

HP-67/HP-97

Users' Library Solutions

Aircraft Operation

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

AIRCRAFT FLIGHT PLAN WITH WIND	1
Simplifies flight planning.	
FLIGHT MANAGEMENT	8
Speed-Time-Distance-Fuel.	
PREDICTING FREEZING LEVELS	12
Computes theoretical freezing level.	
GENERAL AIRCRAFT WEIGHT AND BALANCE.	16
Helps determine your position in the weight-balance envelope.	
PILOT UNIT CONVERSIONS	20
Common units encountered by pilots.	
TURN PERFORMANCE	24
Computes G-force, turn diameter, and stall speed.	
RATE OF CLIMB AND DESCENT	29
Helps you to be sure you'll clear the mountain.	
HEAD WINDS AND CROSS WINDS	33
Resolves reported winds into head-winds and cross-wind components.	
FLIGHT PLANNING AND FLIGHT VERIFICATION.	37
Plan and update the plan enroute.	
Computes ETA, ground speed, etc.	
DETERMINING IN-FLIGHT WINDS.	43
Computes winds from time-distance inputs.	
STANDARD ATMOSPHERE.	47
Estimates atmospheric conditions from pressure altitude.	
MACH NUMBER AND TRUE AIRSPEED.	53
Converts calibrated airspeed to mach number and true airspeed.	
TRUE AIR TEMPERATURE AND DENSITY ALTITUDE.	58
Computes density altitude, accounting for compressibility effects.	
LOWEST USABLE FLIGHT LEVEL	62
Used on flights operating above 18,000 feet.	

1

Program Description I

Program Title Aircraft Flight Plan With Wind

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables

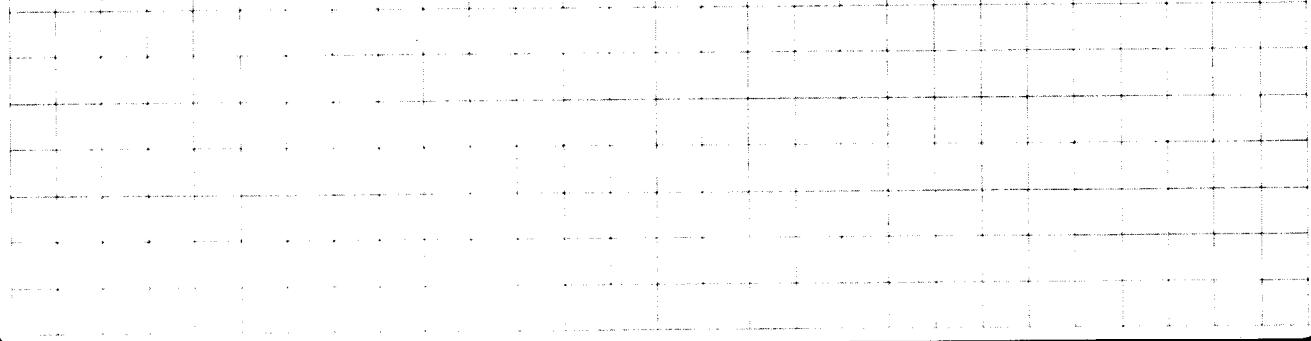
This program is used when making a flight plan which includes winds. It solves the wind triangle, giving correct values for magnetic heading and ground speed. It works for multiple leg lengths, computing time for each leg, cumulative time, and fuel consumed for each leg. The program corrects reported winds from true direction to magnetic direction before using them in a calculation. The winds, true airspeed, fuel consumption, and magnetic variation can be altered on each leg of the flight. The equations used to compute the heading (HDG) and ground speed (GS) of the aircraft are

$$\text{HDG} = C + \sin^{-1} \frac{W}{\text{TAS}} \sin (D - C)$$

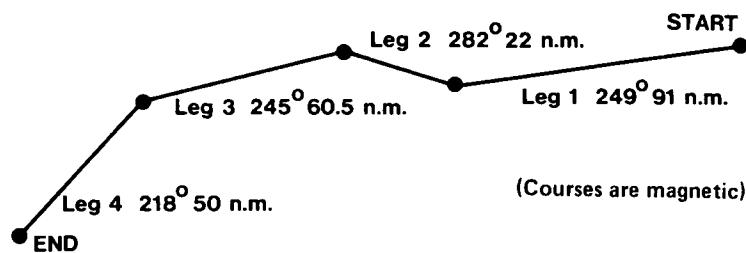
$$\text{GS} = \text{TAS} \cos (\text{HDG} - C) - W \cos (D - C)$$

where W is wind velocity, D is wind direction (magnetic), C is the magnetic course and TAS is the true airspeed.

Operating Limits and Warnings


Wind must be less than 100 knots. Wind speed must not exceed true airspeed.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.


NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Winds for legs 1 and 2 – 230 degrees (true) @ 30 knots.

Winds for legs 3 and 4 – 300 degrees (true) @ 20 knots.

Fuel consumption 8 gal/hr, TAS 105, magnetic variation 15 degrees E.

Solution(s)

For the sketch above the following data table is completed (underlined values are input data).

Course/Steer	GS	Dist	Time/Total	Fuel
<u>249/240</u>	79	<u>91</u>	1:09:18/1:09:18	9.2
<u>282/267</u>	90	<u>22</u>	0:14:44/1:24:03	2.0
<u>245/252</u>	89	<u>60.5</u>	0:40:50/2:04:53	5.4
<u>218/228</u>	96	<u>50</u>	0:31:24/2:36:16	4.2

Reference(s)

This program is a direct translation of a program from the HP-65

Aviation Pac.

Program Description II

3

Sketch(es)

Sketch(es) area, consisting of a large rectangular box with a grid pattern for drawing.

Sample Problem(s)

Sample Problem(s) area, consisting of a large rectangular box with a grid pattern for writing problems.

Solution(s)

Keystrokes

See Displayed

[F] [E] 8 A 105 A 230.30 B 15 B 249 C

240

C

79

91 D.

1.0918

D

1.0918

E

9.2

282 C

267

C

90

22 D

0.1444

Reference(s)

Reference(s) area, consisting of a large rectangular box with a grid pattern for writing references.

Program Description II

Solution(s)	D	1.2403
	E	2.0
300.20	B	245
	C	252
	C	89
60.5	D	0.4050
	D	2.0453
	E	5.4
218	C	228
	C	96

Program Description II

Sketch(es)**Sample Problem(s)****Solution(s)**50 **D****D****E**

0.3124

2.3616

4.2

Reference(s)

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program					
2	Initialize		f E			
3	Input fuel consumption	FC (gal/hr)	A	FC		
	then input true airspeed	TAS	A	TAS		
4	Input wind*	DDD.KK	B	KK		
	then magnetic variation					
	(+E, -W)	V	B	V		
5	Input course and calculate					
	heading	C	C	HDG		
	then calculate ground speed		C	GS		
6	Input leg length and compute					
	leg time	leglength (n.m.)	D	H.MMSS**		
	then display total time		D	H.MMSS		
7	Calculate fuel used on leg		E	fuel (gal)		
8	For next leg with same					
	fuel, TAS, wind, and					
	magnetic variation go to					
	step 5. To change fuel					
	go to step 3 and input new					
	value. To change wind go to					
	step 4 and input new value.					
	To change true air speed					
	go to step 3 input fuel					
	consumption then true air					
	speed. To change magnetic					
	variation go to step 4 input					
	wind then input magnetic					
	variation. For new case go					
	to step 2.					

*DDD.KK means direction, decimal point, wind speed. 325.08 means a direction of 325 degrees and a speed of 8 knots.

**H.MMSS means hours, decimal point, minutes, seconds. 2.0355 is 2 hours 3 minutes and 55 seconds.

97 Program Listing I

7

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS										
001	*LBL _e	21 16 15		057	RTN	24											
002	CLRG	16-53		058	*LBL _C	21 13											
003	DSP2	-63 02		059	R↓	-31											
004	RTN	24		060	RCL2	36 02											
005	*LBL _A	21 11		061	x	-35											
006	ST01	35 01		062	X \neq Y	-41											
007	RTN	24		063	-	-45											
008	*LBL _A	21 11		064	RTN	24											
009	ST02	35 02		065	*LBL _D	21 14											
010	RTN	24		066	X \neq Y	-41											
011	*LBL _B	21 12		067	÷	-24											
012	ENT↑	-21		068	ST07	35 07											
013	INT	16 34		069	ST+6	35-55 06											
014	ST03	35 03		070	DSP4	-63 04											
015	-	-45		071	→HMS	16 35											
016	EEX	-23		072	RTN	24											
017	2	02		073	*LBL _D	21 14											
018	x	-35		074	RCL6	36 06											
019	ST08	35 06		075	→HMS	16 35											
020	RTN	24		076	RTN	24											
021	*LBL _B	21 12		077	*LBL _E	21 15											
022	ST04	35 04		078	RCL7	36 07											
023	RTN	24		079	RCL1	36 01											
024	*LBL _C	21 13		080	x	-35											
025	DSP0	-63 00		081	DSP1	-63 01											
026	ST05	35 05		082	RTN	24											
027	RCL3	36 03															
028	RCL4	36 04															
029	-	-45															
030	X \neq Y	-41															
031	-	-45															
032	RCL8	36 08		090													
033	→R	44															
034	X \neq Y	-41															
035	RCL2	36 02															
036	÷	-24															
037	SIN ⁻¹	16 41															
038	COS	42															
039	LSTX	16-63															
040	RCL5	36 05															
041	+	-55															
042	1	01															
043	→R	44															
044	→P	34		100													
045	CLX	-51															
046	X \neq Y?	16-34															
047	GT01	22 01															
048	CLX	-51															
049	+	-55															
050	RTN	24															
051	*LBL ₁	21 01															
052	CLX	-51															
053	3	03															
054	6	06															
055	0	00															
056	+	-55															
REGISTERS																	
0	1	Fuel	2	TAS	3	DDD	4	V	5	C	6	Total t	7	Leg Time	8	Wind	9
S0	S1		S2		S3		S4		S5		S6		S7		S8		S9
A	B		C		D		E		I								

FLAGS		SET STATUS		
0		FLAGS		
1		ON	OFF	
2		1	0	DEG
110		2	0	GRAD
		3	0	RAD
			1	FIX
			0	SCI
			0	ENG
			1	n

Program Description I

Program Title	Flight Management		
Contributor's Name	HP-67/97 Users' Library, Hewlett-Packard Company		
Address	1000 N. E. Circle Boulevard		
City	Corvallis	State	OR
		Zip Code	97330

Program Description, Equations, Variables This program calculates either time flown, distance flown or ground speed using the other two variables as inputs. Since the equations are analogous, fuel consumed, fuel consumption or time flown can also be calculated if two of the values are known. The program is very useful in calculating ETA and fuel reserves from in-flight data.

$$\text{TIME} = \text{DIST}/\text{GS}$$

$$\text{DIST} = \text{GS} \times \text{TIME}$$

$$\text{GS} = \text{DIST}/\text{TIME}$$

$$\text{FUEL} = \text{FC} \times \text{TIME}$$

$$\text{FC} = \text{FUEL}/\text{TIME}$$

$$\text{TIME} = \text{FUEL}/\text{FC}$$

where

DIST is distance flown, GS is ground speed, and FC is fuel consumption.

Operating Limits and Warnings Fuel consumption and fuel must be in compatible units; i.e., gal/hr and gal, or liters/hr and liters. GS and DIST must be in compatible units; i.e., knots and nautical miles, or miles/hr and miles.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

9

Sketch(es)

Sketch(es) area with 10 horizontal lines for drawing.

Sample Problem(s) A 380 nautical mile flight will be made at an estimated ground speed of 105 knots. The fuel consumption is 8 gal/hr. Find the estimated time for the flight and fuel consumed.

Work area for sample problem, consisting of 10 horizontal lines for calculations.

Solution(s) Time = 3 hrs, 37 min, 8 seconds

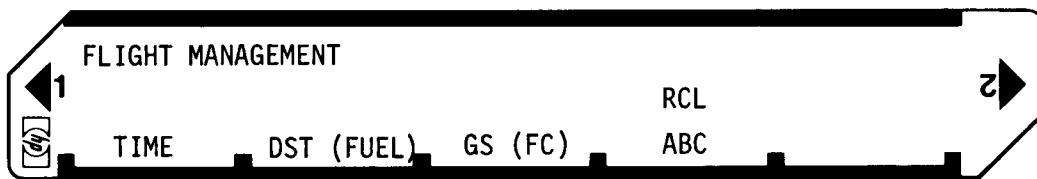
Fuel Consumed = 28.95 gal

Keystrokes:

380 [B] 105 [C] [A]

8 [C] [B]

See Displayed:


3.3709

28.95

Reference(s)

This program is a direct translation of a program from the HP-65
Aviation Pac.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11					
002	HMS+	16 36					
003	ST01	35 01					
004	F3?	16 23 03					
005	RTN	24					
006	DSP4	-63 04					
007	RCL2	36 02					
008	RCL3	36 03					
009	=	-24					
010	ST01	35 01					
011	→HMS	16 35					
012	RTN	24					
013	*LBLB	21 12					
014	DSP2	-63 02					
015	ST02	35 02					
016	F3?	16 23 03					
017	RTN	24					
018	RCL1	36 01					
019	RCL3	36 03					
020	x	-35					
021	ST02	35 02					
022	RTN	24					
023	*LBLC	21 13					
024	DSP2	-63 02					
025	ST03	35 03					
026	F3?	16 23 03					
027	RTN	24					
028	RCL2	36 02					
029	RCL1	36 01					
030	=	-24					
031	ST03	35 03					
032	RTN	24					
033	*LBLD	21 14					
034	RCL1	36 01					
035	→HMS	16 35					
036	DSP4	-63 04					
037	PSE	16 51					
038	RCL2	36 02					
039	DSP2	-63 02					
040	PSE	16 51					
041	RCL3	36 03					
042	PSE	16 51					
043	RTN	24					
050				100			
					FLAGS	SET STATUS	
				0	FLAGS	TRIG	DISP
				1	ON OFF	DEG	FIX
				2	1 OFF	GRAD	SCI
				110	2 OFF	RAD	ENG
					3 OFF		n 2

REGISTERS

REGULATIONS									
0	1 Time	2 Fuel or Dist.	3 FC or GS	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E		I			

Program Description I

Program Title Predicting Freezing Levels

Contributor's Name HP-67/97 Users' Library Hewlett-Packard Company

Address 1000 N. E. Circle Boulevard

City Corvallis State OR Zip Code 97330

Program Description, Equations, Variables

The program computes the theoretical freezing level in feet above mean sea level, from altitude and temperatures in either fahrenheit or Celsius and computes the freezing level in both clouds (wet lapse rate of 1.5 degrees Celsius per 1000 feet) and in clear weather (dry lapse rate of 2 degrees Celsius per 1000 feet).

This program computes the freezing level from

$$FLD = Alt + 1000 (T/2) \text{ (Freezing level dry)}$$

$$FLW = Alt + 1000 (T/1.5) \text{ (freezing level wet)}$$

where temperature (T) is in degrees Celsius and altitude (Alt) is in feet or

$$FLD = Alt + 1000 \left(\frac{T-32}{3.6} \right)$$

$$FLW = Alt + 1000 \left(\frac{T-32}{2.7} \right)$$

where temperature (T) is in degrees fahrenheit.

Operating Limits and Warnings

Limits and Warnings

The actual lapse rate may differ from the standard lapse rate used in this program. This is especially true within 2000 feet of the ground where inversions are common. Also, the program does not give the correct answer when the atmosphere between you and the freezing level contains layers of clouds. When in doubt compute both wet and dry freezing levels and use the more pessimistic value.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

If the outside air temperature is -9 degrees centigrade at 8000 feet, how high is the wet freezing level?

1

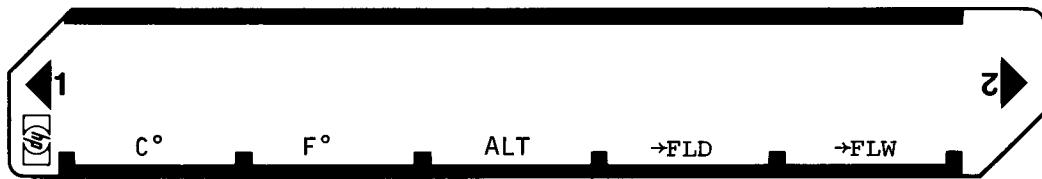
Solution(s)

Solution

Altitude = 2000 feet

Keystrokes

9 CHS A 8000 C E


See Displayed

2000

Reference(s) _____

This program is a direct translation of a program from the HP-65
Aviation Pac.

User Instructions

97 Program Listing I

15

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
601	*LBLA	21 11		657	RCL7	36 07	
602	ST07	35 07		658	1	01	
603	SF1	16 21 01		659	.	-62	
604	RTN	24		660	5	05	
605	*LBLB	21 12		661	÷	-24	
606	ST07	35 07		662	EEX	-23	
607	CF1	16 22 01		663	3	03	
608	RTN	24		664	x	-35	
609	*LBLC	21 13		665	RCL8	36 08	
610	ST08	35 08		666	+	-55	
611	RTN	24		667	RTN	24	
612	*LBLD	21 14					
613	F10	16 23 01					
614	GTOa	22 16 11		070			
615	RCL7	36 07					
616	3	03					
617	2	02					
618	-	-45					
619	3	03					
620	.	-62					
621	6	06					
622	÷	-24					
623	EEX	-23					
624	3	03		080			
625	x	-35					
626	RCL8	36 08					
627	+	-55					
628	RTN	24					
629	*LBLa	21 16 11					
630	RCL7	36 07					
631	2	02					
632	÷	-24					
633	EEX	-23					
634	3	03		090			
635	x	-35					
636	RCL8	36 08					
637	+	-55					
638	RTN	24					
639	*LBLB	21 15					
640	F10	16 23 01					
641	GTOb	22 16 12					
642	RCL7	36 07					
643	3	03		100			
644	2	02					
645	-	-45					
646	2	02					
647	.	-62					
648	7	07					
649	÷	-24					
650	EEX	-23					
651	3	03					
652	x	-35					
653	RCL8	36 08					
654	+	-55		110			
655	RTN	24					
656	*LBLb	21 16 12					
REGISTERS							
0	1	2	3	4	5	6	7 Temp
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C	D	E	F	G	I

FLAGS SET STATUS

0	FLAGS	TRIG	DISP
1	ON OFF		
2	0 <input type="checkbox"/> <input checked="" type="checkbox"/> 1 <input type="checkbox"/> <input checked="" type="checkbox"/> 2 <input type="checkbox"/> <input checked="" type="checkbox"/> 3 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/> GRAD <input type="checkbox"/> RAD <input type="checkbox"/>	FIX <input checked="" type="checkbox"/> SCI <input type="checkbox"/> ENG <input type="checkbox"/> n <u>2</u>
110			

Program Description I

Program Title General Aircraft Weight and Balance

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

The program calculates the final values of gross weight and moment or gross weight and center of gravity that are used to determine your position in the weight-balance envelope furnished with your aircraft. The program will accept either weights and moments or weights and moment arms for inputs. The program is written to accommodate changes in loading without restarting from the beginning.

The center of gravity is computed by dividing the sum of the moments by the gross weight.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

17

Sketch(es)

Sample Problem(s)

Sample Problem

The following table gives weight and balance data for an aircraft.

Item	Weight	Arm	Moment
Empty plane	1200		15000
Pilot	180	11.25	
Passenger	110	41	
Oil	15		-500
Fuel	120	25	

Find the gross weight, total moment and center of gravity.

Solution(s)

Solution

Weight = 1625
Center Gravity = 14.79
Moment = 24,035

Keystrokes

[f] [E]1200 **A** 15000 **C** 180 **A** 11.25 **B**
110 [A] 41 [B] 15 [A] 500 [CHS] [C]

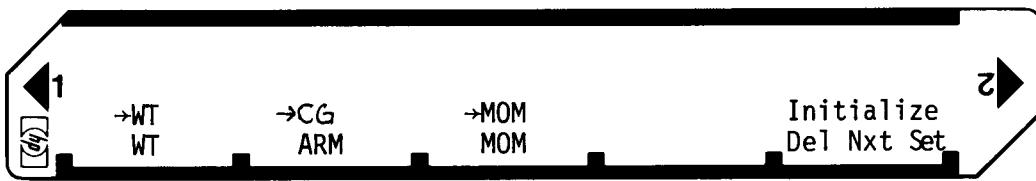
f **A**

See Displayed

1625

f **B**

14.79


f **C**

24035

Reference(s)

This program is a direct translation of a program from the HP-65
Aviation Pac.

User Instructions

97 Program Listing I

19

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	RTN	24	
002	F2?	16 23 02		058	*LBLB	21 16 15	
003	GT01	22 01		059	CLRG	16-53	
004	ST+1	35-55 01		060	RTN	24	
005	ST03	35 03		061	R/S	51	
006	GT09	22 09					
007	*LBL1	21 01					
008	CHS	-22					
009	ST+1	35-55 01					
010	ST03	35 03					
011	RCL1	36 01					
012	GT09	22 09					
013	*LBLa	21 16 11		070			
014	RCL1	36 01					
015	RTN	24					
016	*LBLB	21 16					
017	F2?	16 23 02					
018	GT02	22 02					
019	RCL3	36 03					
020	X	-35					
021	ST+2	35-55 02					
022	ST04	35 04					
023	RCL2	36 02					
024	GT09	22 09					
025	*LBL2	21 02		080			
026	ST-2	35-45 02					
027	RTN	24					
028	*LBLb	21 16 12					
029	RCL2	36 02					
030	RCL1	36 01					
031	÷	-24					
032	GT09	22 09					
033	*LBLC	21 13					
034	F2?	16 23 02		090			
035	GT03	22 03					
036	ST+2	35-55 02					
037	ST04	35 04					
038	RCL2	36 02					
039	GT09	22 09					
040	*LBL3	21 03					
041	ST-2	35-45 02					
042	*LBLc	21 16 13					
043	RCL2	36 02					
044	RTN	24					
045	*LBL9	21 09					
046	R/S	51					
047	RCL3	36 03					
048	ST-1	35-45 01					
049	RCL4	36 04					
050	ST-2	35-45 02					
051	CLX	-51					
052	ST03	35 03					
053	ST04	35 04					
054	GT09	22 09					
055	*LBLB	21 15					
056	SF2	16 21 02					

FLAGS		SET STATUS			
0	1	FLAGS	TRIG	DISP	
	1	ON <input type="checkbox"/> OFF <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>	
	2	1 <input type="checkbox"/> 2 <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>	
110	3	2 <input type="checkbox"/> 3 <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>	
		3 <input type="checkbox"/>		n <input checked="" type="checkbox"/>	

REGISTERS

0	1	ΣW_6	ΣM_t	ΣW_t	4	mt	5	6	7	8	9
S0	S1		S2	S3	S4		S5	S6	S7	S8	S9
A	B		C		D		E		I		

Program Description I

Program Title	Pilot Unit Conversions		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
			Zip Code 97330

Program Description, Equations, Variables

This program performs unit conversions commonly encountered by pilots. Included are conversions between Fahrenheit and Celsius degrees, statute miles and nautical miles, liters and gallons, and gallons of gasoline and pounds of gasoline.

Equations:

$$\begin{aligned}^{\circ}\text{F} &= 1.8^{\circ}\text{C} + 32 \\^{\circ}\text{C} &= (^{\circ}\text{F} - 32)/1.8 \\ \text{statute miles} &= \text{nautical miles}/0.868978 \\ \text{gallons} &= \text{liters}/0.2642 \\ \text{pounds gasoline} &= \text{gallons gasoline} \times 6 \end{aligned}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sketch 1	Sketch 2
Sketch 3	Sketch 4
Sketch 5	Sketch 6
Sketch 7	Sketch 8
Sketch 9	Sketch 10
Sketch 11	Sketch 12
Sketch 13	Sketch 14
Sketch 15	Sketch 16
Sketch 17	Sketch 18
Sketch 19	Sketch 20
Sketch 21	Sketch 22
Sketch 23	Sketch 24
Sketch 25	Sketch 26
Sketch 27	Sketch 28
Sketch 29	Sketch 30
Sketch 31	Sketch 32
Sketch 33	Sketch 34
Sketch 35	Sketch 36
Sketch 37	Sketch 38
Sketch 39	Sketch 40
Sketch 41	Sketch 42
Sketch 43	Sketch 44
Sketch 45	Sketch 46
Sketch 47	Sketch 48
Sketch 49	Sketch 50
Sketch 51	Sketch 52
Sketch 53	Sketch 54
Sketch 55	Sketch 56
Sketch 57	Sketch 58
Sketch 59	Sketch 60
Sketch 61	Sketch 62
Sketch 63	Sketch 64
Sketch 65	Sketch 66
Sketch 67	Sketch 68
Sketch 69	Sketch 70
Sketch 71	Sketch 72
Sketch 73	Sketch 74
Sketch 75	Sketch 76
Sketch 77	Sketch 78
Sketch 79	Sketch 80
Sketch 81	Sketch 82
Sketch 83	Sketch 84
Sketch 85	Sketch 86
Sketch 87	Sketch 88
Sketch 89	Sketch 90
Sketch 91	Sketch 92
Sketch 93	Sketch 94
Sketch 95	Sketch 96
Sketch 97	Sketch 98
Sketch 99	Sketch 100

Sample Problem(s)

Sample Problems

1. Convert 10 pounds of gasoline to gallons of gasoline.
2. Convert 40 gallons to liters.
3. Convert 100 statute miles to nautical miles.
4. Convert 212 degrees Fahrenheit to degrees Celsius.

Solution(s)

Solutions

1. 1.67 gallons
2. 151.40 liters
3. 86.90 nautical miles
4. 100°C

Keystrokes

1. 10 [f] [d]
2. 40 [f] [c]
3. 100 [B]
4. 212 [A]

See Display

- 1.67
- 151.40
- 86.90
- 100.00

Reference(s)

This program is a direct translation of a program from the HP-65
Aviation Pac.

User Instructions

97 Program Listing I

23

STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	
002	3	03	
003	2	02	
004	-	-45	
005	1	01	
006	.	-62	
007	8	08	
008	÷	-24	
009	RTN	24	
010	*LBLa	21 16 11	
011	1	01	
012	.	-62	
013	8	08	
014	x	-35	
015	3	03	
016	2	02	
017	+	-55	
018	RTN	24	
019	*LBLB	21 12	
020	.	-62	
021	8	08	
022	6	06	
023	8	08	
024	9	09	
025	7	07	
026	8	08	
027	x	-35	
028	RTN	24	
029	*LBLb	21 16 12	
030	.	-62	
031	8	08	
032	6	06	
033	8	08	
034	9	09	
035	7	07	
036	8	08	
037	÷	-24	
038	RTN	24	
039	*LBLC	21 13	
040	.	-62	
041	2	02	
042	6	06	
043	4	04	
044	2	02	
045	x	-35	
046	RTN	24	
047	*LBLc	21 16 13	
048	.	-62	
049	2	02	
050	6	06	
051	4	04	
052	2	02	
053	÷	-24	
054	RTN	24	
055	*LBLD	21 14	
056	6	06	

STEP	KEY ENTRY	KEY CODE	COMMENTS
057	x	-35	
058	RTN	24	
059	*LBLd	21 16 14	
060	6	06	
061	÷	-24	
062	RTN	24	
070			
080			
090			
100			
			FLAGS SET STATUS
	0		FLAGS TRIG DISP
	1	ON OFF	DEG <input checked="" type="checkbox"/> FIX <input type="checkbox"/>
	2	1 <input type="checkbox"/> 2 <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/> SCI <input type="checkbox"/>
	110	2 <input type="checkbox"/> 3 <input checked="" type="checkbox"/>	RAD <input type="checkbox"/> ENG <input type="checkbox"/>
	3	3 <input type="checkbox"/>	n <u>2</u>

REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C		D	E		I		

Program Description I

Program Title	Turn Performance			
Contributor's Name	HP-67/97 Users' Library	Hewlett-Packard Company		
Address	1000 N. E. Circle Boulevard			
City	Corvallis	State	OR	Zip Code 97330

Program Description, Equations, Variables This program calculates the G-force, turn diameter, time required to complete a 360° turn, and stall speed for an airplane as a function of an aircraft's bank angle, airspeed and normal stall speed.

$$G = \frac{1}{\cos(\text{bank})}$$

$$\text{Diameter} = \frac{\text{TAS}^2}{34208 \tan(\text{bank})}$$

$$\text{time} = \frac{0.0055 \text{ TAS}}{\tan(\text{bank})}$$

$$\text{stall} = (\text{normal stall}) \sqrt{G}$$

Operating Limits and Warnings All values assume coordinated turns and no vertical accelerations. Gusty conditions will alter the calculated results significantly.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Calculate the G-force, diameter of turn, time required for a 360° turn, and stall speed for an aircraft in a 30° and 45° bank with a cruising speed of 115 knots and a stall speed of 60 knots.

<u>Solution(s)</u>	<u>Bank</u>	<u>G</u>	<u>stall</u>	<u>Diameter</u>	<u>time</u>
	30°	1.15	64.47 Knots	0.67 n.m.	1 min 5 sec
	45°	1.41	71.35 Knots	0.39 n.m.	38 sec

Keystrokes:

See Displayed:

〔f〕 〔a〕 115 〔A〕 60 〔B〕 30 〔C〕 〔D〕

1.15

[f] [d]

64 47

[E]

0 67

Reference(s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description II

Solution(s)	
45 [c] [d]	1.41
[f] [d]	71.35
[E]	0.39
[f] [e]	0.38

Reference(s)	<input type="text"/>
	<input type="text"/>

User Instructions

Program Description I

Program Title Rate of Climb and Descent

Contributor's Name HP-67/97 Users' Library Hewlett-Packard Company

Address 1000 N. E. Circle Boulevard

City Corvallis

State

OR

Zip Code

97330

Program Description, Equations, Variables

The inputs of this program are true airspeed (TAS), elevation change (Δ ALT), and either rate-of-climb (ROC) or the distance (DIST) over which the elevation change is to occur. Outputs are rate-of-climb required to change elevation in the specified distance or, conversely, the distance required when the rate-of-climb is specified.

$$ROC = \frac{TAS (\Delta ALT)}{60 \sqrt{DIST^2 + (\Delta ALT)^2}}$$

$$D = \frac{TAS \Delta ALT}{60 ROC}$$

$$DIST = \sqrt{D^2 - (\Delta ALT)^2}$$

Operating Limits and Warnings

Constant airspeed must be maintained throughout change of altitude. No correction is made for decreased aircraft performance at increased altitude. Inputs for ROC and TAS should be conservative, average values.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

1. 15 n.m. west of Las Vegas (El. 2600 ft) lies a mountain pass having an elevation of 6600 ft. Assuming a climbout TAS of 80 knots, what is the minimum ROC that you must maintain if you wish to clear the pass by 1000 feet?
2. Assume that a different aircraft climbs out at 800 ft/min. and maintains an airspeed of 120 knots. How far from the pass will it be when it is at 7600 ft?

Solution(s)

1. 443.79 ft/min
2. 2.47 n.m.

Keystrokes:

See Displayed:

1. 80 [A] 5000 [B] 15 [C] [D]
2. 120 [A] 5000 [B] 800 [D] [C]
[CHS] 15 [+]

443.78

12.47

2.53

Reference(s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	0	00	
002	ST06	35 06		058	7	07	
003	RTN	24		059	6	06	
004	*LBLB	21 12		060	x	-35	
005	ST04	35 04		061	ST05	35 05	
006	6	06		062	RTN	24	
007	0	00		063	*LBLd	21 16 14	
008	7	07		064	ST05	35 05	
009	6	06		065	RTN	24	
010	÷	-24					
011	ST07	35 07					
012	RCL4	36 04					
013	RTN	24		070			
014	*LBLC	21 13					
015	F3?	16 23 03					
016	GTOc	22 16 13					
017	RCL6	36 06					
018	RCL7	36 07					
019	x	-35					
020	6	06					
021	0	00					
022	÷	-24					
023	RCL5	36 05		080			
024	÷	-24					
025	6	06					
026	0	00					
027	7	07					
028	6	06					
029	x	-35					
030	X ²	53					
031	RCL7	36 07					
032	X ²	53					
033	-	-45		090			
034	√X	54					
035	ST03	35 03					
036	RTN	24					
037	*LBLc	21 16 13					
038	ST03	35 03					
039	RTN	24					
040	*LBLD	21 14					
041	F3?	16 23 03					
042	GTOd	22 16 14					
043	RCL6	36 06					
044	RCL7	36 07					
045	x	-35					
046	6	06					
047	0	00					
048	÷	-24					
049	RCL3	36 03					
050	X ²	53					
051	RCL7	36 07					
052	X ²	53					
053	+	-55					
054	√X	54					
055	÷	-24					
056	^6	06					
REGISTERS							
0	1	2	3 DIST	4 USED	5 ROC	6 TAS	7 ΔALT (n.m.)
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C	D	E			I

	FLAGS		SET STATUS		
	0	1	FLAGS	TRIG	DISP
			ON OFF		
			0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
			1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
			2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
			3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n <u>2</u>

0	1	2	3 DIST	4 USED	5 ROC	6 TAS	7 ΔALT (n.m.)	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E				I	

Program Description I

Program Title Head Winds and Cross Winds

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

This program calculates both the head wind and cross wind components from the aircraft heading and reported winds. The program works both at altitude, where magnetic variation must be considered, and at landing and takeoff, where winds are reported in magnetic directions rather than true directions.

The head wind (HW) and right cross wind (RCW) components are computed from

$$HW = K \cos (D - HDG - V)$$

$$RCW = K \sin (D - HDG - V)$$

where

K = the reported wind velocity

D = the reported wind direction

HDG = the aircraft heading

V = the magnetic variation

Operating Limits and Warnings

Limits and Warnings

Reported winds must be less than 100 knots.

Wind directions reported by the control tower are magnetic and the variation need not be input when using the program for takeoff and landings. Other wind directions are reported in true directions and variation must be included to find the wind components.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Sample Problems

1. At takeoff on runway 28 the winds are reported as 240° at 25 knots. What are the head wind and cross wind components?
2. At altitude the wind is reported as 160° and 40 knots. Your magnetic heading is 270° . What are the head wind and cross wind components if the magnetic variation is 15° east?

Solution(s)

Solutions

1. 19.15 knots (head wind); -16.07 knots (left cross wind)
2. -22.94 knots (tail wind); -32.77 knots (left cross wind)

Keystrokes

See Displayed

1. [f] [E] 280 [B] 240.25 [C] [D] [E]	19.15 -16.07
2. [f] [E] 270 [B] 160.40 [C] 15 [A] [D] [E]	-22.94 -32.77

Reference(s)

This program is a direct translation of a program from the HP-65
Aviation Pac.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Initialize		f E	0.00
3.	If winds are surface winds, go to step 4; if not, input variation (+E,-W)	V(deg)	A	V
4.	Input both airplane heading and reported winds	HDG(deg) DDD.KK*	B C	HDG DDD.KK
5.	Calculate either or both of the following: headwind right crosswind		D E	knots knots
NOTE: negative answers mean tailwind or left crosswind				
6.	To change any inputs go to step 3 and change only the variables affected.			
* DDD.KK means direction, decimal point, wind speed. 325.08 means a direction of 325 degrees and a speed of 8 knots.				

97 Program Listing I

Program Description I

Program Title	Flight Planning and Flight Verification		
Contributor's Name	Hewlett-Packard Company, HP-67/97 Users' Library		
Address	1000 N. E. Circle Boulevard		
City	Corvallis	State	OR
			Zip Code 97330

Program Description, Equations, Variables This program can be used for flight planning and updating the flight plan as it is being flown. The program computes ETA's, ground speeds, cumulative distance flown, actual times for each leg and cumulative time flown. The ground speeds can be changed for each leg.

$$\text{ETA} = \text{DIST}/\text{GS} + \text{T0}$$

$$\text{GS} = \text{DIST}/(\text{ATA} - \text{T0})$$

where

ETA = estimated time of arrival

DIST = distance

GS = ground speed

T0 = take off time (or time over last checkpoint)

ATA = time over current checkpoint

Operating Limits and Warnings Distances and speeds must be in compatible units (knots and n.m., or mph and miles). Ground speeds are rounded in the display to the nearest whole unit. They are carried internally to full significance.

Flight planning and flight verification are identical except that: (1) flight planning usually assumes that the take-off time is 0.00, and (2) flight planning accepts the calculated ETA as the ATA at the checkpoint.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	

Sample Problem(s) Part 2 - Flight Verification

Assume that the actual flight was flown with a take off time of 10:17:00. Assume that the actual times of arrival at the checkpoints were 10:31:10, 11:01:10 and 11:23:50. Find the ETA's at each checkpoint using 80 knots as the ground speed for the first leg. After finding the actual ground speed for the first leg, assume that the difference between actual and estimated speeds is the wind velocity. Add the winds to the 105 knots assumed GS for leg 2. Use the GS calculated for leg 2 as the assumed GS for leg 3.

Compute ETA's for each checkpoint, actual leg times, cumulative time and actual ground speed for the flight.

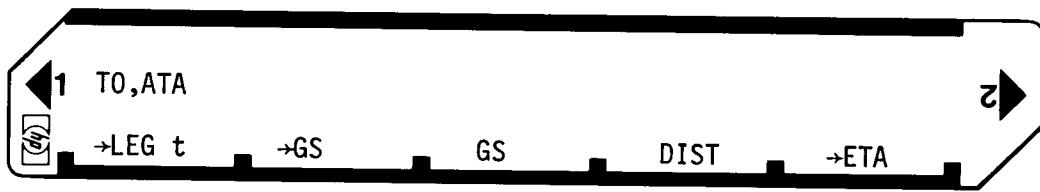
Solution(s)	[A]	0.2326
	[f] [a] 10.17 [A] 80 [C] 20 [D] [E]	10.32
	10.3110 [A]	0.1410
	[R/S]	0.1410
	[B]	85
	110 [C] 53 [D]	73
	[E]	11.0005
	11.0110 [A]	0.3000
	[R/S]	0.4410

Reference(s)

Program Description II

Sketch(es)

Sketches for this program are not provided.


Sample Problem(s)

<u>Solution</u>	<u>ETA</u>	<u>Actual leg time</u>	<u>Cumulative time</u>	<u>Calculated ground speed</u>
Leg 1	10:32:00	14:10	14:10	85
Leg 2	11:00:05	30:00	44:10	106
Leg 3	11:24:22	22:40	1:06:50	109

Solution(s)	[B]	106
	[C] 41 [D]	114
	[E]	11:2422
	11.2350 [A]	0.2240
	[R/S]	1.0650
	[B]	109

Reference(s)

User Instructions

*H.MMSS means hours, decimal point, minutes, seconds. 2.0355 is 2 hours 3 minutes and 55 seconds.

97 Program Listing I

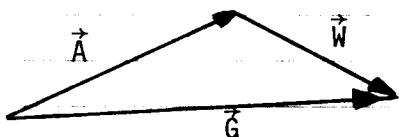
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS				
001	*LBLa	21 16 11		057	*LBLB	21 12					
002	CLX	-51		058	RCL4	36 04					
003	CLRG	16-53		059	RCL1	36 01					
004	SF1	16 21 01		060	RCL2	36 02					
005	*LBL0	21 00		061	CHS	-22					
006	DSP0	-63 00		062	HMS+	16-55					
007	R/S	51		063	HMS+	16 36					
008	GT00	22 00		064	ENT1	-21					
009	*LBLA	21 11		065	CLX	-51					
010	RCL1	36 01		066	X>Y?	16-34					
011	ST02	35 02		067	GSBb	23 16 12					
012	X>Y	-41		068	+	-55					
013	ST01	35 01		069	÷	-24					
014	F1?	16 23 01		070	GT00	22 00					
015	GT04	22 04		071	*LBLb	21 16 12					
016	X>Y	-41		072	2	02					
017	CHS	-22		073	4	04					
018	HMS+	16-55		074	RTN	24					
019	ENT1	-21									
020	CLX	-51									
021	X>Y?	16-34									
022	GSBb	23 16 12									
023	HMS+	16-55									
024	RCL5	36 05									
025	X>Y	-41									
026	HMS+	16-55									
027	ST05	35 05									
028	LSTX	16-63									
029	*LBL4	21 04									
030	CF1	16 22 01									
031	DSP4	-63 04									
032	R/S	51									
033	RCL5	36 05									
034	GT04	22 04									
035	*LBLC	21 13									
036	ST03	35 03									
037	GT00	22 00									
038	*LBLD	21 14									
039	ST04	35 04									
040	ST+6	35-55 06									
041	RCL6	36 06									
042	GT00	22 00									
043	*LBL E	21 15									
044	RCL4	36 04									
045	RCL3	36 03									
046	÷	-24									
047	→HMS	16 35									
048	RCL1	36 01									
049	HMS+	16-55									
050	2	02									
051	4	04									
052	X>Y?	16-34									
053	CLX	-51									
054	CHS	-22									
055	HMS+	16-55									
056	GT04	22 04									
LABELS											
A USED		B →GS		C GS		D DIST					
INITIALIZE		USED		GS		DIST					
0 USED		1		2		3					
5		6		7		8					
FLAGS											
0				FLAGS							
1				TRIG							
2				ON OFF							
110				DEG <input checked="" type="checkbox"/>							
3				GRAD <input type="checkbox"/>							
110				RAD <input type="checkbox"/>							
3				FIX <input checked="" type="checkbox"/>							
n				SCI <input type="checkbox"/>							
2				ENG <input type="checkbox"/>							
REGISTERS											
0	1 t _{new}	2 t _{old}	3 GS	4 DIST	5 TOTAL TIME	6 TOTAL DIST	7 8 9				
S0	S1	S2	S3	S4	S5	S6	S7 S8 S9				
A	B	C		D	E		I				

Program Description I

Program Title Determining In-Flight Winds

Contributor's Name HP-67/97 Users' Library Hewlett-Packard Company

Address 1000 N. E. Circle Boulevard


City Corvallis

State OR

Zip Code 97330

Program Description, Equations, Variables This program computes the winds at altitude from TAS, course of aircraft, ground speed and heading. Ground speed is automatically calculated from time-distance inputs. Winds can be computed as either magnetic or true. The latter must be used when verifying wind forecasts by the weather bureau. The program allows continuous updating of winds.

This program solves the wind triangle shown below.

$$\vec{A} + (\vec{W}) = \vec{G}$$

OR

$$\vec{W} = \vec{G} - \vec{A}$$

\vec{W} , \vec{A} and \vec{G} are all vector quantities representing wind direction and speed; TAS and heading; and ground speed and course respectively.

Since both \vec{A} and \vec{G} use magnetic directions, \vec{W} is computed as a magnetic direction. It must be corrected to true heading by adding the variation (V).

True wind direction = magnetic wind direction + V

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

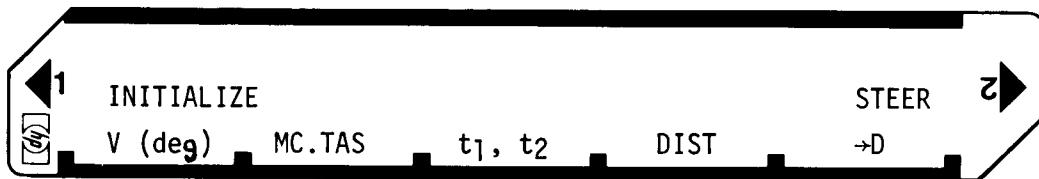
Sample Problem(s) After passing over a checkpoint at 3:05:20 a pilot flying a magnetic course of 150° finds that he must apply 15° right correction; i.e., steer 165° to maintain his ground course. He passes over his next checkpoint 70 n.m. away at 3:40:20. The TAS of his airplane is 110 knots and the variation is 7.5° east. If the local FSS asked him to report the winds, what would he tell them?

Solution(s)

273° at 32 knots.

Keystrokes:

See Displayed:


[f] [a] 7.5 [A] 150.110 [B] 3.0520 [C] 70 [D]
3.4020 [C] 165 [E]

273.032

Reference(s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

User Instructions

97 Program Listing I

Program Description I

Program Title Standard Atmosphere

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

This program can be used to estimate atmospheric conditions from pressure altitude (PALT). It should be remembered that this is only an approximation based on average conditions.

The outputs, with the exception of temperature, are ratios of standard sea level conditions. For instance, if the pressure ratio (P/P_0) is found to be 0.7375 and standard conditions are 29.92 inches of mercury the pressure (P) is the product of 29.92 and 0.7375 or 22.07 inches of mercury. Some standard sea level condition commonly used by pilots are

$$\text{Pressure} \rightarrow P_0 = 29.92 \text{ in Hg} = 14.696 \text{ psi}$$

$$\text{Speed of Sound} \rightarrow a_0 = 661.51 \text{ knots} = 1116.4 \text{ ft/sec}$$

$$\text{Density} \rightarrow \rho_0 = 0.002378 \text{ lb sec}^2/\text{ft}^4$$

From 0 to 36089 feet the following relations hold

$$T(^{\circ}\text{C}) = 15 - 1.981 \times 10^{-3} h$$

$$a/a_0 = \sqrt{T/T_0} ; T_0 = 288.15 \text{ K}$$

$$P/P_0 = \left[\frac{T_0 - 1.981 \times 10^{-3} h}{T_0} \right]^{5.2563}$$

$$\rho/\rho_0 = \frac{P}{P_0} \frac{T_0}{T}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title

Contributor's Name

Address

City

State

Zip Code

Program Description, Equations, Variables

For altitudes between 36,089 feet and 82,000 feet, the following relations hold

$$T = -56.5 \text{ } ^\circ\text{C}$$

$$a/a_0 = 0.8671$$

$$P/P_0 = 0.2234 e^{-\left(\frac{h-36089}{20804.9}\right)}$$

$$\rho/\rho_0 = \frac{P}{P_0} \frac{288.15}{216.65}$$

where

T is temperature in degrees centigrade

a is speed of sound

P is pressure

ρ is density

h is pressure altitude

Operating Limits and Warnings

Program is valid from 0 to 82,000 feet.

There is disagreement among reference sources above
36,000 feet and below 2000 feet.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

49

Sketch(es)

Sample Problem(s)

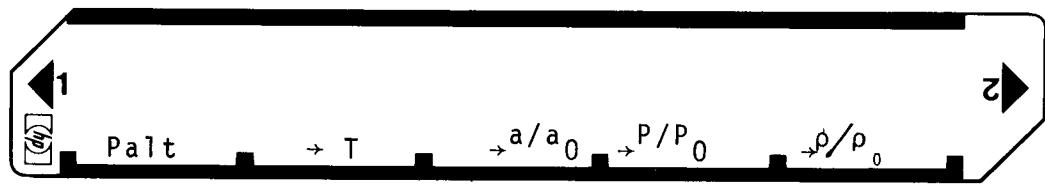
Sample Problems

1. What is the temperature and speed of sound at 27,000 feet assuming a standard atmosphere?
2. What is the density at 70,000 feet assuming a standard atmosphere?

Solution(s) 1. $T = -38.49^{\circ}\text{C}$

$a/a_0 = 0.90$ which yields 596.97 knots for the speed of sound.

2. $\rho/\rho_0 = 0.06$ which yields a density of $1.38 \times 10^{-4} \text{ lb sec}^2/\text{ft}^4$


Keystrokes:

	Display:
1. 27000 [A] [B]	-----> -38.49
[C]	-----> 0.90
661.51 [x]	-----> 596.97
2. 70000 [A] [E]	-----> 0.06
.002377 [x] [SCI]	-----> 1.38×10^{-4}

Reference(s) Chemical Rubber Company Handbook, of Chemistry and Physics, 47th edition, 1966-1967, page F-120.

This program is a direct translation of a program from the HP-65 Aviation Pac.

User Instructions

97 Program Listing I

51

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	RTN	24	
002	3	63		058	*LBLC	21 13	
003	5	65		059	F0?	16 23 00	
004	8	68		060	GTOa	22 16 13	
005	8	68		061	GSBB	23 12	
006	9	69		062	2	02	
007	ST05	35 05		063	7	67	
008	X ² Y?	16-35		064	3	03	
009	GTOa	22 16 11		065	.	-62	
010	CF0	16 22 00		066	1	01	
011	R↓	-31		067	5	65	
012	ST01	35 01		068	+	-55	
013	2	62		069	RCL3	36 03	
014	8	68		070	÷	-24	
015	8	68		071	YX	54	
016	.	-62		072	RTN	24	
017	1	61		073	*LBLc	21 16 13	
018	5	65		074	.	-62	
019	ST03	35 03		075	8	08	
020	RCL1	36 01		076	5	06	
021	RTN	24		077	7	07	
022	*LBLa	21 16 11		078	1	61	
023	SF0	16 21 00		079	RTN	24	
024	R↓	-31		080	*LBLD	21 14	
025	ST01	35 01		081	F0?	16 23 00	
026	2	62		082	GTOd	22 16 14	
027	8	68		083	RCL3	36 03	
028	8	68		084	RCL1	36 01	
029	.	-62		085	1	61	
030	1	61		086	9	65	
031	5	65		087	8	08	
032	ST03	35 03		088	1	61	
033	RCL1	36 01		089	EEX	-23	
034	RTN	24		090	CHS	-22	
035	*LBLB	21 12		091	6	06	
036	F0?	16 23 00		092	×	-35	
037	GTOb	22 16 12		093	-	-45	
038	1	61		094	ST04	35 04	
039	5	65		095	RCL3	36 03	
040	RCL1	36 01		096	÷	-24	
041	1	61		097	5	65	
042	8	68		098	.	-62	
043	8	68		099	2	02	
044	1	61		100	5	05	
045	EEX	-23		101	6	06	
046	CHS	-22		102	3	03	
047	6	06		103	YX	31	
048	×	-35		104	ST06	35 06	
049	-	-45		105	RTN	24	
050	RTN	24		106	*LBLd	21 16 14	
051	*LBLb	21 16 12		107	RCL1	36 01	
052	5	65		108	RCL5	36 05	
053	8	06		109	-	-45	
054	.	-62		110	2	02	
055	5	65		111	0	00	
056	CHS	-22		112	8	08	

REGISTERS

0	1 h	2	3 288.15	4 T (k)	5 36089	6 P/P ₀	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

97 Program Listing II

LABELS					FLAGS	SET STATUS		
A Palt	B → T	C → a/a_0	D → P/P_0	E P/P_0	0	FLAGS	TRIG	DISP
a	b	c	d	e	1	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input type="checkbox"/>	FIX <input type="checkbox"/>
0	1	2	3	4	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8	9	3	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 2

Program Description I

Program Title	Mach Number and True Air Speed		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables

This program converts calibrated airspeed (CAS) to mach number and true airspeed (TAS). Pressure altitude (PALT) must be known to calculate mach number (M). Aircraft recovery coefficient (C_T) and indicated air temperature (IT) must also be known to calculate true airspeed. The recovery coefficient varies from 0.6 to 1.0 but is around 0.8 for most aircraft.

For $PALT \leq 36089$

$$\text{Pressure ratio } \left(\frac{P}{P_0} \right) = \left[\frac{518.67 - 3.566 \times 10^{-3} PALT}{518.67} \right]^{5.2563}$$

For $PALT > 36089$

$$P/P_0 = 0.2234 e^{-\left(\frac{h-36089}{20804.9} \right)}$$

$$M^2 = 5 \left[\left(\frac{P_0}{P} \right) \left\{ \left[1 + 0.2 \left(\frac{CAS}{661.5} \right)^2 \right]^{3.5} - 1 \right\} + 1 \right]^{0.286} - 1$$

$$TAS = 39M \sqrt{(IT + 273) \left[C_T \left(\frac{1}{(1 + 0.2 M^2)} - 1 \right) + 1 \right]}$$

Operating Limits and Warnings

Limits and Warnings

Accuracy degenerates for mach numbers in excess of one.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

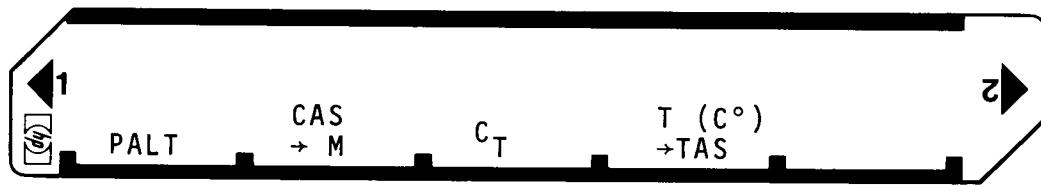
Sketch(es)

Sample Problem(s)

1. For a pressure altitude of 25,500 feet, a calibrated airspeed of 350 knots, a recover factor of 0.8, and an indicated air temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed?
2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed?

Solution(s) Keystrokes

See Displayed


1. 25500 [A] 350 [B] 0.84
.8 [C] 5[D] 515.76

2. 40000 [A] 350 [B] 1.10
8 [C] 5[D] 657.42

Reference(s) -

This program is a direct translation of a program from the HP-65 Aviation Pac.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	*LBLB	21 12	
002	3	03		058	6	06	
003	6	06		059	6	06	
004	8	08		060	1	01	
005	8	08		061	.	-62	
006	9	09		062	5	05	
007	X ² Y?	16-35		063	÷	-24	
008	GTOa	22 16 11		064	X ²	53	
009	X ² Y	-41		065	.	-62	
010	3	03		066	2	02	
011	5	05		067	X	-35	
012	6	06		068	1	01	
013	6	06		069	+	-55	
014	EEX	-23		070	3	03	
015	CHS	-22		071	.	-62	
016	6	06		072	5	05	
017	X	-35		073	Y ²	31	
018	CHS	-22		074	1	01	
019	5	05		075	-	-45	
020	1	01		076	RCL6	36 06	
021	8	08		077	÷	-24	
022	.	-62		078	1	01	
023	6	06		079	+	-55	
024	7	07		080	.	-62	
025	+	-55		081	2	02	
026	LSTX	16-63		082	8	08	
027	÷	-24		083	6	06	
028	5	05		084	Y ²	31	
029	.	-62		085	1	01	
030	2	02		086	-	-45	
031	5	05		087	5	05	
032	6	06		088	X	-35	
033	3	03		089	Y ²	54	
034	Y ²	31		090	ST04	35 04	
035	ST06	35 06		091	RTN	24	
036	RTN	24		092	*LBLC	21 13	
037	*LBLa	21 16 11		093	ST03	35 03	
038	-	-45		094	RTN	24	
039	2	02		095	*LBLD	21 14	
040	0	00		096	2	02	
041	8	08		097	7	07	
042	0	00		098	3	03	
043	4	04		099	+	-55	
044	.	-62		100	ST05	35 05	
045	9	09		101	RCL4	36 04	
046	÷	-24		102	X ²	53	
047	CHS	-22		103	.	-62	
048	e ^x	33		104	2	02	
049	.	-62		105	X	-35	
050	2	02		106	1	01	
051	2	02		107	+	-55	
052	3	03		108	÷	-24	
053	4	04		109	RCL5	36 05	
054	X	-35		110	-	-45	
055	ST06	35 06		111	RCL3	36 03	
056	RTN	24		112	X	-35	

REGIS...L...

0	1	2	3	C _T	4	M	5	I T(k)	6	P/P ₀	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9				
A	B	C	D	E	F						I		

97 Program Listing II

57

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS		
113	RCL5	36 05		170					
114	+	-55							
115	JX	54							
116	3	03							
117	9	09							
118	X	-35							
119	RCL4	36 04							
120	X	-35							
121	RTN	24							
122	R/S	51							
130				180					
140				190					
150				200					
160				210					
				220					
LABELS					FLAGS		SET STATUS		
A	B	C	D	E	0				
a	b	c	d	e	1				
0	1	2	3	4	2				
5	6	7	8	9	3				
							</		

Program Description I

Program Title	True Air Temperature and Density Altitude			
Contributor's Name	Hewlett-Packard Company, HP-67/97 Users' Library			
Address	1000 N. E. Circle Boulevard			
City	Corvallis	State	OR	Zip Code

Program Description, Equations, Variables This program accounts for the compressibility effects of high speed flight. Given the mach number (M) (which can be calculated using Mach Number and True Airspeed, page 53) and the aircraft recovery coefficient ($C_T = 0.8$ for most aircraft), indicated air temperature (IT) is converted to true air temperature (T). True air temperature and pressure altitude are then converted to density altitude. For low flight mach numbers, compressibility effects are small. In such cases only temperature and pressure altitude (PALT) are needed to calculate density altitude (DALT).

$$T(K) = C_T \left(\frac{IT(K)}{0.205 M^2 + 1} - IT \right) + IT(K)$$

$$DALT = 145366 \left[1 - \left(\frac{\rho}{\rho_0} \right)^{0.235} \right]$$

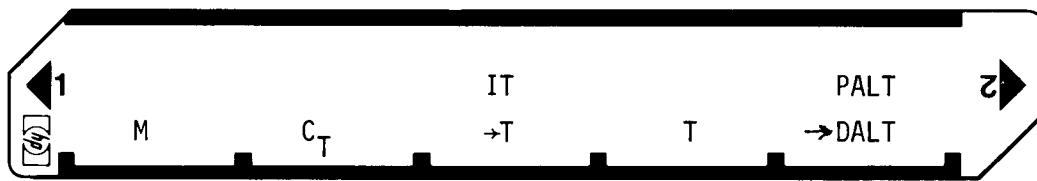
where

$$\frac{\rho}{\rho_0} = \frac{288.15}{T(K)} \left[1 - 6.876 \times 10^{-6} PALT \right]^{5.256}$$

Operating Limits and Warnings The program is limited to altitudes under 36089 feet.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.


Program Description II

Sample Problem(s)	
1.	$M = 0.87$
	$C_T = 0.80$
	$IT = 8^\circ\text{C}$
	$PALT = 10,000 \text{ feet}$
2.	For a low speed aircraft
	$T = 12^\circ\text{C}$
	$PALT = 9,000 \text{ feet}$
Keystrokes:	
Solution(s)	See Displayed:
1. .87 [A] .8 [B] 8 [C] 10000 [E]	-22.21 T
	7852.96 DALT
2. 12 [D] 9000 [E]	10703.11 DALT

Reference(s) _____

This program is a direct translation of a program from the HP-65
Aviation Pac.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	6	06	
002	ST04	35 04		058	Y ^X	31	
003	RTN	24		059	RCL6	36 06	
004	*LBLB	21 12		060	1	01	
005	ST03	35 03		061	5	05	
006	RTN	24		062	+	-55	
007	*LBLC	21 13		063	X	-35	
008	GSBD	23 14		064	RCL5	36 05	
009	RCL4	36 04		065	÷	-24	
010	X ²	53		066	.	-62	
011	.	-62		067	2	02	
012	2	02		068	3	03	
013	0	06		069	5	05	
014	5	05		070	Y ^X	31	
015	X	-35		071	CHS	-22	
016	1	01		072	1	01	
017	+	-55		073	+	-55	
018	÷	-24		074	1	01	
019	RCL5	36 05		075	4	04	
020	-	-45		076	5	05	
021	RCL3	36 03		077	3	03	
022	X	-35		078	6	06	
023	RCL5	36 05		079	6	06	
024	+	-55		080	X	-35	
025	ST05	35 05		081	RTN	24	
026	RCL6	36 06					
027	-	-45					
028	RTN	24					
029	*LBLD	21 14					
030	2	02					
031	7	07					
032	3	03					
033	.	-62					
034	1	01					
035	5	05					
036	ST06	35 06					
037	+	-55					
038	ST05	35 05					
039	RTN	24					
040	*LBLE	21 15					
041	6	06					
042	.	-62					
043	8	06					
044	7	07					
045	9	09					
046	EEX	-23					
047	CHS	-22					
048	6	06					
049	X	-35					
050	CHS	-22					
051	1	01					
052	+	-55					
053	5	05					
054	.	-62					
055	2	02					
056	5	05					

RECORDS													
0	1	2	3	C _T	4	M	5	T(K)	6	273.15	7	8	9
S0	S1	S2	S3		S4	S5	S6	S7	S8	S9			
A	B	C	D		E	F	G	H	I	J	K	L	M

Program Description I

Program Title	Lowest Usable Flight Level			
Contributor's Name	Hewlett-Packard Company, HP-67/97 Users' Library			
Address	1000 N. E. Circle Boulevard			
City	Corvallis	State	OR	Zip Code
				97330

Program Description, Equations, Variables This program computes the lowest usable flight level for aircraft flying above 18,000 feet mean sea level (MSL) from the current altimeter setting.

For flights operating at altitudes in excess of 18,000 feet the altimeter is set at 29.92 and aircraft are assigned flight levels. In order to avoid overlapping flight levels with true altitude above sea level, the lowest usable flight level is found at which a setting of 29.92 will place the aircraft above 18,000 feet MSL.

The lowest usable flight level is 18,000 feet if the altimeter setting is greater than or equal to 29.92 inches of mercury (Hg).

For altimeter settings below 29.92

$$\text{LUFL} = 18,000 + 500 \times \text{INT}(60.82 - 2 \times \text{ASET})$$

where

ASET = altimeter setting

INT = integer function

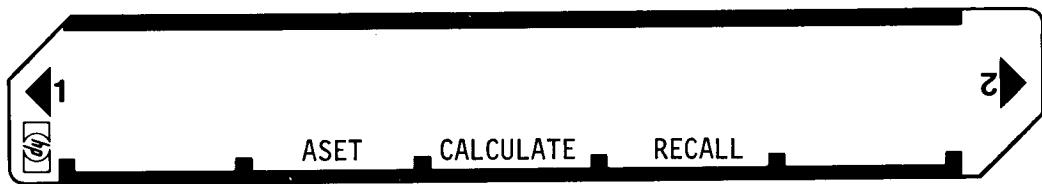
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) For the following altimeter settings, find the lowest usable flight level.


<u>ASET</u>	<u>ANSWER</u>
29.92	18,000
29.55	18,500
28.45	19,500

Solution(s)	Keystrokes :	See Displayed:
	29.92 [B] [C]	18000
	29.55 [B] [C]	18500
	28.45 [B] [C]	19500

Reference(s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

User Instructions

97 Program Listing I

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
Real Estate Investment
Taxes
Home Construction Estimating
Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

AIRCRAFT OPERATION

Primarily intended for general aviation, although many of the programs are equally applicable to commercial aviation. Some of the subjects are flight planning, aircraft weight and balance, wind calculations, atmospheric parameter calculations, and unit conversions.

AIRCRAFT FLIGHT PLAN WITH WIND
FLIGHT MANAGEMENT
PREDICTING FREEZING LEVELS
GENERAL AIRCRAFT WEIGHT AND BALANCE
PILOT UNIT CONVERSIONS
TURN PERFORMANCE
RATE OF CLIMB AND DESCENT
HEAD WINDS AND CROSS WINDS
FLIGHT PLANNING AND FLIGHT VERIFICATION
DETERMINING IN-FLIGHT WINDS
STANDARD ATMOSPHERE
MACH NUMBER AND TRUE AIRSPEED
TRUE AIR TEMPERATURE AND DENSITY ALTITUDE
LOWEST USABLE FLIGHT LEVEL

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14001 Printed in U.S.A. 00097-90176

Revision C 11-78

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.