PANAME MODULE REFERENCE
MANUAL
FOR THE HP/41C/41CV/41CX

Suite of Functions
Management of Matrices

Translated from the French
by
Sophie Ngozi Azorbo

English Translation Edited by
Jigekuma Ayebatari Ombu

Translation (c) 1990

FOREWORD

The PANAME module contains new functions for the HP-41, and applications of these
functions are numerous and diverse. Like the other functions of the HP-41, those found in the
original calculator as well as in other modules created by others, only the users, by the variety of
their backgrounds and preoccupations are in a position to generate interest in the functions at
their disposal.

However, it is useful to collect together the various examples of functions in order to increase
the expertise of every user. One of the aims of the PPC Club is to support the dissemination of
solutions to different problems to a wide audience and thus create permanent information for the
benefit of every one of us. In this connection, it is incontestable that we owe a lot to our Club,
without which the making of this module would not have been possible.

For instance, the PANAME module is provided with explanatory notes which we have
endeavoured to make as explicit as possible. We however, are aware of our limitations and
intend to take up this matter with every one of you, in order to create a document whose
motivation will be close to that which gave rise to the making of the PPC module.

For those of you who are desirous of eventually receiving the reference manual for the
PANAME module, we suggest that you contact, as soon as possible, Mr J J Dhenin, BC M W, 2
bis rue N Houel, 75005 PARIS. As soon as the manual becomes available, it will be sent to you.

How can we collectively bring the publication to fruition? Each one of us may notice in the
document points that may require clarification. As far as possible, we will wait for your written
comments, as these would invariably provide us with new ideas, records of which we would keep,
that would enable us update our explanatory notes for the PANAME module. As much as
possible, we will prefer that you submit ideas for the rewording of the various passages. Indeed,
we are now so familiar with the use of the new functions that we are possibly no longer in a
position to appreciate difficulties you may encounter in your use of the functions. It is you, and
only you, who can say how the reference manual should be drawn up.

Finally, actual use offers the best possible explanation of a function, especially when the
manual is written in a language one is not familiar with. We will therefore wait for you to inform us
of details of your actual applications, which should be kept as short as possible.

Taking into account your suggestions and integrating these with our own work, we will be in a
position, in the near future, to provide you with a more complete manual and above all one that
would be closer to your expectations.

Happy programming!

PREFACE

When the HP-41 was introduced in 1979, it represented an outstanding advance in quality in its
class; it introduced the handling and display of character strings. The way was paved for
complete "dialogue" between the calculator and the user, a dialogue further enhanced by the
sound (tones) capability of the

However significant these characteristics might be, they only represented the tip of the iceberg.
The presence of an alphanumeric keyboard leads to other advantages, some immediately
apparent and others more profound and richer lay beneath the internal structure of the calculator.
The first characteristic is the "open architecture”, as against code of programmed functions. The
term "special machine language" used up to this point for programmable calculators would now
be inappropriate. So much also can be said of the HP-41 assembly language. As a matter of fact,
in developing this calculator, HEWLETT-PACKARD had put together an original language close
to FORTH, which gave the calculator a set of properties that remain unique up to the present.

Understanding these capabilities depends on how one uses the HP-41.
THE LANGUAGE IS INTERPRETATIVE

The instructions set built into the memory of the machine are not directly handled by the
microprocessor. Before being executed, the instructions are compiled and broken up into series
of micro-instructions (sometimes very complex) which are then processed by the HP-41's CPU. It
is this deciphering process that is termed "interpretation”.

THE HP-41 ADOPTS A SYMBOLIC LANGUAGE

A CPU, whatever its configuration, most of the time is searching its memory for information to
transfer elsewhere. It is possible that along the line some of the information may be modified, but
this is not absolutely necessary. To be able to effect this transfer, the microprocessor ought to be
capable of deciphering the origin and destination of the information, often referred to as the
absolute address.

Two types of information exist:

- Data: numeric values or character strings.
- Instructions, a combination of which constitutes a programme.

In machine language these series of information are numerical. But the average user does not
operate like a microprocessor. It is easier for him to remember words than numbers or even a
series of instructions: programmers prefer symbols to numbers. The microprocessor is therefore
left with the tedious task of matching the symbols with the absolute address in order to obtain the
required information. It can do this through the absolute addresses, comparable in principle to the
entries in a diary which makes it possible to find a telephone number through an individual's
name. The level of development of a machine language can be measured by it's degree of
symbolism.

HP-41 LANGUAGE IS MODULAR
In the world of micro-information, the HP-41 is one of the rare machines that permit the use of an

indefinite number of programs. Each one can be created, modified, deleted and (if one possesses
mass storage peripherals) read or stored independently.

Against this physical independence stands a logical dependence. Any program can call for the
execution of instructions in another program; it suffices for the instructions to be executed to
begin with a label: LBL "X..." and end with a RTN or an END instruction.

It is thus possible to break up a complex program into subroutines (these themselves could be
broken up into simpler routines) in accordance with the sound principles of developing programs
with decreasing levels of complexity. The problems posed by simple manipulation of data are
thus thrown back at various levels of sophisticated calls and these in turn would not interfere with
the logical structure of programs with clearly defined levels of calls. This offers multiple
advantages:

- It makes it unlikely to encounter errors of conception in the ordering of necessary operations
for resolving programming problems. If in spite of this errors occur, the problem is easily detected
within a limited number of instructions.

- It is equally possible to test each subroutine in order to verify that the result obtained
corresponds with expected values of a set of data to be input.

Finally, some of the routines could be so useful that one may wish to make an assembler version
out of them. This module is an illustration of such an idea. Almost all the functions contained in
the "PANAME" module were conceived as independent routines, written initially in “"user"
language and published in 1982. The idea of handling matrices and different functions dates from
the beginning of that period.

PROGRAMMING THE HP-41
There are three levels of programming on the HP-41:

- PROGRAMS proper, made up of successive routines interspersed with tests, and always
aimed at solving a specific problem. Programs embody the "strategic" part of the art of the
programmer, and are easily comprehensible through annotations or commentaries given by the
programmer as to the inner workings of a particular program.

- PROCEDURES (or subroutines). These represent the "tactical" side of programming. A
procedure (routine) is usually, short, precise and economizes to the limit programmable memory
available, but does not interfere with the variables themselves. Procedures are concerned with
the execution of specific tasks.

It is generally possible for a subroutine to be called several times by the main program, and
indeed by other programs distinct from the main program. It is therefore often retained
permanently in the computer memory. This requires standardization in programming methods, an
important effort-saving measure. If a routine meets such criteria it could be regarded as a new
function of the HP-41 language set; a demonstration of the quintessence of the language : its
flexibility and evolutionary nature.

- THE FUNCTIONS IN THE FORM OF AN ASSEMBLER. They are the elements that make up
the language. A function ought to be much more than a routine in general use. The two authors
of the module have achieved the feat of putting at our disposal a coherent collection of more that
120 functions.

A FIRST CONCEPT: HANDLING OF PERIPHERAL EQUIPMENT

It is necessary to try out the various functions to be able to appreciate their simplicity. Whether it
is the video interface functions or the printer functions, they constitute appreciable time- saving
devices during programming, as well as during the actual execution of programs. In regard to the
"escape" sequence , for example, the function "CLEAR" in the module, enables us to input an

equivalent of the function "SIN", where we would have previously input the two-byte instruction
"31 04". In the same not only more explicit, but presents a considerable advantage over a
function in the trace mode. In this way, the "PANAME" module brings with it flexibility and solves
very easily problems that were regarded as insurmountable before now.

ANOTHER CONCEPT: HANDLING OF ARRAYS

How often have we expressed regrets on knowing that the HP-41 does not in its bare form
possess the capability of operating on matrices. Today each one of us can determine at what
point our knowledge of the usage of battery operated equipment prepared us towards the
development of these new functions. The great strides that the FORTH language has made may
be additional proof, if indeed necessary, for the present concept. Those who would have a
chance to use RPN logic, will find firm footing in a language that has relegated BASIC to the
realms of antiquity.

We hope that all those who have been able to develop programs with ease on the HP-41 will be
able to see the advantages derivable from possession of the "PANAME" module.

PHILLIPE DESCAMPS

FOREWORD ..ottt e s ann e e e 2

e el N O TR 3
CAT2 (1 0f 2) fFOr XROM 05......cuuiiiiiiiieiieeeciiitiiee e e e e e e e eeivarree s e e s s s s ssaaasssseaessssssasssassneaeeas 9
CAT2 (20f 2) fFOr XROM 9.ttt e ettt e s e e s s s e s sbaa e s e e s s s s s e s sssbssaeeeaeas 10
SUMMANY OF FUNCLIONS ...t 11
SUMMANY OF FUNCLIONS ... 11
Overall ModUIE FUNCLIONS.........cceiiiiiiiiiiiiiiieeeeeeeeieeeeeeeeeeseeeeeeseessessessssesessseeereeeeseeeeeees 11
FUNCTIONS FOR THE HP82163 VIDEO INTERFACE.......cooooiiiiiiiieieeeeeeeeeeee, 12
FUNCTIONS FOR THE HP82162 THERMAL PRINTERccoooiiiiiiieiiiiiieeeeeeeee, 13
FUNCTIONS FOR THE HP82905 PRINTER.......cooiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 14
FUNCTIONS FOR MINI-PLOTTER.....cii ittt avrae e 15
UTILITIES .ottt ettt e e e e e e e s e e e s e s e s e aabb e s s e e e e s s ssssassbaaseesaesseasans 17
(DI ez 1L=io M T 100] 0007z (1o o [20
OVERALL MODULE FUNCTIONS......coiiiiiiiieiiiiieieeeeeeeeeeeeeeeeeeesesessesesssssseseeseseseeees 20
AID ACCESSOrY ldeNtifiCaION........ccviiiiiiiiiiiiieieeeeeeeeeeeeeeeee e 20

ID DEVICE IUBNLITY ...vvveeeiiiiiiiii b abas s sababssasssassassasnnes 21
ouT The OUT - Function as aPrefiX K&Y ..., 21
OUTAX OUTA with repetitions indicated iN Xuuueereninininiiiiniiiisiinsanensnannnns 22
OUTCR Transmission of the CR (Carriage Return) code..........cooecvvveeeeeeeeenne. 22
OUTLF Transmission of the LF (Line Feed) code.........ouvviiiiiiiiiiiiiiiiieieieieeee, 22
OUTLFEX Transmission of oneor more LF (Line Feed) code........cccovveeeeeeeenne. 22
OUTSPX Transmission of one or more "SPace” COUES......uuurrieeeeeeeiiirrrreeeeeeeeeenns 23
OUTXB Transmission of acharacter given itsdecimal code...........cccceeeeeeennnnne. 24
OUTYBX Transmission of one or more characters by their codes................... 24
OUTa OUTA withthebit vAlUE SELLO 7........uuuuei e 25
RCLSEL Recaling the address of the primary deviCe...........cevvvvvvvveeevieeeeeeeeeenee. 26
HP-82163 VIDEO INTERFACE GROUP.......cccooiiiieiiiiee 27
CLEAR Clearing the DISPIaYcooooee e 28
CLEARO Clearing the Display from the CUrSOrccevvvvveeveeieeeeiieeeeeeeeeeeee, 28
CSRDN Movement of the Cursor DOWNWaId..............eeveeeemmmemmemmneenennnnnnnnnnanan. 28
CSRHX Movement of the Cursor HOrzZONtallyeeveeveeeeneeereniininninnnnnnnannnns 28
CSRL Movement of the Cursor to the LEftevvevevieiiiiiiiiiiiiiaiaaans 28
CSROFF Suppression Of the CUISOKuuvveeeiieiiririiiiiiiiisieessssasesssssssnssasesaeaa.... 29
CSRON Display Of the CUISOuuuurrrrrirririiriresiiiiisrsssassssssssassaaaaaeaa——————————— 29
CSRR Movement of the Cursor to the RIghtevvvvviiiiiiiiiiiiiiiiiiiiieineenenans 29
CSRVX Vertical Movement Of the CUISOrccevvveeivieiiieiieieeeeeeeeeeeeeeeeeeeeeeeeens 29
CSRUP Movement Upward Of the CUISOrueueveermrimiiiirirrisiireseesassnnaaeannn. 29
CTYPE Selection of CUrsSor MOGE..........cooovviiiiiiiiii 29
HOME Returning the Cursor to the (0,0) POSItION..........cccvveviiiiieeeeeiieeeeeeeeeeeeeeeee 30
SCRLDN Scrolling down Of the DiSplayccceeeeeiiininiiiiiniiinnsnasssnnnans 30
SCRLUP Scrolling Up of the DISPIayuuueuuiniiiiiiisssssssaanaes 30
SCRLX Scrolling the Display by given Parameter in X ..o, 30
XTTAB Movement of the Cursor to an (X,Y) POSItION..........uuevvveeererrnnnnnnnnnnnnns 30

APPENDIX V oo 31

HP-82162 THERMAL PRINTER GROUPcoiiiiiiiiiieiiiie e 32

8BIT Selection of "eight DitS" MOUE..........uuuvueeiriiiiiiiiiaaes 32
ESCAPE Selection of the "escape’ MOdE..........coevvevvvieiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeee 32
PARSE Selection of the "word wrap” mode...........coevvvviiiiiii, 32
CLBUF Clearing the BUFFEY.......cooee 32
UNPARSE Selection of "word break” mode............ceevvevvvieiieeieieieiiiieeeeeeeeeeeeene 33
TABCOL Tabulation BY COIUMNSuuniiii s 33
HP-82905B PRINTER GROUPcoiiiiiiiiiee ettt 34
] = I R =1 v s o[- 34
CHARSET Selection of the Printerss Character Set.........vvvvvvvvvvveeeveeniiiennnnnnnns 34
FFEED = 0 (SR L] PR 34
O Y = N = o TSY < o |1 [P 34
GRAPHX Generation Of GraphiCS........cuvviiiiiiiiiiiiiiiiieieeeeeeee e e eeeees 35
MODE Printing MOGE.......coviiiiiiiiiiiiiiiiieeeeeeeeee et eeee e e e eeeeeeeseeseeseseesseeeeeeees 35
SKIPOFF Disabling the Top-of-Form FUNCtion ..., 35
SKIPON Activating the Top-0f-FOrm FUNCLION............ueviiiniiiiiiiiiiiieiianiaaans 35
TEXTLEN Length Of TeXL.....ccoooeiiiiiiiiiiiie 35
VSPAC VErtiCal SPACING.....ccviiiiiiiiiiiiiiiiiiieiieeeieeeeeeerereereeeeeeeeererr e 36
F N = 1 G = T 36
MINIPLOTTER ...ttt e e e e s e e e s e e e e e s s s e s sasabraneeaaeeeeesans 37
AXIS Plotting Of the AXES.....cooiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee ettt 37
BACKSP Backspacing by one CharaCter............euvvvveeiiiiiiiiieiiieiiieeeeeeeeeeeeeeeeeeeeens 38
BACKSPX Backspacing by several CharaCterS........ccvvveeeevveeeeeciieee e, 38
BOX Sketching Of RECLANGIE........uuuuueeiiiiiiiiiiiiiia i aaaaaaaaaaaaes 39
COLOR ChOICE Of COlOUNuuvverrruruiirrrrirssrssisssssssssssssssssssssssssssssssssaa.....——————. 39
CSIZE CRaraClel SIZE.....uuuuvvuueriiiiriiiiiiiiiisiissiisssseasassssssessssses.....—.———————————————. 39
DRAW Drawing @ SEOMENTuuuueieiiiiiiiiiiiiaraaaaaaaaaaaraaaa——————————————————— 39
HOME Returningthe Pentothe Origin........covvvviiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeee 39
LABEL Printing the Contents of the ALPHA REQISLESuvvvvvrvverrrnninininnnnnnns 39
STATUS Recalling the Status of the Printer.........cccoceeeieiiinininnnnans 39
F N = N1 P2 41
UTILITIES GROUP ... 42
IMOD EUCHIAEAN DIVISION......cciiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeseeseseeseseeesseeeeeseeees 42
AD-LC Line, CoOlUMN AQArESS.......uuuuueriiiiiiiiiiiiiiiiiiiiiriiaasaraaaaaaaaaaasaaaaaaaaes 43
ALENG ALPHA LENGEN....ciiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeet ettt 44
ANUM Searching for aNumber inthe ALPHA ReQIStercoooovvveveiiiinnnnnnn. 46
ANUMDEL Searching for aNumber in ALPHA and Deletion............ccccevveeeeee.. 47
APPX Copying Integer Portion of Number in X into ALPHAooovvvvvvvivveeeeee. 49
AROT Rotation of Contents of the ALPHA REQISLEScovvvvvvvveiiiiiiiiiieiieeeeeee 49
Transfer of Characters between the ALPHA and X ReQISLEXScoooeevvvveiiiiiieeennnn. 51
ATOXL Transfer of the leftmost Character of ALPHA into X.....ooevvvvvvvveveeeeeee. 51
ATOXR Transfer of the rigthmost character of ALPHA into Xcoevvvvvvvveeeeee. 51
ATOXX Transfer of agiven ALPHA character into X.......covvvvvvvieieeieeeeieeeeenennn. 51
BLDPT BUIHAING Of INAEX ...evvviiiiiiiiiiiiiiiiiiiiiiaas bbb sasaassaaanes 53
BRKPT ANalysiS of INAEX Of AMELIIX......ccevviiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 54

CHFLAG Saving a Predefined Status Of FIagS.....covveeeeeeeeeeeeeee e 55

CLINC Clearing the Increment Value of an INdeX......ccuueeeeeeeeeeeeeeeeeeeeieeeeeen 56

COLPT Calculation of aMatriX INAEXccoeeeieiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 57
GETRBX Recalling of registers from Extended Memory...........cccceeeeeeeeeeeennnn. 58
LC-AD Calculation of address of amatrix elementccooeeeeeeeiiiieiininnnnnnnn. 59
LINPT Cadculation of the row indeXx of amatriX..........ceevvveieieiiiiieeeeeeeeeeeieeeeeeeee. 60
NOP N[N] l< = 11 o U 61
POSA Searching for the position of acharacter iNn ALPHAooovvvvvveivviveeeeee. 61
FUNCTIONS FOR THE ALLOCATION OF MEMORYcoevvviiiiiiiiiieieeeeeeeeeeeeeens 62
PSIZE Allocation of memory regiSters in programmes..........eeeeeeeeeeeeeeeeeeeeeeeeeen. 62
SIZE? Determination of allocated MEMOIY..........uuuruviriiiiiiiiiaaaaaaaes 62
READEM Reading of files into extended memory from mass storage.............. 62
RG Key prefix for RG fUNCHIONccovviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 63
OPERATIONS BETWEEN REGISTERS.......oiiisasssaassnsaanaes 64
RG+- Sum of difference, term by term, of 2 VECLOIS.........euvvvevrrerinniniriiiiiinnnnnnns 64
RG* Multiplication, term by term, of 2 VECIOIS........cvvvvvviviieiiieeieeeeeeeeeeeeeeeeeeeee 64
RG/ Division, term by term, Of 2 VECIOIS.......ccevvviiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee e 64
SCALAR OPERATION IN REGISTERS.......ooiiiiiasaasisssaassasssssannaes 66
RG+Y Addition of aconstant t0 agroup Of rEgIStErSceevvvveveeieeeeeeeeeeeeeeeeeeene. 66
RG*Y Multiplication of agroup Of FEQISLErSccevvvviiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeee 66
RG/Y Division of agroup Of reQIStErS........cevvvviiiiiiiiiiieeeeeeeeeeeeeeeeeee e 66
RGAX Reqgistersto ALPHA or ALPHA tO regiSterScvvvvviveeiiieieeeeieeeeeeeeeeeee 67
RGCOPY Copying or exchange of contents of registers........evvvvvvveeveeeeeeeeeeeee. 68
RGINIT [Initidlization of arange Of rEJIStErScevvvviiiieiiiieiiiiieeeeeeeeeeeeeeeeeeeeeee 70
RHND NUMDEr Of rEQISIEIS....cceviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt e e e e e e e eees 71
RGSUM SUM Of FEOISEEIS ..cevviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesessesesseseesssseeeeees 72
RGVIEW Scrolling or [isting Of rEQISLErS......uuvvvrrreerriiiiiiriiiiiiiiriireraaaaaa.. 73
SORT Numeric and/or ALPHA SOMtiNG........cceeeeuuniiniiiiiiiiiiissanssssssssnssasesssannaes 76
STO>L Storing of dataaccordingtotheindex inLcccooeeeiiiiiiiiinn. 77
SUBS$ Extraction or justification of @ SUb-StriNg.........cccevveeeeeeeiiiiiiiiiiieeeee e 78
TF55 Reversal of the printer existence flag.........couvvvvvvvieiiiieiiiiieeeeeeeeeeeeeeeeeee 79
VKEYS Viewing of assigned KEYS........coooiiiiiiiiiiiieeeeeee 79
WRTEM Saving of files from extended memory on to mass storage.................. 80
X<>F Exchanging X WithflagS0to 7coooeviiiiiiiiiiiee, 80
X...NN? Comparison between X and aregister........ccccceveeeiiiiiiiiiiiiieieeeeeeeeee, 82
Y/N YESOr NOtO QQUESLION......uuuuiiniiiiiiiiiiiii s aassasasassssssasssssssssaasaes 82

(O N AN 0] 0= 10 PSR 84

PANAME
CAT2 (1 of 2) for XROM 05

Listing XROM Listing XROM
-ADV PRT 3C | 05,00 CLBUF 05,32
AID 05,01 8BIT 05,33
ID 05,02 ESCAPE 05,34
FINDAID 05,03 PARSE 05,35
OUTAX 05,04 STATUS 05,36
OUTCR 05,05 TABCOL 05,37
OUTLF 05,06 UNPARSE 05,38
OUTLFEX 05,07 -82905 FCNS | 05,39
OUTSPX 05,08 BELL 05,40
OUTXB 05,09 CHARSET 05,41
OUTYBX 05,10 FFEED 05,42
OUTa 05,11 FORMLEN 05,43
OUTaX 05,12 GRAPHX 05,44
RCLSEL 05,13 MODE 05,45
-82163 FCNS | 05,14 SKIPOFF 05,46
CLEAR 05,15 SKIPON 05,47
CLEARO 05,16 TEXTLEN 05,48
CSRDN 05,17 VSPAC 05,49
CSRHX 05,18 -PLOT FCNS | 05,50
CSRL 05,19 AXIS 05,51
CSROFF 05,20 BACKSP 05,52
CSRON 05,21 BACKSPX 05,53
CSRR 05,22 BOX 05,54
CSRVX 05,23 COLOR 05,55
CSRUP 05,24 *CSIZE 05,56
CTYPE 05,25 *DRAW 05,57
HOME 05,26 *HOME 05,58
SCRLDN 05,27 *LABEL 05,59
SCRLUP 05,28 *LDIR 05,60
SCRLX 05,29 *LTYPE 05,61
XYTAB 05,30 *MOVE 05,62
-92162 FCNS | 05,31 *PLREGX 05,63

PANAME
CAT2 (2 of 2) for XROM 09

Listing XROM Listing XROM
RDRAW 09,00 RG* 09,32
RESET 09,01 RG/ 09,33
REVLF 09,02 RG+Y 09,34
REVLEX 09,03 RG*Y 09,35
RMOVE 09,04 RG/Y 09,36
SETORG 09,05 RGAX 09,37
-UTILITIES | 09,06 RGCOPY 09,38
/MOD 09,07 RGINIT 09,39
AD-LC 09,08 RGNb 09,40
ALENG 09,09 RGORD 09,41
ANUM 09,10 RGXTR 09,42
ANUMDEL | 09,11 RGSUM 09,43
APPX 09,12 RGVIEW 09,44
AROT 09,13 SAVERGX | 09,45
ATOXL 09,14 SIZE? 09,46
ATOXR 09,15 SORT 09,47
ATOXX 09,16 STO>L 09,48
BLDPT 09,17 SUB$ 09,49
BRKPT 09,18 TF55 09,50
CHFLAG 09,19 VKEYS 09,51
CLINC 09,20 WRTEM 09,52
COLPT 09,21 X=NN? 09,53
GETRGX 09,22 XINN? 09,54
LC-AD 09,23 X<NN? 09,55
LINPT 09,24 X<=NN? 09,56
NOP 09,25 X>NN? 09,57
ouT 09,26 X>=NN? 09,58
POSA 09,27 X<>F 09,59
PSIZE 09,28 STOAL 09,60
READEM 09,29 XTOAR 09,61
RG 09,30 YIN 09,62
RG+- 09,31 YTOAX 09,63

Summary of Functions

Overall Module Functions
AID : Returns into X the accessory identification number of the primary peripheral device.

ID : Returns into the alpha register the identification of the primary device.

FINDAID : Searches in the loop for a peripheral device with the accessory identification number
(AID) (or of a class) specified in X (< O for a class) and returns its address into the X register.

OUTAX : Repetition of OUTA. |X]| indicates the number of repetitions.
OUTCR : Sends code 13 (carriage return) to the primary device.
OUTLF : Sends code 10 (line feed) to the primary device.

OUTLFX : Sends one or more code 10 (carriage return) to the primary device. |X| indicates the
number of times the code is sent to the device.

OUTSPX : Sends one or more code 32 (Space) to the primary device. |X| indicates the number of
times the code is sent to the device.

OUTXB : Sends n octet (8-bit byte) to the primary device for the byte value in |X].

OUTYBX : Send to the primary device one or more times an octet specified in |Y|. The number
of repetitions is shown in |X].

OUTa : Similar to OUTA but sets the bit value to 7 for all octets sent (for example for inverse
video on the HP82163).

OUTaX : Repetition of OUTa (cf. OUTAX).

RCLSEL : Returns into X the address of the primary device. If the SELECT value is greater than
the number of the device, RCLSEL returns 1.

FUNCTIONS FOR THE HP82163 VIDEO INTERFACE

CLEAR : Clears the screen.
CLEARO : Clears the screen starting from the cursor.
CSRDN : Moves the cursor one line down.

CSRHX : Moves the cursor horizontally by the number of positions indicated in X (to the left if X <
0, to the right if the reverse is the case).

CSRL : Moves the cursor one position to the left.
CSROFF : Turns off the cursor.

CSRON : Turns on the cursor.

CSRR : Moves the cursor one position to the right.

CSRVX : Moves the cursor vertically by the number of positions in X (upwards if X < 0, downward
if the reverse is the case).

CSRUP : Moves the cursor one line up.

CTYPE : Cursor type selection.

HOME : Moves the cursor to the (0,0) position.

SCRLDN : Scrolls the display one line down.

SCRLUP : Scrolls the display one line up.

SCRLX : Scrolls the display by a given number of lines in |X| (X < 0 downward, X > 0 upwards).

XYTAB : Moves the cursor to the (|X|,|Y]) position.

FUNCTIONS FOR THE HP82162 THERMAL PRINTER

CLBUF : Clears the buffer of the printer.

8BIT : Selects 8-bit mode.

ESCAPE : Selects ESCAPE mode.

PARSE : Selects "word wrap" mode.

STATUS : Recalls into X and Y the 2 octet (8-bit) status of the printer.

TABCOL : Effects an absolute tabulation at the level of the point indicated in |X|.

UNPARSE : Selects parse ("word break™) mode at the 24th character

FUNCTIONS FOR THE HP82905 PRINTER

BELL : Enables the buzzer capability of the printer.

CHARSET : Selects the character set of the printer: X = 0 primary; X = 1 secondary.
FFEED : Executes a page skip.

FOR L N : Shows the number of lines in a logical page (indicated in |X]).

GRAPHX : Indicates to the printer to interpret the next number (in X) of characters as codes for
graphic data.

MODE : Selects printing mode: 0 = Normal, 1 = Expanded, 2 = Compressed, 3 = Compressed-
Expanded, 9 = Emphasized

SKIPOFF : Disables skip-over-perforation function.
SKIPON : Enables skip-over-perforation function.

TEXTLEN : Show he number of lines of text per logical page
(indicated in |X]).

VSPAC : Selects the spacing between two lines; |X| indicates the
number of lines per inch.

FUNCTIONS FOR MINI-PLOTTER

AXIS : Plots an axis in accordance with the following format:
t = size of half a division (unit)
dy = distance between 2 divisions taken on the y-axis

dx = distance between 2 divisions taken on the x-axis
n = number of divisions

[INSERT FIGURE SHOWN AT PAGE 14 OF THE MANUAL]

The given data being thus:
T=t;Z=dy,Y=dx,X=n
BACKSP : Recalls a code (escape sequence).
BACKSPX : Recalls a code one or more times (|X| indicates the number of codes).

BOX : Draws a rectangle in which the two opposite sides have the coordinates (x1,y1) and
(x2,y2), with following stack contents: y2in T, x2in Z, yl in Y and x2 in X.

COLOR : Selects the colour of the of the sketch.
*CSIZE : Selects the size of the characters.

*DRAW : Traces a line through the (X,Y) coordinate.
*HOME : Returns the pen to the origin (0,0).

*LABEL : Prints the contents of the ALPHA register (prints the text in graphic mode in the
direction defined by LDIR).

*LDIR : Determines the direction of drawing for LABEL.
*MOVE : Moves the pen through the (X,Y) coordinate.
*LTYPE : Determines the line type for DRAW and RDRAW (|X]| = 0 through 15)

*PLREGX : A pointer value (bbb,eee) placed in X traces a dotted line passing through the points
[(Rbbb),(Rbbb+1)],[(Rbbb+2),(Rbbb+3)] [(Reee- 1),(Reee)].

RDRAW : Traces a line to the coordinate (X,Y), relative to the actual position of the "pen".

RESET : Resetting function; moves the pen to the left margin and selects text mode.

REVLF : Effects reverse linefeed once.
REVLFX : Effects reverse linefeed one or more times indicated in |X|.

RMOVE : Moves the "pen" to the (X,Y) coordinate relative to
it's actual position.

SETORG : Redefines the origin (0,0) as the actual position of the "pen".

UTILITIES

/MOD : Returns the quotient into Y and the remainder into X of the Euclidean division Y/X (i.e. the
function calculates the quotient and the modulo of the Y/X division in one operation).

AD-LC : Returns the coordinates (line,column) of an element of an array given its address.
ALENG : Returns (into X) the length of the string in the ALPHA register.

ANUM : Places in X the first numeric value in the string contained in the ALPHA register.
ANUMDEL : Similar to ANUM but deletes the string from the beginning up to the numeric value.
APPX : Places a string representation of the value in X without a decimal separator.

ARQOT : Effects rotation of the string in the ALPHA register by the number of positions in X.

ATOXL : Places in X the decimal code of the left-most character in the ALPHA register and
deletes this character from the ALPHA register.

ATOXR : Places in X the decimal code of the right-most character in the ALPHA register and
deletes this character from the ALPHA register.

ATOXX : Places in X the decimal code of a character, the position of which is specified in X.
BLDPT : Builds a special character in X from the data in the Z, Y and X registers. If X >0, X =
zzz.yyy. If X <0, X = a matrix code such that Z = the first element of the array, Y = the number of

rows, X = the number of columns.

BRKPT : Breaks up the contents of the X register into three numeric values (the reverse of
BLDPT).

CHFLAG : In the course of programming, the user determines the state of the HP- 41 while
using the regular functions in the normal mode. In program mode executing "CHFLAG" in a
program two lines:

01 CHFLAG

02 "...." (a non-regular alpha string)

During execution of the program, the two lines reset the calculator to its state at the time the two
lines were inserted.

CLINC : Clears the X register of increments (i.e. from the 4th figure after the comma).
COLPT : Constructs the column code of a matrix from data given in Y and the matrix code in X.

GETRGX : Copies into the memory specified in X, the registers of a given file which conforms
with 2 increments.

LC-AD : Returns the address (register number) of a matrix element given a line number and a
matrix code.

LINPT : Constructs the line code of a matrix given a line number and a column number.

NOP : No operation.

OUT : Prefix to facilitate entry of related functions.
POSA : Returns the position in an ALPHA string of a character specified in X.

PSIZE : Allocates for data storage the number of registers indicated in X.

READEM : Copies from mass storage the XMEMORY file indicated in the ALPHA register. cf.
WRTEM.

RG : Prefix to aid the input and execution of related functions.

RG+- : Effects addition (or subtraction) of data in the registers indicated in Y and X.

RG* : cf RG+-, effects multiplication (of data in the registers indicated in Y and X).

RG/ : cf RG+-, effects division (of data in the registers indicated in Y and X).

RG+Y, RG*Y and RG/Y : Effects arithmetic operation on data in X, with the operand placed in Y.
RGAX : If X < 0, copies the contents of the ALPHA register into registers given by a block of 6
characters. If X > 0, places to the right of the string in the ALPHA register the contents of the

register indicated in X, and up to the end of the string as if it had been filled by RGAX.

RGCOPY : If X > 0, copies the contents of the block of registers indicated in X into the registers
specified in Y. If X < 0, the blocks are exchanged. Permits increment of the registers.

RGINIT : If X > 0, places the value 0 in the registers (i.e. clears the registers) designated in X. If X
<0, places numbers (1,2,3...n) in the registers.

RGNDb : Returns the number of arrays indicated by the code ddd,fffii in X.
RGORD : Replaces each value in the specified registers, by the range (order) of their contents.

RGSUM : Returns the sum of the values specified by the code in X. If X <0, calculates the sum
of the absolute values.

RGVIEW : Entry (of values in) or display of registers. Details required.

SAVERGX : Reverse function of GETRGX. Copies the contents of the registers indicated in X, in
accordance with a given index, from the pointer and following the increment j: X = bbb,eee:iijj

SIZE? : Returns the number of registers allocated for data storage.

SORT : Sorts into ascending (X > 0) or descending (X < 0) order the contents of the registers
indicated in X. Sorts alpha and numeric data.

STO > L : Copies the value in X to the register specified by the address in L and with an
increment value of L.

SUBS$: Extraction and/or justification of a sub-string.
T55 : Enables or disables printer.

VKEYS: Lists key assignments.

WRTEM : Writes an extended memory file on to mass storage. This function is "WRTA" for
extended memory.

Y/N : Simplifies programs which when run, request the user to indicate YES or NO.

X...NN : [No explanation given in the manual. Similar to function in HP-41CX].

Detailed Information

OVERALL MODULE FUNCTIONS

AID Accessory ldentification

AID (Accessory IDentity) enables the determination of the Accessory Identity of the primary
device. Accessory Identity is a number between 0 and 255 which identifies the type of device.

For example, the Accessory Identity of the Thermal Printer HP82162A is 32. If the primary device
is an HP826161A printer, the AID function returns 32 in the X register.

DETAILED INSTRUCTIONS FOR AID

The AID function returns into the X register, if the level of the batteries permit, a number
representing the Accessory Identity of the primary device. To know the Accessory Identity value
of a given device, refer to the "Send Accessory Identity" section of the manual for the device.

If the primary device does not possess an Accessory Identity, the error message NO RESPONSE
is displayed.

Related Functions :

In the I/O module : FINDAID, ID

In the HP-IL module : FINDID, SELECT, AUTOIO, MANIO

In the PANAME module : RCLSEL

APPENDIX C

The Table below shows for each class of device, its name, the range of the value of its Accessory

Identification Number and the corresponding humber to be placed in X when searching for the
class of the device employing the function FINDAID.

CLASS AID CLASS IDENTIFIER
Control Device 0to 15 -1
Mass Storage 16 to 31 -16
Printer 32to 47 -32
Video Display 48 to 63 -48
Interface 64 to 79 -64
80 to 95 -80
Graphic Device 96 to 111 -96
112 to 127 -112
128 to 143 -128
144 to 159 -144
160 to 175 -160
176 to 191 -176
192 to 207 -192
208 to 223 -208
224 to 239 -224

240to 255 -240

ID Device ldentity

ID (Device IDentity) enables the determination of the identity of the primary device. Device
Identity is a string of characters which identifies the device and generally the manufacturer and
the device reference number.

For example, the Device Identity of the HP-IL RS232C Interface is "HP82164A". If the primary
device is the HP-IL RS232C interface, the ID function places in the ALPHA register the string
HP82164A.

DETAILED INSTRUCTIONS FOR ID

The ID function places in the ALPHA register the Device identity of the primary device. To know
the corresponding string for the identity of a given device, refer to the message "Send Device
Identity” in the manual for the device.

If the primary device does not have a Device Identity, the error message NO RESPONSE is
displayed.

Related Functions :

In the HP-IL module: FINDID, SELECT, AUTOIO, MANIO
In the PANAME module: AID, FINDAID, RCLSEL

OuUT The OUT - Function as a Prefix Key

[OUT] is a function intended to facilitate the entry of functions beginning with OUT from the
keyboard. This function is particularly useful if assigned to a key. For example, OUT assigned to
the [LN] key.

ASN "OUT" 15

(Press [yellow key] [ASN] [ALPHA] [O] [U] [T] [ALPHA] [LN]). Place the calculator in USER mode.
Subsequently, to execute or enter into a programme a function beginning with OUT (for example
OUTAX), press:

[OUT] (the LN key) [ALPHA] A X [ALPHA]

The above sequence is equivalent to:

[XEQ] [ALPHA] [O] [U] [T] [A] [X] [ALPHA]

Thus in effect saving three pressings on the keyboard each time a function beginning with the
three letters OUT is required.

DETAILED INSTRUCTIONS FOR OUT

1) Assign [OUT] to a key and place the calculator in USER mode.
2) To execute or programme a function with the prefix OUT, successively press on:

[OUT] (previously assigned to a key) [ALPHA|]

..... characters of the name of the function

..... excluding the first three characters (i.e O U and T)
..... (for example YBX for the function OUTYBX) [ALPHA]

OUTAX OUTA with repetitions indicated in X

OUTAX carries out OUTA operations once or several times, and outputs the contents of the
ALPHA register on to the primary device. The number of times OUTA operation is desired is
given by the absolute value of the contents of the X register.

If Flag 17 is cleared, a linefeed code (carriage return (CR), code 13 or linefeed (LF), code 10) is
sent following every transmission of an ALPHA string in the HPIL loop.

If Flag 17 is set, the string is sent several times without separation of the strings.
DETAILED INSTRUCTIONS FOR OUTAX

Place the string, to be sent several times, in the ALPHA register, the number of times the string is
to be sent in the X register, then set or clear Flag 17 as desired (cf. above) and execute OUTAX.

ILLUSTRATION OF OUTAX APPLICATION

To draw a broken line of 40 strings of "-*" on an HP82905B printer, follow the sequence (it is
assumed that the printer has been declared the primary device by a previous operation):

"+ SF 17 40 OUTAX ADV
RELATED FUNCTIONS :

All functions beginning with OUT on the HPIL system, MANIO and SELECT which are necessary
in the declaration of the status of the device.

OUTCR Transmission of the CR (Carriage Return) code

OUTCR (OUTput Carriage Return) sends CR (carriage return, decimal code 13) code to the
primary device.

OUTLF Transmission of the LF (Line Feed) code

OUTLF (OUTput Line Feed) sends LF (line feed, decimal code 10) code to the primary device.

OUTLEX Transmission of one or more LE (Line Feed) code

OUTLFX (OUTput Line Feeds by X) sends one or more LF (line feed,decimal code 10) codes to
the primary device, the number of times is indicated by the absolute value of the quantity in the X
register (this should be between 0 and 999).

DETAILED INSTRUCTIONS FOR OUTLFX

Place the number of times the LF code is to be sent in the X register and execute OUTLFX.

QUTSPX Transmission of one or more "space" codes

OUTSPX (OUTput SPaces by X) sends one or more "space" codes to the primary device, the
number of times the code is sent being specified by the absolute value of the quantity in the X
register (this should be between 0 and 999).

DETAILED INSTRUCTIONS FOR OUTSPX

Place the number of times the "space" code is to be sent in the X register and execute OUTSPX.
ILLUSTRATION OF OUTSPX APPLICATION

Example: Some printers do not have tab instructions. The OUTSPX function permits quite easily
simulation of such instructions. As an illustration, the short program below sends to the primary
device a string of fixed length L made up of the contents of the ALPHA register complemented
with sufficient number of spaces. If the length of the string in the ALPHA register is greater than L,

the string is reduced to code L (1).

The maximum length of the ALPHA register restricts the use of this program to strings of not
more that 24 characters.

Method of application of the OUTAT function;

- Place the number L in the X register;

- Place the string to be sent in the ALPHA register;
- Execute OUTAT.

The program clears the contents of the X, T, and LASTX registers; it also sets Flag 17.

Important Note: The parameter L to be placed in X must be positive and greater than or equal to
1.

Listing of the OUTAT program:

01 LBL "OUTAT" 08 OUTA 151E2

02 ALENG 09 OUTSPX 16/

03 X>Y? 10 RTN 17 SUB$
04 GTO 01 11LBLO1 18 GTO 02
05 - 12DSEY 19 END

06 LBL 02 13 NOP

07 SF 17 14 CLX

NB: The text is left justified. To make the text right justified, the OUTA and OUTASPX functions
should be used.

OUTXB Transmission of a character given its decimal code

OUTXB sends to the primary device, the character whose decimal code is specified by the
absolute value of the quantity in the X register. This value usually lies between the interval 0-255.

DETAILED INSTRUCTIONS FOR OUTXB

Place the code for the character to be sent to the primary device in the X register and execute
OUTXB.

EXAMPLE OF OUTXB APPLICATION

Example: To send to send the character "\" (inverted slash, decimal code 92) to the primary
device, use the function sequence: 92 OUTXB.

OQUTYBX Transmission of one or more characters by their codes

OUTYBX sends one or more times to the primary device identical characters whose decimal
code is specified by the absolute value of the quantity in the Y register. The absolute value of the
guantity in the X register specifies the number of characters sent to the primary device.

Restrictions: 0 <= ABS(X) <=999 and 0 <= ABS(Y) <= 255
DETAILED INSTRUCTIONS FOR OUTYBX

Place the decimal code of the character to be sent to the primary device in the Y register, the
number of times the character is to be sent in the X register and execute OUTYBX.

EXAMPLES OF OUTYBX APPLICATION

Example 1 : To send a series of twenty "'" characters (apostrophe, decimal code 39), use the
following sequence: 39 ENTER_ 20 OUTYBX.

Example 2 : "FMTNBZ" (ForMaT NumBer with Zero).

This program simulates formatting of numbers without the suppression of leading zeros. It is
effected as follows:

- Place in the X register the number to be printed;

- Place in the Y register the maximum number of characters that can be printed (the size of the
printing area to be occupied by the number of characters);

- Select the mode of printing required,;

- Execute FMTNBZ.

If the number of characters required to represent the content of the X register is greater than the
value placed in the Y register, the corresponding position is filled with " * ".

After execution of the program, the contents of the X, Y, LASTX and ALPHA registers are lost.

Listing of the FMTNBZ program:

01 LBL "FMTNBZ"

02 CLA 10 -48 18 OUTXB

03 ARCL X 11 X<>Y 19 RTN

04 X<0? 12 OUTYBX 20 LBL 01

05 XEQ 00 13 OUTA 21 CLX

06 CLX 14 RTN 22 42

07 ALENG 15 LBL 00 23 X<>Y

08 X>Y? 16 CLX 24 OUTYBX

09 GTO 01 17 ATOXL 25 END

OUTa OUTA with the bit value set to 7

OUTa functions like OUTA, but with the following difference: the bit value of 7 transmitted with
each octet forces the bit value to 1 (in other words, 128 is added to the bit values less than or
equal to 128), with the exception of the two bits which constitute linefeed or carriage return codes
(CR and LF, codes 13 and 10 respectively) sent to the end of the ALPHA string when Flag 17 is
clear.

DETAILED INSTRUCTIONS FOR OUTa

Place the string to be transmitted in the ALPHA register, set or clear Flag 17 as desired (cf.
above) and execute OUTa.

EXAMPLES OF OUTa APPLICATION

Example 1: To display a string of characters in "inverse video" on the HP82163 video interface,
add 128 to the character codes of the string before sending the string on the interface loop. This
operation is achieved automatically using the OUTa function. To display a string of characters in
"inverse video" it suffices to declare the video interface the primary device, place the string in the
ALPHA register and execute OUTa. The status of Flag 17 determines the transmission or
otherwise of a linefeed code.

Example 2: Some printers possess the capability of underlining characters automatically, this
requires the addition of 128 to the code of each character that one desires to underline. The
OUTa function achieves enormous simplification of the underlining operation with such printers.

Example 3: Access to the special characters of the HP82905B printer can be achieved in two
ways:

- By employing the "secondary character game" which gives new meanings to the
character codes between 32 and 127.
- By employing character codes beyond the range 0 to 127.

The second possibility is particularly simplified through the use of the OUTa function.

RCLSEL Recalling the address of the primary device

RCLSEL places in the X register, if the level of the batteries permit, a whole number representing
the HPIL address of the primary device. Furthermore RCLSEL verifies the completeness of loop
and that all the devices have adequate power supply (the effect on devices possessing the
"STANDBY" mode is similar to that of the PWRPUP function; see the description of this function
in the manual of the HP82160A module). Unlike the function of the same name in the HP82183A
Extended 1/0 module, RCLSEL function of the PANAME module returns a value which may be
different from the last address specified by the SELECT function. This occurs when the user
specifies a parameter for SELECT which is greater than the number of devices on the loop; in
that case, the address returned by RCLSEL is equal to 1. This characteristic is particularly useful
in programs comprising a loop executed once for each device in the loop. A simple test
comparing the address of the device to be treated and the value returned by RCLSEL permits
one to know if all the devices have been treated. As an illustration, the LOOP programs (given as
example of AID and ID application) and FNDAIDN (given as example of FINDAID application)
apply this method.

DETAILED INSTRUCTIONS FOR RCLSEL

Execute RCLSEL and a number representing the address of the primary device is recalled into
the X register in accordance with the procedures detailed above.

EXAMPLE OF RCLSEL APPLICATION

RCLSEL can be applied in a program that modifies the selection of the primary device to permit
the restoration of this selection at the end of the program. The initial value of the address of the
primary device is stored in a register at the beginning of the program by the sequence RCLSEL
STO nn and restored when needed by RCL nn SELECT.

HP-82163 VIDEO INTERFACE GROUP

The functions of the above Group are aimed at facilitating the use of the HP82163 Video
Interface. The functions make it possible for the user to control the interface without employing
escape sequences or of control characters required by the interface to implement a function, such
as clearing the display or moving the cursor downward. For example, for these two functions, the
CLEAR and CSRDN (Cursor Down) functions are used respectively.

All these functions require the interface to be declared the primary device. (Refer to the
application instructions for FINDAID (in this manual) and FINDID (in the HPIL HP82160A manual)
to find out the different methods for selecting a particular device.

In AUTOIO mode, if the primary device does not have an Accessory Identification equal to 48
(Standard Video Interface), the error message AID ERR is displayed.

Nevertheless, the functions do not implement the foregoing verification process in MANIO mode,
thus permitting their usage, for example, with the Mountain Computer MC 00701 Video Interface
(with Accessory ldentification 50), PAC-TEXT Interface (48) or with the KRISTAL MINITEL’
Interface (48).

For more technical details about the sequences sent by these functions, refer to Appendix V.

" KRISTAL Chemin des Clos Zirst, 38240 MEYLAN (FRANCE), an interface systems, technical

applications and instrumentation company is an HP approved original equipment manufacturer
(OEM).

CLEAR Clearing the Display

CLEAR clears the display, places the cursor at the (0,0) position and selects replacement mode
of the cursor.

DETAILED INSTRUCTIONS FOR CLEAR

Execute CLEAR.

EXAMPLE OF CLEAR APPLICATION

The sequence ESC E sent by the CLEAR function is used by the HP82905B printer as a
"reinitilisation" sequence. The CLEAR function can thus be used to reinitialise this printer, the

MANIO mode being necessary to prevent the CLEAR function from verifying that the Accessory
Identity of the primary device is equal to 48.

CLEARO Clearing the Display from the Cursor

CLEARO clears the display from the cursor position to the end of the screen. The cursor position
and the cursor type (i.e. replace or insert) is not changed.

DETAILED INSTRUCTIONS FOR CLEARO

Execute CLEARO

CSRDN Movement of the Cursor Downward

CSRDN (CurSoR DowN) moves the cursor one line downward. If the cursor is on the last line of
the display, the cursor is not moved.

CSRHX Movement of the Cursor Horizontally

CSRHX (Move CurSoR Horizontally by X) moves the cursor horizontally, by the number of
positions specified by the absolute value of the contents of the X register and in the direction
specified by the sign of the value in the X register: if X < 0 the movement is to the left, and to the
right if X >= 0. For example, -1 CSRHX is equivalent to CSRL and 1 CSRHX is equivalent to
CSRR.

DETAILED INSTRUCTIONS FOR CSRHX

Place the desired number of movements in the X register in line with the details given above and
execute CSRHX.

CSRL Movement of the Cursor to the L eft

CSRL (CurSoR Left) moves the cursor one position the left. If the cursor is on the first column of
a line, it is moved to the last column of the preceding line; if it is at the (0,0) position, no
movement takes place.

CSROFE Suppression of the Cursor

CSROFF suppresses the cursor display. The cursor would not be visible until the next execution
of CLEAR or CSRON or the subsequent initialisation of the interface (due to a reset, or cleared by
an HP-IL device (DCL) or cleared by a selected device

(SDC).

CSRON Display of the Cursor

CSRON activates the cursor display. This display can be suppressed by executing the CSROFF
function.

CSRR Movement of the Cursor to the Right

CSRR (CurSoR Right) moves the cursor one position to the right. If the cursor is at the last
column of a line, it is moved to the first column of the next line, except that in the case where it is
at the (31,15) position, no movement takes place.

CSRVX Vertical Movement of the Cursor

CSRVX (Move CurSoR Vertically by X) moves the cursor vertically by the number of positions
specified by the absolute value of the contents of the X register and in the direction specified by
the sign of the value in the X register: if X < 0 the movement is downward, and upward if X >= 0.
For example, -1 CSRVX is equivalent to CSRUP and 1 CSRVX is equivalent to CSRDN.

DETAILED INSTRUCTIONS FOR CSRVX

Place the desired number of movements in the X register, in line with the above details and
execute CSRVX.

CSRUP Movement Upward of the Cursor

CSRUP (CurSoR UP) moves the cursor one line up. If the cursor is on the first line of the display,
no movement takes place.

CTYPE Selection of Cursor Mode

CTYPE (Cursor TYPE) selects the "cursor mode" in accordance with specified value in the X
register.

- For X =0, selects the "insert mode" (blinking arrow) cursor;
- For X =1 or -1, selects the "replacement mode" (blinking solid bar) cursor.

DETAILED INSTRUCTIONS FOR CTYPE

Place the corresponding value of the cursor mode desired in the X register and execute CTYPE.
Note that when using the Mountain Computer MC00701A Video Interface, selecting the "insert
mode" cursor (blinking underline character) does not turn on the "insert feature" of characters or
of lines.

HOME Returning the Cursor to the (0.0) position

HOME moves the cursor to the (0,0) position.

SCRLDN Scrolling down of the Display

SCRLDN (SCRoll DowN) scrolls the display one line down (that is, the function causes the last
line of the display to disappear and a new line appears at the top of the screen).

SCRLUP Scrolling Up of the Display

SCRLUP (SCRolL UP) scrolls the display one line up (that is, the function causes the uppermost
line of the display to disappear and a new line appears at the bottom of the screen).

SCRLX Scrolling the Display by given Parameter in X

SCRLX (SCRolL as specified in X) scrolls the display up or down by the number of lines indicated
in X.

- For X < 0, SCRLX scrolls the display up by (-X) lines (corresponds to the repeated execution of
SCRLUP for the absolute value in X).

- For X >= 0, SCRLX scrolls the display down by the number of lines indicated in X (corresponds
to the repeated execution of SCRLDN for the value in X).

DETAILED INSTRUCTIONS FOR SCRLX

Place the desired number of lines to be scrolled in line with the details above and execute
SCRLX.

XTTAB Movement of the Cursor to an (X.Y) Position

XTYAB ((X,Y) TABulate) moves the cursor to the (X,Y) position, the column number indicated by
the absolute value of the contents of the X register, and the row number indicated by the absolute
value of the contents of the Y register.

DETAILED INSTRUCTIONS FOR XYTAB

Place the column number in the Y register and the row number in the Y register and execute
XYTAB.

APPENDIX V

Control Codes sent to the Primary Device by the Functions of the
82163 Group. "ESC" represents the "Escape" Symbol, Decimal Code 27.

Functions Sequence Character Codes
CLEAR ESCE 27 69
CLEARO ESCJ 27 74
CSRDN,CSRVX for X>=0 ESC B 27 66
CSRL,CSRHX for X <0 BS 08

CSROFF ESC < 27 60

CSRON ESC > 27 62
CSRR,CSRHX for X>=0 ESC C 27 67
CSRUP,CSRVX for X< 0 ESC A 27 65

CTYPE for X=0 ESC Q 27 81

CTYPE forX=1or-1 ESCR 27 82

HOME ESCH 27 72
SCRLDN,SCRLX for X>=0 | ESCT 27 84
SCRLUP,SCRLX for X< 0 ESC S 27 83

XYTAB ESC % {c} {} 27 37 {col}{row}

HP-82162 THERMAL PRINTER GROUP

The functions of this group are intended to facilitate the use of the HP-82162A Thermal Printer.
These functions will enable the user to exploit fully all the facilities available in the printer, most of
which are not explained in the manual. These facilities are:

- Two different character types

- A"word wrap" mode

- Possibility of tabulation at a point, independent of data present in the buffer of the printer.
- Possibility of knowing precisely the state of the printer.

These functions operate on the first HP8261A present on the loop after the primary device. If no
HP8216A printer is found on the loop, the error message NO 82162 is displayed. The only
exception to this rule concerns the STATUS function of the PANAME module; for more
information, consult the detailed instruction for use of the STATUS function.

8BIT Selection of "eight bits" mode

8BIT selects the "eight bits" mode which turns on the HP-41 character set. This mode is selected
automatically during the execution of specific printing functions (functions appearing under the
heading - PRINTER 2E - of the HPIL module). This function is therefore useful only if one is using
the HP82162A printer with non-printing functions such as OUTA or OUTYBX.

ESCAPE Selection of the "escape" mode

ESCAPE selects the "escape" mode, which activates the (non HP-41) ASCII character set. In this
mode, characters sent to the printer cannot be printed by specific printing functions because
these re-select the "eight bits" mode. However, certain applications require the use of the ASCII
character set. The ESCAPE function enables the use of this set with such functions; printing
ought therefore should take place using the OUTA function or other related functions which only
enable the transmission of characters to the primary device. Note also that in this case, the
printer ought to be declared the primary device which is not required with specific printing
functions such as PRA.

PARSE Selection of the "word wrap" mode

PARSE selects the "word wrap" mode, which enables the automatic printing of text without word
truncation at the line feed point. A line feed is generated by the printer in between two words, if
the word following the space between the two words cannot be printed entirely on the current line.

CLBUF Clearing the Buffer

CLBUF places the printer in the same condition as when it was first turned on, that is:

- the print head is returned to the right
- the print buffer is emptied
- the active modes are: "escape”, hormal width, upper case and "word wrap" at the 24th
character.
This function is primarily used to empty the buffer of its contents, this operation being impossible
otherwise except by putting off the printer.

UNPARSE Selection of "word break" mode

UNPARSE cancels the "word wrap" mode enabled by the PARSE function.

TABCOL Tabulation by Columns

TABCOL permits unlimited tabulation at the level of column of points (as against SKPCOL which
permits only relative tabulation).

In using TABCOL, one can easily print matrices of several columns (FMT permits only two
columns).

DETAILED INSTRUCTIONS FOR TABCOL

Place the number of columns of tabulation desired (0 to 167) in the X register and execute
TABCOL.

EXAMPLE OF TABCOL APPLICATION
To print the following matrix:

A= 123.00 FF

B= 2395 FS

C =1115.70 FB

One can use the sequence:

FIX 2

CLBUF

"A=" "B=" "c="

ACA ACA ACA

28 TABCOL 28 TABCOL 28 TABCOL
123 ACX 23.95 ACX 1115.7 ACX
91 TABCOL 91 TABCOL 91 TABCOL
"FF" "FS" "FB"

ACA ACA ACA
PRBUF PRBUF PRBUF

HP-82905B PRINTER GROUP

The functions of this group are intended to facilitate use of the 80- column HP82905B printer. The
functions enable the user to completely control the printer without directly knowing the escape
sequences and the character controls required by the printer in order to execute a given a task.
These functions ease considerably the writing and legibility (of print-listed) programs, bringing into
play the numerous modes of operation of the HP82905B printer.

All these functions require that the printer be declared the primary device. The user is advised to
refer to use instructions for FINDAID (in this manual) and FINDID (in the manual of the
HP82160A HPIL module) functions, in order to know the different methods for selection of
particular devices as primary device.

In AUTOIO mode, if the primary device does not possess an Accessory Identity equal to 33, the
error message AID ERROR is displayed. However, the functions do not carry out this verification
in MANIO mode. This feature permits the use of these functions with other printers using the
same escape sequences and character controls as the HP82905B printer.

For more technical details concerning the sequences sent by these functions, refer to Appendix
B.

BELL Buzzer Signal

BELL activates the buzzer of the printer for a second. This function can be used, for example, to
alert the user of a particular condition requiring the user's intervention.

CHARSET Selection of the Printers's Character Set

CHARSET selects the primary character set if X = 0 and the secondary set if X = 1; refer to the
User Manual of the HP82905B printer for a list of the two character sets.

FEEED Page Skip

FFEED sends a "page skip" (form feed) command to the printer which causes the paper to
advance to the top of the next page. Note that the user is to position the paper correctly and
define the number of lines per page corresponding to the paper in use (by means of the
FORMLEN function) for the FFEED function to move the paper to the next page.

FORMLEN Page Lenagth

FORMLEN determines the number of lines in a logical page (this number depends on the type of
paper used and the spacing between lines selected by the VSPAC function).

The contents of the X register (irrespective of sign) indicates the required number of lines, which
ought to be between 1 and 128. When turned on or re-initialised with the CLEAR function (see
the detailed instruction for use of the CLEAR function for a description of this possibility) the
default number of lines is 66.

GRAPHX Generation of Graphics

GRAPHX signals the printer to interpret the octets following, not as characters, but as binary
data, each value corresponding to a column of points. Consult the User Manual of the printer for
the correspondence between received values and the and result print (paragraph on "Graphics
Mode").

The contents of the X register indicates the number of octets the printer is to interpret as graphics
data (the sign of X is ignored).

MODE Printing Mode

MODE determines the printing mode in accordance with the value in the X register (the sign is
ignored) in conformity with the following table:

Content of X Mode No. of char./line
0 Normal 80
1 Expanded 40
2 Compressed 132
3 Compressed-Expanded 66
9 Emphasized 80

The user can combine "0" and "1" or "2" and "3" modes on the same line; other combinations can
give unexpected results.

If X contains a value other than 0,1,2,3 or 9, the calculator displays the message DATA ERROR.

SKIPOFFE Disabling the Top-of-Form Function

SKIPOFF disables the SKIPON function.

SKIPON Activating the Top-of-Form Function

SKIPON enables the "skip-over-perforation” function. When this function is on, the printing of the
last line of the text of a page (the number of lines of text in a page is determined by the TEXTLEN
function) activates automatic advance of the paper to the top of the next page, thus avoiding
printing on the perforations separating two pages.

The "skip-over-perforation" function is inactive when the printer is turned on, or when initialized by
the CLEAR function (see detailed instructions on the use of the CLEAR function for details).

TEXTLEN Length of Text

TEXTLEN defines the number of lines of text in a logical page.

The contents of the X register (without taking into account the sign of the contents) indicates the
number of lines of text desired, which should be between 1 and the number of lines on the page
(determined by the FORMLEN function). When turned on or reinitialized by the CLEAR function
(see the detailed instruction for the use of the CLEAR function for description of this possibility),
the number of lines used by the printer is 60.

VSPAC

Vertical Spacing

VSPAC defines the vertical spacing in number of lines per inch (1 inch = 2.54 cm) determined by
the value in the X register (the sign being ignored). This value can only be 6, 8, 9, 12, 24, 36 or
72. If X contains a value different from the foregoing, the calculator displays the message DATA

ERROR.

APPENDIX B

Escape Sequences sent to the Primary Device by the Functions of the HP82905 Printer Group

- ESC represents the "escape character” with decimal code 27

- {#} symbolises the ASCII representation of a number (parameter) and {by} the
corresponding character codes

Function(s) Sequence Codes Thinkjet

BELL BEL 07

CHARSET for X=0 Sl 15 Normal
CHARSET for X=1o0or-1 | SO 14 Emphasized
FFEED FF 2 FF

FORMLEN ESC &l {#} P 27 38 108 {by} FL

GRAPHX ESC *b {#} G 27 42 98 {by}

MODE ESC &k {#} S 27 38 107 {by}

0 Normal (80 c/l)

1 Expanded (40 c/l)
2 Compressed (142)
3 Expanded-Compressed
SKIPOFF ESC &IOL 27 38108 48 76 skipoff

SKIPON ESC &I1L 27 38108 49 76 skipon

TEXTLEN ESC &I{#}F 27 38 108 {by} textlen

VSPAC ESC &N#}D 27 38 108 {by} vspac

MINIPLOTTER

Different models of mini-plotters which can be operated to much advantage with the HP-41 exist.
TANDY, CANON, for example, employ the same mechanical design and the same modes of
command like the HP82905 printer. It is, however, necessary to interface such mini-plotters with
the HP-IL loop by means of the GPIO (HP82166A) converter.

Other manufacturers have also introduced into the market parallel converters that can be used to
interface these mini-plotters with the HP-IL loop.

The main characteristics of these mini-plotters are:
- Four printing colours: black, red, blue, green; the tracing is carried out by a "tracing head"
which in effect is a barrel containing a set of four ball points. The colour change can be carried

out by a program or by pressing a switch in front of the plotter during the tracing process.

- Large standard roll paper of 11.4 cm size. It thus possible to trace or write in using the paper
along its length and which permits the printing of matrices of large widths (27 or 29.7 cm).

- Along the width, one can print texts of 80 characters maximum per line.
- These mini-plotters can, of course, be controlled by other hardware similar to the HP-41 (HP-

75, HP-85, HP-71) and consequently such equipment, like other HP-IL devices will not quickly
become "obsolete".

AXIS Plotting of the Axes

AXIS plots various types of axes on the mini-plotter.
DETAILED INSTRUCTIONS FOR THE AXIS FUNCTION

AXIS uses 4 parameters which the user places in the stack (of the calculator) before executing
the function:

T: half the size of each division

Z; distance between 2 divisions vertically

Y: distance between 2 divisions horizontally
Z: the number of divisions

The axis is plotted from the current position of the pen, and the direction of the sketch depends
solely on the Y and Z values. On the other hand the divisions are always either vertical or
horizontal, their "direction" being determined by the inclination of the axis in relation to the
horizontal (X axis): below 45* the divisions are vertical, above that angle they are horizontal.

The parameter in T facilitates the plotting of grids, for example, in matrices.

Example: The following program plots a matrix with 2 lines of columns. Each column having a
width of L and each line having a height of H. To use it, it suffices to execute (XEQ) "TABLO"
and to respond to the questions asked by supplying the corresponding values followed by R/S:

01 LBL "TABLO"

02 "HP82166" Identification of GP-1O converter
03 FINDID Searching for mini-plotter position
04 SELECT Selection of the mini-plotter

05 RESET Resetting

06 "NO. OF CcoLs. ?"

07 PROMPT Entry of number of columns

08 STO 00 ROO = Number of columns

09 "COL. WIDTH ?"

10 PROMPT Entry of width of columns

11 STO 01 RO1 = Width of the columns

12 * First dimension of the matrix

13 "LINE HT. ?"

14 PROMPT Entry of the height of each line
15 STO 02 R02 = Height of each line

16 ST*X There are two lines, the second has dimension of 2*X
17 CHS Downward movement

18 X<>Y

190

20 ENTER_

21 BOX BOX uses the 4 parameters in T,Z,Y and X
22 RCL 02

23 CHS

240

25 *MOVE Starting position

26 RCL 02

270

28 RCL 01

29 RCL 00

30 AXIS Sketching of inner lines

31END

XEQ "TABLO"

NO. OF COL. ? To be printed
4,000 RUN

COL. WIDTH ?

100,000 RUN

LINE HT. ?

50,000 RUN

BACKSP Backspacing by one Character

BACKSP (BACKSPace) moves the pen one character backwards.

BACKSPX Backspacing by several Characters

BACKSPX (BACKSPace by X) moves the pen backwards by the number of characters specified
in X. Only the absolute value of X is taken into account.

BOX Sketching of Rectangle

BOX sketches a rectangle whose opposite corners have the coordinates:

(x1,x2) and (x2,y2) with T=y2, Z=x2,Y =yl and X =x1

COLOR Choice of Colour

COLOR selects one of the four colours according to the value in the X register.

CSIZE Character Size

CSIZE (Characters SIZE) selects character size. The value could be between 0 and 63.

DRAW Drawing a Segment

DRAW sketches a segment to the right from the current position of the pen to the coordinate
(X,Y).

HOME Returning the Pen to the Origin

HOME returns the pen to the (0,0) position.

LABEL Printing the Contents of the ALPHA Reqgister

LABEL prints the contents of the ALPHA register. This function is useful in that the printing can
be done in 4 direction in text mode; these directions are defined by LD.

STATUS Recalling the Status of the Printer

STATUS places in the Y register an integer representing the decimal equivalent of the first octet
of the printer status, and in the X register, an integer representing the decimal equivalent of the
second octet of the printer status. The effect of the STATUS function on the stack depends on
whether stack lift was enabled or disabled at the moment of execution of the STATUS function.

- If stack lift was enabled, the effect is as follows:

Before After
T:t Ty
Z:z Z: X
Yy Y: status of first octet
X: X X: status of second octet

- If stack lift was disabled, the effect is as follows:

Before After

T:t T:z

Z:z | Zy
Y:y | Y: status of the first octet
X:x | X: status of the second octet

In both cases, the content of the LASTX register is not changed.

The STATUS function has a peculiar characteristic: in MANIO mode, it places two numbers
representing the status of the primary device in the X and Y registers.

- If the primary device loses its octet status, STATUS places 97 in the X and Y registers.

- If the primary device is in a single octet status, STATUS places the decimal equivalent of
this octet in the Y register and 64 in the X register.

- If the primary device is in two or more octets status, the STATUS function has the same
effect on the primary device as it has on the HP82162A in the AUTOIO mode. Status
octets beyond the second are ignored.

To determine the number and the octet status of a particular device, refer to the description of the
HPIL message "Send Status” in the manual for the device.

The Sl Appendix gives detailed definition of the two octet status of the HP82162A printer.

APPENDIX T2

Minimum Number of Commands required for complete handling of a 4-Colour Mini-Plotter by the
Functions of PLOTTER FUNCTIONS (PLOT FCNS) Group.

To obtain detailed description of a mini-plotter refer to JPC, Number 15, June 1984.
Standards of Representation:
- #represents a numeric string of characters with an implied sign and at most four figures
(examples: -230; 0024);
- The "syntax" column indicates the significant portion of each of the parameters.
Control Characters (Decimal Values):
17: Conversion to "Text" Mode
18: Conversion to "Graphic" Mode
11: Line feed backwards ("Text" Mode only)

08: Movement of the pen one character backwards ("Text Mode only)

Instructions in "Graphic" Mode

Syntax Format Action

A A Initialisation

H H Movement to (0,0) position

Mx,y M# # Movement to (x,y) position

Dx,y D# # Tracing (x,y) position

RXx,y R# # Movement relative to (x,y)

JIX,y J## Tracing relative to (x,y)

P<string> P<string> Printing of a character string

Lx L# Selection of line type by x

Cx C# Selection of pen x (colour change)
SX S# Selection of character size by x
Qx Q# Selection of print direction by x (For instruction P only)

Functions of the

"Graphic" Mode

The plotting functions that correspond to these functions require that the "graphic” mode be
active. The functions, therefore, put the plotter in the "graphic " mode before carrying out the
operation required, and leave it in this mode after execution.

Functions of the "Variable" Mode

The plotting functions that correspond to these functions require that the "graphic" mode be
active. The functions, therefore, put the plotter in the "graphic" mode before carrying out the
operation required. Nevertheless, it is sometimes necessary to carry out the said operation during
a printing sequence using the "text" mode. The user, therefore, has a choice as to the mode in
which the plotter is left after executing these functions.

UTILITIES GROUP

The functions of this group are of varied uses:

- manipulation of strings

- manipulation of numerical or string matrices of one or two dimensions

- numeric or alphanumeric sorting

- extended memory management (HP822180A XFUNCTIONS and HP822181A
XMEMORY modules)

- many other applications ... !

[MOD Euclidean Division

/MOD (Divide MOD) determines the remainder (modulo) and quotient of a division, that is
performs Euclidean division in its entirety. It is an extension of the [MOD] function of Catalogue 3.

Example 1: Calculation of the quotient and the remainder (modulo) of the division 13 by 3.

Press ON: Display

13 13_ Input of the dividend

[ENTER_] 3 3 Input of the divisor

[XEQ] /MOD 1.000 Remainder (Modulo)

[X<>Y] 4.000 Quotient of the division

[LASTX] 3.000 The divisor is preserved in the L register

DETAILED INSTRUCTIONS FOR /MOD

1. For calculating the remainder (modulo) and the quotient of the division Y and X

2. [XEQ] "/MOD". The quotient and the remainder (modulo) of the division are placed in Y and in
X respectively. The divisor is preserved in L, the dividend is lost. The contents of the T and Z

registers are not altered.

3. If the X register contains zero, the calculator displays DATA ERROR.

The Stack
Input Output
T T T T
Z: 7 2.7
Y: Dividend | Y: Quotient
X: Divisor X: Remainder (Modulo)
L:L L: Divisor

APPLICATION PROGRAMS FOR /MOD

Example 2: Following is a fast process for calculating the decimals of the division of A by B where
A<BandBendsin9:

Following may be used for calculating 153 divided by 209

01 LBL "DIV9" 10 LBL 01
02 10 11 RCLO1
03/ 12 /MOD
04 INT 1I3VIEWY
051 14 10

06 + 15+

O7 STO 01 16 +

08 RDN 17 GTO 01
09 SF 21 18 END

153 divided by 209 = 0.732057...

Example 3: [[MOD] can be used in a simple routine such as "changing to a lower base"! This
short program, YBX, (Y to base X) in simplifying the calculation, produces the different figures for
the new value in reverse order, that is to say, from the lower to the higher base. X and Y have to
be integers.

01 LBL "YBX" 07 CLX

02 SIGN 08 X#Y?
03 LBL 00 09 GTO 00
04 X<>L 10 BEEP
05 /MOD 11 END
06 STOP

For example 1103 [ENTER_] 8 [XEQ] "YBX" gives 7 [R/S] 1 [R/S] 1 [R/S] 2 [R/S] 0. This shows
that 1103 (DEC) = 2117 (OCT). This result can be verified using the OCT and DEC functions.

N.B.: If one wants to reconstitute the dividend by X<>Y LASTX * + for a quotient > 0 and by X<>Y

X<0? DSE X NOP * LASTX * + for a quotient not equal to 0, one cannot guarantee a null
guotient.

AD-LC Line, Column Address

[AD-LC] (ADdress-Line, Column) determines the coordinate lines and columns of an element of a
matrix from its real address and from the matrix pointer.

Example: Calculate the coordinates of register 36 in Matrix A (below) whose pointer 25.04405 is
in the ROO register. R25 = Number of the first register and R44 = Number of the highest register.

MATRIX A
Column No. 1 No. 2 No. 3 No.4 | No.5
Row 1 R25 R26 R27 R28 R29
Row 2 R30 R31 R32 R33 R34
Row 3 R35 R36 R37 R38 R39

Row 4 R40 R41 R42 R43 R44

Press ON Display

36 [ENTER_] 36.0000 Input of register number
[RCL] 00 25.04405 Recalling of the matrix index
[XEQ] "AD-LC" 2.00000 Column No. 2

[RDN] 3.00000 Line No. 3

[LASTX] 25.04405 The index is saved in L.

DETAILED INSTRUCTIONS FOR AD-LC

To calculate the line and column coordinates of an element in a matrix when the matrix pointer
and the register occupied by this element are known, [ENTER_] the number of the register,
[ENTER_] the matrix pointer and [XEQ] "AD-LC". The column number is returned into X and that
of the line into Y. The pointer is preserved in L and the Z and T registers remain unchanged.

The Stack
Input Output
T: T:t
Z:7 Z:7
Y: register Y: Line number.
X: matrix X: column number.
L:L L: matrix index

NOTE: This function does not verify if the register is part of the matrix. If the X or Y registers
contain an ALPHA string, the calculator displays ALPHA DATA error message.

ALENG ALPHA Length

[ALENG] (Alpha LENGth) places in the X register, the number of characters of the string present
in the ALPHA register.

Example 1: In the course of a programme, the HP-41 stops to receive ALPHANUMERIC data
input by the user. The programme has to calculate the length of the string in order to arrange it
into different registers. [Solution to this problem can be achieved using the ALENG function]
NB: Refer to the RGAX function in this manual for another solution to this problem.

DETAILED INSTRUCTIONS FOR ALENG

When the ALPHA register contains a string whose length has to be calculated, [ALENG] places
the number of the characters in the X register and enables stack lift.

The Stack

=]
c
=1

Output

T:t

Z:.z

Y: X

X: Length of ALPHA string
L:|

IXIXINAE
TIX (N

APPLICATION PROGRAMS FOR ALENG

Example 2: The following routine replaces the lower case characters with upper case in the string
present in the ALPHA register. It uses [ALENG] to determine the number of characters of the
string (so long as the string does contain null character(s)).

01 LBL "CAP"

02 ALENG Determines the no. of characters in the ALPHA string
03 LBL 00

04 ATOXL Places in X the code of the first character

05 97 The codes of the lower characters are found between 97 and 122
06 X>Y?

07 GTO 01 Ifitis not lower case (< 97), go to LBL 01

08 CLX

09 122

10 X<Y?

11 GTO 01 Ifitis not a lower case (> 122) go to LBL 01
12 CLX One obtains capital letter code by subtracting
1332 32 from the code of the corresponding lower case
14 - letter (A=65,a=97 and 97-65=32)

15R_

16 LBL 01

17 RDN

18 XTOAR Places the capital letter to the right of the string
19 RDN

20 DSE X

21 GTO 00 Continues the loop to the end of the string

22 AON

23 END

ANUM Searching for a Number in the ALPHA Reaqister

[ANUM] (Alpha to NUMber): The [ANUM] function scans the contents of the ALPHA register from
left to right in search of a number. The first number encountered is placed into the X register.

Example: If the ALPHA register contains the string PRICE: 1,234.50 obtained by reading the
alphanumeric text of extended memory and extracting the numeric value for arithmetic
manipulation, execution [XEQ] of ANUM places the number in the X register.

DETAILED INSTRUCTION FOR ANUM

1. The ANUM function searches for a numeric value contained in the string in the ALPHA register.
If a number is found, the calculator places the number in the X register and sets flag 22. If the
calculator does not find a number, the contents of the X register and the status of flag 22 are not
changed.

2. The number in the ALPHA register can be in either format of digit separator representation.
The separators "," and "." are interpreted in accordance with the status of flags 28 and 29. If the
number in the ALPHA register is preceded by a minus sign, the calculator places a negative
number into the X register at the time of execution of the function. Suppose that the ALPHA

register contains the string in Example 1:

Flag 28 | Flag 29 | Display

Set Set 1,234.5000
Set Clear 1,0000
Clear Set 1,2345

Clear Clear 1,2340

THE STACK
Input Output
T:t T:z
Z:z Zy
Y.y Y: X
X X X: number found in X
L:| L:|

ANUMDEL Searching for a Number in ALPHA and Deletion

[ANUMDEL] (Alpha-to-NUMber DEL ete) searches from left to right for a numerical value in the
ALPHA register and places the first number it detects in the X register. It deletes this number from
the ALPHA register as well as all the preceding characters.

Example 1: If the ALPHA register contains the string PRICE:1,234.5 FRS, to extract the numeric
value for arithmetic operation, [XEQ] "ANUMDEL". This places the numeric portion of the string in
the X register. The ALPHA string is deleted up to, and including the character "5".

DETAILED INSTRUCTIONS FOR ANUMDEL

1. The ANUMDEL function searches the contents of the ALPHA string for a numeric value. If the
calculator finds a number, it places the number in the X register and deletes the string from the
beginning to the end of the number.

2. If the string in the ALPHA register contains several numbers, separated by one or more non-
numeric characters, [ANUMDEL] takes into account only the first number. [ANUMDEL] is identical
to the [AMUM)] function, except that [ANUM] does not alter the string in the ALPHA register. The
HP-41 considers the execution of [ANUMDEL] as a numeric input, and sets flag 22 when it places
the number into the X register. If the ALPHA register does not contain any numeric value,
[ANUMDEL] deletes the ALPHA register, but does not alter the operational stack or the status of
flag 22.

The characters "+" "-" "" "." and "E" (standing for exponent) are interpreted by [ANUMDEL] as
numeric or non-numeric representations in accordance with the context in which they appear in
the string. An isolated "+", for example, is not treated as a numeric character. A "+" or "-"
immediately preceding, included in, or directly following a sequence of numbers will be
interpreted as mere keys input from a keyboard (with [CHS] represented by "-"). For example,
[ANUMDEL] returns the value -3425 if the function was executed when the ALPHA register

contained the string "34-2+5".

3. In the ALPHA register numbers can represent values in any separator format. The digit
separators "," or "." are digit interpreted in accordance with the status of flags 28 and 29. For
example, if flags 28 and 29 are set, the comma is treated as a separator of a group of three
figures. But the comma will be considered to be a non-numeric character if flag 28 is set and flag

29 is cleared.

Suppose that the ALPHA register contains the string as in Example No. 1: "PRIX:1,234.5 FRS
and the calculator is placed in FIX 4 mode:

Flag 28 | Flag 29 | Number Displayed | New String
Set Set 1,234.5000 FRS
Set Clear 1,0000 ,234.5FRS
Clear Set 1,2345 FRS
Clear Clear 1,2340 .5FRS
The Stack

Input | Output

T:t T.z

Z:z Zy

Y.y Y: X

XX X: Original value in ALPHA

L:| L:|

APPLICATION PROGRAMS FOR ANUMDEL

Example 2: The HP7470A plotter when programmed returns an ASCII string describing the
current position of the pen. This string contains 3 whole numbers separated by commas: X,Y and
P. X is the ordinate of the position of the pen, Y is the abscissa, and P takes the value 0 or 1
depending on the position of the pen, whether it is raised or lowered. Supposing that the plotter
places in the ALPHA register the value "123,456,1", a program can extract these values by
executing [ANUMDEL] three consecutive times.

Press ON Display Comments/Remarks
[SF 28] Ensures that the comma is not taken as a decimal separator
[CF 29] Ensures that the comma is not considered as a separator of a group

of three figures

[ANUMDEL] 123.0000 Ordinate
[ANUMDEL] 456.0000 Abscissa
[ANUMDEL] 1.0000 The pen is lowered

Example 3: The ALPHA register contains the string "34/-2/5"

[CF 28]

[ANUMDEL] 34.0000
[ALPHA] 1-2/5

[ALPHA] [ANUMDEL] -2,0000
[ALPHA] /5

[ALPHA] [ANUMDEL] 5,0000

The above example shows that the symbols /" and "*" are not interpreted like the symbols "+" "-"

or .

APPX Copving Integer Portion of Number in X into ALPHA

[APPX] [APPend X] appends the integer portion of the number in the X register to the right of the
string in the ALPHA register.

Example: The result of a previous calculation present in the X register is 1,255.7 and the contents
of the ALPHA register is "SURF:" [APPX] appends the integer portion of the number in the X
register to the contents of the ALPHA register: the contents of the ALPHA register become
"SURF:1,255"

DETAILED INSTRUCTIONS FOR APPX

1. [APPX] appends the integer portion of the number in the X register to the right of the string in
the ALPHA register. [APPX] conforms to the status of flags 28 and 29. The number is operated
upon in the FIX 0 mode, except that the decimal separator is not appended to the string and also
the number is not rounded off. Like [ARCL], [APPX] does not generate any error message when
its execution causes overflow in the ALPHA register.

If the X register contains an ALPHA string, the calculator dispalys the ALPHA DATA error
message.

AROT Rotation of Contents of the ALPHA Reqgister

[AROT] [Alpha ROTation] effects rotation of the contents of the ALPHA register by the number of
characters specified in the X register.

Example 1: The ALPHA register contains the string "AROT"; if one wishes to display in
succession the strings "TARQO" and then "ROTA" -

Press ON Display
[ALPHA] AROT AROT_
[ALPHA] 1 [CHS] -1
[XEQ] "AROT" [ALPHA] TARO
[ALPHA] 2 2_
[XEQ] "AROT" [ALPHA] ROTA

DETAILED INSTRUCTIONS FOR AROT

The [AROT] function effects a rotation of the contents of the ALPHA register by the number of
characters specified in the X register (X modulo 24). The rotation takes place from the left if the
content of the X register is positive and from the right if the content is negative. (See the
Annexure at the end of this manual for more information on the effect of the [AROT] function on a
string containing null characters).

The Stack

Execution of the [AROT] function does not modify the contents of the stack.

APPLICATION PROGRAMS FOR AROT

Example 2: The [AROT] function can be used with the [ANUM)] and [POSA] functions for locating

the occurrence of a character or of a string in the ALPHA register without change in the contents
of the register.

Given that as a result of the operation of a device, the ALPHA register contains the sequence
68,2 69,88 (two numbers separated by a space). Let us suppose that we have to extract
separately the two numbers to be used in a program. The following sequence of keystrokes
illustrates the procedure:

Press ON Display

[CF] 28

[XEQ] "ANUM" 68.2000 Places the first number in X

[STO] 20 68.2000 Stores for later use

32 32 Space code

[XEQ] "XTOAR" 32.0000 Adds a space to the right of the ALPHA register
[XEQ] "POSA" 4.000 Searches for the first space in the ALPHA register
[XEQ] "AROT" 4.000 Carries out a string rotation; rotation;

ALPHA contains 69.88 68.2; in 69.88 68.2 in the absence of a space the ALPHA register will
contain 69.8868.2
[XEQ] "ANUM" 69.8800 Places 69.88 in the X register

Transfer of Characters between the ALPHA and X Reqisters

ATOXL Transfer of the leftmost Character of ALPHA into X

[ATOXL] (Alpha-TO-X Left) pulls out the first character of the ALPHA string and places its
decimal code into the X register.

ATOXR Transfer of the rigthmost character of ALPHA into X

[ATOXR] (Alpha-TO-X Right) extracts the last character of the string in the ALPHA register and
places its decimal code in the X register.

ATOXX Transfer of a given ALPHA character into X

[ATOXX] (Alpha-TO-X by X) places in X the code of the character specified in the X register.
DETAILED INSTRUCTIONS FOR ATOXL, ATOXR and ATOXX

1. [ATOXL] deletes the leftmost character contained in the ALPHA register and places its decimal
code in the X register. If the first character is followed by one or more null characters, these nulls
become leading nulls and are erased from the string up to the first non-null character. If the
ALPHA register is empty [ATOXL] places -1 into the X register.

2. [ATOXR] deletes the rightmost character of the string in the ALPHA register and places its
decimal code in the X register. If the ALPHA register is empty, [ATOXR] places -1 into the X
register.

3. [ATOXX] searches for the character whose position is specified by the number in the X register
and returns its decimal character code into the X register. The string in the ALPHA register is not
changed.

A positive value placed in the X register indicates a position in the ALPHA register counting from
left to right from the first non-null character. This first character occupies the 0 position. This
convention is identical to that used by the [POSA] function of the Extended Functions Memory
Module.

On the other hand, a negative value placed in the X register indicates an absolute position in the
ALPHA register. The positions are therefore counted from right to left starting from -1 for the
character at the extreme right and going up to -24 for the extreme left position. The following table
summarizes the way [ATOXX] interpretes the position of the characters.

Position of the Character | Character |

n > n >=length of string [Not available (DATA ERROR)|

0 <=n <length of string | Nth character according to the most exteme left character

n=0 The first character of the string from the left
-24<=n<0 The nth character from the from the right to the end of the register
n<-24 Not available (DATA ERROR)

If the X register contains an ALPHA string, the calculator displays the error message, ALPHA
DATA.

Example: In this example, the whole of the ALPHA register is shown, nulls occupying the left part
are shown as horizontal dashes for easy understanding, but caanot be displayed by the
calculator.

Press Display
[ALPHA] DECAMETRE [ALPHA] DECAMETRE
0 [XEQ] ATOXX 68,000 "D" Code
4 [XEQ] ATOXX 77,000 "M" Code
6 [CHS] [XEQ] ATOXX 65,000 "A" Code

10 [CHS] [XEQ] ATOXX 0,000 Null character

BLDPT Building of Index

[BLDPT] (BuiLD PoinTer) builds an index of the form bbb.eeeii if X is positive or a matrix index if
X is negative.

Example 1. The results of a calculation had placed in the Z register the number in the first register
of a collection of values, into Y the last register and into X the number of registers separating
each consecutive values; say, Z =25, Y =40 and X = 5.

To calculate the index, [XEQ] "BLDPT", [FIX] 5
X = 25.04005 will lead to registers R25, R30 and R40

Example 2. The result of a calculation has placed in the Z register the number of the first register
of a matrix, in the Y register the number of rows and the in the X register the number of columns;
ie.Z=25Y=4and X=5.

To calculate the matrix index, [CHS] [XEQ] "BLDPT", X = 25.04405

MATRIX A

Column No.1 | No.2 No. 3 No.4 | No.5
Row 1 R25 R26 R27 R28 R29
Row 2 R30 R31 R32 R33 R34
Row 3 R35 R36 R37 R38 R39
Row 4 R40 R41 R42 R43 R44

COMPLETE INSTRUCTIONS FOR BLDPT

1. To build an index of the form bb.eeeii:

put bbb in the Z register
- puteeeinthe Y register
put ii in the X register
Execute [BLDPT].

2. To build a matrix index bbb.eeecc where bbb is a number representing the number of the first
register in the matrix, eee is a number representing the number of the last register and cc is a
number representing the number of columns of the matrix:

- place bbb in the Z register

- place the number of rows (|||) of the matrix in the Y register

- place the number of columns cc of the matrix in the X register and change its sign to
negative

- Execute [BLDPT]

NOTE: If the X, Y or Z register contains an ALPHA string, the calculator displays the ALPHA
DATA error message. The index is built by taking the absolute values of bbb and eee.

The Stack:

Forx>0 Forx <0
Input Output Input Output
T:t T:t T:t T:t
Z: bbb Z:t Z:bbb | Z:t
Y: eee Y:t Y: Y:t
X; i X: bbb.eee | X:cc X: bbb.eeecc
L:| L: eee L:| L: ||

BRKPT Analysis of index of a matrix

[BRKPT] (BReak PoinTer) breaks up a bbb.eeeii index if X is positive or a matrix index, if X is
negative.

Example 1. In a calculation it is required to know the elements of a bbb.eeeii index where bbb is
the first register of a collection of values, where eee is the last register and where ii is the number
of registers separating each value.

X = 25.04005 points to the registers R25, R30, R35 and R40, [XEQ] BRKPT, which restores
Z=25, Y=40 and X=5.

Example 2. The index of a matrix is 25.04405, indicating that the matrix starts at R25 register,
extends to R44 register and that the matrix is made up of 5 columns. The number of rows of the
matrix is obtained by: [CHS] [XEQ] BRKPT which results in Z=25 (first register), Y=4 (number of
rows), X = -5 (number of columns)

MATRIX A
Column No.1 | No.2 No. 3 No.4 | No.5
Row 1 R25 R26 R27 R28 R29
Row 2 R30 R31 R32 R33 R34
Row 3 R35 R36 R37 R38 R39
Row 4 R40 R41 R42 R43 R44

DETAILED INSTRUCTIONS FOR BRKPT

1. To break up an index of the bbb.eeeii form where bbb is a number between 0 and 999
representing the first element of a loop or of a vector, where eee is a number between 0 and 999
representing the last element and where ii is a positive number between 0 and 99 representing
the "interval, it is advisable to ensure that the value placed in the X register is positive, by means
of [XEQ] [ABS] for example, then executing BRKPT will place in Z the integer portion of the value
found initially in X, and Y with the first three figures of the decimal part, and X with the 4th and 5th
figures of the decimal portion. The index is retained in the L register.

2. To break up a bbb.eeecc matrix index where bbb is the first register of the matrix, where eee is
the last register and cc is the number of columns, it is advisable to ensure that the value placed in
the X register is negative by executing [ABS] followed by [CHS] for example, then executing
BKRPT returns separately the first register (bbb) in Z, the number of rows (|||) = (eee + 1 - bbb)/cc
in Y and the number of columns (cc) in X.

NOTE: If the X register contains an ALPHA string, the calculator will display the error message
ALPHA DATA.

The Stack:

Forx>0 Forx<0
Input Output Input Output
T:t T:x T:t T:x
Z:z Z: bbb Z:z Z: bbb
Yy Y: eee Yy Y:
X: bbb.eeeii X X: bbb.eeecc X: cc

L: | L: bbb.eeeii L: | L: bbb.eeecc
where eee = (II*|cc|-1+bbb)

CHELAG Saving a Predefined Status of Flags

[CHFLAG] (CHarge FLAGS) saves the status of of the flags in the calculator prior to the
execution of a program.

Example 1. It is required that starts by initializing the calculator for it to be in DEGrees mode,
ENGineering notation format with 3 figures and the first 5 flags (0 to 4) set.

In RUN mode (PRGM indicator off) set the calculator to the above desired status, then switch to
PRGM mode. Executing CHFLAG writes 2 lines into the program: the first line containing the
instruction CHFLAG, the next line a string of seven characters. At the execution of the program
the calculator is returned to its previously set configuration.

FULL INSTRUCTIONS FOR CHFLAG

1. In calculation mode set the calculator to the desired status prior to executing the program.

2. In PRoGraM mode, [XEQ] CHFLAG. This would write two lines of programme where the first
line contains the instruction CHFLAG, the next line contains a string of 7 characters representing
the set configuration. This string starts with an identifier which permits the calculator to keep track
of the required configuration. If this string was altered or replaced by another which does not

conform with the original configuration, the execution of CHFLAG in the course of running the
program will bring about a stop of the program and the display of the message: CHFLAG ERR.

The Stack
The stack is not affected by the execution of CHFLAG.

NB: The ALPHA register is not modified by the execution of CHFLAG. The string of characters is
a representation of the flags, it is not intended for the ALPHA register.

It is not necessary to precede CHFLAG with a test instruction (such as ISG or X =Y ?).

Example:
FS? 01 Checks if the flag is set

CHFLAG Initializes the calculator

...... String representing the initial status

If the test is negative (FLAG 01 clear), this causes replacement of the contents of the ALPHA
register with the string representing the initial status of the calculator. Only the flags 00 43 are
affected by CHFLAG.

Flags 00 to 10 are the flags reserved for the user
Flag 11 Automatic execution of a program when set or after loading the program from mass
storage.
Flags 12 to 20 Control of external devices
Flags 12 and 13, 15 and 16 are used by printers
Flag 12 Double width characters
Flag 13 Lower case letters
Flags 15 and 16 Printing modes of the HPIL printer
Clear Clear Manual mode
Clear Set Normal mode
Set Clear Trace mode
Set Set Trace and contents of the stack
Flag 17 Ignore CR-LF
Flag 18
Flag 19 [Use dependent on external device present]
Flag 20
Flag 21 Enable printing
Flag 22 Set by a numeric input
Flag 23 Set by alpha input
Flag 24 Ignore out of range error
Flag 25 Error (first occurrence) ignore
Flag 26 Tone (or beep) enable
Flag 27 User keyboard
Flag 28 Type of decimal separator
Flag 29 Presence or absence of separator of groups of three figures
Flag 31 DMY mode of TIME module
Flag 32 MANIO mode of the HPIL module
Flag 34 ADROFF mode of the Extended I/O module
Flag 35 Auto starting inhibition (Autostart/Duplication module)
Flag 36 through Flag 39 Number of figures for FIX, SCI or ENG
Flag 40 and Flag 41 Display mode
Flag 42 and Flag 43 Angular mode

CLINC Clearing the Increment Value of an Index

[CLINC] (CLear INCrement) truncates the value of an index in the X register from the 4th figure of
the decimal portion.

Example 1. To have access to all the values of a matrix whose index 25.04405 is stored in R0OO -
Press on Display

[RCL] 00 25.04405 Recalls the index value
[XEQ] CLINC 25.04400

[XEQ] INT 25.00000 1st element of the index
[LASTX] 25.04400

[XEQ] FRC 0.04400

[EEX] 3 [*] 44.00000 Last element of the index

FULL INSTRUCTIONS FOR CLINC

[CLINC] replaces the value in X from the 4th figure (inclusive) of the decimal portion with 0s. The
original value is retained in the L register.

The Stack

Input Output

T:t T:t

Z:7 Z:7

Y.y Y.y

X: bbb.eeeii | X: bbb.eee
L:| L: bbb.eeeii

NOTE: If the X register contains an ALPHA string, the calculator displays the error message,
ALPHA DATA.

COLPT Calculation of a Matrix Index

[COLPT] (COLumn PoinTer), given a column number in the Y register and a matrix index in the X
register, calculates a column index.

Example: In order to access the registers containing the index to the second column of the Matrix
A below, and whose index is retained in the ROO register -

Press on Display

2 2 Column number

[RCL] 00 25.044005 Recalling of the index

[XEQ] COLPT 26.04105 Index of the second column

MATRIX A

Column No. 1 No. 2 No. 3 No.4 | No.5
Row 1 R25 R26 R27 R28 R29
Row 2 R30 R31 R32 R33 R34
Row 3 R35 R36 R37 R38 R39
Row 4 R40 R41 R42 R43 R44

FULL INSTRUCTIONS FOR COLPT

1. Determine the column number whose index is required.

2. Place in the X register the index of the matrix to which the column belongs.

3. [XEQ] COLPT which places in X the column index and restores the matrix index in the L
register.

The Stack
Input: Output:
T:t T:t
Z:7 Z:t
Y: Column number [Y:z
X: bbb.eeeii X:b'b'b'.e'e'l'l'
L:| L: bbb.eeeii

NB: i =i

GETRBX Recalling of reqisters from Extended Memory

[GETRGX] (GET ReGisters by X) copies into registers specified in X, the contents of the registers
of the current index (a control number containing the index) from the position of the index
indicated by the increment specified in X.

Example: The control number constituting the index in R10 is 25.0440510, executing GETRGX
copies the contents of the registers 10, 20, 30, ... from the index in extended memory into
registers 25, 30, 35, ... of main memory.

FULL INSTRUCTIONS FOR GETRGX

1. Itis advisable to ensure that the control number of the current index is in the required position
by means of [SEEKPT] or [SEEKPTA].

2. The control number placed in the X register is a number in the form bbb.eeeiijj where bbb is the
first register of main memory into which it is required to recopy the registers of the extended
memory, where eee is the last register where it is desired to make the copy, where ii is the
interval between two registers of the main memory and finally where jj is the interval between 2
registers copied successively from extended memory.

3. Executing [GETRGX] copies the designated registers from the current index into main memaory.
The Stack:

The stack is not altered by the execution of [GETRGX].

APPLICATION PROGRAMMES FOR GETRGX

The figures below represent two matrices, the one on the left is put into main memory while the
one on the right is put into extended memory. In each case, the register number and the contents
of the register (represented by a letter) are indicated.

Start by putting the control index number in the first register to be recopied from extended
memory by executing [SSEKPT].

To copy the registers of the second column of the matrix B extended memory into the third
column of matrix A in main memory, it is sufficient to place in X the control number of the third
column of matrix A (27.04205) completed by the interval of the register to be read in extended
memory R03), i.e. X = 27.0420503.

27 = bbb, the 1st register of the vector in main memory

42 = eee, the last register of the vector in main memory

05 =i, the interval between two registers of the vector in main memory
03 = jj, the interval between 2 registers read into extended memory.

Executing GETRGX recopies the registers corresponding to the index placed in X; the result is
represented in the second figure.

Figure | : Starting Position

MATRIX A in Main Memory MATRIX B in Extended Memory
Col. No. 1 No. 2 No. 3 No.4 | No.5 No. 1 No.2 | No. 3
Row R25 R26 R27 R28 R29 Row R11 R12 R13
1 A B C D E 1 a b Cc
Row R30 R31 R32 R33 R34 Row R14 R15 R16
2 F G H I J 2 d e f
Row R35 R36 R37 R38 R39 Row R17 R18 R19
3 K L M N O 3 g h |
Row R40 R41 R42 R43 R44 Row R20 R21 R22
4 Q R S T U 4 i k I
Figure Il : Result after Execution of GETRGX
MATRIX A in Main Memory MATRIX B in Extended Memory
Col. No. 1 No. 2 No. 3 No.4 | No.5 No. 1 No.2 | No.3
Row R25 R26 R27 R28 R29 Row R11 R12 R13
1 A B b D E 1 a b c
Row R30 R31 R32 R33 R34 Row R14 R15 R16
2 F G e I J 2 d e f
Row R35 R36 R37 R38 R39 Row R17 R18 R19
3 K L h N O 3 g h I
Row R40 R41 R42 R43 R44 Row R20 R21 R22
4 Q R k T U 4 j k I
LC-AD Calculation of address of a matrix element

[LC-AD] (Line-Column-ADdress) determines the register number of an element of a matrix from
the row coordinatee, column and the matrix index.

Example: Determination of the register number of the element placed in row 2 and column 3 of
matrix A whose index 25.04405 is in the register, R0OO.

MATRIX A

Column | No. 1 No. 2 No. 3 No.4 | No.5
Row 1 R25 R26 R27 R28 R29
Row 2 R30 R31 R32 R33 R34
Row 3 R35 R36 R37 R38 R39
Row 4 R40 R41 R42 R43 R44

Press on Display

2 [ENTER] 2.0000 Introduction of row number

3 3 Introduction of column number

RCL 00 25.04405 Recalling of the matrix index

XEQ LC-AD 32.00000 Register number being sought

FULL INSTRUCTIONS FOR LC-AD

To determine the register number of a matrix element whose index, row number and column
number are known: determine the row number, ENTER, column number, ENTER, matrix index.
Executing LC-AD returns the register number in X and retains the index in L.

The Stack

Input: Output
T T T T
Z: row number Z: T
Y: Column number |[Y: T
X: Matrix index X: Register number
L:L L: Matrix index
LINPT Calculation of the row index of a matrix

[LINPT] (LINe PoinTer), given the row number in the Y register and the matrix index in the X
register, calculates the row index.

Example: In order to have access to the registers of registers of the second row of matrix A,
whose index is in the ROO register:

Press on Display

2 2 Row number

RCL 00 25.04405 Recalling of the index

XEQ LINPT 30.03400 Index of the second row

MATRIX A

Column | No.1 No. 2 No. 3 No.4 [No.5
Row 1 R25 R26 R27 R28 R29
Row 2 R30 R31 R32 R33 R34
Row 3 R35 R36 R37 R38 R39
Row 4 R40 R41 R42 R43 R44

DETAILED INSTRUCTIONS FOR LINPT
1. Determine the row number whose index is being searched for.
2. Place in the X register the index of the matrix where the row belongs.

3. Executing LINPT places in X the row index and saves the matrix index in the L register.

The Stack
Input: Output:
T:t T:t
Z:7 Z:t
Y:row number |Y:z
X: bbb.eeeii X:b'b'b'.e'e'l'l'
L:| L: bbb.eeeii

NOP No operation

[NOP] (No OPeration) is meant to follow an programme instruction comprising a test with
conditional branching when the branching is not to be effected.

Example: In the course of a loop, it required to increase the contents of the Y register and that of
the X register.

One may write the following lines into a program:

ISGY Increments the Y register
NOP Renders inoperative the resulting skip
ISG X Increments the X register
GTO 03 and loops if greater
POSA Searching for the position of a character in ALPHA

[POSA] (POSition in Alpha) scans through the ALPHA register from left to right in search for the
character or string specified in the X register.

Example 1: The string "ABCDEFGHIJ" is in the ALPHA register, what is the position of the
character "D"?

Press on Display
68 68 Character code for D
[XEQ] POSA 3.0000 Position of character D in the ALPHA register
Example 2:
Press on Display
CLA
[ALPHA] DEF [ALPHA]
[ASTO] . X DEF
[ALPHA] ABCDEFGHIJ [ALPHA] DEF
[XEQ] POSA 3 Position of character D in the ALPHA register

DETAILED INSTRUCTIONS FOR POSA

1. [POSA] scans the ALPHA register from left to right in search of a character or string in the X
register. The string can be specified in 2 ways: by entering the code of the single character or by
placing the character or string into the X register with the help of the [ASTO] [.] [X] sequence. If
the calculator finds the string in the ALPHA register it places the position of the first character into
the X register.

2. The positions are counted from left to right starting from position 0. If the string or the character
appears several times in the ALPHA register the calculator gives only the position of the first
occurrence. If the string or the character does not exist in the ALPHA register, the calculator
returns the value -1.

3. The string or the character code is saved in the LASTx register.

The Stack

Input Output

T:t T:t

Z:z Z:.z

Y.y Y.y

X: code or string | X: position in ALPHA register
L:| L: code or string

FUNCTIONS FOR THE ALLOCATION OF MEMORY

PSIZE Allocation of memory reqisters in programmes

[PSIZE] (Programmable SIZE) allocates for data, from within a program, the number of registers
specified in the X register

SIZE? Determination of allocated memory

[SIZE?] places in the X register the number of memory registers allocated to data at the time of
its execution.

The [SIZE?] and [PSIZE] functions can be employed in the same program to reallocate a
collection of registers without destroying data.

Example:
01 ..
02 ...
)
...) (Program)
07 SIZE? The calculator places in X the number of registers allocated to data
08 125 The new program requires 125 registers of data. The previous result is in
the Y register.
09 X>Y ? Is the number of registers required greater the actual number allocated?
10 PSIZE If yes, reallocate the memory registers.

READEM Reading of files into extended memory from mass storage

[READEM] (READ Extended Memory) copies from mass storage (HP82161A cassette reader for
example) the contents of the extended memory previously stored there by way of the WRTEM
function.

Example 1. To load the "MAT3" file stored on the cassette:

Press On Display
[XEQ] EMDIR DIR EMPTY Confirms that extended memory is empty.

In the case where 2 XMEMORY modules are present, the number of available registers
is therefore 600.

[ALPHA] MAT3 [ALPHA] 600.0000 ALPHA contains the generic names of the files to be
read.
[XEQ] READEM 600.0000 The files are loaded into extended memory.

[XEQ] EMDIR MATRP P012 All these files have been read by
A D100 READEM
TEXT A040

DETAILED INSTRUCTIONS FOR READEM

1. After inputting the generic name of the file to be read, executing READMEM copies the
specified file from the cassette into extended memaory.

2. If the HPIL module is not connected, NOHPIL error message is displayed by the calculator.
3. If the file is not on the cassette, the error message, FL NOT FOUND is displayed.

4. If the extended memory space is not sufficient, the calculator displays NO ROOM. In this case,
add one or two XMEMORY modules.

5. If the HPIL module is connected but the cassette reader is missing from the loop, the NO
DRIVE message is displayed and the execution of the function is terminated.

6. If the file is not the type created by WRTEM, FL TYPE ERR is displayed and the execution of
the function is terminated.

NB: [READEM] erases all the files previously stored in extended memory and reads in the file or
files from the external source.

The Stack:
The stack is not altered by [READEM]

REVERSE FUNCTION: WRTEM

RG Key prefix for RG function

[RG] is a function intended to facilitate the entry via the keyboard names of functions starting with
RG. This function is used essentially to assign a key. For example, RG assigned to the [LN] key.

ASN "RG" 15 (Press on [Shift Key][ASN][ALPHA][R][G][ALPHA][LN]. Place the calculator in
USER mode. Thereafter to execute or program or function whose name begins with RG
(RGVIEW for example), press on:

[RG][Key LN]J[ALPHAJVIEW[ALPHA]

This sequence is equivalent to:

[XEQIIALPHA]R]IG][VII[E]W]IALPHA]

You thereby save 2 key depressions each time you use a function beginning with the 2 letters
RG.

DETAILED INSTRUCTIONS FOR RG
1. Assign RG to a key and place the calculator in USER mode.

2. To execute or program a function whose name starts with RG, press successively on:

[RG] (previously assigned to a key)

[ALPHA]
Remaining characters of the name of the function
(for example SUM for the RGSUM function)

[ALPHA]

OPERATIONS BETWEEN REGISTERS

RG+- Sum of difference, term by term, of 2 vectors

[RG+-] (ReGisters + or -) adds or subtracts, term by term, the elements of 2 vectors whose
indices are specified in the Y and X registers. The sign of the value in X determines the type of
operation to be carried out.

RG* Multiplication, term by term. of 2 vectors

[RG*] (ReGister *) multiplies, term by term, the elements of two vectors whose indices are
specified in the Y and X registers.

RG/ Division, term by term, of 2 vectors

[RG/] (ReGisters /) divides, term by term, the elements of 2 vectors whose indices are specified in
the Y and X registers.

Example: In the matrix below -

-- Replace the first column with the sum of the terms of the 3rd column and those of the first
column;

-- then calculate the squares of the 4th column;
-- finally, divide each of these squares by the first 4 values of the first row.
The matrix index is retained in the ROO register.

Matrix before execution:
NB: Each space contains its register number and its initial ~ contents.

MATRIX B
Col 1 2 3 4 5
Row | R25 | R26 | R27 | R28 | R29
1 142 20 857 40 1
Row | R30 | R31 [R32 | R33 | R34
2 285 12 714 14 2

Row | R35 | R36 | R37 | R38 | R39
3 428 22 571 24 3

Row | R40 | R41 | R42 | R43 | R44
4 714 32 285 34 4

Press on Display

[CF]28[FIX]5

[1][RCL]0O 25.04405

[COLPT] 25.04005 Index of the first column

[3][RCL]0O 25.04405

[COLPT] 27.04205 Index of the third column

[XEQ] RG+- 25.04005 Index of the vector where the results are arranged.

At this stage, one can verify that the registers R25, R30, R35 and R40 which constitute the first
column all contain 999.

[4][RCL]0O 25.04405

[COLPT][ENTER] 28.04305 X and Y contain the index
of the 4th column

[RG] * 28.04305

At this point, the elements of the 4th column are:
R28 = 1600 R33 =196 R38 =576 R43 =1.156

[1][RCL]0O 25.04405
[LINPT] 25.02900 Index of the first row
[XEQ] RG/ 28.04305

Finally, the 4th column contains the results of the division and the matrix is shown thus:

MATRIX C

Col 1 2 3 4 5
Row | R25 | R26 | R27 | R28 R29
1 999 20 857 1.60 1
Row | R30 | R31 | R32 | R33 R34
2 999 12 714 | 9.80 2
Row | R35 | R36 | R37 | R38 R39
3 999 22 571 0.67 3
Row | R40 | R41 | R42 | R43 R44
4 999 32 285 | 722 4

DETAILED INSTRUCTIONS FOR RG+- RG* RG/

1. The [RG+-], [RG*] and [RG/] functions require two indices: the index for the operands in Y and
the index for the operators in X.

2. The results are loaded into the registers specified by the index placed in the Y register.

3. After performing the calculations, the X register contains the index where the results have been
arranged and the L register contains the index of the operators.

The Stack

Input Output

T:t T:t

Z.7 Z:t

Y: Index no. 1 Y:z

X: Index no. 2 X: Index no. 1

L: | L: Index no. 2

SCALAR OPERATION IN REGISTERS

RG+Y Addition of a constant to a group of reqisters

[RG+Y] (ReGisters + Y) adds the value contained in the Y register to the contents of the registers
specified in X.

RG*Y Multiplication of a aroup of reqgisters

[RG*Y] (ReGisters * Y) multiplies the contents of the registers specified in X by the value in Y.

RG/Y Division of a group of reqgisters

[RG/Y] (ReGisters / Y) divides the contents of the registers specified in X by the value in Y.
Example: In Matrix B below:

- Subtract the constant 5 from the contents of of the first column;

- Calculate the double of the elements of the third row;

- Divide each term of the 5th column by 6.

The matrix index is retained in the ROO register.

MATRIX B
Col 1 2 3 4 5
Row | R25 |R26 |R27 |R28 | R29
1 1 2 3 4 5
Row | R30 [R31 |R32 |R33 | R34
2 6 7 8 9 10
Row | R35 |R36 |R37 |R38 | R39
3 11 12 13 14 15
Row | R40 |R41 | R42 |R43 | R44
4 16 17 18 19 20
Press on Display
5 [CHS] [ENTER_] -5.0000 Input of the constant
1[RCL] 00 25.04405
[COLPT] 25.04405 Index of the first column
[RG]+Y 25.04405 Index of the vector where the results are arranged.

At this point, the 3rd row contains the double of the preceding values R35 = 12 R36 = 24 R37 =
26 R38 =28 R39 = 30

6 [ENTER_] 6.00000 Input of the constant

5 [RCL] 00 25.04405
[COLPT] 29.04405 Index of the 5th column
[RG]/Y 29.04405

Finally, the 5th column contains the results of the division, and the resulting matrix is shown
below:

MATRIX B
Col 1 2 3 4 5
Row | R25 | R26 | R27 | R28 | R29
1 -4 2 3 4 0.83
Row | R30 | R31 | R32 | R33 | R34
2 1 7 8 9 1.66
Row | R35 | R36 | R37 | R38 | R39
3 12 24 26 28 5
Row | R40 | R41 | R42 | R43 | R44
4 11 17 18 19 3.33

DETAILED INSTRUCTIONS FOR RG+Y, RG*Y, RG/Y
1. The functions [RG+Y], [RG*Y] and [RG/Y] require an index in X and a value in Y.

2. The results from calculations are placed in the registers specified by the index in the X
register, that is to say, they replace the values on which the calculations were carried out.

The Stack
Input Output
T:t T:t
Z:z Z:z
Y: scalar value | Y: scalar value
X: Index X: Index
L:| L:|

The stack is not altered by [RG+Y], [RG*Y] and [RG/Y].

RGAX Reqisters to ALPHA or ALPHA to reqgisters

[RGAX] (ReGisters-ALPHA by X) comprise 2 functions:
1. If X < 0 copies the ALPHA register into the registers specified by the index in X;

2. If X > 0, the register specified by the index in X are copied in conformity with the string in the
ALPHA register.

Example - The string ABCDEFGHIJKLMONPQRSTUVWXYZ is in the ALPHA register. To retain
the string in pairs of regiaters starting from R10, proceed as follows:

Press on Display

10.00002 [CHS] -10.00002_ Index. The negative value loading into
the registers.

[RG] AX -17.00002 The index indicates the last register

occupied in memory following the loading process
[RCL] 10 ABCDEF First six characters

[RCL] 12 GHIJKL Next 6 characters

[RCL] 14 MNOPQR Next 6 characters

[RCL] 16 STUVWX Last 6 characters

If it is desired, the following process will replace the ALPHA register with the contents of registers
R12 and R16.

12.00004 12.00004 Index for recall of the string

[XEQ] CLA 12.00004 Clears the contents of the ALPHA register
[RG] AX 17.00004 Index to the next register

[ALPHA] CHIJKLSTUVWX Note that the loading terminates with
the last character of the string.

DETAILED INSTRUCTIONS FOR RGAX

1. The [RGAX] function cab be used to fill the whole of the ALPHA register with the registers
indicated in X by the index. In this case, the index has to be a negative value. At the time of
loading, the calculator sets an end of string marker intended for re-reading the last register used.
This marker is not visible. However, an alteration of the contents of the last register results in a
loss of this reference.

2. The [RGAX] function can equally be used for recalling of a string present in a range of
registers. In this case, the index has to be positive. The loading of the string is done in conformity
with the characters already present in the ALPHA register. If the new string comprises more that
24 characters, only the last 24 characters will remain in the ALPHA register. The preceding
characters to the left are lost. The loading is carried out until the end of string marker is found by
the calculator (see the preceding paragraph), or, if the calculator does not find the end of string
reference, until it finds a numeric value in the register. In this case, the numeric value is loaded in
the current format in the same way that it is done with [ARCL].

3. Whatever form of use, [RGAX] places the initial index in the L register and an a+-bbb.eeeii
index into the X register where bbb is the number of the last register used plus 1, and the
fractional part is that of the initial index. On the other hand, the first three figures after the comma
can be any character. since [RGAX] does not take these into account.

The Stack
Input Output
T:t T:t
Z.z Z.z
Yy Yy
X: Initial index | X: New index
L: | L: Initial index
RGCOPY Copving or exchange of contents of reqisters

[RGCOPY] (ReGisters COPY) functions in two modes:

If X >= 0, [RGCOPY] copies the contents of the registers designated by the index placed in X,
into those specified by the index in Y.

If X <0, [RGCOPY] exchanges the registers specified in X with those designated in Y.

Example: In the matrix B below, copy the contents of the registers of the first column into the
registers of the 3rd column, then exchange the contents of the 2nd column with those of the first
row.

MATRIX B
Col 1 2 3 4 5
Row | R25 | R26 | R27 | R28 | R29
1 1 2 3 4 5
Row | R30 | R31 [R32 | R33 | R34
2 6 7 8 9 10
Row | R35 | R36 | R37 | R38 | R39
3 11 12 13 14 15
Row | R40 | R41 | R42 | R43 | R44
4 16 17 18 19 20

It is to be assumed that the index of this matrix is contained in the ROO register.

Press on Display Remarks
3 [RCL]OO[COLPT] 27.04205 Index of the destination registers
1 [LASTX][COLPT] 25.04005 Index of the original registers
[XEQ] RGCOPY 27.04205 Index of the new contents
[RGVIEW] Lists the contents of the 3" row R27 = 1, ...,R42 = 16.
1[RCL]OO[LINPT] 25.02905 1stindex
2[LASTX][COLPT][CHS] -26.04105 2nd index
[RG] COPY 25.02905 The stack drops

The matrix is now as expected:

MATRIX B
Col 1 2 3 4 5
Row | R25 | R26 | R27 | R28 | R29
1 2 7 12 17 5
Row | R30 | R31 | R32 | R33 | R34
2 6 1 6 9 10
Row | R35 | R36 | R37 | R38 | R39
3 11 1 11 14 15
Row | R40 | R41 | R42 | R43 | R44
4 16 4 16 19 20

DETAILED INSTRUCTIONS FOR RGCOPY

1. The sign of the index placed in X determines if the registers are copied (X >= 0) or exchanged
(X <0).

2. The copying is carried out from the registers designated by the index placed in X into those
designated by the index in the Y register. After execution, the stack drops.

3. The exchange takes place between the registers designated in X and Y. After execution, the
stack drops. If the range of registers do not overlap, the exchange is carried out by starting with
the lower number of registers. If there is an overlapping, the calculator determines the point at
which it is to proceed with the exchange in order not to lose data.

The Stack

Input Output

T:t T:t

Z:z Z:t

Y: destination index | Y:z

X: index of origin X: destination index
L:| L: index of origin
RGINIT

Initialization of a range of reqisters

[RGINIT] (ReGisters INITialize) has 2 functioning modes:

If X >= 0 [RGINIT] places the contents of the whole range of registers into the registers specified
by the index in X.

Example: In matrix B below whose index is retained in the ROO register, columns 3 and 5 will be
cleared to zeros and then filled with the numbers 1 to 5 in the first row.

MATRIX B
Col 1 2 3 4 5
Row |R25 |[R26 |R27 |R28 | R29
1 a b C d e
Row | R30 | R31 | R32 | R33 | R34
2 f g h i i
Row |R35 [R36 |R37 [R38 |R39
3 k I m n 0
Row | R40 | R41 | R42 | R43 | R44
4 p o} r S t
Press on Display
3[RCL][COLPT] 27.04205
[XEQ] RGINIT 27.04205
5[LASTX][COLPT] 27.04205
[XEQ] RGINIT 27.04205
1[LASTX][LINPT][CHS] -25.02900
[XEQ] RGINIT -25.04400
MATRIX B
Col 1 2 3 4 5
Row |R25 |[R26 |R27 |R28 | R29
1 1 2 3 4 5
Row | R30 | R31 | R32 | R33 | R34
2 f g 0 i 0
Row |R35 [R36 |R37 [R38 |R39
3 k I 0 n 0
Row | R40 | R41 | R42 | R43 | R44
4 p q 0 S 0

DETAILED INSTRUCTIONS FOR RGINIT

Remarks

Index of the 3rd column

Clears the 3rd column to zero

Index of the 5th column

Clears the 5th column to zero

The negative sign indicates

an initialization with whole numbers of 1 to N

1. When the index placed in the X register is positive, the specified registers are cleared to zero.

2. When the index placed in the X register is negative, the designated registers are loaded
successively with the numbers 1 to N.

The Stack:

The execution of [RGINIT] function does not alter the stack.

RHNb Number of registers

[RGND] (ReGisters, Number of) calculates the number of registers specified by the index placed
in X.

Example: To know the number of elements of a matrix whose index is retained in the RO0
register, and then the number of registers contained in a row:

Press on Display Remarks

[RCL]OO[CLINC] 25.04400 Index of the registers

[XEQ] RGNb 20.00000 The matrix is made up of 20 registers
1[RCL]OO[LINPT] 25.02900 Row index
[XEQ] RGNb 5.00000 A row spans 5 registers

DETAILED INSTRUCTIONS FOR RGNb

[RGND] places in X the number of elements designated by an index of the form bbb.eeeii placed
in the X register. The index is retained in the L register.

The Stack

Input Output
T:t T:t
Z.7 Z.7
Y.y Y.y

X:index | X: number of elements

L: | L: index

RGSUM Sum of reqisters

[RGSUM] (ReGisters, SUM of) places in X the sum of the contents of the registers specified by
the index placed in X.

Example: In matrix F below whose index is in R00, one is looking for the sum of the elements of
the first column and the sum of the absolute value of the 4th column.

MATRIX F
Col 1 2 3 4 5
Row |[R25 | R26 | R27 | R28 | R29
1 -14 15 25 2 8
Row [R30 | R31 |R32 |R33 | R34
2 7 13 19 20 1
Row [R35 | R36 | R37 |R38 | R39
3 0 6 12 18 24
Row |[R40 | R41 | R42 | R43 | R44
4 23 4 5 11 17
Row |[R45 | R46 | R47 | R48 | R49
5 16 22 3 9 10
Press on Display Remarks

1[RCL]OO[COLPT] 25.04505 Index of the first column

[RGSUM] 32.00000 Sum of the elements
4[RCL]OO[COLPT] 28.04805 Index of the 4th column
[CHS] -28.04805 Index for absolute value
[RGSUM] 60.00000 Sum of the absolute values

DETAILED INSTRUCTIONS FOR RGSUM

[RGSUM] returns in X the sum of the elements specified by the index placed in the X register. If
the index is negative, the calculator effects a summation of the absolute values.

The Stack

Input Output

T:t T:t

Z:7 Z:7

Y.y Y.y

X:index | X:sum of the elements
L:| L: index

APPLICATION PROGRAMS FOR RGSUM

Example 2: In matrix F above, one wishes to put into the 3rd column, the percentages
corresponding to the values of the 2nd column in relation to their sum:

Press on Display Remarks

3[RCL]OO[COLPT] 27.04705 Destination index

2[LASTX][COLPT] 26.04605 Index of origin

[RGCOPY] 27.04705 Copies the 2nd column in place of the
3rd.

[RGSUM] 60.00000 Sum of elements

[LASTX][X<>Y] 60.00000 Preserves the index

100 [/] 0.60000 Set for % calculation

[X<>Y][RG/Y] 27.04705 The calculations are completed

The matrix now appears as below:

MATRIX F
Col 1 2 3 4 5
Row | R25 | R26 [R27 R28 | R29
1 -14 15 25 2 8
Row | R30 | R31 [R32 R33 | R34
2 7 13 216 |[-20 1
Row | R35 | R36 [R37 R38 | R39
3 0 6 10 18 24
Row | R40 | R41 [R42 R43 | R44
4 23 4 6.6 11 17
Row | R45 | R46 [R47 R48 | R49
5 16 22 36.6 9 10

The 3rd column in effect contains the percentages corresponding to the values of the elements of

the 2nd column in relation to their sum.

RGVIEW

Scrolling or listing of reqgisters

[RGVIEW] (ReGisters VIEW) is intended for different modes of presentation and/or scrolling of

registers.

Example: To carry out different presentations of the matrix below: in some situations, the contents

of the registers may be altered.

MATRIX |
Col 1 2 3 4 5
Row |[R25 | R26 | R27 | R28 | R29
1 1 2 3 4 5
Row [R30 | R31 |R32 |R33 | R34
2 6 7 8 9 10
Row |[R35 | R36 | R37 |R38 | R39
3 11 12 13 14 15
Row |[R40 | R41 | R42 | R43 | R44
4 16 17 18 19 20
|
Press on Display Remarks
[CF]28[FIX]6[<-] 0.000000
[RCL]OO[RGVIEW] 25 =1.000000
30 = 6.000000 Call up the 1st column
[R/S] 35=11.00000 Interruption of the listing
[SST] 40 =16.00000 Single step forward scrolling
[BST] 35=11.00000 Backward single step scrolling

[<]
[CLINC]
[RGVIEW]

[ON]
[ON][CHS]
[RGVIEW]

15

[CHS]

[EEX]

2[CHS]

[R/S]

[BST]
[SST]ALPHA]
ABCDEF

G

[<-]
[R/S][BST]
[SST] A
[ALPHA]
[EEX] 2
[SSTI[BST]
(<]
2[EEX]6[CHS]
[RCL]O0[+]
[ALPHA] RIEN A
[ALPHA][RGVIEW]

[R/S]
[SST][SST]

19,5
[R/S]

[R/S]

[BST]
[<-]6[EEX]6[CHS]
[RCL] 00 [CHS]
[RGVIEW]

[SST]

[<-]3[RCL]OO[COLPT]

6[EEX]6[CHS][+]
[CHS][RGVIEW]
[ALPHA] LUNDI
[R/S] MARDI
[R/S] MERCR.

[R/S] JEUDI [R/S] ALPHA
A[EEX]6[CHS][ENTER]
3[RCL]00[COLPT][+]

[CHS][RGVIEW]
LUNDI = 29_
[R/S] 12

25.044005 Stops the scrolling
25.044000 Range of registers index
25 =1.000000
26 =2.000000 Automatic scrolling of
27 =3.000000 consecutive registers
28 = 4.000000
Puts off the calculator
-25.044000 Index for stopping at the the first element
25 =1.000000
25=15_ Value input
25=-15_
25=-15_ The scrolling is similar
25=-15 .2 to the usual method of display

26 = 2.000000 Data confirmed

25 =-0.15000 Verification

26 =2.000000 Displays ALPHA mode

26 = ABCDEF_ ALPHA display accepts
26 = BCDEFG_ six characters

26 = BCDEF_ Correction possible

26 = BCDEF Data validated and verified
27 =A_ The ALPHA mode is retained
27 =3.000000 Reverts to numeric mode
27=1 2_

27 =3.000000 Data not validated by [R/S]

-25.0440000 Returns to calculation mode
2 -6

25.044052 Matrix index

RIEN A _ Gives a name to the matrix

Al,1 =-0.150000 Only the last character of the ALPHA register serves as
name for the matrix

Al,2 =BCDEF The progression takes place automatically
A1,3 =3.000000 across the matrix
Al,4 =4.000000 [R/S]immobilized
A2,1 = 6.000000 The coordinates of the [BST]
Al1,5=5.000000 elements are displayed

on the left
A1,5=19.5_
A21=._
A2,2 = 7.000000
A2,1 =0.000000
6 -6_
-25.044056 Index of the linear matrix
Al =-0.1500000 1st element of the first column

The matrix can be scrolled rapidly and clearly.

A2 =0.000000 2nd element (R30)
27.042050 3rd column index
27.042056

Al =3.000000 1stelement [R27]

Al = LUNDI_

A2 = MARDI_ Scrolling of the column
A3 = MERCR._ element by element

-27.042056 End of scrolling and return to calculation mode.

0.000004 Building of a new matrix
27.042054 index
LUNDI = In {RGVIEW} mode -29
accepts data while
MARDI =12 _ retaining in the display

[R/S][BST] 12.000000 = the previous contents

[<-] 1 [EEX] 6 [CHS] 1 -6

[RCL]OO[+][RGVIEW] 25 =-0.150000 In automatic listing
35=11.000000 mode, null values are
40 =16.000000 skipped
25.044051

DETAILED INSTRUCTIONS FOR RGVIEW

1. [RGVIEW] is a general function of display, printing and of scrolling of data for registers in main
memory.

2. The index (control value) in the X register determines the mode of access to the registers. The
index is of the form bbb.eeeiij.

If X >= 0: continuous scrolling takes place until interruption by means of the [R/S] key or
exhaustion of the registers specified by the index.

If X <0, scrolling stops at the first register associated with the corresponding value of the index.
The next register is obtained by means of the [SST] key. The [R/S] key restarts the the listing in
the same way as X >= 0.

When j is an odd number, the registers containing zero values are not scrolled. If j = 0 or 1 the
scrolling is normal; that is the display includes the register number before its contents.

If j = 2 or 3 [RGVIEW] displays the elements of a matrix preceded by the name of the matrix, the
row number and the column number.

If j = 4 or 5 [RGVIEW] displays the contents of the register followed by the "=" sign. This sign is
retained with the contents when the scrolling is interrupted.

Example: Display LUNDI =
Scrolling stopped LUNDI =10_

If j = 6 or 7 [RGVIEW] displays the name of the linear matrix, the interval value and its contents.
In ALPHA mode only the last 6 characters scrolled are accepted.
A printer in NORMAL or TRACE mode prints the range of registers generated by [RGVIEW].

3. [RGVIEW] behaves like CATalogue (permits [BST] and [SST]).

The Stack

Input Output

T:t T:t

Z:z Z:z

Y.y Y.y

X:index | X:index

L:| L: used pointer

SORT Numeric and/or ALPHA sorting

[SORT] (SORTer) sorts the contents of the registers specified in X.

Example: In matrix A below:

MATRIX A
Col 1 2 3 4 5
Row |[R25 | R26 | R27 | R28 | R29
1 14 B 21 2 8
Row [R30 | R31 |R32 |R33 | R34
2 7 13 19 20 1
Row [R35 | R36 | R37 |R38 | R39
3 0 A -12 18 24
Row |[R40 | R41 | R42 | R43 | R44
4 23 99 50 11 17
Press on Display Remarks
2[RCL]OO[COLPT] 26.04105 Building of the index of the 2nd column
[XEQ] SORT SORTING Sorting in progress
26.04105 Sorting terminated

3[LASTX](COLPT)[CHS] -27.04205 3rd column index; the negative sign indicates
descending sorting order.

[XEQ] SORT SORTING Sorting in progress

-27.04205 Sorting terminates
MATRIX A

Col 1 2 3 4 5

Row | R25 |R26 |R27 |R28 | R29

1 14 13 50 2 8

Row | R30 [R31 |R32 |R33 | R34

2 7 99 21 20 1

Row | R35 |R36 |R37 |R38 | R39

3 0 A 19 18 24

Row | R40 |R41 | R42 | R43 | R44

4 23 B -12 11 17

DETAILED INSTRUCTIONS FOR SORT

1. [SORT] sorts without discriminating between numeric values or alpha strings. Strings are
sorted according to the ASCII code and are considered greater than numeric values.

2. The index placed in X designates the register for sorting.
3. If X >= 0, the contents are sorted in ascending order.
4. If X <0, the contents are sorted in descending order.

5. During sorting, the message "SORTING" is displayed. If a message is already in the display, it
is maintained and "SORTING" is not displayed.

The Stack:

The execution of the [SORT] function does not later the stack.

STO>L Storing of data according to the index in L

[STO > L] (STOre by L) arranges the value present in the X register at the address indicated by
the integer portion of the index placed in the L register, and increments the index placed in L; the
stack changes are not taken into account.

Example 1: To fill all the values of the first row of a matrix of 4 rows, 5 columns and starting with
register 25;

Press on Display Remarks

1 1

[RCL] OO 25.04405 Recalling of the index

[LINPT] 25.02900 Calculates the index of the first row
[STO][.]1L] 25.02900 Places the index in L

50 50 1st element of the row

[XEQ] STO >L 50.00000 Arranges the value in R25
[VIEW] [.] [L] 26.02900 The index has been incremented
60 60 2nd element of the row

[XEQ] STO > L 60.00000 Arranges the 2nd element

70 70_

[XEQ] STO>L 70.00000

80 80_

[XEQ] STO>L 80.00000

20 90_

[XEQ] STO>L 90.00000

[LASTX] 30.02090

DETAILED INSTRUCTIONS FOR STO > L

[STO > L] uses the contents of the L register as index for arranging the values put stored
successively in the X register. At the execution of [STO > L] the contents of X is transferred into
the data register specified in L. The stack changes are not taken into account, so that several
values can be arranged successively altering the contents of the Y, Z and T registers. Also, the
index stored in L is incremented automatically. This conserves the memory space occupied by
the program.

The Stack

Input Output

T:t T:t

Z:z Z.z

Y.y Y.y

X: Value to be arranged X: Arranged value
L: bbb L: bbb+1

Remark: The fractional part of the L register is ignored.

NOTE: If the L register contains an ALPHA string, the calculator signals the error message
ALPHA DATA.

APPLICATION PROGRAM FOR STO > L
Example 2. The [STO > L] function is intended for storing of values into registers in the course of
programming. Thus to store the first column of the matrix below, whose index is in the ROO

register, the sequence is as follows:

1 RCL OO COLPTSTO>L50STO>L60STO>L70STO>L80STO>L

MATRIX |
Col 1 2 3 4 5

Row | R25 | R26 | R27 | R28 | R29

1 50

Row | R30 | R31 |R32 |R33 | R34

2 60

Row | R35 | R36 | R37 | R38 | R39

3 70

Row | R40 | R41 | R42 | R43 | R44

4 80

SUB$ Extraction or justification of a sub-string

[SUB$] (SUBstring) extracts a sub-string from the content of the ALPHA register, or formats a
string by addition of spaces to the right or left.

Example: To extract 7 characters beginning from the letter C of the string
"ABCDEFGHIJKLMNOPQRSTUVW" present in the ALPHA register:

Press on Display Remarks

2.08 2.08 2 is the position of the last character before C, 8 is the
position of the 7th character to be isolated

[XEQ] SUB$ 2.0800 Extracts the sub-string

[ALPHA] CDEFGHI Sub-string

To justify to the right by a space of 10 characters:

[ALPHA]

10 10_ Size of the space used

[CHS] -10_ Negative sign indicates justification to the right

[XEQ] SUB$ -10.0000

[ALPHA] CDEFGHI The string is preceded by 3 spaces for correct justification

To put 5 spaces to the right of this string:

[ALPHA] -10.0000

15 15 Indicates the new space used.

[XEQ] SUB$ 15.0000 Justification to the left since the content of the X register is
positive

[ALPHA] CDEFGHI

[APPEND] DEFGHI _ The ALPHA register shifts to thevleft and the cursor waits for

a new character after 5 spaces

FULL INSTRUCTIONS FOR SUB$
[SUB$] modifies the contents of the ALPHA register in conformity with value in the X register.

- If X contains a whole number (say x), the calculator extracts |x| characters to the right of the
string of the initial string. if the initial string comprises less than |x| character s the

calculator adds more spaces to complete the string to |x| characters; the spaces are to the left if x
is negative, to the right if positive.

- If X contains a number with fractional part (bb.ee), the calculator extracts the substring
composed of bb to ee characters from the initial string (the character to the extreme left is
numbered 0). If ee is greater than the ASCII value of the last character, the substring extracted is
made up of the substring from bb completed by the number of spaces required to obtain ee-bb+1
characters. The spaces added are to the right if X is sign of X does not intervene if ee is less than
or equal to the number of the last character of the initial string.

- If bb is greater than the number of the last character of the initial string, SUB$ puts into the
ALPHA register, a string made up of ee-bb+1 spaces.

The Stack:
The stack is not altered by the execution of [SUB$].

NOTE: If the ALPHA register contains 24 characters the calculator puts characters with zero code
at the beginning of the string which will appear as small arrows preceding the string.

TES5 Reversal of the printer existence flag

[TF55] (Toggle Flag 55) reverses the status of flag 55, which normally indicates if a printer is
connected to the HP41. This flag cannot be manipulated by the user without the PANAME
module. The TF55 function operates as follows:

1. Sets flag 55 when a printer is not connected to the HP41; this facilitates the use of certain
programs (available for example in application modules) that are executed mandatorily with flag
21 (printer enable) set, to be used as subroutines. Such programs are interrupted they encounter
the VIEW and AVIEW if flag 55 is not set. TF55 because it sets flag 55 avoids these interruptions.
2. Cancels flag 55 when a printer is connected to the HP41. This accelerates the speed of
execution of programs as long as the printer is not required; the printer is re-enabled by a new
TF55.

DETAILED INSTRUCTIONS FOR TF55

1. To set flag 55 when it is not set, execute TF55.

2. To cancel flag 55 when it is set, execute TF55.

VKEYS Viewing of assigned kevs

[VKEYS] (View KEYS) displays successively the assigned keys (redefinitions accessible in USER
mode) from the R/S key, from top to bottom and from right to left. As an illustration, if the function
"PROMPT" is assigned to the key "ENG" (yellow key followed by [3], code of the key -74), the
calculator will display: -74 PROMPT.

The assignment listing can be

- temporarily interrupted by the continuous pressing of a key other than R/S or ON;
- definitively interrupted by pressing the R/S or ON keys which besides puts off the calculator.

NOTE: VKEYS is not programmable.

WRTEM Saving of files from extended memory on to mass storage

[WRTEM] (WRite Extended Memory) recopies the contents of extended memory on to a
supported medium (HP82161A cassettes or HP9114 diskettes).

Example: To save the group of files "MAT 3" from extended memory on to cassette:

Press on Display Remarks
[XEQ] EMDIR MATRP P012
A D100 These files have previously
TEXT A040 been ready by READEM
[ALPHA] MAT 3 [ALPHA] 600.0000 ALPHA contains the generic name of the files
to be read
[XEQ] WRTEM 600.0000 The files have been stored on cassette

DETAILED INSTRUCTIONS FOR WRTEM

1. After you have placed the generic name of the files to be read, executing WRTEM copies the
specified file from extended memory on to the cassette.

2. If the HPIL module is not connected, the NO HPIL message is displayed.
3. If the file exists on the cassette, the file is replaced.

The Stack:

The stack is not altered by WRTEM.

REVERSE FUNCTION : READEM

X<>F Exchanaing X with flags 0to 7

The X<>F function exchanges the contents of the X register and of a fictitious register F which
contains a representation of the status of flags 0 to 7. This representation is a whole number
between 0 and 255, corresponding to the sum of the values of the flags set.

Value

)
@

1

2

4

8

16

32

64

N[OOI |WIN|F[OT

128

For example, if flags 0, 1 and 3 are set, and flags 2, 4, 5, 6 and 7 cleared, the "F" register
contains:

1 (value of flag 0)
+ 2 (value of flag 1)
+ 8 (value of flag 3)
=11
DETAILED INSTRUCTIONS FOR X<>F

To define a new status of flags 00 to 07, and simultaneously obtain the representation of their
actual state:

1. Calculate (cf. above) the representation R' of the new status desired, and put this value in the
X register;

2. Execute X<>F.

Consequently, the X register contains R, representation of the state of flags 00 to 07 before the
execution of X<>F, and the new status of the flags corresponds to the R' representation.

Example of application of X<>F:

The following XFLAGS programme makes possible the use of (up to 80) flags of general usage.
These "extended flags" (EF) numbered 00 to 79 are used as follows:

- to set the EF number N, place N in the X register and execute XSF.

- to cancel the EF number N, place N in the X register and execute XFS?. Consequently, flag 8
of the HP41 takes on the same status (set or cancelled) as the EF nhumber N.

The XSF, XCF and XFS? programs use the stack, registers R00 to R09; XFS? use flag 8 as well.

Listing of the XFLAGS programs:

LBL "XFLAGS" LBL "XFS"
.009 XEQ 00
RGINIT CF 08
RDN FS? IND Y
RTN SF 08
LBL "XSF" LBL 01
XEQ 00 X<>F
SF IND Y STO IND Z
GTO 01 R
LBL "XCF" RTN
XEQ 00 LBL 00
CF IND Y STO Y
GTO 01 8/
MOD
RCLIND Y
X<>F
.END.

Note: Executing "XFLAGS" cancels all X-Flagss 00 to 79.

X...NN? Comparison between X and a reqgister

The X # NN?, X <= NN?, X < NN?, X = NN?, X >= NN? and X > NN? functions are similar to the
functions of standard comparison (e.g. X = Y?) of the HP41, but they do not compare the
contents of the X and Y registers, but the content of the X register with the content of the register
specified in Y. These functions also compare ALPHANUMERIC strings.

DETAILED INSTRUCTIONS FOR X ... NN?

T effect a comparison between the contents of the X register and that of a register R, placed in Y,
proceed as follows:

If the R register is: PlaceinY
- a data register Rnnn - the number nnn
- the Z register - the string "Z"
("2" ASTO . Y)
- the T register - the string "Y"
-the L - the string "L"

then carry out the comparison. In calculation mode, the HP41 displays YES or NO according to
the result of the comparison.

In the process of execution of a program, the program line following the test is executed if the
result of the comparison is YES; it is ignore if the reverse is the case, like all other test operations
of the HP41.

These functions compare numbers and alphanumeric strings in the following way:

1. A number is always strictly less that a string

2. Strings are arranged by the value of the codes of their characters (e.g. "AB0" < "ABA" because
the code for "0" is 48 and that of "A" is 65).

3. A short string identical to the beginning of a longer string is considered as less (e.g. "ABC" <
"ABCD").

Y/N YES or NO to a question

[Y/N] simplifies programs which, at the time of their execution, poses a YES or NO answer
requirement to the user.

Example: The following program sequence makes the calculator to display the question: END
Y/N? and directs the execution of the program to label 00 if the user replies YES to the question
(by pressing the O key) or to label 01 if the user replies NO to the question (by pressing the N

key):

"END" 10000 Rest of the program
Y/N

GTO 00

GTO 01

DETAILED INSTRUCTIONS FOR Y/N
The Y/N function is used only in the middle of a program.
la. To ask a question of the form:
Message Y/N?
place the "message” (7 characters maximum) into the ALPHA register and execute Y/N;

1b. To ask a question in another form (e.g. END Y/N) place the message into the ALPHA
register, execute AVIEW then Y/N.

2. In all cases, at the time of the Y/N execution, the calculator stops and waits for the pressing of
a key:

- if the ON key is touched, the calculator is switched off;

- if the R/S key is pressed, the execution of the program is suspended and the program pointer is
moved to the line immediately following Y/N;

- if the Y (Yes) or O (Oui) key is pressed, program execution proceeds to the line immediately
following Y/N;

- if the N (No or Non) key is pressed, the line immediately following Y/N is ignored, and execution
of the program proceeds to the second line following Y/N (like in the case of a test with a false
result - see for example the use instruction for the X=Y? function in the HP41 user manual).

- Any other key is ignored.

ON Appendix

This appendix describes the supplementary "functions" available in the HP41 calculator when it is
switched with the [ON] key. The "functions" are similar to the function of reinitialisation of the
calculator, which is achieved by simultaneously pressing the [ON] and [<-] keys when the
calculator is off.

Notation:

ON/+ symbolizes the the "function" obtained by holding on to the + key depressed at the same
time as the ON key when the calculator is off, the + key being re;eased after the ON key.

ON/. Changes the "American" mode of display of numbers (e.g. 1.2345) to the "European” format
(1,2345) and vice versa. This "function” exists on the Hewlett-Packard series 10 calculators
(HP10C, HP11C, HP12C, HP15C and HP16C). Note that this "function” reverses the status of
flag 28.

ON/K Cancels all key assignments obtained with the ASN function and activates USER mode.

ON/A carries out the assignments of the "A set" listed in the table below. If one of the keys used
by these assignments already makes up an assignment, this is not altered.

ATOXL ALENG ATOXX ANUMDEL ATOXR

XTOAL AROT YTOAX ANUM XTOAR

ON/M s like ON/A, but activates the set of assignments M listed below:

STO>L BRKPT COLPT AD-LC RGVIEW

RG BLDPT LINPT LC-AD CLINC

ON/T like ON/A, but activates the set of assignments T listed below:

AXIS BOX SETORG RMOVE *CSIZE
*HOME RESET *LABEL *MOVE *LDIR
*PREGX REVLFX | BACKSPX RDRAW *LTYPE

ouT *DRAW COLOR

ON/V like ON/A, but activates the assignment set V listed below:

SCRLUP CLEAR XYTAB CTYPE

HOME SCRLDN | CLEARO CSRL CSRR

SCRLX CSRVX CSRUP CSROFF

CSRNX CSRDN CSRON

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

