
HEWLETT-PACKARD

Matrix ROM Manual
HP-83/85

Printed in U.S.A.

F'iOW HEWLETT
~~ PACKARD

HP-83/85
Matrix ROM Manual

December 1980

00085-90144 Rev. B 12/80

© Hewlett-Packard Company 1980

Contents

Section I: Getting Started ... 5
Introduction ... 5
Matrix ROM Installation .. 5
Conventions .. 5

Arrays, Vectors, and Matrices .. 5
Statement and Function Notation ... 6

Data Types ... 6
Dimensioning an Array ... 6
Redimensioning an Array .. 7

Section 2: Assigning Values to Array Elements 11
Assigning Values From the Keyboard ... 11
Assigning Values in a Program .. 12
Assigning the Values 1 and 0 .. 13
Assigning the Value of a Numeric Expression ... 14
Creating an Identity Matrix .. 14

Section 3: Displaying and Printing Arrays ... 17

Section 4: Array Operations .. 21
Array Transpose ... 21
Scalar Operations .. 22
Arithmetic Operations ... 23
Matrix Multiplication .. 25
Cross Product ... 28
Inverting a Matrix .. 30
Solving the Equation AX = B ... 32
Summing Rows and Columns ... 35

Section 5: Copying Arrays and Suharrays ... 39
Copying an Array .. 39
Copying From/Into a Subarray ... 40

Section 6: Array Functions ... 49
Sum of Elements
Sum of Absolute Values
Maximum and Minimum Element
Maximum Absolute Value
Frobenius/Euclidean Norm
Rowand Column Norms
Determinant
Dot Product
Upper and Lower Bounds

Appendix A: Maintenance, Senice, and Warranty 55
Maintenance ... 55
Service ... 55

Warranty Information .. 56
How to Obtain Repair Service .. 57

Serial Number ... 57
General Shipping Instructions .. 57

Syntax Summary .. 59

Error Messages .. Inside Back Cover

2

3

Notes

Section 1

Getting Started

Introduction

The HP-83/ 85 Matrix ROM provides you with a powerful set of statements and functions for working with

arrays (matrices and vectors). These capabilities enable you to calculate with more convenience, speed, and

accuracy than if you worked with arrays without the ROM.

This manual assumes that you have a working knowledge of linear algebra and matrix theory. In addition, it

presumes that you are familiar with operating and programming an HP-83 or HP-85 Computer, as

described in the Owner's Manual and Programming Guide. Section 8 of that manual (Using Variables:

Arrays and Strings) contains information that is particularly relevant.

All Matrix ROM statements and functions-excepting only the and

statements-work both in "calculator" mode (that is, from the keyboard) and in program mode.

The Matrix ROM uses 69 bytes of the computer's memory (not including any memory allocated to arrays).

If you attempt to load into memory a large program written for the computer alone (including programs

from application pacs) the message i .. ,.,' ":: may result, indicating that the program

does not fit into memory. Such a program can be loaded after installing a 16K Memory Module or

removing the ROM drawer.

Throughout this manual, "HP-83/ 85" is used to refer to both the HP-83 and the HP-85.

Matrix ROM Installation

The Matrix ROM should be installed in an HP 82936A ROM Drawer. Please refer to the instructions

accompanying the ROM Drawer, or to appendix B of the computer owner's manual, for complete ROM

and ROM Drawer installation instructions.

Conventions

Arrays, Vectors, and Matrices

Throughout this manual, the term "array" is used in referring to a variable with either one or two dimensions

(that is, a variable that has been declared with either one or two subscripts). The term "vector" is used in referring

to an array with only one dimension; the term "matrix" is used in referring to a two-dimensional array. The

Matrix ROM regards all vectors as column vectors, not row vectors. Except for the i·'i i:::i·T .,. C:: i? Ci ':::: ::::: operation

and the L!!'.) j function, a matrix declared with only one column-like i:::i ;:: :::':.' :i.:' (with C>::'·T :r i i i···i i::>::»::: .L

in effect)-can be used wherever a vector can be used. In all cases, a vector can be used wherever a one-column

matrix can be used.

References to both matrices and vectors throughout this manual generally have the array name printed in boldface

type (for example, matrix A, vector B). However, if the array name is part of a BASIC statement or function, it

(as well as the rest of the statement or function) is printed in L) CiT i·'i i:::i·T i? I :< type (for example, (i i:::i·T i··i

..... i:::i).

5

6 Section 1: Getting Started

Statement and Function Notation

Statements and functions are described throughout this manual using the following conventions:

italics

Items shown in dot matrix type must be entered exactly as shown (in either upper­

case or lowercase letters). If several items are shown stacked, one (but only one) of

the items must be specified.

Items shown between brackets are optional. If several items are stacked between

brackets, you can specify anyone or none of the items.

Three dots (ellipsis) following a set of brackets indicate that the items between the

brackets may be repeated.

Items shown in italic type are numeric expressions or names of arrays that should be

specified in the statement or function.

The result array, specified on the left side of the ::::: sign in a j.'j i:::i·r statement, is the array whose elements are assigned

values. Many Matrix ROM statements specify one or two operand arrays as well as a result array. The operand

array, specified on the right side of the ::::: sign in a (j i:::i·r statement, is the array from which values are taken to be

operated upon.

The array specified as the result array may be the same as the array specified as an operand array. Thus, values

can be changed and stored in the original array without allocating storage to a new array variable.

Data Types

Like the HP-83/85 itself, the Matrix ROM works with numeric array variables (or, simply, numeric arrays);

string array variables are not allowed.

As described in section 3 of the HP-83 and HP-85 owner's manuals, a numeric array can be any of three

data types: ':::-l ,', i:;> 'T, and T '.'T ,::: ,::: ,:::. j:;>. Operations provided by the Matrix ROM put no

restrictions on the types of array variables or simple variables named in statements. For example, a typical

Matrix ROM statement specifies that values are to be taken from the elements of an operand array,

manipulated in some particular way, and then assigned to the elements of a result array. In all cases, the type

of the result array depends only on how the array was declared, not on the type of the operand array(s).

When values are taken from a;:::' ::: :::::: variable (simple or array) and assigned to a':: L' ,'. ... or

array, the values are rounded before the assignment takes place.

Dimensioning an Array

Arrays should be dimensioned before they appear in a Matrix ROM statement or function. If this is not

done, errors will result. It is best to dimension arrays explicitly using a:: ;j, ":, :: i! C: i:;>T, or

, ,.,., ,::. ,::: ,::!:;> statement. (Refer to section 8 of the HP-83 or HP-85 owner's manual for a discussion of these

declarative statements.)

Section 1: Getting Started 7

You can also dimension arrays implicitly by assigning a value to an array element, but this allows the
I

possibility of an unexpected Error 7 (ii ii' :U i:iT ii). For example, suppose your program does not

contain one of the four declarative statements mentioned above, but it does assign values to the elements in

the first three rows and first three columns of an array A. As discussed in section 8 of the owner's manual,

array A would automatically be dimensioned as an II X II matrix (assuming l' ill:' i' is in

effect). If you were subsequently to execute ai,' i"" '" statement (described on page 17 of this manual)

to display the elements of A, 112 ii i " Ti iiT i:i error messages would be displayed in addition to the nine

(3 X 3) values you assigned. * This is because the elements in the last eight rows and the last eight columns

had been implicitly allocated storage but were never assigned values. In this example, the error messages

could have been avoided by dimensioning A as i' ;

statement.

..., before specifying the array in the i:i ,I"~

Remember to specify if you want the row and column numbers of your arrays to

begin with 1 rather than O. (Refer to section 8 of the owner's manual for a discussion of 1i i" C' ii:: i).

Throughout this manual (unless otherwise specified), examples of operations III program mode use

i, while examples of operations in calculator mode use i' ill"~ :' .. ',

Redimensioning an Array

You can reorganize an array into a more useful configuration by redimensioning it. This changes the working size

of the array; subsequent statements affect only the elements included in the new working size. However, elements

not included in the new working size are still associated with the array. The values of these elements are not

changed, and they can be accessed if the array is redimensioned again.

II:' :: .. : ::::: I ('i array :::redim subscripts:' [.' array ':redim subscripts >] ...

The redimensioning subscripts are numeric expressions, variables, or constants that specify a new upper bound

for each dimension. The number of subscripts must be the same as the number specified in the original L:i T i"'i,

~::~~ E: 1:::1 L .. , : .. j ... ~ C) F~ or, or I 1"'~ or E: C; E: F~ statement. Furthermore, the total number of element~ in the new working size

cannot exceed the number originally dimensioned.

Examples:

Ci F' or I C) ~ ... ~ 1:::; ~:::j ::::; E: Ci assumed.

Redimensions working size from five to
four elements.
Redimensions B from 3 x 5 matrix (15
elements) into 4 X 3 matrix (12 elements).

Redimensions A and B back to original
sizes.
Redimensions C from 2 X 10 matrix into
4 x 5 matrix.

When a matrix is redimensioned, the values of its elements are reassigned to different positions within the matrix.

Values of matrix elements are stored in order from left to right along each row, from the first row to the last.

The redimensioning takes the elements out of the matrix in that order, and reassigns them in accordance with the

new working size of the matrix.

* You could tenninate the display of these messages-as well as halt program execution-by pressing ~.

8 Section 1. Getting Started

The following example shows how values of matrix elements are reassigned when a matrix originally declared to

be 3 x 3 is redimensioned into a 2 x 2 matrix. The values of the original matrix elements are integers that

indicate the order in which the elements are stored before the redimensioning.

Example:

,:::: I:::i C; :i: i"! i:::i;::' Array A is originally dimensioned as
3 X 3.

. ',.! :~. ,::i. l:::" ,: .• ...
. ..

." :::1

~0 K=2 2 GOSUS 130

} Assigns values 1 through 9 to the nine
elements of matrix A.

Displays original 3 X 3 matrix.
Redimensions A down to a 2 X 2 matrix.
Displays redimensioned 2 X 2 matrix.
Redimensions A back up to a 3 X 3 matrix.
Displays redimensioned 3 X 3 matrix.

Subroutine that displays matrix A.

Nine elements of original 3 X 3 matrix.

Four elements of redimensioned 2 X 2
matrix. Values of elements have been
reassigned sequentially within new work­
ing size.

Nine elements of 3 X 3 matrix with
original values still assigned.

Note that redimensioning a matrix does not isolate a submatrix. In other words, if you redimension a 3 X 3

matrix into a 2 X 2 matrix, the resulting matrix is not the 2 X 2 submatrix from the upper left corner of the

original matrix. (A submatrix can be isolated using a different Matrix ROM statement; refer to Copying From/Into

a Subarray, page 40.)

Section 1: Getting Started 9

i? t:: L! I i"i is not the only statement that redimensions an array. The i"! ::::: T ... c:: (:) ""1, j"i H'r ... :? E:: I?, and I"i :::::'r ...

T L! i"'1 statements allow you optionally to specify redimensioning subscripts. These statements assign certain values

to the array specified. If redimensioning subscripts are specified, the array is redimensioned before the assignment

is done.

Furthermore, redimensioning may also occur with all Matrix ROM statements that specify both a result array and an

operand array. In each case, the result array is redimensioned (if necessary) to accommodate the elements of the

operand array before the new values are assigned. The number of rows in the result array will then equal the number

of rows in the operand array, and the same is true for the number of columns. (This occurs in example 2 on page 42

and in the example on page 45.) If the size of the result array is greater than that of the operand array, the

result array is first redimensioned downward to the size of the operand array. Conversely, if the current size of

the result array is smaller than that of the operand array, the result array is first redimensioned upward to the size

of the operand array; but this requires that the size of the result array when originally dimensioned was at least as

large as the current size of the operand array.

Note: If an array has been redimensioned-either explicitly (that is, in a i? i:::U I i'i,

statement) or implicitly (any other statement)-the array remains

redimensioned even when the program that originally dimensioned it is run again. The array is not

automatically dimensioned back to the original size declared in the program's :U I i'L I? C :::!., ':: i·: C1 :;:'T,

or T iiT i ,. C i? statement. If a program is rerun, and it contains an array that is redimensioned (either

in the program or from the keyboard), a F' i::U I i'l statement that specifies the original size should be

included in the program between the Ii i i'i, i" , .. i'i L, "i··i ,'i:? 'T, or T '·.,·T;:: ,:::::: r::' statement and the first

statement or function that specifies the array.

Furthermore, if redimensioning occurs in a program, values of all variables (simple and array) can be

traced only by executing '.j i:':i i':' (or' :':':!. .. L) in the program, not from the keyboard.

Section 2

Assigning Values to Array Elements

Assigning Values From the Keyboard

: i'." ii"T' array [, array] ...

When this statement is executed, the computer displays the name of the first element of the array-for example,

;::, -: Ci. (:' '", (if Ci F"r ::: C>"·: E>::: ::; F: i? is in effect) or r:i '" .L .' .L .' '::' (if C) F"r ::: C; i'·: C: I::::::; E:: ::. is in effect). You

can then enter the value by typing it in and pressing @D. You can also enter values for several consecutive

elements, separated by commas; if you do, the total number of characters (including spaces) cannot exceed 95-

nearl y three full lines.

All elements are assigned values in order from left to right on each row, from the first row to the last. After

you press @D, the computer displays the name of the next element to be assigned a value.

Values can be entered as numbers, as numeric variables, or as numeric expressions .

Example:

8

:~. . ::::;

.l. i···i F: i ... i"T statement is programmable only; it cannot be executed from the keyboard.

,or:

11

Computer prompts for first element of R.
Input value into first element of R.

Input value into second element of R.

Input values into third element of Rand
first four consecutive elements of S.
Computer prompts for next element to be
assigned a value.
Input values into next 13 consecutive
elements of S.

12 Section 2: Assigning Values to Array Elements

•••• i" ~:::: .' : •••• ::= ':>

'r " 'j: i ',,:

'r :', :::: .. ' :~. ::= .::=

y : C'

Assigning Values in a Program

: ':::: . i Li array [, array] ...

Computer prompts for next element to be
assigned a val ue.
Input values into last three elements of S.
Computer prompts for first element of T.
Input values, as expressions, into elements
ofT. Values are computed before assign­
ment using values of X and Y assigned in
statement 40.

This statement is used in conjunction with one or more :, i:: T:: statements. When :-: ii,' ::'::: ji is executed,

elements of the array are assigned values from the list of numbers in a T i:iT:i statement. Array elements are

assigned values in order from left to right on each row, from the first row to the last. Values are read from

T' iiT ii statements as described in section 8 of the HP-83 and HP-85 owner's manuals. Remember that the

items in a :i ::: T ::i statement that correspond to array elements must be numbers, not strings.

The :-: ,ii"~ ,,' :::l' statement is programmable only; it cannot be executed from the keyboard.

Example:

20 INTEGER N(2,5) N is declared as an integer matrix.
A$ andB$ are string variables, not arrays.
Years.
Numbers of U.S. drivers.
Title.

Reads data matrix.
Reads title.

Section 2: Assigning Values to Array Elements 13

8

:\. :::j .

.... . '-;- ,

:, .. ' :

Assigning the Values 1 and 0

i"i: i 'T result array····· ... C i··i ['redim subscripts>]

, i: :T result array·'::::::;> ['redim subscripts >]

to'i i:::i C: i···i assigns the value 1 to all elements of the result array.

i"i :::::'T" ::' E F' assigns the value 0 to all elements of the result array. A matrix in which all elements are zero is

frequently called a zero matrix. Likewise, a vector of which all elements (components) are zero is frequently

called a zero vector.

Examples:

: ... ': .
',', .. ' "

Example:

• '5::::: r'ii"'i: :: ::: :f···i " ... ::'.' ,.:: ... '

(~~: 1 ••••

:~: ::::: :i. 'r C) 1<

C: i·· T' T C: i···i i:::: i:::i ::::; i:::: C: assumed.

Assigns value 1 to all nine elements of A.
Assigns value 0 to all nine elements of B.

Array C originally dimensioned as 4 x 3
matrix.
Assigns value 0 to all 12 elements of C.
Displays C.
Redimensions C down to a 3 x 2 matrix,
then assigns value 1 to the six elements in
current working size. Val ues of remaining
six elements are not changed.
Displays C.
Redimensions C back up to a 4 x 3 matrix.

Displays C.

14 Section 2: Assigning Values to Array Elements

8

.,. :1.

. :. :1 .

:t :~.

:1.

:i. .!.

!::.

Value 0 assigned to all 12 elements of
array C.

C redimensioned down to 3 x 2 matrix,
and value 1 assigned to six elements in
current working size.

C redimensioned back up to original size.
Value 0 still assigned to remaining six
elements.

Assigning the Value of a Numeric Expression

:"'i :::': ! result array····· <numeric expression ::.

This statement assigns the value of the numeric expression to every element of the result array.

Examples:

Creating an Identity Matrix

i"i :::::r result matrix •.... I L: i··i ['redim subscripts::']

Assigns value 30.48 to all elements of X.
Assigns value of variableM to all elements
of Y.
Assigns value of 21TR j

2 to all elements of
Z.

i"i :::::'r I L: i···i assigns the value 1 to all diagonal elements of the result matrix and assigns the value 0 to all other

elements. (Diagonal elements are those for which the row subscript is equal to the column subscript.) A matrix

created by the i"i :::::'r ... I L:: !···i statement is frequently called an identity matrix or unit matrix.

The array named must be a square matrix (after redimensioning, if necessary)-that is, it must have two

dimensions, and the number of rows must be the same as the number of columns.

Examples:

Section 2: Assigning Values to Array Elements 15

Ci F)"T' I C: !',: E:; i:::i ::::; E:: Ci assumed,

Defines I as 5 x 5 identity matrix.

Redimensions J from a 2 x 6 matrix into a
3 x 3 matrix, then defines that 3 x 3
matrix as an identity matrix. Values of
remaining three elements are not changed.

Section 3

Displaying and Printing Arrays

The Matrix ROM provides two kinds of statements for displaying and for printing arrays. The two kinds,

like the and or and statements provided in the

HP-83/ 85, differ in the degree of control you have over the format in the display or printout.

.... , ;:, and (1 ,:" give you three convenient display / print formats.

....... ::; i:::' [,.:.,..'] array[, [;:' i 1.'1] array] ... []

i:: ;." ;] array] ... [.. '

The terminator (semicolon, comma, or slash) following the array name is used to specify the spacing

between elements of the array.

Terminator Spacing Between Elements

Close; elements will be separated by two
spaces. A minus sign, if present, occupies one
of these two spaces.

Wide; elements will be placed in 21-column
fields. The nu mber of fields per line depends on
the line length of the system printer.

One element per line.

If no terminator appears after the last array specified, the elements of that array will appear spaced as they

would if you had specified a comma after the array name .

.... outputs to the F' ", .; , printer. If no i:' ", . T '; printer has been declared,

output defaults to the CRT on the HP-83, and to the internal printer on the HP-85.

If you specify!; ii !,! before an array name, elements are displayed or printed on each line by rows, beginning

with row I. Each row begins on a new line, and the elements in each row are listed in order from the first

column to the last. More than one line may be required to list the elements in each row; this depends on the

terminator following the array name, the number of elements in each row, the number of digits in the values

of the elements, and the printer line width.

If you specify before an array name, elements are displayed or printe don each line by columns,

beginning with column I. Each column begins on a new line; and the elements in each column are listed in

order from the first row to the last. Again, more than one line may be required to list the elements in each

column; this depends on the terminator following the array name, the number of elements in each column,

the number of digits in the values of the elements, and the printer line width.

17

18 Section 3: Displaying and Printing Arrays

Specifying neither i? C! i.'.i nor C: Ci L before an array name has the same effect as specifying F: Ci i.'.i.

If more than one array is specified, a blank line appears between the display or printout of each array.

Examples:

MAT DIS~ ROW J; COL (.

MAT PRINT L/ CUL M

Displays array F by rows with wide
spacing.

Prints array G by rows with close spacing.

Prints array H by rows with wide spacing
and array I by rows with one element per
line.

Displays array J by rows with close spac­
ing and array K by columns with close
spacing.
Prints array L by rows with one element
per line and array M by columns with
wide spacing.

Normally, vectors are displayed or printed with one element per line. If you specify ;;' before the vector

name, however, elements of the vector are displayed or printed across a line.

Example:

.50 MAT PPT\T COL

8
:~.

• •• :=

You can achieve more complete control of the spacing between array elements with the i"i i:::i T C;!:· ,... i ... '" :;: ;,,; (:::

and ~.:.~ j:::1 "r F' !:;:: T k i "T t .. ! ::::; T !" .. j C; statements.

,i",i ,;:::,; ",i" ,r .. ·.·.; .·,i.· .'.:::.: i:::- " ·,i.· ,i""" .; :,: statement number [[i? Ci i.'.i] array [[i":: i .. .! i.'·i] array]]
C Ci L.. C Ci L.. . ..

i"i i:::i'r i:::' i? I !-..!·r i.i ':::; I !···i C; format string [.: [::'~' :::.: ::,.!] array [[::'~' ::::: ;.'.!] array] ...]

i"i i:::i'r i:::' i:;:' I !···i'T ; I i···i C; statement number [: [::':: :::: ::::i] array [[::::' :::.: ::':i] array] ...]

Section 3 Displaying and Printing Arrays 19

The first form of each statement includes a format string that specifies how array elements are displayed or

printed. The second form of each statement specifies the line number of an T i'i i:: i; i statement that includes

the format string. Section 10 of the HP-83 and HP-85 owner's manuals describes the contents of format

strings and their results.

i:::' i? I i···i·r statements, specifying C: Ci L.. before the array name causes

elements to be displayed or printed in order from top to bottom along each column, from the first column to the

last. Otherwise, elements are displayed or printed in order from left to right along each row, from the first row

to the last.

Examples:

: ... ::: .. '
. ,", 'T' ~:::: i:::: : :',: :

: :", ,: :

... . : ~ ... ! : ... : t::.

8

.... ','+: i:::;

...... T ~ ... ~ C; ; i':::

::+ .!. :::
. ; .; '" .. '::

I ••••
. :::i ...

... 1:::'
:.::'

. :.

::::. :l

... :
::

.L :l .
:1, ::: :t ,;:: . .i .. ::

;;;:;
... 1: •.•

i

...
,: ...

::
: : Prints matrix A (by rows) using format

string.

Prints title on one line, then vector B on
the next line (by columns) using .L :·'i: i i .. :; i:::
statement.

Prints matrix C (by rows) using
statement.

) M"rix A .

Vector B .

) M.trix C.

:','

Section 4

Array Operations

Array Transpose

i"i i:::i'-r- result array::::: T' i) i··' <operand arrav .:<

This statement finds the transpose of the operand array. The result array will contain the same elements as llJ'

operand array, but the rows and columns will be interchanged.

Example:

- 70 MAT B = TRN<A)

-100 MAT A - TRN<A)

8
1.

_. .':;= ..
::.-

1::1· c::' l::~ ... ! . ..

:j, t::!.
... i::'
I~:. ... !

... !~:

J. :::i·
... I:::; I:::. . ..
.':;= 6 ...

21

Sets array B equal to transpose of array A.

An array can be replaced by its transpose.

Array A .

Array B, equal to transpose of A. Notice
that B has been redimensioned from a
5 x 5 matrix down to a 3 X 2 matrix.

Array A, now equal to transpose of
original array. A has been redimensioned
from a 2 x 3 matrix into a 3 x 2 matrix.

22 Section 4: Array Operations

Scalar Operations

,', ,···,·r result array····· <scalar> operand array

Scalar operation statements perform arithmetic operations between a scalar (a number, numeric variable, or

numeric expression) and each element of the operand array. The resulting values are assigned to the corresponding

elements of the result array.

Example:

8

Defines A as an identity matrix.
Multiplies all elements of A by 2.

Array A.

If you need to change the sign of all elements in a matrix, you can do so simply with a statement of the following

form:

i"i i .. ·!·r result array · operand array

For example, modify the program above by inserting the following statement:

8

.. ::
1::,=

Array A, with signs of elements changed .

Section 4: Array Operations 23

Arithmetic Operations

": i:::i "r result array::::: operand array 1 operand array 2

Arithmetic operation statements perform arithmetic operations (addition, subtraction, multiplication, division)

between corresponding elements of the two operand arrays. The resulting val ues are assigned to the corresponding

elements of the result array.

Multiplication of corresponding elements is denoted by a period (•); the asterisk (::n is used to denote matrix

multiplication, which is a different kind of operation. (Matrix multiplication is described on page 25.)

The two operand arrays must have the same number of elements in each dimension.

Example: Firebird Stove Works employs three welders building wood

stoves. The table below shows for each welder the monthly efficiency

goal (in average units per day), the actual number of units produced,

and the number of days worked. Write a program that calculates how far

the welders exceeded or fell short of their goals.

Efficiency Goal Units Produced
Welder

JAN FEB MAR JAN FEB MAR

A 3.5 3.8 4.0 75 72 81

B 2.7 3.1 3.4 53 55 58

C 2.2 2.3 2.5 33 35 38

Days Worked

JAN FEB MAR

21 19 20
21 19 17
16 17 15

Solution: In the following program, the efficiency goals are entered in matrix G, the number of units in matrix U,

and the number of days in matrix D. The actual efficiency rates are calculated by dividing each element of U

by the corresponding element of D. Finally, these rates are compared to the goals by subtracting from each

element of the resulting matrix the corresponding element of G.

24 Section 4: Array Operations

.':;: ::::;., :::.:. ; ... : ,":: ,
:'"1". =: .. :.' :i .. ' '.:::. :::1.:

;~:::. :::: . .: I:::.. :::~~., ;~:::. ~:::;
i::::i:::: !:::'('"::::., : .. ::;.: :::::::::'

: ... ·····1.

MAT PRINT ~~IN: ~10 ; E
" .:::~ >.: i i 1:::\ i: ,:':, : .:': =" ::.:: ... ' ::.... ;:::: > .' .:', .:-: j! E~ ;!

.' :' : . .': "'; ::': . ;:::~::. .' :'.'::.: !! C:: ;; : ... :', ,...,:

8

;", t·'; 'T' ;.':

.....•.. :
"::.:. ::;.. i··:i.

·····1:::; .

Sets elements of matrix E equal to actual
efficiency rates.

Sets elements of matrix E equal to differ­
ence between actual efficiency rates and
efficiency goals.

Performance above (+) or below (-)
efficiency goal.

The results of two scalar multiplications can be added in one statement. This saves the storage space that would

otherwise be allocated to the results of each multiplication.

:": i:::i'r result array:···· <scalar::: ::::: operand array 1 <scalar::: ::::: operand array 2

Example:

Specifies matrix A.

Specifies matrix B.

Adds multiples of A and B.

8
!... :::~.

.
i::: i:::= :: .•. ! ... Linear combination of A and B.

Section 4 Array Operations 25

Multiplying or dividing the results of two scalar multiplications cannot be done in one statement. However,

subtracting the results of two scalar multiplications can be accomplished in one statement by changing the sign

of the second scalar.

Example: In the preceding example, change statement 60 to

r··!····· Subtracts multiples of A and B.

8

::.i. ::::.

Matrix Multiplication

,.; ;.; ; result array::::: operand array 1:[: operand array 2

This statement calculates the product of two arrays, such as the product A = Be. The value of each element of

the result array is determined according to the usual rules of matrix multiplication.

The number of columns in the first operand array must be the same as the number of rows in the second operand

array. The result array has the same number of rows as the first operand array and the same number of columns

as the second operand array.

Either (but not both) of the operand arrays can be vectors.

Example: The Whackit Racket Company is considering raising the

prices on each of its four models. Using the data in the following table,

calculate and print a matrix that shows the total income (in thousands

of dollars) in each of the three sales regions at the old and at the new

prices. (The price increase is not expected to affect the number of units

sold.)

26 Section 4: Array Operations

Monthly Sales Forecast (Thousands of Units)

Model
Sales Region

WR01 WR02 WR03 WR04

East 25 23 17 12

Midwest 17 13 11 7

West 21 18 12 13

Price (Per Unit)

Model Old New

WR01 $10 $15
WR02 $20 $27

WR03 $35 $50

WR04 $60 $80

Solution: In each sales region, the total income (either at the old or at the new prices) can be determined by

mUltiplying the quantity by the price for each model, then adding the results. Applying this process to the data

in the forecast and price tables above, we multiply each entry in a row of the forecast table by the corresponding

entry in a column of the price table and then add the results. The sum could be entered into the same row and

column of another table, in which each row shows the total income in a sales region and each column shows the

total income at the old or at the new prices. Since all this is just what happens in matrix multiplication, these

calculations can be done compactly with the matrix mUltiplication C = AB, where:

Matrix A contains the sales forecasts (in thousands of units). The three rows correspond to the three sales

regions; the four columns correspond to the four models.

Matrix B contains the prices (per unit). The four rows correspond to the four models; the two columns

correspond to the two price lists (old and new).

Matrix C will contain the total income in each sales region at the old and at the new prices. The three rows

will correspond to the three sales regions; the two columns will correspond to the two price lists.

:.' : ,' i.... :" .. :~: .: ; ... ~ :

~ .. ~ E. ~.:.~ j< ::~:: ::

110 IMAGE x,DC3D,4x,uc~u

120 MAT PRINT USING 110 C

Sales forecast for East region.
Midwest region.
West region.
Cost matrix.

8

:i .. "::,":;:!:::;

Section 4 Array Operations 27

Income in East region.
Midwest region.
West region.

You can multiply the transpose of an array by an array using just one statement (as well as two):

!"'! C: .. , .. result array < operand array 1 > ::i:: operand array 2

r'i i···i T" result array::::: operand array 1 ! i-,-!-.! <operand array 2 >

The two operand arrays can be the same array.

Example: Since the manufacturing capacity of the Whackit Racket Company is limited this quarter, it can

produce only a percentage of the rackets demanded. The table below shows the percentage that will be supplied

to each region in the next two months. Using the forecast data in the first table on page 26, calculate and print a

matrix showing how many of each racket model will be produced each month.

Production Quota (Percentage)

Sales Region June July

East 80 90
Midwest 75 85

West 85 95

Solution: The quantity of each racket model that will be produced (during either month) can be determined by

multiplying the quantity by the percentage for each model, then adding the results. As in the preceding example,

these calculations can be done compactly with a matrix multiplication of the data in the sales forecast table and

the data in the production quota table. To do so, however, requires that the multiplication use the transpose

either of the matrix containing the forecasts or of the matrix containing the quotas. In the following program, we

multiply the transpose of the matrix containing the forecasts by a matrix containing the quotas.

28 Section 4: Array Operations

30 DATA 25,23,17,12

80 MAT B - (.01)*B

30 IMAGE \,20.0,5·

8

::.j.":;: i:::;

.. ::: !::::. :~.

Cross Product

.... ! I ... 1.... \' !i

Sales forecast for East region.
Midwest region.
West region.
Production quota matrix.

Converts percentages to decimal values.

Model WROl.
Model WR02.
Model WR03.
Model WR04.

i·'i: :.-r- result vector i ... : :'" i .. .! ':::: ':'-: (operand vector 1 , operand vector 2)

The i"! :::::'-r- ... C: i? Ci ::::: ':::: statement calculates the cross product (or vector product) of two 3-element (3-component)

vectors. Mathematically, the cross product of two vectors is expressed as A = B X c.

Each of the arrays named in the i"i ::::: T ... c: i? Ci ::::: ':::: statement must be vectors; that is, they must have only one

dimension. Arrays dimensioned like ::::: (:::::, :i.) are not allowed.

Section 4 Array Operations 29

Example: A leaning tree is guyed to the corner of a house as shown in the illustration. What is the moment of

the force exerted by the guy cable about the base of the tree, if the tension in the wire is 960 lb?

i:
s

.~ -1
10 FT

_I
x

z

Solution: The moment is given by the cross product

M=RXF

where R is the position vector of the guy point (on the tree) with respect to the base of the tree, and F is the

960-lb force exerted by the guy cable. In the following program, vectors R, F, and S are expressed in terms of

their components in the X-, y-, and z-directions. S is the vector from the guy point on the tree to the guy point

on the house.

The components of R, as can be seen in the illustration, are:

Ry = 14

The components and lengths of F and of S are proportional; that is,

Therefore, each component of F can be calculated by mUltiplying the corresponding component of S by the ratio

of the length of F to the length of S. This is done simultaneously for all three components of F in statement

60 below. L, the length of S, can be calculated as in statement 50 below (but it can be calculated more efficiently

using the Matrix ROM's , ... !'" '... ':.,: function; refer to section 6). The components of S, as can be seen in the

illustration, are:

Sx = - 9 - 5 = - 14 10 - 14 = -4 Sz= -4- 2=-6

30 Section 4: Array Operations

: ... :.!

• ("'j:;: "',=:::-:::: :,' ", :'".' :

: ... : ~ ... : :~: j"'~
:i i:::';-",

.... :: .. '

8

:l. :,': ;,'

Inverting a Matrix

i'i i i'T" result matrix : ':operand matrix :::

. ':;: "

....... .. :::= ::=

Reads components of Rand S from
c! ;:::; 'r ;:::; statement.

Calculates length of S .
Calculates components of F.
Calculates cross product.
Prints components of moment M.

x-component of M (in lb-ft).
y-component of M.
z-component of M.

This statement finds the inverse of the operand matrix. The inverse of the operand matrix is the matrix that,

when matrix-multiplied by the operand matrix, results in an identity matrix.

The operand matrix must be square-that is, the number of rows must be the same as the number of

columns.

Example: Find the inverse of the matrix shown below. Check that when the inverse is multiplied by the matrix

itself, the result is an identity matrix.

Elements of matrix A.
40 IMAGE 4(40.0:::/
'::; c! r'i i:::i "T' i:;:- E:: !:::i D I:::!

60 MAT PRINT USING 40 A
• 70 MAT B = INV(A::: Sets matrix B equal to inverse of A .

80 MAT PRINT USING 40 B
Checks that product is identity matrix.

100 MAT PRINT USING 40 C

8

...
: !::.=

:l. !::.

Section 4: Array Operations 31

Matrix A.

Inverse of A .

Product of A and inverse of A is an
identity matrix.

When the determinant of a matrix is zero, the matrix does not have an inverse. Therefore, if you attempt to find

the inverse of such a matrix using the (i i:::i'r ... I i···i;) statement, the result will be meaningless. You can use the

L:i !::::r (determinant) function to check the determinant before inverting a matrix, or use the Ci E:'r 1... function after

inverting. (Refer to page 49.)

You can multiply the inverse of a matrix by an array using just one statement (as well as two):

'" , ... , ' result array::::: T i,:'
>:: operand array 1:' ::!:: operand array 2

Since this performs both an inversion and a matrix multiplication in one statement, the result is calculated with

somewhat more accuracy than if it were calculated in two separate statements.

Example: The following program calculates the inverse of the same matrix as the preceding program, but the

multiplication to check for the identity matrix is done in only one statement.

...
J: j' .j , , ...

... j, .. j

60 MAT PRINT ~: C,

8

i:::'
•.• .1

:1:
. ..

1"'1

Matrix A.

Product of A and inverse of A, calculated
using just one statement.

Calculating the inverse of a matrix is typically done in the process of solving the matrix equation AX = B.

However, a solution still more accurate than that provided by :"i i:::i'r " I !···i;) >:: i:::i:' ::i:: !:::; can be obtained using

the i"i i:::i"T' ... ::::; 'y' ':::; statement (described next).

32 Section 4: Array Operations

Solving the Equation AX B

:..-: (::: ! result array .:::. !... ;:: coefficient matrix., constant array

Given any square matrix A and any other array B, this statement can be used to solve the matrix equation

AX = B for the unknown array X.

Most often, the need for this arises when solving a system of n linear equations in n unknowns. The system

all Xl + al2 X2 + ... + al n Xn = b l

a21 Xl + a22 X2 + ... + a2n Xn = b2

can be expressed in matrix notation as

AX= B,

where

all al2 a ln XI b l

a21 a22 a2n X2 b 2

A = , X= ,and B =
......................

anI a n2 ann Xn bn

The solution to this system of equations is the set of elements of array X. A is the coefficient matrix; B is the

constant array.

Example: Solve the following system of equations:

2x + y - Z = 0

x-y+z=6

X + 2y + z = 3

Solution: Expressing this system of equations in matrix notation, AX = B, where

Section 4 Array Operations 33

8
.... ,

x-value of solution.
y -value.
z -value.

As we mentioned earlier (page 31), the solution to the matrix equation AX = B can also be obtained using the

I 1"'1 i,) ': i:::i >:1:: 1:::;. The solution obtained using the statement j"! i:::i'T' ;:':; :"','! '. !.,,!.' E:; >

is somewhat more accurate; but to achieve this accuracy the Matrix ROM uses two extra blocks of memory,

each the size of the array X.

Although in typical applications the result array X and constant array B are each vectors or one-column matrices,

the j"j i:::iT' ..• :3'" ':::: statement does not restrict these arrays to only one column. This allows you, for example, to

simultaneously solve two different systems of n equations in n unknowns, provided that the coefficients in both

systems of equations are identical.

Example: Your company's Publications Manager wants to determine

the cost factors used by her two outside printers. She knows that each

printer estimates jobs based on the number of pages and the number of

photographs, plus a fixed setup charge. Given the three estimates from

each printer shown below, write a program that calculates their cost per

page, cost per photograph, and setup charge.

Job
Number of Number of Total Cost

Pages Photographs Printer A Printer B

1 273 35 $5835.00 $7362.50

2 150 8 $3240.00 $4085.00

3 124 19 $2775.00 $3517.50

34 Section 4: Array Operations

Solution: We need to solve the following system of equations for two sets of cost estimates:

273 X! + 35xz + 1 X3 = cost!

150x! + 8xz + 1 X3 = costz

These equations can be represented in matrix notation as AX = B, where:

A is the coefficient matrix, having the number of pages in its first column, the number of photographs in

its second column, and the number of setup charges (one for each job) in its third column. Each row

contains this data for a different job.

B is the constant array. Each row contains cost estimates for one job from the two printers; each column

contains one printer's cost estimates for the three jobs.

X is the result array, having the unknown cost factors XI> Xz, and X:J in its rows. X! is the cost per page, Xz is

the cost per photograph, and X3 is the setup charge. Since we are solving two systems of equations, the

result array must be a matrix; that is, it should originally be declared with two dimensions. (Its size, if not

the same size as that of the constant array B, will automatically be redimensioned down to the size of B

before the i"i ::::: T' ... ::::; '/ ::::; statement is executed.) Each column will contain the cost factors for one printer.

60 DATA 5835, (~b~.5
70 DATA 3240,4085
O~ DATA 2775,3517 5

• 100 MAT X = SYS(A,B)

8

:::~:D. ;;:::D i!

~:: Cl. ~::! \::!
~:;. (:!~)

Specifications for job 1.
Specifications for job 2.
Specifications for job 3.
Estimates for job 1.
Estimates for job 2.
Estimates for job 3 .

Cost per page.
Cost per photograph.
Setup charge.

Section 4: Array Operations 35

Summing Rows and Columns

1·'1 i:::i T· result array::::: 1:;:0 '::: '!"': (operand array>

r'1 i:::i·T" result array····· i , .. !..i 1·'1 (operand array>

,', i:::i·r F:' ,;::: U :·'1 adds the values of the elements in each row of the operand array, then assigns the sum to the

corresponding element of the result array (a vector or one-column matrix). If the result array is a vector, it is first

redimensioned (if necessary) to have as many elements as the number of rows in the operand array. If the result

array is a matrix, it is first redimensioned (if necessary) to have one column and as many rows as in the operand

array.

Likewise, 1"'1 i:::i T" '" C: ::::: i . ..! 1-"1 adds the values of the elements in each column of the operand array, then assigns the

sum to the corresponding element of the result array (a vector or one-row matrix). If the result array is a vector,

it is first redimensioned (if necessary) to have as many elements as the number of columns in the operand array.

If the result array is a matrix, it is first redimensioned (if necessary) to have one row and as many columns as in

the operand array.

Example: Using the Whackit Racket Company's monthly forecast data from page 26, write a program that

calculates and prints the total forecast for all racket models in each region and the total forecast for each racket

model in all regions.

Solution: Since each row contains the forecasts for all models in a region, the total forecast for all models in

each region can be found using the 1·'1 i:::i·T" ... 1? ::::: i .. J 1·'1 statement. Likewise, since each column contains the forecasts

for one model in all regions, the total forecast for each model in all regions can be found using the !·'1 i:::i .T"

statement.

.:.

:i. ';::=.= :1. :::~:. :i. :t .: .. ';:

;;::~ :i. " :t ~::::" :!. ;;::.., .i. .. :::

• S0 MAT R = RSUMCA)

• 120 MAT C = CSUM(A>

Sales forecast for East region.
Midwest region.
West region .

Assigns row sums to vector R .

Assigns column sums to matrix C.

36 Section 4: Array Operations

8

:!. :i.
• •• :=

:~. :::~:

.. ::::::::

Matrix of monthly sales forecast (in
thousands of units).

Total sales in East region.
Total sales in Midwest region.
Total sales in West region.

Total sales of model WROI.
Total sales of model WR02.
Total sales of model WR03.
Total sales of model WR04 .

37

Notes

Section 5

Copying Arrays and Subarrays

Copying an Array

I 1·'1 :::::·r result array::::: operand array

This statement assigns the value of each element of the operand array to the corresponding element of the result

array.

The following rules apply to copying arrays:

• If the result array is a matrix and the operand array is a matrix, the result matrix is first redimensioned (if

necessary) to have the same number of rows and columns as the operand matrix.

• If the result array is a matrix and the operand array is a vector, the result matrix is first redimensioned (if

necessary) to have one column and as many rows as the number of elements in the operand vector.

• If the result array is a vector, the operand array must be a vector, a one-column matrix, or a one-row

matrix. The result vector is first redimensioned (if necessary) to have the same number of elements as the

operand array.

Examples:

...
f:) I'!"!

... ... f"'! ...

:j.
. -

I:::! I···' ...
t::. ='! i"'j

:!. . ':;= CI !'="I
...

... , ,

"r !:::!

T i"'j

or E;:

!:::z

...
I ...

r-·
r: .

39

Sets matrix A equal to matrix B.

Redimensions A from a 5 x 5 matrix down
to a 3 x 4 matrix (the size of B), then sets
A equal to C.
Redimensions B from a 5 x 5 matrix down
to a 4 x 1 matrix (the size of E), then sets
B equal to E.
Redimensions D from a 9-element vector
down to a 4-element vector (the size of E) ,
then sets D equal to E.
Redimensions E from a 4-element vector
down to a 3-element vector (the size ofF),
then sets E equal to F.

40 Section 5: Copying Arrays and Subarrays

Copying From/Into a Subarray

row number
!'! i: iT result array [>: [or]

first row number : last row number

column number
or]:,]

first column number : last column number

row number
::::: operand array [>: or]

first row number : last row number

column number
[or] "]

first column number : last column number

With this statement you can copy values from and/or into a subarray (such as a partitioned matrix). Values are

assigned from the specified elements of the operand array to the specified elements of the result array.

Rowand column numbers, if specified after the name of the operand array or the result array, should conform to

the rules listed below. After each rule is one or more references to statements illustrating the rule; these statements

are shown in the examples following.

• If rowand/or column numbers are specified, they must be enclosed in parentheses. (Examples 2 through 9.)

• If all elements are to be copied or assigned values, do not specify row numbers, column numbers, or

parentheses after the array name. (Examples 1,2,6,7,9.) The array elements will be copied or assigned

values in order from left to right along each row from the first row to the last.

• If no row or column numbers are specified after the result array, the result array is redimensioned (if

necessary) before the values are assigned. (Example 2.) If row or column numbers are specified after the

result array, values are assigned to the specified elements, but no redimensioning is done.

• If the array is a vector, specify only the row number(s). (Example 3.)

• If the array is a matrix, specify the column number(s) after the row number(s), separated by a comma.

(Examples 2, 3,4,5,8, 9.)

• If only one row is to be copied or assigned values, specify that one row number. (Examples 3, 4, 6.)

• If more than one row is to be copied or assigned values, specify the first row number and the last row

number, separated by a colon. (Examples 2,5,8,9.)

• If only one column is to be copied or assigned values, specify that one column number. (Examples 3, 5, 7.)

Section 5: Copying Arrays and Subarrays 41

• If more than one column is to be copied or assigned values, specify the first column number and the last

column number, separated by a colon. (Examples 2, 4, 8, 9.)

• If an entire row is to be copied or assigned values, you may omit the column numbers, but specify a comma

after the row number(s). (Example 6.)

• If an entire column is to be copied or assigned values, you may omit the row numbers, but specify a comma

before the column number(s). (Example 7.)

The following examples show, for each statement, the values in the operand array and the values in the result

array. Values in each array that are not affected by the statement are shown in color. (Assume that c>::"r T C'!"'!

, .. .' "<: .. ' i:::. :!. is in effect and all values in the 5 x 5 array B are set to zero before each statement is executed.)

Example 0 d R I Statement Comment peran esu t
Number Array Array

A B

1. !"! i iT Copies the value from each element of array A 11 12 13 14 15- 11 12 13 14 15
into the corresponding element of array B. 21 22 23 24 25 21 22 23 24 25

31 32 33 34 35 31 32 33 34 35

41 42 43 44 45 41 42 43 44 45

51 52 53 54 5~ 51 52 53 54 55 - ~- '-

A B

2. ; ... : :"'r '.' Redimensions B from a 5 x 5 matrix down to a 11 12 13 14 15- [11 12 13J
3 x 3 matrix (the size of the operand sub- 21 22 23 24 25 21 22 23
matrix); then copies the values from the first 31 32 33 34 35 31 32 33
through third rows in columns 1 through 3 of 41 42 43 44 45
array A into the redimensioned array B. 51 52 53 54 55

'- -
D B

, .. , ,.. .- - r- -
3. 1';;;;. Copies the value from the third element of 1 0 0 0 0 0

vector D into the third row in column 2 of 2 0 0 0 0 0
array B. 3 0 3 0 0 0

400 0 0 0

'- 5_ ,-0 0 0 0 ~

A B

4. ,., ,.. C' ".:::' :: 11 ; Copies the values from the second through 11 12 13 14 15 .- 0 0 0 0 0-

fourth elements in row 1 of array A into the 21 22 23 24 25 0 0 0 0 0
first through third elements in row 3 of 31 32 33 34 35 12 13 14 0 0

array B. 41 42 43 44 45 0 0 0 0 0

'-51 52 53 54 55 0 0 0 0 0 - '- --
r- A B

..... - r- -
5. !'i i'i i ,.... '. , , :... ,:1. .;. Copies the values from the fourth and fifth 11 12 13 14 15 0 0 0 0 0

rows in column 1 of array A into the second 21 22 23 24 25 0 0 0 0 41
and third rows in column 5 of array B. 31 32 33 34 35 0 0 0 0 51

41 42 43 44 45 0 0 0 0 0

~51 52 53 54 5~ L-0 0 0 0 Q..

"" I\J

(fJ
CD
2
is
:::)

Ul

o
o
"0
~.
:::)

co
»
OJ
'<
(f)

U)
:::)

0..

(fJ
C
a­
U)

OJ
'<
(f)

D

6. ~':'l1:::; 'T ; ; Copies the vector D into the entire third row of 1
array B. 2

3

4

5

A

7.
;','::"',":" Copies the entire second column of array A 11 12 13 14 15

into the vector D. 21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

A

8. ~" 'j ~ "': ... Copies the values from the first and second rows 11 12 13 14 15
in columns 2 through 5 of array A into the second 21 22 23 24 25
and third rows in columns 1 through 4 of array B. 31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

A
....

9. (','i(::1";' ri ,.. . , : >: : r'o .. Copies the values from the first and second rows in 11 12 13 14 15
columns 3 through 5 of array A into array C. 21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

B

0 0 0 0

0 0 0 0

1 2 3 4

0 0 0 0

0 0 0 0

D

12

22

32

42

52

B

0 0 0 0

12131415

22 23 24 25

0 0 0 0

0 0 0 0

C

[13 14 15]
23 24 25

0

0

5

0

0

0

0

0

0

0

Ul
CD
Sl
o
::J

01

o
o
'0
~.
::J

LO

~
ill
'<
(f)

OJ
::J
0..

Ul
C
0'
OJ

ill
'<
(f)

.j>.
w

44 Section 5: Copying Arrays and Subarrays

The following additional rules apply to copying subarrays:

• Unless either the operand array or the result array is a vector, the number of rows specified after the result

array must be the same as the number of rows to be copied from the operand array. The same is true for the

number of columns in each array.

• Unless the operand array is a vector, a column from the operand array cannot be copied, using just one

statement, into a row in the result array. This copy can, however, be done using two statements, as shown

in the next example.

• Unless the result array is a vector, a row from the operand array cannot be copied, using just one statement,

into a column of the result array. Again, this copy can be done using two statements.

In the following example, row I of array A is copied into column 3 of array B, then column 3 of array A is

copied into row 2 of array B.

• ;:::; i:::i j·"1 i:::i·T" C: i···i'
• ':::; i:::i j.'j r:i "T. F'" .. ::...'

• 130 MAT r - ~, ~

8
:i.

. :::!

:1.

i::: . :::1

. ",' i

Reads values into array A.

Sets all elements of B equal to o.
Copies row I of matrix A into vector C.
Copies vector C into column 3 of matrix B.

Sets all elements of B again equal to O .

Copies column 3 of matrix A into vector C.

Copies vector C into row 2 of matrix B.

Matrix A .

Matrix B, with column 3 containing values
from row 1 of matrix A.

Matrix B, with row 2 containing values
from column 3 of matrix A .

I

Section 5: Copying Arrays and Subarrays 45

Example: The program for the example on page 35 prints a matrix of monthly sales forecasts followed by arrays

showing the row sums (the total sales in each region) and the column sums (the total sales of each model).

Modify that program so that it prints just one matrix containing (in addition to the monthly sales forecasts)

the row sums of the original matrix in the fifth column, and the column sums of the original matrix in the

fourth row.

' ... 1": '::.'

.: !:::

.i.:1::::

8

," . ..:

,,::: .;
::L

i',-J' . 'T'
;;;; ;

:: .. ',: ...

.; ...
:1. :

I::: .:=" 1:::'

. ':;' ;:::: '

••• •••• ; 1 h'! =:: ; : ,,'

::.1

.: 1:::'
1 ••• '" ••••• .' ,,: ••••• :',

... ~., ":1. C: !"'J "

::. ;;::: L; : : : "; : ~:.:: . '.::: 1...1 .' "

.; .':;'
,i, ,

:"',::::; . : '.,. ..

t

•• !.,"

Copies 3 x 4 matrix A into first through
third rows in columns 1 through 4 of
matrix D.

Assigns row sums of A to 3-element vector
R .
Copies R into first through third rows in
column 5 of D .

Assigns column sums of A to 1 x 4 matrix
C.

Copies C into fourth row in columns 1
through 4 of D.

Redimensions R down to one element (the
number of rows in C), then assigns row
sum of C (i.e., row sum of column sums
of A) to R.

Copies R into fourth row in col umn 5 of D.

East region.
Midwest region.
West region.

Column sums: total sales of each model.

Row sums: total sales in each region.

46 Section 5: Copying Arrays and Subarrays

The rowand/or column number(s) can be specified not only as constants (like those in the preceding examples),

but also as variables or expressions. If you do this, this first row or column number specified may-depending

on the value of the variable or expression-be greater than the second number.

An important special case occurs when the first row number specified is just one greater than the second row

number, or when the first column number specified is just one greater than the second column number.* In such

cases, no elements will be copied or assigned values. Furthermore, if no row or column numbers are specified

after the result array-and Cl F' 'r .L 1,) ! ... ~ E~ ~"'; : .. :; ~:::: :1. is in effect-the result array will be redimensioned to have

zero rows or zero columns. ** The value of these features will become apparent after we discuss these arrays a

bit more.

Examples:

: 1< ····.L .'

: ;:::. : 1< ;

,.", ,:::' T C') ...) F:: ,:::, ,:::; F' :). is in effect.

Arrays A, B, and Care 4 X 4 matrices.

When K = 1, redimensions B down to a
o X 1 matrix.
When K = I, redimensions C down to a
4 X 0 matrix.

Arrays with zero rows or zero columns can be considered to be "empty," since they contain no elements: the

current working size of the array is O. Empty arrays should not be confused with arrays that have not been

initialized and therefore result in) ...):J i. .. i...' ,::::T ::::: error messages when displayed or printed. If you should display

or print an empty array, there will be no output since there are no elements in the array.

Empty arrays can be specified in subsequent statements and functions with meaningful results; the usual rules of

redimensioning (refer to page 9) and row/column matching (in statements with two operand arrays) apply. The

following situations are of particular interest:

• Statements specifying only one operand array will, if that array is empty, redimension the result array to be

empty. For example, if the operand array has been redimensioned to be 0 X 3, the statement).,) ::::: 'T , .. ,

would redimension the result array to be 0 X 3, while the statement j"j ::::: 'T'

redimension the result array to be 3 x O.

would

• The matrix multiplication statement, if both operand arrays are empty, can yield a result array that is not

empty. In such cases, furthermore, the statement assigns the value 0 to all elements of the result array.

For example, if matrix B has been redimensioned to be 3 x 0, and matrix C has been redimensioned to be

o x I, the statement r'L::'r ::::: C' ::j:J::: redimensions matrix A to be (3 x 0) x (0 Xl) = 3 x 1 (in

accordance with the usual rules of matrix multiplication). The result array is not empty, since neither the

number of rows nor the number of columns is zero; and the value 0 has been assigned to all three elements.

*If the first row number specified is more than one greater than the second row number, or if the first column number specified is more than
one greater than the second column number, elements will be copied or assigned values in reverse order. The row or colwnn numbers specified
are one above and one below the numbers of the rows or columns that will be copied or assigned values. For example, the statement
!'HiT' ,::,.;? ",. , ':': • I:):. ,::,.: (: '.,;? ':::·-with CJ'T I ()! .. ; E><,:E: 1. in effect-copies the values from the fifth through third
rows in the second through fifth columns of array A into the second through fourth rows in the fourth through first colwnns of array B, With
C: ,.::' r I,:: r'; !:: ,:: ',: [1::1 in effect, the same thing is accomplished by the statement "'1 I:, T ::::: " .:,': .' ,.:, 1:· i:: ,. • " :- ,

**If C F" TIC: ~.; E::! : [: 0 is in effect, the result array is not redimensioned, and aU::: i'i '::,: I :? E: error message is generated,

Section 5: Copying Arrays and Subarrays 47

The fact that no elements are copied or assigned values when the first row or column number is one greater

than the second, plus the characteristics described above for the resulting empty arrays, simplify HP-83/ 85

programs that do certain matrix manipulations.

Example: The program segment listed below forms an orthogonal matrix from a given 3 x 3 matrix. * The

procedure, an implementation of the Gram-Schmidt orthogonalization process, is frequently used in solutions of

"least squares" problems. Each pass through the l::<>?_ i··i E:: ::<T" loop replaces one column of the matrix with a

vector that is orthogonal with respect to each of the previous columns and also normalized. Note that during the

first pass through the loop, there are no previous columns to process with the current (that is, the first) column.

The features described above eliminate the necessity for including additional program statements to handle this

first pass, in which statement 70 otherwise would illegally specify a nonexistent column number.

'T' , •..
..... . :. ' ... '

j ••• , .i.:!' :~.

.. !.,: .
", ·T· ,"

..... , "r

i'

": ;;::~ .'

Copies Kth column of A into X. When
K = I, copies column I of A into X.
Copies columns I throughK - 1 of A into
P. When K = I, no elements are copied
and P is redimensioned to be 3 x O.

Multiplies X and transpose of P. When
K = 1, 'T F' i·j < F> :. is 0 x 3 and X is 3 x I,
so V is redimensioned to be (0 x 3) x
(3 x I) = 0 x 1.

Multiplies P and V. When K = 1, P is
3 x 0 and V is 0 x I, so T is redimen­
sioned to be (3 x 0) x (0 x I) = 3 x 1.
Also, value 0 is assigned to all elements of
T.
Subtracts T from X. WhenK = 1, X is not
changed because T is a zero matrix.

Calculates norm of X.
Normalizes X.
Replaces column K of A by X. When
K = I, net effect of loop is to normalize
column 1 of A.

*y ou need not be concerned if you are not familiar with the concepts or terminology in this example; this familiarity is not required to understand
the features illustrated in the program.

•

Section 6

Array Functions

The Matrix ROM provides 21 functions relating to arrays. Each of these array functions can be used just

like any other function on your HP-83/ 85. The following table lists these functions and their results.

Function

,··:i·.·i····
<array>

':' :.'
r"11'1.1 ,'.: ':.array

. .::; .L r··j 1,... ~ ,J 1

<array>

<matrix>

r··, , .. , , < vector 1 .' vector 2 >

l.... i:: ;··i L:i 'array.' expression >

~.:.~ !:::: '.' 1···1 1··· ,.... '.. :' ':

Result

Sum of absolute values of elements in array. 6

Value of largest element in array.H

Column number of largest element in array most recently specified in i:::i (; ,

function.! 26

Row number of largest element in array most recently specified in i:::i i·'i i:::i >::

function. 1 6

Value of smallest element in array. 9

Column number of smallest element in array most recently named in i:::i r'i I i···i
function.! 2 6

Row number of smallest element in array most recently specified in i:::i i"'i I i···i

function.! 6

Largest sum of absolute values of elements in each column of array (column

norm).6

Column number with largest sum of absolute values in array most recently

specified in C i···i Ci i? i·'i function. 2 3 6

Determinant of matrix. 7

Determinant of last matrix inverted in i·'i i:::i·r •.. I i···i ,,) statement, or specified

as first argument in i·'i i:::i T· ... ':::: \' ':::: statement. 7

Sum of products of corresponding elements of vectors (dot product or scalar

product).56

Square root of sum of squares of elements in array (Frobenius norm or

Euclidean norm). 6

Lower bound of array subscript (lor 2) specified by rounded integer value of

expression. l.... E: i··i Ci is equal to Ci F:' T· I Ci i···i i:::: i:::i '::: E: in effect.

Largest absolute value of any element in array. 6

Column number of element with largest absolute value in array most recently

specified in i"'i i:::i :.: i:::i i:::: function.! 2 6

Row number of element with largest absolute value in array most recently

specified in i·'i i:::i: : i:::i C: function.! 6

49

50 Section 6 Arrav h,!;,)I' '

<array>

':::;! ! t·,,! ':.array':;

' .. .! !:::' i···j L:: i.array, expression>

Examples:

''= ,:::: '"'.:=

Largest sum of absolute values of elements in each row of array (row norm). 6

Row number with largest sum of absolute values in array most recently

specified in i? i",j C' F' ,.,.! function. 4 6

Sum of elements in array. 6

Upper bound of array subscript (lor 2) specified by rounded integer value of

expression. 10

": : ,", ;; 'j =: .. '

.. ' :.' :: , j:::: ..•... :

:: .. " "t ,' .:.

i i
'.' .: ...

10 0 PRINT u~ING ~n

i j' .. : ... j"'lC;

170 PPINT JSING ~n

1~0 ~~INT u5iNG ~n

~00 MAT b - INV<A>
210 PRINT ~~ING ~0

: : ,',

1 Ifmore than one element has the largest or smallest value or absolute value, the element in the lowest-numbered row is chosen, and this number
is returned as the value of the function ,:::, ,.,., ,:::, F::;", L .. ', ,:::, ,", T , ,,::: ,", '.J, or ,"! ,:::, .' , ,::. ,..:. , , ! ... !, If both such elements are in the same row, the element in
the lowest-numbered column is chosen, and this number is returned as the value of the function ,:::, (! ,:::, ,": ''',:.. .. , , " .• , T ,.) ,"': ,",!.. .. , or ,..., ,:::, ,E:, C: ::::' ' ,

2 If the array specified in the most recent ,:, , , , '"'' ,:,;; ::: ,';, ::::,! C:' ,:;0 i"i, or I'i, ,:: ,::,!:" function is a vector, evaluating this function results in a
t) i.." D ,:::, 'T' ,:::, error message, and the number 0 is returned as the value of the function.

3 If more than one column has the largest sum of absolute values, the lowest-numbered column is chosen, and this number is returned as the
value of C I·, U ,:;: I·! c: C: :.. ...

4 If more than one row has the largest sum of absolute values, the lowest-numbered row is chosen, and this number is returned as the value
of F~ t··! C F'l"l i? C! I.I,!.

"The two vectors specified must have the same number of elements. One-column matrices are not allowed.

6 If the array specified is empty (refer to page 46), the number 0 is returned as the value of the function.

7 If the array specified is empty (refer to page 46), the number I is returned as the value of the function.

H If the array specified is empty (refer to page 46), the number - 9.99999999999E499 is returned as the value of the function.

9 If the array specified is empty (refer to page 46), the number 9.99999999999E499 is returned as the value of the function,

10 If the array specified has been redimensioned to have zero rows (refer to page 46) and the value of the second subscript is 1, the number 0 is
returned as the value of the function, If the array specified has been redimensioned to have zero columns and the value of the second subscript
is 2, the number 0 is returned as the value of the function.

I

I

Section 6: Array Functions 51

8
..... " Array A .

....

Vector VI.

Vector V2.

, ... , i:::: : .. ;, ,i'! ,. , - :::: the sum of the absolute values of the elements in A.

i"'! ,:::, ':-' i ;'''; .::: the value of the largest element in A.

i:::i 1"1 i:::' :' C, 1. the lowest-numbered column containing i:::i 1"1 i:::i::-: >:: i:::i.·.

,"', ,-: i::::, .; ,< ' ... : ... :: the lowest-numbered row containing ,:::: 1": :'::: ':.' >:' ,:::, .'

:." .. , ::: 1"1:' '''''. the value of the smallest element in A.

" , .,. ,.: C: ::::, : the lowest-numbered column containing i:::i 1"1 ::: ,'i >:. i"'::

the largest sum of the absolute values of the elements in each column
of A.

, !--! ' .. .' ,-- , ... , , .. C, L .. : the lowest-numbered column with the largest sum of absolute values.

C 1::::'1' Determinant of A.

L~ l:::: 'r! : Determinant of matrix (A) inverted in preceding j';'ll:::!"T' ... I !-"!~) statement.

.;

. L ,:::. c' C,''1' ". ·'i.L ,) ;:::: :::: the sum of the products of corresponding elements of VI and V2 .

:!.1? ;:::;,,:1· , ... i"-: ' .. }:< !; '. ::::, :::: the square root of the sum of the squares of the elements in A.

52 Section 6: Array Functions

:~.

! .".

.. '
:: ...

:l. !:::;

L., i:::; !",i Li ;:" ,:::, , :!. >: the lower bound of the first subscript of A.
I

:"i i:::i:< i:::i !:::; ': ,:::, ,: the largest absolute value of any element in A.

i"i i:::i:::: l:::i l:::; C: Ci L .. : the lowest-numbered column containing the element with largest
absolute value.

i"i i:::i >: i::', E:; i:;:' Ci Li· the lowest-numbered row containing the element with largest absolute
value.

i:::o !",i Ci i:;:: i"i .:: i:::l:: the largest sum ofthe absolute values ofthe elements in each row of A.

i":, !",i Ci i:::o i"i i:;:: i ''',. the lowest-numbered row with the largest sum of absolute values .

.. , 1. .. 1 i"i <:, i"'i ,': the sum of the elements in A.

the upper bound of the second subscript of A.

I

•
53

Notes

Appendix A

Maintenance, Service, and Warranty

Maintenance

The Matrix ROM does not require maintenance. However, there are several areas of caution that you should be

aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions may

result in minor electrical shock hazard and interference with some pacemaker devices. Damage to plug-in

port contacts and the computer's internal circuitry may also result.

CAUTION: Always switch off the computer and any peripherals involved when inserting or removing

modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP-83/85. Failure

to do so could damage the module, the computer, or the peripherals.

CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or designed

for another port. Attempting to force it may damage the computer or the module. Remove the module

carefully and reinsert it.

CAUTION: Do not touch the spring-finger connectors in the ROM drawer with your fingers or other foreign

objects. Static discharge could damage electrical components.

CAUTION; Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not insert any

objects in the contact holes on the ROM. Always keep the protective cap in place over the ROM contacts

while the ROM is not plugged into the ROM drawer. Failure to observe these cautions may result in damage

to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the instructions

accompanying the ROM drawer or to appendix B of the HP-83 or HP-85 owner's manual.

Service

If at any time you suspect that the Matrix ROM or the ROM drawer may be malfunctioning, do the

following:

I. Turn the computer and all peripherals off. Disconnect all peripherals and remove the ROM drawer

from the computer port. Turn the HP-83/85 back on. If the computer does not respond or displays

T; 'T, the HP-83/ 85 requires service.

55

•

56 Appendix A: Maintenance. Service. and Warranty

2. Turn the HP-83/ 85 off. Install the ROM drawer, with.the Matrix ROM installed, into any port. Turn

the computer on again.

i;· ii i'i is displayed, indicating that the ROM is not operating

properly, turn the H P-83 /85 off and try the ROM in another ROM drawer slot. This will help you

determine if particular slots in the ROM drawer are malfunctioning, or if the ROM itself is

malfunctioning.

• If the cursor does not appear, the system is not operating properly. To help determine what is

causing the improper operation, repeat step 2 with the ROM drawer installed in a different port,

both with the Matrix ROM installed in the ROM drawer and with the Matrix ROM removed

from the ROM drawer.

3. Refer to How to Obtain Repair Service for information on how to obtain repair service for the

malfunctioning device.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.

Additional copies may be obtained from any authorized HP-83/ 85 dealer, or the HP sales and service office

where you purchased your system.

If you have questions concerning the warranty, and you are unable to contact the authorized HP-83/85

dealer or the HP sales and service office where you purchased your corriputer, please contact:

In the U.S.:

In Europe:

Hewlett-Packard

Corvallis Division Customer Support

lOOO N.E. Circld Blvd.

Corvallis, OR 97330

Tel. (503) 758-lOlO

Toll Free Number: (800) 547-3400 (except

in Oregon, Hawaii and Alaska).

Hewlett-Packard S.A.

7, rue du Bois-du-lan

P. O. Box

CH-1217 Meyrin 2

Geneva

Switzerland

•

Other Countries:

Appendix A Maintenance. Service. and Warranty 57

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304

U.S.A.

Te!' (415) 857-1501

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-83/85 and its peripherals. For information on

service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and

service office.

If your system malfunctions and repair is required, you can help assure efficient service by providing the

following items with your unites):

1. A description of the configuration of the HP-83/85, exactly as it was at the time of malfunction,

including any plug-in modules, tape cartridges, or other accessories.

2. A brief description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

Computer and peripheral design and circuitry are proprietary to Hewlett-Packard, and service manuals are

not available to customers.

Serial Number

Each HP-83/ 85 and peripheral carries an individual serial number. It is recommended that you keep a

separate record of this number. Should your unit be stolen or lost, the serial number is often necessary for

tracing and recovery, as well as for any insurance claims. Hewlett-Packard does not maintain records of

individual owner's names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your HP-83/85 system, be sure that it is packed in a protective

package (use the original shipping case), to avoid in-transit damage. Hewlett-Packard suggests that the

customer always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the

nearest authorized HP-83/85 dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility.

-

Syntax Summary

Syntax Guidelines

italics

L..;;":": .

(array

1 ••• j-'-l; : 1 < r"~ : ... : !

1...1 ~ ...

Items shown in dot matrix type must be entered exactly as shown (in either uppercase or

lowercase letters). If several items are shown stacked, one (but only one) of the items must

be specified.

Items shown between brackets are optional. If several items are stacked between brackets,

you can specify anyone or none of the items.

Three dots (ellipsis) following a set of brackets indicate that the items between the brackets

may be repeated.

Items shown in italic type are numeric expressions or names of arrays that should be specified

in the statement or function.

Page 49

Page 49

Page 49

Page 49

Page 49

Page 49

Page 49

Page 49

Page 49

Page 49

Page 49

C! ! .. .! T < vector 1, vector 2 ::. Page 49

Inside Back Cover

Page 49

!.. .. !:::; i··i L:! (array.' expression' Page 49

59

I

60 Syntax Summary

i·'i i···i·r result array····· <numeric expression> Page 14

!"'i i···i ; result array::::: operand array Page 39

row number
,.: . iT result array [, or]

first row number : last row number

column number
or] >]

first column number : last column number

row number
co::: operand array [< [or

first row number last row number

column number
[or] >] Page 40

first column number : last column number

· result array:···· operand array Page 22

i·'i i i·T result array::::: operand array 1 operand array 2 Page 23

· result array::::: operand array 1 :i: operand array 2 Page 25

1 i:::i·r result array:···· <scalar> operand array Page 22
...

· result array·· <scalar:' ::!:: operand array 1 .. ;.. <scalar >:1:: operand array 2 Page 24

· result array:·· C Ci 11 ['redim subscripts' Page 13

r'i i···i T" result vector ::.:. ':operand vector 1 .' operand vector 2:' Page 28

· result array : i i i·'i <operand array:' Page 35

r'i i··; result matrix .. i 1·1 [':redim subscripts :' Page 14

,., ,.... result matrix . , .. ,... ':operand matrix :' Page 30

'" , ... , r result array:··· <operand array 1 >:i: operand array 2 Page 31

, i;· result array < operand array:' Page 35

1··: :... result array <coefficient matrix, constant array Page 32

r'i i···; , result matrix : <redim subscripts'] Page 13

;', r,·i 'r result array:···· ..: .. :::: :. : < operand array> Page 21

1"'1 i i·T result array :···r 1< 1···1 <operand array l' ::!:: operand array 2 Page 27

Syntax Summary 61

: :::::'r result array::::: operand array 1 ... <operand array 2 > Page 27

i·.·i···· ;.i] array [•. [;::~:.:] array] ... [.] Page 17

format string
or [.: [i::' i"i:] array [. [.. ,. ,] array] ...] Page 18

statement number

i'ei i:::i'T T k' ,:::. : ... i"T array [.. array] ... Page 11

, :.: .. ; t·,; ;
::::. i'i : ... :] [..

.. array .. i:' C: i':] array] ... [.] Page 17

format string
or [.: [

. _.. . ..

.. : . : i] array [. [;". :] array] ...] Page 18
statement number

i::> i:::' ::: i:::: array [. array] ... Page 12

'array> Page 49

i':i ~:::~ :,.,: : "': " .. Page 49

Page 49

.................. array 'redim subscripts' [. array 'redim subscripts:'] ... Page 7

1:::: k ~ ,", '.array .:, Page 50

Page 50

':.array:' Page 50

':array .. expression> Page 50

I

62

Notes

I

63

Notes

•
64

Notes

Error Messages

A complete list of all HP-83/ 85 errors appear in appendix E of the HP-83 and HP-85 owner's manuals. In

addition to those, there are seven error messages that may be generated by the Matrix ROM.

Error Message Error Condition

Incorrect number of dimensions.

'! 'j i:::! j .. .1 ("; r 1"'1 .. :;~ ..•.. i) E: i ... : 'r C) 1? Vector specified does not have three elements.

:l. :1. :t

:1. :i. ','

:1. :l. ::::;

Incorrect number of elements.

Matrix ROM requires service.

• Total number of elements specified when redimensioning exceeds
the number originally dimensioned.

• Attempt to create empty array with :::::, ' , ,,"',!-., r"", '" "" i:::i in
effect. (Refer to page 46.)

• Statement specifies resu It array created with Ci F' 'r I Ci i·'·i E:: ::::: ::::; E:
I:::i in effect and empty operand array created with Ci i:::' 'r I Ci i",i
E:: i:::: '::; !:::: :i, in effect.

Array specified is not square. (The number of rows is not the same as
the number of columns.)

Array specified is not a vector.

The Matrix ROM provides a special function, F i;' i;' Ii i'l, that returns a number designating the last plug-in

ROM to generate an error message. This is useful when you have more than one ROM plugged in, since

certain ROMs generate the same error number or error message. The number designating the Matrix ROM

is 176. If the error originated in the HP-83/85 itself (rather than in a plug-in ROM), or if no error has

occurred, ::: i;:: i:;:' i' i'i returns the value O.

00085-90144 Rev. B 12/80

r/i~ HEWLETT
~~ PACKARD

1000 N.E. Circle Blvd .• Corvallis. OR 97330

Printed in

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

