 r~ (integer, integer)

integer -- range: -32768 to +32767

Returns the I6-bit binary inclusive OR of two integers. Each bit of the result is calculated using the
corresponding bit of each argument.

•

•

•
,
1

r

---------------------------------------.------

Appendix D; support Functions and Editing Keys 97

BIT - test bit in integer:

\ 8 I T (Integer., position)

integer - range: -32768 to +32767
position - bit position to be tested (0 to 15), Bit number zero is the rightmost bit.

Returns value of specified bit in an integer argument. Result is "I" if bit is set, "0" if bit is clear.

BREAK - find next position of character in list:

j8REAI« '/ist', 'target' ,start)

list - string of characters to be accepted in.search.
target - string to be scanned.
start - position in target string to scan from.

The target string is scanned from the specified starting position until a character from the list string is
found. Returns the position number of that character. If no listed character is found, returns O.

BTD - convert binary string to decimal number:

! nTD('string' >

string .~ string to be converted (represents binary number) range "0" to "1111111111111111".

Returns decimal value of binary representation contained in the string argument.

BUF$ - return contents of specified buffer:

1 r:UF~r:('buffer';'

buffer - I (input buffer) or L (LCD buffer).

The entire contents of the specified buffer are returned. The returned string is 96 characters long.

I

Wt

98 Appendix D: Support Functions and Editing Keys

CALL - call basic program with parameters:

CALL 'filename[: device code] \ [; }<parameters)

filename - name of program. If a string variable is used to name the file, a semicolon must precede the
pRr(lmeters list. Otherwise the semicolon is optional.

device code - device code of device where program is located.
parameters - list of actual parameters to pass.

A mainframe extension that allows the passing of variables to and from the subprogram named in a CAL L
stateml'nt. This statement calls a basic program and passes the variables to it. The results are passed back
through the same variables. The variables may be passed in two forms:

• Passed by mference: Provides bidirectional access to the values of the variables. Values of variables
may be updated by the subprogram, and such updates are reflected immediately in the main program.
For example: 11, X, D$':: -'). and G () are all passed by reference .

• Passed by value: Provides unidirectIonal access to the values of the variables. The values of the vari­
ables in the calling program remain static during the execution of the subprogram. All expressions
and subscripted variables are passed by value. For example: i< * 'r'./ Z, FI:t [1 , 5 J, C (2 -' 1), and (:>::)

Rre all passed by value.

An example of a CrlLL statement (with parameters) would be:

CALL 'ri"'ro·~' (f"I-,A'5$[1 .. 5J-,G$<1,,1)-,(~':»

COPY ':BCRD' - recover bad card with missing tracks:

c eH'''!" 'filename: Be r,:D!"'passwordJ' TO' filename'

filename - a valid filename for a BASIC or TEXT file.
password - the password of a private file on the card.

COP'," :L~:Cf;:U' worksjustlikeCOP'y" :CflRD' unless you press [ATTN [or !SHIFTI!ATTN I before aU of
the tracks of the card have been read. The filename parameter is required for COP'-,-' , : 8CP['I', and must
match the name on the card (use CAT CI,fW to determine the proper name). When the copy process is
allowed to go to normal completion, the result will be a normal copy. If there are errors, the partial file is
purged, just as with C (I P Y , : C FI R 0 ' . However, if the copy is aborted with the [ATTN I key, the file copied
up to that point is manipulated into a valid file and retained. The new file will contain (IS many lines of
the original file aR could be recovered. This process only works for BASIC and TEXT files.

Note: If you are using a n::\'E:(H~RO n:: device, you cannot use the external keyboard to abort

CO f" 'r" , : BeRO ' . You must press the [ATTN I key on the HP-75 keyboard.

•

•

I

.1

s

..• _._--------------------------

Appendix D: Support Functions and Editing Keys 99

COUNT? - show current length of [I I SP or PR I ~lT output:

I COUin? ('flag I ;;

flag - [I (DISP), or F' (PRINT).

Returns the number of characters in the 0 I S P or P F:: I NT buffer (since the last time carriage~return
was sent).

Note: This function will not operate correctly for the 0 I SF' buffer if l'~ I D THis set to lNF; for the
FRItH buffer If P~lIOTH is set to INF.

DEFKEY$ - return current key definition:

I OEFKE'/:t· (I character')

character - character representing key wanted (may be specified with the CHRt function).

Returns the key definition string for the specified key as stored in the keys file. If the key was defined
with a trailing semicolon, the first character will be a semicolon. Otherwise the first character will be
blank.

DELAY? - return current delay setting:

Returns the current delay setting, The returned value may not be exact due to some internal round·off
error, For example: DELA',!, ,6 (i! 01 ::;:p DELn''!'') returns ,599:j755:35~Ci3:=::.

DO EHHOH - cause given error:

I DO [fWOR [error#]

error# - number of error to cause,

Causes the specified error condition to occur. If the error# field is left blank, the last error is caused.
Program execution is stopped, E F: R t·j is set to the specified errol' number, and the error message is dis·
played. ROM errors will not display error messages, but ERROR: er t· Ot· # will be displayed, Refer to
appendix E for I/O ROM 'error definitions,

100 Appendix D: Support Functions and Editing Keys

DTB$ - convert decimal number to binary string:

I D TfH (number)

number - number to convert (-32768 to 32767).

Rounds decimal number to the nearest integer and returns the binary representation as a string.

DTH$ - convert decimal number to hexadecimal string:

I DTH$(number>

number - number to convert (-32768 to 32767).

Rounds decimal number to the nearest integer and returns the hexadecimal representation as a string.

DTO$ - convert decimal number to octal string:

I DTO$(number>

number - number to convert (-32768 to :'l2767).

Hounds decimal number to the nearest integer and returns the octal representation as a string.

ESC$ - return string of escape-character sequences:

I F::,,,f.l('string')

string - s(ring to be escaped.

Returns string with ESC added in front of each character.

EXIT - leave a FOR-NEXT loop early:

I [::.,: I T index variable name

index variable name - the name of the F (I F: variable to be exited.

Causes program execution to branch to the statement following the ~'l E in that corresponds to the index

variable name. For example: E i< IT:"', would cause a branch to the statement following [.j E : .. : T i<. If E)<: I T

is included in a multiple-statement line, statements that precede the Ei< I T will be executed, but the
EX I T will cause an immediate branch, skipping the statements that follow it in the line. If NEXT is in a
multiple-statement line, execution will continue with the statement after the HEXT in that line.

•

•

•
s

I

FILL$ - fill a string:

FILL$('left', 'middle', 'right' ,size)

left - left fill string.
middle - string to fill around.
right - right fill string.
size - size of string to be returned.

Appendix D: Support Functions and Editing Keys 101

Places the middle string in a string of the specified size, and fills in on the left and right sides with the left

and right strings, respectively. Each fill string is duplicated (if necessary) to fill the space from the left or
right margin to the middle string. Odd pieces of the fill string will bracket the middle string since the fill is
from the edges in, both sides. If both left and right strings are specifed, the middle string will be centered
(odd space to the right). If the left string is null, the middle string will be left justified. If the right string is
null, the middle string will be right justifed. If both strings are null, the middle string will be right find left
justifed (spaces will be expanded to fiU the size). If the middle string is longer than the size, then the
middle string is returned truncated to that size.

FIND - find specified occurrence of substring in string, with wild card:

r: I [-j 0 ('subject' , 'target' , '[wild]' ,occur)

subject - substring to find (with wild cards).
target - string to scan for occurrence of subject substring.
wild --, character to use as wild card in subject substring.
occur - an integer specifying the desired occurrence of the subject substring.

Finds the specified occurrence of the subject substring in the target string. The wild character (if specified)
will match any character, and overlapping occurrences are counted. If the pattern is not found, the re­
turned value is zero, otherwise it is the position of the first. character of the match. For example, in H H H H
the second occurrence of H H H is at position 2 and there is no third occurrence. This match could also be
made with tbe subject string H--, where - is the declared wild character.

FLAG$ - set specifed bit to specified value in given string:

\ FI. n C'$: ":, ' flag string' ,bit#, value)

flag string - string being used as an array of flag bits.
bit# - number of bit to set (negative numbers default to zero).
value - 0 or 1. Set the bit to the specified value.

This will set the specifed bit to the specified value and return the new string. If the bit is outside the
current string length, an error will result. The flag string may be initialized with ASC$, for example:
F::J;::::fl:3C$(' 00FFA'). Bit number zero is at the extreme right.

•

102 Appendix 0: Support Functions and Editing Keys

FLAG? - test specified bit in string:

1 FLAC~?('flag string' ,bit#>

flag string - string being used as an array of flag bits.
bit# - number of the bit to be tested, (negative numbers default to zero).

Returns 0 if bit is clear, 1 if bit is set. Bit number zero is at the extreme right.

FOR - FOR allowed after a THE~j or EU,:E:

1'he I/O ROM provides a modified FOF; that works just like tha mainframe FOP, except that it is allowed
after a "1"1",1 E 1--1 or an ELSE in a multiple-statement line. FOr::: may be usad in multiple-statement lines as
shown in the following two examples:

30 If F>=2 THEH FOP X"'1 TO ~, @ F=,:::f:f~ @ DUW F @ tlD:T (.:

?U If::' F=2 Tf~Et-i GOTO ~"'(1 EL:3E FOR)-·:=1 TO 10 I~ F=2:fF/PI (~DISP F C,~ NEXT X

The 110 ROM is required only while such a statement is being written into a program. Once the program
has been written, it can be run even if the ROM has been removed.

GOSUBX - C:OSLJB to a variable as a line number:

leo ::,; 1...1 D: : numeric expression

numeric expression .- numeric expression to he avaluated and used as line number. Expression is rounded
to an integer (MOD 10000). Negative numbers default to zero.

Performs a C: 0 S LJ 8 to the line number derived from the numeric expression, or the line after that if that
line does not exist.

GOTOX - GO 1 CI to a variable as a line numbar:

1 GOT I):: numeric expression

numeric expression - nnmeric expression to be evaluated and used as line number. Expression is rounded
to an inleger (MOD 10000). Negative numbers default to zero.

Performs a COT 0 to the line number derived from the numeric expression, or the line after that if that
line does not exist.

•

•

•
7

Appendix D: Support Functions and Editing Keys 103

HAND$ - AND of two hexadecimal strings:

I HfnW$ 0: 'string l' .' 'string 2')

string 1 and string 2 - two hexadecimal strings.

A bit-by-bit logical AND is performed on the bit patterns of the corresponding characters of the two
strings (the strings are left justified). The output string consists of hexadecimal chamcters that represent
the resulting bit patterns, and is equal in length to the shorter input string. If an input string does not
have an even number of hexadecimal digits, a leading 0 is added (before left justification).

HEX$ - convert ASCII string to hexadecimal:

I HE:"::t (, ASCII string')

ASCII string - string of ASCII characters.

Returns string of hexadecimal characters that represent the bit pattern specified by the ASCII string.

HOR$ - OR two hexadecimal strings:

I HOR$('string 1') 'string 2')

string 1 and string 2 - hexadecimal character strings.

A bit-by-bit logical OR is performed on the bit patterns of the corresponding characters of the two strings.
Trailing characters of the longer string are ORed (in pairs) with "no". The output string consists of hexa­
decimal characters that represent the resulting bit patterns. If an input string does not. have an even
number of hexadecimal digits, a leading zero is added to it before the OR is performed.

I-IROT$ -rotate a hexadecimal string left. or right by bit count:

I HROT$ ('string' "count)

string - hexadecimal character string to be roiated.
count - number of bits to rotate (to right if +, to left if -).

Rotates a hexadecimal string on a bit level, considering the string to be a binary number with a length
that is a multiple of eight bits. (If the input string does not contain an even number of hexadecimal digits,
a leading zero will be added.) Rotates the bits of the given string by the number of bits specified in the bit
count. Bits rotated off one end are added on at the other end. Returns hexadecimal character string that

represents the rotated bit pattern.

104 Appendix D: Support Functions and Editing Keys

HSHF$ - shift a hexadecimal string left or right by bit count:

I HSHF$ 0:: 'string' ,count, bit)

string - string of hexadecimal characters to be shifted.
count - number of bits to shift (to right if +, to left if-).
bit - value to shift into the bit pattern (lor 0).

Operates on a hexadecimal string at a bit level, considering the string to be a binary number with a length
that is a multiple of eight bits (if the input string does not have an even number of hexadecimal digits, a
leading zero will be added). Shifts the bit pattern left or right by the bit count, shifting in D's or l's as
specified by the bit parnmeter. If count is +, the bit pattern is shifted right, and leading D's or l's are
shifted into the pattern. If count is -, the bit pattern is shifted left, and trailing D's or l's are shifted into
the pattern. Returns a hexadecimal character string that represents the shifted bit pattern. An example
should clarify this:

f"1:3HF:~; '" 'f~'5B' ,-3.,1)

Jt'irst, a leading zero is added to make an even number of hexadecimal digits. The string becomes OF"i58.
The bit pattern for this string is "0000 10lD 0101 lOll" The count is -3, so the bit pattern is to be
shifted. three spaces lefl, with l's shifted in 9n the right. 'rhe shifted bit pattern is "0101 0010 11011111".
The hexadecimal string that represents the shifted pattern is ~j ;~:: [II", and this string is returned by
f·I::::Hf::·:'I'·.

H'l'D - convert hexadecimal string to decimal number:

1 HTD('string' .',

string - hexadecimal string to convert, range "0" to "FFFF". Limited to the characters "0" through "9",
"A" through "1<''', or "a" through "r'.

Returns the decimal nUllleri9 value of a bmw 16 representation contained in the string argument.

HXOR$ - EXOR t.wo hexadecimal strings:

string 1 and string 2 - hexadecimal character strings.

A bit-by-bit logical EXOR is performed on the bit patterns of the correspond.ing characters of the two
strings. Trailing characters of the longer string are EXORed (in pairs) with "FF". The output string con­
sists of hexadecimal characters t.hat represent the resulting bit patterns. If an input string does not have
an even number of hexadecimal digits, a leading zero is added to it before the EXOR is performed.

•

•

•
•

Appendix D: Support Functions and Editing Keys 105

INSTALL - load private file from tape (created by ~lCOF'Y):

I INS TAL L 'filename: device code'

filename - filename of desired file.
device code - device code of desired tape drive.

Copies a private file (created by 1"1COF'Y) from tape to RAM. This is the only way to retrieve a private
t'1CUP\' tape file (refer to t1COF'Y).

LCD ON/OFF - turn LCD on/off:

I LCD ~~F
l.. CD 0 H specifies normal LCD operation. LCD U F F prevents anything further from being displayed on
the LCD. LCD OFF remains in effect until LCD Ot-j is executed or the program stops.

LEFT$ - return Jeft portion of string:

It. F: F: T ~r. ',: 'string' -' count::.

string -,. input string (left part to be returned).
count - number of characters to be returned.

Returns the number of characters specified, starting from the loft end of the string. If count is greater
than the longth of t.he string, the right end is padded with blanks.

LTRIM$ - loft trim a string:

I LTPlt'1$('trim',. 'target')

trim _. list of characters to trim.
target -- string to be trimmed.

Trim::; the listed characters off the left edge of the string until a character is encountered that is not in the
trim Jist.

LWRC$ - convert string to lowercase:

I U1RC$ ('string')

string - string to be converted.

The characters "A" through "Z" are converted to lowercase. Other characters are not changed.

106 Appendix D: Support Functions and Editing Keys

MAP$ - map "from" characters into "to" characters in target string:

I tmp$('from'} 'to'" 'target';'

from - list of characters to find.
to - list of characters to replace the from characters.
target - string to operate on.

Scans target string, searching for any from characters. Each from character found is replaced with the
corresponding character from the to list. All other characters are passed through unchanged. For example:
t'IAP;$:(' bac'., 'de'} ',::1l">cfde ') wiII return the string edfde. t''IAP,'!: maps a into e and b into d.
The c goes to null, and fde is passed through. Note that ['lAP! differentiates between upper and lower
case characters. For example: l'ln P $ (, Aa ') 'be I } 'Rat"" dvat- k ') returns the string bet- d',,' c t" k.

MARGIN? - return current right margin setting:

Returns the current right margin setting as a decimal number.

MCOPY - duplicate tape onto multiple tapes:

" ['If'Of''', '[P j:master' TO '
: s/ave[" : Slave] ...

nu"

master - device code of source tape drive (N=normai, P=private).
slave - device code of a destination tape drive (ALL will find all of the drives).

Copies the entire conlents of the master tape onto all of the destination tapes. Tapes are first initialized
unless the colon before master is replaced with a period. The rc!mlting tapes will be made private if you
specify a P in the ['1 C CI f~' '{ statement (only BASIC and LEX file!'; will be private). The files of the ~lCOF"-,-'
lape can bo read into memory wit.h the I H::', Tf'iU. command (see I NSTf'iU).

Note: The slave tapes will be exact copies of the master tapes. You cannot use t'ICOP\' to append

data to an existing tape. You should only specify a period before master if you have already initialized

the destination tapes.

MID$ - return middle portion of string:

I t'1 J r ,I:t \, • string' } start} count \

string - string of which to return middle portion.
start - starting position.
count - number of characters to return.

Returns specified number of characters from the given string, starting from the start position. If the count
passes the end of the string, blanks are appended to the end.

•

•

•
r

Appendix D: Support Functions and Editing Keys 107

NEXT - riEi-::T allowed after a THEN or EL2:E:

The I/O ROM provides a NE?':T that works just like the mainframe NEXT, except that it may be used
after a THEt'J or EU::E in a multiple-statement line. For more details, refer to FOR.

NSCR$ - remove underscoring:

I NSCR$ ('string' ::.

string - string to be mudified.

Removes the underscore bit from all characters in the string and returns the string without the
underscoring.

OTD - convert octal string to decimal number:

I OTIJ('octal' >

octal - string to be converted, range "0" to "177777".

Returns the decimal numeric value of the octal representation contained in the string argument.

PWIDTH? - return current P W I IJ T H sotting:

Helurns the current Pl·l 10TH setting as a number. Returns 9.99999999999E499 if the sotting is I flF.

REPL$ - replace substring in target string with another:

PEPL:t< 'from' -' 'to' -' 'target' -' '[wild]' .. occur)

from - old substring to replace.

to - new suhstring.
target - string to scan.
wild - character to use as a wild card in the from substring.
occur -- an integer specifying the occurrence of the from substring to replace.

Scans the target string for the specified occurrence of the from substring. The wild character (if specified)
will match any character, and overlapping occurrences are counted. If a match (with or without a wild
character) is found, the specified occurrence of the from substring will be replaced with the to substring (or
deleted if the to substring is null). If the from substring is null, the to substring will be insertod in front of
the occur character in the target string. If no match is found, the target string is returned unchanged. For
example: REPL$< 'a--' 'b'-, 'a·",aef') '-' .. 3> will return the string aab. The first, second,
and third occurrences of a- - are a.OJa, a ae, and ae f , respectively. The third occurrence, ,:')e f, is re"

placed with b.

e

108 Appendix 0: Support Functions and Editing Keys

REV$ - reverse string:

I HE ',),t('string')

string - string to be reversed.

Returns reversed string, (ABeD becomes DCBf1).

RIGHT$ - return right portion of string:

I RIGHT,t('string' ,count>

string - string of which right portion is to be retul'lled.
count - number of characters to return.

Returlls the specified number of characters at the right end of the string. If the count is greater than the
string length, blanks are added on at the left end.

ROT$ - rotate string by character count:

I POT$('string' _,count)

string - string to be rotated.
count ,-- number of spaces to rot.ate (to right if +, to left if -).

SUing is rotated right or left by specified count. Characters rotated ofT one end are added on at. the other
end. Retuflul rotated st.ring. For example: R I] T:t (, ABC 0 ' , - j ::. returns the string f,: C D n.

RPT$ - repeal string.

pattern - pattern to be repeated.
count -. number of times to repeat the pattern.

Concatenates pattern the number of times specified by count and returns the resulting string.
f<n -l'" 'HH') ;:~) returns the string F"iE:A8H8.

R1'RIM$ - trim trailing characters:

I r,:TP I t'1$ ('trim' -' 'string')

trim - list of characters to trim.
string -- string to be trimmed.

Trims trailing characters listed in the trim list. All listed characters to the right of the last non-listed
character /lrc trimmed. For example: R T R I 11 $ (, , ' ' , 'a be, de, ' , -' ') returns the string abc, de.

,

•

•

•
•

Appendix D: Support Functions and Editing Keys 109

SHELL ~ automatic run of programs by name:

I 0" t:HELL OFF

'llirns ~; H ELL mode on or ofl If SHE L L mode is on, CAL L I filename I is automatically executed for any
line that is a valid filename for a BASIC file. For example, if there is a BASIC file named APROG in
memory, typing APR 0 G I RTN I will cause C fi L L I APR 0 G I to be executed. SHE L L mode also can be used
to execute a CALL with parameters (refer to CALL>. For example, typing E:F'r:::UC(A, :":> IRTNI will
cause cnLL I BPROC I (A, X) to be executed. Note that BPROC; (A -' X) must be typed with no embed­
ded blanks.

SKEY$ - wait for significant key:

I SKEY$

SKE'y'$, like n:''i''~f, returns the character associated with any pressed key or keystroke combination,
allowing "live" keyboard branching. However, S K E \' $ does not return a character until a key is pressed
(f',,[~, \'~t: will return the null string if no key is depressed while it is being executed). This allows a running
program to "wait" for a pressed key.

There are some keys that do not cause SKE ,/$ to return a character. You may press I SHIFT I [FET I to fetch
an error message if an error occurs before the SKE\I'~~: statement. Also, the G and 8 keys (and their
variations) are not returned, but scroll the LCD.

SPAN -- find position of first character not in list:

I ::;: f:~ f1 H (, list' " 'target I) start)

list -- list of characters to pass over.
target _. string to be scanned.
start - starting position in target string.

Scans target string and returns the position number of the first character found that is not in the list

string. The scan starts at the specified start position, and continues to the end of the string. If no unlisted
character is found, ;>:ero is returned. The function is inclusive. If the starting character is not listed, the

start position is returned.

•

110 Appendix 0: Support Functions and Editing Keys

S'l'A'l'US - set status of system flags:

I STfiTUS 'f/agset'

flagser - 12 character string. Characters indicate settings for flags:

1. A flLARI'l Ot-l, a = ALARI'l OFF

2. 1.... flUTOLOOP en'l, 1 = AUTOLOOf:' OFF

3. E:3C-I/R OH, i = E::;C-L"F: OFF

4.:C. :=:HELL Ot'l, S = SHEll.. OFF

5. B BEEP Ot-l, b = BEEP OFF

6, D

8. T

DEr~'r"jUL T Ot.J, d

~::;THt'lDB\' OH, S

1 H1EOUT (q'l, t

DEFAULT OFF

:3T!-lNOB1' OFF

T I l'lEOUT OFF

9. \) '.}ERIF't OH, '.J = \JEF.:IF\' OFF

10. 0 DEGREES, R = RADIANS

11. TF~f'lCE FLOi<L,.\,.If1R:3, F = TRACE FUJI,l,
\) TRACE 1,}r-m:3, t = TF:ACE OFF

12. 1'1 1'10'-,-' r,',odE:', [I = [11'1\' mode

Any flag may be laft in its present state by including a period (,) as a place holder in the string. Strings
shorter than 13 characters do not change trailing flags. For example: STrn U:::; 'n, ,bD I sets f'H.,riRI'j

eH1, leaves fiIJTOIJIIJf\ ESC" I /R, and SHELL in their present state, sets BEEP OFF, sets DEr'AUL T
IJ 11, and leaves the trailing Hags in their present state.

S'l'ATUS$ - show current system flag settings:

Returns flag string representing system flag settings as set with STHlU'3. The format is the same as for
'~:nHI..,I:3 (see above).

•

•

•
5

Appendix 0: Support Functions and Editing Keys 111

STRING ARRAYS ~ dimensioning and referencing:

The I/O ROM provides the capability to declare string arrays. String arrays may be one or two dimen.
sional, and consist of string elements of specified length. The syntax of the 0 I ['1 (dimension) statement is:

I DHl A$(co!,row)[size]

col ~ column upper bound.
row ~ row upper bound.
size ~ size of element (all elements have the same size).

Dimensioning a string array is similar to dimensioning a numeric array. The column and row upper
bounds are specified in the 0 I ['j statement, but the actual number of elements is affected by 0 P T I (I t·l
8 R:3 E just as for numeric arrays. The following 0 I ~1 statement would dimension a one"dimensional string
array with six elements, each a string 10 characlers long (assuming the default of OPTIO~l E:A:3E 0):

l~j DHl R$(S)[10J

You can reference a dimensioned string array as follows:

B$ "" 11 ~t: (col, row) [start, {stop]]

col - column specifier.
row - row specifier.
start ~ start position in element.
stop - stop position in element.

If you do not specify a start and stop position, the entire element is copied. For example, B:$ "" A $ (1 , 5)

copies the element A $ c: 1 , 5;' into 8 $. If start and/or stop are specified, only the specified portion of the
element is copied. For example, B:$ O~ A ~~: (1 .. 5) 2 , 4 copies characters two through four of the element
FH(l,S) into 8:t:.

SUB - header for subprogram:

I ,::: U to: name (formal parameters)

name - name of subprogram.
formal parameters - list of parameters to be. passed.

Each suhprogrum must have a ,:::U8 statement as the first line in the file (only one subprogram may be in
a file). SUB defines the beginning of the subprogram and the parameters expected by the subprogram.
Parameter!> within the subprogram must match the passed parameters in type. Formal parameters must be
used, for example: ::<, A1'-:.,), C$, and Fl$(,). The name field must match the filename of the sub­
program. The SUB statement is used in conjunction with CALL.

112 Appendix D: Support Functions and Editing Keys

SUB$ - return middle portion of string:

! s U 8 ~t ': 'string' ,left, right)

string - string to process.
left - left position.
right - right position.

Returns the portion of the string bounded by the left and right positions (inclusive). If left is negative,
blanks are added in front. If right is larger than the string, blanks are added at the end.

'l'CAT$ - CrlT:j; of a tape drive:

! TI"':nT$ (, : device code' ,file#)

device code - device code a>!signed to tape drive.
{ile# - number of desired file.

Returns catalog entry for the specified file as a string (like C f:i T .t). If file does not exist on tape, returns
null string.

T.EMPLATE$ - return template string witb protected fields:

TEt-lPl.I1T[cl< 'protectlempl'., 'trail')

protect tempI - protected template string up to 96 character>! long.
trail -- trailing field flag (F' = protected, U = unprotected).

Heturns a protected template string with unprotected fields that the user may change. Specify protected
fields with underlined characters (use 1 CTL)[JZ[J). The underlining will not appear in the returned 8tring.
Use characters without underlining to specify unprotected nelds. The trailing field may be protBeted, or
left unprotected, by specifying P or U for trail. For example:

TEr'W[",nTE:!: I,. 'Ii~l?"_:::_hh..Lrlif~ __ I§:~E:_::',,_dd._f 1 1 f~ 1 "

retmns the string Time'" hh: mfi'l Temp = del F. You can change the fields hh, fi'lfil, and del, but all
other characters are protect.ed. The trailing field is also protected because P is specified. You can lab right
and left from field to field with [TAB] and [§HIFT ll!E:sJ. The [eL1f] key restores the original template.
When input is terminated with I RTN I, the entire 96 character string (with user changes) is returned.
Termination with any other terminator (such ag I ATTN I) cause>! the null string to be returned.

•

•

•
---•. Z 11

•

•

TIMEOUT ON/OFF - set timeout mode:

I T I I1EOUT ~~F
o I~ - allow timeout after five minutes.
OFF - prevent timeout after five minutes.

Appendix 0: Support Functions and Editing Keys 113

::: T ~i H 0 [~'i OH/OFF will affect this setting. If T I ~1 E 0 UT O~l is done after a STR ~j D E: \' 01,\, the HP-75
will stay fully on for five minutes, then tUl'll itself off. If T I t1 E 0 U T 0 F f~· is done after a S T A t-j D 8 Y 0 F f~ ,

the HP-75 will go into the partial power down state almost immediately, and will stay in this state indefi­
nitely. Normally you would want to execute STA~jD8',-' OFF first if you are using T I t'1EOUT Ot-j/OFF.

TIMER? - retul'll current timer interval setting:

I T I 1'1 E F:? (timer number)

timer number .- number of timer to be checked.

Returns the value of the specifed timer's interval. Zero is returned if the timer is not declared.

TOBASE$ - convert number to specified base, return as string:

I T (I [~f:i:3 t: $ (number., base)

number - decimal number (floating point format) to be converted.
base - positive integer (range: 2 through 36).

Converts decimal number to the specified base (2 through 36). Returns result as a string. Maximum string
length is 256 characters. Issues warning if the string is too long.

TODEC - convert string from specified base to decimal number;

I TODEC('string' ,base)

string - string representing number to couvert. Valid characters are: 0-9, A-Z, and a-z (characters must
be valid for the specified base).

base - positive integer (range: 2 through 36).

Returns decimal number in floating point format equivalent to the string representation in the specified

base .

114 Appendix D: support Functions and Editing Keys

USCR$ - underscore string:

I USCR$ ('string' >

string - string to be underscored.

Returns specified string, but with underscored characters.

USERMSG - send message to display and error buffer:

USE R t1 S G 'message' [, error number]

message - message to be displayed (maximum of 32 characters).
error number - error number to be reported with message.

The specified message is sent to the display and error buffer. The message may be recalled with
I SHIFT II FET I (until the next terminator key is pressed). If error number is non-zero and positive, the error
annunciator will be turned on, BEEP will sound, and you may recover the number with ERRt·l, If error

number is Z()ro or negative, the message will be displayed, but the error annunciator, BEEP, and ERR~l
will remain unchanged.

VERIFY ON/OFF - set verify mode for card reader:

\

"lIHF'l 01>1
." OFF

U t'l - turn on verify mode for card rcadur.
(I fT - turn off verify mode for card reader.

WEND? - show current window end:

Returns the cnrrent window end column as a number.

WIDTH? - return current [,J I [I T H setting:

It"1 I DTH?

Returns the current W I [I T H setting as a number. Returns 9 , 54 9 54 9 9 54;! 9 9 9 9 E 4 9 54 if the setting was

I HF.

•

•

•
s

•

•

WINDOW - set the LCD window start, end:

I WINDOW [start[,end]]

start - start column: 1 through 32 (defaults to 1).
end - end column: 1 through 32 (defaults to 32).

Appendix D: Support Functions and Editing Keys 115

Sets the start and end columns of the LCD window. The window setting remains until reset. When used
in a program, 1·1 I ('j D 0 i~ may be used to set up a field within which data may be displayed. Anything that
is outside the window, and that is sent to the display by a 0 I S P or P F: I t'l T statement before the
H I t'l[lO~j statement is executed, will remain "frozen" until the display is cleared by a CRjLF. 'Ib avoid
clearing the display, append a semicolon (;)·to all DISP and PRINT statements, and set i,JIDTH and
F' [,j lOT H to I t-j F. The following program exemplifies the use of i·j I I·j D (I i,l:

H1 DI:3P '*****
20 iHNOmJ 6,10
30 [lISP '12345';

40 EHD

****l' ;

The program displays :f' * *::1: *1 2345:t::l:::I:::\:: * when it is run. You may scroll 1 2345 with the G and [!]
keys. TYPe [,j I rl D (I i·j I RTN I to return the display to normal.

WKEY$ - wait for key, return any key pressed:

Works like KEi'$ except that it will not execllte until a key is pressed. Unlike ::~KE\'$, it returns a

character for any key that is pressed (including I SHIFT) [FEr), G, and G).

WSIZE? - show current window size:

Returns a number representing the number of columns in the current window.

WSTAR'f? - show current window start:

I i~SHiRT?
Returns number of the starting column of the current window .

t

116 Appendix D: Support Functions and Editing Keys

File Manipulation Functions

The following functions provide enhanced file manipulation capabilities.

ADVANCE# - advance data item pointer in a file:

n ,-' '..'!"i ~,j C [# file number _: count .' return variable

file number - number of data file (assigned with ASS I C H #).

count - number of items to skip.
return variable - variable to contain the number of items not skipped.

Moves data item pointer forward in the me specified by file number. Skips the number of data items
specified by count. If the end-of-file marker is encount.ered before count items are skipped, the number of
items nol skipped (count less the number skipped) is returned as t.he value of return variable.

CXf# - return file number of nth W:,:;;: I GH# file:

n - 0 t.o 9999 (negative numbers default to zero).

Returns the file number of t.he nth Ii ::: ::; I C I',j # file. Returns zero if the nth file does not exist. If file
numbers 1, 5, and 8 have been assigned, CnT#(l) returns 1, CAT#(2) returns '::;, and CAT#(3:)

returns 8. If n = 0 is specified, the next available A:=~:3IC~'Hf tile number is returned. In the above
example, CnHr 0:: e) would return 2.

CLEAR ASSIGN# _ .. clear all fc::::: I C.~H-i' assignments.

["",,---c, -'-"~IGN.'.' I" "" ':, H", H_=._=. '

All r: ::,: '~: I C; H H assignments are cleared, recovering space in memory.

DELETE# - delete data items.

I Ll [L_ [: T E:1f file number, count

file number - specifies FI S S I G H ~ file to delete data from.
count - count of items from current position.

Delete specified number of data items from specified W::S I GH# file. Number of items is specified by
count, beginning at the current. position.

•

•

•
i

7

•

•

•
•

Appendix D: Support Functions and Editing Keys 117

FILE$ - show name of specified A~: S I G H # file:

I F I LEt (file number)

file number - number of ASSIGt·l# file (0 specifie!; the current run file if any reads have been done, a
negative number specifies the current edit file).

Returns the name of the ASS I G H # file specified by file number. Returns the null string if the file number

does not exist. Returns underlined name if the file has been assigned, but does not exist.

INDEX# - return current data pointer position in file:

I IHDEX#(fi!e number)

file number - number of ASS I GH# file (0 specifies the current run file if any reads have been done).

This returns the current data pointer position in the specifed file, in terms of the number of items from
the beginning of the file.

INSERT# - insert an item at the current data pointer:

I J t'l :::: E R T # file number.: value

file number - the number of the desired AS'3 I G ~l # file.
value -~ the value to be inserted into the file.

Inserts item into the file in front of the item at the current data pointer position. You can use
f10VAt~CE # to position the pointer at the end of the line (after the last item), then insert an item at the
end of the line.

ITEM# - return pointer position in current line:

I IT E r'l # (file number,'

file number - number of ASSIG~I# file (0 specifies the current run file if any reads have been done).

Returns the pointer position in the current line, (the number of items from the beginning of the line).
Returns an error if the file has been purged.

LASTLN? - return line number of last line in specified file:

I LASTLt-l? ('[filename]')

filename - name of file to be checked.

Returns the line number of the last line in the specified file. If you specifiy the null string for filename, the
line number of the last line in the current file will be returned.

1

4

118 Appendix D: Support Functions and Editing Keys

LINE# - return current line number in specified A:3::: I G H # file:

I LIt~E#(fifenumber>

file number - number of ASS I GH# file (0 specifies the current run file if any reads have been done, a
negative number specifies the current edit file).

Returns current line number in the file specified by file number. If the file is not assigned, I HF is re­
turned. If the file has been assigned, but does not exist, a negative line number is returned.

LINELEN# - return the number of items in a line:

It- I N E L E 1'1 # (file number" line number::'

file number - number of A '3 ';:: I G t'l H file.
line number - number of line in A::; :::: I G [1 H file.

Returns the number of items on the specifed line, in the specified file. Text files return the character
count of the line.

PRINT# •.• USING - F'R I t·j T # to a TEXT file with U C.' I [,1 G format:

image list r:' R I 1,1 T # file number[" line number] U ::: I t-j G .: expression[, expression] ...
line number

file number·~ n::::~: I Gi'l# file number (must be a TEXT file).
line number - line number to print to.
image list or line number - a valid list of image specifiers or the line number of a statement. cont.aining the

image list.
expression - item to print (a numeric or string expression).

P r:': J [,IT H ... U::: I H G works just like P F.: I tH ... U:3 I H G, except that it "prints" to an fer::; :;:, I 1=, ['1# file.

REPLACE# --- replace a data item in a lile:

I r:" f" f" l_ f'1 C E H file number _: value

file number _.- ASSIGN# file number.
value - value to replace old value.

Replaces item currently pointed to in the specified A:::::: I C [,lit file with the new item specified by value.

z

•

•

•
7

•

•

•

SEARCH# - search for value in data file:

:;:; EAR C H # file number["start[., end]]) value

file number - n S S I G H # file number.
start - start line number for search.
end - end I ine number for search.
value - value to search for.

Appendix D: Support Functions and Editing Keys 119

Moves item pointer in specified ASS I G [oj # file to the first OCCllrrence of the specified value. If start is not
specified, search starts at the current location. If end is not specified, search continues to the end of the
file. The pointer does not move and an error is issued if the value is not found.

SEEK# - position item pointer at a given location:

:=:EEK# file number, [line number.,]item number

file number - A:;:',S I GH# file number.
line number - line to position pointer in (optional).
item number - item number (in line if line number is specified; otherwise, in file).

Positions item pointer in the specified AS:::: I Gt'l# file to the specified position. If line number is specified,
positions pointer to item number in the specified line. If 'line number is not specified, item number is an
absolute item number, and the pointer is placed at that item, counting from the beginning of the file.

Additional Editing Keys

The HP-7G I/O ROM provides several additional editing keys. Some of these keys are redefinitions of
existing keys or key sequences, while others are entirely new. These editing keys cannot be reassigned to
other keys or key sequences, and the key sequences that execute these keys cannot be redefined with 0 E F
KE\'.

[clli [ClR I - clear display devices:

Press @illl ClR I to clear all current display devices without affecting the contents of the input buffer.
Sends ESC II and ESC J to the current display devices.

I ClL II DEL I - delete to beginning of line:

Press I Cll II DEL I to delete all characters from the beginning of the current edit line to the position just
left of the cursor. If there is a line number adjacent the prompt, the beginning of the line is defmed as just
after the line number. Otherwise, the line begins just after the prompt. The remaining characters are

justified left .

I ClL I 02[] - literalize and underscore next key;

Works like I SHIFT 11J2[], but with the addition of underscoring.

.. _-----------------------_._---

120 Appendix D: Support Functions and Editing Keys

I ell II SHIFT I EJ - find next occurrence of character on line;

Press the I ell " j SHIFT I, and G keys (holding all three down), release all of them, then press a character
key. The cursor will move to the next (right) occurrence of the specified character on the current edit line.
The cursor does not move if no OCCurrence of the character is found.

(ell I I SHIFT I G - find previous occurrence of character on line:

Works like the previous function, except that the cursor moves to the left instead of to the right.

I TAB] - tah left or right in non-protected field:

I TAB I enables you to tab from field to field. Press I TAB I to move right, I SHIFT II TAB I to move left. StOPfl on
the first character of the next or previous field (delimited by a space, semicolon, comma, or period). For
example, in the string abo: d", f.: -::< hi, ..i k 1 ,mno the tab points are a, d, 9, j, and fli.

Running an Autostart Program

The HP-75 I/O ROM enables the HP-75 to automatically run a program named fHJT(I~::,-r when the
computer is turned on (or turns itself on). 'l'his facility operates through the definition of key number 159.
If a program named AUTOST is present when the power is turned on and key number]59 has not been
defined, the function executes [lEF KE\· CHR$(l~:151)., "t;RUN 'AUTOST'l", then runs the
fWTOST file. If key number 159 has been defined, its current definition will be execut.ed when you turn
on the power. You can turn the featme off by executing ClEF f(E'l CHF:$' 0:: 159) " ' , (establishing a null
definition). To turn the feature back on, execute D [I-" KE\' CHR$: 0:: 1 59::0, "a,F~U ~l 'AU "I" U:3 T ' 1" . If no
mn 0:';-1 program exists and key number 159 has not been defined, the feature remains inactive.

Note: Type I SHIFT I G to produce !:.. Type I SHIFT II DEL I to produce 1.

The eontent of the AUTO~~;T program depends on your application. Simply writ.e a program named
PJITUST that causes the HP,75 to do whatever you want it to do when it is turned on. The program will
run the next time the eomputer is turned on (unless key 159 is defined to do something else). You may
also define key 159 to run any desired program or function. For example, if you execute DEF KEY
C 1,1 F' ~1' 0:: 1. ~j:;'), '~" AT ALL' , C AT ALL will be executed each time the computer is turned on.

•

•

•
1.-_____ ------_·_----

•

•

I •

Appendix E

Errors and Warnings

The HP-75 I/O ROM displays the following error messages when the listed error conditions occur. Other
error messages and warnings are listed in the HP-75 Owner's Manual.

Note: Errors 28, 42, 47, 52, 68, 82, 85, 88, 89, and 91 are HP-75 mainframe error messages. These

error messages have their usual meanings and may also be used by the HP-75 I/O ROM to indicate

the error conditions listed in the fOllowing table. Errors 120 through 129 are specific to the 110 ADM.

Number

28

42

47

52

68

82

85

88

89

91

120

121

122

Message and Condition

~"E'cot-d (il.lerflol,)

lOS I ZE is exceeded by the record being entered.

stt"ing ~oo long

Device code of more than two characters entered in a f': E A:;:; S I G N statement.

no r(larching FOR
No HE:·':: T can be found to match the index variable of the Ei~ I T statement.

inv.;!lid It'1fiC,E

Invalid field in an ENTEr::: or OUTPUT image.

1 ..)1" ong f i 1 E' ~ ype

BeRO used on a file of a type other than BASIC or TEXT.

su"ing expec~~"d
E t~ T E R image and variable type do not match (image is a string).

e>':pt- too big
Reported on key entry if f::: E ''I' rj I) A R 0 I S has no room left for entering a key,

b."d statement

An unrecognized mnemonic is used in a :3END statement.

b.o,d parameter

An 110 ROM statement or function detects an invalid parameter (form or content).

missing p.C':it".::lme1:et-

A parameter has been left out for a SEND mnemonic that requires one.

numbet- e::<pected
EN T E R image and variable type do not match (image is numeric).

bad digit
A function that processes base dependent strings (!-lEi-a:, HANDt, etc.) encounters an
invalid digit for the current base.

bad ,ernplate
Reported when TEt1PLATE$ is given a template with no unprotected field.

121

1

122 Appendix E: Errors and Warnings

Number Message and Condition

125 da~a not fOI.<nd • A file manipulation function cannot find the data requested.

126 type mismatch
CALL and SUB parameters do not match in type.

127 b·;ld pa~" an'l ',/-31lle

CAL 1... value does not match S U 8 parameter type.

128 in"i·Ollid subrrarfle
:3UH name does not match filename.

129 bad param t ',!PE-

C H l... L parameter is not of valid type. Numbers must be PEri L (I f·J T E G E Rand .S H I) f::: T
are not allowed}.

•

•
1 _____________________ ,

•

•

Keyword

FiAt-lOt

~W[lr;:-:E:::::S

ADJUST

AD . ..Il1::::T$

A[lI,.!A~jCE#

AOP$

!'WOTt

Ase I l$

ASHF$

n:31'lLoor:':t

A:3SIGN LOOP

AUTUI",OOP OH/or--f~

f-"j)'::OR$

B I ~lAt-lD

B I Nct'lF'

E: I t'l[OF:

8 I N I OF:

BIT

E:F'Ef:jf:':,

8 "1" [)

BUFf

CRLL

cnTH

CLEnF!, ASSIGt-j#

COP'l ' : BCF:D'

COUNT?

iCTLllCLRI

ICTLIIOELI

I ell IOZ[]

I eTL I [SHIFT I EI
ICTLIISHIFTI B
DEFfC[\'$

I

Keyword Index

Page I Description

93 AND of two strings.

45,59 Address the loop and return number of devices.

94 Set adjust factor for clock.

94 Show current clock adjust factor.

116 Advance data item pointer in file.

94 OR two strings.

94 Rotate string left or right by bit count.

95 Convert hexadecimal string to ASCII.

95 Return string of ASCII characters in specified range.

95 Shift string left or right by bit count.

89 Assign loop and return string.

43,60 Force automatic assignment of loop.

43,61 Assign loop at power on.

96 Exclusive OR of two strings.

96 Bit-by-bit logical AND of two integers.

96 Binary complement of integer.

96 Bit-by-bit exclusive OR of two integers.

96 Bit-by-bit inclusive OR of two integers.

97 Test bit in integer.

97 Find next position of character in list.

97 Convert binary string to decimal number.

97 Return contents of specified buffer.

98 Call basic program with parameters.

116 Return file number of nth A::: ",: I C:: f·a file.

116 Clear all A SS I C: r·j # assignments.

98 Recover bad card with missing tracks.

99 Show current length of D I ::: P or P F: I t·j T output.

119 Clear display devices.

119 Delete to beginning of line.

119 Literalize and underscore next key.

120 Find next occurrence of character on line.

120 Find previous occurrence of character on line.

99 Return current key definition.

123

124 Keyword Index

Keyword

DELA'l?

DEL.ETE#

oE',.,'riDDR

DEJ,.!A I D:$:

DEVID$

DEVt-jAMEt

[I I t'l

DI~~;F'LA\':$:

DO [-: F'F:Cn;:

[·IT[:$

[I T f'l:t

DTO:$:

E ~lfHH.f:: S R Q

FNDL I [-lEt

FI-jTER

nn 1 0::1:

ESC>· f /J-;: ON or: F

r:::XIT

F:r: l. .. F:t:

F I 1...1.. .. et'

F I t·ILl

Fl...nc:t

f .. L.AC'~·

f-- (I F'

C.r"I:::U8X

(,(ITO,'--:

HHHD$

HE)<~t·

HF:OTf·

W" HF$

HTD

HXOR$

II'IAGE

I Page I Description

99 Return current delay setting.

116 Delete data Items.

45,62 Return HP-IL address of specified device.

48,63 Return Accessory 10 as a string.

48,64 Return Device ID as a string.

45,65 Return device cOde of specified device.

111 Dimension string arrays.

89 List current display devices,

99 Cause given error.

100 Convert decimal number to binary string.

100 Convert decimal number to hexadecimal string.

100 Convert decimal number to octal string,

89 Reenable ON :3RQ after an ON sr~o execution,

90 Return current endline string.

14,22,66 Input bytes from specified device; build number or string;
place result in BASIC variable,

32,68

100

90

100

117

101

101

101

102

102

102

102

103

103

103

103

104

104

104

17,69

Send HP-IL commands to specified devices; return data as
a character string.

Return string of escape-character sequences.

Turn modified IIA on or off.

Leave a FOH-HEXT loop early.

Show name of specified ASS I G [-j U file.

Fill a string.

Find specified occurrence of substring in string, with wild
card.

Set specifed bit to specified value in given string.

Test specified bit in string.

FOF: allowed after a THEI'l or EU::;E.

c 0 ~:; U E: to a variable as a line number.

(,OTO to a variable as a line number.

AND of two hexadecimal strings.

Convert ASCII string to hexadecimal.

OR two hexadecimal strings.

Rotate a hexadecimal string left or right by bit count.

Shift a hexadecimal string Jeft or right by bit count.

Convert hexadecimal string to decimal number.

EXOR two hexadecimal strings.

Specify format of EN TEl': or 0 U T PUT statement.

•

•

7

•

•

•

Keyword

IHDE)~#

I t-1SERT#

IHSTALL

lOS IZE

IO::::IZE?

ITEM#

f<E'y'80AF.:D$

KE\'E:OAFW IS

LA::::TUY'

LCD Ot~/OFF

LEFT$

LlHE#

LIHELEH#

Ll STI 0$

LOCAL

LOCI-"lL LOCf<OUT

L TRH1$

U1RC$

MAPt

t1ARG I t-1'~'

t'lCOPY

mO$

t-1E>':T

t-1:3CR$

OFr :::F:[<

01'1 ::::f~ [<

OTD

OUTPUT

PP 0 !.. I,",

PPItH# ... USlt~G

PRINTER$

P~~ 10TH?

REA':;:::: I Gt-1

REt>lO T E

F:EPl.$

REF'LACE:!!

Keyword Index 125

I Page I Description

117

117

105

28,71

90

117

90

90

117

105

105

118

118

92

46,72

47,73

105

105

106

106

106

106

107

107

92

92

107

13,17,74

50,76

118

92

107

92

46,77

107

118

Return current data pointer position in file.

Insert an item at the current data pointer.

Load private fite from tape (created by t1COP'Y).

Set enter buffer size.

Return current lOS I ZE setting.

Return pointer position in current line.

Return device code of current keyboard device.

Assign device for keyboard entry.

Return line number of last line in specified file.

Turn LCD on/off.

Return left portion of string.

Return current line number in specified AS:::: I G t-j # file.

Return the number of items in a fine.

List HP-IL device codes in string.

Return HP-IL devices to local control.

Lock out local control of HP-IL devices.

Left trim a string.

Convert string to lowercase.

Map "from" characters into "to" characters in target string.

Return current right margin setting.

Duplicate tape onto multiple tapes.

Return middle portion of string.

l'lEXT allowed after a THEN or [LSE.

Remove underscoring.

Turn off HP-IL service request response.

Respond to HP-IL SRQ messages.

Convert octal string to decimal number.

Output bytes (string or numeric) to specified devices.

Return result of parallel poll.

P R I tn # to a TEXT fite with US I t-j G format.

List current printer devices.

Return current PH I DTH setting.

Change device code of an HP-IL device.

Set specified devices to remote mode.

Replace substring in target string with allother.

Replace a data item in a file.

r

126 Keyword Index

Keyword

PE',)$

f:,: I (;HT$

PIO

POT$

F:PT$

PTP I 11$

:::EAPCH#

:::E[Kif

::,t:HD

'3 [~,j [I?

SE~'lD£o

SHELL

SKE'y'$

SPlit-j

::::POLL

::::POLL$

,;-:TflTUS

~nATU:=:$

UL:

'c:tlE::f

GAh]

Te fiT!

-I r:t'lF'LtiTEcl

"I I t'lEOUT Ot-l ___ OFF

T I t1EI:::?

TOBFISE$

TOD[e

TRIGGER

U::::CE::!:

I,) ::'1::: k 1'1 :::: I:,

\![F: I r:\' O~j/OFF

I Page I Description

108 Reverse string,

108

93

108

108

108

119

119

35,78

31,80

29,81

109

109

109

49,82

49,83

110

110

111

112

120

112

112

113

113

113

113

47,84

114

114

114

114

Return right portion of string,

Read data from an HP-IL register.

Rotate string by character count.

Repeat string,

Trim trailing characters.

Search for value in data file.

Position item pointer at a given location,

Send HP-IL commands and/or data.

Return position in string of character unsuccessfully
sourced in :::: Et-lD I 0 data list.

Send HP-IL commands and/or data to specified devices,

Automatic run of programs by name,

Wait for significant key.

Find position of first character not in list.

Return result of serial poll as a number.

Return result of serial poll as a string.

Set status of system flags,

Show current system flag settings.

Header for subprogram (see CALL_).

Return middle portion of string.

Tab left or right in non-protected field.

C H "1" $ of a tape drive.

Return template string with protected fields.

Set timeout mode.

Return current timer interval setting.

COnvert number to specified base, return as string.

Convert string from specified base to decimal number.

Send GET (Group Execute Trigger) command to trigger de­
vice operation.

Underscore string.

Send message to display and error buffer,

Set verify mode for card reader.

Show current window end.

•

•

•

•

•

Keyword

IdIOTH?

~j I t'lDOI,j

WIO

l·lKE'y'$

W3I2E?

I,J::;:TART?

I Page

114

115

93

115

115

115

> ,,;

I Description

Return current ~j lOT H setting.

Set the LCD window start, end.

Write data to an HP-IL register.

Wait for key, return any key pressed.

Show current window size.

Show current window start.

1 :
2:
3:
4:
5:

How To Use This Manual (page 5)
Getting Started (page 7)
Simple 110 Operations (page 13)
Formatted 110 Operations (page 17)

Sending and Receiving HP-IL Messages (page 29)
Other HP-IL Statements and Functions (page 43)

r/i~ HEWLETT a!a PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters
150, Roule Du Nanl-O'Avrii

P.O. Box, CH-,217 Meyrin 2
Geneva - Switzerland

00075-90243 English

HP-Unlted Kingdom
(Pinewood)

GS-Nina Mile Ride, Wokingharn
Berkshire RGII 3ll

Printed in U.S.A. 1/84

•

•

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

