HEWLETT-PACKARD

Assembler ROM Manual

HP-83/85

e 10.2327
0.8348 . 0.2474
0.7610 1.0506]

0.0569 - —0.25207
B9 0.0 —0.4088 -0.5963
P 061" OB oss 0163
00736 —04109. =0.5354 ™ 07253 =0.1144
P-—o.zoqi)z —06231 | 0.1027 "~ 10.7357
[14446 1.}38‘67 ” i:,‘1.2530; b
00 | —13389 -0.1486|. ..

L 0.0 0.0 11831

i, S i s A e

b

/A tickaro
HP-83/85
ASSEMBLER RO
AND
HP-82928A SYSTEM MONITOR

MANUAL

00085-90444
December 1980

Printed in U.S.A. © Hewlett-Packard Company 1980

CONTENTS

...........................

The HP-82928A System Monitor. « « « ¢ v v v v v v v e .
Scope of this Manual. © . i i vt e e e e e e e e e
The Computer's Operating System. ¢« v v « ..
The Assembler ROM.« . .« ...
The System Monitor « « v @« i v i e e e e e e e e e

Syntax Guidelines

SECTION T1: GETTING STARTED. . . . & v v v v e e e e e e e e e e e e e e
ROM Installation. . « v v v v v o e e e e e e e e e e e e
Tape Cartridge or Disc Installationand Use« ..
System Monitor Installation ¢ « « ¢ « v v v v v o« o
Assembler Errors. i i e e e e e e e e e e e e e e e e e

SECTION 2: ASSEMBLER COMMANDS, STATEMENTS, AND FUNCTIONS.
Assembler Commands. « v i it i e e e e e e e e e e e e e e e
Assembler Statements and Functions. « ¢ v . v o v 0 e 0. .

SECTION 3: CPU STRUCTURE AND OPERATION. « v v v v v o « .

ARP and DRP .
CPU Register Bank

Hardware-Dedicated Registers « & v ¢ v v v o v v v« &

Register Boundaries. ¢ v v v v« v 4 e u e e e
Multi-Byte Operations. v v v v v v v v vt e e e e e
Single-Byte Operations ¢ ¢« v v 0t e e e e .

Two-Operand Operations o v v v v o v

Numbey Representation o . 0 00 e 0 e e e e e e e s

Addresses. . .

Numeric Quantities« ¢ v v v i i v e e e e e e e e e e

Status Indicators

i

ix
ix
X1
xi
x1i
Xii
Xii
Xii

2-1
2-1
2-7

3-2
3-2
3-2
3-4
3-4
3-6
3-7
3-10
3-10
3-11
3-12

SECTION 4: ASSEMBLER INSTRUCTIONS . .« . + v v v o o v o v v o o o o o v e
Entering Instructions and Pseudo-Instructions

Line Numbering
Labels

Opcodes and Pseudo-Opcodes o o v o o o o o o ..

Operands or Addresses. .
Comments
Numeric Values
Syntax and Symbols Used .
Load/Store Instructions . .
Addressing Modes.
Register Mode.
Register Immediate. .
Register Direct . . .
Register Indirect . .
Literal Mode
Literal Immediate . .
Literal Direct. . . .
Literal Indirect. . .
Index Mode
Index Direct.
Index Indirect. . . .
Stack Instructions.
Stack Addressing
Stack Direct.
Stack Indirect. . . .

oooooooooooooooooooooo

......................

Instructions for an Increasing Stack « « ¢« « v o v o 0o e

Instructions for a Decreasing Stack. + « ¢« ¢« o o oo
Arithmetic and Logical Instructions « o o « o o v v 0 v e o

Shift Instructions.

Register Increment and Decrement Instructions . . . « « « « o o e ..

Complement Instructions . .
Test Instruction.
Register Clear Instruction.
Subroutine Jump Instruction

4-1
4-1
4-2

4-2
4-3
4-3

4-4
4-6
4-7

4-8
4-8
4-8

4-10

4-11

4-11

4-12

4-13

4-13

4-14

4-15

4-16

4-18

4-18

4-19

4-20

4-22

4-25

4-31

4-33

4-35

4-35

4-36

Conditional Jump Instruction. « « ¢ v v v i v o e v v
ARP and DRP Load Instructions & v v v v v v ¢ o o o o o o &
Other Instructions. &« « © v v v i v v v it e e e e e e e
Use of R* & & . . L i i s e e e e e e e e e e e e e e e e e e e
Assembly of CPU Instructions. & ¢ v ¢ v v v v v v v o v o v
Handling of ARP and DRP During Assembly. « ..
USing R . . & v v v et e i e e e e e e e e e e e e e e e e e e e
Pseudo-Instructions 0 0 b 0 e e e e e e e e e e
Pseudo-Instructions for Assembly Control
Pseudo-Instructions for Data Definition.
Pseudo-Instructions for Conditional Assembly

SECTION 5: HP-83/85 SYSTEM ARCHITECTURE AND OPERATION
System Memory . . . & . . i i e
Programs in MemOry. . . . & & v o v i i e e e e e e e e e e e e e e

Allocation v o v v i i e e e e e e e e e e e e e e e e
De-Allocated Program & & v v v v v v i e e e e e e e e
Allocated Program. & . « v v v v v v v v e e e e e e e e e
Software-Dedicated CPU Registers v o o v v v o o o
HP-83/85 Operation. & & v v 4 v v o o o o o e e e e e e e
Tokens o L e B
Overall System Flow. ¢ & o« v v v v v v v e e e e o e s
Executive LOOD . . v . v v v it e e e e e e e e e e e e e e e e s
CSTAT & . o i i e

SVCWRD. . . v o v i e
Interpreter LOOP v v ¢ v v v v v v e b e e e e e e e e e e
Parsing L o o e
Attributes. e

iv

4-37
4-39
4-4]
4-46
4-46
4-47
4-48
4-48
4-49
4-52
4-56

5-1
5-3

5-4
5-5
5-6
5-7
5-8
5-8
5-10
5-11
5-13
5-14
5-14
5-14
5-15
5-15
5-17
5-19
5-20
5-20
5-20

Secondary Attributes o o e e e e e e e e e e e e e e 5-21

Secondary Attributes for Functions. ¢ « @ o v v v v 5-21
Secondary Attributes for Operators. « « « ¢« o o o o o 5-22
RUNEIME & v v v v e v e e e e o v e s e e e e e e e e e e e e e e e 5-22
DecomPiling . . + v v v v v o e e e e e e e e e e e e e e e e e 5-24
Variable StOrage. . . « « v ¢ « v o o e e e e e e s e e e e e e e e e 5-28
Legend . . v v v v v e e e e e e e e e e e e e e e e e e 5-29
Simple Variable Storage. « « v v o o v e e e e e e e e e e 5-30
Local Variables . . v v v v v v v v v e e e e e e e e e e e e e 5-30
Remote Variables. . v v v v o ¢ v v e e e e e e e e e e e e e e 5-30

Array Variable Storage« v ¢ o o e e e e e e e e e e e e 5-31
Local Variables . « v v v v « « v v e e e e e e e e e e e e e s 5-31
Remote Variables. . . v v o v v v v v v e e s e e e e e e e e e 5-31
String Variable Storage. ¢« o v e o e e e e e e e e e 5-32
Local Variables . . v v v v o v o v v e e e s e e e e e e e e e e 5-32
Remote Variables. . . v ¢ v v v v o« v v e e e e e e e e e e e e e 5-32
FUNCLion STOrage. . .« v v v v v v v o o o o o a e e s e e e e e e e 5-32
Numeric FUNCLIONS. . & v v v v v v o e o e o v o e e e e e e e 5-33
String FUnctions . . . « v ¢ v o v e v e e e e e e e e e e e e e e 5-34
Formats on the R12 Stack. . . « « « v ¢ o o v v o o v o o o v o v o o e 5-34
Variables on the R12 Stack . . . « « « ¢ v v o o o o o o o o o0 bt 5-34
Numeric Formats on the R12 Stack . . « .« « o ¢« o v o o v v oo oo e 5-35
SECTION 6: WRITING BINARY AND ROM PROGRAMS. v « ¢ v oo o v v ve 6-1
Program SErUCLUrE . . v o o« v v o v v o o e e e e e e e 6-2
Program Control Block. . . « v v v v v v e e e e e e e e e e e 6-5
System Table . . v v« v v v e e e e e e e e e e e 6-5
Parse Routine Table. . . « o « v v v o o o o o o o s e e e e e 6-6
Runtime Routine Table. « « v v v v v o o v v o oo 00 e e 6-7
ASCIT Table. « v v v v v o o v o o o m o v s o o e e e e e e 6-8
Error Message Table. . . « v v o v v o v o v o e e e e e e e 6-8
Initialization Table ¢ v v v o v v o o v e s e e e e e e e 6-9
Runtime ROULINES . « v v v v v o v o v o o o o o e e e e e 6-9
External Label Table . . . « v ¢ o v« o o v o s e e e e e e e e 6-10
Ending the Program « o o o v o e e e e e e e e e e m e e e 6-11

System HOOKS. . « v v v v v vt e e e e e e e e e e e e e e e e e e
Language HOOkS « & & v 0 v v it e e e e e e e e e e e e e

General HookS. . . v ¢ v v v v e e e e e e e e e e e e e e e e e

Initialization Hooks

Error Messages . . . v v v vt v it h e e e e e e e e e e e e e e

Using System Error Messages

ROM-Defined Error Messages
Binary Program Error Messages

Binary Program and ROM Addressing
External ROM Addressing.
Binary Program Addressing.

oooooooooo

Reserving RAM o @ i i e e e e e e e e e e e e e e e e e e e

RAM Reserved by a ROM

RAM Reserved by a Binary Program
Accessing the Program Control Block

Assembling.« v i i e
Using a Binary or ROM Program

Binary Program & & ¢ 4 0 e e e e e e e e e e e e e e e e e

ROM Program. « ¢ v & v v i e e e e e e e e e e e e e e e e

SECTION 7: HP-83/85 SYSTEM ROUTINES
The Global File . . v &« v v ¢ v v v b e v e e v e v e e e e e e e e
=Y 0 7= 1 o
Global File. . v & v v v v v i e vt et e e e e e e e e e e e e e
System Operation and Routines

System Routine Format.

Parsing and Parse Routines

Parse Routine Registers

Parsing Flow. . . . « « v o v v v o v i e e e e e e e e e e e e

Parsing in Binary Programs and ROMs

Parse Routine Examples.« . . .
Parse ROULINES. . v v & v v v 4 v v v v e e e e e e e e e e e e s
Runtime and Runtime Routines
Runtime Conventions

Runtime Routines

Vi

6-11
6-11
6-12
6-13
6-14
6-14
6-15
6-16
6-17
6-17
6-18
6-19
6-19
6-20
6-21
6-22
6-23
6-23
6-23

7-1

7-2

7-2
7-11
7-11
7-13
7-13
7-13
7-20
7-20
7-22
7-44
7-44
7-44

General-Purpose Utility Routines « ¢ v o v o v v o v v o
CRT Control and Routines « « v o « o o o o o o o o o o o o ¢
CRT Control . v & v v v v e e e o e e v s e e e e e e e e e e e
CRT AdAressing. . . « « v o v o o o o o o o o o o o o o 00 e
CRT ROULINES. v v v v v o o o o o o o o s o o o o o o o o o o & ¢
Tape Control Routines. . . . « . o« v v v v v v v o oo e e e e
DEcOMPiTiNg. « « v v v v v o o v e e e e e e e e e e e e e e e

SECTION 8: SAMPLE BINARY PROGRAMS . . .+ .« .« v o v v v v o o v o o 0o o o
Fahrenheit to CeISTUS « v « « v v & v o v o v o v o o o o b e s e
Soft Keys as Typing Aids. o v v v v v v v e e e e e e e e e
String Underline. v ¢ o v v v v et e e e e e e e e e e
Graphics CUPSOT . .+« v v v o v v o o o o o o e e e e e e e
Rectangular/Polar COnNversions « ¢« o« v o o oo v o0 o
Rectangular/Polar Conversions (ROM) o o v v v o oo v e e e

SECTION 9: THE HP-82928A SYSTEM MONITOR v o o v v v oo e v oo e
Setting and Clearing Breakpoints. « + o o v o v v e oo e o
Operations at a Breakpoint. o v v v v v o v e e e e e e e e e

APPENDIX A: GLOSSARY OF TERMS v v v v o v v o oo oo e e oo e e

APPENDIX B: SYSTEM HARDWARE DIAGRAM v v ¢ o v v o oo m v oo e e

APPENDIX C: ASSEMBLER INSTRUCTION SET . . « v v v v o v oo oo o v e e e

APPENDIX D: ASSEMBLER INSTRUCTION CODING. . . v « v v o e oo v oo v e
APPENDIX E: ASCII TABLE . . v v v v v v v o o a o o v oo e oo 0 n 00
APPENDIX F: TABLE OF TOKENS AND ATTRIBUTES. . . . & ¢ v v v e oo oo e
APPENDIX G: ERROR MESSAGES. . « « v v v o v o v v v oo o v e m e e 0

APPENDIX H: PROGRAMMING HINTS AND ADDENDA . . . v v v v v o oo oo e e

B-1

C-1

D-1

E-1

F-1

NOTES

viii

INTRODUCTION

This manual outlines the commands, statements, instructions and use of both the
HP-83/85 Assembler ROM and the HP-82928A System Monitor. The manual is not
tutorial in nature and it assumes that you already have at least some knowledge
of programming in assembly language. If you are not already familiar with the
HP-83 or HP-85 Personal Computer, you should read the owner's manual before

proceeding.

The HP-83/85 contains both read-only memory (ROM) and read-write or random-
access memory (RAM). The RAM contains the user's BASIC language programs and
data, and can also contain a binary (machine language) program. The ROM con-
tains the machine language program which recognizes and executes the statements
provided by the BASIC language. Thus, the operating system ROM in the HP-83/85
provides such statements as PRINT, DISP, and INPUT.

When external peripheral devices are added, their wider range of capabilities
requires more extensive BASIC language statements to fully use these capabil-
ities. Additional plug-in modules, called add-on ROMs, merely enrich the BASIC
language by increasing the number of statements and functions that can be recog-
nized and executed. Similarly, a binary program within the computer also
extends the BASIC language.

THE ASSEMBLER ROM

Using the Assemblar ROM, you can write assembly-language binary programs for
residence and execution within the computer or for creation of a plug-in EPROM
for the computer. A binary program can:

Extend the BASIC language:

--Provide new BASIC statements and system functions.
--Take over and redefine existing BASIC statements and functions.

--Expand 1/0 control.

ix

Introduction

Give increased execution speed:

--Yield faster results.
--Speed up I/0 processes,

Redefine the system:

--Take over system "hooks," giving access to the HP-83/85 operating system.
--Implement Tanguages other than BASIC.
--Redefine the use and operation of I/0.

A ROM program is written in virtually the same manner as a binary program--the
main difference is in how the program is used after assembly--and in this manual
both are often termed simply "binary programs."

When connected to an HP-83/85 Personal Computer, the Assembler ROM permits you
to enter and edit source code for binary programs right on the computer's CRT
screen. Automatic line numbering and cursor movement are active, and the source
code can be stored on a mass storage device such as a tape cartridge or disc,
listed, and edited in much the same way a BASIC program is stored, listed, and
edited. As source statements are entered, they are automatically checked for
syntax errors and duplicate labels.

At assembly time, the resulting object code (machine language) is stored on a
mass storage device such as a tape or disc. This object code can also be loaded
automatically or on command into the HP-83/85, and it is then ready to run.

To aid in programming, a tape cartridge and a disc are provided with the Assem-
bler ROM. Each of these contains a global file of HP-83/85 system labels and
their memory addresses for use during assembly. The tape and disc also contain
useful sample programs to help illustrate how binary programs are created.

The Assembler ROM gives you the ability to "tailor" statements for your own
applications, to speed up program execution, to perform sophisticated graphics.
But with all the power and system accessibility provided by the Assembler ROM,

Introduction

it is also possible to defeat the computer's internal safeguards and even
seriously damage the HP-83 or HP-85. For this reason, you should understand
assembly language programming before attempting to use the Assembler ROM.

THE HP-82928A SYSTEM MONITOR

The System Monitor is an optional plug-in module that is designed for use only
in conjunction with the Assembler ROM. The System Monitor is not required, but
it makes the debugging and modification of binary programs much easier.

With the System Monitor module attached, you can set breakpoints that interrupt
the execution of a program. After program execution has been interrupted, you
can examine or change the contents of memory, you can execute one instruction
at a time (single-step), or you can trace the operation of a machine language
program, printing the status of the CPU after each instruction.

SCOPE OF THIS MANUAL

This manual contains information about three separate products:
--The HP-83/85 Personal Computer and its operating system.
--The Assembler ROM.

--The HP-82928A System Monitor.

The manual has been written to help you most effectively use these three prod-
ucts together. If you are looking for information in a specific area, however,
you may want to refer to the manual sections as outlined below:

THE COMPUTER'S OPERATING SYSTEM

Manual Section Topic

3 CPU Structure and Operation
5 System Architecture and Operation
7 HP-83/85 System Routines

Appendix A Glossary of Terms

Appendix B Hardware Diagram

Appendix E ASCII Table

Appendix F Tables of Tokens and Attributes

Xi

Introduction

THE ASSEMBLER ROM

Manual Section Topic
Introduction
1 Getting Started
2 Assembler Commands and Statements
4 HP-83/85 Assembler Instructions
6 Writing Binary and ROM Programs
8 Sample Binary Programs
Appendix C Assembler Instructions
Appendix D Decoding Assembler Instructions
Appendix G Error Messages

THE SYSTEM MONITOR

Manual Section Topic
1 Getting Started
9 The HP-82928A System Monitor

SYNTAX GUIDELINES

The syntax used in this manual for illustrating commands, statements, and
instructions is shown here:

LDB Instructions shown in capital letters, but not underlined, must be
entered exactly as shown (in either upper-case or lower-case letters).

DR Items shown underlined are expressions or names that must be specified
in the instruction, statement, or command.

[] Items shown between brackets are optional. If several items are
stacked between brackets, any one or none of the items may be

specified.

Three dots (ellipsis) following a set of brackets indicate that the
items between the brackets may be repeated.

x1i

Introduction

A1l values for registers and addresses in this manual are octal values. Other
values (numbers, quantities, etc.) are given in decimal base unless otherwise

noted.

xiii

NOTES

Xiv

SecTioN 1

GETTING STARTED

When shipped from the factory, the HP-83/85 Assembler ROM package comprises the
following items:

--HP-83/85 Assembler ROM, part number 00085-15007.

--HP-85 Assembler Global File tape.

--HP-83 Assembler Global File disc.

~--HP-83/85 Assembler ROM Manual, part number 00085-90444.

--HP-83/85 Assembler ROM Pocket Guide, part number 00085-90445.

To use the Assembler ROM, you will need at least the following:
~--HP 82936A ROM Drawer

AND

--HP-83 Personal Computer with Flexible Disc Drive

OR
--HP-85 Personal Computer with or without Disc Drive attached.

In addition, to help you write and de-bug binary programs with the Assembler
ROM, you may also wish to obtain the HP-82928A System Monitor.

This manual gives installation and operation instructions for the HP-83/85
Assembler ROM and its global file, and also for the HP-82928A System Monitor.

ROM INSTALLATION

Install the HP-83/85 Assembler ROM in one of the six slots in an HP 82936A ROM
Drawer. The ROM drawer can then be plugged into one of the four module ports
in the rear of the computer. If you are unfamiliar with the procedure for in-
stalling a ROM and a ROM drawer, refer to the owner's manual for your computer,
or to the HP 82936A ROM Drawer Instruction Sheet for the proper procedure.

TAPE CARTRIDGE OR DISC INSTALLATION AND USE

To install the tape cartridqe containing the global file and the example binary
programs into the HP-85 computer, follow the instructions in the HP-85 Owner's

Manual.

1-1

Getting Started

To install the disc containing the global file and sample binary programs, fol-
low the instructions in the owner's manual for the Flexible Disc Drive.

As part of the process of assembling a binary program, the object code is stored
on a mass storage device such as a tape or disc. If, as will probably be most
convenient, you wish to use the global file tape cartridge for this purpose,
make sure that the tab on the cartridge is set to RECORD.

Here is a 1ist of the files available on the global file tape and disc. Files
with names ending in "S" are source code files. Files with names ending in "B"
are binary program object code files. (The file GLOBAL is an ASCII data file
containing the assembled global file.)

FTOCS
Example program: Fahrenheit to Celsius.

FTOCB

GCURS
Example program: Implements a graphics cursor.

GCURB

SOFTKS
Example program: Special function keys as typing aids.

SOFTKB

UDL$S
Example program: Underlines a string.

UDL$B }

RECPLS
Example program: Rectangular/polar conversions.

RECPLB

ROMPRS }

Example program: Rectangular/polar conversions.

ROMPRB (Written for a ROM.)

GLO1S
Global file in source code. (Two parts.)
GLO2S

GLOBAL Global file.

1-2

Getting Started

SYSTEM MONITOR INSTALLATION

The HP-82928A System Monitor is installed in one of the four module I/0 ports of
the HP-83 or HP-85. To install the System Monitor, follow the instructions in
the owner's manual for your computer.

The System Monitor is not required for use of the Assembler ROM.

ASSEMBLER ERRORS

The Assembler ROM and the System Monitor contain some error messages of their
own. A complete list of these error messages and their causes may be found in

appendix G of this manual.

Because of the ability of binary programs to take over internal HP-83/85
routines and to defeat safeguards within the computer, it is possible to phys-
jcally damage the computer without halting execution or even generating an
error. For example, a flawed binary program could hold the print head element
on and burn it out, or it could run the magnetic tape in an HP-85 tape cartridge
off the end of the spool. For this reason, you should be extremely careful as
you write and run binary programs, particularly if your programs take over any
of the internal printer or tape routines.

CAUTION
If during the running of a binary program the print head
appears to be "locked up" or an HP-85 tape cartridge begins
to unspool, shut off the computer's power switch immediately.

1-3

NOTES

1-4

SECTION 2

ASSEMBLER COMMANDS, STATEMENTS, AND FUNCTIONS

When the Assembler ROM is attached to the HP-83 or HP-85, it provides:
--Assembler commands

--Assembler statements and functions

--Assembly language elements

The commands and the statements and functions provided by the Assembler ROM are

added to the functions, statements and commands that are already part of the com-
puter's instruction set. They are executed exactly as the rest of the computer's
instruction set, and have been created to help the programmer control and use the

assembler.

Assembly language elements are used as the actual instructions in writing binary
programs. The format and use of these elements are discussed in section 4 of
this manual, and a complete 1ist of them may be found in that section and in

appendix C.

ASSEMBLER COMMANDS

A command is non-programmable, and can be executed only from the keyboard (i.e.,
in calculator mode). The assembler commands permit the user to transfer between
assembler and BASIC system modes, to assemble, store and load binary program
source code, and to find labels within the source code in memory.

Assembler commands may be entered as normal calculator mode statements, alone on
a line and terminated by [END LINE]. In addition, in assembler mode, the com-
puter's special function keys and certain other keys will generate the assembler

commands as follows:

2-1

Assembler Commands, Statements, and Functions

Key Assembler Command

[LOAD] ALOAD

[RUN] ASSEMBLE

[STORE] ASTORE

(k1] BASIC

(k2] FLABEL

[K3] FREFS
ALOAD Assembler Command
Load Source Code
Format: ALOAD "file name"

Description: Legal only in assembler mode. Loads source code that was previ-
ously stored with the ASTORE command into the computer's memory
from the file specified on the currently-selected mass-storage
device. The file must be of the type known as "extended" (****).
In assembler mode, the [LOAD] key is a typing aid for the word
ALOAD.

Example: ALOAD "OXy"

NOTE
The “extended" type of file, denoted by **** on
the directory of a mass storage device, does not
necessarily mean that the file contains source
code. In fact, other HP-83/85 firmware and soft-
ware may generate extended type files.

2-2

ASSEMBLE

Assembler Commands, Statements, and Functions

Assembler Command

Assemble Source Code

Format:

Description:

ASSEMBLE "file name" [, numeric value]

Legal only in assembler mode. Assembles source code currently in
the computer's memory and stores it in the file specified by file
name on the currently selected mass storage device {(e.g., tape or
disc). The assembled source code is stored as either a binary

program or, if the file has been declared a ROM or global file, as

a series of strings in a data file.

If at assembly numeric value is evaluated as zero, the binary
program currently in the computer's memory 1is scratched, and the
object code of the newly-assembled binary program is loaded from
the mass storage device into memory. Default numeric value is

evaluated as zero.

If at assembly numeric value is other than zero, any binary program
currently in memory remains inviolate, and the object code of the
newly-assembled binary program is stored only on the current mass
storage device.

In assembler mode, the [RUN] key is a typing aid for the word
ASSEMBLE.

CAUTION
If a program contains an error or if programs are
linked at assembly, this command can destroy the
source code; if the source code is to be saved on
a mass storage device such as a disc or tape car-
tridge, it should be stored there before typing
ASSEMBLE.

2-3

Assembler Commands, Statements, and Functions

Examples:

ASSEMBLER

ASSEMBLE "CENT" Assembles source code into object code, stores
object code as a file named CENT on the tape cartridge or disc,
and performs a LOADBIN "CENT" to load the object code.

ASSEMBLE "OXY", 3 Assembles source code into object code and

stores object code as a file named OXY on the tape cartridge or

disc.

Assembler Command

Switch to Assembler Mode

Description:

Legal only when the computer is in normal system mode, this com-
mand scratches memory and puts the computer into assembler mode.

In assembler mode, most normal BASIC statements will still operate,
but only as calculator mode statements--they are not programmable.
Source code for a binary program can then be typed in with line
numbers, just as a BASIC program is typed in while in normal sys-
tem mode (but with only one instruction per line). Unlike its
operation in normal system mode, the computer is somewhat sensitive
to character spacing while in assembler mode. Auto line numbering,
screen editing, listing, etc., are all functional. The [CONT],
[STEP], and [INIT] keys are inoperative in assembler mode; in this
mode the [RUN] key acts as a typing aid for the word ASSEMBLE.

Displays the word Ready when executed.

2-4

Assembler Commands, Statements, and Functions

ASTORE Assembler Command
Store Source Code

Format: ASTORE "file name"
Legal only in assembler mode. Stores the source code currently in
the computer's memory into the specified file on the currently-
selected mass storage device (e.g., tape or disc). File is of the

type known as "extended," shown in the directory as ****,

In assembler mode, the [STORE] key is a typing aid for the word
ASTORE.

Examplie: ASTORE "OXY"

BASIC Assembler Command

Switch to BASIC Mode.

Format: BASIC

Description: Legal only when in assembler mode, this command scratches memory
and puts the HP-83/85 back into normal BASIC mode.

Displays the word Ready when executed.

In assembler mode, special function key [K1] acts as a typing aid
for the word BASIC.

2-5

Assembler Commands, Statements, and Functions

FLABEL
Find Label

Format:

Description:

Examples:

FREFS

Assembler Command

FLABEL "label"

Legal only in assembler mode. This command searches through the
source code in memory for the label specified. For each occur-
rence of the label (as a label at the beginning of a line) the

line is 1isted. After an FLABEL command has been executed, pressing
the [LIST] key causes the source code to be listed, beginning with
the last line where the label occurs.

In assembler mode, special function key [K2] may be used as a
typing aid for the word FLABEL.

FLABEL "SIN"

FLABEL "PARSIT"

Assembler Command

Find References to Labels

Format:

Description:

Examples:

FREFS "label"

Legal only in assembler mode. Searches through the source code
in memory for all occurrences, whether at the beginning of a line
or not, of the specified label. Otherwise operates the same as

FLABEL, including the operation of the [LIST] key.

In assembler mode, special function key [K3] acts as a typing aid
for the word FREFS.

FREFS "SIN"

FREFS "CENT"

2-6

Assembler Commands, Statements, and Functions

TREM Assembler Command
Toggle Remarks

Format: TREM

Description: Legal only in assembler mode. Toggles an internal flag to suppress
end-of-line comments and prevent them from appearing on the com-
puter's CRT when source code is listed. Default condition is that
end-of-1ine comments are not shown on the CRT. Because end-of-
Tine comments can wrap around on the CRT, this command can make
the CRT display of source code more easily readable.

ASSEMBLER STATEMENTS AND FUNCTIONS

Statements and functions are programmabie BASIC language elements. The statements
and functions provided by the Assembler ROM are simply additions to the BASIC
language of the HP-83/85 computer. As with all BASIC statements and functions,
they may be used either in calculator mode or as part of a BASIC program when the
HP-83/85 is in normal BASIC system mode. When the computer is in assembler mode,
of course, all BASIC statements and functions may be executed only from the key-
board (i.e., as calculator mode statements).

DEC Assembler-Provided BASIC Function

Octal to Decimal

Format: DEC (octal numeric value)

Description: Returns the decimal equivalent of the specified octal value.

Example: DEC (377) Returns 255, the decimal equivalent of 3778.

2-7

Assembler Commands, Statements, and Functions

MEM

Memory Dump
Format:

Description:

Examples:

Assembler-Provided BASIC Statement

MEM address [:ROM #] [,# of bytes] [=#,#, ...]

Dumps the contents of computer RAM or ROM memory to the current
CRT IS device beginning with the octal address. Continues dumping
for the specified octal [,# of bytes]. At power-on, default

of bytes is 1008; otherwise, default is the last # of bytes
specified.

The [:ROM #], if included, is a decimal value that selects the
plug-in ROM from which memory is dumped. At power-on, default
value for ROM # is 0; otherwise, default is the last ROM #
specified.

The output is in two forms: The first shows the octal representa-
tion of the bytes in memory; the second shows the ASCII represen-
tation of the bytes.

If =#,# is included in the statement, memory is not dumped, but
instead the contents of memory locations beginning at address are
changed to the octal values specified after the = sign. The mem-
ory locations must be in RAM (32K-64K). The contents of one
succeeding memory location are changed for each value specified
after the = sign. The # of bytes, if included in the statement,
is disregarded in this case.

MEM 103300 Dumps contents of 1008 bytes of memory to the CRT IS
device, beginning with memory location 103300.

MEM 103300, 20 Dumps contents of 208 bytes of memory to the CRT
IS device, beginning with memory location 103300.

2-8

MEMD

Memory Dump

Format:

Description:

Example:

Assembler Commands, Statements, and Functions

MEM 60200: 40,200 Dumps contents of 200 bytes of Assembler ROM
(ROM # 40) to CRT IS device, beginning with memory location 60200.

MEM 105000 = 0,0,0,15 Loads memory locations 105000, 105001, and

105002 with zeros, and loads location 105003 with 158.

Assembler-Provided BASIC Statement

MEMD address [: rom#] [.# of bytes] [=#.#,...]

Same as MEM statement, except it reads the contents of two bytes of
memory beginning with address and uses those contents as the actual
address at which to begin the dump.

MEMD 101233 Dumps contents of 100 bytes of memory to current CRT
IS device beginning with location pointed to by value in bytes
101233 and 101234. (Since address 101233 is the address of BINTAB,
this statement actually dumps the first 100 bytes of a binary pro-
gram, if one is resident.)

2-9

Assembler Commands, Statements, and Functions

REL

Assembler-Provided BASIC Statement

Relative Address

Format:

Description:

Examples:

SCRATCHBIN

REL (octal address)

Returns the absolute address of a relative address. Takes the
relative octal address and adds to it the address (called BINTAB)
of the beginning of the binary program to yield the octal absolute
address. May be used alone or with MEM. May also be used

with command BKP if HP-82928A System Monitor is attached.

REL (0) Returns address of the beginning of the binary program
(i.e., the contents of BINTAB).

MEM REL (123), 100 Dumps contents of 1008 bytes of memory to the
CRT IS device, beginning with the 123rd byte of the binary program.

BKP REL (675) Sets break point at byte 675 after the beginning of

the binary program. (BKP is available only with the HP-82928A
System Monitor attached.)

Assembler-Provided BASIC Statement

Scratch Binary Program

Format:

Description:

SCRATCHBIN

Scratches the current binary program from computer memory, without
affecting anything else. Nothing can follow SCRATCHBIN on a line

except [END LINE].

Assembler Commands, Statements, and Functions

oCT Assembler-Provided BASIC Statement
Decimal to Octal

Format: OCT (decimal numeric value)

Description: Returns the octal equivalent of the specified decimal value.

Example: OCT (45) Returns 55, the octal equivalent of 45]0.

NOTES

SECTION 3

CPU STRUCTURE AND OPERATION

This section explains the structure, addressing modes and operation of the cen-
tral processing unit (CPU) in the HP-83/85.

The HP-83/85 CPU consists of a 64]0-byte register bank, a pair of address
pointers called the address register pointer (ARP) and the data register pointer
(DRP), an arithmetic and logic unit (ALU) and a shifter, and a set of status

indicators.

Register Bank E

ARP

DRP D LSB
Status

CENTRAL PROCESSING UNIT

CPU Structure and Operation

ARP AND DRP

The address register pointer (ARP) and the data register pointer (DRP) are inde-
pendent six-bit CPU locations. Both the ARP and the DRP can be used to address
any of the bytes in the CPU register bank.

The CPU register addressed by the ARP is called the address register, or AR. The
register addressed by the DRP is called the data register, or DR.

CPU REGISTER BANK

The heart of the CPU is the register bank of 64 8-bit bytes of random-access
memory. These bytes form registers which are grouped into two-byte (16-bit) sec-
tions and eight-byte (64-bit) sections. The diagram on the following page shows
the organization of the CPU registers, which are numbered from 0 to 778, and
specified by Rp - R77.

Some of the registers in the CPU register bank are dedicated by hardware to

specific tasks.

HARDWARE-DEDICATED REGISTERS

The first 408 registers of the CPU (RP - R37) are divided into two-byte (16-bit)
sections. Of these, many of the bytes are reserved by hardware for use as
special-purpose registers. These hardware-dedicated registers are:

Register Bank Pointer. Register 0 is a pointer to the remainder of the CPU
register bank. Register 1 is inaccessible except through register 0.

Index Scratch. Registers 2 and 3 are scratch registers used for indexed address-
ing (X). Their contents are destroyed by execution of instructions using indexed

addressing.

Program Counter. Registers 4 and 5 contain the program counter (PC).

3-2

[o | —>

[ae | —

CPU Pointer

X

X

PC

PC

Subroutine RTN SP

Subroutine RTN SP

CPU Structure and Operation

-«——— Boundary

2-Byte
Section

8-Byte
Section

CPU REGISTER BANK

3-3

Usually used for

(addresses.

Usually used for
floating point
, numbers.

CPU Structure and Operation

Return Stack Pointer. Registers 6 and 7 contain the pointer for the subroutine
return stack. (The space allocated for this stack in the computer's system mem-
ory comprises addresses 101300 through 101777, although sometimes these addresses
may be used for other purposes.)

In addition to the special-purpose registers described above, certain other CPU
registers are commonly used for specific purposes by internal HP-83/85 routines.
(For example, registers R40 and R50 are used by internal mathematics routines for
addition, subtraction, etc.)

REGISTER BOUNDARIES

The CPU registers are separated by boundaries, shown as heavy lines in the illus-
tration of the register bank above. In the first 32 bytes, there is a boundary
every two bytes. In the next 32 bytes, there is a boundary every eight bytes.

This partitions the first 32 bytes into 16-bit sections (used primarily for
address manipulation) and the next 32 bytes into 64-bit sections (used primarily
for floating point quantities). The register array is, therefore, capable of
holding up to four floating-point numbers and twelve 16-bit addresses.

MULTI-BYTE OPERATIONS

The HP-83/85 CPU structure permits "multi-byte operations," involving a string of
bytes rather than just a single byte. A string can consist of from one to eight
consecutive CPU registers. The exact number is determined by the DRP and the

next boundary.

The locations involved in a multi-byte operation are those beginning with the
location pointed to by the DRP and ending with the next boundary. The next
boundary is the one in the direction of increasing addresses (except in the case
of a shift right instruction.)

3-4

CPU Structure and Operation

The following examples should help explain this concept:

--A multi-byte increment with DRP set to 70 (that is, executing ICM R70) results
in an increment of the 64-bit quantity stored between locations R70 and R77.
Higher addresses always refer to more significant bytes.

DRP

—W 7z ™
7/

70000000 R

0 P

/////////// R73
0

R74

v
//////////// RS
0
700z

Boundary ————»

--A multi-byte test with DRP set to 44 (that is, executing TSM R44) results in
the status flags being set according to the data found in registers R44, R45,
R46 and R47. Location R47 is the most significant byte.

R40

R41

R42

DRP R43

[\— ™
000 ™
A/
i

Boundary ———»

3-5

CPU Structure and Operation

--A multi-byte complement with DRP set to 37 (that is, executing TCM R37) com-
plements only R37.

) — O

/

Boundary

The only exception to the rule that the next boundary is in the direction of
increasing addresses is the shift right instruction. If a multi-byte instruc-
tion is a shift right, then the next boundary is the one in the direction of

decreasing addresses.

Thus:
--A multi-byte shift right with DRP set to 31 (that is, executing LRM R31) shifts
the combined contents of R31 and R30 right. R31 is the most significant byte.

R26

R27
Boundary —— 5.

DRP 0000000 ra
——

SINGLE-BYTE OPERATIONS

Besides executing multi-byte instructions, the HP-83/85 CPU also executes in-
structions using single bytes. In a single-byte operation, the DRP refers to

only a single byte.

3-6

TWO-OPERAND OPERATIONS

Two-operand multi- and single-byte instructions may also be executed. In the
case of a multi-byte two-operand instruction, DRP points to the first operand

and ARP points to the second.

bytes involved for the first operand.
number of bytes, beginning with the location to which the ARP points. For

example:

CPU Structure and Operation

DRP is still used to determine the number of
The other operand consists of the same

--A multi-byte add with DRP set to 60 and ARP set to 50 (that is, executing ADM
R60, R50) results in the 64-bit quantity starting with R50 being added to the
The sum is stored in R60 through R67.

64-bit quantity starting with R60.

ARP

I e

DRP

Y
77

000
000
00

7
000

00

000

M
N

R50
R51
R52
R53
R54
R55
R56
R57

R60
Ré1
R62
R63

%

7
000

0000
0

N

R64
R65
R66
R67

3-7

Y
®
\

7
00
00

0007

g

R60
R61
R62
R63
R64
R65
R66
Ré67

CPU Structure and Operation

--A multi-byte load with DRP set to 74 and ARP set to 11 (that is, executing LDM -
R74, R11) transfers the contents of four bytes beginning with R11 to locations
R74, R75, R76 and R77.

ARP R10

O\ —

)
00 R

R15

R70

R71
R72 e

DRP R73

[—ZZZZ

0
0000 e
i

3-8

CPU Structure and Operation

--A multi-byte store with DRP set to 74 and ARP set to 11 transfers the contents
of R74 through R77 to the four consecutive locations beginning with Ril.

ARP R10

[— Zzzz4"

0
00000) R

L0000 ™

R15

I

R70

R71

R72

DRP R73

) — T
D

R76

%
7

Remember: The number of bytes in a multi-byte operation is always determined by
the setting of DRP (not ARP) and the next boundary.

There are also two-operand operations where the DRP points to one operand and
the second is located in the computer's memory. Once again, the number of bytes
to be operated upon is determined by the DRP. The corresponding number of bytes
are accessed from memory beginning with the calculated effective address.

CPU Structure and Operation

NUMBER REPRESENTATION

Numbers in the HP-83/85 are manipulated in a variety of formats. The user has
the option of specifying quantities as octal, BCD or decimal. In addition, the
internal quantities used in the HP-83/85 occur in various formats, depending on
their use.

ADDRESSES

An address, whether in the CPU register bank or in system memory, is always an
octal value that occupies two bytes, or 16 bits. The lower-numbered byte con-
tains the less significant byte of the address, and the higher-numbered byte
contains the more significant byte of the address. Only the first byte of the
two-byte address is referenced by other instructions.

For example, address 177405, translated into a binary quantity, appears like
this:

1 7 7 4 0 5 } Octal Representation
1 111 111 100 000 101 } Binary Representation

When this binary quantity is split into two eight-bit registers, it appears as:

1 b 11 111 100 000 101 Binary Quantity

3 7 7 I 0 0 5 | Register Contents

Only the first byte of the two-byte address is referenced by other instructions,
so an address pointing to ROM location 177405 from the CPU might Took like this:

ARP

][o m

3 7 7 R33

CPU Structure and Operation

NUMERIC QUANTITIES

Numeric quantities in the HP-83/85 may be of three types: Real, short, and inte-
ger. The following illustration shows how numeric quantities are represented
internally in the computer. For the illustration, the numbers are shown in CPU
registers R40 - R47.

Real Integer Short
40 E1 E2 45 D1 Do 44 EO E1
a1 EO MS 46 D3 D2 45 M3 M4
42 M10 M1 47 S D4 46 M1 M2
43 M8 M9 47 |0 0 SM SE MO
44 M6 M7
45 M4 M5
46 M2 M3
47 MO M1

FORMATS OF NUMERIC QUANTITIES

In real or floating-point format, the mantissa is a 12-digit quantity expressed
as a magnitude. Each digit consists of four bits. The least significant digit,
represented by M11, is stored in R42. The most significant digit, represented by
Mp, is stored in R47. The number is normalized; thus, there is an implied decimal
point between MP and M1 in R47. The sign of the mantissa is stored in the least
significant digit of R41. A zero is stored as the sign of the mantissa if the
number is positive; otherwise, a nine is stored. The exponent is a three-digit
number stored in R40 and in the most significant digit position of R41. Expo-
nents are expressed in ten's complement form.

Integer variables are stored in three bytes, with five digits and a sign. Short
variables are stored as a mantissa sign (SM) an exponent sign (SE), five mantissa

digits, and a two-digit exponent.

CPU Structure and Operation

STATUS INDICATORS

The HP-83/85 CPU contains eight flags and a four-bit register for program status.
The flags signal the present condition of the data, while the four-bit register
serves as an "extended" register for counting and data manipulation.

Status can affect or be affected by CPU instructions. In the HP-83/85 CPU, the
instruction set has data movement instructions of both the arithmetic and non-
arithmetic types. These instructions include:

--Arithmetic: Add, subtract, compare, increment, decrement, complement.

--Non-arithmetic: Load, store, logical and, or, exclusive or, shift, clear, test.

The following status indicators are present in the HP-85 CPU:

E: Extend Register. A four-bit register which can be cleared, incremented, or
decremented independent of DCM. Shifts can be made into and out of the
extend register only when DCM is set.

DCM: Decimal Mode Flag. When set, binary-coded decimal (BCD) operations will
be performed. When cleared, binary operations will be performed. The
operations affected by DCM are all the arithmetic data movement instruc-
tions and the shift instructions. The DCM flag can be modified only by
two CPU instructions, BCD and BIN. The BCD instruction sets DCM, while
the BIN instruction clears DCM.

CY:

OVF:

LSB:

CPU Structure and Operation

Carry Flag. This one-bit register can be shifted into and out of when DCM
is cleared (i.e., BIN mode). It is loaded with the carry from the most
significant bit (MSB) according to the table shown here:

CPU Instruction Carry Flag
Add CY set according to carry of add.
Subtract CY set if result is positive, cleared if result is
negative.
Compare Same setting as for subtract.
Increment CY set as for add.
Decrement CY set as for subtract.
Shift CY loaded with bit shifted out, if in binary mode.

(Right shift loads CY from LSB.)

Complement CY cleared by nine's complement, set by ten's com-
plement, if contents of data register (DR) were
zero.

A1l other data movement instructions clear cyY.

Overflow Flag. The overflow flag is set whenever the result of a binary
arithmetic operation exceeds the maximum positive or negative number that
can be contained in the destination register. This can occur as the result
of a compare, binary add, binary subtract, binary complement, or binary
left shift instruction. Thus, an arithmetic data movement instruction or

a left shift with DCM cleared affects OVF; all other data movement instruc-
tions clear OVF. The remaining instructions do not affect OVF.

Least Significant Bit Flag. LSB is set the same as the least significant
bit (LSB) of the result of each data movement instruction.

CPU Structure and Operation

MSB:

LDZ:

RDZ:

Most Significant Bit Flag. MSB is set the same as the most significant bit
(MSB) of the result of each data movement instruction.

Zero Flag. Z is set if a data movement instruction produces a result of
all zeros. If the result is not all zeros, Z is cleared. Other instruc-

tions do not affect Z.

Left Digit Zero Flag. LDZ is affected only by data movement instructions.
LDZ is set if the most significant nibble (four bits) of the result is 0000.
If the most significant four bits are not 0000, LDZ is cleared.

Right Digit Zero Flag. RDZ is affected only by data movement instructions.
RDZ is set if the least significant nibble (four bits) of the result is
0000, regardless of the setting of DCM. If the most significant four bits
are not 0000, RDZ is cleared.

Status information is based on the entire single or multi-byte quantity that is
processed. The figure below illustrates status on a three-byte quantity.

MSB LSB
E ¢—
CY<—-—————|7654 3 2 1 Ol ,76 543 21 OI |765432 1 OI
OVF «——
N—— \— p————
LDZ RDZ
ZERO

MULTI-BYTE STATUS

A1l multi-byte operations except right shift start execution with the least sig-
nificant byte. ATl status flags except LSB, RDZ, and DCM are updated after each
byte of an operation, and therefore will be correct whenever the memory boundary
is reached. The LSB and RDZ flags are set only for the first byte.

CPU Structure and Operation

For a shift right instruction, where the shift is from the most significant byte
to the least significant, the MSB and LDZ flags are set only for the most signif-
icant byte; the rest are updated after each byte.

For a complete list of all CPU instructions and their relationships to status

indicators, refer to section 4 and appendix C.

NOTES

SECTION 4

ASSEMBLER INSTRUCTIONS

The HP-83/85 Assembler instructions can manipulate data in the HP-83 or HP-85
central processing unit, and through the CPU, in HP-83/85 RAM as well.

Assembler instructions are of two types: Instructions and pseudo-instructions.
Instructions operate directly on the CPU and during assembly are translated
directly into machine language object instructions. They are specified by means
of opcodes. Pseudo-instructions are entered in the same way as CPU instructions,
but they are actually messages to the Assembler ROM. They are specified by means

of pseudo-opcodes.

ENTERING INSTRUCTIONS AND PSEUDO-INSTRUCTIONS

Source code is typed into the CRT by entering the line number, followed by a

label (if any), followed by the opcode, followed by the address or operand, if
required, followed by a comment (if any). When [END LINE] is then pressed, the
line is parsed and the elements are assigned to their respective fields on the

CRT.

1-4 characters 1-6 characters

Fine Number Label I I Opcode l I Operand/Address I l Comment J

Space Space Space

SOURCE CODE INSTRUCTION FORMAT

In assembler mode, the HP-83/85 is sensitive to spacing among the elements of a

line of source code. For example:

4-1

Assembler Instructions

Ahstggement entered to After parsing appears as:
the CRT as:
60 LEL LDMD R70,R40
69 LBL LDWD R70,R40
g0 FURD RS5S2,+R12
80 PUBD R52,+R12 . - p
99 PUBD 52,+12 7 FUED RoosrRiz
! Q0 ; 40
109 CLB R40 !THIS IS A COMMENT ' THIS 1S A COMMENT

b f

Label Opcode Operand or
Field Field Address Field

LINE NUMBERING

Each 1ine of binary program source code must begin with a line number. These
line numbers may be entered individually, or automatic line numbering may be
specified with the [AUTO] key.

These line numbers are useful for entering and editing a binary program, but do
not correspond to the addresses of the machine language object code that is
generated during assembly.

LABELS

No spaces or one space may be typed between the line number and the label field.
A label is optional, and may be from one to six characters. A label cannot have
a digit as the first character, nor a space as any character; one or more spaces
denote the end of the label.

When a label has been entered and parsed, it appears in a label field on the
CRT or printer. This field begins in the second character space to the right of

the 1ine number.

OPCODES AND PSEUDO-OPCODES

The opcodes and pseudo-opcodes for assembly language instructions may be entered
after typing at least two spaces after the line number or at least a single space
after a label. Entries in the opcode field are restricted to valid instructions
and pseudo-instructions. Blanks are not allowed within the opcode field.

Assembler Instructions

When an opcode or pseudo-opcode has been entered and parsed, it begins in the
field nine spaces to the right of the line number.

Opcodes (but not pseudo-opcodes) may be either single-byte (specified by a "B")
or multi-byte (specified by an "M").

OPERANDS OR ADDRESSES

Depending upon the format of the instruction, the operand or address field may

specify one or more of the following:

--Data Register. A CPU register which may signify single-byte or multi-byte

operation.
--Operand. May be a CPU register or a memory location. Depending on the ad-
dressing mode, memory can be addressed immediately, indirectly, or by an index.
--Register Pointer. Constant used to load ARP or DRP.
--Label. A label to specify an address or constant.
--Nothing. Some instructions do not require an entry in this field.

An AR or DR in the CPU is specified by an "R" pefore the register number (e.g.,
R32), or by an "X" before the register number when indexed addressing is used.
The "R" may be omitted when CPU register numbers are typed, since the assembler
inserts a missing "R" automatically. The "X" must be typed to indicate register

numbers for indexed operations.

COMMENTS

A comment or remark must begin with an exclamation point. A comment must be
typed beginning in the first or second space after the line number, or beginning
one or more spaces after the other elements of the line of source code.

After being parsed, a comment which has been entered immediately following the
other elements of the 1line begins in column 33; thus, on the HP-83/85 CRT it
appears on the following line. A peripheral printer with a column width greater
than 32 can permit a comment to appear on the same line as the source code

statement.

Assembler Instructions

NUMERIC VALUES

Numeric values can be entered in octal, BCD or decimal notation. A BCD value is
entered by immediately following the value with a "C," while a decimal value is
followed by a "D;" otherwise the assembler assumes octal values.

Example: LDM R45,=31, 19C, 25D Loads the same bit pattern into registers R45,
R46 and R47.

Registers can be specified by octal values only.

SYNTAX AND SYMBOLS USED

The following shows the syntax guidelines once again and also includes a list of
the symbols used in the descriptions of assembler instructions.

LDB Instructions shown in capital letters, but not underlined, must be
entered exactly as shown (in either upper-case or lower-case letters).

Items shown underlined (e.g., DR) are expressions or names that must be
specified in the instruction, statement, or command.

[] Items shown between brackets are optional. (e.g., CMB[D] indicates
there is a CMB instruction and also a CMBD instruction available.) If

several items are stacked between brackets, any one or none of the

items may be specified.

Three dots (ellipsis) following a set of brackets indicate that the
items between the brackets may be repeated.

<« Is transferred to.

() Contents of.

Complement (e.g., x is complement of x). This is one's complement if

DCM-0 and ninc's complement if DCM=1.

4-4

B/M

| 3=

ARP

DRP

SP

EA

ADR

Assembler Instructions

Single-byte or multi-byte instruction.

Address register location--location of first byte addressed by ARP.
Can be a register (e.g., R32), R* or R#.

Data register location--location of first byte addressed by DRP. Can
be a register (e.g., R32), R* or R#.

Address mode for load/store. Can be blank (for jmmediate), D (for

direct), or I (for indirect).

Address Register Pointer. A 6-bit register used to point to one of 64
CPU registers. The byte to which ARP points is often used as the first
of two consecutive bytes forming a memory address.

Data Register Pointer. A 6-bit register used to point to one of 64 CPU
registers. The location to which DRP points is often used as the des-
tination for data loaded into the CPU.

CPU register addressed by (x).
Memory location addressed by (x). (x) must be a 16-bit address.

Program Counter. CPU registers R4 and R5. Used to address the instruc-

tion being executed.

Subroutine Stack Pointer. CPU registers 6 and 7. Used to point to the
next available location on the subroutine return address stack.

Effective Address. The location from which data is read for load-type
instructions or the location where data is placed for store-type

instructions.

Address. The two-byte quantity directly following an instruction that
uses the literal direct, literal indirect, index direct or index indi-
rect addressing mode. This quantity is always an address.

Assembler Instructions

The following pages show the HP-83/85 Assembler ROM instructions that are used to
manipulate the CPU and external memory. These instructions are illustrated in an
abbreviated form in this section; for a complete 1list of all forms of each in-

struction, refer to appendix C.

Also contained in this section are the Assembler ROM pseudo-instructions.

LOAD/STORE INSTRUCTIONS

The instructions for loading and storing data have access to all eight addressing
modes, and they can be single-byte or multi-byte.

LD
Load

Format:

Operation:

Description:

ST

Store

Format:

Operation:

Description:

CPU Instruction

LDBA DR, operand Single byte
LDMA DR, operand Multi-byte
DR«(EA)

Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

CPU Instruction

STBA DR, operand Single byte
STMA DR, operand Multi-byte
(DR)-EA

Contents of data register are stored in effective address deter-
mined by the operand and the addressing mode.

4-6

S

Assembler Instructions

ADDRESSING MODES

The HP-83/85 CPU allows for several addressing modes. These include literal,
register, indexed and stack modes of memory access.

Not all addressing modes are available to all instructions. The load (LD) and

store (ST) instructions have access to all addressing modes except stack address-
ing, and they are used here for illustration. For a list of the addressing modes
available to any particular instruction, consult the description of that instruc-

tion in this section or in appendix C.

In addressing, all addresses are referred to as two-byte quantities. Because all
addresses are two consecutive bytes, only the first byte of the sequence is ref-
erenced. For instance, the AR is actually a single byte within the CPU register
bank that is pointed to by the ARP. When the AR is described as being an address,
remember that R (ARP) contains the low byte of the address and R (ARP + 1) con-
tains the upper byte of the address.

The multi-byte feature of the CPU allows data to be manipulated in quantities of
from one to eight bytes. Therefore, in the following descriptions, only the
address of the first byte of data is specified. As explained earlier, the number
of bytes is determined by the distance of the DR from the next consecutive

boundary.

In the following descriptions, the effective address (EA) points to the first
byte of data to be loaded for load instructions.

For store instructions, EA points to the location where the first byte of data

is stored.

REGISTER MODE

The first category of addressing is the register addressing mode. This mode
allows the CPU registers (64]0 bytes) to be used as addresses as well as for
data. There are three levels of register addressing modes.

Assembler Instructions

REGISTER IMMEDIATE

Format:

Effective
Address:

Description:

Examples:

Opcode B/M DR, AR

AR
The operand is another CPU register (single or multi-byte) begin-

ning at AR. Thus, the AR is the source for load instructions or

the destination for store instructions.

CPU Register Bank

REGISTER IMMEDIATE ADDRESSING

LDB R36, R32 Loads contents of R32 into CPU register R36.

STM R40, R50 Stores contents of registers R40 through R47 into
registers R50 through R57.

REGISTER DIRECT

Format:

Effective
Address:

Description:

Opcode B/M D DR, AR

M(AR)

The effective address is a location in system memory that is
addressed by the AR. This mode is useful when using a CPU regis-
ter as a pointer to system memory.

4-8

Assembler Instructions

CPU Register Bank System Memory

REGISTER DIRECT ADDRESSING

Examples: LDBD R36, R32 Loads CPU register R36 with the contents of the
system memory location addressed by R32-R33.

STMD R40, R50 Stores contents of R40-R47 into system memory
beginning with location addressed by R50-R51.

REGISTER INDIRECT

Format: Opcode B/M T DR, AR
Effective
Address: M(M(AR))

Description: The address register points to a system memory location, which in
turn points to another memory Jocation that is the effective

address.

Assembler Instructions

System Memory

CPU Register Bank

EA -

REGISTER INDIRECT ADDRESSING

Example: LDBI R36, R32 If R32 and R33 contain the address 105371, loads
CPU register R36 with the contents of the memory location that is
addressed by the contents of system memory locations 105371 and
105372.

LITERAL MODE

The second of the categories of address modes is the literal mode. In literal
mode, the operand is a literal quantity stored in memory immediately following
the opcode. A literal string can be:

--BCD constant, e.g., 99C, ..., 79C (< 10g bytes)

--Octal constant, e.g., 12, ..., 277 (% 108 bytes)
--Decimal constant, e.g., 201D, ..., 9D (s]08 bytes)

--Label (The literal quantity is a one- or two-byte value or address assigned
to the label.)

The programmer is responsible for ensuring that the number of bytes of the 1it-
eral string matches the DRP setting. The assembler does not check for mismatch.

Assembler Instructions

There are three types of literal addressing modes.

LITERAL IMMEDIATE

Format: Opcode B/M DR, = literal
Effective
Address: (PC+1)

Description: The operand is a Jiteral string that, during assembly, is stored in
memory immediately after the instruction opcode. This mode is use-
ful for loading constants into the CPU register bank.

System Memory

CPU Register Bank

o Instruction

Literal EA

DRP
]

LITERAL IMMEDIATE ADDRESSING

Examples: LDB R36, = 3D Loads 3]0 into CPU register R36.

LDM R40, = 0,0,0,0,0,0,0,120 Loads 1208 (i.e., a floating-point
5) into registers R40-R47.

LITERAL DIRECT

Format: Opcode B/M D DR, = label
Effective
Address: M(PC+1)

Assembler Instructions

Description:

DRP

Examples:

The operand is a memory location that, after assembly, is addressed
by a two-byte literal quantity stored immediately after the instruc-
tion opcode. The label defines the two-byte literal quantity to be
used by the Assembler ROM.

System Memory

CPU Register Bank

Instruction
4 PC)’//////’. 2-byte l

address

LITERAL DIRECT ADDRESSING

LDBD R34, = ROMFL Loads the contents of the memory location
addressed by the label ROMFL into CPU register R34.

STMD R74, = CHIDLE Stores contents of CPU registers R74 through
R77 into four memory locations beginning with the location addressed
by the label CHIDLE.

LITERAL INDIRECT

Format:

Effective
Address:

Description:

Opcode B/M I DR, = label

M(M(PC+1))

The operand is a memory location that, after assembly, is addressed
by a two-byte memory location that itself is addressed by a two-byte
literal quantity stored immediately after the instruction opcode.
The label defines the two-byte literal quantity used by the Assem-
bler ROM.

Assembler Instructions

System Memory

CPU Register Bank

Instruction
4 PC l/ 2-byte l

5 PC Literal

DRP
address
- EA
LITERAL INDIRECT ADDRESSING

Example: STBI R30, = ADDR Stores the contents of CPU register R30 into
the memory location addressed by another memory location which is
itself addressed by the two-byte literal quantity specified by the
label ADDR.

INDEX MODE

The index mode is the third addressing category. Indexing is useful for access-
ing data when the data is stored in a table. In indexed addressing, a fixed
base address is added to an offset to create the desired address. The CPU per-
forms this addition using CPU registers 2 and 3. After an index instruction,
registers 2 and 3 contain the effective address (i.e., the sum of the base and
the offset). Neither the original base nor the offset is altered in memory.

There are two modes for indexed addressing.

INDEX DIRECT

Format: Opcode B/M D DR, XAR, label
Effective
Address: M(AR+(PC+1))

Assembler Instructions

Description:

The effective address is found by adding (in binary) the two-byte
contents of the AR to the two-byte address that immediately follows
the instruction opcode in memory.

System Memory

CPU Register Bank

NG __l,//////" -)

-

o

2
b
4 PC / Instruction
5 PC 2-byte
address]\
ARP

I SN e
| l

DRP
I — o

po
>

Example:

INDEXED DIRECT ADDRESSING

LDBD R36, X30, TABLE Loads into CPU register R36 the contents of
the memory location addressed by registers R2 and R3. R2 and R3
contain the sum of the contents of R30 and the contents of the
address TABLE.

INDEX INDIRECT

Format:

Effective
Address:

Description:

Opcode B/M I DR, XAR, label

M(M(AR+(PC+1)))

The effective address is found in a memory location. This memory
lTocalion is found by adding (in binary) the two-byte contents of

e

Assembler Instructions

the AR to the two-byte address that immediately follows the in-
struction opcode in memory. This mode is useful when addresses are

stored in table form.

System Memory

CPU Register Bank

2 l l
> — —_|— -
\ ® |
4 PC
5 PC
EA —
ARP
11—\ w
] Instruction

2-byte

Example:

INDEXED INDIRECT ADDRESSING

STMI R36, X30, OFFST Stores the contents of CPU register R36 and
R37 in memory, beginning with the Jocation addressed by another
memory location which is itself addressed by CPU registers 2 and

3. Registers 2 and 3 contain th sum of the address in R30 plus the
offset specified by the label OFFST.

STACK INSTRUCTIONS

There is a large set of instructions that are available to push data onto and pop
data from stacks in the main memory of the HP-83/85. These stacks can be ad-

dressed by t

he instructions using direct or indirect addressing.

Assembler Instructions

PU CPU Instruction
Push
Format: PUB D/I DR +/- AR Push single byte

PUM D/I DR +/- AR Push multi-byte

Description: Pushes single byte or multi-byte onto stack. D/I indicates direct
or indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

Examples: PUBD R32, +R12
PUBI R32, -R46

PO CPU Instruction
Pop
Format: POBD/I DR #/- AR Pop single byte

POMD/I DR +/- AR Pop multi-byte

Description: Pops single byte or multi-byte off stack. D/I indicates direct or
indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

STACK ADDRESSING

CPU registers R6 and R7 are permanently dedicated, and always contain the address
of the subroutine return stack. CPU registers R12 and R13 contain, by convention,
the address of the operational stack used during runtime by many of the internal
HP-85 routines. The user can, of course, address a stack from nearly any CPU

register pair.

Stacks may be increasing or decreasing. An increasing stack is one which is
filled in the direction of higher memory locations and from which data is removed

in the direction of Tower memory locations. In a decreasing stack, data is

4-16

Assembler Instructions

pushed in the direction of lower memory locations, and taken off in the direction
of higher memory locations. To avoid confusion, it is best to address a particu-
lar stack using only instructions for an increasing stack or only instructions

for a decreasing stack, but not both.

For stack addressing, the stack pointer is contained in the AR. Multiple stacks
are handled by having multiple stack pointers within the CPU register space. A
stack is activated by setting ARP equal to the location of that stack's pointer.

For an increasing stack, the AR must point to the next available location on the
stack. For a decreasing stack, the AR points to the occupied location on top of
that stack.

Lower Memory
Locations

\ 1st e;nry \ N\
\\\\an entry\\
ARP AR NN

— 1L 71—

—_—————————————

- —————————_————

Stack Stack
Push Pop
Higher Locations
INCREASING STACK
Lower Memory
Locations
A |
| !
ARP AR : :
—]—LC 0 — V55 ||
s/ |
/B
I
| |
| \

Stack Stack
Push Pop
Higher Locations

DECREASING STACK

4-17

Assembler Instructions

STACK DIRECT

In this addressing mode, the stack is presumed to contain data. Stores to the
stack (pushes) fill the stack. Loads from the stack (pops) empty the stack.

For a push onto an increasing stack, the AR points to the location where data is
to be stored. Following the store, the AR is incremented by the number of bytes
stored. For a pop operation from an increasing stack, the AR is first decre-
mented by the number of bytes to be popped off. The AR then points to the
location of the data to be removed from the stack.

For a pop from a decreasing stack, the AR points to the location of the data to
be removed. Following the removal, the AR is incremented by the number of bytes
moved. For a push operation onto a decreasing stack, the AR is first decremented
by the number of bytes to be stored on the stack. Then the data is pushed onto

the stack.

STACK INDIRECT

In this addressing mode, the stack is presumed to contain an ordered list of
addresses. These addresses point to the location from which data is read by
pops or to the Tocation into which data is stored by pushes.

For a push onto an increasing stack, the AR points to the effective address.

After storing data in M(EA), the AR is incremented by two. For a pop instruction
from an increasing stack, the AR is first decremented by two in order to point to
the effective address. M(EA) is then loaded into the CPU register designated by

the DRP.

Assembler Instructions

INSTRUCTIONS FOR AN INCREASING STACK

An increasing stack is one which 1is pushed in the direction of higher addresses

(+) and popped in the direction of lower addresses (-).

D (Direct Mode)

Lower Memory
Locations

1st entry

2nd entry

ARP AR 3rd entry

——— e e ——

D
I
|

Stack Stack
Push Pop

Higher Locations

I (Indirect Mode)

2-byte | *
address | |
2-byte | |

ARP AR address l :
__1—C]— .
I
| |
| |
| |
1st entry | |
|]
|
I |
* !
2nd entry |
Stack Stack
Push Pop

Each entry can be one or more bytes

INCREASING STACK

4-19

Assembler Instructions

The instructions available for use with an increasing stack are:

PUBD DR, *AR Push byte direct with increment

PUMD DR, +AR Push multi-byte direct with increment
PUBI DR, *+AR Push byte indirect with increment

PUMI DR, +AR Push multi-byte indirect with increment
POBD DR, -AR Pop byte direct with decrement

POMD DR, -AR Pop multi-byte direct with decrement
POBI DR, -AR Pop byte indirect with decrement

POMI DR, -AR Pop multi-byte indirect with decrement

INSTRUCTIONS FOR A DECREASING STACK

A decreasing stack is one which is pushed in the direction of lower addresses
(-) and popped in the direction of higher addresses (+).

D (Direct Mode)

Lower Memory

Locations
ARP AR
— | —= [e | 4
2nd entry I |
1st entry i I
| |
I i

Stack Stack
Push Pop

Higher Locations

4-20

Assembler Instructions

| (Indirect Mode)

ARP AR
11— | — [oo b
address : :
2-byte] I
address : |
|
' |
' |
| |
| |
| |
l l
1st entry | '
| |
L
|
2nd entry ' +
Stack Stack
Push Pop

Each entry can be one or more bytes

DECREASING STACK

The instructions available for use with a decreasing stack are:

PUBD DR, -AR Push byte direct with decrement

PUMD DR, -AR Push multi-byte direct with decrement
PUBI DR, -AR Push byte indirect with decrement

PUMI DR, -AR Push multi-byte indirect with decrement
POBD DR, *+AR Pop byte direct with increment

POMD DR, +AR Pop multi-byte direct with increment
POBI DR, +AR Pop byte indirect with increment

POMI DR, *+AR Pop multi-byte indirect with increment

4-21

Assembler Instructions

ARITHMETIC AND LOGICAL INSTRUCTIONS

The arithmetic and logical instructions consist of add, subtract, compare, logi-
cal AND and logical OR instructions.

AD
Add

Format:

Operation:

Description:

Examples:

ANM
Logical AND

Format:

Operation:

Description:

Examples:

CPU Instruction

Add byte
Add multi-byte

ADB [D] DR, operand
ADM [D] DR, operand

DR < DR + operand

Add single or multi-byte. The contents of the effective address
determined by the addressing mode are added to the DR. If DCM=1,
BCD addition is performed; otherwise, binary addition is performed.
The result is stored in the data register.

ADB R40, R50

ADMD R30,=LABEL

CPU Instruction

ANM [D] DR, operand
DR < DR - operand

The DR is loaded with the logical AND of itself and the contents
of the effective address determined by the addressing mode used.
This instruction is multi-byte only.

ANM R40, R50
ANMD R32,=LABEL

4-22

Assembler Instructions

CM CPU Instruction
Compare
Format: CMB [D] DR, operand Compare byte
cMM [D] DR, operand Compare multi-byte
Operation: DR + ten's complement of operand if BCD mode set

DR + two's complement of operand if binary mode set

Description: Compares operand with data register(s). The contents of the effec-
tive address determined by the operand and the addressing mode are
subtracted from DR. BCD subtraction is performed if DCM=1; other-
wise a binary subtraction is performed. The result is used to
affect CPU status indicators and is not stored; DR is not affected.

Examples: CMB R24,=377
CMM R22, R32

OR CPU Instruction

Logical OR (Inclusive)

Format: ORB DR, AR Inclusive OR (single byte)
ORM DR, AR Inclusive OR (multi-byte)

Operation: DR <« DR v AR

Description: Contents of DR are replaced with inclusive OR of DR and AR. CY and
OVF are cleared.

Examples: ORB R21, R41
ORM R40, R70

4-23

Assembler Instructions

SB

Subtract

Format:

Operation:

Description:

Example:

XR

CPU Instruction

SBB [D] DR, operand Subtract byte
SBM [D] DR, operand Subtract multi-byte

DR « DR + ten's complement of operand if BCD mode
DR « DR + two's complement of operand if binary mode

The contents of the effective address determined by the addressing
mode and the operand are subtracted from the contents of the DR.
BCD subtraction is performed if DCM=1; otherwise binary subtraction
is performed. The result is stored in DR. CY is set if the result
is positive, cleared if the result is negative.

SBM R26,=177, 0

CPU Instruction

Logical OR (Exclusive)

Format:

Operation:

Description:

Example:

XRB DR, AR Exclusive OR (single byte)
XRM DR, AR Exclusive OR (multi-byte)
DR« DR @ AR

Contents of DR are replaced with the exclusive OR of DR and AR.
CY and OVF are cleared.

XRM R40, R50

4-24

Assembler Instructions

SHIFT INSTRUCTIONS

A1l shift instructions can be BCD or binary. The shift instructions consist of

logical left, logical right, extended left and extended right instructions; all

are available in single byte or multi-byte modes.

EL

CPU Instruction

Extended Left Shift

Format:

Description:

ELB DR Extended left shift byte
ELM DR Extended left shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted left one bit position. Carry flag CY is Toaded
from MSB. LSB is loaded from CY. OVF is set if the shift causes
a sign change.

CPU Register Bank

(1-8 bytes)
on [T TTTTTT]=—"0]e
\\\\
\\\\\\“\
cy I:I - 4'/
Boundary

4-25

Assembler Instructions

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted Teft one digit position (i.e., four bits) through the E

register. CY is cleared.
CPU Register Bank
(1-8 bytes)
DR\”—[1||||||| IEE
\\
\\
\\\
\\\\\
)
e[]— -
L L 1 1 1 1
Boundary

4-26

Assembler Instructions

ER CPU Instruction
Extended Right Shift

Format: ERB DR Extended right shift byte
ERM DR Extended right shift multi-byte

Description: Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position. For multi-byte shifts,
the shift proceeds from DR to the next Jower boundary. Carry flag
CY is loaded from LSB. MSB is loaded from CY.

CPU Register Bank
Boundary (1-8 bytes)

> —-——PDCY

-~

o [— [TTIITTT o

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits) through the four-
bit E register. CY is cleared.

CPU Register Bank
Boundary (1-8 bytes)

/ | | |
\

~

~—ee
r |)
I |] |

Notice that a multi-byte right shift instruction, unlike other
multi-byte instructions, proceeds from the DR to the preceding
(i.e., lower-numbered) boundary.

Example: ERM R47 Shifts all eight bytes of R40 - R47 right.

4-27

Assembler Instructions

LR

CPU Instruction

Logical Right Shift

Format:

Description:

LRB DR Logical right shift byte
LRM DR Logical right shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position, and the MSB is cleared.
For multi-byte shifts, the shift proceeds from DR to the next lower
boundary. Carry flag CY is loaded from LSB.

CPU Register Bank

Boundary (1-8 bytes)
I/" — I:I CcY
\\\
\\\\\
\\\\\\\\
o—=[[[[]T][}on

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits), and the most
significant digit is cleared. For multi-byte shifts, the shift
proceeds from DR to the next lower boundary. The least signifi-
cant digit is shifted into the four-bit E register.

CPU Register Bank
(1-8 bytes)

- —
L1 1 L1

Boundary

7/

J
0000 —> I 1 £ 1 I 1 11 I-_/ DR

Notice that a multi-byte right shift instruction, unlike other
multi-byte instructions, proceeds from the DR to the preceding

(i.e., lower-numbered) boundary.

4-28

-/

Example:

LL

Assembler Instructions

LRM R54 Shifts contents of R54, R53, R52, R51, and R50 right.

CPU Instruction

Logical Left Shift

Format:

Description:

LLB DR Logical left shift byte
LLM DR Logical Teft shift multi-byte

Binary Mode. In binary mode, the contents of DR are shifted left
one bit position, and the LSB is cleared. The bit shifted out of
MSB is saved in CY. OVF is set if the shift causes a sign change.

CPU Register Bank
(1-8 bytes)

on ([T TL1] =

-~

\
/

cY D - -
Boundary

BCD Mode. 1In BCD mode, the contents of DR are shifted left one
digit position (i.e., four bits), and the least significant digit
is cleared. The digit shifted out of the most significant digit
position is saved in the E register. CY is cleared.

CPU Register Bank
(1-8 bytes)

DR (”r. L1 l L1 |J<—_0000

)

I e <
| I 1

Boundary

4-29

Assembler Instructions

Example: LLM R45 Shifts contents of R45, R46, and R47 Teft one bit posi-
tion through CY (in binary mode) or left one digit position through
E (in BCD mode).

4-30

Assembler Instructions

REGISTER INCREMENT AND DECREMENT INSTRUCTIONS

The increment and decrement instructions for the CPU registers can be BCD or

binary.
DC CPU Instruction
Decrement
Format: DCB DR Decrement byte
DCM DR Decrement multi-byte
Operation: DR « DR + two's complement of 1 (binary mode)

DR < DR + ten's complement of 1 (BCD mode)
Description: Binary Mode. In binary mode, DR is decremented by 1 (binary).
OVF is set if this operation causes a sign to change to a positive

value. CY is set by decrementing a non-zero number .

BCD Mode. In BCD mode, DR is decremented by 1 (decimal). OVF is
cleared. CY is set by decrementing a non-zero number.

Example: DCB R12

4-31

Assembler Instructions

IC CPU Instruction L
Increment
Format: ICB DR Increment byte

ICM DR Increment multi-byte

Operation: DR « DR + 1

Description: Binary Mode. In binary mode, DR is incremented in binary by 1.
OVF is set if this operation causes a sign change to a negative

value.

BCD Mode. In BCD mode, DR is incremented in decimal by 1. OVF is

cleared.

Example: ICM R4Q

4-32

Assembler Instructions

COMPLEMENT INSTRUCTIONS

The complement instructions can be BCD or binary.

NC

CPU Instruction

Nine's (Or One's) Complement

Format:

Operation:

Description:

Example:

NCB DR Nine's (or one's) complement byte
NCM DR Nine's (or one's) complement multi-byte
DR < DR

Binary Mode. In binary mode, the one's complement of the contents
of DR replace the contents of DR. CY and OVF are cleared.

BCD Mode. In BCD mode, the nine's complement of the contents of
DR replace the contents of DR. CY and OVF are cleared.

NCB R30

4-33

Assembler Instructions

TC

CPU Instruction

Ten's (Or Two's) Complement

Format:

Operation:

Description:

Example:

TCB DR Ten's (or two's) complement byte
TCM DR Ten's (or two's) complement multi-byte
DR « DR + 1

Binary Mode. In binary mode, the two's complement of the contents
of DR replaces the contents of DR. CY is set if the contents of DR
were zero. OVF is set if contents of DR were 100...000.

BCD Mode. In BCD mode, the contents of DR are replaced with their
ten's complement. CY is set if the contents of DR were zero. OVF

is cleared.

TCM R50

4-34

Assembler Instructions

TEST INSTRUCTION

The test instruction can check the status of single-byte or multi-byte CPU

registers.

IN

Test

Format:

Description:

Example:

CPU Instruction

TSB DR Test byte
TSM DR Test multi-byte

The contents of DR are tested and condition flags are set accord-
ingly. CY and OVF are cleared.

TSM R36

REGISTER CLEAR INSTRUCTION

The clear instruction permits the clearing of any byte or of any multi-byte por-
tion of the CPU register bank.

CL

Clear

Format:

Operation:

Description:

Example:

CPU Instruction

CLB DR Clear byte
CLM DR Clear multi-byte
DR « 0

DR is cleared. CY and OVF are cleared.

CLB R47

4-35

Assembler Instructions

SUBROUTINE JUMP INSTRUCTION

The subroutine jump instruction is available in the literal direct or the indexed

addressing mode.

JSB

CPU Instruction

Jump to Subroutine

Format:

Operation:

Description:

Examples:

JSB = label Jump subroutine literal direct
JSB XR, label Jump subroutine indexed

Literal Direct. M(SP) < PC+3, SP « SP+2, PC + M(PC+1)

Indexed. M(SPj < PC+3, SP « SP+2, PC <« AR + M(PC+1)

The PC is saved in the memory location addressed by the R6 stack
pointer. Program control is then transferred to the location de-
fined by the label. In indexed addressing, control is transferred
to the location defined by the two-byte contents of the address
register plus the label.

After a subroutine jump, the next RTN instruction executed causes
a return to the instruction after the JSB.

JSB = LOCI
JSB X32, LOC2

Note: Since an indexed subroutine jump (i.e., JSB XR, label) can
cause a jump to an unlabeled destination, the programmer must
ensure that the ARP and DRP are set to ensure proper operation at
the destination. See Handling of ARP and DRP During Assembly later

in this section.

4-36

Assembler Instructions

CONDITIONAL JUMP INSTRUCTION

The conditional jump instruction can alter execution based on 16 different con-
ditions in the CPU.

J

CPU Instruction

Conditional Jump

Format:

Description:

JMP label Unconditional jump

JNO label Jump on no overflow

JOD label Jump on odd

JEV label Jump on even

JPS Tlabel Jump on positive Takes overflow into
JNG label Jump on negative } 2?3:18§r3§1agé aégxgbgj)
JZR label Jump on zero

JNZ label Jump on non-zero

JEZ label Jump on E zero

JEN label Jump on E non-zero

JCY label Jump on carry

JNC Tabel Jump on no carry

JLZ label Jump on left digit zero

JLN label Jump on left digit non-zero

JRZ label Jump on right digit zero

JRN label Jump on right digit non-zero

This group of instructions gives the capability of branching as a
function of status conditions previously generated. The branching
capability uses relative addressing. If the status condition
interrogated is found to be true, then the relative branch to the
address of the label will be taken. Otherwise, the next instruc-
tions after the jump will be executed.

Each jump instruction is assembled into two bytes: An opcode, and
an offset in two's complement notation.

4-37

Assembler Instructions

Example:

A jump can cover 4008 destinations from 2008 before the next in- J
struction to 1778 after the next instruction. The address to which
the jump is made is the sum of the address of the jump instruction

plus the offset plus two.

JMP INITAL When assembled, this instruction would appear as
shown below.

200
375 n -—- Offset = -3
376 n+ 1 JMP Offset = -2
377 n + 2 0ffset O0ffset = -1 (Current byte)
0 n+3--- Offset = 0 (Next byte)
1 n+4 --- 0ffset = +1
2 ntbh--- Offset = +2 _J
177

4-38

Assembler Instructions

ARP AND DRP LOAD INSTRUCTIONS

Two instructions are available for loading the address register pointer or the
data register pointer. These instructions are not normally needed because the
assembler automatically generates necessary ARPs and DRPs where required.

ARP CPU Instruction
Load ARP

Format: ARP AR

Operation: ARP

Description: Sets address register pointer to point to address register.

Example: ARP R25 Sets ARP to point to RZ25.

DRP CPU Instruction
Load DRP

Format: DRP DR

Operation: DRP
Description: Sets data register pointer to point to data register.

Example: DRP R25 Sets DRP to R25.

4-39

Assembler Instructions

NOTE
The instructions to load DRP indirectly with R@ and to load ARP
indirectly with Rp are:

DRP 1
ARP 1

Thus, to avoid confusion, R1 is not allowed in either the DR or AR
fields. This means that CPU register R1 is for all practical pur-
poses inaccessible except by means of a multi-byte RP operation or
when R@ = 1 and the ARP or DRP is specified by R*. See Using R*
later in this section.

4-40

Assembler Instructions

OTHER INSTRUCTIONS

In addition to the instructions above, there are a few other instructions which
the programmer can use to manipulate quantities in the CPU and memory.

BCD CPU Instruction

Set Decimal Mode

Format: DCM

Operation: DCM <« 1

Description: Sets DCM to 1 so that arithmetic operations will be in binary-
coded decimal.

BIN CPU Instruction

Set Binary Mode

Format: BIN

Operation: DCM « O

Description: Sets DCM to zero so arithmetic operations performed will be in

binary.
CLE CPU Instruction
Clear E
Format: CLE
Operation: E< O

Description: All four bits of the E (extend) register are cleared to zero.

4-41

Assembler Instructions

DCE

Decrement E

Format:

Operation:

Description:

ICE

Increment E

Format:

Operation:

Description:

CPU Instruction

DCE
E<«<E -1
E (extend) register decremented by 1. This instruction is always

a binary operation, regardless of the setting of the DCM status
flag.

CPU Instruction

ICE
E<E+1
E (extend) register incremented by 1. This instruction is always

a binary operation, regardless of the setting of the DCM status
flag.

4-42

Assembler Instructions

PAD CPU Instruction
Pop ARP, DRP and Status

Format: PAD
Operation: M(SP) ~ ARP, DRP and all status flags except E.

Description: Restore ARP, DRP and status (usually after a PAD instruction) by
popping them off the stack.

Stack pointer is decremented by 3, and all status flags except E
are altered by the contents of the three stack locations that are

read.

The first byte processed is read as LSB in bit 0, RDZ in bit 1, Z
in bit 2, LDZ in bit 6 and MSB in bit 7. The second byte is read
as DRP in bits 0-5, DCM status in bit 6, and overflow flags in
bit 7. The third byte is read as ARP in bits 0-5, carry flag

in bit 6, and overflow flag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

sp —» |OVF| CY \ . AIIRP ,)

Increasing OVF |DCM DRP
Addresses MSB|LDZ | 0 I 0 I 0 | z Iﬁill.se

7 6 5 4 3 2 1 0

4-43

Assembler Instructions

RTN

CPU Instruction

Return From Subroutine

Format:
Operation:

Description:

SAD
Save ARP, DRP

Format:

Operation:

Description:

RTN
SP « SP — 2, PC « M(SP)

Subroutine return stack pointer is decremented by two. Then the
return address is read from the stack and written into the program

counter.

CPU Instruction
and Status

SAD
M(SP) < ARP, and all status flags except E.

Saves ARP, DRP and status (except E) in memory locations addressed
by SP (stack pointer).

Three bytes are pushed onto the stack. The first byte contains
ARP 1in bits 0-5, CY in bit 6, and the overflow flag in bit 7.
The second byte contains DRP in bits 0-5, DCM status in bit 6,
and the overflow flag in bit 7. The third byte contains LSB in
bit 0, RDZ in bit 1, Z in bit 2, LDZ in bit 6, and MSB in bit 7.

SP is then incremented by three. Status is not affected by this

operation.

4-44

Assembler Instructions

Following a SAD instruction, the stack contents are as shown here:

Increasing
Addresses
OVF| CcY ARP
1 L 1 1 1
OVF | DCM DRP
MSB|LDZ | 0 |] | 0 | Z IRDZILSB
sp —»
1 1 1 1 1 1]

4-45

Assembler Instructions

USE OF R*

When entering source code, the programmer may substitute R* for the AR or DR in
any CPU instruction. R* causes the ARP or DRP to be loaded with the least sig-
nificant six bits of CPU register Rp. The effect is that the DR and AR are
specified by the contents of Rp.

Example: LDB Rp, = 26 Loads RP with 26.

LDB R*, R30 Loads CPU register specified by Rp (i.e.,
R26 now) with contents of R30.

STB R40, R* Stores contents of R40 into register (R26
now) specified by Rg.

ASSEMBLY OF CPU INSTRUCTIONS

When the address field of an instruction consists of a DR and an AR, each source
statement is usually assembled into three bytes of machine code. These bytes are
assembled in order as:

1. DRP: DRP set to point to DR.
2. ARP: ARP set to point to AR.
3. Opcode: Perform operation.

Thus, a stack push instruction such as PUBD would be assembled and appear as

shown here:

Byte No. Machine Code Source Code

000227 110 006 342 PUBD R10, -R6

When the address field of an instruction consists of a DR and a label, as in the
case of literal direct and literal indirect addressing (e.g., LDMI R32, = ADDRS),
each source statement is usually assembled into four bytes of machine code:

DRP: DRP set to point to DR.
Opcode: Perform operation.
Low-order byte of literal quantity.
High-order byte of literal quantity.

W N -~

4-46

Assembler Instructions

When the address field of an instruction consists of DR, AR, and a label, as in
the case of indexed direct and indexed indirect addressing (e.g., LDBI R36, X32,
TABLE), five bytes of machine code may be generated for each source statement:

DRP: DRP set to point to DR.
ARP: ARP set to point to AR.
Opcode: Perform operation.
Low-order byte of address.

o Rw N~

High-order byte of address.

HANDLING OF ARP AND DRP DURING ASSEMBLY

An optimizing feature of the Assembler ROM is the deletion of "unnecessary" ARP
and DRP instructions during assembly.

If an instruction is not labeled (i.e., there is not an entry in the label field)
and the ARP (and/or DRP) is already set to the correct value, the previously-set
ARP (and/or DRP) is not generated during assembly.

For example:

Byte No. Machine Code Source Code
000227 110 006 342 LABEL POBD R10, -R6
000232 342 POBD R10, -R6

In this example, both the ARP and the DRP are specified beginning with byte 227.
Since they are now correctly set for the next instruction, they are automatically
deleted when the second POBD R10, -R6 instruction is assembled. This results in

the machine code shown in byte 232.

Not all previously-set ARPs and DRPs are deleted during assembly. Instances
where a previously-set ARP and/or DRP will not be deleted include:

—-Labeled instructions. Since a jump from anyplace in code may cause execution
to resume at the label, the firsl ARP and DRP are not deleted after an instruc-

tion that contains an entry in the label field.

4-47

Assembler Instructions

--Returns. After executing a JSB, then returning, the first ARP and DRP encoun- N
tered are not deleted.

--PAD. Following a PAD instruction, the first ARP and DRP are not deleted.

USING R#

When entering CPU instructions, the user may substitute R# in almost any instruc-
tion requiring an AR or DR. R# causes the ARP or DRP to be deleted from the
machine code, regardless of other conditions. For example:

Byte No. Machine Code Source Code

000265 240 LABEL LDB R#, R#

R# is normally used after labels, when the ARP and DRP are already set correctly.
By using R#, it is not necessary to squander time or bytes resetting ARP and DRP.

PSEUDO-INSTRUCTIONS _

Pseudo-instructions are instructions to the assembler. Each may be entered by
typing a pseudo-opcode in the same field as the opcode for an instruction, fol-

lowed by any additional required operand.

Pseudo-instructions perform three main functions when encountered during assembly:

--Assembly control
--Data definition
--Conditional Assembly

4-48

PSEUDO-INSTRUCTIONS FOR ASSEMBLY CONTROL

ABS

Absolute Program

Format: ABS 16
ABS 32

ABS ROM base address

Assembler Instructions

Pseudo-Instruction

Description: Declares an absolute program (i.e., with addresses that cannot be
relocated), for either a computer with 16K bytes of memory, a com-
puter with 32K bytes, or for a ROM beginning with the specified
base address. If ABS 16 or ABS 32 is declared, the instruction

must precede a NAM instruction.

FIN

Finish Program

Format: FIN

Description: Signifies the end of the source code.

required for assembly.

GLO

Declare Global File

Format: GLO
GLO file name

Pseudo-Instruction

This pseudo-instruction is

Pseudo-Instruction

Description: If no file name, declares this source code to be a global file.
Otherwise, declares the global file to be used in the assembling of
the current source code. Comments are not allowed on the same line

as the GLO instruction, and the instruction must precede ABS and

NAM.

4-49

Assembler Instructions

LNK

Pseudo-Instruction

Link Files At Assembly

Format:

Description:

Example:

LST
List

Format:

Description:

LNK file name

Will Toad another file containing more source code and continue
assembling. Allows assembly of larger programs than would otherwise
be possible.

LNK SOURCZ2 When this instruction is encountered during assembly,
the assembler looks for the file SQURC2 on the current mass storage
device, loads the file, and continues assembling using the source
code from the file.

Pseudo-Instruction

LST

Causes the code to be listed on the current PRINTER IS device at
assembly time. If the column width of the printer is sufficient
(>46 characters) the 1isting will contain both the object and
source code; otherwise, only the object code will be listed.

An address that is undefined when its label is encountered will be

printed in object code as 326, 336, or 377, depending upon whether
it is a DEF, a relative jump, or a GTO statement.

4-50

NAM

Name Program
Format:

Description:

Example:

ORG

Origin

Format:

Description:

UNL
Unlist

Format:

Description:

Assembler Instructions

Pseudo-Instruction

NAM unquoted string

Sets up the PCB (Program Control Block) for a binary program.
Should be preceded only by GLO, ABS, LST, UNL, DAD, EQU, or com-

ments. Illegal when ABS ROM has been declared.

NAM KEYHIT Names a binary program KEYHIT and sets up the 328-byte

program control block for that program.

Pseudo-Instruction

ORG address
Specifies a base address which is added to all following defined

addresses (DAD's). This pseudo-instruction is most useful in global

files.

Pseudo-Instruction

UNL

Turns off the 1ist feature which was turned on by the LST pseudo-

instruction. After an UNL, code is not listed during assembly.

4-51

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR DATA DEFINITION

ASC
ASCII

Format:

Description:

Example:

ASP

Pseudo-Instruction

ASC numeric value, unquoted string

ASC quoted string

Inserts into the object code the ASCII code for the number of char-
acters specified of the unquoted string. Inserts the entire guoted
string.

ASC 3, FTOC Inserts the ASCII code for FTO.

ASC 4, FTOC Inserts the ASCII code for FTOC.
ASC "“LOCATION" Inserts the ASCII code for LOCATION.

Pseudo-Instruction

ASCII With Parity

Format:

Description:

ASP numeric value, unquoted string
ASP quoted string

Same as ASC except that the parity bit (MSB) of the string's final
character is set. (During operation, the HP-83/85 system determines
the end of an ASCII string in some system tables by checking to see
if the character's parity bit is set. When the bit is found set,
the system assumes the next character begins a new string or entry
in the table.)

4-52

Assembler Instructions

BSZ Pseudo-Instruction
Bytes To Zero

Format: BSZ numeric value

Description: Inserts into the object code the octal number of bytes of zeros
specified by the numeric value.

Example: BSZ 30 Fills 308 bytes with zeros.
BYT Pseudo-Instruction
Bytes To Values

Format: BYT numeric value [,numeric value...]

Description: Inserts literal values into the object code.
Examples: BYT 377 Inserts octal 377 (i.e., all ones) into object code.
BYT 20,55C Inserts octal 20 into this byte of object code and

BCD 55 into next byte.

DAD Pseudo-Instruction

Direct Address

Format: Label DAD address

Description: Assigns either an absolute address or a constant to a label. DAD
and EQU are similar; DAD is usually used for addresses, while EQU
is used for values other than addresses. ORG affects only DAD's.

Example: INTORL DAD 56343 Assigns absolute address 56343 to the Tabel
INTORL.

4-53

Assembler Instructions

DEF

Pseudo-Instruction

Define Label Address

Format:

Description:

Example:

EQU
Equals

Format:

Description:

DEF Tlabel
Inserts the two-byte address associated with the label.

DEF RUNTIM Inserts two-byte address of the label RUNTIM.

Pseudo-Instruction

Label EQU numeric value

Assigns either an absolute address or a constant to a label. DAD
and EQU are similar; DAD is usually used for addresses, while EQU
is used for values other than addresses. ORG affects only DAD's.

4-54

GT0
Go To

Format:

Description:

Example:

VAL

Value

Format:

Description:

Example:

Assembler Instructions

Pseudo-Instruction

GTO label

Generates four bytes of object code which load the program counter
(CPU registers 4 and 5) with the address minus one (i.e., ADR-1) of
the label. The label must be for an absolute address.

The CPU relative jump instructions (JRZ, JINO, etc.) can cause jumps
of from 1778 to -2008 memory locations. The GTO pseudo-instruction
is useful for jumping beyond the range of relative jumps.

WARNING
The GTO pseudo-instruction is primarily for use in
ROMs. It should not be used in a binary program
unless that program has been declared an absolute
program.

GTO INTORL

Pseudo-Instruction

VAL label

Inserts the one-byte literal octal value associated with the label.
PPROM# EQU 360

VAL PPROM# Inserts the one-byte literal octal value (360) of the
label PPROM# into the object code.

4-55

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR CONDITIONAL ASSEMBLY

This set of pseudo-instructions permits the user to control assembly by means of
conditional assembly flags. A conditional assembly flag has the same constraints
as a label--it can be no more than six characters in length, and the first char-

acter cannot be a digit.

A conditional assembly flag is treated the same as a label by the HP-83/85 sys-
tem. (For example, an assembly flag can be located by a label search.) For this
reason, a conditional assembly flag name should be unique, and should not dupli-

cate a label.

AIF Pseudo-Instruction
Assemble If Flag True

Format: AIF assembly flag name

Description: Tests the specified conditional assembly flag and, if true, con-
tinues to assemble the following code. If the flag tests false,
the source code after the flag is treated as if it were a series
of comments until an EIF instruction is found.

Example: AIF CYCLE Tests assembly flag CYCLE.

CLR Pseudo-Instruction
Clear Flag

Format: CLR flag name

Description: Clears the specified conditional assembly flag to the false state.

Example: CLR CYCLE Clears assembly flag CYCLE.

4-56

EIF

Assembler Instructions

Pseudo-Instruction

End Of Conditional Assembly

Format:

Description:

SET
Set Flag

Format:

Description:

Example:

EIF
Terminates any conditional assembly in process. Only one condi-
tional assembly can be handled at a time. If a second one 1is

encountered while the first is still active, the second will
override the first.

Pseudo-Instruction

SET flag name

Sets the specified conditional assembly flag to the true state.

SET CYCLE Sets conditional assembly flag CYCLE.

4-57

NOTES

4-58

SecTioN 5

HP-83/85 SYSTEM ARCHITECTURE AND OPERATION

This section explains how system memory is allocated in the HP-83 and HP-85
computers, how programs are stored in that memory, and how a statement is parsed
and becomes part of a BASIC program. It also explains the sequence of operations

that occurs when a BASIC program is run.

In the computer, BASIC programs are executed by an interpreter that is part of
the firmware operating system. However, the code that is interpreted is vastly
different from the BASIC statements as they were originally entered. As the
statements are entered, they are parsed and compiled into a form of RPN (reverse
Polish notation), which can be interpreted more efficiently than the BASIC state-
ments. As part of the parsing and compiling process, all BASIC reserved words
are converted to single-byte tokens. This makes the internal form of the code
somewhat more compact than the original form, and also makes interpretation

easier and faster.

Also as part of the process of parsing and compiling, variables are placed in a
variable storage area, with only their addresses remaining in the area containing

the tokens.

A BASIC program, then, is held in memory as a series of tokens and addresses of
variables. To execute the program, the computer processes these token and vari-
able addresses in order. As each token is processed, it causes the machine to

go to a table of routine addresses and execute a specific routine whose address is
within that table. If the token indicates a variable, the machine uses the next

two bytes as the variable address.

5-1

HP-83/85 System Architecture and Operation

Execution
Variable - Token for MULTIPLY |~——————— > MULTIPLY Routine
—_— No Token for LET \‘\\\ —_—
~
- ~ N ~ —
S Token for Variable |W ™\ >~
— o N g —_
~ Variable N N ~
~——_ Address \ \\
- N
-~ Next Token NN
\ 3
\\ LET Routine
\ ——
\
\ —_—
\ —

EXECUTION BY TOKENS

A binary program in memory, or a plug-in ROM, merely provides additional tokens
(and their corresponding routines) to the set of HP-83/85 tokens and routines.
This should become clear later in this manual.

HP-83/85 System Architecture and Operation

SYSTEM MEMORY

The memory of the HP-83/85 is arranged as shown here:

Decimal Octal
Address Address
0 000000
System
8K 017777 ROM
020000 System
16K 037777 ROM
040000 System
24K 057777 ROM o
060000 ROM 0 ROM1_[ROM2 |ROM3} T}OM%4‘
|
System Plugin | Plugin | Plugin | | Plugin |
32K 077777 ROM ROM J ROM | ROM | | ROMJ
100000 "'
System
48K 137777 RAM
140000 " pucin |
177377 | RAM _'
177400 1o
Addressing
64K 177777

SYSTEM MEMORY

As shown in the memory map, the main system contains three 8192]O-byte ROMs, the
system ROMs. The fourth ROM space is for bank-selectable ROMs and it is shared
by another system ROM and all plug-in ROMs. The only differences between the
last system ROM and plug-in ROMs are that the select code for the system ROM is
0, and that the system ROM contains routines necessary for the HP-83/85 system
to operate. Each plug-in ROM has its own unique select code. For example, the
select code for the Assembler ROM is 4010.

The last 256]0 locations in the RAM address space are reserved for memory=-mapping

I1/0 addresses.

5-3

HP-83/85 System Architecture and Operation

PROGRAMS IN MEMORY

There are two kinds of programs that can be resident in memory: BASIC programs
and binary programs. In the HP-83/85, memory can contain a single BASIC program,
BASIC subprograms, and a single binary program at one time. In addition, the
computer can access the binary programs located in plug-in ROMs; these ROMs are
bank-selectable by means of their select codes. In form and application, a
plug-in ROM is closely akin to system ROM P or a binary program. Unlike a binary
program, however, ROMs are not relocatable, and always begin with memory location

600008.

Within the HP-83/85, there are many pointers that are used to delineate and
identify the different components of memory. Some of these pointers are in CPU
registers, while others are at various locations in RAM.

ALLOCATION

A BASIC program may be resident in either allocated or de-allocated form. As a
program is first entered from the keyboard, it is de-allocated and can still be
edited. When a BASIC program is run for the first time, however, it must be
allocated before it is actually executed. Memory that contains a de-allocated
BASIC program appears as shown on the left below. An allocated program results

in memory as shown on the right.

]

System RAM |

Area Reserved by
External ROMs

Main

New Program Line

Available Memory

Calc.Variables

GOSUB/RTN Stack

Binary Program

-

Pointers

103300

HP-83/85 System Architecture and Operation

FWUSER/IFWPRGM/FWCURR

NXTMEM

R12

LAVAIL

CALVRB/RTNSTK

BINTAB

LWAMEM

De-Allocated Program (Edit)

System RAM

Area Reserved by
External ROMs

Common

Main

Subprogram

Operating Stack

Available Memory

Calc.Variables

Temp Memory

For/Next Stack

Assign Buffers

GOSUB/RTN Stack

Binary Program

Pointers

103300

FWUSER

FWPRGM/FWCURR

NXTMEM

R12

LAVAIL

CALVRB

RTNSTK

FWBIN
BINTAB
LWAMEN

Allocated Program (Non-Edit)

MEMORY AREAS

DE-ALLOCATED PROGRAM
When a BASIC statement is typed and [END LINE] is pressed, the computer checks

for de-allocation.

then de-allocates it.

If the program is not already de-allocated, the HP-83/85

In a de-allocated program, program variables are held as names rather than

addresses, and the program can still be edited.

As illustrated above, in a de-allocated program the entire memory space is made

up of RAM.

The pointers that define the areas within RAM are:

HP-83/85 System Architecture and Operation

FWUSER: FWUSER points to the first byte of RAM that can be accessed for a BASIC
program by the user. FWPRGM points to the first byte of the main program.
FWCURR is the first byte of the current program. These three pointers are all
the same in a de-allocated program using the basic HP-83/85. (An external ROM
that gives subprogram capabilities might cause these to be different.)

NXTMEM: NXTMEM points to the first byte after the end of the program as the

program currently exists.

R12: CPU register R12 points to the execution stack. It is always used as an
increasing stack, so R12 defines the first word of available program memory.

LAVAIL: This pointer defines the last word of available memory. LAVAIL actually
points to the first word of the area where calculator variables are stored.

CALVRB and RTNSTK: These define the end of the calculator variables and the
beginning of the BASIC subroutine return stack. These returns are the BASIC
program's returns (and in a de-allocated program no returns exist here). These
returns are not the same as those in a binary program, which are stored on the

R6 stack.

BINTAB: Address of the first byte of the binary program. Although other pointers
may change during allocation, BINTAB does not.

ALLOCATED PROGRAM

When a RUN, INIT, or STORE command is executed on the HP-83/85, the computer
checks the allocation status of the resident BASIC program. If the program has
not been allocated, the HP-83/85 allocates the program before executing further.
Allocation creates variable space at the end of the BASIC program for all vari-
ables, and replaces all variable names with relative addresses. This allocation
ultimately causes the program to be executed much more quickly.

The previous illustration of memory areas also shows an allocated program in
memory. If common variables have been declared (that is, variables that are

held in common by two BASIC programs), FWUSER points to the beginning of this

5-6

HP-83/85 System Architecture and Operation

common area, while FWPRGM points to the first word of the main BASIC program.
(FWCURR points to the current program; this is the same as the main program un-
less an external ROM has provided subprogram capability.)

Such internal routines as print operations and string concatenation require
temporary scratch-pad memory; this is provided as needed in the area directly
after that addressed by CALVRB, and is released by the system immediately after
the operation is performed. The FOR/NEXT stack is another temporary area that

is provided when needed.

The Mass Storage ROM and the internal tape routines require 284]0 bytes for each
buffer (up to a maximum of 10 buffers), and these scratch-pad work areas are
obtained in the buffer area directly above the GOSUB return stack.

SOFTWARE-DEDICATED CPU REGISTERS

Certain CPU registers are hardware-dedicated, and these registers always are used
for the same tasks. Software-dedicated CPU registers are those registers which
the system routines use for specific tasks. The registers and tasks vary, de-
pending on whether the computer is parsing a statement, executing code at run-
time, etc. However, here are the tasks of some of the most commonly-used CPU

registers:

Execution Pointer: At runtime, registers R10 and R11 house the program counter

(PCR), a pointer for executing a BASIC program. At parsetime, this pointer

addresses the input stream.

Stack Pointer: Registers R12 and R13 contain the address of the operational

stack pointer (SP).

Current Token: Register R14 contains the current token being processed in parse

and decompile operations.

CSTAT: Register R16 contains CSTAT, which defines current status.

5-7

HP-83/85 System Architecture and Operation

XCOM: CPU register R17 contains XCOM (external communication). The bits of this
byte are used to discover why execution has halted, and to specify what to per-

form during the halt.

HP-83/85 OPERATION

The basic HP-83 or HP-85 is controlled by system routines that are permanently
resident at fixed addresses in memory. The addresses and names of many of these
system routines may be found in the global file in section 7 of this manual.

In addition to the system routines, control can also pass to one of the plug-in
bank-selectable ROMs, or to a binary program in the HP-83/85 memory. At certain
times in the operation of the HP-83/85, the resident binary program and any ROMs
are polled by the main system. In addition, there are a number of entry points,
or "hooks," that allow HP-83/85 operation to be intercepted and modified by a
binary program or ROM. These hooks normally do nothing in the system, but they
can be used to take over the system at certain key times.

TOKENS

The HP-83 and HP-85 use tokens to represent the keyword, such as LET, FOR, BEEP,
etc., that make up each BASIC statement. Each token is a one-byte quantity that
indicates to the machine the addresses of routines associated with that token.
Each token must have an associated entry in a table of routines for execution

at runtime, another entry in an ASCII keyword table, and a third entry in a table
of parse routines. A Tist of all system tokens may be found in appendix F.

The computer itself is a token-driven machine--a program is held in memory as a
series of tokens and variable addresses, and the machine processes these tokens

and addresses in order.

HP-83/85 System Architecture and Operation

Runtime Routine Address Tables

Token | whahm > System Table

Token \
Main BASIC Program 4 \

Variable Address _.‘\ \\

T
L oken

\ External ROMs

Variable Storage Area
4

Binary Program

EXECUTION BY TOKENS (RUNTIME)

At runtime, for example, as the system executes a program, it processes a token
by fetching the address of an associated runtime routine from a table of ad-
dresses. The runtime table may exist in a binary program and/or an external ROM
as well as in the main system. The system performs a JSB to the specified
address to execute the routine, then fetches the next token and searches for its
runtime routine in the tables, etc.

Some tokens indicate to the system that the two bytes following the token con-
tain a variable address. In this case, the system processes the variable by
locating it in one of the variabie storage areas in memory.

Other tokens indicate that the bytes following the token are constants to be
pushed onto the R12 stack.

Two tokens, 3708 and 3718, are used to expand the token tables. Token 370 indi-
cates to the system that the next byte is the number of a ROM, and that the byte
after the ROM# is the token within that ROM's tables that is actually to be
executed. Token 371 directs the system to a binary program in the same way.

More on these tokens later.

5-9

HP-83/85 System Architecture and Operation

OVERALL SYSTEM FLOW
System flow in the HP-83/85 is shown by the flowchart below.

Powel’-On System
(PWO) p init.
// routines
e !
4 ¥
/
System /
PWO / ROM and
Error Initialization < binary pgm.
Conditions ROMINI init. routines
- . e
Parser Exfgghve Interpreter
// \\ V4 \\
7 N / AN
y= 2V ¥ A
ROM and System ROM and System
binary pgm. |- —p. parse binary pgm. | - 9 runtime
parse routines runtime routines
routines routines

In general, loading and running a program, or executing a calculator mode state-

OVERALL SYSTEM FLOW

ment, will require execution within the following areas:

Executive Loop:

Toop and waits for some kind of action.

After power-on initialization, the system enters the executive
The executive loop makes calls to the

appropriate areas for initialization, parsing, allocation, running, and errors.

Parser:

the CRT, parsing occurs when [END LINE] is pressed.

ASCII code into tokens.

After a program line or calculator mode statement has been entered to
Parsing is the changing of

HP-83/85 System Architecture and Operation

In parsing, the parser first searches the ASCII tables in the resident binary
program for a keyword match, then searches the ASCII tables in any external ROMs,
and finally searches the system tables.

Interpreter: The interpreter actually runs a program or executes a calculator
mode statement by fetching tokens in order and calling the runtime routines to

execute them.

In addition to the areas above, there are two other areas which may be called:

Initialization: At many times, including power-on, RESET, SCRATCH, etc., the
system calls routines for initialization. Initialization routines are called
through the ROMINI routine; the system polls system initialization routines
first, ROM routines second, and the routine in the resident binary program last.

Errors: If errors are detected, the system generates the proper warning or error

message.

EXECUTIVE LOOP

After power-on initialization, control passes to the executive portion of the
system. The flowchart on the following page details the operation of this

executive loop.

The executive loop itself contains a smaller loop that examines CPU registers
R16 and R17 for status information. R16 contains CSTAT (current status), while

R17 contains XCOM (external communication).

As long as the value of R16 is zero and all bits of R17 are set to zero, the
system remains in the small loop. An interrupt, such as pressing a key, causes
the system to leave the small loop and process the interrupt as shown on the

flowchart.

HP-83/85 System Architecture and Operation

‘ EXEC '

IS
A16 ODD
?

Y

JSB =
RMIDLE

XCOM (R17)

=0
?

CSTAT (R16)

?

MODE IN INPUT
?

INPUT
COMPLETE
?

SETR16=2
{RUN)

!

FINISH
INPUT

ALLOCATE SETRIS
M
S8 =
INTERPRETER
JSB =
INTERPRETER
Y
CALC N

r___

CLEARBIT1
IN Rt7

!

JSB =
CHIDLE

e

HANDLE
KEY

Y

CLEAR SERVICE
REQUEST BIT
IN R17

PRINTALL
MODE
?

v]

CALC
MODE PENDING
?

GET
SVCWRD

JSB = SERVICE
10SP CLOCK
OUTPUT TO
PRINTER IS
DEVICE
CLEAR BIT
IN SVCWRD
SET INPUT
COMPLETE BIT
(BIT 1) IN R17
JSB= Y
PARSER
CLEAR SERVICE
REQUEST BIT
\ N (BIT 4) IN R17

REPORT
ERROR

CLEAR CSTAT.
CIFAR ALI RUT
SVCREQIN R17

!

Y

SERVICE
REQUEST
2

INPUT
COMPLETE
?

(RUN INMIDDLE

SETR16=7

OF LINE)

!

CLEARBIT 1
IN R17
{INPUT

COMPLETE)

—

REPORT
ERROR

EXECUTIVE LOOP

5-12

HP-83/85 System Architecture and Operation

N CSTAT

CPU register R16 contains an eight-bit word that is interpreted as current status.

CSTAT (R16) Value Status

/) Idle.

1 Calculator mode.

2 Run mode. (Program is running.)

3 Not used.

4 Idle during input statement.

5 Calculating during input statement.
(Evaluating expression before entering
it as variable.)

Not used.
RUN in the middle of a line.
(GOSUB or GOTO occurs because of a
timer interrupt or soft key interrupt.)
8 - 255 Not used.

CURRENT STATUS

CSTAT is examined as an entire byte by the system.

HP-83/85 System Architecture and Operation

XCOM

CPU register R17 contains XCOM, eight bits which are used for external communica-

tion of interpreter status.

XCOM (R17) Bits Interpreter Halt
Bit P set End of calculator mode.
Bit 1 set Input complete.
Bit 2 set Step mode.
Bit 3 set Trace mode.
Bit 4 set Service request. (Any interrupt sets this
bit.)
Bit 5 set Immediate set. (Can be set by user to

halt interpreter.)
Bit 6 set Error set.
Bit 7 set Break. (OR of bits 5 and 6.)

INTERPRETER HALTS

During its cycles, the interpreter examines bit 7 of XCOM to determine if the
interpreter is to halt. After an end-of-line token has been executed, the
interpreter executive loop examines all bits of XCOM to see if control should be
returned to the executive loop for further action. Any routine that sets bit 5
or bit 6 in R17 must also set bit 7, since the interpreter examines only bit 7.

HOOKS

Hooks into the executive loop are available through subroutine calls to RAM
locations RMIDLE, CHIDLE and IOSP. In the normal system, each of these locations
in RAM merely contains a return (RTN); they are present to allow the taking over
of the executive loop by a binary program or external ROM.

ROMFL

ROMFL is a single-byte RAM location used to pass program conditions (such as
RESET or RUN), to binary and ROM programs for initialization. Before the
initialization routine in the binary program or external ROM is called, ROMFL is
set to indicate the kind of condition that has occurred.

\

HP-83/85 System Architecture and Operation

SVCWRD
SVCWRD is a RAM location that indicates the kind of interrupt.

SVCWRD Bit Type of Interrupt
Bit P set Keyboard interrupt.
Bit 1 set 1/0 interrupt.
Bit 2 set Timer 1 interrupt.
Bit 3 set Timer 2 interrupt.
Bit 4 set Timer 3 interrupt.
Bit 5 set Other interrupt.
INTERRUPTS

INTERPRETER LOOP

The interpreter loop fetches the next token, processes it, and passes control to
its runtime code. When the runtime code has been executed, control returns and
the interpreter continues with another token. The following page shows a flow-

chart for the interpreter.

A token is an ordinal into a table of addresses. The address table is made up of
two-byte addresses, so to find the actual address, the token is doubled, then
added to the base address. This changes the ordinal into an offset pointing to

the correct address.

Address Table Runtime Routines

2-byte

(Token x 2) + Base Address N
address.

|
s -
|

address.

2-byte

address.

HP-83/85 System Architecture and Operation

(INTERPRETER ’

[

SETPCR(R10)
TO ADDRESS
OF 1STTOKEN

\

SET
TOS=R12

!

RELEASE
TEMPORARY
MEMORY

-
A

GET NEXT
SYSTEM TOKEN

/

DOUBLE
IT

Y

ADD TO BASE
ADDRESS OF
RUNTIME TABLE

Y

GET RUNTIME
ADDRESS
FROM TABLE

RUNTIME
ROUTINE

INTERPRETER LOOP

5-16

HP-83/85 System Architecture and Operation

After the runtime code is executed, the interpreter checks to see if the imme-
diate break is set in R17, and processes the next token if it is not.

The procedure shown is for system tokens. Tokens 370 and 371 provide access to
external tokens (that is, tokens whose tables reside in a binary program or ROM).

To find an external token, the interpreter first processes system token 370,
doubles it, then adds it to the base address to find the system runtime routine
for token 370. This runtime routine fetches the next two bytes via the R10
pointer; these bytes include the ROM number and the number of the token in the
ROM or binary program. The runtime routine for the token 370 or 371 then handles
this ROM or binary program token much the same way that the interpreter handles

system tokens.

PARSING

As a line of a program or calculator mode statement is entered to the CRT, it is
in ASCII code. When [END LINE] is pressed, the line is parsed. Parsing is the
process of translating the ASCII code into the internal form in which programs
are stored and run in the HP-83/85.

As a line is parsed, it is checked for syntax errors, changed to RPN (Reverse
Polish Notation) from its original algebraic form, and converted into tokens that

are then stored.

Fach token consists of a single byte, and can represent a single keyword, such
as LET or PRINT. Tokens 370 (ROM token) and 371 (binary program token) are used
to allow extensions of the system by means of external ROMs and binary programs.

A table of system tokens may be found in appendix F of this manual. ASCII codes,
which are also used during parsing, may be found in appendix E.

Parsing begins with the Tine number or the first character of the statement and
moves to the right, processing each character and space. Multiple non-quoted
spaces are compressed (i.e., ignored) during parsing.

HP-83/85 System Architecture and Operation

Example: In parsing the 1ine 10 LET A = B * SIN (45), the HP-83/85 system pro-
duces the following tokens in the order shown.

Tokens
(Octal Values)

20 l Line number in BCD. (Two digits per byte.)
0

17 Length in bytes of statement.

142 LET token.

21 Store simple numeric variable token.

40 ASCII codes for the variable "blank A."
101

1 Fetch numeric variable token.

40 Blank B (in ASCII).

120

32 Integer token.

105

0 BCD 45 in integer format.

0

330 Sine token.

52 Multiply token.

10 Store numeric value token.

16 End of statement.

The stack addressed by CPU register R12 is used for parsing. A token is pushed
onto the stack, the stack pointer is incremented, the next token pushed on, etc.

Parsing begins with the 1ine number. This is loaded in BCD form; 20 is loaded
first, since it is the least significant byte.

Next is the size or length of the statement. During parsing this is a blank
placeholder byte; STSIZE is a pointer to the placeholder byte.

5-18

HP-83/85 System Architecture and Operation

In order to find a match for the keyword LET, the system looks first in tables
in the resident binary program, then in any external ROMs, and finally in the
internal HP-83/85 system tables. (For this reason, a binary program or external

ROM can take over any keyword.)

After parsing, if the statement was a program 1ine, its tokens and addresses are
inserted into the program space at the correct locations. If it was an expres-
sion or calculator mode statement, the parsed code remains on the R12 stack and

is executed immediately.

For further details of parsing operations and register conventions at parse time,
along with specific system parse routines, refer to Parsing in section 7.

ATTRIBUTES

In the process of parsing a BASIC statement, code is generated which consists of
tokens and other information. For each token there is a set of attributes which
define the type of token. The attributes occur immediately before the runtime

code for the token.

T T T T
Secondary Attributes (If required) Par. 3 I Par. 4 Par. 5 Par 6 Increasing
Addresses
Secondary Attributes # of parameters Par. 1 Par. 2
Primary Attributes Type ‘ Class

Runtime routine starts here

ATTRIBUTES

Attributes are used to specify how parsing is to occur, how allocation and de-
allocation are to be performed, and how decompiling is to occur. They indicate
to the system how the token is to be handled at these times. Attributes are not

used at runtime.

There are two types of attributes: Primary and secondary. All tokens have pri-
mary attributes, but only BASIC language system-defined functions and operators
have secondary attributes. The primary attributes immediately precede the run-
time code. Secondary attributes occur before the primaries, and may occupy one

or more bytes.

HP-83/85 System Architecture and Operation

PRIMARY ATTRIBUTES

Within the primary attributes, the two most significant bits specify the token
type. The next six bits specify the class.

TYPE
Bits 7 and 6 define the type of token.

Bits 7, 6 Type
11 BASIC statement, illegal after THEN.
10 BASIC statement, legal after THEN.
01 System command. (Non-programmable.)
00 Other (Not BASIC statement; e.g., function or operator.)
Examples:
Token Primary Attribute
DEF FN 3xx Illegal after THEN.
LET 2xx Legal after THEN.
DELETE 1xx Not programmable.
SIN Oxx Not a BASIC statement.
CLASS

The class indicates the form of the token. In many cases, the class is specific
to a few tokens. A complete 1ist of tokens and primary attributes may be found
in appendix F, but the classes of tokens most often used in assembly language

programming are shown here.

5-20

HP-83/85 System Architecture and Operation

Class Token Description
(Bits 5-0)
40 Immediate execute.
41 Other reserve words (i.e., most BASIC statements.)
42 100 Misc output (e.g., @ for special character handling).
44 31 Misc ignore. (Invisible at decompile time.)
50 Numeric unary operator. {e.g., —.)
51 Numeric binary operator. (e.g., +, — *. /, /)
52 String unary operator.
53 String binary operator. {e.g., &)
55 Numeric system function {e.g., SIN, COS).
56 String system function. (e.g., CHRS, VALS.)

USEFUL TOKEN CLASSES

SECONDARY ATTRIBUTES

Secondary attributes

are used to specify the parameters for system-defined func-

tions, as well as the precedence of numeric and string operators.

SECONDARY ATTRIBUTES

FOR FUNCTIONS

A single byte can specify the parameter type for a function. A second byte is
required only if there are more than two parameters. The first two bytes of

secondary attributes

are shown here.

7 6 5 4 3 2 1 0 Bit

Par. 3 Par. 4 Par. 5 Par. 6 Second Byte

of parameters Par. 1 Par. 2 First Byte

Parameter types must
here.

PARAMETER LOCATION

be included for all parameters used. The types are shown

Parameter Type Description

0 Numeric

1 Numeric array
2 String

3 Not available

PARAMETER TYPES

5-21

HP-83/85 System Architecture and Operation

SECONDARY ATTRIBUTES FOR OPERATORS

Secondary attributes also specify the precedence of numeric and string operators.
The Teast significant four bits specify the precedence, as shown.

7 6 5 1 it

[T

PRECEDENCE LOCATION

The precedence is defined within the HP-83/85 system as:

2 OR, EXOR

4 AND

6 Relational operators

7 +, -, Monadic +, monadic -, NOT
12 *, /,\ , DIV, MOD
14 ~

(Some early versions of the HP-85 may have slightly different precedence.)

The only string operator is &, the concatenation operator, and it has a prece-

dence of 7.

RUNTIME

When a BASIC program is run, it is first allocated--all variable names are
changed to relative addresses and all Tline references (such as GOTOs and GOSUBs)
are changed to relative address references.

When the program is executed a token pointer (CPU register R10) is set to the
first line of the main program, or to a specified line number, and control
passes to the interpreter loop. The interpreter fetches a token, fetches the
address of its runtime routine, and performs a JSB jump to the address to
execute the routine there. The interpreter then fetches another token and

execution continues to the end of the line.

5-22

HP-83/85 System Architecture and Operation

Example: Recall the parsing for the Tine
10 LET A = B * SIN(45)

After parsing and allocation, tokens for the line are stacked in the program

portion of memory as shown on the left below.

Tokens R12 Operating Stack
20 }
0 —_— 1
17
142
21 } Address of 2
Address of A A
o ||
Address of B \ Address of A 3
1::)25 } Value of B
0
0 Address of A
330 } B 4
52 } 45
0w)
16 Address of A
B 5
SIN (45)
Address of A 6
B*SIN (45)
7

RUNTIME EXECUTION

R10 points to token 142. The interpreter passes over the line number (the first
two bytes here) and the length (value 17, indicating that 17 bytes following be-
long in this line), then fetches token 142.

Token 142, the token for LET, is used as an index into the runtime table, a table
of addresses which point to the runtime routines for the tokens. The interpreter
fetches the address for the runtime routine for LET and causes a JSB to the
routine. The LET routine does not affect the Ri2 stack.

5-23

HP-83/85 System Architecture and Operation

After a return, the interpreter loop fetches the next token, and a JSB is done
to that token's runtime routine. Since token 21 is the token for storing to a
variable, the next two bytes (the variable address) are loaded from the token
stream and pushed onto the R12 stack. These two bytes together give the address
of variable A. The name block of variable A is also fetched from that address
and pushed onto the R12 stack.

After a return to the interpreter loop, the runtime routine for the next token,

1, fetches a variable value. This fetch routine loads the next two bytes, which
are the address of the variable from the token stream, and uses that address to

fetch the value of variable B and push it onto the R12 stack.

After another return to the interpreter loop, token 32 causes the next three
bytes to be loaded from the token stream and pushed onto R12 as an eight-byte
tagged integer constant.

After a return, the next token, 330, causes a JSB to the sine routine. This
routine expects a numeric value on the R12 stack; it calculates the sine of that
value and pushes the computed result back onto RiZ2.

The routine for the next token, 52, is the multiply routine. It expects two
numbers on R12, and it pops these numbers off, multiplies them, and pushes the
result back onto R12. The runtime routine for token 10 stores the value that
is on the stack into the address of the variable that is on the stack.

Token 16, the end-of-line token, causes some internal clean-up (such as releasing
any memory that might have been reserved by the line, etc.) and moves the run-
time pointer past the line number of the next line to its first token.

For further details and specific system runtime routines, refer to Runtime in

section 7.

DECOMPILING

Decompiling is the process of listing a program or statement. Internally, it
requires the reconstruction of input code as it was entered to the CRT screen.
The tokens which have been parsed into RPN and distributed in the system must be

5-24

reassembled into algebraic notation.
process of parsing and compiling.

Decompiling is a two-stack operation.

HP-83/85 System Architecture and Operation

Decompiling is actually the reverse of the

An expression stack is used to reconstruct

expressions from RPN to their original form, and an output stack is used to

buffer the output.

R12 is used for the expression stack.

In decompiling, the system processes each token and uses its class (a component
of the token's primary attributes) to determine how the token is to be decom-

piled.

Class

p

W NN~

34

36
41

42

44
50

51

52
53
55

56

Type of Token
End-of-line
Fetch variable
Integer

Store variable
Numeric constant
String constant
Subscript, e.g., A(3)
Dimension subscript
e.g., A$[]

Prints

Other reserved words

Miscellaneous output

Miscellaneous ignore
Unary operator

Binary operator

String unary operator
String binary operator
System function

String system function

Here are some common classes and how they are decompiled.

Action
Unstack.
To expression stack.
To expression stack.
To expression stack.
To expression stack.
To expression stack.

() to expression stack if token odd; other-
wise (,) to expression stack.

[] to expression stack if token odd; other-
wise [,] to expression stack.

Unstack and push , to output.

If : then unstack, output reserved word,
then unstack.

If @ then push to expression stack and un-
stack; otherwise output.

Ignore.

Insert after most recent missing operator in
expression stack.

Replace most recent missing operator in ex-
pression stack.

Same as class 50.
Same as class 51.

For each parameter, replace the most recent
missing operator with , . Then insert func-
tion name and (at most recent missing opera-
Lor and push) onto expression stack.

Same as class b5.

DECOMPILING BY CLASS

5-25

HP-83/85 System Architecture and Operation

The following example should help illustrate how decompiling occurs:

Example: Recall again that the statement

10 LET A = B * SIN(45)
was parsed into the tokens shown below. These tokens are decompiled into the
output stack and the expression stack as illustrated.

Step Output Stack Tokens R12 Expression Stack

1. 10 4———{ 2

8 1 T -
2 OLE I 142

21
40
3. 10 LET 101

377

4. 10 LET 40
102

377

32 377

105
5. 10 LET 0

377

3rn

6. 10 LET 330

377
45

ey

kg4

377

377
SIN(
45

5-26

HP-83/85 System Architecture and Operation

7. 10LET 52
8 10LET 10 }
———
ar7
A
an?
B
SIN(
45
}
ar?
A
B
SIN(
as
)
9. 10LETA=B*SIN@45) 16
DECOMPILING

Since the tokens are arranged in RPN internally, as the system decompiles the
tokens it pushes missing operator tokens (377) onto the expression stack. These
missing operator tokens are merely "placeholders" until the arithmetic operators

can be inserted at a later step.

Unlike parsing, decompiling is not an operation to which a binary program or ROM
normally has access, since these programs are seldom required to perform any
unique operations during decompiling. In some special cases the parse routines
for a binary program or ROM may require modification if a statement is to be
decompiled correctly. But for the most part, decompiling will not be a problem
for the writer of binary or ROM programs.

For further details and specific system decompile routines, refer to section 7.

5-27

HP-83/85 System Architecture and Operation

VARIABLE STORAGE

In the HP-83/85, variables may be stored in the variable storage area at the end
of the BASIC program, in the common storage area, and in the area allotted for

calculator variables.

FWCURR ——»

1st variable token

Address
(2 bytes)

Main - —
BASIC Program <
and Memory

2nd variable token
Address
(2 bytes)

Variable space length

(2 bytes)

Name block,

1st variable

L]
Value

Program
Variables ﬁ Name block,

2nd variable

Value

NXTMEM ——» |

VARIABLE STORAGE

5-28

HP-83/85 System Architecture and Operation

In the main BASIC program, each variable is referenced by means of a token fol-
lowed by a two-byte address. The variable itself is held in another part of
memory, within the storage area for program variables. Immediately after the
end of the BASIC program and available memory area in RAM is a two-byte quantity
that signifies the beginning of variable storage and contains the length of the
total space allotted for storage of that program's variables.

Each variable consists of a name block followed by the value of the variable.
The two-byte variable address in the program is a relative one--it is actually
a measure of the distance from FWCURR to the variable's name block in the
storage area. The name block for each variable contains information about the
variable. The format of the variable is shown here:

Byte Bits

LEGEND

it Meaning
= Numeric
= String
T2 = Simple
= Array
T, T0 = Real
= Integer
= Short
(Not used)
R2 = Local variable
= Remote variable
= Not being TRACEed
= Being TRACEed

= Variable

R1

RP

- O - O = O W N - D = 0 — O
n

= Function value

5-29

HP-83/85 System Architecture and Operation

N3 through NO and L4 through LO describe the variable name of the form A-Z or

A0-29.
N3 through NO

L4 through LO

Number minus 608; or 128 if blank.

Alpha (ASCII) Code minus]008.

x In the following diagrams, x indicates the setting of the bit does not matter.

SIMPLE VARIABLE STORAGE
LOCAL VARIABLES

N3 N2 N1 NO

L3 L2 L1 Lo

Byte
0 0 0 ™" TO
1 0 R1 0 L4
2 Value

8 bytes if real number.

REMOTE VARIABLES

4 bytes if short number.

3 bytes if integer number.

A remote variable is a common variable or a subprogram parameter passed by refer-
ence. Subprogram capabilities are available through some ROMs and these subpro-

grams may have variables held in common.

Ti TO N3 N2 N1 NO

Byte
0 0 0
1 1 R1

0 L4 L3 L2 L1 LO

Pointer (2 bytes) to vaiue

5-30

- ARRAY VARIABLE STORAGE

LOCAL VARIABLES

Byte

~N o 0 b W N

10

10+n

10+n*m

10+n*m+n
etc.

REMOTE VARIABLES

HP-83/85 System Architecture and Operation

Common area passed by reference.

Byte

0 1 T TO N3 N2 N1 NO
0 R1 0 L4 L3 L2 L1 Lo
Total size as originally declared
(2 bytes)

Max row
(2 bytes)

Max column (377,377 if vector)

(2 bytes)

Row 0, column 0
Row 0, column 1
Row 0, column m
Row 1, column 0
0 1 T1 TO N3 N2 Nt NO
1 R1 0 L4 L3 L2 L1 LO

Pointer to total size

5-31

n = Element size (3, 4, or 8)

m = Number of columns.

HP-83/85 System Architecture and Operation

STRING VARIABLE STORAGE
LOCAL VARIABLES

Byte
0 1 0 X x N3 N2 N1 NO
1 0 R1 0 L4 L3 L2 L1 LO
2 Total length
3 (2 bytes)
4 Max length
5 (2 bytes)
6 Actual length
7 (2 bytes)
10+ String (as many bytes as required)

Maximum length is the maximum number of characters that can be placed in the

variable string. Actual length is number of characters currently in the variable

string. Total length and maximum length are always the same unless:

--An I/0 ROM 1is plugged in and this string is declared an I/0 buffer.

-~This string has been declared as a string array (using a ROM with advanced
programming capabilities).

REMOTE VARIABLES

Common variable or subprogram parameter passed by reference.

Byte

0 1 0 X x N3 N2 N1 NO
1 1 R1 0 L4 L3 L2 L1 Lo
2 Pointer to total length

FUNCTION STORAGE

The user-defined functions in a BASIC program (created with DEF FN) are stored in
much the same manner as variables. Each is preceded in memory by a block that

gives information about the function.

5-32

HP-83/85 System Architecture and Operation

Because a function must restore status when it returns to a calling program,

a stored function saves a return address (in R10), the BASIC program counter
(PCR), the top-of-stack pointer (TOS), temporary memory, and calculator status
(CSTAT).

In the illustrations below, the legend is the same as that for Variable Storage.

NUMERIC FUNCTIONS

Byte
0 0 0 X x N3 N2 N1 NO
1 0 R2 1 L4 L3 L2 L1 LO
2 Function address
3 (2 bytes)
q Return address
5 (2 bytes)
6 PC
7 (2 bytes)

10 TOS

11 (2 bytes)

12 CSTAT

13 Numeric function value (8 bytes)

5-33

HP-83/85 System Architecture and Operation

STRING FUNCTIONS

Byte

N e o0 b wN

10
11
12
13
14
15
16
17
20
21

X x N3 N2 Ni

NO

1 L4 L3 L2 U1

Lo

Function address

(2 bytes)

Return address

(2 bytes)

PCR
(2 bytes)

TOS
(2 bytes)

CSTAT

Total length
(2 bytes)

Max length
(2 bytes)

Actual length
(2 bytes)

String function value

FORMATS ON THE R12 STACK

The stack to which CPU register R12 points is used for many operations by inter-

nal HP-83/85 system routines.

Number of bytes = total length.
(Always 18 bytes.)

The formats of variables that are fetched and

stored during runtime execution of certain specific tokens, as well as the

formats of numeric quantities, are shown below.

VARIABLES ON THE R12 STACK

The following table illustrates the format of variables on the R12 stack after

the execution of certain tokens.

5-34

N Token

Executed

1

21

22

23

HP-83/85 System Architecture and Operation

Places On R12 Stack

Value of simple variable.

Value of array element.

- String length.

String address.

Address of value storage area.
Name block.

Absolute address of array variable area.
Column. (Present only if TRACEing.)

Row. (Present only if TRACEing, and array
is two-dimensioned.)

Dimension Flag. (Present only if TRACEing.)
Name block.

Base address of string. (Relative if pro-
gram mode, absolute if calculator mode.)

Length available to store string characters in.

Absolute address of 1st location available for
storing characters.

Number of Bytes

8

when fetching or storing substrings, the address points to the first character of

the substring.

Relative addresses are relative to FWCURR.

NUMERIC FORMATS ON THE R12 STACK

In internal HP-83/85 routines, all numbers popped off the R12 stack are eight
bytes long, so integer values are tagged with octal 377.

5-35

HP-83/85 System Architecture and Operation

Et E2
EO MS
M10 M11
M8 M9
Mé M7 377
M4 M5 D1 DO
M2 M3 D3 D2
Mo M1 S D4

Real

Tagged Integer

Undefined

-¢—— [nteger Tag

NUMERIC FORMATS (R12 STACK)

In the illustration on the right, the byte above the number contains the octal
quantity 377. This 377 acts as a tag for the number, specifying the quantity as
an integer value that is only three bytes in length. The next four bytes popped
off the stack are then undefined and are ignored by the system.

5-36

SECTION b

WRITING BINARY AND ROM PROGRAMS

This section describes how to write a binary or ROM program. It outlines the
parts of the program, and it also explains how a binary program or a ROM program
is processed when it is assembled and when it is run.

Binary programs and ROMs are usually written to create new BASIC keywords or to
take over and modify the operation of existing BASIC keywords.

There are almost no procedural differences in writing binary programs and ROMs.

A binary program or a program for a ROM is written in an almost identical manner,
using the HP-83 or HP-85, the Assembler ROM, and, if desired, the System Monitor.
At assembly time, the object code for each is stored on a tape cartridge or disc.
The object code for a binary program is then loaded back into the HP-83/85 to be
run, while the object code for the ROM program may be read from the tape or disc
into a commercial PROM/EPROM burner.

There are a few internal differences between binary programs and ROM programs. A
binary program is usually relocatable, so that it may be loaded into computers
with different sizes of memory. ROM program addresses must be absolute, but a
ROM often needs to reserve some system RAM for its operation. Nevertheless, both
binary programs and ROMs use the same set of HP-83/85 instructions and pseudo-

instructions to generate source code.

Binary program and ROM source code is created using the instructions that make up
the set of assembly language elements found in section 4 of this manual. These
include the CPU instructions as well as the pseudo-instructions. The assembly
language elements include, of course, subroutine jumps. These jumps can be used
to actually call up internal HP-83/85 system routines for use in a binary program
or ROM. It is often much easier to call a system routine to perform a function,
rather than to painstakingly write the code to perform it. A list of available
system routines and their addresses may be found in section 7 of this manual.

Writing Binary and ROM Programs

PROGRAM STRUCTURE

The structure, or "shell," of each binary program should be the same; this shell

is shown below:

NAM

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

PARSE BYT 9, P
--Parse routine addresses go here,

RUNTIM BYT 9, P
--Runtime routine addresses go here.
BYT 377, 377
ASCIIS BSZ P
--Keyword table goes here.
BYT 377
ERMSG BSZ P
--Error message table goes here.
BYT 377
INIT BSZ P
--Initialization code goes here.

RTN
--The rest of the binary program goes here.

FIN

BINARY PROGRAM SHELL

In order to examine the structure of a real binary program, look at the example
program on the next page. The program creates a new BASIC statement, FT0C, for
converting Fahrenheit temperature to Celsius. The function returns the Celsius
equivalent of its Fahrenheit argument, according to the formula C = F-32*5/9.
This program is one of the example programs on the Assembler Global File tape

cartridge and disc.
Both the source code as it appears on the CRT and the object code are shown.

6-2

QOOOLO0
QOOOLE
QOOO0O14
OO001 b4
QOOOZ0
000022
QOOOT

QOO02

00004

QOOO3s

QQOQOO40
Q00042
QOOO44
QOO044
QO0044
QOO04 4
QOO046
DO0044
QOQOOSH0
0OOOOS2
000054
QOOO54
QOOO54
OOOO54
QOOOS4H
QOOOG0
OOO061
QO0O0461
0OO06Y
QOO061
O0OQ06Z
OOO0OLD

000062

QOOO62
OO0O0L3
QOO0
QOOOLT
QOOD6S
QOO06T
QOOOO&GSE
OOO0OTO
QOOO7 1

QOO0O7Z

106
117
040
002
Q00
QOO0
QOO0
QOO
000
Q00
OO0
QOO0
QOO0

A
Ry

ey
326
ey
S
-y

32
Z26

Q00

Q00
326

377

106
117
x77

x77

230

Z16 F

24
150

241

12

103
40
QOO
QOO0
QOO0
QOO0
QOO
[nlale]
QOO0
QOO
Q00
OO0

)
26
Ty
2
)
Ze
ot
326

126

(31018}

OO0
ey

2
77

124
20T

Q40

Writing Binary and ROM Programs

LST
§OK KKK 0K K 0K 0K KOOI K KK KOk KOk KOk Kk
[FTOC BINARY X
‘% (c) Hewlett-Packard Co. X
[3 1980 X

1K K K0K0OK0K KK KKK K K K KKK KKK KK K K K X
GLO GLOBAL

NAM FTOC 'Creates program control block.
1ok 30K 30K KK KKK K OK K K 0K K KKK K KKk Kok ok
'System Table:
DEF RUNTIM
DEF ASCIIS
DEF FARSE
DEF ERMSG
DEF INIT
Eok oK K KK KK K KO K KK KKK RO OR K KK KKk K
'Farse Routine Table:s
FARSE BYT 0,0
KK K KKK K K AOK KK RO KKK K K Kk Xk kX
"Runtime Routine Table:s
RUNTIM BYT ©,0
DEF FTOC.
BYT 377,377
b3k KKK 3 KK K KK KKK ROK Ok 30K K koK ROk kK
TASCII Table:
AGCIIS BSZ ©
ASF "FTOC"
BYT 377
3332338333823 83233333 28228
'Error Message Table:
ERMSG BSZ O
BYT 377
B3333388333833 883233338222 0"
'Initialization Routine:
INIT BESZ O
RTN
1K KK KKK 30K KK K K KKK KOKOK Kk koK
TRuntime Routines:
BYT 20,55 Attributes for FTOC.
FTOC. BSZ O Begin runtime routine.
BIN 1Gets EBIN mode for ONER routine.
JSB =0NER Load F into R40.
LDM R50,R40 'Move F into RSO0.

6-3

Writing Binary and ROM Programs

QOOO74 140 251 LDM R40,=1,0,0,0,0,0,0,32C !'Load 32 into R40,
OOOO76 OO1 OO0

QOD100 000 OO
QOON1O2 OO0 QOO0
OO0104 Q00 042

000106 316 2 JBR =SUR10 'Ferform subtraction.
000110 326

0ON111 170 012 FOMD R7Q,-R1Z 'Throw away copy on stack.
QOO0113 343

000114 150 251 LDM RS50,=0,0,0,0,0,0,0,50C !'Load 95 into RSO,

000116 OO0 OO0
QOO120 OO0 OO0
QOO1L22 000 000
OOO1Z4 OO0 120

OO0126 FT1l6 326 JEB =MFY10 'Perform multiplication.

000130 I26

0001731 170 012 FOMD R70,-R12 'Throw away copy on stack.

QOO13E 243

000134 150 040 LDM RS0, R40 'Move intermediate result to R3O0,
0001376 241

000137 140 251 LDM RAO,=0,0,0,0,0,0,0,90C !'Load 9 irnto R40.

QOO141 OO0 OO0
OO0147% OO0 Q00

OO0145 000 OO0
000147 000 220

000151 316 326 JER =DIV1Q 'Ferform division.
QOOLTE 326
000154 2% RTN 'Answer is on stack, so return.
Q00155 ONER DAD 56215
000155 SUR10O DAD 52137
000155 MFY10 DAD 52362
000155 DIVIO DAD 51644
FIN

6-4

Writing Binary and ROM Programs

The explanations on the following pages refer to this example program.

PROGRAM CONTROL BLOCK

The first 308 bytes of each BASIC and binary program are called a program control
block. In the example program, the program control block appears in source code

as:

10 LET
20 GLO GLOBAL
20 MNAM FTOC

In a BASIC program, subprogram, or binary program these bytes contain information
about the program. In a binary program, the following two bytes contain the
absolute address at which the binary was last loaded. In the example program,
this 32-byte section of code is reserved by the NAM statement.

A ROM does not contain this program control block. Instead, a ROM program is
begun with the ROM number in the first byte and the ROM number complement in the
second byte. A ROM program in memory will always begin at absolute location

60000.

In the example program, the NAM statement is preceded by the pseudo-op LST, which
causes the object code to be listed during assembly of the program.

SYSTEM TABLE

Next in the example program is the system table for the program. This table is

a list of addresses that in turn locate the runtime, ASCII, parse, and error
message tables and the initialization routine farther down in the binary program.

6-5

Writing Binary and ROM Programs

The system table must always be present in a binary or ROM program, and it must
always contain the addresses of subsequent tables in exactly the order shown here.

ROM

Address

6O
70
80
90

1Q0

60000 — ROM#

60002
60004
60006
60010
60012

At certain times during operations such as initialization, parsing, running, key-
board entry, and error conditions, the HP-83/85 system expects an address of a
table of addresses of routines for that operation to be in a specific location.
If a binary program is resident during initialization, for example, the system
expects in byte 42 of the binary program the address of an initialization routine.
The system will use the contents of bytes 42 and 43 (whatever those contents are)

ROM# complement

DEF RUNTIM
DEF ASCIIS
DEF FARSE
DEF ERMSG
DEF INIT

Contents

Binary
Program Byte

Binary program base address -¢———- 30

—» Address of runtime table

Address of ASCII table

Address of parse table

Address of error message

- 32
—— 34
~—— 36

—— 40

Address of initialization table <e——— 42

SYSTEM TABLE ADDRESSES

for the address of the table.

PARSE ROUTINE TABLE

Next in memory is a table of addresses of the parse routines used by a program.

1Z0 PARSE BYT 0,0

6-6

Writing Binary and ROM Programs

In the example program there are no parse routines required. This is because
the only keyword (FTOC) is a function, and thus has a syntax which can be under-
stood and parsed by the HP-83/85. FTOC is a numeric function (attributes 20,
55) of one numeric parameter, just 1ike SIN or COS.

The HP-83/85 automatically knows how to parse numeric and string functions be-
cause of their attributes. However, if a binary program or ROM creates a new
BASIC statement, a parse routine will be required.

The data declaration pseudo-op BYT @, P is merely a filler to occupy the required
opcode field. It corresponds to token @ within the binary program. (Token § is
illegal in the system and cannot be used.)

RUNTIME ROUTINE TABLE

The table of addresses that will be used during runtime follows.

160 RUNTIM BYT 0,0
170 DEF FTOC.
180 BYT 377,377

BYT @, P is again used as a filler. When executing object code, the system
locates the address for RUNTIM, skips two bytes, then uses the next two bytes as
an address for the first runtime routine.

A common convention, although not one that is required, is to name runtime
routines with the keyword (or an abbreviation) followed by a period.

The pseudo-instruction BYT 377, 377 inserts two bytes with all bits set. This
signifies the end of all addresses to be relocated during loading of the binary

program.

The address tables for binary programs are relative when assembled. When the
LOADBIN instruction is executed, the object code is first loaded, then some
relocation is done. A1l pointers up to the first occurrence of an octal 377, 377
are adjusted. This is necessary because the ASSEMBLE command stores a program

6-7

Writing Binary and ROM Programs

without readjusting the pointers and because the machine into which the program
is later loaded may not have the same memory size as the one which stored the

code.

Since a ROM program is not relocatable, the 377, 377 "marker" is not required in
a ROM.

ASCI1 TABLE
The next component of the program is the table that contains the ASCII keywords.

210 ASCLIS BSZ O
220 ASF "FTOC"
230 BYT 377

In an ASCII table, all of the keywords are arranged sequentially. When a BASIC
statement is entered to the CRT, the system attempts to match the characters that
are entered with a keyword in one of the ASCII tables. It looks first in the
resident binary program, then in any plug-in ROMs, and finally in its own ASCII
tables for a match.

The system attempts to find a match, processing a character at a time until it
reaches a character with its most significant bit set. A character with its

MSB set signifies the last character of a keyword. If no match has been found,
the system assumes the next character in the tables begins a new keyword, and it
moves to that character, increments a token counter, and begins trying once again

to find a match.

In the example program, the ASP pseudo-instruction causes the most significant
bit of the C in the keyword "FTOC" to be set. BYT 377 sets all the bits in one
byte, signifying the end of the ASCII table.

ERROR MESSAGE TABLE
Like the other tables, the address of the error messages is required in a binary

program.

/

Writing Binary and ROM Programs

260 ERMSG BSZ O
270 BYT 77

In the example program, there are no error messages. Errors during parsing will
be reported by the system, since system routines are performing all parsing; and
runtime errors will be trapped by the math routines used. Again, BYT 377 signi-
fies the end of the table.

INITIALIZATION TABLE

This section of the program contains the address of a routine that is executed
during initialization. This section is entered during power-on, reset, alloca-
tion, deallocation, and at other times. The flag in memory location ROMFL
indicates which of these entry possibilities has occurred.

Z00 INIT BSZ O
10 KTN

The example program does not require any specific action during initialization,
so all that is required is a return. For an example of ROMFL usage, see the
Special Function Keys as Typing Aids example program in section 8.

RUNTIME ROUTINES

This section contains most of the code used in the program, and normally includes
many runtime routines. Routines here must be included in the tables above;
otherwise, the system will not be able to access these routines. In the example
program, there is only a single runtime routine mentioned in the tables above:

"FTOC. "

During parsing, when the system finds the routine address for a particular key-
word (FTOC., in this case), it examines the primary attributes, located one byte
before the runtime code. (It also examines secondary attributes, if required.)
The attributes define for the system the type of keyword--statement, function,
operator, etc.--so that the system can process the keyword properly.

Writing Binary and ROM Programs

The attributes 20, 55 specify that the next keyword, FTOC., is a numeric function -
with one numeric parameter, so the system knows how to parse a statement that
contains the keyword FTOC, and it knows how many parameters to accept at runtime.
Next is the runtime code for FTOC. The calculation to be performed is C = (F-32)
*5/9; the FTOC routine takes an argument off the R12 stack, subtracts 32 from it,
multiplies the result by 5 and divides that result by 9. Like all functions,
FTOC leaves the final result on the stack.
340 BYT 20,55 tAttributes for FTOC.

350 FTOC. BSZ O 'Regin runtime routine.
Z60 BIN 'Sets binary mode for entry to ONER routine.
Z70 JSE =0NER 'Load F into R40O.
80 LLDM RS0,R40 tMove F into RSO0.

90 LDM R40,=1,0,0,0,0,0,0,32C 'Load 32 into R40.
400 JSE =SURLO 'Ferform subtraction.

410 FOMD R70,-R12 'Throw away copy on stack.

20 LDM RS0, =0,0,0,0,0,0,0,50C 'Load 5 into R50.

430 JSE =MFY10 'FPerform multiplication.

440 FOMD R70,-R12Z 'Throw away copy on stack.

450 LDM RS0O,R40 Move intermediate result to RSO0.
460 LDM R40,=0,0,0,0,0,0,0,90C 'Load 9 into R40. “/
470 JSE =DIV1O 'Ferform division.
480 RTN "Answer is on stack, so return,

Refer to section 4 for descriptions of the CPU instructions and pseudo-
instructions used. Refer to section 7 for descriptions of the system routines
(such as ONER and MPY10) used.

EXTERNAL LABEL TABLE

After the runtime routine is a label table. The label table gives the addresses
in RAM of the system routines used in the binary program. Unlike the binary
program's own routines, there are no addresses available for system routines
unless the addresses are specified in some manner. These addresses will be found
in the system global file (1isted in section 7 of this manual) and/or in the
listings of individual system routines in the same section. In the example pro-
gram, the table of system label addresses is placed at the end for easy reference,
but it can be placed anywhere in the program after the BYT 377, 377 marker.

Writing Binary and ROM Programs

490 ONER DAD 56215
500 SUBLO DAD 52137
510 MPYLO DAD 52562
520 DIVIO DAD 51644

If the addresses for all system routines used in a program are available on a
global file on disc or tape (such as the Assembler Global File), a label table
need not be written. Instead, the program can be directed to look in the system
global file by means of the GLO pseudo-instruction. Merely place a GLO GLOBAL
instruction before the NAM instruction and ensure that the source file named
GLOBAL is available on the tape or disc when the program is assembled.

The user may also create a global file by assembling a list of DAD's and EQU's,
with GLO as the first statement.

ENDING THE PROGRAM
FIN is used to terminate assembly; LNK is used to cause assembly to resume with

another section of source code.

530 FIN

SYSTEM HOOKS

The main reason for an external ROM or binary program is to extend the capabil-
ities of the main system. In order to allow for this, a number of hooks are
provided. A hook is a location where a binary program or ROM can gain control
of the system. There are three main categories of hooks: Language hooks,
general hooks, and initialization hooks.

LANGUAGE HOOKS

With language hooks the binary program or ROM can define new keywords, functions,
and auxiliary tokens. Because the system first polls the resident binary pro-
gram, then all external ROMs, and finally its own system tables when searching
for these, a binary or ROM program can take over or supersede any of them.

Writing Binary and ROM Programs

GENERAL HOOKS

To provide for each general hook, the system at certain times executes a JSB
subroutine jump to a specific RAM location. During normal operation each of
these RAM locations contains a RTN (return) or is otherwise idle. By placing

a JSB to a binary program or ROM at the hook location, the program or ROM gains
access to the operating system. It is the responsibility of the writer of the
external program to determine how to use the hook and how to avoid conflict with
other usages of the hook. No support is supplied by the system.

Unless otherwise noted, each general hook is seven bytes in length. General
hooks are supplied at the following points:

RAM Name Location Function

IOTRFC 102400 1/0 Traffic intercept. Used by I/0 and P/P ROMs.

I0SP 102407 I/0 Service pointer. Used by I/0 and Mass Storage ROMs.

CHIDLE 102416 Character editor intercept.

KYIDLE 102425 Keyboard intercept. Polled whenever a key is pressed.

RMIDLE 102434 Executive Toop intercept.

IMERR 102452 Image statement errors. Located in image code. Used
by I/0 ROM.

PRSIDL 102461 Parser intercept.

1IRQ20 102470 1/0 Interrupt (9 bytes). Interrupt vector, like key-
board service and clock routines.

SPAROQ 102501 Spare interrupt (9 bytes). Hardware interrupt vector
hook. Used by System Monitor.

SPAR1 102512 Spare interrupt (9 bytes). Hardware interrupt vector
hook.

GENERAL HOOKS

At power-on, the first two general hooks above are initialized to JSB = ERROR+,

BYT 25. The remaining eight are initialized to RTN.

Writing Binary and ROM Programs

The following section of code illustrates how to take over a hook (in this case,

the CHIDLE hook):

LDM R36, = KEYCHK
ADMD R36, = BINTAB
STM R36, R45

LDB R47, = 236

LDB R44, = 316
STMD R44, = CHIDLE

INITIALIZATION HOOKS

Load address of routine to handle CHIDLE.

Add value of BINTAB for an absolute address.
Store desired address in R45 and R46.

Load the opcode for return (RTN).

Load the opcode for JSB.

Store it all (multi-byte store) to CHIDLE hook.

A routine called ROMINI is called on several occasions to perform initialization
in external programs. When this occurs, the initialization routines in binary

program and ROMs are given control.

A parameter is passed to the ROMINI routine by way of ROMFL, a single-byte RAM
cell. The occasions and corresponding ROMFL are:

ROMFL Value

0

o O BWw N

7

10
11
12
13

Function

Power on

RESET key

SCRATCH

LOADBIN

RUN, INIT

LOAD

STOP, PAUSE

CHAIN

Allocate token with class > 56
Deallocate token with class > 56
Decompile token with class > 56
Program halt on error

These calls to the ROMs and binary program allow these programs to initialize,
de-inilialize, and otherwise kecp track of operation. For instance, if a ROM
needs to reserve or "steal" memory permanently, it would check for ROMFL = @,

Writing Binary and ROM Programs

and reserve memory only when that is true. Another example is that during RESET
the I/0 ROM might want to deallocate buffers.

During initialization, a binary program or ROM should never destroy any CPU reg-
isters below R20. Similarly, no initialization routine should use CPU registers
other than R34-R37 until it is verified that the value of ROMFL is not 10, 11,
or 12. Once the value of ROMFL is not 10, 11, or 12, all CPU registers numbered
R20 or higher may be used.

ERROR MESSAGES

ROMs and binary programs have the option of reporting system (predefined) errors
or reporting their own error messages. System and ROM errors use positive error
numbers, while error messages defined by a binary program are referred to by

negative error numbers.

USING SYSTEM ERROR MESSAGES

HP-83/85 system errors can be used in binary programs and ROMs in the same way
they are used for system programs. This involves a subroutine jump to system
routine ERROR or ERROR+, which expect the next byte to contain the desired error

number.
Example:
JSB = ERROR Set errors.
BYT 37 System error 37.
Anything Continuation after error.
Example:
JSB = ERROR+ Set errors and return.
BYT 37 System error 37.

No return is necessary. ERROR+ throws away one return address before performing
a RTN.

6-14

Writing Binary and ROM Programs

This last section of code is equivalent to:

JSB = ERROR
BYT 37
RTN

ROM-DEFINED ERROR MESSAGES

When setting up an error message table for a ROM, remember that the first eight
error messages are warnings; they should have default conditions such as in the
ROM error message table shown here:

ERMSG BYT 200, 200, 200, 200 Eight dummy bytes with
BYT 200, 200, 200, 200 } MSB set.
ASP "SYSTEM DOWN" Error #11g.
ASP "BAD INPUTS" Error #124.
ASP "WALK AWAY" Error #138.
BYT 377 End of error message table.

Error messages defined in a specific ROM can be selected by first storing the
ROM number in a location known as ERRROM, then calling system routine ERROR or
ERROR+. Since it is possible for multiple errors to occur before they are

reported, location ERRORS contains a flag that signals whether any errors have
already occurred; once ERRORS is set, ERROR throws away all subsequent errors.

Here is a section of code that would be Jocated within a ROM to check for any
prior errors, then Toad ERRROM with the ROM number for error reporting:

ERRSET LDBD R36, = ERRORS Get error flag.

JNZ DON'T Jump if already an error.

LDB R36, = 40D Otherwise load ROM number

STBD R36, = ERRROM (40]0 in this case) into ERRROM.
DON'T RTN

Writing Binary and ROM Programs

To report errors within ROM #50, the reporting code would first call the above
routine, then call ERROR or ERROR+, as shown in this example:

LDM R26, R36
SBM R26, R24

JZR GOAHED

JSB = ERRSET Select proper ROM number.

JSB = ERROR+ Report error 12. ("BAD INPUT"
BYT 12 } in earlier error message table.)

Note that ERROR or ERROR+ will do nothing if ERRORS is already set, so no testing
is required after calling ERRSET.

BINARY PROGRAM ERROR MESSAGES

As in a ROM, the first eight errors within a binary program are warnings and
should have default conditions. Unlike system or ROM errors, however, binary
program errors are referenced by negative error numbers. Here is an example of
a binary program error message table:

ERMSG BYT 200, 200, 200, 200 Eight dummy bytes (377-370)
BYT 200, 200, 200, 200 with MSB set.
ASP "BAD PARAMETER" Error #3678.
ASP "WILD CARD PROBLEM" Error #3668.
ASP "INPUTS LOST" Error #3658.
BYT 377 End of error message table.

When the correct error is found, the error number is reported in two's complement
form. The following section of code illustrates how an error message from the

binary program error message table might be called:

POMD 22, -12 Get a number.

JNZ OK Jump if not zero.

JSB = ERROR+ Otherwise, report error
BYT 367 #367, "BAD PARAMETER."

Writing Binary and ROM Programs

BINARY PROGRAM AND ROM ADDRESSING

Functionally there is no difference between a binary program and an external ROM;
any task which can be performed by one can be done by the other. Each has spe-
cial problems, however, related mostly to addressing.

EXTERNAL ROM ADDRESSING

External ROMs are selectable by software, so a special problem occurs when

selecting among ROMs.

Suppose it is desired that an external ROM call the TIME function. This function
is located at address 65517 in the bank-selectable system ROM (i.e., ROM p).

Because the external ROM occupies the same address space, it is impossible to
directly select system ROM P, execute a JSB to the TIME routine, and return to

the calling ROM.

The solution is to call the system routine to be executed (TIME) through a sys-
tem routine called ROMJSB. Two parameters are passed to ROMJSB:

1. Address of the routine to be called.
2. ROM number of the location where the routine resides.

Example: To call the TIME routine, the source code in the external ROM would be:

JSB = ROMJSB Call to ROMJSB.
DEF TIME. Address of routine to be called (TIME).
BYT 9 Number of ROM that contains TIME.

When the TIME routine has been executed, control returns to the ROMJSB routine.
ROMJSB, in turn, reselects the calling ROM and returns execution to the next

instruction after BYT §.

Another problem is how to return to the system ROM. It is impossible to select
ROM @ and then return, because selecling ROM @ deselects the ROM which is trying

6-17

Writing Binary and ROM Programs

to execute a return. The solution is another system routine called ROMRTN, which
performs the same function (select ROM @ and return). In most cases the system
automatically reselects ROM § after a normal return, but in some cases, such as
after all parse routines, the external ROM must "clean up" by selecting ROM P
before returning. Executing GTO ROMRTN reselects ROM P and then returns.

A third problem is the overhead required to intercept a system routine. Several
general hooks have been provided; for example, in the executive loop a subroutine
jump is made to a RAM Tlocation (a system hook) called RMIDLE. At power-on, the
system stores a RTN at that location. To intercept the idle loop, a ROM must
load the following sequence into that location (and the following six bytes).

RMIDLE JSB = ROMJSB Call ROM switching routine.
DEF INTERC Address of routine to be executed.
BYT 17 ROM number.
RTN Return.

The load can be performed by the ROM's initialization routine when the ROM gains
control during power-on initialization (ROMFL = 0).

For a binary program to take over the same hook, all that is needed is:

RMIDLE JSB = INTERC
RTN

One further general caution is that any routine which calls an external ROM, such
as an interrupt service routine, must also use the ROMJSB utility. This is true
even if the external ROM is called from a binary program.

BINARY PROGRAM ADDRESSING

The addressing problem of binary programs is relocatability. The HP-83/85 pro-
cessor accomodates relocatable code. A1l conditional jumps and the JMP command
are relative, so they are inherently relocatable. Arithmetic, loads, stores, and
subroutine jumps can all be performed in an indexed mode. If a two-byte register
contains a base address stored in RAM, such as BINTAB, then relocatable code can

be written using indexed addresses (indexed by the base address).

6-18

Writing Binary and ROM Programs

Examples of the various operations follow. The examples assume CPU registers
R36 and R37 contain the base address of the binary program. The base address
will be stored in BINTAB (101233) by the system LLOADBIN command.

Examples:
LDMD R36, = BINTAB Load up base address.
JSB %36, DEST. JSB to destination DEST.
LDM R40, X36 CONST Load a constant into R40.
LDMD R22, X36, ADDR Load direct R22.

CONST BYT 12, 34, 56, 70
12, 34, 56, 70

DEST. RTN Short subroutine.
ADDR BSZ 2 Address in main memory.
FIN End of program.

A1l of the labels in this section of code are merely examples.

RESERVING RAM

A binary program or ROM sometimes requires that system RAM be "stolen," or
reserved, for its use. There are two distinct uses for this RAM.

1. Temporary scratch-pad area for the current routine.
2. Permanently-reserved RAM.

For temporary use of RAM, the binary program or ROM can call system routine
RESMEM, which will reserve memory. (See the RESMEM system routine in section 7

for documentation.)

RAM can be permanently reserved by a ROM or by a binary program.

RAM RESERVED BY A ROM
RAM that is permanently "stolen" by a ROM must be reserved at power-on. This can
be performed during initialization by an INIT routine such as the one shown here:

Writing Binary and ROM Programs

INIT. BIN
LDBD 36, = ROMFL Get ROMFL contents
JNZ NOTPWO Jump if not power-on.
LDMD 36, = FWUSER Get address of first user byte.
STMD 36, = UNBASI Store base address for later use.
ADM 36, = 100,0 Add number of bytes needed.
STMD R36, = FWUSER Reset the first word pointer.
JSB = ROMJSB Call the system scratch routine
DEF SCRAT+ to clean up some pointers and the
BYT 9 program header.
RTN Return. (Or do more initialization.)

System addresses UNBAST and UNBAS2 are locations where the base address of re-
served RAM is stored. Any time access to this "stolen" RAM is required, the
address in UNBAS1 (or UNBAS2) can be loaded into a register and used as a base
address with which to index the reserved RAM. For example:

LDMD 22, = UNBASI Stores zeros into the
CLM R40 10th through the 17th (octal)
STMD R40, X22, VALUE bytes of stolen RAM.

VALUE EQU 10

RAM RESERVED BY A BINARY PROGRAM

A binary program is not loaded at power-on, so it cannot reserve RAM at this
time. Also, a binary program should not reserve memory at the time LOADBIN is
performed because a BASIC program may be resident in that RAM space. However, a
binary program can reserve RAM within its own program space. For example:

VALUE BSZ 10 Generates 8 bytes of storage area
and inserts them into object code.

ENTRY. LDMD R22, = BINTAB Base address of binary program.
CLM R40
STMD R40, X22, VALUE Stores 8 zeros into location VALUE.

6-20

N

Writing Binary and ROM Programs

This routine reserves eight bytes of zeros for permanent use as either scratch-
pad or permanent storage memory.

ACCESSING THE PROGRAM CONTROL BLOCK

Although most of the program control block of a BASIC program is of lTittle use to
assembly-language programmers, there is one byte that contains program informa-
tion that can prove valuable in writing binary programs or ROMs. The seventh
byte of the PCB contains the status information shown below.

LEGEND

C = Common Variables

9 if no common variables are present
1 if common variables present in program

0 = Option Base
P for option base 1
1 for option base P

Allocation Status
P if deallocated program
1 if allocated program

>
n

o
1]

Program Type

P BASIC main program

1 BASIC subprogram

2 Assembly-language program (ROM or binary)

Access to this byte can be gained through the section of code shown here:

6-21

Writing Binary and ROM Programs

LDMD R30, = FWCURR Pointer to 1st byte of
PCB of current program.

ADM R30, = 6,0

LDBD R30, R30

ASSEMBLING

To assemble a binary or ROM program:

1. Ensure that a tape cartridge is inserted in or a disc attached to the
HP-83/85.

2. Store the source code on the mass storage device first. This step is not
required, but is highly recommended. The HP-83/85 system is vulnerable to object
code which takes over hooks or keywords, and source code may be irretrievably
Tost during assembly. (See below.) Source code is stored with the ASTORE
command.

3. Type ASSEMBLE "file name" to assemble the object code on the mass storage
device and Toad it back into memory. Or type ASSEMBLE "file name", number other
than @ to assemble the object code on the mass storage device without loading it

into the computer's memory.

The file names used can be different from those specified by NAM. However, a
good convention is to name the object code file with the name specified by NAM,
followed by a "B" for binary. The source code file can be specified with the
name followed by "S" for source.

Generally, the source code will be destroyed during assembly by any of the fol-

Towing conditions:
1. If a LNK has been specified, the linking code will destroy the previous code.

2. If an immediate load is specified and the initialization routine contains

faulty code.

6-22

Writing Binary and ROM Programs

3. If a binary or ROM program that takes over CHIDLE is assembled, then listed
with the [LIST] key.

USING A BINARY OR ROM PROGRAM
BINARY PROGRAM

Once assembled and loaded, a binary program makes all its keywords available for
use by the HP-83/85 system. The keywords become part of the computer's BASIC
instruction set, so a BASIC function such as FTOC, for example, could be used

as a calculator mode statement:

FTOC(32)

Or as a BASIC language element:

10 LET A = FTOC(100)

ROM PROGRAM

A ROM program is stored in a tape or disc file as a series of 125-character

ASCII strings. To create an EPROM, the HP-83/85 can be connected through HP-IB
(Hewlett-Packard Interface Bus) or another I/0 interface card to a commercial
PROM burner. The HP-83/85 can then be loaded with a simple BASIC program to read
the strings from the tape or disc and send them byte-by-byte to the PROM burner.

NOTE
For further aid in writing binary and ROM programs, study
the sample programs supplied on the tape cartridge and disc
and listed in section 8 of this manual.

6-23

NOTES

6-24

SecTioN 7/

HP-83/85 SYSTEM ROUTINES

This section of the manual gives a listing of the global file contained on the
tape cartridge and disc provided with the HP-83/85 Assembler ROM; it also gives
detailed information on operation of many specific areas in the computer and on
the system routines within the global file.

THE GLOBAL FILE

The global file on the tape cartridge and disc is listed below. It gives the
permanent addresses in memory of many of the system routines used by the HP-83/
85. The global file also contains locations of system pointers, buffers, vari-
ables, and constants which may be referenced in a binary program.

On the tape cartridge and disc supplied with the Assembler ROM, there are
actually two copies of this global file.

—-GLOTS and GLO2S together make up the global source file. This is an extended
file, type ****, and can be edited by the user, if a user-written change to
the global file is desired. GLO1S and GLO2S can also be used to print out a
listing of the global file.

--GLOBAL s the global file in object code. This is a data file containing normal
ASCII strings that make up the assembled object code for the global file. When
the pseudo-op GLO GLOBAL has been placed near the beginning of a binary program,
during assembly the computer will look at this file for the addresses of any

undefined labels in the program.

Although it is usually more convenient, it is not necessary to use the file
GLOBAL as a label table. You may create your own label table on a mass storage
device, or you may specify the addresses of the system routines called in a
binary program by adding them to the label table within the program.

The global file on the following pages is the same as the one on the tape car-
tridge and disc supplied with the Assembler ROM.

7-1

HP-83/85 System Routines

LEGEND
Name Name of routine, buffer, etc.
Address Permanent octal address of routine in HP-83 or HP-85 memory.

Description A short description of the routine.

GLOBAL FILE

NAME ADDRESS DESCRIPTION
10 PRRRKEKKRKKKEKKREK KKK KKK KKK KKK
195 'X ¥
20 'X HF—8%/85 ASSEMEBLER X
IO 'k GLOBAL FILE X
40 '¥x () Hewlett—Packard Co. X
S0 'x 1980 X
(I 4 X
[N $33333332333323332 383823888
70 GLO
80 FWUSER DAD 100000 'FWA USER AREA
90 FWFRGM DAD 100002 IFWA FROGRAM AREA
100 FWCURR DAD 100004 'FTR TO CURRENT FGM
110 NXTMEM DAD 100006 'NEXT IN AVAIL USER MEM
120 LAVAIL DAD 100010 'LAST AVAIL BYTE IN FGM AREA
130 CALVRE DAD 100012 ISTART OF CALC VARIABLES
140 RTNSTK DAD 100014 'TOFP OF GOSUEB RETURN STACK
150 NXTRTN DAD 100016 INEXT AVAIL GOSUB/RTN
160 FWEIN DAD 100020 '=l_WAMEM IF NO BFGM LOADED ELSE =BINTAB-1
170 LWAMEM DAD 100022 'LWA USER MEM
180 LLDCOM DAD 100025 'LAST LINE DECOMFILE

190 FLDCOM DAD 100027 'FIRST LINE DECOMFILE
200 DISFTR DAD R 'DISF BUFFER FTR

210 PRTFTR DAD 100035 'FRINT BUFFER PTR

220 ONFLAG DAD 100040 'ON 508UB FLAG

230 AUTO# DAD 100054 YAUTO LINE # LAST VAL

240 AUTOI DAD 100036 TAUTO LINE # INCREMENT

250 ERLIN# DAD 100062 'LINE# OF BAD LINE

260 ERNUM# DAD 1000464 'ERROR NUMBER

270 ERRROM DAD 100065 'ROM# OF ERROR

280 ERROM# DAD 100066 'ROM # OF LAST ERROR

290 EDMODZ2 DAD 100067 VINS/RFL MODE FLAG

300 ERRORS DAD 100070 'RUN TIME ERRORS

310 ERRTYF DAD 100071 TERROR TYFE
EEYCNT DAD 100120 'EEYROARD COUNTER RFT
ERFET1 DAD 100121 'MAJOR KYBD REFEAT
KRFETZ DAD 100122 'MINOR KYEBD REFEAT
LDFLTR DAD 100123 'LIST BREAK LINE COUNT

T60 DRG DAD 100123 'DEG/RAD/GRAD

370 SVCWRD DAD 100131 'SERVICE WORD

380 I105W DAD 100152 110 SVYC WORD

390 CRTEYT DAD 100176 'CRT BYTE ADDRESS

400 CRTRAM DAD 100200 'CRT FAGE ADDRESS

410 XMAF DAD 100262 'LAST X PLOTTED (0-253)

420 YMAF DAD 100263 'LAST Y FLOTTED (0-233)

430 CS.C. DAD 100264 'CRT 18 select code (8 BYTES)

440 Fh, L. DAL Ltuul/4 TFRINTER 1S select code

7-2

450
460
470
480
490
S00
910
520
830
540
520
560
S70
580
590
600
610
&20
&30
&40
LS50
&b60
&70
&80
&0
700
710
720
730
740
7590
760
770
780
790
800
810
820
830
840
850
860
870
880
890
F0OO
210

20

20
240
G0
960
Q70
280
290

NAME ADDRESS

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD

100310
100447
100450
100524
100524
100564
100642
100644
100645
100650
100660
100665
100666
100671
100672
100710
100750
101016
101075
101077
101101
101103
101110
101130
101132
101231
101233

101235

INPBUF
LASTIN
ERREUF
ERBEND
FRTBUF
DISEUF
FCR
FRFLAG
DSFLAG
TIME
DATE
DISFLN
FRNTLN
KEYHIT
INFTR
LEGEND
LEGENZ
CRTWRS
F.BUFF
F.FTR
F.FLAG
LINELN
SCTEMF
STSIZE
TOS
ROMFL
BINTAE
ROMTAB
ROMLST DAD 101272

STACK DAD 101300

LR 00RO KOOR R 00O0ORKK
'x THE R& STACK USES THE ¥
'x AREA OF MEMORY FROM %
'X 101300 THRU 101777. ¥
L0000 KKK
IOTRFC DAD 102400

I0SF DAD 102407

CHIDLE DAD 102416

KYIDLE DAD 102425

RMIDLE DAD 1024734

IMERR DAD 102452

FRSIDL DAD 102461

IRO2O DAD 102470

SFARO DAD 1028512

SFAR1 DAD 102523

LXK OOO0KKKROO0O0000OK
1% THE FOLLOWING LOCATIONS*
% CONTAIN BASE ADDRESSES *
'x OF STOLEN RAM FOR EACH ¥
'x OF THE EXTERNAL ROMS. X
LXK KKK KOOOKIORKKK KOOOOO0K K
IOBASE DAD 102536

MSEASE DAD 102540

AGLEAS DAD 102542

APRBAS DAD 102544

1000 BSRBAS DAD 102546

1010 MHASE DAD

L2550

1020 ASMBAS DAD 102352

HP-83/85 System Routines

DESCRIPTION

'PARSER INFUT BUFFER

END OF INFUT BUFFER

'ERROR BUFFER (44 EBYTES)

'END BUFFER +1

'FRINT BUFFER

IDISFLAY BUFFER

'BASIC PGM LINE FTR

'FRINTED YET? FLAG AT FRINT EOL FOR FRINT
IPRINTED YET? FLAG AT FRINT EOL FOR DISF
'TIME OF DAY

1JUL.IAN DAY YEAR

t1 RYTE DISFLAY LINE LEN

11 BYTE FRINTER LINE LEN

TKEYBOARD ASCII CODE

CINFUT LINE FOINTER

'KEY LAREL LEGEND AREA

ISECOND LINE LEGEND AREA

tCRT STATUS IN RAM

VINDIRECT BUFFER FTR

VINDIRECT FTR TO BYTE COUNT FOR CURRENT BUFFER
{INDIR. FTR TO FRFLAG OR DSFLAG OR FP/P ROM FLAG
IDEVICE LINE LENGTH

'SELECT CODE TEMF STORE

I STATEMENT SIZE FLACE HOLDER FTR

'TOF OF R12 STACK

{ROM FLAG FOR INIT ROUTINES

ICONTAINS EBASE ADDRESS OF BFGM

(LIST OF PRESENT EXTERNAL ROMS

LLAST ENTRY IN ROM TARLE

'BEGINNING OF THE Ré STACK

11/0 TRAFFIC INTERCEFT

1 1~-0 INTERRUFT SERVICE FTR
ICHAR. EDITOR INTERCEFT

| KEYBOARD INTERRUFT INTERCEFT
{EXEC L.OOF INTERCEFT

t IMAGE ERROR INTERCEFT

'FARSER INTERCEFT

t1-0 INTERRUPT

'SYSTEM MONITOR INTERRUFT HOOK
1GPARE INTERRUFT HOOK #1

t1/0 ROM

IMASS STORAGE ROM

1 FLOTTER/FRINTER ROM

' ADVANCED FROGRAMMING ROM
'BLUE SFPRUCE

IMATRIX ROM

' ASSEMBLER ROM

7-3

HP-83/85 System Routines

1030
1040
1050
1060
1065
1070
1075
1080
1090
1100
1110
1120
11320
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500

NAME ADDRESS

UNBAS1 DAD 102554
UNBASZ DAD 1025546
FWROM EQU 103300
RSP 2222228022222 002329

R | X
'% I/0 ADDRESSES 3
!X X

RS2 2222 22282222288 02822
GINTEN DAD 177400
GINTDS DAD 177401
KEYSTS DAD 177402
FEYCOD DAD 177403
CRTSAD DAD 177404
CRTBAD DAD 1774035
CRTSTS DAD 177406
CRTDAT DAD 177407
RSELEC DAD 1774720
KKK KKK OK K K K KKK 40K K K 30K OO K K
' THE FOLLOWING ARE ONLYX
' CONVENIENT LABELS FOR X

' S0ME ASCII CODES AND X
' SOME DIGITS X
130Kk KK K K K KK KK ok K K Kk Kok ok Kok Xk
ZRO EQU O
ONE EQU 1
TWO EQU 2
THREE EQU 3
FOUR ERQU 4
FIVE EQU S
SIX EQU &
SEVEN EQU 7

EIGHT EQU 10
NINE EQU 11
TEN EQU 12

BLANK EQU 40
BANG EQU 41
" EQU 42
EQU 43
% EQU 44
% EQU 45
% EQU 46
: EGU 47
(EGU S0
) ERQU 51
X EQU 32
+ EQU 53
' EQU 54
- EQU S5
. EQU Sé&
/ EQU 57

DESCRIPTION

TUNUSED: AVAILABLE
'UNUSED: AVAILABLE
'FWA USER FROGRAM ROMRAM

'GLOBAL INTERRUFT ENABLE
'GLOBAL INTERRUFT DISAELE
'FEYBOARD STATUS
'EEYBOARD CODE AND EOQJOR
'CRT START ADDRESSH

'CRT BYTE ADDRE&S

'CRT STATUS

'CRT DATA

'ROM SELECT ADDRESS

1510
1520
1530
1540
1550
1560
1570
1580
1590
14600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1790
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
16890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

T

LM, ANSXECCHDNOQUTIOZIrAG-wIQTMROOD DS I

5

al

TLu=TO 00N OR

EQU
EQU
EGQU
EQU
EGU
EQU
EGU
EGU
QU
EQU
EGU
EQU
EGU
EQU
EQU
EGU
EQU
EGU
EQGU
EQU
EQU
EQU
EQU
EGU
EGU
EQU
QU
EQU
EGU
EQU
EQU
EQU
QU
EGU
QU
EQU
EQU
EQU
EQU
EGU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU

72
73
74
75
76
77
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
22
123
124
125
126
127
130
131
132
133
134
35
136
137
140
141
142
143
144
145
146
147
150
151
152
153

HP-83/85 System Routines

HP-83/85 System

2010
2020
2020
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

2160

Wl N O0T O3~

M X E<E

EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
LNE

Routines

154
155
156
157
160
161
162
163
164
165
1466
167
170
171
172
GLOZ

HP-83/85 System Routines

NAME ADDRESS DESCRIPTION

10 P RRR KK RO KKK KK KR KOk K K

20 'x HF-83/8% ASSEMELER X
IO Xk GLOBAL. FILE X
40 'X SECTION 2 X
50 1% (c) Hewlett-Packard Co. X
60 X 1980 X
T0 UKKKKEKERKKRARKKKRRKRKKKKKRKR
80 !

Q0 !

210 T RRKRR KRR KA OK KK KKK KKKk
2170 'x SYSTEM ROUTINE ENTRY ¥

2180 !'x FOINT ADDREGSES X

2190 KRR R KRR KRR K

2200 ARSSD DAD SE73E1 'AESOLUTE VALUE

2210 ADDROI DAD 52150 'ADD TWO NUMEERS

2220 ALFA DAD 11775 iCHECEKE FOR ALFHA CHAR. % UFC IF S0
2230 ALFHA. DAD 36105 'FORCE CRT TO ALFHA MODE

2240 ASIGN. DAD 27056 'OFEN A BUFFER TO A DATA FILE

2250 ATNZ. DAD 76455 IDOES ATNZ2 (Y, X)

2260 BEEF. DAD 6737 'BEEF COMMAND

2270 BLELIN DAD 36320 'BLANK. A LINE ON CRT

2280 EBFLOT. DAD 34345 'BRLOT

2290 BYTCRT DAD 35423 ISETS CRT BYTE ADDRESS TO R#

2300 BYTCR! DAD 35422 IGETS CRT BYTE ADDRESS TO R34

2310 CEIL10 DAD 53615 'CEIL FUNCTION

2320 CHESTS DAD 36335 'DEMAND CRT NOT BUSY

2330 CHSROI DAD 520735 'CHANGE SIGN OF A REAL OR INTEGER
2340 CLEAR. DAD 35021 ICLEAR A FAGE OF CRT ALFHA

2350 CLREOL DAD 35535 ICLEAR TO END OF LINE

2360 CNTRTR DAD 36002 'COUNT CRT RETRACES

2370 COMFLT DAD 22621 'COMPARE TWO NUMBERS

2380 COMMA%$ DAD 70&34 'FRINT A STRING FOLLOWED BY COMMA
2790 COMMA. DAD 707356 '"FRINT A NUMBER FOLLOWED BY A COoMMA
2400 CONEBIN DAD 3572 1CONVERT A 16-BIT # TO A REAL #
2410 CONCA. DAD 73003 ICONCATENATE TWO STRINGS

2420 CONINT DAD 44321 'CONVERT A REAL # TO A 16-BIT

2430 COPY. DAD 73360 'COPY CRT TO INTERNAL FRINTER

2440 C0S10 DAD 53536 'COSINE FUNCTION

2450 COT10 DAD S3536 'COTANGENT FUNCTION

2460 CREAT. DAD 26561 'CREATE A DATA FILE

2470 CRTBL+ DAD I6255 VINITIALIZE PART OF CRT ALFHA

2480 CRTBLE DAD 36247 (INITIALIZE ALL OF CRT ALFHA

2490 CRTINT DAD 36177 VINITIALIZE ALL OF ALFHA % GRAFHICS
2500 CRTFOF DAD 35703 'FOWER DOWN CRT

2510 CRTFUF DAD 35716 'FOWER UF CRT

2520 CRTUNW DAD I6067 'UNWIFE CRT

2530 CRTWFO DAD 35661 IWIFE-QUT CRT TO HIDE UGLY FLASH
2540 CSEC10 DAD S3507% 1COSECANT FUNCTION

2950 CURS DAD 35005 tGFIT OUT A CURSOR TO CRT

2560 CYNUM DAD 71135 IFORMAT A REAL # TO ASCII FOR OUTFUT
2570 DATE. DAD 37673 'DATE FUNCTION

2580 DECURZ2 DAD 35547 'ERASE CURSOR FROM CRT

2590 DEG. DAD 61736 'SET HP-85 TO DEGREE MODE

2600 DEG1O DAD 54142 'RADIANS TO DEGREE CONVERSION

2610 DIGIT DAD 12027 'CHECK, FOR A DIGIT

2620 DISF. DAD 70046 IGET PRINT FTRS TO "CRT IS8" DEVICE
2630 DIV DAD S1441 ‘DIVIDE TWO NUMBERS

2640 DMNDCR DAD 15060 'DEMAND EITHER A CARRIAGE RTN OR BANG (1)
2650 DNCUR. DAD 35306 IMOVE CURSOR DOWN ONE ROW ON CURRENT FAGE
2660 DNCURS DAD 35370 'MOVE CURSOR DOWN ON ALL 4 FAGES

HP-83/85 System Routines

NAME ADDRESS DESCRIPTION
2670 DRAW. DAD ZFZ015 'DRAW A LINE ON THE CRT
2680 DRV12. DAD S46Z 'DUMF A BUFFER T0O CRT,PRINTER,0OR I/0
2690 EO0J2 DAD 24772 'RESET R17 AND SVCWRD AFTER KEY IS HANDLED
2700 EFS510 DAD 541264 'EFSILON FUNCTION
2710 EQ. DAD 621773 'CHECE. TWO #°8 FOR EQUALITY
2720 EQ%. DAD F00646 'CHECES TWO STRINGS FOR EQUALITY
2730 ERROR DAD 64615 'REFPORTS AN ERROR
2740 ERROR+ DAD 6611 'REFORTS ERROR & THROWS AWAY ONE RETURN
2750 EXPS DAD S2Z77 TEXFONENTIATE
2760 FETAV DAD 44727 'FETCH ARRAY VARIAEBLE
2770 FETAVA DAD 44734 'FETCH ARRAY VARIABLE ADDRESS
2780 FETST DAD 45206 'FETCH STRING VARIAELE
2790 FETSV DAD 44520 'FETCH SIMFLE NUMERIC VARIABLE
2800 FETSVA DAD 44556 'FETCH SIMFLE VARIABLE ADDREGSS
2810 FLIF. DAD 35011 'FI.LIF KEYBOARD UFFERCASE/LOWERCASE
2820 FORMN+ DAD 71146 'FORMAT NUMEER
2830 FP3 DAD S4071 'FRACTIONAL FPART
2840 GHN DAD 14323 'GET A STRING AND NUMEBER
2850 GHN+NN DAD 14421 'GET A STRING AND NUMBER AND OFTIONS
2860 GOL12N DAD 1446465 'GET 0,1,0R 2 NUMBRERS
2870 GO1N DAD 14504 'GET O OR 1 NUMEBERS
2880 GOORZN DAD 14522 'GET O OR 2 NUMBERS
2890 G120R4 DAD 1435330 'GET 1,2 OR 4 NUMBERS
2900 G1ORZN DAD 14537 'GET 1 OR 2 NUMBERS
2910 GCHAR DAD 11759 'GET THE NEXT CHAR TO R20
2920 GCLR. DAD 36013 ' GCLEAR
29720 GEOQ. DAD &2304 'CHECE. TWO #°S FOR »=
2940 GEE$. DAD =111 'CHECKE STRINGS FOR =
2950 GET$N7? DAD 14560 'GET STRING AND NUMBER?
2960 GET) DAD 13Z65 'GET CLOSE FAREN
2970 GET1$ DAD 14455 'GET ONE STRING
2980 GETIN DAD 14337 'GET 1 NUMBER
2990 GETZN DAD 14407 'GET 2 NUMBRERS
F000 GETAN DAD 14414 'GET 4 NUMEERS
3010 GETCMA DAD 13414 'DEMAND A COMMA
3020 GETCM? DAD 1Z42%5 'CHECE. FOR A COMMA
3030 GETFA? DAD 14516 'GET FPARAMETERS
3040 GETFAR DAD 14342 'GET PARAMETERS
3050 GRAD. DAD 61753 'SET COMPUTER TO GRAD TRIG MODE
3060 GR. DAD &2255 ICHECK TWO NUMBERS FOR -
3070 GR$. DAD 036 'CHECEK, TWO STRINGS FOR @
3080 GRAFH. DAD 36147 'FORCE CRT TO GRAFH MODE
3090 GRINIT DAD 36220 VINITIALIZE THE GRAFHICS SCREEN
3100 HLFLIN DAD 35121 'DUMF A BUFFER TO THE CRT WITH NO CR
3110 HMCURS DAD 35527 'SEND CURSOR TO HOME
3120 1C08 DAD 7&352 'ARCCOSINE FUNCTION
F130 IDRAW. DAD 327352 ' INCREMENTAL DRAW
3140 IMOVE. DAD 31475 'INCREMENTAL MOVE
3150 INCHR DAD 35244 IREAD IN A CHARACTER FROM CRT
F160 INCHR- DAD 35220 'READ CRT IF WFO GUARANTEED
3170 INF10 DAD 53524 PINFINITY
3180 INTS DAD 53776 'INTEGER FART
3190 INTDIV DAD S40035 'INTEGER DIVIDE
3200 INTEGR DAD 11447 'GET AN INTEGER NUMEBER
3210 INTMUL DAD S3076 IMULTIFLY TWO 16-EIT BINARY NUMBERS
3220 INTORL DAD 56343 'COMVERT A TAGGED INTEGER TO A REAL #
A0 OIPS DAD 54174 'TNTFGFR PART
5235 ISIN DAD 74542 'ARCSIN FUNCTION
ITAN DAD 76562 'ARCTANGENT
LABEL. DAD 34044 'LABEL ON CRT GRAFHICHS
LDIR. DAD 34020 'SET LAREL DIRECTION

7-8

HP-83/85 System Routines

NAME ADDRESS DESCRIPTION
3270 LEQ. DAD &2232 'CHECK TWO #°S FOR <=
Z280 LE@$. DAD 3100 |CHECK TWO STRINGS FOR <=
3290 LN DAD 51551 INATURAL LOGARITHM
3300 LOGTS DAD 51720 'LOG BASE TEN

LT. DAD 62213 'CHECK TWO #°5 FOR

ICHECK TWO STRINGS FOR <

I MOVE CURSOR LEFT ONE COLUMN ON CURRENT PAGE
IMOVE CURSOR LEFT ON ALL 4 FAGES

'MAXIMUM FUNCTION

'TMINIMUM FUNCTION

tMOD FUNCTION

LTS. DAD =
LTCUR. DAD :
LTCURS DAD :
3350 MAX10 DAD
3360 MINLOQ DAD
Z3F70 MOD1O DAD

3380 MOVCRS DAD 35410 'MOVE CURSOR

Z3I90 MOVDN DAD 37324 tMOVE MEMORY AND DECREMENT

Z400 MOVE. DAD Z1703 'MOVE ON CRT

Z410 MOVUF DAD 37363 ' MOVE MEMORY AND INCREMENT

3420 MPYROI DAD 52722 IMULTIFLY TWO NUMBERS

Z4730 NARRE+ DAD 13376 1GCAN % PARSE ARRAY REF WITHOUT FARENS
3440 NARREF DAD 13402 'PARGE ARRAY REF WITHOUT FARENS

2450 NUMCON DAD 13466 IGET A& NUMERIC CONSTANT

2440 NUMVA+ DAD 12407 'SOAN AND GET A NUMERIC VALUE

2470 NUMVAL DAD 12412 1GET A NUMERIC VALUE

3480 OFTIM. DAD 66211 'TURN A TIMER OFF

3490 ONEER DAD 561173 'GET 1 NUMEER OFF R1Z2 AS 15-BIT SIGNED EINARY
3500 ONEI DAD 56154 'GET ONE NUMBER OFF R1i2 AS TAGGED INTEGER
3510 ONER DAD 56215 \GET 1 NUMEER OFF R12 AS FLOATING FOINT
2520 ONEROI DAD S623% 'GET 1 NUMBER OFF R12 AS REAL OR INTEGER
3530 ONTIM. DAD 66041 'TURN ON A TIMER

3540 DUTCHR DAD 35114 'QUTFUT ONE CHAR TO CRT

550 OUTSTR DAD 35052 TOUTFUT A STRING TO CRT

3560 FHARAY DAD 57642 'EFRINT AN ARRAY TO A DATA FILE

3570 FAPER. DAD 74144 'ADVANCE INTERNAL FRINTER

7580 PEN. DAD 66416 'FEN STATEMENT

3590 FENUF. DAD 66440 | FENUF

3600 FILO0 DAD S35977 'FI FUNCTION

2610 FLOT. DAD 32642 'FLOT TO CRT

3620 FOS. DAD 3435 'FOS FUNCTION

3630 FRDVR1 DAD 75767 OUTFUT A STRING TO THE INTERNAL FRINTER
3640 PRINT. DAD 70067 1GET UF FRINT FTRS TO “FPRINTER 15" DEVICE
650 FRLINE DAD 70402 'DUMF THE FRINT BUFFER

660 FRNT#$ DAD 30577 (FRINT A STRING TO A DATA FILE

3670 FRNT#. DAD IJ0O055 IMOVE THE FRINT FTRS IN THE BUFFER

3680 FRNT#N DAD 31022 VFRINT A NUMBER TO A DATA FILE

3690 PURGE. DAD 26013 'PURGE FILES

3700 FUSHLIA DAD 14244 'PUSH A TOEEN

2710 FUSHIZ DAD 14277 TPUSH TOEEN IN R14 % REGE R44-6 % SCAN
I720 FUSHAS DAD 142466 'FUSH TOKEN IN R14 % REGS R44-5 % SCAN
3730 R#ARAY DAD 77602 'READ AN ARRAY FROM A DATA FILE

3740 RAD. DAD 61746 \FUT COMFUTER IN RADIANS TRIG MODE

7750 RAD1G DAD 534673 \DEGREES TD RADIANS CONVERSION

7760 READ#% DAD 31335 'READ A STRING FROM A DATA FILE

3770 READ#. DAD 0035 IMOVE THE READ FTR

3780 READH#N DAD 21167 'READ A NUMBER FROM A DATA FILE

3790 REFNUM DAD 170235 'GET A VARIABLE REFERENCE

3800 RELMEM DAD I7334 |RELEASE RESERVED MEMORY

IB1O REM10 DAD 51736 'REMAINDER

3820 RESMEM DAD 37442 'RESERVE MEMORY FOR TEMPORARY SCRATCH
AHA0 KNDLO DAD 52144 VROMDOM NUMRFR FLNCTTON

7840 RNDIZ. DAD 55115 'RANDOMIZE STATEMENT

3850 ROMISE DAD 4776 |FOR CALLING EETWEEN EANK SELECTED ROMS
3860 ROMRTN DAD 476Z \GTO ROMRTN = RETURN WITH ROM O SELECTED
2870 ROULO DAD 55163 ' ROUND

7-9

HP-83/85 System Routines

875
880
IB90
2900
3910
3920
3930
3940
2950
3960
3970
2980
3990
/000
4010
4020
40730
4040
4050
4060
4070
4080
4090
4100
4110
4120
41730
4140
4150
4160
4170
4180
4190
{4200
4210
4220
42730
4240

250
4260
4270
4280
4290
47300
4710
4320
47330
47340
4350
4360
4370

NAME ADDRESS

RSMEM~ DAD 374353
REUM#E. DAD 37726
RSUM8BE. DAD 27722
RTCUR. DAD 25351
RTCURS DAD 5404
RTOIN DAD 44204
SCALE. DAD &&247
SCAN DAD 112462
SCAN+ DAD 11257
SCRAT+ DAD 4744

SCRAT. DAD 4477

SGCRDN DAD 25625
SCRUF DAD 25604
SEC10 DAD S34463
SEMIC$ DAD 70643
SEMIC. DAD 70745
SEONO+ DAD 174354
SEGNO DAD 17457
SET240 DAD 11243
SGNS DAD 53405
SIN1O DAD 53546
SMLINT DAD 13474
SORS DAD 52442
STEREEF DAD 7017

STOST DAD 45607
STOSV DAD 45254
STRCON DAD 14076
STREX+ DAD 136273
STREXF DAD 13626
STRREF DAD 137353
SUBROI DAD S2127
TAN1O DAD 53566
TIME. DAD 65517
TRY1IN DARD 145664
TWORB DAD S&176
TWOR DAD S62Z6
TWOROI DAD 56266
UNEG%. DAD 30235

UNER. DAD 62202
UNQUOT DAD 14212
UrCs. DAD 3373

UFCUR. DAD 35244
UFCURS DAD 337362
VAL$. DAD 3207

VAL. DAD 3230

WAIT. DAD 65701
XAXIS. DAD 3ZT03
YAXIS. DAD 32347
YTXS DAD 53242
ZROMEM DAD 44066

FIN

DESCRIPTION

'RESERVE TEMFORARY SCRATCHFAD MEMORY
'CHECESUM # OF BYTES

'CHECESUM AN 8K ROM

'MOVE CURSOR RIGHT ON CURRENT FAGE

'MOVE CURSOR RIGHT ON ALL 4 FAGES
'CONVERT A REAL # TQO A TAGGED INTEGER
'SCALE THE CRT GRAFHICS

'SCAN FOR FARSER

!GCHAR AND SCAN

'SUBSET OF SCRAT. (SCRATCHES BASIC FPGM % BPGM)
'SCRATCH (DOES SCRAT+ & RESETS SOME FPTRS)
'SCROLL ALFHA DOWN

'SCROLL ALFHA CRT UF

'SECANT

'PRINT A STRING FOLLOWED EY SEMICOLON
'FRINT A NUMBER FOLLOWED BY A& SEMICOLON
'PUSH THE INCOMING TOKEN AND GET A LINE #
'GET A LINE NUMBER

'SET IMMEDIATE BREAK RITS IN R17

'SIGN FUNCTION

'SINE

'FPARSE AN INTEGER

'SRARE ROOT

'STANDARD BREEF (NO FARAMETERS)

!STORE STRING

ISTORE SIMFLE ANMD ARRAY VARIAEBLE

'FARSE A QUOTED STRING

'SCAN AND FARSE A STRING EXFRESSION
'FARSE A STRING EXFRESSION

'PARSE A STRING VARIABLE AS A STORE STRING
'SUBTRACT TWO NUMEBERS

'TANGENT

'TIME FUNCTION

'GETS O OR 1 NUMERIC VALUES

IGET TWO NUMBERS OFF R12 AS 1S-BIT SIGNED #°S
'GET TWO NUMBERS OFF R12 A5 REAL #°S

'GET TWD NUMBERS OFF R12 A5 REAL OR INTEGER
'CHECK. TWO STRINGS FOR NOT EQUAL

'COMFARE TWO #°S FOR INEQUALITY

'FARSE AN UNQUOTED STRING

'UPFER CASE FUNCTION

'MOVE CURSOR UF ON CURRENT FAGE

'MOVE CURSOR UF ON ALL FOR FAGES

'VAL$ FUNCTION

'VAL. FUNCTION

'WAIT X MILLISECONDS

'XAXIS STATEMENT

'YAXIS STATEMENT

'YX FUNCTION

'ZERO OR EBLANE. A BLOCE OF MEMORY

HP-83/85 System Routines

SYSTEM OPERATION AND ROUTINES

This section provides some specific details, register conventions, etc. for cer-
tain areas of HP-83/85 system operation. It also shows the input conditions
required and the outputs produced by selected system routines. The names and
addresses of most (but not all) of the system routines detailed here are also
available on the Global File tape cartridge and disc.

The areas of focus are:

--Parsing and parse routines
--Runtime and runtime routines
--General-purpose utility routines
--CRT control and routines

--Tape control routines
--Decompiling

The system routines are arranged within their areas of primary

use. Simply because a routine is 1isted under a certain application, however,
does not 1imit its use to that area. For example, many utility routines may
also be used during runtime operations.

SYSTEM ROUTINE FORMAT

The format of the individual system routines is shown here:

Name : Name of the routine (from the global file).

Address: Permanent octal address of routine in computer memory.
Type: Primary tasks for which routine will be used.
Function: Outlines the function of the routine.

Input Conditions: Shows the assumptions made by the routine (e.g., contents of
specific registers and condition of stack pointed to by CPU
register R12) when routine is called.

Output Conditions: Shows resultls, outputs, etc., as they are found in specific
registers and/or on the stack addressed by CPU register RiZ2.

HP-83/85 System Routines

CPU Changes:

DCM:

Im

DRP

ARP:

STATUS :

ROMJSB :

NOTE
In the descriptions of R12 stack contents, the
contents of the stack are shown as they occur
on the stack. The nomenclature R12» indicates
the location of the stack pointer.

Darkened area indicates the CPU registers whose contents are
altered by execution of the routine.

Setting of decimal mode flag after routine is executed: B
indicates binary mode; D indicates decimal mode; — (dash)
indicates unchanged by routine; and U indicates undefined.

Contents of four-bit extend register after routine is exe-
cuted. Contents may be: Value (2-digit octal quantity);
— (dash) for unchanged by routine; or U for undefined.

Shows setting of data register pointer after routine is exe-
cuted. May be: CPU register number; — (dash) for unchanged
by routine; or U for undefined.

Shows setting of address register pointer after routine is
executed. May be: CPU register number; — (dash) for un-
changed by routine; or U for undefined.

Shows whether other CPU status flags are altered. May be:
— {(dash) for unchanged; or U for undefined.

Indicates whether or not this routine, if called from an
external ROM, must be called through ROMJSB. May be: Y for
yes, must be called through ROMJSB; or N for no, need not be

called through ROMJSB.

\.

HP-83/85 System Routines

PARSING AND PARSE ROUTINES

PARSE ROUTINE REGISTERS

In parsing, the HP-83/85 system uses the CPU registers shown here.

R10
R12
R14
R20
R40-R47
R40
R41-R42

R43

R44-R46

R47

PARSING FLOW

or
or

or
or

or
or

Input buffer pointer.

Output stack pointer.

Next token. (Set by SCAN routine.)

Next non-blank character. (Set by GCHAR routine.)
Detailed scan output. (Set by SCAN.)
First character scanned.

ROM #. (If R42 = p.)

Binary program address. (If R42 # p.)
System ROM. (If R41 = R42 = p.)

ROM token #. (If R14 = 370.)

Binary program token #. (If R14 = 371.)
Type. (If variable.)

Name. (If variable, R46 not used.)
Integer.

Secondary attributes for function.
Primary attributes.

PARSE ROUTINE REGISTER USAGE

Program flow in parsing is shown in the flowcharts on the next few pages. A
brief explanation follows the flowcharts.

HP-83/85 System Routines

PARSER

Y
P. PARS
ANY
ERRORS
?
Y

SET
CALCULATOR
MODE

PARSING A PROGRAM LINE

MAIN PARSE LOOP

END-OF-LINE

PROCESSING

HP-83/85 System Routines

PARSIT

SET ERRN AND
ERRL AND CLEAR
ERRORS

i

RESET INPUT
POINTERS

SCAN +

NUMVAL

FOUND
Y 2
END-OF-LINE N
PROCESSING CESTORE
ORIGINAL ERROR

PARSING A CALCULATOR MODE STATEMENT

7-15

HP-83/85 System Routines

PARSIT

VARIABLE Y

? ¥

N IMPLIED
Y Iiii
N

LET TOKEN
coMMAND N\ N

PARSE
ROUTINE

ERROR \

i O

PROCESS @
OR!

e |
PARSIT ROUTINE
7-16

HP-83/85 System Routines

‘ SCAN)
\

JSB =

SAVREG
Y ANY
ERRORS
?
N
Y
SET VARIABLE

NAME

SAVE R10 FOR
ERROR REPORT

Y

SELECT
ROM 0

\

TOKEN 2
TO

TOKEN3
TO R14
TOKEN 1
TO R14
et <l
P —

TOKEN FOR ILLEGAL
TO R4

SCAN ROUTINE

7-17

HP-83/85 System Routines

SAVE R10
IN R30

BINARY N
PGM PRESENT
? -
SYSTEM v
GET ADDRESS OF GET NUMBER OF ROM TOKEN
ASCIl TABLE T FETCH NEXT CHAR. "
NEXT ROM FROM CURRENT
ASCH TABLE >

PLACE ORDINAL
IN R43

SET ORDINAL ¥ a LOAD R14 WITH
=0 N EXTERNAL ROM
RESET TOSYSTEM. TOKEN (370)
RESET INPUT
STREAM PTR.
BINARY N
PGM
2 BINARY N
CLEAR 2
N Y ¥
SELECT ROM AND
ET ASCI TABLE PTR. M MATCH i GET RUNTIME
v INPUT CHAR. @ ADDRESS OF TOKEN
] ’

| I l

FETCH ATTRIBUTES
OF TOKEN

FETCH NEXT CHAR.

FROM INPUT STREAM
FLAG THAT MATCH
WAS FOUND
N
LOWER- N
CASE ALPHA >
2
Y
MAKE UPPER
CASE
*NOTE: BINTAB, 101233, CONTAINS BASE ADDRESS OF S8INARY PROGRAM.
ROMTAB, 101235, CONTAINS TABLE OF CURRENT EXTERNAL ROM NUMBERS.

INCREMENT
ORDINAL

1

RESET INPUT
STREAM PTR.
{R10)
T

+ GET NEXT CHAR.
FRAOM TABLE

7-18

HP-83/85 System Routines

Main Parse Loop: In the main parse loop, if there is a line number, control
passes to P.PARS, for parsing a program statement. If the statement has no line
number, C.PARS parses a calculator mode statement.

Parsing a Program Line: P.PARS calls the PARSIT routine, then calls the EOL
(end-of-1ine) and LINEDR (1ine editor) routines.

Parsing a Calculator Mode Statement: C.PARS calls the PARSIT routine, then checks

for and processes any errors.

PARSIT Routine: The PARSIT routine calls another parse routine, SCAN.

SCAN Routine: The SCAN routine is always called in parsing. It is SCAN that

places the next token in R14.

The SCAN routine finds the next token, or the next character if a token match

cannot be found.

If the input is: SCAN:

Digit Places integer in R44 or floating-point on R12.
Period Places floating-point quantity on R12.

Quotation mark symbol Returns token 42 in R14 and does not execute GCHAR.
Anything in tables Returns token.

Alpha not in tables Returns variable type.

Other not in tables Returns error token 17.

Blank Skips the character.

SCAN FUNCTIONS

SCAN, in turn, calls the routine SALT.

SALT Routine: The SALT routine searches all ROM and binary program tables, one

character at a time, looking for a keyword match.

HP-83/85 System Routines

PARSING IN BINARY PROGRAMS AND ROMS J

A binary program or ROM gains control at parsetime when the system matches a
keyword within that binary program or ROM. Once control is passed to the binary
program or ROM, there are certain responsibilities of the parse routine before
control is passed back to the calling Tocation.

One responsibility is that SCAN must be called at entry to get the next token.
SCAN may be called in one of three ways:

--Calling SCAN.

--Calling NUMVA+ (which calls SCAN first).

--Calling STREX+ (which also calls SCAN first).

When parsing is completed, SCAN must also be performed before returning to the
system. However, most system parse routines (NUMVAL, STREXP, GETCMA, etc.) call
SCAN before returning, so it is usually done for the user.

Another responsibility is that if a binary program is intended to be resident in
an external ROM, the parse routines must ensure that ROM P is enabled when con-
trol is passed back to the system. This can be accomplished by executing GTO

ROMRTN.

PARSE ROUTINE EXAMPLES

Here are some examples of parse routines for different functions:

Statement With No Parameters: e.g., BLOOPER

BLOPRS LDB 42, = 371 Load binary program token marker.
PUBD 42, +12 Push it.
PUBD 42, +12 Push a garbage byte.
PUBD 43, +12 Push binary program token.
JSB = SCAN Do a scan.
RTN Return.

Statement With One Parameter: e.g., SLOOPER numeric or string value

SLOPRS PUBD 43, +6 Save binary program token.
JSB = NUMVA+ Do a scan and try to get numeric.

7-20

HP-83/85 System Routines

JEN GOTNUM JIF found a numeric.
JSB = STREXP Try to get a string, then:
JEN GOTNUM JIF found a string.
POBD 57, -6 Clean up RTN stack.
JSB = ERROR+ Report error.
BYT 81D Bad expression.
GOTNUM POBD 57, -6 Recover binary program token.
LDB 55, = 371 Load binary program token marker.
PUMD 55, +12 Push them.
RTN Done.

Statement With More Than One Parameter (written for an external ROM): e.g.,
TROOPER numeric value, numeric value, string value

TROPRS PUBD 43, +6 Save ROM token.
JSB ROMJSB
DEF NUMVA+ Do a scan and get a numeric.
BYT P
JEN NUMOK JIF got one.
ERR POBD 57, -6 Clean up R6 stack.
JSB = ERROR Report error.
BYT 88D Bad statement.
RTN GTO ROMRTN Ensure ROM P is reselected.
NUMOK JSB = ROMJSB
DEF GETCMA } Demand a comma.
BYT 9
JSB = ROMJSB
DEF NUMVAL } Try to get another numeric.
BYT 9
JEZ ERR JIF not there to error.
JSB = ROMJSB
DEF = GETCMA } Demand another comma.
BYT @
JSB = ROMJSB
DEF STREXP Get a string expression.
BYT @ }
JEZ E JIF not there.

7-21

HP-83/85 System Routines

POBD 57, -6 Recover ROM token.

LDB 56, = MYROM# Load ROM number.

LDB 55, = 379 Load ROM token marker.
PUMD 55, +12 Push them all.

JMP RTN Re-select ROM p.

MYROM# EQU 341

PARSE ROUTINES

System routines useful in parsing follow.

7-22

FUNCTION |

NAME

ALFA

ADDRESS 11775

70

71172173 [74] 7576177

Determines if next SCAN character is an alphabetic one TYPE Parse
(i.e., A-Z or a-z).
REGISTER CONTENTS R12 STACK CONTENTS
2
o R20 = Current character being scanned
2
o
(8]
-
>
a
z
g| E set to 1 if: A <= R20 <= Z (upper case)
S or
5 a <= R20 <= z (lower case).
S Otherwise E cleared to 0.
s If lower-case input, R20 is changed to
z| upper-case for output; otherwise R20 is
3| 1eft unchanged.
CPU CHANGES COMMENTS LRomusB] N
0 2] af a] 5] 6] 7]bcMm E .
o[[z 1a]a[ts|t6[17] g | R20 contents may be changed if lower-case. No other
20 (21 122 [23[24]25]26] 27 1
R S EER LY T T A A registers are affected.
40 |81 |42 (a3 a4l a5|a6[a7] U - E used as output f]ag'
50 |51 152 |53 |54 555657 FeTatos Mode changed to binary.
60 [61]62]63|64|65]66]|67
7071172173} 74] 75176177 U
FUNCTION NAME DIGIT
ADDRESS 12027
Determines if next SCAN character is a digit (0-9; i.e., TYPE Parse
ASCII 60-71).
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
Q
El R20 = Current character being scanned
&
(8]
[
o]
a.
z
2]
Z
e .
£| E set to 1 if 605 <= R20 <= 71g3 other-
z - .)
S| wise, E is cleared.
5
a
-
2
(@)
CPU CHANGES COMMENTS ROMJSBI N
0} 1 2] 3| a|] 5] 6] 7]DC™M E
ot (121314 15]16{17 - | s - 3
B EEA FEAELI F EI L AEP Affects nothing but E-register.
30131132 [33 [38] 3536 37
40 |41]42]43]44]45]46) 47 - -
50 |51 |52 |53154]55[56} 57 FSTATUS
60 |61 62]63164|65]66] 67

7-23

FUNCTION] NAME DMNDCR
ADDRESS 15060
Checks R14 for either the carriage return character (15) TYPE Parse

or an exclamation point (233). Generates error if neither
is found; returns if either is found.

REGISTER CONTENTS R12 STACK CONTENTS

[%2]
Z
1]
=l R14 = Current token
&
Q
[
2
a
z
[%2]
Z
o
5| R14 = Same current token
&
(8]
[
o
a
-
2
(o]

CPU CHANGES COMMENTS LrRomJsB] Y
of 1] 2] 3] 4] 5] 6] 72}DCcm E
1010312 [13114115, 165174 _ . This routine demands a carriage return or a remark after
20 [21]22123[24] 25]26] 27 YT .I . f DMNDCR t th .l.l t CR
IR ER I B R B a line; i returns to the calling routine, a
40 (4142 [43[aaas]a6lar] U} - or a ! is guaranteed.

FUNCTION NAME GSN
ADDRESS 14323
Parses one string followed by one number (e.g., BPLOT A$,1). | Tvee Parse
REGISTER CONTENTS R12 STACK CONTENTS
[2])
Z
Q
5| R14 = Input token
&
(8}
[
2
a
z
w
Zz
1
£l R14 = Next SCAN token String expression tokens
3 Numeric value tokens
et Token from R14
2 R12Z + memmmmmrm e -
fu
2
o
CPU CHANGES COMMENTS LRomJsB] Y
0] ! 2{ 3] 4] 5] 6] 7]DCM E
101171121314 15]16]|17 - . .
T8 AR A B L R B Y Calls STREX+ and GETPA-. (Similar to GETPAR.)
3013132 |33 34 35 [36 | 37 pR 4 AHF
40 {41142 143]44[45]46] 47 - -
50 |51 52153]54]55[56]57 FcTartos
60 [61162]63]/64]65]|66]67
70171 [72173 /74175176177 -

7-24

FUNCTION | NAME GSN+NN

ADDRESS 14421
Parses one string followed by 1 or 2 numeric parameters TYPE Parse
(e.g., CREATE A$, n [,m]).

REGISTER CONTENTS R12 STACK CONTENTS
[2]
Z
Q
|l R14 = Input token
8
(&)
=
2
a
z
[2]
Z
o
El R14 = Next SCAN token String expression tokens
Z 1 or 2 numeric value tokens
et Token from R14
2 R]12 + —mmmmm———mmem———emm—e—m— o=
[
2
o
CPU CHANGES COMMENTS LRomuse] ¥
[2] 3| 4] 5] 6] 7]OCM E
70 11 [12]13]14]15]16]17 - 3 J 3
otttz e T ;J Ca]]s_another routine which demands 1 or 2 numerics.
30 3T 37133138 351 36] 37 pore 42 (R34 =1 or 2.)
40 {41]42143]44[45[46}47 - -
50 |51 |52 {53 [54]155]56] 57 F cyaTUS
60 |61 /62 [63][64]|65]166]67
7071]72}73]74175176]77 -
FUNCTION name GPI2N
ADDRESS 14465
Gets @, 1 or 2 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
z
8| Normal parse input, i.e.:
=l R10 = Input buffer pointer Stack output pointer
z| R14 = Next token
S| R20 = Next character in input buffer
2
z
m I3
g| Normal parse output, i.e.:
= R14 = Next token Results of successful parse
z| R40-47 = Current parse information R12 + ——==m=m—mmmem=—m—m—mmmom ===
o
2
a
-
2
(o]
CPU CHANGES COMMENTS LRomJsB] Y
[21 3] a| 5] 6] 7]OC™M E
sl ;;;g.;,gg . q-1y Parses @, 1 or 2 line numbers separated by w1 <=
o T3z 53 e |38 36 3T -2 line number <= 9999). Calls SEQNO+ for line number.
g 4 ;g:g 2 ;2;2 g 14112 Error 90 if line number outside specified range.
e .
o terterTesTealos Les L1 o Error 91 if "," not followed by another line number.
20711722173 (74175176177 U

7-25

FUNCTION | NAME GRIN
ADDRESS 14504
Same as GP12N, except gets @ or 1 numeric parameters. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS
w
4
Q
[
5 -
g| Normal parse input (see SCAN)
2
o}
a.
z
[%2]
Z
Q
= Results of successful parse
3 R12 + ~—mm e e
Q
[
2
a
-
2
o
CPU CHANGES COMMENTS [romuse] ¥

0 1 2 3] 4 5 6 7 | DCM E
10 [11]12[13]|14[15[16]17] _
20 |21 |22 | 23124 25| 26 27 AL:P See GPI2N.
303132331 34]35]36] 37 }o20
4041142]a3]aa7a5]46]a7] 14] 12
50 |51 52|53]54]55]56] 57 f=srmr=s
60 (61 /62]63|64]65]|66]67
70 |71 172123{74]175|76| 77 U

FUNCTION NAME GPOR2N

ADDRESS 14522
Same as GPI12N, except gets @ or 2 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[72]
P4
o
[
a 0
&l Normal parse input (See SCAN)
o
2
a
z
[%2]
Z
Q
= Results of successful parse
z R12 + mmmeme e
(&)
-
2
a
-
2
(@]
CPU CHANGES COMMENTS |romuse]y

0] 1 2] 3] 4] 5] 6] 7}]0OCM [3
;8 ;} e = AU Error 91 if only one parameter. Calls NUMVA+ to get
30131 [32]33 34 38 [36] a7 J- L AT numeric value.
40 |41 142 |43]44]45)46] 47 34 U
505152 [53]54]65] 66 57 f=eratee
60 [61/62]63[64]65]66]67
70 [71 {72 [73 7747526] 77 U

7-26

FUNCTION __ | NAME G120R4
ADDRESS 14550
Same as GP12N except gets 1, 2 or 4 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
o
=
S
3 R14 = SCAN token
[
>
a
z
2| R14 = Next SCAN token
2| R20 = Next character (Set by SCAN)
S R34 = Number of parameters found (Error Numeric value tokens
S exit if # 1, 2 or 4) Token from R14
§ R35 = 0 R12 » -=mmmmmemmmmmmmmo =
=| R40 = Set by SCAN
o
CPU CHANGES COMMENTS [RomusB] Y
0] 1 2] 3] 4] 5] 6] 7QbCc™m E
10 1y [12]{13]14]15{16] 17 U
20 |21 22 [23] 24 75 | 26 | 27 Jrmmmtprries Calls GETPA?.
30 |31 (32[33[34[35]36]3 .
e ameramo E## if parameters found.
50 |51 [52[53[54]55]166; 67 FgTatus
60 [61]62]63]64165]66]67
207 172]73}74] 75176377 =
FUNCTION NAME G10R2N
ADDRESS 14537
Same as GP12N, except gets 1 or 2 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
o
|l R14 = Current token
&
Q
—
2
a
z
w
z
14
E[R14 = New current token Numeric value tokens
Z Token from R14
o R12 + ===--==m=m=mmm===m—-
s
g
2
(o]
CPU CHANGES COMMENTS | RomusB] Y
0] 1t 2 3] 4 5| 6 7 §OCM [4
011 [12113114]16116]17)F _ - Ca'l'ls GETPA?.
20121 |22 1201241 2526 27 . . . s
S EIN EF3 EEN TS T E i L Aborts through ERROR+ (91) if error in fmdmg param-
a0 4142143]asalas[a6]ar] 34] - eters. Aborts through another routine if too many
50 |51 152153]|54]|55]56]157
60 [61]62]63]64]65[66]67 STATUS paramEters'
70f711722(73]74125]176]177 -

7-217

FUNCTION | NAME GCHAR

ADDRESS 11755
Fetches next character (usually from input buffer) addressed |} TYpe Parse
by R10 pointer. GCHAR skips blanks, and it increments R10
unless the character is a carriage return.

REGISTER CONTENTS R12 STACK CONTENTS

w
Z
o
5| R10 = Pointer to character
5
(&)
-
2
a
z
z
S| R10 = Pointer to following character
= (unless present character was a
Z carriage return)
©l R20 = Character popped from R10
2
—_
2
o

CPU CHANGES COMMENTS [rRomuss] Y
of 1 2] 3] 4] 5| 6] 7j0CM E
ACHAARATSAEIALINLARLIRYA By B Performs SAD at entry, PAD at exit.

20 [21[22 2324|2526 27

DRP | ARP

30{31[32]33]134[35]36]37

40|41]142]43/44/145]146/ 478 - -

50 [61]52 [63]54]55]56] 57 eTaroe

60 |61162]63]64]65]|66]67

70 171172731741 75]76] 77 -

FUNCTION NAME GET$N?
ADDRESS 14560
Demands one string; also gets one numeric if present. Used TYPE Parse

to parse a statement with one string, and that may have one
numeric parameter. Generates error if no string found.

REGISTER CONTENTS R12 STACK CONTENTS

(2]}
4
o
E
o .
z| Normal parse inputs (See SCAN)
2
2
a
z
w
8
£ Parse results
z R12 » --ommmmmmem-
(S
[
2
a
—_
2
(@]

CPU CHANGES COMMENTS [Romuss] Y }
0f 1 2| 3] 4y 5] 6] 7}0OC™M E
wfn[23frafsfief 7] _ - _
o s e 37 — Parses: string expression or string expression, fol
30 (3132 [33]34]35]36] 37 b Towed by 1 or 2 line numbers. _
dolaifarlasieslasfao i) 14] - Possible errors:” 90 if line number out of range. 91 if

5 4 ———T—— .
50161 T2 Te3 Tea 65 166 67 F—mrss , not followed by another line number.
70171 (7217317241 75176} 77 -

7-28

FUNCTION |

Looks for the symbol) in

NAME GET)
ADDRESS 13365
R14 (usually following a call to TYPE Parse

SCAN). If) is found, calls SCAN and clears E; otherwise,
aborts through ERROR+ with error 80D.
REGISTER CONTENTS R12 STACK CONTENTS
w
<
]
£l R14 = Current input buffer symbol
&
Q
-
o
a
z
[72]
4
e
2| R14 = New current symbol, if successful
&
(&4
-
>
a
[
2
(]
CPU CHANGES COMMENTS Lromuse] ¥ |
ol 1] 2| 3] 4] 5] 6] 7QJ0OC™M E
101112113141 15[16]17 -
R PIN FLR E EL) P B B AU Expects E cleared (#-1) at entry.
o151 T32 33 3a [35 [36| a7 Fore 4+ At exit, E signals whether) was found:
d01a1faz 143 a4 140 128 al -1 - E=E+1 means) was found.
LA raE E=p means) was not found.
70711721731 74175176177 -
FUNCTION NaME GETT$
ADDRESS 14455
Demands a string expression and processes it. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
(2]
g
=l R10 = Pointer to input stream R12 » Output stack
z| R14 = Current token
e
=)
o
z
[72]
4
1
£ R14 = Next token
z R40-47 = Set by SCAN
o
>
a
[
=2
o]
CPU CHANGES COMMENTS ROMJSB
0 1 21 3] a] 5] 6] 7]OC™ E
6
Mot e I R
30 337 33 34| 35 | 36 | 37 o4 Returns an error if no string is found.
a0 |41 |42 [a3]aa]as[a6la7d 14| 12
50 |51 |52 53|64 55]56] 57 F"57Atus
60 |61162[63/64]65]66]67
307 172731741 75176177 U

7-29

FUNCTION | NAME GETIN
ADDRESS 14437

Gets one numeric parameter, and pushes onto R12 the TYPE Parse
corresponding numeric value token and the token in R14.

REGISTER CONTENTS R12 STACK CONTENTS

g
Qo
5| R14 = SCAN token
8
-
2
z
@l R14 = Next SCAN token
S| R20 = Next character (Set by SCAN) Numeric value tokens
5 R34 = Number of parameters found (Error Token from R14
5 if#1) R12 + mmmmmmmmmmmmmmmeeee
5 R35 = 1 (Set by GETPAR)
2| R40 = Set by SCAN
3

CPU CHANGES COMMENTS ROMJSB
0] 1] 2] 3] 4] 5| 6] 7JocM | E l—_l-L
e et r el ey e B Sets R35 = 1, then calls GETPAR. E#p if found.

DRP § ARP

40 |41 42 |43 |4a a5 a6]a7] 34| -
50 |51 |52 |53 | 54 55 | 56 5_7, =t

FUNCTION NAME GET2N
ADDRESS 14407
Gets two numeric parameters, and pushes onto R12 the TYPE Parse

corresponding numeric value tokens and the token in R14.

REGISTER CONTENTS R12 STACK CONTENTS

[72]
Z
o
£(R14 = Current SCAN token
&
(&)
-
2
z
2| R14 = Next SCAN token
S R20 = Next character (Set by SCAN) Numeric value tokens
8| R34 = Numer of parameters found (Gener- Token from R14
9 ates error if # 2) R12 + =mmmmmmccmc e
5 R35 =2
% R40 = Set by SCAN
(@]

CPU CHANGES COMMENTS [romusB] ¥
0 1 2] 3] 4] 5] 6] 7jOCM E
1011121314 1516} 17 - U

20121122 123[24]26]26] 27

e E#@ if found.
3031132 133 34| 35 [36| 37 it 4 AHE .
mmemomr K R GET2N jumps to GETPAR.
50 [51 |52 [53 |54 55 |56 [57 feraree
60 |61 6263 64] 65 66]67
70 |71 172 |73 | 74| 75 76| 77 -

7-30

FUNCTION |

Gets four numeric parameters and pushes onto R12 the TYPE Parse
corresponding numeric value tokens and the token in R14.

NAME GETAN
ADDRESS 14414

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
)
§ R14 = Current SCAN token
(o]
Q
-
2
o
z
2| R14 = Next SCAN token
=1 R20 = Next character (Set by SCAN) Numeric value tokens
2| R34 = Number of parameters found (Gener- Token from R14
3 ates error if # 4) R12 > mmmmmmmmmmmemmmmm oo
é R35 = 4
= R40 = Set by SCAN
(@]
CPU CHANGES COMMENTS [Romusel Y

o] '] 2| 3| 4] 5] 6] 7jocm] E
1wl [12]13]14({15]16][17) - U .
20121 |22 |23 [24] 25 [26 77 fmmmmefmmees E#p if found.
3031132[33134[35136137 GET4N jumps to GETPAR.
20 (41142 |43]aale5]a6]a7] 34) -
50 |51 [5253[sa[55]56]57 F5Tatus
60 |61]62]63164]65]66] 67
70[71]72]73|74] 75176177 -

FUNCTION NAME GETCMA

ADDRESS 13414
Demands a comma as the next SCAN token. Sets E#@ if found; TYPE Parse
otherwise, returns an error.
REGISTER CONTENTS R12 STACK CONTENTS
(7]
4
=
£| R14 = SCAN token
§ R40 = Set by SCAN
—
o
a
z
wn
Z
o
El R14 = Next token
Z| R40 = Set by SCAN
et
oo }
'
-
2
(@]
CPU CHANGES COMMENTS IROMJSBIY

0 1 2 3] 4 51 6 7 1 0CM E
tofiii2fisfral s 6L]) F#p if comma is found.
20121222324 25]26]2) oI —
30 [31]32]33{34[35]36}37
40 [41]42143[44]45]46] 47 - -
50 [61]52 153 |54[55]56(57 Fcratus
60 16162]63/64]65}66]67
720(71[72173174] 7576177 =

7-31

FUNCTION __ | NAME GETCM?
ADDRESS 13425
Checks for a comma. Sets E#@ if found. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
w
rd
)
[
5| R14 = SCAN token
5| R40 = Set by SCAN
[
=2
a.
z
[72)
Z
o
5| R14 = Next token, if SCAN token was a
3 comma
~| R40 = Set by SCAN
2
-
2
o
CPU CHANGES COMMENTS [romuss] Y
[¢] 1 2 3} 4 5| 6 7 L OCM E
1011]12]13]114[1511617 - U .
70 (2122 [23]24] 25]26] 27 — E#@ if comma found.
30 [31]32 |33 34 35 36 37 J22=
40 [41 14214344 45]146] 47 - -
50 {6162 153 |54 55]56]57 f=sraioe
60 |61 |62 163 [/64]65]66]67
70 /71172 [(73[74]|75({76] 77 -
FUNCTION NAME GETPA?
ADDRESS 14516
Gets an arbitrary number of numeric parameters. (Same as TYPE Parse
GETPAR except R35 is set to zero.)
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
5| R14 = Input token
§ R35 = @ (Then GETPAR is called)
o
o
a
z
(2]
P4
Q
=1 R14 = Next SCAN token Numeric value tokens
Z| R34 = Number of numeric parameters found Token from R14
© R12 » =-mmmmmmm e -
2
a
-
=2
(@]
CPU CHANGES COMMENTS ROMJSB] Y
0] 1 2] 3(4] 5] 6] 7jbcwm E
10|11 12113141 15]16]17 - - . -
T G et _ Same as GETPAR with R35 = 0. Calls NUMVA+,
30 [31 3233134 35 | 36| 37 johr 4 ARP
a0]a1[a2]a3Taalasa6]a7] 34| -
50 {5152 |53 [54] 55]56] 57 F=Tatos
60 [61]62]63/64]65]66]|67
2017 {72173]174175]76] 77 -

7-32

—

FUNCTION | NAME GETPAR

ADDRESS 14342

GETPAR gets as many numeric parameters as it can. If at TYPE Parse

entry R35 = @, any number is acceptable. If R35 # 0, the
number fetched must equal that in R35. GETPAR pushes the input token.

REGISTER CONTENTS R12 STACK CONTENTS
w
§ R14 = Input token
8 R35 = @ (Any number of parameters)
ol or
; R35 # @ (R35 = Number of parameters)
z
wn
8
2| R34 = Number of parameters found. Numeric value tokens
S| If R35 # @, then R34 = R35; otherwise, Token from R14
S| an error is returned. R12 + ===-—m—mmm==m—mm=—n=
-
2
o]
(@]
CPU CHANGES COMMENTS | romusB] y
[R 2] 3] a] 5] 6] 7JOCM E
10 [11[12]13]14115]16}17 - U
3021 |22 |23 24| 25| 26] 27 Calls NUMVA+.
31313233 [3a [351 36 37 oo
20 (a1 [a2 |43 [aa] a5 |a6]a7] 34] -
50 |51 |52 |53 |54] 55166157 FSTATUS
60 |61]/62]63[64]|65]66]67
70|71 1721737241 75176177 -
FUNCTION NAME INTEGR
. . . s . ADDRESS 11447
Tries to get an integer of up to]4]0 digits from input TYPE Parse
buffer. Used in applications such as sequence numbers, where”
it is desired to ignore decimal points and exponents.
REGISTER CONTENTS R12 STACK CONTENTS
(2]
2
o
=l R10 = Input buffer pointer (Next
5 character)
S| R20 = Current character from buffer
g
8| R10 = Next character in buffer after
5 number
Z| R20 = First non-digit character
O R36 = Exponent of integer in R40
2| R40 = Digits of number found
g
CPU CHANGES COMMENTS | RomJsE] Y
of 1 2| 3] 4] 5] 6] 7]ocm E
;g ; ;? KIECBEIRLIRNS il) No SCAN is necessary before INTEGR is called.
30|31 AEIED ;2;2 g DRP § ARP E=p if no number found, E=1 if found.
a0 a1]a2laa]aalasla6]a7)22 1 U On return, R40 contains right-justified number if R36 =
50 |51 15263154155} 563 57 FSTATUS 15C; otherwise R40 contains integer with exponent of
60 {61162 [63]64]165]66]67
70|71 172173741 75176177 U R36-]5C

7-33

FUNCTION | NAME NARRE+

ADDRESS 13376
Same as NARREF, except that it performs a SCAN first. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

R14 = Next token 2 (Fetch array token)

R40-47 = As per SCAN outputs R44] Name
R45

CPU CHANGES COMMENTS l ROMJSB I Y

1] 21 3] 4] 5/ 6] 7})DCM E

10

171211314115 116}17 'l

20

211222324 25]26] 27 Calls SCAN at both entry and exit.

30

332133 34 35 36 [37 Jo§-2RF

40

a1|a2743]aalasfa6]4a7] T14] 36

5115253]54]55[56] 87 I=evaroe

611621631|/64/65]166] 67

70

71172173 |74[75)176] 77 U
FUNCTION NAME NARREF

ADDRESS 13402
Parses a simple numeric variable reference as an array TYPE Parse

reference (i.e., MATA=().

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

R14 = Current token (Should be a 1)

OUTPUT CONDITIONS

R14 = Next token 2 (Fetch array token)

RA0-47 = As per SCAN outputs Ras } Name

CPU CHANGES COMMENTS I ROMJSBIY

1f 2] 3] 4] 5] 6] 7]0C™ E

20

11 [12{13114]15{16}17 3
I PT P P P P Y] Jw Calls SCAN before returning.

30

31]32133{34[35]36]37

40

a1]a2]a3]aalas[46]47]14 | 36

50

5115253 [54]66]56] 57 fmrates

61)62163/64[65|66]67

70

71172 (73741 751 761 77 U

7-34

FUNCTION | NAME NUMCON

ADDRESS 13466

Pushes integer or floating point number onto the R12 stack TYPE Parse
and calls SCAN.

REGISTER CONTENTS R12 STACK CONTENTS

w
8| R14 = Token from SCAN (4 if floating
S point, 32 if integer)
S| R40 = Set by SCAN
5
z
2
o R14 = Next token from SCAN Integer or floating point number
5| R40 = Set by SCAN R]2 + =mmmec—ce—emme—mmm—memm———em—m- o
&
&
-
2
=
2
(@]

CPU CHANGES COMMENTS [rRomuse] Y
ot 2| 3| a] 5| 6] 7]oc™ E
ol jiz13lialisi16017) - § U Must SCAN before calling this routine.
23 ;: ;; ;; ;Z ;: §§ ;; orp | ARP Routine SCANs before exit.
40 [41a2]a3]aa]45146]47) - |} - At exit, E#P if number found.

50 |51 |52 |53 54] 65 [56] 67 F5Tatus

60161 [62(63]64]165]|66]67

70]71{72173174]75176]177

FUNCTION NAME NUMVA+
ADDRESS 12407
Same as SCAN routine followed by NUMVAL routine. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
)
Z
o
=
Q
Z
O
&S]
[
>
o
z
W
2
Q
—_
a
4
O
Q
[
>
a-
}—
2
(o]
CPU CHANGES COMMENTS |RomJse] Y
0 1 2 3] 4 5] 6] 730CM [3
W1 f12f1afralsji6]17 o g .
o131 122123 T2a | 25 (261 27 See NUMVAL for conditions and changes.

ORP ARP

30 |31 32 [33][34[35[36] 37

40|41]4243]44]|45]46] 47

50 |51 |52 |53 [54[56| 56| 57 F=STatus

60 |61 162 |63]64]65)66]67

70[71]722]73]74] 75/ 76177

7-35

FUNCTION | NAME NUMVAL

ADDRESS 12412

Pushes a numeric value onto the R12 stack and calls SCAN. TYPE Parse
Sets E#@ if numeric found; otherwise sets E=@ and restores
input buffer.

REGISTER CONTENTS R12 STACK CONTENTS
(2]
2
o
5| R14 = SCAN token
§ R40 = Set by SCAN
©
z
Z
2
S| R14 = Next SCAN token
5| R20 = Set by SCAN
§ R40 = Next character (Set by SCAN)
2
5
@]
CPU CHANGES COMMENTS IROMJSBI x
1 2 3] 4 5 6 7 LOCM™ E
ottt oded U E#@ if numeric found.
31132 33|34 35| 36 37 JoRr £~ Calls SCAN at exit.
41 142 143144 [45]46] 47 - -
51[52]153|54|55[56157 STATUS

61/62163/64]65]66]67

71172173(74175]176] 77 -

FUNCTION NAME PUSHTA
ADDRESS 14244
Pushes the token in R14 onto the R12 stack and calls SCAN. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
=
= R14 = Token
Z
@]
[8)
-
g
z
wn
8
El R14 = Next token (Set by SCAN)
2| R20 = Next character (Set by SCAN)
©| R40 = Set by SCAN
g
2
Q
CPU CHANGES COMMENTS [rROMJUSB] Y |

1] 2] 3] 4] 5] 6] 7}ocMm E

11{12]113]14] 15116} 17 3
e T e 1 Calls §CAN before exit.
3132 [33] 34] 35 36 | 37 p2EE 4 28E Sets E=1.

41/42]43]aa4a5/46]470 14| 36

51[52[53164[65]56] 57 e

B18[8]8[3]5]o

61162163 [64]65]66] 67

71172]73]74175[176]77 -

7-36

FUNCTION | NAME PUSH32
ADDRESS 14277
Pushes an integer onto the R12 stack (at parse time). TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[7p)
Z
=
=
s| R14 = 32 (Integer token)
S| R44-46 = BCD integer
2
z
2
o
o
5 R14 = Next token 32 (Integer token)
9 R40-47 = Set by SCAN BCD integer value from R44-46
5 R12 » =—=-—mmmmm—mmmmmm—m—m—memmmm =
a
5
o]
CPU CHANGES COMMENTS ROMJSB
0 1 2 3 4 5 6 7 | OCM E
el T1] sets &1,
o Tar 132133138135 [36] a7 Jone 28 Calls SCAN at exit.
a0 |41 (a2 [a3 144 a5]a6]a7] 14} 36
50 |51 52 |53 54 66]56]57 FSTArus
60 |61}62163[64]65]66] 67
20171172173 74] 75761 77 U
FUNCTION NAME PUSH45
ADDRESS 14266
Pushes the token in R14 onto the R12 stack; then pushes the TYPE Parse
variable name in R44-45 onto the stack and calls SCAN. y
REGISTER CONTENTS R12 STACK CONTENTS
w0
Z
o
1 R14 = Token
Z| R44-45 = Variable name
et
2
2
w
P4
o
=] R14 = Next token (Set by SCAN)
Z| R20 = Next character (Set by SCAN)
©| R40 = Set by SCAN
g
2
(@]
CPU CHANGES COMMENTS |ROMJSB|Y
0] 1 21 3] a] st 6] 7jDc™m E
w1 (12134 15]16]17] _ e . .
20121 [22123]24{25]26 27] Jump,. tO anothf’r r()”t]nP’ Wh1ch Ca]]S SCAN.
o 3T T2 33 3a 35 36 37 Ao 20 Sets E=1.
a0 a1]az a3 aala5]a6]a7]14 |36
50 |51 |52 [53|54]55]56]57 FSTaTUS
60 |61 [62]63[64]65]66] 67
7071172173] 7241 75]76] 77 -

7-37

FUNCTION |

NAME REFNUM
ADDRESS 17025

Parses a simple numeric variable or a numeric array TYPE Parse
reference.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
=
3 R14 = 1 if simple numeric variable
S reference.
5 = 2 if array reference.
af Otherwise, exit.
(2]
&
5| R14 = Next SCAN token 21 22
S Variable name OR Array name
= Parsed subscript
s
2
o]
CPU CHANGES COMMENTS [Romuse] y
Of 1 2] 3] 4] 5] 6] 7]0OCM E
10117 [12[13(14]115]116{17 - U
20121122 (231241725 [26 [27 femmserfrmeree E=@ at entry.
30(31132]33]34[35]236] 37 3 3
4041 142]a3]aa]a5]a6]a7] - - EFP at exit hf found)‘
50 51 /52 |53]54]55]66] 57 =Tatos
60 (61 /62]63|64]65]|66]67
70]71172173|74]75176] 77 -
FUNCTION NAME SCAN
. ADDRESS 11262
Scans the input buffer and returns the next token. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
w 3
8| R10 = Input buffer pointer
=l R20 = Next character in input buffer R12 = Qutput stack pointer
S
(@]
1S
[
>
a
z
w| R10 = Input buffer pointer
8| R14 = Next token)
El R20 = Next character R12 = OQutput stack pointer
Z| R40 = First character searched
©| R41-42 = ROM#, binary program address, or
2| R43 = ROM token or variable type
5| R44-46 = Name of var. or int., or sec. att.
°| R47 = Class
CPU CHANGES COMMENTS ROMJSB
of 1 2| 3| 4] 5] 6f 7]0OC™M [3
10|11 |12113114]15][16]17 - :
20 (21 (22 [20 (24 25126 [27 }— Sw F=p at exit.
30 [31 (32 [33[34] 35| 36 37 22X
40 {41 {42 143144]45146][47114 | 36
50 !51 [52[53]|54]55[56]57 TTaTos
6061 /62163}64]65|66] 67

70

71 172 |73 [74] 75] 76| 77 U

7-38

FUNCTION |

Gets next character (through GCHAR) and executes SCAN.

NAME SCAN+
ADDRESS 11257
TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS
w)
2
o
[
8
2
@]
Q
—
2
a
z
7]
Z
o
=
&)
Z
(o]
(8]
-
2
a
[
2
(o]
CPU CHANGES COMMENTS |RomusB] Y
0 1 2 3] 4 5 6 7 | OCM [3
1w ([11]12113[14]15]16]17 A
soTa 2713324 26 126 27 See SCAN for conditions and changes.
30 Ta1 132133 3a 35 [36 [37 o~
40 [41]42]43144|45146] 47
50 |61 52|53 [54]55]56]57 gTarus
60 |61]62]63[64]65]|66]67
70{71172173}74175]176177
FUNCTION NAME SEQNO+
ADDRESS 17454
Pushes current token onto R12 stack and looks for valid TYPE Parse
sequence (1ine) number. Pushes Tine number if found. :
REGISTER CONTENTS R12 STACK CONTENTS
w
P
Q
£| R14 = Current token
&
Q
[
o]
o
z
w
5 Current tok
o urrent token
= = :
) R14 = New current token Sequence number (2-byte integer.
] Present only if found.)
5 R12 + ==mmmemmmmmmmmm—comom—mmm———o= =
a
=
2
@]
CPU CHANGES COMMENTS ROMJSBLY
0] 1 2 3| 4] 5} 6{ 7QDCM [4
T s - | u Expects E cleared (#-1) at entry.
70 (77222324 75|26 27 bmeed=med Calls SEQNO (which calls SCAN) to get an integer.
oforiarln s e - | - | Generates error if sequence number = @, or if number>99993.
50 51|52 53] 54]56]56]57 FsTatus Sets E=E+] if sequence number found; sets E=p if number
60 61|62 |63[64]65[66]67 not found.

71172 74| 75 77

7-39

FUNCTION |

Scans for sequence (1ine) number, and pushes the number
onto the R12 stack.

NAME

ADDRESS 17457

TYPE

SEQNO

Parse

REGISTER CONTENTS R12 STACK CONTENTS
z
o
=
Q
Z
]
-
z
z
2
2| If no sequence number found: If sequence number found:
8| R14 = New current token R12 stack = Sequence number (2-byte
5 integer)
2
5
o
CPU CHANGES COMMENTS LRomuse] Y
,3 = 1§ g = é D Di? E Expects E cleared (#-1) at entry. .
20 [21[22[23124] 25126 27 fommmndemns Calls SEQNO (which calls SCAN) to get an integer.
ﬁ I2ia3y3a 38 90087 Generates an error if sequence number = @, or if sequence
42143144 [45]46] 47 - - numbe > 9999.
N S T STAS P Sets PELLF 7 sequence number found; sets E=@ if no sequence
70 |71 (72 {73 [74] 7576 77 - number found.
FUNCTION NAME SMLINT
ADDRESS 13474
Pushes an integer (R44-46) at parse time if R14 contains TYPE Parse
integer token (32).
REGISTER CONTENTS R12 STACK CONTENTS
w
4
Q
5| R14 = Current token
&
Q
-
o]
2
2| If R14 = 32 at entry: If R14 = 32 at entry:
2 R14 = Next token E=1 and stack contents are:
S R40-47 = Set by SCAN 32 (Integer token)
3! Otherwise, registers unchanged R44-46 Value
5 R12 + —--emmmememmme oo
% Otherwise, R12 unchanged and E=(
o]
CPU CHANGES COMMENTS [Romuse]y
04{ 2 3] 4] 5] 6] 7jOCmM E
1011 [12]13]|14]15]16]|17 .
20171 (777774 7526 77 pmr Ag} Calls SCAN at exit.
30 31132 (3334135136137 Dﬁ T If R14#32 at entry, then at exit E=@, DRP=14, and
40 141 |42 /43 |44]145]146] 47 : :
50 51 [52 |53 [54] 55 [56 57 |craos nothing else is changed.

61 /62]163[64[65]|66] 67

70

71172173[74]75]76177 U

7-40

FUNCTION |

Pushes a quoted string onto the R12 stack, then calls SCAN. TYPE Parse

NAME STRCON
ADDRESS 14036

REGISTER CONTENTS R12 STACK CONTENTS
w
e
o
fumy
g R14 = Token (Must be quote)
S R40 = Set by SCAN
-
>
Q.
z
w
3
o 5
o . .
Number of bytes in strin
2| R14 = Next SCAN token String y g
| Re0 = Set by SCAN 212 o
-
2
(@]
CPU CHANGES COMMENTS [romuse] Y
ol 2] 3| al s| 6] 7]0OCM £
CAEIREFAREREEIEIAL o U Must SCAN before entry to this routine. Routine SCANs
o133 133 32 35 [36 37 P2 - before exit.
a0 (a1 [z [a3laalasTasla7} U | U E#p if quoted string found.
50 |51 |52 [53{54]|55]|56]57 STATUS
60 [61]62]63|64]|65]66]67 U
70[71 17221723174 75176]1 77
FUNCTION NAME STREX+
ADDRESS 13623
Same as SCAN followed by STREXP. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[72]
4
o
=
o]
b4
O
o
-
o]
a
z
[72]
z
o
=
o
Z
@}
(5]
-
2
o
-
2
o
CPU CHANGES COMMENTS ROMJSB] Y
0f 1 2| 3| 4] 5] 6] 7]DCM E
10 | 1Y 13_‘ 1__3 14f15[16} 17
20137222328 26 [26 27 Lo
3013737 (33 34| 35 [36 | a7 4= See STREXP for conditions and changes.
40 {41 [42]43]44]45]46 47
50 |51 |52 |53 |54 55]56] 57 FsTatus
60 |61 [62163]64]65]|66]67
70717217374} 75176177

7-41

FUNCTION [

NAME STREXP
ADDRESS 13626

Pushes a string expression onto the R12 stack. E#@ if found. | TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

w

2

o

5| R14 = SCAN token

8| R40 = Set by SCAN

5

z

[72]

2

Q

5| R14 = Next SCAN token

§ R40 = Set by SCAN

2

5

o]

CPU CHANGES COMMENTS lROMJSBI Y ‘

11 2] 3] 4] 5] 6] 7]0CM E

11]12[13[14[15]16{17

21[22123[24]25]26] 27
DRP ARP

31132]33/34[35]36] 37

a1 |a2]43]4a[4a5]a6]47] _ -

51[52]53]54] 55[56] 57 e

61/62|63|64)|65]66]67

71172]73174|75]76]77 -

Must SCAN before calling this routine. The routine
SCANs before exit.
E#@ if string expresion is found.

FUNCTION NAME STRREF
ADDRESS 13753
Pushes a string variable or a substring reference onto the TYPE Parse

R12 stack, then calls SCAN.

REGISTER CONTENTS R12 STACK CONTENTS

w
Z
o
5[R14 = SCAN token
Z| R40 = Set by SCAN
o
5
-
[%2]
3
El R14 = Next SCAN token
Z| R40 = Set by SCAN
©
2
&
2
o

CPU CHANGES COMMENTS [Romuse] Y |
0 1 2 3] 4 5(6{ 7]DCM E
LJEANAT A AALINLIALINS I I Must SCAN before calling this routine. This routine

212212324 25]26] 27

31 132 {337 34| 35 [36] 37 J20 L AR

41]42/43/44]45]4647] - -

51152 |53 |64]55]56] 57 sTatoe

61]62)6)/64[65|66]67

71 (72173174]175]176177 -

SCANs betore exit.
E#£p if found.

7-42

FUNCTION |

onto R12 stack.

NAME TRYIN
ADDRESS 14566

Gets @ or 1 numeric parameter and pushes token from R14 TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS
7]
Z
o
=
5 R14 = Input token
o]
o
=
2
a
z
g
o R14 = Next SCAN token @ or 1 numeric value tokens
5l R34 = @ or 1 (2 or more produces error) Token from R14
5 R12 > =—-mmmmmmmmmemmmm oo
(&)
[
o}
a
—
>
o
CPU CHANGES COMMENTS [rRomuse] Y

0] 1 2] 3] 4] 5] 6] 7jDCM E
w11 [12]13]14]15]16(17 - U
20 [21|77 [23 24 25 [26 27 fmmmegemrers Calls GETPA?, then demands R34 < 2.
30131[32]33[34]35]136] 37
40 |a1 |42 |43 |aa|a5ta6]a7] 34| -
50 515253 |54]55]56{57 FsTatus
60 |61162]63|64]65]66]67
72071172173 1741 75176177 -

FUNCTION NAME UNQUOT

ADDRESS 14212
Pushes an unquoted string onto the R12 stack, then calls TYPE Parse
SCAN. E#@ if unquoted string found.
REGISTER CONTENTS R12 STACK CONTENTS
(2]
Z
o
5| R20 = First character of string
&
(8]
—
2
a
z
[72]
4
Q
E| R14 = Next SCAN token
§ R40 = Set by SCAN
—
2
a
[
2
O
CPU CHANGES COMMENTS |.RomJsB] Y

0 1 2] 3] 4] 5{ 6] 7]0c™ £
7170 11 [12]13][14]15]16] 17 - U)
202122 [23]74] 25 [36| 27 fommmedmmmees 70 if found.
30 [31[32]33[34[35]36} 37 3 3 1
i toTetastaeler] - | - This routine calls SCAN before exit.
50 {6162 |53[54]55|56]57 FSTatus
60 [61[62]63[64]65]66]67

71172173]74]75]76]77

7-43

HP-83/85 System Routines

RUNTIME AND RUNTIME ROUTINES -/
RUNTIME CONVENTIONS

System routines used at runtime include primarily mathematics routines and system
functions. In general, math routines always expect BCD mode at entry. System
functions expect the argument(s) on the R12 stack when the routine is called, and
leave the result on the R12 stack when completed.

CPU registers used during runtime include, but are by no means limited to, the

ones shown here.

Register Runtime Use
R12 Operating stack pointer.
R16 Contains CSTAT.
R17 Contains XCOM.

RUNTIME ROUTINES

System routines useful at runtime follow.

7-44

FUNCTION | NAME ABS5
ADDRESS 53731

Returns the absolute value of the argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

2z

5 Argument (8 bytes)

a R12 + ==mcmmmmmemmmcem o

Z

(o]

Q

-

2

a

z

wn

Z

Q

= Absolute value (8 bytes)

z R12 » —--mmmmmemmmmm e

(&)

[

2

a

-

2

o]

CPU CHANGES COMMENTS [rRomusB] N
Of 1 2 3] 4 5{ 6 7 | DCM E

o1 12[13]1a[s]16][17) U
20 |21 122 | 23] 24 25]26] 27

013 3213334 35 36 | 37 o422
a0 |41 |42 [a3]4a]45]46]470 40 12
50 |51 52153 154]65[56]57 FcTaTus
60 |61 162 63]64]65]66] 67
75{ 76 U

NAME ADDROI
ADDRESS 52150
TYPE Runtime

FUNCTION

Adds two numbers (X+Y).

REGISTER CONTENTS R12 STACK CONTENTS
w
3 X-value (8 bytes)
5 Y-value (8 bytes)
Z R12 » --—-mmmmm e -
(&)
(o
g
z

(7]

P-4

@]

£l R40 = Copy of result X+Y value (8 bytes)
z R12 + ==-mmmmmeemmmmme e
Q

[

2

a

-

2

o]

CPU CHANGES COMMENTS [romusB] N

0 1 2 3| 4 5| 6 7 [OCM E

1wt [12]13]ej15][16}17 D U

70 (27 (22| 2324|2526 27
30 [31 |32 133 34]35]36]37
4041 |47 Ja3 aala5]a6la7] 40 12
50 161 |52 |53 | 541556657 sTaTos
60 |61 |62 163 |64]65]66]67
70171122173 (74175 76| 77 U

DRP | ARP

7-45

FUNCTION |

Returns arctangent of Y/X (i.e., ATN2) in proper quadrant.

NAME ATN2.
ADDRESS /6455
TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
2
) Y-value (8 bytes)
£ X-value (8 bytes)
z R12 + wmmmmecmcee oL
o
[
po)
[N
z
[72]
2
o
£ ATN2 value (8 bytes)
Z R12 » mmemeel
o
[
>
a
-
2
O
CPU CHANGES COMMENTS ROMJSB] Y
0 1 2 3 4 5 6 7 JOCM E
10 (1t]12]13f14] 185016017 D
2021722123241 25261 27 YT
30 (371132 33341 35] 36 37 }-20F
40441142 143]4alasTa6Ta7) y | y
50 151152 {5354 55 [56 [57 femeien
60 161162]63|64]|65[66]67
7017117217374 75 | 76 | 77 U
FUNCTION NAME BEEP.
ADDRESS 6737
Executes the BEEP statement. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
3 Parameter #1 (8 bytes) (optional)
£ Parameter #2 (8 bytes) (optional)
Z R12 » =~
Q
—
2
a
z
w
Z
=
= ? R12 + e
Q
2
(o]
Q
-
)
a.
[mes
po
(@]
CPU CHANGES COMMENTS ROMJSB[N
0 1 2 3] 4 51 6 7 fDCM E
ojn iz fishalisfieli7f y |y If no parameters are on stack at entry (i.e., T0S = R12),

0101221297241 25126] 27

ARP

30131132133[34[35]36] 37

40 [a1]4a2a3]aa]as5]a6la7J U | U
50 51162 [53 154 65|66 57 pmttoem
6061626364 65]66]67 U

70171172173/ 74[75]76] 77

a standard beep is executed.

7-46

FUNCTION]

Returns the smallest integer > = X.

NAME CEIL1D
ADDRESS 53615

TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
[%2]
P4
o
5 X-value (8 bytes)
5 R12 + —=——mmmmemmmmmm
Q
-
o
o
z
w
P4
o
£l R40 = Copy of CEIL result CEIL result (8 bytes)
g R12 + =mmmemmmmmee oo
Q
=
p}
a
[
2
o
CPU CHANGES COMMENTS [RomusB] N
0] 1 2| 3] 4] 5] 6] 7)]0OC™M E
w1 f12]13]14]15]16] 17 D U
20[21[22]23f24]25]26] 27 LR WY
30 131]32]33]34]35]36] 37
40141142 [a3]aa]a5]a6[a2040 | 12
50 |61 52153 [54155]66{ 657 FsTatus
60 |61 [62[63[64]65]66]67
70171 172]73}74}75]76]77 U
FUNCTION NAME CHSROI
ADDRESS 52075
Changes the sign of a number. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
&
= Number (8 bytes)
S R12 + ————memmemememm
o]
Q
[
o]
a
z
(2]
2
o
E
S -Number (8 bytes)
8 R12 5 mmmmmmmmemmemm e
-
>
a
-
2
o
CPU CHANGES COMMENTS ROMJSB
0 1 2 3] 4 5| 6{ 7]DCM E
to{11]12]13]14[156]16]17 D U
201210222324 25]26] 27 .
3013732153 T3 35 36 [a7 F2nef-ARP Requires BCD mode at entry.
a0 (41 [42 43144 as]as]a7]40 112
50 51152 |53 |54 [55[56]57 FgTaTuS
60 |61 [62]63[64]65]|66]67 U

71172173 [{74[75]76177

7-47

FUNCTION |

Prints a string to the print buffer or the display buffer.

(Same as PRINT A$, in BASIC.)

NAME COMMAS
ADDRESS 70634
TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

Length of string (2 bytes)
Address of string (2 bytes)

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

11 2f 3] 4] 5] 6[7j0OCM E

11 [12[13]14]15}16]17 U

21122123[24]25]26] 27

ARP

DRP

31132133/34135]136]37

4142434445146]47] U]

I ROMJSB I Y

DISP. or PRINT. must be called prior to calling
COMMAS to set up the select code and buffer pointers.

50 |51 162 (63|64 [55]|56] 57 FsTatos
60 |61 162 163|64.65]66]67
70171 172]73174]175]176]77 U
FUNCTION NAME COMMA.
ADDRESS 70756
Prints a number to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT 5, in BASIC.)
REGISTER CONTENTS R12 STACK CONTENTS
12
S Number (8 bytes)
£ R12Z » wmemecmccmcee -
Z
o]
Q
-
oo
a
z
w
4
o
= R12 + cmcemcemccmceea
o
Z
Q
(&)
[
2
a
-
=2
o
CPU CHANGES COMMENTS ROMJSB

1] 2] 3] 4] 5] 6] 7jocmM] E

10

11112 [13[14]15]16]17 U U

20122{23(24126]26] 27

30

DRP

31[32]133]34][35]36] 37

40

a142]43]aa 45 4a6]a7] U U

5152 [53]54]557156] 57 =srares

61[62(63[(64|65]66]67 U

70

71172]73]74]75]176] 77

DISP. or PRINT. must be called prior to calling COMMA,
to set up select code and buffer pointers.

7-48

CONCA.

FUNCTION | NAME
. ADDRESS 75005
Concatenates two strings. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
5 A$ length (2 bytes)
£ A$ address (2 bytes)
z B$ length (2 bytes)
o B$ address (2 bytes)
2 R12 + mmmmmmmmmcmc e
4
172
2
Q
= A$ and B$ length
z A$ and B$ address
© R12 » —=ccmmmeemcmmee
p}
a
-
2
(o]
CPU CHANGES COMMENTS LromJse] Y
0] 1 2] 3] a] s| 6] 7j0OCM E
10 [11{12]13[14]15][16]17 B U
20[21]22123124}25]26] 27 L T
30 (3132133343536} 37
40 [a1 |42 4a3]4a4]a5]a67a7} U U
50 [51 |52 [s3{54]55[66]57 FsTATus
60 [61]162[63]64|65166]67
70171172173 |74|75176] 77 U
FUNCTION NAME COS19
ADDRESS 53556
Returns cosine of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
P4
o
£ Argument (real or integer #)
S R12 » wemmecem e
(&)
—_
]
a
z
(7]
P4
)
E
o
z R40 = Copy of result Answer (real #)
O R12 » ~--memmmemmeeem
[
2
a
-
2
@]
CPU CHANGES COMMENTS ROMJSB
0 1 2 3 4 5 6 7 § OCM E
1]y]1213]4]15]16(17 D U
20 (212223 |24]25]26] 27
w0131 (321333235 36 [a7 o 4222
40 a1 |42 |43]eaa5]46147]140] 12
50 [61 152 [53|54] 55 |56 57 F™gTAtTUS
60 |61 /62 [(63]64]65]66]67
20121 1722173174]175]176] 77 U

7-49

FUNCTION | NAME coT1p
ADDRESS 53536
Returns the cotangent of the argument. TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

Argument (8 bytes)

OUTPUT CONDITIONS

R40 = Copy of cotangent result

Cotangent (8 bytes)

CPU CHANGES COMMENTS

1] 2) 3] 4] 5] 6 7]0OCM™M E

11{12{13]14115]16]17 D U

21[22123124|26]26]27

ARP

DRP

31)32133134[35{36] 37

40] 12

4) 14214344

515215364 [55]|56]567

STATUS

61162163/64]65[66] 67

71172173174|75]76]77 U
FUNCTION

Returns cosecant of argument.

l ROMJSBl N

NAME CSEC1p
ADDRESS 53503
TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

Argument (8 bytes)

OUTPUT CONDITIONS

R40 = Copy of cosecant result

Cosecant (8 bytes)

CPU CHANGES COMMENTS

1{ 2 3] 4] 5] 6] 2jocm} E

11112 [13[14]15]16}17 D U

21122123124[25{26] 27

ARP

DRP

31132]33134[35({36] 37

12

a1 |42 143 aa 45 a6]a7] 40

51 [52][53]64]55]56] 57 Jmrmimm

61162163/64]65[66}67 U

71172173]74175176] 77

ROMJSBIN

7-50

FUNCTION | NAME DATE.
ADDRESS 37673
Returns current date. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
2
o
E
(e}
2
o
(&)
-
2
o
z
7]
-4
o
=
Q
§ Date (8 bytes)
et R12 » =-meemmemm -
2
a
-
2
o
CPU CHANGES COMMENTS l ROMJSB I N ‘

0 1 2 3 4 5 6 7 10CM E

o [z 3alis516] 17 _ | -

20127 133 23124 251 26] 27 —

30137321331 34 35 36 | 37 220

20141 [a2 [a3]aalasla6]ar] 40 | 12

50 (5152 |53 |54 5556 57 F==7atos

60 161162 63]64]65]66] 67

70171 172 (731741 75| 76 77 U

FUNCTION NAME DEFA+.
ADDRESS 61505
Turns defaults on. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS

wn
=z
o
E
(e}

Z
o

Q

=

jun}

o

Zz

[7)]

-4

o

E

Qa

4

5]

(&7

-

)

o

o

2

o

CPU CHANGES COMMENTS l ROMJSBI Y

Ol 11 2] 2] 4] 5] 6] 7Jocm] €

ol iz {aialwsel7] _ | -

202122 23|24 25 | 26] 27

o131 32133138 35 36] a7 Fone 282

a0 |a1 [a2 T4 [aa[a5]a6laz] 6] -

50 51 | 52 |63 545556 57 I=2TaAToS

60 161162 6316416566167 U

70 [71 (72 (73 (74| 75| 76| 77

7-51

FUNCTION

|

Turns defaults off.

NAME DEFA-
ADDRESS 61513

TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
[%2]
Z
Q
E
Q
Z
o
| S]
—
2
o
2
[72]
4
Q
b
o
Z
o
Q
[
o]
a
-
=2
o
CPU CHANGES COMMENTS IROMJSBI !
0] 1] 21 3] a] 5] 6] 7JocmT €
o1 (12|34 s]i6]7] _ | _
20 |21 122 |23 24| 26126 27 —
30 31 32 |33]34 35| 36 | 37 }2RE
40141142 43[44]45[46[47] 36] -
50 [51]52 |53 [sa]55[56] 57 f=ertoe
60 |61 62 [63]|64] 65]66] 67
70 [71 (72 73 [7a {751 76 [77 y
FUNCTION NAME DEG.
ADDRESS 61736
Sets computer to degrees mode for trogonometric operations. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
0w
<
o
E
Q
4
o
&)
[
o
a
Z
1]
Z
Q
-
fa)
2
o]
(8]
-
o
o
-
2
o
CPU CHANGES COMMENTS IROMJSB' Y
0] 11 2[3] 4] 5] 6] 72Jocm] E
10111][12113{14]115{16[17]) _ -
20 [21 [?27 [79] 24| 36| 26] 27 -
30 3132 [33]3a] 35|36 a7 o4 AP
40141]42 14a3(4ala5]46[47]0 36 | -
5051525354]55]56] 57 rar=m
60 [61 62 [63 |64]65]66]67
70171172 (73174175761 77 U

7-52

FUNCTION

|

Converts angle in radians to degrees.

NAME DEG1Q
ADDRESS 54142
TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
&
5 Angle in radians (8 bytes)
8 R12 » ———cmcmmmmmmmmmc e
[&]
[
oo
o
z
[72]
z
]
=
o
§ R40 = Copy of result Angle in degrees (8 bytes)
s R12 + =—mmemmmmmmemm e oo
2
o
-
2
o
CPU CHANGES COMMENTS [romuse] N
0 1 2 3] 4 51 6 7jocm |- _E
1o 11 [12]13]14]15716] 17 D U
2021221237247 25]26] 27 TR WG
30 {31 13233]34{35][36] 37
a0 a1 142 |43 aala5|46747]140] 12
50 [51 |52]53[54]56(66] 57 FsTATUS
60 |61]62[/63|64]|65]166]67
70-[71 (721731741 75176177 U
FUNCTION NAME DISP.
ADDRESS 70046
Sets SCTEMP and PRINT pointers to CRT IS device. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
o
-
&
4
o
(&
=
2
a
z
2]
P-4
o
=
o
Z
o
Q
[
>
o
o
2
(o]
CPU CHANGES COMMENTS ROMJSB
0ol 2| 3] a] 5] 6] 7]ocm E
1011213141516 17] _ _
70121 (22|23 (24| 25 | 26 27
o 131132 (33134 [35 | 361 37 oo 255
40 (41 |42 [a3]aa[a5]a6]47]40 | -
50 |61 52 |53154]65]|56]57 FSTarus
60 [61[62163]64]65]66167
720171172 [73}74] 751761727 U

7-53

FUNCTION |

Divides Y into X.

NAME DIV?2
ADDRESS 51641
TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
P4
Q
§ X-value (8 bytes)
5 Y-value (8 bytes)
- R]Z ¥ st e ——
]
a
z
[723
2
o
=| R40 = Copy of result X/Y value (8 bytes)
z R12 + =mmmmmmm;meemmm e
Q
[
2
a
-
2
(@]
CPU CHANGES COMMENTS [romuse] N

0 1 2 3] 4 5 6 7 §OCM E
10|11 (1211311411516} 17 D U
20 [21]22]23]24[25]26] 27 —— yYT
30 [31132)33]34[35]36] 37
4041]42]43/aa[4a5146[470 40 12
50 {51 |52 |53 |54}56]|56]|57 STATUS
60]61]162163!164]65]166] 67
70171172173 [74]|75]76] 77 U

FUNCTION NAME EPS1Q

ADDRESS 54126
Returns the smallest positive number (1E-499) the computer TYPE Runtime
is capable of handling.
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
Q
-
5
Z
(@]
Q
(-
D
a
z
[2]
&
Q
E
Q
2| R40 = Copy of smallest number Smallest number (8 bytes)
© R1I2 » mmeeemmcm e
2
a
-
s }
o
CPU CHANGES COMMENTS ROMJSB

011 2] 3| 4] 5] 6] 7210C™M E
10|11]12[13[14[15]16[17 D U
20 [71[27 {73121 25 [26] 77 fmmmdmres
30 [31]32[33]34]35]36] 37 B8
40 (41 142]43]4a]45]46]47050 112
50 5152 [53]|54]55]56] 57 ==ratus
60 |61 162]163164]65]|66]67
70 [71 1721737475 76| 77 U

7-54

FUNCTION |

NAME DIV1P
ADDRESS 51644

Divides two real numbers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS

w

4

o

£l R50 = Real #A (Numerator)

Z| R40 = Real #B (Denominator)

o

2

o

z
(7]

Z

o

E

&

5

Ol R40-47 = Real rounded result (Copy) Real rounded result (A/B)
-

2 R12 + =mmmmmmmmmmmmmmmmmm e
—_

2

o

CPU CHANGES COMMENTS [romuss] N

[1 2 3] 4 5 6 7 LOCM E

1w {11 }12113]14]15]16]17 N . N

2012112223241 25| 26 27 D U Not listed in g]Oba] file. Same as DIVZ, except DIvV2
30 {31 32|33 [34 [36 |36 [37 PO 4-~2 expects two real or integer numbers on the R12 stack.
40 |41|a2a3]4afa5]461470 40| 12

50 |51 52|53 [54]56[66]57 FTTatos

60 161]62[63/64]65]66]67

70 |71 172 173 [74] 75 | 76| 77 U

FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS

wn

P4

o

E

o

2

@]

(8]

-

po

a

z

[%2]

4

o

=

o]

2

Q

(&)

-

>

a.

-

2

o

CPU CHANGES COMMENTS ROMJSB

0 1 2 3| 4 5 6 7 §DCM [3

o (121314 16]16] 17

20 (21222324 25({26] 27 T ——

30 [31]32133{34}35[36]} 37

40 [41142]43[44145146] 47

50 |51 |52 |53 |54 55]56] 57 TTAros

60 [61]62]63[64]65166]67

71(72[73j74] 75176477

7-55

FUNCTION | NAME EQ.
ADDRESS 62173

Compares two numbers for equality. (#1 = #2.) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[%2])
5 #1 Value (8 bytes)
= #2 Value (8 bytes)
3 R12 » -
(&)
2
z

True/false value (8 bytes)

OUTPUT CONDITIONS

CPU CHANGES COMMENTS l ROMJSB I Y

o] 1] 2] 3] 4] 6] 6] 7Jocm| E
10 {11112]13[14]15]16] 17 U U
20|21 22 |23 24 25]76] 27

30 311323334 35136]37
40 a1 [a2]a3]aalas[a6[a70 40} 12
50 1511525354 55]56] 57 —=5atos
60 [61]62 [63]64]65]66] 67

70 71 172 [73[7475 76| 77 U
FUNCTION | NAME EQS.

ADDRESS 3006

DRP § ARP

Compares two strings for equality. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
3 String 1 length (2 bytes)
= String 1 address (2 bytes)
z String 2 length (2 bytes)
© String 2 address (2 bytes)
2 R12 + =-cmmmmmcm e cecceeee
z
[%2]
3
= True/false value (8 bytes)
z R12 + = de e
38
[
2
5
o]
CPU CHANGES COMMENTS | RoMJsB] N |

O 1 2| 3| 4] 5| 6] 7]OCM E
1011112113 [14]15}16}17 D U

2021 [22123]24]26]26] 27
3031 132]33]34]36]36] 37
40 |41 |42 |43]aala5]a6]a7040 12
50 |51 152 53 [54] 65 56 57 pmwmt=s
60 |61 62 | 63]64]65]66] 67

70 |71 [72 {73 [74[75[76] 77 U

DRP | ARP

7-56

FUNCTION |

NAME ERROR
ADDRESS 6615

Sets ERRORS, ERRN, ERRL and error flag in R17. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
Z
o
[
3
Z
o
Q
[
2
a
z
v
Z
o
—
=
4
o]
(8}
[
>
a
-
2
o]
CPU CHANGES COMMENTS | RomusB] N
0 1 2 3] 4] 5] 6] 7j0C™M [4
10|11 f12{13{14]15]16}17 3 5 .
PIREEA PERFTIR AR Ll B AU ERROR must be called with the following code:
0 313213313435 | 36 | 37 2R JSB=ERROR Call to ERROR.
40]a1[42a3laalase6]a7} U | U BYT Error number.
50 |51 [52 [53]54]55[56 57 FSTATUS ——
60161 162(63]64]65]66]67
70171 (72 73|78l 75 [78] 77 U
FUNCTION NAME ERROR+
ADDRESS 6611
Sets ERRORS, ERRN, ERRL and error bit in R17, then pops one TYPE Runtime
return address off of R6 before returning.
REGISTER CONTENTS R12 STACK CONTENTS
172]
2
1=
-
a
4
o
o
-
o}
a
z
[72]
Z
1
E
[a]
2
O
[8)
[
>
a
-
2
O
CPU CHANGES COMMENTS ROMJSB] N
0 1 2 3] 4 5 6 7 LDCM E
{12134 15]16(17 - U . R .
20 21|22 [23] 26| 75 [76 27 frmmeetmreee ERROR+ must be called with the following code:
Zg 3: ig 33 i: i: 32 :; v T U JSB=ERROR+ Call to ERROR+.
50 [51 (52 [53 |54 5556 |57 orares BYT Error number.
60 [61[62]63164]65]|66)67 U
70171 172173{74} 7517677

7-57

FUNCTION | NAME EXP5
« ADDRESS 52377
Returns e”. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
2
S X-value (8 bytes)
a R12Z + ~mmmmmeeme e
Z
@]
Q
[
o
a
z
w
2
2 X
5 e” result (8 bytes)
g R12 » =cmmmcmmmcme e
o
[
o }
o
s
p}
O
CPU CHANGES COMMENTS [Romuse] N
0] 2 31 4 5| 6] 7JDCM E
10111 [12]13[14] 1516 17 D U
20 (2122|2324 25]26] 27 I3
30 |31 32 [33]34]35]36] 37 F5F
40 |41 142 143[44]45[46[470 40] 12
50 [51 (52 [53[sa] 65 56|57 P=sratos
60 [61 162 163 |64]65]66]67
70 |71 [72 (73174 75| 76 | 77 U
FUNCTION NAME FP5
ADDRESS 54071
Returns the fractional portion of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
2
Q
5 Argument (8 bytes)
P R12 » ==mmmmcmmmm e
[8)
-
2
a
z
w
2
o
£| R40 = Copy of result Result (8 bytes)
Z R12 + m—;mmmmeeeeee
o
-
2
o
-
2
(o]
CPU CHANGES COMMENTS ROMJSB
0 1 2 31 4 5| 6] 7j0OCM [4
1011]12]13[t14]15]16]|17 D U
707 [77 (73741 25126 27 T
3031 132[33]34] 35 36| 3T R0
40141 (a2 43 1aalas]a6la7] 40] 12
5051152535455 56[57 F=erarus
60 |61 (62]63i164]65166}67
70171 {72 (73|74 75176(77 U

7-58

FUNCTION | NAME GEQ.
ADDRESS 62304
Compares two numbers for the condition: #1 >= #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
%]
Z
]
5 #1 value (8 bytes)
S #2 value (8 bytes)
° R12 > —mcmmmmmmmmmmmmm e
-}
a
z
w
Z
o
£ True/false value (8 bytes)
P R12 » —cmmmmmmmec e o
(8]
[
D
a
-
2
o
CPU CHANGES COMMENTS [Romuss] ¥
0] 1 2 3| 4 5 6| 7]DCM E
1w [11[12]13]14]115]16]17 U U
20012112223]24]125]26] 27 TR WXE
3031 {32{33]34]35]36] 37
a0 |41 |a2 (a3 |aa[45]a6]a7] 40)] 12
50 5162 [53|54]55] 5667 FsTarus
60 |61 162|63|64]65]66! 67
70{71172]73}741 757677 U
FUNCTION NAME GEQS.
ADDRESS 3111
Compares two strings for the condition: string 1 >= TYPE Runtime
string 2.
REGISTER CONTENTS R12 STACK CONTENTS
m -
8 String 1 length (2 bytes)
£ String 1 address (2 bytes)
z String 2 length (2 bytes)
© String 2 address (2 bytes)
2 R12 » =-mmmemmmmmmemmmmmmm e
z
w)
8
g True/false value (8 bytes)
z R12 + =-mmmmmmmmmmmmmmmmmmmemmmm
[8]
}—
2
a
-
2
o
CPU CHANGES COMMENTS ROMJSB
ol 2] 3] 4] 5] 6] 7}OCM E
1o [v1]12]13]14]15]16]17 D
20 [21]22]23]24125]26) 27
30 131 {37 333835 [36 |37 -2
a0 |41 142 a3]aal a5 a6]a7] 40] 12
50 |51 1526354 55]56]57 FSTaros
60 [61 {62 |63]164]165]66] 67
7071172173724 75] 76177

7-59

FUNCTION | NAME GRAD.
ADDRESS 61753
Sets computer to grads mode for trigonometric operations. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
=
=
b4
@]
Q
b
v
a
z
wn
Z
=
=
&
=z
@]
Q
(-
2
o
-
2
@]
CPU CHANGES COMMENTS [rRomuse] Y

0ol 2 3] 4 5| 6 7 | OCM E
10§11 [12[13]14]15](16] 17
20 |21 122 |23 | 24| 25 | 26| 27 Juum A;P
30 [31 (32 [33] 34 36 [36] 37 }2R8
40 [a1 [a2]a3Taalas[a6Ta7] 36 | -
50 {51]52 5364 58] 56] 57 I=rarus
60 161]162[63|64[65|66]67
70 [71 1727374 75| 76 | 77 U

FUNCTION NAME GR.

ADDRESS 62255
Compares two numbers for the condition: #1 > #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
o #1 value (8 bytes)
5 #2 value (8 bytes)
g R12 » —---ommmmmmmemmmem
o
=
2
a
F4
w
-4
o
5 True/false value (8 bytes)
Z R12 » ==emmmmmmmm e m e
QO
[
2
a
[
jw}
o
CPU CHANGES COMMENTS ROMJSB]Y Y

0 1 2 3] 4] 5 6 7 {OCM E
1011]12]13{14]|15116]17 U U
20 (21 [22[23[24 [25 26|27 femedmrem
30 |31 [32]33] 34] 351 36] 37 }=F
40 |41 14243]aa]45]461470401 12
5051]52[53[54]55]56]57 fmrmier
60 161 162163]|64]65]66]67
72071172 [73]74]175]76] 77 U

7-60

FUNCTION | NAME GRS$.
ADDRESS 3036
Compares two strings for the condition: string 1 > TYPE Runtime
string 2.
REGISTER CONTENTS R12 STACK CONTENTS
2
S String 1 length (2 bytes)
5 String 1 address (2 bytes)
S String 2 length (2 bytes)
5 String 2 address (2 bytes)
g o A
%)
Z
o
5 True/false value (8 bytes)
g R12 > ——=——memmmm—emeemmm e oo
(&)
[
2
Q.
[
2
(@]
CPU CHANGES COMMENTS LRomJsB] N
0] 1 2| 3] 4] 5] 6] 7])ocm E
1w ([1r][12]13[14]15]16}17 D U
20 |21 [22[23]24]25]26] 27
T 132133 3435 [3s | a7 Jooe-222
a0 |41 142 |a3lealas|a6ta7] 40] 12
50 |51 [52 |53 54] 5556 57 F"STaATUS
60 |61 162 |63]|64]65)66]67
720171 172(73]74] 75761 77 U
FUNCTION NAME ICOS
ADDRESS 76552
Returns inverse consine (arccosine) of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
)
P-4
o
£ Argument (8 bytes)
g R12 » —=-=mmmmm—emm e o
(&)
-
o]
o
F4
w
2
o .
£ Arc cosine (8 bytes)
Z R12 » ==-===emmmmmmmmmm
(8]
[
v }
a
-
2
o]
CPU CHANGES COMMENTS |ROMJSB|X
0 1 2 3 4 5 6 7 §DCM £
1011 [12113]14]16]16] 17 D U
20 (20 |22 |23 |24 25[26] 27 IR WX
30 131]32[33[34][35]36j 37
40 |41 |42 [43]4aaasia6]a7] U
50 |61 52 |63 |54]55] 56|57 Fgratus
60 |61 [62[63[64]65166]67
20 171 |72 173 [74] 75 | 761 77 U

7-61

FUNCTION | NAME INF19
ADDRESS 53524
Returns largest number (9.99999999999E499) that can be TYPE Runtime

handled by the computer.

REGISTER CONTENTS R12 STACK CONTENTS
w
2
o
5 Y A
2
o]
Q
-
2
a
z
2]
3
=| R40 = Copy of largest number 9.99999999999E499 (8 bytes)
2 RTI2 > =mmmmmmmmcm e e
O
Q
b
po}
o
=
-}
@]
CPU CHANGES COMMENTS LrRomusB] N
0 1 2 3| 4 5 6 7 {1 DCM E
10{11[12}13[14[15116(17 D U
20 [21122123(24]25]26] 27 YT
30 131 132 [33] 34 35 [36| 37 }228
40 141 1421434445146 47 g
50 5152 [63]54] 66 [66] 57 p=rrmcms
60 |61(62]63|/64165]66]|67
70 |71 |72 |73 (741 75 | 76| 77 U
FUNCTION NAME INT5
ADDRESS 53776
Returns the FLOOR of X. (Largest integer < = X.) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
5 X-value (8 bytes)
-
=) R12 » e -
2
(@]
Q
-
o }
a.
z
2]
5
£l R40 = Copy of result Result (8 bytes)
Z R12 + =--ememmcceenemee
Q
-
o}
a
-
)
O
CPU CHANGES COMMENTS IROMJSBIN
0 1 2 3 4 5 6 7 {OCM E
10t [12]13[14115]16]17 D U
2021122123124 25]|26] 27 o
30131132 |33 34| 35] 36] 37 =22
a0 |41 |42 |43 |4a]4e5]4a61a7] 401 12
50 |51 [52[53[54] 6656 57 P=sratee
60 |61 |62]63[64]65[66] 67
70|71 172173|74]725]76] 27 U

7-62

FUNCTION |

NAME INTDIV
ADDRESS 54005

Performs integer division: divides two numbers and returns TYPE Runtime
an integer result.
REGISTER CONTENTS R12 STACK CONTENTS
2
9 #A (8 bytes)
ot #B (8 bytes)
3 R12 + =—mmmmmemmm-
(&)
[
2
o
z
w
Z
1]
=
o
§ A\B result (8 bytes)
ud R12 + ———mmmmmcm e
2
a.
=
2
O
CPU CHANGES COMMENTS [RomJsB L N
[B8 2 3t 4 5| 6 7 | OCM E
1011 [12113]14]15][16]17 D U
202172223]24]25]26] 27 T
30131 |32 [33 34 35 [36 37 >
a0 |a) |42]a3]aalas]ae6]az] U] 12
50 [51[52]53]|54]55]66157 FsTarus
60 16162 |63|64]/65]66] 67
70171 (72173741 75]76} 77 U
FUNCTION NAME IP5
ADDRESS 54174
Returns integer portion of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
3 Argument (8 bytes)
=
S R12 + m=—emmemmmmmmmmm -
Z
o
Q
[
2
o
z
w
&
£| R40 = Copy of result Result (8 bytes)
z R12 » =--emmemmem e
©
—
>
o
[
2
o
CPU CHANGES COMMENTS [romusB] N
0 1 2 3] 4 51 6 7 §0CM [
w1 [12]13[14]15]16]17 D U
2012113212312425[26[2) e
30 [31[32[33[34]35]36] 37
a0 |41 |42 143 4a]a5]46]470 40) 12
50 |61]52 |53 [54]55] 56157 FsTatus
60 [61[62163[64]65]66]67

7117217317475} 761727 U

7-63

FUNCTION | NAME ISIN
ADDRESS 76542
Returns inverse sine (arcsine) of argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
g
] Argument (8 bytes)
-
5 R]2 > mecceeeccc—cc————
Z
o]
o
=
2
o
4
w
P-4
o
& Arcsine (8 bytes)
5 R12 » —mmmmmmemmmeee o
o
[
2
o
—
2
O
CPU CHANGES COMMENTS |RomusB Yy
0 1 2 3 4 5 6 7 1 OCM E
101 (1213114115116 17 D U
20121122 {23124 25]26] 27 YN
30 [31 1323334 35 36 37 p200
40 141142 431441451461 47 U U
50 |51 5253]54[65]56] 57 fmrmimes
60 161]62]63]164]|65]66] 67
70 |71 |72 |73 [74| 75 76 | 77 U
FUNCTION NAME ITAN
ADDRESS 76562
Returns inverse tangent (arctangent) of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
S Argument (8 bytes)
[y
8 R12 + mcmmmmmee e
p-4
(o]
o
[
2D
a
z
Wy
s
5 Arctangent result (8 bytes)
z R12 + ==mmmmcmmmccmmcmmcmm e
Q
-
)
[+ 8
funy
D
(@]
CPU CHANGES COMMENTS ROMJSB] Y
0 1 2 3] 4 5] 6 7 1 bCM E
1011 [12]13]14])15]16]|17 D ”
20 7122 [23] 24 25 [26 [27 fmmdmrne
30]31132(33({34[35]36/! 37
40 [41142]43)44]45146147} | U
50 [51]52]53[s4[55]56] 57 Ferares
60 |61 /62]63]64]|65{66]}67
70 [71 (72 (7374 75 {76 [77 U

7-64

FUNCTION | NAME LEQ.
ADDRESS 62232
Compares two numbers for the condition: #1 <= #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
° #1 Value (8 bytes)
8 #2 Value (8 bytes)
Z
o R12 + ——mmmmmccmmme e
Q
[
o}
Q.
z
(2]
2
o
5 True/false value (8 bytes)
z RI2 > =-mmemememmm——am———mmeemme
(&)
—
2
a
[
2
o
CPU CHANGES COMMENTS [rRomuse] Y
0 2] 3] 4] 5] 6] 7jocm E
1011]12]13[14]15]16]17 U U
202122123124 25}26] 27 TR W
30 [31132(33]34]35][36] 37
40 |41 (42 |43 |aalas[a6la7] 40f 12
50 |51 |52 |53 |sa] 5556} 57 F5TATOS
feole1]62]63[64a]65]66]67
70 171 172 73 741 75 76] 77 U
FUNCTION NAME LEQS.
ADDRESS 3100
Compares one string to a second string for the case: TYPE Runtime
string 1 <= string 2.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
8 String 1 length (2 bytes)
= String 1 address (2 bytes)
o -
Z String 2 length (2 bytes)
© String 2 address (2 bytes)
2 R12 + mmmmmmmcomcmmmmmmm—mmm oo
z
w
P-4
o
E
g True/false value (8 bytes)
3 R12 + mmmmemmemmmmmmmemmmee e e
[
2
a
s
2
(o]
CPU CHANGES COMMENTS rROMJSB IN
0 1 2 3] 4 5 6 7 10CM E
1011 [12]13]14]15{16]17 D ”
20121222324 25126] 2/ TR BT
30 [31]32[33{34][35]36]37
40 |41 [42 |43]aaa5]e6]a2]40] 12
50 |51 |52 |53 [54]55]56]57 FETatus
60 |61]62163[64]65166]67
70171 (72 (73174 75] 761 77 U

7-65

FUNCTION | NAME LN5
ADDRESS 51551
Returns LN(X). TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
s X-value (8 bytes)
3 R12 » —memmmmcmceecee e
Q
—
2
[+ N
z
w
Z
o
5| R40 = Copy of result LN(X) result (8 bytes)
z R12 + === mmmmmmmmm oo e
Q
—
o}
a
-
pos}
@]
CPU CHANGES COMMENTS LLlRoMJsB] N
O] 2 3] 4 5] 6 7 | DCM E
1011 [12{13]14|15]16] 17 D U
20121122123 124[25]26] 27 — T3
30]31[32(33[34][35][36] 37
40 |41 [a2143faa]as]a6]4a7]40 | 12
50 [51]52 [53[s4[5556} 57 =sraros
60 |161162]63|64]/65]66]67
70071 1721731741 75]76] 727 U
FUNCTION NAME LOGTS
ADDRESS 51720
Returns LOG]o (X) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w)
8 X-value (8 bytes)
E R12 > =-mmcmmmmmmmmmmee
pd
(o]
Q
[
oo
a
z
(2]
3
£l R40 = Copy of result LOG]0 (X) result (8 bytes)
P4
9 R12 » =--mccmcmmrc e
[
2
a
fom
2
o]
CPU CHANGES COMMENTS ROMJSB] N
0] 1 2 31 4] 5] 6 7 DCM% E
10§11 (12113 (14|15 16] 17
20 (71 (72 [27[24] 25126] 27 BCPD AEP
30|31 373313435136 37 =2
40 [a1[a2 743]aa]a5]a6]4a72] 40 12
50 {5152 [53]54]55]56] 57 I==ratue
60 |61 162]63[/64]65]66!67
70171 [72[73]74]75{76] 77 U

7-66

N

FUNCTION | NAME LT.
ADDRESS 62213
Compares two numbers for the case: #1 < #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
e #1 Value (8 bytes)
5 #2 Value (8 bytes)
Z
'} R12 + =-memmmmemmemm =
(&)
=
]
a
z
w)
8
5 True/false value (8 bytes)
P4
o R12 » =mmmememm—mmm—mmmm o mmmmem
(&)
[
2
o
[
2
(]
CPU CHANGES COMMENTS | rRomusB] Y
0 1 2 31 4 5 6 7 1O0CM [3
10 (1]12]13]14]15]16] 17 U U
20121 |22 2324 25]26] 27 YT
30131132 331341 35 36| 37 o
a0 (41 (42 [a3]aalas [e6]a7] 40] 12
50 |51 (52 [53]|64] 5556} 57 F=5TaAtus
60 [61]62]63[64]65]66]67 U
20 {7 172173}74] 75176177
FUNCTION NAME LT$
ADDRESS 3057
Compares two strings for the condition: string 1 < TYPE Runtime
string 2. ’
REGISTER CONTENTS R12 STACK CONTENTS
w)
8 String 1 length (2 bytes)
3 String 1 address (2 bytes)
3 String 2 length (2 bytes)
e String 2 address (2 bytes)
2 R12 + =~emmmm—mmmmmemmmmm oo
z
[72]
Z
o
E
2 True/false value (8 bytes)
3 R12 & —mmmmmmm—cmm——mmmmmm—mmoe-
-
o’
o
o
3
CPU CHANGES COMMENTS ROMJSB
of ¢ 2 3] 4] 5] 6] 7]OCM E
1011 [12]13]14] 15| 16]17 D U
201211222324 25[26] 27 — =
30]31]32]33[34[35]36]37
20 |41 (a2 [a3]aala5[a6]47040) 12
50 |51 52 5364555657 FSTaTUs
60 |61 162]63]64|65]|66!67
70721 [72]73]74({75)76177 “

7-67

FUNCTION |

NAME MAX1@
ADDRESS 55364

Returns the larger of two values. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
1723
2
)
= Value #1 (8 bytes)
§ Value #2 (8 bytes)
hus R12 » —-mcmmmmemeee e
>
a
z
w
rd
o
= Larger value (8 bytes)
g R1I2 » e
Q
-
]
a
—
2
o]
CPU CHANGES COMMENTS |romusB | N
01 1] 2| 3] 4] 5] 6] 7J0C™ E
101 112(13114|15][16] 17 D U
2021122123 124[25]26] 27 YT
30 [31 (32 [33]3a] 35| 36 37 p228
40[a1]42143Taala5]a6[a2] Uy | 12
50 |51 52 53|54} 55[56]57 FcTatus
60 16116263364]65166] 67
70171172 |73[74]75{76}] 77 U
FUNCTION NAME MOD1@
ADDRESS 51744
Returns the remainder (modulo) of division. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
S A-value (8 bytes)
£ B-value (8 bytes)
g R1I2 +» ---ommmccmmmm e
(&)
—
2
o
z
w
2
o
£ A MOD B result (8 bytes)
Z R12 » ———m—eemeecmmcemcc e
Q
[
2
o
[
2
(@]
CPU CHANGES COMMENTS ROMJSSB
O 1] 2] 3] 4] 5{ 6] 7]0CM E
1011 [12]13|14]|15]16] 17 D U
20 {7V [77 (23|24 25 [76 27 fomeangoree
30 [31]32]33]34]35]36] 37 =2
40 [a1 42 [a3]aa]a5]a6]a7] U]
50 |51 |52 {53 |54]55[56] 57 FeTATUS
60 161162163/64][65]66]67
7017117273 [74] 75176} 77 U

7-68

FUNCTION | NAME MINT®
ADDRESS 55345
Returns the smaller of two values. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
[=
5 Value #1 (8 bytes)
& Value #2 (8 bytes)
Q
= R12 » =emmemmmmmm -
)
o
Z
o
Z
=}
=
g
5 Smaller value (8 bytes)
Q
[R]z YV mmemmememmEm— S —————— -
oo]
a
=
)
o
CPU CHANGES COMMENTS ROMJSB
ol] 2] 3] 4] 5] 6] 7Joem | ¢
o[[z aaftsltel 7 p |y
2027 |22 23] 24] 25 | 26 27 —
30 (3732 [33]34 35 [36 | 37 e
2041 (a2 43 4alas]a6laz] U] 12
50 |51 152 |53 54| 55]56] 67 ==Taros
60 |61 162 |63 |64 6566167
70 |71 172 |73 174175176 77 Y
FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
=
(=]
b4
o
(&)
-
o]
a
Z
wn
z
o
=
o]
z
S
o
-
0
a
o=
2
o
CPU CHANGES COMMENTS ROMJSB ‘
0 1 2 3 4 5 6 7 OCM E
vo[1v 1211311415} 16]17
70 (211372324 | 25 [26| 27] TR BT
30 (31 [32 3334] 3536137
40 |41]42[43]44]45]|46] 47
50 |51 52 |53 |54 55 56| 57 F=eTaros
60 |61 162 163]64]65]66]67
70 (71 (72 173122175 [761 77

7-69

FUNCTION |

Multiplies two real numbers.

NAME MPY10
ADDRESS 52562
TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

R40 = #A (Real)
R50 = #B (Real)

OUTPUT CONDITIONS

R40

Copy of result

Real result (A*B)

CPU CHANGES

COMMENTS IROMJSBIN

1] 2§ 3] 4] 5} 6] 7]DC™M

M)

11 [12]13]14]15{16[17)

21122123]24]25]26] 27

311373334 35]36] 37 }2REJ-2RF

41]142143144145[46[/47% |J U

51[52753[54] 55 [56] 57 Jrmmmmiems
61162163]64]65]66] 67

71 172 |73 74 75 76| 77 U
FUNCTION

Not in global file. Same as MPYROI, except MPYROI
expects two real or integer numbers on the R12 stack
at entry.

NAME
ADDRESS
TYPE

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES

COMMENTS ROMJSB

1] 2] 3] 4] s} 6] 7]Jocm] E

11 112{13{14]15]16] 17

20

21[22]23[24125]126] 27 —trrr

30

31132]33134[35]36] 37

40

4114214314445 [46] 47

51525354 55]56] 67 p=mimes

61162163[64[/65]66!67

70

71172173174175]176177

7-70

FUNCTION | NAME MPYROI
ADDRESS 52722
Multiplies two numbers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
o X-value (8 bytes)
& Y-value (8 bytes)
3 R12 + smmmmmmmmmemmee o
(&)
-
p
a
z
w
Z
o
| R40 = Copy of result X * Y result (8 bytes)
g R12 » ——mmmmmmmemmmmmemm oo
| 8]
[
2
a
-
po }
o
CPU CHANGES COMMENTS [rRomuse] N
0 1 2 3 4 5 6 7 | DCM £
1w [1t[12]13[14]15}16]17 D U
20212212324 25]126] 27 YT
30 (371 [32]33 [34] 35 | 36 37 b
40 |a1 a2 a3 4a]45]46]47] 40] 12
50 |51 52 |53 [54] 5515657 FTaTus
60 [61]162]|63]64]65]66]67
20171 [72]173174] 75176177 U
FUNCTION NAME OFTIM.
ADDRESS 66211
Turns off one of the system timers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2]
4
o
£ Timer number (8 bytes)
3 R12 » —-ememmmmmmmmm e
(&)
[
]
a
z
wn
Z
o
E
2 R12 + =mmmmm=mmemmmmmmmmmme
(&)
[
2
a
-
2
(o]
CPU CHANGES COMMENTS ROMJSB] Y
0 1 2 3 4 5 6 7 §DCM E
1wl f12]13]14]15]16]17 B U
20 (2122232425726} 27 TR WG
30 131132[33[34][35]36]37
40 |41 |42 [43]aalas5[a6]47] 55 | 46
50 |51 52 |53|54]55]56} 57 FeTatos
60 |61 162 (63|64]65]66]67
70 |71 |72 (73 [74] 7517677 U

7-71

FUNCTION | NAME PIQ
ADDRESS 53577
Pushes value of pi onto R12 stack as a real number. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
(o
a R12 » cmmmmmmmee e
=z
o]
Q
(=
2
a.
z
[75]
Z
©
5| R40 = Copy of pi (as real number) Pi (as real number)
2 R12 » —-cmmmmmceec e
(8}
-
2
a
[
2
(o]
CPU CHANGES COMMENTS [rRomuse] N
0] 21 3] 4] 5] 6{f 7]DC™ £
1011 [12[13]14]|15][16]17 3 =
e Pi = 31, 41C, 59C, 26C, 53C, 59C, 0, O (BCD)
30 {31]32[33{3435]36] 37 L,
I e B Pi = 61, 101, 131, 46, 123, 131, 0, 0 (octal)
5051152 [53[64]55]56] 57 p=mrmims
60 |61162]63(64]|65]|66]67
70171172[73]74]|75]76] 77 U
FUNCTION NAME POS.
ADDRESS 3435
Finds the character position in string A of the first TYPE Runtime
occurrence of string B.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
8 Length of string A (2 bytes)
£ Address of string A (2 bytes)
z Length of string B (2 bytes)
o Address of string B (2 bytes)
2 2 2 S
z
[72]
Z
o .
£ Position (8 bytes)
Z R12Z + e -
(&)
[
2
a
-
2
o]
CPU CHANGES COMMENTS [RomJsB] N |
0] 1 2| 3] 4] 5] 6] 7]OC™M E
1011]12[13[14{ 15[16| 17 U U
20 21 (7773 [74| 26 [26 27 et
3031132 [33]34] 3636 37 =
40|41 (42 [43]aalas]a6laz] U | U
505152 [53]54]55]56] 57 =Tmros
60 |61 162]163]64]65({66]67
7017117273741 75]76] 727 U

7-72

FUNCTION | NAME PRINT.
ADDRess /0067
Sets SCTEMP and PRINT pointers to PRINTER IS device. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
Q
|
o
Z
o
Q
-
o]
a
z
w
4
o
=
(@]
Z
o]
Q
-
=
a
-
=2
(@]
CPU CHANGES COMMENTS LRomuse] ¥
ol 1] 2] 3] 41 5] 6] 7jocm [3
1011|1213 [1a]15]16]17] _ _
20 21122 {23]24]25[26] 27
03T 3233134 35 | 36 37 Fore+-25F
20 Ja1 |42 |a3laalas 46478 40| -
50 |51 |52 |53 [54] 6656157 FsTatus
60 [61 162163 |64]65]66]67
70 (71172173 74) 75176177 U
FUNCTION NAME PRLINE
ADDRESS 70402
Dumps either the print buffer or the display buffer. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
)
4
e
—
S
Z
@]
(8]
-
oo
8
z
[22]
Zz
o
-
S
Z
@]
(&)
=
2
a
[
2
(@)
CPU CHANGES COMMENTS ROMJSB
0 2| 3] 4] 5] 6] 7jocm E
I KK KER S A A 5 (VR Y DISP. or PRINT. must be called to set up select code
20 |21 12212312425 [26] 27 fmmmf=ries and buffer pointers betore calling PRLINE.
30 [31]32[33]34[35]36]} 37
40 |41 42 [43]44]145]|46] 47 U U
50 |61 52 |53{5455}56]57 F"STarus
60 |61 {62]63[64]65]|66}67
20[71]72[73[74]75]176]77 “

7-73

FUNCTION | NAME PRNT#$

ADDRESS 30577
Prints a string to a tape buffer. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

R44-45
R46-47

Length of string
Address of string

OUTPUT CONDITIONS

CPU CHANGES COMMENTS l ROMJSB I Y

11 2] 3} 4] 5} 6f 7jocm] E

1111213 1411S6L17ABTN| U Before calling PRNT#$ a buffer must have been assigned

CNEPAEERE RN LR o and PRINT#. called.

31132]133[34[35]36] 37

a1]a2]43]aalas5]a6]a7 U § U

515253541 65]56] 57 ==vayes

61162163;64|65166]67 U

71172173]74175({76]77
FUNCTION NAME PRNT#N

ADDREss 31022
Prints a number to a tape buffer. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

R40 = Number to be printed

OUTPUT CONDITIONS

CPU CHANGES COMMENTS I ROMJSBI Y

1] 2/ 3] 4] 5] 6] 7]0C™M

10

E
gzt i ulu Before calling PRNT#N, a buffer must have been assigned

21122123124 (25]26] 27

30

3T[32 13313435 36 37 P20 and PRINT#. called.

40

a11421a3/aafas]a6la7] U U

51525364 55[56] 67 =eTaros

61162163164]|65]|66;67

70

71 (72173 74 75 | 76| 77 U

7-74

FUNCTION |

Sets the computer to radians mode for trigonometric
operations.

NAME RAD.
ADDRESS 61746
TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
1)
=
&
<
(@]
o
et
2
a
z
[72)
Zz
o
E
(=]
Z
@]
(8]
[
o
a
=
o]
o
CPU CHANGES COMMENTS [romusB] ¥
of ! 2| 3] 4] 5] 6] 7]ocwMm E
1w]i12]13]14]15]16]17 - -
20217222324 25]26] 27 YT
30 (31 [32|33 |34 35 |36 37 |
40 |41 (42 |43]aala5]a6]a7} 36| -
50 |51 |62 163]54] 55 (5657 F5TATUS
60 6162 (63]164[65]66{ 67
70{71172173]74[75176} 77 U
FUNCTION NAME RAD1P
ADDRESS 53675
Converts angle in degrees to radians. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
m *
3 Angle in degrees (8 bytes)
£ R12 » ===ememmmmmmmmmmem oo oo
4
@]
[&]
=
2
a
z
[72]
8
£ Angle in radians (8 bytes)
Z R12 » --memmec—mmmmmmmmmo—m e
(&)
[
o]
Q.
-
]
(@)
CPU CHANGES COMMENTS ROMJSB
o[2| 3] 4] 5] 6] 7]DcMm E
1011 [12f13]14115[16] 17 D U
2002122123]24]25]26] 27 R W
30 /31132]33[34{35]36]37
40 |a1 a2]a3]aala5]a6]4a7040] 12
50 {51162 |53]|54] 5556} 57 F5TaAT0s
60 {61 162]163!64]|65166]67

71172 (73 |74 75176 [77 U

7-75

FUNCTION |

NAME READ#$
ADDRESS 31335

Reads a string from the tape buffer and stores it in a TYPE Runtime
variable area.
REGISTER CONTENTS R12 STACK CONTENTS
m 13 I3 0
ot Pointer to string variable area
E (2 bytes)
z Maximum storage length (2 bytes)
3] Pointer to 1st character of stor-
5 age (2 bytes)
a
z R12 + ~—comem e -
wn
2
o
-
a
&
Q R12 » —cecemmmcemmmcmcmem e
=
>
a
-
2
o
CPU CHANGES COMMENTS | RomJsB] Y

0y 1| 2} 3| 4] 5] 6] 7j0C™M E
;g ; ;; g ;: g ;g ; utlu A buffer must have been assigned and READ#. called
IR EIE R e 3 g B before READ#$ is called.
40 |a1}42|a3]aa]astaclaz] U U
50 |51 152 |53 [54]55{56] 657 Fmmrus
60 161162163]64]165166]|67
2017117273]|74175[76] 77 U

FUNCTION NAME READ#N

ADDRESS 31167
Reads a number from the tape buffer and stores it in a TYPE Runtime
variable area.
REGISTER CONTENTS R12 STACK CONTENTS
z
o See stack requirements for STOSV
-y
a
Z
(o]
Q
=
2
a
z
1%2]
Z
o
|t
2 R12 + =mmmmmmmcmmmmmmemmmmmoeee
&S]
[
]
a.
-
2
o
CPU CHANGES COMMENTS ROMJSB

o 1| 2] 3] 4} 5] 6} 7]0CM E
101112113 |14]15]16f17 U U
20 [21 77|23 (24 26 | 76 77 fmtmegemees
3031132 (33343536 37 >
40 [41742[43[aa]a5]46]47] U U
50 |51 52 [53|54155]156]57 FSTATUS
6061 162163/64]65]166]67
72017V {72173]|74175]76] 77 U

7-76

FUNCTION I NAME REM19
ADDREss 51736
Returns the remainder (A,B) = A-B (IP(A/B)). TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
o A-value (8 bytes)
= B-value (8 bytes)
z R12 & =mmmmmmmmmmmmm -
o
-
2
a
z
w
z
o
E
D .
z Remainder (8 bytes)
© R12 + ==m-cmmmmmmemmmmmes
2
a
=
2
[e]
CPU CHANGES COMMENTS ROMJSB
B 2] 3] a] s| 6] 7j0C™M E
1011][12]13]14]15{16] 17 D U
20 |21 |22 [23]24] 25{26] 27 YT
30131132 (3334 351 36 37
a0 a1]a2 43 aa]as5]a6la7] U | 12
50 |51 (52 [53[s4[65]56] 57 FFTarus
60 [61 62]63]64]65|66] 67 U
20711721731 74]175]76] 77
FUNCTION NAME RND]Q
ADDRESS 53144
Returns a pseudo-random number between @ and 1. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
E
[a]
g R12 » ===w=--- e mmmmmmem oo
Q
=
o]
a
z
w
2
o
=
[a]
Z! R40 = Copy of number Random number (8 bytes)
© R12 + ==--m-emmmmmmmmmmmmmm
o }
a.
-
2
o
CPU CHANGES COMMENTS ROMJSB ‘
0} 2] 3] 4] 5] 6] 7]DCM E
1ol11]12]13]14]15] 16 17 D U
20 (21222324 25(26] 2/ IR W
30 [31]3233][34[35]36] 37
20 (a1 42 [43 | aa]e5]a6]47] 40] 12
50 [51 |52 [53[s4]55]|56) 57 FcTarus
60 |61 [62[63[64]/65]66]67

70

71172]73]74] 75176177 U

7-77

FUNCTION | NAME RNDIZ.
ADDRESS 55115
Executes the RANDOMIZE statement. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
2
o RANDOMIZE value (8 bytes)
g R12 » —crecccnmrcccccrerc e e
o
Q
-
)
[+ %
Z
wn
Z
1]
-
=)
P4
o
(8]
-
2
a
oy
2
d
CPU CHANGES COMMENTS IROMJSBI Y

0] 1] 2] 3] 4] 5] 6] 7JocMI_E
1011 {1213 |14 151617 Y 7
ot tatatetetatu] U RANDOMIZE value 1is optional.
30 |31 |32 |33 34 35 {36 37 R0 J-ARF
40 [41[42]a3[aa]a5]a6]47) U
50151 {52 |53 [54] 55 | 56| 67 P=wrrtr=
60 |61 |62 63164 65]66] 67
70 |71 [72 [73[7a] 75 [76] 77 U

FUNCTION NAME SCRAT.

ADDRESS 4437
Executes a SCRATCH. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
Z
1)
E
[®]
4
o
[8)
=
2
a.
Z
[723
Z
o
fos
a
Z
o
(&)
[,
2
a
-
2
o
CPU CHANGES COMMENTS IROMJSBI Y

0 1 2 3 4 5 6 7 §OCM E
1011 [12]13]14]16]16] 17 : : : ;
B EI KB U, Alr{p SCRAT. sets the immediate break bits (5 and 7) in R17.
30131132 (33134 35136] a7 =2
40141142]4a3]aaa5]a6]a7] 46 36
50 |51 52|53 54]65]66] 57 Jrmrames
60 |61 62163]64]65]66] 67
7071172 (73] 78] 751 76] 77 U

7-78

FUNCTION |

NAME SECT1@
ADDRESS 53463

Returns secant of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
P-4
o
=
g Argument (8 bytes)
9 R12 +» ~=-emmmmmmemme
-
2
a
z
w
Z
o
—_
S R40 = Copy of secant result Secant result (8 bytes)
o R12 + —-eemmmmmmmmmmemme e
(&)
-
2
a
-
2
o
CPU CHANGES COMMENTS [rRoMUSB] N

0] 1 2 3] 4 5| 6{ 7]DCM E
1011 [12]13[14]165116117] D U
202122 23124]25]26] 27 ry
30 [31 [32 [33[34] 3536 | 37 J 2o -2°%
90 a1]e2]a3]aalas]a6la7] 40] 12
50 |51 162 [53 |64 5556 57 P==Tatos
60161]62]163/64]65]66] 67 U
70(71]172|73|74]175]76] 77

FUNCTION NAME SEMIC.

ADDRESS 70765
Prints a number to the display buffer or print buffer. TYPE = Runtime
(Same as PRINT 5, in BASIC.)
REGISTER CONTENTS R12 STACK CONTENTS
%]
8
g Number (8 bytes)
g R12 » =emmemmmmm—mm o
O
Q
-
>
a
z
(723
Z
Q
=
S R12 » =m=mmmmmmmmmmme
(o]
(8]
—_
o]
a
-
=2
(@]
CPU CHANGES COMMENTS | RomJsB] Y

0f 1 2] 3] 4] 5| 6] 7]OCM E
o et U U DISP. or PRINT. must be called to set up select code
30 (3113233 |34 35 136 [37 oo 4250 and buffer pointers before SEMIC. is called.
a0 a1 (a2 |a3]aala5]a6]a7] U 1]
50 61162 [53[54]55156] 57 STatTus
60 |61 162]163|64]165]66]67

711721731741 75]76] 77 U

7-79

FUNCTION |

NAME SEMICS
ADDRESS 70643

Prints a string to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT A$; in BASIC.)
REGISTER CONTENTS R12 STACK CONTENTS
2
o Length of string (8 bytes)
S Address of string (8 bytes)
o R12 + ~mem et e-
Q
-
s}
o
z
(2]
2
o
-
2
s) R12 + —cmmmmm e ccmmmemeeeeeee e
o
-
po}
a
-
2
O
CPU CHANGES COMMENTS [romusB] Y
0 1 2 3 4 5 6 7 | OCM E
0 2113 5
ottt U 1 U DISP. OR PRINT. must be called to set up select code
303132 33 [34] 35 |36 a7 J-one 4 AR and buffer pointers before SEMIC$ is called.
40 141 /42143]44]145]146] 47 U
50 {51 [52 [53[sa]55[56] 67 F=eTartne
60 [61162]63{64]/65}66]67
7071 (72173741 75 76| 77 U
FUNCTION NAME SGN5
ADDRESS 53405
SGN function: returns -1 if x<@, @ if x=0, and TYPE Runtime
+1 if x>0.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
=}
5 X-value (8 bytes)
Z R12 » wcoomcccmmccc e
(8]
—
D
a
z
w
5
E| R40 = Copy of SGN value SGN value (8 bytes)
z R12 » =cemmmmcmmccccmeemem
Q
—
s }
a.
-
o}
o]
CPU CHANGES COMMENTS [RomusB]
[¢] 1 2 3 4 5 6 7 L OCM E
1011312]13[14]|15]16] 17 D U
20 (2127 (23242576 27 —
30 [31132 [33]34] 35]36] 37 p-AE
40 (a1 [a2[437aalas]a6]a7] 40| 12
50 [51[52 53 [54] 56 [s6] 57 f=srxros
60 [61]62]63]|64]65]166]67

71172 [73 17475 [76 77 U

7-80

FUNCTION | NAME SIN1@
ADDRESS 53546

Returns the sine of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS

[72]

b4

o

*— -

S Argument (real or integer #)
8 R12 + —mmmmmmmmmmmmmmmmmmmmm e e
t

2

a

z

(%]
Z
o
-
5
3| R40 = Copy of sine result Sine result (real #)
5 R12 » ——=—m—mmmmmmmm e
a
-
2
IS
CPU CHANGES COMMENTS IROMJSBI N
0 1 2 3 4 5 6 7 §OCM E
w23 [alis]6[71 D I U
70121 22123 24 25] 26 27 —
30 131132 133134 35 36| 37 o
40 (4142 Ja3aaa5]a6]a7] 40| 12
50 5152153]54]65]56] 57 I==Txros
60 161162 163 64165]66]67
70 U

NAME SQR5
ADDRESS 52442
TYPE Runtime

FUNCTION

Returns the square root of the argument.

REGISTER CONTENTS R12 STACK CONTENTS

2
5 Argument (8 bytes)
-
a R12 + ==cmmemmccmcem e
Z
o}
o
-
2
o
z
[72]
Z
o
5 Square root (8 bytes)
z R12 » ~--=c——mmmmmemm oo
(8]
[
po)
a
[
2
@]

CPU CHANGES COMMENTS ROMJSB]N |
0] ¢ 2| 3f 4] s] 6] 7}OCM E
1w [1r[12]13]14]15{16] 17 D U

20 |21 22 |23]24] 25| 26] 2}
30 |31 |32 133]34 35]36] 37
40 [a1142]43]4a]a5]46[a7] | U
50 |51 |52 |53 54|56 56] 57 FsTatee
60 |61 |62 63| 64]65]66] 67
70 (71 172 (73 [74] 75 1 761 77 U

DRP | ARP

7-81

FUNCTION | NAME STBEEP
ADDRESS 7017
Executes standard BEEP. (BEEP with no parameters.) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[7]
P-4
o
g
5
-4
o]
Q
[
o)
a.
z
w
2
Qo
-
8
2
O
Q
—
2
a
-
2
(o]
CPU CHANGES COMMENTS [rRoMusB I N
0 1 2 3 4 5 6 7 1 OCM E
1011Y (12113]|14] 1516|117 B -
20|21{22 (23242526 27
30 [31 132 |33 3a] 35 36] 37 2R} ARE
40 |41 a2 |43]aalas]e6]a7] 311 U
50 [51]52 535465 [566] 57 ==Tavee
60 |61 162163|64]|65]66]67
7017117273724} 75]|76] 77 U
FUNCTION NAME SUBROI
ADDRESS 52127
Subtracts Y from X TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[7)
2
o
5 X-value (8 bytes)
§ Y-value (8 bytes)
- R12 + —cmemcmcmeeee e
o}
a
z
w
2
=}
|l R40 = Copy of result X-Y result (8 bytes)
g R12 + —-emmcccmccccneaeem
Q
—_
2
o
-
=
o]
CPU CHANGES COMMENTS ROMJSB
0 1 2 3] 4] 5] 6 7 LDCM E
10|11 1211314 15([16]|17 D U
20|27 [77 |23 [24] 25 [26 77 Jmmretmree
30 |31 |32]33] 34] 35] 36 37 -
40 |41 (42 |43]4a] a5 a6la7]40) 12
5015152]53 541 55[56] 57 erarus
60 [61 162163]/64]}65]/66]67
70171172 [23 (74| 75[76} 27 U

7-82

FUNCTION | NAME SUB1@
ADDRESS 52137

Subtracts two real numbers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
]
5| R50 = Real #A
g| R40 = Real #B
u
2
Z
2]
Z
3]
E
o
z| R40 = Real result (Copy) Real result (A-B)
ot R12 » ——wemmemcmmmm e
o]
g
2
o
CPU CHANGES COMMENTS [romusB] N
o1 2 3| 4] 5] 6} 7}ROCM £
tojripiz13fialsiclizg pjou Not listed in global file. Same as SUBROI, except
£ §}§§ g ;: 2 32 2 ORP ¥ ARP SUBROI expects real or integer numbers on the R12
a0 [a1]a2]43]aa]a5]a6]a7] U] U stack at entry.
50 [51]52]53]54]55]5657 FsTarus

60 |61 /62 16364]65|66]67
70171172173]74175|76]1 727 U
FUNCTION | NAME

ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
w
2
=
-
o
Z
[}
(]
[
jus
-8
2
123
Z
o
-
=)
r4
Q
(8]
[
2
a.
-
2
(e}
CPU CHANGES COMMENTS I ROMJSB I
0] 1 2{ 3] a] 5] 6] 7})0CM E
101 [12[13]14]15]16]17

20|21 22 |23 24| 251267 27
30 |31132 |33 34[35]36]37
a0 [a1 142 (a3 [aa]a5]a6]47
50 |51 [52 |53 |54 66 [56] 57 FsTatos
60 6162]63]6a]65]66]67
70 [71 {72173 [94751 76] 77

DRP § ARP

7-83

FUNCTION | NAME TAN1@
ADDRESS 53566
Returns the tangent of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
5 Argument (real or integer #)
& R12 » —ommmemmmmmm oo
Q
[
2
a.
z
[%2]
Z
Q
[
a
&| R40 - Copy of result Tangent result (real #)
o S S
oo }
"N
=
2
(@]
CPU CHANGES COMMENTS LRomusB] N
0] 1 21 3| 4] 5| 6| 7pOCM E
101112113114} 15]16] 17 D U
202V]22]23[24] 25126} 27 YT
30 [31 32 133 |34 36| 36 37 F2or
a0 a1 14243 |aa|a5]a6]a7] 40] 12
50 (51162 [53]54]55]56] 57 ™sTaToS
60 |61 162]63/64]/65166] 67
70 171172 |73}74175[76] 77 U
FUNCTION NAME TIME.
ADDRESS 65517
Returns the current system time. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
Z
Qo
ey
a
Z
(@]
Q
[
o
a
z
2]
Z
o
E
D .
Z| R40 = Copy of time Time (8 bytes)
hut R12 + -=-mmmemmmmeme
2
Q.
-
2
o
CPU CHANGES COMMENTS LLRomuse] Y
0 1 2 3{ 4 5 6 7 LOCM E
1011 [12]13]14]15][16] 17 D U
20121122 123124[25]26] 27 T
30131 (331331341 36136 37 p22F
a0la1142(a3ldalasTa6laz] 40 12
50151 [52[s3|54] 56156157 FeTatus
60161 162163|/64]65166(67
70 (71 |72 (73 | 741 75 [76 77 U

7-84

FUNCTION |

NAME UNEQS.
ADDRESS 3025

Compares two strings for equality. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
2 .
< String 1 length (2 bytes)
g String 1 address (2 bytes)
3 String 2 length (2 bytes)
= String 2 address (2 bytes)
g R12 » ===-—cemmmmmmmmmmee e m e
W
Z
o
=
[a]
3 True/false value (8 bytes)
e R12 » —-=-—mmmmmmm oo
2
o
=
2
(o]
CPU CHANGES COMMENTS [rRomusB] N

0 1 2 3 4 5 6 7 §DCM E
10011]1213]14]15{16}17 D U
20 [2t1[22[23]24]25]26] 27
30 (3713233134 35| 36| 37 joAE 4 ARP
40141 (a2 |a3]aalasa64a7] 40] 12
50 |51 [52[53]54]55]|66] 57 FeTaTos
60 |61]162163164]65]166] 67

74 U
FUNCTION

Compares two numbers for inequality.

NAME UNEQ.
ADDRESS 62202
TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

2]

Z

2 #1 Value (8 bytes)

S #2 Value (8 bytes)

S RI2 > mmmmmmommmmmm e

-

po]

[+

2

(22}

2

=

=

o True/false value (8 bytes)

9 R12 + =-=c-mmmmmmmmme e e

(-

ol

'

[

2

) _
CPU CHANGES COMMENTS [romJss] y

ol 1 2] 3] 4] 5] 6] 7j0C™m E

1011 [12113]14]15(16)17 U U

2021 [22[23]24]25]26] 27 =T ARF

30 (3132331343536 37

a0 |41 |42 |43]aaasfa6{a7] 40] 12

50 |51 52 |53 54 55[56] 57 FcTarus

60 [61 162{63|64]|65)66]67

70

7117273 74] 7576 [77 U

7-85

FUNCTION | NAME UPC$.
ADDRESS 3373
Converts all lower-case characters in a string to TYPE Runtime
upper case.
REGISTER CONTENTS R12 STACK CONTENTS
2
S Length of string (8 bytes)
g Address of string (8 bytes)
9] R12 + ——cmmmmm e
(&)
[
2
a
z
w
Z
o
5 Length of string (8 bytes)
5 Address of string (8 bytes)
o R12 » ~ommmmmmm e
2
a
[
2
(@)
CPU CHANGES COMMENTS [romJse] N |
o] 1] 2] 3[4] s] 6] 7JoecmT E |
1011 }12]13|14]15116[17 B U
20 |21 [22123[24]25]26] 27 TR WX
30131]32]33]34{35]36] 37
40 a1]42(43]aa]a5]a6]az7] 30| U
50511525354 55]56] 57 f=wraros
60 (61162 163[64]|65]|66} 67
70 |71 [72]73]|74]75]176] 77 U
FUNCTION NAME VAL$.
ADDRESS 3207
Converts a number into its corresponding ASCII characters. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
Q
5 Number (8 bytes)
Py RI2 + =--cmmmmmcmeeeee
(&)
-
2
o
z
[72]
Z
= .
E| R26 = Address of string Length of string (2 bytes)
Z| R30 = Length of string Address of string (2 bytes)
ot N A e
2
a
-
]
o
CPU CHANGES COMMENTS ROMJSB
0] 2{ 3| 4] 5] 6] 7)]0cwM E
1011 [12]13]14]15]16}17 B U
20|21 2223]24] 26 26] 27 o
30 |31 132 |33 34 35] 36 37 F2o%
40 [a1]a2 [43|aa]a5]a6]az] 26 12
50|51 [52]63 54 65[56] 57 s
60 161 162 163)64]|65|66]|67
20 (71 172{73]74]75]|76] 77 U

7-86

FUNCTION |

Converts an ASCII string of numeric characters to the

corresponding numeric value.

NAME VAL.
ADDRESS 3250
TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
o
5 Length of string (2 bytes)
3 Address of string (2 bytes)
et] A
2
a
z
w
4
o
-
E .
§ Numeric value (8 bytes)
et R12 + =emmmmcmme e e
2
a
-
o}
(@]
CPU CHANGES COMMENTS [romuse] ¥
0 1 2 3 4 5 6 7 OCM [3
111 |12]13|14}15]16] 17 U U
20[21]2223]|24[25]26] 27 T3
3031 132 1331 34] 35| 36 37 p2F
40 a1 (a2 |a3]aalaslaslaz] U | U
50 {5152 [63 |54 55[56] 57 eTares
60 |61 |62]63[64]|65166]67 U
20171 1722}73]|724] 75176} 77
FUNCTION NAME WAIT.
ADDRESS 65701
Executes the WAIT statement. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
5 WAIT count (8 bytes)
5
P4
(@]
(&)
[
2
a
z
w
Z
=
-
8
Z
(o]
o
[
]
[N
s
2
@]
CPU CHANGES COMMENTS ROMJSB
0 1 2 3] 4 5| 6] 7]DbCM E
101 ;; 13]14115[16 ;7 ulv WATT count is in milliseconds. Returns immediately
202 23]|24]25]26 7 .
303113213334 35 | 36 37 Fone 4 2RP if R16#2.
40 |a1 a2 [a3]sa]a5]4e6la7] U | U
50 |51 |52 [63|54] 56556} 57 cTarus
60 161 162]63]164]65]|66¢67 U

71 [72(73]74]175176}77

7-87

FUNCTION | NAME YTX5
ADDRESS 532472
Executes Y"X. TYPE
REGISTER CONTENTS R12 STAGK CONTENTS
w
2
Q
E Y-value (8 bytes)
z X-value (8 bytes)
o R12 » ——cmmmmmmeeeeeeeo
-
2
o
z
[72]
Z
o
5 X
g Y® result (8 bytes)
o RI2 » =
[
o]
a
-
2
o]
CPU CHANGES COMMENTS [rRomusB] ¥
O 1 2|1 3] 4] 5] 6] 7}0CM E
1011 [12113]14} 1511617 U U
20J21122 (23|24 25]26] 27
30 13132 |33]34] 3536 37 pone 4 ARP
a0 141 J42]43]4a]a5]a6]47] U U
50 [51]62 535465 [56] 57 sTatos
60 (61 162 16364)65|66]67
720171172173 }174175176] 77 U
FUNCTION NAME ZROMEM
ADDRESS 44066
Sets a specified number of bytes equal to zeros or blanks TYPE Runtime
(408), starting at a specified address.
REGISTER CONTENTS R12 STACK CONTENTS
v
P4
o
5| R23 = 3 for blanks, #3 for zeros
&| R36 = Pointer to first byte
o| R56-57 = Number of bytes
2
z
2]
£
o
E
[a]
P-4
o
Q
[
2
a
=
2
o
CPU CHANGES COMMENTS ROMJSB
ol 21 3] 4] 5] 6] 7]DCM E
1011|1213 [14]15(16] 17 - -
202772 |23 74 25| 76| 77 e BIN mode should be set before entry,
30]31{32[33)34[35]36}37
4041 [42]43]4a]a5[46[a7] U U
50 {51 52 [53[s4]55]56] 57 I==vatos
60161 162163|64165)66]67

70

711721731741 75176} 77 U

7-88

HP-83/85 System Routines

GENERAL-PURPOSE UTILITY ROUTINES

The general-purpose routines on the following pa
parsing, initialization, or at other times.

ges may find uses during runtime,

7-89

FUNCTION |

Compares two real numbers.

NAME COMFLT
ADDRESS 32621
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
5 R40 = #A
&| R50 = #B
|8}
-
>
a
z
[%2])
Z
o
=
2
3| R50 = B-A
(&)
-
2
a
[
2
(@)
CPU CHANGES COMMENTS [RomusBIN

ol 2] 3] 4] 5] 6] 7}OC™M E
whi2faafsel7f B U
7021122 [23 24 25[26] 27 — At output:
30 37132 |33]34 35 |36 37 200 E=0 if #A > = #B
40 a1]a2]43]aalas]a6laz] U] U E=1if #A < #B
50 [61 52 [53 |54 6556 67 |=matoe =11 <
60161162 |63]64i65]|66}67 U
70 (71 [72 (73]74]75][76] 77

FUNCTION NAME CONBIN

ADDRESS 3572
Converts a two-byte binary number into an eight-byte TYPE Utility
floating-point number.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
= os
5 R36 = Binary #
o]
&)
[
>
a
z
w
z
o
=
o . .
Z| R40 = Floating-point #
o
o
o
-
2
2 {
CPU CHANGES COMMENTS ROMJSB] Y

Of 1 2| 3} 4] 5] 6] 7]D0CM E
10{11]12(113[14|15][16] 17 D
_20 21122]23]24{25(26}27 YT
30|37 [37 1331341 36 [38| 37 2
40141]42]43]4aalas5]a6la7) U | U
50|51 52|53]54]55]56] 57 oo
60 161 162 /63|64]65]66]67

7172 (73] 741 75 76 [77 U

7-90

FUNCTION |

NAME

CONINT

ADDRESS 44321

Converts real number in R60-67 to binary number in R76-77. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
w
P4
Q
=
S R60 = Real #
@]
(&)
-
oo
o
Z
%3]
P4
1=
51 R76 = Binary #
Z
[®]
(8]
[
]
Q.
[*s
o
(@]
CPU CHANGES COMMENTS [RomJsB] N
of 1} 2] 3] 4] 5] 6] 710CM [
1011]12[13[14]15(16}17 - _
20 [21 22 [23 24125 [26] 27 b Performs SAD at entry.
30 1311321331341 35 £361 37 Performs PAD at exit.
40 |41 (42]43144]145]46] 47 - -
50 |51 [52 |53 |54]55]56]57 STATUS
60 |61 162]|63|64|65]66]67
701721]72173174175176] 77 -
FUNCTION NAME CVNUM
ADDRESS 71135
Formats a floating-point number into ASCII characters for TYPE Utility
printing.
REGISTER CONTENTS R12 STACK CONTENTS
Z
S R30 = Pointer to output buffer.
5| R40 = Floating-point # to be formatted.
&
Q
—
>
a
z
2
8| R30 = Pointer to next available byte in
5 output buffer.
8
Q
-
2
a
-
2
(o]
CPU CHANGES COMMENTS ROMJSB] Y
o] 1] 2] 3| 4] 5] 6] 7JOCM E
1011 {12]13[14}15[16}17 “ U
70121 122 |23 241 25| 26] 27 T
303132 (3334 35361 37 b0
40 41]142143]144145146] 47 U U
50 [51[52 |53 (5466 [56] 57 F5TaATUS
60 |61 [62163]64]165/66]67

71 |72 |73 (741 75 76 77 U

7-91

FUNCTION | NAME DRV12.
ADDRESS 5462
Vectors output to appropriate device, obeying CRT IS and TYPE Utitlity

PRINT IS commands.

REGISTER CONTENTS R12 STACK CONTENTS
[22])
8| R26-27 = Pointer to beginning of buffer to
£ be output.
gl R36-37 = Number of bytes to be output.
2
2
a
z
2| If I/0 is hooked up, assume all CPU regis-
2| ter contents are altered; otherwise regis-
2| ter changes shown below are correct.
S
[
o]
a
-
2
o]
CPU CHANGES COMMENTS |LRomJsB] Y
ol [2] 3} 4] s] 6] 7Jocm] E . . .
o[[z{ae 75677l U 1 U Before DRV12. is called for the first time, an I/0 rou-
20 [[22[23124]26[26] 27 tine such as PRINT. or DISP. should be called to ini-
30 [31 152133 134 36 [36 T a7 18- tialize SCTEMP to the desired device
40 [a1]42|43aa]as]ae6]az] U | U .
50 (51152 {53]54]55]|56]57
o TorTos TerTaaTes Lo Ter ATUS DRV12. calls OUTSTR, PRDVRI, or IQTRFC.
20171 (72 [73}74]75}76] 77 U
FUNCTION NAME FETAV
ADDRESS 44727
Fetches array variable value. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
w
8 See FETAVA routine.
5
Z
(o]
Q
=
o]
o
z
2
S| R34 = Address of array variable element
=| R60 = Value of array variable element
&
Q
—_
o
a
-
2
o
CPU CHANGES COMMENTS ROMJSB
0 1} 2{ 3] 4] 5} 6{ 7]DC™M E
10N 121314151617U U
20 [21 72 [23 (74 76| 26 77 frmeeepemeres
30]31]32133[34]35]36] 37
40 (41 [42[43]a4]a5]4a6]4a7] U
50 |51 [52 [53|54] 55 [56 67 FeTaToS
60 |61 162]63]|64]|65[66]67
7017117273741 75[76]77 U

7-92

FUNCTION | NAME FETAVA
ADDRESS 44734
Fetches array variable address. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
g Pointer to variable area (2 bytes)
= Row dimension (2 bytes)
2 Column dimension (2 bytes)
S (optional)
5 Dimension flag (1 byte)
z R12 » =====mmmmmcmmmmmmmmeoommee
2
2| R34 = Address of array variable element R12 » mmmmmmmmmmmme e e
g
(@]
Q
5
o
o}
o

CPU CHANGES COMMENTS

1| 2] 3] 4} 51 6] 7

11 [12]13[14]15]16]178 |J U

21122 [23124}25][26] 27

31[32[33134]35[36] 37

a1 (a2 [a31aalas [a6]a7] U U

51 (52 153[{54)565]56]57

61]62163164]165]66]67 U

FUNCTION

| rRomJsBl N |

NAME FETST

ADDRESS 45206
Fetches the length and absolute address of the first TYPE Utility
character of a string.
REGISTER CONTENTS R12 STACK CONTENTS
w
8 Address of name block (2 bytes)
£ (Relative if program mode,
z absolute if calculator mode.)
(o]
] R]2 + =i
=
2
o
z
w -
z Length of string (2 bytes)
E Address of string (2 bytes)
[a]
z R12 > mce e
@]
(8]
(-
o}
a
[
2
@]
CPU CHANGES COMMENTS [RomJsB]N
0 1 2 3] 4 5| 6 7 LOCM E
1ol |12]13]r4]15[16]17 B U
20121222324 2526} 27
013132 (33 3435 [a6 | a7 Ao f-2RP
a0 |41 |42 |43]aa]a5]a6]a7] U U
50 |51 |52 |53 54]65]56] 57 ™ eTaTos
60 {6162 [63|64]65]|66]|67
207122173 724] 751761 77 U

7-93

FUNCTION

J

Fetches the value of a simple numeric variable.

integer values into tagged integers and converts short
numbers to real numbers.

Converts TYPE Utility

NAME FETSV
ADDRESS 44535

REGISTER CONTENTS R12 STACK CONTENTS
[72)
8| R66 = Address of variable
S Relative if program mode.
z Absolute if calculator mode.
o
2
a
z
w
g| R34 = Absolute address of variable
£| R46 = Name block
Z| R60 = Variable value
2
]
a
-
2
(@]
CPU CHANGES COMMENTS LROMJSB] N |

0] 1 2| 3] 4] 5} 6] 7]0C™M E
101111211314 15(16]17 U
20]21[22)12324125]26] 27
3031 |32 [33[34] 35 36 | 37 e § ARP
40 [41]42]a3]aalasa6]4a7] U
50 |51 [52 [53]|54]556[56] 67 ™eratus
60 |61]162163|64!65]66]67
70171 172173}74]|75176] 77 U

FUNCTION NAME FETSVA

ADDRESS 44556
Returns the name block of a variable and ensures the address | TYPE Utility
is absolute.
REGISTER CONTENTS R12 STACK CONTENTS
U) - 3 .
8| R66 = Relative address if in program RUN
£ mode; absolute address if in calcu-
z lator mode.
Q
[
>
a
z
w
g| R46-7 = Name block of variable
E[R34 = Absolute address of variable
8
(8]
—
o]
a
—
o]
o
CPU CHANGES COMMENTS rROMJSBI N
2| 3) af 5} 6] 7]0CM E . . .

,8 ,}12 sl el 7R | - If R16 is odd, the computer is in calculator mode and
20 (27172 [23| 74| 25 [76 77 e the address is absolute. If R16 is cven, the computer
FavimyT jg 2 ig = 2 U lTu is in RUN mode and FWCURR must be added to the address.
50 |51 [52 |53 [54| 55| 56| 67 fsrmro= A check is also made for remote (common) variables.
60 |61 162]163]164]65]66]67
70 [71 (7217374 75176] 77 U

7-94

FUNCTION | NAME INTMUL

ApDRESs 53076
Performs binary integer multiplication. TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

R66 = Multiplier
R76 = Multiplicand

OUTPUT CONDITIONS

R54

1]

Result (4 bytes. Answer is full
32-bit number; the sign bit may be
set.)

Multiplier

Multiplicand

R66
R76

CPU CHANGES COMMENTS I ROMJSBI N

1] 2] 3] 4] 5] 6] 7joc™m E

a1 -1 - Performs SAD at entry, PAD at exit.

21122[23}24]25[26] 27

31323334 35 | 36 [a7 Jorr 1 A°F Does not destroy multiplier and multiplicand.

41142143/44]45146]47] -~ -

51|52 [s3]sa[ss[s6]57 FsTaros

61]62 163]64]65166) 67

117217231741 75]176] 77 =
FUNCTION NAME INTORL

ADDRESS 56343
Converts a tagged BCD integer number in R60 to a real number | TYPE Utility
in R60.)

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

R60 = Integer #

QUTPUT CONDITIONS

R60 = Converted real #

CPU CHANGES COMMENTS I ROMJSBI N

1] 2| 3] 4] s] 6] 7jocm] E

20

n[iz[3asTe7ky |

77122123124 25| 26 27

DRP | ARP

30

31132[33/34[35]36] 37

40

4 (42 (a3 a4 a5]46]47] 36 | 60

51[652]53]|54]65]56]57 F sTATUS

61162 163,64[65]6667

70

711721731741 75]76177 U

7-95

FUNCTION | NAME MOVDN

ADDRESs 37324
Moves a block of memory, starting with the highest address TYPE Utility
and working down to the lowest address.

REGISTER CONTENTS R12 STACK CONTENTS

2
o R22 = Byte count.
a| R24 = First byte to be moved. (Highest
5 address.)
; R26 = First byte of destination. (Highest
z address.)
2]
Z
Q
=
[a]
Z
@]
Q
[
e
5
O

CPU CHANGES COMMENTS [rRomusB] N

1] 24 3] 4] 5] 6] 7}0CM E

10

1

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

Expects binary mode at entry.

5115253 [54] 55[56] 67 et

61162]63/64]/65]66] 67

71172173[74{75}176] 77 U
FUNCTION NAME MOVUP
ADDRESS 37365
Moves a block of memory, starting at the lowest address and TYPE Utility
working up to the highest address.
REGISTER CONTENTS R12 STACK CONTENTS
2
O R22 = Byte count.
5| R24 = First byte to be moved. (Lowest
g address.)
2| R26 = First byte of destination. (Lowest
g address.)
z
w
2
o
-
=
=z
@]
(8]
[
o
a
[
2
(@)
CPU CHANGES COMMENTS |RoMJsB] N
O] | 2| 3] 4] 5| 6] 7
10|11 12113 }14}115][16]17 .
AR FRF RN EANL Expects binary mode at entry.
30131132133]34]35236] 37
40 |41 |42 14344145146 47
50 [51 152 |53154|55]56] 57
60161162 [/63/64]65166]67
701711721731 74{75]76]77

7-96

FUNCTION |

NAME ONEB
ADDRESS 56113

Fetches one number from R12 stack and converts to it binary. |TYPE Utility

REGISTER CONTENTS . R12 STACK CONTENTS
wn
2
o
5 Real or integer # to pop
5 R12 + ==mmmmmmmmmmmmmmmmm e
Q
-
o]
a
z
wn
=z
o
£| R46-R47 = Binary # from stack
§ R76-R77 = Binary # from stack (Copy)
-
]
a
-
2
o
CPU CHANGES COMMENTS [rRomJsB] |
Of 1 2] 3] 4] 5| 6] 7]DC™M E
1011]12]13{14]15]16}17 B U
20[21]22]23]24]25]26] 27 B WX
30 31 323313413536 37 =
40]41 [a2 43 aa|as [a6]a7] 76 | 46
50 51 [62]53[54]55] 5657 F5Tatus
60 |61 |6263/64]|65]66] 67
70 (71 |72 173|781 751 76[72 U
FUNCTION NAME ONEI
ADDRESS 56154
Gets one number (off R12) as an integer. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
w
4
1]
= Real or integer #
g R12 » ----=cmmmmmmmmo
(&)
-
2
o
z
w
8
£| R44-R47 = Tagged BCD integer R12 + ---==mmmmmmmm oo
&
o
[
o’
a
-
2
o
CPU CHANGES COMMENTS ROMJSB
0] 1 2| 3] 4] 5| 6] 7]OcM £
o ta) 1o D4 Do ;:lz Aulu F=p if valid integer.
30131 [32 3334 35136 |37 o4+ E=1 if real number converteq to integer was too large
40 a1]a2a3laalaslacf47] U | U and overflowed. (In this case, R45-47 = 99999.)
50 151 |52 |53 |54 |55 [56]57 syatus
60 61162 163[64]65166]67
70 [71 [72 [73 | 74 75 [76 [27 U

7-97

FUNCTION |

Fetches one real number from R12 stack.

NAME ONER
ADDRESS 56215
TYPE Utitlity

REGISTER CONTENTS R12 STACK CONTENTS
z
5 Real or integer # (8 bytes)
= R12 + mmeme e
Z
o}
(8]
—
=2
a.
z
w
4
o
%[R40 = Real #.
§ R60 = Real #. (Copy.)
—
2
a
(==
]
Q
CPU CHANGES COMMENTS LRomJsB] N

0 2] 3 s| 6] 7Jocm [E .
0 S FAEE ,: sl p [p Expects DCM set to binary mode at entry.
20 [27 122 [73 124176 [76 [77 fommmrmrems ONER+, address 56200, has the same function, but expects
30131/32]33]34[35][36{37 3 s -
aoTar Taz [asTaaTasTaeTa71 60 1 40 real or 1nteger_number in R60-67 rather than on R12
50 |51 52 [53] 54] 56| 56 57 fr=mrmiees stack. Output is the same.
60 [61162(63]164]65]|66|67
720{71[72]73174[75]76] 77 U

FUNCTION NAME ONEROI

Gets one number (real or integer) from R12 stack and sets ﬁzzﬁess ngifty

E flag according to type of number. Number comes off

unchanged.

REGISTER CONTENTS R12 STACK CONTENTS
12
z 0
2 Real or integer #
=) R12 > —ommmmmcmceee -
o
Q
[
2
o
z
w
gl If real: R40-47 = #
E E=9
o) . A
2| If integer: R44 = 377 R1
S R45-47 = #
[
2 E=1
=
2
(o]
CPU CHANGES COMMENTS ROMJSB

O 1 24 3| 4] 5} 6] 7Q10CM E
1011112113 /14115116117F _] | E=0if real, 1 if integer.
20 [T 27 (23|74 [26 [26] 77 fmmmmmre
30|31 [32]33]34]35]36] 37 }=~
40 |41 [42]a3|aa]as[a6]a7] 44| 12
50 |51 [52 63 (54]55[56] 57 F™=TatuS
60 |61 162 /63|64]65]66]67
70171 [72]173j724]75]|76] 77 U

7-98

FUNCTION |

Causes internal printer to advance one Tine.

NAME PAPER.
ADDRESS 76144
TYPE Utility

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS
o[[2] 3] 4] 5] 6] 7jocm]) E

ICEAKNEFREERRLIGEIRLIRYA By IV Expects binary mode at entry.

20 [21]22(23[24(25]26] 27 TR WX

3031]32133/34/35]36} 37

40 (41 |42 |43 |4ala5]a6]a7] U

50 151 (52|53 154]55|56]57 F cyATUS

60 |61 [62]63|64[65)66]|67

70171 (721731741 75]76]77 U
FUNCTION

Dumps a buffer to the internal printer.

IROMJSB'Y

NAME PRDVRI1
ADDRESS 75767
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

2]

8] R26 = Address of buffer.

£} R36 = Number of bytes in buffer.
&

Q

-

o

a

z

[72]

Z

Q

=

Q

Z

(@)

Q

-

>

a

-

2

o

CPU CHANGES COMMENTS [romJsBl Y

o) 1] 21 3] al s] 6} 7jocm]y E

{11 i12113(14]15116)17 B U

2021 [22]23]24[25[26] 27
30131]32]33[34[{35]36]37

ORP § ARP

20 a1 |42]a3]aalas5]a6laz] U | U

50 |51 152 [53|s4]65(56] 57 F2Taros
60 |61 62|63]64165]66]67

720 (71172173 [74} 75176177 U

7-99

FUNCTION

]

Releases temporary scratch-pad memory.

NAME RELMEM
ADDRESS 37534
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

w
2
o
E
[a]
Z
o)
o
-
>
o
z
2]
Z
o
=
o]
4
o]
Q
-
2
o
s
2
S]

CPU CHANGES COMMENTS IROMJSBI N ‘
0 1 2 3 4 5 6 7 LOCM E
o [12]13]78] 51671 _ | -
70121122 (23] 24] 25|26 27 o
303132 133134 35] 36 3722
40 |41 |42 43 aa]as[a6a7] U U
50 [51 |52 |53 |54 55 | 56 67 f=mrro=
50 |61 62 |63 64]665]66] 67
70 71 172 (731741 75| 76| 77 Y

FUNCTION

NAME RESMEM
ADDRESS 37442

Reserves a block of memory for scratch-pad use. Temporary TYPE Utility
only.
REGISTER CONTENTS R12 STACK CONTENTS
z
S| R54-55 = Number of bytes to be reserved.
-
a
Z
o]
&
[
2
a
z
[2]
8| R26-27 = Address of Ist byte of reserved
= memory.
z
O
o
-
2
[+ 8
-
2
(@)
CPU CHANGES COMMENTS ROMJSB
01 1| 2] 3] 4] 5{ 6] 7]OC™M E
1011 [12]13]|14]15]16]17 - U
20 (791|727 [27]24(25]26] 27 VT3
3031132 [33]3a]35]36] 37 P22
40 Ja1]42]43/44 4546147056 | 54
50 |51 {52 [53[54]55[56] 67 rTatoe
60 161 162 163164[65]66] 67
70 [71 [72 173174 75 [76 77 U

7-100

FUNCTION | NAME ROMJSB

ROM switching subroutine. Selects the desired ROM and ﬁazfess 3ZZ$1ty

executes a JSB to the desired routine in that ROM. When
control is returned, reselects the calling ROM and returns.

g ROMJSB calling sequence: During the call, ROMJSB saves R@-1 on
e JSB=ROMJSB the R6 stack along with the ROM# of the
S Routine address (2 bytes) calling ROM. (This is a total of 3
3 ROM# (1 byte) bytes plus the RTN addresses.)
S| ARP, DRP, and status are not preserved
2| during the call.
2| Preserves the ARP, DRP, and status set by
2| the called routine, and restores the
2] original RQ.
3
5
g
3
CPU CHANGES COMMENTS ROMJSB] -
0] 1 2 3] 4 51 6 7 {OCM E
CHRENAFREEIRLIRLIGLIREA Suviy IV ERTEMP (100674-100677) is destroyed.

20 [21[22 [23]24]25{26] 27
30 131 [32(33[34[35136] 37
40 a1 |42]43]44[4a5[46}472] U
50 |51 |52 [53[54]55]56]57 ™FTAtus
60 |61]62 |63]64]65]66]67

DRP | ARP

FUNCTION NAME ROMRTN

ADDRESS 4762
Reselects system bank-selectable ROM (ROM @) and returns. TYPE Utitity
REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
=
a
Z
(o]
Q
-
2
a.
z
w
P4
Q
=
[a]
-4
o
(8]
(-
2
a
-
2
o]
CPU CHANGES COMMENTS [romJss] N
0| 1 2 3] 4] s] 6] 7]OC™M E
LSRN SRR AR AL GLINLINEY gy An external ROM would perform a GTO ROMRTN after parse
2021222324 25]26] 27 — YT .
30 (3132 |33 13435 36] 37 routines.
40 a1 |42 [43]aaas5[a6]a7] @ -
50 |51 (52 [53]|64]56]56] 57 FeTatos

60161 [(62]63]/64165]66]67
70171172 (731741 75]76]77 U

7-101

FUNCTION | NAME RSMEM-
ADDRESS 37453
Reserves a block of memory for scratch-pad use. Temporary TYPE Utility

memory only.

REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
o
5| R56 = Number of bytes to be reserved.
5
Q
-
]
a
z
[72]
3
El R26-7 = Address of 1st byte of reserved
z memory.
Q
-
2
a
=
2
o
CPU CHANGES COMMENTS | RomusB] N

0] 1 21 3] 4{ 5] 6] 7]|0OCM E
10 [N 23] 1a]s16[17] _ _ : :
2021122 (23]24]|25]|26] 27 YT NOt mn g-lOba] f1]e' .
30 [31 |32]33] 34]35] 36 37 250 Executes a SAD at entry, a PAD at exit.
40 |41 (42 |43]44]145]146] 47 - -
50 {51152 [53 |54 5556 57 FeTaToS
60 161162[163]64]65[66]67
720171 [72 |23]| 74| 75]176] 77 =

FUNCTION NAME

ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
[72]
2
o
-
a
2
o
(8]
-
o]
a
z
w
2
Q
[
[a]
<
(@]
Q
—
2
a
-
2
O
CPU CHANGES COMMENTS [RomJsB]

O t] 2] 3] 4} 5] 6] 7]0OCM E
10|11 (12|13]14{ 1511617
20 (21 (22 (2302425 (2617
30 |31 32133]3a] 35] 36| 37 oo 4-A8F
40 141142 |43]44 4546 47
50 (5152 [53 |54 55]56] 57 J=rreies
60 161 162163!164]65]66]67
7204171 ({7273]74]175176} 77

7-102

FUNCTION | NAME RSUM#K
ADDRESS 37726

Calculates a checksum for memory. (Especially useful for TYPE Utility
ROMs.)
REGISTER CONTENTS R12 STACK CONTENTS
Z
o| R32 = Start address
5| R34 = (# bytes/2) - 1
5
(8]
-
>
o
z
[72]
Z
o
[
3
Z
(e}
Q
[
2
a
[
2
(o]
CPU CHANGES COMMENTS ROM.JSB

2 3 6 7 LOCM E . . .
T KO K EEL S S AL S I Returns Z (zero flag) true if checksum is OK; otherwise
20|21 122 |23 [24] 25 [26 27 fommmfrems Z is not true. Expects last 4 bytes of memory checked
30 131132 133134135136} 37 to be checksum that is compared. Expects binary mode
40 |a1 |42 |43 44| a5146]47] 46 | 32 .
50 |51 |52 |53 (54 55]56] 57 I=eratoe at entry.
60 |61 162163[64]65][66] 67

74175]76] 27 U

FUNCTION NAME RSUM8K
ADDRESS 37722
Used by external ROMs to perform a checksum at power-on. TYPE Utility
(Checksum is for an entire 8K ROM.)
REGISTER CONTENTS R12 STACK CONTENTS
2
S| R32 = Start address
-
&
Z
@]
Q
[
>
a
z
172]
Z
©
=
o
Z
o
Q
[
po
a
-
2
(o]
CPU CHANGES COMMENTS ROMJSB |
of 1 2| 3] 4] 5{ 6] 7]OCM E
w2 [ralralis(i6li7] _ [. Expects last 4 bytes of memory checked to be checksum
2021122 123124125126] 2 Jammeege—rers that is compared. Expects binary mode at entry.

30 13132 |33 134] 3536 37
a0fa1Ta243]4afa5]a6[47Y 46| 32
50 15152 |53 | 54|55 56] 57 P==wratos
60 |61 162 163 |64]65]66] 67
70 171 72 (73 | 74] 75 1 761 77 Y

7-103

FUNCTION |

Converts a real number to a BCD tagged integer.

NAME RTOIN
ADDRESS 44204
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS
2
o R60 = Real # to be converted
a
4
@]
Q
[
]
a
z
2
o] R65 = BCD integer
=
a
2
o]
(&)
[
2
a
[
2
O
CPU CHANGES COMMENTS LrROMJUSB] N

0] 1| 2f 3] 4] 5] 6] 7jocmf E
1011 1213|1415 16] 17 D
20721 [22[23]24125{26] 27
30 (3132]33] 34135 | 36 37 J-2RE 4 ARP
40141142]143]44745/46147] |J
60 {5152 [53154[65[56]57 sTatos
60 |61 [62]63|64]65]|66]67
70 |71 172173174 75 | 76 77 U

FUNCTION NAME SCRAT+

. ADDRESS

Scratches binary program and BASIC program. Does not reset TYPE Sg??it

all pointers, however. Should be used only by external ROMs Y

that are stealing RAM at power-on.

REGISTER CONTENTS R12 STACK CONTENTS
wn
<
o
-
3
4
[o]
o
-
>
a
P
w
P-4
o
=
o]
2
o]
Q
[
o}
a.
-
2
o]
CPU CHANGES COMMENTS ROMJSB]IN

o 1] 2} 3] 4] 5] 6] 72jJocm]y E
1011 }112{13{14] 15| 16| 17 U U
20|21 [22 (2324 25 [26| 27 J=m -
30131 |32 [33]34] 35] 36] 37 b L AHE
40 |41 |42 143 |aalas]a6laz] 12] 12
50 {5152 (53 |54] 55 [56] 57 f=ermiee
60 |61 /62163164[/65]66]67 U

71172173174]75176]77

7-104

FUNCTION | NAME SET240

ADDRESS 11243
Sets bits 7 and 5 (immediate break) in R17. TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS I ROMJSB I N

11 2} 3] 4] 5] 6] 730CcM E

11{12]13[14115]16{17} . -

7112212324 25 [26] 27 This routine is useful if it is desired that the

31 [37[33]3a [3536 a7 for LA intepreter halt when a return to it is performed.

4142 |a3]aalas]a6la7] 36| 6

51]52]53]sa[65]56] 57 F==Taros

61]162163]64]65]66]67
71172(73|74]75]76] 77 U
FUNCTION NAME STOST
ADDRESS 45603
Stores a string into a string variable area; handles variable | TvyPe Utility
tracing if TRACE mode is active.
REGISTER CONTENTS R12 STACK CONTENTS

2 Pointer to variable area (2 bytes)
Q Maximum storage length (2 bytes)
=) Pointer to 1st char. of storage
8 (2 bytes)
5 String length (to store) (2 bytes)
¢ String address (to store) (2 bytes)
R12 >~
W
Z
o
=
@
8 R12 + mmmmmmmmmmcmccmmcmmmmemmmemmmmoee
5
g
2
(o]
CPU CHANGES COMMENTS LROMJSB] Y |

1] 2] 3] o] s 6] 7Jocm R E

11 [12[13114]15[16}17 {i U

21J22723124[25126] 27 R W

31132[33]3435[36] 37

41 [a2]a3faalasTaclar] U] U

51[52]|53[sa[ss]56]57 F=TarUs

61162)63]64165,66]67

71 (72 (73 74| 7576 [77 U

7-105

FUNCTION |

Stores a value into a simple numeric or an array variable in | TYPE Utility
the proper format; handles tracing if TRACE mode is active.

NAME STOSV
ADDRESS 45254

© R12 STACK CONTENTS IF SIMPLE NUMERIC: IF ARRAY:
o Address of variable (2 bytes) Address of variable (2 bytes)
5 Name block (2 bytes) Column (If tracing) (2 bytes)
g Value (8 bytes) Row (If tracing) (2 bytes)
ef R12 & me o e e Dimension flag (If tracing) (1 byte)
g Name block (2 bytes)
= Value (8 bytes)
w)
4
o
5
2
3
£ R12 » =eemmmm e oo
a
2
O
CPU CHANGES COMMENTS [romusB] Y
DCM E .

Tttt | Performs SAD at entry and PAD at exit.
St haee o L &= Tokens 21 and 22 push all of the address and name block
40a1]a2]a3]ea]as|a6]a7] - | - | information onto the R12 stack, so an external routine needs
50 151152153 |54 55 |56 | 57 F=cyatus to push only the value before calling STOSV.
60 [61]62 |63]6a]65]66] 67 -
7071]221731{74|75]|76] 77

FUNCTION NAME TWOB

ADDRESS 56176
Fetches two numbers from R12 stack and converts them to TYPE Utility

binary integers.

REGISTER CONTENTS R12 STACK CONTENTS

w
8 #A (8 bytes)
§ #8 (8 bytes)
o R]Z V e,mcemee—————
o
[
>
a
z
w 3 0
&l R26-27 = #B in binary R12 + =meececaceen
=| R46-47 = #B in binary
Z| R56-57 = #A in binary
s
po)
o
[
2
@]

CPU CHANGES COMMENTS LROMJSB] N
0 1 2 3] 4 5| 6 7 LOCM E
1011112 [13[14{15]116]17 B
201212212324 25]26] 27 1™
30 [31]32]33]34135]36] 37 B8
40 141 /42]43)44]145]46] 47 46 26
50 /51152 [53]54]55[56] 57 F=crares
60 161 /62]63/64;65]66]67
7071 [72 (73174 75] 76} 77 1]

7-106

FUNCTION | NAME TWOR
ADDRESS 56236
Fetches two real numbers from R12 stack. If a number on TYPE Utility
stack is an integer, it is converted to a real.
REGISTER CONTENTS R12 STACK CONTENTS
[42]
&
= #A (8 bytes)
S #B8 (8 bytes)
8 R12 » —=-=--oommmm
-
pos]
a
z
w
P4
1
=
2| R40-47 = Real #B } R12 » -----=mmmmm-
9| R50-57 = Real #A
5
a
=
2
(]
CPU CHANGES COMMENTS [RomusB] N
o[1] 2] 3] 4] 5] 6] 7}j0oC™M E
101 [12]13(14]15]16]17 D Q
20[21]22]23[24]25]26{ 27 —
3031132]33 34] 35 36] 37 2
40 |41 a2 |a3]aa]a5]46]471 60| 40
50 |61 52|53 |54 55]56]57 sTATus
60 (61162]163]64|65]166]67
2071172173741 75{76] 77 U
FUNCTION NAME TWOROI
Fetches two real or integer numbers off R12 stack. Converts ﬁagfess agi??ty
either or both as necessary to make them both integer or both |
real. Status of E-register at exit indicates whether the two
numbers are integer or real.
REGISTER CONTENTS R12 STACK CONTENTS
172}
z 3
2 #A (Real or integer.)
o #B (Real or integer.)
9 R12 » ~——-—memmmmmmmm o m oo
[
2
Q.
z
w)
Z
1
5| R40-47 = #B
z i .l RI2 > —emmmrmmree -
8| R50-57 = #A}’ Both real or both integer R12 -
u
2
a
-
2
o
CPU CHANGES COMMENTS ROMJSB] N
0] 1} 2] 3] 4{ 5| 6] 7]DCM E
1w [1[12[13]14]15][16]17 - .
AN PEAFEIETIFTY ET FL U UP Tf F=p at exit, both numbers are real.
30131 13233134 35 | 36 | 37 o+ If E=1 at exit, both numbers are integer.
a0la1la2]a3]aalasleclarj U | U
50 |51 |52 |53 54] 5515657 FSsTATUS
60 (61162 [63]64]65]|66] 67
70711727374 75176177 U

7-107

HP-83/85 System Routines

CRT CONTROL AND ROUTINES
CRT CONTROL

The memory that controls the CRT display is completely separate from the comput-
er's main memory. This CRT memory is addressed through I/0 addresses in the
main memory.

Main Memory CRT Memory

110
Addresses

There are four 1/0 addresses in RAM that are used to address the CRT. Each
address requires a two-byte quantity to specify a CRT memory address. The I/0
addresses are:

Address Name Function

177404 CRTSAD Write only. Two bytes set current display start address
(i.e., home address).

177405 CRTBAD Write only. Two bytes set current byte address (i.e.,
cursor location). The contents of this address do not
cause a cursor to appear on the CRT at that location;
they merely specify the CRT location to which the next
character will be output or from which the next charac-

ter will be read.

7-108

HP-83/85 System Routines

177406 CRTSTS This byte defines CRT status, as shown here:
WRITE: Bit 0 1
0 No read request Read request
1 Un-wipe Wipeout
2 Power-up Power-down
3 Not used -
4 Not used -
5 Not used -
6 Not used —_
7 Alpha Graphics
READ: 0 Data not ready Data ready to read
1 Retrace time Display time
2 Not used —
3 Not used -
4 Not used —_
5 Not used -
6 Not used -
7 Busy Not busy
177407 CRTDAT This byte contains the data output to or read from the

CRT, as shown below:

WRITE: Bit

0 N

1

2

3 b ASCII code for one byte of data

4

5

6 J

7 =1 causes underline (cursor)
READ: 0]

1

2

3 } ASCII code for one byte of data

4

5

6 /7

7 =1 is underlined or cursor

7-109

HP-83/85 System Routines

To underline a character, the MSB of the character is set when it is output to
the CRT; the character then appears on the CRT screen as if the cursor were set
beneath it. A blank cursor is created by outputting a blank character with its
MSB set.

Each time CRTDAT is read from or written to, the controller in CRT memory auto-
matically increments by two the CRTBAD address. However CRTBYT (in system RAM)
is not automatically updated by the CRT controller.

Because the user cannot read from I/0 addresses CRTSAD or CRTBAD, and because
reading from CRTSTS does not yield exactly what was written, the system normally
keeps copies of the contents of these three I/0 addresses elsewhere in system
RAM (where they may be read). The copies are maintained in the locations shown

here:
I1/0 Name RAM Location Name RAM Address
CRTSAD CRTRAM 100200
CRTBAD CRTBYT 100176
CRTSTS CRTWRS 101016

CRT ADDRESSING

The CRT memory employs "nibble addressing"--each address in the CRT memory con-
tains only four bits. Such an addressing scheme provides greater resolution and
control over the CRT display.

When sending information to CRT memory, the system must output the contents of a
complete eight-bit byte. Thus, each byte shipped is stored at two consecutive
addresses in CRT memory. The most significant four bits are stored at the lower-
numbered CRT memory address, and the least significant four bits are stored at
the higher-numbered address in CRT memory.

7-110

HP-83/85 System Routines

CRT memory is partitioned into alpha and graphics areas.

| 100, —»|
| . !
T
0 1
-~
4 pages of alpha
T
10000, |
L -
1 page of graphics
T
400005 | 1
Led
I; 64,p —»-

Alpha Display: Alpha addresses in CRT memory are from 0 to 77778. In alpha
mode the display shows]6]0 lines of 3210 characters per line. The scrolling
keys permit the user to view an additional 48]0 lines of alphanumeric data.
Thus, only 1/4 of the information in the alpha area of CRT memory fits on the
CRT screen at any one time.

Each ASCII character occupies eight bits. Because of its nibble addressing, two
address locations in CRT memory are required to store one ASCII character.

In alpha mode, one character occupies a space on the CRT of 8]0 dots by 12]0 dots.

In alpha mode, the screen can contain 16]0 rows, with 32 (i.e., 408) characters

per row.

7-111

HP-83/85 System Routines

For example, the following section of code will output a character to the 2nd
row down, 4th character in the row, of the CRT screen:

LDM 34, = 106, 9 Loads desired CRT memory address.

JSB = BYTCRT Sets CRTBYT and CRTBAD to specified address.
LDB R32, = 101 Loads character (A) to ship out.

JSB = CHKSTS

When CRT controller not busy, byte is output.
STBD 32, = CRTDAT

An alternate method of executing the last two instructions (JSB = CHKSTS and
STBD 32, = CRTDAT) would be JSB = OUTCHR. This method may be preferable, since
OUTCHR automatically updates CRTBYT and CRTBAD to the next consecutive location.

Graphics Display: Graphics addresses in CRT memory are from 10000 to 377778.
The graphics display mode, which is entered when the user presses the [GRAPH]
key or executes a graphics statement, shows all information in the graphics area
of CRT memory at one time. In graphics mode, the screen has a resolution of
256]0 dots wide by 192]O dots high. Any consecutive pair of four-bit nibble
addresses in CRT memory can be specified. The address of the first nibble is
specified by CRTBAD. Thus, each byte of information output from the CPU to CRT
memory controls eight dots (i.e., two four-bit nibbles) on the CRT.

For example, the following section of code outputs one byte to addresses 10224
and 10225 of CRT graphics memory.

LDM R34, = 224, 20
Set CRTBAD and CRTBYT to 10224.

JSB = BYTCRT
LDB R32, = 27 Byte to be output.
JSB = CHKSTS

STBD R32, = CRTDAT

In the CRT, the byte shipped out affects address 10224. This 1s the third row
from the top of the graphics CRT, the 80th through the 87th dots from the left.

7-112

\

pe—

CRT ROUTINES

HP-83/85 System Routines

System routines useful in CRT control follow.

FUNCTION | NAME ALPHA.
ADDRESS 36105
Forces CRT to alpha mode, if alpha mode is not already TYPE CRT
active.
REGISTER CONTENTS R12 STACK CONTENTS
wn
Z
©
E
[=]
P4
(@]
Q
[
>
a
z
wn
Z
Q
=
@]
Z
o]
Q
—
2
a
-
po
o
CPU CHANGES COMMENTS | rRomusBl N
0] 1 21 3] a] 5] 6] 7]Dpc™m E
w1 [12]13]14]15]116[17 . . .
otz (a2 25 26 [27 tEP = CRT is in alpha mode at exit.
30 |31 (32 [33[34[35]36]37
40 41142 143]44]45146]47 3] U
50 [51 162 |53 |54 [566(56] 57 FcTatus
60 [61]62|63|64]65]66]}67
72021172173 [741 75176177 “

7-113

FUNCTION |

Extends blanks (carriage returns) to remainder of line on TYPE CRT

CRT. Does not update CRTBYT,
Tine insofar as CRT controller is concerned.

NAME BLKLIN
ADDRESS 36320

but cursor is at start of next

REGISTER CONTENTS R12 STACK CONTENTS
w
2
=4
=
g R34 = Current cursor location (CRTBYT)
QO
—
o
a
Z
wn
Z
o
-
a
2
o
Q
[,
o
o
[
2
o]
CPU CHANGES COMMENTS LroMusB] |y
0 1 2 3 4 5 6 7 10CM [3
1011 [12[13(14]{15}16] 17 N
Wt atatate el - Use CLREOL if updating of CRTBYT is desired. Z is
30|37 |32 |33]34] 35 [36] 37 JoR L ARP true at exit.
a0lar]a2]a3faaasla6]ar] Y| u
50 {5162 153546566] 57 =sraros
60 [61/62]63|64]65[]66]67
70 (71 [72 |73] 741 75 | 76] 77 U
FUNCTION NAME BPLOT.
ADDRESS 34365
Executes the BPLOT statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
[72]
& Length of string (2 bytes)
5 Address of string (2 bytes)
z # Bytes/line (8 bytes)
ut RI2 » cccmememmm e e
o]
a
2
w
-4
o
E
[a]
2 R12 » —-eecmmm e
[&]
-
=)
a
-
3
CPU CHANGES COMMENTS [Romuse] y
o 1 2 3] 4 5{ 6 7 § OCM E
10§11 [12113|14]15]{16| 17 B U
20 (2177 [23124] 25261 27 —
30 |31 132331341 35] 36| 37 }250
40 {41 /42]43144145146]47] ()
50 [51]52 [53[54] 55 [56] 67 f=sratse
60 (61 /62 (63]164]65]66]67

71 (7273174 75 76 77 U

7-114

FUNCTION | NAME BPLOT+
ADDRESS 34405
Same as BPLOT statement, but with parameters in registers TYPE CRT
rather than on stack.
REGISTER CONTENTS R12 STACK CONTENTS
g
o1 R22-3 = Length of string
) R34-5 = Address of string
S| R44-5 = # Bytes/line
5| R46-7 = # Bytes/line (copy)
2
1%2]
Z
o
-
=
4
@]
(8]
[
o]
a
[
2
(o]
CPU CHANGES COMMENTS [RomJsB] N
0] 1 2] 3] 4] 5] 6] 7]DCM E
wfr[12]13]1a]15]16§17 B . .
20 [21 |22 [23| 74| 25 [26 27 fmemmemrers Not in global file.
30 [31[32[33]34{35][36] 37 3 3 1
aotertasTerTaalesTasTar] U Does not switch to graphics mode if not already there.
50 |51 |52 [s3]|54]55166]57 FgTatus
6016162 [63]64]65]66]67
20[(71]722[73]74] 75|76} 77 U
FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
1923
zZ
1
-
a
P4
(@]
Q
—
o
a
z
w
Z
1
-
&
4
(o]
Q
-
2
a
[
2
o
CPU CHANGES COMMENTS ROMJSB
0] 1 2 3| 4] 5] 6] 7}0CM™m E
1w [12]13]14]15 1_6 17
70 2112212334 25 [26|27
3o TaTT32 (33 38 35 [361 37 e 255
40 [41[42[43]44]|45]|46] 47
50 |51 52]|53|54]55]66} 57 FTTarus
60 {61 62163]|64]65)66]67
70 (71172731741 75]76177

7-115

FUNCTION |

Moves cursor to position specified by the register pair
specified by the DRP setting at entry.

NAME BYTCRT
ADDRESS 35423
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

DRP register pair = Address to which to
move cursor

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

11 2] 3] 4] 5] 6] 7jocm E

11[12]13}114115}16}17 B -

37 [22 231241 25 26] 27 DRP at exit is the same as at

311323334 35] 36] 37 2R ARP

41142 43]a4]a5]4a6147] - -

51[62/53]54]55[56] 57 i

61 (62]63|/64]65]66]67

711720731741 75176] 77
FUNCTION

Moves cursor to the specified position, but does not
generate cursor on CRT screen.

IROMJSBlN

entry.

NAME BYTCR!
ADDRESS 35422
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

R34-35 = Address to which cursor is to be
moved

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

11 2] 3] 4] 5] 6] 7]DCM E

11112113 |14]15(16] 17 B

21[22123|24[25]26] 27
; pue [ARP

31132]33[34]35]36] 37

41]42]437a4]4a5]46/4a7]1 34| -

5115215354155 56] 57 frmre

BlE[318i3l5]o

61162 163164|65]66] 67

70

71172173174]75[76] 77 U

I ROMJSBI N

7-116

FUNCTION |

Loops until CRT is not busy.

TYPE CRT

NAME CHKSTS
ADDRESS 36335

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
-
G
4
o]
[&]
[~
jo
Q.
z
[72)
Z
Qo
5| R30 = CRTSTS
Z
o]
(&)
=
2
a
-
2
o]
CPU CHANGES COMMENTS [RoMJSB] N
Of 1 2] 3] a] 5] 6] 7)OCM E
10111]12]13}14]15]16] 17 B - . .
20 {2122 |23 [24] 25 26| 27 fmemmfmrees At exit, CRT is ready to accept an address or a byte
30 [31[32[33]34]35[36] 37 Of data
20 (a1 Ja2 |43 |aaas a6l a7} 30| - :
50 [51[52]53]s4]55]66} 67 FsTatus
60161 [62]63|64]65]66}67
7071172 |73]741 75176177 U
FUNCTION NAME CLEAR.
ADDRESS 35021
Forces CRT screen to alpha mode, clears screen to blanks TYPE CRT
(carriage returns), and homes the cursor.
REGISTER CONTENTS R12 STACK CONTENTS
w)
Z
o
E
Q
Z
o]
Q
-
po]
a
z
[72]
Z
Q
E
Q
Z
o
Q
[
>
a
—
2
o
CPU CHANGES COMMENTS ROMJSSB
0] 1 2| 3] af 5} 6] 7joCc™m £
‘QAJ" 12[13]14]15][16] 17 B _
20721 (22 {23 [Fa[38 | 26] 27
3o 3113733 32| 35 [36 [a7 o2
40 [41[42143]44)45]46] 47 U U
50 5152 [53]|54]55]56!57 F crarus
60 [61[62]63[64]65)66]67

70

711721731741 75176] 77 U

7-117

FUNCTION

J

NAME CLREOL
ADDRESS 35535

Extends blanks (carriage returns) to end of line, but leaves | TYPE CRT
cursor at its current position at entry.
REGISTER CONTENTS R12 STACK CONTENTS
wn
s
o
-
5
Z
[o]
Q
-
o
a
z
wn
pa
o
5| R32 = 15
§ R66-67 = CRTBYT
-
o]
a
-
2
o
CPU CHANGES COMMENTS [Romuss] N

0] 1 2] 3] 4] 5| 6] 7§DC™M E
10{11 (1213|1415} 16] 17 B U
2021]22123[24]25[26¢} 27 TR W3
30]31]32]33][34[35]36] 37
40 141142 |43 14414514647 34 U
50 |51 5253 54[55]56] 57 =sTaros
60 |61 {62]63]|64]65]66] 67
70171172173]|74}175]76] 77 U

FUNCTION NAME CNTRTR

ADDRESS 36002
Counts CRT retraces (the number in R31 at entry) and returns. | TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
wn
Z
Q
5[R31 = Number of retraces to count
8
(8]
[
o]
o
z
w
Z
o
[-
=[R31 = ¢
Z
o
Q
-
o}
o
-
]
(o]
CPU CHANGES COMMENTS ROMJSB

0 1 2 3 4 5 6 7 OCM E
1011 {12}13[14]15]16}17 B _
20 (21 [22 (23] 78] 25 26] 27 - . i
CoyEmEr 33 g“ i I %herg a(r%:eug()) ?‘e';tre‘;((!és. er second
40141]42143]44/45]461478 3] | - P :
50 151 (62 [53[54]55]56] 57 e
60 (61 [62163j64]65]66] 67
70 (71172 73| 74] 75 1 76| 77 U

7-118

FUNCTION | NAME COPY.
ADDRESS 75360
Executes COPY command. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
£
[a]
-4
[@]
Q
[
s
[9
4
w
Z
)
E
(o]
-4
(o]
o
-
2
o
-
2
(@]
CPU CHANGES COMMENTS [rRomuse] ¥
[1 2 3 4 5 6 7 1 OCM [3
1wl]12]13[14]16]16117 U U
20 {21 (22237241 25]26] 27 —
30 (31 (321331 34] 351 36 37 |-
40 [41]42143]44]45]46]47 U
50 |61 162153 [54]55] 56157 FsTarus
60 |61]62[63|/64]65]66]67
70171 (72 {73 74] 75 1 761 77 U
FUNCTION NAME CRTBL+
ADDRESS 36255
Initializes portion of CRT alpha to blanks (carriage TYPE CRT
returns). .
REGISTER CONTENTS R12 STACK CONTENTS
w
2
o
El R34-35 = Starting address (1st byte to
3 blank)
S| R36-37 = Number of bytes to blank
2
z
wn
<
o
[
]
-4
(o]
Q
[
o)
[N
-
2
(o]
CPU CHANGES COMMENTS ROMJSB
[¢] 1 2 3] 4 s| 6] 7})bCM £
w1 [12113114}15[16 174 B -
2012112212324 25]26] 27 TR R
30 131[32]33]34]35]36] 37
40 |41 |42 |43 aaas(a6[47] 36| U
50 |61 52 |53 [54]55] 56157 STarus
60 1616216364 65][66] 67
70 |71 |72 (73 [741 75 [76] 77 U

7-119

FUNCTION _ | NAME CRTBLK
ADDRESS 36247
Blanks all four pages of alpha screen with carriage returns, [TYPE CRT

and homes cursor.

REGISTER CONTENTS R12 STACK CONTENTS
[22]
P-4
o
=
)
Z
o
(&)
-
]
a
Z
(2]
2
Q
=
a
P-4
o
Q
[t
]
a
=
2
e}
CPU CHANGES COMMENTS IROMJSBI N
Of ¢ 2 3] 4] 5] 6 7 L DCM [3
10 [[12113]14]15]16] 17 B -
20 |27 |22 |23 24] 25 26] 27 roT
30 |31 [32]33 |34 351 36] 37 }2°0
40 [a1[42]a3[aa]a5]e6]47] 361 U
50 [51 [52 |53]54] 55 [56 | 57 Jrammmatoner
60 |61 |62 |63]64]65]66]67
70 (71172 073[74]75(76] 77 U
FUNCTION NAME CRTINT
ADDRESS 36177
Initializes CRT: clears all of alpha and graphics, and TYPE CRT
homes cursor in alpha mode.
REGISTER CONTENTS R12 STACK CONTENTS
%)
2
Q
-
)
Z
[}
Q
-
o]
o
Z
[%2]
Z
o
E
(@]
2
o
Q
[
2
a
-
2
o
CPU CHANGES COMMENTS I ROMJSBI N
o[2] 3] 4] 5} 6] 7]jbocm £
1011]12]113]|14]15]16] 17 B
20 [21 |22 |23 24| 25]26] 27 A;w
30131132 331341 35| 36| a7 P2
40 [a1]42]43]aa]4a5]a6]478 37] U
50 |51 {52 15354] 55 [56] 57 oo
60161]62(63|64/65]66]67
0 [7 [72173][74175]76] 77 U

7-120

FUNCTION |

NAME

CRTPOF

ADDRESS 35703

Powers down the CRT. (Must be performed before driving TYPE CRT
the printer or tape.)
REGISTER CONTENTS R12 STACK CONTENTS
w
2z
o
=
o
2
o
Q
-
>
a
z
(%23
Z
o
=
a]
Z
o]
(8]
-
2
a.
=
=2
o
CPU CHANGES COMMENTS [RomJsB] N
0] ! 2 3] 4 5| 6 7 §OCM E
w11 [12]13[14]115]16§17 . .
AR IREFAFEAF EL ELI A B = LSB is even at exit.
30 (31 [32]33]34} 36| 36| 37 }2-
40 [41[42]43[44]45]46} 47 30 3']
50 |51 [52 |53]54|55]|56]57 STATUS
60 [61]62163164]65]66]67
70l71[72173]74] 751761 77 U
FUNCTION NAME CRTPUP
ADDRESS 35716
Powers up CRT. (Also powers down tape transport and waits TYPE CRT
for printer to be not busy.)
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
Q
[
a
Z
O
[&]
-
o]
a
z
[723
Z
©
-
G
z
o
[S]
[
po]
a
-
2
O
CPU CHANGES COMMENTS ROMJSBIY
0 1 2 3] 4 51 6 7 L DCM E
i hi2rafalasjie)? B _
20 (21222324 25]26] 27 TR T
30 {3132]33]34[35][36] 37
a0 |a1 |82 (a3 aala5]a6]a7] 31 | -
50 [51 |52 {53 [64155]|56}57 FTarus
60 |61 [62163[64]65]66]67
72071 172173]174] 75176177 U

7-121

FUNCTION |

NAME CRTUNW
ADDRESS 36067

70

71 (72 |73 [7475 | 76| 77]

Un-wipes CRT. (See CRTWPO.) TYPE CRT
REGISTER CONTENTS R12 STACK-CONTENTS
w
P4
o
=
3
2
[o]
(&)
-
2
a
Z
w
P-4
)
-
a .
P-4
[o]
Q
=
2
a.
-
2
[o]
CPU CHANGES COMMENTS [romusB] N
AR 2} 3] 41 5| 6] 7]0OCM E
10{1V[12[13]14[15]16] 17 - _
2012112212324 25]26] 27 =
30 31132 [33]34] 35] 36 37 FoRE LARP
40 [41]42[43]aa]a5[46]47] 3] -
50 |51 52 [53]54] 56 [56]57 FeTarus
60 161]|62|63/64]65;66] 67
70 171172173|74]175]|76] 77 U
FUNCTION NAME CRTWPO
. . 35661
Wipes out CRT display. Does not cause power-down, and no ?3::535 CRT
data is lost from screen. (Often used to eliminate screen
flashes and to speed up transfer of data.)
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
4
o
=
a
2
o
(&)
b
2
o
z
[72]
Z
o
E
[a]
2
(o]
(&)
-
2
a
=
2
@]
CPU CHANGES COMMENTS | RomusB] N
0] 1 2| 3] 4] 5] 6] 7]DOC™M E
10|11 (1213141151617 B _
2021127231241 251261 77 frometeergmrees LSB is cven at exit.
3031132]33[3435]36{ 37
40 [41742]43[as]a5]a6[47} 30] 31
50 [51 15253 [54]55156] 57 f=ewato=
60 161162]163/64{65166]67

7-122

FUNCTION

]

NAME

CURS

ADDRESS 35055

Generates a cursor at current CRTBYT address. TYPE CRT
R12 STACK CONTENTS
[72]
b4
o
- .
5 CRTBYT (RAM location) = Current cursor
5 location
-
pos |
Q.
z
wn
2
o
5| Cursor generated on CRT at CRTBYT address
P4
(e}
Q
[
)
a
—
2
@]
CPU CHANGES COMMENTS [romJse] N

ol 11 2] 3] 4] 5| 6] 7jDoCM E
1w 1r]t2]13]14]15]16]17 B -
2021022123]24]25]26] 27 YT
3013132]33] 341 35| 36 37 222
40 |41 a2 a3 aa]as]a6]a7] U U
50 |51 |62 153]54]56[56(67 FgTATUS
60 [61]62]63]64]|65]66]67
2071172173174} 751761 77 U

FUNCTION NAME DECUR2

ADDRESS 35547
Removes two cursors from the CRT. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
2]
2
o
E
o]
b4
o
Q
[
o]
a.
z
(7]
=z
o
[
a
P4
(@]
(8]
-
o)
a
—
2
O
CPU CHANGES COMMENTS ROMJSB

ol 1] 2] 3] 4] s] 6] 7)0C™M E
o111 [12]13[1a]15][16]17 B _
2021122123124 25]26] 27
%131 (37133 3a35] 36 | a7 o227
40 [a1]421a3faalasacla2d U | U
50 [51 525354555667 ™ STATus
60 161]62]63|64]|65]66]| 67
2071172173724 75176} 77 “

7-123

FUNCTION _ | NAME DNCUR.
i ADDRESS 35306
Moves cursor down one line. If cursor would move off TYPE CRT
bottom, it wraps around to the top line of the current
screen.
REGISTER CONTENTS R12 STACK CONTENTS
(723
P4
o
=
3
z
o
(&)
-
2
a
z
w
Z
1)
—
3
2
(@]
[&]
[
o]
a.
[
2
o
CPU CHANGES COMMENTS | rRomuss] N
0] t 2] 3] 4] 51 6] 7)DOCM E
10|11 {1213 |14]15]16] 17 B -
20 [271 [22 [23 |24 26126 27 Jomemmecfeurees Does not generate cursor on screen.
3031)32]33[34[35}36:37
40 [a1 |42 143 |aa a5 a6]a7] 34| 24
50 151 [52 [53 |54] 55 [56] 57 ™eTatTUs
60 |61 162]163[64/65]/66]67
70 (71 [72173]74175]176] 27 U
FUNCTION NAME DNCURS
L. ADDRESS 35370
Moves cursor down one position. Does not wrap around on
TYPE CRT
current page, but does wrap from bottom of alpha to top of
alpha.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
[
3
Z
o
o
=
o]
a
z
w
z
o
-
3
Z
(o]
Q
-
2
a
[
2
o
CPU CHANGES COMMENTS ROMJSB
0 1 2 3] 4 5| 6] 71DCM E
1011 [12]13[14}15]16]17 B _
2012) 122123124128 1261 2) fmrs Does not generate cursor on screen.
30[31132]33]/34({35]36/} 37
40 |41 142 143 /44]45146] 47 34 24
50 151 [52 {5354] 55 [56] 67 FeTavT0s
60]6) 162]63]64]165]|66]67
70 {71 [72 {7374 75 [76 77 U

7-124

FUNCTION |

NAME DRAW.
ADDRESS 33015

Draws a line from the current pen position to the specified TYPE CRT
point. (For CRT only.)
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
Z
o
- .
5 X-coordinate (8 bytes)
5 Y-coordinate (8 bytes)
Q
[R12 » —--memmmmemm e m e
2
z
[%2]
2
1
=
o
5 R12 # -emmmmmmmmmmmmmmmm oo
Q
o
)
Q.
[
2
o]
CPU CHANGES COMMENTS | RomJsB] N
ol 11 2] 3] 4] 5] 6] 7jocm E
011 [12]13][14]115]16117 U U
20121 |22 |23]24] 25] 26 27 e
3013132 33134 36 |36 | 37 |
40 [41]42 [43]44]45]46] 47 U U
50 16115253 [54]65]56]57 FSTATusS
60|61 [62163164]65166]67
70 171 172 73 [7al 75 [761 77 U
FUNCTION NAME EQJ?
. cy DDRE
Clears keyboard interrupt bit in SVCWRD, and clears break ?&PE S8 gé%72
bit in R17 if no other interrupts are pending. Also sets l
key repeat counter.
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
o
[
8
z
o
Q
-
s’
o
z
(2]
4
Q
=
8| R32 = KRPETI]
9| R33 = SVCWRD
5
a
-
2
(@]
CPU CHANGES COMMENTS ROMJSB
0] 1 2| 3] a] 5] 6] 7]bCc™m E .
DIDEEDEEE If an external routine takes over CHIDLE to handle a
2 z ;g;g z ;: g ;; T key itselt, the routine must call E0J2 before popping
woTarTasTasTaa a5 [a6la7] 32 | 32 off two returns and returning; otherwise, it appears to
50 |51 |52 |53 |54] 66 [56] 57 Fsvatos the system as though the key has not been handled yet,
60161162 163164165166 6] U and the system will keep looping back.
20|71]72]73]74[75]76{77

7-125

FUNCTION |

Performs a keyboard FLIP.

NAME FLIP.
ADDRESS 35011
TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
=
[a]
Z
C
Q
-
2
a
z
1]
Z
o
=
S| R36 = 200
@)
&)
[
>
a.
(e
2
o
CPU CHANGES COMMENTS LRomuse] N
0 V| 2] 3} 4] 5} 6] 7]J0OCM E
10 (11]12]13]14]15]116(17
20 [21 22 [23 24 25[26] 27 Jrowmm -
30 |31 [32 [3313435 36| 37 p2Re 4 ARP
40 |41 |42 143]44]145]/46] 47 36 -
50 |51 |52 [53]|54] 55 [56] 67 f=eratue
60 |61162163/64]/65]66]67
70171 172173[74]175]76] 77
FUNCTION NAME GCLR.
ADDRESS 36013
Forces graphics mode and clears graphics screen. Can have TYPE CRT
one optional parameter on R12 stack.
REGISTER CONTENTS R12 STACK CONTENTS
w
2
©
—
5
Z
(]
Q
-
2
a
z
w
Z
Q
=
5
4
[@]
o
—
2
a
[
2
o
CPU CHANGES COMMENTS WARNING IROMJSBI N
B IR 2| 3} 41 5] 6] 7}]OCM E
o 112131l 51617 g Checks R12 against TOS to determine if there is an op-
20121122 123124125 T76 127 fommmmmree tional parameter on the stack. So if something else
30 131432 133134135 136137 (not intended for GCLR.) is on the R12 stack, save T0S
40141 142]43]44]4a5]46]47] 3] .
50151152 [53[sa] 65 [56] 67 f=sraros on the R6 stack and set TOS = R12 before calling GCLR.
60161162 163164]65[66]67 Then recover TOS from the R6 stack.

71 (727317475 76| 77 U

7-126

FUNCTION | NAME GRAPH.
ADDRESS 36147

Forces CRT to graphics display mode. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS

w

4

o

-

3

Z

o]

(8]

[

2

a.

z

w

Z

Qe

5l R34 =0

gl R35 = 20

(8]

od

=

a

-

2

o]

CPU CHANGES COMMENTS [romJsB] N

0\234567DCME

1w [11[12113]14]15]16117 B _

20|21 22 (23124 25| 26] 27
30 |31 [32 33]34]35]36]37
20 |41 a2 |a3laaia5]46]470 31 | 31
50 5152 |53 64|56 :56] 57 P TTATUS
60 |61]62]63|64]65]66]67
76| 77 U

ORP § ARP

NAME GRINIT
ADDRESS 36220
TYPE CRT

FUNCTION

Clears graphics screen to appropriate pen condition. (Will
cause flash if CRT is not wiped out.)

REGISTER CONTENTS R12 STACK CONTENTS

[2]

Z

o

o

a

P4

O

(8]

[

o]

o

z

w

Z

o

-

&

Z

Q

(&)

-

2

a

-

2

(@]

CPU CHANGES COMMENTS [RomusB] N

0|1 2] 3] 4{ 5] 6{ 7jocm E
ol f12f13]ra]15116]17 B _
20 121122 123 124125 1 261 27 per—rre Expects binary mode at entry.

30 [31 132 33341 35]36]37
a0 |41 (42 |a3]aa]a5(a6147] U]
50 {5152 |53 | 54| 55]56] 57 F™STATUS
60 |61 62 |63]64]65]6667
72071 172]73174] 75176177 U

7-127

FUNCTION |

Qutputs a string to the CRT without performing a carriage
return. (Does not fill with blanks to the end of the Tine.)

NAME HLFLIN
ADDRESS 35121
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

Pointer to 1st character of
buffer
Number of bytes in buffer

R26-27

R36-37

QUTPUT CONDITIONS

R24 = 2
R25 = @

R30 = CRTSTS

R32 = Last byte output

R34-35 = CRTBYT (New cursor location)
R36 = @

R37 =0

CPU CHANGES COMMENTS

1{ 2] 3{ 4] 5! 6] 7)0cwm E

11 [12]13]14]115[16]17 B

21 [22]23[24125]26] 27

DRP § ARP

31]32]33134[35]36]37

41142 143 fasfas]a6]a7] U U

51152 53]54]65]56] 57 s

6162 63)|64|65]|66]67

71172173741 75]76] 77 U
FUNCTION

Moves cursor to home position on current CRT page, but does

not generate cursor on CRT.

ROMJSB

NAME HMCURS
ADDRESS 35527
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

1] 2] 3] 4] 5] 6] 7]0CM E

111213]14}15]116[17 B -

20

21[22[23124125126] 27

DRP | ARP

30

31/32]33[34/35:36] 37

40

4142 |a3]aalas]a6la7] 34] -

5115253 [54]66[56] 57 J=mrmres

70

61]62163164/65|66]|67 U
71172}73174]|75]176]77

[romusB] N |

7-128

FUNCTION | NAME IDRAW.
ADDRESS 32752
Performs an incremental draw from the current pen position. TYPE CRT

(CRT only.)

REGISTER CONTENTS R12 STACK CONTENTS
2
S X-increment (8 bytes)
& Y-increment (8 bytes)
Z
8 R12 & —mcmemmmmmmmmmmmmmmm e
(8]
[
)
Q
z
[72]
2
o
-
2
o R12 » —--emmmmmmmmemmme o=
(8]
[,
o
[N
-
D
o]
CPU CHANGES COMMENTS [Romuse] N
0 1 2 3 4 5 6 7 fOCM [3
1w 11]12]13114]15]16]|17 U U
2021122 2324125126 27 — YT
30[31]32{33][34][35]36] 37
40 [a1 42143 |4a]45]a6]47] U
50515253 [54] 55| 56] 57 FsTatUs
60 [61]62]63]64]65166]|67
7201711721731 74]75176] 77 U
FUNCTION NAME IMOVE.
ADDRESS 31675
Executes the IMOVE statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
2
)
5 X-coordinate (8 bytes)
§ Y-coordinate (8 bytes)
o R12 & mmmmmmm=mmmmmmmmmmmmee
o}
o
z
wn
-4
o
(o=
2
g R12 » —-emmmmmmmmcmm e e e
Q
[
o }
o
[
=2
(@]
CPU CHANGES COMMENTS [RomusB] N
0 1 2 3 4 5 6 7 LDCM E
w1 [12]13]14(15]16| 17 U
20121 [22123]24]25[26]27
o131 13733134 35 36| a7 pore 4 287
40 |41 a2 |a314a]4a5]46]47) U
50 151 52 [53]54)]55]56]57 STATUS
60 [61162[63]64]65]66]67 U
7017210721731 74] 75176} 77

7-129

FUNCTION |

Inputs one character from current byte address of CRT.

NAME INCHR
ADDRESS 35244
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

R32 = Character from CRT

CPU CHANGES COMMENTS

11 2] 3] 4] 5[6] 7}0CcM E

11 (1213114115116} 17 B

21122[23[24{25]26] 27

31132 | 33] 341 35 36] 37 JoRE§-ARP

41[42/43]a4/a5]4a6/4a7}) 321 -

51]52[53154]65156]57 FSTATUS

61[62]|63|64|65]66!67

71172 (73 74] 75 1 76 77 U
FUNCTION

Same function as INCHR if CRT is wiped out. (INCHR- saves

time, but should not be used unless it is guaranteed that the

CRT 1is wiped out.)

I ROMJSB I N

NAME INCHR-
ADDRESS 35220
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

1] 21 3] 4] s 6] 7JocmME E

11]12[13}14]15]16|17 B -

21]22[23f24125126]27

DRP § ARP

317132]33[34][35]36] 37

4142 43 aa]4a5]46]47] 32] -

51152153 [64]55]56] 57 =rraree

61162163/64]65]|66]67
71172]173[74175]76]77 U

IROMJSB'N

7-130

FUNCTION |

Executes a LABEL statement to the CRT.

NAME LABEL.
ADDRESS 34044
TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS
2
S Length of string (2 bytes)
5 Address of string (2 bytes)
5 R12 + ==mmmmmmmmmm o mmmmmmmem e
(8]
-
2
Q.
2
[72]
Z
]
[
=)
5 RI2 + ==me—mmemmmmmmmm oo e
Q
=
]
o
[
2
o
CPU CHANGES COMMENTS LromJse] Y
0] 1 2 3| 4 5| 6 7 LDCM [3
1011]12]13]14]15][16[17 U U
20 (2102223124 25]26] 27 =tZne
30131 [32]33 343536137 b=
40 |41 142 [a3]aalas[a6[a7] U
50 515253 [54]55] 5667 FFTarus
60 161 [6263]64|65]66]|67
70i71 172173174} 75| 76177 U
FUNCTION NAME LDIR.
ADDRESS 34020
Sets label direction for CRT graphics. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
£ LDIR angle (8 bytes)
b R12 + ==—-cmmmmemmomm oo
Q
—
2D
a
z
w)
Z
o
=
o
z R1I2 » =-—-mmmmcmmmmmmmmm
(&)
-
>
a
-
2
o
CPU CHANGES COMMENTS ROMJSB
0] 1 2 3] 4 51 6 7 LOCM E
1w [1v]12{13[14]15 1§ 17 U U
2012V (222324 25]26] 27 — T3
30 [31{32[33[34][35]36]} 37
a0 |a1 |42 43 4a]a5]46]47] 45] 47
50 51 [62 |53 |sa] 56|56 57 ETarus
60 [61[62163/64]65]66]67
720{71172}73| 7241 75]176] 77 U

7-131

FUNCTION | NAME LTCUR.
ADDRESS 35332

Moves cursor left one position on current display. If

cursor moves off left end of top line, it wraps around to TYPE CRT
right of bottom Tine.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
Q
-
5
2
o
(&)
-
o}
/N
2
[72]
P4
Q
-
5
Z
o
|8
[u.
po }
a
-
2
e}
CPU CHANGES COMMENTS [Romuse] N
(2 2] 3] 4] 5| 6] 7)DbCM £
1011]12]13|14}15]|16]| 17 B _

20 [21122123124726 12627 Does not generate cursor on CRT screen.
30131[32]33[34135136{37
4014142]43faala5]46[47]0 34| 24
50 [51]52 [53 54 55]| 56| 57 F™STATUS

60 161162 |63]64]65}66]67

70 171 |72 173 [74] 75 76| 27 U
FUNCTION | NAME LTCURS

ADDRESS 35366
Moves cursor left one position. Cursor does not wrap TYPE CRT
around on current page.

DRP | ARP

REGISTER CONTENTS R12 STACK CONTENTS
v
Z
o
[
o]
Z
o]
o
[y
2
a
z
[22])
Z
e
o
a
Z
O
o
[
2
o
-
2
o
CPU CHANGES COMMENTS IROMJSBI N
Oof +f{ 2} 3] 4f 5] 6f 7]0CM [3
1011 {12[13[14]15]16[17 B _

082 [22]23]24]26]26] 27
30 |31 |37 [33]34 35]36] 37
40 141]42143f4a/4a5]46]47] 34 24
50 [51 [62 |53 |54 56 |56 | 67 = evatos
60 |61 62 6364 65]66] 67
70 [71 (72 [73[7a 1 75 [76| 77 U

DHP | ARP

7-132

FUNCTION |

Moves cursor an incremental number of positions from its

NAME MOVCRS
ADDRESs 35410

current position. Cursor does not wrap around on current TYPE CRT
page, but does remain on alpha screen.
REGISTER CONTENTS R12 STACK CONTENTS
w
5
2| R24-25 = Twice (2*) the number of posi-
2 tions to move. (Two's complement
3 for a negative value.)
5
Q.
z
wn
P4
o
=
(&)
2
o
(8]
=
2
a
=
2
(@]
CPU CHANGES COMMENTS [rRomuse] N
0 1 2 3] 4 5 6 7 L DCM E
o[11[12{13[14]15]16]17 B -
20 (21122 (2324)25]26] 27 —
%0 132331 3a] 35 [36 | 37 o425
a0 a1 a2 |43]aaa5la6]4a7] 34| 24
50 |51 |52 |53 |54 55156] 57 FcTatus
60 [61]62]63]64]165]66! 67
70 171 172 (73|74} 75 [76177 U
FUNCTION NAME MOVE.
ADDRESS 31703
Executes the MOVE statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
2
o X-coordinate (8 bytes)
5 Y-coordinate (8 bytes)
3 R12 + =m=m—mmmmmm—m—mmmmm =
(&)
[
2
a
z
[72]
2
o
=
S
z R12 —mmmmmmmmmmmmmmmmmmnn=
Q
-
2
a
-
2
o
CPU CHANGES COMMENTS ROMJSB
0 1 2 3] 4 51 6 7 1 OCM E
w011 [12]13114}15]16|17 ” ”
701211273324 25 26] 27 —
36131 [37 (3334 | 35 26 | 37 20
40 [41142]43]44]|45]46] 47 U U
50 |61 152 [63]54]55]56] 67 Frarus
60 |61]62}163]64]|65]66]67
70177 [72 73 (74 75 [76] 77 U

7-133

FUNCTION __ | NAME OUTCHR
ADDRESS 35114
Outputs a single character to the CRT at the current alpha TYPE CRT

cursor position, then advances the cursor position.

REGISTER CONTENTS R12 STACK CONTENTS

wn
Z
o
5 R32 = Byte to be output
5
=
2
z
2
© R24-25 = 2
5| R30 = CRTSTS
5| R32 = Byte that was output
g R34-35 = CRTBYT (New cursor location)
a
5
o

CPU CHANGES COMMENTS [romuse]
of 1 2| 3] 4] 5| 6} 7]0CM [3
1011 1213|141 15116} 17 B -

20 |21 |22 23] 24| 25] 26] 27
30 |31 |32 |33]34 35]36] 37
a0 (41142 [a3]aa]a5]4a6]a7] 34| 24
50 [51]52[53{sa]55156] 57 P=rrus

DRP § ARP

FUNCTION NAME OUTSTR
ADDRESS 35052
Qutputs a buffer to the CRT and executes a carriage return. TYPE CRT
Also blank fills to the end of the output line.
REGISTER CONTENTS R12 STACK CONTENTS
2]
5 R26-27 = Pointer to 1st character
5| R36-37 = Number (in binary) of characters
§ to be output.
2
z
w
2
o
E
a]
4
o]
Q
-
2
o
pas }
(@]
CPU CHANGES COMMENTS LRomusB] N
ol 1] 21 3] 4] 5] 6] 7]pcm]) E
1011112113 al15 1601078 g | - Sets binary mode before exit.

20021 [22123]24]26]26] 27
30 |31 32|33 [34] 35136 37
40 |41 42 |43 aa|a5 a6]ar} U 1]
50 [51]52 53 [54]55]56] 57 p=mmtem
60 |61 162 |63]64]65]66] 67

70 |71 [72|73 74| 75| 76| 77 U

DRP ARP

7-134

FUNCTION | NAME PEN.
ADDRESS 66416
Selects graphics pen. (CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
5 Pen # (8 bytes)
5 A
(&)
-
2D
a
Z
[7]
Z
o
E
[a]
3 R12 » =--mmmmmmm ==
Q
[
)
[« 9
-
2
o]
CPU CHANGES COMMENTS |rRomusB] Y
0 1 2 3 4 5 6 7 | OCM [3
w11 [12]13]14({15]|16]| 17 B U
20 (21][22 23241 25]26] 27 e
30313213334 35] 36 [37 F220
a0 |41 |a2 [a3]aa]a5]a6]a7]47 | 40
50 |51 [52 [53]s4a]56[56(57 FsTatus
60161 (62][63|64|65]66]67
20171 |72 |73 {78 75 [76 | 77 U
FUNCTION NAME PENUP.
ADDRESS 66440
Executes the PENUP statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
wn
b4
o
-
a
2
o
(8]
[
]
a
Z
n
2
o
-
a
2
(o]
o
[
s }
a
-
o]
)
CPU CHANGES COMMENTS ROMJSB] Y
[} 1 2 3| 4 5| 6 7 §DCM E
1211114116 16]17 _
20 [21 [22]23[24]25]26] 27
0131132133 34 35 [36| a7 oo $-222
40 |41 42 [a3laalasTa6]a7] 30| -
50 |51 52 [5354]55]56]57 Fgratus
6016162 [63[64]65]66]67
70 [71 |72 [73]74] 75| 76 [77 L

7-135

FUNCTION __ | NAME PLOT.
ADDRESS 32642
Executes the PLOT statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
5 X-coordinate (8 bytes)
5 Y-coordinate (8 bytes)
o
Pt R12 » ——r e
2
z
wn
Z
o
=
[}
2
O
e R12 + mmmemmmmcmmmmcmmeee e
2
5
@]

CPU CHANGES COMMENTS

1] 2] 3] 4] 5] 6] 7)pD0C™ E

11112113]|14]15][16]17 u

21122J23]24[25]26} 27

DRP § ARP

31132133134]35]/36] 37

41]42]4a3faaias5je6]a7] U

515253154 55]56] 57 f==wrmi=s

61162 163]64|65]66]67

71172173]174175]76177 U
FUNCTION

Moves cursor right one position on current CRT page. From
extreme bottom right, cursor wraps around to top left.

I ROMJSB I N

NAME RTCUR.
ADDRESS 35351
TYPE CRT

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

1] 2] 3] 4] 5] 6] 7]ocm] E

111121314 15[16] 17 B

DHP | ARP

31132]133}34]35]36] 37

a1]a2]43]aalas[a6a7]1 34] 24

5152 [53[54]55]56] 57 =eratoe

61162163]64]65/66]67

71172173[(74]75]76177 U

ROMJSB

2127231241 75[26] 27 - Does not generate cursor on CRT screen.

7-136

FUNCTION |

NAME RTCURS
ADDRESS 35404

Moves cursor right one position. Cursor does not wrap TYPE CRT

around on current CRT page.

REGISTER CONTENTS R12 STACK CONTENTS
w
2
o
-
a
2
o]
(8]
[
2
a.
z
(7]
2
o
=
8
Z
o]
Q
-
>
a
-
2
O
CPU CHANGES COMMENTS ROMJSB
0 1 2 3 4 5 6 7 §OCM E
w1 [12]13]14]15}16]17
AVAREIREE EDN R ELI BT B — Does not generate cursor on CRT screen.
30131 (32 [33]34] 35 36 | 37 2o
40 |41 |42 [43]4a]45]a6]47] 34 24
50 |51 |52 53|54 66| 56{ 57 FTTatos
60 [61]62]63]|64]65]|66]| 67
201721 172173{74] 7576177
FUNCTION NAME SCALE.
ADDRESS 66247
Executes the SCALE statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
2
o) X-minimum (8 bytes)
£ X-maximum (8 bytes)
z Y-minimum (8 bytes)
o y-maximum (8 bytes)
2 R12 + =mmmmmcmmmmcmmmmmmm
z
(7]
Z
o
o
2
z R12 + =-=e—emmmmmmmmm o
(&)
[
2
o
’-—
2
o]
CPU CHANGES COMMENTS rROMJSB] Y
0 1 2 31 4 51 6] 7]DCM E
1w [12f13j14]15]|16]17 U U
20 (2122 23] 24] 25] 261} 27 Tt Arr
30 {31[32]33]34[35]36] 37
40 |a1]a2[a3]aa[4a5[a6]a7]) U U
50 |61152 [63 |54 55]56] 67 FSTaros
60|61]62]63]164]65]66]67
70 71 [72 (73 (74 75 | 76 [77 U

7-137

FUNCTION | NAME SCRDN
ADDRESS 35625
Scrolls CRT down one line, leaving cursor in same relative TYPE CRT
position on CRT.
REGISTER CONTENTS R12 STACK CONTENTS
w
4
Q
[
a
Z
[o]
Q
[
2
a
z
(%2}
Z
o
=
2| R34-35 = CRTRAM
3
[
2
a
[
2
(@]
CPU CHANGES COMMENTS [Romuse] N
0 1 2 3] 4 5| 6 7 LOCM E
10|11 (1211314 15[16] 17 B -
20f21[22]23]24]25]26] 27
30313233134 35 | 36| 37 pore L ARP
a0 a1 (42 |43]aa]as]a6]a7] 34 24
50 |51 [52 53|54] 55 [56] 57 mratrms
60 |61 [62163|64]65]66]67
70 (711721731741 75]76] 77 U
FUNCTION NAME SCRUP
ADDRESS 35654
Scrolls CRT up one line, leaving cursor in same relative TYPE CRT
position on CRT.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
E
Q
Z
o]
(8]
(=9
=]
a
4
w
4
Q
5| R34-35 = CRTRAM
8
Q
-
2
a.
-
]
(o]
CPU CHANGES COMMENTS [ROMJSB] N
0 1 2 3| 4 5 6 7 | OCM E
1011 [12}13}14}15][16]17 B -
2021122]23[24125[26]27 T
30 |31 132 1331341 351 36| 37 4 F
40 141 |42 |a3]aala5]a6la7] 34 24
50 (5152 [53]54]55]56] 57 F™=Tatus
6016162163 [64]{65]66]!67
7017117273 |74175]|76] 77 U

7-138

FUNCTION |

Moves cursor up one line on current page. From top 1ine of TYPE CRT
page, cursor wraps around to bottom line.

NAME UPCUR.
ADDRESS 35264

REGISTER CONTENTS R12 STACK CONTENTS

[72]
2
o
=
Q
2
o
Q
[
>
a
Z
w
b4
o
[
Q
Z
o
(&)
[
2
a.
=
2
o]

CPU CHANGES COMMENTS IROMJSBI N
[¢] 1 2 3 4 5 6 7 LOCM E
w11 112]13]14]15]|16]| 17 B -
20 |27 22 {23 24] 26] 26 27 Does not generate cursor oOn screen.
30131 (32 (33134] 35 36| 37 J2oe 4 2°F
a0 [41 (a2 |43 |4a a5 |a6]a7] 34| 24
50 |51 |52 |53 |54] 55| 56] 57 sTaros
60 161162 |63 |64] 65]66]67 U

74 76

FUNCTION

Cursor does not wrap around

NAME UPCURS
ADDRESS 35362

Moves cursor up one position. TYPE CRT
on current page, but does wrap around from top of alpha to |
bottom of alpha.
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
Z
©
-
S
Z
(@]
Q
[
>
a
z
v
P
o
E
o
4
@]
(S
[
po]
o
[
2
o
CPU CHANGES COMMENTS LRomusB] N
0 1 2| 3] a] 5] 6] 7]oCc™ E
10—‘11 12|13 J‘ 1511617 B -
0131 22 |23 [2435 28] 27 e Dues not generate cursor on CRT screen.
30131 [32 |33]34 | 3536 37 |-
40 a1 |42]a3]4aa] a5 e6]a7] 34| 24
50 {51152 |53]|54]5556{57 P sTATUS
60 [61 (62 63]164]65]|66] 67 U

711721731741 75]76177

7-139

FUNCTION | NAME XAXIS.
ADDRESS 32303

Executes the XAXIS statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
2
(@) .
£ Y-intercept (8 bytes)
g Tic spacing (8 bytes)
o X-minimum (8 bytes)
5 X-maximum (8 bytes)
2 R12 » ~—cmmmmmmeeee -
w
P4
o
—
&
5 R12 > —ememmmmm oo
o
-
o]
o
5
Q
CPU CHANGES COMMENTS [rRomusB [N
ol 2 3] 4 5 6 7 | ODCM E
CI KN K3 EED KXY K3 KO3 K32 BT BT . . .
20 (27222324 2576 27 fommpmrem. Only the Y-intercept is required. The other three
30131132133 134135 36137 parameters are optional.
40 |41 [42143]4a]a5]a6]47] U U
50151 152153 [54]55]56] 57 p=erayo=
60|61 162]63]|64]65]66] 67
73 75176127 U
FUNCTION NAME YAXIS.
ADDRESS 32347
Executes the YAXIS statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
3 X-intercept (8 bytes)
5 Tic spacing (8 bytes)
3 Y-minimum (8 bytes)
© Y-maximum (8 bytes)
2 R12 & —mmmmccccceccce————aa
z
[72]
P4
o
= Y S ——
2
O
Q
-
2
o
3
CPU CHANGES COMMENTS [ROMUSB] N
0 1 2 3] 4 5 6 7 | bcM E
1031 {12113 |14 15|16 17 U U . . .
20 (71|27 |73 [74| 25 26] 27 Only X-intercept is required. The other three
30131 [52 [53134] 36 36 [37 |2 =0 parameters are optional
40 [a1]42 |43[4a]4a5146]47] U U :
50 |51 52 [53 |54 55[56] 57 =ratoe
60 |61 162 [/63]|64]65]66]67
20171172123]|724]75]76] 727 U

7-140

HP-83/85 System Routines

TAPE CONTROL ROUTINES

Routines which provide the major entry points for control of a tape cartridge
follow. In general, each of these routines expects an argument to be on the R12
stack when the routine is called.

7-141

FUNCTION | NAME ASIGN.
ADDRESS 27056

Assigns a buffer to a data file, TYPE - Tape
REGISTER CONTENTS R12 STACK CONTENTS
g Buffer # (8 bytes)
£ File name length (2 bytes)
2 File name address (2 bytes)
S R12 + mmmme e e eean
=
]
o
z
[%2])
Zz
1
—
8
Z R12 + =emmemmm e
(&
-
2
o
-
2
o}
CPU CHANGES COMMENTS ROMJSB] Y
Of v 2] 3] 4] 5] 6] 7]Dbcm E
1011]12[13][141156]16]17 U

20 [21[22]23]24]25]26] 27

30 131 [32]33[34[35]36]37
40 |41]42]|43]44]45]46({47] U
50 151 [52 [53|54] 55 [56] 57 F==72Tus
60 |61]62]63|64]65]/66]67
7071172173174 75 76| 77 U

FUNCTION

NAME CREAT.
ADDRESS 26561
TYPE Tape

Creates a data file.

REGISTER CONTENTS R12 STACK CONTENTS
%]
3 File name Tength (2 bytes)
5 File name address (2 bytes)
& # Records (8 bytes)
; # Bytes/record (8 bytes)
z L S ——
[72]
z
o
E
2]
(&)
-
2
a
2
o

CPU CHANGES COMMENTS [romise]y

0] 1 2 3] 4 5{ 6 7 L DCM E
101y [12[13j14]15]16] 17 U U

20(21{22[23]24]26][26[27
30 [31132[3334]35]36] 37
40 [a1 1427430425 4a6]a7] U U
50 |51 [52 [53]|54] 55[56] 57 FeTatos
60 |61 [62]63][64]65]66]67
2071 [72[73T74f 75 76] 77 Y

DRP | ARP

7-142

FUNCTION |

Prints an entire array to a tape data file.

NAME P#ARAY
ADDRESS 57642
TYPE Tape

INPUT CONDITIONS

REGISTER CONTENTS

R12 STACK CONTENTS

Address of array (2 bytes)
Name block (2 bytes)

OUTPUT CONDITIONS

CPU CHANGES

COMMENTS

1

2

4

5

m

11

12

14

15

21

22

24

25

3

32

34

35

41

42

44

45

51

52

54

55

) |61

62

64

65

71

72

74

FUNCTION

75

Move the print pointers in the buffer.

or PRINT#1,1, portion of a seria

file on tape cartridge.

I ROMJSB I Y

NAME PRNT#.
ADDRESS 30055

Executes the PRINT#1, | TYPE Tape
1 or random PRINT to a data

REGISTER CONTENTS

R12 STACK CONTENTS

OUTPUT CONDITIONS

w
8 Assign buffer # (8 bytes)
£ Record # if random (8 bytes)
g R (+1:31:111) S
-
2
z
R12 > ———=-mm=c=—mmm———-—==o—m—o=s

CPU CHANGES

COMMENTS

3

4

5

6

7

1

13

14

15

16

17

21

23

24

25

26

2]

l

31

33

34

35

36

37

ARP

41

43

44

45

46

47

51

53

54

55

56

57

61

63

64

65

66

67

TUS

71

73

74

75

76

77

[RromuselY

FUNCTION | NAME PURGE.
ADDRESS 26013
Purge a file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
@ File name length (2 bytes)
o File name address (2 bytes)
& ALL flag (8 bytes)
P e
; (ALL flag is optional. See PURGE
g command in computer owner's
= handbook.)
(2]
P4
o
-
&
Z
o
(&)
—
o]
a
o=
=}
(@]
CPU CHANGES COMMENTS [RomusB] Y
B 2] 3] 4] 5] 6] 7}]OCM E
winh2[afafis]6]17f U U
20121]22123)24]25]26} 27
30131 132 {33 [34] 351 36 37 e 4 A0F
40 |41 [a2 [43|aa a5 a6jaz] U | U
50 [51 52163 64655657 f==Trros
60 |61 /62{63|64]65{66167 U
70171172173 [74| 75376} 77
FUNCTION NAME R#ARAY
ADDRESS 77602
Reads an entire array from a tape data file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
2
5 Address of array (2 bytes)
£ Name block (2 bytes)
z U ———
Q
-
>
a
z
w
Z
)
=
2 g
o
-
o}
[*%
-
2
o
CPU CHANGES COMMENTS ROMJSB
0] 1t 2} 3| 4] 5] 6] 7}OCM E
1011 [12[13]14]16][16]17 B U
20 [21 {27 (7074 75|76 [27 frmterms
30[31][32}33[34]35][36] 37
40 [a1 (4243]aa]a5]a6]a7) U]
50 [51 52|53 [s4166][56] 57 I==Taros
60 |61 /62 163)64]65]66]67
70171 721731741 75| 76 77 U

7-144

FUNCTION |

Executes the READ#1, or READ#1,1, portion of a serial or TYPE Tape

random READ from a data file on a tape cartridge.

NAME READ#.
ADDRESS 30055

REGISTER CONTENTS R12 STACK CONTENTS

2

e Assign buffer # (8 bytes)
& Record # (8 bytes) (optional)
Z

o 2 A T
Q

=

oo)

a

Z

w

2

o

=

o)

5 R12 > ==-=mm==—mo-—mmme—o—mmm—m—mmoe
Q

[

o]

o

=

)

o

CPU CHANGES COMMENTS IROMJSBI Y

oT 1 2] 3] 4] 6] 6] 7JocmM] E

ol 2z ese 7] y | u

70 |21 |22 [23 [241 25 [26] 27 frmmegrens See READN. and READS.

6137132133134 35 36 | 37 >

20 a1]a2 (a3 44| a5 a6laz] U U

50 |51 |52 |53 54 55|56 57 FsTatUS

60 |61 |62 | 63|64 65]66] 67

70 (71 (72 73174175 76117 U

FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS

(7]

-4

=4

e

o

Z

o

Q

-

5

a

4

(73]

4

o

=

Q

2

o

(8]

[

2

a

’—

po]

S)

CPU CHANGES COMMENTS | ROMJSB |

5T T 2] 3] 4] 5] 6] 7Jocm] E

1011 [12{13]|14] 15 16 1~7

T0 127122 23|24] 25| 26| 27

%o T tar 33 3a 35 [36 [T oo

20 |41 142 |43 44| a5 46] 47

50 |51 152 153 | 64| 55| 56| 57 "sTat0s

60 |61 162 | 63|64 65]66] 67

20 (71 172 173 [74175761 77

7-145

HP-83/85 System Routines

DECOMPILING -
Decompiling is a two-stack operation. The increasing stack pointed to by CPU
register R12 is used as the expression stack, while the increasing stack
addressed by R30 is used as the output buffer.
Decompiling uses system routines, especially utility routines such as for fetch-
ing variable addresses, that will be found in other areas of this section.
-/
/

7-146

SECTION 8

SAMPLE BINARY PROGRAMS

This section is made up of six prewritten binary programs. In addition to being
listed here, these programs are available on the tape cartridge and disc that
accompany the Assembler ROM. On the cartridge and disc, source code file names
end in "S," while those of object code files end in "B."

Each of these programs is designed to i1lustrate a facet of assembly-language
programming on the HP-83/85, and each provides a function or keyword that is
itself useful to the HP-83/85 operating system.

Each program listing contains at the end a table of addresses of HP-83/85 system
routines that are used by the program. Inserting the Assembler Global File tape
cartridge or disc and placing a GLO GLOBAL pseudo-op near the beginning of the
program obviates the need for this 1list of addresses in some of the example
programs. (Certain example programs, however, call system routines whose ad-
dresses are not available on the Assembler Global File tape cartridge or disc.)

FAHRENHEIT TO CELSIUS FTOC BINARY
Source File: FTOCS

Object File: FTOCB

This program provides a single system function, FTOC, that converts values of
temperatures in degrees Fahrenheit to degrees Celsius. Its source code and object
code may be found listed in section 6 of this manual.

8-1

Sample Binary Programs

SOFT KEYS AS TYPING AIDS SOFTKEY BINARY

Source File: SOFTKS
Object File: SOFTKB

This program permits each special function, or "soft," key ([K1], [K2], etc.) to
contain a string of up to 95 characters; the characters are all output when the

key is pressed.

The program implements a single BASIC statement:

Format:

Description:

SOFTKEY key #, endline code, "text"

Key # is a one-digit code (1-8) that selects the special function
key. Endline code can be either f§, to indicate text is followed
by an [END LINE]; or 1, to indicate text is not followed by an
[END LINE]. Text can be a string of up to 95 characters.

If text is followed by an [END LINE] (i.e., an endline code of 9 is
specified) the text must be an expression, BASIC statement, program
line, etc., that can be understood and parsed by the HP-83/85. The
expression, statement, etc. will be executed immediately when the
specified special function key is pressed.

The program takes over the character idle hook CHIDLE, and it also contains its

own error messages.

8-2

b d b

10
20
30
40
S0
60
70
g0
0
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
240
350
360
370
380
390
400
410
420
30
440
450
460
470
480
490
500
510
520
930
540
550

1K KK KK KKK KOK KKK KK XOK K OKK KKKk K K
' X
R
' X
1Kk K KKK KKK KKK KKK K KOO K ROk X

SOFTEEY EBINARY ¥
{c) Hewlett-Fackard Co. X
1980 X

FORMAT OF COMMAND IS:

SOFTEEY <NUMEXF 3, <NUMEXF 3,
SSTREXF >

THE FIRST NUMEXF SELECTS

THE KEY, AND THE SECOND

SELECTS WHETHER THE TEXT IS

FOLLOWED EY AN ENDLINE (0)

OR NOT (NOT=0). THE STRING

1S THE TEXT ON THE KEY.

NAM SOFTEY

DEF RUNTIM

DEF ASCIIS

DEF PARSE

DEF ERMSG

DEF INIT

EYT 0,0

DEF SOFTH,

BYT 0,0

DEF SOFTK.

BYT 377,377

FUBD R43,+R6

JSE =NUMVA+

JSE =GETCMA

JSE =NUMVAL

JSE =GETCMA

JSB =STREXF

FOBD RA47,-Ré

LDE R45,=371

FUMD R4S, +R12

RTN

ASF

BYT

BYT

ASF

FARSE

RUNTIM

SOFTE,

"SOFTEEY

377
200,200,200,200,200,200,200,200,200
"SOFTEEY NUMBER OUT OF RANGE "
ASF "SOFTEEY STRING T0OO LONG "
BYT 377

LDED RO, =ROMFL

CME RO, =1

JZIR INITAL

CME RO, =5

JZR RTNRTN

CMEB RO, =2

JZR RTNRTN

CMB RO, =3

JZR INITAL

RTN

LDM R3Z4,=KEYHAT

ADMD RZ4,=BINTAER

LLDE R74,=3216

STM R34,R75

LDE R77,=236

STMD R74,=CHIDLE

RTN

LDE R34,=236

STED R34,=CHIDLE

AGCTIS

ERMSE

INIT

INITAL

RTNRTN

8-3

Sample Binary Programs

Samp

560
570
580
47
590
600
610
&L20
&30
640
&50
660
&70
680
&0
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
a870
880
890
00
210
Q20
FIO
P40
950
60
P70
E
280
990
1000
1010
1020
10320
1040
1050
10460
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

le Binary Programs

RTN
! GET BINARY KEY# OFF STACH
'CHECKE FOR CORRECT RANGE,

JSE =0ONEE
CMM R46,=1,0
JINC ERROR1
CMM R46,=11,0
JCY ERROR1
LLM R46
ADMD R4é,=BRINTAR
LDMD R4&, X466, KEYTEL
ADMD R4&,=BINTAE
RTN
ERROR1 JSB =ERROR+

BYT 366
ERRORZ JSE =ERROR+
BYT 365
BYT 241
BIN
FOMD R32,-R12
FOMD R30,~R12
CMM R30,=1,0
JCY CHNGEY
FOMD R40,-R12
LDM R36,=KEY#
ADMD R34, =BINTAR
JSE X36, ZERD

KEY#

SOFTE.

CLE R4S
STED R45,R46
RTN

CHNGEY CMM R30,=140,0
JCY ERRORZ2
JSE =0NER
LDM R26,R46
LDM R3I&6,=KEY#
ADMD R36,=BINTAE
JSB X36, ZERQ
CMM R2&6,=0,0
JNZ AROUND
LDEB RZE1,=200
ORB R3I0,RI1
AROUND PUEBD R30,+R46

ANM R30,=177,0

FOED R26,+R32

FUBD R26,+R46

DCE R3O

JINZ LOOF

KEYRTN RTN

KEYHAT BIN
CLM R26
LDED R26,=KEYHIT
CME R26,=200
INC KEYRTN
CME R26,=210
JCY EEYRTN
SEM R26,=177,0
LLM R26
ADMD R26,=BINTAB
LDMD RTb, X226 KEYTEL
ADMD R26,=HINTAK
FOBD R36,+R26

LOOF

RETURN ABSULUTE ADDRESS OF KEY STORAGE IN R44,R

118 KEY#<17
'JIF YES
'1S KEY#»=97
'JIF YES

'DOUBLE FOR TABLE

'MAKE FEY# ABSOLUTE

'LOAD ADDRESS OF KEY STORAGE
'MAKE IT ABSOLUTE

'EEY NUMBER OUT OF RANGE
'STRING TQO LONG
'BASIC COMMAND ATTRIBUTE

'GET STRING ADDRESS

'GET STRING LENGTH

'I6 IT A NULL OR O-LENGTH STRING?

'JIF NO

'TRASH IMMEDIATE EXECUTION FARAMETER

'GET ADDRESS OF SUEBROUTINE

'MAKE IT ABRSOLUTE

YJUMFP TO IT

'CLEAR LENGTH OF KEY STRING=:*NOTHING THERE

! DONE

18 LENGTH»=967

YJIF YES

'GET IMMEDIATE KEY-EXECUTION VALUE FROM STACK
'SAVE IN R26

'GET ADDRESS OF SUEBROUTINE

'MAKE IT ABRSOLUTE

'JuME TO 1T
'SHOULD IT BE IMMED. EXEC.?
'JIF NO

'SET PARITY RIT
'SET FARITY BIT=xIMMED. EXEC.

'SAVE LENGTH AND FOINT TO START OF STRING STORAG

'CLEAR OFF IMMED. EXEC. BIT, IF ANY
'GET BYTE OF STRING

'GAVE IT

'DONE. YET?

'JIF NO

' DONE

'L0AD KEY CODE

VIS IT < 2007
'JIF YES
Y16 IT »=2107
'JIF YES

'GET TO KEY#

'DOUBLE # FOR TARLE

'MAKE IT ABSOLUTE

'GET ADDREGS OF FEY STORAGE
'MAEE 1T ABSOLUTE

'GET LENGTH

8-4

-/

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1710
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
15460
1570
1580
1590
1600
1610
14620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770

NEXT

OUTCR

FEYTEL

k1

k2

P2

k4

k&

K7

k.8

CURS
CHIDLE
KEYHIT
BINTAE
HLFLIN
EQJ2
ROMFL.
OUTCHR
NUMVA+
GETCMA
NUMVAL
STREXF

CME
JINZ
RTN
STE
ANM
JSHE
JSE
TSR
JING
CLE
JSH

RI6,=0
NEXT

R36,R77
R36,=177,0
=HLFLIN
=CURS

R77

OUTCR

=E0J2

FOMD R74,-Ré6

RTN
LDE

R26, =232

STED R26,=KEYHIT

RTN
BYT
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

BYT :

ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD

0,0
¥l
K

DN B GR

k=
k.
k.
k.
k.
k
" }:: 1 "
140

2

”" "::.2 "
140

2

H }:::3 H
140
2
"K4n
140
"ES"
140

2

LYyl
140

2

" }::7 [
140

2

n }:"B "
140
35055
102416
100671
101233
35121
24772
101271
35114
12407
13414
12412
17626

Sample Binary Programs

VIS IT EMPTY?

'JIF NO

'LET SYSTEM HANDLE IT
'SAVE FOR LATER

TMASK OFF IMMED. EXEC. BIT

'OUTFUT KEY STRING

1SFIT OQUT CURSOR

18 IMMED. EXEC BIT SET?
'JIF YES

'DONE WITH KEY

'CLEAN UF

'TRASH 2 RETURNS

'LOAD ENDLINE
"PUT ENDLINE IN KEYHIT
'LET SYSTEM HANDLE IT

Sample Binary Programs

1780 ONER DAD H&61173
1790 ERROR+ DAD 6611
1800 ZERO EQU ©
1810 FIN

8-6

Sample Binary Programs

STRING UNDERLINE STRING UNDERLINE BINARY PROGRAM
Source File: UDL$S
Object File: UDLS$B

When passed one string parameter, this program returns the same string with all
characters underlined. It implements a BASIC string function with one string

parameter.

Format: UDL$ (“string expression")

Description: Returns the same string expression with all characters underlined.

8-7

Sample Binary Programs

10
20
30
40
50
60
70
80
0
100
110
120
X
130
140
150
160
170

180
190

200

210
220

230

240
250
260

270
R)

280
290
F00
10
320
330
340
350
360
70
380
390
400
410
420
430
440

RO KOKROK KKK KKK KKK K KOk Kk R KRk Kk X

[¢ STRING UNDERLINE X
'¥ (¢) Hewlett—FPackard Co. ¥
'x 1980 X
IR 2233382323333 233033308388 33
NAM UDLEIN 'SET UP FROGRAM CONTROL BLOCK
DEF RUNTIM 'PTR TO RUNTIME ADDRESS TARLE
DEF ASCIIS 'PTR TO EEYWORD TABLE
DEF PFARSE 'PFTR TO FARSE ADDRESS TABLE
DEF ERMSG 'PTR TO ERROR MESSAGE TABLE
DEF INIT 'PTR TO INIT ROUTINE FOR SYSTEM
RS2 23233328323823333 8328832833832 33282323333333833332282323333333333333¢333¢83¢33¢3¢
FPARSE BYT 0,0 'DUMMY TOK #0 PARSE FTR
RUNTIM BYT 0,0 'DUMMY TOE #0 RINTIME
DEF UDL%. 'TOE. #1 RUNTIME
BYT 377,377 'TERMINATE RELOCATABLES
0K K KKK K K0K KK 3K K 30K K 30K K K K 0K 0K KK K 5K KK 3K K K 30K K K 0K 30K K K 0K K 3K K KKK KK K KK KK K K KK XK K XKk KoKk X Kk K
ASCIIS ASF "UDLs$*® 'KEYWORD #1
BYT 377 'TERMINATE ABCIIS TABRLE

1K KK K KK KKK K 30K 00K K K 30K KK KK KK 30K kKK KOk 0K 0K OK KK K KK K K OK0K0K KK KK Kk KK KOKIOKIOKOK KK KK KOk X X0k X

ERMESG BSZ 0
BYT 377 'NO ERROR MESSAGES
0K KKK 0KOKOK KKK K KK HOK KK KK 0K KK 0K 3K K 0K 30K 3K K 0k K K0k 0K k0K 0K K KK KK 30K 30K k0K 3K KKk K 0K K K KO Ok Kk Kok

INIT BSZ O 'NO INITIALIZATION TO BE DONE
RTN ! DONE
VKK KKK KK 3K K K 30K KK K K K K K KK 3K 3K KK 3K KK KKK 3K K KK KKK 0K 0K0K KK K KKK K KK KK KoKk Kok ok sk Kok kR Kk kR okk X
BYT 30,56 ! ATTRIBUTES (STRING FUNCTION, 1 STRING FARAMETE
UDL$. FOMD RI&,-R1Z 'FOF STRING ADDRESS OFF OF R1Z STACK
FOMD R30,-R12 'FOF STRING LENGTH OFF OF R12 STACK
8TM R3I0,R56 'LENGTH NEEDS TO BE IN Sé FOR °“RSMEM-®
JSB =RSMEM- 'G0 GET SOME TEMFPORARY MEMORY)
FUMD RZI0,+R12 'FUSH ADDRESS RETURNED BY *RSMEM-° ON R1Z STACK
FUMD R26&6,+R12 'FUSH LENGTH BACKE ONTO THE R12 STACH
EIN 'SET MATH MODE FOR LOOF COUNTER
LDE R34,=200 1SET UP MAGHK
MORE DCM R3O 'DECREMENT L.OOF COUNTER
JNC DONE 'JIF NO CHARACTERS LEFT
FOBD RZ0O,+R3Ié 'GET NEXT CHARACTER
ORB R20,RZ4 15ET MSE OF CURRENT CHARACTER
FUBD RZO, +RZ6 'FUSH UNDERLINED CHARACTER BACE
JMF MORE '60 GET SOME MORE
DONE RTN ! DONE
RSMEM— DAD 37453
FIN

8-8

Sample Binary Programs

GRAPHICS CURSOR GCURS BINARY

Source File: GCURS
Object File: GCURB

This binary program implements a graphics cursor and allows the four cursor keys
on the computer to control the cursor. There are five new keywords implemented

by the program:

Format:

Description:

Format:

Description:

Format:

Description:

Format:

Description:

Format:

Description:

GCURSOR x-location, y-location [, slow-step distance, fast-step

distance]

A BASIC statement; x,y is location where cursor is placed on the
CRT graphics screen initially. Slow-step distance (optional) is
the distance the graphics cursor moves with each press of a cursor
control key. Fast-step distance (optional) is the distance the
cursor moves with each press of a shifted cursor control key.
Default step distances are 1 and 4, respectively.

The cursor keys control the graphics cursor only when a program is

running.
GCURSOR OFF

A BASIC statement; turns cursor control keys off and removes the
graphics cursor from the CRT screen.

GCURSOR X

A numeric function with no parameters; returns the current x-
Jocation of the graphics cursor.

GCURSOR Y

A numeric function with no parameters; returns the current y-

location of the graphics cursor.
REV DATE

A string function with no parameters; returns the revision date of

the program.

Sample Binary Programs

1 DRI KOO RO 00k X X

Mk

10
20
30
40
90
&0
70
80
90
100
110
120

130

140
150
160
170
180
190
200
210
220
230
240
250
260
280
290
300
310
320
33O
340
350
360
370
380
390
400
410
420
470
440
450
460
470
480
490
S00
510
520
530
540
550
560

X GCURS BINARY X
¥ (¢) Hewlett-FPackard Co. X
X 1980 X
DK KR 30K 3K K KOK KKK K KOk X KK Kk ok Kk kK X
NAM GCURS
DEF RUNTIM 'FTR TO RUNTIME ROUTINES TAELE
DEF TOKS 'PTR TO ASCII TABLE
DEF PFARSES 'PTR TO FARSE ROUTINES TAELE
DEF ERMSG 'PTR TO ERMSG TAEBLE
DEF INIT 'PTR TO INIT ROUTINE
RUNTIM BSZ 2 'TOK. O RUNTIME FTR (DUMMY)
DEF GCOFF. 'TAOE, 1 RUNTIME FTR
DEF GCURX. 'TOE 2 RUNTIME FTR
DEF GCURY. 'TOE, 2 RUNTIME FPTR
DEF GCURS. 'TOK 4 RUNTIME FTR
DEF REV. 'TOE. S RUNTIME FTR
FARSES BSZ 2 'TOK O PARSE ROUTINE (DUMMY)
DEF GCOFFF ' TOk 1 PARSE ROUTINE FTR
BSZ 2 'TOK 2 PARSE ROUTINE (DUMMY)
BESZ 2 YTOE AR FPARSE ROUTINE (DUMMY)
DEF GCFAR 'TOK. 4 FARSE ROUTINE PTR
ERMSG RBYT 377,377 'END OF RELOCATABLE ADDRESSES % ERMSG®S
TOKS ASF "GCURSOR OFF*" 'ASCII FOR EEYWORD 1
ASF "GCURSOR X" 'ASCII FOR EEYWORD 2
ASF "GCURSOR Y 'ASCII FOR KEYWORD 3
ASF "GCURSOR" 'ASCII FOR EKEYWORD 4
ASF "REV DATE" 'ASCII FOR KEYWORD S
BYT 3277 'END OF KEYWORD TAERLE
30K KK OKOK KK OKOK K K K 0K K KK KKK K KK K KKK K KK KK K KK 30K 50K0K oK 30K 350K K KK 3K 30K 360Kk Ok XK XKk KKk X X
INIT BIN 'FOR EBINARY COMFARE
LDED R34,=ROMFL 'GET ROMFL (REASON FOR INIT)
CMEB RZ4,=2 'SCRATCH?
JNZ LOAD? 'JIF NO
SCRAT! LDM R44,=27%6,236,236,236 'LOAD RTNS
STMD R44,=CHIDLE 'STORE TO CHIDLE (RETURN HOOE TOQ SYSTEM)
RTN
LOAD? CME R#,=35 'LOADT?
JZR SCRAT! 'JIF YES, WE'RE GETTING SCRATCHED
RTN RTN 'DONE, ONLY CASES WE CARE AROUT
£ KK 3K 0K KKK K K oK K KK K KKK KOK K KK KK OK K KKK 0K 3K K KK K 30K 3K K K 30K K 30K 0K K KKK K KOK KK AOK 0K KoK K
LEFT LDMD R40,X14,8TEF 'LOAD SLOW STEF OFFSET
JMF COMLEF 'GO MOVE CURSOR LEFT
RIGHT LDMD R40,X14,8TEF '1L.OAD SLOW STEF OFFSET
JMF COMRIT '60 MOVE CURSOR RIGHT
EEY LDMD R14,=RBINTAE 'BASE ADDRESS OF EIN FRGM
EIN 'FOR COMFARE
CME R16,=% "IN RUN MODE?
JNZ RTN 'JIF NO, DON'T DO
LDMD R22,=FEYHIT 'GET KEYCODE 0OF FRESSED EEY
CME R2Z,.=211 'SHIFTED RIGHT CURSOR KEY?
JZR FRIGHT 'JIF YES
CMB R22,=223 'SHIFTED LEFT CURSOR KEY?
JZR FLEFT 'JIF YES
CMB RZ2,=245 'SHIFTED UFP CURSOR EEY?
JIR FUF 'JIF YES
CMEB RZ2,=242 'DOWN CURSOR KEY?
JZK DOWN 'JIF YES
CMB R22,=23 'LEFT CURSOR EEY?
JZR LEFT 'JIF YES

Sample Binary Programs

570 CMB R22,=2350 'RIGHT CURSOR KEY?

580 JZR RIGHT 'JIF YES

590 CMB R22,=241 'UF CURSOR EEY?

600 JZIR UF 'JIF YES

610 CME R22,=204 'SHIFTED DOWN CURSOR KEY?
620 JZR FDOWN 'JIF YES

630 RTN ELSE LET SYSTEM HANDLE THE KEY
640 DOWN LDMD R40,X14,STEF 'LOAD SLOW STEF CONSTANT
&50 JMF COMDOW GO MOVE DOWN

bb0 UF LDMD R40,X14,S8TEF 1LOAD SLOW STEF CONSTANT
&70 JMF COMUP ‘GO0 MOVE UF

'LOAD FAST STEF CONSTANT
'FUSH STEFP VALUE ON R12

&80 FRIGHT LDMD R40,X14,FSTEF
690 COMRIT FUMD R#,+R12

700 LDMD RS0, X14,CURS—X !'GET CURRENT X FOR ADD
710 FUMD RSO, +R12 'FUSH TO R1Z2

20 JSE =ADDROI '"ADD STEF TO CURRENT X
770 COM-X LDMD R40,X14,CURS-Y !GET CURRENT Y
740 FUMD R40,+R12 'FUSH TO R12 STACK
750 JMF COMEEY G0 MOVE CURSOR
760 FLEFT LDMD R40,X14,FSTEF 'LOAD FAST STEF CONSTANT

770 COMLEF LDMD RS0,X14,CURS-X !GET CURRENT X

780 FUMD RSO, +R12 TFUSH FOR SUBTRACT

790 FUMD R40,+R12 1FUSH STEF VALUE FOR SUBTRACT
800 JSE =5UBROI 'GURTRACT STEF FROM CURRENT X
810 JMF COM~X 160 FUSH Y AND FINISH

820 FUF LDMD K40,X14,FSTEF 1LOAD FAST STEF CONSTANT

830 COMUF LDMD RS0,X14,CURS-X !GET CURRENT X LOCATION

840 FUMD RS0O,+R1Z2 PFUSH TO R12 STACK

850 FUMD R40,+R12 'FUSH Y-STEF TO R12 STACK

860 LDMD KR40, X14,CURS-Y !GET CURRENT Y LOCATION

870 FPUMD R40,+R12 'FUSH TO R12

880 JSB =ADDROIL 'ADD STEF TO CURRENT LDCATION
890 JMF COMEEY 'MOVE CURSOR ON SCREEN

900 FDOWN LDMD R40,X14,FSTEF 1LOAD FAST STEF CONSTANT

IGET CURRENT X LOCATION
PPUSH TO R1Z2 STACK

910 COMDOW LDMD RS0, X14,CURS-X
20 FUMD RS0,+R12

930 LDMD RSO, X14,CURS-Y 'GET CURRENT Y LOCATION
940 FUMD RS0, +R12 'FUSH TD R1Z STACK
950 FUMD R4O,+R12 'FUSH STEF VALUE TO R1Z
960 JSE =SUEBROI I SUETRACT STEF VALUE
970 COMEEY JSE X14,FLOT 'ERASE OLD CURSOR
980 CLM RSO 'FOR COMFARE

990 FOMD R40,~R12 'GET NEW Y

1000 FUMD R40, +R12 1SAVE IT

1010 JSE =COMFLT 11§ Yr=ZERO 7

1020 FOMD R40,-R172 'RECOVER Y

1030 JEN TEST-X LJIF NO

1040 FUMD R40,+R12 'SAVE Y

1050 LDM RS0, =2,0,0,0,0,0,20C,19C 'REAL 192
1060 JSE =COMFLT 118 Y4192

1070 FOMD R40,-R12 'RECOVER Y

1080 JEZ TEST-X

1090 STMD R40,X14,CURS-Y !STORE IT AWAY

1100 TEST-X CLM RSO 'FOR COMFARE

1110 FOMD R40,-R1Z 1GET NEW X

1120 FUMD R40,+R12 LSAVE X

1130 JSB =COMFLT X =0

1140 FOMD R40,-R12 'RECOVER X

1150 JEN MOVCUR 1JIF NO

1160 FUMD R40,+R12 ISAVE X

1170 | DM RS0, =2,0,0,0,0,0,60C, 25C 'REAL 256

8-11

Sample Binary Programs

1180 JSE =COMFLT

1190 BIN

1200 FOMD R40,~-R12Z

1210 JEZ MOVCUR

220 STMD R40,X14, CURS-X
1230 MOVCUR JSER X14,FLOT

1240 CLE

1250 JSE =EQJ2

1260 LDED RZ1,X14,KEYCON
1270 LOOFEKEE LDEBD R3O0, =KEYSTS
1280 LRE R3O

1290 JEV EOQJ

1300 LDED RZ0,=CRTSTS
1310 LRE R3O

1320 JEV LOOFEE

Z30 LOOFEZ LDED RZ0,=KEYSTS
1340 LRE R3O

1350 JEV EOQJ

13260 LDED R3O0 ,=85VCWRD
1370 JOoD EQJ

1380 LDED RZ0,=CRTSTS
1390 LRB R30

1400 JOD LOOFE2

1410 DCB R31

1420 JNZ LOOFEE

1430 LDE R31,=KYRFTZ2
1440 STBD RZ1,X14,KEYCON
1450 LDM R20,=KEY

1460 ADM R20,R14

1470 DCM R20

1480 LDM R4,R20

1490 EOQJ LDE R31,=KYRFT!1
1500 STED RZ1.X14,FEYCON
1510 FOMD R44,-Ré

1520 CLE

1530 RTN

X286 7
'COMFLT RETURNS IN ECD MODE
'RECOVER X

'STORE IT AWAY

'SFIT OUT NEW CURSOR

'FLAG KEY HANDLED

'RESET R17 % SVCWRD

'LOAD EEY REFEAT SFEED

'GET EEYBOARD STATUS

'"EEY STILL DOWNY

'JIF NO

'GET CRT S8TATUS

'AT RETRACE™?

'JIF YES

'GET KEYBOARD STATUS

'HEY DEFPRESSED?

'JIF NO

TANOTHER EEY?Y

'JIF YES

'GET CRT STATUS

'RETRACE?

'JIF NO

'DECREMENT WAIT COUNT

'JIF NOT DONE WAITING

IGET FAST REFEAT COUNT

'SET IN KEYCON FOR FAST REFEAT
'GET ADDRESS OF KEY ROUTINE
'MAKE ABSOLUTE (ADD BINTAE)
'DECREMENT FOR LDAD INTO PC
't OAD FC WITH ADDRESS (DOES A GTO)
'RESET KEEY REFEAT TO SLOW WAIT
'STORE IT

'THROW AWAY TWO RETURNS
'FLAG KEY HANDLED

' DONE

1540 1 RKOKK KR KOKOK KKK KK KK KKK 30K 30K K KKK KK XK K K 30K 30K KK 3 K K KK 30K K KOK 0K K KKK K AOK KO KR X X XK

1530 GCFPAR FUBD R43Z, +Ré6

1560 JSE =NUMVA+
1570 JEN Ok

1580 ERR JEB =ERROR+
1590 BYT 81D

1600 Ok JSB =GETCMA
1610 JSE =NUMVAL
1620 JEZ ERR

16320 CMEB R14,=54
1640 JNZ DONE
1650 JSE =NUMVA+
1660 JEZ ERR

1670 JSE =GETCMA
1680 JSE =NUMVAL
1690 JEZ ERR

1700 DONE FOBD R47,-Ré
1710 LDE R4%,=I71
1720 FUMD R4%5,+R12
17730 RTN

1740 GCOFFF FUBD R4Z,+Ré
1750 JSE =GCAN
1760 JMF DONE

'SAVE INCOMING TOKEN

'GET A NUMERIC EXFRESSION
'JIF GOT ONE

'ELSE ERROR

'BAD EXFRESSION

'DEMAND A COMMA

'GET ANOTHER NUMERIC VALUE
'JIF NOT THERE

'ANOTHER COMMAT

'JIF NO, THAT™S ALL

'ELSE GET ANOTHER NUMEBER
'JIF NOT THERE

!DEMAND ANOTHER COMMA
'GET YET ANOTHER VALUE
'JIF NOT THERE

'RECOVER INCOMING TOKEN
'LOAD EBIN FPRGM TOKEN FLAG
YPUSH THEM OOLT

' DONE

'SAVE INCOMING TOKEN
'NEED TO DO A SCAN FOR SYSTEM
'GO FINISH, NO FARAMETERS

1770 U R0K0ROOKIOKK KOKOKK KKK K K0K0K KK 0K KOK KKK 30K 30KO0K0K KK KK K 0K K KOk K KOk K K OKK KOk KK K K

1780 BYT 241

TATTRIBUTE (RASIC STAT. LEGAL AFTER THEN)

1790
1800
1810
1820
1930
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
19240
1950
19460
1970
1980
1990
2000

2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
22460
2270
2280
2290
23200
2310

Sample Binary Programs

GCOFF. LDMD Ri4,=BINTAE 'LOAD BASE ADDRESS
JSE X14,SCRAT! ' RELEASE CHIDLE HOOK
JSE X14,FLOT IERASE CURSOR
RTN ! DONE
Dok KKK KKK IR KKK KK 0K 30K K KKK 0K KK KK OKOK KK 0K 0K KKK KK 00K KOO0 IOKOKR KX
BYT 0,55
GCURX. LDMD R14,=EINTAE 'GET BASE ADDRESS OF EBFGM
LDMD RS0, X14,CURS-X 'GET CURRENT X LOCATION
GEUSH FUMD RSO,+R12 TFUSH TO R12 STACK
RTN | DONE
OO OK KK KKK KKK KK KKK KKK KKK KK ORI K KKK KKK OKORKO0OK K KK K
BYT 0,55
GCURY. LDMD R14,=EINTAH 'GET BASE ADDRESS
LDMD RS0,X14,CURS-Y !'GET CURRENT Y LOCATION
JMF GFUSH 'FUSH TO R12
RO K KOO0 IR KKK KK 00K 0K KKK KKK 00K 0RO ORI OKOR OO KK KK X
EYT 241 'ATTRIBUTE (BASIC STAT.,LEGAL AFTER THEN)
GCURS. BIN 'FOR BINARY MATH
LDMD R14,=EINTAE 'GET BASE ADDRESS

LDM R40,=0,0,0,0,0,0,0,10C 'DEFAULT STEF VALUE (1)
STMD R40,X14,STEF

LDB R47,=40C 'DEFAULT FAST STEF VALUE (4)

S5TMD R40,X14,FSTEF !'STORE 1T AWAY

LDM R20,R12 1GET END OF R12 STACK ADDRESS

SEM R20,=40,0 PTRY 4 NUMBERS ON STACE

CMMD R20,=T0S 'YEG?

JINZ NOSTEF 'JIF NO STEF VALUES

JSE =0NER 'ELGE GET FAST STEF VALUE

BIN 'ONER REQUIRES EIN MODE AT ENTRY

STMD R#, X14,FSTEF ISTORE IT AWAY

JSE =0NER 'GET SLOW STEF VALUE

EIN 'ONER REQUIRES EBIN MODE AT ENTRY

STMD R#,X14,STEF 'STORE IT AWAY
NOSTEF JSBE =0NER 'GET Y VALUE

EIN 'ONER REQUIRES BIN MODE AT ENTRY

STMD R#,X14,CURS-Y !SET CURRENT Y

JSE =0NER 'GET X

BIN (ONER RETURNS IN ECD MODE

STMD R#,X14,CURS-X !'SET CURRENT X

JSE X14,FLOT 'QUTFUT CURSOR

LLDM R464,=KEY 'GET ADDRESS OF KEY HANDLER ROUTINE

ADM R46,R14 'ADD BASE ADDRESS FOR ABSOLUTE ADDRESS

STM R46,R45 'SET FOR STORE

LDB R47,=236 "LOAD A RTN AFTER IT

LDE R44,=316 'L.0AD A JSE IN FRONT

STMD R44,=CHIDLE 'STORE TO CHARCTER IDLE

RTN ! DONE
!***#**X#X********#**X******X***k*****X#X*X*X**X**X#**********#X##X
FLOT JSE X14,6CURX. 'FUSH CURRENT X

JSE X14,GCURY. 'FUSH CURRENT Y

LDM RZ0,=ROMTARE 'GET BASE ADDRESS OF ROM TAELE
NXTROM FOMD R24,+R20 IGET NEXT ROM # FROM TAELE

CME R24,=377 'END OF TARLE?Y

JIR SYSTEM 1JIF YES, DO SYSTEM MOVE

CME R24,=FFROM# TFLOTTER/FRINTER ROM #7

JNZ NXTROM tJIF NO, TRY NEXT ENTRY

JSE =ROMJISE 'GELECT FLOTTER/FRINTER ROM #

DEF PMOVE. 1ISE TO ITS MOVE ROUTINE

VAL FFPROM# 'PLOTTER/FRINTER ROM #

LDMD R14,=BINTAB 'RE~-LOAD EBFGM BASE ADDRESS

JME FPLOTH+ DO COMMON QUT-CURSOR STUFF

Sample Binary Programs

2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2850
2860
2570
2580
2990
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2600
2810
2820
2870
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
29460
2970
2980
2990
3000

S5YGTEM

JSHR

=MOVE.

FLOT++ LDM R20,=CURSES

ADM

R20,R14

LDED RZZ,=XMAF

ANM
L.DM
LLM
LLM
ADM
ADM
LDM
L.DM
JSB
RTN

R22,=3,0
R34, R22

R34

RZ4

R34 ,R22
R34,R20
R22,=5,0
R44,=1,0,1,0
=RFLOT+

'DO A SYSTEM MOVE

'LOAD REL. BASE ADDRESS OF CURSORS
'ADD EBFGM EBASE FOR ABSOLUTE ADDRESS
'GET LOWER BYTE OF CRT EBIT MAF
'EEEF ONLY LOWER TWO RITS

'COFY

'TIMES 2

'TIMES 4

'TIMES S(EACH CURSOR IS S BYTES)
'BASE ADDRESS + OFFSET=CURS0OR ADDRESS
'LOAD LENGTH OF "STRING"

'LOAD # OF BYTES/LINE AND A COFY
'JUMF INTO BFLOT

' DONE

1K K KK KKK K KK K K K K K 0K K K K 0K XK 3K K K 3K KKK KK K 30K K0KOKOK 0K AOKOKOK KK KoKk KK kR Ok Kok Kok Xk X X

CURSES

KEYCON
CURS—X
CURS—-Y
FSTEF
STEF

BYT
BYT
BYT
BYT
BSZ
BSZ
EBSZ
BS5Z
BSZ

360, 300,240,228

0,10 !'FOUR DIFFERENT CURSORS BECAUSE

170,140,120,110,4 'BFLOT CAN ONLY WORK TO A FOUR-EIT

74,60,50,44,2
36,30,24,22,1
1

10

10

10

10

'RESOLUTION. 7O GET 1 BIT RESOLUTION
'WE NEED TO USE FOUR DIFFERENT CURSORS
'TEMFORARY KEY REFEAT SFEED

'CURRENT X LOCATION

'CURRENT Y LOCATION

'FAST STEF INCREMENT VALUE

'SLOW STEFP INCREMENT VALUE

1K K K K KO K KKK 50K K K KK KK KK 0KOK 30K IOK 0K K0KOK 0K 30K 30K 30Kk 0K 30K K00 K KOK KKK KOk IOKKOK X K

REV.

DATE
BRFLOT+
MOVE.
FMOVE.
ROMJISE
PFROM#
ROMTAE
KYRFTZ2
EYRFTL
CRTSTS
KEYSTS
CHIDLE
ROMF L.
KEYHIT
EQJ2
ADDRO1I
SUBROI
BINTAR
NUMVAL
NLUIMVA+
SCAN
GETCMA
SVCWRD
TOS
ERROR+
ONER
XMAF
COMFLT

BYT
EBIN
LDM
DEF

0,56

R44,=11D,0
DATE

ADMD R46&, =BINTHE
FUMD K44, +R12

RTN
ABC
DAD
DAD
DAD
DAD
EQU
DAD
EQU
EGH
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
FIN

"AUG 14,1980"
34405
31703
64400
4776
I60
101238
1

30
177406
177402
102416
101271
100671
34772
52150
52127
10123
12412
12407
11262
1Z414
100151
101132
6611
56215
100262

T2621

'ATTRIBUTES (NO PARAM. . SYSTEM FUNCTION)
'FOR ADD

'LOAD LEN OF STRING

' AND THE RELATIVE ADDRESS

'ADD BASE FOR ABSOLUTE ADDRESS
'FUSH TO OFERATING STACE

! DONE

'DATE STRING

'NOTE:

'MOST OF THESE DEFINITIONS COULD
'BE REFLACED BY A CALL TO

'THE GLOBAL FILE

'END OF S0OURCE FROGRAM

8-14

Sample Binary Programs

RECTANGULAR/POLAR CONVERSIONS RECT/POLAR CONVERSIONS BINARY PROGRAM

Source File: RECPLS
Object File: RECPLB

This program can be used to convert between polar and rectangular coordinates.
It implements four BASIC statements:

Format:

Description:

Format:

Description:

Format:

Description:

Format:

Description:

RECTANGULAR x-variable, y-variable, radius, angle

Sets x- and y-variables equal to the rectangular coordinates that
correspond to the specified polar coordinates (radius and angle).

POLAR radius variable, angle variable, x-coordinate, y-coordinate

Sets radius and angle variables equal to the polar coordinates that
correspond to the specified x- and y-coordinates.

REV DATE

A string function with no parameters; returns the revision date of

the program.

SCRATCHBIN

Scratches the current binary program from computer memory, without

affecting anything else.

Sample Binary Programs

1 IOKOROKOKKOKOK KKK KKK KKK KR KK KKk

2 !'% RECT/FOLAR CONVERSIONS X

32 'x (c) Hewlett—-Packard Co. X

4 'x 1980 X

S VRO KR KK KK K KKK K KK Ok K KK KK KKK K Kok k

10 NAM R%F 'SET UF FROGRAM CONTROL BLOCE

20 DEF RUNTIM 'PTR TO RUNTIME ADDRESS TAELE

30 DEF ASCIIS 'FTR TO EEYWORD TARLE

40 DEF FARSE 'FTR TO PARSE ADDRESS TAELE

S50 DEF ERMSG 'FTR TO ERROR MESSAGE TAEBLE

60 DEF INIT 'PTR TO INIT ROUTINE FOR SYSTEM

7O RO KK KK KK K KKK KKK K KK K KK K KKK KK K KOK 0K KKK KK K KK K KK KK KR KKK K KKK KKK KKK KKk K KKK XK
80 FARSE BYT 0,0 'DUMMY TOE. #0 PARSE FPTR

0 DEF RTFF YTOE. #1 FPARSE FTR

100 DEF RTFF 'TOK #2 FARSE FTR

110 DEF UNLODF 'TOE #Z FPARSE FTR

120 RUNTIM BYT 0,0 'DUMMY TOE #0 RUNTIME

130 DEF RTF. PTOE. #1 RUNTIME

140 DEF FTR. 'TOE. #2 RUNTIME

150 DEF SCRE. 'TOR #3 RUNTIME

160 DEF REWV. 'TOK, #4 RUNTIME

170 BYT 377,377 'TERMINATE RELOCATABLES

180 R0k kK K0k 0K OK KKK 0K K K 0K 0K 30K 30K K K 30Kk k0K k0K K K 3K 3Kk K 3K K 3k 3K K ok K 34K ok Kk K K KKK SO KOk K
190 ASCIIS ASF "FOLAR" '"WEYWORD #1

200 ASF "RECTANGULAR" 'KEYWORD #2

210 ASF “"SCRATCHEIN" '"WEYWORD #2

220 ASF "REV DATE" 'KEYWORD #4

230 BRYT 277 'TERMINATE ASCIIS TABLE

240 1R K0K KK AOK 30K K KOK0K 0K K0K KKK K K0K 5K KK K KK KK 30K 0K J0K 0K K 0K KOK K SO KR X KOO0 KRR KRk X ok Xk X
250 UNLODF LDE R47,R43 'COFY EBFGM TOKEN

260 LDB R45,=371 'LOAD SYSTEM BFGM TOKEN

270 FUMD R45,+R12 'FPUSH THE CODE TO THE STACE

280 JSE =8CAN 'SCAN BEFORE RETURNING

290 RTN 'DONE

FOC TRk KOk K K0k R KK KK K KK KK A K ok KIKOK K OK 0K 30K 30K KK K 0K K k0K 3 3K K 30K KK 30K 30K 0K KOK0KOK K KK K K KK KOK K K
310 RTPF FUEBD R47Z,+Ré 'SAVE INCOMING TOEEN

320 JSB =5CAN 'SCAN FOR REFNUM

230 JSE =REFNUM 'GET THE 1st VARIABLE REFERENCE

340 JEZ ERR 'JIF NOT THERE

350 JSE =GETCMA 'DEMAND A COMMA

360 JSE =REFNUM IGET THE Znd VARIABLE REFERENCE

270 JEZ ERR 'JIF NOT THERE

380 JSE =GETCMA 'DEMAND A COMMA

ZQ0 JSH =NUMVAL 'GET THE X VALUE

K400 JEZ ERR 'JIF NOT THERE

410 JSE =GETCMA 'DEMAND A COMMA

420 JSB =NUMVAL 'GET THE Y VALUE

4730 JEZ ERR 'JIF NOT THERE

440 FOBD R47,-Ré6 TRECOVER THE INCOMING TOKEN

450 LDR R4%5,=371 'LOAD THE SYSTEM BFGM TOEEN

4460 FUMD R45,+R12 'FUSH THE FARSED CODE

470 RTN ! DONE

48O KKK K AOK K KKK K K IOK KKK KOK 30K 10K K K KK K K 30K 0K K I0OKOK 0K OKOKI0OK 0K Kk K KOk KKk Ok ko ok Kok KoKk K X
490 ERR FOBD R47,-R6 'CLEAN UF R6 (REMOVE TOKEN)

SO0 JSE =ERROR+ 'REFORT ERROR

510 BYT 81D 'BAD EXFRESSION

S20 1KoK KKK OKOK KK OKOK KKK KKK KKK 0K KK KK KK K 0k K K KK 0K 0K 60K KKK KK ROk ok koK ok ook ok k Kk
530 ERMSG ESZ O

540 BYT 377 'NO ERROR MESSAGES

530

KK KKK KOK 30K KK KK K K0K K I0OK K KK KK KKK KK K K 30K K 30K 0K 30K 30K KK OKOKOKKKOR KKK K KK KKk K X

560
S70
580
590
&O0
610
&20
630
640
&50
&40
&70
&80
&0
700
710
720
30
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
Q00
Q10
20
QIO
40
QS0
QL0
Q70
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

Sample Binary Programs

'NO INITIALIZATION TO EE DONE
' DONE

!********#***********#*****#***X****************X****X**#**#**********

'TEMFORARY STORAGE

' TEMFORARY STORAGE

!*#**#*#****#**************X***t*k**#***********#**t**************#**#

INIT BSZ ©
RTN
XVAaL BSZ O
RVAL BSZ 10
YVAL BSZ O
AVAL. BSZ 10
BYT 241
RTF. JSE =0NER

LDMD R22,=BINTAR
STMD R40, X22, YVAL
JSE =0ONER

STMD R40, X222, XVAL
FUMD R40,+R12
FUMD R40, +R12

JSE =MFYROI

LDMD R40, X22, YVAL
FUMD R40,+R12
FUMD R40,+R1Z

JSE =MPYROI

JSB =ADDROI

JSE =S0RS

FOMD R40,-R12
FUMD R40,+R6

LDMD R4Q,X22, YVAL
FUMD R40,+R12
LDMD R40,X22, XVAL
FUMD R40, +R12

JSB =ATNZ.

JSE =STOSV

FOMD R40,-Ré&

FUMD R40,+R12

'ATTRIBUTE FOR RECTANGULAR
'GET Y VALUE TO RA4O0

'LOAD BASE ADDRESS

'SAVE Y VALUE

'GET X-VALUE TO R40

'SAVE X VALUE

'FUSH FOR MULTIPLY

'PUSH FOR MULTIFLY

'GET X2 (LEAVE ON R12)

'GET Y VALUE

'FUSH FOR MULTIFLY

'FUSH FOR MULTIFLY

'GET Y~2 (LEAVE ON R12)

IGET X"2+Y"2 (LEAVE ON R12
'GET SOR(X-2+Y2) RADIUS
'RECOVER ANSWER

'SAVE RESULT FOR LATER

'GET Y VALUE

'FUSH FOR ATN

'GET X VALUE

'FUSH FOR ATNZ

{FIND ATNZ2(Y,X) AND LEAVE ON R12
ISTORE RESULT TO ANGLE VARIAELE
'RECOVER RADIUS RESULT

'FUSH FOR STORE

'STORE TO THE RADIUS VARIAELE
! DONE

!*x*#**X**X****X***X**#**X******X***X**X***t**X**X***#**X*****X***X**X

FTR.

JSB =8TOBY
RTN

BYT 241
JSE =0NER

LDMD R22,=EINTAE
STMD R40, X22, AVAL
JSE =0ONEFR

STMD R40, X22,RVAL
LDMD R40,X22,AVAL
FUMD R40,+R12

JSE =COS10

LDMD R2Z,=BINTAB
LDMD R40,X22,RVAL
FUMD R40,+R12

JSE =MFYROI

FOMD R40,-R1Z
FUMD R40,+Ré

LDMD KR40, XZ2, AVAL
FUMD R40,+R12

JSE =SIN1O

LDMD R22,=BEINTAE
LDMD RS0, X22,RVAL
FUMD RS0, +R12

JSB =MPYROI

JSB =8TOSY

FOMD R40,-R6

FUMD R40, +R17

'ATTRIBUTES FOR FOLAR
'GET ANGLE VALUE

'LOAD BASE ADDRESS
'STORE FOR LATER

'GET RADIUS VALUE
'STORE FOR LATER

'GET ANGLE VALUE

'FUSH FOR COS FUNCTION
'TAKE COS (ANGLE)
'L.OAD BASE ADDRESS
'GET RADIUS VALUE
'PUSH FOR MULTIFLY
'GET R¥COS (ANGLE)
'GET ANSHER

'SAVE FOR LATER
IGET ANGLE VALUE
IFUSH FOR SIN FUNCTION
'TAKE SIN(ANGLE)

1LOAD EASE ADDRESSHS

'GET RADIUS

'FUSH FOR MULTIFLY

'GET RXSIN(ANGLE) Y VALUE
ISTORE TO Y VARIAEBLE
'RECOVER X VALUE

'ELUSH FOR STORE

X VALUE

8-17

Sample Binary Programs

1170
1180
1190
1200
1210
1220
1230
1240

250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1470
1440
1450
1440
1470
1480
1490
1500
1510
1520
1530
1540
18950
1860
1570
1880
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
17460
1770

JSB =5TO8V
RTN

'STORE TO X
' DONE

VARIABLE

IR 2220222222222ttt ettt s sees st sssssisss s

SCRB.

UNL.D1

UNLD2

BYT 241
STBD R#,=GINTDS
LDMD R24,=EINTAR
DCM R24

LDMD R26,=LWAMEM
STM R26,R22

SEM R22,R24

LDE R20,=4

LDM R32,=LAVAIL
LDMD R36,R32

ADM R3&,R22

FUMD R36,+R32
DCE R20

JINZ UNLD1

LDMD R3I&,R32
CMMD R36,=LWAMEM
JZR UNLDZ2

ADM R36,RZ2

STMD R36,R32

CLM R#

STMD R#,=BINTAE
LDM R#,R12

LDM R41,=316

DEF MOVDN

STED R#,=GINTEN
RTN

STMD R41,R36

DCM R36

LDM R4,RI6

'ATTRIBUTES FOR SCRATCHEIN
'DISABLE INTERRUFTS

'LOAD BASE ADDRESS

'MOVE TO LAST BYTE TO KEEF

'GET END OF MEMORY (AND EFGM)
'COFY

'GET DISTANCE TO MOVE

'LOAD COUNTER FOR PTR ADJUST
'GET ADDRESS OF 1st FPTR TO MOVE
'GET NEXT PTR

'ADD DISTANCE T0O MOVE

'RESTORE FOINTER
!DECREMENT COUNT
'JIF NOT DONE
'GET FWERIN

'SAME AS LWAMEM?
'JIF YES

'ELSE ADJUST

! AND REFLACE
'ZERO OUT RINTAER (NO EBFGM)

'COPY R12 FPTR

'LOAD INTO R41-R47 THIS CODE:

! JSBE=MOVDN

! STBD R#,=GINTEN

! RTN

'STORE AT END OF R12 STACHK

'DCM ADDR. BECAUSE LDM WILL ICM R4 AFTER LOAD
'MOVE FROGRAM EXECUTION 7O MOVDN CODE

100K 0K K0OKOKCAOK K 0K ROK KKK KK K KA OK OK OKOK 30K 3KOK KOK K 30K KK KKK 0K oK K0k K K KKK K 30K KK0K0K Kk 0K K K X

REV.

DATE

EYT 0,56
LDM R44,=8D,0
DEF DATE

ADMD R4&,=HINTAR
FUMD R44,+R12
RTN

ASC "05/05/80"

'"ATTRIBUTES FOR REV DATE

'LOAD LENGTH OF STRING

! AND RELATIVE ADDRESS OF STRING
'MAKE ADDRESS ABSOLUTE

'PUSH TO STACK

! DONE

DK KK KK KKK 2K KK KOK 30K 3K K 0K 30K 0K 3K 3K K K K 3K K 2k 30K 30K 30K K K K KKK KK K K K K KK 3K K Ok K0k kKoK 0K IOk KOk K

COs10
MFYRO1
ADDROI
SINLO
S50RS
ATNZ.
ONER
ERROR+
NUMVAL.
GETCMA
REFNUM
SCAN
STOsV
BINTAE
GINTDS
LWAMEM
LAVAIL
MOVDN
GINTEN

DAD 53556

DAD 52722

DAD 52150

DAD 53546

DAD 52442

DAD 76455

DAD 546215

DAD 06611

DAD 12412

DAD 13414

DAD 17025

DAD 11262

DAD 435254

DAD 101233
DAD 177401
DAD 100022
DAD 100010
DAD I7324

DAD 177400
IFIN

'DEFINE ADDRESSES

Sample Binary Programs

RECTANGULAR/POLAR CONVERSIONS (ROM) RECT/POLAR CONVERSIONS
ROM VERSION

Source File: ROMPRS
Object File: ROMPRB

This program is the same as the RECT/POLAR CONVERSIONS binary program, except
that it is written for a ROM.

Sample Binary Programs

10 K00 K0K KR KKK KX KKK KKK KKk kX
20 % RECT/POLAR CONVERSIONS X% -

Z0 'x ROM VERSION X

40 '¥ (c) Hewlett-Fackard Co. ¥

S0 'x 1980 X

HEO PEARKKERKKKKKEKKKKERKKRRKAKKKX

70 ABS ROM &0000

a0 BYT 100 'TROM # MUST BE FIRST BYTE

90 BYT 277 'ROM COMFLEMENT # MUST BE SECOND BYTE
100 DEF RUNTIM 'FTR TO RUNTIME ADDRESS TAEBLE

110 DEF ASCIIS 'FTR TO KEYWORD TARLE

120 DEF FARSE 'FTR T0 FARSE ADDRESS TABLE

130 DEF ERMSG 'PTR 70O ERROR MESSAGE TABLE

140 DEF INIT 'FTR TO INIT ROUTINE FOR SYSTEM
TS0 RO KK K KK K K 3K K 30K K KK 50K K K 30K 35 30K K K 30K 3K 0K 3K KK 30K KK 0K 3K 3K 30K 3 3K 3K k0K K k0K 3K ok oK oK K0k K K ok koK ok
160 FARSE EBYT 0,0 'DUMMY TOR #0 FPARSE FTR

170 DEF RTFF 'TOK. #1 FPARSE FPTR

180 DEF RTFF 'TOE #2 FARSE FTR

190 DEF UNLODF 'TOE #2 PARSE FTR

200 RUNTIM BYT 0,0 'DUMMY TOR #0 RUNTIME

210 DEF RTF. 'TOK #1 RUNTIME

220 DEF FTR. 'TOE #2 RUNTIME

2T0 DEF SCRE. 'TOK, #3 RUNTIME

240 DEF REV. 'TOE #4 RUNTIME

Pl R S S 2 0202820233 388283 3332022330383 333333333333¢333833383323823333383¢8333¢
260 ASCIIS ASF "FOLARM 'FEYWORD #1

270 ASF "RECTANGULAR" 'FEYWORD #2

280 ASF "SCRATCHERIN" 'FEYWORD #732

290 ASF "REY DATE" 'EEYWORD #4

200 BYT 377 'TERMINATE ASCIIS TABLE

KT 222282320382 80028203 0382220330382 ¢328333333332383833333333333332333333%3
320 UNLODF LLDM R44,=370,100 'SYSTEM EXTERNAL ROM TOKEN & ROM #
3370 FUMD R46,+R12 'PUSH THEM TGO THE STACK

340 FUMD R4Z,+R12 'FUSH INCOMING TOKEN TO THE STACE
350 JSE =ROMJISE 'MUST CALL THROUGH ROMJSE

Z60 DEF SCAN 'CALL SCAN FOR SYSTEM

370 BYT Q 'IT'S IN ROM O

80 RTN ' DONE

LIRS 220282333833 28233338302¢8233 3383323338323 33083 3333383333332 32232821%
400 RTPFF FUED R43Z,+Ré 'SAVE INCOMING TOKEN

410 JSR =ROMJSE 'SCAN SELECTS OTHER ROMS

420 DEF SCAN 'DO A SCAN FOR REFNUM

4730 BYT O 'SELECT ROM O

440 JER =ROMJISE

450 DEF REFNUM 'GET THE 1lrst VARIABLE REFERENCE
440 BYT O 'ROM #O

470 JEZ ERR 'JIF NOT THERE

480 JSE =ROMJISE

490 DEF GETCMA 'DEMAND A COMMA

SO0 BYT O 'ROM #0

510 JSE =ROMJSE

520 DEF REFNUM 'GET THE 2nd VARIABLE REFERENCE
530 BYT O

540 JEZ ERR 'JIF NOT THERE

550 JSE =ROMJSE

S60 DEF GETCMA 'DEMAND A COMMA

370 BYT O

580 JSE =ROMJSE

590 DEF NUMVAL 'GET THE X WVALUE

600 BYT O

8-20

Sample Binary Programs

a10 JEZ ERR 'JIF NOT THERE

620 JSE =ROMJISE

&30 DEF GETCHMA 'DEMAND A COMMA

L40 BYT O

650 JSBE =ROMJSH

&60 DEF NUMVAL 'GET THE Y VALUE

&70 BYT O

&80 JEZ ERR 'JIF NOT THERE

&0 FOBD R47,~-Ré 'RECOVER THE INCOMING TOHEM
700 LDE R46,=100 'LOAD THE ROM #

710 LDE R45,=371 'LOAD THE SYSTEM BFGM TOEEN
20 FUMD R45,+R12 'FUSH THE FARSED CODE

730 JMP GTOROM ' DONE
740 !*****X***********X********X****X********************X**#**X***X*****#

750 ERR FORD R47,-Ré& 'CLEAN UF Ré& (REMOVE TOKEN)
760 JSE =ERROR 'REFORT ERROR
770 BYT 81D 'BAD EXFRESSION
780 GTOROM GTO ROMRTN 'HAVE TO RESELECT ROM O WHEN RETURMNING FROM FARS
E
790 !X*******X*X*x************X*X****#***##*********X***X************X****
800 ERMSG BSZ ©
810 BYT 377 'NO ERROR MESSAGES
820 !******X**********XX******X**XX*****#*X*X***X**X#**X#X*X*****#**k****t
30 INIT BSZ O
840 BIN
850 LDED R34,=ROMFL 'GET REASON FOR INIT
860 JNZ INIRTN {JIF NOT FOWER ON
870 LDMD RZ4,=FWUSER 'GET FIRST AVAILAELE WORD
880 STMD RZ4,=UNBAS1 'SAVE BASE ADDRESS
a90 ADM R34 ,=20,0 ‘FLUS # OF BYTES NEEDED
900 STMD R34, =FWUSER 'RESET FIRST WORD AVAILABLE FTR
210 JSB =ROMJSE
20 DEF SCRAT+ IKE-SET UF THE BASIC FROGRAM STRUCTURE AND FTRS
0 BYT O
940 INIRTN RTN
FEH0 !**xxxxxxx*x**x*xxt*xxxxx*x**x*xx******xx*x*x*x*xxx*xxxxxxx**xxx**x**x
60 XVAL EQU O
Q70 RVAL EQU O 'INDEX INTO STOLEN RAM
80 YVAL EQU 10
290 AVAL EQU 10 VINDEX INTO STOLEN RAM
1000 !**x*x*xx#xx*x*x*xx*xx*x*xxxx*xx*xxx**x*x****x*xx*xxx*xmxxx**x*x#xx#xx
1010 BYT 241 'ATTRIBUTE FOR RECTANGULAR
1020 RTF. JSE =0NER IGET Y VALUE TO R40
1030 _LDMD R22,=UNEBAS1 'LOAD EBASE ADDRESS
1040 STMD R4O, X22, YVAL 1SAVE Y VALUE
1050 JSB =0ONER IGET X-VALUE TO R40
1060 STMD R40, X22, XVAL 1ISAVE X VALUE
1070 FUMD R40,+R12 TFUSH FOR MULTIFLY
1080 FUMD R40,+R12 'FUSH FOR MULTIFLY
1090 JSE =MFYROI IGET X2 (LEAVE ON R1Z2
1100 LDMD R40,X22,YVAL IGET Y VALUE
1110 FUMD R40,+R1Z "FUSH FOR MULTIPLY
1120 FUMD R4O,+R1Z2 'FUSH FOR MULTIFLY
1130 JSB =MFYROI 'GET Y2 (LEAVE ON R12)
1140 JSE =ADDROI IGET X*2+Y"2 (LEAVE ON R1Z2
1150 JSB =56RS 'GET SR (X24Y"Z) RADIUS
1160 FOMD R40,-R12 'RECOVER ANSWER
1170 FUMD R40,+Ré& 1SAVE RESULT FOR LATER
1180 LDMD R40, X222, YVAL 'GET Y VALUE
1190 FUMD R40,+R12 'PUSH FOR ATN
1200 LDMD F40, X272, XVAl 'GFT X VALUE
1210 FUMD R40,+R1Z FUSH FOR ATNZ

8-21

Sample Binary Programs

1220 JSEB =ATNZ.
1230 JSE =5TOSV
1240 FOMD R40,-Ré
1250 FUMD R40,+R12
1260 JSB =STOSV
1270 RTN

1280

1290 BYT 241

1300 PTR. JSB =ONER
1310 LDMD R22,=UNE
1320 STMD R40, X22,
330 JSE =0ONER
1340 STMD R40,X22,
1350 LDMD R40,X22,
1360 FUMD R40,+R12
1270 JSE =C0S510
1380 LDMD R22,=UNE
1390 LDMD. R4Q, X22,
1400 FUMD R40,+R12
1410 JSE =MFYROI
1420 FOMD R40,-R1Z
1430 FUMD R40,+Ré
1440 LDMD R40,X22,
1450 FUMD R40,+R12
1460 JSE =SIN1O
1470 LDMD R22,=UNE
1480 LDMD RS0, X22,
1490 FUMD RSO, +F12
1500 JSE =MFYROI
1510 JSE =5TOSV
1520 FOMD R4C,-Ré
1530 FUMD R40,+R12
1540 JSE =5TOSV
1550 RTN

1560

1570 BYT 241

1580 SCRE. STBD R#,=GINT
1590 LDMD R24,=UNE
1600 DCM K24

1610 LDMD R26,=LWA
1620 STM FR26,R22
1670 SEM R22,R2
1640 LDE R20,=4
1650 LDM R3Z,=LAVA
1660 UNLD1 LDMD RI6,R32
1670 ADM R3&,R22
1680 FUMD R34, +RI2
1690 DCE RZO

1700 JNZ UNLD1
1710 LDMD R3&,R32
1720 CMMD R3&,=LWA
1730 JZR UNLDZ
1740 ADM RT6,R22
1750 5TMD R3&, K32
1760 UNLDZ CLM R#

1770 STMD R#,=BINT
1780 JSE =MOVDN
1790 STED F#,=GINT
1800 RTN

1810

1620 BYT 0,54

AS1
AVAL

RVAL.

AVAL

AS1

RVAL

AVAL

AS1
RVAL

DS
AS1

MEM

IL

MEM

AR

EN

'FIND ATN2(Y,X) AND LEAVE ON R12Z
'STORE RESULT TO ANGLE VARIAELE
'RECOVER RADIUS RESULT

'PUSH FOR STORE

'STORE TO THE RADIUS VARIABLE

! DONE

13K 3K 0K K 3K K 30Kk 3K 3 KKk K K K KK 30K K oK Kk 2 oK oK KK 0K KK K K K KKK KK 30K KR K0K K KOk KK KOK K K KKK KR Kk K

'ATTRIBUTES FOR FOLAR
'GET ANGLE VALUE

'LOAD BASE ADDRESS
'STORE FOR LATER

'GET RADIUS VALUE
'STORE FOR LATER

'GET ANGLE VALUE

'FUSH FOR COS FUNCTION
'TAKE COS (ANGLE)
'.0AD BASE ADDRESS
'GET RADIUS VALUE
'FUSH FOR MULTIFLY
'GET RXCOS (ANGLE)
'GET ANSWER

'SAVE FOR LATER
'GET ANGLE VALUE
'PUSH FOR SIN FUNCTION
'TAKE SIN(ANGLE)

'LOAD BASE ADDRESS

'GET RADIUS

'FUSH FOR MULTIFLY

'GET R¥SIN(ANGLE) Y VALUE
TGTORE TO Y VARIAEBLE
'RECOVER X VALUE

'FUSH FOR STORE

'STORE TO X VARIABLE

! DONE

X VALUE

1K K KKK KK 30K 3K 3OK K K0K0KOK KKK 0K 0K0KOK 0K 30K 30K K 0K 5 K K 0K 30K 30K 3K 3K K K K010k K KOOk 0ROk KO kX KOk kX

'ATTRIBUTES FOR SCRATCHEBIN
'DISABLE INTERRUFTS

'LOAD BASE ADDRESS

'MOVE TO LAST BYTE TO KEEF
'GET END OF MEMORY (AND EBFGM)
'COFY

'GET DISTANCE TO MOVE

'1.0AD COUNTER FOR FTR ADJUST
'GET ADDRESS OF 1lrst FTR TO MOVE
'GET NEXT FTR

'ADD DISTANCE TO MOVE
'RESTORE FOINTER

'DECREMENT COUNT

'JIF NOT DONE

'GET FWERIN

'SAME AS LWAMEM?

'JIF YES

'ELSE ADJUST

! AND REFLACE

'ZERO OUT BINTAE (NO BFGM)
'MOVE MEMORY TO HIGHER ADDRESS
'RE-ENABLE INTERRUFTS

! DONE

230K 0K 30K 30K R 0K 30K KKK KK 0K 0K 30K KK 0K KK KKK 0K 0K K 0K KK KK 30K KK K0K K K0k OKOK R KKKk KoKk kKK K

'ATTRIBUTFS FOR REY DATE

8-22

1870
1840
1850
18460
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
20720
2040
2050
2(:)6(:)
2070
2080
2090
2100
2110
2120
21370

2140

REV.

DATE

L.DM
DEF

R44,=8D,0
DATE

FPUMD R44,+R12

RTN
ASC

n0S5/05/80"

Sample Binary Programs

'LOAD LENGTH OF STRING

! AND ADDRESS OF STRING
'FUSH TG STACK

' DONE

!****#************X****************#******************#**##*********X*

Ccos10
MFYROI
ADDROI
SIN1O
SRS
ATNZ.
ONER
ERROR
NUMVAL.
GETCMA
REFNUM
SCAN
sTasY
BINTAE
GINTDS
LWAMEM
LAVAIL
MOVDN
GINTEN
ROMJSE
FWUSER
UNEASL
ROMRTN
SCRAT+
ROMFL

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DaD
DAD
DAD

DAD.

DAD
DAD
DAD
DAD
DAD
FIN

53556

52722
52150
5354646
92442
76455
56215
06615
12412
13414
17025
11262
45254
101233
177401
100022
100010
37324
177400
4776
102554
4762
473744
101231

'DEFINE ADDRESSES

8-23

NOTES

8-24

N

SEcTIoN 9

THE HP-82928A SYSTEM MONITOR

The HP-82928A System Monitor is an optional plug-in module for use with the HP-83/
85 Assembler ROM. The System Monitor:

-—Permits the user to set two breakpoints in any portion of memory. Any time
either of these two addresses is referenced in any manner, an interrupt is
caused. The user can use this interrupt to examine CPU registers, status bits,
and memory locations, and to make changes, if desired.

--Permits the user to single-step and trace through the operation of code at any

point in memory.

The System Monitor may be used only in conjunction with the HP-83/85 Assembler
ROM.

SETTING AND CLEARING BREAKPOINTS

Two System Monitor commands, BKP and CLR, permit the user to set and clear

breakpoints.

The HP-82928A System Monitor

BKP System Monitor Command
Set Breakpoint

Format: BKP octal address [, select code for output]

Description: Sets breakpoint (BP) #1 or #2 at the specified address in HP-83/85
memory. If no breakpoints are set, the command sets BPI. If BP1
is already set, the command sets BP2. If BP1 and BP2 are both set,
the command resets BP2 to the new octal address; BP1 remains set at
its original address. Breakpoints can be set at any address in
HP-83/85 system RAM or ROM. Breakpoints can be cleared only by
the CLR command.

When execution is halted at a breakpoint, the B key is a typing
aid for BKP.

When the address at which a breakpoint is set is encountered during
execution of a program or a calculator mode statement, execution
halts and a block of status information is output to the device
specified by the select code. If no select code is specified, the
default is 1 (CRT IS device) at power-on, or the last select code
specified by a breakpoint.

The information output comprises the following:

Memory Contents: The contents of a specified number of RAM or ROM
Tocations are output. The output is based on the specifications in
the last MEM statement or command, if one was previously executed.
Output begins with the octal address specified in the last-executed
MEM and continues for the number of bytes specified by that last MEM.

If no MEM was executed, the default address is 0; default number of

bytes is 1008.

Output can be generated from a ROM, as specified by the ROM# in the
MEM last executed. Default ROM# is O.

9-2

The HP-82928A System Monitor

Like MEM, the output first shows the octal values of the gquantities
in the block of memory, eight bytes to a line of output, then shows
the ASCII representation of the quantities.

CPU Status Indicators: This output includes the following:

PC: The setting of the program counter (i.e., the contents of CPU
registers R4 and R5). When execution is resumed, it will begin at
the address specified by PC.

AR: Contents of the address register pointer (i.e., the current
AR).

DR: Contents of the data register pointer (i.e., the current DR).

BKPS: Addresses of breakpoints BP1 and BP2. An address of 000000
can mean no breakpoint is set or a breakpoint is set at address
000000.

OV: Status of overflow flag.
CY: Status of carry flag.

NG: Status of MSB (most significant bit), used to indicate a nega-
tive quantity.

LZ: Status of LDZ (left digit zero) flag.
ZR: Status of Z (zero) flag.
RZ: Status of RDZ (right digit zero) flag.

0D: Status of LSB (least significant bit), used to indicate an odd
quantity.

DC: Setting of DCM (decimal) flag.

The HP-82928A System Monitor

E: Contents of E (extend) register. This will be a quantity

between 0 and 178.

CPU Registers: Octal contents of all CPU registers, eight bytes to

a line of output.

Once a breakpoint has been encountered and execution is halted, the
following keys on the keyboard are active for the uses shown:

Key Use
B Typing aid for BKP command.
C Typing aid for CLR command.
M Typing aid for MEM command.
P Typing aid for PC= command.
R Typing aid for REG command.
T Typing aid for TRACE command.
[STEP] Single-step execution.
[ROLL a] Ro11 up display.
[ROLL v] Rol11 down display.
[RUN] Resume normal program execution.

[BACK SPACE]
[COPY]
[PAPER ADVANCE]

Most other keys on the keyboard are inactive at a breakpoint,
although once the entry of a system monitor command has been begun,
all alphanumeric keys are once again active to allow the full com-

mand to be entered.

9-4

Example:

The HP-82928A System Monitor

Here is a sample of a breakpoint output.

MEM ©O

026 000
45 074
070 205 123 205 127 205
TOO 202 2I0 136 262 001
T40 OI7 262 OIQ 377 321 QOO
Tbhd 012 262 231 202 261 014
036 Z0a 000 000 316 I22 QO7
055 072 230 316 034 205 117

112 205 155 071 112
106 075 065 075 044
10&6
x77

8

[RSR i y B
m
P
e

= pJ U0

F NR N-:
MEM ©

FC DR AR BEFS

003160 74 20 003157 000000
OV CY NG LZ ZR RZ OD DC E
o 0 0 1 0o 0o 1 1 00

REG

OO0 000 227 141
320 211 325 211
157 006 231 251 321 211 316
w1 212 040 000 107 211 001
015 000 000 OO0 00O 2m1 251
116 000 040 QOO 200 Q03 Q00
040 040 040 040 040 040 176
001 004 000 000 Q000 OO0 Q00

160 006 T04
015 001 001

205
073
251
251
140
140
Zlé

220

202
001
211
QOO
Q02
QOO0
(@185

Q00

Memory Contents (octal)

Memory Contents (ASCII)

PC and Breakpoint Status

CPU Register Contents

The contents of memory and CPU registers are shown with eight
succeeding registers per row; thus, the top row of the CPU register
output shows registers RP-R7, the second row R10-R17, etc.

NOTE
A breakpoint cannot be set in an instruction which em-

ploys immediate addressing.

The HP-82928A System Monitor

CLR System Monitor Command
Clear Breakpoint

Format: CLR 1 Clears BPI]
CLR 2 Clears BP2
CLR [any number except 1 or 2} Clears BP1 and BP2

Description: Clears breakpoint #1, breakpoint #2, or both breakpoints.
After a breakpoint has halted execution, C is a typing aid for CLR.

After CLR is displayed, the user can type 1 [END LINE] to clear
BP1 or 2 [END LINE] to clear BP2. After CLR is displayed, simply
pressing [END LINE] or entering any number except 1 or 2, then
pressing [END LINE], clears both BP1 and BPZ.

CLR may be used any time execution has been halted, whether or not
it has been halted by a breakpoint.

OPERATIONS AT A BREAKPOINT

After execution has halted after a breakpoint, the user can:

--Generate an output of the contents of a specified number of bytes of memory.

--Change the program counter.

--Change contents of any CPU register.

--Perform single-step and TRACE execution.

--Use [ROLL] or [SHIFT] [ROLL] to examine the CRT screen.

--Use [RUN] to resume normal execution, beginning with the memory byte currently
addressed by the program counter (PC).

9-6

The HP-82928A System Monitor

MEM System Monitor Command
Memory Dump to CRT

Format: MEM address [: ROM#] [, # of bytes] [= #, #, ...]

Description: Acts like Assembler-provided BASIC statement MEM, except that at a
breakpoint M acts as a typing aid for MEM.

PC= System Monitor Command

Program Counter Is

Format: PC= address between 0 and 177377

Description: Changes contents of program counter (CPU registers R4 and RS) to
the specified address, and dumps CPU status and memory contents
exactly as when a breakpoint (BKP) is executed.

After a breakpoint has been executed, P acts as a typing'aid for
PC=.

Wwhen execution is resumed, it will begin at the address now spec-
ified by the contents of the program counter.

This command is active only after execution has been halted by a
breakpoint.

Example: PC = 3477 Sets the PC to resume execution with byte 003477.

The HP-82928A System Monitor

REG

System Monitor Command

CPU Register Is

Format:

Description:

Example:

STEP

REG number of CPU register = value between 0O and octal 377

Changes contents of specified CPU register to specified value, and
dumps CPU status and memory contents exactly as when a breakpoint
(BKP) is executed. Value may be specified as octal, decimal, or
BCD quantity. This command is active only after execution has been
halted by a breakpoint. R acts as a typing aid for REG.

REG 35 = 31 Changes contents of register R34 to 318.
REG 36 = 19C Changes contents of register R36 to BCD 19.
REG 37 = 25D Changes contents of register R37 to 25]0.

System Monitor Command

Single-Step Execution

Format:

Description:

This command is executed with the [STEP] key.

Executes the next complete machine code instruction (not merely the
next byte), beginning with the location currently addressed by the
PC, then halts and dumps CPU status and memory contents exactly as
when a breakpoint (BKP) is executed. Active only after execution
has been halted by a breakpoint.

9-8

TRACE

The HP-82928A System Monitor

System Monitor Command

Trace Execution

Format:

Description:

TRACE octal, decimal or BCD value

Resumes execution with the next machine code instruction, and con-
tinues for the number of instructions (not bytes) specified by the
octal, decimal or BCD value.

After each instruction is executed, CPU breakpoint and partial CPU
status is output to the current CRT IS device. When execution
halts, the CPU status and memory contents are output as at a
breakpoint.

The information output after each instruction comprises the
following:

PC: The current setting of the program counter (i.e., the contents
of CPU registers R4 and R5).

DR: Current data register.
AR: Current address register.

BKPS: Addresses of breakpoints BP1 and BP2. (Because of the
internal coding of the System Monitor, the address of BP1 appears
to increase as each instruction is traced and status is output.
However, when trace execution halts, both breakpoints are reset to
their original addresses when the TRACE command was executed.)

The information output when execution halts after tracing is
exactly the same as that output at a breakpoint: that is, the
contents of the memory block specified by the last MEM statement
or command, complete CPU status, and the contents of all CPU
registers. See System Monitor command BKP for details.

9-9

The HP-82928A System Monitor

Example:

TRACE 10

Generates an output similar to the following:

QOZ161 74 2 00F14H0 OQO0O00
QOZ162 74 12 Q0T1461 QOO000
QOILES 36 12 003Z162 000000
QOZ164 Z6 2 00T1467 OQOO00
QOZ16T 36 76 QO0Z164 0O000Q0
QOZLEE T6 76 OOI1ES 000000
OO3I1467 76 76 O0OF1466 QOOOQO0
MEM O
026 000 112 205 155 071 112
345 074 106 O75 06T 075 044
Q70 205 123 205 123 205 106
JI00 202 230 136 262 001 377
340 QF7 262 O30 377 321 Q00
Te6 012 262 231 202 261 014
O3Z6 306 OO0 OO0 I1éd 322 007
035 072 230 316 O34 205 117

J m9J e<F=S5=%=

89 S F)a "2)

e v 2 01

F NR N-: N O
MEM ©
FC DR AR EKFS
QOZ170 76 76 Q03157 QO00O0QO0
Ov CY NG LZ ZR RZ OD DC E
Q Q) Q 1 i O 1 e8]
REG
OO0 000 077 211 170 004 304
T20 211 321 211 015 001 00d
157 0046 231 251 321 211 316
321 212 040 Q04 107 211 1460
015 OO0 Q000 Q00 Q00 231 281
114 000 O40 OO0 200 OQOF QOO0
040 O40 O40 040 040 040 176
001 O04 OO0 000 OO1 QOO OO0

203
075
251
251
140
140
316

220

202
001
211
QOO0
QO%
000
QO3
Q00

o
Tracing PC, DR, AR, BP1,
BP2
Memory Contents (octal)
Memory Contents (ASCII)
CPU and Breakpoint
Status
CPU Register Contents
(octal)

/

ApPENDIX A

GLOSSARY OF TERMS

Allocated program. Form of program where variable space has been allocated, vari-
able names are addresses, and line references have become addresses. An allocated

program is ready to run, and cannot be edited.

BASIC reserved word. Entry in an ASCII table. From the user's point of view, a
BASIC reserved word is an entry that has meaning for the system: it can be entered
as a command, statement, or function. From the system point of view, a BASIC
reserved word is the decompiled form of a token.

Binary program. Assembly-language program which can be loaded into the HP-83 or
HP-85 and run. A binary program should be relocatable.

Calculator mode statement. Contains BASIC statements as well as numeric or string
operations. Compare to expression.

Command. Non-programmable language element. Commands are executed immediately;
they cannot be used in a program. With the Assembler ROM installed there are two

types of commands:

--System command. Available in normal BASIC mode; these commands may or may not
be available in Assembler mode (e.g., COPY, SCRATCH).

--Assembler command. Available only in Assembler mode (e.g., BASIC, ALOAD).

Deallocated program. Form of input text rendered into tokens. Deallocated pro-
gram contains actual variable names and immediate data, and can be edited.

Effective address. Location of the ultimate, fully-computed address or destina-

tion of an instruction.

Expression. Contains purely numeric or string operations. Compare to calculator

mode statement.

Glossary of Terms

Function. Programmable BASIC language element that can be used as part of a
statement. A function, such as PI, SIN, ABS, etc., always returns a value.

HP-83/85. Applies to either HP-83 or HP-85 Personal Computer.
Instruction. Programmable assembly language element. These are of two types:

--CPU instruction. Instructions for the machine central processing unit.

--Pseudo-instruction. Instructions to the Assembler ROM at assembly time.

Label. Identifier that corresponds to an address or value.

Object code. The assembled machine code for a binary or ROM program. Object
code is ready to be run,

PC. Program counter in computer CPU hardware.
PCR. System program counter, controlled by software.

ROM program. Assembly-language program which can be burned into a ROM package
for later connection to and running on the HP-83/85. A ROM program is not

relocatable.

Source code. Instructions and pseudo-instructions before assembly, as they are
entered from the keyboard.

Statement. Programmable BASIC language element. A statement does not return a

value and cannot be used in an expression.

Token: A one-byte numeric quantity representing a keyword. A token indicates
to the machine the addresses of the ASCII entry, runtime routine, and parse
routine (possibly implied) associated with the keyword. Each token also has
associated methods of allocation, deallocation, parsing, and decompiling.

A-2

Glossary of Terms

Variable. A numeric value which may be assigned to a label. Variables can be
simple numeric, array, or string; if numeric, they can be real, short, or integer.

A-3

NOTES

A-4

ApPENDIX B

SYSTEM HARDWARE DIAGRAM

cPU
4\
INTERNAL BUS
i Y Y Y Y Y Y
4 KEYBOARD
CRT PRINTER N 170 8K X8 canTrIoGE | [CONTROLLERL| cocnyen
CONTROLLER| |CONTROLLER| |onTROLLER BUFFER SYSTEM vl s &
ROMS TIMERS
A A A A
Y Y Y y Y
8
CARTRIDGE
PRINTER 16K X 1 v
CRT MECHANISM DYNAMIC e KEYBOARD
RAMS
EXTERNAL BUS
Y \ \
EXTERNAL 8K X 8 1/0
RAM EXTERNAL INTERFACE
CONTROLLER Y ROMS CARDS
] OTHER
/0
\
8
16K X 1
DYNAMIC
RAMS

B-1

NOTES

AppenDIX C

ASSEMBLER INSTRUCTION SET

On the following pages is a list of all CPU instructions available on the

Assembler ROM.

LEGEND
DR

AR

Literal

Label

Clock Cycle

PC

Data register. Can be register number (e.g., R32), R* or R#.

Address register. Can be register number (e.g., R32), R* or
R#.

Literal value, up to 10g bytes in length. Can be BCD constant
(e.g., 99C), octal constant (e.g., 12), or decimal constant
(e.g., 20D). Can also be specified by a label, where the

literal quantity is a one- or two-byte value or address
assigned to the Tabel.

Address of literal quantity. Label name must begin with an

alphabetic character, can use any combination of alphanumeric
characters, and can be 1-6 characters in length.

1.6 upsec.

Number of bytes.

Add one clock cycle if true (i.e., the jump occurs).
CPU register addressed by (x).

Memory location addressed by (x). (x) must be a 16-bit
address.

Program Counter. CPU registers R4 and R5. Used to address

the instruction being executed.

Assembler Instruction Set

SP

EA

ADR

JIF

Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return

address stack.

Effective Address. The location from which data is read for
Toad-type instructions or the location where data is placed
for store-type instructions.

Address. The two-byte quantity directly following an instruc-
tion that uses the literal direct, literal indirect, index
direct or index indirect addressing mode. This quantity is
always an address.

Literal value.

Is transferred to.

Contents of.

Complement (e.g., x is complement of x). This is one's com-
plement if DCM=0 and nine‘s complement if DCM=1.

Logical AND.

Inclusive OR.
Exclusive OR.

Jump if.

Status bit is set.
Status bit is cleared.

Status bit is affected.

c-2

Assembler Instruction Set

- Status bit is not affected.

Y This option is available to this instruction.

The complete Tist of CPU instructions begins on the next page.

c-3

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing { OpCode | Clock Oprrration NCM=P NCM=1 8CD
Format Mode Cycles RDZ e, puiermnen, | Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
ADB DR, AR |Add byte Reg. imm. 302 5 DR<DR+AR X X X X - - X X - X 0 Y
ADB DR, = Add byte Lit. imm. 312 5 DR«DR+M(PC+1 X X X x - - X X - X a Y
literal
ADBD DR, AR |Add byte Reg. dir. 332 6 DR«DR+M(AR) X X X x - - X X - X 0 Y
ADBD DR, = []Add byte Lit. dir. 322 5 DR«DR+M{ADR) X X X X - - X X - X 0 Y
label
ADM DR, AR |Add multi- Reg. imm 303 4+8 DR+DR+AR X X X X - - X X - X 0 Y
byte
ADM DR, = Add multi- Lit. imm. 313 4+B DR<DR+M(PC+1)} X X X X - - X X - X 0 Y
literal byte
ADMD DR, AR |Add multi- Reg. dir. 333 5+8 DR<DR+M{AR} X X X X - - X X - X 0 Y
byte
ADMD DR, =]Add muiti- Lit. dir. 323 448 DR+DR+M(ADR} X X X X - - X X - X 0 Y
label byte
ANM DR, AR {Logical AND Reg. imm 307 4+B DR<DR"AR X X X x - -0 0 -0 0
(multi-byte)
ANM OR, = Logical AND Lit. imm. 317 448 DR+DR ‘M(PC+1), X X X X - -0 0 -0 0
literal |(multi-byte)
ANMD DR, AR JLogical AND Reg. Dir. 337 5+8 DR<DR-M(AR} X X X X - -0 0 -0 0
(multi-byte)
ANMD DR, = {logical AND Lit. dir 327 5+B DR<DR*M(ADR) X X X X - -0 0 - 0 0
literal |{(multi-byte)
ARP AR Load ARP 000-077] 2 ARP+n - - - e - - - - - - -
(#001)
ARP 1 Load ARP with 001 3 ARP+R@ - - - - = - - - - - -
contents
of RY
| :[o] Set BCD mode 231 4 DCM«1 - - - - 1 - - - - - -
IBIN Set binary 230 4 DCM<0 - - - - 0 - - - - - -
mode
CLB DR Clear byte Reg. imm. 222 5 OR+0 X X X X - -0 0 - 0 0
CLM DR Clear multi- |Reg. imm. 223 448 DR<Q X X X X - -0 o -0 0
byte
CLE Clear E 235 2 E«<0 - - - - - 0 - - 0 - -
CMO DR, AR [Compare byte |Reg. imm. | 300 5 JureARel X X X X - - X X - x 0 Y

C-4

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing | OpCode | Clock Operation DCM=p DCM=1 BCD
Format Mode Cycles RDZ St e, | Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
<+
CMB DR, = Compare byte | Lit. imm. 310 5 DRAM(PC+1)+1 X X X X - - X X - X 0 Y
literal
CMBD DR, AR | Compare byte [Reg. dir. 330 6 DRM AR} +1 X X X X - - X X - X 0 Y
CMBD DR, = |Compare byte | Lit. dir. 320 6 DR+M{ADR)+1 X X X X - - X X - X 0 Y
label
CMM DR, AR | Compare Reg. imm. 301 448 DR+AR+1 X X X X - - X X - X 0 Y
multi-byte
CMM DR, = Compare Lit. imm. 3 4+4B DR+M{PC+1)+1 X X X X - - X X - X 0 Y
literal [multi-byte
CMMD DR, AR | Compare Reg. dir. 331 5+8 DR+M{AR)+1 X X X X - - X X - X 0 Y
multi-byte
CMMD DR, = | Compare tit. dir. 321 5+8 DR+M{ADR) +1 X X X X - - X X - X 0 Y
label multi-byte
0c8 DR Decrement Reg. imm. 212 5 DReDR-1 X X X X - - X X - X 0 Y
byte
DCM DR Decrement Reg. imm. 213 448 DR<DR-1 X X X X - - X X - X 0 Y
multi-byte
DCE Decrement E 223 2 E<E-1 - - - - - X - - X - -
DRP DR Load DRP 100-177 2 DRPen - - - - - = - - - - -
(#101)
DRP 1 Load DRP with 101 3 DRP<R@ - - e - - - - - - - -
contents
of RY
ELB DR Extended left] Reg. imm. 200 5 Circulate DR X X X X - - X X X0 0 Y
byte left once
ELM DR Extended left] Reg. imm. 201 4+B Circulate DR X X X X - - X X X 0 0 Y
multi-byte left once
ERB DR Extended Reg. imm. 202 5 Circulate DR X X X X - - X 0 X 0 0 Y
right byte right once
ERM DR Extended Reg. imm. 203 4+B Circulate DR X X X X - - X 0 X 0 0 Y
right right once
multi-byte
1C8 DR Increment Reg. imm, 210 5 DR+DR+1 X X X X - - X X - X 0 Y
byte
ICM DR Increment Reg. imm. 211 4+B DR<DR+1 X X X X - - X X - X 0 Y
multi-byte

C-5

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing] OpCode | Clock Operation DCM=¢ DCM=1 BCD
format Mode Cycles RDZ et rrnns, pues, | Option
LSB MSB LDZ Z OCM E CY OVF E CY OVf
ICE Increment E 234 2 E+E+1 - - - - - X - - X - -
JCY label Jump on carry 373 44T JIF«CY=1 - L - - - -
JEN label Jump on E 370 4+T JIF E#0000 - T - - - -
non-zero
JEV label Jump on even 363 4+7 JIF LSB=0 - - - - - - - - - - -
JEZ label Jump on E 3N 44T JIF E=0000 - e e e e - - - - - -
zero
JLN label Jump on left 375 44T JIF LDZ#1 - - - - - - - - - - -
digit
non-zero
JLZ label Jump on left 374 44T JIF LDZ=1 - - - - e - - - - - -
digit zero
JMP label Unconditional 360 4+T Jump always - - - - - - - - - - -
Jump
JNC label Jump on no 372 44T JIF CY=0 - . - - - -
carry
JNG Jabel Jump on 364 44T JIF MSBFOVF - - - - - - - - - - -
negative
JNO label Jump on no 361 44T JIF OVF=0 - - - e e e - - - - -
overflow
JNZ Jabel Jump on 366 44T JIF 2#1 - - - - - - - - - - -
non-zero
JOD Jabel Jump on odd 362 44T JIF LSB=1 - - - - - - - - - - -
JPS label Jump on 365 4+T JIF MSB=0VF - - - - - - - - - - -
positive
JRN label Jump on right 377 44T JIF RDZ#1 - - - - - - - - - - -
digit
non-zero
JRZ label Jump on right| 376 4+7 JIF RDZ=1 - - - - = - - - - - -
digit zero
JsB=label | Jump Literal 316 9 Jump e e e e e e e e e
subroutine] direct subroutine
JsB XR, Jump Indexed 306 11 |oump - e e e - oo e e .-
label subroutine subroutine
indexed

C-6

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing | OpCode | Clock Operation DCM=¢ DCM=1 BCD
format Mode Cycles RDZ e, pumet e, | Option
LS8 MsB LDZ Z DCM E CY OVF E CY OVF
JZR label Jump on zero 367 44T JIF 2=1 - - - e - - - - - - -
LDB DR, AR | Load byte Reg. imm. 240 5 DR+AR X X X X - -0 0o - 0 4]
LDB DR, = Load byte Lit. imm. 250 5 DR+M(PC+1) X X X X - -0 0 -0 0
literal
LOBD DR, AR | Load byte Reg. dir. 244 6 DR+M(AR) X X X x - -0 0o -0 0
LDBD DR, = | Load byte tit. dir. 260 6 DR«M(ADR) X X X X - -0 0 -0 0
label
LOBD DR, Load byte Index dir. 264 8 DR+M(ADR+AR) X X x X - -0 0 -0 0
XAR,
1abel
LDBI DR, AR | Load byte Reg-indir. 254 8 DR+M(M(AR}) X X X X - -0 o -0 0
LDBI DR, = | Load byte Lit. indir. 270 8 DR<M(M{ADR)) X X X X - -0 ¢ - 0 0
jabel
LDBI DR, Load byte Index indir] 274 10 DR«M(M(ADR+ X X X X - -0 0 -0 0
XAR, AR))
label
LDM DR, AR | Load Reg. imm. 241 448 DR<AR X X X X - -0 0 -0 0
multi-byte
LOM DR, = Load Lit. imm. 251 448 DReM(PC+1) X X X X -« -0 0o -0 0
literal |multi-byte
LDMD DR, AR| Load Reg. dir. 245 5B DR<M{AR) X X X X - -0 0 -0 0
multi-byte
LDMD DR, = { Load Lit. dir. 261 5+8 DR<M(ADR}) X X X X - -0 0 -0 0
labe] multi-byte
LDMD DR, Load Index dir. 265 7+B DR<M(ADR+AR) X X X X - -0 o -0 0
XAR, multi-byte
label
LDMI DR, AR| Load Reg. indir. 255 7+8 DR«M(M(AR}) X X X X - -0 6 -0 0
multi-byte
LDMI DR, = | Load Lit. indir.] 271 74B DR<M(M(ADR)) X X X X - -0 0o -0 0
label multi-byte
LDMI DR, Load Index indir} 275 948 DR-M{M{ADR+ X X X X - -0 g -0 0
XAR, multi-byte AR))
label

c-7

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing | OpCode] Clock Operation OCM=0 DCM=1 BCD
format Mode Cycles RDZ ———— p—— Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
L8 DR Logical left |Reg. imm. 204 5 Logical left X X X X - - X X X0 0 Y
byte shift DR
LLM DR Logical left |Reg. imm. 205 448 Logical left X X X X - - X X X 0 0 Y
multi-byte shift DR
LRB DR Logical right | Reg. imm. 206 5 Logical righyg X X X Xx - < X 0 X 0 [Y
byte shift DR
LRM DR Logical right | Re. imm 207 4+B Logical right X X X x - - X 0 x 0 0 Y
multi-byte shift DR
NCB DR Nine's Reg. imm. 216 5 DR-DR X X X X - - X X - X 4} Y
(or one's)
complement
byte
NCM DR Nine's Reg. imm. 217 448 |DR-DR X X X X - - X X - X 0 Y
{or one's)
complement
multi-byte
ORB DR, AR |Or byte Reg. imm. 224 5 DR-DR AR X X X X - -0 o -0 4}
inclusive
ORM DR, AR |Or multi-byte)] Reg. imm 225 4+B DRe DR~AR X X X X - -0 0o -0 0
inclusive
PAD Pop ARP, DRP 237 8 Status«M(SP) X X X X X - X X - X X
and status
from stack
POBD DR,+AR | Pop byte with] Stk. dir. 342 6 DR«M{AR), X X X X - -0 0 -0 0
post- AR-AR+1
increment
POBD DR,-AR | Pop byte with| Stk. dir. 340 6 DR-M(AR}), X X X X - -0 0o -0 0
with AR-AR-1
pre-decrement
POBI DR,+AR | Pop byte with| Stk. indir.| 352 8 DR-M(M{AR)), X X X X - -0 0 -0 0
post- AR+AR+2
increment
POBI DR,-AR | Pop byte with| Stk. indir.| 350 8 DReM(M{AR)),] X X X X - -0 0 -0 0
pre-decrement AR<AR-2
POMD DR,+AR| Pop multi- Stk. dir. 343 5+8 DR<M(AR) , X X X X - -0 0 -0 0
byte with AR-AR+M
post-
increment

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing | OpCode Clock Operation DCM=P DCM=1 BC_[)
Format Mode Cycles RDZ v, e, | Option
LSB MSB LDZ Z DCM E CY OyF £ CY OVF
POMD DR,-AR | Pop multi- Stk. dir. 341 5+B DR<M(AR}, X X X x - -0 0 -0 1}
byte with AR-AR-M

pre-decrement

POMI DR,+AR | Pop multi- Stk. indir.|] 353 7+8 DR-M(M(AR)), X X X X - -0 0 -0 0
byte with AR-AR+2
post-
increment

POMI DR,-AR | Pop multi- Stk. indir.} 351 748 DR-M(M(AR)), X X X X - -0 g -0 0
byte with AR-AR-2

pre-decrement

PUBD DR,+AR | Push byte Stk. dir. 344 6 M{AR)<DR, X X X X - -0 0o -0 0
with post- AR<AR+1
increment

PUBD OR,-AR | Push byte Stk. dir. 346 6 AR<AR-1, X X X X - -0 0o -0 0
with pre- M{AR)«DR
decrement

PUBI DR,*AR | Push byte Stk. indir.|] 354 8 M(M{AR))<DR, X X X X - -0 0 -0 0
with post- AR+AR+2
increment

PUBI DR,-AR | Push byte Stk. indir. 356 8 AR-AR-2, X X X %X - -0 0 -0 0
with pre- M(M(AR) }<DR
decrement

PUMD DR,+AR } Push multi- Stk. dir. 345 5+B M(AR)}<DR, X X X x - -0 o - 0 0
byte with AR-AR+M
post-
increment

PUMD DR,-AR | Push multi- Stk. dir. 347 548 AR<AR-M, X X X x - -0 o -0 0
byte with M(AR)<DR

pre-decrement

PWMI DR,+AR | Push multi- Stk. indir.| 355 7+B M(M(AR))<DR, X X X X - -0 0o -0 0
byte with AR<AR+2
post-
increment

PUMI DR,-AR | Push multi- Stk. indir.}] 357 748 AR<AR-2, X X X x - -0 o -0 0
byte with M(M{AR) }+DR

pre-decrement

RTN Subroutine 236 5 SP<Sp-2, - P T - - - -
return PC+M(SP)
SAD Save ARP, DRP 232 8 M(sP)«Status} - - - - - - - - - - '~
and status on
starck

Assembler Instruction Set

Status
Binary/
Instruction | Description { Addressing | OpCode | Clock Operation DCM=P DCM=1 8CD
Format Mode Cycles RDZ e, g, | Opt ion
’ LSB MSB LDZ 2 DCM E CY OVF E CY OVF
SBB DR, AR |Subtract byte| Reg. imm. 304 5 DR+DR+AR+1 X X X X - - X X 0 \
SBB DR, = Subtract byte| Lit. imm. 314 5 DR«DR+M{PC+TY X X X X - - X X 0 Y
literatl +1
SBBD DR, AR |Subtract byte | Reg. dir. 334 [DR«DR+M{AR}+ X X X X - - X X 0 \
SBBD DR, = |Subtract byte| Lit. dir. 324 6 DR+DR+M{ADR} X X X X - - X X] Y
labe) +1
SBM DR, AR |{Subtract Reg. imm. 305 4+B DR+DR+AR+1 X X X X - - X X 0 Y
multi-byte
SBM DR, = Subtract Lit. imm. 315 4+8 DR<DR+M{PC+I] X X X X - - X X 0 Y
literal |multi-byte +1
SBMD DR, AR |Subtract Reg. dir. 335 5+8 DRDR+M{ARK1] X X X X - - X X 0 Y
multi-byte
SBMD DR, = |Subtract Lit. dir. 325 5+8 DR+~DR+M{ADR) X X X X - - X X 0 Y
literal [multi-byte +1
STB DR, AR |Store byte Reg. fmm. 242 5 DR+AR X X X X - -0 0 0
STB DR, = Store byte Lit. imm. 252 5 DR+M(PC+1) X X X X - -0 0 0
literal
STBD DR, AR |Store byte Reg. dir. 246 6 DR>M{AR) X X X x - -0 0]
STBD OR, = |Store byte Lit. dir. 262 6 DR+M{ADR) X X X X - -0 0 0
label
STBD DR, Store byte Index dir. 266 8 DR*M(ADR+AR) X X X X - -0 0 0
XAR,
label
STBI DR, AR | Store byte Reg. indir.| 256 8 DR+M(M(AR)) X X X X - -0 0 0
STBI DR, = |Store byte Lit. indir.| 272 8 DR-+M(M(ADR)) X X X X - -0 0 1}
tabel
STBI DR, Store byte Index indir| 276 10 DR+M{M(ADR+ X X X X - -0 0 0
XAR, AR))
label
STM DR, AR | Store multi- | Reg. imm. 243 448 DR+AR X X X X - -0 0 0
byte
STM OR, = Store multi- | Lit, imm. 253 4+B DR-M(PC+1) X X X X - -0 0 0
literal byte
STMD DR, AR | Store multi Reg. dir. 247 5+B DR+M(AR) X X X X - -0 0 1}
hyte

Assembler Instruction Set

Status
Binary/
Instruction § Description Addressing | OpCode | Clock Operation DCM=@ DCM=1 BCD
Format Mode Cycles RDZ e, e, | Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
STMD DR, = |Store multi- Lit. dir. 263 5+B DR-+M(ADR) X X X X - -0 0o -0]
1label byte
STMD DR, Store multi- } Index dir. 267 7+B DR-M(ADR+AR} X X X X - -0 c -0 0
XAR, byte
label
STMI DR, AR] Store multi- Reg. indir.] 257 7+B DR+M{M(AR)) X X X x - -0 ¢ -0 0
byte
STMI DR, = |Store multi- | Lit. indir.] 273 7+B DR-+M(M(ADR)) X X X X - -0 0 - 0 0
label byte
STMI DR, Store multi- | Index indir] 277 948 DR+M(M(ADR+ X X X x - -0 o0 -0 0
XAR, byte AR})
label
TCB DR Ten's (or Reg. imm. 214 5 DR+DR+1 X X X X - -0 0 -0 0 Y
two's)
complement
byte
TCM OR Ten's (or Reg. imm. 215 4+8 DR«DR+1 X X X X - -0 0 -0 0 Y
two's)
complement
multi-byte
TSB DR Test byte Reg. imm. 220 5 Test DR X X X X - - X x - X 0 Y
TSM DR Test multi- Reg. imm. 221 4+8 Test DR X X X X - =X X - X 0 Y
byte
XRB DR, AR | Or byte Reg. imm. 226 5 DR<DR @ AR X X X X - -0 0o -0 0
exclusive
XRM DR, AR | Or multi-byte| Reg. imm. 227 4+B DR*DR ® AR X X X X - -0 o -0 0
exclusive

NOTES

ApPENDIX D

ASSEMBLER INSTRUCTION CODING

The chart below shows how the CPU instructions appear when assembled into machine
language object code by the computer.

7 6 5 4 3 2 1 0
0 DRP/ #000001 Load with literal
ARP =000001 Load with R@
Logical/ .
1 0 0 0 0 Extended Right/Left M/B
Decrement/
! 0 0 0 ! 0 Increment M/B
Nine's Complement/
1 0 0 0 1 ! Ten's Complement M/B
1 0 0 1 0 0 Clear/Test M/B
1 0 0 1 0 1 XOR/OR M/B
1 0 0 1 1 000 BIN
001 BCD
010 SAD
o DCE
100 ICE
101 CLE
110 RTN
m PAD
1 0 1 000 REG IMM Store/Load M/B
001 REG DIR
010 LIT IMM
011 REG IND
100 LIT DIR
101 INX DIR
110 LIT IND
m INX IND
1 1 0 00 REG IMM 00 CMP M/B
01 LIT IMM 01 ADD
10 LIT DIR 10 SUB
1 REG DIR 11 AND 1
1 1 0 00 INX 11 JSB 0
01 LIT
IND/ PUSH/ -ADR/
1 ! ! 0 DIR POP +ADR M/B
1 1 1 1 000 JINO/ IMP
001 JEV/JOD
010 JPS/JNG
on JZR/INZ
100 JEZ/JEN
101 JCY/JNC
110 JLN/JLZ
i JRN/JIRZ
X/Y = 1/0

NOTES

AppeNnDIX E

ASCIT TABLE

The following is a table of all the ASCII keycodes on the HP-83/85.

NOTE
The keycodes used in the HP-83/85 are very close to, but in some cases
not exactly the same as, ASCII codes.

KEYCODE ASCII KEYCODE ASCII
QEvC acT CHE EEY [acT CHE KEY

%) @ 4 ctrl ® 47 =7 < -
1 1 o ctrl H 4% 5@ B 5]
2 2 = ctrl E 49 a1 1 1
3 3 M ctrl © =1t} a2 e =
4 4 i3 ctrl O =1 &3 3 2
5) 1= ctrl E Sz od 4 4
& & r ctrl F 53 &5 5 S
rd v i ctrl G S BE & &
2 i@ & ctrl H 55 &7 7 7
= 11 a ctrl 1 5¢ =) = &
1a 12 1T ctrl J a7 F! e =
11 13 # ctrl E Sa 7 : :
1z 14 u ctrl L 59 V3 i i
13 15 ctrl M &8 V4 < e
14 16 T ctrl M &1) = =
15 17 $ ctrl 0 LS TE *
le 28 d ctrl F &3 77 2 >
17 21 ¥} ctrl i &4 106 ® ©
13 22 & ctrl E &5 1ai H A
13 232 N ctrl S &6 162 [E
e 24 A ctrl T &7 183 C C
21 25 A ctrl u 58 194 o D
22 26 J. ctrl W B9 185 E E
23 27 n} ctrl W ra 186 F F
24 26 & ctrl X 71 187y G G
25 1 i ctrl ¥ T2 11@ H H
26 2z i ctrl 2 73 i1t I I
27 23 1 ctrl C 74 112 A N
28 34 * ctrl ™~ =] 112 (4 K
25 25 z ctrl 1 TE 114 L L
28 3G £ ctrl -~ i 115 4] M
21 27 # ctrl _ 7 116 N H
32 4 SPRCE 7e 117 0 J
i3 41 | 1 28 12e F F
24 s " * g1 121 7] 7]
is 473 # # 22 122 F F
Ky 44 ¥ k3 27 123 s 5
v 15 % e &4 124 T T
an 45 % H 25 129 L]
29 47 ! =1 126 iy i\
40 SiE ‘) 27 127 0] W
41 51 ! 3 S8 124 = "
4z Sz * * 35 131 W Y
43 53 + + a9 1322 Z Z
44 54 21 133 C C
45 55 - - Gz 1324 - >
46 S5 93 135 1 3

E-1

ASCII Table

KEYCODE ASCII KEYCODE ASCII

QEC i CHE EEY QEC OcT LHE KEY
94 136 ~ - 161 241 T UP CURSOR
9s 137 _ - 162 242 v DOWN CURS
96 146 : s KEY LABEL 163 243 # INS. RPL
7 141 a 5 164 244 3 DEL CHR
98 142 b b 165 245 X HOME CURS
93 143 c c 166 246 & RESULT
188 144 d d 167 247 L

181 145 e e 168 258 < DELETE
162 146 f § 163 251 3 STORE
183 147 2 3 1786 252 Y LOAD
124 158 h h 171 253 +

1es 151 i i 172 254 - AUTO
186 152 3 J 173 255 = SCRATCH
187 153 k k 174 256 -

185 154 1 1 175 257 2

189 155 m " 176 z6@ 8

11e 156 fi r 177 261 1

111 157 o o 178 262 z

112 160 P F 179 263 z

112 161 a a 188 264 4

114 162 r r 181 265 s

115 163 = s 182 266 &

116 164 t t 1283 267 Fl

117 185 " u 184 27@ 2

118 186 W v 185 271 3

119 167 u W 126 z72 =

1z@ 176 » ¥ 1&7 zZ73 i

121 171 ¥ v 188 274 <

12z 1vz z z 189 275 =

122 173 " 5 s 19@ 276 >

124 174 : : 191 277 2

125 175 » 5 - 192 2088]

126 17€ z s ¥ 192 361 B

127 177 F s + 194 382 E

123 20e 4 K1 195 3283 C

128 zaet & K2 196 294 o

136 282 z K3 197 385 E

131 zaz i K4 198 20¢ E

132 294 9 KS 199 z@7 G

1323 z@5 & K& ze@ 31@ H

134 286 C (7 ze1 311 L

135 zavy a K8 282 312 4

136 21@ & REW 283 313 K

137 211 a COPY z04 3214 L

138 212 T PAFER ADY zas 215 i

133 213 a RESET zBe 316 N

148 214 v INIT ey 317 Q

141 215 _ RUN 208 329 E

142 Z1& T PAUSE 283 321 Q

142 217 3 CONT 21 3z2 E

144 228 g STEF 211 323 3

145 221 2 TEST 212 324 I

146 222 & CLR SCREEM 213 3225 i

147 223 a GRAPH 214 326 Y

148 224 a LIST 215 327 W

149 z25 8 PLIST 216 23@ %

156 226 i KEY LRABEL 21y 321 ra

151 zz7 a 215 332 Z

152 23@ & 213 333 C

153 231 0 BRACKSPACE 228 334 s

154 232 0 END LINE 221 335 1

155 233 £ FRAST BCKSP 22z 336 ~

156 234 & LEFT CURS 223 337 -

157 235 z RIGHT CURS 224 240 >

156 236 £ ROLL UP 225 341 a

158 237 ¥ ROLL DOWN 226 242 b

166 240 CLR LINE 227 243 c

E-2

ASCII Table

KEYCODE

—

KEYCOO ASCII

xI
R
D

L-

LA

1N E
\E acT ‘H EE'Y QEC ac CHE KEY
22s 244 d 242 oy r
229 245 -3 243 363 =
232n 24¢ t 244 Jod 1
231 247 -2 245 365 u
23z 258 tr 24c 366 ¥
232 251 1 247 387 W
234 35 1 2438 378 X
235 3353 |3 249 271 z
236 354 L 256 272 b
237 355 0 251 2732 1
23s 256 tL 252 74 L
233 257 =1 =53 275 >
246 260 E. 254 376 =
241 361l 3 255 377 |l

NOTES

_/

ApPeENDIX F

TABLE OF TOKENS AND ATTRIBUTES

The following is a table of the system tokens and attributes used in the HP-83

and HP-85.
EH RTTRIB
0,44

TINE HAME T O
EFRORS CRROR

ey

L e o

Talg . ®

p T T

]

E g

DEF FTSYL SRRy i 0,

LEF SYAaDFR HEY 2 o,

LEF FTSTL STRYAR 3 0,

CEF TOONET RERNL DOHET 4 0.4

LEF SCOMST TRUOTED STR S o,

DEF SCONET JHEDOT 3TR o 0, S

DEF ZTOST BT2 STRING 7V r.3
LEF STOSV STORE 54 10 o, 3
HEF AYRDR 1-0IM Abe i 0,2z
CEF avabkd 2=-01M ADE 12 ., 3

S8

DEF AvvRL1 t-0IM YALUE 13 i,
DEF AYYALZ 2-DIM YALUE 14 4,32
LEF ERRORE TRRRIAGE RTHI13S 0,44
GEF GORTH ENDETMT 1 .

DEF ERRORR LLpMY 17 0, g
CES ERRDRR DUMPY &a 0,94
GEF FTALE SHY ADR 21 0,
LEF SYADR+ b AR = i,
LEF FTSTLE SHYE STR

DEF STOSWHM MULTI ST

I
T

R

[SR NN A P Y S I 4%
i

3

24 1,473
DEF ZTOSTH MULTI 3T0s 25 0,4
DEF FHCAL. FUMOTION CL 26 a,
GEF FHCALE ATk FUNC CL 27 0,
CEF JTRUE# GMFTRUE 24 a, 7
UEF ERRUIREE TLLEGHL ZHD 3t i, 4
DEF IHTTON IWHT CONET 32 i,z
CEF JFRLSE GMEPOFALSE 23 o, 11
eEF JMPREL 4P REL 24 0,28
DEF SUBSTH 1 DIM ZUBLT IS .74
LGEF SUBSTZ Z DIM SUBRST 36 0,34
DEF EJMPH ELOE J# 37 0,25
HEF ERRIREX CrubtEy 411 0,44

ERRORX Oy 41 U, 44
FHARAY fAreay PRINT#42 0, 26
ERFIORM DAY 343 0,494
REARAY Frray READH 44 0,44
ERRDRY : 45 0,44
CONEA ., SOMCAT 4 7,53
HOP4T : 47 o,z
ERROREX ‘ 50 1,44
EREORK 3 1 n, a4
MPYRO] + ag 12,51
RODROT + 53 LR
ERRORX . 54 0,4
SUBROI DIRDIC gt V.5
ERRORA . SE o,

T

Sl i W e e o
FIM MmO momom W
T T M M M T T

AREEE]

o

Ty

o TE T Ny T
mmmm T m

vy

Table of Tokens and Attributes

DEF DIVW2

CEF UHEQ. "
LEF LERQ, i =
DEF GEW. =

2

LEF UNEG. L
CEF EQ. =
DEF GR, >
DEF LT, 4 m3
CEF ATSIGH] 1o
CEF NHERR, M EREDR 11
GEF OFFER. OFF ERROK 102
DEY ONKEY. o KEY# 103
DEF OFKEY. OFFE EEY 104
DEF RAUTO. FOIT G LI
nEF BEEF, BEEFR 105
CEF CLEAR, CLEAR 107
DEF DOHT I, ST 110
DEF ONTIM. UM TIMER# it
DEF IMIT. IHIT TR
EF LIST. LIsT P13
DEF ePLOT, EPLOT 114
DEF STIME. SET

DEF ERRORXY
DEF ERRORX
DEF REQADH,
UEF RENAM, REMNAME
CEF ALPHA, FALPHA
CEF CRT, CRT Iz
BEF RUM. U
CEF DES, DEG
CEF DIsF. LIaF
HEF GCOLE. SULEAR
DEF SCRAT., SCRATCH
CEV DEFA+, DEFQULT 0N
CEF JMPLN# SOTR

DEF JMPZUER SOSUR

DEF PRMTH#H, FRIMT #
LEF GRAD. SRuab

GEF GRAPH, GRAPH

DEF INPUT, INFUT

DEF IDRAW, IRl

LDEY FNLET. LET FH

OEF MHOP, WET

CEF PRELL. FRIMT ALl
CEF CAT, CRT

S7 12,51
CEF YTHD & 14,51
DEF UNEQs. # 51 5,53
EF LERF. = & &,373
BEF RERSF. = £32 5,53
DEF UNEQZ. < &4 B,a3
EF ERS, = RS 6,53
DEF GR%., x EF 5,57
DEF L7T%, 3 a7 B, S3

DEF CHEROI - MOWARDIC Py

i

2

3

3

5

R NI I

i I Y

S

— -

PO PD B3 RD oo

o Ee O P

D £ I OUNE IS i LR SR e RS BN 1Y

G, =41
0, 141
0,24
0,210
I
n,zay
a,z241
0,241
iV, Z41
0,341
6,217
n, 41
i, 241

0,241

B et i T o T T e S S U VA U ORI e
PR A &Y

£ b B ot G G D el G G G PP P

o G PO —

PN

Table of Tokens and Attributes

GEF DRAW. DRA i45 0,241
GEF OH., M 146 0,230
DEF LABEL. LABEL 147 0,241
REF WAIT. WalT 0,549
DEF PLAT. ELOT a, 241
HEF PRINE, PRINTER I
F PRINT PRINT
FORAD. Fab

F ORNDIZ, RANDOMIZE
GEF READ. RERD

DEF STORB. STNRE BIN

]

[

2 0,E441
30,24
4 Q0,241
5 0,241
& 0,&49
G

f

4

s

PR O B O I I I

0,241

LEF RESTO. RESTORE £ 0,241
DEF RETRHN. RETURHM @ o, 241

0,241

b

EF OFTIM. OFF TIMER#

EF MGYE. MO E 0,241
EF FLIF. FLIF 18 0,241
UEF STOP. STOP 165 0,243
LEF ERRORY ERROR 1aé 0,94
LEF PEHUFP, PEMUP Ta7 0,244
CEF TRIVE, TRACE wREBL 170 0,241
LEF TRCAL. TRACE ALL 171 0,241
DEF HAKIS, RACER 172 0,o41

S N S ey

fas]

PEF YAXIS. (7E 0,244
FoLOEY. T4 0,2

FONORMA ., HORMAL 175
EFAST. ERASE TAFE 176
SKIPI IHTESER 177
SKIPS SHORT 200
BELET
STHLE, SCALE za
SRIPY REMERK 203
apTIaR. DETION BAZE 204
SKIPn COM e} b
SKIFEN DRTH 20A
SKPOEF LEF FH 207
SKIPD R 210
EEYLHA. nEY LAREL 211
STOaR. EH 212
FHRTH. FH OEHD 213
FOR, FOR 214
ERRORET IF 215
SKIPIT IMRAGE 21& 1y
HEXT. HEH®T 17 0,341
ERROR FRREOR
ERRORT LET CIMPLY D
ASIGHN, HRETGH
CRERT, CREKTE
PURGE . FURGE
REWIN, REWIHD
LaRDB, LwbDRIN
PrUsE, FRUSE
FRRDRY FRROR

SKIPR RES.L.

FEHUM, FEH

T

! £~
T mm
¢

.
o1

e
-
[

e

m
~
T
—
an}
P
o]
—

T

oy or

1M MM momom
Y‘T|Y]

Eo S S pet L o e
R

T T

i
‘1

3
'Y‘ 'Ti

ot

T TR D

e

e

Tt A Dl D — o
s
By

R

i
o

~

I3

£

—

13

=

FOU LR OB
s Ja

—

T
b}
i
I

el .
mmTammmmameymmmimmimn
M

[EPR LKIS (i OO S5 L3 O GO T E I NI O O O i A
[ASE 7S IS (O3 (NN LU B LS B AN I VI RN

v m
AN
£

L]

F-3

Table of Tokens and

HEF
LEF
pEF

T

R

)

B
£
E
£
DE
E
E
E
£

T T

Attributes

SKIPT
DEFR-,
PEHN.
PLIST.
LDIR,
IMOYE,
FHLET.,
CThPE,
TRACE .,
TGO,

R,
M1 0
TIHE.
DRTE.
FP3
1F5
EPsSin
REM1Q
CEIL1D
ATHZ2 .
ERFOR
SRS
MINYO
ERRORN
AEss
1005
I=1H
ITAN
SONS
ERRORY
COT10
CTECYO
ERRORE
EXPS
INTS
LOGTS
LHS
ERRORY
SEIN
CHREF .
VAaLs .
LENM.
HUrM,
WAL,
InFt 0
HD1 N
FziQ
UPCH .
USING.
ERRORY
TAR,
STEP.,
EXCOR.
HQT,

LEFHULT OFF

FEN
FLTST
LOIR
IMOVE
FH OILET
ZTHPE
TRALE
T

R

M
TIME
DATE

FF

Ir
EFSILOH
RN
sEIL
FTHE Y
UMY
SRR

PMIH
DUMPY
HB=

CeLiptfay
ooT
P
Oy
EXF

INT

b

FE B N (I

LG T E D
O Uiy
SEDC
CHRE
VALF
LEM
UM
WAL
IHF
FHD
F1I
UPCE
BEZIHG
THEH
ThAE
STER
EROR
HOT

F-4

~J T e

BB P G oG] G G
-

)

E SR N
B¢

A

S 1)

G I VRN VRN LT EURN S PR LV LS TR SR AV (ST (R S I VI (VI VI O PO O (Pl Y

PR e S B B BT IR RN [0 B ¢ QR R .

N L I AN A R A I A

_—

<

0,249
0,241
0,241
a,z41
0,241
0,241
0,217
a,&41
0,241
G, 491

2,51

1,55
- ©
<UD

20,39
20,55
0,44
20,859
20,95
0,44

:.:: 1 3

20,59
26,55
20,55

o6
0, 54
30,55

Table of Tokens and Attributes

GEF IHTDIV DIW (™D
"EF ERHUM. ERRH
HEF EREL. ERRL
DEF RESET. RESET
CEF RND., AHD

DEF MDD g

DEF ERRORX ELSE
PEF SINVD SIH

PDEF CO¥10 s 23
DEF TANIDQ TN L322
CEF HIPZ. T HSSIGHY 233
CEF RSTO.. RESTORE LN 234
DEF ERRORAX DUMPY 27
LEF ERRORXR L Z3h
DEF ERRDEN 1 AT
IHTEIY " 240
Fog, 20 241
DESGIR ETD 42
rRAabD10 DTHE 43
£ INTS FLGOR o444
F ERFORA RRRICIN Y o450
[

0 de Gl RS —

G o) L Ta) Ue O Cad a2

[AYIS VI RO LV (G T VI LSRN V]

o) O

THER O
mmMmmm
Ty Ty T

[Bl
i

FERDH ., READ (HUM: Z4de
UL TH# . UEING LIME #347
THRUH. IHP HUMERIDC Z30
INPLS ., TP STRING 2% G,
FHRET. LET FHe =) 282 U,
RERDE. REMDT 353 0.
FReIHE FRINT EHD

1T

.-
=
2
4
}
-
s

g

54 01,35

SEMIC. FRINT 350,36
COMHA . FRINT, 560,38

DEF SEMICE FRINT# 570,34
DEF COMMAS PRINT,: e 0,38
DEF ERRORH GLMY & to=a

(539

wJaT I fe) e

STEFRE. ETER KEY
FTaADFR DIM ARREAY
FTRDR IM AREAY
TEST. F27 EKEY
ERRIOR: fumpy
ERFORR D LMY ¥ 0,44
ROM: GO EXTERMAL ROMITI 0,214
BF GO BIMaRY PROG 37 0,14
ERROR Gy ITE 0.4
ERRDREH QUMY 373 0,44
ERRORK UMMy 37 I
ERROR . DLPHY IS 0,44
ERRDRH DUFMY 3Te 0,44
ERRORX DUMMY IVV 0,494

I
IR TR B B
i

i
S -
b3 O ' A

g
T

el Cop T el Gok Oa) ad el 03 D) ded el

Er e

T

oo

i Mol
TEUTCT T T

o el
mmmmmmmmmMmyMmmsm

R

v e
T T T T

o

F-5

NOTES

F-6

ApPENDIX G

ERROR MESSAGES

Below is a list of the error messages provided by the HP-83/85 Assembler ROM and
the System Monitor. For other errors refer to the HP-83 or HP-85 Owner's Manual
or to the manuals for other peripheral devices that may be attached to the
computer.

ASSEMBLER SYSTEM ERRORS

Error Message Error Condition

ERROR 109: ILL MODE A command has been executed in the wrong operating
mode (e.g., ASSEMBLER has been typed when computer
is already in assembler mode).

ERROR 110: LBL An invalid label has been seen; may have been either
longer than six characters or beginning with a digit.

ERORR 111: OPCO The opcode is not recognized; may have been because
of misspelling, because there was no space between
a label and the opcode, or because the opcode was
entered in the first or second column after the line

number.

ERROR 112: ARP-DRP Invalid ARP or DRP; ARPs and DRPs must be between P
and 77 inclusive, and cannot be 1.

ERROR 113: OPER Bad operand; e.g., LDM R34, = 3, remark. Because a
number follows the equal sign in this example, the
assembler expects another number after the comma.
Also, each literal value must be specified with two
digits if a BCD quantity.

ERROR 114: FIN-LNK Missing FIN or LNK statement. If the file name or

file type is wrong in the LNK statement, then a
WFILE NAME" or “FILE TYPE" error will be generated.

G-1

Error Messages

Error Message

ERROR 115: ASSM ROM

ASSEMBLY-TIME ERRORS

Error Message

ILL NAM

AIF UND

ILL ABS

JMP FROM

JMP TO

UND LAB

ILL GLO

Error Condition

At power-on, this means the ROM had a checksum error.
At a breakpoint, all errors generate this message.

Error Condition

A NAM statement has already been executed, or an ABS
ROM has been executed.

The specified conditional assembly flag has not yet
been defined as set or cleared.

An ABS or NAM statement has already been encountered.
The jump from that line is out of range.

The jump to that line is out of range.

After assembly was completed, this label had not been
defined either in the program or in the optional

global file.

The GLO statement occurs after a NAM statement, ABS
statement, or another GLO statement.

G-2

ApPENDIX H

PROGRAMMING HINTS AND ADDENDA

1. If execution of certain Advanced Programming ROM statements is attempted in
assembler mode, unpredictable results can occur. These AP ROM statements are:

X REF L

X REF V
FIND
REPLACE VAR.

H-1

NOTES

H-2

A

Absolute
Address, 2-10
Program, 4-49
ABS pseudo-instruction, 4-49
ABS5 routine, 7-45
Add instruction, 3-7, 4-22
AD instruction, 3-7, 4-22
Address,
Assigning to a label, 4-53
Base, for reserved RAM, 6-20
CRT memory, 7-108
Format of, xiii, 3-10
In CPU register bank, 3-4, 3-10
Inserting, 4-54
Of variables, 5-1
Parse routine, 6-6
Runtime routine, 6-7
System table, 6-5
Addressing,
Binary program, 6-18, 6-19
CRT, 7-110
External ROMs, 6-17
Modes, 4-7
Stack, 4-16
Address register pointer, 3-1, 3-2
Address table, 5-15
Label, 8-1
ADDROI routine, 7-45
Advanced programming capabilities,
5-32
AIF pseudo-instruction, 4-56
ALFA routine, 7-23
Allocated program, 5-4
Allocation, 5-4, 5-19, 5-22
Status, 6-21
ALOAD command, 2-2
Alpha CRT display, 7-111, 7-112
ALPHA. routine, 7-113
ANM instruction, 4-22
Arithmetic and logic unit, 3-1
Arithmetic instructions, 3-12, 4-22
ARP, 3-1, 3-2, 3-9
Handling during assembly, 4-47
Loading, 4-39
ARP instruction, 4-39
Array variable storage, 5-31
ASCIT,
Characters on CRT, 7-111

INDEX

I-1

Code, inserting, 4-52
Data file, 1-2, 2-3
Strings, 6-23
Table, 6-8
ASC pseudo-instruction, 4-52
ASP pseudo-instruction, 4-52, 6-8

ASSEMBLE command, 2-3, 6-7, 6-8, 6-22

ASSEMBLER command, 2-4

Assembler mode, 2-4, 2-7

Assembler ROM, ix, xii, 1-1

Assembly, x, 1-2, 2-3, 4-37, 4-38,
4-46, 4-57, 6-1, 6-22

Assembly control pseudo-instruction,
4-49

Assembly language, ix
Program type, 6-21

ASSIGN. routine, 7-142

ASTORE command, 2-5, 6-22

ATN2. routine, 7-46

Attributes, 5-19

B

Bank-selectable ROMs, 5-3, 5-4

Base address, 5-15, 6-19
Of reserved RAM, 6-20
Specifying, 4-51

BASIC command, 2-5

BASIC language, ix
Reserved word, 5-1

BASIC (normal) mode, 2-1, 2-5, 2-7

Basic program, 5-1

BCD constant, 4-10

BCD instruction, 3-12, 4-41

BEEP. routine, 7-46

BIN instruction, 3-12, 4-41

Binary,
Mode, 3-12, 4-41
Quantity, 3-10

Binary program, 6-1
Addressing, 6-18
Entering a, 2-4
Error messages, 6-16
Reserving RAM by, 6-20
Scratching, 2-10
Storage of, 2-3
Tokens, 5-2, 5-17
Using, 6-23

BINTAB, 2-10, 5-6, 6-18

BKP command, 9-2

Index

BLKLIN routine, 7-114
Boundaries, register 3-4
BPLOT. routine, 7-114
BPLOT+ routine, 7-115
Breakpoints, xi, 9-1
Clearing, 9-6
Operations at, 9-6
Setting, 9-2
BSZ pseudo-instruction, 4-53
BYT pseudo-instruction, 4-53
BYTCR! routine, 7-116
BYTCRT routine, 7-116
Buffers, 5-7
1/0, 5-32

C

Calculator mode statement, parsing
a, 7-15, 7-19

CALVRB pointer, 5-6

Carry flag, 3-13

CEIL1® routine, 7-47

Central processing unit, 3-1, 4-1]

CHIDLE hook, 5-14, 8-2
Use of, 6-23

CHKSTS routine, 7-117

CHSROI routine, 7-47

Class of token, 5-20
Decompiling using, 5-25

Clearing conditional assembly flag,
4-56

Clear instruction, 4-35

CLEAR. routine, 7-117

CLE instruction, 4-41

CL instruction, 4-35

CLR command, 9-6

CLREOL routine, 7-118

CLR pseudo-instruction, 4-56

CM 1instruction, 4-23

CNTRTR routine, 7-118

COMFLT routine, 7-90

Commands, 2-1

COMMA. routine, 7-48

COMMA$ routine, 7-48

Comments, end-of-line, 4-3
Entering, 4-3
Suppressing, 2-7

Common variables, 6-21

Compare instruction, 4-23

Compiling, 5-1

Complement instruction, 3-6, 4-33

CONBIN routine, 7-90

CONCA. routine, 7-49

Conditional assembly, 4-56, 4-57

I-2

Conditional jumps, 4-37, 4-38 y
CONINT routine, 7-91 h
Constant, assigning to a label,
4-53
CONT key in assembler mode, 2-4
COPY. routine, 7-119
C0S19 routine, 7-49
COT19 routine, 7-50
C.PARS routine, 7-15, 7-19
CPU, 3-1
Entering register numbers of, 4-3
Outputting status of, 9-3, 9-9
CREAT. routine, 7-142
CRT addressing, 7-110
CRTBAD, 7-108
CRTBLK routine, 7-120
CRTBL+ routine, 7-119
CRTBYT, 7-110
CRT control, 7-108
CRTDAT, 7-109
CRTINT routine, 7-120
CRTPOF routine, 7-121
CRTPUP routine, 7-121
CRTRAM, 7-110
CRT routines, 7-113
CRTSAD, 7-108
CRTSTS, 7-109 /
CRTUNW routine, 7-122
CRTWPO routine, 7-122
CRTWRS, 7-110
CSEC1@ routine, 7-50
CSTAT, 5-7, 5-11, 5-13
Saving, 5-33
Current status, 5-13
CURS routine, 7-123
CVNUM routine, 7-91
CY flag, 3-13
Clearing, 3-13
Setting, 3-13

D

DAD pseudo-instruction, 4-53
Data definition pseudo-instruction,
4-52
DATE. routine, 7-51
DCE instruction, 4-42
DC instruction, 4-3]
DCM flag, 3-12, 3-14
Clearing, 4-41
Setting, 4-41
De-allocated program, 5-4, 5-5, 5-6
De-allocation, 5-19
DEC assembler function, 2-7

Decimal constant, 4-10

Decimal mode, 3-12
Setting, 4-41

Decimal point representation, 3-11

Decimal to octal conversion, 2-11

Decompiling, 5-24, 7-146

Decreasing stack, 4-16, 4-17, 4-20,
4-21

Decrement instruction, 4-31

DECUR2 routine, 7-123

DEFA+. routine, 7-51

DEFA-. routine, 7-52

DEF pseudo-instruction, 4-54

DEG. routine, 7-52

DEG1® routine, 7-53

Deleting ARPs and DRPs, 4-47, 4-48

DIGIT, 7-23

DISP. routine, 7-53

DIV2 routine, 7-54

DIV1@ routine, 7-55

DMNDCR routine, 7-24

DNCUR. routine, 7-124

DNCURS routine, 7-124

DRAW. routine, 7-125

DRP, 3-4, 3-6, 3-7, 3-9
Handling during assembly, 4-47
Loading, 4-39

DRP instruction, 4-39, 4-40

DRV12. routine, 7-92

Dumping memory, 2-8, 2-9, 9-7

E

EIF pseudo-instruction, 4-57
EL instruction, 4-25, 4-26
Ending a program, 4-49, 6-11
E0J2 routine, 7-125
EPROM, 6-23
Burner, 6-1
EPS1@ routine, 7-54
EQ. routine, 7-56
EQ$. routine, 7-56
EQU pseudo-instruction, 4-54
E-register, 3-12
Clearing, 4-41
Decrementing, 4-42
Incrementing, 4-42
ER instruction, 4-27
Error message, 6-14
Table, 6-8
ERROR routine, 6-14, 7-57
ERROR+ routine, 6-14, 7-57
Errors, 5-11
Assembler, 1-3

I-3

ERRORS location, 6-15
ERRROM location, 6-15
Example programs, x, 8-1
Exclusive OR, 4-24
Execution

By tokens, 5-8, 5-9

Pointer, 5-7
Executive loop, 5-10
Exponent representation, 3-11
Expression stack, 5-25
EXP5 routine, 7-58
Extended files, 2-2, 2-5
Extended left shift, 4-25
Extended right shift, 4-27
Extend register, 3-12
External label table, 6-10

F

Index

Fahrenheit to Celsius, 1-2, 6-2, 8-1

FETAVA routine, 7-93

FETAV routine, 7-92

FETST routine, 7-93

FETSVA routine, 7-94

FETSV routine, 7-94

Finding labels, 2-6

FIN instruction, 4-49, 6-11

FLABEL command, 2-6

Flag,
Conditional assembly, 4-56
Status, 8-12

FLIP. routine, 7-126

Floating point numbers, 3-4

FOR/NEXT stack, 5-7

FREFS command, 2-6

FP5 routine, 7-58

FTOCB file, 1-2, 8-1

FTOCS file, 1-2, 8-1

FTOC program, 1-2, 6-2, 8-1

Functions, 2-1, 6-11
Assembler, 2-1, 2-7
Numeric, 6-10
Parameters of, 5-21
Storage of, 5-32

FWCURR pointer, 5-6, 5-35

FWPRGM pointer, 5-6

FWUSER pointer, 5-6

G

GCHAR routine, 7-28

GCLR. routine, 7-126

GCURB file, 1-2, 8-9

GCURS file, 1-2, 8-9
GCURSOR OFF statement, 8-9
GCURSOR statement, 8-9

Index

GCURSOR X function, 8-9 I
GCURSOR Y function, 8-9 ICE instruction, 4-42 7
GCURS program, 8-9 IC instruction, 3-5, 4-32
General hooks, 6-12 ICOS routine, 7-61
GEQ. routine, 7-59 IDRAW. routine, 7-129
GEQ$. routine, 7-59 Immediate addressing, 9-5
GETCMA routine, 7-31 IMOVE. routine, 7-129
GETCM? routine, 7-32 INCHR routine, 7-130
GET$N routine, 7-28 INCHR~ routine, 7-130
GETIN routine, 7-30 Inclusive OR, 4-23
GET2N routine, 7-30 Increasing stack, 4-16, 4-17, 4-19,
GET4N routine, 7-31 4-20
GETPA? routine, 7-32 Increment instruction, 4-32
GETPAR routine, 7-33 Multi-byte, 3-5
GET) routine, 7-29 Indexed addressing, 3-2
GET1$ routine, 7-29 Entering, 4-3
Global file, x, 1-2 In binary programs, 6-18
Assembler, 7-1 Indexed direct addressing, 4-13
Creating, 6-11 Assembly of, 4-47
Declaring a, 2-3, 4-49 Indexed indirect addressing, 4-14
Disc and tape cartridge, 1-1, Assembly of, 4-47
1-2, 7-1 Index scratch register, 3-2
Using, 8-1 INF19 routine, 7-62
GLO pseudo-instruction, 4-49, 6-11 Initialization, 5-11, 5-14, 6-14, 6-18
GIN+NN routine, 7-25 Hooks, 6-13
G$N routine, 7-24 Reserving memory during, 6-19
GPIN routine, 7-26 Table, 6-9 —
G@12N routine, 7-25 INIT key in assembler mode, 2-4
GAORZN routine, 7-26 Installation,
GI10R2N routine, 7-27 Disc, 1-2
G120R4 routine, 7-27 System Monitor, 1-3
Go to, 4-55 Tape cartridge, 1-3
GRAD. routine, 7-60 Instructions, 4-1
Graphics CRT display, 7-112 Integer values, 3-11
Graphics cursor program, 1-2, 8-9 Popped off R12, 5-35
GRAPH. routine, 7-127 INTEGR routine, 7-33
GRINIT routine, 7-127 Intercepting a system routine, 6-18
GR. routine, 7-60 Interpreter, 5-1, 5-11
GR$. routine, 7-61 Halts, 5-14
GTO pseudo-instruction, 4-55 Loop, 5-15, 5-22
Interrupt, 5-15
H INTDIV routine, 7-63
Hardware-dedicated registers, 3-2 INTMUL routine, 7-95
Hooks, x, 5-14 INTORL routine, 7-95
General, 6-12 INT5 routine, 7-62
Initialization, 6-13 1/0,
System, 5-14, 6-11 Addresses, 5-3, 7-108
Using, 6-18 Buffer, 5-32
HLFLIN routine, 7-128 Control, ix
HMCURS routine, 7-128 Processes, X
HP-82928A System Monitor, xi, 9-1 IOSP hook, 5-14
HP-IB, 6-23 IP5 routine, 7-63 ~

1-4

Index

ISIN routine, 7-64 LOADBIN, action of, 6-7, 6-19, 6-20
ITAN routine, 7-64 LOAD key in assembler mode, 2-2
Loading ARP or DRP, 4-39
J Load instruction, 3-8, 4-6
J instructions, 4-37 Logical AND instruction, 4-22
JSB instruction, 4-36 Logical instructions, 4-22
Jump instructions, 4-37 Logical left shift, 4-29
Jump, relative, 4-55 Logical OR instruction, 4-23
Jump to subroutine, 4-36 Logical right shift, 4-28
LOGT5 routine, 7-66
K LR instruction, 3-6, 4-28
Keyword, BASIC, 5-8, 6-1, 6-7, 6-11 LSB flag, 3-13
LST pseudo-instruction, 4-50, 6-5
L LTCUR. routine, 7-132
Label, 4-10 LTCURS routine, 7-132
And conditional assembly flag, LT. routine, 7-67
4-56 LT$. routine, 7-67
Address table, 8-1
Assigning address or constant to, M
4-53 Machine code, 4-46
Entering, 4-2 Machine language, ix
Inserting value of, 4-55 Main parse loop, 7-14, 7-19
LABEL. routine, 7-131 Mantissa representation, 3-11
Label table, Mass Storage ROM, 5-7
External, 6-10 MAX19 routine, 7-68
Using global file for, 7-1 MEM assembler statement, 2-8
Language hooks, 6-11 MEMD assembler statement, 2-9
LAVAIL pointer, 5-6 MEM command, 9-7
LD instruction, 3-8, 4-6 Memory dump, 2-8, 2-9, 9-2, 9-10
LDIR. routine, 7-131 Memory, CRT, 7-108
LDZ flag, 3-14 Memory, HP-83/85 system, 5-3
Least significant bit flag, 3-13 Programs in, 5-4
Least significant byte, 3-10 Memory, temporary, 5-7
Least significant digit, 3-11 Saving, 5-33
Left digit zero flag, 3-14 MIN1@ routine, 7-69
LEQ. routine, 7-65 MOD1@ routine, 7-68
LEQ$. routine, 7-65 Most significant bit, 3-13
Line numbers, 4-2 Flag, 3-14
Linking files, 4-50 Set, 4-52
Listing, 5-24 Most significant byte, 3-5, 3-6, 3-10
Object code, 4-50 Most significant digit, 3-11
Source code, 2-6 MOVCRS routine, 7-133
LIST key, 2-6 MOVDN routine, 7-96
Literal direct addressing, 4-11 MOVE. routine, 7-133
Assembly of, 4-46 MOVUP routine, 7-96
Literal immediate addressing, 4-11 MPYROI routine, 7-71
Literal indirect addressing, 4-12 MPY1® routine, 7-70
Assembly of, 4-46 MSB flag, 3-14
Literal quantities, 4-10 Multi-byte operations, 3-4
Inserting, 4-53, 4-55 Locations involved in, 3-4
LL instruction, 4-29, 4-30 Multi-byte status, 3-14

LNK pseudo-instruction, 4-50, 6-11
LN5 routine, 7-66

I-5

Index

N

Naming a binary program, 4-5]

NAM pseudo-instruction, 4-51, 6-5

NARREF routine, 7-34

NARRE+ routine, 7-34

NC instruction, 4-33

Nine's complement, 4-33

Non-arithmetic operations, 3-12

Normalized number, 3-11

NUMCON routine, 7-35

Numeric function, 6-10
Storage of, 5-33

Numeric quantities, 3-11, 4-4
On R12 stack, 5-35

NXTMEM pointer, 5-6

NUMVAL routine, 7-36

NUMVA+ routine, 7-20, 7-35

0

Object code, x
Files, 1-2

Listing during assembly, 4-50

Storage of, 1-2, 2-3, 2-4
Suppressing listing during
assembly, 4-51
O0CT assembler statement, 2-11
Octal,
Constant, 4-10
Quantity, 3-10
To decimal conversion, 2-7
ONEB routine, 7-97
ONEI routine, 7-97
ONEROI routine, 7-98
ONER routine, 7-98
OFTIM. routine, 7-71
One's complement, 4-33
Opcodes, 4-2
Operands, 4-3
Operators, precedence for, 5-22
Option base, 6-21
ORG pseudo-instruction, 4-51
OR instruction, 4-23
OUTCHR routine, 7-134
OUTSTR routine, 7-134
Overflow flag, 3-13
OVF flag, 3-13

P

PAD instruction, 4-43
PAPER. routine, 7-99
Parameters, 5-21
P#ARAY routine, 7-143
Parity bit set, 4-52

I-6

Parse loop, main, 7-14, 7-19
Parser, 5-10, 7-14
Parse routine,
Addresses, 6-6
Registers, 7-13
Parsing, 5-1, 5-17, 6-9
A calculator mode statement,

5-19
A program line, 5-19
Flow, 7-13
PARSIT routine, 7-16, 7-19
PC, 3-2
PC= command, 9-7
PCR, 5-7

Saving, 5-33

PEN. routine, 7-135

PENUP. routine, 7-135

PI1® routine, 7-72

PLOT. routine, 7-136

PO instruction, 4-16

Pointers, 5-5

POLAR statement, 8-15

Pop instruction, 4-16

Pop status, 4-43

POS. routine, 7-72

Power-on, 5-10, 6-12

P.PARS routine, 7-14, 7-19

PRDVR1 routine, 7-99

Precedence of operators, 5-22

Primary attributes, 5-19, 6-9

PRINT. routine, 7-73

PRINT#$ routine, 7-74

PRLINE routine, 7-73

PRNT#N routine, 7-74

PRNT#. routine, 7-143

Program control block, 4-51, 6-5
Accessing, 6-21

Program counter, 3-2
Changing contents of, 9-7

Program line, parsing a, 7-14, 7-19

Program type, 6-21
PROM burner, 6-1, 6-23

Pseudo-instructions, 4-1, 4-48, 6-1

PU instruction, 4-16
PURGE. routine, 7-144
PUSH1A routine, 7-36
Push instruction, 4-16
PUSH32 routine, 7-37
PUSH45 routine, 7-37

R

RAD. routine, 7-75
RAD1@ routine, 7-75

Index

RAM, ix Reserving RAM by a, 6-19
Changing values in, 2-8 Tokens, 5-2, 5-17 .
Dumping contents of, 2-8 ROM-defined errors, 6-15, 6-16

RAM, reserving, 6-19 ROM Drawer, HP-82936A, 1-1
By a binary program, 6-20 ROMFL flag, 5-14, 6-9, 6-13, 6-18
By a ROM, 6-19 ROMINI routine, 5-10, 6-13

R#ARAY routine, 7-144 ROMJSB routine, 6-17, 7-101

RDZ flag, 3-14 ROM module, ix

READ#. routine, 7-145 Installation, 1-1

READ#$ routine, 7-76 ROMPRB file, 1-2, 8-19

READ#N routine, 7-76 ROM program, x, 1-2, 6-1

Real numbers, 3-11 Example, 8-19
Representation of, 3-11 Using, 6-23

RECPLB file, 1-2, 8-15 ROMPRS file, 1-2, 8-19

RECPLS file, 1-2, 8-15 ROMRTN routine, 6-18, 7-20, 7-101

Rectangular/polar conversions, 1-2, Routine, 5-1
8-15, 8-19 System, 5-8, 6-1, 6-10, 7-1

RECTANGULAR statement, 8-15 RPN, 5-1, 5-24, 5-25, 5-27

REFNUM routine, 7-38 RSMEM- routine, 7-102

REG command, 9-8 R12 stack, 5-6

Register bank, 3-1 At runtime, 5-24

Register bank pointer, 3-2 And functions, 6-10

Register boundaries, 3-4 Formats on, 5-34

Register direct addressing, 4-8 In decompiling, 5-25

Register immediate addressing, 4-8 In parsing, 5-18

Register increment and decrement, 4-31 RSUM#K routine, 7-103

Register indirect addressing, 4-9 RSUM8K routine, 7-103

Registers, CPU, 3-2 RTCUR. routine, 7-136
Changing contents of, 9-8 RTCURS routine, 7-137
Qutputting contents of, 9-4 RTOIN routine, 7-104

Relative address, RTN instruction, 4-44
Absolute address of, 2-10 RTNSTK pointer, 5-6

REL assembler statement, 2-10 RUN key in assembler mode, 2-4

RELMEM routine, 7-100 Runtime, 5-15, 5-22, 7-44

Relocatable code, 6-1, 6-8, 6-18 Addresses, 6-7

Register values, xiii Routines, 6-9

Remote variables, 5-30 R*, using, 4-46

REM1@ routine, 7-77 R#, 4-47

Reserving RAM, 6-19

RESMEM routine, 6-19 S

Restoring CPU status, 4-43 SAD instruction, 4-44, 4-45

Return, 4-44 SALT, 7-18, 7-19
Address, saving, 5-33 SB instruction, 4-24
Stack, 5-6 SCALE. routine, 7-137

Return stack pointer, 3-4 SCAN routine, 7-17, 7-19, 7-38

REV DATE function, 8-9, 8-15 SCAN+ routine, 7-39

Right digit zero flag, 3-14 SCRATCHBIN assembler statement, 2-10

RMIDLE hook, 5-14 SCRATCHBIN statement, 8-15

RNDIZ. routine, 7-78 Scratching memory, 2-5

RND1@ routine, 7-77 A binary program in, 2-10

ROM, ix, 2-3 SCRAT. routine, 7-78
Addressing, 6-17 SCRAT+ routine, 7-104
Dumping contents of, 2-8 SCRDN routine, 7-138

I-7

Index

SCRUP routine, 7-138
SEC1@ routine, 7-79
SEMIC. routine, 7-79
SEMIC$ routine, 7-80
SEQNO routine, 7-40
SEQNO+ routine, 7-39
Secondary attributes, 5-19, 5-21, 6-9
Select code, 5-3
SET pseudo-instruction, 4-57
SET249 routine, 7-105
Setting conditional assembly flag, 4-57
SGN5 routine, 7-80
Shell of program, 6-2
Shift instructions, 3-12, 4-25
Shift right instruction, 3-6, 3-15
Short numeric quantities, 3-11
Simple variable storage, 5-30
Single byte instructions, 3-6
Single-step execution, xi, 9-8
SIN1@ routine, 7-81
SMLINT routine, 7-40
SOFTKB filte, 1-2, 8-2
SOFTKEY, 8-2
SOFTKS fite, 1-2, 8-2
Source code, x, 1-2, 4-46
Entering, 2-4, 4-1
Files, 1-2
Loading, 2-2
Storing, 2-5
SP, 5-7
Special function keys, 1-2, 8-2
In assembler mode, 2-1, 2-2
SQR5 routine, 7-81
Stack direct addressing, 4-18
Stack indirect addressing, 4-18,
4-21
Stack instructions, 4-15
Stack pointer, 5-7
Status,
Current, 5-13
Indicators, 3-1, 3-12
Qutputting, 9-3
Restoring, 4-43
Saving, 4-44
STBEEP routine, 7-82
STEP command, 9-8
STEP key, 2-4, 9-8
ST instruction, 3-9, 4-6
Store instruction, 3-9, 4-6
STORE key in assembler mode, 2-5
STOST routine, 7-105
STOSV routine, 7-106

I-8

STRCON routine, 7-41
STREXP routine, 7-42
STREX+ routine, 7-20, 7-41
String function, storage of, 5-34
Strings, inserting, 4-52
String underline, 8-7
String variable storage, 5-32
STRREF routine, 7-42
Subprogram capability, 5-7, 5-30, 6-21
SUBROI routine, 7-82
SUBTP routine, 7-83
Subroutine jump, 4-36
Subtract instruction, 4-24
SVCWRD, 5-15
Symbols used in descriptions, 4-4,
4-5
Syntax guidelines, xii, 4-4
System address table, 6-5
System,
Error messages, 6-14
Flow, 5-10
Global file, 6-10
Hooks, 6-11
Labels, x
Memory, 5-3
ROMs, 5-3
Routines, 5-8, 6-1, 6-10, 7-11
System routine format, 7-11
System monitor, HP-82928A, xi, xii,
9-1
Installation, 1-3

T

TANT@ routine, 7-84
Tape routines, 5-7, 7-141
TC instruction, 3-6, 4-34
Temporary scratch-pad memory, 5-7, 5-33
Ten's complement, 4-34
Terminating conditional assembly, 4-57
Test instruction, 4-35
Conditional assembly flag, 4-56
Multi-byte, 3-5
TIME. routine, 6-17, 7-84
Tokens, 5-1, 5-8, 5-15
Class, 5-20, 5-25
External, 5-17
New, 6-11
Pointer to, 5-7, 5-22
For variables, 5-29
Type of, 5-20
Missing operator, 5-27
Top-of-stack pointer, saving, 5-33

TOS, saving, 5-33

TRACE command, 9-9

Tracing execution, xi, 9-9
TREM command, 2-7

TRYIN routine, 7-43

TS instruction, 3-5, 4-35
TWOB routine, 7-106

TWOROI routine, 7-107

TWOR routine, 7-107
Two-operand operations, 3-7
Two's complement, 4-34
Type of token, 5-20

U

uDL$B file, 1-2, 8-7

UDL$ function, 8-7

upL$S file, 1-2, 8-7

UNBAS1 and UNBAS2 locations, 6-20
Underlining a character, 7-110
Underlining a string, 1-2, 8-7
UNEQ. routine, 7-85

UNEQ$ routine, 7-85

UNL pseudo-instruction, 4-51
UNQUOT routine, 7-43

UPC$. routine, 7-86

UPCUR. routine, 7-139

UPCURS routine, 7-139

Utility routines, 7-89

v
VAL pseudo-instruction, 4-55
VAL. routine, 7-87
VAL$. routine, 7-86
Values, inserting, 4-55
Variables, 5-1, 5-9
Common, 5-6, 6-21
Format of, xiii
On R12 stack, 5-34
Representation of, 3-11
Storage of, 5-28

W
WAIT. routine, 7-87

X

XAXIS. routine, 7-140
XCOM, 5-8, 5-11, 5-14
XR instruction, 4-24

Y
YAXIS. routine, 7-140

YTX5 routine, /-88

I-9

Z

Index

Zero flag, 3-14

Zeros, inserting, 4-53
7 flag, 3-14

ZROMEM routine, 7-88

(ﬁﬁ HEWLETT

PACKARD

00085-90444 Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

