
HEWLETT-PACKARD

Mass Storage ROM Manual
HP-83/85

EQUIPMEN1'-.

CHEMICALS TEXTILES

\

r

0.0 0.0 1.1831

Printed in U.S.A.

r"'I!.;;1Ii HEWLETT
~~ PACKARD

HP-83/85
Mass Storage ROM Manual

November 1980

00085-90447

© Hewlett-Packard Company 1980

Contents

Section 1: Getting Started
Introduct ion
Installat ion of the Mass Storage ROM
Installat ion of the HP-IB Interface and Disc Dr ive

The Hp·IB Select Code
The Device Address Switch
Disc Drive Numbers
System Summary

Memory Requirements of the Mass Storage ROM
Syntax Guidelines

Section 2: Accessing Your Mass Storage System
The Mass Storage Unit Specifier •.
Volume Labels •.
Specifying Parameters Using Expressions • .
In it ial izing a Mass Storage Disc
Establishing a Default M ass Storage Medium

Section 3: Accessing Files
File Speci f iers• ••• •• • • ..• • •. • .
The Fi le Directory•
File I ypes

Section 4: Storing and Retrieving Programs
Storing a Program
Loading a Program fr om Mass Storage
Chaini~P~~ms
Storing and Retr ieving Binary Program s
Transla t ing Tape-Based Program s to Disc- Based Programs

Section 5: Storing and Retrieving Data .
Fi le Records • .
Storage Requirements ..
Creat ing Data Files
Opening a Data File
Closing a Data File
Seria l Access

Serial Printing
Reading Files Serially

Random Access
Random Printing
Reading Files Randomly.

Storing and Retr iev ing Arrays .. .
Updating Data Files

Section 6: Storing and Retrieving Graphics
Storing a Graphics Display
Retrieving a Graphics Display..•...

Section 7: Other File Manipulations .
Determining Data Types- The T "" I:' Funct ion
Copying Files
Renaming Files
Purging Files . •• .. • .
Packing Files..
File Security

Secur ing Files
Removing File Security

Disc W r ite Protection

Section 8: Data Verification and Error Processing
Verificat ion of Data
Error Processing

ROM -Issued Errors •
Interface Module Er rors ... • •• •.•••.. • • •. . • •..• .. . • • •.••

2

.. ... 5
5

......... 5
5
5
6

.. 7
7
9
9

1 1
1 1
12
14
14
16

19
19
20
21

23
23
25
26
28
28

31
31
33
34
35
36
36
36
37
39
39
40
41
44

47
47
49

53
53
54
56
56
57
57
57
59
60

63
63
63
63
64

f~

Section 1

Getting Started

Introduction

The HP-83/ 85 Mass Storage ROM allows you to interface your HP-83 or HP-85 computer with the HP 9895

and HP 82900-Series Flexible Disc Drives. By adding over 30 BASIC statements and commands, the

ROM enables you to access your mass storage system for program and data storage and retrieval. This

manual explains the proper use of each of these additional capabilities generated by the ROM.

Coverage in this manual assumes you are familiar with the operation and programming of your Hp·83 or

Hp·85 and that you have your computer's owner's manual available for reference. Sample programs in

this manual assume that you have some knowledge of the statements, commands, and functions

discussed in the owner's manual.

If your computer includes its own internal tape unit (the HP·85), then you are probably familiar with some

of the material discussed here. You may find portions of this manual overlap coverage in the section of

your owner's manual that deals with the tape unit and that you can skim through the material you

already know. However, you should keep in mind that the presence of the ROM changes the way in which

you access your internal tape unit. These changes are discussed in section 3 of this manual.

Installation of the Mass Storage ROM

The ROM must be properly installed in one of the six slots in the HP 82936A ROM Drawer. The ROM

Drawer is then plugged into one of the module ports on your HP-83/ 85. Please refer to the HP 82936A

ROM Drawer Instruction Sheet or to the portion of your owner's manual dealing with the ROM Drawer

for complete instructions. You should never have more than one Mass Storage ROM installed in the ROM

Drawer.

Installation of the HP-IB Interface and Disc Drive

Your mass storage device must be connected to your HP-83/ 85 by the HP 82937 A HP-IB interface. Rerer

to the instructions with your interface and mass storage device for complete installation instructions.

The HP-I B Select Code

Each interface attached to your HP·83/ 85 must be identified by its own unique interface select code. The

interface select code allows you to address an individual interface to which a particular device is attached.

5

6 Section 1: Getting Started

The select code on th e HP-IB interface h as been factory preset to 7. The serial, BCD, and GPIO interfaces

a re preset to the other numbers. If you h ave more than one HP-IB interface connected to your personal

computer, you must make sure there is no duplication of select codes among the attached interfaces. Refer

to the HP-IB Peripheral Installation Instructions or to the Hewlett-Packard 82937A HP-IB Installation

and Theory of Operation Man ual, if necessary, for directions 0 11 changing the interface select code.

Samples in this m an ua l assume an interface select code 7 for the HP-IB interface to which your mass

storage device is attached.

Device Address Switch

Since each HP-IB interface can accept up to eight mass storage master units, each master un it on the

interface must have a unique device address. This device address is then used to access a particular mass

storage device. The device address is set us ing the device a ddress switch located on each master unit.

Each master unit has a factory preset device address (refer to the operator's manua l for your unit). Since

each device on a pa rticular interface must h ave a different device address, it may be necessary to reset the

device address of a unit before configuring it to the computer. The following table lists switch pos itions for

changing a unit's device address. (Refer to the operator's manual for your unit for further instructions.)

Switch V alue

1 2 3

on on on 0

on on off ,
on off on 2

on off off 3

off on on 4

off on off 5

off off on 6

off off off 7

The examples in this manual assume you ha ve an HP 82901M Flexible Disc Drive, which is a " master"

unit with two drives. The device address for this unit is preset to 0, and the examples in th is manual

assume the switch h as remained set to this number.

If your system contains an add-on unit a ttached to a master unit, the add-on un it has the same device

address as the master unit.

Section'· Getting Started 7

Disc Drive Numbers

The disc drive numbers identify individual drives at a particular device address. These drives include

both the master unit and the add-on, if present. A maximum of four drives can be connected at anyone

address (one dual master unit and one dual arlrl-on unit). Disc drive numbers range from 0 through 3.

The HP 82900-8eries Flexible Disc Drives have the following preset drive numbers. The drive numbers

appear on the fron t panel of each unit.

HP 82902M Flexible Disc Drive (single master) DRIVE 0

HP 829028 Flexible Disc Drive (single add-on) DRIVE 2

HP 82901 M Flexible Disc Drive (dual master) DRIVE 0, DRIVE 1

HP 829018 Flexible Disc Drive (dual add-on) DRIVE 2, DRIVE 3

The HP 9895A Flexible Disc Drives h ave the following preset drive numbers.

HP 9895A Option 010 (single master) DRIVE 0

HP 9895A Option 011 (single add-on) DRIVE 2

HP 9895A (dual master) DRIVE 0, DRIVE 1

HP 9895A Option 012 (dual add-on) DRIVE 2, DRIVE 3

For information about drive numbers of other Hewlett-Packard mass storage devices, refer to the

instructions for those devices.

System Summary

Figure 1 on page 8 summarizes the configurations of a mass storage system. Keep in mind that anyone

HP-IB interface may have up to eight master units attached, and that more than one interface may be

connected to your computer.

8 Section 1: Getting Started

o o

HP-IB interface module ___
(up to three) .

Identified by Select
Code (3 through 10).

Single
m aster

o

Dual
master

unit

Figure 1. System su mmary.

Disc drive interconnect cable

/

o

Dual add-on
un it

r

Section 1: Getting Started 9

Memory Requirements of the Mass Storage ROM

All ROMs utilize a certain amount of computer memory that was previously available working space. The

Mass Storage ROM consumes 150 bytes of memory. You may find that a large program written on your

HP-83/ 85 without the ROM in place may be too large to be entered into memory when one or more ROMs

are installed. If ,::- - r'1 I::: r'l (J I.) F occurs upon attempting to load a large program, you may

add a 16K memory module or remove the ROM before entering the program from the keyboard or internal

tape drive, if present.

Syntax Guidelines

The following conventions are used in the Mass Storage ROM manual for syntax descriptions of

statements and commands.

II 0 T r'1 A T F.: I >:: Items shown in dot matrix are typed in exactly as shown, except that lower case

letters may be substituted for upper case letters.

italics

[1

stacked
items

Items shown in italics are numeric constants, numeric variables, numeric

expressions and string expressions that must be included in the statement.

Brackets are used to enclose optional items.

When items are placed one above the other, one and only one must be chosen.

Section 2

Accessing Your Mass Storage System

Your mass storage system will greatly expand the capabilities of your HP·83/ 85. Among the operations

available to you are:

• Storing programs for future use.

• Creating and accessing data fi les tailored to your particular computing needs.

• Storing and retr ieving graphics displays.

• Copying files from one mass storage medium to another.

• Running programs whose memory needs exceed available space in your personal computer by

storing individual program segments in mass storage and recall ing them into computer memory

one at a time.

Section 2 covers how to access any particular drive on any mass storage unit in your system. Even if you

are familiar with other mass storage systems, you should review this information to familiarize yourself

with the syntax of HP·83/ 85 Mass Storage ROM statements. Instructions on h ow to access particular

fi les on a disc will be covered in section 3. Sections 4 through 6 discuss accessing stored programs, data

files, and graphics displays. A number of other file manipulations and techniques for error processing are

covered in sections 7 and 8.

Mass Storage Unit Specifier

In order to store and retrieve information with your mass storage system, you must specify the exact

location of the device on which the information is stored. The mass storage unit specifier, or msus, is a

character string that combines an interface select code, address of the master unit, and drive number to

specify the location of a particular fi le. Accessing the file itself will be covered in section 3.

The msus string has the fo llowing form:

II " device type [interface select code device address drive number] II

All msus character strings begin with a colon.

The device type identifies the type of mass storage device being accessed, either disc or tape. The symbol

:: :U specifies disc and ~ T specifies the internal tape drive, if present.

, ,

12 Section 2: Accessing Your Mass Storage System

All of the optional parameters in the msus (interface select code, device address, drive number) must be

included when specifying a flexibl e disc drive unit. The optiona l parameters are omitted when specifying

the internal tape unit on the HP-85.

The interface select code identifies the Hp·IB interface to which the mass storage unit is attached. The

interface select code is factory preset to 7, but may be reset to an integer 3 through 10. An interface select

code greater than 10 is interpreted as 10.

The device address, a n integer from 0 through 7, matches the number set on the device address switch on

the mass storage unit.

The drive number, an integer from 0 through 3, specifies the drive on the master or add·on unit you wish

to a ccess.

The msus of the dual disc drive units shown in figure 1, page 8, are listed below.

:; .ii"" ell::) II

disc
select code 7
device address 0
DriveO

I; :: :U·?C!:I. ;1

disc
select code 7
device address 0
Drive 1

The following msus specifies the Hp·85 internal tape unit.

ii" Til
" i

Volume labels

II: D"?'

disc
select code 7
device address 0
Drive 2

disc
select code 7
device address 0
Drive 3

When specifying an internal tape unit,
the interface select code, device
address, and drive number are not
included.

Volume labels offer you a convenient way to specify a particular mass storage medium (disc). You cannot

assign a volu me label to a tape cartridge.

A volu me label is a n ame up to six characters in length that you assign to a disc when the disc is

initialized, or by using a L .. UI·'1E I ~::; statement. The volume label is stored on the disc and remains

the disc's name until a new volume label is assigned to the disc.

Like the msus, the volume label is a string and must be enclosed in quotes. The only characters th a t you

should not use in volume labels are: " (period), , (colon), a nd " (quotes). Volume labels longer th a n six

characters are truncated to six characters. Once a volume label has been assigned to a disc, the character

string designating that volu me label always must include a period within the quotes preceding the

characters.

Section 2: Accessing Your Mass Storage System 13

The form of a volume label is:

The syntax of the I) ' .. ' " "" T ':::; statement is:

II; msus H

I.) Cl L U t'1 F: I ~::; II new volume label II
II ~ old volume label II

" i:::i" may be any character except a
period, colon, or quotation mark. Note
that the volume label character string
is preceded by a period.

Note that the new volume label is not preceded by a period. The period must be included only after the

volume label has been assigned. The statement may be executed within a program or from the keyboard.

When a volume label is used to access the medium on which information is stored, the system searches the

discs currently in the system until the disc with tha t volume label is found. If the search fails to find the

specified volume label, the Mass Storage ROM returns [: (i 1.) ::::1 ! i i i"'i [: ::: . Because of this

search operation , it takes more time to access a fil e using a volume label than by using the msus. If the

same volume label has been assigned to more than one disc in the system, the disc with the lowest msus is

accessed.

Examples:

I) Cll... 1...11"'1 E

:1. ':::; I::) I.) (J I !...I I·'! C· il? I I.) [:CIII I::::: ;; :U····c: ii

Assigns the volume label
.. " :U!? I I) [Ci " to the disc located at
msus II:: :U ·?Ci i?" .

Renames the disc formerly labeled
II" LrF: I I...IF:CI Ii to i·····U II

The examples in the remainder of this manual assume the following volume label assignments. It is a lso

assumed that disc ·U i? I I.) F: CI II is always located at msus ':::: Ci ii and that disc {i I:;:: J I.) F: 1. II is

always located a t msus .I I ? I'l l

l')Ol...Ut'IE II ~ n ·?CU i' I ~:; II DF.: I I')E;··;"

14 Section 2: Accessing Your Mass Storage System

Specifying Parameters Using Expressions

You can specify any parameter using expressions. When a parameter is a string, you can specify that

parameter using string expressions. When a parameter is a number, you can specify that parameter using

numeric expressions. In most cases, if the parameter is an integer, a non-integer value supplied by a

numeric expression is rounded to the nearest integer. However, attempts to use an expression evaluating

to a non-integer as part of a msus will generate

Here are some examples of how string expressions can be used to create volume labels and msus values.

Refer to your computer owner's manual for additional information about string expressions.

., !! :U i< T ! i c·

I:::' .:~: !! ;; :u·?
i.1

Initializing a Mass Storage Disc

Assigns the volume label
to the disc at msus

. Note that the period in
the new name is omitted in the

statement.

These statements accomplish the
same task as statements 50 and 60,
above.

Each flexible disc that you use in your system must be initialized at least once. Initializing establishes a

volume label, sets up a file directory for the disc, and clears and tests the disc. The

command accomplished these things. You cannot initialize a tape cartridge with this statement.

Optional parameters in the statement can be used to:

• Rename a disc (change the volume label).

• Specify the amount of space allocated to the disc directory.

• Specify how the physical records on the disc are to be numbered.

The initialization process takes about two minutes. Any information stored on the disc is erased by the

T j:: :j j command. If you are uncertain whether or not a disc has been previously initialized,

insert the disc into DRIVE 0 and type (END LINE). The message :l :::.:

indicates that the disc has not been initialized. The !::: ' command is programmable.

The form of the command is:

msus !'

1:::: [!! new volume label " [:! !!" old volume label [directory size

[., interleave factor]]]]

In the command each listed optional parameter must be preceded by all the optional

parameters listed before it. For instance, the directory size must be preceded by both a new volume label

and a msus or old volume label.

The new volume label is the new name assigned to the flexible disc being initialized (refer to page 12 for

details on volume la bels). If the new volume label is omitted, it defaults to blanks.

The msus or old volume label is the existing label or msus of the disc being initialized. If this parameter is

omitted, the default disc specified by the !'1:4:::; :::; :::; T Ci F: 1:1 i3 E r :::; statement is used. You cannot specify

msus II : Til

The directory s ize specifies the number of records to be a llocated on the disc for the file directory. Each

record holds directory information for eight files. The defa ult value is 14 records (or 14 X 8 = 112 files).

The interleave factor specifies how physical records on the disc are to be numbered. Any integer from 1

through 16 may be specified for the HP 82900-Series F lexible Disc Drives, causing sequential records on

the disc to be numbered consecutively, by every other record, every third record, etc. The default value for

the interlea ve factor is 5.

The ability to renumber records on a disc by specifying an interleave factor a llows you to control the

effi ciency of your disc drives and to minimize the time required to access mass storage files.

The interleave factor affects how many revolutions of the disc are necessary to transfer information to

and from mass storage. Because it ta kes a finite a mount of time to perform accessing operations, and

because the disc is spinning rapidly, it is possible that a full revolution might be required to access

successive records on the disc. By placing a physical separation between records, the appropriate

interleave factor can minimize the number of "wasted" revolutions.

The performan ce of your mass storage system during a particular application can be improved by

adapting the interleave factor to the structure of your dat a. Since there is no easy way to compute the best

interleave factor for a particular data configuration, the simplist way to determine the most efficient

interleave factor is by "trial a nd error."

One method of testing interleave factors involves copying your program and data from a "master" disc to

a "test" disc that has been initialized to a different interleave factor. Then , time the execution of the

progra m, using the computer's internal timer. You may initialize th e "test" disc repeatedly using a

different interleave factor each time, C Ci F '.' the same data onto the disc (remember, the data was lost

when the disc was reinitia lized), a nd re-execute th e program to compare execution times.

Below are severa l examples of the proper form o£lhe J I I J '1

l~~i Ir··IITIF!LIZE !!DF.:II')Elll <; ;; ~ D?Olll

1U H·IITIALI2T HDF:II)[H".;", DF:II)[j",
~! 1 5 , ;2

command.

, 6 Section 2: Accessing Your Mass Storage System

Establishing a Default Mass Storage Medium

A default mass storage medium (disc) is established by the '" ,:::::: '::'

has the form:

;; " volume label ;;
;; ~ msus ;'

statement, which

Once a default device is set up, the system automatically uses that device when the volume label or msus

is not specified, When no default device has been established, the system defaults to the disc with the

lowest address number. If no device is present, or if the disc drive is turned off, the system defaults to an

internal tape unit (i' . . "), if present.

Examples:

", ._.' . . T" r< i ; ; ; ... L··; ;; The default is set to the medium with

"

Section 3

Accessing Files

Data and programs are stored on a mass storage medium, such as disc or tape, in files. By assigning each

file a name, you can access previously stored information by using the appropriate BASIC statement to

call up that file .

If your computer has an internal tape unit, you may a lready have some experience in storing and

retrieving files. However, the Mass Storage ROM requires that a different form of file name be used for

storage on both disc and tape. Attempts to store information on your internal tape drive using file name

conventions you learned in the section of your computer owner's manual dealing with tapes could result

in the information instead being recorded onto a default mass storage medium.

File Specifiers

The location of a file in your mass storage system is described by a file specifier. The file specifier consists

of two parts: a one- to ten- (six for tape) character file name, and a volume label or msus. The volum e label

or msus identifies the particular disc drive (or tape) on which the file is located. The file name

distinguishes anyone file from others stored on the same disc (or tape).

The proper form of a file specifier is:

;; file name [• volume label] Ii

~ msus

File specifiers are always enclosed in quotes. Note that the volume label or msus is shown as being

optional. This is because the system automatically uses the default device established by the

configuration of the system, or specified by a 1"'1 f:: ~:::, f--I i? f:j I '::: statement, when the optiona l

parameter is omitted. Consequently, the volume label or msus must be included if the file is located

elsewhere than the default mass storage medium.

Examples:

;;C!UH~.E" 1: II')EU "

19

The file named QUAKE is on the
medium having volume label
, "Iii ! '.1[1'

The file named QUAKE is on the
device having msus '[I? !;::i Ci II .

The file named QUAKE is on the
HP·85 internal tape unit.

20 Section 3: AcceSSing Files

Here are several examples of file specifiers used with the default device established first. Remember that

the default device you establish remains in effect until you ch a nge it again or reset th e computer .

",'rell"I':

Ii" T! ' . ,

Establishes a mass storage
default medium,
Creates a data file named
PRESSURES on the disc having msus
II ; ri~:' ell!

HP-85 tape unit is th e default device,
The program BIKE is stored on tape.

The only characters that should not be used in the file name portion of a fi le specifier are '" (period),

(colon) and ;; (quotes). The period is reserved as the volume label prefix, the colon is the msus prefix, and

the quotes are used to delimit stri ngs. Null file names are not a llowed; h owever, blanks are a llowed. File

names longer than 10 characters (6 for tape) will be t runcated to 10 characters (6 for tape),

The File Directory

Each mass storage medium (a disc or tape) automatically maintains a catalog, or file directory. of th e fi les

stored on it. The c: AT com mand outputs the contents of the file directory to the com puter display.

The proper form of the C: ::::i T" comm a nd is:

C A "1"[II ~ volume label II]

II ~ msus II

If you h ave previously initialized a disc as :U i : I i ... F: i: ;; , you can now obtain a file directory of that disc

by typi ng in fn:, i"T" II" Ii ::;:' EJJ II (END LINE J.

II " TiF:: I I.)[U I!

:: :U i? I I,) [: I'::'

Once you have stored programs and created data files on a mass storage medium, the file directory will

look simila r to the one shown below.

,I ,:I" IF']I," '"
L .. [R'='T", U

ERFlj [, i':"

F'F'CCi
t··iUL..L..

E:i i 'i' ,." .. :::; .
,::L::::

.-.;:~ .-.
i-.

")
~-.

I

Section 3: Accessing Files 21

The file directory contains the following information:

This is the name assigned to the fi le as part of the file specifier.

."1""
I There are five types of files: D 1:::I·r

and l :*::" :':': (extended),

Ci Ci (program), i~:; I::' i:::i 1"'1 (bin ary program), i·! i...i I ! •

r::: The number listed is the number of bytes per file record.

!~: ,::0 This is the number of records in the file.

If your computer contains an internal tape unit. typing in C I:: :: T· I I (END LINE) will output the tape

directory. The tape directory contains a ll the information in a disc directory, plus one additional column ,

F T 1.... t~ , which lists th e file number of each file. (Refer to your HP-85 owner's manual for more deta ils on

file numbers.)

You may terminate a catalog listing at any time by pressing any key.

File Types

As mentioned in the discussion of file directories, five types of fil es may be used with a mass storage

system: progra m. data. extended, binary program, and null. Each fi le type is created and retrieved by

different procedures. summarized below. Each file type is discussed at greater length elsewhere in this

manual.

File Type

F':;:' :':: C: (program)

(extended)

E: r=. Ci 1"'1 (binary program)

Description

These files contain programs and are created with .~:: T·l::) I::::L: and retrieved
into computer memory using !.... (--: D. Program files are covered in section 4 .

Data files are crea ted usi ng C F: E:: r"i T E and F' F: I r··! T H and retrieved with
(:·I:U :1:1:. Data files are covered in section 5.

Extended fil es are used to store graphics displays. Ci ~:: :;·r CI i? I:::: is the on ly
statement in the Mass Storage ROM th at creates extended files. The
:.~ ::::; T (J F;: F extended files are covered in sect ion 6.

These files are binary programs and are created using ~:::; T (J F: E~: I t·~ and
retrieved using i c':U F: I t·· i. Binary program files are covered in section 4.

Null files are empty files created when individual files are purged. They are
removed from the directory with i::' i::i C K. Null files are covered in section 7.

Section 4

Storing and Retrieving Programs

Information in this section covers how to store and retrieve programs using a mass storage system. Use of

chaining to expand the capability of the computer in running large programs is also covered.

Storing a Program

The ::::;'r Ci 1< L: command is used to store the program currently in computer memory on a mass storage

medium (tape or disc). U I:::: j:: attaches a specified n a me to the program, creates a program file with that

name, and then stores the program in the program file using the computer's unique language. The stored

program rema ins in computer memory until scratched, or until another program is loaded.

,,::: T : ii,' is not programmable. The command may be typed in, or you may use the typing aid (STORE J.

The proper form of the ::::; T' (J I:;:: E command is:

::::: T C! F:' C' II file specifier II

The proper form for fi le specifiers is covered in section 3.

Examples:

I i;'. I····
' ... 'i .1 111~!UHi-:::E:: " :UI:::: I i')E ri ,. N ames the progra m in computer

memory QUAKE, a nd stores the
program in a progra m file located on
the mass storage medium with volume
label II ,,:U : .1::: :: 1:::: 1

'

Remember that you can use either a volume label or msus in a file specifier.

Has the same effect as the previous
example if ;; . IlF.: 1 1.)[U;; is

You may omit the volume label or msus portion of th e file specifier if the program is to be stored onto the

default mass storage medium .

r'! I'L:": '::f CI ", H ,:, E, I ,:,:
~::;TCf~:E II QU:'-"i!<E!!

F II')EU II

23

Assigns the defa ult mass storage
device, (Assume that the volume label
was previously assigned.)

24 Section 4: Storing and Retrieving Programs

If you do not have much experience with mass storage systems, you might want to practice storing (and

later in this section, retrieving) a program. The following program converts speeds input in one of four

units to any of the other four units. The four units are:

F.·' .c.
1'='"
1':::(, r I

1'1

feet per second
miles per hour
kilometers per hour
meters per second

If you intend to store this program, you must first make sure you have a disc which has been initialized. If

you have not yet initialized a disc, do so now in Drive 0 of your unit, following instructions on page 14.

Now, obtain a file directory of the disc by typing C: AT (END LI NE J.

C:HT II" DF: I l')E e! 'i

~;.,! ;: ', j" \""\ W f~ ;; II F I !.) t:: 21
I" ,j .:::: : ;"1 c~ 1:::1 j""

Type in the program as shown.

:i. :::': I) J '
U i·-.i T T' ~ :; I'

I f'~FUT :::; ~ ;_:$
.-', .- . :U I ::::; p II c: I~ [f-F,.iE:-: F: ::; T CI t·,! [i ki T T ::::; H ;

1
1 :2U
1"" C:
1 ., c;
1. ':" ,::,
1 t; !~~
"I. ?Ci
1 ;:::U

I ,,·1,:' :...i l.i i ":
I:; 1 = '=:
I F U~ =" F' :::;" THD··I :I:!. ,e,
I: F Ili'ii::: H I! ·'- i···i F i"': ::. :::::C;
I F' U ::~: :::: II ~:. i·'i."" H II j-- 1···1 E 1',-1 J. ::::i CI
:=;1<,: :ll3.2:,:1

! f' I . ..! 1. :; ," .. ' ':::. "
:",; 'I ' . '::,; 1. :-to , : ... ::e:: :l C:
J F U I ,::=." "WH"

::::; 1 :::::':::; :!.l i

I I i.i 1 ::i: 1'1 ." '
:e;:l =':; Il. 277:=:
I F U:~::=~;; 1'1 .. ··· :::; 11

Ci C 'r !""' j ~ : :·i

p t~: I i",i'r

t'i ."" ::::; T 0 F :~~,
Till:, 1 1 : .. :1'

I' .' '::: T CI l'iI::' ,,,I
THEr'~ 1. ::::C!

l'IFt···i TO ;"';"~"'H

Till:: ::
1<1"'1 H TU ;'.1 .. ':::;

Ti-I D" 1 :=: '"

1 :j~~1 I i'lPC3E ED. 3D:1 >:; ~ f~HiAH ~ I! _ .. " E;D • . .:::;.u

;:.:: ' i HFiF! ::::i
,: ; 1 Eli

To store the program, type (or use the typing aid):

Note that the msus is optional here,
since DRIVE 0 is the default device.

Section 4: Storing and Retrieving Programs 25

The red pilot light on Drive 0 will be on during the storing process. When the light goes off, the program

SPEEDS has been stored on disc ;; " II F: I 1 • .lF C! il . To see the updated file directory. execute [FiT from the

keyboard.

CHT
1 • .I ... ·;·i j i ";. ,\1;, ,..;., ..

f··luri
~:::; r::' I: T ; .::

The directory shows that SPEEDS has been stored in a program file three records in length. Each record

contains 256 bytes.

::::; T U F I:::: can be used to store a program in computer memory over a program that was stored previously.

For in stance, after storing SPEEDS, you may edit the program in computer memory, a nd then re-execute:

The new, edited version will be stored , replacing the first version. Because of this "overlay" capability,

you must be careful in storing a new program not to accidentally assign to it the n ame of another program

file. thereby overwriting a previously stored program that you still need.

Loading a Program From Mass Storage

Once a program has been stored on a mass storage medium, a copy can be retrieved into computer

memory with the command. Like :::;; T· Ci F E, the (.j j:::::U command is not programmable. The proper

form is:

L Ci H :U " file specifier i'

The fil e specifier must correspond to a program in mass storage. Attempting to i_ CI !::I II a non existent

program results in r···

Wh en L.. Ci Fi:U is executed, any progra m or data currently in computer memory is scratched before the new

program is loaded. Variables that were assigned in calculator (keyboard) mode are a lso scratched.

If you stored the program SPEEDS, you can now retrieve it. But first, you may want to scratch the

contents of computer memory just to prove to yourself that really works. Execute ~::. :.,:' H i i···: i···j a nd

then 1.... I to confirm that the progra m is no longer in computer memory.

Now, execute:

Anoth er way of loading the program is to assign the fi le specifier to a string variable:

r :::.: :.... Ii ,~: . ,.... r·o 1.1 el ll

26 Section 4 : Storing and Retrieving Programs

The red pilot light on Drive 0 will light up while the program is being loaded. When the light goes off,

.i: the program to confirm that it is in co mputer memory.

If you used a defined string expression such as

scratched when the program was loaded.

Chaining Programs

to load the progra m, the string definition was

The j-. : statement a llows you to load a stored program into computer memory from a running

program. When is executed in a program:

• The current BASIC program and any data in computer memory are scratched. Specified data may

be preserved between two programs by including a ... C! I"! statement in both programs. Binary

programs are not scratched when .! is executed.

• The program specified in the C i 'j r ! \i statement is immediately loaded into computer memory from

mass storage.

• The newly-loaded program is executed automatically.

Note that, unlike the , command, C:: I·,,: is programmable. The proper form for the statement is:

H file specifier i'

The ' statement is used to preserve variable definitions between programs. All variables not included

in the Ci j"i statement are scratched when the chained program is loaded.

The form of the C::J t'l statement is:

] item [, item ...]

Refer to the discussion of in your computer owner's manual for addition a l information.

"" statements in both the initial and the chained program must agree in the number and type of

variable. Particular care must be taken in preserving a rrays that the option bases of the two programs

agree.

An important function of chaining is that it enables you to execute a program too large for computer

memory by separating the program into two or more parts. While the two programs that follow are

relatively sma ll , they provide an exa mple of using C: Hi:::! I t··! and c: c: t,1. The first program computes yearly

earnings for a company from quarterly earnings over a ten year period from 1970 through 1979. The

EARNINGS program then chains to a program that draws a bar graph of the yearly earnings.

,
"1

I,

First, enter and store the program to draw the bar graph.

:I. kl i::::F E. f.
20 OPTION BASE L

3(,1 '3CL.EfiF:

:l U !
:: 1)<, - ,', lU:'+,.

C; C '·..' :::i ::.:: I :: ~; i ",'
i. 'I I

';. ' C, ::< I ::::; :!. :) ~I :!

UF: 1= 1 TO le
:'1CII.)[

i:::i[:F:

>, t ::1
,", ,
j"' : :

:"iClI')E ';-' C 1 =1 _.;? = i_ ClClC!

'i-- :I.
C! !:J I:::!

I Ci C'
I I "
12U
13U
J .:.1-:-'
:I. ~:::; Ci
ICU

i::i F: E L ; i F !=! i? r-·! I r-·I (3 ::~; _ ... T I .. i ::::; i i i< T ,:::' Ii

I, 1 I:;;:
~R N=:l. 0008 0 800 00 ST ep 2

170 MOUF C1J-l N-30G0
:I. :"" f::i [::: L. i.) H L.. :~:: :- t·. t .,' 1. CI C'

FCF.: 1::::1 T'C! ! ;"

r'1 Ci I.) F '.:' f: T J 'I !?
,: .. ,,: .. :?f:ri",! ::! :1 I J "I ":' F: I'II ,'

24C Et··ID

Now, store the program BARGRAPH into mass storage.

Section 4: Storing and Retrieving Programs 27

Preserves specified variables.

Establish es sca ling factor,
draws axes.

} Labels X-axis.

Labels Y·axis.

Draws bar graph.

Next, execute :::; cp r' C H, and enter the progra m for computing the yearly earnings:

10 OPTION BASE 1
2U OM IN - GEF: (1 0J
1 Ci
::::: CI F' I :~: :L r U J. t:::

,:lCi / C I)::: j~:;:?"T- ';

elf! II I ':'F' "':I!TI:I': l"Jl'ikT!:'; L.. \' [I :.0[1 I t·1
(~i:::; ~:'C il?'!~: '/C:i. J
CO NF'Ul 1,IJ ,I: (2, 1 ,1:(3 l , 1:
C .:1- 'l I ~!
';::'[1 E~ C~5~1 I ··!:::::EC:I., T : -+-F::C;?~! J+EC::::; _ ..1+
[!,; "!

:3 u H f~l I i···1 ;; E: I :::II~:: (:i F.: i:::: F H " Ii F .t. i.) i : 011

1 [lei Ft··11I

Preserves specified variables.

Computes yearly earnings

Loads BARGRAPH.

28 Section 4: Stonng and Retrieving Programs

If you'd like to run the set of programs more than once, be certain to store EARNINGS now since it will be

scratched when statement 90 is executed.

Now, execute EARNINGS. You will be asked to enter quarterly earnings for years 1970 to 1979. Enter any

values you like, but keep in mind that the Y-axis for the bar graph runs from $0 to $100,000.

Wh en you push (END LINE) after the last data entry, you will hear a beep as statement 10 in BARGRAPH

is executed, a nd the bar graph will be drawn on the CRT. When program execution is completed, you may

list the current program in memory if you'd like.

Storing and Retrieving Binary Programs

Some of the programs in the application pacs a re binary programs. They function like a ROM , except t hat

they are loaded from mass storage. The statement that accomplishes loading of binary programs is

L. 0 H It E: I !"'. The statement has the form:

. (J j: ::U [: I I·· ·! loads a binary program without altering existing data or programs in computer memory.

Only one binary program can be in memory at a time.

If a binary routine is to be added to a BASIC program, you must first C I:: :i the main program and then

add th e binary program using

when the main program is loaded.

I j.-.I. If you retrieve the binary program first , it will be scratched

In order to edit a program that uses a binary routine, the binary program must be present in computer

memory.

Binary programs are stored using the statement ::::; T Ci i? E E: T i···i , which has the form:

Translating Tape-Based Programs to Disc-Based Programs

Any programs written without the Mass Storage ROM in place t hat access the HP-85 internal tape unit

are specific to the internal tape unit (tape-based) and cannot, as written, utilize a disc drive system. When

the Mass Storage ROM is installed , those programs will contin ue to execute as they did before, regardless

of the nature of the default mass storage medium.

For instance, suppose you have a program stored on tape that was written without the Mass Storage

ROM insta lled. The program reads a data fil e, performs a number of calculations, creates a new data file ,

and then prints results of the calculations onto the new file. When this program is executed with the Mass

Storage ROM in place, the program will continue to read, create, and write tape-based data files, even if

the default mass storage medium is a disc.

,

Section 4~ Storing and Retrieving Programs 29

Programs written without the Mass Storage ROM installed must be tra nslated before they can utilize a

disc system. After a program loaded from the tape system is translated, the program is compatible with

the requirements of the Mass Storage ROM.

A tape-based program is translated by loading the program into computer memory a nd then executing

the i'-·I ~:::; L.I:::I ''I'' C: command, which has the form:

A beep s ignifies that the translation is completed.

If the tape-based progra m described previously was tra nsl ated and then executed , the program would

read the appropriate data file from the default mass storage device, perform the co mputations, a nd s tore

the results in a data fil e created on the defa ult mass s tora ge devi ce. If the data fil e being read had been

stored ini t ia ll y on tape. it would be necesS::I ry t.o c: CI F' \' it onto the default mass s torage device before

running the program.

The transl ated program can be stored onto a disc simply by executing

specifier.

with an appropriate file

Section 5

Storing and Retrieving Data

The discussion of file types in section 3 pointed out that mass storage enables you to create and use five

different types of files, one of which is the data file. This section covers the operations necessary to store,

retrieve, an d update data using mass storage. The fi ve operations discussed in this section, a ll of which

are essential in storing a nd retrieving data, are:

• Creating data files.

• Opening a previously created data fil e.

• Storing data.

• Retrieving data.

• Closing the data file.

There are two methods for accessing data files: serial access a nd random access. Serial access stores data

sequentially, and is useful when the complete da ta list is to be stored and retrieved as a unit. Random

access allows you to access portions of the data. Both types of files are created, opened, and closed in the

same way. However, data is stored and retrieved somewhat differently. so storing and retrieving will be

discussed separately for serial and random access.

Files created in mass storage consist of one or more records. The s ize of the records may vary to

accommodate the storage requirements of the data. Before covering how to create data files of different

sizes, we will first discuss file structure and s torage requi rements.

File Records

When a data file is created in mass s torage, the s ize of t he file is set by specifyin g t he number of records in

the fi le and the length of the records. A record is the smallest addressable location on a mass storage

medium such as a disc or tape. Record length is specified in bytes, and all records in a particular file are

the same length .

Two types of records are available: physical and logicaL The two types of records make it possible to

match the structure of data to the file in which it is stored. thus using storage space most efficiently.

31

32 Section 5: Storrng and Retrieving Data

Physical Records - Physical records are always 256 bytes in length and are set up automatically when

a program file or data file is created. All files begin at a new physical record. The 256 byte physical record

is the smallest addressable storage unit unless a different size addressable unit, called a logical record, is

established.

Logical records - Logical records are specified for a file when an addressable unit of length other than

256 bytes is desired. The file will still begin at the start of a physical record; within the file, however, the

dividers between physical records are ignored and a logical record may straddle two or more physical

records. When a data file is created without specifying logical records, the automatically-created physical

records become logical records.

The following diagrams illustrate two files consisting of logical records. The first file contains five

records, each 100 bytes long. Note that the file utilizes two physical records and that there are 12 bytes of

unusable space, since any new file must begin at a new physical record. The divider between the two

physical records is ignored.

LOGICAL RECORDS

• • • • •
PHYSICAL RECORDS

The next diagram illustrates a file consisting of two 500-byte logical records. The divisions between

physical records within the logical records are ignored; however, 24 bytes of space are rendered unusable,

since any new file must start at a new physical record.

LOGICAL RECORDS

: I
• • • •

PHYSICAL RECORDS

Section 5: Storing and Retrieving Data 33

Storage Requirements

File a nd record sizes shou ld be specified with the space requirements of the data in mind. The followi n g

chart describes the amount of space necessary to store numeric a nd stri ng data.

Type Numbers Strings

Single variab le 8 bytes per number 1 byte per character + 3 bytes
per string + 3 bytes ea ch time the
string crosses into a new logica l
record.

Array var iable 8 bytes X the Not available.
dimensioned number of
element s

You can use these space requirements to set up files to match your data. For in s tance, suppose you wou ld

like to create a fil e that will store th e last a nd first n a mes, socia l security number, an d salary of a dozen

employees . You would like each employee's information in a separate record.

Item Type of data bytes

last name 12-character string 3 + 12 = 15

fir st name 1 O-character string 3 + 10 = 13

social sec ur ity # 11 -character str ing 3 + 11 = 14

sa lary numeric 8
~~ . 50

A fi le can then be created consisting of 12, 50-byte records. When logical records a re created, any

otherwise wasted space (i n t his case, 168 bytes) is also a llocated into logical records, if possible. The 168

bytes form an addition a l 3 records added to the fi le automatically, with 18 unusable bytes.

12 Records 3 Records

..-"--

I I , ,
I

,
I , , I I I : I

,
I I I I I

,
I , I I , I I

, I , , I
,

I I I I I I I I I
I I

I I I I I I
I I I I I I I I I I I
I I , I

I I I I I I I I I
I

I
I ! ! ! I ! I I I I I

,
I , , I ,

34 Section 5: Storing and Retrieving Data

Creating Data Files

The I::rr 1.:: statement a llocates space on a mass storage medium for the data file. The statement has

the form:

C: i? I:::: i:::i T' F' II file specifier II :1 number of records [:; record length]

The number of records specifies how many records the file will contain , and must be an integer from 1

through 32,767. The recond length is the number of bytes in each record, a nd must be a n integer from 4

through 32,767. The default value for the record length is 256 bytes, the size of a physical record. The total

number of bytes, obtained by multiplying the number of records by the record length , must not exceed the

storage capacity of the mass storage medium.

The fo llowing statement creates a data file named EMPLOYEES for storing the identification a nd salary

information for the 12 employees, as discussed a bove.

Creates a data fi le with 12 logical
records of 50 bytes each. (Actually, 15
record s will be set up, as discussed in
Logical Records, page 32.)

Since the information for each employee is stored in its own record, it can be accessed and updated

separately from the data for other employees. If you create thi s file on ;; " II F I i.) F Cl H and then execute

C: 1'::1 T, the file will be listed.

C:H: II.DFI !') EOII
!;;;! i,:.;;; 1 \;;;\ W ~;~l ~ Ii F: I I.) E 121
1"·1 Ci i'n I:::: "l""i ' ; ',c
~=; F' !:::: I::: II ~::; F' F =i:3
EI"1F' 1 0 \'EE:::; DA TH

C: : ".""
;2 5t;

SCi

.... ,
"

15

If it was preferable to always store and retrieve the informa tion for all employees at once, a fil e

con taining one record could be set up.

JC I.::F:E::H·TF: " EI·'IF'L..U\'[E ,,:U F:II.)[~·:-"

t;CiU

.,

.l. ~ Creates a data file of one 600-byte
record .

36 Section 5: Storing and Retrieving Data

Closing a Data File

When you've completed a data transfer to or from a fil e, you should close the fil e. The

s ta tement accomplishes this , and can be executed in program or keyboard mode.

The buffer number must agree with the buffer number assigned to the file when it was opened. For

insta nce, to close EMPLOYEES previously open ed in s tatement 40, above, execute:

i··j

Wh en a buffer is closed , any data in it is tra nsferred to th e final destination (the computer or mass storage

medium). If a program error causes a h a lt while data is in the buffer enroute to mass s tora ge, a ll the da ta

in th e buffer will be printed to the file. The fil e remains open and thus does not need to be reopen ed before

progra m execution is continued.

If a d isc error causes a halt during program execution , data in a buffer enroute to mass s tora ge is lost

unless the file is closed from the keyboard. When the fil e is closed, the data will be tra ns ferred to mass

stora ge.

Serial Access

Seri a l access is used when a quantity of data is to be stored and retrieved sequenti a lly a nd upda ted as one

unit. The entire fil e itself becomes the sma llest addressable unit of storage. This is tru e even if the fil e

being accessed cons is ts of more than one logical record. In serial a ccess da ta is s tored a nd retrieved

without regard to record divisions.

Serial Printing

Da ta is s tored into a file serially using the seria l F'i:::: I i-··I-'!· :!t statement, which h as the form:

F' 1< I 11'1 ii buffer number print # list

The buffer number must have been previously assigned to a data file. The print # list itemizes the da ta you

wish to s tore, a nd may include numbers, numeric va riables, string variables, and array n a mes. Items in

the prin t # list are separated by commas . Data items a re placed into the file according to the position ofth e

fil e prin ter.

Pointe rs - When a fil e is opened, th e fil e pointer is pl ace a t the beginning of th e fil e, and a ny da ta items

seria lly printed to or read from the file will access th e beginning of the file. The pointer moves through the

fil e sequenti a lly. When an entire print # list has been recorded, the pointer rema ins a t the end of the

recorded data, a nd an end-of-file marker indicates the position of the last recorded da ta. Execution of a
subsequent ::::' ; ii: statement records the new print # list at the end of recorded da ta a nd moves the

end of fil e ma rker to the end of the newly recorded da ta . The pointer will continue to move sequentially

through the file until the file is closed or reassign ed with an 'H: statement.

~I

Section 5: Storing and Retrieving Data 37

The movement of the file pointer and end-of-file marker influ ence the way in which serial files may be

updated. If, after entering a long list of data items serially, the pointer is returned to the beginn ing of the

file using an 1:::: :i:i: statement, a new serial F' F' :i: statement will record new data items over

the old ones. Because an end-of-file marker is placed at the end of the new data items, the entire old data

list is lost.

The fo llowing sample program uses serial access to s tore ch eck register data for the PDQ Music

Company. The company opens a new file each day, an d records the company to which a check has been

written as string and the a mount of the check as numeric variable H.

:i. 0 C:F.:Ff:!TE
:' Ci H ~::; :::; I i~~ i-.;

,: ('I :U I :::'; '"
4 ,', I 1'1 F' I,i'
I~:; Ci I I::' ."".

CIO

;; !" ~CI!')~~;CHECi< :::;" LF::r 1.)[i~:i II

.,.!. :I. I" CI II I···j C! I.) : H i~:: C: 1< ::::;
i"'! i" 1:::1 1"·1 '/ I"'! I:::: i''-i 1:::

t~;CI 1:1 I ~:::;F il Hi·'iUl...It··!T UF L HLi_.:~::. II ~

70 Ir'{F'UT i:~

:::: (1 F' F: I r··! "j' ~* 1 ~: C::;: ~ :=1

:J CI Ci CI T i";
i !~J j .': r::' I:;:' !---: "T' ·i·i··' , ... ,.'

1 I'.' 1'::,

1. ~:: CI t:: r": D

Creates file of 4, 256-byte record s.
Opens file.

Prints company n ame a nd amount of
check to t he file serially.

Closes file.

When th e program is run, it prompts for company name and amount of the check until I I I···i (J i"-"i

"T' (J :U I:::! \ ' II is input in response to the company name prompt. If fil e capacity is exceeded before program

execution ends, ;.-;. " I ,: ::::: i::', t":l :~:: L an nounces an attempt to print at the

end of the file.

Note: When a string printed to a fi le seriall y crosses from one record to another, an add itiona l three

bytes are needed for the st ring " header," which identifies the portion of th e str ing con tained in the

new record .

Reading Files Serially

Data that h as been stored on to a mass storage medium must be retrieved, or read , back into computer

memory before it can be used. Reading data from a fi le transfers a copy of the data t hrough a buffer into

the computer .

38 Section 5: Storing and Retrieving Data

When data is retrieved serially, the entire file contents is accessed sequentially, ignoring any record

divisions. Data stored both serially and randomly can be retrieved serially. Serial reading is

accomplished by the serial i:;:' i:::· , ... statement, which has the form:

:!:!: buffer number :: read# list

The buffer number must match the number previously assigned to the file with an

statement. The read list need not exactly match the print # list used to store the data. However, data items

being read must agree in type (string versus numeric) with the contents of the file. Numeric data need not

agree in precision (i:;:' ::. :···i l:::: i<"Tl The number will be converted to the precision of the

read variable as long as the read precision is less than the print precision. If the read precision exceeds the

precision of the stored number, the number is read to the same precision with which it was stored. For

example, a printed number will be converted to the precision specified in a read list;

however, if you attempt to read the same ::::. precision number with ~;: : precision, the number

will actually be read with precision.

In reading serial files, the pointer moves through the file sequentially, much like with serial printing. The

pointer is moved to the beginning of the file whenever the file is opened, or if an ·i:i: statement

for that file is re-executed. Since a serial statement leaves the file pointer at the end of the last

recorded data, you must move the pointer to the beginning of the file before reading stored data.

If you used the program on page 37 to create a data file for a check register, you can use the following

program to read the file, print its contents, and sum the day's check payments.

. ::1. , , ., Ii ' .

,. ' .. ;, .. ,
.i. .i. i ;. ,

T"

::.
. L'
·i i····

.i. c.

Opens data file.

Reads company name.
i·,i :-··;;-······

Reads amount of check.

Closes the data file .

In the above program, the file pointer moves through the data file as each h' i:::: i:::!:U :i:i: statement is

executed repeatedly. If statement 40 were omitted, the i:;:' i:::· ,... ... :i:i: statement in line 50 would eventually

encounter an end-of-file marker, generating an error.

,
I.

Section 5: Stonng and Retrieving Data 39

Random Access

When you wish to print to, read from, or update a portion of a data file, random access enables you to do

so. The random J. f-.i ·T *1: a nd i~:: i : i:::i Ii :i:!: s tatements are designed to access individual records of a

data file. Remember that a record is the smallest addressable unit of mass storage and can be as small as

four bytes.

Random Print ing

The random I:::' F: 1 f·~ .. j H statement has the form:

F' P I t··1 T ~* buffer number , record number [; print # list]

The buffer number must match the buffer assigned to the fi le by an i:::i ii::: ii::: T C statement. The record

number must be less than or equal to the total number of logical records in the fi le. The print # list

contains a ll the items to be printed to the record, separated by commas.

The random ,_ .. ~c f··i i # statement operates somewhat differently from the serial F'I:::: T , .. ~; .;:j:

statement:

• Beca use random printing accesses a specified record, the record number must be part of the

statement.

• When a random F' F: I 1···1 T :i* statement is executed, the file pointer is moved automatically to the

beginning of the specified record. Thus, a ll items printed to a particular record must a ppear in one

random ,:C' ,< TI* statement.

• In random printing, the contents of the file buffer is transferred to its destination each time another

record is accessed.

• Record divisions are not ignored in random access operations. Attempts to print to a fil e when the

file pointer is at the end of the specified record results in an error.

• The file pointer may be moved to the beginning of a random record by executing a random

,:' I:::: I 1·11 Ii statement without a print # list. For example:

CO I:~\~::: ; ~:::;:I. Cr··! H 1. TO II :Uf:iTf~i. DF I I')EU II

? D F' I:::: It··! ,.. "" 1 '. ::::
Moves the pointer to the beginning of
record 3 of file DATA.

In random access, the prin t # list must not exceed the storage capacity of the logical record. E r- i"" () r ,=::.;

FiAt·Hlm'l 1'1 I.) F, or 1::,. r () I' :: c FiE:C:ClFiD indicates tha t the print # list has exceeded the

capacity of the record.

40 Section 5: Storing and Retrieving Data

The fo llowin g program creates a fil e for storing a nd retrieving a check register us ing random access.

Each of the 20 records contains the name of the company to which the check is written and the amoun t of

the check. The string !! ::.: :::.::::.::::.::!! and the numeric variable e are stored into otherwise empty records.

The progra m prints (or displays) the contents of each record as the checks are entered.

1 CI c: F: E F! TEll T, [:. f"": ,'; ;,::: i"""! F , '::;< ':::. " :[1 F.: I I.) [CI II " :?
Ci ~I J kl
, '" II',' , I I:: I··IH)
I.) F C! II

:: ,', F ::J I? I :,' 1. T ,'",
,::1·,,'[1 I ::::,!",' ;;1' , ,'H'! !'" ::,
~::; CI
t:;CI
:~ 0

11"""1 F' I"': T"
I iO c:: :", " ,.j ,~',

70 Ii I ~:;F' II i::!r'1CiUf'~T

:::(1 I r""IF'UT H
:3C1 PF: I HT IY=' I ,,,3
100 F'F:UiT '*'" I ~
110 tlD:T T

120 FOP F:=I iU

13>:' F'PIHT ~:l,F'~
140 t~t:::':T F:
1 ~::i I~::I I 1""1 H (::i F "") ':!'
1. ~~ CI fi ::~; ::::; I i:~ i-..! i:l:

1 ?" [III'

l~'::':: I,C$,A
C$,A

IHEli

::!,:" ,:,4:1:::" :lID
"~ ""

Creates a 20-record file .

Prints (displays) ch eck data.
Prints c::::~ a nd !:::I to record # 1.

Prints to all unused records.

Closes file.

The program uses a i " ,""i ~ ::." loop to increment the record number. Note that, unlike the serial access

version of this program, this program does not actua lly store i'J Ii I:::! \' II to ma rk the end

of the data. Random access would a llow you to a ttempt to retrieve data beyond that entry, since you may

move the file pointer to the beginning of any existing random record.

Reading Files Randomly

Ra ndom access reading is accomplished with the random read statement, which has the form:

F: E ri Ii H buffer number " record number [;1 read 14 list]

The differences between the random read statement and serial read statement are analogous to the

differences between the two types of F' F: I I'~ T 11 statements:

• The statement must include the record number you wish to access.

• The file pointer a utomatically moves to the beginning of the specified logical record.

• Logical record divisions are n ot ignored. An a ttempt to read past the end of a logical record

generates E r t" () r I': E Ii II II: I' ,

• The file pointer can be moved t o the beginning of the record by executing the statement without a

read # list.

\

Section 5: Storing and Retrieving Data 41

As with serial reading, the read list must agree in data type (numeric versus string) with the stored data;

however, number precision need not agree. (Refer to page 37, Reading Files Seria1ly, for further

information .)

The following program allows you to correct any of the entries to the check register DEC5CHECKS and to

add additional checks. The program asks whether there are any changes and then prompts for the record

number in which the correction is to be made. To ma ke additions, merely specify a previously unused

record and replace its current contents, II ::< ::.:: :-.' ;; and C1 , with the new data.

After accessing the file randomly for updating, the program then uses serial access to access the entire

register, sum the checks, and print the contents.

(:1 ::::: ::::: I Ci roo! :i:!::i T Cl li .L ; i:::' c: I: : :~ C: 1'''1 E ! :
:U I :::::F' ;; i:::i :···:'i· C:I···iHi·" C:F: II,.

:;;" I tH" U T ., ':"
0+ Vi IF, I:t:::= ;; :--H"I II THE~·~ 1313
"C II I :'::F' "E:r..:TE:F: F:E:C C'F: Ii # U~ E:tHP

TO E:[I-':~·· :=:i··.iCiE:U II

, 1"·1 F' 1...1 T

::~, It I ::: F­
':' u II I :,: f"

I t··1 F' i...i T
F' F: I Ii,.

r::;:' 'I E:
'il . I

:i. "';j (:iUT'U '.:::[
1 . .:;~j fi::::::::; I C ki *r.:I. 'Tt:) ;; TiEC~:5CH[C:i< =: II

1 .:+ ~~i ::: :::: C!
1S0 FOR 1=1 TO 20
:i. i::: I:::] i? E I::j Ii :!:!: '!:: C: ::;:: ~I : :~i

• 1. ,. U I:::' I:::: I r"! 'r i : ::::: I i-"! Ci ;? :? U :: I, C i"'!

tlE;;T
2(](' F'F: I HT TOTAL II" '::. , ._.'
:~~ :: ~-:-1 R ::: ::: :r. :j:'.:
:? ::::, [:::[I 1"1 i:::1 Ci ;: ;.; " ,I Ii .. ""
.) !:::, E:i ---ID

Opens data file,

Enters record to be updated.
Reads contents of record.

Enters corrections.
Prints corrections to data fil e.

Moves pointer to beginning of file.

Reads file serially .

Sums check amounts.

Closes data file.

Note that statement 130 is necessary to move the pointer to the beginning of the file. Otherwise, the serial

read would start at the last position of the pointer, the end of record I in statement 110.

Storing and Retrieving Arrays

Entire arrays can be stored and retrieved using an array addressing format with the serial or random

PRINT # and READ # statements. The proper array addressing formats for one-dimensional and two­

dimensional arrays are as follows:

one-dimensional array

two-dimensional array

array name (~I

array name C ~I J

42 SectIOn 5: Storing and Retrieving Data

Examples:

I' :FIIII .;; I:::: J Reads one-dimensional array B
serially.
Stores two-dimensional a rray F into
record 4 of specified file.

In the case of two-dimensional arrays, the array elements are retrieved item by item wi th out regard to

dimensiona lity, with th e second subscript varying more rapidly, i.e., by rows.

A (l,l) _ A (1,2) __ A (1,3) _ A (1,4)) Array elements of this 3 X 4 array are
retrieved by rows.

c.. A(2,l) __ A (2,2) __ A (2,3) __ A (2,4))

C A (3,1) __ A (3,2) _ A(3,3) __ A (3,4)

Since a rray elements are stored on mass s torage linearly, they may be retrieved with or without a n array

form at. In the case of a two-dimensional array, any combination of A(I ,J) dimensions may be used that

accesses the desired number of elements. For instance, a 3 X 4 array stored in a file named ARRAY might

be retrieved by the following statements. (ARRA Y has been assigned buffer #1.)

r-~ T 1'1 F: C :~; " ,.-i

:"';,::: 1'1 I: *1:1.:: : .. ,,:Ii

r-: i'l [: (,:l"

i:i

r-;.·" E:Ct:;,:

:i :[: :I. ::

:U J 1"'1 E:; C 1 ~::: ~i

I? : :: H T' *,1" ,:

If the array specified in the f~: E Fl Ii # statement has fewer elements than the stored array, only those

elements allowed by the F: i::~: ::U :1:1: array will be retrieved.

The following program stores temperature data gath ered by an instrumented aircraft. The pl ane takes six

temper ature readings a long each leg of its flight . The four legs cover the same route at al titudes 5000,

10,000, 15,000, and 20,000 feet. Data for each leg is entered into a separate record, so tha t it can be

inspected and updated, if necessary.

1. CI 1"1 H :::' "" ",T (II? i'l iI:
;? 1:::1 C: I:;:: I:::: I:::: T I:::: I I 'r F: 1"[
:;::0 (IF'! I Ut··1 ":1'1 :='[
40 I1I!"1 TCE:)

'I ,::1 , ~I ,..!,; ::::

5 0 f::r:; ~:::; I ~~i r"~ :it 1 T Ci II T E r'1 F' ~=; ;;
CO FOF: "", I. TO ':
';:"!'! II I :::, '1:1"111' !,' :iiTf'1 F e,i
':': (--I I I"""! I:::' , ' "" "r" I:: :1 ;: ::: ",I ~I "I I

J ~ TCC J
:,1'1 F'F:l f!T #1,1, TC:

:I. OCI i",i !::""' " 1
:I. 1. CI I:::, ~:: :; :: i", i 1:1::1 "I::
J :.: Ij III r.

i.) F: Ij Ii

F Ci II

1 ·: :1, J "! I

Sets defa ult mass storage device.
Creates da ta fi le.

Opens fil e.

Prints T(l) through T(6) to record
1.

Closes file.

Section 5: Storing and Retrieving Data 43

Analysis of the data involves averaging temperatures over height at each of the four locations and

computing the vertical temperature differences between points. Data handling is facilitated in this

situation by reading in the four 1 X 6 arrays as one 4 X 6 array.

J. ~~:! R ~::; ::; I Ci I···! *!::! T U I; ·r [1'1 F' '::. T"i i? I t.i [Ci II

~::~~~ CFTI(Ji··~ Et:i:~~; E 1
30 DIM T(4 ,6),6 (3,6)
40 1;:1 AIl ,,1 I
~: ; C1 F·C)f~: ,i -! C

" J .. ,I

:: II =:: ~ R

1:111 rjl:,<1 I
111! rl [::1 .. -'
1 ;?Ci F'I. I i"-.!"T
I:::LI F' I;' I II T
I Ft··I·r :::; ::1::::1:: ::i::

; , , .T"
,I I"T·

II 11 1'1 1

1·10 FOF: , ... fe' 1 :::;TE F ... 1.

i i

1 :=;~::I F'P I f·~T ;' t:: ET I.'~EEt· 111 ; I ::f:~3CH~i~=: ; !! RHD I;

~ C 1+1 =1 l5~=i~~t U ~ ;; FEET I!
It;C! F'F.:Ir·~T "L..i1' .OC;? L.....i i ... ::~: 1 0[4 L..
C! C:i L..OC:f:;
i . . ? () F i? I!···! ' : ':::: T j.. ,::. Ci C: :I. :·1 ~I Ci C :1

, i i· . ~ . i . 1 T , ... i l , , - .. -'" ,. , . ..

:::: i? Ci I 1'1 i:i i3 E ... , t:; C :::; :[1 :[1 Ii :1 ::.:: J
210 nUl

Opens data file.

Reads in data as 4 X 6 array.

Computes average location
temperature.

Computes gradients (differences).

Closes data fil e.

The TEMPS file is read serially in statement 40. The effect is to perform the following rearrangement of

the data.

Data as printed to file

Record I T(l) T(2) T(3) T(4) T(5) T(6)

Record 2 T(I) T(2) T(3) T(4) T(5) T(6)

Record 3 T(I) T(2) T(3) T(4) T(5) T(6)

Record 4 T(I) T(2) T(3) T (4) T(5) T(6)

Data as read from file

leg I T(I,l) T (I,2) T(I,3) T(I,4) T(I,5) T(I,6)

leg 2 T(2,1) T(2,2) T(2,3) T(2,4) T(2,5) T (2,6)

leg 4 T(4,1) T(4,6)

44 Section 5: Storing and Retrieving Data

Updating Data Files

When data is stored on a mass storage medium, it must be read into computer memory before it can be

updated. Since a record is the smallest addressable unit in mass storage, one practical way to change the

contents of a data file is to read in the contents of an entire record, and later reinsert the updated record

into th e file. The sample program on page 00 contain ed an example of making corrections on a ch eck

register. The following program illustrates adding to, deleting from , and changing the contents of a

40-record file.

A small community college maintains a file, named COURSES, of its course registration data. The

college offers 40 cou rses, numbered sequentially:

Subject Course Numbers Record Numbers

English 101 through 110 1 through 10
History 201 through 210 11 through 20
Math 301 through 31 0 21 through 30
Science 40 1 through 41 0 31 through 40

Each record is set up as follows. Course enrollment is limited to five students.

student 1.0. numbers

r * ,
Course Cou rse #stu dents student student student student student
nam e number #1 #2 #3 #4 #5

Each term before registration , the file is initia lized by entering in course names and numbers, and setting

enrollment data to O. The following program processes student registration forms. The program prompts

for the student I.O . number and then conducts the appropriate file operations for adding and dropping

courses. The program assumes a previously initialized file named COURSES located on m edium

1 Ci C!F'T I Clt··1 E:H~:::;F

.::: ~~:: D::: t,! ::::; C ~:::i)
J C! D I::::; F' II I:::: !···I T· i : f~:: ::::; T ! ... ! Ii E: f··! T f·~ L.i !'! E: E F: i '

4::::i T r··i!:::'UT· 1···1
i;; c; r , .. ,;; 1;:'1 11·1"

::::; F' III:::I :U:U
F' i...i T· ki :~::

c' I i:::· Ci$:=HliC!j ··iL::· ; :-H I:I···I :::::I:~I

:3 ~~i li 1. ::::; P II E t·~ T E F.: !_. i_ H:3 :::; i··~ U r'1 E: t:: ~~ i'
1 lie; ! f··IF'UT Ii':;;

I , " ') ',II CD ;;:;; ,
! _.; ; :I. .. !

·1 :? i::: ;:::;'; ::::; I i:::i I···! :1:1: .t.

Enters student I.D . number.

Enters operation-add, drop, or done.

Enters class number (101-110, 201 -210,
etc.)

Computes record # from course
number.
Opens data file.

Reads in contents of appropriate
record.

[, ,

'): :(J F' II

j" CI ~:::i

·r!. . .i !:::' !, ;
I I ! i. .

,'TH[II

:l .? 0 IF:::; C '. i .. ! :::~ ~:i T' H F t·~ ;? L::! l.-::i

1::':0 rl[;" . :
1 ::::1 U IF i .. - c· 'r' i···j [: r··j ;? t:l ~~i

;? :? I;J
2:~:::CI

,
,I. '

,I "', ' , i.iT
1'\ .!. i"j ,

Ci Ci "! C:
24Cl 11 I ::::;F ,-'. , :::'i'::;'~; Fi...iL..L. ii i:~~ Ci(JT(J hi?
;?~5Cl Ii I ::::;F ;i :::;TUDEr··IT j::iL..i~: ~" .HI.!\' Et··IF:C)I L..

2t;O Fel!?
27Ci IF'
::::::::::1;;:1 i'··I[
;?::::i CI I: I:::'

"Ill E:', E'
J:l 0 FClF: f:: - '._' r'o 4
320 SCV =~LK+1J @ S

::::::::::CI
::::: ,::1- C!

tiE: :
F'I : T I"

::::: I:::; 1;::1 :[I:i F" ":::; 'T :...! :U L: 1"·1 'T i.,.j I::

II i I (~ (:i CJ T Ci i:::; I:::'

:;: 7 0 I:i :':;:'; T ,"; ;,,; *~:I T 0 l
:~; :::: Ci E I"~ :D

Section 5: Storing and Retrieving Data 45

Tests for student already being
enrolled.
Tests for opening in the class.

Statement is executed when class is
full.
Enrolls student.
Updates enrollment number.
Prints updated record to file.

If student is dropping the course,
this loop search es to see whether
she is actually enrolled.
Statement 290 executed if student
wasn't enrolled.
Updates enrollment.

This loop removes student's J.D.
number from the class list.

Closes data file.

Data files should be designed so that information requiring frequent updating can be readily accessed

and a ltered. In the previous program, statement 110 directly converts the course number into a record

number, enabling the program to access a course's record without searching through the entire file. If the

organization of the data didn ' t lend itself to direct computation of record number, it would have been

necessary to search for the a ppropriate course. In such cases, it is more efficient to store a master list of

courses in one file and maintain a separate file for student enrollment. The master list could then include

a pointer for each course, indicating in which record the student enrollment can be found.

Sect ion 6

Storing and Retrieving Graphics

The Mass Storage ROM allows you to store the contents of the computer's graphics display onto a disc

and to retrieve the display without re-executing the display-generating program. The operation of

loading the stored display into the computer's graphics display leaves alpha mode and any program

currently in computer memory intact. (Refer to the graphics section of your HP-83/85 owner's manual for

a discussion of alphanumeric and graphics mode.)

The statements covered in this section create and access extended files, and are the only Mass Storage

ROM statements to do so. Unlike data files, extended files are not opened and closed. An attempt to

assign a buffer to an extended file generates

Storing a Graphics Display

The contents of the computer's graphics display can be stored onto a disc by executing the

statement. may be executed from the keyboard or within a program. The statement

automatically creates an appropriately-sized extended file; you cannot use a

create an extended file.

The proper form of the "', "::: statement is:

j .. " ;; file specllier f'

statement to

The statement stores a copy of the computer's graphics display into the file. Computer memory is

unaffected, and the stored graphics display remains in the computer's graphics display until execution of

i:::i t:;:: or Cit ;""·;C;:U.

Extended files are useful for storing the scaled and labeled X- and Y-axes of a graph for later use in

plotting data. The following program generates a graphics display which will be retrieved for use later in

this section. The program creates the X- and Y·axes for a graph of gold prices from January, 1979, to

January, 1982. After the program is keyed in and executed, the graphics display it generates will be stored

into an extended file named GOLD.

• 47

48 Section 6: Storing and Retrieving Graphics

t U (3Ci_[Hi?
20 SCALE -10.40,-4G0~1100
J ~j ::.:: A ::.:: I ~::; Cl ~I ;::~ ~! !?
4 (:1 \' A ::.:: I ~::; ~~1~;;2 Ct ~::1 ;1 C:" J. :~~ : ;;:i CI

50 l_IiII? U
[:U F'OF: I=C TU
7 U 1'1 CI I.) E 1. 2 :t: I '~~" : :::1 i:::: !-~: L.. fi F: E L II ,J 1::1 r··!
"
I::: (:'I 1'1 0 I) [:l ;,' :",: J: -- ::,: '.
:: 1';1>"(1+1:::
::JC! I···IF: ::-::··1 :I.
:I. Ci i;J I:::· fJ r; ·' :r ;;::: :::. j:::;

Jill !'i III) F .
T :::
1 ~::: C1 I···i E ::.:: ··1

1::0 L.DII?
L.. !IF'PICE
140 EHI:

.... c; .. T ··
;::::1;:)10"1
I)F!I :::

Now, run the program to generate the X- and Y-axes for the gold prices plot:

1".

. , ::: :i . .::::::::

Before you can execute :3 :::; T C i< E, you must return the computer to alpha mode. This is easily done by

pressing any a lphanumeric or display control key. Once you are in alpha mode, execute:

Stores contents of the computer's
graphics display into an extended file
named GOLD.

.'

Section 6: Storing and Retrievmg Graphics 49

The contents of the graphics display has now been copied into the file named GOLD located on the disc

with volume label ;; " IiF: Il.)E[i;; . We could have chosen to store the display as part of the program.

Insert ing the Ci ~:::; T Cl~: E statement after line 130 accomplishes this.

As in program storing, the contents of an extended file can be altered by executing Ci'" 'rerkE: with the

same file specifier and a different computer graphics display.

Retrieving a Graphics Display

Once a graphics display has been stored with a Ci::; T C F i:::: statement, it can be retrieved by executing a

13 L U i:::i:U statement, either from the keyboard or within a program. The proper form of 131._ CI A n is:

I i3 LOA Ii .. file specifier "

The file specifier must be the name of a previously-GSTOREd extended file.

Execution of i":: ' ; places a copy of the graphics display contained in the extended file into the

computer 's graphics display. The contents of the computer's graphics display at the time is

executed will be scratched as the stored display is retrieved. As i:::::U is executed, the computer

automatical1y switches to graphics mode, a nd you can see the stored displ ay appear on the CRT.

The fol1owing program graphs approximate gold prices at the beginning of each month from January,

1979, to September, 1980, using the axes stored in the GOLD extended fi le. Since data is not available for

the entire X·axis time span, the program tests for a price of$O.OO to signal the end of the data list.

(:iF'
T t·. F' ,

It' .

:::::rj
··:1;::" .• i.
I:::j I:::! F:'C:·! ! . ..I F
t:; ~~I 1":1.::! !'::'

90 IF PCI.J)-G THEN
1. 00 F'L.U;
11 C tiD::
1 ;:::U
130

. , • .; , . .L
'- -'- .--_.

Loads axes into graphics mode.
Lifts pen before plotting first point.

Test for 0.00 price
Plots price .

50 Section 6: Storing and Retrieving Graphics

When th e program is executed, the CRT switches to graphics mode at line 30. The axes is retrieved, and

then th e prices are plotted onto the graph. When the data has been plotted, the display will look like this:

("\ /~
o'L.J

,V
...

- --,...,,-._ ... , ..

You may store the graph onto mass storage by executing a i: :i statement with either the

II C~ CI L Ii . Ii I:;:: T i.) !:::: ,~j;; file specifier, to replace the empty axes, or with another fi le name. Once the graph

has been stored, itcan be updated as new data up to January, 1982, becomes available by GLOADing the

graph a nd plotting additional points.

Section 7

Other File Manipulations

The Mass Storage ROM enables you to perform a variety of file manipulations in addition to the ones

already covered. Section 7 covers the following additional file operations:

• Determining the type data of the next item in a data file .

• Copying files from one mass storage medium to another.

• Renaming files.

• Purging files.

• Packing files for more efficient use of mass storage space.

• Securing files.

Determining Data Types-The TYP Function

The . function allows you to determine the type of data of the next item in a data file. The function

also allows you to determine whether the file pointer is at the end of the record or at the end of the file. The

function has the form:

Cbuffer number

The buffer number must correspond to the buffer assigned to the file being accessed. The function returns

an integer from 1 to 10 according to the following table.

Type Value Data Type

1 Number
2 Full Str ing
3 End-ol-File
4 End-af -Record
8 Start of String
9 Middle of String

10 End of String

In using the function, the pointer can be moved through the file in much the same way as it is moved

in serial and random printing and reading. One difference is that record divisions are not ignored when

the pointer is moved with serial statements.

53

54 Section 7: Other File Manipulations

We will use the function to access data items file named AGES, which is organized into logical

records as shown below:

record 1 record 2 record 3 record 4 record 5 record 6

8 ill30 Phyllis 31 Hank Don 35 Plu sorminusl0

Now, the following statements are executed from the keyboard:

Copying Files

Opens AGES file.
Moves pointer to beginning ofrf~c.ord 1.

Moves pointer past first item in record
1.

Moves pointer past 2nd item in record
1.

Moves pointer past first item in record
3.

Moves pointer past first two items in
record 4.

Moves pointer to beginning of record 5.

Moves pointer to beginning of record 6.

Any file in mass storage not secured against copying can be copied to another mass storage medium. The

statement accomplishes this and adds the name of the copied file to the destination medium's file

directory.

;; source file specifier destination file specifier

I '

Section 7: Other File Manipulations 55

The source file specifier corresponds to a file present on a mass storage medium . The destin at ion file

specifier may include the same or a different name. You cannot copy a fil e secured against copying (type 1

security). If you attempt to do so, no error is generated, but the secured file will not be copied to the

destination medium.

Examples:

cr·!F"· II ~:::;F'[F~;

DF Il)Elll

j I II j

.... i •. II ie:"

r Ii

Copies the fil e named SPEEDS on the
disc with volume label = Ii i? T I.) I::~ ~J ;;
onto the disc having volume label

" :UI?
Copies the fil e n a med QUAKE on disc

•• ,,[I F: I I i onto an HP-85 ta pe
cartridge, naming the new fil e on the
tape EARTH.

C. C) F' can a lso be used to co py all the fil es on a mass storage medium to another medium. The CO PYing

process does not affect the original contents of the des tination medium. The source medium's contents are

si mply added on.

[I 'F"·· II "source volume label i'

II :: source msus II

'i "destination volume label
II :: destination msus

Both source and destination volume labels must have been previously assigned with a i·'i I: :::

statement.

One use of (J r:: ' \' is transferring the conten ts of severa l partially filled discs or tapes onto one med ium . If

duplicate names are encoun tered during copying, i"" () j. IH.H::': ::::: is generated, and the

CO I:::' \' operation terminates. All files copied up to the termin ation remain intact.

Files secured against copying (type 1 security) are not copied when the entire contents of one disc are

copied to another disc. The secured file is s imply ignored, and no error is generated.

If there is not enough space on the destination medium to hold a ll the files being copied, the copy

operation terminates and E: I"" r 1 :? :::: i i L.. L.. results when the available space is exhausted.

Copying also terminates when the directory space on the destin ation storage medium is exhausted,

generating F: j"" i"" () ;.. t ;~~ 4 I:::· I L F :::;, Files copied before generation of the error remain intact.

56 Section 7: Other File Manipulations

Renaming Files

Any file, regardless of its type, can be given a new name using the : H i"'1 t-= statement:

II new fi le name ;;

The old file specifier must correspond to a previously specified fil e. When the statement is executed, the

name of the file as listed in the file directory is changed. The file itself is untouched. However, it must now

be addressed using the new name.

Examples:

i? " ,., I! 1'1 F. "II C' "
IIT[.'
F E i",1 1::1 1"1 E: II ~:::; C i? 'r

Purging Files

,';, II T"(J II F: I 1?·Ti· .. iD

il ::~;HEL..l... II

Renames AGES on Drive 0 to
BIRTHDATE.
Renames tape file SORT to SHELL.

The I:::' U I:;;: C:i E statement prevents further access to a file by removing the file name from the directory. The

space that was occupied by a purged file becomes a 1···II...i i ... L .. file and is available for future use.

F' 1...1 1:;:: Ci E: II file specifier [purge code]

The file specifier must correspond to an existing file of any type-program, da ta, extended, or binary

program. The purge code may be any number; however, a ny purge code other than zero is ignored.

When a file is purged without a purge code, t he file name is removed from the file directory , and i"~ U L. 1.... is

substituted for the type of file in the Type column of th e directory. The , .. , . ..' l. L. file is avai lable for future

use, and will be used when you store or create another file that fits into the available space.

When a purge code of Ci is included, the specified file and a ll files after it on the storage medium are

purged. The directory does not create i···I!...! L .. L files; the directory will contain a listing for on ly those files

up to (and not including) the file specified in the F':"': i? Ci C' statement.

The following catalog shows the results of purging a file without a purge code.

r::' 1",1 I? Ci F: "::J r:
C:HT' II. DF I !)E 1
~ ;;~; 1.I,nJ, W ~i,~ ~ II I:;:' [i.) E
r'1 Ci rn I:~ , , ! ... ' ':::

:=; F' E: [II I::'

DFiTHl

"')[Ij 1
T F ~:::; T' ~:::;

''''; F:: I:;:: I 1::1 i. ...

,.. .. ,..::-.. -.
1-' ,.,..' "..,

. ;-;
.!..'J'

j": ! . ..iL.L..

F' i,·'J "-,

T ;,..! i; ,

.... ·I?

i.iF: :i

::: ~J
,2 ,,; f:;
2~;t:;
.-, ;::-,-. '::"_,'=,

1
1

Section 7: Other File Manipulations 57

Now, two files from the end of the directory will be purged.

Packing Files

The statement fills in file gaps created when files are purged without a "::i purge code.

i/ cannot be used with files on an internal tape unit.

" volume label "
msus i'

Example:

File Security

File security is used to prevent program files from being listed, duplicated and overwritten, and to prevent

data files from being copied or changed . You may also remove a file name from the directory listing

without creating a i"" file; the file can still be accessed by anyone who knows its name.

Securing Files

The command places various levels of security on files. is programmable, and can

also be executed from the keyboard. None of the levels of file security prevent a file from being purged.

,. file specifier ;; '; security code :; security type

The file specifier must refer to a file already existing in mass storage. The security code may be either a

quoted string or a string expression that becomes associated with the file for security levels and L

Only the first two characters of the security code string are actually used. If the string has only one

character, the second character is a blank.

60 Section 7: Other File Manipulations

Disc Write Protection

You can prevent any write operation onto a flexible disc by covering the write-protect slot with a write­

protect tab (provided with the discs) as shown in the illustration below.

Write-Protect Slot
\

o
Not Write Protected

Write- Protect Tab
\

\

Write Protected

The procedure for write-protecting other discs may not be the same as the a bove. Refer to the

documentation for your system for write protection information.

The write-protect procedure prevents you from writing a ny information onto the disc. The disc can,

however, be read normally. To write on a protected disc, you must reverse the write-protect procedure.

Tape cartridges used with the HP-85 internal tape unit may be write-protected by s liding the RECORD

s lide tab to the left before insertin g the cartridge into the HP-85. Write-protection is removed by sliding

the tab to the right.

Section 8

Data Verification and Error Processing

Verification of Data

The statement can be used to verify that data printed to a data file located on a disc has

been properly recorded onto the disc. When is activated, an immediate read # is

performed on any data printed to a specified file. If the two lists do not match, indicating failure of the

storage medium (disc) itself, the ROM will return (read verify).

cannot be used for data files located on an internal tape unit.

" buffer number

The buffer number specified must match the buffer assigned to the data file.

errors are rare. If you should ever encounter one, you may wish to compare your

statement again, since the failure which generated the error may have been momentary. If

you obtain another error, it is likely that the disc has failed.

U is turned off by the ",. statement::

+ buffer number

Examples:

Verifies all data printed to buffer #1.

Error Processing

Turns off
buffer #1.

at

Several statements are available for determining whether an error in a running program has been

generated by a ROM or by an interface.

ROM-Issued Errors

When you receive any error message, you may use the ERROM function to determine whether the error

was issued by one of the ROMs.

j"i returns the number of the ROM that issued the error. If the error was issued by the computer

rather than by a ROM, the function returns The Mass Storage ROM number is 208.

63

64 Section 8: Data Verification and Error Processing

F f;:: F:: Ci can be used with an Ci r",r I:::: I? i? (J i? statement to direct program flow. The program below

displays a message when a Mass Storage RO M error occurs.

,., EI?FCIF: (,,," " ;:1:;(1
~-'~:EHTE IIFli.E::. Di?II')F?" 1. .-', .-.

':::.;-"
"'!:::: Ti I :::;F' II TH[F L .. c:.. I ~::; CF:Ei:::TF ri!!

" " "

Refer to your computer owner's manual for more information regarding error processing.

Interface Module Errors

When a n illegal operation elicits an error from an in terface, you can determine the select code of the

interface at which the error originated with the F

interface.

function. ,": C: returns the select code of the

: i? ::;. can be used to direct program flow after an error has occurred. (See example under F i? i? I::) 1" '1,

above.) Refer to your computer owner's manual for more information regarding error processing.

I

I

1
I

Section 9

Tape Commands

The following commands are applicable only to HP-85 tape cartridge operation.

This fun ction conditions the magnetic tape cartridge by running it forward to the end of the tape and then

back to the beginning of the ta pe. Programs and data on the tape are not affected by the c: .. '.' .-.
operation .

This function is similar to the I 1"~ I T I !=i L .. I Z E command.

cartridge. All previous information on the tape is destroyed.

I? 1::::1,": T i' i

I::. ' ,-'j t.. . sets up a directory on the tape

This simply rewinds the magnetic tape cartridge to the beginning of the tape.

67

Syntax Summary

Syntax Guidelines

Items shown in dot matrix must be typed as shown; however, you can use lower case

letters if you wish.

Items enclosed in brackets are optional parameters.

parameter Items in italics are optional parameters.

stacked
items

When items are placed one above the other, one must be chosen.

1;"1 ::::; ::::; I c:; t··! :!:i: buffer number i. i II file specifier ii

; I " volume label H

!! msus i'

C H H I f"1 ;; file specifier Ii

C CI F' \' i! source file specifier il T CI II destination file specifier "

II source volume label II !! • destination volume label ;;
C CI F' \' :: source msus !! T CI II :: destination msus ;;

I:;:: L: f:1 'r ::: ;' file specifier ;i ~ # of records [~I record length]

Page 35

Page 36

Page 20

Page26

Page 63

Page 54

Page 55

Page 34

Page 63

Page 64

Page 49

Page 47

II :msus II

I r"! I "r I Fi L.. I Z E [;; volume label ii [, II. volume label ii [" directory size [:; interleave factor]]]] Page 14

LClri.T:i ;i filespecifier " Page 25

Page 28

69

70 Syntax Summary

,< [volume label
msus

volume label
msus

buffer number :: print# list

j""j ".,.. :i:i: buffer number record number [print# list]

;; file specifier " [:; purge code]

buffer number read# list

i:::i:U :i:!: buffer number '; record number [read# list]

;; old file specifier ," ; new file name ;'

file specifier ;' -; security code security type

"; file specifier

' " file specifier ;

': buffer number

;; file specifier i'

:; msus i'

volume label

;; security code ;; :; security type

;; volume label

Page 16

Page57

Page 36

Page 39

Page 56

Page 38

Page 40

Page 56

Page 57

Page 23

Page 28

Page29

Page53

Page 59

Page 13

1

1
I

Appendix A

Maintenance, Service and Warranty

Maintenance

The Mass Storage ROM does not require maintenance. However, there are several areas of caution that

you should be aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions

may result in minor electrical shock hazard and interference with some pacemaker devices . Damage to

plug-in port contacts and the computer's internal circuitry may also result.

CAUTION: Always switch off the computer and any peripherals involved when inserting or removing

modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP-83/85. Failure

to do so could damage the module, the computer, or the peripherals .

CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or

designed for another port. Attempting to force it may damage the computer or the module. Remove the

module carefully and reinsert it.

CAUTION: Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not

insert any objects in the contact holes on the ROM. Always keep the protective cap in place over the

ROM contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions

may result in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the ROM Drawer

Instruction Sheet or the HP-83/85 owner's manual, appendix B.

Service

If at any time you suspect that the ROM drawer or Mass Storage ROM may be malfunctioning, do the

following:

1. Turn the computer and all peripherals OFF. Disconnect all peripherals and remove the ROM drawer

from the computer ports. Turn the computer back ON. If the computer does not respond or displays

, the computer requires service.

73

74 Appendix A: Maintenance, Service and Warranty

2. Turn the computer OFF. Install th e ROM drawer, with the Mass Storage ROM insta lled, into any

port. Turn th e computer back ON.

i'i ., .:::; " F: Ci 1·'1 is displayed, indicating that the ROM is not operating

properly, turn the computer OFF and try the ROM in another ROM drawer s lot. This will help

you determine if particular slots in the ROM drawer are malfunctioning, or if the ROM itself is

malfunctioning .

• If the cursor does not appear, the system is not operating properly. To help determine what is

causing the improper operation , repeat step 2 with the ROM drawer insta lled in a different port,

both with the Mass Storage ROM installed in the ROM drawer and with the Mass Storage ROM

removed from the ROM drawer.

3. Refer to How to Obtain Repair Service for information on how to obtain repair service for the

malfunctioning device.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.

Additional copies may be obtained from any a uthorized HP-83/85 dealer, or the HP sales a nd service

office where you purchased your system.

If you have questions concerning the warranty. and you are unable to contact the authorized HP-83/ 85 or

the HP sales and service office where you purchased your computer, please contact:

In the U.S.:

In Europe:

Other Countries:

Hewlett-Packard
Corvallis Division Customer Support
1000 N.E. Circle Blvd.
Corvallis. OR 97330
Tel. (503) 758-1010
Toll Free Number: (800) 547-3400 (except

in Oregon, Hawaii a nd Alaska).

Hewlett-Packa rd S.A.
7, rue du Bois-du-lan
P.O. Box
CH-1217 Meyrin 2
Geneva
Switzerland

Hewlett·Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Tel. (41 5) 857-1501

. 1

j
,

Appendix A: Maintenance, Service and Warranty 75

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-83/85 and its peripherals. For information on

service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and

service office.

If your system malfunctions and repair is required, you can help assure efficient servicing by having the

following items with your unit(s) at the time of service:

1. A description of the configuration of the computer, exactly as it was at the time of malfunction,

including any plug-in modules, tape cartridges or other accessories.

2. A brief description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

Computer and peripheral design and circuitry are proprietary to Hewlett-Packard and service manuals

are not available to customers.

Serial Number

Each computer and peripheral carries an individual serial number. It is recommended that you keep a

separate record of this number. Should your unit be stolen or lost, the serial number is often necessary for

tracing and recovery, as well as any insurance claims. Hewlett-Packard does not maintain records of

individual owner's names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your computer system, be sure it is packed in a protective

package (use the original case), to avoid in-transit damage. Hewlett-Packard suggests that the customer

always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the

nearest authorized HP-83/85 dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility .

Index

A ~ ________________________ ___

Address Switch, Device, 6
Arrays, 41-43

Retrieving, 41-42
Storing, 41-42

i:i' Statement, 35-36
Assigning Buffers to Files, 35

B ~~~ __________________ __

BARGRAPH Progmm, 28
Binary Programs, 28
BPGM File Type,21
Buffers, 35-36
Bytes, 21, 33

Entry in File Directory, 21
Needed to Store Data, 33

C~~~~ ______________ ___
Cancelling File Security, 59
-: :'''i Command,20

Catalog of Files, 20-21
i Command, 26

Chaining Programs, 26-28
;"': i : F'" Statement, 63
Closing Data Files, 36
Codes, 5-6, 56, 57

Purge, 56
Security, 57
Select, 5-6

(': C: ('j Statement, 26
Conditioning Tape Cartridges, 67
i,_: i.) Command,54-55
Copying Files, 54-55
Copying Media, 55
COURSES Progmm, 44-45
C: F: i:"i r::: Statement, 34
Creating Data Files, 34
i" : ,:::, Command, 67

D~~~ __________________ __
Data File Type, 21
Data Files, 31-45

Creating, 34
Closing, 36
Opening, 35
Reading From, 37-38, 40-41
Size of, 31-33
Updating, 44-45
Writing To, 36-37,39-40

Data Type Protection, 53-54
Data Verification, 63
Default Mass Storage Medium, 16
Deleting Files, 56
Device Address Switch, 6
Device Type, 11
Directory of Files, 20-21
Disc-Based Programs, 28-29
Disc Copying, 55

77

Disc Drive Numbers, 7
Disc Error During Data Transfer, 36
Disc Initializing, 14-15
Disc Write Protection, 60
Display Retrieval, Graphics, 49-50
Display Storage, Graphics, 47-49
Drawer, ROM, Installation, 5
Drive Numbers, 7
E ____________________________ _

EARNINGS Program, 26-27
Efficiency of Disc, 15
End-of-file Marker, 36

Command, 67
!;-i Function, 63

Error Messages, 80-81
Error Processing, 63-64
Errors, 63-64

Interface Module, 64
ROM,63

;:. Function, 64
Expressions, Used to Specify Parameters, 14
Extended File Type, 21, 47
F ________________________ __

Factor, Interleave, 14-15
File Buffers, 35-36
File Directory, 20-21
File Names, 19-20
File Pointers, 36-40
File Records , 31-32
File Security, 57-60
File Specifier, 19
File Types, 21
Files

Binary Program, 21, 28
Data, 21, 31-45
Extended, 21, 47-50
NULL, 21, 56
Program, 21, 23-29

G ____________________________ _

Statement, 49
GOLD Programs, 47, 49
Graphics Displays

Retrieving, 49-50
Storing, 47-49

':::: i Statement, 47
H ____________________________ _

HP-IB Interface Module, 5-6

I
Command,14-1 5

Initializing a Disc, 14-15
Installation, 5-6

Disc Drive, 5
Mass Storage ROM, 5
ROM Drawer, 5

78 Index

Interface Module Errors, 64
Interface Select Code, 5-6
Interleave Factor, 15

L ~~~~ ________________ __

Labels, Volume, 12-13
Length of Files, 20-21, 31-33
L(JFiIi Statement, 25
L C) A D E: I ! .. ~ Statement, 28
Loading Binary Programs, 28
Loading Programs From Mass Storage, 25-26
Logical Records, 31-32

M
Maintenance, 73
t'1A "::;TOFACE I::::; Statement, 16
Mass Storage Unit Specifier, 11-12
Memory Requirements of ROM, 9
MSlls, 11-12

~a-m-e-s-o~f~F~i~le-s-, 1~9~-~2~0------------------------
11 U U" Files, 21, 56, 57

Creating, 56
Removing, 57

NULL File Type, 21
Numbering of Disc Physical Records, 15
Numbers , Disc Drive, 7

o~~~~ ____ ~ __________ __
c'r-.! EF'F'CF Statement, 64
Opening Data Files, 35

~ H'~--::'-~: 1·-' -;:S::-t-at~e-m-e-n~t-, -=5-=7-------------­

Packing the Disc, 57
Physical Records, 31-32
Pointers, 36-37, 38, 39, 40
Preserving Variables During Chaining, 26

F: I r·~ · r :R: Statements, 37, 39
Random, 39
Serial , 37

Printing to Data Files, 36, 39
Randomly, 39
Serially, 36

Processing Errors, 63·64
Program Chaining, 26·28
Program Loading, 25·26
Program Retrieval, 25·26
Program Storing, 23·25
Program Translation, 28·29
Protecting the Disc Against Writing, 60
F U P C:i E Statement, 56
Purge Code, 56
Purging Files, 56·57

Purging and File Security, 58

R~~ __ ~~ ______________ __
Random Access, 39-41

Printing, 39-40
Reading. 40-41

F: E n n # Statements, 38, 40
Random, 40
Serial,38

Reading Data Files, 37-38, 40-41
Random, 40-41
Serial , 37-38

Records, 31-34
Length, 33, 34

Logical,31-32
Physical,31-32

Recs Entry in File Directory. 21
!?F r·~ Ii r'1 E Statement, 56
Renaming Files, 56
Removing File Security, 59
Removing NULL Files, 57
k E t··1 fi r'l E Statement, 56
Renaming Files, 56
Repair Service, 75
Retrieving Binary Programs, 28
Retrieving Data

Randomly, 40-41
Serially, 37-38

Retrieving Programs, 25-26
F' E ~,~ I r·~ Ii Tape Command, 67
ROM·Issued Errors, 63-64

s ,~~~ __________________ __
E: CUP I:::: Statement, 57

Security, 57-60
Against Copying, :5:5
Code, 57, 59
Removing, 59
Types of Security, 58

Select Code of Interface, 5-6
Serial Access, 36-38

Printing, 36-37
Reading, 37-38

Serial Number of Devices, 75
Service, 73-74
Shipping, 75
Specifier, File, 19-20
SPEEDS Program, 24
String Headers, 37
Storage Requirements of Data, 33

!J r;:: E Command, 23
·r U F: E E' . Statement, 28

Storing Arrays, 41-43
Storing Binary Programs, 28
Storing Data, 36-37. 39-40
Storing Graphics, 47-49
Storing Programs, 23-25
Syntax Guidelines of Manual, 9
Syntax Summary, 69·70

T ~~~ __________________ ___
Tape-Based Programs, 28·29
Tape Cartridge Conditioning, 67
Tape Commands, 67
Tape Copying, 55
Tape Write Protection, 60
Transferring Files, 54-55
T F: FI Ii ,::: 1_ H T E' Command, 29
Translating Programs, 28

\ ' I:::' Function, 53
Type of Data, 53-54
Types of Fi les, 21

U~~~~ ____ ~ __________ ___
Unit Conversion Program, 24
i .i r··! ~::; E C U F: [: Statement, 59
Updating Data Files, 44· 45

V~~~~~~ ____________ ___
Verification of Data, 63
'')OLUt'1E I :~; Statement, 13
Volume Labels, 12-13

:

W
Warranty, 74
Write-Protecting Discs and Tapes, 60
Writing to Data Files, 36, 39

Randomly, 39
Serially, 36

Index 79

Error Messages

The HP-83/ 85 Mass Storage ROM ma kes available a number of additional error messages. Errors 60

through 75 are avail a ble on the HP-85 with or without the Mass Storage ROM. All of these errors a re new ,

however , for the HP-83.

,.

t

I:::: !'

E : .. t

E (.. u r F:::::

I': ,.

Error Number

F r'"

F' E:

I:

':::.
• 1 .• ••

1...:

j' !'

r

L.I
rHI""F'

'I i

,j !'.-

C,

c:

Hi:::' , .. ,. ! 1:::' I L .. t:

Error Condition

The mass storage medium is write-protected.

HP-83 : Not used.
HP-85: Attempting to store more than 4 2 files on a tape.

HP-83 : Not used.
HP-85: Cartridge is out when attempting a tape

operation .

Duplicate fil e name.

Attempting to access an empty program file .

HP-83 : Not used.
HP-85: Tape run-off or tape is full.

Attempt in g to I? E ~*.... !' 1" ,1 "1 to a closed fil e. (A
warning is issued for attempting to close a closed file.)

Name does not exist, or name not in quotes.

File type mismatch:
• Attempting to treat program file as data file . or vice

versa.
• Attempting to treat binary program as BASIC program

or v ice versa.
• Attempt ing to treat data as binary program, or vice

versa.

Attempting to access beyond ex isting number of bytes in
logical record, us ing random fil e access.

System cannot read mass storage medium.

End-of-file.

Record:
• Attempting to access a record that doesn 't ex ist .
• Attempting to ~: E H IH:: I F' F I r·rT *~ at the end of file .
• Lost in record- close file to release the buffer.

HP-83: Not used.
HP-85 : Bad tape cartr idge, or tape not initialized .

HP-83 : Attempting to use non -existent tape drive.
HP-85: Tape is stalled.

HP-83 : Not used.
HP-85 : Not an HP-85 file; cannot read.

The li D card failed self test and requires service.

An invalid li D operation has been attempted.

The Mass Storage ROM failed self -test.

80

The command or statement is valid for disc only.

The file directory on the storage medium is full.

The specified volume label wasn't found .

The specified mass storage unit specifier is invalid.

A read verify error was encountered.

The command cannot be executed because the mass
storage medium is full.

The storage medium is damaged.

The storage medium is not initialized, the drive latch is
open, or the drive number specified is not present.

The interface se lect code or device address specified is
not present, or system hardware has failed .

00085-90447

rhf!IJ HEWLETT
~~ PACKARD

1000 N.E. Circle Blvd ., Corvallis, OR 97330

Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

