

HEWLETT-PACKARD

HP-67/HP-97

Clinical Lab and Nuclear Medicine Pac

HEWLETT PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

00097-90106

A.C.D.E.

Introduction

The 19 programs of Clinical Lab and Nuclear Medicine Pac have been drawn from the fields of clinical chemistry, nuclear medicine, radioimmunoassay, and statistics.

Each program in the pac is represented by a magnetic program card and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to assist you should you want to study the actual workings of the program.

No knowledge of programming is required to use the programs in this pac. However, some familiarity with keyboard operations, as described in Sections 1 through 5 of the Owner's Handbook, is assumed. If you have already run a number of programs from Standard Pac or another applications pac, you will be able to use these programs with very little additional instruction. We recommend that you read only "A Word about these Programs" on pages iv and v of this manual. If, on the other hand, this is your first exposure to running pre-recorded programs, be sure to read the entire introductory section on pages iv to xii.

We hope that Clinical Lab and Nuclear Medicine Pac will assist you in the solution of numerous problems around the laboratory. We have tried to provide you with the most commonly used statistics programs as well, but should you find the need for more, there is another pac, Stat Pac I, exclusively for statistics.

We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

CONTENTS

Program

Clinical Chemistry

	Page
1. Beer's Law	01-01
Converts between absorbance and % transmittance; solves for an unknown concentration given a standard concentration and the absorbance or % transmittance of the standard and unknown.	
2. Protein Electrophoresis	02-01
Given integration counts of a number of protein fractions, finds percentage of each. Calculation of weights optional.	
3. LDH Isoenzymes	03-01
Given values for the five LDH isoenzymes, finds activity of each as a percent of total. Compares results against normal values.	
4. Body Surface Area	04-01
Calculates an estimated BSA by method of Dubois or Boyd. Accepts either English or metric units.	
5. Urea Clearance	05-01
Calculates urea clearance with option of correcting for BSA.	
6. Creatinine Clearance	06-01
Calculates creatinine clearance with option of correcting for BSA.	
7. Amniotic Fluid Assay	07-01
Performs calculations for the spectrophotometric estimation of bile pigments in amniotic fluid.	
8. Blood Acid-Base Status	08-01
Finds total plasma CO ₂ and base excess from PCO ₂ , pH and Hgb concentration.	
9. Oxygen Saturation and Content	09-01
Finds oxygen saturation and content in blood given PO ₂ , PCO ₂ , pH, and body temperature.	
10. Red Cell Indices	10-01
Given hematocrit percent, red cell count, and hemoglobin, finds mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration.	

Nuclear Medicine

11. Total Blood Volume	11-01
Computes total blood volume by the radioisotope dilution method.	
12. Schilling Test	12-01
The radioisotope determination of vitamin B ₁₂ absorption.	
13. Thyroid Uptake	13-01
The radioisotope determination of thyroid uptake.	
14. Radioactive Decay Corrections	14-01
Finds the activity of a radioisotope corrected for decay over time.	

Radioimmunoassay

15. Radioimmunoassay	15-01
Computes least-squares regression line of logit of net counts vs. log concentration, including regression constants, correlation coefficient, and concentration for a given count.	

Statistics

16. Basic Statistics	16-01
Computes mean, standard deviation, standard error, and coefficient of variation for grouped or ungrouped data.	
17. Chi-square Evaluation and Distribution	17-01
Computes the chi-square statistic for goodness of fit. For given $x \geq 0$, finds the chi-square density function $f(x)$ and the cumulative distribution $P(x)$.	
18. t Statistics	18-01
Computes the paired t statistic and the unpaired t statistic.	
19. t Distribution	19-01
For a given $x > 0$, evaluates the t density function and cumulative distribution.	

A WORD ABOUT THESE PROGRAMS

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. Most of the computed results in this pac are output by the command PRINTx. On the HP-97 these results will be output on the printer. On the HP-67 each PRINTx command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution.

If you use an HP-67, you may want more time to copy down the number displayed by a PRINTx command. All you need to do is press any key on the keyboard during the pause interval in which the result is displayed. This action will cause the program to halt; execution of the halted program may be re-initiated by pressing **R/S**. Values that are output by a PRINTx command are marked by three asterisks (****) in the keystroke solutions to example problems. The keystroke solutions reflect another slight difference between the HP-67 and the HP-97. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, **f** on the HP-97 and **f**, **g**, and **h** on the HP-67. For example, the operation **10^x** is performed on the HP-97 as **f 10^x** and on the HP-67 as **g 10^x**. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, **10^x**). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

Programs 1 through 13 of this pac are alike in that many of the same operations are available in each of these programs. A look at the magnetic cards for these programs will show three instructions repeated in gold on every card of these thirteen: PTNT #, P OFF?, and REPRINT. These three operations are intended primarily for use on the HP-97. In addition, either CLEAR or START appears on all of the first thirteen cards. Some discussion of these common operations may be helpful.

The instruction PTNT # allows you to key in a patient number which will be immediately printed in order to identify the data and results of the following calculations. The patient number used should be a whole number; the program will append two digits after the decimal point to identify the program being used, 01 to 13. For example, if the patient number 1234 is used in program 7, the program would print the identification 1234.07, which serves to identify the entire context of the calculations which are to follow. The use of the patient number for identification purposes is entirely optional and may be omitted.

The interrogative P OFF? asks the question: do you want to turn the print function off? When the program is loaded, a flag is set that causes all inputs and outputs of the program to be printed. If this information is not all desired, you may eliminate some or all of it, depending on the program, by turning the print

function off. It may later be turned back on at any time without affecting the operation of the program.

The instruction REPRINT allows for an additional printout of all data and results after a calculation has been completed. Frequently in the clinical lab, the results of a test must be reported to several different departments. The REPRINT feature allows you to obtain additional copies of the data and results directly from the program.

The instructions CLEAR and START are similar in that both have to do with initialization of the program and should be executed before any other operation in the program. They differ in that CLEAR is an optional instruction and START is mandatory. Basically, CLEAR simply sets certain registers to zero to insure that meaningless information is not output during a REPRINT. On the other hand, START loads registers with necessary initial values without which the program would fail to function properly.

RUNNING A PROGRAM

Loading a Program

Select the *Protein Electrophoresis* card, CL1-02A, from the card case supplied with this application pac.

Set the PRGM-RUN switch to RUN.

If you are using the HP-97, set the printer switch to MAN. All the programs in this pac are designed for manual printer setting.

Gently insert either end of the card (printed side up) in the reader slot of your calculator as shown in figure 1a or 1b.

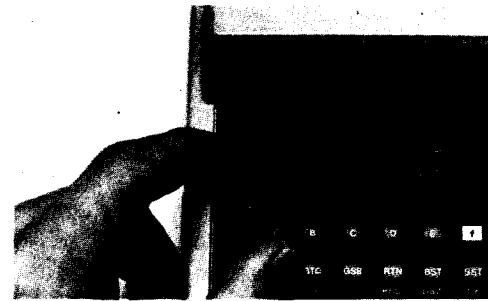


Figure 1a. HP-97

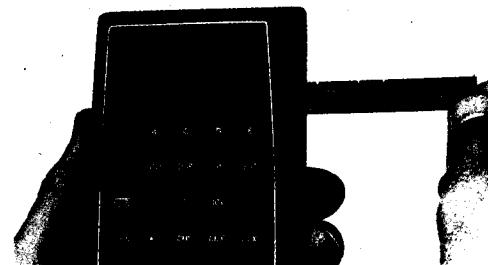


Figure 1b. HP-67

When the card is part way in, a motor engages and passes it out the other side of the calculator. Sometimes the motor engages but does not pull the card in. If this happens, push the card a little farther into the machine. Do not impede or force the card; let it move freely.

The display will show "Error" if the card reads improperly. In this case, press **CLX** and reinser the card.

Since *Protein Electrophoresis* is longer than 112 steps (the capacity of one side of a magnetic card), the display now shows "Crd" indicating that a

second card pass is necessary to load the remaining steps. With the writing still visible to you, insert the *opposite* end of the card (figures 2a and 2b) and pass the card through the card reader again.

Figure 2a. HP-97

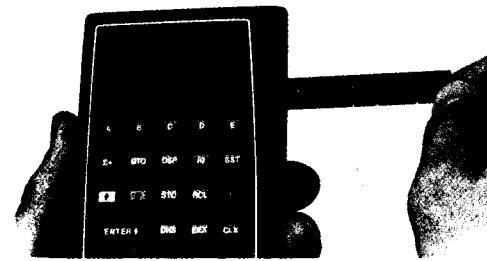


Figure 2b. HP-67

When the motor stops, remove the card from the other side of the calculator and insert it in the "window slot" of the calculator (figures 3a and 3b).

Figure 3a. HP-97

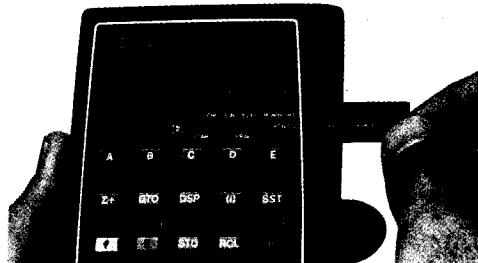


Figure 3b. HP-67

The program has now been stored in the calculator. It will remain stored until another program is loaded or the calculator is turned off.

The Magnetic Card

Complete instructions for running the program are found in the User Instructions form for that program. The first few times you run the program, you should refer to these instructions at each step of the operation. Thereafter, mnemonic symbols on the magnetic card itself will provide shorthand instructions to the program's operation.

Take a look at the card that you have inserted in the window slot of the calculator. Notice that the mnemonic symbols on the card are grouped above the user-definable keys **A** through **E**. For example, the symbols “ $\rightarrow\%$ ” and “PTNT #” are associated with key **C**. Symbols in gold are associated with the shifted keys **f** **A** through **f** **E**.

Below is a table of the important symbols and conventions you will find on magnetic cards.

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x A	White mnemonics are associated with the user-definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing A .
Gold mnemonic: y x f E x A	Gold mnemonics are similar to white mnemonics except that the gold f key must be pressed before the user-definable key. In this case y could be input by pressing f E . \downarrow is the symbol for ENTER . In this case ENTER is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER , key in y and press A .

SYMBOLS AND CONVENTIONS (Continued)

SYMBOL OR CONVENTION	INDICATED MEANING
[x]	The box around the variable x indicates input by pressing STO A .
[A]	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
(x)	
[A]	
\rightarrow x	\rightarrow is the symbol for calculate. This indicates that you may calculate x by pressing key A .
[A]	
\rightarrow x, y, z	This indicates that x, y, and z are calculated by pressing A once. The values would be printed in x, y, z order.
[A]	
\rightarrow x; y; z	The semi-colons indicate that after x has been calculated using A , y and z may be calculated by pressing R/S .
[A]	
\rightarrow “ x ,” y	The quote marks indicate that the x value will be “paused” or held in the display for one second. The pause will be followed by the display of y.
[A]	
\leftrightarrow x	\leftrightarrow indicates that x may be either output or input when the associated user-definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.
[A]	
P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is controlled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.
[A]	
START	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.
[A]	
DEL	This special command indicates that the last value or set of values input may be deleted by pressing A .
[A]	

FORMAT OF USER INSTRUCTIONS

The completed User Instructions Form—which accompanies each program—is your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT DATA/UNITS column specifies the input data, and the units of data if applicable. Data input keys consist of **0** to **9** and decimal point (the numeric keys), **EEX** (enter exponent), and **CHS** (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT DATA/UNITS column specifies intermediate and final outputs and their units, where applicable.

The following illustrates the User Instruction Form for *Protein Electrophoresis*, CL1-02A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient number.	Ptnt #	B C	Ptnt # .02
4	To suppress output of data, turn print function off.		D	0.00
5	To turn print back on later.		D	1.00
6	Key in the counts of the first protein fraction.	Fract,	B	1.00
7	Repeat this step for the rest of the fractions.	Fract,	B	i
8	Calculate the percentage each fraction is of the whole.		C	%
9	(optional) Key in the total grams of protein and find the grams in each fraction.	Total Protein	D	grams
10	(optional) Find the albumin/globulin ratio.		E	A/G
11	(optional) Obtain a reprint of all			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	data and results (Total Protein and grams omitted if Total Protein not input).		E	Ptnt # .02
				Fract,...
				Fract,
				(%) ₁ ...
				(%) _n
				Total Protein
				grams...
				grams _n
				A/G
12	For a new case, go to step 2.			

Since you loaded this program in "Loading a Program" on page vi, step 1 is already done and we can move to step 2. (If you turned your calculator off, you must reload the program.) Leave the magnetic card in the window slot above keys **A** through **E**.

Step 2 is an initialization procedure, marked START on the magnetic card. Press **A** now to perform the initialization, as shown in the KEYS column. You should see a display of 0.00.

Step 3 is optional and allows for input of the patient number if identification of the output is desired. The number output at this step is the patient number followed by ".02", which marks the second program of the pac, CL1-02A. Key in the patient number 1234 and see an output of 1234.02.

Steps 4 and 5 have to do with the optional print mode, which may be turned off or on through the keystrokes **D**. When the program is loaded, the print function is on; pressing **D** will turn it off and display 0.00. Try it. Successive presses of **D** will turn the print function on, then off, alternately displaying 1.00 (on) and 0.00 (off). Try this, but leave 1.00 displayed (print function on) when you are finished. This will allow the input data to be output through PRINTx commands.

Step 6 begins the actual input of the fractionation data. You are to key in the counts for the first protein fraction (Fract₁ under INPUT DATA/UNITS) and press **B**. This value will be output and a 1.00 will be displayed to mark the input of the first fraction. Step 7 instructs you to input the remaining protein fractionation counts in a like manner, keying in each value and pressing **B**.

The number displayed after each value is input indicates the number of functions input so far. Try this sequence with the values from the table below.

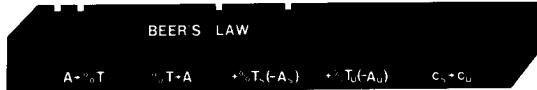
Fraction	Substance	Counts
1	Albumin	67
2	α_1 -globulin	4
3	α_2 -globulin	10
4	β -globulin	14
5	γ -globulin	13

Use the keystrokes 67 **B** 4 **B** 10 **B** 14 **B** 13 **B**. At the end of this sequence the display should show 5.00.

Now that all fractions have been input, step 8 instructs you to find the percentages for the fractions input by pressing **C**. Each percentage is output by a PRINTx command, and the percentages will be output in the order the fractions were input. Press **C** now. The outputs you should see are, in this order, 62.04, 3.70, 9.26, 12.96, and 12.04.

Step 9 is optional. Here you may key in the total grams of protein and press **D** to find the number of grams in each fraction. Key in 7, press **D**, and you should see these outputs: 4.34, 0.26, 0.65, 0.91, and 0.84.

Step 10 is optional. You may press **E** to compute the albumin/globulin ratio. Press **E** now and find an A/G value of 1.63.


Step 11 is also optional. This is the REPRINT feature described on page v. If **FE** is pressed, the entire set of data and results will be output through PRINTx commands in the order shown in the OUTPUT DATA/UNITS column. You may do this now and check that the values returned by the REPRINT function are the same as those you keyed in or calculated earlier.

If your answers agree with ours, you are ready to try other programs in this pac. Otherwise, go back to the start of this section and try the procedure again.

Notes

BEER'S LAW

This program combines two independent routines in the area of spectrophotometry. The first routine, on keys **A** and **B**, solves Beer's law interchangeably to find either absorbance (optical density) or percent transmittance (%T). To find %T, key in absorbance and press key **A**. The output will be %T. To find absorbance, key in %T and press key **B**. Absorbance will be output.

The second routine, on keys **C**, **D**, and **E**, allows calculation of the concentration of an unknown given the concentration of a standard and the absorbance of %T of the standard and unknown. If the percent transmittance of the standard (%T_s) is known, it may be keyed in to key **C**. If the absorbance of the standard (A_s) is known instead, it may be keyed in as a negative number to key **C**. Similarly, for the unknown, percent transmittance (%T_u) may be keyed in as a positive number or absorbance (A_u) as a negative number to key **D**. Then the concentration of the standard (c_s) should be keyed in to key **E**. This will allow output of the concentration of the unknown (c_u).

Equations:

$$A = 2 - \log \%T$$

$$\%T = 10^{2-A}$$

$$c_u = c_s \times \frac{A_u}{A_s}$$

Reference:

Clinical Chemistry, ed. Henry, Cannon, and Winkelman, Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize for reprint.		F A	0.00
3	(optional) Key in patient number.	Ptnt #	F C	Ptnt # .01
4	To suppress printing of data and results, turn print function off.		F D	0.00
5	To turn print function back on.		F D	1.00
6	To solve interchangeably for A and %T, go to step 7; to find an unknown concentration, go to step 9.			
	A = %T			
7	To find percent transmittance, key in absorbance.	A	A	%T
8	To find absorbance, key in percent transmittance.	%T	B	A
	Unknown concentration			
9	Key in A or %T for the standard and the unknown (follow A by CHS):			
	• Standard	+%T _s (-A _s)	C	+%T _s (-A _s)
	• Unknown	+%T _u (-A _u)	D	+%T _u (-A _u)
10	Key in concentration of standard and compute concentration of unknown.	c _s	E	c _u

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
Reprint				
11	Reprint all data and results.		f E	Ptnt # .01
				A
				%T
				+%T _s (-A _s)
				+%T _u (-A _u)
				c _s
				c _u

Example:


A standard solution with a solute concentration of 2 mg/ml is found to have an absorbance of 0.41 at 550 nm. An unknown from patient number 10183 is found to show 46% transmittance at the same wavelength. Convert this %T to absorbance. Also find the solute concentration in the unknown. After all calculations obtain a reprint.

Keystrokes:

f A →
10183 **f C** →
46 **B** →
.41 **CHS C** →
46 **D** →
2 **E** →
f E →

Outputs:

0.00 (Clear)
10183.01 *** (Ptnt ID)
46.00 *** (%T)
0.34 *** (A)
-0.41 *** (-A_s)
46.00 *** (%T_u)
2.00 *** (c_s)
1.65 *** (c_u)
10183.01 *** (Ptnt ID)
0.34 *** (A)
46.00 *** (%T)
-0.41 *** (-A_s)
46.00 *** (%T_u)
2.00 *** (c_s)
1.65 *** (c_u)

Notes

PROTEIN ELECTROPHORESIS

This program is designed to aid in the calculations of protein fractionation. The required data for the program are the integration counts for each protein fraction and, optionally, the total protein. The results calculated by the program are the percentage of the total for each fraction and, if total protein has been input, the number of grams of each protein fraction. An optional output is the albumin/globulin ratio.

To operate the program, press key **A** to initialize. Then for each fraction, key in its integration counts and press key **B**. After the counts have been keyed in for every fraction, you may press key **C** to find the percentage that each fraction is of the total. A single press of **C** will cause all the percentages to be output in the same order as the counts were input. You may then, if you wish, key in the total protein in grams, press key **D**, and output the grams of protein for each fraction.

The albumin/globulin ratio (A/G) may be calculated by pressing key **E**. If A/G is to be found, albumin should be the first fraction input, followed by the four globulin counts.

Equations:

Let Fract_i be the counts for the i^{th} fraction, and $(\%)_i$ the percentage of the total for the i^{th} fraction.

$$(\%)_i = \frac{\text{Fract}_i}{\sum_{j=1}^n \text{Fract}_j} \times 100$$

Let TPr be the total protein in grams and g_i be the number of grams of the i^{th} fraction.

$$g_i = \frac{\text{Fract}_i}{\sum_{j=1}^n \text{Fract}_j} \times \text{TPr}$$

$$A/G = \frac{\text{Fract}_1}{\sum_{j=2}^5 \text{Fract}_j}$$

Remarks:

1. If the print function is turned off, input data will not be printed. Calculated results will still be printed regardless of the status of the print function.
2. If a reprint is called for by pressing **f E**, all possible inputs and outputs will be printed except that if no value was keyed in for total protein, neither it nor the grams of each fraction will be output.
3. The use of this program need not be restricted to protein fractionation. It may be used as a general-purpose total and percent-of-total program. The only restriction is that the number of inputs (fractions) is limited to 21.

Reference:

Clinical Chemistry, ed. Henry *et. al.*, Harper and Row, 1974.

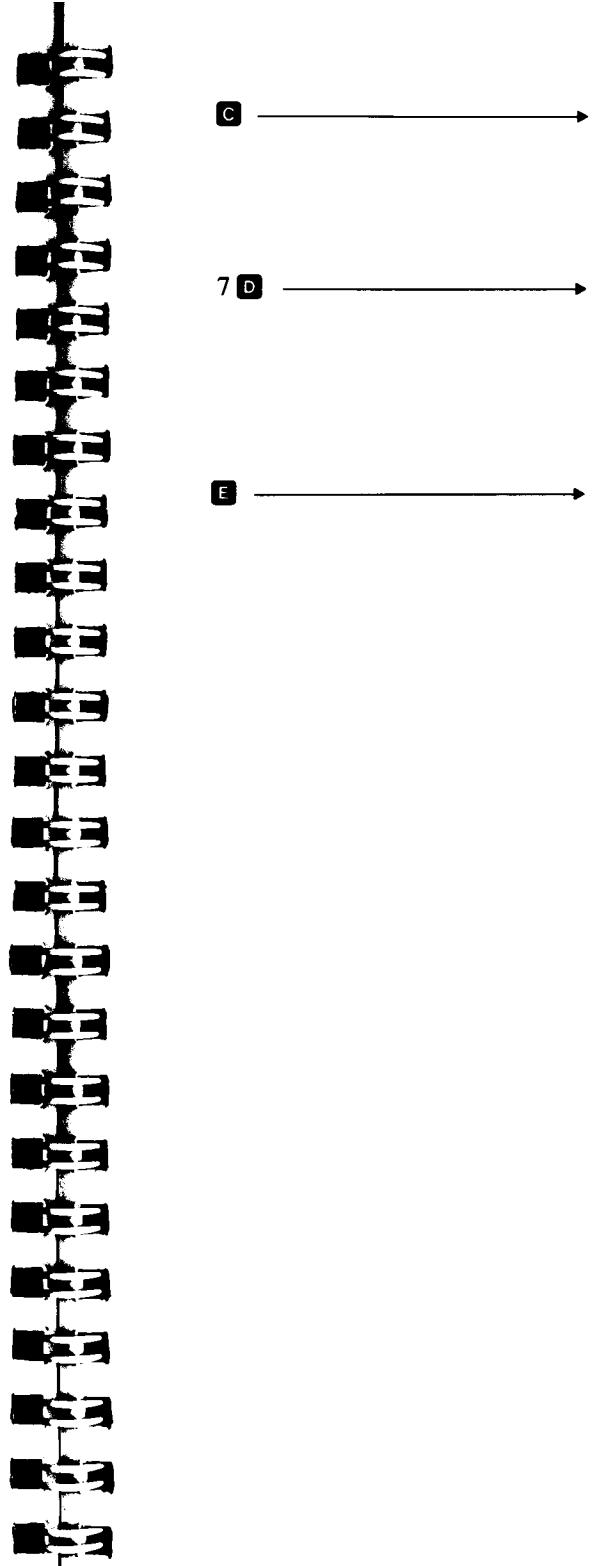
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient number.	Ptnt #	B C	Ptnt # .02
4	To suppress output of data, turn print function off.		B D	0.00
5	To turn print back on later.		B D	1.00
6	Key in the counts of the first protein fraction.	Fract ₁	B	1.00
7	Repeat this step for the rest of the fractions.	Fract _i	B	i
8	Calculate the percentage each fraction is of the whole.		C	%
9	(optional) Key in the total grams of protein and find the grams in each fraction.	Total Protein	D	grams
10	(optional) Find the albumin/globulin ratio.		E	A/G

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	(optional) Obtain a reprint of all data and results (Total Protein and grams omitted if Total Protein not input).			
			f E	Ptnt # .02
				Fract ₁ ...
				Fract _n
				(%) ₁ ...
				(%) _n
				Total Protein
				grams ₁ ...
				grams _n
				A/G
12	For a new case, go to step 2.			

Example:

The following integration counts are determined electrophoretically for serum proteins:

Albumin	67
α_1 -globulin	4
α_2 -globulin	10
β -globulin	14
γ -globulin	13


If the total amount of protein is 7.0 grams, find the percentage of the total and the number of grams for each protein fraction. Also find the albumin/globulin ratio. The patient number is 10183.

Keystrokes:

A →
10183 **f C** →
67 **B** →
4 **B** →
10 **B** →
14 **B** →
13 **B** →

Outputs:

0.00	
10183.02 *** (Ptnt ID)	
1.00	
2.00	
3.00	
4.00	
5.00	

62.04 *** (% albumin)
3.70 *** (% α_1)
9.26 *** (% α_2)
12.96 *** (% β)
12.04 *** (% γ)
7.00 *** (Total Protein)
4.34 *** (g albumin)
0.26 *** (g α_1)
0.65 *** (g α_2)
0.91 *** (g β)
0.84 *** (g γ)
1.63 *** (A/G)

This program analyzes the results of the fractionation of lactic dehydrogenase isoenzymes and computes for each isoenzyme (LDH_1 through LDH_5) the percentage it represents of the whole. After key **A** is pressed to initialize the program, each enzyme value is input by keying in the value and pressing **B**. After all five LDH fractions have been input, key **C** may be pressed to find the percentage each enzyme is of the whole.

An additional feature of the program is the checking of the computed percentage of each enzyme against its accepted normal value. All five percentages are computed and output; if one or more of these values lie outside the accepted normal range, the word "Error" will be displayed at the end of all calculations. (This indicates only that a value is abnormal; the answers calculated are accurate.)

The abnormal value or values should then be determined by inspection. The normal values used by the program are shown below.

Enzyme	Normal Range
LDH_1	18%—33%
LDH_2	28%—40%
LDH_3	18%—30%
LDH_4	6%—16%
LDH_5	2%—13%

These values for normal ranges may be changed easily within the program if you so desire. Simply look at the program listing and find the value you want to change by referring to the program comments. Delete the number as it now exists in the program and key in your own value. Do not forget to record the modified program on a blank magnetic card if you want to preserve it.

Equations:

Let LDH_i be the value of the i^{th} LDH isoenzyme ($i = 1, \dots, 5$) and $LDH_i\%$ be that enzyme's percentage of the whole.

$$LDH_i\% = \frac{LDH_i}{\sum_{j=1}^5 LDH_j}$$

Remarks:

If the print function is turned off, input data will not be printed. Calculated results will still be printed regardless of the status of the print function.

Reference:

Clinical Chemistry, ed. Henry *et. al.*, Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .03
4	To suppress printing of input data, turn the print function off.		f D	0.00
5	To turn the print function back on.		f D	1.00
6	Key in the first LDH enzyme value.	LDH_1	B	1.00
7	Repeat step 6 for LDH values 2 through 5.	LDH_i	B	i
8	Calculate the percentage each enzyme is of the total.*		C	$LDH_i\%$
				...
				$LDH_5\%$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	(optional) Obtain a reprint of all data and results.*			
			f E	Ptnt # .03
				LDH ₁
				...
				LDH ₅
				LDH ₁ %
				...
				LDH ₅ %
	*A display of "Error" following execution of this step indicates a percentage value that lies outside the normal range for that enzyme.			

Example:

Electrophoretic separation of the LDH isoenzymes results in the following counts:

Enzymes	Counts
LDH ₁	95
LDH ₂	120
LDH ₃	85
LDH ₄	15
LDH ₅	22

Find the percentage of the whole for each isoenzyme. The patient number is 10183. Obtain a reprint of the data and results.

Keystrokes:

A →
10183 **f** **C** →
95 **B** →
120 **B** →
85 **B** →
15 **B** →
22 **B** →

Outputs:

0.00
10183.03 *** (Ptnt ID)
1.00
2.00
3.00
4.00
5.00

C →	28.19 *** (% LDH ₁)
	35.61 *** (% LDH ₂)
	25.22 *** (% LDH ₃)
	4.45 *** (% LDH ₄)
	6.53 *** (% LDH ₅)
	"Error"
	0.00
CL X (clears "Error") →	10183.03 ***
E →	95.00 ***
	120.00 ***
	85.00 ***
	15.00 ***
	22.00 ***
	28.19 ***
	35.61 ***
	25.22 ***
	4.45 ***
	6.53 ***
	"Error"

A visual scan of the results indicates that the message "Error" resulted from the percentage value of LDH₄ (4.45%) being below the normal range (6%—16%).

BODY SURFACE AREA

BODY SURFACE AREA

HT (+cm) WT (+kg) → DUBOIS → BOYD

This program calculates body surface area by either the method of Dubois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in., lb.) units. Quantities in English units should be input as negative numbers; that is, **CHS** should be pressed after keying the number in.

To operate the program, the height in either cm or inches should be keyed in to **A**, and the weight in either kg or pounds keyed in to **B**. Then pressing **C** will allow the calculation of body surface area in m^2 by the method of Dubois; pressing **D** computes BSA in m^2 by the Boyd formula. Even if you have already found BSA by one method, you may also find it by the other method simply by pressing the appropriate key; the values of height and weight need not be re-input.

Equations:

Let **Ht** be height, **Wt** be weight, and **BSA** be the body surface area in m^2 .

$$Ht \text{ (cm)} = 2.54 Ht \text{ (in.)}$$

$$Wt \text{ (kg)} = 0.45359237 Wt \text{ (lb.)}$$

Dubois:

$$BSA \text{ (m}^2\text{)} = Ht \text{ (cm)}^{0.725} \cdot Wt \text{ (kg)}^{0.425} \cdot 7.184 \times 10^{-3}$$

Boyd:

$$BSA \text{ (m}^2\text{)} = Wt \text{ (g)}^{(0.7285 - 0.0188 \log Wt)} \cdot Ht \text{ (cm)}^{0.3} \cdot 3.207 \times 10^{-4}$$

Remarks:

1. The Dubois formula for BSA is undefined for children with a BSA less than 0.6 m^2 . In such cases BSA should be calculated by the Boyd formula.
2. Turning off the print function will suppress printing of both data and results.

References:

D. Du Bois and E.F. Du Bois, Clin. Cal. 10, Arch. Int. Med., **17**, 863, 1916.
Edith Boyd, *Growth of the Surface Area of the Human Body*, U. of Minnesota Press, 1935, p. 132.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint desired.		f A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .04
4	To suppress printing of data and results.		f D	0.00
5	To turn print function back on.		f D	1.00
6	Key in height (+ cm, - in.)	Ht	A	Ht (cm)
7	Key in weight (+ kg, - lb.)	Wt	B	Wt (kg)
8	Compute BSA by method of either			
	• Dubois		C	BSA (m^2)
	• Boyd		D	BSA (m^2)
9	(optional) Reprint all data and results.		f E	Ptnt # .04
				Ht input
				Wt input
				BSA (m^2)

Example 1:

Patient number 10183 is a male, height 176 cm, weight 63.5 kg. What is his BSA by the Dubois formula? Compare by also finding the Boyd BSA.

Keystrokes:

10183 **f C** →
176 **A** →
63.5 **B** →
C →
D →

Outputs:

10183.04 *** (Ptnt ID)
176.00 (Ht (cm))
63.50 (Wt (kg))
1.78 *** (Dubois)
1.76 *** (Boyd)

Example 2:

Patient number 10070 is a female, height 64 inches, weight 112 pounds. Find her BSA by the Boyd formula. Obtain a reprint. Remember to input height and weight as negative numbers.

Keystrokes:

f A →
10070 f C →
64 CHS A →
112 CHS B →
D →
f E →

Outputs:

0.00
10070.04 *** (Ptnt ID)
162.56 (Ht (cm))
50.80 (Wt (kg))
1.52 *** (Boyd)
10070.04 *** (Ptnt ID)
-64.00 *** (Ht)
-112.00 *** (Wt)
1.52 *** (BSA)

Notes

UREA CLEARANCE

This program calculates urea clearance given the urine flow rate and the concentration of urea in urine and blood. The urine flow rate may be corrected for the patient's body surface area, if desired. The program will calculate standard or maximum clearance depending on whether the corrected urine flow rate is above or below 2 ml/min. The percent of mean normal may also be found.

If the urine flow rate is to be corrected for body surface area, key **f** **B** should be pressed to indicate that. No action is necessary if the correction is not desired. If correction is to be made, the program will need to find the patient's body surface area (BSA) in register **R_A**. If the program *Body Surface Area* (CL1-04A) has been run immediately before this program, BSA will already have been stored in **R_A**. Otherwise you will need to key in the patient's BSA and store it in **R_A**.

When inputting the urine flow rate, you may either key in the flow rate (\dot{V} , in ml/min.) directly to key **B**, or key in both the urine volume **V** in ml and the time **t** in min. to key **A**. If the print function is on and inputs are being printed, in both cases the printout will be of \dot{V} , the flow rate in ml/min. The number in the display at the end of routine **A** or **B** is \dot{V}_{corr} , the flow rate after correction for BSA. It is the size of this number that determines whether the standard or the maximum clearance will be calculated. This number will also be printed if the print function is on.

Equations:

$$\dot{V}(\text{ml/min}) = \frac{V(\text{ml})}{t(\text{min})}$$

$$\dot{V}_{corr} = \begin{cases} \frac{1.73}{\text{BSA}} \dot{V} & \text{if corrected for BSA} \\ \dot{V} & \text{if no correction for BSA} \end{cases}$$

Maximum clearance ($\dot{V}_{corr} > 2$):

$$C_m(\text{ml/min}) = \frac{U_{\text{urea}} \dot{V}_{corr}}{B_{\text{urea}}}$$

Standard clearance ($\dot{V}_{corr} \leq 2$):

$$C_s(\text{ml/min}) = \frac{U_{\text{urea}} \sqrt{\dot{V}_{corr}}}{B_{\text{urea}}}$$

where

U_{urea} = concentration of urea in urine

B_{urea} = concentration of urea in blood

% mean normal $C_m = 1.33 C_m$

% mean normal $C_s = 1.85 C_s$

Remarks:

1. Any units may be used for U_{urea} and B_{urea} as long as they are consistent.
2. Some users may prefer to ignore the distinction between standard and maximum clearance and use the maximum formula for all cases. This can be accomplished by using the program *Creatinine Clearance* (CL1-06A) and inputting U_{urea} and B_{urea} in place of U_{creat} and P_{creat} , respectively.
3. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Clinical Chemistry, ed. Henry *et al.*, Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint desired.		f A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .05
4	To suppress printing of data and results, turn the print function off.		f D	0.00
5	To turn the print function back on.		f D	1.00

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	If BSA is required and Body Surface Area has not been run, key in BSA.	BSA (m ²)	STO A	
7	If \dot{V} is to be corrected for BSA		I B	BSA (m ²)
8	Perform either one of the steps below:			
	• Key in urine volume and time	V (ml)	ENTER	
		t (min)	A	\dot{V}_{corr}
	• Key in urine flow rate	\dot{V} (ml/min)	B	\dot{V}_{corr}
9	Key in the concentration of urea in urine.	U _{urea}	C	U _{urea}
10	Key in the concentration of urea in blood and find the urea clearance.	B _{urea}	D	C _{urea} (ml/min)
11	Find the percent of mean normal.		E	% m.n.
12	(optional) Reprint data and results.		I E	Ptnt # .05
				\dot{V}
				\dot{V}_{corr}
				U _{urea}
				B _{urea}
				C _s or C _m
				% m.n.
13	For a new case go to step 2.			

Example 1:

A patient, number 10183, is to be tested for urea clearance. A volume of 204 ml of urine is collected over a period of 120 min. The concentration of urea in this urine is found to be 903 mg/100 ml. A blood sample is taken halfway through the urine collection and found to have a urea concentration of 26 mg/100 ml. Determine the urea clearance. Do not correct for body surface area.

Keystrokes:

10183 f C →
204 ENTER + 120 A →
903 C →
26 D →
E →

Outputs:

10183.05 *** (Ptnt ID)
1.70 *** (\dot{V})
1.70 *** (\dot{V}_{corr})
903.00 *** (U_{urea})
26.00 *** (B_{urea})
45.28 *** (C_s, ml/min)
83.77 *** (% m.n.)

Example 2:

Patient number 10142 is a male, height 188 cm, weight 88.5 kg. A urine flow rate of 2.7 ml/min. is recorded. The concentration of urea is 798 mg/100 ml in urine and 21 mg/100 ml in blood. Determine the urea clearance corrected for body surface area using the Dubois formula for BSA.

Keystrokes:

Load side 1 and side 2 of Body Surface Area (CL1-04A).

f D → 0.00 (Print off)
188 A → 188.00 (Ht, cm)
88.5 B → 88.50 (Wt, kg)
C → 2.15 (Dubois BSA)

Outputs:

Load side 1 and side 2 of Urea Clearance (CL1-05A).

10142 f C → 10142.05 *** (Ptnt ID)
f B → 2.15 (BSA)
2.7 B → 2.70 *** (\dot{V})
798 C → 2.17 *** (\dot{V}_{corr})
21 D → 798.00 *** (U_{urea})
E → 21.00 *** (B_{urea})
82.53 *** (C_m, ml/min)
109.76 *** (% m.n.)

CREATININE CLEARANCE

CREATININE CLEARANCE

V+U P+U+C

This program allows the calculation of creatinine clearance given the urine flow rate and the concentration of creatinine in urine and plasma. The urine flow rate may be corrected for the patient's body surface area if desired.

To indicate that a correction should be made for the body surface area, press **I B**. No action is necessary if the correction is not desired. If correction is to be made, the program will need to find the patient's body surface area (BSA, in m^2) in register **R_A**. The program *Body Surface Area* (CL1-04A) automatically leaves BSA stored in **R_A**. If *Body Surface Area* has not been run immediately before this program, you will need to key in the BSA and press **STO A**.

When inputting the urine flow rate, you may either key in the flow rate (\dot{V} , in ml/min.) directly to key **B**, or key in both the urine volume (V , in ml) and the time (t , in minutes) to key **A**. If the print function is on and inputs are being printed, in both cases the printout will be of \dot{V} , the flow rate in ml/min. The number in the display at the end of routine **A** or **B** is \dot{V}_{corr} , the flow rate after correction for BSA. (If no correction is desired, \dot{V}_{corr} will be the same as \dot{V} .) This number will also be printed if the print function is on.

Equations:

$$\dot{V}(\text{ml/min}) = \frac{V(\text{ml})}{t(\text{min})}$$

$$\dot{V}_{corr} = \begin{cases} \frac{1.73}{\text{BSA}} \dot{V} & \text{if corrected for BSA} \\ \dot{V} & \text{if not corrected for BSA} \end{cases}$$

$$C_{\text{creat}}(\text{ml/min}) = \frac{U_{\text{creat}} \dot{V}_{corr}}{P_{\text{creat}}}$$

where

 C_{creat} = creatinine clearance U_{creat} = concentration of creatinine in urine P_{creat} = concentration of creatinine in plasma

Remarks:

1. Any units may be used for U_{creat} and P_{creat} as long as they are consistent.
2. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Clinical Chemistry, ed. Henry *et al.*, Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 of program.			
2	(optional) Initialize if reprint desired.		I A	0.00
3	(optional) Key in patient number.	Ptnt #	I C	Ptnt # .06
4	To suppress printing of data and results, turn print function off.		I D	0.00
5	To turn print function back on later		I D	1.00
6	If BSA is required and <i>Body Surface Area</i> has not been run, key in BSA.	BSA (m^2)	STO A	
7	If \dot{V} is to be corrected for BSA.		I B	BSA (m^2)
8	Perform either one of the steps below:			
	• Key in urine volume and time	V (ml)	ENTER	
		t (min)	A	\dot{V}_{corr}
	• Key in urine flow rate.	\dot{V} (ml/min)	B	\dot{V}_{corr}
9	Key in the concentration of creatinine in urine.	U_{creat}	C	U_{creat}
10	Key in the concentration of creatinine in plasma and find the creatinine clearance.	P_{creat}	D	C_{creat} (ml/min)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	(optional) Reprint data and results.			
			■ E	Ptnt # .06
				\dot{V}
				\dot{V}_{corr}
				U_{creat}
				P_{creat}
				C_{creat}
12	For a new case go to step 2.			

Example 1:

A male, patient number 10095, is tested for creatinine clearance. A urine volume of 506 ml is collected over a 4-hour (240-min.) period. The concentration of creatinine is found to be 43.4 mg/dl in urine and 0.91 mg/dl in plasma. Find the creatinine clearance. Do not correct for body surface area.

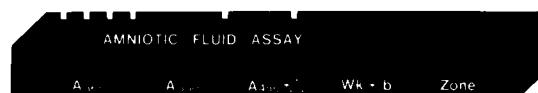
Keystrokes:10095 **f** **C** →506 **ENTER** 240 **A** →43.4 **C** →0.91 **D** →**Outputs:**

10095.06 *** (Ptnt ID)

2.11 *** (\dot{V})2.11 *** (\dot{V}_{corr})43.40 *** (U_{creat})0.91 *** (P_{creat})100.55 *** (C_{creat} , ml/min)**Example 2:**

Patient number 10124 is a female with a body surface area of 1.56 m². Given a urine flow rate of 1.81 ml/min., a creatinine concentration of 46.5 mg/dl in urine and 1.03 mg/dl in plasma, find the creatinine clearance.

Keystrokes:10124 **f** **C** →1.56 **STO** **A** →**f** **B** →1.81 **B** →46.5 **C** →1.03 **D** →**Outputs:**


10124.06 *** (Ptnt ID)

1.56 (BSA)

1.56

1.81 *** (\dot{V})2.01 *** (\dot{V}_{corr})46.50 *** (U_{creat})1.03 *** (P_{creat})90.62 *** (C_{creat} , ml/min)**Notes**

AMNIOTIC FLUID ASSAY

This program performs calculations for the spectrophotometric estimation of bile pigments in amniotic fluid. Measurement of absorbance changes in the fluid has been shown to be useful in determining the management of Rh-sensitized pregnancies. The absorbance of the fluid is measured at two wavelengths (typically, 365 nm and 550 nm) to form a baseline, and then at a third wavelength between these two (typically, 450 nm) to allow calculation of the difference (Δ) between the actual and the interpolated absorbances at the intermediate wavelength. Then, given the weeks of gestation, the "b" factor and, optionally, the Liley zone number may be found.

The inputs to the program, then, are the absorbances of the amniotic fluid at three wavelengths (A_{365} , A_{550} , and A_{450}). From these may be found ΔA_{450} , the difference in absorbance at the intermediate wavelength. The final input is the week of gestation (Wk), from which may be found the "b" factor and zone. The last two outputs are the most meaningful for the obstetrician; for interpretation, see references 1 and 2 below.

Equations:

$$\Delta A_{450} = A_{450} - e^{[.541 (\ln A_{365} - \ln A_{550}) + \ln A_{550}]}$$

$$b = \Delta A_{450} / a^{Wk}$$

where

$$a = 0.91509$$

Wk = week of gestation

Liley zones:

Zone I: $b < 0.7$

Zone II: $0.7 \leq b \leq 3$

Zone III: $b > 3$

Remarks:

1. Some users may prefer to take absorbance readings at wavelengths other than those indicated here. Burnett³, for instance, advocates readings at 350 nm, 550 nm, and 455 nm. It is quite easy to modify the program to handle such a case. The only change required is the alteration of

one constant occupying four steps of program memory, 024-027. At present in these locations the program holds the constant .541. For Burnett's values (350, 550, 455) this constant would have to be changed to .475. In general, if the three wavelengths used are x, y, and z, with $x < z < y$, the constant to be used is

$$\frac{y - z}{y - x}$$

The absorbances at wavelengths x, y, and z should be input to keys **A**, **B**, and **C** respectively.

2. If the print function is turned off, neither inputs nor outputs will be printed.

References:

1. R.C. Brown and W.J. Beckfield, "Computer-assisted spectrophotometric analysis of amniotic fluid in erythroblastosis fetalis," *Amer. J. Clin. Path.*, **57**: 659-663, 1972.
2. A.W. Liley, "Liquor amnii analysis in the management of the pregnancy complicated by rhesus sensitization," *Amer. J. Obstet. Gynecol.*, **82**: 1359-1370, 1961.
3. R. Burnett, "Instrumental and procedural sources of error in determination of bile pigments in amniotic fluid," *Clin. Chem.*, **18**: 150-154, 1972.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint desired.		I A	0.00
3	(optional) Key in patient number.	Ptnt #	I C	Ptnt # .07
4	To suppress printing of data and results, turn print function off.		I D	0.00
5	To turn print function back on later.		I D	1.00
6	Key in absorbance at 365 nm.	A_{365}	A	A_{365}
7	Key in absorbance at 550 nm.	A_{550}	B	A_{550}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	Key in absorbance at 450 nm and find ΔA_{450} .			
		A_{450}	C	ΔA_{450}
9	Key in week of gestation and find b factor.			
		Wk	D	b
10	(optional) Find Liley zone number (1, 2, or 3).			
			E	Zone
11	(optional) To obtain a reprint of data and results.		F E	Ptnt # .07
				A_{365}
				A_{550}
				A_{450}
				ΔA_{450}
				Week
				b
				Zone

Example:

A sample of amniotic fluid from patient number 10070 is found to have absorbances of 0.43, 0.25, and 0.39 at wavelengths 365 nm, 550 nm, and 450 nm respectively. Find ΔA_{450} , the b factor, and the Liley zone number given that it is the 35th week of gestation.

Keystrokes:

10070 **F** **C** →
.43 **A** →
.25 **B** →
.39 **C** →
35 **D** →
E →

Outputs:

10070.07 *** (Ptnt ID)
0.43 *** (A_{365})
0.25 *** (A_{550})
0.39 *** (A_{450})
0.05 *** (ΔA_{450})
35. *** (Wk)
1.22 *** (b)
2. *** (Zone)

Notes

BLOOD ACID-BASE STATUS

This program computes total plasma CO_2 (TCO_2) and base excess (BE) from the partial pressure of CO_2 (PCO_2), pH, and hemoglobin concentration (Hgb). The PCO_2 and pH values used should be found at 37°C ; if they are found at a body temperature (BT) other than 37°C , the program will correct them to 37°C values if BT is also input. An additional, optional output of the program is the concentration of plasma bicarbonate ($[\text{HCO}_3^-]$).

To operate the program, if the body temperature is different from 37°C , then key in BT in $^\circ\text{C}$ and press key **A**. If BT = 37°C , it need not be input; if it is, however, no harm will be done. Next key in PCO_2 in mm Hg and press **B**; the number displayed at the completion of this step is the value of PCO_2 corrected to 37°C . Then key in pH and press **C**; the result in the display at the end of this step is the pH value corrected to 37°C . Finally, press **D** to calculate TCO_2 in mmol/l . As an optional step, hemoglobin may now be input in units of $\text{g}/100 \text{ ml}$. Pressing **E** will allow the calculation of base excess in mEq/l using an equation suggested by Siggaard-Andersen. The last value output is $[\text{HCO}_3^-]$, which may be found by pressing **R/S** after the calculation of base excess.

Equations:

$$\text{PCO}_2 (37^\circ\text{C}) = \text{PCO}_2 (\text{BT}) \cdot 10^{0.019 (37-\text{BT})}$$

$$\text{pH} (37^\circ\text{C}) = \text{pH} (\text{BT}) - 0.0146 (37 - \text{BT})$$

$$\text{TCO}_2 = s \cdot \text{PCO}_2 [1 + 10^{\text{pH}-\text{pK}}]$$

where

s = solubility of CO_2 in plasma, mmol/l (taken to be 0.0307)

$\text{pK} = 6.11$

$$[\text{BE}]_b = (1 - 0.0143 \text{ Hgb}) ([\text{HCO}_3^-] - (9.5 + 1.63 \text{ Hgb}) (7.4 - \text{pH}) - 24)$$

where

$[\text{BE}]_b$ = base excess in mEq/l of blood

Hgb = hemoglobin concentration in $\text{g}/100 \text{ ml}$

$$[\text{HCO}_3^-] = s \cdot \text{PCO}_2 \cdot 10^{\text{pH}-\text{pK}}$$

where

$[\text{HCO}_3^-]$ = concentration of plasma bicarbonate in mmol/l .

Remarks:

1. This program can also be used to correct PCO_2 and pH values from 37°C to body temperature. To do this, let $x = (74 - \text{BT})^\circ\text{C}$. Key in x to key **A**. Then input PCO_2 and pH to keys **B** and **C**, respectively. The number displayed after each of these steps is the value of the parameter corrected to body temperature. For example, if it is desired to correct a 37°C PCO_2 value of 45 mm Hg to a body temperature value with $\text{BT} = 40^\circ\text{C}$, let $x = 34$. Key in 34, press **A**, key in 45, and press **B**. The corrected PCO_2 is found to be 51.31 mm Hg.
2. The equation to correct pH to 37°C values is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 units per $^\circ\text{C}$.
3. If the print function is turned off, neither inputs nor outputs will be printed.

References:

John W. Severinghaus, "Blood gas calculator," *J. Appl. Physiol.*, 21: 1108 - 1116, 1966.

Siggaard-Andersen, "Titratable acid or base of body fluids," *Annals New York Academy of Science*, 133: 41-48, 1966.

L.J. Thomas, Jr., "Algorithms for selected blood acid-base and blood gas calculation," *J. Appl. Physiol.*, 33: 154-158, 1972.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of program.			
2	(optional) Initialize if reprint desired.		f A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .08
4	To suppress printing of data and results, turn print function off.		f D	0.00
5	To turn print function back on later.		f D	1.00
6	If PCO_2 and pH are to be corrected to 37°C, key in body temperature in °C.	BT (°C)	A	37 - BT
7	Key in partial pressure of CO_2 in mm Hg.	PCO ₂ (mm Hg)	B	PCO ₂ (37°)
8	Key in pH.	pH	C	pH (37°)
9	Find total plasma CO_2 in mmol/l.		D	TCO ₂ (mmol/l)
10	(optional) Key in hemoglobin concentration and compute base excess and $[\text{HCO}_3^-]$	Hgb(g/100ml)	E	BE (mEq/l)
			R/S	$[\text{HCO}_3^-]$ (mmol/l)
11	To obtain a reprint.		f E	Ptnt # .08
				BT
				PCO ₂
				pH
				TCO ₂
				Hgb
				BE
				$[\text{HCO}_3^-]$

Example :

Patient number 10183 has a body temperature of 40°C. His PCO_2 at 40°C is found to be 51 mm Hg, his pH at the same temperature 7.31. His hemoglobin concentration is 16 g/100 ml. Find TCO₂, BE, and $[\text{HCO}_3^-]$.

Keystrokes:

f A → 0.00
 10183 f C → 10183.08 *** (Ptnt ID)
 40 A → 40.00 *** (BT)
 -3.00 (37 - BT)
 51 B → 51.00 *** (PCO₂(40))
 44.73 (PCO₂(37))
 7.31 C → 7.31 *** (pH(40))
 7.35 (pH(37))
 D → 25.44 *** (TCO₂)
 16 E → 16.00 *** (Hgb)
 -1.21 *** (BE)
 R/S → 24.07 *** ($[\text{HCO}_3^-]$)

Outputs::

OXYGEN SATURATION AND CONTENT

This program estimates oxygen saturation of blood from various body parameters and computes oxygen content. If the actual oxygen saturation is known, oxygen content may be computed directly.

Estimated saturation

Typically, the input parameters to the program are PCO_2 , pH, and PO_2 measured at 37°C , and the body temperature in $^\circ\text{C}$. If the parameters PCO_2 and pH are known only at body temperature, they may be corrected to 37°C through use of the program *Blood Acid-Base Status*, CL1-08A. If CL1-08A is run before this program, the values of BT, PCO_2 , and pH may be recalled by this program for input to the appropriate keys. For example, pressing **B** will recall the value of BT. Pressing **A** will then input the recalled value to this program and recall the value of PCO_2 . Pressing **B** will input the recalled PCO_2 value and recall the value of pH. If CL1-08A has not been run previously, the recalled values will be meaningless numbers or zero.

After the input of PO_2 to **D**, an intermediate value of virtual PO_2 (VPO_2) will be calculated prior to the calculation of estimated saturation. The value found for VPO_2 will not be output but may be displayed after the calculation of saturation by pressing **RCL C**. VPO_2 is not a real physiologic PO_2 . Its only use is in estimating O_2 saturation.

Suppose as an alternate case that BT, PCO_2 , and pH are not known, but virtual PO_2 , or alveolar PO_2 (PAO_2) is known. In this case, only the known VPO_2 or PAO_2 need be input in order to compute estimated saturation. Input VPO_2 or PAO_2 to key **D** as negative numbers, i.e., key in the value followed by **CHS**, then press **D**. The output, as before, will be estimated oxygen saturation.

After computing saturation, the hemoglobin concentration in g/100 ml should be keyed into **E**. Output from this sequence will be the oxygen content as a volume percent.

Known saturation

If the actual O_2 saturation is known, the oxygen content may be computed directly. Simply key in the O_2 saturation, press **ENTER**, key in hemoglobin concentration and press **E**. Oxygen content will be output.

Equations:

$$\text{VPO}_2 = \text{PO}_2 \cdot 10^{[0.024(37-\text{BT}) + 0.48(\text{pH}-7.4) + 0.06 \log (40/\text{PCO}_2)]}$$

$$\text{O}_2 \text{ Sat} = \frac{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2045(\text{VPO}_2)^2 + 2000(\text{VPO}_2)}{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2400(\text{VPO}_2)^2 - 31,100(\text{VPO}_2) + 2,400,000}$$

$$\text{O}_2 \text{ content} = 1.34 \cdot \frac{\text{Sat} (\%)}{100} \cdot \text{Hgb} + 0.0031 \text{ VPO}_2$$

Remarks:

1. In the computation of VPO_2 , it is important to input the values for pH and BT exactly, as these have a great influence on the value of VPO_2 . PCO_2 has relatively little influence.
2. The equation for VPO_2 is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.
3. The calculation of saturation from PO_2 will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO_2 and O_2 saturation are measured, the program may be used as a convenient means to check for the normality of the dissociation curve.
4. If the print function is turned off, neither inputs nor outputs will be printed.
5. After a keystroke sequence in which **D** is pressed to find saturation, **E** should also be pressed to complete the sequence even if Hgb is not input and the calculated oxygen content is meaningless.

References:

L.J. Thomas, Jr., "Algorithms for selected blood acid-base and blood gas calculation," *J. Appl. Physiol.*, **33**: 154-158, 1972.

G. Richard Kelman, "Digital computer subroutine for the conversion of oxygen tension into saturation." *J. Appl. Physiol.*, **21**: 1375-1376, 1966.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint desired.		f A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .09
4	To suppress printing of data and results, turn print function off.		f D	0.00
5	To turn print function back on later.		f D	1.00
6	If oxygen saturation is to be estimated, go to step 7; if it is known already, go to step 14.			
	Estimated saturation			
7	If BT was stored from <i>Blood Acid-Base Status (CL1-08A)</i> , it may be recalled.		f B	BT (°C)
8	Input body temperature in °C.	BT (°C)	A	PCO ₂ (if stored)
9	Input PCO ₂ in mm Hg.	PCO ₂ (mm Hg)	B	pH(if stored)
10	Input pH.	pH	C	pH
11	Input PO ₂ in mm Hg (CHS for VPO ₂ or P _A O ₂) and find oxygen saturation.	PO ₂ (mm Hg)	D	Sat (%)
12	Key in hemoglobin and find oxygen content as a volume percent.	Hgb (g/100ml)	E	O ₂ content

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	To obtain a reprint.		f E	Ptnt # .09
				BT
				PCO ₂
				pH
				PO ₂
				Sat (%)
				Hgb
				O ₂ content
	Known saturation			
14	Key in saturation and hemoglobin concentration and find oxygen content as a volume percent.	Sat (%)	ENTER	
		Hgb (g/100ml)	E	O ₂ content

Example 1:

Patient number 10183 has a body temperature of 40°C. The following parameters are measured at 37°C: PCO₂ = 45 mm Hg, pH = 7.35, and PO₂ = 75 mm Hg. Find the estimated O₂ saturation. Given a hemoglobin concentration of 16 g/100 ml, find oxygen content.

Keystrokes:

10183 **f C** →
 40 **A** →
 45 **B** →
 7.35 **C** →
 75 **D** →
 16 **E** →

Outputs:

10183.09 *** (Ptnt ID)
 40.00 *** (BT)
 45.00 *** (PCO₂)
 7.35 *** (pH)
 75.00 *** (PO₂)
 90.92 *** (Sat %)
 16.00 *** (Hgb)
 19.68 *** (O₂ cont.)

Example 2:

Alveolar PO₂ (P_A O₂) is known to be 103 mm Hg in patient number 10184. Find the estimated O₂ saturation. Given a hemoglobin concentration of 14.5 g/100 ml, find the oxygen content.

09-05

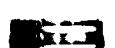
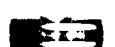
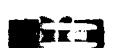
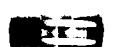
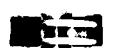
Keystrokes:10184 **f** **C** →103 **CHS** **D** →14.5 **E** →**Outputs:**

10184.09 *** (Ptnt ID.)

-103.00 *** (P_AO₂)

97.72 *** (Sat %)

14.50 *** (Hgb)






19.31 *** (O₂ cont.)**Example 3:**

Oxygen saturation is measured at 92%. Hemoglobin concentration is 16 g/100 ml. What is the oxygen content?

92 **ENTER** 16 **E** →

92.00 *** (Sat %)

16.00 *** (Hgb)

20.04 *** (O₂ cont.)

09-06

Notes

RED CELL INDICES

RED CELL INDICES

COUNT HCT (%) Hgb • MCV • MCH • MCHC

This program computes red cell indices based on three measured values: red cell count, hematocrit, and hemoglobin. The indices computed are mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

The red cell count in millions per mm^3 should be input to key **A** and hematocrit as a percent to key **B**. Then hemoglobin in g/dl ($\text{g}/100 \text{ ml}$) is keyed in, and **C** is pressed to allow calculation of MCV in cubic microns (μ^3). Pressing **D** will cause the output of MCH in picograms, pg (or micromicrograms, $\mu\mu\text{g}$). Finally, key **E** is pressed to compute MCHC in g/dl ($\text{g}/100 \text{ ml}$).

Equations:

$$\text{MCV } (\mu^3) = \frac{\text{Hct } (\%) \times 10}{\text{Count } (10^6/\text{mm}^3)}$$

$$\text{MCH } (\text{pg}) = \frac{\text{Hgb } (\text{g/dl}) \times 10}{\text{Count } (10^6/\text{mm}^3)}$$

$$\text{MCHC } (\text{g/dl}) = \frac{\text{Hgb } (\text{g/dl}) \times 100}{\text{Hct } (\%)}$$

Remarks:

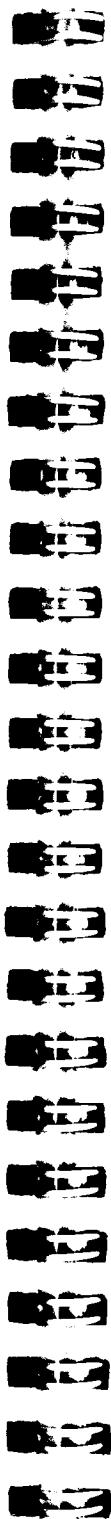
If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Davidson and Henry, *Todd-Sanford Clinical Diagnosis by Laboratory Methods*, W.B. Saunders Co., 1969.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize if reprint desired.		f A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .10
4	To suppress printing of data and results, turn print function off.		f D	0.00
5	To turn print function back on later.		f D	1.00
6	Key in red cell count in millions per mm^3 .	Count ($10^6/\text{mm}^3$)	A	Count
7	Key in hematocrit.	Hct (%)	B	Hct (%)
8	Key in hemoglobin in $\text{g}/100\text{ml}$ and find mean corpuscular volume in μ^3 .	Hgb (g/dl)	C	MCV (μ^3)
9	Compute mean corpuscular hemoglobin in pg ($\mu\mu\text{g}$).		D	MCH (pg)
10	Compute mean corpuscular hemoglobin concentration in g/dl ($\text{g}/100\text{ml}$).		E	MCHC (g/dl)
11	To obtain a reprint of data and results.		f E	Ptnt # .10
				Count
				Hct (%)
				Hgb
				MCV
				MCH
				MCHC

Example:


A sample of venous blood from patient 10183 reveals a red cell count of $2.25 \times 10^6/\text{mm}^3$, a hematocrit of 21%, and hemoglobin of 7.2 g/dl (g/100 ml). Find the indices MCV, MCH, and MCHC.

Keystrokes:

10183 **f** **C** →
 2.25 **A** →
 21 **B** →
 7.2 **C** →
D →
E →

Outputs:

10183.10 *** (Ptnt ID)
 2.25 *** (Count)
 21.00 *** (Hct %)
 7.20 *** (Hgb)
 93.33 *** (MCV)
 32.00 *** (MCH)
 34.29 *** (MCHC)

Notes

TOTAL BLOOD VOLUME

TOTAL BLOOD VOLUME				
BCK	V INJ	STD DIL	STD CPM	CPM + TBV

This program computes total blood volume by the radioisotope dilution technique. The inputs to the program are the background counts per minute (Bck), the volume of radioactive solution injected (V Inj), the dilution of the standard solution (Std Dil), the counts per minute of the standard (Std CPM), and the counts per minute of the sample of whole blood (WB CPM). From these values the program will compute total blood volume (TBV).

Equations:

$$TBV = \text{Dil} \times V \text{ Inj} \times \frac{\text{Std CPM} - \text{Bck}}{\text{WB CPM} - \text{Bck}}$$

Remarks:

1. Total blood volume will be computed in the same units as volume injected. Typically the units used will be milliliters (ml).
2. Equal volumes of whole blood, diluted standard solution, and distilled water should be used for the measurement of whole blood counts, standard counts, and background counts. These three counts need not be counts *per minute*; they may be counts recorded over any length of time, so long as the same time interval is used for all three counts.
3. This same program may be used to find total plasma volume provided that a sample of plasma rather than whole blood is counted for the final input. Total blood volume may be determined from total plasma volume from the equation

$$\text{Total blood volume} = \frac{\text{Total plasma volume}}{(1 - \text{Hct} \times 0.9)}$$

4. If the patient has had prior radioactivity administered, a patient background correction may be necessary. To do this, a count must be made of a blood sample before the current dose is administered. These pre-dose counts should be subtracted from the post-dose whole blood counts to give the corrected counts to be input at the final step.
5. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Beierwaltes, Keyes, and Carey, *Manual of Nuclear Medicine Procedure*, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize for reprint.		<input checked="" type="checkbox"/> A	0.00
3	(optional) Key in patient number.	Ptnt #	<input checked="" type="checkbox"/> C	Ptnt # .11
4	To suppress printing of data and results, turn print function off.		<input checked="" type="checkbox"/> D	0.00
5	To turn print function back on later.		<input checked="" type="checkbox"/> D	1.00
6	Key in background counts.	Bck	<input checked="" type="checkbox"/> A	Bck
7	Key in volume of fluid injected.	Vol. inj.	<input checked="" type="checkbox"/> B	Vol. inj.
8	Key in dilution of standard.	Std. dil.	<input checked="" type="checkbox"/> C	Std. dil.
9	Key in standard counts.	Std. CPM	<input checked="" type="checkbox"/> D	Std. CPM
10	Key in whole blood counts and find total blood volume.	Blood CPM	<input checked="" type="checkbox"/> E	TBV
11	To obtain a reprint.		<input checked="" type="checkbox"/> E	Ptnt # .11
				Bck
				Vol. inj.
				Std. dil.
				Std. CPM
				Blood CPM
				TBV

Example:

5 ml of radioiodinated serum albumin (RISA) are injected into patient 10183. The stock RISA is diluted by a factor of 250 and a 1 ml aliquot of this standard is found to have an activity of 2518 counts over a five-minute period. A 1 ml sample of the patient's whole blood, collected 10 minutes after injection, is found to have an activity of 837 counts over a five-minute period. A five-minute count of 1 ml distilled water yields 152 counts. What is the patient's total blood volume?

11-03

Keystrokes:

10183 **f** **C** →
152 **A** →
5 **B** →
250 **C** →
2518 **D** →
837 **E** →

Outputs:

10183.11 *** (Ptnt ID)
152.00 *** (Bck)
5.00 *** (V Inj)
250.00 *** (Dil)
2518.00 *** (Std CPM)
837.00 *** (WB CPM)
4317.52 *** (TBV, ml)

11-04

Notes

SCHILLING TEST

SCHILLING TEST					
BCK	STD	DIL	STD CPM	U VOL	U CPM

This program performs the calculations involved with the Schilling test for the determination of vitamin B₁₂ absorption. The inputs to the program are the background counts per minute, the dilution and counts per minute of the standard, the volume of urine excreted, and the counts per minute of the urine. The output is the % of dose excreted.

The program is set up to handle urine volume (U Vol) in liters (l). It is assumed that if the urine volume collected was less than 1 l, the volume was brought up to 1 l by the addition of water. If the volume was a liter or more, no dilution should be made.

Equations:

$$\% \text{ excretion} = \frac{V}{\text{Dil}} \left[\frac{\text{Urine CPM} - \text{Background CPM}}{\text{Standard CPM} - \text{Background CPM}} \right] \times 100$$

$$\text{where } V = \begin{cases} 1 & \text{if } \text{U Vol} \leq 1 \text{ l} \\ \text{U Vol} & \text{if } \text{U Vol} > 1 \text{ l} \end{cases}$$

Dil = Dilution of the standard

Remarks:

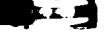
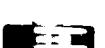
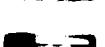
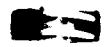
1. The background, standard, and urine counts should be of equal volumes counted over equal time intervals (which need not be one minute).
2. The patient should not have had recent prior radioactivity.
3. If the print function is turned off, neither data nor results will be printed.

Reference:

Beierwaltes, Keyes, and Carey, *Manual of Nuclear Medicine Procedures*, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize if reprint is desired.		f A	0.00
3	(optional) Key in patient number.	Ptnt #	f C	Ptnt # .12
4	To suppress printing of data and results, turn print function off.		f D	0.00
5	To turn print function back on later.		f D	1.00
6	Key in background counts.	Bck	A	Bck
7	Key in dilution of the standard.	Std Dil	B	Std Dil
8	Key in standard counts.	Std CPM	C	Std CPM
9	Key in volume of urine collected.	U Vol (l)	D	U Vol
10	Key in the urine counts and calculate percentage of dose excreted.	U CPM	E	%
11	To obtain a reprint of data and results.		f E	Ptnt # .12
				Bck
				Std Dil
				Std CPM
				U Vol
				U CPM
				%

Example:





A capsule of radioactive B₁₂ is administered orally to patient 10183. Over the following 24 hours, a volume of 2.54 l of urine is collected. A 20 ml aliquot of the urine is counted for 10 minutes to give 1923 counts. A 1 ml sample of the standard is diluted to 20 ml and counted for 10 minutes, giving 1757 counts. 20 ml of tap water is used for a background count; over a ten-minute interval, 127 counts are recorded. Find the percent of dose excreted.

Keystrokes:

10183 **f** **C** →
127 **A** →
20 **B** →
1757 **C** →
2.54 **D** →
1923 **E** →

Outputs:

10183.12 *** (Ptnt ID)
127.00 *** (Bck)
20.00 *** (Std Dil)
1757.00 *** (Std CPM)
2.54 *** (U Vol)
1923.00 *** (U CPM)
13.99 *** (% excreted)

Notes

THYROID UPTAKE

This program computes thyroid uptake as a percentage of an administered dose of radioiodine. The inputs to the program are the counts per minute for the standard, the standard background, the patient counts (after ingestion of the dose), and the patient background. After these variables have been input, pressing **E** will allow computation of the percent uptake.

After calculation of the uptake, two corrections may be made to the computed value. The first correction involves recent prior radioactivity in the patient. The second correction involves a significant difference in activity between the standard and the dose. These are discussed in more detail below.

If the patient has had recent prior radioactivity, the computed uptake must be corrected to account for this. In such a case the patient counts and the background counts *before* ingestion of the present dose must be known. In addition, it will be necessary to correct these predose counts for radioactive decay over the elapsed time between the measurements of the predose counts and of the counts after ingestion of the dose. The program *Radioactive Decay Corrections* (CL1-14A) may be used to account for this decay. *Radioactive Decay Corrections* will compute and store a decay factor D that will be used by this program, *Thyroid Uptake*, to adjust the predose counts to the present time.

To correct for prior radioactivity, then, you should first load side 1 and side 2 of *Radioactive Decay Corrections* (CL1-14A). Select the radioisotope of the *prior* radioactivity. Key in 1, press **A**, then key in the time interval over which the decay has occurred, in the format DD.HH (days.hours), remembering always to allow 2 places for hours. (For example, a period of 1 day 6 hours should be keyed in as 1.06.) After keying in the elapsed time, press **B**, then press **C**. The decay factor D will be displayed and automatically stored. Now load side 1 and side 2 of *Thyroid Uptake* and follow the basic procedure to find the uncorrected percentage uptake. After computing % uptake from key **E**, key in the predose patient counts, press **ENTER**, key in the predose background counts and press **f A**. The corrected percentage uptake will be computed.

The second possible correction to be made is to account for a significant difference in the activities of the standard and the dose. These activities should be measured before the dose is administered. The counts at this point are referred to as precounts. If the standard and dose precounts agree within $\pm 3\%$, no correction is necessary. If the precounts differ by more than 3%, however, then the computed thyroid uptake should be corrected. To make the correction, after pressing **E** to find the uptake, key in the standard precount,

press **ENTER**, key in the dose precount, and press **f B**. The program will compute the corrected thyroid uptake.

The two corrections to computed uptake operate independently of each other. Either, both, or neither correction may be made. If both are to be made, they may be made in either order. If a reprint is called for after a correction is made, the reprint will show the corrected value of uptake but will not show the inputs that went into the correction (i.e., the patient and background predose counts or the standard and dose precounts).

Equations:

$$\% \text{ uptake} = K \times \frac{\text{NPC}}{\text{Std CPM} - \text{Std Bck}} \times 100$$

where

$$\begin{aligned} \text{NPC} &= \text{Net Ptnt Cts} \\ &= \text{Ptnt CPM} - \text{Ptnt Bck} \end{aligned}$$

and K is a correction factor.

$$K = \begin{cases} 1 & \text{if no correction} \\ \frac{\text{NPC} - D \times (\text{Ptnt Predose Ct} - \text{Bck Predose Ct})}{\text{NPC}} & \text{if prior radioactivity} \\ \frac{\text{Std. Precount}}{\text{Dose Precount}} & \text{if different activities} \end{cases}$$

where

D is the radioactive decay factor.

Remarks:

1. The counts need not be input as counts *per minute*; however, all counts should be measured over the same time interval.
2. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Beierwaltes, Keyes, and Carey, *Manual of Nuclear Medicine Procedures*, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	If correction is to be made for prior patient radioactivity, go to step 2. Otherwise go to step 6.			
2	Load side 1 and side 2 of <i>Radioactive Decay Corrections</i> (CL1-14A) and select the radioisotope of the prior radioactivity.			
3	Key in a 1 for the initial activity.	1	A	1.00
4	Key in time elapsed in format Days.Hours (e.g., 1 day 6 hours is keyed in as 1.06).	t(dd.hh)	B	t(dd.hh)
5	Compute the decay factor (will be stored automatically).		C	D
	Basic Procedure			
6	Load side 1 and side 2 of <i>Thyroid Uptake</i> (CL1-13A).			
7	(optional) Key in patient number.	Ptnt #	B C	Ptnt # .13
8	To suppress printing of data and results, turn print function off.		B D	0.00
9	To turn print function back on later.		B D	1.00
10	Key in counts for the standard.	Std. CPM	A	Std. CPM
11	Key in background counts for the standard.	Std. Bck.	B	Net Std. Cts.
12	Key in counts for the patient.	Ptnt. CPM	C	Ptnt. CPM

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	Key in background counts for the patient.	Ptnt. Bck.	D	Net Ptnt. Cts.
14	Compute thyroid uptake as a percent.		B	% Uptake
	Corrections			
15	For prior radioactivity, go to step 16, for differences in standard and dose, go to step 19. For no correction, go to step 20.			
	Prior Radioactivity			
16	For prior radioactivity, CL1-14A should have been run at step 2.			
17	Now key in patient predose counts and predose background and compute the corrected percent uptake.	Predose Cts.	ENTER	
		Predose Bck.	B A	% Uptake
18	For differences in dose and standard, go to step 19. Otherwise go to step 20.			
	Differences in dose and standard			
19	Key in standard and dose precounts and find the corrected percent uptake.	Std. Prec.	ENTER	
		Dose Prec.	B	% Uptake

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Reprint			
20	To obtain a reprint of data and results.		f E	Ptnt # .13
				Std. CPM
				Std. Bck.
				Ptnt. CPM
				Ptnt. Bck.
				% Uptake

Example 1:

Before a dose of radioiodine (^{131}I) is administered to patient 10183, a count is made of the patient's current level of radioactivity from a prior ingestion of ^{131}I . The patient's predose activity is found to be 75 counts per minute (CPM) and the background predose activity 25 CPM. Twenty-four hours after ingestion of the dose, the patient's activity is measured as 350 CPM with a background of 100 CPM. The activity of a standard of ^{131}I is measured at 1500 CPM with a background of 200 CPM. Find the percentage uptake corrected for prior radioactivity.

Keystrokes:**Outputs:**

Load side 1 and side 2 of *Radioactive Decay Corrections* (CL1-14A).

Select ^{131}I as prior radioisotope.

f E	193.20	(^{131}I half-life)
1 A	1.00	
0.24 B	0.24	(24 hours)
C	0.92	(Decay factor)

Load side 1 and side 2 of *Thyroid Uptake* (CL1-13A).

10183 f C	10183.13	*** (Ptnt ID)
1500 A	1500.00	*** (Std CPM)
200 B	200.00	*** (Std Bck)
350 C	1300.00	(Net Std CPM)
100 D	350.00	*** (Ptnt CPM)
E	100.00	*** (Ptnt Bck)
75 ENTER 25 f A	250.00	(Net Ptnt CPM)
	19.23	*** (% uptake)
	75.00	*** (Ptnt Predose)
	25.00	*** (Bck Predose)
	15.70	*** (Corrected uptake)

Example 2:

A standard and a dose are measured (before ingestion of the dose) at activities of 14,500 and 12,500 counts. Since the activities differ by more than 3%, a correction will have to be made to the computed percentage uptake. After ingestion of the dose, the standard activity is found to be 11,500 counts with a background count of 1000. The patient's activity is found as 2650 counts with a background of 500 counts. Find the corrected uptake.

Keystrokes:

11500 A	→
1000 B	→
2650 C	→
500 D	→
E	→
14500 ENTER 12500 f B	→

Outputs:

11500.00	*** (Std Cts)
1000.00	*** (Std Bck)
10500.00	(Net Std Cts)
2650.00	*** (Ptnt CPM)
500.00	*** (Ptnt Bck)
2150.00	(Net Ptnt Cts)
20.48	*** (% Uptake)
14500.00	*** (Std Prects)
12500.00	*** (Dose Prects)
23.75	*** (Corrected uptake)

RADIOACTIVE DECAY CORRECTIONS

This program is designed to allow calculation of the decay in radioactivity of an isotope over a specified time interval. The half-lives of 15 different radioisotopes are stored by the program and may be used in calculating the decay. Generally, to use the program you will select an isotope, key in the activity A_0 at the initial time, then key in the elapsed time t and calculate the present activity A . There are thus three variables needed to define the problem entirely: A_0 , t , and A .

An additional feature of the program is its ability to calculate *any* one of these variables given the other two. Thus you are not restricted to finding the present activity given the initial activity and time; you may also solve for initial activity given time and present activity, or for time given initial activity and present activity.

The radioisotope to be selected must be specified in one of two ways. Six isotopes are available directly by pressing user-definable keys **E** and **I** **A** through **I** **E**. Nine additional isotopes are available by keying in a digit, 1 through 9, and pressing **D**. For instance, to specify use of the radioisotope ^{57}Co , simply press **I** **B**. To specify the isotope ^{14}C , key in the number 2 and press **D**. A table of the correspondence between the isotopes and the numbers 1-9 may be found in the User Instructions. A list of available isotopes and their assumed half-lives is shown below.

You may use any units for the initial and present radioactivity, so long as they are consistent. The elapsed time must be input in the units Days. Hours (DD.HH), where two full decimal places must be allotted to the hours. For instance, an elapsed time of 5 days 18 hours would be keyed in and displayed as 5.18; a time of 1 day 6 hours as 1.06; and a time of 12 hours as 0.12.

Equations:

$$A = A_0 \left(\frac{1}{2} \right)^{t/\tau_{1/2}}$$

$$t = \frac{\tau_{1/2} \ln (A/A_0)}{\ln (1/2)}$$

where:

 A_0 = initial radioactivity A = present radioactivity t = time elapsed, in hours $\tau_{1/2}$ = half-life of radioisotope, in hours

Isotope	$\tau_{1/2}$ (hrs)
^{51}Cr	667.2
^{57}Co	6480
^{99m}Tc	6
^{125}I	1440
^{131}I	193.2
^{137}Cs	262980
^3H	107470
^{14}C	5.058×10^7
^{18}F	1.87
^{32}P	343.2
^{75}Se	2880
^{85}Sr	1536
^{113m}In	1.73
^{133}Xe	126.5
^{197}Hg	65

Remarks:

1. It is also possible to use this program for isotopes other than those provided by the program. In such a case, instead of selecting a radioisotope by the usual means, simply key in half-life in hours of the new isotope and press **STO** **B**. Then execute the rest of the program in the same fashion as usual.
2. Hours are not always rounded nicely to days for output. For example, a time of 6 days 23.8 hours would be computed in days. hours format as 6.238. In display mode FIX DSP 2, this would appear as 6.24, even though 7.00 might be the preferred rounded format.
3. Neither inputs nor outputs will be printed by the program.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select one of the fifteen radio-isotopes and display half-life in hours:			
	• Chromium—51 (^{51}Cr)		f A	667.20
	• Cobalt—57 (^{57}Co)		f B	6480.00
	• Technetium—99m ($^{99\text{m}}\text{Tc}$)		f C	6.00
	• Iodine—125 (^{125}I)		f D	1440.00
	• Iodine—131 (^{131}I)		f E	193.20
	• Cesium—137 (^{137}Cs)		E	262980.00
	• Hydrogen—3 (^3H)	1	D	107470.00
	• Carbon—14 (^{14}C)	2	D	50580000.00
	• Flourine—18 (^{18}F)	3	D	1.87
	• Phosphorus—32 (^{32}P)	4	D	343.20
	• Selenium—75 (^{75}Se)	5	D	2880.00
	• Strontium—85 (^{85}Sr)	6	D	1536.00
	• Indium—113m ($^{113\text{m}}\text{In}$)	7	D	1.73
	• Xenon—133 (^{133}Xe)	8	D	126.50
	• Mercury—197 (^{197}Hg)	9	D	65.00
3	Key in two of the following three quantities:			
	• Activity at time zero	A_0	A	A_0
	• Time elapsed in days.hours format*	$t \text{ (dd.hh)}$	B	$t \text{ (dd.hh)}$
	• Present activity	A	C	A
4	Compute remaining variable:			
	• Activity at time zero		A	A_0
	• Time elapsed in days.hours format		B	$t \text{ (dd.hh)}$
	• Present activity		C	A

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new isotope, go to step 2; to change one or both input parameters, go to step 3.			
	*Recall that two digits must always be allocated for hours.			
	For example, 1 day 6 hours is keyed in as 1.06.			

Example:

An activity of $200 \mu\text{Ci}$ is measured for a standard of ^{51}Cr . What is the activity after a week?

Keystrokes:

f A → 667.20
200 A → 200.00
7 B → 7.00
C → 167.97

Outputs:

$(\tau_{1/2} \text{ for } ^{51}\text{Cr})$
 (A_0)
 $(t = 7 \text{ days})$
 $(A, \mu\text{Ci})$

RADIOIMMUNOASSAY

This program performs the calculations for a logit/log plot of radioimmunoassay data. The program allows for any number of replicates in the counts input and for any number of standards. Outputs include correlation coefficient r , slope m , and intercept b of the least-squares regression line computed. Then, given counts for an unknown, the program will compute the corresponding concentration.

To run this program, first press **A** to initialize. Then key in the non-specific binding (or blank) counts, NSB, and press **B**; repeat for as many replicates as desired. After all replicates have been keyed in, press **R/S** to compute the average non-specific binding count. (This step is *not* optional; do not omit it.) The same procedure is repeated for the counts at zero concentration, B_0 , which are input to key **C**. After input of all replicates **R/S** is pressed to compute the average B_0 .

The next step in the operation of the program is the input of the data for the standards. The counts for the first standard are input to key **D**; as many replicates as desired may be keyed in. After all replicates for the first standard have been keyed in, the concentration of the standard is input to key **E**. This procedure (replicates to key **D**, concentration to key **E**) is repeated for as many standards as desired. Pressing key **f A** will then cause the output of the correlation coefficient r , the slope m , and the intercept b of the least-squares logit/log regression line computed from the standards. (The values of r , m , and b must be found before going to the next step, which is the calculation of the concentration of an unknown.) The regression performed is an unweighted regression.

At this point, the counts of an unknown may be keyed into **f B**; repeat for any number of replicates. After all replicates have been keyed in, **f C** may be pressed to find the concentration of that unknown. Repeat for as many unknowns as desired.

Two output options are available in this program. If neither option is selected, the only values output will be r , m , b , and the concentration of each unknown. Selection of the PRINT mode on key **f D** allows output of the following values as well: all input values (counts and standard concentrations) and the average of each set of counts input (assuming replicates). The second option, on key **f E**, is called PLOT. If this option is selected, the net B/B_0 and the log and logit (x and y) values for standards and unknowns will also be output. This information is intended to assist those who wish to make a plot by hand of the logit-log relationship.

Equations:

Let

$$\text{NSB} = \text{average of replicate counts for non-specific binding}$$

$$B_0 = \text{average of replicate counts for zero concentration}$$

$$B_i = \text{average of replicate counts for } i^{\text{th}} \text{ standard } (i = 1, 2, \dots, n)$$

$$C_i = \text{concentration of } i^{\text{th}} \text{ standard}$$

Let

$$x_i = \log C_i$$

$$y_i = \text{logit} \left(\frac{B_i - \text{NSB}}{B_0 - \text{NSB}} \right)$$

$$= \ln \left[\frac{(B_i - \text{NSB})/(B_0 - \text{NSB})}{1 - (B_i - \text{NSB})/(B_0 - \text{NSB})} \right]$$

$$= \ln \left(\frac{B_i - \text{NSB}}{B_0 - B_i} \right)$$

$$\text{net } B_i/B_0 = \frac{B_i - \text{NSB}}{B_0 - \text{NSB}}$$

The program fits a line of the form $y = mx + b$ to the (x_i, y_i) pairs. All sums below are from 1 to n .

$$m = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$b = \bar{y} - m \bar{x}$$

where:

$$\bar{y} = \frac{\sum y}{n}$$

$$\bar{x} = \frac{\sum x}{n}$$

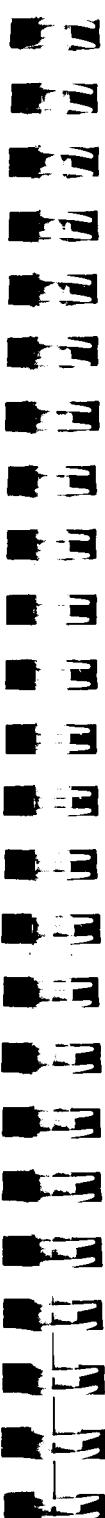
$$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\left[\sum x^2 - \frac{(\sum x)^2}{n} \right]^{1/2} \left[\sum y^2 - \frac{(\sum y)^2}{n} \right]^{1/2}}$$

Let

 B = average of replicate counts for an unknown C_u = concentration of unknown

$$C_u = 10^x$$

$$\text{where } x = \frac{1}{m} \left[\ln \left(\frac{B - \text{NSB}}{B_0 - B} \right) - b \right]$$


Remarks:

1. The term "intercept" is used in this program to refer to the point on the logit axis (the y-axis) where it is intersected by the regression line. It does not mean, as it is sometimes used in RIA documents, the concentration for which the value of the logit function is zero.
2. After computation of r , m , and b , these values may be found in the following registers: r in R_C and Z , m in R_B and Y , and b in R_A and X .

References:

Rodbard, Bridson, and Rayford, "Rapid calculation of radioimmunoassay results", *J. Lab. Clin. Med.*, 74:770 (1969).

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To allow output of input data and intermediate results, turn print function on.		f D	1.00
3	To turn print function off later.		f D	0.00
4	To allow output of (log conc., logit) values, turn plot function on.		f E	1.00
5	To suppress further output of plot data.		f E	0.00
	Setup			
6	Initialize.		A	
7	Key in non-specific binding counts; repeat for as many replicates as desired.	NSB	B	i
8	After all replicates, find average NSB.		R S	NSB

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Key in counts for zero dose; repeat for as many replicates as desired.		B₀	C i
10	After all replicates, find average B_0 .		R S	B̄₀
	Standards			
11	Key in counts for first standard; repeat for as many replicates as desired.		B	D i
12	Key in concentration of first standard; optional outputs are shown in parentheses; 1.00 indicates first standard.		Conc.	E (\bar{B}) (net B/B_0) (Conc.) (Logit) (Log conc.) 1.00
13	Repeat steps 11 and 12 for all standards.			
	Results			
14	Calculate correlation coefficient (r), slope (m), and intercept (b) of regression line.		f A	r m b
	Unknowns			
15	Key in counts for an unknown; repeat for as many replicates as desired.		B f B	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
16	Find concentration of unknown; optional outputs are shown in parentheses.		C	(\bar{B}) (net B/B_0) Conc. (Logit) (Log)
17	Repeat steps 15 and 16 for any number of unknowns.			
	New Case			
18	For a new assay, go to step 6.			

Example:

Below are the data for non-specific binding (NSB), zero concentration (B_0), and various standards for a radioimmunoassay.

Description	Counts per minute	Concentration (pg)
NSB	425, 339, 342, 369	-
B_0	10670, 10570, 10925	-
Standard 1	9176, 9850	25
Standard 2	8453, 7967	50
Standard 3	6323, 6057	100
Standard 4	3866, 4088	200
Standard 5	2027, 2221	400
Standard 6	1251, 1462	800

Find r , m , and b for the regression line. Find the concentrations corresponding to the unknown counts below.

Unknown	Counts per minute
1	10230, 10170
2	3270, 3400

Use the PRINT and PLOT options for complete outputs.

Keystrokes:	Outputs:
A f D	1.00 (Print on)
f E	1.00 (Plot on)
425 B	425.00 *** (1 st NSB)
	1.00
339 B	339.00 ***
	2.00
342 B	342.00 ***
	3.00
369 B	369.00 ***
	4.00
R S	368.75 *** (Avg. NSB)
10670 C	10670.00 *** (1 st B_0)
	1.00
10570 C	10570.00 ***
	2.00
10925 C	10925.00 ***
	3.00
R S	10721.67 *** (Avg. B_0)
9176 D	9176.00 *** (1 st of std. 1)
	1.00
9850 D	9850.00 ***
	2.00
25 E	9513.00 *** (Avg. for std. 1)
	0.88 *** (net B_1/B_0)
	25.00 *** (Conc. of std. 1)
	2.02 *** (Logit = y_1)
	1.40 *** (Log = x_1)
	1.00 (Std. 1)
8453 D	8453.00 *** (1 st of std. 2)
	1.00

7967 D	7967.00 *** 2.00
50 E	8210.00 *** (Avg. for std. 2) 0.76 *** (net B_2/B_0) 50.00 *** (Conc. of std. 2) 1.14 *** (y_2) 1.70 *** (x_2) 2.00 (Std. 2)
6323 D	6323.00 *** (1 st of std. 3) 1.00
6057 D	6057.00 *** 2.00
100 E	6190.00 *** (Avg. for std. 3) 0.56 *** (net B_3/B_0) 100.00 *** (Conc. of std. 3) 0.25 *** (y_3) 2.00 *** (x_3) 3.00 (Std. 3)
3866 D	3866.00 *** (1 st of std. 4) 1.00
4088 D	4088.00 *** 2.00
200 E	3977.00 *** (Avg. for std. 4) 0.35 *** (net B_4/B_0) 200.00 *** (Conc. of std. 4) -0.63 *** (y_4) 2.30 *** (x_4) 4.00 (Std. 4)
2027 D	2027.00 *** (1 st of std. 5) 1.00
2221 D	2221.00 *** 2.00

400 E	2124.00 *** (Avg. for std. 5) 0.17 *** (net B_5/B_0) 400.00 *** (Conc. of std. 5) -1.59 *** (y_5) 2.60 *** (x_5) 5.00 (Std. 5)
1251 D	1251.00 *** (1 st of std. 6) 1.00
1462 D	1462.00 *** 2.00
800 E	1356.50 *** (Avg. for std. 6) 0.10 *** (net B_6/B_0) 800.00 *** (Conc. of std. 6) -2.25 *** (y_6) 2.90 *** (x_6) 6.00 (Std. 6)
f A	-1.00 *** (r) -2.89 *** (Slope m) 6.03 *** (Intercept b)
10230 f B	10230.00 *** (1 st of unkn. 1) 1.00
10170 f B	10170.00 *** 2.00
f C	10200.00 *** (Avg. of unkn. 1) 0.95 *** (net B/B_0) 11.83 *** (Conc. of unkn. 1) 2.94 *** (Unkn. y) 1.07 *** (Unkn. x) 11.83
3270 f B	3270.00 *** (1 st of unkn. 2) 1.00

15-09

3400 **f** **B** →

3400.00 ***
2.00

f **C** →

3335.00 *** (Avg. of unkn. 2)
0.29 *** (net B/B₀)
254.57 *** (Conc. of unkn. 2)
-0.91 *** (Unkn. y)
2.41 *** (Unkn. x)
254.57

15-10

Notes

BASIC STATISTICS

BASIC STATISTICS

START \bar{x} (A) $f \times C$ (B) $\bar{x} \times S$ $\bar{x} \times CV$

This program computes the basic statistics of one variable: mean (\bar{x}), standard deviation (s), standard error ($s_{\bar{x}}$), and coefficient of variation (C.V. %).

The input data to the program may be either grouped or ungrouped. Ungrouped data should be input to key **B** and grouped data to key **C**; keys **f** **B** and **f** **C** provide error correction for the ungrouped and grouped cases, respectively. If an incorrect entry is made, it may be corrected by keying in that entry a second time and pressing the appropriate error correction key. Suppose, for example, that 7.31 is one data point in a set of ungrouped data, but that a mistake is made in entering it. Instead of 7.31, the value 4.31 is input to key **B**. To correct this mistake, you would simply key in 4.31 and press **f** **B**. At this point the error has been eliminated. Now enter the correct data, 7.31, and press **B**.

Equations:

Ungrouped data:

Let $\{x_1, x_2, \dots, x_n\}$ be the set of data points.

$$\text{Mean } \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$s = \sqrt{\frac{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}{n-1}}$$

$$\text{Standard error } s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

$$\text{Coefficient of variation C.V. \%} = \frac{s}{\bar{x}} \times 100$$

Grouped data:

Let $\{x_1, x_2, \dots, x_n\}$ be a set of data points occurring with the respective frequencies f_1, f_2, \dots, f_n .

$$\text{Mean } \bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$

$$\text{Standard deviation } s = \sqrt{\frac{\sum f_i x_i^2 - \frac{(\sum f_i x_i)^2}{\sum f_i}}{\sum f_i - 1}}$$

$$\text{Standard error } s_{\bar{x}} = \frac{s}{\sqrt{\sum f_i}}$$

$$\text{Coefficient of variation C.V. \%} = \frac{s}{\bar{x}} \times 100$$

Remarks:

1. Grouped and ungrouped data may be mixed in the same set of data.
2. The preprogrammed **Σ** and **\bar{x}** keys may be used to input and correct ungrouped data in place of keys **B** and **f B**. Calculation of mean and standard deviation may also be done by the preprogrammed keys **\bar{x}** and **s** for both grouped and ungrouped data.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Initialize.		A	0.00
3	To allow printing of input data, turn print function on.		f A	1.00
4	To turn print function off later.		f A	0.00
5	For ungrouped data, go to step 6; for grouped data, go to step 9.			
Ungrouped data				
6	Perform this step for $i = 1,$ $2, \dots, n$:			
	Input data point.	x_i	B	i
7	To correct an erroneous entry.	x_k	f B	i
8	Go to step 11.			
Grouped data				
9	Perform this step for $i = 1,$ $2, \dots, n$:			
	Input frequency and data.	f_i	ENTER*	
		x_i	C	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
10	To correct an erroneous entry.	f_k	ENTER	
		x_k	C	i
	Results			
11	Compute mean and standard deviation.		D	\bar{x}
				s
12	Compute standard error and coefficient of variation.		E	$s_{\bar{x}}$
				C.V.%
13	For a new set of data, go to step 2.			

Example 1:

Hemoglobin concentration was measured for nine male patients. Compute the basic statistics for these data.

Hemoglobin concentration (g/dl)

13.8	17.4
16.9	13.4
16.5	17.9
17.7	15.2
16.0	

Keystrokes:

A → 0.00
f A → 1.00 (Print on)
13.8 **B** → 13.80 *** (x_i)
16.9 **B** → 1.00 (i)
16.5 **B** → 16.90 ***
2.00
16.5 **B** → 16.50 ***
3.00
17.7 **B** → 17.70 ***
4.00

Outputs:

0.00
1.00 (Print on)
13.80 *** (x_i)
1.00 (i)
16.90 ***
2.00
16.50 ***
3.00
17.70 ***
4.00

16 B	→	16.00 ***
		5.00
17.4 B	→	17.40 ***
		6.00
3.4 B	→	3.40 *** (Error!)
		($k = 7$)
3.4 f B	→	3.40 *** (Correction)
		6.00
13.4 B	→	13.40 *** (x_7)
		7.00
17.9 B	→	17.90 ***
		8.00
15.2 B	→	15.20 ***
		9.00
D	→	16.09 *** (Mean)
		1.65 *** (Std. dev.)
E	→	0.55 *** ($s_{\bar{x}}$)
		10.23 *** (C. V. %)

Example 2:

A certain test was performed on college students ranging in age from 18 to 22 years. The number of subjects of each age is shown in the table. Compute the mean age of the students in the test.

Age	18	19	20	21	22
# Subjects	5	9	13	7	1

Keystrokes:**Outputs:**

A → 0.00

If Example 1 has just been run,
turn print off:

f A	→	0.00	(Print off)
5 ENTER 18 C	→	1.00	
9 ENTER 19 C	→	2.00	
13 ENTER 20 C	→	3.00	
7 ENTER 21 C	→	4.00	
1 ENTER 22 C	→	5.00	
D	→	19.71 *** (Mean)	
		1.05 *** (Std. dev.)	

CHI-SQUARE EVALUATION AND DISTRIBUTION

This program allows you to perform two important calculations concerning the chi-square statistic. The first of these calculates the value of the χ^2 statistic for the goodness of fit test. The second evaluates the chi-square density $f(x)$ and the cumulative distribution $P(x)$ given x and the degrees of freedom ν .

The χ^2 statistic may be computed for the case where the expected frequencies are equal as well as for the case where they are different. If they are equal, only the observed frequencies O_i need be input to key **B**; error correction is available on key **f B**. After calculation of χ^2 from key **D**, the expected frequency E may be calculated. If the expected frequencies are different, both the observed and expected frequencies should be input to key **C**. Error correction is provided on key **f C**.

To make calculations involving the chi-square distribution, first input the degrees of freedom ν to key **E**. Then key in the value of x and press **f D** to find the density $f(x)$ or **f E** to find the cumulative distribution $P(x)$.

Equations:

Chi-square evaluation:

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

where:

O_i = observed frequency

E_i = expected frequency

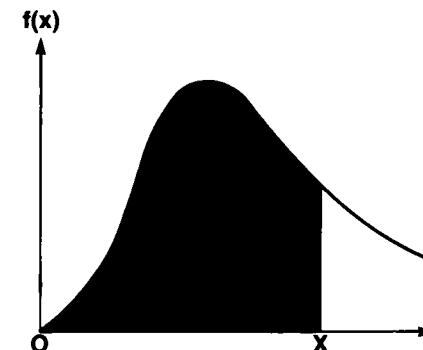
If the expected values are equal

$$\left(E = E_i = \frac{\sum O_i}{n} \text{ for all } i \right)$$

then

$$\chi^2 = \frac{n \sum O_i^2}{\sum O_i} - n$$

Chi-square distribution:


Chi-square density:

$$f(x) = \frac{1}{2^{\frac{\nu}{2}} \Gamma\left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}}$$

where:

$x \geq 0$

ν is the degrees of freedom.

Series approximation is used to evaluate the cumulative distribution

$$P(x) = \int_0^x f(t) dt$$

$$= \left(\frac{x}{2}\right)^{\frac{\nu}{2}} \frac{e^{-\frac{x}{2}}}{\Gamma\left(\frac{\nu+2}{2}\right)} \left[1 + \sum_{k=1}^{\infty} \frac{x^k}{(\nu+2)(\nu+4)\dots(\nu+2k)} \right]$$

where:

$$\Gamma\left(\frac{\nu}{2}\right) = \begin{cases} \left(\frac{\nu}{2} - 1\right)!, & \nu \text{ even} \\ \left(\frac{\nu}{2} - 1\right)\left(\frac{\nu}{2} - 2\right) \dots \left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right), & \nu \text{ odd} \end{cases}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

The program computes successive partial sums of the above series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Remarks:

1. In order to apply the goodness of fit test to a set of given data, it may be necessary to combine some classes to ensure that each expected frequency is not too small (not less than, say, 5).
2. The program for distribution requires that $\nu \leq 141$. If $\nu > 141$, erroneous overflow will result.
3. If both x and ν are large, the calculation of $f(x)$ may cause overflow.

References:

(Evaluation) J.E. Freund, *Mathematical Statistics*, Prentice Hall, 1962.

(Distribution) Abramowitz and Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, 1968.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	20.00
3	To allow printing of data and results, turn the print function on.		1 A	1.00
4	To turn the print function off later.		1 A	0.00
5	For χ^2 evaluation, go to step 6; for χ^2 distribution, go to step 15.			
	χ^2 evaluation			
6	If the expected frequencies are equal, go to step 7; if they are not equal, go to step 11.			
	Expected frequencies equal			
7	Perform this step for $i = 1$, 2, ..., n :			
	Key in observed value.	O_i	B	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	To correct an erroneous entry.	O_k	f B	i
9	Calculate the χ^2 statistic and (optionally) the average expected frequency.		D	χ^2
			R S	E
10	For a new case, go to step 2.			
	Expected frequencies unequal			
11	Perform this step for $i = 1$, 2, ..., n :			
	Key in observed and expected frequency.	O_i	ENTER	
		E_i	C	i
12	To correct an erroneous entry.	O_k	ENTER	
		E_k	f C	i
13	Calculate the χ^2 statistic.		D	χ^2
14	For a new case, go to step 2.			
	χ^2 distribution			
15	Key in degrees of freedom.	ν	f	$\Gamma(\nu/2)$
16	Key in x and compute either			
	• Density	x	f D	$f(x)$
	or			
	• Cumulative distribution	x	f F	$P(x)$
17	For a new case, go to step 2.			

Example:

Ten one-minute counts of a Cesium-137 check source yielded the following results. Use this program to evaluate the counting instrument. (Note that with 10 data points, the degrees of freedom $\nu = 9$.)

25601	25553
25546	25841
25592	25560
25820	25633
25569	25464

Keystrokes:

Keystrokes:	Outputs:
A f A	1.00 (Print on)
25601 B	25601.00 *** 1.00
25546 B	25546.00 *** 2.00
25592 B	25592.00 *** 3.00
25820 B	25820.00 *** 4.00
25569 B	25569.00 *** 5.00
25553 B	25553.00 *** 6.00
25841 B	25841.00 *** 7.00
25560 B	25560.00 *** 8.00
25633 B	25633.00 *** 9.00
25464 B	25464.00 *** 10.00
D	5.10 *** (χ^2)
R/S	25617.90 *** (E)
9 E	9.00 *** (ν) 11.63 *** ($\Gamma (\nu/2)$)
5.10 f E	5.10 *** 0.17 *** (P (χ^2))

Since P (χ^2) is between 0.1 and 0.9, the counting instrument is assumed to be operating properly.

Notes

t STATISTICS

This program will compute either of two test statistics which are used to compare population means: the paired t statistic or the t statistic for two means.

The paired t statistic applies to a set of *paired* observations drawn from two normal populations with unknown means μ_1, μ_2 :

x_i	x_1	x_2	...	x_n
y_i	y_1	y_2	...	y_n

The paired t statistic can be used to test the validity of the hypothesis that the means are equal. If the computed value of t is significant (as determined by *t Distribution*, CL1-19A), then we reject the hypothesis that the population means are equal.

The x- and y-values are input to key **B**. Error correction is provided by key **f B**. After the input of all x-y pairs, the t statistic may be found by pressing **C**.

The t statistic for two means applies to independent random samples $\{x_1, x_2, \dots, x_{n_1}\}$ and $\{y_1, y_2, \dots, y_{n_2}\}$ drawn from two normal populations with unknown means μ_1, μ_2 and the same unknown variance σ^2 . The t statistic is used to test the validity of the hypothesis that the populations means differ by some amount d (i.e., that $\mu_1 - \mu_2 = d$). Note that d may be chosen to be zero.

To operate this routine, the x-values should first be keyed in to key **D**. Error correction is available on key **f D**. After all x-values have been input, the value of d should be input to key **f E**. Then the y-values should be keyed in to key **D**. After input of all the y-values, the t statistic may be found by pressing **E**.

Equations:

Paired t statistic

let

$$D_i = x_i - y_i$$

$$\bar{D} = \frac{1}{n} \sum_{i=1}^n D_i$$

$$s_D = \sqrt{\frac{\sum D_i^2 - \frac{1}{n} (\sum D_i)^2}{n-1}}$$

$$s_{\bar{D}} = \frac{s_D}{\sqrt{n}}$$

The test statistic

$$t = \frac{\bar{D}}{s_{\bar{D}}}$$

which has $n - 1$ degrees of freedom (df) can be used to test the null hypothesis

$$H_0: \mu_1 = \mu_2$$

t statistic for two means

Define

$$\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i$$

$$\bar{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

$$t = \frac{\bar{x} - \bar{y} - d}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sqrt{\frac{\sum x_i^2 - n_1 \bar{x}^2 + \sum y_i^2 - n_2 \bar{y}^2}{n_1 + n_2 - 2}}$$

We can use this t statistic which has the t distribution with $n_1 + n_2 - 2$ degrees of freedom (df) to test the null hypothesis

$$H_0: \mu_1 - \mu_2 = d$$

References:

(Paired t) B. Ostle, *Statistics in Research*, Iowa State University Press, 1963.
 (t for two means) K.A. Brownlee, *Statistical Theory and Methodology in Science and Engineering*, John Wiley and Sons, 1965.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2 of program.			
2	Initialize.		A	
3	To allow output of data and results, turn print function on.		f A	1.00
4	To turn print function off later.		f A	0.00
5	For t statistic for two means, go to step 11; for paired t statistic, go to step 6.			
	Paired t statistic			
6	Repeat this step for all data pairs ($i = 1, 2, \dots, n$):			
	Key in x- and y-values.	x_i	ENTER	
		y_i	B	i
7	To correct an erroneous entry.	x_k	ENTER	
		y_k	f B	i
8	Compute paired t statistic.		C	t
9	(optional) Compute degrees of freedom, mean difference, and standard deviation of D.		R S	df
				\bar{D} .
				s_D
10	For a new case, go to step 2.			
	t statistic for two means			
11	Repeat this step for all x-values ($i = 1, 2, \dots, n_1$):			
	Key in x-value.	x_i	D	i
12	To correct an erroneous entry.	x_k	f D	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	Key in difference to be tested.	d		d
14	Repeat this step for all y-values ($i = 1, 2, \dots, n_2$):			
	Key in y-value.	y_i	B	i
15	To correct an erroneous entry.	y_k	f B	i
16	Compute t statistic for two means.		D	t
17	(optional) Compute degrees of freedom.		R S	df
18	(optional) Change value of d and repeat step 16.	d	STO 7	
19	For a new case go to step 2.			

Example 1:

The hemoglobin concentration in blood samples from six patients was measured by two different methods. Use the paired t-statistic to determine if there is a significant difference between the two methods of measurement.

Sample	Method	
	1 (g/dl)	2 (g/dl)
1	17.6	17.4
2	13.0	12.9
3	15.3	15.3
4	15.0	15.2
5	15.0	15.0
6	14.6	14.5

Keystrokes:

A → 0.00
 f A → 1.00
 17.6 ENTER → 17.6
 17.4 B → 17.4

Outputs:

0.00
 1.00 (Print on)
 17.60 *** (x₁)
 17.40 *** (y₁)
 1.00 (i = 1)

13 [ENTER] 12.9 [B] →	13.00 *** 12.90 *** 2.00
15.3 [ENTER] 15.2 [B] →	15.30 *** 15.20 *** (Error!) 3.00
15.3 [ENTER] 15.2 [f] [B] →	15.30 *** 15.20 *** (Corrected) 2.00
15.3 [ENTER] 15.3 [B] →	15.30 *** 15.30 *** 3.00
15 [ENTER] 15.2 [B] →	15.00 *** 15.20 *** 4.00
15 [ENTER] 15 [B] →	15.00 *** 15.00 *** 5.00
14.6 [ENTER] 14.5 [B] →	14.60 *** 14.50 *** 6.00
[C] →	0.60 *** (t)
[R/S] →	5.00 *** (df) 0.03 *** (D) 0.14 *** (SD)

To interpret these results, load *t Distribution* (CL1-19A) and find the cumulative distribution $I(x)$ for $x = 0.60$ and 5 degrees of freedom.

Keystrokes:	Outputs:
5 [A] .60 [D] →	0.43 *** (I (0.60))

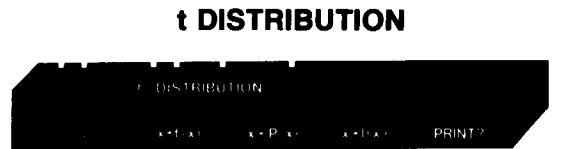
The probability of $|t| > 0.60$ is thus 57%. We conclude that the hypothesis that the means are equal cannot be rejected.

Example 2:

Hemoglobin concentration was measured for nine male and seven female patients. Use the t-statistic for two means to test the hypothesis that the difference between the means is negligible (i.e., $d = 0$).

Hgb concentration (g/dl)	
Men	Women
13.8	11.9
16.9	14.4
16.5	13.7
17.7	16.8
16.0	11.7
17.4	14.9
13.4	12.3
17.9	
15.2	

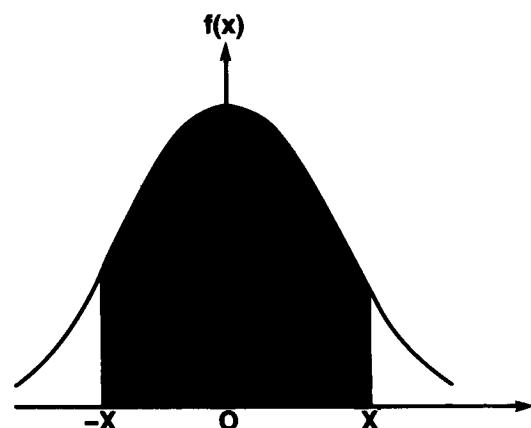
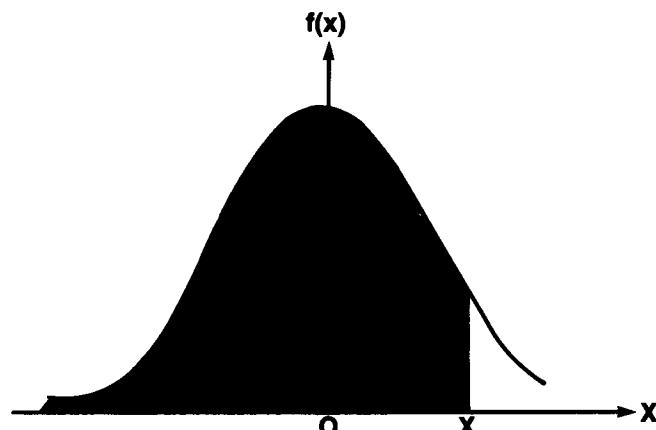
Keystrokes:	Outputs:
[A] →	0.00
If example 1 has not just been run:	
[f] [A] →	1.00 (Print on)
13.8 [D] →	13.80 *** (x ₁) 1.00 (i = 1)
16.9 [D] →	16.90 *** 2.00
16.5 [D] →	16.50 *** 3.00
17.7 [D] →	17.70 *** 4.00
16 [D] →	16.00 *** 5.00
17.4 [D] →	17.40 *** 6.00
13.4 [D] →	13.40 *** 7.00
17.9 [D] →	17.90 *** 8.00
15.2 [D] →	15.20 *** 9.00
0 [f] [E] →	0.00 *** (d = 0)


11.9	D	→	11.90 *** (y ₁) 1.00 (i = 1)
14.4	D	→	14.40 *** 2.00
13.7	D	→	13.70 *** 3.00
16.8	D	→	16.80 *** 4.00
11.7	D	→	11.70 *** 5.00
14.9	D	→	14.90 *** 6.00
12.3	D	→	12.30 *** 7.00
E		→	2.76 *** (t)
R/S		→	14.00 *** (df)

Load *t* Distribution (CL1-19A).

14 A 2.76 D → 0.98 *** (I (2.76))

Thus the value of *t* is significant and we should reject the hypothesis that the average hemoglobin concentrations in males and females are equal.

This program calculates three parameters of the t distribution given x and the degrees of freedom ν . The density function $f(x)$ is computed as well as two measures of the area under the distribution curve, $P(x)$ and, for $x > 0$, $I(x)$, where

$$P(x) = \int_{-\infty}^x f(y) dy$$

$$\text{and } I(x) = \int_{-x}^x f(y) dy.$$

Equations:

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

(1) ν even

$$I(x) = \sin \theta \left\{ 1 + \frac{1}{2} \cos^2 \theta + \frac{1 \cdot 3}{2 \cdot 4} \cos^4 \theta + \dots + \frac{1 \cdot 3 \cdot 5 \dots (\nu-3)}{2 \cdot 4 \cdot 6 \dots (\nu-2)} \cos^{\nu-2} \theta \right\}$$

(2) ν odd

$$I(x) = \begin{cases} \frac{2\theta}{\pi} & \text{if } \nu = 1 \\ \frac{2\theta}{\pi} + \frac{2}{\pi} \cos \theta \left\{ \sin \theta \left[1 + \frac{2}{3} \cos^2 \theta + \dots + \frac{2 \cdot 4 \dots (\nu-3)}{1 \cdot 3 \dots (\nu-2)} \cos^{\nu-3} \theta \right] \right\} & \text{if } \nu > 1 \end{cases}$$

where

$$\theta = \tan^{-1} \left(\frac{x}{\sqrt{\nu}} \right)$$

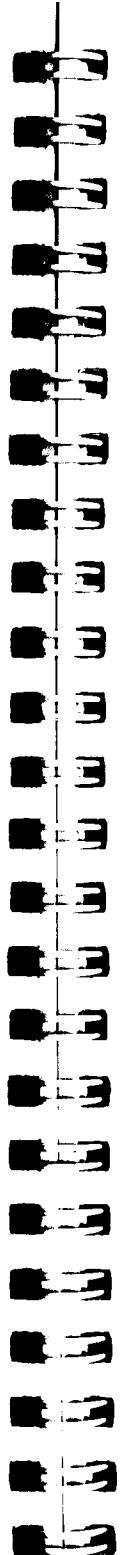
$$P(x) = \begin{cases} \frac{1 + I(x)}{2} & \text{if } x > 0 \\ \frac{1 - I(x)}{2} & \text{if } x \leq 0 \end{cases}$$

Remarks:

The program requires $\nu < 141$. Otherwise an erroneous overflow will result.

Reference:

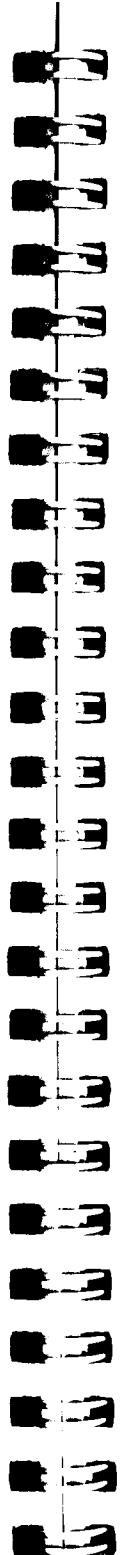
Abramowitz and Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, 1970.

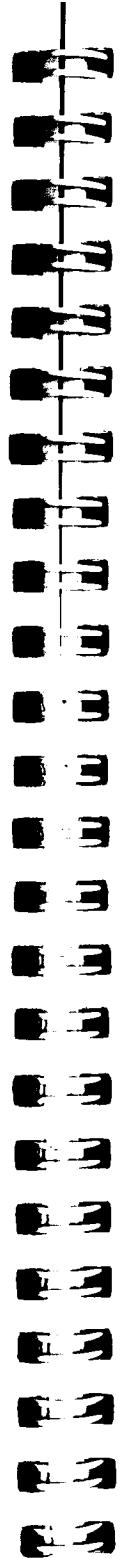

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of program.			
2	To allow printing of inputs, turn print function on.		L	1.00
3	To turn print function off later.		E	0.00
4	Key in degrees of freedom.	ν	A	ν
5	Key in x and compute either			
	• Density function	x	B	$f(x)$
	or			
	• Cumulative distribution	x	C	$P(x)$
	or			
	• Integral, $-x$ to x ($x > 0$).	x	D	$I(x)$

Example 1:

Find the density function and $P(x)$ for $x = 1.6$ with 9 degrees of freedom.

Keystrokes:


9 **A** \longrightarrow 9.00 (ν)
 1.6 **B** \longrightarrow 0.11 *** ($f(x)$)
 1.6 **C** \longrightarrow 0.93 *** ($P(x)$)


Outputs:**Example 2:**

Find $I(x)$ for $x = 1.83$ and $\nu = 11$.

Keystrokes:

11 **A** \longrightarrow 11.00 (ν)
 1.83 **D** \longrightarrow 0.91 *** ($I(x)$)

Outputs:**Notes**

Notes**PROGRAM LISTINGS**

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owner's Handbook.

Program	Page
1. Beer's Law	L01-01
2. Protein Electrophoresis	L02-01
3. LDH Isoenzymes	L03-01
4. Body Surface Area	L04-01
5. Urea Clearance	L05-01
6. Creatinine Clearance	L06-01
7. Amniotic Fluid Assay	L07-01
8. Blood Acid-Base Status	L08-01
9. Oxygen Saturation and Content	L09-01
10. Red Cell Indices	L10-01
11. Total Blood Volume	L11-01
12. Schilling Test	L12-01
13. Thyroid Uptake	L13-01
14. Radioactive Decay Corrections	L14-01
15. Radioimmunoassay	L15-01
16. Basic Statistics	L16-01
17. Chi-square Evaluation and Distribution	L17-01
18. t Statistics	L18-01
19. t Distribution	L19-01

Beer's Law

001	*LBLA	A → %T.	057	+	For % T _u , compute A _u .
002	ST00		058	GTOB	-----
003	F0?		059	*LBL4	-----
004	PRTX	A.	060	CHS	-----
005	2		061	*LBLB	-----
006	-		062	ST09	Store A _u .
007	CHS		063	RCLA	Display input.
008	10 ^x		064	RTN	-----
009	ST0E	%T.	065	*LBL6	-----
010	F0?		066	ST08	C _u → C _u .
011	PRTX		067	F0?	
012	F0?		068	SPC	
013	SPC		069	F0?	
014	RTN	-----	070	PRTX	
015	*LBLB	%T → A.	071	RCL9	
016	ST0E		072	x	
017	F0?		073	RCLB	
018	PRTX	%T.	074	÷	
019	LOG		075	ST07	
020	CHS		076	F0?	
021	2		077	PRTX	
022	+		078	F0?	
023	ST0D		079	SPC	
024	F0?		080	RTN	
025	PRTX	A.	081	*LBLa	
026	F0?		082	0	
027	SPC		083	ST0A	
028	RTN	-----	084	ST0B	
029	*LBLC	+ % T _u (-A _u).	085	ST0C	
030	ST0C		086	ST0D	
031	F0?		087	ST0E	
032	SPC		088	ST0I	
033	F0?		089	RTN	
034	PRTX	For absorbance, GTO 3.	090	*LBLc	
035	X0?		091	INT	
036	GTO3		092	.	
037	LOG		093	0	
038	CHS		094	1	
039	2	For %T _u , compute A _u .	095	+	
040	+		096	ST0I	
041	GTO8	-----	097	PRTX	
042	*LBL3		098	SPC	
043	CHS		099	RTN	
044	*LBL0		100	*LBLD	-----
045	ST08		101	F0?	Print toggle.
046	RCLC	Store A _u .	102	GTO8	
047	RTN	Display input.	103	SF8	
048	*LBLD	-----	104	1	
049	ST0A	+ % T _u (-A _u).	105	RTN	
050	F0?		106	*LBL0	
051	PRTX	For absorbance, GTO 4.	107	CF0	
052	X0?		108	0	
053	GTO4		109	RTN	
054	LOG		110	*LBL6	Reprint
055	CHS		111	SPC	
056	2		112	SPC	

LABELS						FLAGS		SET STATUS		
A A->%T	B %T->A	C +%T _s (-A _s)	D +%T _u (-A _u)	E C _s +C _u	F Print	FLAGS	TRIG	DISP		
a Clear	b	c Ptnt #	d P off?	e Reprint	f 1	ON OFF	DEG	SCI	FIX	█
0 Used	1	2	3 Store A _s	4 Store A _u	2	1	GRAD	ENG	GRAD	█
5	6	7	8	9	3	2	RAD	2	ENG	█

Protein Electrophoresis

```

001 #LBLA
002 2
003 5
004 ST01
005 CLK
006 ST00
007 ST01
008 ST02
009 ST03
010 FB?
011 SPC
012 RTN
013 #LBLB
014 FB?
015 PRTX
016 DSZI
017 ST01
018 ST+0
019 1
020 ST+1
021 RCL1
022 RTN
023 #LBLC
024 SPC
025 RCL1
026 ST01
027 2
028 4
029 ST01
030 #LBL9
031 RCL1
032 RCLB
033 +
034 EEX
035 2
036 X
037 PRTX
038 RCL1
039 RCL1
040 X=Y?
041 GT08
042 DSZI
043 GT09
044 #LBLB
045 CLK
046 RTN
047 #LBLD
048 SPC
049 SPC
050 FB?
051 PRTX
052 FB?
053 SPC
054 ST02
055 2
056 4

Initialize.

Input fractions.

Fracti → R25-n:
Accumulate  $\Sigma$  in R0.
Display i.
Output percents.
I now contains (25 - n).
Save in R1.
Display 0.00 and return.
Total protein.

857 ST01
858 #LBLB
859 RCL1
860 RCL0
861 +
862 RCL2
863 X
864 PRTX
865 RCL1
866 RCL1
867 X=Y?
868 GT08
869 DSZI
870 GT08
871 #LBLB
872 CLK
873 RTN
874 #LBLB
875 RCLC
876 RCLD
877 RCLC
878 +
879 RCLB
880 +
881 RCL1
882 +
883 +
884 SPC
885 PRTX
886 RTN
887 #LBLc
888 INT
889 .
890 0
891 2
892 +
893 ST03
894 SPC
895 PRTX
896 SPC
897 RTN
898 #LBLd
899 FB?
100 GT08
101 SF0
102 1
103 RTN
104 #LBLB
105 CF0
106 0
107 RTN
108 #LBLc
109 2
110 4
111 ST01
112 SPC

```

REGISTERS

0 Σ Fract	1 25 - n	2 Tot Pr	3 Ptnt # .02	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9 Fract ₆
A Fract ₅	B Fract ₄	C Fract ₃	D Fract ₂	E Fract ₁					Index


```

113 SPC
114 RCL3
115 INT
116 .
117 0
118 2
119 +
120 PRTX
121 SPC
122 #LBL7
123 RCL1
124 PRTX
125 RCL1
126 RCL1
127 X=Y?
128 GT01
129 DSZI
130 GT07
131 #LBL1
132 2
133 4
134 ST01
135 SPC
136 GSB9
137 SPC
138 SPC
139 RCL2
140 X=0?
141 GT0E
142 PRTX
143 SPC
144 2
145 4
146 ST01
147 GSB8
148 GT0E

Patient ID _____
Loop to print inputs.

Print %.

If total protein = 0, skip to print A/G.

Otherwise print T Pr and grams.

Print A/G.

130 RCL2
140 X=0?
141 GT0E
142 PRTX
143 SPC
144 2
145 4
146 ST01
147 GSB8
148 GT0E

```

LABELS					FLAGS		SET STATUS		
A Start	B Fract	C →%	D T Pr→g	E →A/G	0 Print	FLAGS	TRIG	DISP	
a	b	c Ptnt #	d P off?	e Reprint	1	ON OFF	DEG <input checked="" type="checkbox"/>	SCI <input checked="" type="checkbox"/>	
0 Used	1 Used	2	3	4	2	0 <input checked="" type="checkbox"/>	GRAD <input checked="" type="checkbox"/>	ENG <input checked="" type="checkbox"/>	
5	6	7 Prt frac	8 Prt gms	9 Prt %	3	1 <input checked="" type="checkbox"/>	RAD <input checked="" type="checkbox"/>	n <input checked="" type="checkbox"/>	

LDH Isoenzymes

001	*LBLA		057	RTN	
002	2	Initialize.	058	*LBL1	Subroutine to find % and test if within normal range.
003	5		059	RCLB	
004	ST01		060	÷	
005	CLK		061	EEX	
006	ST00		062	2	
007	ST01		063	X	
008	ST02		064	PRTX	$(\%)_i = \frac{LDH_i}{\sum_j LDH_j} \times 100$
009	RTN	-----	065	X2Y	
010	*LBLB	Input LDH values.	066	X>Y?	Min > %?
011	DSZ1	LDH _i → R _{25-i}	067	SF2	Yes, set flag 2.
012	ST01		068	R↓	% > Max?
013	ST+0		069	X>Y?	Yes, set flag 2.
014	F07	Accumulate Σ in R ₀ .	070	SF2	
015	PRTX		071	RTN	
016	1		072	*LBLc	Patient ID = Ptnt #.03
017	ST+1	Display i.	073	INT	
018	RCL1		074	.	
019	RTN		075	0	
020	*LBLc	Calculate and print	076	3	
021	SPC	percentages.	077	+	
022	3		078	ST02	
023	3	Max LDH ₁ = 33.	079	PRTX	
024	ENT↑		080	SPC	
025	1		081	RTN	
026	8	Min LDH ₁ = 18.	082	*LBLd	Print toggle
027	RCL4	LDH ₁	083	F07	
028	GSB1	-----	084	GT08	
029	4		085	SF0	
030	0	Max LDH ₂ = 40.	086	1	
031	ENT↑		087	RTN	
032	2	Min LDH ₂ = 28.	088	*LBLd	
033	8	LDH ₂	089	CF0	
034	RCLC	-----	090	0	
035	GSE1		091	RTN	
036	3	Max LDH ₃ = 30.	092	*LBLd	Reprint
037	0		093	SPC	
038	ENT↑		094	SPC	
039	1	Max LDH ₃ = 30.	095	RCL2	
040	8		096	INT	
041	RCLC	Min LDH ₃ = 18.	097	.	
042	GSB1	LDH ₃	098	0	
043	1	-----	099	3	
044	6	Max LDH ₄ = 16.	100	+	
045	ENT↑		101	PRTX	Ptnt #.03
046	6	Min LDH ₄ = 6.	102	SPC	
047	RCLB	LDH ₄	103	RCL4	LDH ₁
048	GSB1	-----	104	FRTX	LDH ₂
049	1		105	RCLD	LDH ₃
050	3	Max LDH ₅ = 13.	106	PRTX	LDH ₄
051	ENT↑		107	RCLC	LDH ₅
052	2	Min LDH ₅ = 2.	108	PRTX	
053	RCL4	LDH ₅	109	RCLB	
054	GSB1	-----	110	PRTX	
055	F22		111	RCLA	
056	GT08	F2 set indicates range error.	112	PRTX	

113 SPC	Compute and print %.		
114 STOC			

LABELS					FLAGS		SET STATUS		
A START	B LDH _i	C →%	D	E None	0 Print	FLAGS	TRIG	DISP	
a	b	c Ptnt#	d P off?	e Reprint	1	ON OFF	DEG	FIX	
0 Used	1 %	2	3	4	2 Range error	0 <input checked="" type="checkbox"/>	1 <input checked="" type="checkbox"/>	SCI	
5	6	7	8	9	3	2 <input checked="" type="checkbox"/>	3 <input checked="" type="checkbox"/>	ENG	
						4 <input checked="" type="checkbox"/>	5 <input checked="" type="checkbox"/>	6 <input checked="" type="checkbox"/>	

Body Surface Area

001	#LBLA	Height (+cm, -in)	057	7				
002	STOE		058	1				
003	F0?		059	8				
004	SPC		060	4				
005	F0?		061	x				
006	PRTX		062	STOA				
007	X0?	If height in cm, GTO 1.	063	F0?				
008	GTO1		064	PRTX				
009	CHS		065	F0?				
010	2		066	SPC				
011	.	Convert inches to cm.	067	RTN				
012	5		068	#LBLD				
013	4		069	RCLD				
014	x		070	.				
015	#LBL1		071	3				
016	STOD	Store height in cm.	072	Y*				
017	RTN		073	RCLB				
018	#LBLB	Weight (+kg, -lb)	074	EEX				
019	STOC		075	3				
020	F0?		076	x				
021	PRTX		077	ENT†				
022	F0?		078	LOG				
023	SPC		079	.				
024	X0?	If weight in kg, GTO 2.	080	0				
025	GTO2		081	1				
026	CHS		082	8				
027	.		083	0				
028	4		084	x				
029	5		085	.				
030	3	Convert pounds to kg.	086	7				
031	5		087	2				
032	9		088	8				
033	2		089	5				
034	3		090	.				
035	7		091	Y*				
036	x		092	‡				
037	#LBL2		093	3				
038	STOB	Store weight in kg.	094	1				
039	RTN		095	1				
040	#LBLC	Dubois BSA	096	8				
041	RCLD		097	‡				
042	.		098	STOA				
043	7		099	F0?				
044	2		100	PRTX				
045	5		101	F0?				
046	Y*		102	SPC				
047	RCLB		103	RTN				
048	.		104	#LBLc				
049	4		105	0				
050	2		106	STOI				
051	5		107	RTN				
052	Y*		108	#LBLc				
053	x		109	INT				
054	.		110	.				
055	8		111	0				
056	0		112	4				

REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A BSA (m ²)	B Wt (kg)	C Wt input	D Ht (cm)	E Ht input	I Ptn #.04				

LABELS		FLAGS		SET STATUS				
A Ht (+cm)	B Wt (+kg)	C →Dubois	D →Boyd	E	F Print	FLAGS	TRIG	DISP
^a Clear	b	c Ptn #	d P off?	e Reprint	1	0 ON	DEG	FIX
0 P toggle	¹ Store ht	² Store wt	3	4	2	0 OFF	1 X	2 SCI
S	6	7	8	9	3	1 X	2 RAD	3 ENG
						2 X	3 RAD	4 ENG
						3 X	4 SCI	5 RAD
						4 X	5 SCI	6 RAD
						5 X	6 SCI	7 RAD
						6 X	7 SCI	8 RAD
						7 X	8 SCI	9 RAD
						8 X	9 SCI	0 RAD
						9 X	0 SCI	1 RAD

Urea Clearance

001	#LBLA	V/t	057	.	Otherwise have maximum.
002	÷		058	3	
003	#LBLB	◊	059	3	
004	ST0E	◊	060	x	
005	F0?		061	ST08	
006	SPC		062	F0?	
007	F0?		063	PRTX	
008	PRTX		064	RTN	
009	F2?		065	#LBLB	
010	GTO8		066	RCL9	Standard
011	GTO1		067	1	
012	#LBL8		068	.	
013	1		069	8	
014	.		070	5	
015	?		071	x	
016	3		072	ST08	
017	RCLA		073	F0?	
018	÷		074	PRTX	
019	x		075	RTN	
020	#LBL1		076	#LBLa	
021	ST0D	Output	077	0	Clear for reprint.
022	F0?		078	ST08	
023	PRTX		079	ST01	
024	F0?		080	RTN	
025	SPC		081	#LBLb	
026	RTN		082	SF2	
027	#LBLC		083	RCLA	
028	ST0C	U _{urea}	084	RTN	
029	F0?		085	#LBLc	
030	PRTX		086	INT	Patient ID = Ptnt #.05
031	RTN		087	.	
032	#LBLD		088	0	
033	ST08	B _{urea}	089	5	
034	F0?		090	+	
035	PRTX		091	ST01	
036	F0?		092	SPC	
037	SPC		093	PRTX	
038	2		094	RTN	
039	RCLD		095	#LBLd	
040	X?Y?		096	F0?	
041	fx		097	GTO8	
042	RCLC		098	SF0	
043	RCLB		099	1	
044	÷		100	RTN	
045	x		101	#LBL8	
046	ST09	Clearance	102	CF0	
047	F0?		103	0	
048	PRTX		104	RTN	
049	RTN		105	#LBLe	
050	#LBLE		106	SPC	
051	2	% mean normal	107	SPC	
052	RCLD		108	RCLI	
053	X?Y?		109	INT	
054	GTO8		110	.	
055	RCL9		111	0	
056	1		112	5	Reprint

REGISTERS

0	1	2	3	4	5	6	7	8 % m.n.	9 C
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A BSA (m ²)	B B _{urea}	C U _{urea}	D V _{cor} (ml/min)	E V (ml/min)	I Ptnt #.05				

LABELS		FLAGS		SET STATUS				
A V/t	B V	C U _{urea}	D B _{urea} → C	E → % m.n.	F Print	FLAGS	TRIG	DISP
^a Clear	^b Cor BSA?	^c Ptnt #	^d P off?	^e Reprint	1	ON OFF	DEG X	FIX X
0 Used	1 Exit V	2	3	4	2	GRAD :	SCI :	ENG :
5	6	7	8	9	3	RAD :	n	2

Creatinine Clearance

001	#LBLA	V/t	057	.	Patient ID = Ptnt #.06
002	#		058	0	
003	#LBLB		059	6	
004	ST0E	V	060	+	
005	FB?		061	ST01	
006	SPC		062	PRTX	
007	FB?		063	SPC	
008	PRTX		064	RTN	
009	F2?	If F2 set, must correct for BSA.	065	#LBLBd	
010	GT08		066	FB?	
011	GT01		067	GT08	
012	#LBLB		068	SF0	
013	1		069	1	
014	.		070	RTN	
015	7	$V_{corr} = 1.73 \frac{V}{BSA}$	071	#LBLB	
016	3		072	CF0	
017	RCLA		073	0	
018	#		074	RTN	
019	x		075	#LBLBd	
020	#LBL1		076	SPC	
021	ST00	Output	077	SPC	
022	FB?		078	RCLI	
023	PRTX		079	INT	
024	FB?		080	.	
025	SPC		081	0	
026	RTN		082	6	
027	#LBLC		083	+	
028	ST0C	U_{creat}	084	PRTX	Patient ID
029	FB?		085	SPC	
030	PRTX		086	RCLC	
031	RTN		087	PRTX	
032	#LBLD		088	RCLD	
033	ST0B	P_{creat}	089	PRTX	
034	FB?		090	SPC	
035	PRTX		091	RCLC	U_{creat}
036	RCLC		092	PRTX	
037	RCLD		093	RCLB	
038	x		094	PRTX	P_{creat}
039	RCLB		095	SPC	
040	#		096	RCL9	
041	ST09		097	PRTX	C
042	FB?		098	RTN	
043	SPC				
044	FB?				
045	PRTX				
046	RTN				
047	#LBLa				
048	0	Clear for reprint.			
049	ST01				
050	RTN				
051	#LBLb				
052	SF2	Set F2 to allow correction for BSA.			
053	RCLA				
054	RTN				
055	#LBLc				
056	INT				

REGISTERS									
0	1	2	3	4	5	6	7	8	9 C
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A BSA (m ²)	B P _{creat}	C U _{creat}	D V _{corr} (ml/min)	E V (ml/min)	I Ptnt # 06				

LABELS						FLAGS		SET STATUS		
A V/t	B V	C U _{creat}	D P _{creat}	E	0 Print	FLAGS	TRIG	DISP		
^a Clear	^b Cor BSA?	^c Ptnt #	^d P off?	^e Reprint	1	ON OFF	DEG	SCI		
0 Used	1 Exit V	2	3	4	2	0 ()	GRAD	ENG		
5	6	7	8	9	3	1 ()	RAD	n 2		
						2 ()				
						3 ()				
						4 ()				
						5 ()				
						6 ()				
						7 ()				
						8 ()				
						9 ()				

Amniotic Fluid Assay

001	#LBLA		057	RCLB		
002	FIX		058	X ² Y		
003	DSP2		059	\div		
004	ST0E		060	ST09		
005	F0?		061	F0?		
006	SPC		062	PRTX		
007	F0?		063	RTN		
008	PRTX		064	#LBLB		
009	RTN		065	3		
010	#LBLB		066	RCL9		
011	ST0D		067	.		
012	F0?		068	7		
013	PRTX		069	X ² Y?		
014	RTN		070	GT01		
015	#LBLC		071	R4		
016	ST0C		072	X ² Y?		
017	F0?		073	GT03		
018	PRTX		074	2		
019	RCLC		075	GT08		
020	LN		076	#LBL1		
021	RCLD		077	1		
022	LN		078	GT08		
023	-		079	#LBL3		
024	.		080	3		
025	5		081	#LBL0		
026	4		082	ST08		
027	1		083	FIX		
028	x		084	DSP0		
029	RCLD		085	F0?		
030	LN		086	PRTX		
031	+		087	RTN		
032	e ^x		088	#LBL4		
033	-		089	CLX		
034	ST08		090	ST08		
035	F0?		091	ST09		
036	SPC		092	ST0A		
037	F0?		093	RTN		
038	PRTX		094	#LBLc		
039	F0?		095	INT		
040	SPC		096	.		
041	RTN		097	8		
042	#LBLU		098	7		
043	ST0A		099	+		
044	FIX		100	ST01		
045	DSP0		101	PRTX		
046	F0?		102	SPC		
047	PRTX		103	RTN		
048	DSP2		104	#LBLd		
049	.		105	F0?		
050	9		106	GT08		
051	1		107	SF0		
052	5		108	1		
053	0		109	RTN		
054	9		110	#LBL0		
055	X ² Y		111	CF0		
056	Y ²		112	0		

REGISTERS

0	1	2	3	4	5	6	7	8	Zone	9	b
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9		
A	Week	B	ΔA_{450}	C	A_{450}	D	A_{550}	E	A_{365}	I	Ptnt #.07

LABELS		FLAGS		SET STATUS	
A	A ₃₆₅	B	A ₅₅₀	C	A ₄₅₀ \rightarrow Δ
^a Clear	b	^c Ptnt #	^d Wk \rightarrow b	^e Zone	^f Print
0 Used	¹ Zone 1	²	³ Zone 3	⁴	⁵
5	6	7	8	9	3

0	ON	OFF	DEG	<input checked="" type="checkbox"/>	FIX	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	GRAD	<input type="checkbox"/>	SCI	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	RAD	<input type="checkbox"/>	ENG	<input type="checkbox"/>

n 2

Blood Acid-Base Status

001	#LBLA	BT	057	-	
002	F0?		058	10 ^x	
003	PRTX		059	.	
004	F0?		060	0	
005	SPC		061	3	
006	3		062	0	
007	7		063	7	
008	X?Y		064	x	
009	-		065	ST05	s(10 ^{PH-PK})
010	ST09	37-BT	066	LSTX	
011	SF1	F1 set for BT.	067	+	
012	RTN	-----	068	RCLD	
013	#LBLB	PCO ₂	069	x	
014	ST0E		070	ST0A	TCO ₂
015	F0?		071	F0?	
016	PRTX		072	PRTX	
017	F1?	To correct for BT, GTO 0.	073	CF1	Clear flag 1.
018	GTO8		074	RTN	-----
019	GTO1	For 37°, GTO 1.	075	#LBLB	
020	#LBLB	-----	076	ST08	Hgb
021	RCL9	Correct PCO ₂ to 37°.	077	F0?	
022	.		078	SPC	
023	0		079	F0?	
024	1		080	PRTX	
025	9		081	RCL5	
026	x		082	RCLD	
027	10 ^x		083	x	
028	x	-----	084	ST06	[HCO ₃ ⁻]
029	#LBL1	PCO ₂ (37°C)	085	9	
030	ST00		086	.	
031	RTN	-----	087	5	
032	#LBLC	pH	088	ENT1	
033	ST0C		089	1	
034	F0?		090	.	
035	PRTX		091	6	
036	F1?	To correct for BT, GTO 0.	092	3	
037	GTO8		093	RCL8	
038	GTO2	For 37°, GTO 2.	094	x	
039	#LBLB	-----	095	+	
040	RCL9	Correct pH to 37°	096	7	
041	.		097	.	
042	0		098	4	
043	1		099	RCLB	
044	4		100	-	
045	6		101	x	
046	x		102	-	
047	-	-----	103	2	
048	#LBL2		104	4	
049	ST0B	pH (37°C)	105	-	
050	RTN	-----	106	1	
051	#LBLD	Compute TCO ₂ .	107	RCL8	
052	RCLB		108	.	
053	6		109	0	
054	.		110	1	
055	1		111	4	
056	1		112	3	

LINE	DATA	DATA	DATA	DATA
113	X			
114	-			
115	X			
116	ST07	BE		
117	FB?			
118	PRTX			
119	RTN			
120	RCL6	[HCO ₃ ⁻]		
121	FB?			
122	PRTX			
123	RTN			
124	#LBL8	Initialize.		
125	8			
126	ST06			
127	ST07			
128	ST08			
129	ST09			
130	ST01			
131	RTN			
132	#LBLc			
133	INT	Patient ID = Ptnt #.08.		
134	-			
135	0			
136	8			
137	+			
138	ST01			
139	PRTX			
140	SPC			
141	RTN			
142	#LBLd			
143	FB?	Print toggle		
144	GTO8			
145	SF8			
146	1			
147	RTN			
148	#LBL8			
149	CF8			
150	0			
151	RTN			
152	#LBL8			
153	SPC	Reprint		
154	SPC			
155	RCLI			
156	INT			
157	-			
158	0			
159	8			
160	+			
161	PRTX	Patient ID		
162	SPC			
163	RCL9			
164	X=?			
165	GTO8	If no BT entered, GTO 0.		
166	3			
167	7			
168	-			

LABELS					FLAGS		SET STATUS						
A	BT	B	PCO ₂	C	pH	D	TCO ₂	E	Hgb→BE	Print	FLAGS	TRIG	DISP
^a Clear	^b	^c	^d Ptnt #	^d	^d P off?	^e	^e Reprint	^f	^f BT	ON OFF	DEG	X	FIX
0 Used	1	PCO ₂ (37)	2	pH (37)	3		4		2	1 <input checked="" type="checkbox"/>	GRAD	---	SCI
5	6		7		8		9		3	2 <input checked="" type="checkbox"/>	RAD	---	ENG
										3 <input checked="" type="checkbox"/>			IT

Oxygen Saturation and Content

001	#LBLA	BT	057	GT00	
002	F0?		058	#LBL1	If input < 0, make positive
003	PRTX		059	CHS	
004	3		060	#LBL0	
005	7		061	STOC	
006	X?Y		062	ENT†	VPO ₂
007	-		063	ENT†	
008	ST09	37-BT	064	ENT†	
009	RCLD	Rcl PCO ₂ (if input).	065	1	
010	RTN	-----	066	5	
011	#LBLB	PCO ₂	067	-	
012	F0?		068	x	
013	PRTX		069	2	
014	ST00		070	0	
015	KCLB	Rcl pH (if input).	071	4	
016	RTN	-----	072	5	
017	#LBLC	pH	073	+	
018	F0?		074	x	
019	PRTX		075	2	Compute oxygen
020	ST00		076	EEX	saturation.
021	RTN	-----	077	3	
022	#LBLD		078	+	
023	F0?		079	x	
024	PRTX		080	ST07	
025	ST0E	PO ₂ input	081	CLK	
026	X?0?	If input < 0, consider as	082	1	
027	GT01	VPO ₂ .	083	5	
028	RCL9	Otherwise compute VPO ₂ .	084	-	
029	.		085	x	
030	0		086	2	
031	2		087	4	
032	4		088	0	
033	x		089	0	
034	RCLB		090	+	
035	7		091	x	
036	.		092	3	
037	4		093	1	
038	-		094	1	
039	.		095	0	
040	4		096	0	
041	8		097	-	
042	x		098	x	
043	+		099	2	
044	4		100	4	
045	0		101	EEX	
046	RCL0		102	5	
047	÷		103	+	
048	LOG		104	EEX	
049	.		105	2	
050	0		106	÷	
051	6		107	ST+7	
052	x		108	RCL7	O ₂ saturation (%).
053	+		109	SF2	F2 set to indicate
054	10*		110	F0?	
055	RCL8		111	SPC	
056	x		112	F0?	saturation computed.

REGISTERS									
0	1	2	3	4	5	6	7	Sat	8 Hgb
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	O ₂ content	B	pH(37)	C	VPO ₂	D	PCO ₂ (37)	E	PO ₂ input
								I	Pnt# .09

LABELS		FLAGS	SET STATUS
113 PRTX			
114 F0?			
115 SPC			
116 RTN			
117 RCL8	Rcl Hgb (if input).		
118 R/S			
119 #LBL8			
120 F2?	If Sat. computed, do not		
121 GT08	input it.		
122 X?Y			
123 ST07	Otherwise store Sat.		
124 F0?			
125 PRTX			
126 F0?			
127 SPC			
128 X?Y			
129 #LBL8			
130 ST08	Store Hgb.		
131 F0?			
132 PRTX			
133 RCL7			
134 X			
135 1			
136 3			
137 4	Compute oxygen content.		Patient ID
138 X			
139 RCLC			
140 3			
141 1			
142 X			
143 +			
144 EEX			
145 4			
146 :			
147 ST0A	O ₂ content		
148 F0?			
149 PRTX			
150 RTN			
151 #LBL8			
152 0	Initialize		
153 ST0C			
154 ST0E			
155 ST0I			
156 RTN			
157 #LBL8			
158 3			
159 7			
160 RCL9	Rcl BT		
161 -			
162 RTN	BT = 37 - (37-BT)		
163 #LBL8			
164 INT			
165 -			
166 0	Patient ID = Ptnt # .09		
167 9			
168 +			

Red Cell Indices

001	#LBLA								
002	STOE								
003	F0?								
004	PRTX								
005	RTN								
006	#LBLB								
007	STOD								
008	F0?								
009	PRTX								
010	RTN								
011	#LBLC								
012	STOC								
013	F0?								
014	PRTX								
015	F0?								
016	SPC								
017	RCLD								
018	1								
019	0								
020	x								
021	RCLE								
022	=								
023	STOB								
024	F0?								
025	PRTX								
026	RTN								
027	#LBLD								
028	RCLC								
029	1								
030	0								
031	x								
032	RCLE								
033	=								
034	STOA								
035	F0?								
036	PRTX								
037	RTN								
038	#LBLE								
039	RCLC								
040	EEX								
041	2								
042	x								
043	RCLD								
044	=								
045	ST09								
046	F0?								
047	PRTX								
048	RTN								
049	#LBLa								
050	0								
051	ST01								
052	RTN								
053	#LBLc								
054	INT								
055	.								
056	1								
REGISTERS									
0	1	2	3	4	5	6	7	8	9 MCHC
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A MCH	B MCV	C Hgb	D Hct (%)	E Count	I	Ptn #.10			

LABELS					FLAGS		SET STATUS		
A Count	B Hct (%)	C Hgb→MCV	D →MCH	E →MCHC	0 Print	FLAGS	TRIG	DISP	
^a Clear	b	c Ptnt #	d P off?	e Reprint	1	0 ON OFF	DEG	FIX	
0 Used	1	2	3	4	2	1	GRAD	SCI	
5	6	7	8	9	3	2	RAD	ENG	
						3	3	2	

Total Blood Volume

001	#LBLA	Background counts.	057	#LBLd	Print toggle
002	STOE		058	F0?	
003	F0?		059	CT008	
004	PRTX		060	SF0	
005	RTN		061	1	
006	*LBLB	Volume injected.	062	RTN	
007	ST00		063	*LBL0	
008	F0?		064	CF0	
009	PRTX		065	0	
010	RTN		066	RTN	
011	*LBLC	Standard dilution.	067	*LBLe	Reprint
012	STOC		068	SPC	
013	F0?		069	SPC	
014	PRTX		070	RCL1	
015	RTN		071	INT	
016	*LBLD	Standard CPM.	072	.	
017	ST08		073	j	
018	F0?		074	1	
019	PRTX		075	+	
020	RTN		076	PRTX	Patient ID
021	*LBLE	Whole blood CPM.	077	SPC	Bck
022	ST0A		078	RCL6	
023	F0?		079	PRTX	
024	PRTX		080	RCLD	Vol. injected
025	F0?		081	PRTX	Std. dilution
026	SPC		082	RCLC	Std. CPM
027	RCLB	Net Std. CPM = Std. CPM - Bck.	083	PRTX	Blood CPM
028	RCL6		084	RCLB	
029	-		085	PRTX	
030	X?Y		086	RCLA	
031	RCL6	Net blood CPM = Blood CPM - Bck.	087	PRTX	
032	-		088	SPC	
033	÷		089	RCL9	
034	RCLC		090	PRTX	
035	x		091	RTN	
036	RCLD	Total blood volume.			
037	x				
038	ST09				
039	F0?				
040	PRTX				
041	RTN				
042	*LBLa	Initialize.			
043	0				
044	STOE				
045	STOI				
046	RTN				
047	*LBLc				
048	INT	Patient ID = Ptnt #.11			
049					
050	1				
051	1				
052	+				
053	STOI				
054	PRTX				
055	SPC				
056	RTN				
REGISTERS					
0	1	2	3	4	5 6 7 8 9 TBV
S0	S1	S2	S3	S4	S5 S6 S7 S8 S9
A Blood CPM	B Std. CPM	C Std. dilution	D Vol. injected	E Bck	I Ptnt #.11

LABELS					FLAGS		SET STATUS		
A Bck	B Vol. inj.	C Std. dil.	D Std. CPM	E CPM→TBV	0 Print	FLAGS	TRIG	DISP	
^a Clear	b	^c Ptnt #	^d P off?	^e Reprint	1	0 <input checked="" type="checkbox"/> <input type="checkbox"/> ON	DEG <input checked="" type="checkbox"/> <input type="checkbox"/> OFF	FIX <input checked="" type="checkbox"/> <input type="checkbox"/>	
0 Toggle	1	2	3	4	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/> 0	GRAD <input type="checkbox"/> <input checked="" type="checkbox"/> RAD	SCI <input type="checkbox"/> <input type="checkbox"/>	
5	6	7	8	9	3	2 <input type="checkbox"/> <input checked="" type="checkbox"/> 1	ENG <input type="checkbox"/> <input checked="" type="checkbox"/> n		

Schilling Test

001	#LBLA	Background counts.	057	.	Patient ID = Ptnt #.12
002	STOE		058	1	
003	F0?		059	2	
004	PRTX		060	+	
005	RTN		061	STOI	
006	*LBLB	Standard dilution.	062	PRTX	
007	STOD		063	SPC	
008	F0?		064	RTN	
009	PRTX		065	*LBLB	Print toggle
010	RTN		066	F0?	
011	*LBLC	Standard counts.	067	GT00	
012	STOC		068	SF0	
013	F0?		069	1	
014	PRTX		070	RTN	
015	RTN		071	*LBLB	
016	*LBLD		072	CF0	
017	STOB	Urine volume. (V)	073	8	
018	F0?		074	RTN	
019	PRTX		075	*LBLB	Reprint
020	RTN		076	SPC	
021	*LBLB	Urine counts. (U)	077	SPC	
022	STOA		078	RCLI	
023	F0?		079	INT	
024	PRTX		080	.	
025	1	1 U	081	1	
026	X2Y	U 1	082	2	
027	RCLE	Bck U 1	083	+	
028	-	Net 1	084	PRTX	Patient ID
029	1	1 Net 1	085	SPC	
030	RCLB	V 1 Net 1	086	RCLE	Bck
031	X2Y?	Is V < 1?	087	PRTX	
032	R4	Yes, eliminate V.	088	RCLD	Std. dilution
033	X	No, V > 1, multiply by V.	089	PRTX	
034	X		090	RCLC	Std. CPM
035	RCLC		091	PRTX	
036	RCLE		092	RCLB	Urine vol.
037	-		093	PRTX	
038	÷	Net std. counts.	094	RCLA	Urine CPM
039	RCLD		095	PRTX	
040	÷		096	SPC	
041	EEX		097	RCL9	% excreted
042	2	Convert to %.	098	PRTX	
043	X		099	RTN	
044	ST09	% of dose excreted.			
045	F0?				
046	SPC				
047	F0?				
048	PRTX				
049	RTN				
050	*LBLA				
051	0	Initialize.			
052	STOE				
053	STOI				
054	RTN				
055	*LBLC				
056	INT				

REGISTERS

0	1	2	3	4	5	6	7	8	9 %
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A Urine CPM	B Urine Vol.	C Std. CPM	D Std. dilution	E Bck	I Ptnt #.12				

LABELS						FLAGS			SET STATUS		
A Bck	B Std. dil.	C Std. CPM	D Urine Vol.	E CPM → %	F Print	FLAGS	TRIG	DISP	ON OFF	DEG	FIX
^a Clear	b	^c Ptnt #	^d P off?	^e Reprint	1	0 <input checked="" type="checkbox"/> <input type="checkbox"/>	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	0 <input checked="" type="checkbox"/> <input type="checkbox"/>	DEG <input checked="" type="checkbox"/> <input type="checkbox"/>	FIX <input type="checkbox"/> <input checked="" type="checkbox"/>
⁰ Toggle	1	2	3	4	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/> <input checked="" type="checkbox"/>	SCI <input type="checkbox"/> <input checked="" type="checkbox"/>
5	6	7	8	9	3	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	3 <input type="checkbox"/> <input checked="" type="checkbox"/>	3 <input type="checkbox"/> <input checked="" type="checkbox"/>	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/> <input checked="" type="checkbox"/>	ENG <input type="checkbox"/> <input checked="" type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>			3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n <u>2</u>

Thyroid Uptake

001	#LBLA								
002	STD0								
003	FB?								
004	PRTX								
005	RTN								
006	#LBLB								
007	ST00								
008	FB?								
009	PRTX								
010	RCLC								
011	XCY								
012	-								
013	RTN								
014	#LBLC								
015	ST0C								
016	FB?								
017	PRTX								
018	RTN								
019	#BLBD								
020	ST0B								
021	FB?								
022	PRTX								
023	RCLC								
024	XCY								
025	-								
026	RTN								
027	#LBLE								
028	RCLC								
029	RLBL								
030	-								
031	RCLC								
032	RCLD								
033	-								
034	+								
035	EEK								
036	2								
037	X								
038	ST09								
039	FB?								
040	SPC								
041	FB?								
042	PRTX								
043	RTN								
044	#LBLA								
045	FB?								
046	SPC								
047	XCY								
048	FB?								
049	PRTX								
050	XCY								
051	FB?								
052	PRTX								
053	-								
054	RCLA								
055	X								
056	CHS								
REGISTERS									
0	1	2	3	4	5	6	7	8	9 % Uptake
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A Decay factor	B Ptnt. Bck	C Ptnt. Cts.	D Std. Bck	E Std. Cts.	I Ptnt #.13				

Patient ID

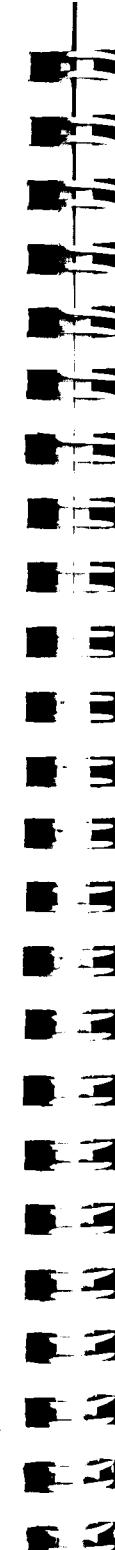
057	RCLC								
058	RCLB								
059	-								
060	+								
061	LSTX								
062	+								
063	STX9								
064	RCL9								
065	FB?								
066	PRTX								
067	RTN								
068	#LBLb								
069	FB?								
070	SPC								
071	XCY								
072	FB?								
073	PRTX								
074	XCY								
075	FB?								
076	PRTX								
077	+								
078	STX9								
079	RCL9								
080	FB?								
081	PRTX								
082	RTN								
083	#LBLc								
084	INT								
085	-								
086	1								
087	3								
088	+								
089	ST01								
090	PRTX								
091	SPC								
092	RTN								
093	#LBLd								
094	FB?								
095	ST0B								
096	SPC								
097	1								
098	RTN								
099	#LBL0								
100	CF0								
101	0								
102	RTN								
103	#LBLe								
104	SPC								
105	SPC								
106	RCL1								
107	INT								
108	+								
109	1								
110	3								
111	+								
112	PRTX								
LABELS									
A Std. CPM	B Std. Bck.	C Ptnt. CPM	D Ptnt. Bck.	E -% Up	F Print	FLAGS	SET STATUS		
^a Rad C1Bk	^b Pre Sd1D	^c Ptnt #	^d Ptnt off?	^e Reprint	1	ON 0 OFF 1	DEG 2 RAD 3	TRIG 4	DISP 5
0 Toggle	1	2	3	4	2	1 0 1 2	SCI 3	ENG 4	2 1 0 1 2
5	6	7	8	9	3	2 0 2 1			

Radioactive Decay Corrections

881	#LBLA	Initial activity (A ₀).	857	ST00	Store t (hrs).
882	F39		858	RCLB	
883	GT08		859	÷	
884	RCLC	Calculate: A ₀ = A/f	860	5	Store decay factor
885	RCLA		861	X ^Y	
886	÷		862	Y ^X	
887	ST0E		863	f = $\frac{1}{2}^{t/\tau_{1/2}}$	
888	RTN		864	ST0A	
889	#LBLB		865	RTN	Display t as input.
890	ST0E	Store input A ₀ .	866	RTN	
891	RTN		867	#LBLC	Present activity (A).
892	#LBLB	Time in days. hours.	868	F3?	
893	F39		869	GT08	
894	GT08		870	RCLC	
895	RCLC		871	RCLA	Calculate:
896	RCLC		872	X	A = A ₀ f
897	÷	Calculate:	873	ST0C	
898	ST0A		874	RTN	
899	LH		875	#LBLB	
900	.		876	ST0C	Store input A.
901	5		877	RTN	
902	LH		878	#LBLD	Isotopes 1-8.
903	÷		879	ST01	
904	RCLB		880	GSB1	
905	x		881	ST0B	
906	ST00	Store t (hours).	882	RTN	Store $\tau_{1/2}$.
907	2		883	#LBLA	
908	4		884	6	
909	÷		885	6	
910	INT	Convert t in hrs. to dd.hh.	886	7	⁵¹ Cr
911	ENT†	for display.	887	.	
912	ENT†		888	2	
913	2		889	ST0B	
914	4		890	RTN	
915	x		891	#LBLb	
916	RCLD		892	5	
917	X ^Y		893	4	
918	-		894	8	⁵³ Co
919	EEX		895	8	
920	2		896	ST0B	
921	÷		897	RTN	
922	RCLC		898	#LBLc	
923	+		899	6	^{99m} Tc
924	#LBLB	Time input.	900	ST0B	
925	ENT†		901	RTN	
926	ENT†		902	#LBLd	
927	INT		903	1	
928	2		904	4	
929	4	Convert from dd.hh.	905	4	¹²⁵ I
930	x	format to hours.	906	8	
931	X ^Y		907	ST0B	
932	FRC		908	RTN	
933	EEX		909	#LBLe	
934	2		910	1	
935	x		911	9	¹³¹ I
936	+		912	3	

REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A Decay factor (A/A ₀)	B $\tau_{1/2}$ (hours)	C A	D t (hours)	E A ₀	I Isotope no. (1-9)				


113	.		169	.		
114	2		170	7		
115	ST0B		171	3		113mIn
116	RTN		172	RTN		
117	#LBLB		173	#LBLB		
118	2		174	1		
119	6		175	2		¹³³ Xe
120	2		176	6		
121	9		177	.		
122	8		178	5		
123	8		179	RTN		
124	ST0B		180	#LBL9		
125	RTN		181	6		¹⁹⁷ Hg
126	#LBL1		182	5		
127	1		183	RTN		
128	0					
129	7					
130	4					
131	7					
132	8					
133	RTN					
134	#LBL2					
135	5					
136	8					
137	5					
138	8					
139	EEX					
140	4					
141	RTN					
142	#LBL3					
143	1					
144	.					
145	8					
146	7					
147	RTN					
148	#LBL4					
149	3					
150	4					
151	3					
152	.					
153	2					
154	RTN					
155	#LBL5					
156	2					
157	8					
158	8					
159	0					
160	RTN					
161	#LBL6					
162	1					
163	5					
164	3					
165	6					
166	RTN					
167	#LBL7					
168	1					

LABELS					FLAGS		SET STATUS							
A	A ₀	B	t (dd.hh)	C	A	D	Isotope #	E	¹³⁷ Cs	0	FLAGS	TRIG	DISP	
⁵¹ Cr		⁵³ Co		c	99mTc	d	¹²⁵ I	e	¹³¹ I	1	ON OFF	DEG	FIX	
0	Inputs	1	³ H	2	¹⁴ C	3	¹⁸ F	4	³² P	2	1	GRAD	SCI	
5	⁷⁵ Se	6	⁸⁵ Sr	7	113mIn	8	¹³³ Xe	9	¹⁹⁷ Hg	3	Data entry	2	RAD	ENG

Radioimmunoassay

001	#LBLA	Initialize.	057	F0?		8	\bar{B}	
002	F2S		058	PRTX				
003	CLRC		059	RCLC				
004	F2S		060	-				
005	GT02		061	RCLD				
006	#LBLB		062	RCLC				
007	GSBD		063	-				
008	RTN		064	÷				
009	GSB1		065	F1?				
010	ST0E	Average NSB.	066	PRTX				
011	RTN		067	F0?				
012	#LBLC	Zero dose counts (B_0).	068	SPC				
013	GSBD		069	R4				
014	RTN		070	F0?				
015	GSB1		071	PRTX				
016	ST0D	Average B_0 .	072	F0?				
017	RTN		073	SPC				
818	#LBL1	Compute average counts.	074	LOG				
019	RCL6		075	GSB3				
020	RCL9		076	F1?				
021	÷		077	PRTX				
022	ST0I	$\bar{B} = \Sigma B/n$	078	X ΣY				
023	F0?		079	F1?				
024	SPC		080	PRTX				
025	F0?		081	F1?				
026	PRTX		082	SPC				
027	F0?		083	Σt				
028	SPC		084	F0?				
029	F0?		085	SPC				
030	SPC		086	RTN				
031	#LBL2	Clear for n, ΣB	087	#LBLa				
032	0		088	RCL Σ				
033	ST08		089	x				
034	ST09		090	P ΣS				
035	R4		091	RCL9				
036	RTN		092	÷				
037	#LBLb	Counts for standards and unknowns.	093	RCL8				
038	#LBLD		094	X ΣY				
039	F0?		095	-				
040	PRTX		096	ST0B				
041	ST ΣB		097	ENT \uparrow				
042	1		098	ENT \uparrow				
043	ST ΣB		099	P ΣS				
044	RCL9		100	S				
045	RTN		101	x				
046	#LBLc	Standard concentration.	102	÷				
047	RCL8		103	P ΣS				
048	RCL9		104	RCL9				
049	÷		105	1				
050	ST0I		106	-				
051	0		107	÷				
052	ST08		108	ST0A				
053	ST09		109	PRTX				
054	R4		110	RCLB				
055	F0?		111	RCL5				
056	SPC		112	RCL4				

REGISTERS								
0	1	2	3	4	5	6	7	8
S0	S1	S2	S3	S4	Σx	$S5$	Σx^2	ΣB , used
A	r	B	Used, m	C	b	D	B_0	E
								NSB
								i
								\bar{B}

113	X Σ					169	RCL9		
114	RCL9					170	F1?		
115	÷					171	PRTX		
116	-					172	F1?		
117	÷					173	SPC		
118	STOB					174	R4		
119	PRTX					175	R4		
120	P ΣS					176	F0?		
121	X					177	SPC		
122	RCLB					178	GT02		
123	-					179	#LBL3		
124	-					180	RCL1		
125	STOC					181	RCLC		
126	PRTX					182	-		
127	SPC					183	RCLD		
128	SPC					184	RCL1		
129	RCLA					185	-		
130	RCLB					186	÷		
131	RCLC					187	LN		
132	RTN					188	RTN		
133	#LBLc					189	#LBLd		
134	RCL8					190	F0?		
135	RCL9					191	GT08		
136	÷					192	SF0		
137	ST0I					193	1		
138	0					194	RTN		
139	ST08					195	#LBL0		
140	ST09					196	CF0		
141	R4					197	0		
142	F0?					198	RTN		
143	SPC					199	#LBLe		
144	F0?					200	F1?		
145	PRYX					201	GT00		
146	RCLC					202	SF1		
147	-					203	1		
148	RCLD					204	RTN		
149	RCLC					205	#LBL0		
150	-					206	CF1		
151	÷					207	0		
152	F1?					208	RTN		
153	PRTX								
154	F0?								
155	SPC								
156	GSB3								
157	STOB								
158	RCLC								
159	-								
160	RCLB								
161	÷								
162	ST09								
163	10 \times								
164	PRTX								
165	SPC								
166	RCL8								
167	F1?								
168	PRTX								

LABELS									FLAGS			SET STATUS		
A	B	C	D	E	0	Print	FLAGS	TRIG	DISP					
^a	Start	NSB, →NSB	$B_0, -B_0$	→ Conc	Std B	Std conc	0	Print	FLAGS	ON	OFF	DEG	FIX	\bar{B}
^b	→ r, m, b	Unkn B	c	→ Conc	d	Print?	1	Plot?	TRIG	1	1	GRAD	SCI	
0	Used	1 Find \bar{B}	2 Clear ΣB	3 Logit	4	Plot?	2	Plot	DISP	2	2	HAD	ENG	
5	6	7	8	9	3		3			3	3			n-2

Basic Statistics

001	#LBLA	Clear Σ registers	857	SPC	Print
002	P _Σ S		858	X _Σ Y	
003	0		859	PRTX	f _k
004	ST04		860	X _Σ ² Y	
005	ST05		861	PRTX	x _k
006	ST06		862	#LBL1	
007	ST07		863	ENT↑	
008	ST08		864	ENT↑	
009	ST09		865	x	
010	P _Σ S		866	R↑	
011	RTN		867	ST-9	Σf_i
012	#LBLB	x _i (Σ +)	868	x	
013	F0?		869	ST-5	$\Sigma f_i x_i^2$
014	PRTX		870	R↓	
015	X+		871	x	
016	RTN		872	ST-4	$\Sigma f_i x_i$
017	#LBL6	x _k (Σ -)	873	1	
018	F0?		874	ST-6	
019	SPC		875	RCL6	i
020	F0?		876	P _Σ S	
021	PRTX		877	RTN	
022	I-		878	#LBLD	
023	RTN		879	SPC	Find mean and standard deviation.
024	#LBLC	Grouped data.	880	\bar{x}	
025	P _Σ S		881	PRTX	
026	F0?		882	S	
027	GT08		883	PRTX	
028	GT01		884	RTN	
029	#LBL0	Print	885	#LBLE	
030	SPC		886	SPC	
031	X _Σ Y		887	S	
032	PRTX	f _i	888	P _Σ S	
033	X _Σ Y		889	RCL9	
034	PRTX	x _i	890	P _Σ S	
035	#LBL1		891	I _X	
036	ENT↑		892	±	
037	ENT↑	x _i x _i x _i f _i	893	PRTX	
038	X		894	\bar{x}	s_x
039	R↑	f _i x _i ² x _i f _i	895	S	
040	ST-9		896	LSTX	
041	x	Σf_i	897	±	
042	ST+5		898	EEX	
043	R↓	$\Sigma f_i x_i^2$	899	2	
044	X		900	x	
045	ST+4		901	PRTX	C. V. %
046	1	$\Sigma f_i x_i$	902	RTN	
047	ST+6		903	#LBLa	Print toggle
048	RCL6	n	904	F0?	
049	P _Σ S		905	GT08	
050	RTN		906	SF8	
051	#LBLc	Grouped data--correct error.	907	1	
052	P _Σ S		908	RTN	
053	F0?		909	#LBL0	
054	GT08		910	CF8	
055	GT01		911	0	
056	#LBL8		912	RTN	

REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	Used	S7	Used
				Σx	Σx^2			S8	Used

A	B	C	D	E	I
---	---	---	---	---	---

LABELS					FLAGS		SET STATUS		
^a START	^b x _i (Σ +)	^c f _i x _i (Σ +)	^d $\Sigma f_i x_i$, s	^e $\rightarrow s_x$, CV	0	Print	FLAGS	TRIG	DISP
^a Print?	^b x _k (Σ -)	^c f _k x _k (Σ -)	^d	^e	1		ON OFF	DEG R	FIX B
^b Print	^c Sums	^d 2	^e 3	4	2		1	GRAD D	SCI C
				5	3		2	RAD E	ENG D
							3		n 2

Chi-square Evaluation and Distribution

001	#LBL4	Start.	057	RTN		
002	CF1		058	#LBL6		
003	CLRC		059	GSB7		
004	2		060	GSB9		
005	0		061	GSB7		
006	STO1	I points to R _A .	062	STOC		
007	RTN		063	-		
008	#LBL8		064	X ²		
009	SF1		065	RCLC		
010	GSB4	F1 set for equal E _i .	066	-		
011	RCLB		067	RCLB		
012	X ² Y		068	-		
013	+		069	CHS		
014	STOB		070	STOB		
015	LSTX		071	1		
016	X ²		072	ST-i		
017	RCLC		073	RCLi		
018	+		074	RTN		
019	STOC		075	#LBL0		
020	1		076	F1?		
021	ST+i		077	GT08		
022	RCLI		078	RCLB		
023	RTN		079	GSB4		
024	#LBL6	Correct erroneous O _k (Σ+).	080	R/S		
025	GSB7		081	GT06		
026	GSB7		082	#LBL8		
027	GSB8		083	RCLA		
028	GSB7		084	RCLC		
029	RCLB		085	X		
030	X ² Y		086	RCLB		
031	-		087	-		
032	STOB		088	LSTX		
033	LSTX		089	-		
034	X ²		090	GSB4		
035	RCLC		091	R/S		
036	-		092	RCLB		
037	CHS		093	RCLA		
038	STOC		094	-		
039	1		095	GSB8		
040	ST-i		096	GSB7		
041	RCLI		097	RTN		
042	RTN		098	#LBL9		
043	#LBLC	Input O _i ↑E _i (Σ+).	099	X ² Y		
044	CF1		100	GSB4		
045	GSB9		101	X ² Y		
046	STOC		102	GSB8		
047	-		103	RTN		
048	X ²		104	#LBL4		
049	RCLC		105	GSB7		
050	-		106	#LBL8		
051	RCLB		107	F0?		
052	+		108	PTX		
053	STOB		109	RTN		
054	1		110	#LBL7		
055	ST+i		111	F0?		
056	RCLI		112	SPC		

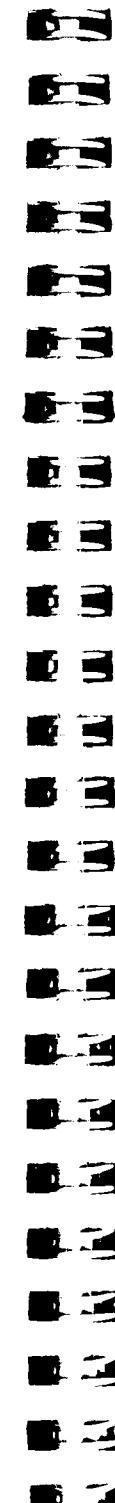
REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	n	B	$\Sigma O_i \cdot \Sigma (O_i - E_i)^2 / E_i$	C	$\Sigma O_i^2 \cdot E_i$	D	E	I	20

Correct erroneous $O_k \uparrow E_k$ (Σ-).Calculate X^2

"Error"

Calculate X^2 for equal E_i.


Calculate E.

Print contents of Y- and X-registers if F0 set.

Space and print.

Print.

Space

A	B	C	D	E	FLAGS	SET STATUS
Start	$O_i \cdot E_i (\Sigma+)$	$O_k \uparrow E_k (\Sigma+)$	$\Sigma (O_i - E_i)^2 / E_i$	$\nu \rightarrow \Gamma (\nu/2)$	0 Print	TRIG DISP
^a Print?	^b $O_k (\Sigma-)$	^c $O_k \uparrow E_k (\Sigma-)$	^d $x \rightarrow f(x)$	^e $x \rightarrow P(x)$	1 Used	ON OFF DEG GRAD RAD FIX SCI ENG n 2
0 Used	1 Used	2 Used	3 Used	4 Print, spc	2	
5 Used	6 Space	7 Space	8 Print x	9 Print x, y	3	

x → P(x)

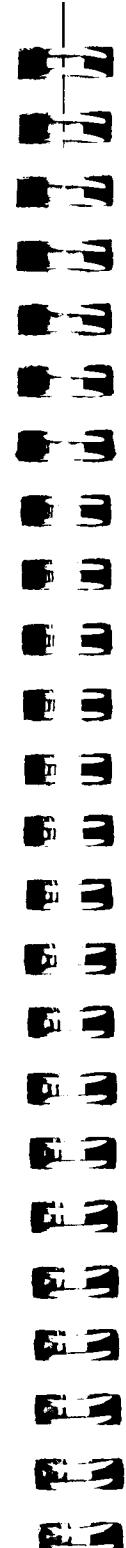
First find f(x).

Sum terms of series.

Print toggle

t Statistics

001 #LBLA	Start.	057 JX	
002 8		058 ST08	SD
003 ST01		059 RCL1	
004 ST02		060 JX	
005 ST03		061 *	
006 RTN		062 *	
007 #LBLA	Print toggle.	063 SPC	t
008 F0?		064 PRTX	
009 GT00		065 R-S	
010 SF0		066 RCLC	
011 1		067 PRTX	
012 RTN		068 RCLA	
013 #LBL0		069 PRTX	
014 CF0		070 RCLB	
015 0		071 PRTX	
016 RTN		072 RTN	
017 #LBLB	Input x_i, y_i for paired t.	073 #LBL0	Input x_i or y_i for t for two means.
018 F0?		074 GS80	
019 GS89		075 ST+2	
020 -		076 X#	
021 ST+2		077 ST-3	
022 X#		078 RCL1	
023 ST+3		079 1	
024 RCL1		080 +	
025 1		081 ST01	
026 +		082 RTN	
027 ST01		083 #LBLd	
028 RTN		084 GS81	
029 #LBLB	Correct x_k, y_k for paired t.	085 GS80	
030 F0?		086 ST-2	
031 GS89		087 X#	
032 -		088 ST-3	
033 ST-2		089 RCL1	
034 X#		090 1	
035 ST-3		091 -	
036 RCL1		092 ST01	
037 1		093 RTN	
038 -		094 #LBLc	
039 ST01		095 ST07	
040 RTN		096 RCL1	
041 #LBLC	Compute paired t.	097 ST04	
042 RCL2		098 RCL2	
043 RCL1		099 ST05	
044 ÷		100 RCL3	
045 ST0A		101 ST06	
046 RCL3	—	102 0	
047 RCL2		103 ST01	
048 X#		104 ST02	
049 RCL1		105 ST03	
050 ÷		106 RCL7	
051 -		107 GS81	
052 RCL1		108 GS80	
053 1		109 GS81	
054 -		110 RTN	
055 ST0C	df	111 #LBLE	
056 1		112 RCL6	Compute t for two means.


REGISTERS									
0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	D	B	Sp	C	df	D	E	F	I

t Distribution

001	#LBLA	Input ν .	057	ST03				
002	GSB5		058	RTN				
003	ST00		059	#LBL1				
004	RTN		060	-				
005	#LBLB	$x \rightarrow f(x)$	061	5				
006	GSB5		062	X=Y?				
007	ST04		063	GT02				
008	RCLD		064	X \approx Y				
009	GSB6		065	1				
010	ST05		066	-				
011	RCLD		067	STX3				
012	1		068	GT01				
013	+		069	#LBL2				
014	GSB6		070	PI				
015	ST05		071	JX				
016	RCLA		072	RCL3				
017	RCLC		073	x				
018	RCLB		074	ST03				
019	=		075	RTN				
020	PI		076	#LBLC				
021	RCLD		077	GSB5				
022	x		078	#LBL6				
023	JX		079	CF1				
024	=		080	ST04				
025	1		081	ABS				
026	RCLA		082	RCLD				
027	X \approx Y		083	ST06				
028	RCLD		084	RAD				
029	=		085	JX				
030	+		086	=				
031	RCLD		087	TAN $^{-1}$				
032	1		088	ST02				
033	+		089	RCL8				
034	2		090	2				
035	=		091	=				
036	CHS		092	INT				
037	Y \times		093	LSTX				
038	x		094	X \times Y?				
039	ST05		095	GT04				
040	PRTX		096	8				
041	SPC		097	ST05				
042	RTN		098	#LBL6				
043	#LBLa	Compute $\Gamma(\nu/2)$.	099	RCL2				
044	1		100	COS				
045	ST03		101	X 2				
046	X \approx Y		102	ST03				
047	2		103	RCL2				
048	=		104	SIN				
049	ST01		105	ST04				
050	INT		106	RCL8				
051	LSTX		107	2				
052	X \approx Y?		108	X \approx Y?				
053	GT01		109	GT08				
054	1		110	=				
055	-		111	ST01				
056	H?		112	1				

REGISTERS

0	$\nu, \nu - 1$	1	2	3	Used	4	Used	5	Used	6	Used	7	R	8	Used	9	f(x)
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9								
A	x	B	Used	C	Used	D	ν	E									

113	ST06																	
114	DSZ1																	
115	GT03																	
116	GT04																	
117	#LBL3																	
118	RCL3																	
119	x																	
120	RCL5																	
121	1																	
122	=																	
123	x																	
124	LSTX																	
125	1																	
126	+																	
127	ST05																	
128	=																	
129	ST+6																	
130	DSZ1																	
131	GT03																	
132	RCL6																	
133	#LBL4																	
134	RCL4																	
135	x																	
136	F1?																	
137	RTN																	
138	RCLA																	
139	GT06																	
140	#LBL4																	
141	RCL2																	
142	2																	
143	x																	
144	PI																	
145	=																	
146	ST07																	
147	RCL8																	
148	1																	
149	ST05																	
150	X \approx Y?																	
151	GT09																	
152	SF1																	
153	GSB6																	
154	CF1																	
155	RCL2																	
156	COS																	
157	x																	
158	2																	
159	x																	
160	PI																	
161	=																	
162	RCL7																	
163	+																	
164	RCLA																	
165	GT06																	
166	RTN																	
167	#LBL9																	
168	RCL7																	

LABELS		FLAGS		SET STATUS	
^a ν	^b $x \rightarrow f(x)$	^c $x \rightarrow P(x)$	^d $x \rightarrow I(x)$	^e Print?	^f Print
^a $\Gamma(\nu/2)$	^b ν even	^c $x \rightarrow P(x)$	^d Used	^e 1 Call b	^f ON OFF
^a Used	^b 1 Used	^c 2 Used	^d 3 Used	^e 2 Call c	^f 0 DEG
^a Print	^b Exit	^c Output P	^d Used	^e 3 Used	^f 1 GRAD
			^f Used	^e 3	^f 2 SCI
					^f 3 RAD
					^f 4 ENG
					^f 5 n
					^f 6 2

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.