(ﬁﬁ HEWLETT

PACKARD

Assembler ROM and
HP 82928A System Monitor
Reference Manual

HP-87

May 1982

20087-20140

Printed in U.S.A. ©Hewlett-Packard Company 1982

CONTENTS

Section bPage
I INTRODUCTION

1 General Information ..ceeeceeecccrscnncces T £
2 The Assembler ROM ceeeeeecescceanesscsssscessssssanssnssanss 1=l
3 The HP 82928A System MONIitOr seeeeecectccscccnoonconesanses 1=2
4 Using HP-83/85 Binary Programs on the HP-87 ..eeeeveessesss 1-3
5 1-5

Assembler Commands, Statements, and FunctionsS ...eeeececececes

II CPU STRUCTURE AND OPERATION

2.1 CPU Register Bank .uceieieeeececeeeeececessnneaccssseasaaases 2-1
2.2 Number Representationeoeee.. teeccsecssescssceesscncnces 2=5
2.3 Status Indicators tsesscssescccncscssscccccssosassesse 2-8

III OPERATING SYSTEM

Introductioneeveerenns 3-1
System MEeMOIY seeeceescscosscssnsseaasss cecsenacsns ceeesseee 3=2
Overall System FlOW ..eeeescossssssssssssccsasassssssascsss 3=6
3-1
3-1

Allocation and DeallocCation es.eeeeecssssceesssacssssccsccnns
Executive Loop
Interrupts
HOOKS tieteeeeeeeeeeeoenseescescsasasoscsooscssssasssnnsnsns 3=21
Extended Memory Controllerceeeeecescscssssasassassaeas 3—29
PArSiNg teeeeeecveeecosoeecancessccenssccacccsssccssssosnas 3-32
0 DecomPilinNg ceeeeeeeccececceosssscrsssccannnans ceeessseeess 3=34
1 Operating Stack ceseeeceeessccsssscscscascsccssssssssesnes 3-37
2 Format of BASIC Programs and Variablesccceececececess 3-41

DR A O A I I I I A A S S A AP P P A A A I I IR SR I P AP ARY

ctecssssecetcccsssassasserrssscosscssscescsccccss 3—18

« s e e o
2O 00U WN

WWwWwwWwwwwwwwww

v CONTROLLERS

Introduction
CRT Controller

DR R I I I I I R R RN N R NI Ay

1 4-1
2 4-1
3 DiSplay MOAES ceeeereeecceescnccssssacssssscnccsssoncanses 44
4 Keyboard Controller ...eeseceeesccscssssccssssscssssssssass 4-8
5 Timers 4-1
6 Speaker 4-1

f gy

L I I R R R N A R I I I I S I S S A AP APIP R AR

v SYSTEM MONITOR

Introduction

5.1 - L |
5.2 System Monitor CommandS .esceesececsccsccccccssssssancsnsss 5-1
VI WRITING BINARY PROGRAMS
. Program SErUCLULE ceeeeeeeeecscccsccsscssscsccssssssnsossss 01
. AtEribDULES cieveveasecsceccssscsccssssccncscscssscsnsscecas 6—10

6.1

6.2

6.3 Assembler INSLruCtionsS ceeeeecececcosssssscensscscaccccnceaas 6-13
6.3 ARP and DRP Load INnStructionS ..ceeececsccecccccccssscssss 6-43
6.3 Other INStruCtionNS ceceveccecscssecscccsssssovsssccnnnnanee 6-44
6.4 Assembly of CPU InStructionsS ...eecececcececccecscacacacaa 6-45
6.5

Multiple Binary PrOgramsS .ceceececsscscscccsscsccssocssssaceccs 6-50

VII SAMPLE BINARY PROGRAMS

INtroduction ceeeeeececcccsccsscccscscccccccsccsccasssssccas /-1
String Highlight .eceieeeeeceeereneencncacccsscncccconnnas 7-2
CRT CONtrOl tevvesvcccncccccccsacaccocsssssancssccssssssonce /=6
7-1

Taking the KYIDLE Hook and Buffering the Keyboard 7-1
7-2

1

2

3

.4 Line INPUL cieeecesssssscccccossanssassscncnns
5

6 SAVE and GET

<
—H
=]
—

REFERENCE MATERIAL

OVEIVIOW teesesssscasssssssosescsassssosssasscosccanscsscnsss

8
The Global File .ieeeeeecsescscscesasasssssssssnsssssscnnes 8—
8

8

N M
WO 00U W N

N

System Operation and Routines
Parsing Flow DiagramS «ceececccccccccccccccrsvnososasscnnns
Hook FlowChartsS .ieececeecececccccceccacccccssssscccsessnees 8-100
System Runtime Table/Tokens and Attributes ..ceceeececccecees 8-109
Error MeSSAgeS ceeeeceecceccscscccncsssotscsssacscsscassaace 8-116
System Hardware Diagram eeeeeeeccccccccsccscsssosscscscsssss 8—118
Assembler Instruction Set .eeccececccecscsccccscsnancaasssass 8-119
Assembler Instruction CodinNg ceceseceeccsaccecacscscccnssss 8-126
Keycode Table .eveecceccccccccsccnscccssosscssssancnsssssas 8-127
Programming HINtS .iceeeeeecececencsnscscnencaceanscaannses 8-129

00 00 0O 00 OO CO 00 00 O CO O 0O
.

iii/iv

Section
I

INTRODUCTION

1.1 General Information

This manual outlines the commands, statements, instructions, and use of
both the HP-87 Assembler ROM and the HP 82928A System Monitor. The
manual assumes you have some knowledge of programming in assembly
language. If you are not familiar with the HP-87 Personal Computer, you
should read the owner's manual.

The HP-87 contains both read only memory (ROM) and read-write or random
access memory {(RAM). The RAM contains the wuser's BASIC language
programs and data, and can also contain up to five binary (machine
language) programs. The ROM contains the machine language program that
recognizes and executes the statements provided by the BASIC language.

Thus, the operating system ROM provides such statements as PRINT, DISP,
and INPUT.

When external peripheral devices are added, their wider range of
capabilities requires more extensive BASIC language statements to fully
use these capabilities. Additional external ROMs enrich the BASIC
language by increasing the number of statements and functions that can

be recognized and executed. Similarly, a binary program also extends
the BASIC language.

1.2 The Assembler ROM

Using the Assembler ROM, you can write assembly language binary programs
for residence and execution within the computer or for creation of a
plug-in EPROM for the computer. A binary program can:

e Extend the BASIC language.
e Give increased execution speed.

e Redefine the system.

The Assembler ROM permits you to enter and edit source code for binary
programs on the computer's CRT screen. Automatic line numbering and
cursor movement are active, and the source code can be stored on a mass
storage device, listed, and edited. As source statements are entered,
they are automatically checked for syntax errors and duplicate labels.

1-1

Section 1: General Information

At assembly time the resulting object code (machine language) is stored
on the mass storage device. The object code can also be 1loaded
automatically or on command, and it is then ready to run. :

To aid in programming, a disc is supplied with the Assembler ROM. This
disc contains a global file of the system labels and their memory
addresses for use during assembly. The disc also contains the sample

programs from section 7 to help illustrate how binary programs are
created and run.

The Assembler ROM gives you the ability to tailor statements for your
own applications, to speed up program execution, and to perform
sophisticated graphics. But with all the power and system accessibility
provided by the Assembler ROM, it is also possible to defeat the
computer's internal safeguards and even seriously damage the computer.
For this reason, you should understand assembly language programming
before attempting to use the Assembler ROM.

1.3 The HP 82928A System Monitor

The system monitor is an optional plug-in module that is designed for
use only in conjunction with the Assembler ROM. The system monitor is

not required, but it makes the debugging and modification of binary
programs much easier.

With the system monitor module attached, you can set breakpoints that
interrupt the execution of a program. After program execution has been
interrupted, you can examine or change the contents of memory, execute
one instruction at a time (single-step), or you can trace the operation

of a machine language program, printing the status of the CPU after each
instruction.

System monitor instructions are discussed in detail in section 5 and the
use of these instructions is demonstrated in section 7.

1-2

Section 1: General Information

1.4 Using HP-83/85 Binary Programs on the HP-87
The HP-87 uses the same CPU as the HP-83/85. The programs are entered,

stored, listed, and run in the same manner. There are some differences
on the HP-87 which include:

e BASIC programs are stored in reverse order (executing from the
higher addresses and progressing to the lower addresses).

e The extended memory controller makes it possible to access more
memory.

e Five binary programs can be resident in the computer at a time.
e PTR1l is used as the BASIC program execution pointer at run time.
e PTR2 is used as the output stack pointer at parse time.

e Entire programs are no longer allocated before execution begins.
e The BASIC program control block in the HP-87 is 48 bytes long.

e The operating stack is of fixed length in the system RAM.

® String values are passed on the operating stack as a two-byte
length and a three-byte address.

e Inverse video, more display modes, eight bit CRT addresses,
and access during horizontal retrace periods are a few of the
changes affecting the CRT.

Because the differences are only highlighted in this section, you should
refer to individual sections in this manual to become familiar with the
HP-87 Assembler ROM before writing programs.

To modify an existing HP-83/85 binary program for use on the HP-87:

1. Pick a binary program number and put it in the NAM statement.
This should be a value between 280 and 377 (octal). Numbers from
@ to 177 are reserved for use by Hewlett-Packard.

Two different binary programs may have the same binary program
number, but they cannot be loaded and used at the same time.
Attempting to do so will cause a BAD BIN-LOAD error.

Section 1: General Information

10.

Modify any ABS statements. In the HP-83/85, all binary programs
were loaded so that the absolute base address could be calculated
by the Assembler ROM at assembly time based upon the length of the
binary program. In the HP-87, this is not true. A change must be

made in the ABS pseudo-opcode. You must have an absolute base
address.

This only applies to binary programs that were written as absolute

code. Most binary programs are relative and not affected by this
change.

Modify all parse routines to use PTR2 as the output pointer rather
than R12-R13.

Modify all parse routines to push the binary program token out as:

TOK# BPGM# 371
rather than:

371 GARBAGE-BYTE TOK#
Change all RUNTIME references to R1@ into references to PTRI1.

Modify all code that uses string parameters that are passed on
the R12 stack. These strings use three-byte addresses on the
HP-87, rather than the two-byte addresses used by the HP-83/85.

Check all references to any system routines to see if any changes

have occurred to the input/output conditions of the routine. Make
any necessary changes.

Change all system/global address definitions.

Any routine that gets control through a RAM hook (such as CHIDLE,
KYIDLE, IOTRFC) must calculate the base address of the
binary program rather than loading it from BINTAB. Use the code:

LABEL LDM R20,R4
BIN
SBM R20,=LABEL

This will leave R20-R21 with the absolute base address of the

binary program. This change is necessary only in relative binary
programs.

If the binary program uses its own error messages, ERRBP# (a RAM
location in the system global addresses) must be set to the binary
program number before calling ERROR or ERROR+.

Section 1: General Information

1.5 Assembler Commands, Statements, and Functions

The commands and the statements and functions provided by the Assembler
ROM are added those which are already part of the instruction set. They
are executed exactly as the rest of the instruction set, and have been
created to help the programmer control and use the assembler.

Assembly language elements are used as the actual instructions in
writing binary programs. The format and use of these elements are
discussed in section 6, and complete list may be found in sections 6 and
8.

Assembler Commands

A command 1is nonprogrammable, and can be executed only from the
keyboard. The assembler commands permit the user to transfer between
assembler and BASIC system modes, to assemble, store and load binary

program source code, and to find labels within the source code in
memory.

ALOAD file name
Assembler Command

Legal only in- assembler mode. Loads source code that was previously
stored with the ASTORE command into computer memory from the file
specified on the currently selected mass storage device. The file must
be of the type known as extended **** or ASSM.

Note: The extended type of file, denoted by **** on the directory of a
mass storage device, does not necessarily mean that the file contains
source code. In fact, other HP firmware and software may generate
extended type files.

ASSEMBLE file name [,numeric value]
Assembler Command

Legal only in assembler mode. Assembles source code currently in the
computer memory and stores it in the file specified by file name on the
currently selected mass storage device. The assembled source code is
stored as either a binary program or, if the file has been declared a
ROM or global file, as a series of strings in a data file.

Section 1: General Information

If at assembly numeric value is evaluated as zero, the binary program
currently in the computer memory is scratched, and the object code of
the newly assembled binary program is loaded from the mass storage
device into memory . Default numeric value is evaluated as zero.

If at assembly numeric value is other than zero, any binary program
currently in memory remains inviolate, and the object code of the newly

assembled binary program is stored only on the current mass storage
device.

Note: If a program contains an error or if programs are linked at
assembly, this command can destroy the source code; if the source code
is to be saved on a mass storage device, it should be stored there
before typing ASSEMBLE.

ASSEMBLER
Assembler Command

Legal only when the computer is in normal system mode, this command
scratches memory and puts the computer into assembler mode. In
assembler mode, most normal BASIC statements will still operate, but
only as calculator mode statements; they are not programmable. Source
code for a binary program can then be typed in with line numbers, just
as a BASIC program is typed in while in normal system mode (but with
only one instruction per line). Unlike its operation in normal system
mode, the computer 1is somewhat sensitive to character spacing while in
assembler mode. Auto line numbering, screen editing, listing, etc., are
all function. The [CONT), [STEP], and [INIT] keys are inoperative in
assembler mode. Displays READY when executed.

ASTORE file name
Assembler Command

Legal only in assembler mode. Stores the source code currently in the
computer memory into the specified file on the currently selected mass
storage device. File is of the type known as extended, shown in the
directory as extended (****) or ASSM.

BASIC
Assembler Command

Legal only when in assembler mode, this command scratches memory and
puts the computer back into BASIC mode. Display READY when executed.

Section 1: General Information

FLABEL label
Assembler Command

Legal only in assembler mode. This command searches through the source
code in memory for the label specified. For each occurrence of the
label the 1line is listed. After an FLABEL command has been executed,
pressing the [LIST] key causes the source code to be listed, beginning
with the last line where the label occurs.

FREFS string
Assembler Command

Legal only in BASIC or assembler mode. Searches through the source code
in memory for all occurrences of the specified string. After an FREFS
command has been executed, pressing the [LIST] key causes the source
code to be listed, beginning with the first 1line where the string
occurred. Pressing any key will cause the FREFS command to halt
prematurely.

Assembler Statements and Functions

Statements and functions are programmable BASIC language elements. The
statements and functions provided by the Assembler ROM are simply
additions to the BASIC language of the computer. As with all BASIC
statements and functions, they may be used either in calculator mode or
as part of a BASIc program when in BASIC mode. When the computer is in
assembler mode, all BASIC statements and functions may be executed only
from the keyboard.

DEC
Assembler Provided BASIC Function

Returns the decimal equivalent of the specified octal value.

MEM address [:ROM#]],# of bytes][=#,#%,..]
Assembler Provided BASIC Function

Dumps the contents of computer RAM or ROM memory to the current CRT IS
device beginning with the octal address given. Continues dumping for
the specified octal [,# ~of bytes]. At power-on, default # of bytes is
100 octal; otherwise, default is the last $ of bytes specified.

The [:ROM #), if included, is an octal value that selects the plug-in

ROM from which memory is dumped. At power-on, default wvalue for ROM #
is @; otherwise, default is the last ROM # specified.

1-7

Section 1: General Information

If =#,% is included in the statement, memory is not dumped, but instead
the contents of memory locations beginning at the address given are

changed to the octal values specified after the = sign. The memory
locations must be in RAM. The contents of one succeeding memory
location are changed for each value specified after the = sign. The §

of bytes, if included in the statement, is disregarded in this case.
Pressing any key will cause the memory dump to halt.

MEMD address [:ROM#][,# of bytesl[=#,#,...]
Assembler Provided BASIC Statement

Same as MEM except reads the contents of three bytes of memory beginning
with the address given and uses those contents as the address.

OCT decimal numeric value
Assembler Provided BASIC Statement

Returns the equivalent of the specified decimal value.

REL octal address
Assembler Provided BASIC Statement

Returns the absolute address of a relative address. Takes the relative
octal address and adds to it the address (called BINTAB) of the
beginning of the last binary program that was accessed to yield the
octal absolute addres. May be used alone or with the MEM command. May
also be used with the command BKP if HP 82928A System Monitor is
installed.

SCRATCHBIN
Assembler Provided BASIC Statement

Scratches all current binary programs from computer memory, without
affecting anything else.

Section
II

CPU STRUCTURE AND OPERATION

2.1 CPU Register Bank

The central processing unit (CPU) consists of 64 eight-bit registers, an
address register pointer (ARP), a data register pointer (DRP), an
arithmetic-logic unit (ALU), a shifter, and a set of status indicators.

The 64 eight-bit registers are grouped into two sections. The first 40
(octal) registers have two-byte boundaries and are used principally for
addresses. Many of these bytes are reserved by the CPU for use as
special purpose registers, and direct access to these should be avoided.
The next 48 (octal) registers are separated by eight-byte boundaries.
Floating-point numbers, 64 bits long, are stored here. The programmer
must be aware of what is destroyed when the system uses these registers.

The effects of system routines on register contents are found in section
8.

Any register in the CPU may be used as an accumulator when performing an
operation. To distinguish between the registers, the CPU uses the DRP
to designate the accumulator and the ARP to designate the operand. The
DRP directs the results of arithmetic operations to the register it
points to, and the ARP supplies the second operand when it is needed.
Both the ARP and the DRP can be used to address any of the bytes in the
CPU register bank. The CPU register addressed by the ARP is called the

address register, or AR. The register addressed by the DRP 1is called
the data register, or DR.

Section 2: CPU Structure and Operation

Hardware-Dedicated Registers

Registers

Description

2,1

6,7

Register Bank Pointer: R@ points to the
remainder of the CPU register bank. Rl is
only accessable through R@.

Index Scratch: R2-R3 are used for address
calculation for indexed addressing.

Program Counter (PC): R4-R5 hold the
absolute address of the next instruction
location.

Return Stack Pointer: R6-R7 contain the
pointer for the subroutine return stack.
When a "JSB=" subroutine jump is executed,
the CPU pushes the PC (R4-R5) on the stack.
When the RTN is executed, the CPU pops two
bytes from this stack and places them in
R4-R5 (program counter).

Software-Dedicated Registers and EMC Pointers

Registers/Pointers

Description

PTR1

PTR2

16,11

12,13

14

At run time, contains the program counter
(PCR), a pointer for executing BASIC
programs.

At parse time, used to point to the parse
output stack.

Not software dedicated at run time. When
parsing, R1#-R1ll point to the next
character of the input ASCII stream.

Operation Stack: Parameters and results are
passed on the stack pointed to by this
register pair. Contains expressions when
the BASIC program is decompiling.

When parsing or decompiling, R14 contains
the current token being processed.

Section 2: CPU Structure and Operation

Software-Dedicated Registers and EMC Pointers

Registers/Pointers Description

16 Current Status (CSTAT): R16 contains the
code that indicates the current mode of
operation. The table of CSTAT codes is
found in paragraph 3.4.

17 External Communication Status (XCOM): When an
external interrupt takes place the status is
stored in R17. The table of XCOM status
codes is found in section 3.

Multi-byte operations can be performed with the help of the register
boundaries. The number of consecutive registers that will be used in

the operation is determined by the distance between the DRP and the next
boundary.

Example: In a multi-byte addition a 64-bit quantity contained in

registers 50 through 57 will be added to a 64-bit quantity in registers
60 through 67.

DRP BOUNDARY

|

R67 R66 R65 R64 R63 R62 R61 R60 R57 R56 R55 RS54 R53 R52 R51 RS0

ARP DRP

The operation begins with the registers pointed to by the DRP and the
ARP, processing the registers within the boundary. The result is stored
as a multi-byte quantity in the registers pointed to by the DRP.

2-3

Section 2: CPU Structure and Operation

Example: A multi-byte 1load with the DRP set to R74 and the ARP set to

R1l will load the the four registers R74-R77 with the contents of
R11-R14.

R77 R76 R75 R74 R73 R72 R71 R70 R17 R16 R15 R14 R13 R12 R11 R10

| THLILL

! ! t

BOUNDARY DRP ARP

The boundary is determined by the DRP and is ignored by the ARP. 1In the

previous example, the load terminates when the DRP reaches the next
boundary.

Example: The multi-byte store recognizes the boundaries in exactly the
same way as the multi-byte load. Attempting to store with the DRP set

to R1l and ARP set to R74 would result in the loss of several bytes due
to the boundary after RI1l.

. R77 R76 R75 R74 R73 R72 R71 R70 R17 R16 R15 R14 R13 R12 R11 R10

! !

ARP - DRP

The boundary after R1ll stops the multi-byte operation. Only one
register is transferred to its destination, that.is, R74. The DRP

always determines how many bytes will be involved in a multi-byte
operation.

There are also two-operand operations where the DRP points to one
operand, and the second is located in computer memory. The number of
bytes used in the operation is dependent upon the boundary after the
DRP. That number of bytes of memory will be used starting at the
location described by the label or pointer accessing computer memory.

Section 2: CPU Structure and Operation

Example: This load will be done with the address BINTAB, which is a
label pointing to an address which contains the address of the start of
the binary program. The DRP will point to R14.

BOUNDARY

{

R17 R16 R15 R14 R13 R12 R11 R10

I Jz4o 234I BINTAB 234 m
(104070,

Because the boundary is two bytes from the DRP, two bytes are accessed
from memory.

2.2 Number Representation

The CPU can operate on numbers as octal and binary-coded decimal (BCD)
quantities. All registers and register addresses are represented as
octal numbers, and all floating-point numbers are represented in BCD
notation, that 1is, each decimal digit is stored as a four-bit binary
number, with two digits per register. Since the CPU cannot tell one
representation from another, it is important to keep track of the way
numbers are stored when doing arithmetic operations.

An address is always an octal value that occupies 16 bits or, for the
extended memory pointers, 24 bits. The highest-numbered byte contains
the first, or most significant, part of the address, and the
lowest-numbered byte contains the last, or least significant, part of
the address.

Example: The octal address 177605 is stored in two registers, R13 and
R12. An address is always an octal value that occupies 16 bits and is
contained in two registeres.

177695 = 11111111100060101

Binary Representation

R27 |11111111| R26 IL@ﬂﬂﬂlﬂTI

Octal Representation

R27 377 R26 205

Section 2: CPU Structure and Operation

The ARP and the DRP will always point to the least significant byte of a
multi-byte operation.

With BCD numbers, decimal one is represented with four bits, ¢ 0 ¢ 1,

decimal two is # # 1 @, on up to decimal nine, which is 1 ¢ ¢ 1. When

the decimal number has more than one digit, each digit is represented by
four bits.

Example: The decimal number 3738 is represented by 16 bits.

3=pg@11 7=0111 3=0g11 8=1009
Binary Representation

R27 |0 011 g111| R26 (6011 1000]

Octal Representation
R27 g6 7 R26 g 70

Each byte can contain two four-bit BCD digits. Each register can
represent numbers in the range 0@ to 99.

The ten's complement is used to simulate subtraction exactly 1like the
two's complement is used in binary arithmetic. The ten's complement is
formed by subtracting each binary-coded digit from nine (nine's
complement arithmetic), 1 @ @ 1, then putting the digits back together
to form the number again and finally incrementing the entire quantity by
one (one's complement arithmetic).

The negative of a number in BCD representation, for subtraction purposes

or in special cases to show the sign of an exponent, is found by taking
the ten's complement.

Example: To find the negative of 19, each digit, 1 and 9, is subtracted
from 9, or, another way of looking at it, 19 is subtracted from 99.

99 1001 1901
- 19 - pegl 1081
80 1000 0000

Section 2: CPU Structure and Operation

Add one to the combined result:

80 1000 0000
+ 21 + 0000 00091
81 19¢0 0001

In effect, when 81 is added to 19 the result is @@ in BCD notation.

Numeric quantities may be represented as real floating-point, short, and
integer formats. The real and short forms are expressed as BCD digits,
and the integer form is a five-digit number with a sign digit at the end

of the quantity. The system represents all numeric quantities in BCD
notation.

Real numbers have a mantissa of 12 digits, and exponent and sign
information, all stored in eight bytes. The mantissa fills the 12 most
significant nibbles of the number, the sign takes one nibble, and the
exponent is contained in the last three nibbles. The most significant
digit of the number is stored in the most significant byte, and the
decimal point is assumed to be immediately after the most significant
digit. The sign of the number follows the least significant digit of
the mantissa, and the exponent, expressed in ten's complement notation,
is found in the three least significant nibbles of the quantity.

Example: The real number 468.3341673 (in scientific notation
4.683341673 x 10°2), would be represented in BCD as:

Most Least
Significant Significant
Digit of Exponent Digit of
Exponent
4 6 8 3 3 4 1 6 7 3 0 0\0 + 0 \ 2
Iowo 1100 | 1000 0011 | 0011 0100 | 0001 0110 | 0111 0011 | 6000 0000 ‘oooo 0000 | 0000 (1)10
R77 R76 .R75 R74 R73 R72 ///h71 IR7O
Sign Middle Digit
Nibble of Exponent

The radix is assumed to be in R77 between the four and the six.

Integers are stored in three bytes, with five digits and a sign. The
most significant digit of the integer is stored in the least significant

byte. Real and short number representations are not right justified
like integer representation.

Section 2: CPU Structure and Operation

Example: The integer 6483 would be represented in BCD notation from the
least significant digit, 3, to the most significant digit, 6, with the
sign, positive or @ @ @ 9§, in the most significant four bits of the
quantity.

+ 0 6 4 8 3

l(]OOO 0000| 0110 0100 | 1000 0011 I

R77 R76 R75 R74 R73 R72 R71 R70

Short numbers have a mantissa of only five digits and an exponent of two
digits. Both the mantissa and the exponent have sign bits, found in the
most significant digit. The representation of the mantissa begins
immediately following the sign bits with the most significant digit of
the mantissa found in the second digit of the most significant byte.
The assumed decimal point is directly after the first digit, then the
rest of the mantissa is represented. The two least significant digits
hold the exponent, which 1is not in complement form because the sign of
the exponent is in the most significant digit.

Example: The short number -.0064 need not be represented as a l1l2-digit
real number. In BCD short form it is represented as:
- 6 4 0o oo 3

IOO‘I‘I 0110[0100 0000 lDﬂOD 0000 j | l I

R77 R76 R75 R74 R73 R72 R71 R70

0000 0011

The radix is assumed to be between R77 and R76.

2.3 Status Indicators

The CPU contains eight flags and a four-bit register for program status.
The flags signal the present condition of the data, while the four-bit

register serves as an extended register for counting and data
manipulation.

2-8

Section 2: CPU Structure and Operation

Status can affect or be affected by CPU instructions. The instruction
set has data movement instructions of both the arithmetic and
nonarithmetic types. These instructions include:

® Arithmetic: Add, substract, compare, increment, decrement, and
complement.

o Nonarithmetic: Load, store, "and", "or", “"exclusive or", shift,
clear, and test.

The CPU contains the following one-bit status flags and four-bit extend
register:

DCM Decimal Mode Flag: This flag determines whether the system
is using binary numbers or BCD numbers in arithmetic
operations. In BCD mode, each decimal digit is converted to
BCD, and all arithmetic operations are done with the
resulting four-bit digits. This is the way floating-point
real numbers and integers from BASIC programs are
represented.

The system uses this flag to determine the correct mode, so
the user must make sure it is set properly for arithmetic
operations. All shifts and all arithmetic operations are
affected by the DCM flag.

Two instructions affect the status of the DCM flag: BCD sets
it to 1, and BIN clears it.

E Extend Register: In BCD mode,this four-bit register will
accept the displaced digit resulting from a shift. Once in
the register, a BCD digit may be incremented, decremented,
or cleared, and, if needed, the digit may be returned to the
register it came from using the extended shift instructions.

Ccy Carry Flag: In binary mode, this flag will indicate the
result of a bit shift. A bit may be shifted into the CY
flag, tested, and then shifted back into a register, using

the extended shifts. It functions similar to the extend
register in BCD mode.

Section 2: CPU Structure and Operation

2-19

During all arithmetic operations, the CY flag will be set
with the carry out of the most significant part of the
operation. 1In addition between two numbers where the result
is too 1large for the register to hold, or in subtraction
where the result is positive, the CY flag is set to 1. The

CY flag may be thought of as the "borrow" if needed for
subtraction.

When two quantities are added, the CY flag is set with the
carry, 1if any, resulting from the addition of the most
significant bits.

Examples:

If two positive numbers, both with a most significant bit
of @, are added, then the carry will always be #.

(01000061 0

+ 60100101}

cy [8] [e11e0111]

If a positive number is added to a negative number, in
reality a subtraction, then two possibilities could occur:

1. The result could be negative, in which case no carry
would be made.

[eo10111 1)

+[1go10111]
cy o] T1ioeoo11 g

2. The result could be positive, causing a carry out.

6100611 01]
+(1110100 0

cvy [1] [Peiio1ai]

Section 2: CPU Structure and Operation

ov

oD

If two negative numbers are added then the CY flag is set to
1.

11000000

+[1s00001 0]

cy[1] (610090661 0]

The carry flag is set by comparisons in the same manner as
additions.

An increment sets the CY flag if the data register is all
1's.

[11111111]
+ledoo0a0 1]

cvy [1] [fovooo000]

Overflow: The overflow status is determined by taking the
"exclusive or" of the CY flag and the most significant bit
of the data register. It is set to 1 when the addition of
two positive numbers vyields a negative result, when the
addition of two negative numbers yields a positive result,
and when the result of a left shift changes the sign of the
data register.

‘Lﬂﬂlﬂlll.l—l 057

+21100101] +145

ov[l][teei1o100] 202

Least Significant Bit: After any data movement instruction,
the least significant bit is shown as the 0D flag. If the
0D flag is set to 1, then the number is odd. If the OD flag
is 8, the number is even. The right-most bit in the data
register is always the least significant bit.

[6e1001130][0] oo

2-11

Section 2: CPU Structure and Operation

NG Most Significant Bit: This flag displays the most
significant bit in the data register. 1If this flag is set
to 1 then the quantity is negative, and if the NG flag is
clear then the quantity is positive.

NG [o] [ep100110

ZR Zero: If the data register is # or if a comparison is made
between two equal numbers then this flag is set to 1.

[cooo0000[L] 2=

LDZ Left Digit Zero: This flag is set if the left-most four

bits are 0 @ @ 8. In BCD mode this would indicate the most
significant digit.

wz [1][pooo1011]

RDZ Right Digit Zero: If the least significant four bits are

@ 0 0 0 then this flag is set to 1. In BCD mode this would
indicate the least significant digit.

Example: Status information is based on the entire multi-byte quantity
that is being processed. All multi-byte operations, except right shift,
start execution with the least significant byte. The right shift starts
with the most significant byte. All status flags, except OD, RDZ, and
DCM, are updated after each byte of execution and will be correct as the
register boundary is met. The OD and RDZ flags are set for the first

byte and never changed. The E, CY, and OVF flags are only affected by
arithmetic operations.

2~-12

Section 2: CPU Structure and Operation

After the multi-byte addition of the two system addresses, OFFSET
(0901¢0) and the label VARIABLE (@@@365), the status indicators will be
set as follows:

OFFSET [Lp o0 1000 [00111000|

+ VARIABLE [g0 6 00 p] [111191001]|

RESULT [Lo 0 @61001] (661011 01]

DCM E Cy LDZ RDZ ZR

ov NG (0)3]

2-13/2-14

Section
I11

OPERATING SYSTEM

3.1 Introduction

This section explains how system memory is allocated, how extended
memory is accessed, and how a statement is parsed and becomes part of a
BASIC program. It also explains the sequence of operations that occurs
when a BASIC program is run.

BASIC programs are executed by an interpreter. However, the code that
is interpreted is vastly different from the BASIC statements as they
were originally entered. As the statements are entered, they are parsed
and compiled into a form of RPN (Reverse Polish Notation), which can be
interpreted more efficiently. The BASIC reserved words are converted to
single-byte tokens (refer to Execution by Tokens). This makes the
internal form of the code somewhat more compact than the original form,
and also makes interpretation easier and faster.

Also during the process of parsing and compiling, variables are placed
in a variable storage area, with only their addresses and names
remaining in the area containing the tokens. The BASIC program is held
in memory as a series of tokens and addresses of variables and
associated data bytes. To execute the program, the computer processes
these token and variable addresses in order. As each token is
processed, it causes the machine to access a table of routine addresses
and execute a specific routine corresponding to the token. If the token
indicates a variable, the machine uses the next three bytes as the
variable address.

Section 3: Operating System

3.2

System Memory

Several distinctly different regions comprise the system memory. They
are (all numbers are octal unless indicated otherwise):

Six system ROMs, each containing 8192 decimal bytes. A subset of
the ROM area is the address range from 60008 to 77777. This
range is shared by system ROMs @, 1, 328, and all of the external
plug-in ROMs. Each of the ROMs in this area can be selected or
deselected for talking on the bus, but only one of them can be
selected at a time. Each of these ROMs has a bank-select address
which is its ROM number, ranging from # to 376. To select a
particular ROM you store the desired ROM number to an I/O address
called RSELEC. The chosen ROM will be selected and all other
bank-selectable ROMs will be deselected.

RAM, 32768 (decimal) bytes in the basic machine.
Memory addressable directly by the CPU (addresses 0 to 177777).

Memory addressable through the extended memory controller (EMC),
32K-544K.

The block of 409 addresses (1774008 to 177777) which act as 1I/0
addresses, when accessed directly by the CPU. The same addresses
accessed through the extended memory controller will act as RAM
memory, not as I/0 addresses.

Section 3: Operating System

DECIMAL OCTAL
ADDRESS ADDRESS
o] 0
SYSTEM
ROM
8K 20000
SYSTEM
ROM
16K 40000
SYSTEM
ROM
24K 60000
ROMO ROM 1 ROM 320 ROM x
SYSTEM GRAPHICS MASS PLUG-IN
ROM ROM STORAGE ROM
32K 100000 A
RAM (OPTIONAL)
(If accessed
either
directly by
the CPU or
through the
EMC)
64K-256 177400
170
RAM ADDRESSES
2 (If accessed
64K 00000 (if accessed directly by
through the the CPU)
EMC)
™ 4000000

Section 3: Operating System

Computer Operation

The basic machine is controlled by system routines that are permanently
resident at fixed addresses in memory. The addresses and names of many
of these system routines may be found in the global file in section 8.

In addition to the system routines, control can also pass to one of the
plug-in bank-selectable ROMs, or to a binary program in memory. At
certain times in the operation of the system, the resident binary
programs and ROMs are polled by the main system. 1In addition, there are
a number of entry points (hooks) that allow operation to be intercepted
and modified by a binary program or ROM. These hooks are normally idle,
but they can be used to take over the system at certain key times.

Execution by Tokens (Run Time)

RAM RAM ROM

Fetch variable
storage Length of Fetchvariable |~7| addressroutine
area

i

T, et

* address

T i)

Header Variable address

/ Variable token
Token for LET
// Token for *
.Low Addresses / /////////////I

[\ N

VN

Tokens are used to represent the keyword, such as LET, FOR, BEEP, etc.,
that make up each BASIC statement. Each token is a one-byte quantity
that the machines uses to find the addresses of routines associated with
that token. Each token must have an associated entry in a table of
routines for execution at run time, another entry in an ASCII keyword

table, and a third entry in a table of parse routines. A list of system
tokens may be found in section 8.

The computer is a token-driven machine. A program is held in memory as
a series of tokens and variable addresses which the machine processes.

3-4

Section 3: Operating System

For example, at run time as the system executes a program, it processes
a token by fetching the address of an associated run time routine from a
table of addresses. The run time table may exist in a binary program
and/or an external ROM as well as in the main system. The system jumps
to the specified address to execute the routine, then fetches the next
token -and ‘searches for its run time routine in the tables, etc.

Some tokens indicate to the system that the three bytes following the
token centain a variable address. In this case, the system attempts to
find the variable in the variable 'storage area and, if not found,
creates -a place for it. Other tokens indicate that the bytes following
the token are constants to be pushed onto the R12 stack.

Two tokens, 370 (octal) and 371 (octal), are used to expand the token
tables. Token 378 indicates to the system that the next byte is the
number of -a ROM, and that the byte after the ROM number is the token
within the ROMs table that is to be executed. Token 371 directs the
system to a binary program in the same way.

3-5

Section 3: Operating System

3.3

Overall System Flow

(PWO) init.
/ routines
/ !
/
System / A
PWO . / ROM and
Error itializati L binary pgm.
Conditions ‘| ROMINI | init. routines

I

- . —_—
Parser Esz:me Interpreter
— P -
/’4 \\ / \\
¥ X ¥ '
ROM and System ' ROM and System
Y !
binary pgm. leg —»] parse binary pgm. |eg 3] runtime
parse routines runtime routines

System flow is shown by the chart above. In general, loading and
running a program, or executing a calculator mode statement, will
require execution within the following areas:

3-6

Power-on Initialization: When the computer initially powers-up, it
performs a sequence of operations: performs a self-test, accesses
and resets any interface modules, reserves memory for later use,
allows any ROMs to reserve memory, and returns to the system.

Executive Loop: External stimulus (such as a keyboard interrupt) and
changes within the computer (such as an error condition) will cause

the executive loop to call the appropriate routines to take control
at the right time.

Parser: Parsing occurs when [END LINE] is pressed after a program
line or calculator mode statement has been typed. Parsing is the
changing of ASCII code into tokens. The parser first searches the
ASCII tables 1in any resident binary programs for a keyword match,
then the ASCII tables in any external ROMs, and finally the system
tables. This makes it possible to redefine system keywords.

Interpreter: The interpreter actually runs a program or executes a
calculator mode statement by fetching tokens and calling the run
time routines to execute them.

Section 3: Operating System

In addition, there are two other areas which may be called:

Initialization: At many times, including power-on,

the system calls routines for initialization.
routines are called through the ROMINI
initialization

etc.,

system

to see why they were called.

Initialization routines

are called before,

RESET,

routine; the system

last. ROMFL is

during, or

condition occurs, depending upon the following conditions:

SCRATCH,
Initialization

polls

routines first, ROM routines second, and the
routines in the resident binary programs
location that

a RAM
initialization routines called by ROMINI can look at

after a

ROMFL Meaning Initialization Routines Called
) Power-0On After system initialization.
1 RESET After system reset.

2 SCRATCH Before scratch.

3 LOADBIN After loadbin.

4 RUN Before execution begins.

INIT After allocation done.

5 LOAD Before load.

6 STOP, PAUSE During.

7 CHAIN After.

19 Allocate token class>56 During.

11 Deallocate token class>56 During.
12 Decompile token classs>56 | During.

13 Program halt on error During.

When errors occur, the system generates the proper warning or

message.

error

Section 3: Operating System

Interpreter Loop

The interpreter 1loop fetches the next token, processes it, and passes
control to the respective run time code. When the run time code has
been executed, control returns and the interpreter continues with
another token.

A token is an ordinal into a table of addresses. The address table is
made up of two-byte addresses. To find the actual address, the token is
doubled, then added to the base address. This changes the ordinal into
an offset pointing to the current address.

Address Table Runtime Routines

2-byte
(Token x 2) + Base Address I~

~ address.

~ [
- 2-byte

- ——
address.

2-byte

address.

Section 3: Operating System

INTERPRETER

SET PCR (PTR1)
TO ADDRESS
IF 1ST TOKEN

!

SET
TOS=R12

!

RELEASE
TEMPORARY
MEMORY

—

GET NEXT
SYSTEM TOKEN

{

DOUBLE
IT

!

ADD TO BASE
ADDRESS OF
RUNTIME TABLE

!

GET RUNTIME
ADDRESS
FROM TABLE

————— RUNTIME
-— — — — ROUTINE

<~ — — —» Bit7of R17indicates an error
has occurred or the routine that
“«~ — —called theinterpreter requested
control be returned after the
next token.

INTERPRETER LOOP

Section 3: Operating System

3.4

Allocation and Deallocation

Allocation is the process of reserving and assigning memory for program
variables. The three modes of allocation are:

o If the program line is a dimension statement, the entire 1line is

allocated before execution continues.

If the current token being allocated is the start of a user
defined function (DEF FN), then allocation will continue for the
duration of the definition (until the FN END) before execution
will resume.

All other tokens are allocated one at a time as they're
encountered.

Section 3: Operating System

The class of a token determines if the token needs to be allocated. The

following diagram shows how memory looks

allocated:

RUNTIME

0 ROM

SYSTEM
RAM

100000

EXTERNAL
ROMs RAM

BINARY
PROGRAMS

GOSUB/RTN
STACK

ASSIGN
BUFFERS

FOR/NEXT
STACK

TEMP MEMORY

CALC MODE
VARIABLES

AVAILABLE
MEMORY

CALC MODE
STATEMENT

SUB 2 VARS.

SUB-PROG 2

LOCAL VARS.
FOR SUB 1

SUB-PROGRAM
NUMBER 1

LOCAL VARS.
FOR MAIN

MAIN BASIC
PROGRAM

COMMON

<«—— FWBIN

<«— LWAMEM

<——— NXTRTN

<«——— RTNSTK

«—— CALVRB

<«— LAVAIL

~<«—— SAVPT2

«—— NXTMEM

<«—— EOVAR

<——— BOVAR

<«—— FWCURR

«——— FWPRGM

<«——— FWUSER

in a program that has been

The GOSUB/RTN stack is for the
BASIC program not for assembly
language. NXTRTN points to the
next RETURN address on the stack.

Each ASSIGN buffer takes 284 bytes.

TEMP memory is released by the
system at the end of each line of
aprogram and when an “@"" token
(statement concatenation) is
encountered.

Both the RUN and the CONT
commands set LAVAIL equal

to CALVRB, so during the
running of a BASIC program,
they will always be equal,

and there will be no CALC mode
variable.

If a CALC mode statement has
been entered and is executing,

it will begin at NXTMEM — 1

and end at SAVPT2. Otherwise,
SAVPT2 will be equal to NXTMEM.

NXTMEM points to the last byte
of the BASIC programs (or sub-
programs).

EOVAR points to the last byte
of the variable space of the
current active BASIC program
and BOVAR points to the
[first byte] + 1.

FWCURR points to the first

byte of the currently active
program.

FWPRGM points to the first

byte of the MAIN BASIC program.
FWUSER points to one higher

than the highest address in
memory.

3-11

Section 3: Operating System

Unless you have created a token whose class 1is greater than 56,
allocation is handled by the computer. Because a program is allocated
in segments, a memory overflow could occur after you are well into your
program.

The system executes the BASIC program starting at the highest address.
The line of BASIC code

10 A=B

would be parsed into this stream of bytes:

716 END OF LINE TOKEN

210 STORE SIMPLE VARIABLE TOKEN

102 B, THE VARIABLE NAME

091 LEN OF VARIABLE NAME

0002

ﬂﬂﬂ} 3 BYTES RESERVED FOR ALLOCATION TIME ADDRESS
000

281 FETCH SIMPLE NUMERIC VARIABLE TOKEN

191 A, THE VARIABLE NAME

a1 LEN OF VARIABLE NAME

290

ﬂﬂﬂ} 3 BYTES RESERVED FOR ALLOCATION TIME ADDRESS
209

921 STORE SIMPLE NUMERIC VARIABLE TOKEN

gle LEN OF LINE (16 OCTAL BYTES FOLLOW)

620
000 BCD LINE NUMBER 1@
200

Token number 21 (and tokens such as 1, 2, 3, 22, and 23) is immediately
followed by three bytes which are used to contain the relative address
from the first byte of the currently active program (FWCURR). Since the
variable storage area for BASIC programs is at a lower address than the
program, this relative address will always be negative (that is, the
most significant bit of the address will always be set). Therefore, if
the most significant bit is @ then the system knows that the current
token has not yet been allocated. In this case, the allocator would be
called, which would search through the variable storage area for the
current variable. If found, the allocator would calculate the correct
relative 'address and place it where the three 0's are following the 21
token. If not found, the allocator would create a storage area for it
in the space allocated for variable storage (EOVAR), then calculate and

store the relative address after the number 21 token. Execution would
then continue.

3-12

Section 3: Operating System

Since the variable name - could be long or short, the length of the name
and the ASCII characters for the name immediately follow the address.
The length of the name and the ASCII characters will be skipped at
execution time, similar to the way a comment is skipped.
Line numbers are handled in a similar manner. The BASIC code

19 GOSUB 140

would be parsed like this:

gl6 END OF LINE TOKEN

1343}

ﬂﬂl] BCD LINE NUMBER OF DESTINATION
209

133 GOSUB LINE NUMBER TOKEN

905 LEN OF LINE

620

@ﬂﬂ} BCD LINE NUMBER 19

000

Since line numbers are only five digits long, the most significant bit
will be @ if the line is not allocated. If the 1line is allocated the
address will always be negative and the most significant bit will be
set. All line numbers are converted into addresses relative to FWCURR
(the first byte of the currently active program) at allocation time.

3-13

Section 3: Operating System

Line labels are handled in a way similar to variable names. The BASIC
code

19 GOSUB [linelabel]

is parsed as:

gl6 END OF LINE TOKEN
154 1
145 e
142 b
141 a
154 1
145 e
156 n
151 i
114 L
g11 L
ﬂﬂﬂ}

EN OF LINE LABEL

200
000
270 GOSUB line label TOKEN
817 LEN OF LINE

3 BYTES RESERVED FOR ALLOCATION ADDRESS

020
ﬂﬂﬁ} BCD LINE NUMBER 10
oo

3-14

Section 3: Operating System

A program is deallocated while you are typing in lines or while it is
being edited. When a BASIC statement is typed and [END LINE] is
pressed, the computer deallocates the program if it has not already been
done. Program variables are held as names rather than addresses. This
diagram shows memory when a program is deallocated:

DEALLOCATED
0 ROM
100000 SYSTEM
RAM
RAM STOLEN
BY EXTERNAL
ROMS
FWBIN is the lowest address
BINARY - FWBIN a user can normally access
PROGRAMS from a BASIC language program.
GOSUB/RTN - LWAMEM/NXTRTN
STACK
CALC MODE e — CALVRB/RTNSTK
VARIABLES
The operating stack {R12) that
- LAVAIL was in available RAM on the
HP-83/85 is now in the system
. RAM and is of fixed length.
available

The pointers shown usually
point to the (FIRST WORD) + 1
memory or to the (LAST WORD) of the
particular block of memory
they are associated with.

- PTR2
NEW LINE

R NXTMEM
MAIN BASIC . .
PROGRAM FWUSER is one address higher

than the highest address existing
in the current configuration of
the machine.

-— FWUSER/FWPRGM/FWCURR

Section 3: Operating System

3.5 Executive Loop

After power-on initialization, the executive loop portion of the system
takes control. The executive loop examines CPU registers R16 and R17
for changes in the status of the computer, 1listens for external
communications, and takes the appropriate actions based upon the
information received. The current status information (CSTAT) is kept in
register R16 and the external communication flags (XCOM) are Kkept in
register R17. As long as registers R16 and Rl7 are both zero, the
system is idle. The executive loop flowchart is shown on the next page.

3-16

Section 3: Operating System

1s
R16 ODD
?
Y

INPUT
COMPLETE
?

SETR16=2
{RUN)
FINISH
INPUT
CLEARBIT1
IN R17

JSB =
RMIDLE

XCOM (R17)
=0

?

JSB
CHIDLE

HANDLE
KEY

SERVICE
REQUEST
?

Y

CALC
MODE PENDING
k4

CLEAR SERVICE
REQUEST BIT
IN R17

PRINTALL
MODE
?

OUTPUTTO
PRINTER IS
DEVICE

SET INPUT
COMPLETE BIT
{BIT 1) IN R17

ERRORS
?

Y

REPORT
ERROR

CLEAR CSTAT.
CLEAR ALL BUT
SVCREQIN R17

!

INPUT
COMPLETE
?

SETR16=7
(RUN INMIDDLE
OF LINE}

CLEARBIT1
IN R17

(INPUT
COMPLETE)

REPORT

SET ROMFL
=13
(PGM HALT
ON ERROR)

CLEAR SERVICE
REQUEST BIT
(BIT 4) IN R17 JBo

ROMINI

SETR16=0.
CLEARALL
BUT BIT 4
OF R17

EXECUTIVE LOOP

Section 3: Operating System

3.6 Interrupts

When there is a change in status and the system is no longer idle, CSTAT

(R16) indicates the computer mode of operation, according to the value
stored there.

CSTAT
Value Current Status
/] Idle.
1 Calculator mode execution.
2 Program is running.
3 Not used.
4 Idle during input statement.
5 Calculating during input statement.
6 Not used.
7 RUN in middle of a line.
8-255 Not used.

If execution halts, the system needs to know what caused it to halt and
how to handle it. Each of the eight bits in XCOM (R17) have a different
meaning associated with it. The service request bit is the only bit
directly affecting interrupts.

XCOM

Bit Set Execution Halt

765432109

X End of calculator mode.

X Input complete.
X Step mode.
X Trace mode.

X Service request (any interrupt).

X Immediate set.

X Error set.
X Break ("or" of bits 5 and 6).

Section 3: Operating System

One of the controlling devices on the internal communications bus will
generate an interrupt to begin execution. An interrupt will set bit 4
in R17 (XCOM) and a bit in a memory location which is used to keep track
of the cause of an interrupt (SVCWRD). The executive loop knows that

the interrupt has occurred (from XCOM) and which device caused the
interrupt (from SVCWRD).

SVCWRD Bit Set Type of Interrupt

7654321090

X Keyboard interrupt.
X I/0 interrupt.
X Timer 1 interrupt.
X Timer 2 interrupt.
X Timer 3 interrupt.
X Special interrupt.
X Not used.
X Not used.

Whenever an interrupt occurs, the CPU expects the interrupting device to
send a pointer to an interrupt handling routine in a table of addresses.
This pointer is a one-byte quantity and the two bytes that it points to
in memory indicate the starting address of the service routine. If

multiple interrupts occur then the first interrupt is handled and the
rest are disabled.

The service routine pointers are 1located at addresses § thru 25 in
memory.

Table of System Interrupt Pointers

ADDRESS CODE FUNCTION
gy 11y] DEF STARTX Power-on vector.
000002 DEF SPAR@ Spare hook 4.
o000p4 DEF KEYSRV Keyboard.
000006 DEF SPAR@ Spare hook #.
200010 DEF CLKSRg Clock 8.
090012 DEF CLKSR1 Clock 1.
200014 DEF CLKSR2 Clock 2.
0900816 DEF CLKSR3 Clock 3.
000020 DEF IRQ20 I/0 modules.
0000922 DEF SPAR1 Spare hook 1.
200924 DEF SPAR1 Spare hook 1.

3-19

Section 3: Operating System

An interrupt may be caused by the keyboard, a timer, an I/0 module, or a
special device. Keyboard interrupts are handled using KEYSRV and the
character editor (CHEDIT). If the clock causes an interrupt, an ON
TIMER routine is called. An interrupt from an I/0 module is handled by
the IRQ2P and IOSP hooks, and special interrupts must be handled by the
spare interrupt routines SPAR@ and SPAR] from other hardware.

Programmer created interrupt routines may be handled by taking control
of certain memory locations accessed by the executive loop or by taking
control of the interrupt service hooks SPAR#, SPARl, KYIDLE, or IRQ2d.
The interrupt service hooks are accessed prior to the executive loop.
Therefore, these locations may bypass the executive loop. Jumps to
these locations (hooks), cause the instructions located there to be
executed. Initially, only a RIN instruction is stored at each of these
locations, so control immediately passes back to the executive loop.

When an I/0 device interrupts the system, a jump is made to IRQ2@ before
control passes to the executive loop. This gives the I/O interrupt

routine the chance to bypass the operation of the executive loop, taking
control more efficiently.

The executive loop always performs these functions: tests CSTAT, tests
XCOM, and jumps to RMIDLE. If an interrupt has occurred from the
keyboard, a jump is made to CHIDLE. When an I/O interrupt occurs a jump

is made to 1I0SP, provided that the proper bits in XCOM and SVCWRD are
set.

When an interrupt occurs during the execution of a program, the CPU
finishes the current instruction, saves the program counter (R4-R5) on
the R6-R7 stack, and acknowledges the interrupt. The device puts a
pointer to the address of the service routine on the bus, and the CPU
loads the service routine address into the program counter (R4-R5).
This is effectively a subroutine jump to the service routine, because
the return address has been saved. The status of the CPU and the
contents of any registers that will be wused in the service routine must
be saved and restored from within the routine. This is important
because an interrupt could occur between the execution of an instruction

which sets the status indicators and an instruction that depends on that
status.

3-20

Section 3: Operating System

3.7 Hooks

A binary program or a ROM can gain control of the system using RAM
hooks. Some are accessed directly by the executive loop and some by

routines that branch from the executive loop. The four types of hooks
are:

e Language hooks: Allow you to create new BASIC keywords or
redefine existing ones.

® General hooks: Allow you to take over various parts of the
operating system by storing subroutine jumps to a binary program
or ROM routine at specified RAM locations.

e Initialization routines: Called by the system, external ROMs, and
binary programs at initialization time. An initialization routine
can steal RAM, change flag status, or gain control of the
operating system.

e Error message table: Allows a binary program or ROM to flag
specialized error conditions with custom error messages.

Language Hooks

With language hooks the binary program or ROM can define new keywords,
functions, or auxiliary tokens. Because the system first polls the
resident binary program and then all external ROMs, a binary or ROM
program can take over or supersede the system tables.

General Hooks

To provide for each general hook, the system at certain times executes a
subroutine jump to a specific RAM location. During normal operation
each of these RAM locations contains a RTN or is otherwise idle. By
placing a Jjump to a binary program or ROM at the hook location, the
program or ROM gains access to the operating system. It is the
responsibility of the external program writer to determine how to use
the hook and how to avoid conflict with other usages of the hook. No
support is supplied by the system.

Because support is not supplied by the system before calling any of the
RAM hooks, any binary program base address might be in BINTAB when the
system calls a hook. You must ensure that the correct base address is
loaded into BINTAB before a hook is taken.

Section 3:

The following code stores

use:

Operating System

Initialization Routine

INIT

**Hook
INIRTN
HOOK

Store Base Address Here

OURBAS

Unless

otherwise
Flowcharts are provided for selected hooks

LDBD R34,=ROMFL
BIN

CMB R34,=3

JNZ INITRTN

LDMD R34, =BINTAB
STMD R34, X34, OURBAS
ADM R34,=HOOK

STM R34,R45

LDB R47,=236

LDB R44,=316
STMD R44,=CHIDLE
Routine*#*

RTN

BIN

DRP R34

BYT 251

BSZ 2
STMD R34,=BINTAB

noted,

a copy of the binary base

each

address for future

See why INIT routine was called.
Binary mode necessary for CMB and

ADM instructions.

Is a binary program being loaded?

If no, return.

If yes, save the binary base address.
Store it in the program.

Make hook routine address absolute.
Make a copy of the address to store

in HOOK.

Load the opcode for return instruction.
Load the opcode for a JSB instruction.
Store R44-R47 into CHIDLE.

Done.

Entry to hook routine.

Set the DRP to R34.

Do a LDM R34,= instruction.

Base address is stored here.

Load the base address into BINTAB.

general hook 1is seven bytes 1long.
in section 8 of this manual.

General hooks are supplied at the following points:

RAM Name

Location

Function

IMERR

CHIDLE

DCIDLE

DGHOOK

103679

194935

1p4044

193724

an

Character editor intercept.

System decompiler hook
time.
want to let the system have a
decompiling,
couple of return addresses.

If the PLOTTER IS select code is
two
this hook will be called so software that
has
CRT.

Used to expand the IMAGE statement.
hook is called when there is something in
IMAGE

doesn't recognize.

called at entry
If you take this hook and don't
chance at

then you need to discard a

one or

and a DIGITIZE command is executed,

been 1loaded can digitize off of the

This

statement that the system

3~-22

Section 3: Operating System

RAM Name | Location Function

IOSP 103652 I/0 service pointer. Used by I/0 and
mass storage ROMs.

IOTRFC 103643 General output hook. If the select code
of the CRT or PRINTER IS device is not 1
or 2, the DISP or PRINT will go to
IOTRFC.

IRQ20 193742 The CPU vectors to IRQ26 when an I1I/0
module interrupts.

KYIDLE 192425 Keyboard intercept. Polled whenever a
key is pressed.

MSHIGH 103764 High level hook that allows modification
of mass storage commands.

MSLOW 183773 Low level hook to allow driving of mass

storage devices not already supported by
the system mass storage ROM.

MSTIME 104002 TIMEOUT hook in the mass storage ROM.

PLHOOK 193661 If the PLOTTER IS select code 1is other
than one or two, PLHOOK gets called. The
contents of R30-R31 determine what
routine is executed.

PRSIDL 193733 Parser intercept. Should be taken
anytime you want to alter the way
something is parsed by the system or Iif
the system can't parse something.

DEF SPARg| 104011 One of the two spare hardware hooks
(currently used by the system monitor).

SPAR1 104922 Second spare hardware hook.
STRANGE 103715 Parameters for parsing functions are

usually numeric, array, or string types.
When the system encounters a parameter
not of one of these types, it is of type
strange. The STRANGE hook is called and
parsing this parameter is up to the
programmer .

Section 3: Operating System

The hooks RMIDLE, CHIDLE, and 1IOSP are directly accessed by the

executive loop. The following code shows how to take control at these
hooks.

RMIDLE

Starting at the RAM location 183706, room is allowed to store the
following 7 bytes of code:

JSB =ROMJSB 3 bytes - used to select external ROM (if
needed) .

DEF LABEL 2 bytes - the address of the routine that will
be written by the programmer.

VAL ROM# 1 byte - the number of the external ROM that
will be accessed using ROMJSB.

RTN 1 byte - return to the executive loop.

Since ROM @ is usually selected when the system is in the executive
loop, external ROMs must go through ROMJSB in order to be selected.
Binary programs need only store the following 4 bytes:

JSB =LABEL 3 bytes - subroutine jump to programmer's
routine.
RTN 1 byte - return to the executive loop.

The following two pieces of code are examples of how to take
control of a hook from a ROM and from a binary program.

From a ROM:

LDM R41,=316 Opcode for 'JsB ='

DEF ROMJSB Address of the ROMJSB routine

DEF LABEL Address of the hook routine

VAL ROM# Number of the external ROM

RTN Return to the executive loop.

STMD R41,=RMIDLE Store the subroutine jump to the
hook routine LABEL at the RMIDLE
location.

Since the DRP is set to R4l in the first instruction, seven bytes will
be loaded, which will include the 316 (JSB =),the DEF ROMJSB, the DEF
LABEL, the VAL ROM#, and the RTN. The code itself will not be executed
until the executive loop accesses RMIDLE.

3-24

Section 3: Operating System

From a binary program:

LDM R44,=316 Opcode for "JSB ="

DEF LABEL Address of the hook routine

RTN Return to the executive loop.

ADMD R45,=BINTAB Finds the absolute address of the
label LABEL.

STMD R44,=RMIDLE Store the subroutine jump to the
hook routine LABEL at the RMIDLE
location.

Here, the 316 opcode, the DEF LABEL, and the RTN are loaded into
R44-R47. BINTAB can be safely added to the address LABEL, even though
LABEL is a two-byte address and BINTAB is a three-byte address. This is
because the most significant byte will be added to the RTN and the most
significant byte of BINTAB is always zero and will not affect the RTN
opcode. The absolute address of LABEL will always be less than 177409,
the limit of binary program memory.

The normal method of returning to the system from RMIDLE is to execute a

RTN instruction. Nothing will be on the R6~R7 stack except the return
addresses from RMIDLE.

CHIDLE

When a key is pressed on the keyboard, the keyboard controller will
generate an interrupt request which causes control to pass to the
key-service routine. The key-service routine will immediately execute a
reset when the [RESET] key is pressed. If no other key is being
processed at the same time, the keycode is stored in the location called
KEYHIT. The flags are set in XCOM and SVCWRD that. indicate that the
keyboard is awaiting service for its interrupt. The keyboard controller
is reset, and the key service routine returns to whatever it was doing.
The next time execution returns to the executive loop XCOM is checked
for any pending service requests. If there are any pending requests,
the executive loop checks SVCWRD to see which device needs servicing.

In this case the keyboard 1is the interrupt device, and the executive
loop will call the character editor (CHEDIT). CHEDIT will do three
things before processing the character input:

1. Set binary arithmetic mode.

2. Clear the E register.

3. Jump control to the location CHIDLE.

At this point you can check the contents of KEYHIT to determine if you
want to return to the system or handle the key.

Section 3: Operating System

In order for a binary program to handle the key you must pop two return
addresses off the R6 stack to insure returning to the executive loop and
not to return to CHIDLE or CHEDIT. You must also execute a JSB =E0J2.
This routine clears the bit in SVCWRD which indicates the keyboard needs

servicing, and 1if no other devices have requested service, clears the
service request bit in R17.

The status of the E register should also be checked before returning to
the executive loop. The E register is cleared by CHEDIT before calling
CHIDLE and expects it to be cleared before returning back to CHEDIT. If
the E register is nonzero when you return, it assumes that the key

pressed was [END LINE] and tries to parse whatever is in the input
buffer (INPBUF).

The following section of code illustrates how to take over CHIDLE:

LDM R36, =KEYCHK Load address of routine to handle
CHIDLE.

ADMD R36, =BINTAB Add value of BINTAB for an absolute
address.

STM R36, R45 Store desired address in R45 and R46.

LDB R47, =236 Load the opcode for RTN.

LDB R44, =316 Load the opcode for JSB.

STMD R44, =CHIDLE Store it all (multi-byte store) to

CHIDLE hook.

I0sP

When an interface module generates an interrupt, the CPU jumps control
to location IRQ20, which is usually taken by the I/0 ROM. If IRQ20 has
not been taken, the interrupt is ignored. The IOSP interrupt hook is
accessed through the executive 1loop. The I/O ROM IRQ2@ routine does
minimal interrupt processing and sets the CSTAT and XCOM flags to
indicate that an interrupt has occurred. This causes the executive loop
to jump to IOSP, where the I/O ROM finishes processing the interrupt.

If you take IOSP you must clear the service bit in CSTAT before
returning.

Initialization Hooks

A routine called ROMINI is called on several occasions to perform
initialization 1in external programs. Power-on, allocation, reset,
deallocation, and executive loop hooks are times when the binary program
may need to initialize special values. When this occurs, the
initialization routines in binary programs and ROMs are given control.

3-26

Section 3: Operating System

A parameter is passed to the ROMINI routine through ROMFL. The
occasions and corresponding ROMFL values are:

ROMFL Value Function
"} Power on
1 RESET key
2 SCRATCH
3 LOADBIN
4 RUN, INIT
5 LOAD
6 STOP, PAUSE
7 CHAIN
10 Allocate token with class greater than 56.
11 Deallocate token with class greater than 56.
12 Decompile token with class greater than 56.
13 Program halt because of an error.

These calls to the ROMs and binary programs allow these programs to
initialize or otherwise keep track of operation. For instance, if a ROM
needs to reserve or steal memory permanently, it would check for ROMFL =
@, and reserve memory only when that is true. Another example is that
during RESET the I/O ROM might want to deallocate buffers.

During initialization, a binary program or ROM should never destroy any
CPU registers below R2@. Similarly, no initialization routine should
use CPU registers other than R34-R37 until it is verified that the value
of ROMFL is not 16, 11, or 12. Once this is verified, all CPU registers
numbered higher than 20 may be used.

Error Handling

When an error is detected inside the executive loop, a system routine
immediately reports the error and waits for the error to be corrected.
The first 1@ (octal) error numbers are default math errors which do not
stop execution after the warning is reported. The routine which has
found the error supplies a default value, and the processing continues.
The defaults must be turned off in order to stop the execution.

The routine that displays the warning message, or sets the error flags
if no other errors have occurred begins at location ERROR. When setting
an error, the subroutine will use the next byte after the return address
as the error number.

Section 3: Operating System

The subroutine ERROR has three basic parts to its operation:
e Initializing the error information.
e Interpreting error status.
e Carrying out the appropriate action.

ERROR saves the address that it will return to in R36-R37, increments
it, and stores it on the R6-R7 stack. Then it finds the error number
which is stored at the return address and puts it into R20-R21 after
saving the previous contents. Checks are made to determine the proper
action for the routine. 1If an error has already been found, then the
routine restores the previous contents of the registers and returns
immediately. If the error number is less than 18 (octal) or greater
than 366 (octal), then the warning for the error is immediately
displayed, and the contents of the registers restored before returning.
If 'ON ERROR' has been declared and a program is running or if error
defaults are off, then the error number, line number, and ROM number (if
any) are stored, bits 6 and 7 in XCOM are set to 1, and the previous
contents of the registers are restored before returning.

A subroutine jump to ERROR+ is equivalent to a subroutine jump to ERROR
followed by a return.

An error condition tested by an assembly language program would go
through the following steps:

1. The assembly language program finds an error and calls the system
routine ERROR.

2. ERROR checks to see that no other errors have occurred which
haven't been reported vyet, in which case ERROR returns without
doing anything (because only one error can be in process at a
time). Otherwise, ERROR sets the error flags in XCOM and in other
RAM locations such as ERRORS, ERLIN#, and ERNUM#.

3. Control returns to the assembly language program which returns to
the system interpreter.

4. The interpreter will check the error flag in XCOM and, noting that

it is set, will exit from the interpreter loop back to the main
body of the executive loop.

5. The executive loop will see that XCOM is not @ and will see that

an error has occurred and will jump to the error-reporting routine
REPORT.

3-28

Section 3: Operating System

6. REPORT checks to see if ON ERROR has been declared and a program
is running. If so, it sets CSTAT to 'run in middle of line',
changes the BASIC program counter to the next line and returns to
the executive 1loop without printing the error message. If a
program is not running or ON ERROR has not been declared, then
REPORT prints the error message and returns to the executive loop.

7. The executive loop checks CSTAT to see if 'run in middle of 1line'
is set. If so, control returns to the interpreter, and the
program continues running. Otherwise, ROMFL is set to 13 and
ROMINI is called, which is the routine that calls initialization
routines in all the external ROMs and the binary programs. When
ROMINI returns to the executive loop, CSTAT is set to idle mode.

3.8 Extended Memory Controller

Addresses @ to 177777 (octal) can be directly accessed using 16-bit
addressing. The extended memory controller (EMC) is used to access
memory locations above 177777. Communication with the EMC, as with the
CRT and keyboard controllers, 1is through the I/0 addresses 177400
through 177777. Access to these locations above 177777 1is through two
pointers, PTRl and PTR2.

The pointers determine where in memory an access will occur, and since
they must access memory locations greater than 177777, they are three-—
byte quantities. To set the contents of the pointers, a direct store
must be performed. For example, STMD R55,=PTR2 will take the three
bytes in R55-R57 and move them to PTR2 in extended memory. To store
data at the desired 1location in memory, an indirect store must be
performed. For example, STMI R32,=PTR2 will put the two bytes contained
in R32, R33 at the address stored in PTR2.

The EMC pointers may be used to create stacks, with the special I/0
addresses provided for each pointer. The two pointers are entirely
independent of each other. Although PTR2 1is used in the following
examples, PTR1 and PTR2 function the same.

Each pointer has four I/0 addresses: PTR1l, PTRl-, PTR1l+, PTR1-+, PTR2,
PTR2-, PTR2-+. PTR1 and PTR2 act as pointers to memory and must be
given a value in order to use the other functions. If data is stored at
PTR2, it fills the memory starting at the address stored in PTR2, moving
toward the higher numbered addresses.

3-29

Section 3: Operating System

PTR2- acts as a decreasing stack pointer. A LOAD or STORE through PTR2-
will first decrement the pointer by the appropriate number of bytes.
The LOAD or STORE operation will then be performed, leaving the pointer
at the new location.

LDM R45,=102,233,114 STMI R45,=PTR2-

BEFORE AFTER
1 102 +PTR2
2 233
3 114
4 «PTR2 4
5 5
6 6
7 7 LDM R45, =102, 233,114
8 8 STMI R45, =PTR2—

PTR2+ is an increasing stack pointer which will perform the 1load or
store operation at the location pointed to by the pointer, and then will

increment the pointer after the load or store operation by the
appropriate number of bytes.

LDM R45,=102,233,114 STMI R45,=PTR2+
BEFORE AFTER
1 1

LDM R45, =102, 233,114

2 STMI R45, = PTR2+

3
+PTR2 102
233
114
7 “PTR2
8

OiN|oja|~|W N

When the CPU accesses an I/0 address directly, it causes the controller
to respond to the address. Each of the controllers is linked to the bus
and monitors the information that is being passed from memory to the
CPU. For example, the direct access instruction LDBD R32,=CRTDAT will
fetch an address from memory. If this address 1is one which the
controller must use for an operation, the controller will send an
information byte to the CPU to tell it what to do. In this case the CRT
controller will send the CPU the current status of the CRT.

The EMC must constantly monitor the machine code instructions being
fetched by the CPU, since the DRP setting determines how many bytes are
to be used in a given operation. Whenever a DRP instruction appears, it
must store that information to keep track of the current DRP setting.

3-30

Section 3: Operating System

This can be done with PAD (restore status) and SAD (save status)
instructions. SAD pushes three bytes onto the R6 stack containing
information about the ARP, the DRP, and the status flags. PAD restores
this information using these bytes.

Because of this method of keeping track of the DRP setting, there are
cases where the EMC cannot know the DRP setting which include:

e After a PAD instruction: Since the PAD instruction restores
status and the ARP and DRP settings, the EMC is not aware of what
the DRP setting is until another DRP instruction is executed.
Therefore you should avoid using the following or similar code:

PAD Restores status, the ARP, and DRP
LDMI R#,=PTR2 Fetches bytes from extended
memory. The CPU assumes the
number of bytes is determined
by the PADs DRP. whereas the
EMC is using the last DRP
instruction.

e When the DRP is set indirectly by the contents of CPU register
RP, as in the following case:

LDMI R*,=PTR2- This sets the DRP according to the least
significant six bits of R@, which the
EMC knows nothing about.

Because of the first situation, all interrupt service routines must be
written to save and restore the contents of the registers used before
returning to the routine that was interrupted. Interrupt service
routines are those that are called immediately when a hardware interrupt
occurs, such as a key being pressed or an I/0 module needing attention.
Because the interrupt is usually granted almost immediately by the CPU,
interrupts can occur between any two instructions (as long as interrupts

are enabled). Before restoring everything, you must do the following to
solve this problem:

Pop the SAD status information off of the R6 stack to get a copy.
Push a copy back on for the eventual PAD.

Figure out what the actual DRP needs to be.

Put the appropriate DRP instruction into RAM along with a RTN.
Restore all the registers and status (PAD).

Jump to the DRP and RTIN instruction so the EMC will get its DRP
pointer back to the right value.

3-31

Section 3: Operating System

There is another I/O address that the EMC listens to. If you store a 1
to RULITE (177704), the power light will start blinking. If you store a
@ to that address, the light will stop blinking. This light blinks when
a BASIC program is running, or when an HP-85 BASIC program is being
translated, or when a program is temporarily halted waiting for input.
It normally stops blinking when program execution is complete, if
program execution is halted by an error, or if the program is paused.

3.9 Parsing

When you type in a BASIC program as a series of ASCII characters it is
translated (parsed) and stored internally as a stream of tokens and
associated data and addresses. The tokens represent the BASIC reserved
words, functions, operators, and punctuation. The data bytes represent
the constants, variables, and line number references.

Parsing begins with the 1line number or the first character of the
statement and moves to the right, processing each character and space.
Multiple nonquoted spaces are ignored during parsing except those
occurring at the beginning of a program line. As a 1line is parsed, it
is checked for syntax errors, changed to RPN (Reverse Polish Notation),
and converted into tokens which are stored internally.

Each token consists of a single byte, and can represent a single
keyword, such as LET or PRINT. Tokens 378 (ROM token) and 371 (binary
program token) are used to allow extensions of the system by means of
external ROMs and binary programs. A table of system tokens can be

found in section 8. ASCII codes can be found in the HP-87 owner's
manual.

Example: In parsing the line
18 LET A = B * SIN (45),

the system produces the following tokens in the order shown.

3-32

Section 3: Operating System

Tokens (Octal Value) Comments

16 End of statement.

19 Store numeric value token.

52 Multiply token.

330 Sine token.

105 BCD 45 in integer format.

[} (Refer to paragraph 3.9, Numeric

[7] Formats.)

32 Integer constant token.
162 ASCII "B", variable name.

1 Length of variable name.
[} Variable address space for allocation.
[} (Refer to Format of BASIC Programs and
[} Variables, paragraph 3.12.)
1 Fetch simple numeric variable
191 ASCII "A"
1 Length.
[} Variable Address Space
)
[}
21 Store simple numeric variable token.
142 Let token.
25 Length of line in bytes.
20 Line number in BCD (two digits per
[} byte except for most significant
/]

byte which contains only one).

The extended memory pointer, PTR2, is used as the output pointer during
parsing. Tokens are stored indirectly to PTR2-. At the beginning of
the parsing process PTR2 is set equal to NXTMEM, so the parsed line will
be built up in available memory at the end of the last BASIC program.
Parsing begins with the line number. This 1is loaded in BCD form; 20 is
loaded first, since it is the least significant byte.

Next is the size or length of the statement. During parsing this is a
blank place holder byte; STSIZE is a pointer to the place holder byte.
In order to find a match for the keyword LET, the system looks first in
keyword tables in the resident binary programs, then in any external
ROMs, and finally in the internal system keyword table. For this
reason, a binary program or external ROM can take over any keyword (that
is, a binary program can implement a custom version of PRINT, while the
preprogrammed PRINT is ignored). The extend register indicates if the
token searched for has been found. Refer to the section on status
indicators in paragraph 2.3.

Section 3: Operating System

After parsing, if the statement was a program line, its tokens and
addresses are inserted into the program space at the correct locations.
If it was an expression or calculator mode statement, the parsed code
remains at the end of the BASIC program and is executed immediately,
being discarded when execution is finished.

For further details of parsing operations and register conventions at
parse time, along with specific parse routines, refer to the systenm
routines which are listed in alphabetical order in section 8.

3.16 Decompiling

Programs or statements are decompiled as they are listed. This is the
reverse process of parsing and compiling. Internally, it requires the
reconstruction of code as it was entered. The tokens which have been
parsed into RPN and distributed in the system are reassembled.

PTR1 points to the input stream, which is accessed by loading indirect
through PTR1-. Input is then decompiled to an expression stack or an
output stack. The expression stack (R12) is used to reconstruct
expressions from RPN to their original form, and an output stack
(pointed to by R3#) is used to buffer the output.

Since the tokens are arranged in RPN internally, the system decompiles
the tokens as it pushes missing operator tokens (#16) onto the
expression stack. These missing operator tokens are merely "place
holders" until the arithmetic operators can be inserted at a later step.

Unlike parsing, decompiling is not an operation to which a binary
program or ROM normally has access, since these programs are seldom
required to perform any unique operations during decompiling. In some
special cases the parse routines for a binary program or ROM may require
modification if a statement is to be decompiled correctly. But for the

most part, decompiling will not be a problem for the writer of binary or
ROM programs.

3-34

Section 3: Operating System

The system processes each token and uses its class (a

component of the
token's primary attributes) to determine how the

token 1is to be

decompiled. Following are some common classes and how they are
decompiled:
Class Type of Token Action

[/} End-of-line Unstack.

1 Fetch variable To expression stack.

2 Integer To expression stack.

3 Store variable To expression stack.

4 Numeric constant . To expression stack.

5 String constant To expression stack.

32 Subscript, such as, () to expression stack if token

A(3) odd; otherwise (,) to expression
stack.

34 Dimension subscript [1 to expression stack 1if token

like, AS[] odd;
otherwise [,] to expression
stack.

36 Prints Unstack and push to output.

41 Other reserved words If : then unstack, output
reserved word, then unstack.

42 Miscellaneous output If , then push to expression
stack and unstack; otherwise
output.

44 Miscellaneous ignore Ignore.

50 Unary operator Insert after most recent missing
operator in expression stack.

51 Binary operator Replace most recent missing
operator in expression stack.

52 String unary operator Same as class 58.

53 String binary operator Same as class 51.

55 Numeric function Replace the most recent missing
operator with "," for each
parameter. Then insert function
name (at most recent missing
operator) and push onto
expression stack.

56 String system function | Same as class 55.

3-35

Section 3: Operating System

The following example illustrates how decompiling occurs:

10 LET A=B*SIN (45)

After being parsed as shown, these tokens are decompiled into the output
stack and the expression stack as illustrated.

STEP TOKENS

9. 16 EOL
8. 10=

7 s2*

6. 330SIN

R12 EXPRESSION
STACK

SIN(

45

SIN(

45

16

SIN(

45

R12EXPRESSION OUTPUT BUFFER

OUTPUT BUFFER STEP TOKENS
STACK
10 LET A=B*SIN(45)
16
A
105 16
5 o 45
) B
32
10LET 16
45
16
102
1 A
4. 0 B
0 16
0
1
B
101
1 16
10LET 3. 0 A
0 A
0
21
2. 142 1LET
25 LEN
1 20
[LINE #
0
10LET

10LET

10LET

Section 3: Operating System

3.11 Operating Stack

The stack to which R12 points is used for passing values in many
internal system routines. The formats of values that are fetched and
stored during run time execution of certain specific tokens, as well as
the formats of numeric quantities are in this section.

Numeric Formats

In internal routines, numbers popped off the R12 stack are eight bytes
long, so integer values are tagged with octal 377.

R40 E1 E2
R41 EO MS -)
R42 M10 M11
R43 M8 M9
R44 M6 M7 377 -«——— |nteger Tag
R45 M4 M5 D1 DO
R46 M2 M3 D3 D2
R47 Mo M1 S D4
Real Tagged Integer

NUMERIC FORMATS (R12 STACK)

In the illustration, the byte above the number contains the octal
quantity 377. This 377 acts as a tag for the number, specifying the
quantity as an integer value that is only three bytes in length. The
next four bytes popped off the stack are then undefined and are ignored
by the system. The numbers are shown as they would be if they were
taken off of the stack by the instruction POMD R4#,-R12. The tagged
integer is right justified so that the most significant digits (starting
with D4) are @ if unused. For tagged integers, the decimal point is to
the right of D@, the least significant digit. The real number decimal
point is between M@ and M1.

3-37

Section 3: Operating System

A short numeric variable is formatted as follows:

R44 EO E1

R45 M3 M4

R46 M1 M2

R47 0 0 SM SE Mo
EQ Most significant four-bit BCD digit of the exponent.
El Least significant four-bit BCD digit of the exponent.
M@ Most significant four-bit BCD digit of the mantissa.
M4 Least significant four-bit BCD digit of the mantissa.
SM Sign of the mantissa (@=positive, l=negative).
SE Sign of the exponent.

The decimal point is assumed to be between digit M@ and digit M1. The
most significant nibble (four bits) contains the signs of the mantissa
and the exponent. The two most significant bits are zeroes.

Strings on the R12 Stack

String values are passed on the operating stack as a two-byte length and
a three-byte address of the next character higher than the first
character of the string. The first character is at the highest address
of any characters of the string. To fetch successive characters of the
string, the following code could be used:

POMD R45,-R12 1 Get the address of $
STMD R45,=PTR2~ ! Set PTR2 pointing to first character
POMD R36,-R12 ! Get the length of $

LOOP LDBI R32,=PTR2- ! Get the next character

DCM R36
JNZ LOOP

Decrement length count
Loop until done

Operating Stack Routines

There are several system routines available to help you in parsing
various kinds of parameters for BASIC statements. These routines will
parse your BASIC statement into tokens that, at run time, will load the
R12 stack with the appropriate variable or parameter.

3-38

Section 3: Operating System

Following is a list of the routines that can be used and what they leave

on the stack:

NUMCON

NUMVAL

REFNUM

STRCON

STREXP

STRREF

(8 bytes) Real or tagged integer.
(8 bytes) Real or tagged integer.

(3 bytes) Absolute address of variable value.
(3 bytes) Absolute address of name of variable.
(1 byte) Head of variable.

(2 bytes) Length of string.
(3 bytes) Absolute address of string.

(2 bytes) Length of string.
(3 bytes) Absolute address of string.

Will parse both a normal string variable and a string
array variable reference. There will be slightly
different information on the stack depending on which
of these it is. String arrays will have everything
that nonarray strings will have but string arrays may
also have row, column, and dimension information if
the variable is being traced. You can tell if that
information is there by checking the trace bit in the
header byte which will come off the stack before the
tracing information would. You also tell whether you
have a string array or normal string by inspecting
the appropriate bit in the header byte.

Nonarray Strings

(3 bytes) Absolute address of name of variable.

(1 byte) Header of variable.

(2 bytes) Maximum length of string variable.

(3 bytes) Absolute address of first byte of string
address.

(2 bytes) Maximum length available to store into.
This will be different from the maximum
length if subscripts were used.

(3 bytes) Absolute address of first byte to store
into. This will also be different from
the address of the first byte of the
string if subscripts were used.

Section 3: Operating System

Array Strings

The first three will only be on the stack if the
variable is being traced.

(2 bytes) Row of element.

(2 bytes) Column of element.

(1 byte) Dimension flag (#=2 dim., 1=1 dim.).

(3 bytes) Absolute address of name of variable.

(1 byte) Header of variable.

(2 bytes) Maximum length of string variable.

(3 bytes) Absolute address of first byte of string
variable.

(2 bytes) Maximum length available to store into.
Different than maximum length of variable
if subscripts were used.

(3 bytes) Absolute address of first byte to store
into. Different from the address of the
first byte if subscripts were used.

NARREF Used when you wish to use a simple numeric variable

name to refer to an array variable. An example would

be:

MAT C=ZER

In this example 'C' refers to an array C, not to a
simple numeric variable. -

(3 bytes)

Address of variable header. This address
is a relative address. The easiest way
to make it an absolute address is:

POMD R65,-R12
JSB =FETSVA

FORMAR Used when you wish to refer to an entire array.

(3 bytes)

(3 bytes)
(1 byte)

PRINTH# 1; C(),D(,)
Absolute address of the first element of
the array.

Absolute address of the array name.
Array header.

In all of the above examples of stack contents, the bottom of the page
represents the direction of higher addresses. As you popped things off
the stack you would be removing things from the bottom first.

3-40

Section 3: Operating System

3.12 Format of BASIC Programs and Variables

The following figure shows how a BASIC program line is formatted:

L

/‘T

The BASIC line

16 END OF LINE TOKEN

1-BYTE LENGTH OF LINE

would be parsed as:

Let's take a look
bytes 140, 121, and 081.

ple
212
202
140
121
281

3-BYTE BCD LINE NUMBER (5 DIGITS)

15160 END
'END OF LINE' TOKEN
'END' TOKEN

LENGTH OF LINE (212 AND @¢16 MAKES TWO BYTES)

—-> 3-BYTE BCD LINE #

at how a 1line number of

can be packed into one byte.

digit groups:

Now we turn those groups into bits:

[%]

1
1
]

Since a

1

MISCELLANEOUS BYTES (ACTUAL TOKENS OF CODE)

15160 generates

the three

BCD digit takes four bits, two digits
So, let's split the line number into three

51 60

2009 0901
2191 0901
0110 0000

3-41

Section 3: Operating System

Arrange the binary representation with three to a group. Convert this
form to an octal number to obtain the three bytes that represent the
line number.

00 000 001 201
21 610 001 121
21 100 000 149

The values of the variables are stored at the end of the current program
in one continuous block of memory. Each variable has a header which
contains information about that variable. Following are the structures
of different kinds of variable storage areas. All variable storage

areas begin with a one byte header. The bits in that header and their
meanings are:

VARIABLE HEADER BYTE LEGEND

BIT /6 &5 4 3 2 1 0

0=VARIABLE
1=FUNCTION
- 0=NOT TRACING
?;:g:lszlc 1=BEING TRACED
0=LOCAL
L 1=REMOTE
0=SIMPLE
1=ARRAY 0=NORMAL VARIABLE
1=CALC MODE VARIABLE NAME
00=REAL
01=INTEGER
10=SHORT

3-42

Section 3: Operating System

In the following diagrams in this section, an "x" will mean that that
particular bit position can be occupied by a "1" or a "8."

Simple Numeric Variable

Local
8, 4, or 3 bytes of value
: depending upon whether it’s
Increasing REAL, SHORT, or INTEGER.
Addresses
3-byte pointer to ASCIl name.
00 xx0 0x0
Remote
3-byte pointer to value.
Increasing . :
Addresses 3-byte pointer to name.
00 xx0 1x0

3-43

Section 3: Operating System

Numeric Array

Local
Element row 0, column 1
8, 4, or 3 bytes.
Element row O, column O
8, 4, or 3 bytes.
Increasing
Addresses
2-byte max column.
2-byte max row.
V 3-byte total size.
3-byte pointer to ASCIl name.
01 xx0 0x0
Remote
3-byte pointer to total size.
Increasing
Addresses 3-byte pointer to ASCIl name.
01 xx0 1x0

Section 3: Operating System

Simple String Variable

Local
n bytes of string value.
2 bytes of actual length.
2 bytes of maximum length.
Increasing
Addresses
3 bytes total size (n).
3-byte pointer to name.
10 xxx Ox0
Remote
3-byte pointer to total size.
Increasing 3-byte pointer to name.
Addresses
10 xx0 1x0

Section 3: Operating System

String Array Variable

Local
N byte value of row 0, col 1 element.
M1 2-bytes actual length of row 0, col 1 element (M1 <N).
N bytes value of row 0, col 0 element.
MO 2-byte actual length of row 0, col 0 element (MO <N).
Increasing .
Addresses N 2-byte maximum length of each element.
2-byte maximum column index.
V 2 bytes maximum row index.
3-byte total size (N + 2) % (# of rows) > (# of cols).
3-byte pointer to ASCIl name.
11 xx0 Ox0
Remote
3-byte pointer to total size.
Increasing 3-byte pointer to ASCll name.
Addresses
11 xx0 1x0

Section 3: Operating System

Numerical User Defined Functions

8-byte function value.

1-byte CSTAT.

3-byte RMEM (reserved MEMory count).

1
Incr

Addresses

3-byte TOS (top of stack pointer).

3-byte return address (relative).

3-byte function address (relative).

3-byte pointer to ASCIl name.

00 xx0 Ox1

3-byte PCR (BASIC program line pointer).

Section 3: Operating System

String User Defined Functions

n-byte string function value.

2-byte actual length.

2-byte maximum length.

3-byte total length.

1-byte CSTAT.

Increasing
Addresses 3-byte RMEM (reserved MEMory count).
3-byte TOS (top of stack pointer}.
} 3-byte PCR (BASIC program line pointer).

3-byte return address (relative).

3-byte function address (relative).

3-byte pointer to ASCIl name.

10 xx0 Ox1

Because calculator mode statements destroy all previous calculator mode
statements but not their variables, the pointers to the ASCII names of
the variables cannot point to the calculator mode statement. A dummy
calculator mode simple string variable is created with the bit set in
the header that indicates this is a calculator mode variable name. This
dummy variable 1is skipped for all purposes other than searching for
variable names at allocation time for calculator mode statements. When
a calculator mode statement 1is allocated, the addresses used for the
variables are relative to FWCURR.

3-48

Section
v

CONTROLLERS

4.1 Introduction

The HP-87 is a multi-processor system. The keyboard, the CRT, the
timers, and the interface modules are all controlled by individual
microcomputers. The mainframe CPU coordinates activities between the
peripherals using the I/0 addresses. To communicate with these
controllers, refer to the appropriate sections.

4.2 CRT Controller

The CRT 1is an intelligent component that is controlled by an internal
computer, or CRT controller. The CRT also has a memory which
continuously refreshes the CRT display.

Main Memory CRT Memory

:/

The CRT controller and the CPU communicate using four addresses in RAM.
Each address requires a two-byte quantity to specify a CRT memory
address. The I/0 addresses are:

1o

CRTBAD DAD 177701

Storing a two-byte address to this location causes the CRT
controller to load its byte address pointer with that address.

Section 4: Controllers

4-2

CRTSAD DAD 177700

Storing a two-byte address to this location causes the display to

be started at that address.

This makes the display appear to

scroll up and down or side to side or to jump to a different page

depending on the

new start address.

effect when in GRAPH NORMAL or GRAPH ALL modes.

CRTDAT DAD 177703 ’
Storing a single byte to this location causes

that byte

Storing to CRTSAD has no

be

stored to the CRT memory location currently pointed to by the

controllers byte

location reads the

address.
byte

Loading

a single byte

pointed to by the controller's byte address.

After either a load or store
controller automatically

address pointer.
instructions to

locations.

However, before storing to CRTDAT,
check the least significant bit to
busy. Before loading from CRTDAT,
with the least significant bit set
you want to read the current memory location.

CRTDAT without
between, those bytes would be

operation
increments

through CRTDAT the
by one its internal byte
you did a series of single byte
storing anything
stored

from this
from the CRT memory location currently

CRT

store
to CRTBAD in

in successive CRT memory

you must first read CRTSTS
make sure the controller is not
you must store a byte to CRTSTS
to tell the CRT controller that
You must then

and

read

CRTSTS until the BUSY bit indicates the controller is not busy, at
which point you can load from CRTDAT to get the byte.
way 1is to simply execute a JSB =INCHR (call the system routine)
that does all the rest for you.

CRTSTS DAD 177782

easier

Loading a single byte from CRTSTS gets you information about the

current status of the

meaning:

CRT controller.

Reading from CRTSTS

Bit 7] 1
[} Not Busy Busy
1 Unblank Blank
2 Power-up Power-down
3 16 lines 24 lines
4 Display time Retrace time
5 Noninverse Inverse Display
6 Normal All
7 Alpha Graphics

Each bit has a specific

Section 4: Controllers

Storing a single

byte to CRTSTS sets

mode and/or redquests a read:

the CRT controller to

Storing to CRTSTS

Bit [} 1
%] No read Read Request
1 Unblank Blank
2 Power-up Power—-down
3 16 lines 24 lines
4 -— -
5 Noninverse Inverse Display
6 Normal All
7 Alpha Graphics

When the CRT is blank, the controller has disabled the
beam, causing the display to go blank.
controller does not have to refresh the

transfer data to

a specific

electron

When this is the case, the

display,

causing
and from the CRT memory much faster.

it to
When you

switch from alpha to graphics or graphics to alpha there will be a

flash

on the display unless it has been blanked.
you must set the blank bit during a retrace.
system routines that will blank and unblank the CRT for you.

are CRTWPO and CRTUNW.

When the CRT is powered up or powered down, the

the high voltage

section

done to conserve power.

controller
of the CRT driver on or off.

To avoid this,
There is a

pair of
They

turns
This is

Section 4: Controllers

4.3 Display Modes

ALPHA NORMAL

OCTAL
ADDRESS

000000

000120
000240

007760
010100
010220 last line of ALPHA NORMAL memory
010340 start of GRAPH NORMAL memory

ALPHA addresses in CRT memory are 0008060 to 910337. In alpha mode the
display shows 16 or 24 (decimal) 1lines of 8¢ (decimal) characters per

line. The scrolling keys permit viewing of an additional 38 (decimal)
lines of alphanumeric data.

Because each ASCII character occupies eight bits, one character can be
stored at each memory location. To move the cursor to the right one
position, add one to the address.

If the start address (CRTSAD) is at an address where there is not enough
ALPHA NORMAL memory left for an entire display, then the CRT controller
will start fetching bytes from address @@@@@0 when it reaches the end of
the ALPHA memory. Because of this a mod operation must be performed on
alpha addresses when moving the cursor around.

At power-on and after a RESET the CRT start address is set to 00@@0@¢. If
you roll the display up one line the CRT start address will then be set

to 00120. If you were to roll the display down one line, the start
address would be 10220.

Section 4: Controllers

GRAPH NORMAL

OCTAL
ADDRESS

010340 first (top) line of GRAPH NORMAL display
010422

037534

037616 last (bottom) line of GRAPH NORMAL display

037700 last 64 bytes are unused.

In GRAPH NORMAL mode, the screen is 5@ bytes (decimal) wide. The GRAPH
display always starts at 1034@.

The last 64 (decimal) bytes of CRT memory are unused in NORMAL mode.
The contents of memory location 18348 will determine whether or not the
first eight dots in the top line of the display will be on. The
contents of memory location 10341 will determine the state of the next
eight dots on the top line.

Section 4: Controllers

ALPHA ALL

OCTAL
ADDRESS

000000 first line of ALPHA ALL memory

000120

037440

037560 last line of ALPHA ALL memory

037700 last 65 bytes are unused.

The ALPHA ALL memory maps 80 addresses per line of the CRT display and
the 1last 64 (decimal) bytes of memory are unused. When the start
address gets too close to the end of memory, the controller wraps around
to address 000009 to finish the display page.

4-6

Section 4: Controllers

GRAPH ALL

OCTAL
ADDRESS

010340 first (top) line of GRAPH ALL display
010444

037640

037744 addresses 37744-37777 addresses 0-47

000050
000154

010134 last line of GRAPH ALL display

010240 last 64 bytes are unused

In GRAPH ALL mode there are 68 (184 octal) bytes per 1line of the
graphics display, giving a dot resolution of 544 dots wide by 240 dots
high. The controller will again wrap back to address @@99880 to continue
fetching bytes when it runs out of memory at the end of the NORMAL
graphics area.

4-7

Section 4: Controllers

4.4 Keyboard Controller

The keyboard controller monitors the RAM location keyboard scanner, four
timers, and the beeper.

Keyboard Scanner

All of the keys are connected to keyboard inputs. The controller
monitors these connections, waiting for a key to be pressed. When a key
is pressed, the controller generates a service request to the CPU. When
the request is granted execution vectors to the service routine
KEYSRV. The keyboard service routine saves the CPU status then does a
JSB=KYIDLE instruction (refer to Hooks, paragraph 3.5). If the KYIDLE
hook has not been taken, control will return to KEYSRV. It will then
disable interrupts, save registers, and read the key code of the key
that was pressed from the keyboard controller through the I/0 address
KEYCOD. The key 1is checked by KEYSRV to see if it was RESET. If so,
KEYSRV does a RESET. 1If not, it checks to see if any other keys have
been pressed that have not been handled by the system.

If another key has been pressed, the system re-enables the keyboard
scanner and restores the registers and status. The system returns to
what it was doing when the CPU received the service request. As long as
other keys are not pending, the key code is saved in a RAM location
called KEYHIT and bits are set in R17 and SVCWRD, indicating that a key

has been pressed. The routine KEYSRV then restores the registers and
status.

Once a key has been pressed, no more keyboard interruptions will be seen
until the previous key 1is released, and a 1 has been stored to I/O
address KEYCOD (which restored the keyboard scanner). If the interrupt
were to occur between the last DRP instruction and an extended memory
access, the EMC could lose track of what the DRP setting is. Refer to
paragraph 3.6.

4-8

Section 4: Controllers

The following define the I/0O addresses associated with the

scanner:
KEYSTS
Write: Bit [} 1
[} No effect Enable keyboard
1 No effect Disable keyboard
2 Not used -
3 Not used -
4 not used -
5 Speaker off Speaker on
6 No effect 1.2 kHz
7 No effect Toggle Flip FF
Read: Bit [/} 1
/] Device disabled Device enabled
1 No key pressed Key pressed
2 Not used -
3 Shift key up Shift key down
4 Not used -
5 Not used -
6 Not used .
7 Globals disabled Globals enabled

keyboard

Bits @ and 1 of KEYSTS allow you to disable and enable the keyboard
Bit 7 (when reading) tells you
whether global interrupts are enabled or disabled.

separately from all other devices.

KEYCOD

The status of KEYCOD utilizes a byte rather than individual bits.

Write: If the

value 1is 1, then

the keyboard scanner

re-enabled as soon as the key is released.

Read: Returns the keycode of the key that was pressed.

will be

Section 4: Controllers

Following is a listing of the system key service routine, KEYSRV,

presented here as an example of what you need to do if you take over
KYIDLE.

5880
5880
5300
S910
5820
5930
5940
5950
5960
5970
5980
59390
6000
6010
6020
6030
8040
6050
6060
6070
6080
6030
€100
6110
6120
6130
5140
6150
6160
6170
6180
€190
6200
6210
6220
6230
6240
5250
6260
6270

KE'YSRY

RSTARRT

NORSET

HAYE1

EDJ1

ENDSR

SAD

JSB =KYIDLE

STBD R32, =GINTDS
PUMD R32,+R6
LOBD R32, =KEYCOD
BIN

CMB R32,=213

JNZ NORSET

LOM RB, =STACK
JSB =RESET.

LDB R30, =1

STBD R30, =KEYCOD
GTO DOCUR.

LDBD R33, =SVCWRD
10D HAVE1

ICB R33

STBD R33, =SYCWRD
STBD R32, =KEYHIT
LDB R32,=20

ORB R17,R32

JSB =E0J1

LDB R#, =1

STBD R#, =KEYCOD
POMD R#, -RE

GTO ENDSR

LDBD R32,=KRFET1
STBD R32, =KEYCNT
RTN

STMD R10,=S10
POMD R10, -RE
PUMD R10,+RE

ANM R10,=77,0
ADB R10, =100
STBD R10, =RAID+1
LOMD R10, =510
GTO RAID+1

Save the STATUS, ARP, and DRP

Call the RAM hook

Disable global interrupts

Save register contents to recall later

Get the keycode from the controller IC

Force BIN mode for keycode compare

Is it the RESET key?

Jif no

Else reset the return stack pointer

Do a RESET

Need to store a 1 out to KEYCOD to

restart the keyboard scanner

Output cursor to CRT and fall into exec.

Any other unserviced keys been pressed?

Jif yes, throw this key away

Eise set the keyboard bit

And restore SYCWRD

Save the keycode for the system

Load the mask to set service request bit
in XCOM (R17)

Make sure we’re set to slow repeat speed

Can’t get any more keys unless we
restart the keyboard scanner

Restore the registers we used (R32-R33)

Make the current DRP setting available

to the EMC.

Get the slow repeat count
Set the counter to the slow repeat

Save R10-11 in a reserved RAM location
Get the byte of SAD that contains DRP
Restore so we can PRAD later

Isolate the DRP register bits

Make it a DRP instruction

Store it into RAM so we can execute it
Restore R10-11

Finish

Section 4: Controllers

At power-on, the system initialization routine has stored at RAID+1l the
following code:

RAID+l BSZ 1 Place holder for DRP instruction
STBD R#,=GINTEN Re—enable global interrupts
PAD Restore status, the ARP, and the DRP
RTN Done
Timers

The timer section of the keyboard controller consists of four separate
timers and four registers each containing eight BCD digits. The timers
and registers are updated at a rate of 1 kHz. During this updating, no
read or write operations should be performed to the CLKDAT address.
Each timer that equals its register count causes a service request
interrupt. It is then set to zero to begin another count sequence. The

contents of the timers are transferred in four consecutive bytes each
containing two BCD digits.

The keyboard scanner has the highest priority on the controller

regarding interrupts. Next highest is timer @, with timer 3 being the
lowest.

4-11

Section 4: Controllers

CLKSTS

This address contains the following information needed when using the
timers.

Write: Bit Comments

Disable addressed timer.
Enable addressed timer.
Stop addressed timer.
Start addressed timer.
Clear addressed timer.
Clear interrupt service
flip FF.

b wNhHHS

6 Bits 6 and 7 are the

7 timer address (9 through 3).
Read: Bit Comments

[} Timer @ enabled.

1 Timer 1 enabled.

2 Timer 2 enabled.

3 Timer 3 enabled.

4 Not used.

5 Not used.

6 Not used.

7 Read (timers available for

access through CLKDAT).

CLKDAT

When loading from CLKDAT, you must execute a four-byte load to get eight
BCD digits which represent the value of the last addressed timer.

When storing to CLKDAT, you must execute a four-byte store and the four

bytes must be the eight-digit value you want the last addressed timer
set to.

Before executing a load or store instruction to CLKDAT you must first
check the most significant bit of CLKSTS to make sure the timers are
ready to be accessed (bit 7=1).

Section 4: Controllers

There are no hooks in the timer interrupt routines. The only way to
make use of the timers from assembly language programming is to
periodically check SVCWRD to see if any timers have been interrupted.
This will only work if you never return to the BASIC interpreter, as the
executive loop will also check for timer interrupts at the end of each
BASIC statement and handle them if necessary.

The following code will read the value of timer @ (the system clock).
It will use that value and the base time to generate the current time
and return the current time to the R12 stack.

TIME. CLB R55 ADDRESS TIMER @
STBD R55,=GINTDS DISABLE INTERRUPTS
JSB =TIMWST WAIT FOR READY AND STORE
TIMER ADDRESS
CLM R49 CLEAR UPPER FOUR BYTES

JSB =TIMRDY
LDMD R44,=CLKDAT
STBD R44,=GINTEN
LDM R36,=4,0

WAIT FOR READY

TIME TO R44-R47
RE-ENABLE INTERRUPTS
SET EXPONENT

BCD
CLB R32 SET SIGN TO POSITIVE
JSB =SHRONF SHIFT, PACK AND PUSH

ON R12 STACK

GET BASE TIME
RECOVER INITIAL TIME
ADD TO BASE TIME AND
PUSH ON R12 STACK

LDMD R58,=TIME
POMD R4@,-R12
JSB =ADD1g

-t 4 4= 4= o= s

RTN

TIMWST JSB =TIMRDY
STBD R55,=CLKSTS
RTN

WAIT FOR READY
STORE OUT STATUS BYTE

—

TIMRDY LDBD R37,=CLKSTS ! GET TIMER STATUS
JPS TIMRDY ! JIF BUSY
RTN ! ELSE RETURN

The system routine SHRONF takes a 16-digit number in R4@-R47, an
exponent in R36-R37 and a sign byte in R32 and normalizes it (shifts out
leading zeroes and adjusts the exponent to match). It then packs the
exponent and sign into R40-R41, and pushes the floating point result
onto the R12 stack. The ADD1¢ routine is basically the same as ADDROI
except it expects as inputs two real (floating point) numbers in R4@-R47
and R58-R57, rather than two real or integer numbers on the R12 stack.

Section 4: Controllers

The following code sets timer # (the system time clock) the way it's set
at power-on.

TIME® LDB R55,=32 SET UP STATUS BYTE.
BITS 4, 3, 1 WILL CLEAR
TIMER O.
START IT, AND ENABLE IT TO
INTERRUPT.
GENERATE 86400000, THE
NUMBER OF MILLISECONDS
IN A DAY.
DISABLE INTERRUPTS.
WAIT FOR READY.
SEND THE TERMINAL COUNT.
RE-ENABLE GLOBAL INTERRUPTS.
DONE.

CLM R44

LDM R46,=100, 206
STBD R#,=GINTDS
JSB =TIMRDY

STMD R44,=CLKDAT
STBD R44,=GINTEN
RTN

S T

Speaker

The speaker can be controlled through the I/0 address KEYSTS. Bits 5
and 6 of KEYSTS allow you to either make the speaker beep at 1.2 kHz or
turn it off and on at whatever frequency you wish (within the limits of
the clock cycle of the CPU).

4-14

Section
\%

SYSTEM MONITOR

5.1 Introduction

The HP 82928A System Monitor is an optional plug-in module that permits
you to set breakpoints and single step or trace through the execution of
assembly code. Two breakpoints can be set in any portion of memory with
an address lower than 200000. Any time either of these addresses is
referenced in any manner, an interrupt is caused. The user can use this
interrupt to examine CPU registers, status bits, memory locations, and
extended memory pointers.

5.2 System Monitor Commands

The system monitor commands described in this section are demonstrated
later in this manual. Refer to section 7.

BKP octal address [,select code for output]

Sets breakpoint (BKP) #1 or #2 at a specified address in memory. If no
breakpoints have been set, the command sets BKP4#l. If BKP#l is already
set, the command sets BKP#2. If BKP#l and BKP#2 are both set, the
command resets BKP#2; BKP#l remains set at its original address.
Breakpoints can be set at any address lower than 20809@ in system RAM or
ROM. They can be cleared only by using the CLR command. Using the
[RESET] key will not clear breakpoints.

5-1

Section 5: System Monitor

When a breakpoint is encountered, execution halts and a block of status
information is output to the CRT IS device. The following Kkeys are
typing aids:

Key Use
B Set an additional breakpoint (BKP)
C Clear (CLR) a breakpoint.
M Obtain a memory dump (MEM).
P Change program counter (PC=).
R Change contents of a register (REG).
T Using the TRACE command.
1 Change value of pointer #1 (PTR1=).
2 Change value of pointer #2 (PTR2=).
[STEP] Single step execution.
[ROLL "] Roll up display.
[ROLL V] Roll down display.
[RUN] Resumes program execution.
[BACK SPACE] Back space.
[A/G] Alternates between graphics and alpha
modes.

Most other keys on the keyboard are inactive at a breakpoint until a
typing aid has been used.

PC DR AR Q¥ CY NG LZ ZR RZ 0D DC E BKP1 BKP2 PTR1 PTR2 ROM
022273 3636 0 O 1 O O 1 0O © 01 114333 114303 0377713 0377732 000
¢} 1 2 3 4 S 6 7 MEM 0:0

ROO 000 G12 265 230 273 044 150 204 026 ©00O 011 210 303 030 011 210

C
R10 242 200 350 212 371 COO 001 000 153 031 305 031 266 031 247 031 k E B *
RZ0O 044 044 233 230 140 011 236 200 342 207 0zz z10 022 210 1058 251 b F)
R30 237 200 034 Q00 075 210 320 230 070 204 230 136 262 001 377 251 B ~2 @)
R40 110 233 230 001 000 000 044 044 340 040 262 030 377 321 000 140 2 @G °

RS0 000 051 000 000 000 QOO 000 000 366 012 262 0B5 210 261 014 140
REO 000 COO 000 000 000 000 357 012 036 306 000 OGO 316 274 011 3186 F NCN
R?70 016 316 Q00 000 000 0OCO 000 000 030 030 230 316 306 207 117 220 NF O

<
N
o
-
-

Output at a breakpoint includes:
1. The following CPU status indicators:
PC: The setting of the program counter stored 1in registers R4
and RS5. When execution is resumed, it will begin at the

address specified by the PC.

DR: Contents of the current data register pointer.

Section 5: System Monitor

AR: Contents of the current address register pointer.
OV: Status of the overflow flag.
CY: Status of the carry flag.

NG: Status of the MSB (most significant bit), used to
indicate a negative quantity.

LZ: Status of the LDZ (left significant zero) flag.
ZR: Status of the zero flag.
RZ: Status of the RDZ (right digit zero) flag.

OD: Status of the LSB (least significant bit), used to indicate
an odd quantity.

DC: Setting of DCM (decimal) flag. Used to indicate decimal
or BCD mode.

E: Contents of the E (extend) register. This will be a
quantity between @ and 17 octal.

BKP1l: Indicates absolute address where breakpoint 1 is currently

set.

BKP2: Indicates absolute address where breakpoint 2 is currently

set.

PTR1: Indicates address of extended memory pointer 1.

PTR2: Indicates address of extended memory pointer 2.

ROM: 1Indicates number of ROM which was selected when the
breakpoint occurred.

The contents of 108 (octal) RAM or ROM locations are output
beginning with the octal address specified in the last executed
MEM and will continue for 108 octal bytes. If no MEM was
executed, 108 (octal) bytes of memory will be output beginning
with zero. The default ROM number 1is zero unless previously
indicated. If MEM was executed, 100 octal bytes will be output

starting with the address of MEM.
Contents of CPU registers # through 77.

Memory contents in ASCII.

5-3

Section 5: System Monitor

CLR breakpoint number

After CLR is displayed (as a result of typing "C"), the user can type 1
[END LINE] to clear BPl or 2 [END LINE], to clear BP2. After CLR is

displayed pressing [END LINE] or typing a number other than 1 or 2 will
clear both breakpoints.

The CLR functions can be used any time execution has been halted,
whether or not it has been halted by a breakpoint.

MEM address ([:ROM#]([,# of bytes] [=#,#,...]

This command dumps the contents of computer RAM or ROM memory to the
current CRT IS device beginning with the octal address selected.
One-hundred octal bytes are dumped unless another parameter was input.

The MEM function can be used after execution has been halted by a
breakpoint.

The ROM number if included, is an octal value of selected plug-in ROMs

from which memory is dumped. Default value for the ROM number is system
ROM @, if no other ROM number has been selected.

The output shows the octal representation of the bytes in memory and the
ASCII representation of the bytes.

If there are numeric entries after the "=" sign, memory is not dumped;
the contents of memory locations beginning at the octal address
specified are changed to the octal values after the "=" sign. The
memory locations must be in RAM. The contents of one succeeding memory
location are changed for each value specified after the "=" sign. The

number of bytes, if included is disregarded in this case.

Examples: MEM 103300

Dumps contents of 188 octal bytes of memory to the CRT IS
device, beginning with memory location 183300.

MEM 103399, 20

Dumps contents of 20 octal bytes of memory to the CRT IS
device, beginning with memory location 183300.

MEM 60200: 40,200
Dumps contents of 208 bytes of the assembler ROM (ROM #40)
to the CRT IS device, beginning with memory location 68200.

MEM 105009 = 9,0,@,15
Loads memory locations 1@5008, 105001, and 105002 with
zeros, and loads location 1@5@0@3 with 15 octal.

Section 5: System Monitor

PC= octal address

Changes contents of program counter stored in CPU registers R4 and R5 to
the specified address, and dumps CPU status and memory contents exactly
as when a breakpoint (BKP) is executed. When execution 1is resumed, it

will begin at the address now specified by the contents of the program
counter (PC).

Example: PC = 3477 (Sets the PC to resume execution with byte 003477.)

REG number of CPU register = value

Changes contents of specified CPU register to the value given, and dumps
CPU status and memory contents as when a breakpoint (BKP) is executed.
Value may be octal, decimal, or BCD.

Example: REG 35
REG 36
REG 37

31 (Changes contents of register R34 to 31 octal.)
19C (Changes contents of register R36 to BCD 19.)
25D (Changes contents of register R37 to 25 decimal.)

STEP

Although STEP is not a command, it is a typing aid which executes the
next complete machine code instruction (not Jjust the next byte).
Beginning with the location currently addressed by the PC, it halts and
dumps CPU status and memory contents like a breakpoint.

TRACE octal, decimal, or BCD value

Resumes execution with the next machine code instruction, and continues
for the number of instructions (not bytes) specified by the octal,
decimal, or BCD value.

After each instruction is executed, CPU breakpoint and status is output
to the current CRT IS device. When execution halts, the CPU status and
memory contents are output as at a breakpoint. Because of the internal
coding of the system monitor, the address of BKPl appears to increase as
each instruction is traced and status 1is output. However, when trace
execution halts, both breakpoints are reset to their original addresses
(when the TRACE command was executed).

To halt execution during TRACE, press any key. Repeatedly pressing a
key may be necessary to halt TRACE.

Section 5: System Monitor

Example:

PC
022274

PC
022275

PC
021636
PC
0218637
PC
021640
PC
021641
PC
021642

PC
021643

DR

46

DR
46

DR
46

DR
46

DR
4B

DR
20

DR
20

DR
20

ROO 000
R10 242
RzZ0O Q40
R30 237
R40 110
R30 000
RBO 000
R70 0186

TRACE 10 output

AR
36

AR
3B

AR

AR
36

AR
10

AR
10

012
200
044
200
233
051
000
3186

R OV
0

av
0

PTR1= octal value

4
2432
371
140
075
000
000
[sle]s}
000

ZR
o]

ZR
O

ZR

]
043
000
011
210
s1e]s}
000
GO0
000

Changes pointer address.

PTR2= octal value

Changes pointer address.

-
204
000
200
230
056
000
01z
000

E
01

MEM
026
153
342
070
340
366
036
030

BKP1

022273 114303

BKP1

0z2274 114303

BKP1

022275 114303

BKP1

0z163B8 114303

BKP1

021637 114303

BKP1

021840 114303

BKP1

021841 114303

BKP1

114333 114303

0:0

000 011
031 305
207 022
204 230
040 zB2
012 282
306 000
030 230

BKP2

BKF2

BKPZ

BKP2

BKP2

BKP2

BKP2

BKPZ

210
031
zZ10
136
030
0BS5S
Q00
318

PTR1

0377713

PTR1

0377713

PTR1

0377713

PTR1

0377713

PTR1

0377713

PTR1

0377713

PTR1

0377713

PTR1

0377713

303
286
0z2
282
377
210
316
306

030
031
210
001
321
261
274
207

PTRZ
0377732

PTR2
0377732

PTR2
037?732

PTRZ
0377732

PTRZ
037?732

PTR2
0377732

PTR2
037?732

PTR2
0377732

011 210
247 031
1068 251
377 251
000 140
014 140
011 316
117 220

ROM
000

ROM
000

ROM
000

ROM
000

ROM
000

ROM
000

ROM
000

ROM
000

E

s DT X

2
2

<

g -
F)
~2 %)
#a °
51 °
N< N
NF 0

Section
A'28

WRITING BINARY PROGRAMS

6.1 Program Structure

An assembly language program is required to have a table of five
pointers, or addresses, to tell the system where important parts of the
program are. The system will use these pointers to find the table of
keywords which the binary program implements and the associated routines
to execute each of those keywords. This structure called the program
shell is shown on the next page.

Section 6: Writing Binary Programs

NAM

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

PARSE BYT 9, P
--Parse routine addresses go here.
RUNTIM BYT 9, @
--Runtime routine addresses go here.
BYT 377, 377
ASCIIS BSZ 9
--Keyword table goes here.
BYT 377
ERMSG BSZ 9
--Error message table goes here.
BYT 377
INIT BSZ @
--Initialization code goes here.
RTN
--The rest of the binary program goes here.
FIN

Section 6: Writing Binary Programs

The shell consists of the following parts:

1.

2.

The program control block.

Label definitions describing the locations of the tables that
will allow the system to hook into the binary program. The
following addresses must be included in this order:

1. Run time routine table.

2. ASCII keyword table.

3. Parse routine table.

4. Error message table.

5. Initialization routine address.

The actual tables that have been defined previously. They must
contain the addresses of the routines that will be performed.

e The parsing routines will tell the system how to check a
keyword for the proper syntax and parameters, and how to
convert it to the internal RPN token format.

e The actual translation of the keywords into machine operations

is done by the run time routines whose addresses are defined
in the run time table.

e A marker, two bytes containing 377, must be set directly after
the run time and parsing routine tables. When a binary
program is loaded, this marker tells the system to assign an
absolute address to all routines. All other addresses
(routine references) are relative to the beginning of the
program.

e To let the system know which character strings will be the

keywords, an ASCII table must be created to specify the
keywords.

e An error message table allows assembly language programs to
specify custom error messages.

e The code for a special initialization routine that is to be
executed during initialization of the system, as at power-on,
reset, allocation, and deallocation times. Refer to
Initialization Hooks in section 3.

The routines that will actually do the operations required for

defining and executing the new BASIC keyword must come after the
tables.

Section 6: Writing Binary Programs

The system will use the structure of the program shell to access the
routines in the program. If a mistake is made in the structure, then

the system cannot run the program.

The labels that are used to reference routines and routine tables can be
any name as long as the names of routines in the tables correspond with
the names of the routines themselves.

In addition, after the execution of a routine, control must be passed

back to the system by executing a return. A return may be included
after every routine.

Control Block

The program control block is 4@ (octal) bytes long and is required to
tell the system important things including:

e The first four characters in the name of the binary program.
e The length of the program in bytes, including the control block.

e The type of file is contained in the seventh byte. The format
of the bits in this byte are as follows:

Bit Meaning

#00=BASIC Main Program
#91=BASIC Subprogram
@@2=Binary Program
Undefined

Undefined

Undefined

Undefined

@=Option base 1
1=0Option base 0§

7 @=No COMMON

1=COMMON

dwNhHFS

[e) WV,

e The binary program number.

e The name of the file in mass storage (up to 1@ characters).
e Six bytes required by the system.

e The base address of the first byte of the control block.

The control block is generated by the NAM instruction, which specifies
the program name and number.

Section 6: Writing Binary Programs

The program listed below is used in examples throughout this

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1180
1170
1180
1180
1200
1210
1220
1230
1240
1250

RUNTIME
PRRSING

ERMSG
KEYWORDS

INIT
TESTPARS

TEST.

SCAN
PTRZ -
STBEEP

NAM
DEF
DEF
DEF
DEF
DEF
BYT
DEF
BYT
DEF
BYT
RSP
BYT
RTN
LDM
LDM

STMI RS5S, =PTRZ-

JSB
RTN
BYT
JSB
RTN
DRD
DRD
DRD
FIN

167, TEST
RUNTIME
KEYWORDS
PARSI NG
ERMSG
INIT

0,0
TEST.
0,0
TESTPARS
377,377
"TEST®
377

R5E, =0,371
RSS5, =PTRZ -

=SCAN

241
=STBEEP

21110
17?7715
10441

section.

Section 6: Writing Binary Programs

Example: The program TEST is 107 (octal) bytes long and contains the
following NAM statement and control block.

1000 NAM 167,TEST
[¢] 5 7 8 M
TEST [LENGTH] TYPE BP?
10
[NAME OF FILE AS ON DISC
* féASEADDRESS *
DRIVE] IF ABS] [UNDEFINED]
30 32 34 36
[LASTBYTE DEF DEF DEF
ADDRESS] RUNTIME ASCIHIS PARSE
Memory Contents ASCII Representation
124 195 123 123 147 000 0062 167 TESTG
124 105 123 124 102 040 049 040 TESTB
24¢ 040 900 000 000 000 090 000

764 221

The first four bytes contain the ASCII representation for the name TEST.
The next two bytes, with the least significant byte first, contain the
length of the binary program in bytes. The type of file that the
program is stored under is represented in eight bits (one byte), and the
binary program number is stored in the last byte. The next 10 (decimal)
bytes show the ASCII representation for the file name under which the
program is stored, with ASCII blanks (@40) to £ill the rest of the
bytes. The following six bytes are undefined, and the last two bytes
contain the address of the first byte in the binary program.

6-6

Section 6: Writing Binary Programs

System Table

The system uses this table to locate the routines and tables it will
need to interpret the binary program. The system table must always be
present in a binary program and must always define the subsequent tables
in the proper order. During operations the system will need to have the
address of a routine to handle parsing, initialization, execution, or

error conditions. It will expect the address to be at the proper
location as shown below:

Bytes From Base Address Sample System Table
32 DEF RUNTIME
34 DEF KEYWORDS
36 DEF PARSING
49 DEF ERMSG
42 DEF INIT

When the system looks for a run time routine, it will add 32 (octal) to
the base address of the program and access the run time routine table at
run time. Likewise, it will add 34 (octal) to the base address to find
the parse routine table, and so on. The system will expect the tables

and the initialization routine to be in exactly these places in the
program.

Placement of Binary Program Routine Tables

The addresses in the parse and run time routine table will be made
absolute by the system when the program is executed. To indicate the
end of the tables whose addresses will be absolute, the system looks for
two bytes of 377's. Only the parsing routine and run time routine
tables are required to have absolute addresses, so .all other routine
tables must follow the two bytes of 377's.

ASCII Keyword Table

The system will check a binary program for a BASIC keyword before it
will try to process the keyword. In the ASCII table, all of the key
words are arranged sequentially. When a BASIC statement is entered into
the CRT, the system attempts to match the characters with a keyword in
the table. The order of the keywords will affect the parsing and
execution of the keyword, as the first keyword in the table will be
processed by the first parsing routine in the parsing routine table and
executed by the first run time routine in the run time routine table.

Section 6: Writing Binary Programs

The system attempts to find a match by comparing each character in the
table with each character in the keyword until it reaches a character
with the most significant bit set. This indicates the end of a keyword,
and, if no match has been found, the system assumes that the next
character begins a new keyword and increments the number of the token.

The search stops when a match has been found or a byte containing 377 is
found.

Example: The following code creates an ASCII keyword table with one
keyword, TEST. The ASP instruction creates an ASCII string with the
most significant bit set on the last character, and the BYT 377
instruction signifies the end of the ASCII keyword table.

1116 KEYWORDS ASP "TEST"
1120 BYT 377

Parsing Routine Table

If the system accesses a BASIC statement keyword that a binary program
has listed in the ASCII keyword table, it will use the parsing routine
provided in the program. Functions will be parsed by the system. The
position of the keyword 1in the ASCII keyword table determines which
parsing routine will need to be executed. If the keyword does not need
to be parsed, then the corresponding position in the parsing routine
table must be filled with two bytes of @'s to reserve the space
corresponding to the ASCII keyword table.

The system will always skip the first two bytes after the location of
the parsing routine table. The next two bytes are used as the address
of the first parsing routine.

Example: The following parsing routine table has only one routine,
TESTPARS, to parse the keyword TEST.

1080 PARSING BYT 0,0 Two dummy bytes
1090 DEF TESTPARS First parsing routine

Run Time Routine Table

Each keyword also has a run time routine associated with it. More than
one run time routine may be 1listed in the table, so the system
distinguishes between them in the same way as in the parsing routine
table. When the system encounters a keyword that is listed in a binary
program, it passes control to the proper routine corresponding to the
position of the ASCII keyword in the keyword table.

Section 6: Writing Binary Programs

Example: The run time routine table for the program TEST contains one
routine address "TEST." which corresponds to the keyword "TEST" and the
parsing routine TESTPARS.

1960 RUNTIME BYT 4,0 Two dummy bytes
1070 DEF TEST. First run time routine

Error Message Table

When an error is flagged in XCOM, the executive loop calls an error
reporting routine that displays the error message. If the error number
is less than 128 (200 octal), then it is a ROM error message and the
bank-addressed ROM is selected whose number is in RAM location ERRROM.
If the error message number is greater than 128 (200 octal), then the
message will be from the binary program whose number is in ERRBP#.

The error message table is similar to the ASCII keyword table. It is
constructed of entries which are strings of ASCII characters, the last

character of each string having the most significant bit set. The table
is terminated by a BYT 377.

Error messages in ROMs are numbered § through 177 (octal). Binary
programs are numbered from 377 down to 200 (octal). The first nine
error messages for ROMs and binary programs are for default errors.
They will give only warning messages if defaults are on (refer +to the
owner's manual). The other error messages will always display the
appropriate error message. Example error message table:

10 ERMSG BYT 200,200,200, 200 PININE DUMMY BYTES (377,387),
20 BYT 200,200,200,200,200 !! WITH THE MSB SET

30 ASP "SYNTAX-CHECK KEYWORD." !!ERROR 366 OCTHL

40 ASP "ROW OUT OF RANGE, >16." !!ERROR 365

50 ASP "COL OUT OF RANGE, >32." | !ERROR 364

60 BYT 377

70 INIT BSZ ©

80 RTN

Initialization Routine

The program TEST has no need to initialize pointers, hooks, or flags.
Therefore, the INIT routine returns control to the system. For times
when further initialization is needed, refer to paragraph 3.5.

1139 INIT RTN

6-9

Section 6: Writing Binary Programs

External Address Table

If any of the system locations have been used in the program, a table
must be included to define the labels as absolute addresses.

Example: In the program TEST the addresses SCAN, PTR2-, and STBEEP are
used and must be defined for the system.

122¢ SCAN DAD 21110
1239 PTR2- DAD 177715
1249 STBEEP DAD 1¢441

6.2 Attributes

Attributes define the type of a token. The system uses the attribute
type to determine how parsing is to occur, how allocation and
deallocation are to be performed, and how decompiling is to be done.
The system is told how the keyword is to be handled at these times. The
attributes must be defined immediately before the run time code in the
program memory as shown in line 9@:

1190 BYT 241
120¢ TEST JSB=STBEEP
121¢ RTN

There are two types of attributes: primary and secondary. All keywords
have primary attributes, but only functions have secondary attributes.
The secondary attributes tell how many and the type of parameters the
function will need and may occupy one or more bytes.

Attribute Location

The attributes must be placed directly before the run time routine code.
The primary attributes must be the £first byte before the run time
routine. The secondary attributes would precede from the first byte to
the last byte. The system checks the attributes from the bottom up,
starting with the primary attribute and ending with the last parameter.

The following program listing:
949 855 BYT 046,855
is the octal representation of these attributes:

@55 Primary attribute - numeric function
240 Secondary attributes - two numeric parameters

Section 6: Writing Binary Programs

Primary Attributes

The primary attribute consists of one byte of information containing the
type of the keyword in the two most significant bits and the class of
the keyword in the next six bits as shown:

BITS 6-7 BITS 0-5
-
Vi Y
TYPE CLASS

RUNTIME ROUTINE ENTRY POINT

The wuser must define the primary bits in order to tell the system
exactly how he wants the system to recognize the keyword. For instance,
if the keyword is to be a numeric function its attributes would be:

Function Numeric Function
20 & g 1 1 @ %

~——

[} 55

y

Type

Bits 7 and 6 define how the keyword may be used. A keyword may be a
BASIC statement or another command for calculator mode. A BASIC
statement may be defined as legal after a THEN or illegal after a THEN.
System commands are BASIC statements used only in calculator mode.
Functions may be used in BASIC programs or in calculator mode.

The codes for each of the types are the following:

Bits 7,6 Octal Type
11 3 BASIC statement, illegal after THEN
10 2 BASIC statement, legal after THEN
91 1 System commands (nonprogrammable)
[/ "] [/} Functions and others

Section 6: Writing Binary Programs

Class

The class will give the system further information on how to process the
keyword. The class should follow directly after the type of keyword.
For example, a function that returns a number will be in the numeric
function class. Keywords that are to be invisible when the program is
decompiled have their own class. All BASIC statements that are not
functions and all system commands are reserved words.

Example: The Kkeyword "INPUT" uses two tokens to compile but only one
shows when it decompiles. The first token puts the system into a
pseudo-calculator mode to allow characters to be entered from the
keyboard and outputs a "?." The other, which is hidden during
decompiling, takes the system out of the pseudo-calculator mode and does
the actual storing of the input values. The class of the second keyword
keeps it from being printed in the program listing. The keyword "LOAD"

is in the class of reserved words. Refer to the sample program LINPUT
in section 7.

Useful Classes

Bits 5-0 Octal Class
100 601 41 Reserved words
100 1060 44 Invisible at decompile time
101 101 55 Numeric function (such as, SIN, IP)
191 1109 56 String function (such as, CHR$, VALS$)

Secondary Attributes

At parse time, if the system parser finds a match for a keyword in the
binary program ASCII table, it will then check the attribute type. If
the keyword is a statement, control passes to the binary program parse
routine. If the keyword 1is a function, the secondary attributes
determine the type and number of parameters to use.

One byte 1is needed if the function uses one or two parameters, and a
second byte is needed if there are more than two but less than seven
parameters. More parameters require more bytes. The first four bits of
the first byte indicate the number of parameters that the function will
accept. The next two bits define the type of the first parameter, and
the second parameter is defined by the last two bits. Thereafter the
consecutive pairs of bits define extra parameters.

6-12

Section 6: Writing Binary Programs

Parameter Types

Type Description

Numeric
Numeric array
String
Strange

RS
HFa S

0010 20 20
—_—

2 Parameters First Second

6.3 Assembler Instructions

The instruction set is used to communicate between the assembly language
programmer and the CPU. Assembly language instructions can move data,
perform arithmetic operations, and execute other functions. There are
two types of instructions: those which operate directly on the CPU and
are translated into machine language; and pseudo-instructions which act
as messages to the Assembler ROM.

The typical instruction is broken up into five fields. The first field
is the 1line number, for the convenience of the programmer . When
assembled, the program will not have 1line numbers, instead it will show
the value of the instruction counter. The instruction counter is the
offset in bytes from the start of the program. The next field 1is an
optional label field. System labels may be defined in the global file.
Other labels must be defined in the routine. The opcode comes after the
label field and is the heart of the instruction because it tells the CPU
or Assembler ROM what is to be done. Following the opcode is the
operand(s) for the instruction, and at the end of the instruction or in
the label field the programmer may place a "!" followed by a comment.

In assembler mode the system will automatically space the elements typed
in the proper fields. The programmer has only to distinguish the fields
by at least one space. The registers may be referred to by their octal
numbers, and the system will add the "R" in its proper place.

Example: Line number 12¢ may be typed in as follows:

120 LDMD 46,22 !A MULTI-BYTE LOAD

Section 6: Writing Binary Programs

After pressing [END LINE], it will appear in the program listing as:
120 LDMD R46,R22 !A MULTI-BYTE LOAD

Line Numbering

Each line of a program source code must begin with a line number (which
will not appear in the assembled code). A line number may be up to
99999 and may be entered individually or automatically, using [AUTO] for
automatic line numbering. When a program is assembled the line numbers
will appear as relative addresses of the instructions, that is, the
instruction location counter.

Labels

A label may be from one to eight characters long. The label field
starts in the second space after the 1line number. A digit may not be
used as a first character, and no spaces may be used in a label because
a space denotes the end of a 1label. When variable storage is needed in
the program, a label may be used after the run time routine. To
simulate control 1loops and branch execution, a label may be used to
designate the location of the jump.

Opcodes

The opcodes for assembly language instructions may be entered after
typing at least two spaces after the 1line number or at least a single
space after a label. Entries in the opcode field are restricted to
valid instructions. Blanks are not allowed within the opcode field.

Opcodes may be single-byte, multi-byte, or pseudo-operations. The
pseudo-operations may act upon bytes but are only messages to the
Assembler ROM and do not generate executable code.

Operands and Addressing

Depending upon the kind of instruction to be performed, the operand may
be a register; a 1label or address, a pointer to a value, or a relative
location which must be offset by an absolute address. The DRP will
point to the register that will be operated upon according to the
opcode. If the opcode calls for direct addressing, where the value is
at a location outside of the CPU register bank, the operand will contain
the address of the value in memory. If the opcode calls for direct
addressing, where the value is pointed to by a label that is located
outside of the CPU register bank, the operand will contain the address
of the pointer in memory.

6-14

Section 6: Writing Binary Programs

Indexed addressing can be used to access an area of memory by adding a
base address to an offset such as in table searching. The absolute
address of a label can be obtained by adding BINTAB to the relative
address of the label.

Comments

A comment must begin with an exclamation point ™!." A comment may be
typed beginning in the first or second space after the line number or
one or more spaces after the other elements of the instruction.
Comments may be as long as needed, though the limit is 160 characters
per line.

Constants

Constants may be entered 1in octal, BCD, or decimal notation. A BCD
value is entered by immediately following the wvalue with a "C," while a
decimal value is followed by a "D"; otherwise the system assumes octal
values. Constants will be stored as one or more bytes, depending on
whether it indicates a single- or multi-byte operation. After the
program is assembled constant values are placed immediately after the
machine code.

Syntax and Explanation

Each of the opcodes are discussed 1in detail in the next three
subsections. The opcode is shown above its explanation, then following
the explanation is an example of how the instruction may be used.

The first two letters of the opcode signify its operation, but the
designation for a single-byte, "B," or multi-byte, "M," operation must
be added at the end. 1In addition, if a type of addressing other than
register immediate is needed, then the letter for that addressing mode
must be added, "D" for direct or "I" for indirect. Instructions using
direct or indirect addressing will have opcodes of four characters. A
register being used for -indexing must be entered in the operand field
with an "X" instead of an "R." Pseudo-instructions always have opcodes
of three characters.

The examples are designed to give the programmer a few hints for using
the instructions in binary programs and clarify some points about the
syntax of the instruction set.

Syntax Guidelines

LDB Instructions shown in capital letters must be entered exactly
as shown (in either upper- or lower-case).

N

-15

Section 6: Writing Binary Programs

()

B/M

AR

DR

ARP

DRP

R(x)

M(x)

PC

6-16

Items shown between brackets are optional. If several items
are stacked between brackets, any one or none of the items may
be specified.

Three dots (ellipsis) following a set of brackets indicate that
the items between the brackets may be repeated.

Contents of.
Complement.
Single- or multi-byte instruction.

Address register location. Location of first byte addressed
by the ARP. Can be a register, R*, or Ri.

Data register location. Location of first byte addressed by
the DRP. Can be a register, R*, or R#.

Address mode for load/store. Can be blank (for immediate),
D (for direct), or I (for indirect).

Address Register Pointer. A 6-bit register used to point to
one of 64 CPU registers. The byte to which ARP points is
often used as the first of two consecutive bytes forming a
memory address.

Data Register Pointer. A 6-bit register used to point to one
of 64 CPU registers. The location to which DRP points is
often used as the destination for data loaded into the CPU.

CPU register addressed by (x).
Memory location addressed by (x) which must be 16-bit address.

Program Counter. CPU registers R4 and R5. Used to address
the instruction being executed.

Section 6: Writing Binary Programs

SP Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return
address stack.

EA Effective Address. The location from which data is read for
load-type instructions or the location where data is placed
for store-type instructions.

ADR Address. The two-byte quantity directly following an
instruction that uses the literal direct, literal indirect,

index direct, or index indirect addressing mode. This quantity
is always an address.

LOAD/STORE Instructions

The instructions for loading and storing data have access to all eight
addressing modes, and they can be single- or multi-byte.

LD
CPU Instruction

Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

Format: LDBA DR, operand single-byte
LDMA DR, operand nulti-byte
ST

CPU Instruction

Contents of data register are stored in effective address determined by
the operand and the addressing mode.

Format: STBA DR, operand single-byte
STMA DR, operand multi-byte

Addressing Modes

The CPU allows several addressing modes. These include literal,
register, indexed, and stack modes of memory access.

Section 6: Writing Binary Programs

Not all addressing modes are available to all instructions. The load
(LD) and store (ST) instruction have access to all addressing modes
except stack addressing, and they are used here for illustration. For a

list of the addressing modes used by a particular instruction, refer to
appendix B.

Most addresses are referred to as two-byte quantities. Because
addresses are two consecutive bytes, only the least significant byte is
referenced. For instance, the address register (AR) 1is actually a
single byte within the CPU register bank that is pointed to by the
address register pointer (ARP). When the address register contains an
address, the CPU register pointed to contains the least significant byte
of the address. The next register (ARP + 1) contains the most
significant byte of the address.

The multi-byte feature of the CPU allows data to be manipulated in
quantities of one to eight bytes. Therefore, in the following
descriptions, only the address of the first byte is specified.

In the following descriptions, the effective address (EA) points to the
first byte of data to be affected by the instruction.

Register Mode

This mode allows the CPU registers to contain addresses as well as data.

There are three types of register addressing: register immediate,
register direct, and register indirect.

Register Immediate

Examples:

LDB R36,R32 Loads contents of R32 into R36.

STM R40,R50 Stores the contents of R4#-R47 into
R50-R57.

Register Direct
Examples:

LDBD R36,R32 Loads CPU register R36 with the contents
of the system memory location addressed
by R32-R33.

STMD R48,R50 Stores contents of R4@-R47 into system

memory beginning with the location
addressed by R5@-R51.

Section 6: Writing Binary Programs

Register Indirect

Examples:

LDBI R36,R32 If R32 contains 185731, and location
195731 contains 1109437, the contents
of 118437 is loaded at location R36.

STBI R36,R32 If R32 contains 105371, and 105731

contains 110437, then the contents of
R36 is stored at location 110437.

Literal Mode

The operand is a literal quantity stored in memory immediately following
the opcode. A literal string, ten octal bytes or less, is a BCD, octal,
or decimal constant or a label. The programmer is responsible for
ensuring that the number of bytes of the literal string matches the DRP
setting. The assembler does not check for a mismatch. Literal mode
includes literal immediate, 1literal direct, and literal 1indirect forms
of addressing.

Literal Immediate
Examples:

LDB R36,=10D Loads 10 decimal (12 octal) into CPU
register R36.

LDM R40, =0,0,0,9,0,0,0,1280 Loads 120 octal (a floating point 5
in BCD format) into register R40-R47.

LDM R32,=LABEL Loads R32-R33 with the relative address
of LABEL.

Literal Direct

Examples:

LDBD R34, =ROMFL Loads the contents of the memory
location addressed by the label ROMFL
into CPU register R34.

STMD R74,=CHIDLE Stores the contents of CPU register R74

through R77 into four memory locations
beginning with the location addressed
by the label CHIDLE.

Section 6: Writing Binary Programs

Literal Indirect

Example:

STBI R30,=ADDR Stores the contents of CPU register R34
into the memory location addressed by
another memory location which is itself
addressed by the two-byte literal
quantity specified by the label ADDR.

Index Mode

Indexing is wuseful for accessing data when the data is stored in a
table. In indexed addressing, a fixed base address is added to an
offset to create the desired address. The CPU performs this addition
using CPU registers R2 and R3. After an index instruction, these
registers contain the effective address (the sum of the base and the
offset). Neither the original base nor the offset is altered in memory.

There are two types of indexed addressing: 1index direct and index
indirect.

Index Direct

Example:

LDBD R36,X30, TABLE Loads into CPU register R36 the contents
of the memory location addressed by
registers R2 and R3. R2 and R3 contain
the sum of the contents of R3@¢-R3l and
the address TABLE.

Index Indirect

Example:

STMI R36,X30@,0FFST Stores the contents of CPU register R36
and R37 in memory, beginning with the
location addressed by another memory
location which is addressed by CPU
registers R2 and R3. Registers R2 and
R3 contain the sum of the address in
R3P-R31 plus the offset specified by the
label OFFST.

STBI R36,X34, 66 Stores the contents of R36 in the
location addressed by R2 and R3 (sum of
the address in R30-R31 plus 66).

Section 6: Writing Binary Programs

Stack Instructions

In stack addressing, a register pair serves as a pointer to the stack in
memory. A load or store is performed at the top of the stack, and the
register pair is decremented or incremented to the new top of the stack.
Instructions push and pop are available to push data onto and pop data
from stacks in the main memory. These stacks can be addressed using
direct or indirect addressing.

PU

Pushes single byte or multi-byte using direct or indirect addressing.
The stack pointer 1is incremented (increasing stack) or decremented
(decreasing stack).

Examples:

PUBD R32,+R12 Pushes single byte from R32 onto the R12
stack. The stack pointer is
incremented.

PUBI R32,-R46 The stack pointer is first decremented
and then the single byte contained in
R32 is pushed onto the R46 stack.

PO

Pops single byte or multi-byte off stack using direct or indirect
addressing. The stack pointer is incremented (increasing stack) or
decremented (decreasing stack).

POBD R32,+R20 Pops single byte contained in R12 onto
the R2@ stack. The stack pointer is
incremented after the operation.

POBD R32,-R20 The stack pointer is first decremented
and then R32 is loaded with the byte
pointed to by R24.

Section 6: Writing Binary Programs

Stack Addressing

You can address a stack from nearly any CPU register pair. Registers R6
and R7 are hardware-dedicated and always point to the subroutine return
stack, a fixed stack of 512 bytes. A subroutine jump will automatically
push an address onto this stack and a return will 1load the program
counter with the address on the top of the stack, causing execution to
begin at that address on the next cycle. The R6 stack is also affected
by SAD and PAD instructions (save and restore status), which push three
bytes onto the R6 stack and remove them respectively.

Another stack used by many of the system routines at run time 1is the
R12-R13 operation stack. This stack is used to pass parameters between
system routines. The documentation for each routine using this stack

describes what the routine expects on the R12 stack and what it leaves
after it has finished.

Stacks may be increasing or decreasing. An increasing stack is one
which is filled in the direction of higher memory locations and from
which data is removed in the direction of lower memory locations. 1In a
decreasing stack, data 1is pushed in the direction of lower memory
locations, and taken off in the direction of higher memory locations.
To avoid confusion, it is best to address a particular stack using only
instructions for an increasing stack or only instructions for a
decreasing stack, but not both.

For stack addressing, the stack pointer 1is contained in the AR.
Multiple stacks are handled by having multiple stack pointers within the

CPU register space. A stack is activated by setting the ARP equal to
the location of that stack pointer.

Section 6: Writing Binary Programs

For an increasing stack, the AR must point to the next location
available on the stack. For a decreasing stack, the AR points to the
occupied location on top of that stack.

Lower Memory
Locations

st entry

2nd entry:

ARP AR 3rd entry

|
I
|
|
{
!
!
|
{
|
|
|

—————————— e

Stack Stack
Push Pop
Higher Locations

Increasing Stack

Lower Memory
Locations

—— —

2nd entry

1st entry

—_——————
-————

Stack Stack
Push Pop
Higher Locations

Decreasing Stack

Section 6: Writing Binary Programs

Stack Direct

In this addressing mode, the stack 1s presumed to contain data. Stores

to the stack (pushes) fill the stack. Loads from the stack (pops) empty
the stack.

For a push onto an increasing stack, the AR points to the location where
data is to be stored. Following the store, the AR is incremented by the
number of bytes stored. For a pop operation from an increasing stack,
the AR is first decremented by the number of bytes to be popped off.

The AR then points to the location of the data to be removed from the
stack.

For a pop from a decreasing stack, the AR points to the location of the
data to be removed. Following the removal, the AR is incremented by the
number of bytes moved. For a push operation onto a decreasing stack,
the AR is first decremented by the number of bytes to be stored on the
stack. Then the data is pushed onto the stack.

Stack Indirect

In this mode, the stack is presumed to contain an ordered list of
addresses. These addresses point to the location from which data is
read by pops or to the location into which data is stored by pushes.

For @ push onto an increasing stack, the AR points to the effective
address. After storing data in M(EA), the AR is incremented by two.
For a pop instruction from an increasing stack, the AR 1is first
decremented by two in order to point to the effective address. The
effective address is then loaded into the CPU register designated by the
DRP.

PUBD DR,+AR Push byte direct with increment.

Section 6: Writing Binary Programs

D (Direct Mode)

Lower Memory
Locations

1st entry | :
2nd entry I 1
ARP AR 3rd entry | 1
[]—] — ! }
I |
Stack Stack
Push Pop
Higher Locations
I (Indirect Mode)
2-byte |
address | ?
2-byte | I
|
ARP AR address { |
E—] —_— | :
1
| |
| |
| |
1st entry | |
| |
I
+ |
2nd entry 1
Stack Stack
Push Pop

Each entry can be one or more bytes

INCREASING STACK

The instructions available for use with an increasing stack are:

PUBD DR, +AR Push byte direct with increment.

PUMD DR, +AR Push multi-byte direct with increment.
PUBI DR,+AR Push byte indirect with increment.

PUMI DR, +AR Push multi-byte indirect with increment.
POBD DR, -AR Pop byte direct with decrement.

POMD DR, -AR Pop multi-byte direct with increment.
POBI DR,-AR Pop byte indirect with decrement.

POMI DR, -AR Pop multi-byte indirect with decrement.

Section 6: Writing Binary Programs

| (Indirect Mode)
ARP AR |
— l . 2byte 4 |
address : {
2-byte | |
address { :
! |
! !
! I
I I
|
| |
1st entry | |
.
|
| |
2nd entry | *
Stack Stack
Push Pop
Each entry can be one or more bytes
DECREASING STACK
D (Direct Mode)
Lower Memory
Locations
ARP AR
[1— I B
2nd entry | |
1st entry I |
| |
‘ l
Stack Stack
Push Pop

Higher Locations

The instructions available for use with a decreasing stack are:

PUBD DR, -AR Push byte direct with decrement.

PUMD DR, -AR Push multi-byte direct with decrement.
PUBI DR, -AR Push byte indirect with decrement.

PUMI DR, -AR Push multi-byte indirect with decrement.
POBD DR, -AR Pop byte direct with increment.

POMD DR,-AR Pop multi-byte direct with decrement.
POBI DR, -AR Pop byte indirect with decrement.

POMI DR, -AR Pop multi-byte indirect with decrement.

Section 6: Writing Binary Programs

Arithmetic and Logical Instructions

AD

Add may be used to combine the value of the data register and the
contents of the operand. This operation may be performed on single
bytes or multiple bytes, and direct addressing or constants may be used.

In BCD mode addition will take place using four-bit digits. The result
is always stored in the data register.

Example:

ADB R20,R30 Adds the contents of R3# to R2@ and
places the result in R20.

ADMD R2#,=BINTAB Takes the location of the beginning of

the binary program and adds it to the

value in R2@, R2l. The result is

stored in R2@, R21.

AN

Each bit in the data register is compared to the corresponding bit in
the operand. If the bits being compared are both 1, then the result is
a 1. If either bit is @, then the result is #. The operand may be a
value in memory that is addressed directly. Although this instruction

is available only for multi-byte operations, single-byte operations are
possible with the DRP set to a boundary register.

Example:

ANM R20,R30 Converts. all of the 1's in R2§-R21 to
@'s if the same bits in R3¢-R3l are @'s.

If R20-R21 contain: I 11 911 01 i} LE,E 191 190 GT

andR3ﬂ—R3lcontain:|ﬂl 'R 111—| L@z 001 @11]

then the result is: Iil 'R @111 |wm 901 @arzT]

Section 6: Writing Binary Programs

CM

The compare is used to simulate the logical operations of a high level
language. It is done by subtracting the operand from the data register
and setting the appropriate status indicators; the result of the
operation 1is not stored. In binary mode the subtraction is two's
complement, and in BCD mode the subtraction is ten's complement.
Compares may be either single- or multi-byte operations, and direct
addressing may be used. When used previous to a logical jump, an
IF-THEN BASIC statement may be simulated.

In order to simulate the relation:

DR<AR CMM DR, AR CY flag should be @
JNC LABEL Jump if DR<AR

DR>=AR CMM DR, AR CY flag should be 1
JCY LABEL Jump if DR>=AR

DR=AR CMM DR, AR ZR flag should be 1
JZR LABEL Jump if equal

DR#AR CMM DR, AR ZR flag should be 0
JNZ LABEL Jump if not equal

The jump instructions JNZ, JZR, JCY, and JNC are explained later in this
section.

OR

Each bit in the data register is compared to the corresponding bit in
the operand. 1If either bit is a1, then that bit in the data register
is set to 1. Otherwise the bit in the data register is set to #. This
logical operation may be performed on single bytes or multiple bytes,
but must use register immediate addressing only.

Example:

ORB R20,R30 Leaves a 1 in R2@ if the
corresponding bit in R3# is set.

If R20 contains: Lg ¢ 101 10 ﬂ]

and R30 contains: LQ g 001 01 11

then the result is: [¢ 101 11 1]

6-28

Section 6: Writing Binary Programs

SB

Subtraction is simulated by adding the complement of the operand to the
data register. Ten's complement is used in BCD mode, and in binary mode
two's complement is used. The result of the subtraction is stored in
the DR. The operand may be addressed immediately or directly, and can
be a single- or multi-byte instruction. The CY flag is set to 1 if the
result is positive and cleared if the result is negative.

Example:
SBM R20,R30 In binary mode, takes the two's
complement of R30-R31 and adds that to
R2@-R21. The result is put in R20-R21.
If R2¢-R21 contain: | 11 911 91 1| |ﬂ 2 101 10 ﬂw

and R30-R31 contain: [Q!l 500 111| [ﬂﬂ 901 ﬂll]

then the complement of R3@-R31

Ll g 111 06060 I {l 1 119 19 ll

is added to R20-R21.

The result is: lil 011 ﬂll—l oo 101 1rarzs|

The operation is done in binary mode. Since registers are shown
in octal, the previous example would look like this:

Before: R20 R21 R30 R31

854 333 813 197

Two's complement

Result: R20 R21 R30 R31

223 241 p13 197

Section 6: Writing Binary Programs

Example:

SBB R20,R38 In BCD more, takes the ten's complement
of the two digits in R3¢ and adds that
to the two digits in R2#.

If R20 contains: L? g 1¢1 190 ﬂ]
which in BCD are the decimal digits: 28
and R3@ contains: LG 1 9@ 11 ll
which in BCD is: 47
Then the ten's complement of R3@: 53
is added to R28: 28
and the result in R20 is: 80
XR

In the "exclusive or" logical operation the bit that corresponds in the
data register is set to 1 when the bits being compared are not the same.
When both bits are 1 or both bits are @, the bit in the data register is
set to #. The CY and OVF flags are cleared.

6-30

Section 6: Writing Binary Programs

Example:

XRM R20,R30 Compares the individual bits in R2@-R21 and
R30-R31l. If they are not the same, sets
that bit to 1 in the DR; otherwise it is set
to @.

If R2¢-R21 contain: fl 1 11 21 l] L? g 1900 1290 @I

and R3@-R31 contain: Lﬂ 1 900 11 i} lﬂ g g1 01 l]

The result in R20-R21 is:

L} g 611 10 81 [ﬂ g 19090 11 ll

Shift Instructions

All shift instructions can be done in BCD or binary mode. In BCD mode
the shift will affect a BCD digit, or four bits, and in binary mode it
will affect a binary digit, a bit. Shifts may also be single- or
multi-byte operations, and the result of a shift will be determined by
the nearest boundary in the direction of the shift. In single-byte
shifts the boundary 1is actually the register being shifted, whereas in
multi-byte operations the boundaries are those in the CPU register bank.
In arithmetic and logical operations the boundaries are normally toward
the higher-numbered registers. With shifts, the boundary may be to the
left, higher-numbered registers, or the right, lower-numbered registers
depending on whether you are shifting right or left.

Shifts are made into one of the shift registers: the E register or the
CY flag. In BCD mode shifts are made into and out of the E register,
and in binary mode shifts are made into and out of the CY flag.

Section 6: Writing Binary Programs

EL

The extended left shift will take the most signficant digit, put it into
the shift register, move the rest of the contents one digit to the left
and put the previous contents of the shift register into the least
significant digit.

Example:

ELM R20 In BCD mode, shifts the most significant
digit of R20-R21 (10@B) into the E
register. The other 12 bits will move
left four bits, and the least
significant digit will be filled with
the previous contents of the E register
(9001).

R23 R22

If R20-R21 contain: [ﬁ 900 9@ Zl lﬂ 210 1000

80 2 8

and "E" contained previously: 2 8 @ 1
then the shift would take place as follows:

R23 PN R22 5 SN E

I@ 900 201 ﬂl [l 200 080 ll [l g0 ﬂl

—

The extended right shift moves the least significant digit to the shift
register and the contents of the shift register into the most
significant digit. It works in the same way as the extended left shift
except that the movement is toward the right boundary.

ER

Section 6: Writing Binary Programs

Example:

ERB R21 In binary mode, shifts the least
significant bit (LSB) to the CY flag,
then moves the previous contents of the
CY flag to the MSB position.

If R21 contains: [11 p11 011]

and the CY flag is:

/\

then the result would be: cYy E 1 1¢1 1@¢1]—]

LR t

When a logical right shift is performed, the LSB is moved into the shift
register and the MSB 1is cleared. The digit is maintained in the shift
register and may be shifted back using the extended shift instructions.

Example:

LRM R21 In binary mode, shifts the LSB into
the CY flag and clears the MSB.

R21 R29

IfRZQ—RZlcontain:lll 611 Q}lll L@E 1081 lﬂ[f)]

R21 TN R20 cy

The result is: l@l 101 1011 llﬂ 910 ll@J

Section 6: Writing Binary Programs

LL

The logical 1left shift moves the most significant digit of the data
register into the shift register and clears the least significant bit.
If the shift causes a sign change then the OVF is set to 1.

Example:
LLM R30 In binary mode, shifts the MSB of R340
into the CY flag and clears the LSB of
R31.
R31 R30
If R3P-R31 contain: |Z l1 9906 11 ll [b g 901 01 ll
CL— R31 N R30

then the result would be: Ilﬂ 201 llﬂ][ﬂ@ 010 llﬂl

DC

The decrement is simulated by adding the complement of 1 binary in

binary mode, to the quantity in the data register. The quantity may be
single or multiple bytes.

Example:
DCB R31 Subtracts one from the quantity in R3l.
R31
If R31 contains: Liiﬂ 6060 00 61
R31

then the result is: Lﬂ 1 111 1 1411

The OVF flag is set to 1, because the sign changed.

6-34

Section 6: Writing Binary Programs

IC

When an increment is performed, 1 is added to the quantity in the data
register. In BCD mode, the quantity is incremented by decimal 1, and in
binary mode, it is incremented by a binary 1. In BCD mode the OVF flag
is cleared (single- or multi-byte).

Example:

ICM R20 In BCD mode, the decimal quantity in
R20, R21l is increased by 1.

R21 R20

If R2¢-R21 contain: 19901 l@‘ﬁll |ﬂﬂlﬂ ﬂlﬂljl

which in BCD is: 9 9 2 5

R21 R20

then the result is: 1001 lﬂ@lllﬂﬂl@ 211690

which in BCD is: 9 9 2 6

6-35

Section 6: Writing Binary Programs

NC

This complement instruction will give the nine's complement in BCD mode
and the one's complement in binary mode. The nine's and one's
complement are performed by taking the number of digits to be
complemented and subtracting each digit individually from 9 in BCD mode
and 1 in binary mode. The result is placed in the data register.

Example:
NCB R28 In binary mode, flips all bits
(one's complement operation).
R20
If R2@ contains: 21000 92111
R20
then the result is: 1611 100080

Example:
NCM R20 In BCD mode, takes the nine's complement
of the contents in R2@-R21 by
subtracting each digit from a BCD 9
(1001).
R21 R20
If R20-R21 contains: 10008 20080 28140 190040
which in BCD is: 2
R21 R20

then the result would be: [/ 1001 [@ 11 ll 2001

. . . S — S ————————————
which in BCD is: 1 9 7 1

Section 6: Writing Binary Programs

TC

The contents of the data register is replaced by the two's complement in
binary mode or the ten's complement in BCD mode. Two's and ten's
complement is found by incrementing the one's or nine's complement. In
BCD mode, the OVF flag is cleared.

Example:
TCM R20 In binary mode, takes the two's
complement of R2¢-R2l.
R21 R2¢
If R2@-R21 contain: 11 11 911 g0 1081 1080
R21 R20
then the result would be: {00 18608 10820 11 91¢ 10890

Section 6: Writing Binary Programs

TS

The status of the contents of the data register are tested, and the
appropriate status indicators are set. The OVF and CY flags are cleared
in all cases, and the E register is not affected. This instruction is a
single- or multi-byte instruction. The status indicators are discussed
in section 2.

Example:
TSM R20 Will set the status indicators and clear
the OVF and CY flags.

R21 R20

If R2@-R21 contain: 1 990 011 g8 001 911

LDZ RDZ

the resulting flags will be set:

DCM May be 1 (BCD) or @ (binary).

E Not affected.

cy Cleared.

OVF Cleared.

oD Set to 1.

NG Set to #.

Z Set to @ (since quantity is nonzero).
LDZ Set to 4.

RDZ Set to #.

CL

The clear instruction permits the clearing of any byte or of any
multi-byte portion of the CPU register bank. The DR is set equal to @
and the flags CY and OVF are cleared.

Example:

CLB R47 Clears R47

Section 6: Writing Binary Programs

JSB

When a subroutine jump is made, the control of the program is given to a
set of instructions with the intention of returning to the program at
the next instruction after the jump was made. In order to return, the
program counter for the next instruction must be stored. This return
location is pushed onto the R6-R7 stack, and when the RIN instruction is
executed, it is loaded back into the program counter. A subroutine jump
that 1is made to a relocatable address in a binary program must be
indexed from the absolute start of the program (BINTAB).

Examples:

JSB =NUMVA+ Increments the program counter (PC) to
the address of the next instruction
after the JSB. That address is pushed
onto the R6-R7 stack, and the PC is
loaded with the address the jump is to
be made to NUMVA+ (located at 22403).
When the system executes a RIN, it pops
the address of the next instruction off
of the R6-R7 stack and loads that value
into the PC.

JSB X14,ROUTINE Makes a jump to ROUTINE by adding the
value of ROUTINE as a label to the
location of the start of the program
(BINTAB) which is stored in R14-R15.
In all other aspects it is the same as
JSB=.

Jump Instructions

This group of instructions gives the capability for branching control to
addresses that are defined by the label that the jump is being made to.
If a condition 1is true, then the jump is made; otherwise, the jump is
ignored and the next instruction is executed. These branching
instructions use relative addressing. Labels that are used must be
contained inside the program. The program counter (PC) 1is loaded with
the value of the address, and program control moves to that location in
the program memory. The maximum number of bytes that may be jumped is
177 octal (forward) higher-addressed bytes or 200 octal (backward)
lower-addressed bytes.

Each conditional jump has a complement, except the jump on no overflow,
which jumps on the opposite of the relation. For instance, the jump on
negative is simply the opposite of the jump on positive and may be used
in the same circumstances depending on the personal preference of the
programmer. All of the jumps will be discussed.

Section 6: Writing Binary Programs

JMP

The unconditional jump always occurs when executed. It is the only jump
that does not check the status of any system flags.

Example:

JMP ALWAYS Will always jump to ALWAYS, a location
in the program.

JNO

Since the system has no jump on overflow, a jump on no overflow must be
used for both cases. If the OVF flag 1is set to 1, then the jump is
ignored and the next instruction will be executed. 1In the case of an
overflow, the code after the jump instruction will perform the necessary
steps, and then if necessary, continue the program.

Example: 1If a flag (E) is to be incremented when an overflow occurs:

ADM R20,R30 Executes the operation that may set
an overflow (OVF).

JNO RESUME If there has been no overflow, the
program will begin at RESUME.

ICE If JNO is ignored, then an overflow
has occurred, and the program
increments the E flag.

RESUME BIN Resumes the program.
JPS, JNG

Jump on positive and jump on negative are made by checking the status of
the most significant bit (NG) flag and taking the "exclusive or" of NG
and the OVF. In the case of two positive numbers added together
resulting in a negative number (NG=1), the jump on positive takes that
into consideration and would Jjump because NG=1 and OVF=¢ and the
"exclusive or" would be 1 and the jump would be made.

Example: If R20 contains 873 and R3# contains 125 then the addition:

ADDITION ADB R2#,R30 Adds @73 to 125 (octal) and sets NG=1 and
OVF=0.

JNG ADDITION Since the exclusive OR of NG=1 and OVF=0
is 1 and JNG expects it to be @, then the
jump will not be made even though the NG
flag says it is negative.

Section 6: Writing Binary Programs

Jop, JEV

The least significant bit flag (OD) shows whether a number is even or
odd. If the number is even, OD is set to 0 and JEV, jump on even, will
take place. If the number is odd, OD=1, then JOD, jump on odd, will
take place. This conditional jump works in binary and BCD modes.

Example: To find out if the 16-bit binary number stored in R36-R37

is a prime number, all even numbers may be ignored by the
following code:

TSM R36 Checks to see if the number is even.
JEV NOTPRIME Since the number is odd, it might be prime.

JZR, JNZ

When making comparisons and when decrementing a counter, the jump on @
and jump on not ¢ are useful. If two quantities are equal, comparing
them will cause the ZR flag to be set to 1. To simulate a conditional
IF-THEN statement, a comparison is made prior to the jump. To simulate
a controlled FOR-NEXT loop, the loop counter is decremented and the
conditional jump made.

Example: To simulate IF X=8¢ THEN RESUME (R2@ contains 120 octal
which is 80 decimal):

CMB R2@,=120 Compares R20 to 12@¢. Since they are
equal, the ZR flag is set to 1.

JZR RESUME Since ZR=1, the jump is made to the
location RESUME.

To simulate the FOR-NEXT loop, the number of times that the loop will be

executed is decremented and a check is made to see if that number of
loops has been done.

Example: If R20 contains the number of times the loop is to be executed,
then FOR X=1 to 2@ would be:

DCB R2@ After the statements have been executed,
R2¢ is decremented. If R20 is equal to
zero, the ZR flag is set to 1.

JNZ LOOP If the loop has not been done the
specified number of times, it must be
done again starting at the beginning of
the statements (LOOP).

6-41

Section 6: Writing Binary Programs

JCY, JNC

When the carry flag (CY) is set to 1, it indicates an addition has
become too large for the register to handle. This happens often in
subtraction and in comparisons. To simulate the statement IF-THEN with
a "greater than or equal to" or "less than" relation, a compare is made
between the values, and the CY flag is checked.

Example: If R2@ and R30 contain the first and second numbers to be

included in the compare, then the statement IF QUANTITY1l >
QUANTITY2 THEN RESUME could be:

CMB R20,R30 Compares R20 to R30 by adding the
negative of R30 to R2@ and sets the
status flags. If R2@ is greater than or
equal to R3¢ then CY=1l. If R2§ is less
than R38, CY=0.

JCY RESUME Jumps to the location RESUME if R20 is
greater than R3¢ (CY¥=l).

JEZ, JEN

The jump on E equal to zero and the jump on E not equal to zero check
the status of the E register for parsing routines and user defined
flags. In parse routines the E flag will be set to 1 if the token
searched for is found, and @ if not found. After returning from a parse
routine it is convenient to set an error message or to do another
procedure if the token is not found. Also, if the E register is used as
a programming flag, it may be set on a special condition to jump to a
procedure.

Example: To demand a numeric parameter at parse time:

JSB=NUMVA+ Try to parse a numeric value.
JEZ ERR Jump if not found to error reporting.
JLZ, JLN

JLZ: Jump on left digit @ (left BCD digit).
JLN: Jump on left digit not 0.

Example: If R20 contains @11, the following code would take the jump:

TSB R28@
JLZ TRUE

Section 6: Writing Binary Programs

JRZ, JRN

JRZ: Jump on right digit # (right BCD digit).
JRN: Jump on right digit nonzero.

Example: If @11 is in R2@, the following code would not take the jump:

TSB R20
JRZ TRUE

ARP and DRP Load Instructions

These two instructions are available for loading the address register
pointer or the data register pointer. They are not normally needed

because the assembler automatically generates the ARPs and the DRPs
where required.

ARP

Sets the address register pointer to the address register.

DRP

Sets data register pointer to the data register.

Use of R*

When entering source code, you may substitute R* for the AR or the DR in
any CPU instruction. This causes the DRP or the DRP to be loaded with
the least significant six bits of CPU register RJ. The effect is that
the DR and the AR are specified by the contents of R@. The CPU uses the
DRP1 and ARPl opcodes to implement this feature.

Example:

LDB R@, = 26 Loads R@ with 26.

LDB R*,R30 Loads CPU register specified by R@.
(which is now R26) with the contents
of R30.

STB R40,R¥ Stores contents of R4@ into register

(R26 now) specified by R@.
To avoid confusion, Rl is not allowed in either the DR or the AR fields.

This means that CPU register Rl is inaccessible except by a multi-byte
RO operation or when R@=1 and the ARP or the DRP is specified by R*.

6-43

Section 6: Writing Binary Programs

Other Instructions

There are a few other CPU instructions which you can use.

BCD

Sets decimal mode (DCM=1). Arithmetic operations will be in BCD format.

BIN

Sets binary mode (DCM=0). Arithmetic operations will be in binary
format.

CLE

The four bits of the extend register are set to 0.

DCE

The extend register 1is decremented by 1. This instruction 1is always a
binary operation, regardless of the DCM flag status.

PAD

Restores ARP, DRP, and status (usually after a SAD instruction) by
popping them off the stack. The stack pointer is decremented by three,

and all status flags except E are altered by the contents of the three
stack locations that are read.

The first byte processed is read as the 1least LSB in bit #, the RDZ bit
1, Z in bit 2, LDZ in bit 6, and MSB bit 7. The second byte is read as
the DRP in bits @-5, DCM status in bit 6, and overflow flag in bit 7.
The third byte is read as the ARP in bits ¢-5, carry flag in bit 6, and
overflow flag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

SP —>» |OVF| CY ARP

1 1) 1 1
Increasing OVF |DCM DRP
Addresses —— = [—
MSB|LDZ | 0] 0 I 0 I 4 |RDZ|LSB
l 1 1 1 1 1 1 1

6-44

Section 6: Writing Binary Programs

RTN

The subroutine return stack pointer is decremented by two. Then the
return address is read from the stack and written into the program
counter.

SAD

Three bytes are pushed onto the stack to save the ARP, the DRP, and the
status flags (except E). The first byte contains the ARP in bits 9-5,
CY in bit 6, and the overflow flag in bit 7. The second byte contains
the DRP in bits @-5, DCM status in bit 6, and the overflow flag in bit
7. The third byte contains the LSB in bit @, RDZ in bit 1, 7 in bit 2,
LDZ in bit 6, and the MSB in bit 7. The stack pointer is incremented by
three. Status is not affected by this operation.

Following a SAD instruction, the stack contents are as shown here:

Increasing
Addresses
OVF| cYy ARP
1 1 1 1 1
OVF | DCM DRP
msB|I0Z [o [o [o]2 | moz[Lse
Sp —»
1] 1 1 1 1 1

6.4 Assembly of CPU Instructions
When the address field of an instruction consists of a DR and an AR,
each source statement is usually assembled into three bytes of machine
code. These bytes are assembled in order as:

1. DRP: DRP set to point to DR.

2. ARP: ARP set to point to AR.

3. Opcode: Perform operation.
A stack push instruction such as PUBD would be assembled and appear as
shown here:

Byte Number Machine Code Source Code

208227 110 P06 342 PUBD R1#,-R6

Section 6: Writing Binary Programs

When the address field of an instruction consists of a DR and a label,
as in the case of literal direct and literal indirect addressing (such
as, LDMI R32, =ADDRS), each source statement is usually assembled into
four bytes of machine code:

1. DRP: DRP set to point to DR.

2. Opcode: Perform operation.

3. Low-order byte of literal quantity.

4. High-order byte of literal quantity.
When the address field of an instruction consists of a DR, an AR, and a
label, as in the case of indexed direct and indexed indirect addressing
(such as, LDBI R36,X32,TABLE), five bytes of machine code may be
generated for each source statement:

1. DRP: DRP set to point to DR.

2. ARP: ARP set to point to AR.

3. Opcode: Perform operation.

4. Low-order byte of address.

5. High-order byte of address.

The ARP and the DRP During Assembly

An optimizing feature of the Assembler ROM is the deletion of
"unnecessary" ARP and DRP instructions during assembly.

If an instruction if not labeled (that is, there is not an entry in the
label field) and the ARP (and/or DRP) 1is already set to the correct

value, the previously set ARP (and/or DRP) is not generated during
assembly.

Example:
Byte Number Machine Code Source Code
680227 110 006 342 LABEL POBD R18@,-R6
p@0232 342 POBD R10,-R6

In this example, both the ARP and the DRP are specified beginning with
byte 227. Since they are now correctly set for the next instruction,
they are automatically deleted when the second POBD R1#,-R6 instruction
is assembled. This results in the machine code shown in byte 232.

6-46

Section 6: Writing Binary Programs

Not all previously set ARPs and DRPs are deleted during assembly. Times
when they are not deleted include:

e Labeled instructions: Since a jump from anyplace in code may
cause execution to resume at the label, the first ARP and DRP
are not deleted after an instruction that contains an entry in
the label field.

e Returns: After executing a subroutine jump, then returning, the
first ARP and DRP encountered are not deleted.

e PAD: Following a PAD instruction, the first ARP and DRP are
not deleted.

Pseudo~-Instructions

Instructions to the assembler are pseudo-instructions. Each may be
entered by typing a pseudo-opcode in the same field as the opcode for an
instruction, followed by any additional operand.

Pseudo-instructions perform these three functions when encountered
during assembly:

e Assembly control.

e Data definition.

e Conditional assembly.
ABS base address

If the base address is less than 100600 (octal) then a ROM file will be
generated at assembly time. Otherwise a binary program file will be
generated and all labels are given absolute addresses, not relative
addresses. The ABS statement must precede a NAM statement, if used.

FIN

Signifies the end of the source code. This pseudo-instruction is
required for assembly.

GLO file name

If no file name is specified , GLO declares this source code to be a
global file to be used in the assembling of the current source code. If
there is a file name, it is the name of the global file to be used in
the assembling of this source code. Comments are not allowed on the

same line as the GLO instruction, and the instruction must precede ABS
and NAM.

Section 6: Writing Binary Programs

LNK file name

Will 1load another file containing more source code and continue

assembling. Allows assembly of larger programs than would otherwise be
possible.

LsT
Causes the code to be listed on the current PRINTER IS device at

assembly. The printed 1lines will be truncated at whatever the current
line length is.

An address that is undefined when its label is encountered will be
printed in object code as 326, 336, or 377, depending upon whether it is
a DEF, a relative jump, or a GTO statement.

NAM binary program #, unquoted string

Sets up the program control block for a binary program. Should be
preceded only by GLO, ABS, LST, UNL, DAD, EQU, or comments.

ORG address

Specifies a base address which 1is added to all following defined

addresses (DADs). This pseudo-instruction is most wuseful in global
files.

UNL

Turns off the 1list feature which was turned on by the LST pseudo-
instruction. After an UNL, code is not listed during assembly.

Pseudo-Instructions for Data Definition

ASC numeric value, unquoted string
ASC quoted string

Inserts into the object code the ASCII code for the number of characters
specified of the unquoted string. Inserts the entire quoted string.

ASP numeric value, unquoted string
ASP quoted string

Same as ASC except that the parity bit of the string's final character
is set. (During operation, the system determines the end of an ASCII
string in some system tables by checking to see 1if the character's
parity bit is set. When the bit has been set, the system assumes the
next character begins a new string or entry in the table.)

6-48

Section 6: Writing Binary Programs

BSZ numeric value

Inserts into the object code the octal number of bytes of 0's specified
by the numeric value.

BYT numeric value [,numeric value...]
Inserts literal values into the object code.

DAD Label DAD address

Assigns elther an absolute address or a constant to a label. DAD and
EQU are similar; DAD is usually used for addresses, while EQU is used
for values other than addresses. ORG affects only DADs.

DEF label

Inserts the two-byte address associated with the label.

EQU Label EQU numeric value

Assigns either an absolute address or a constant to a label. This
instruction is similar to the DAD pseudo-instruction.

GTO label

Generates four bytes of object code which load the program counter with
the address, minus one, of the label. The 1label must be an absolute
address.

The CPU relative jump instructions can cause jumps of from 177 (octal)

to -20@ (octal) memory locations. The GTO pseudo-instruction is useful
for jumping beyond this range.

The GTO instruction is primarily for use in ROMs. It should not be used
in a binary program unless that program has been declared an absolute
program.

VAL label

Inserts the one-byte literal octal value associated with the label.

Pseudo-Instructions for Conditional Assembly

These instructions permit you to control assembly with conditional
assembly flags. A conditional assembly flag has the same constraints as
a label--it can be no more than eight characters in length, and the
first character cannot be a digit.

Section 6: Writing Binary Programs

A conditional assembly flag is treated the same as a label by the
system. (For example, an assembly flag can be located by a 1label
search.) For this reason, a conditional assembly flag should be unique,
and should not duplicate a label.

AIF assembly flag name

Tests the specified conditional assembly flag and, if true, continues to
assemble the following code. If the flag test false, the source code
after the flag 1is treated as if it were a series of comments until an
EIF (end of conditional assembly) instruction is found.

CLR flag name

Changes the specified conditional assembly flag to false.

EIF

Terminates any conditional assembly in process. Only one conditional
assembly can be handled at a time. If a second one is encountered while
the first is still active, the second will override the first.

SET flag name

Sets the specified conditional assembly flag to true.

6.5 Multiple Binary Programs

There can be up to five binary programs in memory at one time. There is
a table of two-byte addresses called BINBAS that contains the base
addresses in the order in which the binary programs were loaded. Bytes
that are not used are zero. Anytime the system calls a binary program,
it first fetches from BINBAS the base address for that program and
stores it in BINTAB.

The ASCII keyword tables and the binary programs are searched in the
order they are loaded. This is also how initialization routines are
called.

Section
VII

SAMPLE BINARY PROGRAMS

7.1 Introduction

This section includes five binary programs. In addition to being listed
here, these programs are on the disc you received with your Assembler
ROM. Source code file names end in "S", while object code file names
end in "B."

Each of these programs is designed to illustrate assembly language
programming, and each provides a function or keyword that is useful to
the HP-87 operating system.

At the end of each program listing is a table of system routine
addresses used by the program. Inserting the disc and placing a GLO
GLOBAL pseudo-opcode near the beginning of the program eliminates the
need for these addresses in some of the sample programs. Certain
programs call system routines whose addresses are not available on the
global file disc.

The string highlight program includes instruction on how to use a binary
program following the listing.

Section 7: Sample Binary Programs

7.2 String Highlight
Source Code: HGLS$S

Object Code: HGLS$B

1000 ! 3 %% * % 5% 3 3

1010 I* This binary program implements a string function called HGL$ *
1020 !% which accepts one string parameter and returns that string with *
1030 !% the most significant bit of sach character set. *
1040 != This binary program is a translation of the UDL$ binary program *
1050 !% from the HP-85 Assembler Rom manual. %
1060 !* *
1070 % (¢) Hewlett-Packard Co. 1982 *
1080 !¥ *
1090 !*¥ An example of how this function might be used is: *
1100 1% *
1110 = 100 INPUT A$ *
1120 1% 110 DISP HGL$(R$) *
1130 % *
1140 | £ % % ¢ % % %

1150 NAM 53, HGLBIN ! SET UP THE PROGRAM CONTROL BLOCK

1160 DEF RUNTIM ! PTR TO RUNTIME ADDRESS TABLE

1170 DEF RSCIIS ! PTR TO KEYWORD TABLE

1180 DEF PARSE ! PTR TO PARSE ADDRESS TABLE

1190 DEF ERMSG ! PTR TO ERROR MESSAGE TABLE

1200 DEF INIT ! PTR TO INIT ROUTINE

1210 | # ERHHHF FRRER

1220 PRARSE BSZ 0 ! NO PARSE ROUTINES

1230 ! 3 ? ¢

1240 RUNTIM BYT 0,0 ! DUMMY TOK# O RUNTIME ADDRESS

1250 DEF REV. ! TOK# 1 RUNTIME RADDRESS

1260 DEF HGLS$. ! TOK# 2 RUNTIME RDDRESS

1270 BYT 377,377 ! TERMINATE RELOCATION

1280 ! X % % ¥R 3 %K KK %
1280 RSCIIS ASP "HGL$B" ! KEYWORD #1

1300 ASP " HGL$" ! KEYWORD #2

1310 ERMSG BYT 377 ! TERMINATE ARSCII TABLE & ERMSG TABLE
1320 sesxsexxx * # E % X3 336 3 EHX
1330 INIT RTN ! NO INITIALIZATION TO BE DOME

1340 ! 3 4 ¢

1350 BYT 30,56 ! ATTRIBUTES ($ FUNCTION, 1 $ PARAMETER)
1360 HGLS$. POMD R45,-R1Z ! POP STRING RDDRESS OFF 0OF STACK

1370 POMD R30, -R1Z ! GET LENGTH OF STRING OFF OF STACK

1380 STM R30,RSS ! LENGTH NEEDS TO BE IN 55 FOR “RSMEM-/
1380 CLB RS? ! ZERO OUT MSB OF RESERVED LENGTH

1400 JSB =RSMEM- ! GO GET SOME TEMPORARY MEMORY

1410 PUMD R30,+R1z ! PUSH LENGTH BARCK ONTO THE R132 STRCK
1420 PUMD RES, +R1Z ! PUSH ADDRESS RETURNED BY RSMEM ON STACK
1430 BIN ! MAKE SURE OF MATH MODE FOR LOOP COUNTER
1440 LDMD R?5,=PTR1- ! SAVE VALUE OF PTR1

1480 PUMD R7?S,+R6 1l ON RB6 STARCK

1480 L.DB R34,=200 ! SET UP MRASK

1470 STMD R45,=PTR1- ! RDDRESS OF 1st BYTE OFf ORIGINRL STRING
1480 STMD RES, =PTRZ- ! RDDRESS OF 1st BYTE OF RESERVED MEMORY
1490 MORE DCM R30 ! DECREMENT LOOP COUNTER

1500 JNC DONE ! JIF NO CHARACTERS LEFT

1510 LDBI RZ20, =PTR1- ! GET NEXT CHARACTER FROM ORIGINAL STRING
1520 ORB R20,R34 ! SET MSB OF CURRENT CHARARCTER

1530 STBI R20,=PTRZ- ! STORE HI-LIGHTED BYTE TO RESERVED MEMORY
1540 JMP MORE ! GO GET SOME MORE

1550 DONE POMD R?5, -RB ! RETRIEVE OLD VYARLUE OF PTR1

7-2

Section 7:

1560
1570
1580
1590
1600
1610
1820
1630
1840
1850
1660
1670
1680
1680
1700
1710
1720
1730
1740

Sample Binary

STMD R?S, =PTR1-
RTN

Programs

! AND RESTORE IT BEFORE RETURNING
DONE

EEX

| %%3% # ¥ 3 3 ¢ %
BYT 0,56 ! NO PARRMETERS, STRING FUNCTION

REVY. BIN ! FOR ADDRESS MATH
LDM R43,=40D,0 ! LOAD THE LENGTH OF THE STRING
DEF DATE- ! AND THE ADDRESS OF THE STRING
BYT 0 ! (MAKE IT A THREE BYTE RDDRESS)
ADMD R45,=BINTAB ! MAKE THE ADDRESS ABSOLUTE
PUMD R43,+R1Z ! PUSH IT TO THE OPERATING STACK
RTN ! DONE

DATE ASC "40.102:veR 2831 .oC drakcaP-ttelweH)C("

DATE - BSZ © ! PLACE HOLDER FOR ADDRESS LOAD

; ;

BINTAE DAD 104070 !

RSMEM- DAD 31741

PTR1- DAD 177711 | DEFINE ADDRESSES

PTRZ- DAD 177715
FIN ! TERMINATE ASSEMBLY

Section 7: Sample Binary Programs

1. In assembler mode load the source code:
ALOAD "HGLS$S" [END LINE]
2. To assemble the source code:
ASSEMBLE "HGLS$B" [END LINE]
If you want a printed copy of the object code as it assembles, you
must designate a PRINTER IS device (that is, PRINTER IS 701).
There must also be an LST instruction at the beginning of the
code. The object code is now assembled and stored on your disc.
3. To use this function, return to BASIC mode. Type:
BASIC [END LINE]
4, Load the object code. Type:
LOADBIN "HGL$B"™ [END LINE]
5. Before running this program you may wish to set a breakpoint.
With the system monitor inserted, type:
BKP REL (100)
The REL instruction sets the breakpoint at an absolute address in
memory. The breakpoint information will appear on the CRT. It
will also be printed if you specify a PRINTER IS device. For
example:
BKP REL (1¢@),701
The program will now halt at the address specified in the
breakpoint. Your breakpoint will look similar to this when
HGL$ ("string") is typed:
PC DR AR OV CY NG LZ 2R RZ 0D DC E BKP1 BKP2 PTR1 PTR2 ROM
114334 57 55 © 0 O 1 O O 1 O 00 114333 000000 0370014 0370013 000
o 1 2 3 4 5 8 7 MEM 114233:0
ROO 005 001 242 053 334 230 100 204 110 107 114 102 254 000 002 053 HGLB, +
R10 307 200 350 212 07?5 210 001 001 110 107 114 O44 102 040 040 040 HGLS$B
RzO 233 230 053 016 010 013 310 200 040 040 000 00O 000 000 000 000
R3O 041 000 324 230 267 230 233 230 233 230 277 230 307 230 2?7 230 2 G 7
R40 015 000 000 000 000 00 380 001 320 230 321 230 233 230 017 231 F Q
RSO 110 053 230 002 000 041 000 001 324 230 377 377 110 107 114 044 T WEHGLS
RE0 000 000 000 000 000 041 360 001 302 110 107 114 244 377 236 030 BHGLS®
R70 016 004 000 000 000 017 360 001 056 145 012 343 130 343 055 243 .e cXo-#

Section 7: Sample Binary Programs

After execution is halted at the breakpoint, you may single
step a specified number of instructions using the TRACE
instruction. For example, to trace the next 1# program steps,
type:

TRACE 10
The TRACE instruction will give you status information for

each of those 1@ steps, as well as the contents of memory.
TRACE 10 will output the following information:

PC DR AR OV CY NG LZ ZR RZ 0D DC E BKP1 BKP2 PTR1 PTRZ ROM
114335 5755 0 0 O 1 1 1 0 O 00 114334 000000 0370014 0370013 000
PC DR AR OV CY NG LZ ZR Rz 0D DC E BKP1 BKP2 PTR1 PTRZ ROM
031741 57 55 0 0 O 1 1 1 0 O 00 114335 000000 0370014 0370013 000
PC DR AR OV CY NG LZ ZR RZ 0D DC E BKP1 BKPZ PTR1 PTRZ ROM
031742 57 55 0 O O 1 1 1 O 0O 00 031741 000000 0370014 0370013 000
PC DR AR OV CY NG LZ ZR Rz 0D DC £ BKP1 BKP2 PTR1 PTR2 ROM
031743 57 55 0 0 0 1 1 1 O O 00 031742 000000 0370014 0370013 000
PC DR AR OV CY NG LZ ZR RZ 0D DC E BKP1 BKP2Z PTR1 PTR2 ROM
031744 8555 0 O O 1 1 1 O O 00 031743 000000 0370014 0370013 000
PC DR AR OV CY NG LZ ZR RZ 0D DC E BKP1 BKPZ PTR1 PTRZ ROM

031747 8555 0 0 0O 1 0O O 1 O OO0 031744 000000 0370014 Q370013 GO0

PC

DR AR OV CY NG LZ ZR RZ 0D DC E BKP1 BKP2Z PTR1 PTR2 ROM

031750 S 55 0 O O 1 O 0 1 O 00 031747 000000 0370014 0370013 000

FC

DR AR OV CY NG LZ ZR RZ 0D DC E BKP1 BKPZ PTR1 PTR2 ROM

031751 65 55 0 0 0 1 O O O O 00 114333 000000 0370014 0370013 000

ROQ
R10
R20
R30
R40
RSO
REO
R?70

o} 1 2 3 4 S [} ? MEM 114233:0

005 001 242 053 351 Q&3 102 204 110 107 114 102 254 000 002 053 HGLB, +
307 200 350 212 075 210 001 001 110 107 114 044 102 040 040 040 HGL$B
233 230 053 018 010 013 310 200 040 040 000 000 000 000 00O 000

041 000 324 230 287 230 233 230 233 230 277 230 307 230 277 230 ?G 7
015 000 000 000 000 QEC 360 001 320 230 321 230 233 230 017 231 P Q

110 053 230 002 000 041 000 COO 324 230 377 377 110 107 114 044 T BBHGLS
000 000 D00 000 000 256 231 000 302 110 107 114 244 377 236 030 BHGL$#
016 004 000 000 000 017 350 001 056 145 012 343 130 343 055 243 .s cXc-#

To continue execution after a breakpoint or after a TRACE
instruction, press [RUN].

To run this program without halting, type:
HGLS ("string")

after the LOADBIN instruction.

7-5

Section 7: Sample Binary Programs

7.3

CRT Control

Source Code: ALPHAS

Object Code: ALPHAB

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1180
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1280
1300
1310
1320
1330
1340
13S0
13860
1370
1380
1380
1400
1410
1420
1430
1440
1450
1460

7-6

|

'% This binary program implements three CRT control statements: *
| % AWRITE (<row>,<column>][,<string>] *
1% AREAD <string wvariable> *
| % START CRT AT <absolute line #> *
t% AWRITE allows you to do one of three things: *
1% 1) force ALPHR mode without moving the cursor position *
1% 2) force ALPHA mode and move the cursor to a position which¥
1% is relative to the top left of the current screen *
| % 3 force ALPHA mode and move the cursor to new position *
1% and output a string at that location, leaving the cursor¥
1 % positioned at the beginning of the string. *
1 % In all cases the cursor is not actually displayed, until some *
| % other normal cursor movement occurs. *
t* AREAD allows you ta read a string of characters from the CRT into %
| % a string variakle. Usually the cursor will have been moved to ¥
bx the correct position with the AWRITE statement. *
!'% START CRT AT allows you to scroll the display up or down or jump ¥
1% to an entirely different page, all under program control. *
1 NOTE: this routine does not change the cursor’s location in *
1% CRT memory, so the cursor may get lost off of the screen when %
1% this command is used. It can be brought back by use of the *
1% AWRITE statement, or by using the Home Cursor key. *
!% ALPHAB returns the revision date of the binary program. *
\ 3 ;

% *
!%¥ An example of how this binary might be used in BRSIC is: *
I % 110 FOR I=1 TO 1000 *
! % 120 START CRT AT IP(RND%50) *
| % 130 RWRITE RND%16,RND*¥80 @ PRRERD A$ *
1% 140 AWRITE RND%16,RND*BO0,R$ *
1% 150 NEXT 1 *
!%¥ This is guaranteed to turn any intelligent display into nonsense. ¥
| % *

XK KKK XX KX

MYBPGM# EQU 52 BINARY PROGRAM NUMBER

1
NAM S52,ALFA ! NAME BLOCK FOR BINARY
DEF RUNTIM ! ADDRESS OF RUNTIME ARDDRESSES
DEF RASCIIS ! ADDRESS OF ASCII TABLE
DEF PRRSE ! ADDRESS OF PARSE ADDRESSES
DEF ERMSG ! ADDRESS OF ERROR MESSAGES
DEF INIT ! ADDRESS O0F INITIALIZATION ROUTINE
RUNTIM BSZ 2 ! PLACE HOLDER
DEF ALFA. ! RUNTIME LARBEL FOR “AWRITE~
DEF AREAD. | RUNTIME FOR ’“ARERD”
DEF STARTAT. ! CRT TOP LINE
DEF REV. | RUNTIME FOR RE¥ISION

Section 7: Sample Binary Programs

1470 PARSE BSZ 2 ! PLRCE HOLDER

1480 DEF ALPHAP ! PARSE LABEL FOR ’AWRITE”

1490 DEF ARERDP ! PARSE LABEL FOR ’ARERD”

1500 DEF STARTATP | PARSE FOR TOP LINE

1510 BYT 377,377 ! END OF RELOCRTRBLES

1520 |%xxx%x * 3 %

1530 ASCIIS BSZ 0O

1540 ASP "AWRITE" | TOKEN 1

1550 RSP "ARREAD" ! TOKEN 2

1560 ASP "“START CRT AT" ! TOKEN 3

1570 RSP "RALPHAB" ! TOKEN 4

1580 ERMSG BYT 377 ! END OF RSCII TRBLE

1580 | % % % : *
1600 INIT RTN ! NO INITIALIZATION TO BE DONE

1610 | ¢ 3 .

1620 STARTATP PUBD R43, +R6 ! SAVE TOKEN#

1630 JSB =NUMVA+ I TRY TO GET A NUMBER

1640 JEZ ERRBS I GOT AN ERROR

1650 OKAY LDB RS53, =371 ! BPGM TOKEN

1660 STBI R53, =PTR2~ ! STORE IT

1670 LDB RS53, =MYBPGM# ! GET MY BINARY NUMBER

1680 STBI RS3, =PTR2- ! STORE IT

1880 POBD R53, -R6 ! GET THE TOKEN NUMBER

1700 STBI RS53,=PTRZ- ! STORE IT

1710 RTN ! ALL DONE

1720 ! 5 EREXEXKEXRXRXER
1730 ALPHAP PUBD R43, +RS ! SAVE TOKEN NUMBER

1740 JSB =NUMVA+ I TRY TO GET A NUMBER

1750 JEZ OKRY ! MUST BE JUST ‘RWRITE’

1760 JSB =GETCMA { DEMAND A COMMA

1770 JSB =NUMVAL t DEMAND A NUMBER

1780 JEN OKAYZ { JIF BOTH NUMBERS THERE

1790 ERRSS POBD R43, -RE ! CLEAN UP RSB

1800 JSB =ERROR+ ! ERROR HANDLING ROUTINE

1810 BYT 88D ! ERROR NUMBER

1820 OKAY2 CMB R14,=54 ! MAKE SURE OF A COMMA

1830 JNZ DOKRY ! JIF JUST “RWRITE X,Y”’

1840 JSB =STREX+ ! PARSES A STRING EXPRESSION

1850 JEZ ERRB88 ! JIF NO STRING TO ERROR

1860 JMP OKAY ! OTHERWISE FINISH UP THE PARSING
1870 ! 3 XX X* 3 ¢

1880 ARERDP PUBD R43, +R6 ! SAVE THE TOKEN

1880 JSB =SCAN t LET’S DO A SCAN

1800 JSB =STRREF ! MUST BE 'R STRING REFERENCE

1810 JMP OKAY | FINISH THE PRARSE

1920 XXX KKK * % %
1830 BYT 0,56 ! NO PARAMETERS, STRING FUNCTION
1840 REV. BIN ! FOR ADMD R4S, =BINTRB

1850 LDM R43,=40D,0 ! LOAD THE LENGTH OF THE STRING
1960 DEF DATE : ! AND THE ADDRESS OF THE STRING
1870 BYT O ! (MUST BE THREE BYTE ADDRESS)
1880 ADMD R45, =BINTAB ! MAKE THE ADDRESS ABSOLUTE

1880 PUMD R43,+R12 ! PUSH IT ‘ALL ON THE OPERATING STRCK
2000 RTN ! DONE

2010 ASC "30.102:veR 28381 .oC drakcaP-ttelweH)c("

2020 DATE BsSZ 0O ! PLACE HOLDER FOR THE LABEL (ADDRESS)
2030 | %% £33 2223 ¢

3 * %% %

Section 7: Sample Binary Programs

2040 BYT 241 { BRSIC STATEMENT

2050 ALFA. BIN | FOR MATH

2060 LDBD R37, =CRTSTS ! CHECK CRT STRTUS

2070 JPS INALPHA! ! JIF ALREADY IN ALPHA MODE

2080 JSB =ALPHA. ! IF NOT, MRKE IT SO

2090 INALPHA! CMMD R12,=T0OS ! ANYTHING ON THE R12 STACK

2100 JZR NO-RDR | JIF JUST “AWRITE”

2110 JSB =DECURZ { KILL BOTH POSSIBLE CURSORS

2120 JSB =HMCURS ! MOVE THE CURSOR TO THE HOME POSITIGN
2130 LDMD R14, =BINTAB ! BECAUSE I’M RELATIVE

2140 CLM R43 ! FAKE O STRING LENGTH

2150 LDM R20,R12 ! COPY OF R12

2160 SBM RzO, =25,0 ! SUBTRACT 2§

2170 CMMD R20,=TOS ! WHAT’S ON R12

2180 JNZ A-ONLY t JIF ONLY X,Y

2180 POMD R43,-R1z ! GET LENGTH AND ADDRESS OF STRING
2200 A-ONLY STMD R43,X14,SAV-$! SAVE LENGTH AND ADDRESS

2210 JSB =TWOB ! GET TWO BINARY NUMBERS OFF OF R12
2220 CALCADR DCM RS8 ! DECREMENT Y~

2230 JNG GOT-IT ! JIF ADDRESS FIGURED OUT

2240 ADM R46,=120,0 | ADD TO GET TO NEXT LINE

2250 JMP CRLCRDR ! TRY FOR ANOTHER ONE

2260 GOT-IT STM R46,R24 ! COPY ADDRESS DISPLACEMENT TO 26
2270 JSB =MOVCRS ! MOVE THE CURSOR

2280 LDMD R43,X14,SAV-$! GET LENGTH AND ADDRESS OF STRING BRCK
2280 LDM RS6,R43 ! GET LENGTH

2300 JZR- NO-RDR I JIF NO LENGTH

2310 STMD R4S, =PTR2Z | SET MEMORY POINTER TO STRING ADDRESS
2320 LDM R36,R43 ! GET LENGTH

2330 ALOP LDBI R32,=PTR2- ! GET A CHARARCTER

2340 JSB =CHKSTS* ! WAIT FOR CRT NOT BUSY

2350 STBD R32, =CRTDAT ! STORE IT

2360 DCM R38 { ANY CHRARACTERS LEFT

2370 JNZ ALOP ! JIF THERE RRE

2380 NO-ADR RTN ! ALL DONE

2390 | 3 3

2400 BYT 241 ! BASIC STATMENT

2410 RREAD. BIN ! FOR MATH

2420 LDBD R37,=CRTSTS ! GET CRT STATUS

2430 JPS INALPHA# ! JIF ALREARDY IN ALPHA MODE

2440 JSB =RALPHA. | IF NOT, MAKE IT SO

2450 INALPHA# JSB =DECUR2 ! KILL THE CURSORS

24E60 POMD R73,-R1Z ! GET STRING STUFF

2470 STM R?3,RSS ! COPY TO S5

2480 PUMD R73,+R1Z ! PUSH THE STUFF BACK

2480 CLB RS? ! CLEAR MSB

2500 JSB =RESMEM ! LET’S GO RESERRVE SOME MEMORY
2510 STM RS5,R73 ! COPY 55 TO 75

2520 STM RB5,R7S | COPY SINK RDDRESS

2530 STMD RE5, =PTR2 | SET MEMORY POINTER

2540 PUMD R?3,+R12 ! PUSH STRING STUFF ONTO R12

2550 TSM RSS ! HOW BIG CAN I GO

2580 JZR DO-STO ! JIF O

2570 LDMD R34, =CRTBYT I GET CURRENT POSITION

2580 PUMD R34, +RE | SAVE IT

2580 JSB =BYTCR! { SET CURRENT POSITION

7-8

Section 7: Sample Binary Programs

2600 ALOOP JSB =INCHR ! GO GET A CHARACTER
2610 STBI R32,=PTR2- ! STORE IT

2620 JSB =RTCUR. ! MOVE 1 BYTE

2630 DCM RSS ! ANY MORE

2640 JNZ ALOoP ! JIF THERE ARE

2650 POMD R34, -RB ! GET OLD CRTBYT BRCK
2660 JSB =BYTCR! ! SET CURRENT POSITION
2670 DO-STO JSB =STOST ! SAVE IT AWARY

2680 RTN ! ALL DONE

2690 | ®x%x 3 * 3 XRKER
2700 ! = START CRT AT THE SPECIFIED NUMBER *
2710 ! ¢ * EEXRXEX
2720 BYT 241

2730 STARTAT. JSB =0ONEB ! GET A NUMBER OFF OF R12
2740 BCD ! FOR MRATH

2750 LLM R ! %186

2760 BIN ! FOR THE REST

2770 STM R#,R# ! COPY IT

2780 LLM R# | %32

2780 LLM R# ! %64

2800 ADM R#,R# I %80

2810 STM R#,R# ! COPY TO 46

2820 LDMD R#,=RSIZE ! GET ARLPHR SIZE INTO 7B
2830 DRP R46 ! GET RERDY FOR “MOD’
2840 JSB =MOD | MOD IT

2850 STM R#,R34 ! COPY RESULT TG 34 FOR “SAD1”
2BEO JSB =SAD1 ! SET CRT START ADDRESS
2870 RTN ! ALL DONE

2880 ! X% * : 3
28380 SAvV-$ BSZ S ! SAVE AREA FOR ALPHAR
2900 ! %% %% 3

2910 NUMVA+ DAD 22403 !

2920 GETCMA DAD 23477 |

2830 NUMVAL DAD 22406 !

2840 STREXP DAD 23724 |

2850 ERROR+ DAD 10220 !

2860 PTR2- DRD 177715 !

2970 SCAN DRD 21110 !

2980 STRREF DAD 24056 !

2990 STREX+ DAD 23721 !

3000 BINTAB DAD 104070 !

3010 CRTSTS DAD 177702 !

3020 ONEB DRD 12153 !

3030 PTRZ DAD 177714 !

3040 CHKSTS DAD 13204 !

3050 CRTBAD DAD 177701 !

3060 CRTDRT DAD 177703 !

3070 ALPHA. DAD 12413 !

3080 TOS DAD 101744 ! DEFINE RDDRESSES

3090 DECUR2 DAD 13467 !

3100 HMCURS DAD 13661 !

Section 7: Sample Binary Programs

3170 RTCUR. DAD
3180 STOST DAD
3180 RSIZE DAD

3200 SAD1 DAD
3210 MOD DAD
3220 FIN

13651
46472
104744
13723
142186

TERMINARTE ARSSEMBLY

Section 7: Sample Binary Programs

7.4

Line Input

Source Code: LINPUTS

Object Code: LINPUTB

10

30
40

60
70

90

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
2380
300
310
320
330
340
350
360
370
380
380
400
410
420
430
440
450
460
470
480

A KEYWORD THAT IS PARSED INTO MORE THAN ONE TOKEN

A TOKEN WITH A CLASS OF 44 (MISC IGNORE AT DECOMPILE)
that makes it invisible when the program is listed

(c) 1982 Hewlstt-Packard Co.

This binary program implements the BASIC statement ’LINPUT”
which acts exactly the same as the BASIC statement “INPUT’ except
that it will only allow you to input a string walue and that
string value may contain commas and/or quotes. The keyword stands
for Line INPUT, as it allows the inputing of a line regardless
of what characters are in that line.

K ok k dk kK K K K K K K XK K K XK

An example of how a BASIC program might use LINPUT is:

100 DISP “RAddress of destination";
110 LINPUT Dest_addr$
120 PRINT# 1; Dest_addr$

K K K K K XK kK

*
SET UP PCB, BPGM # IS 51
POINTER TO RUNTIME ADDRESS TRBLE
POINTER TO TABLE OF ASCII KEYWORDS
POINTER TO TABLE OF PARSE RDDRESSES
POINTER TO TABLE OF ERROR MESSAGES
POINTER TO INITIARLIZATION ROUTINE

NAM S1,LINPUT
DEF RUNTIM
DEF RSCIIS
DEF PARSE

DEF ERMSG

DEF INIT

3 *%% 3 :

The way an INPUT statement works in the series 80 computers is
this: the keyword is actually parsed into two tokens, so the Job
of doing an INPUT is split into three parts; two are performed by
the two INPUT tokens and the third is performed by the system.
The first of the twc tokens outputs a question mark to the CRT andx
puts the computer irto a pseudo-calculator mode, which is kriown *
as Idle-in-Input, by setting CSTAT (R16) to a 4, and then sets thex
immediate break bits in XCOM (R1?) using "or"with 240(octal). Then¥%
the first token terminates its execution by returning to the *
interpreter. The interpreter will see the immediate break bits in %
R17 and will drop out into the exec Loop. The exec will see that ¥
the computer is in Idle-in-Input mode and will simply loop on *
itself. At this point, the user starts typing his input (causing *
keyboard interrupts, which set bits in R17 and SYCWRD, which cause¥
the exec to call the character editor (CHEDIT), which echoes the =
keys to the CRT, clears the SYCWRD flag, and returns to the exec).*

X kK K XK K

Section 7: Sample Binary Programs

430 % This continues until the END LINE key is pressed, which causes *
500 |% CHEDIT to set a flag in the E register which will tell the exec *
510 !* that END LINE has been pressed. This will cause the exec to resume¥*
520 |* execution of the BASIC program by re-entering the interpreter.

*
S30 1% The third part of the INPUT is carried out by the second token of %
540 !%¥ the INPUT statement. It takes the input line, parses and executes %
550 !* it, then stores the values in the appropriate wvariables. *
560 !* LINPUT statement works in very much the same way. As a matter *
570 !%* of fact, the first two LINPUT tokens do nothing but call *
580 !% the runtime code for the first of the INPUT tokens. The differencex
590 !% comes in the second token. For LINPUT, all we want to do is input ¥
BOO !% a literal string with no expressions allowed, so we have no need ¥
610 !% to parse and execute the input line. All we hawve to do is reverse X
620 !* the string so that the first character is at the highest address %
630 !* and then store it in the string variable. *
640 ! 3 XK 5 ¢

650 RUNTIM BYT 0,0 ! DUMMY ADDRESS FOR TOKEN #0 RUNTIME
[51=1¢] DEF REV. ! ADDRESS FOR TOKEN #1 RUNTIME ROUTINE
670 DEF LINPT. ! ADDRESS FOR TOKEN #2 RUNTIME ROUTINE
€80 DEF LINS. ! ADDRESS FOR TOKEN #3 RUTNIME ROUTINE
680 ! 3 3 XXXE

700 PARSE BYT 0,0 ! DUMMY ADDRESS FOR KEYWORD #0 PARSE
710 BYT 0,0 ! DUMMY FOR KEYWORD #1 PARSE (A FUNCTION)
720 DEF LINPRS ! ADDRESS FOR KEYWORD #2 PARSE ROUTINE
730 BYT 377,377 ! TERMINATE RELOCATION OF ADDRESSES
740 ! 3 *} K 3 ¢ *%
750 !* The runtime table has three entries even though the ASCII and *
760 !* parse tables have only two. The third entry in the runtime table X
7?70 !*% will only be used in conjunction with the second entry. If you *

780 I* look at the parse routine for the second keyword (LINPUT) you will#*

790 !* see that it pushes out both tokens 2 and 3. Normally, you want to ¥

800 |* keep a one for one relationship between entries in the ASCII, *

810 Ix PARSE, and RUNTIME tables, but there are times when you can play ¥

820 |* tricks like this (if you’re careful). *

B30 ! 3 %K X X K *

840 RSCIIS ASP " LINPUTG" ! KEYWORD #1 (REVYISION DRTE FUNCTION)

B85S0 ASP " LINPUT" ! KEYWORD #2

860 ERMSG BYT 377 ! TERMINATE ASCII AND ERROR MESSAGE TABLES
870 ! * 3 ¢

880 ERRES JSB =ERROR+ ! SET ERROR FLRAGS IN R17 AND “ERRORS”

890 BYT 83D ! SYSTEM ERROR MESSAGE #83 “INVALID PARAM”
900 ! ;

910 LINPRS LDM RSS5,=2,51,371 ! LOAD TOKEN#, BPGM#, AND SYSTEM TOKEN
820 STMI RS5, =PTRZ- ! STORE THEM ALL OUT TO PARSE STREAM

930 JSB =SCAN ! SCAN THE INPUT STREAM FOR NEXT TOKEN
940 JSB =STRREF ! TRY TO GET R STRING VYARIABLE REFERENCE
3950 JEZ ERRBS ! JIF NOT THERE, ERROR CONDITION

960 LDM R55,=3,51,371 ! ELSE LOAD SECOND TOKEN#, BPGM#, AND SYS
970 STMI RSS,=PTRZ- ! STORE THEM OUT TO PARSE OUTPUT STRERM
980 INIT RTN ! DONE FOR PARSING AND INITIALIZING

980 ! * 3

1000 1% LINPT. is the runtimes code for the first of the two LINUT tokens.*
1010 !% It is responsible for the output of the question mark to the CRT %

1020 |% and putting the computer into Idle-in-Input mode. *
1030 | *%3 3 5

1040 BYT 241 ! ATTRIB.,BASIC STATEMENT LEGAL AFTER THEN
1050 LINPT. JSB =INPUT. ! DO QUESTION MARK AND SET R16=4

1060 RTN | DONE, WAIT FOR INPUT

Section 7: Sample Binary Programs

1070 ! ¢

1080 |* LIN$. is the runtime code for the second of the the twe LINUT *
1080 I* tokens. It is responsible for reversing the string in memory so it¥
1100 !* will be ready for storing into the string variable, and then doingx
1110 1% the actual store (by calling STOST). The R12 stack wil) already *
1120 1% have been set up for the variable store by the tokens parsed by *
1130 1% STRREF. *
1140 | 3 ¢

1150 BYT 44 ! ATTRIBUTE, MISCELLANEOUS IGMORE

1160 LINS. BIN ! BIN MODE FOR COUNTING

1170 LDMD R3Z, =INPTR ! FETCH ABDRESS OF STRING THAT WAS INPUT
1180 STM R32,R14 ! SAVE A COPY

1190 CLM R36 ! PRE-SET LENGTH TO ZERO

1200 CHRCNT POBD R35,+R3z ! GET THE NEXT BYTE FROM INPUT STRING
1210 CMB R35,=15 ! IS IT A CARRIAGE RETURN CHARACTER?
1220 JZR ENDOF ¢ ! JIF YES, WE’VE FOUND THE END AND LENGTH
1230 ICM R38 ! ELSE INCREMENT THE LENGTH

1240 JIMP CHRCNT ! AND LOOP TO CHECK THE NEXT CHRARACTER
1250 ENDOF$ TSM R386 t IS THE LENGHT ZERO?

1260 JZR DONE t JIF YES, RETURN A NULL STRING

1270 POBD R2S, -R3Zz ! GET BRCK TO LAST CHARARCTER

1280 POPBLK POBD R25, -R32 ! FETCH LAST CHARACTER FROM END OF STRING
1280 CMB R25, =40 ! IS IT A BLANK?

1300 JINZ DONE+ ! JIF NO, CONTINUE ON

1310 DCM R36 ! ELSE DECREMENT LENGTH (TRIM BLANKS)
1320 JNZ POPBLK ! JIF LENGTH NOT ZERO

1330 DONE+ ICM R32 ! MOVE RDDRESS TO ONE HIGHER THRN END
1340 STM R32,R65 ! SET RADDRESS IN RB5-R66

1350 CLB RE7 ! CLERR MOST SIGNIFICANT BYTE

1360 DOLOOP CMM R14,R32 ! FRONT OF STRING HIGHER OR EQUAL TO END?
1370 JCY DONE ! JIF YES

1380 LDBD R30,R14 ! ELSE GET BYTE FROM FRONT

1380 POBD R31, -R32 ! AND A BYTE FROM THE BACK

1400 STBD R30,R32 ! STORE THE FRONT BYTE IN BRCK

1410 PUBD R31, +R14 ! AND THE BRCK BYTE IN FRONT

1420 JMP DOLODP ! LOOP TIL STRING IS REVERSED IN PLACE
1430 DONE PUMD R36,+R12Z ! PUSH THE LENGTH OF STRING TO STACK
1440 PUMD RES, +R12 ! PUSH THE ADDRESS OF STRING TO STACK
1450 JSB =STOST ! STORE THE STRING TO THE VARIABLE AREA
1460 RTN ! DONE

1470 | 3 ¢ c %%

1480 !* This is the runtime code for the revision date function, which is¥
1480 !* a string function with no parameters which always returns the same
1500 % 'string value, the copyright notice and the revision code. *
1510 [XREXXEEXXEXXXXRRRXEER XXX XX XXX XXX K% ¥ 36

Section 7:

1520
1530
1540
1550
1560
1570
1580
1580
1600
1610
1820
1630
1640
1650
1660
1670
1680
1680
1700
1710

Sample Binary Programs

BYT 0,56 ! ATTRIBUTES,STRING FUNCTION,MNO PRRAMETERS
REV. LDM R43,=44,0 ! LORD LENGTH OF THE STRING
DEF DRTE ! AND THE ADDRESS OF THE STRING
BYT O ! (IT NEEDS TO BE A THREE BYTE RDDRESS)
BIN ! BIN MODE FOR RDDRESS MATH
ADMD R45, =BINTAB ! MAKE THE ADDRESS ABSOLUTE
PUMD R43,+R1Z ! PUSH THE LENGTH AND ADDRESS TO THE STACK
RTN ! DONE
RSC "B2.111 .veR 2881 drakcaP-ttelweH 3c(" | THE REVISION STRING
DRTE BSZ O ! NEED LRBEL HERE TO GET RIGHT RDDRESS
! 5 * ¢ % % 3 S
BINTAB DAD 104070 !
ERROR+ DRAD 10220
INPTR DAD 101143 !
INPUT. DAD 16314 ! LABEL DEFINITIONS
PTR2 - DAD 1?7715
SCAN DAD 21110
STOST DRAD 46472
STRREF DAD 24056
FIN ! TERMINARTE RSSEMBLY

Section 7: Sample Binary Programs

7.5

Taking the KYIDLE Hook and Buffering the Keyboard

Source Code: KEYS

Object Code: KEYB

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1380
1400
1410
1420
1430
1440
1450

RUNTIM BSZ 2

! EE3 35 *

t* *
!% TAKING THE “KYIDLE’ HOOK AND BUFFERING THE KEYBOARD *
1% *
1% (c) 1981 Hewlett-Packard Co. *
% *
1% THIS BINARY PROGRAM TRAKES OVER THE ‘KYIDLE’ HOOK AND PUTS ALL *
% KEYS PRESSED INTO A BUFFER EXCEPT FOR THOSE KEYCODES LISTED IN *
!%¥ THE TABLE STARTING AT “KEYTAB’/ (RIGHT NOW, THOSE KEYS TO BE LEFT *
!% FOR THE SYSTEM TO HANDLE ARE THE SOFT KEYS AND THE RESET KEY. THIS*
1% COULD ERSILY BE CHANGED BY MODIFYING THE “KEYTAB’ TABLE). THE *
I* BINARY ALSO WATCHES FOR “SHIFT END LINE’ AND *SHIFT UP ARROI’ *
'* (WHICH IS THE "HOME’ KEY. (“UP ARROW” AND “HGME’ ACTUALLY GENERATE#*
'* THE SAME KEYCODE AND CAN ONLY BE DIFFERENTIATED BY CHECKING TO SEEx*
'# IF THE SHIFT KEY IS UP OR DOWN.)) WHEN 7END LINE’ OR ‘UP ARROW’ ISx
I* PRESSED WITH THE SHIFT KEY DOWN, THE BINARY PROGRAM CHANGES THE *
'* KEYCODE TO A DIFFERENT UNIGUE KEYCODE S0 THE BASIC PROGRAM CAN *
I% TELL THE DIFFERENCE. THIS, AND SIMILAR TECHNIQUES, COULD BE *
!¥ APPLIED TO MOST OF THE KEYBORARD. *
1% *
! *

| % *
!%¥ The following is a sample BRSIC program showing how this binary *
| % program can be used: *
| % *
! % 100 TAKE KEYBOARD *
| % 110 RA$=KEY$ *
| % 120 IF A$="" THEN 110 *
1% 130 IF A$="E" THEN 200 *
% 140 DISP "THAT WAS THE " & A$ & " KEY." *
| % 150 GOTO 110 *
1% 200 RELERSE KEYBOARD *
% 210 DISP "DONE" *
| % 220 END *
| % *
! 3 * 3 *EHK XXX 333
MYBPGM# EQU 50 ! BINARY PROGRAM NUMBER

NAM 50,KEYS NAME BLOCK FOR BINARY

DEF RUNTIM ADDRESS OF RUNTIME ADDRESSES
DEF ASCIIS ADDRESS OF ASCII TABLE
DEF PARSE ADDRESS OF PARSE ADDRESSES

DEF INIT ADDRESS OF INITIALIZATION ROUTINE
PLACE HOLDER

RUNTIME FOR ‘TAKE KEYBOARD’
RUNTIME FOR “RELEASE KEYBOARD’

DEF TAKE.

I
t
1
!
DEF ERMSG ! ADDRESS OF ERROR MESSAGES
|
1
!
DEF RELERS.

Section 7: Sample Binary Programs

1460 DEF KEYS$. ! RUNTIME FOR “KEYS$~

1470 DEF REVDATE. ! RUNTIME FOR REYISION

1480 PARSE BSZ 2 ! PLACE HOLDER

1480 DEF COMPRRS { PARSE ROUTINE FOR ’TAKE KEYBORRD’
1500 DEF COMPRRS ! PARSE ROUTINE FOR ’RELEASE KEYBOARD”
1510 BYT 377,377 ! END OF RELOCRTHBLES

1520 ! ; 3

1530 ASCIIS BSZ O

1540 ASP " TAKE KEYBOARD" ! TOKEN 1

1550 ASP "RELEASE KEYBOARD" | TOKEN 2

1560 ASP "KEYS$" ! TOKEN 3

1570 ASP "REV DRTE" ! TOKEN 4

1580 ERMSG BYT 377 ! END OF RSCII TABLE

1590 ! ¥%x%%x%x%3 %%

HXEKXKRX

1600 Ix BECRUSE THIS PROGRAM TRAKES OVER “KYIDLE’, SOME SPECIAL TRICKS

1610 !% ARE NEEDED. ‘KYIDLE” IS AN INTERRUPT HOOK WHICH MEANS THAT THE

1620 !% BASE ADDRESS OF THIS BINARY PROGRAM MAY NOT BE IN “BINTAB’. A

1630 !* METHOD IS NEEDED FOR THE HOOK ROUTINE (7USEKEY’” IN THIS CASE) TO

1640 !% KNOW WHAT THE BASE ADDRESS IS. SINCE THE “KYIDLE’ HOOK IS 7 BYTES

1650 !% LONG AND IT ONLY TAKES 4 BYTES TO DO 7JSB =USEKEY” & “RTN”, 3

1660 |% BYTES ARE LEFT UNUSED (AND THAT WE CAN BE SURE NO ONE ELSE IS

1670 !% GOING TO USE, AS LONG AS THIS BINARY HAS THE HOOK, WHICH IS AS

1680 !% LONG AS IT MATTERS). TWO OF THESE BYTES ARE USED TO STORE THE

1690 ! BASE RDDRESS OF THIS BINARY PROGRAM. WE’VE NAMED THE LOCATION

1700 !% “MYBTAB’ RAND DEFINED ITS ADDRESS AS 4 HIGHER THAN THAT OF “KYIDLE”

1710 1% (103?703 AND 103677 RESPECTIVELY.)

1720 % THE “INIT’/ ROUTINE DOESN’T HAVE TO DO ANYTHING IN THIS PROGRAM

1730 !% SINCE “LORD’ AND ’SCRATCH” CAN’T BE PERFORMED WHILE THE BINARY

1740 !¥ HARS THE HOOK, AND DURING A ’"RESET’ THE SYSTEM WILL HAYVE ALREADY

1750 % PUT /RTN’s BACK INTO “KYIDLE’. WE ONLY TAKE THE HOOK WHEN A

1760 !* “TAKE KEYBORRD” COMMAND IS EXECUTED, SO THERE’S NOTHING FOR INIT

1770 t% TO DO.

1780 !% THE BRSIC PROGRAM WRITER NEEDS TO BE VERY CAREFUL, HOWEVER,

1780 !% USING THIS BINARY, BECAUSE IF HE WERE TO EXECUTE R “STOP’” OR “END”#*

1800 !% COMMAND WHILE THE HOOK IS TRAKEN, THE KEYBOARD WILL EFFECTIVELY BE ¥

1810 t% LOCKED UP EXCEPT FOR THE “RESET” KEY AND, THUS, “RESET” WOULD THEN*
*

1820 !* BE THE USERS ONLY RECOURSE.

1830 ! *% *%% 3 KX KRR® 3 3 *
1840 INIT RTN ! ALL DONE

1850 ! 3 XRXK
1860 !* NEITHER ’TRAKE KEYBORRD” OR “RELEASE KEYBOARD’ HRAVE ANY PARAMETERS *
1870 1% SO0 THEY BOTH USE THE SAME PARSE ROUTINE, WHICH SIMPLY PUSHES OUT
1880 !* THE THREE BYTE SEQUENCE FOR THE KEYWORD AND THEN DOES A “SCAN’ FORx*
1890 !* THE SYSTEM, SO THAT R14 WILL HAYE THE NEXT TOKEN WHEN WE RETURN. %

| .

1800 ! KEXXXXR 3 XXX
1910 COMPARS LDM RS6,=50,371 ! BPGM # AND SYSTEM TOKEN

1920 LDB R55,R43 ! GET THE BINARY PROGRAM TOKEM #

1930 STMI RSS, =PTR2- ! STORE IT ALL OUT TO PARSE STACK

1940 JSB =SCAN ! DO A SCAN FOR THE SYSTEM

1950 RTN

Section 7: Sample Binary Programs

18860
1870
1880
1880
2000
2010
2020
2030
2040
2050
2060
2070
2080
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
2230
2300
2310
2320
2330
2340
2350
2360
2370
2380
2380
2400
2410
2420
2430
2440
2450
2460
2470
2480

| XE XX

I% “REV DATE’ IS A STRING FUNCTION WITH NO PARAMETERS WHICH RETURNS x
1% AS ITS STRING VYALUE THE COPYRIGHT STATEMENT AND REVISION CODE OF x

I% THE BINARY PROGRAM.
!

*

BYT 0,586
REVDRTE. BIN

NO PARAMETERS, STRING FUNCTION
FOR ADMD R45, =BINTAB

!
!

LDM R43,=40D,0 ! LOAD THE LENGTH OF THE STRING

DEF DRTE ! AND THE ADDRESS OF THE STRING

BYT O ! (MUST BE THREE BYTE RADDRESS)

ADMD R4S, =BINTAB ! MAKE THE ADDRESS ABSOLUTE

PUMD R43,+R12 ! PUSH IT ALL ON THE OPERATING STACK

RTN ! DONE

ASC "31.102:veR .oC drakcaP-ttelweH 2891)c("
DATE BSZ O ! PLACE HOLDER FOR THE LABEL (ADDRESS)
| 3 3 ¢
!% THIS IS THE TABLE OF KEYS THAT THE BINARY PROGRAM SHOULD LET THE x
!% SYSTEM HANDLE, AND IT SHOULD NOT PUT THEM IN THE BUFFER. THE TRBLEX
!% IS TERMINATED BY R 377, WHICH IS A KEYCODE THE KEYBORRD COMNTROLLERX
!%* IC IS INCAPABLE OF GENERATING. *
I % 3
KEYTARB BYT 200 { K1

BYT 201 ! K2z

BYT 202 ! K3

BYT 203 ! K4

BYT 241 ! KS

BYT 242 ! KB

BYT 234 ! K?

BYT 204 ! K8

BYT 208 ! K8

BYT 2086 ! K10

BYT 207 K11

BYT 245 ' K12

BYT 254 ! K13

BYT 223 ! K14

BYT 213 ! RESET

BYT 377 ! END OF INVALID KEY TABLE
Ixx 3 3 3 E
1% THIS IS THE RUNTIME ROUTINE FOR THE ‘TAKE KEYBOARD’ KEYWORD. IT %
!% INITIALIZES POINTERS TO THE BEGINNING AND END OF THE KEYBOARD *
!% BUFFER, WHICH EXISTS FARTHER DOWN IN THE BINARRY PROGRAM, TRKES *
!%* DVER THE “KYIDLE’ HOOK, AND INVALIDRTES THE KEY REPEAT FLAG. IF *
!%¥ THE KEY REPEAT FLAG IS VALID, THE LAST KEY IS TAKEN FROM THE *
!% BUFFER (USING THE “KEY$” FUNCTION), AND A KEY IS STILL DEPRESSED x
!% THE LAST KEY WILL BE PUT BRACK IN THE BUFFER SO THRT IT WILL REPEATx
'# AS LONG AS THE KEY IS HELD DOWN. *
! *% %

BYT 241
TAKE . LDMD R46, =BINTAB ! FOR RELATIYE RIDRESSING

LDM R30, =KEYBUF ! GET ADDRESS 0F KEYBORRD BUFFER

ADM R30,R46 ! MRKE IT RABSOLUTE

STMD R30, X46,KEYPTR ! INITIALIZE KEY POINTER

ADM R30, =80D, 0 ! POINT TO END OF BUFFER

Section 7: Sample Binary Programs

24390
2500
2510
2520
2530
2540
2550
25860
2570
2580
2580
2600
2610
2620
2830
2640
2B50
2660
2670
2680
2680
2700
2710
2720
2730
2740
2750
2760
2770
2780
2780
2800
2810
2820
2830
2840
2850
2860
2870
2880
2880
2800
2810
2820
2930
2840
2850
2860
2970
2980
2880
3000
3010
3020
3030
3040
3050
3060
3070
3080
3080
3100
3110

STMD R30,X46,KEYEND
LDM R30, =USEKEY
ADM R30,R48
STM R30,R43
LDB R45,=236
LDB R42,=316
TAKEIT STMD R#,=KYIDLE
LDB R#,=377
STBD R#,X46,LASTKEY
RTN

INITIALIZE KEYEND

ADDRESS OF KEYBOARD SERVICE ROUTINE
MAKE IT RABSOLUTE

COPY TO 438&44

45="RTN”

42=’JSB’

INVALID REPERT FLRAG
SET IT

1 X%% ¢

STORE OUT RTN’S OR JSB=USEKEY,RTN,BINTAB

!'%¥ THIS IS THE RUNTIME ROUTINE FOR THE “RELEARSE KEYBOARD’ KEYQDRD.
I% ALL IT DOES IS PLACE RETURNS BACK INTO THE “KYIDLE” HOOK, THUS,

*
*

1% GIVING UP CONTROL OF THE KEYBOARD. %
!] KEXEXX EXKED KEEX
BYT 241
RELEAS. LDMD R46, =BINTAB ! GET BPGM’S BASE ADDRESS
LDM RS2, =236,236,236,236,236,236 | LOTS OF RTNS
JMP TAKEIT !GO STORE TO HOOK

I %X%%%

!% ZUSEKEY” IS AN INTERRUPT SERVICE ROUTINE SO IT MUST BE CRREFUL TOx

!¥ SAVE ALL CPU STATUS AND CONTENTS AND THEN RESTORE THEM WHEN DONE.
I% THE SYSTEM HAS ALREADY DONE A “SAD’ BEFORE IT DID THE “JSB’ TO

!%¥ /KYIDLE”. THE ROUTINE CHECKS TO SEE IF THE BUFFER IS FULL RAND IF

{%¥ SO0 THROWS THE CURRENT KEYHIT AWAY. IT THEN CHECKS FOR THE SHIFTED
!% /UP ARROW’ OR “END LINE” KEYS AND IF S0 MODIFIES THE KEYCOD TO

*®.
*
*
*
*

{% MATCH. IT THEN CHECKS THE “KEYTAB” TABLE TO SEE IF THIS KEY SHOULD*

! BE IGNORED. IF IT IS IN THE TABLE, THE ROUTINE JUST CLERANS UP R
!% LITTLE AND RETURNS BRCK INTO THE SYSTEM KEY HANDLING ROUTIME.

t% DTHERWISE, IT PUTS THE NEW KEYCODE IN THE BUFFER AND UPDRTES THE
!%¥ BUFFER POINTER. IT THEN FIGURES OUT WHAT THE DRP SHOULD BE WHEN
!%¥ IT RETURNS FROM THE INTERRUPT SERYVICE, AND PLACES A DRP COMMAND
t¥ WHERE IT WILL BE EXECUTED JUST BEFORE RETURNING (THIS IS SO THE
!% EXTENBED MEMORY COMNTROLLER CAN KEEP TRACK OF THE DRP FOR MULTI-
!% BYTE OPERATIONS.) IT THEN RESTORES REGISTERS, THROWS AWARY TWO

!'% RETURN ADDRESSES, AND RETURNS TO WHATEVER WAS HAPPENING BEFORE
!'¥ THE KEYBORRD INTERRUPTED.

! XXX KKK

X K ok K Kk K K K K K

DISABLE GLOBAL INTERRUPTS
FOR EVERYTHING

SAVE 283

SAVE THE 40’S

AND THE 20’S

FOR RELATIVE ANYTHING
GET THE KEY POINTER
ADDRESS OF END OF BUFFER
BUFFER FULL?

JIF IT IS

GET THE KEY CODE

GET KEYBORRD STATUS

MASK FOR SHIFT KEY

JIF SHIFT KEY NOT DOWN
UP CURSOR KEY?

JIF NOT

OTHERWISE MAKE IT THE HOME KEY
FALL THROUGH

WAS IT THE ENDLINE KEY?
JIF NOT

MAKE IT SHIFT ENDLINE
ADDRESS OF INVALID KEYS
MAKE IT ABSOLUTE

GET AN INVALID KEYCODE
END OF TARBLE?

USEKEY STBD R#,=GINTDS
BIM
PUMD RZ,+R6
PUMD R40,+R6
LDM R40,R20
LDMD R26,=MYBTAB
LDMD R20, X26, KEYPTR
LDMD R22,%26,KEYEND
CMM R22,R20
JZR RE-START
LDBD R22, =KEYCOD
LDBD R25, =KEYSTS
ANM R25,=10
JZR NOTSHIFT
CMB R22, =kUPCUR
JNZ ENDLINE?
LDB R22, =kHOME
JMP NOTSHIFT
ENBLINE? CMB R22, =kENDLINE
INZ NOTSHIFT
LDB R22Z,=kSENDLIN
NOTSHIFT LDM R24, =KEYTRB
ADM R24,R26
KEYLOOP POBD R23,+R24
CMB R23, =377

Section 7: Sample Binary Programs

3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3220
3230
3240
3250
3260
3270
3280
3280
3300
3310
3320
3330
3340
3350
3360
3370
3380
3380
3400
3410
3420
3430
3440
3450
3460
3470
3480
3430
3500
3510
3520
3530
3540
3550
3560
3570
3580
3580
3600
3610
3620
3630
3640

KEY

RE -

JZR KEYLOOP1
CMB R23,R22
INZ KEYLOOP
JSB X28,FIXUP-RE
JMP KEYRTN+
PUBD R22,+R20
STMD R20,X26,KEYPTR
START CLB R20
ICB R20
STBD R20, =KEYCOD
ISB X2B,FIXUP-RE
SBM RE,=4,0

LOGP1

JIF IT IS

IS THIS KEY INVALID
JIF NO MATCH

FIX UP THE R STACK

FALL THROUGH, LET THE SYSTEM HRVE IT

APPEND TO THE BUFFER
UPDATE THE POINTER
N

> RESTART THE KEYBOARRD SCRMNER
4

FIX UP THE RE STACK
TRASH TWO RETURNS

KEYRTN STBD R#,=GINTEN RE-ENABLE GLOBAL INTERRUPTS
DRP BSZ 1 FORCE THE DRP

PAD RESTORE THE STATUS

RTN ALL DONE
KEYRTN+ STBD R#, =GINTEN RE-ENABLE INTERRUPTS

RTN
FIXUP-R6 STMI R30,=MYBTRB ! SAVE 30

POMD R30, -RE ! GET THE RETURN ADDRESS

LDM R20,RE ! COPY OF RE

SBM R20,=20,0 ! GET DOWN TO MIDDLE OF THE SAD

LDBD R20,R20 ! FETCH THE DRP BYTE

ANM R20,=77,0 ! MRSK OUT THE LAST DRP

ADB R20, =100 ! MAKE IT INTO A DRP INSTRUCTION

STBD R20, X26, DRP ! STORE IT OUT

STM R40,R20 ! RESTORE THE 20-’S

POMD R40, -RE ! RESTORE THE 40’S

POMD R2z, -R6 ! RESTORE 2&3

PUMD R30, +R6 ! PUT THE RETURN BRCK

LDMI R30, =MYBTAB ! GET 30 BRCK

RTN ! ALL DONE
! 3 *% X% %% EREEKXKX XXX ERKEKEXXXR
1% THIS IS THE RUNTIME ROUTINE FOR THE “KEY$’ KEYWORD. IT IS R *
!% STRING FUNCTION WITH NO PARAMETERS WHICH RETURNS R STRING WITH A %
!%¥ LENGTH OF ONE WHOSE SOLE CHRARACTER IS THE KEYCODE OF THE FIRST *
!% KEY IN THE KEYBOARD BUFFER. IF THE BUFFER WAS EMPTY, IT RETURNS *
'% A NULL STRING (LENGTH=0). WHEN IT TAKES A KEY OUT OF THE BUFFER, x
'%* IT COLLAPSES ALL THE OTHER KEYCODES IN THE BUFFER AND ADJUSTS THE %
!% BUFFER POINTER. *
PRREXEEHK AR EE LXK XXX ¥ HRXXXXKREAAA KRR RAEEERE XX RER

BYT 0,56
KEYS$. BIN FOR EVERYTHING

STBD R#, =GINTDS

LDMD R14,=BINTAB

LDM R20, =KE YBUF

ADM R20,R14

LDMD R22,X14,KEYPTR
CMM R22Z,R20

JZR KEY$3

LDM R30,R20

POBD R32, +R20

STBD R32,X14,LASTKEY

DISABLE GLOBAL INTERRUPTS
FOR ANYTHING RELATIVE
ADDRESS OF KEYBOARD BUFFER
MAKE ADDRESS ABSOLUTE

GET POINTER INTO BUFFER
BUFFER EMPTY?

JIF IT IS

COPY 20

GET R KEY

SAYE LAST KEY FOR POSSIBLE REPERT

Section 7: Sample Binary Programs

3650
3660
3670
3680
3680
3700
3710
3720
3730
3740
3750
3760
3770
3780
3780
3800
3810
3820
3830
3840
3850
3860
3870
3880
3880
3800
3810
3820
3930
3940
3850
3860
3870
3980
3880
4000
4010
4020
4030
4040
4050
4080
4070
4080
4080
4100
4110
4120
4130
4140

KEY$1

KEY$2
KEY$2+

KEY$Z2++

KEY$3

KEY$4

| O RXEEXEXRRXXARRR

LASTKEY
KEYBUF
KEYPTR
KEYEND
KkUPCUR
kHOME

CMM R22,R20

JZR KEY$2

POBD R33,+R20

PUBD R33,+R30

IMP KEY$1

DCH R22

STMD R22,X14,KEYPTR
CLM R22

ICM R22

PUMD R#,+R12

LDM RSS, =LASTKEY
BYT 0

ADMD RSS, =BINTAB
ICM R55

PUMD RSS,+R1Z

STBD R#,=GINTEN

RTN

LDBD R32,X14,LASTKEY
CMB R32Z,2377

JZR KEY$4

LDBD R3Z, =KEYSTS
LRB R32

JOD KEY$2+

LDB R32,=377

STBD R32,%14,LASTKEY
cLM R3Z

IMP KEY$2++

BUFFER COLLAPSED
JIF IT IS
GET R KEY
MOVE IT DOWN
LOOP
ADJUST KEYPTR
AND RESTORE IT
N

> LENGTH OF 1
'
ADDRESS OF KEYHIT
----> RS57?
MAKE ADDRESS ABSOLUTE
POINT TO AFTER THE KEY
PUSH RDDRESS OUT
RE-ENABLE GLOBAL INTERRUPTS
ALL DONE
CHECK LAST KEY
INVALID REPERT?
JIF S0
GET KEYBOARD STATUS
SHIFT STILL DOWN FLAG
LET’S REPEAT IT
INVALID REPERAT FLAG
SET INVALID REPEAT
NO REPEAT, S0 O LENGTH
ONE MORE TIME

BSZ 1
BSZ 80D
BSZ 2
BSZ 2
EQU 243
EQU 230

FOR KEY REPEATING PURPOSES

ALLOW UP TO 80 KEY STROKES IN BUFFER
POINTER TO INPUT POINT IN BUFFER
POINTER TO END OF THE BUFFER

UP CURSOR KEYCODE

NEW HOME KEYCODE

KENDLINE EQU 232 ENDLINE KEYCODE
kSENDLIN EQU 227 NEW SHIFT END ILINE KEYCODE
I ORXXXXXKXERR 3
ERROR+ DAD 10220
PTRZ- OAD 177715 !
SCAN DAD 21110
BINTRB DAD 104070
PTR2 DAD 177714
ROMFL DAD 1040865 ! DEFINE SYSTEM ADDRESSES
KYIDLE DAD 103877 !
GINTDS DRD 177401
GINTEN DAD 177400
MYBTAB DAD 103703
KEYCOD DAD 177403
KEYSTS DAD 177402
FIN i TERMINATE ASSEMBLY

Section 7: Sample Binary Programs

7.6

GET and SAVE

Source Code: GETSAVES

Object Code: GETSAVEB

1000
1010
1020
1030
1040
1050
1080
1070
1080
1080
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1280
1270
1280
1290
1300
1310
1320
1330
1340
13S0
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

*

1%
1%

This binary program implements the SAYE and GET statements for
turning programs into normal strings in a DATA file and turning
normal strings back into lines of a BASIC program.

The syntax for the two statements is:

SAVE <file name>[,<beginning !ine>1[,<ending line>]
GET <file name>

SAVE calculates the size of the DATA file needed by listing the
program and counting the total length of the strings (plus the
three bytes of header per string required by the file manager).

It does this by taking over IOTRFC and forcing the select code to
a value that will cause the listed strings to go out through the
hook. LSSET is an entry point in the LIST routine that lists the
entire program. After the size of the data file is known, it is
created (any old one of that name already in existence will be
purged first) and then the program is listed again, this time with
the lines (as strings) being printed out to the data file.

GET opens the data file, reads a string, copies the string to *
the input buffer INPBUF, then calls the PARSER, which will parse x
the line and edit it into the program, if no errors occur. If a *
parse error occurs, an exclamation point is inserted into the line%
after the line number and the line is parsed again as a comment. ¥
GET has to create a dummy string variable area in the binary
program for the strings to be read into, because ROSTR. does a
call to STOST before it returns, and STOST expects all the usual
information on the stack and an associated variable area Cin
other words, we have to trick the system when we call RDESTR.),

KO 2K K K K K K K K XK K XK XK K kK

X K K XK XK

RUNTIM BYT 0,0

PRRSE BYT 0,0

ERMSG BYT 377,377

NAM 41, SAYG SET UP THE PROGRAM CONTROL BLOCK

DEF RUNTIM PTR TO THE RUNTIME ADDRESSES

DEF TOKS PTR TO THE KEYWORDS

DEF PARSE PTR TO0 THE PARSE ADDRESSES

DEF ERMSG PTR TO THE ERROR MESSAGE TRABLE
DEF INIT PTR TO THE INITIALIZATION ROUTINE

DUMMY RUNTIME ADDRESS FOR TOK# O

DEF SRAVE. RUNTIME ADDRESS FOR TOK# 1
DEF REVISON. RUNTIME RADDRESS FOR TOK# 2
DEF GET.

RUNTIME ADDRESS FOR TOK# 3

DUMMY PARSE ADDRESS FOR TOK# O

PARSE ADDRESS FOR TOK# 1

DUMMY PARSE ADDRESS FOR TOK# 3

PARSE ADDRESS FOR TOK# 3

TERMINRTE RELOCATION AND ERROR TABLE

)
DEF SAVPARS
BYT 0,0
DEF GETPARS

INIT RTN NO INITIALIZATION
TOKS ASP "SAVE" KEYWORD #1
ASP "GET SAVE" KEYWORD #2
ASP “GET" KEYWORD #3
BYT 377 TERMINATE KEYWORD TRBLE

Section 7: Sample Binary Programs

1480 !

* * 3 ¢ %% %
1490 SAVPARS PUBD R43,+RE | SAVE CURRENT TOKEN

1500 JSB =STREX+ ! GET THE FILE NAME

1510 JEN OK1 ! JIF IT WAS THERE

1520 ERR POBD R43, -R6 ! ELSE CLEAN UP STACK

1530 JSB =ERROR+ | REPORT THE ERROR

1540 BYT 88D ! BAD STRTEMENT

1550 OK1 CMB R14,=54 | COMMR?

1560 JNZ PARSCOMN ! JIF NO LINE NUMBERS

1570 JSB =GO12N ! ELSE GET ONE OR TWO LINE NUMBERS
1580 LDBI RSB, =PTR2+ ! CLEAN UP PARSE STREAM

1590 PARSCOMN LDM RS6,=41,371 ! BPGM# RND SYSTEM TOKEN

1600 POBD RSS, -R6 | RECOVER BPGM TOKEN #

1610 STMI RSS5, =PTR2- ! STORE THEM OUT TO THE PARSE STRERAM
1620 RTN ! DONE

1630 ! 3 3 xxx
1640 GETPARS PUBD R43,+R6 ! SAVE THE INCOMING TOKEN

1650 JSB =STREX+ ! GET THE FILE NAME

1660 JEZ ERR ! JIF NOT THERE

1670 JMP PARSCOMN | ELSE FINISH UP

1680 ! 3

1690 BYT 241 ! BASIC STATEMENT, LEGAL AFTER THEN
1700 SAVE. JSB =CLEAR. ! CLERR THE CRT

1710 LDMD R10, =BINTRB ! GET OUR BRASE RADDRESS

1720 LDM R26, =SAVING ! GET THE RELATIVE ADDRESS OF MSG
1730 ADM R26,R10 | MAKE IT ABSOLUTE

1740 LDM R36,=20,0 | LORD THE LENGTH OF THE MSG

1750 JSB =0UTSTR t OUTPUT THE MSG

1760 LDMD R41,=IDTRFC ! SAVE THE REAL HOOK CONTENTS
1770 STMD R41,X10,SAYIOTFC ! STORE IT AWAY

1780 LDMD R40, =SCTEMP ! SAVE THE REAL SELECT CODE

1730 STMD R40,X10,SAVSCTEM ! STORE IT AWAY

1800 ~ LDM R?2,=231,231,11,0,0,0 ! LOAD DEFRULT LIST PARAMETERS
1810 STMD R?72, =LLDCOM SET THEM

1820 LDM R20,R12 COPY STACK POINTER

1830 SBM R20,=5,0 TAKE OFF STRING STUFF

1840 CMMD R20, =TOS ANYTHING ELSE THERE?

1850 JZR DO-IT JIF NO, USE DEFAULTS

1860 JSB =ONEI ELSE GET ONE NUMBER OFF

1870 LDM R20,R12 COPY STACK POINTER

1880 SBM R20,=5,0 ADJUST FOR STRING STUFF

18380 CMMD R20,=TO0S ANY MORE?

1800 JZR STOLIN1 JIF NO

1810 STMD R45, =LLDCOM ELSE SET LAST LLINE DECOMPILE
1920 JSB =ONEI GET THE FIRST LINE

'
1
|
!
1
!
|
|
|
!
!
1

1830 STOLIN1 STMD R45, =FLDCOM

1940 DO-IT POMD R43,-R12 |

1
|
1
!
1
!
1
!
1
!
|
1
|

1850 STMD R43,X10,FILENAME
1860 CLM RSO

1870 LDB RS?7,=10C
1880 PUMD RS0, +R1Z
1880 PUMD R43,+R12z
2000 PUMD R10, +R6
2010 JSB =ROMJSB

2020 DEF RSSIG.

2030 VAL MSROM#

2040 POMD R10, -RE
2050 CMB R17, =300
2060 JNC ITSTHERE
2070 LDBD R20, =ERRORS

SET THE FIRST LINE DECOMPILE
GET THE STRING

SAVE IT AWRY

SET UP FOR A FLOARTING POINT 1
THAT FINISHES IT

PUSH T0 STRCK FOR RSSIGN# 1 TO
PUSH FILE NAME BACK

SAVE OUR BASE RDDRESS

SELECT THE MSTORRGE ROM

ASSIGN BUFFER # 1 TO FILE

ROM TO SELECT

RECOVER OUR BRSE

ANY ERRORS?

JIF NO, IT WAS THERE AND DATA FILE
GET RERSCN

Section 7: Sample Binary Programs

2080 CMB R20, =67D |
2090 JZR CREATIT !
2100 GTO RESTORE !
2110 ITSTHERE PUMD R10,+R6 !
2120 STMD R12,=T0S !
2130 LDMD R?3,X10,FILENAME !
2140 PUMD R?3,+R12 !
2150 JSB =ROMJSB |
2180 DEF MSPUR. I
2170 VAL MSROM# !
2180 POMD R10, -R6 i
2180 JMP CRERTIT !
2200 CALCRTN FOMD R10, -RE !
2210 GTO RESTORE

2220 CREATIT PUMD R10, +RE !
2230 ANM R17, =77 !
2240 CLB R20 !
2250 STBD R20, =ERRORS !
2260 LDM R3B, =COUNT i
2270 ADM R36,R10 !
2280 STM R36,R45 !
2290 LDB R47,=236 |
2300 LDB R44,=316 |
2310 STMD R44,=I0TRFC !
2320 LDMD R?72, =LLDCOM I
2330 PUMD R?72, +R6 !
2340 CLM R70 I
2350 STMD R?70, =SCTEMP !
2360 STMD R?5, =NXTDAT !
2370 PUBD R1B, +R6 !
2380 LDB R1B, =2 |
2390 JSB =LSSET !
2400 POBD R16, -R6 !
2410 POMD R?2, -R6 !
2420 STMD R?72, =LLDCOM !
2430 CLB R50 |
2440 LDMD R45, =NXTDAT I
2450 JZR CALCRTN !
2460 ADM R45,R46 I
2470 ADM R45,R46 !
2480 ADM R45,R46 !
2490 ADM R45,=3,0,0 !
2500 TSB R45 !
2510 JZR NOINC !
2520 ICM R46 !
2530 NOINC LDM RSS,R46 !
2540 JSB =CONBI3 !
2550 POMD R10, -RB |
2560 PUMD R10, +R6 !
2570 LDMD RS53,X10,FILENAME |
2580 PUMD R53,+R12 |
2580 PUMD R40,+R12 !
2600 LCM RS4,=377,56C,2C,0 !
2610 PUMD R50, +R12 !
2620 JSB =ROMJSB !
2630 DEF MSCRE. !
2640 VAL MSROM# !
2650 POMD R10, -RE !
2660 CMB R17,=300 !

FILE NRME ERROR?

JIF IT WASN’T THERE

ELSE BRIL OUT

SAVE QUR BRSE

MAKE SURE STACK LOOKS GOOD
GET THE FILE NAME BACK
PUSH IT TO THE STACK
SELECT THE ROM

PURGE THE FILE

ROM TO SELECT

RECOVER OUR BASE ADDRESS
CONTINUE

RECOVER BARSE

SAVE OUR BASE

CLEAN UP THE ERROR FLRG

AND THE OTHER ONE

0UT IN RAM

GET THE REL ADDRESS OF ROUTINE

MAKE IT ABSOLUTE

SET IT

LOAD A RTN OPCODE

LOAD A JSB OPCODE

TAKE THE HOOK

SAVE LIST POINTERS
ON THE RTN STACK

ZERO THE SELECT CODE

SET THE SELECT CODE

INITIALIZE BYTE COUNT TO O

SAYE CSTAT

FAKE RUN MODE

LIST THE PROGRAM

RESTORE CSTRT

RESTORE THE LIST POINTERS

RESET FIRST/LAST LINE POINTERS

FOR THE MULTI-BYTE ADDS

GET THE BYTE COUNT

JIF NOTHING THERE

WE NEED TO ADD THREE BYTES FOR EACH
RECORD BECAUSE OF THE HERDER USED EACH
TIME A STRING CROSSES RECORD BOUNDARY

AN EXTRA THREE

IS IT 2ERO?

JIF YES

ELSE ROUND IT UP

SET IT FOR CGNBI3

CONVERT IT TO FLOATING-POINT

RECOVER OUR BRSE

SAVE IT RGRIN

GET THE FILE NAME

PUSH IT TO STACK

PUSH THE NUMBER OF RECORDS DESIRED

MAKE 258 BYTE RECORDS

PUSH IT TO THE STACK

SELECT THE ROM

CREATE THE FILE

ROM &

RECOVER OUR BRSE

ANY ERRORS ON THE CRERTE?

Section 7: Sample Binary Programs

2670
2680
2680
2700
2710
2720
2730
2740
2750
2780
2770
2780
2780
2800
2810
2820
2830
2840
2850
2860
2870
2880
2880
2900
2810
2920
2930
2940
28S0
2860
2870
2880
2880
3000
3010
3020
3030
3040
3050
3080
3070
3080
3080
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3220
3230
3240

%%

JCY SAVEX | JIF YES
PUMD R10,+RB | SAVE OUR BRSE
JSB X10, ASNPRT | ASSIGN THE BUFFER AND DO THE MSPRNT
POMD R10, -RE | RECOVER OUR BRSE
CMB R17, =300 i ANY ERRORS IN THE ASSIGN?
JNC PRINT | JIF NO
SAVEX GTO RESTORE ! BRIL OUT
ASNPRT STMD R12,=TOS | MAKE SURE STACK LOOKS GOOD
CLM RS0 | FIX UP FOR REAL 1
LDB R57,=10C
PUMD RSO, +R12 | PUSH IT TO THE STACK
LDOMD RS3,X10,FILENAME | GET THE FILE NAME
PUMD RS53,+R12 | PUSH IT TO THE STARCK
JSB =ROMISB | SELECT THE ROM
DEF RSSIG. | ASSIGN THE BUFFER
VAL MSROM# | ROM#
CMB R17, =300 | ANY ERRORS?
JCY ASNRTN ! JIF YES, DO NO MORE
CLM R40 | ELSE MAKE R 1
LDB R47,=10C ! (FLORTING POINT 1)
PUMD R40,+R12 | PUSH IT TO THE STACK
JSB =ROMISB | SELECT THE ROM
DEF MSPRNT | DO THE READ#
VAL MSROM# | ROM &
ASNRTN RTN | DONE
PRINT LDM R36, =SAYERECS | GET THE REL ADDRESS OF OUR ROUTINE
ADM R36,R10 | MAKE IT ABSOLUTE
STM R3E,R4S | SET IT
LDB R47, =236 { LOAD R RTN OPCODE
LDB R44,=316 | LORD R jSB OPCODE
STMD R44,=I0TRFC | TAKE THE HOOK
PUBD R16,+R6 | SRAVE CSTAT
LDB R1B, =2 | FRKE RUN MODE
PUMD R10, +RE | SAVE OUR BRSE
JSB =LSSET | LIST AND PRINT# IT
CLM R38 ! LINE LEN OF O
POMD R10, -RE | RECOVER OUR BRSE
PUMD R10, +R6 | SAVE IT AGRIN
JSB X10,SAVERECS | PRINT A NULL STRING AT THE END
JSB =ROMJSB ! SELECT THE ROM
DEF PREOL. { DO THE END OF LINE PRINTING
VAL MSROMs | ROM #
POMD R10, -RB | RECOVER OUR BRSE
POBD R16, -RB ! RESTORE CSTAT
JSB %10, CLOSE | CLOSE THE FILE
RESTORE LDMD R?71,%10,SAVIOTFC ! GET THE OLD HOOK
STMD R?1,=I0TRFC | RESTORE IT
LDMD R70,%10,SAYSCTEM | GET THE OLD SELECT CODE
STMD R70, =SCTEMP | RESTORE IT
FINMSG JSB =CLERR. ! CLERR THE CRT
LDM R26, =MESAGE | LOAD THE ADDRESS OF THE MSG
ADM R26,R10 | MRKE IT RBSOLUTE
LDM R3B,=4,0 | LOAD THE LEN
JSB =OUTSTR | OUTPUT THE STRING
RTN | DONE
MESRGE ASC " DONE"
| %% 3 *
CLOSE CLM R40 | NEED ANOTHER 1

Section 7: Sample Binary Programs

3250 LDB R47,=10C I FINISH THE 1

3260 PUMD R40,+R12 I PUSH TO STACK

3270 LDM R46,=1,0 ! LENGTH OF THE ‘"'x"

3280 PUMD R4E,+R12 ! PUSH IT TO STACK

3290 LDM R4S, =STAR ! ADDRESS OF THE RASTERISK
3300 BYT O ! NEED A THREE BYTE RDDRESS
3310 ADM R45,R10 ! MARKE IT RBSOLUTE

3320 CLB R47 | CLEAN UP THE MS BYTE
3330 PUMD R45,+R12 ! PUSH THE ADDRESS

3340 PUMD R10, +R6 | SAVE OUR BASE

3350 JSB =ROMJSB ! SELECT THE ROM

3360 DEF RSSIG. ! CLOSE THE BUFFER

3370 VAL MSROM# | ROM# TO SELECT

3380 POMD R10, -R6 ! RECOVER THE BRSE

3390 RTN | DONE

3400 | 3 *

3410 COUNT BIN ! FOR THE MATH

3420 CLB R40 t FOR THE MULTI-BYTE RDD
3430 ADM R36,=4,0 ! ADD SOME FOR THE HEADER
3440 LDMD R4S, =NXTDAT ! GET THE PREVIOUS COUNT
3450 ADM R45,R36 ! ADD THE CURRENT LINE LEN
3480 STMD R4S, =NXTDART ! SAVE THE NEW COUNT

3470 RTN | DONE

3480 ! *

3480 SRAVERECS
3500

3510

3520

3530

3540

3550 SAVLOOP
3560

3570

3580

3590

3600

3610

3620 PRINT-IT
3630
3640
3650
3660 !%*

PUMD R36,+R1Z
STM R28,R24
ADM R26,R36
STM R26,R45
CLB R47

PUMD R4S, +R1Z
CMM R24,R2E
JCY PRINT-IT
POBD R30, -R2E
LDBD R31,R24
STBD R31,R26
PUBD R30, +R24
JMP SAVLOOP
JSB =ROMISB
DEF PRSTR,
VAL MSROMs
RTN

PUSH THE LEN OF THE LINE

COPY OF START

MOVE TO END OF STRING

GET THE RDDRESS

CLEAR THE MOST SIGNIFICANT BYTE

PUSH THE ADDRESS
DONE?

JIF YES

FETCH LAST BYTE
FETCH FIRST BYTE
SWAP THEM

DITTO

LOOP TIL DONE
SELECT THE ROM
PRINT THE STRING
ROM#

3670
3680 GET.
3880
3700
3710
3720
3730
3740
3750
3760
3770
3780
3780
3800
3810 BIN1
3820

BYT 141

BIN

LDMD R10, =BINTRB
POMD R43,-R1Z

STMD R43,X10, FILENAME

CLB R16

JSB =FXLEN .

JSB =CLERR.

LDM R28B, =GETTING
ADMD RZ6, =BINTRB
LDM R36,=17,0
JSB =QUTSTR

JSB =DECURZ

JSB =DNCURS

LDM R10,R4

BIN

BASIC STATEMENT, LEGAL HFTEé THEN

FOR RDDRESS MATH
LET’S GET OUR BRSE
GET THE FILE NAME
SAVE IT RWAY

MAKE SURE THE PROGRAM’S DEALLOCATED

CLEAR THE SCREEN

GET ADDRESS OF MESSAGE

MAKE IT ABSOLUTE

LORD THE LENGTH OF THE MESSAGE

OUTPUT THE MESSAGE

GET RID OF THE CURSOR

MOVE DOWN ONE LINE
GET THE PC

GOOD FOR ADDRESS MATH

Section 7: Sample Binary Programs

4420
4430
4440
4450
4460
4470
4480
4480
4500
4510
4520

4530

4540
4550
4580
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4870
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4880
4870
4880
4880
4900
4810
4920
4830
4940
4850
43860
4870
4980
4880

SWAP

GOTBUF

PARSIT

FIXIT

MOVE-1

LDMD R24,R26
JZR GOTBUF

POBD R32,-R26
PUBD R32,+R30
DCM R24

INZ SWAP

LDM R38&,R30
SBM R36, =INPBUF

STMD R36,X10, BUFLEN

LDB R24,=15

PUBD R24,+R30
PUBD R2S,+R6

CMB R36,=81D

JNC PARSIT

JSB =DNCURS

CLB R16

LDMD R20Q, =RASNTBL
PUMD R20, +RE
LDMD R42, =LAVAIL
PUMD R42,+R6
LDMD R42, =RTNSTK
PUMD R42,+R6
LDMD R45, =LKAMEM
PUMD R45,+R6

LDMD R4S, =LAVAIL

STMD R45, =LKAMEM
JSB =RSETGO

JSB =PARSER

POMD R45, -R6
STMD R45, =LWAMEM
POMD R42, -R6
STMD R42,=RTNSTK
POMD R42,-RB
STMD R42,=LAVAIL
POMD R20, -RE
STMD R20, =ASNTBL
LDB R18, =1

CMB R17, =300

JCY FIXIT

BIN

DCM RS

GTO OKGET

POBD R3B, -R6

JNZ ERREXIT

ICB R38

PUBD R38,+RE

ANM R17, =77

CLM R40

STMD R40, =ERLIN#
STBD R40, =ERRTYP
LDM R24, =INPBUF
STM R24,R22

ICM R24

POBD R20,+R24
PUBD R20,+R22
CMB R20, =40

JZR MOVE-1

JSB =DIGIT

GET THE LEN OF THE STRING RERD

JIF NO CHARACTERS

GET THE NEXT CHARRCTER
PUSH IT TO INPUT BUFFER
DECREMENT LEN COUNT

JIF MORE TO DO

COPY END OF BUFFER PTR
MINUS THE START OF BUFFER

SAVE IN CASE OF ERROR FOR PRINT

LDAD A CR CHARACTER
PUSH IT OUT FOR PARSER

SAVE A O FLAG ON RE FOR ERROR TRAP
DO WE NEED TO MOVE THE CURSOR DOWN?

JIF NO
MOVE CURSOR DOWN A ROW
FOR LINEDR
SAVE ASSIGN BUFFER POINTER
ON THE RB STACK
SAVE SOME SYSTEM PRIWTERS
ON THE RE STACK
SAVE SOME MORE
SAME PLACE
SAVE SOME MORE
AGAIN
MOVE LWAMEM
UP TO LAVAIL
RESET EVERYTHING UP
TRY TO PARSE THE LINE
START RECOVERING THINGS

ANY ERRORS?

JIF YES

CONFIRM MATH MODE

THROW AWARY ERROR TRAP FLAG
LooP

RECOVER ERROR TRAP FLAG
JIF TWO ERRORS

SET FLRAG

PUT IT BACK

CLEAR ERROR FLAGS

CLERR ERROR FLAGS

CLERR ERROR FLAGS

CLEAR ERROR FLAGS

GET RDDRESS OF BUFFER
COPY

MOVE RHERD TO THE FIRST CHARARCTER

GET THE FIRST CHRARRCTER
MOVE IT BACK ONE PLACE
A BLANK ?

JIF YES

IS IT A DIGIT?

Section 7: Sample Binary Programs

3830

3840

3850

3860

3870

3880

3830

3900 OKGET
3310

3920

3930

3940

3850
3860

3870

3880

3990

4000

4010 GETDON
4020

4030

4040

4050

4060 EOFERR
4070

4080

4080
4100 BADERR
4110 BINS
4120

4130

4140

4150

4160 OKGET2
4170

4180

4180

4200
4210

4220

4230

4240

4250

4280
4270
4280
4280

4300

4310

4320

4330

4340

4350

4360

4370
4380

4380

4400
4410

SBM
STMD
JSB
CMB
JINC
LDMD
GTO
LDM
BIN
SBM
STMD
LDMD
SBMD
CMM
Jcy
JSB
BYT
GTO
LDBD
CMB
JZR
CMB
JINZ
CLM
STMD
STBD

R10, =BIN1
R10, *BINTAB
%10, ASNPRT
R17, =300
OKGET

R10, =BINTAB
FINMSG

R10, R4

R10, =OKGET
R10, =BINTAB
R45, =NXTMEM
R4S, =LAVAIL

R45,=0,2,0

OKGET2

=ERROR

18D

FINMSG
R40, =ERRORS

R40, =107

EOFERR

R40,=110

BADERR

R40
R40, =ERLINS#
R40, =ERRTYP

ANM R17, =77

JSB
LDM
BIN
SBM
JSB
GTO
LDMD
LDM
BYT
ADMD
PUMD

=ST240+
R10,R4

R10, =BINS
%10, CLOSE
FINMSG
R12,=T0S
R45, =BUFFER
0

R4S, =BINTRB
R4S, +R1Z

!
|
!
1
!
!
!
t
)
t
1
!
1
t
1
¢
!
[
!
!
|
|
!
!
t
|
|
]
1
]
!
|
]
]
1
1
]

GET OUR BASE ADDRESS

RESTORE BINTAB CASE "FXLEN’ DESTROYED
TRY TO OPEN THE FILE

ANY ERRORS?

JIF NO, IT’S THERE

GET OUR BASE

OUTPUT THE MESSAGE

GET PC

GET OUR BASE ADDRESS

SET IT IN CASE PARSING BLEW IT AWAY
GET HIGH ADDRESS OF AVAILABLE SPACE
GET AYAILABLE MEMORY COUNT

ENOUGH MEMORY LEFT?

JIF YES

ELSE REPORT ERROR

MEM OVF

OUTPUT “DONE’ MESSAGE

GET REASON FOR ERROR

END OF FILE ERROR?

JIF YES

END OF RECORD ERROR?

JIF NO, LET IT GO

ELSE CLEAR ERROR FLAGS

AND IN XCOM
SET IMMEDIATE BREAK BITS
COPY OF PC
FOR ADDRESS MATH
GET BASE ADDRESS
CLOSE THE FILE
OUTPUT THE “DONE’ MESSAGE
RESET STACK POINTER
GET THE ADDRESS OF THE BUFFER
AS A THREE BYTE QUANTITY
MAKE IT ABSOLUTE
PUSH TO STRCK

LDM RS1,=240,0,0,0,0,0,200 | TOTAL SIZE, NAME PTR, HEADER
R

PUMD
LDM
PUMD
PUBD
PUMD
PUMD
PUMD
PUMD
STMD
JSB
DEF
VAL
CMB
JCy
LDMD
LDMD
BIN
LDM
LDB
PUBD

RS1, -R45
RE4,=0,0,240,0
RE4, -R45
RS7,+R12

REE, +R1Z

R45, +R12

REE, +R1Z

R45, +R12
R45, X10, BUFADR
“ROMJSB

RDSTR.

MSROM#

R17,=300

GETDON

R10, *BINTRB
R26, X10, BUFRDR

R30, =INPBUF
R32, =40
R3Z, +R30

1
1
!
|
]
!
1
]
)
|
]
|
!
]
|

FAKE VARIABLE HEADER AREA
CURRENT LEN, MAX LEN
MORE VARIABLE HERADER STUFF
PUSH STUFF FOR STOST: HERDER
MAX LEN STRING VAR 0, 1)

ADDRESS OF FIRST BYTE OF $ VAR

MAX LEN TO STORE INTO
ADDRESS TO STORE INTO
SAVE BUFFER ADDRESS
CALL A BANK SELECT ROM
READ A STRING FROM THE FILE
1778 THE MASS STORAGE ROM
ANY ERRORS ?
JIF YES
ELSE GET BASE ADDRESS
GET RDDRESS OF BUFFER

GET ADDRESS OF INPUT BUFFER
LOAD A BLANK
PUSH IT TO BUFFER

Section 7: Sample Binary Programs

5000 JEN MOVE-1 t JIF YES

5010 LDB R20, =41 ! ELSE LORD R |

5020 PUBD R20, -R22 | PUSH IT TO THE HOLE

5030 JSB =PRINT. | SET THE SCTEMP SELECT CODE
5040 BIN3 LDM R10,R4 ! GET PC

5050 BIN | CALCULATE BASE IN CASE PARSER DESTROYED
5080 SBM R10,=BINZ ! BINTAB

5070 LDMD R38,X10, BUFLEN ! GET LENGTH OF BUFFER

5080 LDM R26, =INPBUF | GET THE START RDDRESS
5080 JSB =DRV12. ! PRINT THE LINE

5100 GTO PARSIT t GOT PARSE IT RS A COMMENT
5110 ERREXIT LDM R10,R4 ! GET CURRENT RADDRESS

5120 BIN ! FOR RDDRESS MATH

5130 SBM R10, =ERREXIT ! GET BPGM’S BASE RDDRESS
5140 GTO FINMSG | GO DISPLAY “DONE’ MESSAGE
5150 ! 3 3

S160 BYT 0,56

5170 REVISON. BIN | FOR ADDRESS MATH

5180 LDM R43,=40D,0 | LEN OF STRING

$180 DEF DATE | ADDRESS AS TWO BYTE REL
5200 BYT O | THERE’S THE THIRD BYTE
5210 ADMD R45, =BINTAB ! NOW IT’S RBSOLUTE

5220 PUMD R43,+R12Z | PUSH TO RETURN STACK

5230 RTN ! DONE

5240 ASC "81.202 .veR 28381 .oC drakcaP-ttelweH Jc("
5250 DRTE BSZ O

5260 ! EXERERX XXX XRER

5270 éHVING ASC "SAVE IN PROGRESS"
5280 GETTING ASC "GET IN PROGRESS"

5230 DONE ASC " DONE"
5300 ASC " %"
5310 STAR BSZ O

5320 SAVIOTFC BSZ 7
5330 SAVSCTEM BSZ 10
5340 FILENAME BSZ S
5350 BUFADR BSZ 3
2
3

5360 BUFLEN BSZ

5370 BSZ 300
5380 BUFFER BSZ O
5390 ! KEEKKKRK XREEXX

5400 ASNTBL DAD 100125
5410 ASSIG. DAD 65466
5420 BINTRB DAD 104070
5430 CALYRB DAD 100030
$440 CLERR. DAD 14225
5450 CONBI3 DAD 4516
5460 DECURZ DAD 13467
5470 DIGIT DRD 21710
5480 DNCURS DAD 13751
5430 DRV1Z. DAD 6722
5500 ERLIN# DAD 100114
5510 ERROR DAD 10223
5520 ERROR+ DAD 10220
5530 ERRORS DAD 100123
5540 ERRTYP DAD 100124
5550 FLDCOM DAD 100053
5560 FXLEN DRD 31001
5570 GO12N DAD 24707

Section 7: Sample Binary Programs

5580
5530
5500
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5730
5800
5810
5820
5830
5840
5850
5860

INPBUF
I0OTRFC
LAVAIL
LLpcomM
LSSET
LWAMEM
MSCRE .
MSPRNT
MSPUR.
MSROM#
NXTDRT
NXTMEM
ONEI
OUTSTR
PARSER
PREOL .
PRINT.
PRSTR.
PTRZ-
PTR2+
RDSTR.
ROMJSB
RSETGO
RTNSTK
SCTEMP
ST240+
STREX+
TO0S
FIN

DARD
DAD
DARD
DAD
DRD
DRD
DAD
DRD
DAD
DAD
DRD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DRD
DAD
DAD
DARD
DARD
DAD
DARD
DAD
DRD
FIN

100236
103643
100025
100050
6445
100041
65176
86221
64604
320
101845
100022
SB736
14020
20000
70464
71332
66662
177715
177716
67314
6223
5700
100033
101721
21067
23721
101744

7-29/7-30

Section
VIII

REFERENCE MATERIAL

8.1 Overview
This section consists of:
® An alphabetical listing of the global file.
® System operation and routines.
e Parsing flow diagrams.
e General hook flowcharts for the following:
CHIDLE
DCIDLE
I0SP
IOTRFC
IRQ20
KYIDLE
PRSIDL
RMIDLE
SPAR@ and SPARL
e System run time table tokens and attributes.
e Error messages.
e The assembler instruction set.
® An assembler instruction coding table.

® A keycode table.

® Some programming hints.

Section 8: Reference Material

8.2 The Global File

The global file as it appears on the disc is listed here. It gives the
permanent addresses in memory of many of the system routines. The
global file also contains locations of system pointers, buffers,
variables, and constants which may be referenced in a binary program.

Although it is usually more convenient, it is not necessary to use the
file GLOBAL as a label table. You may create your own on a disc, or you
may specify the addresses of the system routines called in a binary
program by adding them to the label table within the program.

Name Address Description
1000 ! 3 KK KKK ¢ XX ERR
1010 I* *
1020 !* HP-87 GLOBAL FILE FOR USE WITH THE ASSEMBLER ROM. *
1030 % *
1040 % (c) 1882 Hewlett-Packard Co. *
1050 !* *
1060 ! *
1070 !%x * : * *%% ;
1080 |%NOTE: Beware of looking up a routine in the gleobal file and using ¥
1090 !%it without also loocking up the documentation. This is especially *
1100 !%true if the routine has an entry point address between E0000 and *
1110 1%?77777, as it may need to be called through ROMJSB. *
1120 ! 3 %% %% 3
1130 GLO
1140 RBSS DAD 54525 fABS FUNCTION RUNTIME CODE

1150 RCTB-3 DRAD 177515
1160 ACTB-6 DRD 177512
1170 RCTBAS DAD 177520
1180 ACTBS+ DAD 177521
1180 ACTMSU DAD 103560
1200 RDD1O DRD 53030

1
! I,0 MODULE RADDRESSES

! I,0 MODULE ADDRESSES

! I~,0 MODULE RDDRESSES

{ 1,0 MODULE RDDRESSES

! ACTIVE MSUS FOR MASS STORAGE ROM

! ADD TWO REAL NUMBERS IN R40 AND RS0

1210 RDDROI DRD 52745 ! RDD 2 REAL OR INTEGER NUMBERS OFF STACK
1220 RGLBAS DAD 1034186 ! PLOTTER ROM STOLEN RAM BASE ADDRESS

1230 ALFA DAD 21656 | CHECK TO SEE IF R20 IS ASCII A-Z OR a-z
1240 ALFAL. DRD 12466 ! FORCE ALPHA ALL MODE

1250 ALPHA DAD 12542 ! FORCE ALPHA OR ALPHA ALL IF NOT GRAPHALL
1260 ALPHA. DAD 12413 ! FORCE ALPHA NORMAL

1270 RAPRBAS DAD 103420 { ADYANCED PROG ROM STOLEN RAM BASE ADDR.
1280 RASIZE DAD 104744 | # OF BYTES IN ALPHR (4K OR 1BK)

1280 ASMBARS DAD 103426 | ASSEMBLER ROM

1300 ASNTBL DAD 100125 | 24 BYTES RSSIGN FILES

1310 RSSIG. DRAD 85466 ! ASSIGN A DISC BUFFER TO A FILE

1320 ATNZ. DAD 77157 ! ATNZ FUNCTION

1330 RUTOD# DAD 100103 ! AUTO LINE # LAST VAL

Section 8: Reference Material

Name

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1580
1600
1810
1620
1630
1840
1650
1680
16870
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1780
1800
1810
1820
1830

RUTOI
BEEP.
BINBRS
BINTRB
BKSPC
BLKLIN
BOS
BOVAR
BPINI
BSRBRS
BYTCRT
CALVRB
CEIL10O
CHIDLE
CHKSTS
CHSROI
CLERR.
CLKDAT
CLKSTS
CLREOL
CNTRTR
COLUMN
COMMAS
COMMA,
CONBI3
CONBIN
CONCA.
CONINT
CONTR.
cos10
CoT10
COUNTK
CPRBRS
CRT.
CRTBAD
CRTBLK
CRTBYT
CRTDAT
CRTINT
CRTLST
CRTPOF
CRTPUP
CRTRAM
CRTSAD
CRTSTS
CRTUNW
CRTWPO
CRTURS
Cs.C.
CSEC10

Address

DARD
DAD
DAD
DAD
DAD
DAD
DRD
DAD
DAD
DRD
DRD
DAD
DAD
DAD
DRD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DARD
DAD
DAD
DAD
DAD
DAD
DRD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DRD
DAD
DARD
DAD
DRD
DAD
DAD
DAD
DAD

100108
10361
104073
104070
11520
14165
105350
100014
6113
103422
14004
100030
54412
103670
13204
52672
14225
177413
177412
13447
13245
14206
72148
72265
45186
4401
76366
45116
61620
54353
54333
14411
103432
57307
1772701
12248
100206
177703
12176
101101
12334
12341
100210
177700
177702
12360
12374
101855
100212
54300

Description

AUTO LINE # INC

BEEP STRTEMENT

5 BP’S ADDRESSES

3 BYTES BP BARSE ARDDRS.

BACKSPACE KEY RUNTIME

BLANK LINE ON CRT

FIXED SIZE R12 STACK

BEGIN OF LOCAL VAR

CALL INIT ROUTINES IN BINARRY PROGRAMS
PROGRAM DEVELOPEMENT ROM STOLEN RAM BASE
SEND RDDRESS TO CRTBAD AND CRTBYT
START OF CALC YARIABLES

CEIL FUNCTION RUNTIME CODE

CHAR. EDITOR INTERCEPT RAM HOOK
WARIT FOR CRT CONTROLLER NOT BUSY
CHANGE SIGN OF REAL OR INTEGER NUMBER
CLEAR ALPHA DISPLAY

CLOCK DRTA

CLOCK STATUS

CLEAR TO END OF LINE ON CRT

COUNT RETRACES (60 ~/ SECOND)

FIND WHRT COLUMN ON ALPHA DISPLAY
PRINT STRING,

PRINT NUMBER,

CONVERT 3-BYTE BINARY # TO REAL
CONVERT 2-BYTE BINARY # TO REAL
CONCATENATE TWO STRINGS

CONVERT A REAL # TO A 15-BIT SIGNED BIN.
I-0 MODULE “CONTROL’ STATEMENT
COSINE FUNCTION

COTANGENT FUNCTION

KEY REPEAT ROUTINE

CAPR ROM

/CRT 1S/ STATEMENT

CRT BYTE ADDRESS

FILL ALPHA MEMORY WITH CHR$(13)”s
CRT BYTE ADDRESS

CRT DATA

INITIALIZE CRT MEMORY

LINES ON CRT PAGE -1

POWER DOWN CRT HIGH VYOLTRGE

POWER UP CRT HIGH YOLTAGE

CRT START ADDRESS (COPY IN RAM)
CRT START ADDRESS I.0 ADDRESS

CRT STATUS I.0 ADDRESS

UNBLANK THE CRT

BLANK THE CRT

CRT STATUS IN RAM

CRT SELECT CODE (8 BYTES)
COSECANT FUNCTION

Section 8: Reference Material

Name Address Description

1840 CSIZE. DRD 66570
1850 CURS DAD 14030
1860 CURSON DAD 105347
1870 CVNUM DAD 72401
1880 DALLED DAD 101104
1890 DALLOC DRD 47123
1800 DRTE DAD 101133
1810 DRTE. DAD 32073
1920 DCIDLE DAD 104035
1830 DCLIN# DAD 34607
1940 DCSLOP DAD 35132
1850 DECUR2 DAD 13467
1960 DEFA+. DAD 615786
1870 DEFA-. DAD 61604
1880 DEFAUL DAD 100152
1880 DEFMSU DAD 103477
2000 DEG. DAD 62257
2010 DEG10 DAD 54736
2020 DFLAG DAD 104224
2030 DGHOOK DAD 104044
2040 DIGIT DAD 21710
2050 DISBUF DAD 100542
2060 DISP. DRD 71311
2070 DISPLN DAD 101136
2080 DISPTR DAD 100060
2090 DIV1O DAD 52441
2100 DIvV2 DRD 52436
2110 DMNDCR DAD 2517S
2120 DNCUR. DRD 13607
2130 DNCURS DAD 13751
2140 DRAW. DRD 64727
2150 DRG DAD 100160
2160 DRvV1Z. DRAD 6722
2170 EDMOD2 DAD 100122
2180 EMOVDN DAD 32161
2180 EMOVUP DAD 32231
2200 ENDSR DAD 14750
2210 EOQJ2 DAD 14525
2220 EOVAR DAD 100017
2230 EPS10 DRD 54722
2240 EQ$. DAD 3564
2250 EQ. DAD 62623
2260 ERBEND DAD 100542
2270 ERLIN# DRAD 100114
2280 ERNUM# DAD 100117
2280 ERRBP# DRD 103371
2300 ERRBUF DAD 100476
2310 ERROM# DAD 100121
2320 ERROR DAD 10224
2330 ERROR+ DAD 10220
2340 ERRORS DAD 100123
2350 ERRROM DAD 100120

7CSIZE” STRTEMENT

TURN CURSOR ON

CURSOR ON FLAG

FORMAT A REAL NUMBER FOR OUTPUT
DEALLOCATED FLAG

DE-ALLOCATE THE BASIC PROGRAM

JULIAN DAY YERR

DATE FUNCTION

DCOMPILE HOOK

DECOMPILE A BASIC PROGRAM LINE NUMBER
REVERSE A STRING FROM EXTENDED MEMORY
TURN CURSOR OFF

TURN MATH DEFRULTS ON

TURN MATH DEFAULTS OFF

DEFAULT ERROR FLRG

DEFAULT MSUS

PUTS THE COMPUTER IN DEGREES TRIG MODE
RADIANS TO DEGREES CONVERSION
DIRECTION FLRG FOR DISC READ/WRITE
DIGITIZE HOOK FOR CRT DIGITIZING

SEE IF R20 CONTAINS A DIGIT (ASCII CODE)
DISPLAY BUFFER

SET SELECT CODE TO CRT IS DEVICE

1 BYTE DISPLAY LINE LENGTH

DISP BUFFER PTR

DIVIDE 2 REAL NUMBERS IN R40 AND RSO
DIVIDE 2 REAL OR INTEGER NUMBERS ON STAK
DEMAND CARRIAGE RTN, BANG (!), DR @ SIGN
MOVE CURSOR DOWN ON CURRENT CRT PAGE
MOVE CURSOR DOWN IN ALPHA MEMORY

DRAW A LINE ON THE CRT

DEG/RAD/GRAD FLAG

OUTPUT VECTOR ROUTINE

EDITOR MODE (INSERT/REPLACE)

EXTENDED MEMORY MOVIN

EXTENDED MEMORY MOVUP

END OF SERVICE ROUTINE(FIX UP EMC’S DRP)
END OF JOB (TURN OFF KEY)

END OF LOCRL VARIABLE POINTER

EPS FUNCTION

COMPARE TWO STRINGS FOR EQUAL

COMPARE TWO NUMBERS FOR EQUAL

END ERROR BUFFER + 1

LINE# OF BRD LINE

ERROR NUMBER

BPGM # THAT REPORTS THE ERR

ERROR BUFFER (44 BYTES)

ROM# OF LAST ERROR

REPORT ERROR ROUTINE

REPORT ERROR AND THROW AWAY 1 RTN RDDR.
RUN TIME ERRORS

ROM# OF ERROR

Section 8: Reference Material

Name Address Description

2360 ERRSC DAD 101141
2370 ERRTYP DAD 100124
2380 ERTEMP DAD 104200
2380 EXEC DAD 72
2400 EXPS DAD 53174
2410 EXSTAT DRD 1?7426
2420 EXTFIL DAD 110010
2430 FRASTBS DAD 11565
2440 FBPGM DAD S0333
2450 FETAVA DRD 45505
2480 FETSVA DAD 4530S
2470 FILTYP DAD 101671
2480 FLDCOM DAD 100053
2430 FLIP DAD 14544
2500 FNAM DRD 103503
2510 FNAM+S DAD 103510
2520 FNDLIN DAD 32355
2530 FORMAR DAD 27034
2540 FPS DRD 54665
2550 FRAME. DAD 66165
2560 FWBIN DAD 100044
2570 FWCURR DAD 1000086
2580 FWPRGM DAD 100003
2580 FWROM DAD 110130 FWA USER PROGRAM ROMRAM
2600 FWUSER DAD 100000 FWA USER AREA

| ERROR SELECT CODE
i
]
]
]
]
1
1
]
]
|
]
}
1
]
]
]
]
1
]
]
]
]
1
|
2610 GSN DAD 24543 ! GET STRING & NUMERIC
1
1
1
1
1
1
1
1
1
]
]
]
]
]
]
]
]
]
]
]
]
1
]
1
]
|

ERROR TYPE

t2 BYTES TEMP

BEGINNING OF MAIN EXEC LOOP

EXP FUNCTION (e”X)

EXTENDED I0 STATUS

EXTENDED FILE TYPE TARBLE

FAST BRCKSPACE (SHIFTED BRCKSPACE KEY)
FIND BINARY PROGRAM (BY BPGM &)
FETCH ARRAY VARIABLE RADDRESS
FETCH SIMPLE VARIABLE ADDRESS

1 BYTE TAPE, TEMP

FIRST LINE DECOMPILE

TOGGLE THE KEYBOARD “FLIP- STATUS
FILE NRME 1ST HALF

FILE NAME 2ND HALF

FIND A BASIC PROGRAM LINE IN MEMORY
PRRSE AN ARRAY REFERENCE
FRACTIONAL PART FUNCTION

FRAME THE CRT

FWA USER BIN PROG

PTR TO CURRENT PGM

FWA PROGRAM ARER

2620 GS$N+NN DAD 24842 GET STRING & NUMERIC WITH OPTEONALS
2630 G/R DAD 116808 TOGGLE BETWEEN GRAPH AND ALPHA

2640 GO12N DRD 24707 GET 0, 1, DR 2 NUMERIC VALUES

2650 GO1N DAD 24726 GET O OR 1 NUMERIC VALUES

26860 GOOR2N DAD 24744
2670 G120R4 DAD 24772
2680 G1OR2N DAD 24761
2680 GCHAR DAD 216386

GET 0 OR 2 NUMERIC VALUES
GET 1, 2, OR 4 NUMERIC VYALUES
GET 1 OR 2 NUMERIC VALUES
GET A CHARACTER AT PARSE TIME

2700 GCLR. DAD 62214 CLEAR THE GRAPHICS CRT DISPLAY

2710 GEMINI DAD 104157 GEMINI FLAG

2720 GEQS. DAD 3667 COMPARE FOR GRERTER THAN OR EQUAL TO
2730 GEQ. DAD 62734 COMPARE TWO NUMBERS FOR >=

2740 GET) DAD 23450 GET A CLOSE PRARENTHESIS

2750 GETIN DAD 24557
2760 GET2N DAD 24830
2770 GET4N DRAD 24635
2780 GETCMA DRD 23477
2730 GETPR? DAD 24740
2800 GETPAR DRD 24562
2810 GINTDS DAD 177401
2820 GINTEN DAD 177400
2830 GLINE DRAD 104740
2840 GLOAD DAD 72510
2850 GNAM DAD 103515
2B60 GNAM+5 DRAD 103522
2870 GOTOSU DAD 30317

PARSE ONE NUMBER

PARSE TWO NUMBERS

PARSE FOUR NUMBERIC PARAMETERS

DEMAND A COMMA AT PARSE TIME

GET SOME OPTIONAL PARAMETERS

GET A SET NUMBER OF NUMERIC PARAMETERS
GLOBAL INTERRUPT DISABLE

GLOBAL INTERRUPT ENRBLE

NUMBER OF DOTS ON A LINE OF GRRPH SCREEN
’GLOAD” STATEMENT

FOR MASS: STORAGE COPY ,RENAME, ETC.

FOR MASS' STORAGE COPY, RENAME, ETC.
PARSE A GOTO/GOSUB LINE NUMBER OR LABEL

Section 8: Reference Material

Name

2880
2890
2800
2910
2920 -
2930
2940
2950
2860
2870
2980
2880
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3220
3230
3240
3250
3280
3270
3280
32380
3300
3310
3320
3330
3340
3350
3360
3370
3380
3380

GR$.
GR.
GRRD.
GRAFA.
GRAPH
GRAPH.
GSIZE
GSTOR.
HLFLIN
HMCURS
HORN
ICoS
IDRAW.
IMERR
IMOVE.
INCHR
INF10
INIT.
INPB-3
INPBUF
INPCOM
INPR10
INPTOS
INPTR
INPUT.
INTS
INTDIV
INTEGR
INTMUL
INTORL
INTRSC
I0BRSE
I0BITS
IODATA
IOINTC
10SP
IOSTAT
I0SW
IOTRFC
IPS
IPLOT.
IRQ20
IRQ20+
IRQPAD
IRQRTN
ISIN
ITAN
KEYCNT
KEYCOD
KEYHIT
KEYLA.
KEYSTS

Address

DAD
DAD
DAD
DAD
DARD
DAD
DAD
DARD
DAD
DAD
DAD
DARD
DAD
DAD
DAD
DARD
DAD
DARD
DRD
DAD
DAD
DAD
DAD
DAD
DRD
DAD
DAD
DAD
DAD
DAD
DRD
DAD
DAD
DARD
DAD
DRD
DAD
DARD
DAD
DAD
DAD
DAD
DAD
DARD
DAD
DAD
DAD
DAD
DARD
DAD
DAD
DAD

03614
62705
62274
12628
12560
12574
104742
2711
14110
13661
10400
77254
64706
103724
64643
14262
54321
1241
100233
100236
100167
101717
100204
101143
16314
54572
54601
21331
53673
57125
177500
103414
101140
177422
177421
103652
177420
100163
103643
54770
64660
103742
103751
103757
103760
77244
77264
100153
177403
101142
13360
177402

Description

COMPARE STRINGS FOR GRERTER THAN
COMPARE NUMBERS FOR GRERTER THAN
SET THE COMPUTER TO GRAD MOLDE

FORCE GRAPH ALL MODE

SWITCH TO GRAPH UNLESS IN ALPHA ALL
FORCE GRAPH NORMAL MODE

OF BYTES IN GRAPH SCREEN (12K OR 16K)
/GSTORE” STRATEMENT

DISP STRING WITHOUT CR AND LF

HOME CURSOR ON CURRENT CRT PAGE
LOWER LEVEL “BEEP” ENTRY POINT

ARC COSINE FUNCTION

IDRAW” STATEMENT

IMAGE ERROR INTERCEPT RAM HOOK
7IMOVE” STRTEMENT

RERD ONE CHARACTER IN FROM CRT MEMORY
INFINITY FUNCTION (RETURNS BIGGEST #)
ZINIT” KEY EXECUTION

3 PERMANENT BYTES IN FRONT OF INPBUF
PARSER INPUT BUFFER

INPUT COMPLETION ADDRESS

R10 SAVE DURING INPUT

INPUT TOP OF STAK

INPUT LINE POINTER

INPUT RUNTIME ROUTINE

INT FUNCTION

INTEGER DIVISION (N) RUNTIME

GET AN INTEGER AT PRRSE TIME
MULTIPLY TWO BINARY NUMBERS

CONVERT R TRGGED INTEGER TO A RERL
I-0 CARDS SELECT CODE ADDRESS

I-0 ROM BRASE RAM POINTER

1 BYTE I-0

1,0 DATA

I/0 CONTR-INTRUPT

1,0 SERVICE POINTER RAM HOOK

1,0 STRATUS

10 SERVICE WORD

7?7 BYTES TRAFFIC INTERCEPT

IP FUNCTION RUNTIME CODE

7IPLOT” STRTEMENT

I/0 INTERRUPT RAM HOOK

I/0 INTERRUPT RAM HOOK

I/0 INTERRUPT RAM HOOK

I-0 INTERRUPT RAM HOOK

ARC SINE FUNCTION

ARC TANGENT FUNCTION

KEYBOARD REPEAT COUNTER

KEYBOARD CODE AND EQJOB I~/0 ADDRESS
KEYBOARD ARSCII

KEY LABEL RUNTIME ROUTINE

KEYBOARD STARATUS I-0 ROUTINE

Section 8:

Name

3400
3410
3420
3430
3440
3450
3460
3470
3480
34890
3500
3510
3520
3530
3540
3550
3560
3570
3580
3580
3600
3610
3620
3630
3640
3650
3660
3670
3680
3680
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870

KEYTAB
KRPET1
KRPET2
KYIDLE
LABEL.
LASTIN
LAVAIL
LDIR.
LEGCA2
LEGCAL
LEGEN2
LEGEND
LEQS.
LEQ.
LINELN
LINET.
LIST.
LLDCOM
LLN-1
LLN-2
LNS

‘LNTYPE

LOGTS
LSTBUF
LSTDRT
LTS.
LT.
LTCUR.
LTCURS
LTYPEY
LWAMEM
MAX10
MBRSE
MIN10O
MLRD
MOD10
MODRDR
MOVCRS
MOVDN
MOVE .
MOVUP
MPY10
MPYROI
MSBASE
MSCRE .
MSHIGH
MSLOW
MSPRNT

3880 MSPUR,

3880
3800
3810

MSREN.
MSTIME
NARRE +

Reference Material

Address

DRD
DRD
DRD
DRD
DRD
DRD
DRD
DRD
DRD
DAD
DRD
DRD
DRD
DRD
DAD
DRD
DRD
DRD
DAD
DARD
DAD
DAD
DAD
DRD
DAD
DRD
DRD
DAD
DAD
DRD
DARD
DAD
DRD
DAD
DAD
DAD
DRD
DAD
DARD
DAD
DARD
DAD
DAD
DRD
DAD
DARD
DAD
DAD
DAD
DAD
DAD
DRD

102016
100154
100155
103677
67262
100475
100025
67052
101525
101405
101265
101145
3656
62662
101714
66336
6352
100050
104231
104233
52346
104750
52515
103200
101650
3635
62643
13623
13757
104537
100041
S6144
103424
56125
177424
52541
13255
13771
57172
64634
§7232
53357
53517
103412
651786
103764
103773
66221
64604
64724
104002
23461

Description

BASE ADDR KEY TABL

MAJOR KYBD REPERAT

MINOR KYBD REPEAT

KEYBOARRD INTERCEPT

LABEL’ STATEMENT

END OF INPUT BUFFER

LAST AYAIL WD IN PGM AREA

/LDIR’ STATEMENT

CALC KEYLRBELS (BTM ROW)>

CALC KEYLABELS (TOP ROW)

RUN KEYLABLES (BTM ROW)

RUN KEYLRBELS (TOP ROW)

COMPARE STRINGS FOR LESS THAN OR EQUAL
COMPARE NUMBERS FOR LESS THAN OR EQUAL
DEVICE LINE LENGTH

“LINE TYPE” STATEMENT

7LIST” STRATEMENT

LAST LINE DECOMPILE

PGSIZE - ONE LINE

PGSIZE - TWO LINES

NATURAL LOGARITHM FUNCTION

LINE TYPE POINTER TRBLE

BASE 10 LOGARITHM FUNCTION

LWA + 1 DISC BUFFER

LAST DATA ADDR. FOR DISC READ/WRITE
COMPARE STRINGS FOR LESS THAN

COMPARE NUMBERS FOR LESS THRAN

LEFT CURSOR ON CURRENT PAGE

LEFT CURSOR IN ALPHA MEMORY

LINE TYPE #

LAST WORD AVAILABLE USER MEMORY

MAX FUNCTION RUNTIME CODE

MATRIX ROM STOLEN RAM BASE ADDRESS

MIN FUNCTION RUNTIME CODE

SERIAL POLL REGISTER

MOD FUNCTION RUNTIME ADDRESS

KEEPING ADDRESS IN ALPHA MEMORY ON CRT
MOVE CURSOR EY SPECIFIED AMOUNT

MOVE MEMORY CONTENTS WITH DECREASING PTR
“MOVE” STRTEMENT

MOVE MEMORY CONTENTS WITH INCRERSING PTR
MULTIPLY TWO REAL #’S IN R40 AND R50
MULTIPLY TWO REAL OR INTEGER #s ON STACK
MASS STORAGE ROM STOLEN RAM BASE ADDRESS
CREATE RUNTIME CODE

MS HIGH LEVEL HOOK

MS LOW LEVEL HOOK

PART OF PRINT# RUNTIME CODE

PURGE RUNTIME CODE

“RENAME” STATEMENT

MS TIMEQUT HOOK

SCAN AND PARSE A NUMERIC ARRAY REFERENCE

Section 8: Reference Material

Name Address Description

3920 NARREF DAD 23465
3930 NUMCDN DRD 23551
3940 NUMVA+ DAD 22403
3950 NUMVAL DAD 22406
3SB0 NXTDAT DRD 101645
3970 NXTMEM DAD 100022
3880 NXTRTN DAD 100036

PARSE A NUMERIC ARRAY REFERENCE

PARSE A NUMERIC CONSTANT

SCAN AND PARSE A NUMERIC EXPRESSION
PARSE A NUMERIC EXPRESSION

NEXT DATA ADDRESS FOR DISK READ/WRITE
NEXT BYTE AVAILABLE MEMORY

NEXT AVAILABLE GOSUB/RTN

3930 ONEB DRD 12153 GET 1 NUMBER OFF STACK AS SIGNED BINARY
4000 ONEI DAD SE736 GET 1 NUMBER OFF STACK AS TAGGED INTEGER
4010 ONER DAD 56777 GET 1 NUMBER OFF STACK AS FLOATING POINT
4020 ONEROI DAD 57035 GET 1 NUMBER OFF STACK AS REAL OR INTEGR
4030 ONEX DAD S6673 GET 1 NUMBER OFF STACK AS UNSIGNED BIN.

4040 ONFLAG DRD 100065
4050 OPTBAS DAD 100175
4080 OUTCH1 DAD 14130

4070 OUTCHR DAD 14143

4080 OUTSTR DRD 14020

4080 P.BUFF DAD 101706
4100 P.FLAG DAD 101712
4110 P.PTR DAD 101710
4120 P.TYPE EQU 6

4130 PAGES. DAD 12756

4140 PRGES1 DAD 13001

4150 PRAGESZ DRD 13103

4160 PARSER DRD 20000

ON GDSUB FLAG

2 BYTE PERMANENT OPTION BASE
OUTPUT A BYTE TO THE CRT
OUTPUT A CHRRACTER TO CRT
OUTPUT A STRING TQ CRT
INDIRECT BUFFER POINTERS
INDIRECT BUFFER FLRG
INDIRECT BUFFER POINTER
OFFSET INTO BASIC PCB TO GET TYPE BYTE
PAGESIZE RUNTIME CODE
PRGESIZE 186

PRAGESIZE 24

SYSTEM PARSER

4170 PEN# DAD 104535 (PEN #) % 3 FOR INDEXING
4180 PGSIZE DRAD 104227 # OF BYTES / PAGE
4180 PI10 DAD $4374 PI FUNCTION RUNTIME CODE

4200 PLHOOK DAD 103661
4210 PLIST. DRD 6344

PLOTTER HOOK
7PLIST” STATEMENT

4220 PLOT. DAD 64652 7PLOT” STATEMENT
4230 PLOTSY DAD 100151 PLOTTER ON/OFF FLAG
4240 POS. DRD 4227 POS FUNCTION RUNTIME CODE

4250 PPOLL DAD 177423
4260 PRARR$ DRD 70730
42?70 PRARR. DAD 701867
4280 PRDRYR DRD 73023
4280 PRDVF+ DAD 103550
4300 PREOL. DAD 70464
4310 PRINT. DRD 71332
4320 PRLINE DAD 71641
4330 PRNTLN DAD 101137
4340 PRNTR. DAD 75631
4350 PRNUM. DRAD 67220
4360 PRSIDL DAD 103733
4370 PRSTR. DRD 66662
4380 PRTBUF DAD 107454
4380 PRTPTR DRD 100062

PARALLEL POLL REG

PRINT# STRING ARRAY TO DISC FILE
PRINT# NUMERIC ARRAY TO DISC FILE
PRINTER DRIVER ROUTINE

SPECIAL CHRARACTER FLAG FOR LIST TIME
PRINT# END OF LINE (DUMP BUFFER)

SET SELECT CODE TO PRINTER IS DEVICE
PRINT LINE RUNTIME CODE

1 BYTE PRINTER LINE LENGTH

PRINTER IS STATEMENT

PRINT# A NUMBER TO A DRTA FILE
PARSER RAM HOOK

PRINT# A STRING TO A DATA FILE

PRINT BUFFER

PRINT BUFFER PTR

4400 PS.C. DAD 100222 PRINTER SELECT CODE

4410 PTR1 DAD 177710 1,0 ADDRESSES FOR EMC POINTERS
4420 PTR1+ DRAD 177712 I,0 RDDRESSES FOR EMC PDINTERS
4430 PTR1- DAD 177711 I-0 ADDRESSES FOR EMC POINTERS

Section 8: Reference Material

Name Address Description

4440 PTR1-+ DAD 1?7713 I-0 ADDRESSES FOR EMC POINTERS

4450 PTR2 DAD 1?7714 I-0 ADDRESSES FOR EMC POINTERS
4460 PTR2+ DRAD 177716 I1-0 ADDRESSES FOR EMC POINTERS
4470 PTR2- DAD 177715 I-0 ADDRESSES FOR EMC POINTERS

4480 PTRZ-+ DAD 177717
4490 RBO+10 DAD 60010
4500 RBO+12 DAD 60012
4510 REO+14 DAD 60014
4520 RE0+2 DAD 60002
4530 RBO+4 DAD 80004
4540 REO+6 DAD 60006
4550 RBOK DRD 60000
4560 RAD. DAD 62267
4570 RAD10O DAD 54472
4580 RAID+1 DARD 103307
4530 RAID+2 DAD 103310
4600 RDARRS® DAD 70312
4610 RDARR. DAD 70106
4620 RDNUM, DAD 67503
4630 RDSTR. DAD 67314
4640 READ. DAD 66221
4650 RECBUF DAD 102600
4660 REFNUM DAD 27530
4670 RELMEM DAD 31777
4680 REM10O DAD 52533
4690 RESET. DAD 5407
4700 RESMEM DAD 31741
4710 RESULT DAD 100070
4720 RETRHI DAD 13234
4730 RMEM DAD 105343
4740 RMIDLE DRD 103706
4750 RND1O DAD 53741
4760 RNDIZ. DRAD 55713
4770 ROMEND DAD 104145
4780 ROMFL DAD 104065
4790 ROMINI DAD 60SS
4800 ROMJISB DAD 6223
4810 ROMLST DAD 104143
4820 ROMRTN DAD 6207
4830 ROMTAB DAD 104105
4840 RPLOT. DRD E4666
4850 RSELEC DRD 177430
4860 RSTREG DAD 22346
4870 RSUMBK DAD 37670
4880 RTCUR. DAD 138651
4830 RTCURS DAD 137865
4900 RTNSTK DAD 100033
4910 RULITE DRD 177704
4820 S10 DAD 103367
4930 SAD1 DAD 13723
4940 SAVERS DAD 104066
4350 SAVRO DAD 103200

1,0 ADDRESSES FOR EMC POINTERS

ROM ERROR MESSAGES

ROM INITIALIZATION

TEST INITIALIZATION

ROM RUNTIME POINTERS

ROM RSCII TABLE

ROM PARSE TABLE

FIRST ADDRESS FOR ROMS

PUT COMPUTER IN RADIANS TRIG MODE
DEGREES TO RADIANS CONYERSION

USED BY INTERRUPT SERVICE ROUTINES
USED BY INTERRUPT SERVICE ROUTINES
READ# A STRING ARRAY FROM DISK FILE
READ# A NUMERIC ARRAY FROM DISK FILE
READ# A NUMBER FROM DISK FILE

READ# ; STRING

READ# POINTER POSITIONING

DISK BUFFER 400 BYTES (256 DECIMAL)
PARSE A NUMERIC VARIABLE REFERENCE
RELEASE TEMPORARY MEMORY

“RMD” FUNCTION (REMAINDER)

RESET KEY RUNTIME CODE

RESERVE SOME TEMPORARY MEMORY

LAST CALCULATOR MODE RESULT

WAIT FOR RETRACE HIGH FROM CRT
RESERVED MEMORY COUNT

EXEC LOOP RAM HOOK

RND FUNCTION (GET A RANDOM NUMBER)
RANDOMIZE COMMAND

END OF ROM TRBLE ENTRIES

ROM FLAG FOR INITIALIZATION ROUTINES
CALL BPGM’S AND ROM’S INIT ROUTINES
JSB TO A BANK SELECTABLE ROM

LAST ENTRY IN ROM TABLE

RE-SELECT ROM O AND RETURN

BASE OF -ROM TABLE

RPLOT” STATEMENT

BANK SELECTABLE ROM SELECTION ADDRESS
RESTORE REGISTERS

DO A CHECKSUM ON BK OF MEMORY

MOVE CURSOR RIGHT ON CURRENT SCREEN
MOVE CURSOR RIGHT IN ALPHA MEMORY
TOP OF GOSUB RETURN STAK

RUN LIGHT I-0 ADDRESS

FOR SAVING R10-11 DURING INTERRUPT SvC
SET CRT ALPHA START RDDRESS

DISK BAIL QUT STACK POINTER FOR ERRORS
SYSTEM MONITOR REGISTER SAVE AREA

Section 8: Reference Material

Name Address Description

4960 SRAVR10 DAD 104063
43970 SAVREG DAD 22310
4980 SC10+1 DAD 177540
4390 SCAN DAD 21110
5000 SCAN+ DAD 21105
5010 SCRAT. DAD SE01
5020 SCRDN DAD 13671
5030 SCRUP DAD 13738
5040 SCTEMP DAD 101721
5050 SEC10 DRD S428B0
5060 SEMICS$ DAD 72155
5070 SEMIC. DAD 72274
S080 SEQNO DRD 30426
5090 SEQNO+ DAD 30422
5100 SERPOL DAD 177425
5110 SET240 DAD 21071
5120 SGNS DAD 54202
5130 SIN10O DAD 54343
5140 SKYTXT DAD 106610
5150 SPRRO DAD 104011
5160 SPAR1 DAD 104022
5170 SPECIF DAD 103527

R10 SAVE FOR PARSE ERRORS

SAVE REGISTERS ON RE

1,0 CRRD STUFF

GET NEXT TOKEN TO R14 AT PARSE TIME
GCHAR AND SCAN

SCRATCH’ RUNTIME CODE

SCROLL DOWN THE CRT

SCROLL UP THE CRT

S.C. TEMP STORE

SECANT RUNTIME CODE

PRINT STRING;

PRINT NUMBER;

PARSE A LINE NUMBER

PARSE A LINE NUMBER

MY LISTEN RDDRESS

SET THE IMMEDIATE BREAK BITS IN R17
SGN FUNCTION

SIN FUNCTION

CALC SOFTKEYS TEXT (14%30)

SPARE INTERRUPT RAM HOOK (SYS MONITOR)
SPARE INTERRUPT RAM HOOK (UNUSED)
DISC VOLUME NAME

5180 SPTR1 DAD 103300 SYSTEM MONITOR SAVE PTR1 ARER
5200 SQARS DAD 53237 SQUARE ROOT FUNCTION

5210 ST240+ DAD 21067
§220 STACK DAD 102070
5230 STBEEP DRD 10441
5240 STOST DAD 46472
5250 STOSY DAD 46057
5260 STRANG DAD 103715
S$270 STRCON DRAD 24201
5280 STREX+ DAD 23721
5290 STREXP DAD 23724
5300 STRREF DAD 24056
5310 STSIZE DAD 101741
5320 SUB10 DAD 52734
5330 SUBROI DAD 52724
5340 SVCWRD DAD 100182
5350 SYSDIS DAD 177707
5360 TAN1O DAD 54363

CLEAR R16 AND SET240

RE6 STACK 500 OCTAL BYTES (320 DECIMAL)
STRANDARD BEEP

STORE STRING ROUTINE

STORE SIMPLE VARIABLE

STRANGE PARAMETER TYPES INTERCEPT HOOK
PARSE A STRING CONSTANT

SCAN AND PARSE A STRING EXPRESSION
PARSE A STRING EXPRESSION

PARSE A STRING VARIABLE REFERENCE
STATEMENT SIZE PLACE HOLDER POINTER
SUBTRACT TWO REAL NUMBERS IN R40 AND RSO
SUBTRACT 2 REAL OR INTEGERS ON STACK
SERVICE WORD

S0S CARD ROM DISABLE ADDRESS

TANGENT FUNCTION

5370 TIME DAD 101123 TIME OF DAY

5380 TIME. DAD 66211 TIME OF DAY FUNCTION

§390 TOS DRAD 101744 TOP R12 STAK

5400 TWOB DAD SEB760 GET TWO BINARY NUMBERS OFF STACK
5410 TWOR DAD 57020 GET 2 REAL NUMBERS OFF R12 STARCK

5420 TWOROI DAD 570SO
5430 UNBAS1 DAD 103430
5440 UNBRS2 DAD 103434
5450 UNEQS. DAD 3603
5460 UNEQ. DAD 62632
$470 UNQUOT DAD 24366

GET 2 REAL OR INTEGERS OFF R12 STACK
UNUSED ROM STOLEN RAM BASE ADDRESS
UNUSED ROM STOLEN RAM BASE ADDRESS
COMPARE STRINGS FOR UNEQUAL

COMPARE NUMBERS FOR UNEQUAL

!
!
]
]
!
1
!
l}
1
1
]
|
[
1
]
!
1
1
1
1
1
!
!

5190 SPTR2 DAD 103303 | SYSTEM MONITOR SAVE PTRZ ARER
|
|
]
]
1
]
1
1
]
]
1
i
1
]
1
!
!
1
]
1
!
]
1
1
!
]
i
! PARSE AN UNQUOTED STRING

Section 8: Reference Material

8.3 System Operation and Routines

This section provides documentation for certain areas of system
operation. It also shows the input conditions required and the outputs
produced by selected system routines. The names and addresses of the
system routines detailed here are also on the disc.

The system routines are arranged in alphabetical order. Their area of
primary use is noted. Because a routine is listed under a certain
application does not limit its use to that area. For example, many
utility routines may also be used during run time operations.

Section 8: Reference Material

The format of the individual system routines is shown here:

7] 2 4 15 |6 |7
12 A15)16[17

F 22(23[24(25 Fird
EFIERNEFE 4[35 37

40| 4 4 2[4 4 47

(:) S56l51|52(53[54(55(56]o7
[62163164 Fd

7 7al7v5(v6]|v7
DR]A E SWFTFIFTRZ

A. Name: Name of the routine (from the global file).
B. Address: Permanent octal address of the routine in computer memory.

C. ROM#: The ROM that must be selected if this routine needs to be
called through ROMJSB.

D. ROM #: The "Y" or "N" entry indicates if this routine needs to
to be called through ROMJSB.

E. Registers: Shaded areas indicate registers used by this routine.

&)
.

DR,AR,DC,E,ST,PTR1,PTR2: Entries in these boxes indicate exit
conditions of this routine. The following symbols are used:

Symbol Meaning
- Unchanged.

Unknown.
Refer to the description (G).

* C

Section 8: Reference Material

G. Conditions: When applicable, shows input and output stack contents,
and output register contents.

H. Description: Contains description of routine.

Section 8: Reference Material

ABS5 INFUT STRACK CONTENTS
Lt k3 0 S
MATH
Sustem function that Argument (§-butes)
returns the abszolute Rla---->
value of a num -
{Refer to the suystem OUTPUT STACK CONTENRTS
function A in the
cwner's manual) clute value of argument (S-butes)
T T 1= TS QUTFUT REGISTER CONTENTS
ot ot R48-R47 = Copy of absolute valus.
Fel31132]22]3410 R o
~ = P RER-RET = Copu of criginal araument
EE]S1152155]5415 valus.
FA|F1}72l73]| a5 [FElvy
ODR|AR|OC] E[ST[FTRIFTRE
4gj1z|0 U U - -~
ADD1@ :
Fddr INFUT REGISTER CONTENTS
MATH Fon &
Adds two real R48-R47 = Real value A (&-butes)
(floatinma-pminty RS6-RS7 = Real wvalue E (S-butes)
numbers, -
OUTFUT STACK CONTENTS
Result A+B (2-butes
R1Z2---->
QUTPUT REGISTER CONTENTS
R4@8-R47 = Copu of result A+E
NOTE: The two numbers must be in
floeating-point format and the CFU must
be in ECD mode when ADD1® is called
or the result will be incorrect.
OC| E]
[Eeliefo{oldl - T - |
ADDROT INFUT STACK CONTENT
‘ = . Co =
MATH
Adds two real or FEeal or tagged-integer A (S-butes?
tagaed-integer Real or taaged-integer B (&-butes?
numbers ., Rla----3
tThis is the main = . R . -
cuntime entry point| DUTFUT STACK CONTENTS
for the sustem " -
cperator +.0 . Pegull A+E (&-butecsk
QUTPUT REGISTER CONTENTS
. hﬁzl?z{hﬁslfs“? R4B-F47 = Copy af the result
20lzl)zz2]22l24[25]26]27
A3
NOTE: The result may he either a real
or & tagged-integer number. The CFU
R R R b gggén?% in BCOD mode before callina
E TRUPTRZ

DRI AR[DLC ETF
IEX:] <3 I O |

Section 8: Reference Material

INPUT CONDITIONS
Checks the character Rzo = The character
in RZ@ to s if it's
betuaen TaTeS AT ISl GuteuT conprTrons
or 'a' and 'z'., If . .
it's lower case, it's Rz@ = The character ishifted to upper
shifted to upper case if it was lowar casedl
pase E =@ If it was not an alpha character
E =1 If it was an alpha character
[£] 2_ 13 J4 15 7
1 1 13/14[15 Fd
2 22(2 425 I
2 22133 4125 27
4 4247 45 7
S@[51[52[53|54|55 S7
6B|61|62|63|E4[ES E7
cejP1[vZ|7I[F4]7S rild
DRI ARJDC] E [ST[PTR R2
2ol 0B] *T0 - =

Forces ALPHA ALL mode

QUTFUT CONDITIONS

The CRT will be in ALFHA ALL mode.

on the CRT. The actual code for ALFAL. i=:
ALFAL. EBIN
DED R IGET CRT STATUS
LE R IGRAPH/GRAPHALL?
LE R !
RE R i
JC¥ A VJIF YES
G A IJIF RLFHA ALL
ALFAL1 5B = VELANK CRT
g LOE R IGET 'ALL' MASEK
1 LOED IGET STATUS
H ANR R ITRASH GRAFH EIT
2 ORE R TOR IN 'ALL' EIT
doidiid ETED ISET CRT STATUS
e LON R3 ILOAD 37780
SOiElle STHD R 1SET ALPHA SIZE
‘ 5 JSE ICLEAR MEMORY
DR[ARD RiPTRZ Js URS 1OUTPUT CURSOR
T I R T I | JMF_CRTUNMW IUNELANK CRT
OUTFUT CONDITIONS
Forcez the CRT to The CRT display will be in ALFHA HORMAL.
‘ [x} &,
?kFﬁzs“;ﬁ”EtpﬂgdﬁLL The CRT memary will nave been
or GRAFH ALL made. and top of stac st equa to
Then ThH RLL mode. if the display was in ALFHA AL

is initialized by
calling CRTINT.

GCRAFH ALL mode at =ntry,

ALFA

PARSE

ALFAL.

CRT

ALPHA

CRT

Section 8: Reference Material

ALPHA. OUTPUT CONDITIONS
CRT
the CRT displ i If the CRT is in ALPHA NORMAL node at
CRAFH NORMAL mode. entry, it will be in ALPHA NORMAL made
antry, it will be at exit, If the CRT is in ALPHR ALL mode
cwitched to ALFHA at entry, it will be in ALPHA ALL mode
NORNAL mode, else at exit. If the CRT is in GRAPH NORMAL
nothina will be dene. mode at entry, it will be in ALPHA
. NORMAL mode at exit, If the CRT is in
CRAPH ALL mode at entry, it will be in
GEAFH ALL mode at exit. One return
address will also be thrown away before
returning if it was in GRAPH ALL mode,
?B%}l%fe %_{?4}?5=f_ I7 so it wen't return to the calling
1 B EREE ER ER EE e reutine.
3223 3 27
40|41]4z(4s]|44]45 47
SA|S1[S2|5Z[54[55[56]57
éalel1|ec|63|64]65]6 67
ro[vi[72]73|7417°5][7 77
DRIARJOC] E [STIPTRI[PTRZ
Ul E ulu -
ASSIG.
DISC INFUT STACK CONTENTS
R time F3 BEuffer number (& bytes)
Runiime code for File name lenath (2 butes)
File name address (32 bytes)
SSIGN# Riz---->
OUTPUT STACK CONTENTS
Cemptyd
R12-—--*
ATN2,
TH INPUT STACK CONTENTS

Performs the sustem
function ATNECY , X2
which returns the
arctanaent of Vo4 in
the proper quadrant.

|
|||

DR[AR[DC] E [ST[PTRI|PTRZ]
vjfofofjuluy = =

Y-value (8 butes?
¥-value (2 butes)
R12---->

OUTFUT STACK CONTENTS

ATN2C(Y, X))
R12----3

(8 butes)

Section 8:

Reference Material

Runtime code for the
EEEP statement,

INFUT CONDITIONS

Top of stack and R1Z are compared to see
if there are anu optional parameters on
the R12 stack. If none, then a JIMP is
made to STBEEF.

BEEEF A,B would make the stack look like

this:
A (2 bhutes)
B 78 butes)
5z [z e 5 Te T Riz=--->
1B|111Z[13[14[IS[16]17
2al21122[22]24|25(26(27
OR|AR|DC] E JSTIPTRI[FTR 2|
EiluloToToT - 7=
INFUT CONDITIONS

Doces a backzpace.
{Same as if the
backspace kew had
been presszed.}

The CPU must be in BIN mode at entry,
CRTEYT must contain the
the CRT controllers
register (CRTEADJ .

same address as
byte address

The cursar
must

must be

off at entry
have been made

to DECURZD.

ta call

from current
bute address to
end of the line
ith carriage return
characters (15 octal)

T

112 1374 15 & [+
1@l11]1z2[13114]15]1&6]17F
2@l21]122]123 26|27

I kT
4014114274343 {45/46[47
Sal51[52]53|54[55|5&[57
cole1le2[63|64[68
valvi[7el73[74]7
ODE|AR|OC] E [STIPTRI[FTRZ|
3zfz4| B[-1 U0 - —
BLKLIHN
14165 INPUT CONDITIONS
Bl Fonist

The CRT byte addresz
must be pointina to
blanking iz to

pointer (CRTBAD?
the addressz where
ztart,

DUTPUT CONDITIONS

Alter= CRTEBYT,leaving The CRT bute address pointer will be
it pointing to the po]ntipg to the first character of the
=tart of the next next line.
éle.lz F T The actual code for BLKLIN is:
] N T Y = A
F 1 ER Zeley| ERKHIN EIN
3 ETAEL Loe R
404142 43]|44]|456(47 L SeE ¢
56(515 Sa[s5(56lsy 1cE R
c8[e1]62[63]64]65 CHE R
Folvilvelv3[valvs Nz L
DR[AR|OC] E [STIPIRI[FTRZ RTN
Gelvel B | -0 - =

BEEP.
MISC.

BKSPC

CRT

BLKLIN

CRT

Section 8: Reference Material

BPINI INFUT CONDITIONS
MISC.
the INIT ROMFL = Reason for the call:
routines in all of o
the binary proarams 4 Fouwer on
Fresent in memorw. 1 Reset
2 Scratch
2 Loadbin
4 Run,Init
9 Load
& Stop,Pause
7 Chain
18 Alleocate class »5&
11 De-allocate class >56
12 De-compile class >56
13 Frogram halt on =rror
NOTE: Binaru programs must insure that R@
does not get destroued during their INIT
routine as R@ is used by BPINI as a
counter of which binary program is next.
BYTCRT INFUT RE ONTENTS
XEGISTER CON s
CRT
Sets the bute addressc The register pair pointed to by éhe
CRTEYT and =end DRP must contain the address to be
1T T8 ihe fpy Cones stored to CRTEYT and CRTRAN.
controlle CCRTEADY .
senirelier The actual code iz:
EYTCRT STHMD R#,.=CRTEYT
=1;]
JSE =CHKSTS
FAD
= “CRTE
T T TE SIHO R#,=CRTEAD
lef1i1]12 14]15]1
I EE A EEE
28[31[3 24[35[2
Am[41]4 34(a5(a
selsi|Se S4{55]5
cBlellez[e2|ed[eS]E
7a|P1]72[73[74[75]7
OR[HR[OC] E S1’P_
[-[-[-1u
CEIL1@ CETLIA
S4412 INPUT STACK CONTENTS
MATH 8 N
Runtime code for the N X-value (8-bytes}
sustem function CEIL. Riz-==-=>
Feturns the QUTPUT STACK CONTENTS

smallest
integer »>= ¥,

) Il Il Il 1 Il il

OR[AR|DC] E [GT[PTRI[FIR
X1] O | I 1

CE

ILCXY result (B-butes?
R1&====>

QUTFUT REGISTER CONTENTS
R48-R47

= Copy of result

Section 8: Reference

Material

This is the actual code for CHESTS:

Uaits for the CRT CHKSTS gég w30

sentroller to be not "P K3

Bocy. “cunen cupaTe® BUSY LDED R#,=CRTSTS GET CRT STATUS

retdrns it i= safe ta JOo BUSY 'LOOF IF BUSY

store to CRTBAD or IELSE RETURH

CRTOAT.? . . . N
This routine is useful when 4ou want to
=tore directly to CRTBAD and-or CRTOAT
tsuch as when doing hiah speed graphics
ar alpha displaus)

G I Ja |5 [& |7

1G] Z[14]is 7

I} | EEN S FE

Z|salz5|26]ar

4 EIEEIEE 47

50|51][52[5254(55|56]s7

6E0|R1|6z 6264656667

Tolvi|7elvalraliS|i6]|vr

DR[AR[OC| E [ST|FTRIFTRE

[-le|-lTuo| - [-

1))
bDoes

the same
as 2 CLEAR =tatement
BRZIC,

thing

in

BEASIC reserved word CLEAR

INFUT STACK CONTENTS
Changes the sian of Rezal or taagged-intaager {E-butes>
a real or integer R12-—-=-->
number.
OUTRUT STACK CONTENTS
Real or tagaed-inteager (E-butes)
R12---->
The actual code i=:
CHSROI FOMD R4
[} 2 14 |5 7 hgs Ea:
1811111211 3114]15[16117 TSM R4@
=] SN R e Y T 12k CHE11
20]31 = 322134[35 ‘S 37 LLE R41
S@51052(53]54155(56]57 NCE R41
1|6 (63 |64|65[RE|67 CHS11 Eﬁﬁnﬁzég +R12
Filv2|v3[v4le5lvelvr = RTH
| AR|DC{ E [ET[PTRI[FTRZ CHE18X TCHM R4S
d@a| 1z — | 0|1 - |- JME CHS11
This i= the runtime entry point for the

CHKS
CRT

CHSR!
MATH

TS

oI

CLEAR.

CRT

Section 8: Reference Material

CLREOL

CLREDL

12447
CRT : N
Clears to the end of
the current ALFHA
line (based upon the
contents of CRTEYT?»
and leaves CRTBYT
Fointing to where it
was.

A=)

| o[o
R el R e

INFUT CONDITIONS

CRTEYT = Current ALPHA cursor location.

CNTRTR

CNTRTR
1) 13245
CRT 324

Counts a specified
number of CRT retrace
Feriods.

en|n|cnfenenlenfon
| N P P P)) R N

-alon|nf £ E8Yroj ez
m
—a[on[cnfeeafral=on)

~ifen|cnl
o)

=
)
{=]
c
!
)
ol

2
:
0|
L

|
1
|
1
=
|

This routine can be used when delays of

16.67 milliseconds to 4.27 seconds are

desired (in steps of multiples of 16.67

milliseconds). The CRT controller refreshes

the CRT 6@ times a second. That means

there is a retrace period everu 1-/6@ of

a second or every 16,67 milliseconds.

This routine =imply counts the number of

retrace periods specified when it is

called.

INPET REGISTER CONTENTS
RZ

= Number of retraces to be counted

OUTPUT REGISTER CONTENTS
k3@ = @

NOTE:

The CFU must be
this

in BIN mode before
routine is called
R3@ is a one-byte count,
the count to 2S6. (If R3@
CNTRTR will count for

thus limiting
is 8 at entry
29¢ retraces,?

COLUMN

CRT

Calculates
number of the current
cursor leocation on
ALFHA displawy. It is
returned as a number
between 8 and 117
{octal).

the column

€ [7
I
HES
Slae37

4 S|a6[47

5 S6l57

&

7

D RI[PTR2)

& - -

INFUT CONDITIONS

CRTEBYT must contain the current

cursor
address.,
OUTPUT REGISTER CONTENTS
RE€E6-RE7 = Column number <(8-117)
R7E-R77 = 128 (octal)
NOTEG:
The CPU must be in EIN mode at entrua.
The actual code is:
COLUMN LDM R7E.=1Z26,0 {tLINE LEN=2@
LOMD REE.=CRTEYT 'CURSOR ADDE.
ARF R7& 'SAVYE CYCLES
MOD SBEM R#,R# ISUBTRACT UNTIL
JCY MOD ! <@
ADM R#,R# 'MAKE FOSITIVE
RTN IDONE

Section 8: Reference Material

COMMAS
INPUT STACK CONTENTS
S # PRINT
Prints a string ta Length of strina (2 bytes?
the print or display Address of string (I butes>
buffer, Same as: Rl2----3
FPRINT "REC", OUTPUT STACK CONTENTS
(emptyd
R12---->
NOTE: DISP. or FRINT. must be called
Frior te calling COMMA$ tc set up the
select code and buffer pointers,
CORHA. COMMA.
722¢ INPUT STACK CONTENTS
0 Y PRINT
Prints a number to Number to be printed (8 bytes)
the print or displauy R12====5
buffer. Same as:
PRINT 34, OUTPUT STACK CONTENTS
Cemptyd
R12---->
275 T8 1= NOTE: DISP. or PRINT. must be called
ISR TeTiT Frior to calling COMMA. to set up the
select code and buffer pointers.
DRIAR|DC] EJSTIFTRIFTRZ
LofululuTo T =-"To]
5 TONETZ CONBI3
4516 INPUT REGISTER CONTENTS
@ N ; MATH
2 2Z-hit RSS5-RS7 = 22-bit =zign=d binary number.
ared binara number The 23 least sianificant bits are
“& flostina-paint the maanitude <8 TO 2°22-1> and the
value h ianificant bit
itiw and 5 n
a range of 538864
OUTFUT REGISTER CONTENTS
F4B-R47 = The equivalent floatinga-paint
T [z [z [3 15 [e]7 value.
FN W R Y 1 = B
elleale3i24| 25|26 |27
31 EENEE EF E
S1|52153]154
Glle2[62]64
172|733 [F4[vS[FE[P7
[AR[OC] E[STIPTRIFTRZ|
vloTolol - -1

8-21

Section 8: Reference Material

CONBIN INFUT REGISTER COHWTENTS
MATH i :
Converts a 15-bit RIE-RIF? = 1S5-bit signed binary number.
sianed binary number The 153 least =significant bits are
to 3 floatina-paint the maanitude ¢(G-32767» and the
value, - nest sianificant bit is the sign
{A=poaszitive and l=negatiwvelr giving
a range of -327E67 to +32767.
OUTPUT REGISTER CONTENTS
R48-R47 = The equiwvalent floating-point
value.
5@
=
il
OR
[
CONCA. [IED
Addre INFUT STACK COMTEMTS
MISC. [P
© tenates t A% Lenath <2 butes)
srinas® v A% Rddrass >
B¢ Length
E
El1z--
QUTFUT STACK COMTENTS
A% & B¥ Lenath 2 butes}
A% & EBF¥ Address (2 butesz:
R RiE2----%
1
N
I SRR
ET] ESEE]
SB|S1|S
1N
Fafvi|e
OR[ARIDC
ulufltu
CONINT SgTizT INPUT REGISTER CONTENTS
MATH 8 CEIEED

Converts a floating-
point value to a
1€-bit unsianed walue
with a separate sign
flaa.

1 m4 s 16 17

1i]12[13[14]15[16[17
c@l21122({23124]125]26]27
363 33
38[41142143144]45146[47

78]v1|v2|73[74]75
DRIAR[DC| E |[ST|PTRI[PTR 2]
— -1 -10u - =

R6B-RE67 = Floating-point value
OUTPUT REGISTER CONTENTS
RPE-R77 = 16-bit unsianed binary value
R3Z2 = Sign of walue
If R32=8@ then value is positive
If RZ2#@ then value is negative

NOTE: This routine deoesn't check to
insure that R60-RE7 contains a fleoating
point number, so if it contains a
tagged-integer or some other garbage,
you'll get indeterminate results,

CONINT does a SAD at entry and = FPAD at
exit, so all status is preserved (not
including the E register).

Section 8: Reference Material

INFUT STACK CONTENTS

140 card number
Register number

R12----3

OUTPUT STACK CONTENTS

R1Z2-=--=)
cocSinm
54353 INFUT STACK CONTENTS
i 2] N
VRS
Returns the COSCX3» Rl2——ten
OUTPUT STACK CONTENTS
COS<H)Y walue
R1Z2---->
1 lg |2 J4 |5 [6 |7
1811111 2[13[14[15[1E]17
23124
OR|ARIOC] EJSTIPTRI[PTRZ
dqafiz] o] Ul = =
e COT18
54333 INPUT STACK
a i
+ = c
Returns the COT(X> Flz-—me
‘(cotanaent) QUTPUT STACK CONTENTS
Rl2---->
1 2 73 T4 15 [€ 7
1aj11]12112[14115[1611F
23124
DRIAR|DC] E [STIFTRI[FTRZ|
40f12[o [0 U - =

CONTR.

MISC

Cosl
MATH

COT1
MATH

[

%

Section 8: Reference Material

COUNTK
1sC If a key is not pressed at entrw or if
M . 3 it is released before the keu repeat wait
Used f i is done then a call is made to EOJ2 else
hege, oF repeatins the key repeat speed is forced to KRPET2
and the service request flags are set in
R17 and SYCUWRD.
@ [1 2 [3 14 [5 [6 [7
1o[11]12[13}14 S rd
26l21]122123[24 S d
4 S 7
494142 43]44{45 7
58[51[52]|53[54[55]|56][57
60(6 63|64]|65(6 Fd
rd 731747576177
DR{AR[DC| E {[ST[P i[PTR2]
UlulTeT-To = "=
CRT. INPUT ST
STACK CONTENTS
CRT
Performs the CRT IS Top of stack-> Select code (8-bytes)
statement . Optional line length (8-bytes)
R12---->
OUTPUT STACK CONTENTS
(empty)
R12---->
CRTBLK [CRTELK
Addre 12246 OUTPUT CONDITIONS
CRT Fin # o CEE¥ET .
Fill 11 £ ALPHA The CRT will be in the blanked-out mode
memery with carriage (that is, CRTUNM will have to be called
return characters after CRTBLK>.
toctal 153, R3z I
RI6-R37 = 8

6 1]
1@]11]
20(21
EEIE]
505
60[6
7alv
OR[A
36[=0

Section 8: Reference Material

OUTPUT CONDITION CRTINT
&
CRT
Initializes RIE-R3I7 = @
memcry to the ALFHA X
HORMAL mode with all The top of stack will have to be zet
of ALFHA and GRAFH equal to R12-R13. Hay GRAFH parameters
memory cleared. will be set tc the default values.
The CRT start address (CRTSAD) and the
CRT bute asddreszs (CRTSAD) will he set
to @,
CTRIFOF CRTPOF
122324 The code for CRTPOF is: CRT
Turns off the CRT's CRTPOF
hiah waltage supplu.
Hould be uszed if a
device were hooked up
to the computer that
needed excessive
power and didn't nesd
to be rum at the same
the CRT
4 5
1415
24135
4 44145
S S4]55
[L]
7 74[75
DF STIPT
k] |
CRTPUP
The code for CRTFUP i=z: CRT
Turns on the CRT'e CRTRPUF LDBOD RZ1,=CRTSTS
Fiah valtage supfly. ANN 21 2
Would be used if & STED R21,=CRTSTS
device were hooked up L 28, =3
to the computer that S =CNTRTR
nesded exceszzive JMECRTUNK
power and didn't need
to be run at the same The CFU must be in EIN mode 3t entry.
time as the CRT
display
8 _[1 |2 4 [5 T8 |7
111111314 17
EE1EF EF I EEL EE £ 27
SZ132[34 & [27
43|41]47]aalq 4 Y
SAlS1l5e[S3[S4|55(56]|50
Qe zle3[s6d[eS[6e[E7
=1 2]|722]v4[FSIF&[F7
OR[A ClEJSTIF 1HFTRZ
Si-1-T-10] [—-

Section 8: Reference Material

CRTUNW
CRT

CRTWPO
CRT

CSEC1@
MATH

Name
Addr The CRT may nezed to be blanked for tuwo
reasons:
4 lay Cstarts the 1y If the CRT controller doesn't need 1o
ele lp:n be;m = ® be refreshina the display, tha CRT
=canninal memory can be accessed much more
- quickly than during refreshing.

2» Mhen switching CRT modes ugly flashes
can be seen if the CRT is not blanked
first,

The actual code for CRTUNW i=:
RS - CRTUNW JSE =RETRHI
S A EERE R LOED R#%,=CRTSTS
ECIEEE rd ANH R# 71
3 32132 7 A
R R m AR 2L STED R#,=CRTSTS
48(31(42[4 i ETH
SA[S1|SZ[G3 57
cBlelles]63 [
cAal71[72]73 i
DR[AR[DC]T E TRZ]
The CRT may need to be blanked for tuwo
reasons:
Elanks the CRT
displou tetops the 13 If the CRT contiroller doesn't need to
electran beaw be refreshing the diszsplay, the CRT
scanningd memory can be accessed much more
quickly than during refreching.

2 When switching CRT modes ugly flashes
can be seen if the CRT is not blanked
first,

The actual code for CRTHRPO is:
L C ST CRTHUPO LDE R2@
L EARE = EIN
ECIER PR R L P 27 JSE =RETRHI
04 ; asTaalas 4 % LOBD R#.=CRTSTS
Se|S1]52[53154]|SS5|S6]|57
GR[E1 62|63 [64]|65]66(E7
caj7l[vz|[73[7a|PS]|Fe[77
DR[AR[OC] E [STIFTRI[PTRS
RN ETE] =N i - 1=
INPUT STACK CONTENTS
¥ value (8-butes>
R12---->
{cosecant) OUTFUT STACK CONWTENTS
CSC(X) value (8-buytes)
R12---->

Section 8: Reference Material

Runtime code for the
BASIC =statement

C3IZE X

INPUT STACK CONTENTS

CSIZE

value
R12----3

(8 butes)

OUTPUT STACK CONTENTS

Cempty)
R12----3

Outputs a cursor at
the current CRTBYT
location,

INPUT CONDITIONS
CRTBYT and CRTBAD must

Point to the
location at which the cursor is to be
cutput,

NOTE: The cursor is created bu setting

the most significant
character at
causes that

bit of
the cursor
character

the
location, This
to be highlighted,

er shown in inverse video, If the

character at that location alreaduy has

its MSE set, then the bit is cleared.
@i 12 13 14 15 Te DECUR2 does just the opposite. In this
1011111711311 2l15 AN way the cursor is not destructive when it
2alz1l22]23 6127 moves through inverse video fields.
300131137143 149 145 = z There is a flag C(CURSOM) which tells
Sel51(52]53[54]55] % CURS and DECURZ if the cursor ic already
toleil6slesloqles = on so that the MSBE of the character will
Tl il7 el a4l not be erroneocusly toggled if

successive calls to CURS or DECURZ are
DRIARIDCY E [STIFTRI[PTRZ] made .
vjujufl-TolT - -

Formats a floating-
point rumber into
RSCII characte
printing or
ing.

= for
displau-

oC

OR[AR
ool

INFUT REGISTER CONTENTS

R26-R3I1 = Pointer to cutput buffer
R46-R47 = Floatina-point number to be
formatted into cutput buffer

OUTFUT REGISTER CONTENTS
RIB-FE2Z1 = Pointer

to next avwailable bute
in the

output buffer,

CSIZE.
CRT

CURS
CRT

CVNUM
PRINT

Section 8: Reference Material

DALLOC INFUT CONDITIONS
MISC. 3 N
Tatally de-al R1& must be even, If it is odd, DALLOC
the current will return without doing anuthing.
pProgaram.
DATE. QUTPUT REGISTER CONTENTS
MISC.
Returns the DATE. R48-R47 = Copy of date
QUTPUT STACK CONTENTS
The date (8 butes)
R12---->
NOTE: DATE will always return as a
tagged integer.
4 |5 rd
14115[16}17
24125]26]|27
34135132637
S@|S51]5 53[54|5
686 62| 6 646
7ai7 relv r4lvs]r6lvv
DR[AR[OC[E [ST[PTRI[PTR2
4o[iz[-T-To] - T -]
DCLIN#
» INPUT CONDITIONS
PRINT Foanish
Decompiles a BASIC R38-R31 = Pointer to ocutput buffer
program line number, R65-R67 = Line number as 5 BCO digits
QUTPUT CONDITIONS
R32-R31 = Pointer to cutput buffer
Cafter the line number was
pushed out as ASCII
characters),
1 |2 4 6 |7
1 2]13]114115]16[17
2 3[24[25[26]27
313 3|34|35136137
d@[di|4z]43|44[a5]46(47
5A[51[(52153[54[55]/56
7B[71({722]73[74)175]76]|77
DR[AR[DC] E [STIPTRI[PTR2]
SFlFef B [0 U - -

Section 8: Reference Material

INFUT CONOITIONS
R = tri ¥ Assumes CFU is in BIN mode at entru,
Eater inta 1he 10,28 RI6-R2I1 = First bute sink (lowest)
64K address space. R7E-R77 Number of butes to move
. PTRZ = First byte + 1 of source
thighest)
The actual code is:
ODCsLOpP LOBI R7S5,=PTRz-
FUBD R7S,+R3Z8
BCH R7E

6 1 T 4 [s 7
1e6{11]iz 4 617 é#ﬁ ODCSLOP
2olzi]z2 4 157

2] 4 [¥
ETE] EIE 4 [N
S50[S 53(54155(56(57
686 626465166167
7al7 73|74
OR[AR[DC] E [ST[FTRI[PTRZ]
Felaa] - [-0 - | 0 |

Erases
the current
locatiaon.

the cursor at
CRTEYT

~

|~ af~a]]

[l
| avj e oo

r
M
wnlf~afen|
B G EY
LA
[o
BE
-

Eo R IO .. [

I e < (R
c|
=

R1PTRZ

INPUT CONDITIONS

CRTBYT and CRTEAD must point to the
location of the cursor.

NOTE: The cursor is created by settina
the most ignificant bit of the
character at the cursor lccation.
causes that character to be high
or shown in inverse video, If t
character at that lecation alrea
its MSE =et, then the bit i= cleared,
DECURZ does just the opposite. 1 this
way the cursor is not destructive when
it moves through inverse video fields.
There is a flag (CURSON) which tells
CURS and DECURE if the cursar
on sd that the MSE of
not be erronecusly
calls

This

L0 e
-

M

w

1
h
d
a
I

3

togaled

if succe=z
toe CURE and DECURZ

are made,

ghted,

iz alreaduy
the character will
sive

Turns the

math defaults on.

] F 16 7
1 2|13 [1e]1
] 3 EEE
] A3 2
q 142 464
SHISLIIS2]ST S6[5
EA[EL[6Z][63 ES |6
ra[v1[72]73

ODRIAR[DO E

Fe{ -] -1~

OUTFUT REGISTER CONTENTS
k36 = 1

The actual code is

OEFA+. CLE R3&
ICE R3E
JMP STORDF
E¥T 241

DEFA-. CLE RI&

STORDF STED R#,=DEFRUL
RTN

DCSLOP
MISC.

DECUR2

CRT

DEFA
MATH

+.

Section

DEFA-.
MATH

DEG.
MATH

DEG10@
MATH

8: Reference Material

T T =
1 1a(1
z Falo
ula aala
EE1 545
[[[[
Tol7 7als
OR[ARIOC] E[ST[F
e -l -1-Tu

OUTPUT REGISTER CONTENTS

RZc = 8

The actual

DEFA+.

»=DEFAUL

the computer
mode for

operations.

in

H)

Z[1=]14

EEIE]

L S4|55 [
& E4[ES|E6
il T4l7olve
OR[AR[OC] E [ST[FTRIFTRY
se[-[-[-Juol - [-

LELL
Addr
Raom

Runtime code for the
system functien RTD.
Copverts radians to
degrees,
[z T3 T4 TS5 T T7
Tzl 3lialistiel17
al21]22]123124]125]26]27
1

DRI AR|DC] E [ST|FTRI[PTIRD
[EEINE I -

[T

INFPUT STHCK CONTENTS

Radian-value

(3-butes?

R1Z----3
QUTRPUT STRACK CONTENTS
Dearees result (8-butes?
R12--=-=3%

QUTFUT REGISTER CONTENTS

R48-R47 = Copu of

result

Section 8: Reference

Material

e o
1

Jonfrnle]ea]

)l o s |

n|njcnjcnfcnleafen|
= -almanl g feafrofise| |
~af~af=af~a

~a|n[inf]

][) =81 X PR Y P
S| [EA R Y P

[l efefrol=fe]

4

=

|
(=1
x
3(m

INFUT CONDITIONS

Rz@ = The character
QUTPUT CONDITIONS
rRz2o = The character
E =@ If it was not a digit
E =1 If it was a digit

contains the
current CRT IS zelect
code., It's usually
Frior to callina

Fl11
] S
Gl R
[
73
3 E
EX:) =

DIvVi@
52441
2]

Divides
number
real

one real
into a second
number,

INFUT STRCKE CONTENTS
(empty)
Rl12---->

INFUT REGISTER CONTENTS
Fd4@-R47 Real rumber L]
RSB8-R47 = Real number BE (g

OUTFUT STACK CONTENTS
Result E/A (B-butes)
Rlz2---->

QUTFUT REGISTER COMTENTS
F4@-R47 = Copy of result E-A

HOTE: The CPU

OIv1m is

must be in

called,

EcoD

The
or

two arguments
the result will

must be rea

b

mode before

1 numbers

be unknown.

DIGIT
PARSE

DISP.
CRT

DIV1g
MATH

8-31

Section 8: Reference Material

DIv2 INPUT STACK CONTENTS
MATH ET¥ED) N
Divides cne real or Real or tagged-integer A (8-butes)
tagaed-integer number _ Resl or tagged-integer B (8-butes)
ints a second real or R1z---->
tagged-inteaer
nomber . OQUTFUT STACK CONTENTS
(This is the main
runtime entry point Result A/B (8-butes)
for the = R12----%
aRerator OUTPUT REGISTER CONTENTS
e LA Er e, R4@-R47 = Copu of result
zol21lzz[23]24]12
NOTE: The CFU must be in EBCD mode before
thig routine is called.
7O[71|7F2|7?3]74iv5]|76]7F
DR|AR|OC| E [STIPTRIFTEZ)
Gehziofufo]l - [-1
DMNDCR INPUT ONDITIONS
c .
PARSE
Flags an error if R14 R14 = Inceming token
is t 3 ca
;etgﬁn ;rb;;r&a%gkan. OUTFUT CONDITIONS
If R14 didn't contain a carriage return
token or an @ token then ERROR will hawve
been called.
1 3 4 15 _|& [¥
1 4151617
2 2425|2627
k Salas]aclar
4 31[42 44[45146[37
SA[S1[S S4|55]96]57
cBElelle 54[65]6€
7alr1]|? v4|7D|7
DRIAR[DC[E [ST|P 1P
olul-julo[- T -
DN ONCUR .
CUR. 13807 INFUT CONDITIONS
CRT] M
Maves the cursor doun The CFU must be in BIN mcode at entruy.
=l line on th ALPHA
dr]'fpl;jf ° b CRTEYT must contain the current bute
45 kz to zes if it address.
2 i f the
gai:ea, nge af CRT The cursor must be off at entry (3 call
Memory and wraps it ta DECURZ will do thatd
around if it does.?
W 112 13 13415 Te |7
10T ta e auTPUT conpITIONS
El 27
SE|37 C - . -
34 35 EFET CRTEYT and CRTEAD will be pointina to
: =TS a3 %" :;lgg 2'7 the new cursor sddress,
SE|5 SZ|S4[55
g g é gg s: gz Solor The cursor will still be off.
OrR[AR[OCT E [ST[FTRIPTEZ]
ool -j-Jul - 1

Section 8:

Reference Material

Moves the cursor
address down one line
in ALFHA memora,
tOoesn't check to see
if it goes off of the
surrent page of CRT
meEmory,)

INPUT CONDITIONS
The CPU must be in BIN mode at entru.

CRTEYT must contain the current bute
addressz.,

The curscr must be off at entry fa call
to DECURZ will do thatd,

OUTFUT CONDITIONMS

g Te Iz 14 15 Te 7 CRTEYT and CRTBAD will be pointing t
im = alis[1e[1r - an wlil. e Fointing to
2BI ELEE A the new cursor address,

%Ei L ET LI e The cursar will still be aff.
SB|5i|5s]5%]54]55 56]a7 \74- - - cursor a =

3 E FCEIET A AT RZ4-R2S The new cursor address,
volvilvelvalralrs

OR|ARIOC] E [ET[FTRIFT

Falzal - -Tu0] -

INFUT STACK CONTENTS

OUTPUT STACK CONTENTS

8 bytes)

m # A 2 0 M] i
PRINT and DISF output
driver. Yectors the
cutFuts to either
DUTSTR routine or the
PRORVE routine or
IOTREFC hook, based
upon the walue of the
current select code
in SCTENMF.

OR OC[E [ST|FTR
[bToTooioT

A call to FRINT. aor DISF. should have been
performned befor calling ORV1Z, This will
set up SCTEMP to point to either the
FRINTER IS device or the CRT IS dewice.

DNCURS
CRT

DRAW.
CRT

DRV12.
PRINT

Section 8: Reference Material

EMOVDN
MISC INPUT CONDITIONS
T = th tent P The CPU must be in BIN mode at entry,
aOgTOCk zpcﬁgmsggstg PTR1 = Last bute of source (low)
a location lower FTRZ Last byte of sink (lowd
than its current R45-R47 = Humber of butes to move
1 tian, tarti
w??ﬁ taz 1§w:;tlng OUTPUT CONDITIONS
ddressed butes d
Ecr;fnzeup ?oezh:n FTR1 = First byte of scurce +1 (high?
highest FTRZ = First buyte of =ink +1 Chigh?
' R45-R47 = @
T4 15 7
egfiaia e ts NGTE: EMOVUP and EMOVDN are backwards
135 3 55 & g% from MOVUF and HOVEN., In other words,
Sl=s EMOVUP does for extended memory what
= j 2ot ,; MOVDN does for the lower &4K of memory
IS TE 54122 22]2; and EMOVON corresponds to HOVUF,
volvi[r2|73|74{v5[7Elv7
DR[AR[DC] E [STIPTRIPTRZ|
S - -Tul * T %
EMOVUP Hame
Addr INPUT CONDITIONS
MIsc. B
Moves the contents of The CPU must be in BIN mode at entru.
a block of memory to PTR1 = First buyte of source +1 ¢(high?
a location higher PTRZ2 = First bute of sink +1 (high?
than its current R45-R47 = Number of butes to meve
locati tarti
with the highest o QUTPUT CONDITIGNS
ddressed butez and
:Drz?nqedouﬁ fo T:e PTR1 = Last bute of source (low>?
lowest. FTRZ = Last byte of sink (low)
T R45-R47 = @&
8 11 12 13 14 |5 [e [7
e NOTE: EMOVUF and EMOVDN are backwards
cojetlzziagiadiontanies from MOVUF and MOVON. In ether words,
= - = R EMOYUF does for extended memory what
SIS IL T R e N MOVDN does for the lower 64K of memory
IS T A A and EMOVDN corresponds to MOVUP.
7071|7272 [?4[75][76[77
DR[AR[DC] E [STIFTRI[PTRZ]
5 -1 -lul % | =%
E0J2
MISC.
Turns off
board &
Bit in SV
no other
requests
turns off =
request bit in R17,
Also, resets the keu
repeat speed to the
value in KRFETL.
a |1
11
Sals
ETE
Sols
EEIE
DElA
2

Section 8: Reference Material

EFS10
S472z INFUT STACK CONTEHWTS
a N
Eeturns the smallest ,__fwhatever?
Fositive number the R12---->
oo t iz capable -
of handling :1E-485.| OUTPUT STACK CONTENTS
twhatever?y
Smallest number 1E-433 (H-butesd
R12----3
2 T4 5 Te [7
| 0 0 N
E Eel EF I ER FA
S|zelar
qelailaz]42]44]45](dE]4r
c@lEl|Eo|62]|6d]65|E6|ET
Falvilralralvalvslvelir
DR[AR[DOC] E [STIFTRIFTIRE
Se[1z[o[uful - T-

EG$.,
3564

Fonjsh
Checks two strings
for equality.

6 11 2 13 T4 J5 6 [7
161111213114 [15(16][17
202122123124 {o5136 07
40141[42[43[44

5zi53|54
6061162163164

DR[AR[DC| E [STIPTRI[PTRZ
[Fefizfofulu] - 17—

INPUT STACK CONTENTS

Lenath of string 'A'

Address of strina 'A’

Length of string 'EB’

Address of string 'B'
R12---->

OUTPUT STACK COMTENTS

TruesFalsze value
Rlz----7

OUTPUT REGISTER CONTENTS

R78-R?7 = Copy of truesfalse value.
NOTE: The
false, =1 if
point format,

true and is

truesfalse value is =8 if
in floating-

(8-butes)

Tests
equality.

two numbers for

4 15 J6 |7

1[12[13114]15({16]17

ol2ijzzlazl24]25]z26]27
1132122[124]35

calv1iva2|s3|[7alrS[r6]77

DR[AR[DC] E [ST[PTRI[PTRD|
qalizfufuoful] = [-}

INPUT STACK CONTENTS

A-value (8-butes)
B-value (8-bytes)
R1Z2----3

QUTPUT STACK CONTENTS

TruesFalse value ¢8-butes?
>

R12----
NOTE: The truesfalse value will alwaus
be a tagged integer and will be a 1 if

true and a @ if false,.

EPS1
MATH

EQS.
MATH

EQ.
MATH

o

8-35

Section 8: Reference Material

Sets flags for error
reporting.

INFUT CONDITIONS

ERROR must be called bu
JSB =ERROR

EYT error number

OUTFUT CONDITIONS

this format:

R17 has bits 6 and 7 set,
ERRORS error number
ERNUM# error number adjusted for
external ROMs or binary programs
ERROM# = ERRRONM
2 Sy e K- If in RUN mode ¢R16=2) then
= = T4 2526127 ERLIN# = error line number
E < AR R When control returns to the EXEC loap,
3 3 z: ;; Z% these flaas will cause an error message
Sals1{551a 5: L EHEL to be output. All registers are csaved.
pB(61l62]63|64]65]66]67
re[71]172]|73[F4[7?5]|FE
DR]AR[DC] E JST[FTRIJPTRZ]
Ul =-Tefuj - T -
ERROR+ IO ERROR+
18228 INFUT CONDITIONS
MISC. [0 F o o= b

Sets flags for error
reporting.

o
=

1

1

cnfcnfenfnjen|onfon
oo || e |
~af~if~a] =g~

o[

o]l -
~J|Tv|Cn|

-]
o] || o]l G B
=
(oI nafr
I e
)

4
1
7|

,
(=t
co|m|

be called bu
B =ERROR+
BE¥T error number

ERROR+ must this format:
<

QUTFUT CONDITIONS
k17 has

ERRORS
ERNUM#

bits € and 7 set,

error number

error number adjusted for
external ROMs or binary programs
ERRROM
in RUN mode (R16=23
ERLIN%

ERROME
If

then

error line number
When control returns to the EXEC loop,
these flags will cause an error message
to be output., One RTN address is
discarded from the REé stack before
ERROR+ returns. All registers are
saved.

EXP5
MATH

o

INPUT STRCK

CONTENTS

X wvalue (&-bytes’
R12---->
DUTFUT STRACK COMNTENTS
EXP (XD (G-butes)
RiZ---=3

8-36

Section 8: Reference Material

Does a fast b
(Same as if t

ackspace |
he

backspace key had
been precced while
the shift key was
held down.>

1 12 13 74 5 16 [7
10[11[12713114015]1€(17
20121122123 26127

E 37

40]41]342]43 47
56851525 i
60616
fal71[7
D DC
66[7 B

INPUT CONDITIONS
The CPU must be in BEIN mode at entru,
CRTEYT must contain the same address as
the CRT controllers bute address
register (CRTEARD>.

The curser must be off at entru (a call
must have been made to DECURZ).

Tries to loca
mEmarygd a5 bin
Froaram havin
given bimary
number. If fo
EIMTAE will b
its base addr
aotherwise, EI
will be sat 1

te (in
ary

a =
Froaranmn
und,

e Z=t to
=55

HTARE

o zTero,

I

INFUT CONDITIONS

n BIN mode at entru.

Azsumes the CFU
rRz2 d binary proaran #.

i
= The des=s

1
L=

OUTPUT CONDITIONS

bimary
o
he bimary
e zTera.

FETAVA
45585 INPUT STACK CONTENTS
e ETRES Ftr to variable area (2 bytes)
Fetches the address Row index ¢2 bytes)
an array element Col {ndex {optional) (2 bytes)
CFETch Array Variabde _ Dim flag €1 byted
Addressd, R1z- >
OUTFUT STACK CONTENTS
Cemptyd
Riz-—--->
QUTPUT REGISTER CONTENTS
RZ@-RZ1 = Max len if =tring array
R4E Header bute of array
R7@-R7Z Abs. address of wvariable name
R?S-R?7 = fAbs. address of element value
PTRZ = fAddress of element value
NOTE: At entry, 'Ftr to variable ares' iz

an address which is relative to FUCURR.

‘Col index' is present only if the array
is twe dimensional. 'Dim flag' is even if
the arrau is two dimensional, add if one.

FASTBS
CRT

FBPGM
MISC.

FETAVA
MISC.

Section 8: Reference Material

FETSVA
MISC.

FETeh Simple Variable

Address.
address which is
relative to FHCURR
and changes it to an
absclute address.

Takes an

INFUT REGISTER CONTENTS

RE65-RE7 = Address of

‘trelative

wariable area
to FUCURRD

OUTPUT REGISTER CONTENTS

R4E Header bute of wariable

R7@-R72 Abs, address of wvariable name

FTRZ = Abs. address of least
sianificant bute of address of

wariable name in variable

T 1= T 15 storage area.
1alt 12]13]14115]18
2Aj21[zz2[23[24][25]126
ulal[sz]=2}34]35]3e
FEIETREIEEIEEIE 4 6
SB[91]52153154]155]156
1 ENEEEEIEE

73i74|FS|FE]PT
OR[ARJOC] E [ST[FTRI[FTRZ
felavTe [-To [- | % 1

FLIP. Th 1 de f FLIP i
- e actua code or 151
MISC.
FLIP. LOE R36,=
STED R32E,
FLIF
z [z 13 |5 [e |7
N S EY B S
Zzlezlzalzs(2el27]
Fll kil EE ¥l
z EIES] v
Seisi[s 4|55
EGlel(e EY =
Telcilr Vi
DR[AR|DOC] E [ST[FTF
ZE[- - -0 —
FNDLIN EERD FNDLIN
- iCELEEE 32355 INPUT REGISTER CONTENTS
MISC. [Iren o LrTEED

Finds a specified
line (bu number? in a
ERSIC Frogram,.

R¥5-R77 = Line number to be found

OQUTPUT CONDITIONS

€E =8 if the line was found.

E = 17 if the line was not found.

PTR1 points to the line length bute of
the desired line, if found, else it
points to the same byte of the next
highest line.

1 12 13 4 |5 [6 |7
1411S{16[17 =
= NOTE: Upon return a LDBI R28,=FPTR1-
ellezlzslzdlzslzeies would load into R2@ the lenath of the
3 3[34[35]36]37 found line, that is PTR1 is really
al b = i: 4314 ;; pointing to the least significant byte
2 ; o TesTeq gg d of the line number. AlIl registers are
e 7il7 217 A 757677 saved and restored.
DRIAR[D E [STIPTRI[PTR2|
65| 6 [B | ®* [U] % | -

Section 8: Reference Material

Addr
Fonm # Romisb
Parses an array
variable reference
with no subscripts,
as in

PRINT# 1: A<,

SCAN must have been
done at entru.

INPUT CONDITIONS

R18-R11 = Pointer to input stream
R14 = Current token
R2@ = Next character
FTRZ = Pointer to output stream

OUTPUT CONDITIONS

E=1 if successful
=@ if unsuccessful

Fomizb
Runtime code for the
system function FP,

Returns the fractional
portion of X.

raro
rofes]cn]
al|cul
o) |]
55|
o]l
nlen
role]on|
onon)|
[~
|~

|
a[rofi-s ||

70lc1|72]v3|74|v5[Fé[r7

OR[AR|DC] E [ST[PTRI[FTR2]
EX1 W O T - -

INPUT STACK CONTENTS

X-value
R12-—-->

(8-butes)

OUTPUT STACK CONTENTS

FPL{X)> result

(8-bytes)
R12---->

OUTPUT REGISTER CONTEMTS
R48-R47 = Copy of result

ntime code for
SIC =statement

FRAME

FORMAR
PARSE

FP5
MATH

FRAME.

CRT

Section 8: Reference Material

GSN TN
24543 INPUT CONDITIONS
PARSE 5] ki R18-R11 = Pointer to input stream
Farzes one string and R14 Current token
ane numeric paramater k2@ = Mext character
and pushes the
ineaming taoken. FTRZ = Pointer to output stream
OUTPUT CONDITIOHS
R1@-F11 = Peointer to input stream
Ei4 = token
Rz@ = character
TS R48-R47 = bu SCAN
12|13 &
N 25 O Ea QUTPUT EMC POINTER
BN EFN R EE BT PTRZ----3 R14 3t entry i1 buted
Humeric parameter tokens
3 (% bytes?
%% L 0 S R T String parameter tokens
(x butes?
OR|AR[DC] E [STIPTRI[PTRZ
safufulwio] - [0]
G$N+NN INPUT CONDITIONS
©
PARSE j R18-R11 = Pointer to input stream
Parse= ane =trin k14 = Current token
3 numeric param=ete R2a = Next character
and pushes the
e Token.
ineeming token PTRZ = Pointer to output stream
OUTFUT CONDITIONS
R1A-R11 = Pointer to input stream
R14 = E
Rz2@ = Mext character
R48-R47 = ZSet by SCAN
QUTRUT EMC POINTER
FTRZ----* R14 at entry {1 bute?l
Humeric parameter tokens
tx butesy
String parameter tokens
— | (x butes)
AR[OC] E [STIF
slufuiulufl - [u |
G/A G/A
/ 11685
CRT] N
Toggles ALPHA to
GRAPH and GRAPH to
ALPHA (same as the
ARG keuw)d.,
4 6 |7
16111112113 16117

ORIAR[DC] E [STIFTRI[FTR2
[olTuojololol - T -1

Section 8: Reference

Material

INPUT CONDITIONS

P R18-R11 = Pointer
line number refer- 924 = Current
znces and pushez the Rza = Next
incoming t R143,
ineaming token FTRE = Fointer

QUTPUT EWC FOINTER

to input
token

stream

character

to output strean

PTRZ----% Incominga token €1 butel
2 bute line #
Integer constant token
3 bute line #
Integer constant token
NOTE:
Either or both line numbers are optional
s0o the output stream may be different.

GA1N
24726 INFUT CONDITIONS
a Y
Parses zero or cne R16-R11 Pointer to input streanm
line number refer-— R14 Current token
ence and Fushes the R2@ = Next character
incomi tok (R143,
tneeming token PTRZ = Pointer to output stream
OUTPUT ENMC FOINTER
FPTRZ----> Incoming token (1 bute)
X
- .
s 117 i 2 byte line #
12113 1617
2122122124125 26(27 3z Integer constant token
20121]32133134]|35 37
6Bl61[62]63]64]65(66]67 :

NOTE: The line number is optional so the
olsilsalz3 ?4L1§_1§A11 output stream may be different.
DR[AR[DOC[E [STIPTRI[PTR2Z|
UTululofol o 7=

NE
inter to input stream
rrent token
numeric ®t character
and then 2
incaomi tokse 43
ineaning token (R1 PTRZ = Fointer to cutput stream
OUTFUT CONDITIONS
E1A8-R11 = Fointer to input =tream
14 Mext token
Rza Hext character
RZ4 = Number of parameters found
OUTFUT EMC FOINTER
FTR2----* R14 at entry 1 buatel
Humeric parameter tokens
¢ buteszl
&2
7 S
% ARIOC] E [STIFTRIIFTRZ]
Ul oo =T 0 |

G@12N
PARSE

G@1N
PARSE

G@OR2N
PARSE

Section 8: Reference Material

G120R4 G120R4
24772 INPUT CONDITIONS
PARSE ! 2] X
Parses one, two, or R1@-R11 Pointer to input streamn
four line number R14 Current token
references and pushes Rz@ = Next character
the incoming token FPTR2 = Pointer to output stream
(R14D .
OUTPUT CONDITIONS
R1@-R11 Pointer to input stream
R14 Next taken
TS = Rz8 Next character
12|13 17 R34 = Number of parameters found
21122(22124[25]126127] |
SR EE e ER kR QUTPUT EMC POINTER
FTR2----> R14 at entry (1 byte)
[60161162163]64]65]166]167 Numeric parametezx1gtfgz)
rd
DR[AR|DC] E [STIPTRIPTRZ
safujulololT o | %
G1OR2N CIOREN
- 24761 INFPUT CONDITIONS
PARSE 8 ¥ R16-R11 = Pointer to input stream
Farses one or tuwo R14 = Current token
fumeric parametars R2o = Mext character

and then pushesz the
ingoming token (R143.

FTRZ = Pointer to output sStream
DUTPUT CONDITIOMS
R18-R11 = Fointer to input stream
F14 = Mext token
rza = Mext character
E R34 = Number of parameters found
12[13 [u (
2ileclesleatesiee OUTPUT EMC FOINTER
EFIERNERIEE] ;< EFIES FTRZ----> R14 2t entry {1 butsed
Humeric parameter tokans

X sns,
66|e1]62162]64[65]66]67 (x bytes

]
DR[AR[DC] E [STIFTRIFTRE
Zalolololo] = [0 |

GCHAR
PARSE

Name
Rddre
Fom #
Gets the next non- R18-R11 = Pointer to input stream
blank character to -
R28, If the character OUTFUT CONDITIONS
is a carriage return
them the R1B Pointer R28@ = Next non-blank character
is not incremented.

INFUT CONDITIONS

The actual code is:

GEHAR SAD
BIN
11]2 a5 7 GCH1 ERED
TE[13[14]is i7 ene
SN EE EE EL 57 2EE,
I ESN K R EEY B 37 Fog
da[al]dz]da]ad[d5 ir che R
5 So(53[54(55(56]57
colel|62]63]64]65(66[67 BCHRTN - FAD
7 Tl7alralr5l7elrs
OR[ARIDC| E [ST[PTRI[PTRZ]
- - - - - - | -

Section 8: Reference Material

INPUT STACK CONTENTS GCLR.
CRT
e code for the Top of stack -> Optional Y-ordinal
tat t. (8 butes)
sStatemen R12———=%
OUTPUT STACK CONTENTS
Cempty)
R12---->
INPUT STACK CONTENTS GEQs.
MATH
Checks to see if one Length of string 'A‘ (2-bytes)
string is greater Address of string 'A" (3-bytes)
than or equal to a Length of string 'B' {(2-bytes)
second string. Address of string 'B° (3-bytes)
R1Z2---->
OUTPUT STACK CONTENTS
A>=B Trues/False value (8-bytes?
R12---->
QUTPUT REGISTER CONTENTS
R7B-R77 = Copy of truesfalse value.
NOTE: The truesfalse value is =8 if
false, =1 if true and is in floating-
point format.
Hame GEG. GEQ.
Addre 62734 INPUT STACK CONTENTS
Fon # o TR MATH
Tests to see if one fi-value (8-bytes)

number is greater B-value (8-bytes)
than or equal to_a R12---->

second number.
OUTPUT STACK CONTENTS

A>=B TruesFalse value (8-bytes)
>

R12-—--

1 T2 I3 T4 15 T6 7 NOTE: The truesfalse value will always
6li1]12]13 1511el17 be a tagged integer and will be =1 if
0|21]pz|23[24[25(26]27 true and =@ if falce
6[31(32(33(34(35 o

sB|71[v2i73[r4]7fS[7&]77

DR[AR[DCI EJSTIFTRI[PTR2|
4gl12fu] uUulU - -

8-43

Section 8: Reference Material

GET)
PARSE

GET1IN
PARSE

GET2N
PARSE

8-44

Checks R14 for the
close parenthesis
token (set by SCAN).
ERROR is called if
not found, else SCANs
and returns.

INPUT CONDITIONS
R18-R11 Pointer to input strean
R14 Next token
RZ@ Next character
PTR2 = Pointer to output stream

OUTPUT CONDITIONS

If successful:
E=1

R14 = Next SCAN token
R20 Next character
= R48-R47 = Set by SCAN before exit.
4 |5 |6 |7
1213 16]17 .
2ilz2[23edles|26]27 1f upsuccessful:
35
EL R e EE ER R EE EN No registers will have been chanaed
and ERROR will have been called.
66]61|/62|63[64[65]66]|67
valr1|F2|v3[v4]75|Vel77
DR[AR|DC] E |[ST|IPTR1|PTR2]
ufufuluolol-"1T"-
GET1H
24557 INFUT CONDITIOHNS
8 Y
Farses one numeric R1B8-R11 Pointer to input stream
parameter and pushes R14 Current token
incoming token (R147, rza = Hext character
FTRZ = Fointer to output stream
OQUTPUT CONDITIOME
E18-R1l = Fointer to input stream
Fld Next toksen
RZ@ MHext character
S R4@-R47 = Set by SCAN
4 |5 |5 v
12]13 16117 ME F O
2122|2224 25126l 27 OUTFUT EMC FOINTER
2831135172 S5 |2E|27 FTRZ—— Fi14 at entru 1 bute?
- e = Humeric parameter tokens
i butes?
sdlolledleiledleSlboo]Eer 4
]
OR[AR]OC] E [ST[FTRI[FTRE
Zafuluolulol - T w]

LELE] T2H
Addr INPUT CONDITIONS
Rom #
Parces two numeric RE1@8-R11 = Pointer to input str=am
Farameters and Fushes R14 = Current token
incoming token (R143. Rza = Next character
FTRZ = Pointer to output stream
QUTFUT CONDITIONS
R1A-R11 = Faointer to input sStresm
R14 = Hext token
Rz2@ = Mext character
15 15 17 R48-R47 = Set bu SCAN
12]132 16117 | C 0
R EHEC EE EE QUTFUT EHC FOINTER
E EFS EF K BN FTRZ----% R14 at entry €1 butel
2 z : Numeric parameter tokens
Eilelealealeolecler (% butes?
[OR[AR|OC] E [STIFTRI[FTRZ
safufufulo] - [T u]

Section 8:

Reference Material

INFUT CONDITIONS

Farses four numeric R18-R11 = Fointer to input stream
parameters and pushes R14 S Current token
incoming token tR14). Rz2a = Hext character
FPTRZ = Fointar to output stream
OUTPUT COHNDITIOMS
R1@-R11 = Fointer to input stream
F14 = Next taken
RZ@A = MNext character
T 15 12 17 R4B-R47 = Sat by =CAN
12113 16117
21]z2[23|edlesEeler OUTPUT EHC POIMTER
Sotests 55
EIERN I EE EEIECIEL: PTRZ----3 R14 at entry ‘1 buted
Numeric parameter tokens
¢ =3
(6016116262164 65 c0ler ¢x bytes)
]
OR|ARIOCT E [ST[FTRIFTIRZ
salufuolT ool — T 0 |
GETCHMA
23477 INFPUT CONDITIONS
a Y

Checks current
for a comma (at parse
timer and if found
does 3 SCAN to get
past it, else calls
ERROR.

token

Fd

12113 6117
2122232242526 27
301311321331 34[35]3|37

60(61]62(63]64]65|66]67
F=3 Il I e) S el
DR[AR[OC[E [STIPTRI[PTRZ
UlololulTol - T o

R1@-R11 Pointer to input stream

R14 Current token

R2@ = Next character

OUTPUT CONDITIONS

If comma was found
R14 Next token
R28 Next character
R40-R47 Set bu CAN

1f comma was not found ERROR will have
been called and E=@,

INFPUT CONDITIONS
¥ Rl1a-R11 Poainter to input stream
Parses as many k14 Current token
numEric parameters as Rza = Mext character
it an and then
ushes the incoming
Toké: (R147 . . FTR2 = Fointer to autputl stream
OUTPUT CONDITIONS
R18-R11 = Fointer to input =tream
E1l4 Next token
RZa ext character
T 15 6 T RZ4 = Number of parameters found
1213 16[17 0 o i
2ileelesloalas zelzy] “MTFUT ENME POINTER
LA ER EFIEE] ek FTRZ > R14 at entry i1 byted
4 Numeric parameter tokens
P =3
HIEEE R AN £ buytes)
]
OR|AR[DC] ETSTIFTRIPTRZ]
Zal ool olo{— T o)

GET4N
PARSE

GETCMA
PARSE

GETPA?
PARSE

Section 8: Reference Material

GETPAR INFUT CONDITIONS
PARSE R18-R11 = Pointer to input strean
Farses as manu R}‘4 = Current token
numeric Farameters Rzo = MNext character
it can. [f, at entre R35 = Number of parameters to parse.
3 any number is =@ if any number acceptablel
acceptable., If RISH#e, FTRZ Fointer to cutput =tream
th =} rzed
mne unner BRI, QUTPUT CONDITIONS
as GETPAR pushes R18-FE11 = Fointer to input straam
1\r(u:-u; token after ﬁls H:;; an
of ot 5 ter g 3
= PaCanctErs R34 = Number of paramneters found
OUTPUT EMC FOINTER
PTRZ2----* E14 a1t entry “1 butel
Humeric parameter tokens
tx butes?
ODC| E|STIPTR
Ssalojuoulolol — T4
GLOAD‘ INPUT STACK CONTENTS
CRT N
Top of stack-> File name length (2 buytes?
File name address (3 butes)
R12-~--=3
{file name>
OUTPUT STACK CONTENTS
(emplyl
Rlz---->
TOSU GOTOSU
GO 30317 INFUT CONDITIONS
PARSE a ¥
Farsesz a S0TO or R18-R11 = Pointer to input stream
COSUE number or label R14 = GOTO or GOSUB token
ind SCANs before rea = Next character
returning. ». _ s I
OUTFUT CONDITIONS
If successful:
E14 Next token
R2A Mext character
E4@- Set ba 3CAL
35 Je |7 E#2
21 é§|§§ 24125 ég é; If unsuccessful then E=8
2p[31{3z2]33]34135]36[37
6B]61|62]63|64]|60l66(67
7o[71{72|73|74IvS[7E|vTT
DRI AR][D E[ST[PTRIFTRZ
gjufuljufu =]

Section 8: Reference Material

Checks to see
string
than

if one
is greater
another string.

B 11 J2 T3 [4 15 Je |7
ie[11[12]13]14[1S5]16[17
2012112212324/ 25(26]z27
48141/42]43(744

52[53[54
601611626364
DR[AR]DC

E |STIPTRI[PTR 2]
cali2fo Uy - -

INPUT STACK CONTENTS

Length of strinag

Rddress of string 'A’'

Length of string

Address of string
R12---->

OUTPUT STACK CONTENTS

A*>B TruesFalse value
R12---->

OUTPUT REGISTER CONTENTS

R78-R77 = Copy of

NOTE: The true-false value
false, =1 if true and is
point format.

(S-bytes?

truesfalse value.

is =@ if

in floating-

Tests to see if one
number is greater
than a second number.

4]S J6 |7
Bl11[12 141511617
0lzi[27|P3|2425(2¢6]27
ClERIER 3435

7aj71]72]73

DRIAR|DC] E
4ej1zfuf O

74l75|v6l7?
STIPTRI[PTRZ
U = —

INPUT STACK CONTENTS

A-value (8-bytes)
B-value <(8-bytes)
R12---->

ODUTPUT STACK CONTENTS

A>B TruesFalse value
R12----3

NOTE: The
be a tagged

true and a @ if false,

truesfalse value will
integer and will be

(8-bytes)

always
a1 if

Puts

the DEG.
arads mode STODRG
math operatia
EAD.
GRAD.
1 2 T4 J5 T8 17
1 21 415[16]17|
K HEE ERA R A RN
3 2|2 4125 27
4 ld3[44]45]anlar
1S 22|53|54]SS|SE[ST
(=0 0 S A = = T
rolv7i1]72[73[v4l7S|76l77
OR|AR|OCT EJSTIFTRI[FTRZ
Fel - - -0l - -

The actual code is:

GRS.
MATH

GR.
MATH

GRAD
MATH

Section 8: Reference Material

GRAFA.
CRT
the CRT to
LL mode.
GRAPH OUTPUT CONDITIONS
CRT p
If the CRT displ i If the CRT is in GRAPH NORMAL mode at
I e CRlopiaptay is entry, it will be in GRAPH NORMAL mode
at emtry, it will be at exit. If the CRT is in GRAPH ALL
switched to GRAPH mode at entry, it will be in GRAFH ALL
NORMAL mode, else mode at exit. If the CRT is in ALFHA
nothing will be done. NORMAL mode at entry, it will be in
GRAPH NORMAL mode at exit. If the CRT
is in ALPHA ALL mode at entry, it will
be in ALPHA ALL mode at exit. One
return address will also be thrown awawy
I S| T4 15T = before returning if it was in ALPHA ALL
1o 11l T1alis] = mode, so it won't return to the calling
20]71 2425 7 routine.
7
4814 44145 T
Se]51]52[52[S4[S5[56(57
6016116216 65 rd
vajvi(72]7 7 7
DR[AR[DC[E P R2]
U SV 3 =1
GRAPH.
CRT

the CRT to
GRAPH NORMAL mode.

Section 8: Reference Material

Runtime code for the
BASIC statement

GSTORE <file name>

INPUT STRACK CONTENTS

Top of stack-> File name length (2 bytes)
File name address (3 buytes)
R12---->

OUTPUT STACK CONTENTS

(empty)
R12---->

strina tao

the CRT,
cursar
the end of

leaving the

Fosition at
strina)

the

rafrarafrl

-

o
=l

INPUT REGISTER CONTENTS

R2B-R27

= Address of
RIE-R37 =

the =tring
Length of

the string

INPUT CONDITIONS
Moves the cursor ta The cursor must be off (a call to DECURZ
the top left of the must have been made) prior to calling
ALPHA displaw, HHMCURS .
OUTPUT CONDITIONS
CRTEYT will contain the new cursor
address (which will be the same as the
contents of CRTRAM,
24-R3 = -
= }4 IS I > R24-R3ES New curscr address,
2]13114[15[16[17 a . is:
HEH IS HEYd The actual code for HMCURS is:
2123 EENEH 2] HNCURS LONMD R34, =CRTRAN
142143144145 E¥; JSE =BYTCRT
3 S51152[53]|54[55[56][57 RTN
c1162[63|64|65|E6|67
r1le2|73|74[?5[76[77
HE|D E[STIPTRI[PTRZ
24l - -1 -Jo] - 1 -

GSTOR.

CRT

HLFLIN

CRT

HMCURS

CRT

Section 8: Reference Material

ICOS
MATH

IDRAW.
CRT

8-50¢

INFUT CONDITIONS

Lower-levael BEEP R30-RI1 = 4@,@)
ei?:: p:::', E R32-R33 = Fréquencg as a3 4-diait BCD #
The ARF must be 34 a3t entry.
OCHM must be ECD at entruy.
RS5-RS57 = Duration as a 4-digit BCD #
An example of the call sequence:
g z I3 14 15 Te 7 Lon
1 I I PEN SR BT B LOH U OR ANY YALUE
< B S A LD | OR ANY WALLE
2 22133 3 BCO
3 2143 ARP
S 51|52[52 JSE
EEIE EE -
FB[F1|F2{73
OR|AR|DC] E
SN I B
1ICO0S
77294 INPUT STACK CONTENTS
%] Y
Returns the inverse Argument (8 bytes>
cosine of an argument R12----3>
QUTPUT STACK CONTENTS
ACSC(Argument) (8 bytes)
R12----3
[2 13 J4 |5 [6 |7
li1l12113114]15]16]17
al21
a]31
OR|AR|DC| E |ST[PTRIPTRZ|
[ofofofugu] = [-1
INFUT STACK CONTENTS
Runtime code far ¥-value (& bytes?
EASIC ztatement R12 - yalus (8 bytes)

IDRAW =x,u

OUTFUT STHCK CONTENTS

Cempty)
R12----3

(@ bytes)

Section 8:

Reference Material

IMOVE.
64643

1 X
Runtime code for the
EASIC statement

IMOVE x.,4

ry
i@l11]12]13

DR|AR[OC] E [ST[PTRI[FTRD]
vluolulwlel - T o)

INPUT STACK CONTENTS

X-value (8 bytes?
¥-value €8 bytes?
RiZ-—---%

OQUTFUT STACK COHTENTS

temptyl
RiZ=-==->

(@ butes)

INPUT CONDITIONS
The CRT's internal byte address pointer
Reads pne chatseiet, Cwhich is set by storing to CRTBAD) must
CRT memord pointed to be pointing to the address of the bute
by the CRT's buyte to be read.
ist
oRTeng,neaister QUTPUT REGISTER CONTENTS
R3z = Character from CRT memory.
NOTE: The CPU must be in BIN mode at
7T r entry. The actual code for INCHR is:
12] 3 5117
22 24 - INCHR ORP 32
o = S JSE =BUSY IRefer to CHKSTS
= = aT5oTs ICE R#
Siselsslsdins o6ios STBD R#,=CRTSTS
e e i e e LoopP2 LDBD R#,=CRTSTS
s |7 7] Joo LogP2
DRIAR[DC[E [STPT LDBD R32,=CRTDAT
32[-B[-[UO - = RTN
INF1@
543221 INPUT STACK CONTENTS
4 2]
Returns the largest (whatever?
number that can be R12----%
handled by the
ci:pu:er:g OUTFUT STACK CONTENTS
.99999999399E499 (whatever)
? 9.59999999959E493 (S-bytes)
R12---->
Em——— T T T
iG[11[12[12[14[15]16[17
[zelzi]zz2lz3|24(25]Z€6[27
38|311322{3313al35{36{37
S2|53|54|55|56]5¢
2|6364l65]66]67
7017 e 73[7al75(76le7
DRIAR|DC| E [PTRI[PTRE|
4pfie{DlUOU0O] - | -

IMOVE.

CRT

INCH
CRT

INF1
MATH

R

2

Section 8: Reference Material

INIT.
MISC. :
Same as the INIT kew.
Allocates the entire
BRSIC praaram.
1
1
1
1
1
1
1
INPUT,
MISC.
INTS INFUT STRACK CONTENTS
MATH
Runtime code for the X-value (8-bytes)
system function FLOOR R12---->
Returns the largest OUTPUT STACK CONTENTS
integer <= X,

FLOOROX)> result (8-bytes)
R12---=>

OUTPUT REGISTER CONTENTS

T T 14 5 617 R4@-R47 = Copy of result
111121311475]16[17

0[21]2z123|74[25]26]27
31

ralei[r2]?3|74]|7S5[76[7?
OR|ARIDC| E [STIPTRIIPTR |
4a[12[D | U U - -

8-52

Section 8:

Reference Material

Runtime code for the
System cperater DIV,

Returns the

integral
Fortion of

the result
BE.

INPUT STACK CONTENTS
A-value (8-buytes)
B-value (8-bytes)

R12--=->

OUTFUT STACK CONTENTS

¥ divi b ANB result (E-butes)
of A divided by R1Z-——n3
1 2 14 5 & T7
11112[13714115[16]17
Al21]lz2]23]24[25[Z&6] 27
21
co|71v2]73[v4[?5[76[?7
OR[ARIDC] E [ST[FTRI[FTE2|
uliz2lo{ulno - -
INPUT CONDITIONS
Fetches an integer R18-R11 = Pointer to input stream
from the input stream R20 = Next character
at arse-time (such
3c Bline mumbernyeh OUTPUT CONDITIONS
R18-R11 Pointer to input stream
R20 Next character (non-digit?
RzZ2 Number of digits seen (BCD)
R36 = Exponent (15C if less than 16
digits were found)
R46-R47 = The integer (up to 16 digits)
I L LI The least significant digit
21 154 2% o157 is in the right nibble of R48.
EEN EAER ELER] E =@ If some digits were found
S0151152]153]154155156157 E =1 If no digits were found
6061|6263 65]|66]67
7v0[71|v2]|73 rdrd
DRIAR[DC|] E
22l U] D] %

Multiplies two 16-bit
binary numbers giving
a 22-bit binarwu
result,

[[frofisf |

4
4
4
E!

64|65]/66]67
74l7S[76|77

ST PTRI]PTRE
- - -

[l
1 [ofi~lenfc
]

o
m)

INPUT REGISTER CONTENTS

16-bit

binary
16-bit

binary

number

R66-RE?7 =
= number

R76-R77
OUTPUT REGISTER CONTENTS
RG6E-RE7

= 16-bit binary rnumber

R76-R77 = 16-bit birmary number
R54-R57 = 22-bit result AXE

NOTE: INTHUL does a SAD at entry

PAD at exit

registers used except

@D

and a
and saves and rectores all
for R34-RS57.

INTDIV
MATH

INTEGR
PARSE

INTMUL
MATH

Section 8: Reference Material

INTORL
MATH INFUT REGISTER CONTENTS
Converts numbers from R6B-R67 = Tagged-integer value
the tagaed-integer
format to the real
(floating-point?
format. OUTPUT REGISTER CONTENTS
R6B-RE67 = Real value
o RS NOTE: This routine assumes that R6G-R67
B 3 A contains a tagged-integer value. It does
£ 52 54 = not check for a tagged-integer value.
T IESREE r Therefore, if wou call this routine with
2 ‘E =3 a real value in REB-R67 you'll get an
= = =l indeterminate value returned.
ve]71|72]73[74l7S|76|77
OR|AR[DC| E [STIPTRI1|PTR2|
[Beleal[DTUTUT - =]
IPS5
MATH INFUT STACK CONTENTS
Runtime code for the X-value (8-buytes)
system function IP. R12---->
Returns the integer OUTPUT STRACK CONTENTS
portions of X.
IPCX)> result (8-bytes)
R1Z----%
OUTPUT REGISTER CONTENTS
T R4@-R47 = Copy of result
11
ala1
31
7a[°1l(r2|v3[74]eS[76({77
ODR[AR|DC|[E [ST[PTR1|PTRZ|
olfeloful 0T - T - 1
IPLOT.

CRT

Statement

IFLOT x.w

INFUT STACK CONTENTS

x
¥

—value
value

¢8 butes)
(8 butes>

Elz----3>
DUTPUT STACK CONTENTS
Cempty) (B butes)
Rl1Z---->

Section 8: Reference Material

Hame
ARddr
F o i
Returns the inverse
sine of an argument.

[2 T2 T4 T5 T 17
12013141511 6{17

=|@|o)
s |i= |

DR[AR|DC] E [ST[PTRI[FTRZ
ool loloT—"T"-"

INPUT STACK CONTENTS

Argument (8 butes)
R12-—-->

OUTPUT STACK CONTENTS

ASN{Argument) (8 bytes)
R12---->

Returns the inverse
tangent of an
argument,

2 13 T4 15 Te T7
12113114[15]16]17

DRIAR|DC| E [STIPTRI[PTRZ|
ujufoluluo - -

INPUT STACK CONTENTS

Argument (8 bytes)
R12----3

OUTFUT STACK CONTENTS

ATNC(Argument) (& bytes)
R12-~--->

INPUT CONDITIONS

This routine does the If R66 = 140 then the CALC mode key
csame as the KEY LAEBEL labels will be displayed, else the
kew. RUN mode key labels will be displayed.
9 J1 T2 3 T4 J5 T [7
18/11[12[13]14]15116]17
20121122123

37
48141/42143144[45/46/47
58[51]52[53154[55[56(57
60816 2|63]64]165|66]67
rd-1id 2lr3|val?
OR[AR]DC] E PTR1[PTR2]
u elulul - [-1

ISIN
MATH

ITAN
MATH

KEYLA.
MISC.

Section 8: Reference Material

LABEL.
INPUT STACK CONTENTS
CRT Lenath of string (2 butes}
Runtime code for the fiddress of string (3 bytes)
BASIC statement Rlg----%
LABEL A% QUTPUT STACK CONTENTS
Cemptyl
R12---->
LDIR.
INPUT STACK CONTENTS
CRT
Runtime code for the LDIR value (8 butes)
BERSIC statement R12----%
LOIR Ed OUTPUT STACK CONTENTS
Cempty)
R1Z2----3
LEQS. D LEGS
Rddre INPUT STRACK CONTENTS
MATH [FEE
Checks to see if one Length of string 'A’ {2-bytes)
string is less than Address of string 'A' (3-bytes)
or equal to a second Length of =string 'B' (2-bytes)
string. Address of strina 'B‘* (Z-butes)
R12----%
QUTPUT STACK CONTENTS
A{=B True-sFalse value (8-butes?

R12---

QUTPUT REGISTER CONTENTS

R78-R?7 = Copy of truesfalse value.
NOTE: The truesfalse value is =@ if
false, =1 if true and is in floating-
Ppoint format.

Section 8: Reference Material

Hanie LEQ.
Addre INPUT STACK CONTENTS
Fou # MATH
Tests to see if one A-value (8-bytes)
number is less than B-value (8-buytes>
or equal to a3 second. R12---->
OUTPUT STRCK CONTENTS
A<=B TruesFalse value (&-bytes>
R1z---->
15 e 17 NOTE: The true/false value will alua
= : us
Qi IstlaISHe 7] be o tagged-integer snd will be =1 if
o1 53155 true and =@ if false.
vOlr1[72[¢v3lr4]75]7El77
DR]AR|DC] E [ST[PTRI[PTRZ|
[Melizfujufuol - T -1}
LINET.
INPUT STACK CONTENTS CRT
Runtime code for Line tupe value <% bytesy
EASIC statement Rla----%
LINE TYFE ¥ OUTPUT STACK CONTENTS
fempiyl
R1Z ¥
LIST.
Thig routine will list the BASIC program.
It checks the R12 stack for optional list PRINT

parameters (line numbers) by comparing
R12-R13 with top of stack. Be sure theu're
equal if you don't push any parameters on
the stack, or that they're equal before

you push one or tuwo parameters. (The
parameters would be tagged-integers or
floating point numbers.? The listing goes
to the CRT IS device,

Section 8: Reference Material

LN5S INPUT STACK CONTENTS
MATH 3 O - oo :
Returns the LN(X> X value (8-bytes)
R12----3
OUTPUT STACK CONTENTS
LNC(X)> result (8-bytes)
R12----3
OUTPUT REGISTER CONTENTS
R40-R47 = Copy of the result
[STIPTRI[FTRZ|
0] - -
L Hame
OGT5 Addr INPUT STACK CONTENTS
MATH Fom %] i
Returns the LGTCXD X value (8-bytes)
(the base 10 R12---->
1 ithm) .
eaarithn QUTPUT STACK CONTENTS
LGTYC(X> result (8-butes)
R1z----3
OUTPUT REGISTER CONTENTS
R48-R47 = Copy of the result
LTS. INPUT STARCK CONTENTS
MATH

Checks
string
cond

to see
is less
=trina.

Length of string
Address of =tring

Length of =string
Address of =string
R1z---->

OUTPUT STACK CONTENTS

ACE True-False va
Rl2- =¥

QUTPUT REGISTER CONTENTS

R7@8-R77
NOTE :
false,
point

Copy of true
The truesfalse v
=1 if true and

format.

‘A’ (2-bytes?
'R (3-bytes?
‘B (2-bute=z)
‘B! {3-butes)
lue

“false value,

alue is =8 if
is in floatina-

Section 8: Reference Material

oo =
Tests to see if one
number is less than
a second number.

|

|

|

|
S
cnca|cn

co|vi|72173|74]|7S|v6l7?

E STPTRHPTRi

OR[AR[DOC
aelizfu ool

INFUT STACK CONTENTS

A-value (8-bytes)
B-value (S-bytes)
Rig---->

OUTPUT STACK CONTENTS

A{B TruesFalse value (8-butes)
R1Z2-—---%

NOTE: The truesfalse value will
be a tagged-integer
true and =@

aluways
and will be =1 if
if false.

LT.
MATH

LTCUR.
12623 INPUT CONDITIONS
a N
Moves the cursor left The CFU must be in BIN mode at emtry.
zpac th .
EESHHPSEZP?:g.Ie CRTEYT must contain the current bute
(Checks to see if it address.
gaﬁiegfrpg;elg? CRT The cursor must be off at entry (a call
memory and wraps it to DECUR2 will do that).
arocund if it daoez.)
[2] i 2 13 J4 5 T 7
10 13114115 I
] S22 d OUTPUT CONDITIONS
33 K . . .
A = L CRTEYT and CRTEAD will be pointing to
; =11s ;; g: 22[5 5; the new cursor address.
g g g g; gj g; SolEr The cursor will still be off.
DR[AR[DC] E [ST[PTRI[PTRE] FZ4-R35 = The new cursor address.
Zalza[- [-0 - [-
LTCURS
375 INFUT CONDITIONS
a N
Moves the curcor The CFU must be in BIN mode at entru,
Zgggzs§nlgtgHanﬁemgpg, CRTEYT must contain the current bute
(Doesn't check address.

to see
if it goes off of the
current page of CRT
memory.)

The curscr must be off at
to DECURZ will do that)

entry (a call

QUTFUT CONDITIONS

8 1 e 15 Te I7 CRTBYT and CRTBAD will be pointina to
i8] 2l13114 1 o11e l? the new cursor address.
28 2 2

2|33 T . 3
5 ST43]a9 a5 [aelar The cursor will still be off.
Sa|S1|52[53154|S55[56]57 - =] .
col61l6216 aTesTeelev R34-R35 The new cursor address
vel7zi[72]7 4175
DR[AR|DC[E PTRI|PTRZ
3alzal - -[u0f - [- |

LTCUR.
CRT

LTCURS
CRT

8-59

Section 8: Reference Material

MAX1d
MATH

MIN1@
MATH

MOD1@
MATH

INPUT STACK CONTENTS
Returns 1 A-value L& bates?
o o = E-value “8 bytes?
of tua ues, Riz——oiy 9

AUTFUT STACK CONTENTS

A MAX B walue (2 butes)
R12----3

a8 T1 T2 13 T4 IS5 T& I7
1B[11]1213[14[15[16[17
20lz1le2]23]24[25[2E[2F
36]31
OR|AR]OC] E [STIFTRI[FTE 2
ulizlolulw = s

MIHL1@
125 INFUT STACK CONTENTS
a
" A-value (2 butes)
f otwo wval . B-value (% butes?
] wo values R12—eosy
OUTPUT STACK CONTENTS
A MIN B value (8% bytesd
RiZ----3
1 [z 13 T4 J5 J& |7
11[15[13114[15[16]|17
ajz1lez2lz3]24][25]76[27
21
DREIAR|OC] E [STIPTRI[FTRE]
vfizlo[ofuo bl =
MoD1@
52541 INPUT STACK CONTENTS
a N
Ret ¥ MOD Y X value (8-butes)
sturns " Y value (8-bytes)
R12---->

OUTFUT STACK CONTENTS

¥ MOD Y (8-butes)
R1Z2---->

Section 8: Reference Material

MODADR
13255 INPUT REGISTER CONTENTS
%] N
Insures that the CRT R24-R25 = Displacement of this movement
memory address will R34-R35 = New ALPHA memory address
remain in the ALPHA
memory area when CRTEYT must contain the previcus ALPHA
dain dd ath. memory address. (Thus, R34-R35
g address m will be the contents of CRTEYT
(Especially useful Plus the contents of R24-R25.)
for doi u -]
novemento, Sorser OUTPUT REGISTER CONTENTS
IESE| rd R24-5 = Address modified for wrap-arcund
'éj'ég‘ o117 NOTE: The CPU must be in BIN mode before
ﬁ L this reoutine is called.
E S MODADR checks to see whether the CRT is
2 2 aTecTecles in ALPHA or ALPHA ALL mode, then checks
= > 5T7 37417 to see if the new address is past the
=l end of the appropriate boundary., If so,
DR[AR[DC] E [STIPTRI]PTR? adjusts it to wrap it back to the top of
3 -1 -TuT -1 -1 ALPHA memorwy.
MOVCRS
Addre 13771 INFPUT CONDITIONS
Foon # [Z F: o
Moves the cursor The CPU must be in BIN mode at entry.
dd = fied
iisziﬁ;? spesifi CRTBYT must contain the current byte
(Doesn't check to see address.
if it ff £
éupﬁ.en?c’ﬁigg DfoCR.}he The cursor must be off at entry (a call
memory.,) to DECURZ will do thatl.
R24-R25 = Offset from current cursor
location to desired new location,
6| 2 13 T4 IS5 T 7
e et ratisl Z1 QUTPUT CONDITIONS
i 2 < FEREH i CRTEYT and CRTBAD will be paintina to
calsi155152154 5”|= 5% the new cursor address.
g g g g g: gg A The cursor will still be off.
DR[AR[DE]T E [STIPTRI[PTRZ| E34-R35 = The new cursar address.
3a[zal-T-T0 [- [- 1

INPUT REGISTER CONTENTS

Moves a b £ Assumes BIN mode at entry.

memory ¢,.:_,;c'1(08e,. R22-R23 = Number of bytes to be moved.
addresses to higher R24-R25 = Pointer to the first word of
addresses, starting source blaock to be moved (the
with the highest highest addressed byte).

address and working R26-R27 = Pointer to the first word of
DOWN to the lowest. the sink block to be moved into
¢Works in lower 64K (the highest addressed byte?.
address range onlwy.>

OUTPUT REGISTER CONTENTS

T2 13 14 15 Te 17 R22-R23 = @
RN N T R24-R25 = Pointer to the last word of
36137 the source block to be moved (the
T4z |43 = ‘4'7 lowest addressed byte),
= =515 Sel57 R26-R27 = Pointer to the last word of
z £S5 1 the sink block to be moved into
= =513 = ¢the lowest addressed byte).
1 (6]
DRIAR]DC 1P NOTE: For moves involving extended
Selel -1 - [= memory, use the routine EMOYUP,

MODADR
CRT

MOVCRS
CRT

MOVDN
MISC.

Section 8: Reference Material

MOVE. INPUT STACK CONTENT
s
CRT j
ne code for the ¥-value (8 bytes)
C statement Y-value (8 bytes)
MOME
VE xu OUTPUT STACK CONTENTS
Cempty)
R1Z2---->
MOVUP pEEn
Addr INPUT REGISTER CONTENTS
MISC. =10}
Moves a block of Assumes BIN mode at entry.
memory from higher R22-R23 = Number of butes tc be moved,
sddresses to lower R24-R25 = Pcinter to the first word of
addresses, starting source block to be moved (the
with the lowest lowest addressed bute),
address and working R26-R27 = Pointer to the first word of
UP to the highest. the sink block to be moved into
(Morks in lower 64K the lowest addressed byte.
= ¥
sddress ranse only. OUTPUT REGISTER CONTENTS
T2 13 4 15 |6 |7 R22-R23 = @
TE NI F T R24-R25 = Pointer to the last word of
24125136137 the source block to be moved (the
FREEIEEIESIE] 2; hiahest addressed byte).
2 =515 =; 5T 5% R26-R27 = Pointer to the last word of
o Te e Tesledtectectes the sink block to be moved into
Felzil7ol73lvalrslz6l7 the highest addressed byte.
OR|AR]DC] E [ST NOTE: For moves involving extended
S 6l-1-1U memory. use the routine EMOVON.
MPY10 MFT 18
53357 INFUT STACK CONTENTS
MATH 2 N Cemptud
Multiplies two real R12---->
bers.,
numbErs INPUT REGISTER CONTENTS
R48-R47 = Real number A (&-butes)
R5@8-R57 = Real number B (8-butes)
OUTPUT STACK CONTENTS
Result A¥E (8-bytes)
R1z---->
OUTPUT REGISTER CONTENTS
T2 12 T4 S J6 T+ - -
Te[1i[1z[13[1a[is1eli7 R4@-R47 Copy of result AXE
20f(21jz2z2l23124(25}26]27
ELNER NOTE: The CFU must be in BECO wode
before calling this routine. The tuco
arguments must be real values or the
result will be unknown.
DR OC| EJSTIPTRI[FTRZ
[gefizlo ool - T -]

Section 8: Reference Material

Multiplies one real
or tagged-integer
number with a second
real or tagged-integer
number. (This is the
main runtime entry
point for the sustem

orFerator ¥.2

INPUT STACK CONTENTS

Real
Real
R12----3

or tagged-integer A (8-butes)
or tagged-integer B (8-bytes)

OUTPUT STACK CONTENTS

Result A%¥B (8-butes)
>

R12--—~
OUTPUT REGISTER CONTENTS
R48-R47 =

Copy of result AXB

NQTE: The CPU must
before calling

be in BCD mode
this routine.

Runtime code for
BASIC statement

CRERATE A$,X,Y

INPUT STACK CONTENTS

Top of stack-> File name length (2 bytes)
File name address (3 bytes)
Number of records (8 bytes)
Optional number of bytessrecord
(8 bytes)
R12---->

OUTPUT STRACK CONTENTS

Cempty)d
R12---->

MSPRNT

Sets the file print
pointers to the
appropriate file
buffer. Part of
statement

the

PRINT# 1

INPUT STACK CONTENTS

Top of stack-> Buffer number (8 bytes)
Optional record # (8 bytes)
R12---->

OUTPUT STACK CONTENTS

Cempty)
R12---->

NOTE: For figuring out what routines
call and in which order when reading
from or printing to disc data files=s,
first write it as a BASIC statement
first line of & program. Using the
command, look into memory (the line
be at FUCURR-48)> to see what the
token form is, Refer to MSPRNU for a
list of routines and token numbers,

MEM
will

MPYR
MATH

MSCR
DISC

OI

E.

MSPRNT

DISC

Section 8: Reference Material

MSPRNU
DISC The Mass Storage ROM routines and their
associated token numbes (for PRINT# and
This is a note which READ# statements) are:
is continued from
MSPRNT .
18 HSPRNT
21 RERAD.
37 RODNUHM .,
40 PRARR
41 RDSTR
4z PRHNUM
43 FREQ
1T 12 13 [a 15 1617 44 PRETR
= = 45 RODARRR
1 12[13 4 ol16[17 46 PRARRS
cligotesledlasizsler 47 ROARR$
S1[32[3 4 S]3 7
4114244 4 Sld i
SB851|52]|53]|54[55[S6[S7
EEE 62(63|64]|65]|66]67
f6[7 relv3lv4]7S({76]v7]
DR[ARIDC| E [ST PTFHPTR
MSPUR.
INFUT STACK CONTENTS
DISC
Furges a disc file Top of stack-> File name length (2 buytes)
and optionally all File name address (3 bytes)
files after that file Optional value @ (2 bytes>
R12----3%
OUTPUT STACK CONTENTS
(emptud
R1z----%
MSREN. MSREN
64724 INPUT STACK CONTENTS
DISC 3z@ Y
Renames a file on a Top of stack-> 0ld file name len(2 bytes)
disc. 01d file name address (2 butes)
New file name length (2 butes)
New file name address (3 butes)
RiZ-~—->
OUTPUT STACK CONTENTS
CEmRtY)
R1Z-—--%
4 & |7
1611112713 16]17

DR[AR[DC] E [STIPTRIPTRY
[l Tojdjul - Tu

8-64 -

Section 8: Reference Material

NARRE+
22461
a

SCANs and parses a3
simple numeric
variable reference

as an array reference
¢that is, MAT A=ZER>

INPUT CONDITIONS

R18-R11 = Pointer to input stream
R20 = Next character
PTR2 = Pointer to ocutput stream

OUTPUT CONDITIONS

If successful (token found was a 1)
then an array reference (token 22)

will have been pushed out to FTRZ-

[
foutput stream) and a SCAN performed.

If unsuccessful when ERROR will have

4 |5 7
12113 5% been called.
21(22]23]24[25|26]2¢
28131132123]124]125]136]37
cBl61l62l63]|64|65[66]|67
velrifr2lr3|F4|75]76(77
OR[ARIDC[E |[ST|PTR1|PTR2)|
uflululuol—"Td
NARREF
23463 INPUT CONDITIONS
R1@-R11 = Pointer to input stream
i i R14 = Next token
t
:?;§120ﬂu;2ﬁlzarses 2 R20 = Next character
variable reference PTR2 = Pointer to cutput stream

as an array reference
(that is, MAT A=ZER).

oo ||
e rofi—[~|
][

2
3@131132]133134]25
62l62l64|65]66167

c2[r3l74]|?5(76]?7
DRIARIDC| E [STIPTR1[PTRZ]
ul - [u

||
~io|

OUTPUT CONDITIONS

If successful (token found was a 1)
then an array reference (token 22)
will have been pushed out to PTRZ2-

(output stream> and a SCAN performed,.

If unsuccessful then ERROR will have
been called.

If the next token is
a numeric constant

it is pushed out to
the output stream and
SCAN is called.

INPUT CONDITIONS

R18-R11 Pointer to input stream
R14 = Current token
R2@ = Next character

OUTPUT CONDITIONS

If numeric constant was found
R14 = Next token
Rz8 = Next character
R49-R47 = SCAN
E=1

Set by
4 |5 7
1213 17 B
If numeric constant was not found

20 gi gg gg g: §g € %; registers are unchanged and E=@.
cBl6l1l62|63lc4l65]66]67
valvi[7o[73]74[75][76]77
DRIAR|DC] E [STIPTRIPTRZ]
UlufululolT -T7d

NARRE+
PARSE

NARREF
PARSE

NUMCON
PARSE

Section 8: Reference Material

NUMVA+ NUTUAT
22403 INFUT CONDITIONS
PARSE a ¥
Calls ZCAN. then R18-R11 = Pointer to input stream
parses a numeric 344 Next character
expression (falls FTRZ = Pointer to cutput stream
th hoimto MHUMMALD .
reushointe OUTFUT CONDITIONS
If successful:
E#@
E14 = Next SCAN token
R2a Next character
TS = R48-R47 = Set bu SCAN before exit,
21 ég gg 24125 g é; If unsuccessful:
HEETS = E=8@
KIS E R LY A R18 i's reset to incoming value so
other parsing may be tried.
e@lellecled|6d|65|6a]67
7olvi[vz]72]|v4l7S[TE|77
ORJARIDC] E [STIPTRIPTR 2]
ulufufufu - 1 U
N Nz NUMYAL
UMVAL Addr 2z48¢6 INFUT CONDITIONS
PARSE Fom # 8 R18-R11 = Fointer to input stream
s i R14 = Next token
Z;;?:;S?ORU?:E;C R2@ = Next character
exprescion that will FTRZ = Fointer to output stream
¢ t 11 aluate
Geun tatyY ina ot OUTFUT CONDITIONS
i ; ¥
numeric value). 1f successful:
E#@
R14 = Next SCAN token
Rz@ = Next character
E R T R4B-RE47 = Set by SCAN before =xit.
21 ,{g‘gg 29125 ég é; If unsuccessful:
AR 2 E=@
B ESNEEI ER] ED E ET K18 is reset tao incoming value so
other parsing may be tried.
cBlel|e2]6l]6a]65[66[67
FA|r1]72]73[74|7S[76[77
OR|HR[DC| E |[STIPTRI[PTRZ]
vlofoloful - T 0
ONEB INPUT STACK CONTENTS
MATH Fiom I
Takes one number off Real or tagged-integer (8-bytes)
of the R12 stack and R12---->
converts it to =
15-bit signed b?napg OUTPUT STHCK CONTENTS
value, N
(empty2
R1z---->
OUTPUT REGISTER CONTENTS
T 75 [6 17 R4€6-R47 = 15-bit signed binary number
TTliel1814[15[16[17 R76-R77 = Copy of 15-bit value
T NOTE: If the value is neaative then
FCIES R E R TR R46-R47 will contain the tuo's
= complement of the absolute value of the
original argument (that is, the value -1
PRI 172173174175 would be returned as octal 177777).
ST

DR[AR|OC] E PIRI[PTR
[Feld4e[B U] = "T"-"

Section 8: Reference Material

(3
Fomish
Takes one number off
of the R12 stack and
converts it to the
tagged-integer format
if it's not alreadwy.

INPUT STACK CONTENTS

Real or tagged-integer (E-bytes)
R12--—->

QUTPUT STACK CONTENTS

Cempty)
Ri2---->
QUTPUT REGISTER CONTENTS
1= T4 s [7 R4B-R47 = Tagged-Integer value
1112713[14715(16]17
Blz1l22]23|24]25/26]27
1 33
DRIARJDC| E ISTIPTRI[PTRZ|
[ofuoluiolul - T -1

Takes one number off
of the R12 =tack and,
if it's not in the
real (floating fFoint?
format, converts it
to that format.

S [e 7
Bl11]1=[13]14]15[16]17
ale21lzz|z23|24[25]26]27
glz1]22]23[34]325

58151 (52[53[54155]56{57
c0l71{72[73[7a4[75|V6[77

DR[AR|JOC] E [ST[PTR1|PTR 2|
calda[Dl alU = -

INPUT STACK CONTENTS

Real or tagged-integer (8-butes?
Elz---->

OUTFUT STACK CONTENTS

Cemptud
R12-—-_%

OUTFUT REGISTER COMNTENTS

R48-R47 = Real value from R1Z2 stack
RE@-RET7 =

Copy of real value freom stack

Takes one number off
of the R12Z stack and
returns a flag to
tell whether it is a
real or integer
format number.

INFUT STACK CONTENTS

Real or tagged-integer

C8-bytes)
Riz---->

OUTPUT STACK COMTENTS

Cempty)
klz -

OUTFUT REGISTER CONTENTS

00 2 = O A R R46-R47 = Real or tagged-integer value
18111 z[12[1a[1S[1&6[17
20lellceles|ealeslebler - i

E = @ if R4B-R47 is a real number
R T = 1 if R4B-R47 i= a tagged-integer
58|51]52|52[54|55[56[57
60|61|62|63(64[65]|66][67
F1 i kA A
ORIAR[OC] E [ST
EXY FEE e

ONEI
MATH

ONER
MATH

ONEROI
MATH

Section 8: Reference Material

ONEX INPUT STACK CONTENTS
MATH
Takes one number off Real or tagged-integer (8-bytes)
of the R12 stack and Bla====>
cons tz it to
T6-bit onsigned OUTPUT STACK CONTENTS
binary value with a
separate sign flag. Rla——f?pw)
OUTPUT REGISTER CONTENTS
T T Te 17 R46-R47 = 16-bit unsigned binary number
1 HZ 131a[15]1e[i7 R?76-R77 = Copy of 16-bit value
51122 2'3 al25 (2627 R32 = 8Sign of 1&é-bit value
e 53 If R3Z=0 then value is positive
A11a-[43]a4]45 If R32#8 then value iz negative
velvilvz2][73[v4]?5
DRIAR|D EJSTIPTRI[FTRZ|
[Felde[B Ul - | -
OUTCH1 SI INPUT COMDITIONS
CRT Fomjsb DI)
character CRTEYT must contain the address of the
21 the CET memory location the character is
ntained in to =tored into,
= The ASCII code of the character
to be output,
The cursor must be off at entry <z call
1 DECU will do thatl,
“UT Ca 5
== 57 QUTFUT CONDITIONS
El NN Y CRTEYT and CRTEAD will he pointing to
= = the new cursor address,
EE The cursor will =till be off.
E E24-R35 = The new cursor address.
E
OUTCHR INPUT CONDITION
- S
CRT
Outputs one character CRTBYT must contain the address of the
to the CRT at the CRT memary location the character is
address contained in to stored into.
CRTEYT d scraolls
displau up it ihe RZ2 = The ASCII code of the character
cursor position moves to be output.
of f of the bottom-—
riaht corner. The curser must be off at entry (a call
to DECURZ will do thaty,
a1 a5 1617 QUTPUT CONDITIONS
Lol L e P CRTBYT and CRTBAD will be pointing to
W—_ TR the new cursor address.
S e The cursor will still be off.
3 g 62]6 g; gg R34-R35 = The new cursor address.
DR]IARJDOC] E JSTIF
vlolTel-TolT-"T"-"1]

8-68

Section 8: Reference Material

Outputs a string to
the CRT, blanks the
rest of the line,
maves the cursor to
the beginning of the
next line and
displaus the cursar,

B _J1 F’H [+ 15 T8 17
1e(i1li2[1213HSHElTT
2alziloz2lz3
]

4B 41]dz[d3]ad]d
Selsi]ce]52(54[5S

c2l63]b6d[es
7 72727475
ORIAR[OC] E [ST]F
1] u 1] [} [

INFUT REGISTER CONTENTS

R2ZE-R2?7 = Address of the string
R36-FE37 = Length of the string

.

Sets the CRT to
page size 16 or to
page size 24 (same
as the PRAGESIZIE
statement),

1 75 16 |7
Te[ii(12]12[1a[15[16[17
alz1lz2|23(24]25]26]27
33
30]41142143]344/45]46]47

vajvi[v2l73]74
DRIAR[OC| E [STIPTRIIPTR2]
] = —

INPUT STACK CONTENTS

Page size (16 or 24 decimald(€ buytes)
R12---->

OUTPUT STACK CONTENTS

NOTE: Gives & warning message if the
Parameter is not equal to 16 or 24,

Forces the CRT to
rage size 16.

|

(N1) P Y) P A

NIENE

e N [

o[~]on|cnf+ B[|
N

c|m|

OUTSTR
CRT

PAGES.
CRT

PAGES1
CRT

8-69

Section 8: Reference Material

PAGES2
CRT "
the CRT to
=ize 249,
CHE [T %
FIER N 4[15[16]iv
zejz BEEIEEE
EEIE] 3135046147
3A[S 4
G 4165
A7 4
DR[A TIPTRIFTRE
Z6[S vl - T -1
PARSER [E PARSER
fAddre If no errors cccur, the parsed line will
PARSE have been edited into the program if it
Parses whatever is was a program line, else it will be
the INFEUF to the betueern NXTHMEM and SAVWPTZ.
internal token form.
DR|AR|OC] E [ST[PTRI[PTRZ]
(U0l ol o[0T
PI10 INPUT TACKE CONTEWNTS
3 A}
MATH

i fi |
||l

[ral [
] Ben] Bl
I)
cafra]—{r
ol
o [N R
]
0| o ot |
[| |
cifra]=[o]
73| |

p (] B Bl

|
|

~a| {0l
| |
jon|on{

r
~J|o{i0|
o]}

3| ES

2.
||
jnfenjont

C
=yl
&
|
&
e
B

[|l [~ b
DC] ‘NI'I\U|

NEY

1|F’TR2

{whatever)
>
OUTFUT STRCK COMNTENTS
{whaten
FI 2.1

R12---=%

Section 8: Reference Material

Same as
command.

the PLIST

This routine will list
parameters (line numbers)
R12-R13 with the top of =stack.
sure they're equal if you don't
Fparameters on the stack, or that
equal before you push one or two
parameters.
tagged-integers or floating-point
The listing goes to the PRINTER

the BASIC program.
It checks the R12 stack for opticnal

list

by comparing

So, be

push anu
theu're

¢The parameters would be
numbers,
IS device.

Runtime coade for
BEASIC statement

PLOT %,y

INPUT STACK CONTENTS
¥-value (8 bytes)
Y-value (2 butes)

Rlz---->
OUTPUT STACK CONTENTS

Cemptud
R12---->

Fonizhb
Returns a value which
iz the position in
one =tring of a
second string. This
is the runtime code
for the system
function POS.

rof| |
||
rofs]i-!
rof—=[rol
raifeu]
]

colel]l62]63]64

OR[AR|DC] EJSTIPTRI[FTRZ
uloJulTuld - -

INFUT STACK CONTENTS

Length of arg string 'A’ <z
fAiddress of arg string 'A' (2
Length of arg string 'B' a2
Address of arg strina 'B' (32
R12---->
OUTFUT STACK CONTENTS
Fozition of string B in stri
R12---=% L&
NOTE: Position value will be @ if
does not exist in string A.

butes?
butes)
bytes)
butes?

PLIST.
PRINT

PLOT.
CRT

POS.
MISC.

Section 8: Reference Material

PRARRS
DISsC

8-72

PRARRS
706738

Prints an entire
string array to a

data file buffer.

INPUT STACK CONTENTS

address of first
the array

Abs., address of the name of the
variable ¢3 bytes)

Header buyte of variable 1
R1Z2---->

element of
(3 bytes)

byte)
OUTPUT STACK CONTENTS

(empty)
R1Z2--—-->

NOTE: Refer to MSPRNT.

Prints an entire
numeric array into a
data file buffer.

INPUT STACK CONTENTS

Abs. address of first

element of
the array

(3 bytes)

Abs. address of the name of the
variable (3 bytes)
Header byte of variable (1 bute)

R12---->
OUTPUT STACK CONTENTS

Cemptyd
R12----3

NOTE: Refer to MSPRNT,

is the printer
driver routine., It's
similar to the OUTETR
routine, but for an
external printer.

INFUT REGISTER CONTENTS

R26-R27 = Address of first character
of output buffer fwhere the
first character is at the
lowest address

R3IE-R37 = Number of butes to be output.

Section 8:

o

f

Terminates a print
a data file buffer,
This routine must
always
the end of a series
calls
.,PRSTR.,
.

Reference Material

PRECOL .
70464
320 RREREL
to

Refer
ke called at

to PRNUM.,
or

to MSPRNT.

F o

#

Sets up SCTEMF sa
that
current
select
usually uced prior
calling DRV1Z.

it contains the
PRINTER 15

code., It is

[N, e
||]

e s

caafrofi=[na
rofrofry
]
cafrahain]
ENENEY
e[mafe[en)
| on|on)
e[|
~a)|

£ [~

DISP.
set up

or PRINT.
the select

must

have been called to
code and buffer pointers

before PRLINE was called.

PREOL.
DISC

PRINT.
PRINT

PRLINE
PRINT

Section 8: Reference Material

INPUT STACK CONTENTS

Runtime code for the TOS-> Select code <(2-bytes)

FRINTER IS5 =tatement. Optional line length (8-butes)
R12---=>

ODUTFUT STACK CONTENTS

Cemptul

7a[P1[P2[73[74]l75

OR|AR[DC] E |[ST|PTRI[FTRZ
sl oo uojual -1 il

FRIUM, INFUT STACK CONTENTS
DISC -
Value to be printed (€ bytes)
Rl12---->
OUTPUT STACK CONTENTS
(empty)d
R1Z----3>
NOTE: Refer ta MSFRNT.
PRSTR. 22262' INFUT STACK COMNTENTS
DISC ! 3209 ¥
i : Length of string (2 butes)
Arints a siring to a Address of string (3 bytes)
R12---->
QUTPUT STACK CONTENTS
Cemptyd
R12~---
T =17 NOTE: Refer to MSFRNT.
19l11]112]13 1617
DR[AR[DC| E [ST|PTRI[PTRZ
o JToTuToT—"T"u

8-74

Section 8: Reference Material

Runtime code for the
system function OTR.
Converts degrees to
radians,

2] [z 13 T4 [e 7
T SN W Y = B
2021221232425 26]27
EL]ERD 4

ORE[AR|OC] E [ET[FIRI[PTRZ
eltelo T oToT -1 - 1

INFUT STACK CONTENTS

Degree-value

(E8-bytes)
R12----3

OUTPUT STACK CONTENTS

Radians result (E-butes)
»

R12--

OUTPUT REGISTER CONTENTS
E48-R47 = Copu of result

the comp
radians mode
math operationsz,

5 _]1]

1)1 z
70|z e}
]] ke
404 4

58S 5

H []
7el7 73
OR[A E
el -

The actual co
EG.
STODRG
RAD .

GRAD,

ROARRS$

Reads an entire
string array from a
data file buffer.into
a string array
variable area.

INPUT STACK CONTENTS

fAibs. address of first
the array
Abs. address of
variable
Header byte of
R12---->

(3 bytes)
the name of
(3 butes)
variable 1

OUTPUT STACK CONTENTS

Cemptyd
R12---->

NOTE: Refer to MSPRNT,

element of

the

butel

RAD1@
MATH

RAD.
MATH

RDARRS
DISC

8-75

Section 8: Reference Material

RDARR. [FEIB RDARR .
Addreszz 70186 INPUT STACK CONTENTS
DISC Fon # 320 CETEEY
Reads an entire Abs. address of first element of
numeric array from a the array (3 bytes)
data file buffer into Abs. address of the name of the
a numeric arrauy variable (3 bytes>
variable area. Header byte of variable (1 bute)d
R1Z---->
OUTPUT STACK CONTENTS
Cemptul
R12-~--->
NOTE: Refer to MSPRNT.
RDNUM. INPUT STRCK CONTENTS
DISC
Reads a number from a Abs. address of variable value
data file buffer into (3 bytes)
a wariable area. Abs. address of the name of the
variable {2 butes)
Header bute of wvariable (1 bute)
R1z---->
OUTPUT STACK CONTENTS
{empty?
R1Z2---->
NOTE: Refer to MSFRNT.
RDSTR. RERE
Addr INPUT STACK CONTENTS
DISC o
Read tri f Abs. address of name (3 butes)
aegafaafilglgaFFggm Header of variable (1 byte)
intae a string Max length of string variable area
variable, i (2 butes)
fibs address of first byte of string
variable (3 buytes)
Max length available to store into
(2 buytes)
Abs address of first bute to =tore
into 3 bytes?
R12---->

OUTPUT STACK CONTENTS

{emptul
R12---->
NOTE: Refer to MSPRNT.

8-76

Section 8: Reference Material

READ.
66221
328 Y

Sets the file print
pointers to the
appropriate file
buffer. Part of the
statement

READ# 1

3
10111112113

DRIARIDC] EJSTIPTRI[PTR]
1] ulufu - u

INPUT STACK CONTENTS
Top of stack-> Buffer number (8 bytes>

Optional record # (€ bytes)
R12---->

OUTPUT STACK CONTENTS

(emptyd
R12---->

NOTE: Refer to MSPRNT.

REFHNUN
27538
a

Parses a simple
numeric or arrawy
variable as a stare
variable token. A
SCAN must have been
done before calling.
(This routine changes
fetch variable tokens
1 and 2 into store
tokens 21 and 22,3

4 15 J&
13 1
232(24[25]2
331324135

erofs
rarafr)
||

o
=
fro]
[
cafrol[~|
g~

62|63[6

3|7
DCl EJS
ulu

65[66 67

[75(F6ler

F_RHPTR2
U E3

o]

[~

[
=
Pl

r
=
=

INPUT CONDITIONS

R1B8-R11 Pointer to input stream
R14 Current token
RZ8 = Next charactar
PTRZ = Pointer to output stream

OUTPUT CONDITIONS

E#2 if successful
E=8 if unsuccessful

This routine will

release all temporary
memory that was
reserved by calling
RESHMEM.

8 1 [z 13 [4 |5 [& |7
1e[11]12]13[14[15[1 7
2@[21lz2(23{24]25]2 7
Z0[21|3z]33[34(25]36(37
q8(41]42]43]44([d5(d6lar
50]51]52]53154([55]56(57
€016 6364
7olvilvz|v3|rd

DR[A E[ST[FTRI[PTR2
gluolelolo] - | -

NOTE: The system uses the RAM location
known as RMEM to keep track of the amcunt
of memory currently reserved.

READ.
DISC

REFNUM
PARSE

RELMEM
MISC.

Section 8: Reference Material

REM1@
MATH

RESET.
MISC.

RESMEM
MISC.

INPUT STHACK CONTENTS

H
remainder X value iS-butes)
Y value (S-butesz?
R12--=—3
OUTPUT STACK CONTENTS
Remainder (8-buytes)
Rl2----3
RESET.
S407 Call this routine with a 'JSB =' or a
a Y 'JSB =ROMJSE' instruction, the same as
Does the same ac the any other routine. (It doesn't mess up
RESET key. the RE& stack.)
Refer tc the Owner's Manual to find cut
what RESET does toe the computer memory and
status.
4 15 J6 [7
17

DR[AR
o]

ulululul™

DC] E STPTRIFTR%
1]

Mame
Addre
Fom #
Reserves temparary
scratchpad memaory,
£It gets released at
the end of each line

INFUT REGISTER CONTENTS
RS5-R37 = Number of bytes

OUTPUT REGISTER CONTENTS

to be reserved.

of a BASIC program RSS-R57 = NumgiriﬁguSgles reserved (same
d at h & sian =
oncatenction ef RES5-R67 = Address of highest bute + 1
statements) .)
NOTE:
= =17 E=8 if memory was reserved 0K.
i E#@ if there was an error (MEM OWF).
3124125126127] The address that is returned in RES is
= = = Z such that the following code will store
et teates ;% a bute into the highest addressed
> At B) location of the block reserved:
626264
c2li3lzd STND R65,=PTR2
DRI AR[OC] E [STIPTRI[PTRZ STEI R36,=PTRZ-
u BJUTU0] - 1T -7

Section 8: Reference Material

RETRAT RETRHI
13234 The actual code for this routine is: CRT
Waits until the CRT RETRHI ~ DRP R31
controlier iz in a DISPLY LDBD R#,=CRTSTS
retrace period. AHM R#,=28
JIR DISPLY
RETHN
This routine would be used when manually
switchina CRT modes (ALPHA~-GRAPHICS,
ELANKED-UNELANKED, etc.), If wou switch
T 12 3 13 5 1617 in the middle of a display period. uou
SRR alisTi i? may get an ualy flas
l2@let1]2=123|24]25[261=7
3¢ 22[33]34la5([36 27
41(42]42[44[457d6147
SalS1|S2[53|54|55[Se[57
EE 2|63|64[65[66 |67
787 2]173174[75(76][77
DRIAR[OC] E [ST[P UPTR2]
2{ - -T-To] - -
RNOI@ RND19
093741 INPUT STACK CONTENTS
o I3 MATH
Returns the next ___Cuhatever)
pseudo-randam number Rlz----3>
‘] 2]
agdvig?e etueen OUTPUT STACK CONTENTS
(whatever)
Fseudo-random number (&-bytesd
Rlz2----»
RNDIZ.
INPUT STRCK CONTENTS MATH
Runtime code for the Top of stack-> Optional RANDOMIZE value
RANDOMIZE statement. (8 bytes)

R12
OUTPUT STACK CONTENTS

Cempty)d
Ri2---->

NOTE: If no parameter is passed to this

1) - T routine then the contents of R12 and the
B lis[14[is[16[17 contents of the top of stack must be equal.
%) é} 2222425126127 If a parameter is passed then R12 must have
5 34135 been stored into the top of stack hefore
2131 3 the parameter was pushed anto the =ztack.
In other words, the top of stack must be
e oelat] Pointing to the first bute of the
velrilvalv3lealsslrelee| Parameter.

DRIAR|JOC} E [STIPTRI[PTRZ
UJuluolu - -

8-79

Section 8: Reference Material

ROMINI
MISC.

ROMJSB
MISC.

ROMRTN
MISC.

N
Fd
Fo

bi

Calls
routines
the bank-selectable
ROMs and all of

[
dr
it
the INIT

in all of

the
nary programs.

INPUT CONDITIONS

ROMFL = Reason for the call:

@ Fower on

1 Reset

2 Scratch

3 Leadbin

4 Run,Init

5 Load

& Stop,Pause

7 Chain

18 Allocate class >36

11 De-alleocate class >56é

12 De-compile class >356

13 Program halt on error
NOTE: ROMINI falls through into BPINI,
Binary prcocgrams must insure that R@ does
not get destrovyed during their INIT

routine as R@

is used as a counter by
BPINI.

Mz ROMJSE INFPUT CONDITIONS
Addre 6223 Calls to ROMJSB must be like this:
Fom # B F oo isb =ROMJSE
i DEF routine name
Eiﬁfiﬁgrjﬁaélggﬁkf BYT rom# of destination routine
selectable ROM ROMJSE will usze the RTN address (on the
(address range of RE€ stack from the 'JSBE =ROMJSBE'? to fetch
E00EE to FIIITY. the address and rom# you want to call.
Uhen control returns, it will be to the
next intstruction after the 'BYT rom#'.
R e io,urhaT QUTPUT CONDITIONS
CFU register usage The first four butes of ERTEMP are
information. destroyed by ROMJSE., The DRP=63 and the
1T 5 7 T5 = ARF=8 when the destination routine is
T AFNEIBE rd reached. HWhen control returns from
= 5153154155 d ROMJSB to your calling routine, DRFP,ARF,
5 AKEIEL = - E,status,DCM,and the EMC PTRs are set
) = = = —= L according to the routine that was called.
=al51(55 53154155156 5% R@-R1 are saved on the RE stack alcng
i TesTesTedTecTeeley with the number of the ROM that was
g NN rEIREIE _E =% selected when the call was initiated.
Theu are restored before ROMJSB returns.
DRIAR|DC| E P P Other registers are destroged according
* [¥ [%] % to the routine that was called.
ROMETN
62a7 The actual code for ROMETN is:
a N
Reselects ROM @, then ROMRTN CLE RA
does 3 RTN, Used bu STBD R@.,=RSELEC
bank-zelectable ROM= RTH
that need to return
to the system, but
need to have ROM A
selected ¢(such as at
parse timel,
2 [3 |4 &
1 2|14 1
Z 2 2[24 2
3 22[32[24 3
4 4714344 4
S|51]52[53]|54 5
6061 |62|62]6d €
7Bl7ilvelral74 7
DR|AR|DC] E [ST
6 -[-]-Tu

Section 8: Reference Material

Runtime code for
BASIC ctatement

the

RPLOT x.y

INPUT STACK CONTENTS

X-value
¥Y-value
R1Z2---->

(8 bytes)
(2 bytes)
OUTPUT STACK CONTENTS

Cempty)
R12---->

RSTREG
INPUT STACK CONTENTS
3 N
Restores some CPU (whatever)
registers from the R21~P§1
R& stack., To be used R3B-R37
in conjunction with REB-REV
SAVREG., RE——--3
OUTPUT STACK COMNTENTS
‘whatever?
RE--— >

7] 4 |5 i
1 2]13[14]15 rd
2 ez2l23[24|25 27
3 32 2435 i
4 z 44]45 47
SO[51]52]52[54|55](5 57

61l62]63[64]|65 &7

21|72]73[74[75 i
DR]|AR|DC] E [STIFTRI[PTRZ|
Sel 6] - -{0] - | -

Used by ROMs perform
a checksum on

themselveas
that theua
gone bad.

to insure
haven't

@)

|
1

e e]]

EA(=]

INFUT CONDITIONS
The CF 1

T

ke in EBIN
lazt two bytes of
‘taddres
the checksum,
22-R3I3I = Baze

The

be &898B88 for
QUTPUT CONDITIONS
the

Upon exit,

checksum
The actual

REUMSE

RSUM

of

ramn
electable romsh.

tthis

set if

will

the

is cleared,.

8Kz +

1

RPLOT.
CRT

RSTREG
MISC.

RSUMBK
MISC.

8-81

Section 8:

Reference Material

RTCUR.
INPUT CONDITIONS
CRT
Maves the cursor righf The CPU must be in BIN mode at entry,
ane = =13 n the
ﬁCpnggingau, CRTEYT must contain the current bute
(Checks to see if it address.
aces off of the . .
current page of CRT The cursor must be off at entry Ya call
memory and wraps it to DECURE will do thatd,
around if it does.?
| 2 |2 [4 5 T6 |7
18 1212 14[1S[1E]17 =
ZBI FETES p = A OUTPUT COMDITIONS
32|33 2E[2 N N N
= o = CRTEYT and CRTEBAD will be pointing to
4 Az (4314445 46 d; > " -
B e R R the new cursor address.
calelleclez]c4lesleglar = i : e
ISR R R A The cursor will =till be off,
OR[AR[OC] E [STIPTRIIFTR S
ool -T-Tul-"T-"1
RTCURS
INFUT CONDITIONS
CRT
Hoves the cur The CPU must be in EIN mede &t entru.
address right
SFace in ALFHA memarw CRTBYT m contain the current byte
ibne=n't check to see addre
if it = off f th
éur;an?ugzge QFOCRT = The cursar must be off at entru (a call
memary, to DECURZ will de that).
OUTFUT COMDITIOQNES
2] AR CRTEY¥T and CRTBAD will be pointing to
3 T AEL] the new cursor address,
35|37 ur s = F
l 24 45]46 N The cursor will still be off,
Sel51[S52[53154[55]56]57 -Rz = & y
tnleilcol6dl6alcal6eler R34-R35 The new cursor addr
ce|lvi]7r2[73[7P4]|FS
DR{AR|DCI E {STIPTRI[PTRZ
(24l - [-0 - [- |
SAD1
CRT INPUT REGISTER CONTENTS

Changes
address of
ALFHA displaw.

the start
the CRT

) [Bff~feten

(=]

R34-R35 New start address
NOTE: The CPU must
calling SAD1.

be changed when
fixed at

be in BIN mode before

The start address can only
in ALPHA mode; 1t is

12348 (octal> when in GRAPH modes.

The actual code for SAD1 is:

SAD1 JSB =RETRHI

STHMD R34,=CRTSAD
STMD R34,=CRTRAN
RTN

8-82

Section 8:

Reference Material

SAVREG
23?1 INPUT STACK CONTENTS
Saves some of the CFU ‘{whatever:>
registers on the R& RE-—-->
stack, To be used in
conjunction with OUTPUT STACK CONTENTS
RSTREG.
twhatever?
EZ1-R31
RZE-R37
RER-RET
RE~—==3
5] 4 |5 |6 |7
L fetisaHglellrl E = 8 I no problen
3 = 5 < E =1 If error flagged, stack was full
T = P i CHEM OVF 2
58151152]53[54|55[56[57
cBlell62l62|6d4|E65[66]67
FajPi{v2lr3[valr5(7elrv
DRIAR]D E[STIP
uful-T%Tu]
INPUT CONDITIOHNS
R26 = Next char. from input strean
Rl1@-R11 = Pointer to input stream
from the input stream OUTPUT CONDITIONS
R18-R11 = Fointer to input =tream
R14 = Hext token
RZ@ = Next character
46 = First character searched
R41-R4Z2 = ROM# <if R42=@)
or binary program base address
Cif R4Z2#@D
432 = ROM or binary program token #
T TE = or Tupe if wariable
12113 = i? R44-R46 = If wvariable, R44-R45 = pointer
Zl|zc]22]24|25 (2607 t? name and R45 = length
= = of name
ENNEFEE ?4 B T or integer wvalue
or secondary attributes for
= = functions
O T R47 = Class (primary attribute’
OR[AR[OC] E [STIFTRI[PTRe|
1a]z6l B el 0] - | -

INPUT CONDITIOHS

R18-R11 = Point
OUTPUT CONDITIONS
Rl1@~R11 = Foint
F14 MNext
Ez2a Hext
R4 First
R41-R4Z2 = RONE
or bin
Ra43 = RON o

er to input stream
er to input =tream
token

character

character searched
Cif R4zZ=@31
ary proaran
Tif R4Z#@3
r binargy progran

base sddress

token #

T e T or Tupe if wariable
e e R44-R46 = If variable, R44-R45 = pointer

B ERERE A Q% to name and R4E = length

=1 == < of name
?@ ERNEEIEES “? ?5 e or integer walus -

or secondarg attributes for
ki 3 functions

?g g gg ?% g: gglg2|$; R47 = Class (primary attribute’
OR[AR[OC] E [STIFTRI[PTRZ
143l Bl B[U - 1 -

SAVREG
MISC.

SCAN
PARSE

SCAN+
PARSE

Section 8: Reference Material

SCRDN
CRT

SCRUP
CRT

Scratches memory,
same as the EBASIC
command SCRATCH,

Hoame
Add
F it
Scrolls the ALPHA
display down cne line|

INPUT CONDITIONS

The CPU must he in

EIN mode

QUTPUT REGISTER CONTENTS

at entru,

displaw up one line.

QUTFUT REGISTER CONTENTS

R34~R35 = New start

address.

R34-R35 = New start address.
6 _J1 T [4 TS5 e T7
18]11] 1ali5{ieli7
2012122 26|27
36]37

404 44454647

5i[52[53[54[55(56(57
60]61]62[63]64[65(66]67

7ilvol73[val7s

ARIDC| E PTRI[PTRZ
34elB[-TU0] - T -1

INPUT CONDITIONS

Serolls the ALPHA The CPU must be in BIN mode at- entry.

8 _J1 {2 T+ 1S 1 i

18[11] 1a[1S[1E6(17

2621 7 B}
K

a4 44145 7

Salsi(s52[52[54{55(56]57

60|c1162|63[64]65|66]67

7olrilr2|c3[74[75

DR|AR[DC] E [ST]PTRIPTRZ

FalelB [-0 - -

Section 8: Reference Material

SECIE SEC1¢
S42¢0 INPUT STACK CONTENTS
8 N ? MATH
Ret SE ¥ value {(€-butes)
eturns CCXD R12——m

OUTPUT STACE CONTENTS

SECCXY value (8-butes)

[
ol
o]
o]
ol 2]
ENEN
n
-

OE[AR|DCI'E [ST[FTRI[PTRZ
[EelizloloJol - T -

. SEMICS
INPUT STACK CONTENT
PRINT
i i Length of string (2 bytes)
t
Phints A sinins e fiddress of string (3 butes)
buffer. Same as: R12---->
PRINT "ABC"; OUTPUT STACK CONTENTS
Cempty)d
R12---->
NOTE: DISP. or FRINT. must be called
prior to calling SEMIC$ to set up the
select code and buffer pointers.
SEMIC. e cont SEMIC.
r227 UT STACK ENTS
Fon # Cl - PRINT

Prints a mumber to Number to be printed (& bytes)
the print or display R12----
buffer. Same as:

PRINT 34; OUTPUT STACK CONTENTS

Cempty)
R12---->

NOTE: DISP. or PRINT. must be called
prior to calling SEMIC. to set up the
select code and buffer pointers,

[DRTARTDC] EJSTIPTRI[FTRZ
UuluJululu = u

Section 8: Reference Material

J SEQND
SEQNO iv4ze INFUT CONDITIONS
PARSE] Y
SCANs and tries to R18-R11 = Pointer to input stream
parse a line number. -
Rz@ = Mext character
OUTPUT CONDITIONS
If successful:
= Next token
R2@ = Hext charactar
R4B-R47 = Set bu SCHN
4 15 |6 [7 E#a
12113 16117 - =
N EH RIS EE R If unsucceseful then E=0
L ENEEE EEEDL ER EE EN
€Blet]|62[62[64[c5]66lE7
=1 I I Il I I R i
DRIAR[OC] E |[STIPTR1|PTRZ2)
vjuloluluof-—"Tu
SEONO+ SERNO+
Q 0 3e4zz INPUT CONDITIONS
PARSE 2 Y
Pushes onut the R18-R11 = Pointer to input stream
incoming token and R14 = Current token
then SCANs and parses R2@ = Next character
a3 line number
reference. QUTPUT CONDITIONS
If successful:
R14 Next token
RZa Mext character
F4B-R47 = Set by SCAN
= E#B
7
H gé; If unsuccessful then E=@
L] N
cB|6l|lecla3[64]|ET]|66]67
ralvilvz[ra|v4[ro5]|76[rT
DR[AR]DC STIFTRI[FTRZ]
ojlojofuluo - 1 u
Name
SET24¢ Address The actual code is:
MISC. Rom #

Sets

immediate break

bite (5 and 73 in RLF SETZ4@ PUBD R36,+R6
LDE R36,=24@
ORE R17,R36
POED R36,-RE
RTN
213 14 15 7
ZI1z 1415 1E[l7
Zlzz|zaps]es|er
ElEE EEY EE EE B
3[da4la5(46(37
Sh|Sl|oz[53(54[55(0e]sr
colcllér|czleales|ea6r
Folcilra|ra|7alvs|relrr
OR[AR|DC] E [ST[FTRI[FTR2
36l e |- -0 - -

Section 8:

Reference Material

Name
Rddr
Fom

8_J1 |2 4
16]11]1¢ 3[14
28212 3|24
SB[31[3 2124

414 2144
58[51|S52[53[54
eble1lc2]63]|64
valFilv2]7Z2[74
OR|ARIDC] E [ST
4j12foJuln

INFUT STHACK CONTENTS

¥ walue
R1Z2---->

{8-bytes)

OUTPUT STACK CONTEHTS

SGN{XY wvalue (8-bute
Riz---->

INPUT STACK CONTENTS

X wvalue
R12-—-->

(8-bytes>

OUTPUT STACK COHNTENTS

SINCX) value (2-butes)
>

Rlz--—-

Returns
root of a number:

SORCHD

INPUT STACK CONTENTS

walue f8-bytes)
>

R1g2----
GUTPUT STACK CONTENTS

SER(HK)Y wvalue

(B-bytes>
R12---=>

SGN5
MATH

SIN1g
MATH

SQRS5
MATH

Section 8: Reference Material

ST2406+ The actual de is
co :
MISC.
§T248+ CLE Ri€
SETZ40 FUBD R36,+RE
LDE R3IG.=24R
ORE R17,R36
FOBD R3&.-R&
RTHN
B 11 |2 |32 & |7
1 11121132 17
2R[21122]273 ZE[ZT
2R[31|2Z2]33 kN
40141(42143 46147
SOS1[52]53 S&[S57
EAJET1[EZ][63
re[v1[v2[7
OR[AR)DC] E
32 €] -
STBEEP
This is the same BEEP as when an error
MISC. occurs, or when the BEEP statement is
Does a standard BEEP executed with no parameters.
¢1.2 kz for 1/18 of a
second) .,
B_J1 T 4 7
161112 14 617
20121 24 627
N 215312 o< e o7
404 441454647
S8|51[52]53]|54|55|SE[57
62]63|64[65]|66[67
4 7217 77
DR[AR[DC
31 -] -1 =
STOST INPUT STRCK CONTENTS
MISC. Ab dd f (3 b >
i i s. a ress o name ytes
glgzﬁ?n; i;::gglénto Header of variable (1 byte)
area., Maximum length of variable (2 bytes)
Abs. address of first char. (3 bytes)
Max length to store into (2 butes)
Abs. address to store into (32 bytes)
Len of string to be stored (2 buytes)
Abs. address of string to be stored
R12----> butes>
OUTPUT STACK CONTENTS
Cempty)
R12- 4
NOTE: All but the length and address of
the string to be stored will be supplied
by the system if you parse the string

variable using the parse routine STREEF.

8-88

Section 8: Reference Material

Foom
Stores a numeric

value into a sinmple
numeric or numeric
array variable.

INPUT STACK CONTENTS
Abs .

address of variable (3 buytes)
Abs. address of name (3 bytes)
Header of variable (1 butel
Yalue to be =stored (8 butes)
R1Z---->

OUTFUT STACK CONTENTS

(emptu)
R12--—=>

NOTE: All but the value to be stored will
be supplied by the suystem if you parse
the variable reference using the parse
routine REFNUHM,

STRCON

5 z4281 INFUT CONDITIONS
3 il 2 F
Parses a quoted R1B6-R11 Pointer to input stream
string and then calls R14 Hext token
SCAN. Rz@ Next character
R4B-R47 Set by SCHN
PTRZ = Pointer to output stream
OUTPUT CONDITIONS
If ul:
Next token
Mext character
3 15 16 17 Fointer to cutput =tream
12]13 16|17
21[22[23124[25]26]27
EL]ERN EE EER D ER EE EN If unsuccessful
666116263]64]65166167 E=@
=1 I I il Y = =l
OR|AR[OCI E IST[FTRI[FTRZ]
OloJuol*®lut - [0
STREX+
23721 INFUT CONDITIONS .
5] Y
SCANs and falls R1B-R11 = Pointer to input stream
th hoint TREXF
<p2?§25 ;nggr?ng Rza = Next charactar
Bxpressiony. OUTPUT CONDITIONS
If =
4 15 J6 [7
12[13 16117 . en o
2122 2224 25 2627 If unsuccessful then E=@
301321 132]23134]35]36|37
6Pl61]62[63|64]65(66(67
ce|v71[F2|73|74]7S|v6[77
OR[AR|D EJSTIPTRIIPTRZ]
viuvivluolol - 1T o

STOSV
MIsC.

STRCON
PARSE

STREX+
PARSE

Section 8: Reference Material

STREXP
PARSE

STRREF
PARSE

STREXP
23724 INPUT CONDITIONS
5] Y
Parsez a string R£18-R11 = Pointer to input stream
- ion tany R14 = Current token
expreszsion that will Rz@ = Mext character
¥ t 11 wal t
Goen iat Yainaa'® OUTFUT CONDITIONS
etring valuel, =
If successful
R14 = Next token
Rz@ = Next character
R48-R47 = Set bua SCAN
3 = = E#a
2 24125 52 g; If unsuccessful then E=8
ElEE1EH EEEN
=0 = I R I T Y
] re[rI[Fa[7olve[Fv
DRE[AR[DOC] E [ST[FTR1PTR2|
ululu Ujul| - [0
e STRREF
24858 INPUT CONDITIONS
a ki
Farses 3 simple Ri1Gm-R11 Fointer to input stream
string or string R14 MNext token
array i rz@ Hext character
az a reference “for ??22R47 by SEH" R N N .
storina into, as) er to output Strean
opposed to fetching OUTPUT CONDIT
the valuel. -
I¥ zuce
El4 token
LEL] character
=T 7 FTEZ = Pointer to ocutput =tream
12113 16 E#@
212223 26
ECIESN EELEE] 36 1§
= f
EBlcllez|6z]nd €667 E=8
il 1[72]73[74 FE|TV
] AR[OC]T EJST 1[PTRZ J
ujul sl [0

Subtracts two real
(floating-fpeoint?
numbers.,

8 [1 [2 [3 4 [5 6 [7
iG[11[18113[14]15[16]17
col21leal23124[25]12E]27
39[31

78l71]72]73|74]75[76[77

DRIAR|IDC! E |[STIPTR1[PTR2)
| IEX=] = I T T N

INFUT REGISTER CONTENTS

Real wvalue A

R40-R47 =
= Real

(8-bytes)
R5@-RS7

value B (E-butes>
QUTFUT STRACK CONTENTS

Result B-A (8-butes?
R12---->

OUTFUT REGISTER CONTENTS

R4@-R47 = Copy of result EB-A

HOTE: The two numbers must
Foint format or the result will be

unknown. The CFU must be in BCD mode when
when ADD1@ is called or the result will be
unknown .

be in floating-

Section 8: Reference Material

SUBROI
52724
o I3

Subtracts one real or
tagged-integer number
from s second real or
tagged-integer
number .
(This is the main
runtime entry point
for the sustem
cperator diadic
subtract,

DC[E[STIPTR
[Beliz[DT uluU]

INFUT STACK CONTENTS

Real or

Real or
R1z2---->

OUTPUT STACK CONTENTS

tagged-integer A (8-bytes)
tagged-integer B (8-butes)

Result
R1z---->

A-B (8-buytes)

OUTPUT REGISTER CONTENTS

FE4B8-R47 = Copy of the result

NOTE: The result may be either a real or
a tagged-integer number. The CPU must be
in BCD mode before calling SUBROI.

TANCX)

Returns the

GCl E
[qef1z]Dfulu]

INPUT STACK CONTENTS

% value
R12-——-

(8-butes)

OUTFUT STACK COMTEHWTS

TANZX) value t8-butes)
7

R12----

Runtime
sustemn

code for the
function TIME.

INFUT STACK CONTENTS

Cwhatever)
Riz- b

DUTPUT =TACEKE COMTENTE

twhatever>
Time {8-bates)

OUTPUT REGISTER CONWTENTS

& E48-R47 = Copu of time
7]
[}

7a|vi|72|72[c4lvo|relrr

DR[AR[OC] E [ST|FTRIJFTRZ

delislo ool =T -

SUBROI
MATH

TAN1@
MATH

TIME.
MISC.

8-91

Section 8: Reference Material

TWOB
MATH

TWOR
MATH

TWOROL
MATH

Takes
of
converts
15-bit

values,

two numbers off
the R12 stack and
them to

zigned binary

2. [Po ||

7B|°1[r2]|73]|74175

DRIAR]DC
[4e]2e[BTUTU]

E[ST PTRllPTR2I

INPUT STACK CONTENTS

Real or integer value A (8-bytes)
Real or integer value B (8-bytes)
R12----=>
OUTPUT STACK CONTENTS
Cempty?
R12---->
OUTPUT REGISTER CONTENTS
R26-R27 = 15-bit signed binary number ¢
R46-R47 = 15-bit signed binary number ¢
R56-R57 = 15-bit signed binary number ¢
R76-R77 = 15-bit signed bimnary number (
HNOTE: If a value iz negaative then it will

be represented as the two's complement
the absolute value of the original
argument <that is, a value of -1 weuld be

returned as octal 177777).

of

Takes
of
if
tagged-integer format

two numbers off
the R12 stack and
theu're in the

they are converted to
the floating point
treald format.

eatfroafifca
alfmafiel
s

eul| e

2

12
22
32

eel[ra] e
|||
atfriaiefe=s

vBicl|cz|e3[c4[vSieelvr
DE[E [ST[FTRI[FTRZ
olaful - T - |

DR|AR
[Eel4@

INPUT STACK CONTENTS
Real or tagged-integer A (8-bytes)
Real or tagged-integer B (8-butes)
Ri2---->

QUTPUT STACK CONTENTS

Cempty?
R12----5
OUTPUT REGISTER CONTEN

s

R4B-7 =

T
Rezl value (B>
Real wvalue <f>

(B>

R6B-7 = Real value

TUORDI

two numbers off
of the R12 stack and
if both are tagged-
integers returns them
as such, else does
any needed conversion
and returns them both
as real numbers.

)
ol11]iz(13]14
Alzil22[z23]24
Bl31]22]33]34

cB|71|72173[74[75]76

il

DR[AR[DC
[(olufolulal] -

E STPTleTPﬁ

INFUT STACK CONTENTS

Real or
Real or

tagged-integer A (8-butes?
taaged-integer B (8-butes?

R12-—--->
QUTPUT S&TACK CONTENTS
temptyd
RiZ2---->

OUTPUT REGISTER COMTENTS

R4@-7 = Real or tagged-integsr (B>
R58-7 = Real or tagged-integer <A}
E = 8 if both numbers are real

= 1 if both numbers are inteaars

Section 8:

Reference Material

Checks
for

two strings
inequality,

INPUT STACK CONTENTS

Length of string 'A' (2-bytes)

Address of strina 'A’ (3-butes)

Lenath of string 'B' (2-hbytes)

Address of strina 'B' {3-bytes)
R12---->

OUTPUT STACK CONTENTS

Trge/False value (2-butes)

R12--~

6 1 1213 T4 15 16 |7

hTlizhishiaisiels] CUTPUT REGISTER CONTENTS

gol2ll221731 24125 [2el2r R7O-R?7 = Copy of truesfalse value.

dald1 I NOTE: The truesfalse value is =@ if false,
=1 if true and is in floating-point

6616116263164 formnt.

DRI AR DC| E [ST[PTRIPTRZ

7e[12[01U - 1 -

Tests
inequalitu,

two numbers for

INPUT STACK CONTENTS

A-value (8-buytes)
E-value (8-butes)
R12---->

OUTPUT STACK CONTENTS

TruesFalse value (8-bytes)
>

R12----
1 f C ?sifslr? NOTE: The truesfalse value will always be
2 a tagged-integer and will be =1 if true
Blz21l22123124125126]27 = i
< £ and =@ if false,
1132 35
ralvi[va]r3[v4]rS|relee
DRIAR[DC] E [ST[PTRI|JPTR2|
4[1z2| U U U - -
INPUT CONDITIONS
Parses an unquoted R10-R11 = Pointer to input stream
T R UCETE I T
SCAN. U t =
S hingaipoted R46-R47 = Set bu SCAN
t i 3 b PTR2 = Pointer to output stream
(oCminaten Dy 2 commal LUTPUT CONDITIONS
LI
nen If successful:
R = Next token
R2@ = MNext character
PTR2 = Pointer to output stream
4 |5 7
12]13 17
21122[23]pal25[26]57 E¢a
T ERNEF LY k¥ If unsuccessful:
60161162162164165166(67 E=e
cBjcil|c2]73[7al75]76[77
DRIARIDC] E [STIFTRI[PTRZ
UfulUl*xl0] - [0]

UNEQS.
MATH

UNEQ.
MATH

UNQUOT
PARSE

Section 8: Reference Material

UPCS. alaz INPUT STACK CONTENTS
T S
MISC. Fom # a
Runtime code for the Length of argument string (2 bytes)
system function UPC$ Address of argument string (3 bytes)
and it forces all R12----3>
alpha characters in a
String ta upper cace. | OUTPUT sTACK CONTENTS
Length of result string (2 bytes)
fiddress of result string (3 bytes)
R12---->
@ [1 T2 S [6 |7
1a[11lig 4[15]1Ef17
CEIER HEZEE12Z] NOTE: The length of the result string will
40414 Y be the samz as the length of the argument
Solsil5: 52154 string but the addresses will be different.
6@8|61]62]6: 4
raj71[72[73[74
OR|AR|DC| E [STIPTRI[PTR 2|
4as[elBlTUlUl - [-]
UPCUR. INFUT CONDITIONS
CRT
Moves the cursor ufp The CFU must be in BIN mede at entru.
ine th ALFHA
.i1n= en © CRTEYT must contain the current bute
to see If it address.
goms o et e et The cursor must be off at entru €3 call
memory and wraps it to DECURZ will do thaty,
around if it does. >
EH| _|4 s _[& 7
16] SIALIEHIEILTl QUTPUT CONDITIONS
L] 3 chler
E:) CRTEYT and CRTEAD will be pointing to
4 == é_ 55 the new cursor address
3 = XS The curser will still be aff.
7 5
AR D RI[FTR 2] F34-R35 = The new cursor addres
za[24] - - -
UPCURS INFUT OMDITIONS
CaOk 3
CRT Rou #
Moves the cursor The CFU must be in BIN mode at entru,
address u one line . .
in ALFHA ;e;uru. = CRT?TT must contain the current buyte
(Doesn't check to see address.
if it ac £t £ th
éurren{cszgg DTDERT ® The cursor must be off at entry (a call

memory.

to DECURZ will do thaty,

OUTFUT CONDITIONS

?a} e ?3|‘I4| . CRTEYT and CRTEAD will be pointing to
=& 5753 B% the new curser address,
) 127 e curzor i .
EY AcTa3]a4 EXd The cursor will still be aff.
s lea]eelsd E R34-R3I5 = The new cursor addre
volrilvelra]vd
DR[AR|OC] E [ST[FTRIPTRZ
4[24 - [-JO0[- 1 -1

8-94

Section 8:

Reference Material

INPUT STACK CONTENTS

Runtime code for the Numeric argument (8-bytes)
system function VALS$ R12---->
and it returns the
s;ring equivalent of OUTPUT STACK CONTENTS
a number.
Length of string (2-bytes)
fiddress of string (3-bytes)
R12---->
OUTPUT REGISTER CONTENTS
: RES-RE? = Address of strina
INPUT STACK CONTENTS
Runtime code for the Length of string argument (Z bytes)
system function VAL Address of string argument (3 butes?

and it returns the

numeric equivalent of

the string argument.

R12----3
QUTPUT STACK CUONTENTS

Numeric value

(& bytesy
Riz-—--->

Returns

INFUT STHCKE CONTENTS
¥ walue -butes:
alue —buytesz)
R12-~--2
OUTFUT STACEK COMNTENTS

H value

(S-butes>

VALS.
MISC.

VAL.
MISC.

YTX5
MATH

Section 8: Reference Material

ZROEXM

MISC.

ZROMEM
MISC.

Mame
Rddr
Foom
Fills a block of
extended memory with
blanks (used by the
system for initializ-
ing string variables)

INFUT

R65-R67

REGISTER CONTENTS

to filled,

= Number of buytes
= word +1 of

Address of first
the area to be filled with
blanks (the highest address;
this routine stores to PTRZ-,
filling frem highest address
to lowest).

OUTPUT REGISTER CONTENTE

5 TS - RE5-RE7 =
1 v = PTRZ = Address of first word +1.
2 4 7
3 Z] NOTE: For fillina a bleck of memory Cin
= =STeatects =% the lower 64K address space only) with
TRAEEIEES oo of o blanks or zeroes, refer to ZROMEM.
71[72]7 4757677
DR|AR|DC| E TIPTR1|PTR2]
el e[-1 -T0]T -] -1
MName
Addre INPUT CONDITIONS
Fom #
Zeroes or blank-fills The CPU must be in BIN mode at entry.
3Blgck of memory Cin R e I eroteini Y
;2§CLOZ§Tg§?K address R56-R57 = Number of buytes to be filled.
R36-R37 = First bute to be filled (the
lowest addressed buyte),
NOTE: This routine will only work in the
T T T2 15 6 7 lower 64K address space. There is another
< alis[1eliy routine called ZROEXM that will blank-fill
3 = blocks of extended memory but it will not
£E1s TS5 25127 zero-fill.
4074 3 36147
SP151152153]54]55
7B8lcl][r2|73|74]75

DR[AR|OC|] E [STIPTRI[PTRZ
[Selsel - T -TU0] = T -]

Section 8: Reference Material

8.4 Parsing Flow Diagrams

Main Parse Loop

PARSER

END-OF-LINE

PROCESSING

ANY
ERRORS
2

Y

SET
CALCULATOR
MODE

PARSING A PROGRAM LINE

8-97

Section 8: Reference Material

Parsing a Calculator Mode Statement

SET ERRN AND
ERRL AND CLEAR
ERRORS

RESET INPUT
POINTERS

END-OF-LINE
PROCESSING

RESTORE
ORIGINAL ERROR

Y

Section 8: Reference Material

Parsit Routine

PARSIT

{MPLIED
LET TOKEN

L]

ERROR

PROCESS @
OR!

Section 8: Reference Material

8.5 Hook Flowcharts

CHIDLE

OTI
1

(HOOK N
TAKEN)

v

8-100

RETURN TO
EXEC LOOP

RETURN TO
XCBITS

RETURN TO
CHEDIT

RETURNTO
CHIDLE

RE

RETURN TO
EXEC

RETURN TO
XCBITS

RETURN TO
CHEDIT

RETURNTO
CHIDLE

RO
R1

ROM#H

RETUAN TO
AOMJSB

[

Section 8: Reference Material

DCIDLE
LsT 85 PRGM
ROUTINE TRANSLATOR
JSB= JsB=
DECOM
JsB=

DCIDLE
_ RETURN TO LIST OR
TRANSLATE ROUTINE
1 i
| ! § (BPGM)
] RETURNTO
1 |] Jse= / DECOM
(HOOK NOT | v
TAKEN) 1 éINARY RETURN TO
DCIDLE
(ROM) PROGRAM
ROUTINE
: R6 >
1
1
1
1 Jse=

RETURN TO LISTOR
TRANSLATE ROUTINE

ROMJSB RETURN TO
DECOM

RETURN TO
DCIDLE

SAVE RO-R1
AND ROM# OF
CALLING ROM

RO
R1

ROM#

RETURNTO
ROMJSB

8-191

Section 8: Reference Material

IOSP

RETURNTO
EXEC

RETURNTO
XCBITS

RETURN TO
10SP

(HOOK NOT

TAKEN)

R6

1
[e
* | (BPGM) JSB=
1
]

|
(ROM)

BINARY
PROGRAM
ROUTINE

RETURN TO
EXEC

RETURNTO
XCBITS

RETURNTO
10SP

SAVE RO-R1

AND ROM# OF

CALLING ROM RO
JsB= ™

ROM#
ROM RETURN TO
ROUTINE ROMJSR

L —

8-102

Section 8: Reference Material

IOTRFC

DRV12.

SAVE
VECTOR CODE

SA
COUNT (R36)
AVE
ADDR (R26)

BINARY
PROGRAM
ROUTINE

JSB=

ROMJSB

SAVE RO-R1
AND ROM#

ROM
ROUTINE

RETURNTO
DRV12,

VECTOR CODE

SCTEMP

R36
R37

R26
R27

R

RETURNTO
DRV12.

R24
R25

RETURNTO
VECTR.

RETURN TO
IOHOK2

RETURNTO
10TRFC

RO
R1

ROM#

_——
RETURN TO

ROMJSB

R6

8-103

Section 8: Reference Material

IRQ20

JSB={VECTOR)

1/0 CARD
HARDWARE
INTERRUPT

! | i RETURN TO
'y ! eremuse= Cooe
(HOOK |
NOT
TAKEN) | SAD
| ROMJSB
I
(ROM) RETURN TO
! SAVE RO-R1 'Razo
| AND CALLING
I RO
| R1
| ROM¥#
]
| RETURN TO
i ROMJSB
1
|
|
]
b yse= RETURN TO
l—* CODE
BINARY
PROGRAM _— SAD
ROUTINE
* RETURN TO
IRQ20

8-194

L ——

Section 8: Reference Material

KYIDLE

KEYBOARD
HARDWARE ——————3»
INTERRUPT

JSB= (VECTOR)

KEYSRV
ROUTINE

(HOOK NOT
TAKEN)

KYIDLE
I i

JSB= (KYIDLE)

JSB= (BPGM)

BINARY PROGRAM
ROUTINE

1
|
|
|
1

(ROM)
!
|
|
1
1

JSB=

AOMJSB

JSB= (ROM)

ROM
ROUTINE

RETURN TO
CODE

RETURN TO
KEYSRV

RETURNTO
KYIDEL

RE —

RETURN TO
CODE

RETURN TO
KEYSRV

RETURN TO
KYIDLE

RO
R1

ROM#

RETURN TO
ROMISE

R6E — g

8-105

Section 8: Reference Material

PRSIDL

8-106

(HOOK NOT
TAKEN)
[
_: | { JSB= (BPGI

SAVE RO-R1

RETURNTO
EXEC LOOP

RETURN TO
XCBITS

RETURN TO
PARSER

RETURN TO
PRSIDL

T//////::ji;————b»

RETURNTO
EXEC

RETURN TO
XCBITS

RETURNTO
PARSER

RETURNTO
PRSIDL

RO
R1

ROM#

RETURNTO
ROMJSB

Section 8: Reference Material

RMIDLE

RETURN TO
| EXEC LOOP
|

RETURNTO

(HOOK NOT TAKEN) (ROM) RMIDLE
|
|
|
I
|
|
i
I
|
]

1 JSB=
ROMJSB RETURNTO
EXEC
RETURN TO
SAVES RO-R1 RMIDLE
AND ROM# OF
CALLING ROM
RO
RT
ROM#
RETURN TO
ROMJSB

8-107

Section 8: Reference Material

SPAR# and SPARIL

JSB=(VECTOR)

SPECIAL
HARDWARE
INTERRUPT

|
i SPARO (OR1) RETURNTO
| CODE
\ | 1 JSB= (BPGM)
—! RETURN TO
v (HOOK NOT SPARO (OR1)
TAKEN

BINARY
PROGRAM

R6 o

SAVE
REGISTERS

“ RETURN TO

CODE
JsB=
SAD
ROMJSB
AND CALLING
ROM#
RO
JSB= R1
ROM#
ROM RETURN TO
ROUTINE ROMJSB

L —

8-108

Section 8: Reference Material

SYSTEM RUNTIME TABLE
ROUTINE NAME TOKEN ATTRIBUTES
BTABR DEF ERRORX ERROR 0 044
DEF FTSVL SNV 1 0.1
DEF SVADR SAV 2 0.1
DEF FTSTL STRVAR 3 0.1
DEF ICONST REAL CONST 4 0.4
DEF SCONST ~ “QUOTED STR 5 05
DEF SCONST ~ UNQUOT STR 6 05
DEF STOST STO. STRING 7 0,31
DEF STOSV STORE SV 10 0,31
DEF AVADR1 1-DIM ADR 1 0,32
DEF AVADR2 2-DIM ADR 12 032
DEF AVVAL1 1-DIM VALUE 13 0,32
DEFAVVAL2 2-DIM VALUE 14 0,32
DEF ERRORX CARRIAGE RTN 15 044
DEF GORTN ENDSTMT 16 0,0
DEF ERRORX DUMMY 17 044
DEF ERRORX DUMMY 20 044
DEF FTADR SNV ADR 21 03
DEF SVADR+ SAV ADR 22 0.3
DEF FTSTLS SAVE STR 23 0.3
DEF STOSVM MULTI STO. 24 043
DEF STOSTM ~ MULTI STO$ 25 0.43
DEF FNCAL. FUNCTION CL 26 086
DEF FNCAL$ STRFUNC CL 27 0.8
DEF JTRUE# JMP TRUE 30 0.7
DEF ERRORE ILLEGAL END 31 0,44
DEF INTCON INT CONST 32 02
DEF JFALSR JMP FALSE 33 0
DEF JMPREL JMP REL 34 0,26
DEF SUBST1 1 DIM SUBST 35 034
DEF SUBST2 2 DIM SUBST 36 0,34
DEF EJMP# ELSE J# 37 0,25
DEF FTSTA STRING ARAY 40 0.3
DEF JMPLB THEN LABEL 4 0,207
DEF P#ARAY Array PRINT# 42 0.36
DEFEJMPLB ELSE LABEL 43 0,225
DEF R#ARAY Array READ# 44 0,44
DEF ERRORX : 45 044
DEF CONCA. & CONCAT 48 1,53
DEF NOP47. 47 042
DEF ERRORX (50 044
DEF ERRORX) 51 044
DEF MPYROI * 52 12,51
DEF ADDROI + 53 1.51
DEF ERRORX | 54 0,44
DEF SUBROI — DIADIC 55 1,51
DEF ERRORX . 56 0,44
DEF DIV2 / 57 12,51
DEF YTX5 ~ 60 14,51
DEF UNEQS. # 61 6,53
DEF LEQS. <= 62 6,53
DEF GEQ$. = 63 6,53

8-109

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF UNEQS. <> 64 6,53
DEF EQs. = 65 6,53
DEF GRS. > 66 6,53
DEF LTS. < 67 6,53
DEF CHSROI — MONADIC 70 750
DEF UNEQ. # n 6,51
DEF LEQ. <= 72 6,51
DEF GEQ. >= 13 6,51
DEF UNEQ. <> 74 6,51
DEF EQ. = 75 6,51
DEF GR. > 76 6,51
DEFLT. < 77 6,51
DEF ATSIGN @ 100 0.42
DEF ONERR. ON ERROR 101 0.241
DEF OFFER. OFF ERROR 102 0.241
DEF ONKEY. ON KEY# 103 0,241
DEF OFKEY. OFF KEY# 104 0,241
DEF AUTO. AUTO 105 0,141
DEF BEEP. BEEP 106 0,241
DEF CLEAR. CLEAR 107 0,241
DEF CONTI. CONT 110 0141
DEF ONTIM. ON TIMER# m 0.241
DEFINIT. INIT 12 0,141
DEF LIST. LIST 13 0,241
DEF BPLOT. BPLOT 114 0.241
DEF STIME. SETTIME 115 0,241
DEF CHAIN. CHAIN 116 0.241
DEF SECUR. SECURE 117 0,241
DEF READ#. READ# 120 0.241
DEF RENAM. RENAME 121 0,241
DEF ALPHA. ALPHA 122 0,241
DEF CRT. CRTIS 123 0,241
DEF RUN. RUN 124 0141
DEF DEG. DEG 125 0.241
DEF DISP. DISP 126 0.241
DEF GCLR. GCLEAR 127 0,241
DEF SCRAT. SCRATCH 130 0141
DEF DEFA+. DEFAULTON 13 0,241
DEF JMPLN# GOTO 132 0.210
DEF JMPSUB GOSUB 133 0,210
DEF PRNT#. PRINT # 134 0,241
DEF GRAD. GRAD 135 0.241
DEF GRAPH. GRAPH 136 0.241
DEF INPUT. INPUT 137 0,241
DEF.IDRAW. IDRAW 140 0.241
DEF FNLET. LETFN 14 0,217
DEF NOP. LET 142 0.241
DEF PRALL. PRINT ALL 143 0,241
DEF CAT. CAT 144 0,241
DEF DRAW. DRAW 145 0,241
DEF ON. ON 146 0,230
DEF LABEL. LABEL 147 0,241
DEF WAIT. WAIT 150 0,241

8-110

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF PLOT. PLOT 151 0,241
DEFPANTR. PRINTERIS 152 0,241
DEFPRINT. PRINT 153 0.241
DEF RAD. RAD 154 0,241
DEFRNDIZ. RANDOMIZE 155 0.241
DEF READ. READ 156 0241
DEF STORB. STORE BIN 157 0,241
DEFRESTO. RESTORE 160 0,241
DEF RETRN. RETURN 161 0,241
DEF OFTIM. OFF TIMER# 162 0.241
DEFMOVE. MOVE 163 0,241
DEF FLIP. FLIP 164 0,241
DEF STOP. STOP 165 0,241
DEF STORE. STORE 166 0,141
DEF PENUP. PENUP 167 0,241
DEFTRCVB. TRACE VRBL 170 0,241
DEFTRCAL. TRACE ALL m 0,241
DEF XAXIS. XAXIS 172 0,241
DEFYAXIS. YAXIS 173 0.241
DEF COPY. COPY 174 0,241
DEFNORMA. NORMAL 175 0,241
DEFERAST. ERASE TAPE 176 0,241
DEF INTEG. INTEGER 177 0,323
DEF SHORT. SHORT 200 0,322
DEF DELET. DELETE 201 0,141
DEF SCALE. SCALE 202 0.241
DEF SKIP! REMARK 203 0,241
DEFOPTIO. OPTION BASE 204 0315
DEF COM. CoM 205 0324
DEF SKIPEM DATA 206 0,320
DEF DEFFN. DEFFN 207 0312
DEF DIM. DIM 210 0,321
DEF KEYLA. KEY LABEL n 0,241
DEF STOP. END 212 0,241
DEF FNRTN. FNEND 213 0,313
DEF FOR. FOR 214 0,341
DEF ERRORT IF 215 0,344
DEF SKIPIT IMAGE 216 0,341
DEF NEXT. NEXT 217 0,341
DEF UNSEC. UNSECURE 220 0,141
DEF ERRORT LET (IMPLY) 221 0,244
DEFASIGN. ASSIGN 222 0,241
DEF CREAT. CREATE 223 0,241
DEFPURGE. PURGE 224 0,241
DEFREWIN. REWIND 225 0,241
DEF LOADB. LOADBIN 226 0,241
DEF PAUSE. PAUSE 227 0.241
DEF LOAD. LOAD 230 0.141
DEF REAL. REAL 231 0,321
DEF RENUM. REN 232 0,141
DEF SKIP! ! 233 0,241
DEF DEFA-. DEFAULT OFF 234 0,241
DEF PEN. PEN 235 0,241

8-111

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF PLIST. PLIST 236 0,241
DEF LDIR. LDIR 237 0,241
DEF IMOVE. IMOVE 240 0,241
DEF FNLET. FNILET 4 0,217
DEF CTAPE. CTAPE 242 0,241
DEF TRACE. TRACE 243 0,241
DEF TO. T0 244 0,41
DEF OR. OR 245 2,51
DEF MAX10 MAX 246 40,55
DEF TIME. TIME 247 0,55
DEF DATE, DATE 250 0,55
DEF FP5 FP 251 20,55
DEF IP5 P 252 20,55
DEF EPS10 EPSILON 253 0,55
DEF REM10 RMD 254 40,55
DEF CEIL10 CEIL 255 20,55
DEF ATN2. ATN(X/Y) 256 40,55
DEF SKPLBL STMT LABEL 257 03
DEF SQRS SQR 260 20,55
DEF MIN10 MIN 261 40,55
DEF GTOLBL ~ GOTO LABEL 262 0,210
DEF ABS5 ABS 263 20,55
DEF ICOS ACS 264 20,55
DEF ISIN ASN 265 20,55
DEF ITAN ATN 266 20,55
DEF SGN5 SGN 267 20,55
DEF GSUB. GOSUB LABEL 270 0.210
DEF COT10 coT 271 20,55
DEF CSEC10 CSC 272 20,55
DEF FTADR3 ~ 1-D ST ARAY 2713 0.1
DEF EXP5 EXP 274 20,55
DEF INTS INT 275 20,55
DEF LOGTS L6T{10) 276 20,55
DEF LN5 LOG (E) 277 20,55
DEF FTADR4 2-D ST ARAY 300 0.1
DEF SEC10 SEC 301 20,55
DEF CHRS. CHR$ 302 20,56
DEF VALS. VALS$ 303 20,56
DEF LEN. LEN 304 30,55
DEF NUM. NUM 305 30,55
DEF VAL, VAL 306 30,55
DEF INF10 INF 307 0,55
DEF RND10 RND 310 0,55
DEF PI10 P n 0,55
DEF UPCS. UPCs 312 30,56
DEF USING. USING 313 0,341
DEF ERRORX ~ THEN 314 0,44
DEF TAB. TAB 315 20,45
DEF STEP. STEP 316 0,41
DEF EXOR. EXOR 317 2,51
DEF NOT. NOT 320 7,50
DEF INTDIV DIV(\) 321 12,51
DEF ERNUM. ERRN 322 0,55

8-112

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF ERRL. ERRL 323 0,55
DEF RESET. RESET 324 044
DEF AND. AND 325 4,51
DEF MOD10 MoD 326 12,51
DEF ERRORX ELSE 327 044
DEF SIN10 SIN 330 20,55
DEF COS10 cos 331 20,55
DEF TAN10 TAN 332 20,55
DEF NOP2. TO (ASSIGN) 333 71,51
DEF RSTO.. RESTORE LN 334 0,227
DEF RESTL. RESTORE LBL 335 0,227
DEF ERRORX [336 0.44
DEF ERRORX] 337 0,44
DEF INTDIV \ 340 12,51
DEF POS. POS k231 52,55
DEF DEG10 RTD 342 20,55
DEF RAD10 DTR 343 20,55
DEF INT5 FLOOR 344 20,55
DEF USINL. USING LABEL 345 0,327
DEF READN. READ (NUM) 346 0,44
DEF ULIN#. USING LINE # 347 0,327
DEF INPUN. INP NUMERIC 350 0.33
DEF INPUS. INP STRING 351 0,33
DEF FNRET. LET FN(:=) 352 0,16
DEF READS. READ$ 353 0,44
DEF PRLINE PRINT END 354 0,35
DEF SEMIC. PRINT; 355 036
DEF COMMA. PRINT, 356 0,36
DEF SEMIC$ PRINT;$ 357 0,36
DEF COMMAS PRINT,$ 360 0,36
DEF ERRORX ~ DUMMY 361 0241
DEF STEPK. STEP KEY 362 0,241
DEF FTADR1 1-D NUM ARY 363 0.1
DEF FTADRZ ~ 2-D NUM ARY 364 0.1
DEF TEST. TEST KEY 365 0,341
DEF ERRORX DUMMY 366 0,44
DEF INDEN. INDENTATION 367 0,2
DEF ROM:GO EXTERNAL ROM 370 0,214
DEF BP:GO BINARY PROG 3n 0,214
DEF ERRORX DUMMY 372 0,44
DEF ERRORX ~ DUMMY 373 0.44
DEF ERRORX DUMMY 374 0,44
DEF ERRORX DUMMY 375 044
DEF ERRORX DUMMY 376 0,44
DEF ERRORX DUMMY 377 0,44

8-113

Section 8: Reference Material

8-114

Runtime Table/Tokens and Attributes for Graphics ROM #1

ROUTINE NAME TOKEN ATTRIBUTES
RUNTAB DEF INIT DUMMY # 0 0

DEF PLOTR. PLOTTERIS 1 23
DEF PRNTR. PRINTER IS 2 24
DEF CRT. CRTIS 3 24
DEF LIMIT. LimiT 4 24
DEF GCLR. GCLEAR 5 4
DEF LOCAT. LOCATE 6 4
DEF BPLOT. BPLOT 7 241
DEF SCALE. SCALE 10 241
DEF SHOW. SHOW 1" 241
DEF MSCAL. MSCALE 12 4
DEF CLIP. CcLIP 13 241
DEF UNCLL UNCLIP 14 24
DEF SETGU. SETGU 15 24
DEF SETUU. SETUU 16 241
DEF PENUP. PENUP 17 yL3|
DEF GREAD. BREAD 20 241
DEF PEN. PEN 21 241
DEF LINET. LINETYPE 22 M
DEF PLOT. PLOT 23 24
DEF IPLOT. IPLOT 24 241
DEF MOVE. MOVE 25 41
DEF IMOVE. IMOVE 26 241
DEF DRAW. DRAW 27 241
DEF IDRAW. IDRAW 30 241
DEF RPLOT. RPLOT 31 24
DEF PDIR. PDIR 32 241
DEF BLOFF. NOBLINK 33 241
DEF AXES. AXES 34 24
DEF LAXES. LAXES 35 241
DEF GRID. GRID 36 yZ3|
DEF FRAME. FRAME 37 241
DEF LABEL. LABEL 40 4
DEF BLINK. BLINK 41 24
DEF LORG. LORG 42 241
DEF LDIR. LDIR 43 241
DEF CSIZE. CSIZE 44 41
DEF WHERE. WHERE 45 Y23
DEF CONTR. CONTROL 48 24
DEF CURSR. CURSOR 47 241
DEF DIGIT. DIGITIZE 50 yZ3]
DEF DUMMY TRANSLATE 51 241
DEF LGRID. LGRID 52 yZ3]
DEF GRAPH. GRAPHICS 53 241
DEF XAXIS. XAXIS 54 241
DEF YAXIS. YAXIS 55 241
DEF FXD. FXD 56 4
DEF ERRSC. ERRSC 57 0.55
DEF ERROM. ERROM 60 0,55
DEF RATIO. RATIO 61 0,55
DEF TAB. TAB 62 20,45
DEF LABEOL LABEL EOLINE 63 35
DEF PAGES. PAGE SIZE 64 241
DEF ALFAL. ALPHA ALL 65 41
DEF GRAFA. GRAPH ALL 66 241
DEF FRE. FREE MEMORY 67 0,55

Section 8: Reference Material

Runtime Table/Tokens and Attributes for Mass Storage ROM #320

ROUTINE NAME TOKEN ATTRIBUTES
RUNTIM DEF INITIT DUMMY # 0 0 4
DEF ASSIG. ASSIGN 1 24
DEF MSCAT. CAT 2 24
DEF CHKOF. CHECK READ DFF 3 M
DEF CHECK. CHECK READ 4 41
DEF ERRORX ~ DUMMY ROUTINE 5 44
DEF MSCPY. COPY 6 4
DEF MSCRE. CREATE 7 24
DEF INITI. INITIALIZE 10 241
DEF MSCHA. CHAIN n M4
DEF MSLDB. LOADBIN 12 yZa]
DEF MSLOD. LOAD 13 M
DEF MASSS. MASS STORAGE IS 14 4
DEF MSPRNT PRINT# 15 241
DEF ERRORX ~ DUMMY ROUTINE 16 44
DEF ERRORX ~ DUMMY ROUTINE 17 44
DEF MSPUR. PURGE 20 24
DEF READ. READ# 21 24
DEF MSREN. RENAME 22 24
DEF MSSTB. STOREBIN 23 M4
DEF MSSTO. STORE 24 141
DEF PACK. PACK 25 241
DEFVOLUM. VOLUME 26 24
DEF GLOAD. GLOAD 27 24
DEF GSTOR. GSTORE 30 M4
DEF ERROM. ERROM 31 0,55
DEF ERRSC. ERRSC 32 0,55
DEF TYP. TYP 33 20,55
DEF IS. (VOLUME) 1S 34 1,61
DEF ERRORX ~ DUMMY ROUTINE 35 44
DEF TO. (RENAME) TO 36 1,51
DEF RDNUM. READ# NUMERIC 37 44
DEF PRARR. PRINT# NUM ARRAY 40 36
DEF RDSTR. READ# STRING 4 44
DEF PRNUM. PRINT# NUMERIC 42 36
DEF PREOL. PRINT# END OF LINE 43 35
DEF PRSTR. PRINT# STRING 44 36
DEF RDARR. READ# NUM ARRAY 45 44
DEF PRARR$ PRINT# STRING ARRAY 48 36
DEF RDARR$ ~ READ# STRING ARRAY 47 44

8-115

Section 8: Reference Material

8.7 Error Messages

Following is a list of the error messages provided by the Assembler ROM
and the system monitor. For other errors refer to the owner's manual or
to the manuals for other peripherals that may be attached to the HP-87.

Assembler System Errors

ERROR 1¢9: ILL MODE A command has been executed in the wrong
operating mode (that is, ASSEMBLER has been
typed when the computer is already in
assembler mode).

ERROR 119: LBL An invalid label has been seen; may have
been longer than six characters or
started with a digit.

ERROR 111: OPCO The opcode is not recognized; may have been
misspelled, no space was typed between the
label and the opcode, or because the opcode
was entered in the first or second column
after the line number.

ERROR 112: ARP-DRP Invalid ARP or DRP; ARPs and DRPs must be
between @ and 77 inclusive, and cannot be
1.

ERROR 113: OPER Bad operand; that is, LDM R34,=3,remark.

Because a number follows the equal sign
in this example, the assembler expects
another number after the comma. Also,
each literal value must be specified with
two digits if a BCD quantity.

ERROR 114: FIN-LNK Missing FIN or LNK statement. If the
file name or file type is wrong in the
LNK statement, then a "FILE NAME" or
"FILE TYPE" error will be generated.

ERROR 115: ASSM ROM At power-on, this means the ROM had a
checksum error. At a breakpoint, any
errors generated give this message.

8-116

Section 8: Reference Material

Assembly Errors

ILL NAM A NAM statement has already been executed,
or an ABS ROM has been executed.

AIF UND The specified conditional assembly flag
has not yet been defined as set or cleared.

ILL ABS An ABS or NAM statement has already been
encountered.

JMP FROM The jump from the spcified line is out of
range.

JMP TO The jump to the specified line is out of
range.

UND LAB After assembly was completed, this label

had not been defined in the program or in
the global file.

ILL GLO The GLO statement occurs after a NAM
statement, ABS statement, or another GLO
statement.

8-117

Section 8: Reference Material

8.8 System Hardware Diagram

INTERNAL BUS AND CONTROL LINES

6 KEYBOARD TIMERS
conTroLER INTERNAL ofSn acke AND SPEAKER
svstEmROMS ConTRoLLER
CRTRAM "
1081 Keveono
16kx1 BYNAMIC
1 ovn DYNAMI RAMS

BUILT-IN
HP1B

sacerLane BACK PLANE
170 PORTS CONNECTOR

EXTERNAL BUS AND CONTROL LINES

A

170 sKxa
OTHER INTERFACE EXTERNAL EXTERNAL
170 CARDS. EMC ROMS.

16
16K X1 HAMS
oR

[
84KX1RAMS
on

16
84K X1 RAMS

8-118

Section 8: Reference Material

8.9 Assembler Instruction Set

On the following pages is a list of all CPU instructions available on
the Assembler ROM.

Legend

DR

AR

Literal

Label

Clock Cycle
B

T

R(x)

M(x)

PC

Sp

EA

Data register. Can be register number (that is, R32),
R*, or Ri.

Address register. Can be register number, R¥, or R#.

Literal value, up to 1@ octal bytes in length. Can be
BCD constant (that is, 99C), octal constant (that is,
12), or decimal constant (that is, 26D). Can also be
specified by a label, where the literal quantity is a
one—~ or two-byte value or address assigned to the label.

Address of literal quantity. Label name must begin with
an alphabetic character, can use any combination of
alphanumeric characters, and can be 1-6 characters in
length.

1.6 sec.

Number of bytes.

Add one clock cycle if true (that is, the jump occurs).

CPU register addressed by (x).

Memory location addressed by (x) where (x) is a 16-bit
address.

Program counter stored in CPU registers R4 and R5. Used
to address the instruction being executed.

Subroutine stack pointer stored in CPU registers R6 and

R7. Used to point to the next available location on the
subroutine return address stack.

Effective address. The location from which data is read

for load-type instructions or the location where data is
placed for store-type instructions.

8-119

Section 8: Reference Material

ADR

8-120

Address. The two-byte quantity directly following an
instruction that uses the literal direct, literal
indirect, index direct, or index indirect addressing
mode. This quantity is always an address.

Literal value.

Is transferred to.

Contents of.

Complement (that is, x is complement of x). This is
one's complement if DCM=@ and nine's complement if
DCM=1.

Logical "and."

Inclusive “or."

Exclusive "or."

Jump if.

Status bit is set.

Status bit is cleared.

Status bit is affected.

Status bit is not affected.

This option is available to this instruction.

Section 8: Reference Material

Status
. . Binary/
trsteuction | puseripion | ATOSNG | gpeagp | Cock Oparstion DCM=0 DCM=1 | BCD
yeles RDZ Option
LSB MSB 1DZ Z DCM E CY OVF E CY OVF
ADB JR, AR Add byte Reg. imm. 302 5 DR+ DR + AR X X X - — X X =X 0 Y
ADBOR, = Add byte Lit. imm. 312 5 DR+DR+MPC+1}| X X X X — — X X — X 0 Y
literal
ADBD DR, AR Add byte Reg. dir. 332 6 DR + DR + M(AR) X X X X — — X X — X 0 Y
ADBD JR, = Add byte Lit. dir. 322 5 DR + DR + M{ADR) X X X X — — X X — X 0 Y
Iabel
ADM JA, AR Add multi- Reg. imm. 303 4+B | DR+ DR-+AR X X X X — — X X — X 0 Y
byte
ADM DR, = Add multi- Lit. imm. 313 448 |DR<DR+MPCH+1)| X X X X — — X X — X 0 Y
literal byte
ADMD DR, AR | Add multi- Reg. dir. 333 5+ 8 | DR« DR + M(AR) X X X X — — X X — X 0 Y
byte
ADMD OR, = Add multi- Lit. dir. 323 4+ B | DR+ DR+ M{ADR) X X X X — — X X — X 0 Y
label byte
ANM DR, AR Logical AND Reg. imm. 307 4+B | DR+ DR-AR X X X X — — 0 0 — 0 0
{multi-byte)
ANMOR, = Logical AND Lit. imm. 317 4+B | DR« DR-M(PC+1) X X X X — — 90 0 — 0 0
literal {multi-byte}
ANMD DA AR | Logical AND Reg. Dir. 337 5+ B | DR+ DR M(AR} X X X X — — 0 0 — 90 0
(multi-byte}
ANMD 08, = Logical AND Lit. dir. 327 5+B | DR+ DR-M(ADR) X X X X — — 0 0 — 0 0
literal (multi-byte)
ARP AR Load ARP 000-077 2 ARP =n - = _ - = = - = = = =
(£001)
ARP* Load ARP with 001 3 ARP + RO - - - - - = = = = = -
contents
of RO
BCD Set BCD mode 231 4 OCM ~1 - - - - 1 - — = — = =
BIN Set binary 230 4 DCM <0 - = - - 0 - = = = = -
mode
CLBOR Clear byte Reg. imm. 222 5 DR+0 X X X X — — 0 0 — 0 0
CLM OR Clear multi- Reg. imm. 223 4+B|DR-0 X X X X — — 0 0 — 0 0
byte
CLE Clear E 235 2 E«~D - - - - — 0 - = 0 - -
CMB DR, AR Compare byte | Reg.imm. 300 5 DR+AR+1 X X X X — — X X — X 0 Y
CMBOR = Compare byte | Lit. imm. 310 5 DR+M(PC+ 1) +1 X X X X — — X X — X 0 Y
literal
CMBD DR, AR Compare byte | Reg. dir. 330 6 DR+ M(AR} + 1 X X X X — — X X =X 0 Y
CMBD 0R. = Compare byte | Lit. dir. 320 6 DR+ M{ADR) + 1 X X X X — — X X — X 0
label
CMM DR, AR Compare Reg. imm. 301 4+B| DR+AR+1 X X X X — — X X — X 0 Y
multi-byte
CMM IR, = Compare Lit. imm. 3n 4+8B | DR+MPCH 1} +1 X X X X — — X X — X 0 Y
litersl multi-byte
CMMD JR, AR | Compare Reg. dir. 33 5+B | DR+ MAR) +1 X X X X — — X X — X 0 Y
multi-byte
CMMD 08 = Compare Lit. dir. 321 5+8 | DR+ M(ADR)+1 X X X X — — X X — X 0 Y
label multi-hyte
DCB DR Decrement Reg. imm. 212 5 DR+~DR—1 X X X X — — X X — X 0 Y
byte
DCM DR Decrement Reg. imm. 213 4+B | DR+-DR—1 X X X X - — X X — X 0 Y
multi-byte
DCE Decrement E 233 2 E~E—1 - - - - = X = = X — —=
DRP DR Load DRP 100-177 2 DRP = n - - _ —_- - = = = = = -
{=101)
DRP1 Load DRP with 101 3 DRP « RO - - - —- - = - = = = =
contents
of RO

8-121

Section 8:

Reference Material

Status.
. - Binary/
Irovocien | Deserigion | Addrossing f gy, | Clock Operation DcM=0 DeM=1 | BCD
ode " RDZ Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
ELBOR Extended left | Reg.imm. 200 5 Circulate DR X X X X — — X X X 0 0 Y
byte left once
ELMOR Extended left | Reg.imm. n 4+ 8B | Circulate DR X X X X — — X X X 0 0 Y
multi-byte laft once
ERB OR Extended Reg. imm. 202 5 Circulate DR X X X X — — X 0 X 0 0 Y
right byte right once
ERM DR Extended right | Reg. imm. 203 4+B | Circulate DR X X X X — — X 0 X 0 0 Y
multi-byte right once
1c8 07 Increment | Reg.imm. | 210 5 |DR~DR+1 X X X X — —x X —x o v
byte
ICM oA Increment Reg. imm. 21 4+B |DR<DR+1 X X X X — — X X — X 0 Y
multi-byte
ICE Increment E 234 2 E-E+1 - - - - = X = = X = =
JCY Jabal Jump on carry 3713 4+T | JF=CY=1 - - _ - = — = = = — =
JEN /abal Jump on E 370 4+T | JIFE 50000 - - _ —_ = = = = = = =
nan-zero
JEV Jabel Jump on even 363 4+T | JFLSB=0D - - - = = - = = = — =
JEZ fabel Jump on E n 4+T { JIFE=0000 - - - - - - - = = — =
zero
JUN Jabel Jump on left 375 4+T [JIFLDZ#*1 - = - - - = = - = - -
digit
nan-zero
JLZ /abel Jump on left 374 4+T | JFLDZ=1 - - - = = = == = = = =
digit zero
JMP /abel Unconditional 360 4+T | Jump always - = - - - - - = — = =
jump
JINC /abel Jump on no 372 4+T [JFCY=0 — - - = = = = - = -
carry
JNG /abal Jump on 364 44T | JIFMSB > OVF - - - - - - - - = — =
negative
JNO /abel Jump on no 361 4+T | JFOVF=0 - = - - - - - = = = =
overflow
JNZ label Jump on 366 44T [JFZ##1 - - - - - - = - — = -
non-zero
JOD /abal Jump on odd 362 44T | JFLSB=1 - = - = - - = = = = -
JPS labal Jump on 365 4+T | JIF MSB = OVF - = - - - - - = = = =
positive
JRN /abe/ Jump on right 3n 4+T | JFRDZ#1 - = - - - - - = = = -
digit
non-zero
JRZ /abel Jump on right 376 4+T | JFRDZ=1 - - - - - = = = = = =
digit zero
JSB = /abel Jump Literal 316 9 Jump subroutine — - - = - - - = = =
subroutine direct
JSB XA, Iabel Jump Indexed 306 1" Jump subroutine - = - = = - = = = = =
subroutine indexed
JRZ Jabel Jump on zero 367 4+T | JFZ=1 - - _ - = = = = = = —
LDB DR, AR Load byte Reg. imm. 240 5 DR - AR X X X X — — 0 0 — 0 0
LDB DR, = Load byte Lit. imm. 250 5 DR < M(PC + 1) X X X X — —0 0 — 0 0
literal
LDBD OA, AR | Load byte Reg. dir. 244 6 | DR~ M{AR) X X X X — — 0 0 — 0 0
LDBD 0A, = Load byte Lit. dir. 260 6 DR + M{ADR) X X X X — —0 0 — 0 0
labe!
LDBD A, XAR, | Load byte Index dir. 264 8 DR + M{ADR + AR) X X X X — —0 0 — 0 0
labe/
LDBI DR, AR Load byte Reg. indir. 254 8 DR « M{M(AR)) X X X X — — 0 0 — 0 0
LDBI OR, = Load byte Lit. indir. 270 8 | DR« M{M(ADR)) X X X X — —0 0 — 0 0
label

8-122

Section 8: Reference Material

Status
N N Binary/
'“;‘_f::‘.':“ Description “"z':""' Opcots | plock Operation DCM=0 DCM=1 | BCD
ol yeles RDZ Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
LDBI OR, XAR, Load byte Index indir. 274 10 [DR+ M{M(ADR + X X X X — — 0 0 — 0 0
label AR))
LOM DR AR Load Reg. imm. 4 4+B | DR«AR X X X X — — 0 0 — 0 0
multi-byte
LOM OB, = Load Lit. imm, 251 4+B | DR~ M(PC+1) X X X X — — 0 0 — 0 0
literal multi-byte
LDMD DR, AR Load Reg. dir. 245 5+ B | DR+ M{AR} X X X X — — 0 0 — 0 o0
multi-byte
LDMD DR, = Load Lit. dir. 261 §+B | DR « M(ADR) X X X X — =10 0 — 0 0
lebel multi-byte
LDMD 0 XAR.| Load Index dir. 265 7+B | DR+ M(ADR + AR} X X X X — — 0 0 — 0 0
label multi-byte
LOMI 2R, AR Load Reg. indir. 255 7+ B | DR« M{M{AR)) X X X X — =0 0 — 0 0
‘multi-byte
LDMI DR, = Load Lit. indir. n 7+B] DR + M{M(ADR)) X X X X — — 0 0 — 0 0
label muiti-byte
LDMI 08, XAR, | Load Index indir. 275 9+B | DR +~ M{M{ADR + X X X X — — 0 0 — 0 G
label multi-byte ARj}}
LLB OR Logical left Reg.imm. 204 5 Logical left X X X X — — X X X 0 0 Y
byte shift DR
LM DR Logical left Reg. imm. 205 448 | Loical left X X X X — — X X X 0 0 Y
multi-byte shift DR
LRB DR Logical right Reg. imm, 206 5 Logical right X X X X — — X 0 X 0 0 A
byte shift DR
LRM R Logical right | Reg. imm. 207 4+ B | Logical right X X X X — — X 0 X 0 0 Y
multi-byte shift DR
NCB DA Nine's Reg. imm. 216 5 DR+ DR X X X X — — X X — X 0 Y
{or one’s)
complement
byte
NCM DR Nine's Reg.imm. 217 4+B | DR-DR X X X X — — X X — X 0 Y
{or one’s)
complement
multi-byte
ORB OR, AR Or byte Reg.imm. 224 5 DR+ DRV AR X X X X — — 0 0 — o0 0
inclusive
ORM OR, AR Or multi-byte | Reg. imm. 225 4+B| DR+ DRVAR X X X X — — 0 0 — 0 0
inclusive
PAD Pop ARP, DRP 237 8 Status « M(SP} X X X X X — X X — X X
and status
from stack
POBD OR, +AR | Pop byte with | Stk. dir. 340 6 DR + M(AR), X X X X — — 0 0 — 0 0
post- AR+AR+1
increment
POBD OR. —AR | Pop byte with | Stk. dir. 342 [} DR - M{AR), X X X X — — 0 — 0 0
pre- AR+ AR—1
decrement
POBIJR, +AR | Pop byte with | Stk. indir. 350 8 DR « M{M{AR)), X X X X — — 0 — 0 0
post- AR+~ AR+ 2
increment
POBIOR, —AR | Popbyte with | Stk. indir. 352 8 DR = M{M{AR}), X X X X — — 0 0 — 0 0
pre- AR+ AR—2
decrement
POMD 0R, +AR| Pop multi-byte | Stk. indir. 341 5+B | DR« M(AR), X X X X - — 0 0 — 0 0
with post- AR+~ AR+ M
increment
POMD 0R, —AR| Pop multi-byte | Stk. dir. 343 5+B | DR — M(AR), X X X X — — 0 0 — 0 0
with pre- AR-AR—M
decrement
POMLOR, +AR | Pop multi-byte | Stk. indir. 351 7+ B | DR < M(M{AR)), X X X x — — 0 0 — 0 0
with past- AR~ AR+2
increment

8-123

Section 8: Reference Material

Status
. N Binary/
Instruction . Addressing Clock . - =
Format Description Mods Opcode Cycles Operation DCM=0 DM =1 uB':iI:n
LSB MSB LDZ Z DCM E CY OVF E CY OVF
POMIOR, —AR | Pop multi-byte
withpra. | Stk indir 353 | 7+B| DR« MM{AR)), X X X X — — 0 0 —0 0
decrement AR+AR—2
PUBD JA, +AR | Push byte
with past- | Stk. dir. 344 8 | M{AR)+ DR, X X X X — — 0 0 — 0 0
increment AR« AR+1
PUBD DR, —AR | Push byte
withpre- | Stk.dir 346 6 | ARe-AR—1, X X X X — — 0 0 —o0 0
decrement M(AR) +- DR
PUBIOR. +AR | Pushbyte
with post- | Stk.indir. 354 8 | mmaR) + DR, X X X X — — 0 0 — 0 0
increment AR+ AR +2
PUBI DR, —AR | Pushbyte
withpre- | Stk indir 356 8 | AR-AR-2, X X X X — — 0 0 — 0 0
decrement M{M{AR)} - DR
PUMD 0R +AR | Push multi-
bytawith | Stk dir 345 | 5+B| M(aR)« DR X X X X — — 0 0 — 0 0
post- AR+~ AR+M
increment
PUMD 08, —AR| Push multi-
bytewith | Stk.dir. 347 | 5+8B| AR<AR—M, X X X X — — 0 0 — 0 8
pre- M(AR) + DR
decrement
PUMI 08, +AR | Push multi-
bytewith | Stk. indir. 355 | 7-+B| MM(AR) ~ DR, X X X X — — 0 0 — 0 0
post- AR = AR+2
increment
PUMIOR, —AR | Push multi-
byts with | Sth.indir. 37 | 7+8| AR-AR—2, X X X X — — 0 0 — 0 0
pre- M(M{AR}} +- DR
decrement
RTN Subroutine
retun 23 | 5 |SPesp—2 - = = - - —_— - - -
PC + M(SP}
SAD Save ARP,
DRP and 232 8 | M(SP) « Status - = = = = =
status an
stack
SBBOR. AR Subtractbyte | Reg.imm. 304 5 |DR<DR+AR+1 X X X X — — X X — X 0 Y
SBBDR, = Subtract byte | Lit. imm. 314 5 JDR<DR+MPC+1)| X X X X — — X X — X 0 Y
litersl +1
SBBD OR, AR Subtractbyte | Reg. dir. 334 6 [DR+DR-+ M(AR} +1 X X X X — = X X — X 0 Y
SBBD OR, = Subtract byte | Lit. dir. 324 6 |DR <+ DR + M(ADR} X X X X — — X X — X 0
labsl +1
SBM OR, AR Subtract Reg. imm. 308 4+B|OR+-DR+AR+1 X X X X — — X X — X 0 Y
multi-byte
SBMOR, = Subtract Lit. imm. 315 4+B|DR<DR+MPCH+1)[X X X X — — X X — X 0 Y
literal multi-byte +1
SBMD JOR AR | Subtract Reg. dir. 33 | 5+B|DR-DR+MAR+1| X X X X — — X X — X 0 Y
multi-byte
SBMO DR, = Subtract Lit. dir. 325 5+ B |DR + DR + M(ADR) X X X X — — X X — X 0 Y
literal multi-byte +1
STBOR, AR Store byte Reg. imm. 242 5 |[DR-AR X X X X — — 0 0 — 0 0
STBOR = Store byte Lit. imm, 252 5 |[DR-~M(PC+1} X X X X — — 0 0 — 0 0
litoral
STBD DR, AR Store byte Reg. dir. 246 6 |DR = M(AR) X X X X — — 0 0 — 0 0
STBD OR, = Store byte Lit. dir. 262 6 [DR~ maDR) X X X X — — 0 0 — 0 0
label
STBD OA, XAR, | Store byte Index dir. 266 8 |DR-» M(ADR + AR) X X X X — — 0 0 — 0 0
label
STBI DA, AR Store byte Reg. indir. | 256 8 DR mimaR) X X X X — — 0 0 — 0 0

8-124

Section 8: Reference Material

Status
N N Binary/
Instruction | - g ipyon | Addressing | gy, | Clook Operation DCcM=0 DCM=1 | BCD
Format Mode Cycles. RDZ Option
LSB MSB LDZ DCM E CY OVF E CY OVF
STBIDR, = Store byte Lit. indir. 212 8 | DR~ M(M{ADR) X X X — — 0 0 —0 0
label
STBI UR, XAR, Store byte Index indir 276 10 | DR~ M(M{ADR + X X X - — 0 0 — 0 O
label AR})
STM DR, AR Store multi- Reg. imm. 243 448 | DR~ AR X X X - — 0 0 — 0 0
byte
STMOR = Stors multi- Lit. imm. 253 4+B | DR=M(PC+1) X X X — — 0 0 — 0 0
litersl byte
STMD DR. AR Store muiti- Reg. dir. 247 5+ B | DR - M(AR) X X X - — 0 0 — 0 0O
byte
complement
byte
NCM DR Nine's Reg. imm. 217 4+B| DR-DR X X X - — X X — X 0
{or one’s)
complement
multi-byte
ORBJA, AR Or byte Reg. imm. 224 5 DR« DRYAR X X X — — 0 0 — 0 0
inclusive
ORM DR, AR Or multi-byte | Reg. imm. 225 4+B | DR+ DRYAR X X X - — 0 0 — 0 0
inclusive
PAD Pop ARP, DRP 237 8 Status + M(SP) X X X X — X X — X X
and status
from stack
POBD JA, +A4R | Pap byte with | Stk. dir. 340 6 DR + M(AR), X X X — — 0 0 — 0 0
post- AR+ AR+1
increment
POBD OB, —AR | Pop byte with | Stk. dir. 342 [} DR + M{AR), X X X — — 0 0 — 0 0
pre- AR+<AR—1
decrement
POBIOAR, +AR | Pop byte with | Stk. indir. 350 8 DR + M{M(AR})), X X X — — 0 0 — 0 0
post- AR+ AR+2
increment
POBIOAR, —AR | Popbytewith | Stk. indir. 362 8 DR + M(M(AR}}, X X X — — 0 0 -0 0
pre- AR+ AR—2
decrement
POMD 08, +AR| Pop multibyte | Stk.indir. | 341 | 5-+B | DR+~ MR, X X X - —0 0 —0 0
with post- AR+<AR+M
increment
STMDDR, = | Storemulti- | Lit. dir. 263 | 5+B | DR~ M(ADR) X X X — — 0 0 —0 0
label byte
STMD DR, XAR, | Store multi- Index dir. 267 7+8 | DR— M{ADR+ AR) X X X - — 0 0 — 0 0
labal byte
STMI DR, AR Store multi- Reg. indir. 257 7+B | DR~ M{M(AR)) X X X — — 0 0 — 0 0
byte
STMIOR, = Store multi- Lit. indir. 273 748 | DR~ M{M(ADR) X X X - — 0 0 — 0 0
label byte
STMIR, XAR, | Store multi- Index indir. 217 8+8 | DR— M(MADR+ X X X - — 0 0 — 0 0
label byte AR))
TCBOR Ten's Reg. imm. 214 5 DR«DR+1 X X X - — 0 0 — 0 0 Y
{or twa's)
complement
byte
TCMOR Ten's Reg. imm. 215 4+B | DR<DR+1 X X X - — 0 0 — 0 0 Y
{or two's}
complement
multi-byte
TSBOR Test byte Reg. imm. 220 5 Test DR X X X - — X X — X 0 Y
TSMOR Test multi- Reg. imm. 221 4+8 | TestDR X X X - — X X — X 0 Y
byte
XRB OR, AR Or byte Reg. imm. 226 5 DR+ DR + AR X X X — — 0 0 — 0 0
exclusive
XRM OR, AR Or multi-byte Reg. imm. 227 4+B | DR+DR + AR X X X - — 0 0 — 0 0
exclusivg

8-125

Section 8: Reference Material

8.10

8-126

Assembler Instruction Coding

6 5 4 3 2 1 0
DRP/ #000001 Load with literal
ARP =000001 Load with R@
Logical/ .
0 0 0 0 Extended Right/Left M/B
Decrement/
0 0 0 ! 0 Increment /8
Nine's Complement/
0 0 0 1 L Ten's Complement M/B
0 0 1 0 0 Clear/Test M/B
Q 0 1 0 1 XOR/OR M/B
0 0 1 1 000 BIN
001 BCD
010 SAD
011 DCE
100 ICE
101 CLE
110 RTN
m PAD
0 1 000 REG IMM Store/Load M/B
001 REG DIR
010 LIT IMM
on REG IND
100 LIT DIR
101 INX DIR
110 LIT IND
m INX IND
1 0 00 REG IMM 00 CMP M/B
01 LIT IMM 01 ADD
10 LIT DIR 10 SUB
1 REG DIR n AND 1
1 0 00 INX n JSB 0
01 LIT
IND/ PUSH/ -ADR/
! ! 0 DIR POP +ADR M/B
1 1 1 000 JNO/ JMP
001 JEV/J0D
010 JPS/JING
011 JZR/INZ
100 JEZ/JEN
101 JCY/JINC
110 JLN/JLZ
m JRN/JRZ
X/Y = 1/0

Section 8:

8.11

Keycode Table

Reference Material

KEYCODE KEYCODE
DEC ocT KEY DEC ocT KEY
0 0 ctrl@ 48 60 0
1 1 ctrl A 49 61 1
2 2 ctrl B 50 62 2
3 3 ctrl C 51 63 3
4 4 ctrl D 52 64 4
5 5 ctrl E 53 65 5
6 6 ctrl F 54 66 6
7 7 ctrl 6 55 67 7
8 10 ctrtH 56 70 8
9 1 ctrl | 57 n 9
10 12 ctrl J 58 72 :
1 13 ctrl K 59 73 ;
12 14 ctrl b 60 14 <
13 15 ctrl M 61 75 =
14 16 ctrl N 62 76 >
15 17 ctrl 0 63 77 ?
16 20 ctrl P 64 100 @
17 21 ctrl 0 65 101 A
18 22 ctrl R 66 102 B
19 23 ctrl S 67 103 C
20 24 et T 68 104 D
21 25 ctrl U 6% 105 E
22 26 ctrl V 70 106 F
23 27 ctrl W n 107 6
24 30 ctrl X 72 110 H
25 3 ctrl Y 73 m |
26 32 ctrl Z 74 12 J
27 33 otrl [75 13 K
28 34 ctrl \ 76 114 L
29 35 ctrl] 77 115 M
30 36 ctrl A 78 116 N
31 37 ctrl _ 79 117 0
32 40 SPACE 80 120 P
33 41 ! 81 121 a
34 42 " 82 122 R
35 41 # 83 123 S
36 44 $ 84 124 T
37 45 % 85 125 u
38 46 & 86 126 v
39 47 ‘ 87 127 w
40 50 { 88 130 X
41 51 } 89 131 Y
42 52 * 90 132 z
43 53 + 91 133 [
44 54 > 92 134 \
45 55 - 93 135 1
46 56 . 94 136 ~
47 57 / 95 137 B

8-127

Section 8: Reference Material

KEYCODE KEYCODE
DEC oct KEY DEC oct KEY
96 140 s KEY LABEL 135 207 K11
97 141 a 136 210 -CHAR
98 142 b 137 211 CLEAR (SCREEN)
99 143 c 138 212 Not used
100 144 d 139 213 RESET
101 145 e 140 214 INIT
102 146 f 141 215 RUN
103 147 9 142 216 PAUSE
104 150 h 143 217 CONT
105 151 i 144 220 STEP
106 152 i 145 221 ROLL A
107 153 k 146 222 TEST
108 154 I 147 223 K14
109 155 m 148 224 LSt
110 156 n 149 225 PLIST
m 157 0 150 226 KEY LABEL
112 160 p 151 227 Not used
13 161 q 152 230 (1
114 162 r 163 231 BACKSPACE
115 163 s 154 232 ENDLINE
116 164 t 155 233 FAST BACKSPACE
17 165 u 156 234 K7
118 166 v 157 235 -LINE
19 167 w 158 236 I/R
120 170 X 159 237 LEFT CURSOR
121 m y 160 240 E
122 172 2 161 241 K5
123 173 s/ 162 242 K6
124 174 ! 163 243 UP CURSOR
125 175 s— 164 244 DOWN CURSOR
126 176 s*® 185 245 K12
127 177 s+ 166 246 RESULT
128 200 K1 167 247 Not used
129 201 K2 168 250 A/G
130 202 K3 169 251 ROLLv
13 203 K4 170 252 RIGHT CURSOR
132 204 K8 m 253 Not used
133 205 K9 172 254 K13
134 206 K10 173 255 TRACE/NORMAL

1 Some binary programs will use this cade for HCURS.

8-128

Section 8: Reference Material

8.12 Programming Hints

If execution of certain advanced programming ROM statements is attempted

in assembler mode, unpredictable results can occur. These statements
are:

e X REF L
e X REF V

e REPLACE VAR

8-129/8-134

INDEX

A

Absolute address, 6-15
ABS pseudo-instruction, 6-47
Accumulator, 2-1
AD instruction, 6-27
Addressing modes, 6-17
Address register pointer
status, 5-3
AIF pseudo-instruction, 6-50@
Allocated program, 1-3
Allocation, 3-1¢
ALPHA ALL, 4-6
ALPHA NORMAL, 4-4
AN, 5-25
Assembly errors, 8-117
ASTORE command, 1-6
Attributes, 6-1¢
Primary, 6-11
Secondary, 6-12
System table, 8-1@9
Attribute location, 6-1¢

B

Base address, 3-22
BASIC command, 1-6
BASIC program format, 3-41
BCD numbers, 2-6
BCD instruction, 6-44
BIN instruction, 6-44
Binary program, 6-1
Multiple, 6-5@
Sample programs, 7-1
Binary programs
in system memory, 1-1, 1-3
BINBAS, 6-58
BINTAB, 1-8, 2-5, 3-21, 6-15
6-39
BKP command, 5-1

Breakpoints

Clearing, 5-1

Output, 5-2, 5-3
BSZ pseudo-instruction, 6-48
BYT pseudo-instruction, 6-49

C

Carry flag, 2-9, 5-3

CHEDIT, 3-20, 3-22, 3-25

CHIDLE, 3-2¢, 3-22, 3-25

Class, 6-12, 3-35

CLE instruction, 6-44

CLKDAT, 4-12

CLKSTS, 4-12

Clock cycle, 8-119

CLR command, 5-4, 6-5¢

CM instruction, 6-28

Commands, 1-5

Comments, 6-15

Computer operation, 3-4

Conditional assembly,
pseudo-instructions, 3-4

Constants, 6-15

Control block, 6-3, 6-4

CpU, 2-1

CPU instructions,
assembly of, 6-45

CRT control, sample
program, 7-6

CRT blank and unblank,
4-3

CRT controller, 4-1

CRTBAD, 4-1

CRTDAT, 4-2

CRTSAD, 4-2

CRTSTS, 4-2
Reading from, 4-2
Storing to, 4-3
STAT, 2-3, 3-18
Current status, 2-3

D

DAD pseudo-instruction, 6-49
Data register status, 5-2
DC instruction, 6-34
DCE instruction, 6-44
DCIDLE, 3-22, 8-101
Deallocation, 3-15
DEC function, 1-7
Decimal flag status, 5-3
Decimal mode flag, 2-9
Decompiling, 3-34, 3-35
DEF pseudo-instruction, 6-49
DGHOOK, 3-22
Disc, 1-2
Display modes, 4-4

ALPHA ALL, 4-4

ALPHA NORMAL, 4-5

GRAPH ALL, 4-6

GRAPH NORMAL, 4-5
DGHOOK, 3-22
DRP

Description, 6-43

Status, , 5-2, 6-40

E

E register, 2-9

Effective address, 6-18

EIF pseudo-instruction, 6-50
EL instruction, 6-32

EMC, 3-29

EMC pointers, 2-2, 2-3
EOVAR, 3-12

EQU pseudo-instruction, 6-49
ER instruction, 6-32

ERLIN$, 3-28

ERNUM#, 3-28

ERROR subroutine, 3-28

Error handling, 3-27

Error message table, 6-9

Error messages, 8-116
Assembler system errors,
8-116
Assembly errors, 8-117
Default error numbers,
6-9
ERRORS, 3-28
Execution pointer for BASIC
programs, 1-3
Executive loop, 3-6, 3-16,
3-17
Extend register, 2-9
Extend register status, 5-3
Extended memory controller,
3-29
External address table, 6-10
External communication status,
2-3

F

FIN instruction, 6-47

FLABEL command, 1-7

Flags, 2-8

Floating-point numbers, 2-5

FORMAR, 3-40

Format of BASIC programs and
variables, 3-41

FREFS command, 1-7

Functions, 1-5, 3-47

FWCURR, 3-12, 3-48

G

Get and Save sample program,
7-21

GETSAVES sample program, 7-21

GLO pseudo-instruction, 7-21

Global file, 1-2, 8-2

GRAPH ALL, 4-7

GRAPH NORMAL, 4-5

GTO label, 6-51

H

Hardware-dedicated registers,
2-2
Hardware diagram, 8-118

HGL$ sample program, 7-2

Hooks, 3-2¢, 3-21
Flowcharts, 8-10@
General, 3-21
Language, 3-21
Supplied at, 3-22

I

IC instruction, 6-35
IMERR, 3-22
Index mode, 6-20

Direct, 6-2¢

Indirect, 6-20
Initialization, 3-7

Power-on, 3-6

Routine, 6-9
Instructions, 6-13
Instruction coding, 8-126
Instruction set, 8-119
Integer representation, 2-7
Interpreter Loop, 3-6, 3-8, 3-9
Interrupts, 3-18, 3-19
105p, 3-26, 3-23, 3-26, 8-1¢2
IOTRFC, 3-23, 8-103
IRQ2p, 3-2¢, 3-23, 8-1¢4

JCy, 6-42
JEN, 6-42
JEV, 6-41
JEZ, 6-42
JLN, 6-42
JLZ, 6-42
JMP, 6-40
JNC, 6-42
JNG, 6-40
JNO, 6-40¢
JNZ, 6-41
JoD, 6-41
JPS, 6-40
JRN, 6-43
JRZ, 6-43
JsB, 6-39
Jump instructions, 6-39
JZR, 6-41

K

Keyboard controller, 4-8
Keyboard scanner, 4-8
KEYCOD, 4-8, 4-9
Keycode table, 8-127
KEYHIT, 3-25, 4-8
KEYS sample program, 7-15
KEYSRV, 3-20, 4-8, 4-19
KEYSTS, 4-9
Keyword table, 6-7
KYIDLE, 3-2¢, 3-23
Flowchart, 8-185
How to take over, 4-1¢
Sample program, 7-15

L

Label description, 6-14

Least significant bit, 2-11,
5-3

Left digit zero flag, 2-12,
5-3

Line input sample program, 7-11

Line numbering, 6-14

LINPUTS sample program, 7-11

Literal addressing mode, 6-19
Direct, 6-19
Immediate, 6-19
Indirect, 6-20

LL instruction, 6-34

LNK pseudo-instruction, 6-48

LOAD instruction, 6-17

LR instruction, 6-33

LST pseudo-instruction, 6-48

M

Mantissa, 2-7

MEM command, 5-4

MEM function, 1-7

MEMD statement, 1-8

Memory, 3-2

Memory dump, 5-4

Most significant bit flag,
2-12, 5-3

MSHIGH, 3-23

MSLOW, 3-23

MSTIME, 3-23 Parsing flow diagrams

Multi-processor, 4-1 Calculator mode statement,
8-98
Main parse loop, 8-97
N Parsit, 8-99
PC= command, 5-5
NAM pseudo-instruction, 6-4, PLHOOK, 3-23
6-48 Pointer status, 5-3
NARREF, 3-40 Pointers, 3-29
NC, 6-38 POP instruction, 6-21
Nine's complement, 2-6, 6-36 Decreasing stack, 6-24
Number representation, 2-5, Increasing stack, 6-24
2-7, 2-8 Power light, 3-32
NUMCON, 3-41 Primary attributes, 6-1¢
Numeric array Primary attribute of a
Local, 3-44 numeric function, 6-11
Remote, 3-44 Program counter, 2-2
Numeric formats, 3-37 Program counter status, 5-2
Integer representation, 2-7 Program shell, 6-2
Short numeric variable, 3-38 Programming hints, 8-129
Numerical user defined PRSIDL, 3-23, 8-106
functions, 3-47 pseudo-instructions, 6-47
NUMVAL, 3-39 PTR1, 2-2, 3-29

PTR1= command, 5-6
PTR2, 2-2, 3-29

0 PTR2= command, 5-6

PUSH instruction, 6-21
Object code, 1-2, 7-1 : Decreasing stack, 6-24
OCT statement, 1-8 Increasing stack, 6-24

ON TIMER routine, 3-2¢
One's complement, 2-6

Opcodes, 6-14, 6-15 R
Operating stack, 3-37
FORMAR, 3-39 R*¥, use of, 6-43
NARREF, 3-39 Radix, 2-7
NUMCON, 3-39 Real number representation, 2-7
NUMVAL, 3-39 REFNUM, 3-39
REFNUM, 3-39 Register
STRCON, 3-39 Bank pointer, 2-2
STRREF, 3-39 Boundaries, 2-3, 2-4
Operands and addressing, 6-14 Usage, 2-1, 2-2
OR instruction, 6-28 Registers
ORG pseudo-instruction, 6-48 Hardware-dedicated, 2-2
Output stack pointer, 1-3 Software-dedicated, 2-2, 2-3
Overflow flag, 2-11, 5-3 Register addressing mode, 6-20

Direct, 6-2¢
Immediate, 6-20

P Indirect, 6-21

REL statement, 1-8
PAD instruction, 3-31 REPORT routine, 3-28, 3-29
PAD, 6-44

I-4

Representation of floating-
point numbers, 2-5
Return stack pointer, 2-2
Reverse Polish Notation, 3-1
Right digit zero flag, 2-12, 5-3
RMIDLE, 3-2¢
Flowchart, 8-197
How to take over, 3-24
ROMFL, 3-27
ROMFL when called, 3-7
ROMINI, 3-7, 3-27
Routines, 8-11
Routines format, 8-12
Routine tables
placement of binary
programs, 6-7
RSELEC, 3-2
RTN instruction, 6-45
RULITE, 3-32
Run time routine table, 6-8
Run time table,
tokens, and attributes, 8-1g9

s

SAD instruction, 3-31, 6-45
Save and Get, sample
program, 7-21
SB instruction, 6-29
SCRATCHBIN statement, 1-8
Secondary attributes, 6-1¢
Secondary attributes, 6-12,
6-13
SET, 6-58
Shell, 6-2
shift instructions, 6-31
Short number representation,
2-8
Simple numeric variable, 3-43
Local, 3-43
Remote, 3-43
Simple string variable, 3-45
Local, 3-45
Remote, 3-45
Single-step, 5-5
Software-dedicated register
and EMC pointers, 2-2, 2-3
Source code, 1-1, 7-1
SPAR@, 3-2¢, 3-23, 8-108
SPAR1, 3-20¢, 3-23, 8-1¢8

Speaker, 4-14

Stack

Addressing, 6-22

Decreasing, 6-22, 6-23

Direct,

6-24

Increasing, 6-22, 6-23, 6-26
Indirect, 6-24
Operating, 3-37

Stack Instructions, 6-21

POP, 6-21

PUSH, 6-
Stacks, multiple, 6-22
Stack operating routines

FORMAR,
NARREF,
NUMCON,
NUMVAL,
REFNUM,
STRCON,
STREXP,
STRREF,

Statements, 1-5

21

3-39
3-39
3-39
3-39
3-39
3-39
3-39
3-39

Status indicators,

Status, restoring, 6-44

STEP command,

program,

Strings on the R12 stack,

3-39

7-2

5-5
STORE instruction, 6-17
String highlight sample

STRANGE hook, 3-23

STRCON, 3-
STREXP, 3-
String array variable, 3-46

39
39

Local, 3-46

Remote,

3-46

String user-defined functions,

3-48

String values, passing, 1-3
STRREF, 3-
STSIZE, 3-
Subroutine jumps, 6-39
SVCWRD, 3-
Syntax, 6-
Syntax guidelines, 6-15

39
31

19
15

System hardware diagram, 8-118

System overall flow, 3-6

System memory,

System monitor, 5-1

3-2

System monitor commands, 5-1

System routines, 8-11

System run time table
tokens and attributes, 8-109
System table, 6-7

T

TC, 6-37

Ten's complement, 2-6, 6-37

Test sample program, 6-5
Control block, 6-6
Program listing, 6-5

Timers, 4-11
Reading Timer ¢, 4-13
Setting Timer @, 4-14

Tokens, 3-4, 3-33

Token description, 3-8

Tokens and attributes
system runtime table, 8-109

TRACE, 5-6

TRACE sample output, 5-6

Translating HP-85 programs,
1-3, 1-4

TS instruction, 6-38

Two's complement, 6-37

Type, 6-4, 6-11

Typing aids, at breakpoint,
5-2

u
UDLS$, 7-2
UNL, 6-48

User-defined functions, 3-48

\

VAL, 6-49

variables
Format, 3-41
Simple numeric, 3-43
Simple string, 3-45
String array, 3-46

X
XCcoM, 2-3, 3-18

XR, 6-30

I-6

Z

Zero flag, 2-12
Zero flag status, 5-3

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	82928asm_Page_001
	82928asm_Page_002
	82928asm_Page_003
	82928asm_Page_004
	82928asm_Page_005
	82928asm_Page_006
	82928asm_Page_007
	82928asm_Page_008
	82928asm_Page_009
	82928asm_Page_010
	82928asm_Page_011
	82928asm_Page_012
	82928asm_Page_013
	82928asm_Page_014
	82928asm_Page_015
	82928asm_Page_016
	82928asm_Page_017
	82928asm_Page_018
	82928asm_Page_019
	82928asm_Page_020
	82928asm_Page_021
	82928asm_Page_022
	82928asm_Page_023
	82928asm_Page_024
	82928asm_Page_025
	82928asm_Page_026
	82928asm_Page_027
	82928asm_Page_028
	82928asm_Page_029
	82928asm_Page_030
	82928asm_Page_031
	82928asm_Page_032
	82928asm_Page_033
	82928asm_Page_034
	82928asm_Page_035
	82928asm_Page_036
	82928asm_Page_037
	82928asm_Page_038
	82928asm_Page_039
	82928asm_Page_040
	82928asm_Page_041
	82928asm_Page_042
	82928asm_Page_043
	82928asm_Page_044
	82928asm_Page_045
	82928asm_Page_046
	82928asm_Page_047
	82928asm_Page_048
	82928asm_Page_049
	82928asm_Page_050
	82928asm_Page_051
	82928asm_Page_052
	82928asm_Page_053
	82928asm_Page_054
	82928asm_Page_055
	82928asm_Page_056
	82928asm_Page_057
	82928asm_Page_058
	82928asm_Page_059
	82928asm_Page_060
	82928asm_Page_061
	82928asm_Page_062
	82928asm_Page_063
	82928asm_Page_064
	82928asm_Page_065
	82928asm_Page_066
	82928asm_Page_067
	82928asm_Page_068
	82928asm_Page_069
	82928asm_Page_070
	82928asm_Page_071
	82928asm_Page_072
	82928asm_Page_073
	82928asm_Page_074
	82928asm_Page_075
	82928asm_Page_076
	82928asm_Page_077
	82928asm_Page_078
	82928asm_Page_079
	82928asm_Page_080
	82928asm_Page_081
	82928asm_Page_082
	82928asm_Page_083
	82928asm_Page_084
	82928asm_Page_085
	82928asm_Page_086
	82928asm_Page_087
	82928asm_Page_088
	82928asm_Page_089
	82928asm_Page_090
	82928asm_Page_091
	82928asm_Page_092
	82928asm_Page_093
	82928asm_Page_094
	82928asm_Page_095
	82928asm_Page_096
	82928asm_Page_097
	82928asm_Page_098
	82928asm_Page_099
	82928asm_Page_100
	82928asm_Page_101
	82928asm_Page_102
	82928asm_Page_103
	82928asm_Page_104
	82928asm_Page_105
	82928asm_Page_106
	82928asm_Page_107
	82928asm_Page_108
	82928asm_Page_109
	82928asm_Page_110
	82928asm_Page_111
	82928asm_Page_112
	82928asm_Page_113
	82928asm_Page_114
	82928asm_Page_115
	82928asm_Page_116
	82928asm_Page_117
	82928asm_Page_118
	82928asm_Page_119
	82928asm_Page_120
	82928asm_Page_121
	82928asm_Page_122
	82928asm_Page_123
	82928asm_Page_124
	82928asm_Page_125
	82928asm_Page_126
	82928asm_Page_127
	82928asm_Page_128
	82928asm_Page_129
	82928asm_Page_130
	82928asm_Page_131
	82928asm_Page_132
	82928asm_Page_133
	82928asm_Page_134
	82928asm_Page_135
	82928asm_Page_136
	82928asm_Page_137
	82928asm_Page_138
	82928asm_Page_139
	82928asm_Page_140
	82928asm_Page_141
	82928asm_Page_142
	82928asm_Page_143
	82928asm_Page_144
	82928asm_Page_145
	82928asm_Page_146
	82928asm_Page_147
	82928asm_Page_148
	82928asm_Page_149
	82928asm_Page_150
	82928asm_Page_151
	82928asm_Page_152
	82928asm_Page_153
	82928asm_Page_154
	82928asm_Page_155
	82928asm_Page_156
	82928asm_Page_157
	82928asm_Page_158
	82928asm_Page_159
	82928asm_Page_160
	82928asm_Page_161
	82928asm_Page_162
	82928asm_Page_163
	82928asm_Page_164
	82928asm_Page_165
	82928asm_Page_166
	82928asm_Page_167
	82928asm_Page_168
	82928asm_Page_169
	82928asm_Page_170
	82928asm_Page_171
	82928asm_Page_172
	82928asm_Page_173
	82928asm_Page_174
	82928asm_Page_175
	82928asm_Page_176
	82928asm_Page_177
	82928asm_Page_178
	82928asm_Page_179
	82928asm_Page_180
	82928asm_Page_181
	82928asm_Page_182
	82928asm_Page_183
	82928asm_Page_184
	82928asm_Page_185
	82928asm_Page_186
	82928asm_Page_187
	82928asm_Page_188
	82928asm_Page_189
	82928asm_Page_190
	82928asm_Page_191
	82928asm_Page_192
	82928asm_Page_193
	82928asm_Page_194
	82928asm_Page_195
	82928asm_Page_196
	82928asm_Page_197
	82928asm_Page_198
	82928asm_Page_199
	82928asm_Page_200
	82928asm_Page_201
	82928asm_Page_202
	82928asm_Page_203
	82928asm_Page_204
	82928asm_Page_205
	82928asm_Page_206
	82928asm_Page_207
	82928asm_Page_208
	82928asm_Page_209
	82928asm_Page_210
	82928asm_Page_211
	82928asm_Page_212
	82928asm_Page_213
	82928asm_Page_214
	82928asm_Page_215
	82928asm_Page_216
	82928asm_Page_217
	82928asm_Page_218
	82928asm_Page_219
	82928asm_Page_220
	82928asm_Page_221
	82928asm_Page_222
	82928asm_Page_223
	82928asm_Page_224
	82928asm_Page_225
	82928asm_Page_226
	82928asm_Page_227
	82928asm_Page_228
	82928asm_Page_229
	82928asm_Page_230
	82928asm_Page_231
	82928asm_Page_232
	82928asm_Page_233
	82928asm_Page_234
	82928asm_Page_235
	82928asm_Page_236
	82928asm_Page_237
	82928asm_Page_238
	82928asm_Page_239
	82928asm_Page_240
	82928asm_Page_241
	82928asm_Page_242
	82928asm_Page_243
	82928asm_Page_244
	82928asm_Page_245
	82928asm_Page_246
	82928asm_Page_247
	82928asm_Page_248
	82928asm_Page_249
	82928asm_Page_250
	82928asm_Page_251
	82928asm_Page_252
	82928asm_Page_253
	82928asm_Page_254
	82928asm_Page_255
	82928asm_Page_256
	82928asm_Page_257
	82928asm_Page_258
	82928asm_Page_259
	82928asm_Page_260
	82928asm_Page_261
	82928asm_Page_262
	82928asm_Page_263
	82928asm_Page_264
	82928asm_Page_265
	82928asm_Page_266
	82928asm_Page_267
	82928asm_Page_268
	82928asm_Page_269
	82928asm_Page_270
	82928asm_Page_271
	82928asm_Page_272
	82928asm_Page_273
	82928asm_Page_274
	82928asm_Page_275
	82928asm_Page_276
	82928asm_Page_277
	82928asm_Page_278
	82928asm_Page_279
	82928asm_Page_280
	82928asm_Page_281
	82928asm_Page_282
	82928asm_Page_283
	82928asm_Page_284
	82928asm_Page_285
	82928asm_Page_286
	82928asm_Page_287
	82928asm_Page_288
	82928asm_Page_289
	82928asm_Page_290
	82928asm_Page_291
	82928asm_Page_292
	82928asm_Page_293
	82928asm_Page_294
	82928asm_Page_295
	82928asm_Page_296
	82928asm_Page_297
	82928asm_Page_298
	82928asm_Page_299
	82928asm_Page_300
	82928asm_Page_301
	82928asm_Page_302
	82928asm_Page_303
	82928asm_Page_304
	82928asm_Page_305
	82928asm_Page_306
	82928asm_Page_307
	82928asm_Page_308
	82928asm_Page_309
	82928asm_Page_310

