

HEWLETT-PACKARD

# HP-67/HP-97

Business Decisions Pac



The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

# Introduction

The 22 programs of the Business Decisions Pac have been selected from the areas of investment analysis, real estate, banking, leasing, securities, and statistics, areas which require rapid and accurate analysis of data. Programs for the most frequently occurring business decisions are included in the pac.

Each program in this pac is represented by one magnetic card. The manual provides a description of the program, a set of instructions for using the program, and one or more examples, each of which includes a list of the actual keystrokes required for its solution. Program listings for all of the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.

On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions for the use of the program. You should first familiarize yourself with a program by running the examples in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.

If you have already worked through a few programs in the Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.

We hope that the Business Decisions Pac will be of assistance in the solution of your problems. We would very much appreciate knowing your reactions to the programs in the pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

| Applications Table                          | Accounting | Industrial Production | Consumer Finance | Forecasting & Planning | Insurance | Securities | Investments | Leasing | Banking | Real Estate |
|---------------------------------------------|------------|-----------------------|------------------|------------------------|-----------|------------|-------------|---------|---------|-------------|
| Internal Rate of Return                     |            |                       |                  |                        |           |            |             |         |         | X           |
| Internal Rate of Return-Groups              |            |                       |                  |                        |           |            |             | X       |         | X           |
| Discounted Cash Flow Analysis               |            |                       |                  |                        |           |            |             | X       |         | X           |
| Direct Reduction Loans/Sinking Fund         |            |                       |                  |                        | X         |            | X           |         |         |             |
| Accumulated Interest/ Remaining Balance     |            |                       |                  |                        |           |            |             |         |         | X           |
| Wrap-Around Mortgage                        |            |                       |                  |                        |           |            |             | X       |         |             |
| Constant Payment to Principal Loan          |            |                       |                  |                        |           |            |             |         |         |             |
| Add-on Rate Loan/ Rule of 78's              |            |                       |                  |                        |           |            |             | X       |         |             |
| Savings Plan—Leases                         |            |                       |                  |                        | X         |            |             |         |         |             |
| Advance Payments                            |            |                       |                  | X                      |           |            |             |         |         |             |
| Savings-Compounding Different from Payments |            |                       |                  | X                      |           |            |             |         |         |             |
| Simple Interest/ Interest Conversions       |            |                       |                  | X                      |           |            |             |         |         | X           |
| Depreciation Schedules                      |            |                       |                  | X                      |           |            |             |         |         | X X X       |
| Days Between Dates                          |            |                       |                  | X                      | X         |            |             |         |         | X X         |
| Bond Price & Yield                          |            |                       |                  |                        | X         | X          |             |         |         | X           |
| Interest at Maturity/ Discounted Securities |            |                       |                  |                        |           | X          |             |         |         |             |
| Linear Regression/ Exponential Curve Fit    |            |                       |                  |                        |           | X          |             |         |         | X           |
| Multiple Linear Regression                  |            |                       |                  |                        |           | X          |             |         |         | X           |
| Break-Even Analysis                         |            |                       |                  |                        |           |            | X           |         |         | X           |
| Invoicing                                   |            |                       |                  |                        |           |            |             |         |         | X           |
| Payroll                                     |            |                       |                  |                        |           |            |             |         |         | X           |
| Inventory                                   |            |                       |                  |                        |           |            |             |         |         | X           |

## Table of Contents

|                                  |     |
|----------------------------------|-----|
| Introduction .....               | i   |
| Applications Table .....         | ii  |
| Contents .....                   | iii |
| A Word About Program Usage ..... | v   |

| <b>Program</b>                                                                                                        | <b>Page</b>  |
|-----------------------------------------------------------------------------------------------------------------------|--------------|
| 1. Internal Rate of Return .....                                                                                      | <b>01-01</b> |
| Yield of a sequence of uneven cash flows.                                                                             |              |
| 2. Internal Rate of Return—Groups of Cash Flows .....                                                                 | <b>02-01</b> |
| Yield of groups of uneven cash flows.                                                                                 |              |
| 3. Discounted Cash Flow Analysis—Net Present Value .....                                                              | <b>03-01</b> |
| Finds the net present value of future cash flows.                                                                     |              |
| 4. Direct Reduction Loans—Sinking Fund .....                                                                          | <b>04-01</b> |
| Solves problems when payments are made at the end of the compounding periods (ordinary annuity).                      |              |
| 5. Accumulated Interest/Remaining Balance .....                                                                       | <b>05-01</b> |
| Calculates accumulated interest and remaining balance, and generates an amortization schedule(s).                     |              |
| 6. Wrap-Around Mortgage .....                                                                                         | <b>06-01</b> |
| Calculates yield of wrap-around mortgage.                                                                             |              |
| 7. Constant Payment to Principal Loan .....                                                                           | <b>07-01</b> |
| Generates schedule for constant payment to principal loan.                                                            |              |
| 8. Add-on Rate Installment Loan/Rule of 78's .....                                                                    | <b>08-01</b> |
| Calculations involving add-on loans and loans using the rule of 78's.                                                 |              |
| 9. Savings Plan—Leases .....                                                                                          | <b>09-01</b> |
| Solves problems involving payments at the beginning of the compounding periods (annuity due), and compounded amounts. |              |
| 10. Advance Payments .....                                                                                            | <b>10-01</b> |
| Payment and yield calculations when additional payments are made in advance.                                          |              |
| 11. Savings—Compounding Periods Different from Payment Periods .....                                                  | <b>11-01</b> |
| Calculations when deposits and compounding periods differ.                                                            |              |
| 12. Simple Interest/Interest Conversions .....                                                                        | <b>12-01</b> |
| Simple interest calculations and nominal to effective interest rate conversions.                                      |              |
| 13. Depreciation Schedules .....                                                                                      | <b>13-01</b> |
| Straight line, SOYD, declining balance, and crossover between straight line and declining balance.                    |              |
| 14. Days Between Dates .....                                                                                          | <b>14-01</b> |
| Calendar routine.                                                                                                     |              |
| 15. Bond Price and Yield .....                                                                                        | <b>15-01</b> |
| Calculates price and yield of semiannual coupon bonds.                                                                |              |
| 16. Interest at Maturity/Discounted Securities .....                                                                  | <b>16-01</b> |
| Price or yield of interest at maturity or discounted securities.                                                      |              |

| <b>Program</b>                                                        | <b>Page</b>  |
|-----------------------------------------------------------------------|--------------|
| 17. Linear Regression—Exponential Curve Fit . . . . .                 | <b>17-01</b> |
| Fits a set of data points x, y to a straight line and a curve.        |              |
| Determines goodness of fit.                                           |              |
| 18. Multiple Linear Regression . . . . .                              | <b>18-01</b> |
| Fits a set of data points x, y, z to a straight line. Also determines |              |
| goodness of fit.                                                      |              |
| 19. Break-even Analysis . . . . .                                     | <b>19-01</b> |
| Calculates all values for linear break-even chart.                    |              |
| 20. Invoicing . . . . .                                               | <b>20-01</b> |
| Maintains net line totals, subtotal and grand total for invoicing.    |              |
| 21. Payroll . . . . .                                                 | <b>21-01</b> |
| Guide for writing a payroll program.                                  |              |
| 22. Inventory . . . . .                                               | <b>22-01</b> |
| Guide for establishing an inventory program.                          |              |
| Program Listings . . . . .                                            | <b>L00</b>   |

### **Appendices**

|                                                    |            |
|----------------------------------------------------|------------|
| A. Magnetic Card Symbols and Conventions . . . . . | <b>A-1</b> |
| B. Principal Equations . . . . .                   | <b>B-1</b> |

## A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the differences in the two machines, and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.

Some of the computed results in this pac are output by PRINTx statements. On the HP-97, these results will be output on the printer. On the HP-67, each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution. The term "PRINT/PAUSE" is used to describe this output condition.

If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press down any key on the keyboard. If the command being executed is PRINTx (four rapid blinks of the decimal point), pressing down a key will cause the program to halt. Execution of the halted program may be re-initiated by pressing **R/S**.

A "display" subroutine has been incorporated into some of the programs in this pac. The function of this routine is to test flag 0 and display the result with a PRINT/PAUSE if the flag is set or by halting execution if the flag is not set. When this option is available, the user may set and clear flag 0 by pressing **f** **E**. Successive use of **f** **E** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

The HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.

Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, **f** on the HP-97 and **f**, **g**, and **h** on the HP-67. For example, the operation **%** is a primary key on the HP-97, and is performed on the HP-67 as **f** **%**. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, **%**). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

## INTERNAL RATE OF RETURN

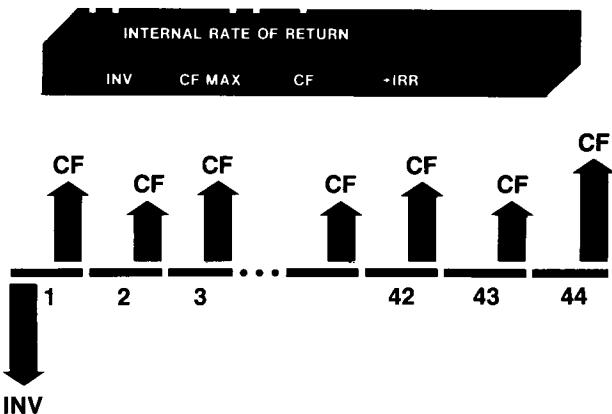



Figure 1

**Note:**

The above diagram is representative of diagrams which will be used in this pac. The horizontal line represents the time period(s) involved, while the arrows represent the cash flows.

The interest rate that equates the present value of all future cash flows with the original investment is known as the internal rate of return (IRR, also called discounted rate of return or yield). Given a non-zero initial investment and up to 44 **positive** cash flows, this program calculates the periodic IRR. If there are negative as well as positive cash flows, the program accepts up to 22 cash flows.

If more than 44 positive cash flows are entered, all cash flows over 44 will be ignored. There will be no indication, however, that more than 44 cash flows have been entered. Likewise, if more than 22 positive and negative cash flows are entered, erroneous results will occur.

Zero should be entered for periods with no cash flow.

When more than 22 cash flows are involved (all of which must be positive), the user is asked to enter the largest cash flow in step 3 because of the storage techniques being used. This value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. Consequently, the resulting periodic rate of return should be considered accurate to within  $\pm 0.01\%$  (.0001 decimal). This largest cash flow must be entered again in sequence in step 4. If a cash flow larger than the value entered for CF MAX is keyed in at step 4, erroneous results may occur.

The answer produced is the *periodic rate of return*. If the cash flow periods are

other than annual (monthly, quarterly) the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

In many instances another program may be more suitable for calculating IRR. If all cash flows are equal and equally spaced, or if all cash flows except the last are equal and equally spaced, DIRECT REDUCTION LOANS (BD-04) is a better choice. If the cash flows occur in groups of uneven amounts, IRR-GROUPS (BD-02) may be more suitable.

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation, and indicates that the program cannot solve that particular problem.

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present value. The NPV should be close to 0.

**Note:**

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating other possibilities.

| STEP | INSTRUCTIONS                                                                                           | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------------------------------------------------------------------------------|------------------|------|-------------------|
| 1    | Load side 1 and side 2.                                                                                |                  |      |                   |
| 2    | Input initial investment.                                                                              | INV              | A    | INV               |
| 3    | If there are > 22 cash flows, key<br>in the largest cash flow.                                         | CF MAX           | B    | CF MAX            |
| 4    | Beginning with the first period,<br>key in all cash flows in sequence,<br>pressing C after each value. | CF               | C    | # of CFs          |
| 5    | Calculate the periodic internal<br>rate of return                                                      |                  | D    | IRR (%)           |

**Example 1:**

Income property requiring a \$250,000 equity investment and to be sold in ten years is expected to generate the “after tax” cash flows shown below. What is the expected yield or IRR?

## 01-03

| End of Year | Cash Flow | End of Year | Cash Flow               |
|-------------|-----------|-------------|-------------------------|
| 1           | \$46,423  | 6           | \$ 23,199               |
| 2           | 40,710    | 7           | 21,612                  |
| 3           | 36,638    | 8           | 20,037                  |
| 4           | 34,097    | 9           | 18,460                  |
| 5           | 32,485    | 10          | 311,406 (property sold) |

### Keystrokes:

250000 **A** 46423 **C** 40710 **C**

36638 **C** 34097 **C** 32485 **C**

23199 **C** 21612 **C** 20037 **C**

18460 **C** 311406 **C** **D** →

### Outputs:

13.98 (annual IRR is 13.98%)

### Example 2:

Property requiring a \$30,000 investment will be sold at the end of 2 years. If the investment results in the monthly net cash flows shown below, what is the IRR?

| End of Month | Cash Flow | End of Month | Cash Flow              |
|--------------|-----------|--------------|------------------------|
| 1            | \$ 16     | 13           | \$ 201                 |
| 2            | 50        | 14           | 195                    |
| 3            | 175       | 15           | 178                    |
| 4            | 181       | 16           | 197                    |
| 5            | 143       | 17           | 210                    |
| 6            | 147       | 18           | 220                    |
| 7            | 151       | 19           | 206                    |
| 8            | 176       | 20           | 194                    |
| 9            | 184       | 21           | 187                    |
| 10           | 193       | 22           | 190                    |
| 11           | 157       | 23           | 201                    |
| 12           | 190       | 24           | 35,000 (property sold) |

### Keystrokes:

30000 **A** 35000 **B**

16 **C** 50 **C** 175 **C** 181 **C**

143 **C** 147 **C** 151 **C** 176 **C**

184 **C** 193 **C** 157 **C** 190 **C** →

### Outputs:

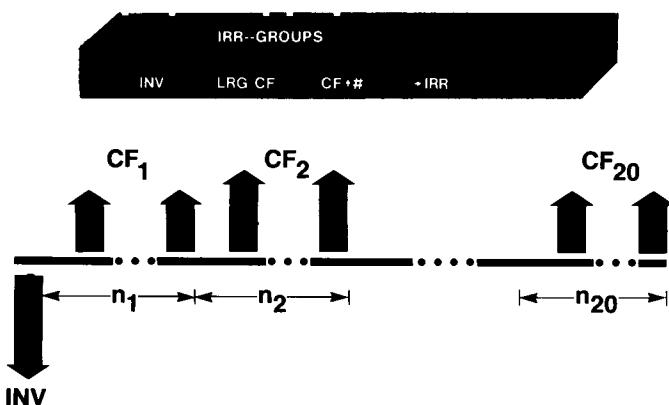
12.00 (12 cash flows input)

201 **C** 195 **C** 178 **C** 197 **C**

210 **C** 220 **C** 206 **C** 194 **C**

187 **C** 190 **C** 201 **C** 35000 **C** →

24.00 (all cash flows input)


**D** →

1.15 (monthly IRR)

12 **x** →

13.79 (an annual IRR of 13.79%)

## INTERNAL RATE OF RETURN—GROUPS OF CASH FLOWS



**Figure 2**

This program solves for the internal rate of return (IRR) when groups of uneven cash flows are involved. Given a non-zero initial investment (INV), the cash flows (CF) and the corresponding number of times each cash flow occurs (#), the periodic IRR is calculated.

Up to 20 groups of positive or negative cash flows, with each group containing a maximum of 99 cash flows, may be entered. If more than 20 groups are input, erroneous results will occur.

Zero should be entered for periods with no cash flow.

The program works with even dollar amounts. When dollars and cents are involved, the cents will be lost.

If a cash flow (other than the investment) exists with more than 8 digits (i.e., more than \$99999999.00) the user is asked to enter this value in step 3 because of the storage techniques being used. The value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. This large cash flow must be entered again in sequence in step 4.

The answer produced is the *periodic rate of return*. If the cash flow periods are other than annual (monthly, quarterly) the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

The calculator must be in FIX mode, as the program is dependent upon the display setting. To obtain 4 decimals of accuracy, the program card was recorded in FIX 4 mode. More or less accuracy may be obtained by changing the display setting from DSP 4 to DSP 5, DSP 6, DSP 2, etc. However, time for solution increases as accuracy is improved.

If the user wishes to re-calculate the IRR without changing the data in any manner, simply input the number of groups and press **f D**. This feature is useful if the calculator is halted prematurely, as it is not necessary to re-enter all of the data.

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation, and indicates that the program cannot solve that particular problem.

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present value. The NPV should be close to 0.

**Note:**

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating other possibilities.

| STEP | INSTRUCTIONS                        | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS       |
|------|-------------------------------------|------------------|--------------|-------------------------|
| 1    | Load side 1 and side 2.             |                  |              |                         |
| 2    | Input initial investment.           | INV              | <b>A</b>     | INV                     |
| 3    | If one cash flow has more than      |                  |              |                         |
|      | 8 digits, key it in.                | LRG CF           | <b>B</b>     | LRG CF/10 <sup>k*</sup> |
| 4    | Beginning with the first period,    |                  |              |                         |
|      | key in each cash flow and the       |                  |              |                         |
|      | number of times it occurs,          |                  |              |                         |
|      | pressing <b>C</b> after each group. | CF               | <b>ENTER</b> |                         |
|      |                                     | #                | <b>C</b>     | # of groups             |
| 5    | Calculate the periodic internal     |                  |              |                         |
|      | rate of return.                     |                  | <b>D</b>     | IRR (%)                 |
| 6    | To recalculate the IRR, enter       |                  |              |                         |
|      | the number of groups.               | # of groups      | <b>f D</b>   | IRR (%)                 |
|      |                                     |                  |              |                         |
|      | * k = 1 (LRG CF has 9 digits)       |                  |              |                         |
|      | k = 2 (LRG CF has 10 digits)        |                  |              |                         |

**Example 1:**

An income property is available for \$50,000. The annual income over a 23-year projection period (all payments received at the end of the year) may be grouped as follows:

| Number of Years | Cash Flow (\$) |
|-----------------|----------------|
| First 5 Years   | 9,000          |
| Next 4 Years    | 7,500          |
| Next 4 Years    | 6,000          |
| Next 3 Years    | 7,500          |
| Last 7 Years    | 5,000          |

If the investor wishes a 15% return, does the property meet his objectives?

**Keystrokes:**

50000 **A**  
 9000 **ENTER** **4** 5 **C**  
 7500 **ENTER** **4** 4 **C**  
 6000 **ENTER** **4** 4 **C**  
 7500 **ENTER** **3** 3 **C**  
 5000 **ENTER** **7** 7 **C**

**Outputs:**

5.0000 (5 groups of cash flows entered)  
**D** → 15.2681 (annual IRR of 15.2681%)

Since the IRR is more than 15%, the property meets the investor's objectives.

**Example 2:**

An investment of \$620,000,000 is expected to have the following annual income stream for the next 15 years.

| Number of Years | Cash Flow (\$) |
|-----------------|----------------|
| First 10 Years  | 100,000,000    |
| Next 5 Years    | 5,000,000      |

What is the expected rate of return?

**Keystrokes:**

620000000 **A** 100000000 **B** → 62000000.00

**Outputs:**

100000000 **ENTER** **10** **C**  
 5000000 **ENTER** **5** **C** **D** → 10.0649 (annual IRR of 10.0649%)

## DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE



Assuming a minimum desired yield (cost of capital, discount rate), this program finds the present value of the future cash flows generated by the investment and subtracts the initial investment from this amount. If the final net present value is a positive value, the investment exceeds the profit objectives assumed. If the final net present value is a negative value, then the investment is not profitable to the extent of the desired yield. If the net present value is zero, the investment meets the profit objectives.

The function associated with the **C** key (#) is designed to accommodate those situations where a series of the cash flows are equal. You enter the number of times these equal periodic cash flows occur with **C**, and then the amount only once with **D**. The program automatically assumes 1 for **#**. If the cash flow occurs only once, there is no need to enter anything for **#**.

Zero must be entered for all periods with no cash flow. When a cash flow other than the initial investment is an outlay (additional investment, loss, etc.) the value must be entered as a negative number with **CHS**.

Cash flows are assumed to occur at the end of cash flow periods.

This program can also be used to find the present value of a series of irregular cash flows that cannot be accommodated by the DIRECT REDUCTION LOANS program by simply entering zero as the initial investment.

An option is provided to print the initial investment and the NPV after each cash flow. Pressing **f E** sets and clears the print flag. Successive use of **f E** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

| STEP | INSTRUCTIONS                          | INPUT DATA/UNITS | KEYS       | OUTPUT DATA/UNITS |
|------|---------------------------------------|------------------|------------|-------------------|
| 1    | Load side 1.                          |                  |            |                   |
| 2    | Optional: Select<br>print/pause mode. |                  | <b>f E</b> | 1.00 or 0.00      |
| 3    | Key in<br>• Initial investment amount | INV              | <b>A</b>   | INV               |
|      | • Periodic interest (discount) rate   | i (%)            | <b>B</b>   | i (%)             |

| STEP | INSTRUCTIONS                                                 | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------------------------------------|------------------|------|-------------------|
| 4    | Key in the number of equal cash flows if greater than 1.     | #                | C    | #                 |
| 5    | Key in cash flow amount(s) and calculate net present value.  | CF               | D    | NPV               |
| 6    | Optional: Display total number of cash flows entered so far. |                  | E    | n                 |
| 7    | For next cash flow(s) go to step 4.                          |                  |      |                   |
| 8    | For a new case go to step 2.                                 |                  |      |                   |

### Example 1:

An investor has an opportunity to purchase a piece of property for \$70,000. If the going rate of return on this type of investment is 13.75%, and the after-tax cash flows are forecast as follows, should the investor purchase the property?

| Year | Cash Flow (\$)                                  |
|------|-------------------------------------------------|
| 1    | \$14,000                                        |
| 2    | 11,000                                          |
| 3    | 10,000                                          |
| 4    | 10,000                                          |
| 5    | 10,000                                          |
| 6    | 9,100                                           |
| 7    | 9,000                                           |
| 8    | 9,000                                           |
| 9    | 4,500                                           |
| 10   | 71,000 (property sold in 10 <sup>th</sup> year) |

### Keystrokes:

70000 A 13.75 B

14000 D → -57692.31 (NPV after 1 cash flow)

11000 D → -49190.92 (NPV after 2 cash flows)

3 C 10000 D → -31172.57 (NPV after 5 cash flows)

9100 D → -26971.76 (NPV after 6 cash flows)

2 C 9000 D → -20108.39 (NPV after 8 cash flows)

### Outputs:

|         |   |                                                                |
|---------|---|----------------------------------------------------------------|
| E       | → | 8.00 (checking that we've entered 8 periods cash flows so far) |
| 4500 D  | → | -18696.99 (NPV after 9 cash flows)                             |
| 71000 D | → | 879.93 (NPV after 10 cash flows)                               |

Since the final NPV is positive, the investment meets the profit objectives.

**Example 2:**

The Cooper Company needs a new photocopier and is considering leasing the equipment as an alternative to buying. The end-of-the-year net cash cost of each option is:

| <b>PURCHASE</b>     |  | <b>Net Cash Cost</b> |
|---------------------|--|----------------------|
| <b>Year</b>         |  |                      |
| 1                   |  | \$ 533               |
| 2                   |  | 948                  |
| 3                   |  | 1,375                |
| 4                   |  | 1,815                |
| 5                   |  | <u>2,270</u>         |
| Total Net Cash Cost |  | \$6,941              |

| <b>LEASE</b>        |  | <b>Net Cash Cost</b> |
|---------------------|--|----------------------|
| <b>Year</b>         |  |                      |
| 1                   |  | \$1,310              |
| 2                   |  | 1,310                |
| 3                   |  | 1,310                |
| 4                   |  | 1,310                |
| 5                   |  | <u>1,310</u>         |
| Total Net Cash Cost |  | \$6,550              |

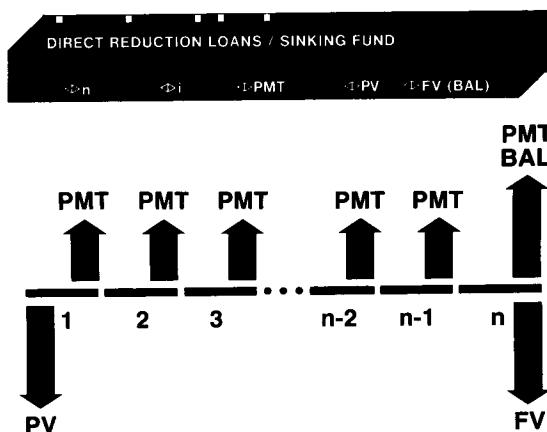
Looking at total cost, leasing appears to be less. But, purchasing costs less the first two years. Mr. Cooper knows that he can make a 15% return on every dollar he puts in the business; the sooner he can reinvest money, the sooner he earns 15%. Therefore, he decides to consider the **timing of the costs**, discounting the cash flows at 15% to find the present value of the alternatives. Which option should he choose?

**Keystrokes:**

PURCHASE

0 A 15 B 533 D 948 D

1375 D 1815 D 2270 D → 4250.71


**Outputs:**

LEASE

0 A 5 C 1310 D → 4391.32

Leasing has a present value cost of \$4391.32, while purchasing has a present value cost of \$4250.71. Since these are both expense items, the lowest present value is the most desirable. So, in this case, purchase is the least costly alternative.

## DIRECT REDUCTION LOANS SINKING FUND



**Figure 3**

This program may be used to solve problems when payments are made at the end of the compounding periods (ordinary annuity). Direct reduction loans and mortgages are typical examples.

The following variables may be inputs or outputs:

- n is the number of compounding periods. (For a 30 year loan with monthly payments  $n = 12 \times 30 = 360$ .)
- i is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e., 8% annual interest compounded monthly equals  $8/12$  or 0.667%.)
- PMT is the periodic payment amount.
- PV is the present value of the cash flows.
- FV is the future value of a series of cash flows.
- BAL is the balloon payment or remaining balance at the end of a series of payments.

In this program, **A** is used to input/calculate n, **B** to input/calculate i, **C** to input/calculate PMT, **D** to input/calculate PV, and **E** to input/calculate FV(BAL). After all inputs have been entered, it is possible to calculate the unknown value by pressing the appropriate user definable key.

When the START function (**f A**) is executed, it sets PMT, PV, and BAL to zero (n and i are not affected). START provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not

necessary to use START between problems containing the same combination of variables. For instance, any number of n, i, PMT, PV problems involving different numbers and/or different combinations of known values could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PMT, FV problems a zero would be input (0 **D**) for PV.

START should always be used immediately after loading DIRECT REDUCTION LOANS/SINKING FUND.

Iterative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. before calculating. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

The values for n, i, PMT, PV, and FV(BAL) are stored in registers A—E respectively. They may be displayed by recalling the appropriate register.

| STEP | INSTRUCTIONS                                | INPUT DATA/UNITS | KEYS       | OUTPUT DATA/UNITS |
|------|---------------------------------------------|------------------|------------|-------------------|
| 1    | Load side 1 and side 2.                     |                  |            |                   |
| 2    | Initialize (START)                          |                  | <b>f A</b> | 0.00              |
| 3    | Input the known values:                     |                  |            |                   |
|      | • Number of periods                         | n                | <b>A</b>   | n                 |
|      | • Periodic interest rate                    | i (%)            | <b>B</b>   | i (%)             |
|      | • Periodic payment                          | PMT              | <b>C</b>   | PMT               |
|      | • Present value                             | PV               | <b>D</b>   | PV                |
|      | • Future value, balloon payment, or balance | FV(BAL)          | <b>E</b>   | FV(BAL)           |
| 4    | Calculate the unknown value:                |                  |            |                   |
|      | • Number of periods                         |                  | <b>A</b>   | n                 |
|      | • Periodic interest rate                    |                  | <b>B</b>   | i (%)             |
|      | • Periodic payment                          |                  | <b>C</b>   | PMT               |
|      | • Present value                             |                  | <b>D</b>   | PV                |
|      | • Future value, balloon payment, or balance |                  | <b>E</b>   | FV(BAL)           |

| STEP | INSTRUCTIONS                   | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------|------------------|------|-------------------|
| 5    | For a new case, go to step 3   |                  |      |                   |
|      | and change appropriate values. |                  |      |                   |
| 6    | For a new type of problem, go  |                  |      |                   |
|      | to step 2.                     |                  |      |                   |

**Example 1:**

A borrower can afford a \$368.21 monthly principal and interest payment on a 30 year, 9 1/4% mortgage. What is the largest such mortgage he can obtain?

**Keystrokes:**

f A

368.21 C

30 ENTER 12 x A

**Outputs**360.00 (total monthly periods  
in mortgage life)

9.25 ENTER 12 ÷ B

0.77 (monthly interest rate)

D

44757.63 (mortgage amount)

**Example 2:**

A 30 year, \$50,000 mortgage has monthly payments of \$320, including principal and interest. What is the annual percentage rate?

**Keystrokes:**

f A

30 ENTER 12 x A

50000 D

320 C B

**Outputs:**0.55 (monthly percentage  
rate)

12 x

6.62 (annual percentage  
rate)**Example 3:**

An investor wishes to purchase a mortgage with a balloon payment to yield him 14% per annum. What maximum price can he pay if there are 60 monthly payments of \$250 and a \$10,000 balloon at the end of year 5? If he purchases the mortgage for \$14,500, what annual yield is he achieving?

**Keystrokes:**

f A 14 ENTER 12 ÷ B  
60 A 250 C 10000 E

D →

14500 D B →

12 X →

**Outputs:**

15730.27 (maximum price to pay to yield 14%)  
1.39 (monthly percent yield)  
16.67 (annual % yield at \$14,500 price)

**Example 4:**

You have an opportunity to purchase a \$10,000, 8% note which has a term of 6 years (monthly payments). What should you pay for the note if you wish to achieve a 13% yield?

**Keystrokes:**

f A 10000 D

8 ENTER 12 ÷ B

6 ENTER 12 X A C →

**Outputs:**

175.33 (monthly payment)

Now determine the purchase price of the note.

13 ENTER 12 ÷ B

D →

8734.26 (purchase price)

**Example 5:**

A borrower is charged 2 points for the issuance of his mortgage and note. If the mortgage amount is \$60,000 for 30 years, and the interest rate is 8 3/4% per year, with monthly payments, what annual percentage rate (APR) is the borrower paying? (1 point is equal to 1% of the mortgage amount.)

**Keystrokes:****Outputs:**

First calculate the periodic payment amount.

f A 60000 D

30 ENTER 12 X A

8.75 ENTER 12 ÷ B C →

472.02 (monthly payment)

Now calculate the mortgage amount less fees.

RCL D 2 % - D →

58800.00 (effective amount borrowed)

To obtain the annual percentage rate, press:

B 12 X →

8.97 (% APR)

**Example 6:**

You are setting up a travel fund for a trip to Australia. If you start in a month, depositing \$150 per month in a  $5\frac{1}{2}\%$  account, compounded monthly, how long will it take from today to accumulate \$2500 for the trip?

**Keystrokes:**

**f A 150 C**  
**5.5 ENTER↑ 12 ÷ B**  
**2500 E A** 

**Outputs:**

16.10 (months)

**Example 7:**

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment amount must be placed in the fund in order to cover this cost if savings are to start at the end of this quarter?

**Keystrokes:**

**f A 50000 E 3 ENTER↑**  
**4 x A 7 ENTER↑**  
**4 ÷ B C** 

**Outputs:**

3780.69 (quarterly payment)

## ACCUMULATED INTEREST/REMAINING BALANCE

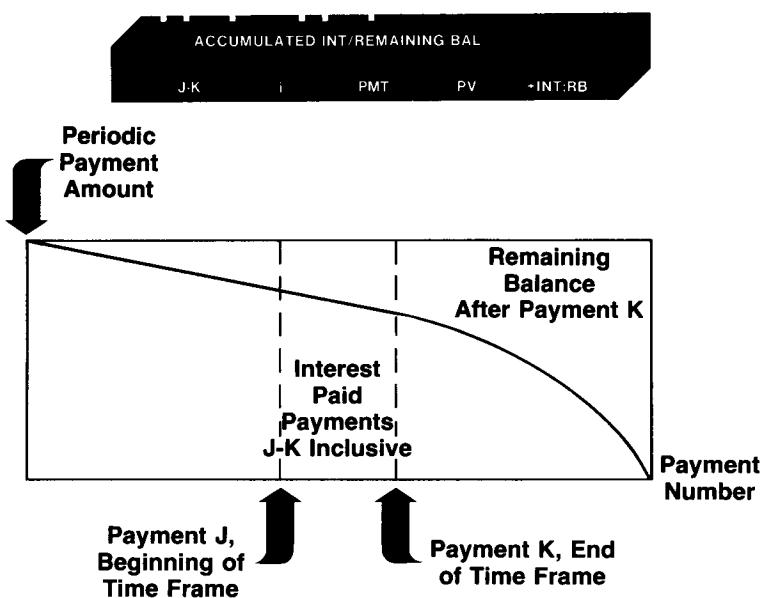



Figure 4

This program finds both the total interest paid over a specified number of payment periods and the remaining balance at the end of the last specified period, given the periodic interest rate, periodic payment amount, loan amount, and the beginning and ending payment numbers for the time span being considered. The payments associated with both the beginning (J) and the ending (K) payment period are included in the calculation.

The program can be used for loans with a balloon payment as well as loans arranged to be fully amortized provided two cautions are observed. First, the balloon payment of the loan must be at the same time as, and in addition to the last payment. Second, care should be taken not to enter a value for K that is after the last payment since the program has no way of knowing the term of the loan.

An option is available to output the amortization schedule between payments J and K (**f** **A**).

Pressing **f** **E** sets and clears the print flag. Successive use of **f** **E** will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

The data generated is valid for loans that have a balloon payment, as well as those that are arranged to be fully amortized. For loans with a balloon payment, the remaining balance of the last payment period is the balloon payment due in addition to the last periodic payment.

For loans scheduled to be fully amortized, the remaining balance after the last payment period may be slightly more or less than zero. This is because the program assumes that **all** payments are equal to the value entered for PMT. In fact for most loans, the last payment is slightly more or less than the rest.

The calculator performs all internal calculations to ten digits. If the user wishes to round the schedule to dollars and cents, the following sequence may be used:

1. Press **GTO** .113
2. Switch to PRGM mode.
3. Press **RND**
4. Switch back to RUN mode.

| STEP | INSTRUCTIONS                                                                                                                                                                                                          | INPUT DATA/UNITS             | KEYS                                                     | OUTPUT DATA/UNITS            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|------------------------------|
| 1    | Load side 1 and side 2.                                                                                                                                                                                               |                              |                                                          |                              |
| 2    | Optional: Select print/pause mode for amortization schedule.                                                                                                                                                          |                              | <b>f</b> <b>E</b>                                        | 1.00 or 0.00                 |
| 3    | Key in <ul style="list-style-type: none"> <li>• Starting period number</li> <li>• Ending period number</li> <li>• Periodic interest rate</li> <li>• Periodic payment amount</li> <li>• Initial loan amount</li> </ul> | J<br>K<br>i (%)<br>PMT<br>PV | <b>A</b><br><b>A</b><br><b>B</b><br><b>C</b><br><b>D</b> | J<br>K<br>i (%)<br>PMT<br>PV |
| 4    | Compute the total interest paid between periods J and K inclusive, and the remaining balance at the end of period K.                                                                                                  |                              | <b>E</b><br><b>R/S</b>                                   | INT<br>BAL                   |
|      | <i>OR</i>                                                                                                                                                                                                             |                              |                                                          |                              |
| 5    | Generate the amortization schedule between payments J and K inclusive. If the print/pause mode is on (1.00), the results are printed automatically.                                                                   |                              | <b>f</b> <b>A</b>                                        | J                            |

| STEP | INSTRUCTIONS                                                                                         | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|------------------------------------------------------------------------------------------------------|------------------|------|-------------------|
| 6    | Calculate amount paid to interest for period J.                                                      |                  |      |                   |
| 7    | Calculate amount paid to principal for period J.                                                     |                  | R/S  | PMT to PRIN       |
| 8    | Calculate remaining balance at the end of period J.                                                  |                  | R/S  | BAL               |
| 9    | Calculate total interest paid between periods J thru K inclusive.                                    |                  | R/S  | TOT INT           |
| 10   | Increment J for next period. If $J \leq K$ , go to step 6 for next period's values. Otherwise, stop. |                  | R/S  | $J + 1$           |
| 11   | For a new case, go to step 2 and change appropriate input values.                                    |                  |      |                   |

**Example 1:**

A mortgage is arranged such that the first payment is made at the end of October, 1975 (i.e., October is payment period 1). It is a \$20,000 loan at 9%, with monthly payments of \$167.84. What is the accumulated interest for 1975 (periods 1-3) and 1976 (periods 4-15) and what would the remaining balance be at the end of each year?

**Keystrokes:**1 A 3 A 9 ENTER $\downarrow$  12 ÷ B

167.84 C 20000 D E

**Outputs:**

449.60 (interest paid in 1975)

R/S

19946.08 (remaining balance at the end of 1975)

4 A 15 A E

1785.89 (interest paid in 1976)

R/S

19717.88 (remaining balance at the end of 1976)

**Example 2:**

Generate an amortization schedule for the first two payments of a \$30,000, 7% mortgage having monthly payments of \$200. Then jump ahead and generate the data for the 36<sup>th</sup> payment.

**Keystrokes:**

1 **A** 2 **A** 7 **ENTER** 12 **÷** **B**

200 **C** 30000 **D** **f** **A** →

**R/S** →

**Outputs:**

1.00 (starting 1<sup>st</sup> period)

175.00 (payment to interest)

25.00 (payment to principal)

29975.00 (remaining balance)

175.00 (total interest to date)

2.00 (starting 2<sup>nd</sup> period)

174.85 (payment to interest)

25.15 (payment to principal)

29949.85 (remaining balance)

349.85 (total interest to date)

**Keystrokes:**

Now let's skip ahead to the 36<sup>th</sup> payment period.

36 **A** **A** **f** **A** →

**R/S** →

**R/S** →

**R/S** →

**R/S** →

**Outputs:**

36.00 (starting 36<sup>th</sup> period)

169.36 (payment to interest)

30.64 (payment to principal)

29001.75 (remaining balance)

6201.75 (total interest to date)

## WRAP-AROUND MORTGAGE

## WRAP-AROUND MORTGAGE

PV<sub>1</sub>\*PMT<sub>1</sub>\*n<sub>1</sub>PV<sub>2</sub>\*PMT<sub>2</sub>\*n<sub>2</sub>

BAL

+Yield

A wrap-around mortgage is essentially the same as a refinancing mortgage, except that the new mortgage is a junior lien mortgage granted by a different lender, who assumes the payments on the existing mortgage, which remains in full force. The new (second) mortgage is thus "wrapped around" the existing mortgage. The "wrap-around" lender advances the net difference between the new (second) mortgage and the existing mortgage in cash to the borrower, and receives as net cash flow the difference between debt service on the new (second) mortgage and debt service on the existing mortgage.

This program calculates the periodic yield to the lender (**E**) of a wrap-around mortgage, with or without a balloon payment. A routine to solve for the periodic payment (**f** **C**) necessary to amortize a mortgage is also available.

The value of each mortgage, as well as the periodic payments, life of each mortgage (number of periods remaining), and balloon payment on the wrap-around mortgage (if it exists) must be entered to calculate the yield.

| STEP | INSTRUCTIONS                                                                                        | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|-----------------------------------------------------------------------------------------------------|------------------|--------------|-------------------|
| 1    | Load side 1 and side 2.                                                                             |                  |              |                   |
| 2    | Key in the following information<br>from the original mortgage:<br>● Remaining balance              | PV <sub>1</sub>  | <b>ENTER</b> | PV <sub>1</sub>   |
|      | ● Periodic payment                                                                                  | PMT <sub>1</sub> | <b>ENTER</b> | PMT <sub>1</sub>  |
|      | ● Number of periods remaining                                                                       | n <sub>1</sub>   | <b>A</b>     | n <sub>1</sub>    |
| 3    | Key in the following information<br>from the wrap-around<br>mortgage:<br>● Total wrap-around amount | PV <sub>2</sub>  | <b>ENTER</b> | PV <sub>2</sub>   |
|      | ● Periodic payment on wrap-<br>around                                                               | PMT <sub>2</sub> | <b>ENTER</b> | PMT <sub>2</sub>  |
|      | ● Number of periods in term of<br>wrap-around                                                       | n <sub>2</sub>   | <b>C</b>     | n <sub>2</sub>    |

| STEP | INSTRUCTIONS                                                                                          | INPUT DATA/UNITS | KEYS  | OUTPUT DATA/UNITS |
|------|-------------------------------------------------------------------------------------------------------|------------------|-------|-------------------|
| 4    | Optional: If a balloon payment exists on the wrap-around at period $n_2$ , key in the balloon amount. | BAL              | D     | BAL               |
| 5    | Calculate the periodic yield of the wrap-around to the lender.                                        |                  | E     | Yield (%)         |
| 6    | Optional: If a payment amount is not known, it may be calculated by keying in:                        |                  |       |                   |
|      | • Total number of periods                                                                             | n                | f A   | n                 |
|      | • Periodic interest rate                                                                              | i (%)            | f B   | i (%)             |
|      | • Loan amount                                                                                         | PV               | f D   | PV                |
| 7    | Calculate periodic payment                                                                            |                  | f C   | PMT               |
|      | The payment is stored in $R_C$ , and may be recalled at a later time.                                 |                  | RCL C | PMT               |

### Example 1:

A mortgage loan on an income property has a balance of \$200,000. The loan has a remaining life of 12 years, and a monthly payment of \$2030.21. A lender has agreed to "wrap" a \$300,000 second mortgage at 9.5%, with full amortization in level monthly payments over 12 years. What is the effective yield (IRR) to the lender on net cash advanced?

#### Keystrokes:

200000 **ENTER** 2030.21 **ENTER**

144 **A** 

#### Outputs:

144.00

Since the payment on the wrap-around is not given, it must be calculated, and is automatically stored in Register C.

144 **f A** 9.5 **ENTER** 12 **÷** **f B**

300000 **f D** **f C** 

3499.12 (payment of second or wrapped mortgage)

Now calculate the yield.

300000 **RCL C** 144 **C E** 12 **x** 

14.50 (% effective yield)

## 06-03

### Note:

Recalling a number causes the stack to lift unless the preceding keystroke was **ENTER**, **CLx**, or  **$\Sigma+$** . See Appendix D in your Owner's Handbook.

### Example 2:

A customer has an existing mortgage with a balance of \$125,000, a remaining term of 200 months, and a \$1051.61 monthly payment. He wishes to obtain a \$200,000,  $9\frac{1}{2}\%$  wrap-around with 240 monthly payments of \$1681.71 and a balloon payment at the end of the 240<sup>th</sup> month of \$129963.35. If you accept the proposal, what is your rate of return?

#### Keystrokes:

125000 **ENTER** 1051.61 **ENTER**

200 **A**

200000 **ENTER** 1681.71 **ENTER**

240 **C**

129963.35 **D** **E** 12 **X** **—————>**

#### Outputs:

11.84 (% rate of return)

## CONSTANT PAYMENT TO PRINCIPAL LOAN AMORTIZATION SCHEDULE



This type of loan is structured such that the principal is repaid in equal installments with the interest paid in addition. Therefore, each periodic payment is different; it has a constant amount applied to the principal and a decreasing amount to the interest.

The first part of the program displays the payment number and calculates the payment to interest, total payment, remaining balance, and total interest. The constant payment to principal required as input data (CPMT) can be found by simply dividing the loan amount by the total number of payment periods. The schedule may be started at any desired payment period; that is, the value entered for K need not be 1.

The second part of the program calculates the accumulated interest between any two payments J and K. The necessary inputs are the periodic interest rate, constant payment, initial loan amount, and the numbers of the starting and ending payments in the time frame.

A print option is available (**f E**) to automatically print the entire amortization schedule, or the accumulated interest. Successive use of **f E** will alternately display 1.00 and 0.00 indicating that the print mode is on or off respectively.

| STEP | INSTRUCTIONS                                           | INPUT DATA/UNITS | KEYS       | OUTPUT DATA/UNITS |
|------|--------------------------------------------------------|------------------|------------|-------------------|
| 1    | Load side 1.                                           |                  |            |                   |
| 2    | Optional: Select print/pause                           |                  |            |                   |
|      | mode                                                   |                  | <b>f E</b> | 1.00 or 0.00      |
| 3    | Key in:                                                |                  |            |                   |
|      | • First period of the desired schedule (need not be 1) | K                | <b>A</b>   | K                 |
|      | • Periodic interest rate                               | i (%)            | <b>B</b>   | i (%)             |
|      | • Constant payment to principal                        | CPMT             | <b>C</b>   | CPMT              |
|      | • Initial loan amount (present value)                  | PV               | <b>D</b>   | PV                |

| STEP | INSTRUCTIONS                                                                                                                                                                        | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------------|
| 4    | Generate the amortization schedule for payments K through term of loan. If the print mode is on (1.00), the schedule may be terminated prior to completion by pressing <b>R/S</b> . |                  | <b>E</b>     | PMT to INT        |
|      |                                                                                                                                                                                     |                  | <b>R/S</b>   | TOT PMT           |
|      |                                                                                                                                                                                     |                  | <b>R/S</b>   | BAL               |
|      |                                                                                                                                                                                     |                  | <b>R/S</b>   | TOT INT           |
|      |                                                                                                                                                                                     |                  | <b>R/S</b>   | K + 1             |
|      |                                                                                                                                                                                     |                  |              | etc.              |
|      | OR                                                                                                                                                                                  |                  |              |                   |
| 5    | To find the accumulated interest between any two points (J, K), key in:                                                                                                             |                  |              |                   |
|      | • Periodic interest rate                                                                                                                                                            | i (%)            | <b>B</b>     | i (%)             |
|      | • Constant payment to                                                                                                                                                               |                  |              |                   |
|      | principal                                                                                                                                                                           | CPMT             | <b>C</b>     | CPMT              |
|      | • Initial loan amount (present value)                                                                                                                                               | PV               | <b>D</b>     | PV                |
|      | • Starting period number                                                                                                                                                            | J                | <b>ENTER</b> | J                 |
|      | • Ending period number                                                                                                                                                              | K                | <b>f A</b>   | ACC INT           |

### Example 1:

A twenty year, 8% loan for \$100,000 is being amortized by annual payments to principal of \$5,000 plus interest on the remaining balance. Generate a 2-year amortization schedule for this loan.

#### Keystrokes:

1 **A** 8 **B** 5000 **C** 100000 **D** **E** →

#### Outputs:

8000.00 (1<sup>st</sup> year's payment to interest)

**R/S** →

13000.00 (total 1<sup>st</sup> payment)

**R/S** →

95000.00 (remaining balance)

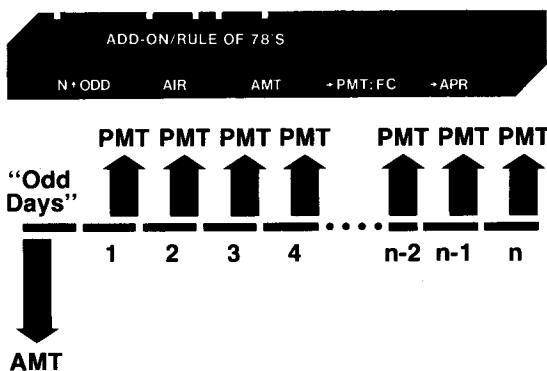
## 07-03

|     |   |                                                      |
|-----|---|------------------------------------------------------|
| R/S | → | 8000.00 (total interest paid to date)                |
| R/S | → | 2.00 (now starting 2 <sup>nd</sup> period)           |
| R/S | → | 7600.00 (2 <sup>nd</sup> year's payment to interest) |
| R/S | → | 12600.00 (total 2 <sup>nd</sup> payment)             |
| R/S | → | 90000.00 (remaining balance)                         |
| R/S | → | 15600.00 (total interest paid to date)               |

### Example 2:

In the previous example, how much interest is accumulated during years 5 to 10 (inclusive)?

#### Keystrokes:


8 **B** 5000 **C** 100000 **D**

5 **ENTER** 10 **f** **A** →

#### Outputs:

32400.00

## ADD-ON RATE INSTALLMENT LOAN/ INTEREST REBATE—RULE OF 78's



**Figure 5**

This program calculates the monthly payment amount, total finance charge, and the Annual Percentage Rate (APR) for an add-on rate loan.

When a loan is initiated in the middle of a month, the first payment is generally not required until the end of the first full month. The number of days from the beginning of the loan to the beginning of the first month (see above diagram) are called "odd days" and affect (decrease) the APR to be quoted with the loan. The calculation of the APR considers these odd days.

**Note:**

The payment amount (PMT) must be calculated in order to calculate the APR.

The second part of this program calculates the unearned interest (rebate) as well as the remaining principal due for a prepaid consumer loan using the rule of 78's.

| STEP | INSTRUCTIONS                                    | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|-------------------------------------------------|------------------|--------------|-------------------|
| 1    | Load side 1 and side 2.                         |                  |              |                   |
| 2    | Key in:                                         |                  |              |                   |
|      | • Number of monthly payments in loan            | N                | <b>ENTER</b> | N                 |
|      | • "Odd-days" to beginning of first month (0-30) | ODD              | <b>A</b>     | ODD               |
|      | • Add-on interest rate (annual rate)            | AIR (%)          | <b>B</b>     | AIR (%)           |
|      | • Loan amount                                   | AMT              | <b>C</b>     | AMT               |
| 3    | Calculate monthly payment.                      |                  | <b>D</b>     | PMT               |

| STEP | INSTRUCTIONS                               | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------------------|------------------|------|-------------------|
| 4    | Calculate total finance charge.            |                  | R/S  | FC                |
| 5    | Calculate the annual percentage rate.      |                  | E    | APR (%)           |
| 6    | Key in all of the following:               |                  |      |                   |
|      | • Total number of monthly payments in loan | N                | f A  | N                 |
|      | • Number of the last payment made          | K                | f B  | K                 |
|      | • Monthly payment amount                   | PMT              | f C  | PMT               |
|      | • Total finance charge                     | FC               | f D  | FC                |
| 7    | Calculate the unearned interest (rebate).  |                  | f E  | REB               |
| 8    | Calculate the remaining balance.           |                  | R/S  | BAL               |

**Example 1:**

A 36 month car loan for \$3,500 with a 6% add-on rate is initiated such that there are 18 "odd days". Calculate the monthly payment required to amortize this loan, the total finance charge, and the annual percentage rate.

**Keystrokes:**36 **ENTER** 18 **A** 6 **B** 3500 **C** **D** →**R/S** →**E** →**Outputs:**

115.01 (monthly payment)

640.36 (total finance charge)

10.89 (10.89% APR)

**Example 2:**

A \$1000 loan, with a total finance charge of \$180.00 is being paid at \$39.33 per month for 30 months. What is the unearned interest (rebate) and remaining balance after the 25<sup>th</sup> regular payment?

**Keystrokes:**30 **f A** 25 **f B**39.33 **f C**180 **f D** **f E** →**Outputs:**

5.81 (unearned interest for payments 26 to 30)

190.84 (remaining balance after payment 25)

**R/S** →

## SAVINGS PLAN—LEASES

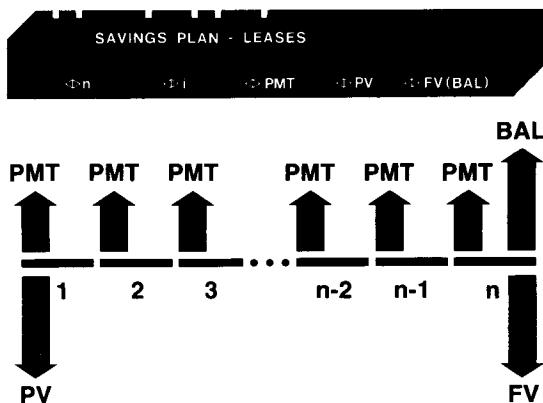



Figure 6

This program may be used to solve problems when payments are made at the beginning of the compounding periods (annuity due). The program also calculates all variables in compound interest situations. Savings plans and leasing problems are typical examples.

The following variables may be inputs or outputs:

- $n$  is the number of compounding periods. (For a 30 year loan with monthly payments  $n = 12 \times 30 = 360$ .)
- $i$  is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e., 8% annual interest compounded monthly equals  $8/12$  or 0.667%.)
- $PMT$  is the periodic payment amount.
- $PV$  is the present value of the cash flows or compounded amount.
- $FV$  is the future value of a compounded amount or a series of cash flows.
- $BAL$  is the balloon payment or remaining balance at the end of a series of payments.

In this program, **A** is used to input/calculate  $n$ , **B** to input/calculate  $i$ , **C** to input/calculate  $PMT$ , **D** to input/calculate  $PV$ , and **E** to input/calculate  $FV$  or  $BAL$ . After all inputs have been entered, the unknown value may be calculated by pressing the appropriate user definable key.

When the START function (**f A**) is executed, it sets  $PMT$ ,  $PV$ , and  $FV(BAL)$  to zero ( $n$  and  $i$  are not affected). START provides a safe, convenient, easy-to-remember method of preparing the calculator for a new problem. It is not necessary to use START between problems containing the same combination of variables. For instance, any number of  $n$ ,  $i$ ,  $PMT$ ,  $FV$  problems

involving different numbers and/or different combinations of known values could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PV, FV problems a zero would be stored (0 **C**) in place of PMT. START should always be used immediately after loading SAVINGS PLAN—LEASES.

Iterative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. before calculating. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

The values for n, i, PMT, PV, and FV(BAL) are stored in registers A—E respectively. They may be displayed by recalling the appropriate register.

| STEP | INSTRUCTIONS                                | INPUT DATA/UNITS | KEYS              | OUTPUT DATA/UNITS |
|------|---------------------------------------------|------------------|-------------------|-------------------|
| 1    | Load side 1 and side 2                      |                  |                   |                   |
| 2    | Initialize (START)                          |                  | <b>I</b> <b>A</b> | 0.00              |
| 3    | Input the known values:                     |                  |                   |                   |
|      | • Number of periods                         | n                | <b>A</b>          | n                 |
|      | • Periodic interest rate                    | i (%)            | <b>B</b>          | i (%)             |
|      | • Periodic payment                          | PMT              | <b>C</b>          | PMT               |
|      | • Present value                             | PV               | <b>D</b>          | PV                |
|      | • Future value, balloon payment, or balance | FV(BAL)          | <b>E</b>          | FV(BAL)           |
| 4    | Calculate the unknown value:                |                  |                   |                   |
|      | • Number of periods                         |                  | <b>A</b>          | n                 |
|      | • Periodic interest rate                    |                  | <b>B</b>          | i (%)             |
|      | • Periodic payment                          |                  | <b>C</b>          | PMT               |
|      | • Present value                             |                  | <b>D</b>          | PV                |
|      | • Future value, balloon payment, or balance |                  | <b>E</b>          | FV(BAL)           |

| STEP | INSTRUCTIONS                   | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------|------------------|------|-------------------|
| 5    | For a new case, go to step 3   |                  |      |                   |
|      | and change appropriate values. |                  |      |                   |
| 6    | For a new type of problem, go  |                  |      |                   |
|      | to step 2.                     |                  |      |                   |

**Example 1:**

What annual interest rate must be obtained to amass \$10,000 in 8 years on an investment of \$6,000, with quarterly compounding?

**Keystrokes:**

f A  
 10000 E 8 ENTER 4 x A →  
 6000 D B →  
 4 x →

**Outputs:**

32.00 (quarters)  
 1.61 (% quarterly interest rate)  
 6.44 (% annual interest rate)

**Example 2:**

The buyer of 3 acres of land can afford to pay \$375.00 per month toward interest and principal. If the asking price is \$35,000 and the seller wants 8% annual interest with payments in advance, how long will it take to pay off the mortgage?

**Keystrokes:**

f A 375 C 35000 D  
 8 ENTER 12 ÷ B A →  
 12 ÷ →

**Output:**

144.87 (number of months)  
 12.07 (years)

**Example 3:**

An annuity of \$100 per month will begin in 2 years and continue for 3 years. What is its present value if the interest rate is 12%, compounded monthly?

**Keystrokes:**

Calculate the present value of the annuity when it commences (2 years from now).

f A 100 C  
 3 ENTER 12 x A  
 12 ENTER 12 ÷ B D →

**Outputs:**

3040.86 (present value when annuity commences)

Now find the present value of the annuity today.

**Keystrokes:** **STO E 0 C 2 ENTER**  
**12 x A D** → **2394.88 (present value today)**

**Example 4:**

Today you begin annual withdrawals of \$2,500 from a \$40,000 fund earning 6% annual interest. How long will it be before the fund is reduced to \$25,000?

**Keystrokes:** **Outputs:**

**f A 6 B 2500 C 40000 D**  
**25000 E A** → **26.19 (years to reach  
balance of \$25,000)**

**Example 5:**

The Cooper Company needs a photocopier, and the one that best suits its needs costs \$10,000. If the copier is purchased, the company would need a 5-year loan, with monthly payments of \$220.00. Mr. Cooper may also elect leasing as an alternative way of financing. The leased photocopier would have 36 monthly payments (in advance) of \$250.00 with a 33% purchase option at the end of 36 months. Which alternative is the least costly?

**Keystrokes:** **Outputs:**

First find the annual interest rate of the lease option.

**f A 36 A 250 C 10000 D**  
**33 % E B 12 x** → **11.47 (% annual interest  
rate)**

Now insert DIRECT REDUCTION LOANS/SINKING FUND (BD-04) and find the annual interest rate of the loan.

**f A 5 ENTER 12 x A**  
**220 C 10000 D B 12 x** → **11.51 (% annual interest  
rate)**

Since the lease option has a lower annual interest rate, it is the least costly alternative.

## ADVANCE PAYMENTS



Payments on loans are typically made at the end of the period (in arrears). However, there are situations where payments are made in advance (leasing is a good example). Sometimes these agreements call for extra payments to be made when the transaction is closed, before the payments would normally be due. Or, the transaction has advance payments and a residual value at the end of the normal term.

This program solves for the periodic payment amount necessary to achieve a desired yield when a number of payments are made in advance. And, given the periodic payment, the program finds the yield. Either amount may be calculated when a residual value exists.

The necessary inputs are the total number of periods in the loan (n), the number of payments made in advance (A), the loan amount (PV), and either the periodic payment amount (PMT) or the periodic yield (i). The residual value at the end of the  $n^{\text{th}}$  period (RESID) is optional.

The value of A must be less than the value of n. If this condition is not met, the display flashes the illegal input. Pressing **R/S** halts the flashing, and the values of n and A must be re-entered.

When A = 0 or 1, BD-04 or BD-09 could be used. A = 0 implies an ordinary annuity calculation, while A = 1 means an annuity due calculation.

| STEP | INSTRUCTIONS                    | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|---------------------------------|------------------|--------------|-------------------|
| 1    | Load side 1 and side 2.         |                  |              |                   |
| 2    | Key in the following:           |                  |              |                   |
|      | • Number of periods in term     |                  |              |                   |
|      | of loan                         | n                | <b>ENTER</b> | n                 |
|      | • Number of payments made       |                  |              |                   |
|      | in advance                      | A                | <b>A</b>     | A                 |
|      | • Loan amount                   | PV               | <b>D</b>     | PV                |
| 3    | Optional: Key in residual value |                  |              |                   |
|      | at end of nth period.           | RESID            | <b>E</b>     | RESID             |
| 4    | Key in one of the following:    |                  |              |                   |
|      | • Periodic payment              | PMT              |              | PMT               |
|      | • Periodic interest rate        | i (%)            |              | i (%)             |

| STEP | INSTRUCTIONS                                               | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|------------------------------------------------------------|------------------|------|-------------------|
| 5    | Calculate the remaining variable.                          |                  |      |                   |
|      |                                                            |                  | f B  | i (%)             |
|      |                                                            |                  | f C  | PMT               |
| 6    | For a new case, go to 2 and change the appropriate values. |                  |      |                   |

**Example 1:**

A lease has been written to run for 60 months. The leased equipment has a value of \$25,000 with a \$600 monthly payment. The lessee has agreed to make 3 payments in advance at the time of closing. What is the annual yield? (There is no residual value at the end of 60 months.)

**Keystrokes:**

60 **ENTER** 3 **A**  
 25000 **D** 600 **f** **B** 12 **X** → 17.33 (% annual yield)

**Outputs:****Example 2:**

A copier worth \$22,000 is to be leased for 48 months. The lessee has agreed to make 4 payments in advance, with a purchase option at the end of 48 months enabling him to buy the copier for 30% of the purchase price. What monthly payment is necessary to yield the lessor 12% annually?

**Keystrokes:**

48 **ENTER** 4 **A**  
 22000 **D** 30 **%** **E**  
 12 **ENTER** 12 **÷** **f** **C** → 453.84 (monthly payment)

**Outputs:**

## SAVINGS-COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS

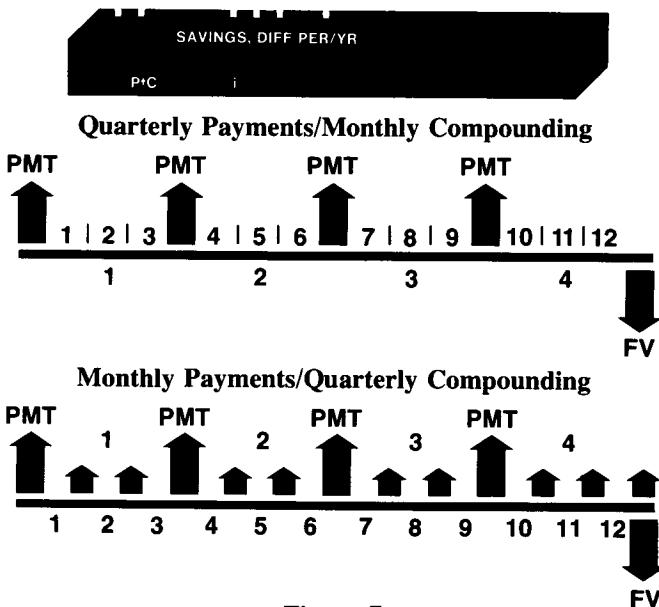



Figure 7

Payments into a savings plan may not occur with the same frequency as the compounding frequency offered. This program solves for the number of payments, the periodic payment amount, or future value.

The diagrams above depict two of the many combinations that may be encountered. Note that payments are assumed to occur at the beginning of the payment period (annuity due).

Another assumption of this program is that payments deposited for a partial compounding period will accrue simple interest for the remainder of the compounding period. Thus, a deposit at the beginning of the 2<sup>nd</sup> month of a quarter into a savings plan that compounds quarterly is assumed to accrue two months simple interest. This is often the case, but is not true for all institutions.

| STEP | INSTRUCTIONS                                       | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|----------------------------------------------------|------------------|--------------|-------------------|
| 1    | Load side 1 and side 2.                            |                  |              |                   |
| 2    | Key in the number of payment periods per year.     | P                | <b>ENTER</b> | P                 |
| 3    | Key in the number of compounding periods per year. | C                | <b>A</b>     | P/C               |

| STEP | INSTRUCTIONS                                                                                                                                               | INPUT DATA/UNITS        | KEYS                           | OUTPUT DATA/UNITS       |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|-------------------------|
| 4    | Key in the periodic interest rate<br>and two of the following:<br>• Total number of payments<br>• Periodic payment amount<br>• Final amount (future value) | i (%)<br>n<br>PMT<br>FV | [B]<br>[f A]<br>[f C]<br>[f E] | i (%)<br>n<br>PMT<br>FV |
| 5    | Calculate the remaining value<br>• Total number of payments<br>• Periodic payment amount<br>• Final amount (future value)                                  |                         | [f A]<br>[f C]<br>[f E]        | n<br>PMT<br>FV          |
| 6    | For a new case, go to step 2.                                                                                                                              |                         |                                |                         |

**Example 1:**

Quarterly deposits of \$95 are to be made into a savings account paying 5% compounded monthly. What amount will be in that account after 7 years (i.e., 28 total payments)?

**Keystrokes:**

4 [ENTER] 12 [A] →

0.33

5 [ENTER] 12 [÷] [B]

7 [ENTER] 4 [×] [f A]

95 [f C] [f E] →

3203.59 (amount after 7 years)

**Outputs:****Example 2:**

Assuming the previous calculation has just been performed as shown, determine the future value if the quarterly payment amount were \$100 instead of \$95.

**Keystrokes:**

100 [f C] [f E] →

**Outputs:**

3372.20 (amount after 7 years)

**Example 3:**

In 2 years, you will need \$4000. If a savings account will pay 5¼% compounded quarterly, what amount must you deposit each month to accumulate the desired amount?

**Keystrokes:**

12 [ENTER] 4 [A] →

3.00

5.25 [ENTER] 4 [÷] [B]

2 [ENTER] 12 [×] [f A]

4000 [f E] [f C] →

**Outputs:**

157.78 (monthly deposit necessary)

## SIMPLE INTEREST/INTEREST CONVERSIONS



This card actually contains three independent programs. The first part of the program (A—E keys) permits the user to solve for any variable of an accrued simple interest calculation. Given three of the four variables (number of days, annual interest rate, beginning amount, or accrued interest) the fourth is calculated. Accrued interest can be based on a 360 or 365 day year. In addition, the user may choose to add the calculated accrued interest to the initial principal to determine the final amount.

The shifted keys (**f A**—**f E**) deal with nominal to effective interest rate conversions, and vice-versa. By definition, an annual effective interest rate demonstrates the **effect** of compounding for a full year of compounding periods at a particular periodic interest rate. The periodic interest rate to be used is determined by dividing the number of compounding periods in a year into the stated annual nominal interest rate. The effect is such that if the nominal rate is held constant, as the number of compounding periods per year is increased, the annual effective interest rate will increase. The ultimate, or upper limit, in this process is to have an infinite number of compounding periods in a year, commonly called continuous compounding.

Three keys (**f A**, **f B**, **f C**) address finite compounding, that is, quarterly compounding, monthly compounding, etc. Given the number of compounding periods in a year, and one of the rates (nominal or effective), the other rate can be calculated. If for example, you require the periodic interest rate for a calculation, given the effective rate, use this program to determine the annual nominal rate first. Dividing the annual nominal rate by the number of compounding periods in a year will give the required periodic interest rate.

The remaining keys (**f D**, **f E**) are for continuous compounding. Given either rate, the other is calculated.

The most common and straightforward definition of effective interest rate has been implemented (see Appendix B). Occasionally other definitions will be used and the results will not compare exactly with those calculated by these programs. For example, since the maximum annual nominal rate that savings institutions can offer is regulated by law, they may modify the process (also regulated) so that the effective rate is even higher (e.g., for daily compounding, the periodic rate may be divided by 360 and then compounding accomplished for 365 periods). It is important then, when attempting to match results, to understand the process employed.

| STEP                        | INSTRUCTIONS                                                                           | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|-----------------------------|----------------------------------------------------------------------------------------|------------------|------|-------------------|
| 1                           | Load side 1 and side 2.                                                                |                  |      |                   |
| 2                           | Initialize.                                                                            |                  | R/S  | 0.00              |
| <b>Simple Interest</b>      |                                                                                        |                  |      |                   |
| 3                           | Key in three of the following:                                                         |                  |      |                   |
|                             | • Number of days                                                                       | DAYs             | A    | DAYs              |
|                             | • Annual interest rate                                                                 | RATE (%)         | B    | RATE (%)          |
|                             | • Beginning amount                                                                     | B AMT            | C    | B AMT             |
|                             | • Accrued interest (360 day<br>year)                                                   | I 360            | D    | I 360             |
|                             | OR                                                                                     |                  |      |                   |
|                             | • Accrued interest (365 day<br>year)                                                   | I 365            | E    | I 365             |
| 4                           | Calculate the remaining<br>variable                                                    |                  |      |                   |
|                             | • Number of days                                                                       |                  | A    | DAYs              |
|                             | • Annual interest rate                                                                 |                  | B    | RATE (%)          |
|                             | • Beginning amount                                                                     |                  | C    | B AMT             |
|                             | • Accrued interest (360 day<br>year)                                                   |                  | D    | I 360             |
|                             | • Final amount (optional)                                                              |                  | +    | FIN AMT           |
|                             | • Accrued interest (365 day<br>year)                                                   |                  | E    | I 365             |
|                             | • Final amount (optional)                                                              |                  | +    | FIN AMT           |
| <b>Interest Conversions</b> |                                                                                        |                  |      |                   |
| 5                           | Go to either step 6 for finite<br>compounding or step 8 for<br>continuous compounding. |                  |      |                   |

| STEP | INSTRUCTIONS                                                 | INPUT DATA/UNITS | KEYS  | OUTPUT DATA/UNITS |
|------|--------------------------------------------------------------|------------------|-------|-------------------|
| 6    | Key in:                                                      |                  |       |                   |
|      | • Number of compounding periods/yr and one of the following: | C/YR             | f A   | C/YR              |
|      | • Annual nominal rate                                        | NOM (%)          | f B   | NOM (%)           |
|      | • Annual effective rate                                      | EFF (%)          | f C   | EFF (%)           |
| 7    | Calculate the remaining rate                                 |                  |       |                   |
|      | • Annual nominal rate                                        |                  | f B   | NOM (%)           |
|      | • Annual effective rate                                      |                  | f C   | EFF (%)           |
|      | Go to step 6 for new data.                                   |                  |       |                   |
| 8    | Key in one of the following:                                 |                  |       |                   |
|      | • Annual nominal rate                                        | C NOM (%)        | f D   | C NOM             |
|      | • Annual effective rate (for continuous compounding).        | C EFF (%)        | f E   | C EFF             |
| 9    | Calculate the remaining rate                                 |                  |       |                   |
|      | • Annual nominal rate                                        |                  | f D   | C NOM (%)         |
|      | • Annual effective rate (for continuous compounding).        |                  | f E   | C EFF (%)         |
| 10   | For continuous compounding on a 365/360 day basis key in:    |                  |       |                   |
|      | • Annual nominal rate                                        | C NOM (%)        |       |                   |
| 11   | Calculate the continuous effective rate (365/360 basis).     |                  | GSB B | C EFF (%)         |

**Example 1:**

Calculate the accrued interest and final amount (both 360 and 365 day basis) for a \$30,000, 8%, 90 day interest at maturity note.

**Keystrokes:**

R/S →

**Outputs:**

0.00

30000 C 8 B 90 A D →

600.00 (interest, 360 day basis)

+ →

30600.00 (final amount, 360 day basis)

|          |   |                                        |
|----------|---|----------------------------------------|
| <b>E</b> | → | 591.78 (interest, 365 day basis)       |
| <b>+</b> | → | 30591.78 (final amount, 365 day basis) |

**Example 2:**

What is the nominal rate if the effective annual rate is 13% compounded quarterly?

**Keystrokes:**

4 **f** **A** 13 **f** **C** **f** **B** → 12.41 (% nominal interest rate)

**Outputs:****Example 3:**

A bank offers a savings plan with a 5% annual nominal interest rate. What is the annual effective rate if compounding is continuous?

**Keystrokes:**

5 **f** **D** **f** **E** → 5.13 (an annual effective rate of 5.13%)

**Outputs:****Example 4:**

In the above example, what is the annual effective rate if compounding is continuous on a 365/360 basis?

**Keystrokes:**

5 **GSB** **8** → 5.20 (an annual effective rate of 5.20%)

**Outputs:**

## DEPRECIATION SCHEDULES



Three methods of depreciation are commonly used: straight-line, sum-of-the-years'-digits, and declining balance. This program evaluates the depreciation schedules for these three methods, and calculates the crossover point between straight line and declining balance depreciation. For the schedules, the output is the annual depreciation amount (DEP), remaining depreciable amount (RDV), remaining book value (RBV), and the total depreciation to date (TOT DEP), as well as an increment for the next year's schedule.

An option is available to output the depreciation schedule beginning at a specified year. Pressing **f E** sets and clears the print flag. Successive use of **f E** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

Values for the last year of an asset with fractional years life (i.e., the 21<sup>st</sup> year's values for an asset with 20.5 years life) are calculated correctly. However, all other values represent a full year's depreciation. For this reason only integer values (whole number, 1.0, 2.0, 17.0 etc.) may be entered for YR (the **D** key). The program makes no checks on this value and generates invalid results if other than whole numbers are entered.

### Straight Line Depreciation

The annual depreciation allowance using this method is determined by dividing the cost or other basis of valuation (starting book value) less its estimated salvage value by its useful life expectancy. This program develops the starting book value (SBV), salvage value (SAL), life expectancy (LIFE), and first year of the schedule (YR). (The schedule may be started at any point in the useful life.)

Fractional years life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

### Sum of the Years' Digits Depreciation

The sum-of-the-years' digits method is an accelerated form of depreciation, allowing more depreciation in the early years of an asset's life than allowed under the straight line method. This program generates the schedule output, given the starting book value (SBV), the salvage value (SAL), expected useful life in years (LIFE), and beginning year (YR) for the schedule. (The schedule may be started at any point in the useful life.)

Fractional years asset life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

## Variable Rate Declining Balance Depreciation

The variable rate declining balance method is another form of accelerated depreciation; as such it provides for more depreciation in earlier years and decreasing depreciation in later years. The program generates the depreciation schedule given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), the declining rate factor (FACT), and the first year of the desired schedule (YR). The schedule may be started at any point in the useful life.

The "variable rate" is indicated as either a factor or percent with equal frequency in the business community. Thus, "1.5 declining balance factor" and "150% declining balance" have the same meaning. The number to be keyed in for FACT (E) in this program, should be in factor form, that is 1.25, 1.5, 2, and not 125, 150 or 200.

This method of depreciation is unique in that it may generate depreciation greater than the depreciable value for some assets, while it may not generate sufficient depreciation for others. The crossover calculation (F D) is provided to assist in determining the best time to switch to straight line depreciation (tax laws permitting) so that an asset may be fully depreciated.

Fractional years life must be entered as an integer and a decimal. Thus, a life of 12 years 3 months would be keyed in as 12.25.

### Crossover Point

As indicated in the description above, the declining balance method of depreciation may not fully depreciate an asset in the asset's lifetime. In these circumstances there is an optimum point in the useful life where a switch from the declining balance method to the straight line method should be made. This is the "crossover point", the first year in which the depreciation by the straight line method is greater than if depreciation were continued using declining balance method. (In accordance with Internal Revenue Service Publication 534, the straight line depreciation is determined by dividing the remaining depreciable value by the remaining useful life.)

Given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), and declining balance factor (FACT), this routine calculates the last year that the declining balance method should be used, and the remaining life and remaining book value after this "last year" so that a switch to straight line depreciation can be made. As in the previous routine, the factor (FACT) should be entered in factor form (1.25, 1.5, 2.0), not as a percent (125, 150, 200).

The crossover routine (F D) may be used with the declining balance (F C) and straight line (F A) depreciation routines as follows:

1. Use F D to determine the "crossover point" and associated values.

2. Use **f C** to generate a declining balance depreciation schedule for the early years up to and including the year indicated as being the "last year". Since the same input values are used, only a value for YR (**D**) need be keyed in before pressing **f C**.
3. Now use **f A** to generate a straight line depreciation schedule for the remaining years. The remaining book value at the end of the last "declining balance year" is keyed in for starting book value (**A**), and the remaining life is keyed in for the asset's life (**C**). There is no need to enter the salvage value as it has been retained throughout this process.

For this portion of the depreciation schedule, the value for "total depreciation to date" will be in error by an amount equal to the amount depreciated during the declining balance calculations.

| STEP | INSTRUCTIONS                   | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|--------------------------------|------------------|--------------|-------------------|
| 1    | Load side 1 and side 2         |                  |              |                   |
| 2    | Optional: Select print mode    |                  | <b>f E</b>   | 1.00 or 0.00      |
| 3    | Key in all of the following:   |                  |              |                   |
|      | • Starting book value          | SBV              | <b>STO A</b> | SBV               |
|      | • Salvage value                | SAL              | <b>STO B</b> | SAL               |
|      | • Life of the asset            | LIFE             | <b>STO C</b> | LIFE              |
| 4    | For depreciation schedules,    |                  |              |                   |
|      | key in:                        |                  |              |                   |
|      | • Year for which depreciation  |                  |              |                   |
|      | is to be calculated.           | YR               | <b>STO D</b> | YR                |
| 5    | To calculate straight line     |                  |              |                   |
|      | depreciation schedule          |                  | <b>f A</b>   | YR                |
|      |                                |                  | <b>R/S</b>   | DEP               |
|      |                                |                  | <b>R/S</b>   | RDV               |
|      |                                |                  | <b>R/S</b>   | RBV               |
|      |                                |                  | <b>R/S</b>   | TOT DEP           |
|      |                                |                  | <b>R/S</b>   | YR + 1            |
|      |                                |                  |              | etc.              |
|      | For new case go to steps 3 and |                  |              |                   |
|      | 4 and change appropriate       |                  |              |                   |
|      | inputs.                        |                  |              |                   |

| STEP | INSTRUCTIONS                                                                       | INPUT DATA/UNITS | KEYS  | OUTPUT DATA/UNITS |
|------|------------------------------------------------------------------------------------|------------------|-------|-------------------|
| 6    | Calculate the SOYD schedule                                                        |                  | f B   | YR                |
|      |                                                                                    |                  | R/S   | DEP               |
|      |                                                                                    |                  | R/S   | RDV               |
|      |                                                                                    |                  | R/S   | RBV               |
|      |                                                                                    |                  | R/S   | TOT DEP           |
|      |                                                                                    |                  | R/S   | YR + 1            |
|      |                                                                                    |                  | etc.  |                   |
|      | For new case go to steps 3 and 4 and change appropriate inputs.                    |                  |       |                   |
| 7    | Calculate the declining balance schedule (the appropriate factor must be entered). | FACT             | STO E | FACT              |
|      |                                                                                    |                  | f C   | YR                |
|      |                                                                                    |                  | R/S   | DEP               |
|      |                                                                                    |                  | R/S   | RDV               |
|      |                                                                                    |                  | R/S   | RBV               |
|      |                                                                                    |                  | R/S   | TOT DEP           |
|      |                                                                                    |                  | R/S   | YR + 1            |
|      |                                                                                    |                  | etc.  |                   |
|      | For new case go to steps 3 and 4 and change appropriate inputs.                    |                  |       |                   |
| 8    | To find crossover point the declining balance factor must be stored.               | FACT             | STO E | FACT              |
| 9    | Calculate last year to use declining balance method.                               |                  | f D   | LAST YEAR         |
| 10   | Calculate remaining life.                                                          |                  | R/S   | REM LIFE          |
| 11   | Calculate remaining book value.                                                    |                  | R/S   | RBV               |

**Example 1:**

For a starting book value of \$375,000, a salvage value of \$30,000 and an expected life of 40 years, generate the 1<sup>st</sup> year's depreciation schedule using each of the common methods. Assume a declining balance factor of 1.5. Then jump ahead to the 15<sup>th</sup> year and generate the data for that year.

**Keystrokes:**

375000 **STO** **A** 30000 **STO** **B**  
40 **STO** **C** 1 **STO** **D**

## Straight Line

|                     |                                               |
|---------------------|-----------------------------------------------|
| <b>f</b> <b>A</b> → | 1.00 (1 <sup>st</sup> year)                   |
| <b>R/S</b> →        | 8625.00 (1 <sup>st</sup> year's depreciation) |
| <b>R/S</b> →        | 336375.00 (remaining depreciable value)       |
| <b>R/S</b> →        | 366375.00 (remaining book value)              |
| <b>R/S</b> →        | 8625.00 (total depreciation to date)          |

Now jump ahead to the 15<sup>th</sup> year.

**Keystrokes:**

|                                            |                                                |
|--------------------------------------------|------------------------------------------------|
| 15 <b>STO</b> <b>D</b> <b>f</b> <b>A</b> → | 15.00 (15 <sup>th</sup> year)                  |
| <b>R/S</b> →                               | 8625.00 (15 <sup>th</sup> year's depreciation) |
| <b>R/S</b> →                               | 215625.00 (remaining depreciable value)        |
| <b>R/S</b> →                               | 245625.00 (remaining book value)               |
| <b>R/S</b> →                               | 129375.00 (total depreciation after 15 years)  |

## SOYD

|                                           |                                                |
|-------------------------------------------|------------------------------------------------|
| 1 <b>STO</b> <b>D</b> <b>f</b> <b>B</b> → | 1.00 (1 <sup>st</sup> year)                    |
| <b>R/S</b> →                              | 16829.27 (1 <sup>st</sup> year's depreciation) |
| <b>R/S</b> →                              | 328170.73 (remaining depreciable value)        |
| <b>R/S</b> →                              | 358170.73 (remaining book value)               |

R/S → 16829.27 (total depreciation to date)

Jump ahead to the 15<sup>th</sup> year.

15 STO D f B → 15.00 (15<sup>th</sup> year)  
 R/S → 10939.02 (15<sup>th</sup> year's depreciation)  
 R/S → 136737.80 (remaining depreciable value)  
 R/S → 166737.80 (remaining book value)  
 R/S → 208262.20 (total depreciation 1<sup>st</sup> through 15<sup>th</sup> year)

Declining Balance

1 STO D 1.5 STO E f C → 1.00 (1<sup>st</sup> year)  
 R/S → 14062.50 (1<sup>st</sup> year's depreciation)  
 R/S → 330937.50 (remaining depreciable value)  
 R/S → 360937.50 (remaining book value)  
 R/S → 14062.50 (total depreciation to date)

Keystrokes:

Now jump to the 15<sup>th</sup> year.

15 STO D f C → 15.00 (15<sup>th</sup> year)  
 R/S → 8235.18 (15<sup>th</sup> year's depreciation)  
 R/S → 181369.51 (remaining depreciable value)  
 R/S → 211369.51 (remaining book value)  
 R/S → 163630.49 (total depreciation 1<sup>st</sup> through 15<sup>th</sup> year)

Outputs:

**Example 2:**

Having just performed the previous calculation, determine the crossover point and the associated remaining life and remaining book value. Generate the depreciation data for the declining balance "last year," and then switch to the straight line method to generate the depreciation data for the year following the declining balance "last year."

**Keystrokes:****Outputs:**

|                                 |                                                                              |
|---------------------------------|------------------------------------------------------------------------------|
| <b>f D</b> →                    | 18.00 (last year to use declining balance)                                   |
| <b>R/S</b> →                    | 22.00 (asset's remaining life after 18 years)                                |
| <b>R/S</b> →                    | 188471.01 (remaining book value after 18 <sup>th</sup> year)                 |
| 18 <b>STO D f C</b> →           | 18.00 (18 <sup>th</sup> year)                                                |
| <b>R/S</b> →                    | 7343.03 (18 <sup>th</sup> year's depreciation)                               |
| <b>R/S</b> →                    | 158471.01 (remaining depreciable value)                                      |
| <b>R/S</b> →                    | 188471.01 (remaining book value)                                             |
| <b>R/S</b> →                    | 186528.99 (total depreciation 1 <sup>st</sup> through 18 <sup>th</sup> year) |
| 188471.01 <b>STO A 22 STO C</b> |                                                                              |
| 1 <b>STO D f A</b> →            | 1.00 (1 <sup>st</sup> year)                                                  |
| <b>R/S</b> →                    | 7203.23 (19 <sup>th</sup> year's depreciation)                               |

**Note:**

Although 1 was keyed in for YR—the first year of straight line depreciation—this is the 19<sup>th</sup> year of the asset's life.

|              |                                         |
|--------------|-----------------------------------------|
| <b>R/S</b> → | 151267.78 (remaining depreciable value) |
| <b>R/S</b> → | 181267.78 (remaining book value)        |

etc.

## DAYS BETWEEN DATES



This program calculates the number of days between two dates on an actual or 30/360 basis (30 day month, 360 day year). When the actual number of days is desired, the two dates must occur between January 1, 1901 and December 31, 2099. There is no limitation for the 30/360 basis.

The earlier date is keyed in for DT 1 (**A**), the later date is keyed in for DT 2 (**B**). The calculation is performed by pressing **C** for the actual number of days or by pressing **D** for the number of days on a 30/360 basis. Both input dates are retained, so that only a changed date must be keyed in for a new calculation.

The date format for input is MM/DDYYYY (March 3, 1976 is keyed in as 3.031976). The program does not check input data. Thus, if an improper format or an invalid date (i.e., February 30) is keyed in, erroneous answers will result.

An important feature of this program is that it is designed to be used in conjunction with BOND PRICE AND YIELD (BD-15). When the settlement date is entered for DT 1 and the redemption date (maturity date, call date, etc.) is entered for DT 2, pressing **C** or **D** also causes the number of remaining semiannual coupon periods to be stored for use by the bond program. The number of semiannual coupon periods on an actual day basis is determined by subtracting the number of leap days (February 29 of a leap year) from the actual number of days (the displayed value) and dividing this by 182.5 (days per semiannual period). On a 30/360 basis the number of semiannual coupon periods is found by dividing the number of days (displayed value) by 180 days per semiannual period.

In addition, the settlement date is retained throughout the bond calculations. Therefore, on return to this program, it is only necessary to key in a new DT 1 if the settlement date is different.

| STEP | INSTRUCTIONS                                                                 | INPUT DATA/UNITS | KEYS     | OUTPUT DATA/UNITS |
|------|------------------------------------------------------------------------------|------------------|----------|-------------------|
| 1    | Load side 1 and side 2.                                                      |                  |          |                   |
| 2    | Key in the following:                                                        |                  |          |                   |
|      | • Earliest date (DT 1)                                                       | MM/DDYYYY        | <b>A</b> | DT 1              |
|      | • Latest date (DT 2)                                                         | MM/DDYYYY        | <b>B</b> | DT 2              |
| 3    | Calculate the number of days between the two dates on an "actual" day basis. |                  | <b>C</b> | Actual Days       |

| STEP | INSTRUCTIONS                                                             | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------------------------------------------------|------------------|------|-------------------|
| 4    | Calculate the number of days between the two dates on a 30/360 basis.    |                  |      |                   |
| 5    | For a new case, go to step 2 and change DT 1 and/or DT 2 as appropriate. |                  | D    | 30/360 Days       |
|      |                                                                          |                  |      |                   |
|      |                                                                          |                  |      |                   |

**Example 1:**

Calculate the actual number of days between June 24, 1974 and December 5, 1985.

**Keystrokes:**

6.241974 A 12.051985 B C → 4182.00 (actual)

**Outputs:****Example 2:**

Having just performed the above calculation, now calculate the actual number of days between June 24, 1974 and March 21, 1990.

**Keystrokes:**

3.211990 B C → 5749.00 (actual)

**Outputs:****Example 3:**

Calculate the number of days, on both an actual and 30/360 basis, between May 1, 1975 and November 1, 1980.

**Keystrokes:**

5.011975 A 11.011980 B C → 2011.00 (actual)

**Outputs:**

D → 1980.00 (30/360)

## BOND PRICE AND YIELD



This program calculates the "flat" price (i.e., not including accrued interest) or annual yield of a semiannual coupon bond. Data required for input are the number of coupon periods (PER) between settlement date and redemption date (maturity date, call date, etc.), the annual coupon rate expressed as a percent (CR), the redemption value (RV) if other than 100, and either the annual yield expressed as a percent (YLD) or the bond price (PRICE).

All prices are expressed as a percent of the face value. (e.g., since most bonds have a face value of \$1,000, a call price of 107 implies an actual redemption value of \$1,070 if the bond is "called".)

The amount of the accrued interest for the expired portion of the current coupon period is available in register 8 and may be recalled (RCL B).

Each time the coupon rate is entered by pressing B, the redemption value is automatically set to 100. This is the proper value for a price-to-maturity calculation, and no value must be keyed in for redemption value (RV). If however, the price-to-call is desired and the call price is other than 100, the call price has to be entered for RV *after* the coupon rate has been keyed in.

All input data are retained so that when alternative calculations are to be performed, only changed data must be keyed in. This permits, for instance, calculating the price for each of several different yields. In addition, the settlement date is retained throughout the bond calculations, and need not be reentered when returning to the calendar program for another bond calendar calculation.

The number of remaining coupon periods between settlement date and redemption date may be calculated and entered in two ways. If the calendar program is used to calculate the number of days between the settlement date and redemption date, the number of remaining semiannual coupon periods is automatically calculated and stored in register 0 for use by the bond program. In this case the instruction to enter the number of remaining coupon periods in step 3 below may be ignored. If however, the number of remaining coupon periods is already known, or the method used to calculate this value by the calendar program is deemed inappropriate, it may be entered in step 3. Choosing between an actual or 30/360 calendar calculation depends on trade custom for the particular security. Corporate bonds are traditionally traded on a 30/360 basis, while many government securities use an "actual" calendar.

This program may be used for after-tax as well as before-tax yield calculations. The procedure is to reduce the coupon and redemption values to their after-tax net values prior to entering them in the program. This can be important when

comparing a bond with taxable coupons to one whose coupons are tax-free. The program may also be used to calculate a yield when a bond is purchased, and then sold prior to redemption by the issuer. The procedure is simple to treat the exit date and price as the redemption date and reemptions value respectively. The yield calculated is the precise yield if the exit date is also a coupon date, and is an approximate yield for other exit dates.

| STEP | INSTRUCTIONS                                                                                                               | INPUT DATA/UNITS | KEYS    | OUTPUT DATA/UNITS  |
|------|----------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------------------|
| 1    | Optional: Use program BD-14 to calculate the number of remaining coupon periods.                                           |                  |         |                    |
| 2    | Load side 1 and side 2 of the bond program.                                                                                |                  |         |                    |
| 3    | Key in:                                                                                                                    |                  |         |                    |
|      | • Number of remaining coupon periods (may be omitted if step 1 is performed)                                               | PER              | A       | PER                |
|      | • Annual coupon rate                                                                                                       | CR (%)           | B       | CR (%)             |
|      | • Redemption value if other than 100.                                                                                      | RV               | D       | RV                 |
| 4    | To determine the yield, key in the bond price.                                                                             | PRICE            | E       | PRICE              |
| 5    | Calculate the annual yield.                                                                                                |                  | C       | YLD (%)            |
| 6    | To find the price, key in the annual yield rate.                                                                           | YLD (%)          | C       | YLD (%)            |
| 7    | Calculate the "flat" price.                                                                                                |                  | E       | PRICE              |
| 8    | Optional: Recall the accrued interest AND add it to the "flat" price to obtain total bond value as of the settlement date. |                  | RCL B + | ACC INT Bond Value |

| STEP | INSTRUCTIONS                     | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|----------------------------------|------------------|------|-------------------|
| 9    | For a new case go to step 1 or 3 |                  |      |                   |
|      | and change appropriate values.   |                  |      |                   |
|      | NOTE: When CR is entered,        |                  |      |                   |
|      | RV is automatically set to 100.  |                  |      |                   |

**Example 1:**

What is the price of a semiannual 3% bond to yield 10% with settlement date of January 1, 1972? The bond matures March 6, 1978, and a 30/360 calendar is used.

**Keystrokes:**

Enter program BD-14

1.011972 **A** 3.061978 **B** **D** → 2225.00 (days settlement to maturity, 30/360 basis)

Now enter program BD-15

3 **B** 10 **C** **E** → 68.29 (price-to-maturity)

**Example 2:**

Having performed the above calculation, determine the price of the same bond using the "actual" number of days. Remember, the settlement date has been retained and need not be reentered.

**Keystrokes:**

Enter program BD-14

3.061978 **B** **C** → 2256.00 (actual days settlement to maturity)

Enter program BD-15

3 **B** 10 **C** **E** → 68.31 (price-to-maturity)

**Example 3:**

A U.S. Treasury Note with a 5.75% coupon and 88 days from settlement to maturity is purchased at 100 18/32. If there are assumed to be 183 days in a coupon period, what is the yield-to-maturity?

**Keystrokes:**

5.75 **B** 88 **ENTER** 183 **÷** **A** → 0.48 (fraction of a coupon period remaining)

18 **ENTER** 32 **÷** 100 **+** **E** **C** **→**

3.34 (% annual yield-to-maturity)

**Example 4:**

Assuming that the previous problem has just been performed as shown, calculate the yield if there are assumed to be 182 days in a coupon period instead of 183.

**Keystrokes:**88 **ENTER** 182 **÷** **A** **C** **→****Outputs:**

3.35 (% annual yield-to-maturity)

**Example 5:**

An **annual** coupon bond with a 5% coupon is settled on March 1, 1974. If the yield is 5.5%, and the bond matures on February 1, 1984 what is the price-to-maturity on a 30/360 basis?

**Keystrokes:**

Enter program BD-14

3.011974 **A** 2.011984 **B** **D** **→****Outputs:**

3570.00 (days settlement to maturity, 30/360 basis)

Determine the number of **annual coupon periods** remaining by dividing by the number of days in a coupon period.

360 **÷** **→**

9.92 (number of annual coupon periods)

Enter program BD-15

**A** **→**

9.92 (the correct value for PER is entered)

The coupon rate and yield rate must be multiplied by a factor prior to input. This factor is determined by dividing the number of coupon periods per year into 2. For annual coupon bonds the factor is therefore 2 (for quarterly coupons the factor is 0.5 etc.).

5 **ENTER** 2 **X** **B** 5.5 **ENTER**2 **X** **C** **E** **→**

96.24 (price-to-maturity)

**Example 6:**

A semiannual coupon bond with a 5% coupon rate maturing February 6, 1993 was purchased November 15, 1973 for a price of 99. The bond is callable on February 6, 1980 at a call price of 101. What is the yield-to-call and yield-to-maturity if the 30/360 calendar is used?

**Keystrokes:**

Enter program BD-14

11.151973 **A** 2.061980 **B** **D** → 2241.00 (days settlement to call)

Enter Program BD-15

5 **B** 101 **D** 99 **E** **C** → 5.33 (% yield-to-call)

Enter program BD-14

2.061993 **B** **D** → 6921.00 (days settlement to maturity)

Enter program BD-15

5 **B** 99 **E** **C** → 5.08 (% yield-to-maturity)**Example 7:**

Having just completed the before tax yield-to-maturity calculation in the previous example, the bond purchaser wishes to perform an after tax yield-to-maturity calculation. He is in a 40% income tax bracket and a 25% tax is to be applied to capital gains.

**Keystrokes:**

First, calculate and enter the after tax value of the coupon.

5 **ENTER** **ENTER** .4 **X** **-** **B** → 3.00 (net after tax coupon)

Now calculate and enter the net after tax proceeds when the bond is redeemed for 100 at maturity.

|                                             |                                           |
|---------------------------------------------|-------------------------------------------|
| 100 <b>ENTER</b> <b>ENTER</b> 99 <b>-</b> → | 1.00 (capital gain)                       |
| .25 <b>X</b> →                              | 0.25 (capital gains tax)                  |
| <b>-</b> <b>D</b> →                         | 99.75 (net proceeds from bond redemption) |

(The price and remaining coupon periods have been retained from the previous calculation.)

|            |                          |
|------------|--------------------------|
| <b>C</b> → | 3.06 (% after tax yield) |
|------------|--------------------------|

## INTEREST AT MATURITY/DISCOUNTED SECURITIES



The first part of this program calculates the price or yield of interest at maturity securities. The necessary inputs are the days from issue to maturity (DIM), the days from settlement to maturity (DSM), the calendar basis (360 or 365), the coupon rate (CR), and either the price (to calculate yield) or the yield (to calculate price).

The second part of the program calculates the price or yield of discounted securities such as U.S. Treasury Bills. The required inputs are the number of days from settlement to maturity and one of the following: discount rate (to calculate price and/or yield), yield (to calculate price) or price (to calculate yield).

| STEP | INSTRUCTIONS                  | INPUT DATA/UNITS | KEYS         | OUTPUT DATA/UNITS |
|------|-------------------------------|------------------|--------------|-------------------|
| 1    | Load side 1 and side 2        |                  |              |                   |
|      | <b>Interest at Maturity</b>   |                  |              |                   |
| 2    | Enter the following:          |                  |              |                   |
|      | ● Days issue to maturity      | DIM              | <b>ENTER</b> | DIM               |
|      | ● Days settlement to maturity | DSM              | <b>A</b>     | DSM               |
|      | ● Basis (360 or 365)          | BASIS            | <b>B</b>     | BASIS             |
|      | ● Coupon rate (as a percent)  | CR (%)           | <b>C</b>     | CR (%)            |
| 3    | Enter one of the following:   |                  |              |                   |
|      | ● Yield (%)                   | YLD (%)          | <b>D</b>     | YLD (%)           |
|      | ● Price                       | PRICE            | <b>E</b>     | PRICE             |
| 4    | Calculate remaining variable  |                  | <b>D</b>     | YLD (%)           |
|      |                               |                  | <b>E</b>     | PRICE             |
|      | <b>Discounted Securities</b>  |                  |              |                   |
| 5    | Key in days settlement to     |                  |              |                   |
|      | maturity                      | DSM              | <b>f A</b>   | DSM               |
| 6    | Input one of the following:   |                  |              |                   |
|      | ● Discount rate               | DR               | <b>f B</b>   | DR                |
|      | ● Yield (as a %)              | YLD (%)          | <b>f D</b>   | YLD (%)           |

| STEP | INSTRUCTIONS             | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------|------------------|------|-------------------|
|      | • Price                  | PRICE            | E    | PRICE             |
| 7    | Calculate either or both |                  | D    | YLD (%)           |
|      |                          |                  | E    | PRICE             |

**Example 1:**

Find the yield of the following interest at maturity security:

DIM = 220  
 DSM = 117  
 Basis = 360  
 CR = 5%  
 Price = 99.531250

**Keystrokes:**

220 **ENTER** 117 **A**

360 **B** 5 **C**

99.531250 **E** **D** →

**Outputs:**

6.38 (% yield)

**Example 2:**

Having just performed the above calculation, what is the price of this interest at maturity security to give a yield of 7%?

**Keystrokes:**

7 **D** **E** →

**Output:**

99.33 (price)

**Example 3:**

Given the number of days from settlement to maturity and the discount rate of the following security, find the price and yield.

DSM = 81  
 DR = 5.60

**Keystrokes:**

81 **f** **A** 5.6 **f** **B**

**f** **E** →

**Outputs:**

98.74 (price)

**f** **D** →

5.67 (% yield)

**Example 4:**

Find the yield of the following discounted security:

DSM = 307

Price = 96.27

**Keystrokes:**

307 **f** **A** 96.27 **f** **E**

**f** **D**

**Outputs:**

4.54 (% yield)

## LINEAR REGRESSION—EXPONENTIAL CURVE FIT



This program performs a least squares regression to determine both a linear and exponential fit for the given set of data pairs (x, y).

Linear regression is a statistical method for finding a straight line that best fits a set of data points. Forecasting and market projections are business applications where linear regression could be used to fit a set of data.

The equation of this straight line expresses the linear relationship between an independent (x) and dependent (y) variable and is of the form:

$$y = a + bx$$

where:

y = dependent variable

a = the value of y when x = 0, called the "y-intercept"

b = the slope of the straight line

x = independent variable

In addition to calculating values for the slope and y-intercept, this program also calculates the coefficient of determination  $r^2$ . This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

If the coefficient of determination is lower than expected, perhaps the data points could be better represented as a curve, rather than a straight line.

The program also determines the best exponential curve fit of the form:

$$y = ae^{bx} \quad (a > 0 \text{ and } y > 0)$$

where:

y = dependent variable

a = the value of y when x = 0, called the "y-intercept"

e = a constant (2.718281828)

b = the slope or rate of growth of the curve

x = independent variable

The coefficient of determination is also calculated for the exponential curve.

The exponential curve fitting technique is often used to determine the growth rate of a variable such as a stock's value over time, when it is suspected that the performance is non-linear. The value for b is the decimal value of the *continuous* growth rate. For instance, assume after keying in several end-of-month price quotes for a particular stock, it is determined that the value for b is 0.10. This means that over the measured period the stock has experienced a 10%

continuous growth rate. (An option is available to convert this decimal continuous growth rate to an effective rate in percent. See program BD-12 for a description of continuous and effective interest rates.)

When evaluating the exponential curve, only positive y-values may be input. If a value of y is entered as a negative number, the linear regression slope, intercept, and goodness of fit will be calculated, and then the display will show ERROR. This means that at least one y-value is less than or equal to zero, and the exponential curve may not be evaluated.

When the user has data where the x-values are evenly spaced (i.e., the difference between any two successive x-values is always the same), the trend line key (C) may be used. In this case, it is necessary to key in only the y-values; the x-values are automatically incremented by 1. This feature may be used for inputting data for lines or exponential curves. Remember that if any y-values are input which are less than or equal to zero, the exponential curve fit cannot be calculated.

If any (x, y) data pair was input incorrectly it may be deleted by re-entering the incorrect pair and pressing f B. Likewise, if the last trend value was input incorrectly, key in the incorrect value and press f C.

After determining whether the linear or exponential fit is better, the user may then key in x-values and generate projected y-values ( $\hat{y}$ ), by pressing D for the line, or by pressing E for the curve.

A print/pause option is available (f E). Successive use of f E will display 1.00 or 0.00 indicating that the print/pause mode is on or off respectively. When the print, pause mode is on (1.00) the results are automatically printed/ displayed.

| STEP | INSTRUCTIONS                                                                         | INPUT DATA/UNITS | KEYS  | OUTPUT DATA/UNITS |
|------|--------------------------------------------------------------------------------------|------------------|-------|-------------------|
| 1    | Load side 1 and side 2                                                               |                  |       |                   |
| 2    | Optional: Set print/pause mode                                                       |                  | f C   | 1.00 or 0.00      |
| 3    | Initialize (START)                                                                   |                  | A     | 0.00              |
| 4    | If data is unevenly spaced, key in x and y-values, until each pair has been entered. | x                | ENTER |                   |
|      |                                                                                      | y                | B     | # entries         |
| 5    | To delete an incorrect data pair (x <sub>k</sub> , y <sub>k</sub> )                  | x <sub>k</sub>   | ENTER |                   |
|      |                                                                                      | y <sub>k</sub>   | f B   | # entries - 1     |
| 6    | If data is evenly spaced, key in                                                     |                  |       |                   |

| STEP | INSTRUCTIONS                                                                                                              | INPUT DATA/UNITS | KEYS                                   | OUTPUT DATA/UNITS                                  |
|------|---------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|----------------------------------------------------|
|      | successive y-values until all have been entered.                                                                          |                  |                                        |                                                    |
|      |                                                                                                                           | y                | C                                      | # entries                                          |
| 7    | To delete the <i>last</i> y-value                                                                                         | y                | F C                                    | # entries -1                                       |
| 8    | Calculate. If the print/pause flag is on (1.00), these values are automatically printed.                                  |                  | F A<br>R/S<br>R/S<br>R/S<br>R/S<br>R/S | a<br>b } linear<br>$r^2$<br>a<br>b } exp.<br>$r^2$ |
|      | Optional: Calculate growth rate                                                                                           |                  | R/S                                    | % growth rate                                      |
| 9    | Optional: Key in an x-value and calculate a corresponding y-value on the line. This may be repeated as often as desired.  | x                | D                                      | $\hat{y}$ (lin.)                                   |
| 10   | Optional: Key in an x-value and calculate a corresponding y-value on the curve. This may be repeated as often as desired. | x                | E                                      | $\hat{y}$ (exp.)                                   |
| 11   | Return to step 2 for a new set of data.                                                                                   |                  |                                        |                                                    |

**Example 1:**

You bought a house three years ago for \$47,500. The first year it appreciated \$5,000. The second year its value rose to \$60,000. Today you figure the market price to be \$64,000 if you were to sell. What will your house be worth next year?

**Keystrokes:****Outputs:**

Since the data is evenly spaced, the trend line function could be used.

A  → 0.00  
47500 C  → 1.00

|       |   |   |      |
|-------|---|---|------|
| 52500 | C | → | 2.00 |
| 60000 | C | → | 3.00 |
| 64000 | C | → | 4.00 |

Now calculate the equation of the line (or curve if that gives a better fit).

|     |   |   |                           |
|-----|---|---|---------------------------|
| f   | A | → | 41750.00 (linear a)       |
| R/S |   | → | 5700.00 (linear b)        |
| R/S |   | → | 0.99 (linear $r^2$ )      |
| R/S |   | → | 43021.27 (exponential a)  |
| R/S |   | → | 0.10 (exponential b)      |
| R/S |   | → | 0.98 (exponential $r^2$ ) |

Since linear regression gives a better fit, use **D** to project new values.

|   |   |   |                                                    |
|---|---|---|----------------------------------------------------|
| 5 | D | → | 70250.00 (projected value at 5 <sup>th</sup> year) |
|---|---|---|----------------------------------------------------|

### Example 2:

A stock's price history is listed below. What effective growth rate does this represent? If the stock continues this growth rate, what is the price projected to be at the end of 1976 (year 5)?

| End of Year | Price          |
|-------------|----------------|
| 1972 (1)    | 52½            |
| 1973 (2)    | 55¼            |
| 1974 (3)    | (missing data) |
| 1975 (4)    | 75             |
| 1976 (5)    | ?              |

#### Keystrokes:

|     |       |       |                                    |   |                                |
|-----|-------|-------|------------------------------------|---|--------------------------------|
| A   | →     | 0.00  |                                    |   |                                |
| 1   | ENTER | 52.5  | B                                  | → | 1.00                           |
| 2   | ENTER | 55.25 | B                                  | → | 2.00                           |
| 4   | ENTER | 75    | B                                  | → | 3.00 (total number of entries) |
| f   | A     | →     | 42.63 (linear a)                   |   |                                |
| R/S |       | →     | 7.84 (linear b)                    |   |                                |
| R/S |       | →     | 0.95 (linear $r^2$ )               |   |                                |
| R/S |       | →     | 45.06 (exponential a)              |   |                                |
| R/S |       | →     | 0.12 (exponential b)               |   |                                |
| R/S |       | →     | 0.96 (exponential $r^2$ )          |   |                                |
| R/S |       | →     | 13.17 (percent annual growth rate) |   |                                |

The exponential curve gives a better fit.

|   |   |   |                                            |
|---|---|---|--------------------------------------------|
| 5 | E | → | 83.65 (projected price at the end of 1976) |
|---|---|---|--------------------------------------------|

## MULTIPLE LINEAR REGRESSION



This program performs a least squares multiple linear regression for a series of data points  $x$ ,  $y$ ,  $z$ . Linear regression is a statistical method for finding a straight line that best fits a set of data points. The equation of this straight line expresses the linear relationship between independent ( $x$  and  $y$ ) and dependent ( $z$ ) variables and is of the form:

$$z = a + bx + cy$$

Independent variables are input by pressing **B**. If one or more of the data points was entered incorrectly, simply re-enter the incorrect value(s) and press **f A**. Then continue as before. The three coefficients ( $a$ ,  $b$ ,  $c$ ) are calculated by pressing **C**.

In addition, the program also calculates the coefficient of determination  $r^2$  (**D**). This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

Having determined the equation (the **C** key), the user can then project estimates of  $z$  for given  $x$ ,  $y$  values (**E**). The sums ( $\Sigma x_i$ ;  $\Sigma y_i$ ;  $\Sigma z_i$ ), the sums of squares ( $\Sigma x_i^2$ ;  $\Sigma y_i^2$ ;  $\Sigma z_i^2$ ), and the sums of cross products ( $\Sigma x_i y_i$ ;  $\Sigma x_i z_i$ ;  $\Sigma y_i z_i$ ) are stored in registers 7–9, 4–6, and 1–3 respectively.

An option is available (**f E**) to automatically print/pause the calculated values. Pressing **f E** sets and clears the print option. Successive use of **f E** will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

| STEP | INSTRUCTIONS                                      | INPUT DATA/UNITS  | KEYS                                     | OUTPUT DATA/UNITS         |
|------|---------------------------------------------------|-------------------|------------------------------------------|---------------------------|
| 1    | Load side 1 and side 2                            |                   |                                          |                           |
| 2    | Optional: Select print/pause                      |                   |                                          |                           |
|      | mode                                              |                   | <b>f E</b>                               | 1.00 or 0.00              |
| 3    | Initialize (START)                                |                   | <b>A</b>                                 | 0.00                      |
| 4    | Key in $x$ and $y$ , and corresponding $z$ value  | $x$<br>$y$<br>$z$ | <b>ENTER</b><br><b>ENTER</b><br><b>B</b> | 1.00 or 0.00<br># entries |
| 5    | Repeat step 4 for all $x$ , $y$ , $z$ data pairs. |                   |                                          |                           |

| STEP | INSTRUCTIONS                                                                                                     | INPUT DATA/UNITS | KEYS                    | OUTPUT DATA/UNITS |
|------|------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|-------------------|
| 6    | If a data pair was input incorrectly, re-enter incorrect x, y, z values                                          | x<br>y<br>z      | ENTER+<br>ENTER+<br>f A |                   |
| 7    | Calculate coefficients:<br><br>If the print/pause mode is on (1.00), b and c are automatically calculated.       |                  | C<br>R/S<br>R/S         | a<br>b<br>c       |
| 8    | Optional: Calculate the coefficient of determination: $r^2$                                                      |                  | D                       | $r^2$             |
| 9    | Optional: Key in x and y values and calculate the estimated z value. (This may be repeated as often as desired.) | x<br>y           | ENTER+<br>E             | $\hat{z}$         |
| 10   | For a new case, go to step 2.                                                                                    |                  |                         |                   |

### Example 1:

A commercial land appraiser has examined 5 vacant lots in the downtown section of a local community, all of which have different depths, frontages, and values as shown below. Based on this data, what is the relationship between depth, frontage, and lot value? What is the coefficient of determination? What predicted value would a lot have with a 50 foot depth and 70 foot frontage? With a 75 foot depth and 80 foot frontage?

| Lot Depth (feet) | Lot Frontage (feet) | Lot Value |
|------------------|---------------------|-----------|
| 70               | 70.8                | \$101,000 |
| 90               | 60.0                | 82,190    |
| 85               | 90.0                | 170,000   |
| 40               | 70.0                | 100,000   |
| 100              | 60.0                | 90,000    |

## Keystrokes:

## Outputs:

A 70 ENTER  $\downarrow$  70.8 ENTER  $\downarrow$  101000 B

90 ENTER  $\downarrow$  60 ENTER  $\downarrow$  82190 B

85 ENTER  $\downarrow$  90 ENTER  $\downarrow$  170000 B

40 ENTER  $\downarrow$  70 ENTER  $\downarrow$  100000 B

100 ENTER  $\downarrow$  60 ENTER  $\downarrow$  90000 B  $\rightarrow$  5.00 (number of entries)

C  $\longrightarrow$  -118499.03 (a)

R/S  $\longrightarrow$  314.71 (b)

R/S  $\longrightarrow$  2892.02 (c)

Hence,  $z = -118499.03 + 314.71x + 2892.02y$

D  $\longrightarrow$  0.98 ( $r^2$ )

50 ENTER  $\downarrow$  70 E  $\longrightarrow$  99678.08 (value of  $50 \times 70$  foot lot)

75 ENTER  $\downarrow$  80 E  $\longrightarrow$  136466.08 (value of  $75 \times 80$  foot lot)

Notice that if your lot has a depth of 50 feet and a frontage of 10 feet a negative \$ value results (-73843.26). You may have difficulty selling this property!

## BREAK-EVEN ANALYSIS

### BREAK-EVEN ANALYSIS

• F

• P

• V

• U

• GP

Break-even analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached, at the intersection of the total income and total cost lines, the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. Break-even analysis may be represented as follows:

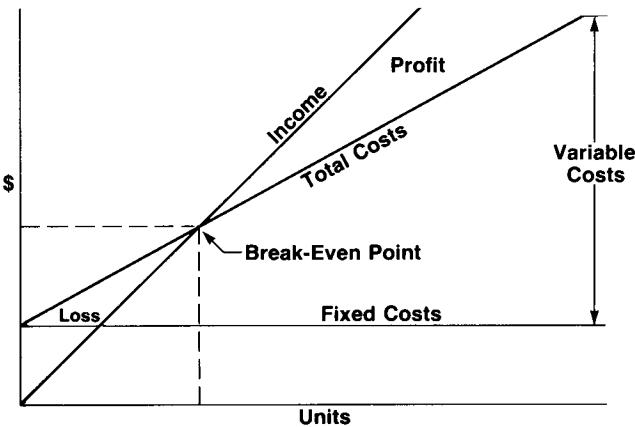



Figure 8

Given four of the following variables: fixed costs (F), sales price per unit (P), variable costs per unit (V), number of units sold (U), and gross profit (GP), this program evaluates the remaining variable. To calculate the break-even values, simply let the gross profit equal zero.

The degree of operating leverage (OL) at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the break-even point, where a small change in sales may produce a very large increase in profits. This happens because the profits are close to zero near the break-even point. Likewise, firms with a small degree of operating leverage are operating farther from the break-even point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage are fixed costs (F), sales price per unit (P), variable costs per unit (V), and number of units (U).

For subsequent calculations, it is necessary only to input *new* data.

| STEP | INSTRUCTIONS                                  | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|-----------------------------------------------|------------------|------|-------------------|
| 1    | Load side 1                                   |                  |      |                   |
| 2    | Key in four of the following in any order:    |                  |      |                   |
|      | • Fixed costs                                 | F                | A    | F                 |
|      | • Sales price per unit                        | P                | B    | P                 |
|      | • Variable costs per unit                     | V                | C    | V                 |
|      | • Number of units                             | U                | D    | U                 |
|      | • Gross profit                                | GP               | E    | GP                |
| 3    | Calculate the remaining variable.             |                  | A    | F                 |
|      |                                               |                  | B    | P                 |
|      |                                               |                  | C    | V                 |
|      |                                               |                  | D    | U                 |
|      |                                               |                  | E    | GP                |
| 4    | To calculate the degree of operating leverage |                  | F A  | OL                |

### Example 1:

The Cooper Company sells finance textbooks at \$13 apiece. Given costs and revenues below, how many textbooks must be sold to break even?

#### Fixed Costs

|                      |                        |
|----------------------|------------------------|
| Typesetting          | \$ 4,000               |
| Graphics production  | 5,000                  |
| Printing and binding | 3,000                  |
| Total fixed costs    | <u><u>\$12,000</u></u> |

#### Variable costs per copy

|                               |                      |
|-------------------------------|----------------------|
| Distribution                  | \$ 1.00              |
| Commissions                   | 3.75                 |
| Royalties                     | 2.00                 |
| Total variable costs per copy | <u><u>\$6.75</u></u> |

|                      |                       |
|----------------------|-----------------------|
| Sales price per copy | <u><u>\$13.00</u></u> |
|----------------------|-----------------------|

**Keystrokes:**

12000 **A** 13 **B** 6.75 **C**

0 **E** **D** →

**Outputs:**

1920.00 (number of units)

**Example 2:**

Having just completed the above problem, what is the Copper Company's degree of operating leverage at 2000 units? At 5000 units?

**Keystrokes:**

2000 **D** **f** **A** →

**Outputs:**

25.00 (this is close to the break-even point)

5000 **D** **f** **A** →

1.62 (the company is farther from the break-even point and less sensitive to changes in sales volume)

## INVOICING



Given a discount rate (DISC), number of units (UNITS), and price per unit (PRICE) for each line item, this program calculates the net line total (NLT), maintains a running subtotal (ST) and grand total (GT), and determines each line total's percent of the grand total (%T). A maximum of 20 line items may be input. If more than 20 are input, ERROR is displayed.

The net line total is the number of units multiplied by the unit price, less the discount amount. Each time it is calculated (**E**), the value is added to both the running subtotal and the grand total. Pressing **f A** displays the running subtotal and clears the subtotal accumulation (grand total is not affected). Pressing **f B** displays the grand total (without clearing it). The grand total is not cleared (set to zero) until you START (**A**) a new problem.

Each line total's percent of the grand total is determined by pressing **f C**. If the print/pause flag is on, the percentages are output automatically. Otherwise **R/S** must be used. The last output is 100.00, indicating that all percentages have been calculated.

If after calculating a net line total (**E**) it is discovered that one of the last input values was keyed incorrectly, press **f D** to delete the last line total. The previous subtotal is displayed. If a prior line total was incorrect, it is necessary to input the appropriate discount, number of units, and price before **f D** is pressed to delete the corresponding line total.

The discount rate, number of units and unit price are retained and must only be keyed in when they change.

Pressing **f E** sets and clears the print/pause option. Successive use of **f E** will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

| STEP | INSTRUCTIONS                       | INPUT DATA/UNITS | KEYS       | OUTPUT DATA/UNITS |
|------|------------------------------------|------------------|------------|-------------------|
| 1    | Load side 1                        |                  |            |                   |
| 2    | Optional: Select print/pause mode. |                  | <b>f E</b> | 1.00 or 0.00      |
| 3    | Initialize (START)                 |                  | <b>A</b>   | 0.00              |
| 4    | Key in:                            |                  |            |                   |
|      | • Discount rate                    | DISC (%)         | <b>B</b>   | DISC (%)          |
|      | • Number of units                  | UNITS            | <b>C</b>   | UNITS             |

| STEP | INSTRUCTIONS                                                                                                          | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|-----------------------------------------------------------------------------------------------------------------------|------------------|------|-------------------|
|      | • Price per unit                                                                                                      | PRICE            | D    | PRICE             |
| 5    | Calculate net line total                                                                                              |                  | E    | NLT               |
| 6    | Optional: Display running subtotal                                                                                    |                  | F A  | ST                |
| 7    | Optional: Display running grand total                                                                                 |                  | F B  | GT                |
| 8    | Display each line total's percent of the grand total                                                                  |                  | F C  | % T <sub>1</sub>  |
|      | Use R/S if print/pause mode is off (0.00).                                                                            |                  | R/S  | % T <sub>2</sub>  |
|      |                                                                                                                       |                  | R/S  | % T <sub>3</sub>  |
|      |                                                                                                                       |                  | etc. |                   |
| 9    | If last net line total was incorrect                                                                                  |                  | F D  | ST                |
| 10   | For additional items, same grand total, go to step 4 and change appropriate inputs. For a new case (clear everything) |                  |      |                   |
|      | go to step 3.                                                                                                         |                  |      |                   |

### Example 1:

The controller of a small company can take advantage of several discounts if he pays the three bills shown below. What amount should be remitted for each bill, what is the grand total to be paid, and what percentage of the grand total is each payment?

#### Bill 1 (2% discount if paid today)

| Line Item | # of Units | Unit Price |
|-----------|------------|------------|
| 1         | 25         | \$ 2.75    |
| 2         | 60         | 1.50       |
| 3         | 71         | 1.50       |

#### Bill 2 (2% discount if paid today)

| Line Item | # of Units | Unit Price |
|-----------|------------|------------|
| 1         | 12         | \$10.50    |
| 2         | 17         | 37.20      |

## Bill 3 (3% discount if paid today)

| Line Item | # of Units | Unit Price |
|-----------|------------|------------|
| 1         | 155        | \$ .28     |
| 2         | 38         | .92        |
| 3         | 217        | .56        |

## Keystrokes:

|                     |                          |
|---------------------|--------------------------|
| A 2 B 25 C 2.75 D E | 67.38                    |
| 60 C 1.50 D E       | 88.20                    |
| 71 C E              | 104.37                   |
| f A                 | 259.95 (Subtotal—Bill 1) |
| 12 C 10.50 D E      | 123.48                   |
| 17 C 37.20 D E      | 619.75                   |
| f A                 | 743.23 (Subtotal—Bill 2) |
| 3 B 155 C .28 D E   | 42.10                    |
| 38 C .92 D E        | 33.91                    |
| 217 C .56 D E       | 117.87                   |
| f A                 | 193.88 (Subtotal—Bill 3) |
| f B                 | 1197.06 (Grand total)    |
| f C                 | 5.63                     |
| R/S                 | 7.37                     |
| R/S                 | 8.72                     |
| R/S                 | 10.32                    |
| R/S                 | 51.77                    |
| R/S                 | 3.52                     |
| R/S                 | 2.83                     |
| R/S                 | 9.85                     |
| R/S                 | 100.00                   |

## Outputs:

Each net line total's percent of the grand total.

## PAYROLL



This section gives an illustration of a payroll program for a small business, which may be modified to suit the employer's particular needs. Since each individual business will have its own needs, requiring modification of this program, we have included a *blank* magnetic card with an unclipped corner. To run the example, the user must record the program included in the Program Listings section. For *example* purposes we have chosen a small business operating in the state of California.

The basic concept around which the program is built is that there is one main program, with a separate data card for each employee. After the net pay for each individual is calculated (based on the data card information), the data card is re-entered to record the new data onto the card.

The data card may contain information on the employee's Social Security number, the number of exemptions, marital status, hourly wage, overtime wage, gross pay to date, Federal, State, Federal Insurance Contributions Act (FICA) and California State Disability Insurance (SDI) withholdings to date, and deductions such as savings deposits, contributions, health insurance, life insurance, stock plans, etc.

The program reflects the 1976 Federal Tax Laws. During 1976, the Social Security (FICA) tax base was increased to \$15,300, with the rate remaining at 5.85%. The California State Disability Insurance (SDI) taxable wage base is \$9000, with a rate of 1%.

The number of regular hours worked (#hrs), and the number of hours of overtime (#hrs OT), are input by pressing **B** and **C** respectively. Federal (FEDL) and state (STATE) taxes are input by pressing **D** and **E**. The net pay key (**A**) calculates the weekly FICA and SDI, deducts three constants, asks for a data card to record new data, and displays the net pay. All results are rounded to two decimal places.

An option is available (**f B**) to display the gross pay and the Federal, State, FICA, and SDI deductions to date.

A print/pause option is also available (**f E**). Successive use of **f E** will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively. When the print/pause mode is off (0.00), multiple results must be output with **R/S**. If the print/pause mode is on (1.00) multiple results are automatically printed or displayed.

**Note:**

The user must provide the applicable Federal and State tax tables.

To use this program, the following registers need to be recorded on a data card:

|                |                                 |
|----------------|---------------------------------|
| R <sub>0</sub> | → Gross pay to date             |
| R <sub>3</sub> | → Federal withholdings to date  |
| R <sub>4</sub> | → State withholdings to date    |
| R <sub>5</sub> | → FICA to date                  |
| R <sub>6</sub> | → SDI to date                   |
| R <sub>7</sub> | → Constant 1 (Health Insurance) |
| R <sub>8</sub> | → Constant 2 (Stock Plan (%))   |
| R <sub>A</sub> | → Constant 3 (United Fund)      |
| R <sub>B</sub> | → Number of exemptions          |
| R <sub>C</sub> | → Hourly wage                   |
| R <sub>D</sub> | → Overtime wage                 |
| R <sub>E</sub> | → Marital status                |
|                | .1 ←→ Single                    |
|                | .2 ←→ Married                   |
| R <sub>I</sub> | → Social Security Number        |

To record data onto a data card, the following procedure may be used:

1. Set the PRGM-RUN switch to RUN.
2. Key the data into the appropriate storage registers.
3. Press **[W/DATA]** on the HP-67, or press **[WRITE DATA]** on the HP-97. The display will show **Crd**.
4. Insert an unclipped blank card. If the secondary storage registers contain non-zero data, insert the second side of the card. The data in the storage registers is now recorded on the data card.
5. To change data already on an unclipped card, enter the card, key in the appropriate new data, repeat step 3, and re-enter the data card. The card now contains the revised data.

The following example illustrates the use of this program.

#### **Example 1:**

Having just purchased an HP-97 (or HP-67), Mr. Cooper is anxious to set up a payroll system for his hourly employees. The Cooper Company is located in Cupertino, California. A typical employee summary is:

|                                                                                                                                           | Gross     | Total Federal Tax | Total State Tax | Total FICA | Total SDI | Health Insurance | Stock Plan(%) | United Fund |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------------|------------|-----------|------------------|---------------|-------------|
| Joyce Waters<br>SS No:<br>553-86-7778<br>Marital Status:<br>Single<br>Exemptions: 1<br>Hourly Wage:<br>\$4.00<br>Overtime Wage:<br>\$6.00 | \$2064.00 | \$335.64          | \$44.20         | \$120.74   | \$20.64   | \$2.50           | 5%            | \$1.00      |

Table 1

Mr. Cooper checks Ms. Waters' time card and finds that she worked 37½ hours this week. What is her take-home pay, gross pay, and Federal, State, FICA and SDI deductions to date?

To make a data card for Ms. Waters:

**Keystrokes:**

553867778 **STO** **I**

.1 **STO** **E**

1 **STO** **B**

4 **STO** **C**

6 **STO** **D**

2064 **STO** **0**

335.64 **STO** **3**

44.20 **STO** **4**

120.74 **STO** **5**

20.64 **STO** **6**

2.50 **STO** **7**

5 **STO** **8**

1 **STO** **A**

**W/DATA** → Crd

**Outputs:**

Insert an unclipped blank magnetic card.

To determine net pay, record the Payroll program on the printed card and initialize.

**Keystrokes:****Outputs:**

|                  |   |                                                  |
|------------------|---|--------------------------------------------------|
| <b>A</b>         | → | 0.00 (blinking)                                  |
| Insert data card | → | 553867778.0 (Ms. Waters' Social Security Number) |
| <b>R/S</b>       | → | 0.10 (Ms. Waters is single)                      |
| <b>R/S</b>       | → | 1.00 (one exemption)                             |
| 37.5 <b>B</b>    | → | 150.00 (weekly wage)                             |

From a federal tax table for single persons paid weekly, the withholding for a wage of \$150.00 and one exemption is \$20.50. The corresponding amount of California State Tax to be withheld is \$2.90.

**Keystrokes:****Outputs:**

|                |   |                       |
|----------------|---|-----------------------|
| 20.50 <b>D</b> | → | 20.50 (Federal tax)   |
| 2.90 <b>E</b>  | → | 2.90 (California tax) |

To find the net pay:

|                   |   |                         |
|-------------------|---|-------------------------|
| <b>f</b> <b>A</b> | → | 8.78 (FICA)             |
| <b>R/S</b>        | → | 1.50 (SDI)              |
| <b>R/S</b>        | → | 2.50 (Health insurance) |
| <b>R/S</b>        | → | 7.50 (Stock fund)       |
| <b>R/S</b>        | → | 1.00 (United Fund)      |
| <b>R/S</b>        | → | Crd                     |

Insert data card to record new data. Program will then continue and display the net pay.

→ 105.32 (Net pay)

**Keystrokes:****Outputs:**

|                   |   |                                       |
|-------------------|---|---------------------------------------|
| <b>f</b> <b>B</b> | → | 2214.00 (Gross pay to date)           |
| <b>R/S</b>        | → | 356.14 (Federal withholdings to date) |
| <b>R/S</b>        | → | 47.10 (State withholdings to date)    |
| <b>R/S</b>        | → | 129.52 (FICA to date)                 |
| <b>R/S</b>        | → | 22.14 (SDI to date)                   |

For subsequent weeks, it will not be necessary to make a new data card for Ms. Waters. Simply input the Payroll program, initialize (**A**), input her data card, execute the program, and re-record on the same data card. Using this procedure, the payroll information is constantly updated.

Suppose that in 1977 the FICA is increased to 6.15% of the base pay, with a taxable wage base of \$16,000. To change the program to meet new requirements, the following procedure should be followed:

1. Press **GTO** .051
2. Switch to PRGM mode → 051 03
3. Delete the last two steps  
~~DEL~~ ~~DEL~~ → 049 01
4. Insert the two digits of the wage base which were changed  
60 → 051 00
5. Press **GTO** .062 → 062 05
6. Delete the last four steps  
~~DEL~~ ~~DEL~~ ~~DEL~~ ~~DEL~~ → 058 \_ \_ 03 (this code will vary between the HP-67 and HP-97)
7. Insert the new percentage  
6.15 → 062 05
8. Switch to RUN mode.

A similar procedure may be used to change or delete the SDI subroutine (LBL 2). Simply press **GTO** [2], switch to PRGM mode, and make the appropriate changes.

The user may also wish to expand or decrease the number of deductions to be taken. Eleven additional registers are available for constant storage (S0–S9, I). Subroutine 5 (LBL 5) may be accessed by pressing **GTO** [5] (in RUN mode) and then switching to PRGM mode. Changes in the routine may then be made. Be sure to delete inappropriate routines already recorded.

Remember that if the secondary storage registers are used (S0–S9), both sides of the data card will need to be recorded.

We recommend that the user does not clip the corner of the magnetic card provided. If you wish a permanent program card, you should use another blank card to record the program.

## INVENTORY



This section gives an illustration of how an inventory program might be written. Every business will probably have a different inventory method, so we have included a *blank* magnetic card with an unclipped corner. To run the example, the user must record the program included in the Program Listings section.

The first step in developing any program is to define what will be calculated, and which labels will be used to do the calculations. The card art shown above, could be programmed to do the following:

- START — initializes the program by asking for a data card; then displays a part number (10 digit maximum)
- PRICE — stores price of parts received
- RECD — subtracts the number of units received from amount ordered; adds the number of units received to total on hand; calculates new unit price by weighted average method; calculates slack (quantity on hand plus quantity on order less quantity required)
- ISSUED — subtracts number of units issued from those on hand; calculates slack
- ORDER — adds number of units ordered to those already on order; calculates slack
- MIN — stores minimum quantity
- LT→SLK — when the lead time (in days) is input, the slack is calculated
- LIST — recalls and displays inventory information
- UPDATE — asks for data card to record new inventory information
- P? — sets and unsets the print/pause flag; successive use of **F** **E** displays 1.00 and 0.00 indicating that the print/pause mode is on or off respectively

The main program contains the instructions to perform the above calculations. A separate data card holds the current inventory information for each part number. The data card may be updated after the transactions have been completed.

To use this program, the following registers should be recorded on a data card:

- $R_0$  → Part number (10 digit maximum)
- $R_1$  → Unit price

R<sub>2</sub> → Quantity on hand  
 R<sub>3</sub> → Quantity on order  
 R<sub>4</sub> → Minimum quantity  
 R<sub>5</sub> → Lead time (days)  
 R<sub>6</sub> → Slack (Optional—as it may be calculated)

The program uses three additional registers for calculations, so 16 registers are still available.

The following report illustrates how this program might be used.

**Inventory Report**  
**February 15, 1976**

| Part #  | Unit Price | Quantity on Hand | Quantity on Order | Minimum Quantity | Lead Time |
|---------|------------|------------------|-------------------|------------------|-----------|
| 2417126 | 9.91       | 275              | 319               | 370              | 56        |
| 3668871 | 4.96       | 250              | 100               | 225              | 46        |
| .       | .          | .                | .                 | .                | .         |
| .       | .          | .                | .                 | .                | .         |
| .       | .          | .                | .                 | .                | .         |

Data cards for each part number could be made in this manner:

1. In RUN mode, store data in the appropriate registers.

**CL REG**

2417126 **STO** 0  
 9.91 **STO** 1  
 275 **STO** 2  
 319 **STO** 3  
 370 **STO** 4  
 56 **STO** 5

2. Press **W/DATA** and insert a blank, unclipped card.
3. Repeat the procedure for each part number.

Suppose that in the next week, the following part was received:

| Part #  | Unit Price | Amount Received |
|---------|------------|-----------------|
| 2417126 | 10.25      | 150             |

To update the data card to reflect this transaction, use the following procedure:

1. Record the inventory program.
2. Press **A**. The display will blink zeros until a data card is input. When the data card is entered, the display will show the part number

→ 2417126.00

3. Key in the price of each unit received and press **B**.

10.25 **B**

4. Key in the number of units received and press **C**.

150 **C** → 425.00

The number displayed is the quantity on hand.

5. To review the status of the part number, press:

|            |                             |
|------------|-----------------------------|
| <b>f C</b> | → 10.03 (New unit price)    |
| <b>R/S</b> | → 425.00 (Amount on hand)   |
| <b>R/S</b> | → 169.00 (Amount on order)  |
| <b>R/S</b> | → 370.00 (Minimum quantity) |
| <b>R/S</b> | → 56.00 (Lead time)         |
| <b>R/S</b> | → 224.00 (Slack)            |
| <b>R/S</b> | → 2417126.00 (Part number)  |

If the print/pause flag was on (1.00), these values would have been displayed automatically.

6. To record the new data press **f D** and insert the data card. The new data is recorded, and the display shows 0.00.

Likewise, if parts had been sold or ordered, the appropriate amounts would be keyed in, the user would press **D** or **E** respectively, and then update the data card.

If the minimum quantity requirements change, key in the new minimum and press **f A**. And if the user wishes to calculate the slack, key in the lead time and press **f B**.

We recommend that the user does not clip the corner of the magnetic card provided. If you wish a permanent program card, you should use another blank card to record the program.

## PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owners Handbook.

| <b>Program</b>                                                 | <b>Page</b> |
|----------------------------------------------------------------|-------------|
| 1. Internal Rate of Return .....                               | L01-01      |
| 2. Internal Rate of Return—Groups of Cash Flows .....          | L02-01      |
| 3. Discounted Cash Flow Analysis—Net Present Value .....       | L03-01      |
| 4. Direct Reduction Loans—Sinking Fund .....                   | L04-01      |
| 5. Accumulated Interest/Remaining Balance .....                | L05-01      |
| 6. Wrap-Around Mortgage .....                                  | L06-01      |
| 7. Constant Payment to Principal Loan .....                    | L07-01      |
| 8. Add-On Rate Installment Loan/Rule of 78's .....             | L08-01      |
| 9. Savings Plan—Leases .....                                   | L09-01      |
| 10. Advance Payments .....                                     | L10-01      |
| 11. Savings—Compounding Periods Different from Payment Periods | L11-01      |
| 12. Simple Interest/Interest Conversions .....                 | L12-01      |
| 13. Depreciation Schedules .....                               | L13-01      |
| 14. Days Between Dates .....                                   | L14-01      |
| 15. Bond Price and Yield .....                                 | L15-01      |
| 16. Interest at Maturity/Discounted Securities .....           | L16-01      |
| 17. Linear Regression—Exponential Curve Fit .....              | L17-01      |
| 18. Multiple Linear Regression .....                           | L18-01      |
| 19. Break-Even Analysis .....                                  | L19-01      |
| 20. Invoicing .....                                            | L20-01      |
| 21. Payroll .....                                              | L21-01      |
| 22. Inventory .....                                            | L22-01      |

## INTERNAL RATE OF RETURN

|     |                   |          |                                                                        |     |                  |          |                                     |    |
|-----|-------------------|----------|------------------------------------------------------------------------|-----|------------------|----------|-------------------------------------|----|
| 001 | #LBLA             | 21 11    | Clear registers                                                        | 057 | RCLI             | 36 46    |                                     |    |
| 002 | CLRG              | 16 53    |                                                                        | 058 | 1                | 01       |                                     |    |
| 003 | PCS               | 16-51    |                                                                        | 059 | 0                | 00       |                                     |    |
| 004 | CLRG              | 16-53    | INV→RE                                                                 | 060 | 1                | 01       |                                     |    |
| 005 | STOE              | 35 15    |                                                                        | 061 | X                | -35      |                                     |    |
| 006 | CF0               | 16 22 00 |                                                                        | 062 | STOI             | 35 46    |                                     |    |
| 007 | CF1               | 16 22 01 |                                                                        | 063 | RTN              | 24       |                                     |    |
| 008 | RTN               | 24       |                                                                        | 064 | *LBLB            | 21 16 15 |                                     |    |
| 009 | #LBLB             | 21 12    |                                                                        | 065 | F0?              | 16 23 00 |                                     |    |
| 010 | 2                 | 02       | Input largest cash flow if                                             | 066 | GT08             | 22 00    |                                     |    |
| 011 | X                 | -35      | #CFs > 22.                                                             | 067 | INT              | 16 34    |                                     |    |
| 012 | ST08              | 35 00    |                                                                        | 068 | EEX              | -23      |                                     |    |
| 013 | RCLE              | 36 15    |                                                                        | 069 | 5                | 05       |                                     |    |
| 014 | X <sup>2</sup> Y  | -41      |                                                                        | 070 | ÷                | -24      |                                     |    |
| 015 | ÷                 | -24      | INV/2 CMAX→RE                                                          | 071 | RTN              | 24       |                                     |    |
| 016 | STOE              | 35 15    |                                                                        | 072 | *LBL0            | 21 00    |                                     |    |
| 017 | LSTX              | 16-63    |                                                                        | 073 | FRC              | 16 44    |                                     |    |
| 018 | SF0               | 16 21 00 | Flag 0 indicates > 22 cash                                             | 074 | RTN              | 24       |                                     |    |
| 019 | 2                 | 02       | flows.                                                                 | 075 | *LBLD            | 21 14    |                                     |    |
| 020 | ÷                 | -24      |                                                                        | 076 | GSB <sub>a</sub> | 23 16 11 | Set-up I                            | NN |
| 021 | RTN               | 24       |                                                                        | 077 | RCLI             | 36 46    |                                     |    |
| 022 | #LBLC             | 21 13    |                                                                        | 078 | EEX              | -23      |                                     |    |
| 023 | ISZI              | 16 26 46 |                                                                        | 079 | 2                | 02       |                                     |    |
| 024 | F0?               | 16 23 00 |                                                                        | 080 | ÷                | -24      |                                     |    |
| 025 | GSB <sub>c</sub>  | 23 16 13 |                                                                        | 081 | STOI             | 35 46    | N.N→I                               |    |
| 026 | ST+I              | 35-55 45 |                                                                        | 082 | 1                | 01       |                                     |    |
| 027 | X <sup>2</sup> Y  | -41      |                                                                        | 083 | .                | -62      |                                     |    |
| 028 | RCLI              | 36 46    | Display # of cash flows (add                                           | 084 | 0                | 00       |                                     |    |
| 029 | F1?               | 16 23 01 | if > 22 CF).                                                           | 085 | 1                | 01       | 1 + i <sub>0</sub> → R <sub>0</sub> |    |
| 030 | +                 | -55      |                                                                        | 086 | ST08             | 35 14    |                                     |    |
| 031 | RTN               | 24       |                                                                        | 087 | *LBL4            | 21 04    |                                     |    |
| 032 | #LBLc             | 21 16 13 |                                                                        | 088 | CF0              | 16 22 00 |                                     |    |
| 033 | 2                 | 02       |                                                                        | 089 | 0                | 00       |                                     |    |
| 034 | 3                 | 03       |                                                                        | 090 | ST08             | 35 00    |                                     |    |
| 035 | RCLI              | 36 46    |                                                                        | 091 | #LBL5            | 21 05    |                                     |    |
| 036 | X <sup>2</sup> Y? | 16-32    | 23 <sup>rd</sup> cash flow?                                            | 092 | RCLI             | 36 46    |                                     |    |
| 037 | GT08              | 22 00    |                                                                        | 093 | INT              | 16 34    |                                     |    |
| 038 | 1                 | 01       |                                                                        | 094 | F1?              | 16 23 01 | Get j                               |    |
| 039 | STOI              | 35 46    | Reset I                                                                | 095 | GSB <sub>d</sub> | 23 16 14 |                                     |    |
| 040 | +                 | -55      |                                                                        | 096 | RCLI             | 36 45    |                                     |    |
| 041 | CLX               | -51      | Drop stack and clear x.                                                | 097 | F1?              | 16 23 01 |                                     |    |
| 042 | EEX               | -23      |                                                                        | 098 | GSB <sub>e</sub> | 23 16 15 | Unpack CF <sub>j</sub>              |    |
| 043 | 5                 | 05       |                                                                        | 099 | ST+0             | 35-55 00 |                                     |    |
| 044 | ST+0              | 35-24 00 | 2 CMAX/10 <sup>5</sup> →R <sub>0</sub>                                 | 100 | X                | -35      |                                     |    |
| 045 | SF1               | 16 21 01 |                                                                        | 101 | +                | -55      | f(i) in R <sub>0</sub>              |    |
| 046 | #LBL0             | 21 00    |                                                                        | 102 | RCLD             | 36 14    |                                     |    |
| 047 | R <sub>0</sub>    | -31      |                                                                        | 103 | ST+0             | 35-24 00 |                                     |    |
| 048 | 1                 | 01       |                                                                        | 104 | ÷                | -24      |                                     |    |
| 049 | -                 | -45      |                                                                        | 105 | DSZI             | 16 25 46 |                                     |    |
| 050 | X <sup>2</sup> Y  | -41      |                                                                        | 106 | GT05             | 22 05    |                                     |    |
| 051 | RCL0              | 36 00    | Scale cash flow                                                        | 107 | F1?              | 16 23 01 |                                     |    |
| 052 | ÷                 | -24      |                                                                        | 108 | GT08             | 22 00    |                                     |    |
| 053 | F1?               | 16 23 01 | If CF <sub>j</sub> , j > 22, drop fractional part of CF <sub>j</sub> . | 109 | #LBL6            | 21 06    |                                     |    |
| 054 | INT               | 16 34    |                                                                        | 110 | RCL8             | 36 08    |                                     |    |
| 055 | RTN               | 24       |                                                                        | 111 | RCLE             | 36 15    |                                     |    |
| 056 | #LBLa             | 21 16 11 |                                                                        | 112 | -                | -45      |                                     |    |

## REGISTERS

| 0 Used  | 1 Used  | 2 Used  | 3 Used  | 4 Used               | 5 Used  | 6 Used  | 7 Used  | 8 Used  | 9 Used  |
|---------|---------|---------|---------|----------------------|---------|---------|---------|---------|---------|
| S0 Used | S1 Used | S2 Used | S3 Used | S4 Used              | S5 Used | S6 Used | S7 Used | S8 Used | S9 Used |
| A Used  | B Used  | C Used  |         | D 1 + i <sub>0</sub> | E Used  |         | I Used  |         |         |

|            |                   |          |                |                                                       |        |            |                                                                |      |      |
|------------|-------------------|----------|----------------|-------------------------------------------------------|--------|------------|----------------------------------------------------------------|------|------|
| 113        | X <sup>2</sup> Y  | -41      |                |                                                       |        |            |                                                                |      |      |
| 114        | ÷                 | -24      |                |                                                       |        |            |                                                                |      |      |
| 115        | RCLD              | 36 14    | $\frac{f}{f'}$ | (1 + i)                                               |        |            |                                                                |      |      |
| 116        | X                 | -35      |                |                                                       |        |            |                                                                |      |      |
| 117        | RCLD              | 36 14    |                |                                                       |        |            |                                                                |      |      |
| 118        | X <sup>2</sup> Y  | -41      |                |                                                       |        |            |                                                                |      |      |
| 119        | +                 | -55      |                | (1 + i) next                                          |        |            |                                                                |      |      |
| 120        | STO0              | 35 14    |                |                                                       |        |            |                                                                |      |      |
| 121        | LSTX              | 16-63    |                |                                                       |        |            |                                                                |      |      |
| 122        | ABS               | 16 31    |                |                                                       |        |            |                                                                |      |      |
| 123        | EEX               | -23      |                |                                                       |        |            |                                                                |      |      |
| 124        | CHS               | -22      |                |                                                       |        |            |                                                                |      |      |
| 125        | 5                 | 85       |                |                                                       |        |            |                                                                |      |      |
| 126        | X <sup>2</sup> Y? | 16-34    |                |                                                       |        |            |                                                                |      |      |
| 127        | GT07              | 22 87    |                | ←DONE!                                                |        |            |                                                                |      |      |
| 128        | GSB <sub>a</sub>  | 23 16 11 |                |                                                       |        |            |                                                                |      |      |
| 129        | GT04              | 22 84    |                |                                                       |        |            |                                                                |      |      |
| 130        | *LBL0             | 21 00    |                |                                                       |        |            |                                                                |      |      |
| 131        | F0?               | 16 23 00 |                |                                                       |        |            |                                                                |      |      |
| 132        | GT06              | 22 06    |                |                                                       |        |            |                                                                |      |      |
| 133        | SF0               | 16 21 00 |                |                                                       |        |            |                                                                |      |      |
| 134        | GSB <sub>b</sub>  | 23 16 12 |                |                                                       |        |            |                                                                |      |      |
| 135        | GT05              | 22 05    |                |                                                       |        |            |                                                                |      |      |
| 136        | *LBLb             | 21 16 12 |                | Loop back for lower 22 CFs                            |        |            |                                                                |      |      |
| 137        | 2                 | 02       |                |                                                       |        |            |                                                                |      |      |
| 138        | 2                 | 02       |                |                                                       |        |            |                                                                |      |      |
| 139        | RCLI              | 36 46    |                |                                                       |        |            |                                                                |      |      |
| 140        | +                 | -55      |                |                                                       |        |            |                                                                |      |      |
| 141        | STO1              | 35 46    |                |                                                       |        |            |                                                                |      |      |
| 142        | CLK               | -51      |                |                                                       |        |            |                                                                |      |      |
| 143        | +                 | -55      |                |                                                       |        |            |                                                                |      |      |
| 144        | RTN               | 24       |                |                                                       |        |            |                                                                |      |      |
| 145        | *LBLd             | 21 16 14 |                | Add 22 if flag 0 clear.                               |        |            |                                                                |      |      |
| 146        | 2                 | 02       |                |                                                       |        |            |                                                                |      |      |
| 147        | 2                 | 02       |                |                                                       |        |            |                                                                |      |      |
| 148        | F0?               | 16 23 00 |                |                                                       |        |            |                                                                |      |      |
| 149        | CLX               | -51      |                |                                                       |        |            |                                                                |      |      |
| 150        | +                 | -55      |                |                                                       |        |            |                                                                |      |      |
| 151        | RTN               | 24       |                |                                                       |        |            |                                                                |      |      |
| 152        | *LBL7             | 21 07    |                |                                                       |        |            |                                                                |      |      |
| 153        | RCLD              | 36 14    |                | Reset R <sub>1</sub> for another pressing of <b>D</b> |        |            |                                                                |      |      |
| 154        | 1                 | 81       |                |                                                       |        |            |                                                                |      |      |
| 155        | -                 | -45      |                |                                                       |        |            |                                                                |      |      |
| 156        | STO0              | 35 14    |                |                                                       |        |            |                                                                |      |      |
| 157        | EEX               | -23      |                |                                                       |        |            |                                                                |      |      |
| 158        | 2                 | 02       |                |                                                       |        |            |                                                                |      |      |
| 159        | x                 | -35      |                |                                                       |        |            |                                                                |      |      |
| 160        | RCLI              | 36 46    |                |                                                       |        |            |                                                                |      |      |
| 161        | LSTX              | 16-63    |                |                                                       |        |            |                                                                |      |      |
| 162        | x                 | -35      |                |                                                       |        |            |                                                                |      |      |
| 163        | STO1              | 35 46    |                |                                                       |        |            |                                                                |      |      |
| 164        | X <sup>2</sup> Y  | -41      |                |                                                       |        |            |                                                                |      |      |
| 165        | RTN               | 24       |                |                                                       |        |            |                                                                |      |      |
| 166        | R/S               | 51       |                |                                                       |        |            |                                                                |      |      |
| LABELS     |                   |          |                |                                                       |        |            |                                                                |      |      |
| FLAGS      |                   |          |                |                                                       |        |            |                                                                |      |      |
| SET STATUS |                   |          |                |                                                       |        |            |                                                                |      |      |
| A          | INV               | B CF MAX | C CF           | D -IRR                                                | E      | 0 > 22 CFs | FLAGS                                                          | TRIG | DISP |
| a          | Used              | b Used   | c Used         | d Used                                                | e Used | 1 Used     | ON OFF                                                         | DEG  | FIX  |
| 0          | Used              | 1        | 2              | 3                                                     | 4 Used | 2          | 0 <input type="checkbox"/> <input checked="" type="checkbox"/> | GRAD | SCI  |
| 5          | Used              | 6 Used   | 7 Used         | 8                                                     | 9      | 3          | 1 <input type="checkbox"/> <input checked="" type="checkbox"/> | RAD  | ENG  |
|            |                   |          |                |                                                       |        |            | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> |      |      |
|            |                   |          |                |                                                       |        |            | 3 <input type="checkbox"/> <input checked="" type="checkbox"/> |      |      |
|            |                   |          |                |                                                       |        |            | n <u>2</u>                                                     |      |      |

# INTERNAL RATE OF RETURN—GROUPS OF CASH FLOWS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| $\begin{array}{l} 001 \#LBLA 21 11 \\ 002 CLRG 16-53 \\ 003 STOE 35 15 \\ 004 1 .01 \\ 005 STOD 35 14 \\ 006 X2Y -.41 \\ 007 RTN .24 \\ 008 \#LBLB 21 12 \\ 009 ABS 16 31 \\ 010 EEX -.23 \\ 011 7 .07 \\ 012 = -.24 \\ 013 LOG 16 32 \\ 014 INT 16 34 \\ 015 X2Q? 16-45 \\ 016 CLX -.51 \\ 017 10x 16 33 \\ 018 STOD 35 14 \\ 019 RCLC 36 15 \\ 020 X2Y -.41 \\ 021 = -.24 \\ 022 STOE 35 15 \\ 023 RTN .24 \\ 024 \#LBLC 21 13 \\ 025 ISZI 16 26 46 \\ 026 RCLC 36 13 \\ 027 X2Y -.41 \\ 028 + -.55 \\ 029 STOC 35 13 \\ 030 CLX -.51 \\ 031 LSTX 16-63 \\ 032 X -.35 \\ 033 ST+0 35-55 06 \\ 034 LSTX 16-63 \\ 035 = -.24 \\ 036 LSTX 16-63 \\ 037 EEX -.23 \\ 038 2 .02 \\ 039 = -.24 \\ 040 X2Y -.41 \\ 041 RCLD 36 14 \\ 042 = -.24 \\ 043 INT 16 34 \\ 044 X2Q? 16-45 \\ 045 SF0 16 21 00 \\ 046 ABS 16 31 \\ 047 + -.55 \\ 048 F0? 16 23 00 \\ 049 CHS -.22 \\ 050 LSTX 16-63 \\ 051 X=0? 16-43 \\ 052 GS85 23 05 \\ 053 ENT† -.21 \\ 054 ABS 16 31 \\ 055 = -.24 \\ 056 X -.35 \end{array}$ |                            | $\begin{array}{l} 057 ST01 35 45 \\ 058 RCLI 36 46 \\ 059 CF0 16 22 00 \\ 060 RTN .24 \\ 061 \#LBLD 21 16 14 \\ 062 GS83 23 03 \\ 063 0 .00 \\ 064 STOC 35 13 \\ 065 GT07 22 07 \\ 066 \#LBLD 21 14 \\ 067 RCLI 36 46 \\ 068 GS83 23 03 \\ 069 \#LBL7 21 07 \\ 070 1 .01 \\ 071 . -.62 \\ 072 0 .00 \\ 073 1 .01 \\ 074 GS86 23 16 13 \\ 075 GT08 22 08 \\ 076 \#LBL1 21 01 \\ 077 RCLB 36 00 \\ 078 GS8e 23 16 15 \\ 079 STOC 35 13 \\ 080 \#LBL8 21 00 \\ 081 RCLB 36 12 \\ 082 RCLB 36 00 \\ 083 STOB 35 12 \\ 084 - -.45 \\ 085 RCLD 36 14 \\ 086 RCLC 36 13 \\ 087 STOD 35 14 \\ 088 - -.45 \\ 089 \div -.24 \\ 090 X -.35 \\ 091 ST-0 35-45 00 \\ 092 RCLB 36 00 \\ 093 = -.24 \\ 094 RND 16 24 \\ 095 X#0? 16-42 \\ 096 GT01 22 01 \\ 097 RCLB 36 00 \\ 098 1 .01 \\ 099 - -.45 \\ 100 EEX -.23 \\ 101 2 .02 \\ 102 X -.35 \\ 103 RTN .24 \\ 104 \#LBL3 21 03 \\ 105 1 .01 \\ 106 . -.62 \\ 107 0 .00 \\ 108 1 .01 \\ 109 X -.35 \\ 110 ST01 35 46 \\ 111 RTN .24 \\ 112 \#LBLc 21 16 13 \end{array}$ |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | $\Sigma n_j CF_j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |
| ROUTINE TO SUM CASH FLOWS AND RECALL NUMBER OF GROUPS BEFORE GOING TO ITERATION ROUTINE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |
| 1 + INITIAL GUESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |
| THE SECANT METHOD IS USED TO EVALUATE $f(i)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |
| REGISTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |
| 0 1 + i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 $CF_1 \cdot n_1$         | 2 $CF_2 \cdot n_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 $CF_3 \cdot n_3$         |  |  |
| $S_0 CF_{10} \cdot n_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_1 CF_{11} \cdot n_{11}$ | $S_2 CF_{12} \cdot n_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $S_3 CF_{13} \cdot n_{13}$ |  |  |
| $S_4 CF_{14} \cdot n_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_5 CF_{15} \cdot n_{15}$ | $S_6 CF_{16} \cdot n_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $S_7 CF_{17} \cdot n_{17}$ |  |  |
| $S_8 CF_{18} \cdot n_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_9 CF_{19} \cdot n_{19}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |
| A $CF_{20} \cdot n_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B Used                     | C $f(i_k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D $f(i_{k-1})$             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E Investment               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F Used                     |  |  |



# DISCOUNTED CASH FLOW ANALYSIS

## NET PRESENT VALUE

| LABELS |   |        |   |      |   | FLAGS |   | SET STATUS   |   |          |   |       |     |            |                          |                                     |                                         |                                         |      |
|--------|---|--------|---|------|---|-------|---|--------------|---|----------|---|-------|-----|------------|--------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|------|
| A INV  |   | B i(%) |   | C #  |   | D NPV |   | E $\Sigma n$ |   | 0 Print? |   | FLAGS |     | SET STATUS |                          |                                     |                                         |                                         |      |
| a      | b | c      | d | e    | f | g     | h | i            | j | 0        | 1 | ON    | OFF | DEG        | FIX                      | DISP                                |                                         |                                         |      |
| 0      | 1 | Used   | 2 | Used | 3 | 4     | 5 | 6            | 7 | 8        | 9 | Used  | 3   | 0          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | DEG <input checked="" type="checkbox"/> | FIX <input checked="" type="checkbox"/> | DISP |
| 5      | 6 |        | 7 |      | 8 |       | 9 | 3            |   |          |   |       |     | 1          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | GRAD <input type="checkbox"/>           | SCI <input type="checkbox"/>            |      |
|        |   |        |   |      |   |       |   |              |   |          |   |       |     | 2          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>            | ENG <input type="checkbox"/>            |      |
|        |   |        |   |      |   |       |   |              |   |          |   |       |     | 3          | <input type="checkbox"/> | <input checked="" type="checkbox"/> |                                         | n <u>2</u>                              |      |

# DIRECT REDUCTION LOANS

## SINKING FUND

|           |     |       |                |                    |    |                   |           |                |           |
|-----------|-----|-------|----------------|--------------------|----|-------------------|-----------|----------------|-----------|
| REGISTERS |     |       |                |                    |    |                   |           |                |           |
| 0         | 1   | 2     | 3 $\pm(PMT/i)$ | 4 $[1-(1+i)^{-n}]$ | 5  | 6 $n(1+i)^{-n}-1$ | 7 $(1+i)$ | 8 $(1+i)^{-n}$ | 9 $i/100$ |
| S0        | S1  | S2    | S3             | S4                 | S5 | S6                | S7        | S8             | S9        |
| A n       | B i | C PMT | D PV           | E FV(BAL)          | F  | G                 | H         | I              | J 21      |

001 #LBLA 21 11

002 ST0A 35 11

003 F3? 16 23 03

004 RTN 24

005 GSB0 23 00

006 RCLC 36 15

007 LSTX 16-63

008 - -45

009 RCLD 36 14

010 LSTX 16-63

011 - -45

012 ÷ -24

013 LN 32

014 RCL7 36 07

015 LN 32

016 ÷ -24

017 ST0A 35 11

018 RTN 24

019 #LBLC 21 13

020 ST0C 35 13

021 F3? 16 23 03

022 RTN 24

023 1 01

024 ST0C 35 13

025 GSB0 23 00

026 1/X 52

027 RCLD 36 14

028 RT 16-31

029 - -45

030 x -35

031 ST0C 35 13

032 RTN 24

033 #LBLD 21 14

034 ST0D 35 14

035 F3? 16 23 03

036 RTN 24

037 GSB0 23 00

038 + -55

039 ST0D 35 14

040 RTN 24

041 #LBLE 21 15

042 ST0E 35 15

043 F3? 16 23 03

044 RTN 24

045 GSB0 23 00

046 RCLD 36 14

047 X?Y -41

048 - -45

049 RCLB 36 08

050 ÷ -24

051 ST0E 35 15

052 RTN 24

053 #LBL0 21 00

054 CF1 16 22 01

055 RCLD 36 14

056 X=? 16-43

n→RA  
Digit entered?

Solve for n and store in RA.

PMT→RC  
Digit entered?

Store dummy 1 for PMT.

Solve for PMT and store in RC.

PV+RD  
Digit entered?

Solve for PV and store in RD.

Solve for FV(BAL) and store in RE.

857 SF1 16 21 01

058 1 01

059 RCLB 36 12

060 x 55

061 ST09 35 09

062 + -55

063 ST07 35 07

064 RCLA 36 11

065 CHS -22

066 yx 31

067 ST08 35 08

068 RCLC 36 15

069 x -35

070 1 81

071 RCLB 36 08

072 - -45

073 ST04 35 04

074 RCLC 36 13

075 RCL9 36 09

076 5 -24

077 F1? 16 23 01

078 CHS -22

079 ST03 35 03

080 x -35

081 RTN 24

082 #LBLa 21 16 11

083 CLX -51

084 ST0C 35 13

085 ST0D 35 14

086 ST0E 35 15

087 RTN 24

088 #LBLB 21 12

089 ST0B 35 12

090 F3? 16 23 03

091 RTN 24

092 0 00

093 ST0B 35 12

094 2 02

095 1 01

096 ST0I 35 46

097 RCLC 36 15

098 RCLA 36 11

099 RCLC 36 13

100 x -35

101 + -55

102 RCLD 36 14

103 X=? 16-43

104 GT03 22 03

105 - -45

106 RCLC 36 11

107 ÷ -24

108 RCLD 36 14

109 GT04 22 04

110 #LBL3 21 03

111 RCLC 36 15

112 LSTX 16-63

i/100→R9

(1+i)→R7

(1+i)^-n→R8

1-(1+i)^-n→R4

Calculate  $\pm(PMT/i)$  and store in R3

$\pm \frac{PMT}{i} \left[ 1 - (1+i)^{-n} \right]$

Start by clearing PMT, PV, FV(BAL) registers.

i→R8  
Digit entered?

Clear R8 for sum of i terms.

Store address of R8 in R1 for indirect access.

Start guess of i:  
n PMT + FV(BAL)

If PV = 0 GTO FV(BAL)  
guess  
PV guess for i:  
n PMT + FV(BAL) - PV

n

and recall PV.

FV(BAL) guess for i numerator:

|        |                  |          |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
|--------|------------------|----------|------------------------------------|-----|----------|----------|---------------------------|--------|----------------|-----|---|--------|-------|------------|-----|---|
| 113    | -                | -45      | 2(FV(BAL) - n PMT)                 | 169 | ÷        | -24      |                           |        |                |     |   |        |       |            |     |   |
| 114    | ENT <sup>†</sup> | -21      |                                    | 170 | RND      | 16 24    | If value ≠ 0, loop again. |        |                |     |   |        |       |            |     |   |
| 115    | +                | -55      |                                    | 171 | X#0?     | 16-42    |                           |        |                |     |   |        |       |            |     |   |
| 116    | RCLA             | 36 11    | and denominator                    | 172 | GT06     | 22 86    |                           |        |                |     |   |        |       |            |     |   |
| 117    | 1                | 81       | (n - 1) <sup>2</sup> PMT + FV(BAL) | 173 | RCLB     | 36 12    |                           |        |                |     |   |        |       |            |     |   |
| 118    | -                | -45      |                                    | 174 | RTN      | 24       |                           |        |                |     |   |        |       |            |     |   |
| 119    | X <sup>2</sup>   | 53       |                                    | 175 | #LBL5    | 21 85    |                           |        |                |     |   |        |       |            |     |   |
| 120    | RCLC             | 36 13    |                                    | 176 | EEX      | -23      |                           |        |                |     |   |        |       |            |     |   |
| 121    | x                | -35      |                                    | 177 | 2        | 82       |                           |        |                |     |   |        |       |            |     |   |
| 122    | RCL <sup>E</sup> | 36 15    |                                    | 178 | x        | -35      |                           |        |                |     |   |        |       |            |     |   |
| 123    | +                | -55      |                                    | 179 | ST+I     | 35-55 45 |                           |        |                |     |   |        |       |            |     |   |
| 124    | #LBL4            | 21 84    | Guess for i                        | 180 | RTN      | 24       |                           |        |                |     |   |        |       |            |     |   |
| 125    | ÷                | -24      | IF guess < -0.9; use -0.9          | 181 | R/S      | 51       |                           |        |                |     |   |        |       |            |     |   |
| 126    | -                | -62      | for guess                          |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 127    | 9                | 89       |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 128    | CHS              | -22      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 129    | X≤Y?             | 16-35    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 130    | X≥Y              | -41      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 131    | GSBS             | 23 85    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 132    | X=0?             | 16-43    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 133    | RTN              | 24       |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 134    | #LBL6            | 21 86    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 135    | GSBS             | 23 86    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 136    | +                | -55      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 137    | F1?              | 16 23 81 |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 138    | CHS              | -22      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 139    | RCLD             | 36 14    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 140    | -                | -45      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 141    | RCL8             | 36 88    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 142    | RCLA             | 36 11    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 143    | RCL7             | 36 87    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 144    | ÷                | -24      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 145    | x                | -35      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 146    | F1?              | 16 23 81 |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 147    | CLK              | -51      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 148    | ST06             | 35 86    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 149    | F1?              | 16 23 81 |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 150    | R1               | -31      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 151    | F1?              | 16 23 81 |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 152    | LSTX             | 16-63    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 153    | RCL4             | 36 84    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 154    | RCL9             | 36 89    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 155    | ÷                | -24      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 156    | -                | -45      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 157    | RCLC             | 36 13    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 158    | x                | -35      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 159    | RCL9             | 36 89    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 160    | ÷                | -24      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 161    | RCL6             | 36 86    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 162    | RCL <sup>E</sup> | 36 15    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 163    | x                | -35      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 164    | -                | -45      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 165    | ±                | -24      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 166    | CHS              | -22      |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 167    | GSBS             | 23 85    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| 168    | RCLB             | 36 12    |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| LABELS |                  |          |                                    |     |          |          |                           |        |                |     |   |        |       |            |     |   |
| A      | n                | b        | i                                  | C   | PMT      | D        | PV                        | E      | FV(BAL)        | 0   | 1 | PV = 0 | FLAGS | SET STATUS |     |   |
| a      | START            | b        | c                                  | d   | e        | f        | ON OFF                    | DEG    | X <sup>2</sup> | FIX | K |        |       |            |     |   |
| b      | Calc.            | 1        | 2                                  | 3   | FV guess | 4        | guess                     | 2      |                | 0   | □ | □      | GRAD  | □          | SCI | □ |
| c      | i → %            | 6        | loop                               | 7   | 8        | 9        | 3                         | Digit? | 1              | 2   | □ | □      | RAD   | □          | ENG | □ |
| d      |                  |          |                                    |     |          |          |                           |        | 3              | □   | □ | n      | 2     |            |     |   |

## ACCUMULATED INTEREST/REMAINING BALANCE

|     |                   |       |                                                       |     |                   |          |         |  |
|-----|-------------------|-------|-------------------------------------------------------|-----|-------------------|----------|---------|--|
| 001 | *LBLA             | 21 11 |                                                       | 057 | *LBLA             | 21 16 11 |         |  |
| 002 | RCL0              | 36 00 |                                                       | 058 | RCL7              | 36 07    |         |  |
| 003 | ST07              | 35 07 | J→R <sub>7</sub>                                      | 059 | F02               | 16 23 00 |         |  |
| 004 | X <sub>2</sub> Y  | -41   | K→R <sub>0</sub>                                      | 060 | SPC               | 16-11    |         |  |
| 005 | ST08              | 35 00 |                                                       | 061 | GSB9              | 23 09    |         |  |
| 006 | RTN               | 24    |                                                       | 062 | 1                 | 01       | J       |  |
| 007 | *LBLB             | 21 12 | -----                                                 | 063 | RCL1              | 36 01    |         |  |
| 008 | EEX               | -23   |                                                       | 064 | +                 | -55      |         |  |
| 009 | 2                 | 02    | i/100→R <sub>1</sub>                                  | 065 | ST08              | 35 00    |         |  |
| 010 | ÷                 | -24   |                                                       | 066 | RCL7              | 36 07    |         |  |
| 011 | ST01              | 35 01 |                                                       | 067 | GSB1              | 23 01    |         |  |
| 012 | LSTX              | 16-63 |                                                       | 068 | ST04              | 35 04    |         |  |
| 013 | x                 | -35   |                                                       | 069 | RCL8              | 36 00    |         |  |
| 014 | RTN               | 24    |                                                       | 070 | RCL7              | 36 07    |         |  |
| 015 | *LBLC             | 21 13 | -----                                                 | 071 | 1                 | 01       |         |  |
| 016 | ST02              | 35 02 | PMT→R <sub>2</sub>                                    | 072 | -                 | -45      |         |  |
| 017 | RTN               | 24    | -----                                                 | 073 | GSB1              | 23 01    |         |  |
| 018 | *LBLD             | 21 14 |                                                       | 074 | RCL4              | 36 04    |         |  |
| 019 | ST03              | 35 03 |                                                       | 075 | -                 | -45      |         |  |
| 020 | RTN               | 24    | PV→R <sub>3</sub>                                     | 076 | ST06              | 35 06    |         |  |
| 021 | *LBLE             | 21 15 | -----                                                 | 077 | RCL2              | 36 02    |         |  |
| 022 | RCL0              | 36 00 |                                                       | 078 | X <sub>2</sub> Y  | -41      |         |  |
| 023 | RCL7              | 36 07 |                                                       | 079 | -                 | -45      | INTJ    |  |
| 024 | X <sub>2</sub> Y? | 16-35 |                                                       | 080 | GSB9              | 23 09    |         |  |
| 025 | GT08              | 22 00 |                                                       | 081 | RCL6              | 36 06    |         |  |
| 026 | ST00              | 35 00 |                                                       | 082 | GSB9              | 23 09    | PRINCJ  |  |
| 027 | R4                | -31   |                                                       | 083 | RCL4              | 36 04    |         |  |
| 028 | ST07              | 35 07 |                                                       | 084 | GSB9              | 23 09    | RBALJ   |  |
| 029 | *LBL0             | 21 00 |                                                       | 085 | RCL7              | 36 07    |         |  |
| 030 | 1                 | 01    |                                                       | 086 | RCL2              | 36 02    |         |  |
| 031 | RCL1              | 36 01 |                                                       | 087 | x                 | -35      |         |  |
| 032 | +                 | -55   | (1 + i/100)→R <sub>8</sub>                            | 088 | RCL3              | 36 03    |         |  |
| 033 | ST08              | 35 08 |                                                       | 089 | RCL4              | 36 04    |         |  |
| 034 | RCL0              | 36 00 |                                                       | 090 | -                 | -45      |         |  |
| 035 | GSB1              | 23 01 | BAL <sub>K</sub> →R <sub>4</sub>                      | 091 | -                 | -45      |         |  |
| 036 | ST04              | 35 04 |                                                       | 092 | GSB9              | 23 09    | TOT INT |  |
| 037 | RCL8              | 36 08 |                                                       | 093 | 1                 | 01       |         |  |
| 038 | RCL7              | 36 07 |                                                       | 094 | ST+7              | 35-55 07 |         |  |
| 039 | 1                 | 01    |                                                       | 095 | RCL8              | 36 00    |         |  |
| 040 | -                 | -45   |                                                       | 096 | RCL7              | 36 07    |         |  |
| 041 | GSB1              | 23 01 | -BAL <sub>J-1</sub>                                   | 097 | X <sub>2</sub> Y? | 16-35    | J ≤ K?  |  |
| 042 | CHS               | -22   |                                                       | 098 | GT0a              | 22 16 11 |         |  |
| 043 | RCL4              | 36 04 |                                                       | 099 | RTN               | 24       |         |  |
| 044 | +                 | -55   |                                                       | 100 | *LBL1             | 21 01    |         |  |
| 045 | ST06              | 35 06 | BAL <sub>K</sub> - BAL <sub>J-1</sub> →R <sub>6</sub> | 101 | CHS               | -22      |         |  |
| 046 | RCL8              | 36 00 |                                                       | 102 | x                 | 31       |         |  |
| 047 | RCL7              | 36 07 |                                                       | 103 | ST05              | 35 05    |         |  |
| 048 | -                 | -45   |                                                       | 104 | 1                 | 01       |         |  |
| 049 | 1                 | 01    |                                                       | 105 | -                 | -45      |         |  |
| 050 | +                 | -55   |                                                       | 106 | RCL1              | 36 01    |         |  |
| 051 | RCL2              | 36 02 |                                                       | 107 | ÷                 | -24      |         |  |
| 052 | x                 | -35   |                                                       | 108 | RCL2              | 36 02    |         |  |
| 053 | +                 | -55   |                                                       | 109 | x                 | -35      |         |  |
| 054 | RTN               | 24    |                                                       | 110 | RCL3              | 36 03    |         |  |
| 055 | RCL4              | 36 04 | INT <sub>J-K</sub>                                    | 111 | +                 | -55      |         |  |
| 056 | R/S               | 51    | BAL <sub>K</sub>                                      | 112 | RCL5              | 36 05    |         |  |

## REGISTERS

| 0  | K  | 1 i/100 | 2 PMT | 3 PV | 4 Used | 5 Used | 6 Used | 7 J | 8 1+i/100 | 9 |
|----|----|---------|-------|------|--------|--------|--------|-----|-----------|---|
| S0 | S1 | S2      | S3    | S4   | S5     | S6     | S7     | S8  | S9        |   |
| A  | B  | C       | D     | E    | F      | G      | H      | I   | J         |   |

|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|----------------------------------------------------------|--|--|--|--|
| 113 $\div$ -24<br>114 RTN 24<br>115 *LBL <sub>e</sub> 21 16 15<br>116 F0? 16 23 00<br>117 GT02 22 02<br>118 SF0 16 21 00<br>119 1 01<br>120 RTW 24<br>121 *LBL2 21 02<br>122 0 00<br>123 CF0 16 22 00<br>124 RTN 24<br>125 *LBL9 21 09<br>126 F0? 16 23 00<br>127 GT03 22 03<br>128 R/S 51<br>129 RTN 24<br>130 *LBL3 21 03<br>131 PRTX -14<br>132 RTN 24<br>133 R/S 51 |  |  |  |  |  | RND may be inserted here.<br>-----<br>Print mode option. |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |                                                          |  |  |  |  |

## WRAP-AROUND MORTGAGE

|     |                |          |                                                    |     |                   |          |                        |  |
|-----|----------------|----------|----------------------------------------------------|-----|-------------------|----------|------------------------|--|
| 001 | #LBLA          | 21 11    |                                                    | 057 | x                 | -35      |                        |  |
| 002 | CLRG           | 16 53    | -n <sub>1</sub> → R <sub>1</sub>                   | 058 | +                 | -55      |                        |  |
| 003 | CHS            | -22      | PMT <sub>1</sub> → R <sub>3</sub>                  | 059 | RCL5              | 36 05    |                        |  |
| 004 | ST01           | 35 01    | -PV <sub>1</sub> → R <sub>5</sub>                  | 060 | RCL6              | 36 06    |                        |  |
| 005 | R4             | -31      |                                                    | 061 | x                 | -35      |                        |  |
| 006 | ST03           | 35 03    |                                                    | 062 | -                 | -45      |                        |  |
| 007 | R4             | -31      |                                                    | 063 | STO1              | 35 46    | f(x)                   |  |
| 008 | CHS            | -22      |                                                    | 064 | RCL8              | 36 08    |                        |  |
| 009 | ST05           | 35 05    |                                                    | 065 | RCL1              | 36 01    |                        |  |
| 010 | RCL1           | 36 01    |                                                    | 066 | x                 | -35      |                        |  |
| 011 | CHS            | -22      |                                                    | 067 | RCL3              | 36 03    |                        |  |
| 012 | RTN            | 24       |                                                    | 068 | x                 | -35      |                        |  |
| 013 | #LBLC          | 21 13    |                                                    | 069 | RCL9              | 36 09    |                        |  |
| 014 | CHS            | -22      | -n <sub>2</sub> → R <sub>2</sub>                   | 070 | RCL2              | 36 02    |                        |  |
| 015 | ST02           | 35 02    | PMT <sub>2</sub> → R <sub>4</sub>                  | 071 | x                 | -35      |                        |  |
| 016 | R4             | -31      | PV <sub>2</sub> - PV <sub>1</sub> → R <sub>5</sub> | 072 | RCL4              | 36 04    |                        |  |
| 017 | ST04           | 35 04    |                                                    | 073 | x                 | -35      |                        |  |
| 018 | R4             | -31      |                                                    | 074 | -                 | -45      |                        |  |
| 019 | ST+5           | 35-55 05 |                                                    | 075 | RCL7              | 36 07    |                        |  |
| 020 | RCL2           | 36 02    |                                                    | 076 | ÷                 | -24      |                        |  |
| 021 | CHS            | -22      |                                                    | 077 | RCL6              | 36 15    |                        |  |
| 022 | RTN            | 24       |                                                    | 078 | RCL6              | 36 06    |                        |  |
| 023 | #LBLD          | 21 14    | BAL → R <sub>0</sub>                               | 079 | ÷                 | -24      |                        |  |
| 024 | ST00           | 35 00    |                                                    | 080 | -                 | -45      |                        |  |
| 025 | RTN            | 24       |                                                    | 081 | RCL8              | 36 08    |                        |  |
| 026 | #LBLE          | 21 15    |                                                    | 082 | RCL2              | 36 02    |                        |  |
| 027 | EEX            | -23      | Initial guess                                      | 083 | x                 | -35      |                        |  |
| 028 | CHS            | -22      | i → R <sub>6</sub>                                 | 084 | RCL6              | 36 06    |                        |  |
| 029 | 3              | 83       |                                                    | 085 | x                 | -35      |                        |  |
| 030 | ST06           | 35 06    |                                                    | 086 | RCL9              | 36 09    |                        |  |
| 031 | #LBL0          | 21 00    |                                                    | 087 | x                 | -35      |                        |  |
| 032 | 1              | 81       | Newton's method is used to                         | 088 | RCL7              | 36 07    |                        |  |
| 033 | RCL6           | 36 06    | find i.                                            | 089 | ÷                 | -24      |                        |  |
| 034 | 1              | 81       |                                                    | 090 | +                 | -55      |                        |  |
| 035 | +              | -55      |                                                    | 091 | ÷                 | -24      |                        |  |
| 036 | ST07           | 35 07    |                                                    | 092 | ST-6              | 35-45 06 |                        |  |
| 037 | RCL2           | 36 02    |                                                    | 093 | ABS               | 16 31    |                        |  |
| 038 | Y <sup>x</sup> | 31       |                                                    | 094 | EEX               | -23      |                        |  |
| 039 | ST09           | 35 09    |                                                    | 095 | CHS               | -22      |                        |  |
| 040 | -              | -45      |                                                    | 096 | 6                 | 06       |                        |  |
| 041 | RCL4           | 36 04    |                                                    | 097 | X <sup>Y</sup> ?  | 16-35    |                        |  |
| 042 | x              | -35      |                                                    | 098 | GT00              | 22 00    |                        |  |
| 043 | 1              | 81       |                                                    | 099 | RCL6              | 36 06    |                        |  |
| 044 | RCL7           | 36 07    |                                                    | 100 | EEX               | -23      |                        |  |
| 045 | RCL1           | 36 01    |                                                    | 101 | 2                 | 02       |                        |  |
| 046 | Y <sup>x</sup> | 31       |                                                    | 102 | x                 | -35      |                        |  |
| 047 | ST08           | 35 08    |                                                    | 103 | RTN               | 24       |                        |  |
| 048 | -              | -45      |                                                    | 104 | #LBL <sub>a</sub> | 21 16 11 |                        |  |
| 049 | RCL3           | 36 03    |                                                    | 105 | ST0A              | 35 11    |                        |  |
| 050 | x              | -35      |                                                    | 106 | RTN               | 24       | n → RA                 |  |
| 051 | -              | -45      |                                                    | 107 | #LBL <sub>b</sub> | 21 16 12 |                        |  |
| 052 | ST0E           | 35 15    |                                                    | 108 | EEX               | -23      | i/100 → R <sub>B</sub> |  |
| 053 | RCL9           | 36 09    |                                                    | 109 | 2                 | 02       |                        |  |
| 054 | RCL6           | 36 06    |                                                    | 110 | ÷                 | -24      |                        |  |
| 055 | x              | -35      |                                                    | 111 | ST0B              | 35 12    |                        |  |
| 056 | RCL6           | 36 06    |                                                    | 112 | LSTX              | 16-63    |                        |  |

## REGISTERS

| 0  | BAL | <sup>1</sup> -n <sub>1</sub> | <sup>2</sup> -n <sub>2</sub> | <sup>3</sup> PMT <sub>1</sub> | <sup>4</sup> PMT <sub>2</sub> | <sup>5</sup> PV <sub>2</sub> - PV <sub>1</sub> | <sup>6</sup> i | <sup>7</sup> 1+i | <sup>8</sup> (1+i) <sup>-n<sub>1</sub></sup> | <sup>9</sup> (1+i) <sup>-n<sub>2</sub></sup> |      |
|----|-----|------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------------------------|----------------|------------------|----------------------------------------------|----------------------------------------------|------|
| S0 | S1  | S2                           | S3                           | S4                            | S5                            | S6                                             | S7             | S8               | S9                                           |                                              |      |
| A  | n   | B                            | i                            | C                             | PMT                           | D                                              | PV             | E                | Used                                         | I                                            | Used |

```

113  x      -35
114  RTN      24
115  #LBLd  21 16 14
116  STOD      35 14
117  RTN      24
118  #LBLc  21 16 13
119  RCLB      36 12
120  1          01
121  +          -55
122  RCLa      36 11
123  CHS      -22
124  Yx      31
125  1          01
126  XyY      -41
127  -          -45
128  RCLB      36 12
129  ÷          -24
130  1/X      52
131  RCLD      36 14
132  x          -35
133  STOC      35 13
134  RTN      24
135  R/S      51

```

PV → RD

Calculate PMT and store in  
R<sub>C</sub>.

| LABELS                                                         |              |                                                                |                  |                 |                | FLAGS |      | SET STATUS                                                     |                                         |  |
|----------------------------------------------------------------|--------------|----------------------------------------------------------------|------------------|-----------------|----------------|-------|------|----------------------------------------------------------------|-----------------------------------------|--|
| <sup>A</sup> n <sub>1</sub> ,PMT <sub>1</sub> ,PV <sub>1</sub> | <sup>B</sup> | <sup>C</sup> n <sub>2</sub> ,PMT <sub>2</sub> ,PV <sub>2</sub> | <sup>D</sup> BAL | <sup>E</sup> →i | <sup>F</sup> 0 | FLAGS | TRIG | DISP                                                           |                                         |  |
| a                                                              | n            | b                                                              | i                | c →PMT          | d PV           | e     | 1    | ON OFF                                                         | DEG <input checked="" type="checkbox"/> |  |
| 0                                                              |              | 1                                                              |                  | 2               | 3              | 4     | 2    | 1 <input type="checkbox"/> <input checked="" type="checkbox"/> | GRAD <input type="checkbox"/>           |  |
| 5                                                              |              | 6                                                              |                  | 7               | 8              | 9     | 3    | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>            |  |
|                                                                |              |                                                                |                  |                 |                |       |      | 3 <input type="checkbox"/> <input checked="" type="checkbox"/> | SCI <input type="checkbox"/>            |  |
|                                                                |              |                                                                |                  |                 |                |       |      |                                                                | ENG <input type="checkbox"/>            |  |
|                                                                |              |                                                                |                  |                 |                |       |      | n <u>2</u>                                                     |                                         |  |



|      |  |  |  |  |  |  |  |  |  |
|------|--|--|--|--|--|--|--|--|--|
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
|      |  |  |  |  |  |  |  |  |  |
| </td |  |  |  |  |  |  |  |  |  |

# ADD-ON RATE INSTALLMENT LOAN/ INTEREST REBATE—RULE OF 78's

|           |                  |        |                                       |       |                  |           |                                      |
|-----------|------------------|--------|---------------------------------------|-------|------------------|-----------|--------------------------------------|
| 081       | *LBLA            | 21 11  |                                       | 057   | 1                | 01        |                                      |
| 082       | ST00             | 35 00  | ODD x 12<br>365                       | 058   | +                | -55       |                                      |
| 083       | 1                | 01     |                                       | 059   | ST06             | 35 06     | Calculate f(i)                       |
| 084       | 2                | 02     |                                       | 060   | RCL2             | 36 02     |                                      |
| 085       | x                | -35    |                                       | 061   | CHS              | -22       |                                      |
| 086       | 3                | 03     |                                       | 062   | Y <sup>n</sup>   | 31        |                                      |
| 087       | 6                | 06     |                                       | 063   | ST07             | 35 07     |                                      |
| 088       | 5                | 05     |                                       | 064   | -                | -45       |                                      |
| 089       | ÷                | -24    |                                       | 065   | RCL0             | 36 00     |                                      |
| 090       | RT01             | 35 01  |                                       | 066   | ÷                | -24       |                                      |
| 091       | X <sup>2</sup> Y | -41    |                                       | 067   | RCL5             | 36 05     |                                      |
| 092       | ST02             | 35 02  |                                       | 068   | x                | -35       |                                      |
| 093       | RCL0             | 36 00  |                                       | 069   | RCL6             | 36 06     |                                      |
| 094       | RTN              | 24     |                                       | 070   | RCL1             | 36 01     |                                      |
| 095       | *LBLB            | 21 12  |                                       | 071   | Y <sup>n</sup>   | 31        |                                      |
| 096       | ST03             | 35 03  | AIR → R <sub>3</sub>                  | 072   | RCL4             | 36 04     |                                      |
| 097       | RTN              | 24     |                                       | 073   | x                | -35       |                                      |
| 098       | *LBLC            | 21 13  |                                       | 074   | -                | -45       |                                      |
| 099       | ST04             | 35 04  | AMT → R <sub>4</sub>                  | 075   | RCL7             | 36 07     |                                      |
| 099       | RTN              | 24     |                                       | 076   | RCL6             | 36 06     |                                      |
| 021       | *LBLD            | 21 14  |                                       | 077   | ÷                | -24       |                                      |
| 022       | RCL2             | 36 02  |                                       | 078   | RCL2             | 36 02     |                                      |
| 023       | RCL1             | 36 01  |                                       | 079   | 1                | 01        |                                      |
| 024       | +                | -55    |                                       | 080   | +                | -55       |                                      |
| 025       | 1                | 01     |                                       | 081   | x                | -35       |                                      |
| 026       | 2                | 02     |                                       | 082   | RCL0             | 36 00     |                                      |
| 027       | ÷                | -24    |                                       | 083   | x                | -35       |                                      |
| 028       | RCL3             | 36 03  | $\left[ \frac{(N+h)}{12} \right] AIR$ | 084   | 1                | 01        |                                      |
| 029       | x                | -35    |                                       | 085   | RCL7             | 36 07     |                                      |
| 030       | EEX              | -23    |                                       | 086   | -                | -45       |                                      |
| 031       | 2                | 02     |                                       | 087   | RCL8             | 36 08     |                                      |
| 032       | ÷                | -24    |                                       | 088   | +                | -55       |                                      |
| 033       | RCL4             | 36 04  | FC → R <sub>0</sub>                   | 089   | -                | -45       |                                      |
| 034       | x                | -35    |                                       | 090   | RCL0             | 36 00     |                                      |
| 035       | ST00             | 35 00  |                                       | 091   | X <sup>2</sup>   | 53        |                                      |
| 036       | RCL4             | 36 04  |                                       | 092   | ÷                | -24       |                                      |
| 037       | +                | -55    |                                       | 093   | RCL5             | 36 05     |                                      |
| 038       | RCL2             | 36 02  | $\frac{FC + AMT}{N} \rightarrow R_5$  | 094   | x                | -35       |                                      |
| 039       | ÷                | -24    |                                       | 095   | RCL6             | 36 06     |                                      |
| 040       | ST05             | 35 05  |                                       | 096   | RCL1             | 36 01     |                                      |
| 041       | RTN              | 24     |                                       | 097   | Y <sup>n</sup>   | 31        |                                      |
| 042       | RCL8             | 36 08  |                                       | 098   | RCL6             | 36 06     |                                      |
| 043       | R/S              | 51     |                                       | 099   | ÷                | -24       |                                      |
| 044       | *LBLE            | 21 15  |                                       | 100   | RCL1             | 36 01     |                                      |
| 045       | RCL3             | 36 03  | Calculate APR                         | 101   | X <sup>2</sup> Y | -41       |                                      |
| 046       | 1                | 01     |                                       | 102   | x                | -35       |                                      |
| 047       | 2                | 02     |                                       | 103   | LSTX             | 16-63     |                                      |
| 048       | EEX              | -23    |                                       | 104   | -                | -45       |                                      |
| 049       | 2                | 02     | Guess = AIR/1200                      | 105   | RCL4             | 36 04     |                                      |
| 050       | =                | -24    |                                       | 106   | x                | -35       |                                      |
| 051       | X=0?             | 16-43  | If AIR = 0 then                       | 107   | -                | -45       |                                      |
| 052       | RTN              | 24     | APR = 0                               | 108   | ÷                | -24       |                                      |
| 053       | ST08             | 35 08  |                                       | 109   | RCL8             | 36 08     |                                      |
| 054       | *LBL1            | 21 01  |                                       | 110   | X <sup>2</sup> Y | -41       | $i_k = i_{k-1} - \frac{f(i)}{f'(i)}$ |
| 055       | 1                | 01     |                                       | 111   | -                | -45       |                                      |
| 056       | RCL8             | 36 08  |                                       | 112   | ST00             | 35 00     |                                      |
| REGISTERS |                  |        |                                       |       |                  |           |                                      |
| 0 Used    | 1 Used           | 2 Used | 3 Used                                | 4 AMT | 5 PMT            | 6 1+i/100 | 7 (1+i/100) <sup>-n</sup>            |
| S0        | S1               | S2     | S3                                    | S4    | S5               | S6        | S7                                   |
| A         | B                | C      |                                       | D     | E                | F         | G                                    |

|                                                    |  |  |  |  |  |
|----------------------------------------------------|--|--|--|--|--|
|                                                    |  |  |  |  |  |
| Is answer close enough?                            |  |  |  |  |  |
| No → go to LBL 1                                   |  |  |  |  |  |
| Display answer                                     |  |  |  |  |  |
|                                                    |  |  |  |  |  |
| 113 LSTX 16-63                                     |  |  |  |  |  |
| 114 ABS 16 31                                      |  |  |  |  |  |
| 115 EEX -23                                        |  |  |  |  |  |
| 116 6 86                                           |  |  |  |  |  |
| 117 CHS -22                                        |  |  |  |  |  |
| 118 X <sup>2</sup> ? 16-35                         |  |  |  |  |  |
| 119 ST01 22 81                                     |  |  |  |  |  |
| 120 RCLB 36 88                                     |  |  |  |  |  |
| 121 1 81                                           |  |  |  |  |  |
| 122 2 82                                           |  |  |  |  |  |
| 123 8 88                                           |  |  |  |  |  |
| 124 8 88                                           |  |  |  |  |  |
| 125 x -35                                          |  |  |  |  |  |
| 126 RTN 24                                         |  |  |  |  |  |
| 127 #LBLa 21 16 11                                 |  |  |  |  |  |
| 128 ST08 35 88                                     |  |  |  |  |  |
| 129 RTN 24                                         |  |  |  |  |  |
| 130 #LBLb 21 16 12                                 |  |  |  |  |  |
| 131 ST01 35 81                                     |  |  |  |  |  |
| 132 RTN 24                                         |  |  |  |  |  |
| 133 #LBLc 21 16 13                                 |  |  |  |  |  |
| 134 ST02 35 82                                     |  |  |  |  |  |
| 135 RTN 24                                         |  |  |  |  |  |
| 136 #LBLd 21 16 14                                 |  |  |  |  |  |
| 137 ST03 35 83                                     |  |  |  |  |  |
| 138 RTN 24                                         |  |  |  |  |  |
| 139 #LBLe 21 16 15                                 |  |  |  |  |  |
| 140 RCLB 36 88                                     |  |  |  |  |  |
| 141 RCL1 36 81                                     |  |  |  |  |  |
| 142 - -45                                          |  |  |  |  |  |
| 143 1 81                                           |  |  |  |  |  |
| 144 + -55                                          |  |  |  |  |  |
| 145 RCL3 36 83                                     |  |  |  |  |  |
| 146 x -35                                          |  |  |  |  |  |
| 147 RCLB 36 88                                     |  |  |  |  |  |
| 148 X <sup>2</sup> 53                              |  |  |  |  |  |
| 149 LSTX 16-63                                     |  |  |  |  |  |
| 150 + -55                                          |  |  |  |  |  |
| 151 ÷ -24                                          |  |  |  |  |  |
| 152 RCLB 36 88                                     |  |  |  |  |  |
| 153 RCL1 36 81                                     |  |  |  |  |  |
| 154 - -45                                          |  |  |  |  |  |
| 155 x -35                                          |  |  |  |  |  |
| 156 ST04 35 84                                     |  |  |  |  |  |
| 157 RTN 24                                         |  |  |  |  |  |
| 158 RCL2 36 82                                     |  |  |  |  |  |
| 159 RCLB 36 88                                     |  |  |  |  |  |
| 160 RCL1 36 81                                     |  |  |  |  |  |
| 161 - -45                                          |  |  |  |  |  |
| 162 x -35                                          |  |  |  |  |  |
| 163 RCL4 36 84                                     |  |  |  |  |  |
| 164 - -45                                          |  |  |  |  |  |
| 165 R/S 51                                         |  |  |  |  |  |
|                                                    |  |  |  |  |  |
| LABELS                                             |  |  |  |  |  |
| A N <sup>1</sup> ODD B AIR C AMT D PMT, FC E APR F |  |  |  |  |  |
| 0 1 2 3 4 5                                        |  |  |  |  |  |
| SET STATUS                                         |  |  |  |  |  |
| FLAGS TRIG DISP                                    |  |  |  |  |  |
| 0 ON OFF 1 DEG SCI 2 RAD ENG 3 n 2                 |  |  |  |  |  |

## SAVINGS PLAN—LEASES

|           |       |          |                                                 |           |       |        |         |                       |                                                                        |
|-----------|-------|----------|-------------------------------------------------|-----------|-------|--------|---------|-----------------------|------------------------------------------------------------------------|
| 001       | *LBLA | 21 11    | n→R <sub>A</sub>                                | 057       | SF1   | 16     | 21      | 01                    |                                                                        |
| 002       | ST0A  | 35 11    | Digit entered?                                  | 058       | 1     |        |         | 01                    |                                                                        |
| 003       | F3?   | 16 23 03 |                                                 | 059       | RCLB  | 36     | 12      |                       | i/100→R <sub>9</sub>                                                   |
| 004       | RTN   | 24       |                                                 | 060       | 2     |        |         | 55                    |                                                                        |
| 005       | GSB8  | 23 00    |                                                 | 061       | ST09  | 35     | 09      |                       | (1+i)→R <sub>7</sub>                                                   |
| 006       | RCLC  | 36 15    |                                                 | 062       | +     |        |         | -55                   |                                                                        |
| 007       | LSTX  | 16-63    | Solve for n and store in R <sub>A</sub> .       | 063       | ST07  | 35     | 07      |                       |                                                                        |
| 008       | -     | -45      |                                                 | 064       | RCL8  | 36     | 11      |                       | (1+i) <sup>-n</sup> →R <sub>8</sub>                                    |
| 009       | RCLD  | 36 14    |                                                 | 065       | CHS   |        |         | -22                   |                                                                        |
| 010       | LSTX  | 16-63    |                                                 | 066       | YX    |        |         | 31                    |                                                                        |
| 011       | -     | -45      |                                                 | 067       | ST08  | 35     | 08      |                       |                                                                        |
| 012       | ÷     | -24      |                                                 | 068       | RCLC  | 36     | 15      |                       |                                                                        |
| 013       | LN    | 32       |                                                 | 069       | X     |        |         | -35                   |                                                                        |
| 014       | RCL7  | 36 07    |                                                 | 070       | 1     |        |         | 81                    |                                                                        |
| 015       | LN    | 32       |                                                 | 071       | RCL8  | 36     | 08      |                       | 1 - (1+i) <sup>-n</sup> →R <sub>4</sub>                                |
| 016       | ÷     | -24      |                                                 | 072       | -     |        |         | -45                   |                                                                        |
| 017       | ST0A  | 35 11    |                                                 | 073       | ST04  | 35     | 04      |                       | Calculate ± (PMT/i)                                                    |
| 018       | RTN   | 24       |                                                 | 074       | RCLC  | 36     | 13      |                       | and store in R <sub>3</sub> .                                          |
| 019       | *LBLC | 21 13    |                                                 | 075       | RCL9  | 36     | 09      |                       |                                                                        |
| 020       | ST0C  | 35 13    |                                                 | 076       | ÷     |        |         | -24                   |                                                                        |
| 021       | F3?   | 16 23 03 | PMT→R <sub>C</sub>                              | 077       | F1?   | 16     | 23      | 01                    |                                                                        |
| 022       | RTN   | 24       | Digit entered?                                  | 078       | CHS   |        |         | -22                   |                                                                        |
| 023       | 1     | 01       |                                                 | 079       | ST03  | 35     | 03      |                       |                                                                        |
| 024       | ST0C  | 35 13    | Store dummy 1 for PMT.                          | 080       | RCL7  | 36     | 07      |                       | ± PMT                                                                  |
| 025       | GSB8  | 23 00    |                                                 | 081       | X     |        |         |                       | $[1 - (1+i)^{-n}] R_7$                                                 |
| 026       | 1/X   | 52       |                                                 | 082       | X     |        |         | -35                   |                                                                        |
| 027       | RCLD  | 36 14    |                                                 | 083       | RTN   |        |         | 24                    |                                                                        |
| 028       | R↑    | 16-31    | Solve for PMT and store in R <sub>C</sub> .     | 084       | *LBLB | 21     | 16      | 11                    |                                                                        |
| 029       | -     | -45      |                                                 | 085       | CLX   |        |         | -51                   |                                                                        |
| 030       | X     | -35      |                                                 | 086       | ST0C  | 35     | 13      |                       | Start by clearing PMT, PV, FV(BAL) registers.                          |
| 031       | ST0C  | 35 13    |                                                 | 087       | ST0D  | 35     | 14      |                       |                                                                        |
| 032       | RTN   | 24       |                                                 | 088       | ST0E  | 35     | 15      |                       |                                                                        |
| 033       | *LBLD | 21 14    | PV→R <sub>D</sub>                               | 089       | RTN   |        |         | 24                    |                                                                        |
| 034       | ST0D  | 35 14    |                                                 | 090       | *LBLB | 21     | 12      |                       |                                                                        |
| 035       | F3?   | 16 23 03 | Digit entered?                                  | 091       | ST0B  | 35     | 12      |                       | ↓+R <sub>B</sub>                                                       |
| 036       | RTN   | 24       |                                                 | 092       | F3?   | 16     | 23      | 03                    | Digit entered?                                                         |
| 037       | GSB8  | 23 00    |                                                 | 093       | RTN   |        |         | 24                    | Clear R <sub>B</sub> for sum of i terms.                               |
| 038       | +     | -55      | Solve for PV and store in R <sub>D</sub> .      | 094       | 0     |        |         | 00                    |                                                                        |
| 039       | ST0D  | 35 14    |                                                 | 095       | ST0B  | 35     | 12      |                       |                                                                        |
| 040       | RTN   | 24       |                                                 | 096       | 2     |        |         | 82                    |                                                                        |
| 041       | *LBLE | 21 15    |                                                 | 097       | 1     |        |         | 01                    | Store address of R <sub>B</sub> in R <sub>1</sub> for indirect access. |
| 042       | ST0E  | 35 15    |                                                 | 098       | ST0I  | 35     | 46      |                       |                                                                        |
| 043       | F3?   | 16 23 03 | FV(BAL)→R <sub>E</sub>                          | 099       | RCLC  | 36     | 15      |                       | Recall FV(BAL), n, PMT                                                 |
| 044       | RTN   | 24       | Digit entered?                                  | 100       | RCL8  | 36     | 11      |                       | If PMT = 0 GTO n, i, PV, FV solution.                                  |
| 045       | GSB8  | 23 00    |                                                 | 101       | RCLC  | 36     | 13      |                       |                                                                        |
| 046       | RCLD  | 36 14    |                                                 | 102       | X=?   | 16     | -43     |                       |                                                                        |
| 047       | X2Y   | -41      | Solve for FV(BAL) and store in R <sub>E</sub> . | 103       | GT08  | 22     | 08      |                       |                                                                        |
| 048       | -     | -45      |                                                 | 104       | X     |        |         | -35                   |                                                                        |
| 049       | RCL8  | 36 08    |                                                 | 105       | +     |        |         | -55                   |                                                                        |
| 050       | ÷     | -24      |                                                 | 106       | RCLD  | 36     | 14      |                       | Start guess of i: n PMT + FV(BAL)                                      |
| 051       | ST0E  | 35 15    |                                                 | 107       | X=?   | 16     | -43     |                       | If PV = 0 GTO FV guess                                                 |
| 052       | RTN   | 24       |                                                 | 108       | GT03  | 22     | 03      |                       | PV guess for i:                                                        |
| 053       | *LBL0 | 21 00    |                                                 | 109       | -     |        |         | -45                   |                                                                        |
| 054       | CF1   | 16 22 01 | Clear FV(BAL) flag.                             | 110       | RCL8  | 36     | 11      |                       | n PMT + BAL - PV                                                       |
| 055       | RCLD  | 36 14    | If PV = 0, set FV(BAL) flag.                    | 111       | ÷     |        |         | -24                   |                                                                        |
| 056       | X=?   | 16-43    |                                                 | 112       | RCLD  | 36     | 14      |                       | and recall PV                                                          |
| REGISTERS |       |          |                                                 |           |       |        |         |                       |                                                                        |
| 0         | 1     | 2        | 3 ± (PMT/i)                                     | 4 Used    | 5     | 6 Used | 7 (1+i) | 8 (1+i) <sup>-n</sup> | 9 i/100                                                                |
| S0        | S1    | S2       | S3                                              | S4        | S5    | S6     | S7      | S8                    | S9                                                                     |
| A n       | B i   | C PMT    | D PV                                            | E FV(BAL) | F     | G      | H       | I                     | J 21                                                                   |

| LABELS |       |   |   |      |     | FLAGS |    |          | SET STATUS |        |        |       |        |      |
|--------|-------|---|---|------|-----|-------|----|----------|------------|--------|--------|-------|--------|------|
| A      | n     | B | I | C    | PMT | D     | PV | E        | FV(BAL)    | F      | 0      | FLAGS | TRIG   | DISP |
| a      | START | b |   | c    |     | d     |    | e        |            | 1      | PV = 0 | 0     | ON OFF |      |
| 0      | Calc. |   | 1 |      | 2   |       | 3  | FV guess | 4          | guess  | 2      | 1     | DEG    | ☒    |
| 5      | →%    |   | 6 | loop |     | 7     |    | 8        | n,PV,FV→i  | 9      | 3      | 2     | GRAD   | ☐    |
|        |       |   |   |      |     |       |    |          |            | Digit? | 3      | 3     | RAD    | ☐    |
|        |       |   |   |      |     |       |    |          |            |        |        | 4     | SCI    | ☐    |
|        |       |   |   |      |     |       |    |          |            |        |        | 5     | ENG    | ☐    |
|        |       |   |   |      |     |       |    |          |            |        |        | 6     | n      | 2    |

113 **GTO4** 22 84  
 114 **\*LBL3** 21 83  
 115 **RCL4** 36 15  
 116 **LSTX** 16-63  
 117 - -45  
 118 **ENT↑** -21  
 119 + -55  
 120 **RCL4** 36 11  
 121 1 01  
 122 - -45  
 123 **X<sup>2</sup>** 53  
 124 **RCLC** 36 13  
 125 x -35  
 126 **RCL4** 36 15  
 127 + -55  
 128 **\*LBL4** 21 84  
 129 ÷ -24  
 130 - -62  
 131 9 89  
 132 **CHS** -22  
 133 **K=?** 16-35  
 134 **X<sup>2</sup>Y** -41  
 135 **GS85** 23 85  
 136 **X=?** 16-43  
 137 **RTN** 24  
 138 **\*LBL6** 21 86  
 139 **GS80** 23 88  
 140 + -55  
 141 **F1?** 16 23 81  
 142 **CHS** -22  
 143 **RCLD** 36 14  
 144 - -45  
 145 **RCL8** 36 88  
 146 **RCL4** 36 11  
 147 **RCL7** 36 87  
 148 ÷ -24  
 149 x -35  
 150 **F1?** 16 23 81  
 151 **CLK** -51  
 152 **ST06** 35 86  
 153 **F1?** 16 23 81  
 154 **R4** -31  
 155 **F1?** 16 23 81  
 156 **LSTX** 16-63  
 157 **RCL4** 36 84  
 158 **RCL9** 36 89  
 159 ÷ -24  
 160 - -45  
 161 **RCL7** 36 87  
 162 x -35  
 163 **RCL4** 36 84  
 164 + -55  
 165 **RCLC** 36 13  
 166 x -35  
 167 **RCL9** 36 89  
 168 ÷ -24

FV(BAL) guess for i  
 numerator:  
 2(BAL - n PMT) and  
 denominator  
 (n - 1)<sup>2</sup> PMT + BAL  
 Guess for i  
 If guess < -0.9, use -0.9  
 for guess  
 If guess = 0 stop.

Calculate f(i)

Calculate f'(i)

169 **RCL6** 36 86  
 170 **RCL4** 36 15  
 171 x -35  
 172 - -45  
 173 ÷ -24  
 174 **CHS** -22  
 175 **GS85** 23 85  
 176 **RCLB** 36 12  
 177 ÷ -24  
 178 **RND** 16 24  
 179 **X#0?** 16-42  
 180 **GTO6** 22 86  
 181 **RCL4** 36 12  
 182 **RTN** 24  
 183 **\*LBL8** 21 88  
 184 **RCL4** 36 15  
 185 **RCLD** 36 14  
 186 ÷ -24  
 187 **RCL4** 36 11  
 188 1/X 52  
 189 Y<sup>x</sup> 31  
 190 1 01  
 191 - -45  
 192 **\*LBL5** 21 85  
 193 **EEX** -23  
 194 2 02  
 195 x -35  
 196 **ST+I** 35-55 45  
 197 **RTN** 24  
 198 R/S 51

f(i)/f'(i)

If value ≠ 0, loop again.

Compute i for n, i, PV, FV problem.

Convert i to % and add to content of R<sub>B</sub>.

## ADVANCE PAYMENTS

|     |                   |          |                            |     |                  |       |  |
|-----|-------------------|----------|----------------------------|-----|------------------|-------|--|
| 801 | *LBLA             | 21 11    |                            | 857 | RCL8             | 36 00 |  |
| 802 | ST01              | 35 01    | A→R <sub>1</sub>           | 858 | RCL1             | 36 01 |  |
| 803 | X <sup>2</sup> Y  | -41      | -n→R <sub>0</sub>          | 859 | +                | -55   |  |
| 804 | CHS               | -22      |                            | 860 | Y <sup>x</sup>   | 31    |  |
| 805 | ST08              | 35 08    |                            | 861 | 1                | 01    |  |
| 806 | CHS               | -22      |                            | 862 | X <sup>2</sup> Y | -41   |  |
| 807 | X <sup>2</sup> Y  | -41      |                            | 863 | -                | -45   |  |
| 808 | X <sup>2</sup> Y? | 16-34    | A > n?                     | 864 | RCL2             | 36 02 |  |
| 809 | GT02              | 22 02    |                            | 865 | ÷                | -24   |  |
| 810 | RTN               | 24       |                            | 866 | RCL1             | 36 01 |  |
| 811 | *LBLD             | 21 14    |                            | 867 | +                | -55   |  |
| 812 | ST04              | 35 04    | PV→R <sub>4</sub>          | 868 | RCL3             | 36 03 |  |
| 813 | RTN               | 24       |                            | 869 | X                | -35   |  |
| 814 | *LBLE             | 21 15    |                            | 870 | RCL7             | 36 07 |  |
| 815 | ST05              | 35 05    | RESID→R <sub>5</sub>       | 871 | RCL6             | 36 06 |  |
| 816 | RTN               | 24       |                            | 872 | Y <sup>x</sup>   | 31    |  |
| 817 | *LBLc             | 21 16 13 |                            | 873 | RCL5             | 36 05 |  |
| 818 | EEX               | -23      |                            | 874 | X                | -35   |  |
| 819 | 2                 | 02       |                            | 875 | +                | -55   |  |
| 820 | =                 | -24      |                            | 876 | RCL4             | 36 04 |  |
| 821 | ST02              | 35 02    |                            | 877 | -                | -45   |  |
| 822 | 1                 | 01       |                            | 878 | ST06             | 35 06 |  |
| 823 | +                 | -55      |                            | 879 | RCL7             | 36 07 |  |
| 824 | ST07              | 35 07    | (1 + i/100)→R <sub>7</sub> | 880 | RCL8             | 36 08 |  |
| 825 | RCL0              | 36 00    |                            | 881 | RCL1             | 36 01 |  |
| 826 | Y <sup>x</sup>    | 31       |                            | 882 | +                | -55   |  |
| 827 | RCL5              | 36 05    |                            | 883 | 1                | 01    |  |
| 828 | X                 | -35      |                            | 884 | -                | -45   |  |
| 829 | RCL4              | 36 04    | Calculate PMT              | 885 | Y <sup>x</sup>   | 31    |  |
| 830 | X <sup>2</sup> Y  | -41      |                            | 886 | RCL0             | 36 00 |  |
| 831 | -                 | -45      |                            | 887 | CHS              | -22   |  |
| 832 | RCL7              | 36 07    |                            | 888 | RCL1             | 36 01 |  |
| 833 | RCL8              | 36 08    |                            | 889 | -                | -45   |  |
| 834 | RCL1              | 36 01    |                            | 890 | X                | -35   |  |
| 835 | +                 | -55      |                            | 891 | RCL2             | 36 02 |  |
| 836 | Y <sup>x</sup>    | 31       |                            | 892 | X                | -35   |  |
| 837 | 1                 | 01       |                            | 893 | RCL7             | 36 07 |  |
| 838 | X <sup>2</sup> Y  | -41      |                            | 894 | RCL8             | 36 00 |  |
| 839 | -                 | -45      |                            | 895 | RCL1             | 36 01 |  |
| 840 | RCL2              | 36 02    |                            | 896 | +                | -55   |  |
| 841 | ÷                 | -24      |                            | 897 | Y <sup>x</sup>   | 31    |  |
| 842 | RCL1              | 36 01    |                            | 898 | 1                | 01    |  |
| 843 | +                 | -55      |                            | 899 | X <sup>2</sup> Y | -41   |  |
| 844 | ÷                 | -24      |                            | 900 | -                | -45   |  |
| 845 | RTN               | 24       |                            | 901 | -                | -45   |  |
| 846 | *LBLb             | 21 16 12 |                            | 902 | RCL2             | 36 02 |  |
| 847 | ST03              | 35 03    |                            | 903 | X <sup>2</sup>   | 53    |  |
| 848 | EEX               | -23      | PMT→R <sub>3</sub>         | 904 | ÷                | -24   |  |
| 849 | CHS               | -22      |                            | 905 | RCL3             | 36 03 |  |
| 850 | 3                 | 03       |                            | 906 | X                | -35   |  |
| 851 | ST02              | 35 02    |                            | 907 | RCL7             | 36 07 |  |
| 852 | *LBL0             | 21 00    |                            | 908 | RCL8             | 36 00 |  |
| 853 | 1                 | 01       |                            | 909 | 1                | 01    |  |
| 854 | RCL2              | 36 02    |                            | 910 | -                | -45   |  |
| 855 | +                 | -55      |                            | 911 | Y <sup>x</sup>   | 31    |  |
| 856 | ST07              | 35 07    | Calculate f(i)             | 912 | RCL5             | 36 05 |  |

## REGISTERS

| 0  | -n | 1 A | 2 i/100 | 3 PMT | 4 PV | 5 RESID | 6 f(i) | 7 i+i/100 | 8  | 9 |
|----|----|-----|---------|-------|------|---------|--------|-----------|----|---|
| S0 | S1 | S2  | S3      | S4    | S5   | S6      | S7     | S8        | S9 |   |
| A  | B  | C   | D       | E     |      |         |        |           | I  |   |

|     |                   |          |                               |  |
|-----|-------------------|----------|-------------------------------|--|
| 113 | x                 | -35      |                               |  |
| 114 | RCL <sub>0</sub>  | 36 00    |                               |  |
| 115 | x                 | -35      |                               |  |
| 116 | +                 | -55      |                               |  |
| 117 | RCL <sub>6</sub>  | 36 86    | f(i)/f'(i)                    |  |
| 118 | X <sup>2</sup> Y  | -41      |                               |  |
| 119 | ÷                 | -24      |                               |  |
| 120 | ST-2              | 35-45 02 |                               |  |
| 121 | ABS               | 16 31    |                               |  |
| 122 | EEX               | -23      |                               |  |
| 123 | CHS               | -22      |                               |  |
| 124 | 6                 | 06       |                               |  |
| 125 | X <sup>2</sup> Y? | 16-35    |                               |  |
| 126 | GTO <sub>6</sub>  | 22 00    |                               |  |
| 127 | RCL <sub>2</sub>  | 36 02    |                               |  |
| 128 | EEX               | -23      |                               |  |
| 129 | 2                 | 02       |                               |  |
| 130 | x                 | -35      | Display i                     |  |
| 131 | RTN               | 24       |                               |  |
| 132 | *LBL <sub>2</sub> | 21 02    |                               |  |
| 133 | PSE               | 16 51    |                               |  |
| 134 | GTO <sub>2</sub>  | 22 02    | If A > n, flash A on display. |  |
| 135 | R/S               | 51       |                               |  |

| LABELS |      |   |                 |   | FLAGS             |   | SET STATUS |   |   |       |                                     |                                     |
|--------|------|---|-----------------|---|-------------------|---|------------|---|---|-------|-------------------------------------|-------------------------------------|
| A      | n, A | B | C               | D | PV                | E | RESID      | F | 0 | FLAGS | TRIG                                | DISP                                |
| a      |      | b | $\rightarrow i$ | c | $\rightarrow$ PMT | d |            | e | 1 | ON    | OFF                                 |                                     |
| 0      | Used | 1 |                 | 2 | Used              | 3 | 4          | 5 | 2 | 0     | <input checked="" type="checkbox"/> | <input checked="" type="checkbox"/> |
| 5      | 6    | 7 |                 | 8 |                   | 9 | 3          |   |   | 1     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 2     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 3     | <input type="checkbox"/>            | <input checked="" type="checkbox"/> |
|        |      |   |                 |   |                   |   |            |   |   | 4     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 5     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 6     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 7     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 8     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 9     | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 10    | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 11    | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 12    | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 13    | <input type="checkbox"/>            | <input type="checkbox"/>            |
|        |      |   |                 |   |                   |   |            |   |   | 14    | <input type="checkbox"/>            | <input type="checkbox"/>            |

# SAVINGS-COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS

| 001       | *LBLA             | 21    | 11    |      |    | 057 | x                | -35 |    |                        |  |
|-----------|-------------------|-------|-------|------|----|-----|------------------|-----|----|------------------------|--|
| 002       | =                 | -24   |       |      |    | 058 | RCLD             | 36  | 14 |                        |  |
| 003       | STOD              | 35    | 14    |      |    | 059 | +                | -55 |    |                        |  |
| 004       | 1                 | 01    |       |      |    | 060 | RCLC             | 36  | 13 |                        |  |
| 005       | X <sup>2</sup> Y  | -41   |       |      |    | 061 | x                | -35 |    |                        |  |
| 006       | X <sup>2</sup> Y? | 16    | -34   |      |    | 062 | ÷                | -24 |    |                        |  |
| 007       | F8?               | 16    | 23    | 00   |    | 063 | 1                | 01  |    |                        |  |
| 008       | RTN               | 24    |       |      |    | 064 | +                | -55 |    |                        |  |
| 009       | *LBLB             | 21    | 12    |      |    | 065 | LN               | 32  |    |                        |  |
| 010       | EEX               | -23   |       |      |    | 066 | RCLB             | 36  | 12 |                        |  |
| 011       | 2                 | 02    |       |      |    | 067 | 1                | 01  |    |                        |  |
| 012       | ÷                 | -24   |       |      |    | 068 | +                | -55 |    |                        |  |
| 013       | STOB              | 35    | 12    |      |    | 069 | LN               | 32  |    |                        |  |
| 014       | LSTX              | 16    | -63   |      |    | 070 | ÷                | -24 |    |                        |  |
| 015       | x                 | -35   |       |      |    | 071 | RCLD             | 36  | 14 |                        |  |
| 016       | RCLB              | 36    | 12    |      |    | 072 | x                | -35 |    |                        |  |
| 017       | 1                 | 01    |       |      |    | 073 | RTN              | 24  |    |                        |  |
| 018       | +                 | -55   |       |      |    | 074 | *LBLc            | 21  | 16 | 13                     |  |
| 019       | RCLD              | 36    | 14    |      |    | 075 | STOC             | 35  | 13 |                        |  |
| 020       | 1/X               | 52    |       |      |    | 076 | F3?              | 16  | 23 | 03                     |  |
| 021       | Y <sup>x</sup>    | 31    |       |      |    | 077 | RTN              | 24  |    |                        |  |
| 022       | ST09              | 35    | 09    |      |    | 078 | F8?              | 16  | 23 | 00                     |  |
| 023       | X <sup>2</sup> Y  | -41   |       |      |    | 079 | GT01             | 22  | 01 |                        |  |
| 024       | RTN               | 24    |       |      |    | 080 | RCL9             | 36  | 09 |                        |  |
| 025       | *LBLa             | 21    | 16    | 11   |    | 081 | 1                | 01  |    |                        |  |
| 026       | STOA              | 35    | 11    |      |    | 082 | -                | -45 |    |                        |  |
| 027       | F3?               | 16    | 23    | 83   |    | 083 | RCL9             | 36  | 09 |                        |  |
| 028       | RTN               | 24    |       |      |    | 084 | RCLA             | 36  | 11 |                        |  |
| 029       | F8?               | 16    | 23    | 00   |    | 085 | Y <sup>x</sup>   | 31  |    |                        |  |
| 030       | GT08              | 22    | 00    |      |    | 086 | 1                | 01  |    |                        |  |
| 031       | RCL9              | 36    | 09    |      |    | 087 | -                | -45 |    |                        |  |
| 032       | 1                 | 01    |       |      |    | 088 | ÷                | -24 |    |                        |  |
| 033       | -                 | -45   |       |      |    | 089 | RCLD             | 36  | 15 |                        |  |
| 034       | RCLE              | 36    | 15    |      |    | 090 | x                | -35 |    |                        |  |
| 035       | x                 | -35   |       |      |    | 091 | RCL9             | 36  | 09 |                        |  |
| 036       | RCL9              | 36    | 09    |      |    | 092 | ÷                | -24 |    |                        |  |
| 037       | RCLC              | 36    | 13    |      |    | 093 | RTN              | 24  |    |                        |  |
| 038       | x                 | -35   |       |      |    | 094 | *LBL1            | 21  | 01 |                        |  |
| 039       | ÷                 | -24   |       |      |    | 095 | RCLD             | 36  | 14 |                        |  |
| 040       | 1                 | 01    |       |      |    | 096 | 1/X              | 52  |    |                        |  |
| 041       | +                 | -55   |       |      |    | 097 | RCLA             | 36  | 11 |                        |  |
| 042       | LN                | 32    |       |      |    | 098 | x                | -35 |    |                        |  |
| 043       | RCL9              | 36    | 09    |      |    | 099 | RCLB             | 36  | 12 |                        |  |
| 044       | LN                | 32    |       |      |    | 100 | 1                | 01  |    |                        |  |
| 045       | ÷                 | -24   |       |      |    | 101 | +                | -55 |    |                        |  |
| 046       | RTN               | 24    |       |      |    | 102 | X <sup>2</sup> Y | -41 |    |                        |  |
| 047       | *LBL0             | 21    | 00    |      |    | 103 | Y <sup>x</sup>   | 31  |    |                        |  |
| 048       | RCLE              | 36    | 15    |      |    | 104 | 1                | 01  |    |                        |  |
| 049       | RCLB              | 36    | 12    |      |    | 105 | -                | -45 |    |                        |  |
| 050       | x                 | -35   |       |      |    | 106 | RCLB             | 36  | 12 |                        |  |
| 051       | RCLD              | 36    | 14    |      |    | 107 | X <sup>2</sup> Y | -41 |    |                        |  |
| 052       | 1                 | 01    |       |      |    | 108 | ÷                | -24 |    |                        |  |
| 053       | +                 | -55   |       |      |    | 109 | RCLD             | 36  | 14 |                        |  |
| 054       | RCLB              | 36    | 12    |      |    | 110 | 1                | 01  |    |                        |  |
| 055       | 2                 | 02    |       |      |    | 111 | +                | -55 |    |                        |  |
| 056       | +                 | -24   |       |      |    | 112 | RCLB             | 36  | 12 |                        |  |
| REGISTERS |                   |       |       |      |    |     |                  |     |    |                        |  |
| 0         | 1                 | 2     | 3     | 4    | 5  | 6   | 7                | 8   | 9  | (1 + 1) <sup>C/P</sup> |  |
| S0        | S1                | S2    | S3    | S4   | S5 | S6  | S7               | S8  | S9 |                        |  |
| A # PAY   | B i/100           | C PMT | D P/C | E FV | I  |     |                  |     |    |                        |  |

|        |                   |          |       |   |      |       |            |       |        |                                         |                                         |                              |
|--------|-------------------|----------|-------|---|------|-------|------------|-------|--------|-----------------------------------------|-----------------------------------------|------------------------------|
| 113    | 2                 | 02       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 114    | $\div$            | -24      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 115    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 116    | RCLD              | 36 14    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 117    | +                 | -55      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 118    | $\div$            | -24      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 119    | RCLC              | 36 15    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 120    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 121    | RTN               | 24       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 122    | #LBL <sub>e</sub> | 21 16 15 |       |   |      |       |            |       |        |                                         |                                         |                              |
| 123    | STO <sub>E</sub>  | 35 15    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 124    | F3?               | 16 23 83 |       |   |      |       |            |       |        |                                         |                                         |                              |
| 125    | RTN               | 24       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 126    | FP?               | 16 23 86 |       |   |      |       |            |       |        |                                         |                                         |                              |
| 127    | GTO <sub>2</sub>  | 22 82    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 128    | RCL <sub>9</sub>  | 36 89    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 129    | RCL <sub>A</sub>  | 36 11    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 130    | Y <sup>x</sup>    | 31       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 131    | 1                 | 01       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 132    | -                 | -45      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 133    | RCL <sub>9</sub>  | 36 89    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 134    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 135    | RCLC              | 36 13    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 136    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 137    | RCL <sub>9</sub>  | 36 89    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 138    | 1                 | 01       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 139    | -                 | -45      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 140    | $\div$            | -24      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 141    | RTN               | 24       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 142    | #LBL <sub>2</sub> | 21 02    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 143    | RCLD              | 36 14    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 144    | 1                 | 01       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 145    | +                 | -55      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 146    | RCLB              | 36 12    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 147    | 2                 | 02       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 148    | $\div$            | -24      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 149    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 150    | RCLD              | 36 14    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 151    | +                 | -55      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 152    | RCLB              | 36 12    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 153    | 1                 | 01       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 154    | +                 | -55      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 155    | RCLA              | 36 11    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 156    | RCLD              | 36 14    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 157    | 1 $\times$        | 52       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 158    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 159    | Y <sup>x</sup>    | 31       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 160    | 1                 | 01       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 161    | -                 | -45      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 162    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 163    | RCLC              | 36 13    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 164    | x                 | -35      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 165    | RCLB              | 36 12    |       |   |      |       |            |       |        |                                         |                                         |                              |
| 166    | +                 | -24      |       |   |      |       |            |       |        |                                         |                                         |                              |
| 167    | RTN               | 24       |       |   |      |       |            |       |        |                                         |                                         |                              |
| 168    | R/S               | 51       |       |   |      |       |            |       |        |                                         |                                         |                              |
| LABELS |                   |          |       |   |      | FLAGS | SET STATUS |       |        |                                         |                                         |                              |
| A      | P/C               | B        | i/100 | C | D    | E     | 0 P/C > 1  | FLAGS | TRIG   | DISP                                    |                                         |                              |
| a      | #PAY              | b        |       | c | PMT  | d     | e FV       | 1     | ON OFF | DEG <input checked="" type="checkbox"/> | FIX <input checked="" type="checkbox"/> |                              |
| 0      | Used              | 1        | Used  | 2 | Used | 3     | 4          | 2     | 1      | <input type="checkbox"/>                | GRAD <input type="checkbox"/>           | SCI <input type="checkbox"/> |
| 5      |                   | 6        |       | 7 |      | 8     | 9          | 3     | 2      | <input type="checkbox"/>                | RAD <input type="checkbox"/>            | ENG <input type="checkbox"/> |
|        |                   |          |       |   |      |       |            |       | 3      | <input type="checkbox"/>                | n <u>2</u>                              |                              |

## SIMPLE INTEREST/INTEREST CONVERSIONS

|     |        |          |                                       |  |     |        |          |                                      |  |
|-----|--------|----------|---------------------------------------|--|-----|--------|----------|--------------------------------------|--|
| 001 | 3      | 03       |                                       |  | 057 | GT03   | 22 03    |                                      |  |
| 002 | 6      | 06       | Initialize                            |  | 058 | #LBLC  | 21 13    | BEG AMT $\rightarrow$ R <sub>C</sub> |  |
| 003 | 0      | 00       | 360 $\rightarrow$ R <sub>A</sub>      |  | 059 | ST0C   | 35 13    | Digit entered?                       |  |
| 004 | ST08   | 35 08    | 365 $\rightarrow$ R <sub>9</sub>      |  | 060 | F3?    | 16 23 03 |                                      |  |
| 005 | 5      | 05       |                                       |  | 061 | RTN    | 24       |                                      |  |
| 006 | +      | -55      |                                       |  | 062 | F2?    | 16 23 02 |                                      |  |
| 007 | ST09   | 35 09    |                                       |  | 063 | GT04   | 22 04    | 360 or 365?                          |  |
| 008 | 0      | 00       |                                       |  | 064 | RCLD   | 36 14    |                                      |  |
| 009 | R/S    | 51       |                                       |  | 065 | RCLB   | 36 08    |                                      |  |
| 010 | *LBLA  | 21 11    |                                       |  | 066 | #LBL5  | 21 05    |                                      |  |
| 011 | ST0A   | 35 11    | Days $\rightarrow$ R <sub>A</sub>     |  | 067 | x      | -35      |                                      |  |
| 012 | F3?    | 16 23 03 | Digit entered?                        |  | 068 | RCLA   | 36 11    | Calculate BEG AMT and                |  |
| 013 | RTN    | 24       |                                       |  | 069 | $\div$ | -24      | store in R <sub>C</sub>              |  |
| 014 | F2?    | 16 23 02 |                                       |  | 070 | RCLB   | 36 12    |                                      |  |
| 015 | GT08   | 22 08    | Test for 360 or 365 day               |  | 071 | $\div$ | -24      |                                      |  |
| 016 | RCLD   | 36 14    | basis                                 |  | 072 | ST0C   | 35 13    |                                      |  |
| 017 | RCLB   | 36 08    |                                       |  | 073 | RTN    | 24       |                                      |  |
| 018 | *LBL1  | 21 01    |                                       |  | 074 | #LBL4  | 21 04    |                                      |  |
| 019 | x      | -35      | Calculate days and store in           |  | 075 | RCLC   | 36 15    | 365 day basis                        |  |
| 020 | RCLC   | 36 13    | R <sub>A</sub>                        |  | 076 | RCL9   | 36 09    |                                      |  |
| 021 | $\div$ | -24      |                                       |  | 077 | GT05   | 22 05    |                                      |  |
| 022 | RCLB   | 36 12    |                                       |  | 078 | *LBLD  | 21 14    |                                      |  |
| 023 | $\div$ | -24      |                                       |  | 079 | ST0D   | 35 14    |                                      |  |
| 024 | ST0A   | 35 11    |                                       |  | 080 | F3?    | 16 23 03 |                                      |  |
| 025 | RTN    | 24       |                                       |  | 081 | RTN    | 24       | Digit entered?                       |  |
| 026 | *LBL8  | 21 08    |                                       |  | 082 | RCLC   | 36 13    |                                      |  |
| 027 | RCLC   | 36 15    | 365 day basis                         |  | 083 | RCLA   | 36 11    | Calculate INT <sub>360</sub> and     |  |
| 028 | RCL9   | 36 09    |                                       |  | 084 | RCLB   | 36 08    | store in R <sub>D</sub>              |  |
| 029 | GT01   | 22 01    |                                       |  | 085 | GS86   | 23 06    |                                      |  |
| 030 | *LBL8  | 21 12    |                                       |  | 086 | ST0D   | 35 14    |                                      |  |
| 031 | EEX    | -23      | RATE/100 $\rightarrow$ R <sub>B</sub> |  | 087 | RTN    | 24       |                                      |  |
| 032 | 2      | 02       |                                       |  | 088 | #LBL8  | 21 15    |                                      |  |
| 033 | $\div$ | -24      |                                       |  | 089 | ST0E   | 35 15    |                                      |  |
| 034 | ST0B   | 35 12    |                                       |  | 090 | SF2    | 16 21 02 |                                      |  |
| 035 | LSTX   | 16-63    |                                       |  | 091 | F3?    | 16 23 03 |                                      |  |
| 036 | x      | -35      |                                       |  | 092 | RTN    | 24       | Digit entered?                       |  |
| 037 | F3?    | 16 23 03 |                                       |  | 093 | RCLC   | 36 13    |                                      |  |
| 038 | RTN    | 24       | Digit entered?                        |  | 094 | RCLA   | 36 11    |                                      |  |
| 039 | F2?    | 16 23 02 |                                       |  | 095 | RCL9   | 36 09    |                                      |  |
| 040 | GT02   | 22 02    | Test for 360 or 365 day               |  | 096 | GS86   | 23 06    |                                      |  |
| 041 | RCLB   | 36 08    | basis.                                |  | 097 | ST0E   | 35 15    |                                      |  |
| 042 | RCLD   | 36 14    |                                       |  | 098 | RTN    | 24       |                                      |  |
| 043 | *LBL3  | 21 03    |                                       |  | 099 | #LBL6  | 21 06    |                                      |  |
| 044 | x      | -35      |                                       |  | 100 | $\div$ | -24      |                                      |  |
| 045 | RCLA   | 36 11    | Calculate RATE and store              |  | 101 | RCLC   | 36 13    |                                      |  |
| 046 | $\div$ | -24      | in R <sub>B</sub>                     |  | 102 | x      | -35      |                                      |  |
| 047 | RCLC   | 36 13    |                                       |  | 103 | RCLB   | 36 12    |                                      |  |
| 048 | $\div$ | -24      |                                       |  | 104 | x      | -35      |                                      |  |
| 049 | EEX    | -23      |                                       |  | 105 | RTN    | 24       |                                      |  |
| 050 | 2      | 02       |                                       |  | 106 | #LBLa  | 21 16 11 |                                      |  |
| 051 | x      | -35      |                                       |  | 107 | ST0A   | 35 11    |                                      |  |
| 052 | ST0B   | 35 12    |                                       |  | 108 | RTN    | 24       |                                      |  |
| 053 | RTN    | 24       |                                       |  | 109 | #LBLb  | 21 16 12 |                                      |  |
| 054 | *LBL2  | 21 02    | 365 day basis                         |  | 110 | ST0B   | 35 12    | NOM $\rightarrow$ R <sub>B</sub>     |  |
| 055 | RCL9   | 36 09    |                                       |  | 111 | F3?    | 16 23 03 | Digit entered?                       |  |
| 056 | RCLC   | 36 15    |                                       |  | 112 | RTN    | 24       |                                      |  |

## REGISTERS

|        |        |        |        |        |    |    |    |    |     |    |     |
|--------|--------|--------|--------|--------|----|----|----|----|-----|----|-----|
| 0      | 1      | 2      | 3      | 4      | 5  | 6  | 7  | 8  | 360 | 9  | 365 |
| S0     | S1     | S2     | S3     | S4     | S5 | S6 | S7 | S8 |     | S9 |     |
| A Used | B Used | C Used | D Used | E Used |    |    |    |    |     |    |     |

| LABELS            |                  |                  |                                             | FLAGS                  | SET STATUS            |                                                                |                               |                              |
|-------------------|------------------|------------------|---------------------------------------------|------------------------|-----------------------|----------------------------------------------------------------|-------------------------------|------------------------------|
| A                 | B                | C                | D                                           | E                      | 0                     | FLAGS                                                          | TRIG                          | DISP                         |
| <sup>a</sup> C/YR | <sup>b</sup> NOM | <sup>c</sup> EFF | <sup>d</sup> NOM(cont)                      | <sup>e</sup> EFF(cont) | <sup>f</sup> 1        | ON OFF                                                         | <sup>g</sup> DEG              | <sup>h</sup> FIX             |
| 0 Used            | 1 Used           | 2 Used           | 3 Used                                      | 4 Used                 | 5 365 basis           | 0 <input type="checkbox"/> <input checked="" type="checkbox"/> | GRAD <input type="checkbox"/> | SCI <input type="checkbox"/> |
| 5 Used            | 6 Used           | 7 Used           | 8 Used                                      | 9                      | 3 Digit?              | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>  | ENG <input type="checkbox"/> |
| 113               | RCLC             | 36 13            | Calculate NOM and store in R <sub>B</sub> . |                        | 169 STOE 35 15        |                                                                |                               |                              |
| 114               | EEX              | -23              |                                             |                        | 170 F3? 16 23 03      |                                                                |                               |                              |
| 115               | 2                | 02               |                                             |                        | 171 RTN 24            |                                                                |                               |                              |
| 116               | ÷                | -24              |                                             |                        | 172 RCLD 36 14        |                                                                |                               |                              |
| 117               | 1                | 01               |                                             |                        | 173 #LBL7 21 07       |                                                                |                               |                              |
| 118               | +                | -55              |                                             |                        | 174 EEX -23           |                                                                |                               |                              |
| 119               | RCLA             | 36 11            |                                             |                        | 175 2 02              |                                                                |                               |                              |
| 120               | 1 <sup>x</sup>   | 52               |                                             |                        | 176 ÷ -24             |                                                                |                               |                              |
| 121               | Y <sup>x</sup>   | 31               |                                             |                        | 177 e <sup>x</sup> 33 |                                                                |                               |                              |
| 122               | 1                | 01               |                                             |                        | 178 1 01              |                                                                |                               |                              |
| 123               | -                | -45              |                                             |                        | 179 - -45             |                                                                |                               |                              |
| 124               | RCLC             | 36 11            |                                             |                        | 180 EEX -23           |                                                                |                               |                              |
| 125               | X                | -35              |                                             |                        | 181 2 02              |                                                                |                               |                              |
| 126               | EEX              | -23              |                                             |                        | 182 x -35             |                                                                |                               |                              |
| 127               | 2                | 02               |                                             |                        | 183 STOE 35 15        |                                                                |                               |                              |
| 128               | x                | -35              |                                             |                        | 184 RTN 24            |                                                                |                               |                              |
| 129               | STOB             | 35 12            |                                             |                        | 185 #LBL8 21 08       |                                                                |                               |                              |
| 130               | RTN              | 24               |                                             |                        | 186 RCL9 36 09        |                                                                |                               |                              |
| 131               | *LBLc            | 21 16 13         | EFF → R <sub>c</sub><br>Digit entered?      |                        | 187 x -35             |                                                                |                               |                              |
| 132               | STOC             | 35 13            |                                             |                        | 188 RCL8 36 08        |                                                                |                               |                              |
| 133               | F3?              | 16 23 03         |                                             |                        | 189 ÷ -24             |                                                                |                               |                              |
| 134               | RTN              | 24               |                                             |                        | 190 GT07 22 07        |                                                                |                               |                              |
| 135               | RCLB             | 36 12            |                                             |                        | 191 R/S 51            |                                                                |                               |                              |
| 136               | RCLA             | 36 11            |                                             |                        |                       |                                                                |                               |                              |
| 137               | EEX              | -23              |                                             |                        |                       |                                                                |                               |                              |
| 138               | 2                | 02               |                                             |                        |                       |                                                                |                               |                              |
| 139               | x                | -35              |                                             |                        |                       |                                                                |                               |                              |
| 140               | ÷                | -24              |                                             |                        |                       |                                                                |                               |                              |
| 141               | 1                | 01               |                                             |                        |                       |                                                                |                               |                              |
| 142               | +                | -55              |                                             |                        |                       |                                                                |                               |                              |
| 143               | RCLA             | 36 11            |                                             |                        |                       |                                                                |                               |                              |
| 144               | Y <sup>x</sup>   | 31               |                                             |                        |                       |                                                                |                               |                              |
| 145               | 1                | 01               |                                             |                        |                       |                                                                |                               |                              |
| 146               | -                | -45              |                                             |                        |                       |                                                                |                               |                              |
| 147               | EEX              | -23              |                                             |                        |                       |                                                                |                               |                              |
| 148               | 2                | 02               |                                             |                        |                       |                                                                |                               |                              |
| 149               | x                | -35              |                                             |                        |                       |                                                                |                               |                              |
| 150               | STOC             | 35 13            |                                             |                        |                       |                                                                |                               |                              |
| 151               | RTN              | 24               |                                             |                        |                       |                                                                |                               |                              |
| 152               | *LBLd            | 21 16 14         | Continuous                                  |                        |                       |                                                                |                               |                              |
| 153               | STOD             | 35 14            |                                             |                        |                       |                                                                |                               |                              |
| 154               | F3?              | 16 23 03         |                                             |                        |                       |                                                                |                               |                              |
| 155               | RTN              | 24               |                                             |                        |                       |                                                                |                               |                              |
| 156               | RCLE             | 36 15            |                                             |                        |                       |                                                                |                               |                              |
| 157               | EEX              | -23              |                                             |                        |                       |                                                                |                               |                              |
| 158               | 2                | 02               |                                             |                        |                       |                                                                |                               |                              |
| 159               | ÷                | -24              |                                             |                        |                       |                                                                |                               |                              |
| 160               | 1                | 01               |                                             |                        |                       |                                                                |                               |                              |
| 161               | +                | -55              |                                             |                        |                       |                                                                |                               |                              |
| 162               | LN               | 32               |                                             |                        |                       |                                                                |                               |                              |
| 163               | EEX              | -23              |                                             |                        |                       |                                                                |                               |                              |
| 164               | 2                | 02               |                                             |                        |                       |                                                                |                               |                              |
| 165               | x                | -35              |                                             |                        |                       |                                                                |                               |                              |
| 166               | STOD             | 35 14            |                                             |                        |                       |                                                                |                               |                              |
| 167               | RTN              | 24               |                                             |                        |                       |                                                                |                               |                              |
| 168               | *LBLc            | 21 16 15         |                                             |                        |                       |                                                                |                               |                              |

## DEPRECIATION SCHEDULES

| REGISTERS |                   | REGISTERS |     | REGISTERS |                                                        | REGISTERS |       | REGISTERS |                  | REGISTERS |      | REGISTERS |      | REGISTERS |                                           |
|-----------|-------------------|-----------|-----|-----------|--------------------------------------------------------|-----------|-------|-----------|------------------|-----------|------|-----------|------|-----------|-------------------------------------------|
| 0         | 1                 | 2         | 3   | 4         | Used                                                   | 5         | Used  | 6         | RDV <sub>k</sub> | 7         | Used | 8         | Used | 9         | TOT DEP                                   |
| S0        | S1                | S2        | S3  | S4        | S5                                                     | S6        | S7    | S8        | RDV <sub>k</sub> | S9        |      |           |      |           |                                           |
| A         | SBV               | B         | SAL | C         | LIFE                                                   | D         | YR    | E         | FACTOR           |           |      |           |      |           | SBV-SAL/LIFE                              |
| 001       | #LBL <sub>0</sub> | 21        | 16  | 11        |                                                        | 057       | -     | -         | -45              |           |      |           |      |           |                                           |
| 002       | FB?               | 16        | 23  | 00        | Straight line                                          | 058       | XKB?  | 16        | 45               |           |      |           |      |           |                                           |
| 003       | SPC               | 16-11     |     |           | K                                                      | 059       | GT03  | 22        | 03               |           |      |           |      |           |                                           |
| 004       | RCLD              | 36        | 14  |           |                                                        | 060       | GSB2  | 23        | 02               |           |      |           |      |           |                                           |
| 005       | GSB9              | 23        | 09  |           |                                                        | 061       | RCL7  | 36        | 07               |           |      |           |      |           |                                           |
| 006       | RCLA              | 36        | 11  |           | SBV - SAL                                              | 062       | ÷     | -         | -24              |           |      |           |      |           |                                           |
| 007       | RCLB              | 36        | 12  |           | LIFE                                                   | 063       | ST04  | 35        | 04               |           |      |           |      |           |                                           |
| 008       | -                 | -         | 45  |           |                                                        | 064       | RCLB  | 36        | 08               |           |      |           |      |           |                                           |
| 009       | RCLC              | 36        | 13  |           |                                                        | 065       | x     | -         | -35              |           |      |           |      |           |                                           |
| 010       | ÷                 | -         | 24  |           |                                                        | 066       | #LBL3 | 21        | 03               |           |      |           |      |           |                                           |
| 011       | ST01              | 35        | 46  |           | DEP                                                    | 067       | ST06  | 35        | 06               |           |      |           |      |           | RDV <sub>k</sub>                          |
| 012       | GSB9              | 23        | 09  |           |                                                        | 068       | GSB9  | 23        | 09               |           |      |           |      |           |                                           |
| 013       | RCLC              | 36        | 13  |           |                                                        | 069       | RCLB  | 36        | 12               |           |      |           |      |           |                                           |
| 014       | RCLD              | 36        | 14  |           |                                                        | 070       | +     | -         | -55              |           |      |           |      |           |                                           |
| 015       | -                 | -         | 45  |           | (LIFE - YR) DEP = RDV <sub>k</sub>                     | 071       | GSB9  | 23        | 09               |           |      |           |      |           | RBV <sub>k</sub> = RDV <sub>k</sub> + SAL |
| 016       | RCL1              | 36        | 46  |           |                                                        | 072       | 1     | -         | 81               |           |      |           |      |           |                                           |
| 017       | x                 | -         | 35  |           |                                                        | 073       | RCL4  | 36        | 04               |           |      |           |      |           |                                           |
| 018       | GSB9              | 23        | 09  |           |                                                        | 074       | -     | -         | -45              |           |      |           |      |           |                                           |
| 019       | RCLB              | 36        | 12  |           |                                                        | 075       | RCLB  | 36        | 08               |           |      |           |      |           |                                           |
| 020       | +                 | -         | 55  |           |                                                        | 076       | x     | -         | -35              |           |      |           |      |           |                                           |
| 021       | GSB9              | 23        | 09  |           | RBV <sub>k</sub>                                       | 077       | GSB9  | 23        | 09               |           |      |           |      |           | TOT DEP <sub>k</sub>                      |
| 022       | RCL1              | 36        | 46  |           |                                                        | 078       | 1     | -         | 81               |           |      |           |      |           |                                           |
| 023       | RCLD              | 36        | 14  |           | $\left( \frac{SBV - SAL}{LIFE} \right) YR = TOT DEP$   | 079       | GSBD  | 23        | 14               |           |      |           |      |           |                                           |
| 024       | x                 | -         | 35  |           |                                                        | 080       | RCLC  | 36        | 13               |           |      |           |      |           |                                           |
| 025       | GSB9              | 23        | 09  |           |                                                        | 081       | RCLD  | 36        | 14               |           |      |           |      |           | K ≤ LIFE?                                 |
| 026       | 1                 | 81        |     |           |                                                        | 082       | X?Y?  | 16        | 35               |           |      |           |      |           |                                           |
| 027       | GSBD              | 23        | 14  |           |                                                        | 083       | GT06  | 22        | 16               | 12        |      |           |      |           |                                           |
| 028       | RCLC              | 36        | 13  |           |                                                        | 084       | RTN   | 24        |                  |           |      |           |      |           |                                           |
| 029       | RCLD              | 36        | 14  |           |                                                        | 085       | #LBL2 | 21        | 02               |           |      |           |      |           |                                           |
| 030       | X?Y?              | 16-35     |     |           | K ≤ LIFE?                                              | 086       | ENT†  | -         | -21              |           |      |           |      |           |                                           |
| 031       | GT06              | 22        | 16  | 11        |                                                        | 087       | FRC   | 16        | 44               |           |      |           |      |           |                                           |
| 032       | RTN               | 24        |     |           |                                                        | 088       | ENT†  | -         | -21              |           |      |           |      |           | $(1 + W) (2F + W)$                        |
| 033       | #LBL2             | 21        | 16  | 12        | SOYD                                                   | 089       | +     | -         | -55              |           |      |           |      |           | 2                                         |
| 034       | FB?               | 16        | 23  | 00        |                                                        | 090       | X?Y   | -         | -41              |           |      |           |      |           |                                           |
| 035       | SPC               | 16-11     |     |           |                                                        | 091       | INT   | 16        | 34               |           |      |           |      |           |                                           |
| 036       | RCLD              | 36        | 14  |           |                                                        | 092       | +     | -         | -55              |           |      |           |      |           | = SOYD                                    |
| 037       | GSB9              | 23        | 09  |           | K                                                      | 093       | LSTX  | 16        | 63               |           |      |           |      |           |                                           |
| 038       | RCLA              | 36        | 11  |           |                                                        | 094       | 1     | -         | 81               |           |      |           |      |           |                                           |
| 039       | RCLB              | 36        | 12  |           |                                                        | 095       | +     | -         | -55              |           |      |           |      |           |                                           |
| 040       | -                 | -         | 45  |           |                                                        | 096       | x     | -         | -35              |           |      |           |      |           |                                           |
| 041       | ST08              | 35        | 08  |           |                                                        | 097       | 2     | -         | 82               |           |      |           |      |           |                                           |
| 042       | RCLC              | 36        | 13  |           |                                                        | 098       | ÷     | -         | -24              |           |      |           |      |           |                                           |
| 043       | GSB2              | 23        | 02  |           |                                                        | 099       | RTN   | 24        |                  |           |      |           |      |           |                                           |
| 044       | ST07              | 35        | 07  |           | $\left( \frac{LIFE + 1 - K}{SOYD} \right) (SBV - SAL)$ | 100       | #LBL6 | 21        | 16               | 13        |      |           |      |           |                                           |
| 045       | RCLC              | 36        | 13  |           |                                                        | 101       | FB?   | 16        | 23               | 00        |      |           |      |           |                                           |
| 046       | 1                 | 81        |     |           |                                                        | 102       | SPC   | 16-11     |                  |           |      |           |      |           |                                           |
| 047       | +                 | -         | 55  |           |                                                        | 103       | RCLD  | 36        | 14               |           |      |           |      |           |                                           |
| 048       | RCLD              | 36        | 14  |           |                                                        | 104       | GSB9  | 23        | 09               |           |      |           |      |           |                                           |
| 049       | -                 | -         | 45  |           |                                                        | 105       | GSB4  | 23        | 04               |           |      |           |      |           |                                           |
| 050       | RCL7              | 36        | 07  |           |                                                        | 106       | RCLD  | 36        | 14               |           |      |           |      |           |                                           |
| 051       | ÷                 | -         | 24  |           |                                                        | 107       | 1     | -         | 81               |           |      |           |      |           |                                           |
| 052       | RCL8              | 36        | 06  |           |                                                        | 108       | -     | -         | -45              |           |      |           |      |           |                                           |
| 053       | x                 | -         | 35  |           |                                                        | 109       | Yx    | -         | 31               |           |      |           |      |           |                                           |
| 054       | GSB9              | 23        | 09  |           | DEPK                                                   | 110       | RCLA  | 36        | 11               |           |      |           |      |           |                                           |
| 055       | RCLC              | 36        | 13  |           |                                                        | 111       | x     | -         | -35              |           |      |           |      |           |                                           |
| 056       | RCLD              | 36        | 14  |           |                                                        | 112       | RCLB  | 36        | 08               |           |      |           |      |           |                                           |

| LABELS                |                   |                      |                    |                     |          | FLAGS                                                                                   |      | SET STATUS |            |  |
|-----------------------|-------------------|----------------------|--------------------|---------------------|----------|-----------------------------------------------------------------------------------------|------|------------|------------|--|
| A                     | B                 | C                    | D Used             | E                   | 0 Print? | FLAGS                                                                                   | TRIG | DISP       |            |  |
| <sup>a</sup> St. line | <sup>b</sup> SOYD | <sup>c</sup> DEC BAL | <sup>d</sup> CROSS | <sup>e</sup> SCHED? | 1        | ON OFF                                                                                  | DEG  | FIX        |            |  |
| 0 Used                | 1 Used            | <sup>2</sup> SOYD    | <sup>3</sup> Used  | <sup>4</sup> Used   | 2        | 0 <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> | GRAD | SCI        |            |  |
| 5                     | 6                 | 7                    | 8 Used             | <sup>9</sup> Used   | 3        | 1 <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> | RAD  | ENG        |            |  |
|                       |                   |                      |                    |                     |          | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> |      |            |            |  |
|                       |                   |                      |                    |                     |          | 3 <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> |      |            |            |  |
|                       |                   |                      |                    |                     |          |                                                                                         |      |            | n <u>2</u> |  |

Crossover point

## DAYS BETWEEN DATES

|     |       |          |                                  |     |       |          |  |  |
|-----|-------|----------|----------------------------------|-----|-------|----------|--|--|
| 001 | #LBLA | 21 11    |                                  | 057 | CLK   | -51      |  |  |
| 002 | ST07  | 35 07    | DT <sub>1</sub> → R <sub>7</sub> | 058 | RCL5  | 36 05    |  |  |
| 003 | RTN   | 24       |                                  | 059 | +     | -55      |  |  |
| 004 | #LBLB | 21 12    | DT <sub>2</sub> → R <sub>1</sub> | 060 | RCL3  | 36 03    |  |  |
| 005 | ST01  | 35 01    |                                  | 061 | 1     | 01       |  |  |
| 006 | RTN   | 24       |                                  | 062 | -     | -45      |  |  |
| 007 | #LBLC | 21 13    |                                  | 063 | 3     | 03       |  |  |
| 008 | RCL7  | 36 07    |                                  | 064 | 1     | 01       |  |  |
| 009 | GSBE  | 23 15    |                                  | 065 | x     | -35      |  |  |
| 010 | ST02  | 35 02    | Control and storage              | 066 | +     | -55      |  |  |
| 011 | LSTX  | 16-63    |                                  | 067 | RCL6  | 36 06    |  |  |
| 012 | ST08  | 35 08    |                                  | 068 | 4     | 04       |  |  |
| 013 | RCL1  | 36 01    |                                  | 069 | ÷     | -24      |  |  |
| 014 | GSBE  | 23 15    |                                  | 070 | INT   | 16 34    |  |  |
| 015 | LSTX  | 16-63    |                                  | 071 | X=Y   | -41      |  |  |
| 016 | ST-0  | 35-45 00 |                                  | 072 | +     | -55      |  |  |
| 017 | CLK   | -51      |                                  | 073 | RTN   | 24       |  |  |
| 018 | RCL2  | 36 02    |                                  | 074 | #LBLD | 21 14    |  |  |
| 019 | -     | -45      |                                  | 075 | 3     | 03       |  |  |
| 020 | RCL4  | 36 04    |                                  | 076 | 8     | 08       |  |  |
| 021 | 2     | 02       |                                  | 077 | STD2  | 35 02    |  |  |
| 022 | ÷     | -24      |                                  | 078 | RCL7  | 36 07    |  |  |
| 023 | ST=0  | 35-24 00 |                                  | 079 | GSBe  | 23 16 15 |  |  |
| 024 | X=Y   | -41      |                                  | 080 | ST08  | 35 08    |  |  |
| 025 | RTN   | 24       |                                  | 081 | RCL1  | 36 01    |  |  |
| 026 | #LBLE | 21 15    |                                  | 082 | GSBe  | 23 16 15 |  |  |
| 027 | GSB4  | 23 04    |                                  | 083 | RCL8  | 36 00    |  |  |
| 028 | ST06  | 35 06    |                                  | 084 | -     | -45      |  |  |
| 029 | 3     | 03       |                                  | 085 | ST08  | 35 08    |  |  |
| 030 | 6     | 06       |                                  | 086 | RCL4  | 36 04    |  |  |
| 031 | 5     | 05       |                                  | 087 | CHS   | -22      |  |  |
| 032 | ST04  | 35 04    |                                  | 088 | 2     | 02       |  |  |
| 033 | x     | -35      |                                  | 089 | ÷     | -24      |  |  |
| 034 | 2     | 02       |                                  | 090 | ST=0  | 35-24 00 |  |  |
| 035 | RCL3  | 36 03    |                                  | 091 | R4    | -31      |  |  |
| 036 | X=Y?  | 16-34    |                                  | 092 | RTN   | 24       |  |  |
| 037 | GT08  | 22 08    |                                  | 093 | #LBL  | 21 16 15 |  |  |
| 038 | x     | -35      |                                  | 094 | GSB4  | 23 04    |  |  |
| 039 | CLK   | -51      |                                  | 095 | 3     | 03       |  |  |
| 040 | RCL6  | 36 06    |                                  | 096 | 6     | 06       |  |  |
| 041 | 1     | 01       |                                  | 097 | 0     | 00       |  |  |
| 042 | -     | -45      |                                  | 098 | ST04  | 35 04    |  |  |
| 043 | ST06  | 35 06    |                                  | 099 | x     | -35      |  |  |
| 044 | GT01  | 22 01    |                                  | 100 | RCL3  | 36 03    |  |  |
| 045 | #LBL0 | 21 00    |                                  | 101 | 3     | 03       |  |  |
| 046 | .     | -62      |                                  | 102 | 0     | 00       |  |  |
| 047 | 4     | 04       |                                  | 103 | x     | -35      |  |  |
| 048 | x     | -35      |                                  | 104 | +     | -55      |  |  |
| 049 | .     | -62      | x = INT (.4M + 2.3)              | 105 | RCL5  | 36 05    |  |  |
| 050 | 3     | 03       |                                  | 106 | 3     | 03       |  |  |
| 051 | +     | -55      |                                  | 107 | 1     | 01       |  |  |
| 052 | +     | -55      |                                  | 108 | X=Y?  | 16-33    |  |  |
| 053 | INT   | 16 34    |                                  | 109 | GT02  | 22 02    |  |  |
| 054 | -     | -45      |                                  | 110 | R4    | -31      |  |  |
| 055 | RCL6  | 36 06    |                                  | 111 | ST02  | 35 02    |  |  |
| 056 | #LBL1 | 21 01    |                                  | 112 | +     | -55      |  |  |

## REGISTERS

| 0  | -PER | 1 DT <sub>2</sub> | 2 Used | 3 M | 4 365/360 | 5 D | 6 Y, Z | 7 DT <sub>1</sub> | 8  | 9  |
|----|------|-------------------|--------|-----|-----------|-----|--------|-------------------|----|----|
| S0 |      | S1                | S2     | S3  | S4        | S5  | S6     | S7                | S8 | S9 |
| A  |      | B                 | C      |     | D         |     | E      |                   | I  |    |

| LABELS |                 |                 |               |            |        | FLAGS | SET STATUS                 |                                     |                                     |
|--------|-----------------|-----------------|---------------|------------|--------|-------|----------------------------|-------------------------------------|-------------------------------------|
| A      | DT <sub>1</sub> | DT <sub>2</sub> | C Days Actual | D Days 360 | E Used | 0     | FLAGS                      | TRIG                                | DISP                                |
| a      | b               | c               | d             | e          | Used   | 1     | ON OFF                     | DEG                                 | FIX                                 |
| 0      | Used            | 1               | Used          | 2          | Used   | 3     | 0 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input checked="" type="checkbox"/> |
| 5      | 6               | 7               | 8             | 9          |        | 3     | 1 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input checked="" type="checkbox"/> |
|        |                 |                 |               |            |        |       | 2 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input checked="" type="checkbox"/> |
|        |                 |                 |               |            |        |       | 3 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input checked="" type="checkbox"/> |

## BOND PRICE AND YIELD

|     |       |          |                         |     |       |          |  |  |
|-----|-------|----------|-------------------------|-----|-------|----------|--|--|
| 001 | *LBLA | 21 11    |                         | 057 | ÷     | -24      |  |  |
| 002 | CF3   | 16 22 03 |                         | 058 | -     | -45      |  |  |
| 003 | CHS   | -22      |                         | 059 | ST-6  | 35-45 06 |  |  |
| 004 | ST08  | 35 00    | -PER→R <sub>0</sub>     | 060 | ABS   | 16 31    |  |  |
| 005 | CHS   | -22      |                         | 061 | EEX   | -23      |  |  |
| 006 | RTN   | 24       |                         | 062 | CHS   | -22      |  |  |
| 007 | *LBLB | 21 12    |                         | 063 | 6     | 06       |  |  |
| 008 | EEX   | -23      |                         | 064 | X?Y?  | 16-35    |  |  |
| 009 | 2     | 02       |                         | 065 | GT01  | 22 01    |  |  |
| 010 | ST03  | 35 03    | 100→R <sub>3</sub>      | 066 | F2?   | 16 23 02 |  |  |
| 011 | RJ    | -31      |                         | 067 | GT02  | 22 02    |  |  |
| 012 | ST01  | 35 01    | CR→R <sub>1</sub>       | 068 | RCL6  | 36 06    |  |  |
| 013 | RTN   | 24       |                         | 069 | GT03  | 22 03    |  |  |
| 014 | *LBL2 | 21 14    |                         | 070 | *LBL2 | 21 02    |  |  |
| 015 | CF3   | 16 22 03 | RV→R <sub>3</sub>       | 071 | RCL5  | 36 05    |  |  |
| 016 | ST03  | 35 03    |                         | 072 | 1     | 01       |  |  |
| 017 | RTN   | 24       |                         | 073 | RCL0  | 36 00    |  |  |
| 018 | *LBLC | 21 13    |                         | 074 | FRC   | 16 44    |  |  |
| 019 | F2?   | 16 23 03 | YLD→R <sub>2</sub>      | 075 | +     | -55      |  |  |
| 020 | GT05  | 22 05    |                         | 076 | LSTX  | 16-63    |  |  |
| 021 | RCL0  | 36 00    |                         | 077 | X     | -35      |  |  |
| 022 | ABS   | 16 31    |                         | 078 | 4     | 04       |  |  |
| 023 | 1     | 01       |                         | 079 | ÷     | -24      |  |  |
| 024 | X?Y?  | 16-34    | 1>PER?                  | 080 | RCL1  | 36 01    |  |  |
| 025 | GT08  | 22 00    |                         | 081 | X     | -35      |  |  |
| 026 | SF2   | 16 21 02 | Calculate initial guess | 082 | RCL6  | 36 06    |  |  |
| 027 | RCL1  | 36 01    |                         | 083 | X     | -35      |  |  |
| 028 | 2     | 02       |                         | 084 | -     | -45      |  |  |
| 029 | ÷     | -24      |                         | 085 | ST05  | 35 05    |  |  |
| 030 | RCL4  | 36 04    |                         | 086 | GT01  | 22 01    |  |  |
| 031 | ST05  | 35 05    |                         | 087 | *LBLB | 21 00    |  |  |
| 032 | ÷     | -24      |                         | 088 | RCL3  | 36 03    |  |  |
| 033 | ST06  | 35 06    |                         | 089 | RCL1  | 36 01    |  |  |
| 034 | *LBL1 | 21 01    | Calculate f(y)          | 090 | 2     | 02       |  |  |
| 035 | 1     | 01       |                         | 091 | ÷     | -24      |  |  |
| 036 | RCL3  | 36 03    |                         | 092 | +     | -55      |  |  |
| 037 | RCL5  | 36 05    |                         | 093 | LSTX  | 16-63    |  |  |
| 038 | ÷     | -24      |                         | 094 | RCL0  | 36 00    |  |  |
| 039 | 1     | 01       |                         | 095 | 1     | 01       |  |  |
| 040 | RCL6  | 36 06    |                         | 096 | +     | -55      |  |  |
| 041 | +     | -55      |                         | 097 | X     | -35      |  |  |
| 042 | RCL0  | 36 00    |                         | 098 | RCL4  | 36 04    |  |  |
| 043 | Y%    | 31       |                         | 099 | +     | -55      |  |  |
| 044 | ST08  | 35 00    |                         | 100 | ÷     | -24      |  |  |
| 045 | X     | -35      |                         | 101 | 1     | 01       |  |  |
| 046 | -     | -45      |                         | 102 | -     | -45      |  |  |
| 047 | RCL6  | 36 06    |                         | 103 | RCL0  | 36 00    |  |  |
| 048 | X     | -35      |                         | 104 | CHS   | -22      |  |  |
| 049 | 1     | 01       |                         | 105 | ÷     | -24      |  |  |
| 050 | RCL0  | 36 00    |                         | 106 | *LBL3 | 21 03    |  |  |
| 051 | -     | -45      |                         | 107 | 2     | 02       |  |  |
| 052 | ÷     | -24      |                         | 108 | 0     | 00       |  |  |
| 053 | RCL1  | 36 01    |                         | 109 | 0     | 00       |  |  |
| 054 | 2     | 02       |                         | 110 | X     | -35      |  |  |
| 055 | ÷     | -24      |                         | 111 | ST02  | 35 02    |  |  |
| 056 | RCL5  | 36 05    |                         | 112 | RTN   | 24       |  |  |

## REGISTERS

| 0  | -PER | 1  | CR | 2  | YLD | 3  | RV | 4  | PRICE | 5  | Used | 6  | Used | 7  | DT <sub>1</sub> | 8  | Acc. Int. | 9  |
|----|------|----|----|----|-----|----|----|----|-------|----|------|----|------|----|-----------------|----|-----------|----|
| S0 |      | S1 |    | S2 |     | S3 |    | S4 |       | S5 |      | S6 |      | S7 |                 | S8 |           | S9 |
| A  |      | B  |    | C  |     | D  |    | E  |       | F  |      | G  |      | H  |                 | I  |           |    |



## INTEREST AT MATURITY/DISCOUNTED SECURITIES

|     |       |          |                    |     |       |          |  |  |
|-----|-------|----------|--------------------|-----|-------|----------|--|--|
| 001 | *LBLA | 21 11    |                    | 057 | RCL8  | 36 08    |  |  |
| 002 | STOA  | 35 11    | DSM→RA             | 058 | ÷     | -24      |  |  |
| 003 | X2Y   | -41      | DIM→R9             | 059 | 1     | 01       |  |  |
| 004 | STOD  | 35 09    |                    | 060 | +     | -55      |  |  |
| 005 | X2Y   | -41      |                    | 061 | RCLA  | 36 11    |  |  |
| 006 | RTN   | 24       |                    | 062 | RCLB  | 36 12    |  |  |
| 007 | *LBLB | 21 12    | Basis→RB           | 063 | ÷     | -24      |  |  |
| 008 | STOB  | 35 12    |                    | 064 | RCLD  | 36 14    |  |  |
| 009 | EEX   | -23      | 100→R8             | 065 | ×     | -35      |  |  |
| 010 | 2     | 02       |                    | 066 | RCL8  | 36 08    |  |  |
| 011 | STOB  | 35 08    |                    | 067 | ÷     | -24      |  |  |
| 012 | X2Y   | -41      |                    | 068 | 1     | 01       |  |  |
| 013 | RTN   | 24       |                    | 069 | +     | -55      |  |  |
| 014 | *LBLC | 21 13    | CR→RC              | 070 | ÷     | -24      |  |  |
| 015 | STOC  | 35 13    |                    | 071 | RCLS  | 36 09    |  |  |
| 016 | RTN   | 24       |                    | 072 | RCLA  | 36 11    |  |  |
| 017 | *LBLD | 21 14    |                    | 073 | -     | -45      |  |  |
| 018 | STOD  | 35 14    | YLD→RD             | 074 | RCLB  | 36 12    |  |  |
| 019 | F3?   | 16 23 03 |                    | 075 | ÷     | -24      |  |  |
| 020 | RTN   | 24       |                    | 076 | RCLC  | 36 13    |  |  |
| 021 | RCL9  | 36 09    | Calc. Yield        | 077 | ×     | -35      |  |  |
| 022 | RCLB  | 36 12    |                    | 078 | RCL8  | 36 08    |  |  |
| 023 | ÷     | -24      |                    | 079 | ÷     | -24      |  |  |
| 024 | RCLC  | 36 13    |                    | 080 | -     | -45      |  |  |
| 025 | x     | -35      |                    | 081 | EEX   | -23      |  |  |
| 026 | RCLS  | 36 08    |                    | 082 | 2     | 02       |  |  |
| 027 | +     | -55      |                    | 083 | ×     | -35      |  |  |
| 028 | RCL9  | 36 09    |                    | 084 | STOE  | 35 15    |  |  |
| 029 | RCLA  | 36 11    |                    | 085 | RTN   | 24       |  |  |
| 030 | -     | -45      |                    | 086 | *LBLA | 21 16 11 |  |  |
| 031 | RCLB  | 36 12    |                    | 087 | STOA  | 35 11    |  |  |
| 032 | ÷     | -24      |                    | 088 | CF1   | 16 22 01 |  |  |
| 033 | RCLC  | 36 13    |                    | 089 | RTN   | 24       |  |  |
| 034 | x     | -35      |                    | 090 | *LBLB | 21 16 12 |  |  |
| 035 | RCL8  | 36 15    |                    | 091 | CF1   | 16 21 01 |  |  |
| 036 | +     | -55      |                    | 092 | STOI  | 35 46    |  |  |
| 037 | ÷     | -24      |                    | 093 | RCLA  | 36 11    |  |  |
| 038 | 1     | 01       |                    | 094 | ×     | -35      |  |  |
| 039 | -     | -45      |                    | 095 | 3     | 03       |  |  |
| 040 | RCLB  | 36 12    |                    | 096 | €     | 06       |  |  |
| 041 | x     | -35      |                    | 097 | 0     | 00       |  |  |
| 042 | RCLA  | 36 11    |                    | 098 | ÷     | -24      |  |  |
| 043 | ÷     | -24      |                    | 099 | EEX   | -23      |  |  |
| 044 | RCL8  | 36 08    |                    | 100 | 2     | 02       |  |  |
| 045 | x     | -35      |                    | 101 | X2Y   | -41      |  |  |
| 046 | STOD  | 35 14    | Store yield in RD. | 102 | -     | -45      |  |  |
| 047 | RTN   | 24       |                    | 103 | STOT  | 35 07    |  |  |
| 048 | *LBLE | 21 15    |                    | 104 | GSBc  | 23 16 13 |  |  |
| 049 | STOE  | 35 15    |                    | 105 | RCLI  | 36 46    |  |  |
| 050 | F3?   | 16 23 03 | Price→RE           | 106 | RTN   | 24       |  |  |
| 051 | RTN   | 24       |                    | 107 | *LBLc | 21 16 13 |  |  |
| 052 | RCL9  | 36 09    |                    | 108 | EEX   | -23      |  |  |
| 053 | RCLB  | 36 12    | Calc. price        | 109 | 2     | 02       |  |  |
| 054 | ÷     | -24      |                    | 110 | X2Y   | -41      |  |  |
| 055 | RCLC  | 36 13    |                    | 111 | -     | -45      |  |  |
| 056 | x     | -35      |                    | 112 | LSTW  | 16-63    |  |  |

## REGISTERS

| 0     | 1         | 2       | 3     | 4       | 5  | 6         | 7  | Used | 8  | 100 | 9  | DIM |
|-------|-----------|---------|-------|---------|----|-----------|----|------|----|-----|----|-----|
| S0    | S1        | S2      | S3    | S4      | S5 | S6        | S7 |      | S8 |     | S9 |     |
| A DSM | B 360/365 | C CR(%) | D YLD | E PRICE | F  | DISC RATE |    |      |    |     |    |     |

| LABELS           |                 |                   |                  | FLAGS              |                     | SET STATUS                                                     |                                         |                                         |
|------------------|-----------------|-------------------|------------------|--------------------|---------------------|----------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| A                | B               | C                 | D                | E                  | F                   | FLAGS                                                          | TRIG                                    | DISP                                    |
| <sup>a</sup> DSM | <sup>b</sup> DR | <sup>c</sup> Used | <sup>d</sup> YLD | <sup>e</sup> PRICE | <sup>f</sup> DR     | ON OFF                                                         | DEG <input checked="" type="checkbox"/> | FIX <input checked="" type="checkbox"/> |
| 0                | 1               | 2                 | 3                | 4                  | 2                   | 0 <input type="checkbox"/> <input checked="" type="checkbox"/> | SCI <input type="checkbox"/>            |                                         |
| 5                | 6               | 7                 | 8                | 9                  | <sup>3</sup> Digit? | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>            |                                         |

# LINEAR REGRESSION—EXPONENTIAL CURVE FIT

|           |                |                    |                                      |                 |                   |                 |                                   |                     |
|-----------|----------------|--------------------|--------------------------------------|-----------------|-------------------|-----------------|-----------------------------------|---------------------|
| 881       | #LBLA          | 21 11              |                                      | 857             | R4                | -31             |                                   |                     |
| 882       | CF1            | 16 22 01           | Clears flag 1 and storage registers. | 858             | RCLB              | 36 12           | Calculate linear $r^2$            |                     |
| 883       | CLR6           | 16-53              |                                      | 859             | x                 | -35             |                                   |                     |
| 884       | P $\approx$ S  | 16-51              |                                      | 860             | RCL7              | 36 07           |                                   |                     |
| 885       | CLR6           | 16-53              |                                      | 861             | RCL6              | 36 06           |                                   |                     |
| 886       | CLX            | -51                |                                      | 862             | x $\ddot{e}$      | 53              |                                   |                     |
| 887       | RTN            | 24                 |                                      | 863             | RCL9              | 36 09           |                                   |                     |
| 888       | #LBLB          | 21 12              |                                      | 864             | $\div$            | -24             |                                   |                     |
| 889       | ST08           | 35 09              | y $\rightarrow$ R8                   | 865             | -                 | -45             |                                   |                     |
| 890       | X $\approx$ Y  | -41                |                                      | 866             | $\div$            | -24             |                                   |                     |
| 891       | ST09           | 35 09              | x $\rightarrow$ R9                   | 867             | ST0E              | 35 15           | $r^2 \rightarrow R_E$             |                     |
| 892       | X $\approx$ Y  | -41                |                                      | 868             | RCLA              | 36 11           |                                   |                     |
| 893       | X $\times$ 0?  | 16-44              | y > 0?                               | 869             | GS89              | 23 09           | Display a (lin.)                  |                     |
| 894       | GT08           | 22 00              |                                      | 870             | RCLB              | 36 12           | Display b (lin.)                  |                     |
| 895       | SFI            | 16 21 01           | If no, set flag 1.                   | 871             | GS89              | 23 09           | Display $r^2$ (lin.)              |                     |
| 896       | #LBL4          | 21 04              |                                      | 872             | RCLC              | 36 15           |                                   |                     |
| 897       | RCL8           | 36 08              | Performs summations                  | 873             | P $\approx$ S     | 16-51           |                                   |                     |
| 898       | RCL9           | 36 09              |                                      | 874             | GS89              | 23 09           |                                   |                     |
| 899       | $\Sigma$       | 56                 |                                      | 875             | F12               | 16 23 01        | If any y $\leq$ 0, display ERROR. |                     |
| 900       | RJM            | 24                 |                                      | 876             | GT08              | 22 00           |                                   |                     |
| 901       | #LBL8          | 21 00              |                                      | 877             | RCL2              | 36 02           | Calculate b (exponential)         |                     |
| 902       | LN             | 32                 |                                      | 878             | RCL8              | 36 08           |                                   |                     |
| 903       | ST+0           | 35-55 00           | $\Sigma \ln y \rightarrow R_0$       | 879             | P $\approx$ S     | 16-51           |                                   |                     |
| 904       | X $\ddot{e}$   | 53                 |                                      | 880             | RCL4              | 36 04           |                                   |                     |
| 905       | ST+1           | 35-55 01           | $\Sigma (\ln y)^2 \rightarrow R_1$   | 881             | x                 | -35             |                                   |                     |
| 906       | RCL8           | 36 08              |                                      | 882             | RCL9              | 36 09           |                                   |                     |
| 907       | LN             | 32                 |                                      | 883             | $\div$            | -24             |                                   |                     |
| 908       | RCL9           | 36 09              |                                      | 884             | -                 | -45             |                                   |                     |
| 909       | x              | -35                |                                      | 885             | RCL5              | 36 05           |                                   |                     |
| 910       | ST+2           | 35-55 02           | $\Sigma x \ln y \rightarrow R_2$     | 886             | RCL4              | 36 04           |                                   |                     |
| 911       | GT04           | 22 04              |                                      | 887             | X $\ddot{e}$      | 53              |                                   |                     |
| 912       | #LBLA          | 21 16 11           |                                      | 888             | RCL9              | 36 09           |                                   |                     |
| 913       | P $\approx$ S  | 16-51              |                                      | 889             | $\div$            | -24             |                                   |                     |
| 914       | RCL8           | 36 08              | Calculate b (linear)                 | 890             | -                 | -45             |                                   |                     |
| 915       | RCL4           | 36 04              |                                      | 891             | $\div$            | -24             |                                   |                     |
| 916       | RCL6           | 36 06              |                                      | 892             | ST0C              | 35 13           |                                   |                     |
| 917       | x              | -35                |                                      | 893             | RCL4              | 36 04           |                                   |                     |
| 918       | RCL9           | 36 09              |                                      | 894             | x                 | -35             | Calculate a (exponential)         |                     |
| 919       | $\div$         | -24                |                                      | 895             | CHS               | -22             |                                   |                     |
| 920       | -              | -45                |                                      | 896             | P $\approx$ S     | 16-51           |                                   |                     |
| 921       | RCL5           | 36 05              |                                      | 897             | RCL8              | 36 08           |                                   |                     |
| 922       | RCL4           | 36 04              |                                      | 898             | +                 | -55             |                                   |                     |
| 923       | X $\ddot{e}$   | 53                 |                                      | 899             | P $\approx$ S     | 16-51           |                                   |                     |
| 924       | RCL9           | 36 09              |                                      | 900             | RCL9              | 36 09           |                                   |                     |
| 925       | $\div$         | -24                |                                      | 901             | $\div$            | -24             |                                   |                     |
| 926       | -              | -45                |                                      | 902             | e $\ddot{x}$      | 33              |                                   |                     |
| 927       | $\div$         | -24                |                                      | 903             | ST0D              | 35 14           |                                   |                     |
| 928       | ST0B           | 35 12              | b $\rightarrow$ R8                   | 904             | R4                | -31             |                                   |                     |
| 929       | RCL4           | 36 04              |                                      | 905             | RCLC              | 36 13           | Calculate exponential $r^2$       |                     |
| 930       | x              | -35                |                                      | 906             | x                 | -35             |                                   |                     |
| 931       | CHS            | -22                | Calculate a (linear)                 | 907             | P $\approx$ S     | 16-51           |                                   |                     |
| 932       | RCL6           | 36 06              |                                      | 908             | RCL1              | 36 01           |                                   |                     |
| 933       | $\div$         | -55                |                                      | 909             | RCL8              | 36 08           |                                   |                     |
| 934       | RCL9           | 36 09              |                                      | 910             | X $\ddot{e}$      | 53              |                                   |                     |
| 935       | $\div$         | -24                |                                      | 911             | P $\approx$ S     | 16-51           |                                   |                     |
| 936       | ST0A           | 35 11              | a $\rightarrow$ R <sub>A</sub>       | 912             | RCL9              | 36 09           |                                   |                     |
| REGISTERS |                |                    |                                      |                 |                   |                 |                                   |                     |
| 0         | $\Sigma \ln y$ | $\Sigma (\ln y)^2$ | $\Sigma x \ln y$                     | 3               | 4                 | 5               | 6                                 | 7                   |
| S0        | S1             | S2                 | S3                                   | S4 $\Sigma x_i$ | S5 $\Sigma x_i^2$ | S6 $\Sigma y_i$ | S7 $\Sigma y_i^2$                 | S8 $\Sigma x_i y_i$ |
| A         | a (Linear)     | B                  | b (Linear)                           | C               | b (Exponential)   | D               | a (Exponential)                   | E                   |
|           |                |                    |                                      |                 |                   | Used            |                                   | Used                |

| LABELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |       |       | FLAGS |                          |      | SET STATUS                          |     |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|-------|-------|--------------------------|------|-------------------------------------|-----|-------------------------------------|
| <sup>A</sup> START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>B</sup> Data Input                                                                                       | <sup>C</sup> Trend Line | <sup>D</sup> Lin y | <sup>E</sup> Exp y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>0</sup> Print?                                             | FLAGS |       |       | TRIG                     | DISP |                                     |     |                                     |
| <sup>A</sup> a; b; r <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>B</sup> Del. Data                                                                                        | <sup>C</sup> Del. T.L.  | <sup>D</sup> d     | <sup>E</sup> e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>0</sup> Print?                                             | 1     | y > 0 | ON    | OFF                      | DEG  | <input checked="" type="checkbox"/> | FIX | <input checked="" type="checkbox"/> |
| <sup>0</sup> Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>1</sup> Used                                                                                             | <sup>2</sup> Used       | <sup>3</sup> Used  | <sup>4</sup> Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>2</sup>                                                    |       |       | 0     | <input type="checkbox"/> | GRAD | <input type="checkbox"/>            | SCI | <input type="checkbox"/>            |
| <sup>5</sup> Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                             | 7                       | 8                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                               |       |       | 1     | <input type="checkbox"/> | RAD  | <input type="checkbox"/>            | ENG | <input type="checkbox"/>            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |       |       | 2     | <input type="checkbox"/> |      |                                     | n   | <input type="checkbox"/>            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |       |       | 3     | <input type="checkbox"/> |      |                                     |     |                                     |
| 113 ÷ -24<br>114 - -45<br>115 ÷ -24<br>116 STO <sub>E</sub> 35 15<br>117 F0? 16 23 00<br>118 SPC 16-11<br>119 RCLD 36 14<br>120 GS89 23 09<br>121 RCLC 36 13<br>122 GS89 23 09<br>123 RCLE 36 15<br>124 P2S 16-51<br>125 GS89 23 09<br>126 RCLC 36 13<br>127 e <sup>x</sup> 33<br>128 1 01<br>129 - -45<br>130 EEF -23<br>131 2 02<br>132 x -35<br>133 GS89 23 09<br>134 F0? 16 23 00<br>135 SPC 16-11<br>136 RTN 24<br>137 *LBL <sub>C</sub> 21 13<br>138 ISZ1 16 26 46<br>139 RCLI 36 46<br>140 STO <sub>9</sub> 35 09<br>141 X <sup>2</sup> Y -41<br>142 STO <sub>8</sub> 35 08<br>143 X <sup>2</sup> 0? 16-44<br>144 STO <sub>8</sub> 22 08<br>145 SF1 16 21 01<br>146 GT04 22 04<br>147 *LBL <sub>D</sub> 21 14<br>148 RCLB 36 12<br>149 x -35<br>150 RCLA 36 11<br>151 + -55<br>152 GT09 22 09<br>153 *LBL <sub>E</sub> 21 15<br>154 RCLC 36 13<br>155 x -35<br>156 e <sup>x</sup> 33<br>157 RCLD 36 14<br>158 x -35<br>159 GT09 22 09<br>160 *LBL <sub>b</sub> 21 16 12<br>161 STO <sub>8</sub> 35 00<br>162 X <sup>2</sup> Y -41<br>163 STO <sub>9</sub> 35 09<br>164 X <sup>2</sup> Y -41<br>165 X <sup>2</sup> 0? 16-44<br>166 GT01 22 01<br>167 SF1 16 21 01<br>168 *LBL <sub>5</sub> 21 05 | Display a (exp.)<br>Display b (exp.)<br>Display r <sup>2</sup> (exp.)<br>Continuous effective rate<br>as a %. |                         |                    | 169 RCLB 36 08<br>170 RCL9 36 09<br>171 Σ- 16 56<br>172 RTN 24<br>173 #LBL1 21 81<br>174 LN 32<br>175 ST-0 35-45 00<br>176 X <sup>2</sup> 53<br>177 ST-1 35-45 01<br>178 RCLB 36 08<br>179 LN 32<br>180 RCL9 36 09<br>181 X -35<br>182 ST-2 35-45 02<br>183 GT05 22 05<br>184 #LBL <sub>C</sub> 21 16 13<br>185 DSZ1 16 25 46<br>186 RCL9 36 09<br>187 X <sup>2</sup> Y -41<br>188 GT01 22 01<br>189 *LBL <sub>E</sub> 21 16 15<br>190 F0? 16 23 00<br>191 GT02 22 02<br>192 SF0 16 21 00<br>193 1 01<br>194 RTN 24<br>195 *LBL <sub>2</sub> 21 02<br>196 0 00<br>197 CF0 16 22 00<br>198 RTN 24<br>199 *LBL <sub>9</sub> 21 09<br>200 F0? 16 23 00<br>201 GT03 22 03<br>202 R/S 51<br>203 RTN 24<br>204 *LBL <sub>3</sub> 21 03<br>205 PRTX -14<br>206 RTN 24<br>207 R/S 51 | Delete last trend value.<br>Print/pause flag.<br>Print command. |       |       |       |                          |      |                                     |     |                                     |
| Performs summations for<br>trend line.<br><br>For deleting incorrect<br>inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |       |       |       |                          |      |                                     |     |                                     |

## MULTIPLE LINEAR REGRESSION

|     |               |          |                                                        |     |               |          |  |
|-----|---------------|----------|--------------------------------------------------------|-----|---------------|----------|--|
| 801 | $\#LBLA$      | 21 11    |                                                        | 857 | -             | -45      |  |
| 802 | $CLRC$        | 16 53    | Initialize                                             | 858 | $STO1$        | 35 46    |  |
| 803 | $CF1$         | 16 22 01 |                                                        | 859 | $R\downarrow$ | -31      |  |
| 804 | 0             | 00       |                                                        | 860 | $X^2$         | 53       |  |
| 805 | $RTN$         | 24       |                                                        | 861 | $GSB2$        | 23 82    |  |
| 806 | $\#LBLB$      | 21 12    |                                                        | 862 | $ST+I$        | 35-55 45 |  |
| 807 | $STOC$        | 35 13    |                                                        | 863 | $RTN$         | 24       |  |
| 808 | $R\downarrow$ | -31      |                                                        | 864 | $\#LBLC$      | 21 13    |  |
| 809 | $STOB$        | 35 12    |                                                        | 865 | $RCL0$        | 36 00    |  |
| 810 | $R\downarrow$ | -31      |                                                        | 866 | $RCL4$        | 36 04    |  |
| 811 | $STOA$        | 35 11    |                                                        | 867 | x             | -35      |  |
| 812 | $F0?$         | 16 23 00 |                                                        | 868 | $RCL7$        | 36 07    |  |
| 813 | $GSB8$        | 23 00    |                                                        | 869 | $X^2$         | 53       |  |
| 814 | 0             | 07       |                                                        | 870 | -             | -45      |  |
| 815 | $STO1$        | 35 46    | Compute $\Sigma x_i$ , $\Sigma y_i$ , $\Sigma z_i$     | 871 | $STOD$        | 35 14    |  |
| 816 | $R\downarrow$ | -31      | $\Sigma x_i^2$ , $\Sigma y_i^2$ , $\Sigma z_i^2$       | 872 | $RCL0$        | 36 00    |  |
| 817 | $GSB1$        | 23 01    | $\Sigma x_i y_i$ , $\Sigma y_i z_i$ , $\Sigma z_i x_i$ | 873 | $RCL3$        | 36 03    |  |
| 818 | 0             | 08       |                                                        | 874 | x             | -35      |  |
| 819 | $STO1$        | 35 46    |                                                        | 875 | $RCL8$        | 36 08    |  |
| 820 | $RCLC$        | 36 12    |                                                        | 876 | $RCL9$        | 36 09    |  |
| 821 | $F0?$         | 16 23 00 |                                                        | 877 | x             | -35      |  |
| 822 | $GSB6$        | 23 06    |                                                        | 878 | -             | -45      |  |
| 823 | $GSB1$        | 23 01    |                                                        | 879 | x             | -35      |  |
| 824 | 9             | 09       |                                                        | 880 | $STOC$        | 35 13    |  |
| 825 | $STO1$        | 35 46    |                                                        | 881 | $RCL0$        | 36 00    |  |
| 826 | $RCLC$        | 36 13    |                                                        | 882 | $RCL1$        | 36 01    |  |
| 827 | $F0?$         | 16 23 00 |                                                        | 883 | x             | -35      |  |
| 828 | $GSB6$        | 23 06    |                                                        | 884 | $RCL7$        | 36 07    |  |
| 829 | $GSB1$        | 23 01    |                                                        | 885 | $RCL8$        | 36 08    |  |
| 830 | $RCLA$        | 36 11    |                                                        | 886 | x             | -35      |  |
| 831 | $RCLB$        | 36 12    |                                                        | 887 | -             | -45      |  |
| 832 | x             | -35      |                                                        | 888 | $STOA$        | 35 11    |  |
| 833 | $GSB2$        | 23 02    |                                                        | 889 | $RCL2$        | 36 00    |  |
| 834 | $ST+I$        | 35-55 01 |                                                        | 890 | $RCL2$        | 36 02    |  |
| 835 | $RCLA$        | 36 11    |                                                        | 891 | x             | -35      |  |
| 836 | $RCLC$        | 36 13    |                                                        | 892 | $RCL7$        | 36 07    |  |
| 837 | x             | -35      |                                                        | 893 | $RCL9$        | 36 09    |  |
| 838 | $GSB2$        | 23 02    |                                                        | 894 | x             | -35      |  |
| 839 | $ST+2$        | 35-55 02 |                                                        | 895 | -             | -45      |  |
| 840 | $RCLB$        | 36 12    |                                                        | 896 | $STOB$        | 35 12    |  |
| 841 | $RCLC$        | 36 13    |                                                        | 897 | x             | -35      |  |
| 842 | x             | -35      |                                                        | 898 | $RCLC$        | 36 13    |  |
| 843 | $GSB2$        | 23 02    |                                                        | 899 | $X^2Y$        | -41      |  |
| 844 | $ST+3$        | 35-55 03 |                                                        | 900 | -             | -45      |  |
| 845 | 1             | 01       |                                                        | 901 | $RCLD$        | 36 14    |  |
| 846 | $GSB2$        | 23 02    |                                                        | 902 | $RCL0$        | 36 00    |  |
| 847 | $ST+0$        | 35-55 00 |                                                        | 903 | $RCL5$        | 36 05    |  |
| 848 | $RCL0$        | 36 00    |                                                        | 904 | x             | -35      |  |
| 849 | $F0?$         | 16 23 00 |                                                        | 905 | $RCLB$        | 36 00    |  |
| 850 | $GSB6$        | 23 06    |                                                        | 906 | $X^2$         | 53       |  |
| 851 | $RTN$         | 24       |                                                        | 907 | -             | -45      |  |
| 852 | $\#LBL1$      | 21 01    |                                                        | 908 | x             | -35      |  |
| 853 | $GSB2$        | 23 02    | Subroutine for $\Sigma x_i$ , ...                      | 909 | $RCLA$        | 36 11    |  |
| 854 | $ST+I$        | 35-55 45 | $\Sigma x_i^2$ , ...                                   | 110 | $X^2$         | 53       |  |
| 855 | $RCL1$        | 36 46    |                                                        | 111 | -             | -45      |  |
| 856 | 3             | 03       |                                                        | 112 | $\Sigma$      | -24      |  |

## REGISTERS

| 0  | n    | $1 \Sigma x_i y_i$ | $2 \Sigma x_i z_i$ | $3 \Sigma y_i z_i$ | $4 \Sigma x_i^2$ | $5 \Sigma y_i^2$ | $6 \Sigma z_i^2$ | $7 \Sigma x_i$ | $8 \Sigma y_i$ | $9 \Sigma z_i$ |      |
|----|------|--------------------|--------------------|--------------------|------------------|------------------|------------------|----------------|----------------|----------------|------|
| S0 | S1   | S2                 | S3                 | S4                 | S5               | S6               | S7               | S8             | S9             |                |      |
| A  | Used | B                  | Used               | C                  | Used             | D                | Used             | E              | Used           | I              | Used |

| LABELS                          |           |   |           |   |           |   |       |      | FLAGS                               |      |            | SET STATUS |                          |                                     |                                     |                          |                                     |                          |
|---------------------------------|-----------|---|-----------|---|-----------|---|-------|------|-------------------------------------|------|------------|------------|--------------------------|-------------------------------------|-------------------------------------|--------------------------|-------------------------------------|--------------------------|
| A                               | START     | B | $\Sigma+$ | C | $a; b; c$ | D | $r^2$ | E    | z                                   | 0    | Print      | FLAGS      | TRIG                     | DISP                                |                                     |                          |                                     |                          |
| a                               | $\Sigma-$ | b |           | c |           | d |       | e    | Print?                              | 1    | Correction | ON         | OFF                      |                                     |                                     |                          |                                     |                          |
| 0                               |           | 1 | Used      |   | 2 Used    |   | 3     | 4    |                                     | 2    |            | 0          | <input type="checkbox"/> | DEG                                 | <input checked="" type="checkbox"/> | FIX                      | <input checked="" type="checkbox"/> |                          |
| 5                               | Used      | 6 | Used      |   | 7 Used    |   | 8     | Used | 9                                   | Used | 3          | 3          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | GRAD                                | <input type="checkbox"/> | SCI                                 | <input type="checkbox"/> |
|                                 |           |   |           |   |           |   |       |      |                                     |      |            | 2          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | RAD                                 | <input type="checkbox"/> | ENG                                 | <input type="checkbox"/> |
|                                 |           |   |           |   |           |   |       |      |                                     |      |            | 3          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | n                                   | <u>2</u>                 |                                     |                          |
| 113 ST0C 35 13                  |           |   |           |   |           |   |       |      | 169 F0? 16 23 00                    |      |            |            |                          |                                     | Correction of input values.         |                          |                                     |                          |
| 114 RCLB 36 12                  |           |   |           |   |           |   |       |      | 170 GSB6 23 06                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 115 RCLA 36 11                  |           |   |           |   |           |   |       |      | 171 RCLC 36 13                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 116 RCLC 36 13                  |           |   |           |   |           |   |       |      | 172 x -35                           |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 117 x -35                       |           |   |           |   |           |   |       |      | 173 XY 41                           |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 118 -45                         |           |   |           |   |           |   |       |      | 174 RCLB 36 12                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 119 RCLD 36 14                  |           |   |           |   |           |   |       |      | 175 x -35                           |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 120 ÷ -24                       |           |   |           |   |           |   |       |      | 176 + -55                           |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 121 ST0B 35 12                  |           |   |           |   |           |   |       |      | 177 RCLA 36 11                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 122 RCLS 36 09                  |           |   |           |   |           |   |       |      | 178 + -55                           |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 123 RCLB 36 13                  |           |   |           |   |           |   |       |      | 179 GT09 22 09                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 124 RCLS 36 08                  |           |   |           |   |           |   |       |      | 180 *LBL4 21 16 11                  |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 125 x -35                       |           |   |           |   |           |   |       |      | 181 SF1 16 21 01                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 126 -45                         |           |   |           |   |           |   |       |      | 182 GSB6 23 12                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 127 RCLB 35 12                  |           |   |           |   |           |   |       |      | 183 CF1 16 22 01                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 128 RCL7 36 07                  |           |   |           |   |           |   |       |      | 184 RTN 24                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 129 x -35                       |           |   |           |   |           |   |       |      | 185 *LBL6 21 16 15                  |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 130 -45                         |           |   |           |   |           |   |       |      | 186 F0? 16 23 00                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 131 RCLB 36 08                  |           |   |           |   |           |   |       |      | 187 GT05 22 05                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 132 ÷ -24                       |           |   |           |   |           |   |       |      | 188 SF0 16 21 00                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 133 ST0A 35 11                  |           |   |           |   |           |   |       |      | 189 1 01                            |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 134 GSB7 23 07                  |           |   |           |   |           |   |       |      | 190 RTN 24                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 135 RCLB 36 12                  |           |   |           |   |           |   |       |      | 191 *LBL5 21 05                     |      |            |            |                          |                                     |                                     |                          |                                     | Print instructions       |
| 136 GSB9 23 09                  |           |   |           |   |           |   |       |      | 192 0 00                            |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 137 RCLC 36 13                  |           |   |           |   |           |   |       |      | 193 CF0 16 22 00                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 138 GT09 22 09                  |           |   |           |   |           |   |       |      | 194 RTN 24                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 139 *LBL2 21 14                 |           |   |           |   |           |   |       |      | 195 *LBL7 21 07                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 140 RCLA 36 11                  |           |   |           |   |           |   |       |      | 196 F0? 16 23 00                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 141 RCL9 36 09                  |           |   |           |   |           |   |       |      | 197 SPC 1E-11                       |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 142 x -35                       |           |   |           |   |           |   |       |      | 198 *LBL9 21 09                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 143 RCLS 36 12                  |           |   |           |   |           |   |       |      | 199 F0? 16 23 00                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 144 RCL2 36 02                  |           |   |           |   |           |   |       |      | 200 GT06 22 06                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 145 x -35                       |           |   |           |   |           |   |       |      | 201 R/S 51                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 146 + -55                       |           |   |           |   |           |   |       |      | 202 RTN 24                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 147 RCLC 36 13                  |           |   |           |   |           |   |       |      | 203 *LBL6 21 06                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 148 FCL3 36 03                  |           |   |           |   |           |   |       |      | 204 PRX 14                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 149 x -35                       |           |   |           |   |           |   |       |      | 205 RTN 24                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 150 + -55                       |           |   |           |   |           |   |       |      | 206 *LBL2 21 02                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 151 RCLS 36 09                  |           |   |           |   |           |   |       |      | 207 F1? 16 23 01                    |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 152 $\Sigma^2$ 53               |           |   |           |   |           |   |       |      | 208 CHS -22                         |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 153 RCL6 36 08                  |           |   |           |   |           |   |       |      | 209 RTN 24                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 154 ÷ -24                       |           |   |           |   |           |   |       |      | 210 *LBL8 21 08                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 155 -45                         |           |   |           |   |           |   |       |      | 211 SPC 1E-11                       |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 156 RCL6 36 06                  |           |   |           |   |           |   |       |      | 212 GT09 22 09                      |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 157 RCL9 36 09                  |           |   |           |   |           |   |       |      | 213 R/S 51                          |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 158 $\Sigma^2$ 53               |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 159 RCLB 36 08                  |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 160 ÷ -24                       |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 161 -45                         |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 162 ÷ -24                       |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 163 GT07 22 07                  |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 164 *LBL4 21 15                 |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 165 XY -41                      |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 166 F0? 16 23 00                |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 167 GSB8 23 08                  |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| 168 XY -41                      |           |   |           |   |           |   |       |      |                                     |      |            |            |                          |                                     |                                     |                          |                                     |                          |
| Calculate $r^2$ for given x, y. |           |   |           |   |           |   |       |      | Calculate $\hat{z}$ for given x, y. |      |            |            |                          |                                     | Change sign for correction.         |                          |                                     |                          |

## BREAK-EVEN ANALYSIS

|     |       |          |                              |                |     |       |          |  |                               |
|-----|-------|----------|------------------------------|----------------|-----|-------|----------|--|-------------------------------|
| 001 | *LBLA | 21 11    |                              |                | 057 | RCLB  | 36 12    |  |                               |
| 002 | ST0A  | 35 11    | F→RA                         | Digit entered? | 058 | RCLC  | 36 13    |  | Calculate GP and store in RE. |
| 003 | F3?   | 16 23 83 |                              |                | 059 | -     | -45      |  |                               |
| 004 | RTN   | 24       |                              |                | 060 | RCLD  | 36 14    |  |                               |
| 005 | RCLB  | 36 12    |                              |                | 061 | ×     | -35      |  |                               |
| 006 | RCLC  | 36 13    |                              |                | 062 | RCLA  | 36 11    |  |                               |
| 007 | -     | -45      |                              |                | 063 | -     | -45      |  |                               |
| 008 | RCLD  | 36 14    | Calculate F and store in RA. |                | 064 | STOE  | 35 15    |  |                               |
| 009 | x     | -35      |                              |                | 065 | RTN   | 24       |  |                               |
| 010 | RCLE  | 36 15    |                              |                | 066 | *LBLA | 21 16 11 |  |                               |
| 011 | -     | -45      |                              |                | 067 | RCLB  | 36 12    |  |                               |
| 012 | ST0A  | 35 11    |                              |                | 068 | RCLC  | 36 13    |  |                               |
| 013 | RTN   | 24       |                              |                | 069 | -     | -45      |  |                               |
| 014 | *LBLB | 21 12    |                              |                | 070 | RCLD  | 36 14    |  |                               |
| 015 | ST0B  | 35 12    | P→RB                         |                | 071 | x     | -35      |  |                               |
| 016 | F3?   | 16 23 83 |                              |                | 072 | STOI  | 35 46    |  |                               |
| 017 | RTN   | 24       |                              |                | 073 | RCLI  | 36 46    |  |                               |
| 018 | RCLB  | 36 11    |                              |                | 074 | RCLA  | 36 11    |  |                               |
| 019 | RCLE  | 36 15    |                              |                | 075 | -     | -45      |  |                               |
| 020 | +     | -55      |                              |                | 076 | ÷     | -24      |  |                               |
| 021 | RCLD  | 36 14    | Calculate P and store in RB. |                | 077 | RTN   | 24       |  |                               |
| 022 | ÷     | -24      |                              |                | 078 | R/S   | 51       |  |                               |
| 023 | RCLC  | 36 13    |                              |                |     |       |          |  |                               |
| 024 | +     | -55      |                              |                |     |       |          |  |                               |
| 025 | ST0B  | 35 12    |                              |                |     |       |          |  |                               |
| 026 | RTN   | 24       |                              |                |     |       |          |  |                               |
| 027 | *LBLC | 21 13    |                              |                |     |       |          |  |                               |
| 028 | ST0C  | 35 13    | V→RC                         |                |     |       |          |  |                               |
| 029 | F3?   | 16 23 83 |                              |                |     |       |          |  |                               |
| 030 | RTN   | 24       |                              |                |     |       |          |  |                               |
| 031 | RCLB  | 36 12    |                              |                |     |       |          |  |                               |
| 032 | RCLA  | 36 11    |                              |                |     |       |          |  |                               |
| 033 | RCLE  | 36 15    |                              |                |     |       |          |  |                               |
| 034 | +     | -55      |                              |                |     |       |          |  |                               |
| 035 | RCLD  | 36 14    |                              |                |     |       |          |  |                               |
| 036 | ÷     | -24      |                              |                |     |       |          |  |                               |
| 037 | -     | -45      |                              |                |     |       |          |  |                               |
| 038 | ST0C  | 35 13    |                              |                |     |       |          |  |                               |
| 039 | RTN   | 24       |                              |                |     |       |          |  |                               |
| 040 | *LBLD | 21 14    |                              |                |     |       |          |  |                               |
| 041 | ST0D  | 35 14    | U→RD                         |                |     |       |          |  |                               |
| 042 | F3?   | 16 23 83 |                              |                |     |       |          |  |                               |
| 043 | RTN   | 24       |                              |                |     |       |          |  |                               |
| 044 | RCLA  | 36 11    |                              |                |     |       |          |  |                               |
| 045 | RCLE  | 36 15    |                              |                |     |       |          |  |                               |
| 046 | +     | -55      |                              |                |     |       |          |  |                               |
| 047 | RCLB  | 36 12    |                              |                |     |       |          |  |                               |
| 048 | RCLC  | 36 13    |                              |                |     |       |          |  |                               |
| 049 | -     | -45      |                              |                |     |       |          |  |                               |
| 050 | ÷     | -24      |                              |                |     |       |          |  |                               |
| 051 | ST0D  | 35 14    |                              |                |     |       |          |  |                               |
| 052 | RTN   | 24       |                              |                |     |       |          |  |                               |
| 053 | *LBLE | 21 15    | GP→RE                        |                |     |       |          |  |                               |
| 054 | STOE  | 35 15    |                              |                |     |       |          |  |                               |
| 055 | F3?   | 16 23 83 |                              |                |     |       |          |  |                               |
| 056 | RTN   | 24       |                              |                |     |       |          |  |                               |

## REGISTERS

|    |    |    |    |    |    |    |    |    |    |          |
|----|----|----|----|----|----|----|----|----|----|----------|
| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |          |
| S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |          |
| A  | F  | B  | P  | C  | V  | D  | U  | E  | GP | P(U - V) |

| LABELS |   |   |   |   |   |   | FLAGS |   | SET STATUS |        |                                       |      |                                     |
|--------|---|---|---|---|---|---|-------|---|------------|--------|---------------------------------------|------|-------------------------------------|
| A      | F | B | P | C | V | D | U     | E | GP         | 0      | FLAGS                                 | TRIG | DISP                                |
| a      |   | b |   | c |   | d |       | e |            | 1      | ON OFF                                | DEG  | <input checked="" type="checkbox"/> |
| 0      |   | 1 |   | 2 |   | 3 |       | 4 |            | 2      | 1 <input type="checkbox"/>            | GRAD | <input type="checkbox"/>            |
| 5      |   | 6 |   | 7 |   | 8 |       | 9 |            | 3      | 2 <input type="checkbox"/>            | SCI  | <input type="checkbox"/>            |
|        |   |   |   |   |   |   |       |   |            | Digit? | 3 <input type="checkbox"/>            | ENG  | <input type="checkbox"/>            |
|        |   |   |   |   |   |   |       |   |            | n      | 2 <input checked="" type="checkbox"/> |      |                                     |

## INVOICING

|                                                      |                                                                |                                      |                          |                     |                     |                                          |                     |                     |                     |
|------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------|---------------------|---------------------|------------------------------------------|---------------------|---------------------|---------------------|
| REGISTERS                                            |                                                                |                                      |                          |                     |                     |                                          |                     |                     |                     |
| <sup>0</sup> Subtotal                                | <sup>1</sup> Grand Total                                       | <sup>2</sup> Used                    | <sup>3</sup> Used        | <sup>4</sup> Used   | <sup>5</sup> Used   | <sup>6</sup> Used                        | <sup>7</sup> Used   | <sup>8</sup> Used   | <sup>9</sup> Used   |
| S <sub>0</sub> Used                                  | S <sub>1</sub> Used                                            | S <sub>2</sub> Used                  | S <sub>3</sub> Used      | S <sub>4</sub> Used | S <sub>5</sub> Used | S <sub>6</sub> Used                      | S <sub>7</sub> Used | S <sub>8</sub> Used | S <sub>9</sub> Used |
| A Used                                               | B Used                                                         | C Price                              | D Units                  |                     | E Disc.             | I Control                                |                     |                     |                     |
| 001 #LBLA 21 11                                      | 002 CLRG 16-53                                                 | 003 PSS 16-51                        | 004 CLRG 16-53           | 005 2 02            | 006 STOI 35 46      | 007 0 08                                 | 008 RTN 24          | 009 *LBLB 21 12     | 010 STOE 35 15      |
| 011 RTN 24                                           | 012 #LBLC 21 13                                                | 013 STOD 35 14                       | 014 RTN 24               | 015 #LBLD 21 14     | 016 STOC 35 13      | 017 RTN 24                               | 018 *LBLE 21 15     | 019 GSB5 23 05      | 020 STOI 35 45      |
| 021 ST+0 35-55 00                                    | 022 ST+1 35-55 01                                              | 023 ISZI 16 26 46                    | 024 2 02                 | 025 2 02            | 026 RCLI 36 46      | 027 XY? 1€ 34                            | 028 GT09 22 09      | 029 RTN -31         | 030 RTN -31         |
| 031 RTN 24                                           | 032 #LBL5 21 05                                                | 033 RCLC 36 13                       | 034 ENT† -21             | 035 ENT† -21        | 036 RCLE 36 15      | 037 EEX -23                              | 038 2 02            | 039 ÷ -24           | 040 X -35           |
| 041 - 45                                             | 042 RCLD 36 14                                                 | 043 X -35                            | 044 RTN 24               | 045 #LBL6 21 16 11  | 046 RCLB 36 08      | 047 ENT† -21                             | 048 CLX -51         | 049 STOB 35 00      | 050 X?Y -41         |
| 051 GSB2 23 02                                       | 052 RTN 24                                                     | 053 #LBL7 21 16 12                   | 054 RCLI 36 01           | 055 GSB2 23 02      | 056 RTN 24          | Recall Grand Total                       |                     |                     |                     |
| 057 #LBLc 21 16 13                                   | 058 2 02                                                       | 059 STOI 35 46                       | 060 *LBL1 21 01          | 061 RCLI 36 45      | 062 X=0? 16-43      | 063 GT04 22 04                           | 064 RCLI 36 01      | 065 ÷ -24           | 066 EEX -23         |
| 067 2 02                                             | 068 X -35                                                      | 069 GSB2 23 02                       | 070 ISZI 16 26 46        | 071 2 02            | 072 1 01            | 073 RCLI 36 46                           | 074 X?Y? 16-35      | 075 GT01 22 01      | 076 *LBL4 21 04     |
| 077 1 01                                             | 078 0 00                                                       | 079 0 00                             | 080 GSB2 23 02           | 081 RTN 24          | 082 *LBL2 21 02     | 083 F0? 16 23 00                         | 084 GT03 22 03      | 085 R/S 51          | 086 RTN 24          |
| 087 *LBL3 21 03                                      | 088 PRTX -14                                                   | 089 RTN 24                           | 090 *LBL6 21 16 15       | 091 F0? 16 23 00    | 092 GT08 22 00      | 093 SF0 16 21 00                         | 094 1 01            | 095 RTN 24          | 096 *LBL8 21 00     |
| 097 CF0 16 22 00                                     | 098 0 00                                                       | 099 RTN 24                           | 100 *LBLd 21 16 14       | 101 OSZI 16 25 46   | 102 0 00            | 103 STOI 35 45                           | 104 GSB5 23 05      | 105 ST-0 35-45 00   | 106 ST-1 35-45 01   |
| 107 RCLB 36 00                                       | 108 R/S 51                                                     | Print/pause flag set and unset.      |                          |                     |                     | Routine to delete incorrect line totals. |                     |                     |                     |
| 0 Recall and display line total as % of Grand Total. | 0 Check to recall only those registers containing line totals. | 0 Last output is 100 - you are done! | 0 Test print/pause flag. | 0 Print/pause       | 0                   | 0                                        | 0                   | 0                   | 0                   |

| LABELS                |                          |                      |                  |                     |          | FLAGS |                          | SET STATUS                          |                          |  |
|-----------------------|--------------------------|----------------------|------------------|---------------------|----------|-------|--------------------------|-------------------------------------|--------------------------|--|
| A START               | B Disc.                  | C Units              | D Price          | E Net Line Tot.     | F Print? | 0     | FLAGS                    | TRIG                                | DISP                     |  |
| <sup>a</sup> Subtotal | <sup>b</sup> Grand Total | <sup>c</sup> % Total | <sup>d</sup> DEL | <sup>e</sup> Print? | 1        | 0     | ON OFF                   | DEG                                 | FIX                      |  |
| 0 Used                | 1 Used                   | 2 Used               | 3 Used           | 4 Used              | 2        | 1     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |
| 5 Used                | 6                        | 7                    | 8                | 9                   | 3        | 2     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |
|                       |                          |                      |                  |                     |          | 3     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |

## PAYROLL

|           |          |                                                                        |           |          |               |
|-----------|----------|------------------------------------------------------------------------|-----------|----------|---------------|
| 001 *LBLA | 21 11    | Read data card. If data card read, go to c. Otherwise repeat sequence. | 057 RCL1  | 36 01    | (Wage) 5.85%  |
| 002 0     | 00       |                                                                        | 058 *LBL3 | 21 03    |               |
| 003 PSE   | 16 51    |                                                                        | 059 5     | 05       |               |
| 004 F3?   | 16 23 03 |                                                                        | 060 .     | -62      |               |
| 005 GTOc  | 22 16 13 |                                                                        | 061 8     | 08       |               |
| 006 GTOa  | 22 11    |                                                                        | 062 5     | 05       |               |
| 007 *LBL1 | 21 16 13 | Display SS No.                                                         | 063 %     | 55       |               |
| 008 RCLI  | 36 46    |                                                                        | 064 RND   | 16 24    |               |
| 009 GSB9  | 23 09    | Display marital status.                                                | 065 ST+5  | 35-55 05 |               |
| 010 RCLC  | 36 15    |                                                                        | 066 ST-9  | 35-45 09 |               |
| 011 GSB9  | 23 09    | Display number of exemptions.                                          | 067 GSB9  | 23 09    |               |
| 012 RCLB  | 36 12    |                                                                        | 068 *LBL2 | 21 02    |               |
| 013 GSB9  | 23 09    |                                                                        | 069 9     | 09       |               |
| 014 RTN   | 24       |                                                                        | 070 EEX   | -23      |               |
| 015 *LBLB | 21 12    |                                                                        | 071 3     | 03       |               |
| 016 RCLC  | 36 13    | #hrs x hrly wage                                                       | 072 RCL0  | 36 00    |               |
| 017 x     | -35      |                                                                        | 073 XY?   | 16-34    | Gross > 9000? |
| 018 RND   | 16 24    |                                                                        | 074 GTO6  | 22 06    |               |
| 019 ST01  | 35 01    |                                                                        | 075 RCL1  | 36 01    |               |
| 020 ST09  | 35 09    |                                                                        | 076 *LBL4 | 21 04    |               |
| 021 ST+0  | 35-55 08 |                                                                        | 077 1     | 01       | (Wage) 1%     |
| 022 GSB9  | 23 09    |                                                                        | 078 %     | 55       |               |
| 023 RTN   | 24       |                                                                        | 079 RND   | 16 24    |               |
| 024 *LBLC | 21 13    | #hrs x OT wage                                                         | 080 ST+6  | 35-55 06 |               |
| 025 RCLD  | 36 14    |                                                                        | 081 ST-9  | 35-45 09 |               |
| 026 x     | -35      |                                                                        | 082 GSB9  | 23 09    |               |
| 027 RND   | 16 24    |                                                                        | 083 *LBL5 | 21 05    |               |
| 028 ST+6  | 35-55 08 |                                                                        | 084 RCL7  | 36 07    |               |
| 029 ST+1  | 35-55 01 |                                                                        | 085 ST-9  | 35-45 09 |               |
| 030 ST+9  | 35-55 09 |                                                                        | 086 GSB9  | 23 09    |               |
| 031 RCL9  | 36 09    |                                                                        | 087 RCL1  | 36 01    |               |
| 032 GSB9  | 23 09    |                                                                        | 088 RCL8  | 36 08    |               |
| 033 RTW   | 24       |                                                                        | 089 %     | 55       |               |
| 034 *LBL0 | 21 14    |                                                                        | 090 RND   | 16 24    |               |
| 035 ST02  | 35 02    | Fed'l. tax                                                             | 091 ST-9  | 35-45 09 |               |
| 036 ST+3  | 35-55 03 | Tot. Fed'l. tax                                                        | 092 GSB9  | 23 09    |               |
| 037 ST-9  | 35-45 09 | Net pay - Fed'l. tax                                                   | 093 RCLA  | 36 11    |               |
| 038 RCL2  | 36 02    |                                                                        | 094 ST-9  | 35-45 09 |               |
| 039 GSB9  | 23 09    | Display Fed'l. tax                                                     | 095 GSB9  | 23 09    |               |
| 040 RTN   | 24       |                                                                        | 096 RCL9  | 36 09    |               |
| 041 *LBL1 | 21 15    |                                                                        | 097 NDTA  | 16-61    |               |
| 042 ST02  | 35 02    | State tax                                                              | 098 CF3   | 16 22 03 |               |
| 043 ST+4  | 35-55 04 | Tot. State tax                                                         | 099 GSB9  | 23 09    |               |
| 044 ST-9  | 35-45 09 | Net pay - State tax                                                    | 100 RTN   | 24       |               |
| 045 RCL2  | 36 02    |                                                                        | 101 *LBL6 | 21 08    |               |
| 046 GSB9  | 23 09    | Display State tax                                                      | 102 XY?   | -41      |               |
| 047 RTN   | 24       |                                                                        | 103 -     | -45      |               |
| 048 *LBL6 | 21 16 11 |                                                                        | 104 RCL1  | 36 01    | DONE!         |
| 049 1     | 01       |                                                                        | 105 XY?   | 16-34    |               |
| 050 5     | 05       | FICA tax base                                                          | 106 GTO1  | 22 01    |               |
| 051 3     | 03       |                                                                        | 107 8     | 08       |               |
| 052 0     | 00       |                                                                        | 108 GSB9  | 23 09    |               |
| 053 0     | 00       |                                                                        | 109 GTO2  | 22 02    |               |
| 054 RCL0  | 36 00    | Gross > 15300?                                                         | 110 *LBL1 | 21 01    |               |
| 055 XY?   | 16-34    |                                                                        | 111 XY?   | -41      |               |
| 056 GTO0  | 22 00    |                                                                        | 112 5     | 05       |               |

---

**REGISTERS**

| REGISTERS  |               |               |               |               |                 |                |            |               |           |
|------------|---------------|---------------|---------------|---------------|-----------------|----------------|------------|---------------|-----------|
| 0 Gross    | 1 Wage        | 2 Fed'l/State | 3 Total Fed'l | 4 Total State | 5 $\Sigma$ FICA | 6 $\Sigma$ SDI | 7 Const. 1 | 8 Const. 2(%) | 9 Net Pay |
| S0         | S1            | S2            | S3            | S4            | S5              | S6             | S7         | S8            | S9        |
| A Const. 3 | B #Exemptions | C Hrly Wage   | D OT Wage     | E Used        | F               | G              | H          | I SS Number   | J         |

|     |       |          |                                                              |  |
|-----|-------|----------|--------------------------------------------------------------|--|
| 113 | GTO3  | 22 03    |                                                              |  |
| 114 | *LBL6 | 21 06    |                                                              |  |
| 115 | X2Y   | -41      | Gross--9000                                                  |  |
| 116 | -     | -45      |                                                              |  |
| 117 | RCL1  | 36 01    | Wage > Gross--9000?                                          |  |
| 118 | X2Y?  | 16-34    |                                                              |  |
| 119 | GTO7  | 22 07    | No more SDI to withhold; continue.                           |  |
| 120 | 0     | 00       |                                                              |  |
| 121 | GSB9  | 23 09    |                                                              |  |
| 122 | GTO5  | 22 05    |                                                              |  |
| 123 | *LBL7 | 21 07    | -----<br>Amount to apply to SDI tax is Wage -- (Gross--9000) |  |
| 124 | X2Y   | -41      |                                                              |  |
| 125 | -     | -45      |                                                              |  |
| 126 | GTO4  | 22 04    |                                                              |  |
| 127 | *LBL8 | 21 16 15 |                                                              |  |
| 128 | F0?   | 16 23 00 | -----<br>Set and unset print/pause flag.                     |  |
| 129 | GTO1  | 22 01    |                                                              |  |
| 130 | SF0   | 16 21 00 |                                                              |  |
| 131 | 1     | 01       |                                                              |  |
| 132 | RTN   | 24       |                                                              |  |
| 133 | *LBL1 | 21 01    | -----<br>-----                                               |  |
| 134 | CF0   | 16 22 00 |                                                              |  |
| 135 | 0     | 00       | Print command                                                |  |
| 136 | RTN   | 24       |                                                              |  |
| 137 | *LBL2 | 21 09    |                                                              |  |
| 138 | F0?   | 16 23 00 |                                                              |  |
| 139 | GTO8  | 22 08    |                                                              |  |
| 140 | R/S   | 51       |                                                              |  |
| 141 | RTN   | 24       |                                                              |  |
| 142 | *LBL8 | 21 08    |                                                              |  |
| 143 | PR7X  | -14      |                                                              |  |
| 144 | RTN   | 24       |                                                              |  |
| 145 | *LBL9 | 21 16 12 | -----<br>Gross                                               |  |
| 146 | RCL0  | 36 00    |                                                              |  |
| 147 | GSB9  | 23 09    | Total Fed'l.                                                 |  |
| 148 | RCL3  | 36 03    |                                                              |  |
| 149 | GSB9  | 23 09    | Total State                                                  |  |
| 150 | RCL4  | 36 04    |                                                              |  |
| 151 | GSB9  | 23 09    | Total FICA                                                   |  |
| 152 | RCL5  | 36 05    |                                                              |  |
| 153 | GSB9  | 23 09    | Total SDI                                                    |  |
| 154 | RCL6  | 36 06    |                                                              |  |
| 155 | GSB9  | 23 09    |                                                              |  |
| 156 | RTN   | 24       |                                                              |  |
| 157 | R/S   | 51       |                                                              |  |

| LABELS               |                     |                   |                   |                     | FLAGS  |                          | SET STATUS               |                          |  |
|----------------------|---------------------|-------------------|-------------------|---------------------|--------|--------------------------|--------------------------|--------------------------|--|
| START                | #hrs                | #hrs OT           | Fed'l tax         | State tax           | Print? | ON OFF                   | TRIG                     | DISP                     |  |
| <sup>a</sup> Net Pay | <sup>b</sup> Totals | <sup>c</sup> Used | <sup>d</sup>      | <sup>e</sup> Print? | 1      | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |  |
| <sup>f</sup> Used    | <sup>g</sup> Used   | <sup>h</sup> Used | <sup>i</sup> Used | <sup>j</sup> Used   | 2      | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |  |
| <sup>k</sup> Used    | <sup>l</sup> Used   | <sup>m</sup> Used | <sup>n</sup> Used | <sup>o</sup> Data?  | 2      | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> |  |

## INVENTORY

|     |       |          |                                                             |     |       |          |  |  |
|-----|-------|----------|-------------------------------------------------------------|-----|-------|----------|--|--|
| 001 | *LBLA | 21 11    |                                                             | 857 | RTN   | 24       |  |  |
| 002 | 0     | 00       | Read data card.                                             | 858 | *LBLc | 21 16 13 |  |  |
| 003 | PSE   | 16 51    | If data card read, go to 1.                                 | 859 | 1     | 01       |  |  |
| 004 | F3?   | 16 23 03 | Otherwise repeat sequence.                                  | 860 | STOJ  | 35 46    |  |  |
| 005 | GT01  | 22 01    |                                                             | 861 | *LBL2 | 21 02    |  |  |
| 006 | GT0A  | 22 11    |                                                             | 862 | RCLI  | 36 45    |  |  |
| 007 | *LBL1 | 21 01    |                                                             | 863 | GSB9  | 23 89    |  |  |
| 008 | CF3   | 16 22 03 |                                                             | 864 | JSZI  | 16 26 46 |  |  |
| 009 | RCLB  | 36 00    |                                                             | 865 | RCLI  | 36 46    |  |  |
| 010 | GSB9  | 23 09    |                                                             | 866 | 7     | 07       |  |  |
| 011 | RTN   | 24       |                                                             | 867 | X?Y?  | 16-34    |  |  |
| 012 | *LBLB | 21 12    | Store new price.                                            | 868 | GT02  | 22 02    |  |  |
| 013 | ST0E  | 35 15    |                                                             | 869 | RCLB  | 36 00    |  |  |
| 014 | RTN   | 24       |                                                             | 870 | GSB9  | 23 09    |  |  |
| 015 | *LBLC | 21 13    |                                                             | 871 | F0?   | 16 23 00 |  |  |
| 016 | ST0D  | 35 14    |                                                             | 872 | SPC   | 16-11    |  |  |
| 017 | RCL1  | 36 01    |                                                             | 873 | RTN   | 24       |  |  |
| 018 | RCL2  | 36 02    |                                                             | 874 | *LBLd | 21 16 14 |  |  |
| 019 | x     | -35      |                                                             | 875 | MOTA  | 16-61    |  |  |
| 020 | RCLE  | 36 15    |                                                             | 876 | CF3   | 16 22 03 |  |  |
| 021 | RCLD  | 36 14    |                                                             | 877 | CLX   | -51      |  |  |
| 022 | x     | -35      |                                                             | 878 | RTN   | 24       |  |  |
| 023 | +     | -55      |                                                             | 879 | *LBLe | 21 16 15 |  |  |
| 024 | RCL2  | 36 02    |                                                             | 880 | F0?   | 16 23 00 |  |  |
| 025 | RCLD  | 36 14    |                                                             | 881 | GT00  | 22 00    |  |  |
| 026 | +     | -55      |                                                             | 882 | SF0   | 16 21 00 |  |  |
| 027 | =     | -24      |                                                             | 883 | 1     | 01       |  |  |
| 028 | ST01  | 35 01    |                                                             | 884 | RTN   | 24       |  |  |
| 029 | RCLD  | 36 14    |                                                             | 885 | *LBL0 | 21 00    |  |  |
| 030 | ST+2  | 35-55 02 | Adjusts on hand and on order quantities by amount received. | 886 | CF0   | 16 22 00 |  |  |
| 031 | ST-3  | 35-45 03 |                                                             | 887 | 0     | 00       |  |  |
| 032 | GSB3  | 23 03    |                                                             | 888 | RTN   | 24       |  |  |
| 033 | RCL2  | 36 02    |                                                             | 889 | *LBL9 | 21 09    |  |  |
| 034 | RTN   | 24       |                                                             | 890 | F0?   | 16 23 00 |  |  |
| 035 | *LBLD | 21 14    |                                                             | 891 | GT00  | 22 00    |  |  |
| 036 | ST-2  | 35-45 02 | Subtract # issued from those on hand.                       | 892 | R/S   | 51       |  |  |
| 037 | GSB3  | 23 03    |                                                             | 893 | RTN   | 24       |  |  |
| 038 | RCL2  | 36 02    |                                                             | 894 | *LBL8 | 21 08    |  |  |
| 039 | RTN   | 24       |                                                             | 895 | PRTX  | -14      |  |  |
| 040 | *LBLE | 21 15    |                                                             | 896 | RTN   | 24       |  |  |
| 041 | ST+3  | 35-55 03 | Add # ordered to those on order.                            | 897 | R/S   | 51       |  |  |
| 042 | GSB3  | 23 03    |                                                             |     |       |          |  |  |
| 043 | RCL3  | 36 03    |                                                             |     |       |          |  |  |
| 044 | RTN   | 24       |                                                             |     |       |          |  |  |
| 045 | *LBL0 | 21 16 11 |                                                             |     |       |          |  |  |
| 046 | ST04  | 35 04    |                                                             |     |       |          |  |  |
| 047 | RTN   | 24       |                                                             |     |       |          |  |  |
| 048 | *LBLb | 21 16 12 |                                                             |     |       |          |  |  |
| 049 | ST05  | 35 05    |                                                             |     |       |          |  |  |
| 050 | *LBL3 | 21 03    |                                                             |     |       |          |  |  |
| 051 | RCL2  | 36 02    |                                                             |     |       |          |  |  |
| 052 | RCL3  | 36 03    |                                                             |     |       |          |  |  |
| 053 | +     | -55      |                                                             |     |       |          |  |  |
| 054 | RCL4  | 36 04    |                                                             |     |       |          |  |  |
| 055 | -     | -45      |                                                             |     |       |          |  |  |
| 056 | ST06  | 35 06    |                                                             |     |       |          |  |  |

## REGISTERS

| 0  | Part # | 1  | Unit price | 2  | On hand | 3  | On Order | 4  | Min. Quant. | 5 | Lead Time | 6 | Slack | 7 | 8 | 9    |
|----|--------|----|------------|----|---------|----|----------|----|-------------|---|-----------|---|-------|---|---|------|
| S0 | S1     | S2 | S3         | S4 | S5      | S6 | S7       | S8 | S9          |   |           |   |       |   |   |      |
| A  | B      | C  | D          | E  | F       | G  | H        | I  | J           | K | L         | M | N     | O | P | Used |

| LABELS        |          |            |          | FLAGS     |          | SET STATUS                 |                                         |                                         |
|---------------|----------|------------|----------|-----------|----------|----------------------------|-----------------------------------------|-----------------------------------------|
| A START       | B Price  | C Received | D Issued | E Ordered | F Print? | FLAGS                      | TRIG                                    | DISP                                    |
| a Min. Quant. | b LT+SLK | c List     | d Update | e Print?  | f        | 0 ON OFF                   | DEG <input checked="" type="checkbox"/> | FIX <input checked="" type="checkbox"/> |
| 0 Used        | 1 Used   | 2 Used     | 3 Used   | 4         | 2        | 1 <input type="checkbox"/> | GRAD <input type="checkbox"/>           | SCI <input type="checkbox"/>            |
| 5             | 6        | 7          | 8 Used   | 9 Used    | 3 Data?  | 2 <input type="checkbox"/> | RAD <input type="checkbox"/>            | ENG <input type="checkbox"/>            |
|               |          |            |          |           |          | 3 <input type="checkbox"/> | n <input checked="" type="checkbox"/>   |                                         |

## Appendix A

**MAGNETIC CARD  
SYMBOLS AND CONVENTIONS**

| SYMBOL OR CONVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                        | INDICATED MEANING                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| White mnemonic:<br>x<br>                                                                                                                                                                                                                                                                                                                                                   | White mnemonics are associated with the user definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing <b>A</b> .                                                                                                                                                                                       |
| Gold mnemonic:<br>y<br>x<br> <br> <br> | Gold mnemonics are similar to white mnemonics except that the gold <b>f</b> key must be pressed before the user definable key. In this case y could be input by pressing <b>f E</b> .<br><b>↑</b> is the symbol for <b>ENTER↑</b> . In this case <b>ENTER↑</b> is used to separate the input variables x and y. To input both x and y you would key in x, press <b>ENTER↑</b> , key in y and press <b>A</b> . |
| <br>                                                                                                                                                                                                                                                                                      | The box around the variable x indicates input by pressing <b>STO A</b> .                                                                                                                                                                                                                                                                                                                                      |
| <br>                                                                                                                                                                                                                                                                                      | Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.                                                                                                                                                                                                                                                                                                  |
|  <br>                                                                                                                                                                                                   |  is the symbol for calculate. This indicates that you may calculate x by pressing key <b>A</b> .                                                                                                                                                                                                                             |
|  <br>                                                                                                                                                                                              | This indicates that x, y, and z are calculated by pressing <b>A</b> once. The values would be printed in x, y, z order.                                                                                                                                                                                                                                                                                       |
|  <br>                                                                                                                                                                                              | The semi-colons indicate that after x has been calculated using <b>A</b> , y and z may be calculated by pressing <b>R/S</b> .                                                                                                                                                                                                                                                                                 |
|  <br>                                                                                                                                                                                 | The quote marks indicate that the x value will be “paused” or held in the display for one second. The pause will be followed by the display of y.                                                                                                                                                                                                                                                             |
|  <br>                                                                                                                                                                                              |  indicates that x may be either output or input when the associated user definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.                                                                        |

| SYMBOL OR CONVENTION | INDICATED MEANING                                                                                                                                                                                                                                                                                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P?<br>A              | The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is controlled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off. |
| START<br>A           | The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.                                                                                                                                                            |
| DEL<br>A             | This special command indicates that the last value or set of values input may be deleted by pressing A.                                                                                                                                                                                                                    |

## **Appendix B**

### **PRINCIPAL EQUATIONS**

Unless otherwise stated, all interest rates (i, APR, IRR, NOM, EFF, CR, YLD, etc.) are expressed in decimal form in the equations which follow. Only symbols not defined in the program descriptions are defined here.

#### Program Number

##### 1. Internal Rate of Return

Solve for IRR in:

$$INV = \sum_{j=1}^n \frac{CF_j}{(1 + IRR)^j}$$

where:

n = number of cash flows

CF<sub>j</sub> = j<sup>th</sup> cash flow

##### 2. Internal Rate of Return—Groups

$$INV = \sum_{j=1}^k CF_j \left[ \frac{1 - (1 + i)^{-n_j}}{i} \right] \left[ (1 + i)^{-\sum_{\ell < j}^{n_j}} \right]$$

$$n_0 = 0$$

where:

CF<sub>j</sub> = j<sup>th</sup> cash flow

n = number of cash flows

##### 3. Discounted Cash Flow Analysis—Net Present Value

$$NPV_k = -INV + \sum_{k=1}^n \frac{CF_k}{(1 + i)^k}$$

where:

$n$  = number of cash flows

$CF_k$  =  $k^{\text{th}}$  cash flow

$NPV_k$  = net present value after  $k^{\text{th}}$  cash flow

#### 4. Direct Reduction Loans—Sinking Fund

$$PV = \pm \frac{PMT}{i} [1 - (1 + i)^{-n}] + BAL(1 + i)^{-n}$$

#### 5. Accumulated Interest/Remaining Balance

$$BAL_k = \frac{1}{(1 + i)^{-k}} \left[ PMT \frac{(1 + i)^{-k} - 1}{i} + PV \right]$$

$$Int_{J-K} = BAL_k - BAL_{J-1} + (K - J + 1) \cdot PMT$$

where:

$k^{\text{th}}$  payment to principal =  $BAL_{k-1} - BAL_k$

$k^{\text{th}}$  payment to interest =  $PMT - (BAL_{k-1} - BAL_k)$

Total payment to interest =  $(K) \times (PMT) - (PV - BAL_k)$

#### 6. Wrap-Around Mortgage

$$PV_2 - PV_1 = \frac{PMT_2 [1 - (1 + i)^{-n_2}]}{i} - \frac{PMT_1 [1 - (1 + i)^{-n_1}]}{i} + BAL(1 + i)^{-n_2}$$

#### 7. Constant Payment to Principal Loan Amortization Schedule

where:

$BAL_k = PV - (K \times CPMT)$

$K^{\text{th}}$  payment to interest =  $(i) (BAL_{k-1}) = (PMT_i)_k$

$K^{\text{th}}$  total payment =  $CPMT + (PMT_i)_k$

Total interest to payment  $K$  =

$$\left[ \frac{\frac{(2 - K) CPMT}{PV} + 2}{2} \right] [(K - 1) (i/100) (PV)]$$

## B-03

### 8. Add-on Rate Installment Loan/Interest Rebate—Rule of 78's

$$FC = AMT \cdot \left( \frac{N + h}{12} \right) \cdot AIR$$

$$PMT = \frac{AMT + FC}{N} = AMT (1+i)^h \left[ \frac{i}{1 - (1 + i)^{-N}} \right]$$

$$APR = 12i$$

where:

$$h = ODD \cdot 12/365$$

$$REB_K = (N - K) \cdot \left[ \frac{FC (N - K + 1)}{N \times (N + 1)} \right]$$

$$BAL_K = (N - K) \cdot PMT - REBATE_K$$

### 9. Savings Plan—Leases

$$PV = \pm \frac{PMT}{i} (1 + i) \left[ 1 - (1 + i)^{-n} \right] + (BAL \text{ or } FV) (1 + i)^{-n}$$

### 10. Advance Payments

$$PMT = \frac{PV - BAL (1 + i)^{-n}}{\left[ \frac{1 - (1 + i)^{-(n - A)}}{i} + A \right]}$$

### 11. Savings—Compounding Periods Different from Payment Periods

$$PMT = \frac{FV}{Z} \left[ \frac{Q}{(1 + Q)^n - 1} \right]$$

when  $P/C \leq 1$

$$Q = (1 + i)^{C/P} - 1$$

$$Z = (1 + Q)$$

$$n = \#PAY$$

when  $P/C > 1$

$$Q = i$$

$$n = (\#PAY) \times (C/P)$$

$$Z = (P/C + 1) \times \left( \frac{Q}{2} \right) + (P/C)$$

## 12. Simple Interest/Interest Conversions

$$INT\ 360 = \frac{DAYS}{360} \cdot BEG\ AMT \cdot RATE$$

$$INT\ 365 = \frac{DAYS}{365} \cdot BEG\ AMT \cdot RATE$$

finite compounding

$$EFF = \left( 1 + \frac{NOM}{C} \right)^C - 1$$

continuous compounding

$$EFF = (e^{NOM} - 1)$$

## 13. Depreciation Schedules

where:

$K$  = value for YR

$TOTDEP_K$  = total depreciation for years 1 through  $K$ .

$W$  = integer portion of LIFE

$F$  = decimal portion of LIFE

(i.e., for a LIFE of 12.25 years  $W = 12$  and  $F = .25$ )

Straight Line Schedule

$$DEP_K = \frac{SBV - SAL}{LIFE}$$

$$DEP_K \text{ (last year)} = \left( \frac{SBV - SAL}{LIFE} \right) \cdot F$$

$$TOTDEP_K = (K) \cdot \left( \frac{SBV - SAL}{LIFE} \right)$$

## B-05

$$RDV_K = (LIFE - K) \cdot \left( \frac{SBV - SAL}{LIFE} \right)$$

$$RBV_K = RDV_K + SAL$$

Sum-of-the-Years'-Digits Schedule

$$SOYD = \frac{(W + 1)(W + 2F)}{2}$$

$$DEP_K = \left( \frac{LIFE + 1 - K}{SOYD} \right) \cdot (SBV - SAL)$$

$$TOTDEP_K = \left[ 1 - \frac{(W - K + 1) \times (W - K + 2F)}{2 \times (SOYD)} \right] \cdot (SBV - SAL)$$

$$RDV_K = \left[ \frac{(W - K + 1) \times (W - K + 2F)}{2 \times (SOYD)} \right] \cdot (SBV - SAL)$$

$$RBV_K = RDV_K + SAL$$

Variable Rate Declining Balance Schedule

$$DEP_K = SBV \cdot \left( 1 - \frac{FACT}{LIFE} \right)^{K-1} \cdot \left( \frac{FACT}{LIFE} \right)$$

$$TOTDEP_K = SBV \cdot \left[ 1 - \left( 1 - \frac{FACT}{LIFE} \right)^K \right]$$

$$RDV_K = (SBV - SAL) - TOTDEP_K$$

$$RBV_K = RDV_K + SAL$$

Crossover Point—Declining Balance to Straight Line

$$SBV \left( 1 - \frac{FACT}{LIFE} \right)^{K-1} \cdot \left( \frac{FACT}{LIFE} \right) > \frac{(SBV - SAL) - TOT DEP_{K-1}}{L + 1 - K}$$

where  $TOTDEP_{K-1}$  is determined as shown above.

The largest integer value for  $K$  which maintains the above relationship is the "last year" to use the Declining Balance depreciation method.

#### 14. Days Between Dates

Actual

$$DAYS = f(DT2) - f(DT1)$$

where

$$f(DT) = 365(yyyy) + 31(mm - 1) + dd + \text{Int}(z/4) - x$$

and

for  $mm \leq 2$

$$\begin{aligned} x &= 0 \\ z &= (yyyy) - 1 \end{aligned}$$

for  $mm > 2$

$$x = \text{Int}(.4mm + 2.3)$$

$$z = (yyyy)$$

Int = Integer portion

30/360 Basis

$$DAYS = f(DT2) - f(DT1)$$

$$f(DT) = 360(yyyy) + 30mm + z$$

for  $f(DT1)$

if  $dd_1 = 31$  then  $z = 30$

if  $dd_1 \neq 31$  then  $z = dd_1$

for  $f(DT2)$

if  $dd_2 = 31$  and  $dd_1 = 30$  or  $31$  then  $z = 30$

if  $dd_2 = 31$  and  $dd_1 < 30$  then  $z = dd_2$

if  $dd_2 < 31$  then  $z = dd_2$

## 15. Bond Price and Yield

for PER &gt; 1

$$\text{PRICE} = \text{RV} \left( 1 + \frac{\text{YLD}}{2} \right)^{-\text{PER}} + 100 \frac{\text{CR}}{\text{YLD}} \left[ \left( 1 + \frac{\text{YLD}}{2} \right)^{\text{J}} - \left( 1 + \frac{\text{YLD}}{2} \right)^{-\text{PER}} \right] - 100 \left( \frac{\text{CR}}{2} \right)^{\text{J}}$$

where

$$\text{J} = 1 - \text{FRAC}(\text{PER})$$

$\text{FRAC}(\text{PER})$  = fractional portion of the number  
of remaining coupon periods

i.e., if  $\text{PER} = 12.6$ ,  $\text{FRAC}(\text{PER}) = .6$ , and  $\text{J} = 1 - .6 = .4$   
for  $\text{PER} < 1$

$$\text{PRICE} = \frac{\text{RV} + \frac{\text{CR}}{2}}{1 + \frac{\text{YLD}}{2} \cdot \text{PER}} - \left( \frac{\text{CR}}{2} \right)^{\text{J}}$$

## 16. Interest at Maturity/Discounted Securities

Price (given yield) =

$$\frac{\left( \frac{\text{DIM}}{\text{B}} \times \frac{\text{CR}}{100} + 1 \right)}{\left( \frac{\text{DSM}}{\text{B}} \times \frac{\text{YLD}}{100} + 1 \right)} - \left( \frac{\text{DIM} - \text{DSM}}{\text{B}} \times \frac{\text{CR}}{100} \right)$$

Yield (given price) =

$$\left[ \frac{\left( \frac{\text{DIM}}{\text{B}} \times \text{CR} + 100 \right)}{\frac{\text{DIM} - \text{DSM}}{\text{B}} \times \text{CR} + \text{PRICE}} - 1 \right] \left( \frac{\text{B}}{\text{DSM}} \right)^{(100)}$$

$$\text{Price (given yield)} = \frac{100}{1 + \frac{\text{YLD}}{100} \times \frac{\text{DSM}}{360}}$$

$$\text{YLD (given price)} = \left( \frac{100 - \text{PRICE}}{\text{PRICE}} \times \frac{360}{\text{DSM}} \right) \times 100$$

$$\text{Price (given discount rate)} = 100 - \left( \frac{\text{DR} \times \text{DSM}}{360} \right)$$

## 17. Linear Regression

for

$$y = a + bx$$

$$b = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$

$$a = \bar{y} - b\bar{x}$$

where:

$$\bar{x} = \frac{\sum x_i}{n} \quad \bar{y} = \frac{\sum y_i}{n}$$

$$r^2 = \frac{\left[ \sum x_i y_i - \frac{\sum x_i \sum y_i}{n} \right]^2}{\left[ \sum x_i^2 - \frac{(\sum x_i)^2}{n} \right] \left[ \sum y_i^2 - \frac{(\sum y_i)^2}{n} \right]}$$

n = number of data pairs

Exponential Curve Fit

$$y = ae^{bx} \quad (a > 0)$$

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i) (\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp \left[ \frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n} \right]$$

$$r^2 = \frac{\left[ \sum x_i \ln y_i - \frac{1}{n} \sum x_i \sum \ln y_i \right]^2}{\left[ \sum x_i^2 - \frac{(\sum x_i)^2}{n} \right] \left[ \sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n} \right]}$$

n = number of data pairs

$$\text{Annual growth rate} = (e^b - 1) 100$$

## 18. Multiple Linear Regression

$$z = a + bx + cy$$

$$\sum z_i = an + b \sum x_i + c \sum y_i \quad i = 1, 2, \dots, n$$

$$\sum x_i z_i = a \sum x_i + b \sum x_i^2 + c \sum x_i y_i$$

$$\sum y_i z_i = a \sum y_i + b \sum x_i y_i + c \sum y_i^2$$

$$c = \frac{A - B}{\left[ n \sum x_i^2 - (\sum x_i)^2 \right] \left[ n \sum y_i^2 - (\sum y_i)^2 \right] - \left[ n \sum x_i y_i - (\sum x_i)(\sum y_i) \right]^2}$$

where:

$$A = \left[ n \sum x_i^2 - (\sum x_i)^2 \right] \left[ n \sum y_i z_i - (\sum y_i)(\sum z_i) \right]$$

$$B = \left[ n \sum x_i y_i - (\sum x_i)(\sum y_i) \right] \left[ n \sum x_i z_i - (\sum x_i)(\sum z_i) \right]$$

$$b = \frac{\left[ n \sum x_i z_i - (\sum x_i)(\sum z_i) \right] - c \left[ n \sum x_i y_i - (\sum x_i)(\sum y_i) \right]}{n \sum x_i^2 - (\sum x_i)^2}$$

$$a = \frac{1}{n} (\sum z_i - c \sum y_i - b \sum x_i)$$

$$R^2 = \frac{a \sum z_i + b \sum x_i z_i + c \sum y_i z_i - \frac{1}{n} (\sum z_i)^2}{(\sum z_i^2) - \frac{(\sum z_i)^2}{n}}$$

## 19. Break Even Analysis

$$GP = U(P - V) - F$$

$$OL = \frac{U(P - V)}{U(P - V) - F}$$

## 20. Invoicing

$$\text{Net line total} = \left( \text{Price} - \text{Price} \times \frac{\text{DISC}}{100} \right) \cdot (\#)$$



1000 N.E. Circle Blvd., Corvallis, OR 97330

Rev. 6/77 00097-90084

A B C ● E

Scan Copyright ©  
The Museum of HP Calculators  
[www.hpmuseum.org](http://www.hpmuseum.org)

Original content used with permission.

Thank you for supporting the Museum of HP  
Calculators by purchasing this Scan!

Please do not make copies of this scan or  
make it available on file sharing services.