

HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions Control Systems

INTRODUCTION

In an effort to provide continued value to its customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

FREQUENCY RESPONSE OF A TRANSFER FUNCTION	1
Computes magnitude and phase for a common transfer function.	
BODE OF TRANSFER FUNCTION THAT HAS EACH POLE AND ZERO GIVEN	5
Computes magnitude and phase for a general transfer function.	
BODE OF SECOND-ORDER OVER THIRD-ORDER TRANSFER FUNCTION	9
Computes magnitude and phase for another common transfer function.	
BODE OF SECOND-ORDER OVER SECOND-ORDER TIMES S**N TRANSFER FUNCTION .	14
Computes magnitude and phase for still another common transfer function.	
POLE-ZERO TO GROUP DELAY.	19
Computes group delay given a transmission function in the s-plane.	
ROUTH TEST FOR CONTINUOUS AND DISCRETE TIME SYSTEM STABILITY	23
Tests the location of the roots of a characteristic equation.	
CONVERT FREQUENCY RESPONSE -- OPEN LOOP, CLOSED LOOP	28
Converts open loop frequency response data to closed loop data.	
AID TO ROOT LOCUS PLOTS I -- REAL POLES	32
Helps in finding the poles of the closed-loop system.	
AID TO ROOT LOCUS PLOTS II -- COMPLEX POLES	36
Helps in finding the poles of the closed-loop system.	
CLASSICAL CONTROL GAINS	40
Computes the Ziegler-Nichols recommended settings for P, P1, and PID control.	
FIRST ORDER REGULATOR	45
Determines the optimal feedback gain to minimize a performance index.	
SECOND ORDER REGULATOR.	49
Calculates optimal feedback coefficients to minimize a performance index.	

Program Description I

1

Program Title Frequency Response of a Transfer Function

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables For transfer function of the form:

$$G(S) = \frac{K_1 (\tau_2 S + 1)}{S^3 (\tau_4 S + 1) (\tau_5 S + 1) \left(\frac{S^2}{\omega_7^2} + \frac{2\zeta_6 S}{\omega_7} + 1 \right)}$$

The program computes $\angle G(j\omega)$, $|G(j\omega)|$ and $\log |G(j\omega)|$ for any input frequency ω .

$\angle G(j\omega)$ is displayed upon completion of the calculation.

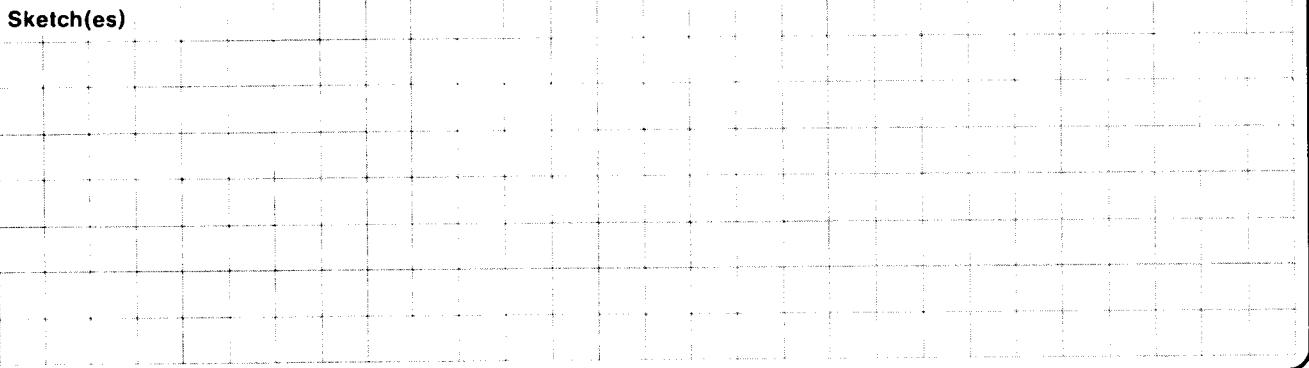
$|G(j\omega)|$ is stored in the stack (z and T) and in Register 8

$\log |G(j\omega)|$ is stored in the stack (y) and in register 9

Parameters $K_1, \tau_2, N_3, \tau_4, \tau_5, \zeta_6$ and ω_7 are stored in registers 1, 2, 3, 4, 5, 6 and 7 respectively.

Operating Limits and Warnings

For type 0 systems enter $N_3=0$


τ_2, τ_4 and/or τ_5 can be entered as 0. If there is no quadratic term enter ζ_6 as 0 and ω_7 very large compared to $\frac{1}{\tau_5}$. Where τ_5 is the smallest (other than zero) first order term used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Find $\angle G(j\omega)$, $|G(j\omega)|$ and $\log|G(j\omega)|$ for

$$G(s) = \frac{12(s+.6)}{s(s+1)(s^2+6s+36)} = \frac{.2(1.67s+1)}{s(s+1)(\frac{s^2}{36} + \frac{2 \times .5}{6}s + 1)}$$

For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec.

$$K_1 = .2$$

$$\tau_2 = 1.67$$

$$N_3 = 1$$

$$\tau_4 = 1$$

$$\tau_5 = 0$$

$$\zeta_6 = .5$$

$$\omega_7 = 6$$

Solution(s)

ω (rad/sec)	$\angle G(j\omega)$ degrees	$ G(j\omega) $	$\log G(j\omega) $
.01	-89.71	20.00	1.30 (26.02dB)
.1	-87.18	2.02	.30 (6.10dB)
1.0	-85.64	.28	-.55 (-11.09dB)
10.0	-224.56	.01	-1.86 (-37.29dB)

Reference(s) Automatic Control Engineering, F.H. Raven, McGraw-Hill, N.Y., 1968

This program is a translation of the HP-65 Users' Library program #00834A
submitted by Eugene Bahniuk.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Initialize			
3.	Enter the gain	k_1		
	Enter Γ_2 when 2.00 is displayed	Γ_2, N_3		2.00 7.00
	Repeat parameter entries in order N_3, Γ_4, Γ_5	$\Gamma_4, \Gamma_5, \zeta_6$		$2.00 \rightarrow 7.00$
	ζ_6 and ω_7	ω_7		
4.	When 8.00 is displayed enter the frequency (rad/sec)	ω		8.00
5.	Upon completion of the calculations / $G(j\omega)$ will be display			$ G(j\omega) $
6.	Amplitude ratio $ G(j\omega) $ is stored in the stack (z and T) and in register 8 To find $ G(j\omega) $ REC 8		RCL 8	$ G(j\omega) $
7.	Log $ G(j\omega) $ is in stack y and in register 9 To calculate decibels - REC 9, enter 20 and multiply		RCL 9	Log $ G(j\omega) $
8.	For another frequency go to Step 4			
9.	To change transfer function parameters enter all parameters or if only one parameter is to be changed enter the changed parameter(s) in the proper register(s) For Γ_4 in register 4 and so on.	k_1, Γ_2, N_3 $\Gamma_4 \Gamma_5 \zeta_6 \omega_7$	A R/S	1.00 thru 7.00
10.	For frequency response of the new transfer function enter ω when 8.00 is displayed (if only one parameter was changed first enter B)	ω	R/S	8.00

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	RCL3	36 03	
002	1	01		058	9	09	
003	STO1	35 46		059	0	00	
004	*LBL9	21 09	Start of parameter entry display 1.00	060	x	-35	
005	RCLI	36 46	and stop for entry of K_1	061	+	-55	
006	R/S	51	Store K_1	062	CHS	-22	
007	STO1	35 45	Disp 2.00 and stop for entry of τ_2	063	RCL2	36 02	
008	ISZ1	16 26 46	etc.	064	RCL9	36 08	
009	RCLI	36 46		065	x	-35	
010	9	09		066	RCL1	36 01	
011	X \Rightarrow Y?	16-34		067	x	-35	
012	GT09	22 09		068	RCL1	36 01	
013	RCL8	36 08		069	+P	34	
014	*LBL8	21 12	Compute $\angle G(j\omega)$, $ G(j\omega)$ and $\log G(j\omega) $	070	R↑	16-31	Replaces ω with $ G(j\omega) $
015	ST08	35 08		071	÷	-24	
016	RCL6	36 06		072	ST08	35 08	
017	RCL7	36 07		073	ENT↑	-21	Stores $\log G(j\omega) $
018	÷	-24		074	LOG	16 32	
019	2	02		075	ST09	35 09	
020	x	-35	This is $2\zeta_6\omega/\omega_7$	076	R↑	16-31	Computes $\angle G(j\omega)$
021	RCL8	36 08		077	R↑	16-31	
022	x	-35		078	+	-55	
023	1	01		079	RTN	24	
024	RCL8	36 08		080	R/S	51	
025	RCL7	36 07					
026	÷	-24					
027	ENT↑	-21	Results in $1-\omega^2/\omega_7^2$				
028	x	-35					
029	-	-45					
030	+P	34					
031	X \Rightarrow Y	-41					
032	RCL5	36 05					
033	RCL8	36 08					
034	x	-35					
035	1	01					
036	+P	34					
037	R↑	-31					
038	+	-55					
039	R↓	-31					
040	x	-35					
041	R↑	16-31					
042	RCL4	36 04					
043	RCL8	36 08					
044	x	-35					
045	1	01					
046	+P	34					
047	R↑	16-31					
048	x	-35					
049	R↑	-31					
050	+	-55					
051	R↑	16-31					
052	RCL8	36 08					
053	RCL3	36 03					
054	Y \times	31					
055	x	-35					
056	X \Rightarrow Y	-41					

REGISTERS

0	1 k_1	2 τ_2	3 N_3	4 τ_4	5 τ_5	6 ζ_6	7 ω_7	8 $\omega G(j\omega) $	9 $\log G(j\omega) $
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D		E		I

SET STATUS

FLAGS	TRIG	DISP
ON	OFF	
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>

DEG GRAD RAD FIX SCI ENG n 2

Program Description I

Program Title BODE OF TRANSFER FUNCTION THAT HAS EACH POLE AND ZERO GIVEN

Contributor's Name Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

Given a laplace transfer function:

$$F(s) = K \frac{(s+z_1+jz_1')(s+z_2+jz_2') \cdots (s+z_N+jz_N')}{(s+p_1+jp_1')(s+p_2+jp_2') \cdots (s+z_M+jz_M')}$$

$F(j\omega) = \text{Magnitude } \angle \theta$

$$\text{where magnitude } = |K| \frac{\sqrt{(z_1' + \omega)^2 + z_1^2} \sqrt{(z_2' + \omega)^2 + z_2^2} \cdots \sqrt{(z_N' + \omega)^2 + z_N^2}}{\sqrt{(p_1' + \omega)^2 + p_1^2} \sqrt{(p_2' + \omega)^2 + p_2^2} \cdots \sqrt{(p_M' + \omega)^2 + p_M^2}}$$

$$\text{and } \theta = \tan^{-1} \frac{z_1' + \omega}{z_1} + \tan^{-1} \frac{z_2' + \omega}{z_2} + \cdots + \tan^{-1} \frac{z_N' + \omega}{z_N}$$

$$-\tan^{-1} \frac{p_1' + \omega}{p_1} + \tan^{-1} \frac{p_2' + \omega}{p_2} + \cdots + \tan^{-1} \frac{p_M' + \omega}{p_M} + 2 \frac{|K| - K}{K} \tan^{-1} 1$$

also decibels = $20 \log_{10} \text{magnitude}$

N.B. zero_i = $-(z_i + jz_i')$

pole_i = $-(p_i + jp_i')$

Operating Limits and Warnings

K must be real and non-zero but may be negative.

About 4 seconds of computing time is required for each pole and each zero, whereas 00361A takes half as long.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Find gain (in decibels and volts/volt) and phase shift in degrees

For $F(s) = 0.09091 \frac{s + 62890}{s + 5717}$ at 3333 Hz.

Solution(s)

3333 [A] $\rightarrow 0.$

62890 [\uparrow] 0 [B] $\rightarrow 1.$

5717 [\uparrow] 0 [C] $\rightarrow -1.$

.09091 [R/S] $\rightarrow -1.$

[D] $\rightarrow -11.1$ Decibels

[R/S] $\rightarrow 2.77590 (10^{-1})$ Volts/Volt

[E] $\rightarrow -56.3$ Degrees

Reference(s)

HP-65 Program 00361A

This program is a translation of the HP-65 Users' Library Program #02582A submitted by E. P. Sansing.

User Instructions

1 BODE, EACH POLE AND ZERO GIVEN

1

hz/rps

z_i, z_j

p_i, p_i

DB/mag

angle

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	X ² Y	-41	
002	CLRG	16-53		058	+P	34	
003	ST06	35 06		059	GT00	22 00	
004	2	02	Frequency input	060	*LBLD	21 14	
005	x	-35	Subroutine	061	RCL1	36 01	
006	Pi	16-24	Convert Hertz to	062	LOG	16 32	
007	x	-35	routine/second	063	2	02	
008	ST05	35 05	Store rads/sec k	064	0	00	
009	1	01	will default to 1	065	x	-35	
010	ST01	35 01	unless step 9 used	066	DSP1	-63 01	
011	RCL2	36 02		067	R/S	51	
012	FIX	-11		068	RCL1	36 01	
013	DSP0	-63 00		069	DSP5	-63 05	Display magnitude
014	R/S	51		070	SCI	-12	
015	RCL6	36 06	Display 0.	071	RTN	24	
016	ST05	35 05	If input was	072	*LBLE	21 15	
017	RCL1	36 01	rads/sec recall	073	RCL2	36 02	Subroutine to call
018	RTH	24	input store rads/	074	DSP1	-63 01	phase angle
019	*LBLB	21 12	sec display 1.	075	FIX	-11	
020	RCL3	36 03	Subroutine for	076	RTN	24	
021	1	01	zero inputs	077	R/S	51	
022	+	-55	Increment N counter				
023	ST03	35 03					
024	ST07	35 07					
025	R↓	-31					
026	RCL5	36 05					
027	+	-55					
028	X ² Y	-41					
029	+P	34					
030	GT00	22 00					
031	*LBL0	21 13	Subroutine for pole				
032	RCL4	36 04	inputs				
033	1	01	Decrement -M pole				
034	-	-45	inputs	090			
035	ST04	35 04					
036	ST07	35 07					
037	R↓	-31					
038	RCL5	36 05					
039	+	-55					
040	CHS	-22					
041	X ² Y	-41					
042	+P	34					
043	1/X	52					
044	*LBL0	21 00		100			
045	STx1	35-35 01	Subroutine to				
046	R↓	-31	update magnitude				
047	RCL2	36 02	and angle				
048	+	-55					
049	1	01					
050	+R	44					
051	+P	34					
052	R↓	-31					
053	ST02	35 02					
054	RCL7	36 07	Display N or -M				
055	R/S	51					
056	0	00					

REGISTERS							
0	Magnitude M	phase ang. θ	3 zero counts i < N	4 pole counts -i > -M	5 radians per second	6 first input, frequency	7 last updated (N or -M)
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C	D	E	F	G	I

Program Description I

Program Title BODE OF SECOND-ORDER OVER THIRD-ORDER TRANSFER FUNCTION

Contributor's Name Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

$$F(s) = \frac{Qs^3 + Bs^2 + Cs + D}{Rs^4 + Bs^3 + Cs^2 + Es + F}$$

where Q and R are options, limited to [-1, 0, +1]
 G, H, L, M, N, and P may assume any real value

$$|\text{magnitude}| = \frac{\sqrt{(K-G\omega^2)^2 + (H\omega-Q\omega^2)^2}}{\sqrt{(P-M\omega^2+R\omega^4)^2 + (N\omega-L\omega^3)^2}}$$

where $\omega = 2\pi F$

$$\text{Decibels} = 20 \log_{10} |\text{magnitude}|$$

$$\text{Phase} = \tan^{-1} \frac{H\omega - Q\omega^3}{K - G\omega^2} - \tan^{-1} \frac{N\omega - L\omega^3}{P - M\omega^2 + R\omega^4}$$

in degrees (unless angular mode is set to radians or grads).

Operating Limits and Warnings Frequency, F , can not equal zero. Coefficient of s^3

in numerator is -1, 0, or +1. Coefficient of s^4 in denominator is -1, 0, or +1.

Display of phase will be between -180° and $+180^\circ$ ($-\pi$ and $+\pi$ radians or -200 and $+200$ grads).

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Find gain (in decibels and volts/volt) and phase shift in degrees

$$\text{For } F(s) = \frac{8s^3-1}{3s^3+8} \quad \text{at DC and } f=0.1 \text{ Hz}$$

Option 3 (see page 4) is required but the coefficient of s^3 in the numerator can be only -1, 0, or +1.

$$\text{Rewritten, } F(s) = \frac{s^3-0.125}{0.375s^3+1}$$

$$G=0 \quad H=0$$

$$k=-0.125 \quad L=0.375$$

$$M=0 \quad N=0$$

$$p=1 \quad f=10^{-50} \text{ (zero is not allowed) and } 0.1$$

Solution(s) Switch to Run: [GTO] 1 Switch to w/prgm: [g][DEL][RCL] 8[-]

Switch to Run: 0[↑] 0[↑] .125[CHS][A] → 0.00

.375 [↑] 0 [↑] 0 [↑] 1 [B] → 0.38

[EEX] 50 [CHS][D] →

[R/S] → $F = 0 \text{ Hz} \quad \begin{cases} \text{Gain} = -18.06 \text{ db} \\ \text{Gain} = 0.13 \text{ volts/volt} \end{cases}$

[E] → $\text{Phase} = 180.00 \text{ degrees}$

.1 [D] → $F = 0.1 \text{ Hz} \quad \begin{cases} \text{Gain} = -11.16 \text{ db} \\ \text{Gain} = 0.28 \text{ volts/volt} \end{cases}$

[R/S] → $\text{Phase} = -111.43 \text{ degrees}$

[E] →

Reference(s) This program is a translation of the HP-65 Users' Library Program #02272A submitted by Edward P. Sansing.

User Instructions

1 BODE OF $(Gs^2 + Hs + K) / (Ls^3 + Ms^2 + Ns + P)$

2

Numer

denom

gain

phase

User Instructions

1 BODE OF $(Gs^2+Hs+K) / (Ls^3+Ms^2+Ns+P)$ 2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	OPTIONS			
	Any combination of the four may be used; however, order of selection must be as follows:			
1	To use radians/second inputs instead of Hz. Switch to Run Switch to w/prgm Perform 4 times Switch to Run		GTO D SST f DEL GTO 2 SST f DEL 1	2114 35 14
2	For $db = 10 \times \log_{10}$ Magnitude Instead of $20 \times \log_{10}$ Magnitude Switch to Run Switch to w/prgm Single step 14 times Switch to Run		GTO 2 SST f DEL 1	2102 02 1632 01
3	For $s^3 + Gs^2 + Hs + K$ as numerator Switch to Run Switch to w/prgm (For $-s^3$, use +) Switch to Run		GTO 1 f DEL RCL 8 - 1	-24 36 08 -45
4	For $s^4 + Ls^3 + Ms^2 + Ns + P$ as denominator Switch to Run Switch to w/prgm (For $-s^4$, use -) Switch to Run		GTO 2 f DEL f LST X + 1	-24 16 -63 -55

97 Program Listing I

13

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	X ² Y	-41	
002	ST03	35 03	Numerator	058	=	-24	
003	R↓	-31	coefficients	059	ENT↑	-21	
004	ST02	35 02		060	LOG	16 32	
005	R↓	-31		061	2	02	
006	ST01	35 01		062	0	00	
007	RTN	24		063	X	-35	
008	*LBLB	21 12	Denominator	064	R/S	51	
009	ST07	35 07	coefficients	065	X ² Y	-41	
010	R↓	-31		066	RTN	24	
011	ST06	35 06		067	*LBLB	21 15	Compute Phase
012	R↓	-31		068	R↑	16-31	
013	ST05	35 05		069	R↑	16-31	
014	R↓	-31		070	RCL9	36 09	
015	ST04	35 04		071	-	-45	
016	RTN	24		072	CHS	-22	
017	*LBLD	21 14	Convert degrees	073	LSTX	16-63	
018	2	02	to radians	074	X ² Y	-41	
019	X	-35		075	1	01	
020	PI	16-24		076	→R	44	
021	X	-35		077	→F	34	
022	ST08	35 08	Compute F(s)	078	R↓	-31	
023	RCL2	36 02		079	R/S	51	
024	RCL8	36 08		080	R↓	-31	
025	÷	-24		081	RTN	24	
026	*LBL1	21 01		082	R/S	51	
027	RCL3	36 03					
028	RCL9	36 08					
029	X ²	53					
030	÷	-24					
031	RCL1	36 01					
032	-	-45					
033	→F	34					
034	ST09	35 09		090			
035	R↓	-31					
036	RCL6	36 06					
037	RCL8	36 08					
038	÷	-24					
039	RCL4	36 04					
040	RCL8	36 08					
041	X	-35					
042	-	-45					
043	RCL7	36 07		100			
044	RCL8	36 08					
045	X ²	53					
046	÷	-24					
047	*LBL2	21 02					
048	RCL5	36 05					
049	-	-45					
050	RCL9	36 09					
051	R↓	-31					
052	→F	34					
053	R↓	-31					
054	R↓	-31					
055	ST09	35 09					
056	R↓	-31					

REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E		I			

Program Description I

Program Title BODE OF 2ND - OVER 2ND - ORDER TIMES S**N TRANSFER FUNCTION

Contributor's Name Hewlett-Packard Company

Address 1000 N. E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

$$F(s) = \frac{Qs^3 + Gs^2 + Hs + K}{s^N(Rs^3 + Ls^2 + Ms + P)}$$

where: Q and R are options, limited to [-1, 0, +1]
 G, H, K, L, M, and P may assume any real value
 N is a non-negative integer [0, 1, 2, ...]

$$|Magnitude| = \frac{\sqrt{(K-G\omega^2)^2 + (H\omega-Q\omega^3)^2}}{\omega^N \sqrt{(P-L\omega^2)^2 + (M\omega-R\omega^3)^2}}$$

where: $\omega = 2\pi F$

$$\text{Decibels} = 20 \log_{10} |Magnitude|$$

$$\text{Phase} = \tan^{-1} \frac{H\omega-Q\omega^3}{K-G\omega^2} - N \sin^{-1} 1.0 - \tan^{-1} \frac{M\omega-R\omega^3}{P-L\omega^2}$$

in degrees (unless angular mode is set to radians or grads).

Operating Limits and Warnings Frequency, F, can not equal zero. Power, N, is a non-negative integer. Coefficient of s^3 in numerator or denominator is -1, 0, or +1 display of phase will be between -180° and $+180^\circ$ ($-\pi$ and $+\pi$ radians or -200 and +200 grads).

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

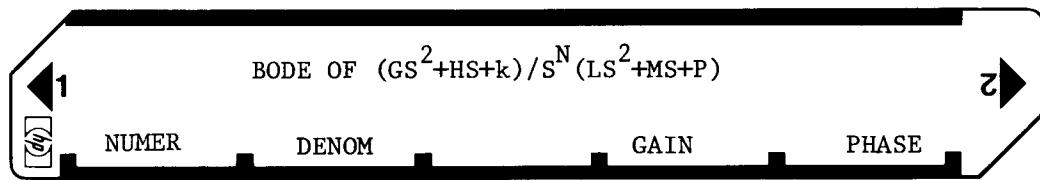
Sample Problem(s)

Find gain (in decibels and volts/volt) and phase shift in degrees

$$\text{For } F(s) = \frac{8s^3 - 1}{s^2(s^2-2)} \text{ at } F = 0.1 \text{ Hz and } 1.0 \text{ Hz}$$

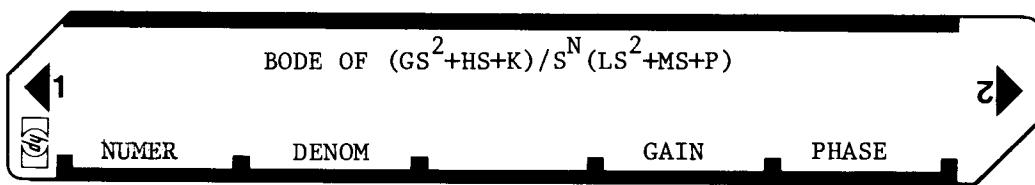
Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1

$$\text{Rewritten, } F(s) = \frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$$


So	G = 0	H = 0
K = -0.125		N = 2
L = 0.125		M = 0
P = -0.25		F = 0.1 and 1.0

Solution(s) Switch to Run: [GTO] 1 Switch to w/prgm: [g][DEL][g][DEL][RCL]8[F^-][F^][{-}]

Switch to Run: 0 [↑] 0 [↑] .125 [CHS][A] →	0.00
2 [↑] .125 [↑] 0 [↑] .25 [CHS][B] →	2.00
.1 [D] →	Gain = 7.42 db
[R/S] →	F = 0.1 Hz Gain = 2.35 volts/volt
[E] →	Phase = -116.74 degrees
1 [D] →	Gain = 1.67 db
[R/S] →	F = 1.0 Hz Gain = 1.21 volts/volt
[E] →	Phase = -90.03 degrees


Reference(s) This program is a translation of the HP-65 Users' Library Program #02273A submitted by Edward P. Sansing.

User Instructions

User Instructions

17

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	OPTIONS			
	Any combination of the four may be used; however, order of selection must be as follows:			
1.	To use radians/sec. inputs instead of Hz			
	Switch to run			
	Switch to W/PRGM			
	Perform 4 times			
	Switch to run			
2.	For $dB - 10 \times \log_{10}$ Magnitude			
	Instead of $20 \times \log_{10}$ Magnitude			
	Switch to run			
	Switch to W/PRGM			
	Single step 16 times			
	'	1		
	Switch to run			
3.	For $S^3 + GS^2 + HS + k$ as numerator			
	Switch to run			
	Switch to W/PRGM			
	(for $-S^3$, use +)			
	Switch to RUN			
4.	For $S^N (S^3+LS^2+MS+P)$			
	As denominator switch to run			
	Switch to W/PRGM			
	(for $-S^3$, use +)			
	Switch to RUN			

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS		
001	*LBLA	21 11		057	RCL9	36 09			
002	ST03	35 03		058	R↓	-31			
003	R↓	-31		059	+P	34			
004	ST02	35 02	Store numerator coefficients	060	R↑	16-31			
005	R↓	-31		061	÷	-24			
006	ST01	35 01		062	R↓	-31			
007	RTN	24		063	-	-45			
008	*LBLB	21 12		064	CHS	-22			
009	ST07	35 07		065	R↑	16-31			
010	R↓	-31		066	ENT↑	-21			
011	ST05	35 06	Store denominator coefficients & power	067	LOG	16 32	Total phase magnitude		
012	R↓	-31		068	2	02			
013	ST05	35 05		069	0	00			
014	R↓	-31		070	X	-35			
015	ST04	35 04		071	R/S	51			
016	RTN	24		072	X \neq Y	-41			
017	*LBLD	21 14	Compute gain	073	RTN	24			
018	2	02		074	*LBLB	21 15			
019	X	-35		075	R1	16-31			
020	Pi	16-24	These four program steps are deleted for inputting radians/second	076	1	01	Compute phase		
021	X	-35		077	+R	44			
022	ST06	35 06		078	+P	34			
023	RCL6	36 06		079	R↓	-31			
024	*LBL2	21 02		080	RTN	24			
025	RCL7	36 07		081	R/S	51			
026	RCL8	36 08							
027	÷	-24							
028	RCL5	36 05							
029	RCL8	36 08							
030	X	-35							
031	-	-45							
032	+P	34							
033	RCL8	36 08							
034	RCL4	36 04							
035	Y \times	31							
036	X	-35							
037	1	01							
038	SIN $^{-1}$	16 41							
039	RCL4	36 04							
040	X	-35							
041	X \neq Y	-41							
042	R↓	-31							
043	+	-55							
044	R↑	16-31							
045	ST09	35 09							
046	R↓	-31							
047	RCL3	36 03							
048	RCL8	36 08							
049	÷	-24							
050	RCL1	36 01							
051	RCL8	36 08							
052	X	-35							
053	-	-45							
054	RCL2	36 02							
055	*LBL1	21 01							
056	X \neq Y	-41							
REGISTERS									
0 G, coeff of S ₂	1 G, coeff of S ₂	2 H, coeff of S ₁	3 k, coeff of S ₀	4 N, power of S	5 L, coeff of S ₂	6 M, coeff of S ₁	7 p, coeff of S ₀	8 ω RAD/SEC	9 DENOM MAGNIT
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

SET STATUS		FLAGS	TRIG	DISP
ON	OFF	0	DEG	FIX
<input type="checkbox"/>	<input checked="" type="checkbox"/>	1	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input type="checkbox"/>	<input checked="" type="checkbox"/>	2	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<input type="checkbox"/>	<input checked="" type="checkbox"/>	3	<input checked="" type="checkbox"/>	<input type="checkbox"/>
GRAD		1	<input type="checkbox"/>	SCI
RAD		2	<input type="checkbox"/>	ENG
		3	<input checked="" type="checkbox"/>	n 2

Program Description I

Program Title Pole-Zero to Group Delay

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables Given a transmission function in the S-Plane:

$$\frac{V_0}{E_i} = \frac{k[s - (\sigma_{z1} + j\omega_{z1})]}{[s - (\sigma_{p1} + j\omega_{p1})]} \frac{[s - (\sigma_{z2} + j\omega_{z2})]}{[s - (\sigma_{p2} + j\omega_{p2})]} \cdots \frac{[s - (\sigma_{zn} + j\omega_{zn})]}{[s - (\sigma_{pn} + j\omega_{pn})]}$$

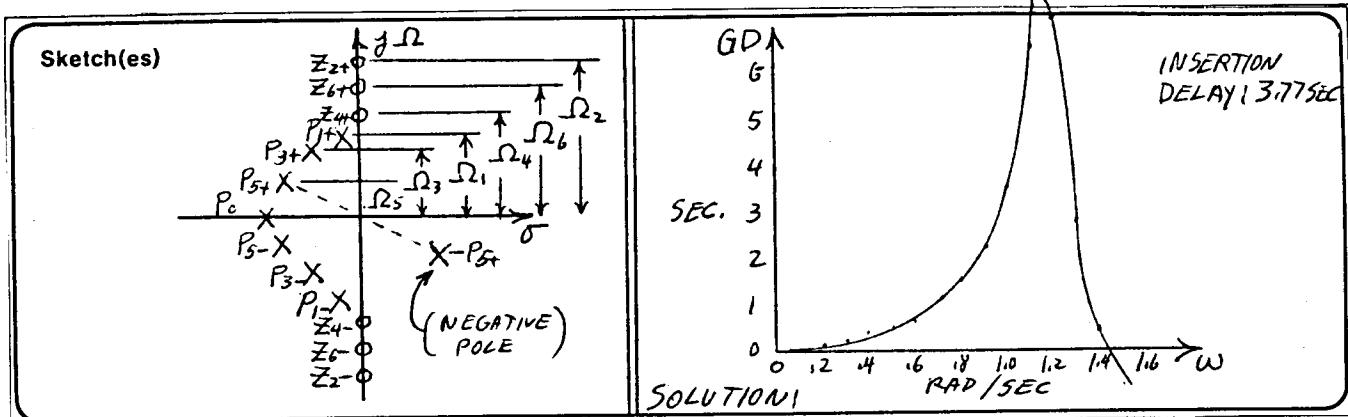
in which poles & zeros are of the form: $\sigma + j\omega$

This program evaluates the expression for time response:

$$T = \sum_{k=1}^m d_{pk} - \sum_{k=1}^n d_{zk} \text{ where } d_k = \frac{\sigma_k}{\sigma_k^2 + (\omega - \omega_k)^2} \quad \text{for}$$

either poles or zeros. A negative quantity for T indicates delay so that for positive values of time delay

$$TD = -T = \sum_{k=1}^n d_{zk} - \sum_{k=1}^m d_{pk}$$


Group delay: $GD = TD - TD_0$ where is the time delay at reference frequency ω_0 .
As $\omega_0 \rightarrow 0$, $TD_0 \rightarrow$ insertion delay.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

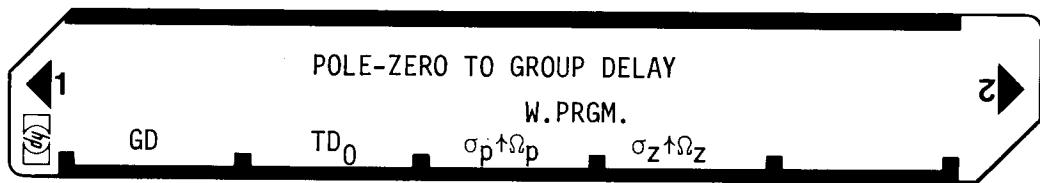
Program Description II

Sample Problem(s) A 7 pole Cauer - Chebyshev filter normalized to $R = 1\Omega$ and $\omega_0 = 1$ rad/sec has pole & zero coordinates as follows:

σ_0	σ_1	σ_3	σ_5	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6
-.78683	-.12406	-.3904	-.65874	1.16504	4.3544	.99847	2.0445	.60818	2.4903

Tabulate the group delay referred to $\omega = .001$ from $\omega = .1$ to $\omega = 1.5$ and generate a normalized group delay curve.

SOLUTION: Note that all zeros lie on the $j\Omega$ axis resulting in no contribution to delay. Register loading is shown below. Pole zero data is called up with the following sequence written in step 2 of the instructions. Results are tabulated below and graphed at top of page.


Solution(s)	In W. PRGM MODE:	ω RAD/SEC	TD/GD SEC	ω RAD/SEC	GD SEC
REGISTER:	$-P_0 : .787 \uparrow OC$.001	TD=3.770	.8	1.544
$R4=-\sigma_1=0.12406$	$-P_{1+} : RCL 4 RCL 5 CHS C$.1	GD=0.015	.9	2.282
$R5=\Omega_1=1.16504$	$-P_{1-} : RCL 4 RCL 5 C$.2	0.064	1.0	3.647
$R6=-\sigma_3=0.3904$	$-P_{3+} : RCL 6 RCL 7 CHS C$.3	0.150	1.1	6.663
$R7=\Omega_3=0.99847$	$-P_{3-} : RCL 6 RCL 7 C$.4	0.281	1.2	7.220
$R8=-\sigma_5=0.65874$	$-P_{5+} : RCL 8 .608 CHS C$.5	0.462	1.3	2.842
	$-P_{5-} : RCL 8 .608 C$.6	0.708	1.4	0.390
	TOTAL: 34 steps	.7	1.052	1.5	-0.808

Reference(s)

Handbook of Filter Synthesis - A. Zverev 1967 p. 149.

This program is a translation of the HP-65 program #04775A submitted by Charles R. Olson.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program & initialize		GTO 0	
2.	Switch to W. PRGM mode. Enter 3 digit: a) real component of negative * of 1st pole b) imag. comp. of neg. of 1st pole c) repeat (a) & (b) for each pole d) real comp. of neg. of 1st zero e) imag. comp. of neg of 1st zero	$-\sigma_{p1}$ RAD/SEC $-\Omega_{p1}$ RAD/SEC $-\sigma_{z1}$ RAD/SEC $-\Omega_{z1}$ RAD/SEC	\uparrow C \uparrow D	11 REGISTERS AND 183 STEPS AVAIL.
3.	Record on auxil. card. switch to RUN			
4.	Enter ω for GD=0	ω_0 RAD/SEC		
5.	Calculate time delay at REF FREQ.		B	
6.	Enter ω	ω RAD/SEC		
7.	Calculate group delay		A	GD SEC
8.	Repeat (6) & (7) for each freq.			
NOTES: * 1) Since poles & zeros often lie in the left half plane, entering negative vectors results in positive values saving many CHS steps.				
2) Any pole or zero with real comp. equal to zero may be omitted in step 2				
3) Use registers 4-8 and A-I to store coordinates of critical poles & zeroes. Use RCL () in step 2 instead of 3 digit data and enter \uparrow .				

97 Program Listing I

Program Description I

Program Title ROUTH TEST FOR CONTINUOUS AND DISCRETE TIME
SYSTEM STABILITY

Contributor's Name JAMES U. WISEMAN JR.

Address 3926 CANYON RD

City LAFAYETTE

State CALIF

Zip Code 94549

Program Description, Equations, Variables DESIGNED TO TEST THE LOCATION OF TIME ROOTS
OF A CHARACTERISTIC EQUATION IN TIME FORM:

$G_0 p^n + G_1 p^{n-1} + \dots + G_{n-1} p + G_n = 0$ p is 's' or 'z' DEPENDING ON SYSTEM
AT HAND

ROUTH TEST FOR RHP ROOTS: REPEATED $n+1$ TIMES:

$$\# \text{RHP Roots} = \sum (\# \text{Times } f_k < 0)$$

$$f_k = \frac{G_0}{G_1}, \quad \text{for } k=1, 3, 5, \dots \quad \left\{ \begin{array}{l} G_{i-1} = G_i \\ G_i = G_{i+1} - f_{i-2} G_{i-2} \end{array} \right. \\ \text{Loop,}$$

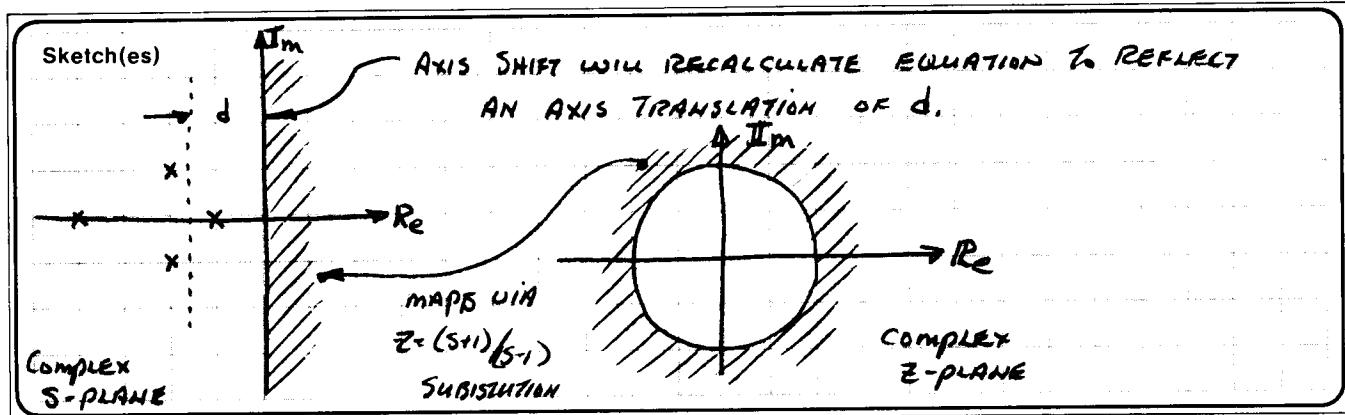
Axis SHIFT FOR GAIN OFFSET d : $(p \leftarrow p' + d)$

$$\begin{array}{l} G_1 = G_1 + G_0 d \\ G_2 = G_2 + G_1 d \\ \vdots \\ G_n = G_n + G_{n-1} d \end{array} \quad \begin{array}{l} G_1 = G_1 + G_0 d \\ G_2 = G_2 + G_1 d \\ \vdots \\ G_{n-1} = G_{n-1} + G_{n-2} d \end{array} \quad \dots \quad \begin{array}{l} G_1 = G_1 + G_0 d \\ G_2 = G_2 + G_1 d \end{array} \quad \begin{array}{l} G_1 = G_1 + G_0 d \\ G_2 = G_2 + G_1 d \end{array}$$

$Z = \frac{(s+1)}{(s-1)}$ SUBSTITUTION:

$$\begin{array}{l} G_0' = G_0 + f_{k_0} G_1 \\ G_1' = G_1 + f_{k_1} G_2 \\ G_2' = G_2 + f_{k_2} G_3 \\ \vdots \\ G_n' = G_n + f_{k_n} G_{n-1} \end{array}$$

$$\text{WHERE: } f_{k_j} = \frac{(-1)^j j!}{(i-j)! j!} \quad \begin{array}{l} G_0 = G_0 + f_{k_0} G_n \\ G_1 = G_1 + G_0 + f_{k_1} G_n \\ G_2 = G_2 + G_1 + f_{k_2} G_n \\ \vdots \\ G_n = G_{n-1} + f_{k_n} G_n \end{array}$$


Operating Limits and Warnings

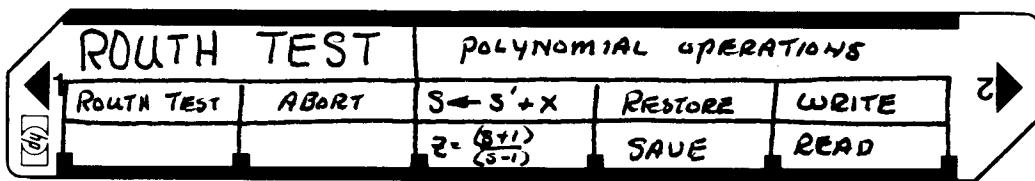
- 1) LIMITED BY CALCULATOR REGISTERS $\#^{15}$ TO 20th ORDER
- 2) ROUTH TEST WITH VARIOUS ROOTS ALONG IMAGINARY
AXIS MAY INDICATE INSTABILITY. SHIFT AXIS SLIGHTLY
TO CHECK ACTUAL LOCATION OF ROOTS.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)


- 1) Does $s^4 + 2s^3 + s^2 + 4s + 4$ represent a stable continuous time system?
 - ENTER poly. By pressing 'fe'. In response to the FLASHING 'f' key in a. (1), in response to the FLASHING 'i' key in a. (2) etc etc until a_4 (4) is entered in response to the FLASHING 'y'. STORE poly. By pressing 'fd' (ignore FLASHING 's').
 - EXECUTE ROUTH TEST By pressing 'A'. CALCULATOR WILL PAUSE DISPLAYING 1st COLUMN OF ROUTH ARRAY: 1, 2, -1, 12, 4 AND FLASH (or print) THE NUMBER OF RHP ROOTS: 2. UNSTABLE
- 2) RECALCULATE $p^4 + 9p^3 + 29p^2 + 41p + 20$ to reflect an axis shift of $d = -1.5$ (SEE ABOVE SKETCH)
 - ENTER poly. AS IN PROB. #1 PART (a)
 - KEY-IN -1.5 PRESS 'C'. AT END OF CALCULATION, PRINT OUT NEW POLYNOMIAL BY 'E': $p^4 + 3p^3 + 2p^2 + 1.25p - 1.5625$
- 3) Does $z^4 + 3z^3 + 1z^2 + .05z + .001$ represent a stable discrete time system?
 - ENTER POLY. AS IN PROB. #1 PART (a)
 - MAKE $Z = (S+1)/(S-1)$ SUBSTITUTION BY 'fc'. RESULTS CAN BE FOUND BY 'E' TO BE: $1.451s^4 + 4.496s^3 + 5.806s^2 + 3.496s + .751$
 - EXECUTE ROUTH TEST BY PRESSING 'A'. AS IN PROB. #1 PART (b) CALCULATOR WILL PAUSE AT $1.451, 4.496, 4.678, 2.774, 0.751$ STOPPING WITH "0" IN THE DISPLAY, THE #RHP :. STABLE

Reference(s)

- 1) Y. TAKAHASHI, M. RABINS, AND D. AUSLANDER, CONTROL, ADDISON-WESLEY, READING, MASS., 1970
- 2) JURY, E.I., THEORY AND APPLICATION OF THE Z TRANSFORM METHOD, NEW YORK: WILEY 1964
- 3) J. WISEMAN, RECURSIVE ALGORITHMS FOR ROUTH TEST IN CONT. & DISCRETE TIME, TRANSACTIONS OF ASME, JDSMC TO BE PUBLISHED.

User Instructions

25

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1)	READ-IN BOTH SIDES OF CARD			0.
2)	READ IN POLYNOMIAL B_0 , 'f e' (READ) 'm' WILL BE FLASHED FOR EACH C_m , REQUESTING USER TO KEY-IN C_m DURING PAUSE, ONCE ENTRY HAS BEEN MADE NEXT 'm' IS FLASHED. STOP DATA ENTRY REQUEST BY 'f d' (SAVE) - THIS WILL SAVE C_m 'S IN SECONDARY REG'S IF $n \leq 10$, OTHERWISE IT WILL STORE C_m 'S ON SCRATCH CARD VIA 'c rd'	C_m	f e f d	m
3)	IF DISCRETE TIME SYSTEM, MAKE $Z = (S+1)/(S-1)$ SUBSTITUTION BY 'f c'. THIS WILL GENERATE A NEW POLYNOMIAL IN PLACE OF ORIGINAL, REFLECTING SUBSTITUTION		f c	0.
4)	IF AXIS SHIFT IS DESIRED, ENTER LOCATION OF NEW ORIGIN IN X. EXECUTE SHIFT BY 'c' ($S \leftarrow S' + X$). THIS WILL GENERATE A NEW POLYNOMIAL IN PLACE OF ORIGINAL, REFLECTING AXIS SHIFT	OFFSET	c	0.
5)	ROUTH TEST IS EXECUTED BY 'A' (ROUTH TEST) PROGRAM PAUSES DURING EXECUTION TO DISPLAY ELEMENTS OF 1 ST COLUMN IN ROUTH ARRAY. NO. OF SIGN CHANGES INDICATES NO. OF RHP ROOTS. PROGRAM HALTS, PRINTING # OF RHP ROOTS.		A	# RHP Roots
<u>NOTE:</u>				
a)	RECURSIVE ALGORITHMS ARE DESTRUCTIVE IN THAT THEY DESTROY THE ORIGINAL POLYNOMIAL. FOR ADDITIONAL RUNS, DATA MUST BE RESTORED VIA 'D' (RESTORE) IF $n \leq 10$ OTHERWISE BY SCRATCH CARD FROM STEP 2.		D	
b)	POLYNOMIAL MAY BE REVIEWED OR PRINTED FOR RECORDS BY 'E' (WRITE).		E	
c)	IF AN ERROR IS MADE DURING C_m ENTRY AND DATA IS 'TAKEN', PRESS 'B' (ABORT) AND START OVER WITH 'f e'		f e	

67 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL A	31 25 11			STO (I)	33 24	
	SCI	32 23			DSZ	31 33	
	DSP 3	23 03			R↓	35 53	
	Ø	00		060	STO (I)	33 24	
	STO D	33 14			RCL E	34 15	
	*LBL Ø	31 25 00			X>Ø?	31 81	
	RCL Ø	34 00			GTO Ø	22 00	
	PAUSE	35 72			RCL Ø	34 00	
	RCL 1	34 01			PAUSE	35 72	
010	X≠Ø?	31 61			RCL D	34 14	
	GTO 2	22 31 11			FIX	31 23	
	CLX	44			DSP Ø	23 00	
	FEX	43			PRINTX	31 84	
	CHS	42		070	SPACE	35 84	
	S	05			R/S	84	
	Ø	00			GTO B	22 12	
	STO 1	33 01			*LBL C	31 25 13	
	*LBL 2	32 25 11			X=Ø?	31 51	
	÷	81			GTO B	22 12	
020	STO C	33 13			SCI	32 23	
	X>Ø?	31 81			DSP 4	23 04	
	GTO 2	22 31 11			PRINTX	31 84	
	RCL D	34 14			STO D	33 14	
	1	01		080	RCL E	34 15	
	+	61			STO C	33 13	
	STO D	33 14			*LBL 2	31 25 02	
	*LBL 2	32 25 11			Ø	00	
	1	01			ST I	35 33	
	ST I	35 33			*LBL 3	31 25 03	
030	*LBL 1	31 25 01			RCL (I)	34 24	
	RCL (I)	34 24			RCL D	34 14	
	DS2	31 33			X	71	
	STO (I)	33 24			1SZ	31 34	
	STO (I)	33 24		090	STO + (I)	33 61 24	
	1SZ	31 34			RC I	35 34	
	1SZ	31 34			RCL C	34 13	
	RCL (I)	34 24			X≠Y?	32 61	
	1SZ	31 34			GTO 3	22 03	
	RCL (I)	34 24			1	1	
040	RCL C	34 13			-	51	
	X	71			STO C	33 13	
	-	51			X≠Ø?	31 61	
	DS2	31 33			GTO Z	22 02	
	DS2	31 33		100	GTO B	22 12	
	STO (I)	33 24			*LBL C	32 25 13	
	1SZ	31 34			CFZ	35 61 02	
	1SZ	31 34			1	01	
	RC I	35 34			STO D	33 14	
	RCL E	34 15			*LBL B	32 25 12	
050	X>Y?	32 81			Ø	00	
	GTO 1	22 01			ST I	35 33	
	1	01			*LBL 4	31 25 04	
	-	51			6SB 5	31 22 05	
	STO E	33 15		110	6SB 6	31 22 06	
	RCL (I)	34 24			RCL (I)	34 24	
	Ø	00			6SB 6	31 22 06	

REGISTERS

0	Q_0	1	Q_1	2	Q_2	3	Q_3	4	...	5	...	6	...	7	...	8	...	9	...
S_0	$G_{10} \text{ or } G_0$	S_1	$G_{11} \text{ or } G_1$	S_2	$G_{12} \text{ or } G_2$	S_3	$G_{13} \text{ or } G_3$	S_4	...	S_5	...	S_6	...	S_7	...	S_8	...	S_9	...
A	Q_{20}	B	SCRATCH	C	SCRATCH	D	SCRATCH	E	11							I	RESERVED		

67 Program Listing II

27

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	X	71			9	09	
	+	61		170	RCL E	34 15	
	RCL (I)	34 24			X \leq Y?	32 71	
	X \leq Y	35 52			GTO d	22 81 14	
	STO + (I)	33 61 24			W/DATA	31 41	
	IS2	31 34			GTO B	22 12	
	RCL D	34 14			*LBL d	32 25 14	
120	RC I	35 34			STO B	33 12	
	X \neq Y?	32 61			ST I	35 33	
	SF2	35 51 02			*LBL 9	31 25 09	
	R2 ↑	35 54			RCL (I)	34 24	
	F2 ?	35 71 02		180	P \neq S	31 42	
	GTO 4	22 04			STO (I)	33 24	
	GSBS	31 22 05			P \neq S	31 42	
	RCL (I)	34 24			DS2	31 33	
	X	71			GTO 9	22 09	
	+	61			RCL Ø	24 00	
130	STO (I)	33 24			P \neq S	31 42	
	RCL E	34 15			STO Ø	33 00	
	RCL D	34 14			GTO B	22 12	
	X = Y?	32 51			*LBL E	32 25 15	
	GTO B	22 12		190	CF3	35 61 03	
	1	01			Ø	00	
	+	61			ST I	35 33	
	STO D	33 14			*LBL 7	31 25 07	
	GTO b	22 31 12			PAUSE	35 72	
	*LBL 5	31 25 05			F3 ?	35 71 03	
140	RC I	35 34			GTO E	22 31 15	
	X \neq Ø?	31 61			GTO 7	22 07	
	GTO S	22 05			*LBL E	32 25 15	
	1	01			STO (E)	33 24	
	STO C	33 13		200	RC I	35 34	
	RTN	35 22			STO E	33 15	
	*LBL S	31 25 05			IS2	31 34	
	RCL D	34 14			RC I	35 34	
	-	51			GTO 7	22 07	
	1	01			*LBL E	31 25 15	
150	-	51			SPACE	35 84	
	RCL C	34 13			SCI	32 23	
	X	71			DSPS	23 05	
	STO C	33 13			Ø	00	
	RC I	35 34		210	ST I	35 33	
	N!	35 81			*LBL 8	31 25 08	
	÷	81			RCL (I)	34 24	
	RTN	35 22			PRINT X	31 84	
	*LBL G	31 25 06			IS2	31 34	
	RCL D	34 14			RCLE	34 15	
160	X \neq I	35 24			RC I	35 34	
	STO D	33 14			X \leq Y?	32 71	
	R ↓	35 33			GTO 8	22 08	
	RTN	35 22			SPACE	35 84	
	*LBL D	31 25 14		220	*LBL B	31 25 12	
	RCL B	34 12			CLX	44	
	STO E	33 15			FIX	31 23	
	P \neq S	31 42			DSP Ø	23 00	
	*LBL d	32 25 14			R/S	84	

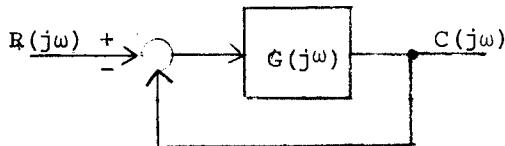
LABELS

LABELS					FLAGS	SET STATUS		
A	B	C	D	E	0	FLAGS	TRIG	DISP
a X	b X	c $Z = \frac{(S+1)}{(S-1)}$	d SAUCE	e READ	0	ON OFF		
0 X	1 X	2 X	3 K	4 K	1	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
5 V	6 X	7 X	8 K	9 X	2 Z SUB.	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
					3 DATA ENTRY	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>	n 0	

Program Description I

Program Title CONVERT FREQUENCY RESPONSE, OPEN LOOP, CLOSED LOOP

Contributor's Name Hewlett-Packard Company


Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables For a linear, unity feedback control system this program converts open loop frequency response data $\angle G(j\omega)$ (or $\log|G(j\omega)|$ or $20\log|G(j\omega)|$) to closed loop data $\angle \frac{C}{R}(j\omega)$ and $|\frac{C}{R}(j\omega)|$ (or $\log|\frac{C}{R}(j\omega)|$ or $20\log|\frac{C}{R}(j\omega)|$)

$$\text{where } \frac{C}{R}(j\omega) = \frac{G(j\omega)}{1+G(j\omega)}$$

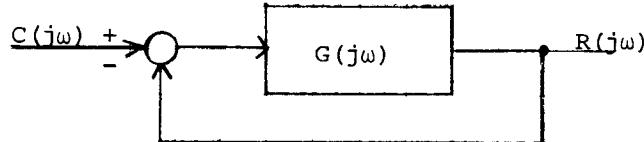
This program also converts from closed loop data

$$\angle \frac{C}{R}(j\omega) \text{ and } \left| \frac{C}{R}(j\omega) \right|$$

$$\angle G(j\omega) \text{ and } |G(j\omega)|.$$

The relationship used is: $g(j\omega) = \frac{\frac{C}{R}(j\omega)}{1 - \frac{C}{R}(j\omega)}$

Operating Limits and Warnings


- When the input phase angle cosine ($\angle \frac{C}{R}(j\omega)$ or $\angle G(j\omega)$) is zero (e.g. $\angle \frac{C}{R}(j\omega) = -90$) the conversion is inaccurate beyond the 6th decimal place.
- When input is to be $|G(j\omega)|$ or $|\frac{C}{R}(j\omega)|$ label C is used and $|\frac{C}{R}(j\omega)|$ or $|G(j\omega)|$ is calculated. Similarly when the input is $\log|G(j\omega)|$ or $\log|\frac{C}{R}(j\omega)|$ then $\log|\frac{C}{R}(j\omega)|$ or $\log|G(j\omega)|$. Similarly when input is in decibels the result is decibels.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

29

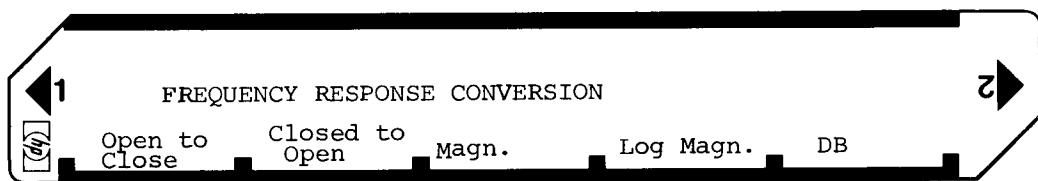
Sketch(es)

Systems having feedback elements can be converted to an equivalent unity feedback system. See the reference for methods of determining equivalent unity feedback systems.

Sample Problem(s) For the system $G(j\omega) = \frac{4}{j\omega(1 + .25j\omega)(1 + .0625j\omega)}$

For $\omega = .1, 1$ and 10 rad/sec $\angle G(j\omega)$ and $|G(j\omega)|$ are:

ω rad/sec	$\angle G(j\omega)$ degrees	$ G(j\omega) $
.1	- 91.79	39.99
1	-107.61	3.87
10	-190.20	.13


Determine closed loop frequency response for $\omega = .1, 1, 10$ rad/sec

Solution(s) For each frequency

ω	$\angle \frac{C}{R}(j\omega)$ degrees	$ \frac{C}{R}(j\omega) $
.1	- 1.43	1.00
1	- 14.96	1.05
10	-191.71	.15

Reference(s) Raven, F.H., Automatic Control Engineering, McGraw-Hill, New York. 1968.
This program is a translation of the HP-65 Users' Library Program #00892A submitted by Eugene Bahniuk.

User Instructions

97 Program Listing I

31

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	*LBL2	21 02	
002	0	00	Ind. that conv. from open to close	058	CF0	16 22 00	
003	ST06	35 06	loop is to be performed	059	LOG	16 32	
004	*LBL5	21 05	Enter phase	060	2	02	
005	0	00		061	0	00	
006	R/S	51		062	X	-35	
007	ST04	35 04		063	ST01	35 01	
008	RCL6	36 06		064	R/S	51	
009	-	-45	These steps determ. if vector add. or vecotr sub. is performed				
010	1	01					
011	R/S	51					
012	*LBL8	21 12	For closed to open loop conv. Note:				
013	1	01	Vector sub. occurs	070			
014	8	08	by reversing vector				
015	0	00	direction then				
016	ST06	35 06	add resultin vector				
017	GT05	22 05					
018	*LBL0	21 13					
019	X#Y	-41					
020	R4	-31					
021	ST05	35 05					
022	+R	44	Steps 22 through 34				
023	1	01	perform the				
024	+	-55	complex algebra	080			
025	+P	34					
026	RCL5	36 05					
027	X#Y	-41					
028	=	-24					
029	ST01	35 01					
030	X#Y	-41					
031	CHS	-22					
032	RCL4	36 04					
033	+	-55					
034	ST02	35 02		090			
035	X#Y	-41					
036	F1?	16 23 01					
037	GT01	22 01					
038	F0?	16 23 00					
039	GT02	22 02					
040	R/S	51					
041	*LBL0	21 14	Magnitudes are				
042	10 ^x	16 33	logarithmic				
043	SF1	16 21 01					
044	GT0C	22 13		100			
045	*LBL1	21 01					
046	CF1	16 22 01					
047	LOG	16 32					
048	ST01	35 01					
049	R/S	51					
050	*LBL0	21 15	Indicates magnitudes				
051	2	02	are decibels				
052	0	00					
053	÷	-24					
054	10 ^x	16 33		110			
055	SF0	16 21 00					
056	GT0C	22 13					

REGISTERS

0	1 computed magnitude	2 computed phase	3	4 entered phase	5 Ent. magn	6 0	7	8	9
S0	S1	S2	S3	S4	G(jw) or C R	180	S7	S8	S9
A	B	C	D	E			I		

Program Description I

Program Title AID TO ROOT LOCUS PLOTS I - REAL POLES

Contributor's Name Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables Given the forward transfer function of unity gain feedback system

$$KG(s) = \frac{K(s+z_1)(s+z_2)}{s(s+p_1)(s+p_2)(s+p_3)(s+p_4)}$$

where $s = \sigma+i\omega$ is the complex frequency variable and z_1, z_2, p_1, p_2, p_3 and p_4 are real numbers, the program helps in finding the roots of $1 + KG(s) = 0$, which determine the poles of the closed-loop system. It follows that at any point in the s -plane, which is a root of the above equation for some value of K ,

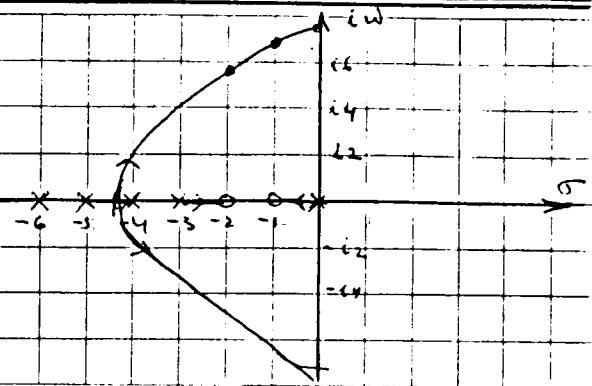
$$G(\sigma+i\omega) = \frac{1}{K} 180^\circ.$$

Since the rules for approximate construction of root locus plots are well-known [1,2], this program can be used to obtain the exact location of the roots in certain regions of the s -plane. The user would select a value of σ , say σ_1 and assume a trial value for ω , say ω_1 . The program then determines $G^{-1}(\sigma_1+i\omega_1) = Ke^{i\phi}$, and ϕ is displayed. If ϕ is not equal to 180° , a new trial value of $\omega = \omega_2$ is obtained. The process is repeated until ϕ is as closed to 180° as desired. The equation for searching the correct value of ω is

$$\omega_2 = \omega_1 \left(4 - \frac{\phi}{60}\right), \text{ where } \phi \text{ is in degrees.}$$

The convergence may be slow when ω approaches zero; in this case the user may often extrapolate mentally to accelerate the convergence. Normally 4 to 8 iterations are sufficient.

The value of the gain constant K required for this location of the root is obtained from y-register.


Operating Limits and Warnings The search equation is based on the assumption that ω_1 is greater than zero. This is no limitation since the root locus is always symmetrical about the real axis of the s -plane.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)
$$KG(s) = \frac{K(s+1)(s+2)}{s(s+3)(s+4)(s+5)(s+6)}$$

It is desired to obtain the complex roots for $\sigma = 0$, $\sigma = -1$, and $\sigma = -2.5$

Solution(s)

- For $\sigma = 0$, starting with $\omega = 5$, after 4 iterations $\phi = 180.01$, for $\omega = 8.545$, and $K = 999.51$
- For $\sigma = -1$, starting $\omega = 6$, after 4 iterations, $\phi = 179.99$ for $\omega = 6.823$ and $K = 519.61$
- For $\sigma = -2.5$, starting $\omega = 4$, after 5 iterations $\phi = 180.01$, for $\omega = 4.35$ and $K = 140.52$.

Reference(s) ⁽¹⁾ D'Azzo, J.J., Honpis, C.H. "Linear Control System Analysis and Design", McGraw-Hill Book Co. 3rd Edition. 1975. pp.202-242.

⁽²⁾ Evans, W.R. "Control-System Dynamics", McGraw-Hill Book Co. 1954.

This program is a translation of the HP-65 Users' Library Program

#04561A submitted by Naresh K. Sinha.

User Instructions

1

AID TO ROOT LOCUS PLOTS I

২

dy

zeroes and poles $\sigma_1 \uparrow \omega_1 \rightarrow \omega_2$

97 Program Listing I

35

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	R↑	16-31	
002	STO5	35 02		058	RTN	24	
003	X ² Y	-41		059	*LBLD	21 14	
004	STO1	35 01		060	RCL7	36 07	
005	R/S	51		061	+	-55	
006	STO6	35 06		062	RCL8	36 08	
007	R↓	-31		063	X ² Y	-41	
008	STO5	35 05		064	+P	34	
009	R↑	-31		065	X ² Y	-41	
010	STO4	35 04		066	R↓	-31	
011	R↓	-31		067	÷	-24	
012	STO3	35 03		068	R↓	-31	
013	RTH	24		069	-	-45	
014	*LBLB	21 12		070	CHS	-22	
015	STO8	35 08		071	R↑	16-31	
016	X ² Y	-41		072	RTN	24	
017	STO7	35 07		073	RCL8	36 08	
018	+P	34		074	R/S	51	
019	RCL6	36 06					
020	GSBE	23 15					
021	RCL5	36 05					
022	GSBE	23 15					
023	RCL4	36 04					
024	GSBE	23 15					
025	RCL3	36 03					
026	GSBE	23 15					
027	RCL2	36 02					
028	GSBD	23 14					
029	RCL1	36 01					
030	GSBD	23 14					
031	X ² Y	-41					
032	RTN	24					
033	*LBLC	21 13	Display φ				
034	E	06					
035	0	00					
036	÷	-24					
037	4	04					
038	-	-45					
039	CHS	-22					
040	RCL8	36 08					
041	X	-35					
042	STO8	35 08					
043	RCL7	36 07					
044	RCL8	36 08	Display ω ₂				
045	RTN	24					
046	*LBLE	21 15					
047	RCL7	36 07					
048	+	-55					
049	RCL8	36 08					
050	X ² Y	-41					
051	+P	34					
052	X ² Y	-41					
053	R↓	-31					
054	X	-35					
055	R↓	-31					
056	+	-55					

REGISTERS

0	1 z ₁	2 z ₂	3 p ₁	4 p ₂	5 p ₃	6 p ₄	7 σ ₁	8 ω ₁	9 Used
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E			I		

SET STATUS		
FLAGS	TRIG	DISP
ON OFF		
0 <input type="checkbox"/>	<input checked="" type="checkbox"/>	
1 <input type="checkbox"/>	<input checked="" type="checkbox"/>	
2 <input type="checkbox"/>	<input checked="" type="checkbox"/>	
3 <input type="checkbox"/>	<input checked="" type="checkbox"/>	
	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
		n ² <input type="checkbox"/>

Program Description I

Program Title AID TO ROOT LOCUS PLOTS II - COMPLEX POLES

Contributor's Name Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

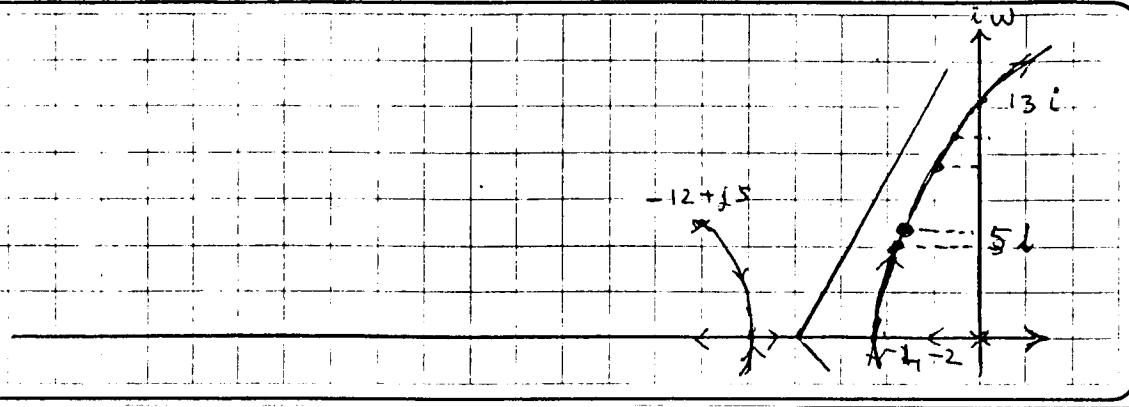
Program Description, Equations, Variables Given the forward transfer function of a unity feedback system

$$KG(s) = \frac{K(s+z_1)(s+z_2)}{s(s+p_1)(s+p_2)(s+\alpha+i\beta)(s+\alpha-i\beta)}$$

where $s = \sigma + i\omega$ is the complex frequency variable, and z_1, z_2, p_1, p_2 , and α, β are real numbers, the program helps in finding the roots of $1 + KG(s) = 0$, which determine the poles of the closed-loop system. It follows that at any point in the s -plane, which is a root of the above equation for some value of K , the argument of $G(s)$ is equal to 180 degrees.

Since the rules for the construction of the approximate root locus plot are well known, this program can be used to obtain the exact location of the roots in critical regions of the s -plane. The user would select a value of σ , say σ_1 and assume a trial value for ω , say ω_1 . The program then determines the modules M , and the argument, ϕ of $G^{-1}(s)$ at this point, and the argument ϕ is displayed. If $\phi \neq 180$, a new trial value of ω is obtained using the equation

$$\omega_2 = \omega_1(4-\phi/180)$$


The process is repeated until ϕ is as close to 180 as desired. The convergence may be slow when ω approaches zero. In this case, the user may often extrapolate mentally to accelerate convergence. Normally 4 to 8 iterations are sufficient.

Operating Limits and Warnings The search equation is based on the assumption that ω is positive. This is no limitation since the root-locus plot is always symmetrical about the real-axis of the s -plane.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

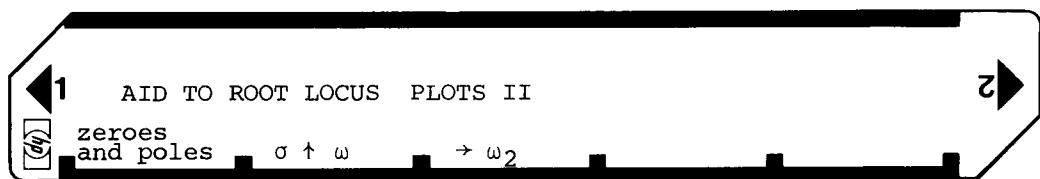
Sample Problem(s) Consider

$$KG(s) = \frac{K}{s(s+12+5i)(s+12-5i)} = \frac{K(s+1)(s+2)}{s(s+1)(s+2)(s+12+5i)(s+12-5i)}$$

The approximate sketch of the root locus is easily obtained following standard rules (see references 1 or 2). It is shown above.

It is desired to obtain the exact locations of the roots for $\sigma = -1, -2$ and -4 .

Solution(s)


- (1) For $\sigma = -1$, starting with $\omega = 12$, after 3 iterations the root is located at $\omega = 11.14$ with $\phi = 180.00$ and $K = 2750$
- (2) For $\sigma = -2$, starting with $\omega = 10$, after 3 iterations the root is located at $\omega = 9.22$ with $\phi = 180.01$ and $K = 1780.7$
- (3) For $\sigma = -4$, starting with $\omega = 5.5$, after 8 iterations the root is located at $\omega = 5.00$ with $\phi = 180.01$ and $K = 656.3$

Reference(s)

1. Evans, W.R. "Control Systems Dynamics". McGraw-Hill Book Co., 1954.
2. D'Azzo, J.J. and Houpis, C.H., "Linear Control System Analysis and Design". McGraw-Hill Book Co. 3rd Edition. 1975.

This program is a translation of the HP-65 Users' Library Program #04562A submitted by Naresh K. Sinha.

User Instructions

97 Program Listing I

39

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	RCL8	36 08	
002	ST02	35 02		058	X	-35	
003	X ² Y	-41		059	ST08	35 08	
004	ST01	35 01		060	RCL7	36 07	
005	R/S	51		061	RCL9	36 08	
006	ST06	35 06		062	RTN	24	
007	R↓	-31		063	*LBLD	21 14	Display w ₂
008	ST05	35 05		064	RCL7	36 07	
009	R↓	-31		065	+	-55	
010	ST04	35 04	P ₂	066	RCL8	36 08	
011	R↓	-31		067	X ² Y	-41	
012	ST03	35 03	P ₁	068	+P	34	
013	RTN	24		069	X ² Y	-41	
014	*LBLB	21 12		070	R↓	-31	
015	ST06	35 08	w ₁	071	÷	-24	
016	X ² Y	-41		072	R↓	-31	
017	ST07	35 07	α ₁	073	-	-45	
018	RCL5	36 05		074	CHS	-22	
019	+	-55		075	R↑	16-31	
020	X ² Y	-41		076	RTN	24	
021	RCL6	36 06		077	*LBLE	21 15	
022	+	-55		078	X ² Y	-41	
023	RCL8	36 08		079	+P	34	
024	RCL6	36 06		080	X ² Y	-41	
025	-	-45		081	R↓	-31	
026	R↑	16-31		082	X	-35	
027	+P	34		083	R↓	-31	
028	R↓	-31		084	+	-55	
029	R↓	-31		085	R↑	16-31	
030	GSBE	23 15		086	RTN	24	
031	RCL4	36 04		087	R/S	51	
032	RCL7	36 07		090			
033	+	-55		100			
034	RCL8	36 08					
035	GSBE	23 15					
036	RCL3	36 03					
037	RCL7	36 07					
038	+	-55					
039	RCL8	36 08					
040	GSBE	23 15					
041	RCL7	36 07					
042	RCL8	36 08					
043	GSBE	23 15					
044	RCL2	36 02					
045	GSBD	23 14					
046	RCL1	36 01					
047	GSBD	23 14					
048	X ² Y	-41					
049	RTN	24	Display φ				
050	*LBLC	21 13					
051	6	06					
052	8	08					
053	÷	-24					
054	4	04					
055	-	-45					
056	CHS	-22					

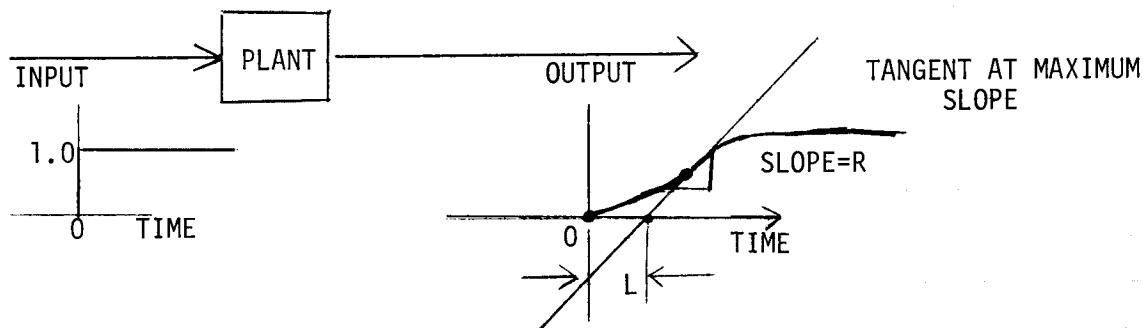
REGISTERS

0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E			I		

SET STATUS

FLAGS	TRIG		DISP
	ON	OFF	
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	RAD <input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	SCI <input type="checkbox"/>
			ENG <input type="checkbox"/>
			n ₂

Program Description I


Program Title Classical Control Gains

Contributor's Name Hewlett-Packard
 Address 1000 N.E. Circle Blvd.
 City Corvallis

State Oregon Zip Code 97330

Program Description, Equations, Variables This program computes the Ziegler-Nichols recommended settings for P, PI, and PID control. Data is required from one of two tests: the general control form is $G_C = k_C [1 + \frac{1}{T_i s} + \frac{1}{T_D s}]$

A) OPEN LOOP TEST - input step function, measure response, draw tangent at point of maximum response slope, scale L & R.

R= maximum slope

L= time intercept of maximum slopline

Then for P control, $k_C = 1/RL$; PI control, $k_C = .9/RL$, $T_i = 3.3L$;
 for PID control, $k_C = 1.2/RL$, $T_i = 2L$, $T_0 = L/2$

Operating Limits and Warnings

Note that plant must be greater than first order for open loop test
 (s is Laplace operator)

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

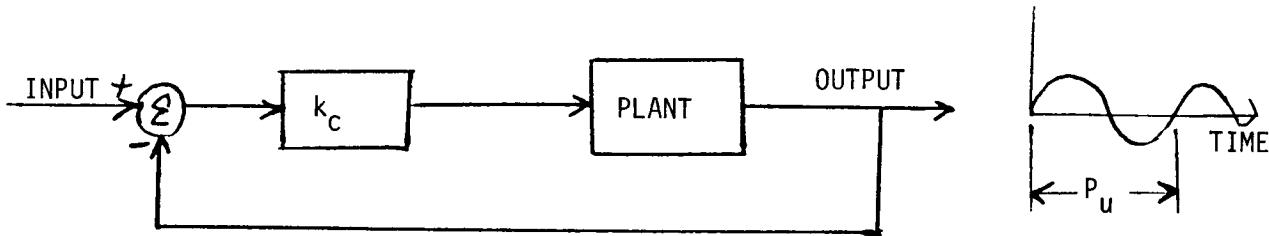
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title Classical Control Gains

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.


City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

B CLOSED LOOP TEST - Increase k_c until plant is near instability (oscillating output). Let the magnitude of k_c at that point be called k_u , and the period of oscillation be called P_u .

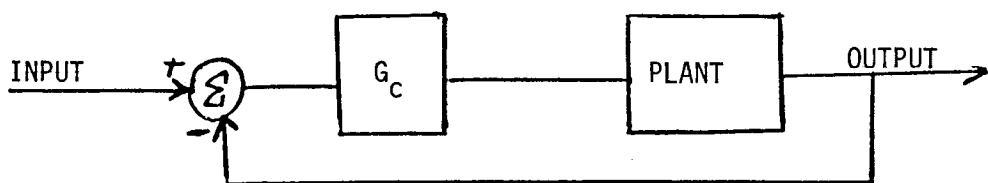
Then for P control, let $k_c = .5k_u$

PI control, let $k_c = .45k_u$, $T_i = 0.83P_u$

PID control, let $k_c = 0.6k_u$, $T_i = .5P_u$, $T_0 = P_u/8$

General control form is = $G_c = k_c [1 + \frac{1}{T_i s} + T_0 s]$

Operating Limits and Warnings


Plant must be greater than second order for closed loop test.

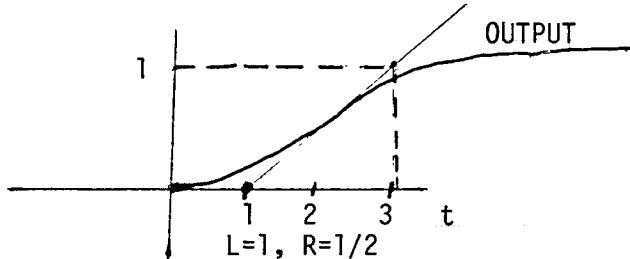
This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Final form of controlled plant


$$\begin{aligned} \text{P control} &\rightarrow G_c = k_c; \quad \text{PI control} \rightarrow G_c = k_c [1 + \frac{1}{T_i s}] \\ \text{PID control} &\rightarrow G_c = k_c [1 + \frac{1}{T_i s} + T_0 s] \end{aligned}$$

Sample Problem(s)

1. For the following open loop test data, compute the control coefficients for:

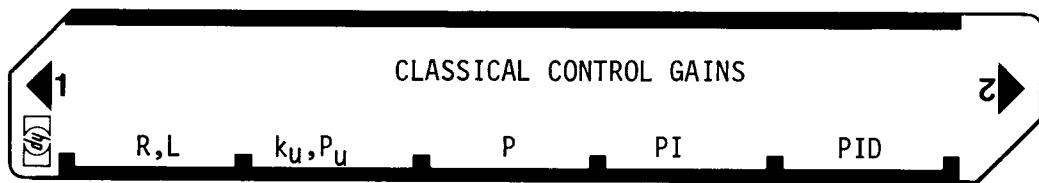
- a.) P control
- b.) PI control
- c.) PID control

(unit step input)

2. During a closed loop P control test, the plant output became oscillatory with $k_c = k_u = 10$, the period of oscillations was 50 sec. Compute coefficients for:

- a.) p control
- b.) PI control
- c.) PID control

Solution(s)


1. $L=1, R=1/2$
 - a.) $k_c = 2$
 - b.) $k_c = 1.8, T_i = 3.3$
 - c.) $k_c = 2.4, T_i = 2.0, T_0 = 0.5$
2. $k_u = 10, P_u = 50$
 - a.) $k_c = 5$
 - b.) $k_c = 4.5, T_i = 41.5$
 - c.) $k_c = 6, T_i = 25, T_0 = 6.25$

Reference(s)

OGATA; Modern Control Engineering, Prentice-Hall.

This program is a translation of the HP-65 Users' Library program #04463A submitted by Randy A. Coverstone.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS		
001	*LBLA	21 11	Open loop test data	057	.	-62			
002	ST02	35 02		058	8	08			
003	Y	-35		059	3	03			
004	1/X	52		060	X	-35			
005	ST01	35 01		061	ST06	35 06			
006	ST03	35 03		062	CLX	-51			
007	.	-62		063	RTN	24			
008	9	09		064	*LBLC	21 13	P control		
009	X	-35		065	RCL3	36 03			
010	ST04	35 04		066	RTN	24			
011	RCL1	36 01		067	*LBLD	21 14	PI control		
012	1	01		068	RCL4	36 04			
013	.	-62		069	R/S	51			
014	2	02		070	RCL6	36 06			
015	X	-35		071	RTN	24			
016	ST05	35 05		072	*LBLE	21 15			
017	RCL2	36 02		073	RCL5	36 05	PID control		
018	2	02		074	R/S	51			
019	X	-35		075	RCL7	36 07			
020	ST07	35 07		076	R/S	51			
021	1	01		077	RCL8	36 08			
022	.	-62		078	RTN	24			
023	6	06		079	R/S	51			
024	5	05	Closed loop test data	090					
025	X	-35		100					
026	ST06	35 06		110					
027	RCL2	36 02							
028	2	02							
029	÷	-24							
030	ST08	35 08							
031	CLX	-51							
032	RTN	24							
033	*LBLB	21 12							
034	ST02	35 02							
035	R↓	-31							
036	ST01	35 01							
037	2	02							
038	÷	-24							
039	ST03	35 03							
040	.	-62							
041	9	09							
042	X	-35							
043	ST04	35 04							
044	RCL1	36 01							
045	.	-62							
046	6	06							
047	X	-35							
048	ST05	35 05							
049	RCL2	36 02							
050	2	02							
051	÷	-24							
052	ST07	35 07							
053	4	04							
054	÷	-24							
055	ST08	35 08							
056	RCL2	36 02							
REGISTERS									
0	1 A-1/RL B-k _C	2 A-L B-P _u	3 P-k _C	4 PI-k _C	5 PID-k _C	6 PI-T _i	7 PID-T _i	8 PID-T ₀	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

SET STATUS		
FLAGS	TRIG	DISP
ON	OFF	
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>

DEG GRAD RAD

FIX SCI ENG

n 2

Program Description I

Program Title	FIRST ORDER REGULATOR		
Contributor's Name	Hewlett-Packard Company		
Address	1000 N.E. Circle Boulevard		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables Given a system;

$$\dot{x} = \frac{dx}{dt} = ax + bu$$

where x = system state
 u = system control
 a, b constant.

This program solves the regulator problem i.e. determines the optimal feedback gain to minimize the following performance index:

$$\text{performance index} = J = \frac{1}{2} \int_0^{\infty} (qx^2 + ru^2) dt$$

the solution is:

$u = -cx$, where $c = \frac{b}{r} S$ and S is the positive solution to
 the Riccati equation:

$$0 = -2as + \frac{s^2b^2}{r} - q$$

Then:

$$\dot{x} = \bar{a}x \text{ where } \bar{a} = a - bc$$

$$\text{and } x = x_0 e^{-\frac{t}{\bar{a}}} \text{ where } \tau = \frac{1}{\bar{a}}$$

Operating Limits and Warnings

$$q > 0$$

$$r > 0$$

$$b \neq 0$$

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

$$\dot{x} = ax + bu, \quad J = 1/2 \int_0^{\infty} \left[\left(\frac{x}{x_{\max}} \right)^2 + \left(\frac{u}{u_{\max}} \right)^2 \right] dt$$

$$1. \quad a = -1, \quad b = 1, \quad q = \left(\frac{1}{x_{\max}} \right)^2 = 0, \quad r = \left(\frac{1}{u_{\max}} \right)^2 = 1$$

$$2. \quad a = 1, \quad b = 1, \quad q = 0, \quad r = 1$$

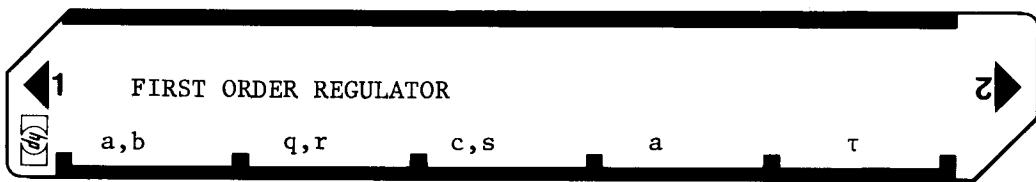
$$3. \quad a = 1, \quad b = 1, \quad q = 1, \quad r = 1$$

$$4. \quad a = 1, \quad b = 2, \quad q = 3, \quad r = 4$$

Solution(s)

$$1. \quad c = 0, \quad s = 0, \quad \bar{a} = -1, \quad \tau = 1$$

$$2. \quad c = 2, \quad s = 2, \quad \bar{a} = -1, \quad \tau = 1$$


$$3. \quad c = 2.41, \quad s = 2.41, \quad \bar{a} = -1.41, \quad \tau = 0.707$$

$$4. \quad c = 1.5, \quad s = 3.0, \quad \bar{a} = -2, \quad \tau = 1/2$$

Reference(s) Shultz and Melsa, State Functions and Linear Control Systems,
McGraw-Hill, 1967.

This program is a translation of the HP-65 Users' Library Program
#04464A submitted by Randy A. Coverstone.

User Instructions

97 Program Listing I

Program Description I

Program Title SECOND ORDER REGULATOR
Contributor's Name Hewlett-Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis **State** Oregon **Zip Code** 97330

Program Description, Equations, Variables Given a system and a quadratic performance index
 as follows:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ b \end{bmatrix} u$$

$$J = 1/2 \int_0^{\infty} \{ [x_1 \ x_2] \begin{bmatrix} q_{11} & q_{12} \\ q_{12} & q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u^2 r \} dt$$

where: x_1, x_2 are the system states
 u is the control
 J is the performance index to be minimized.

The optimal control is given by:

$$u = -c_1 x_1 - c_2 x_2 \quad \text{and} \quad \dot{x} = [\bar{A}] [x] \quad [\bar{A}] = [A] - [b] [c_1 - c_2]$$

$$\text{where: } c_1 = \frac{1}{b} (c_1^* + a_{11} c_2^*) \quad c_2 = \frac{1}{b} (a_{12} c_2^*)$$

$$c_1^* = a_1 + \sqrt{a_1^2 + q_1 \frac{b^2}{r}} \quad c_2^* = a_2 + \sqrt{a_2^2 + 2c_1^* + q_3 \frac{b^2}{r}}$$

$$a_1 = a_{12} a_{21} - a_{11} a_{22} \quad q_1 = q_{11} - 2 \frac{q_{12} a_{11}}{a_{12}} + \frac{q_{22} a_{11}^2}{a_{12}^2}$$

$$a_2 = a_{11} + a_{22} \quad q_3 = q_{22}$$

Operating Limits and Warnings

$$q_{11}, q_{12}, q_{13} \geq 0 ; \quad q_{11} + q_{12} + q_{13} \neq 0$$

$$r > 0$$

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) $\ddot{y} + \theta \dot{y} + \phi = u$ second order system

let $x_1 = y$

$x_2 = \dot{y}$

$$\text{so } \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\phi & -\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$\begin{aligned} \text{suppose } \phi &= 2 \\ \theta &= 3 \end{aligned}$$

Find the optimal control that minimizes:

$$1. J = 1/2 \int_0^{\infty} (x_1^2 + x_2^2 + u^2) dt, \text{ i.e. } q_{11} = 1, q_{12} = 0, q_{22} = 1, r = 1$$

$$2. J = 1/2 \int_0^{\infty} (4x_1^2 + u^2) dt, \text{ i.e. } q_{11} = 4, q_{12} = 0, q_{22} = 0, r = 1$$

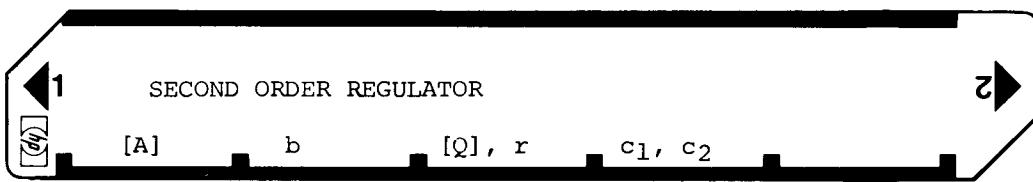
$$3. J = 1/2 \int_0^{\infty} u^2 dt - \text{note that this case violates } q_1 + q_2 + q_3 \neq 0$$

Solution(s)

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \quad b = 1 \quad u = -c_1 x_1 - c_2 x_2$$

$$1. Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad r = 1 \quad \rightarrow u = -.236x_1 -.236x_2$$

$$2. Q = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}, \quad r = 1 \quad \rightarrow u = -.828x_1 -.264x_2$$


$$3. Q = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad r = 1 \quad \rightarrow u = 0$$

Reference(s) Shultz and Melsa, State Functions and Linear Control Systems, McGraw-Hill, 1967.

This program is a translation of the HP-65 Users' Library Program #04465A submitted by Randy A. Coverstone.

User Instructions

51

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input A matrix: input a ₁₁ then a ₁₂ then a ₂₁ then a ₂₂	a ₁₁ a ₁₂ a ₂₁ a ₂₂	↑ ↑ ↑ ↑ A B ↑ ↑ C D R/S	a ₁₁ a ₁₂ a ₂₁ a ₁₁ b q ₁₁ q ₁₂ q ₂₂ q ₁ /r c ₁ c ₂
3	Input b	b		
4	Input Q and r: input q ₁₁ then q ₁₂ then q ₂₂ then r	q ₁₁ q ₁₂ q ₂₂ r		
5	Calculate feedback coefficients (Optional)* Calculate [Ā] (closed loop dynamics matrix) Recall [Ā]			
6	To change Q and r go to step 4			
7	For new case go to step 2			
**	DO NOT CALCULATE [Ā] IF STEP #6 IS TO BE EXECUTED, AS [A] REPLACES THE ORIGINAL [A] MATRIX AND STEP 5 MUST OPERATE ON [A], NOT [Ā]			
	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ b \end{bmatrix} u$			
	$J = 1/2 \int_0^{\infty} (q_{11}x_1^2 + 2q_{12}x_1x_2 + q_{22}x_2^2 + ru^2) dt$			
	minimize J → u = -c ₁ x ₁ - c ₂ x ₂			
	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$			

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	X ²	53	
002	ST04	35 04	Store [A]	058	RCL8	36	c2*
003	R↓	-31		059	x	08	
004	ST03	35 03		060	+	-35	
005	R↓	-31		061	JY	55	
006	ST02	35 02		062	RCL1	54	
007	R↓	-31		063	RCL4	36	
008	ST01	35 01		064	+	04	
009	R/S	51		065	ST07	35	
010	*LBLB	21 12	Store b	066	+P	07	
011	ST05	35 05		067	RCL7	34	
012	RTN	24		068	+	07	
013	*LBLC	21 13		069	ST07	35	
014	ST07	35 07		070	RCL1	07	
015	=	-24		071	x	07	
016	ST08	35 08		072	RCL6	36	
017	LSTX	16-63		073	+	06	
018	x	-35		074	ST06	35	
019	RCL1	36 01		075	RCL5	06	
020	x	-35		076	÷	05	
021	RCL2	36 02		077	R/S	-24	Display c1
022	÷	-24		078	RCL7	51	
023	X ² Y	-41		079	RCL2	36	
024	2	02		080	x	02	
025	x	-35		081	ST07	35	
026	-	-45		082	RCL5	07	
027	RCL1	36 01		083	÷	05	
028	x	-35		084	R/S	-24	Display c2
029	RCL2	36 02		085	RCL2	36	
030	÷	-24		086	RCL3	02	
031	+	-55		087	RCL6	03	
032	RCL7	36 07		088	-	03	
033	÷	-24		089	RCL4	36	Compute [A]
034	ST07	35 07		090	RCL7	04	
035	RTN	24		091	-	07	
036	*LBLD	21 14		092	RCL1	36	
037	RCL2	36 02		093	R↓	01	
038	RCL3	36 03		094	GTOA	-31	
039	x	-35		095	R/S	22	
040	RCL1	36 01					
041	RCL4	36 04					
042	x	-35					
043	-	-45					
044	ST06	35 06		100			
045	RCL7	36 07					
046	JY	54					
047	RCL5	36 05					
048	x	-35					
049	RCL6	36 06	c1*				
050	+P	34					
051	RCL6	36 06					
052	+	-55					
053	ST06	35 06					
054	2	02		110			
055	x	-35					
056	RCL5	36 05					
REGISTERS							
0	1 a ₁₁	2 a ₁₂	3 a ₂₁	4 a ₂₂	5 b	6 temp	7 temp
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C	D	E	I	S8	S9

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
Real Estate Investment
Taxes
Home Construction Estimating
Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

CONTROL SYSTEMS

These programs incorporate many of the important calculations from control theory. Bode plots, stability criteria, root-locus plots, and optimization are included.

FREQUENCY RESPONSE OF A TRANSFER FUNCTION

BODE OF TRANSFER FUNCTION THAT HAS EACH POLE AND
ZERO GIVEN

BODE OF SECOND-ORDER OVER THIRD-ORDER TRANSFER
FUNCTION

BODE OF SECOND-ORDER OVER SECOND-ORDER TIMES
S**N TRANSFER FUNCTION

POLE-ZERO TO GROUP DELAY

ROUTH TEST FOR CONTINUOUS AND DISCRETE TIME SYSTEM
ANALYSIS

CONVERT FREQUENCY RESPONSE — OPEN LOOP, CLOSED
LOOP

AID TO ROOT LOCUS PLOTS I — REAL POLES

AID TO ROOT LOCUS PLOTS II — COMPLEX POLES

CLASSICAL CONTROL GAINS

FIRST ORDER REGULATOR

SECOND ORDER REGULATOR

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14026 Printed in U.S.A. 00097-90201
Revision D 7-78

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.