
HEWLETT-PACKARD

Advanced
Programming ROM

OWNER'S MANUAL
HP-83/85

Printed in U.S.A.

FliP'W HEWLETT a:e.. PACKARD

Advanced Programming ROM
Owner's Manual

HP-83/85

June 1981

00085-90146

©Hewlett-Packard Company 1981

Contents

Section 1: Getting Started ... 5
Introduction ... 5
ROM Installation ... 5
Definitions ... 6
Syntax Guidelines .. 7
Trying It Out! (The Command) .. 7

Section 2: Strings, Cursor Control, and String Arrays 11
Introduction ... 11
String Functions ... 11

The Function. .. 11
The Function. .. 12
The Function. .. 12
The Function ... 12
The Function .. 13
The or Highlight Function ... 13

Cursor Control and String Statements .. 13
Controlling the Cursor (The Statement, and Functions,

and . and Statements) 14
Inputting String Information (The Statement) 16
Filling String Variables with Screen Contents (The Statement) 17
Displaying Strings (The Statement) ... 18

String Arrays .. 20
Dimensioning String Arrays and Array Elements. .. 20
Declaring String Arrays (The . Statement) 21
Building String Arrays (The Statement) ... 22
Retrieving String Array Elements and Their Substrings (The Statement) 23
Determining the Highest Array Element (The Function) 25
Saving String Arrays in Mass Storage ... 26

Section 3: Subprograms .. 29
Introduction ... 29
Subprogram Operations. .. 29
Creating Subprograms (The Statement). .. 30
Returning from Subprograms (The and Statements) 31
Sample Subprogram .. 32
Finding Subprograms and Available Memory for Them (The Command) 32
Checking the Contents of System Memory (The Command) 35
Storing Subprograms ... 35
Calling Subprograms (The Statement) ... 36

Using "'(mon) Statements. .. 37
Passing Variables by Address ... 37
Passing Variables by Value ... 38
Passing by Address and Value .. 39
Passing Optional Parameters (The Function) 42

Deleting Subprograms from Main Memory (The Statement) 43
Global vs. Local System Settings '" '" '" 44
Tracing Subprogram Execution .. 45
Subprograms to and from Disc Drives. .. 47

Section 4: Programming Enhancements .. 49
Time and Calendar Functions .. 49

Time Functions (" and) .. 50
Date Functions (and) .. 51
System Clock Readings (and) .. 52

Assigning Branching Operations to the Entire Keyboard (The and
Statements) .. 52

Program Flags ... 55
Setting and Clearing Flags (The and Statements) 56
Checking Flag Settings (The and Functions) .. 57

Finding Program Strings and Variables (The Command) 59
Replacing Program Variables (The Command) 59
Renumbering Portions of Programs (The Command) 60
Merging Programs (The Command) .. 61

2

Scratching Binary Programs (The Statement) 62
Turning the CRT Screen Off and On (The' and' ,;,' Statements). 62
Determining the Page Length of Printer Output (The Command) 63
Error Recovery Operations .. 63

The Extended i Command .. 63
Cross-Referencing Line Numbers and Variables (The Command) 64
The !:::' i) i) i"i i", Function ... 64
The i:;:;:;:' ,"i Statement ... 65

Appendix A: Maintenance, Service, and Warranty 67

Appendix B: HP-83/85 Characters and Keycodes 73

Appendix C: An Alpha Sort Routine ... 77

Appendix D: A Shell Sort Routine .. 81

Appendix E: A Musical Keyboard Program 83

Syntax Summary ... 87

Error Messages .. 91

3

Section 1

Getting Started

Introduction

The Advanced Programming ROM adds to the power of your HP-83/85 Personal Computer. Its functions,

statements, and commands give you extended control over your data, programs, and system operations.

These instructions assume that you're familiar with your computer and with BASIC programming

language. In particular, you should know how to manipulate character strings, how to cause looping and

conditional branching, how to program statements, and how to write subroutines. For

relevant background information please refer to your computer owner's manual.

Of special interest are the ROM's abilities to:

• Position the cursor during program execution.

• Read string information directly from the display.

• Create string arrays.

• Execute subprograms.

• Use the entire keyboard for branching operations.

• Set, clear, and test 64 program flags.

• Find and replace program variables.

• Merge programs.

• Cross-reference both program statements and program variables.

These instructions will show you how to use these powerful computing tools quickly and easily.

ROM Installation

The Advanced Programming ROM is added to your system in an HP 82936A ROM Drawer. Up to six

different accessory ROMs can be used in a single drawer.

Your computer owner's manual, as well as the instruction sheet that accompanies the drawer, will explain

the simple installation procedure. Make sure you turn off the power of the HP-83/85 whenever you add or

remove ROMs and peripherals.

The AP ROM uses 91 bytes of the computer's memory. You can easily check this "overhead" and that

required by other accessories if you:

1. F' i:iT C i·i the existing contents of system memory.

5

6 Section 1: Getting Started

2. Execute i T :::T, which displays the number of available bytes of memory.

3. Subtract this number from the 14,576 bytes of available memory (30,704 bytes with the HP 82903A

Memory Module connected) when all peripherals are disconnected.

Definitions

The following is a list of commonly used terms in this manual:

function

parameter

expression

string

numeric array

string array

program statement

command

main memory

mass storage

routine

Any operation that returns a value for a given argument. Some functions, like

..... T (i i and i' i, don't require parameters. Others, like i'i ii" and i Ci ::, require two.

Functions may operate either on numeric arguments or on string arguments.

A general term referring to any constant, simple variable, array variable, or

expression used as part of a function, statement, or subprogram-call. Each

parameter represents at least one numeric or string value.

Any collection of constants, variables, and functions combined by BASIC

operators. May be either a numeric expression (like ': T ; , ,:: .. ; .. ;:i;· ::::i) or a

string expression (like Ii,;' .

Any quoted text (also called a "literal string" or "string constant") or any variable

that contains character information. The HP-83/85 allocates 26 bytes for every

string unless you specify differently with a dimension statement (like

or, ,: T ':ii). Each string consumes eight bytes in

"overhead"; consequently, a string variable by default holds a maximum of 18

characters.

A set of numbers represented either by a single column (one-dimensional) or by

columns and rows (two-dimensional).

A collection of string expressions that is treated as a one-dimensional array. String

arrays make many data manipulations faster and more convenient.

Any declaration or instruction that, with appropriate parameters, can serve as one

line of a main program or subprogram.

An instruction that manipulates programs (like Ci C i iT i) or controls the

computer's operation (like; iiT). Usually non-programmable.

The system memory available to the user, approximately 14K bytes (or 30K bytes,

with the HP 82903A Memory Module). Also referred to as RAM (for Random Access

Memory).

Permanent storage for program and data files, available through hardware devices

like tape and disc drives.

Any program or program segment that supports the execution of a larger program.

program

subprogram

Section 1: Getting Started 7

A coherent set of instructions that controls the input, processing, and output of

data. With the AP ROM, the HP-83/85 handles three types: main programs, binary

programs, and subprograms.

An independent set of program statements that can be located at the end of a main

program or stored on a mass storage medium.

Like a subroutine call, a subprogram call transfers program execution to a

subordinate set of program statements. Both subroutines and subprograms

relinquish program control after their execution. However, a subprogram has

added versatility in that it can be compiled independently, it can maintain the

separatedness of its program variables and line numbers, and it can be used

repeatedly by any number of main programs and other subprograms.

Syntax Guidelines

The following conventions will be used throughout these instructions:

[]

italic

stacked
items

Trying It Out!

Syntactical information shown in dot matrix must be entered as shown (in either

uppercase or lowercase letters).

Parentheses enclose the arguments of ROM functions.

This type of brackets indicates optional parameters.

Italic type shows the parameters themselves.

An ellipsis indicates that you may include a series of like parameters within the

brackets.

Quotation marks indicate that the program name or character string must be

quoted.

When two or more items are placed one above the other, either one may be chosen.

Let's execute one of the AP ROM's 51 operations to see how easily it works.

"'i (, wait interval parameter " repeat speed parameter

Required Parameters
wait interval parameter

repeat speed

Explanation
Sets the time delay before a key begins
repeating its output; ranges from 1 to
256. Currently set at 40.
Sets the rate at which the repetition
occurs; ranges from 1 to 256. Currently
set at3.

8 Section 1: Getting Started

You already know that holding down a key will cause the character to duplicate itself on the display

screen after a short delay (as has just happened with this period). The current delay

time is two-thirds of a second; the current repeat rate is about 20 characters/second.

To set a new key speed:

1. Make certain you've installed the ROM carefully in the ROM Drawer and computer.

2. Turn on your computer, which will automatically power and test the ROM. When the cursor

appears, you'll know that the ROM has checked out properly. If an message appears,

please refer to appendix A, Maintenance, Service, and Warranty.

3. Press and hold down any letter, number, or symbol key, say, the asterisk 0. Note the time delay

before it begins repeating, as well as the rate at which it crosses the screen.

4. On a new line, type and press (END LINE). Now when you press the 0, the

current line will fill up with)'s in less than a second! Besides the alphanumeric keys, most system

keys (for example, (ROLL.), (RESLT), and (AUTO)) will register the change.

5. To set the speed back to the original rate, you can press (SHIFT) (RESET). Tryout several other

values to see which works best for you. For example, !< i:::", " ::' ;::; ;:::: effectively suppresses

repetition while !< i'" i :: i; "doubles" each keystroke.

What follows is the wide variety of functions, statements, and commands made possible by the Advanced

Programming ROM.

Notes

9

Section 2

Strings, Cursor Control, and String Arrays

Introduction

The HP-83/85 already allows you considerable freedom in creating and manipulating string expressions.

You can alter, replace, and join both strings and substrings. Functions like and provide

additional string-handling capabilities. Please refer to your HP-83/85 owner's manual to review these

operations.

The AP ROM enables you to manipulate strings in new ways, to control the alpha cursor during program

execution, and to establish easy-access string arrays. This section will cover the ROM's string functions,

cursor control operations, string statements, and string array capabilities.

String Functions

Here is a brief summary of six AP ROM string functions:

String Function and
Meaning

Argument

::'::: <; string expression: Reverses the order of characters in a string.

(string .• number of repetitions: Concatenates, or joins, a string to itself any number of
times .

."
•.•• !string expression: Converts a string with uppercase letters to one with

lowercase letters.

>: <; ':string expression Deletes leading and trailing blanks from a given string .
....

... (string .• number of shifts: Wraps the string around on itself, shifting to the right or
left a given number of positions .

• '. : string expression: Converts a given string to a string of underlined characters.

All six operate equally well on quoted strings, string variables (•.... ,T <:, etc.), substrings (.. ::,

: •. ::), user-defined string functions, elements of string arrays, and concatenations.

The , ,:':: Function

...... :: <: ::string expression ::. reverses the order of characters in a given string. Thus, ::.: •. ,

outputs .. ": returns

This and subsequent examples simulate the display screen as you enter data from the keyboard.

11

12 Section 2: Strings, Cursor Control, and String Arrays

The F' F'T":;: Function

:' ::string expression" number of repetitions ::: concatenates any string the specified number of times.

The number of repetitions is rounded to an integer value. A nonpositive parameter causes :) :::' '!" :::,: to return

a null string.

Examples:

F~ ':'

. : ,
J. : .. j.,:::.:::::::"

• ::;: ;,,' """,,, "!:;>,:':';;" ;:::;'''ii" ;:'"

'i' T T + l l 'i' T '1' .~. ,'i' l l ·t

t .]. 't' 'j' + 'i' '!' 'i' "!' + 'j- T T + 'j' j

The : .. .
.. : .. : Function

'i' l 'J' ,-j-, 'j' "i" 'j' 'j' t

.;- T '" T '!' + T ',' '"

''j" ,'i' t t
'" .:, l +

l ·t·
.;. T

Repeats the string three times .

Repeats the third, fourth, and fifth
characters of string ,'".

" ,',1' ;:: can quickly fill all four display
screens with a specified string.

: string expression processes a given string by changing all of its capitals to lowercase letters.

Thus, if ::' ,: ;:' , ' " L' ,j', will output ;', ";"" "::::. Only letters A-Z are changed.

Examples:

...... : ;! j .. : i"'j ~ . i C: F~ \ ; .. ~ .. f"'j!" : i.""
; j"j!:::.

. "
i.. .. ; ... ;'•.

f' .··· ... 1 •• ••

t": :.: :::: (i ...] ::::: ; ij J 'j, t j"'! !::::
';;',:: .. \:1 ," Ii , ,' . ,_ 'I ",

• i ;"'j : ,:," C: " .. i'''' .L r'" r' . 1

Note: ' , '" ;:': has no effect on underlined characters.

The i i':' I i'i :;: Function

(CTRL)@)produces the " character.
Appendix B lists complete character
and key codes.

""'" T :'!: : string expression:: deletes leading and trailing blanks from a given string.

Example:

1'··· .• 1 Ii ...•. ,.... .j ;!
[;,':;: I:::. Vi' r ' .. :

• i:::.:::::

i"j C:U C: L.. ,:::. " ,:l C:

Note:'!" F:' T i'l :::: has no effect on underlined spaces.

Displays :: with its five leading
spaces.

Shortens the string so that it's left­
justified.

Section 2: Strings, Cursor Control, and String Arrays 13

, , ,. ,::. ",:: Cstring expression., number of shifts:i causes the given string to be right-shifted end around

(if you specify a positive number) and left-shifted end around (if you specify a negative number). The

number of shifts is rounded to an integer value.

Examples:

!? C) "T !:::l 'T t::. ::::. i ;; j:::: .. ri i.) F~ i 1 :, :\.

E~ F ,··,·:U t.!
i.,. : ... : : ,,'" (. " F' U i.) F: ::::: ::i

• :\. Ci :U! .j'" :'.1 ,"
r", T :,1: . ,1

.L "
1:::: ':': .
:", .l. ,'i:'

.... ,
I::: ... j.::,'" i·i········

The : ... : c' L .. ::;:: or Highlight Function

The Ti F: , :: 11 statement enables you
to define your own functions, both
string and numeric. (Refer to your
computer owner's manual for details.)

Shifts the string defined by F" ...
one space to the left.

:,:,: i" string expressioni converts a given character string to a string of underlined characters.

Examples:

I
Using C ii i:' "',: and 1 i ,; 1.. ":, the
program converts 32 decimal
values to their underlined
character equivalents.

Cursor Control and String Statements

Here are the AP ROM statements and functions that enable you to control the location of the cursor:

Cursor Operation Meaning
.... Positions the cursor anywhere on four display screens .

Returns the current row number of the cursor (1-64).

Returns the current column number of the cursor (1-32).

Removes the cursor from display.

Turns the cursor back on.

14 Section 2: Strings, Cursor Control, and String Arrays

Together with three new string statements summarized below, the cursor control operations provide a

wide latitude of display formatting.

String statement Meaning

Allows any combination of characters (maximum of 95) to be input from the
keyboard and assigned to a string or substring.

Fills a string variable with the contents of the display screen(s), beginning at the
current cursor location.

Displays a designated string on the alpha display, beginning at the current cursor
location.

These cursor control and string statements have no effect on printer operations.

Controlling the Cursor

The extended statement controls the location of the cursor in the alpha mode. It works in a

program similarly to the way the cursor control keys (0, m, m, G, G, (ROLLA), (ROLL'") work

in calculator mode.

'::", :::: [row parameter] [" column parameter]

Optional Parameters
row parameter

column parameter

Explanation
A number or numeric expression
specifying a row location from 1 to 64
(four screens of display positioning).
A number or numeric expression
specifying a column location from 1 to
32 (leftmost to rightmost position).

If either parameter is 0, then the cursor "homes" to the upper-left corner of the current display screen (as

when pressing 0 in calculator mode). Parameter values are assumed to be non-negative and are rounded

to integer values. Parameters greater than 64 (32 for column parameters) and less than 32768 are

!'! ':Uuloed to the proper range.

The statement alone works just as the current statement does without the ROM: It

switches the system from graphics mode to alpha mode and locates the cursor at its last alpha mode

position. The two additional parameters can position the cursor anywhere on four screens of display.

Try using ALPHA in calculator mode. First, execute ::: (to position the cursor on the top line of

your first display screen) and press (SHIFT) (CLEAR). Then execute :::: , ..: :': The cursor moves

to the bottom-right corner of screen 1.

Notice that a cursor is left behind in row 2, column 1. statements relocate the cursor without

affecting the currently displayed cursor. However, only the relocated cursor functions as the cursor.

Section 2: Strings, Cursor Control, and String Arrays 15

To remove the cursor from the display, first execute the (, ,: ,.... " ' ... ' i:' 'i:,' ::::' statement. Using ii' c, i' ,:, and

" statements, the following program clears all four screens and moves the cursor unseen

to the middle of screen 4.

The cursor returns to view anytime program execution halts, as happens when an L. ,., .L!, .. , , , "', or

statement is executed. During a running program, the (CLEAR) and (COpY) keys and the

,and ,', "i:' statements also cause the cursor to reappear.

If you designate only the row parameter, the cursor moves to that row while staying in its current alpha

column. Likewise, if you designate only the column parameter (" c), the cursor moves to that column

while staying on its current row.

If the top row of the current screen is ((for example,' ::) and you execute c, ii" (+16 (for example,

:'), then the current display will roll one line up. If your row parameter is greater than (+16

(say:), then will cause that specified row to appear as the top row of the display with the

cursor in that row. Rows less than ((for example, i:) will always become the top row of the display.

can be used in conjunction with the

relative positioning on the current display.

and functions to accomplish

The former function returns an integer from 1 to 64 designating the cursor's current row location. The

latter function returns an integer from 1 to 32 designating its column location.

Three examples illustrate the function's usefulness in relative positioning:

· : .. ,.

· ,..: .'

· ,..:

Moves the cursor down four rows in
the first column ofthe display.

Keeps C non-negative and enables
line wrap-around.
Shifts cursor five spaces to the left in
the current row.

I

16 Section 2: Strings, Cursor Control, and String Arrays

• (; c··· ..

These five cursor control operations work very well with the

statements.

Inputting String Information

[prompt string expression] string variable

Required Parameter
string variable

Optional Parameter
prompt string expression

Sets i:';; equal to the row number of
the top line of the current display
screen (to establish a reference).

, and

Explanation
During a program, you'll fill this
variable with a character string,
maximum of 95 characters.

Explanation

string

This prompt, established by you, will
appear on the display screen whenever
the! statement occurs

during program execution. The default
prompt is (a question mark).

The statement accepts any combination of characters and assigns them to a designated

string. When this statement is executed, the program waits for your input. Unlike the T ;< i:' , ' statement,

T ; .. ! [:::=; : ":'. offers a variety of input prompts. Also, the 1. .. T ~ .. j i:::: i i .. :'. statement assigns all entered characters

to the designated string or substring, including commas, quotation marks, function names, and leading

and trailing blanks. The statement doesn't allow numeric inputs or multiple string inputs.

Example:

Ii ,.:.j::;::

':::iCi E:i'··l:D
F: tJ !' .. !

Without a specified prompt character,
this statement prompts with a
question mark.

Prompts with a string constant.

Replaces the end of i.,! ::;: with a string
from the keyboard, using :::: :;: for the
prompt characters.

• ' The default prompt.
;:::: :.::: i:::: := ::::; 1;::1 ;:::: i'< j,l,j j'''1

;.::~ ',::: i:::; 'i ::::; i:::! i::': 1'< !.I.! ,"';

::.. c>,'·,··

Section 2: Strings, Cursor Control, and String Arrays 17

........... for i),;, prompts with text.
The four leading blanks, quote marks,
and comma in the string are
preserved.
Prompts for the i,i,;, substring. These
substring characters alter the contents
of i',.

Like' ,. , i, f : T, i . T ;.; " is executed only within programs, not in calculator mode. Using the null string

" ") as the prompt string constant will suppress the prompt symbol and carriage return altogether .

. also works well in graphics mode. It allows the user to input string information while viewing

a graphics display.

Example:

;-,-j,:; ij:::'
: , ',' : :.;,.

• ':'; c, T ;..; ;:::'; ; ","

... ;:, ...

: : ; ... ;:
,':::: ;' User text will remain on the same line

as the prompt string .

Adds to the display screen contents.

Filling String Variables with Screen Contents

f' :: i ;:;U string variable name

The ::: i ':: f::U statement fills a designated string variable or substring with whatever is on the computer's

alpha screen(s). Because the HP-83/85 maintains four screens of memory and each screen displays 16

lines and 32 characters per line, you can quickly create a 2,048-character string. Here are three points to

remember:

1. ;:" ff if begins copying characters from the current cursor location on the screen. Therefore, an

statement and an statement should precede each program

statement to position the cursor properly and to remove it from the display so that it won't be copied

in the string.

2. The number of characters read into the designated string variable depends on the dimensioned size

of that variable. For example, if the dimension of i'i:; is 45, then i'!:; will produce a

45-character string and ::::f f:;:' ;' .. : f:f:i will put 10 characters into the string.

3. The string resulting from the statement will preserve the commas, quotation marks,

lowercase letters, and leading and trailing blanks of the alpha display.

18 Section 2: Strings, Cursor Control, and String Arrays

The statement makes it easy for you to copy whatever's on the screen into a variable. For example, you

can easily fill a string with three lines of text:

Don't press (END LINE) here or while
composing the string itself.

By repositioning the cursor under the i::i r;: i: i:i:U statement and then pressing (END LINE), you execute the

statement, which begins the copying from column one of the next line. For as long as your computer

remains in calculator mode, string F: i ;: will hold the text.

You can even use i:i i:; i: i:i Ti to fill a string variable with the listing of an entire program!

The following program fills up string variable with screen information using the and

capabilities. Afterwards, pressing (SHIFT) (CLEAR) and typing (END LINE) displays the

string.

•

•
•

Displaying Strings

" "'" string expression

}
Fills the screen with a character
string.

Dimensions i; <: so that it will fill with
15 rows of information.
Removes cursor from display so that it
won't be copied into, ".
Repositions the cursor.
Fills i:i :',: with screen contents.

Returns the cursor to the display.

The ii ;,; i'" statement displays a designated string expression on the alpha screen, beginning at the

current cursor location. In calculator mode this means the specified string will be displayed beginning on

the line after i' j,; j)'T. Whether an statement is executed in calculator or program mode, the

cursor is repositioned to the first character ofthe j::j j,j ,:,"" string.

Modifying the previous program with and statements will cause the contents of

variable jj to be displayed at whichever screen locations you choose.

• The i::i i ;::: i"i j:::j parameters have been
arbitrarily chosen.

•

Section 2: Strings, Cursor Control, and String Arrays 19

The completed program will display the following string twice, once on lines 1-15 and once on lines 32-46:

By changing any of the :

effect on the displayed string.

statement parameters in this program, you can see the corresponding

Note: A string expression exceeding 2,048 characters will overwrite itself after once filling the four

screens.

The following example should give some idea of the degree of control the cursor and string statements

provide in display formatting, as in Computer Aided Instruction programs.

•

.: :' , ..

· '; ' .. :"
," ;.'i"':; i","

· :::: .. , . · :,:' · :::: .. " .

::::.r:::

Reads string and cursor data.

Positions the cursor for user input.

The null string suppresses prompt and
carriage return.

Reads string data.
Writes characters one by one.

Correctly positions the cursor.

20 Section 2: Strings, Cursor Control, and String Arrays

Toggles between two screens.

String Arrays

The Advanced Programming ROM enables you to generate and reference one-dimensional string arrays.

These capabilities provide a convenient way to handle large numbers of string expressions.

A string array element can be any string expression-a quoted string, string variable, substring, string

function, or any combination of these. In addition, array elements can vary in length, allowing you to use

system memory efficiently.

Let's look at the three statements which create string arrays:

Declares the size of a string array; that is, the total number of bytes set aside for that array.

Transforms string variables into string arrays.

Adds elements to already established arrays.

There are also two functions associated with string arrays:

Retrieves individual elements of a string array. Also retrieves substrings of array
elements.

Returns the largest subscript number of a string array.

Using these five operations in the above order, you can easily generate and manipulate string arrays.

Dimensioning String Arrays and Array Elements

A string array is, in effect, a string variable with special properties. In fact, the string array is initiated as

a string variable. Consequently, a string array must have its size declared if its total number of bytes

exceeds 26.

Section 2: Strings, Cursor Control, and String Arrays 21

r, T (: array name ::number of bytes:: [" array name ::number of bytes) ...]

Required Parameters
array name

number of bytes

Explanation
String array names are identical to
string variable names. They're
composed of a letter or a letter-digit
combination.
Enclosed in brackets, this number
limits the final size of your array. It
can range from 5 to about 14K bytes
(30K with the HP 82903A Memory
Module), depending on available
system memory.

Each string array consumes two bytes of memory in overhead. Each array element itself consumes an

additional two bytes. Consequently, allow sufficient space in your array dimension statements for two

extra characters per array and two extra characters per array element.

Examples:

When initialized, variable ::, ,... is
allocated 2K bytes of system memory.
, ':, <' is allowed 600 bytes and :,:,'
800 bytes.

Note: Because the names of string variables are indistinguishable from the names of string arrays,

this manual will designate all string array names with the digit ,

Declaring String Arrays

Having dimensioned a string variable for its intended use as an array, you can transform it into one .

.... ,.,' string variable name [" string variable name ...]

An ,: c, " " " " statement declares the specified string variables to be string arrays.

Examples:

Declares :::., <:: to be a string array.

Declares the three strings to be string
arrays.

After you've made a string into an array, you can still manipulate it the same ways as a regular string.

You can display the entire array,
change all its letters to uppercase
characters,
combine it with other strings,
and even make it an element of
another array, as we'll see next.

22 Section 2: Strings, Cursor Control, and String Arrays

Unless changed into a string array with an

variable. For example, the declaration :'

with the characters contained in

Building String Arrays

statement, a string variable remains a string

doesn't make:: a string array; instead, it simply fills

string array name element subscript [:position 1 [position 2])] string expression

Required Parameters
array name

subscript

string expression

Optional Parameters
position 1 [position 2]

Examples:

· ' ... :'
· '::;:
· '...:'

· ' .. ::

Explanation
This is the name of a string you've
previously declared to be a string
array, like :::':: and., .. , ..

This numeric expression denotes
which element of the array you want
the string expression to become.
Subscript values must be greater than
or equal to 1 and are rounded to integer
values.
This is the string you're entering as a
new array element.

Explanation
These two numeric expressions
designate the beginning and ending
characters of a portion of the string
array element. Specifying one or both
causes the appropriate number of
string expression characters to enter
the element substring, always
beginning from the first character of
the given expression.

Creates one string array element (four
characters).

Gives the element four additional
characters.

Alters the element's middle characters.

Replaces the end of the element with
null characters.

Adds a new element after the end of
the first.

If another string array, say····:· <, is now set equal to (i.e.,'" :', :::::;: ::), it does not inherit the

element sizes of <. That is, will retain its own original sizes. As a general rule, you should

manipulate string arrays element-by-element or you may get unpredictable results.

Section 2: Strings, Cursor Control, and String Arrays 23

The Advanced Programming ROM thus lets the array elements vary in length, enabling you to conserve

system memory.

You can enter as many elements in a string array as you'd like, limited only by the total number of

characters that array has been dimensioned for and by the consumption of two bytes per element. Also,

you don't have to enter individual elements sequentially; you can add them in any order, allowing two

bytes for undeclared as well as declared elements.

Examples:

The undeclared elements of' <-those between

values.

Sets the first element of array
equal to a quoted string.
Declares characters 1-11 of

to be

Fills the: th element of
contents of a string variable.

with the

Fills the 33rd throughth positions of
: with the first characters of

Gives the fourth element of the
characters of another string array.

and -default to null string

Using the' statement in conjunction with F ,.' statements and::: ,:,;, T: ::T:: routines,

you can quickly build up string arrays.

This program assigns every letter of the alphabet to an array element in ::

• :>, ...

•

Sizes :::' ': for 26 one-character
elements (1 byte/character + 2 bytes/
element + 2 bytes/array = 26 + 52 + 2).

Enters the array elements one by one .

Having created and filled a string array, you can retrieve elements from it using the ;:: T < function.

Retrieving String Array Elements and Their Substrings

: string array name C element subscript [!!position 1 [,' position 2]::]

24 Section 2: Strings, Cursor Control, and String Arrays

The (::T <: function retur~s an element (specified by the subscript) from a designated string array. You

can also retrieve a substring of that array element by specifying its beginning character position or its

beginning and ending positions.

Examples:

Retrieves the third element of array
.. :,'.

Retrieves a substring ofthe fifth
element of the array, beginning at the
10th character of that array element
and ending at its last character.

Retrieves a substring ofthe sixth
element, characters 'i through 45.

Sets the third element of :.: •• :: <: equal to
itself plus a string constant.

Here's a program that uses the C, ::T <: function to retrieve random phrases of high-level jargon from three

string arrays.

.... '! ('::.:

.. '! ;":;'.!.'::::,;,:-:"

. " '! c::,.[.·r":'·

.···, •• 1 •••••• •••

.. r··,····

•. : .• to.·

l:::=r;;' ',': ,

.:: ":' !','! .:" .. i'!r'" ,', ..
. .. '" ; ... ;,

Assigns enough space for 10 elements
in each of three arrays.
Declares the three strings to be string
arrays.

Fills up each ofthe arrays with 10
string constants gotten from the
U iii:: statements below .

I Generates pseudo-random integers
from 1 to 10 .

I Randomly selects strings from arrays
j:::i;::::::;::, F .::::::;>, and , , ..

Numbers each phrase as it's printed.

} Prints the individual phrases.

.............. , ... ; ','

Determining the Highest Array Element

.:.:. '. ,:' ' .. ,' • string array name .•

Section 2: Strings, Cursor Control, and String Arrays 25

Input to generate six phrases.

This listing typifies program output
which,hopefully, meets your
"functional policy utilizations."

The :< •• , function returns the highest subscript number of a string array. It provides a convenient way

to determine the number of elements contained in an array. After the above program, '.: i::" shows:

Array::: .;:: :: contains 10 elements.

26 Section 2: Stri'ngs, Cursor Control, and String Arrays

However, ':, (i (::: will not necessarily tell you the number of non-null elements in an array, as you can

enter new elements in any order. For example, after adding T:)" ' and T:) ," ' as two array

elements of T: ':::, .

"j .•••

Saving String Arrays in Mass Storage

Returns i:, the largest subscript,
rather than ;', the number of non-null
elements. (The in-between elements
are present as null strings.)

The current i':' : :iT:i and i: iiU:i statements are used to store and retrieve string arrays on tapes and

discs. However, the individual array elements should be entered one at a time to preserve their

separateness. You should therefore allow 1 byte per character and an additional 3 bytes for each array

element when creating a data file.

The following example shows how to store the alphabet array (on page 23) in mass storage:

· ;:' ,','
· ') ," ,"

Uses one record and the default record
size of 256 bytes for storing "".

"" <: has been filled sequentially so
that ': (:", ': equals 26.

Files the elements serially.

Reading the array from mass storage is also done element by element.

· ,:::::::, Reads the elements serially.

Notes

27

Section 3

Subprograms

Introduction

The HP-83/85 is already equipped with subroutine capabilities that allow it to handle entire groups of

program statements within main programs. The AP ROM extends your BASIC operating system by

allowing it to create, store, and access other groups of program statements, called "subprograms,"

completely apart from main programs.

When loading a BASIC program, whether from tape or disc, your computer automatically scratches both

main and binary programs in system memory. A subprogram works differently. When "called," it's

retrieved from mass storage, added onto the end of existing programs in memory, and executed. (If you've

called a subprogram into main memory previously, calling it again will simply locate it in main memory

and begin executing it.) It's possible to bring as many subprograms into the HP-83/85 as you'd like,

limited only by available memory.

We define "subprogram" as a subordinate yet discrete block of programming statements and "calling

program" as any program that transfers program execution to the subprogram.

Like a subroutine, a subprogram depends on a main program and can't be executed alone. However, a

subprogram has broad versatility:

• It's completely detachable from the main program and can reside in mass storage as well as in

system memory.

• Its variables and line numbers are "local;" that is, they are not shared by the main program.

• It can receive specified values from the calling program, process them, and return new values.

• It can call other subprograms.

• It can execute internal subroutines.

In short, a subprogram provides an easy way to isolate a useful programming routine, store it, call it back

into main memory whenever needed, and execute it.

Subprogram Operations

Your computer may have either or both of two mass storage facilities: an internal tape drive and/or an

HP 82900-Series Flexible Disc Drive. The instructions contained in these pages for storing, locating, and

calling subprograms pertain to both types of devices. For additional disc drive instructions, please refer to

Subprograms to and from Disc Drives, page 47.

29

30 Section 3: Subprograms

The following table summarizes the AP ROM's subprogramming controls:

Names the subprogram and specifies the transfer variables from the calling
program; serves as the first statement of the subprogram.

Transfers control back to the calling program; serves as the last statement of the
subprogram.

Transfers control back to the calling program before the
allows early exit from the subprogram.

statement;

Locates the designated subprogram in main memory and makes it available for
editing. If non-resident in main memory, the subprogram is retrieved from mass
storage. If the subprogram doesn't exist, the command finds the first available
location in main memory for writing a subprogram. A non-programmable
command.

Lists the names and sizes of all programs and subprograms currently in system
memory. A programmable command.

Brings the designated subprogram into system memory (if not already there),
passes the values of specified variables to it, and begins executing it.

Returns the number of parameters whose values have, in fact, been passed to the
subprogram.

Deletes designated subprograms from main memory and reclaims the resulting
unoccupied memory.

Creating Subprograms

"subprogram name" [(pass parameter list

Required Parameter
subprogram name

Optional Parameter
pass parameter list

Explanation
The name is a quoted string that the
computer truncates to six or ten
characters depending on the mass
storage device (tape or disc,
respectively).

Explanation
This list is used to convey the values
of variables and arrays to the
subprogram. The parameters,
separated by commas, must agree in
type with the corresponding
parameters of your calling program.
This list is necessary for the calling
program and subprogram to share
values.

The " statement always appears as the first line of your subprogram. The parameter list (enclosed in

parentheses) doesn't need to specify the precisions of the numeric variables (" , or

ii i). Neither does the list have to specify the dimensions of the string variables and the arrays: The

precisions and dimensions of parameters automatically accompany their transfer. However, the types of

the listed parameters (for example, string variable, numeric variable, numeric array) must agree with the

types ofthe calling program parameters.

Section 3: Subprograms 31

The values of variables in the calling program that are not explicitly transferred to the subprogram

remain unknown to the subprogram.

statements cannot be executed in calculator mode. Neither can they be concatenated with other

program statements by means of the character.

Some examples of iii; statements follow. For clarity the digit designates all parameters used within

subprograms.

Names the subprogram ii and
brings to it the values of one string
variable and two numeric variables.
N ames the subprogram and
brings to it the values of one 1-
dimensional numeric array, one 2-
dimensional numeric array, two string
variables, and one numeric variable.
N ames the subprogram

and indicates
that the subprogram shares no
parameters with the calling program.
The tape directory will show

i:'!:; the disc directory,

Although subprograms can be specified by any 6- (or 10-) character name, most subprogram names in this

chapter will use the prefix i; to differentiate them clearly from main program names.

The line numbering of your subprogram will not affect the line numbering of your main program or of any

other subprogram. In fact, the statements of your main program and subprograms can begin at the same

number and increment in identical values. Both can range from 1 to 9999.

Finally, while writing subprograms, you have available the easy-editing features of your HP-83/85

computer, which include controlling the cursor, scrolling the display, inserting/replacing characters, and

;, , iiumbering program lines.

Returning from Subprograms

The statement appears in the last line of your subprogram. It returns execution to the main

program or the subprogram that brought the current subprogram into use. After a statement,

execution resumes at the statement of the calling program that immediately follows the

statement.

32 Section 3: Subprograms

The' i ""'. statement is used within the body of a subprogram (anywhere after the; iii: statement)

to return control to the calling program. Like' ' 'i" :<U, '; i i ,.. transfers program execution to the

statement following the i 1::: statement. A statement allows early exit from a subprogram.

-
-? ...

Names the subprogram
and brings to it the values of one
string and two numeric variables.

Tests a value for early exit.

Returns execution to the calling
program .

.... and' iii:' L :.::: statements are interchangeable. Both are included to conform to proposed

ANSI (American National Standards Institute) BASIC language extensions.

Sample Subprogram

Here's an example of a subprogram that receives the elements of a two-dimensional array, sets a subset of

them to 0, and pauses.

The was included so that the values of

Subprogram receives the
values of an array and two numeric
variables. (Note: The comma in the
array name is optional; we use it
simply for documentation.)

This routine can initialize any two­
dimensional numeric array.

can be checked in calculator mode before

execution returns to the main program. Once a subprogram finishes executing, the variables named in its

; : .. ::: statement return to undefined values.

Finding Subprograms and Available Memory for Them

Section 3: Subprograms 33

The non-programmable: command locates the designated subprogram, ifit exists. Besides a

quoted string, you can also use a string variable or expression to specify the subprogram. If the command

includes no name, the computer locates the main program. The command won't start program execution.

When you issue a i
command by itself, the first
program in system memory is
found.

System Memory

Your Main Program

Subprogram

Subprogram

Subprogram

Available Memory

If the subprogram is not part of main memory, then the

r-

~

When you issue a :
command, a search

begins from the top of system
memory for the specified
subprogram.

command causes a search for the

subprogram in mass storage. Iffound there, it's brought into system memory.

causes the computer to search
mass storage after reviewing
the contents of system memory.

System Memory

Your Main Program

Subprogram

Subprogram 0::: i : ,

Subprogram

Available Memory

Mass Storage
(tape or disc drive)

...

Finding
computer I

here, your
oads a copy of it into

the first av ail able memory location.

-

34 Section 3: Subprograms

You can also bring a subprogram into main memory using the current

however, you will destroy the current contents of system memory .

command. In so doing,

..... , "I, ,:. i;' Ci Ci's most important function is to locate a subprogram you want to i .. T and edit. Its other

important function is to enable you to write new subprograms. Given a new subprogram name, it tells

your computer to allocate system memory for a new group of subprogramming statements. Then you can

key them in, beginning with the ':": ii i': statement.

Let's assume you'd like to create a subprogram «; i i ,::. ;:::) but a main program and several subprograms

already reside in system memory. You don't want to write over them, so you key in:

:: ::::; !, .. : L~

Visually, here's what happens:

System Memory

Your Main Program

Subprogram '::'" •...

Subprogram '::':' ,

Subprogram ";' "

Subprogram: .

Available Memory

Mass Storage

After searching unsuccessfully for
':< in system memory and mass

storage, the computer finds the first
available memory location and
displays this message.

... Unable to find .• : •• ' ,.. ::', the
computer stops here.

!'··i ! 'j j'; j 1'" ."'. \' j:::: r'o' L: :: 'r l:::' c· ~: ~:::: (" ...

::::.[1i::::
····:l::··,····

Afterwards, executing i' T •• ,. ;:::. i? Ci C, alone returns the computer to the main program. Another quick way

to find the main program is simply to initialize it by pressing (SHIFT) CIffiD.

Section 3: Subprograms 35

Checking the Contents of System Memory

The AP ROM enables you to examine the names and sizes of the programs currently residing in system

memory.

This programmable command will cause your computer to display the names and lengths of both main

program, and subprograms. Length means the number of bytes each program requires when initialized.

Example:

•

Lists subprograms in the order of their
location in system memory.

Each program consumes 31 bytes of
memory for a "program header."

Note: The directory won't show the size of variables declared in \'\ statements.

Then when you use the command to review and edit one of these subprograms, it's

positioned at the end of occupied system memory and initialized. Checking the directory afterwards will

show the new order of subprograms in system memory.

Important: Due to memory allocation, any time you edit the main program, all subprograms will be

cleared from system memory. In the example above, editing the main program will scratch all five

subprograms. Consequently, you may want to preserve your subprograms in mass storage soon after

creating or editing them. Any subprograms lost from system memory will be reloaded from mass

storage when they are again called from a running program or located with a

command.

Storing Subprograms

Knowing how to store main programs means that you can easily store subprograms.

First, make sure the computer is properly positioned in system memory. If you've just finished

writing/editing the subprogram, the memory pointer is already at the right location. Otherwise, simply

execute:

"subprogram name "

Afterwards, you use the current, non-programmableT:: \::': command as described in your computer

owner's manual. The first six characters of the T:: i' \ name must be identical to the first six of the ':: :',

name.

Subprograms, like main programs, must be':: i:' id and i :: ::Ued singly.

36 Section 3: Subprograms

Calling Subprograms

"subprogram name" [ipass parameter list']

Required Parameter
subprogram name

Optional Parameter
pass parameter list

Explanation
The first six letters of this quoted
string must agree with the first six of
the name you've created in the '::' ' , ...
statement of your subprogram. The
name may also be specified by a string
variable or expression.

Explanation
This list (in parentheses) consists of
the constants, variables, and
expressions whose current values your
calling program is transferring to the
subprogram. These parameters must
agree in kind with the parameters
you've specified in the ':: , , .. ,
statement. (The list is unnecessary
when the calling program shares no
values with the subprogram.)

When encountered in a program or subprogram, a statement begins a search for the specified

subprogram, first in main memory and then in mass storage if necessary. If the specified subprogram is

found in main memory, then the statement causes its execution. If the specified subprogram is

found instead in mass storage, then the i i statement causes your computer to bring a copy of that

subprogram into main memory and to start executing it.

statements can't be executed in calculator mode.

Once a subprogram has been loaded in main memory, calling it again won't bring another copy of it from

mass storage. Instead, calling it again will simply locate it in main memory and begin its execution.

Note: While running and only while running, a subprogram requires 119 bytes of RAM more than its

listing shows. If any declarations are active at the time of the call,

subprogram execution will require an additional 64 bytes. (,' i' declarations in the calling

program, discussed in section 4, take another 36 bytes of RAM during subprogram execution.)

statements won't work recursively; for example, you can't use a statement in the middle of

to call again. Neither is "indirect recursion" allowed. For example, the following

sequence-

C: calls

C calls" .

U calls 'i , "

-results in an error message.

Section 3: Subprograms 37

Main programs and subprograms can both call any number of subprograms from mass storage, limited

only by the available memory of the HP-83/85. Once subprogram execution reaches a

statement, it returns control back to the calling program, at the statement following the

statement.

There are three ways you can share parameter values between calling programs and subprograms: using

statements, passing by address, and passing by value.

Using::: l':(mon) Statements

A statement in the calling program reserves variable and array values for the subprogram by

means of a matching !': statement in the subprogram.

Example:

•

•

· :.

Specifies the variables shared by the
subprogram and declares their
dimension/precision.

Transfers program control to the
subprogram.

Enables you to key in the specified
subprogram.

Corresponding :: i< statement in the
subprogram.

Returns control to the calling
program, line 100.

U sing this method eliminates the need for pass parameter lists. However, unlike parameter lists, all ! ..

statements must specify the size (that is, dimension) and precision (if either

the common variables. Furthermore, statements can't transfer numeric and string constants.

Consequently, statements aren't as convenient as pass parameter lists; the remaining examples all

show parameters' being passed between programs either by address or by value.

Passing Variables by Address

After transferring the current values of parameters to the specified subprogram, passing by address

causes the subprogram to return any altered values to the calling program.

Example:

Main program (.... statement: Corresponding subprogram:::! : i:::: statement:

38 Section 3: Subprograms

When the statement above is executed, variables and are assigned the same memory

addresses as :: and 'i, respectively. Therefore, changing the values of ::', and 1'" in the subprogram will

cause the main program values of ' , and " to be changed.

Here's an example of a main program which uses a statement to pass a 9 by 6 numeric array

(i:) by address. This program corresponds to subprogram 'i: ' "" :i:? appearing on page 32.

Passing Variables by Value

Fills the array with decimal forms of
the two subscripts (for example, 'i,
represents ii: , ,,: " '; :n.

The values of variables " and
determine the number of elements that

:i C: will initialize.

Passing by value also transfers current parameter values to the subprogram. However, the subprogram

won't influence any values ofthe calling program.

Example:

Main program :" : statement: Corresponding subprogram 'i",: 1" statement:

The inner parentheses enclosing ': and' , in the:" (,:: i L statement cause different memory addresses to

be used for subprogram values r: ': and i : ". Consequently, regardless of how the subprogram operates on

the passed values, it won't affect the values of :: and " in the calling program.

All expressions (for example,
..............

. :.: .:, : :'"'".: ... ', i": ,: , 1'': <:) are passed by value; parentheses around a

variable simply cause it to be treated as an expression.

Here's a main-subprogram pair that demonstrates a passing-by-value operation:

j C:l 1,.,l F: j':'j t:::, T i: l'" t·::' i j j"; j'::: j"'! i'l
j:::j;:::: F: ':" Invests variables ii and l' <: with

arbitrary values.

Passes the variables by value so that
the main program will retain their
original values.

,''', i"!

:"',.,1 ..

.. ... r"

"", ,,' :::::r:::

,; : :, .. :i··,'

...... :!!

e,:' .
i",' .

Section 3: Subprograms 39

}
Displays their values after
subprogram execution.

Matches the variables of the C: ,:::, ,
statement; however, only the C ,:::, ,
statement designates passing by value
or address.

}
Changes the values of the two
variables .

Preserves a copy of the subprogram in
mass storage.

} The original values of ii and: ...

}

}

The values as altered by': i ' " ,',:: ..

The subprogram hasn't affected the
main program variables.

The important feature of passing by value is that it protects your calling program variables. The

variables used in the subprogram will be strictly local.

For all three methods, you can use a string variable or expression in the 'ii : L .. statement to specify the

subprogram name.

Example:

Locates the main program .
t ::::; .U ':,' :: ii

Ti:: specifies the subprogram.

Passing by Address and Value

The following lists show which way you can pass the various parameters:

Pass by Address Pass by Value

numeric variables (': ;:, (;, i.» numeric variables (C ',';' i, C ,ii, (' . .ii)

string variables (i:i i< ::::: :n string variables (C i i:::i, " i<:: :::i)

40 Section 3: Subprograms

Passed by Address Passed by Value

numeric arrays ('i' , . :, , ' :») always
substrings (::, ... ii, :

numeric constants (F' " , " "'n string arrays (i:' , ,",

string constants (" " .. , , , ")

always numeric expressions (i " ,"ii, ii"", i' ':, 'n
string expressions (:':' " ";)

individual numeric array elements (i: :
'" ",)

individual string array elements

.. :,

user-defined numeric functions (~:::. i< : ... , i'" ..

user-defined string functions (: "',
, ;

String arrays can be passed by value if you wrap them with the inner parentheses; however, the

subprogram will treat them as string variables only. To retain their usefulness as string arrays, they

must be passed by address.

Within a single: statement, you can pass parameters both by address and by value.

To generalize, variables are normally passed by address while expressions are passed by value.

Examples:

Passes by address the array and the
first numeric variable. Variable IS

passed by value.

Passes array:: '
first element of

by address and the
by value.

Passes all three parameters by value.
What the subprogram does to them
will have no bearing on calling
program variables.

Passes the first string by value and the
second string by address.

Passes the string concatenation and
constant by value. Passes: by
address.

Section 3: Subprograms 41

The following main program-subprogram combination shows how a single

variables both by address and by value.

statement can pass

•

This statement transfers the values of
by address,
by value,

the product of and by value,
by address,
by value, and

the concatenation of and by
value.

{
These six parameters receive their
values from the main program.

}

Th~ initial variable values of the
main program.

I The values as the subprogram
receives them.

I The values as altered by the
subprogram.

} Final main p,"",am value,

42 Section 3: Subprograms

To conclude, passing a variable by address means that your subprogram, after processing that variable,

will return its new value to the calling program. Passing a variable by value means that your subprogram

won't affect the value of the variable used by the calling program. Only the i··!! L i statement designates

passing by value or address, although both i ii! . Land 'i '!; statements must specify the same kinds of

variables-numeric variables and string variables.

Passing Optional Parameters

An additional refinement lets you include any number of optional parameters in a '::! ! ;:::; statement, that

is, parameters that don't have to be passed from every calling program. Your subprogram, then, mayor

may not use the values ofthese optional parameters in its calculations.

In order to determine the number of parameters that have been passed during the transfer of program

execution, you can use the ii i:' ,:::, i) function.

Appearing after the

subprogram has received.

Example:

•

• :i. ;:::;i:' .L (.. ,' ;··;i<··

statement, this function supplies the number of parameter values the

····.1 ii··'::,·· .

If only the value of i! '! has been
passed, this statement ends
subprogram execution.

If only two values have been passed,
the subprogram finishes execution.

Parameters appear in a statement in the order in which they're filled, from left to right. In the

example above, is filled first, followed by i:';, i:i, and Ti :i. Consequently, optional parameters

should appear at the end of the '; i.! i:; statement list. On the other hand, the C i:i L .. L.. list need only include

the parameters whose values are passed.

Note: Used in the calling program or in calculator mode, i< i'!.., i·,' returns .,

The following example shows how this option allows more flexible programming. Subprogram: ... ' ...

receives up to three user inputs and calculates the hyperbolic cosine of their sum.

... r" .,. !'"I

j'" i'::! ii",:"': r .. ;;·;····
..... : 'j .. ,"
:":l ii',:",

• ·:::,C··· , , C··,,.··,··,··

T j .. j j::::; :

'j'

r":
: , ... : '!; ' .. ;;;: ;:

L .. i :,.,: ;:::: !:::' \? E; C'\ l

..... T j··.i:UF j:;> (.. :.... :i ::::: ,"

;; :' :.
; ; ;; . ..'r': .

Section 3: Subprograms 43

Numeric precision accompanies the
variables when they're passed.

After subprogram execution, variable
i:i will contain the computed value.

Determines which equation(s) to use.

Computes the hyperbolic cosine.

Any unfilled parameters in the ': i; i:' statement are set to undefined values at the outset of subprogram

execution. If i< r::: :"', - J above, then i:::~ ::::1 and C: :::! can't be used anytime during the subprogram.

This capability enables a given subprogram to be called by any number of other programs, each passing

to it a different number of parameters.

Deleting Subprograms From Main Memory

Subprograms in main memory, like the main program itself, are automatically lost when either of two

non-programmable commands is executed:

"program name"

There's also a way you can delete an individual subprogram without destroying the main program, any

binary program, or any other subprogram.

"subprogram name" [T i' ii:U]

I

44 Section 3: Subprograms

This programmable command has no effect on subprograms in mass storage. If . is appended to

it and if it's executed in calculator mode, all subprograms following the named subprogram will also be

deleted from main memory.

Unlike., is programmable as well as executable in calculator mode. You can

place statements within both main and subprograms, as long as you don't ask a

subprogram to delete itself or to delete a program that has directly or indirectly called it. Trying to do so

will result in an error message.

Examples:

Deletes from main memory;
has no effect on III mass
storage.
Deletes and all subsequent
subprograms from main memory. (In
run mode, a suffix will be
ignored.)

Note: After executing a command. the HP-83/85 reclaims the RAM formerly

occupied by the deleted subprogram(s).

Global vs. Local System Settings

Some system settings, such as the trigonometric mode, are global; they remain in effect before, during,

and after subprogram execution. Other declarations, such as :, are local; they affect

only the main program or subprogram that executes them.

Consequently, whichever trigonometric statement (! .. , is executed most recently

becomes the current system setting and applies until another declaration occurs, whether in a main

program or subprogram. On the other hand, an statement affects only the current

program; other programs revert either to their own

(by default).

declarations or to

The following lists show which major statements and commands act globally and which act locally.

Global Declarations: Local Declarations:

:! and the buffer numbers themselves.

(and other Plotter/Printer ROM
statements)

Section 3: Subprograms 45

Global Declarations: Local Declarations:

} (Refer to section 4.)

When any program sets a system timer (1, 2, or 3), that timer counts up the number of milliseconds

specified by the statement, causes a branch, and then repeats the process (until it's

disabled). However, a timer interrupts only the execution of the program that's set it. During the

execution of another program, when the timer reaches its upper limit, it will simply begin counting from 0

again. Because the

previous program.

statement acts globally, any program can disable a timer set by a

There are dozens of other local declarations (like and T',' since subprograms are designed

to run independently. The instances above highlight the fact that branching declarations work locally.

Note: The I/O ROM branching declarations are also intended to affect only the program in which they

appear. These include :, and . However, these declarations

are not automatically suppressed during other programs and may unexpectedly interrupt their

execution. Consequently, you must disable them (with " and

statements) before calling other subprograms.

Tracing Subprogram Execution

The AP ROM extends the current " :, and statements, enabling

you to monitor both main program and subprogram execution. They cause the computer to trace the

program jumps, line sequences, and variable changes within individual subprograms as well as cause the

computer to follow the transitions between subprograms and calling programs.

The two operators that follow variable changes (and treat pass

parameters the same as local program variables if the pass parameters are passed by value. If passed by

address, the parameters are traced from calling program to subprogram and back.

In calculator mode, :. :' :: and default to the main program. To apply either or both to

a particular subprogram, you must write a or statement within that

subprogram. That is, the two act locally in program mode.

46 Section 3: Subprograms

U i:::i i) always operates locally, affecting only a single main program or subprogram. Therefore,

begin a operation by finding the appropriate main program or subprogram (use

",'. ,:. i< i:' C:) Then insert a . , ,,::, F' statement in that program or else execute'

in calculator mode, in either case specifying the local variables within that program that interest you.

In calculator mode, acts globally for line-tracing operations, disabling them from wherever

you execute it. However, for variable-tracing operations, "" ,:. >j ,:, i in calculator mode affects only the

local program.

Appearing as a program statement, "" i:'!oj ii j always acts locally, disabling a trace operation for the

current program only.

The following table should help:

Statement: Calculator mode: Program mode:

Global (although limited Local
to main program execution)

Local Local

In general, it's best to executeT' i:> i:::i C: j:::, , .. , , , , i.l i:::i i:::', and as program

statements so that you can check out your programs locally. To completely localize a trace operation, you

can change the relevant C ii L j statements so that their parameters are passed by value.

Trace operations will indicate when the current program calls another and when execution returns to it.

Here's an example of a main program that uses aT ::. j:j C i: operation:

• ".... ·T'::>,:::" .. · .. ·

, , 'T':

• :'::: 'j ,.... 1"'; !, .. ~? ~':'i ,", :

k! T'!

!.:,'; :, ..

i:::' i·,.i T L. ~:;:: '" : ::"', ..
"':; ;,
..... ! ;""

' .. ;,',: ..

Using' j:' i' ,j for the main program
only.

Disables the! i) jj C i operation of the
main program.

The resultant print-out shows when
execution leaves and returns to the
calling program.

I

Section 3: Subprograms 47

Subprograms to and from Disc Drives

and frequently bring designated subprograms from mass storage into system

memory. Depending on how you've set the mass storage default device, they will search either the tape

directory or the disc directory for designated subprograms.

Examples:

: :.: ':i.·"!<l ii··:

These will cause the computer to

)
access the default storage device after
searching unsuccessfully for the
subprogram in system memory.

To bypass the default storage device, simply append a storage specifier to the command.

Examples:

:: : :r"

: ;'.: :i: .. ," .. ":·

)
If not in system memory, '::; , ""
retrieved from the tape.

,:':, IS

ii, IS

You can also replace the subprogram name and storage specifier with a string variable or expression.

Example:

.... : 1: ~:::; 1 .. ,1 F: "':;;

•

Section 4

Programming Enhancements

In addition to its string handling, cursor control, and subprogramming capabilities, the AP ROM offers a

wide variety of other programming enhancements which enable you to:

• Program new clock and calendar functions.

• Assign program-branching operations to virtually every key on the keyboard.

• Set, clear, and use program flags.

• Find program strings and variables and replace program variables.

• Renumber selected portions of programs and subprograms.

• Merge a system program with another program from mass storage.

• Scratch existing binary programs in system memory.

• Turn the CRT display off and on.

• Set the page length of HP-85 printer output.

• Use new error recovery operations.

This section will explain these new capabilities and show you how to use them. It's intended as a

quick-reference guide so that you can learn about these features in whatever order you'd like.

Time and Calendar Functions

The AP ROM adds seven new time and calendar functions to your computer's current clock and timer

capabilities.

, " .. , :::numeric expression ::.

.... :': '; ':string expression ::.

... : :': .:: timer number:

, .. , ., .. ".. .: numeric expression

'" " : string expression:

Converts a specified number of seconds to an hours: minutes:
seconds (hh:mm:ss) format.

Converts a string in the form "hh:mm:ss" to the equivalent number
of seconds .

Returns the current timer reading in seconds for system timers 1,2,
and 3.

Converts a specified Julian day number to a month/day/year
(mm/dd/yyyy) format.

Converts a string in the form "mm/dd/yyyy" to the equivalent
Julian day number.

Returns the time registered by the system clock in an hours: minutes:
seconds (hh:mm:ss) format.

Returns the date registered by the system clock in a year /month/day
(yy/mm/dd) format.

49

50 Section 4: Programming Enhancements

Time Functions

The i··i (::;:::: ::numeric expression ::i function converts a specified number of seconds to an equivalent string

in the form hh:mm:ss.

The ii i·:; : string expression: function does the opposite: It converts a string in the form "hh:mm:ss ,. to

the integer equivalent in seconds.

The starting point for both functions is midnight, when ii :.: .:: .. " "': equals ::i ::, C: :::. From here, the

functions operate over a four-day time period.

More specifically, accepts nonnegative integers less than 360000 as its arguments; non-integer

arguments are truncated at the decimal point. ii i< .:; arguments must lie between and

, .. " and consist of exactly eight characters (including the two colons).

Examples:

J '::1·

} Displays the system clock reading.

• The number of seconds since

The i:;> :::. c, T·'· T 1'i i:: timer number ::i function returns the number of seconds registered on a specified system

timer, 1, 2, or 3, after that timer has been set in a running program. i) i: '''i returns the number

of seconds elapsed since the system clock was set, either by a statement or by power on.

Executed in calculator or run mode, i;:' :::. ,: I ("i of an unset timer returns :? After an :': i:: ,. T h::::: i:;:'iin

statement, i::':: c·' T l"i : n:: returns the timer reading when it was disabled.

Note: The system clock and all three timers count upwards in milliseconds.

Examples:

.,;':

• : ... , ":j ...
! ''1'' I !' d E: F :j:i:

... 'f ... , .. , ... :j ...

!: 'T .:. !"'! F

... ... T r'i , , , ...

... :

... ... , ..

...

Gives variable! :::; the number of
milliseconds in 30 minutes .
Timer 3 will interrupt execution 30
minutes after this statement is
executed.
Enables (ill to cause branching .

.................... I i'l as part of a conditional

test.

T', T ,

. L i'ii'"

Note: An ,"', ".'

Section 4: Programming Enhancements 51

}

Pressing (ill causes the computer to
display the number of seconds before
timer 3 causes branching .

..... , h' ,:::. ::;:. ::::: statement causes branching only within the main program or subprogram

in which it's placed and only when that main program or subprogram is currently executing. However,

............ T i': statements supply timer readings regardless of their placement.

Date Functions

Two powerful AP ROM functions enable you to determine any date-to-date span over a range of 24

centuries!

The (.! f,'/ :::: Cnumeric expression' function converts an integer (called the "Julian Day number"*) from

through to an equivalent string expression in the form month/day/year

(mm/dd/yyyy). These lower and upper limits correspond to October 15, 1582t and November 25, 4046,

respectively.

The (i T," 'string expression! function does the opposite: Given a string in the form "mm/dd/yyyy", it

returns the equivalent Julian Day number. The string must lie between and

.... " and consist of exactly 10 characters (including the two slashes).

Examples:

i; n\'··:··

1: i f: . ; . ::~:: (: 1:!. ,.: , ..
. . ;

.i. , ... :.'

..... ",

" J ~:::] <:', ,... .. ", ! i 1 : " •.

Finds the number of days between two
dates.

Tells the day of the week of a specified
date (Sunday = ,;, Monday =:. , etc.).

Returns the number of days since the
beginning of 1990.

* The Julian Day number is an astronomical convention representing the number of days since January 1, 4713 B.C.

t The beginning date of the modern Gregorian calendar.

52 Section 4: Programming Enhancements

System Clock Readings

The' .,. i.; I:: ,': function outputs the system clock reading in 24-hour notation, hh:mm:ss. Assuming you've

initially set the clock using the computer's .;: l i'i: statement, the reading will show the time elapsed

since midnight of the current day.

The function returns the system clock reading in a year/month/day (yy/mm/dd) format, as

specified by ANSI standards. Its range covers two hundred years: March 1, 1900 through February 28,

2100.

If you don't set the clock initially, and : return the time since power-on. Because your

computer "wakes up" on day :i, the T: i::"; .. '.: function initially shows ii" .'•.... ' ::: ::. Twenty-four hours

later, this becomes the equivalent of January 1: ::'; ,.

Examples:

!';:' .

.L ::::: ;
• ;; :::j·TC···'"

SetsU equal to a date according to an
ANSI-specified yyddd format .

Adjusts the system clock .

Returns the current time .

Returns the current date.

These two functions enable you to include run-time information on your print-outs.

Assigning Branching Operations to the Entire Keyboard

A new and powerful feature of the AP ROM offers you a wide range of branching options. In effect, the

'.' 'I' i::U statement can equip you with a "live keyboard" during running programs.

:< ". l: ii numeric variable [,' string expression] line number

You can use this statement to declare any key on the keyboard (except for (SHIFT), (CTRL) , (f$tR), and

(RESET)) as an immediate-execute key during a running program. In other words, virtually all keys now

have the "soft-key" capability of keys @-@.

An statement affects the keyboard only while the main program or subprogram that

executed it is running.

The string expression in the statement is a list of the keys you want to endow with branching capabilities.

Although usually a quoted string, the expression can be a variable or any concatenation.

Examples:

.'
· .'

· .:::

· ::::. ,,:

Section 4: Programming Enhancements 53

After this statement has been
executed, it will cause execution to
branch to line ;.:: C: whenever you
press one of the keys in the quoted
string.
Causes the program to loop on itself
while waiting for a key interrupt.

Enables the shifted CD to start the
execution of a subroutine.

Causes execution to return to the
statement following the one that was
being executed when the live key was
pressed.

A special feature of this statement is the numeric variable (and in the above examples) that takes

on the value of a keycode number. Whenever one of the specified keys in the list is pressed, that variable is

set equal to the keycode of the pressed key.

For example, when ~ is pressed (after the first statement has been activated), then

1. Branching to line occurs, and

2. Variable., directed by the ~, assumes the value of 87.

Note: You can find the keycode numbers of individual key characters either by consulting appendix B

or by using the :.::: >: function, which converts a display character to its decimal equivalent. Above,

... ": equals

As a second example, executing statement ;> and pressing CD afterwards cause

1. The program to branch to the subroutine on line::'::::' and

2. The variable to assume the value of or 33.

Only one statement can be active at a time, although the computer remembers all keys

previously declared "live." Thus, after statement above has been executed, pressing a key from the

first quoted string (say, CD) will cause a branch to the subroutine on line' and invest variable

with a value of :: ": or 84. The previous will be disregarded, and variable::: will

be used no longer. (However, the computer will retain ::"s previous value, 87.)

54 Section 4: Programming Enhancements

Thus, you can assign a given numeric value to the variable depending on the key you press. This

capability means that you can initiate a completely new routine for each key you activate.

To illustrate, here are a few more program statements added to the above example:

}

These statements cause the current
values of program variables to be
displayed when the corresponding
keys are pressed.

Causes the system clock reading to be
displayed when CD is pressed.

Other applications include setting up specific keys to call subprograms, to display instrument readings, to

alter the I/O configuration of a system you're monitoring, to input new variable values, to set system

timers, even to play musical scales!

You can assign branching operations to alphanumeric keys (like (ill and CD), to symbol keys (like 0
and 0), to shifted keys (like (@J and CD), even editing «(-CHAR D and system keys «(AUTO D. To do so,

either include their display character in a quoted string (for example, ;;; ;') or use the function

and their keycode number (for example, "; for the 0 key).

Example:

The character can be used for the o key, but keycode number 163 is the
only way to activate the (~~l) key.

After statement:' is executed, pressing either the 0 or (~~f) key will cause the program to branch to

line and will set variable i: equal to 61 or 163, respectively.

You can change the simple numeric variable and/or the branching address simply by executing another

, " ; i:U statement that omits the string expression.

Examples:

Assigns the keycode number to a new
variable,.

Causes execution to start a different
subroutine when a "live key" is
pressed.

Section 4: Programming Enhancements 55

What happens if you assign one of the keys CED-@bothan ,t'.: .,,'" branch and an i·'::

branch? For example,

• Assigns a branching operation to
CED, whose keycode is 128.
Also assigns a branch to CED .

The rule is that l' .. 'i F:: Tl statements replace 1: :.: ','u assignments for as long as the former are

active for CED-@. In the above case, therefore, the 1: ,.: , .. '; 1,1; statement takes precedence.

A subset ofthe declared keys can be turned off at any time by executing an ",: , .. ';' 1:U statement.

, .. ',' i:1; [string expression]

The string expression in the statement designates the keys to be turned off.

Examples:

}

These statements are all equivalent;
all disable the five specified keys.

If the string expression is altogether omitted, then the 1';::· , .. , i ::::' I, statement turns off all previously

declared keys.

Note: The 'i ;:: T, statement will not affect the branches associated with keys

CED-@·

When implementing an 1':: ',' ;::1; routine, you may want to assign one operation to a subset of the keys

(like C~ and (]J), another operation to a shifted subset of the keys (like (SHIFT) 0 and (SHIFT) (]J),
and a completely different operation to a subset of the control keys (like (CTRL) 0 and (CTRL) (]J).
Even (SHIFT) (CTRL) assignments are possible. You have 256 unique declarations to choose from!

Duplicated keys on the HP-83/85 (like the CD) will all be activated by a single 1·' ,.: , .. '/ F: I, declaration.

Similarly, key combinations which produce identical output (as (SHIFT) GJ, (SHIFT) (CTRL) @, and

(f~tg) (CTRL)@ produce the: character) will all function the same after one Cll.' , .. \' F: Tl declaration.

An statement works locally. It causes branching only within the main program or

subprogram that executes it. Similarly, an ,,:: i< \' 1:1; statement cancels only the live keys within one

program.

Program Flags

The AP ROM comes equipped with 64 program flags which you can individually set, program, and clear.

When set, a flag registers "I." When cleared, its value returns to "0." Like logical and relational operators,

flags are useful ways to control program branching.

56 Section 4: Programming Enhancements

The 64 flags work globally; they maintain their settings during both calling programs and subprograms.

At power on, they're all cleared. While flags are usually used within running programs, they can also be

set, tested, and cleared in calculator mode.

Setting and Clearing Flags

Setting individual flags is simple:

" (; numeric expression

The numeric expression specifies which flag to set.

Examples:

Clearing flags to "0" is equally simple:

numeric expression

This statement sets flag 32 to "1."

}
The value of A causes the
corresponding flag to be set to "1."

A parameter less than 1 or greater than 64 will cause an error condition. Also, both

will round numbers containing decimals.

Examples:

The statement clears one flag at a time.

Note: Executing : , ::, or will clear all 64 flags.

Clears flag 32 to "0."
Changes the value to "0" of the flag
specified by the array element.

Clears the flag specified by the product
of the two variables.

There's also a concise way to set or clear each of the 64 flags in a single program statement.

"';:!: 8-character string expression

This string expression contains 64 bits of information; that is, each of its eight characters represents one

byte. Executing the statement will set those flags that correspond to a "1" bit and clear those flags that

correspond to a "0" bit.

Section 4: Programming Enhancements 57

If you want to set every fifth flag (5 through 60) and clear all the rest, you first draw up a representation of

the bit setting:

(00001000)(01000010)(00010000)(1 0000 1 00)(00100001)(00001000)(01000010)(00010000)
I II III IV V VI VII VIII

Using l's and O's, this diagram specifies the flag settings from left to right (1 to 64) and divides the 64 bits

into eight bytes (or characters).

Then you use the HP-83/85 decimal codes (as listed in appendix B) to determine what characters

correspond to this binary representation:

Binary Character: Decimal Equivalent: String Character:

I 8
II 66
III 16
IV 132
V 33
VI 8
VII 66
VIII 16

Finally, you have a couple of choices in writing the statement itself:

Or you can use:

The : function converts the
decimal information into string
characters.
The 64-bit setting is now contained in
variable, , .. , ..

Except for the ":,, (represented by
:), you can explicitly

write the alpha string in the
statement.

Thus, when statement::: is executed, it will set or clear each of the 64 flags, depending on whether the

corresponding bits have been set to "I" or "0." This programming option gees a long way in conserving

system memory.

truncates alpha strings longer than eight characters at the eighth character. Strings shorter

than eight characters are filled with characters (whose decimal code is 0) so that the corresponding

flags up to and including flag 64 are cleared by default.

Checking Flag Settings

Two functions,

branching.

and <:, enable you to check flag settings as well as use them to cause

58 Section 4: Programming Enhancements

" : numeric expression:

This function returns a if the specified flag is set, a if not. In the above example, you can easily

spot-check flag settings while in calculator mode.

Examples:

Within programs, the l

Example:

function can test for branching.

The function verifies that flag 5 has
been set while flag 64 hasn't.

If the function returns ai, (due to a set
flag), execution will jump.

The function returns an eight-character string whose binary representation shows the settings

of all 64 program flags.

Example:

Each character represents eight bits or
flag settings. Converting each
character to its decimal code and then
to its eight-place binary equivalent
will confirm that every fifth flag is set.

At power on, l:' , will return""'" A,', "":' ',ii, indicating all flags are clear.

Between chained programs,

Example:

" ': <: can be used to transfer flag settings.

Passes a1164 flag settings to the
chained program.

Note: Since flag settings are global, all subprograms automatically inherit the current settings.

You can also use :: and :' "'" '!' statements to control the status of flags during program

execution. For example, a shifted 0 can set flag 1, a control 0 can clear flag 1, and an unshifted 0
can test flag 1.

I

Section 4: Programming Enhancements 59

Finding Program Strings and Variables

The new command enables you to locate string constants and variables within programs. A

second command, ii: '" , ... :,' : ,:, :,: ': 'i, enables you to substitute new variable names for existing ones.

Like other system commands, they operate on one main program or subprogram at a time.

This non-programmable command finds the next occurrence of a given literal string or program variable,

beginning its search from a designated line number and moving downward in program memory. Then,

the program statement containing this string or variable is displayed.

Omitting the line number causes the search to begin from the first statement of the program. Omitting the

string or variable parameter causes a search for the most recently specified string or variable, beginning

from the specified line number. alone begins a search for the most recently specified parameter,

beginning from the most recently displayed line.

Examples:

· ' .. ';' .

· ;::,,.

· ",:, ,.

· "':,,.

· ",:, ,.

Searches from the beginning of the
program and displays the found line.

Searches for the previously specified
string, beginning from line . '.

Shows that variable :, does not
appear anywhere after statement

Defaults to the beginning of the
program.

Searches for the last specified
variable, beginning from line

The parameter must be either a quoted string or a numeric or string variable name. Other

expressions won't work. The computer uses only the first 32 quoted characters of the string

constant during its search.

string will help you track down specific program statements. variable will help you

determine whether you've already used the prospective name of a new variable somewhere earlier in your

program. Pressing (LIST) after the command's execution will cause succeeding program statements to be

displayed for quick review and editing.

Replacing Program Variables

Another useful command is:::: :':: ii:- F': i, which replaces any variable name by another name

throughout a main program or subprogram .

. L '': ::: i:" variable name F:: ',' variable name

60 Section 4: Programming Enhancements

You can substitute new names for numeric variables, string variables, substrings, numeric arrays (both

one and two dimensional), and string arrays.

Examples:

• F: ...

• r;:' ;:::.,

The

alone.

ii is renamed i:' throughout the
current program.

Locates the specified subprogram.
Gives the array a new name
throughout the subprogram. (The
commas in the array names are
optional.)

command operates only on initialized programs. To initialize a subprogram,

"subprogram name". To initialize a main program, execute (SHIFT) OR[) or

Obviously, the new variable name should be a new name and should agree in type with the old name (as a

string variable for string variable).

Renumbering Portions of Programs

:< [initial line of new portion [new increment value [, from original line number

through original line number]]]]

This non-programmable command extends the current renumbering capability of your computer,

enabling you to renumber selected portions of programs as well as entire programs. It affects only one

system program or subprogram at a time.

will "compress" or "expand" program segments, although it will not change the order of

program statements. Therefore, an error condition occurs anytime the

overlap or change the relative position of program statements.

command attempts to

Examples:

• F:: .

• ::;:'!:::',.,.,

• F::' ". ".' , "',,

I
With 0, 1, or 2 parameters, F;

~~:r:t=~~~~et:~~~~yv~~~: f~rt~e
beginning line number and increment
steps are 10.
Locates the specified subprogram.
Renumbers the subprogram from line

'C; to the end (by default). This end
portion now begins at line ::: '!!! and
increments by 60.

Compresses lines; c; ofthe
subprogram; renumbering begins at
statement: and increments by 2.

If a line number exceeds anytime during the renumbering process, the command

automatically causes the entire program to be renumbered by l's, starting at line :. However, in the same

situation the :;.! !.! ! ... : (: command simply returns all line numbers to their original values.

I

Section 4: Programming Enhancements 61

Merging Programs

"program name;; [beginning line number of merged portion

[" increment step of merged portion]]

This non-programmable command builds up an existing program in system memory by adding to it

another program from mass storage.

i renumbers the entire program from the mass storage device before that program becomes part of

the system program or subprogram. Renumbering ofthis named program begins at the first line number

you specify in the command and increments by the specified step. If you don't specify a line number, then

C tacks the named program onto the end of the system-resident program, renumbering this end

portion in increments of 10.

Important: Once merging begins, any part of the system program that has the same line numbers as

the incoming renumbered program will be overwritten. Therefore, if you want to add a program to the

beginning or in the middle of the system program, first make sure you've opened a gap in the system

program large enough to accommodate all of the incoming program. This precaution is easily taken by

means of the :;':: :.) i.i:'i command.

Examples:

Locates the main program.
Retrieves :: '" :.' " from storage,
renumbers it in steps of 10, and tacks it
onto the end ofthe main program.

Renumbers statements, "- , ... ", to
begin the resultant program at a much
higher line number (: :: '),
incrementing by 1.

Merges (. ::.) :< :, T::i at the beginning of
the system program, renumbering its
statements so that they increment by
10 (the default value), beginning at
line.
Locates subprogram ' :: • '"

Renumbers the end of ''';' • ,', i"i, from
line: ';';' so that it begins at
statement ;":::: C: and increments by
10.
Retrieves ::;' .'. ", .. ,.. • ... from storage,
renumbers it (beginning from line
"::. and incrementing by 5), and

merges it in the middle of the
subprogram.

Merging programs is the opposite of writing subprograms. Subprograms are designed to separate

algorithms, whereas merging combines them. Which way to go depends on your application. For

example, a program containing assignments can be usefully merged with another main

program, while an error recovery routine may be more useful as a subprogram. Both are powerful

programming tools.

62 Section 4: Programming Enhancements

Scratching Binary Programs:

The AP ROM enables you to shuffle binary programs in and out of system memory from mass storage.

System memory holds one binary program at a time, and the current: :::: I: i: I i! statement will load a

new binary file into it only when it's first been cleared of any existing binary program.

This statement clears any binary program currently residing in system memory without affecting

resident BASIC programs. Therefore, it offers an alternative to the ':: ') :::::T:::i command, which clears

memory altogether.

Turning the CRT Screen Off and On

To speed up data file operations, you can use the following statement:

This statement suppresses the flashing CRT display while data are being read into the system or printed

onto tape or disc, thereby expediting the filing process. In fact, data transfer time should be cut almost in

half.

To regain the display, use:

The best use of

statements.

Examples:

You can also use

and

and

statements is to bracket your and

'Both of these "sandwiched" data­
/access statements will work faster.

statements to flash messages and create other special

effects. Both can be executed in calculator mode.

In a program, a statement will cause the display to be suppressed until a

statement is executed, the display is: : ii :::ed, the HP-83/85 is reset, or (ROLL.), (ROLL'"), or (COpy)

(on the HP-85 only) is pressed.

Section 4: Programming Enhancements 63

In calculator mode, pressing (RESET), (SHIFT) (CLEAR), (LIST), (PLlST), or (GRAPH) will return the

display.

Determining the Page Length of Printer Output

Currently, the HP-85 statement produces a printed program-listing separated into 9:%"-10"

segments for convenient filing. The new command enables you to set the length of these page

partitions yourself. This command applies only to the internal printer of the HP-85.

':' ::, C: , numeric expression

The numeric expression sets the number of lines you want printed before page separation occurs, one

"line" containing up to 32 characters of a program statement. The current page parameter is 60. If a

program statement doesn't end on the 60th line (or on the specified line number), the page size will

increase by one or two lines to accommodate the complete statement.

Examples:

Between the six separating blank
lines, the print block will be 54 lines
(8").

Sets the page length (including
blanks) to 11".

uses the absolute value of parameters and rounds them to integer values, the upper limit being

32767 lines.

You can execute this command either from the keyboard or during a running program. It remains

declared until you execute another !' command or reset the computer.

Error Recovery Operations

The HP-83/85 is equipped with a number of program debugging capabilities:
....................
l l"<l"'! 1 ... :1:::., , ii".,

; i; ; , ""';:::';:::', and
"'" The AP

ROM's extended statements and command, previously explained, also work well in

debugging applications. The ROM offers four additional operations for error processing.

The Extended :.u I , Command

Without the ROM, the programmable command defaults to the first statement of the main

program. With the ROM, as you may have already discovered, a main program or subprogram: : ':T'ing

will begin right from the current line location in the following situations:

• After the '; i: :! command is executed.

• When an error halts program execution.

64 Section 4: Programming Enhancements

• After a F :: :: '; : statement.

• When a key (not previously declared in an

program, causing a halt in execution .

, .. ',' F:; T: 'statement) is pressed during a running

This new capability enables faster program editing.

Cross-Referencing Line Numbers and Variables

The

variables.

Executing

statement generates convenient cross-reference tables of program line numbers and

will produce a display of all line numbers that are referenced by other program

statements, showing the line numbers of the referencing statements themselves.

Example:

Executing ; ; will produce a table of your program variables, showing the line numbers of all

program statements that reference them.

Example:

:j, ::::::'" ...

',.;:.,:: :

.:. '."" :' :1 ~"':: ... ~ i·' 'l
.: ::

,,:,'

Note: operates on one program or subprogram at a time. To index a specific main or

subprogram. first use the ::; ; ;;, ::' F:' C::: command.

The ••••. ::' :;:: >: Function

Section 4: Programming Enhancements 65

The function returns the number of the last ROM to generate an error. Obviously, you won't

need to use it if your computer employs only the AP ROM. In the case oftwo or more enhancement ROM's,

the :': function distinguishes among identical error numbers.

For example, if your HP-83/85 system uses the AP ROM, the Matrix ROM, and the Mass Storage ROM,

you may not be able to identify readily the origin of all error messages, such as:

You know the difficulty lies not in the system ROM because its error numbering system stops at 92. So

which plug-in ROM? At this point you execute:

• Identifies the AP ROM as the source of
the error message.

A complete listing of available HP-83/85 ROMs and their corresponding identification numbers appears

on page 92.

Note: If the error has originated in the computer itself, or if no error has occurred, C ::' ::' C; (i returns i'.

The ':;:':: Statement

A final error capability, the

generated by the most recent error.

statement, causes your computer to display the error message

Its primary usefulness occurs during "

error messages.

Example:

;:':' Ci ::' routines, when the ::':: >: statement lets you view

i:::'[" -,":i',': 'Tj ... j "Traps" the specified Matrix ROM
error .

:', :"", ,'" . . ;:"

Most debugging operations, including
'",C';:::', and

declaration.

Displays any other error message and
returns execution to the statement
after the one in which the error
occurred.

and as well as the existing ,": ;.':. L .. , ;::' :? :<,

act globally. However, is a local branching

Appendix A

Maintenance, Service, and Warranty

Maintenance

The Advanced Programming ROM doesn't require maintenance. However, there are several areas of

caution that you should be aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions

may result in minor electrical shock hazard and interference with some pacemaker devices. Damage to

plug-in port contacts and the computer's internal circuitry may also result.

CAUTION: Always switch off the HP-83/85 and any peripherals involved when inserting or removing

modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP-83/85. Failure

to do so could damage the module, the computer, or the peripherals.

CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or

designed for another port. Attempting to force it may damage the computer or the module. Remove the

module carefully and reinsert it.

CAUTION: Do not touch the spring-finger connectors in the ROM drawer with your fingers or other

foreign objects. Static discharge could damage electrical components.

CAUTION: Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not

insert any objects in the contact holes on the ROM. Always keep the protective cap in place over the

ROM contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions

may result in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the instructions

accompanying the ROM drawer or to appendix B of your computer owner's manual.

Service

If at any time, you suspect that the AP ROM or the ROM drawer may be malfunctioning, do the following:

1. Turn the computer and all peripherals off. Disconnect all peripherals and remove the ROM drawer

from the HP-83/85 port. Turn the computer back on. If it doesn't respond or displays

T, the computer requires service.

2. Turn the computer off. Install the ROM drawer, with the Matrix ROM installed, into any port. Turn

the computer on again.

67

68 Appendix A: Maintenance, Service, and Warranty

• If IS <;lisplayed, 'indicating that the ROM is not operating

properly, turn the computer off and try the ROM in another ROM drawer slot. This will help you

determine if particular slots in the ROM drawer are malfunctioning, or if the ROM itself is

malfunctioning.

• If the cursor does not appear, the system is not operating properly. To help determine what is

causing the improper operation, repeat step 2 with the ROM drawer installed in a different port,

both with the AP ROM installed in the ROM drawer and with the ROM removed from the ROM

drawer.

3. Refer to "How to Obtain Repair Service" for information on how to obtain repair service for the

malfunctioning device.

Federal Communications Commission
Radio Frequency Interference Statement

The HP-83/85 Advanced Programming ROM uses radio frequency energy and may cause interference to

radio and television reception. The ROM has been type-tested and found to comply with the limits for a

Class B computing device in accordance with the specifications in Subpart J of Part 15 of the FCC Rules.

These specifications provide reasonable protection against such interference in a residential installation.

However, there is no guarantee that interference will not occur in a particular installation. If the ROM

does cause interference to radio or television, which can be determined by turning the HP-83/85 on and off

with the ROM installed and with the ROM removed, you can try to eliminate the interference problem by

doing one or more ofthe following:

• Reorient the receiving antenna.

• Change the position ofthe computer with respect to the receiver.

• Move the computer away from the receiver.

• Plug the computer into a different outlet so that the computer and the receiver are on different

branch circuits.

If necessary, consult an authorized HP dealer or an experienced radio/television technician for additional

suggestions. You may find the following booklet, prepared by the Federal Communications Commission,

helpful: How to Identify and Resolve Radio-TV Interference Problems. This booklet is available from the

U.S. Government Printing Office, Washington, D.C. 20402, Stock No. 004-000-00345-4.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.

Additional copies may be obtained from any authorized Hewlett-Packard dealer, or the HP sales and

service office where you purchased your system.

Appendix A: Maintenance, Service, and Warranty 69

If you have any questions concerning the warranty, and you are unable to contact the authorized

HP-83/85 dealer or the HP sales office where you purchased your computer, please contact:

In the U.S.:

In Europe:

Other Countries:

Hewlett-Packard

Corvallis Division Customer Support

1000 N.E. Circle Boulevard

Corvallis, OR 97330

Telephone: (503) 758-1010

Toll Free Number: (800) 547-3400 (except

in Oregon, Hawaii, and Alaska).

Hewlett-Packard S.A.

7, rue du Bois-du-Ian

P.O. Box

CH-1217 Meyrin 2

Geneva

Switzerland

Hew lett-Packard In tercon tinen tal

3495 Deer Creek Road

Palo Alto, California 94304

U.S.A.

Tel. (415) 856-1501

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-83/85 and its peripherals. For information on

service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and

service office.

If your system malfunctions and repair is required, you can help assure efficient service by providing the

following items with your unit(s):

1. A description of the configuration of the HP-83/85, exactly as it was at the time of malfunction,

including ROMs, interfaces, and other peripherals.

2. A brief yet specific description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area. (If possible, press the (COpY) key

to copy the display to the computer's printer at the time of the malfunction.)

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

I

70 Appendix A: Maintenance, Service, and Warranty

Computer and peripheral design and circuitry are proprietary to Hewlett-Packard, and service manuals

are not available to customers.

Serial Number

Each HP-83/85 and peripheral carries an individual serial number. We recommend that you keep a

separate record of serial numbers. Should your unit be stolen or lost, you may need them for tracing and

recovery, as well as for any insurance claims. Hewlett-Packard doesn't maintain records of individual

owners' names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your HP-83/85 system, be sure that it is packed in a protective

package (use the original shipping case), to avoid in-transit damage. Hewlett-Packard suggests that the

customer always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the

nearest authorized dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility.

Notes

71

Appendix B

HP-83/85 Characters and Keycodes

To convert an HP-83/85 character to its decimal equivalent, use the i ! ! .. ' !'! function.

Examples:

To produce a character from its numeric value, use the function. Underlined characters are

generated by adding 128 to the numeric value of the regular character or by applying the :! <' function

to the regular character.

Examples:

.• • "', •. j .• 1.. :L ; ::: ~ ~ :::: ..

The following list shows the character and keycode equivalents of all HP-83/85 keys except for (SHIFT),

(f$t~), (CTRL), and (RESET). Due to their special functions, these keys can't be reassigned by!!"

statements.

Decimal Display
Keystrokes

Decimal Display
Keystrokes

Decimal Display
Keystrokes

Code Character Code Character Code Character

0 (CTRL)@J 16 (CTRL)0 32 SPACE BAR
1 (CTRL) (A) 17 (CTRL)CQ) 33 CD
2 (CTRL)(]) 18 (CTRL)(]) 34 []
3 (CTRL)© 19 (CTRL)([) 35 (]J
4 (CTRL)([J 20 (CTRL)(I) 36 m
5 (CTRL)(I) 21 (CTRL)(]) 37 00
6 (CTRL)(£) 22 (CTRL)(SZJ 38 W
7 (CTRL)(ID 23 (CTRL) (]iD 39 0
8 (CTRL)@ 24 (CTRL)0 40 CD
9 (CTRL) CD 25 (CTRL)(YJ 41 CD

10 (CTRL)Q) 26 (CTRL)(]J 42 8
11 (CTRL)(K) 27 (CTRL)CO 43 GJ
12 (CTRL) CI:l 28 (CTRL) G:l 44 0
13 C.r. (CTRL)CM) 29 (CTRL)m 45 G
14 (CTRL)(]J 30 (CTRL)(E) 46 0
15 (CTRL)@) 31 (CTRL)G 47 0

73

I

74 Appendix B: H P-83/85 Characters and Keycodes

Decimal Display
Keystrokes

Code Character

48 @J
49 CD
50 m
51 GJ
52 m
53 ([)
54 (])
55 m
56 (]J
57 ([)
58 0
59 0
60 @
61 0
62 (3
63 CD
64 rID
65 0
66 (]J
67 ©
68 CQJ
69 m
70 (}]
71 @J
72 CBJ
73 OJ
74 QJ
75 CKl
76 W
77 C0
78 (ill
79 CQ)
80 0
81 CQJ
82 (]J
83 W
84 CD
85 (ill
86 (2)
87 (}YJ
88 00
89 CD
90 m
91 CD
92 0
93 m
94 GSJ
95 G

1 On the numeric keypad.
2 (SHIFT) (LOAD) on the HP-83.
3 (TEST) on the HP-83.
4 (SHIFT) (STORE) on the HP-83.

Decimal Display
Keystrokes

Code Character

96 (SHIFT) (LmL)

97 0
98 W
99 (0
100 .: .. ~ (ill
101 0
102 CD
103 (ill
104 CEJ
105 CD
106 m
107 CD
108 OJ
109 ~
110 ~
111 CQ)
112 W
113 C9J
114 0
115 GJ
116 CD
117 Gl
118 0
119 ~
120 W
121 GJ
122 0
123 (SHIFT)0'
124 CD
125 (SHIFT)[J'
126 (SHIFT)G)'
127 (SHIFT)G)'
128 (ill
129 (IT)
130 @J
131 Qill
132 CR[)
133 CK§J
134 em
135 Cl®
136 (REW)2

137 (COpy)3

138 ~ A AN

139
140 CillIfJ
141 (RUN)
142 (PAUSE)
143 (CONT)

Decimal Display
Keystrokes

Code Character

144 (STEP)
145 (TEST)4

146 (CLEAR)
147 (GRAPH)
148 (LIST)
149 (PLlST)
150 GlliJ LABEL

151
152
153 t IA1:Ke)

154 (END LINE)
155 (SHIFT)~
156 CB
157 ffi
158 (ROLL.)
159 (ROLL'Y)
160 (-LINE)
161 rn
162 rn
163 00
164 (-CHAR)
165 8
166 (RESLT)
167
168 (DEL)
169 (STORE)
170 (LOAD)
171
172

:,~::
(AUTO)

173 (SCRATCH)
174
175
176
177
178
179
180
181
182
183
184
185
186
187

~"l;:

188
189
190
191

Decimal Display
Code Character

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223

Appendix B: HP-83/85 Characters and Keycodes 75

Decimal
Code

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Display
Character

'ii::

@;

I

Appendix C

An Alpha Sort Routine

The following program uses two string arrays to alphabetize a list of up to 30 first and last names. It

employs a bubblesort routine, comparing last names (and then first names if necessary), two at a time,

letter by letter, until it finds a difference. Both first and last names have an upper limit of 32 characters

and can be entered in upper- or lowercase letters. The routine will also sort single-name entries.

After entering the program, press CB:Q[). Names must be entered last name, first name (if there is a first

name). To stop the entering, press (END LINE) twice.

When initialized, the program requires about 6K bytes of RAM.

77

I

78 Appendix C: An Alpha Sort Routine

I

Notes

79

Appendix D

A Shell Sort Routine

The first segment ofthe main program takes in a list of up to 30 name strings, phone number strings, and

zipcode numbers from the user and writes them into a data file.

The second segment retrieves the data items from storage, enters them into two string arrays and one

numeric array, and calls ';' The subprogram creates a second numeric array whose elements

represent the string array subscripts of the main program. The subprogram sorts both numeric arrays,

one containing the zipcodes themselves and the second containing the string element addresses.

The final main program segment uses both arrays to display the results.

When initialized, the two programs require about 5K bytes.

81

82 Appendix D: A Shell Sort Routine

,'., .: .• , .. , .. , .. :,.:." .. :." .. :.,: ... !. ... ,. ... : : :····i:··-i:" :1····;·,

:! i::::U.i
::::::i.;:::!:::"

·1.···:····:···;1····;···

E"': L": E'"

. ····i:::; 'I :::1-

Appendix E

A Musical Keyboard Program

The versatile i' '.' '.' '" [,U statement can be fun! The following program transforms your HP-83/85 into a

four-octave organ. Keys (I)-O, 0-00, @-CD, and (D-w produce C-major scales. Pressing the

(SHIFT) key raises all 32 ofthese keys to their sharped values. Additionally, the "notes" are displayed on

the screen as they're played. Finally, a user-defined function (: :<') and an '!" ','H routine enable

you to adjust the pitch and to "tune" your instrument fairly accurately.

Unless modified by the routine, row @-CD produce a middle-C scale (CD generating a

440-hz A). Upper scales are indicated by('s on the screen. You can write these arrows in the program by

pressing (CTRL) CD.

When initialized, the program requires about 4K bytes.

83

84 Appendix E: A Musical Keyboard Program

Appendix E: A Musical Keyboard Program 85

The program intro: The CTIJ routine:

Syntax Summary

Syntax Guidelines

Items shown ill dot matrix type must be entered exactly as shown (in either

uppercase or lowercase letters).

Parentheses enclose the arguments of AP ROM functions.

[] This type of brackets indicates optional parameters.

italic Italicized items are the parameters themselves.

An ellipsis indicates that you may include a series of similar parameters.

Quotation marks indicate the program name or string constant must be quoted.

stacked
items

When two or more items are placed one above the other, either one may be chosen.

F Indicates that the item is a function.

s Indicates a statement.

PC Indicates a programmable command.

NPC Indicates a non-programmable command.

The AP ROM's Functions, Statements, and Commands

;::> i···i I:::: [row parameter] [" column parameter]

S

,:::, i) [:::: :::i :U string variable name

s

....... string expression

s

"subprogram name" [Cpass parameter list;]

s

,:::: ,::, numeric expression

s

87

Page 14

Page 17

Page 18

Page 36

Page 56

88 Syntax Summary

S Page 62

F Page 15

F Page 15

F Page 52

PC Page 35

S Page 65

F P~M

...... ,. ' .. ' .'., ,:' F::' ;., ;: ["subprogram name"]

NPC

,:, f: Cnumeric expression ::

F

F

···T: Cstring array name Celement subscript: [Tposition 1 ["position 2]i!]:

F

<' : string expression:

F

:: :'!: Cstring expression:

F

: ... : >: ':::: ::':: C numeric expression::

F

, , \' : ::::: C: wait interval parameter " repeat speed parameter

PC

................ [prompt string expression,] string variable

S

Page 32

Page 57

Page 57

Page 23

Page 13

Page 50

Page 50

Page 7

Page 16

, '.,-' :: string expression!

F

..... ' ... ' , (string expression;

F

...... ",-': (numeric expression;

F

"program name" [beginning line number of merged portion

[, increment step of merged portion]]

NPC

F

s

, .. '/ i:U [string expression]

s

s

[< '; ::: L; numeric variable [': string expression] line number

s

;, ;; ;: : numeric expression

PC

>: (timer number!

F

...... ; !.; ;! F: variable name F:' 'i variable name

NPC

;:, ;: :< :: i·e: [initial line number of new portion [': new increment value

[, from original line number [" through original line number]]]]

NPC

!string expression!

F

.......... , ; string expression, number of shifts;

F

, ' ... ',-' (string expression "number of repetitions:!

F

Syntax Summary 89

Page 12

Page 51

Page 51

Page 61

Page 42

Page 13

Page 55

Page 13

Page 52

Page 63

Page 50

Page 59

Page 60

Page 11

Page 13

Page 12

90 Syntax Summary

... ,.,' string variable name [" string variable name ...]

s

NPC

s

"subprogram name" [T (, 1111'1

PC

s

,::, " numeric expression
string expression

.......... string array name : element subscript' [Tposition 1

"position 2]::] "'" string expression

s

',' ;::," ; string array name ::

F

"subprogram name" [(pass parameter list:]

s

s

s

F

......... , "<' 'string expression::

F

s

Page21

Page 59

Page 62

Page 43

Page 56

Page 22

Page 25

Page 30

Page 31

Page 32

Page 52

Page 12

Page 64

Error Messages

There are five error messages generated by the AP ROM. Executing after any of them will

produce 232, the AP ROM identification number. In addition, there are many system error messages that

the AP ROM can trigger. After any of them, : ,;'::: (: will return ". Listed below are five ROM-triggered

system errors as well as the five ROM-generated errors.

System Error Message Error Condition

String array error:

• Attempt to enter or retrieve an illegal string array
element-that is, one with a zero or negative subscript or
with a larger subscript than >: ::, ',: indicates.

• Attempt to use ';:. ::r, ' " or on a non-
existent string array-that is, on a string variable that
hasn't appeared in an ":,:,"",,, declaration.

String array too small to accommodate an element
assignment.

Attempt to store a subprogram under a file name different
from the name declared in its':; : .. : :::: statement.

Subprogramming error:

• Attempt to execute a :. :' L ... L, : : C:, ' , ':' ':!U, or
..... statement in calculator mode.

• Attempt to write a " ", ' , ", ',!U, or
statement in a main program.

Attempt to execute the"":; ::::: ::;'- ::, 'i command

without having initialized the program.

91

92 Error Messages and ERROM Codes

AP ROM Error Message Error Condition

Illegal subprogramming operation:

• Trying to i' ii ii a subprogram.

• Trying to i i:i i.:. a main program.

• Specifying a main program name in a
command.

Redundant declaration:

• Declaring an existent string array variable to be a string
array.

• Declaring an existent I/O ROM buffer variable to be a
string array.

• Executing an statement after a binary
program has taken control of the linkage to the
keyboard.

Attempted recursive operation:

• A subprogram directly or indirectly tries to C ii i L itself.

• A subprogram directly or indirectly tries to
... ,'.', :: ': iii::: itself.

Self-test error; the ROM requires service.

Parameter mismatch between a
': :) i:::' statement:

statement and a

• Parameters disagree in type-as when a string variable is
paired with a numeric variable.

• Parameters disagree in number-that is, the
parameter list is longer than the': ii i:::: parameter list.

ROM Identification Numbers

Enhancement ROM HP Part Number : i:: i:: Ci (i Number

Advanced Programming ROM 00085-15005
Assembler ROM 00085-15007
Input/Output ROM 00085-15003
Mass Storage ROM 00085-15001
Matrix ROM 00085-15004
Plotter /Printer ROM 00085-15002

00085-90146

l

F/idl HEWLETT
~~ PACKARD

1000 N.E. Circle Blvd .• Corvallis. OR 97330. U.S.A.

Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

