

HEWLETT-PACKARD
HP-19C/HP-29C Applications Book

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

Welcome to the world of HP calculators. We know you will be pleased with the quality, versatility, and ease of use of your new HP-19C/HP-29C. This application book is designed to help you get the best from your calculator, whether your interest is in solving specific problems in a particular area or in learning to use the powerful programming capabilities of the HP-19C/HP-29C.

These programs have been chosen from real world problems in a variety of areas; mathematics, statistics, finance, surveying, navigation, science, medicine and games. They demonstrate the many uses of the HP-19C/HP-29C and will give you immediate calculation aids for problems you encounter every day. You will also find them useful as guides to programming techniques and models for writing your own customized software. The comments on each program listing demonstrate the approach used to reach the solution and help you follow the programmer's logic as you become an expert with your own HP-19C/HP-29C.

TABLE OF CONTENTS

<i>Introduction</i>	1
<i>A Word About Program Usage</i>	4
Algebra and Number Theory	
Quadratic Equation	6
Base Conversions	10
Vector Operations	14
Complex Operations	19
System of Linear Equations With 3 Unknowns	24
Finance	
Annuities and Compound Amounts	28
Discounted Cash Flow Analysis Net Present Value	39
Calendar Functions	44
Games	
Moon Rocket Lander	49
Queen Board	52
Biorhythms	55
Countdown Timer	58
Medical	
Body Surface Area Calculations	61
Pulmonary Functions and Vital Capacity	64
Navigation	
Great Circle Navigation	70
Rhumb Line Navigation	73
Sight Reduction Table	77
Numerical Methods	
Newton's Method-Solution to $f(x) = 0$	81
Numerical Integration by Simpson's Formula	85
Physical Sciences	
Ideal Gas Equation of State	89
Radioactive Isotope Decay	93
Acid-Base Equilibrium	98
Statistics	
Curve Fitting	102
Normal and Inverse Normal Distribution	107
Factorial, Permutation and Combination	112

Stress Analysis	
Static Equilibrium at a Point	116
Section Properties	121
Surveying	
Field Angle or Bearing Traverse	127
Horizontal Curve Layout	133
Trigonometry and Analytical Geometry	
Coordinate Translation and Rotation	138
Triangle Solutions	143
Circle Determined by Three Points	152
Intersections of Lines and Lines, Lines and Circles, and Circles and Circles	155

A WORD ABOUT PROGRAM USAGE

This Applications Book for the HP-19C/HP-29C provides a diverse selection of programs chosen from a number of areas of interest. Each program includes a brief description, a listing of the program keystrokes, a set of instructions for using the program and one or more example problems, including the actual keystrokes required for the solution.

Explanatory comments have been incorporated in each program listing to aid your understanding of the actual working of each program. Thorough study of the commented listing can help you expand your programming repertoire since interesting techniques can often be found.

The completed User Instruction Form—which accompanies each program—is your guide to operating the programs in this pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT-DATA/UNITS column specifies the input data, and the units of the data, if applicable. Data input keys consist of **0** to **9** and decimal point (the numeric keys), **EEX** (enter exponent), and **CHS** (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT-DATA/UNITS column specifies intermediate and final outputs and their units, wherever applicable.

The following illustrates the User Instruction Form for Quadratic Equation, the first program in this book.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Enter coefficients of quadratic			
	x^2 coefficient	a	ENTER	
	x coefficient	b	ENTER	
	constant	c	GSB 1	D
3	If $D \geq 0$, roots are real		R/S	x_2
			R/S	x_1
4	If $D < 0$, roots are complex of form $u \pm iv$		R/S	u (real part)
			R/S	v (imaginary part)

Step 1 requires you to key in the program. Switch the HP-19C/HP-29C to PRGM mode, depress **CLEAR PRGM** and key in the program steps as listed. The choice of program LABEL 1 is arbitrary and could be changed to fit the user's needs by making corresponding changes in the User's Instructions (and possibly other modifications in the program listing.) Note that some steps on the program listing require keystrokes not explicitly listed for entry in the program, e.g. LBL 1 is keyed in by three keystrokes **9 LBL 1**. (See the Owner's Handbook for a more detailed explanation of keying in programs.)

Step 2 of the User's Instructions asks for the coefficients of the quadratic equation. Switch the calculator to RUN mode. Coefficient a is keyed in and followed by **ENTER**, coefficient b is keyed in and followed by **ENTER**, and coefficient c is keyed in, followed by **GSB 1**. D is immediately calculated and displayed and program execution stops. Upon depressing **R/S** the calculator resumes program execution, automatically determining if D is positive or negative and displaying a root of the equation. Depressing **R/S** again displays the other root.

Display of intermediate or sequential results can be accomplished in several ways; a pause may be used to display a result for approximately 1 second before resumption of program execution, or a R/S command may be used to stop execution and display the result. Execution of the program then resumes after depressing the **R/S** key. (In these programs we have usually resorted to R/S commands to eliminate the chance of missing important results during the brief pause.) Additionally, with the printer, PRINT X commands may be used to print intermediate results.

If you own the HP-19C with printer you should note that the program listings are written to provide display outputs only and do not include PRINT commands. You will want to take advantage of the printer in recording both intermediate and final results. This can best be done by substituting a PRINT X command for the R/S commands when recording sequential or intermediate results and inserting a PRINT X command at the point in the program where the final result is displayed (usually just prior to a RTN command). Use of the printer in this manner has the advantage of eliminating halts in the program due to R/S commands.

Many of the program comments show points (designated by *******) at which the PRINT X command may be inserted or substituted, if desired. If the length of the program prevents insertion of the printer commands at the various steps the results still may be recorded by manually operating **PRX** as needed.

For example, in the Quadratic Equation program the R/S instruction at step 15 could have been replaced with a PAUSE instruction if only momentary display of D was desired, or, on the HP-19C, a PRINT X command could be substituted for the R/S command at 15 and inserted after step 34 to provide a printout of the results.

QUADRATIC EQUATION

This program calculates the two roots of a quadratic equation. If the roots are real they are displayed consecutively. If complex, the real part is displayed first, followed by the imaginary part.

Equations:

The roots x_1, x_2 of $ax^2 + bx + c = 0$

are given by
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $D = (b^2 - 4ac)/4a^2$ is positive or zero, the roots are real. In these cases, better accuracy may sometimes be obtained by first calculating the root with the larger absolute value:

If
$$-\frac{b}{2a} \geq 0, \quad x_1 = -\frac{b}{2a} + \sqrt{D}$$

If
$$-\frac{b}{2a} < 0, \quad x_1 = -\frac{b}{2a} - \sqrt{D}$$

In either case,
$$x_2 = \frac{c}{x_1 a}$$

If $D < 0$, the roots are complex, being

$$u \pm iv = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i$$

Remarks:

- The user merely inputs the coefficients in proper order; first a , then b , then c , being careful to observe signs for negative coefficients. The first result displayed is D . If it is positive the roots are real, if negative, they are complex.
- In the case of real roots the program tests for and calculates the larger root first for best accuracy, then displays the roots in reverse order.

01 *LBL1 02 ST08 03 R4 04 X2Y 05 ST=0 06 ÷ 07 2 08 ÷ 09 CHS 10 ST01 11 ENT† 12 X2 13 RCL0 14 - 15 R/S 16 X ² Y 17 GT08 18 JX 19 ST-1 20 X2Y 21 + 22 RCL1 23 LSTX 24 X ² B? 25 R4 26 R4 27 ST=0 28 RCL0 29 GT03 30 *LBL0 31 ABS 32 JX 33 X2Y 34 *LBL3 35 R/S 36 X2Y 37 GT03	c/a b/2a *** D -b/2a - \sqrt{D} -b/2a + \sqrt{D} Select x ₂ v *** Display		
--	--	--	--

REGISTERS

0 c/a, x ₂	1 x ₁	2	3	4	5
6	7	8	9	0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Enter coefficients of quadratic			
	x^2 coefficient	a	ENTER ↴	
	x coefficient	b	ENTER ↴	
	constant	c	GSB [1]	D
3	If $D \geq 0$, roots are real		[R/S]	x_2
			[R/S]	x_1
4	If $D < 0$, roots are complex of form $u \pm iv$		[R/S]	u (real part)
			[R/S]	v (imaginary part)

Example 1:Find the roots of $x^2 + x - 6 = 0$ **Keystrokes:**

1 ENTER ↴ 1 ENTER ↴
 6 CHS GSB [1] →
 [R/S] →
 [R/S] →

Outputs:

6.25 (D)
 2.00 (x_2)
 -3.00 (x_1)

Example 2:Solve the quadratic equation $2x^2 - 3x + 5 = 0$ **Keystrokes:**

2 ENTER ↴ 3 CHS ENTER ↴
 5 GSB [1] →
 [R/S] →
 [R/S] →

Outputs:

-1.94 (D)
 0.75 (u)
 1.39 (v)

Since D is negative the roots are imaginary and the solutions are of the form
 $x_{1,2} = 0.75 \pm 1.39i$

Example 3:

A ball is thrown straight up at a velocity of 20 meters per second from a height of 2 meters. At what time, neglecting air resistance, will it reach the ground? The acceleration of gravity is 9.81 meters/second². From physics:

$$f(t) = x = \frac{1}{2}gt^2 + V_0t + x_0 = 0 \quad \text{or} \quad \left(-\frac{9.81}{2}\right)t^2 + 20t + 2 = 0$$

Keystrokes:

9.81 **CHS** **ENTER** 2 **÷** 20 **ENTER**
 2 **GSB** **1** **→**
R/S **→**
R/S **→**

Outputs:

4.56 (D)
 -0.10 (seconds)
 4.18 (*seconds)

*The answer is 4.18 seconds. The root - 0.10 seconds is a legitimate root of the equation but is not relevant to the problem.

BASE CONVERSIONS

This program converts positive numbers to and from base 10 representations. The other base involved may be any integer from 2 to 99, inclusive.

Let x_b be the representation of the number in the original base b . Assume that it is to be converted to the representation x_B in base B . Either b or B must be 10. In general, the bases are stored manually (b in R_1 , B in R_2) prior to keying in x_b and pressing **GSB 1**, which will cause the computation of x_B .

When converting numbers from base 10, $b = 10$. However, the number stored for b may be either 10 or 100. If the other base $B < 10$, then store b in R_1 as 10. If, however, $B > 10$, the value stored for b in R_1 should be 100.

Similarly, when numbers are converted to base 10 representations, $B = 10$. When $b < 10$, the value of B stored in R_2 should be 10; when $b > 10$, a value of 100 should be stored in R_2 .

The table below shows examples of the four possible cases:

To convert	From Base	To Base	Store in R_1	Store in R_2
	10	2	10	2
	10	16	100	16
	2	10	2	10
	16	10	16	100

A number such as $4B6_{16}$ cannot be represented directly on the display because the display is strictly numeric. Therefore, some convention must be adopted to represent numbers R_a when $a > 10$. We use the convention of allocating two digit locations for each single character in R_a when $a > 10$.

For example, $4B6_{16}$ is represented as 041106_{16} by our convention (in hexadecimal system, A = 10, B = 11, C = 12, D = 13, E = 14, F = 15).

When displayed, this number may appear as 41106 or with an exponent

4.1106 04

which is interpreted as $4.B6 \times 16^2$.

The displayed exponent 4 is for base 10 and only serves to locate the decimal point (in the same manner as for decimal numbers).

When base $a > 10$ (as in the above example), divide the displayed exponent by 2 to get the true exponent of the number. When the displayed exponent is an odd integer, shift the decimal point of the displayed number one place (to the left or right) and adjust its exponent accordingly to make the true exponent an integer.

For example, the displayed number

1.112 -03

is interpreted as $B.C \times 16^{-2}$ or $0.BC \times 16^{-1}$.

Remarks:

- When the magnitude of the number is very large or very small, this program will take a long time to execute.
- The program will not give error indication for invalid inputs for x_b . For example, 981_8 will be treated the same as 1201_8 .
- As the program now stands, the user is forced to make a decision at input time whether the number stored for base 10 is 10 or 100. An alternative approach would be to always store 10, never 100, and have the program decide whether to overwrite the 10 with 100 in some cases. Such an alteration of the program would require about 25 more program steps.

01	LBL1		50	GT08	
02	ST03	$x_b \rightarrow x_p$	51	LBL6	
03	RCL1		52	RCL5	
04	ST05		53	RCL9	
05	RCL2		54	Y ⁿ	
06	ST06		55	RCL4	
07	0		56	X	
08	ST08		57	ST04	
09	ST04		58	RTN	
10	EEX		59	LBL7	
11	1		60	EEX	
12	2		61	4	
13	ST08		62	+	
14	RCL3	----- Shift right until < 1 , R_0 keeps track of no. places shifted (exponent) ...	63	EEX	*** XB
15	LBL9		64	4	
16	1		65	-	
17	X#Y?		66	INT	Eliminate round-off error
18	GT08		67	RTN	
19	ST-B				
20	CLX				
21	RCL6				
22	=				
23	ST03				
24	GT09				
25	LBL8	On entry, R_3 contains normalized x_b : $0 < x_b < 1$.			
26	RCL6				
27	RCL3				
28	X				
29	ST03				
30	GSB7				
31	RCL4				
32	RCL5	Build up x_b .			
33	x				
34	+				
35	ST04				
36	RCL3				
37	GSB7				
38	RCL3				
39	-				
40	ABS	Do not build mantissa beyond 10^{12}			
41	ST03				
42	1				
43	ST-B				
44	RCL4				
45	RCL8				
46	X#Y?				
47	GT06				
48	RCL3				
49	X#B?				

REGISTERS

0 Used	1 b	2 B	3 x_b	4 Used	5 b
6 B	7	$8 \cdot 10^{12}$	9	0	1
.2	.3	4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Store bases (one must be 10 or 100):			
	• Base to be converted from	b	STO 1	
	• Base to be converted to	B	STO 2	
3	Key in number in base b and calculate number in base B.	x_b	GSB 1	x_B
4	For a new conversion between the same bases, go to step 3; to change either base, go to step 2.			

Example 1:

Convert 0.2937_{10} to base 8 representation. (Since $B = 8 < 10$, $b = 10$.)

Keystrokes:

10 STO 1 8 STO 2
 f FIX 9 .2937 GSB 1 \longrightarrow 0.226277543 (Base 8)

Outputs:**Example 2:**

Convert $1.23_{10} \times 10^{-12}$ to base 16. (Since $B = 16 > 10$, $b = 100$.)

Keystrokes:

100 STO 1 16 STO 2
 1.23 EEX CHS 12 GSB 1 \longrightarrow 1.0510030 -20 (Base 16)

Outputs:

This is interpreted as $1.5A3_{16} \times 16^{-10}$.

Example 3:

Convert $7.200067_8 \times 8^{-10}$ to base 10. (Since $b = 8 < 10$, $B = 10$.)

Keystrokes:

8 STO 1 10 STO 2
 f SCI 9 7.200067
 EEX CHS 10 GSB 1 \longrightarrow 6.7522840 -09 (Base 10)

Outputs:**Example 4:**

Convert $D.2EE4_{16} \times 16^{12}$ to base 10. (Since $b = 16 > 10$, $B = 100$.)

Keystrokes:

16 STO 1 100 STO 2
 13.02141404 EEX 24 GSB 1 \longrightarrow 3.7107314 15 (Base 10)

Outputs:

VECTOR OPERATIONS

This program calculates the basic vector operations of addition, dot (scalar) product, and cross product for three dimensional vectors. It also calculates the angle between two vectors. The program is capable of doing chain calculations whenever the product is a vector (refer to examples).

Equations:

Define a vector \vec{V} in 3 dimensional rectangular coordinate system,

$$\vec{V} = x \vec{i} + y \vec{j} + z \vec{k}$$

then:

Vector addition:

$$\vec{V}_1 + \vec{V}_2 = (x_1 + x_2) \vec{i} + (y_1 + y_2) \vec{j} + (z_1 + z_2) \vec{k}$$

Dot or scalar product:

$$\vec{V}_1 \cdot \vec{V}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Cross product:

$$\vec{V}_1 \times \vec{V}_2 = (y_1 z_2 - z_1 y_2) \vec{i} + (z_1 x_2 - x_1 z_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k}$$

Angle between vectors:

$$\gamma = \cos^{-1} \frac{\vec{V}_1 \cdot \vec{V}_2}{|\vec{V}_1| |\vec{V}_2|}$$

Remarks:

- For two dimensional vectors, simply consider that the k component does not exist, i.e. input 0 for z 's.

01 #LBL8			58 x	
02 RCL6			51 RCL3	
03 ST03			52 RCL5	
04 R4			53 GS88	
05 ST06			54 ST08	
06 R1			55 R/S	
07 RCL5			56 RCL3	
08 ST02	Input \vec{V}_1		57 RCL4	
09 R4			58 x	
10 ST05			59 RCL1	
11 R4			60 RCL6	
12 RCL4			61 GS88	
13 ST01			62 ST09	
14 R4			63 R/S	
15 ST04			64 RCL1	
16 RTN			65 RCL5	
17 #LBL1			66 x	
18 GS88			67 RCL2	
19 RCL1			68 RCL4	
20 ST+4			69 #LBL8	
21 RCL4			70 x	
22 R/S			71 -	
23 RCL2	$\vec{V}_1 + \vec{V}_2$		72 ST08	
24 ST+5			73 RCL8	
25 RCL5			74 RCL9	
26 R/S			75 RCL8	
27 RCL3			76 RTN	
28 ST+6			77 #LBL4	
29 RCL6			78 GS82	
30 RTN			79 8	
31 #LBL2			80 ST.2	
32 GS88			81 ST.4	
33 RCL1			82 RCL1	
34 RCL4			83 RCL4	
35 x	$\vec{V}_1 \cdot \vec{V}_2$		84 Z+	
36 RCL2			85 RCL2	
37 RCL5			86 RCL5	
38 x			87 Z+	
39 +			88 RCL3	
40 RCL3			89 RCL6	
41 RCL6			90 Z+	
42 x			91 RC.2	
43 +			92 RC.4	
44 ST07			93 x	
45 RTN			94 JX	
46 #LBL3			95 ST=7	
47 GS88			96 RCL7	
48 RCL2			97 COS-1	
49 RCL6			98 RTN	
REGISTERS				
0 $\vec{V}_1 \times \vec{V}_2$	1 x_1	2 y_1	3 z_1	4 x_2
6 z_2	7 $\vec{V}_1 + \vec{V}_2$	8 $\vec{V}_1 \times \vec{V}_2$	9 $\vec{V}_1 \times \vec{V}_2$	0 Used
2 Used	3 Used	4 Used	5 Used	1 Used
18	19	20	21	22
24	25	26	27	28
				29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Input the first vector \vec{V}_1	x_1	ENTER +	x_1
		y_1	ENTER +	y_1
		z_1	GSB [0]	x_1
3	For vector addition, go to step 4 For vector dot product, go to step 6. For vector cross product, go to step 8. For the angle between two vectors, go to step 10.			
4	Vector Addition: Input the 2 nd vector \vec{V}_2 and calculate $\vec{V}_1 + \vec{V}_2$	x_2	ENTER +	x_2
		y_2	ENTER +	y_2
		z_2	GSB [1] [R/S] [R/S]	\vec{i} \vec{j} \vec{k}
5	For a new case, go to step 2.			
6	Vector Dot Product: Input the 2 nd vector \vec{V}_2 and calculate $\vec{V}_1 \cdot \vec{V}_2$	x_2	ENTER +	x_2
		y_2	ENTER +	y_2
		z_2	GSB [2]	$\vec{V}_1 \cdot \vec{V}_2$
7	For a new case, go to step 2.			
8	Vector Cross Product: Input the 2 nd vector and calculate $\vec{V}_1 \times \vec{V}_2$	x_2	ENTER +	x_2
		y_2	ENTER +	y_2
		z_2	GSB [3] [R/S]	\vec{i} \vec{j}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
			R/S	\vec{k}
9	For a new case go to step 2.			
10	Angle Between Two Vectors: Input the 2 nd vector and calculate γ			
		x_2	ENTER ↴	x_2
		y_2	ENTER ↴	y_2
		z_2	GSB [4]	γ
11	For a new case go to step 2.			

Example 1: $\vec{V}_1 = (2, 5, 2)$, $\vec{V}_2 = (3, 3, -4)$

Addition: $\vec{V}_1 + \vec{V}_2 = (5, 8, -2)$

Keystrokes:

2 ENTER ↴ 5 ENTER ↴
2 GSB [0] →
3 ENTER ↴ 3 ENTER ↴
4 CHS GSB [1] →
R/S →
R/S →

Outputs:

2.00
5.00 (i)
8.00 (j)
-2.00 (k)

Dot product: $\vec{V}_1 \cdot \vec{V}_2 = 13.00$

Keystrokes:

2 ENTER ↴ 5 ENTER ↴
2 GSB [0] →
3 ENTER ↴ 3 ENTER ↴
4 CHS GSB [2] →

Outputs:

2.00
13.00 $(\vec{V}_1 \cdot \vec{V}_2)$

Cross product: $\vec{V}_1 \times \vec{V}_2 = (-26, 14, -9)$

Keystrokes:

2 ENTER ↴ 5 ENTER ↴
2 GSB [0] →
3 ENTER ↴ 3 ENTER ↴
4 CHS GSB [3] →
R/S →
R/S →

Outputs:

2.00
-26.00 (i)
14.00 (j)
-9.00 (k)

Angle:

Keystrokes:

2 [ENTER ↴] 5 [ENTER ↴]

2 [GSB] [0] →

3 [ENTER ↴] 3 [ENTER ↴]

4 [CHS] [GSB] [4] →

Outputs:

2.00

67.16° (γ)

Example 2:

Calculate $(\vec{V}_1 + \vec{V}_2) \cdot \vec{V}_3$ for $\vec{V}_1 = (1.10, 3.00, 4.40)$

$\vec{V}_2 = (1.24, 2.17, 3.03)$, and $\vec{V}_3 = (0.072, 0.231, 0.409)$

Keystrokes:

1.10 [ENTER ↴] 3 [ENTER ↴]

4.40 [GSB] [0] →

1.24 [ENTER ↴] 2.17 [ENTER ↴]

3.03 [GSB] [1] →

[R/S] →

[R/S] →

0.072 [ENTER ↴] 0.231 [ENTER ↴]

0.409 [GSB] [2] →

Outputs:

1.10

2.34
5.17
7.43

} $(\vec{V}_1 + \vec{V}_2)$

4.40 $((\vec{V}_1 + \vec{V}_2) \cdot \vec{V}_3)$

COMPLEX OPERATIONS

This program allows for chained calculations involving complex variables. The four operations of complex arithmetic (+, -, ×, ÷) are provided, as well as several of the most used functions of a complex variable z ($|z|$, z^n , and $z^{1/n}$). Functions and operations may be mixed in the course of a calculation to allow evaluation of expressions like $z_3/(z_1 + z_2)$, $|z_1 + z_2|$, etc., where z_1 , z_2 and z_3 are complex numbers of the form $x + iy$.

Arithmetic Operations

An arithmetic operation needs two numbers to operate on. Both numbers must be input before the operation can be performed. Suppose that $z_1 = 2 + 3i$, $z_2 = 5 - i$, and we wish to find $z_1 - z_2$. This can be calculated by the keystrokes:

2 **ENTER** 3 **GSB** 0 5 **ENTER** 1 **CHS** **GSB** 2

The result $z_3 = u + iv$ is found to be $-3 + 4i$. This result is now stored by the program in place of the second complex number z_2 . A further calculation $z_3 \times z_4$ could be performed by inputting z_4 and depressing **GSB** 3 for multiplication. This type of chaining can be continued indefinitely, and functions can be interspersed with arithmetic operations.

Equations:

$$\text{Let } z_j = x_j + iy_j = r_j e^{i\theta_j}, j = 1, 2$$

$$z = x + iy = r^{i\theta}$$

Where

$$r = \sqrt{x^2 + y^2}$$

Let the result in each case be $u + iv$

$$z_1 + z_2 = u + iv = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 - z_2 = u + iv = (x_1 - x_2) + i(y_1 - y_2)$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot e^{i(\theta_1 + \theta_2)} = u + iv$$

$$z_1/z_2 = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} = u + iv$$

$$|z| = r = \sqrt{x^2 + y^2}$$

$$z^n = r^n e^{in\theta} \quad n = \pm(1, 2, 3, \dots)$$

$$z^{1/n} = r^{1/n} e^{i\left(\frac{\theta}{n} + \frac{360k}{n}\right)}, k = 0, 1, \dots, n-1$$

81 #LBL8		58 GT08	
82 RCL4		51 #LBL9	
83 ST02		52 RCL2	
84 R↓		53 RCL1	
85 ST04		54 →P	
86 R↓		55 ST05	
87 RCL3		56 X×Y	
88 ST01		57 ST06	
89 R↓		58 #LBL5	
10 ST03		59 RCL4	
11 0		60 RCL3	z ₁
12 ST08		61 →P	
13 RTN		62 RTN	
14 #LBL2		63 #LBL6	
15 CHS		64 ST07	
16 X×Y		65 GS85	
17 CHS		66 RCL7	
18 X×Y		67 Y ⁿ	
19 #LBL1		68 ST05	
20 GS88		69 X×Y	
21 RCL1		70 RCL7	
22 ST÷3		71 x	
23 RCL2		72 ST06	
24 ST÷4		73 ST08	
25 RCL3		74 #LBL7	
26 R/S		75 ST07	
27 RCL4		76 GS85	
28 R/S		77 RCL7	
29 #LBL3		78 1/X	
30 GS88		79 Y ⁿ	
31 GS89		80 X×Y	
32 ST×5		81 RCL7	
33 X×Y		82 ÷	
34 ST÷6		83 3	
35 #LBL8		84 6	
36 RCL6		85 0	
37 RCL5		86 RCL8	
38 →R		87 x	
39 ST03		88 RCL7	
40 R/S		89 ÷	
41 X×Y		90 +	
42 ST04		91 X×Y	
43 RTN		92 →R	
44 #LBL4		93 R/S	
45 GS88		94 X×Y	
46 GS89		95 R/S	
47 ST÷5		96 ISZ	
48 X×Y		97 RCL7	
49 ST÷6		98 GT07	

REGISTERS

0 K	1 x ₁	2 y ₁	3 x ₂ , Last x	4 y ₂ , Last y	5 x, ÷, r ⁿ
6 +, -, nθ	7 n	8	9	0	1
.2	.3	4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in the first complex number.			
	$z_1 = x_1 + iy_1$	x_1	ENTER ↴	
		y_1	GSB [0]	0
3	For a function, go to step 7, for arithmetic, go to step 4. A complex result is $u + iv$			
4	Arithmetic			
	Key in the second complex number $z_2 = x_2 + iy_2$	x_2	ENTER ↴	
		y_2		
5	Select one of the four:			
	• Add (+)		GSB [1]	u
			R/S	v
	• Subtract (-)		GSB [2]	u
			R/S	v
	• Multiply (×)		GSB [3]	u
			R/S	v
	• Divide (÷)		GSB [4]	u
			R/S	v
6	The result of the operation has been stored, go to step 7 for a function or to step 4 for further arithmetic.			
7	Functions			
	Select one of the 3 functions:			
	• Magnitude ($ z_1 $)		GSB [5]	$ z $
	• Raise z to integer power (z_1^n)	n	GSB [6]	u
			R/S	v
	• Find the roots of ($z^{1/n}$)	n	GSB [7]	u
			R/S	v

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	The result, if complex, has been calculated; go to step 4 for arithmetic or to step 7 for another function.		R/S R/S ⋮ R/S R/S	u_2 v_2 ⋮ u_n v_n

Examples:**Keystrokes:**

	Keystrokes:	Outputs:
1.	$(3+4i) + (7.4 - 5.6i) = 10.40 - 1.60i$ 3 ENTER 4 GSB 0 7.4 ENTER 5.6 CHS GSB 1 R/S →	10.40 -1.60
2.	$(3+4i) - (7.4 - 5.6i) = -4.40 + 9.60i$ 3 ENTER 4 GSB 0 7.4 ENTER 5.6 CHS GSB 2 R/S →	-4.40 9.60
3.	$(3.1+4.6i)(5-12i) = 70.70 - 14.20i$ 3.1 ENTER 4.6 GSB 0 5 ENTER 12 CHS GSB 3 R/S →	70.70 -14.20
4.	$\frac{3+4i}{7-2i} = 0.25 + 0.64i$ 3 ENTER 4 GSB 0 7 ENTER 2 CHS GSB 4 R/S →	0.25 0.64
5.	$\frac{1}{2+3i} = 0.15 - 0.23i$ 1 ENTER 0 GSB 0 2 ENTER 3 GSB 4 R/S →	0.15 -0.23
	OR:	
	2 ENTER 3 GSB 0 1 CHS GSB 6 R/S →	0.15 -0.23

6. $(7-2i)^2 = 45.00 - 28.00i$

7 **ENTER** 2 **CHS** **GSB** **0** 2 **GSB** **6** → 45.00
R/S → -28.00

7. $\sqrt{7+6i} = \pm (2.85 + 1.05i)$

7 **ENTER** 6 **GSB** **0** 2 **GSB** **7** → 2.85
R/S → 1.05
R/S → -2.85
R/S → -1.05

8.
$$\frac{23+13i}{(-2+i)+(4-3i)} = 2.50 + 9.00i$$

2 **CHS** **ENTER** 1 **GSB** **0** 4 **ENTER** 3 **CHS** **GSB** **1** → 2.00
R/S → -2.00
1 **CHS** **GSB** **6** → 0.25
R/S → 0.25
23 **ENTER** 13 **GSB** **3** → 2.50
R/S → 9.00

SYSTEM OF LINEAR EQUATIONS WITH 3 UNKNOWNS

This program uses Cramer's rule to solve systems of linear equations with three unknowns.

Equations:

A system of linear equations can be expressed as

$$A\bar{x} = \bar{b}$$

For 3 Unknowns, $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

$$\bar{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \bar{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Determinant of the system

$$\text{Det} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$b_i \text{'s are solved by } b_i = \frac{\det(i)}{\text{Det}}$$

Where $\det(i)$ is the determinant of the A matrix with the i^{th} column replaced by \bar{b} .

Remarks:

If "Error" occurs while running the program, then possibly the determinant is zero. i.e. the system is linearly dependent and this program is not applicable.

01 #LBL1		58 ST00	
02 0		51 GSB8	
03 ST00		52 GSB1	
04 RCL6		53 RC.5	
05 RCL8	Input a_{ij} 's and calculate	54 ÷	
06 GSB9	Det	55 ST.0	
07 RCL4		56 RC.4	
08 RCL9		57 ST00	
09 GSB9		58 GSB8	Swap register contents
10 RCL5		59 RC.0	
11 RCL7		60 RTN	
12 GSB9		61 #LBL8	
13 CHS		62 RCLi	
14 RCL3		63 RC.1	
15 RCL8		64 ST0i	
16 GSB9		65 X\leftrightarrowY	
17 RCL1		66 ST.1	
18 RCL9		67 RCL0	
19 GSB9		68 3	
20 RCL2		69 +	
21 RCL7		70 ST00	
22 #LBL9		71 RCLi	
23 DSZ		72 RC.2	
24 RCLi		73 ST0i	
25 x		74 X\leftrightarrowY	
26 x		75 ST.2	
27 +		76 RCL0	
28 ST.0	Input b_1, b_2, b_3 and	77 3	
29 RTN	calculate x_1, x_2 , and x_3	78 +	
30 #LBL2		79 ST00	
31 ST.3		80 RCLi	
32 R4		81 RC.3	
33 ST.2		82 ST0i	
34 R4		83 X\leftrightarrowY	
35 ST.1		84 ST.3	
36 GSB1		85 RTN	
37 RC.0			
38 ST.5			
39 1			
40 GSB7			
41 R/S	***		
42 2	-----		
43 GSB7			
44 R/S	***		
45 3			
46 GSB7			
47 R/S	***		
48 #LBL7	Subroutine to calculate		
49 ST.4	det (i)		

REGISTERS

0 Index	1 a_{11}	2 a_{12}	3 a_{13}	4 a_{21}	5 a_{22}
6 a_{23}	7 a_{31}	8 a_{32}	9 a_{33}	.0 Det	.1 b_1
.2 b_2	.3 b_3	.4 Index	.5 Det	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program			
2	Store elements of A matrix	a_{11}	STO 1	a_{11}
		a_{12}	STO 2	a_{12}
		a_{13}	STO 3	a_{13}
		a_{21}	STO 4	a_{21}
		a_{22}	STO 5	a_{22}
		a_{23}	STO 6	a_{23}
		a_{31}	STO 7	a_{31}
		a_{32}	STO 8	a_{32}
		a_{33}	STO 9	a_{33}
3	(Optional) to calculate determinant		GSB 1	Det
4	Input \bar{b} to calculate \bar{x}	b_1	ENTER	b_1
		b_2	ENTER	b_2
		b_3	GSB 2	x_1
			R/S	x_2
			R/S	x_3
5	For a new b with the same system, go to step 4.			
6	For a new system, go to step 2.			

Example:

Find x_1 , x_2 , and x_3 for the following system.

$$\begin{bmatrix} 19 & -4 & -15 \\ -4 & 22 & -10 \\ -15 & -10 & 26 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 40 \\ 0 \\ 0 \end{bmatrix}$$

Keystrokes:

19 **STO** **1**, 4 **CHS** **STO** **2**,
15 **CHS** **STO** **3**, 4 **CHS** **STO** **4**,
22 **STO** **5**, 10 **CHS** **STO** **6**,
15 **CHS** **STO** **7**, 10 **CHS** **STO** **8**,
26 **STO** **9**

GSB **1** →

40 **ENTER** ↑ 0 **ENTER** ↑

0 **GSB** **2** →

R/S →

R/S →

Outputs:

2402.00 (Det)

7.86 (x_1)

4.23 (x_2)

6.16 (x_3)

ANNUITIES AND COMPOUND AMOUNTS

These programs (1st part and 2nd part) can be used to solve a variety of problems involving money, time and interest. The following variables can be inputs or outputs:

n, which is the number of compounding periods. (For a 30 year loan with monthly payments, $n = 12 \times 30 = 360$.)

i, which is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e. 8% annual interest compounded monthly equals 8/12 or 0.667%.)

PMT, which is the periodic payment.

PV, which is the present value of the cash flows or compound amounts.

FV, which is the future value of a compounded amount or a series of cash flows.

BAL, which is the balloon or remaining balance at the end of a series of payments.

Accumulated interest and remaining balance may also be computed with this program.

The program accommodates payments which are made at the end of compounding periods or at the beginning. Payments made at the end of compounding periods (ordinary annuity) are common in direct reduction loans and mortgages while payments at the beginning of compounding periods (annuity due) are common in leasing.

This program uses the convention that cash outlays are input as negative, and cash incomes are input as positive.

1st part: When i is known

The initialization (**GSB 0**) performs two functions:

1. It sets PMT, PV, and BAL to zero (n and i are not affected).
2. It toggles for the ordinary annuity mode (display = 1), and annuity due mode (display = 0).

Pressing **GSB 0** provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not necessary to use **GSB 0** between problems containing the same combination of variables. For instance, any number of n, i, PMT, FV problems involving different numbers and/or different combinations of knowns could be done in succession without re-initializing. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using

GSB 0, simply input zero for any variable which is no longer applicable. To go from n , i , PMT, PV problems to n , i , PV, FV problems, a zero would be stored (0 **STO** **3**) in place of PMT. Table I summarizes these procedures.

2nd part: Solving for i

Newton's method is applied to solve problems with unknown i . (Refer to page 81: Newton's Method-Solution to $f(x) = 0$).

Table I
Possible Solutions Using *Annunities and Compound Amounts*

Allowable Combination of Variables	Applications		Initial Procedure
	Ordinary Annuity	Annuity Due	
n, i, PMT, PV (Input any three and calculate the fourth.)	Direct reduction loan Discounted notes Mortgages	Leases	Use GSB 0 or set BAL to zero
n, i, PMT, PV, BAL . (Input any four and calculate the fifth.)	Direct reduction loan with balloon Discounted notes with balloon	Leases with residual values	None
n, i, PMT, FV (Input any three and calculate the fourth.)	Sinking fund	Periodic savings insurance	Use GSB 0 or set PV to zero
n, i, PV, FV (Input any three and calculate the fourth.)	Compound amount Savings (Annuity mode is not applicable and has no effect)		Use GSB 0 or set PMT to zero.

Equations:

$$PV = \frac{PMT}{i} A \left[1 - (1 + i)^{-n} \right] + (BAL \text{ or } FV)(1 + i)^{-n}$$

where

$$A = \begin{cases} 1 & \text{ordinary annuity} \\ (1 + i) & \text{annuity due.} \end{cases}$$

Remarks:

- The equation above is solved for i using Newton's method where:

$$i_n = i_{n-1} - \frac{f(i_{n-1})}{f'(i_{n-1})}$$

This is why solutions involving PMT and i take longer than other solutions. It is quite possible to define problems which cannot be solved by this technique. Such problems usually result in an error message but may simply continue to run indefinitely.

- Interest problems with balloon payment of opposite sign to the periodic payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

1st Part: When i Is Known

01 #LBL8		50 +	
02 CLX		51 CHS	
03 ST03		52 ST04	
04 ST04	Toggling	53 RTN	***
05 ST05		54 #LBL5	-----
06 RC.2	1 for ordinary annuity	55 CS89	
07 X=0?	0 for annuity due	56 RCL4	
08 ST08		57 +	
09 0		58 RCL8	Calculate
10 ST.2		59 =	FV (BAL)
11 RTN		60 CHS	
12 #LBL8		61 ST05	***
13 1		62 RTN	-----
14 ST.2		63 #LBL9	
15 RTN		64 1	
16 #LBL1		65 ST.1	
17 0		66 RCL2	
18 ST01		67 %	
19 CS89		68 ST09	
20 RCL5		69 +	Calculate
21 LSTX	Calculate n	70 ST07	PMT
22 -		71 RC.2	$\frac{1}{i} [1 - (1 + i)^{-n}] R_1$
23 RCL4		72 X=0?	
24 PI		73 X ² Y	
25 +		74 ST.1	
26 ÷		75 RCL7	
27 CHS		76 RCL1	
28 LH		77 CHS	
29 RCL7		78 Y ^x	
30 LH		79 ST08	
31 =		80 RCL5	
32 ST01		81 x	
33 RTN	***	82 ST.3	
34 #LBL3		83 1	
35 1		84 RCL8	
36 ST03		85 -	
37 CS89	Calculate PMT	86 ST.0	
38 1/x		87 RCL3	
39 RCL4		88 RCL9	
40 RC.3		89 ÷	
41 +		90 ST08	
42 x		91 RC.1	
43 CHS		92 x	
44 ST03	---	93 x	
45 RTN	***	94 RTN	
46 #LBL4	Calculate PV		
47 1			
48 ST04			
49 CS89			

REGISTERS

0 PMT/i	1 n	2 i	3 PMT	4 PV	5 FV (BAL)
6 $n(1+i)^{n-1}$	7 $1+i$	8 $(1+i)^{-n}$	9 $i/100$	0 $1 - (1+i)^{-n}$	1 1 or $1+i$
.2 annuity flag	.3 Used	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

2nd Part: Solving For i

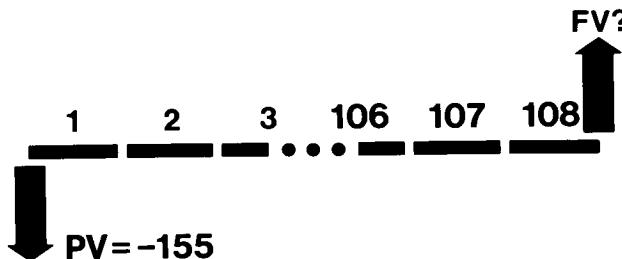
81 #LBL1	Annuity	50 -	
82 1		51 ÷	Calculate next i
83 ST03		52 CMS	
84 #LBL2		53 GSB9	
85 0		54 RCL2	
86 #LBL3	Annuity due	55 ÷	
87 ST.2		56 ABS	
88 0		57 RC.5	
89 ST02	Clear R ₂ for sum of	58 X ² Y	
90 RCL5	i terms	59 ST08	
91 RCL4		60 RCL2	
92 +	nPMT + BAL + PV	61 RTN	
93 RCL1	n	62 #LBL9	
94 ÷		63 EEX	
95 RCL3		64 2	
96 +		65 x	Calculate i to % and add
97 RCL4		66 ST+2	to i
98 ÷	guess for i	67 RTN	
99 CMS		68 #LBL8	
20 .		69 1	
21 9		70 ST.1	
22 CMS	If guess is less than -0.9, use -0.9 for guess.	71 RCL2	
23 X ² Y		72 z	
24 X ² Y		73 ST09	
25 GSB9		74 +	1 to R ₁ for ordinary
26 X=0?		75 ST07	annuity
27 RTN		76 RC.2	
28 #LBL8		77 X=0?	
29 GSB8	Calculate f(i)	78 X ² Y	Calculate
30 +		79 ST.1	PMT
31 RCL4		80 RCL7	$[1 - (1+i)^{-n}] \times R_1$
32 +		81 RCL1	
33 RCL8		82 CMS	
34 RCL1		83 Y ²	
35 RCL7	Calculate f'(i)	84 ST08	
36 ÷		85 RCLS	
37 x		86 x	
38 ST06		87 1	
39 RC.8		88 RCL8	
40 RCL9		89 -	
41 ÷		90 ST.0	
42 -		91 RCL3	
43 RC.1		92 RCL9	
44 x		93 ÷	
45 RCL8		94 ST08	
46 x		95 RC.1	
47 RCL6		96 x	
48 RCL5		97 x	
49 x	f(i)/f'(i)	98 RTN	

REGISTERS

0 PMT/i	1 n	2 i	3 PMT	4 PV	5 FV(BAL)
6 n(1+i) ⁻ⁿ⁻¹	7 1 + i	8 (1+i) ⁻ⁿ	9 i/100	10 1-(1+i) ⁻ⁿ	11 or 1+i
2 annuity flag	3 used	4	5 10 ⁻⁶	16	17
18	19	20	21	22	23
24	25	26	27	28	29

1st Part: When i Is Known

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Toggle for ordinary annuity (1.00) and annuity due (0.00)		GSB [0]	1.00/0.00
3	Input the known values (i must be known):			
	Number of periods	n	STO [1]	n
	Periodic interest rate	i (%)	STO [2]	i (%)
	Periodic payment	PMT	STO [3]	PMT
	Present value	PV	STO [4]	PV
	Future value, balloon or balance	FV (BAL)	STO [5]	FV, (BAL)
4	Calculate the unknown value			
	Number of periods		GSB [1]	n
	Periodic payment		GSB [3]	PMT
	Present value		GSB [4]	PV
	Future value, balloon or balance		GSB [5]	FV, (BAL)
6	For a new case, go to step 3 and change appropriate values.			
	Input zero for any value not applicable in the new case.			


2nd Part: Solving For i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input the known values: (0 for not existing values)			
	Number of periods	n	STO [1]	n
	Periodic payment	PMT	STO [3]	PMT
	Present value	PV	STO [4]	PV

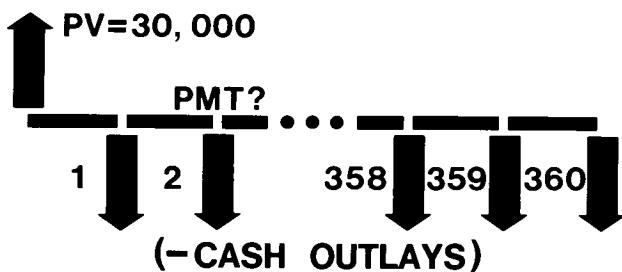
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Future value, balloon or balance	FV, (BAL)	STO [5]	FV, (BAL)
	and the tolerance for i (say $\epsilon = 10^{-6}$)	ϵ	STO \square [5]	ϵ
3	Calculate interest rate.			
	For ordinary annuity		GSB [1]	i (%)
	For annuity due		GSB [2]	i (%)
4	For a new case, go to step 2.			

Example 1:

If you place \$155 in a savings account paying 5 1/4% compounded monthly, what sum of money may you withdraw at the end of 9 years?

Keystrokes:(Key in the 1st program)

GSB [0] \longrightarrow	1.00	(ordinary annuity)
9 ENTER \downarrow 12 \times STO [1] \longrightarrow	108.00	(# of month compounding)
5.75 ENTER \downarrow 12 \div STO [2] \longrightarrow	0.48	(% monthly interest rate)
155 CHS STO [4] \longrightarrow	-155.00	(cash outlay)
GSB [5] \longrightarrow	259.74	(FV)


Outputs:

If the interest is changed to 6% what is the sum?

6 ENTER \downarrow 12 \div STO [2] \longrightarrow	0.50	(% monthly interest rate)
GSB [5] \longrightarrow	265.62	(FV)

Example 2:

You receive \$30000 from the bank as a 30 year, 9% mortgage. What monthly payment must you make to the bank to fully amortize the mortgage?

Keystrokes:

(Key in the 1st program)

GSB [0] →

30 [ENTER] 12 [X] STO [1] →

9 [ENTER] 12 [÷] STO [2] →

30000 [STO] [4] →

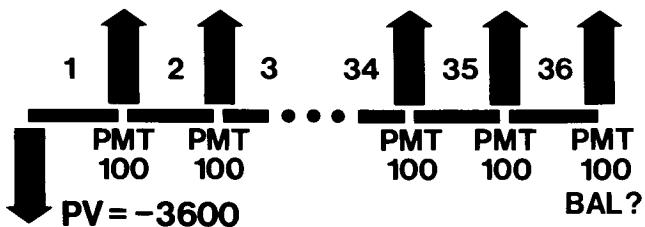
GSB [3] →

Outputs:

1.00

360.00 (# monthly payments)

0.75 (% monthly interest rate)


30000.00 (PV)

-241.39 (PMT)

Example 3:

Two individuals are constructing a loan with a balloon payment. The loan amount is \$3,600 and it is agreed that the annual interest rate will be 10% with 36 monthly payments of \$100. What balloon payment amount, to be paid coincident with the 36th payment, is required to fulfill the loan agreement?

(Note the cash flow diagram below is with respect to the loaner. For the loanee, the appropriate diagram will be exactly the opposite.)

Keystrokes:(Key in the 1st program)

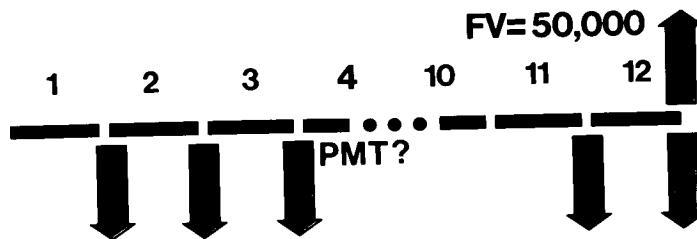
GSB 0 →

Outputs:

1.00

36 STO 1 10 ENTER 12 ÷

STO 2 100 STO 3 3600


CHS STO 4 GSB 5 →

675.27

(Note that the final payment is \$675.27 + \$100.00 = \$775.27 since the final payment falls at the end of the last period.)

Example 4:

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment must be made in order to withdraw this cost from the fund if savings are to start at the end of this quarter?

Keystrokes:(Key in the 1st program)

GSB 0 →

Outputs:

1.00

3 ENTER 4 X STO 1 7 ENTER

4 ÷ STO 2 50000 STO 5

GSB 3 →

-3780.69

What single amount, invested immediately, would provide the same effect?

0 STO 3 GSB 4 →

-40602.89

Example 5:

This program may also be used to calculate accumulated interest/remaining balance for loans. The accumulated interest between two points in time, n_1 and n_2 , is just the total payments made in that period less the principal reduction in that period. The principal reduction is the difference of the remaining balances for the two points in time. The following example demonstrates the concepts above.

For a 360 month, \$50,000 loan at 9½% annual interest, find the remaining balance after the 24th payment and the accrued interest for payments 13-24 (between the 12th and 24th payments!).

First we must calculate the payment on the loan:

Keystrokes:

(Key in the 1st program)

GSB 0 → 1.00

360 STO 1 9.5 ENTER 12 ÷

STO 2 50000 CHS STO 4

GSB 3 → 420.43 (payment)

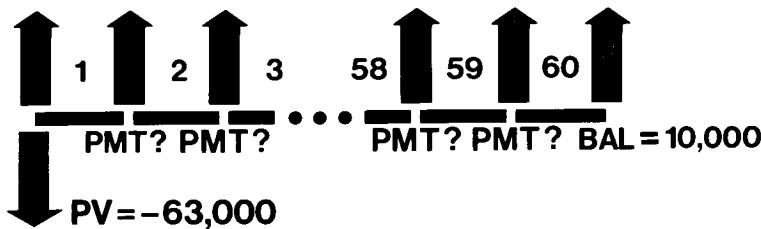
The remaining balance is found:

24 STO 1 GSB 5 → 49352.76 (remaining balance at month 24)

Store this remaining balance and calculate the remaining balance at period 12:

STO 0 4 12 STO 1
GSB 5 → 49691.68

The principal reduction between payments 12 and 24 is:


RCL 0 4 - → 338.92

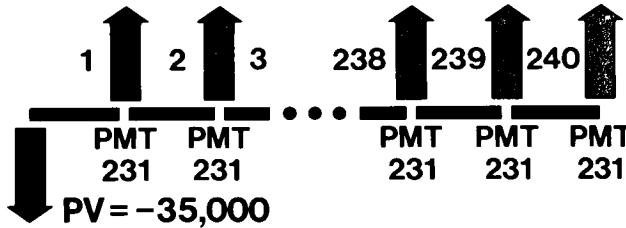
The accrued interest is 12 payments less the principal reduction:

RCL 3 12 X → 5045.13 (total paid out)
x₂y - → 4706.20 (accrued interest)

Example 6:

A “third” party leasing firm is considering the purchase of a mini-computer priced at \$63,000 and intends to achieve a certain annual yield by leasing the computer to a customer for a 5-year period. Ownership is retained by the leasing firm and at the end of lease they expect to be able to sell the equipment for at least \$10,000. If the monthly payment is \$1300.16, what is the annual yield? (Since lease payments occur at the start of the periods, this is an annuity due problem).

Keystrokes:(Key in the 2nd program)


5 **ENTER** 12 **X** **STO** **1**,
 1300.16 **STO** **3** 63000 **CHS**
STO **4** 10000 **STO** **5** **EEX**
CHS 6 **STO** **6** **GSB** **2** →
 12 **X** →

Outputs:

1.08 (% per month)
 13.00 (% per year)

Example 7:

A fixed term annuity is available which requires a \$35,000 initial deposit. In return the depositor will receive monthly payments of \$231 for 20 years. What annual interest rate is being applied?

Keystrokes:(Key in the 2nd program)

20 **ENTER** 12 **X** **STO** **1** →
 231 **STO** **3** →
 35000 **CHS** **STO** **4** →
 0 **STO** **5** →
EEX **CHS** 6 **STO** **6** **GSB** **1** →
 12 **X** →

Outputs:

240.00 (# monthly payments)
 231.00 (monthly income)
 -35000.00 (initial cash deposit)
 0.00 (FV = 0)
 1. -06 (ε)
 0.42 (0.42% monthly)
 5.00 (5% annual interest rate)

Example 8:

Suppose you deposit \$100 today in the bank, after 3 years you will have a total of \$116.08. If the interest is compounded quarterly, what is the interest rate?

Keystrokes:

(Key in the 2nd program)

3 **ENTER** 4 **X** **STO** 1 0 **STO** 3
100 **CHS** **STO** 4 116.08 **STO** 5
EEX **CHS** 6 **STO** 6 5
GSB 1 →
4 **X** →

Outputs:

1.25 (% quarter)
5.00 (% annual)

DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

Assuming a minimum desired yield (cost of capital, discount rate), this program finds the present value of the future cash flows generated by the investment and subtracts the initial investment from this amount. If the final net present value is a positive value, the investment exceeds the profit objectives assumed. If the final net present value is a negative value, then the investment is not profitable to the extent of the desired yield. If the net present value is zero, the investment meets the profit objectives.

The function associated with the **GSB 3** key (#) is designed to accommodate those situations where a series of the cash flows are equal. You enter the number of times these equal periodic cash flows occur with **GSB 3**, and then the amount only once with **GSB 4**. The program automatically assumes 1 for #. If the cash flow occurs only once, there is no need to enter anything for #.

Zero must be entered for all periods with no cash flow. When a cash flow other than the initial investment is an outlay (additional investment, loss, etc.) the value must be entered as a negative number with **CHS**.

Cash flows are assumed to occur at the end of cash flow periods.

Equation:

$$NPV_k = -INV + \sum_{k=1}^n \frac{CF_k}{(1 + i)^k}$$

where:

n = number of cash flows

CF_k = k^{th} cash flow

NPV_k = net present value after k^{th} cash flow

81 #LBL1		50 R ₄	***
82 CHS		51 RTN	
83 STO1		52 #LBL5	Recall Σn
84 0	-NPV $\rightarrow R_1$	53 RCL9	
85 ST09	0 $\rightarrow R_9$	54 RTN	
86 1	1 $\rightarrow R_3$		
87 ST03			
88 RCL1			
89 CHS			
10 RTN			
11 #LBL2	-----		
12 EEX			
13 2	$i \over 100 \rightarrow R_2$		
14 \div			
15 ST02			
16 LSTX			
17 x			
18 RTN			
19 #LBL3	-----		
20 ST03	# $\rightarrow R_3$		
21 RTN	-----		
22 #LBL4			
23 ST04			
24 1			
25 RCL2			
26 +			
27 RCL3			
28 ST+9			
29 Y ^x	Calculate present value of series		
30 ST05			
31 RCL1			
32 x			
33 RCL5			
34 1			
35 -			
36 RCL2			
37 \div			
38 RCL4			
39 x			
40 +			
41 STO1			
42 1			
43 RCL2			
44 +			
45 RCL9			
46 Y ^x			
47 \div			
48 1	Reset n to 1		
49 STO3			

REGISTERS

0	1	NPV	2	i/100	3	#	4	CF	5	(1 + i) ⁿ
6	7		8		9	Σn	0		.1	
.2	3		4		.5		16		17	
18	19		20		21		22		23	
24	25		26		27		28		29	

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input: Initial investment amount Periodic interest (discount) rate	INV i (%)	GSB [1] GSB [2]	INV i (%)
3	Input the number of equal cash flows if greater than 1.	#	GSB [3]	#
4	Input cash flow amounts and calculate net present value	CF	GSB [4]	NPV
5	(Optional): Display total number of cash flows entered so far.		GSB [5]	n
6	For next cash flow go to step 3.			
7	For a new case go to step 2.			

Example 1:

An investor has an opportunity to purchase a piece of property for \$70,000. If the going rate of return on this type of investment is 13.75%, and the after-tax cash flows are forecast as follows, should the investor purchase the property?

Year	Cash Flow (\$)
1	\$14,000
2	11,000
3	10,000
4	10,000
5	10,000
6	9,100
7	9,000
8	9,000
9	4,500
10	71,000 (property sold in 10 th year)

Keystrokes:

70000 GSB [1] 13.75 GSB [2]

14000 GSB [4] →

Outputs:

-57692.31 (NPV after 1 cash flow)

11000 GSB 4	→	-49190.92	(NPV after 2 cash flows)
3 GSB 3 10000 GSB 4	→	-31172.57	(NPV after 5 cash flows)
9100 GSB 4	→	-26971.76	(NPV after 6 cash flows)
2 GSB 3 9000 GSB 4	→	-20108.39	(NPV after 8 cash flows)
GSB 5	→	8.00	(checking that we've entered 8 periods cash flows so far)
4500 GSB 4	→	-18696.99	(NPV after 9 cash flows)
71000 GSB 4	→	879.93	(NPV after 10 cash flows)

Since the final NPV is positive, the investment exceeds the profit objectives.

Example 2:

The Cooper Company needs a new photocopier and is considering leasing the equipment as an alternative to buying. The end-of-the-year net cash cost of each option is:

PURCHASE		
Year	Net Cash Cost	
1	\$ 533	
2	948	
3	1,375	
4	1,815	
5	2,270	
Total Net Cash Cost	\$6,941	

LEASE		
Year	Net Cash Cost	
1	\$1,310	
2	1,310	
3	1,310	
4	1,310	
5	1,310	
Total Net Cash Cost	\$6,550	

Looking at total cost, leasing appears to be less. But, purchasing costs less the first two years. Mr. Cooper knows that he can make a 15% return on every dollar he puts in the business; the sooner he can reinvest money, the sooner he earns 15%. Therefore, he decides to consider the **timing of the costs**, discounting the cash flows at 15% to find the present value of the alternatives. Which option should he choose?

Keystrokes:**PURCHASE**

0 GSB 1 15 GSB 2 533 GSB 4
948 GSB 4 1375 GSB 4
1815 GSB 4 2270 GSB 4 → 4250.71

LEASE

0 GSB 1 5 GSB 3
1310 GSB 4 → 4391.32

Outputs:

Leasing has a present value cost of \$4391.32, while purchasing has a present value cost of \$4250.71. Since these are both expense items, the lowest present value is the most desirable. So, in this case, purchase is the least costly alternative.

CALENDAR FUNCTIONS

For the period March 1, 1900 through February 28, 2100, this program solves for dates and days.

Given a date, the first part calculates an associated day number*. By using this program on two dates, the number of days between those dates may be found.

The second part takes a day number* and finds the corresponding date. The third part calculates the day of the week from a given day number*.

By using the first two parts together, a second date may be calculated from a date and a specified number of days (see example).

A date must be input in mm.ddyyyy format. For instance, June 3, 1975, is keyed in as 6.031975. It is important that the zero between the decimal point and the day of the month be included when the day of the month is less than 10. The day of the week is represented by the digits 0 through 6 where zero is Sunday.

Equations:

To calculate the day number from the date:

$$\text{Julian Day number*} = \text{INT}(365.25 y') + \text{INT}(30.6001 m') + d + 1,720,982$$

where:

$$y' = \begin{cases} \text{year} - 1 & \text{if } m = 1 \text{ or } 2 \\ \text{year} & \text{if } m > 2 \end{cases}$$

$$m' = \begin{cases} \text{month} + 13 & \text{if } m = 1 \text{ or } 2 \\ \text{month} + 1 & \text{if } m > 2 \end{cases}$$

Then days between dates is found by:

$$\text{Days} = \text{Day number}_2 - \text{Day number}_1$$

To calculate the date from a day number:

$$\text{Day \#} = \text{Julian Day Number*} - 1,720,982$$

$$y' = \text{INT} \left[\frac{\text{Day \#} - 122.1}{365.25} \right]$$

* The Julian Day number is an astronomical convention representing the number of days since January 1, 4713 B.C.

$$m' = \text{INT} \left[\frac{\text{Day \#} - \text{INT}(365.25 y')}{30.6001} \right]$$

$$\begin{aligned} \text{Day of the month} &= \text{Day \#} - \text{INT}[365.25 y'] \\ &\quad - \text{INT}[30.6001 m'] \end{aligned}$$

$$\text{Month} = m = \begin{cases} m' - 13 & \text{if } m' = 14 \text{ or } 15 \\ m' - 1 & \text{if } m' < 14 \end{cases}$$

$$\text{Year} = \begin{cases} y' & \text{if } m > 2 \\ y' + 1 & \text{if } m = 1 \text{ or } 2 \end{cases}$$

To calculate the day of the week:

$$\text{Day of the week} = 7 \times \text{FRAC}[(\text{Day \#} + 5)/7]$$

Remarks:

- No checking is done to determine if input data represent valid dates.

01	#LBL1		50	ST09	
02	ENT†		51	RCL1	
03	INT		52	x	
04	ST07		53	INT	
05	-		54	ST-6	
06	EEX		55	RCL6	
07	2		56	RCL2	
08	x		57	÷	
09	ENT†		58	INT	
10	INT		59	ST07	
11	ST08		60	RCL6	
12	-		61	X#Y	
13	EEX		62	RCL2	
14	4		63	x	
15	x		64	INT	
16	ST09		65	-	
17	RCL7		66	ST08	
18	1	m + 1	67	RCL7	
19	+		68	1	
20	ENT†		69	RCL8	
21	1/X	m + 1 → m'	70	2	
22	.	y → y'	71	-	
23	?		72	-	
24	+		73	RCL7	
25	CHS		74	1	
26	INT		75	4	
27	ST+9		76	÷	
28	RCL4	If input to this routine has	77	INT	Correct m' - 1 and y' to m
29	x	absolute value 1 or greater,	78	ST+9	and y
30	-	y = y ± 1	79	RCL4	
31	RCL2	m = m ± 2	80	x	
32	x		81	-	
33	INT		82	RCL9	
34	RCL9		83	EEX	
35	RCL1		84	6	
36	x		85	÷	
37	INT	Calculate day number	86	+	
38	+		87	FIX6	
39	RCL8		88	RTN	
40	+		89	#LBL3	
41	FIX8		90	5	
42	RTN		91	+	
43	#LBL2		92	7	
44	ST06		93	÷	
45	RCL3	Calculate y'	94	FRC	Calculate day of the week
46	-		95	7	from day #
47	RCL1		96	x	
48	÷		97	RTN	
49	INT				

REGISTERS

0	1	365.25	2	30.6001	3	122.1	4	12	5
6	Day #	m	7	d	8	y	9	0	.1 Used
.2	Used	3	.4	.5	.6	.7	.8	.9	17
18		19		20		21		22	23
24		25		26		27		28	29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input constants for calculations:	365.25 30.6001 122.1 12	STO [1] STO [2] STO [3] STO [4]	365.25 30.6001 122.1 12
3	For day #, go to step 4. For dates from day #, go to step 7. For day of the week go to step 9.			
4	Input date and calculate day #	date	GSB [1]	day #
5	Repeat step 4 for any other date			
6	For # of days between dates calculate day #'s for each and find the difference.	date 1 date 2	GSB [1] STO [1] GSB [1] RCL [1] []	day #1 day #1 day #2 day #1 difference
7	For dates from day #'s, input day # and calculate date	day #	GSB [2]	date
8	Repeat step 7 for any other day #			
9	For day of the week from day #, input day # and calculate day of the week.	day #	GSB [3]	0, ..., 6
10	Repeat step 9 for any other day #.			
11	For a new case, go to step 3.			

Example 1:

Senior Lieutenant Yuri Gagarin flew Vostok I into space on April 12, 1961. On July 21, 1969, Neil Armstrong set foot on the moon. How many days had passed between the first manned space flight and the moon landing? On what day of the week did each event take place.

Keystrokes:

(Key in the program and store constants by:

365.25 **STO** **1** 30.6001 **STO** **2**

122.1 **STO** **3** 12 **STO** **4**)

4.121961 **GSB** **1** **STO** **•** **1** →

7.211969 **GSB** **1** **STO** **•** **2** →

RCL **•** **1** **—** →

RCL **•** **1** **GSB** **3** →

RCL **•** **2** **GSB** **3** →

Outputs:

716420. (day # 1)

719442. (day # 2)

3022. (days)

3. (Wednesday)

1. (Monday)

Example 2:

A short term note is due in 200 days. If the issue date is June 11, 1976, what is the maturity date?*

Keystrokes:

6.111976 **GSB** **1** →

200 **+** →

GSB **2** →

Outputs:

721959.

722159.

12.281976 (December 28, 1976)

* First a day number is calculated for the known date, the number of days (200) is added to it, and this new day number is converted to a date.

Some securities use a 30/360 day calendar while this program performs all calculations using the actual number of days. Do not use the program for financial purposes unless you are sure that actual calendar days are correct.

MOON ROCKET LANDER

Imagine for a moment the difficulties involved in landing a rocket on the moon with a strictly limited fuel supply. You're coming down tail-first, freefalling toward a hard rock surface. You'll have to ignite your rockets to slow your descent; but if you burn too much too soon, you'll run out of fuel 100 feet up, and then you'll have nothing to look forward to but cold eternal moon rocks coming faster every second. The object, clearly, is to space your burns just right so that you will alight on the moon's surface with no downward velocity.

The game starts off with the rocket descending at a velocity of 50 feet/second from a height of 500 feet. The velocity and altitude are shown in a combined display as -50.0500, the altitude appearing to the right of the decimal point and the velocity to the left, with a negative sign on the velocity to indicate downward motion. Then the remaining fuel is displayed and the rocket fire count-down begins: "3", "2", "1", "0",.. Exactly at zero you may key in a fuel burn. You only have one second, so be ready. A zero burn, which is very common, is accomplished by doing nothing. After a burn the sequence is repeated unless:

1. You have successfully landed—flashing zeros.
2. You have smashed into the lunar surface—flashing crash velocity.

You must take care, however, not to burn more fuel than you have; for if you do, you will free-fall to your doom! The final velocity shown will be your impact velocity (generally rather high). You have 60 units of fuel initially.

Equations:

We don't want to get too specific, because that would spoil the fun of the game; but rest assured that the program is solidly based on some old friends from Newtonian physics:

$$x = x_0 + V_0 t + \frac{1}{2} a t^2, \quad V = V_0 + a t, \quad V^2 = V_0^2 + 2a(x - x_0)$$

where:

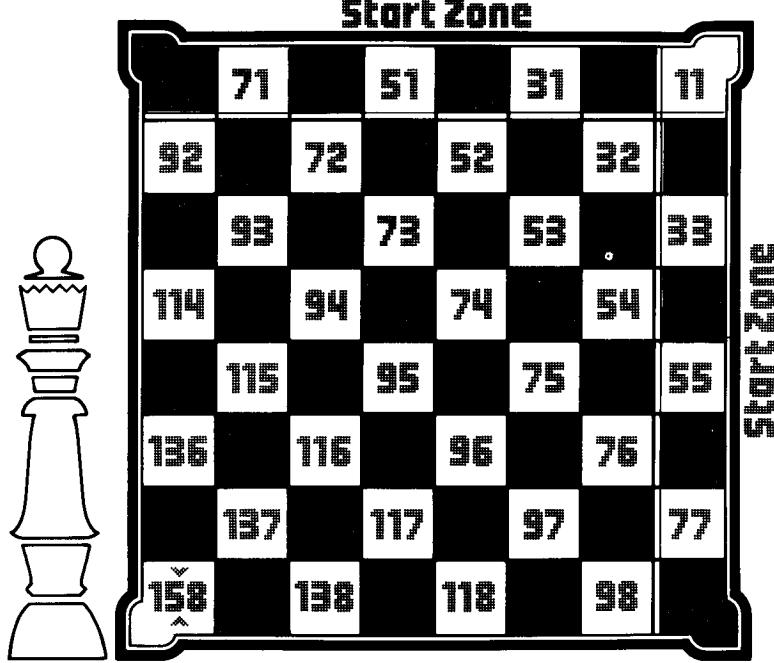
x , V , a , and t are distance, velocity, acceleration, and time.

Remarks:

- Only integer values for fuel burn are allowed. **R/S** can be used to stop Moon Rocket Lander at any time.

01	#LBL1		58	STD9	
02	5		51	2	
03	0		52	÷	
04	0		53	RCL6	
05	STD6		54	+	
06	5		55	RCL7	
07	0		56	+	
08	CMS		57	RCL9	
09	STD7		58	ST+7	
10	6		59	R4	
11	0		60	STD6	
12	STD8		61	INT	
13	#LBL0		62	X#0?	
14	RCL6		63	GT08	
15	FIX4		64	RCL7	
16	EEX		65	#LBL7	
17	4		66	PSE	
18	÷		67	GT07	
19	RCL7		68	#LBL6	
20	ABS		69	RCL8	
21	+		70	2	
22	RCL7		71	-	
23	X#0?		72	5	
24	FSB4		73	-	
25	XZY		74	ST+6	
26	CMS		75	2	
27	PSE		76	x	
28	PSE		77	ST+7	
29	FIX8		78	RCL6	
30	RCL8		79	1	
31	PSE		80	0	
32	3		81	x	
33	PSE		82	RCL7	
34	2		83	X ²	
35	PSE		84	+	
36	1		85	JX	
37	PSE		86	CMS	
38	0		87	GT07	
39	PSE		88	#LBL4	
40	#LBL9		89	XZY	
41	RCL8		90	CMS	
42	XZY		91	XZY	
43	X?Y?		92	RTN	
44	STD6				
45	ST-8				
46	2				
47	x				
48	5				
49	-				
Determine velocity and height					

REGISTERS


0	1	2	3	4	5
6 X	7 V	8 Fuel	9 Accel.	0	1
12	3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program. 2 Assume manual control.		GSB 1	"V. ALT" "FUEL"
				"3" "2" "1" "0"
3	Key in burn upon "0" display: Press and hold R/S until blinking stops. Enter burn	BURN	R/S R/S	"V. ALT" "FUEL"
				"3" "2" "1" "0"
4	Go to step 3 until you land (flashing zeros) or crash (flashing impact velocity).			
5	If you survived last landing attempt, go to step 2 for another try.			

QUEEN BOARD

This game is based on the moves of a chess queen. A queen will be allowed to move only to the left, down, or diagonally to the left. The object of the game is to be the first player to move the queen to the lower left-hand corner of the chess board (square 158), by alternating moves between you and the calculator. You start by placing the queen on any square on the top row or right-hand column. This is your first move. The play then alternates.

The playing board is numbered as follows:

You tell the calculator your moves by keying in the number of the square you start on or move to. Press **GSB 1** and the calculator responds with the square it moves to. Square 158 is the winning square.

The program does not check for illegal moves. If you win (by moving to square 158), the program will respond with 168 (the calculator acknowledges the loss by displaying a nonexistent square).

The program is in FIX 0 mode, for integer display.

Reference:

This program is based on an HP-65 Users' Library program by Jacob R. Jacobs. Some interesting comments on the theory of "Queen Board" may be found in: Gardner, M. "Mathematical Games", Scientific American, vol 236, no 3., p. 134, March 1977.

81 #LBL1	Current position R_1	58 RTN	158 = R_2 ?
82 FIX8		51 #LBL8	
83 ST01	7 $\rightarrow R_0$	52 1	127 = R_2 ?
84 GS88		53 5	
85 1	10K + $R_1 \rightarrow R_2$ Position good?	54 8	126 = R_2 ?
86 X=Y?		55 X=Y?	
87 GT08	Yes, recall R_2	56 GT06	75 = R_2 ?
88 7		57 3	
89 ST08	K+ $R_2 \rightarrow R_2$ Position good?	58 1	73 = R_2 ?
10 #LBL9		59 -	
11 RCL1	Yes, recall R_2	60 X=Y?	44 = R_2 ?
12 RCL8		61 GT06	
13 EEX	10K + $R_2 \rightarrow R_2$ Position good?	62 1	41 = R_2 ?
14 1		63 -	
15 X	Yes, recall R_2	64 X=Y?	126 = R_2 ?
16 +		65 GT06	
17 ST02	Yes, recall R_2	66 5	127 = R_2 ?
18 GS88		67 1	
19 1	Default move 10 + $R_1 \rightarrow R_1$	68 -	128 = R_2 ?
20 X=Y?		69 X=Y?	
21 GT07	Yes, recall R_2	70 GT06	129 = R_2 ?
22 RCL8		71 2	
23 ST+2	Yes, recall R_2	72 -	130 = R_2 ?
24 RCL2		73 X=Y?	
25 GS88	Yes, recall R_2	74 GT06	131 = R_2 ?
26 1		75 2	
27 X=Y?	Yes, recall R_2	76 9	132 = R_2 ?
28 GT07		77 -	
29 RCL8	Yes, recall R_2	78 X=Y?	133 = R_2 ?
30 EEX		79 GT09	
31 1	Yes, recall R_2	80 3	134 = R_2 ?
32 X		81 -	
33 ST+2	Yes, recall R_2	82 X=Y?	135 = R_2 ?
34 RCL2		83 GT06	
35 GS88	Yes, recall R_2	84 RTN	136 = R_2 ?
36 1		85 #LBL6	
37 X=Y?	Yes, recall R_2	86 1	137 = R_2 ?
38 GT07		87 RTN	
39 DSZ	Default move 10 + $R_1 \rightarrow R_1$		
40 GT09			
41 RCL1	Default move 10 + $R_1 \rightarrow R_1$		
42 #LBL8			
43 EEX	Default move 10 + $R_1 \rightarrow R_1$		
44 1			
45 ST+1	Default move 10 + $R_1 \rightarrow R_1$		
46 RCL1			
47 RTN	Default move 10 + $R_1 \rightarrow R_1$		
48 #LBL7			
Test for good position			

REGISTERS

0 Indirect	1 Used	2 Used	3	4	5
6	7	8	9	0	.1
2	3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in your starting position (first move).	Move	GSB 1	Calc's Move
3	Repeat step 2 until someone wins. Display of 158: calculator wins Display of 168: you win			
4	To begin new game, repeat step 2 with new starting position.			

Example:**Keystrokes:**

55 GSB 1 →

Outputs:

75.

(You start on 55, and the calculator, after deep and careful thought, moves to 75).

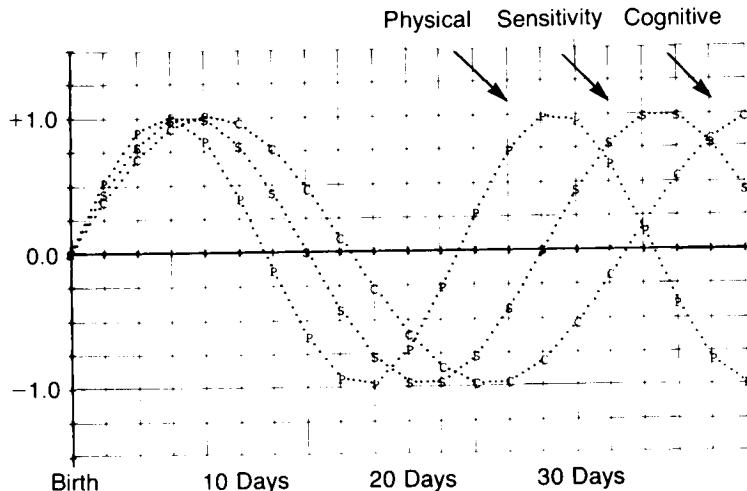
97 GSB 1 →

127.

(You respond with 97, and the calculator, showing no mercy moves to 127).

148 GSB 1 →

158.


(You try 148, hoping the calculator's batteries run down before it can respond, but no luck—it wins by moving to 158).

BIORHYTHMS

From ancient days philosophers and sages have taught that human happiness lies in the harmonious integration of body, mind, and heart. Now a twentieth-century theory claims to be able to quantitatively gauge the functioning of these three aspects of our selves: the physical, sensitive, and cognitive.

The biorhythm theory is based on the assumption that the human body has inner clocks or metabolic rhythms with constant cycle times. Currently, three cycles starting at birth in a positive direction are postulated. The 23-day or physical cycle relates with physical vitality, endurance and energy. The 28-day cycle or sensitivity cycle relates with sensitivity, intuition and cheerfulness. The 33-day or cognitive cycle relates with mental alertness and judgement.

For each cycle, a day is considered either high, low, or critical. x is the output value for a given cycle. The high ($0 < x \leq 1$) times are regarded as energetic times, you are your most dynamic in the cycle. The low ($-1 \leq x < 0$) times are regarded as the recuperative periods. The critical days ($x = 0$) are regarded as your accident prone days, especially for the physical and sensitivity cycles.

Remarks:

- The birthdate and biodate must be between January 1, 1901, and December 31, 2099.
- The format for input of dates is MM.DDYYYY. For example, June 3, 1976, is keyed in as 6.031976. The program does not check input data. Thus, if an improper format or an invalid date (e.g., February 30) is keyed in, erroneous answers may result.
- This program sets the angular mode to radians (RAD).

81 #LBL1			58 ST06	M
82 RTD	Birthdate store		51 -	-----
83 GSB8			52 EEX	
84 ST09	N ₁		53 2	
85 RTW			54 x	
86 GSB8	Biodate		55 ENT†	
87 RCL9			56 INT	D
88 -			57 ST05	
89 ST08			58 -	-----
10 #LBL9	Store N ₂ - N ₁		59 EEX	
11 1			60 4	
12 8			61 x	
13 ST07	23 Day cycle		62 ST04	Y
14 GSB8	28 Day cycle		63 2	-----
15 GSB8			64 RCL6	
16 #LBL8			65 XY?*	
17 5	# Days		66 GT06	
18 ST+7			67 1	
19 RCL8			68 ST-4	
20 RCL7			69 1	
21 ÷			70 2	
22 FRC			71 ST+6	
23 2			72 #LBL6	
24 x			73 1	
25 PI			74 ST+6	
26 x			75 RCL6	
27 SIM			76 3	
28 ENT†			77 0	
29 ABS			78 -	
30 X#R?			79 6	
31 ÷			80 x	
32 LSTX			81 INT	
33 EEX			82 RCL4	
34 7			83 3	
35 +			84 6	
36 EEX			85 5	
37 7			86 -	
38 -			87 2	
39 x	***		88 5	
40 R/S	Bio value		89 x	
41 RTW			90 INT	
42 #LBL7			91 +	
43 1	Next day		92 RCL5	
44 ST+8			93 +	
45 GSB9			94 RTW	N
46 GT07	Compute N(M, D, Y,)			
47 #LBL8				
48 ENT†				
49 INT				

REGISTERS

0	1	2	3	4 Y	5 D
6 M	7 23,28,33	8 N ₂ - N ₁	9 N ₁	0	1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in birthdate	MM.DDYYYY	GSB 1	Day #*
3	Key in biodate and find bio values	MM.DDYYYY	R/S	P
			R/S	S
			R/S	C
4	To find bio values for succeeding days.		R/S R/S	P
			R/S	S
			R/S	C
5	For a new birthdate, go to step 2; for a new biodate, go to step 3.			
	* See Calendar Functions for explanation of this number.			

Example:

Calculate the bio values for June 29, 1976, for a person born March 27, 1948. Find the values for the two days following also.

Keystrokes:

3.271948 GSB 1 →
 6.291976 R/S →
 R/S →
 R/S →
 R/S R/S →
 R/S →
 R/S →
 R/S →
 R/S →
 R/S →
 R/S →

Outputs:

711656	(day #)
-1.00	(June 29) (P)
-0.62	(S)
-1.00	(C)
-0.98	(June 30) (P)
-0.78	(S)
-0.97	(C)
-0.89	(July 1) (P)
-0.90	(S)
-0.91	(C)

COUNTDOWN TIMER

This program provides a countdown timer and a calibration routine for measuring elapsed time. When using this program, you should remember that clock circuits of HP calculators are designed for calculator use, not for accurate time keeping. Although the routine may be calibrated quite accurately, highly stable performance should not be expected due to variable conditions about the calculator.

Equations:

$$C_{a_{\text{new}}} = C_{a_{\text{old}}} \frac{\text{HP time}}{\text{Actual Time}}$$

81 #LBL1				
82 FIX4	Store constant			
83 ST02	-----			
84 #LBL9				
85 0	Alarm			
86 R/S	-----			
87 ST01				
88 →H				
89 RCL2				
10 x	Store time			
11 ST08	-----			
12 RCL1				
13 R/S	***			
14 #LBL8				
15 DS2				
16 GT08	Loop on counter			
17 GT09	Go to "alarm"			
18 #LBL2	-----			
19 →H				
20 X2Y				
21 →H				
22 X2Y				
23 -				
24 RCL1	Calibrate constant			
25 →H				
26 ÷				
27 1/X				
28 RCL2				
29 x				
30 R/S				
31 GT01				
REGISTERS				
0 counter	1 time	2 Ca	3	4
6	7	8	9	.0
.2	.3	.4	.5	.16
18	19	20	21	22
24	25	26	27	28
				29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input timer constant (try 10000)	Ca	GSB [1]	0.0000
3	Input desired time	t(H.MMSS)	[R/S]	t
4	Start timer		[R/S]	0.0000
5	Timer loops for time t. When 0.0000 is displayed, time has elapsed. For a new time t, execute step 3 and 4. To calibrate, proceed to step 6.			
6	Input ending time and starting time to calculate new constant	te	ENTER +	
		ts	GSB [2]	Ca
	To proceed depress		[R/S]	
	Then go to step 3.			

Example:

Measure elapsed times of 35 seconds and 1 minute 8 seconds.

Keystrokes:

10000 GSB [1] → 0.0000
 0.0035 [R/S] → 0.0035
 [R/S] → 0.0000

Outputs:

Timer runs for approximately 32 seconds.

For the second desired time:

Keystrokes:

0.0108 [R/S] → 0.0108
 [R/S] → 0.0000

Outputs:

Supposing you had noticed the *actual* ending and starting times of the 2nd example were 9:58:03 and 9:57:01, respectively, then calibrate the timer with this information:

Keystrokes:**Outputs:**9.5803 **ENTER** 9.5701

10967.7421

GSB [2] →

0.0000

R/S →

Now try the calibrated timer for 2 minutes 5 seconds:

0.0205 **R/S** → 0.0205**R/S** → 0.0000

Under the same conditions, the new timer constant 10967.7421 should be used for subsequent use of this program. Your HP calculator will have its own "best" constant for calibration.

BODY SURFACE AREA CALCULATIONS

This program calculates body surface area by either the Dubois or Boyd formula, ... allowing your choice of the preferred method. If cardiac output is known, cardiac index may also be calculated.

The Dubois is undefined, and should not be used, for children with a BSA of less than 0.6m². If the result is less than 0.6, use the Boyd formula instead.

Data inputs are patient's height and weight, in either metric or English units, and if desired, the cardiac output. If the measurements are in English units (inches and pounds) the data are input as negative values and the program automatically converts then to metric units (cm and kilograms).

Equations:

Dubois formula:

$$\text{BSA (m}^2\text{)} = \text{Ht (cm)}^{0.725} \cdot \text{Wt (kg)}^{0.425} \cdot 71.84 \cdot 10^{-4}$$

Boyd formula:

$$\text{BSA (m}^2\text{)} = 3.207 \cdot \text{Wt (gm)}^{(0.7285 - 0.0188 \log \text{Wt})} \cdot \text{Ht (cm)}^{0.3} \cdot 10^{-4}$$

Cardiac Index (CI):

$$\text{CI} = \text{CO (l/min)}/\text{BSA (m}^2\text{)}$$

Remarks:

- The height and weight may be input in either metric or English units. If English units are used, they must be entered as negative values, by pressing **CHS** after the number is input. Press **GSB 1** to calculate BSA by the Dubois method, or **GSB 2** for the Boyd result. The data must be reentered for calculation by the alternate method, if desired.
- Values for BSA calculated by the Dubois method are stored in Register 1 or, if by the Boyd method in Register 2 and may be recalled as needed.
- To calculate cardiac index: select BSA as calculated by the desired method and recall it from storage, then enter cardiac output and press **GSB 3**.

01	4LBL1		58	3		
02	GSB8		51	1		
03	RCL8	Calculate BSA by DuBois method	52	1		
04	.		53	8		
05	7		54	÷		
06	2		55	ST02	***	
07	5		56	RTN	-----	
08	YX		57	4LBL3	Input CO and calculate CI	
09	RCL9		58	X2Y		
10	.		59	÷	***	
11	4		60	RTN	-----	
12	2		61	4LBL8		
13	5		62	XCB2		
14	YX		63	GSB9		
15	X		64	ST09		
16	1		65	R4		
17	3		66	XCB2		
18	9		67	GSB8		
19	.		68	ST08		
20	2		69	RTN		
21	÷		70	4LBL9		
22	ST01	-----	71	CHS	Convert wt. to metric	
23	RTN	-----	72	2		
24	4LBL2	Calculate BSA by Boyd method	73	.		
25	GSB8		74	2		
26	RCL8		75	÷		
27	.		76	RTN	Convert ht. to metric	
28	3		77	4LBL8		
29	YX		78	CHS		
30	RCL9		79	2		
31	EEX		80	.		
32	3		81	5		
33	X		82	4		
34	ENT†		83	X		
35	LOG		84	RTN		
36	.					
37	8					
38	1					
39	8					
40	8					
41	X					
42	.					
43	7					
44	2					
45	8					
46	5					
47	-					
48	YX					
49	÷					

REGISTERS

0	1	BSA (DuBois)	2	BSA (Boyd)	3	4	5
6	7		8	Ht.	9	Wt.	.0
12	3		.4		.5		.1
18	19		20		21	16	17
24	25		26		27	22	23
						28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input patient height (+ cm or -in)	Ht	ENTER ↴	
3	Input patient weight (+ kg or -lb)	Wt		
4	Calculate BSA by Dubois formula or, by Boyd formula Note: Reenter data before performing calculation again by alternate method.		GSB [1] GSB [2]	BSA (m ²) BSA (m ²)
5	Calculate cardiac index. Recall desired BSA from storage or, Input cardiac output and calculate cardiac index	BSA, Dubois BSA, Boyd CO, ℥/min	RCL [1] RCL [2] GSB [3]	BSA (m ²) BSA (m ²) CI, (ℓ/min/m ²)

Example:

A patient has the following height and weight.

Ht = 60 in or 152.40 cm

Wt = 100 lbs or 45.45 kg.

Calculate BSA by both the Dubois and Boyd methods. If the cardiac output, (CO) is 5 1/min calculate the cardiac index using the Dubois BSA.

Keystrokes:

60 CHS ENTER ↴

100 CHS GSB [1] →

152.4 ENTER ↴ 45.45 GSB [2] →

RCL [1] 5 GSB [3] →

Outputs:

1.39 m² (Dubois)

1.40 m² (Boyd)

3.59 CI (by Dubois)

PULMONARY FUNCTIONS AND VITAL CAPACITY

The pulmonary function testing package provides calculations of the predicted and percent predicted values for vital capacity (VC), forced expiratory volume after 1 second (FEV₁), maximum expiratory flow rate (MEFR), maximum ventilatory volume after 12 seconds (MVV₁₂), residual volume (RV), total lung capacity (TLC), functional residual capacity (FRC), and forced expiratory flow from 25% to 75% (FEF 25%-75%).

The calculations are performed for either male or female patients, given the patient's height and age.

Equations:

All of the functions (with two exceptions) are calculated from a general equation of the form: (A • Ht(cm)) – (B • AGE(years)) – C, where A, B, and C are constants given in Table 1.

The exceptions are:

- Female TLC: If height is greater than 174 cm (68.5 inches) add 1 cm to height before calculation.
- Female Predicted FEF: (A • Ht(cm)) – (B • AGE(years)) – (0.00005 • AGE²(years)) – C.

$$25\% \text{ VC} = 0.25 \text{ VC}$$

$$75\% \text{ VC} = 0.75 \text{ VC}$$

$$\Delta t = t_{75\%} - t_{25\%}$$

$$\text{Measured FEF} = (0.5 \cdot \text{VC})/\Delta t$$

References:

Morris, J.F., Koski, A., Johnson, L.C., *American Rev. Resp. Dis.*, 1971, 103, 57.

Bates, et. al., *Respiratory Function in Disease*, W.G. Saunders Co., 1971.

Table 1
Constants For Calculation of Predicted Values

	FEMALE			MALE		
	A	B	C	A	B	C
Predicted VC	0.045	0.024	2.852	0.058	0.025	4.24
Predicted FEV ₁	0.035	0.025	1.932	0.036	0.032	1.26
Predicted MEFR	0.057	0.036	2.532	0.043	0.047	-2.07
Predicted MVV ₁₂	0.762	0.81	6.29	0.9	1.51	-27.0
Predicted RV	0.024	-0.012	2.63	0.03	-0.015	3.75
Predicted TLC*	0.078	0.01	7.36	0.094	0.015	9.17
Predicted FRC	0.047	0.00	4.86	0.051	0.00	5.05
Predicted FEF	0.02	0.03	-1.3	0.02	0.04	-2.0

Detailed User Instructions:

Key in the program. Then key in the patient height, in centimeters or inches (if in inches, input as a negative number) and press **GSB 1**. Then key in patient age in years and press **GSB 2**. Now any of the predicted values may be calculated by entering the appropriate constants A, B and C from table 1 and pressing **GSB 3**. The predicted value of the function is displayed. Key in the measured value of the function and press **R/S** to obtain the percent of predicted value.

The measured forced expiratory flow rate from the 25% and 75% points of a spirogram and predicted and percentage of predicted value are calculated as follows:

Enter A, B, and C from table 1, then press **GSB 4**. The predicted FEF is displayed. Key in the vital capacity as measured from the spirogram and press **R/S**. The display will show 25% VC. Read the measured time of this volume from the spirogram, key in this time in seconds and press **R/S**. The display will now show 75% VC. Determine the time at this volume from the spirogram, key it in and again press **R/S**. The measured FEF is now displayed. Pressing **R/S** again results in display of the percentage of predicted value. If desired, the predicted FEF can be recalled by pressing **R/S** or **RCL 0**.

*(Note: for female patients over 174 cm in height be sure to add 1 cm to height before calculating TLC, then reenter proper value for height before proceeding with calculations of other functions).

01 #LBL1		58 7	
02 X#R		51 5	
03 CSBB	Store ht.	52 x	
04 ST04		53 RTN	Input Δt @ .75 VC
05 RTN		54 X#Y	Calculate measured FEF
06 #LBL2		55 R4	
07 ST05	Store age	56 X#Y	
08 RTN		57 -	
09 #LBL3		58 -	
10 ST03		59 5	
11 R4	Calculate functions	60 RCL6	*** Display Meas. FEF
12 ST02		61 x	
13 R4		62 X#Y	
14 ST01		63 -	
15 RCL1		64 R/S	
16 RCL4		65 RCL8	
17 x		66 -	
18 RCL2		67 EEX	
19 RCL5		68 2	
20 x		69 x	
21 -		70 R/S	*** Display % of pre-
22 RCL3		71 RCL8	dicted FEF.
23 1		72 RTN	
24 -		73 #LBL8	
25 3		74 CHS	Change inches to cm
26 CHS		75 2	
27 X#Y?		76 -	
28 CSBB		77 5	
29 R4		78 4	
30 -		79 x	
31 ST08	*** Display function	80 RTN	
32 RTN		81 #LBL9	
33 X#Y	Input meas. value	82 R4	Calculate female FEF.
34 -		83 5	
35 EEX		84 EEX	
36 2	Calculate and display % of	85 5	
37 x	predicted	86 CHS	
38 RTN		87 RCL5	
39 #LBL4		88 X#	
40 CSBB	Calculate predicted FEF	89 x	
41 R/S		90 +	
42 ST06		91 ENT?	
43 -		92 RTN	
44 2			
45 5			
46 x			
47 RTN	Input Δt @ .25VC		
48 RCL6			
49 -			

REGISTERS

0 Predicted Value	1 A	2 B	3 C	4 ht. (cm)	5 age (Years)
6 Measured VC	7	8	9	0	1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input patient height in cm, or in inches	Ht, cm. Ht, in.	GSB [1] CHS GSB [1]	Ht, cm Ht, cm
3	Input patient age in years	AGE, Yrs.	GSB [2]	AGE, Yrs.
4	Calculate predicted values of desired functions.			
	Input A from table I	A	ENTER ↴	
	Input B from table I	B	ENTER ↴	
	Input C from table I	C	GSB [3]	Pred. Value
5	Calculate % of predicted value			
	Input measured value	Meas. Value	R/S	% of Pred.
6	Calculate forced expiratory flow			
	Calculate predicted FEF			
	Input A from table I	A	ENTER ↴	
	Input B from table I	B	ENTER ↴	
	Input C from table I	C	GSB [4]	FEF Pred.
	Input measured VC	VC	R/S	25% VC
	Obtain t @ 25% VC from spirogram and input	$t_{25\%}$ sec.	R/S	75% VC
	Obtain t @ 75% VC from spirogram and input	$t_{75\%}$ sec.	R/S	FEF _{Meas.}
	Calculate % predicted FEF		R/S	% FEF _{Pred.}
	Recall FEF _{Pred.} if desired		R/S	FEF _{Pred.}

Example 1:

Calculate the predicted and percentage of predicted vital capacity, residual volume and forced expiratory flow for a male 6 feet tall, 28 years of age.

Measured values are:

$$VC = 5.2 \text{ l}$$

$$RV = 2.0 \text{ l}$$

Keystrokes:**Outputs:**

Calculate VC: From table 1, A = 0.058, B = 0.025, C = 4.24

72 CHS GSB 1	182.88	(cm)
28 GSB 2	28	(years)
.058 ENTER + .025 ENTER + 4.24		
GSB 3	5.67	(l, VC _{Pred.})
5.2 R/S	91.76	(% Pred.)

Calculate RV: From table 1, A = 0.03, B = -0.015, C = 3.75

.03 ENTER + .015 CHS ENTER +		
3.75 GSB 3	2.16	(l, RV _{Pred.})
2 R/S	92.75	(% Pred.)

Calculate % of FEF: From table 1, A = 0.02, B = 0.04, C = -2.0

.02 ENTER + .04 ENTER + 2.0		
CHS GSB 4	4.54	(l, FEF _{Pred.})

Input Measured VC = 5.2 l.

5.2 R/S	1.30	(25% VC)
---------	------	----------

From Spirogram at 25% VC = 1.3 Obtain t_{25%} = 0.4 sec.

.4 R/S	3.90	(75% VC)
--------	------	----------

From Spirogram at 75% VC = 3.9 Obtain t_{75%} = 1.0 sec.

1 R/S	4.33	(l, FEF)
R/S	95.50	(% Pred.)
R/S	4.54	(l, FEF _{Pred.})

Example 2:

Calculate the predicted and percentage of predicted vital capacity for a female patient 5 feet tall, 28 years of age.

Measured VC = 3.0 l

Measured RV = 1.2 l

Keystrokes:**Outputs:**

Calculate VC: From table 1, A = 0.045, B = 0.024, C = 2.852

60 CHS GSB 1	152.40	(cm)
28 GSB 2	28.00	(years)
.045 ENTER + .024 ENTER +		
2.852 GSB 3	3.33	(l, VC _{Pred.})
3.0 R/S	89.98	(% Pred.)

Calculate RV: From table 1, A = 0.024, B = -0.012, C = 2.63

.024 **ENTER** **♦** .012 **CHS** **ENTER** **♦**

2.63 **GSB** **3** **ENTER** **♦** 1.36 (l, RV_{Pred.})

1.2 **R/S** **ENTER** **♦** 88.00 (% Pred.)

Calculate % FEF: From table 1, A = 0.02, B = 0.03, C = -1.3

.02 **ENTER** **♦** .03 **ENTER** **♦** 1.3

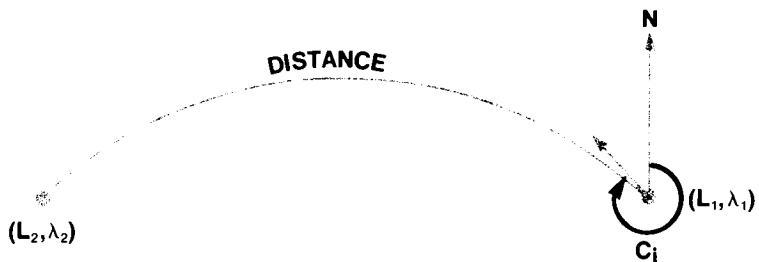
CHS **GSB** **4** **ENTER** **♦** 3.47 (l, FEF_{Pred.})

3.0 **R/S** **ENTER** **♦** 0.75 (25% VC)

From Spirogram Find t = 0.4 sec @ 25% VC

.4 **R/S** **ENTER** **♦** 2.25 (75% VC)

From Spirogram Find t = 1.0 sec @ 75% VC


1.0 **R/S** **ENTER** **♦** 2.50 (l, FEF_{Meas.})

R/S **ENTER** **♦** 72.07 (% Pred.)

R/S **ENTER** **♦** 3.47 (l, FEF_{Pred.})

GREAT CIRCLE NAVIGATION

This program calculates the great circle distance between two points and the initial course from the first point. Coordinates are input in degrees-minutes-seconds format. The distance is displayed in nautical miles and the initial course in decimal degrees.

Equations:

$$D = 60 \cos^{-1} [\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos (\lambda_2 - \lambda_1)]$$

$$C = \cos^{-1} \left[\frac{\sin L_2 - \sin L_1 \cos (D/60)}{\sin (D/60) \cos L_1} \right]$$

$$C_i = \begin{cases} C; \sin (\lambda_2 - \lambda_1) < 0 \\ 360 - C; \sin (\lambda_2 - \lambda_1) \geq 0 \end{cases}$$

where:

L_1, λ_1 = coordinates of initial point

L_2, λ_2 = coordinates of final point

D = distance from initial to final point

C_i = initial course from initial to final point

Remarks:

Southern latitudes and eastern longitudes must be entered as negative numbers.

Truncation and round off errors occur when the source and destination are very close together (1 mile or less).

Do not use coordinates located at diametrically opposite sides of the earth.

Do not use latitudes of $+90^\circ$ or -90° .

Do not try to compute initial heading along a line of longitude ($L_1 = L_2$).

This program assumes the calculator is set in DEG mode.

01 #LBL8		50 SIN		
02 +H		51 ÷		
03 ST08	L ₁	52 COS ⁻¹		C
04 RTN	-----	53 RCL4		
05 +H		54 SIN		
06 ST01	λ_1	55 X ^{0.9}		
07 R/S	-----	56 CT09		
08 +H		57 R ⁴		
09 ST02	L ₂	58 3		
10 R/S	-----	59 6		
11 +H		60 8		
12 ST03	λ_2	61 X ² Y		
13 R/S	-----	62 -		
14 #LBL1		63 RTN	*** C _i	
15 RCL8		64 #LBL9		
16 SIN		65 R ⁴		
17 RCL2		66 RTN	*** C _i	
18 SIN				
19 x				
20 RCL8				
21 COS				
22 RCL2				
23 COS				
24 x				
25 RCL3				
26 RCL1				
27 -				
28 ST04				
29 COS				
30 x				
31 +				
32 ST05				
33 COS ⁻¹				
34 ST06				
35 6				
36 8				
37 x				
38 R/S	*** D			
39 RCL2				
40 SIN				
41 RCL8				
42 SIN				
43 RCL5				
44 x				
45 -				
46 RCL8				
47 COS				
48 ÷				
49 RCL6				
REGISTERS				
0 L ₁	1 λ_1	2 L ₂	3 λ_2	4 $\lambda_2 - \lambda_1$
6 D/60	7 C _i	8	9	0
2	.3	4	5	16
18	19	20	21	22
24	25	26	27	28
				29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in latitude and longitude of origin.	L_1 (D.MS) λ_1 (D.MS)	GSB 0 R/S	L_1 (dec. deg) λ_1 (dec. deg)
3	Key in latitude and longitude of destination.	L_2 (D.MS) λ_2 (D.MS)	R/S R/S	L_2 (dec. deg) λ_2 (dec. deg)
4	Calculate distance and initial course.		GSB 1 R/S	D (n.m.) C_i (dec. deg)

Example 1:

Find the distance and initial course for the great circle from Tokyo (L $35^{\circ}40'N$, $\lambda 139^{\circ}45'E$) to San Francisco (L $37^{\circ}49'N$, $\lambda 122^{\circ}25'E$).

Keystrokes:

35.40 GSB 0 139.45

CHS R/S →

37.49 R/S 122.25 R/S →

GSB 1 →

R/S →

Outputs:

-139.75

122.42

4460.04 (D, n. m.)

54.37 (C_i , dec. deg.)**Example 2:**

What is the distance and initial great circle course from L $33^{\circ}53'30"S$, $\lambda 18^{\circ}23'10"E$ to L $40^{\circ}27'10"N$, $\lambda 73^{\circ}49'40"W$?

Keystrokes:

33.533 CHS GSB 0 18.231

CHS R/S →

40.271 R/S 73.494 R/S →

GSB 1 →

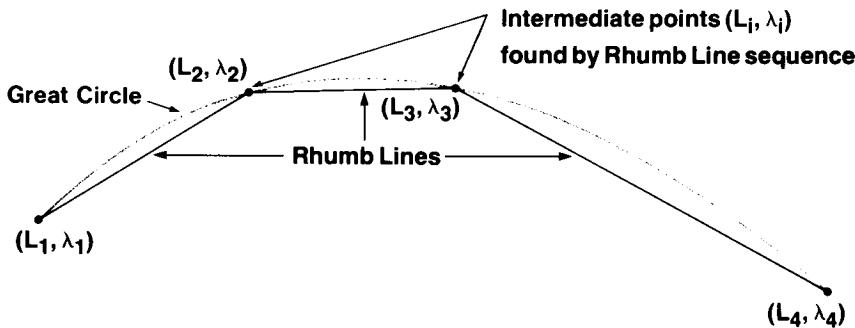
R/S →

Outputs:

-18.39

73.83

6763.09 (D, n. m.)


304.48 (C_i , dec. deg.)

RHUMB LINE NAVIGATION

This program is designed to assist in the activity of course planning. You supply the latitude and longitude of the point of origin and the destination. The program calculates the rhumb line course and the distance from origin to the destination.

Since the rhumb line is the constant course path between points on the globe, it forms the basis of short distance navigation. In low and midlatitudes the rhumb line is sufficient for virtually all course and distance calculations which navigators encounter. However, as distance increases or at high latitudes the rhumb line ceases to be an efficient track since it is not the shortest distance between points.

The shortest distance between points on a sphere is the great circle. However, in order to steam great circles, an infinite number of course changes are necessary. Since it is impossible to calculate an infinite number of courses at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumb lines used the closer to the great circle distance the sum of the rhumb line distances will be. The Great Circle Navigation program may be used to calculate intermediate course change points which can be linked by rhumb lines.

Latitudes and longitudes are input in degrees-minutes-seconds. Course is displayed in decimal degrees. Southern latitudes and eastern longitudes are input as negative numbers.

Equations:

$$C = \tan^{-1} \frac{\pi (\lambda_1 - \lambda_2)}{180 (\ln \tan (45 + \frac{1}{2} L_2) - \ln \tan (45 + \frac{1}{2} L_1))}$$

$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0 \\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ otherwise} \end{cases}$$

where:

(L_1, λ_1) = position of initial point

(L_2, λ_2) = position of final point

D = rhumb line distance

C = rhumb line course

Remarks:

No course should pass through either the south or north pole.

Errors in distance calculations may be encountered as $\cos C$ approaches zero.

Accuracy deteriorates for very short legs.

This program assumes the calculator is set in DEG mode.

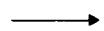
01 #LBL1		58 RTN		
02 #H		51 #LBL8		
03 ST03	λ_2	52 3		
04 R4		53 6		
05 #H		54 8		
06 ST02	L_2	55 RCL5		
07 R4		56 ABS		
08 #H	λ_1	57 -		
09 ST01		58 #LBL7		
10 R4		59 ABS		
11 #H	L_1	60 ST06		
12 ST08		61 1		
13 FJX2	$\lambda_1 - \lambda_2$	62 8		
14 RCL1		63 8		
15 RCL3	-----	64 RCL4		
16 -		65 ABS		
17 ST04		66 X#Y?		is $(\lambda_1 - \lambda_2) > 180^\circ$?
18 2	Make $-180 \leq \lambda_1 - \lambda_2$	67 GSB6		If so subtract from 360
19 ≤ 180		68 RCL2		
20 SIN		69 COS		
21 SIN⁻¹		70 x		
22 9		71 ST07		
23 0		72 RCL2		
24 =		73 RCL8		
25 Pi		74 -		
26 x		75 RCL5		
27 RCL2		76 COS		
28 GSB9		77 X#B?		is C = 90° ?
29 RCL8		78 \div		
30 GSB9		79 ENT†		
31 -		80 X=B?		
32 #P		81 RCL7		
33 R4		82 6		
34 ST05	C	83 0		
35 RCL4		84 x		
36 SIN		85 ABS		*** Distance
37 SIN⁻¹		86 R/S		*** Course
38 X#B?	x < 0 means east to west,	87 RCL6		-----
39 GT08		88 RTN		
40 RCL5		89 #LBL6		
41 GT07		90 3		
42 #LBL9	If west to east	91 6		if $[\lambda_1 - \lambda_2] > 180^\circ$
43 2	C is answer	92 0		
44 \div		93 X#Y		then $360 - [\lambda_1 - \lambda_2]$
45 4		94 -		
46 5		95 RTN		
47 +				
48 TAN				
49 LN				

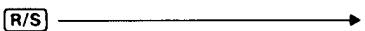
REGISTERS

0 L_1	1 λ_1	2 L_2	3 λ_2	4 $\lambda_1 - \lambda_2$	5 Used
6 C	7 Used	8	9	0	1
2	3	4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in latitude and longitude of origin	λ_1 (D.MS) λ_1 (D.MS)	ENTER ENTER	
3	Key in latitude and longitude of destination	λ_2 (D.MS) λ_2 (D.MS)	ENTER	
4	Calculate distance and course		GSB 1 R/S	D (n.m.) C (dec. deg.)
	Note: Southern latitudes and eastern longitudes must be input as negative numbers.			


Example 1:


What is the distance and course from $L35^{\circ}24'12''N$, $\lambda125^{\circ}02'36''W$ to $L41^{\circ}09'12''N$, $\lambda147^{\circ}22'36''E$?

Keystrokes:

35.2412 **ENTER** 125.0236

ENTER 41.0912 **ENTER**

147.2236 **CHS** **GSB** **1**

R/S

Outputs:

4135.60 (DIST., n. m.)

274.79 (C, dec. deg.)

Example 2:

What course should be sailed to travel a rhumb line from $L2^{\circ}13'42''S$, $\lambda179^{\circ}07'54''E$ to $L5^{\circ}27'24''N$, $\lambda179^{\circ}24'36''W$? What is the distance?

Keystrokes:

2.1342 **CHS** **ENTER** 179.0754

CHS **ENTER** 5.2724 **ENTER**

179.2436 **GSB** **1**

R/S

Outputs:

469.31 (DIST., n. m.)

10.73 (C, dec. deg.)

SIGHT REDUCTION TABLE

This program calculates the computed altitude, H_c , and azimuth, Z_n , of a celestial body given the observer's latitude, L , and the local hour angle, LHA, and declination, (d), of the body. It thus becomes a replacement for the nine volumes of H0 214. Moreover, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

Equations:

$$H_c = \sin^{-1} [\sin d \sin L + \cos d \cos L \cos \text{LHA}]$$

$$Z_n = \begin{cases} Z; & \sin \text{LHA} < 0 \\ 360 - Z; & \sin \text{LHA} \geq 0 \end{cases}$$

$$Z = \cos^{-1} \left[\frac{\sin d - \sin L \sin H_c}{\cos L \cos H_c} \right]$$

Remarks:

- Southern latitudes and southern declinations must be entered as negative numbers.
- The meridian angle t may be input in place of LHA, but if so, eastern meridian angles must be input as negative numbers.
- The program assumes the calculator is set in DEG mode.

Note:

This program may also be used for star identification by entering observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in *The Nautical Almanac*.

01 #LBL1			50 3		
02 +H			51 6		
03 ST08	L		52 0		
04 RTN	-----		53 XZY		
05 +H			54 -		
06 ST01			55 RTN	*** Zn	
07 R/S			56 #LBL8		
08 +H	d		57 R4		
09 ST02	-----		58 RTN	*** Zn	
10 RCL8					
11 SIN	LHA				
12 RCL1					
13 SJN					
14 x					
15 RCL8					
16 COS					
17 RCL1					
18 COS					
19 x					
20 RCL2					
21 COS					
22 x					
23 +					
24 ST03					
25 SIN ⁻¹					
26 ST04	Hc, dec. deg.				
27 +HNS					
28 FTX4	Hc, D.MS				
29 R/S	***				
30 FTX1					
31 RCL1					
32 SIN					
33 RCL3					
34 RCL8					
35 SIN					
36 x					
37 -					
38 RCL8					
39 COS					
40 ÷					
41 RCL4					
42 COS					
43 ÷					
44 COS ⁻¹					
45 RCL2					
46 SIN					
47 X ^{0.8}	Z				
48 ST08					
49 R↓					

REGISTERS

0 L	1 d	2 LHA	3 Sin Hc	4 Hc	5
6	7	8	9	0	1
.2	.3	4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTION	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input the following:			
	Observer's latitude	L (D.MS)	GSB 1	
	Declination	d (D.MS)	R/S	
	Local hour angle	L.H.A. (D.MS)		
3	Calculate:			
	Altitude		R/S	Hc (D.MS)
	Azimuth		R/S	Zn (dec. deg.)
	or			
2	Input:			
	Observer's latitude	L (D.MS)	GSB 1	
	Altitude	Hc (D.MS)	R/S	
	Azimuth	Zn (D.MS)		
3	Calculate:			
	Declination		R/S	d (D.MS)
	Local hour angle		R/S	L.H.A. (dec. deg.)

Example 1:

Calculate the altitude and azimuth of the moon if its LHA is $2^{\circ}39'54''$ W and its declination $13^{\circ}51'06''$ S. The assumed latitude is $33^{\circ}20'$ N.

Keystrokes:

33.20 GSB 1 → 33.33
 13.5106 CHS R/S → -13.85
 2.3954 R/S → 42.4447 (Hc, D.MS)
 R/S → 183.5 (Zn, dec. deg.)

Outputs:**Example 2:**

Calculate the altitude and azimuth of REGULUS if its LHA is $36^{\circ}39'18''$ W and its declination is $12^{\circ}12'42''$ N. The assumed latitude is $33^{\circ}30'$ N.

Keystrokes:

33.30 GSB 1 → 33.5
 12.1242 R/S → 12.2
 36.3918 R/S → 50.2425 (Hc, D.MS)
 R/S → 246.3 (Zn, dec. deg.)

Outputs:

Example 3:

At 6:10 G.M.T. on January 12, 1977 a star peeked through the clouds over Corvallis ($44^{\circ}34'N$, $\lambda 123^{\circ}17'W$). An alert observer using a bubble sextant quickly determined its altitude to be 26° and its azimuth 158° . Using *The Nautical Almanac* identify the star.

Keystrokes:

44.34 GSB 1 26 R/S

158 R/S →

R/S →

Outputs:

-16.3725 (d, D.MS)
339.4 (L.H.A., dec. deg.)

Obtain G.H.A. by adding latitude to L.H.A.

123.17 g H + → 462.7 (G.H.A., dec. deg.)

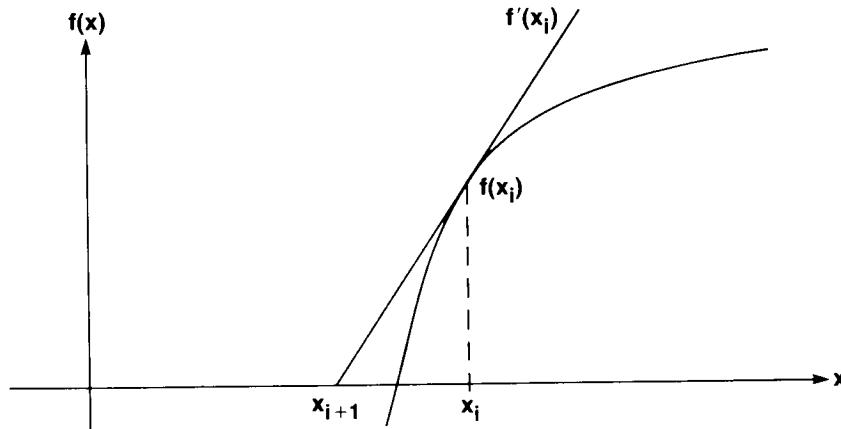
Then convert G.H.A. to S.H.A. by subtracting G.H.A. ARIES (for 6:10 G.M.T., January 12, 1977 G.H.A. ARIES is 203.4 dec. degrees).

203.4 - f + H.MS → 259.2 (S.H.A., D.MS)

From *The Nautical Almanac* we find the star to be SIRIUS (S.H.A. = $258^{\circ}58.1'$, d = $S16^{\circ}41.2'$).

NEWTON'S METHOD-SOLUTION TO $f(x) = 0$

This program uses Newton's method to find a solution for $f(x) = 0$, where $f(x)$ is specified by the user.


The user must define the function $f(x)$ by keying into program memory the keystrokes required to find $f(x)$, assuming x is in the X-register. 55 program steps are available for defining $f(x)$; the program only uses registers R_0 through R_4 , the rest of the registers are available to the user.

The user must provide the program with an initial guess, x_1 , for the solution. The closer the initial guess is to the actual solution, the faster the program will converge to an answer. The program will halt when two successive approximations for x , say x_i and x_{i+1} , are within a tolerance ϵ , i.e., when $|x_{i+1} - x_i| < \epsilon$. The value for ϵ must be input by the user. In general a reasonable value for ϵ might be $10^{-6} x_1$.

Equations:

The basic formula used by Newton's method to generate the next approximation for the solution is:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

This program makes a numerical approximation for the derivative $f'(x)$ to give the following equation:

$$x_{i+1} = x_i - \delta_i \left[\frac{f(x_i + \delta_i) - f(x_i)}{\delta_i} - 1 \right]^{-1}$$

where:

$$\delta_i = 10^{-5} x_i$$

Remarks:

After the routine has finished calculating, the last value of $f(x)$ may be displayed by pressing **RCL 4**. If this value is not close enough to zero, the program may be run again with a smaller value for ϵ .

Programming Remarks:

This is one of the more complex programs in the book. The main difficulty is that at each iteration both $f(x)$ and $f(x + \delta)$ need to be calculated, but the function f is keyed in in only one place in program memory. Large computers handle this problem by the use of a subroutine. This program simulates that technique by a number stored in R_0 known as a flag. The flag is set to 0 to indicate that $f(x)$ is to be calculated, or to 1 if $f(x + \delta)$ is to be found. After the calculation of f , a test is made on the flag. If it is 0, the program will branch to an instruction which will store $f(x)$; if it is 1, the program will go on to calculate a derivative based on $f(x + \delta)$.

01 #LBL1				
02 STO2	Store x, ϵ			
03 X ² Y	-----			
04 STO1	-----			
05 #LBL8				
06 CLX				
07 STO8	Set flag to 0 for $f(x)$			
08 RCL1	-----			
09 GT08	-----			
10 #LBL6				
11 R ₁				
12 STO4				
13 1				
14 STO8				
15 RCL1	Store $f(x)$ and calculate δ			
16 RCL1				
17 EEX				
18 5				
19 ÷				
20 STO3	-----			
21 +	User's $f(x)$	-----		
22 #LBL8	-----			
23 #LBL7				
24 X=0?				
25 GT09				
26 RCL8				
27 X=0?				
28 GT06				
29 R ₁				
30 RCL4	Calculate x_{i+1}			
31 ÷				
32 1	x_i and			
33 -				
34 1/X	$[x_{i+1} - x_i] > \epsilon?$			
35 RCL3				
36 x				
37 ST-1				
38 ABS				
39 RCL2				
40 X ² Y				
41 X ² Y ²	-----			
42 GT08	-----			
43 #LBL9				
44 RCL1	...			
45 RTN	Output x_0			

REGISTERS

0 Flag	1 x	2 ϵ	3 δ	4 $f(x)$	5
6	7	8	9	0	1
12	3	4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

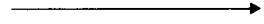
*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Press GTO 0		GTO 0	
3	Switch to PRGM and key in function $f(x)$			
4	Switch to RUN			
5	Input initial guess for solution and tolerance to calculate solution.	x_1	ENTER ↴	
		ϵ	GSB 1	x_0
6	To recall the last $f(x)$		RCL 4	$f(x)$

Example:

Find a root x_0 of the equation $\ln x + 3x - 10.8074 = 0$ in the interval $[1, 5]$.
An accuracy of 10^{-4} is acceptable.

Keystrokes:


GTO 0,

Switch to PRGM

f ln f LAST X 3 x
+ 10.8074 -

Switch to RUN

1 ENTER ↴ EEX CHS 4

GSB 1

3.21 (root)

RCL 4

-1.50 -07 (f(3.21))

Outputs:

NUMERICAL INTEGRATION BY SIMPSON'S FORMULA

This program will perform numerical integration by Simpson's formula whether a function is known explicitly or only at a finite number of equally spaced points (discrete case).

Discrete Case:

Let x_0, x_1, \dots, x_n be n equally spaced points ($x_j = x_0 + jh$, $j = 1, 2, \dots, n$) at which corresponding values $f(x_0), f(x_1), \dots, f(x_n)$ of the function $f(x)$ are known. The function itself need not be known explicitly. After input of the step size h and the values of $f(x_j)$, $j = 0, 1, \dots, n$, then the integral

$$\int_{x_0}^{x_n} f(x) dx \quad (1)$$

may be approximated using Simpson's rule:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \quad (2)$$

In order to apply Simpson's rule, n must be even.

Explicit Functions:

If an explicit formula is known for the function $f(x)$, then the function may be keyed into program memory and numerically integrated by Simpson's rule. The user must specify the endpoints a and b of the interval over which integration is to be performed, and the number of subintervals n into which the interval (a, b) is to be divided. This n must be even; if it is not, Error will be displayed. The program will go on to compute $x_0 = a$, $x_j = x_0 + jh$, $j = 1, 2, \dots, n-1$, and $x_n = b$ where

$$h = \frac{b - a}{n}$$

The integral $\int_a^b f(x) dx$ is approximated by equation (2) above, Simpson's rule.

17 program steps (or more) are available for user's function $f(x)$. Refer to the Instructions for keying in the function $f(x)$.

Remarks:

- Since there are actually 3 routines after LBL 1 for keying in the value of $f(x_j)$, one for $j = 0$, one for j odd, and one for j even, it is important that no other keys be pressed during the entry of the $f(x_j)$, lest the next $f(x_j)$ entered go into the wrong register.
- If n is not even erroneous results will occur.

81 #LBL1		58 ST+0	
82 CLRG	Input h	51 RCL2	
83 ST04		52 RCL1	
84 R/S	-----	53 ST05	
85 ST09		54 -	
86 #LBL9	Input f_0	55 RCL3	
87 RCL3	-----	56 =	
88 R/S		57 ST04	
89 ST01		58 0	
10 GSB6		59 ST09	
11 ENT+		60 #LBL8	
12 +		61 GSB4	
13 ST+9	Input f_i for odd i	62 ST+R	
14 1		63 2	
15 ST+3		64 ST+9	$x \leftarrow x + h$
16 RCL3		65 RCL3	
17 R/S	-----	66 RCL9	
18 ST01		67 X=Y?	$R_0 \leftarrow R_0 + 4 f(x)$
19 GSB6		68 GT05	Exit for $R_9 = n$
20 ST+9		69 GSB4	
21 1		70 GT08	
22 ST+3	Input f_i for even i	71 #LBL4	
23 GT09	-----	72 RCL4	
24 #LBL2		73 ST+5	
25 3		74 RCL5	Subroutine
26 RCL9		75 GSB0	
27 RCL1		76 GSB6	
28 -		77 RTN	
29 #LBL7	Calculate	78 #LBL5	
30 RCL4		79 3	
31 X	$\int f(x) dx$	80 RCL0	Exit
32 X=Y		81 GT07	
33 ÷	***	82 #LBL0	
34 RTN	-----	83 RTN	For User's function
35 #LBL6			
36 ENT+			
37 +			
38 ST+0	Subroutine		
39 RTN	-----		
40 #LBL3			
41 ST03			
42 R↓			
43 ST02			
44 R↓			
45 ST01	Input a, b, n		
46 GSB0	To calculate		
47 ST08	$\int_a^b f(x) dx$		
48 RCL2			
49 GSB0			

REGISTERS

0 Used	1 $f(x_i)$, a	2 b	3 n	4 h	5 x
6	7	8	9 Used	.0	.1
.2	3	4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program: i for discrete case only: program step 1 to step 39. ii for explicit functions only: program step 29 to step 83.			
2	For explicit functions, go to step 7, for discrete case, go to step 3.			
3	Discrete Case: input h	h	GSB [1]	h
4	Repeat this step for $j = 0, 1, \dots, n$: Key in the function value at x_j	$f(x_j)$	R/S	j
5	Calculate the integral		GSB [2]	the integral
6	For a new case, go to step 3.			
7	Explicit Function: To key in your function $f(x)$, first press, then switch to PRGM and key in $f(x)$ Switch back to RUN*		GTO [0]	
8	Input a, b, and n to calculate $\int_a^b f(x) dx$	a b n	ENTER ENTER GSB [3]	the integral
9	For a new set of a, b, and n, go to step 7.			
	*Note: Available program steps for $f(x)$ are: • 45 steps when only the EXPLICIT part is keyed in. • 17 steps when both parts are keyed in.			

Example 1:

Given the values below for $f(x_j)$, $j = 0, 1, \dots, 8$, calculate the approximations to the integral

$$\int_0^2 f(x) dx$$

by Simpson's formula.

The value for h is 0.25.

i	0	1	2	3	4	5	6	7	8
x_i	0	.25	.5	.75	1	1.25	1.5	1.75	2
$f(x_i)$	2	2.8	3.8	5.2	7	9.2	12.1	15.6	20

Keystrokes:**Outputs:**

(Key in the program from step 1 to step 39)

0.25 GSB 1 → 0.25
 2 R/S 2.8 R/S 3.8 R/S 5.2
 R/S 7 R/S 9.2 R/S 12.1
 R/S 15.6 R/S 20 R/S → 8.00
 GSB 2 → 16.58 (the integral)

Example 2:

Find the value of

$$\int_0^{2\pi} \frac{dx}{1 - \cos x + 0.25}$$

for $n = 16$. Note that x is assumed to be in radians. For safety, if you work mostly in degrees, it is good programming practice to set the angular mode to radians at the beginning of the routine, then back to degrees at the end.

Keystrokes:**Outputs:**

(Key in the program from step 29 to step 83)

GTO 0,

Switch to PRGM

9 RAD f cos 1 x:y - .25
 + 9 1/x 9 DEG ,

Switch back to RUN

0 ENTER + 9 π 2 x 16

GSB 3 →

8.36 (Answer)

IDEAL GAS EQUATION OF STATE

Many gases obey the ideal gas laws quite closely at reasonable temperatures and pressures. This program calculates any one of the four variables when data for the other three and the universal gas constant are entered. Likewise, the value of the universal gas constant can be determined by entering data for the four variables.

Equation:

$$PV = n RT$$

where: P is the absolute pressure

V is the volume

n is the number of moles present

R is the Universal Gas Constant

T is the absolute temperature

Table 1
Values of the Universal Gas Constant

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	N·m/g mole-°K	N/m ²	m ³ /g mole	°K
83.14	cm ³ ·bar/g mole-°K	bar	cm ³ /g mole	°K
82.05	cm ³ ·atm/g mole-°K	atm	cm ³ /g mole	°K
0.08205	ℓ - atm/g mole-°K	atm	ℓ/g mole	°K
0.7302	atm·ft ³ /lb mole-°R	atm	ft ³ /lb mole	°R
10.73	psi·ft ³ /lb mole-°R	psi	ft ³ /lb mole	°R
1545	psf·ft ³ /lb mole-°R	psf	ft ³ /lb mole	°R

Remarks:

- At low temperatures or high pressures the ideal gas law does not represent the behavior of real gases.
- The value of R used must be compatible with the units of P, V, T.
- To ensure proper execution of the program initialize by pressing **GTO 6** before entering data.

01	*LBL6				
02	8				
03	RTN				
04	*LBL1				
05	1				
06	GT08				
07	*LBL2				
08	2				
09	GT08				
10	*LBL3				
11	3				
12	GT08				
13	*LBL4				
14	4				
15	GT08				
16	*LBL5				
17	5				
18	*LBL6				
19	ST08				
28	R				
21	ST01				
22	X#02				
23	GT08				
24	1				
25	ST01				
26	RCL1				
27	RCL2	PV			
28	X				
29	RCL3				
30	RCL4	n RT			
31	X				
32	RCL5				
33	X				
34	GT01				
35	*LBL1				
36	*LBL2				
37	X#Y				
38	*LBL3				
39	*LBL4				
40	*LBL5				
41	÷				
42	ST01				
43	RTN	***			

Initialize and store data

PV

n RT

Calculate P or V

Calculate n, R or T

REGISTERS

0	Indirect	1	P	2	V	3	n	4	R	5	T
6		7		8		9		.0		.1	
2		3		4		5		16		17	
18		19		20		21		22		23	
24		25		26		27		28		29	

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input four of the following:			
	absolute pressure	P	GSB 1	0.00*
	volume	V	GSB 2	0.00
	number of moles	n	GSB 3	0.00
	universal gas constant	R	GSB 4	0.00
	absolute temperature	T	GSB 5	0.00
3	Calculate one of the following:**			
	absolute pressure	0.00	GSB 1	P
	volume	0.00	GSB 2	V
	number of moles	0.00	GSB 3	n
	universal gas constant	0.00	GSB 4	R
	absolute temperature	0.00	GSB 5	T
4	For a new case, go to step 2 and change appropriate inputs.			
5	If program fails to execute properly press GTO 6 and start again.		GTO 6	
*	Be sure that 0.00 is displayed after each data entry. If not press GTO 6 and reenter all data.			
**	Be sure 0.00 is displayed before GSB is executed to calculate unknown.			

Example 1:

0.63 moles of air are enclosed in 25000 cm³ of space at 1200°K. What is the pressure in bars? In atmospheres? Assume an ideal gas.

Keystrokes:

25000 GSB 2 0.63 GSB 3

83.14 GSB 4 1200 GSB 5

GSB 1 →

82.05 GSB 4 GSB 1 →

Outputs:

2.51 (bars)

2.48 (atm.)

Example 2:

What is the specific volume (ft³/lb) of a gas at atmospheric pressure and a temperature of 513°R? The molecular weight is 29 lb/lb-mole.

Keystrokes:

513 GSB 5 29 g 1/x

GSB 3 0.7302 GSB 4 1

GSB 1 GSB 2 →

Outputs:12.92 (ft³/lb)

What is the density?

g 1/x FIX 3 →

0.077 (lb/ft³)

What is the density at 1.32 atmosphere and 555° R?

1.32 GSB 1 555 GSB 5 GSB 2

g 1/x →

0.094 (lb/ft³)

RADIOACTIVE ISOTOPE DECAY

This program is designed to allow calculation of the decay in radioactivity of an isotope over a specified time interval. To use the program, select an isotope and key in its half-life. (Half-life data may be stored for up to 10 different isotopes in available storage registers.) Then key in two of the three variables:

A_0 : Initial activity of the isotope.

t : Elapsed time.

A : Present activity.

The program then calculates the missing variable. Thus, for example, you are not restricted to finding the present activity, given time and initial activity; you may also solve for initial activity given time and present activity, or for time given initial activity and present activity.

The continuous memory feature of your calculator allows convenient storage and recall of the half-lives of up to ten of the isotopes you most commonly use. Prior storage of the half-lives eliminates having to enter them before each calculation and they are always available.

You may use any units for initial and present activity as long as they are consistent. The elapsed time *must* be input in the units: Days.Hours (DD.HH), where two full decimal places must be allotted to the hours. For instance an elapsed time of 5 days 18 hours would be keyed in and displayed as 5.18; a time of 1 day 6 hours as 1.06; and a time of 12 hours as 0.12.

Equations:

$$A = A_0 \left(\frac{1}{2} \right)^{t/\tau_{1/2}}$$

$$t = \frac{\tau_{1/2} \ln (A/A_0)}{\ln (1/2)}$$

where:

A_0 = initial radioactivity

A = present radioactivity

t = time elapsed, in hours

$\tau_{1/2}$ = half-life of radioisotope, in hours

Isotope	Half-Life in Hours ($\tau_{1/2}$)
Cr ⁵¹	6672
Co ⁵⁷	6480
Co ⁶⁰	46460
I ¹²⁵	1440
I ¹³¹	193.2
Cs ¹³⁷	262980
H ³	107470
C ¹⁴	5.058×10^7
F ¹⁸	1.87
P ³²	343.2
Se ⁷⁵	2880
Sr ⁸⁵	1536
In ¹¹³	1.73
Xe ¹³³	126.5
Hg ¹⁹⁷	65
Ra ²²⁶	1.3938×10^7

Remarks:

When recalling previously stored half-life data from the storage registers the program utilizes indirect addressing. Remember that the indirect addresses of storage registers .0 thru .5 are 10 thru 15 respectively.

If half-life of desired isotope has not previously been stored the user may key it in and store it in register 2, for use in the program.

Time is input and displayed in DD.HH format. To prevent "untidy" displays, such as 6.24 instead of 7.00 days, residual hours of 23.5 or greater are presented as 1.00 day.

The variable to be calculated is always input with a value of 0.00.

81 #LBL0	Recall selected isotope half-life	58 ÷	
82 ST00		51 ST01	
83 RCL1		52 LN	
84 ST02		53 RCL2	
85 RTN		54 X	
86 #LBL1		55 .	
87 FIX2		56 5	
88 ST03	Input data	57 LN	
89 R↓		58 ÷	
10 X=0°	Calculator determines which variable is to be calculated	59 2	
11 ST04		60 4	
12 GSB9		61 ÷	
13 R↓		62 ENT*	Convert from hours to DD.HH
14 ST05		63 INT	
15 X=0°		64 X ^Y	
16 GT08		65 FRC	
17 RCL4		66 2	
18 X=0°		67 4	
19 GT07		68 X	
20 GT06		69 2	
21 #LBL9		70 3	
22 ENT*	Convert time from DD.HH to hours	71 .	If t ≥ 23.5 hours, round to nearest day
23 INT		72 5	
24 2		73 X ^Y	
25 4		74 GT05	
26 X		75 R↓	
27 X ^Y		76 EEX	
28 FRC		77 2	
29 EEX		78 ÷	
30 2		79 4	
31 X		80 RTN	
32 +		81 #LBL6	Calculate A, Present activity
33 ST04		82 .	
34 RTN		83 5	
35 #LBL8	Calculate A ₀ , Initial activity	84 RCL4	
36 RCL3		85 RCL2	
37 RCL4		86 ÷	
38 RCL2		87 Y ^X	
39 ÷		88 RCL5	
40 .		89 X	
41 5		90 ST03	
42 X ^Y		91 RTN	
43 Y ^X		92 #LBL5	
44 ÷		93 R↓	
45 ST05		94 R↓	
46 RTN		95 1	
47 #LBL7		96 +	
48 RCL3		97 RTN	
49 RCL5	Calculate t, time		Present t ≥ 23.5 hours as 1 day

REGISTERS

0 i	1 A/A ₀	2 $\tau_{1/2}$	3 A	4 t	5 A ₀
6 *	7	8	9	10	11
2	3	4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

* Registers 6 through .5 are available for isotope half life storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program. To store half-lives of commonly used isotopes.			
1'	Store half lifes of desired isotopes in registers 6 through 9 and .0 through .5.*	$\tau_{1/2}$, hrs.	STO 6 STO 9 STO .0 STO .5	
2	To calculate variables. Select desired isotope and initialize by recalling its $\tau_{1/2}$ from storage, using indirect address.	$\tau_{1/2}$ index	GSB 0	
2'	or, if isotope half life is not stored, input $\tau_{1/2}$ manually.	$\tau_{1/2}$	STO 2	
3	Key in variables in this format: <ul style="list-style-type: none">Activity at time zeroElapsed time, in days hours formatPresent activity Important: Input zero for value of unknown variable. Be sure variables are entered in above order.	A_0 t, DD.HH A	ENTER 1 ENTER 2 GSB 1	unknown
4	Other data may be recalled as desired: <ul style="list-style-type: none">Decay factor, A/A_0Half life, $\tau_{1/2}$		RCL 1 RCL 2	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	<ul style="list-style-type: none"> • Present activity, A • Elapsed time • Initial activity <p>* Half lives of up to 10 selected isotopes may be permanently stored in registers 6 through 9 and .0 through .5 having indirect addresses 6 through 15 respectively.</p>		RCL 3 RCL 4 RCL 5	

Example:

An activity of $200 \mu\text{Ci}$ is measured for a standard of Cr^{51} (with half-life 667.20 hours). What is the activity after a week?

Keystrokes:

667.20 **STO** 2 →
 200 **ENTER** →
 7 **ENTER** →
 0 **GSB** 1 →

Outputs:

667.20 ($\tau_{1/2}$ for Cr^{51})
 200.00 (A_0)
 7.00 ($t = 7$ days)
 167.97 ($A, \mu\text{Ci}$)

(OR)

Calculate A_0 given $A = 167.97 \mu\text{Ci}$ and $t = 7.00$

0 **ENTER** → 0 Unknown
 7 **ENTER** → 7.00 ($t = 7$ days)
 167.97 **GSB** 1 → 200.00 ($A_0, \mu\text{Ci}$)

ACID-BASE EQUILIBRIUM

This program calculates the hydrogen ion concentration, $[\text{H}_3\text{O}^+]$, and pH of a solution of a monoprotic weak acid if the ionization constant is known. Likewise, the program will calculate $[\text{OH}^-]$ concentration and pOH for solutions of weak bases given the ionization constant of the base. In addition, conversions from concentration to pH or pOH and vice versa and from pH to pOH, $[\text{H}_3\text{O}^+]$ to $[\text{OH}^-]$ etc. are included.

The following equation is used:

$$x^3 + K_a x^2 - (K_w + K_a C_a) x - K_w K_a = 0 \quad (K_b \text{ For bases})$$

where:

$$x = [\text{H}_3\text{O}^+] \text{ For acid, } [\text{OH}^-] \text{ For base}$$

$$K_a = \text{Ionization constant of acid} = \frac{[\text{H}_3\text{O}^+] [\text{A}^-]}{[\text{HA}]}$$

$$K_b = \text{Ionization constant of base} = \frac{[\text{B}^+] [\text{OH}^-]}{[\text{BOH}]}$$

$$K_w = \text{Ionization constant of water} = 10^{-14} @ 25^\circ \text{ C}$$

$$C_a \text{ or } C_b = \text{Concentration (moles/liter) of acid or base}$$

The program uses Newton's method of approximating the solution of a polynomial where one evaluates $f(x)$ successively with approximate values of X . First approximation of x is $x = (K_a C_a + K_w)^{1/2}$. Successive approximations are $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

The calculation is reiterated until x_{i+1} differs from x_i a small amount (1% or less).

References:

Butler, J.N., "Ionic Equilibrium, A Mathematical Approach", Addison-Wesley, 1964.

Dick, J.G., "Analytical Chemistry", McGraw-Hill, 1973.

This program is based upon a program submitted to the HP Users' Library by Alan J. Rubin.

01 #LBL1			58 X?Y?		
02 ST08			51 GT09		
03 R4			52 RCL2		
04 ST01			53 RCL5		
05 SCI2			54 -		
06 RCL0			55 ST02		
07 x			56 GT08		
08 EEY			57 #LBL9		
09 CMS	Calculate and store constants		58 RCL2		
10 1			59 R/S		Calculate next approximation
11 4			60 #LBL2		
12 +			61 LOG		Iterate
13 ST03			62 CMS		
14 LSTX			63 FIX2		
15 RCL1			64 RTN		
16 x			65 #LBL3		
17 ST04			66 CMS		
18 RCL3			67 10^X		*** Result $[\text{H}_3\text{O}^+]$ or $[\text{OH}^-]$
19 JY			68 SCI2		
20 ST02			69 RTN		
21 #LBL6			70 #LBL4		
22 RCL1			71 1		
23 +			72 4		
24 RCL2			73 X?Y		Convert pH to pOH or vice versa
25 x			74 -		
26 RCL3			75 FIX2		
27 -			76 RTN		
28 RCL2			77 #LBL5		
29 x			78 EEY		
30 RCL4			79 CMS		
31 -			80 1		Convert $[\text{H}_3\text{O}^+] \rightarrow [\text{OH}^-]$ or $[\text{OH}^-] \rightarrow [\text{H}_3\text{O}^+]$
32 RCL2			81 4		
33 3			82 X?Y		
34 x			83 ÷		
35 RCL1			84 RTN		***
36 2					
37 x					
38 +					
39 RCL2					
40 x					
41 RCL3					
42 -					
43 ÷					
44 ST05					
45 ABS					
46 RCL2					
47 9					
48 9					
49 ÷					
Test approximations					

REGISTERS

0 C_a or C_b	1 K	2 X(est)	3 $CK + K_w$	4 KK_w	5 $f(x)/f'(x)$
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program:			
2	Enter ionization constant: K_a or K_b or pK_a or pK_b	K pK	ENTER GSB [3]	K K
3	Input concentration (moles/liter) of acid or base and calculate conc. of $[H_3O^+]$ if acid (conc. of $[OH^-]$ if base).	Conc.	GSB [1]	$[H_3O^+]$ or $[OH^-]$
4	Convert concentration to pH or pOH: $[H_3O^+] \rightarrow pH$ or $[OH^-] \rightarrow pOH$	$[H_3O^+]$ or $[OH^-]$		pH or pOH
5	If desired the following con- versions are available: concentration of $[H_3O^+]$ or $[OH^-]$ to pH or pOH Ionization const. K_a or K_b to pK_a or pK_b pH or pOH to concentration of $[H_3O^+]$ or $[OH^-]$ pK to ionization constant pH to pOH or vice versa $[H_3O^+]$ to $[OH^-]$ or vice versa	$[H_3O^+]$, $[OH^-]$ K_a , K_b pH , pOH pK_a , pK_b pH , pOH $[H_3O^+]$, $[OH^-]$	GSB [2] GSB [2] GSB [3] GSB [3] GSB [4] GSB [5] RCL [5]	pH or pOH pK_a , pK_b $[H_3O^+]$, $[OH^-]$ K_a , K_b pOH, pH $[OH^-]$, $[H_3O^+]$ $f(x)/f'(x)$
6	If desired, error of calculation may be reviewed.			

Example 1:

1. Calculate the pH of a 1.0×10^{-4} molar solution of acetic acid if the ionization constant is 1.75×10^{-5} .

Keystrokes:

1.75 EEX CHS 5 ENTER \downarrow EEX CHS
 4 GSB 1 —————→
 R/S —————→

Outputs:

3.41 -05 ($[H_3O^+]$)
 4.47 (pH)

Example 2:

Calculate the pH of a sample of water containing 0.85 mg of ammonia as the only contaminant. K_b of ammonium hydroxide is 1.8×10^{-5} and the molecular wt. of ammonia is 17.

Keystrokes:

1.8 EEX CHS 5 ENTER \downarrow 0.85
 EEX CHS 3 ENTER \downarrow 17
 \div GSB 1 —————→
 R/S —————→
 GSB 4 —————→

Outputs:

2.25 -05 ($[OH^-]$)
 4.65 (pOH)
 9.35 (pH)

(Note: After entering ionization constant, calculate molar conc. of $NH_3 = 0.85 \times 10^{-3}/17 = 5 \times 10^{-5}M$).

Example 3:

Water in equilibrium with air contains carbon dioxide which forms a dilute solution of carbonic acid. If distilled water contains 1.35×10^{-5} moles/liter of carbon dioxide, what is the pH?

(The primary ionization constant of carbonic acid is 3.5×10^{-7} , the secondary ionization constant of 4.4×10^{-11} may be neglected).

Keystrokes:

3.5 EEX CHS 7 ENTER \downarrow 1.35
 EEX CHS 5 GSB 1 —————→
 R/S —————→

Outputs:

2.03 -06 ($[H_3O^+]$)
 5.69 (pH)

(Examples 2 and 3 are taken from Kolthoff and Sandell, Textbook of Quantitative Inorganic Analysis, MacMillan, 1948).

CURVE FITTING

This program can be used to fit data to:

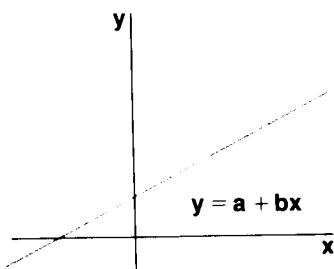
1. Straight lines (linear regression); $y = a + bx$.
2. Exponential curves; $y = ae^{bx}$ ($a > 0$),
3. Logarithmic curves; $y = a + b \ln x$,
4. Power curves; $y = ax^b$ ($a > 0$).

The regression coefficients a and b are found from solving the following equivalent of linear equations.

$$\begin{bmatrix} n & \sum X_i \\ \sum X_i & \sum X_i^2 \end{bmatrix} \begin{bmatrix} A \\ b \end{bmatrix} = \begin{bmatrix} \sum Y_i \\ \sum Y_i X_i \end{bmatrix}$$

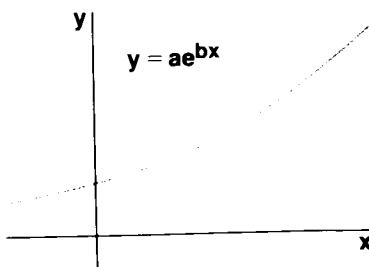
While the relations of the variables are defined as the following:

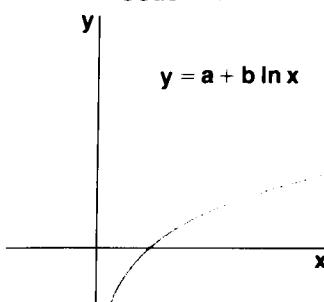
Regression	A	X _i	Y _i	Code
Linear	a	x _i	y _i	5
Exponential	ln a	x _i	ln y _i	6
Logarithmic	a	ln x _i	y _i	7
Power	ln a	ln x _i	ln y _i	8


The coefficient of determination is:

$$r^2 = \frac{A \sum Y_i + b \sum X_i Y_i - \frac{1}{n} (\sum Y_i)^2}{\sum (Y_i^2) - \frac{1}{n} (\sum Y_i)^2}$$

The type of curve fit must be determined before data input begins, that is, by storing the code number into register 0.


Linear Regression


Code = 5

Exponential Curve Fit

Code = 6

Logarithmic Curve Fit**Code = 7****Power Curve Fit****Code = 8****Remarks:**

- Negative and zero values of x_i will cause a machine error for logarithmic curve fits. Negative and zero values of y_i will cause a machine error for exponential curve fits. For power curve fits both x_i and y_i must be positive, non-zero values.
- As the differences between x and/or y values become small, the accuracy of the regression coefficients will decrease.

01 σ LBL1			58 x		
02 x ²			51 STO7		
03 GS81	Input data		52 R4		Determinate
04 Z ⁺			53 x		
05 RTN			54 RCL7		
06 σ LBL7			55 -		
07 LN	Log		56 RTN		
08 RTN			57 σ LBL3		
09 σ LBL8			58 RCL4		
10 LN			59 RC.3		
11 σ LBL6			60 x		
12 X ²	Power and exp.		61 RCL5		
13 LN			62 RC.5		
14 X ²			63 x		
15 RTN			64 +		
16 σ LBL2			65 RC.3		
17 RC.0			66 X ²		
18 RC.2			67 RC.0		Calculate r ²
19 RC.1			68 ÷		
20 RC.1			69 STO9		
21 GS82			70 -		
22 STO3			71 RC.4		
23 RC.3			72 RCLS		
24 RC.2			73 -		
25 RC.1			74 ÷		
26 RC.5			75 R/S		
27 GS89			76 σ LBL4		
28 RCL3	Calculate A, b, and a, b		77 GT01		
29 ÷			78 σ LBL8		
30 STO4			79 RCL5		
31 GS81			80 Y ²		
32 STO6			81 GT05		
33 R/S			82 σ LBL6		
34 RC.0			83 RCL5		
35 RC.5			84 x		
36 RC.1			85 e ^x		
37 RC.3			86 σ LBL9		
38 GS89			87 RCL6		
39 RCL3			88 x		Input x to calculate y
40 ÷			89 RTN		
41 STO5			90 σ LBL7		
42 RTN			91 LN		
43 σ LBL6	Inverse transform		92 σ LBL5		
44 σ LBL8			93 RCL5		
45 e ^x			94 x		
46 σ LBL5			95 RCL6		
47 σ LBL7			96 +		
48 RTN			97 RTN		
49 σ LBL9					

REGISTERS

0 Index	1 x	2 y	3 det	4 A	5 b
6 a	7 Used	8	9 1/n (ΣY) ²	10 n	11 ΣX
12 ΣX^2	13 ΣY	14 ΣY^2	15 ΣXY	16	17
18	19	20	21	22	23
24	25	26	27	28	29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Initialize.		REC	
3	Store curve fit code (5 or 6 or 7 or 8) in register 0	code	STO 0	code
4	(Repeat for $i = 1, 2, \dots, n$.) Input x_i value and y_i value.	x_i y_i	ENTER ↓ GSB 1	i
5	Calculate regression coefficients		GSB 2	a
6	Calculate r^2 .		R/S	b
7	(Repeat if necessary.) Input x to calculate \hat{y} .	x	GSB 3 GSB 4	r^2 \hat{y}
8	For a new case, go to step 2.			

Example 1:

(Linear, code = 5):

x_i	40.5	38.6	37.9	36.2	35.1	34.6
y_i	104.5	102	100	97.5	95.5	94

Solution:

$$a = 33.53, b = 1.76$$

$$r^2 = 0.99$$

$$\text{i.e., } y = 33.53 + 1.76 x$$

$$\text{For } x = 37, \hat{y} = 98.65$$

Keystrokes:

REC 5 **STO** **0**

40.5 **ENTER** **↓** 104.5 **GSB** **1**

38.6 **ENTER** **↓** 102 **GSB** **1**

37.9 **ENTER** **↓** 100 **GSB** **1**

36.2 **ENTER** **↓** 97.5 **GSB** **1**

Outputs:

5.00

35.1 ENTER \downarrow 95.5 GSB 134.6 ENTER \downarrow 94 GSB 1 \longrightarrow

6.00

GSB 2 \longrightarrow

33.53 (a)

R/S \longrightarrow

1.76 (b)

GSB 3 \longrightarrow 0.99 (r^2)37 GSB 4 \longrightarrow 98.65 (\hat{y})**Example 2:**

(Exponential, Code = 6):

x_i	.72	1.31	1.95	2.58	3.14
-------	-----	------	------	------	------

y_i	2.16	1.61	1.16	.85	0.5
-------	------	------	------	-----	-----

Solution:

$$a = 3.45, b = -0.58$$

$$y = 3.45 e^{-0.58x}$$

$$r^2 = 0.98$$

$$\text{For } x = 1.5, \hat{y} = 1.44$$

Example 3:

(Logarithmic, Code = 7):

x_i	3	4	6	10	12
y_i	1.5	9.3	23.4	45.8	60.1

Solution:

$$a = -47.02, b = 41.39$$

$$y = -47.02 + 41.39 \ln x$$

$$r^2 = 0.98$$

$$\text{For } x = 8, \hat{y} = 39.06$$

$$\text{For } x = 14.5, \hat{y} = 63.67$$

Example 4:

(Power, Code = 8):

x_i	10	12	15	17	20	22	25	27	30	32	35
y_i	0.95	1.05	1.25	1.41	1.73	2.00	2.53	2.98	3.85	4.59	6.02

Solution:

$$a = .03, b = 1.46$$

$$y = .03x^{1.46}$$

$$r^2 = 0.94$$

$$\text{For } x = 18, \hat{y} = 1.76$$

$$\text{For } x = 23, \hat{y} = 2.52$$

NORMAL AND INVERSE NORMAL DISTRIBUTION

This program evaluates the standard normal density function $f(x)$ and the normal integral $Q(x)$ for given x . If Q is given, x can also be found.

The standard normal distribution has mean 0 and standard deviation 1.

Equations:

1. Standard normal density

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

2. Normal integral

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-\frac{t^2}{2}} dt$$

Polynomial approximation is used to compute $Q(x)$ for given x .

Define $R = f(x) (b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5) + \epsilon(x)$

where:

$$|\epsilon(x)| < 7.5 \times 10^{-8}$$

$$t = \frac{1}{1 + r |x|}, \quad r = 0.2316419$$

$$b_1 = .319381530$$

$$b_2 = -.356563782$$

$$b_3 = 1.781477937$$

$$b_4 = -1.821255978$$

$$b_5 = 1.330274429$$

$$\text{Then } Q(x) = \begin{cases} R & \text{if } x \geq 0 \\ 1 - R & \text{if } x < 0 \end{cases}$$

3. Inverse normal

For a given $Q > 0$, x can be found such that

$$Q = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-\frac{t^2}{2}} dt$$

The following rational approximation is used:

$$\text{Define } y = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \epsilon(Q)$$

where:

$$|\epsilon(Q)| < 4.5 \times 10^{-4}$$

$$t = \begin{cases} \sqrt{\ln \frac{1}{Q^2}} & \text{if } 0 < Q \leq 0.5 \\ \sqrt{\ln \frac{1}{(1-Q)^2}} & \text{if } 0.5 < Q < 1 \end{cases}$$

$$c_0 = 2.515517 \quad d_1 = 1.432788$$

$$c_1 = 0.802853 \quad d_2 = 0.189269$$

$$c_2 = 0.010328 \quad d_3 = 0.001308$$

$$\text{Then } x = \begin{cases} y & \text{if } 0 < Q \leq 0.5 \\ -y & \text{if } 0.5 < Q < 1 \end{cases}$$

Reference:

Abramowitz and Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, 1970.

01 #LBL1		58 ENT†	
02 STC7		51 RCL5	
03 X ²		52 X	
04 2		53 RCL4	
05 ÷		54 GSB7	
06 CHS		55 RCL3	
07 e ^x		56 GSB7	
08 F1		57 RTN	
09 2	Calculate f(x)	58 #LBL3	-----
10 x		59 STO7	
11 T ¹		60 .	
12 ÷		61 5	
13 STC9	-----	62 X ² Y	
14 RTN		63 X ² Y ²	
15 #LBL2		64 GSB8	
16 GSB1		65 X ²	
17 i		66 1/X	
18 RCL8		67 LN	
19 RCL7		68 LN	
20 ABS		69 STO8	
21 x		70 GSB6	
22 +		71 1	
23 1/X	Calculate Q(x)	72 +	
24 GSB6		73 STO9	
25 RCL2		74 CLX	
26 GSB7		75 RCL2	
27 RCL1		76 X	
28 GSB7		77 RCL1	
29 RCL9		78 GSB7	
30 x		79 RCL8	
31 RCL7		80 +	
32 X ² Y ²		81 RCL9	
33 GT09		82 ÷	
34 X ² Y	-----	83 -	
35 RTN		84 STO6	
36 #LBL9		85 RCL7	
37 X ² Y		86 .	
38 #LBL8		87 5	
39 i		88 X ² Y	
40 -		89 X ² Y ²	
41 CHS		90 GT05	
42 RTN		91 RCL6	
43 #LBL7		92 RTN	
44 +		93 #LBL5	
45 x		94 RCL6	
46 RTN		95 CHS	
47 #LBL6		96 RTN	-----
48 ENT†			
49 ENT†			
Subroutines			

REGISTERS

0 r, C ₀	1 b ₁ , C ₁	2 b ₂ , C ₂	3 b ₃ , d ₁	4 b ₄ , d ₂	5 b ₅ , d ₃
6 y	7 x, Q	8 t	9 f(x), deno.	0	1
.2	3	.4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
	i. Normal distribution: from program step 1 to step 57.			
	ii. Inverse normal distribution: from program step 38 to step 96.			
	iii. Both: the entire program.			
2	For normal distribution, go to step 3, for inverse, go to step 7.			
3	Store constants for normal distribution.	r	STO [0]	r
		b ₁	STO [1]	b ₁
		b ₂	STO [2]	b ₂
		b ₃	STO [3]	b ₃
		b ₄	STO [4]	b ₄
		b ₅	STO [5]	b ₅
4	Optional: Input x to calculate f(x)	x	GSB [1]	f(x)
5	Input x to calculate Q(x)	x	GSB [2]	Q(x)
6	For a new x, go to step 4 or step 5.			
7	Store constants for inverse	c ₀	STO [0]	c ₀
		c ₁	STO [1]	c ₁
		c ₂	STO [2]	c ₂
		d ₁	STO [3]	d ₁
		d ₂	STO [4]	d ₂
		d ₃	STO [5]	d ₃
8	Input Q(x) to calculate x.	Q(x)	GSB [3]	x
9	For a new Q(x), go to step 8.			

Example 1:

(Normal distribution):

Find f(x) and Q(x) for x = 1.18 and x = -2.28

Keystrokes:**Outputs:**

(Key in the program as shown in the Instructions)

0.2316419 **STO** 0 0.31938153**STO** 1 0.356563782 **CHS** **STO****2** 1.781477937 **STO** 31.821255978 **CHS** **STO** 41.330274429 **STO** 51.18 **GSB** 1 →

0.20 (f(1.18))

1.18 **GSB** 2 →

0.12 (Q(1.18))

2.28 **CHS** **GSB** 2 →

0.99 (Q(-2.28))

2.28 **CHS** **GSB** 1 →

0.03 (f(-2.28))

Example 2:

(Inverse):

Given Q = 0.12 and Q = 0.95, find x's

Keystrokes:**Outputs:**

(Key in program as shown in the Instructions)

2.515517 **STO** 0 0.802853**STO** 1 0.010328 **STO** 21.432788 **STO** 3 0.189269**STO** 4 0.001308 **STO** 50.12 **GSB** 3 →

1.18 (x)

0.95 **GSB** 3 →

-1.65 (x)

FACTORIAL, PERMUTATION AND COMBINATION

Factorial $n! = n(n-1)(n-2)\dots 2 \cdot 1$

Permutation ${}_mP_n = \frac{m!}{(m-n)!} = m(m-1)\dots(m-n+1)$

Combination ${}_mC_n = \frac{m!}{(m-n)!n!} = \frac{m(m-1)\dots(m-n+1)}{1 \cdot 2 \cdot \dots \cdot n}$

where m, n are integers and $0 \leq n \leq m$.

Remarks:

This program will compute factorials for positive integers between 2 and 69.

$$n! = n(n-1)(n-2)\dots(2)(1)$$

For large values of n , the program will take some time to arrive at a result, up to a maximum of about 20 seconds for $n = 69$.

The program does not check input values and will return incorrect answers for values of $n < 2$ or $n > 69$ or non-integer n .

${}_mP_0 = 1$, ${}_mP_1 = m$, ${}_mP_m = m!$ Therefore $n!$ should be used for large m .

$${}_mC_0 = {}_mC_m = 1$$

$${}_mC_1 = {}_mC_{m-1} = m$$

$${}_mC_n = {}_mC_{m-n}$$

01 #LBL1		58 GT08		
02 1		51 -		
03 ST.0		52 LSTX		
04 X ² Y		53 X ² Y?		
05 #LBL4		54 GS89		
06 Sx.0		55 ST01		Calculate mC_n
07 1		56 1		
08 -		57 ST08		
09 X ² Y?		58 +		
10 GT04	Calculate n!	59 ST02		
11 RC.0		60 CLX		
12 RTN	***	61 X=Y?		
13 #LBL2	-----	62 GT07		
14 X ² Y?		63 #LBL0		
15 GT08		64 R↓		
16 ENT↑		65 IS2		
17 0		66 RCL0		
18 X=Y?		67 X ² Y?		
19 GT07		68 GT08		
20 CLX		69 RCL1		
21 :		70 X ² Y		
22 X=Y?		71 +		
23 GT06		72 LSTX		
24 -		73 ÷		
25 ST08	Calculate mP_n	74 RCL2		
26 R↓		75 X		
27 ST01		76 ST02		
28 #LBL5		77 GT08		
29 RCL1		78 #LBL9		-----
30 1		79 ST02		$mC_n = mC_{m-n}$
31 -		80 X ² Y		
32 ST01		81 RTN		-----
33 X		82 #LBL8		
34 DS2		83 RCL2		-----
35 GT05	***	84 RTN		***
36 RTN				
37 #LBL6	-----			
38 R↓				
39 R↓				
40 RTN				
41 #LBL7				
42 ENT↑				
43 1	*** 1			
44 RTN	-----			
45 #LBL8				
46 0	Error			
47 ÷	-----			
48 #LBL3	-----			
49 X ² Y?	-----			
REGISTERS				
0 n!	1 m,	2 Used	3	4
6	7	8	9	0
12	3	4	5	16
18	19	20	21	22
24	25	26	27	28
				29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
	i. Factorial: from program step 1 to step 12.			
	ii. Permutation: from program step 12 to step 47.			
	iii. Combination: from program step 41 to step 84.			
2	For factorial, go to step 3, for permutation go to step 5, for combination go to step 7.			
3	Input n to calculate $n!$	n	GSB [1]	$n!$
4	Repeat step 3 for another n.			
5	Input m and n to calculate ${}_mP_n$	m n	ENTER GSB [2]	${}_mP_n$
6	Repeat step 5 for a different set of m and n.			
7	Input m and n to calculate ${}_mC_n$	m n	ENTER GSB [3]	${}_mC_n$
8	Repeat step 7 for a different set of m and n.			

Example 1:

(Factorial):

Find $n!$ for $n = 5$ and $n = 10$ **Keystrokes:****Outputs:**

(Key in the program as shown in the Instructions)

5 GSB [1] → 120.00 (5!)
 10 GSB [1] → 3628800.00 (10!)

Example 2:

(Permutation):

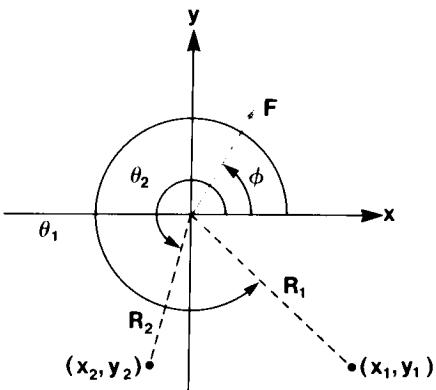
Find ${}_{43}P_3$ and ${}_{73}P_4$.**Keystrokes:****Outputs:**

(Key in the program as shown in the Instructions)

43 ENTER 4 GSB 2 \longrightarrow	74046.00	$({}_{43}P_3)$
73 ENTER 4 GSB 2 \longrightarrow	26122320.00	$({}_{73}P_4)$

Example 3:

(Combination):


Find ${}_{73}C_4$ and ${}_{43}C_3$.**Keystrokes:****Outputs:**

(Key in the program as shown in the Instructions)

73 ENTER 4 GSB 3 \longrightarrow	1088430.00	$({}_{73}C_4)$
43 ENTER 4 GSB 3 \longrightarrow	12341.00	$({}_{43}C_3)$

STATIC EQUILIBRIUM AT A POINT

This program calculates the two reaction forces necessary to balance a given two-dimensional force vector. The direction of the reaction forces may be specified as a vector of arbitrary length or by Cartesian coordinates using the point of force application as the origin.

Equations:

$$R_1 \cos \theta_1 + R_2 \cos \theta_2 = F \cos \phi$$

$$R_1 \sin \theta_1 + R_2 \sin \theta_2 = F \sin \phi$$

where:

F is the known force;

ϕ is the direction of the known force;

R_1 is one reaction force;

θ_1 is the direction of R_1 ;

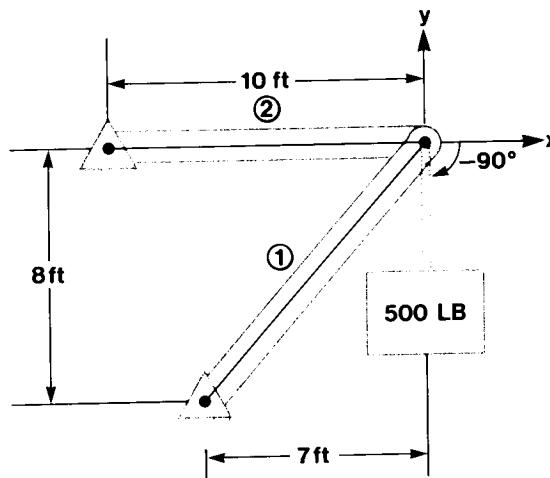
R_2 is the second reaction force;

θ_2 is the direction of R_2 ;

The coordinates x_1 and y_1 are referenced from the point where F is applied to the end of the member along which R_1 acts; x_2 and y_2 are the coordinates referenced from the point where F is applied to the end of the member along which R_2 acts.

Remarks:

This program assumes the calculator is set in DEG mode.


81 #LBL1	Input y_1, x_1	58 -			
82 +P	-----	51 RCL6			
83 X ^Y		52 ÷			
84 #LBL2		53 RTN	***		
85 1	Input θ_1 , and store sin θ_1 ,				
86 →R	cos θ_1				
87 STO8	-----				
88 X ^Y					
89 STO1	-----				
90 RTN					
91 #LBL3	Input y_2, x_2				
92 +P	-----				
93 X ^Y					
94 #LBL4	-----				
95 1					
96 →R	Input θ_2 and store sin θ_2 ,				
97 STO2	cos θ_2				
98 X ^Y	-----				
99 STO3					
100 RTN					
101 #LBL5					
102 →R					
103 STO4					
104 X ^Y					
105 STO5					
106 RCL4					
107 RCL3					
108 X					
109 RCL5					
110 RCL2					
111 X					
112 -					
113 RCL1					
114 RCL2	Input ϕ and F and calculate				
115 X	reaction forces				
116 RCL8					
117 RCL3					
118 X					
119 -					
120 ÷					
121 R/S	***				
122 LSTX					
123 STO6					
124 RCL5					
125 RCL8					
126 X					
127 RCL4					
128 RCL1					
129 X					
Registers					
0 cos θ_1	1 sin θ_1	2 cos θ_2	3 sin θ_2	4 F cos ϕ	5 F sin ϕ
6 Used	7	8	9	0	.1
.2	3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

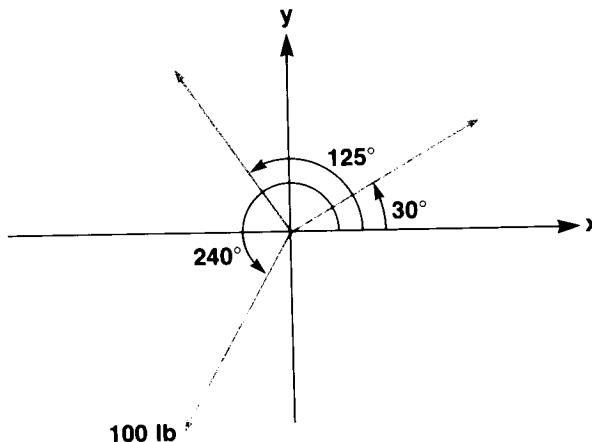
*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Define reaction directions as Cartesian coordinates or as vectors of arbitrary magnitude. (Use the point of force appli- cation as the origin): Define direction one in rec- tangular form	y_1	ENTER ↴	y_1
		x_1	GSB 1	$\sin \theta_1$
	or in polar form and	θ_1	GSB 2	$\sin \theta_1$
	Define direction two in rectangular form	y_2	ENTER ↴	
		x_2	GSB 3	$\sin \theta_2$
	or in polar form	θ_2	GSB 4	$\sin \theta_2$
3	Key in known force: direction then magnitude and compute reactions.	ϕ	ENTER ↴	
		F	GSB 5	R_1
			R/S	R_2
4	To change force, go to step 3. To change either or both reac- tion directions, go to step 2.			

Example 1:

Find the reaction forces in the pin-jointed structure shown below.

Keystrokes:


8 CHS ENTER + 7 CHS
 GSB 1 —————
 0 ENTER + 10 CHS GSB 3 —————
 90 CHS ENTER + 500 GSB 5 —————
 (R/S) —————

Outputs:

-0.75
 0.00
 -664.38 (R₁)
 437.50 (R₂)

Example 2:

Find the reaction forces for the diagram below:

Keystrokes:

30 GSB 2 →

125 GSB 4 →

240 ENTER 100 GSB 5 →

R/S →

Outputs:

0.50

0.82

90.98 (R₁)50.19 (R₂)

SECTION PROPERTIES

The properties of arbitrarily shaped sections which are composed of rectangles can be evaluated using this program.

The program calculates the area of the section, the centroid of the area, the moments of inertia about any specified set of axes, the polar moment of inertia about the specified axis, the moments of inertia about an axis translated to the centroid, the moments of inertia of the principal axis, and the rotation angle between the translated axis and the principal axis.

Equations:

$$A_{si} = \Delta x_i \Delta y_i$$

$$A = S_{s1} + A_{s2} + A_{s3} + \dots + A_{sn}$$

$$\bar{x} = \frac{\sum_{i=1}^n x_{oi} A_{si}}{A}$$

$$\bar{y} = \frac{\sum_{i=1}^n y_{oi} A_{si}}{A}$$

$$I_x = \sum_{i=1}^n \left(y_{oi}^2 + \frac{\Delta y_i^2}{12} \right) A_{si}$$

$$I_y = \sum_{i=1}^n \left(x_{oi}^2 + \frac{\Delta x_i^2}{12} \right) A_{si}$$

$$J = I_x + I_y$$

$$I_{xy} = \sum_{i=1}^n x_{oi} y_{oi} A_{si}$$

$$I_{\bar{x}} = I_x - A\bar{y}^2$$

$$I_{\bar{x}\bar{y}} = I_{xy} - A\bar{x}\bar{y}$$

$$I_{\bar{y}} = I_y - A\bar{x}^2$$

$$\phi = \frac{1}{2} \tan^{-1} \frac{-2 I_{\bar{x}\bar{y}}}{I_{\bar{x}} - I_{\bar{y}}}$$

where:

Δx_i is the width of a rectangular element;

Δy_i is the height of a rectangular element;

A_{si} is the area of an element;

A is the total area of the section;

\bar{x} is the x coordinate of the centroid;

\bar{y} is the y coordinate of the centroid;

x_{oi} is the x coordinate of the centroid of an element;

y_{oi} is the y coordinate of the centroid of an element;

I_x is the moment of inertia about the x -axis;

I_y is the moment of inertia about the y -axis;

J is the moment of inertia about the origin;

I_{xy} is the product of inertia;

$I_{\bar{x}}$ is the moment of inertia about the x -axis translated to the centroid;

$I_{\bar{y}}$ is the moment of inertia about the y -axis translated to the centroid;

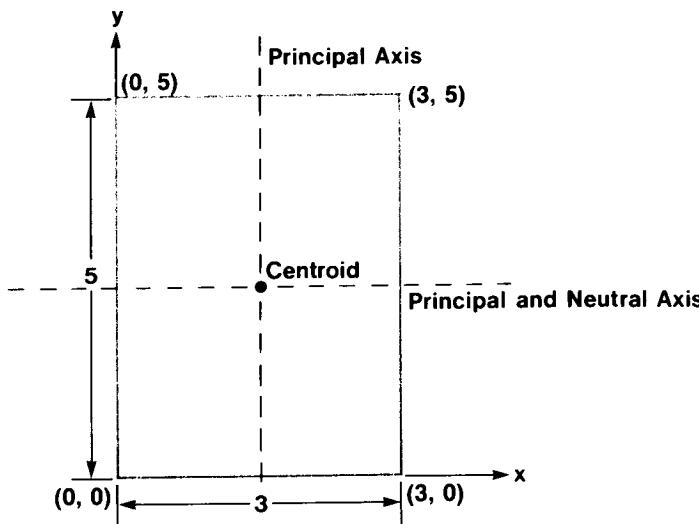
$I_{\bar{x}\bar{y}}$ is the product of inertia about the translated axis;

ϕ is the angle between the translated axis and the principal axis;

Reference:

Wojciechowski, Felix; "Properties of Plane Cross Sections"; *Machine Design*; P. 105, Jan 22, 1976.

01 #LBL8		50 RCL5		
02 ST04		51 RCL0		
03 R ₄		52 ÷		Calculate \bar{x} , \bar{y} , and A
04 ST03		53 RTN		
05 R ₄		54 #LBL9		
06 ST02		55 RCL6		
07 X ² Y	Input Δx , Δy , x_{oi} , and y_{oi} and calculate	56 RCL0		
08 ST01		57 ÷		
09 X		58 RTN		
10 ST.5		59 RCL8		
11 ENT		60 RTN		
12 ST+0		61 #LBL2		
13 RCL3		62 RCL7		
14 X		63 GSB9		
15 ST+5		64 X ²		
16 R ₄		65 RCL0		
17 RCL4		66 X		
18 X		67 -		
19 ST+6		68 ST.2		Calculate $I_{\bar{x}}$, $I_{\bar{y}}$, and $I_{\bar{x}\bar{y}}$
20 RCL2		69 R ₄ S		
21 X ²		70 RCL8		
22 :		71 GSB1		
23 2		72 X ²		
24 ÷		73 RCL0		
25 RCL4		74 X		
26 X ²		75 -		
27 +		76 ST.3		
28 RC.5		77 R ₄ S		
29 X		78 RCL9		
30 ST+7		79 GSB1		
31 RCL1		80 GSB9		
32 X ²		81 X		
33 :		82 RCL6		
34 2		83 X		
35 ÷		84 -		
36 RCL3		85 ST.4		
37 X ²		86 RTN		
38 +		87 #LBL3		
39 RC.5		88 RC.4		
40 X		89 2		
41 ST+8		90 X		
42 RCL3		91 RC.3		Calculate ϕ
43 RCL4		92 RC.2		
44 X		93 -		
45 RC.5		94 ÷		
46 X		95 TAN ⁻¹		
47 ST+9		96 2		
48 RTN		97 ÷		
49 #LBL1		98 RTN		


REGISTERS

0 ΣA	1 Δx_i	2 Δy_i	3 x_{oi}	4 y_{oi}	5 $\Sigma x_{oi} A_{si}$
6 $\Sigma y_{oi} A_{si}$	7 ΣI_x	8 ΣI_y	9 ΣI_{xy}	.0	.1
.2 $I_{\bar{x}}$	3 $I_{\bar{y}}$.4 $I_{\bar{x}\bar{y}}$.5 A_{si}	16	17
18	19	20	21	22	23
24	25	26	27	28	29

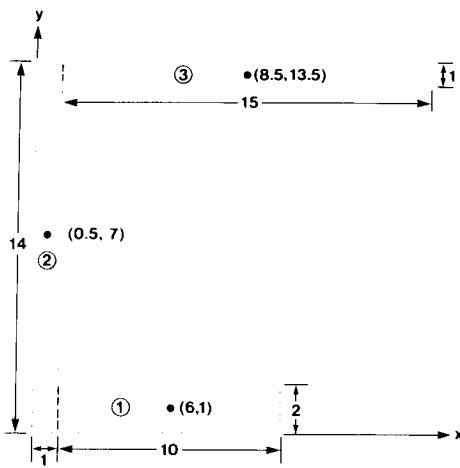
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Initialize		REG	
3	Input Δx , Δy , x_{oi} , y_{oi}	Δx Δy x_{oi} y_{oi}	ENTER ENTER ENTER GSB 0	
4	Repeat step 3 for more sections.			
5	To calculate \bar{x} , \bar{y} , A		GSB 1 	\bar{x} \bar{y} A
6	Optional: To recall I_x I_y I_{xy}		RCL 7 RCL 8 RCL 9	I_x I_y I_{xy}
7	To calculate $I_{\bar{x}}$ $I_{\bar{y}}$ $I_{\bar{x}\bar{y}}$		GSB 2 	$I_{\bar{x}}$ $I_{\bar{y}}$ $I_{\bar{x}\bar{y}}$
8	To calculate ϕ		GSB 3	ϕ
9	For a new case, go to step 2.			

Example 1:

Given the rectangle below, find \bar{x} , \bar{y} , A , I_x , I_y , I_{xy} , $I_{\bar{x}}$, $I_{\bar{y}}$, $I_{\bar{x}\bar{y}}$ and ϕ .

TABLE OF INPUTS

Section	Δx	Δy	x_o	y_o
1	3	5	1.5	2.5


Keystrokes:

f REG 3 ENTER	5 ENTER	1.5	
ENTER	2.5 GSB 0		56.25
GSB 1			1.50 (\bar{x})
R/S			2.50 (\bar{y})
R/S			15.00 (A)
RCL 7			125.00 (I_x)
RCL 8			45.00 (I_y)
RCL 9			56.25 (I_{xy})
GSB 2			31.25 $(I_{\bar{x}})$
R/S			11.25 $(I_{\bar{y}})$
R/S			0.00 $(I_{\bar{x}\bar{y}})$
GSB 3			0.00 (ϕ)

Outputs:

Example 2:

Calculate the section properties for the beam shown below.

TABLE OF INPUTS

Section	Δx	Δy	x_{ol}	y_{ol}
1	10	2	6	1
2	1	14	0.5	7
3	15	1	8.5	13.5

Keystrokes:

1 [REG] 10 [ENTER] 2 [ENTER] 6
 [ENTER] 1 GSB [0] →
 1 [ENTER] 14 [ENTER] 0.5 [ENTER] →
 7 GSB [0] →
 15 [ENTER] 1 [ENTER] 8.5 [ENTER] →
 13.5 GSB [0] →
 GSB [1] →
 R/S →
 R/S →
 RCL [7] →
 RCL [8] →
 RCL [9] →
 GSB [2] →
 R/S →
 R/S →
 GSB [3] →

Outputs:

120.00	
49.00	
1721.25	
5.19	(\bar{x})
6.54	(\bar{y})
49.00	(A)
3676.33	(I_x)
2256.33	(I_y)
1890.25	(I_{xy})
1580.00	($I_{\bar{x}}$)
934.49	($I_{\bar{y}}$)
225.61	($I_{\bar{x}\bar{y}}$)
-17.48	(ϕ)

FIELD ANGLE OR BEARING TRAVERSE

This program uses angles and/or deflections turned from a reference azimuth and horizontal distances, or quadrant bearings and horizontal distances, to compute the coordinates of successive points in a traverse. For a closed traverse, the area enclosed and closure distance and azimuth are computed.

(Note: Angles left and deflections left must be entered as negative numbers.)

Equations:

$$N_{i+1} = N_i + HD \cos Az$$

$$E_{i+1} = E_i + HD \sin Az$$

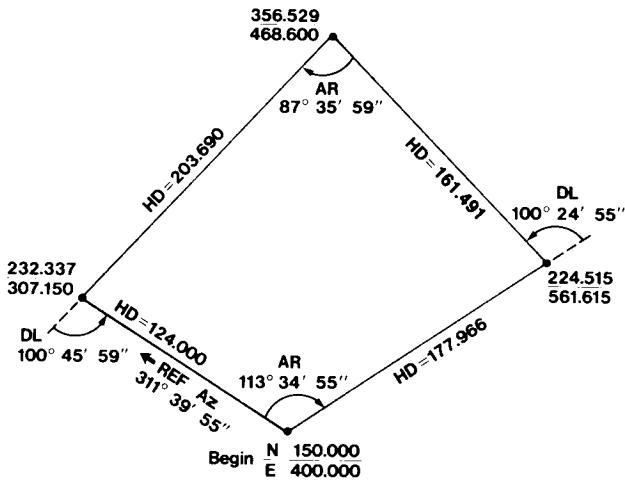
$$\text{Area} = \sum_{k=1}^n LAT_k \left(\frac{1}{2} DEP_k + \sum_{j=1}^{k-1} DEP_j \right)$$

where:

$$DEP_k = E_{k+1} - E_k \text{ and } LAT_k = N_{k+1} - N_k$$

81 #LBL1	Store starting point coordinates and 180°	50 2	
82 FIX4		51 \div	
83 CLR6		52 RCL7	
84 ST01		53 -	
85 XZY		54 x	
86 STC2	-----	55 ST+5	
87 1		56 RCL6	
88 8		57 RCL2	
89 0		58 +	
10 ST03	-----	59 R/S	***
11 R/S	-----	60 RCL7	
12 +H		61 RCL1	
13 RCL3	Reference azimuth	62 +	
14 +H		63 R/S	***
15 +		64 #LBL4	
16 GT08	-----	65 XZY	
17 #LBL2		66 ST09	
18 +H	Angle input	67 XZY	Convert bearing and quadrant code to azimuth.
19 RCL3		68 ENT1	
20 +H		69 ENT1	
21 +		70 2	
22 +HMS	-----	71 \div	
23 #LBL3	Deflection angle input	72 INT	
24 +H		73 RCL3	
25 RCL4	-----	74 x	
26 +		75 XZY	
27 #LBL8		76 RCL3	
28 :		77 x	
29 +R	Compute azimuth	78 COS	
30 +P		79 RCL9	
31 #LBL9		80 +H	
32 XZY		81 x	
33 X>0?		82 -	
34 GT08	-----	83 GT08	
35 ?		84 #LBL5	Area
36 6		85 RCL8	
37 0		86 ABS	
38 +		87 R/S	***
39 #LBL6	-----	88 RCL7	
40 ST04		89 RCL6	
41 +HMS		90 +P	
42 R/S	***	91 R/S	Setup for closure
43 ST+5	-----	92 GT09	***
44 RCL4			
45 XZY			
46 +R			
47 ST+6			
48 XZY			
49 ST+7	Compute next coord. and accumulate area.		

REGISTERS


0	1 Beg. E	2 Beg. N	3 180	4 Az	5 Σ HD
6 Lat.	7 Dep.	8 Area	9 Bearing	0	.1
.2	.3	.4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

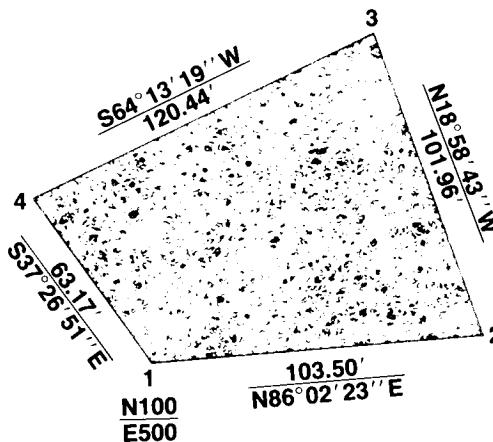
*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Key in beginning coordinates	BEG N BEG E	ENTER GSB 1	180.00
	For Field Angle Traverse			
3	Key in reference azimuth away from beginning point.	REF AZ (D.MS)	R/S	Az (D.MS)
4	Key in field angle: Angle right or Angle left (-) or Deflection right or Deflection left (-)	ang. right -ang. left deflect. right -deflect. left	GSB 2 GSB 2 GSB 3 GSB 3	Az (D.MS) Az (D.MS) Az (D.MS) Az (D.MS)
5	Key in horizontal distance and compute coordinates	HD	R/S R/S	N E
	or			
	For Bearing Traverse			
3'	Key in bearing and quadrant code.	BRG (D.MS)	ENTER GSB 4	Az (D.MS)
4'	Key in horizontal distance and compute coordinates.	HD	R/S R/S	N E
	Repeat steps 3, 4, 5, or 3', 4' for successive courses.			
6	For closed figure: Compute area, error distance, and error azimuth		GSB 5 R/S R/S	Area Error Dist. Error Az (D.MS)

Example 1:**Field Angle Traverse**

Traverse the figure below starting at $\frac{N 150}{E 400}$.

Keystrokes:


150 [ENTER] 400 [GSB] 1 →
 311.3955 [R/S] →
 113.3455 [GSB] 2 →
 177.966 [R/S] →
 [R/S] →
 100.2455 [CHS] [GSB] 3 →
 161.491 [R/S] →
 [R/S] →
 87.3559 [GSB] 2 →
 203.690 [R/S] →
 [R/S] →
 100.4559 [CHS] [GSB] 3 →
 124 [R/S] →
 [R/S] →
 [GSB] 5 →
 [R/S] →
 [R/S] →

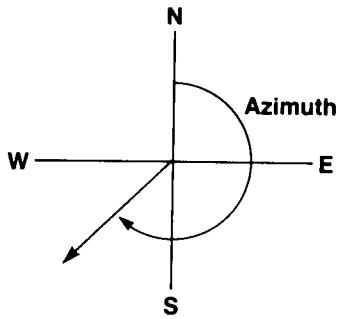
Outputs:

180.0000
 131.3955
 65.1450
 224.5150 (N)
 561.6150 (E)
 324.4955
 356.5285 (N)
 468.6000 (E)
 232.2554
 232.3372 (N)
 307.1498 (E)
 131.3955
 149.9048 (N)
 399.7829 (E)
 26558.8204 (Area)
 0.2371 (Error distance)
 246.1844 (Error azimuth)

Example 2:**Bearing Traverse**

Traverse the figure below starting at $\frac{N\ 100}{E\ 500}$.

Keystrokes:

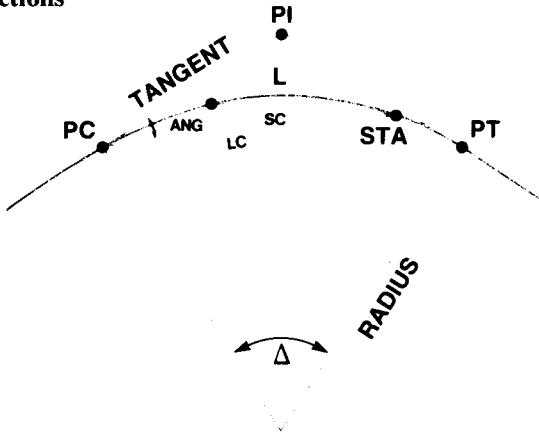

100 ENTER \downarrow 500 GSB [1] →
 86.0223 ENTER \downarrow 1 GSB [4] →
 103.50 [R/S] →
 [R/S] →
 18.5843 ENTER \downarrow 4 GSB [4] →
 101.96 [R/S] →
 [R/S] →
 64.1319 ENTER \downarrow 3 GSB [4] →
 120.44 [R/S] →
 [R/S] →
 37.2651 ENTER \downarrow 2 GSB [4] →
 63.17 [R/S] →
 [R/S] →
 GSB [5] →
 [R/S] →
 [R/S] →

Outputs:

180.0000
 86.0223
 107.1482 (N)
 603.2529 (E)
 341.0117
 203.5657 (N)
 570.0939 (E)
 244.1319
 151.1880 (N)
 461.6395 (E)
 142.3309
 101.0366 (N)
 500.0490 (E)
 8855.4922 (Area)
 1.0378 (Error distance)
 2.4219 (Error azimuth)

Remarks:

- If the user does not desire to do Field Angle Traverse, steps 012 through 026 may be eliminated; if he does not desire to do Bearing Traverse, steps 064 through 080 may be eliminated.
- Angles left and deflections left must be entered as negative numbers.
- This program assumes the calculator is set in DEG mode.


HORIZONTAL CURVE LAYOUT

This program calculates various field data for layout of a horizontal circular curve. The required information on the curve is the PC station and the radius or degree of curve. With this data one computes successively the arc length, deflection angle from tangent to long chord, the long chord from PC to current station, and the short chord from previous station to current station. In addition, the tangent offset and tangent distance are available if desired.

If the central angle is known the program also will compute the total arc length from PC to PT, the station PT and the length of the tangent from PC to PI.

In the program, stations are entered in the form XXXX.XX for station XX+XX.XX. For example: 20 + 10.00 is entered as 2010.00. The degree of curve D, (or central angle subtending an arc of 100 ft.) is entered in degrees with a negative sign, *always*.

PC Deflections

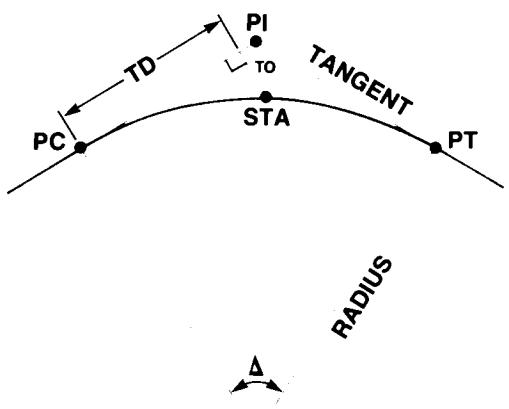
Field data output for PC deflections consist of:

STA-current station

ANG-deflection angle from tangent to long chord

LC-long chord from PC to current station

SC-short chord from previous station to current station


Δ-central angle

PI-point of intersection of tangents

PC, PT-ends of curve

L-Arc length

R-radius

Tangent Offsets and Distances

Field data output for tangent offsets consists of:

STA-current station

TD-tangent distance

TO-tangent offset

T-distance from PC to PI

81 *LBL1		50 SJW	Calculate TO
82 CLRG		51 x	
83 FIN4	Store R & D	52 ST06	Calculate TD
84 X180		53 RCL5	
85 GS88		54 RCL7	
86 ST01		55 COS	
87 PI		56 x	
88 x		57 ST09	dsp LC
89 9		58 RCL5	
10 0		59 R/S	***
11 +		60 RCL4	
12 ST02	Input PC	61 RC.2	
13 R4		62 -	
14 ST03		63 GS89	
15 ST04		64 x	
16 RTN		65 SIN	
17 *LBL8		66 RCL1	
18 CHS		67 2	
19 +H	Calculate R from D	68 x	
20 PI		69 x	*** Calculate SC
21 A		70 RTN	
22 1/2		71 *LBL9	
23 1		72 9	90
24 8		73 0	πR
25 EEX		74 PI	
26 3		75 +	
27 x		76 RCL1	Input Δ
28 RTN		77 +	
29 *LBL2	Input station	78 RTN	
30 RCL4		79 *LBL3	
31 ST.2		80 +H	
32 R4		81 2	
33 ST04		82 +	
34 RCL3		83 ST06	
35 -		84 GS89	
36 R/S	*** Calculate L	85 ÷	Calculate L
37 GS89		86 R/S	***
38 x		87 RCL3	
39 ST07		88 +	Calculate PT
40 +HMS		89 R/S	
41 R/S	***	90 RCL6	***
42 RCL7	Calculate ANG	91 TAM	
43 SIN		92 RCL1	
44 RCL1		93 x	*** Calculate T
45 x		94 R/S	
46 2	Calculate LC		
47 x			
48 ST05			
49 RCL7			

REGISTERS

0	1 R	2 Ft/Deflect	3 PC	4 STA Current	5 LC
6 Δ/2	7 ANG	8 TO	9 TD	0	.1
2 Prev. Sta.	3	4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input beginning station of curve	PC	ENTER ↴	PC
3	Input radius or degree of curve (as a negative number)	R -D (D.MS)	GSB [1] GSB [1]	
3'	Radius or degree of curve are available if desired.		RCL [1] RCL [2]	R D
4	Input station	STA	GSB [2] R/S R/S R/S	L (Arc. length) def. angle long chord short chord
4'	Tangent offset, TO, and tangent distance, TD, are available if desired.		RCL [8] RCL [9]	TO TD
5	Input central angle	Δ (D.MS)	GSB [3] R/S R/S	Arc. length station PT T, length of tan.

Example:

Compute field data for a curve with a central angle of $35^\circ 30'$ and degree of curve of $12^\circ 30'$. The PC station is $7 + 85.40$.

Keystrokes:

785.40 ENTER ↴ 12.30

CHS GSB [1] →

RCL [1] (if desired) →

For Station 8:

800 GSB [2] →

R/S →

R/S →

R/S →

RCL [8] (if desired) →

RCL [9] (if desired) →

Outputs:

785.40 (PC)

458.3662 (R)

14.6000 (L)

.5445 (ANG)

14.5994 (LC)

14.5994 (SC)

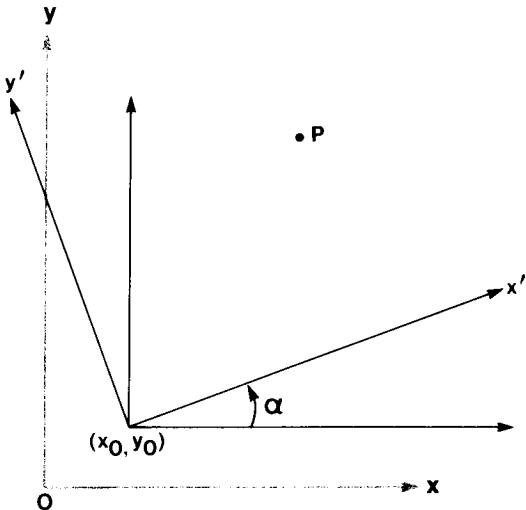
.2325 (TO)

14.5975 (TD)

For Station 9:

900 GSB [2]	→	114.6000	(L)
R/S	→	7.0945	(ANG)
R/S	→	114.3018	(LC)
R/S	→	99.8018	(SC)
RCL [8]	→	14.2516	(TO)
RCL [9]	→	113.4098	(TD)

For Station 10:


1000 GSB [2]	→	214.6000	(L)
R/S	→	13.2445	(ANG)
R/S	→	212.6454	(LC)
R/S	→	99.8018	(SC)
RCL [8]	→	49.3252	(TO)
RCL [9]	→	206.8455	(TD)
35.30 GSB [3]	→	284.0000	(L)
R/S	→	1069.4000	(PT)
R/S	→	146.7242	(T)

Now calculate field data for PT:

1069.40 GSB [2]	→	284.000	(L)
R/S	→	17.4500	(ANG)
R/S	→	279.4790	(LC)
R/S	→	69.3337	(SC)

COORDINATE TRANSLATION AND ROTATION

This program allows for two-dimensional translation and rotation of coordinate axes. Suppose the origin of a coordinate system is translated to a new point, (x_0, y_0) , and the x and y axes are rotated through an angle α to give new axes, x' and y' . A point P having coordinates (x, y) with respect to the old system of x and y axes, now has coordinates (x', y') with respect to the new axes. Given α and one pair of coordinates, the program allows you to find the other pair of coordinates.

Equations:

Let $\text{Rect}(r, \theta)$ denote the operation \boxed{R} when r is in the X-register and θ is in the Y-register. Let $\text{Pol}(x, y)$ denote the operation \boxed{P} when x is in X and y is in Y.

Then $(x', y') = \text{Rect}(r, \theta - \alpha)$

where $(r, \theta) = \text{Pol}(x - x_0, y - y_0)$

and $(x, y) = (x_0, y_0) + \text{Rect}(r', \theta' + \alpha)$

where $(r', \theta') = \text{Pol}(x', y')$

Remarks:

- The program may be used to solve a problem of translation only, or of rotation only, or of combined translation and rotation. If the problem involves translation alone, a value of $\alpha = 0$ must be input. For rotation alone, the values $x_0 = y_0 = 0$ must be input.
- The program assumes the following sign convention: α should be input as a positive number if the rotation is counterclockwise, and negative if clockwise.
- This program assumes the calculator is set in DEG mode.

81	*LBL0				
82	ST07				
83	R ₁	x ₀ ↑ y ₀ Stored			
84	ST09				
85	R ₁				
86	STC8				
87	RTN				
88	*LBL1				
89	RCL9	Convert x, y to x', y'			
10	-				
11	X ² Y				
12	RCLS				
13	-				
14	+P				
15	X ² Y				
16	RCL7				
17	-				
18	X ² Y				
19	+R				
20	R/S	***			
21	X ² Y	***			
22	RTN				
23	*LBL2				
24	X ² Y	Convert x', y' to x, y			
25	+P				
26	X ² Y				
27	RCL7				
28	+				
29	X ² Y				
30	+R				
31	RCL8				
32	+				
33	R/S	***			
34	X ² Y				
35	RCL9				
36	+	***			
37	RTN				

REGISTERS

0	1	2	3	4	5
6	7 θ	8 x ₀	9 y ₀	0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

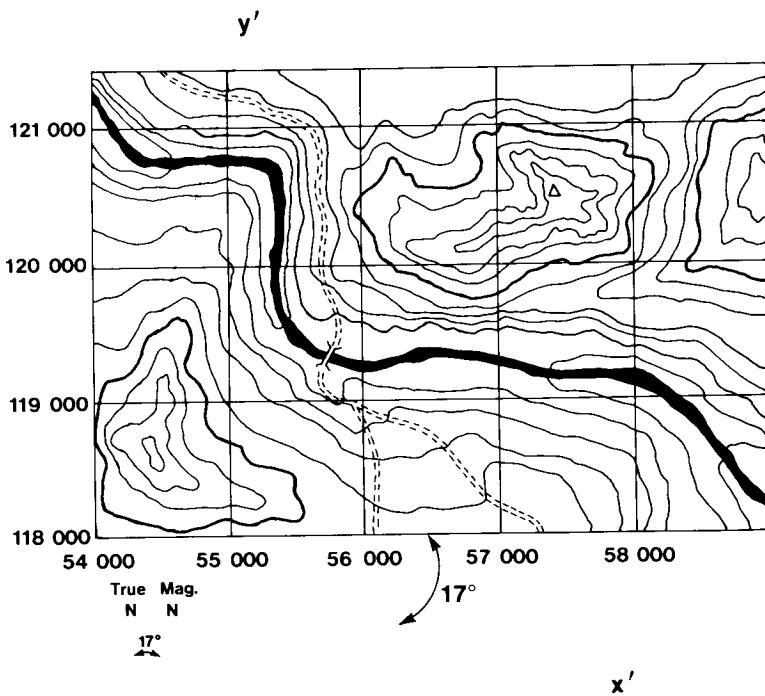
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Initialize:			
	Key in new origin	x_0	ENTER ↴	
		y_0	ENTER ↴	
	Key in angle of rotation (observe proper sign)	α	GSB [0]	x_0
3	Key in old coordinates and calculate coordinates in new system	x	ENTER ↴	
		y	GSB [1]	x'
			R/S	y'
4	Key in new coordinates and calculate coordinates in old system	x'	ENTER ↴	
		y'	GSB [2]	x
			R/S	y

Example 1:

The origin of a coordinate system is translated to the point $(-1, 4)$ and rotated 30° in a positive (counterclockwise) direction. Find the new coordinates of the point whose coordinates in the old system are $(1, 3)$. If the coordinates of a point in the new system are $(5, 7)$, what are its coordinates in the old system?

Keystrokes:

1 **CHS** **ENTER** ↴ 4 **ENTER** ↴
 30 **GSB** [0] →
 1 **ENTER** ↴ 3 **GSB** [1] →
R/S →
 5 **ENTER** ↴ 7 **GSB** [2] →
R/S →


Outputs:

-1.00
 1.23 (x')
 -1.87 (y')
 -0.17 (x)
 12.56 (y)

Example 2:

Backpacker Will B. Bushed's route will take him cross-country from the marked trails of an area. He knows that he will have to check his compass frequently against his map over this terrain, and regrets that the map is in such an inconvenient format for his purposes. In the first place, the grid lines on his map represent distances in feet from an origin about 25 miles away, resulting in such large numbers that the calculations are difficult. Secondly, the map's grid is based on true north while his compass readings are relative to magnetic north, a variation of 17° .

Before he leaves home, Bushed decides to draw a rough version of the map for his own convenience, locating his origin at the grid point (54 000, 118 000) and rotating his axes by 17° in a clockwise direction. As a first step, he wants to find the new coordinates of the bridge and the peak of the hill, whose coordinates in the old system are (55 750, 119 300) and (57 450, 120 500) respectively.

Keystrokes:54000 **ENTER** 118000 **ENTER**17 **CHS** **GSB** **①** 55750**ENTER** 119300 **GSB** **①** **→****Outputs:**

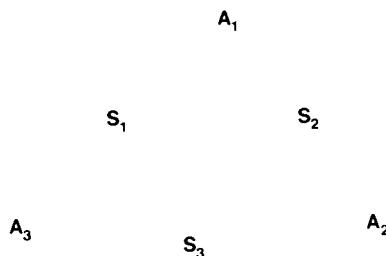
1293.45

R/S **→** 1754.85

The new coordinates of the bridge are (1293, 1755).

57450 **ENTER** 120500**GSB** **①** **→**

2568.32


R/S **→**

3399.44

The new coordinates of the peak are (2568, 3399).

TRIANGLE SOLUTIONS

This program may be used to find the sides, the angles, and the area of a plane triangle.

In general, the specification of any three of the six parameters of a triangle (3 sides, 3 angles) is sufficient to define the triangle. (The exception is that three angles will not define a triangle.) There are thus five possible cases that this program will handle: two sides and the included angle (SAS), two angles and the included side (ASA), two sides and the adjacent angle (SSA—an ambiguous case), two angles and the adjacent side (AAS), and three sides (SSS).

The results are stored in storage registers 0 through 6 as follows:

AREA	Register 0
SIDE 1	Register 1
ANGLE 1	Register 2
SIDE 2	Register 3
ANGLE 2	Register 4
SIDE 3	Register 5
ANGLE 3	Register 6

Equations:

SAS (S_1, A_1, S_2):

$$S_3 = \sqrt{S_1^2 + S_2^2 - 2 S_1 S_2 \cos A_1}$$

$$A_2 = \tan^{-1} \frac{S_1 \sin A_1}{S_2 - S_1 \cos A_1}$$

$$A_3 = \cos^{-1} [-\cos (A_1 + A_2)]$$

ASA (A_3, S_1, A_1):

$$S_2 = S_1 \frac{\sin A_3}{\sin A_2} = S_1 \frac{\sin A_3}{\sin (A_1 + A_3)}$$

Now go to SAS.

SSA (S_1 , S_2 , A_2):

$$A_3 = \sin^{-1} \left(\frac{S_2 \sin A_2}{S_1} \right)$$

$$A_1 = \cos^{-1} [-\cos (A_2 + A_3)]$$

Now go to SAS.

AAS (A_2 , A_1 , S_1):

$$S_2 = S_1 \frac{\sin A_3}{\sin A_2} = S_1 \frac{\sin (A_1 + A_2)}{\sin A_2}$$

Now go to SAS.

SSS (S_1 , S_2 , S_3):

$$A_1 = \cos^{-1} \left(\frac{S_1^2 + S_2^2 - S_3^2}{2 S_1 S_2} \right)$$

Now go to SAS.

$$\text{AREA:} = \frac{1}{2} S_1 S_3 \sin A_3.$$

Remarks:

Any angular mode may be used.

Note that the triangle described by the program does not conform to standard triangle notation; i.e., A_1 is not opposite S_1 .

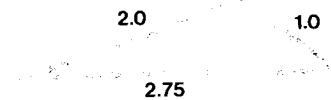
Angles must be entered as decimals. The DH conversion can be used to convert degrees, minutes, and seconds to decimal degrees.

Accuracy of solution may degenerate for triangles containing extremely small angles.

01 #LBL1		50 X	
02 RCL2	SAS, Calculate A_2, S_3 by law of cosines	51 STO3	
03 RCL1		52 GTO1	
04 +R		53 #LBL4	
05 RCL3		54 RCL3	
06 X ² Y		55 RCL4	
07 -		56 SIN	
08 +P		57 RCL1	
09 STO5		58 ÷	
10 X ² Y		59 X	
11 STO4		60 SIN ⁻¹	
12 RCL2		61 RCL4	
13 +		62 +	
14 GSB0		63 GSB0	
15 STO6		64 STO2	
16 SIN		65 GSB1	
17 √	Area	66 RCL1	
18 RCL1		67 RCL3	
19 √		68 X ² Y ²	
20 2		69 RTN	
21 ÷		70 R/S	
22 STO8	***	71 RCL6	
23 RTN		72 GSB0	
24 #LBL2		73 STO6	
25 RCL1		74 RCL4	
26 RCL3	SSS, Find A_1 by law of cosines then go to SAS	75 +	
27 +F		76 GSB0	
28 X ²		77 STO2	
29 RCL5		78 GTO1	
30 X ²		79 #LBL5	
31 -		80 RCL4	
32 RCL1		81 RCL2	
33 RCL3		82 +	
34 x		83 SIN	
35 2		84 RCL4	
36 x		85 SIN	
37 ÷		86 ÷	
38 COS ⁻¹		87 RCL1	
39 STO2		88 X	
40 GTO1		89 STO3	
41 #LBL3		90 GTO1	
42 RCL6		91 #LBL0	
43 SIN		92 COS	
44 RCL2	ASA, Find S_1 then go to SAS	93 CWS	
45 RCL6		94 COS ⁻¹	
46 +		95 RTN	
47 SIN			
48 ÷			
49 RCL1			

REGISTERS

0	Area	1	Side 1	2	Angle 1	3	Side 2	4	Angle 2	5	Side 3
6	Angle 3	7		8		9		0		.1	
2		.3		.4		.5		.16		.17	
18		19		20		21		.22		.23	
24		25		26		27		.28		.29	


*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Select case and key in data:			
	2A: SAS (2 sides & included angle)			
	Side 1	S_1	STO 1	
	Angle 1	A_1	STO 2	
	Side 2	S_2	STO 3	
			GSB 1	output
	2B: SSS (3 sides)			
	Side 1	S_1	STO 1	
	Side 2	S_2	STO 3	
	Side 3	S_3	STO 5	
			GSB 2	output
	2C: ASA (2 angles & included side)			
	Angle 3	A_3	STO 6	
	Side 1	S_1	STO 1	
	Angle 1	A_1	STO 2	
			GSB 3	output
	2D: SSA (2 sides & adjacent angle) Side 1 (opposite side)	S_1	STO 1	
	Side 2 (adjacent side)	S_2	STO 3	
	Angle 2 (adjacent angle)	A_2	STO 4	
			GSB 4	solution # 1*
			R/S	solution # 2**
	2E: AAS (2 angles & adjacent side)			(If it exists)
	Angle 1 (adjacent angle)	A_1	STO 2	
	Angle 2 (opposite angle)	A_2	STO 4	
	Side 1 (adjacent side)	S_1	STO 1	
			GSB 5	output

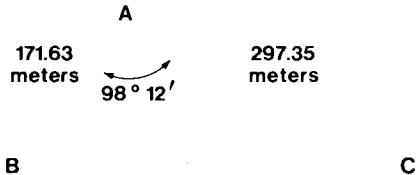
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	Obtain solution by reviewing registers (use print reg. command if applicable).			
	recall reg. 0		RCL 0	area
	recall reg. 1		RCL 1	S_1
	recall reg. 2		RCL 2	A_1
	recall reg. 3		RCL 3	S_2
	recall reg. 4		RCL 4	A_2
	recall reg. 5		RCL 5	S_3
	recall reg. 6		RCL 6	A_3
<p>* Review registers at this point for solution #1.</p> <p>** Press R/S, once only, for solution #2, (pressing R/S more than once will give erroneous results.)</p>				

Example 1:

Find the angles and the area for the following triangle.

Keystrokes:

2 STO 1 1 STO 3
2.75 STO 5 GSB 2


(and recall registers) →

Outputs:

Reg 0	0.77	(Area)
Reg 1	2.00	(S_1)
Reg 2	129.84	(A_1)
Reg 3	1.00	(S_2)
Reg 4	33.95	(A_2)
Reg 5	2.75	(S_3)
Reg 6	16.21	(A_3)

Example 2:

A surveyor is to find the area and dimensions of a triangular land parcel. From point A, the distances to B and C are measured with an electronic distance meter. The angle between AB and AC is also measured. Find the area and other dimensions of the triangle.

This is a side-angle-side problem where:

$$S_1 = 171.63, A_1 = 98^\circ 12' \text{ and } S_2 = 297.35.$$

Keystrokes:

171.63 STO 1 98.12

g H STO 2 297.35

STO 3 GSB 1

(and recall registers) →

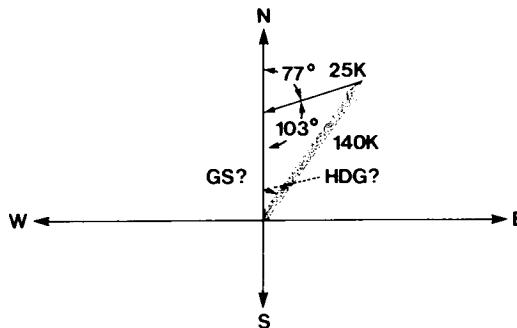
Outputs:

25256.21 (Area (m²))

171.63 (AB, m)

98.20 (ANG. A)

297.35 (AC, m)


27.83 (ANG. C)

363.91 (CB, m)

53.97 (ANG. B)

Example 3:

A pilot wishes to fly due north. The wind is reported as 25 knots at 77° . Because winds are reported opposite to the direction they blow, this is interpreted as $77 + 180$ or 257° . The true airspeed of the aircraft is 140 knots. What heading (HDG) should be flown? What is the ground speed (GS)?

By subtracting the wind direction from 180 (yielding an angle of 103°), the problem reduces to a S_1, S_2, A_2 triangle.

Keystrokes:

140 **STO** **1** 25 **STO** **3**

103 **STO** **4** **GSB** **4**

(and recall registers) \longrightarrow

Outputs:

25.00 (Side 2)

1610.64

140.00 (TAS)

66.98

25.00 (WIND VEL.)

103.00

132.24 (GS)

10.02 (HDG)

R/S \longrightarrow No Operation

(No Second Solution)

Thus, the pilot should fly a heading 10.02° east due north. His ground speed equals 132.24 knots.

Example 4:

Two angles and an adjacent side of a triangle are known. Calculate the area of the triangle, the other two sides and the third angle. The known side is 19.6 ft. and the angle adjacent is 61.06° . The opposite angle is 40.25° .

This is an AAS case where $S_1 = 19.6$ ft., $A_1 = 61.06^\circ$ and $A_2 = 40.25^\circ$.

Keystrokes:

19.6 **STO** **1** 61.06
STO **2** 40.25 **STO** **4**
GSB **5** (and recall

registers) →

Reg 0	255.11	(Area (ft ²))
Reg 1	19.60	(S ₁ , ft)
Reg 2	61.06	(A ₁ , deg)
Reg 3	29.75	(S ₂ , ft)
Reg 4	40.25	(A ₂ , deg)
Reg 5	26.55	(S ₃ , ft)
Reg 6	78.69	(A ₃ , deg)

Example 5:

Given 2 sides and a nonincluded angle solve for the triangle:

Side 1 = 25.6

Side 2 = 32.8

Angle 2 = 42.3°

(Note: Since S₁ < S₂ and A₂ < 90°, 2 solutions exist.)

Keystrokes:

25.6 **STO** **1** 32.8 **STO**
3 42.3 **STO** **4** **GSB** **4**

(and recall registers) →

(Solution #1)

Outputs:

Reg 0	410.85	(Area)
Reg 1	25.60	(S ₁)
Reg 2	78.12	(A ₁)
Reg 3	32.80	(S ₂)
Reg 4	42.30	(A ₂)
Reg 5	37.22	(S ₃)
Reg 6	59.58	(A ₃)

R/S (and recall

registers) →

(Solution #2)

Reg 0	124.68	(Area)
Reg 1	25.60	(S ₁)
Reg 2	17.28	(A ₁)
Reg 3	32.80	(S ₂)
Reg 4	42.30	(A ₂)
Reg 5	11.30	(S ₃)
Reg 6	120.42	(A ₃)

Example 6:

A triangle has angles of $64^{\circ}32'$ and $35^{\circ}06'$ with the included side 20.96 feet long. Solve for the remainder of the triangle.

Keystrokes:

64.32 **g** **↔** **STO** **6**
20.96 **STO** **1** 35.06 **g** **↔**
STO **2** **GSB** **3** (and
recall registers) \longrightarrow

Outputs:

Reg 0	115.66	(Area (ft ²))
Reg 1	20.96	(S_1 , ft)
Reg 2	35.10	(A_1)
Reg 3	19.19	(S_2 , ft)
Reg 4	80.37	(A_2)
Reg 5	12.22	(S_3 , ft)
Reg 6	64.53	(A_3)

CIRCLE DETERMINED BY THREE POINTS

This program calculates the center (x_0, y_0) and radius (r) of a circle given three non-collinear points.

Equations:

Circle determined by three points:

$$y_0 = \frac{K_2 - K_1}{N_2 - N_1} \cdot x_0 = K_2 - N_2 y_0$$

$$r = \sqrt{(x_3 - x_0)^2 + (y_3 - y_0)^2}$$

where:

$$K_1 = \frac{(x_2 - x_1)(x_2 + x_1) + (y_2 - y_1)(y_2 + y_1)}{2(x_2 - x_1)}$$

$$K_2 = \frac{(x_3 - x_1)(x_3 + x_1) + (y_3 - y_1)(y_3 + y_1)}{2(x_3 - x_1)}$$

$$N_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$N_2 = \frac{y_3 - y_1}{x_3 - x_1}$$

Remarks:

- If $x_1 = x_2$ or $x_1 = x_3$ in the calculation of the center and radius of a circle, then point 1 replaces point 3, point 3 replaces point 2 and point 2 replaces point 1.

01 #LBL1		50 RTN	***
02 RCL3		51 #LBL6	
03 RCL1		52 RCL1	
04 X=Y?		53 RCL2	
05 GT09		54 +P	
06 RCL5	Check for $x_1 = x_2$ or $x_1 = x_3$	55 X ²	
07 X=Y?		56 ST08	
08 GT02		57 RCL3	
09 #LBL5		58 RCL4	
10 GSB6		59 +P	
11 ST.3		60 X ²	
12 X ² Y		61 RCL6	
13 ST07		62	Subroutine to
14 RCL3		63 RCL3	Calculate $K_1, K_2,$
15 RCL5		64 RCL1	
16 ST03		65 -	
17 X ² Y		66 Z	N_1 and N_2
18 ST05		67 X	
19 RCL4	Calculate y_0, x_0 , or r	68 ÷	
20 RCL6		69 RCL4	
21 ST04		70 RCL2	
22 X ² Y		71 -	
23 ST06		72 RCL3	
24 GSB6		73 RCL1	
25 ST.4		74 -	
26 X ² Y		75 ÷	
27 ST08		76 RTN	
28 RCL7		77 #LBL9	-----
29 -		78 RCL5	
30 RC.4		79 X ² Y	
31 RC.3		80 GT08	Check for $x_1 = x_2 = x_3$
32 -		81 #LBL8	-----
33 ÷		82 RCL1	
34 ST.2		83 RCL3	
35 RC.4		84 RCL5	
36 X		85 ST03	
37 RCL8		86 R↓	
38 -		87 ST01	
39 CHS		88 R↑	
40 ST.1		89 ST05	
41 R/S	***	90 RCL2	Swap for $x_1 = x_2$ or
42 RC.2		91 RCL4	$x_1 = x_3$
43 R/S	***	92 RCL6	
44 RCL4		93 ST04	
45 -		94 R↓	
46 RCL3		95 ST02	
47 RC.1		96 R↑	
48 -		97 ST06	
49 +P		98 GT05	

REGISTERS

0 Used	1 x_1	2 y_1	3 x_2	4 y_2	5 x_3
6 y_3	7 k_1	8 k_2	9 r	0	.1 x_0
.2 y_0	.3 N_1	.4 N_2	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in the program.			
2	Input $x_1, y_1; x_2, y_2; x_3, y_3$	x_1 y_1 x_2 y_2 x_3 y_3	STO 1 STO 2 STO 3 STO 4 STO 5 STO 6	x_1 y_1 x_2 y_2 x_3 y_3
3	Calculate x_0, y_0 , and r		GSB 1 R/S R/S	x_0 y_0 r
4	For a new case go to step 2.			

Example:

What circle contains the points $(1, 1)$, $(3.5, -7.6)$ and $(12, 0.8)$?

Keystrokes:

1 **STO** **1** 1 **STO** **2** 3.5
STO **3** 7.6 **CHS** **STO** **4** 12
STO **5** 0.8 **STO** **6**
GSB **1**
R/S
R/S

Outputs:

6.45 (x_0)
-2.08 (y_0)
6.26 (r)

INTERSECTIONS OF LINES AND LINES, LINES AND CIRCLES, AND CIRCLES AND CIRCLES

This program calculates the point of intersection of two lines, the points of intersection of a coplanar circle and line, or the points of intersection of two coplanar circles.

There are three sub-programs, i.e.,

1. Calculates intersections of lines and lines.

Lines may be specified by two points (x_1, y_1 , and x_2, y_2), or by one point and an angle (θ), where θ is the angle from the positive x-axis to the line.

2. Calculates intersections of circles and lines.

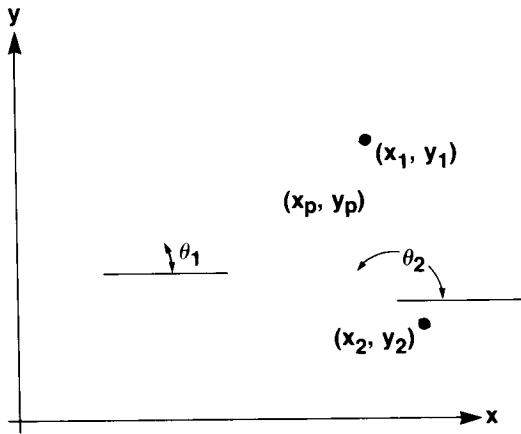
Lines are specified by two points (x_1, y_1 , and x_2, y_2).

Circles are specified by their center coordinates (x_0, y_0) and the radius (r).

3. Calculates intersections of circles and circles.

Circles are specified by their center coordinates (x_0, y_0) and the radius (r).

Equations:


Line-Line Intersection:

$$x_p = \frac{x_1 \tan \theta_1 - x_2 \tan \theta_2 + y_2 - y_1}{\tan \theta_1 - \tan \theta_2}$$

$$y_p = y_1 + (x_p - x_1) \tan \theta_1$$

$$y_1 = x_1 \tan \theta_1 + C_1$$

$$y_2 = x_2 \tan \theta_2 + C_2$$

Circle-Line Intersections:

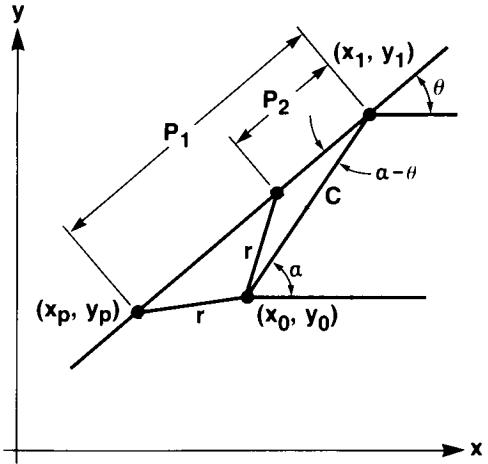
$$x_{p1} = x_1 + P_1 \cos \theta$$

$$y_{p1} = y_1 + P_1 \sin \theta$$

$$x_{p2} = x_1 + P_2 \cos \theta$$

$$y_{p2} = y_1 + P_2 \sin \theta$$

where:


P_1 and P_2 are the roots of

$$P^2 - 2 D \cos(\theta - \alpha) P + D^2 - r^2 = 0$$

$$\theta = \tan^{-1} \left[\frac{y_2 - y_1}{x_2 - x_1} \right]$$

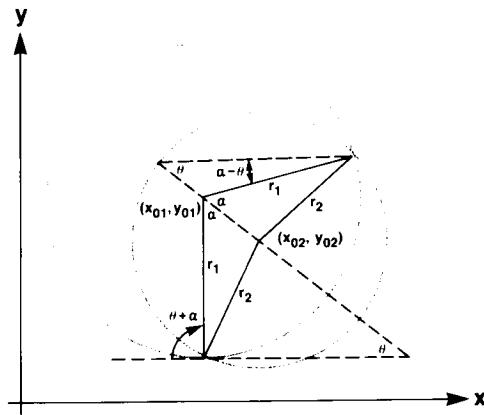
$$\alpha = \tan^{-1} \left[\frac{y_0 - y_1}{x_0 - x_1} \right]$$

$$D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}$$

Circle-Circle Intersections:

$$x_{p1} = x_{01} + r_1 \cos(\theta + \alpha)$$

$$y_{p1} = y_{01} + r_1 \sin(\theta + \alpha)$$


$$x_{p2} = x_{01} + r_1 \cos(\theta - \alpha)$$

$$y_{p2} = y_{01} + r_1 \sin(\theta - \alpha)$$

$$\theta = \tan^{-1} \left(\frac{y_{02} - y_{01}}{x_{02} - x_{01}} \right)$$

$$\alpha = \cos^{-1} \left[\frac{D^2 + r_1^2 - r_2^2}{2Dr_1} \right]$$

$$D = \sqrt{(x_{02} - x_{01})^2 + (y_{02} - y_{01})^2}$$

Intersections Part 1: Line-Line

01 #LBL3		58 -	
02 ST03		51 +P	
03 R+		52 R↓	
04 ST02	Input one point and angle for the 1 st point	53 RTN	
05 R↓		54 #LBL5	
06 ST01		55 RCL7	
07 GT05		56 RCL3	
08 #LBL4		57 X=Y	
09 ST07		58 GT08	
10 R↓		59 ABS	To calculate x _p , y _p
11 ST06	Input one point and angle for the 2 nd point	60 RC.θ	
12 R.		61 X#Y	
13 ST05		62 ST06	
14 GT08		63 RCL1	
15 #LBL1		64 R/S	
16 ST02		65 RCL7	
17 X#Y		66 TAN	
18 ST01		67 X	
19 GS86		68 RCL8	
20 ST03	Input coordinates of the 1 st point	69 +	
21 #LBL9		70 RTN	
22 RCL2		71 #LBL6	
23 RCL1		72 RCL7	
24 RCL3		73 ABS	
25 TAN		74 RC.θ	
26 X		75 X#Y	
27 -		76 GT07	The 1 st line is vertical.
28 ST04		77 RCL5	
29 RTN		78 R/S	
30 #LBL2		79 ST05	
31 ST06		80 #LBL7	
32 X#Y		81 RCL8	
33 ST05		82 RCL4	
34 GS86		83 -	
35 ST07		84 RCL3	
36 #LBL8		85 TAN	
37 RCL6		86 RCL7	
38 RCL5		87 TAN	
39 RCL7		88 -	
40 TAN		89 +	
41 X		90 R/S	
42 -		91 #LBL9	
43 ST08		92 RCL3	
44 RTN		93 TAN	
45 #LBL6		94 X	
46 R↓		95 RCL4	
47 -		96 +	
48 X#Y	Subroutine to find the slope and constant.	97 RTN	
49 RCL8			

REGISTERS

0 temp x ₂	1 x ₁ '	2 y ₁ '	3 θ ₁	4 c ₁	5 x ₂ '
6 y ₂ '	7 θ ₂	8 c ₂	9	0 90	.1
.2	3	4	5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

Intersections Part 2: Circle Line

81 #LBL2		58 *		
82 STO2		51 JX		
83 X2Y		52 STO9	***	-----
84 STO1		53 RTN		
85 R ¹		54 #LBL5		
86 -		55 #LBL3		
87 X2Y	Input x ₁ , y ₁ , x ₂ , y ₂ , and calculate	56 RCL9		
88 RCL2		57 RCL6		
89 -		58 -	Calculate x _p	
10 +F		59 RC.1		
11 R ¹		60 ÷		
12 9		61 R/S	***	
13 0		62 RCL3		
14 X2Y		63 X		
15 X=Y?		64 RCL4		
16 GT05		65 +		
17 TAN		66 #LBL9	***	-----
18 STO3		67 RTN		
19 RCL2		68 #LBL4		
20 RCL1		69 :		
21 RCL3		70 CHS	Calculate y _p	
22 X		71 STx9		
23 -		72 GT05		
24 STO4		73 #LBL3		
25 RCL6		74 RCL7		
26 -		75 X ²		
27 ST.2		76 RCL1		
28 RCL3		77 R/S	***	
29 X		78 RCL5		
30 RCL5		79 -		
31 -		80 X ²	Calculate x _p and y _p for vertical line.	
32 STO8		81 -		
33 RC.2		82 JX		
34 X ²		83 ST.3		
35 RCL5		84 #LBL8		
36 X ²		85 RCL6		
37 +		86 +		
38 RCL7		87 RTN		
39 X ²		88 #LBL4		
40 -		89 RCL1		
41 RCL3		90 R/S	***	
42 X ²		91 RC.3		
43 1		92 CHS		
44 +		93 GT08		
45 ST.1				
46 X				
47 CHS				
48 RCL8				
49 X ²				

REGISTERS

0 temp x ₂	1 x ₁ '	2 y ₁ '	3 tan θ ₁	4 c ₁	5 x ₀
6 y ₀	7 r	8 α	9 β	0	.1 (1 + m)
.2 c - y ₀	.3 Used	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

Intersections Part 3: Circle-Circle

01 #LBL1		58 GSB9		
02 ST03		51 #LBL6		
03 R4		52 RCL8		
04 ST02		53 SIN		Calculate x_{p2}, y_{p2}
05 R4		54 RCL3		
06 ST01		55 X		***
07 RTN		56 RCL2		
08 #LBL2		57 +		
09 ST05		58 RTN		
10 R4		59 #LBL9		
11 ST05		60 ST08		
12 R4		61 COS		
13 ST04		62 RCL3		
14 RTN		63 X		
15 #LBL3		64 RCL1		
16 RCL5		65 +		
17 RCL2		66 R/S		
18 -		67 RTN		
19 RCL4				
20 RCL1				
21 -				
22 +P				
23 ST08	Calculate x_{p1}, y_{p1}			
24 X2'				
25 ST07				
26 RCL8				
27 X2				
28 RCL3				
29 X2				
30 +				
31 RCL6				
32 X2				
33 -				
34 RCL6				
35 2				
36 X				
37 RCL3				
38 X				
39 ÷				
40 COS				
41 ST09				
42 RCL7				
43 +				
44 GSB9				
45 GT08				
46 #LBL4				
47 RCL7				
48 RCL9				
49 -				

REGISTERS

0 $\theta \pm \alpha$	1 x_{01}	2 y_{01}	3 r_1	4 x_{02}	5 y_{02}
6 r_2	7 θ	8 D	9 α	10	11
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

*** indicates that "Print X" may be inserted or used to replace "R/S".

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Circles and Lines			
10	Input the circle center			
	x_0	x_0	STO 5	x_0
	y_0	y_0	STO 6	y_0
	radius r	r	STO 7	r
11	Input the line by two points			
	x_1	x_1	ENTER	
	y_1	y_1	ENTER	
	x_2	x_2	STO 0	
	y_2	y_2	GSB 2	c_2
12	Calculate the intersection points			
	x_{p1}		GSB 3	x_{p1}
	y_{p1}		R/S	y_{p1}
	x_{p2}		GSB 4	x_{p2}
	y_{p2}		R/S	y_{p2}
13	For a new case, go to step 9.			
14	Circles and Circles			
15	Input circle one			
	x_{01}	x_{01}	ENTER	
	y_{01}	y_{01}	ENTER	
	r_1	r_1	GSB 1	x_{01}
16	Input circle two			
	x_{02}	x_{02}	ENTER	
	y_{02}	y_{02}	ENTER	
	r_2	r_2	GSB 2	x_{02}
17	Calculate intersections			
	x_{p1}		GSB 3	x_{p1}
	y_{p1}		R/S	y_{p1}
	x_{p2}		GSB 4	x_{p2}
	y_{p2}		R/S	y_{p2}
18	For a new case, go to step 14.			

Example 1:

Find the intersection of the vertical line specified by two points:

$$P_1 = (0, 0)$$

$$P'_1 = (0, 50)$$

And the oblique line specified by one point and an angle:

$$P_2 = (10, 20)$$

$$\theta = 45^\circ$$

Keystrokes:

(Key in the first program)

90	STO	0	0	→	90.00
0	ENTER	+	ENTER	+	STO 0 50
GSB	1			→	9.9999999 +99 (Neglect)
10	ENTER	+	20	ENTER	+
45				→	10.00
GSB	4			→	0.00 (x _p)
GSB	5			→	10.00 (y _p)
R/S				→	

Outputs:**Example 2:**

Find the points of intersection for a circle with center at (0, 0) and radius 50, and the line containing the points (20, 30) and (0, -10).

Keystrokes:

(Key in the second program)

0	STO	5	STO	6	50	STO	7	→	50.00
20	ENTER	+	30	ENTER	+	0	STO		
0	10	CHS	GSB	2				→	111.36
GSB	3							→	26.27 (x _{p1})
R/S								→	42.54 (y _{p1})
GSB	4							→	-18.27 (x _{p2})
R/S								→	-46.54 (y _{p2})

Example 3:

Calculate the points of intersection for circles at $(0, 0)$ radius 50 and $(90, 30)$ radius 70.

Keystrokes:

(Key in the third program)

0	ENTER	ENTER	50	GSB	1	→	0.00
90	ENTER	30	ENTER	70			
	GSB	2	→	90.00			
	GSB	3	→	21.64	(x_{p1})		
	R/S		→	45.07	(y_{p1})		
	GSB	4	→	44.36	(x_{p2})		
	R/S		→	-23.07	(y_{p2})		

HEWLETT PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional Sales and Service Information contact your local Hewlett-Packard Sales Office or call 800/648-4711. (In Nevada call collect 702/323-2704.)

5955-2111

Printed In U.S.A.

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.