
HEWLETT-PACKARD

Assembler ROM Manual

"

, .

-0.2520

...;.0.5963

0.1632
" _, -<"i:~';

,,+0.1144

Q.7357 i

HP-83/85

Printed in U.S.A.

rli~ HEWLETT
~~ PACKARD

HP-83/85

ASSEMBLER ROM

AND

HP-82928A SYSTEM MONITOR

MANUAL

00085-90444

December 1980

~ Hewlett-Packard Company 1980

CONTENTS

INTRODUCTION
The Assembler ROM
The HP-82928A System Monitor.
Scope of this Manual

The Computer's Operating System.
The Assembler ROM.
The System Monitor

Syntax Guidelines ..

SECTION 1: GETTING STARTED.
ROM Installation
Tape Cartridge or Disc Installation and Use
System Monitor Installation
Assembler Errors

SECTION 2: ASSEMBLER COMMANDS, STATEMENTS, AND FUNCTIONS.
Assembler Commands

Assembler Statements and Functions ..

SECTION 3: CPU STRUCTURE AND OPERATION.
ARP and DRP
CPU Register Bank

Hardware-Dedicated Registers
Register Boundaries ..
Multi-Byte Operations.
Single-Byte Operations
Two-Operand Operations

Number Representation
Addresses
Numeric Quantities

Status Indicators ..

ii

J

ix
ix
xi
xi
xi

xii
xii
xii

1-1

1-1

1-1
1-3
1-3

2-1 J

2-1
2-7

3-1
3-2
3-2
3-2
3-4
3-4
3-6
3-7

3-10
3-10
3-11
3-12

SECTION 4: ASSEMBLER INSTRUCTIONS
Entering Instructions and Pseudo-Instructions

Line Numbering ..
Labels
Opcodes and Pseudo-Opcodes
Operands or Addresses ..
Comments
Numeric Values .. .

Syntax and Symbols Used
Load/Store Instructions .
Addressing Modes

Register Mode
Register Immediate.
Register Direct.
Register Indirect

Literal Mode
Literal Immediate.
Literal Direct ..
Literal Indirect.

Index Mode
Index Di recto .
Index Indirect.

Stack Instructions.
Stack Addressing.

Stack Di recto .
Stack Indirect.

Instructions for an Increasing Stack
Instructions for a Decreasing Stack.

Arithmetic and Logical Instructions ..
Shift Instructions
Register Increment and Decrement Instructions
Complement Instructions . . .
Test Instruction
Register Clear Instruction.

Subroutine Jump Instruction

i; i

4-1
4-1
4-2

4-2
4-2
4-3
4-3
4-4
4-4
4-6

4-7
4-7
4-8
4-8
4-8

4-10
4-11

4-11

4-12

4-13
4-13
4-14
4-15
4-16

4-18
4-18
4-19

4-20
4-22

4-25

4-31

4-33

4-35
4-35

4-36

Conditional Jump Instruction.
ARP and DRP Load Instructions
Other Instructions.. .,
Use of R*..
Assembly of CPU Instructions.

Handling of ARP and DRP During Assembly.
Using R#

Pseudo-Instructions
Pseudo-Instructions for Assembly Control
Pseudo-Instructions for Data Definition.
Pseudo-Instructions for Conditional Assembly

SECTIOr~ 5: HP-83/85 SYSTEM ARCHITECTURE AND OPERATION
System Memory . .
Programs in Memory. .

Allocation .. .
De-Allocated Program
Allocated Program.
Software-Dedicated CPU Registers

HP-83/85 Operation ..
Tokens ...
Overall System Flow.
Executive Loop

CSTAT
XCOM.
Hooks
ROMFL
SVCWRD.

Interpreter Loop
Parsing
Attributes

Primary Attributes
Type.
Cl ass .. .

iv

4-37

4-39
4-41
4-46

4-46

4-47
4-48

4-48

4-49

4-52

4-56

5-1

5-3
5-4

5-4
5-5

5-6
5-7
5-8
5-8

5-10

5-11

5-13
5-14

5-14

5-14

5-15

5-15
5-17

5-19

5-20

5-20
5-20

/

J

)

\

Secondary Attributes
Secondary Attributes for Functions.
Secondary Attributes for Operators.

Runtime •
Decompiling ...
Variable Storage ..

Legend
Simple Variable Storage ..

Local Variables ..
Remote Variables ..

Array Variable Storage
Local Variables ..
Remote Variables ..

String Variable Storage.
Local Variables .
Remote Variables ..

Function Storage. . .
Numeric Functions ..
String Functions ..

Formats on the R12 Stack.
Variables on the R12 Stack
Numeric Formats on the R12 Stack

SECTION 6: WRITING BINARY AND ROM PROGRAMS.
Program Structure

Program Control Block.
System Tabl e
Parse Routine Table ..
Runtime Routine Table.
ASCII Table
Error Message Table.
Initialization Table
Runtime Routines . .
External Label Table .

Ending the Program .

v

5-21
5-21
5-22
5-22
5-24
5-28
5-29
5-30
5-30
5-30
5-31
5-31
5-31
5-32
5-32
5-32
5-32
5-33
5-34
5-34
5-34
5-35

6-1

6-2

6-5

6-5

6-6

6-7

6-8

6-8

6-9

6-9

6-10

6-11

System Hooks ...
Language Hooks
General Hooks.
Initialization Hooks
Error Messages

Using System Error Messages
ROM-Defined Error Messages.
Binary Program Error Nessages

Binary Program and ROM Addressing
External ROM Addressing.
Binary Program Addressing.

Reserving RAM.
RAM Reserved by a ROM. . .
RAM Reserved by a Binary Program

Accessing the Program Control Block
Assembling.
Us i ng a B ina ry or RO~l Program

Binary Program
ROM Program. .

SECTION 7: HP-83/85 SYSTEM ROUTINES
The Gl oba 1 Fil e

Legend ..
Global File ..

System Operation and Routines
System Routine Format.
Parsing and Parse Routines

Parse Routine Registers
Parsing Flow.
Parsing in Binary Programs and ROMs

Parse Routine Examples.
Parse Routines

Runtime and Runtime Routines .
Runtime Conventions

Runtime Routines ..

vi

6-11
6-11
6-12
6-13
6-14
6-14
6-15
6-16
6-17
6-17
6-18
6-19
6-19
6-20
6-21
6-22
6-23
6-23
6-23

7-1
7-1
7-2
7-2

7-11
7-11
7-13
7-13
7-13
7-20
7-20
7-22
7-44
7-44

7-44

/

/

General-Purpose Utility Routines
CRT Control and Routines

CRT Control . .
CRT Addressing .. .
CRT Routines

Tape Control Routines.
Decompiling

SECTION 8: SAMPLE BINARY PROGRAMS .
Fahrenheit to Celsius ...
Soft Keys as Typing Aids.
String Underline
Graphics Cursor
Rectangular/Polar Conversions
Rectangular/Polar Conversions (ROM)

SECTION 9: THE HP-82928A SYSTEM MONITOR
Setting and Clearing Breakpoints.
Operations at a Breakpoint.

APPENDIX A: GLOSSARY OF TERMS

APPENDIX B: SYSTEM HARDWARE DIAGRAM.

APPENDIX C: ASSEMBLER INSTRUCTION SET

APPENDIX D: ASSEMBLER INSTRUCTION CODING. ·

APPENDIX E: ASCII TABLE

APPENDIX F: TABLE OF TOKENS AND ATTRIBUTES

APPENDIX G: ERROR MESSAGES ·

APPENDIX H: PROGRAMMING HINTS AND ADDENDA ·

INDEX

vii

7-89
7-108
7-108
7-110
7-113
7-141
7-146

8-1
8-1

8-2
8-7
8-9

8-15

8-19

9-1
9-1
9-6

A-l

B-1

C-l

D-l

E-l

F-l

G-l

H-l

1-1

NOTES J

/

viii

INTRODUCTION

This manual outlines the commands, statements, instructions and use of both the
HP-83/85 Assembler ROM and the HP-82928A System Monitor. The manual is not
tutorial in nature and it assumes that you already have at least some knowledge
of programming in assembly language. If you are not already familiar with the
HP-83 or HP-85 Personal Computer, you should read the owner's manual before
proceeding.

The HP-83/85 contains both read-only memory (ROM) and read-write or random­
access memory (RAM). The RAM contains the user's BASIC language programs and
data, and can also contain a binary (machine language) program. The ROM con­
tains the machine language program which recognizes and executes the statements
provided by the BASIC language. Thus, the operating system ROM in the HP-83/85
provides such statements as PRINT, DISP, and INPUT.

When external peripheral devices are added. their wider range of capabilities
requires more extensive BASIC language statements to fully use these capabil­
ities. Additional plug-in modules, called add-on ROMs, merely enrich the BASIC
language by increasing the number of statements and functions that can be recog­
nized and executed. Similarly, a binary program within the computer also
extends the BASIC language.

THE ASSEMBLER ROM
Using the Assembler ROM, you can write assembly-language binary programs for
residence and execution within the computer or for creation of a plug-in EPROM
for the computer. A binary program can:

Extend the BASIC language:

--Provide new BASIC statements and system functions.
--Take over and redefine existing BASIC statements and functions.

--Expand I/O control.

ix

Introduction

Give increased execution speed:

--Yield faster results.
--Speed up I/O processes.

Redefine the system:

--Take over system "hooks," giving access to the HP-83/85 operating system.
--Implement languages other than BASIC.
--Redefine the use and operation of I/O.

A ROM program is written in virtually the same manner as a binary program--the
main difference is in how the program is used after assembly--and in this manual
both are often termed simply "binary programs. II

When connected to an HP-83/85 Personal Computer, the Assembler ROM permits you
to enter and edit source code for binary programs right on the computer's CRT
screen. Automatic line numbering and cursor movement are active, and the source
code can be stored on a mass storage device such as a tape cartridge or disc,
listed, and edited in much the same way a BASIC program is stored, listed, and
edited. As source statements are entered, they are automatically checked for
syntax errors and duplicate labels.

At assembly time, the resulting object code (machine language) is stored on a

mass storage device such as a tape or disc. This object code can also be loaded
automatically or on command into the HP-83/85, and it is then ready to run.

To aid in programming, a tape cartridge and a disc are provided with the Assem­
bler ROM. Each of these contains a global file of HP-83/85 system labels and
their memory addresses for use during assembly. The tape and disc also contain
useful sample programs to help illustrate how binary programs are created.

The Assembler ROM gives you the ability to "tailor" statements for your own
applications, to speed up program execution, to perform sophisticated graphics.
But with all the power and system accessibility provided by the Assembler ROM,

x

/

Introduction

it is also possible to defeat the computer's internal safeguards and even

seriously damage the HP-83 or HP-85. For this reason, you should understand
assembly language programming before attempting to use the Assembler ROM.

THE HP-82928A SYSTEM MONITOR
The System Monitor is an optional plug-in module that is designed for use only
in conjunction with the Assembler ROM. The System Monitor is not required, but
it makes the debugging and modification of binary programs much easier.

With the System Monitor module attached, you can set breakpoints that interrupt
the execution of a program. After program execution has been interrupted, you
can examine or change the contents of memory, you can execute one instruction
at a time (single-step), or you can trace the operation of a machine language
program, printing the status of the CPU after each instruction.

SCOPE OF THIS MANUAL
This manual contains information about three separate products:
--The HP-83/85 Personal Computer and its operating system.
--The Assembler ROM.
--The HP-82928A System Monitor.

The manual has been written to help you most effectively use these three prod­
ucts together. If you are looking for information in a specific area, however,
you may want to refer to the manual sections as outlined below:

THE COMPUTER'S OPERATING SYSTEM

Manual Section

3

5

7

Appendix A
Appendix B
Appendix E

Appendix F

Topic

CPU Structure and Operation
System Architecture and Operation
HP-83/85 System Routines
Glossary of Terms
Hardware Diagram
ASCII Tabl e

Tables of Tokens and Attributes

xi

Introducti on

THE ASSEMBLER ROM

Manual Section

Introduction

2
4

6

8
Appendix C
Appendix D
Appendix G

THE SYSTEM MONITOR

Manual Section

9

SYNTAX GUIDELINES

Getting Started
Assembler Commands and Statements
HP-83/85 Assembler Instructions
Writing Binary and ROM Programs
Sample Binary Programs
Assembler Instructions
Decoding Assembler Instructions
Error Messages

Topic

Getting Started
The HP-82928A System Monitor

The syntax used in this manual for illustrating commands, statements, and
instructions is shown here:

LDB Instructions shown in capital letters, but not underlined, must be
entered exactly as shown (in either upper-case or lower-case letters).

DR Items shown underlined are expressions or names that must be specified
in the instruction, statement, or command.

[J Items shown between brackets are optional. If several items are
stacked between brackets, anyone or none of the items may be
specified.

Three dots (ellipsis) following a set of brackets indicate that the

items between the brackets /IIay be repeated.

xii

Introduction

All values for registers and addresses in this manual are octal values. Other
values (numbers, quantities, etc.) are given in decimal base unless otherwise
noted.

xiii

NOTES /

/

xiv

SECTION 1

GETTING STARTED

When shipped from the factory, the HP-83/85 Assembler ROM package comprises the
following items:
--HP-83/85 Assembler ROM, part number 00085-15007.
--HP-85 Assembler Global File tape.
--HP-83 Assembler Global File disc.
--HP-83/85 Assembler ROM Manual, part number 00085-90444.
--HP-83/85 Assembler ROM Pocket Guide, part number 00085-90445.

To use the Assembler ROM, you will need at least the following:
--HP 82936A ROM Drawer
AND
--HP-83 Personal Computer with Flexible Disc Drive
OR
--HP-85 Personal Computer with or without Disc Drive attached.

In addition, to help you write and de-bug binary programs with the Assembler
ROM, you may also wish to obtain the HP-82928A System ~1onitor.

This manual gives installation and operation instructions for the HP-83/85
Assembler ROM and its global file, and also for the HP-82928A System Monitor.

ROM INSTALLATION
Install the HP-83/85 Assembler ROM in one of the six slots in an HP 82936A ROM
Drawer. The ROM drawer can then be plugged into one of the four module ports
in the rear of the computer. If you are unfamiliar with the procedure for in­
stalling a ROM and a ROM drawer, refer to the owner's manual for your computer,
or to the HP 82936A ROM Drawer Instruction Sheet for the proper procedure.

TAPE CARTRIDGE OR DISC INSTALLATION AND USE
To install the tape cartridge containing the global file and the example binary

programs into the HP-85 computer, follow the instructions in the HP-85 Owner's
Manual.

1-1

Getting Started

To install the disc containing the global file and sample binary programs, fol­
low the instructions in the owner's manual for the Flexible Disc Drive.

As part of the process of assembling a binary program, the object code is stored
on a mass storage device such as a tape or disc. If, as will probably be most
convenient, you wish to use the global file tape cartridge for this purpose,
make sure that the tab on the cartridge is set to RECORD.

Here is a list of the files available on the global file tape and disc. Files
with names ending in "s" are source code files. Files with names ending in "B"
are binary program object code files. (The file GLOBAL is an ASCII data file
containing the assembled global file.)

FTOCS) FTOCB

GCURS) GCURB

SOFTKS

) SOFTKB

UDL$S) UDL$B

RECPLS) RECPLB

ROMPRS
) ROMPRB

GL01S) GL02S

GLOBAL

Example program: Fahrenheit to Celsius.

Example program: Implements a graphics cursor.

Example program: Special function keys as typing aids.

Example program: Underlines a string.

Example program: Rectangular/polar conversions.

Example program: Rectangular/polar conversions.
(Written for a ROM.)

Global file in source code. (Two parts.)

Gl oba 1 fil e.

1-2

J

r

Getting Started

SYSTEM MONITOR INSTALLATION
The HP-82928A System Monitor is installed in one of the four module I/O ports of
the HP-83 or HP-85. To install the System Monitor, follow the instructions in
the owner1s manual for your computer.

The System ~lonitor is not required for use of the Assembler ROM.

ASSEMBLER ERRORS
The Assembler ROM and the System Monitor contain some error messages of their
own. A complete list of these error messages and their causes may be found in
appendix G of this manual.

Because of the ability of binary programs to take over internal HP-83/85
routines and to defeat safeguards within the computer, it is possible to phys­
ically damage the computer without halting execution or even generating an
error. For example, a flawed binary program could hold the print head element
on and burn it out, or it could run the magnetic tape in an HP-85 tape cartridge
off the end of the spool. For this reason, you should be extremely careful as
you write and run binary programs, particularly if your programs take over any
of the internal printer or tape routines.

CAUTION

If during the running of a binary program the print head
appears to be IIlocked Upll or an HP-85 tape cartridge begins
to unspool, shut off the computer1s power switch immediately.

1-3

NOTES
)

/

1-4

SECTION 2

ASSEMBLER COMMANDS) STATEMENTS) AND FUNCTIONS

When the Assembler ROM is attached to the HP-83 or HP-85, it provides:
--Assembler commands
--Assembler statements and functions
--Assembly language elements

The commands and the statements and functions provided by the Assembler ROM are
added to the functions, statements and commands that are already part of the com­
puter's instruction set. They are executed exactly as the rest of the computer's
instruction set, and have been created to help the programmer control and use the
assembler.

Assembly language elements are used as the actual instructions in writing binary
programs. The format and use of these elements are discussed in section 4 of
this manual, and a complete list of them may be found in that section and in
appendix C.

ASSE~iBLER COMMANDS
A command is non-programmable, and can be executed only from the keyboard (i.e.,
in calculator mode). The assembler commands permit the user to transfer between

assembler and BASIC system modes, to assemble, store and load binary program
source code, and to find labels within the source code in memory.

Assembler commands may be entered as normal calculator mode statements, alone on
a line and terminated by [END LINE]. In addition, in assembler mode, the com­
puter's special function keys and certain other keys will generate the assembler
commands as follows:

2-1

Assembler Commands, StdLements, and Functions

ALOAD
Load Source Code

~

[LOAD]
[RUN]
[STORE]
[Kl]

[K2]

[K3]

Assembler Command

ALOAD
ASSEMBLE
ASTORE
BASIC
FLABEL
FREFS

Assembler Command

Format: ALOAD "file name"

Description: Legal only in assembler mode. Loads source code that was previ­
ously stored with the ASTORE command into the computer's memory
from the file specified on the currently-selected mass-storage
device. The -File must be of the type known as "extended" (****).

In assembler mode, the [LOAD] key is a typing aid for the word
ALOAD.

Example: ALOAD "OXY"

NOTE
The "extended" type of file, denoted by **** on
the directory of a mass storage device, does not
necessarily mean that the file contains source
code. In fact, other HP-83/85 firmware and soft­
ware may generate extended type files.

2-2

J

)

Assembler Commands, Statements, and Functions

ASSEMBLE Assembler Command
Assemble Source Code

Format: ASSEMBLE "file name" [, numeric value]

Description: Legal only in assembler mode. Assembles source code currently in
the computer's memory and stores it in the file specified by file
name on the currently selected mass storage device (e.g., tape or
disc). The assembled source code is stored as either a binary
program or, if the file has been declared a ROM or global file, as
a series of strings in a data file.

If at assembly numeric value is evaluated as zero, the binary
program currently in the computer's memory is scratched, and the
object code of the newly-assembled binary program is loaded from
the mass storage device into memory. Default numeric value is
evaluated as zero.

If at assembly numeric value is other than zero, any binary program
currently in memory remains inviolate, and the object code of the
newly-assembled binary program is stored ~ on the current mass
storage device.

In assembler mode, the [RUN] key is a typing aid for the word
ASSEMBLE.

CAUTION
If a program contains an error or if programs are
linked at assembly, this command can destroy the
source code; if the source code is to be saved on
a mass storage device such as a disc or tape car­
tridge, it should be stored there before typing

ASSEMBLE.

2-3

Assembler Commands, Statements, and Functions

Examples:

ASSEMBLER

ASSEMBLE "CENT" Assembles source code into object code, stores
object code as a file named CENT on the tape cartridge or disc,
and performs a LOADBIN "CENT" to load the object code.

ASSEMBLE "OXY", 3 Assembles source code into object code and
stores object code as a file named OXY on the tape cartridge or
disc.

Assembler Command
Switch to Assembler Mode

Description: Legal only when the computer is in normal system mode, this com­
mand scratches memory and puts the computer into assembler mode.
In assembler mode, most normal BASIC statements will still operate,
but only as calculator mode statements--they are not programmable.
Source code for a binary program can then be typed in with line
numbers, just as a BASIC program is typed in while in normal sys­
tem mode (but with only one instruction per line). Unlike its
operation in normal system mode, the computer is somewhat sensitive
to character spacing while in assembler mode. Auto line numbering,
screen editing, listing, etc., are all functional. The [CONT],
[STEP], and [INIT] keys are inoperative in assembler mode; in this
mode the [RUN] key acts as a typi ng ai d for the word ASSEMBLE.

Displays the word Ready when executed.

2-4

/

/

\

Assembler Commands, Statements, and Functions

ASTORE Assembler Command
Store Source Code

Format:

Example:

BASIC

ASTORE "file name"

Legal only in assembler mode. Stores the source code currently in
the computer's memory into the specified file on the currently­
selected mass storage device (e.g., tape or disc). File is of the
type known as "extended," shown in the directory as ****.

In assembler mode, the [STORE] key is a typing aid for the word
ASTORE.

ASTORE "OXY"

Assembler Command
Switch to BASIC Mode.

Format: BASIC

Description: Legal only when in assembler mode, this command scratches memory
and puts the HP-83/85 back into normal BASIC mode.

Displays the word Ready when executed.

In assembler mode, special function key [Kl] acts as a typing aid
for the word BASIC.

2-5

Assembler Commands, Statements, and Functions

FLABEL Assembler Command

Find Label

Format: FLABEL "label"

Description: Legal only in assembler mode. This command searches through the
source code in memory for the label specified. For each occur­
rence of the label (as a label at the beginning of a line) the

Examples:

FREFS

line is listed. After an FLABEL command has been executed, pressing
the [LIST] key causes the source code to be listed, beginning with
the last line where the label occurs.

In assembler mode, special function key [K2] may be used as a
typing aid for the word FLABEL.

FLABEL "SIN"

FLABEL "PARSIT"

Assembler Command

Find References to Labels

Format: FREFS "1 abel"

Description: Legal only in assembler mode. Searches through the source code
in memory for all occurrences, whether at the beginning of a line
or not, of the specified label. Otherwise operates the same as
FLABEL, including the operation of the [LIST] key.

Examples:

In assembler mode, special function key [K3] acts as a typing aid
for the word FREFS.

FREFS "SIN"

FREFS "CENT"

2-6

/

)

\

Assembler Commands, Statements, and Functions

TREM Assembler Command
Toggle Remarks

Format: TREM

Description: Legal only in assembler mode. Toggles an internal flag to suppress
end-of-line comments and prevent them from appearing on the com­
puter's CRT when source code is listed. Default condition is that
end-of-line comments are not shown on the CRT. Because end-of­
line comments can wrap around on the CRT, this command can make
the CRT display of source code more easily readable.

ASSEMBLER STATEMENTS AND FUNCTIONS
Statements and functions are programmable BASIC language elements. The statements
and functions provided by the Assembler ROM are simply additions to the BASIC
language of the HP-83/85 computer. As with all BASIC statements and functions,
they may be used either in calculator mode or as part of a BASIC program when the
HP-83/85 is in normal BASIC system mode. When the computer is in assembler mode,
of course, all BASIC statements and functions may be executed only from the key­
board (i.e., as calculator mode statements).

DEC Assembler-Provided BASIC Function

Octal to Decimal

Format: DEC (octal numeric value)

Description: Returns the decimal equivalent of the specified octal value.

Example: DEC (377) Returns 255, the decimal equivalent of 3778,

2-7

Assembler Commands, Statements, and Functions

~lE~l Assembler-Provided BASIC Statement
Memory Dump

Format: MEM address [:ROM #] [,# of bytes] [=!,!, ...]

Description: Dumps the contents of computer RAM or ROM memory to the current

Examples:

CRT IS device beginning with the octal
for the specified octal [,# of bytes].
of bytes is 1008; otherwise, default
specifi ed.

address. Continues dumping
At power-on, default

is the last # of bytes

The [:ROM #], if included, is a decimal value that selects the
plug-in ROM from which memory is dumped. At power-on, default
value for ROM # is 0; otherwise, default is the last ROM #

specified.

The output is in two forms: The first shows the octal representa­
tion of the bytes in memory; the second shows the ASCII represen­
tation of the bytes.

If =!,! is included in the statement, memory is not dumped, but
instead the contents of memory locations beginning at address are
changed to the octal values specified after the = sign. The mem­
ory locations must be in RAM (32K-64K). The contents of one
succeeding memory location are changed for each value specified
after the = sign. The # of bytes, if included in the statement,
is disregarded in this case.

MEI~ 103300 Dumps contents of 1008 bytes of memory to the CRT IS
device, beginning with memory location 103300.

MEM 103300, 20 Dumps contents of 208 bytes of memory to the CRT
IS device, beginning with memory location 103300.

2-8

J

/

)

ME~1D
Memory Dump

Assembler Commands, Statements, and Functions

MEM 60200: 40,200 Dumps contents of 200 bytes of Assembler ROM
(ROM # 40) to CRT IS device, beginning with memory location 60200.

MEM 105000 = 0,0,0,15 Loads memory locations 105000, 105001, and
105002 with zeros, and loads location 105003 with 158,

Assembler-Provided BASIC Statement

Format: MEIVlD address [: rom#] [,# of bytes] [=1,1, ...]

Description: Same as MEM statement, except it reads the contents of two bytes of
memory beginning with address and uses those contents as the actual
address at which to begin the dump.

Example: MEMD 101233 Dumps contents of 100 bytes of memory to current CRT
IS device beginning with location pointed to by value in bytes
101233 and 101234. (Since address 101233 is the address of BINTAB,
this statement actually dumps the first 100 bytes of a binary pro­

gram, if one is resident.)

2-9

Assembler Commands, Statements, and Functions

REL Assembler-Provided BASIC Statement
Relative Address

Format: REL (octal address)

Description: Returns the absolute address of a relative address. Takes the
relative octal address and adds to it the address (called BINTAB)
of the beginning of the binary program to yield the octal absolute
address. May be used alone or with MEM. May also be used

Examples:

SCRATCHBIN

with command BKP if HP-82928A System Monitor is attached.

REL (0) Returns address of the beginning of the binary program
(i .e .• the contents of BINTAB).

~lEM REL (123). 100 Dumps contents of 1008 bytes of memory to the
CRT IS device. beginning with the 123rd byte of the binary program.

BKP REL (675) Sets break point at byte 675 after the beginning of
the binary program. (BKP is available only with the HP-82928A
System Monitor attached.)

Assembler-Provided BASIC Statement

Scratch Binary Program

Format: SCRATCHBIN

Description: Scratches the current binary program from computer memory. without
affecting anything else. Nothing can follow SCRATCHBIN on a line

except [END LINEJ.

2-10

J

)

Assembler Commands, Statements, and Functions

OCT Assembler-Provided BASIC Statement
Decimal to Octal

Format: OCT (decimal numeric value)

Description: Returns the octal equivalent of the specified decimal value.

Example: OCT (45) Returns 55, the octal equivalent of 4510 .

'-

2-11

NOTES /

./

J

2-12

SECTION 3

CPU STRUCTURE AND OPERATION

This section explains the structure, addressing modes and operation of the cen­
tral processing unit (CPU) in the HP-83/85.

The HP-83/85 CPU consists of a 6410-byte register bank, a pair of address
pointers called the address register pOinter (ARP) and the data register pointer
(DRP), an arithmetic and logic unit (ALU) and a shifter, and a set of status
indicators.

Register Bank

ARP

I I ,

-
DRP

. , ,

CENTRAL PROCESSING UNIT

3-1

E

I I I I I
D oeM

D OVF

D LSB

D MSB

D LDZ

D RDZ

Status
Indicators

CPU Structure and Operation

ARP AND DRP
The address register pointer (ARP) and the data register pointer (ORP) are inde­
pendent six-bit CPU locations. Both the ARP and the ORP can be used to address
any of the bytes in the CPU register bank.

The CPU register addressed by the ARP is called the address register, or AR. The
register addressed by the ORP is called the data register, or DR.

CPU REGISTER BANK
The heart of the CPU is the register bank of 64 8-bit bytes of random-access
memory. These bytes form registers which are grouped into two-byte (16-bit) sec­
tions and eight-byte (64-bit) sections. The diagram on the following page shows
the organization of the CPU registers, which are numbered from 0 to 778, and
specified by R0 - R77.

Some of the registers in the CPU register bank are dedicated by hardware to
specific tasks.

HARDWARE-DEDICATED REGISTERS

The first 408 registers of the CPU (R0 - R37) are divided into two-byte (16-bit)
sections. Of these, many of the bytes are reserved by hardware for use as
special-purpose registers. These hardware-dedicated registers are:

Register Bank Pointer. Register 0 is a pointer to the remainder of the CPU
register bank. Register 1 is inaccessible except through register O.

Index Scratch. Registers 2 and 3 are scratch registers used for indexed address­
ing (X). Their contents are destroyed by execution of instructions using indexed

addressing.

Program Counter. Registers 4 and 5 contain the program counter (PC).

3-2

/

)

DRP ..

ARP ..

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

CPU Structure and Operation
CPU Pointer

X
X

PC
PC

Subroutine RTN SP
Subroutine RTN SP

.. Boundary

Usually used for
addresses.

} 2·Byte
Section

Usually used for
floating point
numbers.

a·Byte
Section

CPU REGISTER BANK

3-3

CPU Structure and Operation

Return Stack Pointer. Registers 6 and 7 contain the pointer for the subroutine
return stack. (The space allocated for this stack in the computer's system mem­
ory comprises addresses 101300 through 101777, although sometimes these addresses
may be used for other purposes.)

In addition to the special-purpose registe~s described above, certain other CPU
registers are commonly used for specific purposes by internal HP-83/85 routines.
(For example, registers R40 and R50 are used by internal mathematics routines for
addition, subtraction, etc.)

REGISTER BOUNDARIES

The CPU registers are separated by boundaries, shown as heavy lines in the illus­
tration of the register bank above. In the first 32 bytes, there is a boundary
every two bytes. In the next 32 bytes, there is a boundary every eight bytes.

This partitions the first 32 bytes into 16-bit sections (used primarily for
address manipulation) and the next 32 bytes into 64-bit sections (used primarily
for floating point quantities). The register array is, therefore, capable of

holding up to four floating-point numbers and twelve l6-bit addresses.

MULTI-BYTE OPERATIONS

The HP-83/85 CPU structure permits "multi-byte operations," involving a string of

bytes rather than just a single byte. A string can consist of from one to eight
consecutive CPU registers. The exact number is determined by the ORP and the
next boundary.

The locations involved in a multi-byte operation are those beginning with the
location pointed to by the ORP and ending with the next boundary. The next
boundary is the one in the direction of increasing addresses (except in the case

of a shift right instruction.)

3-4

)

\

\"'-

CPU Structure and Operation

The following examples should help explain this concept:

--A multi-byte increment with ORP set to 70 (that ;s, executing ICM R70) results

in an increment of the 64-bit quantity stored between locations R70 and R77.

Higher addresses always refer to more significant bytes.

DRP

~ R70

R71

R72

R73

R74

R75

R76

R77
Boundary ~

--A multi-byte test with ORP set to 44 (that is, executing TSM R44) results in

the status flags being set according to the data found in registers R44, R45,

R46 and R47. Location R47 is the most significant byte.

R40

R41

R42

DRP R43

~ R44

R45

R46

R47
Boundary ..

3-5

CPU Structure and Operation

--A multi-byte complement with ORP set to 37 (that is, executing TCM R37) com­
plements only R37.

DRP

Boundary ~

R34
I----------i

R35

R36
!rr-r-r-;..-r7--rT-r-r-:77?"7'"l

R37

The only exception to the rule that the next boundary is in the direction of
increasing addresses is the shift right instruction. If a multi-byte instruc­
tion is a shift right, then the next boundary is the one in the direction of
decreasing addresses.

Thus:
--A multi-byte shift right with ORP set to 31 (that is, executing LRt·l R3l) shifts

the combined contents of R3l and R30 right. R3l is the most significant byte.

R26
I---------i

R27
Boundary - ____ .~ """"",,,,,,,.,.,.~,.,.,.,.,.j

DRP R30

R31

SINGLE-BYTE OPERATIONS

Besides executing multi-byte instructions, the HP-83/85 CPU also executes in­
structions using single bytes. In a single-byte operation, the ORP refers to

only a single byte.

3-6

J

..j

CPU Structure and Operation

TWO-OPERAND OPERATIONS

Two-operand multi- and single-byte instructions may also be executed. In the
case of a multi-byte two-operand instruction, ORP points to the first operand
and ARP points to the second. ORP is still used to determine the number of
bytes involved for the first operand. The other operand consists of the same
number of bytes, beginning with the location to which the ARP points. For
example;

--A multi-byte add with ORP set to 60 and ARP set to 50 (that is, executing ADM
R60, R50) results in the 64-bit quantity starting with R50 being added to the
64-bit quantity starting with R60. The sum is stored in R60 through R67.

ARP

DRP

R50
174~~;Lh"-H44-0.41

R51
~Y-r:.r-r-.;Lh"-H~~

R52
~,Lh44-~~.LHc,..q

R53
Fh"~,Lh44-~~44

R54
~'-h'-~,Lh44~~

R55
""""';LhY-r~"L,4,"-H<,4

R56
fr7"~~;Lh"-h<.,,4:.,..<74

R57

R60
~"<¥~~~~~

R61
~~~,<¥~~:yj 

R62 
""",,:y...:~~~~~ 

R63 
~~~,:y...:~~~ 

R64
~~~~~~y.j 

R65 
fY,~~~~~;y..j 

R66 
~~~~~~~ 

R67

DRP

3-7

R60
~,Lh44-~~.LHc,..q

R61
Fh"~,Lh44-~~44

R62
1'h44~~.LH'-h'-:,..<;i

R63
~.,£.hLh<W~.,£.h4"1

R64
I7"7CHW~,Lh.Lh.y,..j

R65
V7S.LhLhCHW;.4L,4<,j

R66
W77':~.LhLhW7LA

R67

CPU Structure and Operation

--A multi-byte load with DRP set to 74 and ARP set to 11 (that is, executing LDM
R74, Rll) transfers the contents of four bytes beginning with Rll to locations
R74, R75, R76 and R77.

ARP

DRP -

R10
h--r7"-r-r7"7"":~~"""T"7I

R11

R12
14444-'Y-r~~~'hl

R13

R14
fLL.L...£..~~:.L.L~L"'j

R15

R70

R71

R72

R73

R74

R75

R76

R77

3-8

J

J

/

\

CPU Structure and Operation

--A multi-byte store with DRP set to 74 and ARP set to 11 transfers the contents

of R74 through R77 to the four consecutive locations beginning with Rll.

ARP

DRP ..

R10
\o--r:,'7'"7-rT~rT"7'7'"7~

R11

R12
17'r:-r-r-,~'"T-rrr,-r-r-,"71

R13

R14
F-"--'<...L..I.~"""'-L..LJ....'-L...~

R15

R70

R71

R72

R73

R74

R75

R76

R77

Remember: The number of bytes in a multi-byte operation is always determined by

the setting of DRP (not ARP) and the next boundary.

There are also two-operand operations where the DRP points to one operand and

the second is located in the computer's memory. Once again, the number of bytes

to be operated upon is determined by the DRP. The corresponding number of bytes

are accessed from memory beginning with the calculated effective address.

3-9

CPU Structure and Operation

NUMBER REPRESENTATION
Numbers in the HP-83/85 are manipulated in a variety of formats. The user has
the option of specifying quantities as octal, BCD or decimal. In addition, the
internal quantities used in the HP-83/85 occur in various formats, depending on
their use.

ADDRESSES

An address, whether in the CPU register bank or in system memory, is always an
octal value that occupies two bytes, or 16 bits. The lower-numbered byte con­
tains the less significant byte of the address, and the higher-numbered byte
contains the more significant byte of the address. Only the first byte of the
two-byte address is referenced by other instructions.

For example, address 177405, translated into a binary quantity, appears like
this:

7 7 4 0 5} Octal Representation

111 111 100 000 101 } Binary Representation

When this binary quantity is split into two eight-bit registers, it appears as:

11 111 111

I 3 7 7

100

o

000

o
Binary Quantity

Register Contents

Only the first byte of the two-byte address is referenced by other instructions,
so an address pointing to ROM location 177405 from the CPU might look like this:

ARP

o

7

3-10

5 I R~
7 . R33

)

/

\

CPU Structure and Operation

NUMERIC QUANTITIES

Numeric quantities in the HP-83/85 may be of three types: Real, short, and inte­

ger. The following illustration shows how numeric quantities are represented

internally in the computer. For the illustration, the numbers are shown in CPU

registers R40 - R47.

40

41

42

43

44

45

46

47

E1

EO

M10

M8

M6

M4

M2

MO

Real

E2

MS

M11

M9

M7

M5

M3

M1

45

46

47

01

03

S

Inleger

DO

02

04

44

45

46

47

FORMATS OF NUMERIC QUANTITIES

Shorl

EO E1

M3 M4

M1 M2

00 SM SE MO

In real or floating-paint format, the mantissa is a 12-digit quantity expressed

as a magnitude. Each digit consists of four bits. The least significant digit,

represented by Mll, is stored in R42. The most significant digit, represented by

M0, is stored in R47. The number is normalized; thus, there is an implied decimal

point between M0 and Ml in R47. The sign of the mantissa is stored in the least

significant digit of R41. A zero is stored as the sign of the mantissa if the

number is positive; otherwise, a nine is stored. The exponent is a three-digit

number stored in R40 and in the most significant digit position of R41. Expo­

nents are expressed in ten's complement form.

Integer variables are stored in three bytes, with five digits and a sign. Short

variables are stored as a mantissa sign (SM) an exponent sign (SE), five mantissa

digits, and a two-digit exponent.

3-11

CPU Structure and Operation

STATUS INDICATORS
The HP-83/85 CPU contains eight flags and a four-bit register for program status.
The flags signal the present condition of the data, while the four-bit register
serves as an "extended" register for counting and data manipulation.

Status can affect or be affected by CPU instructions. In the HP-83/85 CPU, the
instruction set has data movement instructions of both the arithmetic and non­
arithmetic types. These instructions include:

--Arithmetic: Add, subtract, compare, increment, decrement, complement.

--Non-arithmetic: Load, store, logical and, or, exclusive or, shift, clear, test.

The following status indicators are present in the HP-85 CPU:

E: Extend Register. A four-bit register which can be cleared, incremented, or
decremented independent of OCM. Shifts can be made into and out of the
extend register only when OCM is set.

DCM: Decimal Mode Flag. When set, binary-coded decimal (BCD) operations will
be performed. When cleared, binary operations will be performed. The
operations affected by OCM are all the arithmetic data movement instruc­
tions and the shift instructions. The OCM flag can be modified only by
two CPU instructions, BCD and BIN. The BCD instruction sets OCM, while

the BIN instruction clears OCM.

3-12

)

CPU Structure and Operation

CY: Carry Flag. This one-bit register can be shifted into and out of when DCM

is cleared (i.e., BIN mode). It is loaded with the carry from the most

significant bit (MSB) according to the table shown here:

CPU Instruction

Add

Subtract

Compare

Increment

Decrement

Shift

Complement

Carry Flag

CY set according to carry of add.

CY set if result is positive, cleared if result is

negative.

Same setting as for subtract.

CY set as for add.

CY set as for subtract.

CY loaded with bit shifted out, if in binary mode.

(Right shift loads CY from LSB.)

CY cleared by nine's complement, set by ten's com­

plement, if contents of data register (DR) were

zero.

All other data movement instructions clear CY.

OVF: Overflow Flag. The overflow flag is set whenever the result of a binary

arithmetic operation exceeds the maximum positive or negative number that

can be contained in the destination register. This can occur as the result

of a compare, binary add, binary subtract, binary complement, or binary

left shift instruction. Thus, an arithmetic data movement instruction or

a left shift with DCM cleared affects OVF; all other data movement instruc­

tions clear OVF. The remaining instructions do not affect OVF.

LSB: Least Significant Bit Flag. LSB is set the same as the least significant

bit (LSB) of the result of each data movement instruction.

3-13

CPU Structure and Operation

MSB: Most Significant Bit Flag. MSB is set the same as the most significant bit
(MSB) of the result of each data movement instruction.

Z: Zero Flag. Z is set if a data movement instruction produces a result of
all zeros. If the result is not all zeros, Z is cleared. Other instruc­
tions do not affect Z.

LDZ: Left Digit Zero Flag. LDZ is affected only by data movement instructions.
LDZ is set if the most significant nibble (four bits) of the result is 0000.
If the most significant four bits are not 0000, LDZ is cleared.

RDZ: Right Digit Zero Flag. RDZ is affected only by data movement instructions.
RDZ is set if the least significant nibble (four bits) of the result is
0000, regardless of the setting of DCM. If the most significant four bits
are not 0000, RDZ is cleared.

Status information is based on the entire single or multi-byte quantity that is
processed. The figure below illustrates status on a three-byte quantity.

MSB LSB

E • t t
cv f--- r-17-6-5 -4-3-2-1--'0 1 17 6 5 4 3 2 1 01 17 6 5 4 3 2 1 01

OVF 1----

LDZ RDZ

ZERO

MULTI·BYTE STATUS

All multi-byte operations except right shift start execution with the least sig­
nificant byte. All status flags except LSB, RDZ, and DCM are updated after each
byte of an operation, and therefore will be correct whenever the memory boundary
is reached. The LSB and RDZ flags are set only for the first byte.

3-14

/

)

CPU Structure and Operation

For a shift right instruction, where the shift is from the most significant byte

to the least significant, the MSB and LDZ flags are set only for the most signif­

icant byte; the rest are updated after each byte.

For a complete list of all CPU instructions and their relationships to status
indicators, refer to section 4 and appendix C.

3-15

NOTES

/

3-16

\'-...-- SECTION 4

ASSEMBLER INSTRUCTIONS

The HP-83/85 Assembler instructions can manipulate data in the HP-83 or HP-85

central processing unit, and through the CPU, in HP-83/85 RAM as well.

Assembler instructions are of two types: Instructions and pseudo-instructions.

Instructions operate directly on the CPU and during assembly are translated

directly into machine language object instructions. They are specified by means

of opcodes. Pseudo-instructions are entered in the same way as CPU instructions,

but they are actually messages to the Assembler ROM. They are specified by means

of pseudo-opcodes.

ENTERING INSTRUCTIONS AND PSEUDO-INSTRUCTIONS

Source code is typed into the CRT by entering the line number, followed by a

label (if any), followed by the opcode, followed by the address or operand, if

required, followed by a comment (if any). When [END LINE] is then pressed, the

line is parsed and the elements are assigned to their respective fields on the

CRT.

1-4 characters 1-6 characters

Line Number Label Opcode Operand/Address Comment

SOURCE CODE INSTRUCTION FORMAT

In assembler mode, the HP-83/85 is sensitive to spacing among the elements of a

line of source code. For example:

4-1

Assembler Instructions

A statement entered to
the CRT as:

60 LBL LDMD R70,R40
70 Label jsb=numval
80 PUBD R52,+R12
90 PUBD 52,+12
100 CLB R40 !THIS IS A COMMENT

LINE NUMBERING

After parsing appears as:

60 LBL LDMD R70,R40
70 Label JSB =NUMVAL
80 PUBD R52,+R12
90
100
!THIS IS

t

PUBD R52,+R12
CLB R40

A COMMENT

t t
Label
Field

Opcode Operand or
Field Address Field

Each line of binary program source code must begin with a line number. These
line numbers may be entered individually, or automatic line numbering may be
specified with the [AUTO] key.

These line numbers are useful for entering and editing a binary program, but do
not correspond to the addresses of the machine language object code that is

J

generated during assembly. .~

LABELS

No spaces or one space may be typed between the line number and the label field.
A label is optional, and may be from one to six characters. A label cannot have
a digit as the first character, nor a space as any character; one or more spaces
denote the end of the label.

When a label has been entered and parsed, it appears in a label field on the
CRT or printer. This field begins in the second character space to the right of
the line number.

OPCODES AND PSEUDO-OPCODES

The opcodes and pseudo-opcodes for assembly language instructions may be entered
after typing at least two spaces after the line number or at least a single space
after a label. Entries in the opcode field are restricted to valid instructions
and pseudo-instructions. Blanks are not allowed within the opcode field.

4-2

\

Assembler Instructions

When an opcode or pseudo-opcode has been entered and parsed, it begins in the

field nine spaces to the right of the line number.

Opcodes (but not pseudo-opcodes) may be either single-byte (specified by a "8")

or multi-byte (specified by an "M").

OPERANDS OR ADDRESSES

Depending upon the format of the instruction, the operand or address field may

specify one or more of the following:

--Data Register. A CPU register which may signify single-byte or multi-byte

operation.

--Operand. May be a CPU register or a memory location. Depending on the ad-

dressing mode, memory can be addressed immediately, indirectly, or by an index.

--Register Pointer. Constant used to load ARP or DRP.

--Label. A label to specify an address or constant.

--Nothing. Some instructions do not require an entry in this field.

An AR or DR in the CPU is specified by an "R" before the register number (e.g.,

R32), or by an "X" before the register number when indexed addressing is used.

The "R" may be omitted when CPU register numbers are typed, since the assembler

inserts a missing "R" automatically. The "X" must be typed to indicate register

numbers for indexed operations.

COMMENTS

A comment or remark must begin with an exclamation point. A comment must be

typed beginning in the first or second space after the line number, or beginning

one or more spaces after the other elements of the line of source code.

After being parsed, a comment which has been entered immediately following the

other elements of the line begins in column 33; thus, on the HP-83/85 CRT it

appears on the following line. A peripheral printer with a column width greater

than 32 can permit a comment to appear on the same line as the source code

statement.

4-3

Assembler Instructions

NUMERIC VALUES -j

Numeric values can be entered in octal, BCD or decimal notation. A BCD value is
entered by immediately following the value with a "C," while a decimal value is
followed by a "D;" otherwise the assembler assumes octal values.

Example: LDM R45,=31, 19C, 250 Loads the same bit pattern into registers R45,
R46 and R47.

Registers can be specified by octal values only.

SYNTAX AND SYMBOLS USED
The following shows the syntax guidelines once again and also includes a list of
the symbols used in the descriptions of assembler instructions.

LOB Instructions shown in capital letters, but not underlined, must be

entered exactly as shown (in either upper-case or lower-case letters).

Items shown underlined (e.g., DR) are expressions or names that must be
specified in the instruction, statement, or command.

[] Items shown between brackets are optional. (e.g., CMB[D] indicates
there is a CMB instruction and also a CMBD instruction available ..) If

several items are stacked between brackets, anyone or none of the
items may be specified.

Three dots (ellipsis) following a set of brackets indicate that the
items between the brackets may be repeated.

Is transferred to.

Contents of.

Complement (e.g., x is complement of x). This is one's complement if

DCM-Q and nine's complement if DCM=l. I

4-4

Assembler Instructions

8/M Single-byte or multi-byte instruction.

AR Address register location--location of first byte addressed by ARP.

Can be a register (e.g., R32), R* or R#.

DR Data register location--location of first byte addressed by DRP. Can

be a register (e.g., R32), R* or R#.

A Address mode for load/store. Can be blank (for immediate), D (for

direct), or I (for indirect).

ARP Address Register Pointer. A 6-bit register used to point to one of 64

CPU registers. The byte to which ARP points is often used as the first

of two consecutive bytes forming a memory address.

DRP Data Register Pointer. A 6-bit register used to point to one of 64 CPU

registers. The location to which DRP points is often used as the des­

tination for data loaded into the CPU.

R(x) CPU register addressed by (x).

~l(x) Memory location addressed by (x). (x) must be a l6-bit address.

PC Program Counter. CPU registers R4 and R5. Used to address the instruc­

tion being executed.

SP Subroutine Stack Pointer. CPU registers 6 and 7. Used to point to the

next available location on the subroutine return address stack.

EA Effective Address. The location from which data is read for load-type

instructions or the location where data is placed for store-type

instructions.

ADR Address. The two-byte quantity directly following an instruction that

uses the literal direct, literal indirect, index direct or index indi­

rect addressing mode. This quantity is always an address.

4-5

Assembler Instructions

The following pages show the HP-83/85 Assembler ROM instructions that are used to J

manipulate the CPU and external memory. These instructions are illustrated in an
abbreviated form in this section; for a complete list of all forms of each in-
struction, refer to appendix C.

Also contained in this section are the Assembler ROM pseudo-instructions.

LOAD/STORE INSTRUCTIONS
The instructions for loading and storing data have access to all eight addressing
modes, and they can be single-byte or multi-byte.

LD
Load

Format:

Operation:

LDBA DR, operand
LDMA DR, operand

DR+-(EA)

Single byte
Multi-byte

CPU Instruction

Description: Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

ST CPU Instruction

Store

Format: STBA DR, operand
STMA DR, operand

Operation: (DR)-+EA

Single byte
Mul ti-byte

Description: Contents of data register are stored in effective address deter­
mined by the operand and the addressing mode.

4-6

Assembler Instructions

ADDRESSING MODES
The HP-83/85 CPU allows for several addressing modes. These include literal,

register, indexed and stack modes of memory access.

Not all addressing modes are available to all instructions. The load (LD) and

store (ST) instructions have access to all addressing modes except stack address­

ing, and they are used here for illustration. For a list of the addressing modes

available to any particular instruction, consult the description of that instruc­

tion in this section or in appendix C.

In addressing, all addresses are referred to as two-byte quantities. Because all

addresses are two consecutive bytes, only the first byte of the sequence is ref­

erenced. For instance, the AR is actually a single byte within the CPU register

bank that is pointed to by the ARP. When the AR is described as being an address,

remember that R (ARP) contains the low byte of the address and R (ARP + 1) con­

tains the upper byte of the address.

The multi-byte feature of the CPU allows data to be manipulated in quantities of

from one to eight bytes. Therefore, in the following descriptions, only the

address of the first byte of data is specified. As explained earlier, the number

of bytes is determined by the distance of the DR from the next consecutive

boundary.

In the following descriptions, the effective address (EA) points to the first

byte of data to be loaded for load instructions.

For store instructions, EA points to the location where the first byte of data

is stored.

REGISTER MODE

The first category of addressing is the register addressing mode. This mode

allows the CPU registers (6410 bytes) to be used as addresses as well as for

data. There are three levels of register addressing modes.

4-7

Assembler Instructions

REGISTER IMMEDIATE

Format: Opcode B/M DR, AR

Effective
Address: AR

Description: The operand is another CPU register (single or multi-byte) begin­
ning at AR. Thus, the AR is the source for load instructions or
the destination for store instructions.

Examples:

CPU Register Bank

ARP

----".-. AR EA

DRP

----".-. DR

REGISTER IMMEDIATE ADDRESSING

LOB R36, R32 Loads contents of R32 into CPU register R36.

STM R40, R50 Stores contents of registers R40 through R47 "into
registers R50 through R57.

REGISTER DIRECT

Format: Opcode BIM 0 DR, AR

Effective
Address: M(AR)

Description: The effective address is a location in system memory that is
addressed by the AR. This mode is useful when using a CPU regis­
ter as a pointer to system memory.

4-8

ARP

DRP

Examples:

CPU Register Bank

1-----------1 -~ AR }

----I~~ DR

Assembler Instructions

System Memory

EA
~ f---------;

REGISTER DIRECT ADDRESSING

LOBO R36, R32 Loads CPU register R36 with the contents of the

system memory location addressed by R32-R33.

STMD R40, RSO Stores contents of R40-R47 into system memory

beginning with location addressed by RSO-RS1.

REGISTER INDIRECT

Format: Opcode B/M I DR, AR

Effective
Address: M(M(AR))

Description: The address register points to a system memory location, which in

turn points to another memory location that is the effective

address.

4-9

Assembler Instructions

System Memory

CPU Register Bank

DRP

----i.~ DR

ARP

----i.~ AR

REGISTER INDIRECT ADDRESSING

Example: LOBI R36, R32 If R32 and R33 contain the address 105371, loads
CPU register R36 with the contents of the memory location that is
addressed by the contents of system memory locations 105371 and
105372.

LI TERAL MODE

The second of the categories of address modes is the literal mode. In literal
mode, the operand is a literal quantity stored in memory immediately following
the opcode. A literal string can be:
--BCD constant, e.g., 99C, ... , 79C (~ lOa bytes)

--Octal constant, e.g., 12, ... , 277 (~ lOa bytes)

--Decimal constant, e.g., 2010, ... ,90 (s lOa bytes)

--Label (The literal quantity is a one- or two-byte value or address assigned
to the label.)

The programmer is responsible for ensuring that the number of bytes of the lit­
eral string matches the DRP setting. The assembler does not check for mismatch.

4-10

)

)

Assembler Instructions

There are three types of literal addressing modes.

LITERAL IMMEDIATE

Format: Opcode B/M DR, = literal

Effective
Address: (PC+l)

Description: The operand is a literal string that, during assembly, is stored in

memory immediately after the instruction opcode. This mode is use­

ful for loading constants into the CPU register bank.

ORP

Examples:

LITERAL DIRECT

Format:

System Memory

CPU Register Bank

4 PC
---I.~ Instruction

5 PC
Literal EA

--."OR

LITERAL IMMEDIATE ADDRESSING

LDB R36, = 3D Loads 310 into CPU register R36.

LDM R40, = 0,0,0,0,0,0,0,120 Loads 1208 (i.e., a floating-point

5) into registers R40-R47.

Opcode B/M D DR, = label

Effective
Address: M(PC+1)

4-11

Assembler Instructions

Description: The operand is a memory location that, after assembly, is addressed J

DRP

Examples:

by a two-byte literal quantity stored immediately after the instruc-
tion opcode. The label defines the two-byte literal quantity to be
used by the Assembler ROM.

System Memory

CPU Register Bank

Instruction

2·byte

address : I-----:~-----ll/
--.. ~ DR EA -

LITERAL DIRECT ADDRESSING

LOBO R34, = RO~1FL Loads the contents of the memory 1 oca ti on
addressed by the label ROMFL into CPU register R34.

STMD R74, = CHIDLE Stores contents of CPU registers R74 through
R77 into four memory locations beginning with the location addressed
by the label CHIDLE.

LITERAL INDIRECT

Format: Opcode BIM I DR, = label

Effective
Address: M(M(PC+l))

Description: The operand is a memory location that, after assembly, is addressed
by a two-byte memory location that itself is addressed by a two-byte
literal quantity stored immediately after the instruction opcode.
The label defines the two-byte literal quantity used by the Assem­
bler ROM.

4-12

/

I

DRP

Example:

INDEX MODE

Assembler Instructions

System Memory

CPU Register Bank

Instruction

2·byte

Literal I : t-----::----Il~
2·byte

address I ----i ... DR

- EA

LITERAL INDIRECT ADDRESSING

STBl R30, = ADDR Stores the contents of CPU register R30 into

the memory location addressed by another memory location which is

itself addressed by the two-byte literal quantity specified by the

label ADDR.

The index mode is the third addressing category. Indexing is useful for access­

ing data when the data is stored in a table. In indexed addressing, a fixed

base address is added to an offset to create the desired address. The CPU per­

forms this addition using CPU registers 2 and 3. After an index instruction,

registers 2 and 3 contain the effective address (i.e., the sum of the base and

the offset). Neither the original base nor the offset is altered in memory.

There are two modes for indexed addressing.

INDEX DIRECT

Format:

Effective
Address:

Opcode BIM D DR, XAR, label

M(AR+(PC+l))

4-13

Assembler Instructions

Description: The effective address is found by adding (in binary) the two-byte
contents of the AR to the two-byte address that immediately follows
the instruction opcode in memory.

Example:

System Memory

CPU Register Bank

- EA

o
PC ----P'"

1---------1---
Instruction

PC 2·byte

address

ARP

AR

DRP

DR

INDEXED DIRECT ADDRESSING

LOBO R36, X30, TABLE Loads into CPU register R36 the contents of
the memory location addressed by registers R2 and R3. R2 and R3

contain the sum of the contents of R30 and the contents of the
address TABLE.

INDEX INDIRECT

Format: Opcode B/M I DR, XAR, label

Effective
Address: M(M(AR+(PC+1)))

Description: The effective address is found in a memory location. This memory

lUCdLiulI is fuunu lJy duuiny (in bindry) the two-byte contents of

4-14

J

I

I

Example:

ARP

DRP

Assembler Instructions

the AR to the two-byte address that immediately follows the in­

struction opcode in memory. This mode is useful when addresses are

stored in table form.

System Memory

CPU Register Bank

I: _1
r- ev .. - I

- J
4 PC

5 PC

EA -
)

I- I AR

1 Instruction

2·byte)-
I

address .. DR

INDEXED INDIRECT ADDRESSING

STMI R36, X30, OFFST Stores the contents of CPU register R36 and

R37 in memory, beginning with the location addressed by another

memory location which is itself addressed by CPU registers 2 and

3. Registers 2 and 3 contain th sum of the address in R30 plus the

offset specified by the label OFFST.

STACK INSTRUCTIONS
There is a large set of instructions that are available to push data onto and pop

data from stacks in the main memory of the HP-83/85. These stacks can be ad­

dressed by the instructions using direct or indirect addressing.

4-15

Assembler Instructions

PU
Push

Format: PUB 0/1 DR +/ - AR
PUM 0/1 DR +/ - AR

Push single byte
Push mul ti-byte

CPU Instruction

Description: Pushes single byte or multi-byte onto stack. 0/1 indicates direct
or indirect addressing. +/- indicates stack pOinter is incremented
(increasing stack) or decremented (decreasing stack) in memory.

Examples:

PO
Pop

Format:

PUBO R32, +R12
PUBI R32, -R46

POBO/l DR +/ - AR
POMO/ I DR +/ - AR

Pop si ngle byte
Pop mul ti -byte

CPU Instruction

Description: Pops single byte or mUlti-byte off stack. 0/1 indicates direct or
indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

STACK ADDRESSING

CPU registers R6 and R7 are permanently dedicated, and always contain the address
of the subroutine return stack. CPU registers R12 and R13 contain, by convention,
the address of the operational stack used during runtime by many of the internal
HP-85 routines. The user can, of course, address a stack from nearly any CPU
register pair.

Stacks may be increasing or decreasing. An increasing stack is one which is
filled in the direction of higher memory locations and from which data is removed

in the direction of lower memory locations. In a decreasing stack, data is

4-16

J

/

\

Assembler Instructions

pushed in the direction of lower memory locations, and taken off in the direction

of higher memory locations. To avoid confusion, it is best to address a particu­

lar stack using only instructions for an increasing stack or only instructions

for a decreasing stack, but not both.

For stack addressing, the stack pointer is contained in the AR. Multiple stacks

are handled by having multiple stack pointers within the CPU register space. A

stack is activated by setting ARP equal to the location of that stack's pointer.

For an increasing stack, the AR must point to the next available location on the

stack. For a decreasing stack, the AR points to the occupied location on top of

that stack.
Lower Memory

Locations

I ~
I I
I I
I I
I I
I I
I I
I I

ARP AR I I

·1
I I

• I I
I I , I

Stack Stack
Push Pop

Higher Locations

INCREASING STACK

Lower Memory
Locations

• I
ARP AR I

·1
I

• I
I
I
I
I
I
I
I
I

Stack Stack
Push Pop

Higher Locations

DECREASING STACK

4-17

Assembler Instructions

STACK DIRECT

In this addressing mode, the stack is presumed to contain data. Stores to the
stack (pushes) fill the stack. Loads from the stack (pops) empty the stack.

For a push onto an increasing stack, the AR points to the location where data is
to be stored. Following the store, the AR is incremented by the number of bytes
stored. For a pop operation from an increasing stack, the AR is first decre­
mented by the number of bytes to be popped off. The AR then points to the
location of the data to be removed from the stack.

For a pop from a decreasing stack, the AR points to the location of the data to
be removed. Following the removal, the AR is incremented by the number of bytes
moved. For a push operation onto a decreasing stack, the AR is first decremented
by the number of bytes to be stored on the stack. Then the data is pushed onto
the stack.

STACK INDIRECT

In this addressing mode, the stack is presumed to contain an ordered list of
addresses. These addresses point to the location from which data is read by
pops or to the location into which data is stored by pushes.

For a push onto an increasing stack, the AR points to the effective address.
After storing data in M(EA), the AR is incremented by two. For a pop instruction
from an increasing stack, the AR is first decremented by two in order to point to
the effective address. M(EA) is then loaded into the CPU register designated by
the DRP.

4-18

J

\

Assembler Instructions

INSTRUCTIONS FOR AN INCREASING STACK

An increasing stack is one which is pushed in the direction of higher addresses

(+) and popped in the direction of lower addresses (-).

D (Direct Mode)

Lower Memory
Locations

I +
1st entry I I

I I
2nd entry I I

ARP AR 3rd entry I I

I I I
• • I I

t I
Stack Stack
Push Pop

Higher Locations

I (Indirect Mode)

2·byte

address
t

2·byte

ARP AR address

• I~------------~ ---~.~

1st entry

2nd entry

Stack Stack
Push Pop

Each entry can be one or more bytes

INCREASING STACK

4-19

Assembler Instructions

The instructions available for use with an increasing stack are:

PUBD DR, +AR
PUMD DR, +AR
PUBI DR, +AR
PUMI DR, +AR
POBD DR, -AR
PO/V1D DR, -AR
POBI DR, -AR
POMI DR, -AR

Push byte direct with increment
Push multi-byte direct with increment
Push byte indirect with increment
Push multi-byte indirect with increment
Pop byte direct with decrement
Pop multi-byte direct with decrement
Pop byte indirect with decrement
Pop multi-byte indirect with decrement

INSTRUCTIONS FOR A DECREASING STACK

A decreasing stack is one which is pushed in the direction of lower addresses
(-) and popped in the direction of higher addresses (+).

D (Direct Mode)

ARP AR

• ~I __________ ~--~.~

4-20

Lower Memory
Locations

3rd entry

2nd entry

1st entry

Higher Locations

+ I
I I
I I
I I
I I
I I

I +
Stack Stack
Push Pop

/

)

Assembler Instructions

I (Indirect Mode)

ARP AR

• 1-1 __ -
J---.. • 2·byte

address

I 2·byte

address

I
I

1st entry

2nd entry

Each entry can be one or more bytes

DECREASING STACK

The instructions available for use with a decreasing stack are:

PUBD DR, -AR
PUMD DR, -AR
PUBI DR, -AR
PUMI DR, -AR
POBD DR, +AR
POMD DR, +AR
POB! DR, +AR
POMI DR, +AR

Push byte direct with decrement
Push multi-byte direct with decrement
Push byte indirect with decrement
Push multi-byte indirect with decrement
Pop byte direct with increment
Pop multi-byte direct with increment
Pop byte indirect with increment
Pop multi-byte indirect with increment

4-21

+
I
I
I
I
I
I
I
I
I
I
I I
I I
I I
I I

I I
I +

Stack Stack
Push Pop

Assembler Instructions

ARITHMETIC AND LOGICAL INSTRUCTIONS
The arithmetic and logical instructions consist of add, subtract, compare, logi­
cal AND and logical OR instructions.

AD
Add

Format:

Operation:

ADB [0] DR, operand
ADM [0] DR, operand

DR + DR + operand

CPU Instruction

Add byte
Add multi -byte

Description: Add single or multi-byte. The contents of the effective address
determined by the addressing mode are added to the DR. If DCM=l,
BCD addition is performed; otherwise, binary addition is performed.
The result is stored in the data register.

Examples:

AN~l
Logical AND

ADB R40, R50
ADMD R30,=LABEL

Format: ANM [0] DR, operand

Operation: DR + DR • operand

CPU Instruction

Description: The DR is loaded with the logical AND of itself and the contents
of the effective address determined by the addressing mode used.
This instruction is multi-byte only.

Examples: ANM R40, R50

ANMD R32,=LABEL

4-22

)

\
'.~

eM
Compare

Format:

Operation:

Assembler Instructions

CMB [0] DR, operand

CMM [0] DR, operand

Compa re byte

Compare multi-byte

DR + ten's complement of operand if BCD mode set

DR + two's complement of operand if binary mode set

CPU Instruction

Description: Compares operand with data register(s). The contents of the effec­

tive address determined by the operand and the addressing mode are

subtracted from DR. BCD subtraction is performed if DCM=l; other­

wise a binary subtraction is performed. The result is used to

affect CPU status indicators and is not stored; DR is not affected.

Examples:

OR
Logical OR

Format:

Operation:

CMB R24,=377

CMM R22, R32

(Inclusive)

ORB DR, AR

ORM DR, AR

DR -+- DR v AR

Inclusive OR (single byte)

Inclusive OR (multi-byte)

CPU Instruction

Description: Contents of DR are replaced with inclusive OR of DR and AR. CY and

OVF are cleared.

Examples: ORB R2l, R4l

ORM R40, R70

4-23

Assembler Instructions

SB
Subtract

Format:

Operation:

SBB [0] DR, operand
SBM [0] DR, operand

Subtract byte
Subtract multi-byte

DR + DR + ten's complement of operand if BCD mode

CPU Instruction

DR + DR + two's complement of operand if binary mode

Description: The contents of the effective address determined by the addressing
mode and the operand are subtracted from the contents of the DR.
BCD subtraction is performed if DCM=l; otherwise binary subtraction
is performed. The result is stored in DR. CY is set if the result
is positive, cleared if the result is negative.

Example: SBM R26,=177, 0

XR
Logical OR (Exclusive)

Format: XRB DR, AR
XRM DR, AR

Operati on: DR + DR (±) AR

Exclusive OR (single byte)
Exclusive OR (multi-byte)

CPU Instruction

Description: Contents of DR are replaced with the exclusive OR of DR and AR.
CY and OVF are cleared.

Example: XRM R40, R50

4-24

)

\

Assembler Instructions

SHIFT INSTRUCTIONS
All shift instructions can be BCD or binary. The shift instructions consist of
logical left, logical right, extended left and extended right instructions; all

are available in single byte or multi-byte modes.

EL
Extended Left Shift

Format: ELB DR
ELM DR

Extended left shift byte
Extended left shift multi-byte

CPU Instruction

Description: Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted left one bit position. Carry flag CY is loaded
from MSB. LSB is loaded from CY. OVF is set if the shift causes

a sign change.

CPU Register Bank
(1-8 bytes)

DR(-I I I I I I I I 1...--" - D CY

'--------- -...... ,
CY D ...--.. -I I I I I 1 I I I-I

Boundary

4-25

Assembler Instructions

BCD ~lode. In BCD mode. the contents of DR (one to eight bytes) are)
shifted left one digit position (i.e .• four bits) through the E
register. CY is cleared.

CPU Register Bank
(1-8 bytes)

DR, ,. -IL .I....-.l..-I ..J-I --1-1 --1..1 --1.1 ---L-..JI ..
\ -
...... -- -­........

.... --- -.... -..... ,
............................ 1.,1

Boundary

4-26

/

Assembler Instructions

ER CPU Instruction

Extended Right Shift

Format: ERB DR

ERM DR

Extended right shift byte

Extended right shift multi-byte

Description: Binary Mode. In binary mode, the contents of DR (one to eight

bytes) are shifted right one bit position. For multi-byte shifts,

the shift proceeds from DR to the next lower boundary. Carry flag

CY is loaded from LSB. MSB is loaded from CY.

Example:

CPU Register Bank

Boundary (1-8 bytes)

I~·I I I I I I I I I ----..~ D CY

\ -
...... _-- "-­----.........

\

CY D --+0- I I I I I I I I I-~I DR

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are

shifted right one digit position (i.e., four bits) through the four­

bit E register. CY is cleared.

CPU Register Bank

Boundary (1-8 bytes)

,.' "I, _--,1---1...1 -'II...-LI---I...I ~IL--J.____'
\

..... _­ --.......
.... -........

-­........ ,
~ L-IL..-.!----'--~'---L-__LI____'I- ~ I DR

Notice that a multi-byte right shift instruction, unlike other

multi-byte instructions, proceeds from the DR to the preceding

(i .e., lower-numbered) boundary.

ERM R47 Shifts all eight bytes of R40 - R47 right.

4-27

Assembler Instructions

LR CPU Instruction
Logical Right Shift

Format: LRB DR
LRM DR

Logical right shift byte
Logical right shift multi-byte

Description: Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position, and the MSB is cleared.
For multi-byte shifts, the shift proceeds from DR to the next lower
boundary. Carry flag CY is loaded from LSB.

CPU Register Bank

Boundary 1'""'!"...,..('"!'1-.8 ... b.
y

t".es ...)

,,,·11 1 1 1 1 1 1 1 ~. D CY ,
.... --- -.... -......

\

o _. 1 I I 1 1 1 I 1 I-j DR

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits), and the most
significant digit is cleared. For multi-byte shifts, the shift
proceeds from DR to the next lower boundary. The least signifi­
cant digit is shifted into the four-bit E register.

Boundary

CPU Register Bank
(1-8 bytes)

(·1,---L'~' -1''--1-1---,-, -I''---L---'

"-
.............................

.... --.... -.... --... ,
0000 • 1.----.------,1-,) DR

Notice that a multi-byte right shift instruction, unlike other

IIlul ti-byte instrucbons, proceeds frolll the DR to the preceding

(i.e., lower-numbered) boundary.

4-28

)

\

Assembler Instructions

Example: LRM R54 Shifts contents of R54, R53, R52, R5l, and R50 right.

LL CPU Instruction

Logical Left Shift

Format: LLB DR
LLM DR

Logical left shift byte

Logical left shift multi-byte

Description: Binary Mode. In binary mode, the contents of DR are shifted left

one bit position, and the LSB is cleared. The bit shifted out of

MSB is saved in CY. OVF is set if the shift causes a sign change.

CPU Register Bank
(1-8 bytes)

DR , __ -I I I I I I I I I.. 0

" -............. _-
-... -... _- ---- ... ,

CY D ...-.. _ I I I 1 I 1 1 1 I'"
Boundary

BCD Mode. In BCD mode, the contents of DR are shifted left one

digit position (i.e., four bits), and the least significant digit

is cleared. The digit shifted out of the most significant digit

position is saved in the E register. CY is cleared.

CPU Register Bank
(1-8 bytes)

DR (-I I I I I I I 1 1--- 0000

...... _-
... -...... "'- _--... ,

E L-I -'---L..---'-....JI .. .----.----.1 '
Boundary

4-29

Assembler Instructions

Example: LLM R45 Shifts contents of R45, R46, and R47 left one bit posi­
tion through CY (in binary mode) or left one digit position through
E (in BCD mode).

4-30

/

/

Assembler Instructions

REGISTER INCREMENT AND DECREMENT INSTRUCTIONS
The increment and decrement instructions for the CPU registers can be BCD or

binary.

DC
Decrement

Format: DCB DR

DCM DR

Decrement byte

Decrement multi-byte

CPU Instruction

Operation: DR + DR + two's complement of 1 (binary mode)

DR + DR + ten's complement of 1 (BCD mode)

Description: Binary Mode. In binary mode, DR is decremented by 1 (binary).

Example:

OVF is set if this operation causes a sign to change to a positive

value. CY is set by decrementing a non-zero number.

BCD Mode. In BCD mode, DR is decremented by 1 (decimal). OVF is

cleared. CY is set by decrementing a non-zero number.

DCB R12

4-31

Assembler Instructions

Ie
Increment

Format: ICB DR
ICM DR

Increment byte
Increment multi-byte

CPU Instruction

Operation: DR + DR + 1

Description: Binary Mode. In binary mode, DR is incremented in binary by 1.

Example:

OVF is set if this operation causes a sign change to a negative
value.

BCD Mode. In BCD mode, DR is incremented in decimal by 1. OVF is
cleared.

ICM R40

4-32

J

)

Assembler Instructions

COMPLEMENT INSTRUCTIONS
The complement instructions can be BCD or binary.

NC CPU Instruction

Nine's (Or One's) Complement

Format: NCB DR
NCM DR

Nine's (or one's) complement byte

Nine's (or one's) complement multi-byte

Operation: DR + DR

Description: Binary Mode. In binary mode, the one's complement of the contents

of DR replace the contents of DR. CY and OVF are cleared.

Example:

BCD Mode. In BCD mode, the nine's complement of the contents of

DR replace the contents of DR. CY and OVF are cleared.

NCB R30

4-33

Assembler Instructions

TC
Ten's (Or TWo's) ComplemeQt

Format: TCB DR
TCM DR

Operation: DR ~ DR +

CPU Instruction

Ten's (or two's) complement byte
Ten's (or two's) complement multi-byte

Description: Binary Mode. In binary mode, the two's complement of the contents
of DR replaces the contents of DR. CY is set if the contents of DR
were zero. OVF is set if contents of DR were 100 ... 000.

Example:

BCD Mode. In BCD mode, the contents of DR are replaced with their
ten's complement. CY is set if the contents of DR were zero. OVF
is cleared.

TCM R50

4-34

j

)

\

Assembler Instructions

TEST INSTRUCTION
The test instruction can check the status of single-byte or multi-byte CPU
registers.

TS
Test

Format: TSB DR
TSM DR

CPU Instruction

Test byte

Test mul ti-byte

Description: The contents of DR are tested and condition flags are set accord­
ingly. CY and OVF are cleared.

Example: TSM R36

REGISTER CLEAR INSTRUCTION
The clear instruction permits the clearing of any byte or of any multi-byte por­
tion of the CPU register bank.

CL
Clear

Format:

Operation:

ClB DR
ClM DR

DR of- 0

Cl ear byte
Clear multi-byte

Description: DR is cleared. CY and OVF are cleared.

Example: ClB R47

4-35

CPU Instruction

Assembler Instructions

SUBROUTINE JUMP INSTRUCTION
The subroutine jump instruction is available in the literal direct or the indexed
addressing mode.

JSB CPU Instruction
Jump to Subroutine

Format: JSB = label
JSB X~, label

Jump subroutine literal direct
Jump subroutine indexed

Operation: Literal Direct. M(SP) + PC+3, SP + SP+2, PC + M(PC+l)
Indexed. M(SPj + PC+3, SP + SP+2, PC + AR + M(PC+l)

Description: The PC is saved in the memory location addressed by the R6 stack
pointer. Program control is then transferred to the location de­
fined by the label. In indexed addressing, control is transferred
to the location defined by the two-byte contents of the address

register plus the label.

Examples:

After a subroutine jump, the next RTN instruction executed causes
a return to the instruction after the JSB.

JSB = LOCl
JSB X32, LOC2

Note: Since an indexed subroutine jump (i.e., JSB XR, label) can
cause a jump to an unlabeled destination, the programmer must
ensure that the ARP and DRP are set to ensure proper operation at
the destination. See Handling of ARP and DRP During Assembly later

in this section.

4-36

/

)

Assembler Instructions

CONDITIONAL JUMP INSTRUCTION
The conditional jump instruction can alter execution based on 16 different con­

ditions in the CPU.

J CPU Instruction

Conditional Jump

Format: JMP label

JNO label

JOD label --
JEV 1 abe 1

JPS 1 abel

JNG label

JZR label

JNZ label

JEZ label

JEN label --
JCY 1 abel

JNC 1 abel

JLZ 1 abel

JLN label

JRZ 1 abel --
JRN label

Unconditional jump

Jump on no overflow

Jump on odd

Jump on even

Jump on positive }

Jump on negative

Jump on zero

Jump on non-zero

Jump on E zero

Jump on E non-zero

Jump on carry

Jump on no carry

Jump on left digit zero

Takes overflow into
consideration. (Exclu­
sive OR of MSB and OVF.)

Jump on left digit non-zero

Jump on right digit zero

Jump on right digit non-zero

Description: This group of instructions gives the capability of branching as a

function of status conditions previously generated. The branching

capability uses relative addressing. If the status condition

interrogated is found to be true, then the relative branch to the

address of the label will be taken. Otherwise, the next instruc­

tions after the jump will be executed.

Each jump instruction is assembled into two bytes: An opcode, and

an offset in two·s complement notation.

4-37

Assembler Instructions

A jump can cover 4008 destinations from 2008 before the next in- J

Example:

struction to 1778 after the next instruction. The address to which
the jump is made is the sum of the address of the jump instruction
plus the offset plus two.

JMP INITAL When assembled, this instruction would appear as
shown below.

200

375 n Offset = -3
376 n + 1 JMP Offset = -2
377 n + 2 Offset Offset = -1 (Current byte)

0 n + 3 --- Offset = 0 (Next byte)

1 n + 4 Offset = +1

2 n + 5 --- Offset = +2

177

4-38

-)

)

Assembler Instructions

ARP AND DRP LOAD INSTRUCTIONS
Two instructions are available for loading the address register pointer or the
data register pOinter. These instructions are not normally needed because the
assembler automatically generates necessary ARPs and DRPs where required.

ARP CPU Instruction
Load ARP

Forma t: ARP AR

Operation: ARP

Description: Sets address register pointer to point to address register.

Example: ARP R25 Sets ARP to point to R25.

DRP CPU Instruction

Load DRP

Format: DRP DR

Operation: DRP

Description: Sets data register pointer to pOint to data register.

Example: DRP R25 Sets DRP to R25.

4-39

Assembler Instructions

NOTE
The instructions to load ORP indirectly with R0 and to load ARP
indirectly with R0 are:

ORP 1
ARP 1

Thus, to avoid confusion. Rl is not allowed in either the DR or AR
fields. This means that CPU register Rl is for all practical pur­
poses inaccessible except by means of a multi-byte R0 operation or
when R0 = 1 and the ARP or ORP is specified by R*. See Using R*
later in this section.

4-40

)

Assembler Instructions

OTHER INSTRUCTIONS
In addition to the instructions above, there are a few other instructions which

the programmer can use to manipulate quantities in the CPU and memory.

BCD CPU Instruction

Set Decima 1 ~lode

Format: DCM

Operation: DCM +

Description: Sets DCrv! to 1 so that arithmetic operations will be in binary­

coded decimal.

BIN CPU Instruction

Set Bi nary Mode

Format: BIN

Operation: DCM + 0

Description: Sets DC[~ to zero so arithmetic operations performed will be in

bi nary.

CLE CPU Instruction

Clear E

Format: CLE

Operation: E + 0

Description: All four bits of the E (extend) register are cleared to zero.

4-41

Assembler Instructions

DCE CPU Instruction
Decrement E

Format: DCE

Operation: E + E - 1

Description: E (extend) register decremented by 1. This instruction is always
a binary operation, regardless of the setting of the DCM status
flag.

ICE CPU Instruction
Increment E

Format: ICE

Operation: E + E + 1

Description: E (extend) register incremented by 1. This instruction is always
a binary operation, regardless of the setting of the DCM status
flag.

4-42

J

\

Assembler Instructions

PAD CPU Instruction

Pop ARP, DRP and Status

Format: PAD

Operation: M(SP) ~ ARP, DRP and all status flags except E.

Description: Restore ARP, DRP and status (usually after a PAD instruction) by

popping them off the stack.

Stack pOinter is decremented by 3, and all status flags except E

are altered by the contents of the three stack locations that are

read.

The first byte processed is read as LSB in bit 0, RDZ in bit 1, I

in bit 2, LDZ in bit 6 and MSB in bit 7. The second byte is read

as DRP in bits 0-5, DCM status in bit 6, and overflow flags in

bit 7. The third byte is read as ARP in bits 0-5, carry flag

in bit 6, and overflow flag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

SP -..

Increasing
Addresses

OVF CY ARP

OVF OCM ORP

MSB LOZ o I 0 I 0 I Z I ROZ I LSB

7 6 5 4 3 2 0

4-43

Assembler Instructions

RTN CPU Instruction
Return From Subroutine

Format: RTN

Operation: SP + SP - 2, PC + M(SP)

Description: Subroutine return stack pointer is decremented by two. Then the
return address is read from the stack and written into the program
counter.

SAD CPU Instruction
Save ARP, DRP and Status

Format: SAD

Operation: M(SP) + ARP, and all status flags except E.

Description: Saves ARP, DRP and status (except E) in memory locations addressed
by SP (stack pointer).

Three bytes are pushed onto the stack. The first byte contains
ARP in bits 0-5, CY in bit 6, and the overflow flag in bit 7.
The second byte contains ORP in bits 0-5, OCM status in bit 6,
and the overflow flag in bit 7. The third byte contains LSB in
bit 0, ROZ in bit 1, Z in bit 2, LOZ in bit 6, and ~~SB in bit 7.

SP is then incremented by three. Status is not affected by this
operation.

4-44

)

\
'--

Assembler Instructions

Following a SAD instruction, the stack contents are as shown here:

Increasing
Addresses

1
SP ---

OVF CY

OVF OCM

MSB LOZ

7 6

4-45

A~P

ORP

o I 0 I 0 I Z I ROZ I LSB

5 4 3 2 o

Assembler Instructions

USE OF R*
When entering source code, the programmer may substitute R* for the AR or DR in
any CPU instruction. R* causes the ARP or ORP to be loaded with the least sig­
nificant six bits of CPU register R0. The effect is that the DR and AR are
specified by the contents of R0.

Example: LOB R0, = 26

LOB R*, R30

STB R40, R*

Loads R0 with 26.

Loads CPU register specified by R0 (i.e.,
R26 now) with contents of R30.

Stores contents of R40 into register (R26
now) specified by R0.

ASSEMBLY OF CPU INSTRUCTIONS
When the address field of an instruction consists of a DR and an AR, each source
statement is usually assembled into three bytes of machine code. These bytes are
assembled in order as:

1. ORP: ORP set to point to DR.
2. ARP: ARP set to point to AR.
3. Opcode: Perform operation.

Thus, a stack push instruction such as PUBO would be assembled and appear as
shown here:

Byte No. Machine Code Source Code

000227 110 006 342 PUBO R10, -R6

When the address field of an instruction consists of a DR and a label, as in the
case of literal direct and literal indirect addressing (e.g., LOMI R32, = AOORS),
each source statement is usually assembled into four bytes of machine code:

1. ORP: ORP set to point to DR.
2. Opcode: Perform operation.

3. Low-order byte of literal quantity.
4. High-order byte of literal quantity.

4-46

J

\

Assembler Instructions

When the address field of an instruction consists of DR, AR, and a label, as in

the case of indexed direct and indexed indirect addressing (e.g., LOBI R36, X32,

TABLE), five bytes of machine code may be generated for each source statement:

1. DRP: ORP set to point to DR.

2. ARP: ARP set to point to AR.

3. Opcode: Perform operation.

4. Low-order byte of address.

5. High-order byte of address.

HANDLING OF ARP AND DRP DURING ASSEMBLY

An optimizing feature of the Assembler ROM is the deletion of "unnecessary" ARP

and DRP instructions during assembly.

If an instruction is not labeled (i.e., there is not an entry in the label field)

and the ARP (and/or DRP) is already set to the correct value, the previously-set

ARP (and/or DRP) is not generated during assembly.

For example:

Byte No.

000227

000232

Machine Code

110 006 342

342

Source Code

LABEL POBD R10, -R6

POBD R10, -R6

In this example, both the ARP and the DRP are specified beginning with byte 227.

Since they are now correctly set for the next instruction, they are automatically

deleted when the second POBO R10, -R6 instruction is assembled. This results in

the machine code shown in byte 232.

Not all previously-set ARPs and DRPs are deleted during assembly. Instances

where a previously-set ARP and/or DRP will not be deleted include:

--Labeled instructions. Since a jump from anyplace in code may cause execution

to resume at the ldbel, the flrsL ARP dlld ORr are not deleted after an instruc­

tion that contains an entry in the label field.

4-47

Assembler Instructions

--Returns. After executing a JSB, then returning, the first ARP and ORP encoun-
tered are not deleted.

--PAD. Following a PAD instruction, the first ARP and DRP are not deleted.

USING R#

When entering CPU instructions, the user may substitute R# in almost any instruc­
tion requiring an AR or DR. R# causes the ARP or ORP to be deleted from the
machine code, regardless of other conditions. For example:

Byte No. Machine Code Source Code

000265 240 LABEL LOB R#, R#

R# is normally used after labels, when the ARP and ORP are already set correctly.
By using R#, it is not necessary to squander time or bytes resetting ARP and ORP.

PSEUDO-INSTRUCTIONS
Pseudo-instructions are instructions to the assembler. Each may be entered by
typing a pseudo-opcode in the same field as the opcode for an instruction, fol­
lowed by any additional required operand.

Pseudo-instructions perform three main functions when encountered during assembly:

--Assembly control
--Data definition
--Conditional Assembly

4-48

)

J

\ PSEUDO-INSTRUCTIONS FOR ASSEMBLY CONTROL

ABS
Absolute Program

Format: ABS 16

ABS 32

ABS ROM base address

Assembler Instructions

Pseudo-Instruction

Description: Declares an absolute program (i.e., with addresses that cannot be

relocated), for either a computer with 16K bytes of memory, a com­

puter with 32K bytes, or for a ROM beginning with the specified

base address. If ABS 16 or ABS 32 is declared, the instruction

must precede a NAM instruction.

FIN Pseudo-Instruction

Finish Program

Format: FIN

Description: Signifies the end of the source code. This pseudo-instruction is

required for assembly.

G~
Pseudo-Instruction

Declare Global File

Format: GLO

GLO file name

Description: If no file name, declares this source code to be a global file.

Otherwise, declares the global file to be used in the assembling of

the current source code. Comments are not allowed on the same line

as the GLO instruction, and the instruction must precede ABS dnd

NAM.

4-49

Assembler Instructions

LNK Pseudo-Instruction
Link Files At Assembly

Format: LNK file name

Description: Will load another file containing more source code and continue
assembling. Allows assembly of larger programs than would otherwise
be possible.

Example:

LST
List

LNK SOURC2 When this instruction is encountered during assembly,
the assembler looks for the file SOURC2 on the current mass storage
device, loads the file, and continues assembling using the source
code from the file.

Pseudo-Instruction

Format: LST

Description: Causes the code to be listed on the current PRINTER IS device at
assembly time. If the column width of the printer is sufficient
(>46 characters) the listing will contain both the object and
source code; otherwise, only the object code will be listed.

An address that is undefined when its label is encountered will be
printed in object code as 326, 336, or 377, depending upon whether
it is a DEF, a relative jump, or a GTO statement.

4-50

/

/

\

\

Assembler Instructions

MM Pseudo-Instruction
Name Program

Format: NAM unguoted string

Description: Sets up the PCB (Program Control Block) for a binary program.

Example:

ORG
Origin

Format:

Should be preceded only by GLO, ABS, LST, UNL, DAD, EQU, or com­
ments. Illegal when ABS ROM has been declared.

NAM KEYHIT Names a binary program KEYHIT and sets up the 32s-byte
program control block for that program.

Pseudo-Instruction

ORG address

Description: Specifies a base address which is added to all following defined
addresses (DAD's). This pseudo-instruction is most useful in global
files.

UNL Pseudo-Instruction

Unlist

Format: UNL

Description: Turns off the list feature which was turned on by the LST pseudo­
instruction. After an UNL, code is not listed during assembly.

4-51

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR DATA DEFINITION

ASC
ASCII

Format: ASC numeric value, unguoted string
ASC guoted string

Pseudo-Instruction

Description: Inserts into the object code the ASCII code for the number of char­
acters specified of the unquoted string. Inserts the entire guoted
string.

Example: ASC 3, FTOC Inserts the ASCII code for FTO.
ASC 4, FTOC Inserts the ASCII code for FTOC.
ASC II LOCATION II Inserts the ASCII code for LOCATION.

ASP
ASCII With Parity

Format: ASP numeric value, unguoted string
ASP quoted string

Pseudo-Instruction

Description: Same as ASC except that the parity bit (MSB) of the string's final
character is set. (During operation, the HP-83/85 system determines
the end of an ASCII string in some system tables by checking to see
if the character's parity bit is set. When the bit is found set,
the system assumes the next character begins a new string or entry
in the table.)

4-52

-_/

J

\

Assembler Instructions

BSZ Pseudo-Instruction

Bytes To Zero

Format: BSZ numeric value

Description: Inserts into the object code the octal number of bytes of zeros

specified by the numeric value.

Example: BSZ 30 Fills 308 bytes with zeros.

BYT Pseudo-Instruction

Bytes To Values

Format: BYT numeric value [,numeric value ...]

Description: Inserts literal values into the object code.

Examples:

DAD
Direct Address

BYT 377 Inserts octal 377 (i.e., all ones) into object code.

BYT 20,55C Inserts octal 20 into this byte of object code and

BCD 55 into next byte.

Pseudo-Instruction

Format: Label DAD address

Description: Assigns either an absolute address or a constant to a label. DAD

and EQU are similar; DAD is usually used for addresses, while EQU

is used for values other than addresses. ORG affects only DAD's.

Example: INTORL DAD 56343 Assigns absolute address 56343 to the label

IIHORL.

4-53

Assembler Instructions

DEF Pseudo-Instruction
Define Label Address

Format: DEF label

Description: Inserts the two-byte address associated with the label.

Example: DEF RUNTIM Inserts two-byte address of the label RUNTIM.

EQU Pseudo-Instruction
Equals

Format: Label EQU numeric value

Description: Assigns either an absolute address or a constant to a label. DAD

and EQU are similar; DAD is usually used for addresses, while EQU

/

is used for values other than addresses. ORG affects only DAD's. j

4-54

\

\

Assembler Instructions

GTO Pseudo-Instruction

Go To

Format: GTO label

Description: Generates four bytes of object code which load the program counter

(CPU registers 4 and 5) with the address minus one (i.e., ADR-l) of

the label. The label must be for an absolute address.

Example:

VAL
Value

The CPU relative jump instructions (JRZ, JNO, etc.) can cause jumps

of from 1778 to -2008 memory locations. The GTO pseudo-instruction

is useful for jumping beyond the range of relative jumps.

WARNING

The GTO pseudo-instruction is primarily for use in

ROMs. It should not be used in a binary program

unless that program has been declared an absolute

program.

GTO INTORL

Pseudo-Instruction

Format: VAL label

Description: Inserts the one-byte literal octal value associated with the label.

Example: PPROM# EQU 360

VAL PPROM# Inserts the one-byte literal octal value (360) of the

label PPROM# into the object code.

4-55

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR CONDITIONAL ASSEMBLY

This set of pseudo-instructions permits the user to control assembly by means of
conditional assembly flags. A conditional assembly flag has the same constraints
as a label--it can be no more than six characters in length. and the first char­
acter cannot be a digit.

A conditional assembly flag is treated the same as a label by the HP-83/85 sys­
tem. (For example. an assembly flag can be located by a label search.) For this
reason, a conditional assembly flag name should be unique, and should not dupli­
cate a label.

AIF Pseudo-Instruction
Assemble If Flag True

Format: AIF assembly flag name

Description: Tests the specified conditional assembly flag and, if true, con­
tinues to assemble the following code. If the flag tests false,
the source code after the flag is treated as if it were a series
of comments until an ElF instruction is found.

Example: AIF CYCLE Tests assembly flag CYCLE.

CLR Pseudo-Instruction

Clear Flag

Format: CLR flag name

Description: Clears the specified conditional assembly flag to the false state.

Example: CLR CYCLE Clears assembly flag CYCLE.

4-56

/

Assembler Instructions

ElF Pseudo-Instruction
End Of Conditional Assembly

Format: ElF

Description: Terminates any conditional assembly in process. Only one condi­
tional assembly can be handled at a time. If a second one is
encountered while the first is still active, the second will
override the first.

SET Pseudo-Instruction
Set Flag

Format: SET flag name

Description: Sets the specified conditional assembly flag to the true state.

Example: SET CYCLE Sets conditional assembly flag CYCLE.

4-57

NOTES

)

4-58

\
SECTION 5

HP-83/85 SYSTEM ARCHITECTURE AND OPERATION

This section explains how system memory is allocated in the HP-83 and HP-85
computers, how programs are stored in that memory, and how a statement is parsed
and becomes part of a BASIC program. It also explains the sequence of operations
that occurs when a BASIC program is run.

In the computer, BASIC programs are executed by an interpreter that is part of
the firmware operating system. However, the code that is interpreted is vastly
different from the BASIC statements as they were originally entered. As the
statements are entered, they are parsed and compiled into a form of RPN (reverse
Polish notation), which can be interpreted more efficiently than the BASIC state­
ments. As part of the parsing and compiling process, all BASIC reserved words
are converted to single-byte tokens. This makes the internal form of the code
somewhat more compact than the original form, and also makes interpretation
easier and faster.

Also as part of the process of parsing and compiling, variables are placed in a
variable storage area, with only their addresses remaining in the area containing
the tokens.

A BASIC program, then, is held in memory as a series of tokens and addresses of
variables. To execute the program, the computer processes these token and vari­
able addresses in order. As each token is processed, it causes the machine to
go to a table of routine addresses and execute a specific routine whose address is
within that table. If the token indicates a variable, the machine uses the next

two bytes as the variable address.

5-1

HP-83/85 System Architecture and Operation

Variable

"-,
....

1--------1-__

.... ,
.... , ,

.... , ,

--- -.....

Execution

Token for MULTIPLY

Token for LET

Token for Variable

Variable

Address

Next Token

" , , ...
\... ' , " , ' , " , , , , , ' , " , , , -.. , , , , ,

"

EXECUTION BY TOKENS

MUL TlPL Y Routine

-
-
-

LET Routine

-
-
-

A binary program in memory, or a plug-in ROM, merely provides additional tokens
(and their corresponding routines) to the set of HP-83/85 tokens and routines.
This should become clear later in this manual.

5-2

)

HP-83/85 System Architecture and Operation

SYSTEM f~E~10RY

The memory of the HP-83/85 is arranged as shown here:

Decimal Octal
Address Address

0 000000

8K 017777
020000

16K 037777
040000

24K 057777
060000

32K 077777
100000

48K 137777
140000

177377
177400

64K 177777

System
ROM

System
ROM

System
ROM

ROM 0

System
ROM

System
RAM

I Plug-In
I RAM

1/0
Addressing

ROM 1 jRoM ;--1 Ro;31---rROM 25~
Plug-In I Plug-In I Plug-In I I Plug-In I
ROM -.l_ROM_L~~-1 ___ l....!!.OM ~

SYSTEM MEMORY

As shown in the memory map, the main system contains three 819210-byte ROMs, the
system ROMs. The fourth ROM space is for bank-selectable ROMs and it is shared
by another system ROM and all plug-in ROMs. The only differences between the
last system ROM and plug-in ROMs are that the select code for the system ROM is
0, and that the system ROM contains routines necessary for the HP-83/85 system
to operate. Each plug-in ROM has its own unique select code. For example, the
select code for the Assembler ROM is 4010 .

The last 25610 locations in the RAM address space are reserved for memory~mapping
I/O addresses.

5-3

HP-83/85 System Architecture and Operation

PROGRAf~S IN MENORY
There are two kinds of programs that can be resident in memory: BASIC programs
and binary programs. In the HP-83/85, memory can contain a single BASIC program,
BASIC subprograms, and a single binary program at one time. In addition, the
computer can access the binary programs located in plug-in ROMs; these ROMs are
bank-selectable by means of their select codes. In form and application, a
plug-in ROM is closely akin to system ROM 0 or a binary program. Unlike a binary
program, however, ROMs are not relocatable, and always begin with memory location
600008 .

Within the HP-83/85, there are many pointers that are used to delineate and
identify the different components of memory. Some of these pointers are in CPU
registers, while others are at various locations in RAM.

ALLOCATION

A BASIC program may be resident in either allocated or de-allocated form. As a
program is first entered from the keyboard, it is de-allocated and can still be
edited. When a BASIC program is run for the first time, however, it must be
allocated before it is actually executed. Memory that contains a de-allocated
BASIC program appears as shown on the left below. An allocated program results
in memory as shown on the right.

5-4

/

)

HP-83/85 System Architecture and Operation

Pointers ,----,
I System RAM I

~ 103300
Area Reserved by
External ROM s

- FWUSERIFWPRGMIFWCURR

Main

- NXTMEM

New Program Line

-R12

Available Memory

~ LAVAIL

Calc. Variables

~ CALVRBIRTNSTK

GOSUB/RTN Stack

.... ~f--- BINTAB

Binary Program .. LWAMEM

De·Allocated Program (Edit)

r-- -----,
I System RAM I

Area Reserved by
External ROM s

Common

Main

Subprogram

Operating Stack

Available Memory

Calc. Variables

Temp Memory

ForlNext Stack

Assign Buffers

GOSUB/RTN Stack

Binary Program

Pointers

"'~~-103300

~ FWUSER

"'~f--- FWPRGMIFWCURR

~ NXTMEM

.. R12

_ LAVAIL

- CALVRB

- RTNSTK

- FWBIN
_ BINTAB

- LWAMEN

Allocated Program (Non· Edit)

MEMORY AREAS

DE-ALLOCATED PROGRAM

When a BASIC statement is typed and [END LINE] is pressed, the computer checks
for de-allocation. If the program is not already de-allocated, the HP-83/85
then de-allocates it.

In a de-allocated program, program variables are held as names rather than
addresses, and the program can still be edited.

As illustrated above, in a de-allocated program the entire memory space is made
up of RAM. The pointers that define the areas within RAM are:

5-5

HP-83/85 System Architecture and Operation

FWUSER: FWUSER points to the first byte of RAM that can be accessed for a BASIC /
program by the user. FWPRGM points to the first byte of the main program.
FWCURR is the first byte of the current program. These three pointers are all
the same in a de-allocated program using the basic HP-83/85. (An external ROM
that gives subprogram capabilities might cause these to be different.)

NXTMEM: NXTMEM points to the first byte after the end of the program as the
program currently exists.

R12: CPU register R12 points to the execution stack. It is always used as an
increasing stack, so R12 defines the first word of available program memory.

LAVAIL: This pointer defines the last word of available memory. LAVAIL actually
points to the first word of the area where calculator variables are stored.

CALVRB and RTNSTK: These define the end of the calculator variables and the
beginning of the BASIC subroutine return stack. These returns are the BASIC
program's returns (and in a de-allocated program no returns exist here). These /
returns are not the same as those in a binary program, which are stored on the
R6 stack.

BINTAB: Address of the first byte of the binary program. Although other pointers
may change during allocation, BINTAB does not.

ALLOCATED PROGRAM

When a RUN, INIT, or STORE command is executed on the HP-83/85, the computer
checks the allocation status of the resident BASIC program. If the program has
not been allocated, the HP-83/85 allocates the program before executing further.
Allocation creates variable space at the end of the BASIC program for all vari­
ables, and replaces all variable names with relative addresses. This allocation
ultimately causes the program to be executed much more quickly.

The previous illustration of memory areas also shows an allocated program in
memory. If common variables have been declared (that is, variables that are

held in common by two BASIC programs), FWUSER points to the beginning of this

5-6

HP-83/85 System Architecture and Operation

common area, while FWPRGM points to the first word of the main BASIC program.
(FWCURR points to the current program; this is the same as the main program un­
less an external ROM has provided subprogram capability.)

Such internal routines as print operations and string concatenation require
temporary scratch-pad memory; this is provided as needed in the area directly
after that addressed by CALVRB, and is released by the system immediately after
the operation is performed. The FOR/NEXT stack is another temporary area that
is provided when needed.

The Mass Storage ROM and the internal tape routines require 28410 bytes for each
buffer (up to a maximum of 10 buffers), and these scratch-pad work areas are
obtained in the buffer area directly above the GOSUB return stack.

SOFTWARE-DEDICATED CPU REGISTERS

Certain CPU registers are hardware-dedicated, and these registers always are used
for the same tasks. Software-dedicated CPU registers are those registers which
the system routines use for specific tasks. The registers and tasks vary, de­
pending on whether the computer is parsing a statement, executing code at run­
time, etc. However, here are the tasks of some of the most commonly-used CPU
registers:

Execution Pointer: At runtime, registers R10 and Rll house the program counter
(PCR), a pointer for executing a BASIC program. At parsetime, this pointer

addresses the input stream.

Stack Pointer: Registers R12 and R13 contain the address of the operational

stack pointer (SP).

Current Token: Register R14 contains the current token being processed in parse
and decompile operations.

CSTAT: Register R16 contains CSTAT, which defines current status.

5-7

HP-83/85 System Architecture and Operation

XCOM: CPU register R17 contains XCOM (external communication). The bits of this J

byte are used to discover why execution has halted, and to specify what to per-
form during the halt.

HP-83/85 OPERATION
The basic HP-83 or HP-85 is controlled by system routines that are permanently
resident at fixed addresses in memory. The addresses and names of many of these
system routines may be found in the global file in section 7 of this manual.

In addition to the system routines, control can also pass to one of the plug-in
bank-selectable ROMs, or to a binary program in the HP-83/85 memory. At certain
times in the operation of the HP-83/85, the resident binary program and any ROMs
are polled by the main system. In addition, there are a number of entry points,
or "hooks," that allow HP-83/85 operation to be intercepted and modified by a
binary program or ROM. These hooks normally do nothing in the system, but they
can be used to take over the system at certain key times.

TOKENS

The HP-83 and HP-85 use tokens to represent the keyword, such as LET, FOR, BEEP,
etc., that make up each BASIC statement. Each token is a one-byte quantity that
indicates to the machine the addresses of routines associated with that token.
Each token must have an associated entry in a table of routines for execution
at runtime, another entry in an ASCII keyword table, and a third entry in a table
of parse routines. A list of all system tokens may be found in appendix F.

The computer itself is a token-driven machine--a program is held in memory as a
series of tokens and variable addresses, and the machine processes these tokens

and addresses in order.

5-8

/

HP-83/85 System Architecture and Operation

Runtime Routine Address Tables

~

Main BASIC Program

Token

Token

Variable Address

Token

~----­\\
\\

_\ \
1 \ \
\ \ \
1\\

I \ " I \
\ \

,.-- \ \

• ..J \

\
\

System Table

External ROMs

{
\ \

Variable Storage Area 1--------1 \ \

~..------, -
[Binary Program

EXECUTION BY TOKENS (RUNTIME)

At runtime, for example, as the system executes a program, it processes a token
by fetching the address of an associated runtime routine from a table of ad-
dresses. The runtime table may exist in a binary program and/or an external ROM
as well as in the main system. The system performs a JSB to the specified
address to execute the routine, then fetches the next token and searches for its
runtime routine in the tables, etc.

Some tokens indicate to the system that the two bytes following the token con­
tain a variable address. In this case, the system processes the variable by
locating it in one of the variable storage areas in memory.

Other tokens indicate that the bytes following the token are constants to be
pushed onto the R12 stack.

Two tokens, 3708 and 3718, are used to expand the token tables. Token 370 indi­

cates to the system that the next byte is the number of a ROM, and that the byte
after the ROM# is the token within that ROM's tables that is actually to be

executed. Token 371 directs the system to a binary program in the same way.
More on these tokens later.

5-9

HP-83/85 System Architecture and Operation

OVERALL SYSTEM FLOW

System flow in the HP-83/85 is shown by the flowchart below.

Power·On
(PWO) ;4

I
I

I
I

System I
I

PWO /

Error Initialization t.

Conditions ROMINI

Parser Executive
Loop Interpreter

ROM and
binary pgm. ~ -­

parse
routines

" , ,
System
parse

routines

J
/

I

ROM and
binary pgm. ~ _

runtime
routines

OVERALL SYSTEM FLOW

System
init.

routines

I ,
ROM and

binary pgm.
init. routines

System
runtime
routines

In general, loading and running a program, or executing a calculator mode state­
ment, will require execution within the following areas:

Executive Loop: After power-on initialization, the system enters the executive
loop and waits for some kind of action. The executive loop makes calls to the
appropriate areas for initialization, parsing, allocation, running, and errors.

Parser: After a program line or calculator mode statement has been entered to
the CRT, parsing occurs when [END LINE] is pressed. Parsing is the changing of
ASCII code into tokens.

5-10

/

HP-83/85 System Architecture and Operation

In parsing, the parser first searches the ASCII tables in the resident binary
program for a keyword match, then searches the ASCII tables in any external ROMs,
and finally searches the system tables.

Interpreter: The interpreter actually runs a program or executes a calculator
mode statement by fetching tokens in order and calling the runtime routines to
execute them.

In addition to the areas above, there are two other areas which may be called:

Initialization: At many times, including power-on, RESET, SCRATCH, etc., the
system calls routines for initialization. Initialization routines are called
through the ROMINI routine; the system polls system initialization routines
first, ROM routines second, and the routine in the resident binary program last.

Errors: If errors are detected, the system generates the proper warning or error

message.

EXECUTIVE LOOP

After power-on initialization, control passes to the executive portion of the
system. The flowchart on the following page details the operation of this
executive loop.

The executive loop itself contains a smaller loop that examines CPU registers
R16 and R17 for status information. R16 contains CSTAT (current status), while

R17 contains XCOM (external communication).

As long as the value of R16 is zero and all bits of R17 are set to zero, the
system remains in the small loop. An interrupt, such as pressing a key, causes
the system to leave the small loop and process the interrupt as shown on the

flowchart.

5-11

HP-83/85 System Architecture and Operation

EXECUTIVE LOOP

5-12

SET R16 = O.
CLEAR ALL
BUT BIT 4

OF R17

/

j

HP-83/85 System Architecture and Operation

\- CSTAT

CPU register R16 contains an eight-bit word that is interpreted as current status.

CSTAT (R16 }

9)

2

3
4

5

6

7

8 - 255

Value Status

Idl e.
Calculator mode.
Run mode. (Program is running.)
Not used.
Idle during input statement.
Calculating during input statement.

(Evaluating expression before entering
it as variable.)

Not used.
RUN in the middle of a line.

(GOSUB or GOTO occurs because of a
timer interrupt or soft key interrupt.)

Not used.

CURRENT STATUS

CSTAT is examined as an entire byte by the system.

5-13

HP-83/85 System Architecture and Operation

XCOM

CPU register R17 contains XCOM, eight bits which are used for external communica­
tion of interpreter status.

XCOM (Rl7) Bits

Bit)1 set
Bit 1 set
Bit 2 set
Bit 3 set
Bit 4 set

Bit 5 set

Bit 6 set
Bit 7 set

Interpreter Halt

End of calculator mode.
Input complete.
Step mode.
Trace mode.
Service request. (Any interrupt sets this

bit.)
Immediate set. (Can be set by user to

halt interpreter.)
Error set.
Break. (OR of bits 5 and 6.)

INTERPRETER HALTS

During its cycles, the interpreter examines bit 7 of XCOM to determine if the
interpreter is to halt. After an end-of-line token has been executed, the
interpreter executive loop examines all bits of XCOM to see if control should be
returned to the executive loop for further action. Any routine that sets bit 5
or bit 6 in R17 must also set bit 7, since the interpreter examines only bit 7.

HOOKS

Hooks into the executive loop are available through subroutine calls to RAM
locations RMIDLE, CHIDLE and IOSP. In the normal system, each of these locations
in RAr~ merely contains a return (RTN); they are present to allow the taking over
of the executive loop by a binary program or external ROM.

ROMFL

ROMFL is a single-byte RAM location used to pass program conditions (such as
RESET or RUN), to binary and ROM programs for initialization. Before the

initialization routine in the binary program or external ROM is cal led, ROMFL is

set to indicate the kind of condition that has occurred.

5-14

HP-83/85 System Architecture and Operation

SVCWRD

SVCWRD is a RAM location that indicates the kind of interrupt.

SVCWRD Bit T~~e of Interruet

Bit 0 set Keyboard interrupt.

Bit 1 set I/O interrupt.

Bit 2 set Timer 1 interrupt.

Bit 3 set Timer 2 interrupt.

Bit 4 set Timer 3 interrupt.

Bit 5 set Other interrupt.

INTERRUPTS

INTERPRETER LOOP

The interpreter loop fetches the next token, processes it, and passes control to

its runtime code. When the runtime code has been executed, control returns and

the interpreter continues with another token. The following page shows a flow­

chart for the interpreter.

A token is an ordinal into a table of addresses. The address table is made up of

two-byte addresses, so to find the actual address, the token is doubled, then

added to the base address. This changes the ordinal into an offset pointing to

the correct address.

Address Table Runtime Routines

(Token x 2) + Base Address
I 2·byte

address.

2·byte
---~

address.

2·byte

address.

5-15

HP-83/85 System Architecture and Operation

SET peR (R 10)
TO ADDRESS
OF 1STTOKEN

SET
TOS= R12

RELEASE
TEMPORARY

MEMORY

GET NEXT
SYSTEM TOKEN

DOUBLE
IT

ADD TO BASE
ADDRESS OF

RUNTIME TABLE

GET RUNTIME
ADDRESS

FROM TABLE

INTERPRETER LOOP

5-16

RUNTIME
ROUTINE

/

HP-83/85 System Architecture and Operation

After the runtime code is executed, the interpreter checks to see if the imme­
diate break is set in R17, and processes the next token if it is not.

The procedure shown is for system tokens. Tokens 370 and 371 provide access to
external tokens (that is, tokens whose tables reside in a binary program or ROM).

To find an external token, the interpreter first processes system token 370,
doubles it, then adds it to the base address to find the system runtime routine
for token 370. This runtime routine fetches the next two bytes via the R10
pointer; these bytes include the ROM number and the number of the token in the
ROM or binary program. The runtime routine for the token 370 or 371 then handles
this ROM or binary program token much the same way that the interpreter handles
system tokens.

PARSING
As a line of a program or calculator mode statement is entered to the CRT, it ;s
in ASCII code. When [END LINE] is pressed, the line is parsed. Parsing is the
process of translating the ASCII code into the internal form in which programs

are stored and run in the HP-83/85.

As a line is parsed, it is checked for syntax errors, changed to RPN (Reverse
Polish Notation) from its original algebraic form, and converted into tokens that

are then stored.

Each token consists of a single byte, and can represent a single keyword, such
as LET or PRINT. Tokens 370 (ROM token) and 371 (binary program token) are used
to allow extensions of the system by means of external ROMs and binary programs.

A table of system tokens may be found in appendix F of this manual. ASCII codes,
which are also used during parsing, may be found in appendix E.

Parsing begins with the line number or the first character of the statement and
moves to the right, processing each character and space. Multiple non-quoted

space) are compressed (i .e., ignored) during parsing.

5-17

HP-83/85 System Architecture and Operation

Example: In parsing the line 10 LET A = B * SIN (45), the HP-83/85 system pro­
duces the following tokens in the order shown.

Tokens
(Octal Values)

20 } 0
17
142
21
40 } 101
1
40 } 120
32
105

} 0

0
330
52
10
16

Line number in BCD. (Two digits per byte.)

Length in bytes of statement.
LET token.
Store simple numeric variable token.

ASCII codes for the variable "blank A."

Fetch numeric variable token.

Blank B (in ASCII).

Integer token.

BCD 45 in integer format.

Sine token.
Multiply token.
Store numeric value token.
End of statement.

The stack addressed by CPU register R12 is used for parsing. A token is pushed
onto the stack, the stack pointer is incremented, the next token pushed on, etc.

Parsing begins with the line number. This is loaded in BCD form; 20 is loaded
first, since it is the least significant byte.

Next is the size or length of the statement. During parsing this is a blank

placeholder byte; STSIZE is a pointer to the placeholder byte.

5-18

)

~J

)

HP-83/85 System Architecture and Operation

In order to find a match for the keyword LET, the system looks first in tables

in the resident binary program, then in any external ROMs, and finally in the

internal HP-83/85 system tables. (For this reason, a binary program or external

ROM can take over any keyword.)

After parsing, if the statement was a program line, its tokens and addresses are

inserted into the program space at the correct locations. If it was an expres­

sion or calculator mode statement, the parsed code remains on the R12 stack and

is executed immediately.

For further details of parsing operations and register conventions at parse time,

along with specific system parse routines, refer to Parsing in section 7.

ATTRIBUTES
In the process of parsing a BASIC statement, code is generated which consists of

tokens and other information. For each token there is a set of attributes which

define the type of token. The attributes occur immediately before the runtime

code for the token.

Secondary Attributes (If required)

Secondary Attributes

Primary Attributes

Par. 3 I Par. 4 Par. 5

1# of parameters Par. 1

Type I Class

Runtime routine starts here

ATTRIBUTES

Par 6

Par. 2

Increasing
Addresses

Attributes are used to specify how parsing is to occur, how allocation and de­

allocation are to be performed, and how decompi1ing is to occur. They indicate

to the system how the token is to be handled at these times. Attributes are not

used at runtime.

There are two types of attributes: Primary and secondary. All tokens have pri­

mary attributes, but only BASIC language system-defined functions and operators

have secondary attributes. The primary attributes immediately precede the run­

time code. Secondary attributes occur before the primaries, and may occupy one

or more bytes.

5-19

HP-83/85 System Architecture and Operation

PRIMARY ATTRIBUTES

Within the primary attributes, the two most significant bits specify the token
~. The next six bits specify the class.

TYPE

Bits 7 and 6 define the type of token.

Bits 7, 6

11

10

01

00

Examples:

CLASS

~

BASIC statement, illegal after THEN.
BASIC statement, legal after THEN.
System command. (Non-programmable.)
Other (Not BASIC statement; e.g., function or operator.)

Token Primary Attribute

DEF FN 3xx Illegal after THEN.
LET 2xx Legal after THEN.
DELETE lxx Not programmable.
SIN Oxx Not a BASIC statement.

The class indicates the form of the token. In many cases, the class is specific
to a few tokens. A complete list of tokens and primary attributes may be found
in appendix F, but the classes of tokens most often used in assembly language

programming are shown here.

5-20

)

"'-~ Class Token

(Bits 5-0)

40
41
42 100

44 31

50
51
52
53
55
56

HP-83/85 System Architecture and Operation

Description

Immediate execute.

Other reserve words (i.e., most BASIC statements.)

Misc output (e.g., @ for special character handling).

Misc ignore. (Invisible at decompile time.)

Numeric unary operator. (e.g., -.)

Numeric binary operator. (e.g., +, -, *, I, I.)

String unary operator.

String binary operator. (e.g., &.)

Numeric system function (e.g., SIN, COS).

String system function. (e.g., CHR$, VAL$.)

USEFUL TOKEN CLASSES

SECONDARY ATTRIBUTES

Secondary attributes are used to specify the parameters for system-defined func­

tions, as well as the precedence of nUmeric and string operators.

SECONDARY ATTRIBUTES FOR FUNCTIONS

A single byte can specify the parameter type for a function. A second byte is

required only if there are more than two parameters. The first two bytes of

secondary attributes are shown here.

7 6 5 4 3 2 o

Par. 3 I Par. 4 Par. 5 Par. 6

1# 01 parameters Par. 1 Par. 2

PARAMETER LOCATION

Bit

Second Byte

First Byte

Parameter types must be included for all parameters used. The types are shown

here.

Parameter Type Description

o Numeric

1 Numeric array

2 String

3 Not available

PARAMETER TYPES

5-21

HP-83/85 System Architecture and Operation

SECONDARY ATTRIBUTES FOR OPERATORS

Secondary attributes also specify the precedence of numeric and string operators.
The least significant four bits specify the precedence, as shown.

7 6 5 4 3 2 o Bit

PRECEDENCE LOCATION

The precedence is defined within the HP-83/85 system as:

2 OR, EXOR
4 AND
6 Relational operators
7 +, -, Monadic +, monadic - , NOT

12 * /,\, DIV, MOD ,
14

(Some early versions of the HP-85 may have slightly different precedence.)

The only string operator is &, the concatenation operator, and it has a prece­
dence of 7.

RUNTIME
When a BASIC program is run, it is first allocated--all variable names are
changed to relative addresses and all line references (such as GOTOs and GOSUBs)
are changed to relative address references.

When the program is executed a token pointer (CPU register R10) is set to the
first line of the main program, or to a specified line number, and control
passes to the interpreter loop. The interpreter fetches a token, fetches the

address of its runtime routine, and performs a JSB jump to the address to
execute the routine there. The interpreter then fetches another token and

execution continues to the end of the line.

5-22

J

HP-83/85 System Architecture and Operation

\. Example: Recall the parsing for the line

10 LET A = B * SIN(45)

After parsing and allocation, tokens for the line are stacked in the program

portion of memory as shown on the left below.

Tokens

20

0

17

142

21

Address of A

1

Address of B

32

105

0

0

330

52

10

16

R12 Operating Stack

I ~I 11

} • I Address of I 2 A

l~ Address of A 3

I~
Value of B

Address of A

B 4

} 45

}
Address of A

B 5

SIN (45)

Address of A
r-----------~ 6

B*SIN (45)

RUNTIME EXECUTION

R10 points to token 142. The interpreter passes over the line number (the first

two bytes here) and the length (value 17, indicating that 17 bytes following be­

long in this line), then fetches token 142.

Token 142, the token for LET, is used as an index into the runtime table, a table

of addresses which point to the runtime routines for the tokens. The interpreter

fetches the address for the runtime routine for LET and causes a JSB to the

routine. The LET routine does not affect the R12 stack.

5-23

HP-83/85 System Architecture and Operation

After a return, the interpreter loop fetches the next token, and a JSB is done
to that token1s runtime routine. Since token 21 is the token for storing to a
variable, the next two bytes (the variable address) are loaded from the token
stream and pushed onto the R12 stack. These two bytes together give the address
of variable A. The name block of variable A is also fetched from that address
and pushed onto the R12 stack.

After a return to the interpreter loop, the runtime routine for the next token,
1, fetches a variable value. This fetch routine loads the next two bytes, which
are the address of the variable from the token stream, and uses that address to
fetch the value of variable B and push it onto the R12 stack.

After another return to the interpreter loop, token 32 causes the next three
bytes to be loaded from the token stream and pushed onto R12 as an eight-byte
tagged integer constant.

After a return, the next token, 330, causes a JSB to the sine routine. This
routine expects a numeric value on the R12 stack; it calculates the sine of that /
value and pushes the computed result back onto R12.

The routine for the next token, 52, is the multiply routine. It expects two
numbers on R12, and it pops these numbers off, multiplies them, and pushes the
result back onto R12. The runtime routine for token 10 stores the value that
is on the stack into the address of the variable that is on the stack.

Token 16, the end-of-line token, causes some internal clean-up (such as releasing
any memory that might have been reserved by the line, etc.) and moves the run­
time pointer past the line number of the next line to its first token.

For further details and specific system runtime routines, refer to Runtime in

section 7.

DECOMPILING
Oecompiling is the process of listing a program or statement. Internally, it

requires the reconstruction of input code as it was entered to the CRT screen.

The tokens which have been parsed into RPN and distributed in the system must be

5-24

I

HP-83/85 System Architecture and Operation

reassembled into algebraic notation. Decompiling is actually the reverse of the

process of parsing and compiling.

Decompiling is a two-stack operation. An expression stack is used to reconstruct

expressions from RPN to their original form, and an output stack is used to

buffer the output. R12 is used for the expression stack.

In decompiling, the system processes each token and uses its class (a component

of the token's primary attributes) to determine how the token is to be decom­

piled. Here are some common classes and how they are decompiled.

Class

o
1

2

3

4
5

32

34

36

41

42

44
50

51

52
53

55

56

Type of Token

End-of-line

Fetch variable

Integer

Store variable

Numeric constant

String constant

Subscript, e.g., A(3)

Dimension subscript
e. g., A$[]

Prints

Other reserved words

Miscellaneous output

Miscellaneous ignore

Unary operator

Bi nary opera tor

String unary operator

String binary operator

System function

String system function

Unstack.

To
To
To
To

expression

expression

expression

expression

Action

stack.

stack.
stack.

stack.

To expression stack.

() to expression stack if token odd; other­
wise (,) to expression stack.

[] to expression stack if token odd; other­
wise [,] to expression stack.

Unstack and push , to output.

If : then unstack, output reserved word,
then unstack.

If @ then push to expression stack and un­
stack; otherwise output.

Ignore.
Insert after most recent missing operator in
expression stack.

Replace most recent missing operator in ex­
pression stack.

Same as class 50.

Same as class 51.

For each parameter, replace the most recent
missing operator with,. Then insert func­
tion name and (at most recent missing opera­
Lur' dllJ lJush) onto expre~~ion stack.

Same as class 55.

DECOMPILING BY CLASS

5-25

HP-83/85 System Architecture and Operation

The following example should help illustrate how decompi1ing occurs:

Example: Recall again that the statement
10 LET A = B * SIN(45)

was parsed into the tokens shown below. These tokens are decompi1ed into the
output stack and the expression stack as illustrated.

Step Output Stack Tokens R12 Expression Stack

1. 10 _--- { 20

0

{ 7

142
2. 10 LET •• --

21

~ 40

101 3. 10 LET

1) 40

102

4. 10 LET

32

105

5. 10 LET 0

0

377

A

377

6. 10 LET 330 B

377

45

377

A

377

B

377

SIN(

45

)

5-26

/

/

HP-83/85 System Architecture and Operation

7. 10 LET 52

8. 10 LET 10

377

A

377

B

,

SIN(

45

)

377

A

B

SIN(

45

9. 10LETA=B'SIN(45) 16

DECOMPILING

Since the tokens are arranged in RPN internally, as the system decompiles the

tokens it pushes missing operator tokens (377) onto the expression stack. These

missing operator tokens are merely IIplaceholdersll until the arithmetic operators

can be inserted at a later step,

Unlike parsing, decompiling is not an operation to which a binary program or ROM

normally has access, since these programs are seldom required to perform any

unique operations during decompiling. In some special cases the parse routines

for a binary program or RO~l may require modification if a statement is to be

decompiled correctly, But for the most part, decompiling will not be a problem

for the writer of binary or ROM programs.

For further details and specific system decompile routines, refer to section 7.

5-27

HP-83/85 System Architecture and Operation

VARIABLE STORAGE
In the HP-83/85, variables may be stored in the variable storage area at the end
of the BASIC program, in the common storage area, and in the area allotted for

calculator variables.

FWCURR -

Main
BASIC Program

and Memory

Program
Variables

NXTMEM ---..

1 st variable token

Address
I-- -

(2 bytes)

I-- -

2nd variable token

Address
I-- -

(2 bytes)

Variable space length
I-- -

(2 bytes)

Name block,
I-- -

1 st variable

•
Value

•
Name block,

I-- -
2nd variable

•
Value

•

r - -- l
VARIABLE STORAGE

5-28

/

\---

HP-83/85 System Architecture and Operation

In the main BASIC program, each variable is referenced by means of a token fol­

lowed by a two-byte address. The variable itself is held in another part of

memory, within the storage area for program variables. Immediately after the

end of the BASIC program and available memory area in RAM is a two-byte quantity

that signifies the beginning of variable storage and contains the length of the

total space allotted for storage of that program's variables.

Each variable consists of a name block followed by the value of the variable.

The two-byte variable address in the program is a relative one--it is actually

a measure of the distance from FWCURR to the variable's name block in the

storage area. The name block for each variable contains information about the

variable. The format of the variable is shown here:

LEGEND

Byte Bits

7 6 5 4 320

o T3 T2 11 TO N3 N2 N1 NO

R2 R1 RO L4 L3 L2 L1 LO

Bit Meaning

T3 0 = Numeric

1 = String

T2 0 = Simple

1 = Array

Tl, TO o = Real

1 = Integer

2 = Short

3 = (Not used)

R2 0 = Local variable

1 = Remote variable

Rl o = Not being TRACEed

1 = Being TRACEed

R~ 0 = Variable

1 = Function value

5-29

HP-83/85 System Architecture and Operation

N3 through NO and L4 through LO describe the variable name of the form A-Z or
AO-Z9.

N3 through NO = Number minus 608; or 128 if blank.

L4 through LO = Alpha (ASCII) Code minus 1008.

x In the following diagrams, x indicates the setting of the bit does not matter.

SIMPLE VARIABLE STORAGE

LOCAL VARIABLES

Byte

o 0 0 T1 TO N3 N2 N1 NO

o R1 0 L4 L3 L2 L 1 LO

2 Value 8 bytes if real number.
~ .. ----------------------~

4 bytes if short number.

3 bytes if integer number.

REMOTE VARIABLES

A remote variable is a common variable or a subprogram parameter passed by refer­
ence. Subprogram capabilities are available through some ROMs and these subpro­
grams may have variables held in common.

Byte

o

2

3

0 0

1 R1

T1 TO N3 N2 N1 NO

0 L4 L3 L2 L1 LO

Pointer (2 bytes) to value

5-30

/

ARRAY VARIABLE STORAGE

LOCAL VARIABLES

Byte

0

2

3

4

5

6

7

10

10+n

10+ nOm

10+n*m+n
etc.

REMOTE VARIABLES

0

0

HP-83/85 System Architecture and Operation

1 T1 TO N3 N2 N1 NO

R1 0 L4 L3 L2 L1 LO

Total size as originally declared

(2 bytes)

Max row

(2 bytes)

Max column (377,377 if vector)

(2 bytes)

Row 0, column 0

Row 0, column 1 n = Element size (3, 4, or 8)

Row 0, column m m = Number of columns.

Row 1, column 0

Common area passed by reference.

Byte

o 0 1 T1 TO N3 N2 N1 NO

1 R1 0 L4 L3 L2 L1 LO

2 Pointer to total size

5-31

HP-83/85 System Architecture and Operation

STRING VARIABLE STORAGE

LOCAL VARIABLES

Byte

o

2

3

4

5

6

7

10+

1

0

0 x x N3 N2 N1

R1 0 L4 L3 L2 L1

Total length

(2 bytes)

Max length

(2 bytes)

Actual length

(2 bytes)

String (as many bytes as required)

NO

LO

Maximum length is the maximum number of characters that can be placed in the
variable string. Actual length is number of characters currently in the variable
string. Total length and maximum length are always the same unless:
--An I/O ROM is plugged in and this string is declared an I/O buffer.
--This string has been declared as a string array (using a ROM with advanced

programming capabilities).

REMOTE VARIABLES

Common variable or subprogram parameter passed by reference.

Byte

o 1 0 x x N3 N2 N1 NO

1 R1 0 L4 L3 L2 L1 LO

2 Pointer to total length

FUNCTION STORAGE
The user-defined functions in a BASIC program (created with DEF FN) are stored in
much the same manner as variables. Each is preceded in memory by a block that

gives information about the function.

5-32

HP-83/85 System Architecture and Operation

\~ Because a function must restore status when it returns to a calling program,
a stored function saves a return address (in R10), the BASIC program counter
(PCR), the top-of-stack pointer (TOS), temporary memory, and calculator status
(CSTAT) .

In the illustrations below, the legend is the same as that for Variable Storage.

NUMERIC FUNCTIONS

Byte

o

2

3

4

5

6

7

10

11

12

13

0

0

0 x x N3 N2 N1 NO

R2 1 L4 L3 L2 L1 LO

Function address

(2 bytes)

Return address

(2 bytes)

PC

(2 bytes)

TOS

(2 bytes)

CSTAT

Numeric function value (8 bytes)

5-33

HP-83/85 System Architecture and Operation

STRING FUNCTIONS

Byte

o

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

1

0

0

R2

x x N3 N2

1 L4 L3 L2

Function address

(2 bytes)

Return address

(2 bytes)

PCR

(2 bytes)

TOS

(2 bytes)

CSTAT

Total length

(2 bytes)

Max length

(2 bytes)

Actual length

(2 bytes)

String function value

FORMATS ON THE R12 STACK

N1

L1

NO

LO

Number of bytes = total length.
(Always 18 bytes.)

The stack to which CPU register R12 points is used for many operations by inter­
nal HP-83/85 system routines. The formats of variables that are fetched and
stored during runtime execution of certain specific tokens, as well as the
formats of numeric quantities, are shown below.

VARIABLES ON THE R12 STACK

The following table illustrates the format of variables on the R12 stack after
the execution of certain tokens.

5-34

/

I

HP-83/85 System Architecture and Operation

Token

Executed

2

3

21

22

23

Places On R12 Stack

Value of simple variable.

Value of array element.

String length.

String address.

Address of value storage area.

Name block.

Absolute address of array variable area.

Column. (Present only if TRACEing.)

Row. (Present only if TRACEing, and array

is two-dimensioned.)

Dimension Flag. (Present only if TRACEing.)

Name block.

Base address of string. (Relative if pro­

gram mode, absolute if calculator mode.)

Length available to store string characters in.

Absolute address of 1st location available for

storing characters.

Number of Bytes

8

8

2
2

2
2

2
2
2

1
2

2

2

2

When fetching or storing substrings, the address points to the first character of

the substring.

Relative addresses are relative to FWCURR.

NUMERIC FORMATS ON THE R12 STACK

In internal HP-83/85 routines, all numbers popped off the R12 stack are eight

bytes long, so integer values are tagged with octal 377.

5-35

HP-83/85 System Architecture and Operation

E1 E2

EO MS
Undefined

M10 M11

M8 M9

M6 M7 377 .. Integer Tag

M4 M5 01 DO

M2 M3 03 02

MO M1 S 04

Real Tagged Integer
NUMERIC FORMATS (R12 STACK)

In the illustration on the right, the byte above the number contains the octal
quantity 377. This 377 acts as a tag for the number, specifying the quantity as
an integer value that is only three bytes in length. The next four bytes popped
off the stack are then undefined and are ignored by the system.

5-36

/

J

SECTION 6

WRITING BINARY AND ROM PROGRAMS

This section describes how to write a binary or ROM program. It outlines the

parts of the program, and it also explains how a binary program or a ROM program

is processed when it is assembled and when it is run.

Binary programs and RONs are usually written to create new BASIC keywords or to

take over and modify the operation of existing BASIC keywords.

There are almost no procedural differences in writing binary programs and ROMs.

A binary program or a program for a ROM is written in an almost identical manner,

using the HP-83 or HP-85, the Assembler ROM, and, if desired, the System Monitor.

At assembly time, the object code for each is stored on a tape cartridge or disc.

The object code for a binary program is then loaded back into the HP-83/85 to be

run, while the object code for the ROM program may be read from the tape or disc

into a commercial PROM/EPROM burner.

There are a few internal differences between binary programs and ROM programs. A

binary program is usually relocatable, so that it may be loaded into computers

with different sizes of memory. ROM program addresses must be absolute, but a

ROM often needs to reserve some system RAM for its operation. Nevertheless, both

binary programs and ROMs use the same set of HP-83/85 instructions and pseudo­

instructions to generate source code.

Binary program and ROM source code is created using the instructions that make up

the set of assembly language elements found in section 4 of this manual. These

include the CPU instructions as well as the pseudo-instructions. The assembly

language elements include, of course, subroutine jumps. These jumps can be used

to actually call up internal HP-83/85 system routines for use in a binary program

or ROM. It is often much easier to call a system routine to perform a function,

rather than to painstakingly write the code to perform it. A list of available

system routines and their addresses may be found in section 7 of this manual.

6-1

Writing Binary and ROM Programs

PROGRAM STRUCTURE
The structure, or "shell," of each binary program should be the same; this shell
is shown below:

NAt~

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

PARSE BYT 0, 0
--Parse routine addresses go here.

RUNTIM BYT 0, 0

--Runtime routine addresses go here.
BYT 377, 377

ASCIIS BSZ 0
--Keyword table goes here.
BYT 377

ERMSG BSZ 0
--Error message table goes here.
BYT 377

INIT BSZ 0
--Initialization code goes here.
RTN
--The rest of the binary program goes here.
FIN

BINARY PROGRAM SHELL

In order to examine the structure of a real binary program, look at the example
program on the next page. The program creates a new BASIC statement, FTOC, for
converting Fahrenheit temperature to Celsius. The function returns the Celsius
equivalent of its Fahrenheit argument, according to the formula C = F-32*5/9.
This program is one of the example programs on the Assembler Global File tape

cartridge and disc.

Both the source code as it appears on the CRT and the object code are shown.

6-2

J

\

000000
000000
000000
000000
000000
000000
000000
000000
000002
000004
000006
000010
000012
000014
000016
000020
000022
000024
000026
000030
0000:32
000032
000032
000034
0000:36
000040
000042
000044
000044
000044
000046
000046
000046
000050
000052
000054
000054
000054
000054
000056
000060
000061
000061
000061
000061
000062
000062
000062
000062
00006:;
000063
000063
000065
000065
000066
OO(H)70
000071
000073

106 124
117 10:3
040 040
002 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

326 326
326 326
326 326
326 326
326 :326

000 000

000 000
326 326
377 377

106 124
117 :303
3T7

LST
'****************************
!* FTOC BINARY *
!* (c) Hewlett-Packard Co. *
!* 1980 *
!****************************

GLO GLOBAL

Writing Binary and ROM Programs

NAM FTOC !Creates program control block.

!***************************
!System Table:

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

'***************************
'Parse Routine Table:
PARSE BYT O~O
!***************************
'Runtime Routine Table:
RUNTIM BYT 0.0

DEF FTOC.
BYT 3T7,377

'**************************
!ASCII Table:
ASCIIS BSZ 0

ASP "FTOC"

BYT :377
!**************************
!Error Message Table:
ERI'1SG BS Z 0

377 BYT 377
!**************************
!Initialization Routine:
INIT BSZ 0

236 RTN
!**************************
!Runtime Routines:

020 055 BYT 20~55
FTOC. BSZ 0

230 BIN
316 326 JSB =ONER
326
150 040 LDM R50~R40
241

6-3

!Attributes for FTOC.
!Begin runtime routine.
!Sets BIN mode for ONER routine.
!Load F into R40.

!Move F into R50.

Writing Binary and ROM Programs

/
000074 140 251 LDM R40,=1,0,0,0,0,0,0,32C ILoad 32 into R40.
000076 001 000
000100 000 000
000102 000 000
000104 000 062
000106 316 326 JSB =SUBI0 !Perform subtraction.
000110 326
000111 170 012 POMD R70,-RI2 'Throw away copy on stack.
000113 343
000114 150 251 LDM R50,=0,0,0,0,0,0,0,50C !Load 5 into R50.
000116 000 000
000120 000 000
000122 000 000
000124 000 120
000126 316 326 JSB =MPYI0 !Perform multiplication.
000130 326
000131 170 012 POMD R70,-R12 !Throw away copy on stack.
000133 343
000134 150 040 LDM R50,R40 !Move intermediate result to R50.
000136 241
000137 140 251 LDM R40,=0,0,0,0,0,0,0,90C !Load 9 into R40.
000141 000 000
000143 000 000
000145 000 000
000147 000 220
000151 316 326 JSB =DIVI0 !Perform division.
000153 326
000154 236 RTN !Answer is on stack, so return. /
000155 ONER DAD 56215
000155 SUBI0 DAD 52137
000155 MPYI0 DAD 52562
000155 DIVI0 DAD 51644

FIN

/

6-4

Writing Binary and ROM Programs

The explanations on the following pages refer to this example program.

PROGRAM CONTROL BLOCK

The first 308 bytes of each BASIC and binary program are called a program control
block. In the example program, the program control block appears in source code
as:

10
20
30

LST
GLO GLOBAL
NAM FTOC

In a BASIC program, subprogram, or binary program these bytes contain information
about the program. In a binary program, the following two bytes contain the
absolute address at which the binary was last loaded. In the example program,
this 32-byte section of code is reserved by the NAM statement.

A ROM does not contain this program control block. Instead, a ROM program is
begun with the ROM number in the first byte and the ROM number complement in the
second byte. A ROM program in memory will always begin at absolute location
60000.

In the example program, the NAM statement is preceded by the pseudo-op LST, which
causes the object code to be listed during assembly of the program.

SYSTEM TABLE

Next in the example program is the system table for the program. This table is
a list of addresses that in turn locate the runtime, ASCII, parse, and error
message tables and the initialization routine farther down in the binary program.

6-5

Writing Binary and ROM Programs

60 DEF RUNTIM
70 DEF ASCIIS
80 DEF PARSE
90 DEF ERMSG
100 DEF INIT

The system table must always be present in a binary or ROM program, and it must
always contain the addresses of subsequent tables in exactly the order shown here.

ROM
Address

60000

60002

60004

60006

60010

60012

---..... ROM#

ROM# complement

Contents
Binary

Program Byte

Binary program base address 1---- 30

---------1.... Address of runtime table 1---- 32

--------..... Address of ASCII table 1---- 34

---------1..... Address of parse table f---- 36

--------... Address of error message.. 40

---------1.... Address of Initialization table .. 42

SYSTEM TABLE ADDRESSES

At certain times during operations such as initialization, parsing, running, key­

board entry, and error conditions, the HP-83/85 system expects an address of a
table of addresses of routines for that operation to be in a specific location.
If a binary program is resident during initialization, for example, the system
expects in byte 42 of the binary program the address of an initialization routine.
The system will use the contents of bytes 42 and 43 (whatever those contents are)
for the address of the table.

PARSE ROUTINE TABLE

Next in memory is a table of addresses of the parse routines used by a program.

130 PARSE BYT 0,0

6-6

J

\

Writing Binary and ROM Programs

In the example program there are no parse routines required. This is because

the only keyword (FTOC) is a function, and thus has a syntax which can be under­

stood and parsed by the HP-83/85. FTOC is a numeric function (attributes 20,

55) of one numeric parameter, just like SIN or COS.

The HP-83/85 automatically knows how to parse numeric and string functions be­

cause of their attributes. However, if a binary program or ROM creates a new

BASIC statement, a parse routine will be required.

The data declaration pseudo-op BYT 0, 0 is merely a filler to occupy the required

opcode field. It corresponds to token 0 within the binary program. (Token 0 is

illegal in the system and cannot be used.)

RUNTIME ROUTINE TABLE

The table of addresses that will be used during runtime follows.

160 RUNTIM BYT o~o
170 DEF FTOC.
180 BYT 377,377

BYT 0, 0 is again used as a filler. When executing object code, the system

locates the address for RUNTIM, skips two bytes, then uses the next two bytes as

an address for the first runtime routine.

A common convention, although not one that is required, is to name runtime

routines with the keyword (or an abbreviation) followed by a period.

The pseudo-instruction BYT 377, 377 inserts two bytes with all bits set. This

signifies the end of all addresses to be relocated during loading of the binary

program.

The address tables for binary programs are relative when assembled. When the

LOADBIN instruction is executed, the object code is first loaded, then some

relocdtiun is done. All pointers up to the first occurrence of an octal 377, 377

are adjusted. This is necessary because the ASSEMBLE command stores a program

6-7

Writing Binary and ROM Programs

without readjusting the pointers and because the machine into which the program
is later loaded may not have the same memory size as the one which stored the
code.

Since a ROfvi program is not relocatable, the 377, 377 "marker ll is not required in
a ROM.

ASC I I TABLE

The next component of the program is the table that contains the ASCII keywords.

210 ASCIIS BSZ (I

220 ASP "FTOC"
230 BYT 377

In an ASCII table, all of the keywords are arranged sequentially. When a BASIC
statement is entered to the CRT, the system attempts to match the characters that
are entered with a keyword in one of the ASCII tables. It looks first in the
resident binary program, then in any plug-in ROMs, and finally in its own ASCII
tables for a match.

The system attempts to find a match, processing a character at a time until it
reaches a character with its most significant bit set. A character with its
MSB set signifies the last character of a keyword. If no match has been found,
the system assumes the next character in the tables begins a new keyword, and it

moves to that character, increments a token counter, and begins trying once again
to find a match.

In the example program, the ASP pseudo-instruction causes the most significant
bit of the C in the keyword "FTOC" to be set. BYT 377 sets all the bits in one
byte, signifying the end of the ASCII table.

ERROR MESSAGE TABLE

Like the other tables, the address of the error messages is required in a binary

program.

6-8

\

\-

Writing Binary and ROM Programs

260 ERMSG BSZ 0
270 BYT 377

In the example program, there are no error messages. Errors during parsing will
be reported by the system, since system routines are performing all parsing; and
runtime errors will be trapped by the math routines used. Again, BYT 377 signi­
fies the end of the table.

INITIALIZATION TABLE

This section of the program contains the address of a routine that is executed
during initialization. This section is entered during power-on, reset, alloca­
tion, deal location, and at other times. The flag in memory location ROMFL
indicates which of these entry possibilities has occurred.

~300 INIT
~.HO

BSZ 0
RTN

The example program does not require any specific action during initialization,
so all that is required is a return. For an example of ROMFL usage, see the
Special Function Keys as Typing Aids example program in section 8.

RUNTIME ROUTINES

This section contains most of the code used in the program, and normally includes
many runtime routines. Routines here must be included in the tables above;
otherwise, the system will not be able to access these routines. In the example
program, there is only a single runtime routine mentioned in the tables above:
IIFTOC. II

During parsing, when the system finds the routine address for a particular key­
word (FTOC., in this case), it examines the primary attributes, located one byte
before the runtime code. (It also examines secondary attributes, if required.)

The attributes define for the system the type of keyword--statement, function,

operator, etc.--so that the system can process the keyword properly.

6-9

Hriting Binary and ROM Programs

The attributes 20, 55 specify that the next keyword, FTOe., is a numeric function ---j

with one numeric parameter, so the system knows how to parse a statement that
contains the keyword FTOe, and it knows how many parameters to accept at runtime.

Next is the runtime code for FTOe. The calculation to be performed is e = (F-32)
*5/9; the FTOe routine takes an argument off the Rl2 stack, subtracts 32 from it,
multiplies the result by 5 and divides that result by 9. Like all functions,
FTOe leaves the final result on the stack.

340 BYT 20,55
350 FTOC. BSZ 0
360 BIN
370 JSB =ONER

'Attributes for FTOC.
!Begin runtime routine.
!Sets binary mode for entry to ONER routine.
!Load F into R40.

380 LDM R50,R40 !Move F into R50.
390 LDM R40,=1,O,0,0,0,O,O,32C !Load 32 into R40.
400 JSB =SUB10 'Perform subtraction.
410 POMD R70,-RI2 !Throw away copy on stack.
420 LDM R50,=0,0,0,0,0,0,O,50C 'Load 5 into R50.
430 JSD =MPV10 'Perform multiplication.
440 POMD R70,-R12 'Throwaway copy on stack.
450 LDM R50,R40 'Move intermediate result to R50.
460 LDM R40,=0,0,O,0,0,0,O,90C !Load 9 into R40.
470 JSB =DIV10 'Perform division.
480 RTN 'Answer is on stack, so return.

Refer to section 4 for descriptions of the CPU instructions and pseudo­
instructions used. Refer to section 7 for descriptions of the system routines
(such as ONER and MPY10) used.

EXTERNAL LABEL TABLE

After the runtime routine is a label table. The label table gives the addresses
in RAi~ of the system routines used in the binary program. Unlike the binary
program's own routines, there are no addresses available for system routines
unless the addresses are specified in some manner. These addresses will be found
in the system global file (listed in section 7 of this manual) and/or in the
listings of individual system routines in the same section. In the example pro­
gram, the table of system label addresses is placed at the end for easy reference,

but it can be placed anywhere in the pro9ram after the BYT 377, 377 marker.

6-10

Writing Binary and ROM Programs

490 ONER DAD 56215
500 SUBi0 DAD 52137
510 MPY10 DAD 52562

520 DIV10 DAD 51644

If the addresses for all system routines used in a program are available on a

global file on disc or tape (such as the Assembler Global File), a label table

need not be written. Instead, the program can be directed to look in the system

global file by means of the GLO pseudo-instruction. Merely place a GLO GLOBAL

instruction before the NAM instruction and ensure that the source file named

GLOBAL is available on the tape or disc when the program is assembled.

The user may also create a global file by assembling a list of DAD's and EQU's,

with GLO as the first statement.

ENDING THE PROGRAM

FIN is used to terminate assembly; LNK is used to cause assembly to resume with

\ another section of source code.

530 FIN

SYSTEM HOOKS
The main reason for an external ROM or binary program is to extend the capabil­

ities of the main system. In order to allow for this, a number of hooks are

provided. A hook is a location where a binary program or ROM can gain control

of the system. There are three main categories of hooks: Language hooks,

general hooks, and initialization hooks.

LANGUAGE HOOKS

With language hooks the binary program or ROf4 can define new keywords, functions,

and auxiliary tokens. Because the system first polls the resident binary pro­

gram, then all external ROMs, and finally its own system tables when searching

for these, a hinary or ROM program can take over or supersede any of them.

6-11

Writing Binary and ROM Programs

GENERAL HOOKS

To provide for each general hook. the system at certain times executes a JSB
subroutine jump to a specific RAM location. During normal operation each of
these RAM locations contains a RTN (return) or is otherwise idle. By placing
a JSB to a binary program or ROM at the hook location. the program or ROM gains
access to the operating system. It is the responsibility of the writer of the
external program to determine how to use the hook and how to avoid conflict with
other usages of the hook. No support is supplied by the system.

Unless otherwise noted. each general hook is seven bytes in length. General
hooks are supplied at the following points:

RAM Name

IOTRFC

IOSP

CHIDLE

KYIDLE

RMIDLE

IMERR

PRSIDL

IRQ20

SPARO

SPARl

Location

102400

102407

102416

102425

102434

102452

102461

102470

102501

102512

Function

I/O Traffic intercept. Used by I/O and PIP ROMs.

I/O Service pointer. Used by I/O and Mass Storage ROMs.

Character editor intercept.

Keyboard intercept. Polled whenever a key is pressed.

Executive loop intercept.

Image statement errors. Located in image code. Used
by I/O ROM.

Parser intercept.

I/O Interrupt (9 bytes). Interrupt vector. like key­
board service and clock routines.

Spare interrupt (9 bytes). Hardware interrupt vector
hook. Used by System Monitor.

Spare interrupt (9 bytes). Hardware interrupt vector

hook.

GENERAL HOOKS

At power-on. the first two general hooks above are initialized to JSB = ERROR+.

BYT 25. The remaining eight are initialized to RTN.

6-12

Writing Binary and ROM Programs

The following section of code illustrates how to take over a hook (in this case,

the CHIDLE hook):

LDM R36, = KEYCHK

AD~1D R36, = BIrHAB

STM R36, R45

LOB R47, = 236

LOB R44, = 316

STMD R44, = CHIDLE

INITIALIZATION HOOKS

Load address of routine to handle CHIDLE.

Add value of BINTAB for an absolute address.

Store desired address in R45 and R46.

Load the opcode for return (RTN).

Load the opcode for JSB.

Store it all (multi-byte store) to CHIDLE hook.

A routine called ROMINI is called on several occasions to perform initialization

in external programs. When this occurs, the initialization routines in binary

program and ROMs are given control.

A parameter is passed to the ROMINI routine by way of ROMFL, a single-byte RAM

cell. The occasions and corresponding ROMFL are:

ROMFL Value Function

0 Power on

1 RESET key

2 SCRATCH

3 LOADBIN

4 RUN, INIT

5 LOAD

6 STOP, PAUSE

7 CHAIN

10 Allocate token with class > 56

11 Deallocate token with class> 56

12 Decompile token with class > 56

13 Program halt on error

These calls to the ROMs and binary program allow these programs to initialize,

de-iniLialize, and otherwise keep track of operation. For instance, if a ROM

needs to reserve or IIsteal ll memory permanently, it would check for ROMFL = 0,

6-13

Writing Binary and ROM Programs

and reserve memory only when that is true. Another example is that during RESET
the I/O ROM might want to deallocate buffers.

During initialization, a binary program or ROM should never destroy any CPU reg­
isters below R20. Similarly, no initialization routine should use CPU registers
other than R34-R37 until it is verified that the value of ROMFL is not 10, 11,
or 12. Once the value of ROMFL is not 10, 11, or 12, all CPU registers numbered
R20 or higher may be used.

ERROR MESSAGES

ROMs and binary programs have the option of reporting system (predefined) errors
or reporting their own error messages. System and ROM errors use positive error
numbers, while error messages defined by a binary program are referred to by
negative error numbers.

USING SYSTEM ERROR MESSAGES

HP-83/85 system errors can be used in binary programs and ROMs in the same way
they are used for system programs. This involves a subroutine jump to system
routine ERROR or ERROR+, which expect the next byte to contain the desired error
number.

Example:

JSB = ERROR

BYT 37
Anything

Example:

Set errors.
System error 37.
Continuation after error.

JSB = ERROR+ Set errors and return.
BYT 37 System error 37.

No return is necessary. ERROR+ throws away one return address before performing

d RTN.

6-14

J

;

\

Writing Binary and ROM Programs

This last section of code is equivalent to:

JSB = ERROR

BYT 37
RTN

ROM-DEFINED ERROR MESSAGES

When setting up an error message table for a ROM, remember that the first eight

error messages are warnings; they should have default conditions such as in the

ROM error message table shown here:

ERMSG BYT 200, 200, 200,

BYT 200, 200, 200,

ASP "SYSTEM DOWN"

ASP "BAD INPUTS"

ASP "WALK AWAY"

BYT 377

200 }

200

Eight dummy bytes with

MSB set.

Error #11 8.

Error #128.

Error #138.

End of error message table.

Error messages defined in a specific ROM can be selected by first storing the

ROM number in a location known as ERRROM, then calling system routine ERROR or

ERROR+. Since it is possible for multiple errors to occur before they are

reported, location ERRORS contains a flag that signals whether any errors have

already occurred; once ERRORS is set, ERROR throws away all subsequent errors.

Here is a section of code that would be located within a ROM to check for any

prior errors, then load ERRROM with the ROM number for error reporting:

ERRSET LOBO R36, = ERRORS

JNZ DON'T

LOB R36, = 400 }
STBD R36, = ERRROM

DON'T RTN

Get error flag.

Jump if already an error.

Otherwise load ROM number

(4010 in this case) into ERRROM.

6-15

Writing Binary and ROM Programs

To report errors within ROM #50, the reporting code would first call the above
routine, then call ERROR or ERROR+, as shown in this example:

LDM R26, R36
SBM R26, R24
JZR GOAHED
JSB = ERRSET

JSB = ERROR+ }
BYT 12

Select proper ROM number.
Report error 12. ("BAD INPUT"
in earlier error message table.)

Note that ERROR or ERROR+ will do nothing if ERRORS is already set, so no testing
is required after calling ERRSET.

BINARY PROGRAr~ ERROR MESSAGES

As in a ROM, the first eight errors within a binary program are warnings and
should have default conditions. Unlike system or ROM errors, however, binary
program errors are referenced by negative error numbers. Here is an example of
a binary program error message table:

ERMSG BYT 200, 200, 200, 200 }
Eight dummy bytes (377-370)

BYT 200, 200, 200, 200 with MSB set.

ASP "BAD PARAMETER" Error #3678.

ASP "WILD CARD PROBLEM" Error #3668.

ASP "INPUTS LOST" Error #3658.

BYT 377 End of error message tabl e.

When the correct error is found, the error number is reported in two·s complement
form. The following section of code illustrates how an error message from the
binary program error message table might be called:

POMD 22, -12
JNZ OK

JSB = ERROR+

BYT 367

Get a number.
Jump if not zero.

Otherwise, report error
#367, "BAD PARAMETER."

6-16

)

j

Writing Binary and ROM Programs

BINARY PROGRAM AND ROM ADDRESSING
Functionally there is no difference between a binary program and an external ROM;
any task which can be performed by one can be done by the other. Each has spe­
cial problems, however, related mostly to addressing.

EXTERNAL ROM ADDRESSING

External ROMs are selectable by software, so a special problem occurs when
selecting among ROMs.

Suppose it is desired that an external ROM call the TIME function. This function
is located at address 65517 in the bank-selectable system ROM (i.e., ROM 0).

Because the external ROM occupies the same address space, it is impossible to
directly select system ROM 0, execute a JSB to the TIME routine, and return to
the calling ROM.

The solution is to call the system routine to be executed (TIME) through a sys­
tem routine called ROMJSB. Two parameters are passed to ROMJSB:

1. Address of the routine to be called.
2. ROM number of the location where the routine resides.

Example: To call the TIME routine, the source code in the external ROM would be:

JSB = ROMJSB
DEF TIME.
BYT 0

Call to ROMJSB.
Address of routine to be called (TIME).
Number of ROM that contains TIME.

When the TIME routine has been executed, control returns to the ROMJSB routine.
ROMJSB, in turn, reselects the calling ROM and returns execution to the next

instruction after BYT 0.

Another problem is how to return to the system ROM. It is impossible to select

ROM ~ and then return, beCduse selecting ROM 0 deselects the ROM which is trying

6-17

Writing Binary and ROM Programs

to execute a return. The solution is another system routine called ROMRTN, which /
performs the same function (select ROM 0 and return). In most cases the system
automatically reselects ROM 0 after a normal return, but in some cases, such as
after all parse routines, the external Ror~ must "clean up" by selecting ROM 0
before returning. Executing GTO ROMRTN reselects ROM 0 and then returns.

A third problem is the overhead required to intercept a system routine. Several
general hooks have been provided; for example, in the executive loop a subroutine
jump is made to a RAM location (a system hook) called RMIDLE. At power-on, the
system stores a RTN at that location. To intercept the idle loop, a ROM must
load the following sequence into that location (and the following six bytes).

RMIDLE JSB = ROMJSB
DEF INTERC
BYT 17

RTN

Call ROM switching routine.
Address of routine to be executed.
ROM number.
Return.

The load can be performed by the ROM's initialization routine when the ROM gains
control during power-on initialization (ROMFL = 0).

For a binary program to take over the same hook, all that is needed is:

RMIDLE JSB = INTERC
RTN

One further general caution is that any routine which calls an external ROM, such
as an interrupt service routine, must also use the RO~lJSB utility. This is true
even if the external ROM is called from a binary program.

BINARY PROGRAM ADDRESSING

The addressing problem of binary programs is relocatability. The HP-83/85 pro­
cessor accomodates relocatable code. All conditional jumps and the JMP command
are relative, so they are inherently relocatable. Arithmetic, loads, stores, and
subroutine jumps can all be performed in an indexed mode. If a two-byte register

contains a base address stored in RAM, such as BINTAB, then relocatable code can

be written using indexed addresses (indexed by the base address).

6-18

Writing Binary and ROM Programs

Examples of the various operations follow. The examples assume CPU registers

R36 and R37 contain the base address of the binary program. The base address

will be stored in BINTAB (101233) by the system LOADBIN command.

Examples:

LDMD R36, = BINTAB

JSB X36, DEST.

LDM R40, X36 CaNST

LDMD R22, X36, AD DR

CaNST BYT 12, 34, 56, 70

12,34,56,70

DEST. RTN

ADDR BSZ 2
FIN

Load up base address.

JSB to destination DEST.

Load a constant into R40.

Load direct R22.

Short subroutine.

Address in main memory.

End of program.

All of the labels in this section of code are merely examples.

RESERVING RAM
A binary program or ROM sometimes requires that system RAM be "stolen," or

reserved, for its use. There are two distinct uses for this RAM.

1. Temporary scratch-pad area for the current routine.

2. Permanently-reserved RAM.

For temporary use of RAM, the binary program or ROM can call system routine

RESMEM, which will reserve memory. (See the RESMEM system routine in section 7

for documentation.)

RAM can be permanently reserved by a ROM or by a binary program.

RAM RESERVED BY A ROM

RAM that is permanently "stolen" by a ROM must be reserved at power-on. This can

be performed during initialization by an JrHT routine such as the one shown here:

6-19

l~riting Binary and RO~1 Programs

INIT. BIN
LOBO 36, = RO~1FL

JNZ NOTPWO
LDMD 36, = FWUSER
STMD 36, = UNBASl
ADM 36, = 100,0
STMD R36, = FWUSER

JSB = ROMJSB }
DEF SCRAT+
BYT 9)

RTN

Get ROMFL contents
Jump if not power-on.
Get address of first user byte.
Store base address for later use.
Add number of bytes needed.
Reset the first word pointer.
Call the system scratch routine
to clean up some pointers and the
program header.
Return. (Or do more initialization.)

System addresses UNBASl and UNBAS2 are locations where the base address of re­
served RAM is stored. Any time access to this "stolen" RAM is required, the
address in UNBASl (or UNBAS2) can be loaded into a register and used as a base
address with which to index the reserved RAM. For example:

Lor~D 22, = UNBASl }
CLM R40
STMD R40, X22, VALUE

VALUE EQU 10

RAM RESERVED BY A BINARY PROGRAM

Stores zeros into the
lOth through the 17th (octal)
bytes of stolen RAM.

A binary program is not loaded at power-on, so it cannot reserve RAM at this
time. Also, a binary program should not reserve memory at the time LOADBIN is
performed because a BASIC program may be resident in that RAM space. However, a
binary program can reserve RAM within its own program space. For example:

VALUE BSZ 10

ENTRY. LDMD R22, = BINTAB

CLM R40

STMD R40, X22, VALUE

Generates 8 bytes of storage area
and inserts them into object code.

Base address of binary program.

Stores 8 zeros into location VALUE.

6-20

)

/

Writing Binary and ROM Programs

This routine reserves eight bytes of zeros for permanent use as either scratch­
pad or permanent storage memory.

ACCESSING THE PROGRAM CONTROL BLOCK
Although most of the program control block of a BASIC program is of little use to
assembly-language programmers, there is one byte that contains program informa­
tion that can prove valuable in writing binary programs or ROMs. The seventh
byte of the PCB contains the status information shown below.

c o A I x I x

LEGEND

C = Common Variables
~ if no common variables are present
1 if common variables present in program

o = Option Base
~ for option base 1
1 for option base ~

A = Allocation Status
~ if deallocated program

if allocated program

P = Program Type
~ BASIC main program
1 BASIC subprogram
2 Assembly-language program (ROM or binary)

p

Access to this byte can be gained through the section of code shown here:

6-21

Writing Binary and ROt1 Programs

LOMO R30, = FWCURR

ADM R30, = 6,0
LOBO R30, R30

ASSEMBLING
To assemble a binary or ROM program:

Pointer to 1st byte of
PCB of current program.

1. Ensure that a tape cartridge is inserted in or a disc attached to the
HP-83/85.

2. Store the source code on the mass storage device first. This step is not
required, but is highly recommended. The HP-83/85 system is vulnerable to object
code which takes over hooks or keywords, and source code may be irretrievably
lost during assembly. (See below.) Source code is stored with the ASTORE
command.

3. Type ASSEMBLE "file name" to assemble the object code on the mass storage
device and load it back into memory. Or type ASSEMBLE "file name", number other
than ~ to assemble the object code on the mass storage device without loading jt
into the computer1s memory.

The file names used can be different from those specified by NAM. However, a
good convention is to name the object code file with the name specified by NAM,
followed by a "B" for binary. The source code file can be specified with the
name followed by "5" for source.

Generally, the source code will be destroyed during assembly by any of the fol­

lowing conditions:

1. If a LNK has been specified, the linking code will destroy the previous code.

2. If an immediate load is specified and the initialization routine contains
faulty code.

6-22

j

J

Writing Binary and ROM Programs

3. If a binary or ROM program that takes over CHIDLE is assembled, then listed

with the [LIST] key.

USING A BINARY OR ROM PROGRAM

BINARY PROGRAM

Once assembled and loaded, a binary program makes all its keywords available for

use by the HP-83/85 system. The keywords become part of the computer's BASIC

instruction set, so a BASIC function such as FTOC, for example, could be used

as a calculator mode statement:

FTOC(32)

Or as a BASIC language element:

10 LET A = FTOC(100)

~_ ROM PROGRAM

A ROM program is stored in a tape or disc file as a series of l25-character

ASCII strings. To create an EPROM, the HP-83/85 can be connected through HP-IB

(Hewlett-Packard Interface Bus) or another I/O interface card to a commercial

PROM burner. The HP-83/85 can then be loaded with a simple BASIC program to read

the strings from the tape or disc and send them byte-by-byte to the PROM burner.

NOTE

For further aid in writing binary and ROM programs, study

the sample programs supplied on the tape cartridge and disc

and listed in section 8 of this manual.

6-23

NOTES J

)

6-24

\ SECTION 7

HP-83/85 SYSTEM ROUTINES

This section of the manual gives a listing of the global file contained on the

tape cartridge and disc provided with the HP-83/85 Assembler ROM; it also gives

detailed information on operation of many specific areas in the computer and on

the system routines within the global file.

THE GLOBAL FILE
The global file on the tape cartridge and disc is listed below. It gives the

permanent addresses in memory of many of the system routines used by the HP-83/

85. The global file also contains locations of system pointers, buffers, vari­

ables, and constants which may be referenced in a binary program.

On the tape cartridge and disc supplied with the Assembler ROM, there are

actually two copies of this global file.

--GL01S and GL02S together make up the global source file. This is an extended

file, type ****, and can be edited by the user, if a user-written change to

the global file is desired. GL01S and GL02S can also be used to print out a

listing of the global file.

--GLOBAL is the global file in object code. This is a data file containing normal

ASCII strings that make up the assembled object code for the global file. When

the pseudo-op GLO GLOBAL has been placed near the beginning of a binary program,

during assembly the computer will look at this file for the addresses of any

undefined labels in the program.

Although it is usually more convenient, it is not necessary to use the file

GLOBAL as a label table. You may create your own label table on a mass storage

device, or you may specify the addresses of the system routines called in a

binary program by adding them to the label table within the program.

The global file on the following pages is the same as the one on the tape Car­

tridge and disc supplied with the Assembler ROM.

7-1

HP-83/85 System Routines

LEGEND

Name Name of routine, buffer, etc.
Address Permanent octal address of routine in HP-83 or HP-85 memory.

Description A short description of the routine.

GLOBAL FILE

NAME ADDRESS

10 !***************************
15 '* *
20!* HP-83/85 ASSEMBLER *
30 !* GLOBAL FILE *
40 !* (c) Hewlett-Packard Co. *
50 !* 1980 *
55 ! * *
60 !***************************
70 GLo
80 FWUSER DAD 100000
90 FWPRGM DAD 100002
100 FWCURR
110 NXTMEM
120 LAVAIL
130 CALVRB
140 RTNSTI<
150 NXTRTN
160 FWBIN
170 LWAMEM
180 LLDCOM
190 FLDCoM
200 DISPTR
210 PRTPTR
220 ONFLAG
230 AUTo#
240 AUToI
250 ERLIN#
260 ERNUM#
270 ERRRoM
280 ERROM#
290 EDMOD2
300 ERRORS
310 ERF<TYP
320 KEYCNT
330 I<RPETI
340 KRPET2
350 LDFLTR
360 DRG
370 SVCWRD
380 IOSW
390 CRTBYT
400 CFnRAM
410 XMAP
420 YMAP
430 CS.C.
44u !-'S. L:.

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
UAIJ

100004
100006
100010
100012
100014
100016
100020
100022
100025
100027
100033-
100035
100040
100054
100056
100062
100064
100065
100066
100067
100070
100071
100120
100121
100122
100123
100125
100151
100152
100176
100200
100262
100263
100264
ItJ()~/4

DESCRIPTION

!FWA USER AREA
!FWA PROGRAM AREA
'PTR TO CURRENT PGM
!NEXT IN AVAIL USER MEM
!LAST AVAIL BYTE IN PGM AREA
!START OF CALC VARIABLES
!ToP OF GOSUB RETURN STACI<
!NEXT AVAIL GoSUB/RTN
'=LWAMEM IF NO BPGM LOADED ELSE =BINTAB-l
'LWA USER MEM
'LAST LINE DECOMPILE
'FIRST LINE DECOMPILE
'DISP BUFFER PTR
'PRINT BUFFER PTR
!ON GoSUB FLAG
!AUTo LINE # LAST VAL
!AUTO LINE # INCREMENT
!LINE# OF BAD LINE
!ERROR NUMBER
!ROM# OF ERROR
!ROM # OF LAST ERROR
!INS/RPL MODE FLAG
!RUN TIME ERRORS
!ERRoR TYPE
'KEYBOARD COUNTER RPT
'MAJOR I<YBD REPEAT
'MINOR I<YBD REPEAT
!LIST BREAK LINE COUNT
!DEG/RAD/GRAD
!SERVICE WORD
! 10 SVC WORD
!CRT BYTE ADDRESS
'CRT PAGE ADDRESS
!LAST X PLOTTED (0-255)
!LAST Y PLOTTED (0-255)
!CRT IS select code (8 BYTES)
! f-'fdl\l 1 U, i b !S~i lK L (_(JUt?

7-2

NAME

450 INPBUF
460 LASTIN
470 ERRBUF
480 ERBEND
490 PF<TBUF
500 DISBUF
510 PCR
520 PRFLAG
530 DSFLAG
540 TIME
550 DATE
560 DISPLN
570 PRNTLN
580 KEYHIT

ADDRESS

DAD 100310
DAD 100447
DAD 100450
DAD 100524
DAD 100524
DAD 100564
DAD 100642
DAD 100644
DAD 100645
DAD 100650
DAD 100660
DAD 100665
DAD 100666
DAD 100671

590 INPTR DAD 100672
600 LEGEND DAD 100710
610 LEGEN2 DAD 100750
620 CRTWRS DAD 101016
630 P.BUFF DAD 101075
640 P.PTR DAD 101077
650 P.FLAG DAD 101101
660 LINELN DAD 101103
670 SCTEMP DAD 101110
680 SlSIZE DAD 101130
690 TOS DAD 101132
700 ROMFL DAD 101231
710 BINTAB DAD 101233
720 ROM TAB DAD 101235
730 ROMLST DAD 101272
740 STACK DAD 1013~)

750 !*************************
760 !* THE R6 STACK USES THE *
770 !* AREA OF MEMORY FROM *
780 !* 101300 THRU 101777. *

790 !*************************
800 IOTRFC DAD 102400
810 IOSP DAD 102407
820 CHIDLE DAD 102416
830 KYIDLE DAD 102425
840 RMIDLE DAD 102434
850 IMERR DAD 162452
860 PRSIDL DAD 102461
870 IRQ20 DAD 102470
880 SPA~) DAD 102512
890 SPARI DAD 102523

900 !**************************
910 !* THE FOLLOWING LOCATIONS*
920 !* CONTAIN BASE ADDRESSES *
930 !* OF STOLEN RAM FOR EACH *
940 !* OF THE EXTERNAL ROMS. *

950 !**************************
960 IOBASE DAD 102536
970 MSBASE DAD 102540
980 AGLBAS DAD 102542
990 APR BAS DAD 102544
1000 BSRBAS DAD 102546
1010 MUAS~ DAD lu2~5u

1020 ASMBAS DAD 102552

HP-83/85 System Routines

DESCRIPTION

!PARSER INPUT BUFFER
!END OF INPUT BUFFER
!ERROR BUFFER (44 BYTES)
'END BUFFER +1
!PRINT BUFFER
'DISPLAY BUFFER
!BASIC PGM LINE PTR
'PRINTED YET? FLAG AT PRINT EOL FOR PRINT

!PRINTED YET? FLAG AT PRINT EOL FOR DISP

! TIME OF DAY
! JULIAN DAY YEAR
'I BYTE DISPLAY LINE LEN
'I BYTE PRINTER LINE LEN
!KEYBOARD ASCII CODE
!INPUT LINE POINTER
!KEY LABEL LEGEND AREA
!SECOND LINE LEGEND AREA
!CRT STATUS IN RAM
'INDIRECT BUFFER PTR
!INDIRECT PTR TO BYTE COUNT FOR CURRENT BUFFER

!INDIR. PTR TO PRFLAG OR DSFLAG OR PIP ROM FLAG

'DEVICE LINE LENGTH
!SELECT CODE TEMP STORE
!STATEMENT SIZE PLACE HOLDER PTR
'TOP OF R12 STACK
'ROM FLAG FOR INIT ROUTINES
'CONTAINS BASE ADDRES~ OF BPGM
'LIST OF PRESENT EXTERNAL ROMS
'LAST ENTRY IN ROM TABLE
!BEGINNING OF THE R6 STACK

'liD TRAFFIC INTERCEPT
!I-O INTERRUPT SERVICE PTR
!CHAR. EDITOR INTERCEPT
!KEYBOARD INTERRUPT INTERCEPT
'EXEC LOOP INTERCEPT
!IMAGE ERROR INTERCEPT
!PARSER INTERCEPT
, I -() INTERRUPT
!SYSTEM MONITOR INTERRUPT HOOK
!SPARE INTERRUPT HOOK #1

! 110 ROM
!MASS STORAGE ROM
!PLOTTER/PRINTER ROM
'ADVANCED PROGRAMMING ROM
!BLUE SPRUCE
I M{)mI x nOM
'ASSEMBLER ROM

7-3

HP-83/85 System Routines

NAME ADDRESS

1030 UNBASI DAD 102554
1040 UNBAS2 DAD 102556
1050 FWROM Eau 103300
1060 !*************************
1065 ! * *
1070!* I/O ADDRESSES *
1075 !* *
1080 !*************************
1090 GINTEN DAD 177400
11~) GINTDS DAD 177401
1110 KEYSTS DAD 177402
1120 KEYCOD DAD 177403
1130 CRTSAD DAD 177404
1140 CRT BAD DAD 177405
1150 CRTSTS DAD 177406
1160 CRTDAT DAD 177407
1170 RSELEC DAD 177430
1180 !*************************
1190 !* THE FOLLOWING ARE ONLV*
1200 !* CONVENIENT LABELS FOR *
1210 !* SOME ASCII CODES AND *
1220 !* SOME DIGITS *
1230 !*************************
1240 ZRO Eau 0
1250 ONE Eau 1
1260 TWO Eau 2
1270 THREE Eau 3
1280 FOUR Eau 4
1290 FIVE Eau 5
1300 SIX
1310 SEVEN
1320 EIGHT
1330 NINE
1340 TEN
1350 BLANK
1360 BANG
1370 "
1380 ,..
1390 $

1400 'Y.

1410 ~<

1420
1430
1440)
1450 *
1460 +
1470 ,
1480 -
1490
1500 /

Eau
Eau
EQU
Eau
Eau
EQU
Eau
EQU
Eau
Eau
Eau
Eau
Eau
Eau
EQU
EQU
Eau
Eau
Eau
Eau
EQU

6
7
10
11
I''''
40
41
42
43
44
45
46
47
50
51
52,..
~.-..
54
55
56
57

DESCRIPTION

!UNUSED: AVAILABLE
!UNUSED: AVAILABLE
'FWA USER PROGRAM ROMRAM

'GLOBAL INTERRUPT ENABLE
'GLOBAL INTERRUPT DISABLE
!KEYBOARD STATUS
!KEYBOARD CODE AND EOJOB
!CRT START ADDRESS
'CRT BYTE ADDRESS
!CRT STATUS
!CRT DATA
'ROM SELECT ADDRESS

7-4

/

)

HP-83/85 System Routines

1510 EQU 72
1520 EQU 73
1530 < EQU 74
1540 EQU 75
1550 > EQU 76
1560 ? EQU 77
1570 ;;) EQU 100
1580 A EQU 101
1590 B EQU 102
1600 C EQU 103
1610 D EQU 104
1620 E EQU 105
1630 F EQU 106
1640 G EQU 107
1650 H EQU 110
1660 I EQU 111
1670 J EQU 112
1680 V EQU 113
1690 L EQU 114
1700 M EQU 115
1710 N EQU 116
1720 a EQU 117
1730 F' EQU 120
1740 G1 EQU 121
1750 H EQU 122
1760 (~

'" EQU 123
1770 T EQU 124

"- 1780 U EQU 125
1790 V EQU 126
1800 W EQU 127
1810 X EQU 130
1820 Y EQU 131
1830 Z EQU 132
1840 [EQU 133
1850 \ EQU 134
1860] EQU 135
1870 .~, EQU 136
1880 EQU 137 -
1890

, EQU 140
1900 a EQU 141
1910 b EQU 142
1920 c EQU 143
1930 d EQU 144
1940 e EQU 145
1950 f EQU 146
1960 9 EQU 147
1970 h EQU 150
1980 i EQU 151
1990 j EQU 152
2000 k EQU 153

7-5

HP-83/85 System Routines

2010 1 EQU 154
2020 m EQU 155
2030 n EQU 156
2040 0 EQU 157
2050 p EQU 160
2060 q EQU 161
2070 r- EQU 162
2080 s EQU 16::';
2090 t EQU 164
2100 Ll EQU 165
2110 v EQU 166
2120 IN EQU 167
2130 >(EQU 170
2140 Y EQU 171
2150 z EQU 172
2160 LNK GL02S

/

7-6

"

10
20
30
40
50
60
70
80
90

NAME ADDRESS

!***************************
!* HP-83/85 ASSEMBLER *
!* GLOBAL FILE *
'* SECTION 2 *
!* (c) Hewlett-Packard Ca. *
! * 1980 *
!***************************

2160 !************************
2170 !* SYSTEM ROUTINE ENTRY *
2180!* POINT ADDRESSES *
2190 !************************
2200 ABS5 DAD 53731
2210 ADDROI DAD 52150
2220 ALFA DAD 11775
2230 ALPHA. DAD 36105
2240 ASIGN. DAD 27056
2250 ATN2. DAD 76455
2260 BEEP. DAD 6737
2270 BLKLIN DAD 36320
2280 BPLOT. DAD 34365
2290 BYTCRT DAD 35423
2300 BYTCR! DAD 35422
2310 CEILI0 DAD 53615
2320 CHKSTS DAD 36335
2330 CHSROI DAD 52075
2340 CLEAR. DAD 35021
2350 CLREOL DAD 35535
2360 CNTRTR DAD 36002
2370 COMFLT DAD 32621
2380 COMMA$ DAD 70634
2390 COMMA. DAD 70756
2400 CONBIN DAD 3572
2410 CONCA. DAD 75~)5
2420 CONINT DAD 44321
2430 COPY. DAD 75360
2440 COSIO DAD 53556
2450 COTI0 DAD 53536
2460 CREAT. DAD 26561
2470 CRTBL+ DAD 36255
2480 CRTBLK DAD 36247
2490 CRTINT DAD 36177
2500 CRTPOF DAD 35703
2510 CRT PUP DAD 35716
2520 CRTUNW DAD 36067
2530 CRTWPO DAD 35661
2540 CSECI0 DAD 53503
2550 CURS DAD 35055
2560 CVNUM DAD 71135
2570 DATE. DAD 37673
2580 DECUR2 DAD 35547
2590 DEG. DAD 61736
2600 DEGI0 DAD 54142
2610 DIGIT DAD 12027
2620 DISP. DAD 70046
2630 DIV2 DAD 51641
2640 DMNDCR DAD 15060
2650 DNCUR. DAD 35306
2660 DNCURS DAD 35370

DESCRIPTION

!ABSOLUTE VALUE
!ADD TWO NUMBERS

HP-83/85 System Routines

!CHECK FOR ALPHA CHAR. & UPC IF SO
!FORCE CRT TO ALPHA MODE
!OPEN A BUFFER TO A DATA FILE
!DOES ATN2(Y,X)
!BEEP COMMAND
!BLANK A LINE ON CRT
!BPLOT
!SETS CRT BYTE ADDRESS TO R#
!SETS CRT BYTE ADDRESS TO R34
, CE I L FUNCTI ON
!DEMAND CRT NOT BUSY
!CHANGE SIGN OF A REAL OR INTEGER
!CLEAR A PAGE OF CRT ALPHA
!CLEAR TO END OF LINE
!COUNT CRT RETRACES
!COMPARE TWO NUMBERS
!PRINT A STRING FOLLOWED BY COMMA
!PRINT A NUMBER FOLLOWED BY A COMMA
!CONVERT A 16-BIT # TO A REAL #
!CONCATENATE TWO STRINGS
!CONVERT A REAL # TO A 16-BIT
!COPY CRT TO INTERNAL PRINTER
!COSINE FUNCTION
!COTANGENT FUNCTION
!CREATE A DATA FILE
!INITIALIZE PART OF CRT ALPHA
'INITIALIZE ALL OF CRT ALPHA
!INITIALIZE ALL OF ALPHA & GRAPHICS
!POWER DOWN CRT
!POWER UP CRT
!UNWIPE CRT
!WIPE-OUT CRT TO HIDE UGLY FLASH
!COSECANT FUNCTION
!SPIT OUT A CURSOR TO CRT
!FORMAT A REAL # TO ASCII FOR OUTPUT
!DATE FUNCTION
!ERASE CURSOR FROM CRT
!SET HP-85 TO DEGREE MODE
!RADIANS TO DEGREE CONVERSION
'CHECK FOR A DIGIT
'SET PRINT PTRS TO 'CRT IS' DEVICE
, D I V IDE TWO NUMBERS
'DEMAND EITHER A CARRIAGE RTN OR BANG (!)
!MOVE CURSOR DOWN ONE ROW ON CURRENT PAGE
!MOVE CURSOR DOWN ON ALL 4 PAGES

7-7

HP-83/85 System Routines

NAME

2670 DRAW.
2680 DFN12.
2690 EoJ2
2700 EPS10
2710 EQ.
2720 EQ$.
2730 ERROR
2740 ERF<oR+
2750 EXP5
2760 FETAV
2770 FETAVA
2780 FETST
2790 FETSV
2800 FETSVA
2810 FLIP.
2820 FoRMN+
2830 FP5
2840 G$N

ADDRESS

DAD 33015
DAD 5462
D?m 34772
DAD 54126
DAD 62173
DAD 3006
DAD 6615
DAD 6611
DAD 52377
DAD 44727
DAD 44734
DAD 45206
DAD 44535
DAD 44556
DAD 35011
DAD 71146
DAD 54071
DAD 14323

2850 G$N+NN DAD 14421
2860 G012N DAD 14465
2870 GOIN DAD 14504
2880 GOOR2N DAD 14522
2890 G12oR4 DAD 14550
2900 GIOR2N DAD 14537
2910 GCHAR DAD 11755
2920 GCLR. DAD 36013
2930 GEQ. DAD 62304
2940 GEQ$. DAD 3111
2950 GET$N? DAD 14560
2960 GET) DAD 13365
2970 GET1$ DAD 14455
2980 GETIN DAD 14337
2990 GET2N DAD 14407
3000 GET4N DAD 14414
3010 GETCMA DAD 13414
3020 GETCM? DAD 13425
3030 GETPA? DAD 14516
3040 GETPAR DAD 14342
3050 GRAD. DAD 61753
3060 GR. DAD 62255
3070 GR$. DAD 3036
3080 GRAPH. DAD 36147
3090 GRINIT DAD 36220
3100 HLFLIN DAD 35121
3110 HMCURS DAD 35527
3120 ICOS DAD 76552
3130 IDRAW. DAD 32752
3140 IMoVE. DAD 31675
3150 INCHR DAD 35244
3160 INCHR- DAD 35220
3170 INFIO DAD 53524
3180 INT5 DAD 53776
3190 INTDIV DAD 54005
3200 INTEGR DAD 11447
3210 INTMUL DAD 53076
3220 INToRL DAD 56343
3230 IP5 Df1D 54174
3235 ISIN DAD 76542
3240 ITAN DAD 76562
3250 LABEL. DAD 34044
3260 LDIR. DAD 34020

DESCRIPTION

!DRAW A LINE ON THE CRT
!DUMP A BUFFER TO CRT,PRINTER,OR I/O
!RESET R17 AND SVCWRD AFTER KEY IS HANDLED
!EPSILoN FUNCTION
!CHECK TWO #'S FOR EQUALITY
'CHECKS TWO STRINGS FOR EQUALITY
!REPoRT8 AN ERROR
'REPORTS ERROR ~ THROWS AWAY ONE RETURN
! EXPONENTIATE
'FETCH ARRAY VARIABLE
!FETCH ARRAY VARIABLE ADDRESS
!FETCH STRING VARIABLE
!FETCH SIMPLE NUMERIC VARIABLE
!FETCH SIMPLE VARIABLE ADDRESS
!FLIP KEYBOARD UPPERCASE/LOWERCASE
!FoRMAT NUMBER
'FRACTIONAL PART
!GET A STRING AND NUMBER
!GET A STRING AND NUMBER AND OPTIONS
!GET O,l,oR 2 NUMBERS
'GET 0 OR 1 NUMBERS
'GET 0 OR 2 NUMBERS
!GET 1,2 OR 4 NUMBERS
!GET 1 OR 2 NUMBERS
!GET THE NEXT CHAR TO R20
!GCLEAR
!CHECK TWO #'8 FOR)=

!CHECK STRINGS FOR)=

!GET STRING AND NUMBER?
!GET CLOSE PAREN
!GET ONE STRING
!GET 1 NUMBER
!GET 2 NUMBERS
'GET 4 NUMBERS
!DEMAND A COMMA
!CHECK FOR A COMMA
!GET PARAMETERS
!GET PARAMETERS
'SET COMPUTER TO GRAD TRIG MODE
!CHECK TWO NUMBERS FOR>
!CHECK TWO STRINGS FOR>
!FORCE CRT TO GRAPH MODE
!INITIALIZE THE GRAPHICS SCREEN
!DUMP A BUFFER TO THE CRT WITH NO CR
'SEND CURSOR TO HOME
'ARCCOSINE FUNCTION
!INCREMENTAL DRAW
!INCREMENTAL MOVE
!READ IN A CHARACTER FROM CRT
'READ CRT IF WPO GUARANTEED
! INFINITY
!INTEGER PART
!INTEGER DIVIDE
!GET AN INTEGER NUMBER
!MULTIPLY TWO 16-BIT BINARY NUMBERS
!CoNVERT A TAGGED INTEGER TO A REAL #
, T tHFnFR Pf1RT
! ARCSIN FUNCTION
!ARCTANGENT
'LABEL ON CRT GRAPHICS
'SET LABEL DIRECTION

7-8

/

/

NAME

3270 LEQ.
3280 LEQ$.
3290 LN5
3300 LoGT5
3310 L T.
3320 LT$.
3330 LTCUR.
3340 LTCURS
.3350 MAX10
3360 MIN10
:3370 MoD10
3380 MoVCRS
3390 MoVDN
3400 MOVE.
3410 MDVUP
3420 MPYRoI
34:':;0 NARRE+
3440 NARREF
3450 NUMCoN
3460 NUMVA+
3470 NUMVAL
3480 oFTIM.
:3490 oNEB
3500 oNEI
3510 oNER
3520 oNERoI
3530 ONTIM.
3540 oUTCHR
3550 oUTSTR
3560 P#ARAY
3570 PAPER.
3580 PEN.
3590 PENUP.
3600 Pl10
3610 PLOT.
3620 PoS.
3630 PRDVR1
3640 PRINT.
3650 PRLINE
3660 PRtH#$
3670 PRNT#.
3680 PRNHIN
3690 PURGE.
3700 PUSH1A
3710 PUSH:32
3720 PUSH45
3730 R#ARAY
3740 RAD.
3750 RAD10
3760 READ#$
:5770 READ#.
3780 READ#N
37'/0 REFNLlM
3800 RELMEI"I
3810 REM10
3820 RESMEM
~.8.~.() I..:I\ILJ 1 u
3840 RI\lD I Z .
3850 RoMJSB
:;';860 RDMFHN
:3870 RDLl 1 0

ADDRESS

DAD 62232
DAD 3100
DAD 51551
DAD 51720
DAD 62213
DAD 3057
DAD 35332
DAD 35366
DAD 55:364
DAD 55::';45
DAD 51744
DAD 35410
DAD 37324
DAD 317():3
DAD 37365
DAD 52722
DAD 13376
DAD 13402
DAD 13466
DAD 12407
DAD 12412
DAD 66211
DAD 56113
DAD 56154
DAD 56215
DAD 5625:3
DAD 66041
DAD 35114
DAD :55052
DAD 57642
DAD 76144
DAD 66416
DAD 66440
D?m 53577
DAD 32642
DAD 3435
DAD 75767
DAD 70067
DAD 70402
DAD 30577
DAD 30055
DAD 31022
DAD 26013
DAD 14244
DAD 14277
DAD 1.4266
DAD 7'7602
DAD 61746
DAD 5:3675
DAD 31335
DAD 30055
D?'iO 31167
DAD 17025
DAD 3753'+
DAD 51736
DAD 37442
J) () 0 :~i~: 1'1 4
DAD 55115
DAD 4776
DAD 4762
DAD 55163

HP-83/85 System Routines

DESCRIPTION

!CHECK TWO #'S FOR <=
'CHECK TWO STRINGS FOR <=
!NATURAL LOGARITHM
!LoG BASE TEN
'CHECK TWO #"S FOR <
!CHECK TWO STRINGS FOR <
!MOVE CURSOR LEFT ONE COLUMN ON CURRENT PAGE
!MoVE CURSOR LEFT ON ALL 4 PAGES
!MAXIMUM FUNCTION
!MINIMUM FUNCTION
! 1"1OD FUNCTION
'MOVE CURSOR
'MOVE MEMORY AND DECREMENT
!MoVE ON CRT
!MOVE MEMORY AND INCREMENT
!MLlLTIPLY TWO NUMBERS
'SCAN L PARSE ARRAY REF WITHOUT PARENS
'PARSE ARRAY REF WITHOUT PARENS
'GET A NUMERIC CONSTANT
'SCAN AND GET A NUMERIC VALUE
!GET A NUMERIC VALUE
!TURN A TIMER OFF
!GET 1 NUMBER OFF R12 AS 15-BIT SIGNED BINARY
'GET ONE NUMBER OFF R12 AS TAGGED INTEGER
'GET 1 NUMBER OFF R12 AS FLOATING POINT
!GET 1. NUMBER OFF R12 AS REAL DR INTEGER
!TURN ON A TIMER
'OUTPUT ONE CHAR TO CRT
!oUTPUT A STRING TO CRT
!PRINT AN ARRAY TO A DATA FILE
!ADVANCE INTERNAL PRINTER
'PEN STATEMENT
!PENUP
!PI FUNCTION
'PLOT TO CRT
'POS FUNCTION
'OUTPUT A STRING TO THE INTERNAL PRINTER
!SET UP PRINT PTRS TO 'PRINTER IS' DEVICE
!DUMP THE PRINT BUFFER
!PRINT A STRING TO A DATA FILE
'MOVE THE PRINT PTRS IN THE BUFFER
!PRINT A NUMBER TO A DATA FILE
!PURGE FILES
!PUSH A TOKEN
!PUSH TOKEN IN R14 & REGS R44-6 L SCAN
'PUSH TOKEN IN R14 & REGS R44-5 & SCAN
!READ AN ARRAY FROM A DATA FILE
'PUT COMPUTER IN RADIANS TRIG MODE
!DEGREES TO RADIANS CONVERSION
!READ A STRING FROM A DATA FILE
'MOVE THE READ PTR
'READ A NUMBER FROM A DATA FILE
!GET A VARIABLE REFERENCE
!RELEASE RESERVED MEMORY
!REMAINDEF<
!RESERVE MEMORY FOR TEMPORARY SCRATCH
'P(iNf)[)l'l NI JMflFR FIINLT I DN
!RANDoMIZE STATEMENT
'FOR CALLING BETWEEN BANK SELECTED ROMS
!GTo ROMRTN - RETURN WITH ROM 0 SELECTED
'HOUND

7-9

HP-83/85 System Routines

NAME

3875 RSMEM·­
:3880 RSUM#f<
3890 RSUM8f<
3900 RTCUR.
3910 RTCURS
3920 RTOIN
3930 SCALE.
3940 SCAN
3950 SCAN+
3960 SCRAT+
3970 SCRAT.
3980 SCF<DN
3990 SCRUP
4000 SEC10
4010 SEMIC$
4020 SEMIC.
40:30 SEQNo+
4040 SEG1No
4050 SET240
4060 SGN5
4070 SIN10
4080 SMLINT
4090 SQR5
4100 STBEEP
4110 SToST
4120 STOSV
41 :3'.0 STRCoN
4140 STREX+
4150 STREXP
4160 STHREF
4170 SUBRoI
4180 TAN10
4190 TIME.
4200 TRY1N
4210 TWOB
4220 TWOR
4230 TWoRoI
4240 UNEQ$.
4250 UNEQ.
4260 UNG1UOT
4270 UPC$.
4280 UPCUR.
4290 UPCURS
4300 VAL$.
4310 VAL.
4320 WAIT.
4330 XAXIS.
4340 YAXIS.
4350 YTX5
4360 ZROMEM
4370

ADDRESS

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
FIN

3745:3
37726
37722
35351
35404
44204
66247
11262
1.1257
4344
4437
35625
35654
5346:3
70643
70765
17454
17457
1124:3
53405
53546
1:5474
52442
7017
45603
45254
14036
136Z3
13626
13753
52127
53566
65517
14566
56176
56236
56266
3025
62202
14212
3373
35264
35362
3207
3250
65701
32303
32347
53242
44066

DESCRIPTION

!RESERVE TEMPORARY SCRATCHPAD MEMORY
'CHECf<SUM # OF BYTES
!CHECf<SUM AN 8f< ROM
!MoVE CURSOR RIGHT ON CURRENT PAGE
!MoVE CURSOR RIGHT ON ALL 4 PAGES
!CONVERT A REAL # TO A TAGGED INTEGER
!SCALE THE CRT GRAPHICS
!SCAN FOR PARSER
!GCHAf(AND SCAN
'SUBSET OF SCRAT. (SCRATCHES BASIC PGM • BPGM)
!SCRATCH (DOES SCRAT+ & RESETS SOME PTRS)
'SCROLL ALPHA DOWN
!SCROLL ALPHA CRT UP
'SECANT
'PRINT A STRING FOLLOWED BY SEMICOLON
'PRINT A NUMBER FOLLOWED BY A SEMICOLON
'PUSH THE INCOMING TOf<EN AND GET A LINE #
'GET A LINE NUMBER
!SET IMMEDIATE BREAf< BITS IN R17
, SIGN FUNCTI ON
'SINE
!PARSE AN INTEGER
!SQARE ROOT
!STANDARD BEEP (NO PARAMETERS)
!SToRE STRING
!STORE SIMPLE AND ARRAY VARIABLE
'PARSE A QUOTED STRING
'SCAN AND PARSE A STRING EXPRESSION
!PARSE A STRING EXPRESSION
'PARSE A STRING VARIABLE AS A STORE STRING
!SUBTRACT TWO NUMBERS
!TANGENT
, TI ME FUNCTI ON
'GETS 0 OR 1 NUMERIC VALUES
!GET TWO NUMBERS OFF R12 AS 15-BIT SIGNED #'S
!GET TWO NUMBERS OFF R12 AS REAL #'S
!GET TWO NUMBERS OFF R12 AS REAL OR INTEGER
!CHECf< TWO STRINGS FOR NOT EQUAL
!COMPARE TWO #'S FOR INEQUALITY
!PARSE AN UNQUOTED STRING
!UPPER CASE FUNCTION
!MOVE CURSOR UP ON CURRENT PAGE
'MOVE CURSOR UP ON ALL FOR PAGES
! VAL$ FUNCTION
!VAL FUNCTION
!WAIT X MILLISECONDS
!XAXIS STATEMENT
'YAXIS STATEMENT
! Y····X FUNCTION
!ZERo OR BLANf< A BLOCf< OF MEMORY

7-10

/

/

HP-83/85 System Routines

SYSTEM OPERATION AND ROUTINES
This section provides some specific details, register conventions, etc. for cer­

tain areas of HP-83/85 system operation. It also shows the input conditions

required and the outputs produced by selected system routines. The names and

addresses of most (but not all) of the system routines detailed here are also

available on the Global File tape cartridge and disc.

The areas of focus are:

--Parsing and parse routines

--Runtime and runtime routines

--General-purpose utility routines

--CRT control and routines

--Tape control routines

--Decompil ing

The system routines are arranged within their areas of primary

use. Simply because a routine is listed under a certain application, however,

does not limit its use to that area. For example, many utility routines may

also be used during runtime operations.

SYSTEM ROUTINE FORMAT

The format of the individual system routines is shown here:

Name: Name of the routine (from the global file).

Address: Permanent octal address of routine in computer memory.

~: Primary tasks for which routine will be used.

Function: Outlines the function of the routine.

Input Conditions: Shows the assumptions made by the routine (e.g., contents of

specific registers and condition of stack pointed to by CPU

register R12) when routine is called.

Output Conditions: Shuws re~ulLs, outputs, etc., as they are found in specific

registers and/or on the stack addressed by CPU register R12.

7-11

HP-83/85 System Routines

CPU Changes:

OCM:

E:

DRP:

ARP:

STATUS:

ROMJSB:

NOTE
In the descriptions of R12 stack contents, the
contents of the stack are shown as they occur
on the stack. The nomenclature R12~ indicates
the location of the stack pointer.

Darkened area indicates the CPU registers whose contents are
altered by execution of the routine.

Setting of decimal mode flag after routine is executed: B
indicates binary mode; 0 indicates decimal mode; - (dash)
indicates unchanged by routine; and U indicates undefined.

Contents of four-bit extend register after routine is exe­
cuted. Contents may be: Value (2-digit octal quantity);
- (dash) for unchanged by routine; or U for undefined.

Shows setting of data register pointer after routine is exe­
cuted. May be: CPU register number; - (dash) for unchanged
by routine; or U for undefined.

Shows setting of address register pointer after routine is
executed. May be: CPU register number; - (dash) for un­
changed by routine; or U for undefined.

Shows whether other CPU status flags are altered. May be:
- (dash) for unchanged; or U for undefined.

Indicates whether or not this routine, if called from an
external ROM, must be called through ROMJSB. May be: Y for
yes, must be called through ROMJSB; or N for no, need not be

called through ROMJSB.

7-12

)

\

HP-83/85 System Routines

PARSING AND PARSE ROUTINES

PARSE ROUTINE REGISTERS

In parsing, the HP-83/85 system uses the CPU registers shown here.

R10
R12
R14
R20
R40-R47

R40
R4l-R42

R43

R44-R46

R47

PARSING FLOW

Input buffer pointer.

Output stack pointer.

Next token. (Set by SCAN routine.)

Next non-blank character. (Set by GCHAR routine.)

Detailed scan output. (Set by SCAN.)

First character scanned.

ROM #. (If R42 = ~.)
or Bi nary program address. (If R42 f ~.)

or System ROM. (If R4l = R42 = ~.)

ROM token #. (If R14 = 370.)

or Binary program token #. (If R14 = 371.)

or Type. (If variable.)

or
or

Name. (If variable, R46 not used.)

Integer.

Secondary attributes for function.

Primary attributes.

PARSE ROUTINE REGISTER USAGE

Program flow in parsing is shown in the flowcharts on the next few pages. A

brief explanation follows the flowcharts.

7-13

HP-83/85 System Routines

J

N

N
I

PARSING A PROGRAM LINE

MAIN PARSE LOOP

)

7-14

\

SET ERRN AND
ERRL AND CLEAR

ERRORS

N

y

RESTORE
ORIGINAL ERROR

HP-83/85 System Routines

PARSING A CALCULATOR MODE STATEMENT

7-15

HP-83/85 System Routines

y

PROCESS @

OR!

PARSIT ROUTINE

7-16

IMPLIED
LETTOKEN

/

/

)

HP-83/85 System Routines

SCAN ROUTINE

7-17

HP-83/85 System Routines

°NOTE: BINTAB, 101233, CONTAINS BASE ADDRESS OF BINARY PROGRAM
AOMTAB. 101235. CONTAINS TABLE OF CURRENT EXTERNAL ADM NUMBERS

)

7-18

HP-83/85 System Routines

Main Parse Loop: In the main parse loop, if there is a line number, control
passes to P.PARS, for parsing a program statement. If the statement has no line
number, C.PARS parses a calculator mode statement.

Parsing a Program Line: P.PARS calls the PARSIT routine, then calls the EOL
(end-of-line) and LINEDR (line editor) routines.

Parsing a Calculator Mode Statement: C.PARS calls the PARSIT routine, then checks
for and processes any errors.

PARSIT Routine: The PARSIT routine calls another parse routine, SCAN.

SCAN Routine: The SCAN routine is always called in parsing. It is SCAN that
places the next token in R14.

The SCAN routine finds the next token, or the next character if a token match
cannot be found.

If the input is:

Digit
Period
Quotation mark symbol
Anything in tables
Alpha not in tables
Other not in tables
Blank

SCAN:

Places integer in R44 or floating-point on R12.
Places floating-point quantity on R12.
Returns token 42 in R14 and does not execute GCHAR.
Returns token.
Returns variable type.
Returns error token 17.
Skips the character.

SCAN FUNCTIONS

SCAN, in turn, calls the routine SALT.

SALT Routine: The SALT routine searches all ROM and binary program tables, one

character at a time, looking for a keyword match.

7-19

HP-83/85 System Routines

PARSING IN BINARY PROGRAMS AND ROMS

A binary program or ROM gains control at parsetime when the system matches a
keyword within that binary program or ROM. Once control is passed to the binary
program or ROM, there are certain responsibilities of the parse routine before
control is passed back to the calling location.

One responsibility is that SCAN must be called at entry to get the next token.
SCAN may be called in one of three ways:
--Calling SCAN.
--Calling NUMVA+ (which calls SCAN first).
--Calling STREX+ (which also calls SCAN first).

When parsing is completed, SCAN must also be performed before returning to the
system. However, most system parse routines (NUMVAL, STREXP, GETCMA, etc.) call
SCAN before returning, so it is usually done for the user.

Another responsibility is that if a binary program is intended to be resident in

an external ROM, the parse routines must ensure that ROM 0 is enabled when con­
trol is passed back to the system. This can be accomplished by executing GTO

ROMRTN.

PARSE ROUTINE EXAMPLES

Here are some examples of parse routines for different functions:

Statement With No Parameters: e.g., BLOOPER

BLOPRS LOB 42, = 371 Load binary program token marker.
PUBD 42, +12 Push it.
PUBD 42, +12 Push a garbage byte.
PUBD 43, +12 Push binary program token.
JSB = SCAN Do a scan.
RTN Return.

Statement With One Parameter: e.g., SLOOPER numeric or string value

SLOPRS PUBD 43, +6 Save binary program token.
JSB = NUMVA+ Do a scan and try to get numeric.

7-20

j

/

\ --

JEN GOTNUM

JSB = STREXP

JEN GOTNUM
POBD 57, -6
JSB = ERROR+

BYT 81D
GOTNUM POBD 57, -6

LDB 55, = 371

PUMD 55, +12

RTN

HP-83/85 System Routines

JIF found a numeric.

Try to get a string, then:

JIF found a string.

Clean up RTN stack.

Report error.

Bad expression.
Recover binary program token.

Load binary program token marker.

Push them.

Done.

Statement With More Than One Parameter (written for an external ROM): e.g.,

TROOPER numeric value, numeric value, string value

TROPRS PUBD 43, +6

JSB ROMJSB

} DEF NUMVA+

BYT 0
JEN NUMOK

ERR POBD 57, -6
JSB = ERROR
BYT 88D

RTN GTO ROMRTN

NU~10K JSB = ROMJSB }

DEF GETCMA

BYT 0

JSB = ROMJSB }
DEF NUMVAL

BYT 0
JEZ ERR

JSB = ROMJSB}
DEF = GETCMA

BYT 0
JSB = ROMJSB

OEF STREXP

} BYT 0
JEZ ERR

Save ROM token.

Do a scan and get a numeric.

JIF got one.

Clean up R6 stack.

Report error.
Bad statement.
Ensure ROM 0 is rese1ected.

Demand a comma.

Try to get another numeric.

JIF not there to error.

Demand another comma.

Get a string expression.

JIF not there.

7-21

HP-83/85 System Routines

POBO 57, -6
LOB 56, = MYROM#
LOB 55, = 37~

PUMO 55, +12
JMP RTN

MYROM# EQU 341

PARSE ROUTINES

Recover ROM token.
Load ROI~ number.
Load ROM token marker.
Push them all .
Re-select ROM ~.

System routines useful in parsing follow.

7-22

/

/

FUNCTION NAME ALFA
ADDRESS 11775

Determines if next SCAN character is an alphabetic one TYPE Parse

(i.e. , A-Z or a-z).
\

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0 R20
~

= Current character being scanned
0
z
0
U
t-
:J
Il.

~

(/) E set to 1 if: A <= R20 <= Z (upper case)
z
0 or
~
0 a <= R20 <= z (lower case).
z Otherwise E cleared to 0. 0
u If lower-case input, R20 is changed to
t-
:J
a.. upper-case for output; otherwise R20 is
t-
:J left unchanged. 0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 OCM E
10 11 12 13 14 15 16 17 B U R20 contents may be changed if lower-case. No other
20 21 22 23 24 25 26 27 registers are affected.
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U - E used as output flag.
50 51 52 53 54 55 56 57 STATUS Mode changed to binary.
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77 U

FUNCTION NAME DIGIT
ADDRESS 12027

Determines if next SCAN character is a digit (0-9; i . e. , TYPE Parse

ASCII 60-71) .

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
~ R20 = Current character being scanned
0
z
0
U
t-
:J
a..
~

(/)

z
0
~ E set to 1 if 608 <= R20 <= 71 8; other-
0
z
0 wise, E is cleared.
u
t-
:J
a..
t-
:J
0

CPU CHANGES COMMENTS I ROMJSB IN

0 1 2 3 4 5 6 7 OCM E

10 11 1] 1 J 14 15 Hi 17 - U Affects nothing but E-re~ister.
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
ORP ARP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77 -

7-23

FUNCTION NAME DMNDCR
ADDRESS 15060

Checks R14 for either the carriage return character (15) TYPE Parse
or an exclamation point (233). Generates error if neither
is found; returns if either is found.

J
REGISTER CONTENTS R 12 STACK CONTENTS

rJl
z
0
~ R14 Ci = Current token
z
0
U
I-
::J
Cl.

~

rJl
Z
0
~ R14 = Same current token Ci
z
0
U
I-
::J
Cl.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3' 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - This routine demands a carriage return or a remark after
20 21 22 23 24 25 26 27
30 31 '32 33 34 35 36 37 ORP ARP ali ne; if DMNDCR returns to the calling routine, a CR
40 41 42 43 44 45 46 47 U - or a ! is guaranteed.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME G$N
ADDRESS 14323

Parses one string followed by one number (e.g., BPLOT A$,l). TYPE Parse

REGISTER CONTENTS R 12 STACK CONTENTS

rJl
z
0
~ R14 Input token Ci =
z
0
U
I-
::J
Cl.

~

rJl
Z
0
E R14 = Next SCAN token String expression tokens 0
z Numeric value tokens 0
u Token from R14 I-
::J R12 -+ ------------------------Cl.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Calls STREX+ and GETPA-. (Similar to GETPAR.) 70]1 n]1]4 7~ 71i 77
30 31 32 33 34 35 36 37 LJHP AHP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-24

FUNCTION NAME G$N+NN
ADDRESS 14421

Parses one string followed by 1 or 2 numeric parameters TYPE Parse

(e. g. , CREATE A$, n [,m]).

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
;= R14 Input token 15 =
z
0
u
::>
a.
~

en
z
0
;= R14 = Next SCAN token String expression tokens
15
z 1 or 2 numeric value tokens
0
u Token from R14
....
::> R12 -+
a. ---------------------------
....
::>
0

CPU CHANGES COMMENTS I ROMJSB I y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Calls another routine which demands 1 or 2 numerics.
20 21 22 23 24 25 26 27 (R34 = 1 or 2.)
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME G012N
ADDRESS 14465

Gets 0, 1 or 2 numeri c parameters. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

en
z Normal parse input, i . e. : 0
;= R10 = Input buffer pointer Stack output pointer
15
z R14 = Next token
0
u R20 = N~xt character in input buffer
....
::>
a.
~

en
z Normal parse output, i.e. :
0
;= R14 = Next token Results of successful parse
15
z R40-47 = Current parse information R12 -+ ---------------------------
0
u
....
::>
a.
::>
0

CPU CHANGES COMMENTS I ROMJSBI Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - II Po rc:;es ~, 1 or 2 line numbers separated by 11,11 (I <=
1Tc) ~1 if" 23 '24 i5 26 27

30 31 32 33 34 35 36 37
ORP ARP 1 i ne number <= 9999). Calls SEQNO+ for line number.

40 41 42 43 44 45 46 47 14 12 Error 90 if line number outside specified range.
50 51 52 53 54 55 56 57 STATUS Error 91 if II II not followed by another line number.
60 61 62 63 64 65 66 67

,
70 71 72 73 74 75 76 77 U

7-25

FUNCTION NAME G~lN
ADDRESS 14504

Same as G~12N, except gets ~ or 1 numeri c parameters. TYPE Parse

)
REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~
Ci
z Normal parse input (see SCAN) 0
u
f-
::J
0..
~

en
z
0
~ Results of successful parse Ci
z R12 -+ ---------------------------0
U
f-
::J
0..
f-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U See G~12N. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 14 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME G~OR2N
ADDRESS 14522

Same as G~12N, except gets 0 or 2 numeric parameters. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~
Ci
z Normal parse input (See SCAN) 0
u
f-
::J
0..
~

en
z
0
~ Results of successful parse Ci
z R12 -+ ---------------------------0
U
f-
::J
0..
f-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U Error 91 if only one pa rameter. Calls NLMVA+ to get 20 21 22 23 24 25 26 27 -
--_. _."" '32 JJ [J11f' AnP numeric vdlue. 30 31 34 35 36 37
40 41 42 43 44 45 46 47 34 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-26

FUNCTION NAME G120R4
ADDRESS 14550

Same as G012N except gets 1,2 or 4 numeric parameters. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
~
Ci
z R14 SCAN token 0 =
U
to-
=> n.
~

Vl R14 Next SCAN token z =
0

R20 Next character (Set by SCAN) ~ =
Ci R34 = Number of parameters found (Error Numeric value tokens
z
0 exit if i 1, 2 or 4) Token from R14
u
to- R35 = 0 R12 -+
=> --------------------
n.
to- R40 = Set by SCAN
=>
0

CPU CHANGES COMMENTS I ROMJSB I y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U
20 2\ 22 23 24 25 26 27 - Ca 11 s GETPA?

ORP ARP
30 31 32 33 34 35 36 37 Ei~ if parameters found.
40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME Gl0R2N
ADDRESS 14537

Same as G012N, except gets 1 or 2 numeric parameters. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
~ R14 Ci = Current token
z
0
U
to-
=> n.
~

Vl
Z
0
~ R14 = New current token Numeric value tokens
Ci
z Token from R14
0
u R12 -+ --------------------
to-
=> n.
to-
=>
0

CPU CHANGES COMMENTS I ROMJSBj t

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Calls GETPA?
20 21 22 13 24 2[' 26 27 Aborts through I:.I<IWR + (91) if error in finding pllram-
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 - eters. Aborts through another routine if too many
50 51 52 53 54 55 56 57 STATUS pa rameters.
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-27

FUNCTION NAME GCHAR
ADDRESS 11755

Fetches next character (usually from input buffer) addressed TYPE Parse
by R10 pointer. GCHAR skips blanks, and it increments R10
unless the character is a carriage return.

REGISTER CONTENTS R12 STACK CONTENTS

CIl
z
0
i= R10 = Pointer to character Ci
z
0
U
I-
~
a..
~

CIl
z R10 = Pointer to following character 0
i= (unless present character was a Ci
z carriage return) 0
u R20 = Character popped from R10 I-
~
a..
I-
~
0

CPU CHANGES COMMENTS lROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Performs SAD at entry, PAD at exit. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 7" 75 76 77 -

FUNCTION NAME GET$N?
ADDRESS 14560

Demands one string; also gets one numeric if present. Used TYPE Parse
to parse a statement with one string, and that may have one
numeric parameter. Generates error if no stri ng found.

REGISTER CONTENTS R12 STACK CONTENTS

CIl
z
0
i=
Ci

(See SCAN) z Normal parse inputs 0
u
I-
~
a..
~

CIl
Z
0
i= Parse results Ci
z R12 -+ -------------0
U
I-
~
a..
I-
~
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 '" 15 16 17 - - Parses: _s..!T.i_n.9._e_xp_r_e_s_s_i.D_n or str~expression, fol-20 ~ 1 77]] 24 75 26 n
30 31 32 33 34 35 36 37 OAP ARP lowed by 1 or 2 line numbers.
40 41 42 43 44 45 46 47 14 - Possible errors: 90 if line number out of range. 91 if
50 51 52 53 54 55 56 57 STATUS , not followed by another line number. 60 61 62 63 64 65 66 67
70 71 72 73 7" 75 76 77 -

7-28

FUNCTION NAME GET)
ADDRESS 13365

Looks for the symbol) in R14 (usually following a call to TYPE Parse
SCAN) . If) is found, calls SCAN and clears E; otherwise,
aborts through ERROR+ with error 800.

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i= R14 = Current input buffer symbol c
z
0
u
~
::::l
Q.

~

(/)

z
0
i= R14 = New current symbol, if successful c
z
0
u
~
::::l
Q.
~
::::l
0

CPU CHANGES COMMENTS I ROMJSB I V

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Expects E cleared (r-l) at entry.
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP At exit, E signals whether) was found:
40 41 42 43 44 45 46 47 - - E=E+1 means) was found.
50 51 52 53 54 55 56 57 STATUS E=~ means) was not found.
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME GET1$
ADDRESS 14455

Demands a string expression and processes it. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i= R10 = Pointer to input stream R12 ~ Output stack
c
z R14 = Current token
0
u
~
::::l
Q.

~

(/)

z
0
i= R14 = Next token c
z R40-47 = Set by SCAN
0
u
~
::::l
Q.
~
::::l
0

CPU CHANGES COMMENTS I ROMJSB I V

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 Ca 115 STRFX+.
~7 - -

20 21 22 23 24 25 2S
30 31 32 33 34 35 36 37 ORP ARP Returns an error if no string is found.
40 41 42 43 44 45 46 47 14 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-29

FUNCTION NAME GETlN
ADDRESS 14437

Gets one numeric parameter, and pushes onto R12 the TYPE Parse
corresponding numeric value token and the token in R14.

J
REGISTER CONTENTS R 12 STACK CONTENTS

CIl
z
0
1=

R14 SCAN token Ci = z
0
U
I-
::J
CL.

~

CIl R14 = Next SCAN token z
0 R20 = Next character (Set by SCAN) Numeric value tokens
1=
Ci R34 = Number of parameters found (Error Token from R14
z if"ll) R12 -+ 0 --------------------u R35 1 (Set by GETPAR) I- =
::J

R40 Set by SCAN CL. = I-
::J
0

cpu CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Sets R35 = 1, then calls GETPAR. E"l0 if found. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME GET2N
ADDRESS 14407

Gets two numeric parameters, and pushes onto R12 the TYPE Parse
corresponding numeric value tokens and the token in R14.

REGISTER CONTENTS R 12 STACK CONTENTS

CIl
z
0
1= R14 = Current SCAN token Ci
z
0
U
I-
::J
CL.

~

CIl R14 = Next SCAN token z
0 R20 = Next character (Set by SCAN) Numeric value tokens 1=
Ci R34 = Numer of parameters found (Gener- Token from R14 z
0 ates error if "I 2) R12 -+ --------------------U
I- R35 ::J = 2
CL. R40 = Set by SCAN I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U
~o 71 n 71 74 7!i 76 n

AHP EI0 if found. UHf' 30 31 32 33 34 35 36 37 GET2N jumps to GETPAR. 40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-30

FUNCTION NAME GET4N
ADDRESS 14414

Gets four numeric parameters and pushes onto R12 the TYPE Parse

corresponding numeric value tokens and the token in R14.

\,

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
t= R14 Current SCAN token Ci =
z
0
U
I-
:J
Cl.

~

Ul R14 Next SCAN token z =
0 R20 Next character (Set by SCAN) Numeric value tokens
t= =
Ci R34 = Number of parameters found (Gener- Token from R14
z
0 ates error if ; 4) R12 ~
u --------------------
I- R35 :J = 4
Cl. R40 Set by SCAN I- = :J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U
20 21 22 23 24 25 26 27 E;0 if found.
30 31 32 33 34 35 36 37 ORP ARP GET4N jumps to GETPAR.
40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 -75 76 77

FUNCTION NAME GETCMA
ADDRESS 13414

Demands a comma as the next SCAN token. Sets E;0 if found; TYPE Parse

otherwise, returns an error.

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z
0
t= R14 = SCAN token Ci
z R40 = Set by SCAN
0
u
I-
:J
Cl.

~

Ul
Z
0
t= R14 = Next token
Ci
z R40 = Set by SCAN
0
u
I-
:J
Cl.
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 ~ - 1/ E;~ if comma is found.
20 21 ii ij i4 it, 26 1I

30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-31

FUNCTION NAME GETCM?
ADDRESS 13425

Checks for a comma. Sets Ef0 if found. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~

R14 SCAN token 0 = z R40 Set by SCAN 0 =
U
I-
::>
a.
~

en
z
0
~ R14 Next token, if SCAN token was a 0 =
z comma 0
u R40 Set by SCAN I- =
::>
a.
I-
::>
0

CPU CHANGES COMMENTS TROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U
20 21 22 23 24 25 26 27 Ef0 if comma found.
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME GETPA?
ADDRESS 14516

Gets an arbitrary number of numeric parameters. (Same as TYPE Parse
GETPAR except R35 is set to zero.)

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~ R14 Input token 0 =
z R35 = 0 (Then GET PAR is called) 0
u
I-
::>
a.
~

en
z
0
~ R14 = Next SCAN token Numeric value tokens 0
z R34 = Number of numeric parameters found Token from R14 0
u R12 + --------------------I-
::>
a. .
I-
::>
0

CPU CHANGES COMMENTS TROMJSBI Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Same as GETPAR with R35 O. Calls NUMVA+. = 70]1 n 71 74 75 76 n
30 31 32 33 34 35 36 37 DHP AHP

40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-32

FUNCTION NAME GETPAR

GETPAR gets numeric parameters as it can. If at ADDRESS 14342
as many TYPE Parse

entry R35 = ~, any number is acceptable. If R35 ., 0, the

number fetched must equal that in R35. GET PAR pushes the input token.

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0 R14 = Input token
t=
6 R35 = 0 (Any number of parameters)
z
0 or
u R35 ., ~ (R35 = Number of parameters)
I-
:>
Q.

:?;

(/)

z
0 R34 = Number of parameters found. Numeric value tokens
t=
6 If R35 ., ~, then R34 = R35; otherwise, Token from R14
z
0 an error is returned. R12 -+
u

I-
:>
Q.
I-
:>
0

CPU CHANGES COMMENTS I ROMJSBJ y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U
20 21 22 23 24 25 26 27 Calls NUMVA+.
3D 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 41 34 -
50 51 52 53 54 55 56 51 STATUS
60 61 62 63 64 65 66 61
70 71 72 13 14 15 76 71 -

FUNCTION NAME INTEGR

Tri es to get an integer of up to 1410 digits from input ADDRESS 11447
TYPE Parse

buffer. Used in applications such as sequence numbers, where

it is desired to ignore decimal points and exponents.

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
t= R10 Input buffer pointer (Next
6 =
z character) 0
u R20 = Current character from buffer
I-
:>
Q.

:?;

(/)

z R10 = Next character in buffer after
0
t= number 6
z R20 = First non-digit character
0
u R36 = Exponent of integer in R40
I-
:> R40 = Digits of number found
Q.
I-
:>
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 1] 11 14 15 16 17 0 U No SCAN is necessary before INTEGR is called.
20 21 22 23 24 25 26 27 E=~ if no number found, E=l if found.
30 31 32 33 34 35 36 31

ORP ARP

40 41 42 43 44 45 46 41 22 U On return, R40 contains right-justified number if R36 =
50 51 52 53 54 55 56 57 STATUS 15C; otherwise R40 contains integer with exponent of
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 71 U R36-15C.

7-33

FUNCTION
NAME NARRE+
ADDRESS 13376

Same as NARREF, except that it performs a SCAN first. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
Ci
z
0
U
I-
::l
a..
~

Vl
Z
0
i= R14 = Next token 2 (Fetch array token) Ci
z R40-47 = As per SCAN outputs R44 } 0 Name u R45 I-
::l R12 -+ a.. ---------------------I-
::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 1 OCM E

10 11 12 13 14 15 16 11 - 1
20 21 22 23 24 25 26 21 Ca 11 s SCAN at both entry and exit.
30 31 32 33 34 35 36 31 ORP ARP

40 41 42 43 44 45 46 41 14 36
50 51 52 53 54 55 56 51 STATUS
60 61 62 63 64 65 66 61

U 10 11 12 13 14 15 16 11

FUNCTION NAME NARREF
ADDRESS 13402

Parses a simple numeric variable
reference (i.e., MATA=0).

reference as an array TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i= R14 Current token (Should be a 1) Ci =
z

R12 -+ ---------------------0
U
I-
::l
a..
~

Vl
Z
0
i= R14 = Next token 2 (Fetch array token) Ci
z R40-47 = As per SCAN outputs R44 } 0 Name u R45 I-
::l R12 -+ ---------------------a..
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB IV
0 1 2 3 4 5 6 1 OCM E

10 11 12 13 14 15 16 11 1 Co 11 5 SCAN heforp rpturni ng. 20 J 1 -n JJ J4 J~ Jb 11
30 31 32 33 34 35 36 31

ORP ARP

40 41 42 43 44 45 46 47 14 36
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
10 11 12 13 14 15 16 11 lJ

7-34

FUNCTION NAME NUr~CON

ADDRESS 13466

Pushes integer or floating point number onto the R12 stack TYPE Parse

and calls SCAN.
\

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z (4 if 0 R14 = Token from SCAN floating
E point, 32 if integer) 0
z R40 Set by SCAN 0 =
U
I-
:l
IL.

~

(/)

z
R14 Next token from SCAN Integer or floating point number

0 =
~
B R40 = Set by SCAN R12 + --------------------------------
z
0
U
I-
:l
IL.
I-
:l
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 - U Must SCAN before calling this routine.
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
ORP ARP Routine SCANs before exit.

40 41 42 43 44 45 46 47 - - At exit, Ef0 if number found.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77 -
FUNCTION NAME NUMVA+

ADDRESS 12407

Same as SCAN routine followed by NUMVAL routine. TYPE Parse

REGISTER CONTENTS R12STACKCONTENTS

(/)

z
0
~
B
z
0
U
I-
:l
IL.

~

(/)

z
0
E
0
z
0
U
I-
:l
ll-
l-
:l
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 I 2 3 4 5 6 7 OCM E

10 II 1] 11 14 1~ 16 17 See NUMVI\L for condition~ and chan~es.
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
ORP ARP

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

7-35

FUNCTION NAME NUMVAL
ADDRESS 12412

Pushes a numeric value onto the R12 stack and ca 11 s SCAN. TYPE Parse
Sets Er0 if numeric found; otherwise sets E=0 and restores
input buffer.

REGISTER CONTENTS R 12 STACK CONTENTS

C/l
z
0
~ R14 SCAN token cs =
z R40 Set by SCAN 0 =
U
I-
::>
Il.
~

C/l
z

R14 Next SCAN token 0 =
~ R20 Set by SCAN cs =
z R40 = Next character (Set by SCAN) 0
u
I-
::>
Il.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Er0 if numeric found. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP Calls SCAN at exit.
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME PUSH1A
ADDRESS 14244

Pushes the token in R14 onto the R12 stack and calls SCAN. TYPE Parse

REGISTER CONTENTS R 12 STACK CONTENTS

C/l
z
0
E R14 = Token a
z
a
u
I-
::>
Il.

~

C/l
Z
0
~ R14 = Next token (Set by SCAN) CS
z R20 = Next character (Set by SCAN) 0
u R40 = Set by SCAN
I-
::>
Il.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 1 Ca 11 s SCAN before exit. n]1]4]~]fi -]()]1 n Sets [=1. 30 31 32 33 34 35 36 37 OHP AHP

40 41 42 43 44 45 46 47 14 36
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-36

FUNCTION NAME PUSH32
ADDRESS 14277

Pushes an integer onto the R12 stack (at parse time). TYPE Parse

\

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i=

(Integer token) 15 R14 = 32 z
0 R44-46 = BCD integer
u
I-
:J
Il-
~

(/)

z
0
i=

R14 = Next token 32 (Integer token)
15
z R40-47 = Set by SCAN BCD integer value from R44-46
0
u R12 -+
I-

:J
ll-
l-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - 1 Sets E=l.
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP Ca 11 s SCAN at exit.
4!L 41 42 43 44 45 4(i 47 14 36
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME PUSH45
ADDRESS 14266

Pushes the token in R14 onto the R12 stack; then pushes the TYPE Parse

variable name in R44-45 onto the stack and calls SCAN.

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i= R14 = Token 15
z R44-45 = Variable name 0
u
I-
:J
Il-

~

(/)

z
0
i= R14 = Next token (Set by SCAN)
15
z R20 = Next character (Set by SCAN)
0
u R40 = Set by SCAN
I-
:J
ll-
l-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 1 ~ 13 14 15 16 17 - 1 Jumps to another rOllti np , whi ch calls SCAN.
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37 ORP ARP Sets E=l.
40 41 42 43 44 45 46 47 14 36
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-37

FUNCTION NAME REFNUM
ADDRESS 17025

Parses a simple numeric variable or a numeric array TYPE Parse
reference.

)

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=

R14 1 if simple numeric variable Ci =
z reference. 0
u 2 if array reference. t- =
:::J
11. Otherwise, exit.
~

Vl
Z
0
i= R14 Next SCAN token 21 22 Ci =
z Variable name OR Array name 0
u Parsed subscript t-
:::J
11.
t-
:::J
0

CPU CHANGES COMMENTS LROMJSB I y
0 1 2 3 4 5 6 7 oeM E

10 11 12 13 14 15 16 17 - U
20 21 22 23 24 25 26 27 E=0 at entry.

OAP AAP
30 31 32 33 34 35 36 37 Er0 at exit (if found).
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME SCAN
ADDRESS 11262

Scans the input buffer and returns the next token. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z R10 = Input buffer pointer 0
i= R20 Ci = Next character in input buffer R12 = Output stack pointer
z
0
U
t-
:::J
11.

~

Vl R10 = Input buffer pointer
z R14 = Next token 0
i= R20 = Next character R12 = Output stack pointer
Ci
z R40 = First character searched 0
u R41-42 = ROM#, binary program address, or 0 t-
:::J R43 = ROM token or variable type 11.
t- R44-46 = Name of var. or int., or sec. att. :::J
0 R47 - Class

CPU CHANGES COMMENTS I ROMJSBil

0 1 2 3 4 5 6 7 oeM E
10 11 12 13 14 15 16 17 0 F=0 ilt pxit. -20 11 22 2J 24 2[, 26 27
30 31 32 33 34 35 36 37 OAP AAP

40 41 42 43 44 45 46 47 14 36
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-38

FUNCTION NAME SCAN+
ADDRESS 11257

Gets next character (through GCHAR) and executes SCAN. TYPE Parse

\

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
f=
0
z
0
U
I-
:J
(l.

~

en
z
0
f=
0
z
0
U
I-
:J
(l.
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 See SCAN for conditions and changes.
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37 DRP ARP

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

FUNCTION NAME SEQNO+
ADDRESS 17454

Pushes current token onto R12 stack and looks for valid TYPE Parse

sequence (line) number. Pushes line number if found.

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
f= R14 = Current token 0
z
0
U
I-
::>
(l.

~

en
z
0 Current token
f= R14 = New current token
0 Sequence number (2-byte integer.
z
0 Present only if found.)
u
I- R12 + ---------------------------------
:J
ll-
l-
::>
0

CPU CHANGES COMMENTS
I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E
Expects E cleared (,-1)

10 11 17 11 14 Hi 11i 17 - U
at entry.

20 21 22 23 24 25 26 27 Ca 11 s SEQNO (wh i ch ca I I s SCAN) to get dn in Leger'.
ORP ARP

30 31 32 33 34 35 36 37 Generates error if sequence number = 0, or if number> 9999.
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS Sets E=E+ 1 if sequence number found; sets E=0 if number

60 61 62 63 64 65 66 67 not found.
70 71 72 73 74 75 76 77 -

7-39

FUNCTION
NAME SEQNO
ADDRESS 17457

Scans for sequence (line) number, and pushes the number TYPE Parse
onto the R12 stack.

REGISTER CONTENTS R 12 STACK CONTENTS

Vl
z
0
i=
15
z
0
u
~
:::l
a..
~

Vl
Z
0 If no sequence number found: If sequence number found: i=
15 R14 = New current token R12 stack = Sequence number (2-byte z
0 integer) u
~
:::l
a..
~
:::l
0

CPU CHANGES COMMENTS lROMJSBI y
0 1 2 3 4 5 6 7 OCM E Expects E cleared (,-1) at entry. 10 11 12 13 14 15 16 17 - U

20 21 22 23 24 25 26 27 Calls SEQNO (which calls SCAN) to get an integer.
30 31 32 33 34 35 36 37 ORP ARP

Generates an error if sequence number = 0, or if sequence
40 41 42 43 44 45 46 47 - -

num~ef > 9999. 50 51 52 53 54 55 56 57 STATUS Sets = +1 if sequence number found; sets E=0 if no sequence 60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 - number found.

FUNCTION NAME SMLINT
ADDRESS 13474

Pushes an integer (R44-46) at parse time if R14 contains TYPE Parse
integer token (32).

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i= R14 = Current token 15
z
0
u
~
:::l
a..
~

Vl If R14 = 32 at entry: If R14 = 32 at entry: z
0 R14 = Next token E=l and stack contents are: i=
15 R40-47 = Set by SCAN 32 (Integer token) z
0 Otherwise, registers unchanged R44-46 Value u
~
:::l R12 -7 ---------------------
a.. Otherwise, R12 unchanged and E=0 ~
:::l
0

CPU CHANGES COMMENTS LROMJSBll
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U Ci'lll s SCAN i'lt pxit. -70 71 n 71 74 7'i 76 77
30 31 32 33 34 35 36 37 DHP AAP If R14132 at entry, then at exit E=0, DRP=14, and
40 41 42 43 44 45 46 47 U U nothing else is changed.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-40

FUNCTION NAME STRCON
ADDRESS 14036

Pushes a quoted string onto the R12 stack, then calls SCAN. TYPE Parse

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i= R14 Token (r~ust be quote) Ci =
z R40 Set by SCAN 0 =
U
t-
:J
[L

~

(/)

z
0 5
i=
Ci Number of bytes in string
z R14 Next SCAN token 0 = String
u R40 Set by SCAN t- = R12 -+
:J

[L
t-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U Must SCAN before entry to this routine. Routine SCANs
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37 ORP ARP before exit.
40 41 42 43 44 45 46 47 U U Er0 if quoted string found.
50 51 52 53 54 55 56 57 STATUS
60 fl1 62 63 64 65 66 67 U
70 71 72 73 74 75 76 77

FUNCTION NAME STREX+
ADDRESS 13623

Same as SCAN followed by STREXP. TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i=
Ci
z
0
U
t-
:J
[L

~

(/)

z
0
i=
Ci
z
0
U
t-
:J
[L
t-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17

20 21 22 23 24 2!> 26 21 See STREXP for conditions and changes.
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

7-41

FUNCTION NAME STREXP
ADDRESS 13626

Pushes a stri ng expression onto the R12 stack. Et0 if found. TYPE Parse

/
REGISTER CONTENTS R12 STACK CONTENTS

(f)
z
0
i=

R14 Ci = SCAN token z R40 Set by SCAN 0 =
U
I-
::>
Q..

~

(f)

z
0
i= R14 Next SCAN token Ci = z R40 Set by SCAN 0 =
U
I-
::>
Q..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17
U Must SCAN before calling this routine. The routi ne 20 21 22 23 24 25 26 27 -

30 31 32 33 34 35 36 37 ORP ARP SCANs before exit.
40 41 42 43 44 45 46 47 - - Et0 if string expresion is found.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME STRREF
ADDRESS 13753

Pushes a string variable or a substring reference onto the TYPE Parse
R12 stack, then ca 11 s SCAN.

REGISTER CONTENTS R 12 STACK CONTENTS

(f)

z
0
i= R14 = SCAN token Ci
z R40 = Set by SCAN 0
u
I-
::>
Q..

~

(f)
z
0
i= R14 = Next SCAN token Ci
z R40 = Set by SCAN 0
u
I-
::>
0-
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U Must SCAN before calling this routine. This routi ne n -20 21 23 24 25 26 27 ,,--- UHf' Anr SCANs betol'e exi t. 30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47 - - Et0 if found.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-42

FUNCTION NAME TRY1N
ADDRESS 14566

Gets o or 1 numeric parameter and pushes token from R14 TYPE Parse
onto R12 stack.

REGISTER CONTENTS R12 STACK CONTENTS

(J1

z
0
i=

R14 Input token 15 = z
0
U
I-
:J
CL.

~

(J1
z

R14 Next SCAN token o or 1 numeri c value tokens 0 =
i= R34 o or 1 (2 or more produces error) Token from R14 15 =
z R12 -+ 0 ---------------------------
U
I-
:J
CL.
I-
:J
0

CPU CHANGES COMMENTS I ROMJSBI Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U
20 21 22 23 24 25 26 27 Calls GETPA?, then demands R34 < 2.
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME UNQUOT
ADDRESS 14212

Pushes an unquoted string onto the R12 stack, then calls TYPE Parse
SCAN. Er0 if unquoted string found.

REGISTER CONTENTS R12 STACK CONTENTS

(J1

z
0
i= R20 = First character of string 15
z
0
U
I-
:J
CL.

~

(J1

z
0
i= R14 = Next SCAN token 15
z R40 0 = Set by SCAN
u
I-
:J
CL.
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U
i6 - ct0 if found. i 1 2i ij i4 i!> 26 21

ORP ARP
30 31 32 33 34 35 36 37 This routine calls SCAN before exit.
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

7-43

HP-83/85 System Routines

RUNTIME AND RUNTIME ROUTINES

RUNTIME CONVENTIONS

System routines used at runtime include primarily mathematics routines and system
functions. In general, math routines always expect BCD mode at entry. System
functions expect the argument(s) on the R12 stack when the routine is called, and
leave the result on the R12 stack when completed.

CPU registers used during runtime include, but are by no means limited to, the
ones shown here.

RUNTIME ROUTINES

Register

R12
R16
R17

Runtime Use

Operating stack pointer.
Contains CSTAT.
Contains XCm·1.

System routines useful at runtime follow.

7-44

FUNCTION
NAME ABS5
ADDRESS 53731

Returns the absolute value of the argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z

Argument (8 bytes) 0
i=
6 R12 -+ ------------------z
0
U
I-
::J
Cl.

~

Ul
Z
0
i= Absolute value (8 bytes) 6
z R12 -+ ------------------------0
U
I-
::J
Cl.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I
NAME AOOROI
ADDRESS 52150

Adds two numbers (X+V) . TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z X-value (8 bytes) 0
i= V-value (8 bytes) 6
z R12 -+ -----------------0
U
I-
::J
Cl.

~

Ul
Z
0
i= R40 = Copy of result X+V value (8 bytes) 6
z
0 R12 -+ -------------------
U
I-
::J
Cl.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSBl N
0 1 2 3 4 5 6 7 OCM E

10 11 11 11 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-45

FUNCTION
NAME ATN2.
ADDRESS 76455

Returns arctangent of YjX (i.e., ATN2) in proper quadrant. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
V-value (8 bytes) 0

i= X-value (8 bytes) 15
z R12 + -----------------0
U
I-
~
c..
~

en
z
0
i= ATN2 value (8 bytes) 15
z R12 + --------------------0
U
I-
~
c..
I-
~
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION I NAME BEEP.
ADDRESS 6737

Executes the BEEP statement. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z Parameter #1 (8 bytes) (optional) 0
i= Parameter #2 (8 bytes) (optional) 15
z
0 R12 + ----------------------
U
I-
~
c..
~

en
z
0
i= • R12 + ----------------------15
z
0
U
I-
~
c..
I-
~
0

CPU CHANGES COMMENTS I ROMJSB-' N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U If no raramptfrs are on stack at entry (i.e., TOS ~ R12),]0 71 n 71 74 25 26 27
30 31 32 33 34 35 36 37 ORP ARP a standard beep is executed.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-46

FUNCTION NAME CEIL10
ADDRESS 53615

Returns the smallest integer> = x. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

(J)

z
0
;::

X-value (8 bytes) C5
z R12 -+ 0 -----------------
U
I-
::>
0..
~

(J)

z
0
;:: R40 = Copy of CEIL result CEIL result (8 bytes) C5
z R12 -+ ---------------------0
U
I-
::>
0..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME CHSROI
ADDRESS 52075

Changes the sign of a number. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

(J)

z
0 Number (8 bytes) ;::
C5 R12 -+ ----------------z
0
U
I-
::>
0..

~

(J)

z
0
E
0 -Number (8 bytes) z
0 R12 -+ u -----------------
I-
::>
0..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D 1I
20 21 22 23 24 25 26 27

Requires BCD mode at entry. 30 31 32 33 34 35 36 37
ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-47

FUNCTION
NAME COMMA$
ADDRESS 70634

Prints a string to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT A$, in BASIC.)

REGISTER CONTENTS R12 STACK CONTENTS

CJl
z

Length of string (2 bytes) 0
~

Address of string (2 bytes) 0
z R12 -+ ---------------------------0
u
~
:J
Q..

~

CJl
Z
0
~
0
z

R12 -+ ---------------------------0
u
~
:J
Q..
~
:J
0

CPU CHANGES COMMENTS I ROMJSB-. V
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U DISP. or PRINT. must be called prior to calling 20 21 22 23 24 25 26 27
ARP

30 31 32 33 34 35 36 37 ORP
COMMA$ to set up the select code and buffer pointers.

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME COMMA.
ADDRESS 70756

Prints a number to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT 5, in BASIC.)

REGISTER CONTENTS R12 STACK CONTENTS

CJl
z Number (8 bytes) 0
~ R12 -+ ----------------0
z
0
u
~
:J
Q..

~

CJl
Z
0
t: R12 -+ ----------------0
z
0
u
~
:J
Q..
~
:J
0

CPU CHANGES COMMENTS I ROMJSBTV
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U DISP. or PRINT. must be called prior to calling COMMA. 10 11 n 13 2" 26 26 27
ARP to set up select code and buffer pointers. 30 31 32 33 34 35 36 37

ORP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-48

FUNCTION NAME CONCA.
ADDRESS 75005

Concatenates two strings. TYPE Runtime

\

REGISTER CONTENTS R 12 STACK CONTENTS

C/)

z A$ length (2 bytes) 0
;:::: A$ address (2 bytes) 15
z B$ length (2 bytes) 0
u B$ address (2 bytes) ~
::J R12 -+ --------------------Q..

~

C/)

z
0
;:::: A$ and B$ length 15
z A$ and B$ address 0
u R12 -+ -----------------~
::J
Q..
~
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

OAP AAP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME COSHlj
ADDRESS 53556

Returns cosine of argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

C/)

z
0
;:::: Argument (real or integer #) 15
z
0 R12 -+ ----------------------------
u
~
::J
Q..

~

C/)

z
0
E
Cl R40 Copy of result Answer (real #) z =
0
u R12 -+ ---------------~
::J
Q..
~
::J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 17 13 14 15 16 17 D U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 OAP AAP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-49

FUNCTION
NAME COTl,0
ADDRESS 53536

Returns the cotangent of the argument. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

(/)
z
0
i= Argument (8 bytes) Ci
z R12 + ------------------0
U
f-
:;j
a..
!!:

(/)

z
0
i=
Ci

R40 Copy of cotangent result (8 bytes) z = Cotangent 0
u R12 + -------------------f-
:;j
a..
f-
:;j

0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME CSEC1,0
ADDRESS 53503

Returns cosecant of argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i= Argument (8 bytes) Ci
z R12 + ------------------0
U
f-
:;j
a..
~

(/)

z
0
i= R40 Ci = Copy of cosecant result Cosecant (8 bytes)
z
0 R12 + ------------------
U
f-
:;j
a..
f-
:;j

0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
10 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

j

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-50

FUNCTION NAME DATE.
ADDRESS 37673

Returns current date. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
i=
0
z
0
u
....
::J
ll.
~

en
z
0
i=
0
z Date (8 bytes) 0
u R12 -+ --------------....
::J
ll.
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -20 25 26 27 21 22 23 24
30 31 32 33 34 35 36 37 ORP ARP

4 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME DEFA+.
ADDRESS 61505

Turns defau1 ts on. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
i=
0
z
0
u
....
::J
ll.
~

en
z
0
i=
0
z
0
u
....
::J
ll.
::J
0

CPU CHANGES COMMENTS -, ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17
\- - -20 21 22 23 24 25 26 27 ARP

30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 36 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-51

FUNCTION NAME DEFA-
ADDRESS 61513

Turns defaults off. TYPE Runtime

)

REGISTER CONTENTS R12 STACK CONTENTS

<f)
z
0
i=
0
z
0
U
I-
:::l
Q..

~

<f)

z
0
i=
0
z
0
U
I-
:::l
Q..
I-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 36 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME DEG.
ADDRESS 61736

Sets computer to degrees mode for trogonometric operations. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTI:NTS

<f)

z
0
i=
0
z
0
U
I-
:::l
Q..

~

<f)

z
0
i=
0
z
0
U
I-
:::l
Q..
I-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -70]1 17 71 74 7fi 7fl n
AHP

30 31 32 33 34 35 36 37 DHP
/

40 41 42 43 44 45 46 47 36 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-52

FUNCTION NAME DEG1~
ADDRESS 54142

Converts angle in radians to degrees. TYPE Runtime

\

REGISTER CONTENTS R 12 STACK CONTENTS

If)

z
0
i= Angle in radians (8 bytes) 6
z R12 -+ 0 --------------------------
U
to-
::J
0..
~

If)

z
0
i=
6
z R40 = Copy of result Angle in degrees (8 bytes) 0
u R12 -+ --------------------------to-
::J
0..
to-
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70- 71 72 73 74 75 76 77

FUNCTION NAME DISP.
ADDRESS 70046

Sets SCTEMP and PRINT pointers to CRT IS device. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

If)

z
0
i=
6
z
0
U
to-
::J
0..
~

If)
z
0
i=
6
z
0
U
to-
::J
0..
to-
::J
0

CPU CHANGES COMMENTS I ROMJSB I V
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -
20 21 22 23 24 25 iii -i'1

ARP
30 31 32 33 34 35 36 37

ORP

40 41 42 43 44 45 46 47 40 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-53

FUNCTION
NAME DIV2
ADDRESS 51641

Di vi des V into X. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
t: X-value (8 bytes) a
z V-va 1 ue (8 bytes) 0
u R12 -+ I- -----------------:J
0..
~

Vl
Z
0
~ R40 = Copy of resul t X/V value (8 bytes) 0
z R12 -+ -------------------0
U
I-
:J
0..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME EPS10
ADDRESS 54126

Returns the smallest positive number (lE-499) the computer TYPE Runtime
is capable of handling.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
~
0
z
0
U
I-
:J
0..

~

Vl
Z
0
~
0

R40 Copy of smallest number Smallest number (8 bytes) z = 0
u R12 -+ -------------------------I-
:J
0..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D lJ
20 2 , n 2J 24 2~ 26 27

32 33 34 35 36 37 ORP ARP
30 31

/

40 41 42 43 44 45 46 47 50 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-54

FUNCTION NAME DIV10
ADDRESS 51644

Divides two real numbers. TYPE Runtime --
\

REGISTER CONTENTS R12 STACK CONTENTS

VI
z
0
i= R50 = Real #A (Numerator) is
z R40 = Real #B (Denominator) 0
u
I-
~
Il-
~

VI
Z
0
i=
is
z
0

(Copy) (A/B) u R40-47 = Real rounded resul t Real rounded result I-
~ R12 -+ -------------------------ll-
l-
~
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U Not listed in global fi le. Same as DIV2, except DIV2 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP expects two real or integer numbers on the R12 stack.
40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME
ADDRESS

TYPE

REGISTER CONTENTS R12 STACK CONTENTS

VI
z
0
i=
is
z
0
U
I-
~
Il-

~

VI
Z
0
i=
is
z
0
U
I-
~
ll-
l-
~
0

CPU CHANGES COMMENTS I ROMJSB I
0 1 2 3 4 5 6 7 OCM E

10 11 12 1] 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-55

FUNCTION
NAME EQ.
ADDRESS 62173

Compares two numbers for equality. (#1 = #2.) TYPE Runtime

J
REGISTER CONTENTS R12 STACK CONTENTS

en
z

#1 Value (8 bytes) 0
t=
3 #2 Value (8 bytes) z R12 -+ 0 ------------------
U
I-
::l
n.
~

en
z
0
t= True/false value (8 bytes) 3
z R12 -+ --------------------------0
U
I-
::l
n.
I-
::l
0

CPU CHANGES COMMENTS l ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME EQ$.
ADDRESS 3006

Compares two strings for equality. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z String 1 length (2 bytes) 0
t= String 1 address (2 bytes) 3
z String 2 length (2 bytes) 0
u String 2 address (2 bytes) I-
::l R12 -+ --------------------------n.
~

en
z
0
t= True/false value (8 bytes) 3
z R12 -+ --------------------------0
U
I-
::l
n.
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
]0]I 22 13 H 15 16 27
30 31 32 33 34 35 36 37

ORP ARP
)

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-56

FUNCTION NAME ERROR
ADDRESS 6615

Sets ERRORS, ERRN, ERRL and error flag in R17. TYPE Runtime

\

REGISTER CONTENTS R12 STACK CONTENTS

VI
z
0
t=
0
z
0
U
I-
::l
Il-
~

VI
Z
0
t=
0
z
0
U
I-
::l
ll-
l-
::l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 1 OCM E

10 11 12 13 14 15 16 11 - U ERROR must be called with the following code: 20 21 22 23 24 25 26 21
30 31 32 33 34 35 36 31 ORP ARP JSB=ERROR Call to ERROR.
40 41 42 43 44 45 46 41 U U BYT Error number.
50 51 52 53 54 55 56 51 --STATUS
60 61 62 63 64 65 66 61
10 11 72 13 14 15 16 11 U

FUNCTION I NAME ERROR+
ADDRESS 6611

Sets ERRORS, ERRN, ERRL and error bit in R17, then pops one TYPE Runtime
return address off of R6 before returning.

REGISTER CONTENTS R12 STACK CONTENTS

VI
z
0
t=
0
z
0
U
I-
::l
Il-
~

VI
Z
0
t=
0
z
0
U
I-
::l
ll-
l-
::l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 1 OCM E

10 11 1] 11 14 15 16 17 - U
20 21 22 23 24 25 26 21 tRRUR+ must be called with the following code: ORP ARP
30 31 32 33 34 35 36 31 JSB=ERROR+ Call to ERROR+.
40 41 42 43 44 45 46 41 U U BYT Error number. 50 51 52 53 54 55 56 51 STATUS --
50 61 62 63 64 65 66 61

U 10 11 72 13 14 15 16 11

7-57

FUNCTION I NAME EXP5
X

ADDRESS 52377
Returns e . TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

VI
z

(8 bytes) 0 X-value
i=
15 R12 -+ -----------------z
0
U
I-
::l
0...

~

VI
Z
0
i= X result (8 bytes) 15 e
z R12 -+ 0 -------------------
U
I-
::l
0...
I-
::l
0

CPU CHANGES COMMENTS LROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME FP5
ADDRESS 54071

Returns the fractional portion of the argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

VI
z
0
i= Argument (8 bytes) 15
z R12 -+ ------------------0
U
I-
::l
0...

~

VI
Z
0
i= R40 = Copy of result Result (8 bytes) 15
z R12 -+ ----------------0
U
I-
::l
0...
I-
::l
0

CPU CHANGES COMMENTS I ROMJSBIN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
70 71 n 7J 74 15 16 n
30 31 32 33 34 35 36 37

ORP ARP
/

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-58

FUNCTION NAME GEQ.
ADDRESS 62304

Compares two numbers for the condition: #1 >= #2. TYPE Runtime

\

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=

#1 value (8 bytes) Ci
z #2 value (8 bytes) 0
u R12 + I- ------------------:::>
n.
~

Vl
Z
0
i= True/false value (8 bytes) Ci
z R12 + --------------------------0
U
I-
:::>
n.
I-
:::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME GEQ$.
ADDRESS 3111

Compa res two strings for the condition: string 1 >= TYPE Runtime
string 2.

REGISTER CONTENTS R 12 STACK CONTENTS

Vl
z String 1 length (2 bytes) 0
i= String 1 address (2 bytes) Ci
z String 2 length (2 bytes) 0
u String 2 address (2 bytes) I-
:::> R12 + --------------------------n.
~

Vl
Z
0
i= True/false value (8 bytes) Ci
z R12 + --------------------------0
U
I-
:::>
n.
I-
:::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D
20 21 22 23 24 25 26 21
30 31 32 33 34 35 36 37 DRP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-59

FUNCTION NAME GRAD.
ADDRESS 61753

Sets computer to grads mode for trigonometric operations. TYPE Runtime

)

REGISTER CONTENTS R 12 STACK CONTENTS

Vl
z
0
i=
C
z
0
u
~
::l
Cl.

~

Vl
Z
0
i=
C
z
0
u
~
::l
Cl.
~
::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 - -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 36 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME GR.
ADDRESS 62255

Compares two numbers for the condition: #1 > #2. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z #1 value (8 bytes) 0
i= #2 value (8 bytes) c
z R12 + ------------------0
u
~
::l
Cl.

~

Vl
Z
0
i= True/false value (8 bytes) c
z R12 + --------------------------0
u
~
::l
Cl.
~
::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U
20 21 22 23 24 2& 26 n
30 31 32 33 34 35 36 37 ORP ARP

/

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-60

FUNCTION NAME GR$.
ADDRESS 3036

Compares two strings for the condition: string 1 > TYPE Runtime

stri ng 2.

REGISTER CONTENTS R 12 STACK CONTENTS

en
z length (2 bytes)
0 String 1
i=
i5

String 1 address (2 bytes)
z String 2 length (2 bytes)
0
u String 2 address (2 bytes)
I-
::> R12 + c.. --------------------------
~

en
z
0
i= True/false value (8 bytes)
i5
z R12 +
0

U
I-
::>
c..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME lCOS
ADDRESS 76552

Returns inverse consine (arccosine) of argument. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

en
z
0
i= Argument (8 bytes)
i5
z R12 + ------------------
0
U
I-
::>
c..
~

en
z
0
i= Arc cosine (8 bytes)
i5
z R12 + --------------------
0
U
I-
::>
c..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I V

0 1 2 J 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-61

FUNCTION NAME INF10
ADDRESS 53524

Returns largest number (9.99999999999E499) that can be TYPE Runtime
handled by the computer.

/

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i=

R12 + --------------------15
z
0
u
~
::;)
a.
~

(/)

z
0 R40 Copy of largest number 9.99999999999E499 (8 bytes) i= =
15 R12 + z ---------------------------
0
u
~
::;)
a.
~
::;)

0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 0 6
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME INT5
ADDRESS 53776

Returns the FLOOR of X. (Largest integer < = X.) TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z X-value (8 bytes) 0
i= R12 + 15 -----------------
z
0
u
~
::;)
a.
~

(/)
z
0
i= R40 = Copy of resu1 t Result (8 bytes) 0
z
0 R12 + ----------------
u
~
::;)
a.
~
::;)

0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U ,0 ,1]I 13 24 ,5 26 17
30 31 32 33 34 35 36 37 LJHP AHP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-62

FUNCTION NAME INTDIV
ADDRESS 54005

Performs integer division: divides two numbers and returns TYPE Runtime
an integer result.

REGISTER CONTENTS R12 STACK CONTENTS

(/)
z #A (8 bytes) 0
;:: #B (8 bytes) Ci
z R12 -+ ------------0
U
I-
:l
0..
~

(/)
z
0
;::
Ci
z A\B resul t (8 bytes) 0
u R12 -+ --------------------I-
:l
0..
I-
:l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U 12
so 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME IP5
ADDRESS 54174

Returns integer portion of the argument. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z Argument (8 bytes) 0
;:: R12 -+ ------------------Ci
z
0
U
I-
:l
0..

~

(/)

z
0
;:: R40 = Copy of result Result (8 bytes) Ci
z R12 -+ ----------------0
U
I-
:l
0..
I-
:l
0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 ff f-~- 25 27 24 26
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-63

FUNCTION NAME ISIN
ADDRESS 76542

Returns inverse sine (arcsine) of argument. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

en
z

(8 bytes) 0 Argument
~
Ci R12 + ------------------z
0
U
I-
:::>
Q.

~

en
z
0
~ Arcsine (8 bytes) Ci
z R12 + 0 -----------------
U
I-
:::>
Q.
I-
:::>
0

CPU CHANGES COMMENTS LROMJSBI Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME ITAN
ADDRESS 76562

Returns inverse tangent (arctangent) of argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z Argument (8 bytes) 0
~ R12 + Ci ------------------
z
0
U
I-
:::>
Q.

~

en
z
0
~ Arctangent result (8 bytes) Ci
z R12 + ---------------------------0
U
I-
:::>
Q.
I-
:::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 tJ
10 11 n 23 24 2& 26 27
30 31 32 33 34 35 36 37 ORP ARP

/

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-64

FUNCTION NAME LEQ.
ADDRESS 62232

Compares two numbers for the condition: #1 <= #2. TYPE Runtime

\

REGISTER CONTENTS R12 STACK CONTENTS

en
z

(8 bytes) a #1 Value i=
15 #2 Value (8 bytes)
z R12 -+ a ------------------u
I-
:J
D.
~

en
z
a
i= True/false value (8 bytes) 15
z R12 -+ a --------------------------u
I-
:J
D.
I-
:J a

CPU CHANGES COMMENTS I ROMJSBI Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
.50 51 52 53 54 55 56 57 STATUS

60 61 62 63 64 65 66 ~7
70 71 72 73 74 75 76 77 U

FUNCTION NAME LEQ$.
ADDRESS 3100

Compares one string to a second string for the case: TYPE Runtime
string 1 <= string 2.

REGISTER CONTENTS R12 STACK CONTENTS

en
z String 1 length (2 bytes) a
i= String 1 address (2 bytes) 15
z String 2 length (2 bytes) a
u String 2 address (2 bytes) I-
:J R12 -+ --------------------------D.
~

en
z
a
i=
15 True/false value (8 bytes) z
a R12 -+ --------------------------U
I-
:J
D.
I-
:J
a

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D IJ
20 21 i2 23 24 25 26 21
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-65

FUNCTION
NAME LN5
ADDRESS 51551

Returns LN (X) . TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
i= X-value (8 bytes) 0
z R12 + 0 -----------------
U
I-
::;)
Q..

~

en
z
0
i= R40 = Copy of resu1 t LN(X) result (8 bytes) 0
z R12 + ----------------------0
U
I-
::;)
Q..
I-
::;)

0

CPU CHANGES COMMENTS I ROMJSB I N
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 D U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME LOGT5
ADDRESS 51720

Returns LOG10 (X) TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z X-value (8 bytes) 0
i= R12 + -----------------0
z
0
U
I-
::;)
Q..

~

en
z
0
i= R40 = Copy of resu1 t LOG10 (X) result (8 bytes) 0
z
0 R12 + --------------------------U
I-
::;)
Q..
I-
::;)

0

CPU CHANGES COMMENTS l ROMJSB I N
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 BCD U
70 71 n 7J]4]5 26 27
30 31 32 33 34 35 36 37 OAP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-66

FUNCTION NAME LT.
ADDRESS 62213

Compares two numbers for the case: #1 < #2. TYPE Runtime ,-

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0 #1 Value (8 bytes)
i=
0 #2 Value (8 bytes)
z
0 R12 -+ ------------------
u
~
::>
n.
i!:

en
z
0
i= True/false value (8 bytes)
0
z R12 -+
0

u
~
::>
n.
~
::>
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U
70 71 72 73 74 75 76 77

FUNCTION NAME LT$.
ADDRESS 3057

Compares two strings for the condition: string 1 < TYPE Runtime

string 2.

REGISTER CONTENTS R 12 STACK CONTENTS

en
z String 1 length (2 bytes)
0
i= String 1 address (2 bytes)
0
z String 2 length (2 bytes)
0
u String 2 address (2 bytes)
~
::> R12 -+
n. --------------------------
i!:

en
z
0
i=
0 True/false value (8 bytes)
z
0 R12 -+
u --------------------------
~
::>
n.
~
::>
0

CPU CHANGES COMMENTS
I ROMJSBI N

0 I 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-67

FUNCTION NAME MAX1",
ADDRESS 55364

Returns the larger of two values. TYPE Runtime

I

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~ Value #1 (8 bytes) Ci
z Value #2 (8 bytes) 0
u R12 -+ I- ------------------
::J
0..
~

en
z
0
~ La rger value (8 bytes) Ci
z
0 R12 -+ ----------------------
U
I-
::J
0..
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 DCM E

10 11 12 13 14 15 16 17 D U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 DRP ARP

40 41 42 43 44 45 46 4 U 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME MOD1",
ADDRESS 51744

Returns the remainder (modulo) of division. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z A-value (8 bytes) 0
~ B-value (8 bytes) Ci
z R12 -+ -----------------0
U
I-
::J
0..

~

en
z
0
~ A MOD B result (8 bytes) Ci
z R12 -+ ------------------------0
U
I-
::J
0..
I-
::J
0

CPU CHANGES COMMENTS I ROMJSBIN

0 1 2 3 4 5 6 7 OCM E
10 11 12 13 14 15 16 17 D U
70 71 n]J 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-68

FUNCTION NAME MINH~
ADDRESS 55345

Returns the smaller of two values. TYPE Runtime

\

REGISTER CONTENTS R 12 STACK CONTENTS

en
z
0
~

Va 1 ue #1 (8 bytes) is
z Value #2 (8 bytes) 0
u R12 -+ I- ------------------:J
CL

~

en
z
0
~
is
z Smaller value (8 bytes) 0
u R12 -+ I- -----------------------
:J
CL
I-
:J
0

CPU CHANGES COMMENTS I ROMJSBl~
0 1 2 3 4 5 6 7 oeM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME
ADDRESS

TYPE

REGISTER CONTENTS R 12 STACK CONTENTS

en
z
0
~
is
z
0
U
I-
:J
CL

~

en
z
0
~
Ci
z
0
U
I-
:J
CL
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I
0 1 2 3 4 5 6 7 oeM E

10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 i7
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-69

FUNCTION NAME MPY1~
ADDRESS 52562

Multiplies two real -- numbers. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z
0
i= R40 = #A (Real) 15
z R50 = #B (Real) 0
u
to-
::l
Il.
~

Ul
Z
0
i=
15

result (A*B) z R40 = Copy of resul t Real 0
u R12 + -----------------to-
::l
Il.
to-
::l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U Not in global fi le. Same as MPYROI, except MPYROI 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP expects two real or integer numbers on the R12 stack
40 41 42 43 44 45 46 47 U U at entry.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME
ADDRESS

TYPE

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
i=
15
z
0
U
to-
::l
Il.
~

Ul
Z
0
i=
15
z
0
U
to-
::l
Il.
to-
::l
0

CPU CHANGES COMMENTS I ROMJSBI
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17
10 21 n 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-70

FUNCTION NAME MPVROI
ADDRESS 52722

Multiplies two numbers. TYPE Runtime

\

REGISTER CONTENTS R12 STACK CONTENTS

en
z

(8 bytes) 0 X-value
i=
Ci V-value (8 bytes)
z R12 + 0 -----------------
U
I-
:>
Il.
~

en
z
0
i= R40 = Copy of result X * V result (8 bytes) Ci
z R12 + 0 ----------------------
U
I-
:>
Il.
I-
:>
0

CPU CHANGES COMMENTS I ROMJSBJ N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME OFTIM.
ADDRESS 66211

Turns off one of the system timers. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
i= Timer number (8 bytes) Ci
z R12 + ----------------------0
U
I-
:>
Il.
~

en
z
0
i=
Ci
z R12 + ----------------------0
U
I-
:>
Il.
I-
:>
0

CPU CHANGES COMMENTS I ROMJSB I V
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 n U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 55 46
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-71

FUNCTION
NAME PI1~
ADDRESS 53577

Pushes value of pi onto R12 stack as a real number. TYPE Runtime

)

REGISTER CONTENTS R12 STA"CK CONTENTS

(J)

z
0
1=
0
Z R12 + ---------------------
0
U
to-
=> a..
~

(J)

z
0
1= R4a Copy of pi (as real number) Pi (as real number) 0 =
z R12 + 0 -------------------
U
to-
=> a..
f-
=>
0

CPU CHANGES COMMENTS • ROMJSB. N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Pi = 31 , 41C, 59C, 26C, 53C, 59C, a, a (BCD) 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 OAP AAP

(octal) Pi = 61 , 1 al , 131, 46, 123, 131, a, a 40 41 42 43 44 45 46 47 4a 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME pas.
ADDRESS 3435

Finds the character position in string A of the first TYPE Runtime
occurrence of string B.

REGISTER CONTENTS R12 STACK CONTENTS

(J)

z Length of string A (2 bytes) 0
1= Address of string A (2 bytes) 0
z Length of string B (2 bytes) 0
u Address of string B (2 bytes) f-
=> R12 + -----------------------------a..
~

(J)

z
0
1= Position (8 bytes) 0
z R12 + ------------------0
U
f-
=> a..
f-
=>
0

CPU CHANGES COMMENTS l ROMJSB .·N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
70 71 n 73 24 25 26 27
30 31 32 33 34 35 36 37 ORP AAP

/

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-72

FUNCTION I NAME PRINT.
ADDRESS 70067

Sets SCTEMP and PRINT pointers to PRINTER IS device. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
i=
0
z
0
u
~
;j
CL

~

Ul
Z
0
i=
0
z
0
u
~
;j
CL
~
;j

0

CPU CHANGES COMMENTS I ROMJSB I V

0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 - -
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
ORP ARP

40 41 42 43 44 45 46 47 40 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U
70 71 72 73 74 75 76 77

FUNCTION NAME PRUNE
ADDRESS 70402

Dumps either the print buffer or the display buffer. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z
0
i=
0
z
0
u
~
;j
CL

~

Ul
Z
0
i=
0
z
0
u
~
;j
CL
~
;j

0

CPU CHANGES COMMENTS I ROMJSB I V

0 I 2 3 4 5 6 7 OCM E

10 II 1] 13 14 15 16 17 U U
DISP. or PRINT. must be called to set up select code

20 21 22 23 24 25 26 27 and buffer pointers betore cal ling PRLINE.
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77 U

7-73

FUNCTION NAME PRNT#$
ADDRESS 30577

Pri nts a string to a tape buffer. TYPE Runtime

J
REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
i= R44-45 Length of string Ci = z R46-47 Address of string 0 = u ...
::l
Cl.

~

Ul
Z
0
i=
Ci
z
0
u ...
::l
Cl. ...
::l
0

CPU CHANGES COMMENTS I ROMJSB I y
0 1 2 3 4 5 6 1 OCM E

10 11 12 13 14 15 16 11 BIN U Before calling PRNT#$ a buffer must have been assigned
20 21 22 23 24 25 26 21
30 31 32 33 34 35 36 31 ORP ARP and PRINT#. called.
40 41 42 43 44 45 46 41 U U
50 51 52 53 54 55 56 51 STATUS
60 61 62 63 64 65 66 61

U 10 11 12 13 14 15 16 11

FUNCTION NAME PRNT#N
ADDRESS 31022

Prints a number to a tape buffer. TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z
0
i= R40 = Number to be printed Ci
z
0
u ...
::l
Cl.

~

Ul
Z
0
i=
Ci
z
0
u ...
::l
Cl. ...
::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 1 OCM E

10 11 12 13 14 15 16 11 U U Before calling PRNT#N, a buffer must have been assigned 20 21 22 23 24 25 26 n
30 31 32 33 34 35 36 31

UHP AiH' and PRINI#. ca lied.
40 41 42 43 44 45 46 41 U U
50 51 52 53 54 55 56 51 STATUS
60 61 62 63 64 65 66 61

U 10 11 12 13 14 15 16 11

7-74

FUNCTION NAME RAD.
ADDRESS 61746

Sets the computer to radians mode for trigonometric TYPE Runtime
operations.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
15
z
0
U
f-
:::l
(l.

~

Vl
Z
0
i=
15
z
0
U
f-
:::l
(l.
f-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 36 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME RAD10
ADDRESS 53675

Converts angle in degrees to radians. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z Angle in degrees (8 bytes) 0
i= R12 + --------------------------15
z
0
U
f-
:::l
(l.

~

Vl
Z
0
i= Angle in radians (8 bytes) 15
z R12 + --------------------------0
U
f-
:::l
(l.
f-
:::l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 2!> 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-75

FUNCTION NAME READ#$
ADDRESS 31335

Reads a string from the tape buffer and stores it in a TYPE Runtime
variable area.

j
REGISTER CONTENTS R12 STACK CONTENTS

<Il
z Pointer to string variable area 0
i= (2 bytes)
0
z Maximum storage length (2 bytes)
0
u Pointer to 1st character of stor-
I- (2 bytes) ::l age Il.
~ R12 + ---------------------------------

<Il
Z
0
i=
0
z
0

R12 + ---------------------------------U
I-
::l
Il.
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB J Y
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U A buffer must have been assigned and READ#. called
20 21 22 23 24 25 26 27 before READ#$ is called. 30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION I NAME READ#N
ADDRESS 31167

Reads a number from the tape buffer and stores it in a TYPE Runtime
variable area.

REGISTER CONTENTS R12 STACK CONTENTS

<Il
Z See stack requi rements for STOSV 0
i=
0
z
0
U
I-
::l
Il.
~

<Il
Z
0
i=
0

R12 + --------------------------
Z
0
U
I-
::l
Il.
I-
::l
0

CPU CHANGES COMMENTS I ROMJSBl'L
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U
W 11 n 13 24 15 26 27
30 31 32 33 34 35 36 37

OAP AHP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-76

FUNCTION NAME REM10
ADDRESS 51736

Returns the rema i n de r (A , B) = A-B (I P(A/B)) . TYPE Runtime

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z A-value (8 bytes)
0
t= B-value (8 bytes)
5
z R12 "*
0

u
~

=>
0..

~

Ul
Z
0
t=
5
z Remainder (8 bytes)
0
u R12 "* -------------------
~

=>
0..
~

=>
0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U
20 21 22 23 24 25 26 27
JO 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U
70 71 72 73 74 75 76 77

FUNCTION NAME RND10
ADDRESS 53144

Returns a pseudo-random number between 0 and 1. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
t=
is
z R12 "* -------------------------0
u
~

=>
0..

~

Ul
Z
0
t=
is (8 bytes) z R40 = Copy of number Random number
0
u R12 "* -----------------------
~

=>
0..
~

=>
0

CPU CHANGES COMMENTS I ROMJSB IN

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 lJ
20 21 22 23 24 2!> 26 21
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-77

FUNCTION NAME RNDIZ.
ADDRESS 55115

Executes the RANDOMIZE statement. TYPE Runtime

)

REGISTER CONTENTS R 12 STACK CONTENTS

Vl
z
0 RANDOMIZE value (8 bytes) ~
is R12 + -------------------------z
0
U
I-
:>
Il.
~

Vl
Z
0
~
is
z
0
U
I-
:>
Il.
I-
:>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U RANDOMIZE value is optional.
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME SCRAT.
ADDRESS 4437

Executes a SCRATCH. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
E:
0
z
0
U
I-
:>
Il.

~

Vl
Z
0
~
is
z
0
U
I-
:>
Il.
I-
:>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U SCRAT. sets the immediate break bits (5 and 7) in R17.
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 UHI' ArW

40 41 42 43 44 45 46 47 46 36
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-78

FUNCTION NAME SEC10
ADDRESS 53463

Returns secant of argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z
0
i=

Argument (8 bytes) 0
z
0 R12 + ------------------
U
I--
:J
!l.
~

rJl
Z
0
i= R40 Copy of secant result Secant result (8 bytes) 0 =
z R12 + 0 -----------------------
U
I--
:J
!l.
I--
:J
0

CPU CHANGES COMMENTS LROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME SEMIC.
ADDRESS 70765

Prints a number to the display buffer or print buffer. TYPE Runtime
(Same as PRINT 5, in BASIC.)

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z
0 Number (8 bytes) i=
0 R12 + ----------------z
0
U
I--
:J
!l.
~

rJl
Z
0
i=
0 R12 + ----------------Z
0
U
I--
:J
!l.
I--
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U \I DISP. or PRINT. mu~t be rHllerl to set up select code
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP and buffer pointers before SEMIC. is called.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-79

FUNCTION I NAME SEMIC$
ADDRESS 70643

Prints a string to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT A$; in BASIC.)

)

REGISTER CONTENTS R12 STACK CONTENTS

(J)

z
0 Length of string (8 bytes) f=
0 Address of string (8 bytes) z
0 R12 + ---------------------------
U
I-
:::>
a..
~

(J)

z
0
f=
0
z

R12 + ---------------------------0
U
I-
:::>
a..
I-
:::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U DISP. OR PRINT. must be called to set up select code 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP and buffer pointers before SEMIC$ is called.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME SGN5
ADDRESS 53405

SGN function: returns -1 if x<0, 0 if x=0, and TYPE Runtime
+1 if x>0.

REGISTER CONTENTS R12 STACK CONTENTS

(J)

z
0
f= X-value (8 bytes) 0
z R12 + -----------------0
U
I-
:::>
a..
~

(J)

z
0
f= R40 = Copy of SGN value SGN value (8 bytes) 0
z R12 + -------------------0
U
I-
:::>
a..
I-
:::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U]0]I n]3 24 25 76]7

30 31 32 33 34 35 36 37 ORP ARP

4 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-80

FUNCTION NAME SIN1~
ADDRESS 53546

Returns the sine of the argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~

(real or integer #) 0 Argument z
0 R12 + ----------------------------U
I-
:J
0..
~

en
z
0
~
c
z R40 Copy of sine resul t Sine result (real #) 0 = u R12 + I- --------------------:J
0..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME SQR5
ADDRESS 52442

Returns the square root of the argument. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

en
z Argument (8 bytes) 0
~ R12 + 0 ------------------
z
0
U
I-
:J
0..
~

en
z
0
~ Square root (8 bytes) 0
z
0 R12 + ---------------------
U
I-
:J
0..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 [) \J
20 21 22 23 24 2!> 26 21
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-81

FUNCTION
NAME STBEEP
ADDRESS 7017

Executes standard BEEP. (BEEP with no parameters.) TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

C/l
z
0
i=
is
z
0
U
I-
:::I
0..
~

C/l
Z
0
i=
is
z
0
U
I-
:::I
0..
I-
:::I
0

CPU CHANGES COMMENTS LROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 OAP AAP

40 41 42 43 44 45 46 47 31 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME SUBROI
ADDRESS 52127

Subtracts V from X. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

C/l
z
0
i= X-value (8 bytes) is
z V-value (8 bytes) 0
u R12 + I- -----------------
:::I
0..

~

C/l
Z
0
i= R40 = Copy of result X-V result (8 bytes) is
z R12 + --------------------0
U
I-
:::I
0..
I-
:::I
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U
](l 71 n]] 2~ 25 26]7

30 31 32 33 34 35 36 37 OAP AAP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-82

FUNCTION NAME SUB10
ADDRESS 52137

Subtracts two real numbers. TYPE Runtime --

\

REGISTER CONTENTS R 12 STACK CONTENTS

(/)
z
0
i= R50 Real #A 0 =
z R40 = Real #B 0
u
I-
::>
n.
~

(/)
z
0
i=
0
z R40 = Real result (Copy) Real resul t (A-B) 0
u R12 -+ -----------------I-
::>
n.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 D U Not listed in global fi le. Same as SUBROI, except
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP SUBROI expects real or integer numbers on the R12
40 41 42 43 44 45 46 47 U U stack at entry.
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME

ADDRESS

TYPE

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i=
0
z
0
U
I-
::>
n.
~

(/)

z
0
i=
0
z
0
U
I-
::>
n.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-83

FUNCTION
NAME TAN10
ADDRESS 53566

Returns the tangent of the argument. TYPE Runtime

)
REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
~

Argument (real or integer #) Ci
z
0 R12 + ----------------------------U
to-
~
a..
~

(/)

z
0
~
Ci
z R40 - Copy of result Tangent resu1 t (real #) 0
u R12 + to- -----------------------
~
a..
to-
~
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME TIME.
ADDRESS 65517

Returns the current system time. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

(/)
z
0
~
Ci
z
0
U
to-
~
a..
~

(/)

z
0
~
Ci
z R40 = Copy of time Time (8 bytes) 0
u R12 + --------------to-
~
a..
to-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 n 23 24 25 26 27
30 31 32 33 34 3S 36 37

UHf' AHP /

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-84

FUNCTION NAME UNEQ$.
ADDRESS 3025

Compares two strings for equality. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z

(2 bytes) 0 String 1 length i=
0 String 1 address (2 bytes)
z String 2 length (2 bytes) 0
u String 2 address (2 bytes) I-
:::l
Il- R12 -+ --------------------------~

rJl
Z
0
i=
0
z True/fa 1 se value (8 bytes) 0
u R12 -+ I- --------------------------
:::l
ll-
l-
:::l
0

CPU CHANGES COMMENTS I ROMJSBllL
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 D U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME UNEQ.
ADDRESS 62202

Compares two numbers for i nequa 1 ity. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z
0 #1 Value (8 bytes) i=
0 #2 Value (8 bytes) z
0 R12 -+ ------------------U
I-
:::l
Il-
~

rJl
Z
0
i=
0 True/false value (8 bytes) z
0 R12 -+ --------------------------U
I-
:::l
ll-
l-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I t
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U IJ 20 21 22 23 24 2!> 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 40 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-85

FUNCTION NAME UPC$.
ADDRESS 3373

Converts all lower-case characters in a string to TYPE Runtime
upper case.

/

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z

(8 bytes) 0 Length of string
~
Ci Address of string (8 bytes) z R12 + 0 ---------------------------U
I-
::J
11.
~

Ul
Z
0
~ Length of string (8 bytes) Ci
z Address of string (8 bytes) 0
u R12 + I- ---------------------------
::J
11.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 30 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME VAL$.
ADDRESS 3207

Converts a number into its corresponding ASCII characters. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
~ Number (8 bytes) Ci
z R12 + ----------------0
U
I-
::J
11.

~

Ul
Z
0
~ R26 = Address of string Length of string (2 bytes) Ci
z R30 = Length of string Address of string (2 bytes) 0
u R12 + ---------------------------I-
::J
11.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 n 23 2. 26 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 26 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-86

FUNCTION NAME VAL.
ADDRESS 3250

Converts an ASCII string of numeric characters to the TYPE Runtime
corresponding numeric value.

REGISTER CONTENTS R 12 STACK CONTENTS

til
z
0
i= Length of string (2 bytes) c
z Address of string (2 bytes) 0
u R12 -+ ---------------------------I-
::l
CI..

~

til
Z
0
i=
c

(8 bytes) z Numeric value 0
u R12 -+ -----------------------I-
::l
CI..
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 OAP AAP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME WAIT .
ADDRESS 65701

Executes the WAIT statement. TYPE Runtime

REGISTER CONTENTS R12 STACK CONTENTS

til
z WAIT count (8 bytes) 0
i=
C
z
0
U
I-
::l
CI..

~

til
Z
0
i=
C
z
0
U
I-
::l
CI..
I-
::l
0

CPU CHANGES COMMENTS TROMJSB Iv
0 I 2 3 4 5 6 7 OCM E

10 II I] 13 14 15 16 17 U U WA IT COlJnt is in mi 11 i seconds. Returns immediately
20 21 22 23 24 25 26 27 if R16#2. 30 31 32 33 34 35 36 37 OAP AAP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-87

FUNCTION I NAME YTX5
ADDRESS 53242

Executes VAX. TYPE

)
REGISTER CONTENTS R12 STACK CONTENTS

en
z
a

(8 bytes) 1= V-value 0
z X-value (8 bytes) a
u R12 + -----------------
t-
~
D-
~

en
Z
a
1=
0 yX result (8 bytes) z
0 R12 + u -------------------
t-
~
D-
t-
~
a

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME ZROMEM
ADDRESS 44066

Sets a specified number of bytes equal to zeros or blanks TYPE Runtime
(408) , starting at a specified address.

REGISTER CONTENTS R12 STACK CONTENTS

en
z
a
1= R23 = 3 for blanks, #3 for zeros 0
z R36 = Pointer to first byte a
u R56-57 = Number of bytes t-
~
D-
~

en
z
a
1=
0
z
a
u
t-
~
D-
t-
~
a

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -
20 21 22 23 24 25 26 27 BIN mode should be set before entry.

33- -.- ij DriP Anr
30 31 32 34 35 36
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-88

HP-83/85 System Routines

GENERAL-PURPOSE UTILITY ROUTINES

The general-purpose routines on the following pages may find uses during runtime,

parsing, initialization, or at other times.

7-89

FUNCTION
NAME COMFLT
ADDRESS 32621

Compares two rea 1 numbers. TYPE Utility

)

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
t= R40 = #A Ci
z R50 = #B 0
u
I-
:l
11.

~

(/)
z
0
t=
Ci
z R50 = B-A 0
u
I-
:l
11.
I-
:l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 22 23 24 25 26 27 At output:
30 31 32 33 34 35 36 37 ORP ARP

E o if #A > = #B =
40 41 42 43 44 45 46 47 U U E = 1 if #A < #B 50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME CONBIN
ADDRESS 3572

Converts a two-byte binary number into an eight-byte TYPE Util ity
floating-point number.

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
t= R36 = Bi nary # Ci
z
0
U
I-
:l
11.

~

(/)

z
0
t=
Ci

Floating-point # z R40 = 0
U
I-
:l
11.
I-
:l
0

CPU CHANGES COMMENTS lROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 UHf' ARP

;

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-90

FUNCTION NAME CONINT
ADDRESS 44321

Converts real number in R60-67 to binary number in R76-77. TYPE Util ity

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
;=

R60 Real # Ci = z
0
U
I--
:J
el-

~

en
z
0
;=

R76 Binary # Ci =
z
0
U
I--
:J
el-
I--
:J
0

CPU CHANGES COMMENTS LROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Performs SAD at entry. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP Performs PAD at exit.
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME CVNUM
ADDRESS 71135

Formats a floating-point number into ASCII characters for TYPE Utility
printing.

REGISTER CONTENTS R12 STACK CONTENTS

en
z R30 Pointer to output buffer. 0 = ;=

R40 Floating-point # to be formatted. Ci =
z
0
U
I--
:J
el-

~

en
z R30 Pointer to next available byte in 0 = ;= output buffer. Ci
z
0
U
I--
:J
el-
I--
:J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 II II
20 Ltl 22 23 24 2!1 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-91

FUNCTION
NAME DRV12.
ADDRESS 5462

Vectors output to appropriate device, obeying CRT IS and TYPE Util i ty
PRINT IS commands.

)
REGISTER CONTENTS R12 STACK CONTENTS

(/)
z R26-27 = Pointer to beginning of buffer to 0
f= be output. 0
z R36-37 = Number of bytes to be output. 0
U
I-
::>
Cl.

~

(/) If I/O is hooked up, assume all CPU regis-z
0 ter contents are altered; otherwise regis-f=
0 ter changes shown below are correct. z
0
U
I-
::>
Cl.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 I 2 3 4 5 6 7 OCM E

Before DRV12. is called for the first time, an I/O rou-10 II 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27

ARP tine such as PRINT. or DISP. should be called to ini-ORP 30 31 32 33 34 35 36 37 tialize SCTEMP to the desired device. 40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS DRV12. calls OUTSTR, PRDVRI, or IOTRFC. 60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME FETAV
ADDRESS 44727

Fetches array variable value. TYPE Uti 1 ity

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z See FETAVA routine. 0
f=
0
z
0
U
I-
::>
Cl.

~

(/)
z R34 Address of array variable element 0 =
f= R60 = Value of array variable element 0
z
0
U
I-
::>
Cl.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 I 2 3 4 5 6 7 OCM E

10 II 12 13 14 15 16 17 U U
70 21 n 23 24 26 26 17 AHf'
30 31 32 33 34 35 36 37 ORP

/

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 10 11 72 73 14 75 16 77

7-92

FUNCTION NAME FETAVA
ADDRESS 44734

Fetches array variable address. TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

If)

Pointer to variable area (2 bytes) z
0 Row dimension (2 bytes) i=
a Column dimension (2 bytes) z
0 (optional) u
I- Dimension flag (1 byte) :::J
a. R12 + ~ --------------------------

If)
z
0 R34 = Address of array variable element R12 + --------------------------i=
a
z
0
U
I-
:::J
a.
I-
:::J
0

CPU CHANGES COMMENTS TROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27 ARP
30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME FETST
ADDRESS 45206

Fetches the length and absolute address of the first TYPE Util ity
character of a string.

REGISTER CONTENTS R 12 STACK CONTENTS

If)

z Address of name block (2 bytes) 0
i= (Relative if program mode. a
z absolute if calculator mode.)
0

R12 + -------------------------------
U
I-
:::J
a.
~

If)

Length of string (2 bytes) z
0
i= Address of string (2 bytes) a R12 + z ---------------------------0
U
I-
:::J
a.
I-
:::J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B lJ
20 21 22 23 24 25 26 27

ARP
30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-93

FUNCTION
NAME FETSV
ADDRESS 44535

Fetches the value of a simple numeric variable. Converts TYPE Util i ty
integer values into tagged integers and converts short
numbers to real numbers.

J
REGISTER CONTENTS R12 STACK CONTENTS

(/)

z R66 = Address of variable 0
t= Relative if program mode. 15
z Absolute if calculator mode. 0
u
I-
::l
0..
~

(/)

z R34 = Absolute address of variable 0
t= R46 = Name block 15
z R60 = Variable value
0
u
I-
::l
0..
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME FETSVA
ADDRESS 44556

Returns the name block of a variable and ensures the address TYPE Util ity
is absolute.

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z R66 = Relative address if in program RUN 0
t= mode; absolute address if in calcu-15
z lator mode. 0
u
I-
::l
0..
~

(/)

z R46-7 = Name block of variable 0
t= R34 = Absolute address of variable 15
z
0
U
I-
::l
0..
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB fN
0 1 2 3 4 5 6 7 OCM E

If R16 is odd, the computer is in calculator mode and 10 11 12 13 14 15 16 17 B -
70 71 n 71 74 7~ 76 77 the address is absolute. If R16 is even, the computer UHP AHP
30 31 32 33 34 35 36 37 is in RUN mode and FWCURR must be added to the address. 40 41 42 43 44 45 46 47 U U

A check is also made for remote (common) variables. 50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-94

FUNCTION NAME INTMUL
ADDRESS 53076

Performs binary integer multiplication. TYPE Util i ty

REGISTER CONTENTS R12 STACK CONTENTS

<fl
z R66 = t~ultipl ier 0
i= R76 = Multiplicand c
z
0
U
I-
:::l
a.
~

<fl
z R54 = Result (4 bytes. Answer is full 0
i= 32-bit number; the sign bit may be c
z set.)
0
u R66 = Multiplier
I-
:::l R76 = Multiplicand a.
I-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Performs SAD at entry, PAD' at exit. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP Does not destroy multiplier and multiplicand.
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 -

FUNCTION NAME INTORL
ADDRESS 56343

Converts a tagged BCD integer number in R60 to a real number TYPE Util ity
in R60.

REGISTER CONTENTS R 12 STACK CONTENTS

<fl
z R60 = Integer # 0
i=
C
z
0
U
I-
:::l
a.
~

<fl
Z
0
i= R60 = Converted real # c
z
0
U
I-
:::l
a.
I-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I-N
0 1 2 3 4 5 6 7 OCM E

"-
10 11 12 13 14 15 16 ~~ [) 1/
20 21 iF ij 24 25 26 27

ARP
30 31 32 33 34 35 36 37

ORP

40 41 42 43 44 45 46 47 36 60
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION
NAME MOVDN
ADDRESS 37324

Moves a block of memory, starting with the highest address TYPE Uti 1 ity
and working down to the lowest address.

REGISTER CONTENTS R 12 STACK CONTENTS

Vl
z

R22 Byte count. 0 =
i= R24 First byte to be moved. (Highest 15 =
z address.) 0
u R26 Fi rst byte of destination. (Highest I- =
:J address.) a..
~

Vl
Z
0
i=
15
z
0
U
I-
:J
a..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U 20 21 22 23 24 25 26 27 Expects binary mode at entry. 30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME MOVUP
ADDRESS 37365

Moves a block of memory, starting at the lowest address and TYPE Util ity
working up to the highest address.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z

R22 Byte count. 0 =
i= R24 First byte to be moved. (Lowest 15 =
z address.) 0
u R26 = First byte of destination. (Lowest I-
:;) address.) a..
~

Vl
Z
0
i=
15
z
0
U
I-
:;)
a..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Expects binary mode at entry. 10 11 n 73 ~4 ~5 76 n
30 31 32 33 34 35 36 37 UHP AA"
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-96

FUNCTION NAME ONEB
ADDRESS 56113

Fetches one number from R12 stack and converts to it binary. TYPE Uti 1 ity

,
\

REGISTER CONTENTS , R 12 STACK CONTENTS

Ul
z
0
~ Real or integer # to pop is
z R12 -+ 0 ------------------------
u
~
:J
Il.
~

Ul
Z
0
~ R46-R47 = Binary # from stack is
z R76-R77 = Binary # from stack (Copy) 0
u
~
:J
Il.
~
:J
0

CPU CHANGES COMMENTS I ROMJSB]1i
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 76 46
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME ONEI
ADDRESS 56154

Gets one number (off R12) as an integer. TYPE Uti 1 ity

REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
~ Real or integer # is
z R12 -+ -----------------0
u
~
:J
Il.

~

Ul
Z
0
~ R44-R47 = Tagged BCD integer R12 -+ -----------------is
z
0
u
~
:J
CL.
~
:J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 II II F=0 if vi'llirl integer.
26 21 22 23 24 25

.. -~
26 21

30 31 32 33 34 35 36 37 ORP ARP E=l if real number converted to integer was too large
40 41 42 43 44 45 46 47 U U and overflowed. (In this case, R45-47 = 99999.)
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-97

FUNCTION NAME ONER
ADDRESS 56215

Fetches one real number from R12 stack. TYPE Util ity

_/
REGISTER CONTENTS R12 STAC.f(CONTENTS

(/)

z
Real or integer # (8 bytes) 0

i=
Ci R12 + ---------------------------z
0
U
t-
::J
!l.
~

(/)

z
0
i= R40 = Real #. Ci
z R60 0 = Real #. (Copy.)
U
t-
::J
!l.
t-
::J
0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

Expects OCM set to binary mode at entry. 10 11 12 13 14 15 16 17 0 0 20 21 22 23 24 25 26 27 ONER+, address 56200, has the same function, but expects ORP ARP 30 31 32 33 34 35 36 37 rea 1 or integer number in R60-67 rather than on R12 40 41 42 43 44 45 46 47 60 40
50 51 52 53 54 55 56 57 STATUS stack. Output is the same.
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME ONEROI
Gets one number (real or integer) from R12 stack and sets ADDRESS 56253
E flag according to type of number. Number comes off TYPE Util ity
unchanged.

REGISTER CONTENTS R12 STACK CONTENTS
(/)

z
0 Real or integer # E
a R12 + -----------------z
0
U
t-
::J
0.
~

(/)

z If real: R40-47 = # 0
i= E = 0 Ci R12 + -----------------z If integer: R44 = 377
0
u R45-47 = #
t-
::J E = 1 !l.
t-
::J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U E = 0 if real, 1 if integer.
]0]1 22 2J 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 44 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-98

FUNCTION NAME PAPER.
ADDRESS 76144

Causes i nterna 1 printer to advance one line. TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

If)

z
0
~
Ci
z
0
U
I-
::::>
IL
~

If)

z
0
~
Ci
z
0
U
I-
::::>
IL
I-
::::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - U Expects bi nary mode at entry. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME PRDVRl
ADDRESS 75767

Dumps a buffer to the i nterna 1 pri nter. TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

If)

z R26 = Address of buffer. 0
~ R36 = Number of bytes in buffer. Ci
z
0
U
I-
::::>
IL

~

If)
z
0
~
Ci
z
0
U
I-
::::>
IL
I-
::::>
0

CPU CHANGES COMMENTS I ROMJSsl Y
0 1 2 3 4 5 6 7 OCM E

10 11 11 11 14 15 16 17 B U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-99

FUNCTION NAME RELMEM
ADDRESS 37534

Releases temporary scratch-pad memory. TYPE Util i ty

)

REGISTER CONTENTS R 12 STACK CONTENTS
(/)

z
0
i=
15
z
0
U
f-
:::>
~

~

(/)

z
0
i=
15
z
0
U
f-
:::>
~
f-
:::>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME RESMEM
ADDRESS 37442

Reserves a block of memory for scratch-pad use. TemQorar~ TYPE Uti 1 ity
only.

REGISTER CONTENTS R 12 STACK CONTENTS
(/)

z R54-55 Number of bytes to be reserved. 0 =
i=
15
z
0
U
f-
:::>
~

~

(/)

z R26-27 = Address of 1st byte of reserved 0
i= memory. 15
z
0
U
f-
:::>
~
f-
:::>
0

CPU CHANGES COMMENTS lROMJSBIN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U
70 71 n 7J 14 75 26 27 -
30 31 32 33 34 35 36 37 DRP AHP

/

40 41 42 43 44 45 46 47 56 54
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-100

FUNCTION I NAME ROMJSB
ROM switching subroutine. Selects the desired ROM and ADDRESS 4776
executes a JSB to the desired routine in that ROM. When

TYPE Util ity
control is returned, reselects the calling ROM and returns.

(/)

ROMJSB calling sequence: During the call, ROMJSB saves R0-1 on z
0
;::: JSB=ROMJSB the R6 stack along with the ROM# of the Ci Routine address (2 bytes) ca 11 i ng ROM. (This is a total of 3 z
0 ROM# (1 byte) bytes plus the RTN addresses.) u
I- ARP, ORP, and status are not preserved =>
ll. during the call. ~

(/) Preserves the ARP, ORP, and status set by z
0 the called routine, and restores the ;:::
Ci ori gi na 1 R0. z
0
U
l-
=>
ll.
l-
=>
0

CPU CHANGES COMMENTS ~ROMJSB~ -
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U ERTEMP (100674-100677) is destroyed. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME ROMRTN
ADDRESS 4762

Reselects system bank-selectable ROM (ROM 0) and returns. TYPE Uti 1 ity

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
;:::
Ci
z
0
U
l-
=>
ll.

~

(/)

z
0
;:::
Ci
z
0
U
l-
=>
ll.
l-
=>
0

CPU CHANGES COMMENTS 1 ROMJSBl N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - An external ROM woul d perform a GTO Ror~RTN after parse 20 21 22 23 24 2!> 16 2J ARP routines. 30 31 32 33 34 35 36 37 DRP

40 41 42 43 44 45 46 47 0 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7 -101

FUNCTION
NAME RSMEM-
ADDRESS 37453

Reserves a block of memory for scratch-pad use. Temporary TYPE Uti 1 ity
memory only.

)

REGISTER CONTENTS R 12 STACK CONTENTS

<Jl
z
0
t= R56 = Number of bytes to be reserved. Ci
z
0
U
I-
::>
Il.
~

<Jl
Z
0
t= R26-7 Ci = Address of 1st byte of reserved
z memory. 0
u
I-
::>
Il.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSBT1.f
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - Not in global file. 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP Executes a SAD at entry, a PAD at exit.
40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 13 74 75 76 77 -

FUNCTION NAME

ADDRESS

TYPE

REGISTER CONTENTS R12 STACK CONTENTS

<Jl
z
0
t=
Ci
z
0
U
I-
::>
Il.
~

<Jl
Z
0
t=
Ci
z
0
U
I-
::>
Il.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17
20 21 22 2J 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-102

FUNCTION NAME RSUM#K
ADDRESS 37726

Calculates a checksum for memory. (Especially useful for TYPE Util ity
ROMs.)

REGISTER CONTENTS R 12 STACK CONTENTS

C/l
z R32 Start address 0 =
i= R34 = (# bytes/2) - 1 Ci
z
0
U
I-
:>
a..
~

C/l
Z
0
i=
Ci
z
0
U
I-
:>
a..
I-
:>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

Returns Z (zero flag) true if checksum is OK; otherwise 10 11 12 13 14 15 16 17 - -20 21 22 23 24 25 26 27
ARP Z is not true. Expects last 4 bytes of memory checked

30 31 32 33 34 35 36 37 ORP
to be checksum that is compared. Expects binary mode 40 41 42 43 44 45 46 47 46 32

50 51 52 53 54 55 56 57 STATUS
at entry.

60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME RSUM8K
ADDRESS 37722

Used by external ROMs to perform a checksum at power-on. TYPE Util ity
(Checksum is for an entire 8K ROM.)

REGISTER CONTENTS R12 STACK CONTENTS

C/l
z R32 Start address 0 =
i=
Ci
z
0
U
I-
:>
a..
~

C/l
Z
0
i=
Ci
z
0
U
I-
:>
a..
I-
:>
0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

10 11 D 11 14 15 16 17 Expects last 4 bytes of memory checked to be checksum - -20 21 22 23 24 25 26 27
ARP that is compared. Expects binary mode at entry.

30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 46 32
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-103

FUNCTION NAME RTOIN
ADDRESS 44204

Converts a real number to a BCD tagged integer. TYPE Util ity

j
REGISTER CONTENTS R12 STACK CONTENTS

en
z R60 Real # to be converted 0 =
i=
15
z
0
U
I-
:J
0..
~

en
z R65 BCD integer 0 =
i=
15
z
0
U
I-
:J
0..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME SCRAT+
Scratches binary program and BASIC program. Does not reset ADDRESS 4344
all pointers, however. Should be used only by external ROMs TYPE Utility
that are stealing RAM at power-on.

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
i=
15
z
0
U
I-
:J
0..
~

en
z
0
E
a
z
0
U
I-
:J
0..
I-
:J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 '" 15 16 17 U U
W 71 n 73 7" 75 7fi n

AHP
30 31 32 33 3" 35 36 37 UHP

)

40 41 42 43 44 45 46 47 12 12
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 7" 75 76 77

7-104

FUNCTION NAME SET240
ADDRESS 11243

Sets bits 7 and 5 (immediate break) in R17. TYPE Util i ty

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i=
is
z
0
U
I-
::J
n.
~

(/)
z
0
i=
is
z
0
U
I-
::J
n.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - - This routine is 20 21 22 23 24 25 26 27 useful if it is desired that the
30 31 32 33 34 35 36 37 ORP ARP i ntepreter halt when a return to it is performed.
40 41 42 43 44 45 46 47 36 6
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME STOST
ADDRESS 45603

Stores a string into a string variable area; handles variable TYPE Util ity
tracing if TRACE mode is active.

REGISTER CONTENTS R12 STACK CONTENTS

(/) Pointer to variable area (2 bytes) z
0 Maximum storage length (2 bytes) E
Q Pointer to 1st char. of storage z
0 (2 bytes) u
I- String length (to store) (2 bytes) ::J
n. String address (to store) (2 bytes) ~

R12 -+ ----------------------------------
(/)
z
0
i=
is
z

R12 -+ -----------------------------------
0
U
I-
::J
n.
I-
::J
0

CPU CHANGES COMMENTS 1 ROMJSB-) Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 1J IJ
20 21 22 '~n 24 2!J 26 21

ARP
30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-105

FUNCTION NAME STOSV
ADDRESS 45254

Stores a value into a simple numeric or an array variable in TYPE Utility
the proper format; handles tracing if TRACE mode is active.

-j

(/) R12 STACK CONTENTS IF SIMPLE NUMERIC: IF ARRAY: z
Address of variable (2 bytes) Address of variable (2 bytes) 0

~ Name block (2 bytes) Column (If tracing) (2 bytes) 0
z Value (8 bytes) Row (If tracing) (2 bytes) 0
u

R12 ~ ------------------------------- Dimension flag (If tracing) (1 byte) I-
::J

Name block (2 bytes) Cl.

~ Value (8 bytes)

(/)
z
0
~
0
z
0
u

R12 ~ ---------------------------------I-
::J
Cl.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSBT Y
0 1 2 3 4 5 6 7 OCM E Performs SAD at entry and PAD at exit. 10 11 12 13 14 15 16 17 - U

20 21 22 23 24 25 26 27
ARP Tokens 21 and 22 push all of the address and name block 30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 - - information onto the R12 stack, so an external routine needs
50 51 52 53 54 55 56 57 STATUS to push only the value before calling STOSV.
60 61 62 63 64 65 66 67 -70 71 72 73 74 75 76 77

FUNCTION NAME TWOB
ADDRESS 56176

Fetches two numbers from R12 stack and converts them to
binary integers.

TYPE Util ity

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z #A (8 bytes) 0
~ #B (8 bytes) 0
z R12 ~ ------------0
U
I-
::J
Cl.

~

(/)
z R26-27 = #B in bi nary R12 ~ ------------0
~ R46-47 = #B in bi nary 0
z R56-57 = #A in bi nary 0
u
I-
::J
Cl.
I-
::J
0

CPU CHANGES COMMENTS I ROMJSBTN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U 20 21 n 23 24 ~5 ~6 27
32 33 34 35 36 37

lJHf' AAp
30 31

/

40 41 42 43 44 45 46 47 46 26
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 II

7-106

FUNCTION NAME TWOR
ADDRESS 56236

Fetches two real numbers from Rl2 stack. If a number on TYPE Uti 1 ity
stack is an integer, it is converted to a real.

\

REGISTER CONTENTS R12 STACK CONTENTS

(J1
z
0 #A (8 bytes) ~
i:5 #B (8 bytes) z
0 Rl2 -+ ------------U
I-
::l
Il.
~

(J1
z
0
~
i:5 R40-47 = Real #B} Rl2 -+ ------------z
0 R50-57 = Real #A u
I-
::l
Il.
I-
::l
0

CPU CHANGES COMMENTS I ROMJSBl N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 0 0 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 60 40
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U -70 71 72 73 74 75 76 77

FUNCTION NAME TWOROI
Fetches two real or integer numbers off Rl2 stack. Converts ADDRESS 56266
either or both as necessary to make them both integer or both TYPE Uti 1 ity
real. Status of E-register at exit indicates whether the two
numbers are integer or real.

REGISTER CONTENTS R12 STACK CONTENTS

(J1

z
0 #A (Real or integer.) ~
i:5 #B (Real or integer.) z
0 Rl2 -+ U ---------------------
I-
::l
Il.
~

(J1
z
0
~
i:5 R40-47 = #B} Both real or both integer. Rl2 -+ ---------------------
z

R50-57 #A 0 =
U
I-
::l
Il.
I-
::l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U If F=~ (It p.xit, both numbers are real. 20 21 22 23 24 2b 26 21
30 31 32 33 34 35 36 37 ORP ARP If E=l at exit, both numbers are integer.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-107

HP-83/85 System Routines

CRT CONTROL AND ROUTINES

CRT CONTROL

The memory that controls the CRT display is completely separate from the comput­
er's main memory. This CRT memory is addressed through I/O addresses in the
main memory.

Main Memory CRT Memory

1/0
Addresses '---_____ ---'

There are four I/O addresses in RAM that are used to address the CRT.
address requires a two-byte quantity to specify a CRT memory address.
addresses are:

Each
The I/O

Address Name

177404 CRTSAD

177405 CRTBAD

Function

Write only. Two bytes set current display start address

(i. e., home address) .

Write only. Two bytes set current byte address (i.e.,

cursor location). The contents of this address do not
cause a cursor to appear on the CRT at that location;
they merely specify the CRT location to which the next
character will be output or from which the next charac­
ter will be read.

7-108

/

177406 CRTSTS

177407 CRTDAT

HP-83/85 System Routines

This byte defines CRT status, as shown here:

WRITE: Bit 0

0 No read request Read request

1 Un·wlpe Wipeout

2 Power·up Power·down

3 Not used

4 Not used

5 Not used

6 Not used

7 Alpha Graphics

READ: 0 Data not ready Data ready to read

Retrace time Display time

2 Not used

3 Not used

4 Not used

5 Not used

6 Not used

7 Busy Not busy

This byte contains the data output to or read from the

CRT, as shown below:

WRITE: Bit

0
1

2

3 ASCII code for one byte of data

4

5
6

7 = 1 causes underline (cursor)

READ: 0

2

3 ASCII code for one byte of data

4

5
6

7 = 1 Is underlined or cursor

7-109

HP-83/85 System Routines

To underline a character, the MSB of the character is set when it is output to
the CRT; the character then appears on the CRT screen as if the cursor were set
beneath it. A blank cursor is created by outputting a blank character with its
MSB set.

Each time CRTDAT is read from or written to, the controller in CRT memory auto­
matically increments by two the CRTBAD address. However CRTBYT (in system RAM)
is not automatically updated by the CRT controller.

Because the user cannot read from I/O addresses CRTSAD or CRTBAD, and because
reading from CRTSTS does not yield exactly what was written, the system normally
keeps copies of the contents of these three I/O addresses elsewhere in system
RAM (where they may be read). The copies are maintained in the locations shown
here:

CRT ADDRESSING

I/O Name

CRTSAD
CRTBAD
CRTSTS

RAM Location Name

CRTRAM
CRTBYT
CRTWRS

RAM Address

100200

100176
101016

The CRT memory employs "nibble addressing"--each address in the CRT memory cOn­
tains only four bits. Such an addressing scheme provides greater resolution and
control over the CRT display.

When sending information to CRT memory, the system must output the contents of a
complete eight-bit byte. Thus, each byte shipped is stored at two consecutive
addresses in CRT memory. The most significant four bits are stored at the lower­
numbered CRT memory address, and the least significant four bits are stored at

the higher-numbered address in CRT memory.

7-11 0

/

HP-83/85 System Routines

CRT memory is partitioned into alpha and graphics areas.

I f----- 1008-----I .. ~1

o :
_..J

4 pages of alpha

100008 •
_.J

1 page of graphics

I
400008 , I

L. _ .J

1 f-----S410-----I

Alpha Display: Alpha addresses in CRT memory are from 0 to 77778, In alpha
mode the display shows 1610 lines of 3210 characters per line. The scrolling
keys permit the user to view an additional 4810 lines of alphanumeric data.
Thus, only 1/4 of the information in the alpha area of CRT memory fits on the
CRT screen at anyone time.

Each ASCII character occupies eight bits. Because of its nibble addressing, two
address locations in CRT memory are required to store one ASCII character.

In alpha mode, one character occupies a space on the CRT of 810 dots by 1210 dots.
In alpha mode, the screen can contain 1610 rows, with 32 (i.e., 408) characters
per row.

7-111

HP-83/85 System Routines

For example, the following section of code will output a character to the 2nd
row down, 4th character in the row. of the CRT screen:

LOM 34, = 106. 0

JSB = BYTCRT

LOB R32, = 101

JSB = CHKSTS }

STBD 32, = CRTOAT

Loads desired CRT memory address.

Sets CRTBYT and CRTBAO to specified address.

Loads character (A) to ship out.

When CRT controller not busy, byte is output.

An alternate method of executing the last two instructions (JSB = CHKSTS and
STBD 32, = CRTDAT) would be JSB = OUTCHR. This method may be preferable, since
OUTCHR automatically updates CRTBYT and CRTBAD to the next consecutive location.

Graphics Display: Graphics addresses in CRT memory are from 10000 to 377778,
The graphics display mode, which is entered when the user presses the [GRAPH]
key or executes a graphics statement, shows all information in the graphics area
of CRT memory at one time. In graphics mode. the screen has a resolution of

25610 dots wide by 19210 dots high. Any consecutive pair of four-bit nibble
addresses in CRT memory can be specified. The address of the first nibble is
specified by CRTBAD. Thus, each byte of information output from the CPU to CRT
memory controls eight dots (i.e., two four-bit nibbles) on the CRT.

For example, the following section of code outputs one byte to addresses 10224
and 10225 of CRT graphics memory.

LDM R34, = 224.

JSB = BYTCRT

LOB R32, = 27

JSB = CHKSTS

20 }

STBD R32. = CRTDAT

Set CRTBAD and CRTBYT to 10224.

Byte to be output.

In the CRT, the byte shipped out affects address 10224. This is the third row
from the top of the graphics CRT, the 80th through the 87th dots from the left.

7-112

)

J

HP-83/85 System Routines

CRT ROUTINES

System routines useful in CRT control follow.

FUNCTION NAME ALPHA.
ADDRESS 36105

Forces CRT to alpha mode, if alpha mode is not already TYPE CRT

active.

REGISTER CONTENTS R12 STACK CONTENTS

VJ
z
0
~
is
z
0
U
t-
::>
CL

~

VJ
Z
0
~
is
z
0
U
t-
::>
CL
t-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 oeM E

10 11 12 13 14 15 16 17 B CRT is in alpha mode at exit.
20 21 22 23 24 25 26 27 -
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 31 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 IJ

7-113

FUNCTION NAME BLKLIN
Extends blanks (carriage returns) to remainder of line on ADDRESS 36320
CRT. Does not update CRTBYT, but cursor is at start of next TYPE CRT
1 i ne insofar as CRT controller is concerned.

/

REGISTER CONTENTS R12 STACK CONTENTS

IJl
z
0
i= a R34 = Current cursor location (CRTBYT) z
0
U
t-
::>
a..
~

IJl
Z
0
i=
a
z
0
U
t-
::>
a..
t-
::>
0

CPU CHANGES COMMENTS lROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B Use CLREOL if updating of CRTBYT is desired. Z is 20 21 22 23 25 26 27 -24
30 31 32 33 34 35 36 37 OAP AAP true at exit.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME BPLOT.
ADDRESS 34365

Executes the BPLOT statement. TYPE CRT

REGISTER CONTENTS R 12 STACK CONTENTS

IJl
Z Length of string (2 bytes) 0
i= Address of string (2 bytes) a
z # Bytes/line (8 bytes) 0
u R12 -+ ---------------------------t-
::>
a..
~

IJl
Z
0
i=
a

R12 -+ ---------------------------
Z
0
U
t-
::>
a..
t-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U 70 71 n 7J 24 25 26 27
30 31 32 33 34 35 36 37 OAP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-114

FUNCTION NAME BPLOT+
ADDRESS 34405

Same as BPLOT statement, but with parameters in registers TYPE CRT

rather than on stack.

REGISTER CONTENTS R 12 STACK CONTENTS

(J)

z
0 R22-3 t= = Length of string
i5 R34-5 = Address of string
z
0 R44-5 = # Bytes/line
u
I- R46-7 = # Bytes/line (copy)
:l
Il.

~

(J)

z
0
t=
i5
z
0
U
I-
:l
Il.
I-
:l
0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 22 23 24 25 26 27 Not in global fi 1 e.

ORP ARP
30 31 32 33 34 35 36 37 Does not switch to graphics mode if not already there.
40 41 42 43 44 45 46 47 U U -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME

ADDRESS

TYPE

REGISTER CONTENTS R 12 STACK CONTENTS

(J)

z
0
t=
i5
z
0
U
I-
:l
Il.

~

(J)

z
0
t=
i5
z
0
U
I-
:l
Il.
I-
:l
0

CPU CHANGES COMMENTS I ROMJSBT

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17

20 21 22 23 24 25 is 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

7-115

FUNCTION NAME BYTCRT
ADDRESS 35423

Moves cursor to position specified by the register pair TYPE CRT
speci fi ed by the ORP setting at entry.

)

REGISTER CONTENTS R12 STACK CONTENTS

(/l

z
0
~
5 DRP register pair = Address to which to z
0 move cursor u
I-
::>
a..
~

(/l

z
0
~
5
z
0
U
I-
::>
a..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27 DRP at exit is the same as at entry.
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 - -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 7. 75 76 77 -

FUNCTION I NAME BYTCR!
ADDRESS 35422

Moves cursor to the specified position, but does not TYPE CRT
generate cursor on CRT screen.

REGISTER CONTENTS R12 STACK CONTENTS

(/l

z
0
~ R34-35 = Address to which cursor is to be 5
z moved 0
u
I-
::>
a..
~

(/l
z
0
~
5
z
0
U
I-
::>
a..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 I. 15 16 17 B -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 Df1P Anr /

40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 7. 75 76 77

7-116

FUNCTION NAME CHKSTS
ADDRESS 36335

Loops until CRT is not busy. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
5
z
0
U
t-
:l
Il.
~

Vl
Z
0
i= R30 CRTSTS 5 =
z
0
U
t-
:l
Il.
t-
:l
0

CPU CHANGES COMMENTS I ROMJSBI N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27 At exit, CRT is ready to accept an address or a byte ORP ARP
30 31 32 33 34 35 36 37 of data.
40 41 42 43 44 45 46 47 30 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME CLEAR.
ADDRESS 35021

Forces CRT screen to alpha mode, clears screen to blanks TYPE CRT
(carriage returns), and homes the cursor.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
5
z
0
U
t-
:l
Il.
~

Vl
Z
0
i=
5
z
0
U
t-
:l
Il.
t-
:l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 R io
-,-

ii 23 -21 l~4 25 26 21
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-117

FUNCTION NAME CLREOL
ADDRESS 35535

Extends blanks (carriage returns) to end of line, but leaves TYPE CRT
cursor at its current position at entry.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
Ci
z
0
U
I-
::>
Il-
~

Vl
Z
0
i= R32 = 15 Ci
z R66-67 = CRTBYT 0
u
I-
::>
ll-
l-
::>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME CNTRTR
ADDRESS 36002

Counts CRT retraces (the number in R31 at entry) and returns. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i= R31 = Number of retraces to count Ci
z
0
U
I-
::>
Il-
~

Vl
Z
0
i= R31 = 0 Ci
z
0
U
I-
::>
ll-
l-
::>
0

CPU CHANGES COMMENTS I ROMJSB!li
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B 25 26 27 - Z - 1 (Lt'ue) dL exiL. 20 21 22 2) 2.
ORP ARP

30 31 32 33 34 35 36 37 There are 60 retraces per second.
40 41 42 43 44 45 46 47 31 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-118

FUNCTION NAME COPY.
ADDRESS 75360

Executes COpy command. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

VI
z
0
i=
0
z
0
U
I-
::>
Il-
~

VI
Z
0
i=
0
z
0
U
I-
::>
ll-
l-
::>
0

CPU CHANGES COMMENTS I ROMJSSl y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME CRTBL+
ADDRESS 36255

Initializes portion of CRT alpha to blanks (carriage TYPE CRT

returns) .

REGISTER CONTENTS R 12 STACK CONTENTS

VI
z
0
i= R34-35 = Starting address (1st byte to
0
z blank) 0
u R36-37 = Number of bytes to blank
I-
::>
Il-
~

VI
Z
0
i=
0
z
0
U
I-
::>
ll-
l-
::>
0

CPU CHANGES COMMENTS I ROMJSsTN

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
ORP ARP

40 41 42 43 44 45 46 47 36 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-119

FUNCTION NAME CRTBLK
ADDRESS 36247

Bl anks a 11 four pages of alpha screen with carri age returns, TYPE CRT
and homes cursor.

/
REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
;::
Ci
z
0
U
I-
::>
11.

~

en
z
0
;::
Ci
z
0
U
I-
::>
11.
I-
::>
0

CPU CHANGES COMMENTS 1 ROMJSB lJ.L
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 36 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME CRTINT
ADDRESS 36177

Initi ali zes CRT: clears a 11 of alpha and graphics, and TYPE CRT
homes cursor in alpha mode.

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
;::
Ci
z
0
U
I-
::>
11.

~

en
z
0
;::
Ci
z
0
U
I-
::>
11.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B 20 21 n 23 24 25 26 27 -
30 31 32 33 34 35 36 37 lJHP AHP

40 41 42 43 44 45 46 47 31 U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-120

FUNCTION NAME CRTPOF
ADDRESS 35703

Powers down the CRT. (Must be performed before driving TYPE CRT
the printer or tape.)

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
;::::
is
z
0
U
I-
::>
(l.

~

en
z
0
;::::
is
z
0
U
I-
::>
(l.
I-
::>
0

CPU CHANGES COMMENTS IROMJSBjN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B LSB is even at exit. 20 21 22 23 24 25 26 27 -
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 30 31
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME CRTPUP
ADDRESS 35716

Powers up CRT. (Also powers down tape transport and waits TYPE CRT
for pri nter to be not busy.)

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
;::::
is
z
0
U
I-
::>
(l.

~

en
z
0
;::::
is
z
0
U
I-
::>
(l.
I-
::>
0

CPU CHANGES COMMENTS I ROMJSBl Y
0 1 2 3 4 5 6 7 OCM E

1n 11 17 11 14 15 16 17 [3 -
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 31 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-121

FUNCTION NAME CRTUNW
ADDRESS 36067

Un-wipes CRT. (See CRTWPO.) TYPE CRT

)

REGISTER CONTENTS R 12 STACK. CONTENTS

U1
z
0
i=
Ci
z
0
u
~
:::l
(l,

~

U1
Z
0
i=
Ci
z
0
u
~
:::l
(l,
f-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 31 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME CRTWPO
Wipes out CRT display. Does not cause power-down, and no ADDRESS 35661

data is lost from screen. (Often used to eliminate screen TYPE CRT

flashes and to speed up transfer of data.)

REGISTER CONTENTS R 12 STACK CONTENTS

U1
z
0
i=
Ci
z
0
U
f-
:::l
(l,

~

U1
Z
0
i=
Ci
z
0
U
f-
:::l
(l,
f-
:::l
0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 OCM E
10 11 12 13 14 15 16 17 B n 71 - LSB is even at exit. 70 71 74 7fi]6 77

AHP
30 31 32 33 34 35 36 37 UHP

40 41 42 43 44 45 46 47 30 31
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-122

FUNCTION NAME CURS
ADDRESS 35055

Generates a cursor at current CRTBYT address. TYPE CRT

R12 STACK CONTENTS

Vl
z
0
i= CRTBYT (RAM location) Current cursor Ci =
z location 0
u
....
~
Il-
~

Vl
Z
0
i= Cursor generated on CRT at CRTBYT address Ci
z
0
u
....
~
Il-....
~
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME DECUR2
ADDRESS 35547

Removes two cursors from the CRT. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
Ci
z
0
u
....
~
Il-
~

Vl
Z
0
i=
Ci
z
0
u
~
Il-....
~
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B 20" 21" "2T 2J -24 25 26 21
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-123

FUNCTION
NAME DNCUR.

Moves cursor down one line. If cursor would move off ADDRESS 35306
bottom, it wraps around to the top line of the current TYPE CRT
screen.

)

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z
0
i=
15
z
0
U
I-
::;)
a.
~

rJl
Z
0
i=
15
z
0
U
I-
::;)
a.
I-
::;)

0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27 Does not generate cursor on screen.
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME DNCURS
Moves cursor down one pas iti on. Does not wrap around on ADDRESS 35370
current page, but does wrap from bottom of alpha to top of TYPE CRT
alpha.

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z
0
i=
15
z
0
U
I-
::;)
a.
~

rJl
Z
0
i=
15
z
0
U
I-
::;)
a.
I-
::;)

0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 R 21 2. 2~ 26 27 -]0 n]J Does nol yenerdte cursor on screen. ORP ARP
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 lJ

7-124

FUNCTION NAME DRAW.
ADDRESS 33015

Draws a line from the current pen position to the specified TYPE CRT
point. (For CRT only.)

\

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i= X-coordinate (8 bytes)
Ci
z V-coordinate (8 bytes)
0
u
..... R12 -+ ----------------------
;)
IL

~

(/)

z
0
i=
Ci
z R12 -+ ----------------------
0
u
.....
;)
IL
;)

0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME EOJ2

Clears keyboard interrupt bit in SVCWRD, and clears break ADDRESS 34772

bit in R17 if no other interrupts are pending. Also sets TYPE CRT

key repeat counter.

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i=
Ci
z
0
u
.....
;)
IL

~

(/)

z
0
1=
Ci R32 = KRPETl z
0 R33 = SVCWRD u
.....
;)
IL
;)

0

CPU CHANGES COMMENTS I ROMJSB IN

0 1 2 3 4 5 6 7 OCM E

10 11 1] 13 14 15 '16 17 I f an external routine takes over CHIDLE to handle a
- -

27 20 21 22 23 24 25 26 key itselt, the routine lIIusL cdll EOJ2 before popping
ORP ARP

30 31 32 33 34 35 36 37 off two returns and returning; otherwise, it appears to
40 41 42 43 44 45 46 47 32 32
50 51 52 53 54 55 56 57 STATUS the system as though the key has not been handled yet,
60 61 62 63 64 65 66 67 and the system will keep looping back.
70 71 72 73 74 75 76 77 U

7-125

FUNCTION NAME FLIP.
ADDRESS 35011

Perfonns a keyboard FLIP. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
~
Ci
z
0
U
I-
::I
(l.

~

en
z
0
~
Ci R36 = 200 z
0
U
I-
::I
(l.
I-
::I
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 - -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 36 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME GCLR.
ADDRESS 36013

Forces graphics mode and clears graphics screen. Can have TYPE CRT
one optional parameter on R12 stack.

REGISTER CONTENTS R 12 STACK CONTENTS

en
z
0
~
Ci
z
0
U
I-
::I
(l.

~

en
z
0
~
Ci
z
0
U
I-
::I
(l.
I-
::I
0

CPU CHANGES COMMENTS WARNING TROMJSBI N
0 1 2 3 4 5 6 7 OCM E

Checks R12 against TOS to determine if there is an op-10 11 12 13 14 15 16 17 B U 20 21 22 23 24 25 26 27 tional parameter on the stack. So if something else UHP AHP
30 31 32 33 34 35 36 37 (not intended for GCLR.) is on the R12 stack, save TOS
40 41 42 43 44 45 46 47 31 U
50 51 52 53 54 55 56 57 STATUS

on the R6 stack and set TOS = R12 before calling GCLR.
60 61 62 63 64 65 66 67 Then recover TOS from the R6 stack.
70 71 72 73 74 75 76 77 U

7-126

FUNCTION NAME GRAPH.
ADDRESS 36147

Forces CRT to graphics display mode. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
i=
i5
z
0
U
I-
:l
0..
~

(/)

z
0
i= R34 i5 = ~
z R35 = 20 0
U
I-
:l
0..
I-
:l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 31 31
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME GRINIT
ADDRESS 36220

Clears graphics screen to appropriate pen condition. (Wi 11 TYPE CRT
cause flash if CRT is not wiped out.)

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i=
i5
z
0
U
I-
:l
0..
~

(/)

z
0
i=
i5
z
0
U
I-
:l
0..
I-
:l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 1] 1) 14 15 16 17 13 -20 21 22 23 24 25 26 27 Expects binary mode at entry.
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 7" 75 76 77

7-127

FUNCTION NAME HLFLIN
ADDRESS 35121

Outputs a string to the CRT without performi ng a carriage TYPE CRT
return. (Does not fill with blanks to the end of the 1 i ne.)

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z R26-27 Pointer to 1st character of 0 =
i= buffer a
z R36-37 = Number of bytes in buffer 0
u
::>
Il.
~

(/) R24 = 2 z
0 R25 i= = Ii' a R30 = CRTSTS z
0 R32 = Last byte output u R34-35 = CRTBYT (New cursor location) ::>
Il. R36 = Ii'
::>
0 R37 = Ii'

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME HMCURS
ADDRESS 35527

Moves cursor to home position on current CRT page, but does TYPE CRT
not generate cursor on CRT.

REGISTER CONTENTS R 12 STACK CONTENTS

(/)

z
0
i=
a
z
0
u
::>
Il.
~

(/)
z
0
i=
a
z
0
u
::>
Il.
::>
0

CPU CHANGES COMMENTS I ROMJSBlli

0 1 2 3 4 5 6 7 OCM E
10 11 12 13 14 15 16 17 B -
20 21 n 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

)

40 41 42 43 44 45 46 47 34 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-128

FUNCTION NAME IDRAW.
ADDRESS 32752

Performs an incremental draw from the current pen position. TYPE CRT
(CRT only.)

REGISTER CONTENTS R 12 STACK CONTENTS

en
z

(8 bytes) 0 X-increment i=
0 V-increment (8 bytes) z R12 -+ 0 ---------------------U
I-
:>
~

~

en
z
0
i=
0
z

R12 -+ ---------------------0
U
I-
:>
~
I-
:>
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME IMOVE.
ADDRESS 31675

Executes the IMOVE statement. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
E X-coordinate (8 bytes) 0
z V-coordinate (8 bytes) 0
u R12 -+ I- ----------------------
:>
~

~

en
z
0
i=
0
z R12 -+ ----------------------0
U
I-
:>
~
I-
:>
0

CPU CHANGES COMMENTS I ROMJSBIN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-129

FUNCTION NAME INCHR
ADDRESS 35244

Inputs one character from current byte address of CRT. TYPE CRT

J
REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
;::
a
z
0
u
~
:::l
Il.

~

Vl
Z
0
;::

R32 Character from CRT a =
z
0
u
~
:::l
Il.
~
:::l
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B 20 21 22 23 24 25 -26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 32 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME INCHR-
ADDRESS 35220

Same function as INCHR if CRT is wiped out. (INCHR- saves TYPE CRT
time, but should not be used unless it is guaranteed that the
CRT is wiped out.)

REGISTER CONTENTS R12 STACK CONTENTS
Vl
z
0
;::
a
z
0
u
~
:::l
Il.

~

Vl
Z
0
;::
a
z
0
u
~
:::l
Il.
~
:::l
0

CPU CHANGES COMMENTS I ROMJSBIN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -
]0 21 22 n 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

/

40 41 42 43 44 45 46 47 32 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-130

FUNCTION NAME LABEL.
ADDRESS 34044

Executes a LABEL statement to the CRT. TYPE CRT

\

REGISTER CONTENTS R12 STACK CONTENTS

(J)

z
Length of string (2 bytes) 0

i=
Ci Address of string (2 bytes)
z R12 + 0 ---------------------------
U
I-
::::l
a.
~

(J)

z
0
i=
Ci
z

R12 + ---------------------------0
U
I-
::::l
a.
I-
::::l
0

CPU CHANGES COMMENTS LROMJSBLY
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME LDIR.
ADDRESS 34020

Sets 1 abel direction for CRT graphics. TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

(J)

z
0
i= LDIR angle (8 bytes) Ci
z
0 R12 + --------------------
U
I-
::::l
a.
~

(J)

z
0
i=
Ci
z R12 + --------------------0
U
I-
::::l
a.
I-
::::l
0

CPU CHANGES COMMENTS LROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 "27
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 45 47
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-131

FUNCTION
NAME LTCUR.

Moves cursor left one position on current display. If ADDRESS 35332
cursor moves off left end of top line, it wraps around to TYPE CRT
right of bottom line.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
cs
z
0
U
I-
::J
el-

~

Vl
Z
0
i=
cs
z
0
U
I-
::J
el-
I-
::J
0

CPU CHANGES COMMENTS l ROMJSB .·N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B 20 21 - Does not generate cursor on CRT screen. 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME LTCURS
ADDRESS 35366

Moves cursor left one position. Cursor does not wrap TYPE CRT
around on current page.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
E
0
z
0
U
I-
::J
el-

~

Vl
Z
0
i=
cs
z
0
U
I-
::J
el-
I-
::J
0

CPU CHANGES COMMENTS • ROMJSB. N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -70]1 n 71 24 2fi 76]7
OHP

30 31 32 33 34 35 36 37
AHP

J

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-132

FUNCTION NAME MOVCRS

Moves cursor an incremental number of positions from its ADDRESS 35410

current position. Cursor does not wrap around on current TYPE CRT

page, but does remain on alpha screen.

REGISTER CONTENTS R 12 STACK CONTENTS

en
z
0 R24-25 Twice (2*) the number of posi-i= =
is tions to move. (Two's complement
z
0 for a negative value.) u
~
:>
Il.

~

en
z
0
i=
is
z
0
u
~
:>
Il.
~
:>
0

CPU CHANGES COMMENTS I ROMJSB I N

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B
20 21 22 23 24 25 26 27 -
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME MOVE.
ADDRESS 31703

Executes the MOVE statement. TYPE CRT

REGISTER CONTENTS R 12 STACK CONTENTS

en
z X-coordinate (8 bytes)
0
i= V-coordinate (8 bytes)
is
z R12 + ----------------------
0
u
~
:>
Il.

~

en
z
0
i=
is
z R12 + ----------------------
0
u
~
:>
Il.
~
:>
0

CPU CHANGES COMMENTS I ROMJSB IN

0 1 2 3 4 5 6 7 OCM f
10 11 12 13 14 15 16 17 \I II
20 21 22 23 24 25 26 '11
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-133

FUNCTION NAME OUTCHR
ADDRESS 35114

Outputs a single character to the CRT at the current alpha TYPE CRT
cursor position, then advances the cursor position.

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z
0
i= R32 Byte to be output a =
z
0
u
~
:::>
0..

~

rJl
z

R24-25 = 2 0
i= R30 = CRTSTS a
z R32 = Byte that was output 0
u R34-35 = CRTBYT (New cursor location) ~
:::>
0..
~
:::>
0

CPU CHANGES COMMENTS TROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME OUTSTR
ADDRESS 35052

Outputs a buffer to the CRT and executes a carri age return. TYPE CRT
Also blank fills to the end of the output 1 i ne.

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z R26-27 Pointer to 1st character 0 =
i= R36-37 Number (in binary) of characters a =
z to be output. 0
u
~
:::>
0..

~

rJl
Z
0
i=
a
z
0
u
~
:::>
0..
~
:::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B - Sets binary mode hefore exit.
~o ~ 1 7~ n 2~ 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-134

FUNCTION NAME PEN.
ADDRESS 66416

Selects graph; cs pen. (CRT only.) TYPE CRT

\

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
t= Pen # (8 bytes) is
z R12 -+ 0 ---------------
U
I-
:l
Cl.

~

(/)

z
0
t=
is
z R12 -+ ---------------0
U
I-
:l
Cl.
I-
:l
0

CPU CHANGES COMMENTS I ROMJSBI y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 47 40
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME PENUP.
ADDRESS 66440

Executes the PENUP statement. (For CRT only.) TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z
0
t=
is
z
0
U
I-
:l
Cl.

~

(/)

z
0
t=
is
z
0
U
I-
:l
Cl.
I-
:l
0

CPU CHANGES COMMENTS LROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 1] 11 14 15 16 17 - -20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 30 -
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 ~

7-135

FUNCTION NAME PLOT.
ADDRESS 32642

Executes the PLOT statement. TYPE CRT

)
REGISTER CONTENTS R12 STACK CONTENTS

Ul
z
0
i=

X-coordinate (8 bytes) Ci
z V-coordinate (8 bytes) 0
u R12 -+ I- ----------------------::J
Q..

~

Ul
Z
0
i=
Ci
z
0
u

R12 -+ ----------------------I-
::J
Q..
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 I 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME RTCUR.
ADDRESS 35351

Moves cursor right one position on current CRT page. From TYPE CRT
extreme bottom right, cursor wraps around to top left.

REGISTER CONTENTS R 12 STACK CONTENTS

Ul
z
0
i=
Ci
z
0
U
I-
::J
Q..

~

Ul
Z
0
i=
Ci
z
0
U
I-
::J
Q..
I-
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -]0]1 n]3 24 25]6 27 Oaes not ~enerate cursor on CRT screen.
30 31 32 33 34 35 36 37 UHf' AHP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-136

FUNCTION NAME RTCURS
ADDRESS 35404

Moves cursor right one position. Cursor does not wrap TYPE CRT
around on current CRT page.

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z
0
i=
is
z
0
U
I-
::>
a..
~

Vl
Z
0
i=
is
z
0
U
I-
::>
a..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B Does not generate cursor on CRT screen. -20 21 22 23 24 25 26 27
JO 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

FUNCTION NAME SCALE.
ADDRESS 66247

Executes the SCALE statement. (For CRT only.) TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

Vl
z X-minimum (8 bytes) 0
i= X-maximum (8 bytes) is
z V-minimum (8 bytes) 0
u V-maximum (8 bytes) I-
::> R12 + -------------------a..
~

Vl
Z
0
i=
is
z R12 + -------------------0
U
I-
::>
a..
I-
::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77 U

7-137

FUNCTION I NAME SCRDN
ADDRESS 35625

Scrolls CRT down one line, leaving cursor in same relative TYPE CRT
position on CRT.

J
REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
1=
is
z
0
u
~
::J
Cl.

~

en
z
0
1=
is R34-35 = CRT RAM z
0
u
~
::J
Cl.
~
::J
0

CPU CHANGES COMMENTS I ROMJSB I N
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME SCRUP
ADDRESS 35654

Sero 11 s CRT up one 1 i ne, leaving cursor in same relative TYPE CRT
position on CRT.

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
1=
is
z
0
u
~
::J
Cl.

~

en
z
0
1= R34-35 = CRTRAM is
z
0
u
~
::J
Cl.
~
::J
0

CPU CHANGES COMMENTS 1 ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -70 71 n 73 24 2!i 76 77
AAf>

30 31 32 33 34 35 36 37 UHf'
/

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-138

FUNCTION NAME UPCUR.
ADDRESS 3~264

Moves cursor up one line on current page. From top line of TYPE CRT
page, cursor wraps around to bottom 1 i ne.

\

REGISTER CONTENTS R 12 STACK CONTENTS

en
z
0
i=
Ci
z
0
u
~
::>
n.
~

en
z
0
i=
Ci
z
0
u
~
::>
n.
~
::>
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B -
20 21 22 23 24 25 26 27 Does not generate cursor on screen.
30 31 32 33 34 35 36 37

DRP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME UPCURS

Moves cursor up one position. Cursor does not wrap around ADDRESS 35362

on current page, but does wrap around from top of alpha to TYPE CRT

bottom of alpha.

REGISTER CONTENTS R12 STACK CONTENTS

en
z
0
i=
Ci
z
0
u
~
::>
n.
~

en
z
0
i=
Ci
z
0
u
~
::>
n.
~
::>
0

CPU CHANGES COMMENTS I ROMJSBIJi
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 R -io- il ii ij f--i4 -i5 26 21 Dues not generate cur~or on CRT screen.
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 34 24
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

7-139

FUNCTION
NAME XAXIS.
ADDRESS 32303

Executes the XAXIS statement. (For CRT only.) TYPE CRT

REGISTER CONTENTS R 12 STACK CONTENTS

rJl
z
0

V-intercept (8 bytes) ~
a Ti c spaci ng (8 bytes) z
0 X-minimum (8 bytes) u
~ X-maximum (8 bytes) :::l
a..
~ R12 -+ ---------------------

rJl
Z
0
~
a
z

R12 -+ ---------------------0
u
~
:::l
a..
~
:::l
0

CPU CHANGES COMMENTS I ROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27 Only the V-intercept is requi red. The other three
30 31 32 33 34 35 36 37 ORP ARP

parameters are optional.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION NAME VAXIS.
ADDRESS 32347

Executes the VAXIS statement. (For CRT only.) TYPE CRT

REGISTER CONTENTS R12 STACK CONTENTS

rJl
z X-intercept (8 bytes) 0
~ Tic spacing (8 bytes) a
z V-minimum (8 bytes) 0
u V-maximum (8 bytes) ~
:::l R12 -+ ---------------------a..
~

rJl
Z
0
~

R12 -+ ---------------------a
z
0
u
~
:::l
a..
~
:::l
0

CPU CHANGES COMMENTS LROMJSB IN
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 2~ 2fl 26 27 Only X-intercept is requi red. The other three
30 31 32 33 34 35 36 37 ORP ARP

parameters are optional.
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-140

\

HP-83/85 System Routines

TAPE CONTROL ROUTINES

Routines which provide the major entry points for control of a tape cartridge
follow. In general, each of these routines expects an argument to be on the R12
stack when the routine is called.

7-141

FUNCTION NAME ASIGN.
ADDRESS 27056

Assigns a buffer to a data fi 1 e. TYPE Tape

REGISTER CONTENTS R 12 STACK CONTENTS

en
(8 bytes) z Buffer # 0

t= File name length (2 bytes) 0
z File name address (2 bytes)
0 R12 + u ---------------------------
~
:::>
0..
~

IJ)

z
0
t=
0
z R12 + ---------------------------0
u
~
:::>
0..
~
:::>
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME CREA T.
ADDRESS 26561

Creates a data fi 1 e. TYPE Tape

REGISTER CONTENTS R12 STACK CONTENTS

IJ)

z File 1 ength (2 bytes) 0 name
t= File name address (2 bytes) 0
z # Records (8 bytes) 0
u # Bytes/record (8 bytes) ~
:::>
0..

R12 + ---------------------~

IJ)
z
0
t=
0
z R12 + ---------------------------0
u
~
:::>
0..
~
:::>
0

CPU CHANGES COMMENTS I ROMJSB I y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 2) 24 2!i 26 27
30 31 32 33 34 35 36 37

ORP ARP
/

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-142

FUNCTION NAME P#ARAY
ADDRESS 57642

Prints an entire array to a tape data file. TYPE Tape

REGISTER CONTENTS R12 STACK CONTENTS

(/) (2 bytes) z Address of array
0
i= Name block (2 bytes)
c
z R12 -+ --------------------------
0
U
I-
::::l
a.
~

(/)

z
0
i= c R12 -+ --------------------------
Z
0
U
I-
::::l
a.
I-
::::l
0

CPU CHANGES COMMENTS I ROMJSBI Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

FUNCTION I NAME PRNT#.
ADDRESS 30055

Move the print pointers in the buffer. Executes the PRINT#l, TYPE Tape

or PRINT#l, 1, portion of a serial or random PRINT to a data
file on tape cartridge.

REGISTER CONTENTS R12 STACK CONTENTS

(/)

z Assign buffer # (8 bytes)
0
i= Record # if random (8 bytes)
c
z R12 -+ ____________ i2e!!2~~12 ______
0
u
I-
::::l
n.
~

(/)

z
0
i= R12 -+ ----------------------------
C
z
0
U
I-
::::l
n.
I-
::::l
0

CPU CHANGES COMMENTS I ROMJSB I Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 II II
20 21 22 23 24 25 2'6 hT ARP
30 31 32 33 34 35 36 37 ORP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-143

FUNCTION
NAME PURGE.
ADDRESS 26013

Purge a fil e. TYPE Tape

_J
REGISTER CONTENTS R12 STACK CONTENTS

rJl File name length (2 bytes) z
0 File name address (2 bytes) i=
0 ALL flag (8 bytes) z R12 -+ 0 ---------------------------u

(ALL flag is optional. See PURGE to-
::J

command in computer owner's Q..

~ handbook.)

rJl
z
0
i=
0
z
0
U
to-
::J
Q..
to-
::J
0

CPU CHANGES COMMENTS I ROMJSB I Y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37 ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U 70 71 72 73 74 75 76 77

FUNCTION NAME R#ARAY
ADDRESS 77602

Reads an entire array from a tape data file. TYPE Tape

REGISTER CONTENTS R 12 STACK CONTENTS

rJl
z Address of array (2 bytes) 0
i= Name block (2 bytes) 0
z R12 -+ --------------------------0
U
to-
::J
Q..

~

rJl
Z
0
i=
0

R12 -+ --------------------------
Z
0
U
to-
::J
Q..
to-
::J
0

CPU CHANGES COMMENTS I ROMJSBI y
0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 B U
20 21 22 23 24 2!i 211 27

32 33 35 36 37 ORP ARP
30 31 34
40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

U 70 71 72 73 74 75 76 77

7-144

FUNCTION NAME READ#.
ADDRESS 30055

Executes the READ#l, or READ#l,l, portion of a serial or TYPE Tape

random READ from a data file on a tape cartridge.

REGISTER CONTENTS R 12 STACK CONTENTS

en
z buffer # (8 bytes) a Assign
~
is

Record # (8 bytes) (optional)
z R12 -+ a -----------------------------
u
I-
::::l
Il-

~

en
z
a
E
0
z R12 -+ -----------------------------
a
u
I-
::::l
ll-
l-
::::l
a

CPU CHANGES COMMENTS LROMJSBI Y

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17 U U
20 21 22 23 24 25 26 27 See READN. and READ$.
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47 U U
50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67 U
70 71 72 73 74 75 76 77

FUNCTION NAME

ADDRESS

TYPE

REGISTER CONTENTS R12 STACK CONTENTS

en
z
a
~
is
z
a
u
I-
::::l
Il-

~

en
z
a
~
is
z
a
u
I-
::::l
ll-
l-
::::l
a

CPU CHANGES COMMENTS I ROMJSB I

0 1 2 3 4 5 6 7 OCM E

10 11 12 13 14 15 16 17

20 21 22 23 24 25 2S- if
30 31 32 33 34 35 36 37

ORP ARP

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57 STATUS
60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

7-145

HP-83/85 System Routines

DECOMPILING

Decompiling is a two-stack operation.
register R12 is used as the expression
addressed by R30 is used as the output

The increasing stack pointed to by CPU
stack, while the increasing stack
buffer.

Decompiling uses system routines, especially utility routines such as for fetch­
ing variable addresses, that will be found in other areas of this section.

7-146

)

\ SECTION 8

SAMPLE BINARY PROGRAMS

This section is made up of six prewritten binary programs. In addition to being

listed here, these programs are available on the tape cartridge and disc that

accompany the Assembler ROM. On the cartridge and disc, source code file names

end in "S," while those of object code files end in "B."

Each of these programs is designed to illustrate a facet of assembly-language

programming on the HP-83/85, and each provides a function or keyword that is

itself useful to the HP-83/85 operating system.

Each program listing contains at the end a table of addresses of HP-83/85 system

routines that are used by the program. Inserting the Assembler Global File tape

cartridge or disc and placing a GLO GLOBAL pseudo-op near the beginning of the

program obviates the need for this list of addresses in some of the example

programs. (Certain example programs, however, call system routines whose ad­

dresses are not available on the Assembler Global File tape cartridge or disc.)

FAHRENHEIT TO CELSIUS FTOC BINARY

Source File: FTOCS

Object File: FTOCB

This program provides a single system function, FTOC, that converts values of

temperatures in degrees Fahrenheit to degrees Celsius. Its source code and object

code may be found listed in section 6 of this manual.

8-1

Sample Binary Programs

SOFT KEYS AS TYPING AIDS SOFTKEY BINARY
Source File: SOFTKS
Object File: SOFTKB

This program permits each special function, or "soft," key ([Kl], [K2], etc.) to
contain a string of up to 95 characters; the characters are all output when the
key is pressed.

The program implements a single BASIC statement:

Format: SOFTKEY ~, end1 i ne code, "text"

Description: Key # is a one-digit code (1-8) that selects the special function
key. End1ine code can be either 0, to indicate text is followed
by an [END LINE]; or 1, to indicate text is not followed by an
[END LINE]. Text can be a string of up to 95 characters.

If text is followed by an [END LINE] (i.e., an endline code of 0 is
specified) the text must be an expression, BASIC statement, program
line, etc., that can be understood and parsed by the HP-83/85. The
expression, statement, etc. will be executed immediately when the
specified special function key is pressed.

The program takes over the character idle hook CHIDLE, and it also contains its
own error messages.

8-2

)

/

1 !****************************
2 '* SOFTKEY BINARY *
3 !* (c) Hewlett-Packard Co. *
4 ! * 1980 *
5 !****************************
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

FORMAT OF COMMAND IS:
SOFTKEY <NUMEXP>,<NUMEXP>,

<STREXP>
THE FIRST NUMEXP SELECTS
THE KEY, AND THE SECOND
SELECTS WHETHER THE TEXT IS
FOLLOWED BY AN ENDLINE (0)
OR NOT (NOT=O). THE STRING
IS THE TEXT ON THE KEY.

NAM SOFTKY
DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

160 PARSE BYT 0,0
170
180 RUNTIM

200
210 SOFTf'::,
220
23()
240
250
260
270
280
290
300
310 ASCIIS
320

DEF SOFTK,
BYT 0,0
DEF SOFTf':.
BYT 3T7, :577
PUBO R43,+R6
JSB =NUMVA+
JSB =GETCMA
JSB =NUMVAL
JSB =GETCMA
JSB =STREXP
POBD R47,-R6
LDB R45, =:371
PUMD R45,+R12
RTN
ASP "SOFTKEY"
BYT 377

330 ERMSG
340

BYT 200,200,200,200,200,200,200,200,200
ASP "SOFH::EY NUMBER OUT OF RANGE "

350
360
370 INIT
380
390
400
410
420
430
440
450
460
470 INITAL
480
490
500
510
520
530

ASP "SOFn~EY STRING TOO LONG "
BYT 377
LDBD RO, =RDI"lFL
CMB RO,=l
JZR INITAL
CMB RO,=5
JZR F<TNRTN
CMB RO,=2
JZR F<TNRTN
CMB RO,=3
J ZR INITAL
RTN
LOM F<34, =~::EYHAT
ADMD R34,=BINTAB
LDB R74,=316
STM R34,R75
LOB R77,=236
STMO R74,=CHIOLE
RTN

540 RTNRTN LDB R34,=236
550 STBD R34,=CHIOLE

8-3

Sample Binary Programs

Sample Binary Programs

560 RTN
570 ! GET BINARY KEY# OFF STACK
580 !CHECK FOR CORRECT RANGE, RETURN ABSOLUTE ADDRESS OF KEY STORAGE IN R46,R
47
590 KEY#
600
610
620
630
640
650
660
670
680
690 ERRORl
700
710 ERROR2
720
730
740 SOFn::.
750
760

JSB =ONEB
CMM R46,=l,O
JNC ERRORl
CMM R46,=11,0
JCY ERRORI
LLM R46
ADMD R46,=BINTAB
LDMD R46,X46,KEYTBL
ADMD R46,=BINTAB
RTN
JSB =ERROR+
BYT 366
JSB =ERROR+
BYT 365
BYT 241
BIN
POMD R32,-R12
POMD R30,-R12

770 CMM R30,=1,0
780 JCY CHNGKY
790 POMD R40,-R12
800 LDM R36,=KEY#
810 ADMD R36,=BINTAB
820 JSB X36,ZERO
830 CLB R45
840 STBD R45,R46
850 RTN
860 CHNGKY CMM R30,=140,O
870 JCY ERROR2
880 JSB =ONEB
890 LDM R26,R46
900 LDM R36,=KEY#
910 ADMD R36,=BINTAB
920 JSB X36,ZERO
930 CMM R26,=0,0
940 JNZ AROUND
950 LDB R31,=200
960 ORB R30,R31
970 AROUND PUBD R30,+R46
E
980
990 LOOP
1000
1010
1020
1030 KEYRTN
1040 KEYHAT
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

ANM R30,=177,0
POBD R26,+R32

PUBD R26,+R46
DCB R30
JNZ LOOP
RTN
BIN
CLM R26
LDBD R26,=KEYHIT
CMB R26,=200
JNC KEYRTN
CMB R26,=210
JCY f<EYRTN
SBM R26,=177,O
LLM R26
ADMD R26,=BINTAB
LDMD R26,X26,KEYTBL
ADMD R26,=BINTAB
POBD R:36, +R26

! IS KEY#< 17
'JIF YES
! IS I<:EY# >=97
!JIF YES
!DOUBLE FOR TABLE
!MAKE KEY# ABSOLUTE
!LOAD ADDRESS OF KEY STORAGE
!MAKE IT ABSOLUTE

!KEY NUMBER OUT OF RANGE

'STRING TOO LONG

!BASIC COMMAND ATTRIBUTE

!GET STRING ADDRESS
'GET STRING LENGTH
'IS IT A NULL OR O-LENGTH STRING?
'JIF NO
!TRASH IMMEDIATE EXECUTION PARAMETER
!GET ADDRESS OF SUBROUTINE
'MAKE IT ABSOLUTE
! JUMP TO IT
!CLEAR LENGTH OF KEY STRING=>NoTHING THERE

!DONE
!IS LENGTH>=96?
!JIF YES
!GET IMMEDIATE KEY-EXECUTION VALUE FROM STACK
!SAVE IN R26
'GET ADDRESS OF SUBROUTINE
!MAKE IT ABSOLUTE
!JUMP TO IT
'SHOULD IT BE IMMED. EXEC.?
!JIF NO
'SET PAR ITY BIT
'SET PARITY BIT=>IMMED. EXEC.
!SAVE LENGTH AND POINT TO START OF STRING STORAG

!CLEAR OFF IMMED. EXEC. BIT, IF ANY
!GET BYTE OF STRING
! SAVE IT
!DoNE YET?
!JIF NO
'DONE

'LOAD KEY CODE
! IS IT <: 2007
!JIF YES
'IS IT >=210?
'JIF YES
!GET TO KEY#
!DOUBLE # FOR TABLE
'MAKE IT ABSOLUTE
'GFT ADDRESS OF VEY STORAGE
!MAKE IT ABSOLUTE
!GET LENGTH

8-4

J

1170 CMB
1180 JNZ
1190 RTN
1200 NEXT STB
1210 ANM
1220 JSB
1230 JSB
1240 TSB
1250 JNG
1260 CLE
1270 JSB
1280 POMD
1290 RTN
1300 OUTCR LDB
1310 STBD
1320 RTN
1330 KEYTBL BYT
1340 DEF
1350 DEF
1360 DEF
1370 DEF
1380 DEF
1390 DEF
1400 DEF
1410 DEF
1420 1< 1 BYT
1430 ASC
1440 BSZ
1450 ~'..., , ... BYT
1460 ASC
1470 BSZ
1480 1<3 BYT
1490 ASC
1500 BSZ
1510 K4 BYT
1520 ASC
1530 BSZ
1540 fo""'" ..• --J BYT
1550 ASC
1560 BSZ
1570 1<6 BYT
1580 ASC
1590 BSZ
1600 K7 BYT
1610 ASC
1620 BSZ
1630 1<8 BYT
1640 ASC
1650 BSZ
1660 CURS DAD
1670 CHIDLE DAD
1680 I<EYHIT DAD
1690 BINTAB DAD
1700 HLFLIN DAD
1710 EOJ2 DAD
1720 ROMFL DAD
1730 OUTCHR DAD
1740 NUMVA+ DAD
1750 GETCMA D?m
1760 NUMVAL DAD
1770 STFiEXF' DAD

R36,=O
NEXT

R:36, R77
R36,=177,0
=HLFLIN
=CURS
R77
OUTCR

=EOJ2
R74,-R6

R26!, =232
R26, =KEYH IT

0,0
1:::1
V"":;.

f<:3
f<4
1<5
1<6
1<7
1<8
.-,
.:.

"~:: 1"
140
2
IIK211
140
2
IIK3 11

140
2
"f<4"
140
2
111<5 11

140
2
"1<6"
140
2
"t:::7f1
140
2
"f<8"
140
35055
102416
100671
101233
35121
34772
101231
35114
12407
13414
12412
13626

! IS IT EMPTY?
!JIF NO
!LET SYSTEM HANDLE IT
! SAVE FOR LATEF<

Sample Binary Programs

'MASI< OFF IMMED. EXEC. BIT
!OUTPUT KEY STRING
'SPIT OUT CURSOR
'IS IMMED. EXEC BIT SET?
!JIF YES
!DONE WITH KEY
!CLEAN UP
!TRASH 2 RETURNS

!LOAD ENDLINE
'PUT ENDLINE IN KEYHIT
!LET SYSTEM HANDLE IT

8-5

Sample Binary Programs

1780 ONEB DAD 56113
1790 ERROR+ DAD 6611
1800 ZERO
1810

EQU 0
FIN

/

/

)

8-6

STRING UNDERLINE

Sample Binary Programs

STRING UNDERLINE BINARY PROGRAM
Source File: UDL$S
Object File: UDL$B

When passed one string parameter, this program returns the same string with all
characters underlined. It implements a BASIC string function with one string
parameter.

Format: UDL$ ("s tring expression")

Description: Returns the same string expression with all characters underlined.

8-7

Sample Binary Programs

10 !***************************
20 '* STRING UNDERLINE *
30 !* (c) Hewlett-Packard Co. *
40 !* 1980 *
50 !***************************
60 NAM UDLB IN! SET UP PROGRAM CONTROL BLOCK
70 DEF RUNTIM !PTR TO RUNTIME ADDRESS TABLE
80 DEF ASCIIS !PTR TO KEYWORD TABLE
90 DEF PARSE !PTR TO PARSE ADDRESS TABLE
100 DEF ERMSG 'PTR TO ERROR MESSAGE TABLE
110 DEF I NIT! PTR TO I N IT ROUTI NE FOR SYSTEM
120 !***

* 130 PARSE BYT 0,0 !DUMMY TOK #0 PARSE PTR
140 RUNTIM BYT 0,0 !DUMMY TOK #0 RINTIME
150 DEF UDL1Ii. ! TOf< #1 RUNTIME
160 BYT 377,377 !TERMINATE RELOCATABLES
170 '***

180 ASCIIS ASP "UDL$" !KEYWORD #1
190 BYT 377 ! TERMINATE ASCI IS TABLE
200 !***

210 ERMSG BSZ 0
220 BYT 3Tl ! NO ERROR MESSAGES
230 !***

240 INIT BSZ 0 !NO INITIALIZATION TO BE DONE
250 RTN ! DONE
260 !***

270
R)
280 UDL$.
290
300
310
320
330
340
350
360 MOF.'E
370
380
390
400
410
420 DONE
430 RSMEM-
440

BYT 30,56

POMD R36,-RI2
POMD R30,-RI2
STM F\30, R56
JSB =RSMEM­
PUMD R30, +F(12
PUMD R26,+RI2
BIN
LDB R34,=200
DCM R30
JNC DONE
POBD R20,+R36
ORB R20,R34
PUBD R20,+R26
JMP MORE
RTN
DAD 37453
FIN

, ATTRIBUTES (STRING FUNCTION, 1 STRING PARAMETE

!POP STRING ADDRESS OFF OF R12 STACK
!POP STRING LENGTH OFF OF R12 STACf<
!LENGTH NEEDS TO BE IN 56 FOR 'RSMEM-'
'GO GET SOME TEMPORARY MEMORY
!PUSH ADDRESS RETURNED BY 'RSMEM-' ON R12 STACK
'PUSH LENGTH BACK ONTO THE R12 STACf<
!SET MATH MODE FOR LOOP COUNTER
'SET UP MASK
!DECREMENT LOOP COUNTER
!JIF NO CHARACTERS LEFT
!GET NEXT CHARACTER
!SET MSB OF CURRENT CHARACTER
!PUSH UNDERLINED CHARACTER BACK
!GO GET SOME MORE
!DONE

8-8

J

/

GRAPHICS CURSOR

Sample Binary Programs

GCURS BINARY
Source File: GCURS
Object File: GCURB

This binary program implements a graphics cursor and allows the four cursor keys
on the computer to control the cursor. There are five new keywords implemented
by the program:

Format: GCURSOR x-location, y-locat;on [, slow-step distance, fast-step
distance]

Description: A BASIC statement; x,y is location where cursor is placed on the
CRT graphics screen initially. Slow-step distance (optional) is
the distance the graphics cursor moves with each press of a cursor
control key. Fast-step distance (optional) is the distance the
cursor moves with each press of a shifted cursor control key.
Default step distances are 1 and 4, respectively.

The cursor keys control the graphics cursor only when a program is
running.

Format: GCURSOR OFF

Description: A BASIC statement; turns cursor control keys off and removes the
graphics cursor from the CRT screen.

Format: GCURSOR X

Description: A numeric function with no parameters; returns the current x­
location of the graphics cursor.

Format: GCURSOR Y

Description: A numeric function with no parameters; returns the current y­

location of the graphics cursor.

Format: REV DATE

Description: A string function with no parameters; returns the revision date of

the program.

8-9

Sample Binary Programs

'****************************
2 '* GCURS BINARY *
3 !* (e) Hewlett-Packard Co. *
4 ! * 1980 *
5 !****************************
10
20
30
40
50
60
70 RUNTIM
80
90
100
110
120
130 PARSES
140
150
160

NAM GCURS
DEF RUNTIM !PTR TO RUNTIME ROUTINES TABLE
DEF ToKS !PTR TO ASCII TABLE
DEF PARSES 'PTR TO PARSE ROUTINES TABLE
DEF ERMSG !PTR TO ERMSG TABLE
DEF INIT 'PTR TO INIT ROUTINE
BSl 2 !ToK 0 RUNTIME PTR (DUMMY)
DEF GCoFF. !ToK 1 RUNTIME PTR
DEF GCURX. !ToK 2 RUNTIME PTR

DEF GCURY. !ToK 3 RUNTIME PTR
DEF GCURS. !ToK 4 RUNTIME PTR
DEF REV. !ToK 5 RUNTIME PTR
BSl 2 !ToK 0 PARSE ROUTINE (DUMMY)
DEF GCoFFP , ToK 1 PARSE ROUTINE PTR
BSl 2 'ToK 2 PARSE ROUTINE (DUMMY)
BSl 2 !ToK 3 PARSE ROUTINE (DUMMY)

170 DEF GCPAR 'ToK 4 PARSE ROUTINE PTR
180 ERMSG BYT 377,377 'END OF RELoCATABLE ADDRESSES & ERMSG'S
190 ToKS
200
210
220
230
240

ASP "GCURSoR OFF" ! ASC I I FOR KEYWORD 1
ASP "GCURSoR X" , ASC I I FOR KEYWORD 2
ASP "GCURSoR Y" , ASC I I FOR KEYWORD 3
ASP "GCURSoR" , ASC I I FOR KEYWORD 4
ASP "REV DATE" ! ASCI I FOR KEYWORD 5
BYT 377 'END OF KEYWORD TABLE

250 !***
260 INIT BIN 'FOR BINARY COMPARE
280 LDBD R34,=ROMFL 'GET RoMFL (REASON FOR INIT)
290
300

CMB R34,=2 !SCRATCH?
JNZ LoAD~ 'JIF NO

310 SCRAT' LDM R44,=236,236,236,236 !LoAD RTNS
320 STMD R44,=CHIDLE !STORE TO CHIDLE (RETURN HOOK TO SYSTEM)
:;.:':;.0 RTN
340 LOAD? CMB R#,=5 'LOAD?

JlR SCRAT' 'JIF YES, WE'RE GETTING SCRATCHED 350
360
370

RTN RTN !DoNE, ONLY CASES WE CARE ABOUT
!***

380 LEFT LDMD R40,X14,STEP 'LOAD SLOW STEP OFFSET
390
400 RIGHT
410
420 KEY
430
440
450
460
470
480
490
500
510
520
530
540
550
560

JMP CoMLEF 'GO MOVE CURSOR LEFT
LDMD R40,XI4,STEP 'LOAD SLOW STEP OFFSET
JMP CoMRIT !Go MOVE CURSOR RIGHT
LDMD R14,=BINTAB !BASE ADDRESS OF BIN PRGM
BIN !FoR COMPARE
CMB R16,=2 !IN RUN MODE?
JNZ RTN 'JIF NO, DON'T DO
LDMD R22,=KEYHIT 'GET KEYCoDE OF PRESSED KEY
CMB R22,=211 'SHIFTED RIGHT CURSOR KEY?
JZR FRIGHT !JIF YES
CMS R22,=223 'SHIFTED LEFT CURSOR KEY?
JZR FLEFT 'JIF YES
CMS R22,=245 'SHIFTED UP CURSOR KEY?
JZR FUP !JIF YES
CMS R22,=242 !DoWN CURSOR KEY?
,JZF< DOWN 'JIF YES
CMB R22,=234 !LEFT CURSOR KEY?
JZR LEFT !JIF YES

8-10

/

/

570
580
590
600
610
620
630
640 DOWN
650
660 UP
670
680 FRIGHT
690 COMRIT
700
710
720
730 COM-X
740
750
760 FLEFT
770 COMLEF
780
790
800
810
820 FUP
830 COMUP
840
850
860
870
880
890
900 FDDWN
910 COM DOW
920
930
940
950
960
970 COI'1KEY
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100 TEST--X
1110
1120
1130
1140
1150
1160
117n

CMS R22,=235
JZR RIGHT
CMS R22,=241
JZR UP
CMB R22,=254
JZR FDOWN
RTN
LDMD R40,XI4,STEP
JMP COMDOW
LDMD R40,XI4,STEP
JMP COMUP
LOMO R40,XI4,FSTEP
PUMD R#,+R12
LOMD R50,XI4,CURS-X
PUMD R50,+RI2
JSB =AODROI
LDMD R40,XI4,CURS-Y
PUMD R40, +1"\12
JMP COMI<EY
LOMD R40,XI4,FSTEP
LDMD R50,XI4,CURS-X
PUMD R50,+RI2
PUMD R40,+RI2
JSB ==SLJBROI
JMP COM-X
LDMD R40,XI4,FSTEP
LOMD R50,XI4,CURS-X
PUMD R50,+R12
PUMD R40,+RI2
LDMD R40,X14,CURS-Y
PUMD R40,+R12
JSB ::ADDROI
JMP COMKEY
LDMD R40,X14,FSTEP
LDMD R50,XI4,CURS-X
PUMD R50,+R12
LDMO R50,XI4,CURS-Y
PUMD R50,+R12
PUMD R40,+RI2
JSB =SUBROI
JSB X14,PLOT
CLM R50
POMD R40,-RI2

PUMD R40, +F< 12
JSB ==COMFLT
POMD R40, ·-RI2
JEN TEST-X
PUl'lD R40, +R 12

IRIGHT CURSOR KEY?
!JIF YES
! UP CURSOR ~:'EY?

!JIF YES

Sample Binary Programs

!SHIFTED DOWN CURSOR KEY?
!JIF YES
IELSE LET SYSTEM HANDLE THE KEY
!LOAD SLOW STEP CONSTANT
!GO MOVE DOWN
!LOAD SLOW STEP CONSTANT
!GO MOVE UP
!LOAO FAST STEP CONSTANT
IPUSH STEP VALUE ON R12
!GET CURRENT X FOR ADD
IPUSH T() R12
'ADD STEP TO CURRENT X
'GET CURRENT Y
IPUSH TO R12 STACK
IGO MOVE CURSOR
!LOAD FAST STEP CONSTANT
!GET CURRENT X
'PUSH F()R SUBTRACT
'PUSH STEP VALUE FOR SUBTRACT
'SUBTRACT STEP FROM CURRENT X
!GO PUSH Y AND FINISH
'LOAD FAST STEP CONSTANT
'GET CURRENT X LOCATION
'PUSH TO R12 STACK
!PUSH V-STEP TO R12 STACK
'GET CURRENT Y LOCATION
!PUSH TO R12
'ADD STEP TO CURRENT LOCATION
IMOVE CURSOR ON SCREEN
'LOAD FAST STEP CONSTANT
'GET CURRENT X LOCATION
'PUSH TO R12 STACK
IGET CURRENT Y LOCATION
'PUSH TD R12 STACK
IPUSH STEP VALUE TO R12
'SUBTRACT STEP VALUE
!ERASE OLD CURSOR
'FOR COMPARE
!GET NEW Y
'SAVE IT
! IS Y>=ZERO ?
'RECOVER Y
'~J IF NO
'SAVE Y

LDM R50,=2,O,0,0,0,0,20C,19C IREAL 192
JSB =COMFLT lIS Y(192
POMD R40,-RI2 'RECOVER Y
JEZ TEST-X
STMD R40,XI4,CURS-Y !STORE IT AWAY
CLM R50 'FOR COMPARE
POMD R40,-RI2 !GET NEW X
PUMD R40,+RI2 !SAVE X
JSB =COMFLT !X>=O
POMD R40,-RI2 'RECOVER X
JEN MOVCUR 'JIF NO
PUMD R40, +F< 12 'SAVE X
I DM R50,=2,O,O,O,O,O,60C.25C IREAL 256

8-11

Sample Binary Programs

1180
1190
1200
1210
1220
1230 MOVCUR
1240
1250
1260
1270 LOOPKE
1280
1290

JSB =CoMFLT
BIN
PoMD R40, ·-R 12
JEZ MOVCUR
STMD R40,XI4,CURS-X
JSB XI4,PLOT
CLE
JSB =EoJ2
LDBD R31,XI4,KEYCON
LDBD R30,=KEYSTS
LRB R30
JEV EOJ

!X<256 ?
'CoMFLT RETURNS IN BCD MODE
!RECoVER X

!SToRE IT AWAY
'SPIT OUT NEW CURSOR
!FLAG KEY HANDLED
'RESET R17 & SVCWRD
'LOAD KEY REPEAT SPEED
!GET KEYBOARD STATUS
! KEY ST I LL DOWN'?
!JIF NO

1300 LDBD R30,=CRTSTS !GET CRT STATUS
1310 LRB R30 'AT RETRACE?
1320 JEV LOoPKE !JIF YES
1330 LOoPK2 LDBD R30,=KEYSTS !GET KEYBOARD STATUS
1340 LRB R30 !KEY DEPRESSED?
1350 JEV Eoa !aIF NO
1360 LDBD R30,=SVCWRD 'ANOTHER KEY?
1370 aDD EOc1 ! J I F YES
1380 LDBD R30,=CRTSTS 'GET CRT STATUS
1390 LRB R30 !RETRACE?
1400 JOD LOoPK2 !JIF NO
1410 DCB R31 'DECREMENT WAIT COUNT
1420 JNZ LOoPKE 'JIF NOT DONE WAITING
1430 LDB R31,=KYRPT2 !GET FAST REPEAT COUNT
1440 STBD R31,XI4,KEYCON 'SET IN KEYCON FOR FAST REPEAT
1450 LDM R20,=KEY 'GET ADDRESS OF KEY ROUTINE
1460 ADM R20,R14 'MAKE ABSOLUTE (ADD BINTAB)
1470 DCM R20 'DECREMENT FOR LOAD INTO PC
1480 LDM R4,R20 !LoAD PC WITH ADDRESS (DOES A GTo)
1490 EOJ LOB R31,=KYRPTl !RESET KEY REPEAT TO SLOW WAIT
1500 STBD R31,XI4,KEYCON 'STORE IT
1510 PoMD R44,-R6 'THROW AWAY TWO RETURNS
1520 CLE 'FLAG KEY HANDLED
15:3C) RTN ' DONE
1540 '**
1550 GCPAR PUBD R43,+R6 'SAVE INCOMING TOKEN
1560 JSB =NUMVA+ 'GET A NUMERIC EXPRESSION
1570 JEN OK 'JIF GOT ONE
1580 ERR JSB =ERROR+ !ELSE ERROR
1590 BYT 81D !BAD EXPRESSION
1600 OK JSB =GETCMA !DEMAND A COMMA
1610 JSB =NUMVAL 'GET ANOTHER NUMERIC VALUE
1620 JEZ ERR 'JIF NOT THERE
1630 eMB RI4,=54 'ANOTHER COMMA?
1640 JNZ DONE 'JIF NO, THAT'S ALL
1650 JSB =NUMVA+ !ELSE GET ANOTHER NUMBER
1660 JEZ ERR 'JIF NOT THERE
1670 JSB =GETCMA !DEMAND ANOTHER COMMA
1680 JSB =NUMVAL 'GET YET ANOTHER VALUE
1690 aEZ ERR 'JIF NOT THERE
1700 DONE PoBD R47,-R6 !RECOVER INCOMING TOKEN
1710 LDB R45,=371 'LOAD BIN PRGM TOKEN FLAG
1720 PUMD R45,+RI2 'PUSH THEM OUT
1730 RTN ' DONE
1740 GCOFFP PUBD R43,+R6 !SAVE INCOMING TOKEN
1750 JSB =SCAN 'NEED TO DO A SCAN FOR SYSTEM
1760 JMP DONE !GO FINISH, NO PARAMETERS
1770 '**
1780 BYT 241 !ATTRIBUTE(BASIC STAT.,LEGAL AFTER THEN)

8-12

J

/

Sample Binary Programs

1790 GCOFF. LDMD R14,=BINTAB 'LOAD BASE ADDRESS
1800 JSB X14,SCRAT' !RELEASE CHIDLE HOOK
1810 JSB X14,PLOT 'ERASE CURSOR
1820 RTN ' DONE
1830 !**
1840 BYT 0,55
1850 GCURX. LDMD RI4,=BINTAB !GET BASE ADDRESS OF BPGM
1860 LDMD R50,XI4,CURS-X !GET CURRENT X LOCATION
1870 GPUSH PUMD R50,+R12 !PUSH TO R12 STACK
1880 RTN ! DONE
1890 !**
1900 BYT 0,55
1910 GCURY. LDMD RI4,=BINTAB !GET BASE ADDRESS
1920 LDMD R50,XI4,CURS-Y !GET CURRENT Y LOCATION
1930 JMP GPUSH 'PUSH TO R12
1940 '**
1950 BYT 241 'ATTRIBUTE(BASIC STAT.,LEGAL AFTER THEN)
1960 GCURS. BIN !FOR BINARY MATH
1970
1980

LDMD RI4,:=BINTAB 'GET BASE ADDRESS
LDM R40,=O,O,O,O,O,O,O,10C !DEFAULT STEP VALUE (1)

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

STMD R40,X14,STEP
LDB R47,=40C
STMD R40,X14,FSTEP

'DEFAULT FAST STEP VALUE (4)
! STORE IT AWAY

LDM R20,R12
SBM R20,=40,O
CMMD R20,=TOS
JNZ NOSTEP
JSB =OI\lER

'GET END OF R12 STACK ADDRESS
!TRY 4 NUMBERS ON STACk
!YES?
'JIF NO STEP VALUES
'ELSE GET FAST STEP VALUE

BIN 'ONER REQUIRES BIN MODE AT ENTRY
STMD R#,XI4,FSTEP
JSB =ONt:R
BIN
STMD R#,XI4,STEP

NOSTEP JSB =ONER

'STOF<E I T AWAY
'GET SLOW STEP
!ONER REQUIRES
!STIJRE IT AWAY
!GET Y VALUE

VALUE
BIN MODE AT ENTRY

BIN !ONER REQUIRES BIN MODE AT ENTRY
STMD R#,X14,CURS-Y
JSB =ONER
BIN

!SET CURRENT Y
'GET X
'ONER RETURNS IN BCD MODE

2170 STMD R#,XI4,CURS-X 'SET CURRENT X
2180 JSB X14,PLOT 'OUTPUT CURSOR
2190 LDM R46,=kEY 'GET ADDRESS OF KEY HANDLER ROUTINE
2200 ADM R46,R14 'ADD BASE ADDRESS FOR ABSOLUTE ADDRESS
2210 STM R46,R45 'SET FOR STORE
2220 LDB R47,=236 'LOAD A RTN AFTER IT
2230 LOB R44,=316 'LOAD A JSB IN FRONT
2240 STMD R44,=CHIDLE 'STORE TO CHARCTER IDLE
2250 RTN 'DONE
2260 '**
2270 PLOT JSB XI4,GCURX. !PUSH CURRENT X
2280 JSB XI4,GCURY. 'PUSH CURRENT Y
2290 LDM R20,=ROMTAB 'GET BASE ADDRESS OF ROM TABLE
2300 NXTROM POMD R24,+R20 !GET NEXT ROM # FROM TABLE
2310 eMB R24,=377 !END OF TABLE?
2320 JZR SYSTEM !JIF YES, DO SYSTEM MOVE
2330 CMB R24,=PPROM# 'PLOTTER/PRINTER ROM #7
2340 JNZ NXTROM 'JIF NO, TRY NEXT ENTRY
2350 JSB =ROMJSB 'SELECT PLOTTER/PRINTER ROM #
2360 DEF PMOVE. !JSB TO ITS MOVE ROUTINE
2370 VAL PPROM# !PLOTTER/PRINTER ROM #
2380 LDMD RI4,=BINTAB 'RE-LOAD BPGM BASE ADDRESS
2390 JMP PIOT++ 'DO COMMIJN OUT-CURSOR STUFF

8-13

Sample Binary Programs

2400 SYSTEM JSB =MOVE. !DO A SYSTEM MOVE
2410 PLOT++ LDM R20,=CURSES !LOAD REL. BASE ADDRESS OF CURSORS
2420 ADM R20,R14 !ADD BPGM BASE FOR ABSOLUTE ADDRESS
2430 LDBD R22,=XMAP 'GET LOWER BYTE OF CRT BIT MAP
2440 ANM R22,=3,O 'KEEP ONLY LOWER TWO BITS
2450 LDM R34,R22 !COPY
2460 LLM R34 !TIMES 2
2470 LLM R34 !TIMES 4
2480 ADM R34,R22 !TIMES 5(EACH CURSOR IS 5 BYTES)
2490 ADM R34,R20 !BASE ADDRESS + OFFSET=CURSOR ADDRESS
2500 LDM R22, =5, ° ! LOAD LENGTH OF "STR I NG"
2510 LDM R44,=l,O,I,O 'LOAD # OF BYTES/LINE AND A COPY
2520 JSB =BPLOT+ ! JUMP INTO BPLOT
2530 RTN !DONE
2540 !**
2550 CURSES BYT 360,300,240,220,10 'FOUR DIFFERENT CURSORS BECAUSE
2560 BYT 176,140,120,110,4 !BPLOT CAN ONLY WORK TO A FOUR-BIT
2570 BYT 74,60,50,44,2 !RESOLUTION. TO GET 1 BIT RESOLUTION
2580 BYT 36,30,24,22,1 !WE NEED TO USE FOUR DIFFERENT CURSORS
2590 KEYCON BSZ 'TEMPORARY KEY REPEAT SPEED
2600 CURS-X BSZ 10 !CURRENT X LOCATION
2610 CURS-Y BSZ 10 !CURRENT Y LOCATION
2620 FSTEP BSZ 10 !FAST STEP INCREMENT VALUE
2630 STEP BSZ 10 'SLOW STEP INCREMENT VALUE
2640 !**
2650 BYT 0,56 !ATTRIBUTES(NO PARAM.,$ SYSTEM FUNCTION)
2660 REV. BIN !FOR ADD
2670 LDM R44,=IID,O !LOAD LEN OF STRING
2680 DEF DATE AND THE RELATIVE ADDRESS
2690 ADMD R46,=BINTAB !ADD BASE FOR ABSOLUTE ADDRESS
2700 PUMD R44,+R12 !PUSH TO OPERATING STACK
2710 RTN ! DONE
2720 DATE ASC "AUG 14,1980" !DATE STRING
2730 BPLOT+ DAD 34405 !NOTE:
2740 MOVE. DAD 31703 !MOST OF THESE DEFINITIONS COULD
2750 PMOVE. DAD 64400 'BE REPLACED BY A CALL TO
2760 RoMJSB DAD 4776 'THE GLOBAL FILE
2770 PPRoM# EQU 360
2780 ROMTAB DAD 101235
2790 KYRPT2 EQU 1
2800 KYRPTI EQU 30
2810 CRTSTS DAD 177406
2820 KEYSTS DAD 177402
2830 CHIDLE DAD 102416
2840 RoMFL DAD 101231
2850 KEYHIT DAD 1~)671

2860 EoJ2 DAD 34772
2870 ADDRoI DAD 52150
2880 SUBROI DAD 52127
2890 BINTAB DAD 101233
2900 NUMVAL DAD 12412
2910 NUMVA+ DAD 12407
2920 SCAN DAD 11262
2930 GETCMA DAD 13414
2940 SVCWRD DAD 100151
2950 TOS DAD 101132
2960 ERRoR+ DAD 6611
2970 oNER DAD 56215
2980 XMAP DAD 100262
2990 CoMFLT DAD 32621
3000 FIN 'END OF SOURCE PROGRAM

8-14

/

RECTANGULAR/POLAR CONVERSIONS

Sample Binary Programs

RECT/POLAR CONVERSIONS BINARY PROGRAM

Source File: RECPLS

Object File: RECPLB

This program can be used to convert between polar and rectangular coordinates.

It implements four BASIC statements:

Format: RECTANGULAR x-variable, y-variab1e, radius, angle

Description: Sets x- and y-variables equal to the rectangular coordinates that

correspond to the specified polar coordinates (radius and angle).

Format: POLAR radius variable, angle variable, x-coordinate, y-coordinate

Description: Sets radius and angle variables equal to the polar coordinates that

correspond to the specified x- and y-coordinates.

Format: REV DATE

Description: A string function with no parameters; returns the revision date of

the program.

Format: SCRATCHBIN

Description: Scratches the current binary program from computer memory, without

affecting anything else.

8-15

Sample Binary Programs

1 !****************************
2 !* RECT/POLAR CONVERSIONS *
3 !* (c) Hewlett-Packard Co. *
4 ! * 1980 *
5 !****************************
10 NAM R&P !SET UP PROGRAM CONTROL BLOCK
20 DEF RUNTIM !PTR TO RUNTIME ADDRESS TABLE
30 DEF ASCIIS !PTR TO KEYWORD TABLE
40 DEF PARSE !PTR TO PARSE ADDRESS TABLE
50 DEF ERMSG !PTR TO ERROR MESSAGE TABLE
60 DEF INIT 'PTR TO INIT ROUTINE FOR SYSTEM
70 !**
80 PARSE BYT 0,0 'DUMMY TOK #0 PARSE PTR
90 DEF RTPP !TOK #1 PARSE PTR
100 DEF RTPP !TOK #2 PARSE PTR
110 DEF UNLODP !TOK #3 PARSE PTR
120 RUNTIM BYT 0,0 !DUMMY TOK #0 RUNTIME
130 DEF RTP. 'TOK #1 RUNTIME
140 DEF PTR. !TOK #2 RUNTIME
150 DEF SCRB. !TOK #3 RUNTIME
160 DEF REV. 'TOK #4 RUNTIME
170 BYT 377,377 !TERMINATE RELOCATABLES
180 '***
190 ASCIIS ASP "POLAR" 'KEYWORD #1
200 ASP "RECTANGULAR" 'I<EYWORD #2
210 ASP "SCRATCHBIN" ! KEYWORD #3
220
230
240
250
260
270
280
290
300
310
320
330
340

ASP "REV DATE" '~::EYWORD #4
BYT 377 !TERMINATE ASCIIS TABLE

!***
UNLODP LOB R47,R43 'COPY BPGM TOKEN

LDB R45,=371 !LOAD SYSTEM BPGM TOKEN
PUMD R45,+RI2 !PUSH THE CODE TO THE STACK
JSB =SCAN 'SCAN BEFORE RETURNING
RTN 'DONE

'***
RTPP PUBD R43,+R6 !SAVE INCOMING TOKEN

JSB =SCAN 'SCAN FOR REFNUM
JSB =REFNUM 'GET THE 1st VARIABLE REFERENCE
JEZ ERR 'JIF NOT THERE

350 JSB =GETCMA !DEMAND A COMMA
360 JSB =REFNUM 'GET THE 2nd VARIABLE REFERENCE
370 JEZ ERR 'JIF NOT THERE
380 JSB =GETCMA !DEMAND A COMMA
390 JSB =NUMVAL !GET THE X VALUE
400 JEZ ERR !JIF NOT THERE
410 JSB =GETCMA 'DEMAND A COMMA
420 JSB =NUMVAL !GET THE Y VALUE
430 JEZ ERR 'JIF NOT THERE
440 POBD R47,-R6 'RECOVER THE INCOMING TOKEN
450 LDB R45,=371 'LOAD THE SYSTEM BPGM TOKEN
460 PUMD R45,+RI2 'PUSH THE PARSED CODE
470 RTN ! DONE
480 !***
490 ERR POBD R47,-R6 'CLEAN UP R6 (REMOVE TOKEN)
500 JSB =ERROR+ 'REPORT ERROR
510 BYT 810 'BAD EXPRESSION
520 '***
530 ERMSG BSZ 0
540 BYT 377 !NO ERROR MESSAGES
550 !***

8-16

)

/

Sample Binary Programs

560 INIT BSZ 0 !No INITIALIZATION TO BE DONE
570
580
590
600
610
620
630
640

RTN 'DONE
!***
XVAL BSZ 0
RVAL BSZ 10
YVAL BSZ 0

!TEMPORARY STORAGE

AVAL BSZ 10 !TEMPoRARY STORAGE
!***

BYT 241 !ATTRIBUTE FOR RECTANGULAR
650 RTP.
660

JSB =oNER 'GET Y VALUE TO R40
LDMD R22,=BINTAB !LOAD BASE ADDRESS
STMD R40,X22,YVAL !SAVE Y VALUE
JSB =oNER !GET X-VALUE TO R40
STMD R40,X22,XVAL 'SAVE X VALUE
PUMD R40,+R12 !PUSH FOR MULTIPLY
PUMD R40,+R12 !PUSH FOR MULTIPLY
JSB =MPYRoI !GET XA2 (LEAVE ON R12)
LDMD R40,X22,YVAL !GET Y VALUE
PUMD R40,+R12 !PUSH FOR MULTIPLY
PUMD R40,+R12 !PUSH FOR MULTIPLY
JSB =MPYRoI 'GET yA2 (LEAVE ON R12)
JSB =ADDRoI !GET XA2+yA2 (LEAVE ON R12)
JSB =SQR5 !GET SQR(X A 2+Y A 2) RADIUS
POMD R40,-R12 'RECOVER ANSWER
PUMD R40,+R6 !SAVE RESULT FOR LATER
LDMD R40,X22,YVAL !GET Y VALUE
PUMD R40,+R12 !PUSH FOR ATN
LDMD R40,X22,XVAL !GET X VALUE
PUMD R40,+R12 !PUSH FOR ATN2
JSB =ATN2. 'FIND ATN2(Y,X) AND LEAVE ON R12
JSB =STOSV 'STORE RESULT TO ANGLE VARIABLE
POMD R40,-R6 'RECOVER RADIUS RESULT
PUMD R40,+R12 !PUSH FOR STORE
JS8 =STOSV 'STORE TO THE RADIUS VARIABLE
RTN ! DONE

670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910 !***
920
930 PTR.
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
11:30
1140
1150
1160

BYT 241 'ATTRIBUTES FOR POLAR
JSB =ONER !GET ANGLE VALUE
LDMD R22,=BINTAB !LOAD BASE ADDRESS
STMD R40,X22,AVAL 'STORE FOR LATER
JSB =oNER !GET RADIUS VALUE
STMD R40,X22,RVAL !STORE FOR LATER
LDMD R40,X22,AVAL !GET ANGLE VALUE
PUMD R40,+R12 !PUSH FOR CDS FUNCTION

JSB =CoSl0 'TAKE COS (ANGLE)
LDMD R22,=BINTAB 'LOAD BASE ADDRESS
LDMD R40,X22,RVAL !GET RADIUS VALUE
PUMD R40,+R12 !PUSH FOR MULTIPLY
JSB =MPYROI !GET R*COS(ANGLE) X VALUE
POMD R40,-R12 !GET ANSWER
PUMD R40,+R6 'SAVE FOR LATER
LDMD R40,X22,AVAL 'GET ANGLE VALUE
PUMD R40,+R12 'PUSH FOR SIN FUNCTION
JSB =SIN10 'TAKE SIN (ANGLE)
LDMD R22,=BINTAB !LOAD BASE ADDRESS
LDMD R50,X22,RVAL
PUMD R50,+R12
JSB =MPYF<OI
JSB =STOSV
POMD R40,-R6
F'UMD f('1(),fril ';'

'GET RADIUS
'PUSH FOR MULTIPLY
!GET R*SIN(ANGLE) Y VALUE
!STORE TO Y VARIABLE
'RECOVER X VALUE
'PI ISH FrIR flTrIRE

8-17

Sample Binary Programs

1170 JSB =STOSV 'STORE TO X VARIABLE
1180 RTN !DONE
1190 !***
1200 BYT 241 !ATTRIBUTES FOR SCRATCHBIN
1210 SCRB. STBD R#,=GINTDS !DISABLE INTERRUPTS
1220
1230
1240
1250
1260
1270
1280

LDMD R24,=BINTAB 'LOAD BASE ADDRESS
DeM R24 'MOVE TO LAST BYTE TO KEEP
LDMD R26,=LWAMEM !GET END OF MEMORY (AND BPGM)
STM R26,R22 'COPY
SBM R22,R24 'GET DISTANCE TO MOVE
LOB R20,=4 'LOAD COUNTER FOR PTR ADJUST
LDM R32,=LAVAIL 'GET ADDRESS OF 1st PTR TO MOVE

1290 UNLDI LDMD R36,R32 !GET NEXT PTR
1300
1310
1320
1330
1340
1350
1360
1370
1380

ADM R36,R22
PUMD R36,+R32
DCB R20
JNZ UNLDl
LDMD R36,R32
CMMD R36,=LWAMEM
,JZR UNLD2
ADM R36,R22

'ADD DISTANCE TO MOVE
! RESTOFlE PO INTER
'DECREMENT COUNT
!JIF NOT DONE
!GET FWBIN
'SAME AS LWAMEM?
'JIF YES
!ELSE ADJUST

AND REPLACE
1390 UNLD2
1400

STMD R36,R32
CLM R#
STMD R#,=BINTAB !ZERO OUT BINTAB (NO BPGM)

1410 LDM R#,R12 !COPY R12 PTR
1420 LDM R41,=316 'LOAD INTO R41-R47 THIS CODE:
1430 DEF MOVDN JSB=MOVDN
1440 STBD R#,=GINTEN STBD R#,=GINTEN
1450 RTN RTN
1460 STMD R41,R36 !STORE AT END OF R12 STACK
1470 DCM R36 'oeM ADDR. BECAUSE LDM WILL ICM R4 AFTER LOAD
1480 LDM R4,R36 !MOVE PROGRAM EXECUTION TO MOVDN CODE
1490 '***
1500 BYT 0,56 'ATTRIBUTES FOR REV DATE
1510 REV. LDM R44,=8D,0 'LOAD LENGTH OF STRING
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
16]0
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770

DEF DATE AND RELATIVE ADDRESS OF STRING
ADMD R46,=BINTAB !MAKE ADDRESS ABSOLUTE
PUMD R44,+R12 !PUSH TO STACK
RTN ! DONE

DATE ABC "05/05/80"
!***
COSI0 DAD 53556
MPYROI DAD 52722
ADDROI DAD 52150
SINI0
SQR5
ATN2.
ONER
ERROR+
NUMVAL
GETCMA
REFNUM
SCAN
STOSV
BINTAB
GINTDS
LWAMEM
LAVAIL
MOVDN
GINTEN

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
fIN

53546
52442
76455
56215
06611
12412
1:5414
17025
11262
45254
101233
177401
100022
100010
37324
17"7400

!DEFINE ADDRESSES

8-18

/

/

\

RECTANGULAR/POLAR CONVERSIONS (ROM)

Sample Binary Programs

RECT/POLAR CONVERSIONS
ROM VERSION
Source File: ROMPRS
Object File: ROMPRB

This program is the same as the RECT/POLAR CONVERSIONS binary program, except
that it is written for a ROM.

8-19

Sample Binary Programs

10 !***************************
20 !* RECT/POLAR CONVERSIONS *
30 !* ROM VERSION *
40 !* (c) Hewlett-Packard Co. *
50 ! * 1980 *
60 !***************************
70 ABS ROM 60000
80 BYT 100 'ROM # MUST BE FIRST BYTE
90 BYT 277 'ROM COMPLEMENT # MUST BE SECOND BYTE
100 DEF RUNTIM 'PTR TO RUNTIME ADDRESS TABLE
110 DEF ASCIIS !PTR TO KEYWORD TABLE
120 DEF PARSE !PTR TO PARSE ADDRESS TABLE
130 DEF ERMSG !PTR TO ERROR MESSAGE TABLE
140 DEF INIT !PTR TO INIT ROUTINE FOR SYSTEM
150 '**
160 PARSE BYT 0,0 'DUMMY TOK #0 PARSE PTR
170 DEF RTPP 'TOK #1 PARSE PTR
180 DEF RTPP 'TOK #2 PARSE PTR
190 DEF UNLODP !TOK #3 PARSE PTR
200 RUNTIM BYT 0,0 'DUMMY TOK #0 RUNTIME
210 DEF RTP. !TOK #1 RUNTIME
220 DEF PTR. !TOK #2 RUNTIME
230 DEF SCRB. 'TOK #3 RUNTIME
240 DEF REV. !TOK #4 RUNTIME
250 !***
260 ASCIIS ASP "POLAR" 'KEYWORD #1
270 ASP "RECTANGULAR" ! ~::EYWORD #2
280 ASP "SCRATCHBIN" 'KEYWORD #3
290 ASP "REV DATE" ! KEYWORD #4
300 BYT 377 'TERMINATE ABCIIS TABLE
310 !***
320 UNLODP LDM R46,=370, 100 !SYSTEM EXTERNAL ROM TOKEN & ROM #
330 PUMD R46,+RI2 !PUSH THEM TO THE STACK
340 PUMD R43,+RI2 'PUSH INCOMING TOKEN TO THE STACK
350 JSB =ROMJSB !MUST CALL THROUGH ROMJSB
360 DEF SCAN !CALL SCAN FOR SYSTEM
370 BYT 0 ! IT'S I N ROM 0
380 RTN ' DONE
390 !***
400 RTPP PUBD R43,+R6 'SAVE INCOMING TOKEN
410 JSB =ROMJSB 'SCAN SELECTS OTHER ROMS
420 DEF SCAN
430 BYT 0
440 JSB =ROMJSB
450 DEF REFNUM
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

BYT
JEZ
JSB
DEF
BYT
JSB
DEF
BYT
JEZ
JSB
DEF
BYT
JSB
DEF
BYT

0
ERR
=ROMJSB
GETCMA
0
=F(QMJSB
REFNUM
0
ERR
=ROMJSB
GETCMA
0
==F,OMJSB
NUMVAL
0

'DO A SCAN FOR F~EFNUl'l

!SELECT ROM 0

!GET THE lrst VARIABLE REFERENCE
'ROM #0
!JIF NOT THERE

!DEMAND A COMMA
'ROM #0

!GET THE 2nd VARIABLE REFERENCE

!JIF NOT THERE

!DEMAND A COMMA

!GET THE X VALUE

8-20

J

J

Sample Binary Programs

610 JEZ ERR !JIF NOT THERE
620 JSB =ROMJSB
630 DEF GETCMA !DEMAND A COMMA
640 BYT 0
650 JSB =ROMJSB
660 DEF NUMVAL !GET THE Y VALUE
670 BYT 0
680 JEZ ERR !JIF NOT THERE
690 POSD R47,-R6 !RECOVER THE INCOMING TOKEN
700 LDB R46,=100 !LOAD THE ROM #
710 LDB R45,=371 !LOAD THE SYSTEM BPGM TOKEN
720 PUMD R45,+R12 !PUSH THE PARSED CODE
730 JMP GTOROM !DONE
740 !***
750 ERR POBD R47,-R6 !CLEAN UP R6 (REMOVE TOKEN)
760 JSB =ERROR !REPORT ERROR
770 Byt 81D !BAD EXPRESSION
780 GTOROM GTO ROMRTN !HAVE TO RESELECT ROM 0 WHEN RETURNING FROM PARS
E
790 '***
800 ERMSG BSZ 0
810 BYT 377 !NO ERROR MESSAGES
820 '***
830 INIT BSZ 0
840 BIN
850 LDBD R34,=ROMFL 'GET REASON FOR INIT
860 JNZ INIRTN 'JIF NOT POWER ON
870 LDMD R34,=FWUSER 'GET FIRST AVAILABLE WORD
880 STMD R34,=UNBASI 'SAVE BASE ADDRESS
890 ADM R34,=20,O 'PLUS # OF BYTES NEEDED
900 STMD R34,=FWUSER !RESET FIRST WORD AVAILABLE PTR
910 JSB =ROMJSB

!RE-SET UP THE BASIC PROGRAM STRUCTURE AND PTRS 920
930
940
~O

960
970
900
990
1000
1010

OEF SCRAT+
BYT 0

INIRTN RTN
!***
XVAL EQU 0
RVAL EQU °
YVAL EQU 10

!INOEX INTO STOLEN RAM

AVAL EQU 10 !INDEX INTO STOLEN RAM
!***

BYT 241 'ATTRIBUTE FOR RECTANGULAR
1020 RTP.
1030

JSB =ONER !GET Y VALUE TO R40
LDMD R22,=UNBASI !LOAD BASE ADDRESS

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
l~OO
1210

STMO R40,X22,YVAL 'SAVE Y VALUE
JSB =ONER 'GET X-VALUE TO R40
STMO R40,X22,XVAL !SAVE X VALUE
PUMD R40~+RI2 !PUSH FOR MULTIPLY
PUMO R40,+RI2 'PUSH FOR MULTIPLY
JSB =MPYROI !GET XA2 (LEAVE ON R12)
LDMD R40,X22,YVAL !GET Y VALUE
PUMO R40,+RI2 !PUSH FOR MULTIPLY
PUMO R40,+RI2 !PUSH FOR MULTIPLY
JSB =MPYROI !GET yA2 (LEAVE ON R12)
JSB =AODROI !GET XA2+YA2 (LEAVE ON R12)
JSB =SQR5 !GET SQR(X A 2+Y A 2) RADIUS
POMD R40,-RI2 !RECOVER ANSWER
PUMD R40,+R6 !SAVE RESULT FOR LATER
LDMD R40,X22,YVAL !GET Y VALUE
PUMO R40,+RI2 !PUSH FOR ATN
LDMD R~n.X7~.XVAI 'RFT X VALUE
PUMD R40,+R12 'PUSH FOR ATN2

8-21

Sample Binary Programs

JSB =ATN2. !FIND ATN2(Y,X) AND LEAVE ON R12
JSB =STOSV 'STORE RESULT TO ANGLE VARIABLE
POMD R40,-R6 !RECOVER RADIUS RESULT
PUMD R40,+RI2 !PUSH FOR STORE
JSB =STOSV ISTORE TO THE RADIUS VARIABLE
RTN ! DONE

1220
1230
1240
1250
1260
1270
1280
1290

!***
1300 PTR.
1310

BYT 241 'ATTRIBUTES FOR POLAR
JSB =ONER !GET ANGLE VALUE
LDMD R22,=UNBASI
STMD R40,X22,AVAL
JSB =ONER
STMD R40,X22,RVAL
LDMD R40,X22,AVAL
PUMD R40,+R12
,JSB =COS10
LDMD R22,=UNBASl
LDMn R40,X22,RVAL
PUMD R40,+R12
JSB =MPYROI
POMD R40,-RI2
PUMD R40,+F<6
LDMD R40,X22,AVAL
PUMD R40,+R12
JSB =SIN10
LDMD R22,=UNBASl
LDMD R50,X22,RVAL
PUMD R50, +F~ 12
JSB =MPYROI

!LOAD BASE ADDF<ESS
!STORE FOR LATER
!GET F<ADIUS VALUE
ISTORE FOR LATER
!GET ANGLE VALUE
!PUSH FOR COS FUNCTION
!TAKE COS (ANGLE)
ILOAD BASE ADDRESS
!GET RADIUS VALUE
IPUSH FOR MULTIPLY
IGET R*COS(ANGLE) X VALUE
'GET ANSWER
! SAVE FOR LATEF~
IGET ANGLE VALUE
!PUSH FOR SIN FUNCTION
'TAKE SIN (ANGLE)
!LOAD BASE ADDRESS
!GET RADIUS
'PUSH FOR MULTIPLY
'GET R*SIN(ANGLE) Y VALUE

JS8 =STOSV 'STORE TO Y VARIABLE
POMD R40,-R6 !RECOVER X VALUE
PUMD R40,+R12 'PUSH FOR STORE
JSB =STOSV !STORE TO X VARIABLE
F<TN ! DONE

1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
15:30
1540
1550
1560 '***
1570
1580 SCRB.
1590
1600
1610
1620
16:30
1640
1650
1660 UNLDI
1670
1680
1690
1700
1710
1720
1730
1740

BYT 241
STBD R#,=GINTDS
LDMD R24,=UNBASl
DCM F<24
LDMD R26,=LWAMEM
STM R26, F:22
581'1 R22, R24
LDB R20,=4
LDM R32,=LAVAIL
LDMD R36,R32
ADM R:36, R22
PUMD R36,+R32
DC8 R20
JNZ UNLDI
LDMD R36,R32
CMMD R36,=LWAMEM
JZF~ UNLD2
ADM R36,R22

!ATTRIBUTES FOR SCRATCHBIN
'DISABLE INTERRUPTS
'LOAD BASE ADDRESS
!MOVE TO LAST BYTE TO KEEP
'GET END OF MEMORY (AND BPGM)
ICOPY
!GET DISTANCE TO MOVE
!LOAD COUNTER FOR PTR ADJUST
'GET ADDRESS OF lrst PTR TO MOVE
!GET NEXT PTR
'ADD DISTANCE TO MOVE
!RESTORE POINTER
!DECREMENT COUNT
'JIF NOT DONE
!GET FWBIN
!SAME AS LWAMEM?
!JIF YES
!ELSE ADJUST

1750 STMD R36,R32 AND REPLACE
1760 UNLD2 CLM R#
17"10
1780
1790

STMD R#,=BINTAB !ZERO OUT BINTAB (NO BPGM)
JSB =MOVDN IMOVE MEMORY TO HIGHER ADDRESS
STBD R#,=GINTEN !RE-ENABLE INTERRUPTS

1800 RTN ! DONE
1810 1***
1820 rWT n, 51. 1 ATTR T fit/TFS Fnn RFV DATF

8-22

1830
1840
1851)
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130

\ 2140

REV. LDM R44,=8D,0
DEF DATE
PUMD R44,+f(12
RTN

Sample Binary Programs

'LOAD LENGTH OF STRING
AND ADDRESS OF STRING

!F'USH TO STACK
!DONE

DATE ASC "05/05/80"
!***
COSIO DAD 53556
MF'YROI DAD 52722
ADDROI DAD 52150
SINI0 DAD 53546
SQR5 DAD 52442
ATN2. DAD 76455
ONER DAD 56215
ERROR DAD 06615
NUMVAL DAD 12412
GETCMA DAD 13414 'DEFINE ADDRESSES
REFNUM DAD 17025
SCAN DAD 11262
STOSV DAD 45254
BINTAB DAD 101233
GINTDS DAD 177401
LWAMEM DAD 100022
LAVAIL DAD 100010
MOVDN DAD 37324
GINTEN DAD 177400
ROMJSEc DAD. 4776
FWUSER DAD 100000
UNBASI DAD 102554
ROMRTN DAD 4762
SCRAT+ DAD 4344
ROMFL DAD 101231

FIN

8-23

NOTES

)

8-24

\ SECTION 9

THE HP-82928A SYSTEM MONITOR

The HP-82928A System Monitor is an optional plug-in module for use with the HP-83/
85 Assembler ROM. The System Monitor:

--Permits the user to set two breakpoints in any portion of memory. Any time
either of these two addresses is referenced in any manner, an interrupt is
caused. The user can use this interrupt to examine CPU registers, status bits,
and memory locations, and to make changes, if desired.

--Permits the user to single-step and trace through the operation of code at any
point in memory.

The System Monitor may be used ~ in conjunction with the HP-83/85 Assembler
ROM.

SETTING AND CLEARING BREAKPOINTS
Two System Monitor commands, BKP and CLR, permit the user to set and clear
breakpoints.

9-1

The HP-82928A System Monitor

BKP System Monitor Command
Set Breakpoint

Format: BKP octal address [, select code for output]

Description: Sets breakpoint (BP) #1 or #2 at the specified address in HP-83/85
memory. If no breakpoints are set, the command sets BP1. If BPl
is already set, the command sets BP2. If BPl and BP2 are both set,
the command resets BP2 to the new octal address; BPl remains set at
its original address. Breakpoints can be set at any address in
HP-83/85 system RAM or ROM. Breakpoints can be cleared only by
the CLR command.

When execution is halted at a breakpoint, the B key is a typing
aid for BKP.

When the address at which a breakpoint is set is encountered during
execution of a program or a calculator mode statement, execution /
halts and a block of status information is output to the device
specified by the select code. If no select code is specified, the
default is 1 (CRT IS device) at power-on, or the last select code
specified by a breakpoint.

The information output comprises the following:

Memory Contents: The contents of a specified number of RAM or ROM
locations are output. The output is based on the specifications in
the last MEM statement or command, if one was previously executed.
Output begins with the octal address specified in the last-executed
MEM and continues for the number of bytes specified by that last MEM.

If no MEM was executed, the default address is 0; default number of

bytes is 1008,

Output can be generated from a ROM, as specified by the ROM# in the

MEM last executed. Default ROM# is O.

~2

/

The HP-82928A System Monitor

Like MEM, the output first shows the octal values of the quantities
in the block of memory, eight bytes to a line of output, then shows
the ASCII representation of the quantities.

CPU Status Indicators: This output includes the following:

PC: The setting of the program counter (i.e., the contents of CPU
registers R4 and R5). When execution is resumed, it will begin at
the address specified by PC.

AR: Contents of the address register pointer (i.e., the current
AR) .

DR: Contents of the data register pointer (i.e., the current DR).

BKPS: Addresses of breakpoints BPl and BP2. An address of 000000
can mean no breakpoint is set or a breakpoint is set at address
000000.

OV: Status of overflow flag.

CY: Status of carry flag.

NG: Status of MSB (most significant bit), used to indicate a nega­

tive quantity.

LZ: Status of LDZ (left digit zero) flag.

ZR: Status of Z (zero) flag.

RZ: Status of RDZ (right digit zero) flag.

00: Status of LSB (least significant bit), used to indicate an odd

quantity.

DC: Setting of DCM (decimal) flag.

9-3

The HP-82928A System Monitor

E: Contents of E (extend) register. This will be a quantity
between 0 and 178,

CPU Registers: Octal contents of all CPU registers, eight bytes to
a line of output.

Once a breakpoint has been encountered and execution is halted, the
following keys on the keyboard are active for the uses shown:

Key Use

B Typing aid for BKP command.
C Typi ng aid for CLR command.
M Typing aid for I~H1 command.
P Typing aid for PC= command.
R Typing aid for REG command.
T Typi ng aid for TRACE command.

[STEP] Single-step execution.
[ROLL A] Roll up display.
[ROLL ,] Roll down display.

[RUN] Resume normal program execution.

[BACK SPACE]
[COPY]

[PAPER ADVANCE]

Most other keys on the keyboard are inactive at a breakpoint,
although once the entry of a system monitor command has been begun,
all alphanumeric keys are once again active to allow the full com­
mand to be entered.

9-4

/

)

Example:

The HP-82928A System Monitor

Here is a sample of a breakpoint output.

MEM (>

026 000 112 2()5 155 071 112
345 074 106 075 065 075 044
070 205 123 20~i 123 205 106
300 202 23() 136 262 001 377
340 037 262 030 377 :321 000
366 012 262 231 2()2 261 014
036 :::;;06 000 000 316 7'1'-\ ._::.Jl:. 007
055 072 23() 316 034 205 117

J m9,J e<F=5=$=
8 S S F)@ '~"2)

< ,.,
Cl <y r, 1 <

..::. ..::.

F I'IR N-: N 0

MEM (I

PC DR AR BKPS
003160 74 20 003157 000000
OV CY NG LZ ZR RZ 00 DC E
(I 0 0 1 0 0 1 1 00

REG
000 000 227 141 160 006 304
32() 211 325 211 015 001 001

157 006 2:31 251 :::~21 211 316

321 212 040 000 107 211 001

015 000 000 000 000 231 251

116 000 040 000 200 003 000

040 040 040 040 040 040 176

001 004 000 000 000 000 000

2()5
075 Memory Contents (octal)
251
251
140
140
316
220

Memory Contents (ASCII)

PC and Breakpoint Status

2()2 CPU Regi ster Contents
001
211
000
002
000
003
000

The contents of memory and CPU registers are shown with eight

succeeding registers per row; thus, the top row of the CPU register

output shows registers R0-R7, the second row R10-R17, etc.

NOTE

A breakpoint cannot be set in an instruction which em­

ploys immediate addressing.

9-5

The HP-82928A System Monitor

CLR System Monitor Command
Clear Breakpoint

Format: CLR 1
CLR 2
CLR [any number except 1 or 2J

Clears BPl
Clears BP2
Clears BPl and BP2

Description: Clears breakpoint #1, breakpoint #2, or both breakpoints.

After a breakpoint has halted execution, C is a typing aid for CLR.

After CLR is displayed, the user can type 1 [END LINE] to clear
BPl or 2 [END LINE] to clear BP2. After CLR is displayed, simply
pressing [END LINE] or entering any number except 1 or 2, then
pressing [END LINEJ, clears both BPl and BP2.

CLR may be used any time execution has been halted, whether or not
it has been halted by a breakpoint. /

OPERATIONS AT A BREAKPOINT
After execution has halted after a breakpoint, the user can:

--Generate an output of the contents of a specified number of bytes of memory.

--Change the program counter.
--Change contents of any CPU register.
--Perform single-step and TRACE execution.
--Use [ROLL] or [SHIFT] [ROLL] to examine the CRT screen.
--Use [RUN] to resume normal execution, beginning with the memory byte currently

addressed by the program counter (PC).

)

9-6

The HP-82928A System Monitor

MEM System Monitor Command

Memory Dump to CRT

Format: MEM address [: ROM#] [, # of bytes] [=!, !, ..•]

Description: Acts like Assembler-provided BASIC statement MEM, except that at a

breakpoint M acts as a typing aid for MEM.

pc= System Monitor Command

Program Counter Is

Format: PC= address between 0 and 177377

Description: Changes contents of program counter (CPU registers R4 and R5) to

the specified address, and dumps CPU status and memory contents

exactly as when a breakpoint (BKP) is executed.

Example:

After a breakpoint has been executed, P acts as a typing aid for

PC=.

When execution is resumed, it will begin at the address now spec­

ified by the contents of the program counter.

This command is active only after execution has been halted by a

breakpoint.

PC = 3477 Sets the PC to resume execution with byte 003477.

9-7

The HP-82928A System Monitor

REG System Monitor Commanp
CPU Register Is

Format: REG number of CPU register = value between 0 and octal 377

Description: Changes contents of specified CPU register to specified value, and
dumps CPU status and memory contents exactly as when a breakpoint
(BKP) is executed. Value may be specified as octal, decimal, or
BCD quantity. This command is active only after execution has been
halted by a breakpoint. R acts as a typing aid for REG.

Example: REG 35 = 31 Changes contents of register R34 to 31 8,

REG 36 = 19C Changes contents of register R36 to BCD 19.

REG 37 = 250 Changes contents of register R37 to 2510 ,

STEP System Monitor Command
Single-Step Execution

Format: This command is executed with the [STEP] key.

Description: Executes the next complete machine code instruction (not merely the
next byte), beginning with the location currently addressed by the
PC, then halts and dumps CPU status and memory contents exactly as
when a breakpoint (BKP) is executed. Active only after execution
has been halted by a breakpoint.

9-8

)

The HP-82928A System Monitor

TRACE System Monitor Command

Trace Execution

Format: TRACE octal, decimal or BCD value

Description: Resumes execution with the next machine code instruction, and con­

tinues for the number of instructions (not bytes) specified by the

octal, decimal or BCD value.

After each instruction is executed, CPU breakpoint and partial CPU

status is output to the current CRT IS device. When execution

halts, the CPU status and ~emory contents are output as at a

breakpoint.

The information output after each instruction comprises the

following:

PC: The current setting of the program counter (i.e., the contents

of CPU registers R4 and R5).

DR: Current data register.

AR: Current address register.

BKPS: Addresses of breakpoints BPl and BP2. (Because of the

internal coding of the System Monitor, the address of BPl appears

to increase as each instruction is traced and status is output.

However, when trace execution halts, both breakpoints are reset to

their original addresses when the TRACE command was executed.)

The information output when execution halts after tracing is

exactly the same as that output at a breakpoint: that is, the

contents of the memory block specified by the last MEM statement

or command, complete CPU status, and the contents of all CPU

registers. See System Monitor command BKP for detai1s.

~9

The HP-82928A System Monitor

Example: TRACE 10 Generates an output similar to the following:
003161 74 12 ()()~:; 160
003162 74 12 003161
(11):3163 36 12 003162
003164 36 1 " .<:. 003163
003165 ~,6 76 003164
003166 36 76 003165
003167 76 76 003166

MEM 0
026 000 112 205 155
345 074 106 075 065
070 2()5 123 205 1 ~ . ..,.

"::'"-"

300 2()2 230 136 262
340 0:37 262 030 377
366 012 262 2:31 2()2
036 306 000 000 :316
055 072 230 316 034

J m9J e<F=5=$=
8 S B F) @ ·····2)
.. 2 D 'v 2 1 ..
F NR N-: N 0

MEM 0

PC DR AR BKPS

000000
000000
000000
000000
000000
000000
000000

071 112
075 044
2()5 106
001 377
:321 000
261 014
322 007
205 117

003170 76 76 003157 000000
OV CY NG LZ ZR RZ OD DC E
o 0 0 1 1 1 0 1 00

F<EG
000 000 077 211 170 006 304
32() 211 321 211 015 001 001
157 006 231 251 321 211 316
321 212 040 000 107 21.1 160
015 000 000 000 000 231 251
116 000 040 000 200 003 000
040 040 040 040 040 040 176
001 004 000 000 001 000 000

9-10

2()5
075
251
251
140
140
:316
220

2()2
001
211
000
002
000
003
000

Tracing PC, DR, AR, BP1,
BP2

~lemory Contents (octal)

Memory Contents (ASCII)

CPU and Breakpoint
Status

CPU Regi ster Contents
(octal)

/

)

ApPENDIX A

GLOSSARY OF TERMS

Allocated program. Form of program where variable space has been allocated, vari­
able names are addresses, and line references have become addresses. An allocated
program is ready to run, and cannot be edited.

BASIC reserved word. Entry in an ASCII table. From the user's point of view, a
BASIC reserved word is an entry that has meaning for the system: it can be entered
as a command, statement, or function. From the system point of view, a BASIC
reserved word is the decompiled form of a token.

Binary program. Assembly-language program which can be loaded into the HP-83 or
HP-85 and run. A binary program should be relocatable.

Calculator mode statement. Contains BASIC statements as well as numeric or string
operations. Compare to expression.

Command. Non-programmable language element. Commands are executed immediately;
they cannot be used in a program. With the Assembler ROM installed there are two
types of commands:

--System command. Available in normal BASIC mode; these commands mayor may not
be available in Assembler mode (e.g., COPY, SCRATCH).

--Assembler command. Available only in Assembler mode (e.g., BASIC, ALOAD).

Deallocated program. Form of input text rendered into tokens. Deallocated pro­
gram contains actual variable names and immediate data, and can be edited.

Effective address. Location of the ultimate, fully-computed address or destina­

tion of an instruction.

txpression. COllldill~ lJurely IlUilieric or string opcriltion~. Compare to calculator

mode statement.

A-l

Glossary of Terms

Function. Programmable BASIC language element that can be used as part of a
statement. A function, such as PI, SIN, ABS, etc., always returns a value.

HP-83/85. Applies to either HP-83 or HP-85 Personal Computer.

Instruction. Programmable assembly language element. These are of two types:

--CPU instruction. Instructions for the machine central processing unit.

--Pseudo-instruction. Instructions to the Assembler ROM at assembly time.

Label. Identifier that corresponds to an address or value.

Object code. The assembled machine code for a binary or ROM program. Object
code is ready to be run.

PC. Program counter in computer CPU hardware.

PCR. System program counter, controlled by software.

ROM program. Assembly-language program which can be burned into a ROM package
for later connection to and running on the HP-83/85. A ROM program is not
relocatable.

Source code. Instructions and pseudo-instructions before assembly, as they are
entered from the keyboard.

Statement. Programmable BASIC language element. A statement does not return a
value and cannot be used in an expression.

Token: A one-byte numeric quantity representing a keyword. A token indicates
to the machine the addresses of the ASCII entry, runtime routine, and parse
routine (possibly implied) associated with the keyword. Each token also has
associated methods of allocation, deal location, parsing, and decompiling.

A-2

/

,

Glossary of Terms

Variable. A numeric value which may be assigned to a label. Variables can be
simple numeric. array. or string; if numeric. they can be real. short. or integer.

A-3

NOTES)

)

A-4

\

CRT
CONTROLLER

CRT

PRINTER
CONTROLLER

PRINTER
MECHANISM

ApPENDIX B

SYSTEM HARDWARE DIAGRAM

INTERNAL

INTERNAL
RAM

CONTROLLER

8
16K X 1

DYNAMIC
RAMS

CPU

1/0
BUFFER

EXTERNAL

EXTERNAL
RAM

CONTROLLER

8
16K X 1

DYNAMIC
RAMS

t
OTHER

1/0

8-1

BUS

~
4

BK X8
SYSTEM
ROMS

BUS

8K X8
EXTERNAL

ROMS

TAPE
CARTRIDGE

CONTROLLER

CARTRIDGE
TRANSPORT
MECHANISM

1/0
INTERFACE

CARDS

!
KEYBOARD

CONTROLLER
~ SPEAKER &

TIMERS

KEYBOARD

NOTES /

)

B-2

ApPENDIX C

ASSEMBLER INSTRUCTION SET

On the following pages is a list of all CPU instructions available on the
Assembler ROM.

LEGEND

DR

AR

Literal

Label

Clock Cycle

B

T

R(x)

M(x)

PC

Data register. Can be register number (e.g., R32), R* or R#.

Address register. Can be register number (e.g., R32), R* or
R#.

Literal value, up to lOS bytes in length. Can be BCD constant
(e.g., 99C), octal constant (e.g., 12), or decimal constant
(e.g., 200). Can also be specified by a label, where the
literal quantity is a one- or two-byte value or address
assigned to the label.

Address of literal quantity. Label name must begin with an
alphabetic character, can use any combination of alphanumeric
characters, and can be 1-6 characters in length.

1.6 ~sec.

Number of bytes.

Add one clock cycle if true (i.e., the jump occurs).

CPU register addressed by (x).

Memory location addressed by (x). (x) must be a 16-bit

address.

Program Counter. CPU registers R4 and RS. U5ed to dddress
the instruction being executed.

C-l

Assembler Instruction Set

SP

EA

ADR

n

+

v

JIF

x

Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return
address stack.

Effective Address. The location from which data is read for
load-type instructions or the location where data is placed
for store-type instructions.

Address. The two-byte quantity directly following an instruc­
tion that uses the literal direct, literal indirect, index
direct or index indirect addressing mode. This quantity is
always an address.

Literal value.

Is transferred to.

Contents of.

Complement (e.g., x is complement of x). This is one's com­
plement if DCM=O and nine's complement if DeM=l.

Logical AND.

Inclusive OR.

Exclusive OR.

Jump if.

Status bit is set.

Status bit is cleared.

Status bit is affected.

C-2

/

/

)

Assembler Instruction Set

Status bit is not affected.

y This option is available to this instruction.

The complete list of CPU instructions begins on the next page.

C-3

Assembler Instruction Set

Status
Blnary/ /

In, true t1 on lJe,crl~tlon Addre» I ny O"Cod.· C I ()I ~. 0lwrd llIJJI OCM'~ OCM-l BCD

Fonnat Mode Cycles ROZ -- -- Option
LSB MSB LOZ Z OCM E CY OVF E CY OVF

ADB~.~ Add byte Reg. il1111. 302 5 OR<{)R+AR X X X X - - X X - X 0 Y

ADB Q!l.. = Add byte Lit. ilJlTl. 312 5 OR~OR+M(PC+1 X X X X - - X X - X 0 Y

1 iteral

ADBO Q!l.. ~ Add byte Reg. di r. 332 6 OR~OR+M (AR) X X X X - - X X - X 0 Y

ADBO Q!l.. = Add byte Lit. dir. 322 5 OR~OR+M(AOR) X X X X - - X X - X 0 Y

label

ADM~.~ Add multi- Reg. il1111. 303 4+B OR~OR+AR X X X X - - X X - X 0 Y

byte

ADM~. = Add multi- Lit. inTTl. 313 4+B OR~OR+M(PC+1) X X X X - - X X - X 0 Y

1 iteral byte

ADMD~. ~ Add multi- Reg. di r. 333 5+B O~OR+M(AR) X X X X - - X X - X 0 Y

byte

ADMO Q!l.. = Add multi- Lit. dir. 323 4+B OR~OR+M(AOR) X X X X - - X X - X 0 Y

label byte

ANM Q!l.. ~ Logical AND Reg. imm. 307 4+B O~OR'AR X X X X - - 0 0 - 0 0

(multi-byte)

ANM~. = Logical AND Lit. inrn . 317 4+B 0~OR'M(PC+1) X X X X - - 0 0 - 0 0

1 iteral (multi-byte)

ANMO~. ~ Logical AND Reg. Oir. 337 5+B OR<{)R'M(AR) X X X X - - 0 0 - 0 0

(multi-byte)

ANMO Q!l.. = Logical AND Lit. dir. 327 5+B O~OR 'M(AOR) X X X X - - 0 0 - 0 0

1 iteral (multi-byte)

ARP ~ Load ARP 000-077 2 ARP+I\ - - - - - - - - - - -
(001)

ARP 1 Load ARP with 001 3 ARP~R~ - - - - - - - - - - -
contents

of R~

BCD Set BCD mode 231 4 OCM~l - - - - 1 - - - - - -

BIN Set binary 230 4 OCM<{) - - - - 0 - - - - - -

mode

CLB ~ Clear byte Reg. il1l11. 222 5 OR<{) X X X X - - 0 0 - 0 0

CLM Q!l. Clear multi- Reg. irrm. 223 4+B OR<{) X X X X - - 0 0 - 0 0

byte

CLE Clear E 235 2 E<{) - - - - - 0 - - 0 - -

eMU~. ~ Lumpare byte Heg. 111111. JUU ~ UH+AR+l X X X X - - X X - X 0 Y)

C-4

Assembler Instruction Set

Status
Binary/

Instruction Oeser; pt ion Address i ng OpCode Clock Operation OCM=~ OCM=l BCD

Forma t Mode Cycles ROZ -- -- Opt ion
LSB MSB LOZ Z OCM E CY OVF E CY OVF

" CMB.Q!!. = Compare byte Lit. imn. 310 5 OR+M(PC+l)+1 X X X X - - X X - X 0 Y

1 itera 1

CMBO.Q!!. M Compare byte Reg. di r. 330 6 DR+M (AR}+1 X X X X - - X X - X 0 Y

CMBD !lEo = Compare byte Lit. di r. 320 6 DR+M{MWY+l X X X X - - X X - X 0 Y

label

CMM !lEo M Compare Reg. illl11. 301 4+B OR+AA+l X X X X - - X X - X 0 Y

multi-byte

CMM !lEo = Compare Lit. imm. 311 4+B DR+M(PC+l)+1 X X X X - - X X - X 0 Y

~r.aJ multi-byte

CM>1D!lE. M Compare Reg. dir. 331 5+B OR+M(ARJ+l X X X X - - X X - X 0 Y

multi-byte

CMMD !lEo = Compare Lit. dir. 321 5+B OR+M(AOR}+1 X X X X - - X X - X 0 Y

label multi-byte

DCB !lE Decrement Reg. inrn. 212 5 DR+DR-l X X X X - - X X - X 0 Y

byte

DCM !lE Decrement Reg. ilTlTl. 213 4+B OR+DR-l X X X X - - X X - X 0 Y

multi-byte

DCE Decrement E 223 2 E~E-1 - - - - - X - - X - -

DRI" !lE Load ORP 100-177 2 DRi"'n - - - - - - - - - - -
(;101)

DRP 1 Load DRP with lUI 3 ORi"'R~ - - - - - - - - - - -

contents

of R~

ELB !lE Extended left Reg. irrm. 200 5 Circulate DR X X X X - - X X X 0 0 y

byte left once

ELM !lE Extended left Reg. irrm. 201 4+B Circulate DR X X X X - - X X X 0 0 y

multi-byte 1 eft once

ERB .Q!! Extended Reg. illll1. 202 5 Circulate DR X X X X - - X 0 X 0 0 y

right byte ri ght once

ERM !lE Extended Reg. irnn . 203 4+B Circulate DR X X X X - - X 0 X 0 0 Y

ri ght right once

multi-byte

ICB !lE Increment Reg. illlll. 210 5 DR~R+1 X X X X - - X X - X 0 Y

byte

ICM !lE Increment Reg. irml. 211 4+B DR~R+1 X X X X - - X X - X 0 Y

multi-byte

C-5

Assembler Instruction Set

Status
Binaryl

Instruction Description Address i"9 OpCode Clock Operation DCM=, DCM=l BCD

Format Mode Cycles RDZ - - Option
LSB MSB LDZ Z OCM E CV OVF E CV OVf

ICE Increment E 234 2 E+£+1 - - - - - X - - X - -

JCY label Jump on carry 373 4+T JIF~CY=1 - - - - - - - - - - -

JEN label Jump on E 370 4+T JIF E~OOOO - - - - - - - - - - -
non-zero

JEV label Jump on even 363 4+T JIF LSB=O - - - - - - - - - - -

JEZ label Jump on E 371 4+T J I F E=OOOO - - - - - - - - - - -
zero

JLN label Jump on left 375 4+T JIF LDUI - - - - - - - - - - -
digit

non-zero

JLZ label Jump on left 374 4+T JIF LDZ=1 - - - - - - - - - - -
di git zero

JMP label Unconditional 360 4+T JllnP always - - - - - - - - - - -

jump

JNC label Jump on no 372 4+T JIF CY=O - - - - - - - - - - -

carry

JNG label Jump on 364 4+T JIF MSBIOVF - - - - - - - - - - -
negative

JNO label Jump on no 361 4+T JIF OVF=O - - - - - - - - - - -
overflow

JNZ label Jump on 366 4+T JIF Zn - - - - - - - - - - -
non-zero

JOD label Jump on odd 362 4+T JIF LSB=I - - - - - - - - - - -

JPS label Jump on 365 4+T JIF MSB=OVF - - - - - - - - - - -
pos it i ve

JRN label Jump on ri ght 377 4+T JIF RDZ~I - - - - - - - - - - -
digit

non-zero

JRZ label Jump on ri ght 376 4+T JIF RDZ=1 - - - - - - - - - - -
digit zero

JSB=label Jump Literal 316 g Jump - - - - - - - - - - -
subrouti ne di rect subroutine

JSB ~. Jump Indexed 306 11 Jump - - - - - - - - - - -

label subrouti ne subrout ine

indexed

C-6

Assembler Instruction Set

Status
Binary/

Instruction Oeser; pt ion Addressing OpCode Clock Operation OCM=~ OCM=l BCD

Format Mode Cycles ROZ -- -- Opt ion
LSB MSB LOZ Z OCM E CY OVF E CY OVF

JZR label Jump on zero 367 4+T JIF Z=1 - - - - - - - - - - -

LOB QR. ~ Load byte Reg. inln. 240 5 OR~AR X X X X - - 0 0 - 0 0

LOB QR. = Load byte Lit. ilml. 250 5 OR~(PC+l) X X X X - - 0 0 - 0 0

1 itera 1

LOBO QR. ~ Load byte Reg. dir. 244 6 OR~(AR) X X X X - - 0 0 - 0 0

LOBO QR. = Load byte Lit. dir. 260 6 OR~(AOR) X X X X - - 0 0 - 0 0

label

LOBO QR. Load byte Index dir. 264 B OR~M(AOR+AR) X X X X - - 0 0 - 0 a
X~.

label

LOBI QR. ~ Load byte Reg-indir. 254 B OR~M(M(AR)) X X X X - - 0 0 - 0 0

LOBI QR. = Load byte Lit. indir. 270 B OR~M(M(AOR)) X X X X - - 0 0 - a 0

label

LOBI QR. Load byte Index indir. 274 1.0 OR~M(M(AOR+ X X X X - - a a - a a

XM!.. AR))

label

\.

LOM QR. ~ Load Reg. inrn . 241 4+B OR~AR X X X X - - a a - a a
multi-byte

LOM QR. = Load Lit. irnn. 251 4+B O~M(PC+l) X X X X - - a a - a 0

1 itera 1 multi-byte

LOMO QR. ~ Load Reg. dir. 245 5+B O~M(AR) X X X X - - a a - 0 0

multi-byte

LOMO QR. = Load Lit. dir. 261 5+B OR~M(AOR) X X X X - - 0 0 - a a
1 abel multi-byte

LOMO QR. Load Index dir. 265 7+B O~M (AOR+AR) X X X X - - a a - a .0

X~. multi-byte

label

LOMI QR. ~ Load Reg. indir. 255 7+B O~M(M(AR)) X X X X - - .0 0 - a a
multi-byte

LOMI QR. = Load Lit. indi r. 271 7+B O~M(M(AOR)) X X X X - - a a - 0 a
label multi -byte

LOMI QR. Load Index indir. 275 9+B O~M(M(AOR+ X X X X - - a a - a a

XM multi-byte AR))

label

C-7

Assembler Instruction Set

Status
Binary/

Instruction Description Addressing OpCode Clock Operation DCM=0 DCM=l BCD

Format Mode Cye 1 es RDZ -- -- Opt ion

LSB MSB LDZ Z DCM E CY OVF E CY OVF

;

LlB QR logical left Reg. ilTlTl. 204 5 logical left X X X X - - X X X 0 0 y

byte shift DR

llM QR logical left Reg. inm. 205 4+B logical left X X X X - - X X X 0 0 Y

multi-byte shift DR

lRB QR logical right Reg. inm. 206 5 Logical righ X X X X - - X 0 X 0 0 y

byte shift DR

lRM QR logi ca 1 ri ght Re. inm. 207 4+B logical right X X X X - - X 0 X 0 0 y

multi -byte shift DR

NCB QR Nine's Reg. ilTlTl. 216 5 DR.-DR X X X X - - X X - X 0 Y

(or one's)

complement

byte

NCM QR Nine's Reg. ilJlJl. 217 4+B DR.-DR X X X X - - X X - X 0 Y

(or one's)

complement

multi-byte

ORB QR, M Or byte Reg. inm. 224 5 DR.-ORvAR X X X X - - 0 0 - 0 0

inclusive

ORM QR, M Or multi-byte Reg. imm. 225 4+B DR<- DRvAR X X X X - - 0 0 - 0 0
/

inclusive

PAD Pop ARP, DRP 237 8 Status.-M(SP) X X X X X - X X - X X

and status

from stack

POBD QR.+M Pop byte with Stk. dir. 342 6 DR.-M(AR) • X X X X - - 0 0 - 0 0

post- AR<-AR+1

increment

POBD QR.-M Pop byte with Stk. dir. 340 6 DR.-M(AR). X X X X - - 0 0 - 0 0

with AR.-AR-J

pre-decrement

POBI QR.+M Pop byte with Stk. indir. 352 8 DR<-M(M(AR)) • X X X X - - 0 0 - 0 0

post- AR<-AR+2

increment

POBI QR.-M Pop byte with Stk. indir. 350 8 DR.-M(M(AR)) • X X X X - - 0 0 - 0 0

pre-decrement AR~AR-2

POMD QR.+M Pop multi- Stk. di r. 343 5+B DR.-M(AR) • X X X X - - 0 0 - 0 0

byte with AR<-AR+M

post-

increment

C-8

Assembler Instruction Set

Status
Binaryl

Instruction Description Addressing OpCode Clock Operation DCM=~ DCM=l BCD

Format Mode Cycles RDZ -- -- Option
LSB MSB LOZ Z OCM E CY OYF E CY OVF

POMD QR,-~ Pop mult i- Stk. dir. 341 5+B OIl<-M(ARl. X X X X - - 0 0 - 0 0

byte with AIl<-AR-M

pre-decrement

POMI QR,+~ Pop multi- Stk. indir. 353 7+B DIl<-M(M(AR)) , X X X X - - 0 0 - 0 0

byte with AIl<-AR+2

post-

increment

POMI QR,-~ Pop multi- Stk. indir. 351 7+B DIl<-M(M(AR)) , X X X X - - 0 0 - 0 0

byte wi th AIl<-AR-2

pre-decrement

PUBD !lli,+~ Push byte Stk. dir. 344 6 M(AR)~DR, X X X X - - 0 0 - 0 0

with post- AR~AR+I

increment

PUBD QR,-~ Push byte Stk. dir. 346 6 AR~AR-l. X X X X - - 0 0 - 0 0

with pre- M(AR)~DR

decrement

PUBI QR,+~ Push byte Stk. indir. 354 8 M(M(AR))~DR, X X X X - - 0 0 - 0 0

with post- AR~AR+2

increment

PUBI QR,-~ Push byte Stk. ind; r. 356 8 AIl<-AR-2, X X X X - - 0 0 - 0 0

with pre- M(M(AR))~DR

decrement

PUMD QR,+~ Push mult i- Stk. dir. 345 5+B M(AR)<-DR, X X X X - - 0 0 - 0 0

byte with AIl<-AR+M

post-

increment

PUMD QR,-~ Push multi- Stk. dir. 347 5+B AR~AR-M, X X X X - - 0 0 - 0 0

byte with M(AR)~DR

pre-decrement

PUMI QR,+~ Push multi- Stk. indir. 355 7+B M(M(AR))~DR, X X X X - - 0 0 - 0 0

byte with AR~AR+2

post-

increment

PUMI QR,-~ Push multi- Stk. indi r. 357 7+B AIl<-AR-2, X X X X - - 0 0 - 0 0

byte with M(M(AR))+DR

pre-decrement

RTN Sub rout ine 236 5 S~SP-2, - - - - - - - - - - -
return PC+M(SP)

SAD Save ARP, DRP 232 8 M(SP)~Status - - - - - - - - - - -
and status on

stark

C-9

Assembler Instruction Set

Status
Binary/

Instruction Description Addressing OpCode Clock Operation DCM'~ DCM-I BCD

Format Mode Cyc I es ROZ -- -- Option

LSB MSB LDZ Z OCM E CY OVF E CY OVF

SBB !JR. ~ Subtract byte Reg. irrm. 304 5 DR<OR+AA+I X X X X - - X X - X 0 Y

SBB DR. = Subtract byte Lit. inm. 314 5 DR<DR+~ X X X X - - X X - X 0 Y

I itera I +1

SBBD Q!l.. ~ Subtract byte Reg. dir. 334 6 DR<-DR+M[AAT+I X X X X - - X X - X 0 Y

SBBa!JR •• Subtract byte lit. dir. 324 6 DR<D R +if(AliIiI X X X X - - X X - X 0 Y

label +1

SSM !JR. ~ Subtract Reg. irrm . 305 4+B DR<-DR+AA+ I X X X X - - X X - X 0 Y

multi-byte

SSM.Q!l. •• Subtract lit. inm. 315 4+B DR+{)R+MTPC+Il X X X X - - X X - X 0 Y

literal multi-byte +1

SSMD Q!l.. ~ Subtract Reg. dir. 335 5+8 DR<-DR+M1AR)+ I X X X X - - X X - X 0 Y

multi-byte

SSMD .Q!l. •• Subtract Lit. dir. 325 5+8 DR<-DR+~ X X X X - - X X - X 0 Y

literal multi-byte +1

ST8.Q!l.. ~ Store byte Reg. inm. 242 5 DR~AR X X X X - - 0 0 - 0 0

STB!JR •• Store byte Lit. irrm. 252 5 D~(PC+l) X X X X - - 0 0 - 0 0

literal

STSO.Q!l.. ~ Store byte Reg. dir. 246 6 D~M(AR) X X X X - - 0 0 - 0 0

STSO !JR •• Store byte Lit. dir. 262 6 DR~(ADR) X X X X - - 0 0 - 0 0

label

ST8D .Q!l.. Store byte Index dir. 266 8 D~M(ADR+AR) X X X X - - 0 0 - 0 0

~
label

STBI.Q!l.. ~ Store byte Reg. indir. 256 8 DR>M(M(AR)) X X X X - - 0 0 - 0 0

STBI DR •• Store byte Lit. indir. 272 8 DR~ (M (ADR)) X X X X - - 0 a - 0 0

label

STBI .Q!l.. Store byte Index indir 276 10 DR~(M(ADR+ X X X X - - 0 0 - 0 0

XM, AR))

label

STH Q!l.. ~ Store multi- Reg. irrm. 243 4+B DR~AR X X X X - - 0 0 - 0 0

byte

STH.Q!l. •• Store multi- Lit. inm. 253 4+B DR~(PC+I) X X X X - - 0 0 - 0 0

literal byte

STHD !JR. ~ Store multi Reg. dir. 247 5+B DR>M(AR) X X X X - - 0 0 - 0 0

hyt@

C-10

Assembler Instruction Set

Status
Binary/

Instruction Description Addressiny OpCode Clod Operdti on DCM·~ DCM-I 8CD

Format Mode Cycles RDZ ---... -- Option

LSB MSB LDZ Z DCM E CY OVF E CY OVF

STMD DR. = Store multi- Lit. dir. 263 5+B DR..M(ADR) X X X X - - 0 0 - 0 0

label byte

STMD !l.B.. Store multi- Index dir. 267 7+8 DR..M(ADR+AR) X X X X - - 0 0 - 0 0

XAii. byte

label

STMI!l.B.. Ali Store mult i- Reg. indir. 257 7+B DR->M(M(AR)) X X X X - - 0 0 - 0 0

byte

STMI !l.B.. = Store multi- Lit. indir. 273 7+8 DR->M (M (ADR)) X X X X - - 0 0 - 0 0

~ byte

STMI !l.B.. Store multi- Index indir 277 9+8 DR->M(M(ADR+ X X X X - - 0 0 - 0 0

XM. byte AR))

label

TCB !l.B. Ten's (or Reg. illlJl. 214 5 DR+OR+l X X X X - - 0 0 - 0 0 y

two's)

complement

byte

TCM !l.B. Ten's (or Reg. 1m. 215 4+8 DR+OR+I X X X X - - 0 0 - 0 0 y

two's)

complement

multi-byte

TS8 !l.B. Test byte Reg. inm. 220 5 Test DR X X X X - - X X - X 0 Y

TSM !l.B. Test multi- Reg. inm. 221 4+8 Test DR X X X X - - X X - X 0 Y

byte

XRB!l.B.. Ali Or byte Reg. i 226 5 DR+DR eAR X X X X - - 0 0 - 0 0

exclusive

XRM!l.B.. Ali Or multi-byte Reg. inm. 227 4+8 DR+DR eAR X X X X - - 0 0 - 0 0

exclus ive

C-ll

NOTES -j

/

C-12

ApPENDIX D

ASSEMBLER INSTRUCTION CODING

The chart below shows how the CPU instructions appear when assembled into machine
language object code by the computer.

7 6 5 4 3 2 o

o I DRP/ I ;000001 Load with literal
ARP =000001 Load with R0

1 0 0 0 0 I Logica1/ Ri ght/Left M/B Extended

1 0 0 0 1 0 Decrement/ M/B Increment

1 0 0 0 1 1 Nine's Comp1ement/ M/B Ten's Complement

1 0 0 1 0 0 Clear/Test M/B

1 0 0 1 0 1 XOR/OR M/B

1 0 0 1 1 000 BIN
001 BCD
010 SAD
011 DCE
100 ICE
101 CLE
110 RTN
111 PAD

1 0 1 000 REG IMM Store/Load M/B
001 REG DIR
010 LIT IMM
011 REG IND
100 LIT DIR
101 INX DIR
110 LIT IND
111 INX IND

1 1 0 00 REG IMM 00 CMP M/B
01 LIT IMM 01 ADD
10 LIT DIR 10 SUB
11 REG DIR 11 AND 1

1 1 0 00 INX 11 JSB 0
01 LIT

1 1 1 0 IND/ PUSH/ I -ADR/ M/B DIR POP +ADR

1 1 1 1 000 JNO/JMP
001 JEV/JOD
010 JPS/JNG
011 JZR/JNZ
100 JEZ/JEN
101 JCY/JNC
110 JLN/JLZ
III JRN/JRZ

X/V = 1/0

D-l

NOTES J

)

)

D-2

ApPENDIX E

ASCII TABLE

The following is a table of all the ASCII keycodes on the HP-83/85.

NOTE

The keycodes used in the HP-83/85 are very close to, but in some cases

not exactly the same as, ASCII codes.

KE 'CODE ASCII KEYCODE ASCII
Qf..C Q.U r:I:iE r~E'r: Qf..C Oil C:I:iE KEY

~3 €I ~ etrl ~ 47 57 .. '

1 1 .::,. etrl A 48 613 (1 €I
~. 'j ::< etrl E: 49 61 1 1 .::. <-

3 3 N etrl C 50 62 2 -. .::.

4 4 'J. etrl D 51 '-7
t·~· 3 3

c-
'-'

c-
'-' t:3 e q-l E 52 64 4 4

6 6 r etrl F 53 .- c-o .J 5 c-
'-'

'7 '7 Pi etrl G 54 66 6 6 , ,
8 10 6 etrl H 55 67 7 7
9 11 'J e t t-1 I C'~

.Jt:. 713 :=: 8

10 12 1 etrl J 57 71 9 9

1 1 13 .\ etrl K c .. ,
·JC·

7-:' , '-
12 14 .LJ etrl L 59 73
13 1 c

.a. "_f e t rl 11 60 ('4 -: . <.

14 16 ·r e t rl t-l 61 .., c-
'" "_I = =

15 17 .1- etrl I) 62 76 "

16 213 8 etrl P 63 77 .j r:..

17 21 11 etrl G! 64 1£10 ~ @

18 .:. "='
~~ O!. e t rl P 65 101 A A

19 .7} "7
~'-' A etrl S 66 102 B B

20 24 ,j, et rl T 67 103 C C

21 25 A etrl U 68 HJ4 D 0

22 26 ,J. ctrl \} 69 105 E E
23 ":-7 .:.., .:' etrl ~J 70 W6 F F

24 3€1 .:. ctrl '" ('. 71 107 G G

25 31 I) et..-l ' -,..-. .. .::. 1113 H H

26 32 (j ctrl .:::. 73 1 11 I I
.... ..,
c. .. 33 1£ ctrl [74 112 .J J

28 34 11.: c t rl ,?c-
I ".J 113 K K

29 ~c

.~."-, 1 ctrl] 76 114 L L

3~3 36 £ ct rl 77 115 M M

31 ~.., of ctrl 78 116 N N
.~. { -

32 413 SPACE 79 117 0 0

33 41 I 80 1213 P P

34 42 .. " 81 121 t} Q

35 43 # # Po .:-
J':'" 122 R R

36 44 $ $ 83 123 c ,-.
.J .:>

37 45 ~~
., 84 124 T T ...•

38 4f- t: 1.:.; 85 1 .:- c-.:....J U U

39 47
, 0'-... ·0 126 V \}

413 513 (0"'7 '-', 127 ~~ W

41 51) 88 130 X :.:
42 52 1: ::t: 8~ 131 V Y

43 53 + + Cj~1 17 ':' Z '7 _ '-

.~ 44 54 91 13'3 [[

45 55
Q'-'
-" .::. 134 ". ".

46 56 Q7
_" .-J 135]]

E-l

ASCII Table

KEYCODE ASCII KE~JCODE ASCII I
Oil. QU Cl:iR KEY Oll. QU.. l"":i::lR ~

94 136 161 241 .L UP CURSOR
95 137 - 162 242 " DOWN CURS
96 14£1 .,

s KEY LABEL 163 243 I.. I NS----RPL
q-:> - , 141 .a .a 164 244 i. DEL CHR
98 142 to to 165 245 ;.. HOME CURS
99 143 c c 166 246 &. RESULT

1 e~1 144 d d 167 247 ,
1131 145 e e 168 250 i.. DELETE
102 146 f f 169 251 2.. STORE
103 147 ·3 -=J 170 252 1. LOAD
104 150 h h 171 253 ±.
la5 151 i i 172 254 AUTO
106 152 .j j 173 255 - SCRATCH -187 153 k Ie: 174 256
108 154 1 1 175 257 ~
109 155 m m 176 260 e.
1113 156 n n 177 261 l.
111 157 0 0 178 262 2-
112 16£1 p p 179 263 3.
113 161 "'!. "'!. 1813 264 4-
114 162 t- ,..- 181 265 5.
115 163 s s 182 266 b.
116 164 t t 183 267 Z-
117 165 1..1 u 184 270 a
118 166 '·l v 185 271 :i
119 167 IAI w 186 272 -
1213 170 :x: ;-:: 187 ·-'-:>7

~ f "_"
121 171 .:/ y 188 2?4 i.
122 172 z z 189 275 -123 173 11 s

190 276 L
124 174 , I 191 277 1. I I / 125 175 ~ s - 192 3130 ii
126 176 : s * 193 3131 8..
127 177 ~ s + 194 3132 E!.
128 2013 .1 Kl 195 303 I~

'-'-
129 2131 ~ K2 196 304 Il
1313 202 R V7

o •• oj 197 305 E.
131 2133 ii K4 198 3136 E.
132 204 !l. K5 199 3137 G.
133 2135 ~ K6 2130 310 l:I.
134 206 C. ~'-:>

" 281 311 1-
135 207 6.. K8 2132 312 J..
136 2113 I:.. REW 2133 313 ~
137 211 !Z. copy 2134 314 I-
138 212 1- PAPER ADV 2135 315 l'1
139 213 h. RESET 2136 316 ti
140 214 !L INIT 207 317 !l
141 215 - RUN 2138 320 E:.
142 216 i PAUSE 289 321 Il
143 217 1. CONT 210 7':. ':'

--'~~ R.
144 2213 a STEP 211 323 ,-

.~

145 221 ~ TEST 212 324 L
146 222 Ii CLR SCREEN 213 "?., s= "_,.:- __ 1 u..
147 223 Ii. GRAPH 214 326 'i.
148 224 Ii. LIST 215 327 Ii
149 225 tL PLIST 216 3313 :i
1513 226 !i KE'y LABEL 217 331 " .L
151 227 Q.. 218 77':' ...,

--'--'':- ~

152 2313 Q 219 333 [.
153 231 U. BACKSPACE 220 334 ~
154 232 u.. END LINE 221 335 ~
155 233 iE. FAST BCKSP 22;;:: 336 A -
15f. ?-H 't. L f"FT CliRS ~?21 "3l7
157 235 :£ RIGHT CURS 224 3413 ...

158 236 L ROLL UP .-'--:01:"
,:::,~.J 341 a

159 237 I. ROLL DOWN 22E, 342 b.
1613 2413 CLR LINE 227 343 ~

E-2

ASCII Table

KE ... ·'CODE ASCI I KEYCODE ASCII

D.E.!:. nr:r 1-:t:1E' KEY Qf.C. Q.C.l Ct:18 KEY
228 344 ~ 242 362 L

229 345 ~ 243 363 ~

2313 346 1. 244 364 1.
231 347 :i. 245 365 '.l

232 350 tL 246 366 jL

233 351 i. 247 7~7
-..J 1:. I w.

234 352 :L 248 370 ~

235 353 k. 249 371 L

236 354 l. 2513 372 ;;.
'-:-7-' 355 III 251 ~7"'7 n..
';"' ... 11

--'I "J

238 71:' .- n 252 374 I

--",_11::. .L..

239 357 Q. 253 375 :t
24(1 360 E: 254 ~..,~

. .!o i to :.
241 361 1 255 377 t:..

E-3

NOTES J

/

E-4

ApPENDIX F

TABLE OF TOKENS AND ATTRIBUTES

The following is a table of the system tokens and attributes used in the HP-83

and HP-85.
ROll'7 HE t'IAr'IE TOI(EH ATTRIB

T~; E: R ClEF Ej;: ROF::,; f.RROR 0 0, 44
ClEF FTS'oh. ::;: t,j '.,I (I,. i
L'EF :;VA(lP :::A"I .-,

Co. (I J i
[,·E~ FTSTL :.:HR'lAR '7

'-' 0/ i
i.>E ;:- I ::Ol-~ST REAL.. COt·IST 4 (I" 4
[.IE !=' SCOI'lST "OUOTED STR 5 0, c:
/.oEF SCON:::T Ut·~OUOT STR 6 (I ; co:

'-'

C'EF :':::TO:3T :3TO :.3TRING -;0 I) " . .::. 1 I

['EF ::nO:3V :3TORE :::; './ 1 I) I) ; '7 ,
'-' !

['EF A'IIADPl 1 -DIN RDP ~ 1 (I"
":i' .~).

'-' ~

[)EF A'v'A[lP2 2'-[) 11'1 1:.j[)F 1 ~, (I i 32 "-

OEF A";'I}t~L 1 t '-[i I "'I VALUE 1 ~ 0 :3?
[;.E!=' A'J11 f4L2 2·-[l HI VALUE 1 4 (I,. :: ~:~
[.iEF ERROR~:; Gf:,PF: 1 AG!:: RTNl 5 (I I 44
[:OEF GORTN f- t4D ::: T 1'1 T 1 (.' ::. I) " (I

[;E~ EF- ~:OR;><: OUt'1~1'1' 1 7 OJ 44
[·E"'- H,ROF:~':: o U i'l 1'1'1' 20 (I., 44
OEF FTADF: ::: t'j './ R[JR 21 (I ; '-, .;..

['EF S"·iA[IP+ :::A'.f ~WR 22 I)) :3
I)EF FTSTl::: :::: f'\ ',/E :;HR 23 OJ 3
[,'EF ::: TO'::; '<-'1'1 P1ULT I ~;TO 24 (I J 47 .. ~.'

DEF STO:3H1 f'WlTI STot .') C'
i!...J I) , .:.1- .~~

DEF FNCAL.. ~-=Ut'{C;T I ON CL .:;> ,
_0 I) J 6

DEF Ft·1CAU· 3TR !-=I) t~ e- Cl 27 0 .. 6

CEF ~, TRUE# ,)I'1F TPUE 30 (I) ?

L'El=' ERRORE TlLEGi4L ':: t·lD 31 0, 44
C' E;:- 1 t·j T:::Otl I/·iT COI"~:, T 32 (I

"
2

C'EF ~'FHlSR .j to1 F' FALSE --. (I 1 1 . .:.-.=')

LiEF ,Jf'lPREl .j i"1 F' RCl 34 I) "
....... -
:'::"~I

OfF SUBSTl 1 DHI :;UE:fT -::'c; I) .f 34 '-'
[,n- :::UBST2 ~~ [:.I t'1 :~ U8 S- T .'36 0 .. 34
['IEF E,.it-lP# EL~:';E ,J# 37' (I" :~~5

['EF ERROR>:: (illl'1r,,"I} ~o 0, 44
[:·EF ERROF.::'~ Olli'1N'l 41 (I

"
44

DEF P#ARA'l j:it't-· a::,.1 PRHH#42 (I, :36

DEF ERROR>:: I) Llt'1t'1\' 4' '-' (I .. 44
DEf-- R#ARR · ~irt'a:,.1 REA[i# 44 (I .. 44

OEF EF:ROR::-:: 45 0) .:.1-4

r',EF CONCA ::~.: ::OHCAT 4E, '7 C'~'
I .' -'--'

[OEF' tWP47 47 I), 4:2

r:"EF ERROR~< '" 50 (I, 44
[<E~- EF.:ROP:X: 51 I)) 44
L ~_ ~ .. HP'lROl ,j, 52 1 '') ' :d
t>EF ~if)[)RO I + C::7 '7 '51 '..J '_'

, .'
C:Ef- ER~:OR:x: 54 I) J 44
OE!-' SUBROI - DI~Dlt.:: 55 '7

I " 51

DEF ERRORi-:: 5E, 0, 44

F-l

Table of Tokens and Attributes

DEF DIV2
C!EF 'Y'Ti!.5
OEF UNEQ$,
L:'EF LEO$
DE~ GEIH
['oEF lINEQ$
[,'EF EO$
OFF GR$
DEF LT$
[iEF CHSROI
OEF UHEQ
(:OEF LEO
OEF GEl).
OEF UI'iEQ
DE~:- EO
DEF GR,
["EF L T
C'EF' ATS I Gr~
LTF I)t·1ERR,
r'EF OFFER
DEF OI'WE'i
e'EF OFKE'r'
[;EF ~WTO
[::EF BEEF'
rEF CLEAR
riFF CON':
r.':E~ CitH I 1'1
DEF HI IT
L'F~ LI:::T
DEF 8PLOT
[:,[f:."" S: HIE
DEF E~.ROR::~

i)EF EF:ROR:':
DEI=' READ*'
liEf f<ENAI'1
C:EF ALPHA
CEF CRT
PEF RUr·l,
e·EF C·EG,
DEF DISP
DH- GCLf'~

[,'EF SCR~n,

e,EF DEfA+.
DEF ~INPUI#

OEF ,Jt'IP~?UB

DU' PRNT#.
[)EF GRAD
DE~:- GRAPH
DEF INPUT
[:OEF lDRAl,1
OEF FNLET
t'EF I'lOP.
DEF PRHLL
OEF CAT

•••• 1

<=
};::

=

- I'tot-iADIC

<=

<: '>

Ot·! ERF.~OR

OFF i::F~~OF:~

Of·1 KE\'#
UFF Kf.:'-r'#
AUTO
f:EEP
CLEAR
COHl
Ull TINEF=:#
HE!'
U:::;T
8PLOT
:::;f::~-;TINE

E:RPOH
f:YFOR
RU!D#
REHAt'1E
ALPHA
::'PT I:::;
RUH
DEG
[:0 I :~;F
GCLEAF:
SCF'1ATCH
(.Er:HU: T Or~

GOTO
:':;0';1..18
PPIHT #

::;F.~APH

It·lPUT
I [:·RAl.J
LET Ft-I
:_ET
PRIHT ALL
CAT

F-2

57
60
61
'::',":,
\-'':':''

63

65

67
'10
71
72
..,
(.~

74

.\ (I (I

1 I) 1
1 O~:

'f 03
'/04
i 05
., 06

'f 07
1 ! I)

'j '1 1
i,2
'i !:3
1 ., 4

i ;::­
I "_I

1 'f t-,

'f '17
'120
1 ~~ 1
'f 2:2
'1.23
124
"1.25
121'::,
127
'f 30
., 31

1.32
'13:3
'/34
135
l36
137
140
'j 41

12.,51
14.,51
6,53
6,53
.- C'-c·.a ,_I ~

6 .. 5.3
6,53
6, 5~3
6 J ~53

'1.,50
6,,51
6,51
6,5;
6,51
E,,51
6,51
6,5 i
0,42
(1.,241
(f, ;?41
0,241
0,241
(I} 141
I)., :241
0,241
(I, 'i':;"f
0 .. 241
(I, 104'j
0,241
0,241
0, 2.::j 1
I) 44
0 .. 44
(I} 241
I)., 2,:i 1

0,241
(1,241
I), 'j 41
(1.,241
(I, :2~1 'j

0,241
(I, .\ 41

0, ~~ 4'1
0.,21 (I

0,21 (I

0 .. 2"q
(1 .• 24 j
(1.,241
0.,241
0.241
0,217

142 (I ?41
143 0,241
'~44 0 .. 241

J

/

DEF DRiil.J.
DEF 01·1.
["IEF LABEL.
OEF (,hUT
DEF PLOT
DEi:" PR It4S.
DEF PRINT.
DEF RAD
DEf" RNDIZ
[,E!=- READ
DEF STORB
DEF RE:::TO.
DEF f<:ETRt~

C·EF OF TI M .
[:'Ei:" NOVE
DU' FL IP
DEF STOP
[:OEF EEROR::<:
DE"- PEtWF' ,
DE~:- TRCVB
[:'E~- TRCAL
DEF ~<:A:'~ IS.
r:EF '-(A~< I S
DEF COpv
DEi:" t'WF<:t'IA.
rEF" ERAST.
C>E"- ::;KI P I
,'Fi:- ::::t<IPf:
[iEF DELET.
[";E~' :3CALE
DEi:" '31{IPI
['IEF OPTICl
[:oEF '::WIPC
D E ~' ':; KIf" E t'l
[:-OEF St<PDEF
t:'EF :=;K I PD
DEF KE';'LA
L'EF ::::TOP
PEF HHHt-l
DEF FOR
C'EF ERF::ORT
DE~- S~:! P IT
[:< E f" t'j E ~<T
DEF ERROR>::
OEF ERRORT
["EF A::;IGN
I)[F CREAT.
PEF PUF.:GE
OEf" REl~' It4
DE~- LOADB
[:ofF PAUSE.
f'tr;:- FFRCIR>~

OEF S~:IPR

DEF REtWr·l.

Table of Tokens and Attributes

DRAt •. 1

Clt'l
l-AE:EL
I.IJ~i IT
FiLOT
PR HITER IS
PRUIT
RAD
RANDor·, I ZE
REf~fo
::';TORE BIt-I
PESTORE
RETURI,I
OFF TH1ER#
NO ... ·'E
FLIF
STOP
t:RROR
PHWP
TRACE VR8'_
TF.:~ICE ALL.

145
146
147
150
j 51
152
'J53
154
't55
'I ~;15

157
160
'/61
162
'(E.3
'! 64
'j 65
'j 1,:.6

167
'I '7 (I
1 ",::' 1

0,241
0 .. 2.30
IL ;241
I)., ;;::41
0,241
0,241
(I, ;:-:':·11
0,241
(1,24 'I
(1,241
(1,241
0 .. 241
(1,241
0,241
0,241
0,241
0,241
0,44
0,241
(1 .. 241
(1,241

XA~IS 172 0,241
\'A~::I8(73 0,:24"
COpy 174 0,241
NORMAL 175 0,241
ERASE TAPE 176 0,241
INTEGER 177 0 .. 323
:::HOF.'T
I)EL~TE

;200 0.1322
2(11 0,.141

:3CAL E :2 02
REt'lARK 203
JJF",'rOt'4 [='i:;:::E 204
C (11"1 205
DtYTt4 :2 06
(:OEf Ftl ;2 07
[l Hl 21 1)

t:::EY Ul£:EL 211
Et-ID 212
Ft~ Et-W 213
F'OR 214
IF 215
H1AGE 216
tlE)n 2 '17
E:'pr;w~: ;:;~ 0
L..ET 0: H1PLY) 221

0,.241
IL241
IL315
(t .• 3;24

(I; 312
0,321
0,241
0,241
(1 .• 31 J
0 .. 341
0,344
O,,:::Ql
0, :341
(1,44

0 .. 244
RS::; I Gtl
GREf:i TE
PURGE
REIAI I ND
LOHOBlt-l
F'AU:;::E
fPpnp

222 0,241
223 0,,241
224 0,241
:~25 0 .. 241

REA~"
,::iEH

F-3

226 0,241
22? 0,241
230 0,44
:;:31 0,.321
2320,.14"

Table of Tokens and Attributes

DEF SKIP!
OEF DEfA­
CEF PEH.
DEF PLIST
['E LDIR.
DEF Hl0',/E,
DEF FtKET.
DEF CTAPE
[:'EF TRACE
f)EF TO
['EI=" OR
[,E.... r'lf~;':: 1 I)

L:,EF TI I1E
['E~ DHTE
OEF FP5
DEF 11='5
DEF EPS1!)
C'EF RHll!)
DEF CEILIO
I)Er- ATN2
[)EF ERROR:>;;
L'EF ::::G!R5
[":EF t'1IN1 (I

L"EF ERROR::';
CEF ABS:,
[\E~- 1(OS
r'E':- I S It~
DE>:" I THt~
DEt':" SGN5
f)EF ERROR>;
[)P- COT 1 I)
DEF C:'::EC 1 0
r'EF EF.:ROR:;·;;
L:'E~ E;:';P5
[[S::­

[E;::'

:1['':"

It-n5
LO:::;T5
Lt~5

OFF ERROR>;:
DEF ::::EC 11)
C'E~ CHr~:t
i)EF '·/AL.$
[:.[f-- LEI·j
'·EF ~lUr'l

i:'EF VAL
[",p- INFl I)

DEF RND10
[:'E(:" P; < I)

DEF UPC$
!)EF USING
[:OEF ERROR:x;
rlEF TAB.
DE;:- STEP
[iEF E~WR
['·EF· NOT

233 0,241
DEF~ULT OFF 234 0,241
PEN 235 0,241
PLIST
LDIF<:
II'10VE
Ft·~ I LET
CTAPE
TRfKE
TO
OR
tot ~~ :;.;;

TIt-iE
[)~lTE

FP
IF'
t.:P::;: I ~O~·j
F::f'1D
CEIL
~iTt·j(~<,/'"!,)

DuriN'"!'
:3i.~R

I'll H
ClUI-'lr'1'!"'
148::::
RC:::;
{l ~;I'1

HT~·j

:':::GN
(0 Ui'l t·, '"t'
C:OT
C'3C
o UI'11'1 \'
~>';P

ItH
'_GT (. 1 0
,_0[; -'. E)
OUt-lt'i'l
:::EC
CHP.t
VAL:t
,_ Et·j

HUt'1
\'AL
IHF
eND
PI
UPC$
1..1:::: I t·jG
T Hf.t~
TAB
':'::TfP
t::)';;OR
I'~OT

F-4

236 (1,241
237 0.,241
240 0,241
24'1 0,217
242 0,241
243 0,241
244 (1,41
245 2,51
246 40,55
247 O,,~~5

2500,155
:;-:51 20,55
252 ;:;: 0,55
:253 (1.,55
254 40,5:5
::255 20.155
256 40 / 55
257 0,44
2E.O 20,,:~~i

261 4(1.,55
262 0,44
:263 20;55
264 20,55
265 ;2 (;.; ~55
266 20 .. 55
26720.155
270 0,·44
2?1 ~~O.:55

273 0,4,>+
274
~;:?5

2?6
''',"? ?
":"1 f

300
3 I) 1
202

20.,55
20,.55
2 (I ~5~,

0,44
:?O,,55
20., "'::6

303 ;~:O,5'::-

304 30 ~:::i5

305 30 / 55
~06 30,155
30(' 0,1 ~55
31 0 (I 55
311 0., :;5
312 30,5t:.
313 0,:341
3141L44
315 20.--45
316 0,41
317 2.,51
320 ?:~IO

/

/

[iEF ItHO IV
C'EF ERNU~l

I)EF ERRL
OEF RESET
OEF AND.
()EF NODto
DEF ERROR:";
i)EF SIt~1 I)

['·EF COS 1 0
C·EF TAN10
DEF tWP2
GEi=" F~STO

DEF ERRORX
OEF ERRORX
CoEr ERROF.:>':
OE;:- ItHD IV
["EF POS
PEF DEG10
[:. E i=" R H[, 1 I)
DEF I ~lT5
C'EF ERPOR:',;
(·EF F.:EAD t,l
PH- UL I N#
CiEi=" H1PIJt,j
CEi=" INPU$
i>EF" Ft~RET.

[·EF RE~,)DS

i)EF PR~ I liE
DEF :3Er'lI C
e· E F" co t·tt·1 {4

[lEO:- SET" I C$
(:rE F (:Ol'lMf~$

C·EF EF:ROR;:';
CEF S TEPI<
r' EF FTADF:
::··EF FTADF:
l:'EF TEST
[:OEF ERROR;:':
[··E F EK F::OR:x:
!)EF" ~:O~l!. GO
DEF BP:GO
DE':" ERROR>';
[:'EF ERROR.~;

OEF ERROR:x:
[';EF ERROR:'';
DfF ERROR:'<
DEF ERRORX

Table of Tokens and Attributes

01"1 (""')
LRRt~

E:Rf'::t...
RESET
AND

321 l~L~:;l

322 0, 5~i
323 0.,55
324 0,44
325 4:51

NOD 326 12 .• 51
327 0,44

SHl
COS
TAt~

330 20,55

T 0 < A S ::':;I Cit·))
REbTORE !....~)

OUMfol','
[

:]

PO:::
RTD
OTP
!:::-LIJOR
out'1!'1 ·

334
~....,-

":.'.!'::'

340
341
342
:;::43
~44

245
3<l6

U:;:::l NG L H1E #347'
I tiP tWMEF.: Ie 35 (I
rt~P ::;TRIHG 351
LET F~·i(: :::) 352

20.155
77 :~ 1
0 .. 221
0,44
0,44
0,44-
12, 51
52,55
20 ... 55
;20J~55

2 (I) 5~'

0,44
1),4"1
I) :3 ;~:?
0 .. 33
0,33
0,16

F::E~l l):t;

f:'F.:,{iH EI"W
PP It·jT.,

.353 0 .. 44
3540,35
.355 0,36

PPi.HT .'
Pj:;:HH .:t
PRIt~T., :$

our·11·' ·
:3TEF' KE'c"

356 0,36
.357 (1,.36
36 I) (1,3(:.

361 (1,241
36;;:: 0; 24'1

1 [J I t·t f.l R I~ H \. .,:. to .,:.

2 (! I t'1 ARJ;.:AY 31::.4
TC:;::T f:::E · 365
our'1r·1 · 366
OUi'l t'l'r' 36?
E::<TERt·iA~. POi'13;:'O
.8 HlAR~' Pi~.: OC; .'371
(i1.JNt'lY 372
OUI'lc'1'r' 373
o Ut'1t·l · 374
01..11'1"1\' .3'15
DUNN\' T,tS
Dut'it-l'!' .;.

F-5

(I,: 1
I), 1

(1,341
0,44
0,44
(1,214
0,214
0 .. 44
0.44
0,44
1) .• 44
0,44
0,44

NOTES /

/

F-6

ApPENDIX G

ERROR MESSAGES

Below is a list of the error messages provided by the HP-83/85 Assembler ROM and

the System Monitor. For other errors refer to the HP-83 or HP-85 Owner's Manual

or to the manuals for other peripheral devices that may be attached to the

computer.

ASSEMBLER SYSTEM ERRORS
Error Message

ERROR 109: ILL MODE

ERROR 110: LBL

ERORR 111: OPCO

ERROR 112: ARP-DRP

ERROR 113: OPER

ERROR 114: FTN-I NK

Error Condition

A command has been executed in the wrong operating

mode (e.g., ASSEMBLER has been typed when computer

is already in assembler mode).

An invalid label has been seen; may have been either

longer than six characters or beginning with a digit.

The opcode is not recognized; may have been because

of misspelling, because there was no space between

a label and the opcode. or because the opcode was

entered in the first or second column after the line

number.

Invalid ARP or DRP; ARPs and DRPs must be between ~

and 77 inclusive, and cannot be 1.

Bad operand; e.g., LDM R34, = 3, remark. Because a

number follows the equal sign in this example, the

assembler expects another number after the comma.

Also, each literal value must be specified with two

digits if a BCD quantity.

Missing FIN or LNK statement. If the file name or

file type is wrong in the LNK statement, then a

"FILE NAME" or "FILE TYPE" error will be generated.

G-l

Error Messages

Error Message

ERROR 115: ASSM ROM

ASSEMBLY-TIME ERRORS
Error Message

ILL NAM

AIF UND

ILL ABS

JMP FROM

JMP TO

UND LAB

ILL GLO

Error Condition

At power-on, this means the ROM had a checksum error.
At a breakpoint, all errors generate this message.

Error Conditi on

A NAM statement has already been executed, or an ABS
ROM has been executed.

The specified conditional assembly flag has not yet
been defined as set or cleared.

An ABS or NAM statement has already been encountered.

The jump from that line is out of range.

The jump to that line is out of range.

After assembly was completed, this label had not been
defined either in the program or in the optional
global file.

The GLO statement occurs after a NAM statement, ABS
statement, or another GLO statement.

G-2

/

ApPENDIX H

PROGRAMMING HINTS AND ADDENDA

1. If execution of certain Advanced Programming ROM statements is attempted in
assembler mode, unpredictable results can occur. These AP ROM statements are:

X REF L
X REF V
FIND
REPLACE VAR.

H-1

NOTES ./

/

/

H-2

A
Absolute

Address, 2-10
Program, 4-49

ABS pseudo-instruction, 4-49
ABS5 routine, 7-45
Add instruction, 3-7, 4-22
AD instruction, 3-7, 4-22
Address,

Assigning to a label, 4-53
Base, for reserved RAM, 6-20
CRT memory, 7-108
Format of, xiii, 3-10
In CPU register bank, 3-4, 3-10
Inserting, 4-54
Of variables, 5-1
Parse routine, 6-6
Runtime routine, 6-7
System table, 6-5

Addressing,
Binary program, 6-18, 6-19
CRT, 7-110
External ROMs, 6-17
Modes, 4-7
Stack, 4-16

Address register pointer, 3-1, 3-2
Address table, 5-15

Labe 1, 8-1
ADDROI routine, 7-45
Advanced programming capabilities,

5-32
AIF pseudo-instruction, 4-56
ALFA routine, 7-23
Allocated program, 5-4
Allocation, 5-4, 5-19, 5-22

Status, 6-21
ALOAD command, 2-2
Alpha CRT display, 7-111, 7-112
ALPHA. routine, 7-113
ANM instruction, 4-22
Arithmetic and logic unit, 3-1
Arithmetic instructions, 3-12, 4-22
ARP, 3-1, 3-2, 3-9

Handling during assembly, 4-47
Loading, 4-39

ARP instruction, 4-39
Array variable storage, 5-31
ASCII ,

Characters on CRT, 7-111

INDEX

I-I

Code, inserting, 4-52
Data file, 1-2, 2-3
Strings, 6-23
Table, 6-8

ASC pseudo-instruction, 4-52
ASP pseudo-instruction, 4-52, 6-8
ASSEMBLE command, 2-3, 6-7, 6-8, 6-22
ASSEMBLER command, 2-4
Assembler mode, 2-4, 2-7
Assembler ROM, ix, xii, 1-1
Assembly, x, 1-2, 2-3, 4-37, 4-38,

4-46,4-57,6-1,6-22
Assembly control pseudo-instruction,

4-49
Assembly language, ix

Program type, 6-21
ASSIGN. routine, 7-142
ASTORE command, 2-5, 6-22
ATN2. routine, 7-46
Attributes, 5-19

B
Bank-selectable ROMs, 5-3, 5-4
Base address, 5-15, 6-19

Of reserved RAM, 6-20
Specifying, 4-51

BASIC command, 2-5
BASIC language, ix

Reserved word, 5-1
BASIC (normal) mode, 2-1, 2-5, 2-7
Basic program, 5-1
BCD constant, 4-10
BCD instruction, 3-12, 4-41
BEEP. routine, 7-46
BIN instruction, 3-12, 4-41
Binary,

Mode, 3-12, 4-41
Quanti ty, 3-10

Binary program, 6-1
Addressing, 6-18
Entering a, 2-4
Error messages, 6-16
Reserving RAM by, 6-20
Scratching, 2-10
Storage of, 2-3
Tokens, 5-2, 5-17
Using, 6-23

BINTAB, 2-10, 5-6, 6-18
BKP command, 9-2

Index

BLKLIN routine, 7-114
Boundaries, register 3-4
BPLOT. routine, 7-114
BPLOT+ routine, 7-115
Breakpoints, xi, 9-1

Clearing, 9-6
Operations at, 9-6
Setting, 9-2

BSZ pseudo-instruction, 4-53
BYT pseudo-instruction, 4-53
BYTCR! routine, 7-116
BYTCRT routine, 7-116
Buffers, 5-7

I/O, 5-32

C
Calculator mode statement, parsing

a, 7-15, 7-19
CALVRB pointer, 5-6
Ca rry fl ag, 3- 13
CEIL1~ routine, 7-47
Central processing unit, 3-1, 4-1
CHIDLE hook, 5-14, 8-2

Use of, 6-23
CHKSTS routine, 7-117
CHSROI routine, 7-47
Class of token, 5-20

Decompiling using, 5-25
Clearing conditional assembly flag,

4-56
Clear instruction, 4-35
CLEAR. routine, 7-117
CLE instruction, 4-41
CL instruction, 4-35
CLR command, 9-6
CLREOL routine, 7-118
CLR pseudo-instruction, 4-56
CM instruction, 4-23
CNTRTR routine, 7-118
COMFLT routine, 7-90
Commands, 2-1
COMMA. routine, 7-48
COMMA$ routine, 7-48
Comments, end-of-line, 4-3

Entering, 4-3
Suppressing, 2-7

Common variables, 6-21
Compare instruction, 4-23
Compiling, 5-1
Complement instruction, 3-6, 4-33
CONBIN routine, 7-90
CONCA. routine, 7-49
Conditional assembly, 4-56, 4-57

1-2

Conditional jumps, 4-37, 4-38
CONINT routine, 7-91
Constant, assigning to a label,

4-53
CONT key in assembler mode, 2-4
COPY. routine, 7-119
COS1~ routine, 7-49
COT1~ routine, 7-50
C.PARS routine, 7-15, 7-19
CPU, 3-1

Entering register numbers of, 4-3
Outputting status of, 9-3, 9-9

CREAT. routine, 7-142
CRT addressing, 7-110
CRTBAD, 7-108
CRTBLK routine, 7-120
CRTBL+ routine, 7-119
CRTBYT, 7-110
CRT control, 7-108
CRTDAT, 7-109
CRTINT routine, 7-120
CRTPOF routine, 7-121
CRTPUP routine, 7-121
CRTRAM, 7-11 0
CRT routines, 7-113
CRT SAD , 7-108
CRTSTS, 7-109
CRTUNW routine, 7-122
CRTWPO routine, 7-122
CRTWRS, 7-11 0
CSEC10 routine, 7-50
CSTAT, 5-7, 5-11, 5-13

Saving, 5-33
Current status, 5-13
CURS routine, 7-123
CVNUM routine, 7-91
CY flag, 3-13

D

Cl eari ng, 3-13
Setting, 3-13

DAD pseudo-instruction, 4-53
Data definition pseudo-instruction,

4-52
DATE. routine, 7-51
DCE instruction, 4-42
DC instruction, 4-31
DCM flag, 3-12, 3-14

Clearing, 4-41
Setting, 4-41

De-allocated program, 5-4, 5-5, 5-6
De-J11oCJtion, 5-19
DEC assembler function, 2-7

/

\ Decimal constant, 4-10
Decimal mode, 3-12

Setting, 4-41
Decimal point representation, 3-11
Decimal to octal conversion, 2-11
Decompiling, 5-24, 7-146
Decreasing stack, 4-16, 4-17, 4-20,

4-21
Decrement instruction, 4-31
DECUR2 routine, 7-123
DEFA+. routine, 7-51
DEFA-. routine, 7-52
DEF pseudo-instruction, 4-54
DEG. routine, 7-52
DEG10 routine, 7-53
Deleting ARPs and DRPs, 4-47, 4-48
DIGIT, 7-23
DISP. routine, 7-53
DIV2 routine, 7-54
DIV10 routine, 7-55
DMNDCR routine, 7-24
DNCUR. routine, 7-124
DNCURS routine, 7-124
DRAW. routine, 7-125
DRP, 3-4, 3-6, 3-7, 3-9

Handling during assembly, 4-47
Loading, 4-39

DRP instruction, 4-39, 4-40
DRV12. routine, 7-92
Dumping memory, 2-8, 2-9, 9-7

E
ElF pseudo-instruction, 4-57
EL instruction, 4-25, 4-26
Ending a program, 4-49, 6-11
EOJ2 routine, 7-125
EPROM, 6-23

Burner, 6-1
EPS10 routine, 7-54
EQ. routine, 7-56
EQ$. routine, 7-56
EQU pseudo-instruction, 4-54
E-register, 3-12

Clearing, 4-41
Decrementing, 4-42
Incrementing, 4-42

ER instruction, 4-27
Error message, 6-14

Table, 6-8
ERROR routine, 6-14, 7-57
ERROR+ routine, 6-14, 7-57
Errors, 5-11

Assembler, 1-3

1-3

ERRORS location, 6-15
ERRROM location, 6-15
Example programs, x, 8-1
Exclusive OR, 4-24
Execution

By tokens, 5-8, 5-9
Pointer, 5-7

Executive loop, 5-10
Exponent representation, 3-11
Expression stack, 5-25
EXP5 routine, 7-58
Extended files, 2-2, 2-5
Extended left shift, 4-25
Extended right shift, 4-27
Extend register, 3-12
External label table, 6-10

F

Index

Fahrenheit to Celsius, 1-2, 6-2, 8-1
FETAVA routine, 7-93
FETAV routine, 7-92
FETST routine, 7-93
FETSVA routine, 7-94
FETSV routine, 7-94
Finding labels, 2-6
FIN instruction, 4-49, 6-11
FLABEL command, 2-6
Flag,

Conditional assembly, 4-56
Status, 8-12

FLIP. routine, 7-126
Floating point numbers, 3-4
FOR/NEXT stack, 5-7
FREFS command, 2-6
FP5 routine, 7-58
FTOCB file, 1-2, 8-1
FTOGS file, 1-2, 8-1
FTOG program, 1-2, 6-2, 8-1
Functions, 2-1, 6-11

Assembler, 2-1, 2-7
Numeric, 6-10
Parameters of, 5-21
Storage of, 5-32

FWCURR pointer, 5-6, 5-35
FWPRGM pointer, 5-6
FWUSER pointer, 5-6

G
GGHAR routine, 7-28
GCLR. routine, 7-126
GCURB file, 1-2, 8-9
GCURS file, 1-2, 8-9
GGURSOR OFF statement, 8-9
GCURSOR statement, 8-9

Index

GCURSOR X function, 8-9
GCURSOR Y function, 8-9
GCURS program, 8-9
General hooks, 6-12
GEQ. routine, 7-59
GEQ$. routine, 7-59
GETCMA routine, 7-31
GETCM? routine, 7-32
GET$N routine, 7-28
GET1N routine, 7-30
GET2N routine, 7-30
GET4N routine, 7-31
GETPA? routine, 7-32
GETPAR routine, 7-33
GET) routine, 7-29
GET1$ routine, 7-29
Global file, x, 1-2

Assembler, 7-1
Creating, 6-11
Declaring a, 2-3, 4-49
Disc and tape cartridge, 1-1,

1-2, 7-1
Using, 8-1

GLO pseudo-instruction, 4-49, 6-11
G$N+NN routine, 7-25
G$N routine, 7-24
G~lN routine, 7-26
G~12N routine, 7-25
G~OR2N routine, 7-26
Gl0R2N routine, 7-27
G120R4 routine, 7-27
Go to, 4-55
GRAD. routine, 7-60
Graphics CRT display, 7-112
Graphics cursor program, 1-2, 8-9
GRAPH. routine, 7-127
GRINIT routine, 7-127
GR. routine, 7-60
GR$. routine, 7-61
GTO pseudo-instruction, 4-55

H
Hardware-dedicated registers, 3-2
Hooks, x, 5-14

General,6-12
Initialization, 6-13
System, 5-14, 6-11
Using, 6-18

HLFLIN routine, 7-128
HMCURS routine, 7-128
HP-82928A System Monitor, xi, 9-1
HP- IB, 6-23

1-4

I
ICE instruction, 4-42
IC instruction, 3-5, 4-32
ICOS routine, 7-61
IDRAW. routine, 7-129
Immediate addressing, 9-5
IMOVE. routine, 7-129
INCHR routine, 7-130
INCHR- routine, 7-130
Inclusive OR, 4-23
Increasing stack, 4-16, 4-17, 4-19,

4-20
Increment instruction, 4-32

Multi -byte, 3-5
Indexed addressing, 3-2

Enteri ng, 4-3
In binary programs, 6-18

Indexed direct addressing, 4-13
Assembly of, 4-47

Indexed indirect addressing, 4-14
Assembly of, 4-47

Index scratch register, 3-2
INF10 routine, 7-62
Initialization, 5-11, 5-14, 6-14,6-18

Hooks, 6-13
Reserving memory during, 6-19
Table, 6-9

INIT key in assembler mode, 2-4
Installation,

Disc, 1-2
System Monitor, 1-3
Tape cartridge, 1-3

Instructions, 4-1
Integer values, 3-11

Popped off R12, 5-35
INTEGR routine, 7-33
Intercepting a system routine, 6-18
Interpreter, 5-1, 5-11

Ha lts, 5-14
Loop, 5-15, 5-22

Interrupt, 5-15
INTDIV routine, 7-63
INTMUL routine, 7-95
INTORL routine, 7-95
INT5 routine, 7-62
I/O,

Addresses, 5-3, 7-108
Buffer, 5-32
Control, ix
Processes, x

rasp hook, 5-14
Ir5 routine, 7~63

/

ISIN routine, 7-64
ITAN routine, 7-64

J
J instructions, 4-37
JSB instruction, 4-36
Jump instructions, 4-37
Jump, relative, 4-55
Jump to subroutine, 4-36

K
Keyword, BASIC, 5-8,6-1,6-7,6-11

L
Label,4-10

And conditional assembly flag,
4-56

Address table, 8-1
Assigning address or constant to,

4-53
Entering, 4-2
Inserting value of, 4-55

LABEL. routine, 7-131
Label table,

External, 6-10
Using global file for, 7-1

Language hooks, 6-11
LAVAIL pointer, 5-6
LD instruction, 3-8, 4-6
LDIR. routine, 7-131
LDZ flag, 3-14
Least significant bit flag, 3-13
Least significant byte, 3-10
Least significant digit, 3-11
Left digit zero flag, 3-14
LEQ. routine, 7-65
LEQ$. routine, 7-65
Line numbers, 4-2
Linking files, 4-50
Listing, 5-24

Object code, 4-50
Source code, 2-6

LIST key, 2-6
Literal direct addressing, 4-11

Assembly of, 4-46
Literal immediate addressing, 4-11
Literal indirect addressing, 4-12

Assembly of, 4-46
Literal quantities, 4-10

Inserting, 4-53, 4-55
LL instruction, 4-29, 4-30
LNK pseudo-instruction, 4-50, 6-11
LN5 routine, 7-66

1-5

Index

LOADBIN, action of, 6-7, 6-19, 6-20
LOAD key in assembler mode, 2-2
Loading ARP or DRP, 4-39
Load instruction, 3-8, 4-6
Logical AND instruction, 4-22
Logical instructions, 4-22
Logical left shift, 4-29
Logical OR instruction, 4-23
Logical right shift, 4-28
LOGT5 routine, 7-66
LR instruction, 3-6, 4-28
LSB flag, 3-13
LST pseudo-instruction, 4-50, 6-5
LTCUR. routine, 7-132
LTCURS routine, 7-132
LT. routine, 7-67
LT$. routine, 7-67

M
Machine code, 4-46
Machine language, ix
Main parse loop, 7-14, 7-19
Mantissa representation, 3-11
Mass Storage ROM, 5-7
MAX10 routine, 7-68
MEM assembler statement, 2-8
MEMO assembler statement, 2-9
MEM command, 9-7
Memory dump, 2-8, 2-9, 9-2, 9-10
Memory, CRT, 7-108
Memory, HP-83/85 system, 5-3

Programs in, 5-4
Memory, temporary, 5-7

Saving, 5-33
MIN10 routine, 7-69
MOD10 routine, 7-68
Most significant bit, 3-13

Flag, 3-14
Set, 4-52

Most significant byte, 3-5, 3-6, 3-10
Most significant digit, 3-11
MOVCRS routine, 7-133
MOVDN routine, 7-96
MOVE. routine, 7-133
MOVUP routine, 7-96
MPYROI routine, 7-71
MPY10 routine, 7-70
MSB flag, 3-14
Multi-byte operations, 3-4

Locations involved in, 3-4
Multi-byte status, 3-14

Index

N
Naming a binary program, 4-51
NAM pseudo-instruction, 4-51, 6-5
NARREF routine, 7-34
NARRE+ routine, 7-34
NC instruction, 4-33
Nine's complement, 4-33
Non-arithmetic operations, 3-12
Normalized number, 3-11
NUMCON routine, 7-35
Numeric function, 6-10

Storage of, 5-33
Numeric quantities, 3-11, 4-4

On R12 stack, 5-35
NXTMEM pointer, 5-6
NUMVAL routine, 7-36
NUMVA+ routine, 7-20, 7-35

o
Object code, x

Files, 1-2
Listing during assembly, 4-50
Storage of, 1-2, 2-3, 2-4
Suppressing listing during

assembly, 4-51
OCT assembler statement, 2-11
Octa 1 ,

Constant, 4-10
Quantity, 3-10
To decimal conversion, 2-7

ONEB routine, 7-97
ONEI routine, 7-97
ONEROI routine, 7-98
ONER routine, 7-98
OFTIM. routine, 7-71
One's complement, 4-33
Opcodes, 4-2
Operands, 4-3
Operators, precedence for, 5-22
Option base, 6-21
ORG pseudo-instruction, 4-51
OR instruction, 4-23
OUTCHR routine, 7-134
OUTSTR routine, 7-134
Overflow flag, 3-13
OVF fl ag, 3- 13

P
PAD instruction, 4-43
PAPER. routine, 7-99
Parameters, 5-21
PHARAY routine, 7-143
Parity bit set, 4-52

1-6

Parse loop, main, 7-14, 7-19
Parser, 5-10, 7-14
Parse routine,

Addresses, 6-6
Regi sters, 7-13

Parsing, 5-1, 5-17,6-9
A calculator mode statement,

5-19
A program line, 5-19
Flow, 7-13

PARSIT routine, 7-16, 7-19
PC, 3-2
PC= command, 9-7
PCR, 5-7

Saving, 5-33
PEN. routine, 7-135
PENUP. routine, 7-135
PI10 routine, 7-72
PLOT. routine, 7-136
PO instruction, 4-16
Pointers, 5-5
POLAR statement, 8-15
Pop instruction, 4-16
Pop status, 4-43
POS. routine, 7-72
Power-on, 5-10, 6-12
P.PARS routine, 7-14, 7-19
PRDVRl routine, 7-99
Precedence of operators, 5-22
Primary attributes, 5-19, 6-9
PRINT. routine, 7-73
PRINT#$ routine, 7-74
PRLINE routine, 7-73
PRNT#N routine, 7-74
PRNT#. routine, 7-143
Program control block, 4-51,6-5

Accessing, 6-21
Program counter, 3-2

Changing contents of, 9-7
Program line, parsing a, 7-14, 7-19
Program type, 6-21
PROM burner, 6-1, 6-23
Pseudo-instructions, 4-1, 4-48, 6-1
PU instruction, 4-16
PURGE. routine, 7-144
PUSH1A routine, 7-36
Push instruction, 4-16
PUSH32 routine, 7-37
PUSH45 routine, 7-37

R
RAD. routine, 7-75
RAD10 routine, 7-75

\ RAM, i x
Changing values in, 2-8
Dumping contents of, 2-8

RAM, reserving, 6-19
By a binary program, 6-20
By a ROM, 6-19

R#ARAY routine, 7-144
RDZ fl ag, 3-14
READ#. routine, 7-145
READ#$ routine, 7-76
READ#N routine, 7-76
Real numbers, 3-11

Representation of, 3-11
RECPLB file, 1-2, 8-15
RECPLS fil e, 1- 2, 8-1 5
Rectangular/polar conversions, 1-2,

8-15, 8-19
RECTANGULAR statement, 8-15
REFNUM routine, 7-38
REG command, 9-8
Register bank, 3-1
Register bank pointer, 3-2
Register boundaries, 3-4
Register direct addressing, 4-8
Register immediate addressing, 4-8
Register increment and decrement, 4-31
Register indirect addressing, 4-9
Registers, CPU, 3-2

Changing contents of, 9-8
Outputting contents of, 9-4

Relative address,
Absolute address of, 2-10

REL assembler statement, 2-10
RELMEM routine, 7-100
Relocatable code, 6-1, 6-8, 6-18
Register values, xiii
Remote variables, 5-30
REM10 routine, 7-77
Reserving RAM, 6-19
RESMEM routine, 6-19
Restoring CPU status, 4-43
Return, 4-44

Address, saving, 5-33
Stack, 5-6

Return stack pointer, 3-4
REV DATE function, 8-9, 8-15
Right digit zero flag, 3-14
RMIDLE hook, 5-14
RNDIZ. routine, 7-78
RND1~ routine, 7-77
ROM, ix, 2-3

Addressing, 6-17
Dumping contents of, 2-8

1-7

Reserving RAM by a, 6-19
Tokens, 5-2, 5-17

ROM-defined errors, 6-1~, 6-16
ROM Drawer, HP-82936A, 1-1

Index

ROMFL flag, 5-14, 6-9, 6-13, 6-18
ROMINI routine, 5-10, 6-13
ROMJSB routine, 6-17, 7-101
ROM module, ix

Installation, 1-1
ROMPRB file, 1-2, 8-19
ROM program, x, 1-2, 6-1

Example, 8-19
Using, 6-23

ROMPRS file, 1-2, 8-19
ROMRTN routine, 6-18, 7-20, 7-101
Routine, 5-1

System, 5-8, 6-1, 6-10, 7-1
RPN, 5-1,5-24,5-25,5-27
RSMEM- routine, 7-102
R12 stack, 5-6

At runtime, 5-24
And functions, 6-10
Formats on, 5-34
In decompiling, 5-25
In parsing, 5-18

RSUM#K routine, 7-103
RSUM8K routine, 7-103
RTCUR. routine, 7-136
RTCURS routine, 7-137
RTOIN routine, 7-104
RTN instruction, 4-44
RTNSTK pointer, 5-6
RUN key in assembler mode, 2-4
Runtime, 5-15, 5-22, 7-44

Addresses, 6-7
Routines, 6-9

R*, using, 4-46
R#, 4-47

S
SAD instruction, 4-44, 4-45
SALT, 7-18, 7-19
SB instruction, 4-24
SCALE. routine, 7-137
SCAN routine, 7-17, 7-19, 7-38
SCAN+ routine, 7-39
SCRATCHBIN assembler statement, 2-10
SCRATCHBIN statement, 8-15
Scratching memory, 2-5

A binary program in, 2-10
SCRAT. routine, 7-78
SCRAT+ routine, 7-104
SCRDN routine, 7-138

Index

SCRUP routine, 7-138
SEC10 routine, 7-79
SEMIC. routine, 7-79
SEMIC$ routine, 7-80
SEQNO routine, 7-40
SEQNO+ routine, 7-39
Secondary attributes, 5-19, 5-21, 6-9
Select code, 5-3
SET pseudo-instruction, 4-57
SET240 routine, 7-105
Setting conditional assembly flag, 4-57
SGN5 routine, 7-80
Shell of program, 6-2
Shift instructions, 3-12, 4-25
Shift right instruction, 3-6, 3-15
Short numeric quantities, 3-11
Simple variable storage, 5-30
Single byte instructions, 3-6
Single-step execution, xi, 9-8
SIN10 routine, 7-81
SMLINT routine, 7-40
SOFTKB file, 1-2, 8-2
SOFTKEY, 8-2
SOFTKS file, 1-2, 8-2
Source code, x, 1-2, 4-46

Entering, 2-4, 4-1
Files, 1-2
Loading, 2-2
Storing, 2-5

SP, 5-7
Special function keys, 1-2, 8-2

In assembler mode, 2-1, 2-2
SQR5 routine, 7-81
Stack direct addressing, 4-18
Stack indirect addressing, 4-18,

4-21
Stack instructions, 4-15
Stack pointer, 5-7
Status,

Current, 5-13
Indicators, 3-1, 3-12
Outputting, 9-3
Restoring, 4-43
Saving, 4-44

STBEEP routine, 7-82
STEP command, 9-8
STEP key, 2-4, 9-8
ST instruction, 3-9, 4-6
Store instruction, 3-9, 4-6
STORE key in assembler mode, 2-5
STOST routine, 7-105
STOSV routine, 7-106

1-8

STRCON routine, 7-41
STREXP routine, 7-42
STREX+ routine, 7-20, 7-41
String function, storage of, 5-34
Strings, inserting, 4-52
String underline, 8-7
String variable storage, 5-32
STRREF routine, 7-42
Subprogram capability, 5-7, 5-30, 6-21
SUBROI routine, 7-82
SUB10 routine, 7-83
Subroutine jump, 4-36
Subtract instruction, 4-24
SVCWRD, 5-15
Symbols used in descriptions, 4-4,

4-5
Syntax guidelines, xii, 4-4
System address table, 6-5
System,

Error messages, 6-14
Flow, 5-10
Global file, 6-10
Hooks, 6-11
Labels, x
Memory, 5-3
ROMs, 5-3
Routines, 5-8,6-1,6-10,7-11

System routine format, 7-11
System monitor, HP-82928A, xi, xii,

9-1
Installation, 1-3

T
TAN10 routine, 7-84
Tape routines, 5-7, 7-141
TC instruction, 3-6, 4-34
Temporary scratch-pad memory, 5-7, 5-33
Ten's complement, 4-34
Terminating conditional assembly, 4-57
Test instruction, 4-35

Conditional assembly flag, 4-56
Multi-byte, 3-5

TIME. routine, 6-17, 7-84
Tokens, 5-1,5-8,5-15

Class, 5-20, 5-25
External, 5-17
New, 6-11
Pointer to, 5-7, 5-22
For variables, 5-29
Type of, 5-20
Missing operator, 5-27

Top-of-stack pointer, saving, 5-33

J

/

TOS, saving, 5-33
TRACE command, 9-9
Tracing execution, xi, 9-9
TREM command, 2-7
TRY1N routine, 7-43
TS instruction, 3-5, 4-35
TWOB routine, 7-106
TWOROI routine, 7-107
TWOR routine, 7-107
Two-operand operations, 3-7
Two's complement, 4-34
Type of token, 5-20

U
UDL$B fi 1 e, 1- 2, 8- 7
UDL$ function, 8-7
UDL$S file, 1-2, 8-7
UNBASl and UNBAS2 locations, 6-20
Underlining a character, 7-110
Underlining a string, 1-2, 8-7
UNEQ. routine, 7-85
UNEQ$ routine, 7-85
UNL pseudo-instruction, 4-51
UNQUOT routine, 7-43
UPC$. routine, 7-86
UPCUR. routine, 7-139
UPCURS routine, 7-139
Utility routines, 7-89

v
VAL pseudo-instruction, 4-55
VAL. routine, 7-87
VAL$. routine, 7-86
Values, inserting, 4-55
Variables, 5-1, 5-9

W

Common, 5-6, 6-21
Format of, xiii
On R12 stack, 5-34
Representation of, 3-11
Storage of, 5-28

WAIT. routine, 7-87

x
XAXIS. routine, 7-140
XCOM, 5-8, 5-11, 5-14
XR instruction, 4-24

Y
YAXIS. routine, 7-140

\-., YTX5 rout; ne, /-HH

1-9

Z
Zero fl ag, 3-14
Zeros, inserting, 4-53
Z flag, 3-14
ZROMEM routine, 7-88

Index

/

/

/

I

00085-90444

r/i~ HEWLETT
~e. PACKARD

Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

