

Hewlett-Packard
**HP-19C/HP-29C
SOLUTIONS**

NAVIGATION

INTRODUCTION

This HP-19C/HP-29C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become an expert on your HP calculator.

You will find general information on how to key in and run programs under "A Word about Program Usage" in the Applications book you received with your calculator.

We hope that this Solutions book will be a valuable tool in your work and would appreciate your comments about it.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

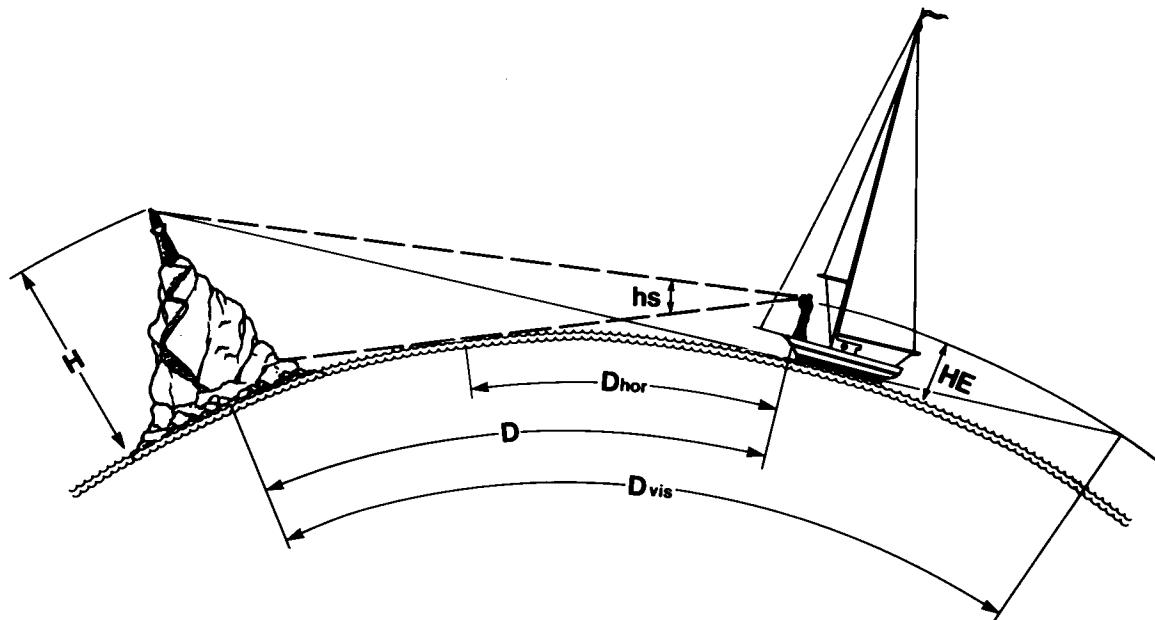
TABLE OF CONTENTS

DISTANCE TO OR BEYOND HORIZON	1
This program computes the distance to an object of known height whose base is obscured by the horizon. It also computes distance to horizon for a given height of eye and the distance of visibility of an object of known height.	
DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON	5
This program calculates the distance between an observer and an object given (1) the vertical angle between its waterline and the horizon observed from a known height of eye or (2) the object's height and its subtended angle.	
DISTANCE OFF AN OBJECT BY TWO BEARINGS	9
This program computes the distance off an object given two bearings and the distance run between the bearings.	
VELOCITY TRIANGLE	12
This program provides interchangeable solutions for vector addition problems such as heading, current, and course problems.	
COURSE TO STEER	15
This program computes course to steer given initial position, final position, speed, current, and magnetic deviation and variation.	
ESTIMATED TIME OF ARRIVAL	18
This program computes ETA's given distance, speed, departure date and time, and time zones. It also computes speed required to make an ETA given distance, date and time of arrival and departure, and time zones.	
GREAT CIRCLE NAVIGATION*	21
This program calculates the great circle course and distance between two points.	
GREAT CIRCLE COMPUTATION	24
This program computes the latitude corresponding to a given longitude on a great circle passing through two given points.	
COMPOSITE SAILING	27
This program computes, for two points, the longitude at which a great circle is tangent to a given limiting parallel.	
RHUMB LINE NAVIGATION*	30
This program calculates the rhumb line course and the distance from origin to the destination.	

RHUMB LINE DEAD RECKONING 34

This program calculates DR position given course, speed, and elapsed time from the last fix or DR position.

CELESTIAL NAVIGATION AND DEAD RECKONING 38


This program keeps track of the positions of a ship and also a celestial object. Given time and sextant altitude, an updated DR and altitude intercept and azimuth are output.

SIGHT REDUCTION TABLE* 42

This program is a replacement for various published sight reduction tables (e.g.: H.O. 214, H.O. 229, etc.).

* THIS PROGRAM ALSO APPEARS IN THE HP-19C/29C APPLICATIONS BOOK. IT HAS BEEN INCLUDED HERE, IN SLIGHTLY MODIFIED FORM, FOR THE SAKE OF COMPLETENESS.

DISTANCE TO OR BEYOND HORIZON

This program computes the distance to an object of known height whose base is obscured by the horizon and whose top subtends a sextant altitude hs with the horizon. The sextant altitude is corrected for index error and height of eye. Additional features are the calculation of the distance to the horizon for a given height of eye and the distance of visibility of an object of height H above sea level.

EQUATIONS:

$$D = \sqrt{\left(\frac{\tan ha}{2.46 \times 10^{-4}}\right)^2 + \frac{H-HE}{0.74736} - \frac{\tan ha}{2.46 \times 10^{-4}}}$$

$$D_{hor} = 1.144 \sqrt{HE}$$

$$D_{vis} = 1.144(\sqrt{HE} + \sqrt{H})$$

where

D = distance to object, nautical miles

D_{hor} = distance to horizon, nautical miles

D_{vis} = distance of visibility, naut. miles

H = height of object beyond horizon, feet

HE = height of eye, feet

ha = $hs + IC - 0.97 \sqrt{HE}$

hs = sextant altitude, D.MS

IC = index correction, M.m

EXAMPLE 1:

The height of eye of an observer is 9 feet above sea level, how far away is his horizon?

EXAMPLE 2:

An observer "bobs" Farallon Light on the horizon and finds his height of eye to be 16 feet. The light is 358 feet above sea level. How far is the observer from the light? (Accuracy is affected by abnormal refraction)

EXAMPLE 3:

The top of a lighthouse, whose base is obscured by the horizon, is known to be 300 feet above sea level. It is found to have a sextant altitude of 25°6' above the horizon. The height of eye is 20 feet and the sextant requires an index correction of +1°3'.

What is the distance to the lighthouse?

What is the distance to the horizon?

It has been determined that the luminous range of the light is "strong", now compute its visibility for the given height of eye.

SOLUTIONS:

(1)

9.00 ST02
GSB2
3.43 *** n.m.

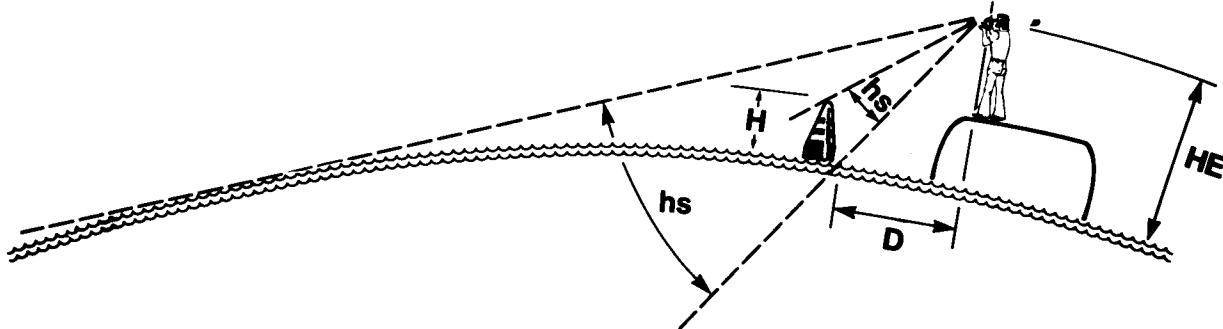
(2)

16.00 ST02
358.00 ST03
GSB2
R/S
26.22 *** n.m.

(3)

1.30 ST01
20.00 ST02
300.00 ST03
0.2536 GSB1
6.28 *** n.m.
GSB2
5.12 *** n.m.
R/S
24.93 *** n.m.

User Instructions


Program Listings

01 *LBL1	hs(D.MS)	48 x	1.144
02 →H	hs°	49 LSTX	
03 RCL1		50 RCL2	
04 RCL2		51 JX	
05 JX		52 x	
06 .		53 R/S	*** D _{hor}
07 9		54 +	
08 7		55 R/S	** D _{vis}
09 x			
10 -			
11 6			
12 0			
13 ÷			
14 +	ha°		
15 TAN			
16 2			
17 .			
18 4			
19 6			
20 EEX			
21 CHS			
22 4			
23 ÷			
24 ST05			
25 RCL3			
26 RCL2			
27 -			
28 .			
29 7			
30 4			
31 7		** "Printx" may be inserted before "R/S".	
32 3		*** "Printx" may be used to replace	
33 6		"R/S".	
34 ÷			
35 JX			
36 +P	$\sqrt{x^2 + y^2}$		
37 RCL5			
38 -			
39 R/S	** D		
40 *LBL2			
41 RCL3			
42 JX			
43 1			
44 .			
45 1			
46 4			
47 4			

REGISTERS

0	1 IC	2 HE	3 H	4	5 Used
6	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

DISTANCE BY HORIZON ANGLE AND DISTANCE SHORT OF HORIZON

This program calculates the distance between an observer and an object when (1) the vertical angle between its waterline and the horizon has been observed from a known height of eye or (2) the object's height is known, together with its subtended angle.

This program also calculates the height of an object if its subtended angle and distance from the observer are known.

EQUATIONS:

$$D = \frac{HE}{\tan(hs + IC + .97 \sqrt{HE})}$$

$$D = \frac{H}{\tan(hs + IC)}$$

where

D = distance to object, feet

HE = height of eye, feet

IC = index correction, M.m

H = height of object, feet

hs = sextant altitude, D.MS

NOTE:

$hs < 10'$ may make D unreliable due to atmospheric conditions when vertical sextant altitude between object and horizon is taken.

EXAMPLE 1:

The sextant altitude between the waterline of a buoy and the horizon is found to be $21^\circ 4'$. The observer has a height of eye of 22 feet and the sextant requires a $+1^\circ 7'$ index correction. How far is the observer from the buoy?

EXAMPLE 2:

The sextant altitude subtended by the base and the top of a 41 foot light tower is $56^\circ 2'$. The sextant requires a $-1^\circ 9'$ index correction. How far is the observer from the light tower?

EXAMPLE 3:

A vessel is anchored 2015 feet from an observer. The sextant altitude between the vessel's waterline and truck of mast is $1^\circ 15^\circ 2'$. There is no index error. How high is the truck of the mast above the waterline?

SOLUTIONS:

(1)

1.70 ST01
22.00 ST02
0.2124 GSB1
2735.25 *** ft.
R/S
0.45 *** n.m.

(2)

-1.90 ST01
41.00 ENT↑
0.5612 GSB2
2595.50 *** ft.
R/S
0.43 *** n.m.

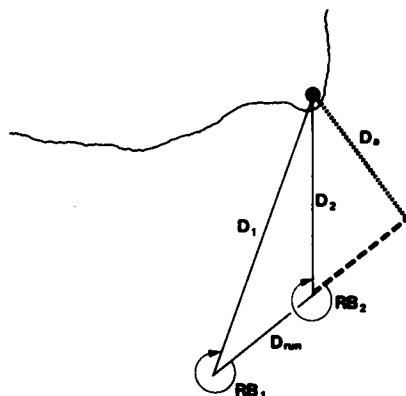
(3)

0.00 ST01
2015.00 ENT↑
1.1512 GSB3
44.08 *** ft.

User Instructions

Program Listings

01 *LBL1	hs		
02 +H			
03 RCL1			
04 RCL2			
05 JX			
06 .			
07 9			
08 7			
09 x			
10 +			
11 GSB0			
12 RCL2			
13 X ² Y			
14 ÷	D		
15 GT09	hs H		
16 *LBL2			
17 +H			
18 RCL1			
19 GSB0			
20 ÷			
21 *LBL9	D		
22 R/S	** D(ft.)		
23 6			
24 0			
25 7			
26 6			
27 ÷			
28 R/S	** D(n.m.)		
29 *LBL3	hs D(ft.)		
30 +H			
31 RCL1			
32 GSB0			
33 x			
34 R/S	** H (ft.)		
35 *LBL8			
36 6			
37 0			
38 ÷			
39 +			
40 TAN			
41 RTN			


** "Printx" may be inserted before "R/S".

REGISTERS

0	1	IC	2	HE	3	4	5
6	7		8		9	.0	.1
.2	.3		.4		.5	16	17
18	19		20		21	22	23
24	25		26		27	28	29

DISTANCE OFF AN OBJECT BY TWO BEARINGS

To determine the distance off an object as a vessel passes it, observe two bearings on the bow and note the distance run between bearings. The program calculates the distance off the object when it is abeam and at the time of the first and second bearings.

EQUATIONS:

$$D_2 = \frac{\sin RB_1}{\sin(RB_2 - RB_1)} D_{\text{run}} \quad (2)$$

$$D_{\text{abeam}} = |D_2 \sin RB_2|$$

$$D_1 = \frac{D_{\text{abeam}}}{\sin RB_1}$$

where

RB_1 = First relative bearing

RB_2 = Second relative bearing

D_{run} = St = Distance run

S = speed of vessel

t = time in minutes

D_1, D_2 = Distance at time of first or second bearing

D_a = Distance when abeam

EXAMPLE 1:

A lighthouse bears -026° (26° counter-clockwise) at 1130 and -051° at 1140. Our speed is 15 knots. How far will we be off the light when it is abeam? How far off were we at 1130 and 1140?

EXAMPLE 2:

A buoy is sighted bearing 015° on the bow, after a 3 mile run it bears 105° . What was its distance when abeam?

SOLUTIONS:

(1)

-26.00	ENT↑	
-51.00	GSB1	
15.00	ENT↑	
0.10	GSB3	
4.60	***	D_1
	R↓	
2.59	***	D_2
	R↓	
2.02	***	D_{abeam}

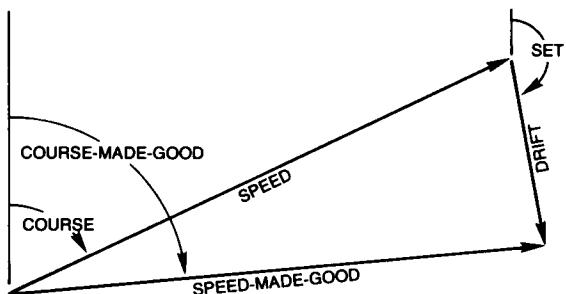
(2)

15.00	ENT↑	
105.00	GSB1	
3.00	GSB2	
	R↓	
	R↓	
0.75	***	D_{abeam}

User Instructions

Program Listings

11


01 *LBL1	Store bearings		
02 ST02			
03 X2Y			
04 ST01			
05 R/S			
06 *LBL3	t,s		
07 →H			
08 x			
09 *LBL2			
10 RCL2	D _{run}		
11 RCL1			
12 -			
13 SIN			
14 ÷			
15 RCL1			
16 SIN	D ₂		
17 x			
18 ST04			
19 RCL2			
20 SIN			
21 x			
22 ABS	D _{abeam}		
23 RCL4			
24 LSTX			
25 RCL1			
26 SIN			
27 ÷			
28 ABS	D ₁		
29 R/S	D ₁ , D ₂ , D _{abeam}		

REGISTERS

0	1	RB ₁	2	RB ₂	3	4	Used	5
6	7		8		9	.0	.1	
.2	.3		.4		.5	16	17	
18	19		20		21	22	23	
24	25		26		27	28	29	

VELOCITY TRIANGLE

This program is an interchangeable solution for the vector addition problem. Given any two of the vectors shown, the program computes the third.

SOLUTION:

5.00 ST01
 20.50 ST02
 60.00 ENT1
 2.00 GSB1
 90.00 ENT1
 3.00 GSB3
 GSB5
 1.02 *** knots
 X2Y
 98.86 *** °T

Compass course is corrected on input for magnetic variation and deviation. True course is decorrected on output to yield compass course. Remember to update the values used for variation (changes with location) and deviation (changes with heading).

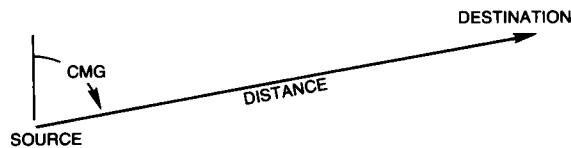
EXAMPLE:

A vessel is making 2 knots through the water, steering 060° by the compass. The magnetic variation is $20.5^\circ E$ and the deviation is $5^\circ E$. Calculate the set and drift of the current if the vessel is making good 3 knots on a course of $090^\circ T$.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store compass corrections:			
	Deviation (negative if west)	$+\text{Dev}^\circ$	STO 1	
	Variation (negative if west)	$+\text{Var}^\circ$	STO 2	
3.	Enter any two of the three vectors:			
3a.	Heading -			
	Compass course	C_C°	ENT↑	
	Speed	S, knots	GSB 1	
3b.	Current -			
	Set	Set°	ENT↑	
	Drift	Drift, knots	GSB 2	
3c.	Course -			
	Course made good	CMG°	ENT↑	
	Speed made good	SMG, knots	GSB 3	
4.	Compute the remaining vector:			
4a.	Heading -			
	Speed		GSB 4	S, knots
	Compass course		x↔y	C_C°
	True course		RCL 4	C_t°
4b.	Current -			
	Drift		GSB 5	Drift/knots
	Set		x↔y	Set°
4c.	Course -			
	Speed made good		GSB 6	SMG, knots
	Course made good		x↔y	CMG°

Program Listings


01 *LBL1	Enter heading	50 RCL5	
02 ST05		51 →R	x ₁ ,y ₁
03 X ₂ Y		52 ST.0	
04 ST03		53 X ₂ Y	
05 RCL1		54 RCL8	
06 +		55 RCL9	
07 RCL2		56 GSB0	CMG
08 +		57 ST06	
09 GSB9	Normalize angle	58 X ₂ Y	
10 ST04		59 ST07	
11 R/S		60 R/S	SMG
12 *LBL2	Enter current	61 *LBL7	
13 ST09		62 RCL6	
14 X ₂ Y		63 RCL7	
15 ST08		64 →R	
16 R/S		65 ST.0	x ₁ ,y ₁
17 *LBL3	Enter course	66 X ₂ Y	
18 ST07		67 RTN	
19 X ₂ Y		68 *LBL0	x ₂ ,y ₂ ,y ₁
20 ST06		69 →R	
21 R/S		70 S+.0	
22 *LBL4	Compute heading	71 R↓	
23 GSB7		72 +	
24 RCL8		73 RC.0	x ₁ +x ₂ ,y ₁ +y ₂
25 RCL9		74 →P	
26 CHS		75 X ₂ Y	
27 GSB0		76 GSB9	Normalize angle
28 ST04		77 RTN	
29 RCL1		78 *LBL9	
30 -		79 3	
31 RCL2		80 6	
32 -		81 θ	
33 GSB9	Normalize angle	82 →R	
34 ST03	C _c	83 →P	
35 X ₂ Y		84 X ₂ Y	∠,360
36 ST05	Speed	85 X<0?	
37 R/S		86 ST08	
38 *LBL5	Compute current	87 X ₂ Y	
39 GSB7		88 R↓	
40 RCL4		89 RTN	∠
41 RCL5		90 *LBL8	
42 CHS		91 +	
43 GSB0		92 RTN	360 + ∠
44 ST08	Set		
45 X ₂ Y	Drift		
46 ST09			
47 R/S	Compute course		
48 *LBL6			
49 RCL4			

REGISTERS

0	1 Dev	2 Var	3 C _c	4 C _t	5 Speed
6 CMG	7 SMG	8 Set	9 Drift	.0 Used	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

COURSE TO STEER

This program calculates a course to steer given your location, the location where you want to go, your boat's speed through the water, and the set and drift of the current.

EXAMPLE:

A vessel making 6 knots through the water is at (45°N. 124°40'W) and she wishes to steer a course toward (44°40'N, 124°10'W). The magnetic variation is 20.5E and there is a 2 knot current setting 090°. What course should she steer.

SOLUTION:

```

0.00 ST01
20.50 ST02
90.00 ST08
2.00 ST09
45.00 ENT↑
124.40 ENT↑
44.40 ENT↑
124.10 GSB1
29.20 *** Dist., n.m.
6.00 GSB2
125.93 *** Course to steer,degrees
R/S
7.30 *** Speed made good,knots
R/S
4.00 *** Transit time, H.MS

```

User Instructions

Program Listings

17

01 *LBL1	$\lambda_2 L_2 \lambda_1 L_1$	50 ST07	
02 $\rightarrow H$		51 GSB7	SMG, CMB
03 X \leftrightarrow Y	L ₂	52 CHS	
04 $\rightarrow H$		53 GSB0	
05 ST.1		54 RCL1	
06 R \downarrow		55 -	
07 X \leftrightarrow Y	λ_1	56 RCL2	
08 $\rightarrow H$		57 -	
09 -		58 GSB9	C _C
10 CHS	$\lambda_1' - \lambda_2'$	59 R/S	
11 ST.2		60 RC.1	Dist
12 R \downarrow		61 RCL7	
13 $\rightarrow H$	L ₁	62 R/S	SMG (knots)
14 S-.1	$L_1 + L_2$	63 \div	
15 +		64 +HMS	Time (H.MS)
16 2		65 R/S	Normalize:
17 \div	Ang., latitude	66 *LBL9	0 < angle < 360
18 COS		67 3	
19 RC.2		68 6	
20 X		69 0	
21 RC.1	$\sqrt{x^2 + y^2}$	70 $\rightarrow R$	
22 +P		71 $\rightarrow P$	
23 6		72 X \leftrightarrow Y	
24 0		73 X θ ?	
25 X		74 GT08	
26 ST.1		75 X \leftrightarrow Y	
27 X \leftrightarrow Y		76 R \downarrow	
28 GSB9		77 RTN	
29 ST06	CMG	78 *LBL8	
30 X \leftrightarrow Y		79 +	
31 R/S	Dist. (n.m.)	80 RTN	Vector add
32 *LBL2	Enter speed and	81 *LBL8	x ₂ , y ₂
33 ST05	Compute C _C	82 $\rightarrow R$	
34 RCL6		83 S+.0	
35 RCL8		84 R \downarrow	
36 RCL6		85 +	y ₁ + y ₂
37 -		86 RC.0	x ₁ + x ₂
38 SIN		87 $\rightarrow P$	
39 RCL9		88 X \leftrightarrow Y	r
40 X		89 GSB9	θ
41 RCL5		90 RTN	θ'
42 \div		91 *LBL7	Vector add
43 SIN $^{-1}$		92 $\rightarrow R$	x ₁ , y ₁
44 -		93 ST.0	
45 GSB9	C _t	94 X \leftrightarrow Y	
46 RCL5		95 RCL8	
47 GSB7		96 RCL9	
48 GSB0		97 RTN	
49 X \leftrightarrow Y	SMG		

REGISTERS

0	1 Dev	2 Var	3	4	5 Speed
6 CMG	7 SMG	8 Set	9 Drift	0 Used	.1 Used
.2 Used	.3	.4	.5	.16	.17
18	19	20	21	22	23
24	25	26	27	28	29

ESTIMATED TIME OF ARRIVAL

This program computes the time of arrival at the next port in local zone time and GMT, when distance, speed, departure date and time in local zone time are input.

It also computes speed required to make a given ETA, when distance, date and time of departure in local zone time and date and time of desired arrival in local zone time are input.

All computations can be made in GMT by storing zeros in registers 4 and 5 and entering GMT times.

EXAMPLES:

1. A vessel departs San Francisco at 0030 on the 2nd of January local time, bound for Guam, distance 5,146 miles. What will be the date and time of arrival Guam local time, and GMT at 15.5 knots.
2. If the same Vessel makes the same departure time and wishes to arrive in Guam at 0700 on the 16th of January local Guam time, what speed is required.

NOTE:

Zone time of San Francisco is +8 and Guam is -10.

REFERENCE:

This program is adapted from HP-65 Users' Library program #02185A by Capt. Kenneth R. Orcutt.

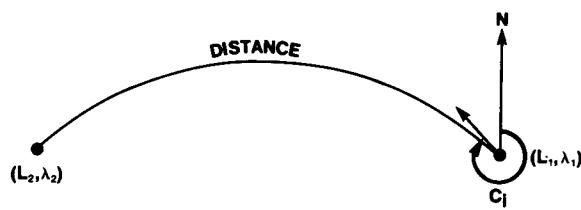
SOLUTIONS:

(1)	5146.00 ST01	
	15.50 ST02	
	8.00 ST04	
	-10.00 ST05	
	2.0030 GSB1	
	16.1430 *** Local time	
	R/S	
	16.0430 *** GMT	
(2)	2.0030 ENT†	
	16.0700 GSB2	
	15.8582 *** Knots	

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store pertinent data:			
	Distance (nautical miles)	Dist	STO 1	
	Speed (knots)	Speed	STO 2	
	Departure time zone (negative if east)	DTZ	STO 4	
	Arrival time zone (negative if east)	ATZ	STO 5	
3.	To compute arrival time and date:			
3a.	Enter departure time and date in DD.HHMM format and run. e.g., 2:30 p.m. Jan 3 would be written 3.1430	DD.HHMM	GSB 1	DD.HHMM (local time)
3b.	For GMT time and date of arrival Note: If arrival is in the next month, subtract the number of days in the month.		R/S	DD.HHMM(GMT)
4.	To compute speed required to make a given ETA:			
4a.	Enter departure time and date	DD.HHMM	ENT↑	
4b.	Enter arrival time and date and compute speed NOTE: If arrival is in the next month, enter date plus the number of days in the month.	DD.HHMM	GSB 2	Speed, knots

Program Listings


01 *LBL1	Compute arrival	50 +	
02 4	i = 4	51 RTN	Arriv. time.Dep.
03 ST00		52 *LBL2	Time
04 R↓		53 5	i = 5
05 GSB0		54 ST00	
06 RCL1		55 R↓	
07 RCL2		56 GSB0	
08 ÷		57 X \div Y	Dep. time
09 RCL9	Time of transit	58 DSZ	i = 4
10 ÷		59 GSB0	
11 +		60 -	Total transit time
12 ST07	Add to departure	61 RCL1	
13 RCL5	time	62 X \div Y	
14 RCL9		63 ÷	Speed
15 ÷		64 RCL9	
16 -	Arrival time	65 ÷	**
17 *LBL9		66 R/S	Speed, knots
18 INT	DD.		
19 LSTX			
20 FRC	Convert to hours		
21 RCL9			
22 x			
23 \div HMS			
24 1			
25 0	Format display		
26 0			
27 ÷			
28 +			
29 R/S	**		
30 RCL7	Arrival time and		
31 GT09	date, local and		
32 *LBL0	GMT		
33 FIX4	Set display		
34 INT	DD.		
35 LSTX			** "PRINTX" may be inserted before "R/\$".
36 FRC			
37 1			
38 0			
39 0			
40 x			
41 \div H			
42 2			
43 4			
44 ST09	Add DD.		
45 ÷			
46 +	Time zone		
47 RCL1			
48 RCL9			
49 ÷			

REGISTERS

0	i	1 Distance	2 Speed	3	4 Dep. Time Zone	5 Arriv. TIME	Zone
6		7 Used	8	9	.0	.1	
.2		.3	.4	.5	16	17	
18		19	20	21	22	23	
24		25	26	27	28	29	

GREAT CIRCLE NAVIGATION

This program calculates the great circle distance between two points and the initial course from the first point. Coordinates are input in degrees-minutes-seconds format. The distance is displayed in nautical miles and the initial course in decimal degrees.

EQUATIONS:

$$D = 60 \cos^{-1} [\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos (\lambda_2 - \lambda_1)]$$

$$C = \cos^{-1} \left[\frac{\sin L_2 - \sin L_1 \cos (D/60)}{\sin (D/60) \cos L_1} \right]$$

$$C_i = \begin{cases} C; \sin (\lambda_2 - \lambda_1) < 0 \\ 360 - C; \sin (\lambda_2 - \lambda_1) \geq 0 \end{cases}$$

where:

L_1, λ_1 = coordinates of initial point

L_2, λ_2 = coordinates of final point

D = distance from initial to final point

C_i = initial course from initial to final point

REMARKS:

- Southern latitudes and eastern longitudes must be entered as negative numbers.
- Truncation and round off errors occur when the source and destination are very close together (1 mile or less).

- Do not use coordinates located at diametrically opposite sides of the earth.
- Do not use latitudes of $+90^\circ$ or -90° .
- Do not try to compute initial heading along a line of longitude ($L_1=L_2$).
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:

Find the distance and initial course for the great circle from Tokyo ($L35^\circ 40'N$, $\lambda 139^\circ 45'E$) to San Francisco ($L37^\circ 49'N$, $\lambda 122^\circ 25'W$).

EXAMPLE 2:

What is the distance and initial great circle course from $L33^\circ 53'30''S$, $\lambda 18^\circ 23'10''E$ to $L40^\circ 27'10''N$, $\lambda 73^\circ 49'40''W$?

SOLUTIONS:

(1) 75.40 ENT↑
 -139.45 ENT↑
 37.49 ENT↑
 122.25 GSB1
 4460.04 *** (D,n.m.)
R/S
 54.37 *** (C_i ,dec.deg.)

(2) -33.5330 ENT↑
 -18.2310 ENT↑
 40.2710 ENT↑
 73.4940 GSB1
 6763.09 *** (D,n.m.)
R/S
 304.48 *** (C_i ,dec.deg.)

User Instructions

Program Listings

23

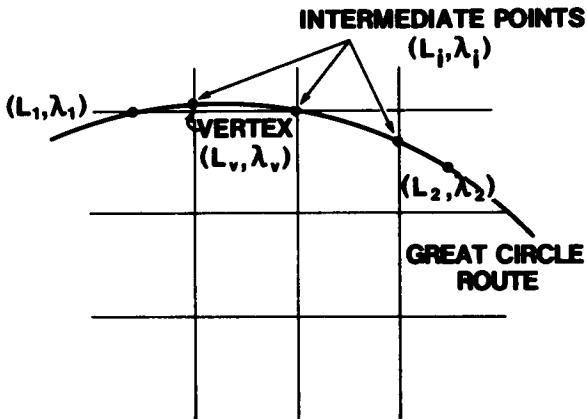
01 *LBL1
 02 →H
 03 ST03
 04 R↓
 05 →H
 06 ST01
 07 R↓
 08 →H
 09 ST04
 10 R↓
 11 →H
 12 ST02
 13 RCL2
 14 SIN
 15 RCL1
 16 SIN
 17 X
 18 RCL2
 19 COS
 20 RCL1
 21 COS
 22 X
 23 RCL3
 24 RCL4
 25 -
 26 ST00
 27 COS
 28 X
 29 +
 30 ST05
 31 COS-
 32 ST06
 33 E
 34 θ
 35 X
 36 R/S
 37 RCL1
 38 SIN
 39 RCL2
 40 SIN
 41 RCL5
 42 X
 43 -
 44 RCL2
 45 COS
 46 ÷
 47 RCL6

** D

48 SIN
 49 ÷
 50 COS-
 51 RCL8
 52 SIN
 53 X<0?
 54 GT09
 55 R↓
 56 3
 57 6
 58 0
 59 X+Y
 60 -
 61 RTN
 62 *LBL9
 63 R↓
 64 RTN

** C_i

** C_i


** "Printx" may be inserted
before "R/S" and "RTN".

REGISTERS

0	$\lambda_2 - \lambda_1$	1	L_2	2	L_1	3	λ_2	4	λ_1	5	COS D/60
6		7		8		9		.0		.1	
.2		.3		.4		.5		.16		.17	
18		19		20		21		.22		.23	
24		25		26		27		.28		.29	

GREAT CIRCLE COMPUTATION

This program computes the latitude corresponding to a specified longitude on a great circle passing through two given points.

EQUATIONS:

$$L_j = \tan^{-1} \left[\frac{\tan L_2 \sin(\lambda_j - \lambda_1) - \tan L_1 \sin(\lambda_j - \lambda_2)}{\sin(\lambda_2 - \lambda_1)} \right]$$

where

(L_1, λ_1) = coordinates of initial point

(L_2, λ_2) = coordinates of final point

(L_j, λ_j) = coordinates of intermediate point

NOTES:

The program does not compute along lines of longitude ($\lambda_1 = \lambda_2$).

EXAMPLE:

A ship is proceeding from Manila to Los Angeles. The captain wishes to use great-circle sailing from $L12^{\circ}45'2N$, $\lambda124^{\circ}20'1E$, off the entrance to San Bernardino Strait, to $L33^{\circ}48'8N$, $\lambda120^{\circ}07'1W$, five miles south of Santa Rosa Island. Find the latitudes corresponding to 1) $\lambda = 160^{\circ}34'W$; and 2) $\lambda = 180^{\circ}$.

SOLUTION:

12.4512 ENT↑
-124.2006 ENT↑
33.4848 ENT↑
120.0706 GSB1
160.3400 GSB2
41.2108 *** °N
180.0000 GSB2
39.4133 *** °N

User Instructions

Program Listings

```

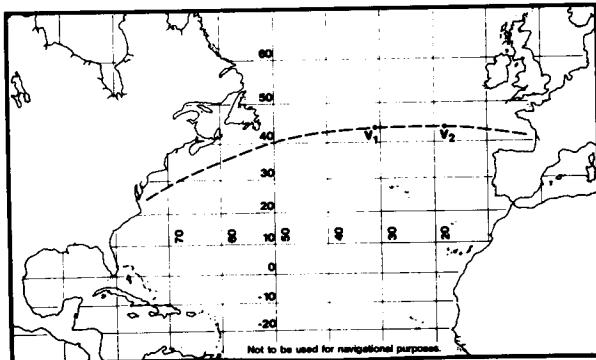
01 *LBL1
02 →H
03 ST03
04 R↓
05 →H
06 ST01
07 R↓
08 →H
09 ST04
10 R↓
11 →H
12 ST02
13 R/S
14 *LBL2
15 →H
16 ST08
17 RCL4
18 -
19 SIN
20 RCL1
21 TAN
22 x
23 RCL8
24 RCL3
25 -
26 SIN
27 RCL2
28 TAN
29 x
30 -
31 RCL3
32 RCL4
33 -
34 SIN
35 ÷
36 TAN⁻¹
37 →HMS
38 R/S

```

λ_2 L_2 λ_1 L_1

** λ_i

** L_i


** "Printx" may be inserted
before "R/S".

REGISTERS

0	1	L_2	2	L_1	3	λ_2	4	λ_1	5
6	7		8	λ_i	9		.0		.1
.2	.3		.4		.5		16		17
18	19		20		21		22		23
24	25		26		27		28		29

COMPOSITE SAILING

When the great circle would carry a vessel to a higher latitude than desired, a modification of great-circle sailing, called composite sailing, may be used to good advantage. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel and through the destination. This program computes, for each of two points, the longitude at which a great circle through the point is tangent to some limiting parallel.

EQUATIONS:

$$\lambda_{V1} = \lambda_1 + \cos^{-1}\left(\frac{\tan L_1}{\tan L_{\max}}\right) s_1 s_2$$

$$\lambda_{V2} = \lambda_2 + \cos^{-1}\left(\frac{\tan L_2}{\tan L_{\max}}\right) s_3 s_2$$

where

(L_1, λ_1) = initial position

(L_2, λ_2) = final position

(L_{\max}, λ_{V1}) = point at which limiting parallel is met

(L_{\max}, λ_{V2}) = point at which limiting parallel is left

$$s_1 = \text{sgn}(\lambda_2 - \lambda_1)$$

$$s_2 = \text{sgn}(|\lambda_2 - \lambda_1| - 180)$$

$$s_3 = -s_1$$

$$\text{sgn}(x) = \begin{cases} +1 & ; x \geq 0 \\ -1 & ; x < 0 \end{cases}$$

EXAMPLE:

A ship leaves Baltimore bound for Bordeaux (Royan), France. The captain desires to use composite sailing from $L36^{\circ}57'7N, \lambda75^{\circ}42'2W$ one mile south of Chesapeake Light to $L45^{\circ}39'1N, \lambda1^{\circ}29'8W$, near the entrance to Grande Passe de l'Quest, limiting the maximum latitude to $47^{\circ}N$.

Required:

- (1) The longitude at which the limiting parallel is reached.
- (2) The longitude at which the limiting parallel should be left.

SOLUTION:

36.5742 ENT↑	
75.4212 ENT↑	
45.3906 ENT↑	
1.2948 GSB1	
47.0000 GSB2	
30.1607 *** λ_{V1} (D.MS)	
R/S	
18.5653 *** λ_{V2} (D.MS)	

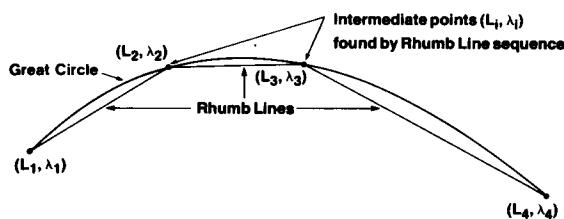
User Instructions

Program Listings

29

01 *LBL1 02 →H 03 ST03 04 R↓ 05 →H 06 ST01 07 R↓ 08 →H 09 ST04 10 R↓ 11 →H 12 ST02 13 R/S 14 *LBL2 15 TAN 16 ST05 17 RCL2 18 TAN 19 X ² Y 20 ÷ 21 COS ⁻¹ 22 RCL3 23 RCL4 24 - 25 ENT↑ 26 ABS 27 1 28 8 29 0 30 - 31 x 32 ENT↑ 33 ABS 34 ÷ 35 ST06 36 CHS 37 x 38 RCL4 39 *LBL0 40 + 41 1 42 →R 43 →P 44 X ² Y 45 →HMS 46 R/S 47 RCL1 48 TAN 49 RCL5	$\lambda_2 \quad L_2 \quad \lambda_1 \quad L_1$ Enter L_{\max} $\lambda_2 - \lambda_1$ $ \lambda_2 - \lambda_1 \quad \lambda_2 - \lambda_1$ ± 1 Normalize Angle $\lambda_{V1}, \lambda_{V2}$	50 ÷ 51 COS ⁻¹ 52 RCL6 53 x 54 RCL3 55 GT08	sgn		
REGISTERS					
0	1 L_2	2 L_1	3 λ_2	4 λ_1	5 $\tan L_{\max}$
6 sgn	7	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

** "PRINTX" may be inserted before "R/S".


RHUMB LINE NAVIGATION

This program is designed to assist in the activity of course planning. You supply the latitude and longitude of the point or origin and the destination. The program calculates the rhumb line course and the distance from origin to the destination.

Since the rhumb line is the constant-course path between points on the globe, it forms the basis of short distance navigation. In low and midlatitudes the rhumb line is sufficient for virtually all course and distance calculations which navigators encounter. However, as distance increases or at high latitudes the rhumb line ceases to be an efficient track since it is not the shortest distance between points.

The shortest distance between points on a sphere is the great circle. However, in order to steam great circles, an infinite number of course changes are necessary. Since it is impossible to calculate an infinite number of courses at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumb lines used the closer to the great circle distance the sum of the rhumb line distances will be. The Great Circle Computation program may be used to calculate intermediate course change points which can be linked by rhumb lines.

Latitudes and longitudes are input in degrees-minutes-seconds. Course is displayed in decimal degrees. Southern latitudes and eastern longitudes are input as negative numbers.

EQUATIONS:

$$C = \tan^{-1} \frac{\pi (\lambda_1 - \lambda_2)}{180 (\ln \tan (45 + \frac{1}{2} L_2) - \ln \tan (45 + \frac{1}{2} L_1))}$$

$$D = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos L; \cos C = 0 \\ 60 \frac{(L_2 - L_1)}{\cos C}; \text{ otherwise} \end{cases}$$

where:

(L_1, λ_1) = position of initial point

(L_2, λ_2) = position of final point

D = rhumb line distance

C = rhumb line course

REMARKS:

- No course should pass through either the south or north pole.
- Errors in distance calculations may be encountered as $\cos C$ approaches zero.
- Accuracy deteriorates for very short legs.
- This program assumes the calculator is set in DEG mode.

EXAMPLE 1:

What is the distance and course from
 $L35^{\circ}24'12''N, \lambda125^{\circ}02'36''W$ to $L41^{\circ}09'12''N, \lambda147^{\circ}22'36''E$?

EXAMPLE 2:

What course should be sailed to travel
 a rhumb line from $L2^{\circ}13'42''S, \lambda179^{\circ}07'54''E$ to $L5^{\circ}27'24''N, \lambda179^{\circ}24'36''W$? What is the distance?

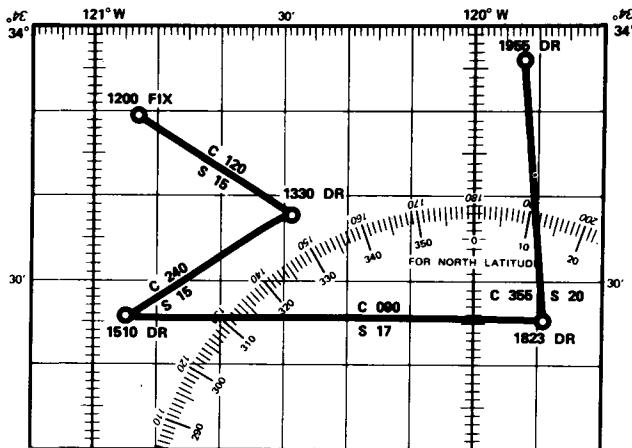
SOLUTIONS:

(1) 35.2412 ENT↑
 125.0236 ENT↑
 41.0912 ENT↑
 -147.2236 GSB1
 4135.60 *** (DIST., n.m.)
 R/S
 274.79 *** (C, dec, deg.)

(2) +
 -2.1342 ENT↑
 -179.0754 ENT↑
 5.2724 ENT↑
 179.2436 GSB1
 469.31 *** (DIST., n.m.)
 R/S
 10.73 *** (C, dec, deg.)

User Instructions

Program Listings


33

01 *LBL1		48 LN		
02 $\rightarrow H$		49 RTN		
03 ST03	λ_2	50 *LBL8		
04 R↓		51 3		
05 $\rightarrow H$		52 6		E to W 360 - C
06 ST01	L_2	53 0		
07 R↓		54 RCL5		
08 $\rightarrow H$	λ_1	55 ABS		
09 ST04		56 -		
10 R↓		57 *LBL7		
11 $\rightarrow H$		58 ABS		
12 ST02	L_1	59 ST06		
13 RCL4	$\lambda_1 - \lambda_2$	60 1		
14 RCL3		61 8		
15 -		62 0		
16 ST00		63 RCL0		
17 2	Make $-180 < \lambda_1 - \lambda_2$	64 ABS		
18 \div	< 180	65 X \leq Y?		is $[\lambda_1 - \lambda_2] > 180^\circ$
19 SIN		66 GSB6		If so subtract from
20 SIN $^{-1}$		67 RCL1		360
21 9		68 COS		
22 0		69 X		
23 \div		70 ST07		
24 PI		71 RCL1		
25 x		72 RCL2		
26 RCL1		73 -		
27 GSB9		74 RCL5		
28 RCL2		75 COS		
29 GSB9		76 X \neq 0?		is C = 90° ?
30 -		77 \div		
31 $\rightarrow P$		78 ENT↑		
32 R↓		79 X=0?		
33 ST05	C	80 RCL7		
34 RCL0		81 6		
35 SIN		82 0		
36 SIN $^{-1}$		83 X		
37 X \leq 0?	x<0 means east to	84 ABS		** Distance
38 GT08	west	85 R/S		
39 RCL5		86 RCL6		** Course
40 GT07		87 RTN		
41 *LBL9	If west to east	88 *LBL6		
42 2	C is answer	89 3		
43 \div		90 6		If $[\lambda_1 - \lambda_2] > 180^\circ$
44 4		91 0		
45 5		92 X \neq Y		
46 +		93 -		then $360 - [\lambda_1 - \lambda_2]$
47 TAN		94 RTN		
		95 R/S		

REGISTERS

0	$\lambda_1 - \lambda_2$	1	L_2	2	L_1	3	λ_2	4	λ_1	5	Used
6		7		8		9		.0		.1	
.2	.3	** "Printx" may be inserted before "R/S" & "RTN".								17	
18		19		20		21		22		23	
24		25		26		27		28		29	

RHUMB LINE DEAD RECKONING

This program calculates a ship's DR position given the ship's course, speed, and elapsed time from the last fix or DR position. The DR position is stored so that on subsequent legs just course, speed, and elapsed time need be entered to obtain the updated DR position. The program may be used for both small and large area DR problems.

EQUATIONS:

The updated position (L, λ) is given by following a loxodrome (rhumb line) from the initial position (L_i, λ_i) for a distance determined by the speed and time.

$$L = L_i + \Delta t \frac{S \cos C}{60}$$

$$180 \tan C \left(\ln \tan \left(45 + \frac{L_i}{2} \right) - \ln \tan \left(45 + \frac{L}{2} \right) \right)$$

$$\lambda = \begin{cases} \lambda_i + \frac{180 \tan C \left(\ln \tan \left(45 + \frac{L_i}{2} \right) - \ln \tan \left(45 + \frac{L}{2} \right) \right)}{\pi} ; \\ \lambda_i - \Delta t \frac{S \sin C}{60 \cos L_i} ; \end{cases} \begin{matrix} C \neq 90 \text{ or } 270 \text{ } (L_i \neq L) \\ C = 90 \text{ or } 270 \text{ } (L_i = L) \end{matrix}$$

where:

L_i = initial latitude (N, positive; S, negative)

L = updated latitude

λ_i = initial longitude (W, positive; S, negative)

λ = updated longitude

S = ship's speed, knots

C = ship's course, degrees

Δt = the time (H.MS) between initial and final positions.

NOTES:

1. The program cannot follow a meridian over a pole.
2. The program loses accuracy and gets incorrect answers when within 0.5° of a pole.

EXAMPLE (Fig. 1):

A vessel's position is $L33^\circ 49' 1N$, $\lambda120^\circ 52' 0W$ at 1200. If she steams as shown, what is her position at each time?

TIME	C	S	DR
1200			$L33^\circ 49' 06'' N, \lambda120^\circ 52' 00'' W$
1330	120°	15 knots	$(L33^\circ 37' 51'' N, \lambda120^\circ 28' 34'' W)$
1510	240°	15 knots	$(L33^\circ 25' 21'' N, \lambda120^\circ 54' 32'' W)$
1823	90°	17 knots	$(L33^\circ 25' 21'' N, \lambda119^\circ 49' 01'' W)$
1955	355°	20 knots	$(L33^\circ 55' 54'' N, \lambda119^\circ 52' 14'' W)$

SOLUTION:

33.4906 ENT↑
120.5200 GSB1
13.3000 ENT↑
12.0000 GSB3
120.0000 ENT↑
15.0000 GSB2
33.3751 ***
R/S 1330 DR
120.2834 ***
15.1000 ENT↑
13.3000 GSB3
240.0000 ENT↑
15.0000 GSB2
33.2521 ***
R/S 1510 DR
120.5433 ***
18.2300 ENT↑
15.1000 GSB3
90.0000 ENT↑
17.0000 GSB2
33.2521 ***
R/S 1823 DR
119.4902 ***
19.5500 ENT↑
18.2300 GSB3
355.0000 ENT↑
20.0000 GSB2
33.5554 ***
R/S 1955 DR
119.5214 ***

User Instructions

Program Listings

37

REGISTERS					
0	1 L	2 λ	3	4	5 ScosC
6 SsinC	7 Δt	8	9	.0	.1
.2	.3	.4	.5	16	17
18	19	20	21	22	23
24	25	26	27	28	29

01 \#LBL1	λ_1	L_1	50 STO2	λ
02 FIX4			51 RCL1	
03 $\rightarrow H$			52 $\rightarrow \text{HMS}$	*** L
04 STO2			53 R/S	
05 $X \times Y$			54 RCL2	
06 $\rightarrow H$			55 $\rightarrow \text{HMS}$	
07 STO1			56 R/S	** λ
08 R/S			57 \#LBL0	
09 \#LBL2	$S \text{ C } \Delta t$		58 9	
10 $\rightarrow R$			59 0	
11 STO5	ScosC		60 +	
12 $R \downarrow$			61 2	
13 STO6	$S \sin C$		62 \div	
14 $R \downarrow$			63 TAN	
15 $\rightarrow H$			64 RTN	
16 STO7			65 \#LBL9	
17 RCL5			66 RCL6	
18 x			67 RCL7	
19 6			68 x	
20 0			69 RCL1	
21 \div			70 COS	
22 RCL1	L_i		71 6	
23 +			72 0	
24 STO1	L		73 x	
25 LSTX	L_i		74 CHS	
26 $X=Y?$			75 STO8	
27 GT09	$C = 90^\circ \text{ or } 270^\circ$		76 \#LBL3	Δt routine
28 GSB8			77 $\rightarrow H$	
29 RCL1			78 $X \times Y$	
30 GSB8			79 $\rightarrow H$	
31 \div			80 -	
32 LN			81 ABS	
33 RCL6			82 $\rightarrow \text{HMS}$	
34 x			83 R/S	** Δt
35 RCL5				
36 \div				
37 1				** "PRINTX" may be inserted before "R/S".
38 e				*** "PRINTX" may be used to replace "R/S".
39 0				
40 x				
41 Pi				
42 \#LBL8				
43 \div				
44 RCL2	λ_i			
45 +				
46 1				
47 $\rightarrow R$	Normalize			
48 $\rightarrow P$	Angle			
49 $X \times Y$				

CELESTIAL NAVIGATION AND DEAD RECKONING

This program allows you to update a vessel's position and correct it using sights on a celestial object. The program is started with your latitude and longitude and the object's GHA and declination all determined for the same time. Then when any other time is keyed in, the corresponding DR is computed. If a sight is taken at that time, the resulting altitude may be entered into the calculator to yield an intercept and azimuth. The DR may be moved accordingly if desired.

The dead reckoning technique used is mid-latitude sailing which, while not as accurate as rhumb line dead reckoning, is sufficiently good for most purposes. Altitude intercepts "toward" are considered to be positive, even though careful reading of Bowditch would indicate the opposite. By using this convention, it is easy to compute the intercept terminus (most probable position or MPP).

The program contains a useful subroutine, GSB 7, which can be used for translating almanac entries in degrees, minutes and tenths (D.M.M) to decimal degrees (D.d).

REFERENCE:

This program is based on private communications with Paul E. Shaad of Sacramento, California.

EXAMPLE:

On February 19, 1975, a ship is steaming on course 240 at 17 knots. At 1800 GMT her dead reckoning position is 42°N, 135°W. Compute her position at 2115.

Her navigator shoots the Sun from a height of 65' (dip = 7°8'). At 2340 he obtains a sextant altitude of 28°25'36". Compute the altitude intercept and azimuth and correct the ship's DR.

SOLUTION

From The Nautical Almanac we take the Sun's GHA and declination at 1800 and 1900 GMT and also the Sun's semidiameter.

G.M.T.	SUN				
	G.H.A.		Dec.		
d	h	°	:	°	:
19	18	86	31.5	S11	18.5
	19	101	31.5		17.6
		S.D.	16.2		

8631.5000 GSB7 GHA at 1800

86.5250 ***

ST01

-1118.5000 GSB7 DEC at 1800

-11.3083 ***

ST02

16.2000 GSB7 Semidiameter

0.2700 ***

ST03

42.0000 ST04 Lat.

135.0000 ST05 Long.

7.8000 GSB7 Dip of the } at 1800

0.1300 *** horizon

ST06

240.0000 ST07 Course

17.0000 ENT1 Speed

60.0000 =

0.2833 *** Speed converted to degrees per hour

ST08

18.0000 ST09 Time

10131.5000 GSB7

101.5250 ***

8631.5000 GSB7

86.5250 ***

-

15.0000 ***

ST.1

-1117.6000 GSB7

-11.2933 ***

-1118.5000 GSB7

-11.3083 ***

-

0.0150 ***

ST.2

} Calculation of
Rate of Change
of GHA

} Calculation of
Rate of Change
of DEC

Now that the setup is complete, you can dead reckon and reduce sights all day long.

21.1500 GSB1 New time
41.3223 *** Latitude
XZY }
136.8409 *** Longitude } New Position at 2115

23.4000 GSB1 New time
41.1150 *** Latitude
XZY }
136.5134 *** Longitude } New Position at 2340
28.2536 GSB2 Sextant altitude
-4.3689 *** Altitude intercept
XZY
219.4574 *** Azimuth
XZY
GSB7
-0.0728 *** Intercept converted to degrees
GSB3
41.1512 *** Latitude
XZY }
136.4752 *** Longitude } Intercept terminus on Line of Position

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Key in the program			
2.	Store the following values			
	Greenwich Hour Angle of object (negative if east)	GHA,D.d	STO 1	
	Declination of object (negative if south)	DEC,D.d	STO 2	
	Semi-diameter of object (negative if U.L.)	SD,D.d	STO 3	
	Latitude (negative if south)	L,D.d	STO 4	
	Longitude (negative if east)	λ ,D.d	STO 5	
	Dip of the horizon	Dip,D.d	STO 6	
	Course	C,D.d	STO 7	
	Speed (in knots divided by 60)	S,D.d	STO 8	
	Time	t,H.h.	STO 9	
	Rate of change of GHA*	gha,D.d/hr	STO 1	
	Rate of change of dec*	dec,D.d/hr	STO 2	
3.	Enter a new time and compute new DR	t_{new} , H.MS	GSB 1	L,D.MS
			x \leftrightarrow y	λ ,D.MS
4.	Enter sextant altitude and compute inter- cept and azimuth	h_s , D.MS	GSB 2	a,mi.
			x \leftrightarrow y	Zn,D.d
5.	Update DR to MPP after GSB 2 in Step 4 (i.e.: An in y; a in x)		GSB 7	a,D.d
			GSB 3	L,D.MS
*	Enter GHA or DEC for some time	Value ₁ ,D.MS	x \leftrightarrow y	λ ,D.MS
	Enter GHA or DEC for one hour earlier	Value ₂ ,D.MS	\rightarrow H	Value ₁ ,D.d
	OR		\rightarrow H	Value ₂ ,D.d
	Enter GHA or DEC for some time	Value ₁ ,DM.M	-	Rate D.d/hr
	Enter GHA or DEC for one hour earlier	Value ₂ ,DM.M	GSB 7	Value ₁ ,D.d
			GSB 7	Value ₂ ,D.d
			-	Rate D.d/hr

Program Listings

41

01 *LBL1		50 ÷		
02 →H		51 -		
03 RCL9		52 RCL3		
04 X#Y		53 +		
05 ST09	Update	54 ST.3		
06 X#Y	Time	55 RCL0		
07 -		56 RCL2		
08 ST.4		57 COS		
09 RC.1		58 →R		
10 X	Update	59 RCL4		
11 ST+1	GHA	60 ST.5		
12 RC.4	And	61 X#Y		
13 RC.2		62 →R		
14 X	DEC	63 ST.4		
15 ST+2		64 R↓		
16 RC.4		65 RC.5		
17 RCL8		66 RCL2		
18 X		67 SIN		
19 RCL7		68 →R		
20 X#Y		69 ST.5		
21 *LBL3	Update	70 R↓		
22 →R	DR	71 RC.4		
23 ST+4		72 +		
24 2		73 SIN⁻¹		
25 ÷		74 ST.4		
26 RCL4		75 R↓		
27 X#Y		76 RC.5		
28 -		77 -		
29 COS		78 →P		
30 ÷		79 R↓		
31 ST-5		80 1		
32 RCL1		81 0		
33 RCL5		82 0		
34 -		83 +		
35 ST00		84 RC.3		
36 RCL5		85 RC.4		
37 →HMS	New λ	86 -		
38 RCL4		87 6		
39 →HMS	New L	88 9		
40 RTN		89 X		
41 *LBL2		90 RTN		
42 →H	Compute	91 *LBL7		
43 RCL6	a and Z_n	92 →HMS	Convert	
44 -		93 EEX	DM.m	
45 ENT↑		94 2	to	
46 TAN		95 ÷	D.d	
47 1/X		96 →H		
48 6		97 RTN		
49 3				

REGISTERS

0 LHA	1 GHA	2 DEC	3 SD	4 L	5 λ	
6 Dip	7 C	8 S	9 t	.0	.1	gha
.2 dec	.3 H_0	.4 H_c	.5 Used	.6	.7	
18	19	20	21	22	23	
24	25	26	27	28	29	

SIGHT REDUCTION TABLE

This program calculates the computed altitude, H_c , and azimuth, Z_n , of a celestial body given the observer's latitude, L , and the local hour angle, LHA, and declination, d , of the body. It thus becomes a replacement for the nine volumes of HO 214. Moreover, the user need not bother with the distinctions of same name and contrary name; the program itself resolves all ambiguities of this type.

EQUATIONS:

$$H_c = \sin^{-1} [\sin d \sin L + \cos d \cos L \cos LHA]$$

$$Z_n = \begin{cases} Z; & \sin LHA < 0 \\ 360 - Z; & \sin LHA \geq 0 \end{cases}$$

$$Z = \cos^{-1} \left[\frac{\sin d - \sin L \sin H_c}{\cos L \cos H_c} \right]$$

REMARKS:

Southern latitudes and southern declinations must be entered as negative numbers.

The meridian angle t may be input in place of LHA, but if so, eastern meridian angles must be input as negative numbers.

The program assumes the calculator is set in DEG mode.

NOTE:

This program may also be used for star identification by entering observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in The Nautical Almanac.

EXAMPLE 1:

Calculate the altitude and azimuth of the moon if its LHA is $2^{\circ}39'54''W$ and its declination $13^{\circ}51'06''S$. The assumed latitude is $33^{\circ}20'N$.

EXAMPLE 2:

Calculate the altitude and azimuth of REGULUS if its LHA is $36^{\circ}39'18''W$ and its declination is $12^{\circ}12'42''N$. The assumed latitude is $33^{\circ}30'N$.

EXAMPLE 3:

At 6:10 G.M.T. on January 12, 1977 a star peeked through the clouds over Corvallis ($44^{\circ}34'N$, $123^{\circ}17'W$). An alert observer using a bubble sextant quickly determined its altitude to be 26° and its azimuth 158° . Using the Nautical Almanac identify the star.

SOLUTIONS:

(1)	33.20 ENT↑ -13.5106 ENT↑ 2.3954 GSB1 42.4447 *** (Hc,D.MS) R/S 183.5 *** (Zn,dec.deg.)
(2)	33.3000 ENT↑ 12.1242 ENT↑ 36.3918 GSB1 50.2425 *** (Hc,D.MS) R/S 246.3 *** (Zn,dec.deg.)

(3) 44.3400 ENT↑
26.0000 ENT↑
158.0000 GSB1
-16.3725 *** (d,D.MS)
R/S
339.4 *** (LHA,dec.deg.)
123.17 →H
+
462.7 *** (GHA,dec.deg.)
203.4 -
→HMS
259.2 *** (SHA,D.MS)

User Instructions

Program Listings

45

01 *LBL1		48 R↓		
02 →H		49 3		
03 ST02	L	50 6		
04 R↓		51 0		
05 →H		52 X↑Y		
06 ST01	d	53 -	** Zn	
07 R↓		54 RTN		
08 →H		55 *LBL0		
09 ST00	LHA	56 R↓	** Zn	
10 SIN		57 RTN		
11 RCL1		58 R/S		
12 SIN				
13 X				
14 RCL0				
15 COS				
16 RCL1				
17 COS				
18 X				
19 RCL2				
20 COS				
21 X				
22 +				
23 ST03				
24 SIN ⁻¹	Hc,dec.deg.			
25 ST04				
26 →HMS	Hc,D.MS			
27 FIX4				
28 R/S	***	** "PRINTX" may be inserted before "RTN".		
29 FIX1		*** "PRINTX" may be used to replace "R/S".		
30 RCL1				
31 SIN				
32 RCL3				
33 RCL0				
34 SIN				
35 X				
36 -				
37 RCL0				
38 COS				
39 ÷				
40 RCL4				
41 COS				
42 ÷				
43 COS ⁻¹				
44 RCL2				
45 SIN	Z			
46 XEQ02				
47 GT00				

REGISTERS

0	L	1	d	2	LHA	3	Sin	Hc	4	Hc	5
6		7		8		9		.0		.1	
.2		.3		.4		.5		16		17	
18		19		20		21		22		23	
24		25		26		27		28		29	

In the Hewlett-Packard tradition of supporting HP programmable calculators with quality software, the following titles have been carefully selected to offer useful solutions to many of the most often encountered problems in your field of interest. These ready-made programs are provided with convenient instructions that will allow flexibility of use and efficient operation. We hope that these Solutions books will save your valuable time. They provide you with a tool that will multiply the power of your HP-19C or HP-29C many times over in the months or years ahead.

Mathematics Solutions
Statistics Solutions
Financial Solutions
Electrical Engineering Solutions
Surveying Solutions
Games
Navigational Solutions
Civil Engineering Solutions
Mechanical Engineering Solutions
Student Engineering Solutions

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.