
Printed in U.S.A.

FliiiW HEWLETT
~r.JIII PACKARD

Assembler ROM and
HP 82928A System Monitor

Reference Manual

HP-87

May 1982

00087-90140

©Hewlett-Packard Company 1982

CONTENTS

Section Page

I INTRODUCTION

1.1 General Information ••••••••••••••••••••••••••••••••••••••• 1-1
1.2 The Assembler ROM ••• 1-1
1.3 The HP 82928A System Monitor •••••••••••••••••••••••••••••• 1-2
1.4 Using HP-83/85 Binary Programs on the HP-87 ••••••••••••••• 1-3
1.5 Assembler Commands, Statements, and Functions ••••••••••••• 1-5

II CPU STRUCTURE AND OPERATION

2.1 CPU Register Bank ••• 2-1
2.2 Number Representation ••••••••••••••••••••••••••••••••••••• 2-5
2.3 Status Indicators ••• 2-8

III OPERATING SYSTEM

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Introduction •••
System Memory ••
OVerall System Flow •••••••••••••••••••••••••••••••••••••••
Allocation and Deallocation •••••••••••••••••••••••••••••••
Executi ve Loop •••
Interrupts •••
Hooks •••
Extended Memory Controller •••••••••••••••••••••••••••••••
parsing •••
Decompiling ••
Operating Stack ••
Format of BASIC Programs and Variables •••••••••••••••••••

IV CONTROLLERS

4.1
4.2
4.3
4.4
4.5
4.6

ii

Introduction •••
CRT Controller •••
Display Modes ••
Keyboard Controller ••••••••••••••••••••••••••••••••••••••
Timers •••
Speaker ••

3-1
3-2
3-6
3-10
3-16
3-18
3-21
3-29
3-32
3-34
3-37
3-41

4-1
4-1
4-4
4-8
4-11
4-14

V SYSTEM MONITOR

5.1 Introduction • 5-1
5.2 System f'ionitor Commands •••••••••••••••••••••••••••••••••• 5-1

VI WRITING BINARY PROGRAMS

6.1
6.2
6.3
6.3
6.3
6.4
6.5

Program Structure ••
Attributes •••
Assembler Instructions •••••••••••••••••••••••••••••••••••
ARP and DRP Load Instructions ••••••••••••••••••••••••••••
Other Instructions •••••••••••••••••••••••••••••••••••••••
Assembly of CPU Instructions •••••••••••••••••••••••••••••
Multiple Binary Programs •••••••••••••••••••••••••••••••••

VII SAMPLE BINARY PROGRAMS

7.1
7.2
7.3
7.4
7.5
7.6

Introduction •••
String Highlight •••
CRT Control ••
Line Input •••
Taking the KYIDLE Hook and Buffering the Keyboard ••••••••
SAVE and GET •••

VIII REFERENCE MATERIAL

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

Overview •••
The Global File ••
System Operation and Routines ••••••••••••••••••••••••••••
Parsing Flow Diagrams ••••••••••••••••••••••••••••••••••••
Hook Flowcharts ••
System Runtime Table/Tokens and Attributes •••••••••••••••
Error Messages •••
System Hardware Diagram ••••••••••••••••••••••••••••••••••
Assembler Instruction Set ••••••••••••••••••••••••••••••••
Assembler Instruction Coding •••••••••••••••••••••••••••••
Keycode Table ••
programming Hints ••

6-1
6-10
6-13
6-43
6-44
6-45
6-50

7-1
7-2
7-6
7-11
7-15
7-21

8-1
8-2
8-11
8-97
8-100
8-109
8-116
8-118
8-119
8-126
8-127
8-129

iii/iv

INTRODUCTION

1.1 General Information

Section
I

This manual outlines the commands, statements, instructions, and use of
both the HP-87 Assembler ROM and the HP 82928A System Mo~itor. The
manual assumes you have some knowledge of programming In assembly
language. If you are not familiar with the HP-87 Personal Computer, you
should read the owner's manual.

The HP-87 contains both read only memory (ROM) and read-write or random
access memory (RAM). The RAM contains the user's BASIC language
programs and data, and can also contain up to five binary (machine
language) programs. The ROM contains the machine language program that
recognizes and executes the statements provided by the BASIC language.
Thus, the operating system ROM provides such statements as PRINT, DISP,
and INPUT.

When external peripheral devices are added, their wider range of
capabilities requires more extensive BASIC language statements to fully
use these capabilities. Additional external ROMs enrich the BASIC
language by increasing the number of statements and functions that can
be recognized and executed. Similarly, a binary program also extends
the BASIC language.

1.2 The Assembler ROM

Using the Assembler ROM, you can write assembly language binary programs
for residence and execution within the computer or for creation of a
plug-in EPROM for the computer. A binary program can:

• Extend the BASIC language.

• Give increased execution speed.

• Redefine the system.

The Assembler ROM permits you to enter and edit source code for binary
programs on the computer's CRT screen. Automatic line numbering and
cursor movement are active, and the source code can be stored on a mass
storage device, listed, and edited. As source statements are entered,
they are automatically checked for syntax errors and duplicate labels.

1-1

Section 1: General Information

At assembly time the resulting object code (machine language) is stored
on the mass storage device. The object code can also be loaded
automatically or on command, and it is then ready to run.

To aid in programming, a disc is supplied with the Assembler ROM. This
disc contains a global file of the system labels and their memory
addresses for use during assembly. The disc also contains the sample
programs from section 7 to help illustrate how binary programs are
created and run.

The Assembler ROM gives you the ability to tailor statements for your
own applications, to speed up program execution, and to perform
sophisticated graphics. But with all the power and system accessibility
provided by the Assembler ROM, it is also possible to defeat the
computer's internal safeguards and even seriously damage the computer.
For this reason, you should understand assembly language programming
before attempting to use the Assembler ROM.

1.3 The HP 82928A System Monitor

The system monitor is an optional plug-in module that is designed for
use only in conjunction with the Assembler ROM. The system monitor is
not required, but it makes the debugging and modification of binary
programs much easier.

With the system monitor module attached, you can set breakpoints that
interrupt the execution of a program. After program execution has been
interrupted, you can examine or change the contents of memory, execute
one instruction at a time (single-step), or you can trace the operation
of a machine language program, printing the status of the CPU after each
instruction.

System monitor instructions are discussed in detail in section 5 and the
use of these instructions is demonstrated in section 7.

1-2

Section 1: General Information

1.4 Using HP-83/85 Binary Programs on the HP-87

The HP-87 uses the same CPU as
stored, listed, and run in the
on the HP-87 which include:

the HP-83/85. The programs are entered,
same manner. There are some differences

• BASIC programs are stored in reverse order (executing from the
higher addresses and progressing to the lower addresses).

• The extended memory controller makes it possible to access more
memory.

• Five binary programs can be resident in the computer at a time.

• PTRl is used as the BASIC program execution pointer at run time.

• PTR2 is used as the output stack pointer at parse time.

• Entire programs are no longer allocated before execution begins.

• The BASIC program control block in the HP-87 is 40 bytes long.

• The operating stack is of fixed length in the system RAM.

• String values are passed on the operating stack as a two-byte
length and a three-byte address.

• Inverse video, more display modes, eight bit CRT addresses,
and access during horizontal retrace periods are a few of the
changes affecting the CRT.

Because the differences are only highlighted in this section, you should
refer to individual sections in this manual to become familiar with the
HP-87 Assembler ROM before writing programs.

To modify an existing HP-83/85 binary program for use on the HP-87:

1. Pick a binary program number and put it in the NAM statement.
This should be a value between 200 and 377 (octal). Numbers from
o to 177 are reserved for use by Hewlett-Packard.

Two different binary programs may have the same binary program
number, but they cannot be loaded and used at the same time.
Attempting to do so will cause a BAD BIN-LOAD error.

1-3

Section 1: General Information

2. Modify any ASS statements. In the HP-83/85, all binary programs
were loaded so that the absolute base address could be calculated
by the Assembler ROM at assembly time based upon the length of the
binary program. In the HP-87, this is not true. A change must be
made in the ASS pseudo-opcode. You must have an absolute base
address.

This only applies to binary programs that were written as absolute
code. Most binary programs are relative and not affected by this
change.

3. Modify all parse routines to use PTR2 as the output pointer rather
than R12-R13.

4. Modify all parse routines to push the binary program token out as:

TOK# BPGM# 371
rather than:

371 GARBAGE-BYTE TOK#

5. Change all RUNTIME references to R10 into references to PTRI.

6. Modify all code that uses string parameters that are passed on
the R12 stack. These strings use three-byte addresses on the
HP-87, rather than the two-byte addresses used by the HP-83/85.

7. Check all references to any system routines to see if any changes
have occurred to the input/output conditions of the routine. Make
any necessary changes.

8. Change all system/global address definitions.

9. Any routine that gets control through a RAM hook (such as CHIDLE,
KYIDLE, IOTRFC) must calculate the base address of the
binary program rather than loading it from BINTAB. Use the code:

LABEL LDM R20,R4
BIN
SBM R20,=LABEL

This will leave R20-R21 with the absolute base address of the
binary program. This change is necessary only in relative binary
programs.

10. If the binary program uses its own error messages, ERRBP# (a RAM
location in the system global addresses) must be set to the binary
program number before calling ERROR or ERROR+.

1-4

Section 1: General Information

1.5 Assembler Commands, Statements, and Functions

The commands and the statements and functions provided by the Assembler
ROM are added those which are already part of the instruction set. They
are executed exactly as the rest of the instruction set, and have been
created to help the programmer control and use the assembler.

Assembly language elements are used as the actual instructions in
writing binary programs. The format and use of these elements are
discussed in section 6, and complete list may be found in sections 6 and
8.

Assembler Commands

A command is nonprogrammable, and can be executed only from the
keyboard. The assembler commands permit the user to transfer between
assembler and BASIC system modes, to assemble, store and load binary
program source code, and to find labels within the source code in
memory.

ALOAD file name
Assembler Command

Legal only in'assembler mode. Loads source code that
stored with the ASTORE command into computer memory
specified on the currently selected mass storage device.
be of the type known as extended **** or ASSM.

was previously
from the file

The file must

Note: The extended type of file, denoted by **** on the directory of a
mass storage device, does not necessarily mean that the file contains
source code. In fact, other HP firmware and software may generate
extended type files.

ASSEMBLE file name [,numeric value]
Assembler Command

Legal only in assembler mode. Assembles
computer memory and stores it in the file
currently selected mass storage device.
stored as either a binary program or, if
ROM or global file, as a series of strings

source code currently in the
specified by file name on the
The assembled source code is
the file has been declared a
in a data file.

1-5

Section 1: General Information

If at assembly numeric value is evaluated as zero, the binary program
currently in the computer memory is scratched, and the object code of
the newly assembled binary program is loaded from the mass storage
device into memory. Default numeric value is evaluated as zero.

If at assembly numeric value is other than zero, any binary program
currently in memory remains inviolate, and the object code of the newly
assembled binary program is stored only on the current mass storage
device.

Note: If a program contains an error or if programs are linked at
assembly, this command can destroy the source code; if the source code
is to be saved on a mass storage device, it should be stored there
before typing ASSEMBLE.

ASSEMBLER
Assembler Command

Legal only when the computer is in normal system mode, this command
scratches memory and puts the computer into assembler mode. In
assembler mode, most normal BASIC statements will still operate, but
only as calculator mode statements; they are not programmable. Source
code for a binary program can then be typed in with line numbers, just
as a BASIC program is typed in while in normal system mode (but with
only one instruction per line). Unlike its operation in normal system
mode, the computer is somewhat sensitive to character spacing while in
assembler mode. Auto line numbering, screen editing, listing, etc., are
all function. The [CONT], [STEP], and [INIT] keys are inoperative in
assembler mode. Displays READY when executed.

ASTORE file name
Assembler Command

Legal only in assembler mode. Stores the source code currently in the
computer memory into the specified file on the currently selected mass
storage device. File is of the type known as extended, shown in the
directory as extended (****) or ASSM.

BASIC
Assembler Command

Legal only when in assembler mode, this command scratches memory and
puts the computer back into BASIC mode. Display READY when executed.

1-6

Section 1: General Information

FLABEL label
Assembler Command

Legal only in assembler mode. This command searches through the source
code in memory for the label specified. For each occurrence of the
label the line is listed. After an FLABEL command has been executed,
pressing the [LIST] key causes the source code to be listed, beginning
with the last line where the label occurs.

FREFS string
Assembler Command

Legal only in BASIC or assembler mode. Searches through the source code
in memory for all occurrences of the specified string. After an FREFS
command has been executed, pressing the [LIST] key causes the source
code to be listed, beginning with the first line where the string
occurred. Pressing any key will cause the FREFS command to halt
prematurely.

Assembler Statements and Functions

Statements and functions are programmable BASIC language elements. The
statements and functions provided by the Assembler ROM are simply
additions to the BASIC language of the computer. As with all BASIC
statements and functions, they may be used either in calculator mode or
as part of a BASIc program when in BASIC mode. When the computer is in
assembler mode, all BASIC statements and functions may be executed only
from the keyboard.

DEC
Assembler Provided BASIC Function

Returns the decimal equivalent of the specified octal value.

MEM address [:ROM#]],# of bytes] [=#,#, ••]
Assembler Provided BASIC Function

Dumps the contents of computer RAM or ROM memory to the current CRT IS
device beginning with the octal address given. Continues dumping for
the specified octal [,# of bytes]. At power-on, default # of bytes is
100 octal; otherwise, default is the last # of bytes specified.

The [:ROM #], if included, is an octal value that selects the plug-in
ROM from which memory is dumped. At power-on, default value for ROM #
is 0; otherwise, default is the last ROM # specified.

1-7

Section 1: General Information

If =~t, # is incl uded in the statement, memory is not dumped, but instead
the contents of memory locations beginning at the address given are
changed to the octal values specified after the = sign. The memory
locations must be in RAM. The contents of one succeeding memory
location are changed for each value specified after the = sign. The #
of bytes, if included in the statement, is disregarded in this case.
pressing any key will cause the memory dump to hal t.

MEMD address [:ROM#] [,# of bytes] [=#,#, •••]
Assembler Provided BASIC Statement

Same as MEM except reads the contents of three bytes of memory beginning
with the address given and uses those contents as the address.

OCT decimal numeric value
Assembler Provided BASIC Statement

Returns the equi valent of the spec if ied decimal val ue.

REL octal address
Assembler Provided BASIC Statement

Returns the absolute address of a relative address. Takes the relative
octal address and adds to it the address (called BINTAB) of the
beginning of the last binary program that was accessed to yield the
octal absolute addres. May be used alone or with the MEM command. May
also be used with the command BKP if HP 82928A System Monitor is
installed.

SCRATCHBIN
Assembler Provided BASIC Statement

Scratches all current binary programs from computer memory, without
affecting anything else.

1-8

CPU STRUCTURE AND OPERATION

2.1 CPU Register Bank

Section
II

The central processing unit (CPU) consists of 64 eight-bit registers, an
address register pointer (ARP) , a data register pointer (DRP) , an
arithmetic-logic unit (ALU) , a shifter, and a set of status indicators.

The 64 eight-bit registers are grouped into two sections. The first 40
(octal) registers have two-byte boundaries and are used principally for
addresses. Many of these bytes are reserved by the CPU for use as
special purpose registers, and direct access to these should be avoided.
The next 40 (octal) registers are separated by eight-byte boundaries.
Floating-point numbers, 64 bits long, are stored here. The programmer
must be aware of what is destroyed when the system uses these registers.
The effects of system routines on register contents are found in section
8.

Any register in the CPU may be used as an accumulator when performing an
operation. To distinguish between the registers, the CPU uses the DRP
to designate the accumulator and the ARP to designate the operand. The
DRP directs the results of arithmetic operations to the register it
points to, and the ARP supplies the second operand when it is needed.
Both the ARP and the DRP can be used to address any of the bytes in the
CPU register bank. The CPU register addressed by the ARP is called the
address register, or AR. The register addressed by the DRP is called
the data register, or DR.

2-1

Section 2: CPU Structure and Operation

2-2

Registers

0,1

2,3

4,5

6,7

Hardware-Dedicated Registers

Description

Register Bank Pointer: R0 points to the
remainder of the CPU register bank. R1 is
only accessable through R0.

Index Scratch: R2-R3 are used for address
calculation for indexed addressing.

Program Counter (PC): R4-R5 hold the
absolute address of the next instruction
location.

Return Stack Pointer: R6-R7 contain the
pointer for the subroutine return stack.
When a "JSB=" subroutine jump is executed,
the CPU pushes the PC (R4-R5) on the stack.
When the RTN is executed, the CPU pops two
bytes from this stack and places them in
R4-R5 (program counter).

Software-Dedicated Registers and EMC Pointers

Registers/Pointers Description

PTRl

PTR2

10,11

12,13

14

At run time, contains the program counter
(PCR), a pointer for executing BASIC
programs.

At parse time, used to point to the parse
output stack.

Not software dedicated at run time. When
parsing, R10-R11 point to the next
character of the input ASCII stream.

Operation Stack: Parameters and results are
passed on the stack pointed to by this
register pair. Contains expressions when
the BASIC program is decompiling.

When parsing or decompiling, R14 contains
the current token being processed.

Section 2: CPU Structure and Operation

Software-Dedicated Registers and EMC Pointers

Registers/Pointers Description

16 Current Status (CSTAT) : R16 contains the
code that indicates the current mode of
operation. The table of CSTAT codes is
found in paragraph 3.4.

17 External Communication Status (XCOM) : When an
external interrupt takes place the status is
stored in R17. The table of XCOM status
codes is found in section 3.

Multi-byte operations can be performed with the help of the register
boundaries. The number of consecutive registers that will be used in
the operation is determined by the distance between the DRP and the next
boundary.

Example: In a multi-byte addition a 64-bit quantity contained in
registers 50 through 57 will be added to a 64-bit quantity in registers
60 through 67.

DRPBOUNDARY

R67 R66 R65 R64 R63 R62 R61 R60 ~ R57 R56 R55 R54 R53 R52 R51 R50

I I I I I I I I I I I I I I I I I
t t

ARP DRP

The operation begins with the registers pointed to by the DRP and the
ARP, processing the registers within the boundary. The result is stored
as a multi-byte quantity in the registers pointed to by the DRP.

2-3

Section 2: CPU Structure and Operation

Example: A multi-byte load with the DRP set to R74 and the ARP set to
Rll will load the the four registers R74-R77 with the contents of
Rll-R14.

R77 R76 R75 R74 R73 R72 R71 R70 R17 R16 R15 R14 R13 R12 R11 R10

111111111111111111
t t t
BOUNDARY DRP ARP

The boundary is determined by the DRP and is ignored by the ARP. In the
previous example, the load terminates when the DRP reaches the next
boundary.

Example: The multi-byte store recognizes the boundaries in exactly the
same way as the multi-byte load. Attempting to store with the DRP set
to Rll and ARP set to R74 would result in the loss of several bytes due
to the boundary after Rll.

, R77 R76 R75 R74 R73 R72 R71 R70 R17 R16 R15 R14 R13 R12 R11 R10

I1111111I11I1I1111
t t
ARP DRP

The boundary after Rll stops the mUlti-byte operation. Only one
reg ister is transferred to its destination, that. is, R74. The DRP
always determines how many bytes will be involved in a multi-byte
operation.

There are also two-operand operations where the DRP points to one
operand, and the second is located in computer memory. The number of
bytes used in the operation is dependent upon the boundary after the
DRP. That number of bytes of memory will be used starting at the
location described by the label or pointer accessing computer memory.

2-4

Section 2: CPU Structure and Operation

Example: This load will be done with the address BINTAB, which is a
label pointing to an address which contains the address of the start of
the binary program. The DRP will point to R14.

BOUNDARY

R17 R16 R15 R14 ~ R13 R12 R11 R10

DRP

BINTAB

(104070)

234 240

Because the boundary is two bytes from the DRP, two bytes are accessed
from memory.

2.2 Number Representation

The CPU can operate on numbers as octal and binary-coded decimal (BCD)
quantities. All registers and register addresses are represented as
octal numbers, and all floating-point numbers are represented in BCD
notation, that is, each decimal digit is stored as a four-bit binary
number, with two digits per register. Since the CPU cannot tell one
representation from another, it is important to keep track of the way
numbers are stored when doing arithmetic operations.

An address is always an octal value that occupies 16 bits or, for the
extended memory pointers, 24 bits. The highest-numbered byte contains
the first, or most significant, part of the address, and the
lowest-numbered byte contains the last, or least significant, part of
the address.

Example: The octal address 177605 is stored in two registers, R13 and
R12. An address is always an octal value that occupies 16 bits and is
contained in two registeres.

177605 1111111110000101

Binary Representation

R27 11 111 III 11 R26 11 0 0 001 0 11

Octal Representation

R27 13 7 71 R26 12 o 5

2-5

Section 2: CPU Structure and Operation

The ARP and the DRP will always point to the least significant byte of a
mUlti-byte operation.

With BCD numbers, decimal one is represented with four bits, 0 0 0 1,
decimal two is 0 0 1 0, on up to decimal nine, which is 1 0 0 1. When
the decimal number has more than one digit, each digit is represented by
four bits.

Example: The decimal number 3738 is represented by 16 bits.

3=0011 7=0111 3=0011 8=1000

Binary Representation

R27 I 0 " 1 1 0 1 1 1 I R26 \0 0 1 1 1 0 0 0 I

Octal Representation

R27 \0 6 7 I R26 \070

Each byte can contain two fou~-bit BCD digits.
represent numbers in the range 00 to 99.

Each register can

The ten's complement is used to simulate subtraction exactly like the
two's complement is used in binary arithmetic. The ten's complement is
formed by subtracting each binary-coded digit from nIne (nine's
complement arithmetic), 100 1, then putting the digits back together
to form the number again and finally incrementing the entire quantity by
one (one's complement arithmetic).

The negative of a number in BCD representation, for subtraction purposes
or in special cases to show the sign of an exponent, is found by taking
the ten's complement.

Example: To find the negative of 19, each digit, 1 and 9, is subtracted
from 9, or, another way of looking at it, 19 is subtracted from 99.

2-6

1001 1001
- 0001 1001

1000 0000

Section 2: CPU Structure and Operation

Add one to the combined result:

80
+ 01 -sr-

1000 0000
+ 0000 0001

1000 0001

In effect, when 81 is added to 19 the result is 00 in BCD notation.

Numeric quantities may be represented as real floating-point, short, and
integer formats. The real and short forms are expressed as BCD digits,
and the integer form is a five-digit number with a sign digit at the end
of the quantity. The system represents all numeric quantities in BCD
notation.

Real numbers have a mantissa of 12 digits, and exponent and sign
information, all stored in eight bytes. The mantissa fills the 12 most
significant nibbles of the number, the sign takes one nibble, and the
exponent is contained in the last three nibbles. The most significant
digit of the number is stored in the most significant byte, and the
decimal point is assumed to be immediately after the most significant
digit. The sign of the number follows the least significant digit of
the mantissa, and the exponent, expressed in ten's complement notation,
is found in the three least significant nibbles of the quantity.

Example: The real number 468.3341673 (in scientific
4.683341673 x 10A 2), would be represented in BCD as:

notation

Most
Significant
Digit of Exponent

Least

Sign Middle Digit
Nibble of Exponent

The radix is assumed to be in R77 between the four and the six.

Integers are stored in three bytes, with five digits and a sign. The
most significant digit of the integer is stored in the least significant
byte. Real and short number representations are not right justified
like integer representation.

2-7

Section 2: CPU Structure and Operation

Example: The integer 6483 would be represented in BCD notation from the
least significant digit, 3, to the most significant digit, 6, with the
sign, positive or 0 0 0 0, in the most significant four bits of the
quantity.

+ o 6 4 8 3

1000 0000\ 0110 0100 \1000 0011 I I
R77 R76 R75 R74 R73 R72 R71 R70

Short numbers have a mantissa of only five digits and an exponent of two
digits. Both the mantissa and the exponent have sign bits, found in the
most significant digit. The representation of the mantissa begins
immediately following the sign bits with the most significant digit of
the mantissa found in the second digit of the most significant byte.
The assumed decimal point is directly after the first digit, then the
rest of the mantissa is represented. The two least significant digits
hold the exponent, which is not in complement form because the sign of
the exponent is in the most significant digit.

Example: The short number -.0064 need not be represented as a l2-digit
real number. In BCD short form it is represented as:

6 4 o 0 o 0 3

10011 01101 0100 0000 10000 0000 10000 0011 I I
R77 R76 R75 R74 R73 R72 R71 R70

The radix is assumed to be between R77 and R76.

2.3 Status Indicators

The CPU contains eight flags and a four-bit register for program status.
The flags signal the present condition of the data, while the four-bit
register serves as an extended register for counting and data
manipulation.

2-8

Section 2: CPU Structure and Operation

Status can affect or be affected by CPU instructions.
set has data movement instructions of both the
nonarithmetic types. These instructions include:

The instruction
arithmetic and

• Arithmetic: Add, substract, compare, increment, decrement, and
complement •

• Nonarithmetic: Load, store, "and", "or", "exclusive or", shift,
clear, and test.

The CPU contains the following one-bit status flags and four-bit extend
register:

DCM Decimal Mode Flag: This flag determines whether the system
is using binary numbers or BCD numbers in arithmetic
operations. In BCD mode, each decimal digit is converted to
BCD, and 911 arithmetic operations are done with the
resulting four-bit digits. This is the way floating-point
real numbers and integers from BASIC programs are
represented.

The system uses this flag to determine the correct mode, so
the user must make sure it is set properly for arithmetic
operations. All shifts and all arithmetic operations are
affected by the DCM flag.

Two instructions affect the status of the DCM flag: BCD sets
it to 1, and BIN clears it.

E Extend Register: In BCD mode,this four-bit register will
accept the displaced digit resulting from a shift. Once in
the register, a BCD digit may be incremented, decremented,
or cleared, and, if needed, the digit may be returned to the
register it came from using the extended shift instructions.

CY Carry Flag: In binary mode, this flag will indicate the
result of a bit shift. A bit may be shifted into the CY
flag, tested, and then shifted back into a register, using
the extended shifts. It functions similar to the extend
register in BCD mode.

2-9

Section 2: CPU Structure and Operation

2-10

During all arithmetic operations, the CY flag will be set
with the carry out of the most significant part of the
operation. In addition between two numbers where the result
is too large for the register to hold, or in subtraction
where the result is positive, the CY flag is set to 1. The
CY flag may be thought of as the "borrow" if needed for
subtraction.

When two quantities are added, the CY flag is set with the
carry, if any, resulting from the addition of the most
significant bits.

Examples:

If two positive numbers, both with a most significant bit
of 0, are added, then the carry will always be 0.

10 1 0 0 0 0 1 01

+ 10 0 1 0 0 1 0 11

CY ~ 10 1 1 0 0 1 1 11

If a positive number is added to a negative number, in
reality a subtraction, then two possibilities could occur:

1. The result could be negative, in which case no carry
would be made.

10 0 1 0 1 1 1 11

+ 11 0 0 1 0 1 1 11

CY ~ \1 1 0 0 0 1 1 0\

2. The result could be positive, causing a carry out.

1
0 1 0 0 1 1 0 11

+ 11 1 1 0 1 0 0 01

CY IT] \0 0 1 1 0 1 0 11

Section 2: CPU Structure and Operation

If two negative numbers are added then the CY flag is set to
1.

11 1 0' 0' 0' 0' 0' 0'1

+ 11 0' 0' 0 0' 0' 1 0'1

CY IT] 10' 1 0' 0' 0' 0' 1 0'1

The carry flag is set by compar isons in the same manner as
additions.

An increment sets the CY flag if the data reg ister is all
1 's .•

\1 1 1 1 1 1 1 1 I
+ 10' 0' 0' 0' 0' 0' 0' 11

CY [IJ 10' 0' 0' 0' 0' 0' 0' 0' I

OV Overflow: The overflow status is determined by taking the
"exclusive or" of the CY flag and the most significant bit
of the data register. It is set to 1 when the addition of
two positive numbers yields a negative result, when the
addition of two negative numbers yields a positive result,
and when the result of a left shi ft changes the sign of the
data register.

10' 0' 1 0' 1 1 1 11 0'57

+10' 1 1 0' 0' 1 0' 11 +145

OV IT] 11 0' 0' 1 0' 1 0' 0'1 20'2

OD Least Significant Bit: After any data movement instruction,
the least significant bit is shown as the OD flag. If the
OD flag is set to 1, then the number is odd. If the OD flag
is 0', the number is even. The right-most bit in the data
register is always the least significant bit.

10' 0 1 0' 0' 1 1 0'1 0 OD

2-11

Section 2: CPU Structure and Operation

NG Most Significant Bit: This flag displays the most
significant bit in the data register. If this flag is set
to 1 then the quantity is negative, and if the NG flag is
clear then the quantity is positive.

ZR Zero: If the data reg ister is 0 or if a compar ison is made
between two equal numbers then this flag is set to 1.

LDZ Left Digit Zero: This flag is set if the left-most four
bits are 0 0 0 0. In BCD mode this would indicate the most
significant digit.

LDZ IT] 10 0 0 0 1 0 1 1 I

RDZ Right Digit Zero: If the least significant four bits are
o 0 0 0 then this flag is set to 1. In BCD mode this would
indicate the least significant digit.

Example: Status information is based on the entire multi-byte quantity
that is being processed. All multi-byte operations, except right shift,
start execution with the least significant byte. The right shift starts
with the most significant byte. All status flags, except OD, RDZ, and
DCM, are updated after each byte of execution and will be correct as the
register boundary is met. The OD and RDZ flags are set for the first
byte and never changed. The E, CY, and OVF flags are only affected by
arithmetic operations.

2-12

Section 2: CPU Structure and Operation

After the multi-byte addition of the two system addresses, OFFSET
(000100) and the label VARIABLE (000365) , the status indicators will be
set as follows:

OFFSET 11 0 0 0 1 0 0 01 10 0 1 1 1 0 0 01

+ VARIABLE 10 0 0 0 0 0 0 01 11 1 1 1 0 1 0 11

RESULT 11 0 0 0 1 0 0 1\ 10 0 1 0 1 1 0 1\

DCM E CY OV NG OD LDZ RDZ ZR

[!] 10000 \ 0 0 lIJ [II 0 0 0

2-13/2-14

OPERATING SYSTEM

3.1 Introduction

Section
III

This section explains how system memory is allocated, how extended
memory is accessed, and how a statement is parsed and becomes part of a
BASIC program. It also explains the sequence of operations that occurs
when a BASIC program is run.

BASIC programs are executed by an interpreter. However, the code that
is interpreted is vastly different from the BASIC statements as they
were originally entered. As the statements are entered, they are parsed
and compiled into a form of RPN (Reverse Polish Notation), which can be
interpreted more efficiently. The BASIC reserved words are converted to
single-byte tokens (refer to Execution by Tokens). This makes the
internal form of the code somewhat more compact than the original form,
and also makes interpretation easier and faster.

Also during the process of parsing and compiling, variables are placed
in a variable storage area, with only their addresses and names
~emaining in the area containing the tokens. The BASIC program is held
In memory as a series of tokens and addresses of variables and
associated data bytes. To execute the program, the computer processes
these token and variable addresses in order. As each token is
processed, it causes the machine to access a table of routine addresses
and execute a specific routine corresponding to the token. If the token
indicates a variable, the machine uses the next three bytes as the
variable address.

3-1

Section 3: Operating System

3.2 System Memory

Several distinctly different regions comprise the system memory. They
are (all numbers are octal unless indicated otherwise):

3-2

• Six system ROMs, each containing 8192 decimal bytes. A subset of
the ROM area is the address range from 60000 to 77777. This
range is shared by system ROMs 0, 1, 320, and all of the external
plug-in ROMs. Each of the ROMs in this area can be selected or
deselected for talking on the bus, but only one of them can be
selected at a time. Each of these ROMs has a bank-select address
which is its ROM number, ranging from 0 to 376. To select a
particular ROM you store the desired ROM number to an I/O address
called RSELEC. The chosen ROM will be selected and all other
bank-selectable ROMs will be deselected.

• RAM, 32768 (decimal) bytes in the basic machine.

• Memory addressable directly by the CPU (addresses 0 to 177777).

• Memory addressable through the extended memory controller (EMC),
32K-544K.

• The block of 400 addresses (177400 to 177777) which act as I/O
addresses, when accessed directly by the CPU. The same addresses
accessed through the extended memory controller will act as RAM
memory, not as I/O addresses.

Section 3: Operating System

DECIMAL
ADDRESS

o

8K

16K

24K

32K

64K-256

64K

1M

OCTAL
ADDRESS

o

20000

40000

60000

100000

177400

200000

4000000

SYSTEM
ROM

SYSTEM
ROM

SYSTEM
ROM

ROMO

SYSTEM
ROM

RAM

(If accessed
either
directly by
the CPU or
through the
EMC)

RAM

(If accessed
through the
EMC)

ROM 1 ROM 320

GRAPHICS MASS
ROM STORAGE

1/0
ADDRESSES

(If accessed
directly by
the CPU)

ROMx

PLUG-IN
ROM

A
(OPTIONAL)

3-3

Section 3: Operating System

Computer Operation

The basic machine is controlled by system routines that are permanently
resident at fixed addresses in memory. The addresses and names of many
of these system routines may be found in the global file in section 8.

In addition to the system routines, control can also pass to one of the
plug-in bank-selectable ROMs, or to a binary program in memory. At
certain times in the operation of the system, the resident binary
programs and ROMs are polled by the main system. In addition, there are
a number of entry points (hooks) that allow operation to be intercepted
and modified by a binary program or ROM. These hooks are normally idle,
but they can be used to take over the system at certain key times.

Execution by Tokens (Run Time)

RAM
High Addresses

Low Addresses

RAM

Variable Name

Length of
variable name

Variable address
Variable token
Token for LET

ROM

Tokens are used to represent the keyword, such as LET, FOR, BEEP, etc.,
that make up each BASIC statement. Each token is a one-byte quantity
that the machines uses to find the addresses of routines associated with
that token. Each token must have an associated entry in a table of
routines for execution at run time, another entry in an ASCII keyword
table, and a third entry in a table of parse routines. A list of system
tokens may be found in section 8.

The computer is a token-driven machine. A program is held in memory as
a series of tokens and variable addresses which the machine processes.

3-4

Section 3: Operating System

For example, at run time as the system executes a program, it proce'sses
a token by fetching the address of an associated run time routine from a
table of addresses. The runtime table may exist in a binary program
and/or an external ROM as well as in the main system. The system jumps
to the specified address to execute the routine, then fetches the next
token and searches for its run time routine in the tables, etc.

Some tOkens indicate to the system that the three bytes following the
token contain a variable address. In this case, the system attempts to
find the variable in the variable storage area and, if not found,
'creates a place for it. Other tokens indicate that the bytes following
the to'kenare constants to be pushed onto the Rl2 stack.

Two tokens, 3711' (octal) and 371 (octal), are used to expand the token
tables. Token 3711' indicates to the system that the next byte is the
number o·f a ROM, and that the byte after the ROM number is the token
within the ROMs table that is to be executed. Token 371 directs the
system to a binary program in the same way.

3-5

Section 3: Operating System

3.3 Overall System Flow

8=
/ ,

/ ,

System flow is shown by the chart above. In general, loading
running a program, or executing a calculator mode statement,
require execution within the following areas:

and
will

3-6

Power-on Initialization: When the computer initially powers-up, it
performs a sequence of operations: performs a self-test, accesses
and resets any interface modules, reserves memory for later use,
allows any ROMs to reserve memory, and returns to the system.

Executive Loop: External stimulus (such as a keyboard interrupt) and
changes within the computer (such as an error condition) will cause
the executive loop to call the appropriate routines to take control
at the right time.

Parser: Parsing occurs when [END LINE] is pressed after a program
line or calculator mode statement has been typed. Parsing is the
changing of ASCII code into tokens. The parser first searches the
ASCII tables in any resident binary programs for a keyword match,
then the ASCII tables in any external ROMs, and finally the system
tables. This makes it possible to redefine system keywords.

Interpreter: The interpreter actually runs a program or executes a
calculator mode statement by fetching tokens and calling the run
time routines to execute them.

Section 3: Operating System

In addition, there are two other areas which may be called:

Initialization: At many times, including power-on, RESET, SCRATCH,
etc., the system calls routines for initialization. Initialization
routines are called through the ROMINI routine; the system polls
system initialization routines first, ROM routines second, and the
routines in the resident binary programs last. ROMFL is a RAM
location that initialization routines called by ROMINI can look at
to see why they were called.

Initialization routines are called before, during, or after a
condition occurs, depending upon the following conditions:

ROMFL

o
1
2
3
4

5
6
7

10
11
12
13

Power-On
RESET
SCRATCH
LOADBIN
RUN
INIT
LOAD

Meaning

STOP, PAUSE
CHAIN
Allocate token class>56
Deallocate token class>S6
Decompile token classs>S6
Program halt on error

Initialization Routines Called

After system initialization.
After system reset.
Before scratch.
After loadbin.
Before execution begins.
After allocation done.
Before load.
During.
After.
During.
During.
During.
Dur ing.

When errors occur, the system generates the proper warning or error
message.

3-7

Section 3: Operating System

Interpreter Loop

The interpreter loop fetches the next token, processes it, and passes
control to the respective run time code. When the run time code has
been executed, control returns and the interpreter continues with
another token.

A token is an ordinal into a table of addresses. The address table is
made up of two-byte addresses. To find the actual address, the token is
doubled, then added to the base address. This changes the ordinal into
an offset pointing to the current address.

Address Table Runtime Routines

2·byte
(Token x 2) + Base Address

address.

2·byte --
address.

2·byte

address.

3-8

Section 3: Operating System

N R17
BIT 7 SET

- - ~ Bit 7 of R 17 indicates an error
has occurred or the routine that

.... _ _ called the interpreter requested
control be returned after the
next token.

INTERPRETER LOOP 3-9

Section 3: Operating System

3.4 Allocation and Deallocation

Allocation is the process of reserving and assigning memory for program
variables. The three modes of allocation are:

• If the program line is a dimension statement, the entire line is
allocated before execution continues.

• If the current token being allocated is the start of a user
defined function (DEF FN), then allocation will continue for the
duration of the definition (until the FN END) before execution
will resume.

• All other tokens are allocated one at a time as they're
encountered.

3-10

Section 3: Operating System

The class of a token determines if the token needs to be allocated. The
following diagram shows how memory looks in a program that has been
allocated:

RUNTIME

o ROM

100000 SYSTEM
RAM

EXTERNAL
ROMs RAM

BINARY
PROGRAMS

GOSUB/RTN
STACK

ASSIGN
BUFFERS

FOR/NEXT
STACK

TEMP MEMORY

CALC MODE
VARIABLES

AVAILABLE
MEMORY

CALC MODE
STATEMENT

SUB 2 VARS.

SUB-PROG 2

LOCAL VARS.
FOR SUB 1

SUB-PROGRAM
NUMBER 1

LOCALVARS.
FOR MAIN

MAIN BASIC
PROGRAM

COMMON

~ FWBIN

..-- LWAMEM

.....--- NXTRTN

....--- RTNSTK

~CALVRB

-4-- LAVAIL

~ SAVPT2

.....--- NXTMEM

...- EOVAR

~ BOVAR

~ FWCURR

~FWPRGM

.-- FWUSER

The GOSUB/RTN stack is for the
BASIC program not for assembly
language. NXTRTN points to the
next RETURN address on the stack .

Each ASSIGN buffer takes 284 bytes.

TEMP memory is released by the
system at the end of each line of
a program and when an "@" token
(statement concatenation) is
encountered.

Both the RUN and the CaNT
commands set LAVAIL equal
to CALVRB, so during the
running of a BASIC program,
they will always be equal,
and there will be no CALC mode
variable.

If a CALC mode statement has
been entered and is executing,
it will begin at NXTMEM - 1
and end at SAVPT2. Otherwise,
SAVPT2 will be equal to NXTMEM.

NXTMEM points to the last byte
of the BASIC programs (or sub­
programs).

EOVAR points to the last byte
of the variable space of the
current active BASIC program
and BOVAR points to the
[first byte] + 1 .

FWCURR points to the first
byte of the currently active
program .

FWPRGM points to the first
byte of the MAIN BASIC program.

FWUSER points to one higher
than the highest address in
memory.

3-11

Section 3: Operating System

Unless you have created a token whose class is greater than 56,
allocation is handled by the computer. Because a program is allocated
in segments, a memory overflow could occur after you are well into your
program.

The system executes the BASIC program starting at the highest address.
The line of BASIC code

10 A=B

would be parsed into this stream of bytes:

016
010
102
001
000)
000
000
001
101
001
000)
000
000
021
016
020)
000
000

END OF LINE TOKEN
STORE SIMPLE VARIABLE TOKEN
B, THE VARIABLE NAME
LEN OF VARIABLE NAME

3 BYTES RESERVED FOR ALLOCATION TIME ADDRESS

FETCH SIMPLE NUMERIC VARIABLE TOKEN
A, THE VARIABLE NAME
LEN OF VARIABLE NAME

3 BYTES RESERVED FOR ALLOCATION TIME ADDRESS

STORE SIMPLE NUMERIC VARIABLE TOKEN
LEN OF LINE (16 OCTAL BYTES FOLLOW)

BCD LINE NUMBER 10

Token number 21 (and tokens such as 1, 2, 3, 22, and 23) is immediately
followed by three bytes which are used to contain the relative address
from the first byte of the currently active program (FWCURR). Since the
variable storage area for BASIC programs is at a lower address than the
program, this relative address will always be negative (that is, the
most significant bit of the address will always be set). Therefore, if
the most significant Qit is 0 then the system knows that the current
token has not yet been allocated. In this case, the allocator would be
called, which would search through the variable storage area for the
current variable. If found, the allocator would calculate the correct
relative address and place it where the three 0's are following the 21
token. If not found, the allocator would create a storage area for it
in the space allocated for variable storage (EOVAR), then calculate and
store the relative address after the number 21 token. Execution would
then continue.

3-12

Section 3: Operating System

Since the variable name could be long or short, the length of the name
and the ASCII characters for the name immediately follow the address.
The length of the name and the ASCII characters will be skipped at
execution time, similar to the way a comment is skipped.

Line numbers are handled in a similar manner. The BASIC code

10 GOSUB 100

would be parsed like this:

016

000)
001
000
133
005

020)
000
000

END OF LINE TOKEN

BCD LINE NUMBER OF DESTINATION

GOSUB LINE NUMBER TOKEN
LEN OF LINE

BCD LINE NUMBER 10

Since line numbers are only five digits long, the most significant bit
will be 0 if the line is not allocated. If the line is allocated the
address will always be negative and the most significant bit will be
set. All line numbers are converted into addresses relative to FWCURR
(the first byte of the currently active program) at allocation time.

3-13

Section 3: Operating System

Line labels are handled in a way similar to variable names. The BASIC
code

is parsed as:

3-14

016
154
145
142
141
154
145
156
151
114
011

000)
000
000
270
017
020)
000
000

10 GOSUB [line1abe1]

END OF LINE TOKEN
1
e
b
a
1
e
n
i
L
LEN OF LINE LABEL

3 BYTES RESERVED FOR ALLOCATION ADDRESS

GOSUB line label TOKEN
LEN OF LINE

BCD LINE NUMBER 10

Section 3: Operating System

A program is deallocated while you are typing in lines or while it is
being edited. When a BASIC statement is typed and [END LINE] is
pressed, the computer deallocates the program if it has not already been
done. Program variables are held as names rather than addresses. This
diagram shows memory when a program is deallocated:

DEALLOCATED

o ROM

100000 SYSTEM
RAM

RAM STOLEN
BY EXTERNAL
ROMS

BINARY
PROGRAMS

GOSUB/RTN
STACK

CALC MODE
VARIABLES

available

memory

NEWLINE

MAIN BASIC
PROGRAM

FWBIN
FWBIN is the lowest address
a user can normally access
from a BASIC language program.

LWAMEM/NXTRTN

CALVRB/RTNSTK

LAVAIL

PTR2

NXTMEM

The operating stack (R 12) that
was in available RAM on the
HP-83/85 is now in the system
RAM and is of fixed length.

The pointers shown usually
point to the (FIRST WORD) + 1
or to the (LAST WORD) of the
particular block of memory
they are associated with.

FWUSER is one address higher
than the highest address existing
in the current configuration of
the machine.

FWUSER/FWPRGM/FWCURR

3-15

Section 3: Operating System

3.5 Executive Loop

After power-on initialization, the executive loop portion of the system
takes control. The executive loop examines CPU registers RI6 and Rl7
for changes in the status of the computer, listens for external
communications, and takes the appropriate actions based upon the
information received. The current status information (CSTAT) is kept in
register Rl6 and the external communication flags (XCOM) are kept in
register R17. As long as registers R16 and Rl7 are both zero, the
system is idle. The executive loop flowchart is shown on the next page.

3-16

Section 3: Operating System

IS

CALC
MODE IN INPUT

INPUT
COMPLETE

?

IDLE
IN INPUT

JSB=
RMIDLE

XCOM(R17)
=0

?

CSTAT(R16)
=0

ERROR

CALC
MODE PENDING '>-~-----!~

3-17

EXECUTIVE LOOP

Section 3: Operating System

3.6 Interrupts

When there is a change in status and the system is no longer idle, CSTAT
(R16) indicates the computer mode of operation, according to the value
stored there.

CSTAT

Value Current Status

0 Idle.
1 Calculator mode execution.
2 Program is running.
3 Not used.
4 Idle during input statement.
5 Calculating during input statement.
6 Not used.
7 RUN in middle of a line.
8-255 Not used.

If execution halts, the system needs to know what caused it to halt and
how to handle it. Each of the eight bits in XCOM (R17) have a different
meaning associated with it. The service request bit is the only bit
directly affecting interrupts.

XC OM

Bit Set Execution Hal t

7 6 5 4 3 2 1 0

X End of calculator mode.
X Input complete.

X Step mode.
X Trace mode.

X Service request (any interrupt).
X Immediate set.

X Error set.
X Break ("or" of bits 5 and 6) •

3-18

Section 3: Operating System

One of the controlling devices on the internal communications bus will
generate an interrupt to begin execution. An interrupt will set bit 4
in Rl7 (XCOM) and a bit in a memory location which is used to keep track
of the cause of an interrupt (SVCWRD). The executive loop knows that
the interrupt has occurred (from XCOM) and which device caused the
interrupt (from SVCWRD).

SVCWRD Bi t Set Type of Interrupt

7 6 5 4 3 2 1 0

X Keyboard interrupt.
X I/O interrupt.

X Timer 1 interrupt.
X Timer 2 interrupt.

X Timer 3 interrupt.
X Special interrupt.

X Not used.
X Not used.

Whenever an interrupt occurs, the CPU expects the interrupting device to
send a pointer to an interrupt handling routine in a table of addresses.
This pointer is a one-byte quantity and the two bytes that it points to
in memory indicate the starting address of the service routine. If
multiple interrupts occur then the first interrupt is handled and the
rest are disabled.

The service routine pointers are located at addresses 0 thru 25 in
memory.

Table of System Interrupt Po inters

ADDRESS CODE FUNCTION

000000 DEF STARTX Power-on vector.
000002 DEF SPAR0 Spare hook 0.
000004 DEF KEYSRV Keyboard.
000006 DEF SPAR0 Spare hook 0.
000010 DEF CLKSR0 Clock 0.
000012 DEF CLKSRl Clock 1.
000014 DEF CLKSR2 Clock 2.
000016 DEF CLKSR3 Clock 3.
000020 DEF IRQ20 I/O modules.
000022 DEF SPARl Spare hook 1.
000024 DEF SPARI Spare hook 1.

3-19

Section 3: Operating System

An interrupt may be caused by the keyboard, a timer, an I/O module, or a
special device. Keyboard interrupts are handled using KEYSRV and the
character editor (CHEDIT). If the clock causes an interrupt, an ON
TIMER routine is called. An interrupt from an I/O module is handled by
the IRQ20 and IOSP hooks, and special interrupts must be handled by the
spare interrupt routines SPAR0 and SPARl from other hardware.

Programmer created interrupt routines may be handled by taking control
of certain memory locations accessed by the executive loop or by taking
control of the interrupt service hooks SPAR0, SPARI, KYIDLE, or IRQ20.
The interrupt service hooks are accessed prior to the executive loop.
Therefore, these locations may bypass the executive loop. Jumps to
these locations (hooks), cause the instructions located there to be
executed. Initially, only a RTN instruction is stored at each of these
locations, so control immediately passes back to the executive loop.

When an I/O device interrupts the system, a jump is made to IRQ20 before
control passes to the executive loop. 1bis gives the I/O interrupt
routine the chance to bypass the operation of the executive loop, taking
control more efficiently.

The executive loop always performs these functions: tests CSTAT, tests
XCOM, and jumps to RMIDLE. If an interrupt has occurred from the
keyboard, a jump is made to CHIDLE. When an I/O interrupt occurs a jump
is made to IOSP, provided that the proper bits in XCOM and SVCWRD are
set.

When an interrupt occurs during the execution of a program, the CPU
finishes the current instruction, saves the program counter (R4-RS) on
the R6-R7 stack, and acknowledges the interrupt. The device puts a
pointer to the address of the service routine on the bus, and the CPU
loads the service routine address into the program counter (R4-RS).
This is effectively a subroutine jump to the service routine, because
the return address has been saved. The status of the CPU and the
contents of any registers that will be used in the service routine must
be saved and restored from within the routine. This is important
because an interrupt could occur between the execution of an instruction
which sets the status indicators and an instruction that depends on that
status.

3-20

Section 3: Operating System

3.7 Hooks

A binary program or a ROM can gain control of the system using RAM
hooks. Some are accessed directly by the executive loop and some by
routines that branch from the executive loop. The four types of hooks
are:

• Language hooks: Allow you to create new BASIC keywords or
redefine existing ones.

• General hooks: Allow you to take over various parts of the
operating system by storing subroutine jumps to a binary program
or ROM routine at specified RAM locations.

• Initialization routines: Called by the system, external ROMs, and
binary programs at initialization time. An initialization routine
can steal RAM, change flag status, or gain control of the
operating system.

• Error message table: Allows a binary program or ROM to flag
specialized error conditions with custom error messages.

Language Hooks

With language hooks the binary program or ROM can define new keywords,
functions, or auxiliary tokens. Because the system first polls the
resident binary program and then all external ROMs, a binary or ROM
program can take over or supersede the system tables.

General Hooks

To provide for each general hook, the system at certain times executes a
subroutine jump to a specific RAM location. During normal operation
each of these RAM locations contains a RTN or is otherwise idle. By
placing a jump to a binary program or ROM at the hook location, the
program or ROM gains access to the operating system. It is the
responsibility of the external program writer to determine how to use
the hook and how to avoid conflict with other usages of the hook. No
support is supplied by the system.

Because support is not supplied by the system before calling any of the
RAM hooks, any binary program base address might be in BINTAB when the
system calls a hook. You must ensure that the correct base address is
loaded into BINTAB before a hook is taken.

3-21

Section 3: Operating System

The following code stores a copy of the binary base address for future
use:

Initialization Routine
INIT LDBD R34,=ROMFL See why INIT routine was called.

Binary mode necessary for CMB and
ADM instructions.

BIN

CMB R34,=3
JNZ INITRTN

Is a binary program being loaded?
If no, return.

LDMD R34,=BINTAB
STMD R34,X34,OURBAS
ADM R34,=HOOK

If yes, save the binary base address.
Store it in the program.
Make hook routine address absolute.
Make a copy of the address to store
in HOOK.

STM R34,R45

LDB R47,=236
LDB R44,=316
STMD R44,=CHIDLE

Hook Routine
INIRTN RTN
HOOK BIN

DRP R34
BYT 251

Load the opcode for return instruction.
Load the opcode for a JSB instruction.
Store R44-R47 into CHIDLE.

Done.
Entry to hook routine.
Set the DRP to R34.
Do a LDM R34,= instruction.

Store Base Address Here
OURBAS BSZ 2 Base address is stored here.

STMD R34,=BINTAB Load the base address into BINTAB.

Unless otherwise noted, each general hook is seven bytes long.
Flowcharts are provided for selected hooks in section 8 of this manual.
General hooks are supplied at the following points:

RAM Name Location

CHIDLE 103670

DCIDLE 104035

DGHOOK 104044

1M ERR 103724

3-22

Function

Character editor intercept.

System decompiler hook called at entry
time. If you take this hook and don't
want to let the system have a chance at
decompiling, then you need to discard a
couple of return addresses.

If the PLOTTER IS select code is one or
two and a DIGITIZE command is executed,
this hook will be called so software that
has been loaded can digitize off of the
CRT.

Used to expand the IMAGE statement. This
hook is called when there is something in
an IMAGE statement that the system
doesn't recognize.

Section 3: Operating System

RAM Name Location

IOSP 103652

IOTRFC 103643

IRQ20 103742

KYIDLE 102425

MSHIGH 103764

MSLOW 103773

MSTIME 104002

PLHOOK 103661

PRSIDL 103733

DEF SPAR0 104011

SPARl 104022

STRANGE 103715

Function

I/O service pointer.
mass storage ROMs.

Used by I/O and

General output hook. If the select code
of the CRT or PRINTER IS device is not 1
or 2, the DISP or PRINT will go to
IOTRFC.

The CPU vectors to IRQ20 when an I/O
module interrupts.

Keyboard intercept.
key is pressed.

Polled whenever a

High level hook that allows modification
of mass storage commands.

Low level hook to allow driving of mass
storage devices not already supported by
the system mass storage ROM.

TIMEOUT hook in the mass storage ROM.

If the PLOTTER IS select code is other
than one or two, PLHOOK gets called. The
contents of R30-R31 determine what
routine is executed.

Parser intercept. Should be taken
anytime you want to alter the way
something is parsed by the system or if
the system can't parse something.

One of the two
(currently used

spare hardware hooks
by the system monitor).

Second spare hardware hook.

Parameters for parsing functions are
usually numeric, array, or string types.
When the system encounters a parameter
not of one of these types, it is of type
strange. The STRANGE hook is called and
parsing this parameter is up to the
programmer.

3-23

Section 3: Operating System

The hooks RMIDLE, CHIDLE, and IOSP are directly accessed by the
executive loop. The following code shows how to take control at these
hooks.

RMIDLE

Starting at the RAM location 103706, room is allowed to store the
following 7 bytes of code:

JSB =ROMJSB 3 bytes - used to select external ROM (if
needed) •

DEF LABEL 2 bytes - the address of the routine that will
be written by the programmer.

VAL ROM # 1 byte - the number of the external ROM that
will be accessed using ROMJSB.

RTN 1 byte - return to the executive loop.

Since ROM 0 is usually selected when the system is in the executive
loop, external ROMs must go through ROMJSB in order to be selected.
Binary programs need only store the following 4 bytes:

JSB =LABEL 3 bytes - subroutine jump to programmer's
routine.

RTN 1 byte - return to the executive loop.

The following two pieces of code are examples of how to take
control of a hook from a ROM and from a binary program.

From a ROM:

LDM R41, =316
DEF ROMJSB
DEF LABEL
VAL ROM#
RTN
STMD R41,=RMIDLE

Opcode for 'JSB ='
Address of the ROMJSB routine
Address of the hook routine
Number of the external ROM
Return to the executive loop.
Store the subroutine jump to the
hook routine LABEL at the RMIDLE
location.

Since the DRP is set to R41 in the first instruction, seven bytes will
be loaded, which will include the 316 (JSB =),the DEF ROMJSB, the DEF
LABEL, the VAL ROM#, .and the RTN. The code itself will not be executed
until the executive loop accesses RMIDLE.

3-24

Section 3: Operating System

From a binary program:

LOO R44,=316
DEF LABEL
RTN
ADMD R45,=BINTAB

STMD R44,=RMIDLE

Opcode for "JSB ="
Address of the hook routine
Return to the executive loop.
Finds the absolute address of the
label LABEL.
Store the subroutine jump to the
hook routine LABEL at the RMIDLE
location.

Here, the 316 opcode, the DEF LABEL, and the RTN are loaded into
R44-R47. BINTAB can be safely added to the address LABEL, even though
LABEL is a two-byte address and BINTAB is a three-byte address. This is
because the most significant byte will be added to the RTN and the most
significant byte of BINTAB is always zero and will not affect the RTN
opcode. The absolute address of LABEL will always be less than 177400,
the limit of binary program memory.

The normal method of returning to the system from RMIDLE is to execute a
RTN instruction. Nothing will be on the R6-R7 stack except the return
addresses from RMIDLE.

CHIDLE

When a key is pressed on the keyboard, the keyboard controller will
generate an interrupt request which causes control to pass to the
key-service routine. The key-service routine will immediately execute a
reset when the [RESET] key is pressed. If no other key is being
processed at the same time, the keycode is stored in the location called
KEYHIT. The flags are set in XCOM and SVCWRD that indicate that the
keyboard is awaiting service for its interrupt. The keyboard controller
is reset, and the key service routine returns to whatever it was doing.
The next time execution returns to the ex.ecutive loop XCOM is checked
for any pending service requests. If there are any pending requests,
the executive loop checks SVCWRD to see which device needs servicing.

In this case the keyboard is the interrupt device, and
loop will call the character editor (CHEDIT). CHEDIT
things before processing the character input:

1. Set binary arithmetic mode.

2. Clear the E register.

3. Jump control to the location CHIDLE.

the executive
will do three

At this point you can check the contents of KEYHIT to determine if you
want to return to the system or handle the key.

3-25

Section 3: Operating System

In order for a binary program to handle the key you must pop two return
addresses off the R6 stack to insure returning to the executive loop and
not to return to CHIDLE or CHEDIT. You must also execute a JSB =EOJ2.
This routine clears the bit in SVCWRD which indicates the keyboard needs
servicing, and if no other devices have requested service, clears the
service request bit in R17.

The status of the E register should also be checked before returning to
the executive loop. The E register is cleared by CHEDIT before calling
CHIDLE and expects it to be cleared before returning back to CHEDIT. If
the E register is nonzero when you return, it assumes that the key
pressed was [END LINE] and tries to parse whatever is in the input
buffer (INPBUF).

The following section of code illustrates how to take over CHIDLE:

IOSP

LDM R36, =KEYCHK

ADMD R36, =BINTAB

STM R36, R45
LDB R47, =236
LDB R44, =316
STMD R44, =CHIDLE

Load address of routine to handle
CHIDLE.
Add value of BINTAB for an absolute
address.
Store desired address in R45 and R46.
Load the opcode for RTN.
Load the opcode for JSB.
Store it all (multi-byte store) to
CHIDLE hook.

When an interface module generates an interrupt, the CPU jumps control
to location IRQ20, which is usually taken by the I/O ROM. If IRQ20 has
not been taken, the interrupt is ignored. The IOSP interrupt hook is
accessed through the executive loop. The I/O ROM IRQ20 routine does
minimal interrupt processing and sets the CSTAT and XCOM flags to
indicate that an interrupt has occurred. This causes the executive loop
to jump to IOSP, where the I/O ROM finishes processing the interrupt.
If you take IOSP you must clear the service bit in CSTAT before
returning.

Initialization Hooks

A routine called ROMINI is called on several occasions to perform
initialization in external programs. Power-on, allocation, reset,
deallocation, and executive loop hooks are times when the binary program
may need to initialize special values. When this occurs, the
initialization routines in binary programs and ROMs are given control.

3-26

Section 3: Operating System

A parameter is passed to the ROMINI routine through ROMFL. The
occasions and corresponding ROMFL values are:

ROMFL Value Function

0 Power on
1 RESET key
2 OCAA~H

3 LOADBIN
4 RUN, INIT
5 LOAD
6 STOP, PAUSE
7 CHAIN

10 Allocate token with class greater than 56.
11 Deallocate token with class greater than 56.
12 Decompile token with class greater than 56.
13 Program halt because of an error.

These calls to the ROMs and binary programs allow these programs to
initialize or otherwise keep track of operation. For instance, if a ROM
needs to reserve or steal memory permanently, it would check for ROMFL =
0, and reserve memory only when that is true. Another example is that
during RESET the I/O ROM might want to deallocate buffers.

During initialization, a binary program or ROM should never destroy any
CPU registers below R20. Similarly, no initialization routine should
use CPU registers other than R34-R37 until it is verified that the value
of ROMFL is not 10, 11, or 12. Once this is verified, all CPU registers
numbered higher than 20 may be used.

Error Handling

When an error is detected inside
immediately reports the error and
The first 10 (octal) error numbers
stop execution after the warning
found the error supplies a default
The defaults must be turned off in

the executive loop, a system routine
waits for the error to be corrected.
are default math errors which do not
is reported. The routine which has
value, and the processing continues.

order to stop the execution.

The routine that displays the warning message, or sets the error flags
if no other errors have occurred begins at location ERROR. When setting
an error, the subroutine will use the next byte after the return address
as the error number.

3-27

Section 3: Operating System

The subroutine ERROR has three basic parts to its operation:

• Initializing the error information.

• Interpreting error status.

• Carrying out the appropriate action.

ERROR saves the address that it will return to in R36-R37, increments
it, and stores it on the R6-R7 stack. Then it finds the error number
which is stored at the return address and puts it into R20-R21 after
saving the previous contents. Checks are made to determine the proper
action for the routine. If an error has already been found, then the
routine restores the previous contents of the registers and returns
immediately. If the error number is less than 10 (octal) or greater
than 366 (octal), then the warning for the error is immediately
displayed, and the contents of the registers restored before returning.
If 'ON ERROR' has been declared and a program is running or if error
defaults are off, then the error number, line number, and ROM number (if
any) are stored, bits 6 and 7 in XCOM are set to 1, and the previous
contents of the registers are restored before returning.

A subroutine jump to ERROR+ is equivalent to a subroutine jump to ERROR
followed by a return.

An error condition tested by an assembly language program would go
through the following steps:

1. The assembly language program finds an error and calls the system
routine ERROR.

2. ERROR checks to see that no other errors have occurred which
haven't been reported yet, in which case ERROR returns without
doing anything (because only one error can be in process at a
time). Otherwise, ERROR sets the error flags in XCOM and in other
RAM locations such as ERRORS, ERLIN#, and ERNUM#.

3. Control returns to the assembly language program which returns to
the system interpreter.

4. The interpreter will check the error flag in XCOM and, noting that
it is set, will exit from the interpreter loop back to the main
body of the executive loop.

5. The executive loop will see that XCOM is not 0 and will see that
an error has occurred and will jump to the error-reporting routine
REPORT.

3-28

Section 3: Operating System

6. REPORT checks to see if ON ERROR has been declared and a program
is running. If so, it sets CSTAT to 'run in middle of line',
changes the BASIC program counter to the next line and returns to
the executive loop without printing the error message. If a
program is not running or ON ERROR has not been declared, then
REPORT prints the error message and returns to the executive loop.

7. The executive loop checks CSTAT to see if 'run in middle of line'
is set. If so, control returns to the interpreter, and the
program continues running. Otherwise, ROMFL is set to 13 and
ROMINI is called, which is the routine that calls initialization
routines in all the external ROMs and the binary programs. When
ROMINI returns to the executive loop, CSTAT is set to idle mode.

3.8 Extended Memory Controller

Addresses 0 to 177777 (octal) can be directly accessed using 16-bit
addressing. The extended memory controller (EMC) is used to access
memory locations above 177777. Communication with the EMC, as with the
CRT and keyboard controllers, is through the I/O addresses 177400
through 177777. Access to these locations above 177777 is through two
pointers, PTRI and PTR2.

The pointers determine where in memory an access will occur, and since
they must access memory locations greater than 177777, they are three­
byte quantities. To set the contents of the pointers, a direct store
must be performed. For example, STMD R55,=PTR2 will take the three
bytes in R55-R57 and move them to PTR2 in extended memory. To store
data at the desired location in memory, an indirect store must be
performed. For example, STMI R32,=PTR2 will put the two bytes contained
in R32, R33 at the address stored in PTR2.

The EMC pointers may be used to create stacks, with the special I/O
addresses provided for each pointer. The two pointers are entirely
independent of each other. Although PTR2 is used in the following
examples, PTRI and PTR2 function the same.

Each pointer has four I/O addresses: PTRl, PTRI-, PTRl+, PTRl-+, PTR2,
PTR2-, PTR2-+. PTRI and PTR2 act as pointers to memory and must be
given a value in order to use the other functions. If data is stored at
PTR2, it fills the memory starting at the address stored in PTR2, moving
toward the higher numbered addresses.

3-29

Section 3: Operating System

PTR2- acts as a decreasing stack pointer. A LOAD or STORE through PTR2-
will first decrement the pointer by the appropriate number of bytes.
The LOAD or STORE operation will then be performed, leaving the pointer
at the new location.

LDM R45,=102,233,114 STMI R45,=PTR2-
BEFORE AFTER

1 102

2 233

3 114

4 +PTR2 4

5 5

6 6

7 7

8 8

+PTR2

LDM R45. = 102.233. 114

STMI R45. = PTR2-

PTR2+ is an increasing stack pointer which will perform the load or
store operation at the location pointed to by the pointer, and then will
increment the pointer after the load or store operation by the
appropriate number of bytes.

LDM R45,=102,233,114 STMI R45,=PTR2+
BEFORE AFTER

1 1

2 2

3 3

4 +PTR2 102

5 233

6 114

7 7

8 8

+PTR2

LDM R45. = 102. 233. 114

STMI R45. = PTR2+

When the CPU accesses an I/O address directly, it causes the controller
to respond to the address. Each of the controllers is linked to the bus
and monitors the information that is being passed from memory to the
CPU. For example, the direct access instruction LDBD R32,=CRTDAT will
fetch an address from memory. If this address is one which the
controller must use for an operation, the controller will send an
information byte to the CPU to tell it what to do. In this case the CRT
controller will send the CPU the current status of the CRT.

The EMC must constantly monitor the machine code instructions being
fetched by the CPU, since the DRP setting determines how many bytes are
to be used in a given operation. Whenever a DRP instruction appears, it
must store that information to keep track of the current DRP setting.

3-30

Section 3: Operating System

This can be done with PAD (restore status) and SAD (save status)
instructions. SAD pushes three bytes onto the R6 stack containing
information about the ARP, the DRP, and the status flags. PAD restores
this information using these bytes.

Because of this method of keeping track of the DRP setting, there are
cases where the EMC cannot know the DRP setting which include:

• After a PAD instruction: Since the PAD instruction restores
status and the ARP and DRP settings, the EMC is not aware of what
the DRP setting is until another DRP instruction is executed.
Therefore you should avoid using the following or similar code:

PAD
LDMI R#,=PTR2

Restores status, the ARP, and DRP
Fetches bytes from extended
memory. The CPU assumes the
number of bytes is determined
by the PADs DRP. whereas the
EMC is using the last DRP
instruction.

• When the DRP is set indirectly by the contents of CPU register
R0, as in the following case:

LDMI R*,=PTR2- This sets the DRP according to the least
significant six bits of R0, which the
EMC knows nothing about.

Because of the first situation, all interrupt service routines must be
written to save and restore the contents of the registers used before
returning to the routine that was interrupted. Interrupt service
routines are those that are called immediately when a hardware interrupt
occurs, such as a key being pressed or an I/O module needing attention.
Because the interrupt is usually granted almost immediately by the CPU,
interrupts can occur between any two instructions (as long as interrupts
are enabled). Before restoring everything, you must do the following to
solve this problem:

• Pop the SAD status information off of the R6 stack to get a copy.
• Push a copy back on for the eventual PAD.
• Figure out what the actual DRP needs to be.
• Put the appropriate DRP instruction into RAM along with a RTN.
• Restore all the registers and status (PAD).
• Jump to the DRP and RTN instruction so the EMC will get its DRP

pointer back to the right value.

3-31

Section 3: Operating System

There is another I/O address that the EMC listens to. If you store a 1
to RULITE (177704), the power light will start blinking. If you store a
o to that address, the light will stop blinking. This light blinks when
a BASIC program is running, or when an HP-85 BASIC program is being
translated, or when a program is temporarily halted waiting for input.
It normally stops blinking when program execution is complete, if
program execution is halted by an error, or if the program is paused.

3.9 Parsing

When you type in a BASIC program as a series of ASCII characters it is
translated (parsed) and stored internally as a stream of tokens and
associated data and addresses. The tokens represent the BASIC reserved
words, functions, operators, and punctuation. The data bytes represent
the constants, variables, and line number references.

Parsing begins with the line number or the first character of the
statement and moves to the right, processing each character and space.
Multip~e nonquoted spaces are ignored during parsing except those
occurrIng at the beginning of a program line. As a line is parsed, it
is checked for syntax errors, changed to RPN (Reverse Polish Notation),
and converted into tokens which are stored internally.

Each token consists of a single byte, and can represent a single
keyword, such as LET or PRINT. Tokens 370 (ROM token) and 371 (binary
program token) are used to allow extensions of the system by means of
external ROMs and binary programs. A table of system tokens can be
found in section 8. ASCII codes can be found in the HP-87 owner's
manual.

Example: In parsing the line

10 LET A B * SIN (45),

the system produces the following tokens in the order shown.

3-32

Section 3: Operating System

Tokens (Octal Value)

16
10
52

330
105

o
o

32
102

1
o
o
o
1

101
1
o
o
o

21
142

25
20
o
o

Comments

End of statement.
Store numeric value token.
Multiply token.
Sine token.
BCD 45 in integer format.
(Refer to paragraph 3.9, Numeric
Formats.)
Integer constant token.
ASCII "B", variable name.
Length of variable name.
Variable address space for allocation.
(Refer to Format of BASIC Programs and
Variables, paragraph 3.12.)
Fetch simple numeric variable
ASCII "A"
Length.
Variable Address Space

Store simple numeric variable token.
Let token.
Length of line in bytes.
Line number in BCD (two digits per
byte except for most significant
byte which contains only one) •

The extended memory pointer, PTR2, is used as the output pointer during
parsing. Tokens are stored indirectly to PTR2-. At the beginning of
the parsing process PTR2 is set equal to NXTMEM, so the parsed line will
be built up in available memory at the end of the last BASIC program.
Parsing begins with the line number. This is loaded in BCD form; 20 is
loaded first, since it is the least significant byte.

Next is the size or length of the statement. During parsing this is a
blank place holder byte; STSIZE is a pointer to the place holder byte.
In order to find a match for the keyword LET, the system looks first in
keyword tables in the resident binary programs, then in any external
ROMs, and finally in the internal system keyword table. For this
reason, a binary program or external ROM can take over any keyword (that
is, a binary program can implement a custom version of PRINT, while the
preprogrammed PRINT is ignored). The extend register indicates if the
token searched for has been found. Refer to the section on status
indicators in paragraph 2.3.

3-33

Section 3: Operating System

After parsing, if the statement was a program line, its tokens and
addresses are inserted into the program space at the correct locations.
If it was an expression or calculator mode statement, the parsed code
remains at the end of the BASIC program and is executed immediately,
being discarded when execution is finished.

For further details of parsing operations and register conventions at
parse time, along with specific parse routines, refer to the system
routines which are listed in alphabetical order in section 8.

3.19 Decompiling

Programs or statements are decompiled as they are listed. This is the
reverse process of parsing and compiling. Internally, it requires the
reconstruction of code as it was entered. The tokens which have been
parsed into RPN and distributed in the system are reassembled.

PTRl points to the input stream, which is accessed by loading indirect
through PTRl-. Input is then decompiled to an expression stack or an
output stack. The expression stack (Rl2) is used to reconstruct
expressions from RPN to their original form, and an output stack
(pointed to by R30) is used to buffer the output.

Since the tokens are arranged in RPN internally, the system decompiles
the tokens as it pushes missing operator tokens (016) onto the
expression stack. These missing operator tokens are merely "place
holders" until the arithmetic operators can be inserted at a later step.

Unlike parsing, decompiling is not an operation to which a binary
program or ROM normally has access, since these programs are seldom
required to perform any unique operations during decompiling. In some
special cases the parse routines for a binary program or ROM may require
modification if a statement is to be decompiled correctly. But for the
most part, decompiling will not be a problem for the writer of binary or
ROM programs.

3-34

Section 3: Operating System

The system processes each token and uses its class (a component of the
token's primary attributes) to determine how the token is to be
decompiled. Following are some common classes and how they are
decompiled:

Class

o
1
2
3
4
5
32

34

36
41

42

44
50

51

52
53
55

56

Type 0 f To ken

End-of-line
Fetch variable
Integer
Store variable
Numeric constant
String constant
Subscript, such as,
A(3)

Dimension subscript
like, A$ []

Prints
Other reserved words

Miscellaneous output

Miscellaneous ignore
Unary operator

Binary operator

String unary operator
String binary operator
Numeric function

String system function

Action

Unstack.
To expression stack.
To expression stack.
To expression stack.
To expression stack.
To expression stack.
() to expression stack if token
odd; otherwise (,) to expression
stack.
[] to expression stack if token
odd;
otherwise [,] to expression
stack.
Unstack and push to output.
If : then unstack, output
reserved word, then unstack.
If , then push to expression
stack and unstack; otherwise
output.
Ignore.
Insert after most recent missing
operator in expression stack.
Replace most recent missing
operator in expression stack.
Same as class 50.
Same as class 51.
Replace the most recent missing
operator with "," for each
parameter. Then insert function
name (at most recent missing
operator) and push onto
expression stack.
Same as class 55.

3-35

Section 3: Operating System

The following example illustrates how decompiling occurs:

10 LET A=B*SIN(45)

After being parsed as shown, these tokens are decompiled into the output
stack and the expression stack as illustrated.
STEP TOKENS R12 EXPRESSION

STACK

9. 16EOL

16

A

B. 10=

SIN(

45

16

A

16

7. 52* B

SIN(

45

)

16

A

16

6. 330SIN B

16

SIN(

45

I

3-36

OUTPUT BUFFER STEP

10 LET A = B * SIN(45)

5.

10LET

4.

10LET 3.

2.

1.

10LET

TOKENS

T} 45

32

n
T} A

21

142 LET

25 LEN

R12 EXPRESSION OUTPUT BUFFER

STACK

16

A

16

10LET
B

16

45

~ 16

B

E8
10LET

2~0 } LlNE# ---- 10

Section 3: Operating System

3.11 Operating Stack

The stack to which R12 points is used for passing values in many
internal system routines. The formats of values that are fetched and
stored during run time execution of certain specific tokens, as well as
the formats of numeric quantities are in this section.

Numeric Formats

In internal routines, numbers popped off the R12 stack are eight bytes
long, so integer values are tagged with octal 377.

R40

R41

R42

R43

R44

R45

R46

R47

E1

EO

M10

M8

M6

M4

M2

MO

E2

MS

M11

M9

M7 377 ~ Integer Tag

M5 01 DO

M3 03 02

M1 S 04

Real Tagged Integer

NUMERIC FORMATS (R12 STACK)

In the illustration, the byte above the number contains the octal
quantity 377. This 377 acts as a tag for the number, specifying the
quantity as an integer value that is only three bytes in length. The
next four bytes popped off the stack are then undefined and are ignored
by the system. The numbers are shown as they would be if they were
taken off of the stack by the instruction POMD R40,-R12. The tagged
integer is right justified so that the most significant digits (starting
with D4) are 0 if unused. For tagged integers, the decimal point is to
the right of D0, the least significant digit. The real number decimal
point is between M0 and MI.

3-37

Section 3: Operating System

A short numeric variable is formatted as follows:

R44 EO E1

R45 M3 M4

R46 M1 M2

R47 0 0 8M 8E MO

E0 Most significant four-bit BCD digit of the exponent.
EI Least significant four-bit BCD digit of the exponent.
M0 Most significant four-bit BCD digit of the mantissa.
M4 Least significant four-bit BCD digit of the mantissa.
SM Sign of the mantissa (0=positive, I=negative).
SE Sign of the exponent.

The decimal point is assumed to be between digit M0 and digit MI. The
most significant nibble (four bits) contains the signs of the mantissa
and the exponent. The two most significant bits are zeroes.

Strings on the R12 Stack

String values are passed on the operating stack as a two-byte length and
a three-byte address of the next character higher than the first
character of the string. The first character is at the highest address
of any characters of the string. To fetch successive characters of the
string, the following code coul~ be used:

LOOP

POMD R45,-R12
STMD R45,=PTR2-
POMD R36,-R12
LDBI R32,=PTR2-

DCM R36
JNZ LOOP

Operating Stack Routines

Get the address of $
Set PTR2 pointing to first character
Get the length of $
Get the next character

Decrement length count
Loop until done

There are several system routines available to help you in parsing
various kinds of parameters for BASIC statements. These routines will
parse your BASIC statement into tokens that, at run time, will load the
R12 stack with the appropriate variable or parameter.

3-38

Section 3: Operating System

Following is a list of the routines that can be used and what they leave
on the stack:

NUMCON

NUMVAL

REFNUM

STRCON

STREXP

S'l'RREF

(8 bytes) Real or tagged integer.

(8 bytes) Real or tagged integer.

(3 bytes) Absolute address of variable value.
(3 bytes) Absolute address of name of variable.
(1 byte) Head of variable.

(2 bytes) Length of string.
(3 bytes) Absolute address of str ing.

(2 bytes) Length of string.
(3 bytes) Absolute address of str ing.

Will parse both a normal string variable and a string
array variable reference. There will be slightly
different information on the stack depending on which
of these it is. String arrays will have everything
that nonarray strings will have but string arrays may
also have row, column, and dimension information if
the variable is being traced. You can tell if that
information is there by checking the trace bit in the
header byte which will come off the stack before the
tracing information would. You also tell whether you
have a string array or normal string by inspecting
the appropriate bit in the header byte.

Nonarray Strings

(3 bytes)
(1 byte)
(2 bytes)
(3 bytes)

(2 bytes)

(3 bytes)

Absolute address of name of variable.
Header of variable.
Maximum length of string variable.
Absolute address of first byte of string
address.
Maximum length available to store into.
This will be different from the maximum
length if subscripts were used.
Absolute address of first byte to store
into. This will also be different from
the address of the first byte of the
string if subscripts were used.

3-39

Section 3: Operating System

NARREF

FORMAR

Array Strings

The first three will only be on the stack if the
variable is being traced.

(2 bytes) Row of element.
(2 bytes) Column of element.
(1 byte) Dimension flag (0=2 dim., 1=1 dim.).

(3 bytes)
(1 byte)
(2 bytes)
(3 bytes)

(2 bytes)

(3 bytes)

Absolute address of name of variable.
Header of variable.
Maximum length of string variable.
Absolute address of first byte of string
variable.
Maximum length available to store into.
Different than maximum length of variable
if subscripts were used.
Absolute address of first byte to store
into. Different from the address of the
first byte if subscripts were used.

Used when you wish to use a simple
name to refer to an array variable.
be:

numeric variable
An example would

MAT C=ZER

In this example 'C' refers to an array C, not to a
simple numeric variable.

(3 bytes) Address of variable header. This address
is a relative address. The easiest way
to make it an absolute address is:

POMD R65,-R12
JSB =FETSVA

Used when you wish to refer to an entire array.

PRINT* 1; CO ,D(,)

(3 bytes) Absolute address of the first element of
the array.

(3 bytes) Absolute address of the array name.
(1 byte) Array header.

In all of the above examples of stack contents, the bottom of the page
represents the direction of higher addresses. As you popped things off
the stack you would be removing things from the bottom first.

3-40

Section 3: Operating System

3.12 Format of BASIC Programs and Variables

The following figure shows how a BASIC program line is formatted:

END OF LINE TOKEN

MISCELLANEOUS BYTES (ACTUAL TOKENS OF CODE)

1-BYTE LENGTH OF LINE I 3· BYTE BCD LINE NUMBER (5 DIGITS)

The BASIC line

15160 END

would be parsed as:

016 'END OF LINE' TOKEN
212 'END' TOKEN
002 LENGTH OF LINE (212 AND 016 MAKES TWO BYTES)
140
121 --) 3-BYTE BCD LINE #
001

Let's take a look at how a line number of 15160 generates the three
bytes 140, 121, and 001. Since a BCD digit takes four bits, two digits
can be packed into one byte. So, let's split the line number into three
digit groups:

1 51 60

Now we turn those groups into bits:

1 0000 0001
5 1 0101 0001
6 0 0110 0000

3-41

Section 3: Operating System

Arrange the binary representation with three to a group.
form to an octal number to obtain the three bytes that
line number.

00 000 001 001
01 010 001 121
01 100 000 140

Convert this
represent the

The values of the variables are stored at the end of the current program
in one continuous block of memory. Each variable has a header which
contains information about that variable. Following are the structures
of different kinds of variable storage areas. All variable storage
areas begin with a one byte header. The bits in that header and their
meanings are:

VARIABLE HEADER BYTE LEGEND

BIT 7 6 5 4

I I

O=NUMERIC
1=STRING-

O=SIMPLE
1=ARRAY-

OO=REAL -
01=INTEGER
10=SHORT

3-42

3 2 o

O=VARIABLE
L...-- 1 =fUNCTION

O=NOT TRACING
'--- 1 =BEING TRACED

0= LOCAL
L...-- 1 =REMOTE

L...-- O=NORMAL VARIABLE
1 =CALC MODE VARIABLE NAME

Section 3: Operating System

In the following diagrams in this section, an "x" will mean that that
particular bit position can be occupied by a "1" or a "0."

Simple Numeric Variable

Local

Increasing
Addresses

Remote

Increasing
Addresses

00 xxOOxO

l~

8, 4, or 3 bytes of value
depending upon whether it's
REAL, SHORT, or INTEGER.

3-byte pointer to ASCII name.

3-byte pointer to value.

3-byte pointer to name.

3-43

Section 3: Operating System

Numeric Array

Local

Increasing
Addresses

Remote

Increasing j
Addresses

3-44

01 xxO OxO

01 xxO 1xO

Element row 0, column 1
8, 4, or 3 bytes.

Element row 0, column 0
8, 4, or 3 bytes.

2-byte max column.

2-byte max row.

3-byte total size.

3-byte pointer to ASCII name.

3-byte pointer to total size.

3-byte pointer to ASCII name.

Section 3: Operating System

Simple String Variable

Local

Increasing
Addresses

Remote

Increasing
Addresses

10xxxOxO

J 10xxO 1xO

n bytes of string value.

2 bytes of actual length.

2 bytes of maximum length.

3 bytes total size In).

3-byte pointer to name.

3-byte pointer to total size.

3-byte pointer to name.

3-45

Section 3: Operating System

String Array Variable

Local

Increasing
Addresses

Remote

Increasing I
Addresses

3-46

M1

MO

N

11 xxO OxO

11 xxO 1xO

N byte value of row O. col 1 element.

2-bytes actual length of row O. col 1 element (M 1 < N).

N bytes value of row O. colO element.

2-byte actual length of row O. colO element (MO < N).

2-byte maximum length of each element.

2-byte maximum column index.

2 bytes maximum row index.

3-byte total size (N + 2) * (# of rows) * (# of cols).

3-byte pointer to ASCII name.

3-byte pointer to total size.

3-byte pointer to ASCII name.

Section 3: Operating System

Numerical User Defined Functions

Increasing
Addresses

OOxxO Ox1

a-byte function value.

1-byte CSTAT.

3-byte RMEM (reserved MEMory count).

3-byte TOS (top of stack pointer).

3-byte PCR (BASIC program line pointer).

3-byte return address (relative).

3-byte function address (relative).

3-byte pointer to ASCII name.

3-47

Section 3: Operating System

String User Defined Functions

Increasing
Addresses

10xxOOx1

n-byte string function value.

2-byte actual length.

2-byte maximum length.

3-byte total length.

1-byte CSTAT.

3-byte RMEM (reserved MEMory count).

3-byte TOS (top of stack pointer).

3-byte PCR (BASIC program line pointer).

3-byte return address (relative).

3-byte function address (relative).

3-byte pointer to ASCII name.

Because calculator mode statements destroy all previous calculator mode
statements but not their variables, the pointers to the ASCII names of
the variables cannot point to the calculator mode statement. A dummy
calculator mode simple string variable is created with the bit set in
the header that indicates this is a calculator mode variable name. This
dummy variable is skipped for all purposes other than searching for
variable names at allocation time for calculator mode statements. When
a calculator mode statement is allocated, the addresses used for the
variables are relative to FWCURR.

3-48

CONTROLLERS

4.1 Introduction

Section
IV

The HP-87 is a multi-processor system. The keyboard, the CRT, the
timers, and the interface modules are all controlled by individual
microcomputers. The mainframe CPU coordinates activities between the
peripherals using the I/O addresses. To communicate with these
controllers, refer to the appropriate sections.

4.2 CRT Controller

The CRT is an intelligent component that is controlled by an internal
computer, or CRT controller. The CRT also has a memory which
continuously refreshes the CRT display.

Main Memory CRT Memory

1/0
Addresses '-----____ -'

The CRT controller and the CPU communicate using four addresses in RAM.
Each address requires a two-byte quantity to specify a CRT memory
address. The I/O addresses are:

CRTBAD DAD 177701
Storing a two-byte address to this location causes the CRT
controller to load its byte address pointer with that address.

4-1

Section 4: Controllers

4-2

CRTSAD DAD 177700
Storing a two-byte address to this location causes the display to
be started at that address. This makes the display appear to
scroll up and down or side to side or to jump to a different page
depending on the new start address. Storing to CRTSAD has no
effect when in GRAPH NORMAL or GRAPH ALL modes.

CRTDAT DAD 177703
Storing a single byte to this location causes that byte to be
stored to the CRT memory location currently pointed to by the
controllers byte address. Loading a single byte from this
location reads the byte from the CRT memory location currently
pointed to by the controller's byte address.

After either a load or store operation through CRTDAT the CRT
controller automatically increments by one its internal byte
address pointer. If you did a series of single byte store
instructions to CRTDAT wi thout storing anything to CRTBAD in
between, those bytes would be stored in successive CRT memory
locations.

However, before storing to CRTDAT, you must first read CRTSTS and
check the least significant bit to make sure the controller is not
busy. Before loading from CRTDAT, you must store a byte to CRTSTS
with the least significant bit set to tell the CRT controller that
you want to read the current memory location. You must then read
CRTSTS until the BUSY bit indicates the controller is not busy, at
which point you can load from CRTDAT to get the byte. An easier
way is to simply execute a JSB =INCHR (call the system routine)
that does all the rest for you.

CRTSTS DAD 177702
Loading a single byte from CRTSTS gets you information about the
current status of the CRT controller. Each bit has a specific
meaning:

Reading from CRTSTS

Bit 0 1

0 Not Busy Busy
1 Unblank Blank
2 Power-up Power-down
3 16 lines 24 lines
4 Display time Retrace time
5 Noninverse Inverse Display
6 Normal All
7 Alpha Graphics

Section 4: Controllers

Storing a single byte to CRTSTS sets the CRT controller to a specific
mode and/or requests a read:

Storing to CRTSTS

Bit 0 1

0 No read Read Request
1 Unblank Blank
2 Power-up Power-down
3 16 lines 24 lines
4 - -
5 Noninverse Inverse Display
6 Normal All
7 Alpha Graphics

When the CRT is blank, the controller has disabled the electron
beam, causing the display to go blank. When this is the case, the
controller does not have to refresh the display, causing it to
transfer data to and from the CRT memory much faster. When you
switch from alpha to graphics or graphics to alpha there will be a
flash on the display unless it has been blanked. To avoid this,
you must set the blank bit during a retrace. There is a pair of
system routines that will blank and unblank the CRT for you. They
are CRTWPO and CRTUNW.

When the CRT is powered up or powered down, the controller turns
the high voltage section of the CRT driver on or off. This is
done to conserve power.

4-3

Section 4: Controllers

4.3 Display Modes

ALPHA NORMAL

OCTAL
ADDRESS

000000

000120

000240

007760

010100

010220

010340

last line of ALPHA NORMAL memory

start of GRAPH NORMAL memory

ALPHA addresses in CRT memory are 000000 to 010337. In alpha mode the
display shows 16 or 24 (decimal) lines of 80 (decimal) characters per
line. The scrolling keys permit viewing of an additional 38 (decimal)
lines of alphanumeric data.

Because each ASCII character occupies eight bits, one character can be
stored at each memory location. To move the cursor to the right one
position, add one to the address.

If the start address (CRTSAD) is at an address where there is not enough
ALPHA NORMAL memory left for an entire display, then the CRT controller
will start fetching bytes from address 000000 when it reaches the end of
the ALPHA memory. Because of this a mod operation must be performed on
alpha addresses when moving the cursor around.

At power-on and after a RESET the CRT start address is set to 00000. If
you roll the display up one line the CRT start address will then be set
to 00120. If you were to roll the display down one line, the start
address would be 10220.

4-4

Section 4: Controllers

GRAPH NORMAL

OCTAL
ADDRESS

010340

010422

037534

037616

037700

first (top) line of GRAPH NORMAL display

last (bottom) line of GRAPH NORMAL display

last 64 bytes are unused.

In GRAPH NORMAL mode, the screen is 50 bytes (decimal) wide. The GRAPH
display always starts at 10340.

The last 64 (decimal) bytes of CRT memory are unused in NORMAL mode.
The contents of memory location 10340 will determine whether or not the
first eight dots in the top line of the display will be on. The
contents of memory location 10341 will determine the state of the next
eight dots on the top line.

4-5

Section 4: Controllers

ALPHA ALL

OCTAL
ADDRESS

000000

000120

037440

037560

037700

first line of ALPHA ALL memory

last line of ALPHA ALL memory

last 65 bytes are unused.

The ALPHA ALL memory maps 80 addresses per line of the CRT display and
the last 64 (decimal) bytes of memory are unused. When the start
address gets too close to the end of memory, the controller wraps around
to address 000000 to finish the display page.

4-6

Section 4: Controllers

GRAPH ALL

OCTAL
ADDRESS

010340

010444

first (top) line of GRAPH ALL display

037640

037744

000050

000154

addresses 37744-37777 addresses 0-47

010134

010240

last line of GRAPH ALL display

last 64 bytes are unused

In GRAPH ALL mode there are 68 (104 octal) bytes per
graphics display, giving a dot resolution of 544 dots wide
high. The controller will again wrap back to address 000000
fetching bytes when it runs out of memory at the end of
graphics area.

line of the
by 240 dots
to continue
the NORMAL

4-7

Section 4: Controllers

4.4 Keyboard Controller

The keyboard controller monitors the RAM location keyboard scanner, four
timers, and the beeper.

Keyboard Scanner

All of the keys are connected to keyboard inputs. The controller
monitors these connections, waiting for a key to be pressed. When a key
is pressed, the controller generates a service request to the cpu. When
the request is granted execution vectors to the service routine
KEYSRV. The keyboard service routine saves the cpu status then does a
JSB=KYIDLE instruction (refer to Hooks, paragraph 3.5). If the KYIDLE
hook has not been taken, control will return to KEYSRV. It will then
disable interrupts, save registers, and read the key code of the key
that was pressed from the keyboard controller through the I/O address
KEYCOD. The key is checked by KEYSRV to see if it was RESET. If so,
KEYSRV does a RESET. If not, it checks to see if any other keys have
been pressed that have not been handled by the system.

If another key has been pressed, the system re-enables the keyboard
scanner and restores the registers and status. The system returns to
what it was doing when the cpu received the service request. As long as
other keys are not pending, the key code is saved in a RAM location
called KEYHIT and bits are set in Rl7 and SVCWRD, indicating that a key
has been pressed. The routine KEYSRV then restores the registers and
status.

Once a key has been pressed, no more keyboard interruptions will be seen
until the previous key is released, and a I has been stored to I/O
address KEYCOD (which restored the keyboard scanner). If the interrupt
were to occur between the last DRP instruction and an extended memory
access, the EMC could lose track of what the DRP setting is. Refer to
paragraph 3.6.

4-8

Section 4: Controllers

The following define the I/O addresses associated with the keyboard
scanner:

KEYSTS

Write: Bit 0 1

0 No effect Enable keyboard
1 No effect Disable keyboard
2 Not used -
3 Not used -
4 not used -
5 Speaker off Speaker on
6 No effect 1. 2 kHz
7 No effect Toggle Flip FF

Read: Bit 0 1

0 Device disabled Device enabled
1 No key pressed Key pressed
2 Not used -
3 Shift key up Shift key down
4 Not used -
5 Not used -
6 Not used -
7 Globals disabled Globals enabled

Bits 0 and 1 of KEYSTS allow you to disable and enable the keyboard
separately from all other devices. Bit 7 (when reading) tells you
whether global interrupts are enabled or disabled.

KEYCOD

The status of KEYCOD utilizes a byte rather than individual bits.

Write: If the value is 1, then the keyboard scanner will be
re-enabled as soon as the key is released.

Read: Returns the keycode of the key that was pressed.

4-9

Section 4: Controllers

Following is a listing of the system key service routine, KEYSRV,
presented here as an example of what you need to do if you take over
KYIDLE.

5880 KEYSRV SRO Save the STRTU~3, RRP, and O~~P

5890 JSB =KYIOLE Ca 11 the RAM h()ok
5900 STBO R32, =GI tHrJS Disable global interrupts
5910 PUMO R32,+R6 Save register contents to r eca 11 later
5920 LOBO R32, =KE'r'COD Get the k e yc 0 d ~~ from the controller Ie
5930 BIN Force BIN mode for keycode compare
5940 CMB R32,=213 Is it the RESET key?
5950 JNZ NORSET Jif no
5960 RSTRRT LOM R6,=STRCK Else reset the return stack pOinter
5970 JSB =RESET. 00 a RESET
5980 LOB R30,=1 Need to store a 1 out to KEYCOO to
5990 STBO R30,=KEYCOO restart the keyboard scanner
6000 GTO OOCUR. Output cursor to CRT and fa 1 1 into exec.
6010 NORSET LOBO R33,=SVCWRO Any other unset' v iced keys been pressed?
6020 JOO HRVE1 Jif yes, throw this key away
6030 ICB R33 Else set the k~~yboard bit
6040 STBO R33,=SVCWRO And restore SVCWRO
6050 STBO R32,=KEYHIT Save the keycode for the sys:tem
6060 HRVE1 LOB R32,=20 Load the mask to set service request bit
6070 ORB R17,R32 in XCOM (1~17)
6080 JSB =EOJ1 t1ake sure we' r' ~~ set to slow repeat speed
6090 LOB RiI, = 1 Can't get any more keys unless we
6100 STBO RiI,=KEYCOO restart the keyboard scanner
6110 POMO RiI,-R6 Restore the re!~isters we used (R32-R33)
6120 GTO ENOSR ~1ake the cur r' ent ORP setting avai lable
6130 to the EMC.
6140
6150 EO]1 LOBO R32 , = KRPE T1 Get the slow t'~~peat count
6160 STBO R32, =KEYCNT Set the countet' to the slow repeat
6170 RTN
6180
6190
6200 ENOSR STt10 R10,=S10 Save R10-11 in a reserved RFlM location
6210 POMO R10,-R6 Get the byte o"F SRD that contains ORP
6220 PUMO R10,+R6 Restore so we can PRO later
6230 RNM Rl0,=77,O Isolate the ORI~ r' eg i ~ter bit.s
6240 ROB R1 0, = 100 Make it a DRP instruction
6250 STBO R10,=RRIO+1 Store it into I~RM so we can execute it
6260 LOMO R10,=S10 Restore R10-11
6270 GTO RRIO+1 Finish

4-10

Section 4: Controllers

At power-on, the system initialization routine has stored at RAID+l the
following code:

RAID+l BSZ 1
STBD R#,=GINTEN
PAD

Place holder for DRP instruction
Re-enable global interrupts
Restore status, the ARP, and the DRP
Done RTN

Timers

The timer section of the keyboard controller consists of four separate
timers and four registers each containing eight BCD digits. The timers
and registers are updated at a rate of 1 kHz. During this updating, no
read or write operations should be performed to the CLKDAT address.
Each timer that equals its register count causes a service request
interrupt. It is then set to zero to begin another count sequence. The
contents of the timers are transferred in four consecutive bytes each
containing two BCD digits.

The keyboard scanner
regarding interrupts.
lowest.

has the highest priority on the controller
Next highest is timer 0, with timer 3 being the

4-11

Section 4: Controllers

CLKSTS

This address contains the following information needed when using the
timers.

Write: Bit Comments

0 Disable addressed timer.
1 Enable addressed timer.
2 Stop addressed timer.
3 Start addressed timer.
4 Clear addressed timer.
5 Clear interrupt service

flip FF.
6 Bits 6 and 7 are the
7 timer address (0 through 3) •

Read: Bit Comments

0 Timer 0 enabled.
1 Timer 1 enabled.
2 Timer 2 enabled.
3 Timer 3 enabled.
4 Not used.
5 Not used.
6 Not used.
7 Read (timers available for

access through CLKDAT).

CLKDAT

When loading from CLKDAT, you must execute a four-byte load to get eight
BCD digits which represent the value of the last addressed timer.

When storing to CLKDAT, you must execute a four-byte store and the four
bytes must be the eight-digit value you want the last addressed timer
set to.

Before executing a load or store instruction to CLKDAT you
check the most significant bit of CLKSTS to make sure the
ready to be accessed (bit 7=1).

4-12

must first
timers are

Section 4: Controllers

There are no hooks
make use of the
periodically check
This will only work
executive loop will
BASIC statement and

in the timer interrupt routines. The only way to
timers from assembly language programming is to
SVCWRD to see if any timers have been interrupted.
if you never return to the BASIC interpreter, as the
also check for timer interrupts at the end of each
handle them if necessary.

The following code will read the value of timer 0 (the system clock) •
It will use that value and the base time to generate the current time
and return the current time to the R12 stack.

TIME. CLB R55
STBD R55,=GINTDS
JSB =TIMWST

CLM R40
JSB =TIMRDY
LDMD R44,=CLKDAT
STBD R44,=GINTEN
LDM R36,=4,0
BCD
CLB R32
JSB =SHRONF

LDMD R50, =TIME
POMD R40, -R12
JSB =ADD10

RTN

TIMWST JSB =TIMRDY
STBD R55,=CLKSTS
RTN

TIMRDY LDBD R37,=CLKSTS
JPS TIMRDY
RTN

ADDRESS TIMER 0
DISABLE INTERRUPTS
WAIT FOR READY AND STORE
TIMER ADDRESS
CLEAR UPPER FOUR BYTES
WAIT FOR READY
TIME TO R44-R47
RE-ENABLE INTERRUPTS
SET EXPONENT

SET SIGN TO POSITIVE
SHIFT, PACK AND PUSH
ON R12 STACK
GET BASE TIME
RECOVER INITIAL TIME
ADD TO BASE TIME AND
PUSH ON R12 STACK

WAIT FOR READY
STORE OUT STATUS BYTE

GET TIMER STATUS
JIF BUSY
ELSE RETURN

The system routine SHRONF takes a 16-digit number in R40-R47, an
exponent in R36-R37 and a sign byte in R32 and normalizes it (shifts out
leading zeroes and adjusts the exponent to match). It then packs the
exponent and sign into R40-R41, and pushes the floating point result
onto the R12 stack. The ADD10 routine is basically the same as ADDROI
except it expects as inputs two real (floating point) numbers in R40-R47
and R50-R57, rather than two real or integer numbers on the R12 stack.

4-13

Section 4: Controllers

The following code sets timer 0 (the system time clock) the way it's set
at power-on.

TIME0

Speaker

LDB R55,=32

CLM R44

LDM R46,=100,206
STBD R#, =GINTDS
JSB =TIMRDY
STMD R44,=CLKDAT
STBD R44,=GINTEN
RTN

SET UP STATUS BYTE.
BITS 4, 3, 1 WILL CLEAR
TIMER O.
START IT, AND ENABLE IT TO
INTERRUPT.
GENERATE 86400000, THE
NUMBER OF MILLISECONDS
IN A DAY.
DISABLE INTERRUPTS.
WAIT FOR READY.
SEND THE TERMINAL COUNT.
RE-ENABLE GLOBAL INTERRUPTS.
DONE.

The speaker can be controlled through the I/O address KEYSTS. Bits 5
and 6 of KEYSTS allow you to either make the speaker beep at 1.2 kHz or
turn it off and on at whatever frequency you wish (within the limits of
the clock cycle of the CPU).

4-14

SYSTEM MONITOR

5.1 Introduction

Section
V

The HP 82928A System Monitor is an optional plug-in module that permits
you to set breakpoints and single step or trace through the execution of
assembly code. Two breakpoints can be set in any portion of memory with
an address lower than 200000. Any time either of these addresses is
referenced in any manner, an interrupt is caused. The user can use this
interrupt to examine CPU registers, status bits, memory locations, and
extended memory pointers.

5.2 System Monitor Commands

The system monitor commands described in this section are demonstrated
later in this manual. Refer to section 7.

BKP octal address [,select code for output]

Sets breakpoint (BKP) #1 or #2 at a specified address in memory. If no
breakpoints have been set, the command sets BKP#l. If BKP#l is already
set, the command sets BKP#2. If BKP#l and BKP#2 are both set, the
command resets BKP#2; BKP#l remains set at its original address.
Breakpoints can be set at any address lower than 200000 in system RAM or
ROM. They can be cleared only by using the CLR command. Using the
[RESET] key will not clear breakpoints.

5-1

Section 5: System Monitor

When a breakpoint is encountered, execution halts and a block of status
information is output to the CRT IS device. The following keys are
typing aids:

Key

B
C
M
P
R
T
1
2

[STEP]
[ROLL "]
[ROLL V]

[RUN]
[BACK SPACE]

[A/G]

Use

Set an additional breakpoint (BKP)
Clear (CLR) a breakpoint.
Obtain a memory dump (MEM).
Change program counter (PC=).
Change contents of a register (REG).
Using the TRACE command.
Change value of pointer *1 (PTRl=).
Change value of pointer *2 (PTR2=).
Single step execution.
Roll up display.
Roll down display.
Resumes program execution.
Back space.
Alternates between graphics and alpha
modes.

Most other keys on the keyboard are inactive at a breakpoint until a
typing aid has been used.

PC DR RR ()V CY NG LZ Z~~ RZ oD DC E BKP1 BKP;~ PTR1 PTR2 ROM
022273 36 36 0 0 1 0 0 1 0 0 01 114333 114303 0377713 0377732 000

0 1 4 =i 6 7 l1EM 0:0
ROO 000 012 265 230 273 044 150 204 026 000 011 210 303 030 011 210 C
R10 242 200 350 212 371 000 001 000 153 031 305 03·1 266 031 247 031 k E 6
R20 044 044 233 230 140 011 236 200 342 207 022 210 022 210 106 251 b F)
R30 237 200 034 000 075 2·10 320 230 070 204 230 13G 262 001 377 251 8 "2 !iii)

R40 110 233 230 001 000 000 044 044 340 040 262 030 377 321 000 140 2 !IiIQ
R50 000 051 000 000 000 000 000 000 366 012 262 06 ~5 210 261 014 140 v 25 1 ,
R60 000 000 000 000 000 000 357 012 036 306 000 000 316 274 011 316 F N< N
R70 016 316 000 000 000 000 000 000 030 030 230 31G 306 207 117 220 NF 0

Output at a breakpoint includes:

5-2

1. The following CPU status indicators:

PC: The setting of the program counter stored in registers R4
and R5. When execution is resumed, it will begin at the
address specified by the PC.

DR: Contents of the current data register pointer.

Section 5: System Monitor

AR: Contents of the current address register pointer.

OV: Status of the overflow flag.

CY: Status of the carry flag.

NG: Status of the MSB (most significant bit), used to
indicate a negative quantity.

LZ: Status of the LDZ (left significant zero) flag.

ZR: Status of the zero flag.

RZ: Status of the RDZ (right digit zero) flag.

OD: Status of the LSB (least significant bit), used to indicate
an odd quantity.

DC: Setting of DCM (decimal) flag. Used to indicate decimal
or BCD mode.

E: Contents of the E (extend) register. This will be
quanti ty between 0 and 17 octal.

BKP1: Indicates absolute address where breakpoint 1 is currently
set.

BKP2: Indicates absolute address where breakpoint 2 is currently
set.

PTR1: Indicates address of extended memory pointer l.

PTR2: Indicates address of extended memory pointer 2.

ROM: Ind icates number of ROM which was selected when the
breakpoint occurred.

a

2. The contents of 100 (octal) RAM or ROM locations are output
beginning with the octal address specified in the last executed
MEM and will continue for 100 octal bytes. If no MEM was
executed, 100 (octal) bytes of memory will be output beginning
with zero. The default ROM number is zero unless previously
indicated. If MEM was executed, 100 octal bytes will be output
starting with the address of MEM.

3. Contents of CPU registers 0 through 77.

4. Memory contents in ASCII.

5-3

Section 5: System Monitor

CLR breakpoint number

After CLR is displayed (as a result of typing "C"), the user can type 1
[END LINE] to clear BPI or 2 [END LINE], to clear BP2. After CLR is
displayed pressing [END LINE] or typing a number other than 1 or 2 will
clear both breakpoints.

The CLR functions can be used any time execution has been halted,
whether or not it has been halted by a breakpoint.

MEM address [:ROM#] [,# of bytes] [=#,:fj:, •••]

This command dumps the contents of computer RAM or ROM memory to the
current CRT IS device beginning with the octal address selected.
One-hundred octal bytes are dumped unless another parameter was input.
The MEM function can be used after execution has been halted by a
breakpoint.

The ROM number if included, is an octal value of selected plug-in ROMs
from which memory is dumped. Default value for the ROM number is system
ROM 0, if no other ROM number has been selected.

The output shows the octal representation of the bytes in memory and the
ASCII representation of the bytes.

If there are numeric entries after the "=" sign, memory is not dumped;
the contents of memory locations beginning at the octal address
spec i fied are changed to the octal values after the "=" sign. The
memory locations must be in RAM. The contents of one succeeding memory
location are changed for each value specified after the "=" sign. The
number of bytes, if included is disregarded in this case.

Examples: MEM 103300

5-4

Dumps contents of 100 octal bytes of memory to the CRT IS
device, beginning with memory location 103300.

MEM 103300,20
Dumps contents of 20 octal bytes of memory to the CRT IS
device, beginning with memory location 103300.

MEM 60200: 40,200
Dumps contents of 200 bytes of the assembler ROM (ROM #40)
to the CRT IS device, beginning with memory location 60200.

MEM 105000 = 0,0,0,15
Loads memory locations 105000, 105001, and 105002 with
zeros, and loads location 105003 with 15 octal.

Section 5: System Monitor

PC= octal address

Changes contents of program counter stored in CPU registers R4 and R5 to
the specified address, and dumps CPU status and memory contents exactly
as when a breakpoint (BKP) is executed. When execution is resumed, it
will begin at the address now specified by the contents of the program
counter (PC).

Example: PC = 3477 (Sets the PC to resume execution with byte 003477.)

REG number of CPU register = value

Changes contents of specified CPU register to the value given, and dumps
CPU status and memory contents as when a breakpoint (BKP) is executed.
Value may be octal, decimal, or BCD.

31 (Changes contents of register R34 to 31 octal.)
19C (Changes contents of register R36 to BCD 19.)

Example: REG 35
REG 36
REG 37 25D (Changes contents of register R37 to 25 decimal.)

smp

Although STEP is not a command, it is a typing aid which executes the
next complete machine code instruction (not just the next byte).
Beginning with the location currently addressed by the PC, it halts and
dumps CPU status and memory contents like a breakpoint.

TRACE octal, decimal, or BCD value

Resumes execution with the next
for the number of instructions
decimal, or BCD value.

machine code instruction, and continues
(not bytes) specified by the octal,

After each instruction i~ executed, CPU breakpoint and status is output
to the current CRT IS device. When execution halts, the CPU status and
memory contents are output as at a breakpoint. Because of the internal
coding of the system monitor, the address of BKPl appears to increase as
each instruction is traced and status is output. However, when trace
execution halts, both breakpoints are reset to their original addresses
(when the TRACE command was executed).

To halt execution during TRACE, press any key. Repeatedly pressing a
key may be necessary to halt TRACE.

5-5

Section 5: System Monitor

Example: TRACE 10 output

PC DR RR (JV C,(HG LZ ZR RZ oD DC E BKP1 BKP:~ PTR1 PTR2 ROM
022274 46 3E; 0 0 1 0 0 1 0 0 01 022273 114303 0377713 0J"7'7732 000

PC DR RR {)V CY HG LZ ZF~ RZ oD DC E BKP1 BKP:~ PTR1 PTR2 ROM
022275 46 36 0 0 0 0 0 0 0 0 01 022274 114303 0377713 037'7732 000

PC DR RR ()V CY HG LZ ZF~ RZ oD DC BI<P'1 BKP:~ PTR1 PTR2 ROM
021636 46 36 0 0 0 0 0 0 0 0 01 022275 114303 0377713 037'7732 000

PC DR RR ()V CY NG LZ ZR RZ OD DC E BKP1 BKP:2 PTR1 PTR2 ROM
021637 46 36 0 0 0 0 0 0 0 0 01 021636 114303 0377713 0377732 000

PC DR RR (JV CY NG LZ ZF~ RZ oD DC E BKP1 BKP:Z PTR1 PTR2 ROM
021640 46 36 0 0 0 0 0 0 0 0 01 021637 114303 0377713 037'7732 000

PC DR RR ()V CY NG LZ ZR RZ oD DC E BKP1 BKP2 PTR1 PTR2 ROM
021641 20 36 0 0 0 0 0 0 0 0 01 021640 114303 0377713 037'7732 000

PC DR RR [)V C'(NG LZ ZR RZ oD DC E BKP1 BKP:~ PTR1 PTR2 ROM
021642 20 10 0 0 0 0 0 0 0 0 01 021641 114303 0377713 037'7732 000

PC DR RR (JV CY NG LZ ZR RZ oD DC E BKP1 BKP:~ PTR1 PTR2 ROM
021643 20 10 0 0 0 0 0 1 0 0 01 114333 114303 0377713 037'7732 000

0 3 6 7 MEM 0:0
ROO 000 012 265 230 243 043 '155 204 026 000 011 210 303 030 011 210 C
R10 242 200 350 212 371 000 001 000 153 031 305 031 266 031 247 031 6
R20 040 044 233 230 140 01 '1 236 200 342 207 022 210 022 210 106 251 F)
R30 237 200 034 000 075 210 316 230 070 204 230 1313 262 001 377 251 "2 ill
R40 110 233 :230 001 000 000 030 056 340 040 262 030 377 321 000 140 2 IilO
R50 000 051 000 000 000 000 000 000 366 012 262 065 210 261 014 140 v 25 1
R60 000 000 000 000 000 000 357 012 036 306 000 000 316 274 011 316 F N< N
R70 016 316 000 000 000 000 000 000 030 030 230 3113 306 207 117 220 NF 0

PTR1= octal value

Changes pointer address.

PTR2= octal value

Changes pointer address.

5-6

WRITING BINARY PROGRAMS

6.1 Program Structure

Section
VI

An assembly language program is required to have a table of five
pointers, or addresses, to tell the system where important parts of the
program are. The system will use these pointers to find the table of
keywords which the binary program implements and the associated routines
to execute each of those keywords. This structure called the program
shell is shown on the next page.

6-1

Section 6: Writing Binary Programs

NAt~

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

PARSE BYT 0, 0
--Parse routine addresses go here.

RUNTIM BYT 0, 0

--Runtime routine addresses go here.
BYT 377, 377

ASCIIS BSZ 0
--Keyword table goes here.
BYT 377

ERMSG BSZ 0
--Error message table goes here.
BYT 377

INIT BSZ 0

6-2

--Initialization code goes here.
RTN

--The rest of the binary program goes here.
FIN

Section 6: Writing Binary Programs

The shell consists of the following parts:

1. The program control block.

2. Label definitions describing the locations of the tables that
will allow the system to hook into the binary program. The
following addresses must be included in this order:

1. Run time routine table.
2. ASCII keyword table.
3. Parse routine table.
4. Error message table.
5. Initialization routine address.

3. The actual tables that have been defined previously. They must
contain the addresses of the routines that will be performed.

• The parsing routines will tell the system how to check a
keyword for the proper syntax and parameters, and how to
convert it to the internal RPN token format.

• The actual translation of the keywords into machine operations
is done by the run time routines whose addresses are defined
in the run time table.

• A marker, two bytes containing 377, must be set directly after
the run time and parsing routine tables. When a binary
program is loaded, this marker tells the system to assign an
absolute address to all routines. All other addresses
(routine references) are relative to the beginning of the
program.

• To let the system know which character
keywords, an ASCII table must be
keywords.

strings
created

will be the
to specify the

• An error message table allows assembly language programs to
specify custom error messages.

• The code for a special initialization routine that is to be
executed during initialization of the system, as at power-on,
reset, allocation, and deallocation times. Refer to
Initialization Hooks in section 3.

4. The routines that will actually do the operations required for
defining and executing the new BASIC keyword must come after the
tables.

6-3

Section 6: Writing Binary Programs

The system will use the structure of the program shell to access the
routines in the program. If a mistake is made in the structure, then
the system cannot run the program.

The labels that are used to reference routines and routine tables can be
any name as long as the names of routines in the tables correspond with
the names of the routines themselves.

In addition, after the execution of
back to the system by executing a
after every routine.

a routine, control must be passed
return. A return may be included

Control Block

The program control block is 40 (octal) bytes long and is required to
tell the system important things including:

• The first four characters in the name of the binary program.

• The length of the program in bytes, including the control block.

• The type of file is contained in the seventh byte. The format
of the bits in this byte are as follows:

Bit Meaning

0 000=BASIC Main Program
1 001=BASIC Subprogram
2 002=Binary Program
3 Undefined
4 Undefined

Undefined
5 Undefined
6 0=Option base 1

l=Option base 0
7 0=No COMMON

l=COMMON

• The binary program number.

• The name of the file in mass storage (up to 10 characters).

• Six bytes required by the system.

• The base address of the first byte of the control block.

The control block is generated by the NAM instruction, which specifies
the program name and number.

6-4

Section 6: Writing Binary Programs

The program listed below is used in examples throughout this section.

1000 NRM 167, TEST
1010 DEF RUNT! 1'1E
1020 DEF KEYWORDS
1030 DEF PRRSING
'1040 DEF ERMSG
1050 DEF I NI T
1060 RUNT! ME BYT 0,0
1070 DEF TEST.
1080 PRRSING BYT 0,0
1090 DEF TESTPRRS
1100 ERMSG B'rT 377,377
1110 KEYWORDS RSP " TEST"
1120 BYT 377
1130 I NI T RTN
1140 TESTPRRS LDM R56, =0,3"('1
1150 Lm1 R55,=PTR2-
1160 STMI R55, =PTF~2-
1170 JSB =SCRN
1180 RTN
1190 BYT 241
1200 TEST. JSB =STBEEP
1210 RTN
1220 SCRN ORO 21110
1230 PTR2- ORO 177715
1240 STBEEP ORO 10441
1250 FIN

6-5

Section 6: Writing Binary Programs

Example: The program TEST is 107 (octal) bytes long and contains the
following NAM statement and control block.

1000 NAM l67,TEST

0 5

17 TYPE 1 8BP~M TEST [LENGTH]

10

[NAME OF FILE AS ON DISC

20 22 24

DRIVE]
[BASE ADDRESS

[UNDEFINED]
IFABS]

30 32 34

1

36
[LAST BYTE DEF DEF DEF
ADDRESS] RUNTIME ASCIIS PARSE

Memory Contents ASCII Representation

124 105 123 123 107 000 002 167 TESTG
124 105 123 124 102 040 040 040 TESTB
040 040 000 000 000 000 000 000
064 221

The first four bytes contain the ASCII representation for the name TEST.
The next two bytes, with the least significant byte first, contain the
length of the binary program in bytes. The type of file that the
program is stored under is represented in eight bits (one byte), and the
binary program number is stored in the last byte. The next 10 (decimal)
bytes show the ASCII representation for the file name under which the
program is stored, with ASCII blanks (040) to fill the rest of the
bytes. The following six bytes are undefined, and the last two bytes
contain the address of the first byte in the binary program.

6-6

Section 6: Writing Binary Programs

System Table

The system uses this table to locate the routines and tables it will
need to interpret the binary program. The system table must always be
present in a binary program and must always define the subsequent tables
in the proper order. During operations the system will need to have the
address of a routine to handle parsing, initialization, execution, or
error conditions. It will expect the address to be at the proper
location as shown below:

Bytes From Base Address Sample System Table

32 DEF RUNTIME
34 DEF KEYWORDS
36 DEF PARSING
40 DEF ERMSG
42 DEF INIT

When the system looks for a run time routine, it will add 32 (octal) to
the base address of the program and access the run time routine table at
run time. Likewise, it will add 34 (octal) to the base address to find
the parse routine table, and so on. The system will expect the tables
and the initialization routine to be in exactly these places in the
program.

Placement of Binary Program Routine Tables

The addresses in the parse and run time routine table will be made
absolute by the system when the program is executed. To indicate the
end of the tables whose addresses will be absolute, the system looks for
two bytes of 377's. Only the parsing routine and run time routine
tables are required to have absolute addresses, so _all other routine
tables must follow the two bytes of 377's.

ASCII Keyword Table

The system will check a binary program for a BASIC keyword before it
will try to process the keyword. In the ASCII table, all of the key
words are arranged sequentially. When a BASIC statement is entered into
the CRT, the system attempts to match the characters with a keyword in
the table. The order of the keywords will affect the parsing and
execution of the keyword, as the first keyword in the table will be
processed by the first parsing routine in the parsing routine table and
executed by the first run time routine in the run time routine table.

6-7

Section 6: Writing Binary Programs

The system attempts to find a match by comparing each character in the
table with each character in the keyword until it reaches a character
with the most significant bit set. This indicates the end of a keyword,
and, if no match has been found, the system assumes that the next
character begins a new keyword and increments the number of the token.
The search stops when a match has been found or a byte containing 377 is
found.

Example: The following code creates an ASCII keyword table with one
keyword, TEST. The ASP instruction creates an ASCII string with the
most significant bit set on the last character, and the BYT 377
instruction signifies the end of the ASCII keyword table.

Parsing Routine Table

11113 KEYWORDS
11213

ASP "TEST"
BYT 377

If the system accesses a BASIC statement keyword that a binary program
has listed in the ASCII keyword table, it will use the parsing routine
provided in the program. Functions will be parsed by the system. The
position of the keyword in the ASCII keyword table determines which
parsing routine will need to be executed. If the keyword does not need
to be parsed, then the corresponding position in the parsing routine
table must be filled with two bytes of f21's to reserve the space
corresponding to the ASCII keyword table.

The system will always skip the first two bytes after the location of
the parsing routine table. The next two bytes are used as the address
of the first parsing routine.

Example: The following parsing routine table has only one routine,
TESTPARS, to parse the keyword TEST.

11218121 PARSING
113913

Run Time Routine Table

BYT 121,121
DEF TESTPARS

Two dummy bytes
First parsing routine

Each keyword also has a run time routine associated with it. More than
one run time routine may be listed in the table, so the system
distinguishes between them in the same way as in the parsing routine
table. When the system encounters a keyword that is listed in a binary
program, it passes control to the proper routine corresponding to the
position of the ASCII keyword in the keyword table.

6-8

Section 6: Writing Binary Programs

Example: The run time routine table for the program TEs'r contains one
routine address "TEST." which corresponds to the keyword "TEST" and the
parsing routine TESTPARS.

1060 RUNTIME BYT 0,0 Two dummy bytes
1070 DEF TEST. First run time routine

Error Message Table

When an error is flagged in XCOM, the executive loop calls an error
reporting routine that displays the error message. If the error number
is less than 128 (200 octal), then it is a ROM error message and the
bank-addressed ROM is selected whose number is in RAM location ERRROM.
If the error message number is greater than 128 (200 octal), then the
message will be from the binary program whose number is in ERRBP#.

The error message table is similar to the ASCII keyword table. It is
constructed of entries which are strings of ASCII characters, the last
character of each string having the most significant bit set. The table
is terminated by a BYT 377.

Error messages in ROMs are numbered 0 through 177 (octal). Binary
programs are numbered from 377 down to 200 (octal). The first nine
error messages for ROMs and binary programs are for default errors.
They will give only warning messages if defaults are on (refer to the
owner's manual). The other error messages will always display the
appropriate error message. Example error message table:

10 ERMSG BYT 200, 200, 200, 200 ! ! tH ~E DUMMY Byn: S (377, 367) ,
20 BYT 200,200,200,200,200 !! WITH THE MSB SET
30 RSP "SYNTRX-CHECK KEYWORD," ! !ERROR 366 OCTRL
40 RSP "ROW OUT OF RRl'lGE, > 16," !! ERROR 365
50 RSP "COL OUT OF RRNGE, >32," !! ERROR 364
60 B'r'T 377
70 I NI T BSZ 0
80 RTN

Initialization Routine

The program TEST has no need to initialize pointers, hooks, or flags.
Therefore, the INIT routine returns control to the system. For times
when further initialization is needed, refer to paragraph 3.5.

1130 INIT RTN

6-9

Section 6: Writing Binary Programs

External Address Table

If any of the system locations have been used in the program, a table
must be included to define the labels as absolute addresses.

Example: In the program TEST the addresses SCAN, PTR2-, and STBEEP are
used and must be defined for the system.

6.2 Attributes

1220 SCAN
1230 p'rR2-
1240 STBEEP

DAD 21110
DAD 177715
DAD 10441

Attributes define the type of a token. The system uses the attribute
type to determine how parsing is to occur, how allocation and
deallocation are to be performed, and how decompiling is to be done.
The system is told how the keyword is to be handled at these times. The
attributes must be defined immediately before the run time code in the
program memory as shown in line 90:

1190
1200 TEST
12Hl

BYT 241
JSB=STBEEP
RTN

There are two types of attributes: primary and secondary. All keywords
have primary attributes, but only functions have secondary attributes.
The secondary attributes tell how many and the type of parameters the
function will need and may occupy one or more bytes.

Attribute Location

The attributes must be placed directly before the run time routine code.
The primary attributes must be the first byte before the run time
routine. The secondary attributes would precede from the first byte to
the last byte. The system checks the attributes from the bottom up,
starting with the primary attribute and ending with the last parameter.

The following program listing:

040 055 BYT 040,055

is the octal representation of these attributes:

055 Primary attribute - numeric function
040 Secondary attributes - two numeric parameters

6-10

Section 6: Writing Binary Programs

Primary Attributes

The primary attribute consists of one byte of information containing the
type of the keyword in the two most significant bits and the class of
the keyword in the next six bits as shown:

BITS 6-7

-- r
TYPE 1

BITS 0-5

t"t

CLASS

RUNTIME ROUTINE ENTRY POINT

The user must define the primary bits in order to tell the system
exactly how he wants the system to recognize the keyword. For instance,
if the keyword is to be a numeric function its attributes would be:

Type

Function
o 0

Numeric Function
1 0 1 1 0 1
, I

55

Bits 7 and 6 define how the keyword may be used. A keyword may
BASIC statement or another command for calculator mode. A
statement may be defined as legal after a THEN or illegal after a
System commands are BASIC statements used only in calculator
Functions may be used in BASIC programs or in calculator mode.

The codes for each of the types are the following:

Bits 7,6 Octal Type

1 1 3 BASIC statement, illegal after THEN
1 0 2 BASIC statement, legal after THEN
0 1 1 System commands (nonprogrammable)
0 0 0 Functions and others

be a
BASIC
THEN.
mode.

6-11

Section 6: Writing Binary Programs

Class

The class will give the system further information on how to process the
keyword. The class should follow directly after the type of keyword.
For example, a function that returns a number will be in the numeric
function class. Keywords that are to be invisible when the program is
decompiled have their own class. All BASIC statements that are not
functions and all system commands are reserved words.

Example: The keyword" INPUT" uses two tokens to compile but only one
shows when it decompiles. The first token puts the system into a
pseudo-calculator mode to allow characters to be entered from the
keyboard and outputs a "?" The other, which is hidden during
decompiling, takes the system out of the pseudo-calculator mode and does
the actual storing of the input values. The class of the second keyword
keeps it from being printed in the program listing. The keyword "LOAD"
is in the class of reserved words. Refer to the sample program LINPUT
in section 7.

Useful Classes

Bits 5-0 Octal Class

1 0 0 0 0 1 41 Reserved words
1 0 0 1 0 0 44 Invisible at decompile time
1 0 1 1 0 1 55 Numeric function (such as, SIN, IP)
1 0 1 1 1 0 56 String function (such as, CHR$, VAL$)

Secondary Attributes

At parse time, if the system parser finds a match for a keyword in the
binary program ASCII table, it will then check the attribute type. If
the keyword is a statement, control passes to the binary program parse
routine. If the keyword is a function, the secondary attributes
determine the type and number of parameters to use.

One byte is needed if the function uses one or two parameters, and a
second byte is needed if there are more than two but less than seven
parameters. More parameters require more bytes. The first four bits of
the first byte indicate the number of parameters that the function will
accept. The next two bits define the type of the first parameter, and
the second parameter is defined by the last two bits. Thereafter the
consecutive pairs of bits define extra parameters.

6-12

Section 6: Writing Binary Programs

Parameter Types

Type Description

0 0 Numeric
0 1 Numeric array
1 0 String
1 1 Strange

0010 --
2 Parameters First Second

6.3 Assembler Instructions

The instruction set is used to communicate between the assembly language
programmer and the CPU. Assembly language instructions can move data,
perform arithmetic operations, and execute other functions. There are
two types of instructions: those which operate directly on the CPU and
are translated into machine language; and pseudo-instructions which act
as messages to the Assembler ROM.

The typical instruction is broken up into five fields. The first field
is the line number, for the convenience of the programmer. When
assembled, the program will not have line numbers, instead it will show
the value of the instruction counter. The instruction counter is the
offset in bytes from the start of the program. The next field is an
optional label field. System labels may be defined in the global file.
Other labels must be defined in the routine. The opcode comes after the
label field and is the heart of the instruction because it tells the CPU
or Assembler ROM what is to be done. Following the opcode is the
operand(s) for the instruction, and at the end of the instruction or in
the label field the programmer may place a "!" followed by a comment.

In assembler mode the system will automatically space the elements typed
in the proper fields. The programmer has only to distinguish the fields
by at least one space. The registers may be referred to by their octal
numbers, and the system will add the "R" in its proper place.

Example: Line number 120 may be typed in as follows:

120 LDMD 46,22 !A MULTI-BYTE LOAD

6-13

Section 6: Writing Binary Programs

After pressing [END LINE], it will appear in the program listing as:

120 LDMD R46,R22 !R MULTI-BYTE LORD

Line Numbering

Each line of a program source code must begin with a line number (which
will not appear in the assembled code). A line number may be up to
99999 and may be entered individually or automatically, using [AUTO] for
automatic line numbering. When a program is assembled the line numbers
will appear as relative addresses of the instructions, that is, the
instruction location counter.

Labels

A label may be from one to eight characters long. The label field
starts in the second space after the line number. A digit may not be
used as a first character, and no spaces may be used in a label because
a space denotes the end of a label. When variable storage is needed in
the program, a label may be used after the run time routine. To
simulate control loops and branch execution, a label may be used to
designate the location of the jump.

Opcodes

The opcodes for assembly language instructions may be entered after
typing at least two spaces after the line number or at least a single
space after a label. Entries in the opcode field are restricted to
valid instructions. Blanks are not allowed within the opcode field.

Opcodes may be single-byte, multi-byte, or pseudo-operations. The
pseudo-operations may act upon bytes but are only messages to the
Assembler ROM and do not generate executable code.

Operands and Addressing

Depending upon the kind of instruction to be performed, the operand may
be a register, a label or address, a pointer to a value, or a relative
location which must be offset by an absolute address. The DRP will
point to the register that will be operated upon according to the
opcode. If the opcode calls for direct addressing, where the value is
at a location outside of the CPU register bank, the operand will contain
the address of the value in memory. If the opcode calls for direct
addressing, where the value is pointed to by a label that is located
outside of the CPU register bank, the operand will contain the address
of the pointer in memory.

6-14

Section 6: Writing Binary Programs

Indexed addressing can be used to access an area of memory by adding a
base address to an offset such as in table searching. The absolute
address of a label can be obtained by adding BINTAB to the relative
address of the label.

Comments

A comment must begin with an exclamation point "!." A comment may be
typed beginning in the first or second space after the line number or
one or more spaces after the other elements of the instruction.
Comments may be as long as needed, though the limit is 160 characters
per line.

Constants

Constants may be entered in octal, BCD, or decimal notation. A BCD
value is entered by immediately following the value with a "C," while a
decimal value is followed by a "D"; otherwise the system assumes octal
values. Constants will be stored as one or more bytes, depending on
whether it indicates a single- or multi-byte operation. After the
program is assembled constant values are placed immediately after the
machine code.

Syntax and Explanation

Each of the opcodes are discussed in detail in the next three
subsections. The opcode is shown above its explanation, then following
the explanation is an example of how the instruction may be used.

The first two letters of the opcode signify its operation, but the
designation for a single-byte, "B," or multi-byte, "M," operation must
be added at the end. In addition, if a type of addressing other than
register immediate is needed, then the letter for that addressing mode
must be added, "D" for direct or "I" for indirect. Instructions using
direct or indirect addressing will have opcodes of four characters. A
register being used for ,indexing must be entered in the operand field
with an "X" instead of an "R." Pseudo-instructions always have opcodes
of three characters.

The examples are designed to give the programmer a few hints for using
the instructions in binary programs and clarify some points about the
syntax of the instruction set.

Syntax Guidelines

LDB Instructions shown in capital letters must be entered exactly
as shown (in either upper- or lower-case).

6-15

Section 6: Writing Binary Programs

[] Items shown between brackets are optional. If several items
are stacked between brackets, anyone or none of the items may
be specified.

Three dots (ellipsis) following a set of brackets indicate that
the items between the brackets may be repeated.

() Contents of.

Complement.

B/M Single- or multi-byte instruction.

AR Address register location. Location of first byte addressed
by the ARP. Can be a register, R*, or R#.

DR Data register location. Location of first byte addressed by
the DRP. Can be a register, R*, or R#.

A Address mode for load/store. Can be blank (for immediate),
D (for direct), or I (for indirect).

ARP Address Register Pointer. A 6-bit register used to point to
one of 64 CPU registers. The byte to which ARP points is
often used as the first of two consecutive bytes forming a
memory address.

DRP Data Register Pointer. A 6-bit register used to point to one
of 64 CPU registers. The location to which DRP points is
often used as the destination for data loaded into the CPU.

R(x) CPU register addressed by (x).

M(x) Memory location addressed by (x) which must be 16-bit address.

PC Program Counter. CPU registers R4 and RS. Used to address
the instruction being executed.

6-16

Section 6: Writing Binary Programs

SP Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return
address stack.

EA Effective Address. The location from which data is read for
load-type instructions or the location where data is placed
for store-type instructions.

ADR Address. The two-byte quantity directly following an
instruction that uses the literal direct, literal indirect,
index direct, or index indirect addressing mode. This quantity
is always an address.

LOAD/STORE Instructions

The instructions for loading and storing data have access to all eight
addressing modes, and they can be single- or multi-byte.

LD
CPU Instruction

Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

ST

Format: LDBA DR, operand
LDMA DR, operand

CPU Instruction

single-byte
multi-byte

Contents of data register are stored in effective address determined by
the operand and the addressing mode.

Format: STBA DR, operand
STMA DR, operand

Addressing Modes

single-byte
multi-byte

The CPU allows several addressing modes. These include literal,
register, indexed, and stack modes of memory access.

6-17

Section 6: Writing Binary Programs

Not all addressing modes are available to all instructions. The load
(LD) and store (ST) instruction have access to all addressing modes
except stack addressing, and they are used here for illustration. For a
list of the addressing modes used by a particular instruction, refer to
appendix B.

Most addresses are referred to as two-byte quantities. Because
addresses are two consecutive bytes, only the least significant byte is
referenced. For instance, the address register (AR) is actually a
single byte within the CPU register bank that is pointed to by the
address register pointer (ARP). When the address register contains an
address, the CPU register pointed to contains the least significant byte
of the address. The next register (ARP + 1) contains the most
significant byte of the address.

The multi-byte feature of the CPU allows data to be manipulated in
quantities of one to eight bytes. Therefore, in the following
descriptions, only the address of the first byte is specified.

In the following descriptions, the effective address (EA) points to the
first byte of data to be affected by the instruction.

Register Mode

This mode allows the CPU registers to contain addresses as well as data.
There are three types of register addressing: register immediate,
register direct, and register indirect.

Register Immediate

Examples:

LDB R36,R32

STM R40,RS0

Register Direct

Examples:

LDBD R36,R32

STMD R40,RS0

6-18

Loads contents of R32 into R36.

Stores the contents of R40-R47 into
RS0-RS7.

Loads CPU register R36 with the contents
of the system memory location addressed
by R32-R33.

Stores contents of R40-R47 into system
memory beginning with the location
addressed by RS0-RS1.

Section 6: Writing Binary Programs

Register Indirect

Examples:

LDBI R36,R32

STBI R36,R32

Literal Mode

If R32 contains 105731, and location
105731 contains 110437, the contents
of 110437 is loaded at location R36.

If R32 contains 105371, and 105731
contains 110437, then the contents of
R36 is stored at location 110437.

The operand is a literal quantity stored in memory immediately following
the opcode. A literal string, ten octal bytes or less, is a BCD, octal,
or decimal constant or a label. The programmer is responsible for
ensuring that the number of bytes of the literal string matches the DRP
setting. The assembler does not check for a mismatch. Literal mode
includes literal immediate, literal direct, and literal indirect forms
of addressing.

Literal Immediate

Examples:

LDB R36,=10D Loads 10 decimal (12 octal) into CPU
register R36.

LDM R40, =0,0,0,0,0,0,0,120 Loads 120 octal (a floating point 5
in BCD format) into register R40-R47.

LDM R32,=LABEL Loads R32-R33 with the relative address
of LABEL.

Literal Direct

Examples:

LDBD R34, =ROMFL

STMD R74,=CHIDLE

Loads the contents of the memory
location addressed by the label ROMFL
into CPU register R34.

Stores the contents of CPU register R74
through R77 into four memory locations
beginning with the location addressed
by the label CHIDLE.

6-19

Section 6: Writing Binary Programs

Literal Indirect

Example:

STBI R30,=ADDR

Index Mode

Stores the contents of CPU register R30
into the memory location addressed by
another memory location which is itself
addressed by the two-byte literal
quantity specified by the label ADDR.

Indexing is useful for accessing data when the data is stored in a
table. In indexed addressing, a fixed base address is added to an
offset to create the desired address. The CPU performs this addition
using CPU registers R2 and R3. After an index instruction, these
registers contain the effective address (the sum of the base and the
offset). Neither the original base nor the offset is altered in memory.
There are two types of indexed addressing: index direct and index
indirect.

Index Direct

Example:

LDBD R36,X30,TABLE

Index Indirect

Example:

STMI R36,X30,OFFST

STBI R36,X34,66

6-20

Loads into CPU register R36 the contents
of the memory location addressed by
registers R2 and R3. R2 and R3 contain
the sum of the contents of R30-R3l and
the address TABLE.

Stores the contents of CPU register R36
and R37 in memory, beginning with the
location addressed by another memory
location which is addressed by CPU
registers R2 and R3. Registers R2 and
R3 contain the sum of the address in
R30-R3l plus the offset specified by the
label OFFST.

Stores the contents of R36 in the
location addressed by R2 and R3 (sum of
the address in R30-R3l plus 66).

Section 6: Writing Binary Programs

Stack Instructions

In stack addressing, a register pair serves as a pointer to the stack in
memory. A load or store is performed at the top of the stack, and the
register pair is decremented or incremented to the new top of the stack.
Instructions push and pop are available to push data onto and pop data
from stacks in the main memory. These stacks can be addressed using
direct or indirect addressing.

PU

Pushes single byte or multi-byte using direct or indirect addressing.
The stack pointer is incremented (increasing stack) or decremented
(decreasing stack).

Examples:

PUBO R32,+R12

PUBI R32,-R46

PO

Pushes single byte from R32 onto the R12
stack. The stack pointer is
incremented.

The stack pointer is first decremented
and then the single byte contained in
R32 is pushed onto the R46 stack.

Pops single byte or mUlti-byte off stack using direct or indirect
addressing. The stack pointer is incremented (increasing stack) or
decremented (decreasing stack).

POBO R32,+R20

POBO R32,-R20

Pops single byte contained in R12 onto
the R20 stack. The stack pointer is
incremented after the operation.

The stack pointer is first decremented
and then R32 is loaded with the byte
pointed to by R20.

6-21

Section 6: Writing Binary Programs

Stack Addressing

You can address a stack from nearly any CPU register pair. Registers R6
and R7 are hardware-dedicated and always point to the subroutine return
stack, a fixed stack of 512 bytes. A subroutine jump will automatically
push an address onto this stack and a return will load the program
counter with the address on the top of the stack, causing execution to
begin at that address on the next cycle. The R6 stack is also affected
by SAD and PAD instructions (save and restore status), which push three
bytes onto the R6 stack and remove them respectively.

Another stack used by many of the system routines at run time is the
R12-R13 operation stack. This stack is used to pass parameters between
system routines. The documentation for each routine using this stack
describes what the routine expects on the R12 stack and what it leaves
after it has finished.

Stacks may be increasing or decreasing. An increasing stack is one
which is filled in the direction of higher memory locations and from
which data is removed in the direction of lower memory locations. In a
decreasing stack, data is pushed in the direction of lower memory
locations, and taken off in the direction of higher memory locations.
To avoid confusion, it is best to address a particular stack using only
instructions for an increasing stack or only instructions for a
decreasing stack, but not both.

For stack addressing, the stack pointer is contained in the AR.
Multiple stacks are handled by having multiple stack pointers within the
CPU register space. A stack is activated by setting the ARP equal to
the location of that stack pointer.

6-22

Section 6: Writing Binary Programs

For an increasing stack, the AR must
available on the stack. For a decreasing
occupied location on top of that stack.

ARP AR

point to the next location
stack, the AR points to the

Lower Memory
Locations

'--__ ----'I -1'-____ ---'1 - ~--------1

I
I
I
I
I
I
I
I
I
I
I
I
t

Slack Slack
Push Pop

Higher Locations

Increasing Stack

Lower Memory
Locations

• I
I I

ARP AR I I

I-I 1-. I I
I I
I I
I I
I I
I I
I I
I I
I I

I t
Slack Slack
Push Pop

Higher Locations

Decreasing Stack

6-23

Section 6: Writing Binary Programs

Stack Direct

In this addressing mode, the stack is presumed to contain data. Stores
to the stack (pushes) fill the stack. Loads from the stack (pops) empty
the stack.

For a push onto an increasing stack, the AR points to the location where
data is to be stored. Following the store, the AR is incremented by the
number of bytes stored. For a pop operation from an increasing stack,
the AR is first decremented by the number of bytes to be popped off.
The AR then points to the location of the data to be removed from the
stack.

For a pop from a decreasing stack, the AR points to the location of the
data to be removed. Following the removal, the AR is incremented by the
number of bytes moved. For a push operation onto a decreasing stack,
the AR is first decremented by the number of bytes to be stored on the
stack. Then the data is pushed onto the stack.

Stack Indirect

In this mode, the stack is presumed to contain an ordered list of
addresses. These addresses point to the location from which data is
read by pops or to the location into which data is stored by pushes.

For a push onto an increasing stack, the AR points to the effective
address. After storing data in M(EA), the AR is incremented by two.
For a pop instruction from an increasing stack, the AR is fi rst
decremented by two in order to point to the effective address. The
effective address is then loaded into the CPU register designated by the
DRP.

PUBD DR,+AR Push byte direct with increment.

6-24

Section 6: Writing Binary Programs

D (Direct Mode)

ARP AR

Lower Memory
Locations

1st entry

2nd entry

3rd entry

'--__ -----'1- ,-I ____ ----'1- f-----------i

Stack Stack
Push Pop

Higher Locations

I (Indirect Mode)

ARP
I

2-byte

address

2-byte

address I

1st entry

AR

) '---_--'I -I L-___ --'1-

2nd entry

Stack Stack
Push Pop

Each entry can be one or more bytes

INCREASING STACK

The instructions available for use wi th an increasing stack are:

PUBD DR,+AR Push byte direct with increment.
PUMD DR,+AR Push multi-byte direct with increment.
PUBI DR,+AR Push byte indirect with increment.
PUMI DR,+AR Push multi-byte indirect with increment.
POBD DR, -AR Pop byte direct with decrement.
POMD DR,-AR Pop mUlti-byte direct with increment.
POBI DR,-AR Pop byte indirect with decrement.
POMI DR,-AR Pop multi-byte indirect with decrement.

6-25

Section 6: Writing Binary Programs

I (Indirect Mode)

ARP AR

'---_------'1- <-I ___ -------'1- 2·byte

ARP

address

2·byte

address

)
1st entry

2nd entry

Each entry can be one or more bytes

DECREASING STACK

D (Direct Mode)

AR

Lower Memory
Locations

'---___ --'1 - LI _____ --'1 - 1--_3_rd_e_n_try_--t

2nd entry

1st entry

Higher Locations

S ck Stack
Push Pop

Stack Stack
Push Pop

The instructions available for use with a decreasing stack are:

6-26

PUBD DR,-AR
PUMD DR,-AR
PUBl DR,-AR
PUMl DR, -AR
POBD DR,-AR
POMD DR,-AR
POBl DR,-AR
POMl DR,-AR

Push byte direct with decrement.
Push multi-byte direct with decrement.
Push byte indirect with decrement.
Push multi-byte indirect with decrement.
Pop byte direct with increment.
Pop multi-byte direct with decrement.
Pop byte indirect with decrement.
Pop multi-byte indirect with decrement.

Section 6: Writing Binary Programs

Arithmetic and Logical Instructions

AD

Add may be used to combine the value of the data register and the
contents of the operand. This operation may be performed on single
bytes or multiple bytes, and direct addressing or constants may be used.
In BCD mode addition will take place using four-bit digits. The result
is always stored in the data register.

Example:

ADB R20,R30

ADMD R20,=BINTAB

AN

Adds the contents of R30 to R20 and
places the result in R20.

Takes the location of the beginning of
the binary program and adds it to the
value in R20, R21. The result is
stored in R20, R21.

Each bit in the data register is compared to the corresponding bit in
the operand. If the bits being compared are both 1, then the result is
a 1. If either bit is 0, then the result is 0. The operand may be a
value in memory that is addressed directly. Although this instruction
is available only for mUlti-byte operations, single-byte operations are
possible with the DRP set to a boundary register.

Example:

ANM R20,R30 Converts· all of the lIs in R20-R21 to
0's if the same bits in R30-R31 are 0's.

If R20-R21 contain: 1 1 011 011 o 0 1 o 1 1 o 0

and R30-R31 contain: o 1 000 III o 0 001 011

then the result is: o 1 000 011 o 0 001 000

6-27

Section 6: Writing Binary Programs

CM

The compare is used to simulate the logical operations of a high level
language. It is done by subtracting the operand from the data register
and setting the appropriate status indicators; the result of the
operation is not stored. In binary mode the subtraction is two's
complement, and in BCD mode the subtraction is ten's complement.
Compares may be either single- or multi-byte operations, and direct
addressing may be used. When used previous to a logical jump, an
IF~THEN BASIC statement may be simulated.

In order to simulate the relation:

DR(AR CMM DR,AR CY flag should be 0
JNC lABEL Jump if DR(AR

DR)=AR CMM DR,AR CY flag should be 1
JCY LABEL Jump if DR)=AR

DR=AR CMM DR,AR ZR flag should be 1
JZR LABEL Jump if equal

DRJtAR CMM DR,AR ZR flag should be 0
JNZ LABEL Jump if not equal

The jump instructions JNZ, JZR, JCY, and JNC are explained later in this
section.

OR

Each bit in the data register is compared to the corresponding bit in
the operand. If' either bit is a 1, then that bi t in the data reg ister
is set to 1. Otherwise the bit in the data register is set to 0. This
logical operation may be performed on single bytes or multiple bytes,
but must use register immediate addressing only.

Example:

ORB R20,R30

If R20 contains:
1

0 0

and R30 contains:
1

0 0

then the result is: 10 0

6-28

1

Leaves a 1 in R20 if'the
corresponding bit in R30 is set.

o 1 1 0 01

001 o 1 1 I
1 o 1 1 1 1 I

Section 6: Writing Binary Programs

SB

Subtraction is simulated by adding the complement of the operand to the
data register. Ten's complement is used in BCD mode, and in binary mode
two's complement is used. The result of the subtraction is stored in
the DR. The operand may be addressed immediately or directly, and can
be a single- or multi-byte instruction. The CY flag is set to 1 if the
result is positive and cleared if the result is negative.

Example:

SBM R20,R30 In binary mode, takes the two's
complement of R30-R3l and adds that to
R20-R21. The result is put in R20-R21.

If R20-R2l contain: 1 1 011 o 1 1 I \0 0 1 o 1 100

and R30-R3l contain: o 1 000 1 1 1 I \0 0 001 011

then the complement of R30-R31

1 0 III 000 11 1 110 1 0 1

is added to R20-R21.

The result is: 1 1 011 011
1

0 0 1 o 1 100

The operation is done in binary mode. Since registers are shown
in octal, the previous example would look like this:

Before: R20 R2l R30 R31

a §] B ~
Two's complement

Result: R20 R21 R30 R31

~ ~ B B
6-29

Section 6: Writing Binary Programs

Example:

SBB R20, R30

If R20 conta ins:

In BCD more, takes the ten's complement
of the two digits in R30 and adds that
to the two digits in R20.

which in BCD are the decimal digits: 28

and R30 contains: 10 1 000 1 1 1\

which in BCD is: 47

Then the ten's complement of R30: 53

is added to R20: 28

and the result in R20 is: 80

XR

In the "exclusive or" logical operation the bit that corresponds in the
data register is set to 1 when the bits being compared are not the same.
When both bits are 1 or both bits are 0, the bit in the data register is
set to 0. The CY and OVF flags are cleared.

6-30

Section 6: Writing Binary Programs

Example:

XRM R20,R30 Compares the individual bits in R20-R2l and
R30-R3l. If they are not the same, sets
that bit to 1 in the DR; otherwise it is set
to 0.

If R20-R21 contain: 11 1 0 1 1 0 1 11 100100100

100001011 and R30-R31 conta in: 1 0 1 0 0 0 1 1 1 I
The result in R20-R21 is:

1 0 011 1001 100100 III

Shift Instructions

All shift instructions can be done in BCD or binary mode. In BCD mode
the shift will affect a BCD digit, or four bits, and in binary mode it
will affect a binary digit, a bit. Shifts may also be single- or
multi-byte operations, and the result of a shift will be determined by
the nearest boundary in the direction of the shift. In single-byte
shifts the boundary is actually the register being shifted, whereas in
mUlti-byte operations the boundaries are those in the CPU register bank.
In arithmetic and logical operations the boundaries are normally toward
the higher-numbered registers. With shifts, the boundary may be to the
left, higher-numbered registers, or the right, lower-numbered registers
depending on whether you are shifting right or left.

Shifts are made into one of the shift registers: the E register or the
CY flag. In BCD mode shifts are made into and out of the E register,
and in binary mode shifts are made into and out of the CY flag.

6-31

Section 6: Writing Binary Programs

EL

The extended left shift will take the most signficant digit, put it into
the shift register, move the rest of the contents one digit to the left
and put the previous contents of the shift register into the least
significant digit.

Example:

ELM R20 In BCD mode, shifts the most significant
digit of R20-R21 (1000) into the E
register. The other 12 bits will move
left four bits, and the least
significant digit will be filled with
the previous contents of the E register
(0001) •

R23 R22

If R20-R21 contain: 10 0 1 0 1 000

80 2 8

and "E" contained previously: 0 0 0 1

then the shift would take place as follows:

R23 ~ R22 ,---...... E

C
rl-0 -0-0-0--0-0 -1-0--', 11 0 0 0

0001 II H00 1 :J
ER

The extended right shift moves the least significant digit to the shift
register and the contents of the shift register into the most
significant digit. It works in the same way as the extended left shift
except that the movement is toward the right boundary.

6-32

Section 6: Writing Binary Programs

Example:

ERB R21

If R21 conta ins:

and the CY flag is:

then the result would be:

LR

In binary mode, shifts the least
significant bit (LSB) to the CY flag,
then moves the previous contents of the
CY flag to the MSB position.

11 1 011 o 1 1 I
[!]
~

CY0 11 1 1 0 1 1 0 1 Ii t
When a logical right shift is performed, the LSB is moved into the shift
register and the MSB is cleared. The digit is maintained in the shift
register and may be shifted back using the extended shift instructions.

Example:

LRM R21

If R20-R21 contain: 1 1 0

The result is:
1

0 1 1

In binary mode, shifts the LSB into
the CY flag and clears the MSB.

R21 R20

1 1 011 10 0 1 o 1 100

R21 ~ R20 CY

o 1 1 0 1 I 11 0 0 1 0 110 I 0

6-33

Section 6: Writing Binary Programs

LL

The logical left shift moves the most significant digit of the data
register into the shift register and clears the least significant bit.
If the shift causes a sign change then the OVF is set to 1.

Example:

DC

LLM R30 In binary mode, shifts the MSB of R30
into the CY flag and clears the LSB of
R31.

R31 R30

If R30-R31 contain: 10 1

C~ R31 ~ R30

then the result would be: ~ 11 0 0011101100010110\

The decrement is simulated by adding the complement of 1 binary in
binary mode, to the quantity in the data register. The quantity may be
single or multiple bytes.

Example:

DCB R31 Subtracts one from the quantity in R31.

R31

If R31 contains:

R31

then the resul tis:. \0 1 1 1 1 1 1 1 I

The OVF flag is set to 1, because the sign changed.

6-34

Section 6: Writing Binary Programs

Ie

When an increment is performed, 1 is added to the quantity in the data
register. In BCD mode, the quantity is incremented by decimal 1, and in
binary mode, it is incremented by a binary 1. In BCD mode the OVF flag
is cleared (single- or multi-byte) •

Example:

IeM R20 In BCD mode, the decimal quantity in
R20, R21 is increased by l.

R21 R20

If R20-R21 contain: \1 001 1 o 0 11 \0 o 1 0 0 1 0 1 \

which in BCD is: 9 9 2 5

R21 R20

then the result is: 1 001

which in BCD is: 9 9 2 6

6-35

Section 6: Writing Binary Programs

NC

This complement instruction will give the nine's complement in BCD mode
and the one's complement in binary mode. The nine's and one's
complement are performed by taking the number of digits to be
complemented and subtracting each digit individually from 9 in BCD mode
and 1 in binary mode. The result is placed in the data register.

Example:

NCB R20

If R20 contains:
I.

010

then the result is: 101

Example:

NCM R20

If R20-R21 contains:

which in BCD is:

then the result would be:

which in BCD is:

6-36

0

1

In binary mode, flips all bits
(one's complement operation).

R20

0 111

R20

1 000

In BCD mode, takes the nine's complement
of the contents in R20-R21 by
subtracting each digit from a BCD 9
(1001) •

R21 R20

1 1000 0000]\0010 1000\
1,,;;;;~=:;;=;;;7"""";;;;=::;;;~;;;;;;;;;:J ~ ~

R21 R20

\0001\\1001\\0111\1 0001 \
~~--''-i

Section 6: Writing Binary Programs

TC

The contents of the data register is replaced by the two's complement in
binary mode or the ten's complement in BCD mode. Two's and ten's
complement is found by incrementing the one's or nine's complement. In
BCD mode, the OVF fla9 is cleared.

Example:

TCl~ R20

If R20-R21 contain:

In binary mode, takes the two's
complement of R20-R21.

R21 R20

R21 R20

then the result would be: 10 ({) 1 0 0 1 0 0111 1 0 1 0 1 0 (1

6-37

Section 6: Writing Binary Programs

TS

The status of the contents of the data register are tested, and the
appropriate status indicators are set. The OVF and CY flags are cleared
in all cases, and the E register is not affected. This instruction is a
single- or multi-byte instruction. The status indicators are discussed
in section 2.

Example:

TSM R20 Will set the status indicators and clear
the OVF and CY flags.

R21 R20

If R20-R21 contain: \0 I 0 0 0 0 I I 1\ 0 0 0 0 I 0 I I \

LDZ

the resulting flags will be set:

DCM May be I (BCD)
E Not affected.
CY Cleared.
OVF Cleared.
OD Set to l.
NG Set to 0.
Z Set to 0 (since
LDZ Set to 0.
RDZ Set to 0.

CL

The clear instruction permits the clearing
multi-byte portion of the CPU register bank.
and the flags CY and OVF are cleared.

Example:

CLB R47 Clears R47

6-38

RDZ

or 0 (binary).

quantity

of any
The DR

is nonzero) •

byte or of any
is set equal to 0

Section 6: Writing Binary Programs

JSB

When a subroutine jump is made, the control of the program is given to a
set of instructions with the intention of returning to the program at
the next instruction after the jump was made. In order to return, the
program counter for the next instruction must be stored. This return
location is pushed onto the R6-R7 stack, and when the RTN instruction is
executed, it is loaded back into the program counter. A subroutine jump
that is made to a relocatable address in a binary program must be
indexed from the absolute start of the program (BINTAB).

Examples:

JSB =NUMVA+

JSB X14,ROUTINE

Jump Instructions

Increments the program counter (PC) to
the address of the next instruction
after the JSB. That address is pushed
onto the R6-R7 stack, and the PC is
loaded with the address the jump is to
be made to NUMVA+ (located at 22403).
When the system executes a RTN, it pops
the address of the next instruction off
of the R6-R7 stack and loads that value
into the PC.

Makes a jump to ROUTINE by adding the
value of ROUTINE as a label to the
location of the start of the program
(BINTAB) which is stored in R14-R15.
In all other aspects it is the same as
JSB=.

This group of instructions gives the capability for branching control to
addresses that are defined by the label that the jump is being made to.
If a condition is true, then the jump is made; otherwise, the jump is
ignored and the next instruction is executed. These branching
instructions use relative addressing. Labels that are used must be
contained inside the program. The program counter (PC) is loaded with
the value of the address, and program control moves to that location in
the program memory. The maximum number of bytes that may be jumped is
177 octal (forward) higher-addressed bytes or 200 octal (backward)
lower-addressed bytes.

Each conditional jump has a complement, except the jump on no overflow,
which jumps on the opposite of the relation. For instance, the jump on
negative is simply the opposite of the jump on positive and may be used
in the same circumstances depending on the personal preference of the
programmer. All of the jumps will be discussed.

6-39

Section 6: Writing Binary Programs

JMP

The unconditional jump always occurs when executed. It is the only jump
that does not check the status of any system flags.

Example:

JMP ALWAYS

JNO

Will always jump to ALWAYS, a location
in the program.

Since the system has no jump on overflow, a jump on nrr overflow must be
used for both cases. If the OVF flag is set to 1, then the jump is
ignored and the next instruction will be executed. In the case of an
overflow, the code after the jump instruction will perform the necessary
steps, and then if necessary, continue the program.

Example: If a flag (E) is to be incremented when an overflow occurs:

ADM R20,R30

JNO RESUME

ICE

RESUME BIN

JPS, JNG

Executes the operation that may set
an overflow (OVF).

If there has been no overflow, the
program will begin at RESUME.

If JNO is ignored, then an overflow
has occurred, and the program
increments the E flag.

Resumes the program.

Jump on positive and jump on negative are made by checking the status of
the most significant bit (NG) flag and taking the "exclusive or" of NG
and the OVF. In the case of two positive numbers added together
resulting in a negative number (NG=l), the jump on positive takes that
into consideration and would jump because NG=l and OVF=0 and the
"exclusive or" would be 1 and the jump would be made.

Example: If R20 contains 073 and R30 contains 125 then the addition:

ADDITION ADB R20,R30

JNG ADDITION

6-40

Adds 073 to 125 (octal) and sets NG=l and
OVF=0.

Since the exclusive OR of NG=l and OVF=0
is 1 and JNG expects it to be 0, then the
jump will not be made even though the NG
flag says it is negative.

Section 6: Writing Binary Programs

JOD, JEV

The least significant bit flag (aD) shows whether a number is even or
odd. If the number is even, aD is set to 0 and JEV, jump on even, will
take place. If the number is odd, OD=l, then JOD, Jump on odd, will
take place. This conditional jump works in binary and BCD modes.

Example: To find out if the 16-bit binary number stored in R36-R37
is a prime number, all even numbers may be ignored by the
following code:

TSM R36 Checks to see if the number is even.
JEV NOTPRIME Since the number is odd, it might be prime.

JZR, JNZ

When making comparisons and when decrementing a counter, the jump on 0
and jump on not 0 are useful. If two quantities are equal, comparing
them will cause the ZR flag to be set to 1. To simulate a conditional
IF-THEN statement, a comparison is made prior to the jump. To simulate
a controlled FOR-NEXT loop, the loop counter is decremented and the
conditional jump made.

Example: To simulate IF X=80 THEN RESUME (R20 contains 120 octal
which is 80 decimal):

CMB R20,=120

JZR RESUME

Compares R20 to 120. Since they are
equal, the ZR flag is set to 1.

Since ZR=l, the jump is made to the
location RESUME.

To simulate the FOR-NEXT loop, the number of times that the loop will be
executed is decremented and a check is made to see if that number of
loops has been done.

Example: If R20 contains the number of times the loop is to be executed,
then FOR X=l to 20 wouJ.d be:

DCB R20

JNZ LOOP

After the statements have been executed,
R20 is decremented. If R20 is equal to
zero, the ZR flag is set to 1.

If the loop has not been done the
specified number of times, it must be
done again starting at the beginning of
the statements (LOOP).

6-41

Section 6: Writing Binary Programs

JCY, JNC

When the carry flag (CY) is set to 1, it indicates an addition has
become too large for the register to handle. This happens often in
subtraction and in comparisons. To simulate the statement IF-THEN with
a "greater than or equal to" or "less than" relation, a compare is made
between the values, and the CY flag is checked.

Example: If R20 and R30 contain the first and second numbers to be
included in the compare, then the statement IF QUANTITYI >
QUANTITY2 THEN RESUME could be:

CMB R20,R30

JCY RESUME

JEZ, JEN

Compares R20 to R30 by adding the
negative of R30 to R20 and sets the
status flags. If R20 is greater than or
equal to R30 then CY=l. If R20 is less
than R30, CY=0.

Jumps to the location RESUME if R20 is
greater than R30 (CY=l).

The jump on E equal to zero and the jump on E not equal to zero check
the status of the E register for parsing routines and user defined
flags. In parse routines the E flag will be set to 1 if the token
searched for is found, and 0 if not found. After returning from a parse
routine it is convenient to set an error message or to do another
procedure if the token is not found. Also, if the E register is used as
a prog ramming flag, it may be set on a spec ial cond i tion to jump to a
procedure.

Example: To demand a numeric parameter at parse time:

JSB=NUMVA+
JEZ ERR

JLZ, JLN

Try to parse a numeric value.
Jump if not found to error reporting.

JLZ: Jump on left digit 0 (left BCD digit).
JLN: Jump on left digit not 0.

Example: If R20 contains 011, the following code would take the jump:

6-42

TSB R20
JLZ TRUE

Section 6: Writing Binary Programs

JRZ, JRN

JRZ: Jump on right digit 0 (right BCD digit).
JRN: Jump on right digit nonzero.

Example: If 011 is in R20, the following code would not take the jump:

TSB R20
JRZ TRUE

ARP and DRP Load Instructions

These two instructions are available for loading the address register
pointer or the data register pointer. Theyare not normally needed
because the assembler automatically generates the ARPs and the DRPs
where required.

ARP

Sets the address register pointer to the address register.

DRP

Sets data register pointer to the data register.

Use of R*

When entering source code, you may substitute R* for the AR or the DR in
any CPU instruction. This causes the DRP or the DRP to be loaded with
the least significant six bits of CPU register R0. The effect is that
the DR and the AR are specified by the contents of R0. The CPU uses the
DRP1 and ARP1 opcodes to implement this feature.

Example:

LDB R0, = 26
LDB R* ,R30

STB R40, R*

Loads R0 with 26.
Loads CPU register specified by R0.
(which is now R26) with the contents
of R30.
Stores contents of R40 into register
(R26 now) specified by R0.

To avoid confusion, R1 is not allowed in either the DR or the AR fields.
This means that CPU register R1 is inaccessible except by a multi-byte
R0 operation or when R0=1 and the ARP or the DRP is specified by R*.

6-43

Section 6: Writing Binary Programs

Other Instructions

There are a few other CPU instructions which you can use.

BCD

Sets decimal mode (DCM=I). Arithmetic operations will be in BCD format.

BIN

Sets binary mode (DCM=0).
format.

CLE

Arithmetic operations will be in binary

The four bits of the extend register are set to 0.

DCE

The extend register is decremented by 1. This instruction is always a
binary operation, regardless of the DCM flag status.

PAD

Restores ARP, DRP, and status (usually after a SAD instruction) by
popping them off the stack. The stack pointer is decremented by three,
and all status flags except E are altered by the contents of the three
stack locations that are read.

The first byte processed is read as the least LSB in bit 0, the RDZ bit
1, Z in bit 2, LDZ in bit 6, and MSB bit 7. The second byte is read as
the DRP in bits 0-5, DCM status in bit 6, and overflow flag in bit 7.
The third byte is read as the ARP in bits 0-5, carry flag in bit 6, and
overflow flag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

6-44

SP~

Increasing
Addresses

OVF

OVF

MSB

CY ARP

OCM ORP

LOZ o I 0 I 0 I Z I ROZ I LSB

Section 6: Writing Binary Programs

RTN

The subroutine return stack
return address is read from
counter.

SAD

pointer is decremented
the stack and written

by two.
into the

Then the
program

Three bytes are pushed onto the stack to save the ARP, the DRP, and the
status flags (except E). The first byte contains the ARP in bits 0-5,
CY in bit 6, and the overflow flag in bit 7. The second byte contains
the DRP in bits 0-5, DCM status in bit 6, and the overflow flag in bit
7. The third byte contains the LSB in bit 0, RDZ in bit 1, Z in bit 2,
LDZ in bit 6, and the MSB in bit 7. The stack pointer is incremented by
three. Status is not affected by this operation.

Following a SAD instruction, the stack contents are as shown here:

Increasing
Addresses

1
SP -+-

OVF

OVF

MSB

CY ARP

OCM ORP

LOZ o I 0 I 0 I z I ROZ J LSB

6.4 Assembly of CPU Instructions

When the address field of an instruction consists of
each source statement is usually assembled into three
code. These bytes are assembled in order as:

a DR and an AR,
bytes of machine

1. DRP: DRP set to point to DR.

2. ARP: ARP set to point to AR.

3. Opcode: Perform operation.

A stack push instruction such as PUBD would be assembled and appear as
shown here:

Byte Number Machine Code Source Code

000227 110 006 342 PUBD R10,-R6

6-45

Section 6: Writing Binary Programs

When the address field of an instruction consists of a DR and a label,
as in the case of literal direct and literal indirect addressing (such
as, LDMI R32, =ADDRS), each source statement is usually assembled into
four bytes of machine code:

1. DRP: DRP set to point to DR.

2. Opcode: Perform operation.

3. Low-order byte of literal quantity.

4. High-order byte of literal quantity.

When the address field of an instruction consists of a DR, an AR, and a
label, as in the case of indexed direct and indexed indirect addressing
(such as, LDBI R36,X32,TABLE), five bytes of machine code may be
generated for each source statement:

l. DRP: DRP set to point to DR.

2. ARP: ARP set to point to AR.

3. Opcode: Perform operation.

4. Low-order byte of address.

5. High-order byte of address.

The ARP and the DRP During Assembly

An optimizing feature of the Assembler ROM is the deletion of
"unnecessary" ARP and DRP instructions dur ing assembly.

If an instruction if not labeled (that is, there is not an entry in the
label field) and the ARP (and/or DRP) is already set to the correct
value, the previously set ARP (and/or DRP) is not generated during
assembly.

Example:

Byte Number

000227
000232

Machine Code

110 006 342
342

Source Code

LABEL POBD R10,-R6
POBD R10,-R6

In this example, both the ARP and the DRP are specified beginning with
byte 227. Since they are now correctly set for the next instruction,
they are automatically deleted when the second POBD R10,-R6 instruction
is assembled. This results in the machine code shown in byte 232.

6-46

Section 6: Writing Binary Programs

Not all previously set ARPs and DRPs are deleted during assembly. Times
when they are not deleted include:

• Labeled instructions: Since a jump from anyplace in code may
cause execution to resume at the label, the first ARP and DRP
are not deleted after an instruction that contains an entry in
the label field.

• Returns: After executing a subroutine jump, then returning, the
first ARP and DRP encountered are not deleted.

• PAD: Following a PAD instruction, the first ARP and DRP are
not deleted.

Pseudo-Instructions

Instructions to the assembler are pseudo-instructions. Each may be
entered by typing a pseudo-opcode in the same field as the opcode for an
instruction, followed by any additional operand.

Pseudo-instructions perform these three functions when encountered
during assembly:

• Assembly control.

• Data definition.

• Conditional assembly.

ABS base address

If the base address is less than 100000 (octal) then a ROM file will be
generated at assembly time. Otherwise a binary program file will be
generated and all labels are given absolute addresses, not relative
addresses. The ABS statement must precede a NAM statement, if used.

FIN

Signifies the end of the source code. TIlis pseudo-instruction is
required for assembly.

GLO file name

If no file name is specified , GLO declares this source code to be a
global file to be used in the assembling of the current source code. If
there is a file name, it is the name of the global file to be used in
the assembling of this source code. Comments are not allowed on the
same line as the GLO instruction, and the instruction must precede ABS
and NAM.

6-47

Section 6: Writing Binary Programs

LNK file name

will load
assembling.
possible.

another file containing
Allows assembly of larger

more source code and continue
programs than would otherwise be

LST

Causes the code to be listed on the current PRINTER IS device at
assembly. The printed lines will be truncated at whatever the current
line length is.

An address that is undefined when its label is encountered will be
printed in object code as 326, 336, or 377, depending upon whether it is
a DEF, a relative jump, or a GTO statement.

NAM binary program i, unquoted string

Sets up the program control block for a binary program. Should be
preceded only by GLO, ABS, LST, UNL, DAD, EQU, or comments.

ORG address

Specifies
addresses
files.

UNL

a base address which is added to all
(DADs). This pseudo-instruction is most

following
useful in

Turns off the
instruction.

list feature which was turned on by the LST
After an UNL, code is not listed during assembly.

Pseudo-Instructions for Data Definition

ASC numeric value, unquoted string
ASC quoted string

defined
global

pseudo-

Inserts into the object code the ASCII code for the number of characters
specified of the unquoted string. Inserts the entire quoted string.

ASP numeric value, unquoted string
ASP quoted string

Same as ASC except that the parity bit of the string's final character
is set. (During operation, the system determines the end of an ASCII
string in some system tables by checking to see if the character's
parity bit is set. When the bit has been set, the system assumes the
next character begins a new string or entry in the table.)

6-48

Section 6: Writing Binary Programs

BSZ numeric value

Inserts into the object code the octal number of bytes of 0's specified
by the numeric value.

BYT numeric value [,numeric value •••]

Inserts literal values into the object code.

DAD Label DAD address

Assigns either an absolute address or a constant to a label. DAD and
EQU are similar; DAD is usually used for addresses, while EQU is used
for values other than addresses. ORG affects only DADs.

DEF label

Inserts the two-byte address associated with the label.

EQU Label EQU numeric value

Assigns either an absolute address or a constant to a label. This
instruction is similar to the DAD pseudo-instruction.

GTO label

Generates four bytes of object code which load the program counter with
the address, minus one, of the label. The label must be an absolute
address.

The CPU relative jump instructions can cause jumps of from 177 (octal)
to -200 (octal) memory locations. The GTO pseudo-instruction is useful
for jumping beyond this range.

The GTO instruction is primarily for use in ROMs. It should not be used
in a binary program unless that program has been declared an absolute
program.

VAL label

Inserts the one-byte literal octal value associated with the label.

Pseudo-Instructions for Conditional Assembly

These instructions permit you to control assembly with conditional
assembly flags. A conditional assembly flag has the same constraints as
a label--it can be no more than eight characters in length, and the
first character cannot be a digit.

6-49

Section 6: Writing Binary Programs

A conditional assembly flag is treated the same as a label by the
system. (For example, an assembly flag can be located by a label
search.) For this reason, a conditional assembly flag should be unique,
and should not duplicate a label.

AIF assembly flag name

Tests the specified conditional assembly flag and, if true, continues to
assemble the following code. If the flag test false, the source code
after the flag is treated as if it were a series of comments until an
ElF (end of conditional assembly) instruction is found.

CLR flag name

Changes the specified conditional assembly flag to false.

ElF

Terminates any conditional assembly in process. Only one conditional
assembly can be handled at a time. If a second one is encountered while
the first is still active, the second will override the first.

SET flag name

Sets the specified conditional assembly flag to true.

6.5 Multiple Binary Programs

There can be up to five binary programs in memory at one time. There is
a table of two-byte addresses called BINBAS that contains the base
addresses in the order in which the binary programs were loaded. Bytes
that are not used are zero. Anytime the system calls a binary program,
it first fetches from BINBAS the base address for that program and
stores it in BINTAB.

The ASCII
order they
called.

6-50

keyword tables and the binary programs are searched in the
are loaded. This is also how initialization routines are

SAMPLE BINARY PROGRAMS

7.1 Introduction

Section
VII

This section includes five binary programs. In addition to being listed
here, these programs are on the disc you received with your Assembler
ROM. Source code file names end in "S", while object code file names
end in "B."

Each of these programs is designed to illustrate assembly language
programming, and each provides a function or keyword that is useful to
the HP-87 operating system.

At the end of each program listing is a table of system routine
addresses used by the program. Inserting the disc and placing a GLO
GLOBAL pseudo-opcode near the beginning of the program eliminates the
need for these addresses in some of the sample programs. Certain
programs call system routines whose addresses are not available on the
global file disc.

The string highlight program includes instruction on how to use a binary
program following the listing.

7-1

Section 7: Sample Binary Programs

7.2 String Highlight

Source Code: HGL$S

Object Code: HGL$B

!***
!* This binary program Implements a string function cal led HGL$ *

1000
1010
1020
1030
1040
1050
1060
1070 ! *
1080 ! *

!* which accepts one string parameter and returns that string with *
! * the most sign I f I cant bit of each character set.
!* This binary program Is a translation of the UDL$ binary program *
!* from the HP-85 Assembler Rom manual. *
! * *

(c) Hewlett-Packar'd Co. 1982

1090 !* An example of how this function might be used
1100 ! *

Is:

*
*
*
*
*
*

100 INPUT A$
110 DISP HGL$(A$)

!*
! ********************~,**************************;**********************

1110 ! *
1120 1*
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550

7-2

NAM 53,HGLBIN SET UP THE PROGRAM CONTROL BLOCK
DEF RUNTIM ! PTR TO RUNTIME ADDRESS TABLE
DEF ASCIIS PTR TO KEYWORD TABLE
DEF PARSE ! PTR TO PARSE ADDRESS TABLE
DEF ERMSG PTR TO ERROR MESSAGE TABLE
DEF INIT PTR TO INIT ROUTINE

!***
PARSE BSZ 0 ! NO PARSE ROUTINES
! *******;**
RUNTIM BYT 0,0 ! DUMMY TOK~ 0 RUNTIME ADDRESS

DEF REV. ! TOK~ 1 RUNTIME ADDRESS
DEF HGL$. ! TOK~ 2 RUNTIME ADDRESS
BYT 377,377 ! TERMINATE RELOCATION

!***
ASCIIS ASP "HGL$B" ! KEYWORD ~1

ASP "HGU" ! KEYWORD ~2

ERMSG BYT 377 ! TERMINATE ASCII TABLE & ERMSG TABLE
!***
I NIT RTN ! ~m I NITI ALI ZATI ON TO BE DO~IE

! *******'*************~'**

HGU.

MORE

DONE

B~'T 30,56
POMD R45,-R12'
POMD R30,-R12
STM R30, R55
CLB R57
JSB =RSMEM­
PUMD R30,+R12'
PUMD R65,+R12
BIN
LDMD R75,=PTR1-
PUMD R75,+R6
LDB R34, =200
STMD R45,=PTR1-
STMD R65,=PTR2-
DCM R30
JNC DONE
LDBI R20,=PTR1-
ORB R20,R34
STBI R20, =PTR2-
JMP MORE
POMD R75, -R6

ATTRIBUTES ($ FUNCTION, 1 $ PARAMETER)
POP STRING ADDRESS OFF OF STACK
GET LENGTH OF STRING OFF OF STACK
LENGTH NEEDS TO BE IN 55 FOR 'RSMEM-'
ZERO OUT MSB OF RESERVED LENGTH
GO GET SOME TEMPORARY MEMORY
PUSH LENGTH BACK ONTO THE R132 STACK
PUSH ADDRESS RETURNED BY RSMEM ON STACK
MAKE SURE OF MRTH MODE FOR LOOP COUNTER
SAVE VALUE OF PTR1

ON R6 STACK
SET UP MASK
RDDRESS OF 1st BYTE OF ORIGINRL STRING
ADDRESS OF 1st BYTE OF RESERVED MEMORY
DECREMENT LOOP COUNTER
JIF NO CHARACTERS LEFT
GET NEXT CHARACTER FROM ORIGINAL STRING
SET MSB OF CURRENT CHARACTER
STORE HI-LIGHTED BYTE TO RESERVED MEMORY
GO GET SOME MORE
RETRIEVE OLD VRLUE OF PTR1

Section 7: Sample Binary Programs

1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

STMD R75,=PTR1-
RTN

RND RESTORE IT BEFORE RETURNING
DONE

!***
BYT 0,56 NO PRRRMETERS, STRING FUNCTION

REV. BIN FOR RDDRESS MRTH

DRTE
DRTE-

lDM R43,=40D,0 lORD THE lENGTH OF THE STRING
DEF DATE- RND THE RDDRESS OF THE STRING
BYT 0 (MRKE IT R THREE BYTE RDDRESS)
RDMD R45,=BINTRB ! MRKE THE RDDRESS RBSOlUTE
PUMD R43,+R12 ! PUSH IT TO THE OPERRTING STRCK
RTN DONE
RSC "40.102:veR 2891 .oC drakcaP-ttelw,~H)C("
BSZ 0 ! PlRCE HOLDER FOR RDDRESS lORD

!***
BINTRB DRD 104070
RSMEM- DRD 31741
PTR1 - DRD 177711 ! DEFI NE RDDRESSES
PTR2- DRD 177715

FI N TE RMI NRTE RSSE r1Bl Y

7-3

Section 7: Sample Binary Programs

1. In assembler mode load the source code:

ALOAD "HGL$S" [END LINE]

2. To assemble the source code:

ASSEMBLE "HGL$B" [END LINE]

If you want a printed copy of the object code as it assembles, you
must designate a PRINTER IS device (that is, PRINTER IS 701).
There must also be an LST instruction at the beginning of the
code. The object code is now assembled and stored on your disc.

3. To use this function, return to BASIC mode. Type:

BASIC [END LINE]

4. Load the object code. Type:

LOADBIN "HGL$B" [END LINE]

5. Before running this program you may wish to set a breakpoint.

PC

With the system monitor inserted, type:

BKP REL (100)

The REL instruction sets the breakpoint at an absolute address in
memory. The breakpoint information will appear on the CRT. It
will also be printed if you specify a PRINTER IS device. For
example:

BKP REL (100) ,701

The program will now halt at the address specified in the
breakpoint. Your breakpoint will look similar to this when
HGL$ ("string") is typed:

DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP;2 PTR1 PTR2 ROM
114334 57 55 0 0 0 1 0 0 1 0 00 114333 000000 0370014 03"('0013 000

0 1 3 6 7 MEM 114233:0
ROO 005 001 242 053 334 no 100 204 110 107 114 10;2 254 000 002 053 HGLB,
R10 307 200 350 212 075 210 001 001 110 107 114 044 102 040 040 040 HGUB
R20 233 230 053 016 010 013 310 200 040 040 000 000 000 000 000 000
R30 041 000 324 230 267 230 233 230 233 230 277 230 307 230 277 230 ? G ?
R40 015 000 000 000 000 OE;O 360 001 320 230 321 230 233 230 017 231 P Q
R50 110 053 230 002 000 041 000 001 324 230 377 377 110 107 114 044 T IUIHGL$
R60 000 000 000 000 000 041 360 001 302 110 107 114 244 377 236 030 BHGL$Il
R70 016 004 000 000 000 017 360 001 056 145 012 343 130 343 055 243 .e cXc-iI

7-4

Section 7: Sample Binary Programs

After execution is halted at the breakpoint, you may single
step a specified number of instructions using the TRACE
instruction. For example, to trace the next 10 program steps,
type:

TRACE 10

The TRACE instruction will give you status information for
each of those 10 steps, as well as the contents of memory.
TRACE 10 will output the following information:

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP2 PTR1 PTR2 ROM
114335 57 55 0 0 0 1 1 1 0 0 00 114334 000000 0370014 03,'0013 000

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP;~ PTR1 PTR2 ROM
031741 57 55 0 0 0 1 1 1 0 0 00 114335 000000 0370014 03,'0013 000

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKPZ PTR1 PTR2 ROM
031742 57 55 0 0 0 1 1 1 0 0 00 031741 000000 0370014 03,'0013 000

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP;~ PTR1 PTR2 ROM
031743 57 55 0 0 0 1 1 1 0 0 00 031742 000000 0370014 0370013 000

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP2 PTR1 PTR2 ROM
031744 65 55 0 0 0 1 1 1 0 0 00 031743 000000 0370014 0370013 000

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP2 PTR1 PTR2 ROM
031747 65 55 0 0 0 1 0 0 1 0 00 031744 000000 0370014 03,'0013 000

PC DR RR OV CY NG LZ ZR RZ OD DC E BKP1 BKP2 PTR1 PTR2 ROM
031750 65 55 0 0 0 1 0 0 1 0 00 031747 000000 0370014 0370013 000

PC DR RR OV CY NG LZ Z~~ RZ OD DC E BKP1 BKP2 PTR1 PTR2 ROM
031751 65 55 0 0 0 1 0 0 0 0 00 114333 000000 0370014 0370013 000

0 1 3 4 6 7 MEM 114233:0
ROO 005 001 242 053 351 OE;3 102 204 110 107 114 10;2 254 000 002 053 HGLB,
R10 307 200 350 212 075 210 001 001 110 107 114 044 102 040 040 040 HGUB
R20 233 230 053 016 010 013 310 200 040 040 000 000 000 000 000 000
R30 041 000 324 230 267 230 233 230 233 230 277 230 307 230 277 230 ? G ?
R40 015 000 000 000 000 OE;O 360 001 320 230 321 230 233 230 017 231 P Q
R50 110 053 230 002 000 041 000 000 324 230 377 377 110 '107 114 044 T nHGL$
R60 000 000 000 000 000 256 231 000 302 110 107 11'. 244 377 236 030 BHGLU
R70 016 004 000 000 000 017 360 001 056 145 012 343 130 343 055 243 ,e cXc-1I

To continue execution after a breakpoint or after a TRACE
instruction, press [RUN].

6. To run this program without halting, type:

HGL$ ("string")

after the LOADBIN instruction.

7-5

Section 7: Sample Binary Programs

7.3 CRT Control

Source Code: ALPHAS

Object Code: ALPHAB

!*** 1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270 !*
1280 !*
1290 1*
1300 !*
1310 ! *
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

7-6

!* This binary program implements three CRT contr'ol statements: *
1* AWRITE [<row>,<column>l [,<string>l *
1* AREAD <string variable> *
1* START CRT AT <absolute 1 ine ~> *
1* AWRITE al lows you to do one of three things: *
1* 1) force ALPHA mode without moving the cursor position *
1* 2) force ALPHA mode and move the cursor to a position which*
1* is relative to the top left of the current screen *
1* force ALPHA mode and move the cursor to new position *
1* and output a string at that location, leaving the cursor*
1* positioned at the beginning of the string. *
1* In all cases the cursor is not actually displayed, unti 1 some *
1* other normal cursor movement occurs. *
1* AREAD allows you to read a string of characters from the CRT into *
1* a string variable. Usually the cursor wi 1 1 have been moved to *
!* the correct position with the AWRITE statement. *
!* START CRT AT al lows you to scroll the display up or down or jump *
1* to an entirely different page, all under program control. *
!* NOTE: this routine does not change the cursor's location in *
1* CRT memory, so the cursor may get lost off of the screen when *
!* this command is used. It can be brought back by use of the *
!* AWRITE statement, or by using the Home Cursor key. *
1* ALPHAB returns the revision date of the binary program. *
!***
1* *
!* An example of how this binary might

110 FOR I-1 TO 1000
120 START CRT AT IPCRND*50)

be used in BASIC is:

130 AWRITE RND*16,RND*80 ~ AREAD A$
140 AWRITE RND*16,RND*80,A$
150 NEXT I

*
*
*
*
*
* !* This is guaranteed to turn any intelligent display into nonsense. *

1* *
!***
MYBPGM~ EQU 52 BINARY PROGRAM NUMBER

NAM 52,ALFA NAME BLOCK FOR BINARY
DEF RUNTIM ADDRESS OF RUNTIME ADDRESSES
DEF ASCIIS ADDRESS OF ASCII TABLE
DEF PARSE ADDRESS OF PARSE ADDRESSES
DEF ERMSG ADDRESS OF ERROR MESSAGES
DEF INIT ADDRESS OF INITIALIZATION ROUTINE

RUNTIM BSZ 2 PLACE HOLDER
DEF ALFA. RUNTIME LABEL FOR 'AWRITE'
DEF AREAD. RUNTIME FOR 'AREAD'
DEF STARTAT. CRT TOP LINE
DEF REV. RUNTIME FOR REVISION

Section 7: Sample Binary Programs

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
202·0
2030

PARSE BSZ 2 PLACE HOLDER
DEF ALPHAP PARSE LABEL FOR 'AWRITE'
DEF AREADP PARSE LABEL FOR 'AREAD'
DEF STARTATP PARSE FOR TOP LINE
BYT 377,377 END OF RELOCATABLES

!*f***
ASCIIS BSZ 0

ERMSG

ASP "AWRITE"
ASP "AREAD"
ASP "START CRT AT"
ASP "ALPHAB"
BYT 377

TOKEN 1
TOKEN 2
TOKEN 3
TOKEN 4
END OF ASCII TRBLE

1***-************************
INIT RTN ! NO INITIALIZATION TO BE DONE
!***
STARTATP PUBD R43,+R6 SAVE TOKEN~

JSB -NUMVA+ TRY TO GET A NUMBER
JEZ ERR88 GOT AN ERROR

OKAY LDB R53,-371 BPGM TOKEN
STBI R53,-PTR2- STORE IT
LDB R53,·MYBPGM~ GET MY BINARY NUMBER
STBI R53,·- PTR2 - STORE IT
POBD R53,-R6 GET THE TOKEN NUMBER
STBI R53,=PTR2- STORE IT
RTN ALL DONE

!***;**********************
ALPHAP

ERR88

OKAY2

PUBD R43,+R6
JSB -NUMVA+
JEZ OKAY
JSB -GETCMA
JSB -NUMVAL
JEN OKAY2
POBD R43,-R6
JSB -ERROR+
BYT 88D
CMB R14,=54
JNZ OKAY
JSB -STREX+
JEZ ERR88
JMP OKAY

SAVE TOKEN NUMBER
TRY TO GET A NUMBER
MUST BE JUST 'RWRITE'
DEMAND A COMMA
DEMAND A NUMBER
JIF BOTH NUMBERS THERE
CLEAN UP R6
ERROR HANDLING ROUTINE
ERROR NUMBER
MAKE SURE OF A COMMA
JIF JUST 'AWRITE X,Y'
PARSES A STRING EXPRESSION
JIF NO STRING TO ERROR
OTHERWISE FINISH UP THE PARSING

;***********************
AREADP PUBD R43,+R6 SAVE THE TOKEN

JSB -SCAN LET'S DO A SCAN
JSB -STRREF MUST BE 'A STRING REFERENCE
JMP OKAY FINISH THE PARSE

BYT 0,56 NO PARAMETERS, STRING FUNCTION

REV. BIN FOR ADMD R45,-BINTAB
LDM R43,-40D,0 LOAD THE LENGTH OF THE STRING
DEF DATE • AND THE ADDRESS OF THE STRING
BYT 0 (MUST BE THREE BYTE ADDRESS)
ADMD R45,-BINTAB MAKE THE ADDRESS ABSOLUTE
PUMD R43,+R12 ! PUSH IT'ALL ON THE OPERATING STACK
RTN DONE
ASC "30.102:veR 2891 .oC drll.kclI.P-ttelweH)c("

DATE BSZ 0 ! PLACE HOLDER FOR THE LABEL (ADDRESS)
I ***

7-7

Section 7: Sample Binary Programs

BYT 241
ALFA. BIN

LDBD R37,mCRTSTS
JPS INALPHA!
JSB -ALPHA.

INALPHA! CMMD R12,~TOS
JZR NO-ADR
JSB "DECUR2
JSB -HMCURS
LDMD R14,-BINTAB
CLM R43
LDM R20,R12
SBM R20,-25,O
CMMD R20,"TOS
JNZ A-ONLY
POMD R43,-R12

A-ONLY STMD R43,X14,SAV-$
JSB -TWOB

CALCADR DCM R56
JNG GOT-IT
ADM R46,~120,O
JMP CALCADR

GOT-IT STM R46,R24
JSB -MOVCRS
LDMD R43,X14,SAV-$
LDM R56,R43
JZR NO-ADR
STMD R45,·PTR2
LDM R36,R43

ALOP LDBI R32,-PTR2-
JSB -CHKSTS'
STBD R32,"CRTDAT
DCM R36
JNZ ALOP

NO-ADR RTN

BASIC STATEMENT
FOR MATH
CHECK CRT STATUS
JIF ALREADY IN ALPHA MODE
IF NOT, MAKE IT SO
ANYTHING ON THE R12 STACK
JIF JUST 'AWRITE'
KILL BOTH POSSIBLE CURSORS
MOVE THE CURSOR TO THE HOME POSITION
BECAUSE I'M RELATIVE
FAKE 0 STRING LENGTH
COPY OF R12
SUBTRACT 25
WHAT'S ON R12
JIF ONLY X,Y
GET LENGTH AND ADDRESS OF STRING
SAVE LENGTH AND ADDRESS
GET TWO BINARY NUMBERS OFF OF R12
DECREMENT 'Y'
JIF ADDRESS FIGURED OUT
ADD TO GET TO NEXT LINE
TRY FOR ANOTHER ONE
COPY ADDRESS DISPLACEMENT TO 26
MOVE THE CURSOR
GET LENGTH AND ADDRESS OF STRING BACK
GET LENGTH
JI F NO LENGTH
SET MEMORY POINTER TO STRING ADDRESS
GET LENGTH
GET A CHARACTER
WAIT FOR CRT NOT BUSY
STORE IT
ANY CHARACTERS LEFT
JI F THE RE ARE
ALL DONE

2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

! ***

7-8

BYT 241
AREAD. BIN

LDBD R37,-CRTSTS
JPS INALPHAII
JSB -ALPHA.

INALPHAII JSB -DECUR2
POMD R73,-R12
STM R73,R55
PUMD R73,+R12
CLB R57
JSB -RESMEM
STM R55,R73
STM Rso5, R75
STMD R65,·PTR2
PUMD R73,+R12
TSM R55
JZR DO~STO
LDMD R34,~CRTBYT
PUMD R34,+R6
JSB -BYTCRI

BASIC STATMENT
FOR MATH
GET CRT STATUS
JIF ALREADY IN ALPHA MODE
IF NOT, MAKE IT SO
KILL THE CURSORS
GET STRING STUFF
COpy TO 55
PUSH THE STUFF BACK
CLEAR MSB
LET'S GO RESEARVE SOME MEMORY
COpy 55 TO 75
COPY SINK ADDRESS
SET MEMORY POINTER
PUSH STRING STUFF ONTO R12
HOW BIG CAN I GO
JIF 0
GET CURRENT POSITION
SAVE IT
SET CURRENT POSITION

Section 7: Sample Binary Programs

2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100

ALOOP

DO-STO

JSB -INCHR
STBI R32,=PTR2-
JSB "RTCUR.
DCM R55
JNZ ALOOP
POMD R34,-R6
JSB '"BYTCR!
JSB -STOST
RTN

GO GET A CHARACTER
STORE IT
MOVE 1 BYTE
ANY MORE
JIF THERE ARE
GET OLD CRTBYT BACK
SET CURRENT POSITION
SAVE IT AWAY
ALL DONE

*** * START CRT AT THE SPECIFIED NUMBER *
~:********

BYT 241
STARTAT. JSB -ONEB

BCD
LLM RII.
BIN
STM RII,RII
LLM RII
LLM RII
ADM RII,RII
STM RII,RII
LDMD RII,-ASIZE
DRP R46
JSB -MOD
STM RII,R34
JSB -SAD1
RTN

GET A NUMBER OFF OF R12
FOR MATH
*16
FOR THE REST
COPY IT
*32
*64
*80
COPY TO 46
GET ALPHA SIZE INTO 76
GET READY FOR 'MOD'
MOD IT
COPY RESULT TO 34 FOR
SET CRT START ADDRESS
ALL DONE

'SAD1'

!***,**********************
SAV-$ BSZ 5 ! SAVE AREA FOR ALPHA
!***
NUMVA+
GETCMA
NUMVAL
STREXP
ERROR+
PTR2-
SCAN
STRREF
STREX+
BINTAB
CRTSTS
ONEB
PTR2
CHKSTS
CRT BAD
CRTDAT
ALPHA.
TOS
DECUR2
HMCURS

DAD 22403
DAD 23477
DAD 22406
DAD 23724
DAD 10220
DAD 177715
DAD 21110
DAD 24056
DAD 23721
DAD 104070
DAD 177702
DAD 12153
DAD 177714
DAD 13204
DAD 177701
DAD 177703
DAD 12413
DAD 101744
DAD 13467
DAD 13661

DEFI NE ADDRESSES

7-9

Section 7: Sample Binary Programs

3170 RTCUR. DAD 13651
3180 STOST DAD 46472
3190 ASIZE DAD 104744
3200 SAD1 DAD 13723
3210 MOD DAD 14216
3220 FIN TERMINATE ASSEMBLY

7-10

Section 7: Sample Binary Programs

7.4 Line Input

Source Code: LINPUTS

Object Code: LINPUTB

10 !**
20 1 * *
30 1* A KEYWORD THAT IS PARSED INTO MORE THAN ONE TOKEN *
40 1* *
50 1* A TOKEN WITH A CLASS OF 44 (MISC IGNORE AT DECOMPILE) *
SO 1* that makes jt jnvjsjble when the program js 1 jsted *
70 1* *
80 1* (c) 1982 Hewlett-Packard Co. *
90 1* *
100 1* Thjs bjnary program jmplements the BASIC statement 'LINPUT' *
110 1* whjch acts exactly the same as the BASIC statement 'INPUT' except *
120 1* that jt wjll only al low you to jnput a strjng value and that *
130 !* strjng value may contajn commas and/or quotes. The keyword stands *
140 1* for Ljne INPUT, as jt al lows the jnputjng of a 1 jne regardless *
150 1* of what characters are jn that line. *
1S0 !* *
170 !**;~********************
180 1* *
190 1* An example of how a BASIC program mjght use LINPUT js: *
200 1 * *
210 1* 100 DISP "Address of destjnation"; *
220!* 110 LINPUT Dest_addr$ *
230!* 120 PRINT~ 1; Dest_addr$ *
240 ! * *
250 !***
2S0 NAM 51,LINPUT SET UP PCB, BPGM ~ IS 51
270 DEF RUNTIM POINTER TO RUNTIME ADDRESS TABLE
280 DEF ASCIIS POINTER TO TABLE OF ASCII KEYWORDS
290 DEF PARSE POINTER TO TABLE OF PARSE ADDRESSES
300 DEF ERMSG POINTER TO TABLE OF ERROR MESSAGES
310 DEF INIT POINTER TO INITIALIZATIoN ROUTINE
320 !***
330 1* The wayan INPUT statement works in the series 80 computers is *
340 !* this: the keyword is actually parsed into two tokens, so the job *
350 !* of doing an INPUT is split into three parts; two are performed by *
3S0 !* the two INPUT tokens and the third js performed by the system. *
370 !* The first of the two tokens outputs a question mark to the CRT and*
380 !* puts the computer into ~ pseudo-calculator mode, which is known *
390 !* as Idle-jn-Input, by setting CSTAT (R1S) to a 4, and then sets the*
400 !* immediate break blts jn XCOM (R17) usjng "or"wlth 240(octal). Then*
410 1* the first token terminates jts executjon by returnjng to the *
420 !* jnterpreter. The interpreter wj 11 see the immediate break bits in *
430 !* R17 and wjll drop out into the exec Loop. The exec will see that *
440 1* the computer is in Idle-in-Input mode and will simply loop on *
450 !* itself. At thjs point, the user starts typing his input (causjng *
4S0 !* keyboard interrupts, which set bit~ in R17 and SVCWRD, whjch cause*
470 1* the exe~ to ca11 the character editor (CHEDIT), which echoes the *
480 !* keys to the CRT, clears the SVCWRD flag, and r~turns to the exec).*

7-11

Section 7: Sample Binary Programs

480 !* This continues unti 1 the END LINE key is pressed, which causes *
500 1* CHEDIT to set a flag in the E register which will tell the exec *
510 !* that END LINE has been pressed. This will cause the exec to resume*
520 1* execution Qf the BASIC program by re-entering the interpreter. *
530 1* The third part of the INPUT is carried out b.~ the second token of *
540 !* the INPUT statement. It takes the input 1 ine, parses and executes *
550 !* it, then stores the values in the appropriate variables. *
560 !* LINPUT statement works in very muoh the same way. As a matter *
570 !* of fact, the first two LINPUT tokens do nothing but call *
580 !* the runtime code for the first of the INPUT tokens. The difference*
590 !* comes in the second token. For LINPUT, all we want to do is input *
600 !* a literal string with no expressions allowed, so we have no need *
610 !* to parse and execute the input line. All we have to do is reverse *
620 !* the string so that the first character is at the highest address *
630 1* and then store it in the string variable. *
640 !***
650 RUNTIM BYT 0,0 DUMMY ADDRESS FOR TOKEN ~O RUNTIME
660 DEF REV. ADDRESS FOR TOKEN ~1 RUNTIME ROUTINE
670 DEF LINPT. ! ADDRESS FOR TOKEN ~2 RUNTIME ROUTINE
680 DEF LIN$. ADDRESS FOR TOKEN .3 RUTNIME ROUTINE
690 !***
700 PARSE BYT 0,0 DUMMY ADDRESS FOR KEYWORD ~o PARSE
710 BYT 0,0 DUMMY FOR KEYWORD ~1 PARSE (A FUNCTION)
720 DEF LINPRS ! ADDRESS FOR KEYWORD ~2 PARSE ROUTINE
730 BYT 377,377 TERMINATE RELOCATION OF ADDRESSES
740 !**,*********************
750 !* The runtime table has three entries even though the ASCII and *
760 !* parse tables have only two. The third entry in the runtime table *
770 !* will only be used in conjunction with the second entry. If you *
780 !* look at the parse routine for the second keyword (LINPUT) you wi1 1*
790 !* see that it pushes out both tokens 2 and 3. Nor'ma11y, you want to *
800 1* keep a one for one relationship between entries in the ASCII, *
810 1* PARSE, and RUNTIME tables, but there are times when you can play *
8201* tricks like this (if you're careful). *
830 !***
840 ASCII S ASP II LI NPUTG II KEYWORD ~ 1 (REVI SI ON DATE FUNCTI ON)
850 ASP II LINPUT II ! KEYWORD ~2

860 ERMSG BYT 377 ! TERMINATE ASCII AND ERROR MESSAGE TABLES
870 !***
880 ERR89 JSB -ERROR+ ! SET ERROR FLAGS IN R17 AND 'ERRORS'
890 BYT 89D ! SYSTEM ERROR MESSAGE ~89 'INVALID PARAM'
900 !***
910 LINPRS LDM R55,~2,51,371 LOAD TOKEN~, BPGM~, AND SYSTEM TOKEN
820 STMI R55,-PTR2- STORE THEM ALL OUT TO PARSE STREAM
930 JSB -SCAN SCAN THE INPUT STREAM FOR NEXT TOKEN
940 JSB -STRREF TRY TO GET A STRING VARIABLE REFERENCE
950 JEZ ERR89 ! JIF NOT THERE, ERROR CONDITION
960 LDM R55,-3,51,371 ELSE LOAD SECOND TOKEN~, BPGM~, AND SYS
970 STMI R55,~PTR2- STORE THEM OUT TO PARSE OUTPUT STREAM
980 INIT RTN DONE FOR PARSING AND INITIALIZING
990 !***
1000 1* LINPT. is the rUntime code for the first of the two LINUT tokens.*
1010 !* It is responsible fdr the output of the question mark to the CRT *
1020 1* and putting the computer into Id1e-in-Input mode. *
1030 1***
1040 BYT 241 ATTRIB.,BASIC STATEMENT LEGAL AFTER THEN
1050 LINPT. JSB -INPUT. DO QUESTION MARK AND SET R1S-4
1060 RTN DONE, WAIT FOR INPUT

7-12

Section 7: Sample Binary Programs

1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

!***
1* LIN$. is the runtime code for the second of the the two LINUT *
!* tokens. It is responsible for reversing the string in memory so it*
!* will be ready for storing into the string variable, and then doing*
1* the actual store (by calling STOST). The R12 stack wi 1 1 already *
1* have been set up for the variable store by the tokens parsed by *
1 * STRREF. *
1***

LIN$.

CHRCNT

ENDOF$

POPBLK

DONE+

DOLOOP

DONE

BYT 44
BIN
LDMD R32,-INPTR
STM R32,R14
CLM R36
POBD R35,+R3Z
CMB R35,-15
JZR ENDOF$
ICM R36
JMP CHRCNT
TSM R36
JZR DONE
POBD R25,-R3Z
POBD R25,-R3Z
CMB R25,=40
JNZ DONE+
DCM R36
JNZ POPBLK
ICM R32
STM R32,R65
CLB R67
CMM R14,R32
JCY DONE
LDBD R30,R14
POBD R31,-R3Z
STBD R30,R32
PUBD R31,+R14
JMP DOLOOP
PUMD R36,+R1Z
PUMD R65,+R1Z
JSB -STOST
RTN

ATTRIBUTE, MISCELLANEOUS IGNORE
BIN MODE FOR COUNTING
FETCH ADDRESS OF STRING THAT WAS INPUT
SAVE A COPY
PRE-SET LENGTH TO ZERO
GET THE NEXT BYTE FROM INPUT STRING
IS IT A CARRIAGE RETURN CHARACTER?
JIF YES, WE'VE FOUND THE END AND LENGTH

ELSE INCREMENT THE LENGTH
AND LOOP TO CHECK THE NEXT CHARACTER

IS THE LENGHT ZERO?
JIF YES, RETURN A NULL STRING
GET BACK TO LAST CHARACTER
FETCH LAST CHARACTER FROM END OF STRING
IS IT A BLANK?
JIF NO, CONTINUE ON

ELSE DECREMENT LENGTH (TRIM BLANKS)
JIF LENGTH NOT ZERO
MOVE ADDRESS TO ONE HIGHER THAN END
SET ADDRESS IN R65-R66
CLEAR MOST SIGNIFICANT BYTE
FRONT OF STRING HIGHER OR EQUAL TO END?
JIF YES

ELSE GET BYTE FROM FRONT
AND A BYTE FROM THE BACK
STORE THE FRONT BYTE IN BACK
AND THE BACK BYTE IN FRONT

LOOP TIL STRING IS REVERSED IN PLACE
PUSH THE LENGTH OF STRING TO STACK
PUSH THE ADDRESS OF STRING TO STACK
STORE THE STRING TO THE VARIABLE AREA
DONE

!***
!* This is the runtime code for the revision date function, which is*
!* a string function with no parameters which always returns the same*
I*:string value, the copyright notice and the revision code. *
!**~:********

7-13

Section 7: Sample Binary Programs

1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710

REV.
8YT 0,56
LDM R43,-44,O
DEF DATE
BYT 0
8IN
ADMD R45,~8INTAB
PUMD R43,+R12
RTN

ATTRI8UTES,STRING FUNCTION,NO PARAMETERS
LOAD LENGTH OF THE STRING
AND THE ADDRESS OF THE STRING

(IT NEEDS TO 8E A THREE BYTE ADDRESS)
8IN MODE FOR ADDRESS MATH
MAKE THE ADDRESS A8S0LUTE
PUSH THE LENGTH AND ADDRESS TO THE STACK
DONE

ASC "82.111 .veR 2891 drakeaP-ttelweH)e(" ! THE REVISION STRING
DATE BSZ 0 t NEED LABEL HERE TO GET RIGHT ADDRESS
!***;**********************
8INTA8 DAD 104070
ERROR+ DAD 10220
INPTR DAD 101143
INPUT. DAD 16314 LABEL DEFINITIONS
PTR2- DAD 177715
SCAN DAD 21110
STOST DAD 46472
STRREF DAD 24056

FIN TERMINATE ASSEMBLY

7-14

Section 7: Sample Binary Programs

7.5 Taking the KYIDLE Hook and Buffering the Keyboard

Source Code: KEYS

Object Code: KEYB

!***;********************** 1000
1010
1020
1030
1040
1050
1060 ! *
1070 1 *
1080 ! *
1090 ! *
1100 1*
1110 1 *
1120 ! *
1130 ! *
1140 ! *
1150 1 *
1160 ! *
1170 1 *
1180 ! *
1190 ! *
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450

1* *
1* TAKING THE 'KYIDLE' HOOK AND BUFFERING THE KEYBOARD *
1* *
1* (c) 19E:1 Hewlett-Packard Co. *
1* *

THIS BINARY PROGRAM TAKES OVER THE 'KYIDLE' HOOK AND PUTS ALL *
KEYS PRESSED INTO A BUFFER EXCEPT FOR THOSE KEYCODES LISTED IN *
THE TABLE STARTING AT 'KEYTAB' (RIGHT NOW, THOSE KEYS TO BE LEFT *
FOR THE SYSTEM TO HANDLE ARE THE SOFT KEYS AND THE RESET KEY. THIS*
COULD EASILY BE CHANGED BY MODIFYING THE 'KEYTAB' TABLE). THE *
BINARY ALSO WATCHES FOR 'SHIFT END LINE' AND 'SHIFT UP ARROW' *
(WHICH IS THE 'HOME' KE~. ('UP ARROW' AND 'HOME' ACTUALLY GENERATE*
THE SAME KEYCODE AND CAN ONLY BE DIFFERENTIATED BY CHECKING TO SEE*
IF THE SHIFT KEY IS UP OR DOWN.)) WHEN 'END LINE' OR 'UP ARROW' 15*
PRESSED WITH THE SHIFT KEY DOWN, THE BINARY PROGRAM CHANGES THE *
KEYCODE TO A DIFFERENT UNIQUE KEYCODE SO THE BASIC PROGRAM CAN *
TELL THE DIFFERENCE. THIS, AND SIMILAR TECHNIQUES, COULD BE *
APPLIED TO MOST OF THE KEYBOARD. *

* !***;**********************
1* *
!* The fol lowing is a sample BASIC program showing how this binary *
1* program can be used: *
!* *
!* 100 TAKE KEYBOARD *
1* 110 A$=KEY$ *
!* 120 IF A$="" THEt--1 110 *
!* 130 IF A$="E" THEN 200 *
!* 140 DI SP "THAT WAS THE & A$ & " KEY." *
1* 150 GOTO 110 *
1.* 200 RELEASE KEYBOARD *
!* 210 DISP "DONE" *
!* 220 END *
!* *
!***;**********************
MYBPGM~ EQU 50 BINARY PROGRAM NUMBER

NAM 50,KEYS NAME BLOCK FOR BINARY
DEF RUNTIM ! ADDRESS OF RUNTIME ADDRESSES
DEF ASCIIS ADDRESS OF ASCII TABLE
DEF PARSE ADDRESS OF PARSE ADDRESSES
DEF ERMSG ADDRESS OF ERROR MESSAGES
DEF INIT ! ADDRESS OF INITIALIZATION ROUTINE

RUNTIM BSZ 2 PLACE HOLDER
DEF TAKE. ! RUNTIME FOR 'TAKE KEYBOARD'
DEF RELEAS. RUNTIME FOR 'RELEASE KEYBOARD'

7-15

Section 7: Sample Binary Programs

1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950

DEF KEY$. RUNTIME FOR 'KEY$'
DEF REVDATE. RUNTIME FOR REVISION

PARSE BSZ 2 PLACE HOLDER
DEF COMPARS PARSE ROUTINE FOR 'TAKE KEYBOARD'
DEF COMPARS PARSE ROUTINE FOR 'RELEASE KEYBOARD'
BYT 377,377 END OF RELOCATRBLES

!***
ASCIIS BSZ 0

ERMSG

ASP "TAKE KEYBOARD"
ASP "RELEASE KEYBOARD"
ASP "KEY$"
ASP "REV DATE"
BYT 377

TOKEN
TOKEN
TOKEN
TOKEN 4
END OF ASCII TRBLE

!***,**********************
!* BECAUSE THIS PROGRAM TAKES OVER 'KYIDLE', SOME SPECIAL TRICKS *
!* ARE NEEDED. 'KYIDLE' IS AN INTERRUPT HOOK WHICH MEANS THAT THE *
!* BASE ADDRESS OF THIS BINARY PROGRAM MAY NOT BE IN 'BINTAB'. A *
!* METHOD IS NEEDED FOR THE ~OOK ROUTINE ('USEKEY' IN THIS CASE) TO *
!* KNOW WHAT THE BASE ADDRESS IS. SINCE THE 'KYIDLE' HOOK IS 7 BYTES *
!* LONG AND IT ONLY TAKES 4 BYTES TO DO 'JSB -USEKEY' & 'RTN', 3 *
1* BYTES ARE LEFT UNUSED (AND THAT WE CAN BE SURE NO ONE ELSE IS *
!* GOING TO USE, AS LONG AS THIS BINARY HAS THE HOOK, WHICH IS AS *
!* LONG AS IT MATTERS). TWO OF THESE BYTES ARE USED TO STORE THE *
!~ BASE ADDRESS OF THIS BINARY PROGRAM. WE'VE NAMED THE LOCATION *
!* 'MYBTAB' AND DEFINED ITS ADDRESS AS 4 HIGHER THAN THAT OF 'KYIDLE'*
1* (103703 AND 103677 RESPECTIVELY.) *
!* THE 'INIT' ROUTINE DOESN'T HAVE TO DO ANYTHING IN THIS PROGRAM *
!* SINCE 'LOAD' AND 'SCRATCH' CAN'T BE PERFORMED WHILE THE BINARY *
!* HAS THE HOOK, AND DURING A 'RESET' THE SYSTEM WILL HAVE ALREADY *
!* PUT 'RTN's BACK INTO 'KYIDLE'. WE ONLY TAKE THE HOOK WHEN A *
!* 'TAKE KEYBOARD' COMMAND IS EXECUTED, SO THERE'S NOTHING FOR INIT *
I * TO DO. *
!* THE BASIC PROGRAM WRITER NEEDS TO BE VERY CAREFUL, HOWEVER, *
!* USING THIS BINARY, BECAUSE IF HE WERE TO EXECUTE A 'STOP' OR 'END'*
1* COMMAND WHILE THE HOOK IS TAKEN, THE KEYBOARD WILL EFFECTIVELY BE *
!* LOCKED UP EXCEPT FOR THE 'RESET' KEY AND, THUS, 'RESET' WOULD THEN*
1* BE THE USERS ONLY RECOURSE. *
!***,**********************
INIT RTN ! ALL DONE
!***
!* NEITHER 'TAKE KEYBOARD' OR 'RELEASE KEYBOARD' HAVE ANY PARAMETERS *
!* SO THEY BOTH USE THE SAME PARSE ROUTINE, WHICH SIMPLY PUSHES OUT *
!* THE THREE BYTE SEQUENCE FOR THE KEYWORD AND THEN DOES A 'SCAN' FOR*
!* THE SYSTEM, SO THAT R14 WILL HAVE THE NEXT TOKEN WHEN WE RETURN. *
!***,**********************
COMPARS LDM R56,-50,371 BPGM ~ AND SYSTEM TOKEN

LDB R55,R43 GET THE BINARY PROGRAM TOKEN ~

STMI R55,-PTR2- STORE IT ALL OUT TO PARSE STACK
JSB -SCAN DO A SCAN FOR THE SYSTEM
RTN

7-16

Section 7: Sample Binary Programs

1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480

1***
1* 'REV DATE' IS A STRING FUNCTION WITH NO PARAMETERS WHICH RETURNS *
1* AS ITS STRING VALUE THE COPYRIGHT STATEMENT AND REVISION CODE OF *
1* THE BINARY PROGRAM. *
1***

BYT 0,56 NO PARAMETERS, STRING FUNCTION
REVDATE. BIN FOR ADMD R45,=BINTAB

LDM R43,-40D,0 LOAD THE LENGTH OF THE STRING
DEF DATE AND THE ADDRESS OF THE STRING
BYT 0 (MUST BE THREE BYTE ADDRESS)
ADMD R45,-BINTAB MAKE THE ADDRESS ABSOLUTE
PUMD R43,+R12 PUSH IT ALL ON THE OPERATING STACK
RTN DONE
ASC "31.102:veR .oC drakeaP-ttelweH 28!31)e("

DATE BSZ 0 ! PLACE HOLDER FOR THE LABEL (ADDRESS)
1***
!* THIS IS THE TABLE OF KEYS THAT THE BINARY PROGRAM SHOULD LET THE *
!* SYSTEM HANDLE, AND IT SHOULD NOT PUT THEM IN THE BUFFER. THE TABLE*
!* IS TERMINATED BY A 377, WHICH IS A KEYCODE THE KEYBOARD CO~lTRoLLER*
!* IC IS INCAPABLE OF GENERATING. *
!***
KEYTAB BYT 200

BYT 201
BYT 202
BYT 203
BYT 241
BYT 242
BYT 234
BYT 204
BYT 205
BYT 206
BYT 207
BYT 245
BYT 254
BYT 223
BYT 213
BYT 377

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
RESET
END OF INVALID KEY TABLE

!***;**********************
!* THIS IS THE RUNTIME ROUTINE FOR THE 'TAKE KEYBOARD' KEYWORD. IT *
!* INITIALIZES POINTERS TO THE BEGINNING AND END OF THE KEYBOARD *
!* BUFFER, WHICH EXISTS FARTHER DOWN IN THE BINARY PROGRAM, TAKES *
!* OVER THE 'KYIDLE' HOOK, AND INVALIDATES THE KEY REPEAT FLAG. IF *
!* THE KEY REPEAT FLAG IS VALID, THE LAST KEY IS TAKEN FROM THE *
!* BUFFER (USING THE 'KEY$' FUNCTION), AND A KEY IS STILL DEPRESSED *
1* THE LAST KEY WILL BE PUT BACK IN THE BUFFER SO THAT IT WILL REPEAT*
!t AS LONG AS THE KEY IS HELD DOWN. *
!***'**********************

TAKE.
BYT 241
LDMD R46, -BHlTAB
LDM R30,-KEYBUF
ADM R30,R46
STMD R30,X46,KEYPTR
ADM R30,"'80D,0

FOR RELATIVE ADDRESSING
GET ADDRESS OF KEYBOARD BUFFER
MAKE IT ABSOLUTE
INITIALIZE KEY POINTER
POINT TO END OF BUFFER

7-17

Section 7: Sample Binary Programs

2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110

7-18

TAKEIT

STMD R30,X46,KEYEND
LDM R30,-USEKEY
ADM R30,R46
STM R30,R43
LDB R45,=236
LDB R42,=316
STMD RII,~KYIDLE

LDB RII,-377
STBD RII,X46,LASTKEY
RTN

INITIALIZE KEYEND
ADDRESS OF KEYBOARD SERVICE ROUTINE
MAKE IT ABSOLUTE
COPY TO 43&44
45"'RTN'
42""JSB'
STORE OUT RTN'S OR JSB=USEKEY,RTN,BINTAB
INVALID REPEAT FLAG
SET IT

!***
!* THIS IS THE RUNTIME ROUTINE FOR THE 'RELEASE KEYBOARD' KEYWORD. *
1* ALL IT DOES IS PLACE RETURNS BACK INTO THE 'KYIDLE' HOOK~ THUS, *
!* GIVING UP CONTROL OF THE KEYBOARD. *
!***

BYT 241
RELEAS. LDMD R46,"BINTAB ! GET BPGM'S BASE ADDRESS

LDM R52,-236,236,236,236,236,236 ! LOTS OF RTNS
JMP TAKEIT ! GO STORE TO HOOK

!***
!* 'USEKEY' IS AN INTERRUPT SERVICE ROUTINE SO IT MUST BE CAREFUL TO*
!* SAVE ALL CPU STATUS AND CONTENTS AND THEN RESTORE THEM WHEN DONE. ~
1* THE SYSTEM HAS ALREADY DONE A 'SAD' BEFORE IT DID THE 'JSB' TO *
!* 'KYIDLE'. THE ROUTINE CHECKS TO SEE IF THE BUFFER IS FULL AND IF *
!* SO THROWS THE CURRENT KEYHIT AWAY. IT THEN CHECKS FOR THE SHIFTED *
!* 'UP ARROW' OR 'END LINE' KEYS AND IF SO MODIFIES THE KEYCOD TO *
!* MATCH. IT THEN CHECKS THE 'KEYTAB' TABLE TO SEE IF THIS KEY SHOULD*
!* BE IGNORED. IF IT IS IN THE TABLE, THE ROUTINE JUST CLEANS UP A *
!* LITTLE AND RETURNS BACK INTO THE SYSTEM KEY HRNDLING ROUTINE. *
!* OTHERWISE, IT PUTS THE NEW KEYCODE IN THE BUFFER AND UPDATES THE *
!* BUFFER POINTER. IT THEN FIGURES OUT WHAT THE DRP SHOULD BE WHEN *
!* IT RETURNS FROM THE INTERRUPT SERVICE, AND PLRCES A DRP CO~lMAND *
!* WHERE IT WILL BE EXECUTED JUST BEFORE RETURNING (THIS IS SO THE *
!* EXTENDED MEMORY CONTROLLER CAN KEEP TRACK OF THE DRP FOR MULTI- *
!* BYTE OPERATIONS.) IT THEN RESTORES REGISTERS, THROWS AWAY TWO *
!* RETURN ADDRESSES, AND RETURNS TO WHATEVER WAS HAPPENING BEFORE *
!* THE KEYBOARD INTERRUPTED. *
!***:~*********************
USEKEY STBD RII,"'GINTDS

BH:
PUMD R2,+R6
PUMD R40,+R6
LDM R40,R20
LDMD R26,=MYBTAB
LDMD R20,X26,KEYPTR
LDMD R22,X26,KEYEND
CMM R22,R20
JZR RE-START
LDBD R22,-KEYCOD
LDBD R25,-KEYSTS
ANM R25,·10
JZR NOTSHIFT
CMB i<:22,-ktJPCUR
JNZ ENDLINE?
LDB R22, ·kHO~lE
JMP NOTSHIFT

ENDLINE? CMB R22,-kENDLINE
JNZ NOTSHIFT
LDB R22,-kSENDLIN

NOTSHIFT LDM R24,-KEYTAB
ADM R24,R26

KEYLOOP POBD R23,+R24
CMB R23,-377

DISABLE GLOBAL INTERRUPTS
FOR EVERYTHING
SAVE 2&3
SAVE THE 40'S
AND THE 20'S
FOR RELATIVE ANYTHING

I GET THE KEY POINTER
ADDRESS OF END OF BUFFER
BUFFER FULL?
JIF IT IS
GET THE KEY CODE
GET KEYBOARD STATUS
MASK FOR SHIFT KEY
JIF SHIFT KEY NOT DOWN
UP CURSOR KEY?
JIF NOT
OTHERWISE MAKE IT THE HOME KEY
FALL THROUGH
WAS IT THE ENDLINE KEY?
JIF NOT
MAKE IT SHIFT ENDLINE
ADDRESS OF INVALID KEYS
MAKE IT ABSOLUTE
GET AN INVALID KEYCODE
END OF TABLE?

Section 7: Sample Binary Programs

3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640

JZR KEYLOOP1
CMB R23,R22
JNZ KEYLOOP
JSB X26,FIXUP-R6
JMP KEYRTN+

KEYLOOP1 PUBD R22,+R20
STMD R20,X26,KEYPTR

RE-STRRT CLB R20
ICB R20
STBD R20,=KEYCOD
JSB X26,FIXUP-R6
SBM R6,-4,0

KEYRTN STBD RII,-GINTEN
DRP BSZ 1

PRD
RTN

KEYRTN+ STBD RII,zGINTEN
RTN

FIXUP-R6 STMI R30,-MYBTRB
POMD R30,-R6
LDM R20,R6
SBM R20,=20,O
LDBD R20,R20
RNM R20,=77,Cl
RDB R20,-100
STBD R20,X26,DRP
STM R40,R20
POMD R40,-R6
POMD R2,-R6
PUMD R30,+R6
LDMI R30,=MYBTRB
RTN

JIF IT IS
IS THIS KEY INVRLID
JIF NO MRTCH
FIX UP THE R6 STRCK
FRLL THROUGH, LET THE SYSTEM HRVE IT
RPPEND TO THE BUFFER
UPDRTE THE POINTER
"-

> RESTRRT THE KEYBORRD SCRNNER
/

FIX UP THE R6 STRCK
TRRSH TWO RETURNS
RE-ENRBLE GLOBAL INTERRUPTS
FORCE THE DRP
RESTORE THE STRTUS
RLL DONE
RE-ENRBLE INTERRUPTS

I SRVE 30
GET THE RETURN RDDRESS
COpy OF R6
GET DOWN TO MIDDLE OF THE SRD
FETCH THE DRP BYTE
MRSK OUT THE LRST DRP
MRKE IT INTO R DRP INSTRUCTION
STORE I TOUT
RESTORE THE 20'S
RESTORE THE 40'S
RESTORE 28.3
PUT THE RETURN BRCK
GET 30 BRCK
RLL DONE

1*** 1* THIS IS THE RUNTIME ROUTINE FOR THE 'KEY$' KEYWORD. IT IS R * 1* STRING FUNCTION WITH NO PRRRMETERS WHICH RETURNS R STRING WITH R * 1* LENGTH OF ONE WHOSE SOLE CHRRRCTER IS THE KEYCODE OF THE FIRST * 1* KEY IN THE KEYBORRD BUFFER. IF THE BUFFER WRS EMPTY, IT RETURNS * 1* R NULL STRING (LENGTH=O). WHEN IT TRKES R KEY OUT OF THE BUFFER, * !* IT COLLRPSES RLL THE OTHER KEYCODES IN THE BUFFER RND RDJUSTS THE * 1* BUFFER POINTER. * I********************~'**
KEY$.

BYT 0,56
BIN
STBD RII,=GINTDS
LDMD R14,-BINTRB
LDM R20,=KEYBUF
RDM R20,R14
LDMD R22,X14,KEYPTR
CMM R22,R20
JZR KEY$3
LDM R30,R20
POBD R32,+R2Cl
STBD R32.X14.LRSTKEY

FOR EVERYTHING
DISRBLE GLOBRL INTERRUPTS
FOR RNYTHING RELRTIVE
RDDRESS OF KEYBORRD BUFFER
MRKE RDDRESS RBSOLUTE
GET POINTER INTO BUFFER
BUFFER EMPTY?
JIF IT IS
COPY 20
GET R KEY
SRVE LRST KEY FOR POSSIBLE REPERT

7-19

Section 7: Sample Binary Programs

3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140

KEY$1 CMM R22 , R20
JZR KEY$2
POBD R33 , +R20
PUBD R33 , +R30
JMP KEY$1

KEY$2 DCM R22
STMD R22 , X14,KEYPTR

KEY$2+ CLM R22
ICM R22

KEY$2++ PUMD R~,+R12
LDM R55,-LASTKEY
BYT 0
ADMD R55,-BINTAB
ICM R55
PUMD R55,+R12
STBD R~,·GINTEN
RTN

KEYS3 LDBD R32,X14,LASTKEY
CMB R32,-377
JZR KEYS4
LDBD R32,=KEYSTS
LRB R32
JOD KEYS2+

KEYS4 LDB R32,=377
STBD R32,X14,LASTKEY
ClM R32
JMP KEYS2++

BUFFER COLLAPSED
JIF IT IS
GET A KEY
MOVE IT DOWN
LOOP
ADJUST KEYPTR
AND RESTORE IT
"-
> LENGTH OF

/

ADDRESS OF KEYHIT
----> R57
MAKE ADDRESS ABSOLUTE
POINT TO AFTER THE KEY
PUSH ADDRESS OUT

I RE-ENABlE GLOBAL INTERRUPTS
ALL DONE
CHECK LAST KEY
I NVALI D REPEAT?
JIF SO
GET KEYBOARD STATUS
SHIFT STILL DOWN FLAG
LET'S REPEAT IT
INVALID REPEAT FLAG
SET INVALID REPEAT
NO REPEAT, SO 0 LENGTH
ONE MORE TIME

LASTKEY BSZ 1 FOR KEY REPEATING PURPOSES
KEYBUF BSZ 80D ALLOW UP TO 80 KEY STROKES IN BUFFER
KEYPTR BSZ 2 , POINTER TO INPUT POINT IN BUFFER
KEYEND BSZ 2 POINTER TO END OF THE BUFFER
kUPCUR Eau 243 UP CURSOR KEYCODE
kHOME Eau 230 NEW HOME KEYCODE
kENDlINE Eau 232 ENDLINE KEYCODE
kSENDLIN Eau 227 NEW SHIFT END LINE KEYCODE
! **;*************************
ERROR+ DAD 10220
PTR2- DAD 177715
SCAN DAD 21110
BINTAB DAD 104070
PTR2 DAD 177714
ROMFL DAD 104065 DEFINE SYSTEM RDDRESSES
KYIDLE DAD 103677
GINTDS DAD 177401
GINTEN DAD 177400
MYBTAB DAD 103703
KEYCOD DAD 177403
KEYSTS DAD 177402

FIN TERMINATE ASSEMBLY

7-20

Section 7: Sample Binary Programs

7.6 GET and SAVE

Source Code: GETSAVES

Object Code: GETSAVEB

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

!***
!* This binary program implements the SAVE and GET statements for *
!* turning programs into normal strings in a DATA fi le and turning *
1* normal strings back into lines of a BASIC program. *
1* The syntax for the two statements is: *
1* SAVE <file name>[,<beginning line>][,<ending line>] *
1* GET <fi le name> *
1* SAVE calculates the size of the DATA fi le needed by 1 isting the *
1* program and counting the total length of the strings (plus the *
1* three bytes of header per string required by the fi le manager). *
!* It does this by taking over IOTRFC and forcing the select code to *
!* a value that will cause the listed strings to go out through the *
1* hook. LSSET is an entry point in the LIST routine that lists the *
1* entire program. After the size of the data fi le is known, it is *
1* created (any old one of that name already in existence wi 1 1 be *
!* purged first) and then the program is listed again, this time with*
1* the lines (as strings) being printed out to the data file. *
1* GET opens the data file, reads a string, copies the string to *
1* the input buffer INPBUF, then calls the PARSER, which will parse *
1* the line and edit it into the program, if no errors occur. If a *
!* parse error occurs, an exclamation point is inserted into the line*
!* after the line number and the line is parsed again as a comment. *
1* GET has to create a dummy string variable area in the binary *
1* program for the strings to be read into, because RDSTR. does a *
1* call to STOST before it returns, and STOST expects all the usual *
1* information on the stack and an associated vat'iable area (in *
!* other words, we have to trick the system when we call RDSTR.). *
!***

RUNTIM

PARSE

ERMSG
INIT
TOKS

NAM 41,SAVG SET UP THE PROGRAM CONTROL BLOCK
DEF RUNTIM PTR TO THE RUNTIME ADDRESSES
DEF TOKS PTR TO THE KEYWORDS
DEF PARSE PTR TO THE PARSE ADDRESSES
DEF ERMSG PTR TO THE ERROR MESSAGE TABLE
DEF INIT PTR TO THE INITIALIZATION ROUTINE
BYT 0,0 DUMMY RUNTIME ADDRESS FOR TOK# 0
DEF SAVE. RUNTIME ADDRESS FOR TOK# 1
DEF REVISON. RUNTIME ADDRESS FOR TOK# 2
DEF GET. RUNTIME ADDRESS FOR TOK# 3
BYT 0,0 DUMMY PARSE ADDRESS FOR TOK# 0
DEF SAVPARS PARSE ADDRESS FOR TOK# 1
BYT 0,0 DUMMY PARSE ADDRESS FOR TOK#
DEF GETPARS PARSE ADDRESS FOR TOK# 3
BYT 377,377 TERMINATE RELOCATION AND ERROR TABLE
RTN NO INITIALIZATION
ASP "SAVE" KEYWORD 111
ASP "GET SAVE" KEYWORD 112
ASP "GET" KEYWORD #3
BYT 377 TERMINATE KEYWORD TABLE

7-21

Section 7: Sample Binary Programs

1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

7-22

!***
SAVPARS PUBD R43,+R6 SAVE CURRENT TOKEN

JSB -STREX+ GET THE FILE NAME
JEN OK1 JIF IT WAS THERE

ERR POBD R43,-R6 ELSE CLEAN UP STACK
JSB -ERROR+ REPORT THE ERROR
BYT 88D BAD STATEMENT

OK1 CMB R14,-54 COMMA?
JNZ PARSCOMN JIF NO LINE NUMBERS
JSB -G012N ELSE GET ONE OR TWO LINE NUMBERS
LDBI R56,-PTR2+ CLEAN UP PARSE STREAM

PARSCOMN LDM R56,-41,371 BPGMM AND SYSTEM TOKEN
POBD R55,-R6 RECOVER BPGM TOKEN M
STMI R55,-PTR2- STORE THEM OUT TO THE PARSE STREAM
RTN DONE

!***
GETPARS PUBD R43,+R6 SAVE THE INCOMING TOKEN

JSB -STREX+ ! GET THE FILE NAME
JEZ ERR ! JIF NOT THERE
JMP PARSCOMN I ELSE FINISH UP

!***
BYT 241 BASIC STATEMENT, LEGAL AFTER THEN

SAVE. J SB - CLE AR . CLE AR THE CRT
LDMD R10,-BINTAB GET OUR BASE ADDRESS
LDM R26,-SAVING GET THE RELATIVE ADDRESS OF MSG
ADM R26,R10 MAKE IT ABSOLUTE
LDM R36,-20,O LOAD THE LENGTH OF THE MSG
JSB -OUTSTR OUTPUT THE MSG
LDMD R41,-IOTRFC SAVE THE REAL HOOK CONTENTS
STMD R41,X10,SAVIOTFC STORE IT AWAY
LDMD R40,-SCTEMP SAVE THE REAL SELECT CODE
STMD R40,X10,SAVSCTEM STORE IT AWAY
LDM R72,-231,231,11,0,0,O ! LOAD DEFAULT LIST PARAMETERS
STMD R72,-LLDCOM ! SET THEM
LDM R20,R12 COpy STACK POINTER
SBM R20,-5,O TAKE OFF STRING STUFF
CMMD R20,-TOS ANYTHING ELSE THERE?
JZR DO-IT JIF NO, USE DEFAULTS
JSB -ONEI ELSE GET ONE NUMBER OFF
LDM R20,R12 COPY STACK POINTER
SBM R20,-5,0 ADJUST FOR STRING STUFF
CMMD R20,-TOS ANY MORE?
JZR STOLIN1 JIF NO
STMD R45,-LLDCOM ELSE SET LAST LINE DECOMPILE
JSB -ONEl GET THE FIRST LINE

STOLIN1 STMD R45,-FLDCOM SET THE FIRST LINE DECOMPILE
DO-IT POMD R43,-R12 GET THE STRING

STMD R43,X10,FILENAME SAVE IT AWAY
CLM R50 SET UP FOR A FLOATING POINT
LDB R57,-10C THAT FINISHES IT
PUMD R50,+R12 PUSH TO STACK FOR ASSIGNM TO
PUMD R43,+R12 PUSH FILE NAME BACK
PUMD R10,+R6 SAVE OUR BASE ADDRESS
JSB -ROMJSB SELECT THE MSTORAGE ROM
DEF ASSIG. ASSIGN BUFFER M 1 TO FILE
VAL MSROMM ROM TO SELECT
POMD R10,~R6 RECOVER OUR BASE
CMB R17,-300 ANY ERRORS?
JNC ITSTHERE JIF NO, IT WAS THERE AND DATA FILE
LDBD R20,-ERRORS GET REASON

Section 7: Sample Binary Programs

2080 CMB R20,-67D I FILE NAME ERROR?
2090 JZR CREATI T JIF IT WASN'T THERE
2100 GTO RESTORE ELSE BAIL OUT
2110 ITSTHERE PUMD R10,+R6 SAVE OUR BASE
2120 STMD R12,-TOS MAKE SURE STACK LOOKS GOOD
2130 LDMD R73,X10,FILENAME GET THE FILE NRME BACK
2140 PUMD R73,+R12 I PUSH IT TO THE STACK
2150 JSB -ROMJSB I SELECT THE ROM
2160 DEF MSPUR. PURGE THE FILE
2170 VAL MSROMII ROM TO SELECT
2180 POMD R10,-R6 RECOVER OUR BASE ADDRESS
2190 JMP CREATIT CONTINUE
2200 CALCRTN POMD R10,-R6 RECOVER BASE
2210 GTO RESTORE
2220 CREATIT PUMD R10,+R6 SAVE OUR BASE
2230 ANMR17,-77 CLEAN UP THE ERROR FLAG
2240 CLB R20 AND THE OTHER ONE
2250 STBD R20,-ERRORS OUT IN RAM
2260 LDM R36,-COUNT GET THE REL ADDRESS OF ROUTINE
2270 ADM R36,R10 MAKE IT ABSOLUTE
2280 STM R36,R45 SET IT
2290 LOB R47,-236 LOAD A RTN OPCODE
2300 LOB R44,-316 LOAD A JSB OPCODE
2310 STMD R44,-IOTRFC TAKE THE HOOK
2320 LDMD R72,-LLDCOM SAVE LIST POINTERS
2330 PUMD R72,+R6 ON THE RTN STACK
2340 CLM R70 ZERO THE SELECT CODE
2350 STMD R70,=SCTEMP SET THE SELECT CODE
2360 STMD R75,=NXTDAT INITIALIZE BYTE COUNT TO 0
2370 PUBD R16,+R6 SAVE CSTAT
2380 LDB R16,-2 FAKE RUN MODE
2390 JSB -LSSET LI ST THE PROGRAM
2400 POBD R16,-R6 RESTORE CSTAT
2410 POMD R72,-R6 RESTORE THE LIST POINTERS
2420 STMD R72,-LLDCOM RESET FIRST/LAST LINE POINTERS
2430 CLB R50 FOR THE MULTI-BYTE ADDS
2440 LDMD R45,-NXTDAT GET THE BYTE COUNT
2450 JZR CALCRTN JIF NOTHING THERE
2460 ADM R45,R46 I WE NEED TO ADD THREE BYTES FOR EACH 2470 ADM R45,R46 RECORD BECAUSE OF THE HEADER USED EACH 2480 ADM R45,R46 TIME A STRING CROSSES RECORD BOUNDARY 2490 ADM R45,-3,0,0 AN EXTRA THREE
2500 TSB R45 I S IT ZERO?
2510 JZR NOINC JIF YES
2520 ICM R46 ELSE ROUND IT UP
2530 NOINC LDM R55,R46 SET IT FOR CONBI3
2540 JSB -CONBI3 CONVERT IT TO FLOATING-POINT
2550 POMD R10,-R6 RECOVER OUR BASE
2560 PUMD R10,+R6 SAVE IT AGAIN
2570 LDMD R53,X10,FILENAME GET THE FILE NAME
2580 PUMD R53)+R12 PUSH IT TO STACK
2590 PUMD R40,+R12 PUSH THE NUMBER OF RECORDS DESIRED 2600 L~~ R54,-377,56C,2C,0 MAKE 256 BYTE RECORDS
2610 PUMD R50,+R12 PUSH IT TO THE STACK
2620 JSB -ROMJSE SELECT THE ROM
2630 DEF MSCRE. CREATE THE FILE
2640 VAL MSROMII ROM II
2650 POMD R10,-R6 RECOVER OUR BASE
2660 CMB R17,-300 ANY ERRORS ON THE CREATE?

7-23

Section 7: Sample Binary Programs

2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240

7-24

JCY SAVEX
PUMD R10,+R6
JSB X10,ASNPRT
POMD R10,-R6
CMB R17,-300
JNC PRINT

SAVEX GTO RESTORE
ASNPRT STMD R12,-TOS

CLM R50
LDB R57,-10C
PUMD R50,+R12
LDMD R53,X10,FILENAME
PUMD R53,+R12
JSB -ROMJSB
DEF ASSIG.
VAL MSROMIt
CMB R17,-300
JCY ASNRTN
CLM R40
LDB R47,-10C
PUMD R40,+R12
JSB -ROMJSB
DEF MSPRNT
VAL MSROMIt

ASNRTN RTN
PRINT LDM R36,-SAVERECS

ADM R36,R10
STM R36,R45
LDB R47,-236
LDB R44,-316
STMD R44,-IOTRFC
PUBD R16,+R6
LDB R16,-2
PUMD R10,+R6
JSB -LSSET
CLM R36
POMD R10,-R6
PUMD R10,+R6
JSB X10,SAVERECS
JSB -ROMJSB
DEF PREOL.
VAL MSROMIt
POMD R10,-R6
POBD R16,-R6
JSB X10,CLOSE

RESTORE LDMD R71,X10,SAVIOTFC
STMD R71,-IOTRFC
LDMD R70,X10,SAVSCTEM
STMD R70,-SCTEMP

FINMSG JSB -CLEAR.
LDM R26,-MESAGE
ADM R26,R10
LDM R36,-4,O
JSB -OUTSTR
RTN

ME SAGE ASC" DONE"

JIF YES
SAVE OUR BASE
ASSIGN THE BUFFER AND DO THE MSPRNT
RECOVER OUR BASE
ANY ERRORS IN THE ASSIGN?
JIF NO
BAIL OUT
MAKE SURE STACK LOOKS GOOD
FIX UP FOR REAL 1

PUSH IT TO THE STACK
GET THE FILE NAME
PUSH IT TO THE STACK
SELECT THE ROM
ASSIGN THE BUFFER
ROMIt
ANY ERRORS?
JIF YES, DO NO MORE
ELSE MAKE A 1

(FLOATING POINT 1)
PUSH IT TO THE STACK
SELECT THE ROM
DO THE READIt
ROM It
DONE
GET THE REL ADDRESS OF OUR ROUTINE
MAKE IT ABSOLUTE
SET IT
LOAD A RTN OPCODE
LOAD A JSB OPCODE
TAKE THE HOOK
SAVE CST AT
FAKE RUN MODE
SAVE OUR BASE
LIST AND PRINTIt IT
LINE LEN OF °
RECOVER OUR BASE
SAVE IT AGAIN
PRINT A NULL STRING AT THE END
SELECT THE ROM
DO THE END OF LINE PRINTING
ROM It
RECOVER OUR BASE
RESTORE CST AT
CLOSE THE FILE
GET THE OLD HOOK
RESTORE IT
GET THE OLD SELECT CODE
RESTORE IT
CLEAR THE CRT
LOAD THE ADDRESS OF THE MSG
MAKE IT ABSOLUTE
LOAD THE LEN
OUTPUT THE STRING
DONE

1***
CLOSE CLM R40 1 NEED ANOTHER 1

Section 7: Sample Binary Programs

3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
:3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820

LDB R47,-10C
PUMD R40,+R12
LDM R46,-1,0
PUMD R46,+R12
LDM R45,-STAR
BYT 0
ADM R45,R10
CLB R47
PUMD R45,+R12
PUMD R10,+R6
JSB -ROMJSB
DEF ASSIG.
VAL MSROM*I
POMD R10,-R6
RTN

FINISH THE 1
PUSH TO STACK
LENGTH OF THE "*" STRING
PUSH IT TO STACK
ADDRESS OF THE ASTERISK
NEED A THREE BYTE ADDRESS
MAKE IT ABSOLUTE
CLEAN UP THE MS BYTE
PUSH THE ADDRESS
SAVE OUR BASE
SELECT THE ROM
CLOSE THE BUFFER
ROM*I TO SELECT
RECOVER THE BASE
DONE

!***
COUNT BIN FOR THE MATH

CLB R40 FOR THE MULTI-BYTE ADD
ADM R36,-4,0 ADD SOME FOR THE HEADER
LDMD R45,~NXTDAT GET THE PREVIOUS COUNT
ADM R45,R36 ADD THE CURRENT LINE LEN
STMD R45,-NXTDAT SAVE THE NEW COUNT
RTN DONE

!**~;********
SAVERECS PUMD R36,+R12

STM R26,R24
ADM R26,R36
STM R26,R45
CLB R47
PUMD R45,+R12

SAVLOOP CMM R24,R26
JCY PRINT-IT
POBD R30, -R2E;
LDBD R31,R24
STBD R31,R26
PUBD R30,+R24
JMP SAVLOOP

PRINT-IT JSB -ROMJSB
DEF PRSTR.
VAL MSROM*I
RTN

PUSH THE LEN OF THE LINE
COpy OF START
MOVE TO END OF STRING
GET THE ADDRESS
CLEAR THE MOST SIGNIFICANT BYTE
PUSH THE ADDRESS
DONE?
JIF YES
FETCH LAST BYTE
FETCH FIRST BYTE
SWAP THEM
DITTO
LOOP TI L DONE
SELECT THE ROM
PRINT THE STRING
ROM*I

!***
GET.

BIN1

BYT 141
BIN
LDMD R 1 0, - BHnAB
POMD R43,-R12
STMD R43,X10,FILENAME
CLB R16
JSB -FXLEN.
JSB -C.LEAR.
LDM RZ6, -GETTI NG
ADMD R26,-BINTAB
LDM R36,-17,O
JSB -OUTSTR
JSB -DECUR2
JSB -DNCURS
LDM R10,R4
BIN

BASIC STATEMENT, LEGAL AFTER THEN
FOR ADDRESS MATH
LET'S GET OUR BASE
GET THE FILE NAME
SAVE IT AWAY

MAKE SURE THE PROGRAM'S DEALLOCATED
CLEAR THE SCREEN
GET ADDRESS OF MESSAGE
MAKE IT ABSOLUTE
LOAD THE LENGTH OF THE MESSAGE
OUTPUT THE MESSAGE
GET RID OF THE CURSOR
MOVE DOWN ONE LINE
GET THE PC
GOOD FOR ADDRESS MATH

7-25

Section 7: Sample Binary Programs

4420
4430
4440 SWAP
4450
4460
4470
4480 GOTBUF
4490
4500
4510
4520
4530
4540
4550
4560
4570 PARSIT
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
~no
4780
4790
4800
4810
4820
4830
4840 FIXIT
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950 MOVE-1
4960
4970
4980
4990

7-26

LDMD R24,R26
JZR GOTBUF
POBD R32,-R26
PUBD R32,+R30
DCM RZ4
JNZ SWAP
LDM R36 J R30
SBM R36,-INPBUF
STMD R36,X10,BUFLEN
LDB R24,-15
PUBD R24,+R30
PUBD R25,+R6
CMB R36,-81D
JNC PARSIT
JSB -DNCURS
CLB R16
LDMD R20,-ASNTBL
PUMD RZO,+R6
LDMD R42,-LAVAIL
PUMD R42,+R6
LDMD R4Z,-RTNSTK
PUMD R42,+R6
LDMD R45,-LWAMEM
PUMD R45,+R6
LDMD R45,-LAVAIL
STMD R45,-LWAMEM
JSB -RSETGO
JSB -PARSER
POMD R45, -R6
STMD R45,-LWAMEM
POMD R42,-R6
STMD R42,-RTNSTK
POMD R42,-R6
STMD R42,-LAVAIL
POMD R20,-R6
STMD R20,~ASNTBL
LDB R16,-1
CMB R17,-300
JCY FIXIT
BIN
DCM R6
GTO OKGET
POBD R36,-R6
JNZ ERREXIT
ICB R36
PUBD R36,+R6
ANM R17,-n
CLM R40
STMD R40,~ERLIN~
STBD R40,-ERRTYP
LDM R24,-INPBUF
STM R24,R22
ICM R24
POBD R20,+R24
PUBD R20,+R22
CMB R20,-40
JZR MOVE-1
JSB -DIGIT

GET THE LEN OF THE STRING READ
JIF NO CHARACTERS
GET THE NEXT CHARACTER
PUSH IT TO INPUT BUFFER
DECREMENT LEN COUNT
JIF MORE TO DO
COpy END OF BUFFER PTR
MINUS THE START OF BUFFER
SAVE IN CASE OF ERROR FOR PRINT
LOAD A CR CHARACTER
PUSH IT OUT FOR PARSER
SAVE A 0 FLAG ON R6 FOR ERROR TRAP
DO WE NEED TO MOVE THE CURSOR DOWN?
JIF NO
MOVE CURSOR DOWN A ROW
FOR LINEDR
SAVE ASSIGN BUFFER POINTER
ON THE R6 STACK
SAVE SOME SYSTEM Pf}INTERS
ON THE R6 STACK
SAVE SOME MORE
SAME PLACE
SAVE SOME MORE
AGAIN
MOVE LWAMEM

UP TO LAVAIL
RESET EVERYTHING UP
TRY TO PARSE THE LINE
START RECOVERING THINGS

ANY ERRORS?
JIF YES
CONFIRM MATH MODE
THROW AWAY ERROR TRAP FLAG
LOOP
RECOVER ERROR TRAP FLAG
JI F TWO ERRORS
SET FLAG
PUT IT BACK
CLEAR ERROR FLAGS
CLEAR ERROR FLAGS
CLEAR ERROR FLAGS
CLEAR ERROR FLAGS
GET ADDRESS OF BUFFER
COpy
MOVE AHEAD TO THE FIRST CHARACTER
GET THE FIRST CHARACTER
MOVE IT BACK ONE PLACE
A BLANK ?
JIF YES
I S IT A DI GIT?

Section 7: Sample Binary Programs

3830
3840
3850
3860
3870
3880
3890
3900 OKGET
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010 GETDON
4020
4030
4040
4050
4060 EOFERR
4070
4080
4090
4100 8ADERR
4110 8IN5
4120
4130
4140
4150
4160 OKGET2
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410

S8M R10,-8IN1
STMD R10,-BINTA8
JS8 X10,ASNPRT
CM8 R17,-300
JNC OKGET
LDMD R10,-BINTA8
GTO FINMSG
LDM R10,R4
8IN

GET OUR BASE ADDRESS
RESTORE BINTAB CASE 'FXLEN'
TRY TO OPEN THE FILE
ANY ERRORS?
JIF NO, IT'S THERE
GET OUR 8ASE
OUTPUT THE MESSAGE
GET PC

GET OUR BASE ADDRESS

DESTROYED

S8M R10,-OKGET
STMD R10,-BINTA8
LDMD R45,-NXTMEM
S8MD R45,-LAVAIL
CMM R45,-0,2,0
JCY OKGET2

SET IT IN CASE PARSING BLEW IT AWAY
GET HIGH ADDRESS OF AVAILABLE SPACE
GET AVAILABLE MEMORY COUNT

JS8 -ERROR
8YT 19D
GTO FINMSG
LD8D R40,-ERRORS
CM8 R40,-107
JZR EOFERR
CM8 R40,-110
JNZ 8ADERR
CLM R40
STMD R40,-ERLIN~
ST8D R40,-ERRTYP

ENOUGH MEMORY LEFT?
JIF YES
ELSE REPORT ERROR
MEM OVF
OUTPUT 'DONE' MESSAGE
GET REASON FOR ERROR
END OF FILE ERROR?
JIF YES
END OF RECORD ERROR?
JIF NO, LET IT GO
ELSE CLEAR ERROR FLAGS

ANM R17,-77 AND IN XCOM
JS8 -ST240+ SET IMMEDIATE BREAK 8ITS
LDM R10,R4 COpy OF PC
8IN FOR ADDRESS MATH
S8M Rl0,-8IN5 GET 8ASE ADDRESS
JS8 Xl0,CLOSE CLOSE THE FILE
GTO FINMSG OUTPUT THE 'DONE' MESSAGE
LDMD R12,-TOS RESET STACK POINTER
LDM R45,-8UFFER GET THE ADDRESS OF THE BUFFER
8YT 0 , AS A THREE 8YTE QUANTITY
ADMD R45,-8INTA8 MAKE IT A8S0LUTE
PUMD R45,+R12 PUSH TO STACK
LDM R51,-240,0,0,0,0,0,200 ! TOTAL SIZE. NAME PTR, HEADER
PUMD R51, -R45 ! FAKE VARIA8LE HEADER AREA
LDM R64,-0,0,240,0 CURRENT LEN, MAX LEN
PUMD R64,-R45 MORE VARIA8LE HEADER STUFF
PU8D R57,+R12 PUSH STUFF FOR STOST: HEADER
PUMD R66,+R12 MAX LEN STRING VAR (0,1)
PUMD R45,+R12 ADDRESS OF FIRST BYTE OF $ VAR
PUMD R66,+R12 MAX LEN TO STORE INTO
PUMD R45,+R12 ADDRESS TO STORE INTO
STMD R45,Xl0,BUFADR SAVE BUFFER RDDRESS
JSB -ROMJSB I CALL A BANK SELECT ROM
DEF RDSTR. READ A STRING FROM THE FILE
VAL MSROM~ IT'S THE MASS STORAGE ROM
CM8 R17/-300 ANY ERRORS?
JCY GETDON JIF YES
LDMD R10,-BINTA8 ELSE GET BASE ADDRESS
LDMD R26,X10,8UFADR GET ADDRESS OF BUFFER
8IN
LDM R30,-INPBUF
LDB R32,-40
PU8D R32.+R30

GET ADDRESS OF INPUT BUFFER
LOAD A BLANK
PUSH IT TO 8UFFER

7-27

Section 7: Sample Binary Programs

5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570

7-28

JEN MOVE-1
LDB R20,-41
PUBD R20,-R22
JSB -PRINT.

BIN3 LDM R10,R4
BIN
SBM R10,-BIN3
LDMD R36,X10,BUFLEN
LDM R26,-INPBUF
JSB -DRV12.
GTO PARSIT

ERREXIT LDM R10,R4
BIN
SBM R10,-ERREXIT
GTO FINMSG

JI F YES
ELSE LOAD A I
PUSH IT TO THE HOLE
SET THE SCTEMP SELECT CODE
GET PC
CALCULATE BASE IN CASE PARSER DESTROYED

BINTAB
GET LENGTH OF BUFFER
GET THE START ADDRESS
PRI NT THE LI NE
GOT PARSE IT AS A COMMENT
GET CURRENT ADDRESS
FOR ADDRESS MATH
GET BPGM'S BASE ADDRESS
GO DISPLAY 'DONE' MESSAGE

!***,**********************
BYT 0,56

REVISON. BIN
LDM R43,-40D,0
DEF DATE
BYT 0
ADMD R45,. BI t-ITAB
PUMD R43,+R12
RTN

FOR ADDRESS MATH
LEN OF STRING
ADDRESS AS TWO BYTE REL
THERE'S THE THIRD BYTE
NOW IT'S ABSOLUTE
PUSH TO RETURN STACK
DONE

ASC "81.202 .veR 2891 .oC drakcaP-ttelweH)c("
DATE BSZ 0
!***
SAVING ASC "SAVE IN PROGRESS"
GE TTl NG ASC" GE TIN PRO GRE SS"
DONE ASC "DONE"

STAR
SAVIOTFC
SAVSCTEM
FI LENAME
BUFADR
BUFLEN

BUFFER

ASC "*"
BSZ 0
BSZ 7
BSZ 10
BSZ 5
BSZ 3
BSZ 2
BSZ 300
BSZ 0

!***,**********************
ASNTBL
ASSIG.
BINTAB
CALVRB
CLEAR.
CONBI3
DECUR2
DIGIT
DNCURS
DRV12.
ERLIN,*
ERROR
ERROR+
ERRORS
ERRTYP
FLDCOM
FXLEN
G012N

DAD 100125
DAD 65466
DAD 104070
DAD 100030
DAD 14225
DAD 4516
DAD 13467
DAD 21710
DAD 13751
DAD 6722
DAD 100114
DAD 10223
DAD 10220
DAD 100123
DAD 100124
DAD 100053
DAD 31001
DAD 24707

Section 7: Sample Binary Programs

5580 INPBUF
559Q IOTRFC
5800 LAVAIL
5610 LLDCOM
5620 LSSET
5630 LWAMEM
5640 MSCRE.
5650 MSPRNT
5660 MSPUR.
5670 MSROMtt
5680 NXTDAT
5690 NXTMEM
5700 ONEI
5710 OUTSTR
5720 PARSER
57~u PREOL.
5740 PRINT.
5750 PRSTR.
5760 PTR2-
5770 PTR2+
5780 RDSTR.
5790 ROMJSB
5800 RSETGO
5810 RTNSTK
5820 SCTEMP
5830 ST240+
5840 STREX+
5850 TOS
5860 FIN

DAD 100236
DAD 103643
DAD 100025
DAD 100050
DAD 6445
DAD 100041
DAD 65176
DAD 66221
DAD 64604
DAD 320
DAD 101645
DAD 100022
DAD 56736
DAD 14020
DAD 20000
DAD 70464
DAD 71332
DAD 66662
DAD 177715
DAD 177716
DAD 67314
DAD 6223
DAD 5700
DAD 100033
DAD 101721
DAD 21067
DAD 23721
DAD 101744
FIN

7-29/7-30

REFERENCE MATERIAL

8.1 Overview

This section consists of:

• An alphabetical listing of the global file.

• System operation and routines.

• Parsing flow diagrams.

• General hook flowcharts for the following:

CHIDLE
DCIDLE
IOSP
IOTRFC
IRQ2QJ
KYIDLE
PRSIDL
RMIDLE
SPARQJ and SPARI

• System run time table tokens and attributes.

• Error messages.

• The assembler instruction set.

• An assembler instruction coding table.

• A keycode table.

• Some programming hints.

Section
VIII

8-1

Section 8: Reference Material

8.2 The Global File

The global file as it appears on the disc is listed here. It gives the
permanent addresses in memory of many of the system routines. The
global file also contains locations of system pointers, buffers,
variables, and constants which may be referenced in a binary program.

Although it is usually more convenient, it is not necessary to use the
file GLOBAL as a label table. You may create your own on a disc, or you
may specify the addresses of the system routines called in a binary
program by adding them to the label table within the program.

Name Address Description

1*** 1000
1010
1020
1030 1*
1040 1 *
1050 1*
1060 1*
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

8-2

1 * *
1* HP-87 GLOBAL FILE FOR USE WITH THE ASSEMBLER ROM. *

(c) 1982 Hewlett-Packard Co. *
*
*
* 1***;**********************

I*NOTE: Beware of looking up a routine in the global fi le and using *
I*it without also looking up the documentation. This is especially *
I*true if the routine has an entry point address between 60000 and *
1*77777, as it may need to be called through ROMJSB. *
1***

ABS5
ACTB-3
ACTB-6
ACTBAS
ACTBS+
ACTMSU
ADD10
ADDROI
AGLBAS
ALFA
ALFAL.
ALPHA
ALPHA.
APRBAS
ASIZE
ASMBAS
ASNTBL
ASSIG.
ATN2.
AUTO II

GLO
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD

54525
177515
177512
177520
177521
103560
53030
52745
103416
21656
12466
12542
12413
103420
104744
103426-
100125
65466
77157
100103

ABS FUNCTION RUNTIME CODE
I/O MODULE ADDRESSES

I I/O MODULE ADDRESSES
I/O MODULE ADDRESSES

I I/O MODULE ADDRESSES
ACTIVE MSUS FOR MASS STORAGE ROM
ADD TWO REAL NUMBERS IN R40 AND R50
ADD 2 REAL OR INTEGER NUMBERS OFF STACK
PLOTTER ROM STOLEN RAM BASE ADDRESS
CHECK TO SEE IF R20 IS ASCII A-Z OR a-z
FORCE ALPHA ALL MODE
FORCE ALPHA OR ALPHA ALL IF NOT GRAPHALL
FORCE ALPHA NORMAL
ADVANCED PROG ROM STOLEN RAM BASE ADDR.
II OF BYTES IN ALPHA (4K OR 16K)
ASSEMBLER ROM
24 BYTES ASSIGN FILES
ASSIGN A DISC BUFFER TO A FILE
ATN2 FUNCTION
AUTO LINE II LAST VAL

Section 8: Reference Material

Name Address Description

1340 AUTOI DAD 100106 I AUTO LINE II INC
1350 BEEP. DAD 10361 BEEP STATEMENT
1360 BINEAS DAD 104073 5 EP'S ADDRESSES
1370 EINTAE DAD 104070 I 3 EYTES EP EASE ADDRS.
1380 EKSPC DAD 11520 EACKSPACE KEY RUNT:ME
1390 ELKLIN DAD 14165 ELANK LINE ON CRT
1400 EOS DRD 105350 FIXED SIZE R12 STRCK
1410 EOVAR DRD 100014 EEGIN OF LOCAL VRR
1420 EPINI DRD 6113 CALL INIT ROUTINES IN EINRRY PROGRRMS
1430 ESREAS DAD 103422 PROGRAM DEVELOPEMENT ROM STOLEN RRM ERSE 1440 EYTCRT DAD 14004 SEND ADDRESS TO CRTERD AND CRTEYT
1450 CALVRE DAD 100030 STRRT OF CALC VRRIRELES
1460 CEIL10 DRD 54412 CEIL FUNCTION RUNTIME CODE
1470 CHIDLE DAD 103670 CHRR. EDITOR INTERCEPT RRM HOOK
1480 CHKSTS DRD 13204 WAIT FOR CRT CONTROLLER NOT EUSY
1490 CHSROI DAD 52672 CHANGE SIGN OF RERL OR INTEGER NUMEER
1500 CLEAR. DAD 14225 CLERR ALPHA DISPLRY
1510 CLKDAT DAD 177413 CLOCK DATA
1520 CLKSTS DAD 177412 CLOCK STATUS
1530 CLREOL DAD 13447 CLEAR TO END OF LINE ON CRT
1540 CNTRTR DAD 1.3245 COUNT RETRACES (60 / SECOND)
1550 COLUMN DAD 14206 FIND WHAT COLUMN ON ALPHA DISPLRY
1560 COMMA$ DAD 72146 PRINT STRING,
1570 COMMA. DAD 72265 PRINT NUMEER,
1580 CONEI3 DAD 4516 CONVERT 3-EYTE EINRRY II TO REAL
1590 CONEIN DAD 4401 CONVERT 2-BYTE EINARY II TO REAL
1600 CONCA. DAD 76366 I CONCATENATE TWO STRINGS
1610 CONINT DAD 45116 CONVERT A RERL II TO A 15-BIT SIGNED BIN. 1620 CONTR. DAD 61620 I/O MODULE 'CONTROL' STATEMENT
1630 COS10 DAD 54353 COSI NE FUNCTI ON
1640 COT10 DAD 54333 COTANGENT FUNCTION
1650 COUNTK DAD 14411 KEY REPEAT ROUTINE
1660 CPREAS DAD 103432 CAPR ROM
1670 CRT. DAD 57307 'CRT IS' STATEMENT
1680 CRTBAD DAD 177701 CRT EYTE ADDRESS
1690 CRTELK DAD 12246 FILL ALPHA MEMORY WITH CHR$ (13)'s
1700 CRTEYT DAD 100206 CRT BYTE ADDRESS
1710 CRTDAT DAD 177703 CRT DATA
1720 CRTINT DAD 12176 INITIALIZE CRT MEMORY
1730 CRTLST DAD 101101 II LINES ON CRT PAGE -1
1740 CRTPOF DAD 12334 POWER DOWN CRT HIGH VOLTRGE
1750 CRTPUP DRD 12341 POWER UP CRT HIGH VOLTAGE
1760 CRTRAM DAD 100210 CRT STRRT ADDRESS (COPY IN RRM)
1770 CRTSAD DAD 177700 CRT START RDDRESS I/O ADDRESS
1780 CRTSTS DAD 177702 CRT STATUS I/O ADDRESS
1790 CRTUNW DAD 12360 UNBLANK THE CRT
1800 CRTWPO DAD 12374 BLANK THE CRT
1810 CRTWRS DAD 101655 CRT STATUS IN RAM
1820 CS.C. DAD 100212 CRT SELECT CODE (8 BYTES)
1830 CSEC10 DAD 54300 COSECANT FUNCTION

8-3

Section 8: Reference Material

Name

1840 CSIZE.
1850 CURS
1860 CURSON
1870 CVNUM
1880 DALLED
1890 DALLOC
1900 DATE
1910 DATE.
1920 DCIDLE
1930 DCLINII
1940 DCSLOP
1950 DECUR2
1960 DEFA+.
1970 DEFA-.
1980 DEFAUL
1990 DEFMSU
2000 DEG.
2010 DEG10
2020 DFLAG
2030 DGHOOK
2040 DIGIT
2050 DISBUF
2060 DISP.
2070 DI SPLN
2080 DISPTR
2090 DIV10
2100 DIV2
2110DMNDCR
2120 DNCUR.
2130 DNCURS
2140 DRAW.
2150 DRG
2160 DRV12.
2170 EDMOD2
2180 EMOVDN
2190 EMOVUP
2200 ENDSR
2210 EOJ2
2220 EOVAR
2230 EPS10
2240 EOS.
2250 EO.
2260 ERBEND
2270 ERUNII
2280 ERNUMII
2290 ERRBPII
2300 ERRBUF
2310 ERROMII
2320 ERROR
2330 ERROR+
2340 ERRORS
2350 ERRROM

8-4

Address

DAD 66570
DAD 14030
DAD 105347
DAD 72401
DAD 101104
DAD 47123
DAD 101133
DAD 32073
DAD 104035
DAD 34607
DAD 35132
DAD 13467
DAD 61576
DAD 61604
DAD 100152
DAD 103477
DAD 62257
DAD 54736
DAD 104224
DAD 104044
DAD 21710
DAD 100542
DAD 71311
DAD 101136
DAD 100060
DAD 52441
DAD 52436
DAD 25175
DAD 13607
DAD 13751
DAD 64727
DAD 100160
DAD 6722
DAD 100122
DAD 32161
DAD 32231
DAD 14750
DAD 14525
DAD 100017
DAD 54722
DAD 3564
DAD 62623
DAD 100542
DAD 100114
DAD 100117
DAD 103371
DAD 100476
DAD 100121
DAD 10224
DAD 10220
DAD 100123
DAD 100120

Descr iption

'CSIZE' STATEMENT
TURN CURSOR ON
CURSOR ON FLAG
FORMAT A REAL NUMBER FOR OUTPUT
DEALLOCATED FLAG
DE-ALLOCATE THE BASIC PROGRAM
JULIAN DAY YEAR
DATE FUNCTI ON
DCOMPI LE HOOK
DECOMPILE A BASIC PROGRAM LINE NUMBER
REVERSE A STRING FROM EXTENDED MEMORY
TURN CURSOR OFF
TURN MATH DEFAULTS ON
TURN MATH DEFAULTS OFF
DEFAULT ERROR FLRG
DEFAULT MSUS
PUTS THE COMPUTER IN DEGREES TRIG MODE
RADIANS TO DEGREES CONVERSION
DIRECTION FLAG FOR DISC READ/WRITE
DIGITIZE HOOK FOR CRT DIGITIZING
SEE IF R20 CONTAINS A DIGIT (ASCII CODE)
DI SPLAY BUF FER
SET SELECT CODE TO CRT IS DEVICE
1 BYTE DISPLAY LINE LENGTH
DISP BUFFER PTR
DIVIDE 2 REAL NUMBERS IN R40 AND R50
DIVIDE 2 REAL OR INTEGER NUMBERS ON STAK
DEMAND CARRIAGE RTN, BANG (!), OR @ SIGN
MOVE CURSOR DOWN ON CURRENT CRT PAGE
MOVE CURSOR DOWN IN ALPHA MEMORY
DRAW A LINE ON THE CRT
DEG/RAD/GRAD FLAG
OUTPUT VECTOR ROUTINE
EDITOR MODE (INSERT/REPLACE)
EXTENDED MEMORY MOVDN
EXTENDED MEMORY MOVUP
END OF SERVICE ROUTINE(FIX UP EMC'S DRP)
END OF JOB (TURN OFF KEY)
END OF LOCAL VARIABLE POINTER
EPS FUNCTION
COMPARE TWO STRINGS FOR EOUAL
COMPARE TWO NUMBERS FOR EQUAL
END ERROR BUFFER + 1
LINEII OF BAD LINE
ERROR NUMBER
BPGM II THAT REPORTS THE ERR
ERROR BUFFER (44 BYTES)
ROMII OF LAST ERROR
REPORT ERROR ROUTINE
REPORT ERROR AND THROW AWAY 1 RTN ADDR.
RUN TIME ERRORS
ROMII OF ERROR

Section 8: Reference Material

Name

2360 ERRSC
2370 ERRTYP
2380 ERTEMP
2390 EXEC
2400 EXP5
2410 EXSTAT
2420 EXTFIL
2430 FASTBS
2440 FBPGM
2450 FETAVR
2460 FETSVA
2470 FILTYP
2480 FLDCOM
2490 FLIP
2500 FNAM
2510 FNAM+5
2520 FNDLIN
2530 FORMAR
2540 FP5
2550 FRAME.
2560 FWBIN
2570 FWCURR
2580 FWPRGM
2590 FWROM
2600 FWUSER
2610 GSN
2620 GSN+NN
2630 G/A
2640 G012N
2650 G01N
2660 GOOR2N
2670 G120R4
2680 G10R2N
2690 GCHAR
2700 GCLR.
2710 GEMINI
2720 GEQ$.
2730 GEQ.
2740 GET)
2750 GET1N
2760 GET2N
2770 GET4N
2780 GETCMA
2790 GETPA?
2800 GETPAR
2810 GINTDS
2820 GINTEN
2830 GLINE
2840 GLOAD
2850 GNAM
2860 GNAM+5
2870 GOTOSU

Address

DAD 101141
DAD 100124
DAD 104200
DAD 72
DAD 53174
DAD 177426
DAD 110010
DAD 11565
DAD 50333
DAD 45505
DAD 45305
DAD 101671
DAD 100053
DAD 14544
DAD 103503
DAD 103510
DAD 32355
DAD 27034
DAD 54665
DAD 66165
DAD 100044
DAD 100006
DAD 100003
DAD 110130
DAD 100000
DAD 24543
DAD 24642
DAD 11606
DAD 24707
DAD 24726
DAD 24744
DAD 24772
DAD 24761
DAD 21636
DAD 62214
DAD 104157
DAD 3667
DAD 62734
DAD 23450
DAD 24557
DAD 24630
DAD 24635
DAD 23477
DAD 24740
DAD 24562
DAD 177401
DAD 177400
DAD 104740
DAD 72510
DAD 103515
DAD 103522
DAD 30317

Description

ERROR SELECT CODE
I ERROR TYPE

12 BYTES TEMP
BEGINNING OF MRIN EXEC LOOP
EXP FUNCTION (eAX)
EXTENDED 10 STRTUS
EXTENDED FILE TYPE TABLE
FAST BACKSPACE (SHIFTED BACKSPRCE KEY)
FIND BINARY PROGRAM (BY BPGM ~)
FETCH ARRAY VARIABLE ADDRESS
FETCH SIMPLE VRRIABLE RDDRESS
1 BYTE TRPE, TEMP
FIRST LINE DECOMPILE
TOGGLE THE KEYBOARD 'FLIP' STRTUS
FILE NAME 1ST HRLF
FILE NAME 2ND HALF
FIND A BRSIC PROGRAM LINE IN MEMORY
PARSE AN ARRAY REFERENCE
FRACTIONAL PART FUNCTION
FRRME THE CRT
FWA USER BIN PROG
PTR TO CURRENT PGM
FWA PROGRAM RREA

I FWA USER PROGRRM ROMRRM
FWA USER AREA
GET STRING & NUMERIC
GET STRING & NUMERIC WITH OPTIONRLS
TOGGLE BETWEEN GRAPH AND RLPHR
GET 0, 1, OR 2 NUMERIC VRLUES
GET 0 OR 1 NUMERIC VALUES
GET 0 OR 2 NUMERIC VRLUES
GET 1, 2, OR 4 NUMERIC VRLUES
GET 1 OR 2 NUMERIC VRLUES
GET A CHARRCTER RT PARSE TIME
CLERR THE GRRPHICS CRT DISPLRY
GEMINI FLAG
COMPARE FOR GRERTER THRN OR EQURL TO
COMPARE TWO NUMBERS FOR >-

I GET A CLOSE PRRENTHESIS
PRRSE ONE ~UMBER
PARSE TWO NUMBERS
PRRSE FOUR NUMBERIC PARRMETERS
DEMRND R COMMR RT PARSE TIME
GET SOME OPTIONRL PARRMETERS
GET R SET NUMBER OF NUMERIC PRRAMETERS
GLOBRL INTERRUPT DISABLE
GLOBRL INTERRUPT ENRBLE
NUMBER OF DOTS ON A LINE OF GRRPH SCREEN
'GLORD' STATEMENT
FOR MASS STORAGE COpy ,RENRME, ETC.
FOR MASS· STORAGE COPY, RENAME, ETC.
PARSE A GOTO/GOSUB LINE NUMBER OR LRBEL

8-5

Section 8: Reference Material

Name

2880 GRS.
2890 GR.
2900 GRAD.
2910 GRAFA.
2920 GRAPH
2930 GRAPH.
2940 GSIZE
2950 GSTOR.
2960 HLFLIN
2970 HMCURS
2980 HORN
2990 ICOS
3000 IDRAW.
3010 IMERR
3020 IMOVE.
3030 INCHR
3040 INF 1 0
3050INIT.
3060 INP8-3
3070 INP8UF
3080 INPCoM
3090 INPR10
3100 INPToS
3110 INPTR
3120 INPUT.
3130 I NT5
3140 INTDIV
3150 INTEGR
3160 INTMUL
3170 INToRL
3180 INTRSC
3190 I08ASE
3200 I08ITS
3210 IoDATA
3220 IoINTC
3230 IoSP
3240 IoSTAT
3250 IoSW
3260 IoTRFC
3270 IP5
3280 IPLoT.
3290 IRQ20
3300 IRQ20+
3310 IRQPAD
3320 IRQRTN
3330 ISIN
3340 ITAN
3350 KEYCNT
3360 KEYCoD
3370 KEYHIT
3380 KEYLA.
3390 KEYSTS

8-6

Address

DAD 03614
DAD 62705
DAD 62274
DAD 12626
DAD 12560
DAD 12574
DAD 104742
DAD 72711
DAD 14110
DAD 13661
DAD 10400
DAD 77254
DAD 64706
DAD 103724
DAD 64643
DAD 14262
DAD 54321
DAD 1241
DAD 100233
DAD 100236
DAD 100167
DAD 101717
DAD 100204
DAD 101143
DAD 16314
DAD 54572
DAD 54601
DAD 21331
DAD 53673
DAD 57125
DAD 177500
DAD 103414
DAD 101140
DAD 177422
DAD 177421
DAD 103652
DAD 177420
DAD 100163
DAD 103643
DAD 54770
DAD 64660
DAD 103742
DAD 103751
DAD 103757
DAD 103760
DAD 77244
DAD 77264
DAD 100153
DAD 177403
DAD 101142
DAD 13360
DAD 177402

Description

COMPARE STRINGS FOR GREATER THAN
COMPARE NUM8ERS FOR GREATER THAN
SET THE COMPUTER TO GRAD MODE
FORCE GRAPH ALL MODE
SWITCH TO GRAPH UNLESS IN RLPHR ALL
FORCE GRAPH NORMAL MODE
~ OF 8YTES IN GRRPH SCREEN (12K OR 16K)
'GSToRE' STATEMENT
DISP STRING WITHOUT CR RND LF
HOME CURSOR ON CURRENT CRT PAGE
LOWER LEVEL '8EEP' ENTRY POINT
ARC COSINE FUNCTION
'IDRAW' STATEMENT
IMAGE ERROR INTERCEPT RAM HOOK
'IMoVE' STATEMENT
READ ONE CHARACTER IN FROM CRT MEMORY
INFINITY FUNCTION (RETURNS BIGGEST ~)
'INIT' KEY EXECUTION
3 PERMANENT 8YTES IN FRONT OF INP8UF
PARSER INPUT 8UFFER
INPUT COMPLETION ADDRESS
R10 SAVE DURING INPUT
INPUT TOP OF STAK
INPUT LINE POINTER
INPUT RUNTIME ROUTINE
INT FUNCTION
INTEGER DIVISION (') RUNTIME
GET AN INTEGER AT PARSE TIME
MULTIPLY TWO BINARY NUM8ERS
CONVERT A TAGGED INTEGER TO A REAL
I/O CARDS SELECT CODE ADDRESS
I/O ROM BASE RAM POINTER
1 8YTE I/O
I/O DATA
I/O CONTR-INTRUPT
I/O SERVICE POINTER RAM HOOK
I/O STATUS
I/O SERVICE WORD
7 8YTES TRAFFIC INTERCEPT
IP FUNCTION RUNTIME CODE
'IPLOT' STATEMENT
I/O INTERRUPT RAM HOOK
I/O INTERRUPT RAM HOOK
I/O INTERRUPT RAM HOOK
I/O INTERRUPT RAM HOOK
ARC SINE FUNCTION
ARC TANGENT FUNCTION
KEY80ARD REPEAT COUNTER
KEY80ARD CODE AND EOJ08 I/O ADDRESS
KEY80ARD ASCII
KEY LA8EL RUNTIME ROUTINE
KEY80ARD STATUS I/O ROUTINE

Section 8: Reference Material

Name

3400 KEYTAB
3410 KRPET1
3420 KRPET2
3430 KYIDLE
3440 LABEL.
3450 LASTIN
3460 LAVAIL
3470 LDIR.
3480 LEGCA2
3490 LEGCAL
3500 LEGEN2
3510 LEGEND
3520 LEO$.
3530 LEO.
3540 LINELN
3550 LINET.
3560 LIST.
3570 LLDCOM
3580 LLN-1
3590 LLN-2
3600 LN5
3610 LNTYPE
3620 LOGT5
3630 LSTBUF
3640 LSTDAT
3650 L T$.
3660 LT.
3670 LTCUR.
3680 LTCURS
3690 LTYPEII
3700 LWAMEM
3710 MAX10
3720 MBASE
3730 MIN10
3740 MLAD
3750 MOD10
3760 MODADR
3770 MOVCRS
3780 MOVDN
3790 MOVE.
3800 MOVUP
3810 MPY10
3820 MPYROI
3830 MSBASE
3840 MSCRE.
3850 MSHIGH
3860 MSLOW
3870 MSPRNT
3880 MSPUR.
3890 MSREN.
3900 MSTIME
3910 NARRE+

Address

DAD 102016
DAD 100154
DAD 100155
DAD 103677
DAD 67262
DAD 100475
DAD 100025
DAD 67052
DAD 101525
DAD 101405
DAD 101265
DAD 101145
DAD 3656
DAD 62662
DAD 101714
DAD 66336
DAD 6352
DAD 100050
DAD 104231
DAD 104233
DAD 52346
DAD 104750
DAD 52515
DAD 103200
DAD 101650
DAD 3635
DAD 62643
DAD 13623
DAD 13757
DAD 104537
DAD 100041
DAD 56144
DAD 103424
DAD 56125
DAD 177424
DAD 52541
DAD 13255
DAD 13771
DAD 57172
DAD 64634
DAD 57232
DAD 53357
DAD 53517
DAD 103412
DAD 65176
DAD 103764
DAD 103773
DAD 66221
DAD 64604
DAD 64724
DAD 104002
DAD 23461

Description

BASE ADDR KEY TABL
MAJOR KYBD REPEAT
MINOR KYBD REPEAT
KEYBOARD INTERCEPT
'LABEL' STATEMENT
END OF INPUT BUFFER
LAST AVAIL WD IN PGM AREA
'LDIR' STATEMENT
CALC KEYLABELS (BTM ROW)
CALC KEYLABELS (TOP ROW)
RUN KEYLABLES (BTM ROW)
RUN KEYLABELS (TOP ROW)
COMPARE STRINGS FOR LESS THAN OR EQUAL
COMPARE NUMBERS FOR LESS THAN OR EQUAL
DEVICE LINE LENGTH
'LINE TYPE' STATEMENT
'LIST' STATEMENT
LAST LINE DECOMPILE
PGSIZE - ONE LINE
PGSIZE - TWO LINES
NATURAL LOGARITHM FUNCTION
LINE TYPE POINTER TABLE
BASE 10 LOGARITHM FUNCTION
LWA + 1 DISC BUFFER
LAST DATA ADDR. FOR DISC READ/WRITE
COMPARE STRINGS FOR LESS THAN
COMPARE NUMBERS FOR LESS THAN
LEFT CURSOR ON CURRENT PAGE
LEFT CURSOR IN ALPHA MEMORY
LINE TYPE II
LAST WORD AVAILABLE USER MEMORY
MAX FUNCTION RUNTIME CODE
MATRIX ROM STOLEN RAM BASE ADDRESS
MIN FUNCTION RUNTIME CODE
SERIAL POLL REGISTER
MOD FUNCTION RUNTIME ADDRESS
KEEPING ADDRESS IN ALPHA MEMORY ON CRT
MOVE CURSOR EY SPECIFIED AMOUNT
MOVE MEMORY CONTENTS WITH DECREASING PTR
'MOVE' STATEMENT
MOVE MEMORY CONTENTS WITH INCREASING PTR
MULTIPLY TWO REAL II'S IN R40 AND R50
MULTIPLY TWO REAL OR INTEGER lis ON STACK
MASS STORAGE ROM STOLEN RAM BASE ADDRESS
CREATE RUNTIME CODE
MS HIGH LEVEL HOOK
MS LOW LEVEL HOOK
PART OF PRINTII RUNTIME CODE
PURGE RUNTIME CODE
'RENAME' STATEMENT
MS TI MEOUT HOOK
SCAN AND PARSE A NUMERIC ARRAY REFERENCE

8-7

Section 8: Reference Material

Name

3920 NARREF
3930 NUMCoN
3940 NUMVA+
3950 NUMVAL
3960 NXTDAT
3970 NXTMEM
3980 NXTRTN
3990 oNEB
4000 oNEI
4010 oNER
4020 oNERoI
4030 oNEX
4040 oNFLAG
4050 oPTBAS
4060 oUTCH1
4070 oUTCHR
4080 oUTSTR
4090 P.BUFF
4100 P.FLAG
4110 P.PTR
4120 P.TYPE
4130 PAGES.
4140 PAGES1
4150 PAGES2
4160 PARSER
4170 PENIt
4180 PGSIZE
4190 PI10
4200 PLHooK
4210 PLIST.
4220 PLOT.
4230 PLoTSY
4240 POS.
4250 PPoLL
4260 PRARR$
4270 PRARR.
4280 PRDRVR
4290 PRDVF+
4300 PREoL.
4310 PRINT.
4320 PRUNE
4330 PRNTLN
4340 PRNTR.
4350 PRNUM.
4360 PRSIDL
4370 PRSTR.
4380 PRTBUF
4390 PRTPTR
4400 PS.C.
4410 PTR1
4420 PTR1+
4430 PTR1-

8-8

Address

DAD 23465
DAD 23551
DAD 22403
DAD 22406
DAD 101645
DAD 100022
DAD 100036
DAD 12153
DAD 56736
DAD 56777
DAD 57035
DAD 56673
DAD 100065
DAD 100175
DAD 14130
DAD 14143
DAD 14020
DAD 101706
DAD 101712
DAD 101710
EQU 6
DAD 12756
DAD 13001
DAD 13103
DAD 20000
DAD 104535
DAD 104227
DAD 54374
DAD 103661
DAD 6344
DAD 64652
DAD 100151
DAD 4227
DAD 177423
DAD 70730
DAD 70167
DAD 73023
DAD 103550
DAD 70464
DAD 71332
DAD 71641
DAD 101137
DAD 75631
DAD 67220
DAD 103733
DAD 66662
DAD 107454
DAD 100062
DAD 100222
DAD 177710
DAD 177712
DAD 177711

Description

PARSE A NUMERIC ARRAY REFERENCE
PARSE A NUMERIC CONSTANT
SCAN AND PARSE A NUMERIC EXPRESSION
PARSE A NUMERIC EXPRESSION
NEXT DATA ADDRESS FOR DISK READ/WRITE
NEXT BYTE AVAILABLE MEMORY
NEXT AVAILABLE GoSUB/RTN
GET 1 NUMBER OFF STACK AS SIGNED BINARY
GET 1 NUMBER OFF STACK AS TAGGED INTEGER
GET 1 NUMBER OFF STACK AS FLOATING POINT
GET 1 NUMBER OFF STACK AS REAL OR INTEGR
GET 1 NUMBER OFF STACK AS UNSIGNED BIN.
ON GoSUB FLAG
2 BYTE PERMANENT OPTION BASE
OUTPUT A BYTE TO THE CRT
OUTPUT A CHARACTER TO CRT

I OUTPUT A STRING TO CRt
INDIRECT BUFFER POINTERS
INDIRECT BUFFER FLAG
INDIRECT BUFFER POINTER
OFFSET INTO BASIC PCB TO GET TYPE BYTE
PAGESIZE RUNTIME CODE
PAGESIZE 16
PAGESIZE 24
SYSTEM PARSER
(PEN It) * 3 FOR INDEXING
It OF BYTES / PAGE
PI FUNCTION RUNTIME CODE
PLOTTER HOOK
'PLIST' STATEMENT
'PLOT' STATEMENT
PLOTTER ON/OFF FLAG
POS FUNCTION RUNTIME CODE
PARALLEL POLL REG
PRINTIt STRING ARRAY TO DISC FILE
PRINTIt NUMERIC ARRAY TO DISC FILE
PRINTER DRIVER ROUTINE
SPECIAL CHARACTER FLAG FOR LIST TIME
PRINTIt END OF LINE (DUMP BUFFER)
SET SELECT CODE TO PRINTER IS DEVICE
PRINT LINE RUNTIME CODE
1 BYTE PRINTER LINE LENGTH
PRINTER IS STATEMENT
PRINTIt A NUMBER TO A DATA FILE
PARSER RAM HOOK
PRINTIt A STRING TO A DATA FILE
PRINT BUFFER
PRINT BUFFER PTR
PRINTER SELECT CODE
I/O ADDRESSES FOR EMC POINTERS
I/O ADDRESSES FOR EMC POINTERS
I/O ADDRESSES FOR EMC POINTERS

Section 8: Reference Material

Name

4440 PTR1-+
4450 PTR2
4460 PTR2+
4470 PTR2-
4480 PTR2-+
4490 R60+10
4500 R60+12
4510 R60+14
4520 R60+2
4530 R60+4
4540 R60+6
4550 R60K
4560 RAD.
4570 RAD10
4580 RAID+1
4590 RAID+2
4600 RDARR!t
4610 RDARR.
4620 RDNUM.
4630 RDSTR.
4640 READ.
4650 RECBUF
4660 REFNUM
4670 RELMEM
4680 REM10
4690 RESET.
4700 RESMEM
4710 RESULT
4720 RETRHI
4730 RMEM
4740 RMIDLE
4750 RND10
4760 RNDIZ.
4770 ROMEND
4780 ROMFL
4790 ROMINI
4800 ROMJSB
4810 ROMLST
4820 ROMRTN
4830 ROMTAB
4840 RPLOT.
4850 RSELEC
4860 RSTREG
4870 RSUM8K
4880 RTCUR.
4890 RTCURS
4900 RTNSTK
4910 RULI TE
4920 S10
4930 SAD1
4940 SAVER6
4950 SAVRO

Address

DAD 177713
DAD 177714
DAD 177716
DAD 177715
DAD 177717
DAD 60010
DAD 60012
DAD 60014
DAD 60002
DAD 60004
DAD 60006
DAD 60000
DAD 62267
DAD 54472
DAD 103307
DAD 103310
DAD 70312
DAD 70106
DAD 67503
DAD 67314
DAD 66221
DAD 102600
DAD 27530
DAD 31777
DAD 52533
DAD 5407
DAD 31741
DAD 100070
DAD 13234
DAD 105343
DAD 103706
DAD 53741
DAD 55713
DAD 104145
DAD 104065
DAD 6055
DAD 6223
DAD 104143
DAD 6207
DAD 104105
DAD 64666
DAD 177430
DAD 22346
DAD 37670
DAD 13651
DAD 13765
DAD 100033
DAD 177704
DAD 103367
DAD 13723
DAD 104066
DAD 103200

Description

I/O ADDRESSES FOR EMC POINTERS
I/O ADDRESSES FOR EMC POINTERS
I/O ADDRESSES FOR EMC POINTERS
I/O ADDRESSES FOR EMC POINTERS
I/O ADDRESSES FOR EMC POINTERS
ROM ERROR MESSAGES
ROM INITIALIZATION
TEST INITIALIZATION
ROM RUNTIME POINTERS
ROM ASCII TABLE
ROM PARSE TABLE
FIRST ADDRESS FOR ROMS
PUT COMPUTER IN RADIANS TRIG MODE
DEGREES TO RADIANS CONVERSION
USED BY INTERRUPT SERVICE ROUTINES
USED BY INTERRUPT SERVICE ROUTINES
READ~ A STRING ARRAY FROM DISK FILE
READ~ A NUMERIC ARRAY FROM DISK FILE
READ~ A NUMBER FROM DISK FILE
READII ; STRING
READ~ POINTER POSITIONING
DISK BUFFER 400 BYTES (256 DECIMAL)
PARSE A NUMERIC VARIABLE REFERENCE
RELEASE TEMPORARY MEMORY
'RMD' FUNCTION (REMAINDER)
RESET KEY RUNTIME CODE
RESERVE SOME TEMPORARY MEMORY
LAST CALCULATOR MODE RESULT
WAIT FOR RETRACE HIGH FROM CRT
RESERVED MEMORY COUNT
EXEC LOOP RAM HOOK
RND FUNCTION (GET A RANDOM NUMBER)
RANDOMIZE COMMAND
END OF ROM TABLE ENTRIES
ROM FLAG FOR INITIALIZATION ROUTINES
CALL BPGM'S AND ROM'S INIT ROUTINES
JSB TO A BANK SELECTABLE ROM
LAST ENTRY IN ROM TABLE
RE-SELECT ROM 0 AND RETURN
BASE OF ·ROM TABLE
'RPLOT' STATEMENT
BANK SELECTABLE ROM SELECTION ADDRESS
RESTORE REGISTERS
DO A CHECKSUM ON 8K OF MEMORY
MOVE CURSOR RIGHT ON CURRENT SCREEN
MOVE CURSOR RIGHT IN ALPHA MEMORY
TOP OF GOSUB RETURN STAK
RUN LIGHT I/O ADDRESS
FOR SAVING R10-11 DURING INTERRUPT SVC
SET CRT ALPHA START ADDRESS
DISK BAIL OUT STACK POINTER FOR ERRORS
SYSTEM MONITOR REGISTER SAVE AREA

8-9

Section 8: Reference Material

Name Address Description

4960 SAVR10 DAD 104063 R10 SAVE FOR PARSE ERRORS
4970 SAVREG DAD 22310 SAVE REGISTERS ON R6
4980 SC10+1 DAD 177540 I/O CARD STUFF
4990 SCAN DAD 21110 GET NEXT TOKEN TO R14 AT PARSE TIME
5000 SCAN+ DAD 21105 GCHAR AND SCAN
5010 SCRAT. DAD 5601 'SCRATCH' RUNTIME CODE
5020 SCRDN DAD 13671 SCROLL DOWN THE CRT
5030 SCRUP DAD 13736 SCROLL UP THE CRT
5040 SCTEMP DAD 101721 S.C. TEMP STORE
5050 SEC10 DAD 54260 SECANT RUNTIME CODE
5060 SEMIC$ DAD 72155 PRINT STRING;
5070 SEMIC. DAD 72274 PRINT NUMBER-;
5080 SEQNO DAD 30426 PARSE A LINE NUMBER
5090 SEQNO+ DAD 30422 PARSE A LINE NUMBER
5100 SERPOL DAD 177425 MY LISTEN ADDRESS
5110 SET240 DAD 21071 SET THE IMMEDIATE BREAK BITS IN R17
5120 SGN5 DAD 54202 SGN FUNCTI ON
5130 SIN10 DAD 54343 SIN FUNCTION
5140 SKY TXT DAD 106610 CALC SOFTKEYS TEXT (14*30)
5150 SPARO DAD 104011 SPARE INTERRUPT RAM HOOK (SYS MONITOR)
5160 SPAR1 DAD 104022 SPARE INTERRUPT RAM HOOK (UNUSED)
5170 SPECIF DAD 103527 DI SC VOLUME NAr'1E
5180 SPTR1 DAD 103300 SYSTEM MONITOR SAVE PTR1 AREA
5190 SPTR2 DAD 103303 SYSTEM MONITOR SAVE PTR2 AREA
5200 SQR5 DAD 53237 SQUARE ROOT FUNCTION
5210 ST240+ DAD 21067 CLEAR R16 AND SET240
5220 STACK DAD 102070 R6 STACK 500 OCTAL BYTES (320 DECIMAL)
5230 STBEEP DAD 10441 STANDARD BEEP
5240 STOST DAD 46472 STORE STRING ROUTINE
5250 SToSV DAD 46057 STORE SIMPLE VARIABLE
5260 STRANG DAD 103715 STRANGE PARAMETER TYPES I NTERCEPT HOOK
5270 STRCoN DAD 24201 PARSE A STRING CONSTANT
5280 STREX+ DAD 23721 SCAN AND PARSE A STRING EXPRESSION
5290 STREXP DAD 23724 PARSE A STRING EXPRESSION
5300 STRREF DAD 24056 PARSE A STRING VARIABLE REFERENCE
5310 STSIZE DAD 101741 STATEMENT SIZE PLACE Ho~DER POINTER
5320 SUB10 DAD 52734 SUBTRACT TWO REAL NUMBERS IN R40 AND R50 5330 SUBRoI DAD 52724 SUBTRACT 2 REAL OR INTEGERS ON STACK
5340 SVCWRD DAD 100162 SERVICE WORD
5350 SYSDIS DAD 177707 SOS CARD ROM DISABLE ADDRESS
5360 TAN10 DAD 54363 TANGENT FUNCTION
5370 TIME DAD 101123 TIME OF DAY
5380 TIME. DAD 66211 TIME OF DAY FUNCTION
5390 TOS DAD 101744 TOP R12 STAK
5400 TWOB DAD 56760 GET TWO BINARY NUMBERS OFF STACK
5410 TWoR DAD 57020 GET 2 REAL NUMBERS OFF R12 STACK
5420 TWORoI DAD 57050 GET 2 REAL OR INTEGERS OFF R12 STACK
5430 UNBAS1 DAD 103430 UNUSED ROM STOLEN RAM BASE ADDRESS
5440 UNBAS2 DAD 103434 UNUSED ROM STOLEN RAM BASE RDDRESS
5450 UNEQ$. DAD 3603 COMPARE STRINGS FOR UNEQUAL
5460 UNEQ. DAD 62632 COMPARE NUMBERS FOR UNEQUAL
5470 UNQUOT DAD 24366 PARSE AN UNQUoTED STRING

8-10

Section 8: Reference Material

8.3 System Operation and Routines

This section provides documentation for certain areas of system
operation. It also shows the input conditions required and the outputs
produced by selected system routines. The names and addresses of the
system routines detailed here are also on the disc.

The system routines are arranged in alphabetical order. Their area of
primary use is noted. Because a routine is listed under a certain
application does not limit its use to that area. For example, many
utility routines may also be used during run time operations.

8-11

Section 8: Reference Material

The format of the individual system routines is shown here:

@

A. Name: Name of the routine (from the global file).

B. Address: Permanent octal address of the routine in computer memory.

C. ROM#: The ROM that must be selected if this routine needs to be
called through ROMJSB.

D. ROM #: The "Y" or "N" entry indicates if this routine needs to
to be called through ROMJSB.

E. Registers: Shaded areas indicate registers used by this routine.

F. DR,AR,DC,E,ST,PTR1,PTR2: Entries in these boxes indicate exit
conditions of this routine. The following symbols are used:

8-12

Symbol

U

*

Unchanged.
Unknown.

Meaning

Refer to the description (G).

Section 8: Reference Material

G. Conditions: When applicable, shows input and output stack contents,
and output register contents.

H. Description: Contains description of routine.

8-13

Section 8: Reference Material

ABS5
MATH

ADD10
MATH

ADDROl
MATH

8-14

System function that
returns the absolute
value of a number.

(Refer to the system
function A8S in the
owner's manual,)

Adds two real
(floating-point)
numbers.

Adds two real or
tagged-integer
number

(Thi is the main
runt
for

INPUT STACK CONTENTS

Argument (8-bytes)
RI2----)

OUTPUT STACK CONTENTS

Absolute value of argument (8-bytes)
RI2----)

OUTPUT REGISTER CONTENTS

R40-R47 Copy of absolute value.

R60-R67 = Copy of original argument
value.

INPUT REGISTER CONTENTS

R40-R47 = Real value
R50-R57 = Real value

(8-bytes)
(8-bytes)

OUTPUT STACK CONTENTS

Result A+B (8-bytes)
RI2---->

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of result A+B

NOTE: The two numbers must be in
floating-point format and the CPU must
be in BCD mode when ADDl0 is called
or the result will be incorrect,

INPUT STACK CONTENTS

Real or taQQed-inteQer
Real or ta~~ed-inte~er

RI2----)

OUTPUT STACK CONTENTS

Result A+B (8-b~tes)
RI2----> -

OUTPUT REGISTER CONTENTS

R40-R47 = COpy of the result

(8-bytes)
(a-bytes)

Section 8: Reference Material

Checks the character
in R20 to see if it's
between IAI and II'
or la l and I Z ' I If
it's IOl..o.ler- case) it's
shifted to upper

Forces ALPHA ALL mode
on the CRT.

It~PUT CONDITIONS

R20 = The character

OUTPUT CONDITIONS

R20 The character (shifted to upper
case if it was lower case)

If it was not an alpha character
If it was an alpha character

OUTPUT CONDITIONS

The CRT will be in ALPHA ALL mode.
The actual code for ALFAL. is:

ALFAL.

ALFALI

BIN
LOBO R30,=CRTSTS
LLB R3(1
ELB R3(1
ERB R30
.JCY ALFALI
.Jt·~G A":TN
.J~;B =CRTWPO
LOB R30,=100
LOBO R31,=CRTSTS
AtHl R31 .. =177
ORB R31 .. R3(1
STE:D ":31,=CRTSTS
LOt·, R36,=300,77
~;Tt1D ":36, =ASIZE
.JSB =(:F~TBLK
.JSB =CURS

OUTPUT CONDITIONS

GET CRT STATUS
GRAPH/GRAPHALL?

.J I F · ES

.JIF ALPHA ALL
BLANK (:":T
GET 'ALL' MASK
GET ~;TATUS
TRASH GRAPH BIT
OF~ IN 'ALL' BIT
SET CRT ~;TATUS
LOAD 377(10
SET ALPHA SIZE
CLEAR t1EMORY
OUTPUT CU":SOF:

The CRT display will be in ALPHA NORMAL.

he CRT
nd top of st
f the displ
RAPH ALL mod

"Ji I I h
ck set
I~ I.o .. as i

.at ent

ve been initialized
qual to ":12-RI3

ALPHA ALL or·

ALFA
PARSE

ALFAL.
CRT

ALPHA
CRT

8-15

Section 8: Reference Material

ALPHA.
CRT OUTPUT CONDITIONS

ASSIG.
DISC

ATN2.
MATH

8-16

If the CRT display is
in GRAPH NORMAL mode
at entry, it will be
switched to ALPHA
NORMAL mode, else
nothing will be done.

If the CRT is in ALPHA NORMAL mode at
entry, it will be in ALPHA NORMAL mode
at exit. If the CRT is in ALPHA ALL mode
at entr"y, it will be in ALPHA ALL mode
at exit. If the CRT is in GRAPH NORMAL
mode at entry, it \o.'ill be in ALPHA
NORMAL mode at exit. If the CRT is in
GRAPH ALL mode at entry, it will be in
GRAPH ALL mode at exit. One return
address will also be thrown away before
returning if it was in GRAPH ALL mode,
so it won't return to the calling
routine.

INPUT STACK CONTENTS

Buffer number (8 bytes)
File name length (2 bytes)
File name address (3 bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT STACK CONTENTS

V-value (8 bytes)
X-value (8 b~tes)

R12----) -

OUTPUT STACK CONTENTS

ATN2(Y,X) (8 bytes)
R12----)

Section 8: Reference Material

Runtime code for the
BEEP statement.

ame a
ckspa
en pr

ackspace.
if the

e ke'~ had
ssed,)

Fills fro
CRT bqte
the e;.d 0
~Iith c-~rr­
character

curr-en t
ddress t

the lin
age r-etu n

(15 oc t 1)

1 t ers CRTBYT, 1 eav i nQ
t pointing to the -
tart of the next
ine.

INPUT CONDITIONS

Top of stack and R12 are compared to see
if there are any optional parameters on
the R12 stack. If none, then a JMP is
made to STBEEP.

BEEP A,B would make the stack look like
this:

A (8 bytes)
B (8 bytes)

RI2----)

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRTBYT must contain the same address
the CRT controllers byte address
register (CRTBAD).

The cursor must be off at entry (a
must have been made to DECUR2).

INPUT CONDITIONS

ca 11

The CRT byte address pointer (CRTBAD)
must be pointing to the address where
blanking is to start.

OUTPUT CONDITIONS

The CRT byte address pointer will be
pointing to the first character of the
next line.

The actual code for BLKLIN is:

BLKLIN BIN
JSB =COLLIMN
LDB R32,=15

L8 JSB =OllTCHl
ICB R66
CMB R66,=80D
JNZ L8
RTN

BEEP.
MISC.

BKSPC
CRT

BLKLIN
CRT

8-17

Section 8: Reference Material

SPINI
MISC.

SYTCRT
CRT

CEILleJ
MATH

8-18

ts the b~te add~ess
CRTBYT and sends
to the CF.:T

nt~olle~ (CRTBAD).

Runtime code fo~ the
system funotion CEIL.

Retu~ns the smallest
integer >= X.

INPUT CONDITIONS

ROMFL = Reason fo~ the call:

Power- on
Reset
Sc~atch
Loadbin

4 Run, Ini t
5 Load
6 Stop,Pause
7 Chain

10 Allocate class >56
11 De-allocate class)56
12 De-compile class)56
13 P~og~am halt on e~~o~

NOTE: Bina~y p~og~ams must insur-e that R0
does not get dest~oyed du~ing thei~ INIT
~outine as R0 is used by BPINI as a
counter of which binary program is next.

INPUT REGISTER CONTENTS

The ~egiste~ pai~ pointed to by the
DRP must contain the add~ess to be
sto~ed to CRTBYT and CRTRAM.

The actual code is:

BYTCRT STMD R~.=CRTBYT
SAD -
JSB =CHKST~;
PAD
SH1D R~, =CRTBAD
RTN

INPUT STACK CONTENTS

X-value (8-bytes)
R12----)

OUTPUT STACK CONTENTS

CEIL(X) ~esult (8-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of ~esult

Section 8: Reference Material

Waits for the C T
controller to b not
bus~. (When CHK TS
returns it is s fe to
store to CRTBAD
CRTDAT.)

Changes the sign of
a real or integer
number.

Does the same thing
as a CLEAR statement
in BASIC.

This is the actual code for CHKSTS:

CHKSTS

BUSY

BIN
DRP R30
~ggDB~:~=CRTSTS
RTN

'GET CRT STATUS
'LOOP IF BUSY
!ELSE RETURN

is ro t i
ore d
uch a

alph

e is
t l'~ t
en do
splay

seful when ~ou want to
CRTBAD and;or CRTDAT

ng high speed graphics
).

INPUT STACK CONTENTS

Real or tagged-integer (8-b~tes)
R12----)

OUTPUT STACK CONTENTS

Real or tagged-integer (8-b~tes)
R12----)

The actual code is:
CHSROI POMD R40,-R12

CMB R44.=377
JCY CHsioH
TSM R40
JZR CHSii
LLB R4i
NCB R4i
ERB R4i

CHSii PUMD R40,+R12
RTN

CHSi0H TCM R45

This is the runtime entr~ point for the
BASIC reserved word CLEAR.

CHKSTS
CRT

CHSROI
MATH

CLEAR.
CRT

8-19

Section 8: Reference Material

CLREOL
CRT

CNTRTR
CR'f

COLUMN
CRT

8-20

Clear
the c
line
con~e

and I

to the end of
r-r-en t ALPHA
based upon the
ts of CRTBYT)
aves CRTBYT

point ng to where it

Counts a specified
number of CRT retrace
periods.

Calculates the column
number of the current
cursor location on
ALPHA isplay. It is
return d as a number
betwee 0 and 117
(oc tal

INPUT CONDITIONS

CRTBYT = Current ALPHA cursor location.

This routine can be used when delays of
16.67 milliseconds to 4.27 seconds are
desired (in steps of multiples of 16.67
milliseconds). The CRT controller refreshes
the CRT 60 times a second. That means
there is a retrace period every 1/60 of
a second or every 16.67 milliseconds.
This routine simply counts the number of
retrace periods specified when it is
called.

INPUT REGISTER CONTENTS
R30 = Number of retraces to be counted

OUTPUT REGISTER CONTENTS
R30 = 0

NOTE: The CPU must be in BIN mode before
this routine is called

R30 is a one-byte count, thus limiting
the count to 256. (If R30 is 0 at entry

INPUT CONDITIONS

CRTBYT must contain the current cursor
address.

OUTPUT REGISTER CONTENTS

R66-R67 Column number (0-117)
R76-R77 = 120 (octal)

NOTES:
The CPU must be in BIN mode at entry.
The actual code is:

COLUMN LDM R76,=120,0
LDMD R66,=CRTBYT
ARP R76

MOD SBM R#,R#
JCY MOD
ADM R#,R#
RTN

LINE LEN=80
CURSOR ADDR.
SAVE CYCLE~;
SUBTRACT UNTIL

<0
MAKE POSITIVE
DONE

Section 8: Reference Material

nvert::: a 23-bit
gned binary number

a floa1.in·~-point
lue..

INPUT STACK CONTENTS

Length of strinQ
Address of stri~Q

R12----> -

OUTPUT STACK CONTENTS

(empty)
R12---->

(2 bytes)
(3 bytes)

NOTE: DISP. or PRINT. must be called
prior to calling COMMAS to set UP the
select code and buffer pointers.

INPUT STACK CONTENTS

Number to be printed
R12---->

(8 bytes)

OUTPUT STACK CONTENTS

(empty)
R12---->

NOTE: DISP. or- PRINT. must be called
prior to calling COMMA. to set up the
select code and buffer pointers.

INPUT REGISTER CONTENTS

R55-R57 = 23-bit signed binary
The 23 least significant b
the magnitude (0 TO 2A23-1
most si·:tnificant. bit. is t.t-.
(0=positive and l=negative
a range of -8388607 TO +83

OUTPUT REGISTER CONTENTS

ber- .

nd the
i'~ n
i v i ng
07

R40-R47 = The equivalent floating-point
v·:.lue.

COMMA$
PRINT

COMMA.
PRINT

CONBI3
MATH

8-21

Section 8: Reference Material

CONBIN
MATH

CONCA.
MISC.

CONINT
MATH

8-22

Concatenates
s t r- i n';,!s.

Converts a floating­
point value to a
16-bit unsiqned value
with a separate sign
flag.

INPUT REGISTER CONTENTS

R36-R37 = 15 bit signe
The 15 east sign
the mag itude (0-
most 5i nificant
(O=posi ive and 1
a range of -32767

OUTPUT REGISTER CONTENTS

in

67

ga
+

r '~ nu ber
t bit ar-e
and he
the ign

ive) i v i n'~
2767

R40-R47 = The equivalent floating-point
value.

INPUT STACK CONTENTS

A$ Length
A$ Address
8$ Length
8$ Addr'ess

R12---->

OUTPUT STACK CONTENTS

A$ & 8$ Length (? bytes)
A$ & 8$ Address (3 bytes)

R12---->

INPUT REGISTER CONTENTS

R60-R67 = Floating-point value

OUTPUT REGISTER CONTENTS

R76-R77 = 16-bit unsigned binary value
R32 Sign of value

If R32=0 then value is positive
If R32#0 then value is negative

t~OTE: This r"outine doesn't check to
insure that R60-R67 contains a floating
point number. so if it contains a
tagged-integer or some other garbage~
you'll get indeterminate results.

CONINT does a SAD at entr~ and a PAD at
exit. so all status is pr~served (not
including the E register).

Section 8: Reference Material

INPUT STACK CONTENTS

I/O card number
Register number
Control ~'alue

R12----}

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT STACK CONTENTS

(8 bytes)
(8 bytes)
(8 bytes)

X value
R12----)

(8-bytes)

OUTPUT STACK CONTENTS

COS(X) value
R12----)

INPUT STACK CONTENTS

(8-bytes)

X value
R12----)

(8-bytes)

OUTPUT STACK CONTENTS

COT ()O va 1 ue
R12----)

CONTR.
MISC.

COS10
MATH

COTl0
MATH

8-23

Section 8: Reference Material

COUNTK
MISC.

CRT.
CRT

CRTBLK
CRT

8-24

Used for repea~ing
keys,

ills all of ALPHA
emory with carriage
e~urn charac~ers
oc~al 15),

If a key is no~ pressed a~ en~ry or if
i~ is released before ~he key repea~ wai~
is done ~hen a call is made ~o EOJ2, else
~he key repea~ speed is forced ~o KRPET2
and ~he service reques~ flags are se~ in
R17 and SVCWRD,

INPUT STACK CONTENTS

Top of s~ack-> Selec~ code (8-by~es)
R12 ___ ~~~ional line leng~h (8-by~es)

OUTPUT STACK CONTENTS

(emp~y)

R12----)

OUTPUT CONDITIONS

The CRT will be in ~he blanked-ou~ mode
(~ha~ is, CRTUNW will have ~o be called
after CRTBLK),

R32 15
R36-R37 = e

Section 8: Reference Material

Turns off
high'lolta
~·jould be u
device I.,.ler­

'to the com
needed E:»:C
pOIAer" and
'to be r-un
time ·3::' t h
d i SF' 1 -3'0:1 I

he CRT's

~dS~~P~Y'
hooked up
ter that
sive
dn't need

the
CF~T

Turns on the CRT's
high voltage sup~ly.
Would be used if a
device were hooked up
to the computer that
needed excessive
pOI}.ler" and didn't need
to be r-un at the
time as the CF.:T
displ.~y.

OUTPUT CONDITIONS

R3.6-R37 = °
The top of stack will have to be set
equal to RI2-RI3. May GRAPH parameters
will be set to the default values.

The CRT start address (CRTSAO) and the
CRT byte address (CRTSAO) will be set
to 0.

The code for CRTPOF is:

CRTPOF LOB R3f:l, =6
B It-l
.JSB =RET HI
LOBO R# .. C":T~:T:3
ORB R#,R 0
STBO R#.' CRTSTS
":TN

The code for CRT PUP

CRTPUP LOBO 31, CRTSTS
ANt1 1': 1, = 73
STBO 31, CRT~:T~:

LOB R O,=
Y=:B = NT": F~
.Jt1P C TUN

The CPU must be in BIN mode at entry.

CRTINT
CRT

CRTPOF
CRT

CRTPUP
CRT

8-25

Section 8: Reference Material

CRTUNW
CRT

CRTWPO
CRT

CSEC10
MATH

8-26

Un-bl nks the CRT
displ y (starts the
elect (.n beam

ng)

Blanks the CRT
display (stops the
elec-t:r"on be·~m
scann i n'~)

The CRT may need to be blanked For

I) IF the CRT controller doesn't need
be refreshing the display, the CRT
memory can be accessed much more
quickly than during refreshing.

2) When switching CRT modes ugly flashes
can be seen iF the CRT is not blanked
first.

The actual code for CRTUNW is:

CRTUNW JSB =RETRHI
LOBO R#,=CRTSTS
AtH1 R#, =371
STBO R#,=CRTSTS
RTN

The CRT may need to be blanked for

I) IF the CRT controller doesn't need
be refreshing the display, the CRT
memory can be accessed much more
quickly than during refreshing.

2) When switching CRT modes ugly flashes
can be seen if the CRT is not blanked
first.

The actual code for CRTWPO is:

CRTWPO LOB R30,=2
BIN
J~;B =RET~:H I
LDBD R#,=CRTSTS
ORB R#,R30
STBD R#, =CRT~;TS
RTN

INPUT STACK CONTENTS

X value (8-bytes)
RI2----)

OUTPUT STACK CONTENTS

CSC(X) value (8-bytes)
RI2----)

Section 8: Reference Material

Outputs a cu~so~ at
the cu~~ent CRTBYT
location.

INPUT STACK CONTENTS

CSIZE
R12----)

value (8 bytes)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT CONDITIONS

CRTBYT and CRTBAD must point the
location at which the cu~so~ is to be
output.

NOTE: The cU~so~ is c~eated by setting
the most significant bit of the
cha~acte~ at the cu~so~ location. This
causes that cha~acte~ to be highlighted,
o~ shown in inve~se video. If the
cha~acte~ at that location al~eady has
its MS8 set, then the bit is clea~ed.
DECUR2 does just the opposite. In this
way the cu~so~ is not dest~uctive when it
moves through inverse video fields.
The~e is a flag (CURSON) which tells
CURS and DECUR2 if the cu~so~ is al~eady
on so that the MSB of the cha~acte~ will
not be e~~oneously toggled if
successive calls to CURS o~ DECUR2 a~e
made.

INPUT REGISTER CONTENTS

R30-R31 Pointe~ to output buffe~
R40-R47 = Floating-point numbe~ to be

fo~matted into output buffer.

OUTPUT REGISTER CONTENTS

R30-R31 = Pointe~ to next available byte
in the output buffe~.

CSIZE.
CRT

CURS
CRT

CVNUM
PRINT

8-27

Section 8: Reference Material

DALLOC
MISC.

DATE.
MISC.

DCLIN#
PRINT

8-28

Totally de-allocates
the current BASIC
pr"O'3r"am.

Returns the DATE.

Decompiles a BASIC
program line number.

INPUT CONDITIONS

R16 must be even. If it is odd, DALLOC
will return without doing anything.

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of date

OUTPUT STACK CONTENTS

The date (8 bytes)
R12----)

NOTE: DATE will always return
tagged integer.

INPUT CONDITIONS

R30-R31 = Pointer to output buffer
R65-R67 = Line number as 5 BCD digits

OUTPUT CONDITIONS

R30-R31 = Pointer to output buffer
(after the line number
pushed out as ASCII
charac t er-s) .

Section 8: Reference Material

Reverses a string of
bytes into the lower
64K address space.

Erases the cursor at
the current CRTBYT
location.

Turns the system
math defaults on.

INPUT CONDITIONS

Assumes
R30-R31
R7'6-R7'7'
PT~:2

CPU i
F i r­
Num

= Fir

in BIN mode at
t byte sink (10 e
er of bl..ltes to
t byte -i- 1 of s

(highe

The actual code is:

DCSLOP LOBI R 5,=PTR2-
PUBD R 5,+R30
Dct-l R7'
JNZ DC LOP
RTN

INPUT CONDITIONS

ry.
)

CRTBYT and CRTBAD must point to the
location of the cursor.

NOTE: The cursor is created by setting
the most significant bit of the
character at the cursor location. This
causes that character to be highlighted,
or shown in inverse video. If the
character at that location already has
its MSB set, then the bit is cleared.
DECUR2 does just the opposite. In this
way the cursor is not destructive when
it moves through inverse video fields.
There is a flag (CURSON) which tells
CURS and DECUR2 if the cursor is already
on sd that the MSB of the character will
not be erroneously toggled if successive
calls to CURS and DECUR2 are made.

OUTPUT REGISTER CONTENTS

R36 = 1

The actual code is:

DEFA+.

DEFA-.
STORDF

CLB
IeB
JMP RDF
B-"'-T
CLB R
STBD ,=DEFAUL
RTN

DCSLOP
MISC.

DECUR2
CRT

DEFA+.
MATH

8-29

Section 8: Reference Material

DEFA-.
MATH

DEG.
MATH

DEG10
MATH

8-30

Tur-n:=: the s'..Jstem
math defaulis off.

Puts the computer in
degrees Irtode for-
math oper'at ions.

Runtime code for the
system function RTD.

Convents radians to
degre"e::; I

OUTPUT REGISTER CONTENTS

R36 = 0

The actual code is:

DEFA+.

DEFA-.
STORDF

CL8 36
IC8 36
.JMP TORDF
BYT 41
CL8 36
ST8D R#,=DEFAUL
RTN

The actual code is:

DEG.
STOORG

PAD.

GRAD.

L08 R36,=90C
ST80 R#,=DRG
PTI"j
B",{T
CLB
.J~lP ORG
BYT
CLB
DCB
.J11P D~:G

INPUT STACK CONTENTS

Radian-value
RI2----)

OUTPUT STACK CONTENTS

(S-bytes)

Degrees result (S-bytes)
R12---->

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of result

Section 8: Reference Material

Checks a character to
see if it's a digit
(0-9, ASCII codes
60-71 octal).

Set CTEMP
tha it ontain

ent F:T IS
cod. It
use prior
DRV 2,

the
elect
I q

Iii ng

Divides one real
number into a second
real number.

INPUT CONOITIONS

R20 = The character

OUTPUT CONDITIONS

R20 The character

If it
If it

not a digit
a dig it

INPUT STACK CONTENTS
(em p t,~)

R12----)

INPUT REGISTER CONTENTS
R40-R47 = Real number
R50-R47 = Real number

OUTPUT STACK CONTENTS

(8-bqtes)
(8-b~tes)

Result 8/A (8-bqtes)
R12----) -

OUTPUT REGISTER CONTENTS
R40-R47 = COpy of result 8/A

NOTE: The CPU must be in 8CD mode before
DIU10 is called.

The two arguments must be real numbers
or the result will be unknown.

DIGIT
PARSE

DISP.
CRT

DIV10
MATH

8-31

Section 8: Reference Material

DIV2
MATH

D!VlNDCR
PARSE

DNCUR.
CRT

8-32

Divides one real or
tagged-integer number
into a second real or
tagged-inteqer
number. -

(This he main
runtim
t'or t h

e try point
s stem

oper-a t r- .)

Flags an error if R14
is not a carriaqe
return or an @ ~oken.

Moves
one Ii
displa
(Check

he cursor- dO ln
e on the ALPHA

to se if it
f of t e

page f CRT
and I.oJr- ps it

around if it oes.)

INPUT STACK CONTENTS

Real or tagged-integer
Real or tagged-integer

R12---->

OUTPUT STACK CONTENTS

Result
R12---->

A/B (S-bytes)

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of result

(S-bytes)
(S-bytes)

NOTE: The CPU must be in BCD mode before
this routine is called.

INPUT CONDITIONS

R14 = Incoming token

OUTPUT CONDITIONS

If R14 didn ' t contain a carriage return
token or an @ token then ERROR will have
been called.

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRTBYT must contain the current byte
adljres5.

The cursor must be off at entru (a call
to DECUR2 will do that). -

OUTPUT CONDITIONS

CRTBYT and CRT BAD
the nel ...

The cursor will still be off.

Section 8: Reference Material

Moves the cursor
address down one line
in ALPHA memor~.
(Doesn't check-to see
if it goes off of the
current page of CRT
memory.)

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRTBYT must contain the current byte
address.

The cursor must be off at entry (a call
to DECUR2 will do that).

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing
the new address.

The cursor will still be off.

R34-R35 = The new cursor address.

INPUT STACK CONTENTS

X-value
V-value

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

(0 bytes)

call to PF.:UH. or- 0 :3P.
erformed before call ng 0
et up SCTEMP to poin to
RINTER IS device or he C

ould ha e been
12. Th swill
ther th

IS dey

DNCURS
CRT

DRAW.
CRT

DRV12.
PRINT

8-33

Section 8: Reference Material

EMOVDN
MISC.

EMOVUP
MISC.

EOJ2
MISC.

8-34

Moves
a blo
a loc
than
locat
"' it h
addre
",orki
highe

Moves
a biD
a loc
than
locat
with
addre
worki
lowes

the contents o~
k of memory to
tion lo",er
t5 current
on. starting
he lowest
sed bytes ~nd
g UP to the
t,

the contents of
k of memory to
t on higher

current
• starting
highest

d bytes and
do",n to the

o f he k y-
ar rv quest
t n '.}C~:Dad .. if

he rvic

t rn f
qu bi

r peat spe
v lue in K

e pe ding.
he s rvice

in 17,
s th keu
d 10 the­
PET1,

INPUT CONDITIONS

The CPU must be in BIN mode at entry,
PTRI Last bute of source (10"')
PTR2 = Last b~te of sink (low)
R45-R47 = Number of bytes to move

OUTPUT CONDITIONS

PTRI First byte of source +1 (hiqh)
PTR2 = First byte of sink +1 (high5
R45-R47 = 0

NOTE: EMOUUP and EMOUDN are backwards
from MOUUP and MOUDN, In other words.
EMOVUP does for extended memory what
MOUDN does for the lower 64K of memoru
and EMOUDN corresponds to MOUUP, -

INPUT CONDITIONS

The CPU must be in BIN mode at entru,
PTRI First byte of source +1 (high)
PTR2 = First byte of sink +1 (high)
R45-R47 = Number of bytes to move

OUTPUT CONDITIONS

PTRI Last byte of source (10"')
PTR2 = Last byte of sink (low)
R45-R47 = 0

NOTE: EMOUUP and EMOUDN are backwards
from MOUUP and MOUDN, In other words.
EMOUUP does for extended memoru what
MOUDN does for the lower 64K oj memory
and EMOUDN corresponds to MOVUP,

Section 8: Reference Material

Returns the malle t
positive num er th
computer is apabl
of handling lE-49

Checks two strings
for equality.

Tests two numbers for
equality.

INPUT STACK CONTENTS

(I hatever)
R12---->

OUTPUT STACK CONTENTS

(1 ... lha t ever-)
Smallest number lE-499 (8-bytes)

RI2---->

INPUT STACK CONTENTS

Length of str
Address of st
Length of str"
Address of st

RI2---->

OUTPUT STACK CONTENTS

g • A'
ng I A I

g • B 0

ng 0 B 0

True/False value
RI2---->

OUTPUT REGISTER CONTENTS

-byte
-byte
-byte
-byte

(8-bytes)

R70-R77 = Copy of true/false value.

NOTE: The true/false value is =0 if
false, =1 if true and is in floating­
point format.

INPUT STACK CONTENTS

A-value (8-bytes)
B-value (8-bytes)

RI2---->

OUTPUT STACK CONTENTS

True/False value (8-bytes)
RI2---->

NOTE: The true/false value will always
be a tagged integer and will be a 1 if
true and a 0 if false.

EPS10
MATH

EQ$.
MATH

EQ.
MATH

8-35

Section 8: Reference Material

ERROR
MISC.

ERROR+
MISC.

EXP5
MATH

8-36

Sets flags for error
reporting.

Sets flags for error
r-epor"1:ing.

INPUT CONDITIONS

ERROR must be called by this format:
JSB =ERROR
BYT error number

OUTPUT CONDITIONS

R17 has bits 6 and 7 set.
ERRORS = error number
ERNUM# = error number adjusted for

external ROMs or binary programs
ERROM# = ERR ROM
If in RUN mode (RI6=2) then

ERLIN# = error line number
When control returns to the EXEC loop,
these flags will cause an error message
to be output. All registers are saved.

INPUT CONDITIONS

ERROR+ must be called by this format:
JSB =ERROR+
BYT error number

OUTPUT CONDITIONS

R17 has bits 6 and 7 set.
ERRORS = error number
ERNUM# = error number adjusted for

external ROMs or binary programs
ERROM# = ERRROM
If in RUN mode (RI6=2) then

ERLIN# = error line number
When control returns to the EXEC loop,
these flags will cause an error message
to be output. One RTN address is
discarded from the R6 stack before
ERROR+ returns. All registers are
saved.

INPUT STACK CONTENTS

X value
1': 12----)

(8-bytes)

OUTPUT STACK CONTENTS

EXP(X)
RI2----)

(8-bytes)

Section 8: Reference Material

Does a fast backspace,
(Same as if the
backspace key had
been pressed while
the shift key
held down,)

give
nUh'lb

BUn
its
othe
',Jill

locate
'-:I) a binar
am h.::avin·;I

birrarl.;! pr
r-, If fourt
B ',) ill be
ase addr'es
',) ise, B Ir-n
be set 'to

(i n

'3 r' d m

e t to

INPUT CONDITIONS

The CPU must be in BIN mode at entry,

CRTBYT must contain the same address
the CRT controllers byte address
register (CRTBAD),

The cursor must be off at entru (a call
must have been made to DECUR2):

INPUT CONDITIONS

Assumes the CPU is in
R22 = The desired

BIN mode at entry,
binary program t.

OUTPUT CONDITIONS

F:20-F:21 Bas addr-
pr'o roam f fou

BINTAB Bas addr-
f fou

INPUT STACK CONTENTS
Ptr to variable
ROlo.l index
Col index (OPtional)
Dim flag

R12----)
OUTPUT STACK CONTENTS

(emp t '-:I)
R12----)

OUTPUT REGISTER CONTENTS

f
Is
f
Is

b nary
er-

t, nar'-I

(3 byte
(2 byte
(2 byte)
<1 byte

=~~-R21 ~::d!~nb~~eS~~i~~r:~ray
R70-R72 Abs, address of variable name
R75-R77 = Abs, address of element value
PTR2 = Address of element value

NOTE: At
an addre
'Co 1 i r,d
is two d
the arr-a

entry, 'Ptr to variable area' is
s which is relative to FWCURR,

:~n!ro~~~~e~~i~n}1a!! :~ee:~~atf
is two dimensional, odd if one,

FASTBS
CRT

FBPGM
MISC.

FE'I'AVA
MISC.

8-37

Section 8: Reference Material

FETSVA
MISC.

FLIP.
MISC.

FNDLIN
MISC.

8-38

FETch Simple Variable
Address. Takes an
address which is
relative to FUCURR
and chanqes it to
absolute-address.

Run time code for the
BASIC statement:

FLIP

Finds a specified
line (by number) in a
BASIC program.

INPUT REGISTER CONTENTS

R65-R67 = Address of variable area
(relative to FWCURR)

OUTPUT REGISTER CONTENTS

R46
R70-R72
PTR2

eader byte of var able
bs. address of va iable
bs. address of Ie
ignificant byte 0 address of
ariable name' riable
torage area.

The actual code for FLIP is:

FLIP. LOB R36,=200
STBO R36,=KEYSTS
RTN

INPUT REGISTER CONTENTS

R75-R77 = Line number to be found

OUTPUT CONDITIONS

E = 0 if the line was found.
E = 17 if the line was not found.
PTR1 points to the line length byte of

the desired line, if found, else it
points to the same byte of the next
highest line.

NOTE: Upon return a LOBI R20 =PTR1-
would load into R20 the leng h of the
found line, that is PTR1 is eally
pointing to the least signif cant byte
of the line number. All reg sters are
saved and restored.

Section 8: Reference Material

INPUT CONDITIONS

R10-Rll
R14

Pointer to input stream
Current token

R20 Nex 1: charac 1: er

PTR2 Pointer to output stream

OUTPUT CONDITIONS

E=l if successful
E=0 if unsuccessful

INPUT STACK CONTENTS

X-value
R12---->

(S-bytes)

OUTPUT STACK CONTENTS

FP(X) result (S-bytes)
R12---->

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of result

FORMAR
PARSE

FP5
MATH

FRAME.
CRT

8-39

Section 8: Reference Material

G$N
PARSE

G$N+NN
PARSE

G/A
CRT

8-40

INP T COND TIONS
R 0-RII Pointer to input
R 4 Current token
R 0 Next character

PTR2 Pointer to output

OUTPUT CONDITIONS
R10-Rll Pointer to input
RI4 = Next token
R20 = Next character
R40-R47 = Set by SCAN

OUTPUT ENC POINTER

PTR2----) RI4 at entry (I byte)
Numeric parameter tokens

(x bytes)
String par~meter tokens

(x bytes)

INPUT CONDITIONS
RI0-RII Pointer to input
RI4 Current token
R20 Next character

PTR2 Pointer output

OUTPUT CONDITIONS
RI0-RII Pointer input
RI4 = Next token
R20 = Next character
R40-R47 = Set by SCAN

OUTPUT ENC POINTER

PTR2----) RI4 at entry (I byte)
Numeric parameter tokens

(x bytes)
String parameter tokens

(x bytes)

Section 8: Reference Material

Parse zero or one
line umber refer­
ence nd pushes the
incom ng token (R14),

INPUT CONDITIONS

R10-Rll
R14
R20

PTR2

Pointer to input
Current token
Next character

Pointer to output

OUTPUT EMC POINTER

PTR2----) Incoming token (1 byte)

3 byte line #
x
32 Integer constant token

3 byte line #

32 Integer constant token
NOTE:

Either both line numbers are optional
50 the output stream may be different,

INPUT CONDITIONS

R10-Rll
R14
R20

PTR2

Pointer to input
Current token
Next character

Pointer to output

OUTPUT EMC POINTER

PTR2----> Incoming token (1 byte)
x

3 byte line #
x
32 Integer constant token

NOTE: The line number is optional
output stream may be different,

INPUT CONDITIONS
R10-Rll Pointer to input
R14 Current token
R20 Next character

PTR2 Pointer output

OUTPUT CONDITIONS

50 the

R10-Rll Pointer _ input stream
R14 = Next token
R20 = Next character
R34 = Number of parameters found

OUTPUT EMC POINTER

PTR2----) R14 at entr~ (1 b~te)

Numeric par~meter to~ens
(x bytes)

G012N
PARSE

G01N
PARSE

G00R2N
PARSE

8-41

Section 8: Reference Material

G120R4
PARSE

GlOR2N
PARSE

GCHAR
PARSE

8-42

Parses one J 1: 1,.,10... or
four line number
references and pushes
the incoming token
(R 14) .

Gets the next non­
blank character to
R20. If the character
is a carriage return
then the R10 pointer
is not incremented.

INPUT CONDITIONS

R10-Rll
R14

Pointer to input stream
Current token

R20 Next character

PTR2

OUTPUT CONDITIONS

R10-Rll
R14

Pointer tD input stream
Next token

R20 = Next character
R34 = Number of parameters found

OUTPUT EMC POINTER

PTR2----) R14 at entry (1 byte)
Numeric parameter tokens

(x bytes)

INPUT CONDITIONS
R10-Rll Pointer to input
R14 Current token
R20 Next character

PTR2 Pointer output

OUTPUT CONDITIONS
R19-Rll Pointer to input stream
F:14 = Next token
R29 = Next character
R34 = Number of parameters found

OUTPUT EMC POINTER

PTR2----) R14 at entry (1 byte)
Numeric parameter tokens

(x by'tes)

INPUT CONDITIONS

OUTPUT CONDITIONS

R20

The actual code is:

GCHAR SAO
BIN

GCHl LOBO R 0,R19
U1B R2 ,=15
JZR GC RTN
POBD R 0,+R10
CMB R2 ,=49
JZR GC 1

GCHRTN PAD
RTN

Section 8: Reference Material

Checks to see if one
st~ing is g~eate~
than o~ equal to a
second st~ing.

Tests to see if one
number is greater
than o~ equal to a
second number. ~

INPUT STACK CONTENTS

Top of stack -> Optional Y-o~dinal
(S bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12---->

INPUT STACK CONTENTS

Length of st~
Add~ess of st
Length of st~
Add~ess of st

R12----)

OUTPUT STACK CONTENTS

9 • A'
ng • A'
9 'B'
ng 'B'

(2-bytes)
(3-bytes)
(2-bytes)
(3-bytes)

A)=B T~ue/False value (S-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R70-R77 = Copy of t~ue/false value.

NOTE: The t~ue/false value is =0 if
false, =1 if t~ue and is in floating­
point fo~mat.

INPUT STACK CONTENTS

A-value (S-bytes)
B-value (S-bytes)

R12----)

OUTPUT STACK CONTENTS

A)=B T~ue/False value (S-bytes)
R12---->

NOTE: The t~ue/false value will always
be a tagged intege~ and will be =1 if
t~ue and =0 if false.

GCLR.
CRT

GEQ$.
MATH

GEQ.
MATH

8-43

Section 8: Reference Material

GET)
PARSE

GETIN
PARSE

GET2N
PARSE

8-44

Parses one numeric
parameter and pushes
incoming token (R14).

INPUT COND TIONS
R10-Rll Pointer to input stream
R14 Next token
R20 Next character
PTR2 Pointer to output stream

OUTPUT CONDITIONS

If successful:
E=l
R14 = Next SCAN token
R20 = Next character
R40-R47 = Set by SCAN before exit.

If unsuccessful:
E=0
No registers will have been chanqed
and ERROR will have been called.-

INPUT CONDITIONS

R10-Rll
R14
R20

PTR2

Pointer to input stream
Current token
Next character

output str-eam

OUTPUT CONDITIONS
R10-Rll Pointer to input
R14 = Next token
R20 = Next character
R40-R47 = Set by SCAN

OUTPUT EMC POINTER

PTR2----) R14 at entry (I byte)
Numeric parameter tokens

(x bytes)

INPUT CONDITIONS

RI0-RII
RI4
R20

PTR2

Pointer to input stream
Cur-r-ent token
Next character

Pointer

OUTPUT CONDITIONS
RI0-RII Pointer to input
RI4 = Next token
R20 = Next character
R40-R47 = Set by SCAN

OUTPUT EMC POINTER

PTR2----) RI4 at entr~ (I byte)
Numepic par~meter tokens

(x bytes)

Section 8: Reference Material

Parses four numeric
parameters and pushes
incoming token (RI4).

numeric par
it can and
pushes the n
token (RI4).

ters as
n
oming

INPUT CONDITIONS

R10-Rll
R14

Pointer to input stream
Current token

R20 Next character

PTR2 Pointer to output

OUTPUT CONDITIONS
R10-Rll Pointer to input stream
R14 = Next token
R20 = Next character
R40-R47 = Set by SCAN

OUTPUT EMC POINTER

PTR2----)

INPUT CONDITIONS

R10-Rll
R14

Pointer to input stream
= Current token

R20 = Next character

OUTPUT CONDITIONS

If comma was found
R14 Next token
R20 = Next character
R40-R47 = Set by SCAN
E= 1 -

If comma was not found ERROR will have
been called and E=0.

INPUT CONDITIONS
R10-Rll Pointer to input
R14 Current token
R20 Next character

PTR2 Pointer output stream

OUTPUT CONDITIONS
R10-Rll Pointer to input stream
R14 = Next token
R20 = Next character
R34 = Number of parameters found

OUTPUT EMC POINTER

PTR2----) R14 at entry (1 byte)
Numeric parameter tokens

(x bytes)

GET4N
PARSE

GETCMA
PARSE

GETPA?
PARSE

8-45

Section 8: Reference Material

GETPAR
PARSE

GLOAD.
CRT

GOTOSU
PARSE

8-46

Parses as many
numeric parameters do

~; ~~~'a~~Jn~;b:~t~~J
ac eptable. If R35#0,
th number parsed
mu t equal that in
R3 . GET PAR pushes
th input token after
al of the parameters

INP T COND TIO
R 0-R11 Po nter to nput stream
R 4 Cu rent tok n
R 0 Ne t charac er
R Nu ber of p rameters to parse.

(~ if any umber acceptable)
PTR2 Po nter utput stream

OUTPUT CONDITIONS
R10-R11 Pointer input stream
R14 ~ Next token
R20 ~ Next character
R34 ~ Number of parameters found

OUTPUT EMC POINTER

PTR2----' R14 at entr~ (1 b~te)
Numeric parimeter to~ens

(x bytes)

INPUT STACK CONTENTS

Top of stack-) File name length (2 bytes)
File name address (3 bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT CONDITIONS

R10-R11
R14

Pointer to input stream
~ GOTO or GOSUB token

R20 ~ Next character

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 ~ Next character
R40-R47 ~ Set b~ SCAN
E#0 -

If unsuccessful then E~0

Section 8: Reference Material

Checks to see if one
string is greater
than another string.

INPUT STACK CONTENTS

Length of str
Address of st
Length of str
Address of st

RI2----)

OUTPUT STACK CONTENTS

g 'A'
ng 'A'
g 'B'
ng 'B'

A)B True/False value
RI2----)

OUTPUT REGISTER CONTENTS

(2-bytes)
(3-bytes)
(2-bytes)
(3-bytes)

(8-bytes)

R70-R77 = Copy of true/false value.

NOTE: The true/false value is =0 if
false, =1 if true and is in floating­
point format.

GR$.
MATH

~,-------,-----------------------------------~ GR.

Tests to see if one
number is greater
than a second number.

Puts the computer in
grads mode for
math operations.

INPUT STACK CONTENTS

A-value (8-bytes)
B-value (8-bytes)

RI2----)

OUTPUT STACK CONTENTS

A)B True/False value (8-bytes)
RI2----)

NOTE: The true/false value will always
be a tagged integer and will be a 1 if
true and a 0 if false.

The actual code is:

DEG.
STODRG

PAD.

GRAD.

LOB R36,=90C
STBD R# .. =DRG
PTt~
BYT
CLB
JMP
BYT
CLB
DeB
JMP

41
36
TODRG
41
36
36
TODPG

MATH

GRAD.
MATH

8-47

Section 8: Reference Material

GRAFA.
CRT

GRAPH
CRT

GRAPH.
CRT

8-48

If 'he CRT display is
in ALPHA NORMAL mode
a' en'ry. i' will be
swi'ched '0 GRAPH
NORMAL mode, else
no,hing will be done,

OUTPUT CONDITIONS

If 'he CRT is in GRAPH NORMAL mode a'
en'ry. i' will be in GRAPH NORMAL mode
a' exi', If 'he CRT is in GRAPH ALL
mode a' en'ry. i' will be in GRAPH ALL
mode a' exi', If 'he CRT is in ALPHA
NORMAL mode a' en'ry. it will be in
GRAPH NORMAL mode a' exit, If the CRT
is in ALPHA ALL mode at entry, it will
be in ALPHA ALL mode at exi', One
return address will also be thrown away
before returning if it was in ALPHA ALL
mode, so i' won't return to the calling
routine.

Section 8: Reference Material

Outputs a s
the CRT, Ie
cursor- posi
the end of

nCi 1: 0
ng the
n at
string

Moves the cu~so~ to
the top left of the
ALPHA d i SP I a'~,

INPUT STACK CONTENTS

Top of stack-) File name length (2 bytes)
File name add~ess (3 bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT REGISTER CONTENTS

R26-R27 Add~ess of the st~ing
R36-R37 = Length of the string

INPUT CONDITIONS

The cu~so~ must be off (a call to DECUR2
must have been made) p~io~ to calling
HMCURS.

OUTPUT CONDITIONS

CRTBYT will contain the new cu~so~
add~ess (which will be the same the
contents of CRTRAM.

R34-R35 = New oursor address.

The actual code fo~ HMCURS is:

HMCURS LDMD R34,=CRTRAM
JSB =BYTCRT
RTN

GSTOR.
CRT

HLFLIN
CRT

HMCURS
CRT

8-49

Section 8: Reference Material

HORN
MISC.

INPUT CONDITIONS

ICOS
MATH

IDRAW.
CRT

8-50

Lower-level BEEP
en1:r- '-j point.

R30-R31 = 40,0
R32-R33 = Frequency as a 4-digit BCD #

The ARP must be 34 at entry.
DCM must be BCD at entry.

R55-R57 = Duration a 4-digit BCD #

An example of the call sequence:

LDM R30,=40,0
LDt-l R32, =50C, 0
LD~l R55,=0,1,0
BCD

! OR ANY VALUE
I OF~ ANY ' . .!ALUE

ARP 34
JSB =HORN

INPUT STACK CONTENTS

Argument (8 bytes)
R12----)

OUTPUT STACK CONTENTS

ACS(Argument) (8 bytes)
R12----)

INPUT STACK CONTENTS

X-value
Y-value

R12----)

(8 bytes)
(8 bytes)

OUTPUT STACK CONTENTS

(empty)
R12----)

(0 bytes)

Section 8: Reference Material

Reads one character
from the location in
CRT memOry pointed to
by the CRT's byte
address register
(CRTBAO) .

Returns the largest
number that can be
handled by the
computer:

9.99999999999E499

INPUT STACK CONTENTS

X-value
V-value

R12----)

(8 bytes)
(8 bytes)

OUTPUT STACK CONTENTS

(empty)
R12----)

(0 bytes)

INPUT CONDITIONS

The CRT's internal byte address pointer
(which is set by storing to CRTBAO) must
be pointing to the address of the byte
to be read.

OUTPUT REGISTER CONTENTS

R32 = Character from CRT memory.

NOTE: The CPU must be in BIN mode
entry. The actual code for INCHR is:

INCHR

LOOP2

ORP 32
JSB =BUSY !Refer to CHKSTS
ICB R#
STBO R#,=CRTSTS
LOBO R#,=CRTSTS
JOO LOOP2
LOBO R32,=CRTOAT

INPUT STACK CONTENTS

(whatever)
R12----)

OUTPUT STACK CONTENTS

(whatever)
9.99999999999E499 (8-bytes)

R12----)

IMOVE.
CRT

INCHR
CRT

INF10
MA'I'H

8-51

Section 8: Reference Material

INIT.
MISC.

INPu'r.
MISC.

INT5
MATH

8-52

Same as the INIT key,
Allocates the entire
BASIC pr'ogram,

oes 'the fir t half
f an I t-lPUT 1:atement

I? I and
4,

it .:IU t pu 1::.
hanges CSTA
dle-in-inpu).

Runtime code for the
system function FLOOR

Returns the largest
integer <=)(,

INPUT STACK CONTENTS

}(-value (8-bytes)
R12----)

OUTPUT STACK CONTENTS

FLOOR(}() result (8-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = COpy of result

Section 8: Reference Material

Runtime code fo~ the
system ope~ate~ DIV.

Retu~ns the integ~al
po~tion of the result
of A divided by B.

Fetches an intege~
f~om the input st~eam
at parse-time (such
as a line numbe~).

Mu tiplies two 16-bit
bi a~y numbers giving
a 2-bit binary
re u It. -

INPUT STACK CONTENTS
A-value (S-bytes)
B-value (S-bytes)

R12---->

OUTPUT STACK CONTENTS

A,B ~esult (8-bytes)
R12---->

INPUT CONDITIONS

R10-R11 = Pointe~ to input st~eam
R20 = Next cha~acte~

OUTPUT CONDITIONS

R10-R11
R20
R22
R36

R40-R47

Pointe~ to input st~eam
Next characte~ (non-digit)
Numbe~ of digits seen (BCD)
Exponent (15C if less than 16
digits we~e found)
The integer (up to 16 digits)
The least significant digit
is in the right nibble of R40.

If some digits were found
If no digits were found

INPUT REGISTER CONTENTS

R66-R67 = 16-bit bina~y number
R76-R77 = 16-bit binary number

OUTPUT REGISTER CONTENTS

R66-R67 16-bit binary number
R76-R77 = 16-bit binary number
R54-R57 = 32-bit result A*B

NOTE: INTMUL does a SAD at entry and a
PAD at exit and saves and restores all
registers used except for R54-R57.

INTDIV
MATH

INTEGR
PARSE

INTMUL
MATH

8-53

Section 8: Reference Material

INTORL
MATH

IP5
MATH

IPLOT.
CRT

8-54

Converts numbers from
the tagged-intege~

fo~mat to the ~eal
(floating-point)
fo~ma t .

Runtime code fo~ the
system function IP.

Retu~ns the inteqe~
po~t ions of X. -

INPUT REGISTER CONTENTS

R60-R67 = Tagged-intege~ value

OUTPUT REGISTER CONTENTS

R60-R67 = Real value

NOTE: This ~outine assumes that R60-R67
contains a tagged-intege~ value. It does
not check fo~ a tagged-intege~ value.
The~efo~e, if you call this ~outine with
a r-eal value in R60-R67 you'll get an
indete~minate value ~etu~ned.

INPUT STACK CONTENTS

X-value (8-bytes)
R12----)

OUTPUT STACK CONTENTS

IP(X) ~esult (8-bytes)
R12---->

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of ~esult

INPUT STACK CONTENTS

X-value
Y-value

R12----)

(8 bytes)
(8 bytes)

OUTPUT STACK CONTENTS

(empty)
R12---->

(0 bytes)

Section 8: Reference Material

This routine does the
same as the KEY LABEL
ke'~ ,

INPUT STACK CONTENTS

Argument (8 bytes)
RI2----)

OUTPUT STACK CONTENTS

ASN(Argument)
RI2----)

INPUT STACK CONTENTS

(8 bytes)

Argument (8 bytes)
RI2----)

OUTPUT STACK CONTENTS

ATN(Argument)
RI2----)

INPUT CONDITIONS

(8 bytes)

If R66 = 140 then the CALC mode key
labels will be displayed, else the
RUN mode key labels will be displayed,

ISIN
MATH

ITAN
MATH

KEYLA.
MISC.

8-55

Section 8: Reference Material

LABEL.
CRT

LDIR.
CRT

LEQ$.
MATH

8-56

Che ks to see if one
ng is less than
qua 1 to a second

str

INPUT STACK CONTENTS
Length of string (2 bytes)

R12 __ ~~~ress of string (3 bytes)

OUTPUT STACK CONTENTS

(empty)
R12---->

INPUT STACK CONTENTS

LOIR value (8 bytes)
R12---->

OUTPUT STACK CONTENTS

(empty)
R12---->

INPUT STACK CONTENTS

Length of str
Address of st
Length of str
Address of st

R12----)

OUTPUT STACK CONTENTS

g 'A'
ng 'A'
Q 'B'
~g I B I

(2-bytes)
(3-bytes)
(2-bytes)
(3-bytes)

R12 __ ~~~B True/False value (8-bytes)

OUTPUT REGISTER CONTENTS

R70-R77 = COpy of true/false value.

NOTE: The true/false value is =0 if
false, =1 if true and is in floating­
point format.

Section 8: Reference Material

Tests to see if one
number is less than
or equal to a second.

Same as the LIST
command.

INPUT STACK CONTENTS

A-value (8-bytes)
B-value (8-bytes)

R12----)

OUTPUT STACK CONTENTS

A(=B True/False value (8-bytes)
R12----)

NOTE: The true/false value will always
be a tagged-integer and will be =1 if
true and =0 if false.

INPUT STACK CONTENTS

Line type value (8 bytes)
R12----)-

OUTPUT STACK CONTENTS

(empty)
F: 12----)

This routine will list the BASIC program.
It checks the R12 stack for optional list
parameters (line numbers) by comparing
R12-R13 with top of stack. Be sure they're
equal if you don't push any parameters on
the stack. or that they're equal before
you push one or two parameters. (The
parameters would be tagged-integers or
floating point numbers.) The listing goes
to the CRT IS device.

LEQ.
MATH

LINET.
CRT

LIST.
PRINT

8-57

Section 8: Reference Material

LN5
MATH

LOGT5
MATH

LT$.
MATH

8-58

Returns the LN(X).

Returns the LGT(X)
(the base 10
logarithm) .

Checks to see if one
string is less than a
second str"ing.

INPUT STACK CONTENTS

X value (8-bytes)
R12----)

OUTPUT STACK CONTENTS

LN(X) result (8-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of the result

INPUT STACK CONTENTS

X value (8-bytes)
R12---->

OUTPUT STACK CONTENTS

LGT(X) result (8-b~tes)
R12----) -

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of the result

INPUT STACK CONTENTS

Length of str
Address of st
Length of str"
Address of st

R12----)

OUTPUT STACK CONTENTS

gOA 0

ng I A I

q 08 0
~Ig I B I

A(8 True/False value
~: 12----)

OUTPUT REGISTER CONTENTS

-by
-by
-tilt

-by e

(S-bytes)

R70-R77 = Copy of true/false value.

NOTE: The true/false value is =0 if
false. =1 if true and is in floating­
point format.

Section 8: Reference Material

Tests to see if one
number is less than
a second number.

Move the cursor left
one pace on the
ALPH display.
(Che ks to see if it
goes off of the
current page of CRT
memory and wraps it
around if it does.)

Moves the cursor
address left one
space in ALPHA memory
(Doesn't check to see
if it goes off of the
current page of CRT
memory.)

INPUT STACK CONTENTS

A-value (8-bytes)
B-value (8-bytes)

R12---->

OUTPUT STACK CONTENTS

A(B True/False value (8-bytes)
R12---->

NOTE: The true/false value will
be a tagged-integer and will be
true and =0 if false.

INPUT CONDITIONS

always
=1 if

The CPU must be in BIN mode at entry.

CRTBYT must contain the current byte
address.

The cursor must be off at entry (a call
to DECUR2 will do that).

OUTPUT CONDITIONS

CRTBYT and CRT BAD will be pointing
the new cursor address.

The cursor will still be off.

R34-R35 = The new cursor address.

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRTBYT must contain the current byte
address,

The cursor must be off at entry (a call
to DECUR2 will do that).

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing
the new cursor address.

The cursor will still be off.

R34-R35 = The new cursor address.

LT.
MATH

LTCUR.
CRT

LTCURS
CRT

8-59

Section 8: Reference Material

MAX10
MATH

MIN10
MATH

MOD10
MATH

8-60

Re~urns ~he larger
of 1:1J.10 values.

Re~urns the smaller
of tl .. .10 values.

Returns X MOO Y

INPUT STACK CONTENTS

A-value
B-value

R12---->

(8 b'-J tes)
(8 bytes)

OUTPUT STACK CONTENTS

A MAX B value (8 bytes)
R12---->

INPUT STACK CONTENTS

A-value
B-value

R12----}

(8 bytes)
(8 bytes)

OUTPUT STACK CONTENTS

A MIN B value (8 bytes)
R12---->

INPUT STACK CONTENTS

X value (8-bytes)
Y value (8-bytes)

R12----)

OUTPUT STACK CONTENTS

X MOO Y (8-bytes)
R12----)

Section 8: Reference Material

Insu~es that the CRT
memo~y add~ess will
~emain in the ALPHA
memo~y a~ea when
doing add~ess math.

(Especially useful
fo~ doing cu~so~
movemen t s.)

Moves the cu~so~
add~ess a specified
distance.
(Doesn't check to see
if it goes off of the
cu~~ent page of CRT
memor·y ,)

Moves a block of
memo~y f~om lowe~
add~esses to highe~
add~esses, sta~ting
with the highest
add~ess and wo~king
DOWN to the lowest.
(Wo~ks in lowe~ 64K
add~ess ~ange only.)

INPUT REGISTER CONTENTS

R24-R25 = Displacement of this movement
R34-R35 = New ALPHA memo~y add~ess

CRTBYT must contain the p~evious ALPHA
memo~y addr-ess. (Thus, R34-R35
will be the contents of CRTBYT
plus the contents of R24-R25.)

OUTPUT REGISTER CONTENTS

R34-5 = Add~ess modified fo~ w~ap-a~ound

NOTE: The CPU must be in BIN mode befo~e
this ~outine is called.

MODADR checks to see whethe~ the CRT is
in ALPHA o~ ALPHA ALL mode, then checks
to see if the new add~ess is past the
end of the app~op~iate bounda~y. If so,
adjusts it to w~ap it back to the top of

INPUT CONDITIONS

The CPU must be in BIN mode at ent~y.

CRTBYT must contain the cu~~ent byte
add~ess.

The cu~so~ must be off at ent~y (a call
to DECUR2 will do that).

R24-R25 = Offset f~om cu~~ent cu~so~
location to desired new location.

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing
the new add~ess.

The cu~so~ will still be off.

R34-R35 = The new cu~so~ add~ess.

INPUT REGISTER CONTENTS

Assumes BIN mode at ent~y.
R22-R23 = Numbe~ of bytes to be moved.
R24-R25 = Pointe~ to the fi~st wo~d of

sou~ce block to be moved (the
highest add~essed byte).

R26-R27 = Pointe~ to the fi~st wo~d of
the sink block to be moved into
(the highest add~essed byte).

OUTPUT REGISTER CONTENTS

R22-R23 = 13
R24-R25 = Pointe~ to the last wo~d of

the sou~ce block to be moved (the
lowest add~essed byte).

R26-R27 = Pointe~ to the last wo~d of
the sink block to be moved into
(the lowest add~essed byte).

NOTE: Fo~ moves involving extended

MODADR
CRT

MOVCRS
CRT

lVlOVDN
MISC.

8-61

Section 8: Reference Material

MOVE.
CRT

MOVUP
MISC.

MPY10
MATH

8-62

Moves a block of
memory from higher
addresses to lower
addresses, starting
with the lowest
address and working
UP to the highest.
(Works in lower 64K
address range only.)

Multiplies two real
numbers.

INPUT STACK CONTENTS

X-value (S bytes)
V-value (S bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12---->

INPUT REGISTER CONTENTS

Assumes BIN mode at entry.
R22-R23 = Number of bytes to be moved.
R24-R25 = Pointer to the first word of

source block to be moved (the
lowest addressed byte).

R26-R27 = Pointer to the first word of
the sink block to be moved into
the lowest addressed byte.

OUTPUT REGISTER CONTENTS

R22-R23 = 0
R24-R25 = Pointer to the last word of

the source block to be moved (the
highest addressed byte).

R26-R27 = Pointer to the last word of
the sink block to be moved into
the highest addressed byte.

NOTE: For moves involving extended

INPUT STACK CONTENTS
(empty)

R12----)

INPUT REGISTER CONTENTS
R40-R47 = Real number A (S-bytes)
R50-R57 = Real number B (S-bytes)

OUTPUT STACK CONTENTS
Result A*B (S-bytes)

R12----)

OUTPUT REGISTER CONTENTS
R40-R47 = Copy of result A*B

NOTE: Th CPU must be in BCD mode
before c lling this routine. The two
argument must be real values or the
result w 11 be unknown.

Section 8: Reference Material

INPUT STACK CONTENTS

Real or tagged-integer
Real or tagged-integer

R12---->

OUTPUT STACK CONTENTS

Result
R12----)

AtB (8-bytes)

OUTPUT REGISTER CONTENTS

R40-R4? = COpy of result AtB

NOTE: The CPU must be in BCD
before calling this routine.

INPUT STACK CONTENTS

(8-bytes)
(8-bytes)

mode

Top of stack-) File name length (2 bytes)
File name address (3 bytes)
Number of records (8 bytes)
Optional number of bytes/record

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT STACK CONTENTS

(8 bytes)

Top of stack-) Buffer number (8 bytes)
Optional record # (8 bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: For figuring out what routines
call and in which order when readinQ
from or printing to disc data files:
first write it as a BASIC statement
first line of a program. Using the MEM
command, look into memory (the line will
be at FWCURR-40) to see wha t the
token form is. Refer to MSPRNU for a
list of routines and token numbers.

MPYROI
MATH

MSCRE.
DISC

MSPRNT
DISC

8-63

Section 8: Reference Material

MSPRNU
DISC

MSPUR.
DISC

MSREN.
DISC

8-64

This is a note which
is continued f~om
MSPRNT.

The Mass Sto~age ROM ~outines and thei~
associated token numbes (fo~ PRINT# and
READ# statements)

15 t-1SPRNT
21 READ.
37 RDNUM.
40 PRARR.
41 RDSTR.
42 PRNUM.
43 PREOL.
44 PRSTR.
45 RDARR.
46 PRARR$
47 RDARR$

INPUT STACK CONTENTS

Top of stack-) File name length (2 bytes)
File name add~ess (3 bytes)
Optional value 0 (8 bytes)

R12---->

OUTPUT STACK CONTENTS

(empty)
R12---->

INPUT STACK CONTENTS

Top of stack-> Old
Old file
New file
New file

R12---->

OUTPUT STACK CONTENTS

(empty)
R12----)

file name len(2 bytes)
add~ess (2 bytes)
length (2 bytes)
address (3 bytes)

Section 8: Reference Material

This routine parses a
simple numeric
variable reference
as an array reference
(that is, MAT A=ZER).

If the next token is
a numeric constant
it is pushed out to
the output stream and
SCAN is called.

INPUT CONDITIONS

R10-R11
R20
PTR2

Pointer to input stream
= Nex t charac t er
= Pointer to output stream

OUTPUT CONDITIONS

If successful (token fund was a 1)
then an array referenc (token 22)
will have been pushed ut to PTR2-
(output stream) and a CAN performed.
If unsuccessful when E ROR will have
been called.

INPUT CONDITIONS
R10-R11 Pointer to input stream
R14 = Next token
R20 = Next character
PTR2 = Pointer to output stream

OUTPUT CONDITIONS

If successful (token found was a 1)
then an array reference (token 22)
will have been pushed out to PTR2-
(output stream) and a SCAN performed.
If unsuccessful then ERROR will have
been called.

INPUT CONDITIONS

R10-R11
R14

Pointer to input
= Current token

R20 = Next character

OUTPUT CONDITIONS

If numeric constant was found
R14 Next token
R20 = Next character
R40-R47 = Set by SCAN
E=1

If numeric constant was not found
registers are unchanged and E=0.

NARRE+
PARSE

NARREF
PARSE

NUMCON
PARSE

8-65

Section 8: Reference Material

NUMVA+
PARSE

NUMVAL
PARSE

ONEB
MATH

8-66

Parses nume ic
express on (a y
express on th t ,.,ill
eventua I y ev luate
down to a sin Ie
numeric value

Takes one numbe off
of the R12 stac and
converts it to
15-bit signed b
value.

INPUT CONDITIONS

R10-R11 Pointer to input stream
R20 = Next character
PTR2 = Pointer to output stream

OUTPUT CONDITIONS

If successful:
E#0
R14 = Next SCAN token
R20 = Next character
R40-R47 = Set by SCAN before exit.

If unsuccessful:
E=O
R10 fs reset to incoming value
other parsing may be tried.

INPUT CONDITIONS
R10-R11 Pointer to input stream
R14 Next token
R20 = Next character
PTR2 = Pointer to output stream

OUTPUT CONDITIONS

If successfu I:
E#0
R14 = Next SCAN token
R20 = Next character
R40-R47 = Set by SCAN before exit.

If unsuccessful:
E=0
R10 is reset to incoming value
other parsing may be tried.

INPUT STACK CONTENTS

Real or tagged-integer (8-bytes)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

R46-R47 = 15-bit signed binary number
R76-R77 = Copy of 15-bit value

NOTE: If the value is negative then
R46-R47 will contain the two's
complement of the absolute value of the
original argument (that is, the value -1
would be returned as octal 177777).

Section 8: Reference Material

Takes 0 e number off
of the 12 stack and
convert it to the
tagged- nteger format
if it's not already,

Takes one number ff
of the R12 stack nd,
if i1: ' s no'!: in 1:h
real (floating po nt)
for-mat) conver-'ts 1:
to that format.

Takes one number off
of the R12 stack and
returns a flag to
tell I .. Jhether' it is a
r-ea 1 or in t eger­
forma t number.

INPUT STACK CONTENTS

Real or tagged-integer (8-bytes)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = Tagged-Integer

INPUT STACK CONTENTS

value

Real or tagged-integer (8-bytes)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 Real value from R12 stack
R60-R67 = Copy of real value from stack

INPUT STACK CONTENTS

Real or tagged-integer (8-bytes)
R12---->

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 Real or tagged-integer value

if R40-R47 is a real number
If R40-R47 is a tagged-integer

ONEI
MATH

ONER
MATH

ONEROI
MATH

8-67

Section 8: Reference Material

ONEX
MATH

OUTCHl
CRT

OUTCHR
CRT

8-68

Takes one number off
of the R12 stack and
converts: i
16-bit uns
binary val
separate s

to a
gned
e ~I it h a
gn flag.

utp s one character
CRT at the

ddr contained in
RTB

Outputs one character
to the CRT at the
address contained in
CRTBYT and scrolls
display UP if the
cursor position moves
off of the bottom­
right

INPUT STACK CONTENTS

Real or tagged-integer (a-bytes)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

R46-R47 = 16-bit unsigned binary number
R76-R77 = Copy of 16-bit value
R32 Sign of 16-bit value

If R32=0 then value is positive
If R32#0 then value is negative

INPUT CONDITIONS

CRTBYT must contain the address of the
CRT memory location the character is
~o stored int.: ..

R32 = The ASCII code of the character
to be output.

(a ca 11

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing
the new address.

The cursor will still be off.

R34-R35 = The new cursor address.

INPUT CONDITIONS

CRTBYT must contain the address of the
CRT memory location the character is
to stored into.

R32 = The ASCII code of the character
to be output.

The cursor must be off at entry (a call
to DECUR2 will do that).

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing
the new address.

The cursor will still be off.

R34-R35 = The new cursor address.

Section 8: Reference Material

Outputs a string to
the CRT, blanks the
rest of the line,
moves the cursor to
the beginning of the
next line and
displays the cursor.

Sets the CRT to
page size 16 or to
page size 24 (same
as the PAGESIZE
statement) .

Forces the CRT to
size 16.

INPUT REGISTER CONTENTS

R26-R27 Address of the string
R36-R37 = Length of the string

INPUT STACK CONTENTS

Page size (16 or 24 decimal)(8 bytes)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: Gives a warning message if the
parameter is not equal to 16 or 24.

OUTSTH.
CRT

PAGES.
:RT

PAGES 1
CRT

8-69

Section 8: Reference Material

PAGES2
CRT

PARSER
PARSE

PI10
MATH

8-70

Forces
page

the CRT to
size 24.

3 ,14159265359

If no errors occur, the parsed line will
have been edited into the program if it
~Ias a program line, else it will be
between NXTMEM and SAVPT2.

INPUT STACK CONTENTS

(l.Jha t ever-)
R12---->

OUTPUT STACK CONTENTS

(I.~[ha t ever)
PI 3.14159265359

R12---->
(S-by1:es)

Section 8: Reference Material

Same as the PLIST
command.

o I 2 , ~~r.~
10 III:H~ 14 151D1H
20 21 :::.. 2? ':4 25 ':'t 2;-­
'3(1 ?1 "2: ?3 34 35 31"5 37
4'3 41 42 4, 44 45 4':' 47
50 Sl 5': 53 54 5S St" 57"
to t 1 6':' ':3 ':4 t"5 bb ':7"
7"(1 7"1 72 7'? 7"4 7"'5 7"': 7"-;-'

1mJ1illI1I!M~IHICIIiIl~ --.. -----

This routine will list the BASIC program.
It checks the R12 stack for oPtional list
parameters (line numbers) by comparing
R12-R13 with the top of stack. So, be
sure they're equal if you don't push any
parameters on the stack, or that they're
equal before you push one or two
parameters. (The parameters would be
tagged-integers or floating-point numbers.
The listing goes to the PRINTER IS device.

INPUT STACK CONTENTS

X-value (8 bytes)
V-value (8 bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT STACK CONTENTS

Length of arg str
Address of arg st
Length of arg str
Address of arg st

R12----)

OUTPUT STACK CONTENTS

g 'A'
ng I A I

Q 'B'
;;g 'B'

bytes)
bytes)
b'~ t es)
b'~ t es)

Position of string B in string A
R12----) (8 bytes)

NOTE: Position value will be 0 if string B
does not exist in string A.

PLIST.
PRINT

PLOT.
CRT

POSe
MISC.

8-71

Section 8: Reference Material

PRARR$
DISC

PRARR.
DISC

PRDRVR
PRINT

8-72

Prints an entire
numeric array into a
data file buffer,

This is the printer
driver routine, It's
similar to the OUTSTR
r"out ine J but for an
external printer.

INPUT STACK CONTENTS

Abs, address of first element of
the array (3 bytes)

Abs, address of t he name of the
variable (3 bytes)

R12 __ ~:~der byte of variable (1 byte)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: Refer to MSPRNT,

INPUT STACK CONTENTS

Abs, address of first element of
the array (3 bytes)

Abs, address of t he name of the
variable (3 bytes)

Header byte of variable (1 byte)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: Refer to MSPRNT,

INPUT REGISTER CONTENTS

R26-R27 = Address of f rst character
of output bu fer (where the
first charac er is at the
1 cq~les t addre s) I

R36-R37 Number of byes to be output,

Section 8: Reference Material

Sets UP SCTEMP so
that it contains the
current PRINTER IS
select code. It is
usually used prio~
calling ORV12.

Dumps e.ithe.r the.
PRINT buffe.r or the.
o I SF' buffer.

Re.fe.r to MSPRNT.

OISP. or PRINT. must have be.e.n called to
set up the. select code and buffe.r pointe.rs
be.fore PRLINE was calle.d.

PREOL.
DISC

PRINT.
PRINT

PRLINE
PRINT

8-73

Section 8: Reference Material

PRNTR.
PRINT

PRNUM.
DISC

PRSTR.
DISC

8-74

INPUT STACK CONTENTS

T08-> Select code (8-bytes)
Optional line length (8-bytes)

R12----)

OUTPUT STACK CONTENTS

R12 ___ ~~mpty)

INPUT STACK CONTENTS

Value to be printed (8 bytes)
R12----)

OUTPUT STACK CONTENTS

(empt...,)
R 12----) -

NOTE: Refer to MSPRNT.

INPUT STACK CONTENTS

Length of string
Address of string

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: Refer to MSPRNT.

(2 bytes)
(3 bytes)

Section 8: Reference Material

Runtime code for the
system function DTR,

Converts degrees to
radians.

Puts the computer in
r-adians mode for­
math operations.

INPUT STACK CONTENTS

Degree-value
R12----)

OUTPUT STACK CONTENTS

Radians result (8-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = COpy of result

The actual code is:

DEG,
STODRG

LOB R36,=9(1C
STBD F:II, =DF:G
F:T N
E:',{T

RAD, CLB
JMP DRG
B',{T

GRAD, CLB
DCB
J~lP OF~G

INPUT STACK CONTENTS

Abs, address of
the array

Abs, address of
variable

Header byte of
R12---->

OUTPUT STACK CONTENTS

(empty)
R12---->

NOTE: Refer to MSPRNT,

first element of
(3 bytes)

the name of the
(3 bytes)

variable (1 byte)

RADle!
MATH

RAD.
MATH

RDARR$
DISC

8-75

Section 8: Reference Material

RDARR.
DISC

RDNUM.
DISC

RDSTR.
DISC

8-76

INPUT STACK CONTENTS

Abs. address of first element of
the arra~ (3 b~tes)

Abs. address of the name of the
variable (3 b~tes)

Header b~te of variable (1 b~te)
R12----)

OUTPUT STACK CONTENTS

(empt~)

R12----)

NOTE: Refer to MSPRNT.

INPUT STACK CONTENTS

Abs. address of variable value
(3 b~tes)

Abs. address of the name of the
variable (3 b~tes)

Header b~te of variable (1 b~te)
R12---->

OUTPUT STACK CONTENTS

(empt~)
R12----)

NOTE: Refer to MSPRNT.

INPUT STACK CONTENTS

Abs. address of name (3 b~tes)
Header of variable (1 b~te)
Max length of string variable area

(2 b~tes)
Abs address of first b~te of string

variable (3 b~tes)
Max length available to store into

(2 b~tes)
Abs address of first b~te to store

into (3 b~tes)
R12----)

OUTPUT STACK CONTENTS

(empt~)

R12----)

NOTE: Refer to MSPRNT.

Section 8: Reference Material

This routine will
release all temporary
memor'y that !"'as
r~served by calling
RESMEM.

INPUT STACK CONTENTS

Top of stack-) Buffer number (8 bytes)
Optional record # (8 bytes)

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: Refer to MSPRNT.

INPUT CONDITIONS

R10-Rll
R14
R20

Pointer to input stream
Current token
Next character

PTR2 Pointer to output

OUTPUT CONDITIONS

E#0 if successful
E=0 if unsuooessful

NOTE: The system uses the RAM location
known as RMEM to keep track of the amount
of memory currently reserved.

READ.
DISC

REFNUM
PARSE

RELMEM
MISC.

8-77

Section 8: Reference Material

REM10
MATH

RESET.
MISC.

RESMEM
MISC.

8-78

Returns the remainder
RMD 0:: X .. ".,..)

=x-y:t. I F' (x/"'{)

Does the same as the
RESET key,

\"1"-?~~r.
10 11 1':' 1? 14 15 ltllil
~(1 '::12':' ':'7 '::'4 '::'5 ':'t c~
3(1 31 3':: 3? 74 35 ?t' 37"
413 41 42 42' 44 45 4<: 47
50 51 5':: 57 54 SS 5': 57"
60 61 t':: 63 ':4 ':5 bt. ':7"
7" (1 7" 1 7" 2 7" '3 7" 4 7" 5 7" t. 7" 7'

1IillJ1lffiJ1!U_Ml~~ _ .. --.. ------

Reserves temporary
scratchpad memory,
(It gets released at
the end of each line
of a BASIC program
and at each @ sign
(concatenation of
statements).)

INPUT STACK CONTENTS

X value
Y value

F: 12---->

O::S-bytes)
O::S-b'~tes)

OUTPUT STACK CONTENTS

Remainder CS-bytes)
F: 12---->

Call th s routine with a 'JSB =' or a
'JSB =R MJSB' instruction, the as
any oth r routine. (It doesn't
the R6 tack.)

Refer to the Owner's Manual to find out
what RESET does to the computer memory and

INPUT REGISTER CONTENTS

R55-R57 = Number of bytes to be reserved.

OUTPUT REGISTER CONTENTS

R55-R57

R65-R67

NOTE:

Number of bytes reserved (same
as input)

Address of highest byte + 1

E=0 if memory was reserved OK.
E#0 if there was an error (MEM OUF).

The address that s returned i R65 is
such that the fol owing code w 11
a byte into the h ghest addres ed
location of the bock reserved

STMD R65,=PTR2
STBI R36,=PTR2-

Section 8: Reference Material

Waits until the CRT
controller is in a
r-etrace period.

eturns the next
seudo-random number
a value between 0
nd 1),

Runtime code for the
RANDOMIZE statement,

The actual code for this routine is:

DRP R31 RETRHI
DISPLY LOBO RII,=CRTSTS

At-jM RII, =20
!GET CRT STATUS
!GET RETF.:ACE BIT
IJIF DI~;P TIME JZR DISPLY

RTN

This routine would b
switching CRT modes
BLANKED/UNBLANKED, e
in the middle of ~ d
may get an ugly fIa:=:

INPUT STACK CONTENTS

(whatever)
R12----)

OUTPUT STACK CONTENTS

(whatever)

I ELSE F.:ETURN

used when manually
ALPHA/GRAPHICS,
c.), If 1-:101...1 sl.'Jitch
splay period, you

Pseudo-random number (8-bytes)
R12----)

INPUT STACK CONTENTS

Top of stack-) Optional RANDOMIZE value
(8 bytes)

R12----)
OUTPUT STACK CONTENTS

(empty)
R12---->

NOTE: If no parameter is passed to this
routine then the contents of R12 and the
contents of the top of stack must be equal,
If a parameter is passed then R12 must have
been stored into the top of stack before
the parameter was pushed onto the stack,
In other words, the top of stack must be
pointing to the first byte of the
parameter,

RETRHI
CRT

RND10
MATH

RNDIZ.
MATH

8-79

Section 8: Reference Material

ROMINI
MISC.

ROMJSB
MISC.

ROMRTN
MISC.

8-813

Calls the INIT
routines in all of
the bank-selectable
ROMs and all of the
binary programs.

012'~~"'~
10 11161WJ 14 15 IDIH
~~3 21 22 27 ':4 25 2': ~7
3~3 '31 ?.: -:Z":! :4 ?S '3': :7"
4~3 41 42 42' 44 45 46 47
SO 51 52 5: 54 55 5': 57
to t 1 .:': "':'3 64 ':5 tot 67"
7"0 7"1 7"':' 7"7 7"4 7"5 7"': 7"7"

1IillI1illI1!I!I~1HI1iI1im1iDifJl _ mil ..

Used for calling a
routine in a bank­
selectable ROM
(address range of
60000 to 77777).

Refer to OUTPUT
COND I T IONS t'or
CPU register usage
i nfor-ma t i on I

Re elects ROM 0, then
do s a RTN Used bu
ba k-selec able RO~s
th t need

the sys eln J but
need to ha e ROM 0
selected (uch
parse time

INPUT CONDITIONS

ROMFL = Reason for the call:

o Power on
1 Reset
2 Scratch
3 Loadbin
4 Run, Ini t
5 Load
6 Stop,Pause
7 Chain

10 Allocate class >56
11 De-allocate class >56
12 De-compile class >56
13 Program halt on error

NOTE: ROMINI falls through into BPINI.
Binary programs must insure that R0 does
not get destroyed during their INIT
routine as R0 is used as a counter by
BPINI.

Calls to ROMJSB must be like this:
JSB =ROMJSB
DEF routine name
BYT rom# of destination routine

ROMJSB will use the RTN address (on the
R6 stack from the 'JSB =ROMJSB') to fetch
the address and rom# you want to call.
When control returns, it will be to the
next intstruction after the 'BYT rom#'.

OUTPUT CONDITIONS
The first four bytes of ERTEMP are
destroyed by ROMJSB. The DRP=65 and the
ARP=0 when the destination routine is
reached. When control returns from
ROMJSB to your calling routine, DRP,ARP,
E,status,DCM,and the EMC PTRs are set
according to the routine that was called.
R0-Rl are saved on the R6 stack along
with the number of the ROM that was
selected when the call was initiated.
They are restored before ROMJSB returns.
Other registers are destro ed according

The actual code for ROMRTN is:

ROMRTN CLB R0
STBD R0 .. =RSELEC
RTN

Section 8: Reference Material

Restores some CPU
registers from the
R6 stack. To be used
in conjunction with
SAVREG.

Used by ROMs perform
a checksum on
themselves to insure
'that the'-:I havenlt
gone bad.

INPUT STACK CONTENTS

X-value
V-value

R12----)

(8 bytes)
(8 bytes)

OUTPUT STACK CONTENTS

(empty)
R12----)

INPUT STACK CONTENTS

(whatever)
R21-R31
R30-R37
R60-R67

R6----)

OUTPUT STACK CONTENTS

(I"Jha 1: -ever-)
R6----)

INPUT COrWITI HS
The CPU mu t be in BIN mode at entry.
The last t 0 bytes of the ROM

(addres es 77776 and 77777) must be
1: he crle ksum.

R32-R33 = ase address of rom (this will
be 6000 for bank-selectable roms).

OUTPUT CONDIT OHS
Upon exit, the zero flag is set if the
checksum was good, else it is cleared.

The actual code for RSUM8K is:
RSUM8K LDM R34,=377,017 I 8K/2 + 1

CUl R40
RSUM POMD R36,+R32

ADrl R44, F:36
Dct-l R34
.JHZ R~;Ut1
ADrl R46, R44
HCM R46
Ct-1MD R46, R32
RTH

RPLOT.
CRT

RSTREG
MISC.

RSUM8K
MISC.

8-81

Section 8: Reference Material

RTCUR.
CRT

RTCURS
CRT

SADI
CRT

8-82

Moves the cursor righ
one space on the
ALPHA displa'".
(Checks to s~e if it
goes off of the
current page of CRT
memory and wraps it
.~r·olJnd if it does.)

Moves the cursor
address right one
space in ALPHA memOr~
(Ooesn l t check to se~
if it goes off of the
current page of CRT
memorl-;l.)

Changes the start
address of the CRT
ALPHA displa'~.

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRTBYT must contain the current byte
addr-ess.

The cursor must be off at entry (a call
to DECUR2 will do that).

OUTPUT CONDITIONS

CRTBYT and CRT BAD will be pointing
the new address.

The cursor will still be off.

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRT8YT must contain the current byte
address.

The cursor must be off at entr~ (a call
to DECUR2 will do that). -

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing 10
Ihe new address.

The cursor will slill be off.

R34-R35 = The new cursor address.

INPUT REGISTER CONTENTS

R34-R35 = New start address

NOTE: The CPU must be in BIN mode before
calling SADI. The start address can only
be changed when in ALPHA mode; it is
fixed at 10340 (octal) when in GRAPH modes.

The actual code for SAOI is:

SAOI JSB =RETRHI
STMO R34,=CRTSAO
STMO R34,=CRTRAM
RTN

Section 8: Reference Material

Saves some oV t e CPU
registers on th R6
stack. To be us d in
conjunction wit
RSTREG.

INPUT STACK CONTENTS

(whatever)
R6-~-->

OUTPUT STACK CONTENTS

(whatever)
R21-R31
R30-R37
R60-R67

R6---->

IV no problem
IV error Vlagged, stack was Vull

(MEt-l O'v'F)

INPUT COND
R20
R10-Rll

OUTPUT COt-I
R10-Rll
R14
R20
R40
R41-R42

TIONS
Nex t char-. from i npu t stream
Pointer to input stream

ITIONS
Pointer to input stream
Nex t token
Next character
First character searched
ROMII (iV R42=0)

or binary program base address
(if R42110)

R43 = ROM or binary program token II
or Type if variable

R44-R46 = If variable, R44-R45 = pointer
to name and R46 = length
of name

or integer value
or secondary attributes for

functions
R47 = Class (primary attribute)

INPUT CONDITIONS

R10-Rll = Pointer input
OUTPUT CONDITIONS

R10-Rll Pointer to input stream
R14 Next token
R20 = Next character
R40 = First character searched
R41-R42 = ROMII if R42=0)

or- b in

R43 = ~:Ot-l 0

or- Typ
R44-R46 = If va

ry program base address
if R42110)
binary program token II
if variable

iable, R44-R45 = pointer
name and R46 = length
name

or- int ger value
ndary attributes for

functions
R47 = Class (primary attribute)

SAVREG
MISC.

SCAN
PARSE

SCAN+
PARSE

8-83

Section 8: Reference Material

SCRAT.
MISC.

SCRDN
CRT

SCRUP
CRT

8-84

Scratches memory)
same as the BASIC
command SCRATCH.

the

o 1 2 , ~~r.~
1 0 1 1 161M 1 4 1 5 1': IH
':'0 21 .::.~ '::'3 ':'4 '::'5 .:.t 2.7"
?~3 2'1 ?2 2'3 2'4 35 36 2'7"
413 41 42 4:: 44 45 4': 47
50 51 52 5::: 54 SS 5': 57
t.~) ':1 6': E? ':4 is ~€ 6.7
7"0 7'1 7"'::' 7"7 7"4 7'S 7'': 7"7

1illI1iRI1!I!lI_MlIaU)IiDiIil EH ___

Scrolls the ALPHA
display down one line

Scrolls the ALPHA
display UP one line.

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

OUTPUT REGISTER CONTENTS

R34-R35 = New start address.

INPUT CONDITIONS

The CPU must be in BIN mode at' entry.

OUTPUT REGISTER CONTENTS

R34-R35 = New start address.

Section 8: Reference Material

INPUT STACK CONTENTS

X alue
R12---->

(8-bytes)

OUTPUT STACK CONTENTS

SEC (X) alue
R12---->

(8-bytes)

INPUT STACK CONTENTS

Length of string
Address of string

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

(2 bytes)
(3 bytes)

NOTE: DISP. or- PRINT. must be called
prior to calling SEMIC$ to set up the
select code and buffer pointers.

INPUT STACK CONTENTS

Number to be printed (8 bytes)
R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: DISP. or PRINT. must be called
prior to calling SEMIC. to set up the
select code and buffer pointers.

SEC10
MATH

SEMIC$
PRINT

SEMIC.
PRINT

8-85

Section 8: Reference Material

SEQNO
PARSE

SEQNO+
PARSE

SET240
MISC.

8-86

SCANs and tries to
a line number.

Sets immediate break
bits (5 and 7) in R17

INPUT CONDITIONS

R10-Rll Pointer to input stream

R20 Next character

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 = Next character
R40-R47 = Set bu SCAN
E1I0 -

If unsuccessful then E=0

INPUT CONDITIONS

R10-Rll
R14

Pointer to input stream
= Cur-r-ent token

R20 = Next character

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 = Next character
R40-R47 = Set by SCAN
E1I0

If unsuccessful then E=0

The actual code is:

SET240 PUBD R36,+R6
LOB R36_, =240
ORB R17,R36
POBD R36 _, -R6
RTN

Section 8: Reference Material

(-1 IF X(O, 0 IF X=O ..
AtW +1 IF X)O.)

Returns the square
root of a number:

SQR(X)

INPUT STACK CONTENTS

X alue
R12----)

(8-byt.es)

OUTPUT STACK CONTENTS

SGN(X) alue (8-bytes)
R12----)

INPUT STACK CONTENTS

X value
R12----)

(8-bytes)

OUTPUT STACK CONTENTS

SIN(X) value
R12----)

INPUT STACK CONTENTS

(8-bytes)

X value
R12----)

(8-bytes)

OUTPUT STACK CONTENTS

SQR(X) value
R12----)

(8-bytes)

SGN5
MATH

SIN10
MATH

SQR5
MATH

8-87

Section 8: Reference Material

ST240+
MISC.

STBEEP
MISC.

STOST
MISC.

8-88

ts
t s

ads
<: dIe

mmediate br-eak
5 and 7) in R17

R 16 to 0

Does a standard BEEP
(1.2 kz for 10-'10 of a
second) .

The actual code is:

ST240+
SET240

CLB R16
PUBO R36,+R6
LOB R36,=240
ORB R17,R36
POBO R36,-R6
RTN

This is the same BEEP as when an error
occurs, or when the BEEP statement is
executed with no parameters.

INPUT STACK CONTENTS

Abs. address of name (3 bytes)
Header of variable (1 byte)
Maximum length of variable (2 bytes)
Abs. address of first char, (3 bytes)
Max length to store into (2 bytes)
Abs, address to store into (3 bytes)
Len of string to be stored (2 bytes)
Abs. address of string to be stored

R12----) (3 bytes)

OUTPUT STACK CONTENTS

(empty)
R12----)

NOTE: All but the length and address of
the string to be stored will be supplied
by the system if you parse the string
variable using the parse routine STREEF.

Section 8: Reference Material

SCANs an aIls
through n 0 STREXP
(parses 1:ring.
expressi n

INPUT STACK CONTENTS

Abs. address of variable
Abs. address of name
Header of variable
Value to be stored

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

(3 bytes)
(3 bytes)
(1 by t e)
(8 bytes)

NOTE: All but the value to be stored will
be supplied by the system if you parse
the variable reference using the parse
routine REFNUM.

INPUT CONOITIONS

R10-Rll Pointer to input
R14 = Next token
R20 = Next character
R40-R47 = Set by SCAN
PTR2 = Pointer to output

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 Next character
PTR2 = Pointer to output

E!l0

If unsuccessful:

E=0

INPUT CONDITIONS

R10-Rll

R20

Pointer to input stream

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 = Next character
R40-R47 = Set by SCAN
E!l0

If unsuccessful then E=0

STOSV
MISC.

STRCON
PARSE

STREX+
PARSE

8-89

Section 8: Reference Material

STREXP
PARSE

S'l'RREF
PARSE

SUB10
MATH

8-90

o a single
value) .

Subtracts two real
(floating-point)
numbers,

INPUT CONDITIONS

Rl0-Rll
R14

Pointer to input stream
= Curren t token

R20 = Next character

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 = Next character
R40-R47 = Set by SCAN
EIIO

If unsuccessful then E=O

INPUT CONDITIONS

Rl0-Rll Pointer to input stream
R14 Next token
R20 Next character
R40-R47 Set by SCAN
PTR2 Pointer to output stream

OUTPUT CONDITIONS

If slJccessful:
R14 Next token
R20 Next character
PTR2 = Pointer to output stream

EIIO

If unslJccessful:

E=O

INPUT REGISTER CONTENTS

R40-R47 = Real value
R50-R57 = Real value

OUTPUT STACK CONTENTS

(S-bytes)
(S-bytes)

Result B-A (S-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of result B-A

NOTE: The two numbers must be in floating­
point format or the result will be
unknown. The CPU must be in BCD mode when
when ADD10 is called or the result will be
un knolo..1n.

Section 8: Reference Material

Subtracts one real or
tagged-integer number
from a second real or
tagged-integer
number.

(This is the main
runtime entry point
for the system
operator diadic
subtract .)

Runtime oode for the
system function TIME.

INPUT STACK CONTENTS

Real or tagged-integer
Real or tagged-integer

R'1 2 - - - - >
OUTPUT STACK CONTENTS

Result A-B (8-bytes)
R12----)

OUTPUT REGISTER CONTENTS

R40-R47 = Copy of the result

(8-bytes)
(8-bytes)

NOTE: The result may be either a real or
a tagged-integer number. The CPU must be
in BCD mode before calling SUBROI.

INPUT STACK CONTENTS

X value
R12---->

(8-bytes)

OUTPUT STACK CONTENTS

TAN(X) value
R12---->

INPUT STACK CONTENTS

(I.oJha t ever-)
R12---->

OUTPUT STACK CONTENTS

(whatever)

(8-bytes)

Time (8-bytes)
R12---->

OUTPUT REGISTER CONTENTS

R40-R47 = COpy of time

SUBROI
MATH

TAN10
MATH

TIME.
MISC.

8-91

Section 8: Reference Material

'!WOS
MATH

'!WOR
MATH

'!WOROl
MATH

8-92

Takes two numbers OTT
oT the R12 stack and
converts them to
15-bit signed binary
values.

Takes two numbers OTT
oT the R12 stack and
if the'~'re in the
tagged-integer format
they are converted ~o
the floating point
(real) Tormat.

Takes two numbers OTT
oT the R12 stack and
iT both are tagged­
integers returns them
as such} else does
any needed conversion
and returns them both
as real numbers.

INPUT STACK CONTENTS
Real or integer value
Real or integer value

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

(S-bytes)
(S-bytes)

R26-R27 15-bit signed binary number (8)
R46-R47 15-bit signed binary number (8)
R56-R57 = 15-bit signed binary number (A)
R76-R77 = 15-bit signed binary number (A)

NOTE: If a value is negative then it will
be represented as the two's complement OT
the absolute value OT the original
argument (that is, a value OT -1 would be
returned as octal 177777).

INPUT STACK CONTENTS
Real or tagged-integer
Real or tagged-integer

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

R40-7 Real value (8)
R50-7 Real value (A)
R60-7 = Real value (8)

INPUT STACK CONTENTS

Real or tagged-integer
Real or tagged-integer

R12----)

OUTPUT STACK CONTENTS

(empty)
R12----)

OUTPUT REGISTER CONTENTS

(S-bytes)
(a-bytes)

(8-bytes)
(8-bytes)

R40-7
R50-7

Real or tagged-integer (8)
Real or tagged-integer (A)

o if both numbers are real
1 if both numbers are integers

Section 8: Reference Material

Checks two strings
for inequality.

Tests two numbers for
inequality.

INPUT STACK CONTENTS

Length of str
Address of st
Length of str­
Address of st

RI2----)

OUTPUT STACK CONTENTS

g 'A'
ng I A I

g 'B'
ng 'B'

(2-bytes)
(3-bytes)
(2-bytes)
(3-bytes)

True/False value (8-bytes)
RI2----)

OUTPUT REGISTER CONTENTS

R70-R77 = Copy of true/false value.

NOTE: The true/false value is =0 if false,
=1 if true and is in floating-point
forma t .

INPUT STACK CONTENTS

A-value (8-bytes)
B-value (8-bytes)

RI2----)

OUTPUT STACK CONTENTS

True/False value (8-bytes)
RI2----)

NOTE: The true/false value will
a tagged-integer and will be =1
and =0 if false.

INPUT CONDITIONS

always be
if true

R10-Rll Pointer to input stream
R14 Next token
R20 Next character
R40-R47 Set by SCAN
PTR2 Pointer to output stream

OUTPUT CONDITIONS

If successful:
R14 Next token
R20 Next character
PTR2 = Pointer to output stream

E#0

If unsuccessful:

E=0

UNEQ$.
MATH

UNEQ.
MATH

UNQUOT
PARSE

8-93

Section 8: Reference Material

UPC$.
MISC.

UPCUR.
CRT

UPCURS
CRT

8-94

Runtime code for the
s~stem function UPC$
and it forces all
alpha characters in a
string to upper case.

Mo es
on 1 i
di pIa
(C eck

he cursor up
e on the ALPHA

'to see if it
f of the

rfle orl-:l
ar und

page of CRT
.and 1 .• Jr'aps it
if it does,)

t10ves the c
addr-ess u
in ALPHA
<Doesn't
if it goe
cur-r-en t p 9
memory.)

or
1 i ne

,~ .
to see
of the

f CRT

INPUT STACK CONTENTS

Length of argument string (2 b~tes)
Address of argument string (3 b~tes)

R12----)

OUTPUT STACK CONTENTS

Length of result string (2 b~tes)
Address of result string (3 b~tes)

R12---->

NOTE: The length of the result string will
be the same as the length of the argument
string but the addresses will be different.

INPUT CONDITIONS

The CPU must be in BIN mode at entry.

CRTBYT must contain the current byte
addr-ess.

The cursor must be off at entru (a call
to DECUR2 ,.)ill do that). -

OUTPUT CONDITIONS

CRTBYT and CRTBAD will be pointing
the new address.

The cursor will still be off.

R34-R35 = The new cursor address.

INPUT CONDITIONS

The CPU must be in BIN mode at entr~.

CRTBYT must contain the current byte
addre:=:·s.

The cursor must be off at entr~ (a call
to DECUR2 will do that).

OUTPUT CONDITIONS

CRTBYT and CRT BAD will be pointing
the new address.

The cursor will still be off.

R34-R35 = The new cursor address.

Section 8: Reference Material

INPUT STACK CONTENTS

Numeric argument
R12----)

OUTPUT STACK CONTENTS

Length of string
Address of string

R12---->

OUTPUT REGISTER CONTENTS

R65-R67 = Address of string

INPUT STACK CONTENTS

(8-bytes)

(2-bytes)
(3-bytes)

Length of string argument (2 bytes)
Address of string argument (3 bytes)

R12----)

OUTPUT STACK CONTENTS

Numeric value
R12----)

INPUT STACK CONTENTS

(8 bytes)

Y value
X value

R12----)

(8-bl~tes)

(8-b'~tes)

OUTPUT STACK CONTENTS

yAX value (8-bytes)
R12---->

VAL$.
MISC.

VAL.
MISC.

YTX5
I"lATH

8-95

Section 8: Reference Material

ZROEXM
MISC.

ZROMEM
MISC.

8-96

Fills a block Ot
extended memory with
blanks (used by the
system tor initializ­
ing string variables)

Zeroes or blank-tills
a block Ot memory (in
the lower 64K address
space only),

INPUT REGISTER CONTENTS

R65-R67
PTR2

Number Ot bytes to tilled,
Address Ot tirst word +1 Ot
the area to be tilled with
blanks <the highest address;
this routine stores to PTR2-,
tilling trom highest address
to lowest),

OUTPUT REGISTER CONTENTS

R65-R67 0
PTR2 = Address Ot tirst word +1,

NOTE: For tilling a block Ot memory <in
the lower 64K address space only) with
blanks or zeroes, reter to ZROMEM,

INPUT CONDITIONS

The CPU must be in BIN mode at entry,
It R23=3 then ZROMEM will blank-till,

else it will zero-till,
R56-R57 Number Ot bytes to be tilled,
R36-R37 = First byte to be tilled <the

lowest addressed byte),

NOTE This routine will only work in the
lowe 64K address space, There is another
rout ne called ZROEXM that will blank-till
bloc s Ot extended memory but it will not

ti 11,

Section 8: Reference Material

8.4 Parsing Flow Diagrams

Main Parse Loop

LlNE#

ANY
ERRORS

N

N

PARSING A PROGRAM LINE

8-97

Section 8: Reference Material

Parsing a Calculator Mode Statement

ERROR ?N _____ ---,.

RTN

FOUND N

FOUND

8
8-98

Section 8: Reference Material

Parsit Routine

y

N

COMMAND N

y

CALCULATOR
MODE N

ERROR ~Y __________ ~

RTN

8-99

Section 8: Reference Material

8.5 Hook Flowcharts

CHIDLE

Rn
~O ,

8-100

RETURN TO
EXEC LOOP

RETURN TO
XCBITS

RETURN TO
CHEDIT

RETURN TO
EXEC

RETURN TO
XCBITS

RETURN TO
CHEDIT

RETURN TO
CHI OLE

RO
R1

Section 8: Reference Material

DCIDLE

n SIr-----r---r:----J(BPGM) LJ I JS.~
(HOOK NOT

TAKEN)

(ROM)

I
I

I

JSB=

R6

RETURN TO LIST OR
TRANSLATE ROUTINE

RETURN TO
DECOM

RETURN TO
DCIDLE

RETURN TO LIST OR
TRANSLATE ROUTINE

RETURN TO
DECOM

RETURN TO
DCIDLE

RO
R1

ROM#

RETURN TO
ROMJSB

8-un

Section 8: Reference Material

rosp

8-102

R17
=0
7

KEY
7

CLOCK
7

RETURN TO
EXEC

RETURN TO
XCBITS

RETURN TO
IOSP

RETURN TO
EXEC

RETURN TO
XCBITS

RETURN TO
IOSP

RO
R1

RETURN TO
ROMJSR

Section 8: Reference Material

IOTRFC

SAVE
VECTORCOOE
10.2.4)

SAVE
SCTEMP

SAVE
COUNTIR36)

SAVE
AODR IR26)

HOOK
TAKEN

7

ROUTINE p~~~A::M

JSB= L..-__ ---,

RETURNTO
DRV12.

R36
R37

R26
R27

RETURN TO
DRV12.

R24
R25

RETURN TO
VECTR.

RETURN TO
IOHOK2

RETURN TO
IOTRFC

RO
Rl

RETURN TO
ROMJSB

8-103

Section 8: Reference Material

IRQ20

1/0 CARD
HARDWARE
INTERRUPT

8-104

I
I
I
I ,

(HOOK
NOT

TAKEN)

(ROM)

JSB=

R6 •

..

R6 ~

RETURN TO
CODE

SAD

RETURN TO
IRQ20

RO
R1

ROM#

RETURN TO
ROMJSB

RETURN TO
CODE

SAD

RETURN TO
IRQ20

Section 8: Reference Material

KYIDLE

(HOOK NOT
TAKEN)

RETURN TO
CODE

RETURN TO
KEVSRV

RETURN TO
KYIDEl

RETURN TO
CODE

8-105

Section 8: Reference .Materia1

PRSIDL

R17
=0
7

8-106

(HOOK NOT
TAKEN)

RETURN TO
EXEC LOOP

RETURN TO
XC BITS

RETURNTO
PARSER

PRSIDL

~
RETURN TO

: JSB= (BPGM) R6 ___ ~.: _____ ...J

I JSB= (ROM)

RETURN TO
EXEC

RETURN TO
XC BITS

RETURN TO
PARSER

RETURNTO
PRSIDL

RO
Rl

RETURN TO
ROMJSB

Section 8: Reference Material

RMIDLE

(HOOK NOT TAKEN)

R16
~O

1

(ROM)

I
I
I
I

I
I
I

I
I
I

RETURN TO
EXEC LOOP

RETURN TO
RMIOLE

RETURN TO
EXEC

RETURN TO
RMIOLE

RO
Rl

RETURN TO
ROMJSB

8-107

Section 8: Material Reference

d SPARl SPAR0 an

8-108

Section 8: Reference Material

SYSTEM RUNTIME TABLE

ROUTINE NAME TOKEN ATTRIBUTES
BTAB.R DEF ERRORX ERROR 0 0,44

DEF FTSVL SNV 1 0,1
DEF SVADR SAV 2 0,1
DEF FTSTL STRVAR 3 0,1
DEF ICONST REAL CONST 4 0,4
DEF SCONST "QUOTED STR 5 0,5
DEF SCONST UNQUOT STR 6 0,5
DEF STOST STO. STRING 7 0,31
DEF STOSV STORE SV 10 0,31
DEF AVADRI I-DIM ADR 11 0,32
DEF AVADR2 2-DlM ADR 12 0,32
DEF AVVAL1 I-DIM VALUE 13 0,32
DEF AVVAL2 2-DlM VALUE 14 0,32
DEF ERRORX CARRIAGE RTN 15 0,44
DEF GORTN ENDSTMT 16 0,0
DEF ERRORX DUMMY 17 0.44
DEF ERRORX DUMMY 20 0.44
DEF FTADR SNV ADR 21 0,3
DEF SVADR+ SAV ADR 22 0,3
DEF FTSTLS SAVE STR 23 0,3
DEF STOSVM MULTI STO. 24 0.43
DEF STOSTM MULTI STO$ 25 0,43
DEF FNCAL. FUNCTION CL 26 0,6
DEF FNCAL$ STR FUNC CL 27 0,6
DEF JTRUE# JMP TRUE 30 0,7
DEF ERRORE ILLEGAL END 31 0,44
DEF INTCON INT CONST 32 0,2
DEF JFALSR JMP FALSE 33 0,11
DEF JMPREL JMP REL 34 0,26
DEF SUBSTI 1 DIM SUBST 35 0,34
DEF SUBST2 2 DIM SUBST 36 0,34
DEF EJMP# ELSE J# 37 0,25
DEF FTSTA STRING ARAY 40 0,3
DEF JMPLB THEN LABEL 41 0,207
DEF P#ARAY Array PRINT# 42 0,36
DEF EJMPLB ELSE LABEL 43 0,225
DEF R#ARAY Array READ# 44 0,44
DEF ERRORX : 45 0,44
DEF CONCA. & CONCAT 46 7,53
DEF NOP47. ; 47 0.42
DEF ERRORX (50 0,44
DEF ERRORX) 51 0,44
DEF MPYROI 52 12,51
DEF ADDROI + 53 7,51
DEF ERRORX 54 0,44
DEF SUBROI - DIADIC 55 7,51
DEF ERRORX 56 0.44
DEF DlV2 / 57 12,51
DEF YTX5 1\ 60 14,51
DEF UNEO$. # 61 6,53
DEF LEO$. <= 62 6,53
DEF GEO$. >= 63 6,53

8-109

Section 8: Reference Material

8-110

ROUTINE

DEF UNEQ$.
DEF EO$.
DEF GR$.
DEF m.
DEF CHSROI
DEF UNEQ.
DEF LEO.
DEF GEQ.
DEF UNEO.
DEF EO.
DEF GR.
DEF LT.
DEF ATSIGN
DEF ONERR.
DEF OFFER.
DEF ONKEY.
DEF OFKEY.
DEF AUTO.
DEF BEEP.
DEF CLEAR.
DEF CONTI.
DEF ONTIM.
DEF INIT.
DEF LIST.
DEF BPLOT.
DEF STiME.
DEF CHAIN.
DEF SECUR.
DEF READ#.
DEF RENAM.
DEF ALPHA.
DEF CRT.
DEF RUN.
DEF OEG.
DEF OISP.
DEF GCLR.
DEF SCRAT.
DEF DEFA+.
DEF JMPLN#
DEF JMPSUB
DEF PRNT#.
DEF GRAD.
DEF GRAPH.
DEF INPUT.
DEFIDRAW.
DEF FNLET.
DEF NOP.
DEF PRALL.
DEF CAT.
DEF DRAW.
DEF ON.
DEF LABEL.
DEF WAIT.

<>

>
<

NAME

- MONADIC

<=
>=
<>

>
<
@

ON ERROR
OFF ERROR
ON KEY#
OFF KEY#
AUTO
BEEP
CLEAR
CO NT
ON TIMER#
INIT
LIST
BPLOT
SETTIME
CHAIN
SECURE
READ#
RENAME
ALPHA
CRT IS
RUN
DEG
DlSP
GCLEAR
SCRATCH
DEFAULT ON
GOTO
GOSUB
PRINT #
GRAD
GRAPH
INPUT
IDRAW
LET FN
LET
PRINT ALL
CAT
DRAW
ON
LABEL
WAIT

TOKEN

64
65
66
67
70
71
72
73
74
75
76
77
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150

ATTRIBUTES

6,53
6,53
6,53
6,53
7,50
6,51
6,51
6,51
6,51
6,51
6,51
6,51
0,42
0,241
0,241
0,241
0,241
0,141
0,241
0,241
0,141
0,241
0,141
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,241
0,141
0,241
0,241
0,241
0,141
0,241
0,210
0,210
0,241
0,241
0,241
0,241
0,241
0,217
0,241
0,241
0,241
0,241
0,230
0,241
0,241

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES

DEF PLOT. PLOT 151 0,241
DEF PRNTR. PRINTER IS 152 0,241
DEF PRINT. PRINT 153 0,241
DEF RAD. RAD 154 0,241
DEF RNDIZ. RANDOMIZE 155 0,241
DEF READ. READ 156 0,241
DEF STORB. STORE BIN 157 0,241
DEF RESTO. RESTORE 160 0,241
DEF RETRN. RETURN 161 0,241
DEF OFTIM. OFF TIMER# 162 0,241
DEF MOVE. MOVE 163 0,241
DEF FLIP. FLIP 164 0,241
DEF STOP. STOP 165 0,241
DEF STORE. STORE 166 0,141
DEF PENUP. PEN UP 167 0,241
DEF TRCVB. TRACE VRBL 170 0,241
DEF TRCAL. TRACE ALL 171 0,241
DEF XAXIS. XAXIS 172 0,241
DEF YAXIS. YAXIS 173 0,241
DEF COPY. COPY 174 0,241
DEF NORMA. NORMAL 175 0,241
DEF ERAST. ERASE TAPE 176 0,241
DEF INTEG. INTEGER 177 0,323
DEF SHORT. SHORT 200 0,322
DEF DELET. DELETE 201 0,141
DEF SCALE. SCALE 202 0,241
DEF SKIP! REMARK 203 0,241
DEF OPTIO. OPTION BASE 204 0,315
DEF COM. COM 205 0,324
DEF SKIPEM DATA 206 0,320
DEF DEFFN. DEF FN 207 0,312
DEF DIM. DIM 210 0,321
DEF KEYLA. KEY LABEL 211 0,241
DEF STOP. END 212 0,241
DEF FNRTN. FN END 213 0,313
DEF FOR. FOR 214 0,341
DEF ERRORT IF 215 0,344
DEF SKIPIT IMAGE 216 0,341
DEF NEXT. NEXT 217 0,341
DEF UNSEC. UNSECURE 220 0,141
DEF ERRORT LET (IMPLY) 221 0,244
DEF ASiGN. ASSIGN 222 0,241
DEF CREAT. CREATE 223 0,241
DEF PURGE. PURGE 224 0,241
DEF REWIN. REWIND 225 0,241
DEF LOADB. LOADBIN 226 0,241
DEF PAUSE. PAUSE 227 0,241
DEF LOAD. LOAD 230 0,141
DEF REAL. REAL 231 0,321
DEF RENUM. REN 232 0,141
DEF SKIP! ! 233 0,241
DEF DEFA-. DEFAULT OFF 234 0,241
DEF PEN. PEN 235 0,241

8-111

Section 8: Reference Material

ROUTINE NAME TOKEN ATIRIBUTES

DEF PLiST. PLiST 236 0,241
DEF UlIR. LDiR 237 0,241
DEF IMOVE. IMOVE 240 0,241
DEF FNLET. FN ILET 241 0,217
DEF CTAPE. CTAPE 242 0,241
DEF TRACE. TRACE 243 0,241
DEF TO. TO 244 0,41
DEF OR. OR 245 2,51
DEF MAX10 MAX 246 40,55
DEF TIME. TIME 247 0,55
DEF DATE. DATE 250 0,55
DEF FP5 FP 251 20,55
DEF IP5 IP 252 20,55
DEF EPS10 EPSILON 253 0,55
DEF REMI 0 RMD 254 40,55
DEF CElLI 0 CEIL 255 20,55
DEF ATN2. ATN(X/Y) 256 40,55
DEF SKPLBL STMT LABEL 257 0,3
DEF SQR5 SQR 260 20,55
DEF MIN10 MIN 261 40,55
DEF GTOLBL GOTO LABEL 262 0,210
DEF ABS5 ABS 263 20,55
DEF ICOS ACS 264 20,55
DEF ISIN ASN 265 20,55
DEF ITAN ATN 266 20,55
DEF SGN5 SGN 267 20,55
DEF GSUB. GOSUB LABEL 270 0,210
DEF COTI 0 COT 271 20,55
DEF CSECI 0 CSC 272 20,55
DEF FTADR3 1-0 ST ARAY 273 0,1
DEF EXP5 EXP 274 20,55
DEF INT5 INT 275 20,55
DEF LOGT5 LGT (10) 276 20,55
DEF LN5 LOG (E) 277 20,55
DEF FTADR4 2-D ST ARAY 300 0,1
DEF SEC10 SEC 301 20,55
DEF CHR$. CHR$ 302 20,56
DEF VAL$. VAL$ 303 20,56
DEF LEN. LEN 304 30,55
DEF NUM. NUM 305 30,55
DEF VAL. VAL 306 30,55
DEF INFI 0 INF 307 0,55
DEF RND10 RND 310 0,55
DEF PlIO PI 311 0,55
DEF UPC$. UPC$ 312 30,56
DEF USING. USING 313 0,341
DEF ERRORX THEN 314 0,44
DEF TAB. TAB 315 20,45
DEF STEP. STEP 316 0,41
DEF EXOR. EXOR 317 2,51
DEF NOT. NOT 320 7,50
DEF INTDIV DlV(\) 321 12,51
DEF ERNUM. ERRN 322 0,55

8-112

Section 8: Reference Material

ROUTINE NAME TOKEN ATTRIBUTES
DEF ERRL. ERRL 323 0,55
DEF RESET. RESET 324 0,44
DEF AND. AND 325 4,51
DEF MDDlO MDD 326 12,51
DEF ERRORX ELSE 327 0,44
DEF SIN10 SIN 330 20,55
DEF COS10 COS 331 20,55
DEF TAN10 TAN 332 20,55
DEF NOP2. TO (ASSIGN) 333 77.51
DEF RSTO .. RESTORE LN 334 0,227
DEF RESTL. RESTORE LBL 335 0,227
DEF ERRORX [336 0,44
DEF ERRORX J 337 0.44
DEF INTDIV \ 340 12,51
DEF POS. POS 341 52,55
DEF DEGl 0 RTD 342 20,55
DEF RAD10 DTR 343 20,55
DEF INT5 FLOOR 344 20,55
DEF USINL. USING LABEL 345 0,327
DEF READN. READ (NUM) 346 0,44
DEF UlIN#. USING LINE # 347 0,327
DEF INPUN. INP NUMERIC 350 0,33
DEF INPU$. INP STRING 351 0,33
DEF FNRET. LET FN(::=) 352 0,16
DEF READS. READ$ 353 0.44
DEF PRlINE PRINT END 354 0,35
DEF SEMIC. PRINT; 355 0,36
DEF COMMA. PRINT. 356 0,36
DEF SEMIC$ PRINT;$ 357 0,36
DEF COMMA$ PRINl$ 360 0,36
DEF ERRORX DUMMY 361 0,241
DEF STEPK. STEP KEY 362 0,241
DEF FTADRl l-D NUM ARY 363 0,1
DEF FTADR2 2-D NUM ARY 364 0,1
DEF TEST. TEST KEY 365 0,341
DEF ERRORX DUMMY 366 0,44
DEF IN DEN. INDENTATION 367 0,2
DEF ROM:GO EXTERNAL ROM 370 0,214
DEF BP:GO BINARY PROG 371 0,214
DEF ERRORX DUMMY 372 0,44
DEF ERRORX DUMMY 373 0,44
DEF ERRORX DUMMY 374 0.44
DEF ERRORX DUMMY 375 0,44
DEF ERRORX DUMMY 376 0,44
DEF ERRORX DUMMY 377 0,44

8-113

Section 8: Reference Material

Runtime Table/Tokens and Attributes for Graphics ROM #1

ROUTINE NAME TOKEN ATIRIBUTES

RUNTAB DEF INIT DUMMY # 0 0
DEF PLOTR. PLOTTER IS 1 241
DEF PRNTR. PRINTER IS 2 241
DEF CRT. CRT IS 3 241
DEF LIMIT. LIMIT 4 241
DEF GCLR. GCLEAR 5 241
DEF LOCAT. LOCATE 6 241
DEF BPLOT. BPLOT 7 241
DEF SCALE. SCALE 10 241
DEF SHOW. SHOW 11 241
DEF MSCAl. MSCALE 12 241
DEF CLIP. CLIP 13 241
DEF UNCLI. UNCLIP 14 241
DEF SETGU. SETGU 15 241
DEF SETUU. SETUU 16 241
DEF PENUP. PENUP 17 241
DEF GREAD. BREAD 20 241
DEF PEN. PEN 21 241
DEF LlNET. lINETYPE 22 241
DEF PLOT. PLOT 23 241
DEF IPLOT. IPLOT 24 241
DEF MOVE. MOVE 25 241
DEF IMOVE. IMOVE 26 241
DEF DRAW. DRAW 27 241
DEF IDRAW. IDRAW 30 241
DEF RPLOT. RPLOT 31 241
DEF PDIR. PDlR 32 241
DEF BLOFF. NOBLINK 33 241
DEF AXES. AXES 34 241
DEF LAXES. LAXES 35 241
DEF GRID. GRID 36 241
DEF FRAME. FRAME 37 241
DEF LABEl. LABEl 40 241
DEF BLINK. BLINK 41 241
DEF LORG. LORG 42 241
DEF LDiR. LDiR 43 241
DEF CSIZE. CSIZE 44 241
DEF WHERE. WHERE 45 241
DEF CONTR. CONTROL 46 241
DEF CURSR. CURSOR 47 241
DEF DIGIT. DIGITIZE 50 241
DEF DUMMY TRANSLATE 51 241
DEF LGRID. LGRID 52 241
DEF GRAPH. GRAPHICS 53 241
.DEF XAXIS. XAXIS 54 241
DEF YAXIS. YAXIS 55 241
DEF FXD. FXD 56 241
DEF ERRSC. ERRSC 57 0,55
DEF ERROM. ERROM 60 0,55
DEF RATIO. RATIO 61 0,55
DEF TAB. TAB 62 20,45
DEF LABEOL LABEL EOLINE 63 35
DEF PAGES. PAGE SIZE 64 241
DEF ALFAl. ALPHA ALL 65 241
DEF GRAFA. GRAPH ALL 66 241
DEF FRE.

8-114
FREE MEMORY 67 0,55

Section 8: Reference Material

Runtime Table/Tokens and Attributes for Mass Storage ROM #320

ROUTINE NAME TOKEN ATTRIBUTES

RUNTIM DEF INITIT DUMMY # 0 0 241
DEF ASSIG. ASSIGN 1 241
DEF MSCAT. CAT 2 241
DEF CHKOF. CHECK READ OFF 3 241
DEF CHECK. CHECK READ 4 241
DEF ERRORX DUMMY ROUTINE 5 44
DEF MSCPY. COpy 6 241
DEF MSCRE. CREATE 7 241
DEF INITI. INITIALIZE 10 241
DEF MSCHA. CHAIN 11 241
DEF MSLDB. LOADBIN 12 241
DEF MSLOD. LOAD 13 141
DEF MASSS. MASS STORAGE IS 14 241
DEF MSPRNT PRINT# 15 241
DEF ERRORX DUMMY ROUTINE 16 44
DEF ERRORX DUMMY ROUTINE 17 44
DEF MSPUR. PURGE 20 241
DEF READ. READ# 21 241
DEF MSREN. RENAME 22 241
DEF MSSTB. STOREBIN 23 141
DEF MSSTO. STORE 24 141
DEF PACK. PACK 25 241
DEF VOLUM. VOLUME 26 241
DEF GLOAD. GLOAD 27 241
DEF GSTOR. GSTORE 30 241
DEF ERROM. ERROM 31 0,55
DEF ERRSC. ERRSC 32 0,55
DEF TYP. TYP 33 20,55
DEF IS. (VOLUME) IS 34 1,51
DEF ERRORX DUMMY ROUTINE 35 44
DEF TO. (RENAME) TO 36 1,51
DEF RDNUM. READ# NUMERIC 37 44
DEF PRARR. PRINT# NUM ARRAY 40 36
DEF RDSTR. READ# STRING 41 44
DEF PRNUM. PRINT# NUMERIC 42 36
DEF PREOl. PRINT# END OF LINE 43 35
DEF PRSTR. PRINT# STRING 44 36
DEF RDARR. READ# NUM ARRAY 45 44
DEF PRARR$ PRINT# STRING ARRAY 46 36
DEF RDARR$ READ# STRING ARRAY 47 44

8-115

Section 8: Reference Material

8.7 Error Messages

Following is a list of the error messages provided by the Assembler ROM
and the system monitor. For other errors refer to the owner's manual or
to the manuals for other peripherals that may be attached to the HP-87.

Assembler System Errors

ERROR 109: ILL MODE

ERROR 110: LBL

ERROR Ill: OPCO

ERROR 112: ARP-DRP

ERROR 113: OPER

ERROR 114: FIN-LNK

ERROR 115: ASSM ROM

8-116

A command has been executed in the wrong
operating mode (that is, ASSEMBLER has been
typed when the computer is already in
assembler mode).

An invalid label has been seen; may have
been longer than six characters or
started with a digit.

The opcode is not recognized; may have been
misspelled, no space was typed between the
label and the opcode, or because the opcode
was entered in the first or second column
after the line number.

Invalid ARP or DRP; ARPs and DRPs must be
between 0 and 77 inclusive, and cannot be
1.

Bad operand; that is, LDM R34,=3,remark.
Because a number follows the equal sign
in this example, the assembler expects
another number after the comma. Also,
each literal value must be specified with
two digits if a BCD quantity.

Missing FIN or LNK statement. If the
file name or file type is wrong in the
LNK statement, then a "FILE NAME" or
"FILE TYPE" error will be generated.

At power-on, this means the ROM had a
checksum error. At a breakpoint, any
errors generated give this message.

Section 8: Reference Material

Assembly Errors

ILL NAM

AIF UND

ILL ASS

JMP FROM

JMP TO

UND LAB

ILL GLO

A NAM statement has already been executed,
or an ABS ROM has been executed.

The specified conditional assembly flag
has not yet been defined as set or cleared.

An ASS or NAM statement has already been
encountered.

The jump from the spcified line is out of
range.

The jump to the specified line is out of
range.

After assembly was completed, this label
had not been defined in the program or in
the global file.

The GLO statement occurs after a NAM
statement, ABS statement, or another GLO
statement.

8-117

Section 8: Reference Material

8.8 System Hardware Diagram

8-118

Section 8: Reference Material

8.9 Assembler Instruction Set

On the following pages is a list of all CPU instructions available on
the Assembler ROM.

Legend

DR

AR

Literal

Label

Clock Cycle

B

T

R(x)

M(x)

PC

SP

EA

Data register. Can be register number (that is, R32),
R*, or R#.

Address register. Can be register number, R*, or R#.

Literal value, up to 10 octal bytes in length. Can be
BCD constant (that is, 99C) , octal constant (that is,
12), or decimal constant (that is, 20D). Can also be
specified by a label, where the literal quantity is a
one- or two-byte value or address assigned to the label.

Address of literal quantity. Label name must begin with
an alphabetic character, can use any combination of
alphanumeric characters, and can be 1-6 characters in
length.

1. 6 sec.

Number of bytes.

Add one clock cycle if true (that is, the jump occurs).

CPU register addressed by (x) •

Memory location addressed by (x) where (x) is a 16-bit
address.

Program counter stored in CPU registers R4 and R5. Used
to address the instruction being executed.

Subroutine stack pointer stored in CPU registers R6 and
R7. Used to point to the next available location on the
subroutine return address stack.

Effective address. The location from which data is read
for load-type instructions or the location where data is
placed for store-type instructions.

8-119

Section 8: Reference Material

ADR

n

()

v

JIF

1

x

y

8-120

Address. The two-byte quantity directly following an
instruction that uses the literal direct, literal
indirect, index direct, or index indirect addressing
mode. This quantity is always an address.

Literal value.

Is transferred to.

Contents of.

Complement (that is, x is complement of x). This is
one's complement if DCM=0 and nine's complement if
DCM=l.

Logical "and."

Inclusive "or."

Exclusive "or."

Jump if.

Status bit is set.

Status bit is cleared.

Status bit is affected.

Status bit is not affected.

This option is available to this instruction.

Section 8: Reference Material

Status
Instruction Addrassing Clock Binary/

Format Dascription
Moda Dpcoda

Cyclas Dparation DCM=O DCM=I BCD
RDZ Option

LSB MSB LDZ Z DCM E CY DVF E CY DVF
ADBOR, AR Add byte Reg.imm. 302 DR-DR+AR - X
ADBOR, = Add byte lit.imm. 312 DR - DR + M(PC + 1)

literal

ADBDOR,AR Add byte Reg. dir. 332 DR - DR + M(AR)
ADBDOR, = Add byte lit.dir. 322 DR - DR + M(ADR)

Isbel

ADMOR,AR Add multi· Reg.imm. 303 4+B DR- DR+AR
byte

ADM OR, = Add multi· lil.imm.
literal byte

313 4+B DR - DR + M(PC + 1) - X

ADMDOR,AR Add multi· Reg. dir.
byte

333 5+B DR - DR + M(AR)

ADMDOR, = Add multi· lil.dir. 323 4+B DR - DR + M(ADR) X -
Isbel byte

ANM OR, AR logical AND Reg.imm. 307 4+B DR - DR' AR X -
(multi·byte)

ANMOR, = Logical AND lil.imm. 317 4+B DR - DR' M(PC + 1) X -
literal (multi·byte)

ANMDOR,AR Logical AND Reg. Dir. 337 5+B DR - DR' M(AR) - 0
(multi·byte)

ANMDOR, = logical AND Lil.dir.
litersl (multi·byte)

327 5+B DR - DR' M(ADR) - 0

ARPAR load ARP 000·077 ARP-n
(;COOl)

ARP' Load ARPwith 001 ARP - RO
contents
of RO

BCD Set BCD mode 231 DCM-l
BIN Set binary 230 DCM-O

mode

CLBOR Clear byte Reg.imm. 222 DR-O - 0
ClMOR Clear multi· Reg.imm. 223 4+B DR-O

byte

CLE Clear E 235 E-O

CMBOR,AR Compare byte Reg.imm. 300 DR+AR+ 1 X -

CMBOR, = Compare byte Lil.imm.
litersl

310 DR + M(PC + 1) + 1 X -

CMBDOR, AR Compare byte Reg. dir. 330 DR + M(AR) + 1 X -
CMBDOR, = Compare byte Lit.dir. 320 DR + M(ADR) + 1 X -

Isbel

CMMOR,AR Compare Reg.imm. 301 4+B DR+AR+ 1 X - X -
multi·byte

CMMOR,= Compare Lil.imm. 311 4+B DR + M(PC)+ 1) + 1 X - X -
litersl multl·byte

CMMDOR,AR Compare Reg. dir. 331 5+B DR + M(AR) + 1 X - X -
multi·byte

CMMDOR, = Compare lit.dir. 321 5+B DR + M(ADR) + 1 X - X -
Isbel multi·byte

DCBOR Decrement Reg.imm. 212 DR - DR-l X - X -
byte

DCMOR Decrement Reg.imm. 213 4+B DR - DR-l X - X -
multi·byte

DCE Decrement E 233 E-E-l

DRPOR Load DRP 100·177 DRP -n
(;cl0l)

DRP 1 LoadDRPwith 101 DRP -RO
contents
of RO

8-121

Section 8: Reference Material

Status
Instruction Addrassing Clock Binary/

Format Description
Mode Dpcode

Cycles Operation DCM=O DCM=I BCD
RDZ Option

LSB MSB LDZ Z DCM E CV DVF E CV DVF
ELBOR Extandedlell Reg.imm. 200 Circulate DR X 0

byte lallonca

ELM OR Extendedlell Reg.imm. 201 4+B Circulate DR X 0
multi· byte lellonce

ERBOR Extended Reg.imm. 202 Circulate DR X 0
right byte right once

ERMOR Extended right Reg.imm. 203 4+B Circulate DR X 0
multi·byte right once

ICBOR Increment Reg.imm. 210 DR DR + 1
byte

ICMOR Increment Reg.imm. 211 4+B DR OR + I
multi·byte

ICE IncrementE 234 E E+l

JCY Isbsl Jump on carry 373 4 +T JIF CY=1

JEN/sbsl Jump on E 370 4+T JIF E ""0000

JEV Isbel Jump on even 363 4+T JIFLSB=O

JEZlsbel JumponE 371 4+T JIFE=OOOO

JLN/sbel Jump on left 375 4+T JIFLOZ"" 1
digit

JLZlsbel Jumponlaft 374 4+T JIFLOZ= 1
digit zero

JMP/sbel Unconditional
jump

360 4+T Jump always

JNClsbsl Jump on no 372 4+T JIFCY=O
carry

JNG/sbsl Jump on 364 4+T JIF MSB"" OVF
negative

JNO/sbel Jump on no 361 4+T JIFOVF =0
overflow

JNZlsbel Jump on 366 4+T JIFZ"" 1

JOO/sbsl Jump on odd 362 4+T JIFLSB= I

JPSlsbel Jump on 365 4+T JIFMSB=OVF
positive

JRN/sbel Jump on right 377 4+T JIF ROZ"" 1
digit

JRZlsbel Jump on right 376 4+T JIFROZ= 1
digit zero

JSB=lsbel Jump Literal 316 Jump subroutine
subroutine direct

JSB XR, Isbel Jump Indexed 306 11 Jump subroutine
subroutine indexed

JRZlsbsl Jump on zero 367 4+i" JIFZ=1

LOBOR,AR Load byte Reg.imm. 240 DR AR X -
LOB OR. = Load byte Lit.imm. 250 OR M(PC+I) X -

litSfSI

LOBO OR, AR Loadbyta Reg. dir. 244 DR M(AR)

LOBO OR. = Loadbyta Lit.dir. 260 DR M(AOR) X -
Isbsl

LOBO OR. XAR. Load byte Indexdir. 264 DR M(tiOR + AR) X -
Isbsl

LOBI OR. AR Load byte Reg. indir. 254 DR M(M(AR))
LOBI OR, = load byte Lit.indir. 270 DR M(M(AOR)) X -

Isbsl

8-122

Section 8: Reference Material

Status
Instruction Addrassing Clock Binary/ Dascription Opcoda Oparation DCM=O DCM=l BCD Format Mod. Cyclas

RDZ Option
LSB MSB LDZ Z DCM E CV DVF E CV OVF

LDBIOR, XAR, Load byte Indexindir. 274 10 DR - M(M(ADR +
Isbel AR))

LDM OR, AR Load Reg. imm. 241 4+B DR-AR
multi-byte

LDMOR, = Load Lit.imm. 251 4+B DR - M(PC + 1)
litsrsl mUlti-byte

LDMDOR, AR Load Reg.dir.
multi-byte

245 5+B DR - M(AR)

LDMDOR, = Load Lit.dir. 261 5+B DR - M(ADR)
Isbel multi-byte

LDMD OR, XAR, Load Indexdir. 265 7+B DR - M(ADR + AR)
Isbsl multi-byte

LDMIOR,AR Load Reg.indir_ 255 7+B DR - M(M(AR))
multi-byte

LDMIOR, = Load Lit.indir. 271 7+B DR - M(M(ADR))
Isbel multi-byte

LDMI OR, XAR, Load Indexindir. 275 9+B DR - M(M(ADR +
Isbel multi-byte AR))

LLBOR Logical left Reg.imm. 204 Logical left X 0
byte shift DR

LLMOR Logical left Reg.imm. 205 4+B Logical left X 0
multi-byte shift DR

LRBOR Logical right Reg.imm. 206 Logical right X 0
byta shift DR

LRMOR Logical right Reg_imm. 207 4+B Logical right X 0 mUlti-byte shift DR

NCBOR Nine's Reg.imm. 216 DR - DR
(orona's)
complement
byte

NCMOR Nine's Reg.imm. 217 4+B DR - DR X - - X X - X (or one's)
complement
multi-byte

ORB OR, AR Or byte Reg.imm. 224 DR - DRv AR
inclusive

ORMOR,AR Or multi-byte Reg.imm. 225 4+B DR - DRv AR
inclusive

PAD Pop ARP, DRP
and status

237 Status-M(SP}

from stack

POBD OR, +AR Pop byte with Stk. dir. 340 DR - M(AR}, X - - 0 0 - 0 post- AR-AR+ 1
increment

POBDOR, -AR Pop byte with Stk_ dir. 342 DR - M(AR), X - - 0 0 - 0 pre- AR-AR-l
decrement

POBIOR, +AR Pop byte with Stk.indiT. 350 DR - M(M(AR)), X - - 0 0 - 0 post- AR -AR+2
increment

POBIOR, -AR Pop byte with Stk. indir. 352 DR - M(M(AR)), X - - 0 0 - 0 pre- AR-AR- 2
decrement

POMDOR, +AR Pop multi-byte Stk. indir. 341 5+8 DR - M(AR), X - - 0 0 - 0 with post- AR-AR+ M
increment

POMDOR, -AR Pop multi-byte Stk. dir. 343 5+B DR-M(AR), X - - 0 0 - 0 with pre- AR - AR - M
decrement

POMIOR, +AR Pop mUlti-byte Stk. indir. 351 7+B DR - M(M(AR)), X - - 0 0 - 0 with post- AR -AR+2
increment

8-123

Section 8: Reference Material

Status
Instruction Addreuing Clock Binary/

Format Description
Mode Dpcoda

Cycles Dperetion DCM=O DCM=1 BCD
RDZ Option

LSB MSB LDZ Z OeM E CV DVF E CV DVF

POMIOR. -AR Pop multi-byte
7+B with pre- Stk. indir. 353 DR M(M(AR)).

decrement AR AR - 2

PUBDOR. +AR Push byte
with post· Stk. dir. 344 M(AR) DR. X - - 0 0 - 0
increment AR AR+ 1

PUBDOR, -AR Push byte
with pre· Stk. dir. 346 AR AR -1. X - - 0 0 - 0
decrement M(AR) DR

PUBIOR. +AR Push byte
with post· Stk. indir. 354 M(M(AR)) DR. X - - 0 0 - 0
increment AR AR+2

PUBIOR. -AR Push byte
with pre· Stk. indir. 356 AR AR-2. X - - 0 0 - 0
decrement M(M(AR)) DR

PUMDOR+AR Push multi-
byte with Stk. dir. 345 5+B M(AR) DR. X - - 0 0 - 0
post- AR AR+M
increment

PUMDOR. -AR Push multi·
byte with Stk. dir. 347 5+B AR AR-M. X - - 0 0 - 0
pre- M(AR) DR
decrement

PUMIOR, +AR Push multi·
byte with Stk. indir. 355 7+B M(M(AR)) DR. X - - 0 0 - 0
post- AR AR+2
increment

PUMIOR. -AR Push multi-
byte with Stk. indir. 357 7+B AR AR - 2. X - - 0 0 - 0
pre· M(M(AR)) DR
decrement

RTN Subroutine
return 236 SP SP-2.

SAD Save ARP.
PC M(SP)

DRP and 232 M(SP) Status
status on
stack

SBBOR.AR Subtract byte Reg.imm. 304 DR DR+AR+ 1

SBB DR. = Subtract byte lit.imm. 314 DR DR + M(PC + 1)
litefal +1

SBBD OR. AR Subtractbyta Reg. dir. 334 DR DR + M(AR) + 1

SBBDOR, = Subtract byte Lit.dir. 324 DR DR + M(ADR)
label +1

SBMOR, AR Subtract Rag.imm. 305 4+B DR DR+AR+ 1
mUlti-byta

SBMOR. = Subtract lit.imm. 315 4+B DR DR+M(PC+l)
litefal mUlti-byta +1

SBMDOR, AR Subtract Rag. dir.
multi·byte

335 5+B DR DR + M(AR) + 1

SBMDOR. = Subtract lit.dir. 325 5+B DR DR + M(ADR) - X
litefal multi·byte +1

STBOR, AR Store byte Reg.imm. 242 DR AR

STBOR. = Store byte lit.imm. 252 DR M(PC+l)
litefal

STBD OR. AR Store byte Reg. dir. 246 DR M(AR)
STBDOR, = Store byte lit.dir. 262 DR M(ADR)

label

STBD OR. XAR. Store byte Indexdir. 266 DR M(ADR + AR)
lebel

STBI OR. AR Store byte Reg. indir. 256 DR M(M(AR))

8-124

Section 8: Reference Material

Status
Instruction Addressing Clock Binary/

Description Dpcode Operation DCM=O DCM=1 BCD Format Mode Cycles
RDZ Option

LSB MSB LDZ Z DCM E CY DVF E CY OVF
STBI DR, = Store byte Lit.indir. 272 DR - M(M(ADR))

Isbel

STBI OR. XAR, Store byte Indexindir 276 10 DR - M(M(ADR +
Isbel AR))

STM OR. AR Store multi- Reg.imm. 243 4+B DR-AR
byte

STMOR. = Store multi- Lit.imm.
litersl byte

253 4+B DR- M(PC + 1) - 0

STMDOR,AR Store multi· Reg. dir. 247
byte

5+B DR-M(AR) - 0

complement
byte

NCMOR Nine's Reg.imm. 217 4+B DR - DR X - - X X - X
(or one's)
complement
multi-byte

ORB OR. AR Or byte Reg.imm. 224 DR - DRv AR - 0
inclusive

ORMOR. AR Or multi-byte Reg.imm. 225 4+B DR - DRvAR
inclusive

PAD Pop ARP, DRP 237 Status - M(SP)
and status
Iromstack

POBDOR, +AR Pop byte with Stk. dir. 340 DR-M(AR), X - - 0 0 - 0
post- AR-AR+ 1
increment

POBDOR, -AR Pop byte with Stk. dir. 342 DR-M(AR), X - - 0 0 - 0
pre- AR-AR-l
decrement

POBIOR, +AR Pop byte with Stk. indir. 350 DR - M(M(AR)), X - - 0 0 - 0
post- AR-AR+2
increment

POBIOR, -AR Pop byte with Stk. indir. 352 DR - M(M(AR)), X - - 0 0 - 0
pre- AR-AR-2
decrement

POMDOR, +AR Pop multi-byte Stk. indir. 341 5+B DR - M(AR), X - -
with post- AR-AR+M
increment

STMD DR, = Store multi· Lit.dir. 263 5+B DR- M(ADR) X -
Isbel byte

STMDOR. XAR. Store multi- Indexdir.
Isbel byte

267 7+B DR - M(ADR + AR) X -

STMIOR,AR Store multi- Reg. indir. 257 7+B OR - M(M(AR)) X - - 0
byte

STMIOR. = Store multi· Lit.indir. 273 7+B DR - M(M(ADR))
Isbel byte

STMIOR.XAR. Store multi- Indexindir. 277 9+B DR - M(M(ADR +
Isbel byte AR))

TCBOR Ten's Reg.imm. 214 DR -DR+ 1 - 0
(or two's)
complement
byte

TCMOR Ten's Reg.imm. 215 4+B DR-DR+ 1 X - - 0 0 - 0
(Dr two's)
complement
multi-byte

TSBOR Test byte Reg.imm. 220 Test DR - X
TSMOR Test multi- Reg.imm. 221 4+B Test DR - X

byte

XRBOR.AR Or byte Reg.imm. 226 DR - DR + AR 0 - 0
exclusive

XRMOR.AR Or multi-byte Reg. imm. 227 4+B DR -DR + AR X - 0 - 0 exclusive

8-125

Section 8: Reference Material

8.10 Assembler Instruction Coding

o I DRP/

I
r!000001 Load with literal

ARP =000001 Load wi th R\il

1 0 0 0 0 I
Logical/ Ri ght/Left M/B Extended

1 0 0 0 1 0 Decrement/ M/B Increment

1 0 0 0 1 1 Nine's Complement/ M/B Ten's Compl ement

1 0 0 1 0 0 Clear/Test M/B

1 0 0 1 0 1 XOR/OR M/B

1 0 0 1 1 000 BIN
001 BCD
010 SAD
011 DCE
100 ICE
101 CLE
110 RTN
111 PAD

1 0 1 000 REG IMM Store/Load M/B
001 REG DIR
010 LIT IMM
011 REG IND
100 LIT DIR
101 INX DIR
110 LIT IND
111 INX IND

1 1 0 00 REG IMM 00 CMP M/B
01 LIT IM~' 01 ADD
10 LIT DIR 10 SUB
11 REG DIR 11 AND 1

1 1 0 00 INX 11 JSB 0
01 LIT

1 1 1 0 INO/ PUSH/

I
-ADR/ M/B

OIR POP +ADR

1 1 1 1 000 JNO/ JMP
001 JEV / JOD
010 JPS/ JNG
011 JZR/ JNZ
100 JEZ/ JEN
101 JCY / JNC
110 JLN/JLZ
111 JRN/ JRZ

X/V = 1/0

8-126

Section 8: Reference Material

8.11 Keycode Table

DEC

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

KEYCODE
OCT

o
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
41
44
45
46
47
50
51
52
53
54
55
56
57

KEY

clrl@
clrlA
clrl B
clrl C
clrlO
ctrl E
clrl F
clrl G
clrl H
clrll
clrl J
clrl K
clrlL
clrlM
clrl N
clrlO
clrl P
clrl a
clrl R
clrl S
clrl T
clrl U
clrl V
clrlW
clrl X
clrl Y
clrl Z
clrl[
clrl \
clrl]
clrl A

clrl
SPACE

$

%
&

+
>

DEC

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

KEYCODE
OCT

60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

<

>
?
@

A
B
C
o
E
F
G
H
I
J
K
L
M
N
o
P
a
R
S
T
U
V
W
x
y

Z
[
\
]

KEY

8-127

Section 8: Reference Material

KEYCODE KEYCODE
DEC OCT KEY DEC OCT KEY

96 140 s KEY LABEL 135 207 Kll
97 141 a 136 210 -CHAR
98 142 b 137 211 CLEAR (SCREEN)
99 143 c 138 212 Not used

100 144 d 139 213 RESET
101 145 e 140 214 INIT
102 146 f 141 215 RUN
103 147 9 142 216 PAUSE
104 150 h 143 217 CONT
105 151 i 144 220 STEP
106 152 i 145 221 ROLL"
107 153 k 146 222 TEST
108 154 I 147 223 K14
109 155 m 148 224 LIST
110 156 n 149 225 PLiST
111 157 0 150 226 KEY LABEL
112 160 p 151 227 Not used
113 161 q 152 230 (1)
114 162 r 153 231 BACKSPACE
115 163 s 154 232 END LINE
116 164 t 155 233 FAST BACKSPACE
117 165 u 156 234 K7
118 166 v 157 235 -LINE
119 167 w 158 236 I/R
120 170 x 159 237 LEFT CURSOR
121 171 V 160 240 E
122 172 z 161 241 K5
123 173 s / 162 242 K6
124 174 ! 163 243 UP CURSOR
125 175 s- 164 244 DOWN CURSOR
126 176 s· 165 245 K12
127 177 s+ 166 246 RESULT
128 200 Kl 167 247 Not used
129 201 K2 168 250 A/G
130 202 K3 169 251 ROLL v
131 203 K4 170 252 RIGHT CURSOR
132 204 K8 171 253 Not used
133 205 K9 172 254 K13
134 206 Kl0 173 255 TRACE/NORMAL

1 Some binary programs will use this code for HCURS.

8-128

Section 8: Reference Material

8.12 Programming Hints

If execution of certain advanced programming ROM statements is attempted
in assembler mode, unpredictable results can occur. These statements
are:

• X REF L

• X REF V

• REPLACE VAR

8-129/8-130

A

Absolute address, 6-15
ABS pseudo-instruction, 6-47
Accumulator, 2-1
AD instruction, 6-27
Addressing modes, 6-17
Address register pointer

status, 5-3
AIF pseudo-instruction, 6-50
Allocated program, 1-3
Allocation, 3-10
ALPHA ALL, 4-6
ALPHA NORMAL, 4-4
AN, 6-25
Assembly errors, 8-117
ASTORE command, 1-6
Attributes, 6-10

Primary, 6-11
Secondary, 6-12
System table, 8-109

Attribute location, 6-10

B

Base address, 3-22
BASIC command, 1-6
BASIC program format, 3-41
BCD numbers, 2-6
BCD instruction, 6-44
BIN instruction, 6-44
Binary program, 6-1

Multiple, 6-50
Sample programs, 7-1

Binary programs
in system memory, 1-1, 1-3

BINBAS, 6-50
BINTAB, 1-8, 2-5, 3-21, 6-15

6-39
BKP command, 5-1

INDEX

Breakpoints
Clear ing, 5-1
Output, 5-2, 5-3

BSZ pseudo-instruction, 6-48
BYT pseudo-instruction, 6-49

C

Carry flag, 2-9, 5-3
CHEDIT, 3-20, 3-22, 3-25
CHIDLE, 3-20, 3-22, 3-25
Class, 6-12, 3-35
CLE instruction, 6-44
CLKDAT, 4-12
CLKSTS, 4-12
Clock cycle, 8-119
CLR command, 5-4, 6-50
CM instruction, 6-28
Commands, 1-5
Comments, 6-15
Computer operation, 3-4
Conditional assembly,

pseudo-instructions, 3-4
Constants, 6-15
Control block, 6-3, 6-4
CPU, 2-1
CPU instructions,

assembly of, 6-45
CRT control, sample

program, 7-6
CRT blank and unblank,

4-3
CRT controller, 4-1
CRTBAD, 4-1
CRTDAT, 4-2
CRTSAD, 4-2

I-I

CRTSTS, 4-2
Reading from, 4-2
Storing to, 4-3

STAT, 2-3, 3-18
Current status, 2-3

D

DAD pseudo-instruction, 6-49
Data register status, 5-2
DC instruction, 6-34
DCE instruction, 6-44
DCIDLE, 3-22, 8-101
Deallocation, 3-15
DEC function, 1-7
Decimal flag status, 5-3
Decimal mode flag, 2-9
Decompiling, 3-34, 3-35
DEF pseudo-instruction, 6-49
DGHOOK, 3-22
Disc, 1-2
Display modes, 4-4

ALPHA ALL, 4-4
ALPHA NORMAL, 4-5
GRAPH ALL, 4-6
GRAPH NORMAL, 4-5

DGHOOK, 3-22
DRP

E

Description, 6-43
Status, , 5-2, 6-40

E register, 2-9
Effective address, 6-18
ElF pseudo-instruction, 6-50
EL instruction, 6-32
EMC, 3-29
EMC pointers, 2-2, 2-3
EOVAR, 3-12
EQU pseudo-instruction, 6-49
ER instruction, 6-32
ERLIN:jj:, 3-28
ERNUM:jj:, 3-28
ERROR subroutine, 3-28
Error handling, 3-27
Error message table, 6-9

1-2

Error messages, 8-116
Assembler system errors,

8-116
Assembly errors, 8-117
Default error numbers,

6-9
ERRORS, 3-28
Execution pointer for BASIC

programs, 1-3
Executive loop, 3-6, 3-16,

3-17
Extend register, 2-9
Extend register status, 5-3
Extended memory controller,

3-29
External address table, 6-10
External communication status,

2-3

F

FIN instruction, 6-47
FLABEL command, 1-7
Flags, 2-8
Floating-point numbers, 2-5
FORMAR, 3-40
Format of BASIC programs and

variables, 3-41
FREFS command, 1-7
Functions, 1-5, 3-47
FWCURR, 3-12, 3-48

G

Get and Save sample program,
7-21

GETSAVES sample program, 7-21
GLO pseudo-instruction, 7-21
Global file, 1-2, 8-2
GRAPH ALL, 4-7
GRAPH NORMAL, 4-5
GTO label, 6-51

H

Hardware-dedicated registers,
2-2

Hardware diagram, 8-118

HGL$ sample program, 7-2
Hooks, 3-20, 3-21

Flowcharts, 8-100
General, 3-21
Language, 3-21
Supplied at, 3-22

IC instruction, 6-35
IMERR, 3-22
Index mode, 6-20

Direct, 6-20
Indirect, 6-20

Initialization, 3-7
Power-on, 3-6
Routine, 6-9

Instructions, 6-13
Instruction coding, 8-126
Instruction set, 8-119
Integer representation, 2-7
Interpreter Loop, 3-6, 3-8, 3-9
Interrupts, 3-18, 3-19
IOSP, 3-20, 3-23, 3-26, 8-102
IOTRFC, 3-23, 8-103
IRQ20, 3-20, 3-23, 8-104

J

JCY, 6-42
JEN, 6-42
JEV, 6-41
JEZ, 6-42
JLN, 6-42
JLZ, 6-42
JMP, 6-40
JNC, 6-42
JNG, 6-40
JNO, 6-40
JNZ, 6-41
JOD, 6-41
JPS, 6-40
JRN, 6-43
JRZ, 6-43
JSB, 6-39
Jump instructions, 6-39
JZR, 6-41

K

Keyboard controller, 4-8
Keyboard scanner, 4-8
KEYCOD, 4-8, 4-9
Keycode table, 8-127
KEYHIT, 3-25, 4-8
KEYS sample program, 7-15
KEYSRV, 3-20, 4-8, 4-19
KEYSTS, 4-9
Keyword table, 6-7
KYIDLE, 3-20, 3-23

L

Flowchart, 8-105
How to take over, 4-10
Sample program, 7-15

Label description, 6-14
Least significant bit, 2-11,

5-3
Left digit zero flag, 2-12,

5-3
Line input sample program, 7-11
Line numbering, 6-14
LINPUTS sample program, 7-11
Literal addressing mode, 6-19

Direct, 6-19
Immediate, 6-19
Indirect, 6-20

LL instruction, 6-34
LNK pseudo-instruction, 6-48
LOAD instruction, 6-17
LR instruction, 6-33
LST pseudo-instruction, 6-48

M

Mantissa, 2-7
MEM command, 5-4
MEM function, 1-7
MEMD statement, 1-8
Memory, 3-2
Memory dump, 5-4
Most significant bit flag,

2-12, 5-3
MSHIGH, 3-23
MSLOW, 3-23

1-3

MSTIME, 3-23
Multi-processor, 4-1

N

NAM pseudo-instruction, 6-4,
6-48

NARREF, 3-40
NC, 6-38
Nine's complement, 2-6, 6-36
Number representation, 2-5,

2-7, 2-8
NUMCON, 3-41
Numeric array

Local, 3-44
Remote, 3-44

Numeric formats, 3-37
Integer representation, 2-7
Short numeric variable, 3-38

Numerical user defined
functions, 3-47

NUMVAL, 3-39

o

Object code, 1-2, 7-1
OCT statement, 1-8
ON TIMER routine, 3-20
One's complement, 2-6
Opcodes, 6-14, 6-15
Operating stack, 3-37

FORMAR, 3-39
NARREF, 3-39
NUMCON, 3-39
NUMVAL, 3-39
REFNUM, 3-39
STRCON, 3-39
STRREF, 3-39

Operands and addressing, 6-14
OR instruction, 6-28
ORG pseudo-instruction, 6-48
Output stack pointer, 1-3
OVerflow flag, 2-11, 5-3

P

PAD instruction, 3-31
PAD, 6-44

1-4

parsing flow diagrams
Calculator mode statement,

8-98
Main parse loop, 8-97
parsit, 8-99

PC= command, 5-5
PLHOOK, 3-23
Pointer status, 5-3
Pointers, 3-29
POP instruction, 6-21

Decreasing stack, 6-24
Increasing stack, 6-24

Power light, 3-32
Primary attributes, 6-10
primary attribute of a

numeric function, 6-11
program counter, 2-2
program counter status, 5-2
program shell, 6-2
programming hints, 8-129
PRSIDL, 3-23, 8-106
Pseudo-instructions, 6-47
PTRl, 2-2, 3-29
PTRl= command, 5-6
PTR2, 2-2, 3-29
PTR2= command, 5-6
PUSH instruction, 6-21

R

Decreasing stack, 6-24
Increasing stack, 6-24

R*, use of, 6-43
Radix, 2-7
Real number representation, 2-7
REFNUM, 3-39
Register

Bank pointer, 2-2
Boundaries, 2-3, 2-4
Usage, 2-1, 2-2

Registers
Hardware-dedicated, 2-2
Software-dedicated, 2-2, 2-3

Register addressing mode, 6-20
Direct, 6-20
Immediate, 6-20
Indirect, 6-21

REL statement, 1-8
REPORT routine, 3-28, 3-29

Representation of floating-
point numbers, 2-5

Return stack pointer, 2-2
Reverse Polish Notation, 3-1
Right digit zero flag, 2-12, 5-3
RMIDLE, 3-20

Flowchart, 8-107
How to take over, 3-24

ROMFL, 3-27
ROMFL when called, 3-7
ROMINI, 3-7, 3-27
Routines, 8-11
Routines format, 8-12
Routine tables

placement of binary
programs, 6-7

RSELEC, 3-2
RTN instruction, 6-45
RULITE, 3-32
Run time routine table, 6-8
Run time table,

tokens, and attributes, 8-109

S

SAD instruction, 3-31, 6-45
Save and Get, sample

program, 7-21
SB instruction, 6-29
SCRATCHBIN statement, 1-8
Secondary attributes, 6-10
Secondary attributes, 6-12,

6-13
SET, 6-50
Shell, 6-2
Shift instructions, 6-31
Short number representation,

2-8
Simple numeric variable, 3-43

Local, 3-43
Remote, 3-43

Simple string variable, 3-45
Local, 3-45
Remote, 3-45

Single-step, 5-5
Software-dedicated register

and EMC pointers, 2-2, 2-3
Source code, 1-1, 7-1
SPAR0, 3-20, 3-23, 8-108
SPARl, 3-20, 3-23, 8-108

Speaker, 4-14
Stack

Addressing, 6-22
Decreasing, 6-22, 6-23
Direct, 6-24
Increasing, 6-22, 6-23, 6-26
Indi rect, 6-24
Operating, 3-37

Stack Instructions, 6-21
POP, 6-21
PUSH, 6-21

Stacks, multiple, 6-22
Stack operating routines

FORMAR, 3-39
NARREF, 3-39
NUMCON, 3-39
NUMVAL, 3-39
REFNUM, 3-39
STRCON, 3-39
STREXP, 3-39
STRREF, 3-39

Statements, 1-5
Status indicators, 2-8
Status, restoring, 6-44
STEP command, 5-5
STORE instruction, 6-17
String highlight sample

program, 7-2
Strings on the R12 stack,

3-39
STRANGE hook, 3-23
STRCON, 3-39
STREXP, 3-39
String array variable, 3-46

Local, 3-46
Remote, 3-46

String user-defined functions,
3-48

String values, passing, 1-3
STRREF, 3-39
STSIZE, 3-31
Subroutine jumps, 6-39
SVCWRD, 3-19
Syntax, 6-15
Syntax guidelines, 6-15
System hardware diagram, 8-118
System overall flow, 3-6
System memory, 3-2
System monitor, 5-1
System monitor commands, 5-1
System routines, 8-11

1-5

System run time table
tokens and attributes, 8-109

System table, 6-7

T

TC, 6-37
Ten's complement, 2-6, 6-37
Test sample program, 6-5

Control block, 6-6
Program listing, 6-5

Timers, 4-11
Reading Timer 0, 4-13
Setting Timer 0, 4-14

Tokens, 3-4, 3-33
Token description, 3-8
Tokens and attributes

system runtime table, 8-109
TRACE, 5-6
TRACE sample output, 5-6
Translating HP-85 programs,

1-3, 1-4
TS instruction, 6-38
TWo's complement, 6-37
Type, 6-4, 6-11
Typing aids, at breakpoint,

5-2

U

UDL$, 7-2
UNL, 6-48
User-defined functions, 3-48

v

VAL, 6-49
Variables

Format, 3-41

x

Simple numeric, 3-43
Simple string, 3-45
String array, 3-46

XCOM, 2-3, 3-18
XR, 6-30

1-6

Z

Zero flag, 2-12
Zero flag status, 5-3

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	82928asm_Page_001
	82928asm_Page_002
	82928asm_Page_003
	82928asm_Page_004
	82928asm_Page_005
	82928asm_Page_006
	82928asm_Page_007
	82928asm_Page_008
	82928asm_Page_009
	82928asm_Page_010
	82928asm_Page_011
	82928asm_Page_012
	82928asm_Page_013
	82928asm_Page_014
	82928asm_Page_015
	82928asm_Page_016
	82928asm_Page_017
	82928asm_Page_018
	82928asm_Page_019
	82928asm_Page_020
	82928asm_Page_021
	82928asm_Page_022
	82928asm_Page_023
	82928asm_Page_024
	82928asm_Page_025
	82928asm_Page_026
	82928asm_Page_027
	82928asm_Page_028
	82928asm_Page_029
	82928asm_Page_030
	82928asm_Page_031
	82928asm_Page_032
	82928asm_Page_033
	82928asm_Page_034
	82928asm_Page_035
	82928asm_Page_036
	82928asm_Page_037
	82928asm_Page_038
	82928asm_Page_039
	82928asm_Page_040
	82928asm_Page_041
	82928asm_Page_042
	82928asm_Page_043
	82928asm_Page_044
	82928asm_Page_045
	82928asm_Page_046
	82928asm_Page_047
	82928asm_Page_048
	82928asm_Page_049
	82928asm_Page_050
	82928asm_Page_051
	82928asm_Page_052
	82928asm_Page_053
	82928asm_Page_054
	82928asm_Page_055
	82928asm_Page_056
	82928asm_Page_057
	82928asm_Page_058
	82928asm_Page_059
	82928asm_Page_060
	82928asm_Page_061
	82928asm_Page_062
	82928asm_Page_063
	82928asm_Page_064
	82928asm_Page_065
	82928asm_Page_066
	82928asm_Page_067
	82928asm_Page_068
	82928asm_Page_069
	82928asm_Page_070
	82928asm_Page_071
	82928asm_Page_072
	82928asm_Page_073
	82928asm_Page_074
	82928asm_Page_075
	82928asm_Page_076
	82928asm_Page_077
	82928asm_Page_078
	82928asm_Page_079
	82928asm_Page_080
	82928asm_Page_081
	82928asm_Page_082
	82928asm_Page_083
	82928asm_Page_084
	82928asm_Page_085
	82928asm_Page_086
	82928asm_Page_087
	82928asm_Page_088
	82928asm_Page_089
	82928asm_Page_090
	82928asm_Page_091
	82928asm_Page_092
	82928asm_Page_093
	82928asm_Page_094
	82928asm_Page_095
	82928asm_Page_096
	82928asm_Page_097
	82928asm_Page_098
	82928asm_Page_099
	82928asm_Page_100
	82928asm_Page_101
	82928asm_Page_102
	82928asm_Page_103
	82928asm_Page_104
	82928asm_Page_105
	82928asm_Page_106
	82928asm_Page_107
	82928asm_Page_108
	82928asm_Page_109
	82928asm_Page_110
	82928asm_Page_111
	82928asm_Page_112
	82928asm_Page_113
	82928asm_Page_114
	82928asm_Page_115
	82928asm_Page_116
	82928asm_Page_117
	82928asm_Page_118
	82928asm_Page_119
	82928asm_Page_120
	82928asm_Page_121
	82928asm_Page_122
	82928asm_Page_123
	82928asm_Page_124
	82928asm_Page_125
	82928asm_Page_126
	82928asm_Page_127
	82928asm_Page_128
	82928asm_Page_129
	82928asm_Page_130
	82928asm_Page_131
	82928asm_Page_132
	82928asm_Page_133
	82928asm_Page_134
	82928asm_Page_135
	82928asm_Page_136
	82928asm_Page_137
	82928asm_Page_138
	82928asm_Page_139
	82928asm_Page_140
	82928asm_Page_141
	82928asm_Page_142
	82928asm_Page_143
	82928asm_Page_144
	82928asm_Page_145
	82928asm_Page_146
	82928asm_Page_147
	82928asm_Page_148
	82928asm_Page_149
	82928asm_Page_150
	82928asm_Page_151
	82928asm_Page_152
	82928asm_Page_153
	82928asm_Page_154
	82928asm_Page_155
	82928asm_Page_156
	82928asm_Page_157
	82928asm_Page_158
	82928asm_Page_159
	82928asm_Page_160
	82928asm_Page_161
	82928asm_Page_162
	82928asm_Page_163
	82928asm_Page_164
	82928asm_Page_165
	82928asm_Page_166
	82928asm_Page_167
	82928asm_Page_168
	82928asm_Page_169
	82928asm_Page_170
	82928asm_Page_171
	82928asm_Page_172
	82928asm_Page_173
	82928asm_Page_174
	82928asm_Page_175
	82928asm_Page_176
	82928asm_Page_177
	82928asm_Page_178
	82928asm_Page_179
	82928asm_Page_180
	82928asm_Page_181
	82928asm_Page_182
	82928asm_Page_183
	82928asm_Page_184
	82928asm_Page_185
	82928asm_Page_186
	82928asm_Page_187
	82928asm_Page_188
	82928asm_Page_189
	82928asm_Page_190
	82928asm_Page_191
	82928asm_Page_192
	82928asm_Page_193
	82928asm_Page_194
	82928asm_Page_195
	82928asm_Page_196
	82928asm_Page_197
	82928asm_Page_198
	82928asm_Page_199
	82928asm_Page_200
	82928asm_Page_201
	82928asm_Page_202
	82928asm_Page_203
	82928asm_Page_204
	82928asm_Page_205
	82928asm_Page_206
	82928asm_Page_207
	82928asm_Page_208
	82928asm_Page_209
	82928asm_Page_210
	82928asm_Page_211
	82928asm_Page_212
	82928asm_Page_213
	82928asm_Page_214
	82928asm_Page_215
	82928asm_Page_216
	82928asm_Page_217
	82928asm_Page_218
	82928asm_Page_219
	82928asm_Page_220
	82928asm_Page_221
	82928asm_Page_222
	82928asm_Page_223
	82928asm_Page_224
	82928asm_Page_225
	82928asm_Page_226
	82928asm_Page_227
	82928asm_Page_228
	82928asm_Page_229
	82928asm_Page_230
	82928asm_Page_231
	82928asm_Page_232
	82928asm_Page_233
	82928asm_Page_234
	82928asm_Page_235
	82928asm_Page_236
	82928asm_Page_237
	82928asm_Page_238
	82928asm_Page_239
	82928asm_Page_240
	82928asm_Page_241
	82928asm_Page_242
	82928asm_Page_243
	82928asm_Page_244
	82928asm_Page_245
	82928asm_Page_246
	82928asm_Page_247
	82928asm_Page_248
	82928asm_Page_249
	82928asm_Page_250
	82928asm_Page_251
	82928asm_Page_252
	82928asm_Page_253
	82928asm_Page_254
	82928asm_Page_255
	82928asm_Page_256
	82928asm_Page_257
	82928asm_Page_258
	82928asm_Page_259
	82928asm_Page_260
	82928asm_Page_261
	82928asm_Page_262
	82928asm_Page_263
	82928asm_Page_264
	82928asm_Page_265
	82928asm_Page_266
	82928asm_Page_267
	82928asm_Page_268
	82928asm_Page_269
	82928asm_Page_270
	82928asm_Page_271
	82928asm_Page_272
	82928asm_Page_273
	82928asm_Page_274
	82928asm_Page_275
	82928asm_Page_276
	82928asm_Page_277
	82928asm_Page_278
	82928asm_Page_279
	82928asm_Page_280
	82928asm_Page_281
	82928asm_Page_282
	82928asm_Page_283
	82928asm_Page_284
	82928asm_Page_285
	82928asm_Page_286
	82928asm_Page_287
	82928asm_Page_288
	82928asm_Page_289
	82928asm_Page_290
	82928asm_Page_291
	82928asm_Page_292
	82928asm_Page_293
	82928asm_Page_294
	82928asm_Page_295
	82928asm_Page_296
	82928asm_Page_297
	82928asm_Page_298
	82928asm_Page_299
	82928asm_Page_300
	82928asm_Page_301
	82928asm_Page_302
	82928asm_Page_303
	82928asm_Page_304
	82928asm_Page_305
	82928asm_Page_306
	82928asm_Page_307
	82928asm_Page_308
	82928asm_Page_309
	82928asm_Page_310

