

HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions

Energy Conservation

INTRODUCTION

In an effort to provide continued value to its customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

AIR COOLING SYSTEM DESIGN	1
Program calculates one of any four quantities in the design of an air cooling system for electronic equipment. Given the ambient temperature, the power dissipation in the enclosure, and the worst case maximum temperature, the program calculates the required blower rating in cubic feet per minute.	
BLACK BODY THERMAL RADIATION	6
Calculates wave length of maximum emissive power, total emissive power, monochromatic emissive power, emissive power from zero to a specified wave length, for black radiating surfaces.	
ECONOMIC INSULATION THICKNESS	14
Can be used to determine the economic thickness of insulation given the thermal properties of the insulation, the cost of energy, hours of operation, cost of insulation, and the temperature difference.	
HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS	18
Can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.	
STEADY STATE COND. HEAT TRANS., HEAT LOAD & LOGARITHMIC MEAN TEMP DIFF.	23
Computes heat duty, heat load, transfer area, logarithmic mean temperature difference, heat capacity, transfer coefficient and mass flow rate.	
SUN ALTITUDE, AZIMUTH, SOLAR POND ABSORPTION	27
Computes sun's altitude, azimuth, and the fraction of the sun's radiation which will penetrate the surface of a solar pond given index of refraction of pond fluid, latitude, number of days after spring equinox, and number of hours before or after solar noon.	
TOTAL DAILY AMOUNT OF SOLAR RADIATION	31
Computes length of day and total amount of solar radiation received by a horizontal surface of unit area as a function of latitude and declination of the sun.	
TEMPERATURE OR CONCENTRATION PROFILE FOR A SEMI-INFINITE SOLID	35
May be used to find the temperature (or concentration profile) at a specified time for a semi-infinite solid with constant surface temperature (or concentration) the profiles is assumed to be uniform when time equals zero.	

TRANSIENT TEMPERATURE DISTRIBUTION IN A SEMI-INFINITE SOLID WITH CONVECTION BOUNDARY CONDITION	40
Computes factor enabling calculation of temperature in a semi-infinite solid for data including distance from surface, time, thermal conductivity, thermal diffusivity, and heat transfer coefficient.	
CONSERVATION OF ENERGY.	44
This is a two card set which may be used to solve a variety of energy conservative flow problems (Bernoulli's equation). Card one accepts English units while card two is for metric units.	

Program Description I

Program Title	Air Cooling System Design		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables

Define: H_i = Molal enthalpy of air at T_i and P_i (BTU/LB Mole)

P_i = Power in kilowatts (3413 kW-Hr / BTU)

T_i = Temperature in degrees Rankine ($^{\circ}$ R)

\dot{V}_i = Volumetric flow rate

\dot{N}_i = Molal flow rate

$i = 1$ for outside enclosure

p_i = pressure (in atmospheres)

$i = 2$ for inside enclosure

C_p = specific heat at constant pressure =
6.953 (BTU/lb-mole $^{\circ}$ R)

- Molar volume for air at a temperature T and pressure p is $V = (0.35905 (0.35905 \times 10^3 \text{ Ft}^3/\text{lb-mole}) (\text{Atm}/p)(T/491.7^{\circ}\text{R}) = .7302$

- Energy balance at steady state

$$H_1 \dot{N}_1 + (P_1 - P_2) = H_2 \dot{N}_2$$

- Molal volume for an ideal gas has a flow rate $\dot{V}_1 = \left(\frac{P_2}{P_1}\right) \left(\frac{T_2}{T_1}\right) \dot{V}_2$

- Specific heat equation $H_2 - H_1 = C_p (T_2 - T_1)$

- Neglect pressure difference $p_1 = p_2$

Continued on next page →

Operating Limits and Warnings

1. Calculation assumes steady state, treats air as an ideal gas, neglects humidity, etc.
2. The "E" key should not be used as it contains several values needed to cram the program into the limited memory.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title Air Cooling System Design

Contributor's Name Hewlett-Packard
 Address 1000 N.E. Circle Blvd.
 City Corvallis

State Oregon Zip Code 97330

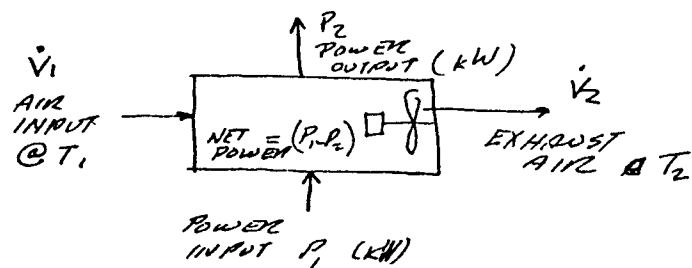
Program Description, Equations, Variables

Then $\dot{V}_2 = \frac{K(P_2 - P_1)T_2}{T_2 - T_1} = \text{Ft}^3/\text{min} = \text{Req'd flow rate}$ $k = 5.974$

or $P_2 - P_1 = \frac{\dot{V}_2}{k} \left(\frac{T_2 - T_1}{T_2} \right) = \text{kW} = \text{Power Input}$

or $T_2 = \frac{\dot{V}_2 T_1}{\dot{V}_2 - k(P_2 - P_1)} = \text{Max. Enclosure Temperature}$

or $T_1 = \frac{T_2}{\dot{V}_2} (\dot{V}_2 - k(P_2 - P_1)) = \text{Ambient Temperature}$


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

$$t_1 = 72^\circ\text{F}$$

$$t_2 = 85^\circ\text{F}$$

$$\dot{V} = 250 \text{ ft}^3/\text{min}$$

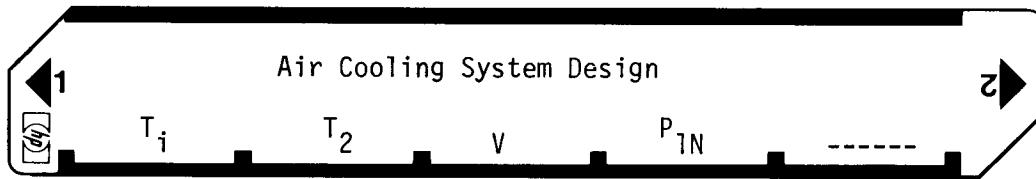
$$\text{Calculate: } P_{1N} = 0.9982 \text{ kW}$$

Now assume you wish to change the ambient to 68°F with the same power and see what effect it has upon the blower rating. After having first pressed "D" just key in 68 in "A" and press "C". To use the calculated $P_{1N} = 191.1765$

Now change \dot{V} to 200 and P_{1N} to 1kW and resolve for $t_1 = 68.7209^\circ\text{F}$. Now change t_1 to 65°F and calculate t_2 for the $\dot{V}=200$ and $P_{1N} = 1$ by entering 65° in "A" and pressing "B" to obtain $t_2 = 81.1646$

If you forget one of the other three variables in using the program for optimizing just look in R_1, R_2, R_3 or R_4 For T_1, T_2, V or P_{1N} as may be of interest.

Solution(s)


Keystrokes:

	Outputs
72[A] 85[B] 250[C] [D] -----	0.9982
[D] 68[A] [C] -----	191.1765
200[C] 1[D] [A] -----	68.7209
65[A] [B] -----	81.1646

Reference(s) V.M. Faires, Thermodynamics, 5th Edition, MacMillan Co., New York, 1970; page 453.

This program is a translation of the HP-65 User's Library program #02001A submitted by Todd A.C. Heard.

User Instructions

97 Program Listing I

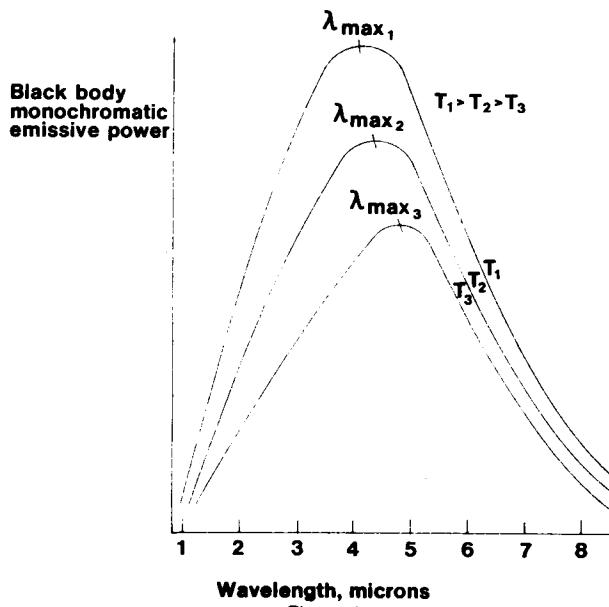
5

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	*LBLD	21 14	
002	ST01	35 01		058	ST04	35 04	
003	0	00		059	0	00	
004	X#Y?	16-32		060	X#Y?	16-32	
005	RTN	24		061	RTN	24	
006	GSBE	23 15	Calls constants,etc	062	GSBE	23 15	
007	RCL4	36 04		063	RCL5	36 05	
008	RCL6	36 06		064	RCL3	36 03	
009	CHS	-22		065	X	-35	
010	RCL3	36 03		066	RCL6	36 06	
011	+	-55		067	÷	-24	
012	RCL3	36 03	Computed t_1 (°F)	068	ENT↑	-21	Computed P_{1N} (kW)
013	÷	-24		069	RCL8	36 08	
014	ENT↑	-21		070	÷	-24	
015	RCL8	36 08		071	RTN	24	
016	X	-35		072	*LBL E	21 15	
017	RCL7	36 07		073	5	05	
018	-	-45		074	.	-62	Constant 5.974
019	RTN	24		075	9	09	
020	*LBL B	21 12		076	7	07	
021	ST02	35 02		077	4	04	
022	0	00		078	ST06	35 06	
023	X#Y?	16-32		079	4	04	Constant 460
024	RTN	24		080	6	06	
025	GSBE	23 15		081	0	00	
026	RCL1	36 01		082	ST07	35 07	
027	RCL7	36 07		083	RCL2	36 02	
028	+	-55		084	RCL1	36 01	
029	RCL3	36 03		085	-	-45	$(t_2 - t_1)$
030	X	-35		086	ST05	35 05	
031	ENT↑	-21		087	RCL2	36 02	
032	RCL4	36 04		088	RCL7	36 07	
033	RCL6	36 06		089	+	-55	T_2 (°R)
034	X	-35		090	ST08	35 08	
035	CHS	-22		091	RTN	24	
036	RCL3	36 03					
037	+	-55					
038	÷	-24					
039	RCL7	36 07	Computed t_2 (°F)				
040	-	-45					
041	RTN	24					
042	*LBL C	21 13					
043	ST03	35 03					
044	0	00					
045	X#Y?	16-32					
046	RTN	24					
047	GSBE	23 15					
048	RCL8	36 08					
049	RCL4	36 04					
050	X	-35					
051	RCL6	36 06					
052	X	-35					
053	ENT↑	-21					
054	RCL5	36 05	Computed V (Ft ³ /min)				
055	÷	-24					
056	RTN	24					
REGISTERS							
0	¹ t_1 (°F)	² t_2 (°F)	³ V (Ft ³ /min)	⁴ P_{1N} (kW)	⁵ $t_2 - t_1$	⁶ 5.974	⁷ 460
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C		D	E		I

FLAGS		TRIG		DISP	
ON	OFF	DEG	GRAD	FIX	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
110					
n	4				

Program Description I

Program Title Black Body Thermal Radiation


Contributor's Name Hewlett-Packard

Address 1000 N. E. Circle Blvd.

City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables

Bodies with finite temperatures emit thermal radiation. The higher the absolute temperature, the more thermal radiation emitted. Bodies which emit the maximum possible amount of energy at every wavelength for a specified temperature are said to be black bodies. While black bodies do not actually exist in nature, many surfaces may be assumed to be black for engineering considerations.

Wavelength, microns
Figure 1.

(continued
next page)

Operating Limits and Warnings

A minute or more may be required to obtain $E_b(0-\lambda)$ or $E_b(\lambda_1-\lambda_2)$ since the integration is numerical.

Sources differ on values for constants. This could yield small discrepancies between published tables and program outputs.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases, the area under the curves (total emissive power $E_{b(0-\infty)}$) increases. Also note that the wavelength of maximum emissive power λ_{\max} shifts to the left as temperature increases.

This program calculates the wavelength of maximum emissive power for a given temperature, the temperature for which a given wavelength would be the wavelength of maximum emissive power, the total emissive power over all wavelengths, the emissive power at a particular wavelength, the emissive power from zero to a specified wavelength, and the emissive power between specified wavelengths.

Equations:

$$\lambda_{\max} T_{\lambda_{\max}} = c_3$$

$$E_{b(0-\infty)} = \sigma T^4$$

$$E_{b\lambda} = \frac{2\pi c_1}{\lambda^5 (e^{c_2/\lambda T} - 1)}$$

$$\begin{aligned} E_{b(0-\lambda)} &= \int_0^\lambda E_{b\lambda} d\lambda \\ &= 2\pi c_1 \sum_{k=1}^{\infty} -T/kc_2 e^{-\frac{kc_2}{\lambda T}} \left[\left(\frac{1}{\lambda}\right)^3 + \frac{3T}{\lambda^2 kc_2} \right. \\ &\quad \left. + \frac{6}{\lambda} \left(\frac{T}{kc_2}\right)^2 + 6 \left(\frac{T}{kc_2}\right)^3 \right] \end{aligned}$$

$$E_{b(\lambda_1 - \lambda_2)} = E_{b(0-\lambda_2)} - E_{b(0-\lambda_1)}$$

where

λ_{\max} is the wavelength of maximum emissivity in microns;

T is the absolute temperature in $^{\circ}\text{R}$ or K ;

$E_{b(0-\infty)}$ is the total emissive power in $\text{Btu}/\text{hr}\cdot\text{ft}^2$ or Watts/cm^2 ;

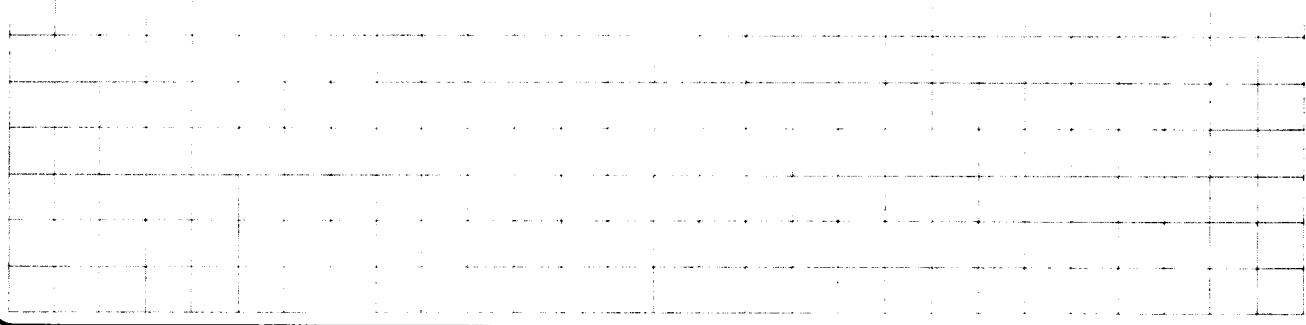
$E_{b\lambda}$ is the emissive power at λ in $\text{Btu}/\text{hr}\cdot\text{ft}^2\cdot\mu\text{m}$ or $\text{Watts}/\text{cm}^2\cdot\mu\text{m}$;

$E_{b(0-\lambda)}$ is the emissive power for wavelengths less than λ in $\text{Btu}/\text{hr}\cdot\text{ft}^2$ or Watts/cm^2 ;

$E_{b(\lambda_1-\lambda_2)}$ is the emissive power for wavelengths between λ_1 and λ_2 in $\text{Btu}/\text{hr}\cdot\text{ft}^2$ or Watts/cm^2 .

$$c_1 = 1.8887982 \times 10^7 \text{ Btu}\cdot\mu\text{m}^4/\text{hr}\cdot\text{ft}^2 \\ = 5.9544 \times 10^3 \text{ W}\mu\text{m}^4/\text{cm}^2$$

$$c_2 = 2.58984 \times 10^4 \mu\text{m}\cdot{}^{\circ}\text{R} = 1.4388 \times 10^4 \mu\text{m}\cdot\text{K}$$


$$c_3 = 5.216 \times 10^3 \mu\text{m}\cdot{}^{\circ}\text{R} = 2.8978 \times 10^3 \mu\text{m}\cdot\text{K}$$

$$\sigma = 1.713 \times 10^{-9} \text{ Btu}/\text{hr}\cdot\text{ft}^2\cdot{}^{\circ}\text{R}^4 = 5.6693 \times 10^{-12} \text{ W}/\text{cm}^2\cdot\text{K}^4$$

$$\sigma_{\text{exp}} = 1.731 \times 10^{-9} \text{ Btu}/\text{hr}\cdot\text{ft}^2\cdot{}^{\circ}\text{R}^4 = 5.729 \times 10^{-12} \text{ W}/\text{cm}^2\cdot\text{K}^4$$

Program Description II

Sketch(es)

Sample Problem(s) Example 1:

What percentage of the radiant output of a lamp is in the visible range (0.4 to 0.7 microns) if the filament of the lamp is assumed to be a black body at 2400 K? What is the percentage at 2500 K?

Keystrokes:

[f] [B]----- $\rightarrow 5.669 \times 10^{-12} \text{ W/cm}^2 \cdot \text{K}^4$
 2400 [A] .4 [B] .7 [f] [E] [C] [÷] 100 [x]----- $\rightarrow 2.641\%$
 2500 [A] .7 [f] [E] [C] [÷] 100 [x]----- $\rightarrow 3.337\%$

Outputs:

Example 2:

If the human eye was designed to work most efficiently in sunlight and the visible spectrum runs from about 0.4 to 0.7 microns, what is the sun's temperature in degrees Rankine? Assume that the sun is a black body. Using the temperature calculated, find the fraction of the sun's total emissive power which falls in the visible range. Find the percentage of the sun's radiation which has a wavelength less than 0.4 microns.

Keystrokes:

[f] [A]----- $\rightarrow 1.713 \times 10^{-9} \text{ Btu/hr-ft}^2 \cdot {}^\circ\text{R}^4$

Compute mean of visible range.

.4 [+].7 [+].2 [÷]----- $\rightarrow 550.0 \times 10^{-3} \mu\text{m}$

Compute temperature of sun.

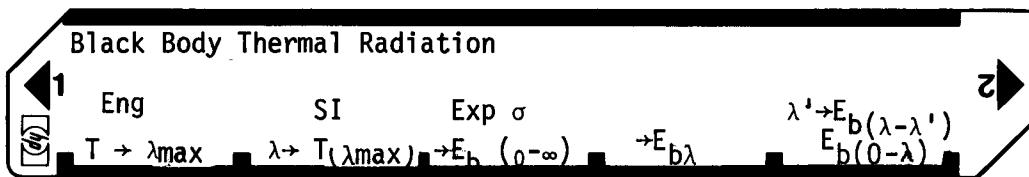
[B]----- $\rightarrow 9.484 \times 10^3 {}^\circ\text{R}$

(continued)

Outputs:

Reference(s)

Robert Siegel and John R. Howell, *Thermal Radiation Heat Transfer*, Volume 1, National Aeronautics and Space Administration, 1968.


Compute percentage of power in visible range.

[A] .4 [B] .7 [E] [C] [÷] 100 [x]-----→ 33.70×10^0 %

Compute percentage of power under 0.4 microns.

[E] [C] [÷] 100 [x]-----→ **8.433%**

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLc	21 16 11		057	5	05	
002	1	01		058	.	-62	
003	8	08	Store English constants.	059	6	06	
004	8	08		060	5	06	
005	8	08		061	9	09	
006	7	07		062	3	03	
007	9	09		063	EEX	-23	
008	8	08		064	CHS	-22	
009	2	02		065	1	01	
010	ST01	35 01		066	2	02	
011	2	02		067	ST04	35 04	
012	5	05		068	RTN	24	
013	8	08		069	*LBLc	21 16 13	Convert to experimental σ .
014	9	09		070	1	01	
015	8	08		071	.	-62	
016	.	-62		072	0	00	
017	4	04		073	1	01	
018	ST02	35 02		074	0	00	
019	5	05		075	5	05	
020	2	02		076	STx4	35-35 04	
021	1	01		077	RCL4	36 04	
022	6	06		078	RTN	24	
023	ST03	35 03		079	*LBLA	21 11	Store T and calculate λ_{max} .
024	.	-62		080	ST05	35 05	
025	1	01		081	RCL3	36 03	
026	7	07		082	X \leftrightarrow Y	-41	
027	1	01		083	÷	-24	
028	3	03		084	RTN	24	
029	1	01		085	*LBLB	21 12	
030	2	02		086	ST06	35 06	Store λ and calculate T for which λ would be λ_{max} .
031	EEX	-23		087	RCL3	36 03	
032	CHS	-22		088	X \leftrightarrow Y	-41	
033	8	08		089	÷	-24	
034	ST04	35 04		090	RTN	24	
035	RTN	24		091	*LBLC	21 13	
036	*LBLb	21 16 12	Store SI constants.	092	RCL5	36 05	Calculate $E_b(0-\infty)$.
037	5	05		093	X \times	53	
038	9	09		094	X \times	53	
039	5	05		095	RCL4	36 04	
040	4	04		096	X	-35	
041	.	-62		097	RTN	24	
042	4	04		098	*LBLD	21 14	
043	ST01	35 01		099	RCL1	36 01	
044	1	01		100	ENT↑	-21	Calculate $E_{b\lambda}$.
045	4	04		101	+	-55	
046	3	03		102	Pi	16-24	
047	8	08		103	X	-35	
048	8	08		104	RCL6	36 06	
049	ST02	35 02		105	5	05	
050	2	02		106	Y \times	31	
051	8	08		107	÷	-24	
052	9	09		108	RCL2	36 02	
053	7	07		109	RCL6	36 06	
054	.	-62		110	÷	-24	
055	8	08		111	RCL5	36 05	
056	ST03	35 03		112	÷	-24	

REGISTERS

0	λ	1	c_1	2	c_2	3	c_3	4	σ	5	T	6	λ, λ'	7	sum	8	kc_2/T	9
S0	S1		S2		S3		S4		S5	S6	S7	S8	S9					
A		B		C		D		E				I						

97 Program Listing II

13

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	e^x	33		169	X \leftrightarrow Y	16-35	
114	:	01		170	GT01	22 01	
115	-	-45		171	R↓	-31	
116	÷	-24		172	CLX	-51	
117	RTN	24		173	RCL7	36 07	
118	*LBL1	21 15	Calculate $E_b(0-\lambda)$	174	ENT↑	-21	
119	0	00		175	+	-55	
120	ST08	35 08		176	Pi	16-24	
121	ST07	35 07		177	×	-35	
122	*LBL1	21 01		178	RCL1	36 01	
123	R↓	-31		179	X	-35	
124	CLX	-51		180	RTN	24	
125	RCL8	36 08		181	*LBL1	21 16 15	Calculate $E_b(\lambda-\lambda')$
126	RCL2	36 02		182	ENT↑	-21	
127	RCL5	36 05		183	ENT↑	-21	
128	÷	-24		184	GSPE	23 15	
129	-	-45		185	X \leftrightarrow Y	-41	
130	ST08	35 08		186	RCL6	36 06	
131	3	03		187	ST00	35 00	
132	X \leftrightarrow Y	-41		188	R↓	-31	
133	÷	-24		189	ST05	35 05	
134	RCL6	36 06		190	GSBE	23 15	
135	X \leftrightarrow	53		191	-	-45	
136	÷	-24		192	ABS	16 31	
137	LSTX	16-63		193	RCL0	36 00	
138	1/X	52		194	ST06	35 06	
139	RCL6	36 06		195	R↓	-31	
140	÷	-24		196	RTN	24	
141	-	-45					
142	6	06					
143	RCL6	36 06					
144	÷	-24					
145	RCLS	36 08					
146	X \leftrightarrow	53					
147	÷	-24					
148	-	-45					
149	6	06					
150	RCLS	36 08					
151	X \leftrightarrow	53					
152	÷	-24					
153	RCL8	36 08					
154	÷	-24					
155	+	-55					
156	RCL8	36 08					
157	RCL6	36 06					
158	÷	-24					
159	e^x	33					
160	X	-35					
161	RCL8	36 08					
162	÷	-24					
163	ST+7	35-55 07					
164	RCL7	36 07					
165	÷	-24					
166	EEX	-23					
167	CHS	-22					
168	5	05					

LABELS

LABELS					FLAGS	SET STATUS		
A	B	C	D	E	0	FLAGS	TRIG	DISP
$T \rightarrow \lambda$ max	$\lambda \rightarrow T(\lambda)$ max	$\rightarrow E_b(0-\lambda)$	$\rightarrow E_b(\lambda)$	$\rightarrow E_b(0-\lambda)$	0	ON	DEG	FIX
a Eng	b SI	c Exp σ	d	e $\lambda' \rightarrow E_b(\lambda-\lambda')$	1	OFF	GRAD	SCI
0	$^1 E_b(0-\lambda)$	2	3	4 $b(\lambda-\lambda')$	2	2	RAD	ENG
5	6	7	8	9	3	3		n

Program Description I

Program Title **Economic Insulation Thickness**

Contributor's Name **Hewlett-Packard**

Address **1000 N.E. Circle Blvd.**

City **Corvallis**

State **Oregon**

Zip Code **97330**

Program Description, Equations, Variables

$$I = 3.46 \times 10^{-3} \sqrt{Y(\Delta T) M k/b} - 6k$$

Where:

I = thickness of insulation in inches

Y = hours per year

k = conductivity of insulation BTU/ft²°F/ft.

ΔT = temperature difference, °F

M = cost of energy \$ per 10^6 BTU

b = cost of insulation \$ per ft^2 per in. thickness

Operating Limits and Warnings

Insulation is assumed to be protected from moisture saturation possibilities.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

A. What thickness of insulation is economic for a prefab wall used in a structure with the following conditions?

$$k = 0.15, \Delta T = 72^\circ - 32^\circ F$$

$Y = 24$ hrs per day per year(8760),

$M = \$1.00$ per 10^6 BTU

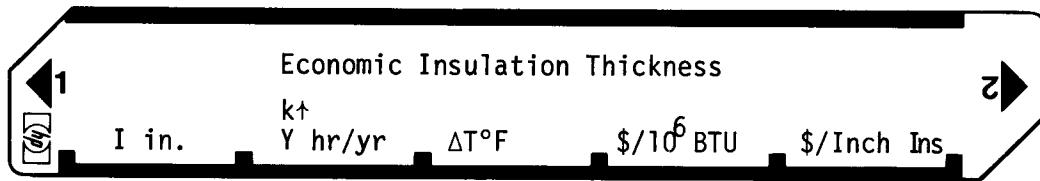
$b = \$0.20$ per sq. ft. per inch thickness

B. What if the energy price is \$2.50/million BTU?

Solution(s)

$$0.15 [↑] 8760[B] 40[C] 1[D] 0.2[E] [A] [R/S] \longrightarrow 0.87 \text{ inches}$$

A Ans. 0.87 inches


$$2.5[D] [A] [R/S] \longrightarrow 1.90$$

B Ans. 1.90 inches

Reference(s) Mechanical Engineers Handbook, L. Marks, McGraw-Hill 1941, pg 404.

This program is a translation of the HP-65 Users' Program #01621A submitted by John R. Feemster.

User Instructions

97 Program Listing I

17

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	÷	-24	
002	ST01	35 01		058	ST04	35 04	
003	3	03		059	RTN	24	
004	.	-62	Const. 3.46×10^{-3}	060	*LBLB	21 15	
005	4	04		061	ST07	35 07	Calculate b
006	6	06		062	R/S	51	
007	EEX	-23		063	RCL2	36 02	
008	3	03		064	RCL5	36 05	
009	CHS	-22		065	×	-35	
010	ST06	35 06		066	RCL4	36 04	
011	RCL1	36 01	Calculate I	067	×	-35	
012	R/S	51		068	RCL3	36 03	
013	RCL2	36 02		069	×	-35	
014	RCL3	36 03		070	RCL1	36 01	
015	×	-35		071	RCL5	36 05	
016	RCL4	36 04		072	6	06	
017	×	-35		073	×	-35	
018	RCL5	36 05		074	+	-55	
019	×	-35		075	RCL6	36 06	
020	RCL7	36 07		076	÷	-24	
021	÷	-24		077	X^2	53	
022	JX	54		078	÷	-24	
023	RCL6	36 06		079	ST07	35 07	
024	×	-35		080	RTN	24	
025	6	06					
026	RCL5	36 05					
027	×	-35					
028	-	-45					
029	ST01	35 01		090			
030	RTN	24					
031	*LBLB	21 12					
032	ST02	35 02					
033	R↓	-31					
034	ST05	35 05					
035	RTN	24					
036	*LBLC	21 13					
037	ST03	35 03					
038	RTN	24					
039	*LBLD	21 14					
040	ST04	35 04					
041	R/S	51					
042	RCL1	36 01					
043	RCL5	36 05					
044	6	06					
045	×	-35					
046	+	-55					
047	RCL6	36 06					
048	÷	-24					
049	X^2	53					
050	RCL2	36 02					
051	RCL5	36 05					
052	×	-35					
053	RCL3	36 03					
054	×	-35					
055	RCL7	36 07					
056	÷	-24					
Registers							
0	¹ Ins.	² hrs/yr	³ ΔT	⁴ M	⁵ k	⁶ Const	⁷ b
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C	D	E			I

SET STATUS

FLAGS	TRIG		DISP
	ON	OFF	
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	RAD <input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	SCI <input type="checkbox"/>
			FIX <input checked="" type="checkbox"/>
			ENG <input type="checkbox"/>
			n <u>2</u>

Registers

0	¹ Ins.	² hrs/yr	³ ΔT	⁴ M	⁵ k	⁶ Const	⁷ b	⁸	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E				I	

Program Description I

Program Title Heat Transfer Through Composite Cylinders and Walls

Contributor's Name Hewlett-Packard
Address 1000 N.E. Circle Blvd.

City Corvallis **State** Oregon **Zip Code** 97330

Program Description, Equations, Variables

This program can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.

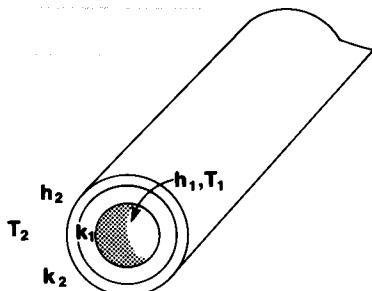


Figure 1.—Composite tube

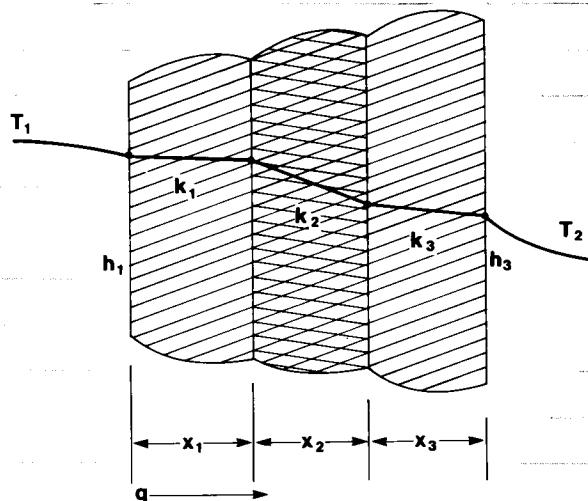


Figure 2. —Composite wall

Operating Limits and Warnings

These equations are for steady state heat transfer through materials with constant properties in all directions.

Inputs must start with the inside convective coefficient and work out in the case of composite cylinders.

Zero is an invalid input for D, k, and h.

Dimensional consistency must be maintained.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title Heat Transfer Through Composite Cylinders and Walls

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

The overall heat transfer coefficient U is defined by:

$$q/L = U \Delta T$$

or

$$q/A = U \Delta T$$

where ΔT is the total temperature difference ($T_2 - T_1$), q/L is the heat transfer per unit length of pipe, and q/A is the heat transfer per unit area of wall.

For cylinders

$$U = \frac{2\pi}{\frac{2}{h_1 D_1} + \frac{\ln D_2/D_1}{k_1} + \frac{\ln D_3/D_2}{k_2} + \dots + \frac{2}{h_n D_n}}$$

For walls

$$U = \frac{1}{\frac{1}{h_1} + \frac{x_1}{k_1} + \frac{x_2}{k_2} + \dots + \frac{1}{h_n}}$$

where

h is the convective surface coefficient;

D_n is the outside diameter of the annulus;

k is the conductive coefficient;

x is the thickness of a wall section.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

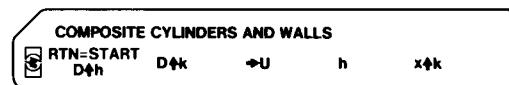
Example 1:

A steel pipe with an inside diameter of 4 inches and a thickness of 0.5 inches has a conductivity of $25 \text{ Btu/ft}\cdot\text{hr}\cdot{}^{\circ}\text{F}$. Two inches of asbestos ($k = 0.1 \text{ Btu/hr}\cdot\text{ft}\cdot{}^{\circ}\text{F}$) enclose the pipe bringing the total diameter to 9 inches. If the inside convective coefficient is $1000 \text{ Btu/hr}\cdot\text{ft}^2\cdot{}^{\circ}\text{F}$ and the outside coefficient is $5 \text{ Btu/hr}\cdot\text{ft}^2\cdot{}^{\circ}\text{F}$, what is the overall heat transfer coefficient? What is the heat loss for 100 feet of pipe if ΔT is 115°F ?

Keystrokes	See Displayed
4 \uparrow 12 \div 1000 A 5 \uparrow 12 \div 25 B 9 \uparrow 12 \div	0.98
0.1 B 9 \uparrow 12 \div 5 A C	Btu/hr-ft ^o F
115 \times	112.44 Btu/hr-ft
100 \times	11244.20 Btu/hr

Solution(s)

Example 2:


A wall is composed of 1 foot of brick ($k = 0.4 \text{ Btu/hr-ft}^{-2}\text{F}$), and 1 inch of wood ($k = 0.12 \text{ Btu/hr-ft}^{-2}\text{F}$). The convective coefficient on one side is $23 \text{ Btu/hr-ft}^{-2}\text{F}$. The convective coefficient of the other side is $5 \text{ Btu/hr-ft}^{-2}\text{F}$. What is the overall coefficient? What is the heat flux if the temperature difference is 70°F ?

Keystrokes	See Displayed
RTN 1 0.4 E 1 12 .12 E 23 D 5 D C	0.29 Btu/ft² -hr -°F
70	20.36 Btu/ft² -hr

Reference(s)

User Instructions

21

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	For a composite wall go to			
	step 9.			
3	Input the inner diameter	D_{in}	\uparrow	D_{in}
4	Input the inner convective			
	coefficient	h_{in}	A	$2/hD$
5	Input next diameter value	D	\uparrow	D
	and corresponding coefficient	k or h	B	
6	Go to step 5 for next surface			
	or go to step 3 for outside			
	surface*			
7	Calculate overall heat transfer			
	coefficient		C	U
8	To calculate another overall			
	coefficient, go to step 2			
9	Input the coefficients for each			
	section of the wall:			
	Convective coefficient	h	D	$1/h$
	or length of conductive path	x	\uparrow	
	and conductive coefficient	k	E	x/k
10	Go to step 9 for next input*			
11	Calculate overall heat transfer			
	coefficient		C	U
12	To calculate another overall			
	coefficient, go to step 2			

* Press **RTN** to restart a calculation.

97 Program Listing I

22

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11					
002	Pi	16-24					
003	ST06	35 06	Initialize				
004	CLX	-51		060			
005	ST08	35 08					
006	R↓	-31					
007	X↓Y	-41					
008	ST07	35 07	Idle				
009	X↓Y	-41					
010	GTOA	22 11					
011	*LBL1	21 01					
012	RTN	24					
013	*LBLA	21 11		070			
014	X	-35					
015	1/X	52	Add convective factor				
016	ST+8	35-55 08					
017	RTN	24					
018	*LBLB	21 12					
019	1/X	52					
020	X↓Y	-41					
021	RCL7	36 07					
022	X↓Y	-41					
023	ST07	35 07	Add conductive factor				
024	÷	-24		080			
025	LN	32					
026	X	-35					
027	2	02					
028	÷	-24					
029	ST-8	35-45 08					
030	GTO1	22 01	Calculate U				
031	*LBLC	21 13					
032	RCL8	36 08					
033	1/X	52		090			
034	RCL6	36 06					
035	X	-35					
036	ST04	35 04					
037	RTN	24					
038	*LBLD	21 14	Add convective factors				
039	1	01					
040	X↓Y	-41					
041	*LBLE	21 15					
042	1	01					
043	ST06	35 06		100			
044	CLX	-51					
045	ST08	35 08					
046	R↓	-31					
047	GTOE	22 15					
048	*LBL2	21 02					
049	RTN	24					
050	*LBLF	21 15					
051	X↓Y	-41	Add conductive factors				
052	÷	-24					
053	*LBLD	21 14					
054	1/X	52					
055	ST+8	35-55 08					
056	GTO2	22 02					

FLAGS		SET STATUS		
0		FLAGS	TRIG	DISP
1		ON OFF		
2		0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
110		1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
		2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
		3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n <u>2</u>

REGISTERS

0	1	2	3	4	U	5	6	7	8	9
S0	S1	S2	S3	S4		S5	S6	S7	S8	S9
A	B	C	D	E				I		

Program Description I

Program Title Steady State Conductive Heat Transfer, Heat Load and Logarithmic Mean Temperature Difference

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

Given any Three variables

$(Q, U, A\Delta t_m)$ OR $(Q, W, C_p \& \Delta t)$

The Program Computes the Fourth Variables:

$$Q = UA\Delta t_m, \quad U = \frac{Q}{A\Delta t_m}, \quad \dots \quad \text{etc.}$$

$$Q = WC_p\Delta t, \quad C_p = \frac{Q}{W\Delta t}, \quad \dots \quad \text{etc}$$

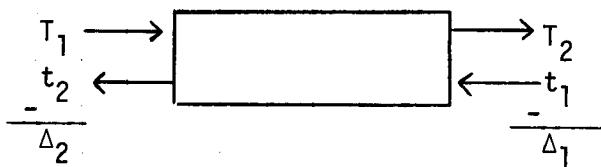
Given Temperature Conditions

$(T_1, T_2, t_1 \& t_2)$, $(t_1 \& t_2)$ or $(T_1 \& T_2)$

The Program Computes:

$$\text{OR } \Delta t_m = \frac{\Delta_2 - \Delta_1}{\ln(\Delta_2 / \Delta_1)}$$

$$\Delta t = (t_2 - t_1), (T_2 - T_1).$$


To combine these three basic heat transfer equations will increase the flexibility and speed of heat transfer design.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Determine U of an existing exchanger for the following data
(Represented by the Above Sketch):

$W = 247,000$ lb per hr

Flow Rate

$C_p = 0.585$ Btu/(1b)(°F)

Heat Capacity of the Fluid

$T_1 = 410^\circ\text{F}$

Hot Inlet Temperature

$T_2 = 150^\circ\text{F}$

Hot Outlet Temperature

$t_1 = 100^\circ\text{F}$

Cold Inlet Temperature

$t_2 = 347.5^\circ\text{F}$

Cold Outlet Temperature

$A = 9390$ sq ft

Heat Transfer Area

Solution(s)

$Q = 37,568,700$ Btu/hr

Duty

$\Delta t_m = 56^\circ\text{F}$

Mean Temperature Difference

$U = 71.42$ Btu/(hr)(°F)(sq ft)

Heat Transfer coefficient

Keystrokes:

247000[B] 0.585[C] 410[ENT↑] 150[→] [D] 0[A]

Output:

37568700(Q)

410[ENT↑] 347.5[ENT↑] 150[ENT↑] 100[E]

56.02 (Δt_m)

[D] 9390[C] 0[B]

71.42 (U)

Reference(s) McAdams, W.H., Heat Transmission, McGraw-Hill Book Co.

This program is a translation of the HP-65 Users' Library program #00648A
submitted by Yu Tsung Pef.

User Instructions

Steady State Conductive Heat Transfer, Heat Load and Log Mean Temperature Difference

5

Q

U or W

△ 0

C_p

Δt_m

or Δt

2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load program			
2.	Compute Q			
	Input $U \text{ Btu}/(\text{hr})(^{\circ}\text{F})(\text{sq ft})$ or $W \text{ lb}/\text{hr}$	U or W	B	U or W
	Input $A \text{ sq ft}$ or $C_p \text{ Btu}/(\text{lb})(^{\circ}\text{F})$	A or C_p	C	A or C_p
	Input $\Delta t_m \text{ }^{\circ}\text{F}$ or $\Delta t \text{ }^{\circ}\text{F}$	Δt_m or Δt	D	Δt_m or Δt
2.	Compute U or W			
	Input $Q \text{ Btu}/\text{hr}$	Q	A	Q
	Input $A \text{ sq ft}$ or $C_p \text{ Btu}/(\text{lb})(^{\circ}\text{F})$	A or C_p	C	A or C_p
	Input $\Delta t_m \text{ }^{\circ}\text{F}$ or $\Delta t \text{ }^{\circ}\text{F}$	Δt_m or Δt	D	Δt_m or Δt
2.	Compute A or C_p			
	Input $Q \text{ Btu}/\text{hr}$	Q	A	Q
	Input $U \text{ Btu}/(\text{hr})(^{\circ}\text{F})(\text{sq ft})$ or $W \text{ lb}/\text{hr}$	U or W	B	U or W
	Input $\Delta t_m \text{ }^{\circ}\text{F}$ or $\Delta t \text{ }^{\circ}\text{F}$	Δt_m or Δt	C	A or C_p
2.	Compute t_m or t			
	Input $Q \text{ Btu}/\text{hr}$	Q	A	Q
	Input $U \text{ Btu}/(\text{hr})(^{\circ}\text{F})(\text{sq ft})$ or $W \text{ lb}/\text{hr}$	U or W	B	U or W
	Input $A \text{ sq ft}$ or $C_p \text{ Btu}/(\text{lb})(^{\circ}\text{F})$	A or C_p	C	A or C_p
			D	Δt_m or Δt
3.	Compute Δt_m or Δt from T_1, T_2, t_1 & t_2 .			
	T_1	T_1	↑	T_1
	t_2	t_2	↑	t_2
			↑	T_2 or t_2
			E	t_1 or t_2
				Δt_m or Δt

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	*LBL0	21 00	
002	0	00		058	-	-45	
003	X \geq Y	-41	Compute the Q	059	R↑	16-31	
004	X \neq Y?	16-32		060	X=Y?	16-33	T ₁ -t ₂ = Δ ₂
005	GTO1	22 01		061	R/S	51	T ₂ -t ₁ = Δ ₁
006	RCL2	36 02		062	X \leq Y?	16-35	Δ ₂ = Δ ₁ = Δt _m
007	RCL3	36 03		063	X \neq Y	-41	
008	RCL4	36 04		064	ST05	35 05	
009	X	-35		065	ST06	35 06	
010	X	-35		066	R↓	-31	
011	ST01	35 01		067	ST-5	35-45 05	
012	RTN	24		068	ST÷6	35-24 06	
013	*LBLB	21 12	Compute the U or W	069	RCL5	36 05	
014	0	00		070	RCL6	36 06	
015	X \geq Y	-41		071	LN	32	
016	X \neq Y?	16-32		072	÷	-24	
017	GTO2	22 02		073	ST04	35 04	
018	RCL1	36 01		074	RTN	24	
019	RCL3	36 03		075	*LBL1	21 01	
020	RCL4	36 04		076	ST01	35 01	
021	X	-35		077	R/S	51	
022	÷	-24		078	*LBL2	21 02	
023	ST02	35 02		079	ST02	35 02	
024	RTN	24		080	R/S	51	
025	*LBLC	21 13	Compute the A or C	081	*LBL3	21 03	
026	0	00		082	ST03	35 03	
027	X \geq Y	-41		083	R/S	51	
028	X \neq Y?	16-32		084	*LBL4	21 04	
029	GTO3	22 03		085	ST04	35 04	
030	RCL1	36 01		086	R/S	51	
031	RCL2	36 02					
032	RCL4	36 04					
033	X	-35					
034	÷	-24					
035	ST03	35 03					
036	RTN	24					
037	*LBLC	21 14	Compute Δt _m or Δt				
038	0	00					
039	X \geq Y	-41					
040	X \neq Y?	16-32					
041	GTO4	22 04					
042	RCL1	36 01					
043	RCL2	36 02					
044	RCL3	36 03					
045	X	-35					
046	÷	-24					
047	ST04	35 04					
048	RTN	24					
049	*LBLD	21 15	Compute Δt _m or Δt				
050	-	-45					
051	R↓	-31					
052	X \neq Y?	16-32	from T ₁ , T ₂ , t ₁ or t ₂				
053	GTO0	22 00					
054	R↑	16-31					
055	ST04	35 04					
056	RTN	24					

REGISTERS

0	1 Q	2 U,W	3 A,C _p	4 Δt _m ,Δt	5 Δ ₁	6 Δ ₂	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

SET STATUS		FLAGS		TRIG		DISP	
ON	OFF	0	<input type="checkbox"/>	DEG	<input checked="" type="checkbox"/>	FIX	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	1	<input type="checkbox"/>	GRAD	<input type="checkbox"/>	SCI	<input type="checkbox"/>
2	<input type="checkbox"/>	2	<input checked="" type="checkbox"/>	RAD	<input type="checkbox"/>	ENG	<input type="checkbox"/>
3	<input type="checkbox"/>	3	<input checked="" type="checkbox"/>	n	2		

Program Description I

Program Title Sun Altitude, Azimuth, Solar Pond Absorption

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

Given: Index of refraction of pond fluid; latitude; number of days after spring equinox, and number of hours before or after solar noon; the program computes: the sun's altitude h.

$$h = \sin^{-1}(\cos i \cos d \cos t + \sin i \sin d)$$

i - latitude in decimal degrees

d = sun's declination = $23.45 \sin D$

D = (no. of days after spring equinox) (0.9856 $\frac{\text{degrees}}{\text{day}}$)

t = (no. of hours before or after solar noon);

the sun's azimuth A.

$$A = \cos^{-1}\left(\frac{\cos i \sin l - \sin d}{\cos l \sin i}\right)$$

i = $90 - h$;

the fraction of solar radiation striking the pond surface which will penetrate the pond surface, E,

$$\text{Fraction } E = 2n(a^2 + b^2) \cos i \cos r$$

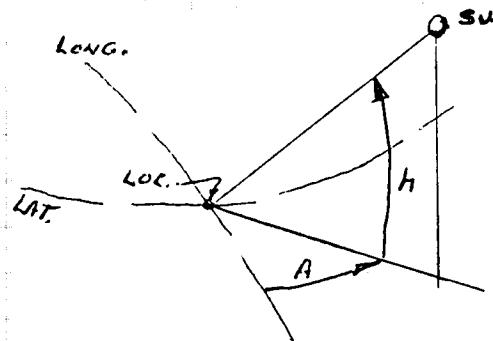
$$a = \frac{1}{\cos r + n \cos i} \text{ where } r = \sin^{-1}\left(\frac{\sin i}{n}\right)$$

$$b = \frac{1}{\cos i + n \cos r}$$

n = index of refraction of pond fluid

(refs: Smithsonian Physical Tables, 9th rev. Ed. & Weinberger, H., Solar energy, v8, n2, 1954 (p 729) 1964 (pp 45-56)

OPERATING LIMITS AND WARNINGS


Does not compute azimuth at latitude of 90 degrees.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Find the sun's altitude, azimuth, and the fraction of the sun's radiation which will penetrate the surface of a solar pond under the following circumstances:

Index of refraction of pond fluid $n = 1.33$

Latitude $l = 46.00$

Days after spring equinox = 68

Hours before solar noon = 4

Solution(s)

$h = 35.99$ degrees

$A = 84.41$ degrees

$E = 0.96$

Keystrokes:

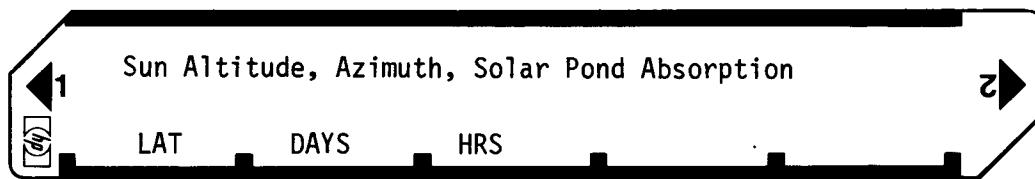
Outputs:

23.45[STO][1] .9856[STO][2] 1.33[STO][3]

46[A] 68[B] 4[C] -----> 35.99

[R/S] -----> 84.41

[R/S] -----> 0.96


Reference(s)

Smithsonian Physical Tables, 9th rev. Ed., 1954, (p 729)

Weinberger, H., Solar Energy, vol 8, no. 2, 1964 (pp 45-56)

This program is a translation of the HP-65 Users' Library program #00683A
submitted by Robert J. Zaworski.

User Instructions

97 Program Listing I

REGISTERS									
0	¹ 23.45	² 0.9856 deg/day	³ n (index of refrac	⁴ cos 1	⁵ d declination	⁶ cos i	⁷ sin d/cos i	⁸ cos t	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	I				

Program Description I

Program Title	Total Daily Amount of Solar Radiation		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
		Zip Code	9733

Program Description, Equations, Variables This program determines the total amount of solar radiation received by a horizontal surface of unit area during one calendar day. The result is expressed as equivalent hours of direct sunshine if sun were stationary and directly overhead. Also computes length of daylight and accumulates total radiation in R7 for successive calculations. Input variables are latitude, L, suns declination (from nautical almanac) in decimal degrees.

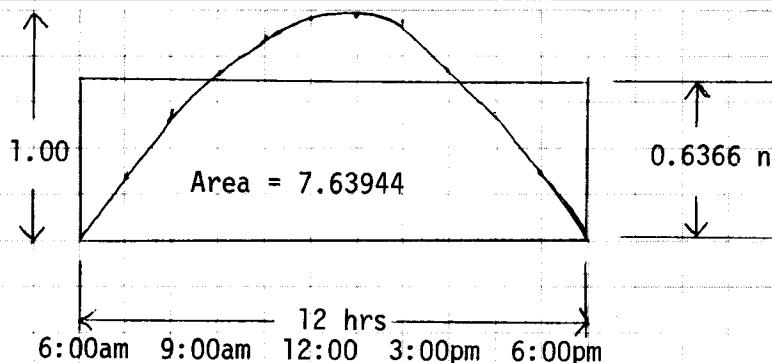
Day Length = $24 \theta/\pi$, θ expressed in radians

$\theta = \text{Arc cos } (-\sin L \sin D / \cos L \cos D)$

$$\begin{aligned} \text{Total Radiation} &= 2 \int_0^{\theta} \sin H d\theta \\ &= (\sin L \sin D) \theta + \cos L \cos D \sin \theta \end{aligned}$$

Operating Limits and Warnings

North latitudes and declinations are entered as positive values south as negative values.


The value $90-L+D$ must be greater than zero.

Equations assume surface level with horizon and ignores atmospheric refraction and assume cloudless sky.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)
Sample (1)

Sample Problem(s)

(1) Equator, March 21 L = 0, D = 0

(2) North Pole, June 21, L = 90°, D = +23.45°

(3) Cupertino, CA 95014, September 15, 1974

L = 37.32°, Dec = +2.93°

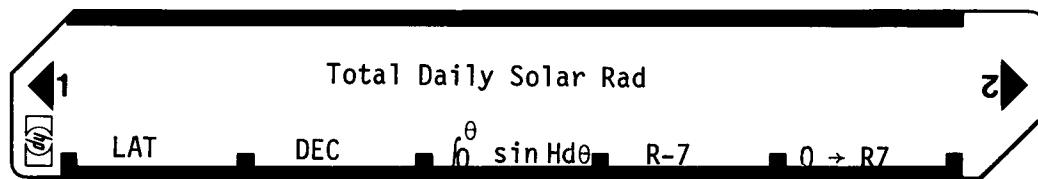
Solution(s)

(1) DHY length = 12.00 hrs Total Rad = 7.6394 hrs

(2) " " = 24.00 " " = 9.5508

(3) " " = 12 hrs, 17 min, 53 sec. Total Rad = 6.4439

Keystrokes:


(1) 0[E] 0[A] 0[B]	-----	12.0000
[C]	-----	7.6394
(2) 0[E] 90[A] 23.45[B]	-----	24.0000
[C]	-----	9.5508
(3) 0[E] 37.32[A] 2.93[B]	-----	12.1753
[C]	-----	6.4439

Outputs:
Reference(s)

- (1) The Nautical Almanac, U.S. Naval Observatory Purchase from Superintendent of Documents, Washington D.C., 20402.
- (2) American Practical Navigation, Bowditch U.S. Naval Oceanographic Office, pg 531, Also chapter XIV.
- (3) Britannica Atlas

This program is a translation of the HP-65 Users' Library program 00996A
submitted by Robert B. Egbert.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	ENT↑	-21	
002	DSP4	-63 04	Enter latitude & store in R-1	058	RCL7	36 07	
003	ST01	35 01		059	+	-55	
004	R/S	51		060	ST07	35 07	
005	*LBLB	21 12		061	R↓	-31	
006	ST02	35 02	Enter sums declination and compute no. of hours of sunshine	062	R/S	51	Display sums accumulated in R-7
007	DEG	16-21		063	*LBLD	21 14	
008	RCL1	36 01		064	RCL7	36 07	
009	SIN	41		065	R/S	51	
010	RCL2	36 02		066	*LBLE	21 15	
011	SIN	41		067	0	00	Stores zero in R-7 for new series of calculations
012	x	-35		068	ST07	35 07	Limits of integration for midnight s or case
013	ST03	35 03		069	R/S	51	
014	RCL1	36 01		070	*LBL1	21 01	
015	COS	42		071	2	02	
016	RCL2	36 02		072	4	04	
017	COS	42		073	ST05	35 05	
018	x	-35		074	R/S	51	
019	ST04	35 04					
020	X4Y?	16-35	This takes care of midnight sun				
021	GT01	22 01					
022	RCL3	36 03					
023	RCL4	36 04					
024	=	-24					
025	CHS	-22					
026	COS ⁻¹	16 42					
027	7	07					
028	.	-62	Converts degrees (θ) to length of day in hr, min, sec				
029	5	05					
030	÷	-24					
031	ST05	35 05					
032	→HMS	16 35					
033	R/S	51					
034	*LBLC	21 13	θ is converted to radians to perform the integration & result is converted to hours				
035	RCL5	36 05					
036	Pi	16-24					
037	x	-35					
038	2	02					
039	4	04					
040	÷	-24					
041	ST06	35 06					
042	RAD	16-22					
043	RCL3	36 03					
044	RCL6	36 06					
045	x	-35					
046	RCL4	36 04					
047	RCL6	36 06					
048	SIN	41					
049	x	-35					
050	+	-55					
051	2	02					
052	4	04					
053	x	-35					
054	Pi	16-24					
055	÷	-24					
056	ENT↑	-21					

REGISTERS

0	¹ LAT	² DEC OF SUN	³ Sin LX Sin D	⁴ COS LX cos D	⁵ θ HOURS OF SUNSHINE	⁶ θ RADIANS	⁷ $\int \sin H d\theta$	⁸	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

Program Description I

Program Title Temperature or Concentration Profile For A Semi-Infinite Solid

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

Many physical situations in heat and mass transfer may be solved within engineering tolerances by assuming an infinite geometry.

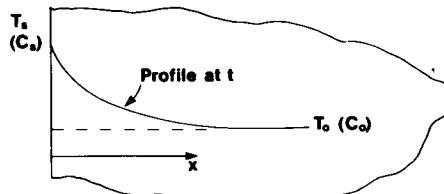


Figure 1.

In Figure 1 an infinitely thick wall initially at temperature T_0 or concentration C_0 is subject to a constant surface potential T_s or C_s . At a later time t , the internal profile will have been altered by the transport of heat or mass. This program computes values of temperature T or concentration C at time t for specified distances x from the outer surface.

Operating Limits and Warnings

This solution is exact for infinite configurations with constant cross sectional areas. However, finite geometries where the argument of the error function is greater than two will yield little or no error. This means transfer in finite bodies such as plates may be predicted until the effects of the step are felt on the far side. Also, geometries such as cylinders may be studied if the depth of penetration is small compared to the radius.

The routine used by this program will resolve error functions with arguments less than 4.5. For larger arguments, the value of the error function is set to 1.0.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title Temperature or Concentration Profile For A Semi- Infinite Solid

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

Equations:

$$T = (T_0 - T_s) \operatorname{erf} \left(\frac{x}{2 \sqrt{\frac{k}{\rho c_p} t}} \right) + T_s$$

where

k is thermal conductivity of the material;

ρ is the density of the material;

c_p is the specific heat of the material;

$k/\rho c_p$ is also known as the diffusivity of heat α .

Similarly, for mass transfer

$$C = (C_0 - C_s) \operatorname{erf} \left(\frac{x}{2\sqrt{Dt}} \right) + C_s$$

where

D is the mass diffusivity.

* erf is the error function.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Example 1:

A large steel transmission shaft is case hardened by diffusion of carbon. The initial carbon concentration is 0.10% and the surface concentration is brought to 1.20% almost instantly. What is the carbon concentration at 1.0 mm (1×10^{-3} m) after 15 hours (54000 seconds), if the diffusivity of carbon in steel is taken to be $1.6 \times 10^{-11} \text{ m}^2/\text{s}$?

Keystrokes

1.6 [EEX] [CHS] 11 [↑] 1 [↑] 1 [A] 1.2 [↑] .1 [B] 54000

[C] [EEX] [CHS] 3 [D] → 0.59%

See Displayed

Example 2:

A furnace wall is at a constant 55°F. When the furnace is turned on the inside wall temperature is raised to 2000°F. How long will it take to raise the outside wall temperature 1°F?

$$k = 0.67 \text{ Btu/hr-ft}^{-\circ}\text{F}$$

Thickness = 1.5 feet

$$c = 0.2 \text{ Btu/lb } ^\circ\text{F}$$

$$\rho = 150 \text{ lb/ft}^3$$

Keystrokes

See Displayed

An iterative solution is required since t is not a program output.
Guess 5.0 hours for t .

.67 [↑] 150 [↑] .2 [A] 2000 [↑] 55 [B] 5 [C] 1.5 [D] → 57.92°F

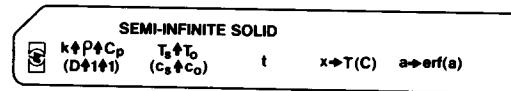
Guess 4.0

Noting that x is stored in register 8.

4.0 [C] [RCL] [8] [D] → 55.75°F

Guess 4.2

4.2 [C] [RCL] [8] [D] → 56.04°F


Guess 4.18

4.18 [C] [RCL] [8] [D] → 56.01°F

Noting that t is stored in register 7.

[RCL] [7] [f] [H.MS] → ≈4 hr. 10 min.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	To compute the error function			
	of an argument go to step 8.			
3	Input:			
	Conductivity	k	↑	k
	then density	ρ	↑	ρ
	then specific heat	c _p	A	α
	or heat (or mass) diffusivity	α (D)	↑	α (D)
	then 1.00	1	↑	1.00
	then 1.00	1	A	α (D)
4	Input:			
	Surface temperature (con-			
	centration)	T _s (C _s)	↑	T _s (C _s)
	then initial temperature			
	(concentration)	T ₀ (C ₀)	B	T _s (C _s)
5	Input time	t	C	t
6	Input distance from surface			
	and calculate temperature			
	or concentration	x	D	T (C)
7	For new case go to step 2, 3, or			
	4 and change inputs. For new			
	time go to step 5. For new x go			
	to step 6.			
8	Input argument and compute			
	error function	a	E	erf(a)

97 Program Listing I

39

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	+	-55	
002	X	-35		058	X#Y?	16-32	
003	÷	-24	Store constants as α or D	059	GT01	22 01	
004	ST06	35 06		060	2	02	
005	RTN	24		061	X	-35	
006	*LBLB	21 12	Store concentrations or temperatures	062	Pi	16-24	
007	ST04	35 04		063	JX	54	
008	X#Y	-41		064	÷	-24	
009	ST05	35 05		065	RCL2	36 02	
010	RTN	24		066	2	02	
011	*LBLC	21 13	Store time	067	÷	-24	
012	ST07	35 07		068	e ^X	33	
013	RTN	24		069	÷	-24	
014	*LBLD	21 14		070	RTN	24	
015	ST08	35 08		071	*LBL0	21 00	
016	2	02		072	1	01	
017	÷	-24		073	RTN	24	
018	RCL6	36 06	Calculate temp. or concentration given x	080			
019	RCL7	36 07		090			
020	X	-35		100			
021	JX	54					
022	÷	-24					
023	GSBE	23 15					
024	RCL4	36 04					
025	RCL5	36 05					
026	-	-45					
027	X	-35					
028	RCL5	36 05					
029	+	-55					
030	RTN	24					
031	*LBLE	21 15					
032	ST01	35 01					
033	4	04					
034	.	-62					
035	5	05					
036	X≤Y?	16-35					
037	GT06	22 00					
038	R↓	-31					
039	ENT↑	-21					
040	X	-35					
041	2	02					
042	X	-35					
043	ST02	35 02					
044	1	01					
045	ST03	35 03					
046	RCL1	36 01					
047	*LBL1	21 01	Evaluate the error function				
048	RCL2	36 02					
049	RCL3	36 03					
050	2	02					
051	+	-55					
052	ST03	35 03					
053	÷	-24					
054	RCL1	36 01					
055	X	-35					
056	ST01	35 01					

REGISTERS

0	¹ Part. Sum	² 2a ²	³ 2n + 1	⁴ T ₀ (C ₀)	⁵ T _s (C _s)	⁶ α	⁷ t	⁸ X	⁹ Used
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F				

FLAGS	TRIG		DISP	
	ON	OFF	DEG	FIX
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
110				
n	—	2		

Program Description I

Program Title Transient Temperature Distribution In A Semi-Infinite Solid With Convection Boundary Condition

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

Given the data set:

x = Depth from surface

α = Thermal diffusivity

k = Thermal conductivity

h = Heat transfer coefficient

θ = Time

The program computes the following factor \bar{x}

$$\bar{x} = \text{ERF} \left(\frac{x}{2\sqrt{\alpha\theta}} \right) + \left[\text{EXP} \left(-\frac{h^2\alpha\theta}{k^2} \right) \right] \left[1 - \text{ERF} \left(\frac{\sqrt{h\alpha\theta}}{k} \right) \right]$$

where ERF = Error function

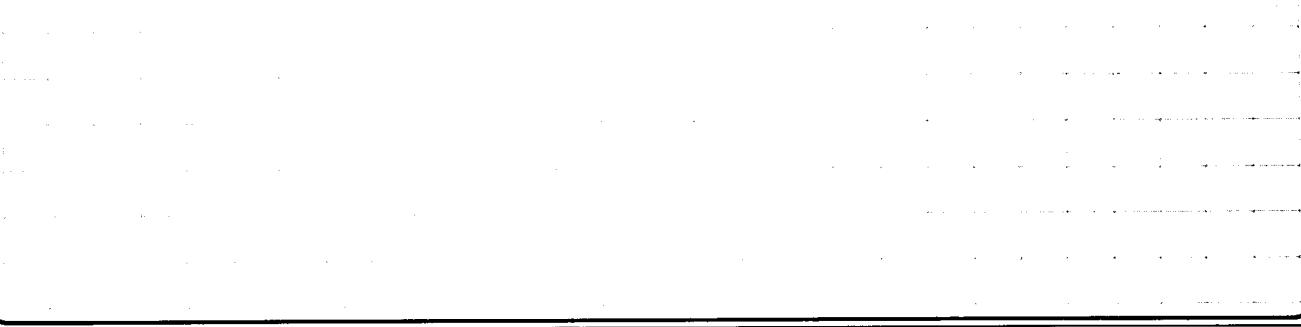
EXP = Exponential

The user must then manually compute the desired temperature $T(x, \theta)$, according to:

$$T(x, \theta) = T_{\infty} + (T_i - T_{\infty}) \bar{x}$$

where T_{∞} = Sink temperature

T_i = Initial solid temperature


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

For the data set:

$$x = 10^{-2} \text{ cm.}$$

$$\theta = 10^{-1} \text{ cm.}$$

$$\alpha = 7.141 \times 10^{-3} \text{ cm}^2 \text{ sec}^{-1}$$

$$k = 6.322 \times 10^{-3} \text{ cal cm}^{-1} \text{ sec}^{-1} \text{ }^{\circ}\text{C}^{-1}$$

$$h = 6.0 \times 10^{-1} \text{ cal cm}^{-2} \text{ sec}^{-1} \text{ }^{\circ}\text{C}^{-1}$$

Solution(s) The program computes the value:

$$\underline{x} = 0.3973$$

for $T_i = 1050^{\circ}\text{C}$ and $T_{\infty} = 450^{\circ}\text{C}$

$$T(x, \theta) = T_{\infty} + (T_i - T_{\infty}) \underline{x} = 688.40^{\circ}\text{C}$$

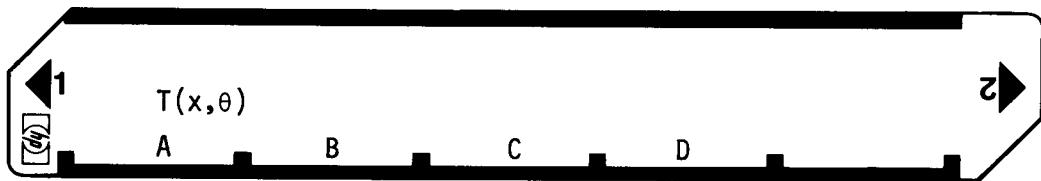
Keystrokes:

Outputs:

1[EEX][CHS] 2[STO][4] 1[EEX][CHS] 1[STO][5] 7.141[EEX][CHS] 3[STO][6]

6[EEX][CHS] 1[STO] [7] 6.322[EEX][CHS] 3[STO][8]

[A][B][C][D] -----> 0.3973


1050[ENT↑] 450[-][x] 450[+] -----> 688.40

Reference(s)

Hockman, J.P. Heat Transfer Third Edition pgs. 91-96 McGraw Hill, 1972

This program is a translation of the HP-65 Users' Library program #01472A
submitted by John S. Wasyllyr.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load program			
2.	Enter data	x	STO 4	
3.	Enter data	θ	STO 5	
4.	Enter data	α	STO 6	
5.	Enter data	h	STO 7	
6.	Enter data	k	STO 8	
7.	Press		A	See 1 below
8.			B	" 2 "
9.			C	" 3 "
10.			D	—x
11.	Enter $(T_i - T_\infty)$	$(T_i - T_\infty)$		
12.	Press		x	
13.	Enter T_∞	T_∞		
14.	Press		+	$T(x, \theta)$
For new case, go to step 2				
1.	Calculates $\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k}$			
2.	Calculates $ERF(\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k})$			
3.	Calculates & Stores: $R8 = ERFC(\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k}) EXP(\frac{hx}{k} + \frac{h^2\alpha\theta}{k^2})$			
	$ERF(\frac{x}{2\sqrt{\alpha\theta}})$ in stack			

97 Program Listing I

43

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	*LBLC	21 13	Calc
002	RCL8	36 08		058	1	01	$ERFC\left(\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k}\right)$
003	ST ⁻¹ 7	35-24 07	Calc (h/k) Sto R-7	059	X#Y	-41	
004	RCL6	36 06		060	-	-45	
005	ST ⁻¹ 5	35-35 05	Calc ($\alpha\theta$) Sto R-5	061	ST08	35 08	Store R-8
006	RCL4	36 04		062	RCL7	36 07	
007	RCL7	36 07		063	RCL5	36 05	
008	x	-35		064	JX	54	
009	ST06	35 06	Calc (hx/k) Sto R-6	065	x	-35	
010	RCL4	36 04		066	x ²	53	
011	2	02		067	RCL6	36 06	$EXP\left(\frac{hx}{k} + \frac{h^2x\theta}{k^2}\right)$
012	÷	-24		068	+	-55	
013	RCL5	36 05		069	e ^x	33	
014	JX	54		070	RCL8	36 08	Calc (EXP)(ERFC)
015	÷	-24		071	x	-35	Sto R-8
016	ST04	35 04	Calc (4/2 $\sqrt{\alpha\theta}$) Sto R-4	072	ST08	35 08	
017	RCL7	36 07		073	RCL4	36 04	
018	RCL5	36 05		074	GT08	22 12	
019	JX	54		075	RTN	24	
020	x	-35		076	*LBLD	21 14	
021	+	-55	Calc (x/2 $\sqrt{\alpha\theta}$ + $h\sqrt{\alpha\theta}/k$)	077	RCL8	36 08	
022	RTN	24		078	+	-55	
023	*LBLB	21 12		079	RTN	24	
024	ST01	35 01		080			
025	ENT ¹	-21	Calc				
026	x	-35	$ERF\left(x/\frac{2\sqrt{\alpha\theta}}{k} + \frac{h\sqrt{\alpha\theta}}{k}\right)$				
027	2	02					
028	x	-35					
029	ST02	35 02					
030	1	01					
031	ST03	35 03					
032	RCL1	36 01					
033	*LBL1	21 01					
034	RCL2	36 02					
035	RCL3	36 03					
036	2	02					
037	+	-55					
038	ST03	35 03					
039	÷	-24					
040	RCL1	36 01					
041	x	-35					
042	ST01	35 01					
043	+	-55					
044	X#Y?	16-32					
045	GT01	22 01					
046	2	02					
047	x	-35					
048	P1	16-24					
049	JX	54					
050	RCL2	36 02					
051	2	02					
052	÷	-24					
053	e ^x	33					
054	x	-35					
055	÷	-24					
056	RTN	24					

REGISTERS

0	1 Used	2 Used	3 Used	4 X	5 α	6 θ	7 h	8 k	9 Used
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C		D		E		I	

SET STATUS

FLAGS		TRIG		DISP	
ON	OFF	DEG	GRAD	FIX	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

ON	OFF	DEG	GRAD	FIX	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Program Description I

Program Title	Conservation of Energy		
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State	Oregon
			Zip Code 97330

Program Description, Equations, Variables			
<p>These cards convert kinetic energy, potential energy and pressure-volume work to energy. Card 1 is for English units while Card 2 is for SI or metric units. Energy is stored as a running total. When a zero is displayed, pressing the B, C, D or E keys will cause the running total to be converted to an equivalent velocity, height, pressure or energy per unit mass. The cards may be used in a large number of fluid flow problems, where velocity, elevation and pressure change along the path of flow.</p>			

Operating Limits and Warnings			
<p>Downstream values should be input as negatives. However, when an output is called for, the calculator displays the relative value with no regard to upstream or downstream location.</p>			
<p>Flashing zeros will result when the total energy sum stored in register 8 is negative and an attempt is made to calculate velocity.</p>			

<p>This program has been verified only with respect to the numerical example given in <i>Program Description II</i>. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.</p> <p>NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.</p>			
---	--	--	--

Program Description I

Program Title

CONSERVATION OF ENERGY

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables

$$\frac{v_1^2}{2} + gz_1 + \frac{P_1}{\rho} + \frac{E_1}{\dot{m}} = \frac{v_2^2}{2} + gz_2 + \frac{P_2}{\rho} + \frac{E_2}{\dot{m}}$$

where

v is the fluid velocity;

z is the height above a reference datum;

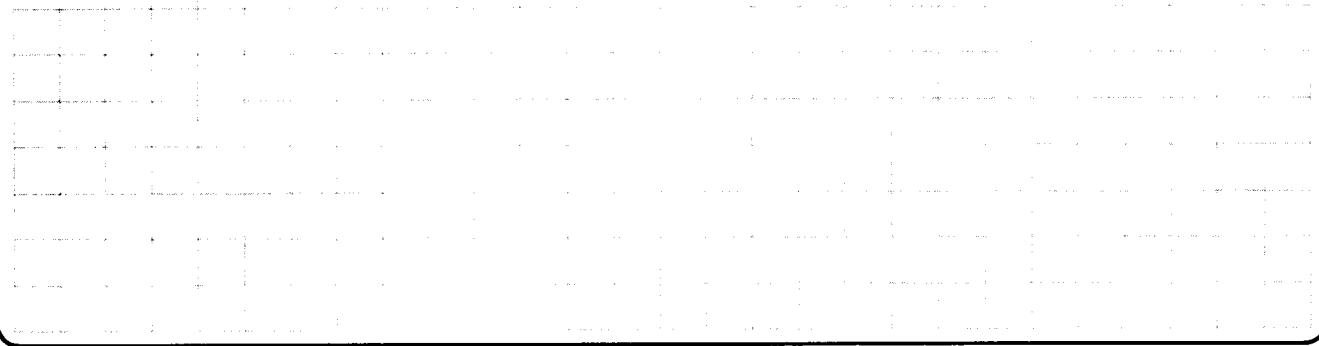
P is the pressure;

E is an energy term which could represent inputs of work or friction losses (negative value);

g is the acceleration of gravity;

 ρ is the fluid density; \dot{m} is the mass flow rate (assumed to be unity);

subscripts 1 and 2 refer to upstream and downstream values respectively.


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Example 1:

A water tower is 100 feet high. What is the zero flow rate pressure at the base? The density of water is 62.4 lb/ft³.

Keystrokes

See Displayed

Using card 1

62.4 **A** 100 **C** **D** → 43.33 psig

If water is flowing out of the tower at a velocity of 10 ft/sec, what is the static pressure?

10 **CHS** **B** **D** → 42.66 psig

What is the maximum frictionless flow velocity which could be achieved with the 100 foot tower?

62.4 **A** 100 **C** **B** → 80.21 ft/sec

If 10000 pounds of water are pumped to the top of the tower every hour, at a velocity of 20 ft/sec, with a frictional pressure drop of 2 psi, how much power is needed at the pump?

62.4 **A** 20 **B** 2 **D** 100 **C** **E** → 0.14 Btu/lb

10000 **X** → 1424.29
(Btu/hr)

Solution(s)

Reference(s)

Program Description II

Sketch(es)

Sketch(es) area for drawing the converging passage diagram.

Sample Problem(s)

Example 2:

An incompressible fluid ($\rho = 735 \text{ kg/m}^3$) flows through the converging passage of Figure 1. At point 1 the velocity is 3 m/s and at point 2 the velocity is 15 m/s. The elevation difference between points 1 and 2 is 3.7 meters. Assuming frictionless flow, what is the static pressure difference between points 1 and 2?

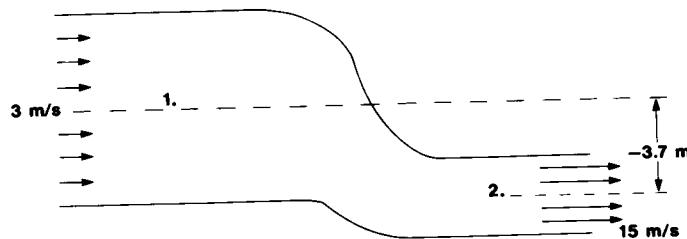


Figure 1.

Solution(s)

Keystrokes

Using card 2

735 A 3 B 3.7 C 15 CHS B D → -52710.82
(Nt/m²)

See Displayed

Reference(s)

Program Description II

Sketch(es)
Sample Problem(s)
Example 3:

A reservoir's level is 25 meters above the discharge pond. Assuming 85% power generation efficiency, how much power can be generated with a flow rate of $20 \text{ m}^3/\text{s}$?

$$\rho = 1000 \text{ kg/m}^3$$

Keystrokes

Using card 2

Keystrokes	See Displayed
1000 A 25 C E	245.17 (joule/kg)
.85 X	208.39 (joule/kg)
20 ↑ 1000 X	20000 (kg/s)
X	4167826.25 (watts)

Solution(s)
Reference(s)

User Instructions

49

CONSERVATION OF ENERGY-ENGLISH				
<input type="checkbox"/>	$P(\text{START})$ (lb/ft ³)	v (ft/sec)	z (ft)	P (psi)
<input type="checkbox"/>				E (Btu)

CONSERVATION OF ENERGY-SI				
<input type="checkbox"/>	$P(\text{START})$ (kg/m ³)	v (m/s)	z (m)	P (N/m ²)
<input type="checkbox"/>				E (J/kg)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	For English units (pounds, feet, seconds, Btus), enter Card 1. for SI units			
	(kilograms, meters, seconds, watts), enter Card 2			
2	Input fluid density	ρ	A	g
3	Input the following (negative values are downstream values):			
	Fluid velocity	v	B	0.00
	Height from reference datum	z	C	0.00
	Pressure	P	D	0.00
	Energy input	E	E	0.00
4	Repeat step 3 for all input values			
5	Calculate the unknown:			
	Fluid velocity	0.00	B	v
	Height from reference datum	0.00	C	z
	Pressure	0.00	D	P
	Energy	0.00	E	E
6	For new case go to step 2, or store 0.00 in register 8 and go to step 3.			

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	GT01	22 01	
002	ST04	35 04		058	RCL8	36 08	
003	CLX	-51		059	RCL7	36 07	
004	ST08	35 08		060	=	-24	
005	7	07		061	RCL4	36 04	
006	7	07		062	X	-35	
007	8	08	Store p and	063	RCL6	36 06	
008	.	-62	constants	064	=	-24	
009	1	01		065	RTN	24	
010	6	06		066	*LBLB	21 15	
011	ST05	35 05		067	ENT↑	-21	
012	3	03		068	RCL5	36 05	
013	2	02		069	Y	-35	
014	.	-62		070	RCL6	36 06	
015	1	01		071	X	-35	
016	7	07		072	0	00	Energy
017	ST06	35 06		073	X#Y?	16-32	
018	RTN	24		074	GT01	22 01	
019	*LBLB	21 12		075	RCL8	36 08	
020	ENT↑	-21		076	RCL5	36 05	
021	ABS	16 31		077	=	-24	
022	X	-35		078	RCL6	36 06	
023	2	02		079	=	-24	
024	=	-24		080	RTN	24	
025	0	00		081	*LBL1	21 01	
026	X#Y?	16-32		082	R↓	-31	
027	GT01	22 01		083	ST+8	35-55 08	Summation
028	RCL8	36 08		084	0	00	
029	2	02		085	RTN	24	
030	X	-35					
031	JX	54					
032	RTN	24					
033	*LBLC	21 13		090			
034	ENT↑	-21					
035	RCL6	36 06					
036	X	-35					
037	0	00					
038	X#Y?	16-32					
039	GT01	22 01					
040	RCL8	36 08					
041	RCL6	36 06					
042	=	-24					
043	RTN	24					
044	*LBLD	21 14		100			
045	ENT↑	-21					
046	1	01					
047	4	04					
048	4	04					
049	ST07	35 07					
050	X	-35					
051	RCL4	36 04					
052	=	-24					
053	RCL6	36 06					
054	X	-35					
055	0	00					
056	X#Y?	16-32		110			

REGISTERS

0	1	2	3	4	p	5	778.16	6	g	7	144	8	ΣE	9	Used
S0	S1	S2	S3	S4		S5		S6		S7		S8		S9	
A	B	C				D		E				I			

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS						
001	*LBLA	21 11		057	R↓	-31							
002	ST04	35 04		058	ST+8	35-55 08	Summation						
003	CLX	-51	Store and gravity	059	0	00							
004	ST08	35 08	constant	060	RTN	24							
005	9	09											
006	.	-62											
007	8	08											
008	0	00											
009	6	06											
010	6	06											
011	5	05											
012	ST06	35 06		180									
013	RTN	24											
014	*LBLB	21 12											
015	ENT↑	-21											
016	ABS	16 31											
017	x	-35											
018	2	02											
019	÷	-24	Velocity										
020	0	00											
021	X#Y?	16-32											
022	GT01	22 01		190									
023	RCL8	36 08											
024	2	02											
025	x	-35											
026	Jx	54											
027	RTN	24											
028	*LBLC	21 13											
029	ENT↑	-21											
030	RCL6	36 06											
031	x	-35	Height										
032	0	00		200									
033	X#Y?	16-32											
034	GT01	22 01											
035	RCL8	36 08											
036	RCL6	36 06											
037	÷	-24											
038	RTN	24											
039	*LBLD	21 14											
040	ENT↑	-21											
041	RCL4	36 04											
042	÷	-24		210									
043	0	00											
044	X#Y?	16-32	Pressure										
045	GT01	22 01											
046	RCL8	36 08											
047	RCL4	36 04											
048	x	-35											
049	RTN	24											
050	*LBLE	21 15											
051	ENT↑	-21											
052	0	00											
053	X=Y?	16-33	Energy	220									
054	RCL8	36 08											
055	RTN	24											
056	*LBL1	21 01											
LABELS													
A	p	B	V	C	Z	D	P	E	E	0	FLAGS	SET STATUS	
a	b			c		d		e		1	FLAGS	TRIG	DISP
0		1	Σ	2		3		4		2	ON OFF		
5		6		7		8		9		3	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
											1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
											2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
											3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 2

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
Real Estate Investment
Taxes
Home Construction Estimating
Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

ENERGY CONSERVATION

This is a book with heat transfer calculations for everyday use. Programs include basic heat transfer calculations in conduction, convection, and radiation.

- AIR COOLING SYSTEM DESIGN**
- BLACK BODY THERMAL RADIATION**
- ECONOMIC INSULATION THICKNESS**
- HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS**
- STEADY STATE COND. HEAT TRANS., HEAT LOAD & LOGARITHMIC MEAN**
- SUN ALTITUDE, AZIMUTH, SOLAR POND ABSORPTION**
- TOTAL DAILY AMOUNT OF SOLAR RADIATION**
- TEMPERATURE OR CONCENTRATION PROFILE FOR A SEMI-INFINITE SOLID**
- TRANSIENT TEMPERATURE DISTRIBUTION IN A SEMI-INFINITE SOLID WITH CONVECTION BOUNDARY CONDITION**
- CONSERVATION OF ENERGY**

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14029 Printed in U.S.A. 00097-90204
Revision C 12-78

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.