

HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions Aeronautical Engineering

INTRODUCTION

In an effort to provide continued value to its customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

PROPERTIES OF AIR	1
This program computes the following properties of air at low pressures for a given temperature: specific heat ratio, specific heat at constant pressure, specific heat at constant volume, coefficient of viscosity, and absolute Rankine temperature.	
THEORETICAL U.S. STANDARD ATMOSPHERE TEMPERATURE AND PRESSURE BELOW 35,332 FT.	5
The program computes the theoretical U.S. Standard Atmosphere values for temperature and pressure at any altitude from -16,500 to 35,332 feet or by converting to metric units in the formula, -5,000 to 11,000 meters. Temperature is provided in absolute and thermometer standards. Pressure results are in Hg, psf, psi and mb.	
AIRCRAFT FLYOVER ACOUSTIC TONE DOPPLER SHIFT	9
Computes Doppler shift of an aircraft flyover acoustic source frequency observed on the ground. Also determines the 1/3 octave-band filter, and location within the filter, of the observed frequency. Inputs are flight path speed and angle, air temperature, source frequency, and aircraft elevation angle.	
ISENTROPIC FLOW FOR IDEAL GASES	13
The card replaces isentropic flow tables for a specified specific heat ratio k. Inputs and outputs are interchangeable with the exception of k.	
NORMAL AND OBLIQUE SHOCK PARAMETERS FOR COMPRESSIBLE FLOW	19
Knowing freestream Mach number, shock angle and ratio of specific heats (Gamma); computes mach number behind shock and the ratios across the shock for: static pressure, total pressure, density and temperature. Assumes adiabatic flow, perfect fluid.	
OBLIQUE SHOCK ANGLE FOR WEDGE	23
Given the upstream Mach number, the flow deflection angle, and the ratio of specific heats the program determines if an oblique shock is possible and finds the shock angle for the weak shock condition if the condition is possible.	
MACH NUMBER AND TRUE AIRSPEED	28
Converts calibrated airspeed and pressure altitude to Mach number and true airspeed.	
TAKE-OFF RUN VS DENSITY ALTITUDE	32
Computes actual take-off run required given sea level run at 15° C at full gross weight, pressure altitude, actual air temperature, and actual take-off weight.	
TRUE AIR TEMPERATURE AND DENSITY ALTITUDE	36
Converts indicated air temperature to true air temperature accounting for the temperature rise associated with high speed flight. Once a true temperature is established the density altitude can be calculated.	
AIRCRAFT CLIMB	40
This program permits one to determine the desirability of climbing from an altitude of high headwinds to an altitude with lower headwinds. Determine the minimum that must remain at the start of the climb to make the climb to higher altitude worthwhile. Program is good for non-supercharged aircraft only.	

Program Description I

1

Program Title	Properties of Air		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables

This program computes properties of air at low pressures for a given temperature * in degrees Fahrenheit or Rankine.

The following properties are computed:

1. Specific heat ratio

$$k = 1/(1-R/J C_p)$$

where:

R Universal gas constant

J Mechanical equivalent of heat

3. Specific heat at constant volume

$$C_v = C_p/k, \text{ Btu/lb.} - {}^{\circ}\text{R}$$

4. Coefficient of viscosity

$$\mu = 7.4 \times 10^{-7} (T)^{1.5} / (T + 200), \text{ lbm./ft.} - \text{sec.}$$

2. Specific heat at constant pressure

$$C_p = 0.2478 - 4.2047 \times 10^{-5} T + 5.8 \times 10^{-8} T^2 - 1.49 \times 10^{-11} T^3, \text{ Btu/lb.} - {}^{\circ}\text{R}$$

5. Absolute Rankine temperature

$$T = 459.7 + (T, {}^{\circ}\text{F}), {}^{\circ}\text{R}$$

* If temperature is in degrees Centigrade or Kelvin, use Temperature Conversion program (STD - 08A) from Standard Pac to convert to degrees Fahrenheit or Rankine.

Operating Limits and Warnings

Properties k , C_p , C_v and μ are good for temperature and pressure ranges of 300 - 2000 ${}^{\circ}\text{R}$ and 0 - 300 psia respectively.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Find the specific heat ratio, specific heat at constant pressure, specific heat at constant volume, coefficient of viscosity, and absolute Rankine temperature for air at a temperature of 300 degrees Fahrenheit.

$$k = 1.3930$$

$$C_n = 0.2428 \text{ Btu/lb. } -^{\circ}\text{R}$$

$$C_v = 0.1743 \text{ Btu/lb. } {}^{\circ}\text{R}$$

$$\mu = 1.6146 \times 10^{-5} \text{ lbm./ft. -sec.}$$

T = 759.70°R

Solution(s)

Keystrokes:

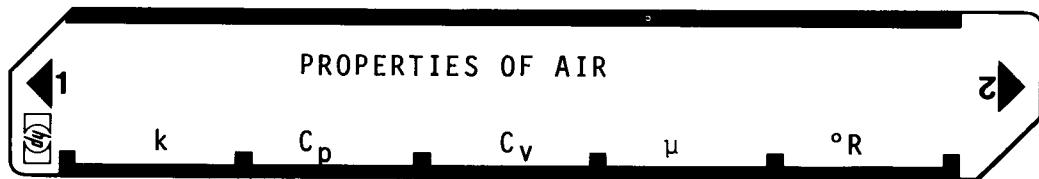
Outputs:

300[E] [A] -----> 1.3930

300 [E] [B] -----> 0.2428

300[E] [C] -----> 0.1743

300[E] [D] -----> 1.6146 x 10⁻⁵


300[E] -----> 759.70

Reference(s)

Keenan and Kay, Gas Tables, fifth printing, John Wiley & Sons, Inc.,
March, 1956. Hall, Newman A., Thermodynamics of Fluid Flow, Prentice-
Hall, Inc., 1951.

This program is a translation of the Users' Library program #01078A submitted by Paul. K. Shumpert.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	RCL2	36 02	
002	FIX	-11		058	RTN	24	
003	DSP4	-63 04	Compute k T, °R	059	*LBLC	21 13	Compute C _V
004	ST01	35 01		060	GSBA	23 11	
005	ENT↑	-21		061	RCL2	36 02	
006	x	-35		062	X2Y	-41	
007	5	05		063	÷	-24	
008	.	-62		064	RTN	24	
009	8	08		065	*LBLD	21 14	Compute μ
010	EEX	-23		066	ST01	35 01	
011	CHS	-22		067	1	01	
012	8	08		068	.	-62	
013	x	-35		069	5	05	
014	.	-62		070	Y ^x	31	
015	2	02		071	RCL1	36 01	
016	4	04		072	2	02	
017	7	07		073	0	00	
018	8	08		074	0	00	
019	+	-55		075	+	-55	
020	RCL1	36 01		076	÷	-24	
021	2	02		077	7	07	
022	3	03		078	.	-62	
023	7	07		079	4	04	
024	8	08		080	EEX	-23	
025	3	03		081	CHS	-22	
026	÷	-24		082	7	07	
027	-	-45		083	x	-35	
028	1	01		084	SCI	-12	
029	4	04		085	RTN	24	
030	9	09		086	*LBLE	21 15	Compute T, °R
031	EEX	-23		087	ENT↑	-21	
032	CHS	-22		088	4	04	
033	1	01		089	5	05	
034	3	03		090	9	09	
035	RCL1	36 01		091	.	-62	
036	3	03		092	7	07	
037	Y ^x	31		093	+	-55	
038	x	-35		094	FIX	-11	
039	-	-45		095	RTN	24	
040	ST02	35 02					
041	1	01					
042	ENT↑	-21					
043	1	01					
044	ENT↑	-21					
045	.	-62					
046	0	00					
047	6	06					
048	8	08					
049	5	05					
050	RCL2	36 02					
051	÷	-24					
052	-	-45					
053	÷	-24					
054	RTN	24					
055	*LBLB	21 12					
056	GSBA	23 11	Compute C _p				

REGISTERS

0	1 Used	2 Used	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

SET STATUS

FLAGS	TRIG	DISP
ON	OFF	
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>
		n 4

Program Description I

Program Title	Standard Atmosphere Below 35,322 Feet		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables This program computes the theoretical U.S. Standard Atmosphere temperature and pressure in English and Metric units at altitudes below 35,332 feet and 11,000 meters. Additionally, the actual mean sea level values, at a specific time, can be placed in the program for prediction of altitude temperature and pressure based on the following formulas:

$$P = \frac{P_0}{\left(\frac{T_0}{T_0 - aZ} \right)^n} \quad T = T_0 - aZ \quad t = T - T_{\text{abs reference}}$$

P = Pressure at altitude above/below mean sea level.

P₀ = Standard air pressure at mean sea level.

T₀ = Standard absolute temperature at mean sea level in Rankine/Kelvin.

a = Temperature lapse rate per foot of altitude in [°]F/per meter [°]C.

Z = Altitude above/below mean sea level in feet/meters.

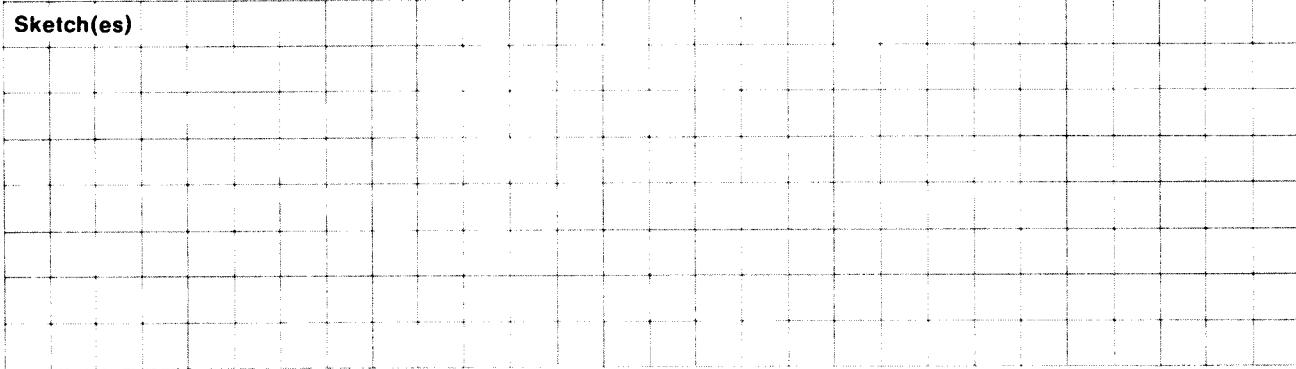
n = Constant G/aR = 5.2561

T = Temperature absolute at altitude in Rankine/Kelvin.

T_{abs ref.} = 459.688 [°]R/ 273.16 [°]K.

t = Temperature at altitude in Fahrenheit/Centigrade

Operating Limits and Warnings 1. The program will accurately reproduce the theoretical U.S. Standard Atmosphere tables of temperature and pressure within the limits of -16,500 to 35,332 feet or -5,000 to 11,000 meters.


2. The correct temperature and pressure cannot be predicted under actual conditions when the temperature gradient is not linear, i.e. the lapse rate is not linear per foot of altitude.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

1. What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature in degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet?
2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters?

1. $Hg = 8.885413$
 $lbs/in^2 = 4.364107$
 $^{\circ}F = -47.984800$
 $^{\circ}R = 411.703200$

2. $mb = 226.319813$
 $^{\circ}C = -56.500000$
 $^{\circ}K = 216.660000$

Solution(s) Keystrokes:

1. [RTN] [f] [a] 30000[D] -----> 8.885413
[E] -----> -47.984800
[RCL] [6] -----> 411.703200
[f] [b] 3000[D] -----> 4.364107
2. 1013.25[A] 288.16[B] .0065[C] 273.16[STO] [7]
11000[D] -----> 226.319813
[E] -----> -56.5000
[RCL] [6] -----> 216.6600

Outputs:

Reference(s)

This program is a translation of the HP-65 Users' Library program #01148A submitted by William D. Staton.

User Instructions

STANDARD ATMOSPHERE BELOW 35,332 FEET

1

P₀

T_0

LR

ALT

t

2

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 16 11		057	ST02	35 02	Input MSL ref. temperature
002	2	02		058	RTN	24	
003	9	09	Inputs U.S. Standards in program	059	*LBLC	21 13	
004	.	-62		060	ST03	35 03	Input temperature rate.
005	9	09		061	RTN	24	
006	2	02		062	*LBLD	21 14	
007	1	01		063	ST05	35 05	
008	2	02		064	RCL2	36 02	
009	6	06		065	ENT↑	-21	
010	ST01	35 01	Temperature at MSL in °R	066	ENT↑	-21	
011	5	05		067	RCL3	36 03	
012	1	01		068	RCL5	36 05	
013	8	08		069	x	-35	
014	.	-62		070	-	-45	
015	6	06		071	ST06	35 06	
016	8	08		072	÷	-24	
017	8	08		073	5	05	
018	ST02	35 02	Temperature lapse rate in °F per foot of H.	074	.	-62	
019	.	-62		075	2	02	
020	0	00		076	5	05	
021	0	00		077	6	06	
022	3	03		078	1	01	
023	5	05		079	Y ^x	31	
024	6	06		080	RCL1	36 01	
025	6	06		081	X ^Y	-41	
026	1	01		082	÷	-24	
027	6	06		083	RTN	24	
028	ST03	35 03	Temperature absolute at the melting point of ice under 29.92126 Hg minus 32 degrees.	084	*LBLE	21 15	
029	4	04		085	RCL6	36 06	
030	5	05		086	RCL7	36 07	
031	9	09		087	-	-45	
032	.	-62		088	RTN	24	
033	6	06		090			Computes °F or °C at altitude.
034	8	08					
035	8	08					
036	ST07	35 07					
037	DSP6	-63 06					
038	RTN	24					
039	*LBL6	21 16 12					
040	1	01					
041	4	04					
042	.	-62					
043	6	06					
044	9	09					
045	5	05					
046	9	09					
047	4	04					
048	8	08					
049	6	06					
050	1	01					
051	ST01	35 01					
052	RTN	24					
053	*LBLA	21 11					
054	ST01	35 01					
055	RTN	24					
056	*LBLB	21 12					

REGISTERS

0	¹ P ₀ Ref.	² T ₀ Ref.	³ Lapse Rate	⁴	⁵ Alt.-H	⁶ Temp. at H °R/°K	⁷ T abs ref.	⁸	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B		C		D		E		I

FLAGS	TRIG		DISP	
	ON	OFF	DEG	FIX
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
				n 4

Program Description I

9

Program Title Aircraft Flyover Acoustic Tone Doppler Shift

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables Computes doppler shift of an aircraft fly-over acoustic source frequency observed on the ground. Also determines the 1/3 octave-band filter, and location within the filter, of the observed frequency. Inputs are flight path speed and angle, air temperature, source frequency, and aircraft elevation angle. Any input frequency can be located in the A.N.S.I.* 1/3 octave-band filters. Equations: See sketch on next page.

Doppler shift $f_0/f_s = 1/(1-M \cos\beta)$ f_0 is observed freq.
where f_s is source freq.
 M is Mach Number of source
 β = Source angle to observe

Source angle $\beta = \theta + \alpha$

Mach number $\text{Mach} = V/(29.04\sqrt{T+459})$ V = Flt. path speed, kts
 T = Air temp, °F

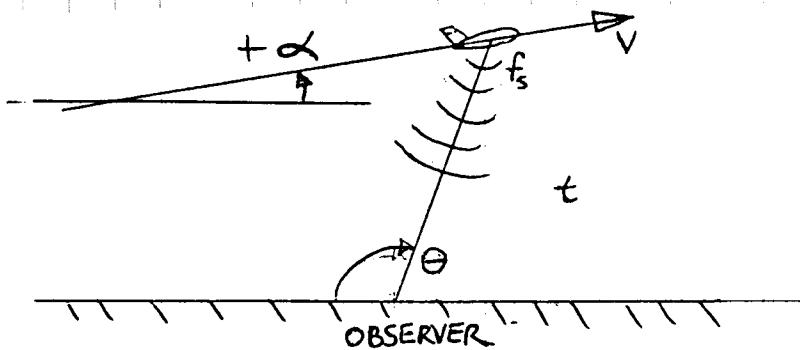
*Mid-frequency of 1/3 oct-band $f_m = 10^{N/10}$, N any integer

*Upper frequency of 1/3 oct-band $f_2 = 1.1225 f_m$
(nominal band edge)

*American National Standards Institute

Operating Limits and Warnings 1/3 octave band filters start at $f_m = 50 \text{ Hz}$ which corresponds to $N=17$, ANSI convention. Minimum input frequency of 45 Hz.

f_m 's are exact preferred frequencies, which are within 0.7% of nominal preferred frequencies.


The time required for filter band location is a function of the band no., $3 \text{ sec} < \text{time} < 34 \text{ sec}$ for $17 < N < 40$.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Air temperature $t = 77^{\circ}\text{F}$

Given: Flight path angle $\alpha = -3^{\circ}$

Source tone frequency $f_s = 687 \text{ Hz}$

Flight path speed $V = 155 \text{ kts. (re to observer)}$

Calculate the Doppler shift, the observed frequency, the 1/3 oct.

band filter position (f_0/f_m), the band number, and the filter mid-frequency for the following aircraft elevation angles.

$\theta_1 = 45 \text{ degrees}$

$\theta_2 = 90 \text{ degrees}$

$\theta_3 = 135 \text{ degrees}$

Aircraft Elev. Angle

$\theta_1 = 45^{\circ}$

$\theta_2 = 90^{\circ}$

$\theta_3 = 135^{\circ}$

f_0/f_s

1.21

1.01

0.87

f_0, Hz

829

695

595

f_0/f_m

1.04

1.10

0.94

Band No.

29

28

28

f_m, Hz

7.9×10^2

6.3×10^2

6.3×10^2

(nominal of 800)

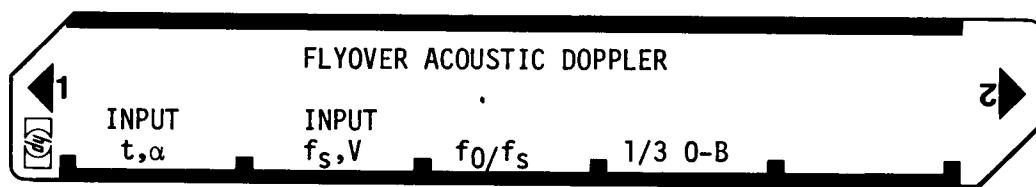
Solutions:

Keystrokes:

Output

77[ENT↑] 3[CHS] [A] 687[ENT↑] 155[B]

45[C] --->1.21[R/S] --->829.04[D] --->1.04[R/S] 29[R/S] 7.9×10^2


etc.

Reference(s)

1. Wood, A.B., A Textbook of Sound, pages 370B-372, G. Bell & Sons, London, 1957.
2. S1.11-1966, Specification for Octave, Half-Octave, and Third-Octave Band Filter Sets, page 12, American National Standards Institute, New York, 1966.

This program is a translation of the HP-65 Users' Library program #01291A submitted Edgar L. Zwieback.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	0	00	
002	ST02	35 02		058	÷	-24	
003	X ² Y	-41		059	10 ^x	16 33	
004	ST04	35 04		060	ST07	35 07	
005	X ² Y	-41		061	1	01	
006	RTN	24		062	.	-62	
007	*LBLB	21 12		063	1	01	
008	ST03	35 03		064	2	02	
009	X ² Y	-41		065	2	02	
010	ST06	35 06		066	5	05	
011	RTN	24		067	X	-35	
012	*LBLC	21 13		068	RCL5	36 05	
013	FIX	-11		069	X>Y?	16-34	
014	DSP2	-63 02		070	GT01	22 01	
015	ST01	35 01		071	RCL7	36 07	
016	RCL4	36 04		072	RCL5	36 05	
017	4	04		073	X ² Y	-41	
018	5	05		074	÷	-24	
019	9	09		075	R/S	51	
020	+	-55		076	RCL1	36 46	
021	JK	54		077	CHS	-22	
022	2	02		078	1	01	
023	9	09		079	6	06	
024	.	-62		080	+	-55	
025	0	00		081	R/S	51	
026	4	04		082	RCL7	36 07	
027	X	-35		083	SCI	-12	
028	RCL3	36 03		084	DSP1	-63 01	
029	X ² Y	-41		085	RTN	24	
030	÷	-24					
031	RCL1	36 01					
032	RCL2	36 02					
033	+	-55					
034	COS	42					
035	X	-35					
036	CHS	-22					
037	1	01					
038	+	-55					
039	1/X	52					
040	R/S	51					
041	RCL6	36 06					
042	X	-35					
043	ST05	35 05					
044	RTN	24					
045	*LBLD	21 14					
046	ST05	35 05					
047	0	00					
048	ST01	35 46					
049	*LBL1	21 01					
050	DSZ1	16 25 46					
051	RCLI	36 46					
052	CHS	-22					
053	1	01					
054	6	06					
055	+	-55					
056	1	01					

REGISTERS

0	¹ θ, deg	² α, deg	³ V, kts	⁴ t, °F	⁵ f ₀ /Hz	⁶ f _s , Hz	⁷ f _m , Hz	⁸ N	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

SET STATUS

FLAGS	TRIG		DISP	
	ON	OFF	DEG	GRAD
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

FIX
 SCI
 ENG
 n 2

f₀/f_s Doppler shift
 Calc. upper freq.
 f_z of 1/3 oct-
 ban filters

Program Description I

Program Title

ISENTROPIC FLOW FOR IDEAL GASES

Contributor

HEWLETT-PACKARD
1000 N. E. Circle Blvd.
Corvallis, Oregon 97339

Address

City

State

Zip Code

Program D

This card replaces isentropic flow tables for a specified specific heat ratio k .
Inputs and outputs are interchangeable with the exception of k .

The following values are correlated:

M is the Mach number;

T/T_0 is the ratio of flow temperature T to stagnation or zero velocity temperature T_0 ;

P/P_0 is the ratio of flow pressure P to stagnation pressure P_0 ;

ρ/ρ_0 is the ratio of flow density ρ to stagnation density ρ_0 ;

A/A_{sub}^* and A/A_{sup}^* are the ratios of flow area A to the throat area A^* in converging—diverging passages. A/A_{sub}^* refers to subsonic flow while A/A_{sup}^* refers to supersonic flow.

Equations:

$$T/T_0 = \frac{2}{2 + (k - 1) M^2}$$

$$P/P_0 = (T/T_0)^{k/(k-1)}$$

$$\rho/\rho_0 = (T/T_0)^{1/(k-1)}$$

$$A/A^* = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} M^2 \right) \right]^{\frac{k+1}{2(k-1)}}$$

In the last equation M^2 is determined using Newton's method. The initial guess used is as follows with a positive exponent for supersonic flow:

$$M_0^2 = (\sqrt{Frac(A/A^*)} + A/A^*)^{\pm 3}$$

Remarks:

After an input of A/A^* , the program begins to iterate to find M^2 for future use. This iteration will normally take less than one minute, but may take longer on occasion. For extreme values of k (1.4 is optimum) the routine may fail to converge at all. An "Error" message will eventually halt the routine if it goes out of control.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title	_____	
Contributor's Name	_____	
Address	_____	
City	State _____	Zip Code _____

Program Description, Equations, Variables

A/A* values of 1.00 are illegal inputs. Instead, input an M of 1.00.

The calculator uses flag 3 to decide whether to store or calculate a value. If you use the data input keys (setting flag 3) and then wish to calculate a parameter based on a prior input, clear flag 3 before pressing the appropriate user definable keys.

Registers R_0 , R_5 and $R_{S0}-R_1$ are available for user storage.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

If the same pilot reads a stagnation pressure P_0 of 700 millimeters of mercury, what is the true air pressure?

(Since the data input flag was set when 288 was keyed in, we must either clear it, or input 0.93 again.)

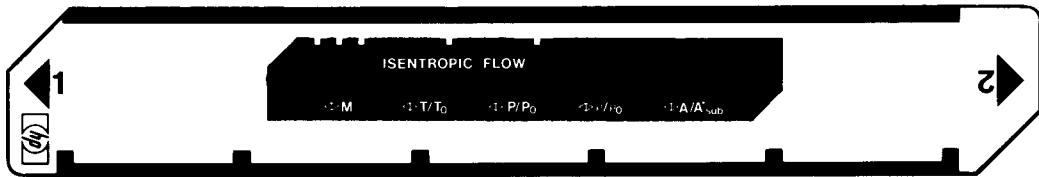
$$\begin{array}{l} .93 \text{ A C} \longrightarrow 0.575 \text{ (P/P}_0\text{)} \\ 700 \text{ x} \longrightarrow 402.843 \text{ (mm Hg)} \end{array}$$

Example 2:

A converging, diverging passage has supersonic flow in the diverging section. At an area ratio A/A^* of 1.60, what are the isentropic flow ratios for temperature, pressure and density? What is the Mach number? $k = 1.74$.

Keystrokes:

1.74	f	A	→	1.740	
1.60	f	E	→	2.105	(M)
B	→			0.379	(T/T ₀)
C	→			0.102	(P/P ₀)
D	→			0.269	(ρ/ρ ₀)


or, alternatively, using automatic output.

f	B	→	1.740 *** (k)
			2.105 *** (M)
			0.379 *** (T/T ₀)
			0.102 *** (P/P ₀)
			0.269 *** (ρ/ρ ₀)
			1.600 *** (A/A*)

Solution(s)

Reference(s)

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input specific heat ratio.	k	f a	k
3	Input one of the following:			
	Mach number	M	a	M
	Temperature ratio	T/T ₀	b	M
	Pressure ratio	P/P ₀	c	M
	Density ratio	ρ/ρ_0	d	M
	Subsonic area ratio	A/A* _{sub}	e	M
	Supersonic area ratio	A/A* _{sup}	f e	M
4	Calculate one of the following:			
	Mach number		a	M
	Temperature ratio		b	T/T ₀
	Pressure ratio		c	P/P ₀
	Density ratio		d	ρ/ρ_0
	Area ratio (subsonic or supersonic)		e	A/A*
4'	Calculate and output all values automatically.		f b	k, M, T/T ₀ , P/P ₀ , ρ/ρ_0 , A/A*
5	For another calculation based on same input, go to step 4 (or 4'). For a new input, go to step 3. For a new specific heat ratio, go to step 2.			

97 Program Listing I

17

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 16 11		057	SF3	16 21 03	
002	ST02	35 02		058	GT0B	22 12	
003	1	01		059	*LBLD	21 14	
004	-	-45		060	F3?	16 23 03	Output ρ/ρ_0 .
005	ST03	35 03		061	GT0B	22 00	
006	1/X	52		062	GSBB	23 12	
007	ST04	35 04		063	RCL4	36 04	
008	RCL2	36 02		064	Y^X	31	
009	RTN	24		065	RTN	24	
010	*LBLA	21 11		066	*LBL0	21 00	
011	F3?	16 23 03		067	SF3	16 21 03	Convert ρ/ρ_0 to
012	GT0B	22 00		068	RCL3	36 03	T/T_0 and
013	RCL1	36 01		069	Y^X	31	$GT0B$.
014	JX	54		070	GT0B	22 12	
015	RTN	24		071	*LBL0	21 15	
016	*LBL0	21 00		072	3	03	Set -3 in display
017	X^2	53		073	CHS	-22	for subsonic guess.
018	ST01	35 01		074	$X \neq Y$	-41	
019	JX	54		075	F3?	16 23 03	
020	RTN	24		076	GT01	22 01	
021	*LBLB	21 12		077	GT03	22 03	
022	F3?	16 23 03	Output T/T_0 .	078	*LBL1	21 01	
023	GT0B	22 00		079	ENT \uparrow	-21	
024	2	02		080	ST06	35 06	Make guess of M^2 .
025	RCL1	36 01		081	FRC	16 44	
026	RCL3	36 03		082	JX	54	
027	x	-35		083	+	-55	
028	2	02		084	$X \neq Y$	-41	
029	+	-55		085	Y^X	31	
030	\div	-24		086	ST01	35 01	
031	RTN	24		087	*LBL2	21 02	
032	*LBL0	21 00	Convert T/T_0 to M^2 .	088	RCL6	36 06	
033	2	02		089	GSB3	23 03	Iterate by Newton's
034	$X \neq Y$	-41		090	\div	-24	method to find M^2
035	\div	-24		091	1	01	Corresponding to
036	2	02		092	-	-45	A/A^* .
037	-	-45		093	.	-62	
038	RCL3	36 03		094	5	05	
039	\div	-24		095	RCL8	36 08	
040	ST01	35 01		096	\div	-24	
041	JX	54		097	.	-62	
042	RTN	24		098	5	05	
043	*LBLC	21 13		099	RCL1	36 01	
044	F3?	16 23 03	Output P/P_0 .	100	\div	-24	
045	GT0B	22 00		101	-	-45	
046	GSBB	23 12		102	\div	-24	
047	RCL2	36 02		103	ST \uparrow 1	35-55 01	
048	RCL3	36 03		104	RCL1	36 01	
049	\div	-24		105	\div	-24	
050	Y^X	31		106	ABS	16 31	
051	RTN	24		107	EEX	-23	
052	*LBL0	21 00		108	CHS	-22	
053	RCL3	36 03	Convert P/P_0 to	109	4	04	
054	RCL2	36 02	T/T_0 and $GT0B$.	110	$X \neq Y$?	16-35	
055	\div	-24		111	GT02	22 02	
056	Y^X	31		112	RCL1	36 01	

REGISTERS

0	1 M^2	2 k	3 k-1	4 1/k-1	5	6 A/A*	7	8 Used	9 Used
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E		I			

97 Program Listing II

LABELS					FLAGS	SET STATUS		
$A M \rightarrow M$	$B T/T_0 \rightarrow M$	$C P/P_0 \rightarrow M$	$D p/p_0 \rightarrow M$	$E A/A^*_{sub} \rightarrow M$	0	FLAGS	TRIG	DISP
$a k$	$b \rightarrow k, M, T/T_0$	c	d	$e A/A^*_{sup} \rightarrow M$	1	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0 Used	$^1 M^2$ guess	$^2 M^2$ iter	$^3 A/A$	4	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8	9	3 Data?	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 3

Program Description I

Program Title Normal and Oblique Shock Parameters for Compressible Flow

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables

Given the values for: free stream Mach number (M_1), the ratio of specific heats (γ), and the shock angle (θ); the program computes:

$$M_2 = \frac{[(\gamma+1)^2 M_1^4 \sin^2 \theta - 4(M_1^2 \sin^2 \theta - 1)(\gamma M_1^2 \sin^2 \theta + 1)]}{[2\gamma M_1^2 \sin^2 \theta - (\gamma-1)][(\gamma-1)M_1^2 \sin^2 \theta + 2]} \quad \text{1/2 Mach No. behind shock}$$

$$\frac{P_2}{P_1} = \frac{2\gamma M_1^2 \sin^2 \theta - (\gamma-1)}{\gamma + 1} \quad \text{Static pressure ratio}$$

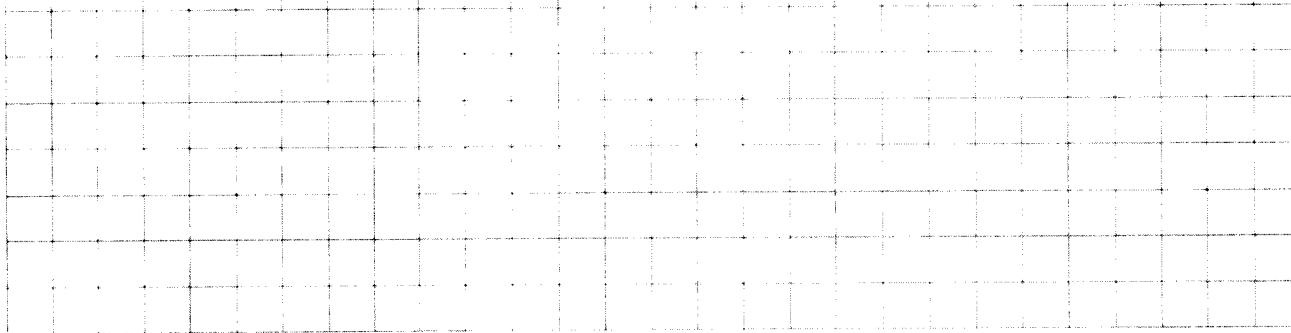
$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)M_1^2 \sin^2 \theta}{(\gamma-1)M_1^2 \sin^2 \theta + 2} \quad \text{Density ratio}$$

$$\frac{T_2}{T_1} = \frac{[2\gamma M_1^2 \sin^2 \theta - (\gamma-1)][(\gamma-1)M_1^2 \sin^2 \theta + 2]}{(\gamma+1)^2 M_1^2 \sin^2 \theta} \quad \text{Temperature ratio}$$

$$\frac{P_{T_2}}{P_{T_1}} = \left[\frac{(\gamma+1)M_1^2 \sin^2 \theta}{(\gamma-1)M_1^2 \sin^2 \theta + 2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma + 1}{2\gamma M_1^2 \sin^2 \theta - (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \quad \text{Total pressure ratio}$$

Where the 1 subscript denotes the value upstream of the shock, and the 2 subscript denotes the value downstream of the shock.

Operating Limits and Warnings


Assumes calorically perfect (C_p and C_v are constant) and thermally perfect ($P = \rho RT$) gas, and adiabatic flow. Only solutions where $M_2 < M_1$; $\frac{P_2}{P_1} > 1$, $\frac{\rho_2}{\rho_1} > 1$, $\frac{T_2}{T_1} > 1$, and $\frac{P_{T_2}}{P_{T_1}} < 1$ are valid. If any one of these conditions is satisfied, the other four are satisfied.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

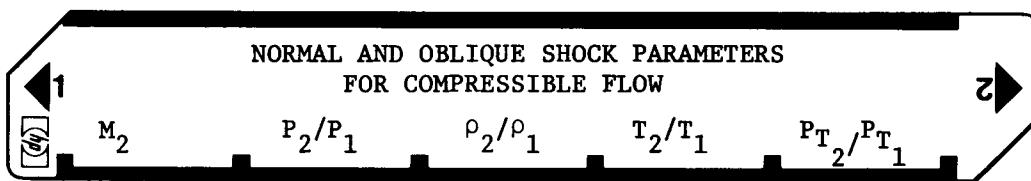
Program Description II

Sketch(es)

Sample Problem(s)

- Find the Mach number and static pressure behind an oblique shock where $M_1 = 2.5, \theta = 70^\circ, \gamma = 1.4$ and $P_1 = 85$ psi. Also find the ratios across the shock for density, temperature and total pressure. (See Fig. 1)
- Find the temperature, Mach number and total pressure behind a normal shock ($\theta = 90^\circ$) where $M_1 = 6.23, \gamma = 1.4, P_{T_1} = 64$ psi and $T_1 = 624^\circ R$ (See Fig. 2)

Solution(s)


1. 1.4[↑] 70[↑] 2.5[f] [a] [A] -----	0.80 (M ₂)
[B] -----	6.27 (P ₂ /P ₁)
85[X] -----	533.12 (psi) (P ₂)
[C] -----	3.15 (P ₂ /P ₁)
[D] -----	1.99 (T ₂ /T ₁)
[E] -----	0.56 (P _{T2} /P _{T1})
2. 6.23 [STO] [] 90 [STO] [2] [GTO] [0] [R/S] [D] -----	8.49 (T ₂ /T ₁)
624 [X] -----	5296.40 (°R) (T ₂)
[A] -----	0.40 (M ₂)
[E] -----	.30 (P _{T2} /P _{T1})
64 [X] -----	1.62 (psi) (P _{T2})

Reference(s)

National Advisory Committee for Aeronautics, Report 1135, Equations, Tables and Charts for Compressible Flow, By Ames Research Staff, pgs. 7,8, U.S. Government Printing Office, 1953.

This program is a translation of the HP-65 Users' Library program #01303A submitted by Glenn D. Rambach.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL _a	21 16 11		057	*LBL _B	21 12	
002	ST01	35 01		058	RCL3	36 03	Compute P_2/P_1
003	R↓	-31	Store M_1 in R_1	059	RCL4	36 04	
004	ST02	35 02	Store θ in R_2	060	X	-35	
005	R↓	-31	Store γ in R_3	061	2	02	
006	ST03	35 03		062	X	-35	
007	1	01		063	RCL7	36 07	
008	-	-45		064	-	-45	
009	ST07	35 07		065	RCL8	36 08	
010	2	02		066	÷	-24	Display P_2/P_1
011	+	-55		067	RTN	24	Compute P_2/P_1
012	ST08	35 08	Initial point for repeated operations	068	*LBL _C	21 13	
013	*LBL ₀	21 00		069	RCL5	36 05	
014	RCL2	36 02		070	RCL6	36 06	
015	SIN	41		071	2	02	
016	RCL1	36 01		072	+	-55	
017	X	-35		073	÷	-24	
018	X ²	53		074	RTN	24	Display P_2/P_1
019	ST04	35 04		075	*LBL _D	21 14	Compute T_2/T_1
020	RCL8	36 08		076	GSBB	23 12	
021	X	-35		077	GSBC	23 13	
022	ST05	35 05		078	÷	-24	
023	RCL7	36 07		079	RTN	24	
024	RCL4	36 04		080	*LBL _E	21 15	Display T_2/T_1
025	X	-35		081	GSBC	23 13	Compute P_{T2}/P_{T1}
026	ST06	35 06		082	GSBB	23 12	
027	R/S	51		083	÷	-24	
028	*LBL _A	21 11		084	RCL7	36 07	
029	RCL5	36 05		085	1/X	52	
030	RCL8	36 08		086	Y ²	31	
031	X	-35		087	GSBC	23 13	
032	RCL1	36 01		088	X	-35	Display P_{T2}/P_{T1}
033	X ²	53		089	RTN	24	
034	X	-35		090			
035	RCL4	36 04					
036	RCL3	36 03					
037	X	-35					
038	1	01					
039	+	-55					
040	4	04					
041	X	-35					
042	RCL4	36 04					
043	1	01					
044	-	-45					
045	X	-35					
046	-	-45					
047	GSBC	23 13					
048	X	-35					
049	GSBB	23 12					
050	÷	-24					
051	RCL8	36 08					
052	÷	-24					
053	RCL5	36 05					
054	÷	-24					
055	JX	54					
056	RTN	24	Display M_2				
REGISTERS							
0	1 M_1	2 θ	3 γ	4 $M_1^2 \sin^2 \theta$	5 $(\gamma+1)M_1^2$	6 $(\gamma-1)M_1^2$	7 $\gamma-1$
S0	S1	S2	S3	S4	Sin ² θ	Sin ² θ	S7
A	B	C			D	E	I
							S8
							S9

FLAGS		TRIG	DISP
0	ON <input type="checkbox"/>	OFF <input checked="" type="checkbox"/>	
1	ON <input type="checkbox"/>	OFF <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>
2	ON <input type="checkbox"/>	OFF <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>
3	ON <input type="checkbox"/>	OFF <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>
			FIX <input checked="" type="checkbox"/>
			SCI <input type="checkbox"/>
			ENG <input type="checkbox"/>
			n <u>2</u>

Program Description I

Program Title	Oblique Shock Angle for Wedge		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables

When the upstream Mach number, the deflection angle and the specific heat ratio are given the compressible flow equation will give at most three values for the shock angle. This program calculates the weak oblique shock angle when it is possible.

The equation which must be solved is

$$\sin^6 \sigma + b \sin^4 \sigma + c \sin^2 \sigma + d = 0$$

where

$$b = - \frac{M_1^2 + 2}{M_1^2} - k \sin^2 \delta$$

$$c = \frac{2M_1^2 + 1}{M_1^4} + \left[\frac{(k+1)^2}{4} + \frac{k-1}{M_1^2} \right] \sin^2 \delta$$

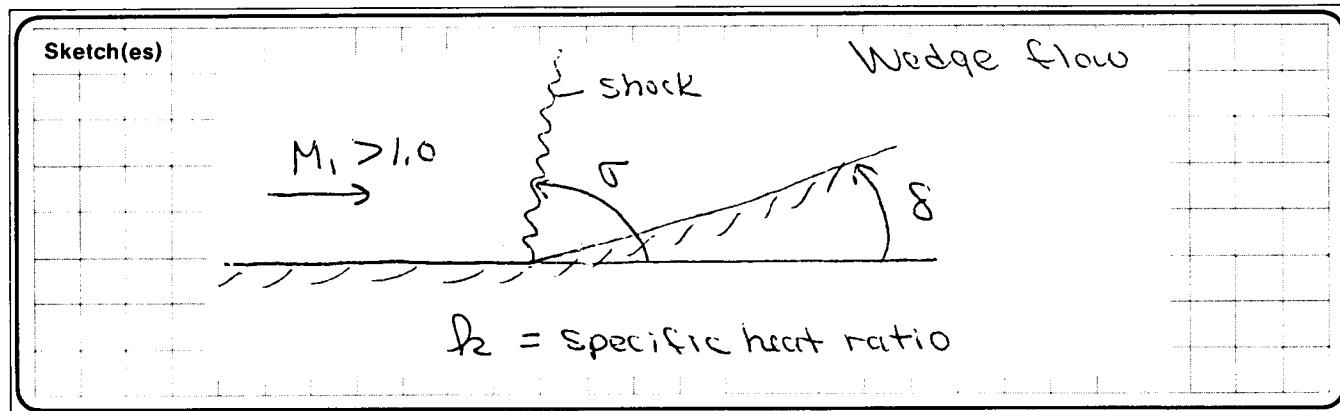
$$d = - \frac{\cos^2 \delta}{M_1^4}$$

M_1 = Upstream Mach number > 1.0

δ = Deflection angle (deg)

k = Specific heat ratio

σ = Shock angle (D.M.S.)


Operating Limits and Warnings

If no shock condition is possible, i.e., if the shock must detach from the corner, then the first program card stops with a blinking display. If δ approaches δ_{\max} for the flow the program takes some time (1 min or so) to converge. I have never had the program fail to converge, although it may be possible. Should convergence not occur, change the calculator to the DEG mode after the iteration is stopped.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) Given

$$M_1 = 2.0$$

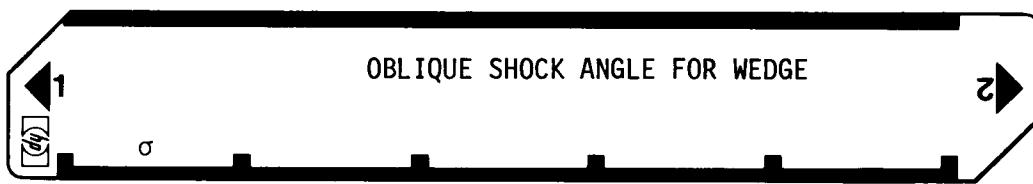
$$\delta = 10^\circ$$

$$k = 1.4$$

$\sigma = 39.3139$ Deg

Solution(s)

Keystrokes:


Outputs:

2[x²] [STO] [1] 10 [STO] [2] 1.4 [STO] [3] [A] -----> 39.3139

Reference(s) 1. Introductory Gas Dynamics, A.J. Chapman and W.F. Walker, HRW Series in Mech. Engineering

This program is a translation of the HP-65 Users' Library program #00630A
submitted by Harry W. Townes.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	ENT↑	-21	
002	RCL2	36 02		058	X	-35	
003	SIN	41		059	-	-45	
004	ENT↑	-21		060	ST07	35 07	
005	X	-35		061	RCL4	36 04	
006	ST07	35 07		062	RCL5	36 05	
007	RCL3	36 03		063	X	-35	
008	X	-35		064	3	03	
009	RCL1	36 01		065	X	-35	
010	2	02		066	RCL6	36 06	
011	+	-55		067	-	-45	
012	RCL1	36 01		068	2	02	
013	÷	-24		069	÷	-24	
014	+	-55		070	RCL4	36 04	
015	CHS	-22		071	ENT↑	-21	
016	3	03		072	ENT↑	-21	
017	÷	-24		073	X	-35	
018	ST04	35 04	b/3 R4	074	X	-35	
019	RCL3	36 03		075	-	-45	
020	1	01		076	ST08	35 08	
021	+	-55		077	RCL7	36 07	
022	ENT↑	-21		078	ENT↑	-21	
023	X	-35		079	ENT↑	-21	
024	4	04		080	X	-35	
025	÷	-24		081	X	-35	
026	RCL3	36 03		082	ST06	35 06	
027	1	01		083	RCL8	36 08	
028	-	-45		084	ENT↑	-21	
029	RCL1	36 01		085	X	-35	
030	÷	-24		086	+	-55	
031	+	-55		087	0	00	
032	RCL7	36 07		088	X≤Y?	16-35	Test for existance of weak shock
033	X	-35		089	1/X	52	
034	RCL1	36 01		090	RCL2	36 02	Blinking display for no solution possible
035	2	02		091	TAN	43	
036	X	-35		092	ST02	35 02	
037	1	01		093	RAD	16-22	
038	+	-55		094	RCL8	36 08	
039	RCL1	36 01		095	RCL6	36 06	
040	ENT↑	-21		096	CHS	-22	
041	X	-35		097	JX	54	
042	÷	-24		098	÷	-24	
043	+	-55		099	COS⁻¹	16 42	
044	3	03		100	PI	16-24	
045	÷	-24		101	4	04	
046	ST05	35 05		102	X	-35	
047	RCL2	36 02		103	+	-55	
048	COS	42		104	3	03	
049	RCL1	36 01		105	÷	-24	
050	ENT↑	-21		106	COS	42	
051	X	-35		107	RCL7	36 07	
052	÷	-24		108	CHS	-22	
053	CHS	-22		109	JX	54	
054	ST06	35 06	d R6	110	X	-35	
055	RCL5	36 05		111	2	02	
056	RCL4	36 04		112	X	-35	

REGISTERS

0	¹ M ₁	² δ and ton δ	³ k	⁴ Used	⁵ Used	⁶ Used	⁷ Used	⁸ σ in RAD	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E			I		

97Program Listing II

27

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	RCL4	36 04		169	SIN	41	
114	-	-45		170	-	-45	
115	JX	54		171	÷	-24	
116	SIN ⁻¹	16 41		172	CHS	-22	
117	ST08	35 08		173	RCL1	36 01	
118	.	-62	σ in RAD from direct solution of the equation. Iteration improves accuracy.	174	-	-45	
119	0	00		175	RTN	24	
120	1	01		180			
121	ST06	35 06		190			
122	RCL8	36 08		200			
123	+	-55		210			
124	GSB0	23 00		220			
125	ST07	35 07					
126	RCL8	36 08					
127	GSB0	23 00					
128	RCL7	36 07					
129	X ² Y	-41					
130	-	-45					
131	RCL6	36 06					
132	÷	-24					
133	ST07	35 07					
134	*LBL1	21 01					
135	RCL8	36 08					
136	GSB0	23 00					
137	RCL7	36 07					
138	÷	-24					
139	ST-8	35-45 08					
140	RCL8	36 08					
141	÷	-24					
142	ABS	16 31					
143	EEX	-23					
144	CHS	-22					
145	6	06					
146	X≤Y?	16-35					
147	GT01	22 01					
148	RCL8	36 08					
149	R→D	16 46	σ in deg after convergence				
150	RTN	24					
151	*LBL0	21 00					
152	ST05	35 05					
153	TAN	43					
154	1/X	52					
155	RCL2	36 02					
156	+	-55					
157	2	02					
158	x	-35					
159	RCL5	36 05					
160	2	02					
161	x	-35					
162	ST05	35 05					
163	COS	42					
164	RCL3	36 03					
165	+	-55					
166	RCL2	36 02					
167	x	-35					
168	RCL5	36 05					

LABELS

LABELS					FLAGS	SET STATUS			
A	σ	B	C	D	E	0	FLAGS	TRIG	DISP
a	b	c	d	e		1	ON OFF	DEG SCI RAD	FIX SCI ENG n-4
0	1	2	3	4		2	0 1 2 3	0 1 2 3	0 1 2 3
5	6	7	8	9		3	0 1 2 3	0 1 2 3	0 1 2 3

Program Description I

Program Title	Mach Number and True Airspeed		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables, etc.

This program converts calibrated airspeed (CAS) to mach number and true airspeed (TAS). Pressure altitude (PALT) must be known to calculate mach number (M). Aircraft recovery coefficient (C_T) and indicated air temperature (IT) must also be known to calculate true airspeed. The recovery coefficient varies from 0.6 to 1.0 but is around 0.8 for most aircraft.

$$\text{Pressure ratio} \left(\frac{P}{P_0} \right) = \left[\frac{518.67 - 3.566 \times 10^{-3} \text{ PALT}}{518.67} \right]^{5.2563}$$

$$M^2 = 5 \left[\left(\frac{P_0}{P} \left\{ \left[1 + 0.2 \left(\frac{\text{CAS}}{661.5} \right)^2 \right]^{-1} \right\} + 1 \right)^{-1} \right]^{0.286}$$

$$\text{TAS} = 39M \sqrt{(IT + 273) \left[C_T \left(\frac{1}{(1 + 0.2 M^2)} - 1 \right) + 1 \right]}$$

Operating Limits and Warnings

Accuracy degenerates for mach numbers in excess of one.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

For a pressure altitude of 25,500 feet, a calibrated airspeed of 350 knots, a recovery factor of 0.8, and an indicated air temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed?

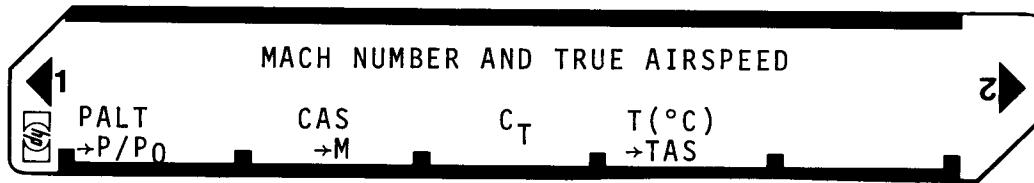
Sample Problem(s)

For a pressure altitude of 25,500 feet, a calibrated airspeed of 350 knots, a recovery factor of 0.8, and an indicated air temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed?

Solution(s)

$$\mathbf{M} = 0.84$$

TAS = 515.76 knots


Keystrokes	See Displayed
25500 A 350 B	0.84
.8 C 5 D	515.76

Reference(s)

This program is a translation of the HP-65 Users' Library program
#00531B submitted by Hewlett-Packard.

Reference(s)
This program is a translation of the HP-65 Users' Library program
#00531B submitted by Hewlett-Packard.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program*			
2	Input pressure altitude	PALT	A	P/P ₀
3	Input calibrated airspeed in knots and calculate mach number	CAS	B	M
4	Input recovery coefficient (.8 for most aircraft)	C _T	C	C _T
5	Input indicated air temperature and calculate true airspeed in knots	IT (°C)	D	TAS
6	For same aircraft at same PALT go to step 3 and skip step 4. For different PALT go to step 2 and skip step 4. For totally new case go to step 2.			

*For pressure altitudes above 36089 feet, calculate P/P₀ using *Standard Atmosphere*.

Program Description I

Program Title TAKE-OFF RUN VS. DENSITY ALTITUDE

Contributor's Name Hewlett-Packard, Corvallis Division

Address 1000 N. E. Circle Blvd.

City Corvallis State OR Zip Code 97330

Program Description, Equations, Variables

$$A_D = 145366 \left[1 - \left(\frac{\rho}{\rho_0} \right)^{0.235} \right] \quad \text{Density altitude}$$

$$\rho/\rho_0 = (288/T_0)_K (1 - 6.87 \times 10^{-6} A_p)^{5.256}$$

where A_p = Pressure altitude (Ft)

$$F = 1 + 2.18 \times 10^{-5} A_D + 2.032 \times 10^{-8} A_D^2$$

$$D_A = (D_{STD}/W_G) \cdot W_A \cdot F$$

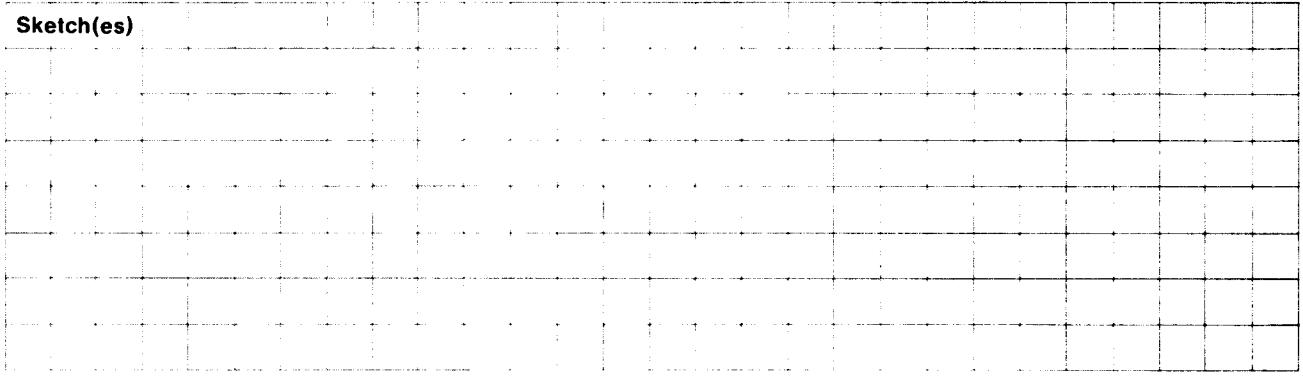
where

D_A = Actual take-off run (Ft)

D_{STD} = Sea level take-off run at 15°C and full gross weight

W_G = Gross weight

W_A = Actual take-off weight


Operating Limits and Warnings Computed value of D_A is an approximation to be tempered by caution and good sense. It depends on runway surface condition, aircraft condition, pilot skill; assumes zero wind. No provision for obstructions.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Land performance of a popular twin engine amphibian is a ground run of 965 feet (sea level) at 15°C at full gross weight of 6,000 lbs.

How much runway will it require at Laramie, Wyoming (elev. 7300 ft.) on a summer day when outside air temperature is 35°C (95°F) and plane is loaded to 5750 lbs?

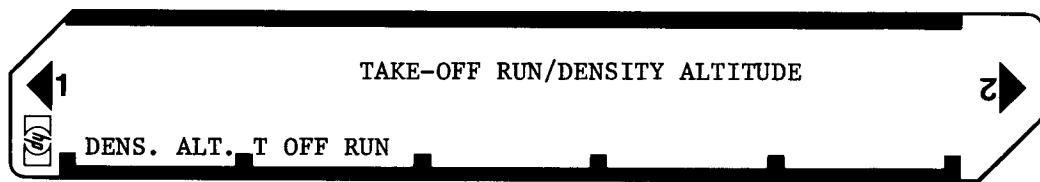
Solution(s) $965/6000 = .1608$ - Aircraft parameter to be inserted in program at LBL 1.

A_D (density altitude) = 11094 ft

D_A (actual take-off distance) = 3461 ft

Outpoints

Keystrokes: 965[ENT ↑] 6000[+][STD][0] 35[ENT ↑] 7300[ENT ↑] 5750[A] → 11094


[B] → 3461

Reference(s) 1) HP-65 Users' Library Program #532A

2) "AOPA Handbook for Pilots - 1974", page 15 (F VS A_D)

3) "Aerodynamics of the airplane", Millikan, John Wiley & Sons, 1941,
page 132.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	ENT↑	-21	
002	DSP0	-63 00		058	2	02	
003	ST01	35 01	W _A (Take off Wt.)	059	.	-62	
004	R↓	-31	A _P (Pressure Alt.)	060	1	01	
005	ST02	35 02		061	8	08	
006	R↓	-31		062	EEX	-23	
007	2	02		063	CHS	-22	
008	7	07		064	5	05	
009	3	03		065	x	-35	
010	ST03	35 03		066	1	01	
011	+	-55		067	+	-55	
012	ST04	35 04	Temp. °k	068	X \pm Y	-41	
013	6	06		069	ENT↑	-21	
014	.	-62		070	x	-35	A _D ²
015	8	08		071	2	02	
016	7	07		072	.	-62	
017	6	06		073	0	00	
018	EEX	-23		074	3	03	
019	CHS	-22		075	2	02	
020	6	06		076	EEX	-23	
021	RCL2	36 02		077	CHS	-22	
022	x	-35		078	8	08	
023	CHS	-22		079	x	-35	
024	1	01		080	+	-55	
025	+	-55		081	RCL0	36 00	
026	5	05		082	x	-35	
027	.	-62		083	RCL1	36 01	
028	2	02		084	x	-35	
029	5	05		085	RTN	24	
030	6	06		086	R/S	51	
031	Y \times	31					
032	RCL3	36 03					
033	1	01					
034	5	05		090			
035	+	-55					
036	x	-35					
037	RCL4	36 04					
038	÷	-24					
039	.	-62					
040	2	02					
041	3	03					
042	5	05					
043	Y \times	31					
044	CHS	-22					
045	1	01					
046	+	-55					
047	1	01					
048	4	04					
049	5	05					
050	3	03					
051	6	06					
052	6	06					
053	x	-35	A _D				
054	RTN	24					
055	*LBLB	21 12					
056	ENT1	-21					

REGISTERS

REGISTERS									
0	1 W _A	2 A _P	3 273	4 T°k	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E		I			

Program Description I

Program Title TRUE AIR TEMPERATURE AND DENSITY ALTITUDE

Contributor's Name Hewlett-Packard, Corvallis Division

Address 1000 N. E. Circle Blvd.

City Corvallis

State OR

Zip Code 97330

Program Description, Equations, Variables This program accounts for the compressibility effects of high speed flight. Given the mach number (M) and the aircraft recovery coefficient ($C_T = 0.8$ for most aircraft), indicated air temperature (IT) is converted to true air temperature (T). True air temperature and pressure altitude are then converted to density altitude. For low flight mach numbers, compressibility effects are small. In such cases only temperature and pressure altitude (PALT) are needed to calculate density altitude (DALT).

$$T(K) = C_T \left(\frac{IT(K)}{0.205 M^2 + 1} - IT \right) + IT(K)$$

$$DALT = 145366 \left[1 - \left(\frac{\rho}{\rho_0} \right)^{0.235} \right]$$

where

$$\frac{\rho}{\rho_0} = \frac{288.15}{T(K)} \left[1 - 6.879 \times 10^{-6} PALT \right]^{5.256}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

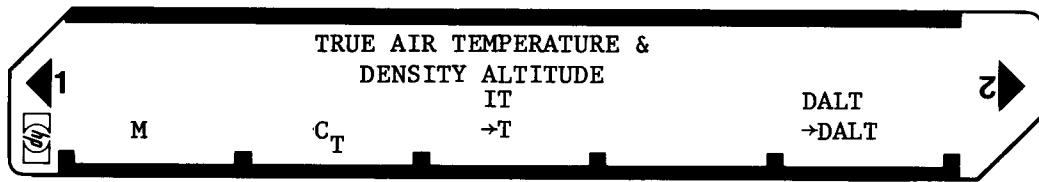
Sketch(es)

Category	Sub-Category	Item	Description	Quantity	Unit	Unit Price	Total Price
Electronics	Smartphones	iPhone 12 Pro	High-end smartphone with 5G support and 120Hz display	1	Unit	1000	1000
Electronics	Smartphones	Samsung Galaxy S21	Mid-range smartphone with 6.2" display and 5G connectivity	2	Unit	800	1600
Electronics	Smartphones	Google Pixel 5	Entry-level smartphone with 6.1" display and 5G support	3	Unit	600	1800
Electronics	Tablets	Apple iPad Pro (11")	High-end tablet with 11" display and 12.9" keyboard	1	Unit	1200	1200
Electronics	Tablets	Microsoft Surface Pro 7	Mid-range tablet with 12.3" display and 10th Gen Intel processor	2	Unit	900	1800
Electronics	Tablets	Google Pixel Slate	Entry-level tablet with 10.2" display and 10th Gen Intel processor	3	Unit	700	2100
Peripherals	Monitors	Dell UltraSharp U2720Q	4K UHD monitor with 27" display and 144Hz refresh rate	1	Unit	1500	1500
Peripherals	Monitors	ASUS ProArt PA279Q	4K UHD monitor with 27" display and 144Hz refresh rate	2	Unit	1300	2600
Peripherals	Monitors	BenQ PD2700Q	4K UHD monitor with 27" display and 144Hz refresh rate	3	Unit	1100	3300
Peripherals	Keyboards	Razer BlackWidow V3 Pro	RGB mechanical keyboard with 104 keys and 16.8 million color options	1	Unit	1800	1800
Peripherals	Keyboards	Logitech G915 TKL	RGB mechanical keyboard with 87 keys and 16.8 million color options	2	Unit	1600	3200
Peripherals	Keyboards	SteelSeries Apex 7	RGB mechanical keyboard with 104 keys and 16.8 million color options	3	Unit	1400	4200
Peripherals	Mice	Razer DeathAdder V2 Pro	RGB optical mouse with 16,000 DPI and 7 programmable buttons	1	Unit	1200	1200
Peripherals	Mice	SteelSeries Rival 650	RGB optical mouse with 16,000 DPI and 7 programmable buttons	2	Unit	1000	2000
Peripherals	Mice	Logitech G305	RGB optical mouse with 12,000 DPI and 6 programmable buttons	3	Unit	800	2400
Software	Operating Systems	Windows 11 Pro	Windows 11 Pro operating system for desktop computers	1	Unit	200	200
Software	Operating Systems	Mac OS X Big Sur	Mac OS X Big Sur operating system for Mac computers	2	Unit	250	500
Software	Operating Systems	Ubuntu 21.04	Ubuntu 21.04 operating system for Linux desktops	3	Unit	150	450
Software	Productivity	Microsoft Office 365	Microsoft Office 365 productivity suite for business users	1	Unit	300	300
Software	Productivity	Google Workspace	Google Workspace productivity suite for business users	2	Unit	250	500
Software	Productivity	Apple iWork	Apple iWork productivity suite for Mac users	3	Unit	200	600
Software	Entertainment	Adobe Creative Suite	Adobe Creative Suite for graphic design and video editing	1	Unit	500	500
Software	Entertainment	Steam	Steam digital distribution platform for PC games	2	Unit	350	700
Software	Entertainment	Origin	Origin digital distribution platform for EA games	3	Unit	300	900
Software	Business	Microsoft Project	Microsoft Project project management software	1	Unit	150	150
Software	Business	Oracle Database	Oracle Database enterprise relational database management system	2	Unit	250	500
Software	Business	IBM SPSS Statistics	IBM SPSS Statistics statistical analysis software	3	Unit	200	600
Software	Education	Microsoft Office 365 Education	Microsoft Office 365 Education productivity suite for schools	1	Unit	250	250
Software	Education	Google Classroom	Google Classroom learning management system for schools	2	Unit	200	400
Software	Education	Microsoft OneNote	Microsoft OneNote digital notebook for students	3	Unit	150	450
Software	Security	McAfee Endpoint Protection	McAfee Endpoint Protection enterprise security software	1	Unit	100	100
Software	Security	Bitdefender GravityZone	Bitdefender GravityZone endpoint security software	2	Unit	120	240
Software	Security	Avast Business Security	Avast Business Security endpoint security software	3	Unit	80	240
Software	Cloud	Amazon AWS Lambda	Amazon AWS Lambda serverless computing service	1	Unit	180	180
Software	Cloud	Microsoft Azure Functions	Microsoft Azure Functions serverless computing service	2	Unit	150	300
Software	Cloud	Google Cloud Functions	Google Cloud Functions serverless computing service	3	Unit	120	360
Hardware	Computers	Dell XPS 15 (9500)	Dell XPS 15 (9500) 15.6" 4K UHD laptop	1	Unit	1800	1800
Hardware	Computers	HP Spectre x360 15t (2021)	HP Spectre x360 15t (2021) 15.6" 4K UHD laptop	2	Unit	1600	3200
Hardware	Computers	Lenovo ThinkPad X1 Carbon (2021)	Lenovo ThinkPad X1 Carbon (2021) 14" 4K UHD laptop	3	Unit	1400	4200
Hardware	Monitors	ASUS ProArt PA279Q	4K UHD monitor with 27" display and 144Hz refresh rate	1	Unit	1500	1500
Hardware	Monitors	BenQ PD2700Q	4K UHD monitor with 27" display and 144Hz refresh rate	2	Unit	1300	2600
Hardware	Monitors	Dell UltraSharp U2720Q	4K UHD monitor with 27" display and 144Hz refresh rate	3	Unit	1100	3300
Hardware	Keyboards	Razer BlackWidow V3 Pro	RGB mechanical keyboard with 104 keys and 16.8 million color options	1	Unit	1800	1800
Hardware	Keyboards	SteelSeries Apex 7	RGB mechanical keyboard with 104 keys and 16.8 million color options	2	Unit	1600	3200
Hardware	Keyboards	Logitech G915 TKL	RGB mechanical keyboard with 87 keys and 16.8 million color options	3	Unit	1400	4200
Hardware	Mice	Razer DeathAdder V2 Pro	RGB optical mouse with 16,000 DPI and 7 programmable buttons	1	Unit	1200	1200
Hardware	Mice	SteelSeries Rival 650	RGB optical mouse with 16,000 DPI and 7 programmable buttons	2	Unit	1000	2000
Hardware	Mice	Logitech G305	RGB optical mouse with 12,000 DPI and 6 programmable buttons	3	Unit	800	2400
Hardware	Power Banks	Anker PowerCore 26800	Anker PowerCore 26800 portable power bank	1	Unit	50	50
Hardware	Power Banks	Satechi 100W GaN Charger	Satechi 100W GaN Charger fast charger	2	Unit	80	160
Hardware	Power Banks	Belkin Boost Charge 100W GaN Charger	Belkin Boost Charge 100W GaN Charger fast charger	3	Unit	60	180
Hardware	Chargers	Belkin Boost Charge 100W GaN Charger	Belkin Boost Charge 100W GaN Charger fast charger	1	Unit	80	80
Hardware	Chargers	Satechi 100W GaN Charger	Satechi 100W GaN Charger fast charger	2	Unit	60	120
Hardware	Chargers	Anker PowerPort Atom III 60W	Anker PowerPort Atom III 60W fast charger	3	Unit	40	120
Hardware	Speakers	Logitech X500	Logitech X500 2.1 speaker system	1	Unit	100	100
Hardware	Speakers	SteelSeries Arctis 7	SteelSeries Arctis 7 7.1 surround sound gaming headset	2	Unit	150	300
Hardware	Speakers	SteelSeries Arctis 3	SteelSeries Arctis 3 7.1 surround sound gaming headset	3	Unit	120	360
Hardware	Headphones	SteelSeries Arctis 7	SteelSeries Arctis 7 7.1 surround sound gaming headset	1	Unit	150	150
Hardware	Headphones	SteelSeries Arctis 3	SteelSeries Arctis 3 7.1 surround sound gaming headset	2	Unit	120	240
Hardware	Headphones	SteelSeries Arctis 1	SteelSeries Arctis 1 7.1 surround sound gaming headset	3	Unit	100	300
Hardware	Mouse Pads	Razer DeathAdder V2 Pro	RGB optical mouse pad with 16,000 DPI and 7 programmable buttons	1	Unit	50	50
Hardware	Mouse Pads	SteelSeries QcK Prism	RGB mouse pad with 16.8 million color options	2	Unit	60	120
Hardware	Mouse Pads	Logitech G843	RGB mouse pad with 16.8 million color options	3	Unit	40	120
Hardware	Keyboard Pads	Razer DeathAdder V2 Pro	RGB optical mouse pad with 16,000 DPI and 7 programmable buttons	1	Unit	50	50
Hardware	Keyboard Pads	SteelSeries QcK Prism	RGB mouse pad with 16.8 million color options	2	Unit	60	120
Hardware	Keyboard Pads	Logitech G843	RGB mouse pad with 16.8 million color options	3	Unit	40	120
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	1	Unit	20	20
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	2	Unit	20	40
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	3	Unit	20	60
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	4	Unit	20	80
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	5	Unit	20	100
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	6	Unit	20	120
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	7	Unit	20	140
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	8	Unit	20	160
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	9	Unit	20	180
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	10	Unit	20	200
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	11	Unit	20	220
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	12	Unit	20	240
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	13	Unit	20	260
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	14	Unit	20	280
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	15	Unit	20	300
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	16	Unit	20	320
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	17	Unit	20	340
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	18	Unit	20	360
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	19	Unit	20	380
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	20	Unit	20	400
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	21	Unit	20	420
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	22	Unit	20	440
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	23	Unit	20	460
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	24	Unit	20	480
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	25	Unit	20	500
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	26	Unit	20	520
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	27	Unit	20	540
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	28	Unit	20	560
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	29	Unit	20	580
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	30	Unit	20	600
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	31	Unit	20	620
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	32	Unit	20	640
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	33	Unit	20	660
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	34	Unit	20	680
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	35	Unit	20	700
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	36	Unit	20	720
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	37	Unit	20	740
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	38	Unit	20	760
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	39	Unit	20	780
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	40	Unit	20	800
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	41	Unit	20	820
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	42	Unit	20	840
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	43	Unit	20	860
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	44	Unit	20	880
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	45	Unit	20	900
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	46	Unit	20	920
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	47	Unit	20	940
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	48	Unit	20	960
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	49	Unit	20	980
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	50	Unit	20	1000
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	51	Unit	20	1020
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	52	Unit	20	1040
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	53	Unit	20	1060
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	54	Unit	20	1080
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	55	Unit	20	1100
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	56	Unit	20	1120
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	57	Unit	20	1140
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	58	Unit	20	1160
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	59	Unit	20	1180
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	60	Unit	20	1200
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	61	Unit	20	1220
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	62	Unit	20	1240
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	63	Unit	20	1260
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	64	Unit	20	1280
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	65	Unit	20	1300
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	66	Unit	20	1320
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	67	Unit	20	1340
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	68	Unit	20	1360
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	69	Unit	20	1380
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	70	Unit	20	1400
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	71	Unit	20	1420
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	72	Unit	20	1440
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	73	Unit	20	1460
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	74	Unit	20	1480
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	75	Unit	20	1500
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	76	Unit	20	1520
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	77	Unit	20	1540
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	78	Unit	20	1560
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	79	Unit	20	1580
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	80	Unit	20	1600
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	81	Unit	20	1620
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	82	Unit	20	1640
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	83	Unit	20	1660
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	84	Unit	20	1680
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	85	Unit	20	1700
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	86	Unit	20	1720
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	87	Unit	20	1740
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	88	Unit	20	1760
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	89	Unit	20	1780
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	90	Unit	20	1800
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	91	Unit	20	1820
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	92	Unit	20	1840
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	93	Unit	20	1860
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	94	Unit	20	1880
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	95	Unit	20	1900
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	96	Unit	20	1920
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	97	Unit	20	1940
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	98	Unit	20	1960
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	99	Unit	20	1980
Hardware	Power Strips	Belkin Surge Protector	Belkin Surge Protector power strip	100	Unit	20	2000

Sample Problem(s)

1. $M = 0.87$
 $C_T = 0.80$
 $IT = 8^\circ C$
 $PALT = 10,000 \text{ ft}$

2. For a low speed aircraft
 $T = 12^\circ C$
 $PALT = 9,000 \text{ ft}$


Solution(s)

1. $T = -22.21^\circ C$
 $DALT = 7852.96 \text{ ft}$
2. $DALT = 10,703.11 \text{ ft}$

Keystrokes [f][a]	See Displayed
1. .87[A]8[C]	-22.21
10000[E]	7852.96
2. 12[D]9000[E]	10703.11

Reference(s) This program is a translation of the HP-65 Users' Library Program
#00532A Submitted by User's Library.

User Instructions

97 Program Listing I

39

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 16 11		057	1	01	
002	.	-62		058	+	-55	
003	8	08	Initialize	059	5	05	
004	ST03	35 03		060	.	-62	
005	RTN	24		061	2	02	
006	*LBLA	21 11		062	5	05	
007	ST04	35 04	Input mach number	063	6	06	
008	RTN	24		064	Y ^x	31	
009	*LBLB	21 12		065	RCL6	36 06	
010	ST03	35 03		066	1	01	
011	RTN	24	Input recovery	067	5	05	
012	*LBLC	21 13	factor	068	+	-55	
013	GSBD	23 14		069	X	-35	
014	RCL4	36 04		070	RCL5	36 05	
015	ENT1	-21		071	÷	-24	
016	X	-35		072	.	-62	
017	.	-62	Calculate true	073	2	02	
018	2	02	temperature	074	3	03	Calculate density
019	0	00		075	5	05	altitude
020	5	05		076	Y ^x	31	
021	X	-35		077	CHS	-22	
022	1	01		078	1	01	
023	+	-55		079	+	-55	
024	÷	-24		080	1	01	
025	RCL5	36 05		081	4	04	
026	-	-45		082	5	05	
027	RCL3	36 03		083	3	03	
028	X	-35		084	6	06	
029	RCL5	36 05		085	6	06	
030	+	-55		086	X	-35	
031	ST05	35 05		087	RTN	24	
032	RCL6	36 06					
033	-	-45					
034	RTN	24		090			
035	*LBLD	21 14					
036	2	02					
037	7	07	Convert T(°C) to				
038	3	03	T(K) and store it.				
039	.	-62					
040	1	01		100			
041	5	05					
042	ST06	35 06					
043	+	-55					
044	ST05	35 05					
045	RTN	24					
046	*LBLE	21 15					
047	6	06					
048	.	-62					
049	8	08					
050	7	07					
051	9	09					
052	EEX	-23					
053	CHS	-22					
054	6	06	Calculate density				
055	X	-35	ratio				
056	CHS	-22					

REGISTERS

FLAGS		TRIG		DISP	
ON	OFF	DEG	GRAD	FIX	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

0	1	2	3 C _T	4 M	5 T(K)	6 273.15	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

Program Description I

Program Title Aircraft Climb

Contributor's Name Carroll F. Lam

Address 4411 Random Ct.

City Annadale

State VA

Zip Code 22003

Program Description, Equations, Variables

Given current and new higher altitudes, A_1 and A_2 , and associated headwinds at these altitudes, W_1 and W_2 , this program will compute the following:

$$1. D_{\min} = [(V_{cr} - V_{c1}) + \frac{W_1 - W_2}{2}] \frac{V_{cr} - W_1}{W_1 - W_2} T_c$$

where: V_{cr} = cruise air speed

V_{cc} = climb air speed

T_c = time to climb, A_1 to A_2

$$2. T_{climb} = \frac{A_m}{ROC_{\max}} \ln \frac{A_m - A_1}{A_m - A_2}$$

where: A_m = aircraft ceiling

ROC_{\max} = sea level rate-of-climb

$$3. T_{act} = \frac{D_{act} - [V_{c1} - \frac{W_1 + W_2}{2}] T_c}{V_{cr} - W_2} + T_c$$

$$4. T_{save} = \frac{D_{act}}{V_{cr} - W_1} - T_{act}$$

Operating Limits and Warnings

$W_1, W_2 \geq 0$

$A_2 > A_1$

$D_{act} > D_{\min}$ if steps 9,10,11 are to be used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

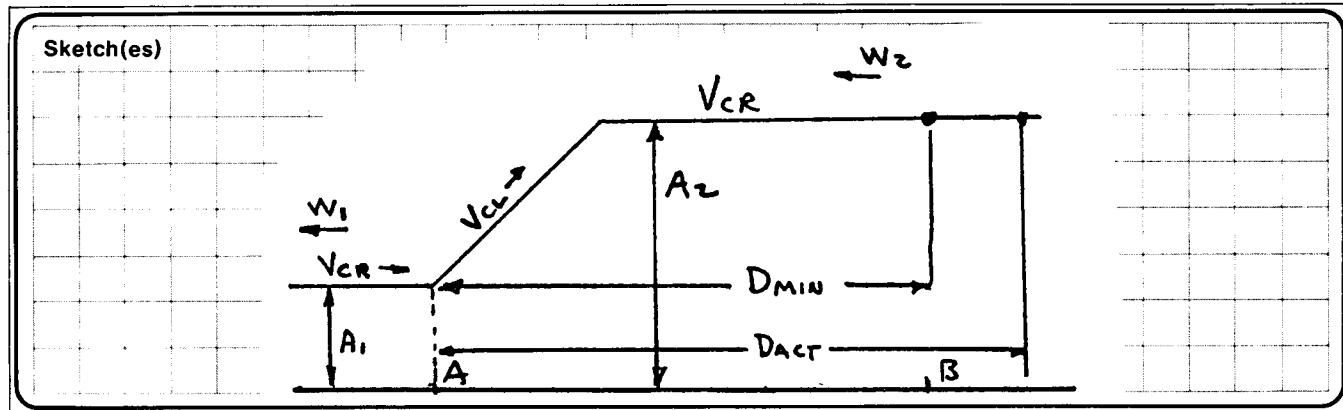
Program Description I

Program Title	Aircraft Climb		
Contributor's Name	Carroll F. Lam		
Address	4411 Random Ct.		
City	Annandale	State	VA
		Zip Code	22003

Program Description, Equations, Variables (con't)

The equation for D_{\min} is derived by setting up an equation for the two time possibilities for traveling between points A and B_1 and solving for the D that assures that the travel time based on climbing to a higher altitude with a smaller headwind component is less than the travel time that would result from remaining at altitude A_1 .

Although the program doesn't incorporate it, there would in general be an additional benefit in climbing to a higher altitude, namely a higher true airspeed will generally result.


Operating Limits and Warnings

See previous page.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

Assumed aircraft parameters:

- $V_{cr} = 150 \text{ mph}$
- $V_{c1} = 85 \text{ mph}$
- $ROC_{\max} = 850 \text{ ft/min}$
- $A_{\max} = 18.5 \text{ kft}$

Given:

- Current Altitude (A_1) = 3.5 kft
- Current Headwind Component (W_1) = 38 mph
- Potential Altitude (A_2) = 11.5 kft
- Headwind Component at A_2 (W_2) = 10 mph
- Distance Remaining (D_{act}) = 185 miles

Find:

- Distance required for climb to breakeven
- Time to fly distance remaining if climb is made
- Time saved by climbing to higher altitude
- Time to climb to new altitude

Solution(s)

150	[STO]	[1]	85	[STO]	[2]	[850]	[STO]	[3]	18.5	[STO]	[4]
11.5	[ENTER]										11.50
10	[ENTER]										10.50
3.5	[ENTER]										3.50
38	[A]										11.50
1.	[B]										87.54
2.	185	[C]									1.28 (1 hr, 28 mins)
3.	[R/S]										0.10 (10 mins)
4.	[D]										0.16 (16 mins)

Reference(s) Equations (1), (2), and (4) are submitter's own derivations based on the geometry of the problem.

Equation (3) is based on an assumption that ROC varies linearly with altitude $[ROC(A) = A_{\max} \left(1 - \frac{A}{A_{\max}}\right)]$ and straight forward integration. See any good aeronautical engineering text.

This program is a translation of the HP-65 Users Library program # 01815A submitted

by Carroll F. Lam.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	+	-55	
002	ST05	35 05		058	2	02	Compute Actual
003	R↓	-31	Store Data	059	÷	-24	Stage Time
004	ST06	35 06		060	CHS	-22	
005	R↓	-31		061	RCL2	36 02	
006	ST07	35 07		062	+	-55	
007	R↓	-31		063	RCL9	36 09	
008	ST08	35 08		064	×	-35	
009	RTN	24		065	-	-45	
010	*LBLD	21 14		066	RCL1	36 01	
011	RCL4	36 04		067	RCL7	36 07	
012	RCL8	36 08		068	-	-45	
013	-	-45		069	÷	-24	
014	RCL4	36 04		070	RCL9	36 09	
015	RCL6	36 06		071	+	-55	
016	-	-45		072	→HMS	16 35	
017	÷	-24		073	R/S	51	
018	LN	32	Compute Climb Time	074	X#Y	-41	Compute Time
019	RCL3	36 03		075	RCL1	36 01	Savings
020	÷	-24		076	RCL5	36 05	
021	RCL4	36 04		077	-	-45	
022	X	-35		078	÷	-24	
023	CHS	-22		079	→HMS	16 35	
024	1	01		080	CHS	-22	
025	6	06		081	HMS+	16-55	
026	.	-62		082	CHS	-22	
027	7	07		083	RTN	24	
028	X	-35					
029	ST09	35 09					
030	→HMS	16 35					
031	RTN	24					
032	*LBLB	21 12					
033	RCL1	36 01	Compute Minimum	090			
034	RCL5	36 05					
035	-	-45	State Length				
036	RCL5	36 05					
037	RCL7	36 07					
038	-	-45					
039	÷	-24					
040	LSTX	16-63					
041	2	02					
042	÷	-24					
043	RCL1	36 01					
044	RCL2	36 02					
045	-	-45					
046	+	-55					
047	X	-35					
048	GSBD	23 14					
049	HMS+	16 36					
050	X	-35					
051	RTN	24					
052	*LBLC	21 13					
053	ENT↑	-21					
054	ENT↑	-21					
055	RCL5	36 05					
056	RCL7	36 07					

REGISTERS

0	V _{cruise}	V _{climb}	R.O.C _{max}	A _{max}	W ₁	A ₁	W ₂	A ₂	T _{climb}
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

FLAGS		TRIG		DISP	
ON	OFF	DEG	FIX	SCI	ENG
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
110					
n	2				

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
Real Estate Investment
Taxes
Home Construction Estimating
Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

AERONAUTICAL ENGINEERING

Includes programs in several areas for Aeronautical Engineering, such as calculations for properties of air and atmosphere, behavior of gas flows, calibration of temperature and speed, and also some aircraft maneuvering.

PROPERTIES OF AIR

**THEORETICAL U.S. STANDARD ATMOSPHERE TEMPERATURE
AND PRESSURE BELOW 35,332 FT.**

AIRCRAFT FLYOVER ACOUSTIC TONE DOPPLER SHIFT

ISENTROPIC FLOW FOR IDEAL GASES

**NORMAL AND OBLIQUE SHOCK PARAMETERS FOR
COMPRESSIBLE FLOW**

OBLIQUE SHOCK ANGLE FOR WEDGE

MACH NUMBER AND TRUE AIRSPEED

TAKE-OFF RUN VS DENSITY ALTITUDE

TRUE AIR TEMPERATURE AND DENSITY ALTITUDE

AIRCRAFT CLIMB

HEWLETT PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14036 Printed in U.S.A. 00097-90211

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.