

HEWLETT iII PACKARD

warranty Statement

Hewlett-Packard products are warranted against defects in materials and
workmanship. For Hewlett-Packard Desktop Computer Division products
sold in the U.S.A. and Canada, this warranty applies for ninety (90) days
from date of delivery. * Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment
returned to Hewlett-Packard for repair must be shipped freight prepaid.
Repairs necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are not covered
by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service Office to
determine warranty terms.

Extended I/O Programming

The HP 9825A Calculator

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1976

5

fin

iii

Table of Contents

Chapter 1: General Information

Description 1

Inspection and Installation 2

Syntax 2

Unnecessary Parameters 2

Requirements 3

Chapter 2: Binary Operations

Introduction 5

Binary Representation 5

Decimal/Octal Mode Statements 6

Decimal/Octal Conversion Functions 7

The Binary AND Function 7

The Exclusive OR Function 7

The Inclusive OR Function 8

- The Complement Function 8

The Rotate Function 8

The Shift Function 9

The Add Function 10

The Bit Function 10

Chapter 3: HP-IB Operations

Introduction 13

Bus Messages 13

Transfer Parameters 16

Extended Bus Addressing 16

Non-Active Controller Address Parameter 17

The Device Statement 17

Multiple Listeners 18

Data Messages 19

Sending Data Messages 19

Receiving Data Messages 20

Sending the Trigger Message 20

Sending the Clear Message 21

Sending the Remote Message 22

Sending the Local Message 23

Sending the Local Lockout Message 23

Sending the Clear Lockout/Set Local Message 24

iv

Service Requests and Polling

Sending the Require Service Message

Receiving the Require Service Message

Sending the Status Byte Message

Serial Polling or Receiving the Status Byte Message

Sending the Status Bit Message

Parallel Polling or Receiving the Status Bit Message

The Poll Configure Statement

The Poll Unconfigure Statement

Sending the Pass Control Message

Sending the Abort Message

Sample Application

The Command Statement

The Equate Statement

Extended Read Status

Chapter 4: Potpourri

Autostart

The Timeout Statement

The On Error Statement

The Conversion Table Statement

Substring Conversion Tables

The Parity Statement

Conversion Protocol

Interface Control Operations

The Write Interface Statement

The Read Interface Function

The I/O Flag Function

The I/O Status Function

I/O Drivers Example

Chapter 5: Interrupt Control

Introduction

The Programmable Interrupt Scheme

Vectored Interrupt

The On Interrupt Statement

The Enable Interrupt Statement

The Interrupt Return Statement

The HP-IB Interrupt Control

Abortive Interrupts

Interface Control Bits

24

25

25

26

26

28

29

30

30

30

31

32

35

37

38

41

42

42

44

46

47

48

48

49

50

50

50

51

53

53

54

55

56

57

58

61

63

I nterrupt Lockouts

Variables with Interrupt Service Routines

Chapter 6: Buffered I/O

Introduction

The Buffered I/O Scheme

Automatic Interrupt

Buffer Types

The I nterrupt Buffer

The Fast Read/Write Buffer

The DMA Buffer

Buffer Underflow and Overflow

The Buffer Statement

The Transfer Statement

Data Output

Data Input

I/O Buffer Status

Buffer Pointers

String Variables as Buffers

I nverted Data

Buffered I/O Example

Demonstration Programs

Appendices

The HP Interface Bus

HP-IB Lines and Operations

Interface Functions

Extended I/O Status Conditions

ASCII Character Codes

Buffered I/O Benchmarks

Extended I/O Syntax Summary

Syntax Conventions

Binary Statements and Functions

HP-IB Statements

The Timeout Statement

The On Error Statement

The Conversion Table Statement

The Parity Statement

I nterface Control Operations

I nterrupt Control Statements

Buffered I/O Statements

64

64

67

67

68

68

69

69

70

70

70

72

72

73

74

75

77

77

79

80

85

85

88

90

91

92

97

97

97

98

100

100

100

101

101

101

102

v

vi

Extended I/O ROM Error Messages

General I/O ROM Error Messages

HP Sales and Service Offices

Figures

ROM Installation

A Typical HP-IB System

Conversion Protocol

The I/O Buffer Scheme

HP-IB Signal Lines

Tables

Sample HP-IB Operations with the 9825A Calculator

Calculator Response When Not Active Controller

I/O Buffer Types

HP-IB Command and Address Codes

HP-IB Interface Functions

Functions Used By Each Bus Message

Extended I/O Status Conditions

ASC II Character Codes

Buffered I/O Benchmark Times

103

105

108

2

32

48

67

85

15

31

71

88

88

89

90

91

92

1 Chapter

General Information

Description
The Extended I/O ROM expands the capabilities of the General I/O ROM operations and adds

42 new statements and functions. This manual describes Extended I/O operations in this

order:

• Bit Manipulations - There are 12 instructions for manipulating and testing 16-bit binary

values.

• HP-IB Control - In addition to extending General I/O ROM operations, there are 14

statements and functions to provide complete control of any current HP Interface Bus

system.

• Potpourri - 11 additional statements and functions include a 256-character conversion

table, parity checking and generation, error recovery, direct interface access, and a

timeout routine. An Autostart routine, which automatically loads and runs a program, is

also covered.

• Interrupt Control - Three statements allow you to program interrupt routines for servic­

ing peripheral devices. An interrupt-priority scheme based on interface select codes is

used.

• Buffered I/O - Areas of the read/write memory can be allocated as "buffers" for use in

transferring data under one of three special schemes: interrupt I/O, fast read/write, or

direct memory access (DMA). The transfer (tfr) statement is used to exchange data

between the buffer and the peripheral, while General I/O ROM operations are used to

exchange data between the buffer and calculator variables.

The Extended I/O ROM uses 94 bytes of calculator read/write memory (RWM) when installed.

The Extended I/O ROM is packaged with one or two other ROMs in a single ROM card. This

manual describes Extended I/O operations only. Another manual is furnished with the card to

describe operations of each additional ROM.

"'~

2 General Information

Inspection and Installation
Refer to the HP 9825A System Test Booklet for the procedure to verify operation of each ROM.

The ROM card can be plugged into anyone of the four ROM slots located on the bottom front

of the calculator, as shown in the next photo.

ROM Installation

To install the card, first turn the calculator off. With the ROM label right side up, slide the card

through the ROM slot door; press it in until the front of the card is even with the front of the

calculator. Then turn the calculator on.

Syntax
The following conventions apply to the syntax for the statements and functions found in this

manual.

- All items printed in dot matrix are required exactly as shown.

[] - All items in square brackets are optional, unless the brackets are

printed in dot matrix.

- Dots indicate that successive parameters are allowed, when each is

separated by a comma.

Unnecessary Parameters

Certain Extended I/O statements will allow the specification of more than the required number

of parameters. If any unnecessary parameters are given, they will be ignored at execution

time; an error message will not indicate these unnecessary parameters.

See the Appendix for a summary of all Extended I/O statements and functions.

General Information 3

Requirements
The Extended 1/0 ROM requires that a General 1/0 ROM also be installed. If not, Extended 1/0

operations may be keyed in and stored, but an error will occur if an attempt is made to execute

them.

Before using this manual, you should be familiar with the 9825A Calculator and the HPL

programming language described in the HP 9825A Ope~ating and Programming Manual.

Since Extended 1/0 operations are based on the General 1/0 ROM operations, you should also

have read the General 1/0 Programming Manual.

4 General Information

Chapter 2
Binary Operations

Introduction
The Extended 1/0 ROM has 12 functions and statements for manipulating and testing 16-bit

binary values. For each function, the value can be any expression whose integer value is in the

range of decimal -32768 thru 32767. Fractional values are handled differently depending on

which number mode is currently set. Fractional values are rounded up when the decimal mode

(mdec) is set, but fractional values are truncated when the octal mode (moct) is set.

If the value of any parameter is outside of the above range, error E6 will result. If flag 14 is set,

however, no error will occur; instead, flag 15 will be set to indicate the overflow and the 16-bit

binary result will be used as is. Thus, with flag 14 set, the range of the parameters may be

extended to 0 thru 65535 and treated as 16-bit positive binary values rather than the normal

16-bit 2's complement representation (described in the next section).

The binary functions described here should not be confused with the logical operators and, or,

xor, and not which are described in the calculator operating and programming manual. Each

of those operators is used to evaluate expressions and return a 0 or 1, depending on the

Boolean operator.

Binary Representation

The 16-bit numbers used for the binary operations explained in this chapter are represented

internally as binary numbers. To represent a negative value, the calculator stores the 2's

complement of the value. Here is how to find the 2's complement for a value such as -37

decimal. First convert 37 to 16-bit binary (0 000 000 000 100 101). Then complement 1 the

value (1 111 111 111 011 010). This intermediate value is the 1 's complement of 37. To get the

2's complement, add 1 to the 1 's complement. Thus, -37 would be represented as 1 111 111

111 011 011 or octal 177733.

'To complement a binary number. convert the O's to 1 's and 1 's to O's.

w=

5

6 Binary Operations

Decimal/Octal Mode Statements
The Extended I/O ROM allows you to set the calculator in either of two number modes, octal'

(base 8) or decimal (base 10).

Set Octal Mode Syntax:

Set Decimal Mode Syntax:

The currently set mode affects all Extended I/O binary functions, the General I/O binary

operations, and all other operations which use 8- or 16-bit binary parameters. A complete list

of parameters affected by the number mode follows below. The calculator is automatically set

to the decimal mode when it is switched on.

For example, if the data byte 01011101 (binary) is to be read from a device on select code 3:

,-_·_··· ___ IJ
,---' . _ .. ::_.: ___ IJ

I/O Parameters Affected by the Decimal or Octal Mode

General I/O ROM:

• Values input or output under the b format spec.

• Values output using the write binary (wtb) or write control (wtc) statements.

• Values returned using the read binary (rdb) or read status (rds) functions.

• Conversion codes used in the conversion (conv) statement.

Extended I/O ROM:

• Values used in all binary functions (band, ior, eor, cmp, rot, shf, add, and bit).

• Byte parameters with the require service (rqs), poll configure (polc), and enable interrupt
(eir) statements.

• Byte returned with the parallel pol (pol) function.

• Character parameter in transfer (tfr) statement.

• Register number and expression parameters in the write interface (wti) statement.

• Data returned with the read interface (rdi) function.

'Octal notation is explained in the Appendix of the General 1/0 Programming Manual.

E

.. -

Binary Operations 7

Decimal/Octal Conversion Functions
Two functions are available for converting specified values from decimal to octal form. The

working range is from decimal -32768 thru 32767 . . r ~A
(

Decimal to Octal Conversion Syntax:

expression

Octal to Decimal Conversion Syntax:

expression

The Binary AND Function
Syntax:

expression A expression B

The binary AND (band) function combines the

given values, bit-by-bit, and returns the result.

The truth table for the logical AND operation is

shown on the right.

For example, to AND decimal 20 and 24, execute these lines:

.
::.: .. ;::::., :, :::: ·:;·i···!;; ::::l:::: F::: ;:

...
.....

A

0
0

The Exclusive OR Function

Syntax:

expression A expression B

The exclusive OR (eor) function combines the

values, bit-by-bit, in a logical exclusive OR op­

eration and returns the result. The exclusive

OR truth table is shown on the right.

A

o
o

B band (A,B)

0 0
1 0
0 0

(000000000001 0100) \J
(000000000001 1000) \J
(000000000001 0000) \J

B

o
1
o

eor (A,B)

o

1
o

F

8 Binary Operations

The Inclusive OR Function
Syntax:

expression A expression B

The inclusive OR (ior) function combines the

values, bit-by-bit, in a logical OR operation and

returns the result. The logical OR truth table is

shown on the right.

A

o
o
1
1

B

o
1
o
1

ior (A,B)

o
1
1
1

For example, to combine octal 57 and 21 in an inclusive OR operation:

Syntax:

(0000000000101111) \J
(0000000000010001) \J
(0000000000111111) \J

The Complement Function

expression

The complement (cmp) function takes the binary 1 's complement of the 16-bit value and

returns the result. For example, execute these lines:

The Rotate Function
Syntax:

expression ..•.. or no. of places

(0000000001010111) \J
(1111111110101000) \J

The rotate (rot) function right-rotates the 16-bit equivalent of the value by the specified number

of places and returns the result. The value is rotated left when the number of places is

negative. Bit 0 is rotated to bit 15 when the number of places is positive. Thus, no bits are lost

when the value is rotated.

M tt

- For example, execute these lines:

': ::::' .. ::. ~:::: ::

~ ~···l .. .

Here is a sequence which inputs two 8-bit

bytes, combines them into a 16-bit word, and

prints the resulting value. This sequence could

be combined into one statement:

Binary Operations 9

(0000 0000 0000 1111) \J
(0000 0111 1000 0000) \J
(1110 0000 0000 0001) \J

20: rdb(3)+Airdb(3)+B
21: rot(A,8)+A
22: prt ior(A,B)

The Shift Function
Syntax:

expression·. or no. of places ••

The shift (shf) function shifts the 16-bit binary equivalent of the expression the specified

number of places to the right. The value is shifted left when the number of places is negative.

Bits shifted left of bit 15 or right at bit a are lost.

For example, set A = 255 (0000 0000 1111 1111) and execute these lines:

" ". : :'.'::: ::

Here is a sequence which inputs a 16-bit word

from a device on select code 3. The word is

then printed in four 4-bit segments.

(0000 0000 0000 0111) \J
............

.. ::~ ;:::~ ~:::= :::j. ~:::~ (0111111110000000) \J

0: rndec
1: rdb(3)+A
2 : pr t "(1>18B) " , s h f (A , 12)
3: shf(A,-4)+13iprt shf(B,12)
4: shf(A,-8)+Biprt shf(B,12)
5: pr t "(L8B) " , ba nd (A, 1 5)

·n

10 Binary Operations

The Add Function
Syntax:

expression A expression B

The add function adds the binary equivalents of the two expressions and returns the result.

This function is identical to the calculator's + operation for decimal integers. The add function

can be used in the octal mode, however, permitting the addition of octal values.

For example, if A = 37 and B = 2, execute these lines:

... ",
: : : ,' ,::::: : : ... " . ________ IJ

________ IJ

The Bit Function
The bit function is used to test one or more bits of a given value, and return either a 1 to

indicate true (all bits match) or a to indicate false (no match).

Single Bit Test Syntax:

bit position '. expression

Multi-bit Test Syntax:

"mask expression

When a numerical value is given for the first parameter, it indicates to test one bit (position a

thru 15) in the value; a tests the least-significant bit. When the first parameter is text, each bit in

the value is tested according to the corresponding character in text: the character 1 requires

a 1-bit for a match, the character a requires a a-bit for a match, and any other character

indicates not to check that bit. If all specified bits match, a 1 is returned. Up to a 16-bit mask is

allowed. If fewer than 16 characters are in the mask, they correspond to the least-significant

bits in the value; in this case, any higher bits are not tested.

For example, set A = 65 (0000 0000 0100 0001) and test the eight least-significant bits of A

using the mask "0100 0001":

. :: ~? :~. l? j .• :::: ::::: ::::: :~. :: :: ~:::~ :1 (true) \J

Binary Operations 11

Now set A = 66 (0000 0000 0100 0010) and test A using the same mask:

(false) \J :: .. :: .. :: .. : :

As another example, suppose that a tape reader is connected via a 98032A Interface (at

select code 2) which sends this status byte in reply to the read status function:

8 7 6 5 4 3 2 0 (LSB)

Power Tape
End

I
X X 0 X X of

On Loaded
Tape

Status bits 7, 6, 3 and 2 indicate interface status conditions. This program could be used to

monitor the tape reader and input data only when the reader is powered up (bit 8) and a tape

is loaded (bit 1). The first bit function checks only bits 1 and 8 by using a mask. The second bit

function checks bit a to halt the prog ram when the end of tape is reached.

0: dim A$[10,50]
1: rds(2)+A
2: if bit("lxxxxxlx",A)=O;jmp -1
3: red 2,A$
4: if bit(O,A) ;jmp 2
5: if (I+l+I»50;gto
6: end

More examples using the bit function are in Chapter 3.

'j

,

12 Binary Operations

Chapter 3
HP-IB Operations

Introduction
The Extended I/O ROM provides the statements and functions for complete control of HP

Interface Bus (HP-IB) systems. In addition to using General I/O ROM operations to transmit

data and control instructions, the calculator can now transmit all bus control messages (e.g.,

trigger, clear, local, and remote), conduct serial and parallel polls, and pass bus control to

another device on the same bus. The user can assign device names to be used in place of

select code parameters. When the calculator is not the active controller, it can transmit the

Require Service message and automatically respond to serial and parallel polls. The com­

mand (cmd) statement is provided for compatibility with other HP calculator programs.

This chapter describes all Extended I/O bus operations. It assumes that you are familiar with

the General I/O ROM operations, as described in the General I/O Programming Manual. You

should also know the bus operations for each device in your HP-IB system. Refer to their

operating manuals.

The HP-IB is Hewlett-Packard's implementation of IEEE standard 488-1975. A copy of this

standard can be ordered from the IEEE Standard's Office; 345 East 47th Street; New York,

N.Y. 10017. A brief technical description of the HP-IB is in the Appendix of this manual.

Bus Messages
The communication capabilities of each device on the HP-IB can be exercised by using the

messages described here. The General I/O ROM permits using three messages (Data, Re­

mote, and Abort) for addressing one instrument at a time (the calculator is assumed to be the

system controller). The addition of an Extended I/O ROM, however, provides all 12 bus mes­

sages to permit complete bus capability. Messages can be transferred among:

• Device and Device(s)

• Controller and Device(s)

• Controller and Controller

13

14 HP-IB Operations

The 12 bus messages are categorized and listed below. A more complete description of each

message is given later.

Device Communication:

• Data - The data characters transferred between devices by a calculator instruction (such as red,
wrt, or cmd).

Device Control:

• Trigger - Causes a device or group of devices to simultaneously initiate a device-dependent
action.

• Clear - Initializes device-dependent functions to a predefined state.

• Remote - Switches selected devices to remote operation, allowing parameters and device
characteristics to be controlled by Data messages.

• Local - Causes selected devices to revert to manual control for future parameter modifications.

• Local Lockout - Prevents the device operator from switching the unit to manual control.

• Clear Lockout and Set Local - Removes all devices from local lockout mode and causes all
devices to revert to local.

Interrupt and Device Status:

• Require Service - Asynchronously indicates a device's need for interaction with the controlling
device.

• Status Byte - Presents device-dependent status information; one bit indicates whether or not the
device currently requires service. The remaining 7 bits indicate status defined by the device.

• Status Bit - A single bit of device-dependent status which may be logically combined with status
bit messages from eight devices.

System Control:

• Pass Control - Causes bus management responsibilities to pass from the sending device to the
receiving device.

• Abort - Stops all communication and causes control to pass back to the system controller,
independent of the device currently in control.

To determine which messages are needed to control and exchange data with each device,

first review the programming requirements for the device as explained in its operating manual.

Then find the appropriate bus message syntax in this chapter. Remember that most instru­

ments must be set to Remote before they will respond to other bus messages, and that the

Data message is used to transfer control characters and data between devices.

If the operating manual does not describe which bus messages are required by that device,

you can determine which messages are required by knowing which HP-IB interface functions

are implemented on the device. Refer to the Appendix for more details.

The following table summarizes the bus operations available with the General I/O and Ex­

tended I/O ROMs. Each message and operation is further described in the remainder of this

chapter. The table on page 31 summarizes calculator response to bus messages when it is not

in active control of the bus.

Message Name

Data

Trigger

Clear

Remote

Local

Local Lockout

Clear Lockout/Set Local

Pass Control

Require Service

Status Byte

Status Bit

Abort

HP-IB Operations 15

Sample HP-IB Operations with the 9825A Calculator

Description

Output text and vartables to single devices.

Output single characters.

Input data from a device.

Input single characters.

Specify device address and send data in the form of

ASCII characters.

Output data to multiple listeners

Transfer data from device to device.

Send a Group Execute Trtgger to all Instruments

Send a GET to selected devices

Clear all devices

Clear selected device.

Enable remote mode on all devices. Switching the

calculator on also sends a Remote message

Set remote mode on selected device.

Return selected device to local mode.

Prevent all devices from returning to local mode.

Set local mode and disable local lockout on all de­

vices. r=:J also sends this message

Transfer bus control to a selected device.

Request Service from the controller and send an

8-bit status byte for response to a Serial Poll.

Bit and logic level for responses to a Parallel Poll.

Clear all bus operations and return control to the

original system controller. [-''';] also sends an abort

message

Sample Operations'

lin each case, a device name can be assigned and substituted for the select code parameter See "The Device Statement

•

16 HP-IB Operations

Transfer Parameters

Transfer parameters specify each message's origin (sender) and destination (receiver) on the

bus. For most messages, the calculator, as controller, specifies the device sending the mes­

sage and the device or devices receiving the message.

The select code parameter is used to specify transfer parameters in the same form described

in the General I/O Programming Manual. Here is a review of the general syntax:

cc[dd][" f] cc = one or two digit select code of interface card.

dd = HP-IB address from 00 thru 31 1 (must be two digits).

= format number (read and write statements only).

The address code within each select code parameter specifies the appropriate address

(origin or destination) of the device on the bus. Except for the command (cmd) statement, all

I/O operations which have an address code automatically transmit the calculator's preset

talker/listener address and the specified address code in the appropriate order on the bus.

When the calculator is the active controller, this address sequence is preceded by the bus

Unlisten command to clear all listeners previously set. For example, this statement

. sends this address sequence before sending data:

• Unlisten command

• Calculator talk address

• Listen address 11 (on bus 7)

Extended Bus Addressing

When communicating among devices which use extended addressing on the HP-IB, the

extended address can be specified by adding two more digits to the select code parameter.

Here is the complete syntax:

cc[dd[ee]][f] ee extended address, from 00 thru 31 (must be two digits).

Extended addressing is provided by the bus definition (see IEEE Std. 488-1975). The primary

address of a bus device is followed by another byte of addressing information. This byte has

an allowed range of 00 thru 31, with the Secondary Command Group (SCG) bits (bits 5 and 6)

'Address 31 is a special address. See next page

-

HP-IBOperations 17

set. This optional byte is automatically sent by the Extended I/O ROM when the two additional

digits are specified in the select code parameter. For example, the statement

... outputs this address sequence:

• Unlisten command

• Calculator's preset talk address

• Device listen address 03 (on bus 7)

• Secondary device address 21.

As controller on the bus, the calculator has the ability to send secondary addresses. As a

device on the bus (not controller), the calculator does not respond to a secondary address.

Non-Active Controller Address Parameter

When a device is not the active controller on the bus it can not address other devices to talk or

listen. If the calculator specifies a device address from 00 thru 30 in an I/O operation when it is

not in active control, an error message will occur. The calculator can still send Data and other

messages when addressed to talk or listen, however, by specifying device address 31. For

example, this sequence sends a Data message (contents of variables A, B, and C) when the

calculator is addressed to talk:

5: rds(7)+A;if bit(6,A)=0;gto +0
6: wrt 731,A,B,C

The calculator continually executes lire 5 until it is addressed to talk. The read status function

is described at the end of this chapter.

The Device Statement

Syntax:

name 1 select code 1 [device address]

name 2 select code 2 [device address] ...]

The device statement sets up a name/address list for peripheral devices. Once each name is

set up, it can be used in place of the select code parameter in each I/O operation. Each new

device statement adds the new names to the previous list; each name can have only one

select code parameter assigned at a time. The device list is erased when the calculator is

reset (8, run command, erase command, or switch power on). This statement can be used

with any interface with a select code of 2 thru 15, but the optional device address IS allowed

only with the HP-IB interface.

18 HP-IB Operations

In this example sequence, line 6 sets up the names "printer", "dvm", and "punch". Then lines

7 thru 11 use the device names instead of numeric select codes. Notice that the tape punch

(select code 3) is assigned a name, even though it is not a bus device.

6: dev "printer",701,"dvm",711,"punch",3
7: wrt "dvrn","R3FOT1E"
8: red "dvrn",A
9: wrt "punch",A
10: if A=64;jrnp -3
11: wrt "printer","value =",A

Each select code parameter can be a positive integer from 2 thru 15. If a format number other

than 0 is to be specified, it can be specified in the read or write statement by using the syntax:

device name format no.

For example, line 13 in this sequence references format 1, while line 14 references format O.

12: frnt 1,"R3F",b,"T1E"
13: wrt "dvm.1",F
14: red "dvrn",A

Some of the example programs in this manual were output using an HP 9871A Printer. To

output program listings via the bus, the list statement is used. For example, this statement was

used to output the sequence shown above:

"

Multiple Listeners

More than one listener can be specified for Data messages and certain other messages by

using device names, separated by commas, in place of the select code parameter in each

statement. For write operations, the calculator is set to the talker and all names in the list are

set to listeners. For read operations, the first name in the list is set to the talker and the

calculator and all other names in the list are set to listeners. This method assumes that the

calculator is to be either the talker or the listener in the operation. If a talker and one or more

listeners is to be set up without the calculator participating in the transfer, the command

statement must be used.

For example, this program sequence first defines device names, and then simultaneously

outputs the variables A, B, and C to a voltmeter and an HP 9871A Printer. The next line outputs

the string A$ to the printer and the HP 59304A Display. The last line inputs a reading from the

voltmeter, and also sends it to the printer and the display.

43: dey "printer",701,"dvrn",722,"display",724
44: wrt "printer,dvrn",A,B,C
45: wrt "printer,display",A$;wait 1000
46: red "dvrn,printer,display",D

HP-IB Operations 19

Multiple device names are not allowed within these bus statements: trg, clr, cli, rem, 110, Icl,

pct, polc, and polu. Instead, either execute the statement repeatedly (using one device name

at a time), or use the method shown on page 21 to send the message simultaneously.

Data Messages
The primary reason for the existence of the interface bus is to transmit Data messages. It is the

Data message that exchanges device-dependent data among bus devices. Data messages

are one or more 8-bit bytes (characters) sent over the bus from one Talker to one or more

Listeners. For example, a Data message from the controller might send a function code to set

a frequency counter to the frequency mode. The message might be a pair of ASCII characters

such as "F2". Another Data message might be an ASCII string of alpha prefixes and numbers

that are the measured value. A Data message thus may impart control information, or a

measured value, or a command of some sort. Any Data message is mUlti-valued. That is, it will

be transmitted over the 8 data lines of the interface. A Data message can have either an

implicit termination or an explicit termination, for example, carriage return/line feed.

Sending Data Messages

The following I/O operations are used to send Data messages from the calculator to the bus:

• select code [format no.][expression,[expression 2 ...]] (see General I/O)

• select code expression,[expression 2 ...] (see General I/O)

• [select code [non-zero digit]][line nos.] (see General I/O)

• source destination [character count [last character]] (see page 72)

• select code . address characters [. data characters]

or

device name(s) .. or select code [data characters]

(see page35)

The select code parameter previously explained is used to specify the listener address(es).

The write statement (wrt) can reference a format statement for controlling the output of the expres­

sions. A Carriage Return/Line Feed (CR/LF) is sent at the end of the write statement unless edit

spec z is specified in a format statement. No CR/LF is sent after the write binary statement (wtb).

20 HP-IB Operations

Receiving Data Messages
When the calculator is a listener, the following I/O operations are used to receive data messages

from the bus:

• select code [format no.] variable 1 [variable 2 ...] (see General I/O)

• select code (see General I/O)

• select code (see General I/O and page 38)

• source destination[character count[last character]](see page 72)

• select code (see page 29)

The read statement (red) can reference a format statement to control the incoming data. Read

binary (rdb) and read status (rds) are both functions, which means that they must appear as

part of a statement (such as or) in order to be stored as part of

a program. Read binary (rdb) reads only one byte (8 bits on the HP-IB) at a time.

Sending the Trigger Message

The Trigger message is always sent from a controller to a selected device or set of devices.

The purpose of the Trigger message is to initiate some action, for example, to trigger a digital

voltmeter to perform its measurement cycle, or a digital voltage source to go to a new setting.

Neither the Trigger message nor the interface indicates what a device does when it receives

this message. The action taken is entirely up to the device designer.

Syntax:

select code [device address]

Specifying only the interface card's select code (e.g.,) outputs a Trigger message to

all devices currently addressed to listen on the bus. I ncluding a device address (e.g.,

) triggers that device only. Multiple device names cannot be used to specify multiple

listeners with the trigger statement.

Here's a sequence that presets functions on a frequency counter and a voltmeter, and then

outputs a Trigger message (line 51) to simultaneously initiate action on both devices. Line 52

then inputs the data for the DVM. The device names have been defined earlier in the program.

-

49: wrt "count","I2E8E?G?52"
50: wrt "dvm","TOFIM3E"
51: wtb "count,dvm"~trg 7
52: red "dvm",A,B

HP-IB Operations 21

Notice that line 51 first outputs the device addresses to specify them as listeners, and then

sends the Trigger messa~e to both devices.

Some devices do not respond to the Trigger message but still have "trigger" capability. In

most cases they can be triggered by receiving an appropriate ASCII character via a Data

message.

For example, this sequence inputs 50 data readings from an HP 3490A Multimeter. Line 2

presets the meter functions and executes a reading by sending the character E. Line 4

re-executes the preset functions for another reading.

0: dim A$[50,20]~0+A~I+I+N
1: dey "dmm",722
2: wrt "dmm","FOR6TIM3E"
3: red "dmm",A$[I]
4: wrt "dmm","E"
5: if (I+l+I)<51~jmp-2
* 30105

Sending the Clear Message

The purpose of the Clear message is to provide a way to initialize devices to some predefined

state. A Clear message can be sent either to all devices or to a selected set of devices. Only

the controller can send a Clear message. The message is single-valued in the sense that it is

either true or not true.

Syntax:

select code [device address]

Specifying only the interface select code (such as) outputs a Device Clear (DCl)

command to all devices addressed to listen on the bus. Specifying an individual device

address (such as), however, outputs a Selected Device Clear (SOC) command to

reset only the specified device.

22 H P-I B Operations

For example, these lines send (simultaneously) the Clear message to the devices named

"gen" and "clock":

0: dev" 9 en" , 7 0 6 , "c10c k " , 720
1: w t b "g en, c 10 c k "
2: c1r 7

But this statement sends the Clear message only to the clock:

11: clr "clock"

Sending the Remote Message
The Remote message causes devices on the bus to switch to remote, program control from

local, front panel control. It is single-valued, true or false. A device in remote control may be so

designed as to remain unresponsive to some or all of its front panel controls.

Syntax:

select code [device address]

The Remote message is automatically output whenever the calculator is switched on or B is

pressed. To prevent a device from being switched back to local by a front panel switch, use

the Local Lockout statement (110).

In the following example, the remote message is sent to the digital multi meter at select code 7,

device address 22.

0: dev" dmm " , 722
1: rem" dmm"

All devices on the bus which can respond to remote enable (REN) are set to remote by this

line:

2: rem 7

5

-
HP-IB Operations 23

Sending the Local Message

The Local message always originates with a controller and is sent to selected devices with the

purpose of returning them to local, front panel control. During system operation, it is some­

times necessary for an operator to interact with one or more devices. For instance, an operator

might need to work from the front panel to make special tests or to troubleshoot. Also, it is

good systems practice to return all devices to local control upon the conclusion of automatic

operations.

Syntax:

select code with device address

When an interface select code with a device address is specified, a Local message (Go To

Local - GTL) is output to the specified device only. The Icl statement also sends the Clear

Lockout/Set Local message (as explained later) when only the interface select code is

specified.

The following lines send the Local message to the digital multimeter at select code 7, device

address 11.

0: dey "dmm",711
1: leI "dmm"
*15637

Sending the Local Lockout Message
This message prevents an operator from returning a device to local control from its front panel.

Since it always orJginates with the controller and is issued to all devices, transfer parameters

are implied and need not be stated explicitly. As long as the Local Lockout message is in

effect, no device can be returned to local control except through the controller itself, thus

maintaining system integrity. In effect, this message locks out the "local" push-button present

on most device front panels. This message prevents a casual passer-by from interfering with

systems operations by pressing buttons.

Syntax:

select code

To cancel local lockout, send a Clear Lockout/Set Local message (Icl). The Abort message

(cli) does not cancel local lockout.

It is a good practice, especially when devices that are connected to the bus are used for other

purposes, to send the Local Lockout message when they are used by the bus. The following

line sets local lockout:

0: 110 7

24 HP-IB Operations

Sending the Clear Lockout/Set Local Message
This compound message returns all devices to local, front panel control and simultaneously

clears the Local Lockout message. It is used instead of the Local message when the control­

ler, in an earlier action, issued the Local Lockout message.

Syntax:

select code

Executing the local statement without a device address sends the Clear Lockout/Set Local

message (REN), which sets all devices to local operation and cancels local lockout if it is in

effect.

As an example, if the Local Lockout message is sent in line 0, and all bus activity is complete

by line 30, the Clear Lockout/Set Local message is sent to return front panel control to all bus

devices:

0: 110 7

• • •
31 : leI 7

Service Requests and Polling
Service Requests and polling provide an additional means of communications between the

calculator (controller) and other devices on the bus. A device may use the Require Service

message (rqs) to ask for the attention of the controller. The controller could then use polling to

find out the status or condition of a device on the bus. Typically, the controller uses polling to

locate the source of a service request, and then the cause. Polling, however, is not limited to

situations involving service requests.

Two polling methods are available with the Extended I/O ROM: serial polling and parallel

polling. A device responds to a serial poll by sending a Status Byte message (a value between

° and 255) containing up to 8 bits of status information. A device responds to a parallel poll by

sending a Status Bit message, which places one pre-selected bit of data on the bus. Use of

the parallel poll allows the controller to quickly check up to eight devices at once, while use of

the serial poll enables receiving a full byte (8 bits) of information from one device at a time.

Each method is further described in the following pages.

.....

HP-IB Operations 25

Every bus-compatible device that is designed to use the service request should also respond

to a serial and/or parallel poll. However, a device can be designed to respond to polling even

though it does not use service request.

The operating manual for each device describes whether it can transmit Require Service

messages and how the device responds to a poll.

Sending the Require Service Message
The Require Service message originates with devices other than the controller. The Purpose of

the message is to let a device alert the controller to the device's need for some action by the

controller. The Require Service message provides a system with an additional level of com­

munications outside and asynchronous to the run-of-the-mill interchanges.

When the calculator is not the active controller (either it passed control 1 to another device or

the System Controller switch on the interface is OFF), it can transmit the Require Service

message and respond to both types of polls.

Syntax:

select code, status byte

The status byte specifies an 8-bit byte (number between a and 255) to be sent in response to a

serial poll, as explained in the next section. Bit 6 (decimal 64) is the SRQ bit which must be set

if the Require Service message is sent. To clear the SRQ line, send a zero for the status byte.

The SRQ line is also cleared if the controller serial polls the calculator. To send the Require

Service message, the following program segment could be used:

0: pet 705
• • • 20: rqs 7,64

Receiving the Require Service Message
When the calculator is the system controller, it can be programmed to identify the source of a

request and to service the requesting device(s); or the calculator can completely ignore all

service requests. In most cases, however, a Require Service message indicates that the

calculator should take some action to maintaining proper system operations. The calculator

can use serial or parallel polling to identify the source of a service request and reveal the

cause. The calculator can then service the device.

1 See pass control statement on page 30.

26 HP-IB Operations

The Require Service message controls the bus management line SRQ. The calculator can

check the status of this line to see whether a service request is present. All devices on the bus

use the same line to request service. So when the calculator detects a service request, one or

more devices may be the source.

Sending the Status Byte Message

The Status Byte message is sent at the request of the controller and is usually a response to

the controller's poll taken to discover which device or devices are sending the Require Service

message. The byte is specified via the require service (rqs) statement previously described.

Bit 6 (decimal 64) must be set if the calculator requires service. The remaining bits may

optionally be set to transmit other status information. In the usual case the message is directed

to the controller for its interpretation and possible action. However, there is no restriction. Any

device with the talker function can send the Status Byte message to any other devices with the

listener function.

The status byte is stored in the 98034A Interface Card until the calculator is polled via the bus.

The interface card automatically responds to a serial poll by sending the byte as a Status Byte

message.

Serial Polling or Receiving the Status Byte Message

The serial poll is so named because the calculator polls devices one at a time, in sequence,

rather than all at once. When serial-polled, a device transmits a single byte of information to

indicate its status. This transmission is called the Status Byte message. For example, a status

byte may indicate that a device is overloaded (power supply), a device output has stabilized

at a new level (signal generator), or a device has requested manual service (any of several

types of devices). Once the calculator has serviced each device that has been requesting

service, the SRQ line is cleared (assuming no new requests are received).

To serial poll for checking the presence of a service request use the read status (rds) function

to check interface card status. As shown in the General I/O Programming Manual, bit 7

(decimal 128) indicates when the SRQ line is true.

For example, this program line checks for a service request:

7: if bit(7,rds(7»jgto 15

•

-

HP-IB Operations 27

If a service request is present, the program branches to line 15 to conduct a polling operation.

The bit function is described in Chapter 2. Also, interrupt control can be used to automatically

detect a service request and branch to a service routine which polls the bus. See Chapter 5 for

details. The Extended 1/0 ROM increases the capability of the read status function, permitting

you to conduct a serial poll by specifying the device address in the select code parameter. For

example, executing this statement: conducts a serial poll on a device with

decimal address 11 and returns its status byte to A.

As another example, assume that a bus system has two devices that can send Require

Service messages. One device has talk address X (decimal 24) and the other has talk address

Y (decimal 25). When polled, each device returns status byte 64 (decimal) to indicate that it

requires service (only bit 6 is set true). Otherwise, 0 is returned.'

Here's a sequence that checks for a service request (lines 5-6), and then conducts a serial

poll when a request is seen (lines 7 and 8). Then the program automatically branches to a

display statement to indicate the device requesting service.

5: rd 5 (7) +A
6: if bit(7,A)=O;gto 12
7: if bit(6,rds(724» ;gsb 10
8: if bit(6,rds(725» ;gsb 11
9: 9 to 5
10: dsp "SERVICE DEVICE X";stp ;ret
11: dsp "SERVICE DEVICE Y";stp ;ret

This sequence assumes that each device requires manual servIcing (e.g., change printer

paper) and that device X gets preference when both request service at the same time.

'For convenience, the calculator assumes that bus status bits are numbered 0 thru 7 (0 is least-significant bit). Other devices may
assume that the bits are numbered 1 thru 8 (1 is least-significant bit); see each manual for details.

--

28 HP-IB Operations

Some devices return more than the service request bit (bit 6) in the Status Byte message. For

example, here is the status byte sent by an HP 9871 A (option 001) Printer:

bit 7 6 5 4 3 2 o (LSB)

Data Printer
0 Service Cover Latch Not Buffer 0 0

Request Off Ready Ready Space

• Bits 0, 1 and 7 are always logical zero.

• Bit 2 is a logical 1 when the buffer is within 16 characters of being filled. It remains true until the
buffer is empty. Bit 2 is a logical 0 when the buffer is empty.

• Bit 3 is a logical 1 when the printer is not ready to accept data (e.g., cover interlock broken, self
test) or if the controller is not ready.

• Bit 4 is a logical 1 when the printer's HP-IB interface assembly is ready to accept data.

• Bit 5 is a logical 1 when the printer's front cover is off.

• Bit 6 is a logical 1 when the printer has sent a Require Service message.

9871A Status Byte1

The sequence shown here conducts a serial poll (printer address is 01). If the printer has sent

a Require Service message (bit 6 is 1), lines 4 thru 6 check other status bits and report

conditions.

2: rds(701)+A
3: if bit(6,A)=O;gto 7
4: if bit(2,A) ;dsp "PRINTER BUFFER FULL";stp
5: if bit("xxxOlxxx",A) ;dsp "PRINTER NOT READY";wait lOO;gto 2
6: if bit(5,A) ;dsp "PRINTER COVER OFF";stp

Sending the Status Bit Message
When the interface responds to a parallel poll, it sends the status bit message. The rqs

statement sets or clears the status bit on the interface. When bit 6 of the status byte is set, as in

" the status bit is set. To clear the status bit, clear bit 6, as in The

status byte is erased when the interface responds to a parallel poll.

Two switches on the interface card are associated with the Status Bit message. A rotary switch

with ten positions corresponding to one of 8 bit positions (switch positions 9 and 10 are null

positions) determines the location of the bit in the byte. A slide switch can be used to reverse

the logic sense of the status bit (positive or negative true logic).

'For convenience, the calculator assumes that bus status bits are numbered 0 thru 7 (0 is least-significant bit). Other devices may
assume that the bits are numbered 1 thru 8 (1 is least-significant bit); see each manual for details.

--

HP-IB Operations 29

Parallel Polling or Receiving the Status Bit Message
Parallel polling enables the calculator to check the status of up to eight devices at a time. This

is possible since each device with parallel poll capability is pre-programmed to output one

status bit when parallel polled. The bit is output as the Status Bit message. The status bit for

each device indicates either that it has sent a Require Service message or that a predefined

condition exists (e.g., a printer is out of paper). The poll function executes a parallel poll:

Syntax:

select code ••

The poll function causes all devices to output their Status Bit messages simultaneously. The

function then returns the combined byte for the calculator to analyze. The calculator can now

quickly see which device(s) require service and take appropriate action.

As an example, suppose that three devices named X, Y, and Z can respond to a parallel poll.

Each device is assigned to output a different Status Bit message when polled as shown here:

bit 7 6 5 4

Device
X

3 2

Device
y

Device
Z

(LSB)

A logical 1 for devices X and Y indicate that they have sent a Require Service message. A

logical 1 for device Z, however, indicates that it is out of paper. So for this system, the

calculator can respond to the Device Z status bit by displaying

, .••• , ' ••••••••••. , but it must perform a serial poll to determine the exact status of devices X and Y.

Here is a sequence which checks for a Require o : rds(7)+A
Service message on the bus (lines 0 and 1), 1 : if bit(7 ,A) =O;gto 7
and parallel polls all devices when a message 2: pol(7)+B
is seen. The program then determines which 3 : if bit(4,B) ;gsb "srvcX"

device requires service (lines 3-5) and
4: if bit(2,B) ;gsb "srvcY"
5: if bit(O,B) ;gsb "srvcZ"

branches to the appropriate service routine. 6 : gto 0

In this sequence, notice that device X gets the highest priority service, while device Z (the

printer) gets serviced last. The entire sequence is repeated until all service requests are

cleared.

30 HP-IB Operations

The Poll Configure Statement
Some devices having parallel poll capability can be programmed remotely to output a given

status bit. The poll configure (polc) and poll unconfigure (polu) statements permit the cal­

culator to set and clear status bits on these devices.

Syntax:

••...• J .••• select code with device address, status byte

The poll configure statement sends the Parallel Poll Configure (PPC) command to set the

device specified to send the specified status bit when parallel polled. For example, the

statement! (programs the device at address 24 to send status bit 5

(decimal 16) in response to a parallel poll.

Syntax:

NOTE

Bit 3 determines sense, and bits 0, 1, 2 determine the re­

sponse line.

The Poll Unconfigure Statement

.j select code [device address]

The poll unconfigure statement clears all programmed status bits on compatible devices. If

the select code parameter contains a device address (e.g., ;'.,:;' J~) '?;;::~::::;) a Parallel Poll

Disable (PPD) command clears only the specified device. If the select code does not contain

a device address, however, a Parallel Poll Unconfigure (PPU) command clears all compatible

devices on the bus.

Sending the Pass Control Message

The pass control statement sends a Pass Control message to transfer bus controller responsi­

bility to another device which can assume active control of the bus.

Syntax:

: ••.... j select code with device address

After passing control the calculator can be addressed from the new active controller, and can

send a Require Service message and respond to both serial and parallel polls, as described

earlier. If the other controller cannot pass control back to the calculator, the Abort message

(cli) must be used to halt all bus operation and return control to the calculator. An error occurs

if a device address is not specified.

Data

Trigger

Clear

Message

NOTE

Do not execute the pass control statement while a transfer

(tfr) operation is being executed on the HP-IB. To check if a

transfer operation is active, execute rds ("buffer name"). If

-1 is returned, then the transfer is active.

Calculator Response when Not Active Controller

Response

HP-IB Operations 31

Can branch to I/O routines when addressed to Talk or Listen.'

No response.

Can branch to "clear" routine, by monitoring interface card status.'

~~:~te }
Local Lockout
Clear Lockout/Set Local
Require Service

No Response.

Status Byte

Status Bit

Pass Control

Abort

Status Byte sent in response to serial poll.

Status Bit sent in response to parallel poll.

Can branch to "controller" routines when addressed
to control. '

The 98034A Interface halts all bus operations, clears status
bits and regains active control if preset to be System
Controller.

'See "Extended Read Status" and Chapter 5.

Sending the Abort Message
Syntax:

select code

The clear interface statement sends the Abort message to halt all bus operations and return

bus control to the calculator. Pressing E.J also outputs the Abort message.

The Abort message can be sent only when the calculator is preset as the System Controller; if

not, error E9 occurs. The System Controller Switch is on the 98034A Interface.

32 HP-I B Operations

Sample Application

Systems designed around the 9825A can be used in many areas for a wide variety of applica­

tions. The block diagram shown below outlines a typical HP-IB configuration. One possible

use for this system would be to study temperature variations in a flowing stream or some other

body of water near a power plant or factory in order to ascertain certain pollution effects.

For this simple application, temperatures are measured by thermistors, which output voltages

read via the digital multimeter. Various channels of the scanner correspond to individual

thermistor or temperature inputs. At pre-entered intervals, the calculator commands the scan­

ner to rotate channels and reads the corresponding voltage equated to temperature from the

multimeter. The calculator then prints the date, time and temperature readings on its internal

printer. A listing and analysis of the program are on the following pages.

HP-IB

~ V V

59309A 3490A
ASCII Digital 3495A Thermistor

Clock Multlrneter Scanner Inputs

A Typical HP-IB System

-
HP-IB Operations 33

0: dim T{S)
I: dey "timer",706,"scan",709,"clock",720,"dmm",722
2: ent "ENTER SAMPLE INT~RVAL IN SECUNOS",N;jmp N>IO and N<IOOO
3: tmt 1,"T",fz3.0,"~6ASR",z
4: tmt 2,2/,2fz2.0,/,fz2.0,":",fz2.0,":",fz2.0
S: tmt 3,/,"Channel",2x,"'l'emp(C) ",/, 16"-"
6: tmt 4,3x,tl.0,Sx,f7.4
7: tmt S,"C",fz2.0,"~",z
8: trot 6,"R7fISITIM3E",z
9: wrt "timer.I",N;wtb "clock","C"
10:
II: red "clock",'I';I+1
12: 100trc('l'/100)+'I'{I);int(1'/IOO)+T;jmp (1+1+1)=6
13: wrt 16.2,"Oate: ",T{5J,"/",'l'(4),"1'ime: ",'I'(3),'I'[2),T[IJ
14: wr t 16.3
15: I+C
16 :
17: wrt "scan.S",C
18: wrt "dmm.6";red "dmm",u
19: 3807/(log(O)+9.39)-273+U
20: wrt 16.4,C,0;if (C+I+C)<8;gto 16
2 I: it bit (6 , r d 5 (" time r ")) = I ; t r 9 "t i me r , c 1 oc k" ; 9 to I 0
22: jmp -I
23: end
*8694

• Line a - Dimensions a simple array for date/time reading.

• Line 1 - Defines device names for the I/O devices.

• Line 2 - Allows the user to enter the sample interval time (range: 1 0<N<1 000).

• Lines 3 thru 8 - Are formats for the timing generator, printer, scanner, multimeter and

clock.

• Line 9 - Programs the timer and triggers a time interval. The timer will output a Require

Service message when the interval has elapsed. The write binary statement triggers the

clock to store the current time.

• Lines 10 and 16 - Are null lines added to separate the "read" routine in the program

listing.

-

34 HP-IB Operations

• Lines 11 and 12 - Take the current date/time reading and separate the data. The HP

59309A Clock outputs the reading in this format:

MMDDhhmmss § @

• Line 13 - Prints the current date and time.

MM = Month

DD = Day

hh = Hour

mm = Minute

ss = Second

• Line 17 - Sets the scanner to the channel indicated by variable C.

• Lines 18 and 19 - Program the multimeter, input a data reading, and convert the

voltage reading to degrees Celsius.

• Line 20 - Prints the channel number and temperature. The remainder of the line con­

tinues the reading routine until all 7 channels are read. A sample printout is shown

below.

[io.te: ~.:.i;:;./!2!=?-

T i (:'1 E' ~ 0 J : ~::: ~5 ~ ~) 6

.-,
',)

4

161191:39
1611924?
i 6 II '::~23:3

16 II '~;2~J2
16::9115

• Lines 21 and 22 - Monitor the bus, waiting for a Require Service message from the

timer which indicates that the current time interval has elapsed. When this occurs, the

trigger statement simultaneously restarts the timer and causes the clock to store the

current time. Then the program branches to the read routine.

Although this is a simple example of bus operation, it shows the power available for controlling

bus systems. In this example, the calculator would spend considerable time at lines 21 and 22

waiting for a long timing interval. Instead, line 21 could branch the program to a data reduction

routine, or other time-consuming operation, while waiting to take the next set of data samples.

HP-IB Operations 35

The Command Statement
The command statement allows direct addressing of one or more devices on the bus by using

ASCII characters to specify talker or listener addresses and data. 1

Syntax:

select code address characters' ["data characters ,,]

or

'device name(s) . or select code [,. 'data characters ,]

As shown above, when a select code is specified, the address parameter is used to specify

the talker and listener addresses for the Data message. But, as shown in the second syntax,

device names or a select code can be used in place of the select code and address­

characters parameter. (The device statement is described at the start of this chapter.) In either

case, the data characters are output to the addressed listeners. Also, an equate name can be

used in place of the data characters. The equate statement is described later.

The command statement is provided for compatibility with HP 9820A, 9821 A, and 9830A

calculator programs. Use of this statement is completely described in the HP-IB User's

Guides: for 9820A/9821 A Calculators, specify part number 59300-90001; for 9830AlB Cal­

culator, specify part number 59300-90002.

When comparing this command statement with the ones available for the 9820A, 9821 A, and

9830A/B Calculators, notice that a select code parameter is now required, since the 98034A

Interface Card has a variable select code. Also notice that only one set of address-data

parameters can now be included in each statement.

For example, this sequence could be used to send the data message "L 1 00.0=" to program

an HP 3330A Synthesizer responding to address $ (decimal 04):

Clear all listeners ________ t t t'-________ Listen address (3330A)

Talker address (calculator)

If the device name were defined as "GEN" in the device (dev) statement, this sequence could

be used to send the same data message:

'ASCII address characters are described in the General 110 Programming Manual and in each device's operating manual.

36 HP-IB Operations

The? character should be included at the start of each address parameter to clear (unlisten)

all listeners on the bus. This instruction is automatically sent, however, when other I/O opera­

tions (wrt, red, tfr, etc.) are used on the bus, or when a device name is used in the command

statement, as shown above.

Here are two versions of a program that inputs, stores and computes the average of 50 data

samples from an HP 3490A Multimeter. The program shown on the left uses ASCII characters

to specify talker/listener addresses, while the one on the right uses device names. A brief

analysis of the program follows.

Using ASCII Characters

0: dim A$[SO,20):0+A:1+I+N
1 :
2: cmd 7,"?SV","FOR6T1M3E"
3: cmd 7,"?U6":red 7,A$[I)
4: cmd 7,"?SV","E"
S: if (I+1+I)<S1:jrnp-2
6: A+val(A$[N))+A
7: if (N+1+N)<S1:jmp -1
8: pr t A/SO
9: end
*3790

Using Device Names

0: dim A$[SO,20) iO+A:1+I+N
1: dey "calc",721,"dmm",722
2: cmd "dmm","FOR6T1M3E"
3: cmd "calc":red 7,A$[I)
4: cmd "dmm","E"
S: if (I+1+I)<S1:jmp-2
6: A+val(A$[N))+A
7: if (N+1+N)<S1:jmp -1
8: pr t A/SO
9: end
*27174

• Line a - Sets up a 50-element string array and initializes three varaibles.

• Line 1 - Sets up a device name table for the program on the right.

• Line 2 - Programs the 3490A to the 1 volt range and instructs it to take a data sample.

• Line 3 - Inputs the data sample into a string array element.

• Line 4 - Instructs the 3490A to take another data sample.

• Line 5 - Exits the data input loop when 50 samples are stored.

• Lines 6 thru 8 - Compute and print an average value from the data.

Another version of this program, which does not use command statements, is in Chapter 4 of

the General I/O Programming Manual. For another program using the command statements,

see the following pages.

HP-IB Operations 37

The Equate Statement
Syntax:

name 1 data string 1 [.• name 2 ...• data string 2 ... J

The equate statement sets up a list of names and data character strings for use with the

command statement. Each name can then be used in place of the data parameter in com­

mand statements to output the associated string of ASCII characters. The data string can be

either a sequence of text or a string variable name (String ROM needed). Each successive

equate statement adds the new names to the equate list; the same name, however, cannot be

used for more than one string at a time. The equate list is cleared when the calculator is reset

(8, run, erase, or power on).

For example, the following program is identical to the one shown on page 33 except that

command statements are used in most cases to control devices on the bus. The equate

statement in line 4 allows command statements to reference equate names "time" and "100

kohm", rather than specify the exact output strings. Using a string variable name as the data

string for "time" allows the string to be entered by the user (lines 2 and 3) before it is

"equated" in line 4. Notice that once the string is equated, however, it cannot be altered or

deleted until the calculator is reset. The rest of the program is as described on page 32.

0: dim T[5),A$[9)i "T E6ASR "+A$
1: dey "t i me r" , 7 0 6 , "scan" , 7 0 9 , "cloc k " , 720" , 7 2 0 , "dmm" , 7 2 2
2: ent "ENTER SAMPLE INTERVAL IN SECONDS" ,Nijmp N>lO and N<lOOO
3: str(N)+A$[2,4)
4: equ "time" ,A$, "lOOkohm", "R7S1T1M3E"
5: fmt 1,2/,2fz2.0,/,fz2.0,":",fz2.0,",fz2.0
6: fmt 2, /, "Channel", 2x, "Temp (C)", /,16"-"
7: fmt 3, f4 . 0 , fl2 . 4
8: fmt 4,"C",fz2.0,"E"
9: cmd"timer", "time" icmd "clock", "C"
10:
11: red "clock",Til+I
12: 100frc (T/100) +T[I)i int (T/100) +T ijmp (1+1+1) =6
13: wrt 16.1,"Oate: ",T[5),"/",T[4),"Time: ",T[3),T[2),T[1)
14: wrt 16.2
15: l+C
16:
17: wrt "scan. 4",C
18: cmd"dmm", "lOOkohm" ired"dmm",O
19: 3807/(10g(0)+9.39)-273+0
20: wrt16.3,C,Oiif (C+l+C)<8igto 16
21: if bit (6 , r ds ("t i mer")) = 1 i t r 9 "t i mer, cloc k " i 9 to 10
22: jmp-l
23: end
*11031

38 HP-IB Operations

Extended Read Status
Syntax:

select code [variable,[·. variable 2[·. variable 3]]] .•..••. variable 4

or

•. select code with device address ••

The Extended I/O ROM enables the read status function either to return up to four interface

status bytes or conduct a serial poll.

When only the interface select code is specified (2 thru 15), up to four variables can be

specified to return status bytes from the 98034A Interface. The fourth variable returns the

same status byte described in the General I/O Programming Manual. The interface status

bytes are shown on the next pages. The first status byte is returned to variable" the second

status byte is returned to variable2, and so on.

When a device address is specified in the select code parameter (as in the second syntax), a

serial poll is automatically conducted on the specified device. The function then returns the

status byte. Serial polling is described beginning on page 26.

bit 7 6 5

• Bit 0: Is 1 when error is detected.

4 3 2

Clear
Message

• Bit 2: Is 1 when a Clear (DCl) message has been received.

First Status Byte

bit 7 6 5 4 3 2

0 HP~IB fddC'"
(MSB)

• Bits 0 thru 4: Indicate the bus address set on the 98034A Interface.

Second Status Byte

o (LSB)

Error

o (LSB)

(LSB)

-

--

HP-IB Operations 39

bit 7 6 5 4 3 2 o (LSB)

EOI REN SRO ATN IFC NDAC NRFD DAV

• Logical 1 indicates that the corresponding bus control line is true. These lines are described in
the 98034A Installation and Service Manual.

Third Status Byte

bit 7 6 5 4 3 2 o (LSB)

Service Controller Talker Listener
System Serial

Controller 1 Poll EOI
Request Active Active Active

Set Set

• Bit 0: Is 1 when the EOI (end of data) line has been set true. This bit is cleared by a read status
(rds) operation.

• Bit 1: Is 1 when the Serial Poll function is set.

• Bit 2: Is always 1.

• Bit 3: Is 1 when the System Controller function is set.

• Bit 4: Is 1 when the calculator is an active listener.

• Bit 5: Is 1 when the calculator is an active talker.

• Bit 6: Is 1 when the calculator is an active controller.

• Bit 7: Is 1 when an instrument has sent a Require Service message.

Fourth Status Byte

-

40 HP-IB Operations

Chapter 4
Potpourri

This chapter describes additional operations available with the Extended I/O ROM.

Autostart
When the Extended I/O ROM is plugged in and a tape cartridge is installed, the calculator

automatically executes a load program 0 (

the calculator is switched on.

) statement from track 0 immediately after

The autostart routine permits the calculator to automatically load and run a supervisory pro­

gram, which in turn could define special function keys or load other programs without operator

instructions. The autostart routine is also performed after a power failure, enabling the cal­

culator to automatically reload and restart a program.

The autostart routine may also be initiated by a remote controller on the HP-IB. This is de­

scribed in Chapter 5 under "Abortive Interrupts".

As an example, suppose the calculator is being used in an environment where power interrup­

tions occur frequently. File 0 on track 0 contains the following program:

File 1 contains a memory file. Periodically, the calculator executes the record memory

••.) statement, storing the memory in its present state. If the power is interrupted with the

cartridge in the transport and the power comes back on, the system can be brought back up

without having to start over.

42 Potpourri

The Timeout Statement

Syntax:

................ limit in milliseconds

The timeout statement specifies a maximum time in which the calculator will wait for a

peripheral device to respond to an input or output operation.1 (Normally, the calculator simply

waits unt4llfthe device becomes ready to send or accept data.) Whenever a device does not

respond within the specified time interval, the calculator exits the I/O operation and displays

•.... !. The time limit can be up to 32767 milliseconds (about 32 seconds). If 0 is

specified, the time limit is cancelled. When"the timeout routine is in effect, 8 will not abort

the I/O operation. The timeout routine can be cancelled, however, by resetting the calculator

(erase command, run command or switch power on).

The timeout routine may be used in conjunction with error recovery to take alternate action if a

peripheral is not responding. See the next section.

The On Error Statement
Syntax:

label··

The on error statement enables an error recovery routine and specifies a label to branch to

when a calculator error occurs. Then, when an error is seen, the calculator does not halt and

display the error message; instead, it branches to the specified label and assigns values to

three read-only variables:

.••••• - The ROM in which the error occurred. 0 = mainframe; an ASCII-equivalent value

indicates the letter for plug-in ROM errors (an ASCII-decimal table is in the Appen­

dix) .

..... (- The error number .

.. . !. - The line in which the error occurred.

For example, if .. is executed and then error E2 occurs in line 17, the

calculator immediately exits the current line, branches to label "error", and assigns these

values to the error recovery variables: rom = 69, ern = 2, erl = 17.

The error recovery routine is cancelled after the calculator branches to the specified label.

Another on error statement must be executed to re-enable the routine. Resetting the calculator

(8, run command, erase command, or switch power on) also cancels the routine.

'I/o operations used with Buffered I/O (transfer statement) are not affected by the timeout routine. Buffered I/O is described in
Chapter 6.

NOTE

The on err statement should not be placed in the first line of

the error recovery routine; if it is, the calculator may con­

tinuously loop in the routine when an error occurs in that

line.

Potpourri 43

Here is a short program which reads and prints data readings from a digital voltmet8a.t select

code 3. Line 0 specifies a time limit of one second for each I/O operation. The on error

statement before each I/O operation specifies a routine to branch to when an error is seen.

0: time 1000
1: on err -dvm error"
2: red 3, A, B , C
3: on err "alt-prt"
4: wrt 6,A,B,C
5: 9 to 1
6: "dvm error" :dsp "DVM DOWN" istp igto 1
7: "alt-prt":
8: if rom=69 and ern=4iprt "TIHEUU'I''':gto 3
9: if rom=71 and ern=8;prt "PRIN'l'ER DOWN"
10: if rom=71 and ern=9iprt "CHECK INTERFACE"
1 1: pr t A, B , C
12: 9 to 1
13: end
*10921

The "dvm error" routine displays DVM DOWN and halts the program whenever any error

occurs in line 2. The "alt-prt" routine however, checks the error recovery variables and prints

the error which occurred. Then it prints the three items and continues the program.

Notice in each case that the on error statement must be re-executed to reset the error recovery

routine after an error occurs.

NOTE

The on error statement cannot be used to trap errors if the

program is stopped for an enter statement. For example, in

the following program you enter a string that exceeds two

characters. When you press CONTINUE, Error 89 is dis­

played and the program stops. The program will not branch

to error routine "E" because the error occurred on an enter

statement.

0: dim B $[2]
l:onerr"E"
2: ent"B$",B$
3: prtB$istp
4: "E":dsp"Error"istp
5: end

44 Potpourri

The Conversion Table Statement
Syntax:

[string variable name]

The conversion table statement assigns a pre-dimensioned string variable (String ROM

needed) to act as a conversion table for all General I/O and Extended I/O ROM input and

output operations. This statement sets up a conversion table completely separate from the

General I/O ROM's conversion statement, which is intended for conversion of delimiters, etc.

with read and write statements only. The ctbl statement can be used to set up a table of any

length up to 256 characters, allowing conversion to or from foreign (non ASCII) code.

To use the conversion table statement, a string variable must first be dimensioned and filled

with the ASCII characters to be converted. The position, or index, of each ASCII character in

the string corresponds to the value of a foreign-code character. These positions are all offset

by one, however, to allow conversion of a binary zero in the foreign-code set. Thus, the first

character in the table corresponds to a foreign code of 0, the second character corresponds

to a foreign code of 1, etc. Once the string is filled, the ctbl statement assigns the string as a

conversion table.

For input, each data character is read from the peripheral and used as an index into the

conversion table; the content of that location is then substituted for the input character. For

output, the table contents are searched (starting from the first character) for the character

being output; when it is found, the index of the character at that location is used as the output

code. If the ASCII code being searched for is not found, the code is sent untransformed. For

input conversion, if the character code read is larger than the size of the currently established

conversion table, the code is not converted.

Only one conversion table at a time is active. Executing another ctbl statement cancels the

former table and establishes the new one. A ctbl statement with no parameters cancels any

previous conversion string. This table should only be activated for the duration of the I/O

operation requiring the foreign code set; it should then be de-activated.

NOTE

I/O operations will also reference conversion (conv) and

parity (par) statements in addition to referencing ctbl. Refer

to "Conversion Protocol" later in this chapter.

•

Potpourri 45

For example, suppose that you wish to read and print sets of X-Y values from a paper tape

punched in EIA1 code. Each value is separated by a comma and each set of values is followed

by a carriage return (CR). Here is the complete foreign code to be used:

Character
Decimal Ec uivalent

EIA ASCII

0 32 48
1 1 49
2 2 50
3 19 51
4 4 52
5 21 53
6 22 54
7 7 55
8 8 56
9 25 57

59 44
107 46

Carr. Ret. 128(CR) 10(LF)

The ASCII decimal-equivalent values were found by using the ASCII table at the back of this

manual. Notice that the ASCII line feed was entered instead of carriage return, since the

calculator ignores CR but responds to LF as a terminating delimiter during free-field read.

Now a conversion table can be set up by using the table above. First, dimension a string

variable having one more element than the largest foreign code value to be converted (dec i­

mal 128 in this case):

0: dim C$[129];1+1

Next, fill the string with spaces (ASCII decimal 32) so that other characters can be assigned to

individual positions:

1:" "+C$[1,129]

Then store each ASCII character in the string position determined by the corresponding EIA

decimal value. (Remember that the string position is the foreign code value plus 1.) Either of

these methods can be used:

1 Electronic Industries Association standard.

46 Potpourri

2 : char(48)+C$[33,33] 2: 0 +C$[33,33]
3: char(49)+C$[2,2] 3: 1 +C$[2,2]
4 : char(50)+C$[3,3] 4: 2 +C$[3,3]
5: char(51)+C$[20,20] 5 : 3 +C$[20,20]
6 : char (52)+C$[5,5] 6 : 4 +C$ [5,5]
7 : char(53)+C$[22,22] 7: 5 +C $ [22,22]
8 : char(54)+C$[23,23) 8 : 6 +C $ [23,23 J
9: char(55)+C$[8,8) 9 : 7 +C $ [8,8)
10 : char(56)+C$[9,9) 10: "8"+C$[9,9)
1 1 : char(57)+C$[26,26) 1 1 : "9"+C$[26,26)
12 : char(44)+C$[60,60) 12: ","+C$[60,60)
1 3 : ch a r (46) +C $ [1 08 , 1 08] 13: " • II +C $ [1 08 , 1 08]
14: char(10)+C$[129,129) 14 : char(10)+C$[129,129]

Finally, the string can be assigned as a conversion table:

15: ctbl C$

With the above instructions, definition of the conversion table is complete. Since all remaining

elements in the string are defined as spaces, the table will convert any EIA character not in the

set to an ASCII space. The calculator, in turn, will ignore all spaces when reading with the

free-field format.

Once the conversion table is assigned, all I/O operations which follow will reference it. For

example, the next sequence will read ten sets of X-Y values, automatically reference the

conversion table as each character is input, and print the converted data items. Line 21

cancels the table so that other I/O operations do not reference it.

16: 1+1
17: red 3, X, Y
18: prt X,Yispc 2
19: if (1+ 1 + I) < = 10 i j mp - 2
20: ctbl
21: end

This conversion table could also be used to output numeric data, converting only the charac­

ters in the string to EIA (see the previous table) and passing all other characters, unchanged,

in ASCII. Note, however, that ASCII space (decimal 32) would be converted to binary 0 (ASCII

NULL), since the first position in the string contains decimal 32.

Substring Conversion Tables
The conversion table need not be based on an entire string. The index of the conversion table

is based on the string specified by the ctbl statement and not on the absolute locations of

characters in the original string variable.

Potpourri 47

As an example, here is a sequence which dimensions and fills a string with the entire ASCII

character set, but then sets up a conversion table using only ASCII A through Z (decimal 65

through 90):

0: dim A$[129]
1: char(1)+A$[1+l,1+l];jmp (1+1+1»128
2: ctbl A$[66,91]

So a 26-character conversion table is set up so that:

A = O,B = 1,C = 2,0 = 3, ...

The Parity Statement
Syntax:

parity type

The parity statement enables a parity check routine for input data and a parity-bit generating

routine for output data. The parity type specifies the routine:

type 0 - parity disabled.

type 1 - parity always 1.

type 2 - parity even.

type 3 - parity odd.

When parity is enabled, the output data is masked to 7 bits; then the specified parity bit is

calculated and set as the 8th bit. Input data is checked for the proper parity type;

is displayed if the parity bit is not correct.

The parity routine should only be active when using ASCII or another 7-bit code. If parity is

active during 8-bit or higher data transfers, erroneous results will occur. If a parity type outside

the above range is given, only the two least-significant bits of the binary representation of the

given parity type will be used. Thus, ••••• is the same as! .. Execution of

turns off the parity routine.

For example, the following program sequence inputs 50 data items from a paper tape

punched in ASCII with even parity. If an error occurs in line 1, the program jumps to the error

recovery routine, disables parity, and checks the error recovery variables. If error E7 has

occurred, the calculator displays BAD DATA. If any other error has occurred in line 1, how­

ever, the rest of the routine displays an error message.

•

48 Potpourri

0: par 2~on err "error"
1: red 2,A~prt A~jmp (1+1+1)=50
2: 9 to 8
3: "error":par 0
4: if rom=69 and ern=7~dsp "BAD DATA" ~beep~stp ~gto 0
5: rom+R;if R=0;32+R
6: fmt b,2f.0
7: wrt O,"ERROR ",R,ern," IN LINE ",erl~beep~stp
8: end

Notice that parity is disabled at the beginning of the "error" routine, so that it will not be

referenced by succeeding I/O operations.

Conversion Protocol
When more than one of the conversion routines: conversion (conv), conversion table (ctbl),

or parity (par) are active at the same time, they are executed in the following order. Remember

that conv is referenced by only read (red) and write (wrt) statements, while ctbl and par are

referenced by all General I/O and Extended I/O ROM input/output operations.

I calculator I ~~t = (conv):: (ctbl):=: (par)"':1 device I
Conversion Protocol

Remember also that ctbl and par are not applied to data being transferred between buffers

and peripherals, as described in Chapter 6. These conversions are applied at the time that

data is being written to, and read from the buffer using the normal read and write operations.

So the buffer always contains an exact representation of the data that came from, or is going

to, the peripheral.

I nterface Control Operations
The following four operations allow direct transfer of data or status information between the

calculator and the control registers on each interface card. It should be noted that, since these

operations are fundamental I/O routines, the user must completely understand the function

and I/O protocol of each interface card and peripheral device. If not, unexpected and/or

unwanted results could occur!

The Write Interface Statement

Syntax:

CAUTION

UNEXPECTED (AND SOMETIMES UNWANTED) RESULTS

CAN OCCUR WITH THE WTI STATEMENT IF THE USER DOES

NOT FULLY UNDERSTAND THE REQUIREMENTS OF THE

DEVICE BEING ADDRESSED.

select code

register no. expression

Potpourri 49

The first syntax is used to specify a select code for successive write interface and read

interface operations. The specified select code remains set until either another one is

specifieq or the calculator is reset (El, run command, erase command, or switch power on).

The second syntax is used to output 16-bit binary values directly to the pre-specified inter­

face. The register number may be an integer from 4 thru 7. The binary equivalent of the

expression is sent to the specified register. A general description of the interface control

registers is given below. For more details, refer to the appropriate interface installation and

service manual.

• R4 - Primary data register.

• R5 - Primary status/control register.

• R6 - Secondary data register.

• R7 - Secondary status/control register.

Extreme care should be taken when the wti statement is used with the select code 0 or 1.

These are the addresses of the internal display and tape cartridge, respectively, and require

special I/O and data protocol.

50 Potpourri

The Read Interface Function

Syntax:

register number

This function returns the 16-bit binary equivalent value of the interface register specified. The

select code currently set by a previous write interface statement determines the interface

addressed. returns the currently set select code parameter.

The I/O Flag Function

Syntax:

select code

This function returns a 1 or 0, indicating the state of the specified interface flag (FLG) line:

usually indicates that the peripheral is ready; 0 indicates that the peripheral is busy.

The I/O Status Function

Syntax:

select code

This function returns a 1 or 0, indicating the state of the specified interface status (STS)

line: 1 usually indicates that the peripheral is functioning; 0 indicates an error condition.

Refer to the interface installation and service manual for more details.

-

Potpou rri 51

I/O Drivers Example
Using the write interface (wti) statement, the read interface (rdi) function, the 1/0 flag (iof)

function, and the I/O status (ios) function, the input and output drivers can be simulated for the

98032A and 98033A interfaces.

This program example imitates the output drivers:

0: "Output sUbroutine":
1: ent "Select code?",S
2: ent "Data?",D
3: wti O,S
4: if iosS=O:gsb "down"
5: if iofS=O: jrnp 0
6: if bit(2,rds(S» :crnpD+D
7: wti 4, D
8: wti 7,0
9: ret
*3651

This program example imitates the input drivers:

0: "Input sUbroutine":
1: ent "Select code?",S
2: wti O,S
3: if iosS=O:g sb "down"
4: if iofS=O:jrnp 0
5: rdi 4+D
6: wti 7,0
7: if iofS=O:jrnp 0
8: rdi 4+D
9: if bit(3,rdi 5);crnpD+D
10: ret
*16352

-

-
52 Potpourri

Chapter 5
Interrupt Control

Introduction
The Extended I/O ROM provides the 9825A Calculator with the ability to run user-written

programs in various interrupt modes. That is, normal program execution may be interrupted to

perform other program lines at the request of external devices.

There are two types of interrupt capability: programmable and automatic. Programmable

interrupt is available for you to write routines for controlling peripheral devices and transfer­

ring data via special interfaces, such as the HP-IB. Automatic interrupt is a built-in feature of

certain I/O operations, providing them with a higher level of I/O control than a programmable

interrupt scheme could allow.

This chapter describes the three statements which provide you with programmable interrupt

capability: the on interrupt (oni), enable interrupt (eir), and interrupt return (iret) statements.

Chapter 6, Buffered I/O, shows how automatic interrupt is used with the I/O buffer feature for

hahdling data transfers in various formats. Automatic interrupt is also used by the calculator

keyboard, and has priority over programmable interrupt routines.

The Programmable Interrupt Scheme
The program lines which perform an interrupt service task are called a "service routine". The

oni statement is used to specify an interface card and the location in read/write memory of a

service routine to be executed when that interface card interrupts the calculator. The eir

statement is used to enable, or allow the interface card to interrupt when its peripheral device

requires service. The conditions which actually determine when the interface will interrupt

depend upon the interface card and the eir parameters, as described later.

When the interface card interrupts, the calculator "logs in" the request for service, disables

the interface from further interrupts, and branches to the pre-specified service routine after

completing the current program line. The service routine must be terminated with an iret

statement, which returns program control to the line which would have been executed next if

the interrupt hadn't occurred.

54 Interrupt Control

The general set up for an interrupt service routine is as follows:

(specify interface and label of service routine)

... (enable interface card to interrupt)

•
•
•

(main program)

•

•
•

(service routine lines) ••

The service routine can be any number of program lines needed to service the interrupting

device. The last line must be terminated by an iret statement. The iret must not be executed

except when accessed via interrupt control.

The calculator normally branches to each service routine between lines of the main program.

This is called End of Line (EOL) branching, and is described in the following sections. For

extreme cases, an "abortive interrupt" routine can be initiated, which causes the calculator to

immediately branch to the service routine. This is explained under "Abortive Interrupts".

Vectored Interrupt

The calculator I/O structure provides for two levels of EOL interrupt priority, based on interface

select codes: select codes 2 thru 7 have low-level priority, while select codes 8 thru 15 have

high-level priority. Automatic interrupts from the keyboard and the I/O Buffer feature (see

Chapter 6) are given priority over these high/low levels.

As the calculator is executing each program line, it logs in each interrupt request and assigns

it a priority. If more than one interrupt within a priority level is received, the one with the highest

select code is given highest priority. Then, at the end of the current program line, the cal­

culator compares any interrupts logged in with the current interrupt routines (if any) being

executed: if a new interrupt has a higher priority than the current routine, the calculator

branches to the new routine. But if the new interrupt is of equal or lower priority, the calculator

continues with the next program line of the current service routine.

--

-

-

Interrupt Control 55

For example, if a low-level interrupt routine is being serviced and a high-level interrupt comes

in, it does not need to wait until the low-level routine is finished. Rather, at the end of the

current line of the low-level service routine, control passes to the high-level routine. When the

high-level routine finishes (by executing its iret statement), control passes back to the low­

level routine to finish its service. The iret from that routine then returns control back to the main

program. Had another high-level interrupt logged in while the first high-level routine was in

progress, its priority would not be sufficient to interrupt that routine. When the first high-level

routine finished, however, the second high-level routine would have been executed entirely

before the calculator returned to finish the low-level routine.

Notice that within this EOL branching scheme, any interrupts logged in within a program line

are considered simultaneous interrupts. So if (within one line of the program) select code 4

interrupts and logs in, followed immediately by select code 6, they would both be logged in by

the end of the line, and select code 6 would be granted service first, even though it interrupted

slightly after select code 4. Once the service routine for select code 6 has started, however, a

new interrupt from, say select code 7, would have to wait for the select code 6 service routine

to be completed before being granted a branch to its service routine.

A line executed under the live keyboard mode takes priority over all service routines. It will be

executed at the end of the current program line, regardless of the current interrupt-level being

serviced. So the operator is never "locked out" by the EOL branching scheme, unless the live

keyboard has been previously disabled using the Ikd statement.

The On Interrupt Statement
Syntax:

•...• 'i: select code·· ··Iabel·· or string variable [.• abort byte]

This statement establishes linkages between each select code that will interrupt and the

location of a service routine in the program.

Only interfaces can interrupt, not internal devices. The select code must be a value from 2 thru

15. Since the keyboard (select code 0) and the tape drive (select code 1) are handled

automatically by the calculator, they are not available as interrupting devices.

The label or string variable specifies the first line of a service routine beginning with the

matching label. A line number cannot be used to specify the location of a service routine.

The optional abort byte is described later, under "Abortive Interrupts".

56 Interrupt Control

For example, this statement specifies to branch to the service routine labelled "plot" when the

interface at select code 5 interrupts.

0: oni 5,l pl o t"

This sequence sets up the same branch, but uses a string variable to specify the label name:

0: dim A$[5] ~"plot"+A$
1: oni 5,A$

At any time (including within the service routine itself) another oni statement for the same

select code may be executed, either to re-establish a new location for interrupts from that

device or to modify the abort byte. Each oni for a given select code cancels any previous oni

for the same select code.

The Enable Interrupt Statement

Syntax:

.... select code [.• interrupt enable byte]

Once a service routine and interface have been specified via the oni statement, the eir

statement actually enables the interface to interrupt. When the calculator is switched on or

8 is pressed, all interfaces are disabled from interrupting the calculator.

When the enabled interface interrupts, the calculator logs in the fact that the interface would

like service, and then disables the interface from further interrupts. This is to prevent the

interface from continually interrupting until its service routine has been executed. ~ you wish to

enable_ theirl!erf_~c;~_f_or further interrupts after the service routine is complete, another eir

statement with the desired interrupting conditions specified should be executed before exit­

ing the service routine (i.e., before the iret statement). This provides for repeated calls to the

service routine each time one of the specified conditions occurs.

To disable an interrupt, set the interrupt enable byte to zero (e.g., eir 7,0). The conditions for

which an interface can interrupt depends on the interrupt enable byte and the type of inter­

face. For example, specifying an interrupt enable byte of 128 (octal 200) sets control bit 7 on

the 98032A Interface, causing it to interrupt whenever its peripheral device is ready for more

operations (indicated by the peripheral flag line being true). So whenever an eir statement is

executed and no interrupt enable byte is given, a byte to set control bit 7 is automatically

given. The transfer statement (page 72) automatically enables an interrupt when it is used.

Since most peripherals connected via the 98032A Interface indicate "ready" most of the time,

the programmable interrupt scheme is not suited for data transfer operations with them. (An

exception is the 9862A Plotter, as described later.) The automatic interrupt scheme is specifi-

--

--

Interrupt Control 57

cally designed for data transfer with these devices. Examples of data transfer under automatic

interrupt control are in Chapter 6.

The Interrupt Return Statement
Syntax:

This statement is always the last statement executed in an interrupt service routine. It causes

program control to return to the program line that would have been executed next if the

interrupt had not come in. Although iret is the service routine equivalent of the ret statement for

a subroutine called by a gsb statement, the two statements cannot be mixed; so a gsb call

must end with a ret statement, and a branch to an interrupt service routine (initiated by the

interface card) must end with an iret statement.

Example Application
The 9862A Plotter is a device which requires data in non-ASCII code and in a special format.

The 9862A Plotter ROM generates the special code to control the plotter. Although the plotter

is a comparatively slow device (due to its mechanical plotting requirements), it is connected

via the 98032A Interface, so the programmable interrupt scheme can be used to speed up

program execution time by reducing the time spent waiting for the plotter.

The following sequence shows one method to allow the calculator to rapidly calculate and

store data points in an internal array, while a service routine outputs the points to the plotter.

This enables the calculator to perform lengthy calculations, or even control other I/O devices,

while also driving the plotter at its fastest rate.

0: d im A [1 0 00 , 2]
1: oni 5,"plot"
2: O+J i 1 +1

• • •
10: ifI>1000;gto21

• • •
18: X+A[I,I]iY+Al1,2]
19: 1+1+1
20: eir 5igto 10
21: if J+l<1ieir 5ijmp 0
22: pe n i pl t 100, 1 00
23: end
24:
25: "plot":
26: if J+l>=1ijmp 2
27: J + 1 +J i pl t A [J , 1] , A [J , 2]
28: iret

58 Interrupt Control

• Line 0 - Dimensions an array to hold 1000 sets of plotter coordinates.

• Line 1 - Sets up an interrupt routine such that the program will branch to label "plot"

whenever the plotter is ready for another set of coordinates.

• Line 2 - Initialize J, the output pointer, and I, the input pointer.

• Line 10 - Check if computation of plot coordinates is complete.

• Line 11 thru 18 - Compute one set of X-Y coordinates.

• Line 19 - Increment input pointer.

• Line 20 - Enable interrupt 5 and continue computing X-V coordinates.

• Line 21 - Plot computation is complete, so continue in loop until output pointer plus one

equals input pOinter.

• Line 22 & 23 - Lift pen & move out of way at the end.

• Lines 25 thru 28 - Interrupt routine to plot each point.

HP-IB Interrupt Control

The 98034A HP-IB Interface can interrupt for a variety of conditions, each of which may be

independently enabled (in any combination) by specifying the appropriate interrupt enable

byte in an eir statement. The byte is specified as a decimal (or octal when the octal mode is

set) equival~nt of an 8-bit binary value, where each bit specifies an interrupt condition as

shown below.

bit 7 6 5 4 3 2 o (lSB)

SRQ
Active Active Active I

0 Controller Talker Listener (Internal Use Only) DCl

I

• Bit 7: Interrupt on Require Service (SRQ) Message.

• Bit 6: Interrupt on becoming Active Controller.

• Bit 5: Interrupt on becoming Active Talker.

• Bit 4: Interrupt on becoming Active Listener.

• Bit 3: Interrupt on input register ful1. 1

• Bit 2: Interrupt on output register empty.1

• Bit 1: Interrupt on Clear (DCl) message.

• Bit 0: Always set to 0. 1

'These bits are for internal use only; see text.

98034A Interrupt-Enable Byte

-

Interrupt Control 59

When the calculator is the active controller on the bus, the Require Service (SRQ) message

(bit 7) is the only interrupt condition needed from a device; therefore bit 7 is automatically set

when an interrupt byte is not specified. This is equivalent to specifying a byte of decimal 128

or octal 200.

Bits 1,4, 5, and 6 are useful when the calculator is not the active controller on the bus. This

allows the program to go on with other tasks, but to be interrupted when the controller addres­

ses the calculator (as a peripheral device) to talk, listen, respond to a Clear (DCl) message,

or take active control. Bits 0, 2, and 3 are used by automatic interrupt control routines only,

and should not be set by the user.

When an interrupt enable byte is specified for a 98034A Interface, bits 1, 4, 5, and 6 are not

automatically cleared when the calculator logs in an interrupt from the card. Only bit 7 (SRQ) is

cleared automatically. So an interrupt is enabled again whenever any of those bits (1,4,5, and

6) are set, until either another eir statement changes the byte or the calculator is reset.

For example, suppose that you wish to monitor three devices that can send Require Service

messages and respond to a parallel poll via the HP-IB. When parallel polled, device X re­

sponds by sending status bit 4, device Y sends bit 2, and device Z sends bit O. The parallel

poll (pol) function returns all bits in one 8-bit byte. Here is a sequence which sets up service

routine "SRQ" to parallel poll the bus and then branch to a subroutine to service each device.

(Bus polling methods are described in Chapter 3.)

1 0 : oni 7, "SRQ"
1 1 : eir 7

• • •
40: "SRQ":pol(7)+P
4 1 : if bit(4,P)=1;gsb "svc X"
42: if bit(2,P)=1;gsb "svc y"
4 3: if bit(O,P)=l;gsb "svc Z"
44: eir 7; ire t
45: "svc X": ••• ; ret
46: "svc y": ••• ; ret
47: "svc Z": ••• ; ret
48: end

By using this method, the calculator runs its main program (lines 12 through 39) while waiting

for a device to interrupt. When a Require Service message is seen (bit 7 on the 98034A

Interface), the calculator automatically branches to the service routine between program

lines. The eir statement (line 44) is needed to re-enable interrupt on bit 7 (SRQ) after each

pass through the service routine.

60 Interrupt Control

Remember that interrupts are not generated by specific devices on the bus, but only by the

98034A Interface itself. So, if more than one device on the bus is able to request service, the

only interrupting condition is via the SRQ line. The service routine can determine which de­

vices on the bus are currently requesting service, however, via a serial and/or parallel poll.

Also, it is not possible to establish two different service routines for the same interface: one

for active talker and another for active listener, for example. Each oni statement cancels any

previous oni statement for the same select code. If both of these conditions are set as inter­

rupting conditions, the service routine must determine which condition caused the interrupt by

using the rds function, and then test the appropriate talk/listen bits in the status byte returned.

For example, here is part of an interrupt method used when the calculator controls a subsys­

tem of data measurement devices, and is also controlled by another device on the bus. Line

10 sets up a service routine and enables interrupt from the bus for any of three

conditions: active talker, active listener, or active controller. When the calculator is not on the

bus, it runs a data reduction and plotting program (lines 11 thru 49). When the active controller

interrupts, service routine "SUS" determines which bus function has been addressed (talker,

listener, or controller) and branches to an appropriate subroutine. The "TALK" subroutine

sends data to the controller. The "LISTEN" subroutine inputs control information for the cal­

culator. The "CONTROL" subroutine programs and takes data from the measurement devices

on the bus; then the pass control (pct) statement returns active control to the other controller

(address 26).

10: oni 7,"BUS";eir 7,112

---50: "BUS":rds(7)+A
51: if bit(4,A)=1;gsb "TALK"
52: if bit(5,A)=1;gsb "LISTEN"
53: if bit(6,A)=1;gsb "CONTROL"
54: iret
55: "TALK" :wrt 731,A[I]iret
56: "LISTEN" :red731,A$."iret
57: "CONTROL": _. _ ; pet 726; ret
58: end

Interrupt Control 61

Abortive Interrupts
The oni statement described earlier in this chapter allows for an optional abort byte parameter.

Normally, interrupts using the end-of-line (EOL) branching scheme described earlier are

sufficient, and interrupts are serviced in a reasonable amount of time. Some extraordinary

circumstances, however, may require that a critical interrupt (e.g., a warning from a device of

a critical or dangerous situation that must be corrected immediately) must be serviced in as

short a time as possible. For these rare situations, the abort byte can be used.

NOTE

Abortive I nterrupts should be used with extreme care.

If an interrupt has been declared abortive, this is detected as soon as the interrupt is received

by the calculator and an immediate branch to the service routine is performed. The currently

executing line of the main program is aborted, any other pending interrupts are cancelled, and

an immediate branch to the service routine is performed, unless a record or load operation is

being performed on the tape cartridge. The record or load operation is completed before an

interrupt branch takes place. (Interrupts are not recognized during cartridge operations.) As

far as the calculator is concerned, an abortive interrupt is nearly the same as pressing 8
followed by executing ", where "label" is the location of the interrupt

service routine specified in the oni statement. This is a drastic action for extreme cases only,

since variables that were being modified when the action occurred may be lost. Also, all

pending gosubs and for/next loops are lost. The only meaningful action after an abortive

interrupt is to perform any I/O operations necessary to quickly correct or halt the critical

situation, followed by loading an entirely new program to bring the system back to an opera­

tional state.

The abort byte in the oni statement specifies a binary value of which only the four least­

significant bits are used for the 98032A I nterface. Bits 2 and 3 however, should not be used

since they are preset on the interface card. This byte is logically ANDed with the lower four bits

of the status byte to determine whether the interrupt is to be abortive. Thus, if any of the bits set

in the abort byte are also set in the' status byte at the time the interrupt occurs, the interrupt is

to be abortive.

The 98032A status byte is described in the General I/O Programming Manual; only the four

least-significant bits are described here:

•

62 Interrupt Control

bit 8 7 6 5 4 3 2 .0 (LSB)

I I I I Invert Invert I
Extended Not Used Input Output
Strus

I I I I Data Data

• Bits 0 and 1 - Indicate the state of optional device status-input lines (see the 98032A Installation
and Service Manual for details).

• Bits 2 and 3 - Indicate states of logic levels preset on the 98032A Interface. Each of these bits is
logical 1 when the corresponding jumper wire on the 98032A is installed to invert data.

98032A Abort Byte

For example, if this oni statement is in effect:, and the

interrupt is enabled:, an abortive interrupt will occur to the service routine labelled

"overflow" when bit 1 (binary 2) of the status byte is logical 1. But, if this oni statement is

used: •.... the abortive interrupt occurs when either status bit 0

or 1 or both are logical 1.

The abort byte for the 98034A HP-IB Interface uses only the two least-significant bits. So, the

range of a meaningful abort byte is from 1 thru 3. The 98034A abort byte is shown next.

bit 7 6 5 4 3 2 o (lSB)

I I I I I Require Clear
Not Used Service Message

I I I I I Message (DCl)

• Bit 0: Execute autostart routine when a Clear message (DCl) is received.

• Bit 1: Abortive interrupt when a Require Service message is received.

98034A HP-IB Interface Abort Byte

If bit 1 is set, a Require Service message on the bus will cause an abortive interrupt. If bit 0 is

set, the Clear message from the controller on the bus will initiate the autostart routine (see

Chapter 3). Thus, when the calculator is acting as a peripheral on an HP-IB the program may

either perform its own definition of the Clear message via a normal programmable interrupt, or

it may use that message to cause power-on auto-restart by setting the abort byte. Remember

that the 98034A Card is set to interrupt (normal or autostart) on the Clear message by setting

bit 1 of the interrupt enable byte in the eir statement.

Normal EOL interrupts are serviced only when the program is running. Abortive interrupts and

autostart on the Clear message are serviced anytime except during, or immediately after,

-

I nterrupt Control 63

program editing (before run is executed). If an abortive interrupt is encountered while a

program is being edited, pressing 8 may be required to return control to the keyboard. In

all cases, abortive interrupts should be used with extreme care!

I nterface Control Bits
The eir statement and the General I/O write control (wtc) statement both output to control

register (R5) of an interface card. The differences in their actions is described next.

The write control statement provides a means of modifying bit 0, 1, and 5 of the control byte for

the 98032A Interface. The format of this control byte is shown below.

bit 7 6 5 4 3 2 o (LSB)

Interrupt DMA Reset
Auto

N/A N/A CTL1 CTL 0
Handshake

98032 Interface Control Bits

Only bits 0, 1, and 5 are settable with the wtc statement (bits 2 and 3 are not used by the

98032A). Any of these bits (0 thru 7) may be set or cleared, however, by using the appropriate

interrupt enable byte in the eir statement. When no byte is specified, bit 7 is automatically set

to enable interrupt whenever the peripheral flag line is true. Bits 4 and 6 should not be set via

an eir statement since, if they are set at the wrong time, they can disrupt normal Extended I/O

operations.

You may wish to modify the settings of bits 0 thru 3 of the control byte. If these bits are set via

the wtc statement, they remain set as specified until the next automatic write to the control

register by the Extended I/O ROM to service an interrupt. If these bits are set via an eir

statement, however, the setting is saved and the state of bits 0 thru 3 is preserved whenever

an output to the control register is required to service interrupts.

For example, executing this statement (in the octal mode): '" ••••••.••• enables the inter-

face at select code 5 for interrupt and sets control bits 0 and 1. When the device interrupts, the

calculator automatically clears bit 7 to disable interrupt until the service routine is reached.

The state of bits 0 thru 3 will be remembered and preserved. Also, ... ',,, •.••• could be used

to set the two control bits without enabling interrupt. A later transfer (tfr) statement1 would

automatically enable (and disable when complete) interrupts while maintaining the setting of

the four control bits. If these bits had been set via a wtc, however, their settings would not be

maintained.

'The transfer statement is used only with an 1/0 Buffer, as explained in Chapter 6.

-

64 Interrupt Control

Interrupt Lockouts
During certain critical operations within the calculator, all programmable and automatic inter­

rupts may be disabled for short time periods. Usually, these lockout periods are only a few

microseconds. An exception to this is during tape drive operations. While a find file (fdf)

operation is in progress, for example, the DMA channel is in use and is not available for

transfer operations. This simply means that a transfer (tfr) statement that is attempting to set

up a DMA transfer will wait for the find file operation to be completed before being granted

access to the DMA channel. Similarily, a fdf statement must wait for a tfr to be completed

before it can use the DMA channel.

While a tape data transfer is in progress (e.g., load program, record program) the entire

interrupt mechanism is turned off. So any devices attempting to interrupt during this time will

not be logged in until the tape drive operation is completed. So you should exercise care in

writing a program in which critical interrupts and tape drive operations are interleaved. Inter­

rupts are also locked out for the duration of a Fast Read/Write data transfer (see Chapter 6) in

order to provide the data transfer rate required. The tfr statement sets up the transfer opera­

tion, but the device determines when the transfer begins.

Normal interrupt operation is resumed after each of these interrupt lockout operations is

finished.

Variables with Interrupt Service Routines

The programmer should remember when writing interrupt service routines that all variables in

the 9825A are "global" variables (except p-numbers, see Advanced Programming Manual).

This means that they are recognized and modifiable in all segments of the program. So care

should be taken to ensure that an interrupt service rouine (which can be called at any point in

the program) does not inadvertently modify program variables used by either the main prog­

ram or a lower-level service routine.

Also, program modes should be carefully watched. If, for example, a line in the program were

of the form:

parity would be cancelled (par 0) before the calculator could branch to a service routine. If the

par 0 statement were on the next line of the program, however, a service routine could

interrupt while parity type 3 is still set, which could generate unexpected results within the

service routine.

--

-'

-

Interrupt Control 65

When interrupts are being used, care should be exercised to prevent modes such as par,

conv, ctbl, or moct from being active when they are not needed. Similarly, executing format

statements from within service routines should be done with care, since they may override

formats previously set in the main program.

66 Interrupt Control

Introduction

Chapter 6
Buffered I/O

For the majority of I/O operations, the speed of the calculator and the speed of a peripheral are

reasonably matched, so the General I/O read and write statements will easily accomplish the

data transfer. Very slow and very fast peripherals, however, create speed mismatches which

can usually be overcome by using buffered I/O.

The Buffered I/O Scheme
The buffered I/O scheme enables the calculator to automatically transfer data to or from

external devices using various modes and data formats. Automatic interrupt control is enabled

with each transfer operation.

The buffer (buf) statement allocates and names an area of read/write memory as an I/O data

buffer. It also specifies whether the buffer is to use a 16-bit binary (word) or 8-bit ASCII (byte)

format. The type of data transfer to be performed is also specified. Once the buffer is allo­

cated, General I/O read- and write-type operations are used to exchange data between the

buffer and calculator variables, whire the transfer (tfr) statement is used to exchange data

between the buffer and the external device. I n effect, the buffer becomes the peripheral

device for read and write operations. The next figure shows this I/O buffer scheme.

wrt

red

The I/O Buffer Scheme

tfr External
Device

68 Buffered I/O

Automatic Interrupt
As described in Chapter 5, programmable interrupts allow you to perform any sequence of

operations to service a peripheral interrupt. If the task to be performed is simple data transfer

between the calculator and a peripheral, however, the Extended I/O ROM provides an automa­

tic mechanism for handling interrupts with an I/O buffer. This automatic interrupt is set up

whenever a transfer statement is executed, and takes priority over programmable interrupts.

For high speed data transfers, as explained later, the automatic interrupt even disables

keyboard interrupts while the transfer is in progress.

Buffer Types
The buffer statement specifies which of these buffer types is to be set up: interrupt (type 0 or

1), fast read/write (type 2 or 3), or DMA (direct memory access, type 4). The even numbers

indicate word (16 bit) format, while the odd numbers indicate byte (8 bit) format. The buffer

type specified should match the speed and data format of the external device.

Some devices are extremely slow (such as a 11 O-baud teleprinter) or totally time-random (like

an operator controlled digitizer). With General I/O ROM operations, the calculator simply waits

on these devices to complete each I/O operation. If the time spent waiting is significant, and if

the program could be performing other calculations while it is waiting for these devices, the

interrupt buffer can be used to send or receive each item of data under interrupt while the

calculator is performing other useful work.

On the other end of the speed spectrum are very fast devices (such as digital voltmeters and

fast analog-to-digital converters) which deliver data at a rate faster than can be read using the

read statement. Either a fast read/write or DMA buffer can be used to simply gather the data as

fast as possible without spending the time to convert the data to the calculator's internal

format (i.e., formatting, converting to floating-point representation, etc.). This work can all be

done later, after the data has been input.

The following table summarizes the uses for each buffer type. Notice that I/O operations with

medium speed devices (such as a 9866A/B or 9871A Printer, or most HP-IB modules) are not

listed in the table, since General I/O read- and write-type operations provide an optimum data

transfer rate for most cases. I n applications where considerable time is spent on the data

transfer, however, use of either the interrupt or DMA buffer may save execution time.

...

I/O Buffer Applications

Example Application

Slow Devices:
• 9863A Tape Reader
• 9869A Card Reader
• 9884A Tape Punch

Random-time Devices:
• 9864A Digitizer

High-Speed Devices:
• 9883A Tape Reader
• HP-IB data input
• Burst Read from DVM

Synchronous

Interrupt
Interrupt
Interrupt

Interrupt

Buffer Type

Fast Read/Write or DMN
Fast Read/Write'
Fast Read/Write or DMN

DMA

'The DMA buffer cannot be used with HP-IB; use a fast read/write buffer for the fastest transfer rate.

'For byte transfers, the fast read/write buffer offers the most effecient memory usage.

Buffered I/O 69

Use a fast read/write buffer when tape drive (or disk) operations are to be done during data

transfer, since a DMA buffer, tape drive and disk require use of the same DMA channel.

The Interrupt Buffer

When a transfer statement using an interrupt buffer is executed, it automatically enables the

device to interrupt each time it is ready to output or input another word or byte of data. Then

the calculator goes on executing the program statements and lines following the transfer

statement. Each time the peripheral is ready, it generates an interrupt, transfers the next word

or byte of data, and goes busy again. In the meantime, program execution continues normally,

interrupting only long enough to transfer the next data character. This operation continues

until the last data character has been transferred, at which time the calculator completes the

transfer and disables the peripheral from further interrupts. Note that the entire transfer opera­

tion is automatically handled by the calculator and no interrupt service routine is required in

the program. Also, each new data request by the peripheral is serviced when received and not

at the end of the current line of the user program. End of line (EOL) branching is used only with

programmable interrupts, as explained in Chapter 5.

The Fast Read/Write Buffer
Data transfer with a fast read/write buffer is similar to using an interrupt buffer, except that

once the data transfer has begun, all interrupts are disabled until the last data item is transfer­

red. None of the main program is executed for the duration of this data exchange. When the

transfer is complete, interrupts for other select codes are re-enabled, and the main program

continues execution from where it was interrupted. A fast read/write transfer begins when the

device interrupts, and continues in a fast I/O exchange until completed.

70 Buffered 1/0

The DMA Buffer

Using a DMA buffer can achieve even faster data transfer rates through the use of direct

memory access. In this mode, data is exchanged between the buffer and the peripheral

directly by the calculator processor and independent of the ROM software routines. The DMA

transfer occurs on a "cycle stealing" basis, without any disruption of normal program flow.

Only the 98032A Interface is capable of running in the DMA mode. For the HP-IB, the Fast

ReadlWrite buffer scheme affords the fastest transfer rate.

All of these transfer operations are completely automatic. All you need do, for sayan output

operation, is set up the buffer area (buf statement), fill it with data (wrt or wtb statement), and

initiate the transfer to the peripheral (tfr statement). The automatic interrupt service and buffer

management is taken care of by the calculator.

Buffer Underflow and Overflow

The 1/0 buffer may be written into and read from using any sequence of read, write, and

transfer (tfr) operations, provided that the buffer operation does not cause underflow or over­

flow (i.e., attempting to read from an empty buffer or write to a full buffer). If a buffer is only

partially filled and then emptied, more data may be written into the buffer without erasing the

information left in the buffer from the previous write operation. The data is not repacked within

the buffer area, however, and any unused space is left in the low end of the buffer. Thus, buffer

overflow error E5 may occur even when the buffer contains fewer characters than the size

originally specified. When the buffer is emptied (the last character has been output) the buffer

may be filled completely again. So partial reads should be done with care. See page 75 for an

explanation of buffer poiners.

The Buffer Statement

Syntax:

name" [buffer size or string variable" buffer type]

The buffer statement is similar to the dimension (dim) statement in that it allocates and names

an area of readlwrite memory. As with the dim statement, once a buffer has been allocated it

cannot be modified (i.e., the name, size, and type cannot be changed) or de-allocated. The

buffer can be cleared, however, by executing the syntax:

"name "

The purpose of the buffer for output operations is to prepare and hold data to be transferred to

a peripheral by one of the automatic transfer operations described in this chapter. For input

operations, it provides a means of buffering data received from a peripheral at its own rate,

and reading this data into calculator variables when the program is ready to receive them.

--

-
Buffered I/O 71

The buffer name can be any string of characters in quotes or a string variable name. The name

is then used in place of the select code parameter in I/O operations with the buffer. If a string

variable name is used, string operations can be performed on the string buffer (with the String

Variables ROM).

The buffer size specifies how large an area of memory is to be allocated. The size is specified

in either words or bytes, depending upon the buffer type specified. In addition to the specified

size, each buffer uses an additional 16 bytes of read/write memory as working storage (over­

head). Also string variables can be assigned as buffers, as described later.

The buffer type is a number from 0 thru 4 which specifies one of these types:

I/O Buffer Types

Type Buffer Type Data Format

0 Interrupt buffer words
1 I nterru pt buffer bytes
2 Fast read/write buffer words
3 Fast read/write buffer bytes
4 DMA buffer words

The buffer type specifies whether the buffer is to hold bytes (8-bit characters) or words (16-bit

binary data). It also specifies the mode of operation for transfer of data to or from a peripheral

device. These buffer types were described earlier.

Once the buffer has been established, General I/O read- and write-type operations are used to

exchange data between the buffer and the calculator's internal variables. This is done by

simply using the buffer name in place of the select code parameter in read- and write-type

statements and functions. The same data that would normally be sent to the peripheral (for

write operations) is sent to the specified buffer instead. Within this buffer, the data exists as a

simple byte or word sequence, and the General I/O formatting capability may be used to write

data to the buffer. Similarly, the byte or word data sequence can be read from the buffer into

internal variables, under format control if desired. To specify a format statement in read- and

write-type operations, the "name" parameter has the following form:

. name .. format no ...

Since buffer names and device names (see "The Device Statement" in Chapter 3) may be

used in place of the select code parameter in read- and write-type operations; a buffer and a

device cannot be given the same name. If a buffer statement is executed and the specified

name has already been used as either a device name or another buffer name, error E2 will

result.

•

72 Buffered I/O

Syntax:

The Transfer Statement

source '; destination['; character count['; last character]]

source = buffer "name" or select code

destination = buffer "name" or select code

As mentioned in the previous section, General I/O operations are used to put data into a buffer

from calculator variables, or take data from the buffer and put it into calculator variables. The

transfer statement is used to exchange data between the buffer and a peripheral device. If the

source is a buffer, the destination must be a select code or device name, and vice versa.

Data Output

To transfer data from the buffer to the peripheral, the source parameter is the name of the

buffer and the destination parameter is the select code or device name of the peripheral to

receive the data. The mode of transfer is determined by the buffer type.

The character-count parameter can be used to terminate the output transfer when the

specified number of bytes or words are output. When this parameter is not given, the transfer

is terminated after the buffer is emptied. The last-character parameter is ignored during an

output transfer.

For example, this program sequence sets up a 300-character interrupt buffer for holding sets

of variables to be printed on a teleprinter. Lines 6 thru 20 calculate each set of variables and

then write them into the buffer. The transfer statement sets up the automatic output routine

between the buffer and the printer on select code 3. After enabling the printer to interrupt

when it is ready for each successive character, program execution resumes with the next

statement.

5: buf "out",300,1
6: for 1=1 to 100

• • • 20: wtb "out",A,B,C
21: next I
22: tfr "out",3
23: end

Notice that the tfr statement is executed only once to set up the automatic transfer operation.

In this sequence, the transfer operation is in effect until either the buffer is emptied (underflow)

or overfilled via the write statement (overflow). Error E5 indicates underflow or overflow. Since

the buffer is large enough to hold many sets of variables, overflow may not occur if the printer

is fast enough to keep up with program execution. If the printer is too fast, the buffer will empty

and the transfer will have to be re-initialized after new data is written into the buffer.

-

-

Buffered 1/0 73

To avoid error E5 the program can be written to detect the current buffer size, and branch to

wait until the buffer is emptied before doing the next write statement (avoid overflow) or to

re-execute the tfr statement if the buffer has been emptied already (avoid underflow). See

"Buffer Status" later in this chapter for details.

Data Input

For transfer operations into an 1/0 buffer, the source is specified as a select code or a device

name and the destination is specified as a buffer name. Upon execution of the transfer

statement, data is taken from the peripheral and placed in the buffer according to the buffer

type specified. When the transfer is complete, the data is then taken from the buffer using

General 1/0 read operations, with the buffer name in place of the select code, and using

formatting if desired.

During the transfer from the peripheral to the buffer, the calculator must have some way of

knowing when the operation is complete, that is, when the last word or byte has been re­

ceived. You can specify this cutoff condition in the transfer statement through the optional

character-count and last-character parameters. The character count is the number of words or

bytes to be read in order to complete the transfer operation. If this value is larger than the

space available in the buffer, the input transfer is terminated when the buffer is filled.

The last-character parameter is used by byte-type buffers only to terminate when the specified

character is input. For example, when decimal 10 (or octal 12) is specified, the input transfer

will terminate after an ASCII line feed has been input. If a last character is given, the number of

characters must also be specified, although it may be given as zero to indicate that only the

terminating character or filling the buffer is to act as the cutoff condition. For example, in this

sequence:

1: mdec;buf "hold",750,3
2: tf r 3," hold" ,500, 10

data is transferred from the device on select code 3 to the buffer "hold", until either 500

characters are read or an ASCII line feed is seen.

When using the transfer statement with the HP-IB to input into a buffer, the transfer can be

terminated as described above or by End Or Identify (EOI). Refer to the Appendix; The HP

Interface Bus.

74 Buffered I/O

I/O Buffer Status
Since data transfers using a buffer are done automatically while the main program is running,

a method is needed for the program to detect when the buffer transfer is finished. There are

two methods available for doing this, one uses the read status (rds) function and the other

uses a programmable interrupt service routine.

The program can check current buffer status by executing this read status function:

Syntax:

: "buffer name":

The function returns -1 whenever a transfer statement is active with the buffer. When the

buffer is not busy, the number of words or bytes currently available for output from the buffer is

returned as its status. Thus, a buffer that has finished a transfer to a device will show a status

of zero and a buffer that has finished a transfer from a device will show a status equal to the

character-count parameter (plus any data that was left in the buffer from previous operations).

The second method of detecting the completion of a transfer operation makes use of the

programmable interrupt scheme. When a transfer operation has just been completed, and an

"oni" location has been previously set up for the same select code, a normal end-of-line

service request is logged in. The program then branches to the service routine according to

the programmable interrupt scheme explained in Chapter 5.

For example, this sequence specifies that 50 characters (bytes) should be transferred from

the device on select code 2, and placed in the buffer called "data". When the transfer is

complete, an interrupt is logged in to branch to the service routine labelled "done". Notice that

an enable interrupt (eir) statement is not needed (or should not be used!) to enable an

interrupt from the same select code; it's done automatically by the transfer operation.

0: oni 2,"done"
1: buf "data",50,1
2: tfr 2,"data",50

NOTE

If an eir and a tfr statement are in effect for the same select

code, the service routine will probably be executed before

the transfer operation.

--

-

--

-

Buffered I/O 75

As another example, suppose that we have a calculator-digitizer-printer system and wish to

digitize, compute, and print data as fast as possible. The digitizer is connected via a 98032A

Interface set to select code 3. Data pOints are randomly input, since the operator must manu­

ally move the digitizer cursor from point to point.

By using the following method, the calculator is free to compute and print data (lines 8 thru 24)

while the operator digitizes each new data point. The transfer statement automatically inputs

one data point (a 15-character sequence) and then logs in an interrupt causing the calculator

to branch to service routine "read". The service routine then empties the current data from the

buffer, counts data points, and returns control to the main program. If the main program

sequence is finished before the current transfer operation is complete, the calculator displays

and waits (executes line 25 continually) until the buffer has

been filled and emptied.

Remember that buffer status is -1 when a transfer is active, and 0 when the buffer is empty.

5: oni 3,lIread li

6: buf IIdigitize ll , 15, 1
7: tfr 3,lIdigitize li

• • •
25: dsp IIDigitize Next pointll;jrnp rds(lIdigitizell)=O
26: gto 7
27: IIreadll:red "digitizell,X,Y
28: I+l+I;iret
29: end

Buffer Pointers

Each I/O buffer has two internal pointers which indicate the last word or byte currently input

and output. The following diagrams show the position of these pointers after various opera­

tions using a 20-byte output buffer. A 1 indicates an input pointer and a t indicates an output

pointer. The read status function

mine the current buffer status.

1. Set up a 20-byte buffer:

2. Write five characters into buffer:

was executed after each operation to deter-

1 t (buffer status 0)

ABCDE

t (buffer status 5)

--

76 Buffered I/O

3. Transfer three characters out:

Note that ABC still remains in the buffer.

4. Write more characters in:

5. Attempt to write too many more charac-
ters into buffer: 11 characters

6. Transfer remainder of buffer out:

7. Now the buffer can be filled with new

data: (a = a space):

8. Transfer 19 bytes out:

9. Attempt to write in one byte:

Gives error E5 no room to store it.

10. Remove the last byte:

The buffer can now be refilled.

\ ABC DE

1 t (buffer status = 2)

ABCDE12345@@

1 t
(buffer status = 9)

;:::' (. (. () (. E: ::::; D
(buffer status = 17)

ABCDE12345@@

1 t (buffer status = 0)

~~~~~~~3 .14159265360 

(buffer status = 20) 

~~~~~~~3.14159265360 

(buffer status = 1) 1 t

(buffer status unchanged)

~~~~~~~3.14159265360 

1 t (buffer status = 0) 

Notice in each step, that buffer status indicates the number of bytes available for output (the 

number of bytes between pointers) and not necessarily the total number of bytes in the buffer. 

As shown by steps i5 and 9, the buffer cannot be refilled after being only partially emptied -

the buffer must be emptied completely before it can be filled again. Also remember that data 

which has been output from the buffer can not be output again, even though it is still in the 

buffer. 

When unwanted data remains in the buffer, as after step 8, it can be removed by executing the 

buf statement with the buffer name as shown. 

In the case where a string variable is used as the buffer (refer to the next section), it can be 

seen (by printing the string) that the contents of the buffer are not changed, only the input and 

output pointers are reset (buffer status = 50) by the buf statement. 

-



-

-

Buffered I/O 77 

String Variables as Buffers 

The size parameter in the buffer statement may be replaced by the name of simple string 

variable (String ROM). Substrings and strings of a string array are not allowed. This permits 

the string variable to serve also as an I/O buffer. 

For example, these program lines dimension a 1 DO-character string variable and then assign 

the string as an interrupt type buffer called "fer": 

1;::J :: cl :i. (:"i !:::j ::1:: L 1 Ci 1;::1 J 
:I.;; I:) I) f :, f !::;" ( 'I :i i:::! :;J;: :1 

When a string is specified as a buffer, 16 characters are assigned as working storage (over­

head). So a string dimensioned at 100 characters will allow a buffer size of only 84 bytes (42 

words). If a 1 ~O-byte buffer is required, the string should be dimensioned at 116 characters. 

Remember that non-string buffers automatically allocate the extra area, so the size specified 

is the size of the buffer. For byte-type buffers, odd buffer sizes are rounded to the next higher 

even number. 

Using string variables as buffers offers additional features. For example, the buffer may be 

saved on the tape cartridge or a disk for processing at a later time. This allows one segment of 

a program to be a data acquisition phase and simply fill a buffer from a device, record the 

buffer, reset the buffer to empty, and continue gathering data. In a later phase the buffers may 

be loaded from the tape or disk and processed. A second advantage of string buffers is that 

the string-manipulation functions may be used to "preview" the form of the data received 

before reading it into calculator variables. Or data may be "pre-conditioned" to suit a particu­

lar format or data structure. Be aware, however, that these String ROM operations are entirely 

independent of the normal red/wrtltfr operations. 

As an example, suppose that 10 characters (bytes) are transferred into a buffer which uses the 

area for A$. Then the statement "::: C: C: ",.:: ::!: is executed. Now executing :!. ,:". (! i:: . . . (to 

determine the length of the string) will return 3. But the buffer size will still be 10 bytes even 

though the first three bytes have been changed to ABC and the length of A$ is 3. Bytes 4 

through 10 are unchanged. 

Inverted Data 

The 98032A Interface has two jumper wires which may be set to specify inverted (positive true) 

logic levels for input and/or output data. The card is normally set to handle negative-true logic. 

During normal read and write operations, the state of these jumpers is checked by the cal-

-



78 Buffered I/O 

culator and the data is inverted, if necessary, before writing and after reading. This is also 

done for data transfers using an interrupt buffer. The two fast-access buffer transfers (fast 

read/write and DMA), however, do not check these inversion jumpers to maintain maximum 

transfer rates. So the program must compensate for inverted data when fast read/write or DMA 

buffers are used with an interface set for inverted logic. The fact that inverted data is received 

in these modes of transfer should also be considered when specifying the last-character 

parameter of an input transfer statement. 

Currently, the only HP calculator peripheral that uses inverted logic levels is the 9864A Di­

gitizer. Since this is a slow (time random) device, only the interrupt buffer should be used for 

transfer operations; this also avoids the change for inverted data. 



-

-

-' 

Buffered I/O 79 

Buffered I/O Example 
The following program uses a fast read/write buffer to enter and print measurements from a 

5328A Frequency Counter on the HP-IB. 

0: dim f$[20,17],G$[356]imdec 
I: wrt 710,"P¥4G2SIT" 
2: n Type 3":buf "Cauf",G$,3 
3: tfr 710,"CBuf",340 
4: rds("CBuf")+Biif B=-lijmp 0 
5: fxd Oiprt "#Bytes=",BiSPC iprt "Cauff=",G$iSPC iprt "Buffer=" 
6: for J=I to 20 
7: conv 69,101ired "CBuf",f$[J]iprt f$[J] 
8: next J 
9: spc 2 
10: "Refmt & Prt":prt "FrequencY="ifor K=I to 20 
II: frot l,f6.2," MHz"iwrt 16.I,val(f$[K])/le6 
12: nex t K 
13: spc 2iend 
*19908 

0: 

1 : 

Dimensions string array F$ to hold 20 frequency readings each 17 characters 

long, and string G$ to hold 340 characters of raw data plus 16 extra characters 

required for housekeeping purposes. 

Programs 5328A Frequency Counter to take multiple measurements and output at 

end of each measurement. 

2,3: Sets 9825A for Fast Read/Write (Type 3) buffer. A total of 340 characters are to be 

accepted. 

4: Tests status; while buffer is being filled, the status is "-1" indicating "busy"; upon 

completion, it returns the final character count. 

5: Prints final character count and raw data. Each reading is 17 character spaces 

wide including blanks as fillers. 

Note that "~" is carriage return and "~" is line feed. Such raw data printouts are 

useful for debug purposes. 

6,8: Since each frequency reading is terminated by the line feed delimiter, a conve­

nient way to separate the raw data string into individual readings is to read it into a 

string array. At the same time, the exponent prefix is converted to lower-case "e". 

The string array is printed to illustrate the operation. 

10,13: The val function transforms the strings of ASCII representations into numeric val­

ues so they can be scaled (divided by 106 ) and printed. 

--



80 Buffered I/O 

Printout: 

:i:,: ! .. ' . 

. ,' .... i".! T . 

•. ..~ •. ~"" :' T 

:' ... ';'. (. 

::,,: :: .': ." ~ ... .... ... 

. : : . ..::: 
, . 

': ", :," .,' 

.. : ..... . .... : ..... . 
',. L"; ; .. 

..... '_' ... ' 'T' :,': .. ::::: ::: ~::~ ::::. ,,; ... 

' .. 
J. r_: :: ····1 . :' t.: 

"r 

.. '+' 

• :. :: •• : I' •• ;.,:' :': :-'. : : : .~. 

:". '·1·' 

Demonstration Programs 

. ..... ;::::;" .::: ..... 

':: ; .. ; ':: 

:"::: " 

n •••• ,' ••••• !::: 

;'::: ::::' 
...... 

l';':j .. : ..... 

... . . : ... 

Buffered 1/0 allows more efficient use of the 9825A Calculator as shown in the following 

programs. The time between samples was increased by use of the 5328A Frequency Count­

er's sample rate control in order to show that it is possible to do useful work interleaved with 

data taking where time between samples permits. 

The Test Case was run with the sample rate control set fully counter-clockwise to have the 

counter take readings with the minimum spacing between each one. So little time was left that 

use of a Type 1 "Interrupt" Buffer was of no avail. 

For the two data runs, the time between readings was increased an arbitrary amount by 

setting the 5328A sample rate control to 1 o'clock. In program line 1, note the inclusion of the 

code "S7", which permits manual setting of this control. 



--

-

-

Buffered I/O 81 

Program 1 was run without interleaving any computations. Note that lines 5 and 6 test status in 

a tight loop from which the program exits when the buffer is full. 

Program 2 was run with interleaved computations. Note that program line 6 terminates with 

"jmp -1" to update the index and perform the computation before again testing status to see 

whether the buffer is full yet. 

The results show that more than 1 000 computations can be made without taking but 13 

milliseconds longer than in the case where the 9825A does no useful work between input 

samples. 

Buffered I/O is a significant contribution to efficient utilization of system rsources where the 

measurement situation is such that samples are spaced in time and there is other useful work 

the system can perform while the data buffer is being filled. 

Test Program - Minimum Time Between Samples: 

0: dim F$[20,17],G$[356]irndeciO+Y 
1: wrt 710,"PF4G3S17T"ired 710,A 
2: wrt 716,"001E3PR"ired 716,Cidsp "Cal=",CiSpC 
3: " Type l":buf "CBuf",G$,l 
4: wrt 716,"R"itfr 710,"CBuf",340 
5: Y+l+YiY*ln(Y)+Z 
6: if rds("CBuf")=-lijrnp -1 
7: red 716,D 
8: fxd Oiprt "Tirne,ms=",D-CiSPC iprt "Work=",YiSPc 
9: for J=l to 20 
10: cony 69,lOlired "CBuf",F$[J] 
11: next J 
12: "Refrnt & Prt":prt "FrequencY="ifor K=l to 20 
13: frnt 1,fl0.3," MHz"iwrt 16.1,val(F$[K])/le6 
14: nex t K 
15: spc 2iend 
*15126 

-



82 Buffered 1/0 

Program 1 - No Interleaved Computations: 

0: dim i"$l20,17j,G$[356j;mciec;O+Y 
1: wrt 710,"PF'4G3S17T";red 710,A 
2: wrt 716,"001E3PR"ired 716,C;osp "Cal=",C;sfJC 
3: " Type 1":buf "CBuf",G$,1 
4: wrt 716,"R";tfr 710,"CBuf",340 
5: O+Y 
6: if rds("Cbuf")=-l;)mp -1 
7: red 716,1) 
8: fxd O;prt "'rirne,rns=",D-C;SPC iprt "Work=",y;sPC 
9: for J=1 to 20 
10: conv 69,101ired "CBuf",f$[J) 
1 1: next J 
12: "Refrnt & Prt":prt "trequency=";for K=l tc 20 
13: frnt 1,fl0.3," NHz";wrt 16.1,val(F'$(K))/le6 
14: nex t K 
15: spc 2;end 
*31854 

Program 2 - Interleaved Computations: 

0: dim £'$[20,17J ,G$(356) ;rndec;O+Y 
1: wrt 710,"PF4G3S17T";red 710,A 
2: wrt 716,"OOlE3PR";red 716,C;dsp "Cal=",C;spc 
3: " Type l":buf "CBuf",G$,l 
4: wrt 716,"R";tfr 710,"CBuf",340 
5: Y+l+Y;Y*ln(Y)+~ 
6: if rds("CBuf")=-1;jrnfJ -1 
7: red 716,0 
8: fxd Oiprt "Tirne,rns=",D-C;SPC iprt "Work=",y;sPC 
9: for J=l to 20 
10: conv 69,101;red "Cduf",F$[J] 
11: next J 
12: "Refrnt & Prt":prt "frequency=";for K=1 to 20 
13: frnt 1,fl0.3," HHz";wrt 16.1,val(F'$[K])/1e6 
14: nex t K 
1 5: s pc 2; end 
*15126 

-



-

-

Printouts: 

Test Program 

. :: ...... ': ::;.:::. ... . 

, ... :: ..... . 

L ......... . 
·····1 .,. 

. :: : .... J. i 

j .L ......... . 

i .. ! .• : 1:: ... :. : 
: .. 

," .. -.. , ... 

:1. 1. ... 

1": ~ : .J ••• 

:: : 
:::: " 

!:! i.::'. 

Buffered I/O 83 

Program 1 Program 2 

': .": .~ .~:. ,"::: 
.:. ::::. ~~: :: ... =:.~ l]. : ." :i :";' .;;' 

~.:.: :: i< :::. ~~j : .... : : r to;, .,," 

J. 

4 :::!. j':l H :;-~: 
4 :::j. 1';'1 H 2" 

.i. 



--
84 Buffered 1/0 



-

--

-

Appendices 

The HP Interface Bus 
This appendix offers a brief overview of the HP-IB hardware and control scheme. You need not 

read this section, since complete control of the bus is available by using the bus messages 

described in Chapter 4. If a manual for another device on the bus does not describe operation 

via the bus messages already described, however, this information will help you determine 

which messages are needed to control that device. 

HP-IB Lines and Operations 
The HP Interface Bus transfers data and com­

mands between the components of an in­

strumentation system on 16 signal lines. The 

interface functions for each system component 

are performed within the component so only 

passive cabling is needed to connect the sys­

tem. The cables connect all instruments, con­

trollers, and other components of the system in 

parallel to the signal lines. 

The eight Data I/O lines (0101 thru 0108) are 

reserved for the transfer of data and other 

messages in a byte-serial, bit-parallel manner. 

Data and message transfer is asynch ronous, 

coordinated by the three handshake lines: 

Data Valid (DAV), Not Ready For Data (NRFD), 

and Not Data Accepted (NDAC). The other five 

lines are for management of bus activity. See 

the figure on the right. 

Device A 

Able to talk. 
listen, and 
control 

(e.g., 

calculator) 

Device B 

Able to talk 
and listen 

(e.g, 

multlmeter) 

Device C 

Only able to 
listen 

(e.g., signal 
generator) 

Device D 

Only able to 
talk 

(e g., counter) 

iftfi iiff 
t--

Data Bus 
es) (8 Lin 

r- -(I-- ~ 

t--
r-

D 

=4 
lj 

----< 
-

Data B 
Transl 

yte 
er 
01 Contr 

Gener al 
Interla ce 

Manage ment 

~}DIO 1 .. 8 

~DAV 
NRFD 
NDAC 
IFC 
ATN 
SRQ 
REN 
EOI 

HP- IB Signal Lines 

85 



86 Appendices 

Devices connected to the bus may be talkers, listeners, or controllers. The controller dictates 

the role of each of the other devices by setting the ATN (attention) line true and sending talk or 

listen addresses on the data lines. Addresses are set into each device at the time of system 

configuration either by switches built into the device or by jumpers on a PC board. While the 

ATN line is true, all devices must listen to the data lines. When the ATN line is false, only 

devices that have been addressed will actively send or receive data. All others ignore the data 

lines. 

Several listeners can be active simultaneously but only one talker can be active at a time. 

Whenever a talk address is put on the data lines (while ATN is true), all other talkers will be 

automatically unaddressed. 

Information is transmitted on the data lines under sequential control of the three handshake 

lines (DAV, NRFD and NDAC). No step in the sequence can be initiated until the previous step 

is completed. Information transfer can proceed as fast as devices can respond, but no faster 

than allowed by the slowest device presently addressed as active. This permits several de­

vices to receive the same message byte concurrently. 

The ATN line is one of the five bus management lines. When ATN is true, addresses and 

universal commands are transmitted on only seven of the data lines using the ASCII code. 

When ATN is false, any code of 8 bits or less understood by both talker and listener(s) may be 

used. 

The IFC (interface clear) line places the interface system in a known quiescent state via the 

Abort message. 

The REN (remote enable) line is used with the Remote, Local, and Clear Lockout/Set Local 

messages to select either local or remote control of each device. 

Any active device can set the SRQ (service request) line true via the Require Service mes­

sage. This indicates to the controller that some device on the bus wants attention, say a 

counter that has just completed a time-interval measurement and wants to transmit the read­

ing to a printer. 

The EOI (end or identify) line is used by a device to indicate the end of a multiple-byte transfer 

sequence. When a controller sets both the ATN and EOI lines true, each device capable of a 

parallel poll indicates its current status on the 010 line assigned to it. 



-

--

Appendices 87 

In the interest of cost-effectiveness, it is not necessary for every device to be capable of 

responding to all the lines. Each can be designed to respond only to those lines that are 

pertinent to its function on the bus. 

The operation of the interface is generally controlled by one device equipped to act as 

controller. The interface uses a group of commands to direct the other instruments on the bus 

in carrying out their functions of talking and listening. 

The controller has two weys of sending interface messages. Multi-line messages, which can­

not exist concurrently with other multi-line messages, are sent over the eight data lines and the 

three handshake lines. Uni-line messages are transferred over the five individual lines of the 

management bus. 

The commands serve several different purposes: 

• Addresses, or talk and listen commands, select the instruments that will transmit and 

accept data. They are all multi-line messages. 

• Universal commands cause every instrument equipped to do so to perform a specific 

interface operation. They include multi-line messages and three uni-line commands: in­

terface clear (IFC), remote enable (REN), and attention (ATN). 

• Addressed commands are similar to universal commands, except that they affect only 

those devices that are addressed and are all multi-line commands. An instrument re­

sponds to an addressed command, however, only after an address has already told it to 

be talker or listener. 

• Secondary commands are multi-line messages that are always used in series with an 

address, universal command, or addressed command (also referred to as primary 

commands) to form a longer version of each. Thus they extend the code space when 

necessary. 

To address an instrument, the controller uses seven of the eight data-bus lines. This allows 

instruments using the ASCII 7-bit code to act as controllers. As shown in the table, five bits are 

available for addresses, so a total of 31 addresses are available in one byte. If all secondary 

commands are used to extend this into a two-byte addressing capability, 961 addresses 

become available (31 addresses in the second byte for each of the 31 in the first byte). 

-



88 Appendices 

Command and Address Codes 

Code Form Meaning 

X 0 0 As A4 A3 A2 A, Universal Commands 
X 0 1 As A4 A3 A2 A, Listen Addresses 

except 
X 0 1 1 1 Unlisten Command 
X 0 As A4 A3 A2 A, Talk Addresses 

except 
X 0 1 1 1 1 Untalk Command 
X 1 As A4 A3 A2 A, Secondary Commands 

except 
X 1 1 Ignored 

Code used when attention (ATN) is true (low). 

X = don't care 

Interface Functions 
Interface functions provide the physical capability to communicate via HP-IB. These functions 

are defined in the IEEE Standard 488-1975. This standard, which is the designer's guide to the 

bus, defines each interface function in terms of state diagrams that express all possible 

interactions. 

Bus capability is grouped under 10 interface functions, for example: Talker, Listener, Con­

troller, Remote/Local. The following table lists the functions. 

Mnemonic 

SH 
AH 
T 
L 

SR 
RL 
PP 
DC 
DT 
C 

C N 
C s 

HP-IB Interface Functions 

Interface Function Name 

Source Handshake 
Acceptor Handshake 
Talker (or TE = Extended Talker)' 
Listener (or LE = Extended Listener)' 
Service Request 
Remote Local 
Parallel Poll 
Device Clear 
Device Trigger 
Any Controller 
A specific Controller (for example: C A, C B ... ) 

The System Controller 

"Extended talkers and listeners use a two-byte address. Otherwise, they are the same as Talker and Listener. 

--



-

-

Appendices 89 

Since interface functions are the physical agency through which bus messages are im­

plemented, each device must implement one or more functions to enable it to send or receive 

a given bus message. 

The following table lists the functions required to implement each bus message. Each device's 

operating manual lists the functions implemented by that device. Some devices, such as the 

98034A Interface, list the functions implemented directly on the device. 

Functions Used By Each Bus Message 

Bus Message 

Data 
Trigger 
Clear 
Remote 
Local 
Local Lockout 
Clear Lockout/Set Local 
Require Service 
Status Byte 
Status Bit 
Pass Control 
Abort 

Functions Required 
sender function --+ receiver function(s) 

(support functions) 

T--+L* (SH, AH) 
C--+DT* (L, SH, AH) 
C--+DC* (L, SH, AH) 
C S --+RL* (SH, AH) 
C--+RL* (L, SH, AH) 
C--+RL* (SH, AH) 
C s --+RL* 
SR*--+C 
T--+L* (SH, AH) 
PP*--+C 
C A --+C B (T, SH, AH) 
Cs--+T,L*C 

'Since more than one device can receive (or send) this message simultaneously, each 
device must have the function indicated by an • 

--



90 Appendices 

Extended I/O Status Conditions 
The following table shows status conditions for various Extended I/O operations and modes. 

Notice that the Erase, Erase All/Power on, and Run columns from Appendix 0 of the 9825A 

Operating and Programming Manual are combined into one column here. R = restored to 

power-on state; X = unchanged. 

Calculator Operation 

Power On 
Erase Continue Continue 

Erase All RESET (after edit) (after stop) 
Extended I/O Operation or Mode Run 

Conversion and parity tables R X X X 
Octal mode (reset to decimal) R R X X 
I/O buffer area R X X X 
Service name list R X X X 
Equate name list R X X X 
Buffer select code for tfr R R R X 
Interrupt parameters R R R X 
Error recovery routine R R R X 
Timeout routine R X X X 



--

-

ASCII 
Char. 

EQUIVALENT FORMS 
Binary Octal Dec 

NULL 00000000 000 o 

SOH 00000001 001 

STX 00000010 002 

ETX 000000 11 003 

EOT 00000100 004 

ENQ 00000101 005 

ACK 00000110 006 

BELL 00000111 007 

BS 00001000 010 

HT 00001001 011 

LF 00001010 012 10 

V," 00001011 013 11 

FF 00001100 014 12 

CR 00001101 015 13 

SO 00001110 016 14 

SI 00001111 017 15 

DLE 00010000 020 16 

DC, 00010001 021 17 

DC, 00010010 022 18 

DC, 00010011 023 19 

DC. 00010100 024 20 

NAK 00010101 025 21 

SYNC 00010110 026 22 

ETB 00010111 027 23 

CAN 00011000 030 24 

EM 00011001 031 25 

SUB 00011010 032 26 

ESC 00011011 033 27 

FS 00011100 034 28 

GS 00011101 035 29 

RS 30011110 036 30 

US 00011111 037 31 

ASCII Character Codes 
ASCII 
Char. 

EQUIVALENT FORMS 
Binary Octal Dec 

space 00100000 040 32 

00100001 041 33 

00100010 042 34 

# 00100011 043 35 

$ 00100100 044 36 

% 00100101 045 37 

& 00100110 046 38 

00100111 047 39 

00101000 OSO 40 

00101001 051 41 

00101010 052 42 

+ 00101011 053 43 

00101100 054 44 

00101101 055 45 

00101110 056 46 

00101111 057 47 

00110000 060 48 

00110001 061 49 

00110010 062 50 

3 00110011 063 51 

00110100 064 52 

00110101 065 53 

00110110 066 54 

00110111 067 55 

00111000 070 56 

00111001 071 57 

00111010 072 58 

00111011 073 59 

< 00111100 074 60 

00111101 075 61 

00111110 076 62 

00111111 077 63 

ASCII 
Char. 

@ 

A 

B 

C 

D 

E 

F 

G 

H 

K 

M 

N 

o 

p 

Q 

R 

S 

T 

U 

v 

w 

x 

Y 

z 

EQUIVALENT FORMS 
Binary Octal Dec 

01000000 100 64 

01000001 101 65 

01000010 102 66 

01000011 103 67 

01000100 104 68 

01000101 105 69 

01000110 106 70 

01000111 107 71 

01001000 110 72 

01001001 111 73 

01001010 112 74 

01001011 113 75 

01001100 114 76 

01001101 115 77 

01001110 116 78 

01001111 117 79 

01010000 120 80 

01010001 121 81 

01010010 122 82 

01010011 123 83 

01010100 124 84 

01010101 125 85 

01010110 126 86 

01010111 127 87 

01011000 130 88 

01011001 131 89 

01011010 132 90 

01011011 133 91 

01011100 134 92 

01011101 135 93 

01011110 136 94 

01011111 137 95 

ASCII 
Char. 

e 

m 

o 

w 

EQUIVALENT FORMS 
Binary Octal Dec 

01100000 140 96 

01100001 141 97 

01100010 142 98 

01100011 143 99 

01100100 144 100 

01100101 145 101 

01100110 146 102 

01100111 147 103 

01101000 lSO 104 

01101001 151 105 

01101010 152 106 

01101011 153 107 

01101100 154 108 

01101101 155 109 

01101110 156 110 

01101111 157 111 

01110000 160 112 

01110001 161 113 

01110010 162 114 

01110011 163 115 

01110100 164 116 

01110101 165 117 

01110110 166 118 

01110111 167 119 

01111000 170 120 

01111001 171 121 

01111010 172 122 

01111011 173 123 

01111100 174 124 

01111101 175 125 

01111110 176 126 

DEL 01111111 177 127 

Appendices 91 



92 Appendices 

Buffered I/O Benchmarks 

The table below summarizes results of 8 benchmark programs run to measure relative speeds 

of three methods of transferring data into the 9825A from measuring instruments on the 

HP-IB: Fast READ/Write (Type 1), Interrupt Buffer (Type 3), and ordinary reads using the red 

statement. 

Buffered I/O Benchmark Times 

Average Time/Reading in ms 

Frequency Type 1 Type 3 Standard Read Standard Read 
Counter "I nterrupt" "Fast Read/Write" (for/next loop) Dump into String 

5345A 3.79 ms 1.75 ms 4.07 ms 2.75 ms 

5328A 5.65 ms 3.00 ms 5.80 ms 4.40 ms 

Results show the fast read/write capability to be effective in reducing the time required per 

reading. This could be significant where data runs are long or where data points must be 

taken as close together as possible. 

The following programs were used to generate the table above. 

1. 9825A15345A Counter with buffer type 1 : 

0: dim F$[28,17),G$[353):mdec 
1: wrt 710,"I2E8:<G<Il":red 710,A 
2: wrt 716,"00IE3PR":red 716,C:dsp "Cal=",C:spc 
3: " Type 1":buf "CBuf",G$,1 
4: wrt 716,"R":tfr 710,"CBuf",337 
5: if rds("CBuf")=-I:jmp 0 
6: red 716,D 
7: fxd O:prt "'I'ime,ms=",D:fxd 2:prt "Avg Time/rdg,ms=",(D-C)/28:spc 
8: for J=1 to 28 
9: conv 69,101:red "CBuf",F$[J) 
10: next J 
11: "Refmt & Prt":prt "Frequency=":for K=1 to 28 
12: fmt l,fl0.3," MHz":wrt 16.1,val(F$[K)/le6 
13: nex t K 
14: spc 2:end 
* 11541 



-

-

2. 9825A15345A Counter with buffer type 3: 

0: dim F$[28,17],G$[353]imdec 
I: wrt 710,"I2E8:<G<II"ired 710,A 
2: wrt 716,"00IE3PR"ired 716,Cidsp "Cal=",CiSpC 
3: " Type 3":buf "Cbuf",G$,3 
4: wrt 716,"R"itfr 710,"CBuf",337 
5: if rds("CBuf")=-lijmp 0 
6: red 716,D 

Appendices 93 

7: fxd Oiprt "Time,ms=",Difxd 2iprt "Avg Time/rdg,ms=",(D-C)/28iSPC 
8: for J=l to 28 
9: cony 69,101ired "CBuf",F$[J] 
10: next J 
11: "Refmt & prt":prt "FrequencY="itor K=l to 28 
12: fmt 1,fl0.3," MHz"iwrt 16.1,val(F$[K])/le6 
13: next K 
14: spc 2iend 
*10557 

3. 9825A/5345A Counter with read and for ... next loop: 

0: dim F$[28,17]imdec 
1: wrt 710,"I2E8:<G<Il"ired 710,A 
2: wrt 716,"001E3PR"ired 716,Cidsp "Cal=",CiSpC 
3: cony 69,101iwrt 716,"R" 
4: for J=l to 28ired 710,F$[J] inext J 
5: red 716,0 
6: prt "Time,ms=",Oiprt "Avg 'fime/rdg,ms=",(0-C)/28iSPC 
7: "Refmt & Prt":prt "Frequency=" 
8: for K=l to 28 
9: fmt 1,fl0.3," MHz"iwrt 16.1,val(F$[K])/le6 
10: nex t K 
11: spc 2iend 
*21645 

4. 9825A/5345A Counter with read into a string: 

0: dim G$[353],A[100]imdec 
1: wrt 710,"I2E8:<G<Il"ired 710,A 
2: wrt 716,"001E3PR"ired 716,Cidsp "Cal=",CiSPC 
3: " Type=Do-lt-Yourself": 
4: wrt 716,"R"iconv 69,101ifmt 2,c337,zired 710.2,G$ 
5: red 716,0 
6: prt "G$=",G$iSpC 
7: fxd Oiprt "Time,ms=",Oifxd 2iprt "Avg Time/rdg,ms=",(0-C)/28iSPC 
8: l+Piprt "Frequency" 
9: for J=l to 28 
10: val(G$[P])+A[J] 
11: POS(G$(P+l] ,char (10» +P+l+P 
12: fmt 1,fl0.3," MHZ"iA[J]/le6+A(J]iwrt 16.1,A[J] 
13: next J 
14: spc 2iconv 
15: end 
*5559 

--



94 Appendices 

5. 9825A/5328A Counter with buffer type 1: 

0: dim F$[20,17],G$[356jimdec 
I: wrt 710,"PF4G3SIT"ired 710,A 
2: wrt 716,"00IE3PR"ired 716,Cidsp "Cal=",CiSPC 
3: " Type I":buf "CBuf",G$,1 
4: wrt 716,"R"itfr 710,"CHuf",340 
5: if rds("CBuf")=-lijmp 0 
6: red 716,D 
7: fxd Oiprt "Time,ms=",Difxd 2iprt "Avg Time/rdg,ms=",(D-C)/20iSpC 
8: for J=I to 20 
9: conv 69,101ired "CBuf",F$[J) 
10: next J 
II: "Refmt & Prt":prt "FrequencY="ifor K=I to 20 
12: fmt l,fI0.3," HHz"iwrt 16.I,val(F$[K))/le6 
13: nex t K 
I 4: 5 pc 2 i end 
*21964 

6. 9825A/5328A Counter with buffer type 3: 

0: dim F$[20,17),G$[356)imdec 
I: wrt 710,"PF4G3SIT"ired 710,A 
2: wrt 716,"00IE3PR"ired 716,Cidsp "Cal=",CiSpC 
3: " Type 3":buf "CBuf",G$,3 
4: wrt 716,"R"itfr 710,"CBuf",340 
5: if rds("CBuf")=-lijmp 0 
6: red 716,J..) 
7: fxd O;prt "Time,ms=",Difxd 2iprt "Avg Time/rdg,ms=",(D-C)/20iSPC 
8: for J=I to 20 
9: con v 69,101;red "CBuf",F$[J) 
10: next J 
II: "Refmt & Prt":prt "FrequencY="ifor K=I to 20 
12: fmt l,fI0.3," HHz"iwrt 16.I,val(F$[K))/le6 
13: nex t K 
14: spc 2;end 
* 20980 

7. 9825A15328A Counter with read and for. .. next loop: 

0: dim F$[20,17);mdec 
I: wrt 710,"PF4G3SIT";red 710,A 
2: wrt 716,"00IE3PR"ired 716,C;dsp "Cal=",CiSpC 
3: cDnv 69,101iwrt 716,"R" 
4: for J=I to 20;red 710,F$[J) inext J 
5: red 716,D 
6: prt "Time,ms=",Diprt "Avg Time/rdg,ms=",(D-C)/20iSpC 
7: "Refmt & Prt":prt "Frequency=" 
8: for K=I to 20 
9: fmt l,fIO.3," HHz"iwrt 16.I,val(F$[K))/le6 
10: next K 
II: spc 2iend 
* 30 76 7 



-

--

8. 9825A15328A Counter with read into a string: 

0: dim G$[340),A[100)~mdec 
1: wrt 710,"PF4G3S1T"~red 710,A 
2: wrt 716,"001E3PR"~red 716,C~dsp "Cal=",C~spc 
3: " Type=Oo-It-Yourself": 
4: wrt 716,"R"~conv 69,101~fmt 2,c340,z~red 710.2,G$ 
5: red 716,0 
6: prt "G$=",G$~spc 

Appendices 95 

7: fxd O~prt "Time,ms=",O~fxd 2;prt "Avg Time/rdg,ms=",(0-C)/20~spc 
8: l+P~prt "Frequency" 
9: for J=l to 20 
10: val(G$[P)+A[J) 
11: pos(G$[P+l),char(lO»+P+l+P 
12: fmt 1,flO.3," MHZ"~A[J)/le6+A[J)~wrt 16.1,A[J) 
13: next J 
14: spc 2~conv 
15: end 
*13109 

-



-
96 Appendices 

Notes 



- Extended I/O Syntax Summary 
Syntax Conventions 

[ ] 

Expression 

- Characters printed in dot matrix must appear as shown. 

- Items within brackets are optional. 

- A constant like 16.4, a variable like X or B[8] or r3 or A$, or an 

expression like 8t4 or 6<A+B. 

- Dots indicate that successive parameters, separated by commas, 

are allowed. 

Select Code Format - cc[dd[ee]][. f] 

cc = interface select code. 

dd = optional HP-IB address code (must be two digits). 

ee = optional HP-IB secondary address (must be two digits). 

f = format number, for read (red) and write (wrt) only. 

Binary Statements and Functions 

Appendices 97 

The mode octal statement places the calculator in a mode in which all binary-type parameters 

of the statements and functions of the I/O ROMs are taken to be octal values. See the table on 

page 6. 

The mode decimal statement returns the calculator to the decimal mode, which is automati­

cally set when the calculator is reset or turned on. See page 6 . 

•• expression '. 

The decimal to octal function converts a decimal number in the 16-bit binary range to its octal 

equivalent value. See page 7. 

•• expression •• 

The octal to decimal function converts an octal value in the 16-bit binary range to its decimal 

equivalent. See page 7. 

• expression A'· expression B •• 

The binary AND function combines two 16-bit values in a binary AND operation and returns the 

result. See page 7. 



98 Appendices 

expression A " expression B 

The inclusive OR function combines two 16-bit values in an inclusive OR operation and returns 

the result. See page 8. 

expression A expression B •• 

The exclusive OR function combines two 16-bit values in an exclusive OR operation and 

returns the result. See page 7. 

expression •• 

The complement function returns the 1 's complement of a 16-bit binary value. See page 8. 

expression 'or no. of places •• 

The rotate function performs an n-bit rotation of a 16-bit binary quantity to the left (negative 

no.) or to the right (positive no.) and returns the result. See page 8. 

'expression "or ..... no. of places •• 

The shift function performs an n-bit shift on a 16-bit binary quantity to the left (negative no.) or 

to the right (positive no.) and returns the result. See page 9 . 

• expression A " expression B. 

The add function performs addition on two 16-bit binary quantities, in octal arithmetic, if the 

octal mode is set. See page 10. 

.bit position " expression • 

. mask " " expression .. 

The bit function tests a given 16-bit binary value for a specific bit or for a specified bit pattern 

(mask) and returns a 1 (true) or 0 (false). See page 10. 

HP-IB Statements 

namel " " select codel [" name2"" select code2 ... J 
The device statement associates names with interface cards and devices, for use in place of 

the select code parameter. Use of device names also allows addressing multiple listeners on 

the HP-IB. See page 17. 

';'<: select code "address characters " [" "data characters "J 
'device name(s) " or select code [ "data characters] 

The command statement allows direct addressing of the HP-IB interface, using the bus pro­

tocol employed by the HP 9820A, 9821 A, and 9830AlB Calculators. See page 35. 

--



-

Appendices 99 

data stringl [ data string2 ... ] 

The equate statement allows equating names with HP-IB data sequences for use with the cmd 

statement. See page 37. 

select code [device address] 

The trigger statement sends a Group Execute Trigger (GET). See page 20. 

select code [device address] 

The clear statement sends a Universal Device Clear (DCl) or an addressed Selective Device 

Clear (SDC). See page 21. 

select code [device address] 

The remote statement sends the Remote (REN) message. See page 22. 

select code 

The local statement sends either a local (GTl) message or a Clear lockout/Set local (REN) 

message. See pages 23 and 24. 

select code 

The local lockout statement sends the local lockout (llO) message. See page 23 . 

••... ..... .••. select code with device address 

The pass control statement passes active control to a specified device on the given HP-IB. 

See page 30. 

• ......... select code 

The clear interface statement sends the Abort (IFC) message. See page 31. 

select code with device address •• 

The read status function with an HP-IB device address (e.g., .. .....) conducts a 

serial poll and returns the Status Byte message. See pages 26 and 38. 

select code [ .• variablel[ .• variable2[ variable3]]J ..variable4 

Returns up to four status bytes from the 98034A Interface card. See page 38. 

select code' 

The parallel poll function conducts a parallel poll on the specified HP-IB and returns the 

current Status Bit message as a single byte. See page 29. 

--



100 Appendices 

,:: •••••••.••••. select code with device address·. status byte 

The poll configure statement sends the Parallel Poll Configure (PPC) command and a poll 

configure byte to a selected device on the HP-IB. See page 30 . 

... .....• • , select code [device address] 

The poll unconfigure statement sends the universal Parallel Poll Unconfigure (PPU) or the 

secondary Parallel Poll Disable (PPD) command. See page 30 . 

.... ••• : •••. select code [ .• status byte] 

The Require Service statement allows the calculator (which is not currently the active control­

ler) to request service from the active controller. See page 25. 

The Timeout Statement 

•••• time in milliseconds 

Specifies a maximum time limit for any external peripheral device to respond before issuing 
... ,:::. <. See page 42. 

The On Error Statement 
"label'· 

Allows the program to specify alternative action whenever an error is detected. The following 

three read-only variables are defined when an error occurs. For more details, see page 42. 

Indicates whether a mainframe error (0) or an add-on ROM error caused the branch to the 

error recovery label. An ASCII decimal-equivalent value indicates the letter of the add-on ROM 

(e.g., 69 = "E" for Extended I/O ROM). 

Stores the error number. 

Stores the program line number in which the error occurred. 

The Conversion Table Statement 

.•• ( •.. [string variable name] 

Establishes a string variable as the full conversion table for automatic conversion between 

ASCII and another "foreign" code. Ctbl without a parameter cancels the previous conversion 

table. See page 44. 



Appendices 101 

The Parity Statement 
.......... parity type 

Establishes the parity type to be set for output data, or to be checked on input data. See page 

47. 

Interface Control Operations 

select code 

This write interface statement specifies the interface select code for successive wti and rdi 

operations. 

:L register no. " expression 

Allows direct output to the interface data registers. See page 49. 

: register no.: 

The read interface function allows direct input from the interface data registers. See page 50. 

select code' 

The 1/0 flag function returns a 1 or 0, indicating the state of the specified interface flag line. 

See page 50. 

: select code .: 

The 1/0 status function returns a 1 or 0, indicating the state of the specified interface status 

line. See page 50. 

Interrupt Control Statements 

"L select code ,label " or string variable [,' abort byte] 

The on interrupt statement specifies a location within a program to which control is to be 

transferred whenever an interrupt is generated by a specified external device. See page 55 . 

... select code [,' interrupt enable byte] 

The enable interrupt statement enables an external device to generate an interrupt on the 

occurance of certain specified conditions. See page 56. 

The interrupt return statement terminates an interrupt service routine, and returns control to 

the line of the program that would have been executed if the interrupt had not occurred. See 

page 57. 



102 Appendices 

Buffered I/O Statements 

name . [buffer size or string variable buffer type] 

The buffer statement reserves a segment of read/write memory to be used in an automatic 

data transfer. The buffer type determines the mode of data transfer to be performed: 

Buffer Type 

o 
1 
2 
3 
4 

Description 

Interrupt Buffer, 16-bit words 
Interrupt Buffer, 8-bit bytes 
Fast Read/Write, 16-bit words 
Fast Read/Write, 8-bit bytes 
DMA buffer, 16-bit words 

The buffer is cleared (emptied) by executing the syntax: name. See page 70. 

source destination [, character count [ ., last character]] 

The transfer statement automatically transfers data between an I/O buffer and a peripheral 

device. The buffer type determines the mode of transfer. The optional last-character parame­

ter is used for input transfers only. See page 72. 

--



Appendices 103 

Extended I/O ROM Error Messages 
• Extended I/O operation executed when a General I/O ROM is not installed. 

• HP-IB Error under interrupt: When an HP-IB interrupts with status clear and 

the ERR bit in the status byte is set, select code 0 is logged in. At the end-of­

line service routine, this error is issued. 

Wrong Number of Parameters: 

• Bit manipulation functions do not have 2 parameters. 

• The on err statement does not have a label. 

• The oni statement has less than 2 parameters. 

• The polc or rqs statement has less than 2 parameters. 

• The tfr statement has less than 2 parameters. 

• The cmd statement with bus address has no second parameters. 

• The equ or dev statement has an odd number of parameters. 

• New buffer allocation with less than 3 parameters. 

Improper Buffer, Device or Equate Table Usage: 

• Attempt to add a name in a buffer device or equate table list when that name 

already exists. 

• Buffer, device, or equate name is a null string. 

• Attempt to declare multiple listeners with one of the entries not addressing a 

98034A Card, or not all on the same HP-IB. 

• Read status of multiple listeners. 

• Multiple listenersname list ends in a comma. 

• Attempt to read to, or write from, a busy buffer. 

• Entry in buffer, device, or equate table not found. 

Wrong Parameter Type: 

• Parameter of ctbl statement is not a string variable. 

• Numeric parameter found when string parameter expected. 

• String parameter found when numeric parameter expected. 

• Mask parameter in bit function has more than 16 characters. 

• Null string found for required string parameter. 

-



104 Appendices 

Timeout Error: Specified time ran out without response from peripheral. 

Buffer Overflow or Underflow: 

• Attempt to read from an empty buffer or write to a full buffer. 

• Attempt to transfer to or from an empty buffer. 

Parameter Overflow: 

• Decimal parameter not in range of from -32768 thru 32767 with flag 14 clear. 

• Octal parameter not in range of from 0 thru 177777 with flag 14 clear. 

• Octal representation contains an 8 or a 9. 

• Extended bus address not in range of from 0 thru 31 decimal. 

• Buffer type not in the range of from 0 thru 4. 

• Negative parameter for buffer size specification. 

• Allocating a string as a buffer: After taking 16 characters for working storage, 

no room left in the string for buffer area. 

• Abort byte in eir statement, interrupt enable byte in eir, or character parame­

ter in tfr statement is more than 8 bits; i.e., not in range of from 0 thru 255 

decimal or from 0 thru 377 octal. 

Parity Failure: Parity bit of character read does not match specified parity type 

1, 2, or 3. 

Improper Interrupt Procedure: 

• Attempt to execute an iret statement that is not in a running program, or when 

no interrupt service routine is active. 

• A new program was loaded after an interrupt occured and before the end-of­

line service branch, and the service routine was overlayed. 

• A new program was loaded from an interrupt service routine and the inter­

cepted line (destination of the iret statement) was overlayed. 

• Attempt to transfer a DMA (type 4) buffer with a 98034A HP-IB Interface. 

• Attempt to address a select code or a buffer that has not completed the 

transfer operation. Attempt to read or write with a busy buffer or select code. 

Illegal HP-IB Operation: 

• Attempt to address the HP-IB while calculator is not active controller. 

• Illegal HP-IB command sequence. 

• Attempt to request service on an HP-IB when calculator is active controller. 

-



-

Appendices 105 

The Extended 110 ROM adds these meanings to General 110 error messages G4 and G9: 

Improper Select Code: 

• Select code parameter of an eir or oni statement is not in range of from 2 thru 

15. 

• Parameter of an iof or ios statement is not in range of from 0 thru 15. 

• Attempt to declare a device name for select code 0 or 1. 

• Transfer statement source and destination parameters specify two buffers or 

two peripherals, rather than one buffer and one peripheral. 

• HP-IB control statement used with non-HPIB select code or buffer. 

• HP-IB control statement select code specifies bus when only addressed de­

vice allowed or add ressed device when on Iy bu s allowed. 

Improper Hardware Configuration: HP-IB bus functions addressed to non-HP­

IB interface card or empty slot. 

General I/O ROM Error Messages 
Incorrect format numbers: 

• Format number in format statement not in range of 0.:;;n':;;9. 

• Referenced format number not executed. 

Referenced format statement has an error: 

• Incorrect format spec. 

• Numeric overflow in format statement. 

Incorrect 110 Parameters: 

• Parameter not number or string. 

• Negative parameter with f ::,': numeric spec. 

• Numeric parameter with c· edit spec. 

• Binary parameter not in range of -32768.:;;n.:;;32767. 

• More than one parameter for read binary or read status function. 

• Missing parameter or a non-numeric parameter for write control statement. 



106 Appendices 

Incorrect select code: 

• Select code is non-numeric or greater than 4 digits. 

• Select code is greater than 16 for read status. 

• Select code is not in range from 0 thru 16. 

• Select code 1 allowed only for read status. 

• HP-IB device address code not in range from 0 thru 31. 

• Read from select code 0 not allowed. 

Incorrect read parameter: 

• Constant in read list. 

• String not filled by read operation. 

• Numeric parameter references .:::. format spec. 

Incorrect parameter in conversion statement: 

• More than 20 parameters. 

• Odd number of parameters. 

• Non-numeric parameter. 

• Parameter not in range 0",.n",.127. 

Unacceptable input data: 

• More than one decimal point or "E" read. 

• 511 characters read without a LF. 

• "E" with no leading digit. 

• More than 158 numeric characters read. 

Peripheral device down: 

• Incorrect status bits - device not ready or power is off. 

· 8 cancelled operation. 



-
Appendices 107 

Interface hardware problem: 

• Improper HP-IB operation. 

• Empty I/O slot. 

• Select code does not match interface card (e.g., wrt 711 when a 98032A is set 

to 7, or wrt 6 when 98034A is set to 6). 

• Write Control addressed to a 98034A HP-IB Card. 

-



HEWLETT ~ PACKARD 

SALES & SERVICE OFFICES 

AFRICA, ASIA, AUSTRALIA 

ANGOLA 
Telectra 
Empresa Tf!cnlcaae 

EQulpamentos 
Electncos, S A R L 

R Barbosa Rodngues 42-1 DT 
Caoca Postal, 6487 
luanda 
Tel 35515/6 
Cable TELECTRA Luanda 

AUSTRALIA 
Hewlett-Packard Australia 

Pry Ltd 
31-41 Joseph Street 
Blackburn, Victoria 3130 
POBox 36 
Donc.ster East. Victoria 3109 
Tel 89-6351 
Telex 31-024 
Cable HEW PARD Melbourne 
Hewlett-Packard Australia 

Ply lid 
31 Bridge Street 
Pymble 
New South Wales. 2073 
Tel 449-6566 
Tele:.:: 21561 
Cable HEWPARO Sydney 
Hewlett-Packard Australia 

Ply lid 
153 Greenhill Road 
Park.ide, S A 5063 
Tel 272·5911 
Telex 82536 ADEL 
Cable HEWPARD AOELAIO 
Hewlett-Packard Australia 

PtyLtd 
141 Stirling Highway 
Nedland •. W A 6009 
Tel 86-5455 
Telex 93859 PERTH 
Cable HEWPARD PERTH 
Hewlett-Packard Australia 

12r~oTltgngOng Street 
Fyshwick, ACT 2609 
Tel 95-2733 
Telex 62650 Canberra 
Cable HEWPARO CANBERRA 
Hewlett Packard Australia 

pty ltd 
5th Floor 
Teachers Union BUilding 
495-499 Boundary Street 
f~r~n2~_~~~4 4000 Queensland 

Cable HEWPARO Brisbane 

GUAM 
Medlcal/Pocket Calculators Only 
Guam Medical Supply, Inc 
Jay Ease BUilding, Room 210 
POBox 8947 

J~mM6~~rl~911 
Cable EARMEO Guam 

CANADA 

ALBERTA 
Hewlett-Packard (Canada) Ltd 
11620A 168th Str~et 
EdmontonT5M 3T9 
Tel (403)452-3670 
TWX 610-831·2431 

~fo,lf~2~afl~~~r ~tan~dEa) Ltd 

fe~'~:~) T225H3_~~~ 3 
Twx 610-821-6141 

HONG KONG 
Schmidt 8. Co (Hong Kong) ltd 
POBox 297 
Connailght Centre 
39th Floor 
Connaught Road Central 
Hong Kong 
Tel H-255291-5 
Telex 74766 SCHMC HX 
Cable SCHMIOTCO Hong Kong 

INDIA 
Blue Star ltd 
Kasturl BUildings 
Jamshedll Tata Rd 
Bombay 400 020 
Tel 295021 
Telex 001-2156 
Cable BLUEFROST 
Blue Star ltd 
Sahas 
414/2 Vir Savarkar Marg 
Prabhadevi 

~e~n,:~a!a ~~O 025 
Telex 011-4093 
Cable FROSTBLUE 
Blue Star ltd 
Band Box House 
Prabhadevi 

~e~n,:~f3 b~O 025 
Telex 011-3751 
Cable BLUESTAR 
Blue Star ltd 
7 Hare Street 
POBox 506 
Calcutta 700 001 
Tel 23-0131 
Telex 021-7655 
Cable BLUESTAR 
Blue Star ltd 
7th 8. 8th Floor 
Bhandan House 
91 Nehru Place 
New Delhi 110024 
Tel 6347708. 635166 
Telex 031-2463 
Cable BlUESTAR 
Blue Slar ltd 
Blue Slar House 
lH1A Magarath Road 
Bangalore 560 025 
Tel 55668 
Telex 043-430 
Cable BlUESTAR 
Blue Star ltd 
Meeakshl Mandlran 
xxx/1678 Mahatma Gandhi Rd 
Cochin 682 016 
Tel 32069,32161,32282 
Telex 0885-514 
Cable BLUESTAR 
Blue Star ltd 
1-1-117i1 
Saro)lnl Oevi Road 
Secunderabad 500 003 
Tel 70126.70127 
Cable BLUEFROST 
Telex 015-459 

BRITISH COLUMBIA 
Hewlett-Packard (Canada) Ltd 
837 E Cordova Street 
Vancouver V6A 3R2 

i~x(~6-~~~~~;~ 

Blue Star ltd 
234 Kodambakkam High Road 
Madras 600034 
Tel 82056 
Telex 041·379 
Cable BLUESTAR 

INDONESIA 
BERCA Indonesia P T 
POBox 496 Jkl 
JLN.Abdul MUls 62 
Jakarta 
Tel 40369 49886.49255356038 
JKT42895 
Cable BERCACON 
BERCA IndoneSia P t 
63 JL Raya Gubeng 

fe~r~~tfga 
ISRAEL 
ElectrOniCS 8. Engineering O,V 

01 Motorola Israel Ltd 
17, Kremenetskl Street 
POBox 25016 
Tel-Aviv 
Tel 38973 
Telex 33569 
Cable BASTEl Tel-AVIV 

JAPAN 
Yokogawa-Hewlett-Packard Ltd 
Ohashi Building 
59-1 Yoyogl l-Chome 
Shlbuya·ku, Tokyo 151 
Tel 03-370-2281 '92 
Telex 232-2024YHP MARKET 

TOK 23-724 
Cable YHPMARKET 
Yokogawa-Hewlett·Packard ltd 
Chuo Bldg 4th Floor 

~~~OOg~~:~~~~6'~~a~~~~ome 
Osaka,532
Tel 06-304-6021
Yokogawa-Hewlett·Packard Ltd
Nakamo BUilding
24 Kaml SasaJima-Cho

~:Ika/o~~r~~i _~~?loya 450

YOkogawa-Hewlett-Packard Ltd
Tanlgawa BUilding
2-24·1 Tsuruya-cho
Kanagawa-ku
Yokohama, 221
Tel 045-312-1252
Telex 382-3204 YHP YOK
Yokogawa-Hewlett-Packard Ltd
Mlto M,tsu BUilding
105. Chome·l ,San-no-maru
Mito,lbaragl310
Tel 0292-25-7470
Yokogawa-Hewlett-Packard ltd
Inoue BUilding
1348-3, Asahl-cho 1-chome

f:lsOY~'2~t;_'re.a5~a 243

MANITOBA
Hewlett-Packard (Canada) ltd
513 Century SI
St James
WinniptJi R3H OL8
Tel (204) 786-7581
TWX 610-671-3531

CENTRAL AND SOUTH AMERICA

ARGENTINA
Hewlett-Packard Argenllna
SA
Av Leandro N Alem 822 12
1001 Buenos Air.s
Tel 31-6063.4.5,6 and 7
Telex 122443 AR CIGY
Cable HEWPACK ARG

BOLIVIA
Casa Kavlln S A
Calle POtOSI 1130
POBox 500
La Paz
Tel 41530,53221
Telex CWC BX 5298.IIT 3560082
Cable KAVLlN

BRAZIL
Hewlett-Packard do BraSil
Ie C Ltda
Avenlda RIO Negro. 980
Aiphaville
06400Barueri SP
Tel 429-3222

Hewlett-Packard do Brasil
Ie C Ltda
Rua Padre Chagas 32

i~~~-:,~ri2~~~e2~~5621
Cable HEWPACK Potio Alegre
Hewlett-Packard do BraSil
IE C Ltda
Rua SIQuelra Campos. 53
Copacabana
2oo00-Rio de Janeiro
Tel 257-80-94-000 (021)
Telex 391-212-1905 HEWP-BR
Cable HEWPACK

RIO de Janeiro

CHILE
Calcagni y Metcalle Ltda
Alameda 580-01 807
Casilia 2118

fe~n~~~~3'
Telex 3520001 CALMET
Cable CALMET Santiago

COLOMBIA
InstrumentacI6n
Hennk A Langebaek & Kler S A
Carrera 7 No 48-75
Apartado Aereo 6287
Bogota. IDE
Tel 69-88-77
Cable AARIS Bogota
Tele. 044·400

COSTA RICA
Clentlflca Costartlcense S A
Avenlda 2 Calle 5
San Pedro de Montes de Dca
Apartado 10159
San Jose
Tel 24-38-20 24-08-19
Telex 2367 GALGUR CR
Cable GALGUR

Yokogawa-Hewlett-Packard ltd
Kumagaya Asahl
Hackllum BUilding
4th Floor
3-4 Tsukuba

fe~~:N~_~:~6~~jama 360

KENYA
Technical EnQlneenng

ServlceslE A)Ltd
POBox 18311
Nairobi
Tel 557726/556762
Cable PROTON
Medical Only
InternatIOnal Aeradlo(E A)Ud
POBox 19012
Nairobi Airport
Nairobi
Tel 336055/56
Telex 22201 '22301
Cable INTAERIO Nairobi

KOREA
Sam sung Electronics Co Ltd
20th FI Oongbang Bldg 250 2-KA
CPO Box 2775
Taepyung-Ro, Chung-Ku
Seoul
Tel (23) 6811
Telex 22575
Cable ELEKSTAR Seoul

MALAYSIA
Teknlk Mutu Sdn Bhd
2Lorongn'6A
Section 13
Petallng Jaya Selangor
Tel 54994/54916
Telex MA 37605
Protei Engineering
POBox 1917
Lot 259, Satok Road
Kuchlng. Sarawak
Tel 2400
Cable PROTEL ENG

MOZAMBIQUE
A N Goncalves. Ua
162, 1 Apt 14 Av 0 LUIs
Calxa Postal 107
Lourenco Marques
Tel 27091.27114
Telex 6-203 NEGON Mo
Cable NEGON

NEW ZEALAND
Hewlen·Packard (N Z) Ltd
POBox 9443
Courtenay Place

~Iel~~~~~
Cable HEWPACK Wellington
Hewlen-Packard (N Z) Ltd
Pakuranga ProfeSSional Centre
267 Pakuranga Highway
Box 51092

~eik~69_6~~
Cable HEWPACK.Auckland

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd
800 Windmill Road
Dartmouth B3B 1 L 1
Tel (902) 469-7820
TWX 610-271-4482 HFX

ECUADOR
Calculators Only
Computadoras y EQulpos
ElectrOnlCOS
POBox 6423 CCI
Eloy Alfaro #1824,3 P,SO
Quito
Tel 453482
Telex 02·2113 Saglta Ed
Cable Salllta-QUIto

EL SALVADOR
InstrumentaClon 'I Procesamlento

Electromco de el Salvador
Bulevar de los Heroes 11·48
San Salvador
Tel 252787

GUATEMALA
IPESA
Avemda La Relorma 3-48
Zona 9
Guatemala City
Tel 63627 64786
Telex 4192 Te!etro Gu

Analytlcal,MedlcalOnly
Medical Supplies N Z Ltd
SCientifiC D,VISion
79 Carlton Gore Rd Newmarket
POBox 1234
Auckland
Tel 75-289
Cable DENTAL Auckland
Analytical Medical Only
Medical Supplies N Z Ltd
POBox 1994
147-161 Tory SI
Wellington
Tel 850·799
Telex 3858
Cable DENTAL. Wellington
Analytical Medical Oniy
Medical Supplies N Z Ltd
POBox 309
239 Stanmore Road
Christchurch
Tel 892-019
Cable DENTAL Christchurch
AnalytlcallMedlcalOnly
Medical Supplies N Z Ltd
303 Great King Street
POBox 233
Dunedin
Tel 88-817
Cable DENTAL Dunedin

NIGERIA
The ElectroniCS

InstrumentatIOns Ltd
N6B/770 Dyo Road
Oluseun House
PM B 5402
Ibadan
Tel 61577
Telex 31231 TElL Nigeria
Cable THETEIL Ibadan
The Electronics Instrumenta·

tlonsLtd
144 Agege Motor Road Mushln
POBox 6645
Lsgos
Cable THETEIL Lagos

PAKISTAN
Mushko 8. Company Ltd
Oosman Chambers
Abdullah Haroon Road
Karachi-3
Tel 511027 512927
Telex 2894
Cable COOPERATOR KaraChi
Mushko & Company. Ltd
38B Satellite Town

fe~~~fJ~di
Cable FEMUS Rawalpindi

PHILIPPINES
The Online Advanced

Systems CorporatIOn
RICO House
Amorsolo cor Herrera Str
LegaspI Village. Makatl
Metro Manila
Tel 85·35-81.85-34·91
Telex 3274 ONLINE

ONTARIO
Hewlett-Packard (Canada) ltd
1020 Mornson Or
Ottawa K2H 8K7
Tel (613) 820-6483
TWX 610-563-1636
Hewlen-Packard (Canada) ltd
6877 Goreway Dnve

re~S~l~~j~~:_}:jo 1 M8
TWX 610-492-4246

MEXICO
Hewlen-Packard Mexlcana
S A de C V
Av Penfl!tlco Sur No 6501
Tepepan, Xochimllco
Mexico 23. 0 F
Tel 905-676-4600

Hewlett-Packard Mexlcana
S A de C V
Ave ConstituCl6n No 2184
Monterrey. N L
Tel 48-71·32,48-71-84
Telex 038-410

NICARAGUA
Roberto Terlin G
Apartado Postal 689
Edlflclo Terlin
Managua
Tel 25114,23412,23454
Cable ROTERAN Managua

PANAMA
Electrdmco Balboa. SA
POBox 4929
Calle Samuel LeWIS
Cuidad de Panama
Tel 64-2700
Telex 3483103 Curunda,

Canal Zone
Cable ELECTRON Panama

RHODESIA
Field Technical Sales
45 KelVin Road North
POBox 3458

~e~Ii~~52!' (5 hnes)
Telex RH 4122

SINGAPORE
Hewlett·Packard Singapore

(pte)Ud
1150 Depot Road
Alexandra POBox 58

f~ln~jg~3~~
Telex HPSG RS 21486
Cable HEWPACK, Singapore

SOUTH AFRICA
Hewlen-Packard South Atnca

(Ply) Ltd
Pnvate Bag Wendywood
Sandton, Transvaal 2144
Hewlen·Packard Centre
Daphne Street, Wendywood
Sandton. Transvaal 2144
Tel 802·10408
Tel~x 8-4782
Cable HEWPACK JOHANNESBURG
Service Department
Hewlett-Packard South Attica

(pty).Ud
POBox 39325
Gramley, Sandton, 2018
451 WynbergExtenslon 3
Sandton. 2001
Tel 636-8188/9
Telex 8-2391
Hewlett-Packard South Attica

P 6pt~d~ ~~~
Howard Place, Cape Provmce 7450
Pine Park Centre. Forest Dnve
Pinelands, Cape Province 7405
Tel 53-7955 thu 9
Telex 57-0006
Service Department
Hewlett-Packard South Attica

P 6pt~dx ~jd099
Overport. Durban 4067

~~~b~,~~~s~oad 
Durban, 4001 
Tel 88-7478 
Telex 6-7954 

QUEBEC 
Hewlett-Packard (Canada) Ltd 
275 Hymus Blvd 
Pointe Claire H9R lG7 
Tel (514) 697·4232 
TWX 610-422-3022 
TLX 05-821521 HPCl 

PERU 
Companla Electro Medica S A 
Los Flamencos 145 
San ISidro CaSIlia 1030 
Lima 1 
Tel 41-4325 
Cable ELMEO lima 

PUERTO RICO 
Hewlett-Packard Inter-Americas 
Puerto RICO Branch Office 
Calle 272. 
No 203 Urb Country Club 
Carolina 00924 
T" (809) 762-7255 
Telex 3450514 

URUGUAY 
Pablo Ferrando S A 
ComerClal e Industrial 
Avemda Italla 2877 
Casilla de Correo 370 
Montevideo 
Tel 40-3102 
Cable RADIUM Montevideo 

TAIWAN 
Hewlett-Packard Far East Ltd 
Taiwan Branch 

~;cChlun~thH~~~~rWest Road 

Taipei 
Tel 3819160-4 
Cable HEWPACK TAIPEI 
Hewlett-Packard Far East Ltd 
Taiwan Branch 
68-2. Chung Cheng 3rd Road 

fe~o(~~\U2~~318_KaOhSIUng 
Analytical Only 
San Kwang Instruments Co Ltd 
No 20. Yung SUI Road 
Taipei 
Tel 3715171-4 (Simes) 
Telex 22894 SANKWANG 
Cable SANKWANG TAIPEI 

TANZANIA 
Medical Only 
InternatIOnal Aeradlo (E A) Ltd 
POBox 861 
Dar .. Salaam 
Tel 21251 Ext 265 
Telex 41030 

THAILAND 
UNIMESA Co , Ltd 
Elcom Research BUilding 
2538 SukumVltMe 

fe~'9~~~8 7, 3930338 
Cable UNIMESA Bangkok 

UGANDA 
Medical Only 
Internallonal AeradlO(E A 1 Ltd 
POBox 2577 
Kampala 
Tel 54388 
Cable INTAERIO Kampala 

ZAMBIA 

~ ~ ~~bxui7~~ambla) Ltd 
Lusaka 
Tel 73793 
Cable ARJAYTEE. Lusaka 

OTHER AREAS NOT USTED,CONTACT: 
Hewlett-Packard Intercontlllental 
3200 Hillview Ave 
Palo Ano. California 94304 
Tet (415) 493-1501 
TWX 910-373-1267 
Cable HEW PACK Palo Ano 

FOR CANADIAN AREAS NOT LISTED: 
Contact Hewlett-Packard (Canada) 
Ltd In M,sslssauga 

VENEZUELA 
Hewlen-Packard de Venezuela 
CA 
POBox 50933 
Caracas 105 
Los RUices Norte 
3aTransversai 
EdlflCIO Segre 
Caracas 107 
Tel 35-00-11 (20 hnesl 
Telex 25146 HEWPACK 
Cable HEW PACK Caracas 

FOR AREAS NOT LISTED, CONTACT: 
Hewlen-Packard 
Inter-Americas 
3200 HillView Ave 
Palo Alto. California 94304 
Tel (415) 493-1501 
TWX 910-373-1260 
Cable HEWPACK Palo Afto 
Telex 034-8300, 034-8493 



--

-

EUROPE, NORTH AFRICA AND MIDDLE EAST 
AUSTRIA 
Hewlett-Packard Ges m b H 
Handelskil52 
PO bOIl 7 
A-1205 Vienna 
Tel (0222) 351621 to 27 
cable HEWPAK Vienna 
Telex 75923 hewpak a 

BELGIUM 
Hewlett-Packard Benelux 
5 A IN V 
Avenue de Col-Vert, I, 

~~~~jok~:~I::I. 
t~~I~O~A~~2B~~ ~~usseIS
Telex 23494 patoben bru

CYPRUS
Kypronlcs
19, GreoOfiOS & Xenopoulos Rd
P a Box 1152
CY-Nlcoaill
Tel 45628/29
Cable KYPRQNtCS PANDEHI$
Telex 3018

CZECHOSLOVAKIA
VyvOlova a Provoznl Zakladna

~~~R~~~ ~:V~o~~~~~~'~~y 
Tel 899341 
Telex 121333 
Institute of Medical BioniCS 
Vyskumny Uslav lekarskel B,onlky 
Jedlova 6 
CS-88346 8,fi's'ev.Kr.m.r. 
Tel 44-551/45-541 

DDR 
Entwlcklungslabor Cler TU Dresden 
ri0D~~~~~~smstltut Memsberg 

W.ldhetm/Meinaberg 
Tel 37667 
Telex 112145 

Export Contact AG Zuerich 
Guenther Forgber 
Schlegelstrasse 15 
1040 B ... lln 
Tel 42-74-12 
Telex 111689 

DENMARK 
Hewlett-packard A/S 

g~~~v:~~lrk"'od 
Tel (02) 81 6640 
Cable HEWPACK AS 
Telex 37409 hpas dk 
Hewlett-Packard AlS 

~~~~ kilkebor9 
Tel (06) 82 71 66

t~:I~ ~7E~~:8:s A~k
FINLAND
Hewlett-Packard DV
Nahkahousuntle 5
PO Box6
SF-(1)211 H.I"nki 21
TeL (90) 6923031
Cable. HEWPACKOY HelSinki
Telex 12-1563 HEWPA SF

FRANCE
Hewlett-Packard France
Quartler de Courtaboeuf
BOlte Postale No 6
F-91401 OrHY Cedex
Tel (1) 907 78 25
Cable' HEW PACK Orsay
Telex· 600048
Hewlett-Packard France

~E:n~q~~,I.onale
Chemin des MOUllies
B p 162
F-69130 Ecully
Tel (78) 33 8125,
Cable HEWPACK Eculy
Telex 310617

Hewlett-Packard France
Agence R~glOnaje
P~ncentre de la Cepu!re
Chemm de la C~pl~re, 20
F-31300 Toulou .. Le Mirail
Tel (61) 40 11 12
Cable HEWPACK 51957
Telex 510957
Hewlett-Packard France
Agence ReglOnale
Aeroport pnnclpal de
MarselUe-Marignane

~~13r~,\~~r~~n;6ne
Cable HEWPACK MARGN
Telex 410770
Hewlett-Packard France

~j~l;ee~~ld~~~chester
B P 1124
F-35014 Rennes Cedex
Tel (99) 36 33 21
Cable HEWPACK 74912
Telex 740912
Hewlett-Packard France
Agence ReglOnale
74, A"~e de la Robertsau
F-67000 Str .. bourg
Tel (88) 35 23 20121
Telex 890141
Cable HEWPACK STRBG
Hewlett-Packard France
Agence ReglOnale
Centre Vauban
201, rue Colbert
Entree A2
F-59000 Lille
Tel (20) 514414
Telex 820744
Hewlett-Packard France
Centre d' Affatres Pans-Nord
Bltlment Ampere
Rue de la Commune de Pans
B p 300
F-93153 Le Blanc Mesnll cedex
Tel (01) 931 88 50

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertnebszentrale Frankfurt
Bernerstrasse 117
Postfach 560 140
0-6000 Frankfurt 56
Tel· (0611) 50 04-1
Cable HEWPACKSA Frankfurt
Tel (0611) 50 04-1
Cable HEWPACKSA Frankfurt
Telex 04 13249 hpHmd
Hewlett-Packard GmbH
Technlsches Buero BOblingen
Herrenbergerstrasse 110

~~r%~O~~b~'1~n, Wurttemberg

Cable HEPAK Bdbllngen
Telex 07265739 bbn
Hewlett-Packard GmbH
TechOisches Buero Ousseldort
Emanuel-leutze-Str 1 (Seestern)
0-4000 Dus .. ldorf 11
Tel (021t) 59711
Telex 085/86533 hpdd d
Hewlett-Packard GmbH
Technlsches Buero Hamburg
Wend&nstrasse 23

~~r~~0~~'r~3"3 1
Cable HEWPACKSA Hamburg
Telex 2163032 hphh d
Hewlett-Packard GmbH
TechOisches Buero Hannover
Am Grossmarkt 6
0-3000 Hannover 91
Tel (0511) 46 60 01
Telex 092 3259

UNITED STATES

ALABAMA
8290 Whitesburg Or , S E
POBox 4207
Hunt.vlUe 35802
Tel (205) 881-4591
Medical Only
228 W Valley Ave
Room 220

~:r(J~~}t;.~-~g~~2
ARIZONA

~3~:e~i~~gg~~a St
Tel (602) 244-1361
2424 East Aragon Rd
Tucson 85706
Tel (602) 294-3148

'ARKANSAS
Medical SerVice Only
POBox 5646
Brady StatIOn
Linle Rock 72215
Tel (501) 376-1844

CALIFORNIA
1430 East Orangethorpe Ave
Ful"rton 92631
Tel (714) 870-1000
3939lankershlm Boulevard

~ef{~I~)o~llr~ 91604
TWX 910-499-2671
5400 West Rosecrans Blvd
POBox 92105
World Way Postal Center

~:s(:'";f91;0~7~009
'Lo. Ang
Tel (213) 776-7500
3003 Scott Boulevard
Santa Clara 95050
Tel (408) 249-7000
TWX 910-338-0518

~:i~~~)~:~_6165
646 W North Market Blvd
Sacr.mento 95834
Tel (916) 929-7222
9606 Aero Onve
P a Box 23333
San Di.go 92123
Tel (714) 279-3200

COLORADO
5600 South Ulster Parkway
Englewood 801 1 0
Tel (303) 771-3455

CONNECTICUT
12 Lunar Onve
New Haven 06525
Tel (203) 389-6551
TWX 710-465-2029

FLORIDA
POBox 24210
2806 W Oakland Park Blvd
Ft, Lauderdale 33311
Tel (305) 731-2020
• Jack.onville

~e~dl{~~e~9~~~~
POBox 13910
6177 lake Ellenor Dr
Ortando 32809
Tel (305) 859-2900
POBox 12826
PenHcola 32575
Tel (904) 476-8422

GEORGIA
POBox 105005
Allanta 30348
Tel (404) 955-1500
TWX 810-766-4890
Medical Service Only

~~Uf4;~7~g~t92
POBox 2103
Warn ... Robins 31098
T" (912) 922-0449

Hewlett-Packard GmbH
Werk Groetzlngen
Ohmstrasse 6
0-7500 Karl.ruke 41

~~lle~0~~~~26~7~~ 06

Hewlett-Packard GmbH
Technlsches Buero Nuremberg
Neumeyer Str 90

~~r5{~I~)r563~;f'85
Telex 0623860
Hewlett-Packard GmbH
Technlsches Buero Munchen
Untel'hachlnger Strasse 28
ISAR Center
0-8012 Ottobrunn
Tel (089) 601 3061'7
Cable HEWPACKSA Munchen
Telex 0524985
Hewlett-Packard GmbH
Technlsches Buero Berlin
Keith Strasse 2-4
0-1000 Berlin 30
Tel (030) 24 90 86
Telex 183405 hpbln d

GREECE
Kostas Karayannls
08, Omlrou Street
GR- Athen. 133
Tel 3237731
Cable RAKAR Athens
Telex 21 5962 rkar gr

~~~!fEt~l. 0G'IYpapathanasslou & Co 
Marnl17 
GR - Athen. 103 
Tel 5221915 
Cable INTEKNIKA Athens 
Telex 21 5329 INTE GR 
Medical Only' 
Technomed Hellas lid 
52,Skooula Street 
GR - Ath.n. 135 
Tel 3626972, 3633830 
Cable ETAlAK athens 
Telex 21-4693 ETAL GR 

HUNGARY 
MTA 
MuszenJgYI es Merestechntkal 
Szolgalata 
LenlnKrt 67 
1391 Budapest VI 
Tel 4203 3S 
Telex 225114 

ICELAND 
Medical Only 
Eldlng Trading Company Inc 
Hafnarhvolt - Tryggvatotu 
IS-Reykjavik 
Tell 5820 
Cable ELOING ReykjaVik 

IRAN 
Hewlett-Packard Iran lid 
No 13. Fourteenth St 
Mlremad Avenue 
POBox 41/2419 
IR-Tehran 
Tel 851082-7 
Telex 212574 khrm Ir 

IRAQ 
Hewlett-Packard Trading Co 
411/8 Mansoor City 
Baghdad 
Tel 5517827 

t:I~I~ ~1~p~EDI~tq, Ik 
Baghdad Iraq 

IRELAND 
Hewlett-Packard ltd 
King Street lane 
GB-Wlnn .... h.Woklngham 
Berks, RG11 5AR 
Tel (Q734) 784774 
Telex 847178/848179 

HAWAII 

~8:~O~~luK~~reet 
Tel (8OB) 955-4455 
Telex 723-705 

ILLINOIS 
5201 Tollvlew Dr 
Roiling meadow. 60008 
Tel (312) 255-9800 
TWX 910-687-2260 

INDIANA 
7301 North Shadeland Ave 

~~rl(3~r:~~~0 
TWX 810-260-1797 
IOWA 
2415 Hetnz Road 
low, City 52240 
Tel (319) 338-9466 

KENTUCKY 
Medical Only 
Atkinson Square 
3901 Atkinson Or , 
SUite 407 Atkinson Square 
Loui.ville 40218 
Tel {S02} 456-1573 

LOUISIANA 
POBox 840 
3229-39 Williams Boulevard 
Kenn ... 7Q063 
Tel (504) 443-6201 

MARYLAND 
6707 Whitestone Road 
BaHlmore 21207 
Tel (301) 944-5400 
TWX 710-862-9157 
2 Choke Cherry Road 
Rockville 20850 

i~X{3?,16_~~~~~~~ 
MASSACHUSETTS 
32 Hartwell Ave 

~;x:~~f~6~~~~0 
TWX 710-326-6904 

ITALY 
Hewlett·Packard Italiana SpA 
Via Amerigo VespuCCI 2 
Casella postale 3645 
1-20100 Milano 
Tel (2) 6251 (10 lines) 
Cable HEWPACKIT MIlano 
Telex 32046 
Hewlett-Packard Italiana SpA 
Via Pietro Maroncelll 40 
(ang Via Visentin) 
1·35100 P.dov. 
Tel (49) 66 48 88 
Telex 41612 Hewpackl 
Medical only 
Hewlett·Packard lIaliana SpA 
Via d·Aghlardl. 7 
1-56100 Piu 
Tel (050) 2 32 04 
Telex 32046 via Milano 
Hewlett·Packard lIallana SpA 
Via G Armellinll0 
1-00143 Roma 
Tel (06) 54 69 61 
Telex 61514 
Cable HEWPACKIT Roma 
Hewlett-Packard Italiana SpA 
Corso Giovanni Lanza 
1-1031 Torino 
Tel (OIl) 682245/659308 
MedlcallCalculators Only 
Hewlett-Packard Itahana SpA 
Via Principe NIcola 43 GIC 
1-95126 Catanis 
T. (095137 05 04 
Hewlett-Packard Italiana SpA 
VIa Amerigo VespuCCl, 9 
1-80142 Napoli 
Tel (081) 33 77 11 
Hewlett-Packard lIahana SpA 
Via E Masl,91B 

~:OiE~I~~~~887 
KUWAIT 
AI-Khaldlya Trading & 

P go~~:c~~8_~~ft 
Kuwait 
Tel 424910-411726 

t~~I~ ~i~t~Ge~~ kt 

LUXEMBURG 
Hewlett-Packard Benelux 
S A IN V 
Avenue du Col-Vert, 1 
(Groenkraaglaan) 
B-1170 Bru ... I. 
Tel (02) 672 22 40 
Cable PALOBEN Brussels 
Telex 23494 

MOROCCO 
Gerep 
190, Blvd Brahlm Roudam 
C •• aba-nc. 
Tel 25-16-76/25-90-99 
Cable Gerep-Casa 
Telex 23739 

NETHERLANDS 
Hewlett-Packard Benelux N V 
Van Heuven Goedhartlaan 121 
POBox 667 
Nl-1134 Am.telvNn 
Tel (020) 47 20 21 
Cable PAlOBEN Amsterdam 
Telex 13216 hepa nl 

NORWAY 
Hewlett-Packard Norge A/~ 
Nesvelen 13 
Box 149 
N-1344 H •• lum 
Tel (02) 53 83 60 
Telex 16621 hpnas n 

MICHIGAN 
23855 Research Dnve 

f:r'B'~~f6-~~ 4S024 

724 West Centre Ave 
Kalamazoo 49002 
Tel (606) 323-8362 

MINNESOTA 
2400 N Prior Ave 
St. Paul 55113 
Tel (612) 636-0700 

MISSISSIPPI 
'Jackson 

~1d(~,~e98~~93~~ 
MISSOURI 
11131 Colorado Ave 

fe~n{~~}~iJ!_r~~7 
TWX 910-771-2087 
1024 ExecutIve Parkway 
St. Loui. 63141 
Tel (314) 878-0200 

NEBRASKA 

~~~I~~r~n~oad 
SUite 110
Omaha 68106
Tel (402) 392-0948

NEW JERSEY
W 120 Century Rd
Paramus 07652

i~x{2?,'6_~~~~~~
Crystal Brook ProfeSSional

BUlldmg
Eatontown 07724
Tei (201) 542-1384

NEW MEXICO
POBox 11634
StatIOn E
1 1300 Lomas Blvd N E
Albu~ue~u. 87123

~x(59i6_~8~:~~~g

POLAND
Bluro Informac)1 Technlcznel
Hewlett-Packard
Ul Stawkl 2. 6P
00-950Warszawa
Tel 395962/395187
Telex 812453hepapl
UNIPAN
Zaklad Doswladczalny

~~doK~~I:~:ra~~~ %~~~~~!el 51'55
00-800 War.zawa
Tel 36190
Telex 814648
Zaklady Naprawcze Sprzetu

Medycznego
Plac Komuny Parysl\lel 6
90-007 Ladz
Tel 334-41.337-83

PORTUGAL
Telectra-Empresa Tecnlca de
EQUlpamentos Electncos S a r I
Rua Rodrigo da Fonseca 103
P a Box 2531
P-li.bon 1

t~~I~1 %~~C~OR~2llsbon
Telex 12598
Medical only
Mundlnter
IntercamblO Mundlal deComerclo
Sa r I
Av A A de AgUiar 138
POBox 2761
P - li.bon
Tel (19) 532131./7
Cable INTERCAMBIO lisbon

RUMANIA
Hewlett-Packard Reprezentanta
Bd N Balcescu 16
Bucharest
Tel 158023/138885
Telex 10440
II R U C
Intrepnnderea Pentru

Intretlnerea
SI Repararea Utllalelor de Calcul
B-dul prof Dlmltrfe Pompei 6
Bucharest-Sectorul 2
Tel 126430
Telex 11716

SAUDI ARABIA
Modern ElectronIc Establishment
King Abdul Am str (Head oHlce)
P a Box 1228
Jeddah
Tel 31173-332201
Cable ELECTRA
POBox 2728 (Service center)
Riyadh
Tel 62596-66232
Cable RAOUFCO

SPAIN
HeWlett-Packard Espanola S A
Jerez, Calle 3
E-Madrld 16
Tel (I) 458 26 00 (10 lines)
Telex 23515 hpe
Hewlett-Packard Espanola, S A
Mllanesado 21-23
E-Bareelona 17
Tel (3) 203 6200 (5 lines)
Telex 52603 hpbe e
Hewlett-Packard Espanola S A
Av Ramon y CaJal 1
Edlflclo SeVilla, planta g,
E-SeviUe 5
Tel 644454/58

~~~~~~-:~~arld 7~ssai'lOla S A 

E-Bilbao-l 
Tel 238306/238206 
Calculators Only 
Hewlett-Packard Espanola S A 
Gran Via Fernando EI Catohco, 67 
E-Valencla-8 
Tel 3266728/3268555 

156 Wyatt Onve 
La. Cruc .. 88001 
Tel {50S} 526-2484 
TWX 910-9983-0550 

NEW YORK 
6 Automation Lane 
Computer Park 

~,bi~r8m~5'550 
20t South Avenue 

fe~uM~:):~4~13~5601 
TWX 510-253-5981 
650 Pennton HIli Office Park 

f;irrr~ 1~~~~950 
5858 East Molloy Road 

~eyr(fr5ie4~~~i~86 
TWX 710-541-0482 
1 Crossways Park West 

r::(:t~rg2~~J;Jo 
TWX 710-990-4951 

NORTH CAROLINA 
POBox 5188 
1923 North Main Street 
High Point 27262 
Tel (919) 885-8101 

OHIO 
16500 Sprague Road 
Cleveland 44130 
Tel (216) 243-7300 
TWX 8 t 0-423-9430 
330 Progress Rd 
Dayton 45449 
Tel (513) 859-8202 
1041 Klngsmlll Parkway 
Columbus 43229 
Tel (614) 436·1041 

SWEDEN 
Hewlett-Packard Sverlge AB 
Enlghetsvagenl-3 
Fack 
S- 1 61 20 Bromma 20 
Tel (08) 730 05 50 
Cable MEASUREMENTS 

StockhOlm 
Telex 10721 

Hewlett-Packard Sverlge AB 
Ostra Vlntergatan 22 
S·702 40 Orebro 
Tel (019) 140720 
Hewlett-Packard Sverlge AB 
Frl'ltallsgatan 30 
S-421 32 Vastra Frolunda 
Tel (031) 49 09 50 
Telex 10721 Via Bromma OHlce 

SWtTZERLAND 
Hewlett-Packard (SChwelz) AG 
Zurcherstrasse20 
POBox 307 
CH-8952 SChlieren-Zurich 
Tel (01)7305240:7301821 
Cable HPAG CH 
Telex 53933 hpag ch 
Hewlett-Packard (schwelz) AG 
Chateau Bloc 19 
CH-1219 Le Lignon-Geneva 
Tel (022) 96 03 22 
Cable HEWPACKAG Geneva 
Telex 27333 hpag ch 

SYRIA 
MedlcallCalculator only 
Sawah & Co 
Place Azme 
B P 2308 
SYR-Damascus 
Tel 16367, 19697 14268 
Cable SAWAH, Damascus 

TURKEY 
Telekom Engmeenng Bureau 
POBox 437 
Beyoglu 
TR-Istanbul 
Tel 494040 
Cable TElEMATION Istanbul 
Telex 23609 
Medical only 
EMA 
Muhendlslik Kollektl! Sirketl 
Adakale Sokak 41/6 
TR-Ankara 
Tel 175622 
Analytical only 
Yllmaz Ozyurek 
Milli Mudafaa Cad No 16/6 
Klzllay 
TR-Ankara 
Tel 250309 
Telex 42576 ozek tr 

UNITED KINGDOM 
Hewlett-Packard ltd 
Kmg Street lane 
GB-Winner.h, Woklngham 
Berks RGll 5AR 
Tel (0734)784774 
Cable Hewple london 
Telex 847178/9 

Hewlett-Packard ltd 
Trafalgar House. 
NaVigation Road 
Altrincham 
Cheshire WA14 1NU 
Tel (061) 928 6422 
Telex 668068 

Hewlett-Packard ltd 

~~~~a~gu~se 
Dudley Road
Halesowen
West Midlands B62 SSD
Tel (021) 550 9911
Telex 339105

OKLAHOMA
POBox 32008
Oklahoma City 73132
Tel (405) 721-0200

OREGON
17890 SW Lower Boones

Ferry Road
Tualatin 97062
Tel (503) 620-3350

PENNSYLVANIA
111 Zeta Onve
Pittsburgh 15238
Tel (412) 782-0400
1021 8th Avenue
King of Prussia Industrial Park

~ln~2r~t265~~~069406
TWX 510-660-2670

SOUTH CAROLINA
6941-0 N Trenholm Road
Columbi. 29260
Tel (803) 782-6493

TENNESSEE
'Knoxville
MedIcal SerVice only
Tel (615) 523-5022

3027 Vanguard Dr
Directors Plaza

~(&m·3!~~Jj70
Nashville
Medical Service only
Tel (615) 244-5448

TEXAS
POBox 1270
201 E ArapahO Rd
Richardson 75080
Tel (214) 231-6101

Hewlett-Packard ltd
Wedge House
799 london Road
GB- Thornton Heath
Surrey CR4 6XL
Tel (01)68401038
Telex 946825

Hewlen-Packard Ltd
c'o Makro
South Service wholesale Centre
Wear Industrial Estate
Washington
GB-New Town. County Durham
Tel Washmgton 464001 ext 5758

HewleU-Packard Ltd
10, Wesley St
GB·Castieford
West YorkshireWF10 lAE
Tel (09775) 50402
Telex 557355

Hewlett-Packard Ltd
1 Wallace Way
GB-Hitchin
Herts
Tel (0462) 52824/56704
Telex 825981
Hewlet-Packard Ltd
2C Avonbeg Industrial Estate
long Mile Road
Dublin 12
Tel Dublin 509458
Telex 30439

USSR
HewleU-Packard
Representative OHlce USSR
Pokrovsky Boulevard 4 17-KW 12
Moscow 101000
Tel 294·2024
Telex 7825 hewpak su

YUGOSLAVIA
Iskra-standardIHewlett-Packard
Mlkloslceva 38iVil

¥~1~003~i~8b~~/3~ 16 74
Telex 31583

SOCIALIST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Packard Ges m b H
POBox 7
A-1205 Vienna, Austria
Tel (0222}351621 1027
Cable HEWPAK Vienna
Telex 75923 hewpak a

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE CONTACT:
Hewlett-Packard S A
Mediterranean and Middle
East Operations
35. Kolokotronl Street
Platla Kefallanou
GR-Ktflssta-Athens. Greece
Tel 8080337/359/429
Telex 21-6588
Cable HEWPACKSA Athens

FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett·Packard S A
7, rue du BOls-du-lan
POBox
CH-1217 MeYrin 2 Geneva
SWitzerland
Tel (022) 82 70 00
Cable HEWPACKSA Geneva
Telex 22486

10535 Harwin Or
Hou.ton 77036
Tel (713) 776-6400
205 Billy Mitchell Road
San Antonio 78226
Tel (512) 434-S241

UTAH
2160 South 3270 West Street
Salt Lake City 84119
Tel (SOl) 972-4711

VIRGINA
POBox 12778
No 7 Koger Exec Center
SUite 212
Norfmk23502
Tel (804) 461-4025/6
POBox 9669

~~~~~~n~~rb~28ngs Road 
Tel (804) 285-3431 

WASHINGTON 
Bellelleld Office Pk 
1203-114th Ave S E 
Bellevue 9S004 

~~)2~n_!~~~~~~~ 
·WEST VIRGINIA 
Medical/Analytical Only 
Charleston 
Tel (304) 345-1640 

WISCONSIN 
9004 West Lincoln Ave 
We.t Alii. 53227 
Tel (414) 541-0550 

FOR U.S, AREAS NOT LISTED: 
Contact the regional oHlce 
nearest you Atlanta, Georgia 
North HOllywood. California 
RockVille Maryland Roiling Meadows 
IllinOIS Their complete 
addresses are listed above 

'Service Only 1/78 

--



110 Subject Index 

Subject Index 

a d 
Abort byte ......................... 55,61 Data, inverted ........................ 77 
Abort message (cli) ............. 14,30,31 Data message ........................ 14 
Abortive interrupts .................... 61 sending .......................... 19 
Add .................................. 10 receiving ......................... 20 
Address, HP-IB ................. 16,17,35 Data transfer 

codes ............................ 88 output ............................ 72 
non-active controller ............... 17 input ............................. 73 

AND (band) ........................... 7 Decimal mode (mdec) ................ 5,6 
ASCII table ........................... 91 Decimal to octal (dto) ................... 7 
Automatic interrupt .................... 68 Device address ....................... 16 
Autostart ............................. 41 Device (dev) .......................... 17 

b 
Direct memory access (DMA) .... 64,68,70 
Dot matrix ............................. 2 
Drivers, I/O ........................... 51 

Benchmarks, buffered I/O ............. 92 
Binary AND (band) ..................... 7 e 
Binary representation ................... 5 
Bit function ........................... 10 
Bit bucket ............................ 76 
Brackets, square ....................... 2 
Buffer 

DMA .......................... 68,70 
fast read/write .................. 68,69 
interrupt ....................... 68,69 
overflow .......................... 70 
pointers .......................... 75 
status ............................ 74 
string variable ..................... 77 
types ............................. 68 
underflow ......................... 70 

Buffer statement (buf) ................. 70 
Buffered I/O .......................... 67 

benchmarks ...................... 92 

Enable Interrupt (eir) ............ 53,56,63 
Equate (equ) ......................... 37 
Error line (erl) ......................... 42 
Error number (ern) .................... 42 
Error Recovery ........................ 42 
Errors ............................... 103 

buffer underflow or overflow (E5) ... 70 
messages ....................... 103 
out of range (E6) ................... 5 
parity (E7) ........................ 47 
time limit (E4) ..................... 42 
unnecessary parameters ............ 2 

Exclusive OR (eor) ..................... 7 
Extended Address .................... 16 
Extended I/O 

description ......................... 1 

Byte (8 bits) .......................... 71 modes ............................ 90 
status conditions .................. 90 

c 
Clear interface (cli - abort) ......... 30,31 

Extended read status (rds) ............. 38 

f 
Clear lockout/set local message ..... 14,24 
Clear message (clr) ................ 14,21 
Code conversion ................... 44,48 
Command codes (HP-IB) .............. 88 

Find file (fdf) .......................... 64 
Flags 14 & 15 .......................... 5 
Format (fmt) ....................... 18,71 

Command (cmd) ................ 19,20,35 
Complement ........................... 5 
Complement (cmp) ................... 5,8 

g 
Controller .................... 13,17,31,87 General I/O error messages .......... 105 
Conversion table (ctbl) ................ 44 Global variables ...................... 64 



Subject Index 111 

-- Subject Index 

h m 
HP-IB ............................. 13,85 Modes 

interface functions ................. 88 Extended I/O ...................... 90 
interrupt .......................... 58 OctalIDecimal ...................... 6 
lines .............................. 85 Multiple listeners ...................... 18 
messages ........................ 13 
operations ........................ 15 
sample application ................ 32 n 

• 
1 

Non-active controller ............... 30,31 
Non-active controller address .......... 17 

Inclusive OR (ior) ...................... 8 
Inspection ............................. 2 o 
Installation ............................. 2 
Interface registers .................... 49 
Interrupt 

abortive .......................... 61 
application ........................ 57 
automatic ......................... 68 
end-of-line (EOL) .................. 54 
HP-IB ............................ 58 
lockouts .......................... 64 

Octal mode (moct) ..................... 6 
Octal to decimal (otd) .................. 7 
On error (on err) ...................... 42 
On interrupt (oni) ................... 54,55 
OR 

exclusive (eor) ..................... 7 
inclusive (ior) ....................... 8 

Overflow, buffer ....................... 70 

programmable .................... 53 
vectored (EOL) .................... 54 

Interrupt enable (eir) ............... 54,56 
Interrupt return (iret) ................ 54,57 
I/O 

drivers ........................... 51 
buffered .......................... 67 

I/O flag (iof) .......................... 50 
I/O status (ios) ........................ 50 

p 
Parity (par) ........................... 47 
Pass control message (pct) ......... 14,30 
Poll (pol) .......................... 20,29 
Poll configure (polc) ................... 30 
Poll unconfigure (polu) ................ 30 
Polling ............................... 24 

1 parallel ........................ 24,29 
serial .......................... 24,26 

List ............................... 18,19 
Listenaddress ..................... 16,35 r 
Listener .............................. 18 
Live Keyboard ..................... 53,55 
Local lockout message (110) ......... 14,23 
Local message (Icl) ................ 14,23 
Logical operators (and, or, xor, not) ...... 5 

Range of integers ...................... 5 
Read binary (rdb) ..................... 20 
Read interface (rdi) ................... 50 
Read-only variables ................... 42 
Read (red) ........................... 20 
Read status (rds) .................. 20,38 

buffer ............................ 74 
serial polling ...................... 26 

Read/write memory ..................... 1 



-
112 Subject Index 

Subject Index 

Remote message (rem) ............. 14,22 
Require service message (rqs) ... 14,24,25 t 
Requirements .......................... 3 
Rom (read-only variable) .............. 42 
Rotate (rot) ............................ 8 

Timeout (time) ........................ 42 
Transfer parameters ................... 16 
Transfer (tfr) ................. 19,20,31,72 

s Trigger message (trg) .............. 14,20 
Truth tables .......................... 7,8 
Types of buffers ...................... 68 

Sales and Service Offices ............ 108 
Select codes ...................... 16,17 
Serial polling ...................... 24,26 u 
Service Requests .................. 24,26 
Shift (shf) .............................. 9 Underflow of buffer .................... 70 

Speed of peripherals ............... 67,69 Unlisten command ................. 16,36 
Status bit message .................... 14 

receiving (parallel polling) .......... 29 
sending .......................... 28 v 

Status byte message .................. 14 
receiving (serial polling) ........... 26 
sending .......................... 26 

Variables .......................... 42,64 
Vectored Interrupt ..................... 54 

Status bytes .......................... 38 
Status conditions ..................... 90 
String variable buffers ................. 77 

w 
Syntax ............................. 2,97 Word (16-bits) ........................ 71 

Write Control ......................... 63 
Write interface (wti) ................... 49 



• 



-



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


