HEWLETT-PACKARD

Mass Storage ROM Manual

EQUIPMENT €

CHEMICALS —

125307
0.1486.

HP-83/85

COSMETICS

TEXTILES

rOM
t? pacKARD

025207
~0.5963
0.1632.
01144

| —0.4688
—0.4806

1.1831

A piciano

November 1980

00085-90447

Printed in U.S.A. © Hewlett-Packard Company 1980

Contents
Section 1: Getting Started 5
It OdU T O L e e 5
Installation of the Mass Storage ROM e i e i et i 5
Installation of the HP-IB Interface and DiSC DIiVettt et e e 5 |
The HP-IB Select Code e i e ettt e 5
The Device Address SWItCHo e et e e i e 6
Disc Drive NUMDEIS . i e e e e 7
Sy ST SUMIMIAIY & ot ettt ettt et et ettt e e et et e e e e e 7
Memory Requirements of the Mass Storage ROM i 9
Sy NaX GUIBIIMEBS L. oottt et et et e e e e e 9
Section 2: Accessing Your Mass StorageSystem 11
The Mass Storage Unit Specifier ot e e e e e 11
Volume Labels .. e e e 12
Specifying Parameters Using EXPressionsttt et et i ia s 14
Initializing a Mass Storage DisSCttt s 14
Establishing a Default Mass Storage Medium i e i 16
Section 3: Accessing Files ... 19
a1 LIS 0 1= T =Y - 19
THe FIle DireCtory oot et et et et et e e e e e 20
File Ty DS .« ottt e e e e e s 21
Section 4: Storing and Ret

‘ 'Storivhg a Program

Loading a Program from Mass STOragettt i et st e s 25 A
ChaiNiNg Programs ...ttt et et e e e e 26 ‘-
Storing and Retrieving Binary Programs it 28
Translating Tape-Based Programs to Disc-Based Programs i, 28

" File Recgrds T

Storage ReQUITEMENTSttt et e e e e et e e
Creating Data Files ... ettt e e et et e e e e e e
Opening @ Data File oo e e e e e
ClosingaDataFile i i i e e e et e e e e
XL L2 o E
Serial Printing oottt e e e e e e
Reading Files Serially e i e e
R = L o T a0 Yo o= 1
RanNdom Printing ... et e e
Reading Files Randomily . .. e s
Storing and Retrieving Arrays
Updating Data Files o et e e e e e

ng Graphics

e L 72 er File Ms 0} ¢ 1= TP PP 53
Determining Data Types—T FUNCHION e e e 53
CopYING FilS oo e e e e e e 54
RENaming Files ...ttt et et et e e e e 56
PUrGING il ot e e e e 56
PacKing FileS ..ottt e e 57
LT =3E ST =T L0 142 57

SECUIING FIlES .« ottt et et e e e e e e 57
Removing File SeCUMItY ..ottt et e et e e e e 59
DiSC WVIITE ProteCtiON ..ottt et ettt e e e e e 60
Verification of Data ce.
e T o o Yo=Y =1 o Ve
ROM-IssUBd ErrOrs oottt it i e e et e e 63

Interface Module Errors e e e e s 64

Section 1

Getting Started

The HP-83/85 Mass Storage ROM allows you to interface your HP-83 or HP-85 computer with the HP 9895
and HP 82900-Series Flexible Disc Drives. By adding over 30 BASIC statements and commands, the
ROM enables you to access your mass storage system for program and data storage and retrieval. This

manual explains the proper use of each of these additional capabilities generated by the ROM.

Coverage in this manual assumes you are familiar with the operation and programming of your HP-83 or
HP-85 and that you have your computer’s owner’s manual available for reference. Sample programs in
this manual assume that you have some knowledge of the statements, commands, and functions

discussed in the owner’s manual.

If your computer includes its own internal tape unit (the HP-85), then you are probably familiar with some
of the material discussed here. You may find portions of this manual overlap coverage in the section of
your owner’s manual that deals with the tape unit and that you can skim through the material you
already know. However, you should keep in mind that the presence of the ROM changes the way in which

you access your internal tape unit. These changes are discussed in section 3 of this manual.

The ROM must be properly installed in one of the six slots in the HP 82936A ROM Drawer. The ROM
Drawer is then plugged into one of the module ports on your HP-83/85. Please refer to the HP 82936A
ROM Drawer Instruction Sheet or to the portion of your owner’s manual dealing with the ROM Drawer
for complete instructions. You should never have more than one Mass Storage ROM installed in the ROM

Drawer.

Your mass storage device must be connected to your HP-83/85 by the HP 82937A HP-IB interface. Refer

to the instructions with your interface and mass storage device for complete installation instructions.

The HP-IB Select Code

Each interface attached to your HP-83/85 must be identified by its own unique interface select code. The

interface select code allows you to address an individual interface to which a particular device is attached.

5

e Cartinm 1 (Cattin
(] Section 1: Getting

The select code on the HP-IB interface has been factory preset to 7. The serial, BCD, and GPIO interfaces
are preset to the other numbers. If you have more than one HP-IB interface connected to your personal
computer, you must make sure there is no duplication of select codes among the attached interfaces. Refer
to the HP-IB Peripheral Installation Instructions or to the Hewlett-Packard 82937A HP-IB Installation

and Theory of Operation Manual, if necessary, for directions on changing the interface select code.

Samples in this manual assume an interface select code 7 for the HP-IB interface to which your mass

storage device is attached.

Device Address Switch

Since each HP-IB interface can accept up to eight mass storage master units, each master unit on the
interface must have a unique device address. This device address is then used to access a particular mass
storage device. The device address is set using the device address switch located on each master unit.
Each master unit has a factory preset device address (refer to the operator’s manual for your unit). Since
each device on a particular interface must have a different device address, it may be necessary to reset the
device address of a unit before configuring it to the computer. The following table lists switch positions for

changing a unit’s device address. (Refer to the operator’s manual for your unit for further instructions.)

Switch Value

1
[
| | |
L1 2 3 :
[— fl..,, — —
on on on | 0 |
on on off E 1 E
E on off on | 2
| | |
| on off off | 3 |
| off on on | 4 5
| | |
| off on off | 5 |
| off off on | 6
| off off off | 7

The examples in this manual assume you have an HP 82901M Flexible Disc Drive, which is a “master”
unit with two drives. The device address for this unit is preset to 0, and the examples in this manual

assume the switch has remained set to this number.

If your system contains an add-on unit attached to a master unit, the add-on unit has the same device

address as the master unit.

Disc Drive Numbers

The disc drive numbers identify individual drives at a particular device address. These drives include
both the master unit and the add-on, if present. A maximum of four drives can be connected at any one

address (one dual master unit and one dual add-on unit). Disc drive numbers range from 0 through 3.

The HP 82900-Series Flexible Disc Drives have the following preset drive numbers. The drive numbers

appear on the front panel of each unit.

HP 82902M Flexible Disc Drive (single master) DRIVE 0

HP 829028 Flexible Disc Drive (single add-on) DRIVE 2
HP 82901M Flexible Disc Drive (dual master) DRIVE 0, DRIVE 1

HP 829018 Flexible Disc Drive (dual add-on) DRIVE 2, DRIVE 3

The HP 9895A Flexible Disc Drives have the following preset drive numbers.

HP 9895A Option 010 (single master) DRIVE 0
HP 9895A Option 011 (single add-on) DRIVE 2
HP 9895A (dual master) DRIVE 0, DRIVE 1
HP 9895A Option 012 (dual add-on) DRIVE 2, DRIVE 3

For information about drive numbers of other Hewlett-Packard mass storage devices, refer to the

instructions for those devices.

System Summary

Figure 1 on page 8 summarizes the configurations of a mass storage system. Keep in mind that any one
HP-IB interface may have up to eight master units attached, and that more than one interface may be

connected to your computer,

HP-IB interface module
(up to three).

Identified by Select

Code (3 through 10).

Connector
cable

Single Single
add-on master

Disc drive interconnect cable

Dual Dual add-on
master unit
unit

O o []—o':l‘:: []L‘ZT‘Z“J ‘3—OL’—JI:

Figure 1. System summary.

All ROMs utilize a certain amount of computer memory that was previously available working space. The
Mass Storage ROM consumes 150 bytes of memory. You may find that a large program written on your

HP-83/85 without the ROM in place may be too large to be entered into memory when one or more ROMs

are installed. If i

P A - occurs upon attempting to load a large program, you may
add a 16K memory module or remove the ROM before entering the program from the keyboard or internal

tape drive, if present.

The following conventions are used in the Mass Storage ROM manual for syntax descriptions of

statements and commands.

Items shown in dot matrix are typed in exactly as shown, except that lower case

letters may be substituted for upper case letters.

italics Items shown in italics are numeric constants, numeric variables, numeric

expressions and string expressions that must be included in the statement.

[1] Brackets are used to enclose optional items.

stacked

jtems When items are placed one above the other, one and only one must be chosen.

Section 2

Accessing Your Mass Storage System

Your mass storage system will greatly expand the capabilities of your HP-83/85. Among the operations

available to you are:
Storing programs for future use.
Creating and accessing data files tailored to your particular computing needs.
Storing and retrieving graphics displays.
Copying files from one mass storage medium to another.

Running programs whose memory needs exceed available space in your personal computer by
storing individual program segments in mass storage and recalling them into computer memory

one at a time.

Section 2 covers how to access any particular drive on any mass storage unit in your system. Even if you
are familiar with other mass storage systems, you should review this information to familiarize yourself
with the syntax of HP-83/85 Mass Storage ROM statements. Instructions on how to access particular
files on a disc will be covered in section 3. Sections 4 through 6 discuss accessing stored programs, data
files, and graphics displays. A number of other file manipulations and techniques for error processing are

covered in sections 7 and 8.

Mass Storage Unit Specifier

In order to store and retrieve information with your mass storage system, you must specify the exact
location of the device on which the information is stored. The mass storage unit specifier, or msus, is a
character string that combines an interface select code, address of the master unit, and drive number to

specify the location of a particular file. Accessing the file itself will be covered in section 3.

The msus string has the following form:

i device type [interface select code device address drive number]

| B——

All msus character strings begin with a colon.

The device type identifies the type of mass storage device being accessed, either disc or tape. The symbol

11

Saction ?2° AcceccinaYour Mace Stn Systen
Section 2: Accessing Your Mass Storage System

All of the optional parameters in the msus (interface select code, device address, drive number) must be
included when specifying a flexible disc drive unit. The optional parameters are omitted when specifying
the internal tape unit on the HP-85.

The interface select code identifies the HP-IB interface to which the mass storage unit is attached. The

interface select code is factory preset to 7, but may be reset to an integer 3 through 10. An interface select

code greater than 10is interpreted as 10.

The device address, an integer from 0 through 7, matches the number set on the device address switch on

the mass storage unit.

The drive number, an integer from 0 through 3, specifies the drive on the master or add-on unit you wish

to access.

The msus of the dual disc drive units shown in figure 1, page 8, are listed below.

disc dise disc disc

select code 7 select code 7 select code 7 select code 7
device address 0 device address 0 device address 0 device address 0
Drive 0 Drive 1 Drive 2 Drive 3

The following msus specifies the HP-85 internal tape unit.

When specifying an internal tape unit,
the interface select code, device
address, and drive number are not
included.

Volume labels offer you a convenient way to specify a particular mass storage medium (disc). You cannot

assign a volume label to a tape cartridge.

A volume label is a name up to six characters in length that you assign to a disc when the disc is

initialized, or by using a ! 1 statement. The volume label is stored on the disc and remains

the disc’s name until a new volume label is assigned to the disc.

Like the msus, the volume label is a string and must be enclosed in quotes. The only characters that you
should not use in volume labels are: . (period), : (colon), and “ (quotes). Volume labels longer than six
characters are truncated to six characters. Once a volume label has been assigned to a disc, the character
string designating that volume label always must include a period within the quotes preceding the

characters.

N

Section 2: Accessing Your Mass Storage System 13

The form of a volume label is:

“#" may be any character except a
period, colon, or quotation mark. Note
that the volume label character string
is preceded by a period.

The syntax of the .

I statement is:

imsus
" . oldvelume label

“new volume label '

Note that the new volume label is not preceded by a period. The period must be included only after the
volume label has been assigned. The statement may be executed within a program or from the keyboard.

When a volume label is used to access the medium on which information is stored, the system searches the

discs currently in the system until the disc with that volume label is found. If the search fails to find the

specified volume label, the Mass Storage ROM returns 3 sk Because of this
search operation, it takes more time to access a file using a volume label than by using the msus. If the
same volume label has been assigned to more than one disc in the system, the disc with the lowest msus is

accessed.

Examples:

Assigns the volume label
L ' to the disc located at

Renames the disc formerly labeled
to V.0

The examples in the remainder of this manual assume the following volume label assignments. It is also
“and that disc * #

assumed that dise

' ig always located at msus ' :

always located at msus

You can specify any parameter using expressions. When a parameter is a string, you can specify that
parameter using string expressions. When a parameter is a number, you can specify that parameter using
numeric expressions. In most cases, if the parameter is an integer, a non-integer value supplied by a

numeric expression is rounded to the nearest integer. However, attempts to use an expression evaluating

to a non-integer as part of a msus will generate i v v o ¢

Here are some examples of how string expressions can be used to create volume labels and msus values.

Refer to your computer owner’s manual for additional information about string expressions.

A551gns the volume label

. " tothe disc at msus
. Note that the period in
the new name is omitted in the

: = statement.

These statements accomplish the
same task as statements 50 and 60,
above.

Each flexible disc that you use in your system must be initialized at least once. Initializing establishes a
volume label, sets up a file directory for the disc, and clears and tests the disc. The I

command accomplished these things. You cannot initialize a tape cartridge with this statement.
Optional parameters in the statement can be used to:

Rename a disc (change the volume label).
Specify the amount of space allocated to the disc directory.

Specify how the physical records on the disc are to be numbered.

The initialization process takes about two minutes. Any information stored on the disc is erased by the

& command. If you are uncertain whether or not a disc has been prevmusly initialized,
insert the disc into DRIVE 0 and type i#% (ENDLINE). The message & ¥ 5

indicates that the disc has not been initialized. The ! command is programmable.

The form of the I i~ command is:

“imsus
* . old volume label '

[“new volume label [, [. directory size

[.interleave factor]]]]

In the !

parameters listed before it. For instance, the directory size must be preceded by both a new volume label

‘&2 command each listed optional parameter must be preceded by all the optional

and a msus or old volume label.

The new volume label is the new name assigned to the flexible disc being initialized (refer to page 12 for

details on volume labels). If the new volume label is omitted, it defaults to blanks.

The msus or old volume label is the existing label or msus of the disc being initialized. If this parameter is
omitted, the default disc specified by the .

msus i 77

i = statement is used. You cannot specify

The directory size specifies the number of records to be allocated on the disc for the file directory. Each
record holds directory information for eight files. The default value is 14 records (or 14 X 8 =112 files).

The interleave factor specifies how physical records on the disc are to be numbered. Any integer from 1
through 16 may be specified for the HP 82900-Series Flexible Disc Drives, causing sequential records on
the disc to be numbered consecutively, by every other record, every third record, etc. The default value for

the interleave factor is 5.

The ability to renumber records on a disc by specifying an interleave factor allows you to control the

efficiency of your disc drives and to minimize the time required to access mass storage files.

The interleave factor affects how many revolutions of the disc are necessary to transfer information to
and from mass storage. Because it takes a finite amount of time to perform accessing operations, and
because the disc is spinning rapidly, it is possible that a full revolution might be required to access
successive records on the disc. By placing a physical separation between records, the appropriate

interleave factor can minimize the number of “wasted’’ revolutions.

The performance of your mass storage system during a particular application can be improved by
adapting the interleave factor to the structure of your data. Since there is no easy way to compute the best
interleave factor for a particular data configuration, the simplist way to determine the most efficient

interleave factor is by “trial and error.”

One method of testing interleave factors involves copying your program and data from a “master” disc to
a “test” disc that has been initialized to a different interleave factor. Then, time the execution of the

program, using the computer’s internal timer. You may initialize the “test” disc repeatedly using a

different interleave factor each time, ! ' the same data onto the disc (remember, the data was lost

when the disc was reinitialized), and re-execute the program to compare execution times.

Below are several examples of the proper form of the | " command.

16 Section 2: Accessing Your Mass Storage System
Ectahlichina a2 Dafaiilt Mace Ct+arace Maditim
Establishing a Detault iVlass Storage Viedium -

“ statement, which

A default mass storage medium (disc) is established by the :

has the form:

* . volume label *

“ e msus©
]

Once a default device is set up, the system automatically uses that device when the volume label or msus
is not specified. When no default device has been established, the system defaults to the disc with the

lowest address number. If no device is present, or if the disc drive is turned off, the system defaults to an

internal tape unit (“ : T “), if present.

Examples:

The default is set to the medium with

Section 3

Accessing Files

Data and programs are stored on a mass storage medium, such as disc or tape, in files. By assigning each

file a name, you can access previously stored information by using the appropriate BASIC statement to
call up that file.

If your computer has an internal tape unit, you may already have some experience in storing and
retrieving files. However, the Mass Storage ROM requires that a different form of file name be used for
storage on both disc and tape. Attempts to store information on your internal tape drive using file name
conventions you learned in the section of your computer owner’s manual dealing with tapes could result

in the information instead being recorded onto a default mass storage medium.

The location of a file in your mass storage system is described by a file specifier. The file specifier consists
of two parts: a one- to ten- (six for tape) character file name, and a volume label or msus. The volume label
or msus identifies the particular disc drive (or tape) on which the file is located. The file name
distinguishes any one file from others stored on the same disc (or tape).

The proper form of a file specifier is:

“ file name [* vo{ume Iabef] "
1 msus

File specifiers are always enclosed in quotes. Note that the volume label or msus is shown as being

optional. This is because the system automatically uses the default device established by the

configuration of the system, or specified by a = 1% statement, when the optional
parameter is omitted. Consequently, the volume label or msus must be included if the file is located

elsewhere than the default mass storage medium.

Examples:

The file named QUAKE is on the
medium having volume label

The file named QUAKE is on the
device having msus °

The file named QUAKE is on the
HP-85 internal tape unit.

19

Here are several examples of file specifiers used with the default device established first. Remember that \)
¢

the default device you establish remains in effect until you change it again or reset the computer.

Establishes a mass storage
default medium.

Creates a data file named
PRESSURES on the disc having msus

HP-85 tape unit is the default device.
The program BIKE is stored on tape.

The only characters that should not be used in the file name portion of a file specifier are . (period),
t(colon) and “(quotes). The period is reserved as the volume label prefix, the colon is the msus prefix, and
the quotes are used to delimit strings. Null file names are not allowed; however, blanks are allowed. File

names longer than 10 characters (6 for tape) will be truncated to 10 characters (6 for tape).

Each mass storage medium (a disc or tape) automatically maintains a catalog, or file directory, of the files ‘I]
stored on it. The : & " command outputs the contents of the file directory to the computer display.

The proper form of the ¢ command is:

" . volume label
“imsus

1

', ¥you can now obtain a file directory of that disc

If you have previously initialized a disc as "

by typingin ¢ 7T

Once you have stored programs and created data files on a mass storage medium, the file directory will

look similar to the one shown below,

The file directory contains the following information:

This is the name assigned to the file as part of the file specifier.

There are five types of files: (program), : (binary program),

L ¥ (extended).

and *

2 The number listed is the number of bytes per file record.

This is the number of records in the file.

" ((END LINE) will output the tape

dlrectory The tape directory contains all the information in a disc directory, plus one additional column,

If your computer contains an internal tape unit, typing in ¢

iz, which lists the file number of each file. (Refer to your HP-85 owner’s manual for more details on

file numbers.)

You may terminate a catalog listing at any time by pressing any key.

As mentioned in the discussion of file directories, five types of files may be used with a mass storage
system: program, data, extended, binary program, and null. Each file type is created and retrieved by
different procedures, summarized below. Each file type is discussed at greater length elsewhere in this

manual.

File Type | Description

“and retrreved

These files contain programs and are created with i
i1 Program frles are covered in section 4.

into computer memory using

Data files are created using | and “# and retrieved with

:. Data files are covered in section 5.

£ (extended) | Extendedfiles are used to store graphics displays. i 71} is the only
statement inthe Mass Storage ROM that creates extended files. The
: _extended files are covered in section 6.

i1 (binary program) | Thesefiles are blnary programs and are created using
retrieved using i. i

iand
Binary program files are covered in section 4.

Null files are empty files created when individual files are purged. They are
removed from the dlrectory W|th ¥ Null frles are covered in sectlon 7.

Section 4

Storing and Retrieving Programs

Information in this section covers how to store and retrieve programs using a mass storage system. Use of

chaining to expand the capability of the computer in running large programs is also covered.

The &

medium (tape or disc). 7 i

. command is used to store the program currently in computer memory on a mass storage

. attaches a specified name to the program, creates a program file with that

name, and then stores the program in the program file using the computer’s unique language. The stored

program remains in computer memory until scratched, or until another program is loaded.

.18 not programmable. The command may be typed in, or you may use the typing aid (STORE).

The proper form of the 7}

“file specifier

The proper form for file specifiers is covered in section 3.

Examples:

Names the program in computer
memory QUAKE, and stores the
program in a program file located on
the mass storage medium with volume
label . PR

Remember that you can use either a volume label or msus in a file specifier.

Has the same effect as the previous

exampleif * is

You may omit the volume label or msus portion of the file specifier if the program is to be stored onto the

default mass storage medium.

Assigns the default mass storage
device. (Assume that the volume label
was previously assigned.)

23

If you do not have much experience with mass storage systems, you might want to practice storing (and &

later in this section, retrieving) a program. The following program converts speeds input in one of four Q9

units to any of the other four units. The four units are:

feet per second
miles per hour
kilometers per hour
meters per second

If you intend to store this program, you must first make sure you have a disc which has been initialized. If

you have not yet initialized a disc, do so now in Drive 0 of your unit, following instructions on page 14.

Note that the msusis optional here,
since DRIVE 01is the default device.

Now, obtain a file directory of the disc by typing .- (END LINE).

Type in the program as shown.

To store the program, type (or use the typing aid):

P —a

Section 4: Storing and Retrieving Programs 25

The red pilot light on Drive 0 will be on during the storing process. When the light goes off, the program
SPEEDS has been stored on disc *
keyboard.

“. To see the updated file directory, execute (" from the

The directory shows that SPEEDS has been stored in a program file three records in length. Each record
contains 256 bytes.

can be used to store a program in computer memory over a program that was stored previously.

For instance, after storing SPEEDS, you may edit the program in computer memory, and then re-execute:

The new, edited version will be stored, replacing the first version. Because of this “overlay’ capability,
you must be careful in storing a new program not to accidentally assign to it the name of another program
file, thereby overwriting a previously stored program that you still need.

Loading a Program From Mass Storage

Once a program has been stored on a mass storage medium, a copy can be retrieved into computer

memory with the command. Like ¢ command is not programmable. The proper

form is:

“file specifier

i a nonexistent

The file specifier must correspond to a program in mass storage. Attempting to .

programresultsin i ¢ ¢ ¢

When |

program is loaded. Variables that were assigned in calculator (keyboard) mode are also scratched.

is executed, any program or data currently in computer memory is scratched before the new

If you stored the program SPEEDS, you can now retrieve it. But first, you may want to scratch the

contents of computer memory just to prove to yourself that .. ¥ Iireally works. Execute =i ¥

' to confirm that the program is no longer in computer memory.

Now, execute:

or

Another way of loading the program is to assign the file specifier to a string variable:

26 Section 4. Storing and Retrieving Programs
The red pilot light on Drive 0 will light up while the program is being loaded. When the light goes off,
L. 127 the program to confirm that it is in computer memory.

If you used a defined string expression such as i to load the program, the string definition was

scratched when the program was loaded.

Chaining Programs

The " =i# 1 statement allows you to load a stored program into computer memory from a running

program. When 47 ! I is executed in a program:

e The current BASIC program and any data in computer memory are scratched. Specified data may

be preserved between two programs by including a < statement in both programs. Binary

programs are not scratched when {7+ " I is executed.

e The program specified in the ¢ 2{" | i statement is immediately loaded into computer memory from

mass storage.

o The newly-loaded program is executed automatically.

T ecommand, i+ His programmable. The proper form for the statement is:

Note that, unlike the i.

“ftile specifier

The i (% statement is used to preserve variable definitions between programs. All variables not included

“i statement are scratched when the chained program is loaded.

The form of the i.ii statement is:

ditem| . item...]

Refer to the discussion of n your computer owner’s manual for additional information.

statements in both the initial and the chained program must agree in the number and type of
variable. Particular care must be taken in preserving arrays that the option bases of the two programs

agree.

An important function of chaining is that it enables you to execute a program too large for computer

memory by separating the program into two or more parts. While the two programs that follow are

“and i:1:i%. The first program computes yearly

relatively small, they provide an example of using !
earnings for a company from quarterly earnings over a ten year period from 1970 through 1979. The

EARNINGS program then chains to a program that draws a bar graph of the yearly earnings.

Section 4: Storing and Retrieving Programs

First, enter and store the program to draw the bar graph.

Preserves specified variables.

Establishes scaling factor,
draws axes.

Labels X-axis.

¢ Labels Y-axis.

Draws bar graph.

Now, store the program BARGRAPH into mass storage.

Next, execute =

1, and enter the program for computing the yearly earnings:

Preserves specified variables.

Computes yearly earnings

Loads BARGRAPH.

27

N

8 Section 4: Storing and Retrieving Programs

If you’d like to run the set of programs more than once, be certain to store EARNINGS now since it will be

scratched when statement 90 is executed.

Now, execute EARNINGS. You will be asked to enter quarterly earnings for years 1970 to 1979. Enter any
values you like, but keep in mind that the Y-axis for the bar graph runs from $0 to $100,000.

When you push (END LINE) after the last data entry, you will hear a beep as statement 10 in BARGRAPH
is executed, and the bar graph will be drawn on the CRT. When program execution is completed, you may

list the current program in memory if you’d like.

etrieving Binary Programs

Some of the programs in the application pacs are binary programs. They function like a ROM, except that

they are loaded from mass storage. The statement that accomplishes loading of binary programs is

. The statement has the form:

file specifier

{ loads a binary program without altering existing data or programs in computer memory.

Only one binary program can be in memory at a time.

the main program and then

add the binary program using . . If you retrieve the binary program first, it will be scratched

when the main program is loaded.

In order to edit a program that uses a binary routine, the binary program must be present in computer

memory.

. ¢4, which has the form:

Any programs written without the Mass Storage ROM in place that access the HP-85 internal tape unit
are specific to the internal tape unit (tape-based) and cannot, as written, utilize a disc drive system. When
the Mass Storage ROM is installed, those programs will continue to execute as they did before, regardless

of the nature of the default mass storage medium.

For instance, suppose you have a program stored on tape that was written without the Mass Storage
ROM installed. The program reads a data file, performs a number of calculations, creates a new data file,
and then prints results of the calculations onto the new file. When this program is executed with the Mass
Storage ROM in place, the program will continue to read, create, and write tape-based data files, even if

the default mass storage medium is a disc.

Programs written without the Mass Storage ROM installed must be translated before they can utilize a
disc system. After a program loaded from the tape system is translated, the program is compatible with

the requirements of the Mass Storage ROM.

A tape-based program is translated by loading the program into computer memory and then executing
the T @rmif

~ command, which has the form:

A beep signifies that the translation is completed.

If the tape-based program described previously was translated and then executed, the program would
read the appropriate data file from the default mass storage device, perform the computations, and store

the results in a data file created on the default mass storage device. If the data file being read had been

stored initially on tape, it would be necessary to i it onto the default mass storage device before

running the program.

The translated program can be stored onto a disc simply by executing with an appropriate file

specifier.

Section b

Storing and Retrieving Data

The discussion of file types in section 3 pointed out that mass storage enables you to create and use five
different types of files, one of which is the data file. This section covers the operations necessary to store,
retrieve, and update data using mass storage. The five operations discussed in this section, all of which

are essential in storing and retrieving data, are:

Creating data files,

Opening a previously created data file.
Storing data.

Retrieving data.

Closing the data file.

There are two methods for accessing data files: serial access and random access. Serial access stores data
sequentially, and is useful when the complete data list is to be stored and retrieved as a unit. Random
access allows you to access portions of the data. Both types of files are created, opened, and closed in the
same way. However, data is stored and retrieved somewhat differently, so storing and retrieving will be

discussed separately for serial and random access.

Files created in mass storage consist of one or more records. The size of the records may vary to
accommodate the storage requirements of the data. Before covering how to create data files of different

sizes, we will first discuss file structure and storage requirements.

When a data file is created in mass storage, the size of the file is set by specifying the number of records in
the file and the length of the records. A record is the smallest addressable location on a mass storage
medium such as a disc or tape. Record length is specified in bytes, and all records in a particular file are

the same length.

Two types of records are available: physical and logical. The two types of records make it possible to

match the structure of data to the file in which it is stored, thus using storage space most efficiently.

31

Physical Records — Physical records are always 256 bytes in length and are set up automatically when
a program file or data file is created. All files begin at a new physical record. The 256 byte physical record
is the smallest addressable storage unit unless a different size addressable unit, called a logical record, is
established.

Logical records — Logical records are specified for a file when an addressable unit of length other than
256 bytes is desired. The file will still begin at the start of a physical record; within the file, however, the
dividers between physical records are ignored and a logical record may straddle two or more physical
records. When a data file is created without specifying logical records, the automatically-created physical

records become logical records.

The following diagrams illustrate two files consisting of logical records. The first file contains five
records, each 100 bytes long. Note that the file utilizes two physical records and that there are 12 bytes of
unusable space, since any new file must begin at a new physical record. The divider between the two

physical records is ignored.

LOGICAL RECORDS

v — A ' '

PHYSICAL RECORDS

The next diagram illustrates a file consisting of two 500-byte logical records. The divisions between
physical records within the logical records are ignored; however, 24 bytes of space are rendered unusable,

since any new file must start at a new physical record.

LOGICAL RECORDS

v ' W R

PHYSICAL RECORDS

-

Storage Requirements

Section 5: Storing and Retrieving Data

33

File and record sizes should be specified with the space requirements of the data in mind. The following

chart describes the amount of space necessary to store numeric and string data.

Type

Numbers

Strings

Single variable

Array variable

8 bytes per number

8 bytes x the
dimensioned number of
elements

1 byte per character + 3 bytes
per string + 3 bytes each time the
string crosses into a new logical
record.

Not available.

You can use these space requirements to set up files to match your data. For instance, suppose you would

like to create a file that will store the last and first names, social security number, and salary of a dozen

employees. You would like each employee’s information in a separate record.

Item Type of data bytes
last name 12-character string 3+12= 15
first name 10-character string 3+10= 13
social security # 11-character string 3+11= 14
salary numeric 8
50

A file can then be created consisting of 12, 50-byte records. When logical records are created, any

otherwise wasted space (in this case, 168 bytes) is also allocated into logical records, if possible. The 168

bytes form an additional 3 records added to the file automatically, with 18 unusable bytes.

12 Records

A

3 Records

P ——

[P

the form:

"file specifier * . number of records | . record length]

The number of records specifies how many records the file will contain, and must be an integer from 1
through 32,767. The recond length is the number of bytes in each record, and must be an integer from 4
through 32,767. The default value for the record length is 256 bytes, the size of a physical record. The total

number of bytes, obtained by multiplying the number of records by the record length, must not exceed the
storage capacity of the mass storage medium.

The following statement creates a data file named EMPLOYEES for storing the identification and salary

information for the 12 employees, as discussed above.

Creates a data file with 12 logical

records of 50 bytes each. (Actually, 15 U
records will be set up, as discussed in

Logical Records, page 32.)

Since the information for each employee is stored in its own record, it can be accessed and updated
separately from the data for other employees. If you create this file on
.7, the file will be listed.

" and then execute

If it was preferable to always store and retrieve the information for all employees at once, a file

containing one record could be set up.

&
Creates a data file of one 600-byte
record.

36 Section 5: Storing and Retrieving Data

Closing a Data File

When you’'ve completed a data transfer to or from a file, you should close the file. The =

statement accomplishes this, and can be executed in program or keyboard mode.

i buffer number

The buffer number must agree with the buffer number assigned to the file when it was opened. For

instance, to close EMPLOYEES previously opened in statement 40, above, execute:

When a buffer is closed, any data in it is transferred to the final destination (the computer or mass storage
medium). If a program error causes a halt while data is in the buffer enroute to mass storage, all the data
in the buffer will be printed to the file. The file remains open and thus does not need to be reopened before

program execution is continued.

If a disc error causes a halt during program execution, data in a buffer enroute to mass storage is lost
unless the file is closed from the keyboard. When the file is closed, the data will be transferred to mass

storage.

Serial Access

Serial access is used when a quantity of data is to be stored and retrieved sequentially and updated as one
unit. The entire file itself becomes the smallest addressable unit of storage. This is true even if the file
being accessed consists of more than one logical record. In serial access data is stored and retrieved

without regard to record divisions.

Serial Printing

Data is stored into a file serially using the serial i statement, which has the form:

The buffer number must have been previously assigned to a data file. The print # list itemizes the data you
wish to store, and may include numbers, numeric variables, string variables, and array names. Items in
the print # list are separated by commas. Data items are placed into the file according to the position ofthe

file printer.

Pointers — When a file is opened, the file pointer is place at the beginning of the file, and any data items
serially printed to or read from the file will access the beginning of the file. The pointer moves through the
file sequentially. When an entire print # list has been recorded, the pointer remains at the end of the
recorded data, and an end-of-file marker indicates the position of the last recorded data. Execution of a
subsequent = i # statement records the new print # list at the end of recorded data and moves the

end of file marker to the end of the newly recorded data. The pointer will continue to move sequentially

through the file until the file is closed or reassigned with an 775 [¢ . statement.

b —

Section b: Storing and Retrieving Data 37

The movement of the file pointer and end-of-file marker influence the way in which serial files may be

updated. If, after entering a long list of data items serially, the pointer is returned to the beginning of the

file using an | # statement, a new serial
the old ones. Because an end-of-file marker is placed at the end of the new data items, the entire old data

list is lost.

The following sample program uses serial access to store check register data for the PDQ Music
Company. The company opens a new file each day, and records the company to which a check has been

written as string | % and the amount of the check as numeric variable .

Creates file of 4, 256-byte records.
Opens file.

Prints company name and amount of
check to the file serially.

Closes file.

When the program is run, it prompts for company name and amount of the check until *

" is input in response to the company name prompt. If file capacity is exceeded before program

execution ends, ¥ ¥ ¥
end of the file,

! announces an attempt to print at the

Note: When a string printed to a file serially crosses from one record to another, an additional three
bytes are needed for the string “header,” which identifies the portion of the string contained in the

new record.

Reading Files Serially

Data that has been stored onto a mass storage medium must be retrieved, or read, back into computer
memory before it can be used. Reading data from a file transfers a copy of the data through a buffer into

the computer.

o J YHETLER arvel B atri ot mm
S10rng ana hetrieving

When data is retrieved serially, the entire file contents is accessed sequentially, ignoring any record

divisions. Data stored both serially and randomly can be retrieved serially. Serial reading is

accomplished by the serial § # gtatement, which has the form:

& buffer number ; read# list

The buffer number must match the number previously assigned to the file with an
statement. The read list need not exactly match the print # list used to store the data. However, data items

being read must agree in type (string versus numeric) with the contents of the file. Numeric data need not

agree in precision). The number will be converted to the precision of the

read variable as long as the read precision is less than the print precision. If the read precision exceeds the

precision of the stored number, the number is read to the same precision with which it was stored. For

example, a printed i number will be converted to the . precision specified in a read list;

however, if you attempt to read the same precision number with i.. precision, the number

will actually be read with ik precision.

In reading serial files, the pointer moves through the file sequentially, much like with serial printing. The

pointer is moved to the beginning of the file whenever the file is opened, or if an # statement

for that file is re-executed. Since a serial i statement leaves the file pointer at the end of the last

recorded data, you must move the pointer to the beginning of the file before reading stored data.

If you used the program on page 37 to create a data file for a check register, you can use the following

program to read the file, print its contents, and sum the day’s check payments.

Opens data file.
Reads company name.

Reads amount of check.

Closes the data file.

In the above program, the file pointer moves through the data file as eac it statement is

executed repeatedly. If statement 40 were omitted, the i i statement in line 50 would eventually

encounter an end-of-file marker, generating an error.

Section b: Storing and Retrieving Datz: 39

When you wish to print to, read from, or update a portion of a data file, random access enables you to do

80. Therandom ¥ # and # statements are designed to access individual records of a
data file. Remember that a record is the smallest addressable unit of mass storage and can be as small as

four bytes.

Random Printing

The random | i statement has the form:

buffer number . record number| ; prmr # I.rst]

The buffer number must match the buffer assigned to the file by an “ ¢ statement. The record
number must be less than or equal to the total number of logical records in the file. The print # list

contains all the items to be printed to the record, separated by commas.

The random statement operates somewhat differently from the serial

statement:
Because random printing accesses a specified record, the record number must be part of the
statement.

When a random # statement is executed, the file pointer is moved automatically to the

beginning of the specified record. Thus, all items printed to a particular record must appear in one

random # statement.

In random printing, the contents of the file buffer is transferred to its destination each time another

record is accessed.

Record divisions are not ignored in random access operations. Attempts to print to a file when the

file pointer is at the end of the specified record results in an error.

The file pointer may be moved to the beginning of a random record by executing a random

i+ statement without a print # list. For example:

Moves the pointer to the beginning of
record 3 of file DATA.

In random access, the prmt # list must not exceed the storage capacity of the logical record.

! indicates that the print # list has exceeded the

P, or &

capacity of the record.

40 Section b: Storing and Retrieving Data

The following program creates a file for storing and retrieving a check register using random access.
Each of the 20 records contains the name of the company to which the check is written and the amount of
the check. The string * i

The program prints (or displays) the contents of each record as the checks are entered.

" and the numeric variable i are stored into otherwise empty records.

Creates a 20-record file.

Prints (displays) check data.
Prints % and ¢ to record # i.

Prints to all unused records.

Closes file.

" loop to increment the record number. Note that, unlike the serial access
! " “* to mark the end

of the data. Random access would allow you to attempt to retrieve data beyond that entry, since you may

version of this program, this program does not actually store °

move the file pointer to the beginning of any existing random record.

Reading Files Randomly

Random access reading is accomplished with the random read statement, which has the form:

it buffer number , record number [; read # list]

|

The differences between the random read statement and serial read statement are analogous to the

statements:

differences between the two types of

o The statement must include the record number you wish to access.
o The file pointer automatically moves to the beginning of the specified logical record.

e Logical record divisions are not ignored. An attempt to read past the end of a logical record
"

generates i-

o The file pointer can be moved to the beginning of the record by executing the statement without a
read # list.

—

o

Section b: Storing and Retrieving Data 41

As with serial reading, the read list must agree in data type (numeric versus string) with the stored data;
however, number precision need not agree. (Refer to page 37, Reading Files Serially, for further

information.)

The following program allows you to correct any of the entries to the check register DEC5CHECKS and to
add additional checks. The program asks whether there are any changes and then prompts for the record

number in which the correction is to be made. To make additions, merely specify a previously unused

record and replace its current contents, “ and %, with the new data.

After accessing the file randomly for updating, the program then uses serial access to access the entire

register, sum the checks, and print the contents.

Opens data file.

Enters record to be updated.
Reads contents of record.

Enters corrections.
Prints corrections to data file.

Moves pointer to beginning of file.

Reads file serially.

Sums check amounts.

Closes data file.

Note that statement 130 is necessary to move the pointer to the beginning of the file. Otherwise, the serial

read would start at the last position of the pointer, the end of record I in statement 110.

[&)

Storing and Retrievin

Entire arrays can be stored and retrieved using an array addressing format with the serial or random
PRINT # and READ # statements. The proper array addressing formats for one-dimensional and two-

dimensional arrays are as follows:

one-dimensional array array name | |

two-dimensional array array name i, |

Examples:

e Reads one-dimensional array B
serially.

Stores two-dimensional array F into

record 4 of specified file.

In the case of two-dimensional arrays, the array elements are retrieved item by item without regard to

dimensionality, with the second subscript varying more rapidly, i.e., by rows.

A1) —» A2 —s A3 — A{l4) — Array elements of this 3 X 4 array are
S retrieved by rows.
AQ21)— A22) » A3 A24)
- A(3,1) — A(3,2) —» A(3,3) — A(3,4)

Since array elements are stored on mass storage linearly, they may be retrieved with or without an array
format. In the case of a two-dimensional array, any combination of A(L,J) dimensions may be used that
accesses the desired number of elements. For instance, a 3 X 4 array stored in a filenamed ARRAY might
be retrieved by the following statements. (ARRAY has been assigned buffer #1.)

gtatement has fewer elements than the stored array, only those

If the array specified in the =

elements allowed by the ! i array will be retrieved.

The following program stores temperature data gathered by an instrumented aircraft. The plane takes six
temperature readings along each leg of its flight. The four legs cover the same route at altitudes 5000,
10,000, 15,000, and 20,000 feet. Data for each leg is entered into a separate record, so that it can be

inspected and updated, if necessary.

Sets default mass storage device.
Creates data file.

Opens file.

Prints T(1) through T(6) to record
L.

Closes file.

Analysis of the data involves averaging temperatures over height at each of the four locations and
computing the vertical temperature differences between points. Data handling is facilitated in this

situation by reading in the four 1 X 6 arrays as one 4 X 6 array.

Opens data file.

Reads in data as 4 X 6 array.

Computes average location
temperature.

Computes gradients (differences).

Closes data file.

The TEMPS file is read serially in statement 40. The effect is to perform the following rearrangement of
the data.

Data as printed to file

Record1l T(1) T2y T@B) T4 TB) T6)
Record2 T(1) T(2) T(3) T TG T6)
Record3 T(1) T@) T@B) TE) TG T6)
Record4 T(1) T(2) T(3) T() TGB) T6)

Data as read from file

leg 1 T(1,1) T(1,2) T@,3 T(,4 T{a,5) T(,6)
1eg2_ T(2,1) T22) TE3) TE4 TEs5 Tee)

leg 4 TL) oo T(4,6)

44 Section 5: Storing and Retrieving Data

Updating Data Files

When data is stored on a mass storage medium, it must be read into computer memory before it can be
updated. Since a record is the smallest addressable unit in mass storage, one practical way to change the
contents of a data file is to read in the contents of an entire record, and later reinsert the updated record
into the file. The sample program on page 00 contained an example of making corrections on a check
register. The following program illustrates adding to, deleting from, and changing the contents of a

40-record file.

A small community college maintains a file, named COURSES, of its course registration data. The

college offers 40 courses, numbered sequentially:

Subject Course Numbers Record Numbers
English 101 through 110 1 through 10
History 201 through 210 11 through 20
Math 301 through 310 21 through 30
Science 401 through 410 31 through 40

Each record is set up as follows. Course enrollment is limited to five students.

student |.D. numbers

Course Course #students student student student student student
name number #1 #2 #3 #4 #5

Each term before registration, the file is initialized by entering in course names and numbers, and setting
enrollment data to 0. The following program processes student registration forms. The program prompts
for the student I.D. number and then conducts the appropriate file operations for adding and dropping

courses. The program assumes a previously initialized file named COURSES located on medium

Enters student I.D. number.

Enters operation—add, drop, or done.

Enters class number (101-110, 201-210,
ete.)

Computes record # from course
number.
Opens data file.

Reads in contents of appropriate
record.

Section 5: Storing and Retrieving Data 45

Tests for student already being
enrolled.
Tests for opening in the class.

Statement is executed when class is
full.

Enrolls student.

Updates enrollment number.
Prints updated record to file.

If student is dropping the course,
this loop searches to see whether
she is actually enrolled.
Statement 290 executed if student
wasn’t enrolled.

Updates enrollment.

This loop removes student’s 1.1,
number from the class list.

Closes data file.

Data files should be designed so that information requiring frequent updating can be readily accessed
and altered. In the previous program, statement 110 directly converts the course number into a record
number, enabling the program to access a course’s record without searching through the entire file. If the
organization of the data didn’t lend itself to direct computation of record number, it would have been
necessary to search for the appropriate course. In such cases, it is more efficient to store a master list of
courses in one file and maintain a separate file for student enrollment. The master list could then include

a pointer for each course, indicating in which record the student enrollment can be found.

Section 6

Storing and Retrieving Graphics

The Mass Storage ROM allows you to store the contents of the computer’s graphics display onto a disc
and to retrieve the display without re-executing the display-generating program. The operation of
loading the stored display into the computer’s graphics display leaves alpha mode and any program
currently in computer memory intact. (Refer to the graphics section of your HP-83/85 owner’s manual for

a discussion of alphanumeric and graphics mode.)

The statements covered in this section create and access extended files, and are the only Mass Storage
ROM statements to do so. Unlike data files, extended files are not opened and closed. An attempt to

assign a buffer to an extended file generates [v o ¢ {ni

The contents of the computer’s graphics display can be stored onto a disc by executing the i’

statement.

may be executed from the keyboard or within a program. The statement

automatically creates an appropriately-sized extended file; you cannot use a statement to

create an extended file.

The proper form of the

“file specifier

The statement stores a copy of the computer’s graphics display into the file. Computer memory is

unaffected, and the stored graphics display remains in the computer’s graphics display until execution of

Extended files are useful for storing the scaled and labeled X- and Y-axes of a graph for later use in
plotting data. The following program generates a graphics display which will be retrieved for use later in
this section. The program creates the X- and Y-axes for a graph of gold prices from January, 1979, to
January, 1982. After the program is keyed in and executed, the graphics display it generates will be stored
into an extended file named GOLD.

47

48 Section 6: Storing and Retrieving Graphics

Now, run the program to generate the X- and Y-axes for the gold prices plot:

you must return the computer to alpha mode. This is easily done by

Before you can execute i

pressing any alphanumeric or display control key. Once you are in alpha mode, execute:

Stores contents of the computer’s
graphics display into an extended file
named GOLD.

Section 6: Storing and Retrieving Graphics 49

The contents of the graphics display has now been copied into the file named GOLD located on the disc

with volume label * *. We could have chosen to store the display as part of the program.

Inserting the " statement after line 130 accomplishes this.

As in program storing, the contents of an extended file can be altered by executing with the

same file specifier and a different computer graphics display.

Retrieving a Graphics Display

Once a graphics display has been stored with a " statement, it can be retrieved by executing a

1! statement, either from the keyboard or within a program. The proper form of

“file specifier i

The file specifier must be the name of a previously-GSTOREJ extended file.

Execution of places a copy of the graphics display contained in the extended file into the

computer’s graphics display. The contents of the computer’s graphics display at the time i@ ¢ iis

executed will be scratched as the stored display is retrieved. As i is executed, the computer

automatically switches to graphics mode, and you can see the stored display appear on the CRT.

The following program graphs approximate gold prices at the beginning of each month from January,
1979, to September, 1980, using the axes stored in the GOLD extended file. Since data is not available for
the entire X-axis time span, the program tests for a price of $0.00 to signal the end of the data list.

Loads axes into graphics mode.
Lifts pen before plotting first point.

Test for 0.00 price
Plots price.

n 6: Storing and Retrieving Graphics

When the program is executed, the CRT switches to graphics mode at line 30. The axes is retrieved, and
then the prices are plotted onto the graph. When the data has been plotted, the display will look like this:

" statement with either the

You may store the graph onto mass storage by executing a %7

“ file specifier, to replace the empty axes, or with another file name. Once the graph

has been stored, it can be updated as new data up to January, 1982, becomes available by GLOADing the
graph and plotting additional points.

Section 7

Other File Manipulations

The Mass Storage ROM enables you to perform a variety of file manipulations in addition to the ones

already covered. Section 7 covers the following additional file operations:

Determining the type data of the next item in a data file.
Copying files from one mass storage medium to another.
Renaming files.

Purging files.

Packing files for more efficient use of mass storage space.

Securing files.

The "

also allows you to determine whether the file pointer is at the end of the record or at the end of the file. The

“ function allows you to determine the type of data of the next item in a data file. The function

function has the form:

{ buffer number

The buffer number must correspond to the buffer assigned to the file being accessed. The function returns

an integer from 1 to 10 according to the following table.

Type Value Data Type

Number

Full String
End-of-File
End-of-Record
Start of String
Middle of String
End of String

COWOPLwWN-=

In using the : ¥~ function, the pointer can be moved through the file in much the same way as it is moved
in serial and random printing and reading. One difference is that record divisions are not ignored when

the pointer is moved with serial statements.

53

We will use the

records as shown below:

'~ function to access data items file named AGES, which is organized into logical

record 1 record 2 record 3 record 4 record 5 record 6
Bill 30 | Phyllis 31 Hank | Don 35Plu | sorminus10 |
Now, the following statements are executed from the keyboard:
"""" Opens AGES file.

Any filein mass storage not secured against copying can be copied to another mass storage medium. The

directory.

“source file specifier *

“destination file specifier

Moves pointer to beginning of record 1.

Moves pointer past first item in record
1.

Moves pointer past 2nd item in record
1.

Moves pointer past first item in record

3.

Moves pointer past first two items in
record 4.

Moves pointer to beginning of record 5.

Moves pointer to beginning of record 6.

"'y statement accomplishes this and adds the name of the copied file to the destination medium’s file

Section 7: Other File Manipulations 55

The source file specifier corresponds to a file present on a mass storage medium. The destination file
specifier may include the same or a different name. You cannot copy a file secured against copying (type 1

security). If you attempt to do so, no error is generated, but the secured file will not be copied to the
destination medium.

Examples:

Copies the file named SPEEDS on the
disc with volume label ° o
onto the disc having volume label

the file named QUAKE on disc
“ onto an HP-85 tape
cartridge, naming the new file on the
tape EARTH.

Copi

%" can also be used to copy all the files on a mass storage medium to another medium. The COPYing
process does not affect the original contents of the destination medium. The source medium’s contents are

simply added on.

| " «sourcevolume label " ... " . destination volume label
| " rsource msus ' ‘ i destination msus
|

Both source and destination volume labels must have been previously assigned with a ..

statement.

One use of { “is transferring the contents of several partially filled discs or tapes onto one medium. If

duplicate names are encountered during copying, = « #

. is generated, and the

¢ operation terminates. All files copied up to the termination remain intact.

Files secured against copying (type 1 security) are not copied when the entire contents of one disc are

copied to another disc. The secured file is simply ignored, and no error is generated.

If there is not enough space on the destination medium to hold all the files being copied, the copy

operation terminates and !

: . results when the available space is exhausted.
Copying also terminates when the directory space on the destination storage medium is exhausted,
generating i ¢ v v '

- 2. Files copied before generation of the error remain intact.

56 Section 7: Other File Manipulations

Renaming Files

Any file, regardless of its type, can be given a new name using the !

“old file specifier ¥ i “new file name "

The old file specifier must correspond to a previously specified file. When the statement is executed, the
name of the file as listed in the file directory is changed. The file itself is untouched. However, it must now

be addressed using the new name.

Examples:

Renames AGES on Drive 0 to
BIRTHDATE.

Renames tape file SORT to SHELL.

Purging Files

The statement prevents further access to a file by removing the file name from the directory. The

space that was occupied by a purged file becomes a i/ i file and is available for future use.

“file specifier " [. purge code] u

The file specifier must correspond to an existing file of any type—program, data, extended, or binary

program. The purge code may be any number; however, any purge code other than zero is ignored.

When a file is purged without a purge code, the file name is removed from the file directory, and * s

substituted for the type of file in the Type column of the directory. The i i file is available for future

use, and will be used when you store or create another file that fits into the available space.

When a purge code of i is included, the specified file and all files after it on the storage medium are

purged. The directory does not create [+i!i i files; the directory will contain a listing for only those files

up to (and not including) the file specified in the i statement.

The following catalog shows the results of purging a file without a purge code.

L

Now, two files from the end of the directory will be purged.

The ¥ i statement fills in |

¥ cannot be used with files on an internal tape unit.

“ . volume label ¥
“rmsus

]

Example:

File security is used to prevent program files from being listed, duplicated and overwritten, and to prevent

data files from being copied or changed. You may also remove a file name from the directory listing

without creating a /11l i file; the file can still be accessed by anyone who knows its name.

Securing Files

The =i+ command places various levels of security on files. is programmable, and can

also be executed from the keyboard. None of the levels of file security prevent a file from being purged.

“file specifier © . security code . security type

The file specifier must refer to a file already existing in mass storage. The security code may be either a
quoted string or a string expression that becomes associated with the file for security levels it and .
Only the first two characters of the security code string are actually used. If the string has only one

character, the second character is a blank.

You can prevent any write operation onto a flexible disc by covering the write-protect slot with a write-

protect tab (provided with the discs) as shown in the illustration below.

Write-Protect S}qt Write-Protect Tab

) N

Not Write Protected Write Protected

The procedure for write-protecting other discs may not be the same as the above. Refer to the

documentation for your system for write protection information.

The write-protect procedure prevents you from writing any information onto the disc. The disc can,

however, be read normally. To write on a protected disc, you must reverse the write-protect procedure.

Tape cartridges used with the HP-85 internal tape unit may be write-protected by sliding the RECORD w

slide tab to the left before inserting the cartridge into the HP-85. Write-protection is removed by sliding
the tab to the right.

= =

Section 8

Data Verification and Error Processing

The @
been properly recorded onto the disc. When i -5k

P17 statement can be used to verify that data printed to a data file located on a disc has

i is activated, an immediate read # is

performed on any data printed to a specified file. If the two lists do not match, indicating failure of the

storage medium (disc) itself, the ROM will return i (read verify).

: cannot be used for data files located on an internal tape unit.

¢ buffer number

The buffer number specified must match the buffer assigned to the data file.

errors are rare. If you should ever encounter one, you may wish to compare your

i statement again, since the failure which generated the error may have been momentary. If

you obtain another /i 015 # et error, it is likely that the disc has failed.

itis turned off by the . i (&

statement:

i buffer number
Examples:

Verifies all data prlnted to buffer #1.
1 Turns off i
buffer #1.

Several statements are available for determining whether an error in a running program has been

generated by a ROM or by an interface.

ROM-Issued Errors

When you receive any error message, you may use the ERROM function to determine whether the error
was issued by one of the ROMs.

returns the number of the ROM that issued the error. If the error was issued by the computer
rather than by a ROM, the function returns . The Mass Storage ROM number is 208.

63

64 Section 8: Data Verification and Error Processing

i can be used with an

statement to direct program flow. The program below &

displays a message when a Mass Storage ROM error occurs.

Refer to your computer owner’s manual for more information regarding error processing.

Interface Module Errors

When an illegal operation elicits an error from an interface, you can determine the select code of the
" returns the select code of the

.. function,

interface at which the error originated with the .

interface.

" can be used to direct program flow after an error has occurred. (See example under

above.) Refer to your computer owner’s manual for more information regarding error processing.

Section 9

Tape Commands

The following commands are applicable only to HP-85 tape cartridge operation.

This function conditions the magnetic tape cartridge by running it forward to the end of the tape and then

back to the beginning of the tape. Programs and data on the tape are not affected by the "7

operation.

i sets up a directory on the tape

This function is similar to the 2 command. &R

cartridge. All previous information on the tape is destroyed.

This simply rewinds the magnetic tape cartridge to the beginning of the tape.

67

o

=

—4

Syntax Summary

Syntax Guidelines

letters if you wish.

[] Items enclosed in brackets are optional parameters.
parameter Items in italics are optional parameters.
ff:;];ed When items are placed one above the other, one must be chosen.

buffer number 1 ‘file specifier

buffer number

“ . volume label "
Fumsus

|

“file specifier

i buffer number

“source file specifier * {11 Fdestination file specifier '

" . source volume label " " .destination volume label’
" isource msus o " i destination msus

“file specifier * , # of records [, record length]

“file specifier

“file specifier

" rmsust
Y. volume label

[Vvolume label [., . [. directory size[. interleave factor]]]]

‘file specifier *

“file specifier

69

Items shown in dot matrix must be typed as shown; however, you can use lower case

Page 35

Page 36

Page 20

Page 26
Page 63

Page 54

Page 55

Page 34
Page 63
Page 64
Page 49

Page 47

Page 14

Page 25

Page 28

* . volume label *
Y omsus’

]

“old file specifier

“file specifier

“file specifier

{ buffer number :

Y msus
“ . volume fabel "

“file specifier " .

Y volume label
Frmsus

buffer number : print# list

& buffer number . record number [: print# list]
“file specifier * [. purge code]

i buffer number ; read# list

buffer number . record number [. read# list]

“new file name *

“file specifier . “security code " . security type

“security code " . security type

“volume label "

Page 16

Page 57

Page 36
Page 39
Page 56
Page 38
Page 40
Page 56
Page 57
Page 23
Page 28
Page 29
Page 53

Page 59

Page 13

Appendix A

. Maintenance, Service and Warranty

The Mass Storage ROM does not require maintenance. However, there are several areas of caution that

‘ you should be aware of. They are:

Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions
may result in minor electrical shock hazard and interference with some pacemaker devices. Damage to

plug-in port contacts and the computer’s internal circuitry may also result.

Always switch off the computer and any peripherals involved when inserting or removing
modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP-83/85. Failure

to do so could damage the module, the computer, or the peripherals.

If a module or ROM drawer jams when inserted into a port, it may be upside down or
designed for another port. Attempting to force it may damage the computer or the module. Remove the

module carefully and reinsert it.

Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not
insert any objects in the contact holes on the ROM. Always keep the protective cap in place over the
ROM contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions
may result in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the ROM Drawer
Instruction Sheet or the HP-83/85 owner’s manual, appendix B.

If at any time you suspect that the ROM drawer or Mass Storage ROM may be malfunctioning, do the

following:

1. Turn the computer and all peripherals OFF. Disconnect all peripherals and remove the ROM drawer
b from the computer ports. Turn the computer back ON. If the computer does not respond or displays

, the computer requires service.

73

74

Appendix A: Maintenance, Service and Warranty

2. Turn the computer OFF. Install the ROM drawer, with the Mass Storage ROM installed, into any

port. Turn the computer back ON.

@

If & cee L3 os Mo RO g displayed, indicating that the ROM is not operating
properly, turn the computer OFF and try the ROM in another ROM drawer slot. This will help

you determine if particular slots in the ROM drawer are malfunctioning, or if the ROM itself is

malfunctioning.

If the cursor does not appear, the system is not operating properly. To help determine what is
causing the improper operation, repeat step 2 with the ROM drawer installed in a different port,
both with the Mass Storage ROM installed in the ROM drawer and with the Mass Storage ROM

removed from the ROM drawer.

Refer to How to Obtain Repair Service for information on how to obtain repair service for the

malfunctioning device.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.

Additional copies may be obtained from any authorized HP-83/85 dealer, or the HP sales and service

office where you purchased your system.

If you have questions concerning the warranty, and you are unable to contact the authorized HP-83/85 or

the HP sales and service office where you purchased your computer, please contact:

In the U.S.:

Hewlett-Packard

Corvallis Division Customer Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330

Tel. (503) 758-1010

Toll Free Number: (800) 547-3400 (except
in Oregon, Hawaii and Alaska).

In Europe:

Hewlett-Packard S.A.
7, rue du Bois-du-lan
P.O. Box

CH-1217 Meyrin 2
Geneva

Switzerland

Other Countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Tel. (415) 857-1501

-

S

Appendix A: Maintenance, Service and Warranty 75

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-83/85 and its peripherals. For information on
service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and

service office.

If your system malfunctions and repair is required, you can help assure efficient servicing by having the

following items with your unit(s) at the time of service:

1. A description of the configuration of the computer, exactly as it was at the time of malfunction,

including any plug-in modules, tape cartridges or other accessories.

2. A brief description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.
Computer and peripheral design and circuitry are proprietary to Hewlett-Packard and service manuals
are not available to customers.

Serial Number

Each computer and peripheral carries an individual serial number. It is recommended that you keep a
separate record of this number. Should your unit be stolen or lost, the serial number is often necessary for
tracing and recovery, as well as any insurance claims. Hewlett-Packard does not maintain records of

individual owner’s names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your computer system, be sure it is packed in a protective
package (use the original case), to avoid in-transit damage. Hewlett-Packard suggests that the customer

always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the
nearest authorized HP-83/85 dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility.

Index

Disc Drive Numbers, 7

Address Switch, Device, 6 Disc Error During Data Transfer, 36
Arrays, 41-43 Disc Initializing, 14-15
Retrieving, 41-42 Disc Write Protection, 60
Storing, 41-42 Display Retrieval, Graphics, 49-50
: Statement, 35-36 Display Storage, Graphics, 47-49

Ass1gn1ng Buffers to Files, 35 Drawer, ROM, Installation, 5
Drive Numbers, 7

BARGRAFPH Program, 28

Binary Programs, 28 EARNINGS Program, 26-27
BPGM File Type,21 Efficiency of Disc, 15
Buffers, 35-36 End of-file Marker 36
Bytes, 21, 33 ' :
Entry in File Directory, 21
Needed to Store Data, 33 Error Messages, 80-81
Error Processing, 63-64
- — Errors, 63-64
e]ling File Security, 59 Interface Module, 64
7T Command, 20 ROM, 63
Catalog of Files, 20-21 * Function, 64
-+ Command, 26 Expressmns Used to Specify Parameters, 14
Chammg Programs, 26-28 Extended File Type, 21,47

b ~ i Statement, 63
Closmg Data Frles 36

Codes, 5-6, 56,57 Factor, Interleave, 14-15
Purge, 56 File Buffers, 35-36
Security, 57 File Directory, 20-21
Select 5-6 File Names, 19-20

.11 Statement, 26 File Pointers, 36-40

Cond1t10n1ng Tape Cartridges, 67 File Records, 31-32

7 Command, 54-55 File Security, 57-60

Copying Files, 54-55 File Specifier, 19

Copying Media, 55 File Types, 21

COURSES Program, 44-45 Files

i Statement, 34 Binary Program, 21, 28

Creatmg Data Files, 34 Data, 21, 31-45
Command, 67 Extended, 21, 47-50

NULL, 21, 56
Program, 21, 23-29

Data File Type, 21
Data Files, 31-45

Creating, 34 i Statement, 49

Closing, 36 GOLD Programs, 47, 49
Opening, 35 Graphics Displays
Reading From, 37-38, 40-41 Retrieving, 49-50

Size of, 31-33 Stormg 47-49
Updating, 44-45 . Statement, 47
Writing To, 36-37, 39-40
Data Type Protection, 53-54
Data Verification, 63 HP-IB Interface Module, 5-6
Default Mass Storage Medium, 16
Deleting Files, 56 P - Command, 14-15
Device Address Switch, 6 Imtlahzmg a Disc, 14-15

Device Type, 11 Installation, 5-6
Directory of Files, 20-21 Disc Drive, 5
Disc-Based Programs, 28-29 Mass Storage ROM, 5
Disc Copying, 56 ROM Drawer, 5

77

78 Index

Interface Module Errors, 64
Interface Select Code, 5-6
Interleave Factor, 15

| P
Labels, Volume, 12-13
Length of Files, 20-21, 31-33
Statement 25
i Statement, 28
Loadmg Binary Programs, 28
Loading Programs From Mass Storage, 25-26
Logical Records, 31-32

M __

Maintenan

7

+ Statement, 16
Mass Storage Unit Spec1f1er 11-12
Memory Requirements of ROM, 9

Msus, 11-12

N

Names of Files, 19 20
Files, 21, 56, 57
Creatmg, 56
Removing, 57
NULL File Type, 21
Numbering of Disc Physical Records, 15
Numbers, Disc Drive, 7

O _
Op B {1 Statement, 64
Openmg Data Files, 35

Pi,

- Statement, 57
Packmg the Disc, 57
Physical Records, 31-32
Pointers, 36-37, 38, 39, 40
Preservmg Variables During Chaining, 26
r 7§ Statements, 37, 39
Random 39
Serial, 37
Printing to Data Files, 36, 39
Randomly, 39
Serially, 36
Processing Errors, 63-64
Program Chaining, 26-28
Program Loading, 25-26
Program Retrieval, 25-26
Program Storing, 23-25
Program Translation, 28-29
Protectlng the Disc Against Writing, 60
- - Statement, 56
Purge Code, 56
Purging Files, 56-57
Purging and File Security, 58

R

Random Access, 39-41
Printing, 39-40
Reading, 40-41
Statements, 38, 40
Random, 40
Serial, 38
Reading Data Files, 37-38, 40-41
Random, 40-41
Serial, 37-38
Records, 31-34
Length, 33, 34

Logical, 31-32

Physical, 31-32
Recs Entry in File Directory, 21
_ Statement, 56
Renamlng Files, 56
Removmg File Security, 59
R NULL Files, 57
E - Statement, 56
Renammg Files, 56
Repair Service, 75
Retrieving Binary Programs, 28
Retrieving Data

Randomly, 40-41

Serially, 37-38
R trlevm Programs, 25-26
i i Tape Command, 67
ROM Issued Errors, 63-64

S

. Statement, 57
Securlty, 57-60

Against Copying, 55

Code, 57, 59

Removing, 59

Types of Security, 58
Select Code of Interface, 5-6
Serial Access, 36-38

Printing, 36-37

Reading, 37-38
Serial Number of Devices, 75
Service, 73-74
Shipping, 75
Specifier, File, 19-20 g
SPEEDS Program, 24 w
String Headers, 37
Storage Requirements of Data, 33
Command 23

. i Statement, 28
Stormg Arrays, 41-43
Storing Binary Programs, 28
Storing Data, 36-37, 39-40
Storing Graphics, 47-49
Storing Programs, 23-25
Syntax Guidelines of Manual, 9
Syntax Summary, 69-70

T ~
Tape-Based Programs, 28-29
Tape Cartridge Conditioning, 67
Tape Commands, 67
Tape Copying, 55
Tape Write Protection, 60
Transferrmg Files, 54-55
- Command, 29

lating Programs, 28

7% Function, 53
Type of Data, 53-54
Types of Files, 21

U__
Unit Conversion Program, 24
Statement, 59
Updating Data Files, 44-45

V__ i)
Verlflcat' n of Data 63 w 4

: = Statement, 13
Volume Labels 12-13

Index 79

w S
Warranty, 74
Write-Protecting Discs and Tapes, 60
Writing to Data Files, 36, 39
Randomly, 39
Serially, 36

Error Messages

The HP-83/85 Mass Storage ROM makes available a number of additional error messages. Errors 60
through 75 are available on the HP-85 with or without the Mass Storage ROM. All of these errors are new,

however, for the HP-83.

Error Number

I Error Condition ~
The mass storage medium is write-protected.

HP-83: Not used.
HP-85: Attempting to store more than 42 files on a tape.

HP-83: Not used.
HP-85: Cartridge is out when attempting a tape
operation.

Duplicate file name.
Attempting to access an empty program file.

HP-83: Not used.
HP-85: Tape run-off or tape is full.

Attempting to
warning is issued for attempting to close a closedfile.) w

Name does not exist, or name not in quotes.

F|Ie type mismatch:
Attempting to treat program file as data file, or vice
versa.
Attempting to treat binary program as BASIC program
or vice versa.
Attempting to treat data as binary program, or vice
versa.

Attempting to access beyond existing number of bytes in
logical record, using random file access.

System cannot read mass storage medium.
End-of-file.
Record:

Attempting to access a record that doesn't exist.

Attempting to ¥ i # at the end of file.
Lost in record— close flle to release the buffer.

HP-83: Not used.
HP-85: Bad tape cartridge, or tape not initialized.

HP-83: Attempting to use non-existent tape drive.
HP-85: Tape is stalled.

HP-83: Not used.
HP-85: Not an HP-85 file; cannot read.

The |/0 card failed self test and requires service.
An invalid | /O operation has been attempted. “}
The Mass Storage ROM failed self-test. :

80

The command or statement is valid for disc only.
The file directory on the storage medium is full.
The specified volume label wasn't found.

The specified mass storage unit specifier is invalid.
A read verify error was encountered.

The command cannot be executed because the mass
storage medium is full.

The storage medium is damaged.

The storage medium is not initialized, the drive latch is
open, or the drive number specified is not present.

The interface select code or device address specified is
not present, or system hardware has failed.

A crdianc

.

1000 N.E. Circle Blvd., Corvallis, OR 97330

00085-90447 Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

