
HEWLETT-PACKARD

I/O ROM
OWNER'S MANUAL

SERIES 80

Printed in U.S.A.

Flio- HEWLETT
~r... PACKARD

1/0 ROM
Owner's Manual

Series 80

January 1983

00087-90121

Hewlett-Packard Company 1983

Contents

Section 1: An Introduction to 110 ... 3
Introduction .. 3'
Installing the 1/0 ROM .. 3
Removing the 1/0 ROM .. 4
The Job of an Interface .. 5
Printing to Peripheral Devices .. 8

Section 2: Simple 110 Operations ... 9
Introduction .. 9
Using Simple (:)I . .ifi::'i..rr Statements ... 9
Using Simple [:I·lf I::: I:;: Statements ... 10

Section 3: Formatted 110 Operations .. 13
Introduction .. 13
Formatted (:) i .. .1 T· F' 1 .. .If ... 13
Formatted [1··lf [:F;:: ... 18
Advanced Use of Terminator Images .. 21
A Word of Advice About Images .. 24
Converting 1/0 Data. .. 25

Section 4: Error Handling ... 29

Section 5: Specialized Transfers .. 31
Introduction .. 31
Using Buffers. .. 36
Data Transfers. .. 40

Section 6: End-Of-Line Branching. .. 45
Some Background on Interrupts .. 45
End-of-Line Branch Programming .. 45

Section 7: Keyboard Control .. 55
Introduction .. 55
Key Mask Programming ... 55

Section 8: Direct Interface Communication. .. 59
Introduction .. 59
Checking the Status. .. 59
Interface Control .. 61

Section 9: Additional 110 Commands .. 63
Interfacf:!-pe~.endent Statements ... 63

The ::::; 1:::.1···11...1 Statement. .. 63
i··II:::II....T, 1:::113(:)I::::f 11::), and i;::i::::::;[:r .. 63
Bus-Controlling Functions .. 64

Section 10: Binary Functions .. 65
Introduction .. 65
Review of Base 2 .. 65
Review of Logical Operations. .. 66
The Binary AND Function .. 69
The Binary Inclusive OR Function. .. 69
The Binary Exclusive OR Function .. 69
The Binary Complement Function. .. 70
The Bit Test Function .. 70

Section 11: Base Conversion Functions .. 73
Introduction .. 73
Review of Alternate Representations. .. 73
Conversions From Base 10 to an Alternate Base. .. 74
Conversions From an Alternate Base to Base 10 .. 75
Converting From One Alternate Base to Another 76

Appendix A: Syntax Reference. .. 77

Appendix B: Maintenance, Service, and Warranty 133

Appendix C: Error Messages ... 137

Appendix D: ASCII Character Set ... 141

2

Section 1

An Introduction to 1/0

Introduction

The power of your HP Series 80 Personal Computer is greatly extended by its ability to monitor and

control external events. I/O, which stands for Input/Output, refers to this process of interaction between
the external, or peripheral, device and the computer. There are several interfaces available so that

practically any device designed for computer control may be attached and thus monitored and controlled.

When the computer is monitoring an event it is said to be the listener and it receives a message from the

talker or source. This data message is referred to as Input. When the computer is controlling, on the other

hand, it is the source and the peripheral device that it is talking to is called the destination. In this case,

the message is considered Output.

The process of transferring data can become rather involved, depending on the type of peripheral and the

application. Fortunately, a thorough understanding of interfacing techniques is not necessary to be able

to utilize the 110 ROM with your computer; hence, for maximum effectiveness, this manual is arranged

into three parts:

1. getting started with IIO-how to make use of simple 110 features quickly and easily (sections 1-3);

2. undertaking more complex 110 operations-understanding the full capability ofI/O ROM interface

commands (sections 4-10);

3. appendices-references and useful information in condensed form.

Sections 1 through 3 are adequate to explain operation of the printer interface. Also, a number of examples are

presented in the HP 82949A Printer Interface Owner's Manual. If you intend to use one of the additional inter­

faces it is recommended that you become familiar with the additional flexibility of the I/O ROM as presented in

sections 4 through 10. The owner's manuals for the Serial, HP-IB, GPIO, BCD, and other interfaces will then

provide detailed instructions for each particular interface.

This manual covers both the I/O ROM for the HP-85 and HP-83 (part number 00085-15003) and the I/O ROM

for use with the HP-87 and HP-86 (part number 00087-15003).

Installing the 1/0 ROM

Use of the 110 ROM requires an HP 82936A ROM Drawer. The ROM Drawer is a plug-in module that

contains six rectangular slots for individual plug-in ROMs. Any HP Series 80 ROM will fit in any of the

six positions in the ROM Drawer.

The HP Series 80 Personal Computer has four ports located in the back. These ports are used to hold extra

memory, option ROMs, and interfaces. The 110 ROM should be installed in a ROM Drawer, which is then

installed in one of the computer ports.

3

4 Section 1: An Introduction to I/O

CAUTION

Do not remove or install the ROM Drawer or any plug-in module while the computer power is switched

on. Failure to switch off the computer power may cause damage to the module or the computer.

The installation procedure is as follows:

1. If the ROM Drawer is already plugged into the computer, TURN OFF power to the computer and

remove the ROM Drawer.

2. Remove the plastic cover from an empty ROM socket by inserting the eraser end of a pencil into the

circular hole on the underside ofthe cover.

3. Align the ROM so that its chamfered end matches the chamfered end of the socket. Press the ROM

lightly into the socket until it is even with the top ofthe ROM Drawer.

4. With the ROM labels facing up, press the ROM Drawer firmly into one of the ports in the back of the

computer. The port and module are keyed so that the ROM Drawer cannot be installed upside down.

I I I I I I I fll(((((

Removing the I/O ROM
The procedure to remove a ROM is as follows:

1. TURN OFF power to the computer.

2. Remove the proper ROM drawer.

3. Turn the drawer over and remove the ROM by using a pen, pencil, or small screwdriver to push

gently through the hole underneath the ROM.

Section 1: An I ntroduction to 1/0 5

The Job of an Interface
An interface is the hardware link that is needed to allow efficient communication with peripheral devices.

The job of an interface is to provide compatibility in four major areas. These are:

• Mechanical Compatibility

• Electrical Compatibility

• Data Compatibility

• Timing Compatibility

The following diagram shows the basic hardware components of an interface in its position between the

computer and the peripheral device.

I Computer ~. ___ J

• !

HP
Translator

(IC)

l r
'" ."

~ f
L

Select
Code

Switches

Interface Functional Diagram

1/0
Processor
(including
Interrupt

and Control
Logic and

Drive­
Receiver

Hardware)

Appropriate
Connector

Mechanical and Electrical Compatibility

Peripheral

I ~ontrol' Device <:;_ ...
, Lines

J

Mechanical compatibility simply means that the plugs and connectors must fit together. The HP 829XX

Series plug-in modules are designed to be mechanically compatible with your computer. Certain

interfaces, like HP-IB, are always mechanically compatible with their peripheral devices. Other

interfaces, like the I6-bit parallel interface (GPIO), are supplied without peripheral connectors. In these

cases, it becomes your responsibility to install a mechanically compatible connector. If you need to do

this, study the owner's manual supplied with your interface. Electrical compatibility means that the

interface must change the voltage and current levels used by the computer to those used by the peripheral

device. The Translator Ie used in each interface and the Drivers and Receivers insure that all HP

interfaces are compatible with the computer, and usually compatible with the peripherals. If you have

questions about electrical compatibility with your peripheral device, study the interface owner's manual

and the peripheral device documentation.

6 Section 1: An Introduction to I/O

Data Compatibility
Mechanical and electrical compatibility alone do not guarantee that the computer and peripheral device

will be able to communicate. Another requirement is that both devices must understand the data being

sent by the other. Just as two humans who do not speak the same language need a translator, messages

between the computer and the peripheral device may require some form of translation. The computer,

with its versatile programming capability, usually performs this function. However, this job is sometimes

given to the interface. The BCD interface is one example of giving the translation process to the interface.

To handle those cases where the computer performs the data translation or conversion, the I/O ROM

provides a wide variety of special functions and conversion capabilities. These capabilities are covered in

subsequent sections of this manual.

Timing Compatibility
Computers and their peripheral devices have such a wide range of operating speeds that an orderly

mechanism is required for successful transfer of data. This timing mechanism is referred to as

handshake. Although there are different varieties of handshake, the basic sequence can be summarized

as follows:

1. The receiver signals that it is ready for an item of data, then waits for a signal from the sender that

the data is available.

2. The sender outputs an item of data and signals the receiver when the data is available.

3. When this "data available" signal is recognized, the receiver inputs the data and signals that it is

busy with this input operation.

4. The sender waits until the receiver is ready before it makes a new item of data available. When the

.. receiver is ready, this process repeats.

The following simplified diagram further illustrates the general concept of handshaking.

oJ
"I am ready for data"

"The data is valid now"

Source t Destination
Handshake Lines

~ Data Lines
V

The 110 Processor is a component of each interface, which is itself a microcomputer. It is supplied with a

small set of programs limited to data conversion and handshake management routines. Through the use

of various commands available with the I/O ROM, the I/O Processor can be reconfigured to perform

several different types of handshake operations.

~----

-
Section 1: An Introduction to 1/0 7

Choosing the Source or Destination
To send someone a message through the mail, you must specify their address before the post office will

even attempt delivery. So it is when you want to communicate with peripheral devices. The device with

which you want to communicate must be specified within your program. This selection process is called

addressing. The HP Series 80 Personal Computer addresses its peripheral devices through the use of a

device selector in the I/O statements. Choosing the proper device selector depends upon the interface used

and the way it is used. The following two discussions detail the two types of device selectors.

Using Interface Select Codes
If you are not using an HP-IB interface, and you have only one device connected to the interface, the

device selector can be simply the select code of the interface. An interface select code is analogous to a

house number in a mailing address. It is a number between 3 and 10 (inclusive) that identifies the

interface. Each type of interface is set to a different select code at the factory. The following table

summarizes these factory settings.

HP Part Number Name Select Code Setting

82937A HP-IB 7
82938A HP-IL 9
82939A Serial 10
82940A GPIO (Parallel) 4
82941A BCD 3
82949A Printer 8
82950A Modem 10

Note: For electrical reasons, you must never plug in two interfaces that are set to the same select

code.

Serious electrical conflicts can result if the interfaces and select codes do not correspond uniquely. In

other words, if there are two interfaces present with the same select code, neither one of them will work.

As you can see from the preceding table, the factory settings prevent this from happening unless you are

using two interfaces of the same type. If you need to use two interfaces that came with the same factory

setting, you must change the select code on one of them. The procedure for changing a select code is

covered in the owner's manual for your interface. Follow its instructions carefully.

Using a Primary Address
If you are using an HP-IB interface, or if you have more than one device connected to an interface, the

device selector is a 3-digit or 4-digit number formed from the interface select code and a primary address.

This method of addressing is like mailing a letter to someone in an apartment building. Giving the street

address will get the letter to the right building, but you still need to specify an apartment number to get

the letter to the final destination. When a primary address is used, it is analogous to the apartment

number. It identifies a specific device to be selected from a group of devices serviced by one interface.

Some examples:

• A device selector of721 specifies device 21 on interface 7.

• A device selector of 301 specifies device 1 on interface 3.

• A device selector of 1002 specifies device 2 on interface 10.

8 Section 1: An Introduction to I/O

Printing to Peripheral Devices
One of the simplest ways to direct the computer's output to a peripheral device is the F'I:::: I 1···lr E: I:;:: I::::;

statement. The 110 ROM provides the capability of printing to external devices by using statements such
as F' F: I I··rr E: F: I ::::; ,::\. or F'I:::: I I··fr [F: I ::::; .? ;:::: (:'1. Any valid device selector can be used with the

F'I? I I··j T' I::: F: I ::::; statement. The same holds true for the C: I::::'r I ::::; statement.

The F'I;:: I 1···I·r E: I:;:: I ::::; device is the destination for the output from all F'I:::: I 1···I·r and I:::' I I ::::;r statements.

The C: vr I ::::; device is the destination for the output from all [) I ::::; F', I I ::::;'r, and C: I::rr statements, as

well as all "Error" and "Warning" messages. When programs are listed to a peripheral device, each

program line is output as a single string. For the HP-85 this means that there is no indenting or 32-

character wraparound as occurs when listings are done on the internal printer or CRT. F'I:::: I 1···I·r and

[) I ::::; F' both print out with the default line length set by the computer. To extend the line length or utilize

more elaborate formatting you will need to explore the next two chapters. If, on the other hand, your only

110 requirement is to direct program listings or the output from F'I:::: I I··j·r statements to an external

device, you need not read any further. Simply connect the desired interface and include the appropriate

F'I:::: I 1"·1 T' E: I:::: I ::::; statement in your program.

Section 2

Simple 1/0 Operations

Introduction

Section 1 talked about performing output operations with F'I:::: I 1",I'r E: I:::: I ::::; and F'I:::: I t',I'r statements.

Although this simple technique is very handy, it falls short of the mark in many circumstances. The most

obvious shortcoming is that there is no corresponding 1< E: \' E: C) r::II:::: [) I ::::; statement to allow input from

external devices. Even when output is the only desired operation, it can be very inconvenient re­

specifying the F'I:::: I 1",1 T' E: I:::: I ::::; device all the time when a program communicates with multiple

peripheral devices.

The principal tools for using interfaces to move data in and out of the computer are the () 1...I'r 1:::0 1...1 T and

[1",I'r E I:;:: statements. These statements are the core of 110 operations. They are usually the fastest and

easiest ways of getting data from the source to the destination in its final form. Many applications require

no more than the proper use of () 1...1 T' F' 1...1 T' and E: 1",I'r E: F:.

Simple () 1...1 T' F' 1...1 'r and I:::: 1",I'r E: I:::: statements (as described in this section) use ASCII representation for all

data. ASCII stands for American Standard Code for Information Interchange. It is a commonly used code

for representing letters, numerals, punctuation, and special characters. The ASCII code provides a

standard correspondence between binary codes that are easily understood by the computer and

alphanumeric symbols that are easily understood by humans. A complete list of the characters in the

ASCII set and their code values is included in appendix D.

When special formatting is desired or when binary code is handled directly without using ASCII
representation, the C) 1...I'r F' 1,..1 T' 1...1 ::::; I 1",1 c:; and E:: 1",1 T' E: I:::: 1...1 ::::; I 1",1 c:; forms are very convenient. These forms

are discussed in section 3.

Using Simple OUTPUT Statements

A simple C) I"rr F' I"rr statement can be used anywhere that a simple F'I:::: I torr statement is proper. The

C) 1...1 T F' 1,..1 T statement contains the device selector(s) of the destination device(s) and a list of the items to be

output. The primary difference between C) 1...1 'r F' 1...1 T' and F' F: I 1",I'r is that F' F: I I"j'r statements do not

contain a device selector. Here are some examples of properly written () 1,..1 T' F' 1...1 'r statements:

C) 1...1 T' F' 1...1 T' :l " 1"'1,::;, 1 1 () "
() 1...1 'r F:' 1...I'r ,,::'
01...1 'r F' U 'r
() 1,..I'r F' 1...1 T'
C) II T' F' II 'r

'? 1;::1 :::~: ,I '? ;;::~ ~:::; >:: ,: 1/ ,: :;:::
A(1);8(]),N$[2,7J

Notice that a semicolon is used to separate the device selector from the output list, and commas or

semicolons can be used to separate items within the output list. Items in the output list may be numeric

variables, numeric constants, string variables, or string constants. A Carriage Return/Line Feed (End of

Line sequence) is output after the last item in the output list.

9

10 Section 2: Simple I/O Operations

The difference between using a comma and a semicolon to separate items in the output list is the spacing,

or field of the items. The simple CI 1...1 T·I:::' l...Ir statement uses the same field as the I:::' i? I i··i·r statement. The

semicolon calls for a compact field, while the comma produces free field. These fields are summarized in

the following table.

Numeric Data String Data

Compact Field Digits of the number are output, preceded Characters of the string are output with no
by a space (if plus) or a minus sign (if leading or trailing spaces.

(semicolon) minus), and followed by one space.

Free Field Digits of the number (with leading space or Characters of the string are output with no
, minus sign) are output left-justified in a field leading spaces and no more than 20 trailing

(comma) of 11,21, or 32 characters. Trailing spaces spaces.
are output as necessary to fill the unused
portion of the field.

The actual field width is determined by the same process used when items are output with the PRINT

statement. Therefore on the HP-85, the computer pretends that it is displaying items on the CRT and sets

a field width that would cause items to start in column lor 22 of the 32-column display. On the HP-87 the

items will start in columns 1,22,43, or 64 of the 80-column field. If this is an undesirable format, you may

need to separate items in the output list with semicolons or use formatted output as explained in the

following section.

Using Simple ENTER Statements

A simple E: 1···1 T· E: I? statement can be used anywhere that an I 1··1 F' 1 . ..I·r statement is proper. The E: 1···I·r E:: I?
statement contains the device selector ofthe source device and a list of items to be entered. Remember that

I 1···1 F' 1 . ..I·r statements always use the keyboard as the source and contain no device selector, while E: 1···I·r E: I?
statements always use a peripheral device as the source and contain the device selector of that device.

Here are some examples of properly formed E: 1···I·r E: I? statements:

r:: [.j ·r E: F: :::;:

E [··1 T E: F: ::::; 1.
r:: [.j [: I? .? 0 :::;:

EI··jTE:F: :1. (;1 (j 0

' • .1 ,"',

H< 1.::'.' E:<:::::::'., 1···1:1::

Notice that a semicolon is used to separate the device selector from the enter list and commas are used to

separate items within the enter list. Items in the enter list may be numeric variables or string variables.

To use the r:: 1··I·r E: I? statement effectively, it is important to understand what constitutes the beginning

and ending of an entry into a variable. The simple E: 1···I·r E: I? statements just shown use a "free field

format" for processing incoming characters. This format operates differently with string and numeric

data.

Entering Numeric Data
The computer enters numeric values by reading the ASCII representations of those values. For example,

if the computer reads an ASCII" 1", then an ASCII "2", and finally an ASCII "5", it places the value one

hundred twenty five into a numeric variable.

Section 2: Simple I/O Operations 11

Understanding the process that the computer uses to read a free field number can help you remove much

of the mystery from 110. Suppose your program has the statement:

Now assume that when this statement is executed, the following character sequence is received through

the interface at select code 3:

1 , I 1 9 7

The computer ignores all leading non-numeric characters, so the "TUESDAY DEC" characters do

nothing. Then the "11" is read. Once the computer has started to read a number, a non-numeric character

signals the end of that number. Therefore, the comma after the 11 causes the computer to place the value

eleven into X and start looking for the next value. The space in front of "1979" is ignored and the

computer reads the "1979". The carriage-return character causes the computer to place the value nineteen

hundred seventy nine into variable \'. Finally, the computer keeps reading until it finds a line feed

character. This terminates the [I",I'T E: I:::: statement, so the computer goes on to the next program line with
;:':: ::::: :I. :I. and \' ::::: :I. ::) '? :).

The process just described can be easily summarized. When entering numeric data using free field format,

the computer:

1. Ignores leading non-numeric characters.

2. Ignores all spaces-leading, trailing, or imbedded.

3. Uses numeric characters to build a numeric value.

4. Terminates the building of a value when a trailing non-numeric character is encountered.

5. Inputs characters until a line feed character is encountered.

The discussion so far has referred to numeric and non-numeric characters without being specific. The

digits 0 thru 9 are always numeric characters. Also, the decimal point, plus sign, minus sign, and the

letter E can be numeric if they occur at a meaningful place in a number. For example, assume that the

following character sequence is read by an E: 1",1 T' E: I:::: statement:

If a numeric value is being entered, the leading minus signs and the E in "TEST" will be ignored. They

have no meaningful numeric value when surrounded by non-numeric characters. However, the characters

"12.5E - 3" will be interpreted as 12.5 X 10-3. In this case, the minus sign and the exponent indicator (E)

occur in a meaningful numeric order, so they are accepted as numeric characters.

Entering String Data
The computer enters string data by placing ASCII characters into a string variable. The process used for

free field entry is straightforward. All characters received are placed into the string until:

1. The string is full or,

2. A line feed character is received or,

3. A carriage return/line feed sequence is received.

12 Section 2: Simple liD Operations

Assume that the computer is executing the statement:

Fr',IT'LI? 4

The following character sequence is received:

The letters "HELLO" are placed into f:I::I;: when the first line-feed is encountered, Note that the line-feed

itself is not placed into f::1 ::1;:; it acts only as a terminator for the entry into FI :;1::, Then the entry into E:::I;:
begins, However, a carriage return/line feed sequence is read immediately, This terminates the entry into

E: ::1;:, Since neither the carriage return nor the line feed is placed into E: ::1;:, E:::I;: becomes the null string,

Next, the entry into C::l begins. The characters "THERE" are placed into C: ::1;:, terminated by the carriage

return/line feed following those characters. With the enter list now satisfied and a line feed detected at the

end of the data, the computer will go on to the next program line.

Note that carriage return characters are only ignored when they are immediately followed by a line feed

character. If a carriage return is received and not followed by a line feed, the carriage return is placed into

the string.

Another example can be used to show termination on a full string. This time, suppose the program

contains the following statements:

[I I t"1 ::,:: :;t:: I[:::::]

E: 1",1 T F F: 4 ::':: ::1;:

The following characters are sent to the computer:

The computer places the characters "BOY" into ::'::::1;:, which fills the dimensioned length of 3. Then the

computer continues to read the incoming characters until a line feed is encountered. At that time, the

E: 1",1''1'' E: I? statement is completed, and the computer goes on to the next program step with ::::::1;: ::::: 1\ E: C) \' 1\ •

Section 3

Formatted 1/0 Operations

Introduction
Although free-field format works well for some I/O situations, there are times when more control over

format is necessary. Perhaps the data is some binary pattern which has nothing to do with ASCII, or a

line-feed terminator is not wanted or expected, or a column of numbers with the decimal points in line is

desired, or numbers with only two exponent digits instead of three are required. There is a wide variety of

reasons for desiring format control during I/O operations.

The format of information sent or received through interfaces is controlled by the use of image specifiers.

These image specifiers can be placed in an image statement or can be included directly in an CII...I·r F' !...I·r or

E: 1···I·r E: I? statement. This section of the manual provides details on the meaning and use of image

specifiers.

Formatted OUTPUT
An output image can control all major characteristics of output data, including spacing, appearance of

the field, form of data representation, and use of end-of-line sequences. The computer uses an output

image when some form of the I::) 1 . ..I·r F' 1 . ..Ir l...i ~:::; I 1'·1 c; statement is encountered. There are three forms of this

statement:

1. :I. CI I 1'''11:::1 C; I:::: <output image>

;:::: U Cll...lr F' I...lr ds 1...1 ::::; I 1'·1 C; :I. U .: <output list>

2. C) I..J 'r F' 1 . ..I·r ds 1 . ..1 ~:::; I 1'·1 C; <output image> .: <output list>

3. :I. () F'I'''II:::I'r: I 1'''11:::1 C; E: <output image>

;:::: IJ C) 1...1 T' F' 1..J·r ds 1 . ..1 ~:::; I 1··1 C; F' r"II:::lr.: <output list>

The examples above show the general forms of the C) 1 . ..1 T' F' 1 . ..1 T' 1 . ..1 ~:::; I 1'··1 C; statement. Here are some specific

examples:

:I. 0 'r o'r: 11"'1 H C; E: "'r () '1: ."j:l. :::::"., ::::: ::::: , [I
2U IMHGE 5H,2X,:l.7H

60 OUTPUT 4 USING TOT C1,C2,C3
70 OUTPUT 70:1. USING 20 HS,BS
::::: Ci () I..J T' F' 1 . ..I·r ::) 1 . ..1 ~:::; I 1"·1 C; "*1:, E: " ::.::
'·-:11··1 C) U 'r F' I...I·r ::::; :::;: U ::::; I I"~ C; "1'''1 [I [I [I , [I [I"

:1.00 OUTPUT 7:1.0,7:1.:1. USING IS
·r<:I. >, 'r<;?>

I···I::/::, f:1

In the general forms, the ds stands for "device selector". Device selectors are explained in Section 1. The

symbol <output image> represents a proper list of image specifiers. The image specifier list may be a

literal enclosed in quotes or the name of a string variable which contains the specifier list. The specifiers

within the list must be separated by commas. The list of items to be output is shown by <output list>. It
does not matter whether you use commas or semicolons to separate items within the list. All spacing is

controlled by the image specifiers, so a semicolon has the same effect as a comma.

13

14 Section 3: Formatted I/O Operations

Numeric Images

The image specifiers in this group are used to control the form of numbers which are output. Most of these

image specifiers are the same as the F'I:::: I 1···1 T· image specifiers that may already be familiar to you. Since

there are many numeric images, these specifiers are broken down into three categories in the following

discussion. The categories are digit characters, sign character, and punctuation characters.

Digit Characters

These are the image specifiers which form the digits of the number. They allow you to determine the

number of digits before and after the decimal point, display or suppress leading zeros, and control the

inclusion of exponent information.

Image
Meaning

Specifier

[) Causes one digit of a number to be output. If that digit is a leading zero, a space is output instead.
If the number is negative and no sign image has been provided, the minus sign will occupy one
digit place. If any sign is output, the sign will "float" to a position just left of the left-most digit.

I:::. Same as " I::) " , except leading zeros are output.

::1:: Same as " [I " , except leading zeros are replaced by asterisks.

r··· ... Causes the number's exponent information to be output. This is a 5-character sequence
including the letter" F: ", the exponent sign, and three exponent digits.

I:::' Same as " F: " , except only two exponent digits are output.

1< Causes the number to be output in compact format. No leading or trailing spaces are output.

Sign Character

These are the image specifiers used to control the output of sign information. Note that if no sign specifier

is included in the image, negative numbers will use a digit position to output the minus sign.

Image
Meaning

Specifier

~:::; Causes the output of a leading plus or minus sign to indicate the sign ofthe number.

1·'1 Causes the output of a leading space for a positive number or a minus sign for a negative
number.

Punctuation Characters

These are the image specifiers used to control the output of punctuation within a number, such as the

inclusion of a decimal point.

Image
Meaning

Specifier

Causes an American radix point to be output (a decimal point).

1"""' '1:, Causes a European radix point to be output (a comma).

C: Usually placed between groups of three digits. Causes a comma to be output to separate the
groups of digits (American convention).

F' Same as "C:", except a period is used to separate the groups of digits (European convention).

Section 3: Formatted I/O Operations 15

The following examples show some of the ways of combining these specifiers and the resulting output

when numbers are sent to a typical printer. Additional examples may be found in the "Printer and

Display Formatting" section of the Series 80 owner's manuals and programming guides.

Example Statement Printed Output

ClI...1·rF'UT
01 . ..1 T F'I . ..1 T
()UT·F'I . ..IT
OU'rF'UT
OI . ..ITF'U·r
()I . ..ITF'UT
CIU TF'I...1 T
OI . ..IT·F'UT
()I . ..ITF'UT
OUTF'I...1T
ClUTF'UT
()I...1TF'UT
OUTF'I...1T

-;:.'1;) :1.
lO:l.
?C1i
?O:l.
;:'0:1.
?() 1
?01
;:'0:1.
';::'01
-;::'01
lO:l.
';::'01
("01

1 . ..1::::; I I···IC;
1 . ..1 :=.:; I t'1 C;
1...1::='; I 1"1(:;
1 . ..1::::; I 1···le
1...1 ::::; I 1"·1 C;
1 . ..1 ::=.; I 1"1C;
I . ..I::=,; I 1"1(;
1 . ..1 ::::; I 1"·1 C;
U::=.; I 1"1(;
1 . ..1::::; I 1"·1(;
1...1 ::=.; I t··IC;
U::=.; I I···IG
U::=.; I 1"·1(;

II ;;::: ;~:: ;;:~ ;;:~ I [I D II
II 4 ;;:~ . ;~~ [II'
" ,::1· :::: , ;::: [I"
"~!':[lCJ[IC:3[1 "
"3[1[3[1C3[1 "
"3[1C:3[1C:3[1 "
":::;Z , D[I[I"
"1"1:2: , [1[1[1"
"t'1[1 , [1[1[1"
"Z,[I[lE"
" :::: , [I [I,? "

" :::: , [1[1 '::~ "
" t'E: , [I [I,,,, "

::~o I ::~:36
..... ~:~: ~:'i I ::~: ~:~: 6

1:::'
1· ••• 1

1:::'
1· • ..1

c::'
1· ••• 1

:I. [:1::;
I , ;;=':3'l~:;E:4
:I. ,;;:::E9

, OO.::I·~::;6
,0(1,'1·::;6

.... , 0 (14 ~::; 6
..... , 004~:;6

(Overflow Error)

OO::::~') , 3"f
0()30 , 34
····(;:130,34

1 .. 000 .. C100
1. ~:: .. J4~:;

+·0 , :;00
0, '::;00

, ~500
4 , ~::;6E:····I]O::':

4 , ~:;6E:··-03
... , 4 ~:; E: ... 0 ;;~

·····4 , ~:;I:;E····03

Notice in these examples that the image " ;;::: ;;::: ;;::: ;;::: " and the image " ,::1· ;;::: " mean the same thing. The same

is true for the" [)" and "::1::" specifiers. You can indicate the number of digits desired by simply placing

that number in front ofthe specifier. The use of parentheses, as in " ::::: .:: [) ::. " , means something different.

The image "::;;:IJ" means "output one numeric quantity in a three-digit field". The image "::;;:.:: [I ::. "

means "output three numeric quantities, putting each one in a 1-digit field".

Be careful of overflow conditions when using these image specifiers. An overflow occurs when the number

of digits required to accurately represent a number is greater than the number of digits allowed for in the

image. If this happens, a warning is issued and something is output so that the program can continue.

However, exactly what is output is difficult to predict and will probably bear little or no resemblance to

the number that caused the overflow.

String Images

The image specifiers in this group deal with the output of string characters. They can also be used in

combination with the numeric image specifiers for spacing and labeling purposes. All of these image

specifiers are the same as F' F: I 1"·1 T' image specifiers that may already be familiar to you.

Image
Meaning

Specifier

H Causes the output of one string character. If all the characters in the current string have been
used already, a trailing blank is output.

"literal iI A literal is a string constant formed by placing text in quotes, or by using the C: H F::1;: function, or
a combination of the two. The character sequence specified is output when a literal image is
encountered. When the literal is enclosed in quotes, the quote marks themselves are not output.
Literal images are commonly used for labeling other output. Literal images cannot be placed
directly into () 1 . ..1 TT'I .. rr statements. An 11"1 FI C; E statement must be used if literal images are
desired.

',,' Causes the output of one space. (',

1< Causes the string to be output in compact format. No leading or trailing spaces are output.

16 Section 3: Formatted 1/0 Operations

The following examples show some of the many ways of using these specifiers and the resulting output

when the characters are sent to a typical printer. Additional examples can be found in the "Printer and

Display Formatting" section of each of the HP Series 80 owner's man uals.

Example Statements

() 1 . ..1''1'' F' 1...1 T' .? (:1:1. 1 .. .1 ::::; I 1"·1 (; II ,,::; H .' H II
01...1 T F' 1...1 T .? 0:1. 1 .. .1 ::::; I I··j C II 1< .' ::::: >::, 1< II

o 1 .. .1 ''1'' F' 1 .. .1 T .? (:1:1. 1 .. .1 ::::; I t··1 C "1<, :::;: ::-:: .. 1< "

1. ~1 11"1 H C; E: II T C) T H 1.... ::::: II .. :::;; [I .. >:: .. 1<
20 T ::::: :I. ::::: ,,::; (i:1 f:1 :l ::::: II C: H I:::: ::::; II

11',,'11 11',,'11
.... , .. 1

"1 .. .II··jC:I....E:" .. "::::;HI'''I''
:::~I :;;;: I I:::; . t :::~I ~:::I I ::::1

30 OUTPUT 701 USINC 10 T .. Ht

Printed Output

::.:: \'
1...I1·j CI....E :::;1:::11'''1

TOTHl = :1.25 CHRS

Notice that the" ::<" and" 1:::1" image specifiers allow a number before them in the same fashion as the

" [I ", ":?", and" ::j::" specifiers. the" 1<" specifier works equally well with string data or numeric data.

String and numeric image specifiers can be combined in the same image statement. If literal (string

constant) images are desired, they must be placed in an I 1'''11:::1 C; E: statement.

Binary Images
These image specifiers are not available without the 110 ROM, so they may not already be familiar to

you. These images are used to cause information to be output as one or two binary bytes, rather than as a

character representation. Sections 10 and 11 of this manual explain the details of binary (base 2)

representation. If you are unfamiliar with binary numbers, it is suggested that you read section 9 before

trying to use the binary image specifiers.

The items to be output using these images must be numbers in the proper range. If a value to be output is

not an integer, it will be rounded to the nearest integer before being sent as a binary value.

Image
Meaning

Specifier

f'" :::' Outputs a value as a single 8-bit byte. The value must be in the range of a thru 255. If the value
to be output is out of range, the value modulo (256) is output.

1 ... 1 Outputs a value as two 8-bit bytes comprising a 16-bit word. The most significant byte of the
word is output first, followed by the least significant byte. The value to be output must be in the
range of -32,768 to +32,767. Negative numbers are output in 16-bit 2's complement form. If
the value to be output is out of range and positive, 32,767 is output. If the value is out of range
and negative, -32,768 is output.

Example Statement Interface Output, Bit Pattern

()I .. .I·rF'I...I·r , 1...1::::; I I

01...1 TP 1...1''1'' . '::' I ... 1:3 I I

o 1...1 TF'I...1 T ····1 I I::::; I I ...
()UTF'I...I·r '';:' I I::::; I I ...

1··jC; " E:
I··j C; " F" ::.
t··1 C; " 1 ... 1
1"·1 C; " ~,j

"
"
"
"

:::::
.... ,
.. :~I
..... 1.

01111111
00000011

00000000 00000011
11111111 11111111

Note that specifying a binary image does not automatically suppress the end-of-line sequence after the

last byte is output. Therefore, in the examples just given, the bit pattern shown is output followed by a

carriage return/line feed.

BCD interface users should note that "B" and "W" specifiers do not work with the HP 82941A BCD

Interface. See the BCD Interface Owner's Manual for specific formatting examples.

Section 3: Formatted I/O Operations 17

End-of-Line Sequence Images
These image specifiers control the output of end-of-line sequences. An end-of-line sequence is one or more

characters that is normally output after the last item in an output list, and/or a signal on an interface

wire concurrent with the last byte output. Exactly which sequence or signal is used depends upon the

programming of the interface responsible for the output. See your interface owner's manual for more

details. If your program does not change the end-of-line sequence in the interface, the default is a 2-

character sequence; a carriage return followed by a line feed. The following images do not alter the

end-of-line sequence. They simply control whether or not it is output.

Image
Meaning

Specifier

Causes the output of an end-of-line sequence. Often used for skipping lines in a printout.

:1:1: Suppresses the output of the final end-of-line sequence. This specifier is frequently used with
binary image specifiers to prevent the destination device from interpreting the end-of-line
characters as binary data.

The " " may be placed anywhere in the image list and may have a number before it to indicate how

many EOL (end-of-line) sequences are desired. The" *1:" must be the first item in an image list and can

only be specified once. Note also that the" :1:1: " only suppresses the EOL sequence that would ordinarily

occur after the last item in the output list. It does not suppress any imbedded EOL sequences caused by

the " " specifier.

A typical use of the ":1*" image is to output one byte, and only one byte. The following statement does

this:

This statement outputs the binary representation of :-:: with no carriage return, line feed, or any other

potentially unwanted bit patterns.

A typical use of the " " image is shown by the statement:

() 1 . ..1 ''1'' F' 1 .. .1 ''1'' .? Ij :I. "1<., ,::1- , 1<"

If the destination is a printer, i:::i:l is printed, followed by three blank lines, then E::l is printed. If
H :l ::::: " 1 .. ·1 I " and E::l ::::: " ,...I () E: " , the character sequence output looks like this:

The" :1:1:" image specifier is unique to the I/O ROM. Its power is show'n in the following example where

repetitions of the F'I? I 1"·1''1'' statement cause printout on the same line.

j ~1 FOP I :::::1. ''1''0 :3
;;~12i F'f;: I I"~T' 1...1::::; I I"~G "l:!: .. 61:::1" "[)OOD\'"
:3 ~~I t·~ E ::.:: T I
40 F'f;: I I'fr 1...1::::; I I"~C;; II ;:::H" "DO"
~::.O Et'~D
DOOSY DOODY DOODY DO

18 Section 3: Formatted 1/0 Operations

Formatted ENTER
Using E:: 1"·1 T E:: I:::: statements with image specifiers gives you a high degree of control in two areas:

1. Accurately describing to the computer what the incoming data looks like and what should be done
with it.

2. Precisely specifying what condition(s) constitutes the end point of an entry to a variable and the end

point of the E: 1"·1 T' E: I? statement itself.

This discussion deals with data formatting images first, then presents the terminator images. The HP

Series 80 Personal Computer uses an E 1···I·r E: I? image when some form of the E: 1"·1 T' E: I:::: 1...1 ~:::; I 1"·1 C statement

is encountered. There are three forms of this statement:

1. :I. CI I 1"'1 H c:; E: <enter image>

;:::: U E: 1···I·r [I:::: ds I .. .I~::; I t··1 c; :l CI .: <enter list>

2. E 1···I·r E: F: ds 1...1 ~:::; I 1"·1 c:; <enter image> .: <enter list>

3. :I. Ci 1.... F: 1....: I i"I r::j C; E: <enter image >*
;:::: 0 E: 1···I·r E: I? ds 1...1 ~:::; I 1"·1 c:; I E: I.... .: <enter list>

The examples above show the general forms of the E: I··j·r E: I? 1...1 ~:::; I 1"·1 c:; statement. Here are some specific

examples:

:1.0 II"1HGE 2(H).,f:::
;20 Ff"IT: I t'1HGE: :::)[1 .. 2::<., 3[1,:~

60 ENTER 4 USING 10 HS .. E:S .. X
70 ENTER 7:1.1 USING FMT I .. J
::::0 t::1··jTEf;': 9 U~::; II··jG ":1:1: .. E: II FI (1.) , H (;:~)
'-H·i EJH E I;,: ~::; ::: u ~:::; I 1"·1 G "\ .. :::: f:1 ... / .' f::: " (:1 :l .' F::l
100 t::NTt::R 712 USING IS NS .. H

The general forms use the same type symbols which were used to represent the () I .. rr F' 1...1 T statement.

These are ds for "device selector", <enter image> for the list of image specifiers, and <enter list> for the

list of variables to be entered. As with simple E:: I··j T [F: statements, the enter list must contain either string

or numeric variables.

Data Images
The image specifiers in this group are used to tell the computer what to do with the incoming data stream.

The basic choices are:

1. Use characters to build a numeric variable.

2. Place characters into a string variable.

3. Input bytes as binary values.

4. Skip over a number of characters.

Numeric Image Specifiers

These specifiers are used to control the input of numeric characters, including digits, sign, exponent, and

punctuation.

'Note that labels are not allowed on the HP·85 or HP·83.

Image
Specifier

[)
.... ,
1:: ..

::1::

1"1

I
.... ...

I ... :

1<

I"', 'I:,

F'

Section 3: Formatted 1/0 Operations 19

Meaning

These specifiers ali do the same thing. They tell the computer to accept one character to be used
in building a numeric quantity. The incoming characters do not have to foil ow the specified
format, there just has to be the right number of characters. The six different specifiers are
provided so that your program can document the expected format of the characters, and so that
E: I···IT E: I? and CII .. .! T' F'I...I T' statements can share the same I 1'11:::1 C; E: statement, if desired.

Telis the computer to accept five characters to be used for building a number. The five characters
do not have to be exponent information, but they can be.

Same as "E", except the computer accepts four characters to be used in building a·number.

This specifier also telis the computer to accept one character to be used in building a numeric
quantity. However, if a "C:" is present anywhere in a number's image, ali commas wili be
ignored while the number is being entered. Without this specifier, a comma would end the entry
of a numeric quantity.

Telis the computer to enter a string or numeric variable using free field format (explained in
Section 2).

These specifiers are used with the CII...I·T F'I .. .! T' statement to provide a European radix point and
digit separator. However, these images are NOT permitted for an E: I···I·T E: F: statement. If you
need to enter numbers in European format, you can use the C: CH··II,) E::I?T statement (covered
later in this section) to change the number into American format.

String Image Specifiers

These specifiers are used to enter characters into string variables.

Image
Meaning

Specifier

1:::1 Telis the computer to enter one string character.

I" Telis the computer to enter a string or numeric variable using free-field format (explained in
section 2).

Some examples are in order. Suppose the following character sequence is received by the computer:

Any of the following E: 1"·1 T' E: I:;:: statements can be used to enter a numeric variable followed by a string

variable:

Et·jTEF: '('20 U~:::; I He
Et·jTEF: ?;::~o I...I~::; II···IG
EHTEF~: ?20 U~:::; II··jG

" 41J .' ~::; H " ::.:: .' \':l
" Z , [I [I .. ~::; H " ::.:: .. \' ::~:
"'::' .. 1<"

Notice that any numeric image that accepts four characters will properly enter the "1234". String data

can be entered with an "nl:::I" image if n (number of characters) is known, or with a " 1< " if the number of

characters is unknown.

20 Section 3: Formatted I/O Operations

Suppose instead that the incoming data was:

1 I ' 2 3 4 H ~ L L 0 cr li

The E: 1··ll E: I:;:: image would now have to include a " C:" for the entire "1234" to be entered. For example:

E: t··1 'l E F: .? ;;:: 1;::1 1...1 ::::; I t··1 C; "C: ,:l [) .. f< " ::.:: .' 'y':l
E: t··1 T E: I:;:: -;:" ;;::: 0 1 .. .1 ::;;; I 1"·1 C; "[) [) [) [) c: .. ~:::i 1:::1 " ;:.:: .. 'y':l

Notice that the" C:" does not have to appear at the same place in the image as the comma does in the

incoming data. However, the comma is counted as a character.

Binary Image Specifiers

These specifiers are used to enter data that is received in binary format.

Image
Meaning

Specifier

13 Tells the computer to enter one byte of binary data and enter its equivalent decimal value into a
numeric variable.

1 ... 1 Tells the computer to enter two bytes of binary data to be used in building a 16-bit, 2's
complement binary word. The equivalent decimal value of the resulting word is entered into a
numeric variable. The first byte entered is used as the most significant byte of the word.

Skipping Unwanted Characters
These specifiers can be used with incoming numeric or string data to skip over any characters not wanted

for the input.

Image
Meaning

Specifier

::.:: Tells the computer to skip over one character.

Tells the computer to skip to a line feed. Thus, after the variable has been satisfied, the computer
"throws away" incoming characters until a line feed is received.

The "::.::" specifier should only be used when you have a good understanding of the structure of the

incoming data, but can be very useful in formatting operations. For example, suppose that text is being

entered from a remote computer that sends a line number at the beginning of every string. You know that

the line number information always appears in the first eight characters of each string, and you don't

want these line numbers in your data. The following format could be used to strip off the line numbers:

The" " specifier is used to demand a line-feed field terminator before going on to the next variable. To

see the effect of this specifier, assume that the incoming data is as follows:

1 2 3 H I If BYE cr If

Section 3: Formatted I/O Operations 21

U sing the statement:

causes ::':: to get the value 123 and 'y'::I;: becomes "HI". However, if the statement:

is used, then ::0:: gets the value 123 and 'y'::I;: becomes "BYE". The" ,"" " specifier caused the computer to skip

all characters after ::':: was entered until it saw the line feed. Then the entry into 'y'::I;: began with the first

character after the line feed. Without the" , " specifier, the entry into 'y'::I;: began as soon as the" J [) "
field was exhausted.

Eliminating the Line-Feed Requirement

The E: 1",I'r E: I:::: statement must "see" a line-feed character at the end of the incoming data before the

program can go on to the next statement. If there is no line-feed character at the end of the data, the

computer will be "hung up" waiting for one. If your incoming data does not have a line feed at the end,

you can get the E: 1",1 T' E: I:::: statement working properly by using an image specifier.

Image
Meaning Specifier

:1:1: Eliminates the requirement for a line feed to terminate the E: 1",1 'r E: I:::: statement, When this
specifier is present, the E: 1",1 'r E: I:::: statement terminates as soon as the last variable in the
statement has been satisfied,

When the" :1:1:" specifier is used for this purpose, it must be listed as the first specifier in the image list.

For example:

E: 1",1 T' E: F: :::;: 1,..1 ~:::; I 1",1 C II :1:1: , 1/ II 1:::1 ::1;:

E: 1",I'r E: I:::: '? ;:::: 1:::1 1 .. .1 ~:::; I 1",1 (; II :1:1: .. ,::1, [I .. (:; [I II ::':: " 'y'

The first example statement shows an entry into a string variable using free-field format with the

line-feed requirement removed. This statement terminates when the string is full. The second example

shows a formatted entry into numeric variables with the line-feed requirement removed. This statement

terminates after inputting ten characters.

Advanced Use of Terminator Images

The EJ,iTT::i:::: image specifiers discussed in the preceding sections are sufficient to handle the great

majority of requirements. However, there are some special situations that demand an even greater

amount of flexibility. Most of these special cases involve the EOI (End or Identify) line on the HP-IB. The

following discussion is probably of no concern to most programmers. If you are one of those who must

consider the EOI line, or if you have an unusual problem with line feeds, then read carefully. This is the

most complex part of this section.

22 Section 3: Formatted I/O Operations

Field and Statement Terminators

The purpose of an E: 1"""I"r E: F: statement is to read a record" To the programmer, a record is a logical

grouping of data items" To the computer, a record is an incoming stream of data ended with a record

terminator" Since the E: 1"""1 T E: I:::: statement is ended when the record terminator is read, this manual refers

to the record terminator as a statement terminator" If there is a requirement for a statement terminator in

effect, the E: 1""I"r E: I:::: statement does not end until that terminator is received. (The action is slightly

different when using buffers. These are covered in section 5.) If no terminator image is specified, the

default statement terminator is a line feed character. To allow a carriage return/line feed sequence as a

statement terminator, the I/O ROM ignores a carriage return ifit is immediately followed by a line feed.

An incoming record often contains multiple fields. A field is the group of characters used to determine the

input to a variable in the E: 1""1 T" [I:::: list. For example, an E: 1"""1 T" E: I:::: statement used to input a list of names

and ages might look like this:

This statement reads a record containing a name and an age. This record has two fields. The first is a

string field (the name), and the second is a numeric field (the age). A properly specified [:J-fTT::I::::
statement places the string field in 1"""1:'1;: and the numeric field in 1::(

It is not generally necessary to specify any terminator images to get the E: 1"""I"r E: F' statement to perform

properly. The system has built-in field terminators and a default statement terminator which are

sufficient for most common applicants. These normal terminators are:

• A string field ends when the string is full (check your [I I 1"'1 statements), the character count from an

image field is exhausted, or a line feed is received.

• A numeric field ends when any non-numeric character (except a space) is encountered or the

character count from an image field is exhausted.

• The E: 1"""I"r E: I:::: statement ends upon receipt of a line feed character or a carriage return/line feed

sequence. This can be the same line feed that satisfied the last field in the E: 1"""I"r E: I:::: list.

Given these normal terminating conditions, the E: 1"""I"r [: I:::: statement mentioned previously properly

separates the name field and the age field in two cases. One case is when there is a line feed separating the

string field from the numeric field. The other case is when the string field is always of fixed length and

1"""1 ::1;: is dimensioned to that length.

Terminator Images
If the normal terminating conditions are not ideally matched to your application, the use of terminator

images can help solve the problem. The following image specifiers apply to both field and statement

terminating conditions. Field terminators are the conditions that end the entry of data into a variable.

Statement terminators are the conditions that end the E: 1"""I"r [: I:::: statement after the last variable is

satisfied.

Section 3 Formatted 1/0 Operations 23

Image Asa Asa
Specifier Field Terminator Statement Terminator

:1:1: Eliminates line feed as a terminating condition Suppresses the requirement for a line-feed
during free-field string entry. Line feeds terminator. Statement ends when last field is
entered are placed into the string. satisfied.

""' Allows EOI as an additional terminating Allows EOI or line-feed as terminating "
condition. conditions.

:1:1: ~~.;: Allows EOI as an additional terminating Specifies that an EOI must be received to
(or ~~;: :1:1:) condition, and also eliminates line feed as a terminate the statement, and line feed is not a

terminator during free-field string entry. terminator.

Whether an image specifier controls statement terminator or field terminators depends upon where it is

placed in the image. Consider the following example statement:

When the terminator image is specified by itself as the first item in the image list (like the first ~:.;;), it

specifies the statement terminator. When the terminator image is combined with another specifier (like

the ~~.;: 1<), it specifies a field terminator. The" :1:1: ", "~~';:", and" :1:1: ~~.;: " images all follow this convention.

Because the built-in field terminators are always in effect, these special terminator images only alter the

system's action in a few cases. Let's look at each of these meaningful field terminating combinations

individually.

Entering Line-Feeds Into a String

The image" :1:1: 1< " causes the computer to place all incoming characters (including line feeds) into a string

until it is full. If there is a line feed forthcoming after the string is filled, this image is all that is necessary.

If you wish the statement to end as soon as the string is filled (without waiting for a final line feed), the
image " :1:1: .. :1:1: 1< " should be used.

Using EOI to Terminate a String Entry

The image "~~.;: 1<" allows the computer to terminate a free-field string entry with the EOI signal.

However, a device which uses EOI as its end-of-line indicator may not output any other end-of-line

characters, like line feed. If this is the case, the proper image is "~~.;: .. ~:.;; 1< " . This allows the EOI signal to

also terminate the ENTER statement. If you wish to enter line feed characters into the string and also

wish to terminate with EOI, the image" :1:1: ~~.;: 1< " can be used. This may need to be expanded to " ~~.;: .. :1:1: ~~.;: 1< "

if no line feed is expected to terminate the statement. The further expansion " :1:1: ~~.;: .. :1:1: ~~.;: 1< " not only allows

EOI to terminate the ENTER statement, but requires it as the only method of terminating the statement.
Fixed-field entries can be checked for an expected EO!. For example, the image "~~.;:'? ,:::, " inputs seven

characters into a string and expects to have an EOI signal with the seventh character. Keep in mind that

there are many valid combinations of these image specifiers. The combinations shown here are only some

of the more common ones.

Using EOI to Terminate a Numeric Entry

The image "~~.;: 1<" allows the computer to terminate a free field numeric entry with the EOI signal. As

mentioned in the preceding paragraph, the image ,,~~.;: .. ~:.;: 1<" may be necessary if the EOI signal is to

terminate the ENTER statement also. Fixed field entries can be checked for an expected EO!. For

24 Section 3: Formatted 1/0 Operations

example, the image "::.;;'? [)" inputs seven characters to build a number and expects to have an EOI

signal with the seventh character. Binary fields work in a similar manner. The image" ::.;; 1".1" inputs two

bytes to make a 16-bit integer and expects an EOI signal with the second byte.

There's Always an Exception

Not all terminator problems can be solved with terminator images. Consider again the example of a name

field (string) followed by an age field (numeric). Suppose that the names are variable in length and

separated from the age by a simple comma. If the ages came first, this would not be a problem since the

comma would end the entry to the numeric variable. But since the string data is entered first in this

example, the task is a bit trickier. You might be able to use a C: C) 1".1 I,} E: F:'r statement (explained at the end

of this section) to change the comma into a line feed and terminate the string that way. If the application

does not permit the blanket conversion of commas to line feeds, then the entire record would have to be

input into a temporary string variable. Once the record is entered, the F' CI::::; function and string subscripts

could be used to extract the name and age fields. This hypothetical situation emphasizes the importance

of knowing the nature of the data you are trying to enter.

A Word of Advice About I mages
Choosing the proper image for your application can often mean the difference between success and failure

for your program. However, considering the wide range of peripheral devices and the near-infinite variety

of possible data formats, it is understandably difficult to pick just the right image. Even experienced

programmers will go through a period of trial and error before finding the perfect combination of image

specifiers.

There is an old but true saying in the world of computers: "You can't program'a computer to do

something that you don't know how to do yourself." This is an appropriate statement for formatted 110. If

you don't know exactly what character sequence needs to be output or what an incoming sequence

contains, it is very unlikely that you will know exactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what

data is generated by your program, so all you need to do is pick a desirable form for its output. The

primary caution here is to avoid image overflow conditions.

But how can a programmer determine the exact nature of incoming data when he or she can't get it into

the computer to study it? If the only tools available were the string and numeric image specifiers, this

might be a significant problem. Fortunately, there is a way to inspect a totally unknown character

sequence. Any sequence of bytes, including potential terminators, can be entered with the" :1:1:., E:" image.

The values that are printed or displayed are the decimal equivalents of the binary value for each byte.

Admittedly, this is not the most convenient form of data to work with. However, you can use an ASCII

table or the C: 1···1 I? ::1:: function to determine the exact character sequence which is being received. Then,

knowing the exact nature of the incoming data, the job of choosing image specifiers will be much simpler.

The following example program shows a typical use ofthis technique.

100 Program to inspect incoming data
110 81=3 1 Interface select code
120 ! Estabish a terminating condition
130 8ET TIMEOUT 81;3000
140 ON TIMEOUT 81 GOTO 230
J ~:::; 1:::1

Section 3: Formatted I/O Operations 25

160 1=1 I Initialize counter
170 I Input 1 byte; display analysis
:1. ::::: 0 E: r··I·r E: F: ~:::; 1 1 .. .1 ~:::; I 1"·1 C; ":1:1:., [: " ::.::
1 :) CI [) I ~:::; F' II I:::: \' 'r E: II .: I .:r r::113 < 1 1 > .: II I,} r::II.. .. I .. .1 E: ::::: II .: ::.:: .: 'r 1:::1 E: < ;:::: ,::1· > .: II C: 1 .. ·1 H F: II.:

C: 1 .. ·1 F:::I:: < ::< >
200 1=1+1 I Count bytes
;:::: 1 0 C; CI 'r () 1 C: 1:::1

;;::;::::0 I

;? :::;: 0 [) I ~:::; F' II [) r::1 'r H 1 1"·1 F' 1 .. .1 'r 1 .. ·1 r::1 ~:::; ~:::; T' C) F' F' E: [) II

240 RESET Sl I Stop I/O operation
;::::~:::;D Fr··I[)

Converting 1/0 Data

The final type of formatting involves changing the data characters that are entered or output. An

example cited earlier was incoming numbers in European format (with periods separating digit groups

and a comma for the radix point). There is no image available to accept this type of data directly. The

periods and commas need to be changed to other characters to give the computer what it wants. The tool

for performing this kind of operation is the C:: C) 1,.1 I,} E: I?r statement. Its general form is:

C: CII···II,} E: I:::: T' <direction> <select code> <access method> <string>

The parameters are defined as follows:

<direction> Indicates whether the conversion is to take place during an E: 1··I·r E: I? (choose I 1'·1) or an
C) 1 .. .1 T' F' 1 .. .Ir (choose () 1 .. .Ir).

<Select code> Indicates which interface will use the conversion. Note that the C: C) 1".1 I,} E: I::::'r operation

applies to all devices on a particular interface. A device selector is not allowed. The parameter must be an

interface select code, range 3 thru 10.

<access method> This specifies the method of accessing the conversion table. The conversion table is a

string variable, and there are two access methods. If F' 1:::1 I I:::: ~:::; is specified, the string is treated as a list of

character points. The second character of a pair is substituted for the first character whenever the

incoming or outgoing character matches a first character. This method is a good choice when only a few

characters need to be converted.

If I 1"·1 [) E: :::: is specified, the string is treated as a sequential look-up table. The numeric value of each

incoming or outgoing character is used as an index into that table. The first element in the string

corresponds to the character with a value ofO. If the value of the character to be converted is too large for

the number of characters in the string, no conversion is performed. This method is a good choice when a

large number of characters need to be converted.

<string> This represents the actual conversion table. It must be a string variable. A literal (string

constant) is not allowed.

26 Section 3: Formatted 1/0 Operations

The use of the C: C) 1",1 1,,1 E: I? ''I'' statement should become more clear with a few examples. First, the European

number format problem. This is a conversion for incoming data. One effective conversion is to replace a

comma with a decimal point and replace a period with a space. The statements for doing this with an

interface at select code 7 are:

f::j::I;::::::" .. ' , "
C: CII",II,} E I? ''I''

The conversion has this effect:

12.345,6 is converted to 12 345.6

Since the free field format ignores spaces within a number and recognizes a decimal point, you do not

even need an E 1"1 T E: I? image to recognize the converted data. It is important to note that this C: C) 1",1 1,,1 E: I? T

statement changes all periods to spaces and all commas to periods, whether they are part of a European

number or simply part of a block of text. Since this could have some undesired effects, it is necessary to be

able to turn offthe conversion when it is no longer desired. The statement which cancels the conversion in

this example is:

C: () t',II,} E: I? ''I'' I 1",1 ';::'

Giving only the direction and interface select code, without specifying I:::' f::j I I? ~:::; or 11",1 [I E :::: or any other

parameters cancels a previously selected conversion.

Control characters, such as carriage return or line feed, can also be converted. The following example

shows the statements used to convert a carriage return to a line feed. This conversion is needed when

entering data from a device which gives only a carriage return, without a line feed, as a delimiter.

A$=CHR$(13)&CHR$(10)
CONVERT IN 7 PAIRS A$

Another conversion example is the output of Extended Binary Coded Decimal Information Code

(EBCDIC) instead of ASCII code. EBCDIC is another form of character representation used on certain

types of computers. Since all the ASCII symbols have corresponding EBCDIC symbols, it is reasonable to

choose the I 1",1 [II:::: ::':: conversion mode using a string with 128 characters. In the following example, it is

more important to understand the general process being used than to understand what the actual

EBCDIC values are. The decimal equivalents of 128 EBCDIC characters are read from data statements

and converted to string characters by the C: 1",1 I? ::1;: function. The resulting look-up table is included in a

C: () I",I''} E::I? T' statement for interface select code 7. The 11",1 [) E: :::: specifier tells the computer to use the

outgoing ASCII character as an index to find the equivalent EBCDIC character. For example, an ASCII

right brace (decimal value 125) will convert to a C: 1",1 I? ::1;: (1,'5 '5), which is an EBCDIC right brace.

1, ~::I [) I 1"'1 A $ I[:1, :;::: :::::]
:::: ~::I fi:l :::: " "
30 DATA 0 .. 1 .. 2 .. 3 .. 55 .. 45 .. 46 .. 47 .. 22 ..

~:::; .. 3';:" .. 1,1 .. 1:;::: .. 1,3 .. 14 .. 1,'5" 1'::::" :1,';::' .. 1:::::
.. 19 .. 53 .. 61 .. 50 .. 38 .. 24 .. 25 .. 63 .. 36

40 DATA 28 .. 29 .. 30 .. 31 .. 64 .. 90 .. 127 .. 1
23 .. 91 .. 108 .. 80 .. 125 .. 77 .. 93 .. 92 .. 78

1,07 .. 96 .. 75 .. 97 .. 240 .. 241 .. 242

50 DATA 243,244,245,246,247,248
, ;:::: 4 ::;1" 1 ;:::: ;:::: " 9 ,t " ';:" (;, 1 ;:::: 6, 1 1 ~::I, 1 1 1 , 1

;:::: 4, 1 ~;I :::::, 1. 9 ,::1" 1:) ~:::;,' 1 ::::1 6, 1 9 ';:", 1 9 :::::
60 DATA 199,200,201,209,210,211

,212,213,214,215,216,217,226
,227,228,229,230,231,232,233

';:"0 [IA'fA 1 ';:"::;;:, ;:::: 1 , 1. C:9, :)~:,:;, 10:::,1, ;::::0, 1 ;::::
9, 1 ::~: (I, 1 ::::: :1. " 1 ::~: ;::::, :I. 3 3, 1 :::;: ,::1·, 1 ~:;: ::::;, 1 :::;:
(;, :1. ::;: /' , 1 4 ~:::;, 1 4 I;::;, 1 '::1·';:" , 1 4 :::::, 1 4 ::)

::::: 0 [I A 'f A 1 ~5 1:::1, 1 ~:::; 1 , 1 ~5 ;::::, :I. ~:::; :::;:, 1 (; ;::::, 1 ~:; ~:;:
" 1 I::; 4, 1 (; ::::;, :1. (:; I::;, 1 (;';:", :I. 6 :::::, 1. (; ::), 1 ::;: :)
, -;:' ::), 1 ~::; ':::; , ';:" ,::1·, ';:"

90 FOR 1=1 TO 128
1 (:1 0 F: E A [I ::.::

:1.10 AS=AStCHRS(X)
1 ;:::: (I r',1 E: ::':: T I
13(1 CONVERT OUT 7 INDEX AS

Section 3: Formatted 1/0 Operations 27

Section 4

Error Handling

Run-time errors on the HP Series 80 Personal Computer can be trapped by using the 0 r··1 E I? I? () I:;:
statement. You may already be familiar with the E: F: F: I··j and E: I? I? 1.. .. functions which provide essential

error information in a program. These functions can be used with the 110 ROM. However, all option

ROMs share the error numbers starting at 101. So some other tools are necessary to identify the source of

an error when more than one ROM is installed.

The I/O ROM provides two error functions in addition to the standard diagnostic capabilities of the HP

Series 80 Personal Computer. These functions give the programmer the extra information necessary to

isolate error conditions in a program.

E: I;:: I? C) 1"1 - Provides a number which identifies the option ROM which generated the most recent error. If

the most recent error was caused by the 110 ROM, the E:: F: I? () 1"1 function returns a value of

192. Note that this function is only updated by option ROM errors. Therefore, E::I?F:CH'I
"remembers" the last option ROM error, even if the most recent error in the system was not

caused by an option ROM.

[I? I? ::::; C: - Provides the select code of the interface which generated the most recent interface-dependent

error. Note that this function is only updated by interface-dependent errors. Therefore,

E: I? I? ::::; C: "remembers" the last interface error, even if the most recent error in the system was

not caused by an interface.

Because other option ROMs share similar error numbers to those of the 110 ROM, and because these

functions are not updated by every system error, it is important to interrogate the various error functions

in the proper order. If you are looking for 110 errors in an error recovery routine, check first for

E: I? I? 1"·1 :> :I. OI::L If there is a ROM error, check E: I? I? C) 1"1 to find which ROM. Having determined that the

110 ROM generated the error, check E: I? I? 1"·1 for an interface error before looking at E F: F: ::::; C:. Error

numbers 101 and 112 will not occur during a running program. All other errors below 123 are interface­

dependent errors. Therefore, a simple test for E: F: I? 1"·1 <: :I. ;:::: :::;: will tell if there was an interface error.

The following simple program segment shows the recommended order of function checks used to isolate

110 errors. This segment only displays an error message. An actual error recovery routine would also

include statements to take whatever corrective action is appropriate in your specific situation.

10 ON ERROR GOSU8 :1.00
;::::0
3(:1

100 Test for non-I/O errors
:1.10 IF [RRN<:101 THEN GOTO 350
120 IF [RROM<::>192 TH[N GOTO 350
1 :::: ~') !
:1.40 Test for interface errors
:1.50 IF ERRN<:123 THEN GOTO 260
:1.60
:I. '? I::)

29

30 Section 4: Error Handling

180 I Process ROM errors
1 ::::1 0 [I I :=.:; F' "I / () [: I;:: I:;:: () I? " .: [f;:: I;:: I··j.: ".:::1 t 1 i

nt::' II .: [I?F:L.
;:::00 I

210 Recovery routine goes here
?;;:::Ci I

;;::: ::3 (;j R [·r 1...1 F: 1···1
;;:~40

2~::;0

260 I Process interface errors
27'(1 [I I :3F' "I ./IJ E:F:FU)F: II.: [F:F:I···I.: 11.:::1 ~ 1 i

n I:::' II .: E: F: F: L.
;;::: C: 1;:,1 [I I ::::; P "F' r' () b 1 ~" rfl () n ~::: E~], t::, C: 1: C: I) d I:::'

" .: E: F: F: :3 C:
;;:::90 I

::300 Recovery routine goes here
::~: 1 0 I

~~: ,:: 0 R E: T 1...1 F: 1"·1
:330
::~:40

::350 I Process non-I/O error here
::360 RE:TI.JI?I···I

There is a complete listing of all I/O errors, their meaning, and some debugging hints in appendix C.

Section 5

Specialized Transfers

Introduction
This section deals with data transfers as they are implemented by the ·r I? r::II···1 ~3 F· L: I? statement. The basic

purpose of the ·r I? H 1···1 ~:::; F· L: I? statement is to provide a flexible tool for moving data into and out of the

computer. The key word here is flexibility.

This flexibility allows you to better match the computer's speed to that of the peripheral it is

communicating with. Take the case of a very slow device, such as a 10 character-per-second printer. It

takes such a printer 8 seconds to print an 80 character line, but our computer could send those same 80

characters in less than .1 second. If the computer is forced to wait on the printer, then the computer is

losing 7.9 seconds of computation time out of every 8 seconds! The computer's power can obviously be

increased by gaining back that 7.9 seconds. Let's see how.

The following diagrams constrast the default handshake method used by C) 1 . ..I·r F' 1 . ..I·r and L: 1···I·r L: I? with

the interrupt method of TRANSFER. When the computer executes the C) 1 . ..1 T· F' 1 . ..I·r statement (for example),

it is forced to handshake each character of the data list until all the data has been sent. Only then is the

computer free to execute the next program statement, about 8 seconds later. On the other hand, the

interrupt T·I? 1:::11···1 ~:::; F· E:: I? statement sets up some special pointers to the data and enables the printer

interface to interrupt the computer. Then the computer is free to execute the next program line, about 10

milliseconds later! (Enabling an interrupt is like hanging up a telephone receiver: the telephone is now

able to "interrupt" you by ringing whenever someone calls.)

The computer continues program execution until the printer is ready for another character. The printer

interface interrupts the computer from whatever it was doing, and the computer then fetches the next

character, updates its pointers, check to see if all data has been sent, then continues on with what it was

doing. If all the data has now been sent, the computer disables further interrupts from the interface (like

taking the telephone receiver off the hook-no more rings) before continuing on with the program.

31

I

32 Section 5: Specialized Transfers

Handshake Method

Program
execution

Interrupt Method

Program
execution

If the two methods are looked at in a broader sense, it is possible to see the real difference: the handshake

method is a linear, or sequential operation, while the interrupt method is a parallel, or overlap operation.

Consider the following diagram:

program
execution

program
execution

program
execution
is halted~

T' I:::: H 1",1 ~:::; F' E I::::

executed ~

Sequential

8 seconds
()lj'T'I:::'I..IT'
to printer

via
handshake

Overlap

8 seconds
T' I:::: H ~,j ~:::; F' E: I::::

to printer
via

interrupt

program
execution

never halts

Section 5 Specialized Transfers 33

program
execution

/ resumes

/

T' F: H ~,j ~::; F' E F:
has completed

program
execution

The sequential method effectively pauses the program for the duration of the C) 1".1"1" F' I".I'T' operation, while

the overlap method continues both with program execution and transfer operation.

An interesting possibility brought about by this overlap is that of multiple, simultaneous 110 operations.

Suppose that the next program statement after theT' I:::: FII",I ~:::; F' E:: I:::: statement is another 'T' I:::: FII",I ~:::; F' E: I:::: to a

different device (a large-screen CRT monitor, for instance). Then three things are happening at once: the

program is being executed, the printer is printing, and the external CRT monitor is displaying new

characters.

34 Section 5: Specialized Transfers

The following diagram illustrates some of the power of overlapped I/O operations made possible with
r I? f::II",1 ::::; I:::' E:: I? (PI~ase note that this is for interrupt transfer only, as explained later.)

select code 3
output T P At-~ :::; F E F:

device 701
input TPAt'EFEP

select code 6
output TPAt'~:::;FEP

program
execution

Program execution begins at time to, and some time later an output transfer to select code 6 is initiated

(time t 1). At time t2 an input transfer from HP-IB device 701 is started, and at time t3 another output

transfer is started, this time to select code 3. By now, three transfers and program execution are all going
on at once. At time t4, the input transfer terminates, and the two output transfers finish at t5 and ts. This

overlap capability demonstrates some of the flexibility of system design made possible with the transfer

statement.

There is another side to the transfer statements flexibility: speed. Certain operations are ineffective or

impossible at slow or medium speeds, and require instead a high-speed transfer. Take the case where it is

desired to analyze a signal's waveform by using an HP 3437 A Voltmeter. This voltmeter is capable of

producing a 31/2 digit voltage reading up to 3600 times per second, which is a transfer rate of about 25,000

characters per second! The computer is not quite that fast, however; its transfer rate is closer to 20,000

characters per second.

The other type of T'I? f::II",1 ::::; F' E:: I? statement is the fast-handshake transfer. This is an entirely different

type of operation from the interrupt transfer. A fast handshake transfer represents the fastest possible

data movement operation.

The following diagram illustrates the effect of sampling a signal at slow, medium, and high rates of speed

(sample points are represented by dots):

Section 5: Specialized Transfers 35

sL\/\/\/\
(Reconstructed) '-------'

Fast
(Reconstructed)

The slow sample rate provides at best an inaccurate picture of the signal, while the high sample rate

comes much closer to approximating the actual shape ofthe signal.

So where does 'r F: H I"j ::::; F' E: F: fit into this picture? Consider the E:: 1",1 T' E: I:::: and () 1...1 T' F' 1 .. .I'r statements with

their extensive formatting and conversion capabilities as being like a Rolls-Royce automobile with

electric windows, television, liquor cabinet, automatic transmission, and other accessories.

36 Section 5: Specialized Transfers

A fast-handshake transfer is then comparable to a Formula I race car, with no windows, manual

transmission, one seat, a spine-jolting ride, and that is capable of speeds over 300 kilometers per hour. Its

main objective is performance.

The fast-handshake transfer delivers the highest data transfer rate possible. When a fast-handshake

transfer operation is in progress, all other activities stop. Even the computer's CRESEf) key is disabled and

will have no effect until the transfer completes.

As with the Formula I race car, you pay a price for performance.

Using Buffers
A buffer is a section of read/write memory set aside for the purpose of temporary data storage. It is used to

either input data, output data, or both by means of the 'r I? r::II",1 ::::: F' E: F: statement. There is no formatting or

data conversion done by 'r I::,: FII",I ::::: F' E 1< so what is in the buffer is what is sent to the peripheral device.

The same holds true for data being input by "I" F: fH',1 ::::: FT:: I?; it is placed in the buffer exactly as it is

received from the device.

To illustrate how output, enter, conversion, formatting, I/O buffers, and transfers work together consider

the following diagram.

Program
variables
and data

A:$:'::-:;::' " I.:l . :::::;;:

Program
variables

H': I::' .. ::':: .. B:t

Formatting ..
.: U::: I t'iC::'

Formatting

(U::: I t'iC::'

COt'i'.}EPT
Out

conversion
table

COt'i'.}EPT
In

(Fill)

~-----

conversion (Empty)
table

------~

IOBI",IFFEf:::
Z:*

Et'iTEP 2$ U::: I t'iC 20,: H ': I ::... :::.. [::$:

output
T' P A t'i ::::: F [: P External

Peripheral
(Empty)

input ~ ____ _

~~,~f,cm ~o IIIII
External

Peripheral

The C) 1,..1''1'' F' 1".1''1'' statement takes data from program variables and does any necessary formatting while

placing that data into its ASCII representation. Then, if an output conversion is in effect, the ASCII

characters are converted accordingly and placed into the 110 buffer at the position specified by the fill

pointer. The 110 buffer is full when the fill pointer is at the end of the buffer (the string :::::::1:: in this case).

You should be aware that default C)I"J'rF'I,Jr and "I"F:r::II",I:::::FT::I? operations to a buffer place a carriage

return and a line feed at the end of the data in the buffer. This means that the buffer should be

dimensioned to a length greater by two on the HP-86 and HP-87, when using the default OUTPUT and

TRANSFER operations.

Section 5: Specialized Transfers 37

The output transfer takes characters from the I/O buffer at the position specified by the empty pointer.

These characters are sent to the specified interface and its associated peripheral. This is done either by

interrupt or fast-handshake as specified by the programmer. When the transfer completes, the interface's

end-of-line character sequence is sent.

The input transfer accepts characters from the specified interface (and its associated peripheral) and

places them into the I/O buffer at the position specified by the fill pointer. Again, this is done either by

interrupt or fast handshake as specified by the programmer.

The E: 1',1''1'' E: I:::: statement takes characters from the I/O buffer at the position specified by the empty

pointer. If an input conversion is in effect, these characters are converted accordingly, formatted as

necessary, and changed into the proper internal representation for the program variables. If you are

entering data from an active buffer, errors can be avoided by using the form E: 1",1''1'' E: I:::: :::::::1=: 1 .. .1 ::::; I 1",1 C;
II :1:1: .. :1:1:1< II ,: r::1 ::1;:.

This form of E: 1",1''1'' E: I:::: removes the requirement for statement and variable terminators, which may not be
in the buffer yet.

The Pointers

On the HP-85, when a string variable is first designated as an I/O buffer (by executing an I C) E: 1 .. .1 F' F E: F:
statement), its dimensioned length is effectively reduced by eight characters. This is to provide room for

four "pointers." There is a fill pointer, an empty pointer, an active-out select code, and an active-in select

code.'" On the HP-86 and HP-87 the buffer length is equal to the dimensioned length.

The fill pointer first equals zero (0). This pointer always contains the same value as that returned by the

1.. .. E: 1",1 function for the string variable. Placing a character into the buffer goes as follows: 1) increment

the fill pointer, 2) store the character. This operation is automatically handled by the () 1 .. .1 'T F' 1 .. .1'1" (fill

pointer equals 1.. .. E:: 1",1 function) statement and also by any string variable assignment operations such as
:::::::1;: ::::: ::::: ::1=: ::~,: 1:::1 ::1;:. You do not normally need to assign values to the fill pointer.

The empty pointer first equals one (1). Taking a character from the buffer goes as follows: 1) read the
character, 2) increment the empty pointer. This operation is performed automatically by the E: 1",1''1'' E: I::::

statement.

A buffer is full on the HP-83/85 when the fill pointer equals the string's dimensioned length minus 8. A

string with a dimensioned length of 8 would not be a very useful buffer, as it would be full and empty at

the same time, without any data being placed in it at all! Any () 1 .. .1''1'' F' 1 .. .1 'T' operation to a full buffer will

result in an error. On the HP-87 the length declared is the same as the usable length.

A buffer is empty when the empty pointer equals the fill pointer plus one. This has no relationship to the

dimensioned length of the string. When a buffer is emptied, the full pointer is reset back to 0 and the

empty pointer is reset back to 1. This is exactly the same effect as executing the I () E: 1 .. .1 F' F'I:::: I:::: statement,

except that the I CII:::: 1 .. .1 F'I:::' E: F: statement also initializes (destroys) conversion table pointers.

·On the HP-87, additional memory is allocated for the pointers (additional to the length that the buffer is declared to be). Because of
this, on the HP·87, the number of 110 buffers is limited to ten. Declaring more than 10 buffers will result in an error and abortion of the
program at that point.

38 Section 5: Specialized Transfers

Buffer Activity

When a T'I? f:II",1 ::::; F: E: I:::: statement is executed, the specified buffer is then an active buffer. The buffer may

be active-out, active-in, or both, depending upon the di,rection(s) of the transfer(s). The buffer is assigned

an active-in select code when an input 'r F: 1:::11',,1 ::::; I:::' E: I:::: statement is executed. An active-out select code is

assigned when an output 'r I? ,:::,1",1 ::::; I:::' F: F: statement is executed. For example when the following interrupt

transfer to select code 6 is executed-

TRANSFER Z$ TO 6 INTR

the active-out select code equals 6.

A buffer is made inactive when the transfer completes. This is a direction-specific inactive state; that is,

buffer may be active-out but inactive-in, or vice-versa. When an input transfer completes, the buffer's

active-in select code is set to zero (0). Similarly, when an output transfer completes, the buffer's active-out

select code is set to zero (0).

Buffer Status and Control

The four buffer pointers can be checked by means of the ':::;r I:::' T' i .. ,i '3 statement. The four 110 buffer status

registers are as follows:

Status Default
Register Value

SRO

SR1 o

SR2 o

SR3 o

Register
Function

Buffer empty
pointer

Buffer fill
pointer

Active-in
select code

Active-out
select code

Statement used to read
register value of buffer Z$

These registers may be read at any time on an active or inactive buffer, but attempting to read the status

of a non-buffer string variable (that is, if no I (J [: 1 .. .11::' F:'I:::: I:::: statement has been executed for that string

variable) results in an I:::: i:::: I;: Ci I;'.

An example of using buffer status registers to control program flow follows. In the example, a string

variable is dimensioned to 88 characters (to allow for 80 characters of data after becoming a buffer on the

HP-85) and declared as an 110 buffer. Data is output to the buffer, a transfer out to an HP-IB printer is

initiated, then the buffer's active-out select code is checked to determeine when the transfer has

completed, The program ends when the transfer completes. The buffer may be dimensioned to 80

characters on the HP-86 or HP-87.

Section 5: Specialized Transfers 39

:I. I;:) [) I 1·'1 ;;::: :;l::I[::::: :::::]
;;::: I;:) I () E: 1 • ..1 F· FT:: F: ;;::::;1:: 1 . ..1 ::::: .:::Ii::, I,:::, ::::: :i. :;::: ':::' () f ;:::::;1:: .:1. ::::: C: CI (88 on the HP-86/87)
30 FOR 1=0 TO :I. STEP ,:I. I EOL is suppressed
,::!- CI () 1 . ..I·r F' 1 . ..1 T· ;;::: :;1:: 1 . ..1 ::::; I 1···1 C; ":1:1:.. [) , [I [I [I .. ::.:: " ::::; I 1···1 < I >
~:::; CI 1···1 E: ::.:: ·r I
60 I Show values of buffer registers
70 STATUS Z$.. 0 T0 .. T:I. .. T2 .. T3
::::: (:1 F' f;: I 1···I·r " I:;,: ~::' ,") i ::::: .1: ':::' t". :::: b ':::' f () t". ':::' T· F: f:II···1 ::::; F· E: F: "., T· 1;::1 .' T· :I. .. ·r ;;::: .. T· :::::
90 TRANSFER Z$ TO 70:1. INTR

:1.00 STATUS Z$.. 0 T0 .. T:I. .. T2 .. T3
110 DISP T0 .. T1 .. T2 .. T3
:1.20 IF T3<>0 THEN GOTO :1.00
:I. ::::: 0 P I:::: I I··j T "T· 1"". ·::l rl~" f ~::' 1"". C (I rn pI,:::, .1: ':::' d "
:1.40 [1···10

The variable TO shows how many characters have been taken from the buffer. Tl shows how many

characters total are in the buffer, and T3 indicates select code activity.

For another example, assume device ::.:: is to send three numeric values followed by a carriage return, line

feed. The following program displays the buffer registers until the transfer completes. An E: 1···I·r E: F: is then

executed to take the values out ofthe buffer, which are then printed.

:I. (:) I C) 1 •• ·1 1·- cl ~:' ',.,' i c ':::' X is at HP-IB address
;::: (;1 [) I 1·'1 Z :1:. [:::: :::::]I
::::: I;:) I C) E: 1 . ..1 F· F· E: F: ;;::: :;1::

,::!-I;::I T I:::: A 1···1 ::::; F [F: .? ;;::: :1. T () ;;::: :l I 1···1 T f?
50 ! Note that :1.0 is the decimal value for line-feed
60 STATUS Z$.. O TO .. T:I. ,T2 .. T3
70 DISP T0 .. Tl .. T2 .. T3
80 IF T2<>0 TH[N GOTO 60
90 ENTER Z$ X .. Y .. Z

:I. 0 ~) 0 I ::::; F' ::.::., 'y' .. ;;:::

:I. :I. I~:I E t··1 [)

If device ::.:: is a very slow device, you could "watch" characters come into the buffer by means of variable
·r 1. The variable ·r 1;::1 is not altered until the E: ITr EJ;: is executed, and ·r;;::: reflects the ·r F: FI t··1 ::::; F· E I::::
statement activity. When the T· F: r::II···1 ::::; F· E: F: is initiated, ·r ;;::: :::::.?; when the T·I:::: f:II···1 ::::; F·I:::: I:::: completes,
·r;;::::::::I;:).

The buffer empty pointer and the buffer fill pointer can be assigned new values by using the C: C) I··j T·I:::: () I
statement. This gives you the capability of sending the same data over and over again without having to

re-compute the data, for example. The following table shows these registers and how they are accessed:

Control Default Register Statement used to write
Register Value Function register value of buffer Z$

CRO 1
Buffer empty C:C)I···I·rl::::()I.... ;;:::::1:: CI : I,)CI

pointer

CR1 0
Buffer fill C: CII···I·r F: C) 1.... ;;:::::1:: :I. : I,) :I.
pointer

These buffer registers may be written to at any time, but attempting to write to a control register of a

non-buffer string variable (before an I () E: 1 .. .1 F· F· E: I:::: statement has been executed for the string variable)

results in an error.

40 Section G Specialized Transfers

In the following example, 360 values are computed for ::::; I 1",1 < ::-: ::> to represent one complete cycle of a sine

wave. These values are output to the buffer ;:::::l and subsequently sent to device X, a digital-to-analog

converter, by a fast-handshake transfer.

When the transfer completes (T2 = 0), the buffer empty pointer is automatically reset to 1, the fill pointer

is set equal to 360, and the transfer restarted. This continues indefinitely until the (PAUSE) key is pressed

to stop the program. The effect of this program is to produce a near-continuous sine wave from device X.

(Details of device X are purposefully left out here to avoid confusing the issue.)

10 I Make room for 360 eight-bit values plus pointers
20 DIM Z$[368]1 360 values are adequate for the HP~86/87,
:::;: CI I C) [: 1 .. .1 F' F [: F: ;:::: :l
,::j. CI [) [: C;
50 FOR 1=0 TO 359
(; 1:::1 () 1..1''1'' F' 1..1 'T' ;:::: t 1..1 ::::; I 1",1 C; ":1:1:" [: " ::::; I 1",1 < I :' ::1: ;:::: '5 ~:::;

70 DISP I;@ NEXT I
80 TRANSFER Z$ TO 5 FHS
90 CONTROL Z$,1 360

1 0 1:::1 C; C) ''I'' C) ::::: CI
IICI [:1",1[1

Lines 10-40 merely set up the buffer and place the computer in degrees mode. Lines 50-70 fill the buffer
With the 8-bit value for each of 360 degrees (one complete sine wave), and line 80 starts the fast-handshake

transfer. Line 90 is executed when the transfer is complete. The buffer fill pointer is set back to 360 (so it

looks full again), and the transfer is restarted.

By exercising control over the buffer empty and fill pointer, it is possible to retransmit data, transmit any

portion of the data in the buffer, to write data into any section of the buffer, read data out of any section of

the buffer, etc. These operations may not be ones that you need to use in your application, but the

flexibility they provide you could make feasible certain I/O operations not possible through any other

means.

Data TRANSFERS

The 'T'I? 1:::11',,1 ::::; F' E:: F: statement has been mentioned several times up to this point. In combination with the

I () E: 1 .. .1 F' F' [: I?, it provides you with unmatched flexibility in tailoring and optimizing a program to

exchange data with one or more peripheral devices. The diagram below shows the relationship of the

transfer with the I/O buffer, conversion tables, and program variables.

Section 5: Specialized Transfers 41

Program
variables
and data

1:::1:1:: <: ::-:', 1, I

Program
variables

I I ::'

1:::1 " 1 >, ::-:, [::1'

Formatting

Formatting

" 1...1:; I III; "

I,II·I',,'[I:::T
Out

conversion
table

11111 ',,' [I:;: T
In

conversion
table

::', 1, 1, ;;-;:

(Fill)

(Empty)

I II F: 1...1 F F: I: I:::
::t

[liT [I:: :':1' 1",1 '; I III; ;: II: II 'I', ,,' 1:1

output
rf;>Htj::;f::F~>

(Empty)

input
T F' H tj :::; 1=-- F F:

(Fill)

External
Peripheral

~H=R
000 tt:ij

External
Peripheral

The transfer itself is the easiest section of the entire picture to understand. Simply stated, an output

transfer takes characters, or bytes, out of the buffer from the position specified by the buffer empty

pointer and sends them to the external peripheral. Conversely, the input transfer takes characters from

the external peripheral and places them in the buffer at the position specified by the buffer fill pointer.

Output TRANSFER
For an output transfer, you merely specify whether an interrupt or a fast-handshake transfer is to be

performed. For example, to specify an interrupt output transfer, the following statement could be used:

TRANSFER 7$ TO 7.3

-"­
buffer device selector

(or interface select code)

The operation of an interrupt output transfer is as follows:

interrupt

• When the statement is executed, the interface involved (in this case, device 13 on an HP-IB Interface

at select code 7) is automatically enabled to interrupt* the computer when ready to accept a new

character.

• Thereafter, each time the interface interrupts, the computer temporarily suspends program

execution long enough to move the next character from the buffer to the interface. (It is then the

interface's responsibility to see that the new character is properly sent to the peripheral.)

·This is a hardware-level interrupt, and is distinct from the software-level end-of-line branch discussed in Section 6.

42 Section 5: Specialized Transfers

• When the buffer is finally emptied (described in the U sing Buffers section), the computer disables (or

turns off) further interrupts from the interface. The transfer is now essentially complete, although

the interface may still be sending out the specified end-of-line character sequence (normally a

carriage return/line feed: see the appropriate interface owner's manual).

• When the transfer is terminated, a check is made for a user-defined end-of-transfer branch. If one is

defined, then the branch is taken upon completion of the current program line. This is explained

more thoroughly in the section End-of-Line Branching.

A fast-handshake output transfer is specified as-

TRANSFER Z$ TO 706 FHS

buffer device selector fast-handshake
(or interface select code)

The operation of a fast handshake output transfer is significantly different:

• The computer suspends program execution and dedicates itself to the task of moving all the

characters in the buffer to the interface. The computer totally devotes itself to this task until the

buffer is emptied. No other interrupts are allowed, not even a (RESET)! This means that once a

fast-handshake transfer begins the computer will see it through to completion, and all other

operations are ignored until that time.

• When the buffer is empty, the transfer is essentially finished. (The interface may still be in the

process of sending the end-of-line character sequence.) If a user-defined end-of-transfer branch is

specified, the branch is taken upon completion of the current program line.

Input TRANSFER

The input transfer is essentially the same as the output transfer, except that data is being moved from the

external peripheral to the computer. However, in addition to specifying whether an interrupt or fast­

handshake transfer is to be performed, you may also specify the terminating condition(s) for the transfer.

The terminating conditions for both interrupt and fast-handshake transfers are:

• C: C) 1 .. H·fr -the number of characters or bytes of data to be input before the transfer is considered

complete. Use C: C) I"HfT' when the number of characters or bytes being sent from the peripheral

device is known.

• E: CI I -an interface-specific terminating condition. In the case of the HP-IB Interface, some devices

set the EOI control line when sending the last byte of data indicating end-of-data. This terminates

the transfer if F: C) I is specified.

• Default termination-a full buffer termination. An input transfer terminates with the first

occurrence of any specified terminating condition or a full buffer. (Obviously, if there is no room left

in the I/O buffer, the transfer cannot continue.) If no other terminating condition has been

specified, an input transfer will terminate when the I/O buffer becomes full.

Section 5: Specialized Transfers 43

Additional terminating conditions for interrupt transfers only are:

• [) [: I, .. , I I'''I-the numeric value of the character or byte of data that indicates all data has been sent.

Use [) [: 1.. .. I 1'''1 when the number of characters or bytes being sent from the peripheral device is either

not known or varies for some reason. The peripheral device should not send the [I E: 1.. .. I 1'''1 character

as part of the data being sent, or else the transfer will be terminated prematurely!

• Interface termination-an interface specific termination. Certain interfaces allow you to specify

additional terminating conditions by writing to the interface control registers. These conditions

may be either receipt of user-specified characters or line status, so consult the appropriate interface

programming section to determine which, if any, conditions your interface supports.

Programming with TRANSFERS
Every transfer operation requires an 110 buffer, which in turn requires a dimensioned string variable of

adequate size. After executing the I CI [: I,J F' F' L: I:;:: statement, any I::: Ci i",l I,) [: I::: 'I" statement(s) for that buffer

may be executed. This is because the I C) L: 1 .. ,1 i:::' F' F I? statement initializes all the buffer pointers, including

those to any conversion tables.

If there is any necessary interface initialization to do, it may be done anytime before executing the

transfer. If your program uses end-of-line branching (CII"'I I:::: cl'r: see the End-of-Line Branching section),

the appropriate statement(s) should be executed before the 'I" I::: I:::II",I~:::; F' F: I::: statement.

An input transfer may be executed at any point after the setup sequence described above. An output

transfer, however, requires data in the buffer before anything can be sent. Therefore, an output or a string

assignment operation needs to be performed before attempting to execute the output transfer.

It has been said that either an output or a string assignment operation needs to be performed before

executing an output transfer so that there is data available in the buffer. This is not entirely true. Nor is it

necessary to have all the data in the buffer before initiating an output interrupt transfer. Also, it is not

necessary to wait for an input interrupt transfer to complete before reading data from the buffer. (Fast­

handshake transfers are totally sequential operations and do not apply to the following discussion.)

If the external device is sufficiently slower than the computational speed of the computer, it is possible to

initiate an output transfer with the buffer only partially filled. Then, as more data becomes available to

send to the device, the new data can be output (for example) to the buffer while the transfer is still in

progress. This process can go on indefinitely until either: 1) all data has been sent or, 2) the buffer is filled

(then the user's program must wait for more buffer space) or, 3) the buffer is emptied (then the transfer

terminates and it must be restarted).

Case 1 above is straigiltforward and needs no explanation. Case 2 is determined by the buffer status, and

the program can wait for more buffer space by monitoring buffer status (with the ~:::; 'r FI 'r I .. '! ~:::; statement).

The occurrence of case 3 indicates that the peripheral device is actually faster than the computer in this

instance. (This may be due to excessive computation being performed or some other circumstance causing

a delay in the program.) An end-of-line branch or a status check on the buffer indicates a transfer

completion, and the decision to continue the transfer can be made at that time. The following example

program illustrates how these conditions might be dealt with:

This program shows how you might check
2,and], The buffer size is determined
to optimize memory usage with transfer

f () r C:·:::I:::::':::'::::: :1."
':::' 1':'1 p :i. r :i. c: ,:::1 1 :I. ':::1
1''',:::1'1: ,:,',

44 Section 5 Specialized Transfers

40 DEG @ DIM B$[160]
50 DEF FNA(X) = INT(SIN(X)t35+36,5)
~5 1 C: C) 1",1 ''I'' F: C) 1.." ';:"" 1 C: ,: 1:'1 I ''I'' 1"1 :i, ::::: 'I: 1..1 I'" 1"1 ::::: () f f C: I:::: ... 1.." F' f I'" () I'll t 1'''11:::'

interface by specifying zero EOL sequence characters
c: 1:;:1 I () E: 1...11:::' F' E: I:::: E: ::I;
?CI I
80 FOR X=0 TO 359 STEP 10 I The For-Next loop handles

c: ,:::1 ::::: I:::' 1
:) 1:'1 ~3 ''I'' f:1 ''I'' 1...1 ~:::; [: ::1;: "CI ,: ~:::; 1, ~:::; ::::: " ~:::; :::i: " ~3 ,::1,

100 I Test for buffer empty before putting in data (case

1 CI 1 ::::: ::::: F' 1",1 r::1 (;:'::)

110 IF Sl+2)145 THEN GOTO 90
1 1 ~5 1:'1:: ::::: I,) 1:::11.." :'1:: (:::::) :\ II ;:':: " 1:::1 ! I

1 ::::: CI () 1...1 ''I'' F' 1",1 ''I'' [: ::1;: 1",1 ~:::; I 1",1 C:; 1:'1:: ,: II ::1:: II

130 I Test the active-out select code before starting the
'I: I'" ,:::11'''1::::: f I:::' I'"

140 IF S4=0 THEN TRANSFER B$ TO 720 INTR I (case3)
1 ,:::; 1:'1 1",1 [: ;:':: ''I'' ::";
1 C:CI
1 ';:"1::'\ C; () ''I'' C) :::::CI
1 :::::1::'\ E: 1',1 [)

Section 6

End-of-Line Branching

Some Background on Interrupts
If you've never heard the term "interrupt" with regards to a computer before, then a simple way to think

of it is like a telephone ringing while you are working. It is a means of diverting your attention from

whatever it is you are doing. "Servicing" an interrupt is similar to the act of going over to answer the

ringing telephone. When the telephone business is completed, you typically resume the "interrupted"

activity where you left off.

If you have a switch that can disconnect the telephone bell (so it can't ring), then you can disable or

enable that interrupt by the setting ofthe switch. The computer has essentially the same facility.

In addition, the computer has two types of interrupts to deal with: low-level, or hardware interrupts; and

high-level, or software interrupts. In general, the hardware interrupt is used by the computer for its own

purposes, and is transparent to the user. Hardware interrupts make possible such things as the I I",I'T' I::::
type of "I" I:::: FII",I ::::; F' E: I::::, where program execution and I/O are concurrent operations. However, external

(and internal) events can also trigger hardware interrupts that require specialized service routines to deal

with them. Because there is such a wide variety of interrupt causes possible, it is necessary to make

provisions for the programmer to custom tailor service routines for those interrupts specific to his system.

This provision is the software interrupt, or end-of-line branch.

Imagine a "ghost" I F' <event>T' 1",1 E: 1",1 C; C)::::; 1".1 E: <line #> statement appended to the end of each

program line, like the ones below:

~::; 1;::1 F' F~: I I"~ 'T' "F: I:::' ::::: 1,..11 'I: ::::: " ,: ::':: (!~! I F' <event = true> T' H E: 1",1 C; C) ::::; 1".1 E: <routine>
(:; 0 ::':: ::::: ::':: +, \' (!~I I F' <event = true> T 1",1 E: I"~ C; 0 ::::; U E: <routine>

In effect, at the end of each program line, a check is made for the event, which may be an error, a

hardware interrupt, a select code timeout, a transfer completion, a special function key-press, or a timer

timeout. (End-of-line service for three of the above events is already provided for in the HP Series 80

mainframe: errors, special function keys, and timers.) When one of the events occurs, a special portion of

the program can be executed to deal with that event.

The programmer also has the ability to disable or enable the end-of-line service facility for each event, as

will be shown in the next section on programming for end-of-line branches.

End-of-Line Branch Programming

Introduction
This section shows you how to program service routines to deal with end-of-line branches for I/O related

events. At the end of this section is a sub-section entitled "Interactions and Permutations." The
discussion there deals with problems and questions you may encounter such as C; () ::::; 1 .. .1 E: vs. C; C) T' C)'

45

46 Section 6: End-Of-Line Branching

Interface Interrupts
Each interface (HP-IB, Serial, BCD, etc.) has a control register that allows you to specify an interrupting

condition. This is control register CRl, the Interrupt Mask register. When you set a bit in that register,

you enable the interface to interrupt the computer when the event corresponding to that bit occurs. The

interrupt event is determined by referring to the programming section for the particular interface. For

example, the HP-IB Interface provides for an interrupt on SRQ, or Service Request. The SRQ interrupt is

enabled by setting bit 3 (decimal value 8) of control register CRl. To enable the SRQ interrupt for the

HP-IB Interface at select code 7, execute

E: 1",1 FI E: 1.. .. E: I 1",1''1'' I:;:: '? ,: :::::

This is equivalent to

C: C) 1",1''1'' F: C) 1.... '? I ,: :::::

and both statements set bit 3 of control register CRI on select code 7.

Suppose (for simplicity) that only one device is connected to the HP-IB Interface, and that device asserts

SRQ only to indicate it is ready to send a numeric value to the computer. The statement we'll use to read

this value is

This is the extent of our example service routine, which will take the form of a subroutine in the program.

Once the computer has read the new value from the device, it must again enable the SRQ interrupt so that

another value can be read when the device is again ready. The service routine begins to take shape:

10DU
I CI I I:)
1. (j ;:::: IJ
I CI:::~O
I CI,::I,CI

I SRQ Service Routine for select code 7
STATUS 7, I A I Always read interrupt cause register
E:I"jTE:I? '?O 1. I,} 1.
I Re-enable interrupt and return on same line
ENABLE INTR 7;8 @ RETURN

Note that the E: 1",1 A E: l.., [and the F: E: ''I'' 1...1 I? 1",1 are on the same program line. There are some occasions where

this is a necessary practice, and this is discussed under "Interactions and Permutations."

It is necessary to specify where the service routine for an event is, and also whether the routine is a
subroutine U::; C) ::::; 1 .. .1 13) or just a program segment (C; crr CI). This is accomplished by the 01",1 I I'fr F:
statement. Note that the computer must know where to go and what to do before an interrupt occurs, or

else it will be forced to ignore it. Therefore, the C) 1",1 I 1",1 T'I? statement should be executed before the
E: 1",1 FII:::: 1.. .. E: I 1",1''1'' I? statement, as shown in the example below.

10 ON INTR 7 COSUB 1000
;:::: (::1 C) 1...1 ''I'' F' 1...1 T '? :::: ;:::: " F' If;: '? T :::: "1" :::: [I 1. "
::::: CI I,} I::::: ::':: :::: (j

4 (j 1.. .. () C: 1:::11.... '? ;:::: ;::::
'5 1:::1 E: 1',,11:::1 E: 1.. .. E: I 1",1 "1" I? "? I ()

I ,1 1",1

Section 6 End-Of-Line Branching 47

60 I The following lines are a dummy program
70 X=X+l @ DISP X,Vl
80 WAIT 100 @ GOTO 70

1 UUlj
llj 11:::1
1 CI ::::: 1:::1
1 CI3ij

I SRQ Service Routine for select code 7
:::::l 1:::1 T' 1...1 ::::: ';:", 1 rl
E: 1",1 'l E: I:::: ';:" ::::: ::::: I,) 1
ENABLE INTR 7;8 @ KLlURN This must be
:i, 1'''1 'I: I:::' I" rl,..Ip 'I:

:l.lj,::I,CI E: 1",1 LI

Line 10 specifies the location (line 1000) and type (C: CI ::::: 1...1 E:, not C: CI "I" CI) of the service routine for select

code 7. Line 20 initializes the HP 3455A Digital Voltmeter to take readings whenever it is triggered. The

1..., CI C: 1:::11.." statement of line 40 allows the DVM to be triggered manually, and the E: 1',,11:::1 E: 1..., E: statement

enables the interface for SRQ interrupt (bit 3 of the interrupt mask is set). Lines 70 and 80 merely display

an incrementing counter and the last reading taken from the DVM.

Each time an SRQ is received, program execution of lines 70 and 80 is suspended, and the subroutine at

line 1000 is executed. The E: 1",1 T' I:::: I:::: is performed, which takes a new value for I,) 1. The SRQ interrupt

condition is again enabled in line 1030, and the I:::: E: T' 1...11:::: 1",1 allows the program display loop to resume.

However, the value for I,) 1 that is now displayed is the new value just read by the service routine.

What would happen if the E: 1',·11:::1 E: 1.." E: 11",1 ''I'' I:::: on line 1030 were removed?

Simple. The first SRQ would be serviced as described above, and the program loop then resumed.

However, no more SRQ interrupts would be detected, even if the HP-IB device were frantically sending the

SRQ message to the interface! The interface ignores the event-regardless of its importance, until an
E: 1',,11:::1 E: 1.." E: 11",1 T' I:::: statement is performed to again enable the interface to be able to interrupt the

computer. Also, the E: 1",1 r::1 E: 1.." E: I 1"·1'1" I:::: statement sets the status register to the current state.

To disable or cancel the end-of-line branch condition set up by C)!,'·I I 1",1 ''I'' I::::, simply execute an (J F' F'

11",1 T' I:::: statement for the appropriate select code. No more branches will be taken until another CII"·I I 1"·1 ''I'' I::::
statement is executed.

It is good programming practice to always read the interrupt cause register. Note, however, that the

execution of a ::::: ''I'' 1:::1 T' i...l ::::: statement clears the status register so it cannot meaningfully be read again

immediately. It may also indicate more than one interrupt.

Timeouts
It is possible for an external device to exhibit symptoms of intermittency or disconnection from time to

time. This "falling asleep" is generally caused by an electronic malfunction or some other unusual

condition, such as being switched off. It is not as important to focus here on the possible causes of device

failure so much as the possible effects.

When a device fails, for whatever reason, the immediate effect on the computer is that it is no longer

handshaking data to or from the computer. (Handshaking is a means of reliably transferring data

between two devices. The sender makes data available, signals that data is ready, and the receiver

accepts the data and signals that it has taken the data. This protocol is called handshake.) If an E:: 1",1 ''I'' I:::: F:,
::;: E 1"·1 [J or C) 1...1 T F' 1,..1 ''I'' operation is in progress, a loss of handshake means no data can be transferred and

the operation cannot complete. If the operation does not complete, the program "hangs" until the operator

becomes aware that something has gone wrong. This is unacceptable for most 110 systems, and

especially those where unattended operation is frequent.

I

48 Section 6: End-Of-Line Branching

The :3 E: ''I'' ''I'' I 1"1 E: () 1 .. .1'1" statement gives you the capability of establishing a maximum time period for the

computer to wait on an interface to handshake data. If an interface exceeds the ::::; E: ''1'''1'' I 1"1 E: ell",1 ''I'' limit

specified, two alternative courses of action may be selected. One method simply aborts the I/O operation

in progress and continues program execution at the next line. The other method executes a timeout service

routine after the I/O operation is aborted,

The following example shows the simpler form of ::::; E: T'r I 1"1 E: ell",1 ''I'', where no timeout service routine is

specified:

10 SET TIMEOUT 7; 10000
:::: 0 0 U ''I'' F' U T' '? 1;::16 ; II ::::; :i, I'n p 1,,,;, 'I' ,:" ':::: t .:::1,:;, 1: ,";, II

:::~: ~::I [) I ::::; P II I"~ () ','.1 ,,,:, 'I: 1 i I,", I;'" 3 1;::1 II

40 E: 1",1 [)

If device 706 stops responding to handshake before the output operation is complete, then after 10 seconds

line 30 will be executed. (Line 30 would also be executed if the output were successful, obviously.)

A more sophisticated method for dealing with a timeout condition is to execute a timeout service routine

when an I/O operation is aborted due to a timeout. A separate service routine may be programmed for

each select code to deal with the specific device or conditions for that select code. The () 1",1 T' I 1"'1 E:: () 1".1 ''I''
statement provides this capability, as shown below:

10 SET TIMEOUT 7;2000
20 SET TIMEOUT 5;4000
30 ON TIMEOUT 7 COSUS 1000
40 ON TIMEOUT 5 COSUS 1100
50 ENTER 706 ; Vl,X
60 OUTPUT 5 ;Vl,X
'? 0 C; () T' () !:::; I~j

1000 I Timeout service for select code 7
1 I;) 1 1;::1 F' I? I 1",1''1'' II 1"'1 F' " .. , I 13 ''I'' :i, 1'(";'" () '...I 'I: II

1020 RESET 7 ! Attempt to recover
II;) :::.: 1;::1 I? E: ''I'' 1...1 F: 1",1
1100 ! Timeout service for select code 5
1:1.11;) PF:II",I'r ":::;,;::'l~:'c't (:o.:::I~? !:::; f,:;,ilur'''~''
:I. :I. :::0 I:'::[:::;ET !5
113~::1 1:'::ETI..,1I?t,~

Obviously, in a dedicated system, more significant action could be taken than simply printing a message,

aborting the operation with a F: E: ::::; E: ''I'', and returning to the program. For example, a flag could be set by

the timeout routine which would be checked before attempting an I/O operation to that select code. This

flag might indicate printer out of paper or tape reader at end of tape, which would make I/O to such a

device a useless endeavor. It might also be the only means available of determining when an operation

has completed. The following example shows how a flag might be used:

:I. CI ::::; E: T' ''I'' I 1"'1 E: () 1".1 ''I'' (;::I.!5 CI CI
20 ON TIMEOUT 6 COSUS :1.000
2:1. ! Clear timeout flag (F:I.)
30 F:I.=0 @ DIM V(50)
40 FOR 1=:1. TO 50
50 IF F:I.<>0 THEN COTO 80 Test timeout flag before

[: 1',1 ''I'' E: I?

Section 6: End-Ot-Line Branching 49

60 ENTER 6 V(I)
.? CI 1"·1 E: ::.:: 'r I
::::: Ij F' F: I I',,' T' I.:" I) ·:::1 1 1 . ..1':::' ::::: ':::' 1""'1 '1: ':::' 1""' ':::' (:1" (!~! ::::; T' C) F'

:I. CI Ij Ij L) T ':::; F' !, T' i rfl ",:, 1:) 1 . ..1 '1: ':::' 1"1 (:1 () f 1::1.:::1 '1: ·:::1 "
10:1.0 F:I.=:I. I Set timeout flag
:I. Ij ;:::: 1:::1 I? E: T' t . .! i? ,' .. ,
:I. CI:::;:I::I E: 1"·1 [)

When a timeout occurs, the flag F1 is set equal to 1, and the .I. F' statement of line 50 causes the E: ",·1 T' I:::: i?
statement of line 60 to be skipped. The loop is exited and the program continues. (In the example, only a

F' F: I i···ir and ::::; T' CI F' are shown for simplicity.) In this case, the cause for the timeout is not device failure,

but rather the end of data to be received.

As with (H·' I I··rr I?,. there is a corresponding disable statement for tifH~out end-of-line branches. The

C) F'I:::' 'r I i'" E: CI i . ..i·r statement can be used to cancel end-of-line service for a specified interface timeout.

The ::::; E: T' T T "'1 E: CI !.J T' statement with a time limit of 0 can also be used, which sets an (almost) infinite

timeout limit for the interface. For more information regarding syntax rules, refer to the alphabetical

syntax listing section of this manual.

Transfer Terminations
There are two means of determining when a transfer operation has completed. Both are straightforward,

but using an end-of-line branch service routine allows the greatest flexibility of program design.

As is mentioned in "Using Buffers", buffer status registers SR2 and SR3 indicate input and output

activity, respectively. When the appropriate register becomes equal to 0, that transfer has terminated.

However, this requires rechecking the status register until the transfer terminates, which inhibits

program execution. If there is other work to be done, a fairly convoluted program logic will be the result of

trying to monitor transfer status and also getting the other work done. There is a simpler way.

When an CI ,' .. , E: C) T' (On End Of Transfer) statement is executed, an end-of-line branch is enabled for

transfer termination for the specified interface. Then you can program the operations necessary to deal

with the transfer termination into the CI ",·1 E: C) T' service routine. These operations might include placing

new values into the buffer and re-initiating the transfer (for output) or taking values from the buffer and

placing them into program variables (for input).

To illustrate how the CII···I E: ()'r statement might appear in a program, consider the following example.

An HP 3437 A Voltmeter is programmed to take a reading every .9 seconds. An interrupt transfer is set up

for 100 readings of seven characters each, plus a final carriage return/line feed and the eight extra bytes

needed for pointers.

When the transfer completes, the service routine at line 1000 is executed which saves the readings and

initiates a new transfer.

10 ! Transfer termination service routine example
20 ON EOT 7 COSUS :1.000
::::: 0 CII...1 T F' 1 . ..I·r 7 ;:::: 4 .:" [I , 9 :::; 1"·1:1. (10 ::::; E 0 :::; I:;:: 3'r 1 F' :I. "
40 1=:1. @ X=0 @ DIM 0$[7:1.0],0(:1.00)
~:::; CI I C) 13 1 . ..1 F' F' E: I? [I ::1::

60 This program assumes :1.0 data files are alreadY

50 Section 6 End-Of-Line Branching

7~ crea~ed, and ~ha~ ~he file names are In the ne~t
80 I da~a s~a~ement,
90 DATA da~a1,da~a2,da~a3,da~a4,da~a5,data6,data7,data8,

(:1.:::1 '1: .::J::), el:::1 '1: .:;;1:1. Ij
100 TRANSFER 724 TO 0$ INTR
:I. :I. Ij ;:.:: ::::: ::.:: .+. :i. '3 :i. r(1 pI,:::, ,! 1,-, () I' k !, I c' () F' >:: ,:::i 1 .. ·1 r(1 1"-1 ':::1 >
1 ::::: CI Ci I '3 F' ::::
:I. :::;: 1:::1 C: () T' () :1.:1. CI

:i. CICICI
1lj 1 CI
:I. CI:::::CI
:l CI:::;:CI
:I. CI,:l()
1 CI'5CI
:I. CI(:CI
:I. CI';::'CI
:I. CI:::::CI
:I. CI::::ICI

:I. :I. Cllj
1 11 CI
:I. :I. :;:::CI
:l :l3CI
1 :I. ,:lCI
:I. 1 ,::I- ~5

:I. 1 '51j
:I. :1. C:CI
11 '?CI

EOT service rou~ine
I Read next file name and open file on tape,
READ F$@ ASSIGN# :I. TO F$
I Take values from buffer

F' () F: 1"·1 ::::: 1f C) :1. CI CI
e: 1"·1 'f e: I:::: [I :l Li >:: i'i'
1···le:;:':·f 1"·1
I Now ini~ia~e a new TRANSFER
TRANSFER 724 TO 0$ INTR

Save da~a on ~ape, NOTE: ~his ~emporarlly hal~~
'1: 1 .. ··:::11'·1::::: f,:::, I'" I

PRINT# 1 0>::) @ ASSIGN# :I. TO t
See if all 10 data files have been saved,

1=1+:1. @ IF 1):1.0 THEN GO TO :1.140
I:::: [:·fl...ll:::: 1,·1

If done, then halt I/O and end program,
I 1'·,1 () 'I: ':::' 'I: 1'''1 ·:::1 '1: r::1 e: CII:::: 'f I C) c: ,:::1 1...1 ::::: ':::' ::::: ,:::11'''1 I:::: () 'f I:) 1" ,:::11"'1 (:: 1'''1 , -::.: ,",

:i, 'I: ,

OFF EOT 7 @ ABORTIO (
F' I:::: I 1",1 'f "1:::1 I], ,:::I ,:::1 '1: ·:::1 ::::: ·:::1 \1 ':::' cl "
[:1'·,1 [)

The program logic associated with the transfer and the EOT service routine is quite simple (shaded

program lines), The extra programming shown is included as one example of how the EOT service might

be used for data-save operations to tape. The EOT service routine might just as well have sent the
collected data to a remote central computer (with another 'T' F: 1:::11"·1 ::::: F' C: i::::, of course!),

End-of-transfer service can be cancelled by execution of an CI F' F' C: cI'r statement for the desired select

code. For further details about these statements, refer to the alphabetical syntax listing in this manual.

Interactions and Permutations

This section is written so that you may be able to better predict operation of those programs that utilize

end-of-line branching.

End-of-line service occurs in a specific order. That is, if more than one end-of-line branch is pending at the

end of a program line, one of the branches will be taken before the other. The following table lists the

types of end-of-line branches and the select codes, and gives the precedence order for combinations of

branch type and select code.

Section 6: End-Q.f-Line Branching 51

Branch Precedence Table

Select Code
Branch Type 3 4 5 678 9 10

C) 1·1 C: I;: I? CII?

Ci i'i I i··ir I;' 2 3 4 5 6 7 8 9

Ci i'l 'r I 1"1 i : Ci i. .. iT 1 0 11 1 2 1 3 1 4 1 5 1 6 1 7

Ci i·1 F 1:) 'r 18 19 20 21 22 23 24 25

------- 26 ------

Ci i··i "T I i'li : I:;' ------- 27 ------

For example, a pending CII···I I i···IT I? branch for select code 5 would be taken before a pending 1:) 1"·1 I 1"·1 T'I?
branch for select code 9. Any pending Ci 1·1 E: C)"T' branch would be taken after any pending C) 1"·1

"T I 1"1 E Ci i...iT branch, regardless of select codes.

You should take note that the term precedence is used here, not priority. This means that when the

computer is executing one service routine, other service routines are not implicitly locked out. (In a

priority system, any service routine having a lower priority than the routine currently being executed will

not receive control until the current routine completes.) If two end-of-line' branches are pending on the HP

Series 80 computer, the one having precedence is executed first. However, after the first line of that service
routine executes, the still-pending end-of-line branch to the second service routine is taken!

The only way the first routine can guarantee uninterrupted execution is to disable the other routine's
end-of-line branch with its first line. An example will help show this:

10 ON INTR 7 COSUB 100
20 ON INTR 9 COSUB 200
30 ENABLE INTR 7;8
40 ENABLE INTR 9;64

70 Program body goes here

Now select code 9 cannot get EOL service,

130 This routine would do necessary service functions
140 for select code 7,

180 I Now re-enable EOL service for select code 9
190 ON INTR 9 COSUB 200 @ ENABLE INTR 7;8 @ RETURN
200 OFF INTR 7 i Now select code 7 cannot get EOL service,

240 This routine would do necessary service functions
250 for select code 9,

280 Now re-enable EOL service for select code 7
290 ON INTR 7 COSUB 100 @ ENABLE INTR 9;64 @ RETURN
;;;:00 E:r··li:)

52 Section 6: End-Of-Line Branching

Assume that while line 50 is executing, both interrupts occur. Both end-of-line branches are pending when

line 50 completes. Select code 7's service routine has precedence, and so line 100 is executed. Line 100

disables select code 9's service routine, so the end-of-line branch that would have occurred is not taken.

Line 190, the last line of the select code 7 service routine, re-enables the select code 9 service routine and
when the f;: E:'r 1...1 F: 1"1 is executed, line 200 is then executed. Note that the () F F I 1"·1 T r;~: does not eliminate

the pending end-of-line branch-it just defers the branch until an () 1"·1 I t··1 T'I;~: is executed later.

Events such as interrupts, timeouts, transfer terminations and errors are "remembered" indefinitely,

until a F: E !:; E T or !:; T 0 F' occurs. Therefore, once an event has occurred and remains unserviced,

execution of an 0 t·1 I t·l T F:, 0 t·l T I t'1 E 0 U T or (I t·l E: D T results in an immediate end-of-line branch.

The type of branch taken can affect program operation. The most predictable program execution occurs

when GO!::;UE: end-of-line branches are taken. Use GOTO when the program is simple and only one or

two end-of-line branches are expected. One very simple example ofthis would be:

ON INTF: 7 GOTO 9999
ENA8LE INTF: 7;128

(99999 for the HP-87)

These two statements direct program execution to line 9999 (presumably an D·W statement) when an

Interface Clear on HP-IB occurs. This kind of "bail-out" provision can be useful when developing certain
types of programs such as ones using keyboard masking (see section 7). Then, when something goes

wrong you can halt the program by asserting IFC on the interface bus with another controller or a bus

analyzer.

The following example is presented to show you how some ofthe ON-event branches interact. The listing

and results are shown with a brief explanation, but you will learn more from it if you experiment on your

own. Try setting timers, timeouts, and keys up and then watch it work (or not work). Press the special

function key while the computer is waiting, then watch the display.

10 ! This program serves to illustrate end-of-line
branchin9,

20 ! Substitute YOUF: select codes and device numbers
30 ! on lines 80 and 90 to make this run successfully,
40 F:emember that an ENTER and an input TRANSFEF: cannot
50 occur simultaneously on the same select code,
6(1 I

7~Z1 !
80 Sl=10 ! This is the TRANSFEF: select code assignment,
90 S2=705 ! This is the ENTER select code assi9nment,

100 I=0 @ DIM A$[80],8$[88]
11 (1 I08UFFEF.: 8$
120
13~]
14(1
15(1
16~]
17(1
1 :::(1
19(1
20~Z1

210
22[1
230

!
Ot·~
O~l
Ot·l
Ot·l
I

!
Ot·~
Ot·~

KE"f'# 1
~:::E'r'# 2
KE'r'# 3
KE'r'# 4

T I t'1 E F.: #
T I t'1EF.:#

GOSU8 39[1 Ke'::I
GO!:;U8 45~Z1 Key
GO!:;U8 51 ~] Ke'::I
GOSU8 770 Ke'::I

1., 13~Z1(1 GO!:;U8 56(1
.::' 140(1 GO!:;U8 61 (1
~.'

1 clears the counter
2 terminates the T F.: A t·l !:; F E F:
3 ends the p rogram
4 stat-ts ·",no t he t- EtHEF.:

Section 6: End-Of-Line Branching 53

;:::: 4 (:1 ::::; E: T 'r I 1"1 E () I.J T' ::::; ;:::: ,: :I. (:1 D ~) ! D 0 1"'1 ''I: f () t" ':~ ':::' 'I: 't () :::: ':::' 'I: 1: 1'''1 ~:~ ::::: "" l,::~ c '(
cod.;:~ !

25D ON TIMEOUT S2 COSU8 66D

:::'?'rJ 1

28D ON EOT S1 COSU8 71D 1 Don' 'I: forget to set the select

29D TRANSFER SI TO 8$ INTR
3DD ENTER S2 ; A$
3:1,0
3;::::0 1

330 8EEP 10D,2D @ WAIT 500 @ 8EEP 2D,20
::;:,:+(:1 [) I ::::;F' "L.()OP i n':~ ",: I
350 1=1+1 @ COTO 33D
::':60
::::70
::~::::O 1

390 1 Key :I. service clears 1:he coun1:er,
400 1 ::::(1

4 1 0 [I I :::; F' "::::; '::' I." "/ i c: '::' d f::: ~2 ':~ 1"
4 ;::: 0 F: E T 1...1 F: t',1
4::;:0 1

441;:1
450 1 Key 2 service termina1:es 1:he ac1:ive TRANSFER,
4C;0 F:E:::;ET :::;:1.
4 '? 0 [I I :::; F' "T' '::' t" rl'l i n ,:j '(~:' d T F: H t'j :::; F' E F: "
4 :::: ~3 RET I.J F: 1",1
490

510 1 Key 3 service ends the program,
~:::;20 [II :::;F' "[rlcl 0 f p I."O':~ I''',:lrn''
~:; 3 0 E: t',1 [I
~:;4C1
~::; ~:::; 0
560 1 Timer :I. service,
~::; ? 0 [I I ::::; F' "T i 1'1'1'::' r :I. :::. '::' t" \1 :i, c '::' (:1 , "
~::; :::: 0 F: E: T I.J F: I',j

600
610 Timer 2 service,
C; ;? Ci [J I ::::; P "T :i, 1'1'1 '::' t" ;:::: :::: ~:' r \1 i c: ~:' cl , "
C; 3 0 F: I:::: T I.J R I',j
6,::/.0
(:; ~:; Ci
660 ! Select code S2 [NT[R Timeout service
670 [lI::::;F' "E:t',I'rE:R ()F' '::' 1."'::1 1: ion '(:i,I'fI,::,d 01,..11:"
t::; ::::: ~:1 F: E T I.J I:::: t'j
6 :::I~)
';::,orJ
?lCi Select code S:I. TRHNSFE:R termination service,
7 2 ~) [I I :::; F' "E: 1'''1 cl () f t t" -:l n ::::: f ':::' r :::: ':~ 1'" \1 :i, c: '::~ "
730 TRANSF[R S:I. TO 8$ INTR
';::' 4 ~:I R E: T 1...1 F: 1",1

';::'6~3

770 ! Key 4 service executes another ENTER opera1:ion
780 ENTE:R S2 A$
7 :::'1 ~:'1 F;,: E T I.J F: 1-'-1
::::: CI Ci E: 1',-1 [)

_"'!i""'""II'"',,,,,II,,,,,,',,,,,I,,I,,',,- --"""!I""'!II"I!I!!li!IIIIIII"'!!""T'~-

Section 7

Keyboard Control

Introduction
In certain applications, the operation of a system could be adversely affected by a curious passerby

pressing keys which could halt or alter program execution. In other applications the system operator

must have access to certain keys, but not others.

Traditionally, the dedicated computer's keyboard was covered by a "mask" of plastic, metal or wood

which covered all keys unnecessary to the operation of the system. Cut-outs were provided to allow access

to those keys the operator used to control the system. Obviously, the extra cost of designing and

manufacturing such a mask added to the cost of a dedicated system.

The 110 ROM provides the keyboard mask in software, which-short of turning the computer off-offers

far less chance of user interference than does a mechanical mask. In addition, greater flexibility is

possible with the software masks, as is discussed in the following section.

Key Mask Programming
There are three basic modes of operation for the HP Series 80 Personal Computer: halted (or idle),

program execution, and keyboard input.

In the idle mode, the computer accepts commands and is available for program modification/entry. This

is the mode that the computer normally is in when not executing a program (when first turned on, or after

executing a ~:::;"I"C)F', F'I:H . .I~:::;E, or [::I··ILI type statement). The idle mode is generally used for program

development or debugging, so a keyboard mask for the idle mode is not very useful and is not provided.

In the program execution mode, pressing any key other than the (TR/NORM) key or an () 1"·1 1< E: \' defined

special function key will halt the program. A keyboard mask can be specified for four classes of keys while

in the program execution mode. These classes are:

1.~

2. (PAUSE)

3. Special function keys and GIlli) key

4. Other keys (all remaining keys not in classes 1, 2, or 3)

Any or all four classes of keys can be masked out for the program execution mode.

In the keyboard input mode, the computer is temporarily halted awaiting operator response. This is the

mode of operation for the I 1"·1 F' 1 . ..Il statement. The four classes of key masks for the keyboard input mode

are:

1.~

2. (PAUSE)

3. Special function keys and ~ key

4. Other keys (all remaining keys not in classes 1, 2, or 3)

55

56 Section 7: Keyboard Control

The E: 1'··1 H E: 1.. .. E: f:: E: iJ statement takes as a parameter the key mask desired for the appropriate operating

mode. The upper four bits of the mask parameter specify the program execution keyboard mask. The

lower four bits specify the keyboard input key mask. The bits of the mask parameter are shown below.

Setting a bit enables the corresponding key(s), while clearing a bit disables the key(s). That is, only those

keys having a bit set in the E i···II:::1 1:::: i.... 1:::: i< L: Ci mask will respond.

Bit Decimal Operating
Keys Not Masked

Number Value Mode

7 128 t (RESET)

6 64 Program (PAUSE)

5 32 Execution Special function keys and GnLJ
4 16

+
Other keys

3 8 t CBillfJ
2 4 Keyboard (PAUSE)

1 2 Input Special function keys and GnLJ
0 1 • Other keys

The following example illustrates the use of the keyboard mask to disable all keys except the special

function keys for program execution. The (RESET), (PAUSE), and special function keys are masked out for

the keyboard input mode. This still allows the operator to respond to an I 1"·1 F' 1 .. .1 T' statement, but program

execution cannot be affected.

10 ENHE:LE KE:D 1+32 I Select allowed keys
20 REMOTE: 706,710 @ LOCHL LOC~OUT
30 ON KEY# 1 GOTO 1000
40 ON KEY# 2 GOTO 2000
50 ON KEY# 3 GOTO 3000

The operator can select the desired program section by pressing the appropriate special function key-but

only the special function keys will respond to being pressed. When the operator presses special function

key #1, the program branches to line 1000. When the 11"·1 F' I .. rr statement of line 1000 is executed, the

special function keys no longer respond but the numeric keys do, allowing the operator to set the time as

requested. When the program continues on from the 11"·1 F' 1 .. .I·r, once again all keys except special function

keys are disabled.

The following example gives the operator a ten second time span in which he can pause or reset the

computer if necessary:

10 Line 50 enables the operator to pause or reset the
20 program whenever an INPUT statement is executed,
30 Line 100 exists specifically to allow the operator
40 I to halt the program if necessary,
50 ENHE:LE KE:D 12
60
70
:;;;:0

Section 7 Keyboard Control 57

::::1 0 E: r.:: I::: F' (!~! [I I ::;:; F' II '/ () I.A h .:j \1 ~" :I. (;1 ::::: I::~ c: 1: () F' HI . ..! ::::; E: () r' I:::: E ::::; E: T' '1: 1'''1 ~:'

C:Of(lF' I.A 1: ,:::' I"'"

100 ON TIMER# 1,10000 GOTO 1:1.0 @ INPUT X9S
:1. 1 0 0 F' F' T' I t'1 E F: :1* :1. (!~ [) I ::::; P II c: () I'l'l P 1 . ..1 '1: I::' r I:) I::~ ':~ :i. 1'''1 1"'1 :i. 1"'1 '::~ ·::1 1 . ..1 .~ () r(l .::j '1: :i. c:

op I::~ I'" ·:::1 '1: :i. (:0 1"'1::::: II

:I. ::::'(::1 I

jl~ Now the operator cannot halt the program l

:1.40
:I. ~:::; 0

1IIIIIiIlIII~IIIIIIIIIIIIIII,I' __ "':='IIIIIIIIIIIIIIIIII!1111!!!i!t{~!llill!'II!IIIIIIIIIIIIIII"illllii.~ii"~;"'"i!!IIIII!IIII!IIIIIIIIIIIIIIIIIIIIII!!IIIIIIII!II!IIIII!Ii!llllli,!!"i!!:",i'~~il)ll!!illlill!llllllllll!i!!ilI!I"III!IIII!!!'!" •. ~

Section 8

Direct Interface Communication
'.~"~ ",;"iili!!IIIIIIIIIIIIIIII!I!!II!III:I:!':!'"

Introduction
This section deals with the statements available to the programmer for tailoring the operations of an

interface to the specific requirements of his system.

The status of interface operations can be monitored with the ::::; ''I'' 1:::1''1'' 1 . ..1::::; statement. This status may reflect

the actual hillow voltage level of external 110 lines or it may indicate the interface's internal state,

depending upon which status register is being read.

The mode of operation of an interface can be directed by the C CII···I·r I:::: C) 1.. .. statement. The interface

generally provides automatic control of external 110 lines acording to the mode selected, and also may

provide for man ual override of certain of the II 0 lines for custom seq uences.

Checking the Status
Interface status (and also buffer status) is monitored by the ::::;''1'' 1:::1'1" 1 . ..1 ::::; statement. The ::::;''1'' 1:::1''1'' 1..1 ::::;

statement is a very straightforward one to use, requiring only the interface's select code and desired

register number to be specified. The following statement obtains the value of the HP-IB interface (select

code 7) identification register, SRO:

Select
Code

Register
Number

Numeric
Variable

In this case, the value returned is always 1, the identification code for an HP-IB interface. Each interface

returns a different identification code, so consult the appropriate interface owner's manual for specific

details.

The values of multiple status registers can be obtained with just one ::::;''1'' r::I'r 1 . ..1 ~:::; statement. Simply specify

the first register number and give as many variables as necessary to obtain the status needed. For

example, to read status registers SRI through SR6 of the HP-IB interface at select code 7:

Select
Code

Starting
Register

Returns
SR1

17':'13':':\~
Returns

SR2

59

Returns
SR3

Returns
SR4

Returns
SR5

Returns
SR6

60 Section 8: Direct Interface Communication

What you do with the contents of these registers depends upon your application, needs, and type of

interface. The HP-IB interface above, for example, returns

• Int'errupt Cause-SRI

• HP-IB Control Lines-SR2

• HP-IB Data Lines-SR3

• Hp·IB Address-SR4

• HP-IB State-SR5

• Secondary Command-SR6

for the six registers just read. Obviously the BCD Interface returns different information for those same
registers.

Most interfaces are capable of interrupting the computer when a specified condition occurs, and if more

than one condition has been enabled it will be necessary to determine which interrupt occurred and
caused the end-of-line branch. The following service routine serves as an example of how ~:::;·r f::1 T·I . ..I ~:::;

would be so used:

10 ON INTR 7 GOSUS 1000
15 I Enable interrupts for Active Controller/Talker/

1.... :i. ::::: ·1: ~::' 1 •.• 11:::' r ,
::::: CI [: 1···11:::1 [: I [: I 1···1 T· I:::: .?: :1. :I. :::::

:1.000 I End-of-line branch service for HP-I8 interrupts
1 ~::I 1 1:::1 ~:::; ·r f::I·r 1 . ..1 ~:::; .?..:I. ~:::; :I. I:::: I:::' ·:::1 (:1 :i. 1""·1 ·1: I:::' I··· r 1 .. ·1 p ·1: c: ·:::1 1...1 ::::: I:::'
:1.020 IF 81T(SI .. 4)=:I. THEN GOTO 1100 I Check for Active

·r.:::11 k I:::' t··
:1.030 IF 81T(SI .. 5)=1 THEN GOTO 1200

C: () 1""·1 ·1: I"· () 1
:1.040 IF 8IT(S:I. .. 6)=1 THEN GOTO 1300

1.. .. i ::::: 1: I:::' 1""·11:::' 1"".

:I. (:1 ~:::; (:1 I

Check for Active

1060 The following lines provide for unpredictable
~::' I··· ro r:,,: ,

:I. 0 7 0 F' I:':: 1 I··rr "I I]. I::~ (,:1 .::j I i 1···1 1: I:::' t·· I··· u p·t c: (H·H::I i ·t :i. () 1""·1 () n 1·-1 F' 1 I:::: "
:I. 0 ::::: 0 F' I:::: 1 I··rr "H F' 1 B :i. 1""·1 t I:::' r 1"". 1 . ..1 P ·1: c: ·::H.·I ::::: I:::' ".:~:::::I.
1 ~:j 9 0 ~::; ·r C) F'

:1.100 I Service for Active Talker

Service for Active Control

Service for Active Listener

Line 1010 obtains the interrupt cause from SRI of the interface, and lines 1020-1040 analyze the register

bits for the specific cause of the end-of-line branch. Lines 1050-1090 are included to deal with possible

program errors or illegal interrupt causes. No program or machine is perfect, so try to make provisions

such as the one shown to deal with malfunctions that might occur.

Section 8: Direct Interface Communication 61

I nterface Control

The operating modes of an interface can generally be tailored to suit individual systems and their

requirements. This may mean nothing more than selecting the type of interrupt conditions required to

deal with events specific to your system. Or, it may mean selecting a handshake mode suitable for the

device being connected to the interface. In any case, the C: () I··j 'r F: () I statement provides the means of

programming the interface's control registers.

There are three primary items of interest in a general discussion about C: () 1"·1 T F: () 1.... and interface control

registers. The first is the interface interrupt mask. This mask is CRI for the HP-IB Interface. Therefore,

the following two statements have identical effects for the HP-IB Interface (select code 7):

E t·j A E: L. E I t·j T F: ?.: ::::
COt·jTF:OL. ?,:l.: ::::

Both statements enable an SRQ interrupt condition for the interface. They can be used interchangeably,

however, the E t··1 f=1 E: L. E I I··j·r I:;:: statement better documents the effects it will have on program
execution.

The second item of interest is that of external I/O lines. In general, you can set or clear interface-specific

control lines by writing to control register CR2 of the desired interface (however, consult the individual

interface manuals for exact details). Both ofthe following statements write to HP-IB control register CR2,

the HP-IB Control Lines register (select code 7):

A:::;:::;EfH ?: :3~~
COt·jTPOL. '?, ;~:.: :3~~

Both statements set the HP-IB SRQ (Service Request) control line true, but there is a slight difference in

the manner that they do so. The C: () 1"·1 T I:::: () 1.... statement is not immediately executed if there is an I/O

operation already in progress (an interrupt transfer, for example). The I/O in progress first completes,

then the CONTROL operation is performed. This is in contrast to the H ::::; ::::; E: I::::'r statement, which

immediately sets the control line (SRQ in this case) regardless of any I/O in progress. In either case,

exercise due caution when writing to the interface control register: the consequences of an improper

control operation may be an interface or device malfunction. (In fact, to assert SRQ you should really use
the F: E C! U E :::; T statement so that proper bus protocol is ensured.)

Note: Improper or invalid control line operation may cause loss of data or device malfunctions.

The third item of general interest in control register programming is the end-of-line (EOL) character

sequence sent by the interface. This character sequence is essentially an end-of-record delimiter, which in

the days of punched cards signaled that an entire card had been read or punched. For all interfaces, this

EOL sequence defaults to carriage return/line feed, and is sent after every F' F: I I··j·r or () 1...1 T F' 1...1 T

operation (unless inhibited by the programmer). The EOL sequence is also sent for the" " (slash) image

specifier or forthe " E t·m " keyword ofthe ::; D·l[) statement.

It is sometimes necessary to tailor the EOL sequence to suit the needs of a particular device. For instance,

you might need double spacing on a printer (carriage return/double line feed) or carriage-return only for a

CRT terminal that performs an automatic line-feed when a carriage-return is received.

62 Section 8 Direct Interface Communication

The HP-IB Interface provides EOL sequence programmability with control registers CR16-CR23. Up to

seven EOL characters can be sent if so desired, and are specified by writing the character values and EOL

character count to those control registers. For example, to program a double line-feed EOL sequence with

EOI (END or Identify) set on the last line-feed*, the following C (J 1·ll I:;:: CI 1... statement could be used:

C CII·I T I:;:: C) 1...

Enable
EOI

EOl
Count
of 3

Carriage
Return

Line-Feeds

In summary, the control registers provide the flexibility required to tailor interface operation to your

specific system requirements. They should be used with caution, however, so that you don't get any

unpleasant surprises. Study the appropriate interface manual to determine which capabilities you need

and how to implement them. It may be necessary to experiment a bit before the system works as you want

it, but even the pros have to do that.

* You should note that it is not possible to send EOI with the last data byte of an C:; i...iT F i...iT or ::,:: [; 1'·1 Li operation, but it is possible with
,:' I::: I I'IT, Li I .,,: ,:' , orT' F: !":,I·I :,:,: F' [; I:::.

Section 9

Additional 1/0 Commands

There are several commands made available by the 110 ROM which have not been introduced in the

preceding sections. Many of these commands are only used with certain interfaces and all of them have

different meanings with respect to each interface. Several of these interface-specific commands are

introduced here to illustrate their capabilities. For extensive examples the interface owner's manuals

should be consulted.

Interface- Dependent Statements

The ::::; E: I···IIJ Statement

There are times when it is convenient to be able to send an arbitrary data sequence from the computer to one or

more peripherals. The ::; E t·~ [I statement accomplishes this directly. The following are examples of properly

formed ::; E t·~ [I data statements:

:::; E t·m ? ~~I!:; .: [I A T l=i "1.,-' e 1 C (I rn e t (I t h~:o 1.,-' (I rId Co fl · 0 "
:::;Et·m 9.: DATA "OCT, 9" "tKjI,), 13"

If EOL is specified, the interface sends an end-of-line sequence following each set in the data listing.

With all but the serial interface, the ::; E t·j [I statement may be used to send commands. This allows

sending an arbitrary sequence of bytes out over the interface bus, which may be tailored to command any

device which requires special sequences for initialization or reconfiguration. These same commands could

be sent with 01...1 T F' 1...1 T statements, of course, but by using the ::; E t·j D statement judiciously program

documentation may be enhanced. The following are examples of correctly formed ::; E t·j D command

statements:

::; E t·j [I --,
I : c: t'1 [I E:$

:::;Et·jD ql t'1Tfi 1·'1L.A ut·jl_ L. I ::;TEt·j 4 c:' Ct'1[1 F., H -' ,- ")

:::; E:t·j [I 4 : C: t'1 [I ::.:: :t~

In most cases the interface and device owner's manuals will need to be consulted to confirm the character

programming sequences needed.

HAL T, A E: 0 P T I 0, and P E ::; E T
The 1···11:::11.... T· statement is used to terminate any transfer in progress. This is the best means of recovering
from a hung condition (interface handshake problem). This will not have any effect on a F·H::::;
·r I:::: H I··j ::::; F· [I:::: and other means will be needed to recover from that type of condition.

The next most commonly used statement, A E: CI P T I 0, will also halt any transfers in progress and will

reset control lines on all interfaces and will reset data lines on some interfaces. This is a convenient

method of interrupting an 110 operation and ending up in a known state.

63

64 Section 9: Additional 1/0 Commands

I:::: E: ::::; E: T' is the most drastic statement of this group since it not only terminates any transfers but also

returns all configurations selected to their default (switch-selected) state. This should only be necessary

when first beginning a program or when recovering from an interface failure.

If an EOT branch is enabled when any of these statements is executed, the branch will be taken. After a
1···11:::11.... T' or ::::; E: 1'·1 [I statement, a I:::: [::::; 1 . ..11"1 E: is sometimes necessary to re-enable input or output operations.

The C: 1.... E: 1:::1 F: command is used with the GPIO, HP-IB, and HP-IL interfaces to reset peripherals. The

interface itself is not reset. Examples of these statements are given below:

HHI ·r -;:"
'::IE:OP''j'' I CI '?
I;:: E ::::; r:: T .?
C:l...E:HF: '?CI~5

F:E:::::;I...It'lE: -;:"

Bus-Controlling Functions
With the instrumentation-controlling interfaces (HP-IB and HP-IL) the I:::: E: 1"1 C)'r E: and I () C: f::II....

statements can be used to allow or not allow access to device settings by use of the front-panel controls

supplied on the device.

The I:::: E: 1"'1 C) T' E: statement places instruments under remote control. The instrument may be returned to

front panel control by executing a l... C) C: 1:::11.. .. statement or by activating a switch on the instrument called

Return to Local or Manual Control.

If system security requires, a 1.... () C: HI.... 1.... C) C: 1< () 1...1 T' statement may be executed which precludes any local

control whatsoever until a 1.... () C: 1:::11.. .. statement is subsequently executed.

For an example of the 1.. .. () C: 1:::11 statement, see the program illustrating the Interface Interrupts section of

section 6.

These statements will not be covered in this manual since they have specific meanings (quite specific!)

with each interface they are to be used with:

::::; F'() i I F'F'C)I....I

Refer to the syntax reference in the first appendix of this manual for a brief summary of the uses of these

statements with each interface. The interface owner's manuals will contain more specific instructions

and examples.

Section 10

Binary Functions

Introduction
I/O programming often involves the use of binary functions and bit-level operations. The I/O ROM

provides several useful tools to assist you with these tasks. These binary functions are often used when

manipulating status and control registers in the interface cards. They may also be very handy for

processing I/O data in device control applications. This section explains the binary functions available

with the I/O ROM.

It is important to remember that all the binary functions provided by the I/O ROM operate on 16-bit

words. For example, the binary complement of zero is 1111111111111111 (base 2); the range of bits that

can be tested is 0 thru 15; and the range of values for binary arguments is -32 768 thru 32 767. There is no

problem using these functions to operate on binary values with less than 16 bits. The unused high-order
bits are simply assumed to be zero.

In the following explanations, the term integer is used frequently to identify the arguments for many of

the functions. To the I/O ROM, an integer is a 16-bit binary number with a range of -32,768 thru 32,767.

This contrasts to the definition of an integer given in BASIC where an integer is a 5-digit number with a

range of -99,999 thru 99,999. Please keep this distinction in mind to avoid confusion about the term

"integer" .

If you are not familiar with the binary numbers and operators, study the following review before

continuing with this section.

Review of Base 2
Before looking at base 2, it is helpful to take a careful 10.Jk at the familiar base 10. The number one

hundred twenty five is represented as follows:

125

The digits have a place value corresponding to powers of ten. The representation above really means:

1 X 102 + 2 X 101 + 5 X 10°

The concept of place value also exists in base 2. The difference being that powers of two are represented

instead of powers of ten. The number one hundred twenty five is represented as:

11111101

Base 2 uses only the digits "I" and "0"; a 1 indicates that a place value is included, while 0 indicates that

a place value is not used in the value. Therefore, the binary representation shown above means:

This is the same as:

64 + 32 + 16 + 8 + 4 + 1

65

I

66 Section 10: Binary Functions

The term bit comes from the words "binary digit". A bit is a single digit in base 2 that must be either a 1 or

a O. The grouping of 8 bits together is in such common usage for character representation, internal

storage, and interfacing that it has been given a special name-a byte. The term byte refers to 8 bits

processed as a unit.

Notice in both the previous examples that the right-most digit represents the "Oth" power of the base.

Because of this, bit patterns are usually numbered starting at Bit 0, instead of Bit 1. By doing this, the bit

number and the power of two it represents are the same. The following table shows the bit positions in a

byte and their corresponding values.

Bit Position
Meaning
Value

Bit 7
27

128

Bit 6
26

64

Bit 5
25

32

Examples: 130 in base 10 is 10000010 in base 2

3 in base 10 is 00000011 in base 2

25 in base 10 is 00011001 in base 2

Bit 4
24
16

Bit 3
23

8

Bit 2
22
4

Bit 1
2'
2

Bit 0
2°
1

The term word is also widely used in computer appliations. A "word" is usually the number of bits that

can be handled in one operation by the internal architecture of the computer. Although the Series 80

Personal Computers have an 8-bit internal architecture, they also have operations defined for 16-bit and

floating point numbers. Therefore, 16-bit integers are often referred to as words in the computer because

the system can handle them as a basic data unit. Another characteristic of a word in the computer is that

2's complement representation is used. 2's complement representation is a method of storing either

positive or negative numbers in a word. It works like this:

Positive numbers: If bit 15 is 0, then the word is a positive number represented in normal binary form.

Negative numbers: If bit 15 is 1, then the word is a negative number represented in 2's complement form.

To find the absolute value of a negative number, invert all the bits and add 1.

Problem: Whatisthevalueof1111111111110000?

Solution: Bit 15 tells that this is a negative number.

Inverting all the bits gives: 0000000000001111

Adding 1 results in: 0000000000010000

So the value ofthe given bit pattern is -16.

Review of Logical Operations
In this discussion, "logical operations" refers to operations from Boolean algebra, such as AND and OR.

The outstanding 110 feature ofthese operations is that they can modify individual bits without affecting

surrounding bits. In this respect, they can be contrasted to the arithmetic operations, such as addition

and subtraction. Addition and subtraction generate carries and borrows that can propagate through an

entire word, changing the state of numerous bits many places away from the bit where the arithmetic was

performed. Although this is exactly what is desired for numerical quantities, many ofthe bytes and words

used in 110 are not numerical quantities. When bits are used as individual control elements, the

programmer must have access to tools that allow individual control of bits. This section reviews the

action of the common logical operators.

Section 10: Binary Functions 67

The operators i:::i 1·1 [I, () I?, I'-ilrr, and E::: ell? are available in the standard language of the HP Series 80

computers. These operators treat an entire variable as one entity. A value of "0" is considered "false",

while any other value is considered "true". Although these operators perform the same Boolean function

as the binary logical operators, they do not operate on individual bits. The binary logical operators

available with the 110 ROM work on a bit· by-bit basis across an entire word. Without these binary tools,

isolating an individual bit requires an involved combination of tests, branches, and arithmetic operators.

The simplest logical operation is the complement operation. When binary data is complemented, all the

l's are changed to O's, and all the O's are changed to l's. This operation is also known as "1's

complement", or "inversion". The Boolean notation for this operation is a horizontal bar drawn over the

variable. The truth table is as follows:

-m-
A

o 1
1 0

When used on an entire byte, the complement operator inverts each bit individually.

Binary value of A: 10011101

Binary complement of A: 01100010

The other logical operators combine two inputs to create a result. Let's look at the AND operator first. A

binary AND produces a "1" in the result only if both inputs are "1". The Boolean notation for this

operation is A, although you may also see the symbol· used. The truth table for AND is as follows:

A B AAB

o 0 0
o 1 0
1 0 0

The important thing to notice is that the result is 0 when A is 0, while the result is equal to B when A is 1.

Because ofthis, a binary AND is a convenient method for clearing selected bits. For example, assume that

you wanted to clear the two lowest bits in a byte without disturbing the other bits. This can be done by

ANDing the byte with an appropriate mask.

Original bute: 10011101

ByteANDed: 11111100

Result: 10011100

This operation not only preserves the state ofthe top six bits, but also clears the bottom two bits no matter

what their original state. That saves alot oftesting and branching.

68 Section 10: Binary Functions

The next operator is the binary OR, most correctly called the inclusive OR. In English this means: you

can have pie OR ice cream for dessert, and it is possible to have both at the same time. To the computer

this means that the result bit is "I" when either input bit is "I". The Boolean notation for an inclusive OR

is v, although you may also see the symbol + used. The inclusive OR truth table is:

A B AvB

o 0 0
o 1 1

o

The important thing to notice is that the result is 1 when A is 1, while the result equals B when A is O.

Because of this, the inclusive OR is a convenient method for setting selected bits. For example, assume

you wanted to set the two lowest bits in a byte without disturbing the other bits. This can be done by

ORing the byte with an appropriate mask.

Original byte: 10011101

Byte ORed: 00000011

Result: 10011111

This operation sets the lower two bits no matter what their original state and also preserves the state of

the top six bits.

The final operator is the binary EXOR, or exclusive OR. In English this means: you can take the plane OR the

train to Chicago, but you can't do both at the same time. To the computer this means that the result bit is "I" if

a single input bit is "I", but the result bit is "0" if both input bits are the same. The Boolean notation for an

exclusive OR is v, although you may see the symbol + used. The exclusive OR truth table is:

A B AvB

o 0 0
o 1 1

o 1
o

This important thing to notice is that the result is equal to B when A is 0, while the result is the

complement of B when A is 1. Because of this, the exclusive OR is a convenient method for inverting

selected bits. For example, assume that you wanted to invert the lower two bits of a byte without

disturbing the rest of the bits.

Original byte: 10011110

Byte EXORed: 00000011

Result: 10011101

This operation complements the lower two bits no matter what their original value and leaves the top six

bits unchanged.

Section 10: Binary Functions 69

The Binary AN D Function
The binary AND function performs a bit-by-bit AND using two integers as arguments and producing an

integer result. Here are some examples of properly formed binary AND functions:

;:-:: ::::: b I 1'··1 ri i···1 iJ ('y' .' :i. ,,::; ::>
1:::1 ::::: C: +. E: I i···i f:1 i··i [) ([) .. E: ::>
PRINT bINAND(255 .. Z-32::>

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments

may be numeric constants, numeric variables, numeric expressions, or any combination. The arguments

are assumed to be in base 10 representation. If you wish to express the arguments in another base, refer to

section 11. Each bit of the result is computed according to the following truth table:

First Second Function
Argument Argument Result

a a a
a 1 a

a a
1

The Binary Inclusive OR Function
The binary inclusive OR function performs a bit-by-bit inclusive OR using two integers as arguments and

producing an integer result. Here are some examples of properly written binary inclusive OR functions:

::.:: ::::: E: I r··1 I CII? (\' .. :1. '5 ::>
H ::::: C: +. E: I 1"·1 I (J F: ([i .. E: ::>
PRINT bINIOR(255 .. Z-32::>

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments

may be numeric constants, numeric variables, numeric expressions, or any combination. The arguments

are assumed to be in base 10 representation. If you wish to express the arguments in another base, refer to

section 11. Each bit of the result is computed according to the following truth table:

First Second Function
Argument Argument Result

a a a
a 1 1

a

The Binary Exclusive OR Function
The binary exclusive OR function performs a bit-by-bit exclusive OR using two integers as arguments and

producing an integer result. Here are some examples of correctly stated binary exclusive OR functions:

::-:: ,,:: E: I 1"·1 E: CI F: ('y' .. :I. ~:::; ::>
r::1 ::::: C: +. I:::: I 1"·1 E: C) I? ([I .. E: ::>
PRINT bINE:OR(255 .. Z-32::>

70 Section 10: Binary Functions

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments

may be numeric constants, numeric variables, numeric expressions, or any combination. The arguments

are assumed to be in base 10 representation. If you wish to express the arguments in another base, refer to

section 11. Each bit of the result is computed according to the following truth table:

First Second Function
Argument Argument Result

0 0 0
0 1

0 1
0

The Binary Complement Function
The binary complement funcion performs a bit-by-bit complement of an integer argument, producing an

integer result. Here are some examples of properly formed binary complement functions:

1:::1 ::: I:::: I 1"·1 C: 1"1 F' < F: >
;:-:; :::: [: I 1"·1 C: 1"1 F' < \' ::::: >
PRINT [:INCMP<Nt8>

Notice that the argument is enclosed in parentheses. The argument may be a numeric constant, a numeric

variable, a numeric expression, or any combination. The argument is assumed to be in base 10

representation. Each bit ofthe result is computed according to the following truth table:

Argument Result

o 1
o

You should keep in mind that the binary complement function operates on a fullI6-bit word. This may, in

some cases, give an unexpected result if you are dealing exclusively with 8-bit bytes. The I6-bit

complement of an 8-bit byte is always a negative number. You can generate 8-bit complements by using

the binary exclusive OR function. An exclusive OR with 255 complements the lower eight bits and leaves

the upper eight bits as zeros. This technique prevents the unintentional generation of negative values

when dealing with single bytes.

The Bit Test Function
The bit test function is used to indicate whether a specific bit in an integer is set (1) or clear (0). The

general form for the bit test instruction is:

F: I 'r < integer .' bit number>

The integer argument must be the first expression and the two expressions must be separated by a

comma. The bit number must be in the range 0 thru 15, where 0 is the least-significant bit and 15 is the

most-significant bit. Either argument may be a numeric constant, a numeric variable, a numeric

expression, or any combination. Here are some examples of properly stated bit test functions:

Section 10: Binary Functions 71

1:::1 :::: E: I ''1'' <:: E: .. :::;: >
::.:: :::: E: I 'T' <:: \', ::::: J >
I F' i3 I ''1'' <:: /' .. /.. J > ''1'' / ... / E: /' .. / C; () ~31 .. .1 E: ;;::: ;:::: CI

The bit test function is very useful in decision making and branching. It is easily used with the I F'
statement to direct program flow based on the state of individual bits. The function returns a 0 (false) if

the specified bit is 0 and returns 1 (true) if the specified bit is 1.

Section 11

Base Conversion Functions

Introduction
A programmer who works at the bit and byte level soon develops a preference for the base in which bytes

and words are represented. In some cases, base 2 offers the clearest display of a bit pattern. Base 8 had a

large following in the days when computers could not easily handle alphabetic characters as numeric

input. Base 16 has gained much popularity in recent years because most computers use a word length that

is an integral multiple of 4, and modern systems have no trouble converting the symbols A thru F used in

base 16, also known as hexadecimal or simply hex.

To accommodate these various preferences, your computer provides conversion functions that allow

theinput and output of integers using any of the alternate representations mentioned above. The base

conversion functions have certain characteristics in common:

• All conversions go from base 10 to an alternate base or from an alternate base to base 10. You can't

convert directly from one alternate base to another without passing through base 10.

• The base 10 side of the conversion is always a numeric quantity, while the alternate base side is

always a string.

• Because the alternate base representations are string data, they can be input, output, compared,

stored, and manipulated to some degree. However, the string representations cannot be used in

arithmetic operations.

• All arguments for the base conversion functions must be in the range of 16-bit integers. This

includes the alternate representations as well as the base 10 values.

If you are not familiar with alternate number bases, read the following review material.

Review of Alternate Representations
When text contains values represented in more than one base, it is extremely important to distinguish

between the concepts of value and representation. Consider the number one hundred. The value is the

number of beans in a jar of one hundred beans. The representation in base 10 is the digit "1" followed by

two zeros. The value one hundred can also be represented as "64" in base 16, as "01100100" in base 2, and

as "10" in base 100.

The representation of a number is merely the character set used to communicate the number's value.

Numbers are often represented in bases other than 10 when the use of an alternate base more clearly

communicates the number's value. For example, suppose that up to 16 small pumps and valves are

controlled by a single 16-bit word from the computer. If the control pattern were represented in base 10, it

could be very difficult to understand the number in terms of pumps and valves. However, suppose the

number is represented in base 2, further defined so that the most-significant byte is pumps and the

least-significant byte is valves. The base 2 representation "00100000 10000000" clearly shows one pump

and one valve open. That same value is "8320" in base 10. How quickly does "8320" communicate to you

that one pump is on and one valve is open?

73

74 Section 11 Base Conversion Functions

The problem with using base 10 to represent a binary number is that one base 10 digit does not represent

an integral number of bits. A base 10 pattern does not readily reflect which bits are "1" and which are "0".

The problem with using base 2 is that there are simply too many characters to read and write. To

circumvent these problems, persons who work at the bit and byte level in computers commonly use base 8

or base 16 to represent binary numbers. These bases have place values directly related to powers of two,

making it easy to trace bits with a little practice. They also provide representations that are three and four

times more compact than binary, reducing the number of characters needed to a more manageable small

group. For example, an entire byte is never more than 2 characters in base 16.

Base 8, known as octal, uses one octal digit for three binary digits. Base 16, known as hex, uses one hex

digit for four binary digits. The following tables show the decimal (base 10), binary (base 2), octal (base 8),

and hex (base 16) representations for the numbers 0 thru 16.

Decimal Binary Octal Hex

0 000 0 0
1 001 1 1
2 010 2 2
3 011 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1 000 10 8
9 1 001 11 9

10 1 010 12 A
11 1 011 13 B
12 1 100 14 C
13 1 101 15 D
14 1 110 16 E
15 1 111 17 F
16 10 000 20 10

Notice that the Arabic numeral system (designed for base 10) does not have any single-character symbols

to represent quantities above nine. Single-character representation of all quantities less than the base

value is essential to the concept of place value. Therefore, base 16 representation utilizes the characters A

thru F to represent values from 10 thru 16. The following examples help to illustrate the way that octal

and hex numbers use bit groupings to represent binary values.

Octal: 2 5 3 6 o o 7 o 2 0 2 0 2

Binary: 01010101 11110000 00111000 10000001 10000010

Hex: 5 5 F o 3 8 8 8 2

Conversions From Base 10 to an Alternate Base
These functions use a base 10 numeric quantity as an argument and produce a string as a result. The

primary use of these functions is the printing, display, or output data in an alternate base, although other

applications are possible. The argument for the function may be a numeric constant, numeric variable,

numeric expression, or any combination. The argument must be in the range of -32 768 thru 32767.

Functions are available to convert to base 2, base 8, or base 16.

I

Section 11 Base Conversion Functions 75

From Base 1 0 to Base 2
This is the Decimal To Binary String function. It converts an integer argument to a string of 16 ones

and zeros. The string is the base 2 representation of the integer argument. If the argument is out of range

and positive, the function yields "0111111111111111". If the argument is out of range and negative, the

function yields" 1 000000000000000". The following are examples of well-stated conversion expressions:

I::' I:::: I 1···lr 1:1 ·r [: ::1:: < ;:.:: >
f:1 t: :::: [I T [: ::1:: < 1···1 ::1:: ;;::: >
OUTPUT 701;DT8t<32+Y>
[I I ::::; F' [I·r F::I:: < ;;:: '5 ':::; >

From Base 10 to Base 8
This is the Decimal To Octal String function. It converts an integer argument to a 6-character string.

The string is the octal representation of the integer argument. If the argument is out of range and

positive, the function yields "077777". If the argument is out of range and negative, the function yields

"100000". The following are examples of properly formed decimal-to-octal expressions:

I:::' I:::: I 1···lr [I ·r ()::I:: < :.: >
1:::1 t: ::::: [I ·r (I t: <:: 1···1::1:: ;;::: >
OUTPUT 701;DTOt<32-Y>
[I I ::::; F' Dr (J ::1:: < ;? ':::; ':::; >

From Base 1 0 to Base 1 6
This is the Decimal To Hex String function. It converts an integer argument to a 4-character string.

The string is the hex (hexadecimal) representation of the integer argument. If the argument is out of

range and positive, the function yields "7FFF". If the function is out of range and negative, the function

yields "8000". The following are examples of correct decimal-to-hex expressions:

F' I:::: I 1··1 ·r [I·r 1···1 ::1:: < :::: >
f:1 ::1:: ::::: [I·r 1···1 ::1:: < 1···1::1:: ;;::: >
OUTPUT 701;DTHt<32-Y>
[i I ::::; F' [IT 1···1 ::1:: < ;;::: '5 '5 >

Conversions From an Alternate Base to Base 10

These functions use a string as an argument and produce a numeric result. The primary use of these

functions is the input of data in an alternate base, although other applications are possible. The

argument for the function may be a string constant (literal), string variable, string expression, or any

combination. The argument must represent a value in the range of 16-bit integers. Functions are

available to convert from base 2, base 8, or base 16.

76 Section 11: Base Conversion Functions

From Base 2 to Base 1 0
This is the Binary To Decimal function. The argument is a string which is the binary representation of

an integer. The argument cannot have more than 16 characters, and only the numerals "I" and "0" are

valid. The result of the function is the base 10 value of the number represented by the argument. Since the

function result is numeric, it can be used in arithmetic operations or numeric functions. The following are

examples of properly formed expressions:

F' F: I i···1 T' E: T [) < " :I. U (:1 :I. (:1 :I. II >
::.:: ::::: E: T' [) < FI t: >
'y' ::::: ;:::' ':::; ':::; E: T' [I < 1"·1 ::j:: >

From Base 8 to Base 10
This is the Octal To Decimal function. The argument is a string which is the octal representation of an

integer-. The argument cannot have more than 6 characters. Only the numerals "0" thru "7" are valid. If

all six characters are used, the most-significant character can only be a "I" or a "0". The result of the

function is the base 10 value of the number represented by the argument. Since the function result is

numeric, it can be used in arithmetic operations or numeric functions. The following are examples of

correctly stated e.xpressions:

F'I? I [··IT o'r!::) < II :::;:'?:I. II >
::.:: ::::: U 'r [I (1:::1 ::t,: >
'y' ::::: ;:::' ::::; :::; "'. C) 'r [I < I···i ::j:: >

From Base 1 6 to Base 10
This is the Hex To Decimal function. The argument is a string which is the hex representation of an

integer. The argument cannot have more than four characters. Only the numerals "0" thru "9" and the

letters "A" thru "F" are valid. The result of the function is the base 10 value of the number represented by

the argument. Since the function result is numeric, it can be used in arithmetic operations or numeric

functions. The following are examples of properly written hex-to-decimal expressions:

F' F: I I···i·r H'r [I (II :I. F' 4 II >
>:: :::: H 'r D < FI ~I:: >
'y' ::::: ;::~ :::) ::::; i···1 T [I < t··I::j:: >

Converting From One Alternate Base to Another

Conversions between alternate representations are easily done by nesting two conversion functions. The

following short program is an example of this technique. It inputs a hex representation and displays the

corresponding binary representation.

:I. I:J D I ::::; F' II H I::~ ::< I···II ... IIYI b I;:' t .. II .:

::::0 II···iF'I...IT Ht
J 0 [I I :::;; F' "E::i. r'l ·:::1 t .. 1··1 ".: [i'r E: :l < 1···1 T' IJ < 1:::I::j:: > >
4[1 COTe) :I. Ii:!

Appendix A

Syntax Reference

Conventions Used to Represent Syntax
This reference section uses two methods of representing the syntax of I/O ROM statements. The

conventions of each form are as follows.

Pictorial Representation
All items enclosed by a rounded envelope must be entered exactly as shown. Items enclosed by a

rectangular box are names of parameters used in the statement. A description of each parameter is given

in the text following the drawing. Statement elements are connected by lines. Each line can only be

followed in one direction, as indicated by the arrow at the end of the line. Any combination of statement

elements that can be generated by following the lines in the proper direction is syntactically correct. A

statement element is optional if there is a valid path around it.

This form of syntax representation is easy to use, and in some cases, more formally correct than the

alternate form described next.

Linear Representation
This form of syntax representation is included to be compatible with previous HP Series 80 manuals.

Many users are accustomed to seeing this form.

[]

item 1
item 2

italic

All items shown in dot matrix must be entered exactly as shown.

Items within square brackets are optional.

A vertical placement of two items indicates that only one of the items may be included.

Three dots indicate that successive parameters are allowed.

Italicized items are the parameters themselves.

77

78 Appendix A Syntax Reference

ABORTIO

1:::1 E: C) I:;:'r 1 () interface select code

Example Statements

:1. 0 (;:1 H E: C) I;:: 'r 1 CI .?
250 IF S{128 THEN HBORTIO SO

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
All interfaces: Terminates any interrupt transfer in progress. Performing an f::1 E: CII?'r I Cion an interface

with an active transfer and EOT branching enabled causes the branch to be taken.

HP-IB:

• System Controller: Sends Interface Clear (IFC) and Remote Enable (REN).

• Active Controller (but not System Controller): Sends Attention (ATN) and My Talk Address
(MTA).

• Non controller: Stops handshaking data and becomes ready for next operation.

Serial: Turns off all modem control lines (control register 2).

BCD: Stops handshaking data, sets CTL line false, and places external data lines in high-impedance

state.

GPIO: Stops handshaking data, sets control lines false, places ports A and B in high-impedance state,

and sets lines from ports C and D to false state.

HP-IL:

• System or Active Controller: Sends Interface Clear.

• Non controller: Stops current operation and becomes ready for next operation.

Related Statements

HHI....·r
() 1"·1 E: C) 'r
I?E:::::;E'r

Appendix A: Syntax Reference 79

ASSERT

1:::1 ::::; ::::; F: I?'r interface select code.: byte

Example Statements

100 ASSERT 7 12
210 IF Al=128 THEN ASSERT S X

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

byte-a numeric expression that evaluates to an integer 0 thru 255. Binary value of the byte is used to set

or clear the lines to be asserted.

Actions Taken
HP-IB: Immediately writes the value ofthe byte to control register 2. IFC bit (27, decimal 128) is ignored
(use 1:::113 CII?'r I CI).

Serial, BCD, GPIO: Immediately writes the value of the byte to control register 2.

HP-IL: Sends a frame using the specified byte and the most recent control bits written to register 2. This
statement is similar to C: CII···I·r I? C) 1.. .. isc .,::;:.: byte except that 1:::1 ::::; ::::; F: I? 'T interrupts the interface and sends

the frame without checking loop status.

Related Statements

i:::iE:C)i?r I Ci

C:CI!···i·Ti?Cii....

80 Appendix A: Syntax Reference

BINAND

-..(BINAND~ integer ~ integer ~

E:: I 1···11:::11···1 [I < integer., integer>

Example Statements

:l CI E::[::::: E: I 1···11:::11···1 [I < ;:.:; :[.' :[::::; >
100 PRINT BINAN[I<I,Nt2 A 3>

Parameters
integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

Action Taken
E: I 1··1 f::II··1 [) is a function that returns the I6-bit binary AND oftwo integer values. Each bit of the result is

calculated using the corresponding bit of each argument. according to the following truth table:

Related Statements

E: I 1···1 C: 1·'1 F'
E: I 1···1 F: C) I::::
F: I 1···1 I (:)1::::
E: I ·r

Arg.1

0
0

Arg.2 Result

0 0
1 0
0 0
1

Appendix A: Syntax Reference 81

BINCMP

-...c:BINCMP~ Integer ~

[: I 1,,1 C 1'1 F' < integer>

Example Statements

1. 0 CI C: ::::: [: I 1"·1 C: 1"1 F' < ::-: 1. >
120 PRINT BINCMP<Nt2 A 3>

Parameters
integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

Action Taken
13 I 1"·1 C 1"1 F' is a function that returns the 16-bit binary complement of an integer value. Each bit of the

result is the inverse of the corresponding bit in the argument. If the argument has less than 16 bits,

leading zeros are assumed.

Related Statements

[: I 1'·11:::11"·1 [)
[: I I···I[(:)I?
[: I 1"·1 I CII?
[: I ''1''

82 Appendix A: Syntax Reference

BINEOR

--..cBINEORr@--1,nteger ro-1 integer ~

[: I 1---1 [: C) I? < integer _, integer>

Example Statements

20 Bl=BINEOR<Xl,15>
140 PRINT BINEOR<I,2 A N>

Parameters
integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

Action Taken
[: I 1---1 [: (II? is a function that returns the I6-bit binary exclusive OR of two integer values. Each bit of the

result is calculated using the corresponding bit of each argument, according to the following truth table:

Related Statements

[: I 1---1 r::II---1 IJ
[: I I---I(:I-'IF'
[: I 1---1 I () I?
E: I T-

Arg.1

0
0

Arg.2 Result

0 0
1
0 1

0

BINIOR

-+-(BINIOR)-+-0-1 integer ~ integer ~

[: I 1··1 I C) F: I. integer, integer.'

Example Statements

30 Y=BINIOR(X1,255)
160 DISP BINIOR(I,2 A N)

Parameters

Appendix A: Syntax Reference 83

integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

Action Taken
[: I 1···1 I C) I:::: is a function that returns the I6-bit binary inclusive OR of two integer values. Each bit of the

result is calculated using the corresponding bit of each argument, according to the following truth table:

Related Statements

[: I 1···lr::1 1··1 IJ
[: I I···ICI·'IF'
[: II···I[(JI::::
[: IT

Arg. 1 Arg. 2 Result

o 0 0
o ,

o

84 Appendix A: Syntax Reference

BIT

-(BIT ~ integer ~

U I -r < integer _, bit position)

Example Statements

,::j. 0 \' ::::: E: I -r < ;:.:; :::;: _, -? >

bit
position

180 IF UIT<N,2 A I) THEN GO TO 220

Parameters
integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

bit position-a numeric expression that evaluates to an integer 0 thru 15. Least-significant bit is in

position 0, most-significant in position 15.

Action Taken
[: I -r is a function that returns the value of one bit in an integer argument_ Result ofthe function is TRUE

if bit is set, FALSE if bi is clear.

Related Statements

[: I 1---1 f:II---1 [)
[: I I---ICI-'IF'
E: I 1---1 E: CI I::::
E: I 1---1 I (:)I?

Appendix A: Syntax Reference 85

BTD

--C BTD r<IH string ~

E:l [) (string :'

Example Statements

20 X=BTO(H$&L$)+Al
:1, ::::: 0 [I I ~:::; F' E: 'l [I (" 1 1 (I (I (I (I (I :1, ")

Parameters
string-a string expression that contains the base 2 representation of an integer. Limited to 16

significant characters that must be "I" or "0".

Action Taken
E: 'l [) is a function that returns the value of a base 2 representation contained in the string argument. The

argument is a character representation and the result is a numeric quantity.

Related Statements

[)'IF::'!'
[j'rl"'I::!::
[i"!"Ci:l
1"'I'lIJ
C)'T [)

86 Appendix A: Syntax Reference

CLEAR

C 1.... E:: 1:::1 I? device selector [., device selector] ...

Example Statements

(:; CI C 1.... E:: 1:::1 I? :::;:
250 CLEAR 8*100+01,8*100+02

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1). If multiple device selectors are specified,

they must all be on the same interface select code.

Actions Taken
HP-IB and HP-IL: Must be Active Controller. (HP-IB leaves ATN true; use F:E::::::; 1 .. 11"1 E:: if you wish to set

ATN false.)

• If device selector is only an interface select code, then Device Clear (DCL) is sent.

• If device selector contains a primary address, then Unlisten (UNL), Listen Address(es) (LAD), and

Selected Device Clear (SDC) are sent.

Serial, BCD: Error

GPIO:

• If device selector is only an interface select code, interface pulses RESA and RESB.

• If device selector contains an even primary address, interface pulses RESA.

• If device selector contains an odd primary address, interface pulses RESB.

Related Statements

I::C) 1··I .. r·I?C)I....
::::;1:::1·1[1

Appendix A: Syntax Reference 87

CONTROL

buffer
i • i :i i··j ·r i? i: i i, register number.: control byte [.. control byte 1 interface select code

Example Statements

:! Ci C Ci i··i T· i? iJ i.... :), :i.
' • ., ij C Ci i·1 ·r i:;o Ci i.... '::::, i?

Parameters

Cl .. C2 .. CJ .. C4 .. C5 .. C6
i ... < i:;o >

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

buffer-the name of a string variable that has been declared an I Ci L: i .. .1 F· F· E: i?

register number-a numeric expression that evaluates to an integer 0 thru 23. Must specify a valid

control register for the selected interface.

control byte-a numeric expression that evaluates to an integer 0 thru 255. Binary value of byte is used

to set and clear bits in the control register.

Action Taken
C Ci i··iT i? Ci i writes one or more control bytes to interface or buffer control registers. The register number

specifies the first register to be used. If multiple control bytes are specified, they are stored in consecutive

control registers, beginning with the specified register number.

Related Statements

Fi [:: (:1 i:;~~ 'f I C)
,::,'::::'::::L:i:;oT
i:::: i··i r::i C: 1... C: I i··iT i?
I Ci C: i.J F· I:::· E:: i:;o

::::= i i···j I LJ ::::;

88 Appendix A: Syntax Reference

CONVERT

:r i',i, buffer [r:~' !:::! ,L !~;:: :::::
Ci : .. ,1 'T' mterface select code .i. r"j i...i i:::, ,:-:,

string variable]

Example Statements

20 CONVERT OUT 4 PAIRS A$
50 CONVERT IN 10 INDEX C$
110 CONVERT IN (Turn off conversion

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

buffer-the name of a string variable that has been declared an I Ci E: I .. .l F' F' C: i?

string variable-the name of a string variable in which the conversion table has been previously stored.

Actions Taken
Enables or disables a character conversion process for a specified interface or buffer and a specified

direction. Although you can C: Ci i',i i,,' C: i? 'r using either an interface or a buffer, conversions can only be

performed with Ci I .. .! ''I'' F' i...iT' and E: i",ir i:::: i? statements. Conversions are not performed during ':::; E: i",l Ci or
'T' i? ::::1 1",1 ':::; F' E i?

If the optional parameters are not included (as in the 3rd example statement), a previously selected

conversion is turned off for the specified interface and direction.

If direction is specified as I i",l, all bytes being input from the specified source are processed through a

conversion table immediately after they are received from the source. If direction is specified as Ci 1 .. ,1 ''I', all

bytes being output to the specified destination are processed through a conversion table immediately

before they are sent to the destination. I 1',1 and Ci 1 .. .1 T' conversions may both be specified for a given

interface select code or buffer.

If conversion method F'rl I I:::: ~:::; is specified, the conversion table is treated as a sequential list of character

pairs, the second character in each pair being substituted for the first character. If the byte to be

converted is not found as one of the first characters in a pair, it is passed through unchanged.

Recommended when only a few characters need to be converted.

Appendix A: Syntax Reference 89

If the conversion method I 1"""1 [I [::-:: is specified, the numeric value of the byte to be converted is used as an

index into the conversion table. The byte found as a result of this indexed lookup is substituted for the

original byte. If the index value is greater than the length of the table, no conversion is performed. The

first character in the string corresponds to the index value of O. Recommended when a large number of

characters need to be converted.

Related Statements

[:1""1 "T[:I?
I () [: I"..! F" I:::" F I?
(:)I..I"TF'I..I"T

90 Appendix A: Syntax Reference

DTB$

-+(DTBS ~ Integer ~

[I T' F:::\:: < integer>

Example Statements

100 R$=DTB$<16+2tN>
200 PRINT DTB$<X1>

Parameters
integer-a numeric expression that evaluates to an integer -32,768 thru 32,767,

Action Taken
[I T' F:::\:: is a function that returns the base 2 representation of an integer argument. The result is a

16-character string and the argument is a numeric quantity.

Related Statements

F:l[1
[)ll"'1 ::\::
[I 'l C)::\::
1"'I'l [)
C)'l[1

DTH$

-{ DTHS)--0--1,nteger ~

[I"T 1"""1 :l >: integer>

Example Statements

110 B$=DTH$>:32+2 A N>
210 PRINT DTH$>:X2>

Parameters

Appendix A: Syntax Reference 91

integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

Action Taken
[I"T 1"""1 :,1,: is a function that returns the base 16 representation of an integer argument. The result is a

4-character string and the argument is a numeric quantity"

Related Statements

L:"T[)
[1"TL:l
[1"T(:):l
I"""I"T [)
C)"T [)

92 Appendix A: Syntax Reference

DTO$

-< DTOS >--0-1,nteger ~

[I'T C) :;!:: (integer>

Example Statements

120 C$=DTO$(64+2 A N>
220 PRINT DTO$(X3>

Parameters
integer-a numeric expression that evaluates to an integer -32,768 thru 32,767.

Action Taken
[) 'T (J:;!:: is a function that returns the base 8 representation of an integer argument. The result is a

6-character string and the argument is a numeric quantity.

Related Statements

E:T[)
I"'IT [)
C)T[i
iJ'TE::;!::
[)'TI· .. I:;!::

Appendix A Syntax Reference 93

ENABLE INTR

E: 1'·11:::1 E: 1.... E: I I··I·T I:::: interface select code.: enable byte

Example Statements

:[1:::1 [1"·11:::1 E: l... [I 1"·1 T'I::::'? ::::: :::;; I:::: () :i 1"'1 '1: I:::' 1""' 1""' U F' 1:., 1···1 F' I H
50 IF 8)2 AND 8(11 THEN ENABl...E INTR 8 ~

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

enable byte-a numeric expression that evaluates to an integer a thru 255. Binary value of bytes is used

to set and clear bits in the control register.

Action Taken
Enables the specified interface for interrupts according to the bits set in the enable byte. The enable byte

is placed in control register CRl. The meaning of each bit in CR1 is interface dependent; refer to the

appropriate interface owner's manual for details. This statement is identical to performing a C:: C) I···I·T I:::: C) 1....

statement to control register 1.

Related Statements

C C) I··I·T I:::: C) 1....

C) 1"·1 I I··IT I::::
~:::; T I:::IT 1 . ..1 ~:::;

94 Appendix A: Syntax Reference

ENABLE KBD

~ ENABLE KBD}-1 mask r
[: 1··1 1:::1 [: I [: 1< [: [J mask

Example Statements

30 ENABLE KBD 33
180 IF X THEN ENABLE KBD Kl

Parameters
mask-a numeric expression that evaluates to an integer 0 thru 255. Binary value of byte determines

which keyboard modes are enabled and disabled.

Action Taken
Bits in the mask byte correspond to various keyboard areas and program modes as shown in the

following table. If a bit is set in the mask, its feature is enabled. If a bit is clear, its feature is disabled.

Bit Mode Keys Affected

7 RUN (RESET)

6 RUN (PAUSE)

5 RUN SFKsandGillJ
4 RUN All other keys
3 INPUT (RESET)

2 INPUT (PAUSE)

1 INPUT SFKs and QlliJ
0 INPUT All other keys

Related Statements

II···IF'I . ..IT·
CII···I 1<[:\':1:1:

Appendix A: Syntax Reference 95

ENTER

string
1····1.1··1··1····1···' buffer [I 1 , ... '1' I' I [.] []] :::." ::: ... :. d' I ... ':::' .. '. I .. :. Ime number] [.: vanable .. variable ...

eVlce se ector line label*

Example Statements

70 ENTER 701 USING LBL: X .. Y .. 2
90 ENTER C$ N(I) .2$
120 ENTER 3 USING 30 A$
;:::: ~:::; CI E: 1···I·r E F: 1 CI 0 ::\:: ::::; +. H 1 . ..1 ::::; I t··1 C; II:!:F.. E: II 1"·1

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1).

buffer-the name of a string variable that has been declared as an I C) E: 1...1 F' F' E: I::::.

string-a string expression that contains a valid set of image specifiers.

line number/label-the line number or label or an 11"1 f:1 c:; E:: statement that contains a valid set of image

specifiers.

variable (numeric or string)-the name of a variable intended as a destination of the E: 1···I·r E: I::::
operation.

Action Taken
Inputs bytes from the specified buffer or device; uses those bytes to build a number or string; places the

result into a BASIC variable. If a C: () 1".1 I.) E: I::::'r is in effect, the conversion occurs immediately after the

character is taken from the interface or buffer.

• Line labels are allowed on the HP-87 but not on the HP-85 or 83.

96 Appendix A: Syntax Reference

When 1,..1 ~:::; I 1",1 C; is not specified, free-field format is used. A free-field entry into a string places incoming

bytes into the variable until either a line feed is received, a carriage return/line feed sequence is received,

or the string is full. Terminating sequences are not placed into the destination string. A free-field entry

into a numeric variable ignores up to 256 leading non-numeric characters. Blanks are ignored during
number building. Entry into a numeric variable is terminated by the first trailing character that is

non-blank and non-numeric.

When 1".1 ~:::; I 1",1 C; is specified, input operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotes and placed in the [: I",I'T [: I:::: statement, contained in a string variable

named in the ENTER statement, or placed in an IMAG E statement referenced by the [: I',IT [: I:::: statement.

For detailed information on image specifiers, refer to the I 1"11:::1 C; [: statement in this appendix or see

Formatted ENTER in section 3.

[: 1",1 T [: I:::: requires a line-feed character to satisfy the statement after the variable list has been satisfied.

This can be the same line-feed that satisfied the last variable in the list. If the source is a device selector

and no line feed is detected, the computer will be "hung" on the [: I",I'T [: I:::: statement. If the source is a

buffer and no line feed is detected, a 1",1 C) 'T [: I:::: 1"1 error is generated. This requirement can be removed by

using ":1*" as the first image specifier. For more detailed information on statement terminators, see
Formatted ENTER. A "hung" condition can be trapped by use of the ~:::; [T 'T' I 1"1 [: C) 1".1 'T and C) 1',1

T I 1"1 [: C) 1".1 'T statements.

Related Statements

C: CI 1',1 I,) E F' 'r
11'11:::1 C; [:
I (J [: 1...1 F' I:::' E: I::::
C) 1',1 'T I 1"1 E: C) 1".1 'T
~:::; E 'T 'r I 1"'1 [: 1:11".1 'T
'r I:::: 1:::11',1 ~:::; F E: I::::

Appendix A: Syntax Reference 97

ERROM

-..(ERROMr

Example Statements

:~:: 0 ::':: :::: E I;:: F: ClI"I
70 IF ERRClM=192 THEN CCiTCI 100

Parameters
None

Action Taken
E: I? F: () 1"1 is a function that returns the ID number of the option ROM associated with the last error

generated by an option ROM. All option ROMs use error numbers greater than 100. The ID number of the

110 ROM is 192. Note that E: F: I? () 1"1 is modified only by the occurrence of another option ROM error.

Related Statements

E:I? F:1.. ..
[F:I?r',1
E: I? I:;:: ::::; C:

98 Appendix A: Syntax Reference

ERRSC

~ERRSCr

Example Statements

4 D 'y' ::::: E P F: :::; C:
90 IF EPF:SC=7 THEN GOSUB 200

Parameters
None

Action Taken
E I:;:: F:: :::; C: is a function that returns the interface select code responsible for the most recent 110 error. Note

tha t I::. F: F: ::::; C: is not cleared by a system reset and is modified only by the occurrence of another in terface­

dependent 110 error.

Related Statements

1:::: F: I:;:: l...
E: I:;:: I? 1··1
EF:F: 0 1·'1

I

HALT

-.J ~ interface L
~ HALT /lselectcodei

H H 1.... ·r interface select code

Example Statements

100 HALT?
;~OO HHl...T :;:; 1

Parameters

Appendix A: Syntax Reference 99

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
All interfaces: Stops current 110 operation. If an interface is 1···1 H 1.... T· ed with a T·I? 1:::11···1 ::::; F· [I? active and

an EOT branch enabled, the branch will be taken.

HP-IB: Leaves bus in present state.

Serial, BCD, GPIO: Does not affect external lines, so :;:;; T· H·r 1 . ..1:::;; can be used to inspect line states.

F: E: :;:; F·r or HE: c) F: T· I C) may be necessary after a halt to return handshake lines to the proper state for the

next operation.

HP-IL:

• Active Controller: If a data transfer is in progress than a Not Ready for Data (NRD) is sent. If the

interface is not involved in the transfer then RESUME may be used to continue the transfer.

• Non-controller: Leaves loop in present state.

Related Statements

HE:()I?T I C)
Or·1 ECiT
I~::E:;:;[T

100 Appendix A: Syntax Reference

HTD

-(HTD >--0--1 string KD--

H ''1'' D >:: string>

Example Statements

20 Y=HTD>::Ht<>+A2
4() [I I ::::;F' HTD>::" F?3A" >

Parameters
string-a string expression that contains the base 16 representation of an integer. Limited to 4

significant characters that must be "0" thru "9" or" A" thru "F".

Action Taken
H T [I is a function that returns the value of a base 16 representation contained in the string argument.

The argument is a character representation and the result is a numeric quantity.

Related Statements

I::::T[I
[)TE::l
[)TH~::

[lTC)$
CI T [)

Appendix A: Syntax Reference 101

IMAGE

I ,." f::1 C; E: specifier [., specifier] ...

Example Statements

1. (::1 1.... E: 1....: I t'1 H C E: II T' () '1: .::J], :::: II .' 4 D , [I D
100 IMHCE: #,%K,2X,#K

Summary of C) 1 .. .1 T F' 1 .. .1 T Image Specifiers

Image Meaning

1:::1 Output one string character
r'" ::> Output number as one a-bit byte
C: Output a comma separator in a number
[I Output one digit character; blank for leading zero
r'" ... Output exponent information; five characters
I:::' Output exponent information; four characters
,< Output a variable in free-field format
,." Output number's sign if negative, blank if positive
F' Output a period separator in a number
r'" ":, Output a European radix point (comma)
~:::; Output number's sign, plus or minus
,.,., Output number as two a-bit bytes (16-bit word)
,:-:, Output one blank
::::: Output one digit character, including leading zeros

" " Output a literal
:/:,: Suppress end-of-line sequence at end of statement
::/:: Output one digit character; asterisk for leading zero

Output an American radix point (decimal point)
Output and end-of-line sequence

102 Appendix A Syntax Reference

Summary of E 1···I·r E: i? Image Specifiers

Image Meaning

H Demands one string character
E: Enter number as one a-bit byte
C: Demand one character for a numeric field; allows commas to be skipped over
[I Demand one character for a numeric field
... r··· Demand five characters for a numeric field
I:::' Demand four characters for a numeric field
1< Enter a variable in free-field format
1·'1 Demand one character for a numeric field
~:::; Demand one character for a numeric field
1 ... 1 Enter number as two a-bit bytes (16-bit word)
>:: Skip one character
""1

Demand one character for a numeric field .:::.
:1:1: Suppress requirement for a line-feed to terminate statement or field
,"II Allow EOI to terminate statement or field
::\:: Demand one character for a numeric field

Demand one character for a numeric field
Demand a line feed

Related Statements

C: C) 1 ... 11,) [I:::: ·r
E: I··j ·r E: I::::, , , 1 . ..1 ~:::; I 1···1 C
CII . ..1 ·r I:::' 1 . ..I·r , , ,1 . ..1 ~:::; I 1···1 C;

IOBUFFER

--I. :\.......-J ~tring L
~08UFFER.J -, variable I

I () E: 1,..1 F' F' E: I? string variable

Example Statements

:I. 0 [) I 1"'1 H ::~: [::::: :::::]
;:::: 0 I CI E: 1...1 F F' E: F: 1:::1 :l
:~~: 0 [I I 1"1 E: ::f.: I::: :::: 1:::1]

Parameters

Appendix A: Syntax Reference 103

string variable-the name of a string variable with a dimensioned length 8 characters longer than the

desired size ofthe buffer on the HP-83/85, Length may be the same as is desired on the HP-86/87.

Actions Taken
Eight characters of the string variable are reserved for control of buffer activity on the HP-83/85. On the

HP-87 one of the ten IOBUFFER tables is reserved for control of buffer activity.

Buffer empty pointer:

• Initial value = 1. Accessed by Control/Status registers CRO, SRO. Characters are taken from the
buffer (by E: 1",1''1'' E: I? or ''I'' I? FII",I ~:::; F' E: F:) using the following sequence:

1. Read character

2. Increment empty pointer

Buffer fill pointer:

• Initial value = O. Accessed by Control/Status registers CRl, SRl. Characters are put into the buffer
(by C) 1 .. .1''1'' F' 1 .. .1 T', ''I'' I? FII",I ~:::; F' E: I?, or string assignment) using the following sequence:

1. Increment fill pointer

2. Store character

Active-out select code:

• Initial value = O. Accessed by Status register SR3. When active-out select code equals 0, there is no
output ''I'' I? H 1",1 ~:::; F' E: I? operation active for this buffer. When an output 'r I? 1:::II',j ~:::; F' E: I? is active for this

buffer, the active-out select code is set equal to the interface select code that is the destination of the
T' I? FII",I ~:::; F' E: I? .

104 Appendix A: Syntax Reference

Active-in select code:

• Initial value = 0. Accessed by Status register SR2. When active-in select code equals 0, there is no

input 'r F: H 1",1 ~:::; F' E: I? operation active for this buffer. When an input transfer is active for this buffer,

the active-in select code is set equal to the interface select code that is the source of the transfer.

Conversion pointers:

• These pointers cannot be accessed from BASIC. When a C: C) 1",1 1
,) E: F: ''I'' statement to the I CI E: 1 .. .1 F' F' E: F:

is executed, pointers to the appropriate conversion tables are established. These pointers are
initialized by the I C) E: 1 .. .1 F' F' [I? statement. Therefore, execute C: CI 1',1 I,) E: I? ''I'' after executing
I () E: 1 .. .1 F' F' E: I?

Full buffer:

• A buffer is full when the fill pointer equals the dimensioned length of the string (minus eight on the

HP-85 or HP-83). Attempting to store data into a full buffer generates a E: 1 .. .1 F' F' E: r;;: error.

Empty buffer:

• A buffer is empty when the empty pointer equals the fill pointer plus one. When the buffer becomes

empty, the fill pointer is reset to zero, and the empty pointer is reset to one. Active-out and active-in

select codes are not affected by the buffer becoming empty; neither are the conversion pointers

affected. Old data in the buffer is not lost, but the buffer fill pointer must be modified if you wish to

re-access the data in the buffer (so the buffer will "look" full).

Buffer Status Registers

Empty pointer
Fill pointer
Active in select code
Active out select code

Related Statements

C: () 1",1 T' I? C) 1.. ..

C: () 1",1 1,) E: I? ''I''
E:I"j'rE:I?
C) 1...1 TF'I .. ,IT
~:::; T f::I'r 1 .. .1 ~:::;

'r I? FII",I ~:::; F' E: I?

SRO
SRl
SR2
SR3

Buffer Control Registers

Empty pointer CRO
Fill pointer CRl

Appendix A: Syntax Reference 105

LOCAL

1.... () C: H 1.... device selector [, device selector] ...

Example Statements

;:::: ;:::: C1 L. CI C: H 1.... . .. :'

330 lCiCHl 100*S+01 @ RESUME 7

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1). If multiple device selectors are specified,

they must all be on the same interface select code.

Actions Taken
Hp·IB:

• If device selector is only an interface select code, Remote Enable (REN) is set false. Must be System

Controller.

• If device selector contains a primary address, interface addresses specified device(s) and sends Go

To Local (GTL) message. Leaves ATN true; use I:;::E:~:::;I .. H"IE: if you wish to set ATN false. Must be

Active Controller.

• If device is in REMOTE with LOCAL LOCKOUT set, the device must receive the GTL message or

have REN set false to be returned to local (front panel) control.

Serial, BCD, GPIO: Error

HP-IL: Must be active controller.

• If device selector is only an interface select code then Not Remote Enable (NRE) is sent.

• If device selector includes a primary address then Unlisten (UNL), Listen Address n (LADn), and

Go To Local (GTL) are sent.

• If device is in REMOTE with LOCAL LOCKOUT set then the device must receive the Go To Local or

Not Remote Enable message before it will return to local (front panel) control.

106 Appendix A: Syntax Reference

LOCAL LOCKOUT

LOCAL LocKouT select COd~ ~ H interlace ~

I () C: H 1.... 1.... CI C: 1< CII . ..Il interface select code

Example Statements

50 LOCHL LOCKOUT S0 @ RESUME S0
100 REMOTE 706,712 @ LOCHL LOCKOUT 7

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Action Taken
HP-IB and HP-IL:

• Must be Active Controller. Sends Local Lockout (LLO) command. (HP-IB leaves ATN true; use
1:;:0 E: ::::; 1..11·'1 E: if you wish to set ATN false.)

• Local Lockout remains in effect until the Remote Enable (REN) line is set false for HP-IB or, for

HP-IL the Not Remote Enable (NRE) command is sent.

Serial, BCD, GPIO: Error

Related Statements

I CI C: H 1....
I:;:OE:I·'·IC)·lE:

Appendix A: Syntax Reference 107

OFFEOT

~ n interface ~
OFF EOT select COd~

CI F' F' E: CI 'T interface select code

Example Statements

4() C)FF' [()T ::~

120 IF 8)128 THEN OFF EDT 81

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10,

Action Taken
Disables end-of-line branching for termination of a transfer on the specified interface. () F' F' E: C) 'T does

not cancel a branch permanently. For example, if the transfer has terminated and an CII",I [CI'T

statement is re-executed, the branch will be taken at that time.

Related Statements

() F' F' I 1"·1 'T I?
() F' F' T' I 1"1 E: C) 1 .. .1 T'
()r',1 E: ()'T
C) 1",1 I I",I'T I?
() 1",1 'T I 1"1 E: (J 1 .. .1 'T

108 Appendix A: Syntax Reference

OFF INTR

(J F·I:::· I 1···I·r I? interface select code

Example Statements

:I. :I. 0 C)F·F· II···I·rl??
180 IF X THEN OFF INTR (> ";:r

.... 1.: ...

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Action Taken
Disables end-of-line branching for interrupts from the specified interface. CI F· F· I 1···I·r I? does not cancel a

branch permanently. For example, if the interface has interrupted and an CH·I I I·lr F: statement is

re-executed, the branch will be taken at that time.

Related Statements

C: C) 1···1 T·I? C) I
E:1··1 HE:1.... E: I I··IT I?
CI F· F E: (Jr
C) I:::· F· T· I 1·'1 E: CI 1 . ..1 T
(J 1···1 E: (J·r
C) 1···1 I 1··I·r I?
C) 1···1 ·T I 1·'1 E: (J 1 • ..I·r

OFF TIMEOUT

OFF TIMEOUT select code
~ H Intertace ~

C) I::: F'r I 1"1 E Clt.l·r interface select code

Example Statements

50 OFF TIMEOUT S DIU 100
120 OFF TIMEOUT 7

Parameters

Appendix A: Syntax Reference 109

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Action Taken
Disables end-of-line branching for occurrence of a timeout on the specified interface. C) F' F' 'r I 1"1 F: CII . .I·r
does not cancel a branch permanently. For example, if the interface has timed out and an CII···I
'r I 1"1 E: () 1 . .1 T' statement is re-executed, the branch will be taken at that time.

Related Statements

C) F' F' F: C)'r
C) F' F' I 1···I·r I?
C)I··j F: C)'r
() 1"·1 11"·1 T'I?
C) 1"·1 'r I 1"1 F: () 1 . .1 'r
::::; E: 'r 'r I 1"1 E: C) 1 . .1 T'

110 Appendix A: Syntax Reference

ON EOT

1".·.·.11 ... 1 I···· ... ··1·· . C; (I T () line number
:::.1 . ..1 Interface select code ··.1 II···' .

1 .. :,1...1.:::0 ... :::' line label

Example Statements

20 ON EDT 7 GOTO SERVICE 7
120 ON EDT S4 C;OSUB 1000

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

line number-an integer constant from 1 thru 9999 that specifies a valid line number within the
program.

line label-a name of up to 31 characters containing letters, numbers, or underscore symbol, whose first

character must be a letter.

Actions Taken
Enables end-of-line branches to the specified line number when a transfer to or from the specified

interface is terminated. A pending end-of-line branch from a previous, unserviced transfer termination

(for the specified interface select code) is taken immediately. Only one transfer termination per interface

select code is retained by the system.

Each interface may have alternate causes for transfer terminations that are user-programmable. Refer to

the appropriate interface owner's manual for details about this capability.

Overrides any previous () 1···1 E C) T statement for the same interface select code.

Related Statements

C: () 1···1 T· F: 0 1....
C)FF· [OT·
OF·F I r··IT·F:
eIF·r:· T I t'1E:DUT·
o I··~ I 1···1 T· F:
() 1···1 T I 1·'·1 [() 1 . ..1 T
~::; T fi ·r 1 . ..1 ~:::;

T F:: H r·~ ~:::; F· E: F::

Also see Branch Precedence Table in section 6.

ON INTR

1".·.·.11 ... 1 ·1·' 1··1··1···' . c:; (J T· C) line number
.. 1·· .':. mterface select code ("~("·I(:;IIr::: I· I b I

.•..•..•..•. r... me a e

Example Statements

30 ON INTR Sl COSUS ~~~~
60 ON INTR 3 COTO EXIT
1. ':::;0 E::·:: IT: fiE:(JF:T I 0

Parameters

Appendix A: Syntax Reference 111

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

line number-an integer constant from 1 thru 9999 that specifies a valid line number within the
program.

Actions Taken
Enables end-of-line branches to the specified line number when an interface interrupt occurs (see

E I··~ H E: l... E: I r··1 T F:). A pending end-of-line branch from a previous, unserviced interface interrupt (for the

specified interface select code) is taken immediately. Only one interrupt per interface select code is

retained by the system.

Interrupt causes are specified by either [r··1 H E: I [I 1···I·r I? or C: C) r··I·r I? (J 1.... statements. Interrupt causes

are interface-dependent; refer to the appropriate interface owner's manual for details.

Overrides any previous C) I··~ I 1···1 T· F: statement for the same interface select code.

Related Statements

C: () 1···1 T· F: 0 l...
EI··~H81 E: II···I·rl?
OFF· EO·r
OF·F· I r··I·rF:
CI F· F ·r I 1·'1 E: (J I..J T·
01···1 [(J·r
C) r··1 ·r I 1·'1 [(J 1 . ..I·r

Also see Branch Precedence Table in section 6.

112 Appendix A: Syntax Reference

ON TIMEOUT

Example Statements

20 ON TIMEOUT S3 COSUS 2500
50 ON TIMEOUT 7 COTO 320

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

line number-an integer constant from 1 thru 9999 that specifies a valid line number within the
program.

Actions Taken
Enables end-of-line branches to the specified line number when an interface timeout occurs (see ~3 E: 'r
'r I 1"1 E: () 1 .. .1 "1''). A pending end-of-line branch from a previous, unserviced interface timeout (for the

specified interface select code) is taken immediately. Only one timeout per interface select code is retained

by the system.

End-of-line branching for 'r I 1"1 E: C) 1 .. .I'r is not applicable to the actual data movement portion of a
T'I? 1:::11',,1 ~:::; F' E: I? (I 1",I'r I? or F'I"'I ~:::;) operation. A transfer can timeout if the interface or device cannot be

addressed to start the transfer, but there will be no C) 1",1 'r I 1"1 E: C) 1 .. .I'r branch if the peripheral device stops

handshaking in the middle of the transfer.

Overrides any previous C) 1",1 "1" I 1"1 E: C) 1 .. .I'r statement for the same interface select code.

Related Statements

C) F' F' E: () ''I''
() F' F' I 1",I'r F:
C) F' F' "1" I 1"1 E: C) 1 .. .1 'r
C) 1",1 E: C) 'r
C) 1",1 11",1 T'I?
~:::; E: 'r 'r I 1"1 E: C) 1 .. .1''1''

Also see Branch Precedence Table in section 6.

Appendix A: Syntax Reference 113

OTD

-.(OTD)--.-0-1 string ~

() T' [) < string>

Example Statements

80 X=OTO(HS&LS>+A3
:I. :I. I] 0 I ::::; F' C) T D < II :I. '? '? ::::: .:j. ~:::; II >

Parameters
string-a string expression that contains the base 8 representation of an integer. Limited to 6 significant
characters that must be "0" thru "7" (except most significant character must be "0" or "1 ").

Action Taken
() 'l [I is a function that returns the value of a base 8 representation contained in the string argument. The

argument is a character representation and the result is a numeric quantity.

Related Statements

[)'lE::;!::
[)'ll"'I:;!::
[) T'C):;!::
E: T' [I
I"'IT'[I

114 Appendix A Syntax Reference

OUTPUT

string
C) 1,..1 T F' 1...1 T' ,buffer [, device selector ...] [1".1 ::::; I 1",1 C; line number [[,: expression [, expression]

devIce selector ' line label

[,: expression] ...]

Example Statements

70 OUTPUT 701 USING Out format
90 OUTPUT [$ N(I) ;Z$
120 OUTPUT 3 USING 30 A$
:~: ~:) 0 0 1".1 T P U ''I'' :l (:11::1 ::1:: ::::; + H U :::; I t'j G II :~: " E: II

Parameters

I' I I '~'I

.:.:. ,I r .. I:::.

device selector-a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination). If multiple device selectors are specified, they must all
be on the same interface select code. C) 1...1 ''I'' F' 1".1 ''I'' allows device selectors 1 and 2 for addressing the internal

CRT and printer.

buffer-the name of a string variable that has been declared as an I C) E: 1...1 F F' E F:.

string-a string expression that contains a valid set of image specifiers.

line number/label-the line number or label or an 11'''1 FI C; E: statement that contains a valid set ofimage
specifiers.

expression (string or numeric)-any string expression or numeric expression intended to be output.
Expressions may be constants or variables and may be separated by commas or semicolons.

Appendix A: Syntax Reference 115

Actions Taken
Outputs bytes to the specified buffer or device(s); bytes may be string or numeric. If a C: CI i···1 I,) E: F:'r
operation is specified, the conversion is performed immediately before the byte is sent to the interface or

buffer.

When 1 . ..1 ::::; I 1"·1 C; is not specified, and output items are separated by commas, free-field format is used. A

free-field output of a string item causes it to be left-justified in a field with no more than 20 trailing blanks.

A free-field output of a numeric item causes it to be left-justified in a field of 11,21, or 32 characters.

When 1 .• .1 ::::; I 1"·1 C; is not specified, and output items are separated by semicolons, compact format is used. A

compact output of a string variable causes it to be sent with no leading or trailing blanks. A compact

output of a numeric variable causes it to be sent with one trailing blank and one leading sign character

(blank if positive, minus sign if negative).

When 1 . ..1 ::::; I 1"·1 C; is specified, output operations are formatted according to the image specifiers used. Image

specifiers may be enclosed in quotes and placed in the () 1 .. .I·r F' 1 .. .1 T' statement, contained in a string

variable named in the () 1 . ..I·r F' 1 . ..1 T' statement, or placed in an I 1"11:::1 C; F: statement referenced by the

C) 1 . ..1 T'I:::' 1...1 T' statement. For detailed information on image specifiers, refer to the I 1"11:::1 C; F: statement in this

appendix or see Formatted C) 1 . ..I·r 1:::'I...I·r in section 3.

C) 1...I·r F' 1 . ..I·r sends an end-of-line sequence after the last item In the () i . ..I·r F' i . ..I·r list. This sequence is

interface-dependent, can be changed by the C: () 1···I·r I? () i statement, and defaults to carriage return/line

feed. This sequence can be suppressed by using !I :1:1:" as the first image specifier. For more detailed

information on statement terminators, see Formatted C) 1...1 T'I:::' 1...I·r. If the C) 1...1 T' F' 1...1 T' is to a buffer, a

carriage return/line feed is placed in the buffer after the last data byte unless the !I :1:1: " image is used.

Related Statements

C: () I"~ 'r I? CII
C: C) 1".1 1,) F: I? 'r
II"IHC;F:
I C) F:1 . ..1 F'F'F:I?
·rF:I:::II···I::::;F·F:r;::

116 Appendix A: Syntax Reference

PASS CONTROL

~ ~ device I ~
~ASS CONTR0v-----l selecto~ I

F' FI ~:::; ~:::; C: C) I",I'T I? C) 1.. .. device selector

Example Statements

100 PASS CONTROL 100*8+0
250 PASS CONTROL 721 @ ENABLE INTR

Parameters

"? I":? ")
i ,1 1 1:."

device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1).

Actions Taken
HP-IB and HP-IL: Must be Active Controller. Passes Active Controller responsibility to the specified

device.

• If device selector is only an interface select code, interface sends the Take Control (TCT) message

(and sets ATN false for HP-IB). Be sure that the device receiving control has been addressed to talk
before using this form of F' r::1 ~:::; ~:::; C: (J 1",1 T'I? C) 1.. ...

• If device selector contains a primary address, interface sends the specified device's talk address,

sends the TCT message (then sets ATN false for HP-IB).

Serial, BCD, GPIO: Error

Related Statements

FI E: C) I? 'T I CI
E: 1",1 r::1 E: 1.. .. E: I I",I'T I::::
C) 1",1 I I",IT'F:
I:::: E: C! 1...1 E: ~:::; 'T
F: E: ~:::; E: 'T

PPOLL

-+-(PPOLL ~ Interface ~
select code

F' I:::' () 1 1.... < interface select code>

Example Statements

::;;: :I. 0 ;:.:: ::::: F' F' () 1.... 1.. .. < .? :'
(:; ;;::: (:1 F' ::::1 ::::: F' F' e) 1....1.... < ::::; (:1 >

Parameters

Appendix A: Syntax Reference 117

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
HP·IB and Hp·IL:

• Must be Active Controller. F' I:::' () 1 1 is a function that returns the results of a Parallel Poll operation.

Sends Identify (IDY) message. Devices capable of responding each assert one bit ofthe parallel poll

response byte.

Serial, BCD, GPIO: Error

Related Statements

::::; F'e) 1.... I

118 Appendix A: Syntax Reference

REMOTE

I:;: [: 1"1 CI T' [: device selector [., device selector] ...

Example Statements

~:::; 0 F: [: 1"1 (Jl E::? ;:::: Ij
130 REMOTE 100*S+0 @ RESUME S

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1). If multiple device selectors are specified,

they must all be on the same interface select code.

Actions Taken
HP-IB: Must be System Controller. Puts the bus into remote operation.

• If device selector is only an interface select code, interface sets Remote Enable (REN) true. Devices

do not go into remote state until they are addressed to listen.

• If device selector contains a primary address, interface sets REN true, sends Unlisten (UNL)

message, then sends the listen address of the specified device(s). I:;: [::1"1 Cil [: leaves ATN true; use
I:;: [::::; 1"'\1"1 [if you wish to set ATN false.

Serial: Error

BCD: Sets partial field separator. Refer to the BCD Interface Owner's Manual for details.

GPIO: Error

HP-IL: Must be Active Controller.

• If device selector is only an interface select code then the Remote Enable (REN) message is sent.

• If the device selector includes a primary address then Remote Enable (REN), Unlisten (UNL), and

Listen Address(es) (LAD) are sent.

Related Statements

I.. .. C)C:I:::il.. ..
i.. .. (JC:f:ll.. .. I.. .. C)C:I<C)I .. .I·l
1:;:[:::::;1...11"1[:

Appendix A: Syntax Reference 119

REQUEST

I? E: C! 1 .. .1 E: :;;;; "1" interface select code ,: response byte

Example Statements

50 REQUEST 7 64+4
260 IF T)40 THEN REQUEST S

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

response byte-a numeric expression that evaluates to an integer 0 thru 255.

Actions Taken
HP-IB and HP-IL: Must be non-controller. Sets up a Serial Poll response byte. Sets Service Request (SRQ)

true if bit 6 (decimal value 64) of the response byte is set. The response byte is sent to the Active Controller

in response to an incoming Serial Poll operation. The Active Controller's Serial Poll operation clears SRQ,
which can also be cleared by executing F: E;: I) 1 .. .1 E;: :;;;; "1" with bit 6 of the response byte equal to zero.

Serial: Sends a BREAK. The BREAK is defined by the response byte. A space (O-state) condition is held

for the number of character times specified in the response byte. It is then followed by a mark (I-state)

condition for five character times.

BCD, GPIO: Error

Related Statements

F' f:1 :;;:; ::;:; C:: C) 1",1 T'I? () 1.. ..

:;;;; F'C:I 1.. .. 1.. ..

120 Appendix A: Syntax Reference

RESET

RE8ETselect COd~ -+{ M interface ~

F: [~:::; [:'T interface select code

Example Statements

::::: 0 F: E: ~:::; E: 'T .?
]00 IF 8)128 TH[N R[8[T 8]

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
All interfaces: Performs a hardware reset of the interface, returning it unconditionally to its power-on

state. The interface performs a self test (failure causes ERROR 110), and the control registers are set

according to the configuration switches on the interface circuit assembly. Resetting an interface with a

transfer active and EOT branching enabled causes the branch to be taken.

HP-IB: If System Controller, sends Interface Clear (IFC), then Remote Enable (REN).

Serial: Modem control lines are turned off.

BCD: Data lines are set to high-impedance state, handshake lines are set false, and I/O lines are set to

input state.

GPIO: Ports A and B are set to high-impedance state, Ports C and D are set to off state, CTL lines are set

false, and OUTA and OUTB are set to indicate output.

HP-IL: If the interface is system controller then Interface Clear (IFC), Auto Address Unconfigure (AAU),

and Auto Address 1 (AAD1) are sent, followed by Not Remote Enable (NRE) and Remote Enable (REN).

Related Statements

f::,I:::: CII?T I ()
1···1 ,:::, I.. .. ·T
CI 1"·1 [: () 'T

Appendix A: Syntax Reference 121

RESUME

-{ n interface ~
RESUME select code

I? E: ::::; 1...11"1 E interface select code

Example Statements

1 1 [I F: E ~:::; 1...11'1'1 E '?
190 RESUME S DIV 100

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
HP-IB: Must be Active Controller (CA = 1). Sets the Attention (ATN) line false. Statements that can
lea ve the A TN line true are: C: l... E rll?, l ... CI C: 1:::Il. .. , 1.... () C f::Il... l. .. CI C: 1< CII...I·T', I? [1"1 CI'T' E, ::::; [1"·1 [I, T'I? I C; C; E F:.

Serial: The transmitter is enabled. Refer to the HP 82939A Serial Interface Owner's Manual for details.

BCD, GPIO: Error

HP-IL: Must be active controller. The Send Data (SDA) message is sent if a transfer is not already in

progress.

Related Statements

C: () 1"·1 'T' I? CI 1.. ..

1 .. ·11:::11... T'
::::;[:1'·1[1

122 Appendix A: Syntax Reference

SEND

Appendix A: Syntax Reference 123

::;:; E: 1"·1 [) interface select code.: [[C: 1'''1 [) list] [[I f::I''I'' 1:::1 list [E: (J 1.. ..]] [''1'' f::1 1.. .. 1< primary address] [I.. .. I ::::; ''1'' [1"·1
primary address [., primary address] ...] [::::; C: C; secondary address [., secondary address] ...] [1 ... 11··11.. ..]
[1 .. .11"·1''1''] [1· .. 11.. .. f::I] [1'''1''1'' f::I] ...]

Example Statements

1 (:1 (j ::::; F' [··IIJ ';::'
::: 1~1 I) :::; E·I···I [) ';::'
.. ::,00 ::::;F' 1"·1 I:J ::::;

Parameters

C: 1"1 D "U .. ::' ::.;;" [I H T H "H I::' 1 1 () "
eMD H$ SeG 14,18 DHTH X$
MTH UNl lIST[N 6,14 eMD P,R SeG 6

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

list-a list of numeric or string expressions, separated by commas.

primary address-a numeric expression that evaluated to an integer 0 thru 31.

secondary address-a numeric expression that evaluates to an integer 0 thru 31.

Actions Taken
HP-IB: When sending any commands (C:: I'''IIJ, ''1'' H 1.. .. 1<, I I ::;:; T' E: 1"·1, ::::; C: C;, 1 .. .11···11.. .. , 1 .. .11"·1''1'', 1· .. 11.. .. 1:::1, 1'''1 T 1:::1), the

interface must be Active Controller. The ATN line is set true while sending commands. The ATN line is
set false while sending [) 1:::1 T'I:::I, even if no actual data is sent (i.e., [11:::1''1'' f:I" ").

• C:I"H} Commands: send list of 8-bit expressions with ATN true. Primary commands have a bit

pattern = XOOCCCCC, where X = don't care, C = bits of command (decimal 0 thru 31). ::::; E: 1"·1 [) C: 1'''1 [)
can be used to create odd parity on commands, if necessary.

• [11:::1 T'I:::I: Send list of numeric or string expressions with ATN false. Any 8-bit pattern may be sent. If

EOL is specified, the interface's end-of-line character sequence is sent following data (Control

registers 17-thru 23).

• ''1'' H 1.. .. 1<: Send device's Talk Address (TAD), decimal 0 thru 31.

• 1.. .. I ::::; T' E: 1"·1: Send device's Listen Address (LAD), decimal 0 thru 31.

• ::::; C: C;: Secondary Command Group: Send secondary address to device.

• 1 .. .11···11.. .. : Send Unlisten command (UNL). Numeric value sent is 63; ATN is true.

• 1 .. .11"·1''1'': Send Untalk command (UNT). Numeric value sent is 95; ATN is true.

• 1· .. II....fl: Send My Listen Address (MLA). This is the listen address of the interface. Factory setting =
53.

• l'''I''I''f::I: Send My Talk Address (MT A). This is the talk address of the interface. Factory setting = 85 .

Serial: The only form that can be sent is [I f::I''I'' f(

• [) fl''I'' H: Sends list of numeric or string expressions. If EOL is specified, the interface's end-of-line

character sequence is sent (control registers 17 thru 23).

'24 Appendix A Syntax Reference

BCD: See BCD Owner's Manual for details:

• C 1"1 [} Primary addresses 0 thru 6 set partial field specifier.

• [11:::1''1'' 1:::1: Lower 4 bits of data bytes are sent; control characters, spaces, and commas are ignored. If

EOL is specified, data format checking is enabled.

• 1.. .. I ~:::; "!. F: 1'·1, ''1'' f::II....I<: Primary addresses 0 thru 6 set partial field specifier.

• 1 .. .11'-11. ... ,1 .. .11'-1'1",1"111:::1,1"1'1" 1:::1: Ignored.

GPIO: See GPIO Owner's Manual for details.

• C: 1"1 [I: Primary addresses 0 thru 15 select port configuration. Device Clear command pulses RESA

and RESB. Selected Device Clear pulses RESA or RESB according to the most recent primary

address.

• [I f::I'r 1:::1: Send list of numeric or string expressions. Data is sent as 8-bit bytes. If EOL is specified,

the interface's end-of-line character sequence is sent (control registers 17 thru 23).

• 1.. .. I ~:::; "!. F: 1"·1, ''1'' FI 1.. .. 1<: Primary addresses 0 thru 15 select port configuration.

HP-IL: When sending commands (CMD, TALK, LISTEN, SCG, UNL, UNT, MLA, MTA) the interface

must be active controller.

• C 1"1 [I: Sends a list of8 bit expressions as command frames.

• [) 1:::1''1'' f::I: Sends a list of 8 bit expressions as data frames. If EOL is specified then the interface

end-of-line sequence is sent following the data.

• ''1'' 1:::11....1<: Sends a device's Talk Address, decimal 0 to 31.

• 1.. .. I ~:::;'r E: 1"·1: Sends device Listen Address(es), decimal 0 to 31.

• ~:::; C: C;: Sends a secondary address frame, decimal 0 to 31.

• 1 . ..11···11.. .. : Sends an Auto Address sequence and the Unlisten command frame.

• 1...11"·1''1'': Sends an U ntalk command frame.

• 1·'11.. .. fl: Addresses the interface to Listen.

• 1"1''1'' 1:::1: Sends the Talk Address of the interface.

Related Statements

C)I .. .I·rF'I...I·r

Appendix A: Syntax Reference 125

SETTIMEOUT

~:::; [: T 'r 11"1 [: () 1 . ..I·r interface select code.: milliseconds

Example Statements

100 SET TIMEOUT ~u Xt1000
280 ON TIMEOUT 7 GOTO 550 @ SET TIMEOUT 7

Parameters
interface select code-a numeric expression that evaluates to an integer 3 thru 10.

milliseconds-a numeric expression that evaluates to an integer 0 thru 32,767.

Action Taken
Establishes an approximate time limit (in milliseconds) that the interface will wait to complete a

handshake with its peripheral device. If the specified time limit is exceeded and () 1"·1 'r 11"1 E: () 1 . ..1 T' end-of­
line branching is enabled, the branch is taken. If no () 1"·1 'r I 1"1 [: () 1 . ..1 T' is currently in effect, there is no

indication that a timeout has occurred until an () 1"·1 'r 11"'1 [: () 1 • ..1 T' is subsequently executed.

Related Statements

() F' F' 'r I 1"1 [: () 1...1 'r
() 1"·1 'r I 1"1 [: () 1...1 T'

126 Appendix A: Syntax Reference

SPOll

-{ SPOll }+-0--1

::::; F' () 1.. .. 1 < device selector>

Example Statements

~:::; 0 F' ::::: ::::; F' () I I.... < ::::; ,::1- >

device
selector

250 IF SPOLL<701»63 THEN GOTO 750

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see "Choosing the Source or Destination").

Actions Taken
HP-IB:

• Conducts a Serial Poll of a device on the bus and returns the device's status byte. If bit 6 of the status

byte is set (decimal value 64), it indicates that the device is requesting service (asserting SRQ).

• If device selector is only an interface select code, interface sends Serial Poll Enable (SPE), sets ATN

false, receives the status byte, sends Serial Poll Disable (SPD), then sends Untalk (UNT).

• If device selector contains a primary address, interface sends Unlisten (UNL), My Listen Address

(MLA), devices Talk Address (TAD), Serial Poll Enable (SPE), then sets ATN false. It receives the

status byte, sends Serial Poll Disable (SPD), then sends Untalk (UNT).

Serial, BCD, GPIO: Error.

HP-IL: Must be active controller.

• ::::; F' () 1....1.... returns the first byte received in response to a serial poll of a device.

• If the device selector is just an interface select code then the interface sends the Send Status (SST)

message, then waits to receive a data byte followed by end of transmission (EOT) and then sends

(UNT).

• If the device selector includes a primary address then unlisten (UNL), my talk address (MT A), the

device's talk address (TAD) and send status (SST) are sent. The data byte is received followed by end

of transmission (EOT) and then untalk (UNT) is sent.

Related Statements

F'F'()I...I....

Appendix A Syntax Reference 127

STATUS

::::; 'r ::: T'I 1 ::::; buffer register number.: numeric variable [., numeric variable] ...
... 1 1 interface select code .'

Example Statements

;:::: U ::::; T H 'r 1 .. .1 ::::; '?, (j
.? 1:::1 ::;:; T' r::I'r 1 .. .1 ::::; ::;:;:1.., ~:::;

Parameters

C: CI .' C: :I. .' C:;:;:: .. C: :::;: .' C: ,::1·
, :::; :1 ~:::;*

interface select code-a numeric expression that evaluates to an integer 3 thru 10.

buffer-the name of a string variable that has been declared as an I () E: 1 .. .1 F' F' E: I?

register number-a numeric expression that evaluates to an integer 0 thru 15. Must specify a valid

status register for the selected interface.

numeric variable-any numeric variable intended as a destination for the status information.

Actions Taken
Reads one or more status register(s) and assigns the value(s) to the specified variable(s). When more than

one variable is specified, consecutive status registers are read, starting at the specified register number.

Status values returned are integers 0 thru 255.

Related Statements

r::I:;:;::::;E:I?'r
C: UI"~ T'I?() 1.. ..

E:I···IHE:I.. .. E: II···IT·I?
I ()E!I .. .IF·F·E:F:

"Labels are allowed on the HP-87.

128 Appendix A: Syntax Reference

TRANSFER (in)

'll? f::II'"I::;:; F' E: I:::: device selector 'T' () buffer I 1",1 'l I? [,: [C: () 1 .. .1 1',1 'l byte count] [[) E: 1.. .. I 1"1 byte] [E: () I]]

'll? f:II",1 ::::; F' E: I? device selector 'l () buffer F'I"'I ::::; [,: [C: C) 1 .. .11",1 'T' byte count] [I:::: () I]]

Example Statements

100 TRANSFER 706 TO S$ INTR
200 TRANSFER 100*S+0 TO S$ INTR ; COUNT 80 OELIM 10 EOI
300 TRANSFER 3 TO A$ FHS COUNT 16

Appendix A Syntax Reference 129

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see "Choosing the Source or Destination").

buffer-the name of a string variable that has been declared as an I () E: 1 .. .1 F' F' [F:.

byte count-a numeric expression that evaluates to an integer 0 thru 32 767. Specifies maximum number

of bytes to be input.

byte-a numeric expression that evaluates to an integer 0 thru 255. Specifies the ASCII value of a

character which can terminate the transfer.

Actions Taken
Takes data bytes from the specified device and places them into the specified buffer. Characters are

placed into the buffer according to the buffer fill pointer. The transfer terminates when the buffer is full or

when the first one of the specified terminating conditions is met. The interface may also have a

programmable terminating condition; refer to the appropriate interface owner's manual for details.

Specifying C: C) 1 .. .11"·1'1" sets a maximum limit on the number of characters to be transferred. [) E: 1.... I t'l
specifies the numeric value of a character that can terminate the transfer. Specifying EOI (End or

Identify) allows the transfer to terminate when an interface-dependent "END" signal is detected (such as

the EO! line on HP-IB). The terminating condition for buffer full is always in effect. If an ClI···1 E: ()'r
branch is enabled, the branch is taken when the transfer terminates.

If I 1"·1''1'' F: (Interrupt) is specified, the interface is automatically enabled to interrupt the computer each

time it is ready with a new character. The transfer continues to completion even though program

execution may have stopped. A 1.·.1 1:::1 I? 1"·1 I 1"·1 C; I U I is issued if the program stops with a transfer still

active. Be certain that the transfer has terminated (use I? E: ::::; [;:''1'', 1 .. ·1 fH ... T', or HE: C) I? T' I CI) before

attempting to modify the program. This transfer type (under ideal conditions) is capable of a maximum

data transfer rate of about 400 bytes per second.

If F·I .. ·I ::::; (Fast Handshake) is specified, the interface and computer are dedicated to the transfer until it is

complete. No interrupts of key presses (not even the lli@key) are detected until the transfer terminates.

If the computer "locks up" on a F' H ::::; ''1'' F: fH··1 ::::; FT:: F:, only a power-on or special interface-specific

termination (i.e., Interface Clear on HP-IB) can return the computer to its normal state. This transfer type

(under ideal conditions) is capable of data transfer rates in excess of20 000 bytes per second.

Related Statements

HE:C)F:T' I C)
C: (J [··1 ''1'' I:~: (J 1....

E:1··jTE:F:
I .. ·IHI....T·
I C)[: 1 .. .1 F'F'E:I?
C) 1"·1 E:C)'r
I? 1::::::::; 1:::: T'
::::;·rHT·I .. .I::::;

130 Appendix A: Syntax Reference

TRANSFER (out)

Example Statements

150 TRANSFER B$ TO 721 INTR
;:::: ::::: CI C) 1...1 T' F' 1...1''1'' E: ::\:: 1 .. .1 ::::; I 1",1 C; II :1:1:, 1< II [) ::\:: (!~I ''I'' I? f::II',1 ::::; F' E: I? E: ::\:: ''I'' C) ::::1 F 1"'1 ::::;
400 ON EOT S1 COSUS 660 @ TRANSFER X$ TO S1 INTR

Parameters
buffer-the name of a string variable that has been declared as an IOBUFFER.

device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1 of this manual), With HP-IB, and only a

select code specified, a multiple device transfer may be obtained,

Actions Taken
Takes data bytes from the specified buffer and sends them to the specified device, Data is taken from the

buffer according to the buffer empty pointer, If the device selector contains a primary address, addressing

is performed prior to sending the first byte, The interface's programmable end-of-line sequence is sent

after the last byte from the buffer has been sent, Note that the buffer may contain an additional carriage­

return/line-feed placed there by an () 1...1 T F' 1...1 T statement, The transfer terminates when the buffer is

empty, If C) 1",1 E: () ''I'' branching is enabled, the branch is taken when the transfer terminates,

If I 1",1''1'' F: (Interrupt) is specified, the interface is automatically enabled to interrupt the computer each

time it is ready for a new character, The transfer continues to completion even though program execution

may have stopped, A 1 .. ,1 f::II? 1",1 I 1",1 C; 1 CI:I. is issued if the program stops with a transfer still active, Be

certain that the transfer has terminated (use :::>'1" Fl'r 1...1 ::::;, F: [::::; [''I'', I .. H::II.. .. T', or f::II:::: () I? T' I CI) before

attempting to modify the program, This "I"I? f::II',1 ::::; F'E::I? type (under ideal conditions) is capable of a

maximum data transfer rate of about 400 bytes per second,

If 1:::'1"'1 ::::; (Fast Handshake) is specified, the interface and computer are dedicated to the transfer until it is

complete, No interrupts or keypresses (not even the ffiillJ key) are detected until the transfer terminates,

If the computer "locks up" on a F'I"'I ::::; ''I'' F: A 1'··1 ::::; FT: F\ only a power-on or special interface-specific

termination (i.e., Interface Clear on HP-IB or HP-IL) can return the computer to its normal state, This

transfer type (under ideal conditions) is capable of data transfer rates in excess of 20000 bytes per second,

Related Statements

f::, E: CII?r I CI
C CII··I T·I? CI i
1···1,:::, L .. T
I CI E: '..i r::. r::. E: I:;,:
CII···I E:CiT·
CI i...lT I:::' i..J T·
I? E: ~:::; E: ·r
'::; T H T·I...I~:::;

Appendix A Syntax Reference 131

132 Appendix A: Syntax Reference

TRIGGER

'r I:;:: I C; C; E: I:;:: device selector [, device selector] ...

Example Statements

70 TRIGGER 706,715 @ ENTER 706 V1
191] TI:;:: I GC;E:F: :;;;; 1

Parameters
device selector-a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1). If multiple devices are selected, they must

all be on the same interface select code.

Actions Taken
HP-IB: Must be Active Controller. Sends the Group Execute Trigger command (GET).

• If device selector is only an interface select code, interface sends the GET command. Those devices

already addressed to listen respond to the GET command.

• If device selector contains a primary address, interface sends Unlisten (UNL), then the Listen

Address (LAD) of the specified device(s). Sends the GET command (HP-IB leaves ATN true; use
F: E: ::;:; 1...11"'1 E: if you wish to set ATN false).

Serial, BCD, GPIO: Error.

HP-IL: Must be active controller. If the device selector is only an interface select code then the group

execute trigger (GET) message is sent. If the device selector includes a primary address then unlisten

(UNL), listen address (LADn) and group execute trigger are sent.

Related Statements

I:;::E:::;:;I".II'o'IE:
:::;; E: 1",1 [I

Appendix B

Maintenance, Service, and Warranty

Maintenance

The 110 ROM does not require maintenance. However, there are several areas of caution that you should

be aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions

may result in minor electrical shock hazard and interference with some pacemaker devices. Damage to

plug-in port contacts and the computer's internal circuitry may also result.

CAUTION: Always switch off the computer and any peripherals involved when inserting or removing

modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP Series 80

Personal Computer that you are using. Failure to do so could damage the module, the computer, or the

peripherals.

CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or

designed for another port. Attempting to force it may damage the computer or the module. Remove the

module carefully and reinsert it.

CAUTION: Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not

insert any objects in the contact holes on the ROM. Always keep the protective cap in place over the

ROM contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions

may result in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the ROM Drawer

Instruction Sheet or the HP Series 80 owner's manuals.

Service

If at any time you suspect that the ROM drawer or I/O ROM may be malfunctioning, do the following:

1. Turn the computer and all peripherals off. Disconnect all peripherals and remove the ROM drawer

from the computer ports. Turn the computer back on. If the computer does not respond or displays
E: t"' I'" 0 r ;;::: ::~: ~:::; E 1.... F T E ~::; T, the computer requires service.

133

134 Appendix B: Maintenance, Service, and Warranty

2. Turn the computer off. Install the ROM drawer, with the 110 ROM installed, into any port. Turn the

computer back on.

• If E I" I'" () I" :1.:1. ;:: I / CI ,:;: CI'" is displayed, indicating that the ROM is not operating properly,

turn the computer off and try the ROM in another ROM drawer slot. This will help you determine if

particular slots in the ROM drawer are malfunctioning, or if the ROM itself is malfunctioning.

• If the cursor does not appear, the system is not operating properly. To help determine what is

causing the improper operation, repeat step 2 with the ROM drawer installed in a different port,

both with the 110 ROM installed in the ROM drawer and with the 110 ROM removed from the ROM

drawer.

3. Refer to How to Obtain Repair Service for information on how to obtain repair service for the

malfunctioning device.

Warranty Information
The complete warranty statement IS included in the information packet shipped with your ROM.

Additional copies may be obtained from any authorized HP dealer, or the HP sales and service office

where you purchased your system.

If you have questions concerning the warranty, and you are unable to contact the authorized HP sales

and service office where you purchased your computer, please contact:

In the U.S.:

In Europe:

Other Countries:

Hewlett-Packard

Corvallis Division Customer Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330

Tel. (503) 758-1010

Toll Free Number: (800) 547-3400 (except

in Oregon, Hawaii and Alaska).

Hewlett-Packard S.A.

7, rue du Bois-du-lan

P.O.Box

CH-1217 Meyrin 2

Geneva

Switzerland

Tel. (22) 82 70 00

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.
Tel. (415) 857-1501

Appendix B: Maintenance, Service, and Warranty 135

How to Obtain Repair Service
Not all Hewlett-Packard facilities offer service for the HP Series 80 Personal Computer and its

peripherals. For information on service in your area, contact your nearest authorized HP dealer or the

nearest Hewlett-Packard sales and service office,

If your system malfunctions and repair is required, you can help assure efficient servicing by having the

following items with your unit(s) at the time of service:

1. A description of the configuration of the computer, exactly as it was at the time of malfunction,

including any plug-in modules, tape cartridges or other accessories.

2, A brief description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

General Shipping Instructions
Should you ever need to ship any portion of your computer system, be sure it is packed in a protective

package (use the original case), to avoid in-transit damage. Hewlett-Packard suggests that the customer

always insure shipments,

If you happen to be outside of the country where you bought your computer or peripheral, contact the

nearest authorized HP Series 80 dealer or the local Hewlett-Packard office, All customs and duties are

your responsibility.

Appendix C

Error Messages
II

Error Message Meaning Possible Corrective Action

:I. CI :1. ::·::F·F: This is only a warning. It is issued Before you modify or rerun the
when a program is paused with an I/O program, stop all active transfers with
transfer still active. Do not attempt to a F: E: ~:::; E: ''1'', 1 .. ·1 f::II.... "1', or HE: CII::::'r I C)
modify a program when a transfer is instruction; or press the (RESET) key.
active.

:I. :I. Ij I.- CI C: 1:::1 1::::[1 An interface has failed self-test. This ERRSC can be used to determine
indicates a probable hardware which interface has failed. Try
problem. recycling the power (turn computer

off, then back on again). If the
interface still fails, contact the
authorized dealer or the HP sales and
service office from which you
purchased your computer.

:I. :I. :I. I." C) C) I:::' E:I:::: The I/O operation attempted is not E: I:::: I:::: 1.... can be used to identify the
valid with the type of interface being improper statement. Check this
used. Some examples are: specifying statement in the Syntax Reference
a status or control register that does section to determine if it is defined for
not exist, using a primary address with the interface being used. If the
a Serial interface, or using an I/O statement is valid, check the
statement that is not defined for the appropriate interface owner's manual
interface being used. to get details on the proper mode or

configuration required for the
statement used.

:I. :I. ;::;: I." C) I:::: C) 1"1 The I/O ROM has failed the checksum Try recycling the power (turn the
self-test. This indicates a probable computer off, then back on again). If
hardware problem. the error keeps recurring, contact the

authorized dealer or the HP sales and
service office from which your
purchased your computer.

:I. :I. ... An interface-dependent error . E: I:::: I:::: ~:::; C: can be used to determine the
HP-IB: The statement used requires source of the error. Refer to the
the interface to be system controller. appropriate interface owner's manual
Serial: UART receiver overrun; data to get details on the error and possible
has been lost. corrective actions.
BCD: Attempting to put the interface
into an illegal mode.
GPIO: An odd number of bytes was
transferred when the interface was
configured for 16-bit words.
HP-IL: The Take Control (TCT)
message was ignored by the device.

137

138 Appendix C Error Messages

~------------------~----------------------------------~---------------------------------

Error Message Meaning Possible Corrective Action
~------------------4-----------------------------------~-------------------------------~--

:I. :I. '5

:I. :I. .?

:I. :I. C:

An interface-dependent error.
HP-IB and HP-IL: The statement used
requires the interface to be active
controller.
Serial: Receiver buffer overrun; data
has been lost.
BCD: Port 10 not currently available.
GPIO: F·I···I ::::;r I:::: 1:::11'·1 ::::; F' E: I:::: aborted
by STO.

E: I:::: I:::: ::::; C can be used to determine the
source of the error. Refer to the
appropriate interface owner's manual
to get details on the error and possible
corrective actions.

An interface-dependent error. E: I:::: I:::: ::::; C: can be used to determine the
HP-IB and HP-IL: The statement used source of the error. Refer to the
requires the interface to be addressed
to talk.
Serial: Automatic disconnect forced.
BCD: F·I···I ::::; 'r I:::: 1:::11"·1 ::::; F'I:::: I:::: aborted
by FLGB.
GPIO: Interface configuration does
not allow an output enable or output
operation on Port A or Port B.

appropriate interface owner's manual
to get details on the error and possible
corrective actions.

An interface-dependent error. E: I:::: I:::: ::::; C: can be used to determine the
HP-IB and HP-IL: The statement used source of the error. Refer to the
requires the interface to be addressed
to listen.
Serial: This error number not
currently used.
BCD: Data direction mismatch on
current operation.
GPIO: Cannot start operation
because handshake CTL line is not in
proper state.

appropriate interface owner's manual
to get details on the error and possible
corrective actions.

An interface-dependent error. E: I:::: I:::: ::::; C: can be used to determine the
HP-IB and HP-IL: The statement used source of the error. Refer to the
requires the interface to be non­
controller.
Serial: This error number not
currently used.
BCD: Interface command has been
directed to a non-existent field.
GPIO: This error number not
currently used.

An interface-dependent error.
HP-IB: This error number not
currently used.
Serial: This error number not
currently used.
BCD: Cannot start operation because
CTL line is not in the proper state.
GPIO: This error number not
currently used.
HP-IL: Protocol violation or loop
transmission error.

appropriate interface owner's manual
to get details on the error and possible
corrective actions.

E: I:::: I:::: ::::; C can be used to determine the
source of the error. Refer to the
appropriate interface owner's manual
to get details on the error and possible
corrective actions.

Error Message Meaning

An interface-dependent error.
HP-IB: This error number not
currently used.
Serial: This error number not
currently used.
BCD: Data format does not match the
mode of the interface.
GPIO: This error number not
currently used.
HP-IL: Addressed talker ignored the
start of transmission (SOT) frame.

Syntax error. A semicolon delimiter
was expected in the statement.

Either the interface select code
specified is out of range, or there is no
interface present set to the specified
select code. Interface select codes
must be in the range of 3 thru 10.
Select codes 1 (CRT) and 2 (internal
printer) are allowed for CII...I·r I:::' 1...1 T·
statements only.

The primary address specified is
improper. Only addresses 00 thru 31
are allowed, but not all interfaces use
this entire range.

Four possible buffer problems: (1)
The string variable specified has not
been declared as an I C) F: 1...1 F· F· F: I::::. (2)
Attempting to F: 1···I·r F: I:::: from a buffer
which is out of data. (3) Attempting to
C) 1 . ..I·r F' 1 . ..1 T· to a buffer which is already
full. (4) Attempting an output
T F: 1:::11···1 ~:::; F· F: F: with an empty buffer.

An incoming character sequence does
not constitute a valid number, or a
number being output requires three
exponent digits and an "e" format was
specified.

Appendix C: Error Messages 139

Possible Corrective Action

E:: I:::: 1:;;- ~:::; C: can be used to determine the
source of the error. Refer to the
appropriate interface owner's manual
to get details on the error and possible
corrective actions.

Put the semicolon where it belongs.

Be sure that the interface select code
is within the proper range. Pay special
attention to variables that are used to
hold interface select codes. If the
interface select code is OK, be sure
that the interface is plugged in
properly. Finally, check the switch
settings on the interface. (Someone
might have changed them last
weekend.)

Be sure that the primary address is
within the proper range. Pay special
attention to variables that are used to
hold addresses or device selectors.

Be sure you have included the
necessary I C) F: 1 • ..1 F· F· F: I:::: statement.
Check the logical flow of your program
(in what order the statements are
executed). Buffer contents can be
examined at any time by simply
printing or displaying the string
variable being used as the buffer. If
this doesn't provide enough
information, the buffer pointers can be
examined with the ~:::;·r 1:::I·r 1 . ..1 ~:::;

statement.

If the error is from an output
operation, check the magnitude of the
number and the format used. If the
error is from an input operation, there
are many possible causes. Here are
some things to look for: more than
255 leading non-numeric characters,
unexpected spaces in a character
stream when a character-count
format is used, punctuation
sequences that include potentially
numeric characters used in an order
that is numerically meaningless.

140 Appendix C: Error Messages

Error Message Meaning Possible Corrective Action

:1. ;::::::::: E: 1:::1 F: I "I' T'E:I?!"I A buffer was emptied before all the Check your incoming character
E: 1···I·r [: F: fields were satisfied, or a stream, E: rrrt:: F: list, and image
field terminator was encountered specifiers.
before the specified character count
was reached.

1;::::9 ',}HI? 'r\'F'E: The type (string or numeric) of a Check your E: 1···I·r E: I:::: list and image
variable in an E: r·j·r [F: list does not specifiers.
match with the image specified for
that variable.

:l :::;: () 1"·1 () 'rEF:I"-1 A required terminator was not Check your incoming character
received from an interface or buffer stream, EJ·rr E: F: list, and image
during an E rj T [I:::: statement. specifiers.
Remember that there is a default
requirement for a line-feed statement
terminator.

I 1'1 I II

EQUIVALENT FORMS
Char. Binary Octal Dec

" @' 00000000 000

A' 00000001 001

B' 00000010 002

C' 00000011 003

D' 00000100 004

f; E' 00000101 005

r F' 00000110 006

!, G' 00000111 007

H' 00001000 010

I' 00001001 011

o
1

2

3

4

5

6

7

8

9

J' 00001010 012 10

K' 00001011 013 11

!' L' 00001100 014 12

M' 00001101 015 13

! N' 00001110 016 14

! 0' 00001111 017 15

I, P' 0001 0000 020 16

Q' 00010001 021 17

R' 00010010 022 18

" S' 00010011 023 19

" T' 00010100 024 20

U' 00010101 025 21

V, 00010110 026 22

W'00010111 027 23

X, 00011000 030 24

Y' 00011001 031 25

!, Z' 00011010 032 26

8" [, 00011011 033 27

'! ,-' 00011100 034 28

J' 00011101 035 29

! A' 00011110 036 30

_' 00011111 037 31

lilll

Appendix D

ASCII Character Set

EQUIVALENT FORMS
Char. Binary Octal Dec

SPACE 00100000 040 32

33

34

35

36

37

38

I 00100001 041

" 00100010 042

00100011 043

.t 00100100 044

00100101 045

00100110 046

o
1

':

00100111 047 39

00101000 050 40

00101001 051 41

00101010 052 42

00101011 053 43

00101100 054 44

00101101 055 45

00101110 056 46

00101111 057 47

00110000 060 48

00110001 061 49

00110010 062 50

00110011 063 51

00110100 064 52

00110101 065 53

00110110 066 54

00110111 067 55

00111000 070 56

00111001 071 57

00111010 072 58

00111011 073 59

00111100 074 60

00111101 075 61

00111110 076 62

00111111 077 63

141

EQUIVALENT FORMS
Char. Binary Octal Dec

I~

A
E:

C
[I

E
F
I::;

H
I

T
II

I.'.:

[

]

01000000 100 64

01000001 101 65

01000010 102 66

01000011 103 -67

01000100 104 68

01000101 105 69

01000110 106 70

01000111 107 71

01001000 110 72

01001001 111 73

01001010 112 74

01001011 113 75

01001100 114 76

01001101 115 77

01001110 116 78

01001111 117 79

01010000 120 80

01010001 121 81

01010010 122 82

01010011 123 83

01010100 124 84

01010101 125 85

01010110 126 86

01010111 127 87

01011000 130 88

01011001 131 89

01011010 132 90

01011011 133 91

01011100 134 92

01011101 135 93

01011110 136 94

01011111 137 95

EQUIVALENT FORMS
Char. Binary Octal Dec

h

"

F

I,'

'01100000 140 96

01100001 141 97

01100010 142 98

01100011 143 99

01100100 144 100

01100101 145 101

01100110 146 102

01100111 147 103

01101000 150 104

01101001 151 105

01101010 152 106

01101011 153 107

01101100 154 108

01101101 155 109

01101110 156 110

01101111 157 111

01110000160112

01110001 161 113

01110010 162 114

01110011 163 115

01110100 164 116

01110101 165 117

01110110 166 118

01110111 167 119

01111000 1 70 120

01111001 171 121

_ 01111010 172 122

llC2} 01111011 173 123
!
!

~~" ::::: • ,s

f- + '

01111100 174 124

01111101 175 125

01111110 176 126

01111111 177 127

142

Notes

143

Notes

144

Notes

Reorder Number
00087-90121

Flio- HEWLETT
a!~ PACKARD

Personal Computer Division
1010 N.E. Circle Blvd., Corvallis, OR 97330 U.S.A.

Printed in U.S.A. 1/8:
00087·9026

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

