~
1

£

Vi

ALS -

HEWLETT-PACKARD

I/0 ROM

OWNER’S MANUAL

SERIES 80

Printed in U.S.A.

A ciciaro

I/0 ROM

Owner’s Manual

Series 80

January 1983

00087-90121

Hewlett-Packard Company 1983

Contents

Section 1: AnIntroduction to I/ ...t i i i i i i it 3
1 4 o Yo T T 4 o o A 3
Installing the /O ROM ettt a e e a s 3
Removing the l/0 ROM it i it i e ittt et ettt it innenararansnoos 4
Thedobof aninterfacettt it i it e i e 5
Printing to Peripheral Devicesot ittt 8

Section 2: Simple I/0 Operationsc.cvuiiiiiiiiiiii i 9
Introduction
Using Simple
Using Simple &1

Section 3: Formatted I/O Operationso ittt i, 13
Introduction 13
Formatted [1i.iTF 13
Formatted x| S A 18
Advanced Use of Terminator IMagesv.urirertrineeernnerereninertesiaisieeens 21
AWord of Advice Aboutimages i e 24
Converting 1/0 Data . ..ottt i it e e e e e e e e 25

Section4: ErrorHandling ... 29

Section 5: Specialized Transfersco.ovvueiiiiitiiiriearirirnneiinineins 31
L0 (o[0T (T o T 31
USIiNg BUFf@rs ...t i it e e e e e e e e 36
(D12) € T T E=] (=Y o N 40

Section 6: End-Of-LineBranching ..., 45
Some Background ON INtermUPS ...ttt ettt et iein e eenane st eennnes 45
End-of-Line Branch Programmingvuerururuirsrerenerinnniiannnannnnirinnns 45

Section 7: Keyboard Controlovuiiiiiiiiiii i iiiaiiiia s 55
a4 e o [Lo 4o o T e 55
Key Mask Programmingttt it et e it ittt 55

Section 8: Direct Interface Communication 59
T} (o T LU To] (o) o U O 59
Checking the StatUust i i i ettt it een et enans 59
Interface Control ... i it i e ittt i e 61

Section 9: Additional /0 Commands ...ttt i 63
Interface-Dependent StatemMeENTSottt rne it ioeenrenenerarenarorsens 63

The BT 1511 12 S S 63
LT, AR T T, and B T e e e

Bus-Controlling Functions ..

Section 10: Binary Functionsottt 65
] 4o Yo [FTo1 €] o N 65
REVIEW Of BaSE 2 .. ittt it i ettt ittt e e e 65
Review of Logical Operationscouviruinerererenererenireetinsererannnoeciorons 66
The Binary AND FUNCHION ittt ittt it ittt ie ettt tre i eaatensannaannans 69
The Binary Inctusive QR FUNCLION it it it ie i tieatierine s 69
The Binary Exclusive OR FUNCHIONttt iii ettt iae e 69
The Binary Complement FUNCHIONo ittt it iir e ieernoaieennenenenenens 70
The Bit Test FUNCHION i it ittt ettt tee et 70

Section 11: Base ConversionFunctions ...t 73
L 0T [0 Tt 401 o N 73
Review of Alternate Representationsuetetitinererennerereraneetenseereronans 73
Conversions From Base 10toan AlternateBase ..ottt iiernnnnennens 74
Conversions From an Alternate BasetoBase 10ottt 75
Converting From One Alternate Baseto Another 0. ittt 76

Appendix A: Syntax Referencet 77

Appendix B: Maintenance, Service, and Warranty 133

Appendix C: Error MeSSageso.viviirtiuiiiiiiiiiiiiiiiiiirananeaanas 137

Appendix D: ASCIICharacter Setcociiiiiiiiiiiiiiiiiiiiiiiiaineien., 141

DS T O e
Section 1
An Introduction to 1/0

- TR LT

e e — e

Introduction

The power of your HP Series 80 Personal Computer is greatly extended by its ability to monitor and
control external events. 1/0, which stands for Input/Output, refers to this process of interaction between
the external, or peripheral, device and the computer. There are several interfaces available so that
practically any device designed for computer control may be attached and thus monitored and controlled.

When the computer is monitoring an event it is said to be the listener and it receives a message from the
talker or source. This data message is referred to as Input. When the computer is controlling, on the other
hand, it is the source and the peripheral device that it is talking to is called the destination. In this case,
the message is considered Output.

The process of transferring data can become rather involved, depending on the type of peripheral and the
application. Fortunately, a thorough understanding of interfacing techniques is not necessary to be able
to utilize the I/0 ROM with your computer; hence, for maximum effectiveness, this manual is arranged
into three parts:

1. getting started with I/O—how to make use of simple IO features quickly and easily (sections 1-3);

2. undertaking more complex I/0 operations—understanding the full capability of I/O ROM interface
commands (sections 4-10);

3. appendices—references and useful information in condensed form.

Sections 1 through 3 are adequate to explain operation of the printer interface. Also, a number of examples are
presented in the HP 82949A Printer Interface Owner’s Manual. If you intend to use one of the additional inter-
faces it is recommended that you become familiar with the additional flexibility of the I/O ROM as presented in
sections 4 through 10. The owner’s manuals for the Serial, HP-IB, GPIO, BCD, and other interfaces will then
provide detailed instructions for each particular interface.

This manual covers both the I/O ROM for the HP-85 and HP-83 (part number 00085-15003) and the I/O ROM
for use with the HP-87 and HP-86 (part number 00087-15003).

Installing the /O ROM

Use of the I/0 ROM requires an HP 82936 A ROM Drawer. The ROM Drawer is a plug-in module that
contains six rectangular slots for individual plug-in ROMs. Any HP Series 80 ROM will fit in any of the
six positions in the ROM Drawer.

The HP Series 80 Personal Computer has four ports located in the back. These ports are used to hold extra
memory, option ROMs, and interfaces. The I/O ROM should be installed in a ROM Drawer, which is then
installed in one of the computer ports.

4 Section 1: An Introductionto |/0

CAUTION
Do not remove or install the ROM Drawer or any plug-in module while the computer power is switched
on. Failure to switch off the computer power may cause damage to the module or the computer.

The installation procedure is as follows:

1. If the ROM Drawer is already plugged into the computer, TURN OFF power to the computer and
remove the ROM Drawer.

2. Remove the plastic cover from an empty ROM socket by inserting the eraser end of a pencil into the
circular hole on the underside of the cover.

3. Align the ROM so that its chamfered end matches the chamfered end of the socket. Press the ROM
lightly into the socket until it is even with the top of the ROM Drawer.

4. With the ROM labels facing up, press the ROM Drawer firmly into one of the ports in the back of the
computer. The port and module are keyed so that the ROM Drawer cannot be installed upside down.

Removing the /O ROM

The procedure to remove a ROM is as follows:
1. TURN OFF power to the computer.
2. Remove the proper ROM drawer.

3. Turn the drawer over and remove the ROM by using a pen, pencil, or small screwdriver to push
gently through the hole underneath the ROM.

Section 1: AnIntroductionto /0 5

The Job of an Interface

An interface is the hardware link that is needed to allow efficient communication with peripheral devices.
The job of an interface is to provide compatibility in four major areas. These are:

¢ Mechanical Compatibility
¢ Electrical Compatibility
e Data Compatibility

¢ Timing Compatibility

The following diagram shows the basic hardware components of an interface in its position between the
computer and the peripheral device.

Interface Functional Diagram

| HP 1/0 Data , [|
Translator Processor K 3 |
L (IC) <77 7y (including [. Lines ~ .
Computer k —_ » C O interrupt 1.t Appropriate | Peripheral |
; C /} ; and Control N L’; Connector ‘ Control, | Device ‘
L,,, . : } Logic and] lines !
j Drive-
‘ ‘ ~ Receiver ‘
L o Hardware) ‘
Lot
1] |
L 1
| | \
‘ Select i
Code

! Switches J

Mechanical and Electrical Compatibility

Mechanical compatibility simply means that the plugs and connectors must fit together. The HP 829XX
Series plug-in modules are designed to be mechanically compatible with your computer. Certain
interfaces, like HP-IB, are always mechanically compatible with their peripheral devices. Other
interfaces, like the 16-bit parallel interface (GPIO), are supplied without peripheral connectors. In these
cases, it becomes your responsibility to install a mechanically compatible connector. If you need to do
this, study the owner’s manual supplied with your interface. Electrical compatibility means that the
interface must change the voltage and current levels used by the computer to those used by the peripheral
device. The Translator IC used in each interface and the Drivers and Receivers insure that all HP
interfaces are compatible with the computer, and usually compatible with the peripherals. If you have
questions about electrical compatibility with your peripheral device, study the interface owner’s manual
and the peripheral device documentation.

6 Section 1: An Introductionto /0

Data Compatibility

Mechanical and electrical compatibility alone do not guarantee that the computer and peripheral device
will be able to communicate. Another requirement is that both devices must understand the data being
sent by the other. Just as two humans who do not speak the same language need a translator, messages
between the computer and the peripheral device may require some form of translation. The computer,
with its versatile programming capability, usually performs this function. However, this job is sometimes
given to the interface. The BCD interface is one example of giving the translation process to the interface.
To handle those cases where the computer performs the data translation or conversion, the I/O ROM
provides a wide variety of special functions and conversion capabilities. These capabilities are covered in
subsequent sections of this manual.

Timing Compatibility

Computers and their peripheral devices have such a wide range of operating speeds that an orderly
mechanism is required for successful transfer of data. This timing mechanism is referréd to as
handshake. Although there are different varieties of handshake, the basic sequence can be summarized
as follows:

1. Thereceiver signals that it is ready for an item of data, then waits for a signal from the sender that
the data is available.
2. The sender outputs an item of data and signals the receiver when the data is available.

3. When this “data available” signal is recognized, the receiver inputs the data and signals that it is
busy with this input operation.

4. The sender waits until the receiver is ready before it makes a new item of data available. When the
4 receiveris ready, this process repeats.

The following simplified diagram further illustrates the general concept of handshaking.

“|'am ready for data”

A

“The data is valid now”

Y

Source + Destination
Handshake Lines

Data Lines >

The I/ O Processor is a component of each interface, which is itself a microcomputer. It is supplied with a
small set of programs limited to data conversion and handshake management routines. Through the use
of various commands available with the I/O ROM, the I/O Processor can be reconfigured to perform
several different types of handshake operations.

Section 1: AnIntroductionto /0O 7

Choosing the Source or Destination

To send someone a message through the mail, you must specify their address before the post office will
even attempt delivery. So it is when you want to communicate with peripheral devices. The device with
which you want to communicate must be specified within your program. This selection process is called
addressing. The HP Series 80 Personal Computer addresses its peripheral devices through the use of a
device selector in the I/0O statements. Choosing the proper device selector depends upon the interface used
and the way it is used. The following two discussions detail the two types of device selectors.

Using Interface Select Codes

If you are not using an HP-IB interface, and you have only one device connected to the interface, the
device selector can be simply the select code of the interface. An interface select code is analogous to a
house number in a mailing address. It is a number between 3 and 10 (inclusive) that identifies the
interface. Each type of interface is set to a different select code at the factory. The following table
summarizes these factory settings.

HP Part Number Name Select Code Setting
82937A HP-I1B 7
82938A HP-IL 9
82939A Serial 10
82940A GPIO (Parallel) 4
82941A BCD 3
82949A Printer 8
82950A Modem 10

Note: For electrical reasons, you must never plug in two interfaces that are set to the same select
code.

Serious electrical conflicts can result if the interfaces and select codes do not correspond uniquely. In
other words, if there are two interfaces present with the same select code, neither one of them will work.
As you can see from the preceding table, the factory settings prevent this from happening unless you are
using two interfaces of the same type. If you need to use two interfaces that came with the same factory
setting, you must change the select code on one of them. The procedure for changing a select code is
covered in the owner’s manual for your interface. Follow its instructions carefully.

Using a Primary Address

If you are using an HP-IB interface, or if you have more than one device connected to an interface, the
device selector is a 3-digit or 4-digit number formed from the interface select code and a primary address.
This method of addressing is like mailing a letter to someone in an apartment building. Giving the street
address will get the letter to the right building, but you still need to specify an apartment number to get
the letter to the final destination. When a primary address is used, it is analogous to the apartment
number. It identifies a specific device to be selected from a group of devices serviced by one interface.
Some examples:

e A device selector of 721 specifies device 21 on interface 7.
o A device selector of 301 specifies device 1 on interface 3.

e A device selector of 1002 specifies device 2 on interface 10.

8 Section 1: AnIntroductionto /0

Printing to Peripheral Devices
One of the simplest ways to direct the computer’s output to a peripheral device is the FFRITHTEFR %
statement. The I/0O ROM provides the capability of printing to external devices by using statements such

as FRIMTER 1% 4 or FRIMNTER I5 T2EA, Any valid device selector can be used with the
FRIMTER 1% statement. The same holds true for the [T 1% statement.

The FFIHTER 1% device is the destination for the output from all FF I HT and FL. [% T statements.
The FT [% device is the destination for the output from all [J I 5F L. 1% 7T, and UH T statements, as

well as all “Error” and “Warning” messages. When programs are listed to a peripheral device, each
program line is output as a single string. For the HP-85 this means that there is no indenting or 32-
character wraparound as occurs when listings are done on the internal printer or CRT. FF [T and
[11 %F both print out with the default line length set by the computer. To extend the line length or utilize
more elaborate formatting you will need to explore the next two chapters. If, on the other hand, your only
I/0 requirement is to direct program listings or the output from FFIMT statements to an external
device, you need not read any further. Simply connect the desired interface and include the appropriate
FRIHTER 1% statement in your program.

A A

T

R ==

Section 2

Simple I/0 Operations

S e 222

1

e

e

Introduction

Section 1 talked about performing output operations with FFIMTEFR T% and FFIMT statements.
Although this simple technique is very handy, it falls short of the mark in many circumstances. The most
obvious shortcoming is that there is no corresponding ¥ i W ECIFFRE I % statement to allow input from
external devices. Even when output is the only desired operation, it can be very inconvenient re-
specifying the FEIMTER 1% device all the time when a program communicates with multiple
peripheral devices.

FHTER statements. These statements are the core of I/0 operations. They are usually the fastest and
easiest ways of getting data from the source to the destination in its final form. Many applications require
no more than the proper use of [ILI TFLIT and E i TEF.

Simple DI TFLIT and FHTEF statements (as described in this section) use ASCII representation for all
data. ASCIIstands for American Standard Code for Information Interchange. It is a commonly used code
for representing letters, numerals, punctuation, and special characters. The ASCII code provides a
standard correspondence between binary codes that are easily understood by the computer and
alphanumeric symbols that are easily understood by humans. A complete list of the characters in the

ASCII set and their code values is included in appendix D.
When special formatting is desired or when binary code is handled directly without using ASCII

representation, the LI TFLIT LIS THG and EMHTER 115 IHEG forms are very convenient. These forms
are discussed in section 3.

Using Simple OUTPUT Statements

A simple LU TF1IT statement can be used anywhere that a simple [F IHT statement is proper. The

Notice that a semicolon is used to separate the device selector from the output list, and commas or
semicolons can be used to separate items within the output list. Items in the output list may be numeric
variables, numeric constants, string variables, or string constants. A Carriage Return/ Line Feed (End of
Line sequence) is output after the last item in the output list.

9

10 Section 2: Simple 1/0 Operations

The difference between using a comma and a semicolon to separate items in the output list is the spacing,
or field of the items. The simple LI TFLIT statement uses the same field as the i i T statement. The
semicolon calls for a compact field, while the comma produces free field. These fields are summarized in

the following table.
Numeric Data String Data
Compact Field | Digits of the number are output, preceded Characters of the string are output with no
; by a space (if plus) or a minus sign {if leading or trailing spaces.
(semicolon) minus), and followed by one space.
Free Field Digits of the number (with leading space or Characters of the string are output with no
, minus sign) are output left-justified in a field | leading spaces and no more than 20 trailing
{comma) of 11, 21, or 32 characters. Trailing spaces spaces.
are output as necessary to fill the unused
portion of the field.

The actual field width is determined by the same process used when items are output with the PRINT
statement. Therefore on the HP-85, the computer pretends that it is displaying items on the CRT and sets
a field width that would cause items to start in column 1 or 22 of the 32-column display. On the HP-87 the
items will start in columns 1, 22, 43, or 64 of the 80-column field. If this is an undesirable format, you may
need to separate items in the output list with semicolons or use formatted output as explained in the

following section.

Using Simple ENTER Statements

A simple EHTE R statement can be used anywhere that an [MFLIT statement is proper. The M TE
statement contains the device selector of the source device and a list of items to be entered. Remember that
T HFI1T statements always use the keyboard as the source and contain no device selector, while £ 1 T E F
statements always use a peripheral device as the source and contain the device selector of that device.

Here are some examples of properly formed i1 T E | statements:

EMTER
EMTER %1
EMER FEE
EHTER 1B 0 Aoly BO3, HE

HEE T

Notice that a semicolon is used to separate the device selector from the enter list and commas are used to
separate items within the enter list. Items in the enter list may be numeric variables or string variables.

To use the I TEF statement effectively, it is important to understand what constitutes the beginning
and ending of an entry into a variable. The simple E M TEF statements just shown use a “free field
format” for processing incoming characters. This format operates differently with string and numeric
data.

Entering Numeric Data

The computer enters numeric values by reading the ASCII representations of those values. For example,
if the computer reads an ASCII “1”, then an ASCII “2”, and finally an ASCII “5”, it places the value one
hundred twenty five into a numeric variable.

Section 2: Simpie |/0 Operations 11

Understanding the process that the computer uses to read a free field number can help you remove much
of the mystery from I/0. Suppose your program has the statement:

EHTER 2 & =%

Now assume that when this statement is executed, the following character sequence is received through
the interface at select code 3:

TIU|E|[S;D|{A]|Y DIE]|C 1] 1f , 1197719 |er|lf

The computer ignores all leading non-numeric characters, so the “TUESDAY DEC” characters do
nothing. Then the “11” is read. Once the computer has started to read a number, a non-numeric character
signals the end of that number. Therefore, the comma after the 11 causes the computer to place the value
eleven into X and start looking for the next value. The space in front of “1979” is ignored and the
computer reads the “1979”. The carriage-return character causes the computer to place the value nineteen
hundred seventy nine into variable . Finally, the computer keeps reading until it finds a line feed
character. This terminates the £ T % statement, so the computer goes on to the next program line with
Ael L and el BV,

The process just described can be easily summarized. When entering numeric data using free field format,
the computer:

1. Ignoresleading non-numeric characters.
Ignores all spaces—leading, trailing, or imbedded.

Uses numeric characters to build a numeric value.

L

Terminates the building of a value when a trailing non-numeric character is encountered.

5. Inputs characters until a line feed character is encountered.

The discussion so far has referred to numeric and non-numeric characters without being specific. The
digits O thru 9 are always numeric characters. Also, the decimal point, plus sign, minus sign, and the
letter E can be numeric if they occur at a meaningful place in a number. For example, assume that the
following character sequence is read by an 2 M T [statement:

—|—{T|E|S|T 1 (2. [6]E|—] 3

If a numeric value is being entered, the leading minus signs and the E in “TEST” will be ignored. They
have no meaningful numeric value when surrounded by non-numeric characters. However, the characters
“12.5E — 3” will be interpreted as 12.5 X 1073, In this case, the minus sign and the exponent indicator (E)
occur in a meaningful numeric order, so they are accepted as numeric characters.

Entering String Data

The computer enters string data by placing ASCII characters into a string variable. The process used for
free field entry is straightforward. All characters received are placed into the string until:

1. The string is full or,
2. Aline feed character is received or,

3. A carriage return/line feed sequence is received.

12 Section 2: Simple |/0 Operations

Assume that the computer is executing the statement:

EMTER 4

The following character sequence is received:

H(E[L|(L]|O|[lf|e | |T|H|[E|R|Ejecr|lf

The letters “HELLO” are placed into ¥ when the first line-feed is encountered. Note that the line-feed
itself is not placed into M #¥; it acts only as a terminator for the entry into F1#. Then the entry into & #
begins. However, a carriage return/line feed sequence is read immediately. This terminates the entry into
¥
Next, the entry into I # begins. The characters “THERE” are placed into ", terminated by the carriage

[%#. Since neither the carriage return nor the line feed is placed into %, k¥ becomes the null string.

return/line feed following those characters. With the enter list now satisfied and a line feed detected at the
end of the data, the computer will go on to the next program line.

Note that carriage return characters are only ignored when they are immediately followed by a line feed
character. If a carriage return is received and not followed by a line feed, the carriage return is placed into
the string.

Another example can be used to show termination on a full string. This time, suppose the program
contains the following statements:

I
EHTER 4 & =%

The following characters are sent to the computer:

BIO|Y|C|O|{T|T}|er|lf

The computer places the characters “BOY” into ¥, which fills the dimensioned length of 3. Then the
computer continues to read the incoming characters until a line feed is encountered. At that time, the

RO

EHTEFR statement is completed, and the computer goes on to the next program step with i ¥ =

L e L AL

Section 3

Formatted I1/0 Operations

A L v

e

g
§£

4
o
e
&

Introduction

Although free-field format works well for some I/0 situations, there are times when more control over
format is necessary. Perhaps the data is some binary pattern which has nothing to do with ASCII, or a
line-feed terminator is not wanted or expected, or a column of numbers with the decimal points in line is
desired, or numbers with only two exponent digits instead of three are required. There is a wide variety of
reasons for desiring format control during I/0 operations.

The format of information sent or received through interfaces is controlled by the use of image specifiers.

These image specifiers can be placed in an image statement or can be included directly in an CILITFLIT or
ERTEFR statement. This section of the manual provides details on the meaning and use of image
specifiers.

Formatted OUTPUT

An output image can control all major characteristics of output data, including spacing, appearance of
the field, form of data representation, and use of end-of-line sequences. The computer uses an output

image when some form of the [HLITF LT Li% [1Hi{: statement is encountered. There are three forms of this
statement:
1. 18 ITMAGE <outputimage>
S DHTFUT gs S THG 1E 2 <output list>
2. DITHFIUT ds LIz THG <output image> @ <output list>
3. 18 FHAT: THAGE <output image>
SECDUTRUT gs LIS THG FMAT) <output list>
The examples above show the general forms of the UiLI TF LT 115 T HiE statement. Here are some specific
examples:

FELOLETHG 28
LR THG ", B 1 =

s TG oD Dot oy TaOl
FLELTLL WUETHG T 0 HE A

In the general forms, the ds stands for “device selector”. Device selectors are explained in Section 1. The
symbol <output image> represents a proper list of image specifiers. The image specifier list may be a
literal enclosed in quotes or the name of a string variable which contains the specifier list. The specifiers
within the list must be separated by commas. The list of items to be output is shown by <output list>. It
does not matter whether you use commas or semicolons to separate items within the list. All spacing is
controlled by the image specifiers, so a semicolon has the same effect as a comma.

13

14 Section 3: Formatted /0 Operations

Numeric Images

The image specifiers in this group are used to control the form of numbers which are output. Most of these
image specifiers are the same as the i [[T image specifiers that may already be familiar to you. Since
there are many numeric images, these specifiers are broken down into three categories in the following
discussion. The categories are digit characters, sign character, and punctuation characters.

Digit Characters

These are the image specifiers which form the digits of the number. They allow you to determine the
number of digits before and after the decimal point, display or suppress leading zeros, and control the
inclusion of exponent information.

Image

Specifier Meaning

LA Causes one digit of a number to be output. If that digit is a leading zero, a space is output instead.
If the number is negative and no sign image has been provided, the minus sign will occupy one
digit place. If any sign is output, the sign will “float” to a position just left of the left-most digit.

= Sameas ''[1", except leading zeros are output.

kS Sameas ''[1", except leading zeros are replaced by asterisks.

k. Causes the number’s exponent information to be output. This is a 5-character sequence
including the letter " ["', the exponent sign, and three exponent digits.

i Sameas "I "', except only two exponent digits are output.

Causes the number to be output in compact format. No leading or trailing spaces are output.

Sign Character

These are the image specifiers used to control the output of sign information. Note that if no sign specifier
isincluded in the image, negative numbers will use a digit position to output the minus sign.

Image

Specifier Meaning

b Causes the output of a leading plus or minus sign to indicate the sign of the number.

i Causes the output of a leading space for a positive number or a minus sign for a negative
number.

Punctuation Characters

These are the image specifiers used to control the output of punctuation within a number, such as the
inclusion of a decimal point.

Image

g Meanin
Specifier eaning
, Causes an American radix point to be output (a decimal point).
= Causes a European radix point to be output (a comma).

L Usually placed between groups of three digits. Causes a comma to be output to separate the
groups of digits (American convention).

F Same as "i.", except a period is used to separate the groups of digits (European convention).

Section 3: Formatted /0 Operations 15

The following examples show some of the ways of combining these specifiers and the resulting output
when numbers are sent to a typical printer. Additional examples may be found in the “Printer and
Display Formatting” section of the Series 80 owner’s manuals and programming guides.

Example Statement Printed Output

FELT

CHITRUT
QUTHFUT
CLITFLET D (Overflow Error)
QLITFUT NN
CLITEUT EE DD
R D
OUTFLT rECOnE"
CHTEUT PELOIe "
CLTELT PEL DD
CHITELT DETHG "M Dle

Notice in these examples that the image " : 2" and theimage " " mean the same thing. The same

is true for the " [1" and " #" specifiers. You can indicate the number of digits desired by simply placing

that number in front of the specifier. The use of parentheses, asin " . [11"

, means something different.
The image means “output one numeric quantity in a three-digit field”. The image "3t {l12"

means “output three numeric quantities, putting each one in a 1-digit field”.

Be careful of overflow conditions when using these image specifiers. An overflow occurs when the number
of digits required to accurately represent a number is greater than the number of digits allowed for in the
image. If this happens, a warning is issued and something is output so that the program can continue.
However, exactly what is output is difficult to predict and will probably bear little or no resemblance to
the number that caused the overflow.

String Images

The image specifiers in this group deal with the output of string characters. They can also be used in
combination with the numeric image specifiers for spacing and labeling purposes. All of these image

specifiers are the same as [| M T image specifiers that may already be familiar to you.
Image .
Specifier Meaning
Fi Causes the output of one string character. If all the characters in the current string have been

used already, a trailing blank is output.

"“literal" | A literalis a string constant formed by placing text in quotes, or by using the :HF ¥ function, or
a combination of the two. The character sequence specified is output when a literal image is
encountered. When the literal is enclosed in quotes, the quote marks themselves are not output.
Literal images are commonly used for labeling other output. Literal images cannot be placed

desired.

Causes the output of one space.

k. Causes the string to be output in compact format. No leading or trailing spaces are output.

16 Section 3. Formatted |/0 Operations

The following examples show some of the many ways of using these specifiers and the resulting output
when the characters are sent to a typical printer. Additional examples can be found in the “Printer and

Display Formatting” section of each of the HP Series 80 owner’s manuals.

Example Statements Printed Output

1 ::,:r H 1 "I" 1 L
1]...I }

R B e A

T, R TOTAL = 185 CARS

Notice that the " /" and " F" image specifiers allow a number before them in the same fashion as the
st tEY and " Y specifiers. the "k specifier works equally well with string data or numeric data.
String and numeric image specifiers can be combined in the same image statement. If literal (string

constant) images are desired, they must be placed in an I [1Fi:E statement.

Binary Images

These image specifiers are not available without the I/O ROM, so they may not already be familiar to
you. These images are used to cause information to be output as one or two binary bytes, rather than as a
character representation. Sections 10 and 11 of this manual explain the details of binary (base 2)
representation. If you are unfamiliar with binary numbers, it is suggested that you read section 9 before

trying to use the binary image specifiers.

The items to be output using these images must be numbers in the proper range. If a value to be output is
not an integer, it will be rounded to the nearest integer before being sent as a binary value.

Image .
Specifier Meaning

s Outputs a value as a single 8-bit byte. The value must be in the range of O thru 255. If the value
to be output is out of range, the value modulo (256) is output.

k Outputs a value as two 8-bit bytes comprising a 16-bit word. The most significant byte of the
word is output first, followed by the least significant byte. The value to be output must be in the
range of —32,768 to +32,767. Negative numbers are output in 16-bit 2’s complement form. If
the value to be output is out of range and positive, 32,767 is output. If the value is out of range
and negative, —32,768 is output.

Example Statement Interface Output, Bit Pattern
CHITHUT A 01111111
CLITHUT gt 00000011
CLTELT oy 00000000 00000011
CHETFLT [T R 1 11111111 11111111

Note that specifying a binary image does not automatically suppress the end-of-line sequence after the
last byte is output. Therefore, in the examples just given, the bit pattern shown is output followed by a

carriage return/line feed.

BCD interface users should note that “B” and “W” specifiers do not work with the HP 82941A BCD
Interface. See the BCD Interface Owner’s Manual for specific formatting examples.

Section 3. Formatted | /O Operations 17

End-of-Line Sequence Images

These image specifiers control the output of end-of-line sequences. An end-of-line sequence is one or more
characters that is normally output after the last item in an output list, and/or a signal on an interface
wire concurrent with the last byte output. Exactly which sequence or signal is used depends upon the
programming of the interface responsible for the output. See your interface owner’s manual for more
details. If your program does not change the end-of-line sequence in the interface, the default is a 2-
character sequence; a carriage return followed by a line feed. The following images do not alter the
end-of-line sequence. They simply control whether or not it is output.

Image

Specifier Meaning

Causes the output of an end-of-line sequence. Often used for skipping lines in a printout.

Suppresses the output of the final end-of-line sequence. This specifier is frequently used with
binary image specifiers to prevent the destination device from interpreting the end-of-line
characters as binary data.

The " "' may be placed anywhere in the image list and may have a number before it to indicate how
many EOL (end-of-line) sequences are desired. The " # " must be the first item in an image list and can
only be specified once. Note also that the " # " only suppresses the EOL sequence that would ordinarily
occur after the last item in the output list. It does not suppress any imbedded EOL sequences caused by
the " .- ' specifier.

A typical use of the " # " image is to output one byte, and only one byte. The following statement does
this:
CHITFUT s LEETHG ", B 0w

This statement outputs the binary representation of with no carriage return, line feed, or any other
potentially unwanted bit patterns.

A typical use of the "' " image is shown by the statement:

CHITFUT F@d s IHG "Eods 1Y 0 FAE B
If the destination is a printer, i ¥ is printed, followed by three blank lines, then i is printed. If
FE="HIT" and B ¥F=" 01" the character sequence output looks like this:

H| I |cecx|If Jer |If |exr |If Jer |If | J] O|E |er |If

The " # " image specifier is unique to the I/0 ROM. Its power is shown in the following example where
repetitions of the ' I M T statement cause printout on the same line.

T3
SIMG "HLSeR" o UDO0EY

1

s TG "aar o onot

E I
Doy [

18 Section 3: Formatted |/O Operations

Formatted ENTER

Using EH TEF statements with image specifiers gives you a high degree of control in two areas:

1. Accurately describing to the computer what the incoming data looks like and what should be done
with it.

2. Precisely specifying what condition(s) constitutes the end point of an entry to a variable and the end
point of the E I T EF statement itself.

This discussion deals with data formatting images first, then presents the terminator images. The HP
Series 80 Personal Computer uses an F T EF image when some form of the E M TEF LIZ T HI: statement
is encountered. There are three forms of this statement:

&
E]

1 <enter list>

2. EMTERds LIz ITHG <enter image> : <enter list>

3 i@ LBl B <enter image>*
SEOEMTERG LS ITHEG LEL <enter list>

The examples above show the general forms of the EMHTEF L% THE: statement. Here are some specific

examples:

LB THMAGE 20R3 K
2B FMTy ITMAGE S0, 2, 30

COFEBEE, R
JGOFET o T,

L 2 L A R =
THG "X, 8R, ~ Y o L
ETHG T o HE.H

These are ds for “device selector”, <enter image>> for the list of image specifiers, and <enter list> for the
list of variables to be entered. As with simple F 1 TEF: statements, the enter list must contain either string

or numeric variables.

Data Images
The image specifiers in this group are used to tell the computer what to do with the incoming data stream.
The basic choices are:

1. Use characters to build a numeric variable.
Place characters into a string variable.

Input bytes as binary values.

-~ w

Skip over a number of characters.

Numeric Image Specifiers
These specifiers are used to control the input of numeric characters, including digits, sign, exponent, and

punctuation.

*Note that labels are not allowed on the HP-85 or HP-83.

Section 3: Formatted |0 Operations 19

Image

Specifier Meaning

[These specifiers all do the same thing. They tell the computer to accept one character to be used
° in building a numeric quantity. The incoming characters do not have to follow the specified
k3 format, there just has to be the right number of characters. The six different specifiers are
. provided so that your program can document the expected format of the characters, and so that
e EHTER and OLITFLIT statements can share the same [1 1:E statement, if desired.

k. Tells the computer to accept five characters to be used for building a number. The five characters
do not have to be exponent information, but they can be.

E Same as “E”’, except the computer accepts four characters to be used in building a'number.

l:ﬁ? This specifier also tells the computer to accept one character to be used in building a numeric
quantity. However, if a """ is present anywhere in a number’'s image, all commas will be
ignored while the number is being entered. Without this specifier, a comma would end the entry
of a numeric quantity.

. Tells the computer to enter a string or numeric variable using free field format (explained in
Section 2).

s These specifiers are used with the [1LITFLI'T statement to provide a European radix point and
F digit separator. However, these images are NOT permitted for an L TE statement. If you
need to enter numbers in European format, you can use the UMY iE T statement (covered
later in this section) to change the number into American format.

String Image Specifiers

These specifiers are used to enter characters into string variables.

Image

Specifier Meaning

F Tells the computer to enter one string character.

k. Tells the computer to enter a string or numeric variable using free-field format (explained in
section 2).

Some examples are in order. Suppose the following character sequence is received by the computer:

112|3| 4| H|E|{L|L|O|ec]lf

Any of the following E M TEF statements can be used to enter a numeric variable followed by a string
variable:

EMTEFR
EMTER
EHTER

Notice that any numeric image that accepts four characters will properly enter the “1234”. String data
can be entered with an "nH" image if n (number of characters) is known, or with a " k. " if the number of
characters is unknown.

20 Section 3: Formatted |/0O Operations

Suppose instead that the incoming data was:

TETHEG D

Notice that the """ does not have to appear at the same place in the image as the comma does in the
incoming data. However, the comma is counted as a character.

Binary Image Specifiers

These specifiers are used to enter data that is received in binary format.

Image

Specifier Meaning

i Tells the computer to enter one byte of binary data and enter its equivalent decimal value into a
numeric variable.

bl Tells the computer to enter two bytes of binary data to be used in building a 16-bit, 2's
compiement binary word. The equivalent decimal value of the resulting word is entered into a
numeric variable. The first byte entered is used as the most significant byte of the word.

Skipping Unwanted Characters

These specifiers can be used with incoming numeric or string data to skip over any characters not wanted
for the input.

Image

Specifier Meaning

Tells the computer to skip over one character.

Tells the computer to skip to a line feed. Thus, after the variable has been satisfied, the computer
“throws away’’ incoming characters until a line feed is received.

The " " specifier should only be used when you have a good understanding of the structure of the
incoming data, but can be very useful in formatting operations. For example, suppose that text is being
entered from a remote computer that sends a line number at the beginning of every string. You know that
the line number information always appears in the first eight characters of each string, and you don’t
want these line numbers in your data. The following format could be used to strip off the line numbers:

EHTER F2@ WSTHG "Ee 1KY HE

The " .- " specifier is used to demand a line-feed field terminator before going on to the next variable. To
see the effect of this specifier, assume that the incoming data is as follows:

1 [z {s{m|1[e]|B]Y[E|e 1]

Section 3: Formatted |/0 Operations 21

Using the statement:

EHTER P TR "3 R W E

eFerr
causes - to get the value 123 and ' # becomes “HI”. However, if the statement:
ERTER V& UISTHG "30, o, EY ¢ =, vE

is used, then . gets the value 123 and /' becomes “BYE”. The " .- "' specifier caused the computer to skip
all characters after i© was entered until it saw the line feed. Then the entry into ‘' # began with the first
character after the line feed. Without the " .~ " specifier, the entry into ‘' began as soon as the " Z[1"
field was exhausted.

Eliminating the Line-Feed Requirement

The EHTEFR statement must “see” a line-feed character at the end of the incoming data before the
program can go on to the next statement. If there is no line-feed character at the end of the data, the
computer will be “hung up” waiting for one. If your incoming data does not have a line feed at the end,

you can get the E: M TE I statement working properly by using an image specifier.
Image .
Specifier Meaning
Eliminates the requirement for a line feed to terminate the I T statement. When this
specifier is present, the EMHTER statement terminates as soon as the last variable in the
statement has been satisfied.

When the " # " specifier is used for this purpose, it must be listed as the first specifier in the image list.
For example:

R R PR S L T -
AL

DRG "4, 40, et o W,y

The first example statement shows an entry into a string variable using free-field format with the
line-feed requirement removed. This statement terminates when the string is full. The second example
shows a formatted entry into numeric variables with the line-feed requirement removed. This statement
terminates after inputting ten characters.

Advanced Use of Terminator Images

The EMTiR image specifiers discussed in the preceding sections are sufficient to handle the great
majority of requirements. However, there are some special situations that demand an even greater
amount of flexibility. Most of these special cases involve the EOI (End or Identify) line on the HP-IB. The
following discussion is probably of no concern to most programmers. If you are one of those who must
consider the EOI line, or if you have an unusual problem with line feeds, then read carefully. This is the
most complex part of this section.

22 Section 3: Formatted 1/0 Operations

Field and Statement Terminators

TER

grouping of data items. To the computer, a record is an incoming stream of data ended with a record

The purpose of an £l statement is to read a record. To the programmer, a record is a logical
terminator. Since the - TEF statement is ended when the record terminator is read, this manual refers
to the record terminator as a statement terminator. If there is a requirement for a statement terminator in

effect, the M TEFR statement does not end until that terminator is received. (The action is slightly

different when using buffers. These are covered in section 5.) If no terminator image is specified, the
default statement terminator is a line feed character. To allow a carriage return/line feed sequence as a
statement terminator, the /O ROM ignores a carriage return if it is immediately followed by a line feed.

An incoming record often contains multiple fields. A field is the group of characters used to determine the
input to a variable in the E. M TEF list. For example, an M 7T EF statement used to input a list of names
and ages might look like this:

EHTER V28 & HE.A

This statement reads a record containing a name and an age. This record has two fields. The first is a
string field (the name), and the second is a numeric field (the age). A properly specified EMHTER
statement places the string field in I# and the numeric field in F.

It is not generally necessary to specify any terminator images to get the 214 T2 statement to perform
properly. The system has built-in field terminators and a default statement terminator which are
sufficient for most common applicants. These normal terminators are:

e A string field ends when the string is full (check your [I I [l statements), the character count from an
image field is exhausted, or a line feed is received.

e A numeric field ends when any non-numeric character (except a space) is encountered or the
character count from an image field is exhausted.

e The FHTEF statement ends upon receipt of a line feed character or a carriage return/line feed
sequence. This can be the same line feed that satisfied the last field in the EHTEF list.
Given these normal terminating conditions, the EMTE statement mentioned previously properly

separates the name field and the age field in two cases. One case is when there is a line feed separating the
string field from the numeric field. The other case is when the string field is always of fixed length and
I4# is dimensioned to that length.

Terminator Images

If the normal terminating conditions are not ideally matched to your application, the use of terminator
images can help solve the problem. The following image specifiers apply to both field and statement
terminating conditions. Field terminators are the conditions that end the entry of data into a variable.

Statement terminators are the conditions that end the EMHTEF statement after the last variable is

satisfied.

Section 3. Formatted |/0 Operations 23

Image Asa As a
Specifier Field Terminator Statement Terminator
Eliminates line feed as a terminating condition | Suppresses the requirement for a line-feed
during free-field string entry. Line feeds terminator. Statement ends when last field is
entered are placed into the string. satisfied.
- Allows EOI as an additional terminating Allows EOI or line-feed as terminating
condition. conditions.
2 Allows EQI as an additional terminating Specifies that an EOl must be received to
{or “.#) | condition, and also eliminates line feed as a terminate the statement, and line feed is not a
terminator during free-field string entry. terminator.

Whether an image specifier controls statement terminator or field terminators depends upon where it is
placed in the image. Consider the following example statement:

ERHTER P26 ETHG ", 0 s
When the terminator image is specified by itself as the first item in the image list (like the first =), it
specifies the statement terminator. When the terminator image is combined with another specifier (like

the “), it specifies a field terminator. The " # ", " ¥

LT

,and " #% " images all follow this convention.

Because the built-in field terminators are always in effect, these special terminator images only alter the
system’s action in a few cases. Let’s look at each of these meaningful field terminating combinations
individually.

Entering Line-Feeds Into a String

Theimage " #I<" causes the computer to place all incoming characters (including line feeds) into a string
until it is full. If there is a line feed forthcoming after the string is filled, this image is all that is necessary.
If you wish the statement to end as soon as the string is filled (without waiting for a final line feed), the
image " # , #k " should be used.

Using EOI to Terminate a String Entry

The image " ™" allows the computer to terminate a free-field string entry with the EOI signal.

However, a device which uses EOI as its end-of-line indicator may not output any other end-of-line

"% %k, This allows the EOI signal to
also terminate the ENTER statement. If you wish to enter line feed characters into the string and also

characters, like line feed. If this is the case, the proper image is

wish to terminate with EQI, the image " # " can be used. This may need to be expanded to " = , # "
if no line feed is expected to terminate the statement. The further expansion " # % . # " not only allows
EOI to terminate the ENTER statement, but requires it as the only method of terminating the statement.
Fixed-field entries can be checked for an expected EOI. For example, the image " * 7 " inputs seven
characters into a string and expects to have an EQI signal with the seventh character. Keep in mind that
there are many valid combinations of these image specifiers. The combinations shown here are only some

of the more common ones.

Using EOI to Terminate a Numeric Entry

The image " *}F. " allows the computer to terminate a free field numeric entry with the EOI signal. As

TN u,

mentioned in the preceding paragraph, the image " i, “ k' may be necessary if the EOI signal is to

terminate the ENTER statement also. Fixed field entries can be checked for an expected EOIL For

24 Section 3: Formatted |/0 Operations

1

= ¥I1" inputs seven characters to build a number and expects to have an EOI
%" inputs two

example, the image
signal with the seventh character. Binary fields work in a similar manner. The image "

bytes to make a 16-bit integer and expects an EOI signal with the second byte.

There’s Always an Exception

Not all terminator problems can be solved with terminator images. Consider again the example of a name
field (string) followed by an age field (numeric). Suppose that the names are variable in length and
separated from the age by a simple comma. If the ages came first, this would not be a problem since the
comma would end the entry to the numeric variable. But since the string data is entered first in this
T statement (explained at the end

of this section) to change the comma into a line feed and terminate the string that way. If the application
does not permit the blanket conversion of commas to line feeds, then the entire record would have to be
input into a temporary string variable. Once the record is entered, the i function and string subscripts
could be used to extract the name and age fields. This hypothetical situation emphasizes the importance
of knowing the nature of the data you are trying to enter.

A Word of Advice About Images

Choosing the proper image for your application can often mean the difference between success and failure
for your program. However, considering the wide range of peripheral devices and the near-infinite variety
of possible data formats, it is understandably difficult to pick just the right image. Even experienced
programmers will go through a period of trial and error before finding the perfect combination of image

specifiers.

There is an old but true saying in the world of computers: “You can’t program a computer to do
something that you don’t know how to do yourself.” This is an appropriate statement for formatted I/0. If
you don’t know exactly what character sequence needs to be output or what an incoming sequence
contains, it is very unlikely that you will know exactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what
data is generated by your program, so all you need to do is pick a desirable form for its output. The
primary caution here is to avoid image overflow conditions.

But how can a programmer determine the exact nature of incoming data when he or she can’t get it into
the computer to study it? If the only tools available were the string and numeric image specifiers, this
might be a significant problem. Fortunately, there is a way to inspect a totally unknown character
sequence. Any sequence of bytes, including potential terminators, can be entered with the " # , 2" image.
The values that are printed or displayed are the decimal equivalents of the binary value for each byte.
Admittedly, this is not the most convenient form of data to work with. However, you can use an ASCII
table or the [i # function to determine the exact character sequence which is being received. Then,
knowing the exact nature of the incoming data, the job of choosing image specifiers will be much simpler.

The following example program shows a typical use of this technique.

Section 3: Formatted |/0 Operations 25

Lodrnt b tes

THFUT HAS

“rop T ope

Converting | /0 Data

The final type of formatting involves changing the data characters that are entered or output. An
example cited earlier was incoming numbers in European format (with periods separating digit groups
and a comma for the radix point). There is no image available to accept this type of data directly. The
periods and commas need to be changed to other characters to give the computer what it wants. The tool

COMVERT <direction> <select code> <access method> | <string>

The parameters are defined as follows:

<direction> Indicates whether the conversion is to take place during an EHTEF (choose IIM) or an
CHITFLIT (choose LiLIT).

<select code> Indicates which interface will use the conversion. Note that the L1\ E T operation
applies to all devices on a particular interface. A device selector is not allowed. The parameter must be an

interface select code, range 3 thru 10.

<access method> This specifies the method of accessing the conversion table. The conversion table is a

string variable, and there are two access methods. If i*F I [+ is specified, the string is treated as a list of
character points. The second character of a pair is substituted for the first character whenever the
incoming or outgoing character matches a first character. This method is a good choice when only a few
characters need to be converted.

If TR is specified, the string is treated as a sequential look-up table. The numeric value of each
incoming or outgoing character is used as an index into that table. The first element in the string
corresponds to the character with a value of 0. If the value of the character to be converted is too large for
the number of characters in the string, no conversion is performed. This method is a good choice when a
large number of characters need to be converted.

<string> This represents the actual conversion table. It must be a string variable. A literal (string
constant) is not allowed.

26 Section 3: Formatted |/O Operations

The use of the - L1MHLFEFE T statement should become more clear with a few examples. First, the European
number format problem. This is a conversion for incoming data. One effective conversion is to replace a
comma with a decimal point and replace a period with a space. The statements for doing this with an
interface at select code 7 are:

CORMERT O ITH Y FEIRS - HE
The conversion has this effect:

12.345,6 is converted to 12 345.6

Since the free field format ignores spaces within a number and recognizes a decimal point, you do not
r

statement changes all periods to spaces and all commas to periods, whether they are part of a European

even need an F HTEF image to recognize the converted data. It is important to note that this L UiV E |
number or simply part of a block of text. Since this could have some undesired effects, it is necessary to be
able to turn off the conversion when it is no longer desired. The statement which cancels the conversion in

this example is:

GO ERT

Giving only the direction and interface select code, without specifying I % or [HIIE " or any other
parameters cancels a previously selected conversion.
Control characters, such as carriage return or line feed, can also be converted. The following example

shows the statements used to convert a carriage return to a line feed. This conversion is needed when
entering data from a device which gives only a carriage return, without a line feed, as a delimiter.

TH

Another conversion example is the output of Extended Binary Coded Decimal Information Code
(EBCDIC) instead of ASCII code. EBCDIC is another form of character representation used on certain
types of computers. Since all the ASCII symbols have corresponding EBCDIC symbols, it is reasonable to
choose the I H[IE * conversion mode using a string with 128 characters. In the following example, it is
more important to understand the general process being used than to understand what the actual
EBCDIC values are. The decimal equivalents of 128 EBCDIC characters are read from data statements
and converted to string characters by the I HF # function. The resulting look-up table is included in a
T statement for interface select code 7. The I ML specifier tells the computer to use the
outgoing ASCII character as an index to find the equivalent EBCDIC character. For example, an ASCII
right brace (decimal value 125) will convert to a [HF# ¢ 1 %% 1 which is an EBCDIC right brace.

LI LT

Section 3: Formatted |/0 Operations 27

T
BT OUT 7 OIHOEX : A%

" AHUE

A

L [T s A R

Section 4

Error Handling

it i e s

N o

L

S

Run-time errors on the HP Series 80 Personal Computer can be trapped by using the UM R
statement. You may already be familiar with the EFFH and EFFL. functions which provide essential
error information in a program. These functions can be used with the /O ROM. However, all option
ROMs share the error numbers starting at 101. So some other tools are necessary to identify the source of
an error when more than one ROM is installed.

The I/0 ROM provides two error functions in addition to the standard diagnostic capabilities of the HP
Series 80 Personal Computer. These functions give the programmer the extra information necessary to
isolate error conditions in a program.

k

l1}1 — Provides a number which identifies the option ROM which generated the most recent error. If
the most recent error was caused by the IO ROM, the EFF 1 function returns a value of
“remembers’ the last option ROM error, even if the most recent error in the system was not
caused by an option ROM.

E R 5 — Provides the select code of the interface which generated the most recent interface-dependent
error. Note that this function is only updated by interface-dependent errors. Therefore,
EF
not caused by an interface.

" “remembers”’ the last interface error, even if the most recent error in the system was

Because other option ROMs share similar error numbers to those of the I/O ROM, and because these
functions are not updated by every system error, it is important to interrogate the various error functions
in the proper order. If you are looking for I/O errors in an error recovery routine, check first for

foFFH s L EE, If there is a ROM error, check EFF: 1 to find which ROM. Having determined that the
I/0 ROM generated the error, check L F I for an interface error before looking at EF: %[, Error

numbers 101 and 112 will not occur during a running program. All other errors below 123 are interface-
0 &

-y
L

"% will tell if there was an interface error.

dependent errors. Therefore, a simple test for [F

The following simple program segment shows the recommended order of function checks used to isolate
I/0 errors. This segment only displays an error message. An actual error recovery routine would also
include statements to take whatever corrective action is appropriate in your specific situation.

D L8

tor mon-1-0 srrors

ROLEl THER GOTO 3
e =022 THEM GOTO

L g D

ZER

29

30 Section 4: Error Handling

CoEcE P

Fecowsery rodtinse goes PMers

RETURH
!
!

D FProceszz non-1-o0 error boers

FE TR

There is a complete listing of all I/0 errors, their meaning, and some debugging hints in appendix C.

Section b

Specialized Transfers

Introduction

This section deals with data transfers as they are implemented by the T F: &

! statement. The basic
purpose of the TFHFMHEFEF statement is to provide a flexible tool for moving data into and out of the
computer. The key word here is flexibility.

This flexibility allows you to better match the computer’s speed to that of the peripheral it is
communicating with. Take the case of a very slow device, such as a 10 character-per-second printer. It
takes such a printer 8 seconds to print an 80 character line, but our computer could send those same 80
characters in less than .1 second. If the computer is forced to wait on the printer, then the computer is
losing 7.9 seconds of computation time out of every 8 seconds! The computer’s power can obviously be
increased by gaining back that 7.9 seconds. Let’s see how.

The following diagrams constrast the default handshake method used by ULITHFLUT and EMTER with
the interrupt method of TRANSFER. When the computer executes the LiLI TFLIT statement (for example),
it is forced to handshake each character of the data list until all the data has been sent. Only then is the
computer free to execute the next program statement, about 8 seconds later. On the other hand, the
interrupt TEFMHEFEFR statement sets up some special pointers to the data and enables the printer
interface to interrupt the computer. Then the computer is free to execute the next program line, about 10
milliseconds later! (Enabling an interrupt is like hanging up a telephone receiver: the telephone is now
able to “interrupt” you by ringing whenever someone calls.)

The computer continues program execution until the printer is ready for another character. The printer
interface interrupts the computer from whatever it was doing, and the computer then fetches the next
character, updates its pointers, check to see if all data has been sent, then continues on with what it was
doing. If all the data has now been sent, the computer disables further interrupts from the interface (like
taking the telephone receiver off the hook—no more rings) before continuing on with the program.

31

32 Section 5: Specialized Transfers

Handshake Method

Program
execution
OUTPUT
preparations
> This is where
the computer
loses its 7.9
seconds

printer
ready?

Present
next
character
to printer

All
characters
sent?

Program
execution

Interrupt Method

Program
execution

TRAMSFEF preparations
(enable interrupts, etc.)

Printer
interface
interrupts

Program
execution

Present
next
character
computer to printer
Program
execution
Printer Present
interface Y next
interrupts chargcter
computer to printer
Y

If the two methods are looked at in a broader sense, it is possible to see the real difference: the handshake
method is a linear, or sequential operation, while the interrupt method is a parallel, or overlap operation.

Consider the following diagram:

Section 5: Specialized Transfers 33
Sequential
8 seconds
TR
to printer
via
program handshake program
execution execution
is halted \ resumes
program / program
execution execution
Overlap
to printer
via
o o o interrupt
[F e e e THAMHSFER
executed / has completed
program
execution
program
execution
never halts
The sequential method effectively pauses the program for the duration of the [ILITLIT operation, while

the overlap method continues both with program execution and transfer operation.

An interesting possibility brought about by this overlap is that of multiple, simultaneous I/0 operations.

Suppose that the next program statement after the T F S FEF statement is another TEFMEFE

toa
different device (a large-screen CRT monitor, for instance). Then three things are happening at once: the
program is being executed, the printer is printing, and the external CRT monitor is displaying new
characters.

34 Section 5: Specialized Transfers

The following diagram illustrates some of the power of overlapped I/0 operations made possible with

TR AMSFER, (Please note that this is for interrupt transfer only, as explained later.)

select code 3
output TRHAMZFER
device 701
input TRAHSFER
select code 6
output TRAHZFEE

program j
execution

Program execution begins at time t;, and some time later an output transfer to select code 6 is initiated
(time t;). At time ty an input transfer from HP-IB device 701 is started, and at time t3 another output
transfer is started, this time to select code 3. By now, three transfers and program execution are all going
on at once. At time t4, the input transfer terminates, and the two output transfers finish at t5 and tg. This
overlap capability demonstrates some of the flexibility of system design made possible with the transfer
statement.

There is another side to the transfer statements flexibility: speed. Certain operations are ineffective or
impossible at slow or medium speeds, and require instead a high-speed transfer. Take the case where it is
desired to analyze a signal’s waveform by using an HP 3437A Voltmeter. This voltmeter is capable of
producing a 3% digit voltage reading up to 3600 times per second, which is a transfer rate of about 25,000
characters per second! The computer is not quite that fast, however; its transfer rate is closer to 20,000
characters per second.

"I+ statement is the fast-handshake transfer. This is an entirely different

The other type of T i i
type of operation from the interrupt transfer. A fast handshake transfer represents the fastest possible

data movement operation.

The following diagram illustrates the effect of sampling a signal at slow, medium, and high rates of speed
(sample points are represented by dots):

Section 5: Specialized Transfers 35

Slow

Slow
(Reconstructed)

Medium

Medium
(Reconstructed)

Fast

Fast
(Reconstructed)

The slow sample rate provides at best an inaccurate picture of the signal, while the high sample rate
comes much closer to approximating the actual shape of the signal.

' fit into this picture? Consider the EH TER and QLI TFIIT statements with
their extensive formatting and conversion capabilities as being like a Rolls-Royce automobile with
electric windows, television, liquor cabinet, automatic transmission, and other accessories.

36 Section 5: Specialized Transfers
A fast-handshake transfer is then comparable to a Formula I race car, with no windows, manual

transmission, one seat, a spine-jolting ride, and that is capable of speeds over 300 kilometers per hour. Its
main objective is performance.

The fast-handshake transfer delivers the highest data transfer rate possible. When a fast-handshake
transfer operation is in progress, all other activities stop. Even the computer’s key is disabled and
will have no effect until the transfer completes.

As with the Formula I race car, you pay a price for performance.

Using Buffers
A buffer is a section of read/write memory set aside for the purpose of temporary data storage. It is used to
either input data, output data, or both by means of the T F F M
data conversion done by TFFMSF

[statement. There is no formatting or

, so what is in the buffer is what is sent to the peripheral device.
The same holds true for data being input by TFFEH%F
received from the device.

; it is placed in the buffer exactly as it is

To illustrate how output, enter, conversion, formatting, I/O buffers, and transfers work together consider
the following diagram.

CLITFUT 24 USTIHG 18: AF ox>,. 1.
CUOHWERT
Program g outeut
variables Formatting Out TRAMSFER| External
and data IS THGY T > »| Peripheral
e T N B - conversion (Fill) (Empty)
Tt table
IOBUFFER
SF
COHVERT input
Program | In TRAMEFER ’
variables - ‘lFolr—rl'nattlrJgﬂ -] - [nxxx |
Hilr,w, B¥ LS THG conversion (Empty) (Fill) 000
table External
Peripheral
EHTER 2% WSIMG Z8; M (Ix, =, BEF
The [HITFLIT statement takes data from program variables and does any necessary formatting while

placing that data into its ASCII representation. Then, if an output conversion is in effect, the ASCII
characters are converted accordingly and placed into the I/0 buffer at the position specified by the fill

* operations to a buffer place a carriage

<
o
e
w
=
o
e
=5
o
o
®
o
£
P
[
®©
[
5
o
o+
o
)
fwg)
w
=
=3
o+
o
=
o

return and a line feed at the end of the data in the buffer. This means that the buffer should be
dimensioned to a length greater by two on the HP-86 and HP-87, when using the default OUTPUT and
TRANSFER operations.

Section 5. Specialized Transfers 37

The output transfer takes characters from the I/O buffer at the position specified by the empty pointer.
These characters are sent to the specified interface and its associated peripheral. This is done either by
interrupt or fast-handshake as specified by the programmer. When the transfer completes, the interface’s
end-of-line character sequence is sent.

The input transfer accepts characters from the specified interface (and its associated peripheral) and
places them into the I/O buffer at the position specified by the fill pointer. Again, this is done either by
interrupt or fast handshake as specified by the programmer.

The EMTER statement takes characters from the I/0 buffer at the position specified by the empty
pointer. If an input conversion is in effect, these characters are converted accordingly, formatted as
necessary, and changed into the proper internal representation for the program variables. If you are
entering data from an active buffer, errors can be avoided by using the form FEMTER 2 LT HG
UL R R,

This form of k[T E removes the requirement for statement and variable terminators, which may not be

in the buffer yet.

The Pointers

Lo FE R

statement), its dimensioned length is effectively reduced by eight characters. This is to provide room for

On the HP-85, when a string variable is first designated as an I/0 buffer (by executing an

four “pointers.” There is a fill pointer, an empty pointer, an active-out select code, and an active-in select
code.* On the HP-86 and HP-87 the buffer length is equal to the dimensioned length.

The fill pointer first equals zero (0). This pointer always contains the same value as that returned by the
l.EM function for the string variable. Placing a character into the buffer goes as follows: 1) increment

pointer equals l..E I function) statement and also by any string variable assignment operations such as
& % M¥. You do not normally need to assign values to the fill pointer.

The empty pointer first equals one (1). Taking a character from the buffer goes as follows: 1) read the
character, 2) increment the empty pointer. This operation is performed automatically by the E M TE[
statement.

A buffer is full on the HP-83/85 when the fill pointer equals the string’s dimensioned length minus 8. A
string with a dimensioned length of 8 would not be a very useful buffer, as it would be full and empty at
the same time, without any data being placed in it at all! Any LI TFLIT operation to a full buffer will
resultin an error. On the HP-87 the length declared is the same as the usable length.

A buffer is empty when the empty pointer equals the fill pointer plus one. This has no relationship to the
dimensioned length of the string. When a buffer is emptied, the full pointer is reset back to 0 and the
empty pointer is reset back to 1. This is exactly the same effect as executing the I [ELIF FFEF statement,
except that the I [IELIFF [F statement also initializes (destroys) conversion table pointers.

*On the HP-87, additional memory is allocated for the pointers (additional to the length that the buffer is declared to be). Because of
this, on the HP-87, the number of I/0 buffers is limited to ten. Declaring more than 10 buffers will result in an error and abortion of the
program at that point.

38 Section 5. Specialized Transfers

Buffer Activity

When a T [statement is executed, the specified buffer is then an active buffer. The buffer may
be active-out, active-in, or both, depending upon the direction(s) of the transfer(s). The buffer is assigned
an active-in select code when an input TFFMHZFEF statement is executed. An active-out select code is
assigned when an output TF MM % F 2 statement is executed. For example when the following interrupt
transfer to select code 6 is executed—

TERME:

the active-out select code equals 6.

A buffer is made inactive when the transfer completes. This is a direction-specific inactive state; that is,
buffer may be active-out but inactive-in, or vice-versa. When an input transfer completes, the buffer’s
active-in select code is set to zero (0). Similarly, when an output transfer completes, the buffer’s active-out
select code is set to zero (0).

Buffer Status and Control

registers are as follows:

Status Default Register Statement used to read
Register | Value Function register value of buffer Z$
SRO 1 Bufferempty | wcorpriis 24, @, TEH
pointer
SR1 0 Bufferfill | corprim me, 1T
pointer
SR2 0 Active-in STHTLIE PTE
select code
SR3 0 Active-out | o s g TR
select code

These registers may be read at any time on an active or inactive buffer, but attempting to read the status
of a non-buffer string variable (that is, if no I LIELIFF

! statement has been executed for that string
variable) results in an [i@ = 1§,

An example of using buffer status registers to control program flow follows. In the example, a string
variable is dimensioned to 88 characters (to allow for 80 characters of data after becoming a buffer on the
HP-85) and declared as an 170 buffer. Data is output to the buffer, a transfer out to an HP-IB printer is
initiated, then the buffer’s active-out select code is checked to determeine when the transfer has
completed. The program ends when the transfer completes. The buffer may be dimensioned to 80
characters on the HP-86 or HP-87.

Section 5. Specialized Transfers 39

i I:H.

Ty pnh s

The variable TO shows how many characters have been taken from the buffer. T1 shows how many
characters total are in the buffer, and T3 indicates select code activity.

For another example, assume device * is to send three numeric values followed by a carriage return, line
feed. The following program displays the buffer registers until the transfer completes. An &M T F ig then
executed to take the values out of the buffer, which are then printed.

at HF-TE adodre

T 16

walue for lins-feed

1 EE
ig EMD

If device is a very slow device, you could “watch” characters come into the buffer by means of variable
T1. The variable TE is not altered until the E-MHTEF is executed, and T reflects the T FH&FE R

statement activity. When the TF | - F ‘; when the THFME
TEm=E,

is initiated, T:

* completes,

The buffer empty pointer and the buffer fill pointer can be assigned new values by using the [U1 TF il
statement. This gives you the capability of sending the same data over and over again without having to
re-compute the data, for example. The following table shows these registers and how they are accessed:

Control | Default Register Statement used to write
Register | Value Function register value of buffer Z$
CRO p | Bufferemety | o rRnL me Lm0
pointer
CR1 0 Bufter fill | iRl 7, 1501
pointer

These buffer registers may be written to at any time, but attempting to write to a control register of a
non-buffer string variable (before an I IELIFFE statement has been executed for the string variable)
results in an error,

40 Section 5 Speciahized Transfers

In the following example, 360 values are computed for & [M to represent one complete cycle of a sine
wave. These values are output to the buffer i # and subsequently sent to device X, a digital-to-analog
converter, by a fast-handshake transfer.

When the transfer completes (T2 = 0), the buffer empty pointer is automatically reset to 1, the fill pointer
is set equal to 360, and the transfer restarted. This continues indefinitely until the key is pressed
to stop the program. The effect of this program is to produce a near-continuous sine wave from device X.
(Details of device X are purposefully left out here to avoid confusing the issue.)

Lines 10-40 merely set up the buffer and place the computer in degrees mode. Lines 50-70 fill the buffer
with the 8-bit value for each of 360 degrees (one complete sine wave), and line 80 starts the fast-handshake
transfer. Line 90 is executed when the transfer is complete. The buffer fill pointer is set back to 360 (so it
looks full again), and the transfer is restarted.

By exercising control over the buffer empty and fill pointer, it is possible to retransmit data, transmit any
portion of the data in the buffer, to write data into any section of the buffer, read data out of any section of
the buffer, etc. These operations may not be ones that you need to use in your application, but the
flexibility they provide you could make feasible certain I/0 operations not possible through any other
means.

Data TRANSFERS

FH R statement has been mentioned several times up to this point. In combination with the
-, it provides you with unmatched flexibility in tailoring and optimizing a program to
exchange data with one or more peripheral devices. The diagram below shows the relationship of the
transfer with the I/0 buffer, conversion tables, and program variables.

Section 5: Specialized Transfers 41

DT &% USTHG 18 A cxe, T, 1023

Program DR T
variables Formatting Out _ PEx}e;\nal |
and data PTG) (FiIT) eriphera
(R B B conversion
— table
U BT input
ol | In TRAHZFER
variables M 4. ol o Iﬂ’ix_]
Fro oo w, B Ll TRG D conversion (Empty) (Fill) 6060
table External
Peripheral

The transfer itself is the easiest section of the entire picture to understand. Simply stated, an output
transfer takes characters, or bytes, out of the buffer from the position specified by the buffer empty
pointer and sends them to the external peripheral. Conversely, the input transfer takes characters from
the external peripheral and places them in the buffer at the position specified by the buffer fill pointer.

Output TRANSFER

For an output transfer, you merely specify whether an interrupt or a fast-handshake transfer is to be
performed. For example, to specify an interrupt output transfer, the following statement could be used:

TRAMEFER F4 TO 713 IHTR

buffer device selector interrupt
(or interface select code)

The operation of an interrupt output transfer is as follows:

® When the statement is executed, the interface involved (in this case, device 13 on an HP-IB Interface
at select code 7) is automatically enabled to interrupt* the computer when ready to accept a new
character.

¢ Thereafter, each time the interface interrupts, the computer temporarily suspends program
execution long enough to move the next character from the buffer to the interface. (It is then the
interface’s responsibility to see that the new character is properly sent to the peripheral.)

*This is a hardware-level interrupt, and is distinct from the software-level end-of-line branch discussed in Section 6.

42

Section 5: Specialized Transfers

When the buffer is finally emptied (described in the Using Buffers section), the computer disables (or
turns off) further interrupts from the interface. The transfer is now essentially complete, although
the interface may still be sending out the specified end-of-line character sequence (normally a
carriage return/line feed: seethe appropriate interface owner’s manual).

When the transfer is terminated, a check is made for a user-defined end-of-transfer branch. If one is
defined, then the branch is taken upon completion of the current program line. This is explained
more thoroughly in the section End-of-Line Branching.

A fast-handshake output transfer is specified as—

TR TON FEe

D

buffer device selector fast-handshake
(or interface select code)

The operation of a fast handshake output transfer is significantly different:

The computer suspends program execution and dedicates itself to the task of moving all the
characters in the buffer to the interface. The computer totally devotes itself to this task until the
buffer is emptied. No other interrupts are allowed, not even a (RESET)! This means that once a
fast-handshake transfer begins the computer will see it through to completion, and all other
operations are ignored until that time.

When the buffer is empty, the transfer is essentially finished. (The interface may still be in the
process of sending the end-of-line character sequence.) If a user-defined end-of-transfer branch is
specified, the branch is taken upon completion of the current program line.

Input TRANSFER

The input transfer is essentially the same as the output transfer, except that data is being moved from the

external peripheral to the computer. However, in addition to specifying whether an interrupt or fast-

handshake transfer is to be performed, you may also specify the terminating condition(s) for the transfer.

The terminating conditions for both interrupt and fast-handshake transfers are:

[:HIHT —the number of characters or bytes of data to be input before the transfer is considered
complete. Use L:{1LIFHT when the number of characters or bytes being sent from the peripheral

device is known.

211 T —an interface-specific terminating condition. In the case of the HP-IB Interface, some devices
set the EOI control line when sending the last byte of data indicating end-of-data. This terminates
the transfer if (211 is specified.

Default termination—a full buffer termination. An input transfer terminates with the first
occurrence of any specified terminating condition or a full buffer. (Obviously, if there is no room left
in the I/O buffer, the transfer cannot continue.) If no other terminating condition has been
specified, an input transfer will terminate when the I/0 buffer becomes full.

Section 5: Specialized Transfers 43

Additional terminating conditions for interrupt transfers only are:

e [l I l1—the numeric value of the character or byte of data that indicates all data has been sent.
Use [z L. T 1 when the number of characters or bytes being sent from the peripheral device is either
not known or varies for some reason. The peripheral device should not send the Uif L. I [l character

as part of the data being sent, or else the transfer will be terminated prematurely!

e Interface termination—an interface specific termination. Certain interfaces allow you to specify
additional terminating conditions by writing to the interface control registers. These conditions
may be either receipt of user-specified characters or line status, so consult the appropriate interface
programming section to determine which, if any, conditions your interface supports.

Programming with TRANSFERS

Every transfer operation requires an I/O buffer, which in turn requires a dimensioned string variable of

adequate size. After executing the 1 LiliLil ' statement, any L.UiFHWE R T statement(s) for that buffer

may be executed. This is because the [iifil.
those to any conversion tables.

If there is any necessary interface initialization to do, it may be done anytime before executing the
1'T: see the End-of-Line Branching section),

=
the appropriate statement(s) should be executed before the T MM

transfer. If your program uses end-of-line branching (I}

I statement.

An input transfer may be executed at any point after the setup sequence described above. An output
transfer, however, requires data in the buffer before anything can be sent. Therefore, an output or a string
assignment operation needs to be performed bhefore attempting to execute the output transfer.

It has been said that either an output or a string assignment operation needs to be performed before
executing an output transfer so that there is data available in the buffer. This is not entirely true. Nor is it
necessary to have all the data in the buffer before initiating an output interrupt transfer. Also, it is not
necessary to wait for an input interrupt transfer to complete before reading data from the buffer. (Fast-
handshake transfers are totally sequential operations and do not apply to the following discussion.)

If the external device is sufficiently slower than the computational speed of the computer, it is possible to
initiate an output transfer with the buffer only partially filled. Then, as more data becomes available to
send to the device, the new data can be output (for example) to the buffer while the transfer is still in
progress. This process can go on indefinitely until either: 1) all data has been sent or, 2) the buffer is filled
(then the user’s program must wait for more buffer space) or, 3) the buffer is emptied (then the transfer
terminates and it must be restarted).

Case 1 above s straigitforward and needs no explanation. Case 2 is determined by the buffer status, and
the program can wait for more buffer space by monitoring buffer status (with the & THTLI% statement).
The occurrence of case 3 indicates that the peripheral device is actually faster than the computer in this
instance. (This may be due to excessive computation being performed or some other circumstance causing
a delay in the program.) An end-of-line branch or a status check on the buffer indicates a transfer
completion, and the decision to continue the transfer can be made at that time. The following example
program illustrates how these conditions might be dealt with:

R=laRs
A LR
itk oty

= [T S A R

et

44 Section 5. Specialized Transfers

L From the

LA T

st Loop Bang Les

it l HE

gt oo before starting the

FEHOIMTRE 1 o

cE e R

A

Section 6

End-of-Line Branching

e

Some Background on Interrupts

If you've never heard the term “interrupt” with regards to a computer before, then a simple way to think
of it is like a telephone ringing while you are working. It is a means of diverting your attention from
whatever it is you are doing. “Servicing” an interrupt is similar to the act of going over to answer the
ringing telephone. When the telephone business is completed, you typically resume the “interrupted”
activity where you left off.

If you have a switch that can disconnect the telephone bell (so it can’t ring), then you can disable or
enable that interrupt by the setting of the switch. The computer has essentially the same facility.

In addition, the computer has two types of interrupts to deal with: low-level, or hardware interrupts; and
high-level, or software interrupts. In general, the hardware interrupt is used by the computer for its own
purposes, and is transparent to the user. Hardware interrupts make possible such things as the [TF
type of THFMEF R, where program execution and I/0 are concurrent operations. However, external
‘(and internal) events can also trigger hardware interrupts that require specialized service routines to deal
with them. Because there is such a wide variety of interrupt causes possible, it is necessary to make
provisions for the programmer to custom tailor service routines for those interrupts specific to his system.
This provision is the software interrupt, or end-of-line branch.

Imagine a “ghost” [F <event> THEM {151 <line #> statement appended to the end of each

program line, like the ones below:

10

sl i s BIF <event =true> THEM
BIF <event =true> THEM GISUE <routine>

FRIMT "R

L
e

In effect, at the end of each program line, a check is made for the event, which may be an error, a
hardware interrupt, a select code timeout, a transfer completion, a special function key-press, or a timer
timeout. (End-of-line service for three of the above events is already provided for in the HP Series 80
mainframe: errors, special function keys, and timers.) When one of the events occurs, a special portion of
the program can be executed to deal with that event.

The programmer also has the ability to disable or enable the end-of-line service facility for each event, as
will be shown in the next section on programming for end-of-line branches.

End-of-Line Branch Programming

Introduction

This section shows you how to program service routines to deal with end-of-line branches for I/0 related
events. At the end of this section is a sub-section entitled “Interactions and Permutations.” The

M vs, L

discussion there deals with problems and questions you may encounter such as (1%

45

46 Section 6: End-Of-Line Branching

Interface Interrupts

Each interface (HP-IB, Serial, BCD, etc.) has a control register that allows you to specify an interrupting
condition. This is control register CR1, the Interrupt Mask register. When you set a bit in that register,
you enable the interface to interrupt the computer when the event corresponding to that bit occurs. The
interrupt event is determined by referring to the programming section for the particular interface. For
example, the HP-IB Interface provides for an interrupt on SRQ, or Service Request. The SRQ interrupt is
enabled by setting bit 3 (decimal value 8) of control register CR1. To enable the SRQ interrupt for the
HP-IB Interface at select code 7, execute

ERABELE THTR 7o
This is equivalent to
CORTEOL V.1l

and both statements set bit 3 of control register CR1 on select code 7.

Suppose (for simplicity) that only one device is connected to the HP-IB Interface, and that device asserts
SRQ only to indicate it is ready to send a numeric value to the computer. The statement we’ll use to read
this value is

EMTER FEL W

This is the extent of our example service routine, which will take the form of a subroutine in the program.

Once the computer has read the new value from the device, it must again enable the SRQ interrupt so that
another value can be read when the device is again ready. The service routine begins to take shape:

wt ook

Al L O A

S B

and reture on o sans Line

Note that the EHFELE and the FE TLIFRH are on the same program line. There are some occasions where
this is a necessary practice, and this is discussed under “Interactions and Permutations.”

It is necessary to specify where the service routine for an event is, and also whether the routine is a
‘I). This is accomplished by the it [HTHE
statement. Note that the computer must know where to go and what to do before an interrupt occurs, or

subroutine (/015 1LIE) or just a program segment (1

else it will be forced to ignore it. Therefore, the LM [Tk statement should be executed before the
ERAELE THTHK statement, as shown in the example below.

Section 6: End-Of-Line Branching 47

The Feorllowing linmes srae s ocluamma porogramn
N N £ I AT L Y |

FooEo@ RETURM U Thiz must be odons o0 re

AL E T
Tt et
LEds ERD

Line 10 specifies the location (line 1000) and type (015 LIE, not L3011 of the service routine for select
code 7. Line 20 initializes the HP 3455A Digital Voltmeter to take readings whenever it is triggered. The
. HL statement of line 40 allows the DVM to be triggered manually, and the EMMEL E statement
enables the interface for SRQ interrupt (bit 3 of the interrupt mask is set). Lines 70 and 80 merely display
an incrementing counter and the last reading taken from the DVM.

Each time an SRQ is received, program execution of lines 70 and 80 is suspended, and the subroutine at
line 1000 is executed. The M TEF: is performed, which takes a new value for “' 1. The SRQ interrupt
condition is again enabled in line 1030, and the £ TLIF M allows the program display loop to resume.
However, the value for ' | that is now displayed is the new value just read by the service routine.

What would happen if the iz MHFEL.E T+ TH on line 1030 were removed?

Simple. The first SRQ would be serviced as described above, and the program loop then resumed.
However, no more SRQ interrupts would be detected, even if the HP-IB device were frantically sending the
SRQ message to the interface! The interface ignores the event—regardless of its importance, until an
EMFELE ITHTHE statement is performed to again enable the interface to be able to interrupt the

computer. Also, the EMHFEL.E T HTFE statement sets the status register to the current state.

To disable or cancel the end-of-line branch condition set up by Ui 1T, simply execute an il
I HTHF statement for the appropriate select code. No more branches will be taken until another Ll THTFE
statement is executed.

It is good programming practice to always read the interrupt cause register. Note, however, that the
execution of a & THT Ll statement clears the status register so it cannot meaningfully be read again
immediately. It may also indicate more than one interrupt.

Timeouts

It is possible for an external device to exhibit symptoms of intermittency or disconnection from time to
time. This “falling asleep” is generally caused by an electronic malfunction or some other unusual
condition, such as being switched off. It is not as important to focus here on the possible causes of device
failure so much as the possible effects.

When a device fails, for whatever reason, the immediate effect on the computer is that it is no longer
handshaking data to or from the computer. (Handshaking is a means of reliably transferring data
between two devices. The sender makes data available, signals that data is ready, and the receiver
accepts the data and signals that it has taken the data. This protocol is called handshake.) If an M TEF,
SE D or DHITHILIT operation is in progress, a loss of handshake means no data can be transferred and
the operation cannot complete. If the operation does not complete, the program “hangs” until the operator
becomes aware that something has gone wrong. This is unacceptable for most I/0 systems, and

especially those where unattended operation is frequent.

48 Section 6: End-Of-Line Branching

The SET TIMEDLUT statement gives you the capability of establishing a maximum time period for the
computer to wait on an interface to handshake data. If an interface exceeds the mE T T LMECILIT limit
specified, two alternative courses of action may be selected. One method simply aborts the I/0 operation
in progress and continues program execution at the next line. The other method executes a timeout service
routine after the I/0O operation is aborted.

The following example shows the simpler form of % T T IMEILIT, where no timeout service routine is
specified:

TIH

AT 1
(i 'I"F LT

; S imp
e omtr o Line

chat s

If device 706 stops responding to handshake before the output operation is complete, then after 10 seconds
line 30 will be executed. (Line 30 would also be executed if the output were successful, obviously.)

A more sophisticated method for dealing with a timeout condition is to execute a timeout service routine
when an I/0 operation is aborted due to a timeout. A separate service routine may be programmed for
each select code to deal with the specific device or conditions for that select code. The it T TFECHIT
statement provides this capability, as shown below:

1 Timmout Padooe for
I!IHI R

Timewout"

ToloRttempt to

3 HIIII
! Tineout

L me For
cocde B

Obviously, in a dedicated system, more significant action could be taken than simply printing a message,

aborting the operation with a <[%2 T, and returning to the program. For example, a flag could be set by
the timeout routine which would be checked before attempting an I/0 operation to that select code. This
flag might indicate printer out of paper or tape reader at end of tape, which would make I/0 to such a
device a useless endeavor. It might also be the only means available of determining when an operation

has completed. The following example shows how a flag might be used:

st timeoudt Flag befors

Section 6: End-Of-Line Branching 49

LT A

wpy t el #

It wdba

"Timeowt o oo of odats!

Tl T

When a timeout occurs, the flag F1 is set equal to 1, and the | " statement of line 50 causes the F [T i
statement of line 60 to be skipped. The loop is exited and the program continues. (In the example, only a
FRIHT and % T are shown for simplicity.) In this case, the cause for the timeout is not device failure,
but rather the end of data to be received.

As with Uil THTi, there is a corresponding disable statement for tifhe_out end-of-line branches. The

T statement can be used to cancel end-of-line service for a specified interface timeout.

CFFTITHE
The &ET T IHE
timeout limit for the interface. For more information regarding syntax rules, refer to the alphabetical

syntax listing section of this manual.

Transfer Terminations

There are two means of determining when a transfer operation has completed. Both are straightforward,
but using an end-of-line branch service routine allows the greatest flexibility of program design.

As is mentioned in “Using Buffers”, buffer status registers SR2 and SR3 indicate input and output
activity, respectively. When the appropriate register becomes equal to 0, that transfer has terminated.
However, this requires rechecking the status register until the transfer terminates, which inhibits
program execution. If there is other work to be done, a fairly convoluted program logic will be the result of
trying to monitor transfer status and also getting the other work done. There is a simpler way.

When an Uil EOT (On End Of Transfer) statement is executed, an end-of-line branch is enabled for
transfer termination for the specified interface. Then you can program the operations necessary to deal
with the transfer termination into the i1 1171 service routine. These operations might include placing
new values into the buffer and re-initiating the transfer (for output) or taking values from the buffer and
placing them into program variables (for input).

To illustrate how the Lil ETIT statement might appear in a program, consider the following example.
An HP 3437A Voltmeter is programmed to take a reading every .9 seconds. An interrupt transfer is set up
for 100 readings of seven characters each, plus a final carriage return/line feed and the eight extra bytes
needed for pointers.

When the transfer completes, the service routine at line 1000 is executed which saves the readings and
initiates a new transfer.

Fod i examp le

=0T
WITFLUT 7
1@ .
TORUFFER O%F
P ThHis program &

T8 data files are alreacy

50 Section 6: End-Of-Line Branching

et i

st tThe File mames ars in e peed

colat e datad,cdata®, datas, dat

PR S ! e fe M QR N .
Simp e Mwork S IR A VTR R

sy Pl le o Taps,

orE THTE

T tﬁp@. MOTE: this temporariiyg halts the

T

byt e R

REORTIO T

The program logic associated with the transfer and the EOT service routine is quite simple (shaded
program lines). The extra programming shown is included as one example of how the EOT service might
be used for data-save operations to tape. The EOT service routine might just as well have sent the

collected data to a remote central computer (with another 7 F % EF, of course!).

code. For further details about these statements, refer to the alphabetical syntax listing in this manual.

Interactions and Permutations

This section is written so that you may be able to better predict operation of those programs that utilize

end-of-line branching.

End-of-line service occurs in a specific order. That is, if more than one end-of-line branch is pending at the
end of a program line, one of the branches will be taken before the other. The following table lists the

types of end-of-line branches and the select codes, and gives the precedence order for combinations of

branch type and select code.

For example, a pending [}

Section 6: End-Of-Line Branching

Branch Precedence Table

Select Code

Branch Type 3 4 5 6 7 8 9 10
G R R 1
G THTE 2 3 4 5 6 7 8 9
[MIE! 10 11 12 13 14 15 16 17
NIC R 18 19 20 21 22 23 24 25
NI 26
G TIHER 27

IHMTH branch for select code 5 would be taken before a pending {1

51

You should take note that the term precedence is used here, not priority. This means that when the

computer is executing one service routine, other service routines are not implicitly locked out. (In a

priority system, any service routine having a lower priority than the routine currently being executed will

not receive control until the current routine completes.) If two end-of-line branches are pending on the HP

Series 80 computer, the one having precedence is executed first. However, after the first line of that service

routine executes, the still-pending end-of-line branch to the second service routine is taken!

The only way the first routine can guarantee uninterrupted execution is to disable the other routine’s

end-of-line branch with its first line. An example will help show this:

T

|
Eaaind

Fond e

i bood

A I

ol AT

E el e,

Frmotions

EER TN LT

F R Tl i]

52 Section 6: End-Of-Line Branching

Assume that while line 50 is executing, both interrupts occur. Both end-of-line branches are pending when
line 50 completes. Select code 7’s service routine has precedence, and so line 100 is executed. Line 100
disables select code 9’s service routine, so the end-of-line branch that would have occurred is not taken.
Line 190, the last line of the select code 7 service routine, re-enables the select code 9 service routine and
when the R E TLIFH is executed, line 200 is then executed. Note that the [1iFF [H T does not eliminate
the pending end-of-line branch—it just defers the branch until an [IM IHTH is executed later.

Events such as interrupts, timeouts, transfer terminations and errors are “remembered” indefinitely,
until a FESET or STOF occurs. Therefore, once an event has occurred and remains unserviced,
execution ofan UM IHTRE, OM TIMECQUT or O ET results in an immediate end-of-line branch.

The type of branch taken can affect program operation. The most predictable program execution occurs
when GUSUE end-of-line branches are taken. Use 1T when the program is simple and only one or
two end-of-line branches are expected. One very simple example of this would be:

O IHMTR ¥ GOTO 253339 (99999 for the HP-87)
EMAEBLE THTR 712

1_1__1

These two statements direct program execution to line 9999 (presumably an EMLI statement) when an
Interface Clear on HP-IB occurs. This kind of “bail-out” provision can be useful when developing certain
types of programs such as ones using keyboard masking (see section 7). Then, when something goes
wrong you can halt the program by asserting IFC on the interface bus with another controller or a bus
analyzer.

The following example is presented to show you how some of the ON-event branches interact. The listing
and results are shown with a brief explanation, but you will learn more from it if you experiment on your
own. Try setting timers, timeouts, and keys up and then watch it work (or not work). Press the special
function key while the computer is waiting, then watch the display.

18 t This program serves o illustrate end-otf-line
branching,

28 1 Substitute YOUR select codes and device hnumbers

I ! on lines 20 and 98 to make thiz run successtully,

4@ | Remember that an EHTER and an input TRAHNSFERE cannot

S8 | ooour simultansously on the zame select code

S

e

88 Si=18 ! Thiszs is the TRANSFER selsct code assignment.

SE S2=7FE% | This is the EMHTER zelect code assignment,

188 I=0 @ ODIM A$SC20],EBFL221

118 IQBUFFER BF

128

138 1

148 OH EEY# 1 GOSUR 238 | Kew 1 clears the counter

158 OM EEY# 2 GOSUE 458 | Eey 2 termirnates the TEANSFER

188 O KEY# 3 GOQSUE 518 ! Kew 3 ends the program

178 OH EEY® 4 GOSUE 778 | Key 4 ztarts another EMTER

1ag |

128 |

288 O TIMER# 1,13808 GOSUR Seg

218 0N TIMER# 22,1488 COSUE &18

Rt I

238 1

Section 6: End-Of-Line Branching

SET O TIMECUT S2:1888 Don't forgst to zet the selsot
e

O TIREDUT 22 GOSUE S58
!

|
R EDT

GUSUE P18 0 Don' v forget to set the select

SEE B BEEF 28,28

- Clears the oounter,

1 1]

e i terminates the aotiwe TERAHSFEE.

Termirated TRAHSFER"

I T T T T S

Tl porow e an .,

EHTER Timeouwt seprwioes
st dore timed ot

Termimation Serwios,

P N
A T R 2

gl tes anoiher EMHTER operation

53

Section 7

Keyboard Control

Introduction

In certain applications, the operation of a system could be adversely affected by a curious passerby
pressing keys which could halt or alter program execution. In other applications the system operator
must have access to certain keys, but not others.

Traditionally, the dedicated computer’s keyboard was covered by a “mask” of plastic, metal or wood
which covered all keys unnecessary to the operation of the system. Cut-outs were provided to allow access
to those keys the operator used to control the system. Obviously, the extra cost of designing and
manufacturing such a mask added to the cost of a dedicated system.

The I/0 ROM provides the keyboard mask in software, which—short of turning the computer off—offers
far less chance of user interference than does a mechanical mask. In addition, greater flexibility is
possible with the software masks, as is discussed in the following section.

Key Mask Programming
There are three basic modes of operation for the HP Series 80 Personal Computer: halted (or idle),
program execution, and keyboard input.

In the idle mode, the computer accepts commands and is available for program modification/entry. This
is the mode that the computer normally is in when not executing a program (when first turned on, or after
NIEH

development or debugging, so a keyboard mask for the idle mode is not very useful and is not provided.

executing a =’ - or EMII type statement). The idle mode is generally used for program

In the program execution mode, pressing any key other than the key or an 1 K E" defined
special function key will halt the program. A keyboard mask can be specified for four classes of keys while
in the program execution mode. These classes are:

L

2

3. Special function keys and key
4

Other keys (all remaining keys not in classes 1, 2, or 3)

Any or all four classes of keys can be masked out for the program execution mode.

In the keyboard input mode, the computer is temporarily halted awaiting operator response. This is the

mode of operation for the I I 1!T statement. The four classes of key masks for the keyboard input mode
are:
L.

2
3. Special function keys and key
4

Other keys (all remaining keys not in classes 1, 2, or 3)

55

56 Section 7. Keyboard Control

The EMHAELE KE statement takes as a parameter the key mask desired for the appropriate operating

mode. The upper four bits of the mask parameter specify the program execution keyboard mask. The

lower four bits specify the keyboard input key mask. The bits of the mask parameter are shown below.

Setting a bit enables the corresponding key(s), while clearing a bit disables the key(s). That is, only those

keys having a bit set in the i

F.I:11 mask will respond.

Bit Decimal | Operating
Number Value Mode Keys Not Masked

7 128 }

6 64 Program

5 32 Execution | Special function keys and
4 16 Other keys

3 8

2 4 Keyboard

1 2 Input Special function keys and
0 1 { Other keys

The following example illustrates the use of the keyboard mask to disable all keys except the special
function keys for program execution. The (RESET), (PAUSE), and special function keys are masked out for
the keyboard input mode. This still allows the operator to respond to an [I{I*.IT statement, but program

execution cannot be affected.

16 EHAELE

20 REMOTE _

0 OM KE GOTE
46 0OH EEY# 2 GOTO
=60 KEYH# 3 OGOTO
186 PRIMT "Select

bommn e

PErter datet

o e E T L

T
[HENES R

B OIHFUT MDY

The operator can select the desired program section by pressing the appropriate special function key—but

only the special function keys will respond to being pressed. When the operator presses special function

key #1, the program branches to line 1000. When the 1MF1LIT statement of line 1000 is executed, the
special function keys no longer respond but the numeric keys do, allowing the operator to set the time as
requested. When the program continues on from the [Hi*1LIT, once again all keys except special function
keys are disabled.

The following example gives the operator a ten second time span in which he can pause or reset the

computer if necessary:

18 ! line s
S progrs 1)
a0 Lime B8
dE b o kalto1
I SN

BE

e progr

dedle

mtor to g
mtatemernt i
toyoaml o
BN

Section 7: Keyboard Control

JTEP "You have 1B seo to FRAUSE or RESET the

(m
LEE M Tylaess COTO 118 @ THPUT =oF
peEg i nning automat o

118 NOFF TIMEH# o DIsF "Computer

opsrationg"

How the ocperator cannot halt the programn!

57

il ==

Section 8

Direct Interface Communication

Introduction

This section deals with the statements available to the programmer for tailoring the operations of an
interface to the specific requirements of his system.

The status of interface operations can be monitored with the = T4 T LI statement. This status may reflect
the actual hi/low voltage level of external I/O lines or it may indicate the interface’s internal state,
depending upon which status register is being read.

The mode of operation of an interface can be directed by the [Tl statement. The interface
generally provides automatic control of external I/0 lines acording to the mode selected, and also may
provide for manual override of certain of the I/O lines for custom sequences.

Checking the Status

Interface status (and also buffer status) is monitored by the % THTLI% statement. The =T HTLIE
statement is a very straightforward one to use, requiring only the interface’s select code and desired
register number to be specified. The following statement obtains the value of the HP-IB interface (select
code 7) identification register, SRO:

ETATLS 7050

Select Register Numeric
Code Number Variable

In this case, the value returned is always 1, the identification code for an HP-IB interface. Each interface
returns a different identification code, so consult the appropriate interface owner’s manual for specific
details.

The values of multiple status registers can be obtained with just one = T TLI% statement. Simply specify
the first register number and give as many variables as necessary to obtain the status needed. For
example, to read status registers SR1 through SR6 of the HP-IB interface at select code 7:

/// \\\

Select Starting Returns Returns Returns Returns Return Returns
Code Register SR1 SR2 SR3 SR4 SR5 SR6

59

60 Section 8: Direct Interface Communication

What you do with the contents of these registers depends upon your application, needs, and type of
interface. The HP-IB interface above, for example, returns

e Interrupt Cause—SR1

e HP-IB Control Lines—SR2
e HP-IB Data Lines—SR3

e HP-IB Address—SR4

e HP-IB State—SR5

e Secondary Command—SR6

for the six registers just read. Obviously the BCD Interface returns different information for those same

registers.

Most interfaces are capable of interrupting the computer when a specified condition occurs, and if more
than one condition has been enabled it will be necessary to determine which interrupt occurred and
caused the end-of-line branch. The following service routine serves as an example of how = THTLIE

would be so used:

Flowt g DomtrollersTallker.-

For HF A R P L
T o W O
I

Foor Mot dws
1838 TF BEITOS1, 50 THER GOTO 1288 U Check For Foties

Comtrol
Tada ITF BITOoSL, &
L.1d

P Cheok For Pt dws

THEM GOTO LR

P The following limes provicde for wrepredictable

e HF e TR

Serwiocs for FAotive Talker
La@e 1 Seewios for Fotive Control

D Serwiloce For Fotieve Listense

Line 1010 obtains the interrupt cause from SR1 of the interface, and lines 1020-1040 analyze the register
bits for the specific cause of the end-of-line branch. Lines 1050-1090 are included to deal with possible
program errors or illegal interrupt causes. No program or machine is perfect, so try to make provisions
such as the one shown to deal with malfunctions that might occur.

Section 8: Direct Interface Communication 61

Interface Control

The operating modes of an interface can generally be tailored to suit individual systems and their
requirements. This may mean nothing more than selecting the type of interrupt conditions required to
deal with events specific to your system. Or, it may mean selecting a handshake mode suitable for the

programming the interface’s control registers.

There are three primary items of interest in a general discussion about /I T F{ll. and interface control
registers. The first is the interface interrupt mask. This mask is CR1 for the HP-IB Interface. Therefore,
the following two statements have identical effects for the HP-IB Interface (select code 7):

EMARLE IMTE ¥&
COMTEOL 7,18

Both statements enable an SRQ interrupt condition for the interface. They can be used interchangeably,
however, the EHFELE THTE statement better documents the effects it will have on program
execution.

The second item of interest is that of external I/0 lines. In general, you can set or clear interface-specific
control lines by writing to control register CR2 of the desired interface (however, consult the individual
interface manuals for exact details). Both of the following statements write to HP-IB control register CR2,
the HP-IB Control Lines register (select code 7):

operation already in progress (an interrupt transfer, for example). The I/0 in progress first completes,
then the CONTROL operation is performed. This is in contrast to the !
immediately sets the control line (SRQ in this case) regardless of any I/0 in progress. In either case,

T statement, which

exercise due caution when writing to the interface control register: the consequences of an improper
control operation may be an interface or device malfunction. (In fact, to assert SRQ you should really use
the RHEHLE ST statement so that proper bus protocol is ensured.)

Note: Improper or invalid control line operation may cause loss of data or device malfunctions.

The third item of general interest in control register programming is the end-of-line (EOL) character
sequence sent by the interface. This character sequence is essentially an end-of-record delimiter, which in
the days of punched cards signaled that an entire card had been read or punched. For all interfaces, this

operation (unless inhibited by the programmer). The EOL sequence is also sent for the " " (slash) image

specifier or for the " EM[1" keyword of the = E [statement.

It is sometimes necessary to tailor the EOL sequence to suit the needs of a particular device. For instance,
you might need double spacing on a printer (carriage return/double line feed) or carriage-return only for a
CRT terminal that performs an automatic line-feed when a carriage-return is received.

62 Section 8: Direct Interface Communication

The HP-IB Interface provides EOL sequence programmability with control registers CR16-CR23. Up to
seven EOL characters can be sent if so desired, and are specified by writing the character values and EOL
character count to those control registers. For example, to program a double line-feed EOL sequence with

EOI(END or Identify) set on the last line-feed*, the following 11 TF 1. statement could be used:
Enable Carriage Line-Feeds
EOI Count Return
of 3

In summary, the control registers provide the flexibility required to tailor interface operation to your
specific system requirements. They should be used with caution, however, so that you don’t get any
unpleasant surprises. Study the appropriate interface manual to determine which capabilities you need
and how to implement them. It may be necessary to experiment a bit before the system works as you want
it, but even the pros have to do that.

*You should note that it is not p0s51ble to send EOI with the last data byte of an ©iLi T 1T or & E MU operation, but it is possible with

FRIMT, DLSF, or TH

Section 9

Additional I/0 Commands

There are several commands made available by the I/O ROM which have not been introduced in the
preceding sections. Many of these commands are only used with certain interfaces and all of them have
different meanings with respect to each interface. Several of these interface-specific commands are
introduced here to illustrate their capabilities. For extensive examples the interface owner’s manuals
should be consulted.

Interface-Dependent Statements

The =ML Statement

There are times when it is convenient to be able to send an arbitrary data sequence from the computer to one or
more peripherals. The SEHMD statement accomplishes this directly. The following are examples of properly
formed ZEH[data statements:

SEMD OFES: DATA "weloome fto the world of .00
SEMD S DOATH 00T, v, "HOW, 1EY

If EOL is specified, the interface sends an end-of-line sequence following each set in the data listing.

With all but the serial interface, the SE M statement may be used to send commands. This allows
sending an arbitrary sequence of bytes out over the interface bus, which may be tailored to command any
device which requires special sequences for initialization or reconfiguration. These same commands could
be sent with (LI TFLIT statements, of course, but by using the =EHMIl statement judiciously program
documentation may be enhanced. The following are examples of correctly formed ZEHM[! command
statements:

SEMD W OMD BF
SEMD 2 MTA MLA UHL LISTEM 4,5 CMO FLH
SEHD 4 MO W

In most cases the interface and device owner’s manuals will need to be consulted to confirm the character
programming sequences needed.

HALT, ABORTIO, and RESET
The HFL. T statement is used to terminate any transfer in progress. This is the best means of recovering

from a hung condition (interface handshake problem). This will not have any effect on a FHs
THAMS

F* and other means will be needed to recover from that type of condition.

The next most commonly used statement, FECF T I, will also halt any transfers in progress and will
reset control lines on all interfaces and will reset data lines on some interfaces. This is a convenient
method of interrupting an I/0 operation and ending up in a known state.

63

64 Section 9. Additional /0 Commands

" is the most drastic statement of this group since it not only terminates any transfers but also
returns all configurations selected to their default (switch-selected) state. This should only be necessary
when first beginning a program or when recovering from an interface failure.

If an EOT branch is enabled when any of these statements is executed, the branch will be taken. After a

HAL T or &k HII statement, a FE %L1 is sometimes necessary to re-enable input or output operations.
The I. . command is used with the GPIO, HP-IB, and HP-IL interfaces to reset peripherals. The
interface itself is not reset. Examples of these statements are given below:

statements can be used to allow or not allow access to device settings by use of the front-panel controls

supplied on the device.

The FE M TE statement places instruments under remote control. The instrument may be returned to
front panel control by executing a L. [1Fl. statement or by activating a switch on the instrument called
Return to Local or Manual Control.

If system security requires, a L. LI FL. LOHIKECHIT statement may be executed which precludes any local
control whatsoever until a I..[10: 1. statement is subsequently executed.

For an example of the L.l Fl. statement, see the program illustrating the Interface Interrupts section of
section 6.

These statements will not be covered in this manual since they have specific meanings (quite specific!)
with each interface they are to be used with:

PR GHIE ST =R F L T

O TR TEIGEER

Refer to the syntax reference in the first appendix of this manual for a brief summary of the uses of these
statements with each interface. The interface owner’s manuals will contain more specific instructions
and examples.

=

i

il

A

g

A e

Section 10

Binary Functions

I

il

L

e

i

Introduction

I/0 programming often involves the use of binary functions and bit-level operations. The 1/0 ROM

provides several useful tools to assist you with these tasks. These binary functions are often used when
manipulating status and control registers in the interface cards. They may also be very handy for
processing I/0 data in device control applications. This section explains the binary functions available
with the I/O ROM.

It is important to remember that all the binary functions provided by the I/O ROM operate on 16-bit
words. For example, the binary complement of zero is 11111111 11111111 (base 2); the range of bits that
can be tested is 0 thru 15; and the range of values for binary arguments is —32 768 thru 32 767. There is no
problem using these functions to operate on binary values with less than 16 bits. The unused high-order
bits are simply assumed to be zero.

In the following explanations, the term integer is used frequently to identify the arguments for many of
the functions. To the I/0 ROM, an integer is a 16-bit binary number with a range of —32,768 thru 32,767.
This contrasts to the definition of an integer given in BASIC where an integer is a 5-digit number with a
range of —99,999 thru 99,999. Please keep this distinction in mind to avoid confusion about the term
“integer”’.

If you are not familiar with the binary numbers and operators, study the following review before
continuing with this section.

Review of Base 2

Before looking at base 2, it is helpful to take a careful look at the familiar base 10. The number one
hundred twenty five is represented as follows:

125
The digits have a place value corresponding to powers of ten. The representation above really means:
1X102+2X101+5x100

The concept of place value also exists in base 2. The difference being that powers of two are represented

instead of powers of ten. The number one hundred twenty five is represented as:
11111101

Base 2 uses only the digits “1” and “0”’; a 1 indicates that a place value is included, while 0 indicates that
a place value is not used in the value. Therefore, the binary representation shown above means:

26+254+24+23+22420
This is the same as:
64+32+16+8+4+1

65

66 Section 10: Binary Functions

The term bit comes from the words “binary digit”. A bit is a single digit in base 2 that must be either a 1 or
a 0. The grouping of 8 bits together is in such common usage for character representation, internal
storage, and interfacing that it has been given a special name—a byte. The term byte refers to 8 bits
processed as a unit.

Notice in both the previous examples that the right-most digit represents the “Oth” power of the base.
Because of this, bit patterns are usually numbered starting at Bit 0, instead of Bit 1. By doing this, the bit
number and the power of two it represents are the same. The following table shows the bit positions in a
byte and their corresponding values.

Bit Position Bit7 Bit6 Bits Bit4 Bit3 Bit2 Bit1 BitO
Meaning 27 26 25 24 23 22 21 20
Value 128 64 32 16 8 4 2 1

Examples: 130in base 10is 10000010 in base 2
3in base 101s 00000011 in base 2
25in base 1015 00011001 in base 2

The term word is also widely used in computer appliations. A “word” is usually the number of bits that
can be handled in one operation by the internal architecture of the computer. Although the Series 80
Personal Computers have an 8-bit internal architecture, they also have operations defined for 16-bit and
floating point numbers. Therefore, 16-bit integers are often referred to as words in the computer because
the system can handle them as a basic data unit. Another characteristic of a word in the computer is that
2’s complement representation is used. 2's complement representation is a method of storing either
positive or negative numbers in a word. It works like this:

Positive numbers: Ifbit 15 is 0, then the word is a positive number represented in normal binary form.

Negative numbers: Ifbit 15is 1, then the word is a negative number represented in 2’s complement form.
To find the absolute value of a negative number, invert all the bits and add 1.

Problem: Whatis the valueof11111111 111100007

Solution: Bit 15 tells that this is a negative number.
Inverting all the bits gives: 00000000 00001111
Adding 1 results in: 00000000 00010000

So the value of the given bit pattern is —16.

Review of Logical Operations

In this discussion, “logical operations” refers to operations from Boolean algebra, such as AND and OR.
The outstanding I/0 feature of these operations is that they can modify individual bits without affecting
surrounding bits. In this respect, they can be contrasted to the arithmetic operations, such as addition
and subtraction. Addition and subtraction generate carries and borrows that can propagate through an
entire word, changing the state of numerous bits many places away from the bit where the arithmetic was
performed. Although this is exactly what is desired for numerical quantities, many of the bytes and words
used in I/O are not numerical quantities. When bits are used as individual control elements, the
programmer must have access to tools that allow individual control of bits. This section reviews the
action of the common logical operators.

Section 10: Binary Functions 67

computers. These operators treat an entire variable as one entity. A value of “0” is considered “false”,
while any other value is considered “true”. Although these operators perform the same Boolean function
as the binary logical operators, they do not operate on individual bits. The binary logical operators
available with the /0O ROM work on a bit-by-bit basis across an entire word. Without these binary tools,
isolating an individual bit requires an involved combination of tests, branches, and arithmetic operators.

The simplest logical operation is the complement operation. When binary data is complemented, all the
I’s are changed to 0’s, and all the 0’s are changed to 1’s. This operation is also known as “1’s
complement”, or “inversion”. The Boolean notation for this operation is a horizontal bar drawn over the
variable. The truth table is as follows:

- O

When used on an entire byte, the complement operator inverts each bit individually.

Binary value of A: 10011101
Binary complement of A: 01100010

The other logical operators combine two inputs to create a result. Let’s look at the AND operator first. A
binary AND produces a “1” in the result only if both inputs are “1”. The Boolean notation for this
operation is 4, although you may also see the symbol - used. The truth table for AND is as follows:

A|B|]A~*B
0| O 0
of 1 0
110 0]
111 1

The important thing to notice is that the result is 0 when A is 0, while the result is equal to B when A is 1.
Because of this, a binary AND is a convenient method for clearing selected bits. For example, assume that
you wanted to clear the two lowest bits in a byte without disturbing the other bits. This can be done by
ANDing the byte with an appropriate mask.

Original bute: 10011101
Byte ANDed: 11111100
Result: 10011100

This operation not only preserves the state of the top six bits, but also clears the bottom two bits no matter
what their original state. That saves alot of testing and branching.

68 Section 10: Binary Functions

The next operator is the binary OR, most correctly called the inclusive OR. In English this means: you
can have pie OR ice cream for dessert, and it is possible to have both at the same time. To the computer
this means that the result bit is “1” when either input bit is “1”. The Boolean notation for an inclusive OR
is v, although you may also see the symbol + used. The inclusive OR truth table is:

The important thing to notice is that the result is 1 when A is 1, while the result equals B when A is 0.
Because of this, the inclusive OR is a convenient method for setting selected bits. For example, assume
you wanted to set the two lowest bits in a byte without disturbing the other bits. This can be done by
ORing the byte with an appropriate mask.

Original byte: 10011101
Byte ORed: 00000011
Result: 10011111

This operation sets the lower two bits no matter what their original state and also preserves the state of
the top six bits.

The final operator is the binary EXOR, or exclusive OR. In English this means: you can take the plane OR the
train to Chicago, but you can’t do both at the same time. To the computer this means that the result bit is “1” if
a single input bit is 17, but the result bit is “0” if both input bits are the same. The Boolean notation for an
exclusive OR is v, although you may see the symbol + used. The exclusive OR truth table is:

A |B |AvB
of|o 0
0|1 1
110 1
111 0

This important thing to notice is that the result is equal to B when A is 0, while the result is the
complement of B when A is 1. Because of this, the exclusive OR is a convenient method for inverting
selected bits. For example, assume that you wanted to invert the lower two bits of a byte without
disturbing the rest of the bits.

Original byte: 10011110
Byte EXORed: 00000011
Result: 10011101

This operation complements the lower two bits no matter what their original value and leaves the top six
bits unchanged.

Section 10: Binary Functions 69

The Binary AND Function
The binary AND function performs a bit-by-bit AND using two integers as arguments and producing an
integer result. Here are some examples of properly formed binary AND functions:

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments
may be numeric constants, numeric variables, numeric expressions, or any combination. The arguments
are assumed to be in base 10 representation. If you wish to express the arguments in another base, refer to
section 11. Each bit of the result is computed according to the following truth table:

First Second Function
Argument | Argument Result

0 0 0
0 1 0
1 o 0]
1 1 1

The Binary Inclusive OR Function
The binary inclusive OR function performs a bit-by-bit inclusive OR using two integers as arguments and
producing an integer result. Here are some examples of properly written binary inclusive OR functions:

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments
may be numeric constants, numeric variables, numeric expressions, or any combination. The arguments
are assumed to be in base 10 representation. If you wish to express the arguments in another base, refer to
section 11. Each bit of the result is computed according to the following truth table:

First Second Function
Argument | Argument Result

0 0 0]
0 1 1
1 0] 1
1 1 1

The Binary Exclusive OR Function

The binary exclusive OR function performs a bit-by-bit exclusive OR using two integers as arguments and

producing an integer result. Here are some examples of correctly stated binary exclusive OR functions:

70 Section 10: Binary Functions

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments
may be numeric constants, numeric variables, numeric expressions, or any combination. The arguments
are assumed to be in base 10 representation. If you wish to express the arguments in another base, refer to
section 11. Each bit of the result is computed according to the following truth table:

First Second Function
Argument | Argument Resuit

0 0]
1 1
0 1
1 0

The Binary Complement Function

The binary complement funcion performs a bit-by-bit complement of an integer argument, producing an
integer result. Here are some examples of properly formed binary complement functions:

THCHEP OB
SRR [
FRTHT BT HCHP O

Notice that the argument is enclosed in parentheses. The argument may be a numeric constant, a numeric
variable, a numeric expression, or any combination. The argument is assumed to be in base 10
representation. Each bit of the result is computed according to the following truth table:

Argument l Result

0 ’ :
1 0

You should keep in mind that the binary complement function operates on a full 16-bit word. This may, in
some cases, give an unexpected result if you are dealing exclusively with 8-bit bytes. The 16-bit
complement of an 8-bit byte is always a negative number. You can generate 8-bit complements by using
the binary exclusive OR function. An exclusive OR with 255 complements the lower eight bits and leaves
the upper eight bits as zeros. This technique prevents the unintentional generation of negative values
when dealing with single bytes.

The Bit Test Function

The bit test function is used to indicate whether a specific bit in an integer is set (1) or clear (0). The
general form for the bit test instruction is:

F 1T Cinteger . bit number

The integer argument must be the first expression and the two expressions must be separated by a
comma. The bit number must be in the range 0 thru 15, where 0 is the least-significant bit and 15 is the
most-significant bit. Either argument may be a numeric constant, a numeric variable, a numeric
expression, or any combination. Here are some examples of properly stated bit test functions:

! : Section 10: Binary Functions 71

COTHEM GOSUE 30e

The bit test function is very useful in decision making and branching. It is easily used with the I
statement to direct program flow based on the state of individual bits. The function returns a 0 (false) if
the specified bit is 0 and returns 1 (true) if the specified bit is 1.

T

Section 11

Base Conversion Functions

O LT

Introduction

A programmer who works at the bit and byte level soon develops a preference for the base in which bytes

and words are represented. In some cases, base 2 offers the clearest display of a bit pattern. Base 8 had a
large following in the days when computers could not easily handle alphabetic characters as numeric
input. Base 16 has gained much popularity in recent years because most computers use a word length that
is an integral multiple of 4, and modern systems have no trouble converting the symbols A thru F used in
base 16, also known as hexadecimal or simply hex.

To accommodate these various preferences, your computer provides conversion functions that allow
theinput and output of integers using any of the alternate representations mentioned above. The base
conversion functions have certain characteristics in common:

e All conversions go from base 10 to an alternate base or from an alternate base to base 10. You can’t
convert directly from one alternate base to another without passing through base 10.

o The base 10 side of the conversion is always a numeric quantity, while the alternate base side is
always a string.

e Because the alternate base representations are string data, they can be input, output, compared,
stored, and manipulated to some degree. However, the string representations cannot be used in
arithmetic operations.

e All arguments for the base conversion functions must be in the range of 16-bit integers. This
includes the alternate representations as well as the base 10 values.

If you are not familiar with alternate number bases, read the following review material.

Review of Alternate Representations

When text contains values represented in more than one base, it is extremely important to distinguish
between the concepts of value and representation. Consider the number one hundred. The value is the
number of beans in a jar of one hundred beans. The representation in base 10 is the digit “1” followed by
two zeros. The value one hundred can also be represented as “64” in base 16, as “01100100” in base 2, and
as “10”” in base 100.

The representation of a number is merely the character set used to communicate the number’s value.
Numbers are often represented in bases other than 10 when the use of an alternate base more clearly
communicates the number’s value. For example, suppose that up to 16 small pumps and valves are
controlled by a single 16-bit word from the computer. If the control pattern were represented in base 10, it
could be very difficult to understand the number in terms of pumps and valves. However, suppose the
number is represented in base 2, further defined so that the most-significant byte is pumps and the
least-significant byte is valves. The base 2 representation “00100000 10000000” clearly shows one pump
and one valve open. That same value is “8320” in base 10. How quickly does “8320” communicate to you
that one pump is on and one valve is open?

73

74 Section 11: Base Conversion Functions

The problem with using base 10 to represent a binary number is that one base 10 digit does not represent
an integral number of bits. A base 10 pattern does not readily reflect which bits are “1” and which are “0”.
The problem with using base 2 is that there are simply too many characters to read and write. To
circumvent these problems, persons who work at the bit and byte level in computers commonly use base 8
or base 16 to represent binary numbers. These bases have place values directly related to powers of two,
making it easy to trace bits with a little practice. They also provide representations that are three and four
times more compact than binary, reducing the number of characters needed to a more manageable small
group. For example, an entire byte is never more than 2 characters in base 16.

Base 8, known as octal, uses one octal digit for three binary digits. Base 16, known as hex, uses one hex
digit for four binary digits. The following tables show the decimal (base 10), binary (base 2), octal (base 8),
and hex (base 16) representations for the numbers 0 thru 16.

Decimal Binary | Octal | Hex
0 000 0 0
1 001 1 1
2 010 2 2
3 011 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 11 7 7
8 1 000 10 8
9 1 001 11 9
10 1 010 12 A
11 1 011 13 B
12 1 100 14 C
13 1 101 15 D
14 1 110 16 E
15 1 111 17 F
16 10 000 20 10

Notice that the Arabic numeral system (designed for base 10) does not have any single-character symbols
to represent quantities above nine. Single-character representation of all quantities less than the base
value is essential to the concept of place value. Therefore, base 16 representation utilizes the characters A
thru F to represent values from 10 thru 16. The following examples help to illustrate the way that octal
and hex numbers use bit groupings to represent binary values.

Octal: 1 2 5 3 6 O 0 7 O 2 0 1 2 0 2
Binary: 01010101 11110000 00111000 10000001 10000010

—_———— e————— e e —_— —
Hex: 5 5 F 0] 3 8 8 1 8 2

Conversions From Base 10 to an Alternate Base

These functions use a base 10 numeric quantity as an argument and produce a string as a result. The
primary use of these functions is the printing, display, or output data in an alternate base, although other
applications are possible. The argument for the function may be a numeric constant, numeric variable,
numeric expression, or any combination. The argument must be in the range of —32 768 thru 32 767.
Functions are available to convert to base 2, base 8, or base 16.

Section 11: Base Conversion Functions 75

From Base 10 to Base 2

This is the Decimal To Binary String function. It converts an integer argument to a string of 16 ones
and zeros. The string is the base 2 representation of the integer argument. If the argument is out of range
and positive, the function yields “0111111111111111”. If the argument is out of range and negative, the
function yields “1000000000000000”. The following are examples of well-stated conversion expressions:

From Base 10 to Base 8

This is the Decimal To Octal String function. It converts an integer argument to a 6-character string.
The string is the octal representation of the integer argument. If the argument is out of range and
positive, the function yields “077777”. If the argument is out of range and negative, the function yields
“100000”". The following are examples of properly formed decimal-to-octal expressions:

From Base 10 to Base 16

This is the Decimal To Hex String function. It converts an integer argument to a 4-character string.
The string is the hex (hexadecimal) representation of the integer argument. If the argument is out of
range and positive, the function yields “7FFF”. If the function is out of range and negative, the function

yields “8000”. The following are examples of correct decimal-to-hex expressions:

Conversions From an Alternate Base to Base 10

These functions use a string as an argument and produce a numeric result. The primary use of these
functions is the input of data in an alternate base, although other applications are possible. The
argument for the function may be a string constant (literal), string variable, string expression, or any
combination. The argument must represent a value in the range of 16-bit integers. Functions are

available to convert from base 2, base 8, or base 16.

76 Section 11: Base Conversion Functions

From Base 2 to Base 10

This is the Binary To Decimal function. The argument is a string which is the binary representation of
an integer. The argument cannot have more than 16 characters, and only the numerals “1” and “0”” are
valid. The result of the function is the base 10 value of the number represented by the argument. Since the
function result is numeric, it can be used in arithmetic operations or numeric functions. The following are

examples of properly formed expressions:

Lo

From Base 8 to Base 10

This is the Octal To Decimal function. The argument is a string which is the octal representation of an
integer. The argument cannot have more than 6 characters. Only the numerals “0” thru “7” are valid. If
all six characters are used, the most-significant character can only be a “1” or a “0”. The result of the
function is the base 10 value of the number represented by the argument. Since the function result is
numeric, it can be used in arithmetic operations or numeric functions. The following are examples of

correctly stated expressions:

From Base 16 to Base 10

This is the Hex To Decimal function. The argument is a string which is the hex representation of an
integer. The argument cannot have more than four characters. Only the numerals “0” thru “9” and the
letters “A” thru “F” are valid. The result of the function is the base 10 value of the number represented by
the argument. Since the function result is numeric, it can be used in arithmetic operations or numeric

functions. The following are examples of properly written hex-to-decimal expressions:

Converting From One Alternate Base to Another

Conversions between alternate representations are easily done by nesting two conversion functions. The
following short program is an example of this technique. It inputs a hex representation and displays the

corresponding binary representation.

e DIzorE
: PHPUT HE
IR "Binary =
GOTO 18

TESCHTOCFIED

Appendix A

Syntax Reference

T

Conventions Used to Represent Syntax
This reference section uses two methods of representing the syntax of /O ROM statements. The
conventions of each form are as follows.

Pictorial Representation

All items enclosed by a rounded envelope must be entered exactly as shown. Items enclosed by a
rectangular box are names of parameters used in the statement. A description of each parameter is given
in the text following the drawing. Statement elements are connected by lines. Each line can only be
followed in one direction, as indicated by the arrow at the end of the line. Any combination of statement
elements that can be generated by following the lines in the proper direction is syntactically correct. A
statement element is optional if there is a valid path around it.

interface line
ONINTR select code number
line]
GOsSuUB abel

This form of syntax representation is easy to use, and in some cases, more formally correct than the
alternate form described next.

Linear Representation
This form of syntax representation is included to be compatible with previous HP Series 80 manuals.

Many users are accustomed to seeing this form.

OT FMATET® Allitems shown in dot matrix must be entered exactly as shown.

[1] Items within square brackets are optional.

ZZZ ; A vertical placement of two items indicates that only one of the items may be included.
Three dots indicate that successive parameters are allowed.

fitalic Italicized items are the parameters themselves.

77

78 Appendix A: Syntax Reference

ABORTIO

interface N
ABORT IO select code

FECIRET 11 interface select code

Example Statements

THEM FRORTIO &6

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
All interfaces: Terminates any interrupt transfer in progress. Performing an HE T 11 on an interface
with an active transfer and EOT branching enabled causes the branch to be taken.

HP-1B:

e System Controller: Sends Interface Clear (IFC) and Remote Enable (REN).

e Active Controller (but not System Controller): Sends Attention (ATN) and My Talk Address
(MTA).

* Non controller: Stops handshaking data and becomes ready for next operation.
Serial: Turns off all modem control lines (control register 2).

BCD: Stops handshaking data, sets CTL line false, and places external data lines in high-impedance
state.

GPIO: Stops handshaking data, sets control lines false, places ports A and B in high-impedance state,
and sets lines from ports C and D to false state.

HP-IL:

¢ System or Active Controller: Sends Interface Clear.

® Non controller: Stops current operation and becomes ready for next operation.

Related Statements

Appendix A: Syntax Reference 79

ASSERT

ASSERT nterface oyte f—
select code

=T interface select code : byte

Example Statements

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

byte—a numeric expression that evaluates to an integer 0 thru 255. Binary value of the byte is used to set

or clear the lines to be asserted.

Actions Taken
HP-IB: Immediately writes the value of the byte to control register 2. IFC bit (27, decimal 128) is ignored
(use FECHRET T,

Serial, BCD, GPIO: Immediately writes the value of the byte to control register 2.

HP-IL: Sends a frame using the specified byte and the most recent control bits written to register 2. This

statement is similar to UM TF L. jsc . 3) byte except that T interrupts the interface and sends

the frame without checking loop status.

Related Statements

80 Appendix A: Syntax Reference

BINAND

integer —>@—> integer —>@—>

B I HAHD Cinteger . integer

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken

calculated using the corresponding bit of each argument, according to the following truth table:

Arg. 1 | Arg. 2 | Result

0 0 o
0 1 o
1 0 0
1 1 1

Related Statements

Appendix A: Syntax Reference 81

BINCMP

integer —b-@—>

B THICMEF Cinteger

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken

IO is a function that returns the 16-bit binary complement of an integer value. Each bit of the
result is the inverse of the corresponding bit in the argument. If the argument has less than 16 bits,
leading zeros are assumed.

Related Statements

82 Appendix A: Syntax Reference

BINEOR

BINEOR 0 | integer —>@—>— integer —>@—>

B THET

" integer . integer

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken
F I MEDR is a function that returns the 16-bit binary exclusive OR of two integer values. Each bit of the
result is calculated using the corresponding bit of each argument, according to the following truth table:

Arg.1 | Arg.2 | Result

0 0 o
0 1 1
1 0 1
1 1 o

Related Statements

BT HAMD
BT HE
ETHTOR
BEIT

Appendix A: Syntax Reference 83

BINIOR

BINIOR 0 integer —b@—b- integer ——@—»

BIHIGE Cinteger . integer

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken
E# TR ITIE is a function that returns the 16-bit binary inclusive OR of two integer values. Each bit of the
result is calculated using the corresponding bit of each argument, according to the following truth table:

Arg. 1 l Arg. 2 | Result

9
0 0 0
0 1 1
1 0 1
1 1 1

Related Statements

84 Appendix A: Syntax Reference

BIT

it bit
8IT integer position

1T Cinteger . bit position

Example Statements

A

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

bit position—a numeric expression that evaluates to an integer 0 thru 15. Least-significant bit is in
position 0, most-significant in position 15.

Action Taken
BIT

I is a function that returns the value of one bit in an integer argument. Result of the function is TRUE
if bit is set, FALSE if bi is clear.

Related Statements

Appendix A: Syntax Reference 85

BTD

BTD 0 string _p.@_>

ETI Cstring

Example Statements

o] e

Parameters

string—a string expression that contains the base 2 representation of an integer. Limited to 16
significant characters that must be “1” or “0”.

Action Taken

7T} is a function that returns the value of a base 2 representation contained in the string argument. The
argument is a character representation and the result is a numeric quantity.

Related Statements

86 Appendix A: Syntax Reference

CLEAR

device
selector

L EFF device selector[. device selector] ...

Example Statements

G O A S N A A

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination in section 1). If multiple device selectors are specified,

they must all be on the same interface select code.

Actions Taken
HP-IB and HP-IL: Must be Active Controller. (HP-IB leaves ATN true; use Ik
ATN false.)

LPME if you wish to set

e Ifdevice selector is only an interface select code, then Device Clear (DCL) is sent.

e If device selector contains a primary address, then Unlisten (UNL), Listen Address(es) (LAD), and
Selected Device Clear (SDC) are sent.

Serial, BCD: Error
GPIO:

e Ifdevice selector is only an interface select code, interface pulses RESA and RESB.
e Ifdevice selector contains an even primary address, interface pulses RESA.

e Ifdevice selector contains an odd primary address, interface pulses RESB.

Related Statements

Appendix A: Syntax Reference 87

CONTROL

CONTROL interface register control
select code number byte

buffer

buffer
interface select code

.+ register number : control byte [. control byte]...

Example Statements

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

buffer—the name of a string variable that has been declared an . Lii:

register number—a numeric expression that evaluates to an integer 0 thru 23. Must specify a valid
control register for the selected interface.

control byte—a numeric expression that evaluates to an integer 0 thru 255. Binary value of byte is used
to set and clear bits in the control register.

Action Taken

LLH4THE. writes one or more control bytes to interface or buffer control registers. The register number

specifies the first register to be used. If multiple control bytes are specified, they are stored in consecutive
control registers, beginning with the specified register number.

Related Statements

88 Appendix A: Syntax Reference

CONVERT

interface

CONVERT o select code

—

string

PAIRS variable

! string variable]

Example Statements

COMUERT 00T
MUEFRT TH
COMUERT TH

R L

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

buffer—the name of a string variable that has been declared an I i

string variable—the name of a string variable in which the conversion table has been previously stored.

Actions Taken

Enables or disables a character conversion process for a specified interface or buffer and a specified

direction. Although you can &. using either an interface or a buffer, conversions can only be

i{i or

performed with [iiT I statements. Conversions are not performed during

If the optional parameters are not included (as in the 3rd example statement), a previously selected
conversion is turned off for the specified interface and direction.

If direction is specified as ! I, all bytes being input from the specified source are processed through a
conversion table immediately after they are received from the source. If direction is specified as [iLi T, all
bytes being output to the specified destination are processed through a conversion table immediately

interface select code or buffer.

If conversion method FF I % is specified, the conversion table is treated as a sequential list of character
pairs, the second character in each pair being substituted for the first character. If the byte to be
converted is not found as one of the first characters in a pair, it is passed through unchanged.

Recommended when only a few characters need to be converted.

Appendix A: Syntax Reference 89

If the conversion method [FHIIE - is specified, the numeric value of the byte to be converted is used as an
index into the conversion table. The byte found as a result of this indexed lookup is substituted for the
original byte. If the index value is greater than the length of the table, no conversion is performed. The
first character in the string corresponds to the index value of 0. Recommended when a large number of

characters need to be converted.

Related Statements

90 Appendix A: Syntax Reference

DTBS$

DTBS 0 integer ‘—»@—»

ITESF Cinteger

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken
T

16-character string and the argument is a numeric quantity.

} is a function that returns the base 2 representation of an integer argument. The result is a

Related Statements

Appendix A: Syntax Reference 91

DTHS

DTHS (integer —>-®—>

THE Cinteger

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken

[ITH# is a function that returns the base 16 representation of an integer argument. The result is a
4-character string and the argument is a numeric quantity.

Related Statements

92 Appendix A: Syntax Reference

DTOs

O[O

DT Cinteger 3

Example Statements

Parameters

integer—a numeric expression that evaluates to an integer —32,768 thru 32,767.

Action Taken
[1T11# is a function that returns the base 8 representation of an integer argument. The result is a
6-character string and the argument is a numeric quantity.

Related Statements

BT
HTE
AT
[
T HE

Appendix A: Syntax Reference

ENABLE INTR

ENABLE mnD——»- intertace enable
select code byte >

FFFE

I HTE interface select code : enable byte

Example Statements

PRHTE @ 5 b mRE
MG S0l THER

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

93

enable byte—a numeric expression that evaluates to an integer O thru 255. Binary value of bytes is used

to set and clear bits in the control register.

Action Taken

Enables the specified interface for interrupts according to the bits set in the enable byte. The enable byte

is placed in control register CR1. The meaning of each bit in CR1 is interface dependent; refer to the

appropriate interface owner’s manual for details. This statement is identical to performing a .- (iH T F L.

statement to control register 1.

Related Statements

TR
OF THTH
ETATLE

94 Appendix A: Syntax Reference

ENABLE KBD

ENABLE KBD mask

EHAELE EED mask

Example Statements

IF w THEM EMMBELE ERD E1
Parameters

mask—a numeric expression that evaluates to an integer 0 thru 255. Binary value of byte determines

which keyboard modes are enabled and disabled.

Action Taken
Bits in the mask byte correspond to various keyboard areas and program modes as shown in the
following table. If a bit is set in the mask, its feature is enabled. If a bit is clear, its feature is disabled.

Bit | Mode Keys Affected

RUN
RUN
RUN | SFKsand (B)

RUN All other keys
INPUT | (RESET
INPUT | (PAUSE
INPUT

INPUT | All other keys

O - NWPrOO
n
m
A
»
o
=]
Q

Related Statements

THFLT
D REY 4

Appendix A: Syntax Reference 95

ENTER

device .
ENTER selector o
9
buffer USING string
. numeric
ne ' variable
number
string
variable
string
e buffer) .
EHTER) 1% TG fine number 1[+ [variable][. variable] ...
dewceselector[e I 1.1

line label*

Example Statements

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination in section 1).

buffer—the name of a string variable that has been declared as an I (1 LIF .
string—a string expression that contains a valid set of image specifiers.

line number/label—the line number or label or an | ['1{1i:[: statement that contains a valid set of image
specifiers.

»

variable (numeric or string)—the name of a variable intended as a destination of the EMTI

operation.

Action Taken

Inputs bytes from the specified buffer or device; uses those bytes to build a number or string; places the
result into a BASIC variable. If a L0V ERT is in effect, the conversion occurs immediately after the
character is taken from the interface or buffer.

*Line labels are allowed on the HP-87 but not on the HP-85 or 83.

96 Appendix A: Syntax Reference

When L% I FU is not specified, free-field format is used. A free-field entry into a string places incoming
bytes into the variable until either a line feed is received, a carriage return/line feed sequence is received,
or the string is full. Terminating sequences are not placed into the destination string. A free-field entry
into a numeric variable ignores up to 256 leading non-numeric characters. Blanks are ignored during
number building. Entry into a numeric variable is terminated by the first trailing character that is
non-blank and non-numeric.

When 115 1 Hi: is specified, input operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotes and placed in the F M TE I statement, contained in a string variable
named in the ENTER statement, or placed in an IMAGE statement referenced by the [TE - statement.
For detailed information on image specifiers, refer to the I[1H{:E statement in this appendix or see
Formatted ENTER in section 3.

This can be the same line-feed that satisfied the last variable in the list. If the source is a device selector

' requires a line-feed character to satisfy the statement after the variable list has been satisfied.

and no line feed is detected, the computer will be “hung” on the [T E = statement. If the source is a
buffer and no line feed is detected, a Ml TE I error is generated. This requirement can be removed by
using "#" as the first image specifier. For more detailed information on statement terminators, see
Formatted ENTER. A “hung” condition can be trapped by use of the Tk T

TIMECLT statements.

Related Statements

Appendix A: Syntax Reference 97

ERROM

R CANIY

Example Statements

1EE

Parameters

None

Action Taken

FRRIM is a function that returns the ID number of the option ROM associated with the last error
generated by an option ROM. All option ROMs use error numbers greater than 100. The ID number of the
I/0 ROM is 192. Note that F - F (1 is modified only by the occurrence of another option ROM error.

Related Statements

98 Appendix A: Syntax Reference

ERRSC

THEM GOEUE 268

Parameters

None

Action Taken

is a function that returns the interface select code responsible for the most recent I/O error. Note

dependent I/0O error.

Related Statements

Appendix A: Syntax Reference 99

HALT

interface
HALT select code

HFL. T interface select code

Example Statements

HALT ¥

16 LT
A HALT o1

o

- =
ab i

)

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken

All interfaces: Stops current I/0 operation. If an interface is Hfl. Ted with a TFHMZFEF active and
an EOT branch enabled, the branch will be taken.

HP-1B: Leaves busin present state.

Serial, BCD, GPIO: Does not affect external lines, so = TFHTLI% can be used to inspect line states.

FESET or RECIET I'0) may be necessary after a halt to return handshake lines to the proper state for the

next operation.
HP-IL:

e Active Controller: If a data transfer is in progress than a Not Ready for Data (NRD) is sent. If the
interface is not involved in the transfer then RESUME may be used to continue the transfer.

e Non-controller: Leaves loop in present state.

Related Statements

AECRT I
aH EDT
RESET

100 Appendix A: Syntax Reference

HTD

HTD (string —>@—>

HTL string 3

Example Statements

Parameters

string—a string expression that contains the base 16 representation of an integer. Limited to 4
significant characters that must be “0” thru “9” or “A” thru “F”.

Action Taken
HTILl is a function that returns the value of a base 16 representation contained in the string argument.
The argument is a character representation and the result is a numeric quantity.

Related Statements

BTL
DT EE
T HE
O g
LT

Appendix A: Syntax Reference 101

IMAGE

| specifier |

- specifier[. specifier] ...

Example Statements

1B LEL: THMRAGE
TEE TMAGE #,XE

Image Meaning

F Output one string character
[Output number as one 8-bit byte
i Output a comma separator in a number
[Output one digit character; blank for leading zero
E: Output exponent information; five characters
K Output exponent information; four characters
k. Output a variable in free-field format
[Output number’s sign if negative, blank if positive
F Output a period separator in a number
[Output a European radix point (comma)
o Output number’s sign, plus or minus
bl Output number as two 8-bit bytes (16-bit word)
.:*. Output one blank
o Output one digit character, including leading zeros
Vo Output a literal
i Suppress end-of-line sequence at end of statement
* Output one digit character; asterisk for leading zero
. Output an American radix point (decimal point)
d Output and end-of-line sequence

102 Appendix A: Syntax Reference

Summary of i T iz Image Specifiers

Image Meaning

H Demands one string character

[Enter number as one 8-bit byte

i Demand one character for a numeric field; allows commas to be skipped over
[Demand one character for a numeric field

[Demand five characters for a numeric field

i Demand four characters for a numeric field

I Enter a variable in free-field format

i1 Demand one character for a numeric field

g Demand one character for a numeric field

bl Enter number as two 8-bit bytes (16-bit word)

Skip one character

& Demand one character for a numeric field

Suppress requirement for a line-feed to terminate statement or field
Allow EOI to terminate statement or field

Y Demand one character for a numeric field

. Demand one character for a numeric field

g Demand a line feed

Related Statements

Appendix A: Syntax Reference 103

IOBUFFER

string
IOBUFFER variable >

TR,

F string variable

Example Statements

Parameters

string variable—the name of a string variable with a dimensioned length 8 characters longer than the
desired size of the buffer on the HP-83/85. Length may be the same as is desired on the HP-86/87.

Actions Taken

Eight characters of the string variable are reserved for control of buffer activity on the HP-83/85. On the
HP-87 one of the ten IOBUFFER tables is reserved for control of buffer activity.

Buffer empty pointer:

e Initial value = 1. Accessed by Control/Status registers CR0O, SR0. Characters are taken from the
buffer (by EMHTER or TEFHE

[2) using the following sequence:

1. Read character

2. Increment empty pointer
Buffer fill pointer:

e Initial value = 0. Accessed by Control/Status registers CR1, SR1. Characters are put into the buffer
(by LHITFLUT, TRAHSFER, or string assignment) using the following sequence:

1. Increment fill pointer

2. Store character
Active-out select code:

o Initial value = 0. Accessed by Status register SR3. When active-out select code equals 0, there is no

output TFFIMEFEFR operation active for this buffer. When an output TFFHHM% " is active for this
buffer, the active-out select code is set equal to the interface select code that is the destination of the

TEFAMHEFER,

104 Appendix A: Syntax Reference

Active-in select code:

e Initial value = 0. Accessed by Status register SR2. When active-in select code equals 0, there is no

input TEFMMHZF EF operation active for this buffer. When an input transfer is active for this buffer,

the active-in select code is set equal to the interface select code that is the source of the transfer.

Conversion pointers:

e These pointers cannot be accessed from BASIC. When a [/ EEF T statement to the I DIELIFFER
is executed, pointers to the appropriate conversion tables are established. These pointers are
initialized by the I71ELIFFER statement. Therefore, execute :[IFMWVEFT after executing
T LR F e,

Full buffer:

¢ A buffer is full when the fill pointer equals the dimensioned length of the string (minus eight on the
HP-85 or HP-83). Attempting to store data into a full buffer generates a [LI I [Z error.

Empty buffer:

® A buffer is empty when the empty pointer equals the fill pointer plus one. When the buffer becomes
empty, the fill pointer is reset to zero, and the empty pointer is reset to one. Active-out and active-in
select codes are not affected by the buffer becoming empty; neither are the conversion pointers
affected. Old data in the buffer is not lost, but the buffer fill pointer must be modified if you wish to
re-access the data in the buffer (so the buffer will “look’ full).

Buffer Status Registers Buffer Control Registers
Empty pointer SRO Empty pointer | CRO
Fill pointer SR1 Fill pointer CR1

Active in select code SR2
Active out select code | SR3

Related Statements

STATLY

!

ARk

Appendix A: Syntax Reference 105

LOCAL

device
LOCAL selector

l.IIZFL. device selector [. device selector] ...

Example Statements

1o LOCAL 7
SECLOCHL l@ddz.nl @ RESUME 7

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination in section 1). If multiple device selectors are specified,

they must all be on the same interface select code.

Actions Taken
HP-IB:

e Ifdevice selector is only an interface select code, Remote Enable (REN) is set false. Must be System
Controller.

e - If device selector contains a primary address, interface addresses specified device(s) and sends Go
To Local (GTL) message. Leaves ATN true; use FE SiLIME if you wish to set ATN false. Must be
Active Controller.

e Ifdevice is in REMOTE with LOCAL LOCKOUT set, the device must receive the GTL message or
have REN set false to be returned to local (front panel) control.
Serial, BCD, GPIO: Error

HP-IL: Must be active controller.

o Ifdevice selector is only an interface select code then Not Remote Enable (NRE) is sent.

e If device selector includes a primary address then Unlisten (UNL), Listen Address n (LADn), and
Go To Local (GTL) are sent.

e Ifdeviceisin REMOTE with LOCAL LOCKOUT set then the device must receive the Go To Local or
Not Remote Enable message before it will return to local (front panel) control.

106 Appendix A: Syntax Reference

LOCAL LOCKOUT

interface | >
LOCAL LOCKOUT select code

LOCHL LOCEDUT interface select code

Example Statements

.....

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.
Action Taken
HP-IB and HP-IL:

e Must be Active Controller. Sends Local Lockout (LLO) command. (HP-IB leaves ATN true; use
F: i LIME if you wish to set ATN false.)

e Local Lockout remains in effect until the Remote Enable (REN) line is set false for HP-IB or, for
HP-IL the Not Remote Enable (NRE) command is sent.

Serial, BCD, GPIO: Error

Related Statements

Appendix A: Syntax Reference 107

OFF EOT

() interface)
OFF EOT select code

THEH OFF EOT Sl

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

Action Taken

Disables end-of-line branching for termination of a transfer on the specified interface. [!FFF EIT does
not cancel a branch permanently. For example, if the transfer has terminated and an LM EUT
statement is re-executed, the branch will be taken at that time.

Related Statements

OH THTE
OH TIMEDUT

108 Appendix A: Syntax Reference

OFF INTR

interface >
OFF INTR select code

CIFF - THTH interface select code

Example Statements

THTR 7
¥ THEM OFF THTF

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

Action Taken
Disables end-of-line branching for interrupts from the specified interface. iil- i+ [1 does not cancel a

branch permanently. For example, if the interface has interrupted and an il [MTH statement is
re-executed, the branch will be taken at that time.

Related Statements

Appendix A: Syntax Reference 109

OFF TIMEOUT

() interface
OFF TIMEOUT select code

UFF - TIMEDUT interface select code

Example Statements

Parameters

interface select code-—a numeric expression that evaluates to an integer 3 thru 10.

Action Taken

Disables end-of-line branching for occurrence of a timeout on the specified interface. [IFF T TFEDILIT
does not cancel a branch permanently. For example, if the interface has timed out and an M
TIHECLIT statement is re-executed, the branch will be taken at that time.

Related Statements

|| FZ' IZII'
OFF IHTR

110 Appendix A: Syntax Reference

ON EOT

interface line
ON EOT select code number
line
label

4 BT interface select code o

Example Statements

2 OH EOT 7 OGOTO SERUICE 7
B0 EOT 54 GOSUE 1966

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

line number—an integer constant from 1 thru 9999 that specifies a valid line number within the
program.

line label—a name of up to 31 characters containing letters, numbers, or underscore symbol, whose first

character must be a letter.

Actions Taken

Enables end-of-line branches to the specified line number when a transfer to or from the specified
interface is terminated. A pending end-of-line branch from a previous, unserviced transfer termination
(for the specified interface select code) is taken immediately. Only one transfer termination per interface

select code is retained by the system.

Each interface may have alternate causes for transfer terminations that are user-programmable. Refer to
the appropriate interface owner’s manual for details about this capability.

Overrides any previous 1[4 E1T statement for the same interface select code.

Related Statements

GO T R

OFF EOT

I ITHTE
OFF TIMEQUT
D THTE

O T IMEDLT

STATL
o H H b

Also see Branch Precedence Table in section 6.

Appendix A: Syntax Reference 111

ONINTR

interface | line)
ONINTR select code @oro number
GosuB

AT Jine number
B Jine label

4 THTE interface select code r

Example Statements

e OH THTRE =1
OF THTE 3
R TT e ARORTIO
Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

line number—an integer constant from 1 thru 9999 that specifies a valid line number within the
program.

Actions Taken

Enables end-of-line branches to the specified line number when an interface interrupt occurs (see
EHFAELE IHTHE). A pending end-of-line branch from a previous, unserviced interface interrupt (for the
specified interface select code) is taken immediately. Only one interrupt per interface select code is
retained by the system.

Interrupt causes are specified by either EMMELE THTE or LM TEIIL. statements. Interrupt causes
are interface-dependent; refer to the appropriate interface owner’s manual for details.

Overrides any previous 4 | [TF statement for the same interface select code.

Related Statements

OFF
NFF
OFF
[k
ik

Also see Branch Precedence Table in section 6.

112 Appendix A: Syntax Reference

ON TIMEOUT

() interface line N
ON TIMEOUT select code number

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

line number—an integer constant from 1 thru 9999 that specifies a valid line number within the

program.

Actions Taken

Enables end-of-line branches to the specified line number when an interface timeout occurs (see

TIMECIT). A pending end-of-line branch from a previous, unserviced interface timeout (for the
specified interface select code) is taken immediately. Only one timeout per interface select code is retained

by the system.

TEAMZFER (IMTRE or FH%) operation. A transfer can timeout if the interface or device cannot be
addressed to start the transfer, but there will be no ©114 T I [T branch if the peripheral device stops
handshaking in the middle of the transfer.

Overrides any previous 114 T I LT statement for the same interface select code.

Related Statements

Also see Branch Precedence Table in section 6.

Appendix A: Syntax Reference 113

OTD

LT L string

Example Statements

L s H
Ple Dlok OToorls

Parameters

string—a string expression that contains the base 8 representation of an integer. Limited to 6 significant
characters that must be “0” thru “7” (except most significant character must be “0” or “1”).

Action Taken

[1T1!is a function that returns the value of a base 8 representation contained in the string argument. The
argument is a character representation and the result is a numeric quantity.

Related Statements

114 Appendix A: Syntax Reference

OUTPUT

device
ouTPUT selector A
bufter m string
line
number
. Y numeric _J
’ " | expression
string
expression
string
TR buffer ~ FEI ‘ ' '
CILETF L , [. device selector ..][115 T HI: line number ([i expression| . expression]
device selector line label

[expression]...]

Example Statements

DUTHEUT Pal IS THG tformat oW
DLUTFUYT CF 0 Maoly 5%
CHITFLT =Lt A i
CHITFLT HLOEY M
Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination). If multiple device selectors are specified, they must all

be on the same interface select code. 111 TFLIT allows device selectors 1 and 2 for addressing the internal
CRT and printer.
buffer—the name of a string variable that has been declared as an [[IELIFFEF.

string—a string expression that contains a valid set of image specifiers.

line number/label—the line number or label or an I 1L statement that contains a valid set of image

specifiers.

expression (string or numeric)—any string expression or numeric expression intended to be output.
Expressions may be constants or variables and may be separated by commas or semicolons.

Appendix A: Syntax Reference 115

Actions Taken

Outputs bytes to the specified buffer or device(s); bytes may be string or numeric. If a 040 E T
operation is specified, the conversion is performed immediately before the byte is sent to the interface or
buffer.

When 1% TG is not specified, and output items are separated by commas, free-field format is used. A
free-field output of a string item causes it to be left-justified in a field with no more than 20 trailing blanks.
A free-field output of a numeric item causes it to be left-justified in a field of 11, 21, or 32 characters.

When L% I M is not specified, and output items are separated by semicolons, compact format is used. A
compact output of a string variable causes it to be sent with no leading or trailing blanks. A compact
output of a numeric variable causes it to be sent with one trailing blank and one leading sign character
(blank if positive, minus sign if negative).

When L% 1 Mi: is specified, output operations are formatted according to the image specifiers used. Image
specifiers may be enclosed in quotes and placed in the [JLITFIIT statement, contained in a string
variable named in the ULITFIIT statement, or placed in an I[MFMi:E statement referenced by the
LLITHFLIT statement. For detailed information on image specifiers, refer to the I 1/ statement in this
appendix or see Formatted 1L/ TF LT in section 3.

WITHLUT sends an end-of-line sequence after the last item in the [iLITFLIT list. This sequence is
interface-dependent, can be changed by the LIl T (.. statement, and defaults to carriage return/line
feed. This sequence can be suppressed by using "#" as the first image specifier. For more detailed
information on statement terminators, see Formatted LLITFLUT. If the DHITHUT is to a buffer, a
carriage return/line feed is placed in the buffer after the last data byte unless the "' # " image is used.

Related Statements

116 Appendix A: Syntax Reference

PASS CONTROL

device >
PASS CONTROL | selector

FrREs COMTREOL device selector

Example Statements

Parameters
device selector—a valid interface select code or a valid combination of interface select code and primary

address (see Choosing the Source or Destination in section 1).

Actions Taken
HP-IB and HP-IL: Must be Active Controller. Passes Active Controller responsibility to the specified

device.

o If device selector is only an interface select code, interface sends the Take Control (TCT) message
(and sets ATN false for HP-IB). Be sure that the device receiving control has been addressed to talk
COHTEOL.

before using this form of

e If device selector contains a primary address, interface sends the specified device’s talk address,
sends the TCT message (then sets ATN false for HP-IB).

Serial, BCD, GPIO: Error

Related Statements

Appendix A: Syntax Reference 117

PPOLL

interface
select code

F L Cinterface select code !

Example Statements

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.
Actions Taken
HP-IB and HP-IL:

e Must be Active Controller. "1l L. is a function that returns the results of a Parallel Poll operation.
Sends Identify (IDY) message. Devices capable of responding each assert one bit of the parallel poll
response byte.

Serial, BCD, GPIO: Error

Related Statements

118 Appendix A: Syntax Reterence

REMOTE

device
selector

REMOTE

FEMOTE device selector [. device selector] ...

Example Statements

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination in section 1). If multiple device selectors are specified,
they must all be on the same interface select code.

Actions Taken
HP-IB: Must be System Controller. Puts the bus into remote operation.

e If device selector is only an interface select code, interface sets Remote Enable (REN) true. Devices

do not go into remote state until they are addressed to listen.

e If device selector contains a primary address, interface sets REN true, sends Unlisten (UNL)
message, then sends the listen address of the specified device(s). =101 TE leaves ATN true; use
BB LE if you wish to set ATN false.

Serial: Error

BCD: Sets partial field separator. Refer to the BCD Interface Owner’s Manual for details.
GPIO: Error

HP-IL: Must be Active Controller.

e Ifdevice selector is only an interface select code then the Remote Enable (REN) message is sent.
e If the device selector includes a primary address then Remote Enable (REN), Unlisten (UNL), and
Listen Address(es) (LAD) are sent.

Related Statements

L CHEECOT

REQUEST

Appendix A: Syntax Reference

interface
REQUEST select code

ROs

response
byte

FEGLIEST interface select code | response byte

Example Statements

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

response byte—a numeric expression that evaluates to an integer 0 thru 255.

Actions Taken

119

HP-IB and HP-IL: Must be non-controller. Sets up a Serial Poll response byte. Sets Service Request (SRQ)
true if bit 6 (decimal value 64) of the response byte is set. The response byte is sent to the Active Controller

in response to an incoming Serial Poll operation. The Active Controller’s Serial Poll operation clears SRQ,

which can also be cleared by executing

T with bit 6 of the response byte equal to zero.

Serial: Sends a BREAK. The BREAK is defined by the response byte. A space (0-state) condition is held
for the number of character times specified in the response byte. It is then followed by a mark (1-state)

condition for five character times.

BCD, GPIO: Error

Related Statements

LT RO

120 Appendix A: Syntax Reference

RESET

interface 2
RESET select code

Rk

"interface select code

Example Statements

THEM T

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken

All interfaces: Performs a hardware reset of the interface, returning it unconditionally to its power-on
state. The interface performs a self test (failure causes ERROR 110), and the control registers are set
according to the configuration switches on the interface circuit assembly. Resetting an interface with a
transfer active and EOT branching enabled causes the branch to be taken.

HP-IB: If System Controller, sends Interface Clear (IFC), then Remote Enable (REN).
Serial: Modem control lines are turned off.

BCD: Data lines are set to high-impedance state, handshake lines are set false, and 170 lines are set to
input state.

GPIO: Ports A and B are set to high-impedance state, Ports C and D are set to off state, CTL lines are set
false, and OUTA and OUTB are set to indicate output.

HP-IL: Ifthe interface is system controller then Interface Clear (IFC), Auto Address Unconfigure (AAU),
and Auto Address 1 (AAD1) are sent, followed by Not Remote Enable (NRE) and Remote Enable (REN).

Related Statements

FEDRT 0
ML
oM EOT

Appendix A: Syntax Reference 121

RESUME

interface >
RESUME select code

FES1IE interface select code

Example Statements

I Y

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
HP-IB: Must be Active Controller (CA = 1). Sets the Attention (ATN) line false. Statements that can
leave the ATN line true are: ©L.E MR, LOCHAL, LOCAL LOCE DT, REMOTE, SEHD TG 3

Serial: The transmitter is enabled. Refer to the HP 82939 A Serial Interface Owner’s Manual for details.
BCD, GPIO: Error

HP-IL: Must be active controller. The Send Data (SDA) message is sent if a transfer is not already in
progress.

Related Statements

T RO
HEALT

122 Appendix A. Syntax Reference

SEND

| interface . (
select code ’

numeric

expression

string
expression

numeric

expression

string
expression

TALK

primary

P

address

LISTEN

primary

address

secondary

address

UNL

UNT

Y

MLA

MTA

Y

Appendix A: Syntax Reference 123

SE M interface select code | [0 st [T H fist [ECIL (T HL.E primary address] (L. 1 5 TE
primary address [. primary address] ... 1[5 (. secondary address[. secondary address]...][\.1M1.]

[LHATIOMLFIIM T #T L]

Example Statements

ForonHD Uy

A PR RN S
MTH LML

DRATA "Hello"
;14,18 DATA H#
ERE, 14 DR

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.
list—a list of numeric or string expressions, separated by commas.
primary address—a numeric expression that evaluated to an integer 0 thru 31.

secondary address—a numeric expression that evaluates to an integer 0 thru 31.

Actions Taken

HP-IB: When sending any commands (I, THELE) L TSETEM, 506G, WML, UHT, MLHA, FTH), the
interface must be Active Controller. The ATN line is set true while sending commands. The ATN line is
set false while sending [1F T, even if no actual data is sent (i.e., [IFI TH").

o 1M1 Commands: send list of 8-bit expressions with ATN true. Primary commands have a bit
pattern = X00CCCCC, where X = don’t care, C = bits of command (decimal 0 thru 31). & E M Sl
can be used to create odd parity on commands, if necessary.

e [IFTF: Send list of numeric or string expressions with ATN false. Any 8-bit pattern may be sent. If
EOL is specified, the interface’s end-of-line character sequence is sent following data (Control
registers 17-thru 23).

e THI.F: Senddevice's Talk Address (TAD), decimal 0 thru 31.

o . I%TEM: Senddevice’s Listen Address (LAD), decimal 0 thru 31.

] 5 Secondary Command Group: Send secondary address to device.

. Send Unlisten command (UNL). Numeric value sent is 63; ATN is true.

L Send Untalk command (UNT). Numeric value sent is 95; ATN is true.

L Send My Listen Address (MLA). This is the listen address of the interface. Factory setting =
. Send My Talk Address (MTA). This is the talk address of the interface. Factory setting = 85.

Serial: The only form that can be sentis Lifi T .

o [IMTH: Sends list of numeric or string expressions. If EOL is specified, the interface’s end-of-line

character sequence is sent (control registers 17 thru 23).

124

Appendix A: Syntax Reference

BCD: See BCD Owner’s Manual for details:

:F1l}: Primary addresses 0 thru 6 set partial field specifier.

P TH: Lower 4 bits of data bytes are sent; control characters, spaces, and commas are ignored. If
EOL is specified, data format checking is enabled.

L. TSTER, THILK: Primary addresses 0 thru 6 set partial field specifier.

«: Error.

LI L, LT, MILLA, 1T H: Ignored.

GPIO: See GPIO Owner’s Manual for details.

(“M[; Primary addresses O thru 15 select port configuration. Device Clear command pulses RESA
and RESB. Selected Device Clear pulses RESA or RESB according to the most recent primary
address.

[IF

the interface’s end-of-line character sequence is sent (control registers 17 thru 23).

"f4: Send list of numeric or string expressions. Data is sent as 8-bit bytes. If EOL is specified,

LISTER, THLY: Primary addresses 0 thru 15 select port configuration.

2: Error.

WL, UHT, FHLA, T H: Ignored.

HP-IL: When sending commands (CMD, TALK, LISTEN, SCG, UNL, UNT, MLA, MTA) the interface
must be active controller.

:I1); Sends a list of 8 bit expressions as command frames.

[1FTF: Sends a list of 8 bit expressions as data frames. If EOL is specified then the interface
end-of-line sequence is sent following the data.

THI.E: Sends adevice’s Talk Address, decimal O to 31.
L. T %TER: Sends device Listen Address(es), decimal 0 to 31.

Sends a secondary address frame, decimal O to 31.

LIFL: Sends an Auto Address sequence and the Unlisten command frame.
IIMT: Sends an Untalk command frame.

[ML.+: Addresses the interface to Listen.

[1TH: Sendsthe Talk Address of the interface.

Related Statements

CHITEFLT

SETTIMEOUT

interface
—P{ SET TIMEOUT }-—b- select code

Appendix A: Syntax Reference

Nos

Example Statements

Parameters

milliseconds

-

TIMECQLUT interface select code | milliseconds

interface select code—a numeric expression that evaluates to an integer 3 thru 10.

milliseconds—a numeric expression that evaluates to an integer 0 thru 32,767.

Action Taken

1256

Establishes an approximate time limit (in milliseconds) that the interface will wait to complete a

handshake with its peripheral device. If the specified time limit is exceeded and [1f4 T I MECILIT end-of-

line branching is enabled, the branch is taken. If no I.il4
indication that a timeout has occurred until an 1.1}

Related Statements

OFF TIMEOUT
Ob - TIMECUT

TITMELDLT is subsequently executed.

TTIETHIT is currently in effect, there is no

126 Appendix A: Syntax Reference

SPOLL

SPOLL o device |
selector ()

=il L. Cdevice selector

Example Statements

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see “Choosing the Source or Destination”).

Actions Taken
HP-IB:

e (Conducts a Serial Poll of a device on the bus and returns the device’s status byte. If bit 6 of the status
byte is set (decimal value 64), it indicates that the device is requesting service (asserting SRQ).

o Ifdevice selector is only an interface select code, interface sends Serial Poll Enable (SPE), sets ATN
false, receives the status byte, sends Serial Poll Disable (SPD), then sends Untalk (UNT).

o If device selector contains a primary address, interface sends Unlisten (UNL), My Listen Address
(MLA), devices Talk Address (TAD), Serial Poll Enable (SPE), then sets ATN false. It receives the
status byte, sends Serial Poll Disable (SPD), then sends Untalk (UNT).

Serial, BCD, GPIO: Error.
HP-IL.: Must be active controller.

o LRIl L. returns the first byte received in response to a serial poll of a device.

o If the device selector is just an interface select code then the interface sends the Send Status (SST)
message, then waits to receive a data byte followed by end of transmission (EOT) and then sends
(UNT).

o If the device selector includes a primary address then unlisten (UNL), my talk address (MTA), the
device’s talk address (TAD) and send status (SST) are sent. The data byte is received followed by end
of transmission (EOT) and then untalk (UNT) is sent.

Related Statements

F L

Appendix A: Syntax Reference 127

STATUS

numeric
variable

interface register

STATUS select code number

buffer

o | ,IZII I RS buffer

e . register number ; numeric variable[, numeric variable] ...
interface select code

Example Statements

Parameters

interface select code—a numeric expression that evaluates to an integer 3 thru 10.
buffer—the name of a string variable that has been declared as an I [ELIF FE B,

register number—a numeric expression that evaluates to an integer 0 thru 15. Must specify a valid
status register for the selected interface.

numeric variable—any numeric variable intended as a destination for the status information.

Actions Taken

Reads one or more status register(s) and assigns the value(s) to the specified variable(s). When more than
one variable is specified, consecutive status registers are read, starting at the specified register number.
Status values returned are integers 0 thru 255.

Related Statements

*Labels are allowed on the HP-87.

128 Appendix A: Syntax Reference

TRANSFER (in)

device
TRANSFER seleclor butter D

r

@ A

: DELIM byte >

Y

byte
count

COUNT

EOIl

FHS >

byte

COUNT count

EOI

THAHSFER device selector T1 buffer THTE 1 [0UIHT byte count][IIEL 11 byte][ELHT]]
TREAHSFER device selector T1 buffer FHE [+ [LILIHT byte count][E1 1]
Example Statements

?ﬁ“IHTW CODOUHT =8 DELIM 18 EdI
COUWHT 1e

Appendix A: Syntax Reference 129

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see “Choosing the Source or Destination’).

buffer—the name of a string variable that has been declared as an I CifiLIF | E T,

byte count—a numeric expression that evaluates to an integer 0 thru 32 767. Specifies maximum number
of bytes to be input.

byte—a numeric expression that evaluates to an integer 0 thru 255. Specifies the ASCII value of a
character which can terminate the transfer.

Actions Taken

Takes data bytes from the specified device and places them into the specified buffer. Characters are
placed into the buffer according to the buffer fill pointer. The transfer terminates when the buffer is full or
when the first one of the specified terminating conditions is met. The interface may also have a
programmable terminating condition; refer to the appropriate interface owner’s manual for details.
Specifying C{HIMT sets a maximum limit on the number of characters to be transferred. [1E 1. [
specifies the numeric value of a character that can terminate the transfer. Specifying EOI (End or
Identify) allows the transfer to terminate when an interface-dependent “END” signal is detected (such as
the EOI line on HP-IB). The terminating condition for buffer full is always in effect. If an il E0IT
branch is enabled, the branch is taken when the transfer terminates.

If THTE (Interrupt) is specified, the interface is automatically enabled to interrupt the computer each
time it is ready with a new character. The transfer continues to completion even though program
execution may have stopped. A MFFM MG 161 is issued if the program stops with a transfer still
ET, HALT, or MELETI) before

attempting to modify the program. This transfer type (under ideal conditions) is capable of a maximum

active. Be certain that the transfer has terminated (use F

data transfer rate of about 400 bytes per second.

If FH% (Fast Handshake) is specified, the interface and computer are dedicated to the transfer until it is
complete. No interrupts of keypresses (not even the key) are detected until the transfer terminates.
If the computer “locks up” on a FiH% THEHMZFER, only a power-on or special interface-specific
termination (i.e., Interface Clear on HP-IB) can return the computer to its normal state. This transfer type
(under ideal conditions) is capable of data transfer rates in excess of 20 000 bytes per second.

Related Statements

130 Appendix A: Syntax Reference

TRANSFER (out)

i device
TRANSFER butfer selector ..

- 1 buffer T} device selector 1H

Example Statements

T
LT L
RO

THLEY L DF B TRANSFER BE TO B FHE
B OTRAMGFER & TO f

Parameters
buffer—the name of a string variable that has been declared as an IOBUFFER.

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination in section 1 of this manual). With HP-IB, and only a
select code specified, a multiple device transfer may be obtained.

Actions Taken

Takes data bytes from the specified buffer and sends them to the specified device. Data is taken from the
buffer according to the buffer empty pointer. If the device selector contains a primary address, addressing
is performed prior to sending the first byte. The interface’s programmable end-of-line sequence 18 sent
after the last byte from the buffer has been sent. Note that the buffer may contain an additional carriage-
return/line-feed placed there by an "ILITFLIT statement. The transfer terminates when the buffer is
empty. If (1 E17T branching is enabled, the branch is taken when the transfer terminates.

If IHTHF (Interrupt) is specified, the interface is automatically enabled to interrupt the computer each
time it is ready for a new character. The transfer continues to completion even though program execution
may have stopped. A HFFMHIHZE 181 is issued if the program stops with a transfer still active. Be
T, HALT, or AEDRTIL) before
F type (under ideal conditions) is capable of a

attempting to modify the program. This TFHME
maximum data transfer rate of about 400 bytes per second.

If FH% (Fast Handshake) is specified, the interface and computer are dedicated to the transfer until it is
complete. No interrupts or keypresses (not even the key) are detected until the transfer terminates.
If the computer “locks up” on a FHM% THFAMEFER, only a power-on or special interface-specific
termination (i.e., Interface Clear on HP-IB or HP-IL) can return the computer to its normal state. This
transfer type (under ideal conditions) is capable of data transfer rates in excess of 20 000 bytes per second.

Appendix A: Syntax Reference 131

Related Statements

AECRT IO
COMTROL

132 Appendix A; Syntax Reference

TRIGGER

device
selector

TRIGGER)

TEIG

I device selector[. device selector] ...

Example Statements

Parameters

device selector—a valid interface select code or a valid combination of interface select code and primary
address (see Choosing the Source or Destination in section 1). If multiple devices are selected, they must
all be on the same interface select code.

Actions Taken
HP-IB: Must be Active Controller. Sends the Group Execute Trigger command (GET).

e If device selector is only an interface select code, interface sends the GET command. Those devices
already addressed to listen respond to the GET command.

e If device selector contains a primary address, interface sends Unlisten (UNL), then the Listen
Address (LAD) of the specified device(s). Sends the GET command (HP-IB leaves ATN true; use
Fi B s LIME if you wish to set ATN false).

Serial, BCD, GPIO: Error.

HP-IL: Must be active controller. If the device selector is only an interface select code then the group
execute trigger (GET) message is sent. If the device selector includes a primary address then unlisten
(UNL), listen address (LADn) and group execute trigger are sent.

Related Statements

s

| o

e sl

2 A

e

Appendix B

Maintenance, Service, and Warranty

s

RS

G A

Maintenance

The I/0 ROM does not require maintenance. However, there are several areas of caution that you should

be aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions
may result in minor electrical shock hazard and interference with some pacemaker devices. Damage to
plug-in port contacts and the computer’s internal circuitry may aiso result.

CAUTION: Always switch off the computer and any peripherais involved when inserting or removing
modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP Series 80
Personal Computer that you are using. Failure to do so could damage the module, the computer, or the
peripherals.

CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or
designed for another port. Attempting to force it may damage the computer or the module. Remove the
module carefully and reinsert it.

CAUTION: Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not
insert any objects in the contact holes on the ROM. Always keep the protective cap in place over the
ROM contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions
may result in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the ROM Drawer

Instruction Sheet or the HP Series 80 owner’s manuals.

Service

If at any time you suspect that the ROM drawer or I/O ROM may be malfunctioning, do the following:

1. Turn the computer and all peripherals off. Disconnect all peripherals and remove the ROM drawer

from the computer ports. Turn the computer back on. If the computer does not respond or displays

Error 23+ SELF TEZT, the computer requires service.

133

134

Appendix B: Maintenance, Service, and Warranty

Turn the computer off. Install the ROM drawer, with the I/O ROM installed, into any port. Turn the
computer back on.

Iftrror 11z o 100 R1isdisplayed, indicating that the ROM is not operating properly,
turn the computer off and try the ROM in another ROM drawer slot. This will help you determine if
particular slots in the ROM drawer are malfunctioning, or if the ROM itself is malfunctioning.

If the cursor does not appear, the system is not operating properly. To help determine what is
causing the improper operation, repeat step 2 with the ROM drawer installed in a different port,
both with the I/O ROM installed in the ROM drawer and with the I/O ROM removed from the ROM

drawer.

Refer to How to Obtain Repair Service for information on how to obtain repair service for the
malfunctioning device.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.

Additional copies may be obtained from any authorized HP dealer, or the HP sales and service office

where you purchased your system.

If you have questions concerning the warranty, and you are unable to contact the authorized HP sales

and service office where you purchased your computer, please contact:

Inthe U.S.:

Hewlett-Packard

Corvallis Division Customer Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330

Tel. (503) 758-1010

Toll Free Number: (800)547-3400 (except
in Oregon, Hawaii and Alaska).

In Europe:

Hewlett-Packard S.A.
7, rue du Bois-du-lan
P. 0. Box

CH-1217 Meyrin 2
Geneva

Switzerland

Tel. (22) 82 70 00

Other Countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Tel. (415) 857-1501

Appendix B: Maintenance, Service, and Warranty 135

How to Obtain Repair Service
Not all Hewlett-Packard facilities offer service for the HP Series 80 Personal Computer and its
peripherals. For information on service in your area, contact your nearest authorized HP dealer or the

nearest Hewlett-Packard sales and service office.

If your system malfunctions and repair is required, you can help assure efficient servicing by having the
following items with your unit(s) at the time of service:

1. A description of the configuration of the computer, exactly as it was at the time of malfunction,
including any plug-in modules, tape cartridges or other accessories.

2. A brief description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

General Shipping Instructions
Should you ever need to ship any portion of your computer system, be sure it is packed in a protective
package (use the original case), to avoid in-transit damage. Hewlett-Packard suggests that the customer

always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the
nearest authorized HP Series 80 dealer or the local Hewlett-Packard office. All customs and duties are

your responsibility.

Appendix C

Error Messages

N

Error Message

Meaning

Possible Corrective Action

Ll

11

B

G R

This is only a warning. It is issued
when a program is paused withan 1/0
transfer still active. Do not attempt to
modify a program when a transfer is
active.

An interface has failed self-test. This
indicates a probable hardware
problem.

The 1/0 operation attempted is not
valid with the type of interface being
used. Some examples are: specifying
a status or control register that does
not exist, using a primary address with
a Serial interface, or usingan (/0
statement that is not defined for the
interface being used.

The |/0 ROM has failed the checksum
self-test. This indicates a probable
hardware problem.

An interface-dependent error.

HP-IB: The statement used requires
the interface to be system controller.
Serial: UART receiver overrun; data
has been lost.

BCD: Attempting to put the interface
into an illegal mode.

GPIO: An odd number of bytes was
transferred when the interface was
configured for 16-bit words.

HP-IL: The Take Control (TCT)
message was ignored by the device.

Before you modify or rerun the

m, stop all active transfers with
" HALT, or AEDET I

instruction; or press the key.

ERRSC can be used to determine
which interface has failed. Try
recycling the power (turn computer
off, then back on again). If the
interface still fails, contact the
authorized dealer or the HP sales and
service office from which you
purchased your computer.

k.l . can be used to identify the
improper statement. Check this
statement in the Syntax Reference
section to determine if it is defined for
the interface being used. If the
statement is valid, check the
appropriate interface owner’s manual
to get details on the proper mode or
configuration required for the
statement used.

Try recycling the power (turn the
computer off, then back on again). If
the error keeps recurring, contact the
authorized dealer or the HP sales and
service office from which your
purchased your computer.

[B B 1 can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

137

138 Appendix C. Error Messages

Error Message

Meaning

Possible Corrective Action

114

Il

An interface-dependent error.

HP-IB and HP-IL: The statement used
requires the interface to be active
controller.

Serial: Receiver buffer overrun; data
has been lost.

BCD: Port 10 not currently available.
GPIO: FHE TRAMZFER aborted
by STO.

An interface-dependent error.

HP-IB and HP-IL: The statement used
requires the interface to be addressed
to talk.

Serial; Automatic disconnect forced.
BCD: M TREAM: ! aborted
by FLGB.

GPIO: Interface configuration does
not allow an output enable or output
operation on Port A or Port B.

An interface-dependent error.

HP-IB and HP-IL: The statement used
requires the interface to be addressed
to listen.

Serial: This error number not
currently used.

BCD: Datadirection mismatch on
current operation.

GPIO: Cannot start operation
because handshake CTL line is notin
proper state.

An interface-dependent error.

HP-IB and HP-IL: The statement used
requires the interface to be non-
controller.

Serial: This error number not
currently used.

BCD: Interface command has been
directed to a non-existent field.

GPIO: This error number not
currently used.

An interface-dependent error.
HP-IB: This error number not
currently used.

Serial: This error number not
currently used.

BCD: Cannot start operation because
CTL line is not in the proper state.
GPIO: This error number not
currently used.

HP-IL: Protocol violation or loop
transmission error.

f b - can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

E b " can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

=1 can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

"> can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

F R0 can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

Appendix C. Error Messages 139

Error Message

Meaning

Possible Corrective Action

Laddo o o

An interface-dependent error.
HP-IB: This error number not
currently used.

Serial: This error number not
currently used.

BCD: Data format does not match the
mode of the interface.

GPIO: This error number not
currently used.

HP-IL: Addressed talker ignored the
start of transmission (SOT) frame.

Syntax error. A semicolon delimiter
was expected in the statement.

Either the interface select code
specified is out of range, or there is no
interface present set to the specified
select code. Interface select codes
must be in the range of 3 thru 10.
Select codes 1 (CRT) and 2 (internal

statements only.

The primary address specified is
improper. Only addresses 00 thru 31
are allowed, but not all interfaces use
this entire range.

Four possible buffer problems: (1)
The string variable specified has not
been declared as an I [1ELIF I E . (2)
Attempting to [M TEF from a buffer
which is out of data. (3) Attempting to
CHITFLIT to a buffer which is already
full. (4) Attempting an output
TFAMSF R with an empty buffer.

An incoming character sequence does
not constitute a valid number, or a
number being output requires three
exponent digits and an ‘e’ format was
specified.

B F - can be used to determine the
source of the error. Refer to the
appropriate interface owner’s manual
to get details on the error and possible
corrective actions.

Put the semicolon where it belongs.

Be sure that the interface select code
is within the proper range. Pay special
attention to variables that are used to
hold interface select codes. If the
interface select code is OK, be sure
that the interface is plugged in
properly. Finally, check the switch
settings on the interface. (Someone
might have changed them last
weekend.)

Be sure that the primary address is
within the proper range. Pay special
attention to variables that are used to
hold addresses or device selectors.

Be sure you have included the
necessary | LIELIF I EF statement.
Check the logical flow of your program
(in what order the statements are
executed). Buffer contents can be
examined at any time by simply
printing or displaying the string
variable being used as the buffer. If
this doesn’t provide enough
information, the buffer pointers can be
examined with the & TH T L%
statement.

If the error is from an output
operation, check the magnitude of the
number and the format used. If the
error is from an input operation, there
are many possible causes. Here are
some things to look for: more than
255 leading non-numeric characters,
unexpected spaces in a character
stream when a character-count
format is used, punctuation
sequences that include potentially
numeric characters used in an order
that is numerically meaningless.

140

Appendix C. Error Messages

Error Message

Meaning

Possible Corrective Action

s ERRLY TEREM
Las VAR TYRE
LAg MO TERM

A buffer was emptied before all the
E 1 TEF fields were satisfied, or a
field terminator was encountered
before the specified character count
was reached.

The type (string or numeric) of a
variable in an [TE [list does not
match with the image specified for
that variable.

A required terminator was not
received from an interface or buffer
during an E M TEF statement.
Remember that there is a default
requirement for a line-feed statement
terminator.

Check your incoming character
stream, kM TE K tist, and image
specifiers.

Check your E.FHTFE list and image
specifiers.

Check youri
stream, [l
specifiers.

ming character

« |list, and image

A

Appendix D

ASCII Character Set

EQUIVALENT FORMS

EQUIVALENT FORMS

EQUIVALENT FORMS

EQUIVALENT FORMS

Char. Binary Octal Dec Char. Binary Octal Dec Char. Binary Octal Dec Char. Binary Octal Dec
i (@° 00000000 000 0 SPACE 00100000 040 32 [01000000 100 64 ’f:;a s 01100000 140 96
. Ac 00000001 001 1 ! 00100001 041 33 FH 01000001 101 65 5 01100001 141 97
Be 00000010 002 2 " 00100010 042 34 E 01000010 102 66 ad 01100010 142 98
i C° 00000011 003 3 # 00100011 043 35 [01000011 103 67 [l 01100011 143 99
< D° 00000100 004 4 k2 00100100 044 36 0 01000100 104 68 x} 01100100 144 100
£ E° 00000101 005 5 b 00100101 045 37 E 01000101 105 69 = 01100101 145 101
Fe¢ 00000110 006 6 : 00100110 046 38 F 01000110 106 70 t 01100110 146 102
. G° 00000111 007 7 ! 00100111 047 39 [01000111 107 71 =3 01100111 147 103
He 00001000 010 8 l 00101000 050 40 H 01001000 110 72 ki 01101000 150 104
¢ 00001001 011 9 00101001 051 41 I 01001001 111 73 1 01101001 151 105
Je 00001010 012 10 i 00101010 052 42 . 01001010 112 74 B 01101010 152 106
Ke 00001011 013 11 + 00101011 053 43 . 01001011 113 75 b 01101011 153 107
Lo Le 00001100 014 12 00101100 054 44 L 01001100 114 76 1 01101100 154 108

M: 00001101 015 13
I Ne 00001110 016 14
1 ©Oc 00001111 Q17 15
E 00010000 020 16
Q° 00010001 021 17
Re 00010010 022 18
S° 00010011 023 19
00010100 024 20
00010101 025 21

Ve 00010110 026 22

We 00010111 027 23
© X 00011000 030 24
L' ye 00011001 031 25
Li Ze 00011010 032 26
£ [c 00011011 033 27
“ \ 00011100 034 28
<]c 00011101 035 29
£ A° 00011110 036 30
¥ _c 00011111 037 31

- 00101101 055 45
00101110 056 46
00101111 057 47
00110000 060 48
00110001 061 49
00110010 062 S0
00110011 063 51
00110100 064 52
00110101 065 53
=) 00110110 066 54
i 00110111 067 55
= 00111000 070 56
= 00111001 071 57
00111010 072 58
00111011 073 59
00111100 074 60
00111101 075 61
00111110 076 62
00111111 077 63

ot

BRI RIS T O S

M 01001101 115 77
k4 01001110 116 78
i 01001111 117 79
F 01010000 120 80
5 01010001 121 81
F 01010010 122 82
= 01010011 123 83
T 01010100 124 84
‘ 01010101 125 85
! 01010110 126 86
[01010111 127 87
; 01011000 130 88
N 01011001 131 89
& 01011010 132 90
rC 01011011 133 91
- 01011100 134 92
1 01011101 135 93
- 01011110 136 94
- 01011111 137 95

i 01101101 155 109
t 01101110 156 110
[01101111 157 111
F 01110000 160 112
q 01110001 161 113
- 01110010 162 114
= 01110011 163 115
1 01110100 164 116
] 01110101 165 117

01110110 166 118
1 011101141 167 119
01111000 170 120
01111001 171 121
01111010 172 122
01111011 173 123
01111100 174 124
01111101 175 125
01111110 176 126
01111111 177 127

141

142

Notes

143

Notes

144

Notes

("/” HEWLETT

PACKARD

Personal Computer Division
1010 N.E. Circle Blvd., Corvallis, OR 97330 U.S.A.

Reorder Number Printedin U.S.A. 1/8
00087-90121 . 00087-9026

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

