Series 100/ BASIC

| (D

Manual Part No. Printed in U.S.A.
45445-90007 7/84

Table of Contents

Preface e X
Manual Organization oo X
Notation Conventions xi

Chapter 1: Getting Started

The Series 100/BASIC User 1-1
Before You Begin i 1-1
Starting BASIC 1-2
Modes of Operation. 1-2
Direct Mode 1-2
Quick Computation 1-3
Indirect Mode 1-3
Line Format.. 1-4
Character Set e 1-5
Entering a Program i 1-8
Modifying a Program 1-9
Edit Mode 1-9
Edit Mode Subcommands 1-9
Entering Edit Mode from a Syntax Error 1-14
Modify Mode 1-14
Using Modify Mode 1-15
Start of Text Pointer 1-16

Error Messagesttt 1-18

Chapter 1: Getting Started

Documenting Your Programt 1-18
Printing Operations i 1-19

L Commands and Statements 1-19
Writing a Simple Program. 1-20

Chapter 2: Data, Variables, and Operators

Introduction 2-1
Constants e 2-2
Single and Double Precision Form for Numeric Constants 2-3
Variables 2-3
Variable Names and Declaration Characters 2-4
Special Type Declaration Characters. 2-4
Reserved Words 2-4
String Variables i 2-5
Numeric Variables. 2-5
Array Variables o 2-6
Type CONVerSion.t 2-7
Expressions and Operators 2-10
Arithmetic Operators i, 2-10
Integer Division and Modulus Arithmetic 2-11
Overflow and Division by Zero 2-12
Relational Operators. i, 2-12
Logical Operators 2-13
Functional Operators, 2-16
String Operations i 2-17
Concatenation i 2-17
Comparisonst 2-17

Chapter 3: The BASIC Environment

Introduction it e 3-1
BASIC ..o e 3-2

ii (Portable PLUS)

Chapter 4: File Operations

Disc Filenames e 4-1
Disc Data Files—Sequential and Random Access 4-1
Sequential Files. i 4-1
Random Files. i 4-3
Creatinga Random File 4-3
AccessingaRandom File, 4-4
Protected Files 4-8

Chapter 5: Programming Tasks

Introduction ... 5-1
System Commands i 5-3
Using Commands as Program Statements...................... 5-4
File Operations. i 5-5
Defining and Altering Data and Variables........................ 5-6
Computer Control. 5-7
Program Control, Branching, and Subroutines..... 5-8
Terminal Input and Output. L. 5-10
Debugging Aids. e 5-11
BASIC Functions i 5-12
General Purpose Functions. 5-13
Input/Output Functions 5-13
Arithmetic Functions. oo 5-14
Derived Functions. i i 5-15
String Functions 5-16
Special Functions i 5-17

1ii

Chapter 6: BASIC Statements, Commands, Functions, and

Variables
Introductiono e 6-1
Chapter Format i 6-2
ABS FUNCHON . .o e e 6-3
ASC FUNCHON . . .o e e e e 6-3
ATN Function. e e e e 6-3
AUTO Commandttt e e 6-4
BLOAD Command/Statementciiiuiiiirviinnan.. 6-6
BSAVE Command/Statementc.cciiiiinenraean.. 6-8
CALL Statement.ottt e 6-9
CALLS Statementttt 6-10
CDBL FUNCHON ..ottt e e e e e et e e 6-11
CHAIN Statementt e i 6-12
CHRS FUNCHON . . oot e 6-17
CINT FUNCHON . . .o e e e e e e 6-17
CLEAR Statementttt 6-18
CLOSE Statementttt e et 6-20
COMMON Statement. .. .o.vv et et e 6-21
CONT Commando 6-23
COS FUNCHON e e e et ee e 6-25
CSONG FUnction e e e 6-25
CVL CVS, CVD FUNCHONSo e e 6-26
DATA Statement e 6-27
DATES FUNCHiONttt et 6-28
DATES Statement.t e 6-29
DEF FN Statement. it ieeinenen 6-30
DEF SEG Statement. ittt 6-32
DEF USR Statementottt it eieaeen 6-33
DEFINT/SNG/DBL/STR Statements.coviriuaneienn. 6-34
DELETE Commandttt 6-36
DIM Statement. e 6-37
EDITCommand. it 6-38
END Statement e e 6-39

iv

Chapter 6: BASIC Statements, Commands, Functions, and

Variables
EOF FUNCHON . . . e e e e 6-40
ERASE Statement. e 6-42
ERR and ERL Variables. i 6-43
ERROR Statementt e e e 6-45
EXP Functiont i ettt 6-47
FIELD Statement e 6-48
FILES Command/Statement iiiiiien... 6-50
FIX Function. e e e 6-51
FOR..NEXT Statement e 6-52
FRE FUNCHON ... e e e e e 6-55
GET Statemento e 6-56
GOSUB..RETURN Statement it 6-57
GOTO Statement i i 6-59
HEXS$ Function. e 6-60
IF Statement e 6-61
INKEYS Function e 6-65
INP FUNCHION . .. e e e 6-65
INPUT Statement e 6-66
INPUTH Statementt 6-69
INPUTS FUNCHION et e 6-71
INSTR Function. i e 6-72
INT Function e 6-73
KILL Command/Statement. 0 iiieiviin. 6-74
LEFTS Function e 6-76
LEN Function. e e 6-76
LET Statement e 6-77
LINE INPUT Statement i 6-78
LINE INPUTH Statement. i 6-79
LISTand LLIST Command i, 6-81
LOAD Command. e e 6-83
LOC FUuncCtion. e e e 6-84
LOF Function e 6-84

Chapter 6: BASIC Statements, Commands, Functions, and

Variables
LOG FUNCHON. . o ottt e et e ettt et e e 6-85
LPOS FUNCHON . . o vttt e e et ettt et et e et 6-85
LPRINT and LPRINT USING Statements. 6-86
LSETand RSET Statements, 6-87
MERGE Commandcuiriniii i et 6-88
MIDS FUNCHON. . .ottt e e e et 6-90
MIDS$ Statement.oov ittt e 6-91
MKI$,MKS$,MKD$ Functions.oveiieennninnaonn. 6-92
NAME Statement. oottt et e e 6-93
NEW Command.oortt ettt te e ee e, 6-94
NULL Statementovi it e e e e e et 6-95
OCTS FUNCHON. . . .ottt 6-96
ON ERROR GOTO Statement.couieniiiiininnnenenn 6-97
ON...GOSUBStatementvuiiiiiiieniieanennn 6-99
ON..GOTOStatementcoiii ittt 6-100
OPEN Statementoiv ittt e e e 6-101
OPTION BASE Statementttt 6-104
OUT Statementcvit ittt et et et 6-105
PEEK FUNCHONottt e e et et e i i eneas 6-106
POKE Statementouitnriii ettty 6-107
POS FUNCHONottt et e et ns 6-108
PRINT Statement.ttt ie e 6-109
PRINT USING Statement. it 6-112
PRINT# and PRINT# USING Statements. 6-117
PUT Statemento i e et et et it 6-120
RANDOMIZE Statementtireieiineineann 6-121
READ Statementoi ittt 6-123
REM Statementooviiiii ittt e i 6-125

vi

Chapter 6: BASIC Statements, Commands, Functions, and

Variables
RENUMCommand.ooiuinemneiiiiiiiainennann 6-127
RESET Command/Statementciiiiiiii i, 6-129
RESTORE Statementttt it it 6-130
RESUME Statement.otiii it it it 6-131
RETURN Statement.ottt it i i 6-132
RIGHTS FUNCHONottt it ie et iia e 6-133
RND FUNCHION ... oottt e et i e it e 6-133
RUN Command/Statement........... ..ot 6-134
SAVECommandttt 6-135
SGN FUNCHON. . ..ottt et 6-136
SIN Functionttt 6-136
SPACES FUNCHION.ottt et et 6-137
SPC FUNCHON « .. ottt et ettt et 6-137
SOR FUNCHONot e e i e e 6-138
STOP Statement.cvvi ittt aea e 6-139
STRS FUNCHIONottt ettt et 6-140
STRINGS FUNCtionot et 6-140
SWAP Statementottt 6-141
SYSTEM Command/Statement.o 6-142
TAB FUNCHON . . . oo et 6-143
TAN FUNCHON. i e 6-143
TIMES FUunction.t et 6-144
TIMES Statemento ottt 6-145
TRON/TROFFE Statements.covvieienneniiinenennans 6-146
USR FUNCHON. i ci e eians 6-147
VAL FUNCHON . . o oo e et et e e it ieaaas 6-148
VARPTR Function. i it 6-149
WAIT Statement. it eiaiaana 6-151
WHILE.WEND Statementcotiuiieiiininnnan. 6-152
WIDTH Statement. i i i 6-154
WRITE Statementttt 6-155
WRITE# Statementt e e 6-156

vii

Appendix A: Error Codes and Error Messages...... A-1

Appendix B: Using Terminal Features in BASIC

Introduction. B-1
Sample Functions. B-4
Appendix C: Reference Tables.................... C-1
Appendix D: Assembly Language Subroutines
Introduction D-1
Memory Allocation............ D-2
CALL Statement. D-3
USRFunction........... o i D-8
Appendix E: Installing BASIC on the HP 110
Introduction E-1
Copying the Program Disc for Back-up E-2
Formatting the Back-up Disc E-3
Making the Back-up Copy ... E-4
Running Series 100/BASIC L. E-6
Running BASIC Using PAM. E-6
Running from an External Disc E-6
Running from the Electronic Disc E-7
Running BASIC Using MS-DOS E-8
Running from an External Disc E-8
Running from the Electronic Disc....................... ... E-8

viii

Appendix F: Installing BASIC on the HP 150

INtroductionot vt e F-1
Making a Working Copy of BASICoihn ... F1
For Dual Disc Drive Usersttt F-2
For Hard Disc Drive Users oot i i F4
Starting BASIC F-4
INndeX . .vvtiiiniin et iietaaaaasaacasssesnssanss I-1

ix

Preface

This manual describes the version of Interpretive BASIC by Microsoft®
that Hewlett-Packard supports. For a description of the compiled version
of Microsoft® BASIC, you should consult the Microsoft® BASIC Compiler
manual.

Manual Organization

Throughout this manual, the term “instruction” is a generic term that
groups commands, statements, and functions under one name.

Chapter 1 introduces the Hewlett-Packard BASIC language and gives
guidelines so you may start writing your own BASIC programs.

Chapter 2 describes general features about BASIC, such as data types and
operations.

Chapter 3 gives specific information about the BASIC command line.
Chapter 4 describes files.

Chapter 5 groups the BASIC instructions together, according to the tasks
that you may want to perform.

Chapter 6 is a comprehensive listing of all the BASIC commands,
statements, functions, and variables. The listing is alphabetical.

The appendices provide further information on error codes and error
messages, using your computer’s terminal features, and assembly-
language subroutines, as well as supplying necessary reference tables.

Notation Conventions

The notation conventions that we use in this manual adhere to the
following rules:

CAPITAL LETTERS You must enter those words that appear in capital
letters exactly as they are shown. However, this
only aids reading the syntax charts as BASIC
automatically shifts variable names and key words
to upper case letters.

lower case letters Words shown in italicized, lower case letters are
words that you must supply.

[square brackets] Square brackets enclose items that are optional.

|braces| Braces enclose multiple items when you must
select between the available choices.

vertical bar | A vertical bar divides the selection of items that
are enclosed by braces.

ellipsis (...) Items that are followed by an ellipsis may be
repeated any number of times (up to the length of
the input line).

punctuation The punctuation symbols that serve special
functions have been described above. You must
include all other punctuation symbols (such as
commas, semicolons, parentheses, quotation
marks, etc.) exactly as they appear within the
format charts.

Consider this example:
INPUT;] [*prompt* 15 1, variable [, variable]...

To be valid, an INPUT statement must contain the keyword INPUT and at
least one variable. Since variable is italicized, you must replace this
descriptive term with an appropriate name. Square brackets surround
optional parameters. For example, the semicolon and prompt string are
both optional. However, if you include a prompt, you must enclose the
string in quotation marks and end the string with either a semicolon or a
comma. You may list several variables, but you must separate them with
commas.

xi

Chapter 1

GETTING STARTED

The Series 100/BASIC User

To use Series 100/BASIC successfully, you only need to be familiar
with general programming concepts and the BASIC language. If you
are not familiar with BASIC, we recommend that you either read one
of the introductory texts on programming in BASIC or take a begin-
ning-level course on this language.

Before You Begin

If you have not yet installed the Series 100/BASIC software module
into the software drawer in your computer, you need to do that now.
Here’s the procedure:

Step 1. If your computer’s Edisc has any files that you don't
want to lose, copy those files to an external disc. (To
learn how to copy files from Edisc, refer to the sec-
tion on “Copying Discs” in Chapter 5 of Using the
Portable PLUS.)

Step 2. Install the BASIC software module in your
HP 82982A Software Drawer. Just follow the Software
Module Installation Instructions that came with your
BASIC software package.

Step 3. Install the software drawer in a drawer receptacle on
the bottom of your computer. Follow the Drawer In-
stallation Instructions that came with your software
drawer.

(Portable PLUS) 1-1

Starting BASIC

You start Series 100/BASIC just as you would any other application
program on your Portable PLUS. First, go to the main P.A.M. screen on
your computer. Move the display pointer over to the box labeled

BASIC and then press ().

Modes of Operation

Once you start BASIC, it shows you a symbol like this: 0k. This sym-
bol, called a prompt, means that the BASIC interpreter is waiting for
you to tell it what to do. This condition, where BASIC shows you a
prompt and you respond, is called the command level. BASIC will re-
main at the command level until you enter a RUN command.

At the command level, you may converse with the BASIC interpreter
in one of two modes: Direct Mode or Indirect Mode.

Direct Mode

In Direct Mode, you do not precede BASIC statements or functions
with line numbers. Rather, you “talk” interactively with the BASIC in-
terpreter, and it executes each instruction as you enter it.

For example,

Ok
PRINT “HELLO mOM“
HELLO MOM

Ok

Direct Mode is useful for debugging programs and for quick computa-
tions. You may use Direct Mode to display the results of mathematical
and logical operations (using PRINT statements, as in the preceding
example) or to store the results for later use (using the LET statement).
However, the instructions that produce these results are lost after the
interpreter executes the instruction.

1-2 (Portable PLUS)

Quick Computation

You may use BASIC as a calculator to perform quick calculations without
writing a program. You can perform numeric operations in Direct Mode
by entering a question mark (), then the expression. (BASIC interprets
the question mark as an abbreviation for PRINT.) For example, to
calculate two times the sum of four plus two where the sum is raised to
the third power, type:

2% (a+2)”"3 Return]

BASIC performs the calculation and prints the result:

432

When you assign values to variables with the LET statement, the values
are not displayed. You can only view these values by printing them to
the screen. Furthermore, the values that you assigned to variables are lost
when you subsequently run a program or exit BASIC.

In the next example, the two LET statements set the value for X and Y.
BASIC does not display these values. The last line is a PRINT statement
that displays the answer for this simple problem.

LET X = 3 [Return]
LET Y = -8*X [Return)
PRINT ABSC(X*Y) [Return)

72

Indirect Mode

You use Indirect Mode to enter programs. In this mode, you precede each
line with a unique line number, and BASIC stores these lines in your
computer’s memory. You then execute the program by entering the RUN
command.

For example,

Ok

10 PRINT “HELLO MOM®
RUN

HELL O MOM

0k

1-3

Line Format
Program lines in a BASIC program have the following format:

i BASIC statement [« BASIC statewment]...

i represents a line number that may be from 1 to 5 digits in length.
Permissible values range from 0 to 65529.

A program line always begins with a line number, may contain a
maximum of 255 characters, and ends when you press the key.
When a line contains more than 255 characters, BASIC truncates the
excess characters.

Line numbers indicate the order in which BASIC stores the line in
memory. They must be whole numbers. Numbers also serve as labels for
branching and editing.

You may use a period with the EDIT, LIST, AUTO, and DELETE
commands to refer to the current line. For example, EDIT . enables Edit
mode on the last referenced or entered line.

A program line may contain a maximum of 255 characters. You may
accomplish this in one of two ways. The simplier procedure is to type
continuously, without pressing the key. In this case, if the line
width remains at its default setting of 80 characters per line, a blank line
appears in the program listing. It does not affect program execution. You
can avoid printing the blank line by using the 41DTH statement to set the
line width to 255.

However, if you want to “format” the line (for example, put the THEN
and ELSE parts of an IF statement on separate lines), you may end a
screen line by pressing . This generates a line feed character
which moves the cursor to the next screen line without terminating the
logical line. A logical line is a string of text that BASIC treats as a unit.
When you finish typing the logical line, pressing the key ends
the line at that point.

NOTE
You must always end the last screen line of a logical (“program”) line by

pressing the key.

1-4

BASIC statement is any legal BASIC instruction.

A BASIC statement is either executable or non-executable. Executable
statements instruct BASIC on what action it should undertake next. For
example, LET PI = 3. 141593 is an executable statement. DATA and REM
statements are non-executable statements. They result in no direct action
by BASIC when BASIC encounters them.

You may enter multiple statements on one line, but you must separate
each statement with a colon (:).

Character Set

The BASIC character set contains the alphabetic characters, numeric
characters, and a selected set of special symbols.

Alphabetic characters are either upper-case or lower-case letters.
Numeric characters are the decimal digits 0 through 9.

Table 1-1 lists the special characters that BASIC supports.

1-5

Table 1-1. BASIC Special Characters

Character

Description

[e el

Blank

Equal sign or assignment symbol

Plus sign or concatenation symbol

Minus sign

Multiplication sign or asterisk

Division sign or slash character

Integer division symbol or backslash
Exponentiation symbol or caret

Percent sign or integer type declaration character
Exclamation point or single-precision type declaration
character

Number sign or double-precision type declaration
character

Dollar sign or string type declaration character
Left parenthesis

Right parenthesis

Left bracket

Right bracket

Comma

Period or decimal point

Semicolon

Colon or program statement separator
Ampersand

Question mark

Lesser than symbol

Greater than symbol

At sign

Underscore

Apostrophe or remark delimiter

Quotation mark or string delimiter

1-6

S

BASIC also recognizes the following keyboard keys:

Key

ES

Backspace

Tab

I!

Function

Deletes the last-typed character; also performs an
automatic carriage return when all the characters on the
line are deleted.

"Escapes” Edit mode subcommands.
Backspaces over and deletes the last-typed character.

Moves the cursor to the next tab stop. (BASIC sets tab
stops at every eighth column position beginning with
the first column or at columns 1, 9, 17, and so on.)

Serves several functions. These include terminating an
input line and leaving Edit mode.

BASIC recognizes the following control characters:

(cTRl) (1)

(cTRL] (O]
(cTRL] (@]

(cTRL] [R]

Enters Edit mode on the line being typed.

Stops program execution and returns control to the
BASIC command level.

Rings the computer’s bell.

Backspaces over (and deletes) the last-typed character.
(This duplicates the operation of the key.)

Moves the cursor to the next tab stop. (This duplicates
the operation of the key.)

Generates the line feed character.
Halts program output, but execution continues.

Resumes program execution after it was suspending by
a Control-S.

Prints the line that you are currently entering. (You
might use this keystroke combination to “clean” a line
of the highlighting characters produced by the
key.)

Suspends program execution.

Deletes the line that you are currently typing.

1-7

Entering A Program

You enter a program by simply typing the required text. As you type the
characters over the keyboard, the editor interprets each keystroke. You
may use this feature to reduce your typing. For example, the editor
interprets a question mark (?) as the reserved word PRINT.

BASIC considers any line of text that begins with a number to be a
BASIC statement. It then takes one of the following actions:

+ adds a new line to the program if the line number doesn’t currently
exist

+ replaces the line if the line number does exist
» deletes an existing line if requested to do so
+ displays an error message if:

e you attempt to delete a nonexistent line

» program memory is exhausted

If BASIC prints a Direct Mode message on the screen, the editor
automatically erases the message when you move the cursor to that line.
This prevents the message from being entered as program text and
producing syntax errors.

When you are using BASIC in Direct Mode, BASIC only recognizes those
keys that were described previously. For example, you may delete a
character on the line you are typing by pressing the key, the
key, or by simultaneously pressing the and keys. If you
attempt to “backspace” by using the cursor control keys, the characters
are still transmitted to the BASIC interpreter. They are not deleted as you
might expect.

When you delete characters by pressing the key, BASIC surrounds
the deleted text with backslashes (\). Pressing (H] has the same
effect as pressing the key. After you delete any undesirable
characters, you can continue typing the line from that point.

You may delete the line that you are currently typing by simultaneously
pressing the and keys. After it deletes the line, BASIC
automatically performs a carriage return (moves the cursor to the
beginning of that line.)

You may delete the program that is currently residing in computer
memory by entering the NEW command. You normally use this
command before you begin entering a new program.

1-8

Modifying A Program

The BASIC program editor is a “line” editor. That is, you can only
modify one line at a time. You incorporate the changes into a line by
pressing the key while the cursor is anywhere within that line.

NOTE
You need not move the cursor to the end of a logical line before you
press the key. The editor “knows” where each line ends, and it
processes the entire line, regardless of the cursor’s position when you

press the key.

You may choose between two methods to modify a line that currently
resides in your computer’s memory: retyping the line in its entirety, or
entering Edit mode (by using the EDIT command). Additionally when
running BASIC on the HP 150, you may use “Modify Mode” to edit text.
(For details of this feature, see the discussion under Modify Mode.)

Edit Mode

Edit mode requires special one-character subcommands to edit a line.
You enter Edit mode by typing the command EDIT and either a line
number or a period (if you want to modify the last line). BASIC responds
by displaying the line number of the specified line and a space character,
then waits for you to enter a subcommand.

Edit Mode Subcommands

You may use Edit mode subcommands for either moving the cursor or
performing edit operations. Edit operations include inserting or deleting
text, replacing text, of searching for text within a line. The subcommands
are not displayed. You may precede most of the Edit mode subcommands
with an integer. This causes the command to be executed that number of
times. When you omit the number, BASIC executes the subcommand
once.

1-9

Edit mode subcommands may be categorized by the following functions:

¢ Moving the cursor
e Inserting text

* Deleting text

Finding text

Replacing text

Ending and restarting Edit mode

Moving the Cursor

Use the to move the cursor to the right.

When you precede this action by a number, the cursor
moves right that number of spaces.

Use the key to move the cursor to the left.

When you precede this action by a number, the cursor
moves left that number of spaces.

Inserting Text

i

The ! subcommand inserts text into a line. Any text you
type after you enter Insert mode is inserted into the
line.

You may end Insert mode by pressing the key.
Pressing the key moves the cursor to the
beginning of the next line and ends both Insert mode
and Edit mode.

While using the Insert (1) command, you may delete
characters to the left of the cursor by pressing the

, , or key. Pressing the
key repositions the cursor under the deleted
character. Pressing either the or

key prints an underscore for each character you delete.

When you attempt to insert a character into a line and
that character would make the line longer than 255
characters, BASIC rejects the character and rings the
computer’s bell.

The X subcommand extends a line. It moves the cursor
to the end of the line, puts the keyboard into Insert
mode, and then functions as if you had enter the Insert
command (1). You may end this function by pressing

either the key or the key. (Pressing the
key also terminates Edit mode.)

Deleting Text

D

Finding Text

S

Replacing Text

C

The D subcommand deletes characters to the right of the
cursor. To delete multiple characters, type the required
number before you enter the D subcommand. BASIC
echoes all deleted characters to the screen, with the
deleted text surrounded by backslashes. BASIC
positions the cursor to the right of the last character
deleted. When there are fewer than the given number
of characters to the right of the cursor, BASIC erases the
remainder of the line.

The H subcommand deletes all characters to the right of
the cursor and automatically enters Insert mode. You
may find this subcommand useful for replacing text at
the end of a line.

The s subcommand searches for a character. When you
precede the subcommand with a number, BASIC
searches for that occurrence of the character. For
example, if you give the command:

55p
BASIC searches for the fifth occurrence of the letter “p”.
BASIC positions the cursor before the character when
the search is successful. If the search fails, the cursor
stops at the end of the line. BASIC displays all
characters that it passes over while conducting the
search.

The kK subcommand resembles the S subcommand
except that BASIC deletes all the characters it passes
over while conducting the search. BASIC positions the
cursor before the specified character, and it displays all
deleted characters enclosed by backslashes.

The ¢ subcommand changes the next character in the

line to the specified character. When you want to search
for a specific occurrence of a character before changing
it, precede the letter “C” with the appropriate number.

Ending and Restarting Edit Mode

SN—
el
N—

Pressing the key prints the remainder of the
line, saves any changes you have made, and exits Edit
mode.

The £ subcommand saves any changes you have
made and exits Edit mode.

The & subcommand exits Edit mode without saving
any changes that you made to the line during Edit
mode.

The L subcommand lists the remainder of the line,
saves any changes that you made, and repositions the
cursor at the beginning of the line. Edit mode re-
mains active. (You usually would use this
subcommand to list a line when you first enter Edit
mode.)

The A subcommand restores the line to its original
state (cancels any changes) and repositions the cursor
at the beginning of the line so you can start again.

Simultaneously pressing the and [A] keys takes
you into Edit mode on the line that you are currently
typing. BASIC executes a carriage return, prints an
exclamation point (') and a space, and positions the
cursor at the first character in the line. You may now
enter any Edit mode subcommand.

NOTE
If you have just entered a line and decide you want
to edit it, just type EDIT.. BASIC takes you into Edit
mode at that line. In this context, the period (.) is a
special symbol that refers to the line you just entered.

When BASIC receives an unrecognizable command or illegal charac-
ter while in Edit mode, it ignores the command and sends a Control-G

~.

(“Bell” character) to ring your computer’s bell.

(Portable PLUS) 1-13

Entering Edit Mode From A Syntax Error

When BASIC encounters a syntax error while executing a program, it
automatically takes you into Edit mode at the line that caused the error.
For example:

- (Return]

When this happens, modify the line to correct the error and then ei-
ther press or use the £ subcommand to exit Edit mode. How-
ever, modifying the line this way destroys all variable values. If you
want to preserve the variable values, first exit Edit mode with the a

subcommand. BASIC will go back to the command level where you

can examine the variable values.

Modify Mode

You cannot use Modify mode with your Portable PLUS. This section
applies only to the HP 150.

With the HP 150, you may use Modify mode to edit program lines
with a minimum of typing:

e . i%7 the lines of the program you want to edit.

» Enter Modify mode (as described in the next subsection).

» Move the cursor to the first line you want to modify.

» Use the keyboard’s character editing keys to modify the line.

e Press to store the edited line into memory.

NOTE
When a BASIC statement takes up more than one screen line (that is,
you pressed to insert a line feed character while entering the
line), you cannot use Modify mode to edit that statement. You must
use Edit mode instead.

1-14 (Portable PLUS)

Using Modify Mode
You access the Modify mode softkeys by pressing the key.

The function key labels assume the following values:

device margins/ service modes enhance define set config

control tabs/col keys video fields time keys
Pressing function key or touching the [EEEEEN softkey label assigns
the following values to the function keys:

LINE MODIFY BLOCK REMOTE | SMOOTH [MEMORY | DISPLAY AUTO
HODIFY ALL MODE 10DE SCROLL LOCK FUNCTNS LF
After these softkey labels appear, you may select between one of two

modify modes.

LINE MODIFY You select this mode by pressing function key or by
touching the label. When this mode is
active, an asterisk appears in the screen label. You may
then use the keyboard edit keys to modify the line.
Pressing the key enters the line into the
program and simultaneously ends Line Modify mode.

MODIFY ALL You select this mode by pressing function key or by
touching the label. When this mode is
active, an asterisk appears in the screen label. The
operation resembles Line Modify mode, except Modify
All mode remains active until you explictly turn it off
by again pressing function key or touching the
label. (The asterisk disappears from the
screen label.) Pressing the key does not end
Modify All mode.

While in either Modify mode, you can use the cursor control keys to
position the cursor. You can also use the editing keys and
to modify existing program lines.

To delete a character, place the cursor under the character you wish to

delete, then press . To delete multiple characters, you must
press once for each character you wish to delete.

The key acts as a toggle switch. That is, alternate presses of
this key turns Insert Character mode on then off. When Insert Character
mode is active, the message 1ns Char appears on the screen’s Status Line
(the bottom line of the display). While the keyboard is set for Insert
Character mode, any character you type is inserted before the cursor’s
current position.

Control-C has no effect in Modify mode.

NOTE
You can only use the (Insertchar] and [Delete char] keys while you are in
Line Modify or Modify All mode. Pressing these keys at any other time
produces unpredictable results.

CAUTION
NEVER use either of the Modify modes when the AUTO command is
active. Furthermore, as the BASIC interpreter does not recognize the
(insertline) or [Deleteline] keys, you must avoid using these keys while in
Modify mode.

Start of Text Pointer

In Modify mode, pressing the key transmits all characters
beyond the start-of-text pointer (or the start-column pointer if no start-
of-text pointer exists) to the BASIC interpreter.

Initially, lines of text have no start-of-text pointer. A line of text acquires

a start-of-text pointer under these conditions:

* the line that you are editing is at the bottom of the display (that is, it is
the last line you entered).

+ the line was entered from the keyboard and not transmitted from a
host computer.

+ the first character must be an alphanumeric character, the space
character, a backspace, or a control character.

If all these conditions exist, the start-of-text pointer points to the first
character in the line.

When no start-of-text pointer exists, transmission begins from the start-
column pointer. You may assign a value to the start-column pointer in
one of two ways:

(1) You may configure this value in the Terminal Configuration menu by
following these steps:

Step 1. Press the key. This displays the following
function key labels:

device margins/ service modes enhance define set config
control tabs/col keys video fields time keys

Step 2. Press function key or touch the
screen label. This changes the softkey labels to the

following values:

global portl portd terminal accesory
config config config config config
Step 3. Pressing function key or touching the

softkey label displays the

TERMINAL CONFIGURATION menu.

Step 4. This menu contains an entry for Start Column. It is
normally set to “1"”. If you want to set another value,
touch this field or press the key until the cursor is
positioned at this location. You may now type in the
number you want for Start Column.

Step 5. Pressing function key or touching the
softkey label activates your selection. It
also returns your screen to the state where you left it. If
you decide to leave the menu in its current state, you
can press function key or touch the

softkey label to remove the menu and
return the screen to its last display.

(2) You may set the start-column pointer manually by following these
steps:

Step 1. Press the key. This displays the following
function key labels:

device margins/ service modes enhance define set config
control tabs/col keys video fields time keys
Step 2. Press function key or touch the

LRI TREAECERE YN screen label. This changes the

softkey labels to the following values:

SET CLEAR (LR ALL LEFT RIGHT CLR ALL TAB =
TAB TAB TABS MARGIN MARGIN MARGINS SPACES
Step 3. Pressing function key or touching the

softkey label sets the value of the
start-column pointer to the cursor’s current position.
(This requires your moving the cursor to the proper
column before you set the value.)

Error Messages

When the BASIC interpreter detects a fatal error (that is, one that halts
program execution), it prints an appropriate error message. Appendix A
provides a complete list of error codes and their meanings.

Documenting Your Program

As a general rule for writing good programs in BASIC, we recommend
that you include plenty of comment lines to document the program
properly. See the REM statement for further information.

Printing Operations

You may choose between two methods for accessing a printer from
BASIC. You may use the printer control softkeys or you may use the
BASIC “L” commands and statements. Refer to your Owner’s Manual for
information on the printer control softkeys.

L Commands And Statements
The L commands and statements print to the MS-DOS general list device

and are not affected by the printer control softkeys. The L commands
are:
LLIST Prints a program listing directly to the printer.

LPRINT Prints information that is supplied by a program.

LPRINT USING Formats information that is supplied by a program.

Writing A Simple Program

You need a working knowledge of several commands to start
programming in BASIC. The following discussion treats these
commands in their simplest form. They represent the rudimentary
commands that you need to begin working with the BASIC interpreter.

AUTO

LIST

DELETE
RENUM
RUN
SAVE
FILES
KILL

NEW

SYSTEM

1-20

Generates line numbers automatically when you press
the key. You may end this feature by
simultaneously pressing the and keys
(Control-C).

Displays all or part of a program on the computer’s
screen.

Removes a line or lines from a program.

Resequences the lines in a program.

Executes a program.

Stores a copy of a program in a file on disc.

Lists the names of all the files on the disc.

Deletes a file from the disc.

Clears the program that is currently stored in your
computer’s memory. This frees memory so you may use
the area for other purposes, such as starting a new

program.

Leaves BASIC and returns system control to the
operating system.

Stops execution and returns control to the BASIC
command level.

The following steps lead you through a simple exercise where you use
each of these commands.

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Go to the main P.A.M. screen on your computer.

Move the display pointer to the box labeled: BASIC

Press ((f1]) and wait for the

command level prompt: Ok.

To start programming, type:
AUTO

This command tells BASIC to automatically prompt
you with the next line number after you finish each
line in your program. Notice how BASIC starts you
with the first line number, 10.

Now type the following short program:

10 FOR I = 1 TO 10 [Retum]

20 PRINT 1

30 NEXT 1

40 PRINT "LOOP DONE, I ="; 1

S0 END
60

(Portable PLUS) 1-21

Step 6.

Step 7.

Step 8.

Step 9.

Simultaneously press the and [C] keys to stop
the automatic line number prompt.

Type:

RUN

The program prints the output from the program to
your screen:

O ~NOUODEWND =

o

10
LOOP DONE, I=11
Ok

To list your program on the screen, type:

LIsT
BASIC shows you the listing:

10 FOR I=1 TO 10

20 PRINT 1

30 NEXT 1

40 PRINT "LOOP DONE, I="; I
S0 END

Ok

BASIC provides a variety of ways to modify an ex-
isting program. In this step, you will use the Edit
mode subcommands to change the first line of the
program so the loop counts back from 10 to 1.

» Type:
EDIT 10
BASIC takes you into Edit mode on line 10.

1-22 (Portable PLUS)

* Move the cursor to the number 1 (after the equal
sign) with the space command:

& [Space bar]

(This assumes that you have used the same spacing
as shown in the example.)

¢ FErase the remainder of the line and enter Insert
mode by typing:

» Complete the f OR statement by typing:

10 TO 1 STEP - 1 [Return]
Step 10. List the program by using the L 15T command.

BASIC responds by printing:

10 FOR I =10TO 1 STEP -1

20 PRINT I

30 NEXT I

40 PRINT “LOCP DONE, I ="; 1
50 END

Ok

Step 11. Use the RUN command to see how your changes have
affected program execution.

The following display appears on your screen:

fe]

N W H Ty DWW -

1
LOOP DONE, I =0
Dk

1-23

Step 12.

Step 13.

Step 14.

Step 15.

1-24

Delete line 40 by typing:

DELETE 40

LIST your program again and notice that BASIC has
deleted line 40 from the program.

If you wish to have the program lines in sequential
order, renumber the lines by typing:

RENUM [Return]

Listing the program shows that the line numbers have
been resequenced starting with 10 and incrementing by
10 at each step.

You save your program by giving it a name so the
system can retrieve it. For example, if you want to name
the file PROG1, type:

SAVE "PROG 1" [Return]

Since the name for the program is a character string,

you must surround the name with quotation marks.
Additionally, since you omitted any reference as to

which drive should receive the file, BASIC stores the -
file on the currently active disc drive.

To save the program on a different disc, type:

SAVE *n:PROG1"

Here, n: names the disc drive that you selected. If you
selected drive C, for example, the command appears as:

SAVE "C:PROG1"

BASIC supplies the MS-DOS file type .BAS for you.
After it has successfully written your file to disc, BASIC
responds with its 0k prompt.

To see a listing of all the files on the default disc
(including the one you just saved), type:

FILES (Return)

Step 16.

Step 17.

Step 18.

If you want to delete your program file from the default
disc, type:

KILL “PROG1.BAS" [Return]

NOTE
When using the KILL command, you must supply the
file type . BAS as BASIC provides no default file
extension for you.

If you want to erase the program file from your
computer’s memory, type:

NEW

This clears the memory area for BASIC so you can enter
a program or begin another application.

NOTE
Using the NEW command does not clear the file from
your disc.

When you are ready to leave BASIC and return control
to the operating system, type:

SYSTEM [Return]

NOTE
Before exiting, be sure to SAVE your program if you
wish to use it again.

1-25

Chapter 2

DATA, VARIABLES, AND
OPERATORS

Introduction

This chapter discusses both data representation and also the
mathematical and logical operators that BASIC provides.

Numeric values may be integers, single-precision numbers, or double-
precision numbers. BASIC stores all numeric values in binary
representation:

» Integers require two bytes of memory storage
* Single-precision numbers require four bytes of memory storage
+ Double-precision numbers require eight bytes of memory storage

An integer value may be any whole number between -32768 and
+32767.

BASIC stores single-precision numbers with 7 digits of precision (or 24
bits of precision), and prints up to seven digits, although only six digits
may be accurate.

BASIC stores double-precision numbers with 17 digits of precision (or 56
bits of precision), and prints the number with up to 16 decimal digits.

Constants

The actual values that BASIC uses during program execution are called
constants. Constants may be numeric values or string values.

A string constant is a sequence of up to 255 alphanumeric characters that

are enclosed between quotation marks. Examples of string constants are:

“HELLO"
"Linda Kay"
"$75,000.00"

Numeric constants are positive or negative numbers. In BASIC, numeric
constants never contain commas.

There are five types of numeric constants:

Integer constants Integer constants are whole numbers between
-32768 and +32767. They never contain decimal

points.
Fixed point Fixed point constants are positive or negative real
constants numbers (that is, numbers that contain decimal

points). For example, 1.0 is a fixed point constant;
not an integer constant.

Floating point Floating point constants are positive or negative
numbers that are given in exponential form
(similar to scientific notation.) A floating point
constant consists of an optionally signed integer
or fixed point number (the mantissa), followed by
the letter E and an optionally signed integer (the
exponent). The allowable range for floating point
constants is 10E-38 to 10E+ 38. For example,

235.988E-7 = .0000235988
2359€6 = 2359000000

(Double-precision floating point constants use the
letter D instead of E, as in 235.988D7.

Hex constants Hexadecimal numbers use a Base-16 numeric
system. The letters A through F correspond to the
numbers 10 through 15. You must prefix
hexadecimal numbers with the symbols &H.

For example,

&HFF
&H32F
2-2

Octal constants Octal numbers use a Base-8 numeric system. To
signify an octal number, you must precede the
number with an &0 or &. For example,

40347

Single and Double Precision Form for Numeric
Constants

A single-precision constant is any numeric constant that has:
¢ seven or fewer digits: 46.¢

e exponential form using ¢: 1,098 0¢

* atrailing exclamation point (!): 3.141593!

A double-precision constant is any numeric constant that has:

» eight or more digits: 345632811
* exponential form using : -1.69432D0 06
* a trailing number sign (#): 3.141593#
L4
Variables

Variables are names that represent values within a BASIC program. You
may explictly assign the value to a variable (for example, by using the

" statement). A variable may also obtain a value as the result of a
computation (for example, AREA = P1 * RALIUS™2). BASIC assumes all
numeric variables have the value of zero and all string variables have the
value of the null string until you actually assign them a value.

2-3

Variable Names and Declaration Characters

BASIC variable names may contain a maximum of 40 characters.

Allowable characters are letters, the decimal digits, and a period. The

first character must be a letter. The last character may be a type

declaration character (either %, !, #, or $). N’

Examples of valid variable names are:

PAGELENGTH
SALES. 1983
QUTER.LIMIT

BASIC would reject the following variable names:

A.HORRENDOUSLY.LONG.VARIABLE .NAME .FOR.THE .VALUE . OF .PAGELENGTH
exceeds the limit of 40 characters.

1983SALES starts with a digit. The first character must be a letter.

OUTER LIMIT contains an embedded space.

Special Type Declaration Characters -

BASIC recognizes several special type declaration characters and
reserved words.

Reserved Words
Reserved words include all BASIC commands, statements, function

names, and operator names. Appendix C provides a complete list of
BASIC reserved words.

A variable name may not be a reserved word, but can contain embedded
reserved words. For example, L0G and WIDTH are both BASIC reserved
words, but LOG.WIDTH is a valid variable name.

BASIC assumes that a series of characters beginning with the letters FN is
a call to a user-defined function. Therefore, you should never use these
characters as the first two letters of a variable’s name.

2-4

String Variables
You may designate string variable names with a dollar sign ($) as the last
character, or you may declare them in a DEFSTR statement.

For example,
TITLES
or

10 DEFSTR T
20 TITLE = "1983 Sales Report"

The dollar sign is a variable type declaration character. It "declares” that
the variable represents a string. See Chapter 6 for a full discussion of the
DEFSTR statement.

Numeric Variables

Numeric variable names may declare themselves to be integer, single-
precision, or double-precision values. The type declaration characters for
these variables names are:

% Integer variable
t Single-precision variable
Double-precision varialbe

The default type for a numeric variable name is single precision.

Examples:
PI# Declares P I to be a double-precision variable
MAX! Declares MAX to be a single-precision variable

COUNT% Declares COUNT to be an integer variable
LENGTH Defaults to a single-precision variable

BASIC provides another method for declaring numeric variable types.
This involves using the BASIC statements DEF INT to define integer
variables, DEF SNG to define single-precision variables, and DEFDBL to
define double-precision variables.

2-5

Array Variables

An array is a group of values (or a table) that you reference with a single
variable name. The individual values in the array are called elements.
You refer to each element by using the array’s name and a subscript. The
subscript may be an integer or an integer expression.

You declare an array by dimensioning it. You normally do this with the
DIM statement. For example, DIM ID$ (11) creates a one-dimensional,
string array called 1D$. Eleven is the index number for the "last” element
of the array. When no OPTION BASE statement has executed, the "first”
element of the array is 1D$€0). Therefore, this DIM statement creates an
array of twelve elements. Each element is a variable-length string. An
implicit act of declaring an array is assigning initial values for each array
element. BASIC sets the elements of a string array equal to the null string
(that is, the "empty” string or a string with zero length).

ID{0) ID(1) ID(2) ID(3) 1D(9) ID(10) ID(11)

As another example, consider the statements:

OPTION BASE 1
DIM SALES(3,4)

These statements also create an array of twelve elements, but in this case
the elements are grouped together in 3 rows of four columns each. (The
columns could represent the four fiscal quarters of a year, and the rows
could represent the years 1981 to 1983.) Since the array name has no type
declaration character, BASIC sets the elements of the array to single-
precision numbers and assigns the value of zero to each element.

SALES SALES SALES SALES
(L8] (1.2) (1.3) (1.4)
SALES SALES SALES SALES
2,1 2.2) 2.3) (2.4)
SALES SALES SALES SALES
3.1 3.2) 3.3) (3.4)

2-6

An array variable name has as many subscripts as there are dimensions
in the array. For example, when OPT10N BASE 1 is used, VECTORC10)

refers to the tenth value in a one-dimensional array, and MATRIXC1,4)
refers to the fourth element in the first row of a two-dimensional array.

The maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32767.

Type Conversion

When necessary, BASIC can convert a numeric constant from one type to
another. The following examples illustrate the rules and operation of this
automatic conversion.

1. When a numeric variable of one type is set equal to a numeric
constant of a different type, BASIC stores the number as it was
declared in the variable name. Trying to set a string variable equal to a
numeric value, or vice versa, however, results in a Type mismatch
error.

Example:

10 ROUNDZ = 23.42
20 PRINT ROUNDZ
30 ROUND% = 23.55
40 PRINT ROUNDX
RUN

23

24

2-7

2.

2-8

When evaluating an expression, BASIC converts all operands in an
arithmetic or relational operation to the degree of precision of the
most-precise operand. BASIC also calculates the result to this degree
of precision.

Consider these examples:

a. BASIC performs the following calculation in double-precision
arithmetic because the numerator is given as a double-precision
number. BASIC also stores the result as a double-precision value.

10 TWO.THIRDS# = 2#/3
20 PRINT TWO.THIRDS#
RUN

.6666666666666667

b. BASIC performs the following calculation in double-precision
arithmetic because the numerator is given as a double-precision
number. Since the variable is a single-precision variable (by
default), BASIC rounds the result and stores the value as a single-
precision value.

10 TWO.THIRDS = 2#/3
20 PRINT TWO.THIRDS
RUN

.6666667

c. Logical operators convert their operands to integers and return an
integer result. Operands must be in the range of -32768 to +32767,
or an Over f low error occurs.

10 FALSE = 0

20 PRINT FALSE

30 PRINT NOT FALSE

40 TRUE = 99.44

50 PRINT NOT TRUE

60 PRINT TRUE AND FALSE
RUN

-1
-100

0k

d. When a floating point value is converted to an integer, BASIC
rounds the fractional portion.

o CoMEROMISEY = 55.88
2¢ FrINT COMPROMISEY

S

10 COMPROMISEY = 55.44
20 PRINT COMPROMISEX
Riin

5

e. When you assign a single-precision value to a double-precision
variable, only the first seven digits, rounded, of the converted
number are valid. This happens because only seven digits of
accuracy were supplied with the single-precision value. The
absolute value of the difference between the printed double-
precision number and the original single-precision value is less
than 6.3E-8 times the original single-precision value. For example,

10 PI = 3.141593
20 BALPI# = PI
36 PRINT PI, BADPI#
RUN
3.141593 3.141592979431152

Expressions and Operators

An expression may be a string or numeric constant, or a variable; or it
may be a combination of constants and variables with suitable operators
to produce a single value.

Operators perform mathematical or logical operations on values. BASIC
provides the following four categories of operators:

¢ Arithmetic
¢ Relational
¢ Logical

* Functional

Arithmetic Operators

Table 2-1 lists the arithmetic operators.

Table 2-1. BASIC Arithmetic Operators

Operator Operation Sample Expression
~ Exponentiation RADIUS"2
- Negation -DEBITS
* Multiplication BASE * HEIGHT
/ Point Division AREA / P1
+ Addition WAGES + DIVIDENDS
- Subtraction INCOME - TAXES

BASIC evaluates an expression based upon the order of precedence of the
included operators. Exponentiation is evaluated first, followed by
negation. Next, any multiplication or division is performed, and finally,
all addition or subtraction operations are performed. In the case of
multiple operators with equal precedence, BASIC evaluates the
expression from left to right.

2-10

You may change the order of evaluation by using parentheses. BASIC
first evaluates all operations within parentheses. (Within a parentheses
grouping, the order precedence shown above is maintained.) Consider
these examples:

Without parentheses: 47372 = 4096
With parentheses: 47°(372) = 262144

The following expanded version of the first example uses parentheses to
show the implicit grouping of operations by supplying all parentheses.

((473)72) = (B84)72 = 4096

The following list shows how you would write algebraic expressions in
BASIC.

Algebraic Expression BASIC Expression
X+2y X + 2 %Y
X-Y X - Y / 2Z

V4
XY X * Y / Z
4
X+Yy X + Y)Y / 2
Z
Xty x~N2 vy
xYZ XY N2y
X(-Y) X * C-Y)
NOTE

You must always separate two consecutive operators by parentheses.

Integer Division and Modulus Arithmetic

You specify the integer division operation with a backslash (\). With
integer division, BASIC rounds the operands to integers before it
performs the division. It then truncates the quotient to an integer value.
(The operands must be within the range -32768 to +32767.) For example,

10\ = 2
25.68\6.99 = 3

In the order of precedence, integer division follows multiplication and
floating point division.

2-11

You specify modulus arithmetic with the MOD operator. The MOD operator
returns the remainder from an integer division operation. For example,
10 MOD 4 = 2 (10\4 = 2 with a remainder of 2)
25.68 MOD 6.99 = 5 (26\7 = 3 with a remainder of 5)

The precedence of modulus arithmetic is just after integer division.

Overflow and Division by Zero

When BASIC is evaluating an expression, if it encounters an zero divisor,
it displays a Division by zero error message, sets the result to machine
infinity with the sign of the numerator, and continues program
execution. If the evaluation of an exponentiation results in zero being
raised to a negative power, BASIC again displays the Division by zero
error message, sets the result to positive machine infinity, and continues
program execution.

When BASIC encounters a number whose absolute value is too large for
it to store, it displays the Over f 1ow error message, sets the result to
machine infinity with the appropriate sign, and continues program
execution.

Machine infinity is approximately equal to 1.7 * 10"38.

Relational Operators

Relational operators compare values or variables. The result of the
comparison is either "true” (-1) or "false” (0). You may use this result to
control the flow of a program. (See the description of the IF statement.)

Table 2-2 summarizes the relational operators.

Table 2-2. BASIC Relational Operators

Operator Relation Sample Expression
= Equality COUNTER = LIMIT
<> Inequality LENGTH <> HEIGHT
Less than COLUMN < 80
Greater than ROW > 24
<= Less than or equal to YEAR <= 1984
>= Greater than or equal to | LINECOUNT >= PAGESIZE

2-12

You may also use the equal sign to assign a value to a variable. (See the
description of the LET statement.)

When arithmetic and relational operators are combined in one
expression, BASIC performs all arithmetic operations first. For example,
the expression:

TMARGIN + BMARGIN + LINECOUNT <= PAGESIZE/2

is true when the sum of TMARGIN, BMARGIN, and L INECOUNT is less than
or equal to half the PAGESIZE .,

Logical Operators

Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns a bitwise result that
is either true (not zero) or false (zero). In an expression, logical
operations are performed after arithmetic and relational operations. The
outcome of the logical operators are summarized in the following truth
tables. The operators are listed in their order of precedence.

NOT
Purpose: NOT inverts its operand. That is, a true bit is set to false
and a false bit is set to true.
Truth Table: X NOT X
1 0
0 1
AND
Purpose: AND requires both operands to be true
if the result is to be true.
Truth Table: X Y XANDY
1 1 1
1 0 0
0 1 0
0 0 0

2-13

OR —Inclusive OR

Purpose: OR returns true when either operand or both operands
are true.
Truth Table: X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0

XOR —Exclusive OR

Purpose: XOR returns true when either operand is true.
Truth Table: X Y XXORY

1 1 0

1 0 1

0 1 1

0 0 0

IMP —Implied

Purpose: IMP returns true when both operands are the same. If
they differ, the result is the same as the second operand.

Truth Table: X Y XIMPY
1 1 1
1 0 0
0 1 1
0 0 1

2-14

EQV — Equivalent

Purpose: EQV returns true when both operands have the same
value.
Truth Table: X Y XEQVY
1 1 1
1 0 0
0 1 0
0 0 1

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a value that determines program flow. For example,

IF VALUE < 0 OR VALUE > 100 THEN 480
IF QUARTER <« 4 AND YEAR = 1983 GOTO 1000
IF NOT LIMIT THEN 100

Logical operators convert their operands to sixteen bit, signed, two’s-
complement integers in the range -32768 to +32767. (If either operand is
outside this range, an error occurs.) When both operands are given as 0
or -1, logical operators return 0 or -1. The given operation is performed
on these integers in bitwise fashion, that is, each bit of the result is
determined by the corresponding bits in the two operands.

You may use logical operators to test bytes for a particular bit pattern.
For instance, you may use the AND operator to mask all but one of the
bits of a status byte. Similarly, you may use the OR operator to merge two
bytes to create a particular binary value.

2-15

The following examples demonstrate how you may use the logical
operators in this fashion. (Each number is represented in two bytes, or 16
bits; however, the examples ignore all leading zeros.)

Operation

63 AND 16 = 16

15 AND 14 = 14

-1 AND 8 = 8

4 0R 2 =6

10 OR 10

10

-1 OR -2

"
]
—_

TWOCOMP =
C(NOT X)+1

Calculation

63 is binary 111111 and 16 is binary 10000 so
111111 AND 10000 is 10000 (or 16).

15 is binary 1111 and 14 is binary 1110 so
1111 AND 1110 is 1110 (or 14).

-1is binary 1111111111111111 and 8 is binary
100050 1111111111111111 AND 1000is 1000
(or 8).

4 is binary 100 and 2 is binary 1050 100 0OR 10 is
110 (or 6).

10 is binary 1010,s0 1010 OR 10101is 1010 {or
10).

-1is binary 1111111111111111 and -2 is binary
111111111111111050 1111111111111111

OR 1111111111111110is 1111111111111111
(or -1).

The two’s-complement of any integer is the bit
complement plus one. For example, if X is equal to
2,NOT X would be binary 1111111111111101.
This is decimal -3, and -3 plus 1 is -2, or the
complement of 2.

Functional Operators

A function is a predetermined operation that performs the specified task
on its operand. BASIC has "intrinsic” functions that reside in the system,
such as SGR (square root) or SIN (sine).

BASIC also allows "user-defined” functions that you write, See the
DEF FN statement for further details.

2-16

String Operations

BASIC provides two string operations. These operations are string
concatenation and string comparisons. (See the section on "String
Functions” in Chapter 5 for a listing of the built-in functions that

_/ manipulate strings.)

Concatenation

You can join strings together (concatenate them) by using the plus sign
(+). For example,

10 A$ = "File" : B$ = "Name”
20 PRINT A$ + B$

30 PRINT "Another * + A$ + B$
RUN

FileName

Another FileName

Comparisons
You can compare strings by using the same relational operators that you
use for numeric comparisons:

N = O < > = =

BASIC compares strings by taking one character at a time from each
string and comparing their ASCII codes. When all the ASCII codes are
the same, the strings are equal. When the ASCII codes differ, the lower
code number precedes the higher number. If, during a string
comparison, BASIC reaches the end of one string while characters still
remain in the other, the shorter string is said to be smaller. Leading and
trailing blanks are significant. For example,

"AA" ¢ “AB"

“FILENAME® = “FILENAME"™

“FILENAME" <> “filename"

“kg" > "KG"

123 My 23"

“SMYTH" ¢ "SMYTHE"

B$ < "52/4/24" (where B$ = "47/5/10")

N\~ You may use string comparisons to test string values or to alphabetize
strings. When using string constants in comparison expressions, you
must enclose the constant in quotation marks.

2-17

C

Chapter 3

THE BASIC ENVIRONMENT

Introduction

Chapter 1 describes the easiest procedure for running BASIC on your
computer. However, entering BASIC through an MS-DOS system
command gives you added flexibility in establishing the BASIC
environment.

This chapter describes BASI¢C, the MS-DOS system command that you
must you use to enter BASIC.

BASIC

Format:

Purpose:

Remarks:

32

BASIC

BASIC [filename]
[/F :numfiles] [/ : recl]
[/M: highest.mem.loc]

Loads the BASIC interpreter program into your
computer’s memory.

filename directs BASIC to run the specified BASIC
program immediately. You may use this parameter to
run programs in batch mode by including the filename
in the command line of a . BAT file (such as
AUTOEXEC.BAT). You must end each program with a
SYSTEM statement. This allows the next command from
the .BAT file to execute.

/F : sets the number of files that you can open
simultaneously. Each file requires 62 bytes for the File
Control Block (FCB) and 128 bytes for the data buffer.
You may alter the size of the data buffer with the /s
option switch. When you omit the /F parameter, BASIC
sets the value to 3.

The number of open files that MS-DOS supports
depends upon the value of the F ILES= parameter in the
CONFIG.SYS file. When you are using BASIC, we
recommend that you set the FILES parameter to 10.
BASIC allocates the first three files to Stdin, Stdout,
Stderr, Stdaux, and Stdprn, then it sets aside an
additional file for LOAD, SAVE, CHAIN, NAME, and
MERGE commands. When you set FILES=10, six files
remain for BASIC input/output files. Thus, /F : 6 is the
maximum number of files that you may request when
FILES=10 appears in the CONF1G.SYS file.
Attempting to open a file after all the file handles have
been taken results in a Too many files error message.

Examples:

/S: sets the maximum record size for random-access
files to recl. When you omit this parameter, BASIC sets
the value to 128 bytes.

NOTE
The record size option for the OPEN statement cannot
exceed this value.

/M: sets the highest memory location that BASIC uses.
Normally, BASIC allocates 64K bytes of memory for the
Data and Stack segment. When you omit this parameter
or set it to zero, BASIC attempts to allocate as much
memory as it can, up to a maximum of 65536 bytes.

NOTE
You may use decimal, octal, or hexadecimal numbers for
numfiles, highest.mem.loc, and recl. You must precede
octal numbers with &0, and hexadecimal numbers
with &H.

The first example uses the default settings. Thus, it uses
64K of memory, permits 3 opened files, then loads and
executes PAYROLL . BAS:

A> BASIC PAYROLL

The second example also uses 64K of memory but
permits 6 opened files. It loads and executes
INVENT . BAS:

A> BASIC INVENT/F:6

The next example uses the first 32K bytes of memory.
The memory above 32K is free for the user:

A> BASIC /M:32767

The last example uses 4 files and sets a maximum record
length of 512 bytes:

A> BASIC /F:4/5:512

3-3

Chapter 4

FILE OPERATIONS

Disc Filenames

Disc filenames obey the standard MS-DOS naming conventions. (Refer
to your Owner’s Guide.) All filenames may include a letter and a colon as
the first two characters to specify a disc drive. For example, A : refers to
drive A. If you omit this special symbol combination, BASIC assumes
that all files refer to the currently selected disc drive. When you use
either the LOAD, SAVE, MERGE, or RUN statements, BASIC attaches the
file type extension .BAS to the filename if the filename is less than 9
characters long and you omitted a file extension. (No “.” appears in the
filename.)

Disc Data Files — Sequential and
Random Access

You may create two different types of disc data files for a BASIC program
to access. They are sequential files and random access files.

Sequential Files

Sequential files have a simpler structure than random-access files, but
they are limited by their flexibility and their speed of accessing data.
When you write data to a sequential file, BASIC writes the information
to the file in sequential order, one item after the other, in the order that it
is sent. BASIC reads back the information in the same way.

You may use the following statements and functions with sequential
files:

CLOSE

EOF

INPUT#

LINE INPUT#
Loc

OPEN

PRINT#
PRINT# USING
WRITE#

You must follow these steps to create a sequential file, then
access its data:

Step 1. Open the file in 0 mode. For example,
OPEN "0",#1,"DATA"

Step 2. Write data to the file using the PRINT# or WRITE#
statement. For example,

WRITE #1, A$;BS$;C$

Step 3. To access the data in the file, you must close the file then
reopen it in I mode. For example,

CLOSE #1
OPEN "1™, #1, "DATA"

Step 4. Use the INPUT# statement to read data from the
sequential file into the program. For example,

INPUT #1, X$,Y$,Z¢

A program that creates a sequential file can also write formatted data to
the disc with the PRINT# USING statement. For example, you could use
the following statement to write numeric data to disc without using
explicit delimiters:

PRINT #1,USING "### ##.,": A,B,C,D

In this example, the comma at the end of the format string (before the
closing quotation mark) separates the items in the disc file.

42

Random Files

It takes more programming steps to create and access random files than
sequential files. However, you may find the advantages of random-access
files outweigh the time required to enter the extra steps.

With random files, BASIC stores and accesses information in distinct
units called records. Since each record is numbered, you may access data
anywhere in the file without reading through the file sequentially.

You may use the following statements with random-access files:

CLOSE

CVI CVS CVD

FIELD
GET
Loc

LSET/RSET
MKI$ MKS$ MKD$

OPEN
PUT

Creating a Random File
You must follow these steps to create a random file:

Step 1.

Step 2.

Open the file for random access (R mode). The
following example sets a record length of 32 bytes.
When you omit the record length parameter, BASIC
uses 128 bytes as the default record size.

OPEN "“R"™, #1,"FILE",32

NOTE
The maximum logical record number is 32767.
Theoretically, if you set the record size to 256 bytes, you
may access files up to 8 megabytes in size.

Use the F IELD statement to allocate space in the
random file buffer for the variables that you plan to
write to the random file. For example,

FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$

43

Step 3.

Step 4.

Use LSET to move the data into the random file buffer.
Before you can place numeric values into this buffer,
you must convert these values to strings by using one of
the following functions:

mKk1s$ Converts an integer value to a string
Mkss Converts a single-precision value to a string
MKD$ Converts a double-precision value to a string

Examples of the LSET statement are:

LSET N$ X$
LSET A$ = MKS$(AMT)
LSET P$ = TELS

Write the data from the buffer to the disc using the PUT
statement:

PUT #1, CODE%X

Accessing a Random File
You must follow these steps to access the data in a random-access

file:
Step 1.

Step 2.

Step 3.

Open the file for random access (R mode). For example,
OPEN "™R', #1, FILE#, 32

Use the FI1ELD statement to allocate space in the
random file buffer for the variables that you plan to
read from the file. For example,

FIELD #1,20 AS N$, 4 AS A%, 8 AS P$

NOTE
In a program that performs both input and output on
the same random file, you can usually use one OPEN
statement and one F IELD statement.

Use the GET statement to move the desired record into
the random file buffer. In the following example, CODE %
contains the record number.

GET #1, CODEX

Step 4. Your program may now access the data in the buffer.

However, numeric values must be converted from
strings back to numbers. You do this with the convert
functions:

cvl Converts the data item to an integer

cvs Converts the data item to a single-precision
value _

cvD Converts the data item to a double-precision
value

For example:

PRINT CVSCAS$)

In the following example, the user accesses the random file called FILE
by entering a 2-digit code at the keyboard. The program then reads the
information that is associated with the code and displays it on the
computer screen.

10
20
30
40
50
60
70
80
90

OPEN “R"™, #1,"FILE™,32

FIELD #1,20 AS N$, 4 AS AS, 8 AS P$
INPUT "2-DIGIT CODE"™; CODEZX

IF CODE%Z = 0 THEN CLOSE 1 : END

GET #1, CODEX

PRINT N$

PRINT USING “$s### ##"; CVS(AS)
PRINT P$: PRINT

GOTO 30

4-5

The following program illustrates random file access. In this program,
the record number serves as the part number. (It is assumed that the
inventory never contains more than 100 different part numbers.) Lines
900 through 960 initialize the data file by writing CHR$ (255) as the first
character of each record. Later, lines 270 and 500 use this character to
determine whether an entry already exists for that part number.

110 OPEN "R",#1,"INVEN.DAT",39
120 FIELD #1, 1 AS F$, 30 AS Ds$,
2 AS G%, 2 AS R¢, 4 AS PS$
130 PRINT : PRINT "FUNCTIONS:" : PRINT
140 PRINT 1, "INITIALIZE FILE"™
150 PRINT 2, "CREATE NEW ENTRY"
160 PRINT 3, "DISPLAY INVENTORY FOR ONE PART"
170 PRINT 4, *"ADD TO STOCK"
180 PRINT 5, "SUBTRACT FROM STOCK"™
190 PRINT 6, "DISPLAY ALL ITEMS
BELOW REORDER LEVEL"™
200 PRINT 7, "“END PROGRAM"
210 PRINT : PRINT : INPUT "FUNCTION"; FUNCTION
220 IF CFUNCTION <1)> OR C(FUNCTION > 7)
THEN PRINT “BAD FUNCTION NUMBER™ : GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680,860
240 GOTO 130
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$) <> 255 THEN INPUT "OVERWRITE"; AS$:
IF A$ <> "Y" THEN RETURN
280 LSET F$ = CHR$(0)
290 INPUT "DESCRIPTION"™, DESC$
300 LSET D$ = DESCS
310 INPUT "QUANTITY IN STOCK", Q%
320 LSET Q$ = MKI$(GX)
330 INPUT *"REORDER LEVEL", RZ
340 LSET R$ = MKS$(R%)
350 INPUT "UNIT PRICE"™; P
360 LSET P$ = MKS$(P)
370 PUT #1, PARTZ
380 RETURN

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

630
640

650
660
670
680
630
700
710
720

730
740

REM DISPLAY ENTRY
GOSUB 840
IF ASC(F$) = 255 THEN PRINT "NULL ENTRY"™ : RETURN
PRINT USING "PART NUMBER ###"; PARTX
PRINT D$
PRINT USING "QUANTITY ON HAND ####"; CVI(Q$)
PRINT USING "™REORDER LEVEL ####'; CVI(RS)
PRINT USING "UNIT PRICE #### ##"; CVS(P$)
RETURN
REM ADD TO STOCK
GOSUB 840
IF ASC(F$) = 255 THEN PRINT "NULL ENTRY" : RETURN
PRINT D$: INPUT "QUANTITY TO ADD *, AZ
Q% = CVI(A$) + AX
LSET Q% = MKI$(QX)
PUT #1, PARTZ
RETURN
REM REMOVE FROM STOCK
GOSUB 840
IF ASC(F$) = 255 THEN PRINT "NULL ENTRY" : RETURN
PRINT D$
INPUT "QUANTITY TO SUBTRACT"; SX
Q% = CVI(G$)
IF €QX% - S$) < 0 THEN PRINT "ONLY"; QX%;
" IN STOCK" : GOTO 600
Q% = G% - SX%
IF Q% =¢ CVI(RS$) THEN PRINT "QUANTITY NOW"; Q¥%;
“REORDER LEVEL"; CVI(R$)
LSET Q¢ = MKI$(QX)
PUT #1, PARTX
RETURN
REM DISPLAY ITEMS BELOW REORDER LEVEL
FOR I = 170 100
GET #1, I
IF ASC(F$) = 255 THEN GOTO 730
IF CVI(QAs$) ¢ CVICRS) THEN PRINT D$; "QUANTITY";
CVI(Qas) TAB(S0) "REORDER LEVEL™; CVI(RS$)
NEXT 1
RETURN

47

840 INPUT "PART NUMBER"; PARTX

850 IF (PARTXZ < 1) OR (PARTX > 100)
THEN PRINT "BAD PART NUMBER™ : GOTO 840
ELSE GET #1, PARTX : RETURN

860 END

900 REM INITIALIZE FILE

910 INPUT "ARE YDU SURE"; B$
: IF B$ <> "Y" THEN RETURN

920 LSET F$ = CHR$(255)

930 FOR I = 1 70 100

940 PUT #1, 1

950 NEXT I

960 RETURN

Protected Files

If you wish to save a program in a special binary format, you must use
the "Protect” (P) option with the SAVE command. For example, the
following statement saves the program named ETERNAL so it cannot be
listed or edited:

SAVE “ETERNAL"™, P

As no command exists to "unprotect” the file, you may also want to save
an unprotected copy of the program that you can list and change.

4-8

N

Chapter 5

PROGRAMMING TASKS

Introduction

When programming, you normally have a specific task that you wish to
perform. The experienced programmer has no difficulty determining
which BASIC instruction is appropriate for the task at hand. However, if
some features of the language are new to you, you may have trouble
isolating the best instruction. This chapter groups the various BASIC
commands, statements, and functions into task-oriented areas. For
example, if you want to review a document, you may know that you
need an "output” statement, but you may not know which one. By
looking under the terminal input and output section in this chapter, you
would discover that BASIC provides five "printing” statements: PRINT,
LPRINT, PRINT USING, LPRINT USING, and WRITE. You can get an
indictation of each statement’s use by reading its general description.
Then you should consult Chapter 6 for full details on using the
statement that you selected.

This chapter contains the following sections:

52

System commands

Using system commands as program statements
File operations

Defining and __éltering data and variables
Computer control

Program control, branching, and subroutines
Terminal input and output

Debugging aids

General purpose functions

Input/Output functicns

Arithmetic functions

Derived arithmetic functions

String functions

Special functions

System Commands

System Commands are those commands that you enter on the BASIC
command line and/or those that return control to the command line.
The following list summarizes the system commands that BASIC

provides.

AUTO
BLOAD
BSAVE

CONT

DELETE

EDIT
FILES

KILL
LIsTand LLIST
LOAD

MERGE

NEW
RENUM
RESET
RUN
SAVE

SYSTEM

Automatically generates line numbers for
program entry.

Loads the specified memory image file into your
computer’s memory.

Saves the contents of the specified area of memory
to a disc file.

Continues program execution after you type a
Control-C, or your program executes a STOP or
END statement.

Removes the specified lines from a BASIC
program.

Enables Edit mode on the specified line.

Lists the names of the files residing on a specified
disc.

Deletes one or more files from a specified disc.

Lists all or part of the program that is currently
stored in memory to either the computer screen or
a printer.

Loads a BASIC program file from disc into
memory.

Incorporates statements contained in the specified
disc file into the program that is currently stored
in computer memory.

Deletes the program that is currently stored in
computer memory and clears all variables.

Renumbers the lines of a program so they occur in
a specified sequence.

Closes all disc files and prints the directory
information to every disc with open files.

Executes the program that is currently stored in
your computer’s memory.

Saves the program currently stored in computer
memory to a specified disc file.

Exits BASIC and returns control to the
operating system.
5-3

Using Commands as Program Statements

You may use several of the BASIC commands as program statements.
Refer to the preceding discussion for each of the commands,
then consult this section for its use within a program.

BLOAD

BSAVE

FILES
KILL
RESET

RUN

SYSTEM

5-4

Programmatically loads code or data into a given
area of memory.

Programmatically copies code or data from
memory to a specified disc file.

Programmatically lists directory information.
Programmatically deletes the specified disc files.

Programmatically closes all disc files and prints
the directory information to every disc with open
files. (You should use this statement in any
program that performs disc access.)

Programmatically re-executes a program from a
specified line.

Programmatically exits BASIC.

File Operations

BASIC provides the following instructions or handling files and their

contents.
CLOSE

EOF

FIELD

GET

INPUT#

LINE INPUT#

LocC

LOF
LSET and RSET

NAME

OPEN

PRINT# and

PRINT# USING

PUT

WIDTH

WRITE#

Concludes all input/output to a disc file.

Returns end-of-file for sequential and random-
access files.

Allocates space for variables in a random file
buffer.

Reads a record from a random disc file into a
random file buffer.

Reads values from a sequential disc file and
assigns them to program variables.

Reads an entire line (up to 254 characters) from a
sequential disc file and assigns the line to a string
variable.

Returns the last record number in a GET or PUT
statement.

Returns the length of the file in bytes.

Moves data from memory into a random file
buffer in preparation for a PUT statement.

Changes the name of a disc file.

Allows access to a file for either reading and/or
writing.

Writes data to a sequential disc file.

Writes a record from a random file buffer to a
random disc file.

Sets the printer line width by specifying the
number of characters per line,

Writes data to a sequential file.

5-5

Defining and Altering Data and
Variables

BASIC provides several statements that you may use within a program to
define and manipulate data, variables, expressions, and arrays. The
following list summarizes these statements.

CLEAR Sets numeric and string variables to zero or null,
closes all files, and optionally sets the end of
memory and the amount of stack space.

COMMON Passes variable values to a chained program.
DATA Stores data for later access by a program’s READ
statements.

DEFINT/DEFSNG Declares that BASIC should automatically treat
DEFDBL/DEFSTR certain variable names as integer, single-precision,
double-precision, or string variable types.

DIM Sets the maximum values for an array’s subscripts,
allocates storage, and assigns an initial value to
array elements.

ERASE Removes an array from a program.

LET Assigns the value of an expression to a variable.

MID$ Replaces a portion of one string with another
string.

OPTION BASE Determines if the minimum value for an array

subscript should be zero or one.

READ Reads values from a DATA statement and assigns
them to variables.

RESTORE Permits a program to reread DATA statements
from a specified line.

SWAP Exchanges the values of two variables.

5-6

N

Computer Control

Several BASIC statements let you control your computer from the
program. These statements are:

DATES Sets the current date.

INP Returns a byte, which is read from a
MiCroprocessor port.

ouT Sends a byte to the microprocessor port.

POKE Writes a byte into a memory location.

TIMES Sets the current time.

WAIT Suspends program execution while monitoring

the status of a microprocessor input port.

To control your computer from the program, you can also use escape
sequences. For example, the sequence ESC H “homes” the cursor, and
the sequence ESC J clears the screen from the cursor to the end.
Therefore, you could clear the entire display by executing this
statement:

PRINT CHR$(C27) + '"H'" + CHRS$(27)> + “Ju
(CHR$¢27) is the ASCII code for the escape character.)

For details on using escape sequences, refer to Appendix B. For a
complete list of escape sequences that you can use with your Portable
PLUS, refer to the Portable PLUS Technical Reference Manual

(HP 45559K), which is available from your HP sales representative.

(Portable PLUS) 5-7

Program Control, Branching, and

Subroutines

Several BASIC statements let you control the flow of your program
through branching to other lines, subroutines, and programs. These

statements are:

CALL
CALLS

CHAIN

DEF FN

DEF SEG

DEF USR

END

FOR...NEXT

GOSUB. ..RETURN

G070

IF

ON ERROR GOTOD

ON...GOSUB
ON...GOTO
RESUME

5-8 (Portable PLUS)

Calls an assembly-language subroutine.
Calls a subroutine with segmented addresses.

Calls a program and passes variable values to
it from the current program.

~ Names and defines a user-written function.

Assigns the current segment address. Subse-
quent CALL, CALLS, POKE, PEEK, or USR in-
structions refer to this address.

Assigns the starting address of an assembly-
language subroutine.

Ends program execution, closes all files, and
returns control to the command level.

Loops through a series of instructions a given
number of times.

Branches to and returns from a subroutine.

Branches unconditionally to the specified
line number.

Determines program flow based on the result
returned by a logical expression.

Enables error trapping and specifies the first
line number of the error-handling subroutine.

Branches to a subroutine, or subroutines, de-
pending on the value returned by the govern-
ing expression.

Branches to one of several specified line
numbers, depending on the value returned by
the governing expression.

Continues the program after an error recov-
ery procedure.

RETURN

STOP

WHILE...WEND

You may divide the branching and subroutine statements into the

Returns control to the next statement in a

program after a GOSUB or an ON GOSUB statement.

Suspends program execution and returns control

to the BASIC command level.

following categories:

Unconditional branching:

GOTO
ON ... GOTO

Conditional branching:

Branching to another program:

IF ... THENL... ELSE]
IF ... GOTO

ON ERROR GOTO

WHILE ... WEND

CHAIN

Looping:

FOR ... NEXT
WHILE...WEND

Subroutines:

CALL

CALLS

DEF FN

DEF SEG

DEF USR

GOSUB ... RETURN
ON ... GOSUB
RETURN

Loops through a series of statements as long as a
given condition is true.

5-9

Terminal Input and Output

You may use BASIC Input statements for entering information into
programs from either the keyboard, disc files, or the DATA statement.
You may use BASIC Output statements to copy information to the
computer screen, a printer, a file, and/or a memory location. The
following list summarizes these statements.

INPUT Takes input from the keyboard.
LINE INPUT Enters an entire line (up to 254 characters) to a

string variable, without the use of delimiters.

LPRINT and Prints data to a line printer.
LPRINT USING

NULL Sets the number of nulls to be printed at the end
of each line. This applies to both the display and
the printer.

PRINT Prints data to the computer screen.

PRINT USING Uses a specified format to print strings or
numbers.

WIDTH Sets the printer line width by specifying the

number of characters per line.

WRITE Wrrites data to the computer screen.

5-10

Debugging Aids

You use debugging statements to trace program execution, to define
error codes, or to simulate error conditions. Since well-documented
programs help prevent errors, we treat the REM statement as a debugging
aid.

The following list summarizes the debugging statements that BASIC
provides.

ERROR Simulates the occurrence of a BASIC error; or
allows you to define error codes.

REM Inserts explanatory remarks into a program.

TRON/TROFF Traces the execution of program statements.

5-11

BASIC Functions

BASIC provides several intrinsic functions. You may call these functions,
without further definition, from any point in a program.

You must enclose a function’s argument(s) in parentheses. Most function
formats abbreviate the arguments as follows:

xand y Represent numeric expressions
iand j Represent integer expressions
x$and y$ Represent string expressions

If you give a function a floating point value when the function takes an
integral argument, BASIC rounds the fractional portion and uses the
integer result.

NOTE
The results that the BASIC interpreter returns to function calls are either
integer, single-precision, or string values. Only the BASIC compiler
returns double-precision values.

You may divide the functions into five general categories. These
categories are:

* General Purpose Functions
¢ Input/Output Functions

¢ Arithmetic Functions

¢ String Functions

¢ Special Functions

5-12

General Purpose Functions
BASIC provides the following general-purpose functions:

DATES

TIMES

Returns the current date.

Returns the current time.

Input/Output Functions
The Input/Output functions send or return information to the computer

or a printer.
CVI,CVS,CVD

EOF

INKEYS$

INPUTS

Lac

LOF

LPOS

MKI$,MKS$,MKD$
PQS
SPC

TAB

Convert string values to numeric values.

Returns end-of-file for sequential and random-
access files.

Returns a one-character or null string from the
computer’s keyboard.

Returns a string from either the keyboard or a disc
data file.

Returns the last record number in a GET or PUT
statement.

Returns the length of the file in bytes.

Returns the current position of the printer print
head within the printer buffer.

Convert numeric values to string values.
Returns the print head’s column position.
Prints spaces (blank characters) on the display.

Moves to a specified position on a line.

5-13

Arithmetic Functions

The RANDOM1I ZE statement and the arithmetic functions manipulate
numeric expressions.

ABS Returns the absolute value of the numeric
expression.

ATN Returns the arctangent of a numeric expression
which you must give in radians.

CDBL Converts a numeric expression to a double-
precision number.

CINT Converts a numeric expression to an integer by
rounding off the fractional part.

cos Returns the cosine of a numeric expression which
you must give in radians.

CSNG Converts a numeric expression to a single-
precision number.

EXP Returns ¢ (where ¢ = 2.71828...) to the power of X.
X must be less than 88.02969.

FIX Returns the truncated integer part of a numeric
expression.

INT Returns the largest integer value that is less than
or equal to a given numeric expression.

LOG Returns the natural logarithm of a numeric
expression.

RANDOMIZE Reseeds the random number generator.

RND Returns a pseudo-random number between 0 and
1.

SGN Returns 1 if a numeric expression is positive,

returns 0 if the expression is equal to zero, and
returns -1 if the expression is negative.

SIN Returns the sine of a numeric expression which
you must give in radians.

SGR Returns the square root of a numeric expression.

TAN Returns the tangent of a numeric expression
which you must give in radians.

5-14

Derived Functions

BASIC provides intrinsic functions for your immediate use. From these
intrinsic functions, you may derive the following functions:

Function

Secant
Cosecant
Cotangent
Inverse Sine

Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Cotangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic
Cosecant

Inverse Hyperbolic
Cotangent

Equivalent

SECC(X) = 1/C0S(X)
CSCC(X) = 1/SINCX)
COTCX) = 1/TANCX)

ARCSINCX) = ATNC(X/SARC-X*X
+1))

ARCCOS(X)> = -ATNCX/SQRC-X*X
+1)) +1.5708

ARCSEC(X) = ATNCX/SAR(X*X-1))
+SGN(SGN(X)-1)>*1.5708
ARCCSCC(X) = ATNCX/SAR(X*X-1))
+ (SGN(X>-1) * 1.5708
ARCCOT(X) = -ATN(X) + 1.5708
SINH(X) = CEXPC(X)-EXP(-X))/2
COSH(X) = CEXPCX)+EXP(-X))/2
TANHC(X) = C(EXPCX)-EXP(-X))/
CEXPCX)+EXPC(-X))

SECH(X) = 2/CEXP(X) + EXPC(-X))
CSCH(X) = 2/C(EXP(X) - EXPC(-X))
COTHCX) = EXPCX)+EXP(-X))/
CEXPCX)-EXPC-X))

ARCSINH(X) = LOG (X+SQAR(X*
X+1))

ARCCOSHC(X) = LOG (X+SQARCX*X-
1)

ARCTANHCX) = LOGCC1+X)/C1-X))
/2

ARCSECH(X) = LOGC(SARC-

X*X+1)+1)/X)

ARCCSCH(X) = LOGCCSGN(X)
*SARCX*X+1) +13/X)
ARCCOTH(X) = LOGC(X+1)/(X-1))
/2

5-15

String Functions

The string functions manipulate string expressions.

ASC Returns a numeric value that is the ASCII code of
the first character of a string expression.

CHRS$ Returns the character that corresponds to a given
ASCII code.

HEXS$ Returns a string expression that represents a
hexadecimal value for a decimal argument.

INSTR Searches for the first occurrence of a substring and
returns the position where the match is found.

LEFTS Returns a string expression comprised of the
requested, leftmost characters of a string
expression.

LEN Returns the number of characters in a string
expression.

MID$ Returns a substring from a given string
expression.

OCTs Returns a string that represents the octal value of a
decimal argument.

RIGHTS Returns a string expression comprised of the
requested, rightmost characters in a string
expression.

SPACES Returns a string of spaces the length of a numeric
expression.

STR$ Returns a string representation of the value for a

numeric expression.

STRINGS Returns a given length string whose characters all
have the same ASCII code.

VAL Returns the numeric value of a string expression.

5-16

Special Functions
BASIC provides the following special functions:

ERR and ERL Direct program flow in an error-trap routine.
FRE Forces "garbage collection”.
PEEK Returns the byte (decimal integer in the range 0

(eight zeros) to 255 (eight ones)) read from a
memory location.

USR Calls an assembly-language subroutine.

VARPTR Returns the address of the first byte of data
identified by a variable’s name.

5-17

Chapter 6

BASIC STATEMENTS, COMMANDS,
FUNCTIONS, AND VARIABLES

Introduction

This chapter contains a comprehensive listing of the commands,
statements, functions, and variables that BASIC provides.

The distinction between commands and statements is mainly traditional.
In general, commands operate on programs, and you usually enter them
in Direct Mode. Statements direct the flow of control within a BASIC
program.

Functions are predefined operations that perform a specific task. They
return a numeric or string value. You can put the built-in functions and
variables to immediate use.

Chapter Format

The statement and command descriptions take the following form:

Format: Shows the correct syntax for that instruction.
Purpose: Describes the instruction and what it does.
Remarks: Provides details on the instruction’s use and supplies

pertinent notes and comments.
Example: Gives an example of the instruction’s use.

Since most of the functions perform familiar operations (such as taking
the square root of a number or returning the sine of an angle), the
chapter simplifies their treatment. Each description contains the
function’s format, its action, and an example:

Format: Shows the correct syntax for the function.
Action: Describes what the function does.
Example: Shows sample program segments that demonstrate the

function’s use.

6-2

-

ABS Function

Format: ABS(x)
Action: Returns the absolute value of the expression x.
Example: PRINT ABS(-5 * 7)
35
Ok
ASC Function
Format: ASC(x$)
Action: Returns a numeric value that is the ASCII code of the
first character in the string x$. (Appendix C lists the
ASCII codes.)

If x$ is the null string, an 11legal functioncall
occurs.

See the CHR$ function for ASCII-to-string conversions.

Example: 10 X$ = “TEST"

20 PRINT ASC(XS$)

RUN

84

Ok
ATN Function
Format: ATNCX)
Action: Returns the arctangent of x, where x is given in radians.

The result is in radians and ranges between -pi/2 and
pi/2. The expression x may be any numeric type, but
BASIC evaluates ATN in single-precision arithmetic.

Example: 10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046
Ok

6-3

AUTO Command

Format:

Purpose:

Remarks:

6-4

AUTO[line# [, increment]]

Generates a line number automatically when you press
the key. You normally use this command when
you are entering a program to free yourself from typing
each line number.

AUTO begins numbering at /ine# and increments each
subsequent line number by increment. The default
setting for both values is 10. If you follow line# with a
comma but omit the increment, BASIC uses the
increment specified in the last AUTO command.

When the AUTD command generates a line number that
is already being used, BASIC prints an asterisk after the
number to warn you that any characters you type will
replace the existing line. If this is not your intent, you
may press the key to preserve the old line and
generate the next line number.

NOTE
Pressing the key must be your first action
after the warning asterisk appears. If you happened
to press a character before pressing the key,
BASIC would replace the current line with that
character.

Simultaneously pressing stops the
automatic generation of line numbers. Since pressing
the key to end a line generates a new number
for the next line, BASIC discards the line in which you
press . However, when the line in which you
type has an asterisk after the line number
(showing that the line currently exists), BASIC
preserves the line. BASIC returns control to the
command level.

e

Examples: This first example generates line numbers beginning at
10 and incrementing by 10. (Ten is the default value for
both the starting line number and the increment.):

AUTO

The next example generates the line numbers 100, 150,
200, etc.:

AUTO 100, 50

The last example generates line numbers beginning
with 1000 and increasing by 50 at each step. (This
example assumes that the next command follows the
preceding command where the increment was 50.):

AUTO 1000,

NOTE
The BASIC compiler offers no support for this command.

BLOAD Command/Statement

Format:

Purpose:

Remarks:

BLOAD filename [, offset]

Loads the specified memory image file from disc into
your computer’s memory.

filename is a string expression that contains the filename
and an optional device designation. The filename
portion may be 1 to 8 characters long.

When you omit the device designation in filename,
BASIC assumes you are referring to the current drive.

offset is a numeric expression that returns an unsigned

integer which may range between 0 and 65535. This is

used in conjunction with a DEF SEG statement to specify
an alternate location where loading begins.

As a command, you can use BLOAD to load assembly-
language routines immediately into memory. A
program can use BLOAD as a statement to selectively
load assembly-language routines.

The BLOAD statement loads a program or data file
(which you saved as a memory image file) anywhere in
memory. A memory image file is a byte-for-byte copy
of what was orginally in memory. For example, you
may use BLOAD to load assembly-language programs,
compiled Microsoft® Pascal programs, and Microsoft®
FORTRAN routines. See the BSAVE command in this
chapter for information about saving memory files.

When you omit the offset parameter, BASIC uses the
segment address and offset that are contained in the
file. (That is, the address you specified in the BSAVE
statement when you created the file.) BASIC loads the
file, therefore, back to the same location from which it
was originally saved.

When you give an offset, BASIC uses the segment
address from the most recently executed DEF SEG
statement. Therefore, a program should execute a DEF
SEG statement before it executes a BLOAD statement. If
BASIC fails to encounter a DEF SEG statement, it uses
the BASIC Data Segment (DS) as the default address.

CAUTION
Since BLOAD never performs an address range check,
you may load a file anywhere in memory. You must be
careful, therefore, to avoid loading a file over the BASIC
interpreter program or the MS-DOS operating system.

Example: The following example sets the segment address at 6000
Hex and loads PROG 1 at FOOO:

10 REM Load subroutine at 6F000
20 DEF SEG = &H6000 ’Set segment to 6000 Hex
30 BLOAD "PROG1"™, &HF000 ‘Load PROG1

NOTE
The BASIC compiler offers no support for this command.

6-7

BSAVE Command/Statement

Format:

Purpose:

Remarks:

Example:

BSAVE filename , offset, length

Saves the contents of the specified area of memory as a
disc file. (Also see the BLOAD statement.)

filename is a string expression that contains the filename
and an optional device designation. The filename
portion may be 1 to 8 characters long.

offset is a numeric expression that returns an unsigned
integer which may range between 0 and 65535. This is
the offset address into the segment that you declared in
the last DEF SEG statement. It specifies the exact location
of the first byte of memory that is saved to disc.

length is a numeric expression that returns an unsigned
integer which may range between 1 and 65535. This
gives the length in bytes of the memory image file that
you want to save.

The syntax for BSAVE requires all three parameters:
filename, offset, and length. If you enter an improper
filename, a Bad file name error occurs. Omitting offset
or length produces a Syntax error. Under any of these
circumstances, BASIC cancels the BsAVE operation.

Since the address given in the most recently executed
DEF SEG statement determines the starting point from
which BASIC calculates the offset, you should execute a
DEF SEG statement before you execute a BSAVE
statement.

The following example saves 256 bytes, beginning at
6F000, in file PROG 1:

10 REM SAVE PROG1
20 DEF SEG = &H6000
30 BSAVE "PROG1"™, &HF000, 256

NOTE

The BASIC compiler offers no support for this command.

6-8

CALL Statement (for Assembly Language Subroutines)

Format:
Purpose:
\ Remarks:
\/
N
Example:

CALL varname [Cargument [,argument). . .3]
Calls an assembly-language subroutine.

varname contains the segment offset that is the starting
point in memory of the called subroutine. It cannot be
an array variable name. You must assign the segment

offset to the variable before you use the CALL statement.

argument is a variable or constant that is being passed to
the subroutine. No literals are allowed. You must
separate the items in the list with commas.

The CALL statement is the recommended way of calling
machine-language programs with BASIC. You should
avoid the USR function. See Appendix D, Assembly
Language Subroutines.

The CALL statement generates the same calling
sequence that is used by Microsoft® FORTRAN and
Microsoft® BASIC compilers.

When the CALL statement executes, BASIC transfers
control to the routine via the segment address given in
the last DEF SEG statement and the segment offset
specified by the varname parameter of the CALL
statement. You may return values to the calling
program by including within the list of arguments
variable names to receive the results.

This example sets the segment address to 8000 Hex. The
variable F00 is set to &H7FA, so that the call to FOO
executes the subroutine located at 8000:7FA Hex
(equivalent to absolute address 807FA):

100 DEF SEG = &H8000
110 FOD = &H7FA
120 CALL FOO (A,BS$,C)

NOTE

Refer to the BASIC compiler manual for differences between the
N\ interpretive and compiled versions of BASIC when using the CALL
P P 8

statement.

6-9

CALLS Statement

Format:
Purpose:

Remarks:

CALLS varname [Cargument.list))
Calls a subroutine with segmented addresses.

The CALLS statement resembles the CALL statement,
except the segmented addresses of all arguments are
passed. A CALL statement passes unsegmented
addresses. You should use the CALLS statement when
accessing MS-FORTRAN subroutines, since all
MS-FORTRAN parameters are call-by-reference
segmented addresses.

As with the CALL statement, CALLS uses the segment
address defined by the most recently executed DEF SEG
statement to locate the routine being called.

NOTE

For more information, refer to Appendix D, “Assembly Language

Subroutines”.

6-10

CDBL Function

Format: CDBL(x)
Action: Converts x to a double-precision number.
Example: 10 A = 454.67
20 PRINT A; CDBL(A)
RUN
454,67 454.6700134277344
Ok

6-11

CHAIN Statement

Format:

Purpose:

Remarks:

6-12

CHAIN[MERGE] filename| , [line] [, ALL][, DELETE range]]

Calls a program and passes variables to it from the
current program.

filename is the name of the program that you are calling.
In the example:
CHAIN "PROG1"

BASIC searches the currently active disc for the file
PROG 1.BAS. When it locates the file, it loads then
executes the program. Once the program resides in
memory, you may list and modify it.

If BASIC fails to locate the file, it printsaFile not
found error message, and when no ON ERROR statement
is active, halts execution and returns the user to
command mode.

You may specify a different drive than the currently
active one by including a letter specifer for the drive
(followed by a colon) as part of filename. For example,

CHAIN "“C:PROG2"

line is either a line number or an expression, which
evaluates to a line number, in the called (“chained-to”)
program. It becomes the starting point for executing the
called program. When you omit this parameter, BASIC
begins executing the called program at the first line.
The following statement begins executing PR0G 1 at line
1000:

CHAIN ™PROG1*™, 1000

If BASIC fails to find the given line number, an
Undefined line number error results.

Since line refers to a line in another program, a RENUM
command has no effect on it. (RENUM only affects line
numbers in the current (or calling) program.)

During the chaining process, the CHAIN statement
leaves open any files that were opened.

S

The ALL option passes every variable in the current
program to the called program. When you omit this
parameter, the current program must contain a COMMON
statement to list the variables that are being passed. An
example of a CHAIN statement with the ALL option is:

CHAIN "PROG1*, 1000, ALL

The arguments for the CHAIN statement are position
dependent. For example, when you use the ALL option
but omit the starting line, you must include a comma to
hold the place for the line parameter. That is,

CHAIN "NEXTPROG", ,ALL is correct while

CHAIN “NEXTPROG",ALL is illegal. (In the latter
statement, BASIC assumes ALL is a variable name for a
line number expression.)

Including the MERGE option allows a subroutine to be
brought into the BASIC program as an overlay. That is,
BASIC merges the called program with the current
program. The called program must be in ASCII format
before you can merge it.

CHAIN MERGE "OVERLAY"™, 1000

When using the MERGE option, you should place any
user-defined functions before any CHAIN MERGE
statements in that program. If they are not defined prior
to the merge, they remain undefined after the merge
operation is completed.

The CHAIN statement with MERGE option leaves files
open and preserves the current OPTION BASE setting.

When you omit the MERGE option, the CHAIN statement
does not preserve variable types or user-defined
functions for use by the called program. That is, you
must reissue any DEF INT, DEFSNG, DEFDBL, DEFSTR, or
DEFFN statements within the called program.

6-13

6-14

After an overlay is brought in and finishes processing,
you may delete it with the DELETE option. This allows
BASIC to bring in a new overlay if one is needed.

CHAIN MERGE "“OVRLAY2', 1000, DELETE 1000-5000
The above statement deletes lines 1000 to 5000 in the

current program, merges in the file OVRLAY2.BAS, and
resumes execution at line number 1000.

NOTE
The CHAIN statement does a RESTORE before running
the chained program. Therefore, the next READ
statement accesses the first item in the first DATA
statement that the program contains. The read
operation does not continue from where it left off in the
chaining program.

The RENUM command affects the line numbers in range
since they refer to lines in the current program.

Example 1: 5 REM ----------- THIS IS PROGRAM 1 ---v-------

10 REM THIS EXAMPLE PASSES VARIABLES

15 REM USING THE "COMMON" STATEMENT

20 REM SAVE THIS MODULE ON DISK AS "PROG1" USING
THE A OPTION

30 DIM A$(2), B$(2)

40 COMMON A$C()>, B$O

50 A$(1) = "WARIABLES IN COMMON MUST BE ASSIGNED"

60 A$(2) = "VALUES BEFORE CHAINING."

70 B$SC1) = ™ * : B$(2) = " "

80 CHAIN "PROG2"

90 PRINT : PRINT B$(1) : PRINT B$(2) : PRINT

100 END

5 REM -------oo-- THIS IS PROGRAM 2 -----------
10 REM STATEMENT 30 ABOVE "DIM A$(2), B$(2)"
MAY ONLY BE EXECUTED DNCE.
20 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE.
30 REM SAVE THIS MODULE ON THE DISC AS "PROG2"
USING THE A OPTION.
40 COMMON A$(), B$CQ)
50 PRINT : PRINT A$(1); AS$(2)
60 B$(1) = “NOTE HOW THE OPTION OF SPECIFYING A
STARTING LINE NUMBER™
70 B$(2) = "WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN ‘PROG1‘."
80 CHAIN "PROG1",90
90 END
RUN "PROG1"
VARIABLES IN COMMON MUST BE ASSIGNED VALUES
BEFORE CHAINING.
NOTE HOW THE OPTION OF SPECIFYING A STARTING
LINE NUMBER WHEN CHAINING AVOIDS THE
DIMENSION STATEMENT IN ‘PROG1‘.
0k

6-15

Example 2: S REM ----o-mom- MAINPRG -------------vmuomm-
10 REM THIS EXAMPLE USES THE MERGE, ALL, AND

20 REM SAVE THIS MODULE ON THE DISC AS "MAINPRG".
30 AS

DELETE OPTIONS.

= "MAINPRG"

40 CHAIN MERGE "OVRLAY1"™,1010,ALL
50 END

1000
1010
1020
1030
1040
1050

1000

1010

REM SAVE THIS MODULE ON DISC AS "“OVRLAY1"™
USING THE A OPTION.
PRINT A$; " HAS CHAINED TO OVRLAY1."™
A$ = “OVRLAY1™
B$ = “OVRLAY2"
CHAIN MERGE "OVRLAY2", 1010, ALL,
DELETE 1000-1050
END

REM SAVE THIS MODULE ON DISC AS "“OVRLAY2"
USING THE A OPTION.
PRINT A$; * HAS CHAINED TO "; B$; "."

RUN "MAINPRG"
MAINPRG HAS CHAINED TO OVRLAY1.

OVRLAY1 HAS CHAINED TO OVRLAY2.

Ok

The BAS1C compiler offers no support for the ALL, MERGE, and DELETE
options to the CHAIN statement. If you want to maintain compatibility

NOTE

with the BASIC compiler, you should pass variables with the COMMON
statement and avoid using overlays.

6-16

CHRS$ Function

Format:

Action:

Examples:

CHR$ (1)

Returns the character that corresponds to a given ASCII
code.

You normally use CHR$ to send special characters to the
computer. For example, you could send the BELL
character (CHR$(7)) as a preface to an error message.

See the ASC function for ASCII-to-numeric conversions.

PRINT CHR$(66)
B
0k

The following PRINT statement uses escape sequences
to home the cursor and clear the display:

PRINT CHR$(27) + “H" + CHR$(27) + "J»

CINT Function

Format:

Action:

Example:

CINT(x)

Converts x to an integer by rounding off the fractional
part.

x must be within the range of -32768 to 32767. If x is
outside this range, an Over f1ow error occurs.

See the CDBL and CSNG functions for converting
numbers to double-precision and single-precision data
types. See also the FIX and INT functions, both of
which return integers.

PRINT CINT(45.67)
46
Ok

6-17

CLEAR Statement

Format:

Purpose:

Remarks:

6-18

CLEAR(, [expressiond] [, expression2]]

Sets all numeric variables to zero and all string variables
to the null string, closes all files, and, optionally, sets the
end of memory and the amount of stack space.

expression] sets the maximum number of bytes for the
BASIC workspace. When you omit this parameter,
BASIC uses all available memory up to the starting
point of the MS-DOS operating system.

expression?2 sets aside stack space for BASIC. When you
omit this parameter, BASIC sets aside either 512 bytes or
one-eighth of the available memory, whichever is
smaller.

The CLEAR statement performs the following functions:

o Frees all memory used for data without erasing the
program currently in memory

* Closes all files

» Clears all coMMON and user variables

¢ Resets the stack and string space

» Releases all disc buffers

+ Resets all numeric variables and arrays to zero
o Resets all string variables and arrays to null

« Clears definitions set by any DEF statements. (This
includes DEF FN, DEF SEG, and DEF USR, as well as
DEFINT, DEFSNG, DEFDBL, and DEFSTR.)

Examples: The first example clears all data from memory without
erasing the program:

CLEAR

The next statement clears all data and sets the
maximum workspace size to 32K bytes:

CLEAR,32768

The next example clears all data and sets the size of the
stack to 2000 bytes:

CLEAR, ,2000

The last example clears all data and sets the maximum
workspace size to 32K bytes and the stack size to 2000
bytes:

CLEAR,32768,2000

NOTE
If you intend to compile your program, consult the BASIC compiler
manual for differences in implementation between the compiled and
__ interpretive version of this command.

6-19

CLOSE Statement

Format: cLOSE [[#] filenum [,[#] filenum. . .]]
Purpose: Concludes input and output to a disc file.
Remarks: filenum is the number you gave the file when you

opened it. A CLOSE statement with no arguments closes
all open files and devices.

The association between a particular file and its file
number ceases when the file is closed. Therefore, you
may then reopen the file using the same or a different
file number. Similarly, you may use the freed file
number to open a new file.

A cLOSE for a sequential output file writes the final
buffer of output to the file.

The following instructions close all disc files
automatically:
e END

®* NEW

RESET

RUN without the R option
* SYSTEM

The STOP statement, however, never closes any disc
files.

Example: 100 OPEN “O", #2, "OUTFILE"
110 PRINT #2, CNAMES, ADDRESSS$, ZIP$, PHONES
120 CLOSE #2

6-20

COMMON Statement

Format:
Purpose:

Remarks:

COMMON variable [, variable] . ..
Passes variables to a chained program.

variable is the name of the passed variable. You specify
array variables by appending a pair of parentheses “()“
to the variable’s name.

The BASIC interpreter accepts the number of
dimensions for an array as in:

COMMON EMPLOYEE(3)
but treats it as equivalent to:
COMMON EMPLOYEECQ)

Also, the number in parentheses is the number of
dimensions, not the dimensions themselves. For
example, EMPLOYEE(3) could correspond to either of
the following DIM statements:

DIM EMPLOYEE(20,4,2)
or
DIM EMPLOYEE(10,5,12)

You use the COMMON statement in conjunction with the
CHAIN statement. You pass variables in the main
program to variables in the chained program by listing
each variable name in a COMMON statement.

Although COMMON statements may appear anywhere
within a program, good programming practice dictates
grouping them at the program’s beginning.

You cannot name the same variable in multiple COMMON
statements.

When you want to pass all the variables within a
program, you should use the CHAIN statement with the
ALL option and omit the COMMON statement.

6-21

Example: (Listing for FI1LE2)
10 COMMON CUST$,A,FQ)
20 PRINT CUSTS$,A,F(1)

(Listing for FILE1)
10 A = 10 : CUST$ = "MADELAIN" : B = 20
20 COMMON A, CUSTS, B
30 CHAIN “FILE2"
RUN
MADELAIN 10 0
Ok

Notice in the above example that BASIC prints the
value for the variable F (1) as 0. Since the camman
statement for F ILE 1 omitted the array variable F,
BASIC assigns a value of zero to F(1).

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compile and interpretive versions of this

statement.

6-22

\—/

CONT Command

Format:

Purpose:

Remarks:

CONT

Continues program execution after execution was

suspended by either your typing or the
program encountering a STOP or END statement.

You enter this command in Direct Mode.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt from an
INPUT statement, execution continues by reprinting the
prompt (? or prompt string).

You normally use the CONT statement in conjunction
with the STOP statement to debug a program. After
execution stops, you may examine intermediate values
by using Direct Mode statements. You may resume
execution with the CONT statement (which continues
with the next executable statement) or the Direct Mode
6070 statement (which continues execution at the
specified line number).

You may also use CONT to resume execution after BASIC
suspends execution upon its detecting an error
condition. However, you may not use CONT to resume
execution if you have modified the program (through
edit commands) during the break.

6-23

Example: The following program and interactive session
illustrates how you might use the CONT statement:

10 INPUT "ENTER PRICE"™, AMOUNT
20 IF AMOUNT < 20! THEN SURCHG=1!
30 STOP

40 TOTAL = AMOUNT + SURCHG

50 PRINT TOTAL

RUN

ENTER PRICE

(you type 15 [Return])

Break in 30
Ok

(you type PRINT SURCHG)
1

113

(you type CONT)
16

Ok

For more information, see the STOP statement.

NOTE
The BASIC compiler offers no support for this command.

6-24

COS Function

Format:

Action:

Example:

cosSx)
Returns the cosine of x, where x is given in radians.

To convert degrees to radians, multiply the angle by
P1/180, where PI = 3.141593.

BASIC evaluates COS in single-precision arithmetic.

10 X = 2 * C0SC.4)
20 PRINT X
RUN
1.842122
Ok

CSNG Function

Format:

Action:

Example:

CSNG(x)
Converts x to a single-precision number.

See the CINT and CDBL functions for converting
numbers to the integer and double-precision data types.

10 A# = 975.342124#

20 PRINT A#; CSNG(A#)

RUN

975.342124 975.3421
0k

6-25

CVI, CVS, CVD Functions

Format:

Action:

Example:

6-26

CVI(2-byte string)
CVS(4-byte string)
CVD(8-byte string)

Converts string values to numeric values.

Random-access disc files store numeric values as strings.

Therefore, when you read values from a random disc
file, you must convert the strings into numbers.

cV1 converts a 2-byte string to an integer.

CVS converts a 4-byte string to a single-precision
number.

cvD converts an 8-byte string to a double-precision
number.

See also MKI$, MKS$, MKDS$.

70 FIELD #1, 4 AS N$, 12 AS B$
80 GET #1
90 CODE = CVS(N$)

-/

_/

DATA Statement

Format:

Purpose:

Remarks:

Example:

DATA constant [, constant]

Stores information (that is, numeric or string constants)
for later access by a program’s READ statements.

constant may be a numeric or string constant.

Numeric constants may assume either an integer, fixed-
point, or floating-point format. Numeric expressions are
illegal.

You must place quotation marks around a string
constant only if the string contains embedded commas
or colons, or if it has significant leading or trailing
spaces. Otherwise, you may omit the quotation marks.

DATA statements are nonexecutable. You may place
them anywhere within the program.

A DATA statement may contain as many constants as
you may fit on the input line. (You must separate the
DATA items by commas or spaces.) A program’s READ
statements access the DATA statements in sequential
order (by line number). Therefore, you may envision
the data to be a continuous list of items, regardless of
how many items are on a line or where the lines occur
within the program.

The variable type given in the READ statement must
agree with the corresponding constant in the DATA
statement or a Type mismatch error occurs.

You may reread the information stored in a DATA
statement by using the RESTORE statement.

10 DATA 80, 90, tonight, * dinner", 25
20 FOR'I = 1705

30 READ A$

40 PRINT AS$; "™ *;

50 NEXT

60 END

RUN

80 90 tonight dinner 25

0k

6-27

DATES$ Function

Format:

Action:

Example:

628

DATES$
Retrieves the current date.

The DATE $ function fetches the date, which BASIC
derives from the date set with the bATE $ statement.

The DATE $ function returns a 10-character string in the
form:

mm-dd-yyyy
where:

mm is the month of the year. Values range from 01
to 12.

dd is the day of the month. Values range from 01
to 31.

yyyy is the year. Values range from 1980 to 2099.

PRINT DATES
02-27-1984
Ok

DATES$ Statement

Format:
Purpose:
Remarks:
Example:
—
N

DATES = string
Sets the current date for use by the DATE$ function.

string represents the current date. You may enter it in
one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/ddfyy
mmjddfyyyy

where:

mm is the month of the year. Values range from 01
to 12

dd is the day of the month. Values range from 01
to 31.

yy or yyyy is the year. Values range from 1980 to
2099. When you include only two digits, BASIC
assumes 19 for the first two digits.

This example demonstrates both forms for the year
entry:

DATE$ = *01-01-1984"
0k

PRINT DATES
01-01-1984

Dk

DATES = “02-27-84"
0k

PRINT DATES
02-27-1984

Ok

6-29

DEF FN Statement

Format:
Purpose:

Remarks:

6-30

DEF FN name [Cparameter [, parameter] . . . 3] definition
Names and defines a function which the user writes.

name must be a legal variable name. This name,
preceded by the letters FN, becomes the name of the
function.

parameter is a variable name in the function definition
that BASIC replaces with a value when the function is
called. You must separate multiple parameters with
commas.

definition is an expression that performs the operation of
the function. You must limit the definition to one line
(255 characters). Variable names that appear in this
expression serve only as formal parameters to define the
function. They have no effect on program variables that
have the same name. A variable name used within the
function definition might appear as a parameter. If it isa
parameter, BASIC supplies its value when the function
is called. Otherwise, BASIC uses the variable’s current
value.

The parameter variables correspond on a one-to-one
basis to the argument variables or values that are given
in the function call.

User-defined functions may be numeric or string.
When the function name contains a type definition
character, the value of the expression is forced to that
type before BASIC returns the result to the calling
statement. When you omit the type definition character,
BASIC considers the result to be a single-precision
value. When a type is specified in the function name
and the argument type differs, a Type mismatch error
occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a function is called
before it has been defined, an Undefined user
function €rror occurs.

The DEF FN statement is illegal when you are using the
BASIC interpreter in Direct Mode.

Example 1:

Example 2:

If a program contains the following lines:

30 VALUECI) = A+Y/F-D
80 VALUECI) = B+Y/F-E

200 VALUECI) = C+Y/F-G
Then defining a function such as:

10 DEF FNNUM(S,T) = S+Y/F-T
simplifies the program to:

30 VALUECI) = FNNUMCA,D)
80 VALUECI) = FNNUM(B,E)

200 VALUECI) = FNNUM(C,G)

10 DEF FNMULTCI,J) = 1*J+(172)*J+(I73)*J

201 =2 :J =3

30 A = FNMULT(I,J)
40 B = FNMULT(3,4)
50 PRINT A, B

RUN

42 156

0k

6-31

DEF SEG Statement

Format:

Purpose:

Remarks:

Example:

6-32

DEF SEG [=address]

Assigns the current “segment” for storage. A
subsequent B 0AD, BSAVE, CALL, CALLS, POKE, PEEK, Or
USR instruction defines the actual physical address that
it requires as an offset into this segment.

address is a numeric expression that returns an unsigned
integer which may range between 0 and 65535.

Entering an address outside the permissible range
resultsinan I1legal function call. Under these
circumstances, any previous value remains in effect.

BASIC saves the address you specify for use as the
segment needed by a BLOAD, BSAVE, CALL, CALLS,
POKE, PEEK, or USR instruction.

When you give an address, you should ensure that it is
based on a 16-byte boundary. The value is multiplied by
16 (shifted left by 4 bits) to form the segment address
for the subsequent operation. BASIC does not check the
validity of the specified address.

When you omit the address parameter, BASIC sets the
segment address to that of the BASIC Data Segment
(DS). This is the setting for the current segment when
you initialize BASIC.

NOTE
You must separate DEF and SEG with a space.
Otherwise, BASIC interprets the statement:

DEFSEG = 1000

as “assign the value of 1000 to the variable DEFSEG”.

This example sets the segment address to &HB800 Hex.
Later, a second statement (with no specified address)
restores the address to the BASIC Data Segment (DS):

10 DEF SEG = &HB8O00

90 DEF SEG

DEF USR Statement

Format:

Purpose:

Remarks:

Example:

DEF USR [digit] = offset

Gives the starting address of an assembly-language
subroutine.

digit may be any integer from 0 to 9. The digit
corresponds to the number of the USR routine that you
are specifying. When you omit the digit parameter,
BASIC assumes the reference is to USRO,

offset is an integer expression whose value may range
from 0 to 65535. BASIC adds offset to the value of the
current storage segment to get the actual starting
address of the USR routine. (See Appendix D for
information about assembly-language subroutines.)

DEF USR lets the programmer define starting addresses
for user-defined assembly language functions that are
called from BASIC programs. You must use this
statement to set the starting address prior to its actual
use.

A maximum of 10 user-defined functions are available
for use at any given time. The routines are identified as
USRO to USR9, When you need access to more
subroutines, you can use multiple DEF USR statements
to redefine a subroutine’s starting address. However,
BASIC only saves the last-executed value as the offset
for that subroutine.

NOTE
The CALL statement is the preferred way of calling
subroutines. You should avoid using the USR statement.

This example calls the user function at the Data
Segment relative memory location 24000:

200 DEF SEG = 0
210 DEF USRO = 24000
220 X = USRO (Y~2/2.89)

6-33

DEFINT/SNG/DBL/STR Statements

Format:

Purpose:

Remarks:

6-34

DEF INT letter [-letter] [, letter [-letter]). ..
DEFSNG letter [-letter] [, letter [-letter]]. ..
DEFDBL letter [-letter] [, letter [-letter]]. ..
DEFSTR letter [-letter] [, letter [-letter]]. ..

Declares that BASIC should automatically treat certain
variable names as integer, single-precision, double-
precision, or string variables, respectively.

letter is a letter of the English alphabet (A-Z).

BASIC considers any variable names beginning with
the specified letter(s) to be of the requested type.
However, when assigning variable types, BASIC always
gives precedence to a type declaration character (x,!,#,
or $) over an assignment set by a DEFtype statement.

In the following example, BASIC prints the variable ¢ as
an integer because of the type declaration character (x),
even though c is within the range of the DEFDBL
declaration.

10 DEFDBL B-D

20 D = 5.2D+17 : CX%= 20.2
30 PRINT D,C%

RUN

5.2D+17 20

Ok

When you use these statements, you should place them
at the beginning of a program. (BASIC must execute the
DEF type statement before you use any variables that it
declares.)

If a program contains no type declaration statements,
BASIC assumes that any variable without a declaration
character is a single-precision variable.

Examples: The first example defines all variables that begin with
either the letter L,M,N, 0, or P to be double-precision
variables:

10 DEFDBL L-P

The next statement defines all variables that begin with
the letter A to be string variables:

10 DEFSTR A

The last example defines all variables that begin with
either the letter I,J,K,L,M, N,W,X,Y, or Z to be
integer variables:

10 DEFINT I-N,W-2

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the interpretive and compiled version of this
statement.

6-35

DELETE Command

Format:
Purpose:
Remarks:

Examples:

DELETE [start.line] [-end.line]
Deletes the specifed line(s) from a BASIC program.

start.line is the line number for the first line you want to
delete.

end.line is the line number for the last line you want to
delete.

NOTE
You may use a period (.) in place of a line number when
you want to delete the current line.

If BASIC fails to find the line number you supplied, it
returns an I1legal functioncall.

BASIC always returns control to the command level
after the pELETE command executes.

The first example only deletes line 40:

DELETE 40

The next statement deletes from the beginning of the
program through line 40:

DELETE -40

The last example deletes all lines between 40 and 80,
inclusively:

DELETE 40-80

NOTE

The BASIC compiler offers no support for this command.

6-36

DIM Statement

Format:

Purpose:

Remarks:

Example:

DIM arrayname Csubscripts) [,arrayname Csubscripts)]. . .

Sets the maximum values for the subscripts of an array
variable, allocates the necessary storage, and initializes
the elements of the array to zero or null.

arrayname is a variable that names the array.

subscripts is a list of numeric expressions, separated by
commas, that define the array’s dimensions.

When you fail to dimension an array with the DIM
statement, BASIC assumes the maximum subscript is
10. If you subsequently use a subscript that exceeds this
number, a Subscript out of range error occurs.

If you attempt to dimension an array more than once, a
DuplicateDefinition error occurs. (See the ERASE
statement.)

The minimum value for an array subscript is zero
unless you use the OPTION BASE statement to change it
to one.

The maximum number of dimensions for an array is
255. The maximum number of elements per dimension
is 32767. However, these values are theoretical limits as
both values are limited by the size of memory and the
number of characters that you can enter on the input
line.

The DIM statement sets all elements of numeric arrays
to an initial value of zero and all elements of string
arrays to the null string.

10 DIM IDC20)

20 FOR I = 0 TO 20
30 READ IDCI)
40 NEXT I

NOTE

If you plan to compile your program, see the BASIC complier manual for
differences between the compiled and interpretive version of the DIM

statement.

6-37

EDIT Command

Format:

Purpose:

Remarks:

Examples:

EDIT line
EDIT .

Enables Edit mode on the specified line.

The £p1T command displays the specified line number,
then waits for an Edit subcommand. You may then
modify the line with any of the techniques presented in
Chapter 1.

When you specify a line number, the ED1T command
edits that line. If no such line exists, an Undefined
line number €Iror OoCcurs.

When you enter EDIT ., the Ep1T command edits the
last line that you typed, the last line thata L1sT
statement displayed, or the last line that an error
message referenced.

Both of the following groups of commands display Line
10 for editing: '

EDIT 10

LIST 10
EDIT .

NOTE

The BASIC compiler offers no support for this command.

6-38

END Statement

Format:

Purpose:

Remarks:

Example:

END

Stops program execution, closes all files, and returns
control to the command level.

You may place END statements anywhere in a program
to end execution. The END statement at the end of a
program, however, is optional. When you omit it,
execution stops after the last line in the program
executes.

The END statement differs from the STOP statement in
two important ways:

e END closes all files

* END terminates the program without printing a
Break message

BASIC always returns control to the command level
after an END statement executes.

This program segment tests to see if more data exists.

END statements terminate the program when no data

exists and prevent program flow from falling into the
subroutine section:

520 IF EOF(1) THEN END ELSE GOTO 200
850 END

1000 REM THE FOLLOWING SECTION CONTAINS
1010 REM THE INPUT SUBROUTINES

NOTE

If you plan to compile your program, refer to the BASIC Compiler
Manual for programming differences when using the END statement.

6-39

EOF Function

Format:

Action:

Example:

EOF (filenum)

For sequential files, the £0F function returns true (-1)
when no more data exists in the file. BASIC considers
the file empty if the next input operation (for example,
INPUT Or LINE INPUT) would cause an Input past end
error. Using the EoF function to test for the end-of-file
while inputing information avoids such errors.

For random-access files, EQF returns true (-1) if the most
recently executed GET statement attempts to read
beyond the end-of-file.

Because BASIC allocates 128 bytes to a file at a time, it is
possible that £oF will not accurately detect the end of a
random-access file that was opened with a record
length of less than 128 bytes. For example, if you open a
file with a record length of 64 bytes and you write one
record to the file (that is, PUT #1, 1), EOF returns false if
a GET statement is attempted on the file’s record (for
example, GET #1, 1). This occurs even though the record
has not actually been written.

This sample program lists the titles of the books
cataloged in the file L 1BRARY . DAT. It also counts the
books in the library by counting the number of records
that it reads from L IBRARY . DAT before it encounters
the end-of-file.

Each record of L IBRARY . DAT contains information on
one book. The record length is 128 bytes. The first 35
bytes contain the title of the book. The remaining 93
bytes contain additional information such as the author,
publisher, print date, and so on.

10 REM

20 R
30 R
40 0
50 R
60 R
70 R
80 R
90 R
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
1000
1010
1020
1030
1040
1050
1060
1070
1080

EM Open the library catalog file,
EM LIBRARY.DAT.

PEN "“R", 1,"LIBRARY.DAT"

EM The first 35 bytes of the

EM record contain the title,

EM the remaining 93 bytes contain
EM additional information that

EM this program does not use.
FIELD 1, 35 AS TITLES, 93 AS G$

REM

REM Initialize the number of books seen.
REM

NBOOKS = 0

REM Attempt to fetch the next record.
REM Note that the record number
REM of GET isn’t specified
REM so the next record of the file
REM is fetched.
GET 1
REM
REM 1Is this the end of the file?
REM
IF EOFC1) THEN 1000
REM If no: increment the count of books,
REM print the current title, and
REM loop back to read the next record.
REM
NBOOKS = NBOOKS + 1
PRINT TITLES
GOTO 200
REM Control passes here when the end of
REM file has been reached, so:
REM print a blank line and the number of
REM books, close the file, and terminate
REM the program.
PRINT “There are "; NBOOKS; " books in ";
PRINT *"your library."
CLOSE
END

ERASE Statement

Format: ERASE arrayname [,arrayname] . . .
Purpose: Deletes the named arrays from the program.
Remarks: arrayname names the array that you want to delete.

After you delete an array, you may redimension that
array or use the previously allocated array space for
another purpose.

Attempting to redimension an array without first
erasing it causes a Duplicate Definition error.

Example: 450 ERASE 1D, STATS
460 DIM 1D(99)

NOTE
The BASIC compiler offers no support for this statement.

ERR and ERL Variables

Format:

\ , Action:

ERR
ERL

When BASIC enters an error-handling routine, the
variable ERR contains the error code for the error, and
the variable ERL contains the line number of the line in
which BASIC detected the error.

You normally use these variables in IF...THEN
statements to direct program flow in the error trap
routine.

When the statement causing the error was a Direct
Mode statement, ERL contains the value 65535. To test if
an error occurred in a Direct Mode statement requires
the following statement:

IF ERL = 65535 THEN .

You may also test for other error conditions by using
the following statements:

IF ERR = error.code THEN

or
IF ERL = line# THEN

You could also enter the previous statement as:
IF line# = ERL THEN

However, when line# appears on the left side of the
equal sign, the RENUM command fails to adjust the value
for line# if its value changes while resequencing the

program.

6-44

CAUTION
Numeric constants following an ERL variable in a given
expression may be treated as line references and thus
modified by a RENUM statement. To avoid this problem,
you should use statements similar to these:

L = ERL : PRINT L/10
rather than this statement:

PRINT ERL/10

ERL and ERR are variables that BASIC reserves for its
use. Therefore, BASIC prevents you from assigning
values to these variables. For example, the following
assignment is illegal:

LET ERR = 65535
Appendix A lists the BASIC error codes.

ERROR Statement

Format:

Purpose:

Remarks:

Example 1:

ERROR number

Either simulates the occurrence of a BASIC error or
allows you to define error codes.

number must be an integer expression between 0 and
255. When the value of number is equal to a BASIC error
message, the ERROR statement simulates the occurrence
of that error (which includes the printing of the
corresponding error message). (See Example 1.)

To define your own error code, select a value that is
greater than those used by the BASIC error codes. (We
recommend that you use the highest available values,
for example numbers over 200, so your program can
maintain compatability if BASIC adds more error codes
in later version of this package.) This user-defined error
code may then be conveniently handled in an error-
trap routine. (See Example 2).

When an ERROR statement specifies a code for an error
message that is undefined, BASIC responds with the
message Unprintable error.

Executing an ERROR statement for which no error-trap
routine exists prints an error message and halts
execution.

10 S = 10

20T = §

30 ERROR S + T

40 END

Ok

RUN

String too long in line 30

Example 2:

6-46

If you are using the BASIC interpreter in Direct Mode,
you may enter an error number at the Dk prompt.

For example, if you enter:
ERROR 15
BASIC responds:

String too long
1]

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET"; WAGER
130 IF WAGER > 5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS 5000*
410 IF ERL=130 THEN RESUME 120

EXP Function

Format:

Action:

Example:

EXP(x)

Returns ¢ (where ¢ = 2.71828. . .) to the power of x. The
number e is the base of the natural logarithms.

x must be less than 88.02969.

If EXP overflows, BASIC displays the Over f1ow error
message, sets the result to machine infinity with the
appropriate sign, and continues execution.

10 X = §

20 PRINT EXP (X-1)
RUN

54.59815

Ok

6-47

FIELD Statement

Format:

Purpose:

Remarks:

6-48

FIELD [#] filenum , field. width AS stringvar
[field.width AS stringvar] . ..

Allocates space for variables in the random file buffer.

BASIC reads and writes random files through a file
buffer that holds the file record. You must assemble and
disassemble this buffer into individual variables.
Therefore, this requires your using the F IELD statement
to specify the layout of the file buffer before you get
data out of a random file buffer after a GET, or to enter
data before a PUT.

filenum is the number you gave the file when you
opened it.

field.width is the number of character positions that you
want to allocate to stringvar. For example, the following
statement allocates the first 20 positions (bytes) in the
random file buffer to the string variable CNAMESS, the
next 10 bytes to 1D$, and the next 40 bytes to ADDRESSS:

FIELD #1, 20 ASCNAMES$, 10 AS ID$, 40 AS ADDRESSS

stringvar is a string variable that is used for random file
access.

The F IELD statement is a template for formatting the
random file buffer. It never places any data into the
buffer. (See the GET and LSET/RSET statements for
information on moving data into and out of the random
file buffer.)

You may execute any number of F 1 ELD statements for a
given file. Once it executes, a F 1ELD statement remains
in effect. Each new F IELD statement redefines the
buffer from the first character position. This permits
multiple field definitions for the same data.

The total number of bytes you allocate with a FIELD
statement must not exceed the record length that you
set when you opened the file. (When you omit
specifying the length parameter, BASIC sets the record
length to 128 bytes.) Attempting to allocate more bytes
than the record can hold resultsina Field overflow
€error.

Example:

If your definition of a record’s layout requires more
than 255 characters, you must divide the definition into
two or more F [ELD statements. For example:

10 OPEN "R"™, #1, "“FILE™, 120
20 FIELD #1, 2 AS ACODE$, 2 AS BCODE$, 4 AS ACTNMS,
2 AS DCODE$, 6 AS CITY$, 10 AS LASTNAMES,
2 AS ALTCODES, 4 AS OPFLAGS, 2 AS KYNUMS,
8 AS BDATES$, 8 AS LOANDATES$, 2 AS PAYCODES,
5 AS PYMTCRD$, 5 AS CHECKNUMS$
30 FIELD #1, 62 AS DUMMY$, 40 AS COMMENTSS,
18 AS FRSTNAMES

In this example, DUMMY $ is a string variable whose
width is equal to the combined width of all the
variables in the previous F 1ELD statement. It provides a
way of skipping over the buffer space that you allocated
to variables in the first F 1 ELD statement. Never assign a
LSET or RSET value to these dummy variables.

NOTE
Be careful how you use a field variable name in an
INPUT or LET statement. After you assign a variable
name to a field, it points to the correct place in the
random file buffer. If a subsequent INPUT or LET
statement with that variable’s name executes, the
variable’s pointer moves to string space and ceases to be
in the file buffer.

10 OPEN "R™, #1, "FILE"™, 40

20 FIELD #1, 20 AS CUST$, 4 AS PRICES$, 16 AS CITY$
30 INPUT "CUSTOMER NUMBER™, CODEX
40 INPUT "CUSTOMER NAME"™; CNAMES
50 INPUT "TOTAL ORDER"; AMT

60 INPUT "CITY"; TOWNS$

70 LSET CUSTS = CNAMES

80 LSET PRICES = MKS$(AMT)

90 LSET CITY$ = TOWNS

100 PUT #1, CODEZX

110 GOTO 30

FILES Command/Statement

Format:

Purpose:

Remarks:

Examples:

FILES [filename]

Lists the names of the files that reside on the specified
disc.

filename is a string expression that contains the file’s
name and an optional device designation.

filename may contain question marks (?) or asterisks (*)
as wild cards. A question mark matches any single
character in the filename or extension. For example,
CHAP? would match CHAP 1, CHAP2, CHAPS, and so on.
An asterisk matches one or more characters, beginning
at that position. For example, CHAP* not only matches
all the files listed above but also matches CHAPTER,
CHAPLAIN, CHAPEAU, and so on.

Omitting filename lists all the files on the currently
selected drive.

This statement lists all the files on the current disc:
FILES

The next statement lists all files with the BASIC file
type extension (.BAS):

FILES **.BAS"

This statement lists all the BASIC files with a PROG
prefix and one trailing character, such as PROGS . BAS or
PROG1.BAS:

FILES "PROG?.BAS"

The last statement lists all the files on the disc in drive
B:

FILES “B:*.*"

—

FIX Function

Format:

Action:

Examples:

FIXC(x)
Returns the truncated integer portion of x.

F1X(x) is equivalent to SGNCX) * INTCABS(X)). The
major difference between F1X and INT is that FI1x does
not return the next lower number for negative x.
For example,

FIX(-3.99) returns -3
whereas

INT(-3.99) returns -4.

PRINT FIX (58.75)
58
Ok

PRINT FIX (-58.75)

-58
Ok

6-51

FOR. . .NEXT Statement

Format:

Purpose:

Remarks:

6-52

FOR variable = x T0 y [STEP z]

[loop statements] . . .
NEXT [variable] [, variable] . . .

Loops through a series of statements a given number of
times.

variable serves as a counter.

x, y, and z are numeric expressions.
x is the initial value of the counter.
y is the final value of the counter.

z is the increment. When you omit this parameter,
BASIC increments the count by one on each iteration
through the loop. If STEP is negative, the final value of
the counter is set to be less than the initial value. Under
these circumstances, BASIC decrements the counter on
each iteration through the loop, and looping continues
until the counter is less than the final value.

BASIC executes the program lines that follow the FOR
statement until it encounters the NEXT statement.
BASIC then increments the counter by the amount
specified by STEP. It then checks to see if the value of
the counter exceeds the final value (y). If it is not greater
than the final value, BASIC branches back to the first
statement within the loop and repeats the process.
When the counter finally exceeds the final value,
execution continues with the statement after the NEXT
statement.

You may modify the value of variable from inside the
loop. However, we do not recommend this practice.

If the initial value of the loop times the sign of the step
exceeds the final value times the sign of the step, BASIC
skips over the FOR...NEXT loop.

You may place a FOR. . .NEXT loop within the context of
another FOR. . .NEXT loop. When you nest loops

Examples:

in this fashion, each loop must have a unique variable
name for its counter. Furthermore, the NEXT statement
for the inner loop must appear before the NEXT
statement of the outer loop. When nested loops have
the same end point, you may use a single NEXT
statement for all of them.

The variable name(s) in the NEXT statement are
optional.

If a NEXT statement is encountered before its
corresponding FOR statement, BASIC displays a NEXT
without FOR error and halts execution.

Although the following example modifies the loop’s
final value, it has no effect on program execution since
BASIC calculates this value only once when it first
enters the FOR statement:

10 K = 10
20 FOR I = 1 TO K STEP 2
30 PRINT
40 FOR J = 1 70 3
50 K=K+ 1
60 PRINT K;
70 NEXT J
80 NEXT I
90 END
RUN

11 12 13

14 15 16

17 18 19

20 21 22

23 24 25
Ok

BASIC skips the FOR loop in the following example
since the inital value of the loop exceeds the final value
and a negative STEP doesn’t appear:

10 J =0

20 FOR I = 1 70 J
30 PRINT I

40 NEXT I

6-53

The loop in the next example executes ten times since
BASIC always calculates the final value for the loop
value before it sets the initial value.

NOTE
Previous versions of BASIC set the initial value of the
loop variable before setting the final value. Were this
still true in the following example, the loop would have
executed 6 times and not 10.

101 =25

20 FOR1 =1T01 + S
30 PRINT I3

40 NEXT

RUN
12345678910
Ok

In the statement,
FORI =45T045.8 STEP 0.2

BASIC executes the loop four times; and not five times
as you would expect. This results from the computer’s
attempt to represent decimal digits in a binary format.

On each iteration of the loop, the value for the counter
takes on these values:

45

45.20000076293945
45.40000152587891
45.60000228881836
45.80000305175781

As the last value exceeds 45.8, the FOR loop terminates
after the fourth iteration.

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compiled and interpretive versions of this
statement.

6-54

s

-/

N

FRE Function

Format:

Action:

Example:

FREC0)
FRECx$)
FREC"™)

Returns the number of bytes of memory that are
available for the user’s program.

The FRE arguments are dummy arguments.

FRE("*") forces the system to reorganize the memory
that BASIC uses, so no space is used by unreferenced
variables. It then returns the number of free bytes.
BE PATIENT: this process can take from one to two
minutes.

BASIC does not initiate memory consolidation until it
uses its allotment of free memory. Therefore, using
FRE (") periodically results in shorter delays for each
memory reorganization.

PRINT FRECO0)
14542
Ok

6-55

GET Statement

Format:

Purpose:

Remarks:

Example:

6-56

GET [#] filenum [, recnum]

Reads a record from a random disc file into the random
file buffer.

filenum is the number you gave the file when you
opened it.

recnum identifies the record to be read. The value for
recnum may range from 1 to 32767.

When you omit recnum, BASIC reads the next record,
which followed the last GET, into the buffer.

NOTE
After a GET statement, you may use the INPUT#
statement and/or the LINE INPUT# statement to read
characters from the random file buffer.

10 OPEN “R™, #1, “FILE"™, 40

20 FIELD #1, 20 AS CUST$, 4 AS PRICES$, 16 AS CITY$
30 INPUT "ENTER CUSTOMER NUMBER"™; CODEX

40 IF CODEX = 0 THEN END

50 GET #1, CODEX

60 PRINT CODEZX

70 PRINT USING “ss### ##"; CVYS(PRICES$)

80 PRINT CITY$: PRINT

90 GOTO 30

GOSUB. . .RETURN Statement

Format:

Purpose:

Remarks:

GOSUB [ine#t
RETURN
Branches to and returns from a subroutine.

line#t is the first line of the subroutine.

Subroutines allow you to key in a group of statements
once, yet access them from different parts of a program.
The GOSUB statement directs program flow to a
subroutine, and sets up the mechanism to return
control to the line following the G0SUB statement when
the subroutine finishes execution.

A subroutine may be called any number of times in a
program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

A subroutine’s RETURN statement causes BASIC to
branch back to the statement following the most
recently executed GOSUB statement. A subroutine may
contain more than one RETURN statement when
program logic dictates returning from different parts of
the subroutine.

Although subroutines may appear anywhere within a
program, good programming practice recommends that
subroutines be readily distinguishable from the main
program. You may precede a subroutine with a STOP,
END, or GOTO statement to direct program control
around the subroutine. (This prevents program control
from inadvertantly “falling through” a subroutine.)

6-57

Example:

6-58

10
20
30
40
50
60
70
80
90

RUN

PRINT "MAIN PROGRAM"

GOSUB 60

PRINT "BACK FROM SUBROUTINE"

END

REM ***#%¥ GUBROUTINE SECTION #**%*
PRINT "SUBROUTINE “;

PRINT "IN ";

PRINT "PROGRESS"

RETURN

MAIN PROGRAM
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

0k

The END statement in line 40 prevents the subroutine
from being executed a second time.

GOTO Statement

Format:

Purpose:

\/ Remarks:

GOTa line
Branches directly to the specified line number.
line is the line number of a statement in the program.

When line is an executable statement, BASIC executes
that statement and program flow continues from there.
When line is a nonexecutable statement (such as REM or
DATA), execution continues at the first executable
statement following line.

In Direct Mode, you may use the G070 statement to
reenter a program at a desired point. This can aid
debugging.

Example: Indirect Mode
10 READ RADIUS
20 PRINT "RADIUS = ™; RADIUS,
30 AREA = 3.14 * RADIUS"2
40 PRINT "AREA = "; AREA
50 GOTO 10
60 DATA 5,7,12
RUN
RADIUS = § AREA = 78.5
RADIUS = 7 AREA = 153.86
RADIUS = 12 AREA = 452.16
Out of DATA in 10
Ok
Direct Mode
GOTO 20
RADIUS = 12 AREA = 452.16
Out of DATA in 10
0k
NOTE

_— You may use the 60T0 statement in Direct Mode. However, if you
y y
precede this command with any other command that might change the
values of variables (such as CLEAR or RESTORE), your results will differ.

6-59

HEX$ Function

Format:

Action:

Example:

6-60

HEX$(x)

Returns a string that represents the hexadecimal value
of the decimal argument.

BASIC rounds x to an integer before it evaluates
HEX$(X).
See the 0CT$ function for octal conversions.

10 INPUT X

20 A$ = HEX$(X)

30 PRINT X " DECIMAL IS * A$ ™ HEXADECIMAL"
RUN

? 32

32 DECIMAL IS 20 HEXADECIMAL

0k

IF Statement

Format 1:

Format 2:

Purpose:

Remarks:

IF expression [,] THEN {clause |[60T0] line} [ELSE {clause |
line}]

IF expression GOTQ line [ELSE {clause | line}]

Determines program control based upon the result of
the logical expression.

expression is any logical (numeric) expression.

clause is either a BASIC statement or a sequence of
statements that you separate with colons (:).

line is the line number of a statement in the program.

When the result of the expression is true (not zero),
BASIC executes the THEN or 6OTO clause. Consider this
example:

10 INPUT I
20 PRINT 1
30 IF I THEN 60TO 50
40 STOP
50 PRINT “HIt®
60 END
RUN
? 1[Return]
1
HIY

6-61

Nesting of IF
Statements:

6-62

When expression is false (zero), BASIC disregards the
THEN or 6OTO clause and executes the ELSE clause if it is
present. Otherwise, execution continues with the next
executable statement. Consider this example:

10 INPUT 1
20 PRINT 1
30 IF I THEN GOTO S0
40 STOP
S0 PRINT "HI!™
60 END
RUN
> 0 (Retum)
0
Break in 40
Ok
CONT [Return
HI!
Ok

You may follow the reserved word THEN with either a
line number where program control should branch, or
with one or more statements to be executed.

You may place a comma before THEN.

You can only use a line number after the reserved word
G0TO0.

You may nest I[F...THEN. . .ELSE statements to any
depth, limited only by the length of the input line (255
characters). For example, the following statement is
legal:

IF X>Y THEN PRINT ™GREATER™ ELSE IF Y>X THEN PRINT
“LESS THAN" ELSE PRINT "EQUIVALENT"

When an IF statement contains a different number of
ELSE and THEN clauses, BASIC pairs each ELSE with the
closest unmatched THEN. In the following example, the
single ELSE clause pairs with the second THEN; not the
first.

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "AOC™

When you are conversing with the BASIC interpreter in
Direct Mode and if you follow an IF . ..THEN statement
with a line number, the interpreter displays an
Undefined line number error message unless you
have previously entered that line while in Indirect
Mode.

NOTE
When using the IF statement to test equality for a value
that results from a floating point computation, you
should remember that the internal representation of
the value is not exact. (This happens because a decimal
number is being represented in binary format.)
Therefore, you should conduct the test against the range
of values over which accuracy may vary. For example, to
test a computed variable A against the value 1.0, use:

IF ABS (A-1.0) < 1.0E-6 THEN.

rather than:

IF A=1.0 THEN.

The recommended method returns true if the value of A
is between .999999 and 1.000001 (a relative error of less
than 1.0E-6).

6-63

Examples:

This statement gets record number 1 if 1 is not zero:
200 IF I THEN GET #1, I

The following program segment tests whether I is
between 10 and 20. If I is within this range, BASIC
calculates a value for DB and branches to line 300. If I is
outside this range, execution continues with line 110:

100 IF (I>10) AND (I1<20)

THEN DB=1979 * I : GOTO 300
110 PRINT "™VALUE OUT OF RANGE™
120 GOTO 100

The next example selects a destination for printed
output, depending on the value of a variable (10FLAG).
If 10FLAG is zero (false), output goes to the line printer;
otherwise, output goes to the computer screen:

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

INKEY$ Function

Format:

Action:

Example:

INKEYS

Returns a one-character string that contains a character
read from the computer’s keyboard or the null string
when no character is pending. INKEY$ suppresses the
echoing of the character to the screen.

Control-C terminates the program. All other characters
are passed directly to the program.

10 PRINT "PRESS A KEY"

20 AS = INKEYS

30 IF A$ ="" THEN GOTO 20

40 PRINT “YOU PRESSED THE "™; A$; " KEY"
50 END

INP Function

Format:

Action:

Example:

INPC)D

Returns the byte read from the input port j. j may range
from 0 to 65535.

NOTE
The input port is a microprocessor port. It does not refer
to your computer’s datacomm (or peripheral) ports.

INP is the complementary function to the OuT
statement.

100 A = INPC2)

INPUT Statement

Format:

Purpose:

Remarks:

6-66

INPUT [;]["prompt* {5 | ,} variable [, variablc] . ..

Takes input from the keyboard during program
execution. BASIC accepts the data after you press the

key.

prompt is a string constant that assists the user in
entering the proper information.

variable is the name of the numeric or string variable
that receives the input. The variable may be a simple
variable or the element of an array.

When BASIC encounters an INPUT statement, it prints a
question mark (?) to show that the program is waiting
for data. When you include prompt, BASIC displays that
string before the question mark. You may then enter
the requested data from the keyboard.

You may use a comma (,) instead of a semicolon after
the prompt string to suppress the question mark. For
example, the following statement prints the prompt
without the trailing question mark:

INPUT "ENTER BIRTHDATE ", BDAY$

When you place a semicolon immediately after the
reserved word INPUT, pressing the key does not
echo a carriage return/line feed sequence:

10 PRINT "FOR EXAMPLE"

20 INPUT; AS$
30 INPUT; BS$
RUN

FOR EXAMPLE
? A [Retun]? B [Return]
Ok

As you enter the necessary data, BASIC assigns the
values to the listed variable(s). You must separate a
series of items with commas, and the number of items
you enter must agree with the number of variables in
the list.

Example 1:

Responding to a prompt with too many or too few
items, or the wrong type of value (string instead of
numeric, for instance), prints the message ?Redo from
start. BASIC makes no assignment of values until it
receives a completely acceptable response. For example,

10 INPUT “ALPHA PLEASE :*, AS
20 INPUT "NUMBER ONLY :", B
30 PRINT "essssssspgatt A
40 PRINT "#srsssxsp = B
RUN

ALPHA PLEASE :ALFA

NUMBER ONLY :24
{{*li!ﬁl’A‘. ALFA
ﬁ{il.i{!B = 24

0k

RUN

ALPHA PLEASE :BETA

NUMBER ONLY :B

7Redo from start

NUMBER ONLY :48
!i’l!lliﬁs. BETA

LAAR AR LSS] 48

0k

When entering string information to an INPUT
statement, you may omit surrounding the text with
quotation marks.

If the prompt requests a single respond, you may press
the key to enter a zero for a numeric item or the
null string for a string variable.

10 INPUT X

20 PRINT X ™ SQUARED IS * Xx”2
30 END

RUN

? (you type 5 [Return])

5 SQUARED IS 25
Ok

Example 2:

Example 3:

Example 4:

6-68

10 PI = 3.14

20 INPUT "WHAT IS THE RADIUS"; R

30 A = PI * R™2

40 PRINT “THE AREA OF THE CIRCLE IS “; A

50 END e

RUN _/

WHAT IS THE RADIUS?

(you type 7.4)

THE AREA OF THE CIRCLE IS 171.9464
Ok

10 INPUT "ENTER THREE VALUES: ", A,B,C
20 AVE = (A+B+C)/3

30 PRINT "THE AVERAGE IS "; AVE

RUN

ENTER THREE VALUES:

(you type: 5,10,9 [Retum])
THE AVERAGE IS 8

Ok

10 INPUT; "ENTER EMPLOYEE NUMBER"; ID d

20 IF 1D<25 THEN PRINT * INCORRECT VALUE" N
RUN

(you type 5 to the prompt)
ENTER EMPLOYEE NUMBER? 5 INCORRECT VALUE

INPUT# Statement

Format:

Purpose:

Remarks:

INPUT# filenum , variable [, variable] . ..

Reads data values from a sequential disc file and assigns
them to program variables.

filenum is the number you gave the file when you
opened it for input.

variable is the name of a numeric or string variable that
receives the value read from the file. The variable may
be a simple variable or an array element.

The INPUT# statement suppresses printing of the
question mark as a prompt character.

Data items in a file should appear exactly as they would
if you were typing the information as a response to an
INPUT statement.

The items read must match the variable type of each
variable.

For numeric values, BASIC discards any leading spaces,
carriage return characters, or line feed characters. The
first character that BASIC encouters that is not a space,
carriage return, or line feed character is taken to be the
beginning of a number. The number terminates on a
space, comma, carriage return, or line feed character.

When BASIC scans a sequential file for a string value, it
also discards any leading spaces, carriage returns, or
line feed characters. The first character that it
encounters that is not one of these three characters is
taken to be the start of a string item. When the first
character is a quotation mark ("), the string consists of
all characters that occur between the first quotation
mark and the second. Thus a quoted string cannot
contain embedded quotation marks. When the first
character is not a quotation mark, BASIC considers the
string to be unquoted. In this case, the string terminates
on a comma, carriage return, or line feed, or after 255
characters have been read.

6-69

Example:

6-70

If BASIC reaches the end-of-file while reading a
numeric or string value, it terminates the item
immediately.

10 OPEN "I™, #1, “BUDG"
20 INPUT #1, CHCKNUMS, PAYEES
30 PRINT CHCKNUMS$, PAYEES$

40 GOTQO 20

RUN

2134 ELECTRIC COMPANY
2136 GAS BILL

INPUTS$ Function

Format:

Action:

Examples:

INPUTS G[,[#];]>
Returns a string of i characters.
i is the number of characters to be read from the file.

j is the file number that you used to open a file.
Including the j parameter reads the string from that file.
If you omit the j parameter, INPUT$ reads the string
from the computer’s keyboard. When the keyboard
serves as the source of input, INPUT$ suppresses the
echoing of characters to the screen and passes through
all characters including control characters. The only
exception is Control-C, which you may use to interrupt
the execution of the INPUT$ function and return
control to the BASIC command level.

The first example lists the contents of a sequential file in
Hex:

10 OPEN "I",1,"DATA"

20 IF EOFC1) THEN 50

30 PRINT HEX$CASCCINPUT$(1,#1)));
40 GOTO 20

50 PRINT

60 END

The next program segment determines program flow
based upon a user’s response:

100 PRINT "TYPE P TO PROCEED OR S TO STOP*™
110 X$ = INPUTS$C1)

120 IF X$ = "P" THEN 500

130 IF X$ = "S"™ THEN 700 ELSE 100

6-71

INSTR Function

Format:

Action:

Example:

6-72

INSTRC[,] x$, y$>

Searches for the first occurrence of string y$ in x$, and
returns the position where the match occurs.

i is an offset that determines the starting position for
the search. Its value may range from 1 to 255. If the
value for 7 is outside this range, an I1legal function
call occurs. When the value of i exceeds the number of
characters in x$, the function returns a value of zero.

x$ and y$ may be string variables, string expressions, or
string literals.

If either x$ is the null string or y$ is not within x$, the
function returns a value of zero.

When y$ is the null string, the function returns i (or 1 if
you omitted the offset parameter).,

In the following example, when the search starts at the
string’s beginning, the first occurrence of “B” is position
2. However, when an offset parameter skips the first
“B”, the function returns the position for the next
occurrence (that is, position number 6):

10 X$ = "ABCDEB"

20 v$ = "B"

30 PRINT INSTRCX$,Y$); INSTR(3,X$,Y$)
RUN

2 6

Ok

INT Function

Format: INT(X)

Action: Returns the largest integer that is less than or equal to x.
See the F1x and CINT functions which also return
integer results.

_~ Examples: PRINT INT(99.89)
99
ok

PRINT INT(-12.11)

-13
0k

6-73

KILL Command/Statement

Format:
Purpose:

Remarks:

6-74

KILL filename
Deletes the named file from disc.

filename is a string expression. When filename is a literal,
you must enclose the name in quotation marks.

filename must include the extension designator, if one

exists. Although BASIC provides the . BAS designator as
a default file type extension when you save a file, it does
not supply a default designator for the KI1LL statement.
For example, if you save a program with the statement:

SAVE "“MYPROG"

BASIC supplies the extension . BAS for you. However, if
you later decide to delete that program, you must
supply the file’s complete name as in:

KILL “MYPROG.BAS"

filename may contain question marks (?) or asterisks (*)
as wild cards. A question mark matches any single
character in the filename. An asterisk matches one or
more characters, beginning from that position.

CAUTION
You should exercise extreme caution if you use wild
cards with this command. See second example.

If you give the KILL statement for an open file, BASIC
closes the file and then deletes it.

You may use the K 1LL statement for all types of disc
files (program files, random data files, and sequential
data files).

Example: The first example deletes DATA 83. BAS:
KILL "DATA 83.BAS"

\—

The second example deletes CHAP . 1, CHAP. 2, and so
on, but would also delete CHAP .NEW, CHAP.FINAL,
and cHaP.ouT if these files existed:

KILL “CHAP.*"

6-75

LEFT$ Function

Format:

Action:

Example:

LEFTCx, 1

Returns a string comprised of the leftmost i characters
of x$.

imust be in the range of 0 to 255. When iis greater than
the number of characters in x$, LEFT$ returns the
entire string. When i equals zero, the function returns
the null string (a string with zero length).

Also see the M1D$ and RIGHTS$ functions.

10 A$ = "BASIC"

20 B$ = LEFT$(AS$,2)
30 PRINT B$

RUN

BA

Ok

LEN Function

Format:

Action:

~ Example:

6-76

LENCx$)

Returns the number of characters in x$. LEN counts all
non-printing and blank characters.

In this example, because BASIC initializes all string
variables to the null string, the first PRINT statement
prints a value of zero:

20 PRINT LENCX$)

30 X$ = “PORTLAND, OREGON"
40 PRINT LENCX$)

RUN ~

0

16

Ok

-/

LET Statement

Format:

Purpose:

\. / Remarks:

_

Example:

[LET] variable = expression
Assigns the value of an expression to a variable.

The reserved word LET is optional as the equal sign
suffices when assigning an expression to a variable
name.

variable is the name of a string or numeric variable that
receives the value. It may be a simple variable or the
element of an array.

BASIC evaluates expression to determine the value that it
assigns to variable. The type for expression must match
the variable type (string or numeric), or a Type
mismatch error occurs. ‘

BASIC interprets the leftmost equal sign in an
expression to be the assignment operator. It treats
subsequent equal signs as relational operators. For
example, in evaluating the following expression, BASIC
sets the value of A to true (-1) if B is equal to C.

A=B=¢C

The first example demonstrates the use of the LET
statement:

110 LET D = 12

120 LET E = 1272

130 LET F = 1274

140 LET SUM = D + E + F

The following statements make the identical
assignments but omit the word LET:

110D =12
120E = 1272

130 F = 1274

140 SUM=D+E + F

6-77

LINE INPUT Statement

Format:

Purpose:

Remarks:

Example:

6-78

LINE INPUT[;]["prompt*;] stringvar

Enters an entire line (up to 254 characters) to a string
variable. No string delimiters are necessary.

prompt is a string literal that BASIC displays upon the
computer screen prior to accepting keyboard input.
Including a question mark as part of the prompt
requires your putting the question mark character at
the end of prompt.

BASIC assigns all characters that occur between the end
of the prompt and the end of the line to stringvar.
(BASIC determines that a line has ended when you
press the key, or it has read 254 characters.)
However, if BASIC reads a linefeed/carriage return
combination, both characters are echoed, but the
carriage return is ignored. BASIC includes the linefeed
character in stringvar and continues reading the input
data.

When you immediately follow the reserved words L INE

INPUT with a semicolon, pressing the key to end
the input line does not echo a carriage return/line feed
sequence. (That is, the cursor remains on the line where
you entered your response.)

You may interrupt the entering of datatoa LINE INPUT
statement by simultaneously pressing the and
keys. BASIC returns control to the command level
and issues the interpreter’s 0k prompt. You may then
use the CONT state to resume execution at the L INE
INPUT statement.

80 LINE INPUT "CUSTOMER INFORMATION? ";C$
90 PRINT "VERIFY ENTRY: "; Cs$

RUN

CUSTOMER INFORMATION? BEATRICE ISOLDA 95073
VERIFY ENTRY: BEATRICE ISOLDA 95073

LINE INPUT# Statement

Format:

Purpose:

Remarks:

LINE INPUT# filenum, stringvar

Reads an entire line (up to 254 characters) from a
sequential disc data file and assigns them to the string
variable. No string delimiters are required.

filenum is the number you gave the file when you
opened it for input.

BASIC assigns the line to stringvar. This parameter may
be either a string variable or an array element.

The L INE INPUT # statement reads all characters in the
sequential file up to, but not including, a carriage
return character. It then skips over the carriage return
(or a carriage return/ line feed sequence). The next
LINE INPUT# statement then reads all the following
characters up to the next carriage return character.

NOTE
The LINE INPUT# statement preserves a line feed/
carriage return sequence. For example, if a file contains
the following ASCII characters:

ACRLFBCRCLFDCRLFELFCRFCRLF

then the following program:
10 OPEN "I, #1, “FILE"
20 FOR J = 1 TO 4

30 LINE INPUT #1, C$
40 NEXT J

returns the following values to Cs:

1st iteration: A
2nd iteration: B
3rd iteration: ¢ Lg D

4th iteration: E Lg CRF

6-79

You will find the LINE INPUT # statement especially
useful if each line of a data file contains several fields, or
if a BASIC program that was saved in ASCII mode is
being read as a data file by another program.

Example: 10 OPEN "O", 1, “LIST"
20 LINE INPUT "BIRTH STATS? ", C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "I", 1, “LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
BIRTH STATS? ELAINA MICHELLE 8 2, 20, SDQUEL
ELAINA MICHELLE 8 2, 20, SOQUEL
Ok

6-80

LIST and LLIST Command

Format:

Purpose:

Remarks:

L1ST [first.linel[{last.line]]
LL1sT [first.dine)[-[last linc]]

Lists all or part of the program currently in computer
memory to the screen; or, if LL1ST is used, to a line
printer.

first.line is the first line to be listed while last.line is the
last line to be listed. Both must be valid line numbers
within the range of 0 to 65529.

When you omit both line number parameters, the
listing begins with the first line of the program and
goes to the end of the program.

Specifying first.1ine prints only that line.
Specifying first.line- prints that line through the
end of the program.

Specifying -last . line prints all lines from the
beginning of the program through the given line.

Specifying first.line-last.line printsall the lines
within that range.

NOTE
You may stop the listing of a program by pressing

(cTRL] [€].

You may use a period (.) for either line number to
indicate the current line. For example, you could list all
the lines from the beginning of the program to the
current line with this command:

LIST -.

6-81

BASIC always returns control to the command level
after a LIST or LLIST command executes.

NOTE
The LL1ST command assumes a printer line width of
132 characters.

Examples: The first example lists the program currently stored in
your computer’s memory:

LIST
The next statement lists only line 500:
LIST 500

The next example lists all program lines from line 50
through the end of the program:

LIST 50-

The next statement lists all program lines from the
program’s first line through line 50:

LIST -50
The last example lists lines 50 through 80, inclusively.

LIST 50-80

NOTE
The BASIC compiler offers no support for this command.

6-82

—

LOAD Command

Format:

Purpose:

Remarks:

Example:

LOAD filename [, R]

Loads a BASIC program file from disc into your
computer’'s memory.

filename is the string expression that you used to name
the file when you saved it. When filename is a literal,
you must enclose the name in quotation marks.

When you omit the MS-DOS file type extension from
the file’s name, BASIC adds the default extension . BAS
to the filename if the name is less than nine characters.

Before it loads the named program, BASIC closes all
open files and deletes all variables and program lines
that currently reside in BASIC memory. However, by
using the R option, you can run the program after it is
loaded. Furthermore, all opened data files remain open.
Thus, you may use the LOAD command with the R
option to chain together several program (or segments
of the same program). You pass information between
the programs through shared data files.

The first example loads and runs the program TESTRUN:
LOAD "TESTRUN",R

The next example loads the program MYPROG from the
disc in drive C but does not run the program:

LOAD “C:MYPROG"

NOTE

The BASIC compiler offers no support for this command.

6-83

LOC Function

Format:

Action:

Example:

LacKfilenum)

With random-access files, LOC returns the record
number of the last record referenced in a GET or PUT
statement.

With sequential files, LOC returns the number of sectors
(that is, 256 byte blocks) read from or written to the file
since it was opened.

When you open a file for sequential input, BASIC reads
the first sector of the file. Therefore, L 0C always returns
a “1” even before any input from the file occurs.

filenum is the number you gave the file when you
opened it.

200 IF LOCC1) > 50 THEN STOP

LOF Function

Format:

Action:

Example:

6-84

LOF Cfilenum)
Returns the length of the file in bytes.

filenum is the number you gave the file when you
opened it.

In this example, the variables REC and RECSIZE contain
the record number and record length. The calculation
determines whether the specified record is beyond the
end-of-file.

90 IF REC * RECSIZE > LOF(1)
THEN PRINT "INVALID ENTRY"

LOG Function
Format: LOGC(x)
Action: Returns the natural logarithm of x.

x must be a positive number.

Example: PRINT LOG(45/7)
1.860752
Ok

LPOS Function
Format: LPDOS(x)

Action: Returns the current position of the line printer print
head within the line printer buffer. This may differ
from the physical position of the print head.

x is a dummy argument.

Example: 100 IF LPOSCX) > 132 THEN LPRINT CHR$(13)

6-85

LPRINT and LPRINT USING Statements
Format: LPRINT [list.of expressions]

LPRINT USING stringexp; list.of.expressions
Purpose: Prints data to a line printer.

Remarks: These statements are identical to PRINT and PRINT
US ING, except output goes to a line printer. For details of
operation, see the PRINT and PRINT USING statements
in this chapter.

LPRINT assumes that the printer has a line width of 132
characters.

Example: LPRINT "THIS IS A TEST"

6-86

LSET and RSET Statements

Format: LSET stringvar = stringexp
RSET stringuvar = stringexp

Purpose: Moves data from memory to a random file buffer (in
preparation for a PUT statement).

Remarks: stringvar is the name of a variable that you defined in a
F IELD statement.

stringexp identifies the information that is to be placed
into the field named by stringvar.

When stringexp requires fewer bytes than were allocated
to stringuar, LSET left-justifies the string in the field,
while RSET right-justifies the string. (Spaces pad the
extra positions.) When a string is too long for the field,
the excess characters are dropped from the right.

You must use the MK1$, MKS$, or MKD$ function to
convert numeric values to strings before you move
them into the random file buffer with a LSET or RSET
statement.

NOTE
You may also use LSET and RSET to left-justify or right-
justify a string in a given field. For example, the
following program lines right-justify the string NOTE $
in a 20-character field:

110 LSET AS$ SPACES(20)
120 RSET A$ = NOTES$

You will find these statements helpful when formatting
output to a printer.

Example: 10 OPEN "R"™,#1,"FILE",24
20 FIELD #1, 4 AS AMT$, 20 AS DESCS$
30 INPUT "PRODUCT CODE"™; CODE%
40 INPUT “PRICE"; PRICE
50 INPUT "DESCRIPTION"; DSCRPNS$
60 LSET AMT$ = MKS$(PRICE)
70 LSET DESC$ = DSCRPNS$
80 PUT #1, CODEX
90 GOTO 30
6-87

MERGE Command
Format: MERGE filename

Purpose: Incorporates statements contained in the specified file
into the program that currently resides in your
computer’s memory.

Remarks: filename is the string expression that you used to name
the file when you saved it. When filename is a literal,
you must enclose the name in quotation marks.

When you omit the MS-DOS file type from the file’s
name, BASIC provides the default type .BAS for you.

You must use ASCII format when you save the file that
you want to merge. (That is, you must specify the A
option when you give the SAVE command.) When
BASIC detects another format, it displays a Bad file
mode error message. If this happens, BASIC cancels the
MERGE command and the program in memory remains
unchanged.

You may view the MERGE command as “inserting” the
lines from the program on disc into the program in
memory. When both programs have identical line
numbers, the lines from the disc file replace the
corresponding lines in memory.

6-88

Example: This example shows how the merge command replaces
or adds lines to the program currently in memory based
upon each program’s line numbers.

(Merge File = FILE2)

15 REM THIS FILE CHANGES THE LOOP CONTENTS
30 COUNT = COUNT + I
40 PRINT COUNT

LOAD “FILE1"

LIST

10 REM THIS FILE IS THE RESIDENT FILE
20 FOR I = 1 7O 10

30 PRINT "™HELLO";
50 NEXT 1

60 PRINT "“DONE"

Ok

MERGE “FILE2"
Ok

L1ST [Retun)

10 REM THIS FILE IS THE RESIDENT FILE

15 REM THIS FILE CHANGES THE LOOP CONTENTS
20 FOR I = 1 7O 10

30 COUNT = COUNT + I

40 PRINT COUNT

S0 NEXT I

60 PRINT "DONE"

Ok

NOTE
The BASIC compiler offers no support for this command.

6-89

MID$ Function

Format:

Action:

Example:

6-90

MID$ Cx$,4,j]

Returns a string of length j characters that begins with
the ith character in string x$.

x$ is any string expression.

iis an integer expression that may range between 1 to
255. j is an integer expression that may range between 0
and 255. Numbers outside these ranges produce an
Illegal functioncall.

When you omit the length parameter j, or if fewer than
j characters exist to the right of the ith character, M1D$
returns all the characters beginning with the ith
character.

When the starting point i exceeds the length of x$, MID$
returns the null string.

Also see the LEFT$ and RIGHT$ functions.

10 A¢$ = "c00D "

20 B$ = "MORNING EVENING AFTERNOON"
30 PRINT A$; MID$(B$,9,7)

RUN

GOOD EVENING

Ok

\

MID$ Statement

Format:

Purpose:

\/ Remarks:

Example:

MID$ (x$,i[,j] = y$
Replaces a portion of one string with another string.

x$ is a string variable or an array element. BASIC
replaces the designated characters of this string.

i is an integer expression that may range from 1 to 255.
It marks the starting position in x$ where replacement
begins.

j is an integer expression that may range from 0 to 255.
It gives the number of characters from y$ that BASIC
uses in the replacement. When you omit this parameter,
BASIC uses the entire y$ string.

NOTE
The length of x$ is fixed. Therefore, if x$ is five
characters long and y$ is ten characters long, BASIC
only replaces x$ with the first five characters of y$.

10 A$ = "KANSAS CITY, mo“
20 MID$(CAS$,14) = "KS"

30 PRINT AS$

RUN

KANSAS CITY, KS

Ok

6-91

MKI$, MKS$, MKD$ Functions

Format:

Action:

Example:

MKI$ Cinteger.expression)
MKS$ Csingle-precision.expression)
MKD$ Cdouble-precision.expression)

Converts numeric values to string values.

Random-access disc files store numeric values as strings.
Therefore, when you place values in a random disc file
by using the LSET or RSET statement, you must first
convert the numbers to strings.

MK I$ converts an integer to a 2-byte string.

MKS$ converts a single-precision number to a 4-byte
string.

MKD$ converts a double-precision number to a 8-byte
string.

See also CVI, CVS, and CVD for the complementary
operations.

100 AMT = (K+T)

110 FIELD #1, 8 AS D$, 20 AS N$
120 LSET D$ = MKS$(AMT)

130 LSET N$¢ = AS$

140 PUT #1

NOTE

If you plan to compile your program, see the BASIC compiler manual for
differences between the compiled and interpretive versions of these

functions.

6-92

NAME Statement

Format:

Purpose:

\./ Remarks:

Example:

NAME oldname AS newname
Changes the name of a file to the newly given name.

oldname is a string expression for the name you gave the
file when you opened it or saved it.

newname is also a string expression that conforms to the
rules for a valid filename. If the file is a . BAS file, you
must include the file type . BAS in the file’s name.
BASIC does not supply . BAS as a default type for you.

When either oldname or newname is a literal, you must
enclose the string in quotation marks.

A file must exist with oldname. Similarly, no file can
exist with newname. When BASIC fails to find oldname,
it givesaFile not found error. Likewise, if BASIC
finds that a file already exists with newname, it displays
the message File already exists.

oldname must be closed before the renaming operation.

If oldname and newname contain a drive designator, the
drive must be the same. Attempting to rename a file on
a different disc produces a Rename across disks €rror.

A free file handle must exist for performing the open
check. Otherwise, a Too many files error occurs.

The following statement changes the name of the file
ACCTS to LEDGER on drive C. After the NAME statement
executes, the file still resides on the same area of disc
space on the same disc, but with the new name.

NAME *C:ACCTS" AS "C:LEDGER"

6-93

NEW Command

Format:

Purpose:

Remarks:

Example:

NEW

Deletes the program that currently resides in computer
memory and clears all variables.

You use the NEW command in Direct Mode to clear
extraneous information from your computer’s memory
before you enter a new program.

You must enter the NEW command at the command
level. Control remains at the command level after this
statement executes.

Ok
NEW
0k

NOTE

The BASIC compiler offers no support for this command.

6-94

—

NULL Statement

Format:

Purpose:

Remarks:

Example:

NULL integer.expression

Sets the number of nulls that BASIC prints at the end of
each line. This number applies to both the display and a
printer.

integer.expression is the number of null characters (00
Hex) that BASIC appends at the end of each line. The
default setting is zero.

The ASCII characters between 00 Hex and 20 Hex are
called Control Characters. (For example, this range
includes the backspace character, carriage return
character, and line feed character.) As some devices take
longer to process certain control characters, they require
an extra amount of time before they receive the next
significant character.

When using Hewlett-Packard peripherals, you may
omit using the NULL statement.

NULL 2

6-95

OCT$ Function

Format:

Action:

Example:

6-96

0CT$ ()

Returns a string that represents the octal value of the
decimal argument. BASIC rounds x to an integer before
it evaluates 0CT$(X).

See the HEX$ function for hexadecimal conversion.

PRINT 0OCT$(24)
30
Ok

ON ERROR GOTO Statement

Format:

Purpose:

Remarks:

ON ERROR GOTO line

Enables error trapping and specifies the first line of the
error-handling subroutine.

line is the line number of the first line of an error-
handling routine. If the line number does not exist, an
Undefined line number error occurs.

Once you have enabled error trapping, BASIC sends
program control to the specified line number whenever
it detects an error. (This also includes Direct Mode
errors, such as syntax errors.)

You use the RESUME statement to leave an error-
handling routine.

You may disable error trapping by executing an ON
ERROR GOTO 0 statement. Any subsequent errors print
an error message and halt execution. Within an error-
trapping subroutine, the ON ERROR GOTO 0 statement
halts BASIC and prints the error message for the error
that triggered the trap. We recommend that all error-
trapping subroutines execute an ON ERROR GOTO 0
statement if an error is encountered for which no
recovery action exists.

NOTE
If an error occurs during execution of an error-handling
subroutine, BASIC prints an error message and halts
execution. Further error trapping does not occur within
a error-handling subroutine.

6-97

Example:

The following program segments illustrate the effects of
the ON ERROR and RESUME statements:
5 REM Example without RESUME
10 ON ERROR GOTO 40
20 Y =9 : 2 =0
30 L =30 : X = Y/Z 'Division by zero
40 PRINT "ERROR ENCOUNTERED IN LINE "; L
S0 END
RUN
ERROR ENCOUNTERED IN LINE 30
Ok
8 REM With RESUME, execution continues
9 REM on line where the error occurred
10 ON ERROR GOTO 60
20Y=9:2=20
30L =30 : X =Y/2
40 PRINT "CONTINUE PROGRAM*
50 GOTO 90
60 PRINT "ERROR ENCOUNTERED IN LINE "; L
702 = 5§
80 RESUME
90 PRINT “END"
100 END
RUN
ERROR ENCOUNTERED IN LINE 30
CONTINUE PROGRAM
END
0k

While in Direct Mode, all errors default to the ON ERROR
statement:

30 PRINT "THIS SYNTAX IS NO GOOD!!“
ON ERROR GOTC 30

Ok

PRING "ERROR"

THIS SYNTAX IS NO GOOD!'!

No RESUME in 30

Ok

NOTE

If you plan to compile a program that uses the ON ERROR GOTOstatement,
please refer to the BASIC compiler manual. Also, set the compiler
switches properly so your event trapping routine works correctly.

6-98

ON. ..GOSUB Statement

Format:

Purpose:

Remarks:

Example:

ON result GOSUB line [,line] . . .

Branches to a subroutine or subroutines depending
upon which value is returned from the governing
expression.

result is a numeric expression which must return a
value between 0 and 255. (BASIC rounds the expression
to an integer value when necessary.) Any value outside
this range causes an I1legal function call error.

line is the beginning line number for a subroutine.

In the ON. . .GOSUB statement, each line number in the
list must be the first line number of a subroutine.

When the value of result is zero or greater than the
number of items in the list, BASIC continues with the
next executable statement.

20 INPUT "ENTER TRIG FUNCTION"; A$

30 IF A$ = "SIN" THEN F = 1 : GOTO 70
40 IF A$ = "COS"™ THEN F = 2 : GOTO 70
S0 IF A$ = "TAN"™ THEN F = 3 : GOTO 70

60 PRINT "ILLEGAL ENTRY TRY AGAIN" : GOTO 20

70 FOR K = 0 TO 360 STEP 10

80 -PRINT K;

90 A = K/180%*3.14159

100 ON F GOSUB 1000, 2000, 3000
110 NEXT K

120 STOP

999 REM SUBROUTINE SECTION
1000 PRINT SINCA)Y : RETURN
2000 PRINT COSCA) : RETURN
3000 PRINT TANCA) : RETURN

6-99

ON...GOTO Statement
Format: ON result 6OTO line[., line] . ..

Purpose: Branches to one of several specified line numbers,
depending upon which value BASIC returns when it N J
evaluates the controlling expression.

Remarks: result is a numeric expression which must return a
value between 0 and 255. (BASIC rounds the expression
to an integer value when necessary.) Any value outside
this range causes an Illegal function call error.

line is the line number where you want program control
to go.

The value of result determines to which line number
program control branches. For example, if the returned
value were 3, program control branches to the third line
number in the list.

When the value of result is zero or greater than the
number of items in the list, BASIC continues with the
next executable statement.

Example: 10 REM Simple selection program
20 INPUT "ENTER SELECTION FROM MENU"; K
30 ON K 6OTO 50, 70, 90
40 PRINT "INVALID SELECTION" : GODTO 20
50 PRINT "YOU CHOSE SELECTION NUMBER 1"
60 GOTD 20
70 PRINT "YOU CHOSE SELECTION NUMBER 2
80 GOTO 20
90 PRINT "YOU CHOSE 3 TO END THIS PROGRAM"
100 END
RUN
ENTER SELECTION FROM MENU? 0
INVALID SELECTION
ENTER SELECTION FROM MENU? 2
YOU CHOSE SELECTION NUMBER 2
ENTER SELECTION FROM MENU? 3
YOU CHOSE 3 TO END THIS PROGRAM
Ok

6-100

OPEN Statement

Format 1:
Format 2:
Purpose:

Remarks:

OPEN filename [FOR mode] AS [#] filenum [LEN=recl)
OPEN mode2, [#] filenum, filename [, recl]
Grants access to a file for reading or writing.

In Format 1, mode can be:

INPUT for sequential input mode
CUTPUT for sequential output mode
APPEND for sequential output mode.

Additionally, BASIC positions the file
to the end of the data when you open
the file.

When you omit the mode parameter, the program
assumes random access.

NOTE
Even though mode is a string constant, you must not
enclose the string in quotation marks.

In Format 2, mode2 can be:

I for sequential input mode
0 for sequential output mode
R for random input or output

Disc files allow all modes.

filename is a string expression that names the file. It may
include a file type (. xxx) and a drive specifier if the file
is not on the current disc. When filename is a literal, you
must enclose the string in quotation marks (*).

filenum is an integer expression that gives that file’s
identifying number. Its value may range from 1 to the
maximum number of files allowed. The normal
maximum setting is 3, but you may change this value
with the /F : switch on the BASIC command line.

6-101

6-102

Once you assign a number to the file, BASIC associates
this number to that file for as long as the file remains
open. You use filenum when using other disc

I/0 statements with the file.

recl is an integer expression that sets the record length.
You can define recl for random-access files. The default
is 128 bytes. The value you use for recl must not exceed
the value you set on the BASIC command line for the
/S : switch when you initialized BASIC.

NOTE
You may also set the maximum record length by using
the /5 option when initializing BASIC with the MS-
DOS BASIC command. However, you cannot use this
option with sequential files.

A program must execute an OPEN statement before you
can use any of the following commands:

PRINT#, PRINT# USING, INPUT#, LINE INPUT#
WRITE#, INPUT#, and GET & PUT

You must open a disc file before you can perform any
read or write operation on that file.

The OPEN statement allocates an I/O buffer to the file
and determines the buffer’s mode of access.

You may open a file for sequential input or random
access on more than one file number at a time. You may
only open a file for output, however, on one file number
at a time.

Examples: This program segment accepts input to an inventory
file:

10 OPEN "“I", 2, "INVEN"
20 INPUT #2, PARTS$, DESCS$
30 PRINT PART$; DESCS

40 GOTO 20

The next example opens the file MAIL . DAT so data is
added to the end of the file:

10 OPEN "MAIL.DAT" FOR APPEND AS 1

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences in the interpretive and compiled versions of this statement.

6-103

OPTION BASE Statement

Format:

Purpose:

Remarks:

Example:

6-104

OPTION BASE n
Sets the minimum value for array subscripts.
n may be either 1 or 0.

BASIC normally numbers arrays from a base of zero.
When you want an array index to begin at 1, you must
use the OPT1DN BASE statement.

If you decide to use the OPT 10N BASE statement, you
must include it within your program before you define
or use any arrays.

This example sets up a string array with ten elements
(1..10) and a numeric array with 20 elements (1..20):

10 OPTION BASE 1
20 DIM LNAMES, ID(20)

QUT Statement

Format:

Purpose:

\/ Remarks:

__

Example:

OUT i,j
Sends a byte to the specified output port.

i is an integer expression that ranges between 0 and
65535. It is a microprocessor port number.

NOTE
The output port is a microprocessor port. It does not
refer to your computer’s datacomm (or peripheral)

ports.

j is an integer expression that ranges between 0 to 255. It
is the byte of data that you want to send. For example, a
zero sets all eight bits to zeroes while 255 sets all eight
bits to ones.

OuT is the complementary command to the INP
function.

100 OUT 12345, 255

6-105

PEEK Function
Format: PEEK(I)
Action: Returns the byte read from memory location i.

The result is a decimal integer that ranges between 0
(eight zeros) to 255 (eight ones).

i must be within the range of -32768 to 65535. (It is an
offset from the current segment, which you set with the
DEF SEG statement.) When the function returns a
negative value, you should add 65536 to that value to
obtain the actual address.

PEEK is the complementary function to the POKE
statement. '

Example: A = PEEKC4HSA00)

6-106

POKE Statement

Format:

Purpose:

Remarks:

Example:

POKE address, data
Writes a byte of information into a memory location.

address is an integer expression for the address of the
memory location to be poked. (It is an offset from the
current segment, which you set with the DEF SEG
statement.) The value must be within the range of 0 to
65535.

data is an integer expression for the data to be poked. It
must be within the range of 0 (which would set all eight
bits to zeroes) to 255 (which would set all eight bits to
ones).

PEEK is the complementary function to POKE. PEEK’s
argument is an address from which a byte of
information is read.

You can use PEEK and POKE for efficiently storing data,
loading assembly-language subroutines, and passing
arguments and results to and from assembly-language
subroutines.

CAUTION
BASIC does not check the address. Therefore, use this
statement with extreme care so you do not
inadvertently overwrite meaningful data.

This example places hex value FF (decimal 255, or a byte
with 1’s in all eight positions) into the Data Segment
relative memory location at hex 5A00:

10 POKE &H5A00, &HFF

6-107

POS Function

Format:

Action:

Example:

6-108

POSC0)

Returns the cursor’s current column position. The
leftmost column is position number 1. The rightmost
column is position number 80.

0 is a dummy argument.
See also the LPOS function and the WIDTH statement.

IF POSC0) > 60 THEN PRINT CHR$(13)

\/

PRINT Statement

Format: PRINT [list.of expressions]
Purpose: Copies data to the computer screen.
Remarks: list.of expressions is a list of numeric and/or string

expressions. You must separate multiple items with
commas, blanks, or semicolons and enclose any string
constants with quotation marks.

Including list.of expressions prints the values of those
expressions on the screen.

Omitting list.of.expressions prints a blank line.

Print Positions: The punctuation symbols that separate the listed items
determine the position where BASIC prints each item.

BASIC divides the line into print zones of 14 spaces
each. Within list.of expressions, a comma prints the next
value at the beginning of the next zone. A semicolon
prints the next value immediately after the last value.
Typing one or more spaces between expressions has the
same effect as typing a semicolon.

When a comma or semicolon ends the list of
expressions, the next PRINT statement continues
printing on the same line, spacing accordingly. If the
list ends with no comma or semicolon, BASIC ends the
line by printing a carriage return character. (That is, it
advances the cursor to the next line.)

When the printed line exceeds the width of the screen,
BASIC wraps the line to the next physical line and
continues printing,.

For numbers, BASIC reserves the first character position
for a numeric sign. It precedes positive numbers with a
space. It precedes negative numbers with a minus sign.
BASIC always prints a space as a separator after any
number.

You may enter a question mark (?) as an abbreviation
for the word PRINT in a PRINT statement. When BASIC
lists the program, it automatically replaces the question
mark with the reserved word PRINT,

6-109

6-110

To send output to a line printer, use the LPRINT and
LPRINT USING statements.

NOTE
When single-precision numbers can be represented
with 7 or fewer digits in unscaled format no less
accurately than they can be represented in scaled
format, BASIC prints the numbers using unscaled
format (either integer or fixed point). For example,
BASIC prints 1E-7 as . 000000 1 whereas it prints
1E-8as 1E-08,

When double-precision numbers can be represented
with 16 or fewer digits in unscaled format no less
accurately than they can be represented in scaled
format, BASIC prints the numbers using the unscaled
format. For example, BASIC prints 1D- 16 as
.0000000000000001 whereas it prints 1D-17 as
1D-17,

Examples:

The commas in the following PRINT statement prints
each succesive value at the next print zone:

10 X =5
20 PRINT X+5, X-5, X*5, X/5
30 END
RUN

10 0 25 1
Ok

In the following program segment, the semicolon at the
end of line 20 prints the information from lines 20 and
30 on the same line. Line 40 prints a blank line before
the next prompt:

10 INPUT X

20 PRINT X "SQUARED IS " X*2 "AND ";
30 PRINT X "CUBED IS " X3

40 PRINT

50 GOTO 10

RUN

? 9
9 SQUARED IS 81 AND 9 CUBED IS 729

» 21 (Ferm)

21 SQUARED IS 441 AND 21 CUBED IS 9261

? [cTR] (€]

In the following example, the semicolons in the PRINT
statement print each value immediately after the
preceding value. Remember, positive numbers are
preceded by a space, and all numbers are followed by a
space. Line 40 uses the question mark as an
abbreviation for PRINT:

10 FOR X = 1 TO S

20 J=J+5

30 K=K+ 10

40 743K

S0 NEXT X

RUN

S 10 10 20 15 30 20 40 25 50
Ok

6-111

PRINT USING Statement

Format:
Purpose:

Remarks and
Examples:

String Fields:

\n spaces\

6-112

PRINT USING stringexp; list.of expressions

Uses a specified format to print strings or numbers.

list.of .expressions contains the string or numeric
expressions that you want to print. You must separate
the items in the list with commas or semicolons.

stringexp is either a string constant or a string variable
that is comprised of special formatting characters. These
formatting characters (see below) determine the field
and format of the printed strings or numbers.

When entering program lines, you may use a question
mark (?) as an abbreviation for the reserved word
PRINT. BASIC automatically replaces this symbol with
PRINT when you list the program.

When you use the PRINT USING statement to print
strings, you may select one of three characters to format
the string field:

An exclamation point limits printing to the first
character in the string.

Two back slash characters separated by n spaces prints
that number of characters (that is, n+2). For example,
typing just the backslashes prints two characters; typing
one space between the backslashes prints three
characters; and so on. When the field is longer than the
string, BASIC left-justifies the string within the field
and pads the remainder of the field with spaces.
Consider this example:

10 A$ = “LOOK" : B$ = “OuT"

20 PRINT USING "!"; A$;Bs

30 PRINT USING "\ \"; A$;B$

40 PRINT USING "\ \"s A$;BemIEM
RUN

LO

LOoKOUT

LOOK OuT 1!

Ok

Numeric
Fields:

An ampersand specifies a variable length string field.
Using this formatting character echoes the string
exactly as you entered it.

10 A$ = "LOOK™ : B$ = "DUT"

20 PRINT USING "!"; A$;
30 PRINT USING "&"; BS$
RUN

LOuUT

Ok

When printing numbers with the PRINT USING
statement, you may use the following special characters
to format the numeric field.

The number sign signifies a digit position. BASIC fills
in all requested digit positions. When a number has
fewer digits than the positions specified, BASIC right-
justifies the number in the field (that is, leading unused
positions are replaced with spaces).

You may insert a decimal point at any position within
the field. When the format string specifies that a digit
should appear before the decimal point, BASIC always
prints a digit (0 if necessary). BASIC also rounds
numbers as required to fit the format.

Consider these examples:
PRINT USING "## ##"; .78
0.78

PRINT USING "### ##"; 987.654
987.65

PRINT USING "##.## "; 10.2, 5.3, 66.789, .234
10.20 5.30 66.79 0.23

In the last example, the three spaces at the end of the
format string provide spacing between the printed
values.

6-113

6-114

$$

A plus sign at the beginning or end of the format string
prints the sign of the number (plus or minus) before or
after the number, depending upon the placement of the
plus sign in the format string.

PRINT USING "+## ## *; -68.,95, 2.4,55.6, ~-.9
-68.95 +2.40 +55.60 -0.90

A minus sign at the end of the format field prints a
trailing minus sign after negative numbers.

PRINT USING "## ##- ", -68.95, 22.449, -7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format string
replaces leading spaces with asterisks. The double
asterisk also reserves two more digit positions.

PRINT USING "#**# . # "; 12,39, -0.9, 765.1
*12.4 *-0.9 765.1

A double dollar sign prints a dollar sign to the
immediate left of the formatted number. The double
dollar symbol reserves two more digit positions, one of
which is the dollar sign. You cannot use the exponential
format in conjunction with $$. Furthermore, you can
print negative dollar amounts only if the minus sign
trails to the right.

PRINT USING "ss### ##-"; 456.78, -45.54
$456.78 $45.54-

Placing **$ at the beginning of a format string
combines the effects of the two previous symbols.
BASIC replaces leading spaces with asterisks and prints
a dollar sign before the number. Additionally, **$
reserves three digit positions, one of which is used for
the dollar sign.

PRINT USING "**g## #4"; 2.34
re4$2.34

ANAAN

A comma that appears to the left of the decimal point in
a formatting string prints a comma as a thousands
separator. When the comma appears at the end of the
formatting string, the comma is printed following the
number. The comma represents another digit position.
It has no effect when used with the exponential format

(/\/\/\/\).

PRINT USING "####, #4"; 1234.5
1,234.50

PRINT USING "#### ## . "; 1234.5
1234.50,

You may place four carets (or circumflexes) after the
digit position characters to specify exponential format.
The four carets reserve space to print E+xx (or D+xx).
Any decimal point position may be specified. BASIC
left-justifies the significant digits and adjusts the
exponent accordingly. Unless you include either a plus
formatting character or a trailing plus or minus
formatting character, BASIC reserves one space to the
left of the decimal point to print a space (for positive
numbers) or a minus sign (for negative numbers).

PRINT USING "“## ##~~n~tte 234,66
2.35E+02

PRINT USING ™, ###~~ -t -88888
.889E+05-

PRINT USING "+.##rman; 123
+.12E+03

An underscore character in the format string prints the
next character as a literal character.

PRINT USING * t1## ## t': 12,34
112.34!

6-115

6-116

You may include the underscore character within the
formatting string by preceding it with an underscore.
The next example contains a string constant within the
format string.

PRINT USING “EXAMPLE _ #"; 1
EXAMPLE 1

BASIC prints a percent sign (%) before a number when
the printed value exceeds the specified numeric field.
When rounding causes the number to exceed the field
length, BASIC prints the percent sign before the
rounded number.

PRINT USING "t## ##"; 111.22
x111.22

PRINT USING ".##"; .999
%1.00

If the number of digits exceeds 24, an Illegal
function call results.

PRINT# and PRINT# USING Statements

Format: PRINT# filenum , [USING stringexp;]
list.of expressions

Purpose: Writes data to a sequential disc file.

Remarks: filenum is the number you gave the file when you
opened it for output.

stringexp consists of the formatting characters as
described for the PRINT USING statement.

The expressions in list.of.expressions are the numeric
and/or string values that you want to write to the file.

PRINT# does not compress data on the disc. With this
statement, BASIC writes an image of the data to disc,
just as it would display the information on your
computer screen. For this reason, you must carefully
delimit the data on the disc so that future input
statements can correctly read the data.

In list.of expressions, you should separate all numeric
expressions with semicolons (;). For example,

PRINT #1, A;B;C;X3Y3Z

If you use commas to separate the expressions, BASIC
copies the extra blanks between the print fields to the
disc file.

You must separate string expressions in the list with
semicolons. To format the string expressions correctly
on the disc, use explicit delimiters in the list of
expressions.

For example, let A$ = "CAMERA™ and B$ = *93604-1",
The statement:

PRINT #1, A$;B$
writes the following data to the disc:

CAMERA93604-1

6-117

6-118

Since the PRINT# statement omitted explicit delimiters,
you would be unable to use an INPUT# statement to

read both strings back in. To correct this problem, insert
explicit delimiters into the PRINT# statement as follows:

PRINT #1, AS$;",";B$
This statement writes the following image to disc:
CAMERA,93604-1

In this form, you may use the INPUT# statement to read
both values.

When the strings themselves contain commas,
semicolons, significant leading spaces, carriage return,
or line feed characters, you must surround the string
with explicit quotation marks, that is CHR$(34),

For example, let A$ = "CAMERA, AUTOMATIC" and B$ =
" 93604-1".

The statement:
PRINT #1, A$;BS$
writes the following image to disc:
CAMERA ,AUTOMATIC 93604-1
Therefore, the following INPUT# statement:
INPUT #1, AS$,B$

assigns "CAMERA" to A$ and "AUTOMATIC 93604-1" to
BS.

To separate these strings properly on the disc, include
double quotes within the string by using CHR$(34).

The statement:

PRINT #1, CHR$(34);A$;CHRS$(34);",";CHR$(34);
B$;CHR$(34)

writes the following image to disc:

“CAMERA, AUTOMATIC"," 93604-1"

Therefore, the statement:
INPUT #1, A$,B$

assigns "“CAMERA, AUTOMATIC" to A$ and
" 93604-1*to BS.

You may also use the PRINT# statement with the USING
option to format the data printed to the disc file. For
example,

PRINT #1, USING "“ss### #4"; J:;K;L;s

See WRITE# for more examples.

6-119

PUT Statement

Format:

Purpose:

Remarks:

Example:

6-120

PUT [#] filenum [, recnum]

Writes a record from the random file buffer to a
random-access disc file.

filenum is the number you gave the file when you
opened it.

recnum identifies the record to be written. It may range
from 1 to 32767.

When you omit recnum, BASIC uses the next available
record number (after the last PUT).

NOTE
YbulnaYIBePRINT*,PRINT#USING,andNRITE#tO
put characters in the random file buffer before a PUT
statement executes. When you use the WRITE#
statement, BASIC pads the buffer with spaces up to the
carriage return character. Attempting to read or write
beyond the end of the buffer causesa Field overflow
error.

10 OPEN "R"™, #1, "“BDGT", 30

20 FIELD #1, 18 AS PAYEES$, 4 AS AMTS$, 8 AS DATES
30 INPUT "ENTER CHECK NUMBER"; CK%
40 INPUT “PAYEE"™; PAYS$

50 INPUT "DOLLAR AMOUNT"; A

60 INPUT "DATE"; D$

70 LSET PAYEES = PAYS$

80 LSET AMT$ = MKS$(A)

90 LSET DATE$ = D$

100 PUT #1, CKX

110 GOTO 30

RANDOMIZE Statement

Format:

Purpose:

Remarks:

Example:

RANDOMI ZE [expression]
Reseeds the random-number generator.

When you omit expression, BASIC suspends program
execution and asks for a value by printing:

Random number seed (-32768 to0 32767)7?

After you enter a value, BASIC executes the RANDOMIZE
statement.

If you fail to reseed the random-number generator the
RND function returns the same sequence of “random”
numbers each time you run the program. To change the
seed each time the program runs, place a RANDOMIZE
statement at the beginning of the program and change
its argument before each run.

10 RANDOMIZE
20 FOR'I = 170 S

30 PRINT RND;
40 NEXT 1

50 END

RUN

Random number seed (-32768 to 32767)7

(you type 3)

.2226007 .5941419 .2414202 .2013798
5.361748E-02
Ok

6-121

RUN
Random number seed (-32768 to 32767)7

(you type 4)

.628988 .765605 .5551516 .775797 .7834911
Ok
RUN
Random number seed (-32768 to 32767)7?

(you type 3 which produces the first sequence)

.2226007 .5941419 .2414202 .2013798
5.361748E-02
Ok

6-122

READ Statement

Format:

Purpose:

Remarks:

Examples:

READ variable [, variable] . . .

Reads values from DATA statements and assigns these
values to the named variables.

variable is a numeric or string variable that receives the
value read from a DATA statement. It may be a simple
variable or an array element.

You always use READ statements in conjunction with
DATA statements. READ statements assign DATA items to
variables on a one-to-one basis. The READ-statement
variables may be numeric or string. The values in the
DATA statement must agree, however, with the specified
variable types. If they differ, a Syntax error occurs.

A single READ statement may access one or multiple
DATA statements, or several READ statements may access
the same DATA statement. If the number of variables
exceeds the number of elements in the DATA
statement(s), BASIC prints an Out of DATA error
message. If the number of variables is less than the
number of elements in the DATA statement, subsequent
READ statements begin reading data at the point where
the last READ operation finished. When no subsequent
READ statements occur, BASIC ignores the extra data.

You may reread DATA statements by using the RESTORE
statement. (See the RESTORE statement for more
information.)

This example reads the values from the DATA statements
into the array A. After the FOR loop, the value of AC1) is
3.08, A(2) is 5.19, and so on:

80 FOR I = 1 7O 10
90 READ ACD)
100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

6-123

6-124

The following program segment reads both string and
numeric data:

10 PRINT "“CITY"™, "“STATE"“, "ZIP"

20 READ C$, S$, Z

30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,5¢,Z

50 END

RUN

CITY STATE ZIP
DENVER, COLORADO 80211

Note that you may omit placing quotation marks
around the string COLORADD since it contains no
commas, semicolons, or significant spaces. However,
you must place quotation marks around DENVER,
because of the comma.

This program reads string and numeric data from two
consecutive DATA statements until all variables have
been assigned a value. The excess data is ignored:

10 FOR K = 1 70 5

20 READ A$: PRINT AS$;
30 NEXT K
40 DATA "TONI,", ™NICO,"

50 DATA "BOB,'", BERNADETTE, 52, 50, PRINGLE
60 END

RUN

TONI,NICO,BOB,BERNADETTES2

REM Statement

Format:

Purpose:

Remarks:

REM remark

Inserts explanatory remarks into a program without
affecting program execution.

remark may be any sequence of characters.

BASIC prints REM statements exactly as you entered
them when you list the program. REM statements are
never executed.

You may branch to a REM statement from a GOT0 or
GOSUB statement. In this case, execution continues with
the first executable statement after the REM statement.

You may append remarks at the end of a program line
by preceding the remark with a single quotation mark
or apostrophe (‘) instead of : REM. However, you must
avoid using this method at the end of a DATA statement.
In this event, BASIC would interpret the remark as part
of the data.

NOTE
Never append programming statements to a REM line
since BASIC will interpret the statements as part of the
remark. For example, the following statements do not
print a blank line:

500 REM Begin New Section : PRINT

Rather, make the REM statement the last statement in
the line:

500 PRINT : REM Begin New Section

6-125

Examples:

6-126

The first example uses the REM statement as a header for
the FOR. . .NEXT loop:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I = 1 TO 20

140 SUM = SUM + V(D)

150 NEXT I

The next example shows the use of the apostrophe (*)
for REM:

120 “CALCULATE AVERAGE VELOCITY
130 FOR I = 1 70 20

140 SUM = SUM + V(D)

150 NEXT I

The last example attaches the comment to the end of the
first statement of the FOR loop:

130 FOR I = 1 TO 20 ‘CALCULATE AVERAGE VELOCITY
140 SUM = SuM + V(D)
150 NEXT I

RENUM Command

Format:
Purpose:

Remarks:

RENUM [[newnumber] [,[oldnumber] [, increment]]]
Renumbers the lines within a program.

newnumber is the first line number in the new sequence.
When you omit this parameter, BASIC sets the value to
10.

oldnumber is the line in the current program where
renumbering begins. When you omit this parameter,
BASIC begins with the first line in the program.

increment is the amount by which the numbering
increases at each step. The default value is 10.

RENUM also changes all references to line numbers in
60TO, GASUB, THEN, ON. . .GOTO, ON. . .GOSUB, and ERL
statements to reflect the new line numbers. When
BASIC detects a nonexistent line number after one of
these statements, the error message Undefined line
xxxxx in yyyyy appears. RENUM leaves the incorrect
line number reference xxxxx as it was. However, the
reference to line number yyyyy may have changed.

CAUTION
Numeric constants following an ERL variable in a given
expression may be treated as line references and thus
modified by a RENUM statement. To avoid this problem,
you should use statements similar to these:

L = ERL : PRINT L/10
rather than this statement:

PRINT ERL/10

6-127

Examples:

You cannot use RENUM to change the order of program
lines. For example, if a program contains three lines
numbered 10, 20, and 30, attempting to change line 30
to line 15 to produce the new sequence 10, 15, 20 with
the statement

RENUM 15,30 \ /
is illegal.

You cannot create line numbers greater than 65529.
Attempting to do so causes an I1legal function

call.

The first example renumbers the entire program. The
first line number is 10 and following line numbers are
incremented by 10:

RENUM

The next example also renumbers the entire program.
However, the first line number is 300, and subsequent
lines are incremented by 50:

RENUM 300,,50

The last example renumbers the lines beginning from

900 so they start at 1000 and increase by 20 at each step: ~
RENUM 1000,900,20
NOTE
The BASIC compiler offers no support for this command.
N

6-128

RESET Command/Statement
Format: RESET

Purpose: Closes all disc files and writes the directory information
; to every disc with open files.

Remarks: RESET closes all open files on all drives and writes the
directory track to every disc with open files.

All files must be closed before you remove a disc from
its drive.

BASIC always returns to the command level after
executing a RESET command.

6-129

RESTORE Statement

Format:
Purpose:

Remarks:

Examples:

6-130

RESTORE [line#]
Permits a program to reread DATA statements

After a program executes a RESTORE statement, the next
READ statement accesses the first item in the program’s
first DATA statement. If you specify line#, however, the
next READ statement accesses the first item in the given
DATA statement.

This program segment produces an Jut of DATA error:

10 READ A,B,C

20 READ D,E,F

30 DATA 57,68,79

40 PRINT A;B;C;D;E;F
50 END

RUN

Out of DATA in 20

Ok

Adding a RESTORE statement between lines 10 and 20
assigns a value to all six variables:

10 READ A,B,C
15 RESTORE
20 READ D,E,F
30 DATA 57,68,79
40 PRINT A;B;C;D;E;F
50 END
RUN
57 68 79 57 68 79
Ok

o/

RESUME Statement

Format:

Purpose:

Remarks:

Example:

RESUME
RESUME 0
RESUME NEXT
RESUME [ine#t

Continues program execution after BASIC has
performed an error recovery procedure.

You select between the various formats depending upon
where you want execution to resume.

RESUME or Execution resumes at the statement
RESUME 0 that caused the error.
RESUME NEXT Execution resumes at the statement

that immediately follows the one
that caused the error.

RESUME [inc# Execution resumes at [ine#.

A RESUME statement that is not in an error-handling
routine causes a RESUME wi thout error €rror message.

BASIC always returns to the command level after
executing a RESUME statement.

80 ON ERROR GOTO 900
900 If (ERR=230) AND (ERL=30)

THEN PRINT "PRESS RETURN TO CONTINUE"
910 RESUME 80

NOTE

If you plan to compile your program, see the BASIC compiler manual for
differences between implementations.

6-131

RETURN Statement

Format: RETURN
Purpose: Returns program control to the line immediately .
following the most recently executed GOSUB or N/

ON. . .GOSUB statement.

Remarks: See the GOSUB and ON. . . GOSUB statements in this
chapter for an example on the RETURN statement.

NOTE
If you plan to compile your program, check the BASIC compiler manual
for differences between the interpretive and compiled version of this
statement.

6-132

RIGHTS$ Function

Format:

Action:

Example:

RIGHTS$(x$,i

Returns the rightmost i characters of string x$. When i is
equivalent to the number of characters in x$, RIGHT$
returns x$. When | is zero, the function returns the null
string (a string of zero length).

Also see the M1D$ and LEFT$ functions.

10 A$ = "BASIC"

20 PRINT RIGHT$(AS$,3)
RUN

SIC

0k

RND Function

Format:

Action:

Example:

RND[()]

Returns a random number between 0 and 1. RND
generates the same sequence of “random” numbers
each time a program runs unless you use the
RANDOMI ZE statement to reseed the random-number
generator. However, a negative value for x always
restarts the same sequence for any given x.

Setting x to 0 repeats the last number that was

- generated.

Omitting x or specifying a positive x generates the next
random number in the sequence.

10 FOR T = 1 70 S
20 PRINT INT (RND * 100);
30 NEXT
RUN

12 65 86 72 79
Ok

6-133

RUN Command/Statement

Format 1:

Purpose:

Remarks:

Format 2:

Purpose:

Remarks:

Example:

RUN [line#]

Executes the program currently stored in your
computer’s memory.

When you include line#, execution begins on that line.
Otherwise, execution begins with the lowest line
number. BASIC always returns control to the command
level when program execution finishes.

RUN filename [, R]

Loads a file from disc into your computer’s memory and
then executes it.

filename is the name you gave the file when you saved
it. (You may omit the MS-DOS file type .BAS, as BASIC
supplies it for you.)

RUN closes all open files and deletes the current contents
of computer memory before loading the named
program. However, when you use the R option, all data
files remain open.

For further information on files, see Chapter 4.

The first example executes the program currently in
memory:

RUN

The next example loads the program NEWF IL from disc
then runs it while keeping data files open:

RUN "NEWFIL", R

The last example uses RUN as a statement to re-execute
the current program from its beginning:

9999 RUN ‘Re-run program

NOTE

Differences exist between the interpretive and compiled version of the
RUN command. See the BASIC compiler manual if you plan to compile

your program.

6-134

\/

SAVE Command

Format:

Purpose:

Remarks:

Examples:

SAVE filename [{,A 1 ,P}]

Stores a program file from your computer’s memory to
disc.

filename is a quoted string that “names” the file for
future references.

When the filename is less than nine characters and if
you omit a file extension, BASIC supplies the default
file type .BAS for you.

BASIC normally writes the file to the currently active
disc. Saving a file to another disc requires your
including a drive specifier as part of filename.

When a file already exists on the disc with filename,
BASIC overwrites it. No warning is given.

The A option saves the file in ASCII format. Otherwise,
BASIC saves the file in a compressed binary form.
ASCII format uses more disc space, but some disc
accesses require that files be in ASCII format. For
instance, the MERGE command requires ASCII formatted
files. Also, any programs that you save in ASCII format
may be read as data files.

The P option protects the file by saving it in an encoded
binary format. When the protected file is later loaded or
runned, any attempt to list or edit it fails. No command
exists to “unprotect” such a file.

The first example saves the program MYPROG in ASCII
format:

SAVE '"MYPROG", A

The next command saves the program STATS as a
protected file that cannot be altered:

SAVE "STATS", P

The last example saves the program BDGT to the disc on
drive C:
SAVE "“C:BDGT"

6-135

SGN Function
Format: SGN(x)

Action: If x is positive, SGN returns 1.
If x is equal to zero, SGN returns 0.
If x is negative, SGN returns -1.

Example: 10 INPUT X
20 ON SGN(X) + 2 GOTO 30, 40, 50
30 PRINT "X<O0" : GOTO 60
40 PRINT "X=0" : GOTD 60
50 PRINT "X>Q"
60 END

SIN Function
Format: SINCx)

Action: Returns the sine of x, where x is given in radians.

BASIC evaluates SIN(X) with single-precision
arithmetic.

NOTE
To convert degrees to radians, multiply the angle by
PI/180, where PI = 3.141593.

Example: PRINT SIN (1.50)
.9974951
0k

6-136

SPACES$ Function

Format:

Action:

Example:

SPACE$(x)

Returns a string of x spaces, where y may range
between 0 and 255.

When necessary, BASIC rounds x to an integer.
Also see the spc function.

10 FOR I = 1 70 S

20 X$ = SPACESCI)
30 PRINT X$; I

40 NEXT I

50 END

RUN

Ok

SPC Function

Format:

Action:

Example:

SPC())
Prints j blanks. You may only use the spc statement
with the PRINT or LPRINT statements.

j is the number of spaces to be printed. When ; is
negative, spc prints the null string. When ; is greater
than 255, spc prints the number of blanks equal to

J MOD 255.

spc rounds floating point numbers to an integer value
to determine the number of blanks to print.

Also see the spaces function.

In the following pPRINT statement, BASIC assumes that
a semicolon follows SPC(15):

PRINT "“OVER" SPC(15) "THERE"
OVER THERE
Ok

6-137

SOR Function

Format:

Action:

Example:

6-138

SGR(x)

Returns the square root of x. x must be a positive
number or zero.

10 FOR X = 10 TO 25 STEP 5

20 PRINT X, SQR(X)
30 NEXT
40 END
RUN
10 3.162278
15 3.872984
20 4.472136
25 5
0k

STOP Statement

Format: sTOP

Purpose: Ends program execution and returns control to the
_ command level.

Remarks: You normally use this statement when debugging a

program. However, you may use sT0OP statements
anywhere within a program to stop execution. Upon
encountering a sTOP statement, BASIC prints the
following message (where nnnnn is the line number
causing the break):

Bredk in nnnnn

The sToP statement differs from the END statement
since the sToP statement leaves all files open.

BASIC always returns control to the command level
when a sTOP statement executes. You may resume
exection by giving the cONT command.

Example: 10 INPUT A,B,C
20K = A"2 * 5.3 : L = B3 / .26
— 30 STOP
40 M = C * K + 100 : PRINT M
RUN
2 1,2,3
Break in 30
Ok
PRINT L
30.76923
Ok
CONT
115.9
Ok

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the interpretive and compiled version of this
statement.

N

6-139

STR$ Function
Format: STR$(x)

Action: -Returns a string representation of the value of x.
Also see the VAL function.

Example: 10 INPUT “ENTER X", X
20 PRINT STR$(X)
RUN
ENTER X45
45
Ok

STRINGS$ Function

Format: STRING$(i, /)
STRINGS (7,x$)

Action: Returns a string of length i whose characters all have
ASCII code j or the first character of x$.

i must be an integer between 0 and 255.

Example: 10 REM THE ASCII CODE FOR THE DASH SYMBOL IS 45
20 X$ = STRING$(10,45)
30 PRINT X$ "MONTHLY REPORT" X¢
RUN

6-140

SWAP Statement

Format: SWAP variablel, variable2
Purpose: Exchanges the values of two variables.
Remarks: variable1 and variable? are the identifiers for two

variables or array elements.

You may siaAP variables of any type (integer, single
precision, double precision, or string) as long as both
variables are of the same type. If the types for the
variables differ, a Type mismatch error occurs.

Example: 10 A$ = " ONE™ : B$ = " ALL" : C$ = " FOR®

20 PRINT A$ C$ B$

30 SWAP AS, BS$

40 PRINT AS$ C$ BS

RUN

ONE FOR ALL

ALL FOR ONE
Ok

6-141

SYSTEM Command/Statement

Format:

Purpose:

Remarks:

SYSTEM

Leaves the BASIC environment and returns control to
the operating system.

The SYSTEM command closes all files and reloads the
MS-DOS operating system without deleting any
programs or memory except BASIC itself.

You may enter this statement as a Direct Mode
command or you may include it as a program
statement. For example, if you called BASIC through a
Batch file from MS-DOS, the SYSTEM command returns
control to the Batch file. The Batch file then continues
its execution from the point where it left off.

NOTE

Simultaneously pressing the and keys
always returns you to the BASIC command level.

NOTE

The BASIC compiler offers no support for this command.

6-142

-/

\—

TAB Function

Format: TAB())

Action: Spaces to the jti position on the line. If the current print
position is beyond space j, TAB proceeds to that position
on the next line.

Values for j may range between 1 and 255. 1 is the
leftmost position on a line; the rightmost position is the
width minus one.

When j is negative, TAB treats it as the first character
position (that is, j = 1).

When j is greater than 255, TAB rounds the value then
calculates the value of J MOD 256. TAB uses the resulting
value.

You may only use the TAB statement with either the
PRINT or LPRINT statements.

Example: 10 PRINT "NAME' TAB(25) "AMOUNT"™ : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "MALLORY ALLISON"™, *$25.00"

RUN

NAME AMOUNT
MALLORY ALLISON $25.00
Dk

TAN Function

Format: TANCxX)

Action: Returns the tangent of x, where x is given in radians.
To convert degrees to radians, multiply the angle by
PI/180, where PI = 3.141593.

BASIC evaluates TAN(X) with single-precision
arithmetic. If the calculation overflows, BASIC displays
the Over f 1 ow error message, sets the result to machine
infinity with the appropriate sign, and continues
execution.

Example: PRINT TANC(C2.22)

-1.317612

6-143

TIMES$ Function

Format:

Action:

Example:

6-144

TIMES
Retrieves the current time.

The TIMES$ function returns an eight-character string in
the form:

hh:mm:ss

where:

hh is the hour of the day, based upon a 24-hour
clock. Values range from 00 to 23.

mm is the number of minutes. Values range
from 00 to 59.

ss is the number of seconds. Values range from
00 to 59.

This example assumes that the current time is 8:45 PM.:

PRINT TIMES
20:45:00

—

TIMES$ Statement

Format:

Action:

Example:

TIMES = string
Sets the time for subsequent use by the T1ME ¢ function.

string represents the current time. It may take one of the
following forms:

hh Sets the hour. (Values may range
from 0 to 23.) BASIC sets both
minutes and seconds to 00.

hh:mm Sets both hour and minutes. (Values
for minutes may range from 0 to
59.) BASIC sets seconds to 00.

hh:mm:ss Sets hour, minutes, and seconds.
(Values for seconds may range from
0 to 59).

Since the computer uses a 24 hour clock, you must add
12 hours to all times after 12 noon. For example,
8:00 P.M. is 20:00.

TIMES = "14:"

0k

PRINT TIMES
14:00:07

Ok

TIMES = "14:34:04"
0k

PRINT TIMES$
14:34:10

0k

6-145

TRON/TROFF Statements

Format:

Purpose:

Remarks:

Example:

TRON
TROFF

Traces the execution of program statements.

You may use the TRON statement as a debugging aid in
either Direct or Indirect Mode.

The TRON statement enables a trace flag. Once set, the
trace prints each line number (surrounded by square
brackets) when BASIC executes that line.

You can disable the trace flag by giving either a TROFF
statement or a NEW command.

TRON
0k

10 K = 10
20 FOR J = 1 70 2
30 L=K+ 10
40 PRINT J;KsL
50 K=K+ 10
60 NEXT
70 END
RUN

[(101[2010301040) 1 10 20
{5010601(301040) 2 20 30
[501[6010701)
Ok
TROFF
Ok
RUN

1 10 20

2 20 30
0k

NOTE

If you plan to compile your program, see the BASIC compiler manual for
differences in the implementation of these statements.

6-146

\—

USR Function

Format:

Action:

Example:

USR [digit] [Carqument)]
Calls an assembly-language subroutine.

digit specifies which usr function routine is being
called. digit may range between 0 and 9 and corresponds
to the digit you gave the function with the DEF USR
statement for that routine.

When you omit digit, BASIC assumes USR0. See DEF USR
for further details.

argument is the value you are passing to the subroutine.
It may be any numeric or string expression.

In this implementation, if you use a segment other than
the default Data Segment (DS), you must execute a DEF
SEG statement before giving a USR function call. The
address given in the DEF SEG statement determines the
address of the subroutine.

The type (numeric or string) of the variable receiving
the function call must be consistent with the argument
passed.

100 DEF SEG = &HFO000
110 DEF USRO = 0

120 X = Y
130 Y = USROCX)
140 PRINT Y

6-147

VAL Function

Format:

Action:

Example:

6-148

VAL (x$)

Returns the numeric value for the string x$. For
example, evaluating the following function gives a
result of -3:

VAL("-3")

The VAL function strips leading blanks, tabs, and line
feed characters from the argument string.

In the following program, lines 20 and 30 show how
you may format an IF statement by using the line feed
character (Control-J).

10 READ FIRSTS, CITY$, STATES, ZIP$

20 IF VALCZIPS$) < 90000 OR VAL(ZIP$) > 966993
THEN PRINT FIRST$ TAB(25) "QUT OF STATE"

30 IF VAL(ZIP$) >= 90801 AND VAL(ZIP$) < 90815
THEN PRINT FIRSTS$ TAB(25) “LONG BEACH"

40 DATA MARY, CORVALLIS, OREGON, 97330

-

./

VARPTR Function

Format:

\ , Action:

VARPTR(variable)
VARPTRC #filenum)

filenum is the number associated with a currently
opened file.

variable is a string expression associated with a variable.

When using the variable format, the command returns
the address of the first byte of data identified with
variable.

You must assign a value to variable before you use it as
an argument to VARPTR, Failing to follow this
procedure results in an I1legal function call,

You may use a variable name of any type (numeric,
string, or array).

You normally use VARPTR to obtain the address of a
variable or an array so you may pass the address to an
assembly-language subroutine.

When passing an array, the best procedure is to pass the
lowest-addressed element of that array. Therefore, you
should make the function call in the following form
when accessing arrays:

VARPTRCAC0))

For string variables, VARPTR returns the first byte of the
string descriptor.

NOTE
You should assign all simple variables before you use
VARPTR with an array argument. This is a safeguard
since array addresses change whenever you assign a
new simple variable.

6-149

Example:

6-150

If you use the filenum option, VARPTR returns the
starting address of the disc I/O buffer assigned to
filenum. For random files, VARPTR returns the address of
the F IELD buffer assigned to filenum.

For either format, the function returns a number that
ranges between 0 and 65535. This number is the
required offset into the BASIC’s Data Segment (DS).

100 X = USRCVARPTR(Y))

WALIT Statement

Format:

Purpose:

\ ., Remarks:

Example:

WALT port, i[.j]

Suspends program execution while monitoring the
status of a machine input port.

port is a port number, which may range from 0 to 65535.

NOTE
This port is a microprocessor port; not one of your
computer’s datacomm (or peripheral) ports.

i and j are integer expressions that may range from 0 to
255.

The WA 1T statement suspends program execution until
the specified machine input port develops a specified
bit pattern. The data read at the port is x0R'ed with the
integer expression j , and then ANDed with i. When the
result is zero, BASIC loops back and reads the data at
the port again. When the result is not zero, execution
continues with the next statement.

CAUTION
You could possibly enter an infinite loop when using
the wA 1T statement. To avoid this situation, you must
ensure that the specified value appears at the port
sometime during program execution. If the program
enters an infinite loop, you may exit the loop by
simultaneously pressing the and keys.

This example suspends program execution until port 32
receives a 1 bit in the second bit position:

100 WAIT 32, 2

6-151

WHILE. . .WEND Statement

Format:

Purpose:

Remarks:

6-152

WHILE expression

[loop statements]

WEND

Loops through a series of statements as long as the
given condition is true.

expression is a numeric expression which BASIC
evaluates. If it is true (not zero), BASIC executes the loop
statements until it encounters WEND. BASIC then
returns to the WHILE statement and checks expression. If
it is still true, BASIC repeats the entire process. When
the expression becomes false, BASIC resumes execution
with the statement that follows the WEND statement.

You may nest WHILE/WEND loops to any level. Each
WEND matches the most recently encountered WHILE,
An unmatched WHILE statement causes a WHILE
without WEND error. An unmatched WEND statement
causes a WEND without WHILE error.

If you are directing program control to a WHILE loop,
you should always enter the loop through the WHILE
statement.

Example: 10 OPTION BASE 1
20 DIM AC10)
30 REM ------n--- GET DATA-----=-=---
40 DATA 3,2,4,1,5,8,7,6,9,0
50 FOR I = 1 TO 10

60 READ ACI)

70 PRINT ACI);

80 NEXT I

90 REM ------- BUBBLE SORT---------

100 J = 10

110 FLIPS = 1 ‘FORCE ONE PASS THRU LOOP

120 WHILE FLIPS
130 FLIPS = 0
140 FOR I = 1 70 J-1

150 IF ACI) <= ACI+1) THEN 170

160 SWAP ACI), ACI+1) : FLIPS = 1
170 NEXT I

180 WEND

190 PRINT
200 FOR I = 1 TO 10 : PRINT ACID; : NEXT I
RUN

3 2 41587 6 90

0 12 3 45 6 7 8 9
Ok

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compiled and interpretive version of this
statement.

6-153

WIDTH Statement

Format:

Purpose:

Remarks:

Example:

WIDTH [LPRINT] size

Sets the line width in number of printed characters for
the computer screen or a printer.

size is a numeric expression that may range between 0
and 255. It gives the maximum number of characters
that BASIC prints on a logical line. The default setting is
80 characters.

A size setting of 255 gives an “infinite” line width. (That
is, BASIC never inserts a carriage return character.) Both
the PDOS and LPOS functions return 0 after the 255th
character is printed on a line.

Including the LPRINT option sets the line width at the
line printer. Omitting this option sets the line width for
your computer’s screen.

10 PRINT "ABCDEFGHIJKLMNOPQRSTUVMWXYZ"
RUN

ABCDEFGHI JKLMNOPQRSTUVKXYZ

Ok

WIDTH 13

Ok

RUN

ABCDEFGHIJKLM

NOPQRSTUVKWXYZ

Ok

NOTE

If you plan to compile your program, check the BASIC compiler manual
for differences between the interpretive and compiled versions of this

statement.

6-154

Q)

N

WRITE Statement

Format:
Purpose:

Remarks:

Example:

WRITE [list.of.expressions]
Copies data to the computer’s screen.

list.of expressions is a list of numeric and/or string
expressions. You must separate the different items in
the list with commas or semicolons.

When you include /ist.of.expressions, BASIC prints the
values for the expressions on the computer screen.

Omitting /ist.of expressions prints a blank line on the
screen.

When it prints the line of values, BASIC separates each
item from the last with a comma. After it prints the last
item in the list, BASIC inserts a carriage return/line
feed. BASIC prints quotation marks around any strings
within the list.

The WR1TE statement prints numeric values using the
same format as the PRINT statement.

10 A =80 : B =290 : C$ = "THAT’S ALL"
20 WRITE A,B,C$

RUN

80,90,"THAT’S ALL"

0k

6-155

WRITE# Statement

Format: WRITE# filenum, list.of expressions
Purpose: Writes data to a sequential disc file.
Remarks: filenum is the number you gave the file when you

opened it in 0 mode.

list.of expressions may contain numeric or string
expressions or both. You must separate the items in the
list with commas or semicolons.

The WRITE# statement differs from the PRINT#
statement by the way it writes data to disc.

WRITE# inserts commas between the items as it writes
them to disc and surrounds strings with quotation
marks. Therefore, you may omit putting explicit
delimiters in the list. BASIC inserts a carriage return/
line feed character after it writes the last item in the list
to disc.

Example: Let A$ = "CAMERA" and B$ = "93604- 1" then the
statement:

WRITE #1, AS$,BS$

writes the following image to disc:
"CAMERA","93604-1"

A subsequent INPUT# statement, such as:
INPUT #1, A$,B$

assigns ""CAMERA"™ to A$ and 93604~ 1" to BS.

6-156

Appendix A

~ ERROR CODES AND ERROR
. MESSAGES

This appendix lists the BASIC error messages and describes each one.
Code Number Message
NF 1 NEXT without FOR

A variable in a NE x T statement does not
correspond to any previously executed,
unmatched F oR statement variable.

SN 2 Syntax error

A line is encountered that contains some incorrect
sequence of characters (such as a misspelled
command, unmatched parentheses, or incorrect
punctuation).

RG 3 RETURN without GOSUB

BASIC encounters a RETURN statement for which
no previous, unmatched 60SUB statement exists.

OD 4 Out of DATA

BASIC is executing a READ statement but no data
remains to be read from any DATA statement.

Code

A-2

FC

ov

OM

UL

BS

Number Message

5

Illegal functioncall

You are attempting to pass a parameter that is out
of the permissible range to either a string or
mathematical function.

This error message also appears under these
circumstances:

1. a negative or extremely large subscript
2. a negative or zero argument to L0G
3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

5. a call to an USR function for which no starting
address exists.

6. an improper argument to MID$, LEFTS,
RIGHTS, PEEK, POKE, TAB, SPC, STRINGS,
SPACES$, INSTR, or ON...GOTO

Overflow

The result of a calculation is too large to be
represented in BASIC’s number format. When
underflow occurs, BASIC sets the result to zero
and continues execution.

Out of memory

A program is too large, has too many F OR loops or
GOSUBs, has too many variables, or too many
complicated expressions.

Undefined line number

A line referenced in a GOTO, GOSUB,
IF...THEN...ELSE, or DELETE statement is to a
nonexistent line.

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of the
array, or with the wrong number of subscripts.

Code
DD

/0

ID

™

oS

LS

ST

Number Message

10

11

12

13

14

15

16

DuplicateDefinition

Two DIM statements are given for the same array;
or a DI M statement is given for an array after the

default dimension of 10 has been established for

that array.

Divisionby zero

BASIC has either encountered a division by zero
within an expression or is trying to raise zero to a
negative power in an exponentiation. For division
by zero, BASIC sets the result to machine infinity
with the sign of the numerator. For involution,
BASIC sets the result to positive machine infinity.
In both cases, execution continues.

Illegal direct

You have attempted to enter a command that is
illegal in Direct Mode.

Typemismatch

A string variable name is assigned a numeric
value or vice versa. Otherwise, a function that
expects a numeric argument is given a string
argument or vice versa.

Out of string space

String variables have caused BASIC to exceed the
amount of free memory remaining. BASIC
allocates string space dynamically, until it runs
out of memory.

String too long

An attempt is made to create a string more than
255 characters long.

String formula too complex

A string expression is too long or too complex. You
should break the expression into smaller
expressions.

A-3

Code Number Message
CN 17 Can’t continue
An attempt is made to continue a program that:
1. has halted due to an error
2. has been modified during a break in execution
3. does not exist
UF 18 Undefined user function

A USR function is called before the function
definition (DEF statement) is given.

The following error messages have no error codes.
19 No RESUME

An error-trapping rountine is entered that
contains no RESUME statement.

20 RESUME without error

A RESUME statement is encountered before an
error-trapping routine is entered.

21 Unprintable error

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

22 Missing operand

An expression contains an operator with no
operand following it.

23 Line buffer overflow

An attempt is made to input a line that has too
many characters.

24-25 Unprintableerror

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

26 FOR without NEXT

A FOR was encountered without a matching NEXT.

A-4

Code

Number Message

27-28

29

31-49

51

52

53

Unprintatl~error

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

WHILE witraut WEND

A WHILE statement does not have a matching
WEND.

WEND without WHILE

A WEND was encountered without a matching
WHILE.

Unprintableerror

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

FIELD overflow

A FIELD statement is attempting to allocate more
bytes than were specified for the record length of
a random file.

Internal error

An internal malfunction has occurred in BASIC.
Report to your Hewlett-Packard service office the
conditions under which the message appeared.

Bad file number

A command references a file with a file number
that is not opened or is beyond the range of file
numbers specified at initialization.

Filenot found

A LOAD, KILL, or OPEN statement references a file
that does not exist on the current disc.

Bad file mode

An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOAD a random file, or to
execute an 0PEN with a file mode other than 1, 0,
Or R.

A-5

Code

A-6

Number Message

55

56

57

58

59-60

61

62

63

Filealready open

A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for an
opened file.

Unprintableerror

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

Device I/0Derror

An [/O error occurred on an I/O operation. It is a
fatal error since the operating system cannot
recover from this error.

Filealready exists

The filename specified in a NAME statement is
identical to a filename already in use on the disc.

Unprintableerror

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

Disk full
All disc storage space is in use.
Input past end

An INPUT statement is executed after all the data
in the file has been INPUT, or for a null (empty)
file. Using EQF to detect the end of file avoids this
error.

Bad record number

In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767)
or is equal to zero.

Bad file name

An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN, (For example, the
filename may contain too many characters.)

Code

Number Message

65

67

70

71

72

74

Unprintableerror

No error message exists for the detected error
condition. This usually results from an ERROR
statement with an undefined error code.

Direct statement in file

A Direct Mode statement is encountered while
loading an ASCII-formatted file. The L0AD is
terminated.

focomany tiles

An attempt is made to create a new file (using
SAVE or 0PEN) when all directory entries are full.

Diskwrite protected

Your disc has a write protect tab or is a disc that
cannot be written to.

Disk not Ready
You have probably inserted the disc improperly.
Diskmediaerror

A hardware or disc problem occurred while the
disc was being written to or read from. (For
example, the disc drive may be malfunctioning or
the disc may be damaged.)

Kename across disks

An attempt was made to rename a file with a new
drive destination. As this is not allowed, the
operation is canceled.

A-7

(\

Appendix B

USING TERMINAL

“FEATURES IN BASIC

Introduction

You can program the terminal portion of your computer to perform

many of the functions of an intelligent terminal. By using these fea-
tures, you can tell the computer to perform tasks that would other-

wise be done within each application program.

Most tasks that you do at the keyboard can also be done under pro-
gram control with escape sequences. An escape sequence is simply a
series of ASCII characters preceded by the escape character, ESC
(ASCII code 27). Each escape sequence tells the computer to do a cer-
tain task. For example, the escape sequence ESC h “homes” the cursor
to the upper left-hand corner of the screen.

This appendix shows some examples of how you might use escape
sequences. For a list of all the escape sequences that you can use on
your Portable PLUS, refer to the Portable PLUS Technical Reference
Manual (HP 45559K), which is available from your HP sales
representative,

(Portable PLUS) B-1

NOTE
For clarity, this appendix shows a space between each character in an
escape sequence. When you type in the sequence, do NOT insert
spaces.

Escape sequences fall into two categories: two-character sequences
and multiple-character sequences. For two-character sequences, you
must press the keys in order and use the correct case (upper- or
lower-case). For example, ESC B ((Esc] then the shifted [B] key) moves
the cursor down one row whereas ESC b then the unshifted
key) unlocks the keyboard. The difference appears subtle but is quite
important to your computer.

Multiple-character escape sequences have one or more groups of
characters. Each group, consisting of a number or other character fol-
lowed by a letter, specifies one parameter of the sequence. Generally,
you can arrange these groups in any order or even leave some out en-
tirely, depending on the task you want your computer to do. In this
type of escape sequence, a capital letter defines the end of the escape
sequence, so you would capitalize only the last letter and type the rest
in lower case. An example is the cursor-positioning escape sequence.
Here is an escape sequence that positions the cursor at row zero, col-
umn zero (“home”):

ESC ¢ a 0 r 0C

The uppercase C ends the sequence. But since you can interchange the
order of groups in a multiple-character escape sequence, you could also
use:

ESC & a 0 ¢ 0O R

This escape sequence does the same task as the other one. Only the
order of groups of characters is different. Again, the capital letter ended
the sequence. The order of the groups of characters is not critical as
long as the last character is an uppercase letter.

B-2 (Portable PLUS)

P

You may also truncate this command. To position the cursor to the top
line, without affecting the column position, use the following sequence:

ESC & a O R

Notice that the c or column parameter is simply omitted. The upper case
R terminates the sequence.

You must be aware of two situations when using escape sequences with
BASIC.

1. The PRINT statement forces a carriage return/line feed after every
PRINT statement unless the string to be printed is followed by a
semicolon (;). If you print a sequence that positions the cursor, and
forget to end the PRINT statement with a semicolon, the cursor
automatically moves to the next line.

2. BASIC monitors the number of characters printed on each line so that
a carriage return/line feed can be added after every 80 characters.
When you are using PRINT statements to generate escape sequences,
you may not want these characters added automatically. When you
use the WIDTH statement with a value of 255, BASIC stops inserting
the automatic carriage return/line feed and permits your program to
fully utilize terminal control sequences.

B-3

Sample Functions

An example of using escape sequences within a BASIC program is
illustrated below. By using these sample functions as a model, you
should be able to program any of the remaining functions that are
described in the HP 150 MS-DOS User’s Guide.

The function definitions have been entered on multiple lines just as you
see them. If the program lines were entered normally, each line could
contain a maximum of 80 characters. This makes it difficult to format the
program listing as you see it here. However, by pressing at
the end of each line, BASIC allows single line statements to be entered
on multiple lines.

1000 ‘DEFINE ESCAPE SEQUENCES AS FUNCTIONS

1010 ESC$ = CHR$(27)

1020 DEF FNHOMES$ = ESC$ + "h" +« ESC$ + “J"

1030 DEF FNCURSOR$(C,R) = ESC$ + "&a™ + STR$(C) + "c" +
STR$(R) + "R"

1040 DEF FNKEY$(K,A$,B$) = ESC$ + "&f0a" + STR$C(K) + "k" +
STR$(LENCAS$)) + "d" + STR$C(LENCB$) + 1) + “L" + A$ + BS +
CHR$(C13)

1050 DEF FNIVS(AS$) = ESC$ + "&dB" + A$ + ESC$ + "&da@"

Before exploring how these functions might be used within a program,
let’s take a closer look at each one.

FNHOME $ executes a Home-up, clear-display sequence. This places the
cursor at the top of the display and clears the screen (by deleting the
contents of display memory).

FNCURSORS$ positions the cursor to the row and column specified by R
and C. Note that you must use STR$ to convert the numeric values of C
and R into a string representation of the desired values.

FNKEY$ allows you to define any of the User Keys. The key to be defined
is specified as K, the label as A$, and the definition as B$. Note that the
string representation of the length of each field must be specified. As
with the cursor function above, you must convert the numeric value to a
string.

FNIV$ prints the string of characters in A$ in inverse video at the current
cursor position. FNIV$ also guarantees that only A$ is shown in inverse
video by specifically disabling all character enhancements after printing
AS.

BN

Now look at how these functions might be used in a program. This small
program segment defines two softkeys. One causes program execution to
continue, while one terminates the program. The prompt requesting
operator input appears in the center of the display in inverse video.

1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
2000
5000
5010

WIDTH 255

PRINT FNHOMES;

PRINT FNKEY$(1,"CONTINUE","PROCEED");
PRINT FNKEY$(8, "EXIT TO MS-DOS™, "EXIT");
PRINT ESC$ +« "&jB";

PRINT FNCURSOR$(10,20);

PRINT FNIVS$("CONTINUE?");

PRINT FNCURSOR$(20,20);

INPUT * ™, AS$

IF A$ = "PROCEED"™ GOTO 2000

IF A$ = "“EXIT" GOTO 5000

GOTO 1000

STOP

END

Remember, the semicolon is used after each PRINT statement to allow
the programmer to position the cursor wherever necessary. This
prevents BASIC from performing an automatic carriage return as it
normally would.

For further information on programming with escape sequences, refer to
the appropriate sections in the HP 150 MS-DOS User’s Guide.

B-5

Appendix C

9 REFERENCE TABLES

ASCII Character Codes

ASCII

Code Character Description

000 NUL Null

001 SOH Start of heading

002 STX Start of text

003 ETX End of text

004 EOT End of transmission
005 ENQ Enquiry

006 ACK Acknowledge

007 BEL Bell

008 BS Backspace

009 HT Horizontal tabulation
010 LF Line feed

011 VvT Vertical tabulation

012 FF Form feed

013 CR Carriage return

014 SO Shift out

015 SI Shift in

016 DLE Data Link Escape

017 DC1 Device control 1 or X-ON
018 DC2 Device control 2

019 DC3 Device control 3 or X-OFF
020 DC4 Device control 4

021 NAK Negative acknowledge
022 SYN Synchronous idle

C1

ASCll
Code Character

023 ETB
024 CAN
025 EM
026 SUB
027 ESC
028 FS
022 GS

030 RS
031 US
032 SPACE
033 !
034 -
035
036
037
038
039

040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059 ;

T Rew

+ X S~

OO U R WN -mO ~-

C-2

Description

End of transmission block
Cancel

End of medium
Substitute

Escape

File separator

Group separator-

Record separator

Unit separator

Space

Exclamation point

Quotation mark

Number sign (pound sign or hash mark)
Dollar sign

Percent sign

Ampersand

Apostrophe (closing single quote)

Opening parenthesis
Closing parenthesis
Asterisk

Plus

Comma

Hyphen (minus)
Period (point)

Slant (solidus)

Zero

. Colon
Semicolon

ASCII
Code Character Description

060
061
062
063
064
065
066
067
068
069

070
071
072
073
074
075
076
077
078
079
080
081
082

Less than sign
Equal

Greater than sign
Question mark
Commercial at sign

AOUWOZZOCARTTIO™ BOAFP>P ™DV I A

ASCII
Code Character Description

083
084
085
086
087
088
089
090

091
092
093
094
095

Opening square bracket
Back slant

Closing square bracket
Caret (upward arrow)
Underscore

Opening single quote

>—_— NxXXs<cH®

-

g%

NdxXxg<d<pgTuwnr0gos g—x—=50 "0anocw

098
099
100
101
102
103
104
105
106
107
108
109

110
m
112
113
114
115
116
117
118
119
120
121
122

C4

ASCII
Code Character Description

123 | Opening brace (curly bracket)
124 | Vertical line

125 } Closing brace (curly bracket)
126 ~ Tilde

127 DEL Delete (rub out)

128 Undefined control code
129 Undefined control code
130 Undefined control code
131 Undefined control code
132 Undefined control code
133 Undefined control code
134 Undefined control code
135 Undefined control code
136 Undefined control code
137 Undefined control code
138 Undefined control code
139 Undefined control code
140 Undefined control code
141 Undefined control code
142 Undefined control code
143 Undefined control code
144 Undefined control code
145 Undefined control code
146 Undefined control code
147 Undefined control code
148 Undefined control code

149 Undefined control code

ASCII

Code Character

150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169

SRINSS

176

180
181
182
183

185

186

189

C-6

s s > MEHTD M 2>

|a,c>c»; >

o

w Kb~ - NZro 0

Description

Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code \/
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code

Do not use

Uppercase A accent grave
Uppercase A circumflex
Uppercase E accent grave
Uppercase E circumflex
Uppercase E umlaut or diaeresis
Uppercase I circumflex
Uppercase I umlaut or diaeresis
Accent acute

Accent grave

Circumflex accent N
Umlaut (diaeresis) accent

Tilde accent

Uppercase U accent grave

Uppercase U circumflex

Italian lira symbol

Overline (high line)

Undefined control code

Undefined control code

Degree (ring)

Uppercase C cedilla

Lowercase c cedilla

Uppercase N tilde

Lowercase n tilde

Inverse exclamation mark

Inverse question mark

General currency symbol .
British pound sign

Japanese yen symbol

Section sign

ASCIH
Code

190
191
192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207
208
209

210
2n
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226

228
229

Character

P COM M O DN C.O0 D> e Sy

HO O P> OR-M C:O:- PR & - Ry

Description

Dutch guilder symbol
Cent sign

Lowercase a circumflex
Lowercase e circumflex
Lowercase o circumflex
Lowercase u circumflex
Lowercase a accent acute
Lowercase e accent acute
Lowercase o accent acute
Lowercase u accent acute

Lowercase a accent grave
Lowercase e accent grave
Lowercase o accent grave
Lowercase u accent grave
Lowercase a umlaut or diaeresis
Lowercase e umlaut or diaeresis
Lowercase o umlaut or diaeresis
Lowercase u umlaut or diaeresis
Uppercase A degree

Lowercase i circumflex

Uppercase O crossbar
Uppercase AE ligature
Lowercase a degree

Lowercase i accent acute
Lowercase o crossbar

Lowercase ae ligature

Uppercase A umlaut or diaeresis
Lowercase i accent grave ,
Uppercase O umlaut or diaeresis
Uppercase U umlaut or diaeresis

Uppercase E accent acute
Lowercase i umlaut or diaeresis
Sharp s

Uppercase O circumflex
Uppercase A accent acute
Uppercase A tilde

Lowercase a tilde

Uppercase D with stroke
Lowercase d with stroke
Uppercase I accent acute

C-7

ASCII
Code

230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Character

ol < <C.o<pn<or OO O

1
1

4

>

Description

Uppercase I accent grave
Uppercase O accent acute
Uppercase O accent grave
Uppercase O tilde

Lowercase o tilde

Uppercase S with caron
Lowercase s with caron
Uppercase U accent acute
Uppercase Y umlaut or diaeresis
Lowercase y umlaut or diaeresis

Uppercase thorn

Lowercase thorn

Undefined

Undefined

Undefined

Undefined

Long dash (horizontal bar)

One fourth

One half

Feminine ordinal indicator
Masculine ordinal indicator
Opening guillemets (angle quotes)
Solid

Closing guillemets (angle quotes)
Plus/minus sign

Do not use

ROMANS CHARACTER SET
(USASCH PLUS ROMAN EXTENSION)

br

wlola Ay
I Ia g i LN b = | >n
Qe | | Q o |« =
N <«® |<O ® |0
=g || O wn | %
e <L o lat |: =] Y]
)

@

QA T|~|0|~ 3> x]|> m
«- jolOlOo|DIO|(-|OD|L |-~ c|o
ag|lc(on|F D> |x|> — <! |
I« |@|O|0(w|w (¢O|T |4 X 2|0
olr|an|o|w|(v]|o|(~lo|® ~lv Al
Sl |=|e|Rja|- [~|~]| |+] -
HEERNHEERBERARBAE
HHEERHHEBEEEABENE
012345678.9Wﬁ...u..m.4|.6
dlo| || ~lo|~|o]jr|[o]| |0l ~|ec]
Slo|lol~] ~rfo]lo|~[~[o]le|~]felo]~]+~
Slojo|lolol«]l~v|rl-r|o]lo|lele|]][]+~
dlo|[olololoe|le|loe|e| sl ||~ +][~]

N

C9

Reserved Words

The following table lists all the reserved words in BASIC.

ABS ERASE LPOS RND
AND ERL LPRINT RSET
ASC ERR LSET RUN
ATN ERROR MERGE SAVE
AUTO EXP MID$ SGN
BLOAD FIELD MKD$ SIN
BSAVE FILES MKI$ SPACES$
CALL FIX MKS$ SPC
CDBL FNxxxxxxxx mMoD SGR
CHAIN FOR NAME STEP
CHRS$ FRE NEW STOP
CINT GET NEXT STR$
CLEAR GOSUB NOT STRINGS
CLOSE GOTO ocTs SWAP
COMMON HEX$ OFF SYSTEM
CONT IF ON TAB
cas IMP OPEN TAN
CSNG INKEY$ OPTION THEN
CvD INP OR TIMES
cvl INPUT auT T0

CvS INPUT# PEEK TROFF
DATA INPUTS POKE TRON
DATES INSTR POS USING
DEF INT PRINT USR
DEFDBL KILL PRINT# VAL
DEFINT LEFTS PUT VARPTR
DEFSNG LEN RANDOMIZE WAIT
DEFSTR LET READ WEND
DELETE LINE REM WHILE
DIM LIST RENUM WIDTH
EDIT LLIST RESET WRITE
ELSE LOAD RESTORE WRITE#
END LocC RESUME XOR
EOF LOF RETURN

Eav LOG RIGHTS$

C-10

Appendix D

ASSEMBLY LANGUAGE
SUBROUTINES

Introduction

This appendix is provided for users who call assembly-language
subroutines from their BASIC programs. If you do not use assembly-
language subroutines, you may omit reading this appendix.

The USR function allows assembly-language subroutines to be called in
the same way that BASIC intrinsic functions are called. However, we
recommend that you use the CALL or CALLS statement for interfacing
machine-language programs with BASIC. These statements produce
more readable source code and can pass multiple arguments. In addition,
the CALL statement is compatible with more languages than the USR
function.

D-1

Memory Allocation

You must set aside memory space for an assembly-language subroutine
before you can load it. You accomplish this through the /M: switch in
the BASIC command line. (The /M: switch sets the highest memory
location that BASIC uses.)

In addition to the BASIC Interpreter code area, BASIC uses up to 64K of
memory beginning at the Data Segment (DS).

When calling an assembly-language subroutine, if you need more stack
space, you can save the BASIC stack and set up a new stack for the
assembly-language subroutine. You must restore the BASIC stack,
however, before the program returns from the subroutine.

You can load an assembly-language subroutine into memory through
the operating system or the POKE statement. If you have the software
package for your microprocessor, routines may be assembled with the
MACRO Assembler and linked, but not loaded, using the LINK Linking
Loader. To load the program file, observe these guidelines:

+ Make sure the subroutines do not contain any long references

» Skip over the first 512 bytes of the MS-LINK output file, then read in
the rest of the file

D-2

CALL Statement

The CALL statement is the recommended way of interfacing machine-
language programs with BASIC. Do not use the USR function unless you
are running previously written programs that already contain USR
functions.

Format: CALL variable.name [Cargument.list)]

Remarks: variable.name contains the segment offset that is the
starting point in memory of the subroutine that you are
calling.

argument.list contains the variables or constants that are
passed to the routine. You must separate the items in
the list with commas.

Invoking the CALL statement causes the following
events:

+ For each parameter in the argument list, the 2-byte
offset of the parameter’s location within the Data
Segment (DS) is pushed onto the stack.

¢ The BASIC return address code segment (CS) and
offset (IP) are pushed onto the stack.

» Control is transferred to your routine through a long
call to the segment address given in the last DEF SEG
statement and the offset given in variable.name.

D-3

D-4

The following table illustrates the state of the stack at
the time the CALL statement executes.

High
addresses

Stack
counter

Low
addresses

Parameter 0
Parameter 1

Parameter n

Return segment address

Return offset

Each
parameter is
a 2-byte
pointer into
memory

Stack
pointer (SP)
register
contents

Your routine now has control. You may refer to
parameters by moving the stack pointer to the base
pointer, then adding a positive offset to the base

pointer.

-/

The following figure shows the condition of the stack

during execution of the called subroutine.

High
addresses

Stack
counter

Low
addresses

Parameter 0
Parameter 1

Parameter n

Return segment address

Return offset

Local variables

This space may
be used during
procedure excecution

Absent if any
parameter is
referenced
within a
nested
procedure

Absent in
local -
procedure

Stack pointer
(SP) register
contents

New stack
marker

Only in
reentrant
procedure

Stack
pointer may
change
during
procedure
execution

D-5

D-6

The following rules apply when coding a subroutine:

1. The called routine may destroy the AX, BX, CX, DX,
SI, and DI registers.

2. The called program must know the number and
length of the parameters passed. References to
parameters are positive offsets to BP (assuming the
called routine moved the current stack pointer into
BP).

3. The called routine must do a RET # statement, where
n is twice the number of parameters in the argument
list. This statement adjusts the stack to the start of the
calling sequence.

4. Values are returned to BASIC by including a variable
name in the argument list to receive the result.

5. If the argument is a string, the parameter’s offset
points to three bytes, which, as a unit, is called the
string descriptor.

Byte 0 of the string descriptor contains the length of the
string. This number may vary from 0 (if all 8 bits are
zero) to 255 (if all 8 bits are ones).

Bytes 1 and 2, respectively, are the lower and upper 8
bits of the starting string address in string space.

CAUTION
If the argument is a string literal in the program, the
string descriptor points to program text. Be careful not
to alter or destroy your program this way. To avoid
unpredictable results, add +™ " to the string literal in
the program. For example, the following statement
forces the string literal to be copied into string space:

20 A$ = “BASIC" + " "

You may now modify this string without affecting the
program.

\—

Example:

6. Strings may be altered by user routines, but their
length MUST REMAIN THE SAME. BASIC cannot
correctly manipulate strings if their lengths are
modified by external routines.

100 DEF SEG = &H800
110 FOD = &H7A
120 CALL F0O(A,B$,0)

Line 100 sets the segment address to 8000 Hex. The
value of the variable F00is added to the address as an
offset to the DEF SEG segment value. (See a book on
8086/8088 microprocessors for a complete discussion of
segment addressing.) Here F00 is set to &H7FA, so that
the call to FOC executes the subroutine at location
8000:7FA Hex (equivalent to absolute address 807FA).

The following sequence in assembly-language code
demonstrates access of the parameters passed. The
return result is stored in variable "C”.

PUSH BP ;Save BP register

MOV BP,SP ;Get current stack position in BP
MOV BX,{BP+8] ;Get address of B$ dope

MOV CL[BX] ;Get length of B$ in CL

MOV DX,[BX+1] ;Get address of B$ text in DX

MOV SI[BP+10] ;Get address of ‘A’ in SI
MOV DIL[BP+6] ;Get pointer to ‘C’ in DI
MOVS WORD ;Store variable ‘A’ in 'C’.

POP BP ;Restore BP register
RET 6 ;Restore stack, return
NOTE

The called program must know the variable type for the
numeric parameters passed. In the previous example,
the instruction MOVS WORD copies only 2 bytes. This
suffices when variables A and C are integers. However,
you have to copy 4 bytes if the variables are single-
precision values and 8 bytes if they are double-precision
values.

D-7

USR Function

Although the CALL statement is the recommended way of calling
assembly-language subroutines, the USR function is still available for
compatibility with previously written programs.

Format:

Remarks:

D-8

USR [digit] Cargument)

digit is an integer that ranges from 0 to 9. It specifies
which USR routine is being called and corresponds with
the digit supplied in the DEF USR statement for that
routine. If you omit digit, BASIC assumes the call is to
USRO.

argument is any numeric or string expression.

In BASIC, you must execute a DEF USR statment before
calling a USR function to ensure that the code segment
points to the subroutine being called. The address given
in the DEF SEG statement determines the starting
address of the subroutine.

For each USR function, you must execute a DEF USR
statement to define the USR function offset. This offset
and the currently active DEF SEG statement determines
the starting segment of the subroutine,

When the USR function call is made, register AL
contains a value that specifies which type of argument
was given. The value in AL may be one of the
following;:

Value in AL Type of Argument

2 Two-byte integer (two’s complement)

3 String

4 Single-precision floating point number

8 Double-precision floating point
number

If the argument is a number, the BX register pair points
to the Floating Point Accumulator (FAC) where the
argument is stored.

The Floating Point Accumulator is the exponent minus
128. (The radix point is to the left of the most significant
bit of the mantissa.)

Example:

If the argument is an integer:

FAC-2 contains the upper 8 bits of the argument.
FAC-3 contains the lower 8 bits of the argument.

If the argument is a single-precision floating point
number:

FAC-2 contains the middle 8 bits of the argument.
FAC-3 contains the lowest 8 bits of the argument.

If the argument is a double-precision floating point
number:

FAC-7 through FAC-4 contain four more bytes of the
mantissa (FAC-7 contains the lowest 8 bits).

If the argument is a string, the DX register pair points to
three bytes. These three bytes are called the string
descriptor.

Byte 0 contains the length of the string. This value
varies from 0 (if all 8 bits are zeros) to 255 (if all 8 bits
are ones).

Bytes 1 and 2, respectively, are the lower and upper
eight bits of the starting string address in the BASIC
Data Segment.

CAUTION
If the argument is a string literal in the program, the
string descriptor points to program text. Be careful not
to alter or destroy your program this way.

Usually, the value returned by a USR function is the
same type (integer, single-precision, double-precision,
or string) as the argument that was passed to it.

100 DEF USR0=4HB00 ‘Assumes user gave /M:32767
120 X = 5

130 Y = USRO

140 PRINT Y

The type (numeric or string) of the variable receiving
the function call must be consistent with the argument
passed.

D-9

Appendix E

INSTALLING BASIC ON THE HP 110

Introduction

This appendix provides details on installing BASIC on the HP 110
Portable Computer. It tells you how to make a back-up copy of your
master disc and the simpliest procedures for getting BASIC up and
running on your computer.

You have two major options. You may either modify P.A.M. so you can
use P.A.M.’s friendly interface to run BASIC or you may simply enter
BASIC as an MS-DOS system command. This appendix describes both
methods.

Copying The Program Disc For Back-
Up

Before using Series 100/BASIC for the first time, you should make a

back-up copy of the master BASIC disc. To accomplish this, you need the
following:

¢ the Portable
« the Series 100/BASIC program disc

« an HP 9114A 3 %-Inch Single Flexible Disc Drive (or another
compatible disc drive)

* a back-up disc, formatted as a single-sided disc

CAUTION
Before going through the install procedure, you should write-protect
your master disc to prevent any accidental “over-writing”. For
information on write-protecting your disc, refer to the owner’s manual
that accompanied your disc drive.

The Portable encorporates many new technologies into its design,
including the use of double-sided discs. It is important, however, that the
Portable remains compatible with other Hewlett-Packard Series 100
products. Since all existing Series 100 software uses single-sided disc
format, you should copy your master BASIC disc as a single-sided disc.
This requires your using the format program on the UTILITIES disc that
came with your Portable as the Portable’s built-in format command
formats a disc in double-sided format.

NOTE
The UTILITIES disc is a double-sided disc. This means that you must
read it in a double-sided disc drive. If you have a single-sided disc drive,
you should use P.A.M. or the MS-DOS FORMAT command to format the
back-up disc.

Double-sided disc drives (such as the HP 9114A) can use single-sided
discs without any problems.

E-2

Formatting The Back-Up Disc

If you are using a new disc, you must format it first.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Connect and turn on all the equipment. You should also
ensure that the Portable’s System Configuration menu
correctly show the number of disc drives that you have
connected to your Portable. (The HP 110 Portable
Computer Owner’s Manual provides the necessary
details.)

Insert the UTILITIES disc that you received with your
Portable into a double-sided disc drive.

To copy the formatting program to your electronic disc,
type:
COPY C:FORMAT.COM A:

Remove the UTILITIES disc from the disc drive and
insert the blank, unformatted disc.

Type A:FORMAT C: /W(Return)
Then press the key to begin formatting. It takes
about two minutes for the system to format the disc.

After formatting finishes, you are ready to copy the
master disc. But first, erase the formatting program
from the electronic disc by typing:

ERASE A:FORMAT . COM[Return]

E-3

Making The Back-Up Copy

Once you have a single-sided, formatted disc, you can use the MS-DOS
command DISKCOPY to copy the “Source” disc (the Series 100/BASIC
program disc) to the formatted “Target” disc (your back-up disc).

The master BASIC disc contains these files:

e BASIC.COM (the BASIC interpreter program)

e BASIC.INS$ (the HP 150 install file)

e RANDOM.BAS (a sample BASIC program)

s PAM.MNU (the HP 110 P.A.M. menu file)

e HP110\BASIC.IN$ (an HP 110 file for a future install program)

You must copy all these files to your back-up disc. The Portable provides
the necessary prompts to lead you through this process.

If you have a dual disc drive, type:

DISKCOPY C: D:

Now follow the instructions on the display. (They direct you to place the
“Source” (your master) disc in drive C and the “Target” (your back-up)
disc in drive D).

The procedure for a single disc drive involves a few more steps but the
Portable again provides assistance.

Step 1. I you have a single disc drive connected to your system,
type:
DISKCOPY C: C:

E4

Step 2.

Step 3.

Step 4.

Step 5.

At this point, the Portable prompts you to insert the
“Target” disc (your formatted back-up disc) into the disc
drive and press any key when you are ready to
continue.

NOTE
Your Portable detects the , ,and
keys as keys that are used in combination

with other keys. Therefore, it does not respond to your
pressing any of these keys by themselves. Although you
may press any other key to continue the operation, the
remainder of this procedure directs you to press the

key.

The Portable then tells you when to insert the Source
disc, when to insert the Target disc again, the Source
disc, the Target disc, and so on. To continue the copying
process, swap the discs and press the key. Keep
swapping discs in the external drive as the Portable
directs until all of the master files are copied. The
copying process is done when you see the message
Copy complete,

As soon as the copying is finished, you are asked if you
want to make another copy. If you do, press the key
and repeat the above procedure with another formatted
back-up disc. If your answer is no, press the [N] key
then the key to return to PAM.,

Once you have Series 100/BASIC on a back-up disc, you
should use this back-up disc as your work disc and store
the master program disc in a safe place. (When you
remove the back-up disc from the disc drive, don’t
forget to label it for future reference.)

E-5

Running Series 100/BASIC

You can load Series 100/BASIC through P.A.M. or directly from the MS-
DOS operating system. P.A.M. provides a “friendlier” interface but
requires more steps in the set-up procedure. Entering BASIC through an
MS-DOS system command gives you more flexibility in establishing the
BASIC environment (see Chapter 3 for further information). This
appendix uses the simpliest form of the BASIC command.

Running BASIC Using P.A.M.

You can use P.A.M. to run Series 100/BASIC from either an external disc
drive or the internal electronic disc.

Running From An External Disc

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Display the main P.A.M. menu on your screen. If some
other information currently appears, you can return to
P.A.M. by entering the MS-DOS EX1T command, or by
performing a hard reset. (You may reset your Portable
by simultaneously pressing the and
keys.)

Place your back-up copy of the BASIC disc into the
external disc drive.

Press (71] (NITXEXEIETEN)

This action updates the P.A.M. menu to include the
BASIC label as a possible selection.

Use the key or the cursor-control (“arrow”) keys
to move the pointer to the BASIC field.

Press [Select] or (1] (ISR

Appendix F

INSTALLING BASIC ON THE
HP 150

Introduction

This appendix provides details on installing BASIC on the HP 150
Personal Computer. It tells you how to make a back-up copy of your
master disc and the simplest procedures for getting BASIC up and
running on your computer.

Making A Working Copy Of BASIC

You should always make a back-up copy of your application software as
a safeguard against possible damage or loss. Since the HP 150 supports a
variety of peripheral, mass-storage devices, the actual procedure depends
upon which disc drive you are using. The following sections describe
making a working copy of BASIC using either a dual disc drive or a hard
disc drive. As the system directs you on each step you must take, you
may follow the instructions on the screen if you have a different type of
disc drive.

CAUTION
Before going through the install procedure, you should write-protect
your master disc to prevent any accidental “over-writing”. For
information on write-protecting your disc, refer to the owner’s manual
that accompanied your disc drive.

F-1

For Dual Disc Drive Users

The following discussion lists the steps that you should follow to make a
back-up copy of your BASIC master disc. For this procedure, you need
the following discs:

¢ Your back-up copy of the HP 150 SYS__ MASTER
¢ Your back-up copy of DISC APPLICATIONS

¢ Your master copy of BASIC

* An unformatted disc

Your computer assumes drive A (the left-hand drive) is the currently
active drive, unless you have taken steps to instruct it differently. This
procedure, therefore, requires your inserting the “controlling” discs into
drive A.

Inserting a disc into a drive is an easy task:

+ Hold the disc by its label end to prevent soiling the shutter
mechanism.

+ Inspect both sides of the disc. You can recognize the top since it has
printing on the shutter and also contains the larger portion of the -
label. The most obvious feature on the bottom is the circular head.

* Ensure that the top of the disc is facing up when you insert the disc
into a drive. The engraved arrow shows which way you enter the
disc.

The following discussion uses the touch fields of the HP 150, but you
may select each operation by pressing the function key that corresponds
to the operation you wish to perform.

Step 1. Put your back-up copy of the HP 150 Sys__Master (the
one containing “P.A.M.”) into drive A.

Step 2. Put the disc you wish to format in drive B.

Step 3. Do a System Reset (by simultaneously pressing the

[shift] ,[CTRL], and [Reset] keys) to put the system in its
initial, power-on state.

Step 4. Select the FORMAT program by touching this field, then
[Start Applic |

F-2

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.
Step 11.
Step 12.

Step 13.
Step 14.
Step 15.

Step 16.
Step 17.

Select dr i ve B by pressing this field and type a label for
the disc (for example, BaS1C). Then press the
key.

To include a copy of P.A.M. on the disc while it is being

formatted, touch [EENENEILLE (An asterisk appears
in the screen label to show that you have selected this

option.)
Touch to read in P.A.M.. When the

message Press Relurn Lo contlinue appears, press the
key to format your disc on drive B.

After formatting finishes, touch JEESSNICIENN to
leave this application.

Remove the back-up copy of P.A.M. from drive A and
insert your back-up copy of DISC APPLICATIONS into
drive A. (This disc contains the “Install” utility.)

Touch IXIXEERIETTR
Select 1L, then touch TR

After the Install program has been loaded, remove the
disc from drive A and insert your BASIC master into
drive A.

Touch IETTESVITTIYEN
Touch IEFTIEYEN.

Select by touching this field.

Touch BTSN EEREINE.
After the installation procedure finishes, touch

Exit Select §

NOTE
Step 18 applies to the initial version of P.A.M. (version
number A.01.02). If you have a later version of P.A.M,,
proceed to Step 19.

F-3

Step 18.

Step 19.

Touch |EEFEEETEYRN This is your last step when

using version number A.01.02 of PAM..

Touch |[EEFEEIXI and after the Main Menu appears
touch ECTNEYEN.

You have now successfully installed P.A.M. and BASIC on a single back-

up disc.

For Hard Disc Drive Users

This section details the steps that you must take to place a working copy
of Series 100/BASIC on a hard disc.

For this procedure, you need the following discs:
* Your back-up copy of the HP 150 SYS__MASTER
* Your back-up copy of DISC APPLICATIONS

* Your master copy of Series 100/BASIC

¢ Your hard disc drive

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

F-4

If you have not already done so, format your hard disc.
(The owner’s manual for your hard disc supplies the
necessary details.)

Put your back-up copy of the SYS_ MASTER (the disc
containing P.A.M.) into the flexible disc drive A and
bring up the main P.A.M. menu.

Remove the SYS__MASTER disc and insert your copy
of DISC APPLICATIONS into the flexible disc drive A.
(This disc contains the “Install” utility.)

TS RercadDiscs |

P.A.M. updates the list of possible selections to include
the INSTALL utility.

Touch the INSTALL field to select this option. (You
know you have successfully selected Install when the
field becomes highlighted.)

Touch TR NN

The message Loading Install appears on your screen.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.
Step 15.

Step 16.

Step 17.

When the red light on the disc drive goes out, remove
the DISC APPLICATIONS disc and insert your Series
100/BASIC master disc.

Inspect the current screen display. The message
: nction below appears on the screen. Since you
want to install an application program and not remove

one, touch [BRER-IN Applics §

The next screen asks you to select the correct disc drives.
Remember, you are installing BASIC “FROM:” the
flexible disc drive A “TO:” the fixed disc drive B.

Touch “~” in the FROM column until this field is
highlighted.

Touch “E” in the TO column until this field is
highlighted.

Touch JEETEEEEEEN.

The message Select the applications tobe
installed appears on the screen.

Select BAS1C by touching this field.

Ll Start Install §

When the mstallatlon procedure finishes, the message
Install compl d appears on the screen. Touch

Exit Select §

NOTE
Step 16 applies to the initial version of P.A.M. (version
number A.01.02). If you have a later version of P.A.M.,
proceed to Step 17.

Touch |EEEEEEEREIRE. This is your last step when

using version number A.01.02 of P.AM..
Touch and after the Main Menu appears

touch IEEINIGETEN

F-5

Starting BASIC

After you have both the operating system and BASIC on a single disc,
running BASIC becomes a simple task. You only need to insert this disc
into drive A, simultaneously press the [Shift] , [CTRL], and [Reset] keys to
“reboot” the system, and touch to load BASIC into
your computer’s memory. (Refer to Chapter 3 for information on
increasing your flexibility when entering BASIC.)

F-6

Running From The Electronic Disc

Before you can use P.A.M.’s facilities to run Series 100/BASIC, you must
copy the BASIC.COMfile into the electronic disc. Next, you must install
the program in P.A.M. by modifying the FPArM.MNU file in the electronic
disc. You do this by placing two lines into the existing FPArM. MNU file to
reserve space for the label and file name. These lines are:

e Basic
s BASIC
If the electronic disc doesn’t have a PAM.1MKNU file, you can copy the one

from your back-up disc to the electronic disc.

To remove BASIC from P.A.M., you must return the A .MNU file to its
original state. (Since the install procedure added two lines to the
PAM.MNU file, you must delete those same two lines.)

For information on these tasks, refer to “Copying a File” and “Installing
Application Programs in PA.M.” in chapter 2 of your HP 110 Portable
Computer Owner’s Manual.

Step 1. Display the main P.A.M. menu on your screen. (You can
return to the P.A.M. menu by entering the M5-DOS
EXIT command, or by performing a hard reset.)

Step 2. Use the MS-DOS “list-directory” command (D !R) to
verify that the BAS1C. COM file is in the electronic disc.

Step 3. If the application program is installed, use the key

or the “arrow” keys to move the pointer to the BASIC
selection.

Step 4. Press [Select] or (f1] (NI -

E-7

Running BASIC Using MS-DOS

You can also run Series 100/BASIC from an external disc or the electronic
disc by typing the appropriate MS-DOS command. The following
discussion gives the simpliest form of the BASIC command. Refer to
Chapter 3 if you want to tailor the BASIC environment for your specific
needs.

Running From An External Disc

Step 1. Insert your back-up copy of the BASIC disc into the
external disc drive.

Step 2. Type C:BASIC Return

When drive C (the drive with the BASIC disc) is the
default drive, you may omit typing the drive specifier
C:.

Running From The Electronic Disc

Before using MS-DOS to run Series 100/BASIC from the electronic disc,
you must copy the BASIC.COM file into the electronic disc. For
information on how to do this, refer to “Copying a File” in chapter 2 of
your HP 110 Portable Computer Owner’s Manual.

Step 1. Use the MS-DOS “list-directory” command (DIR) to
verify that the BASIC.COM file is in the electronic disc.

Step 2. Type A:BASIC [Return]

If drive A is the default drive, you may omit typing the
drive specifier A:.

Step 3. Remove the SYS_ MASTER disc and insert your copy
of DISC APPLICATIONS into the flexible disc drive A.
(This disc contains the “Install” utility.)

E-8

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Touch EIXEEIEEEN

P.A.M. updates the list of possible selections to include
the INSTALL utility.

Touch the INSTALL field to select this option. (You
know you have successfully selected Install when the
field becomes highlighted.)

PLelitdd Start Applic B

The message L ocading Install appears on your screen.

When the red light on the disc drive goes out, remove
the DISC APPLICATIONS disc and insert your Series
100/BASIC master disc.

Inspect the current screen display. The message Select
a function below appears on the screen. Since you
want to install an application program and not remove

one, touch [EREFETNTIEEER

The next screen asks you to select the correct disc drives.
Remember, you are installing BASIC “FROM:"” the
flexible disc drive A “TO:" the fixed disc drive B.

Touch “A” in the FROM column until this field is
highlighted.

Touch “B” in the TO column until this field is
highlighted.

Touch [[EITEITISIIN

The message Select the applications to be
installed appears on the screen.

Select BASIC by touching this field.

Touch B BLE IR

E-9

Step 15. When the installation procedure finishes, the message
Install completed appears on the screen. Touch

Exit Select §

NOTE
Step 16 applies to the initial version of P.A.M. (version
number A.01.02). If you have a later version of PAM,,
proceed to Step 17.

Step 16. Touch |EESEEETEIN. This is your last step when
using version number A.01.02 of P.AM..
Step 17. Touch and after the Main Menu appears

touch IETEIIEN

E-10

Index

A
ABS .. 6-3
Absolute Value i 6-3
Adding Text i 1-8,1-11
Algebraic Expressionsl 2-11
Alphabetizing Strings il 2-17
Altering Data And Variables 5-6
AND .. 2-13
Arctangent 6-3
ArithmeticFunctions o ool 5-14
Arithmetic Functions, Derived 5-15
Arithmetic Operators 2-10
ArithmeticOverflow i i 2-12
Array Variables 2-6
Arrays, Deletingl 6-42
Arrays, Dimensioning o oL 6-37
Arrays, Initial Subscripto o oo 6-104
ASC 6-3
Assembly Language Subroutinesl D-1
Assigning Values To Variables 6-77
Asterisk After Line Number 6-4
ATN 6-3
AUTO .. 6-4

Index-1

Back-up Copy For BASIC ...t 1-1, E-1, F-1
BASIC . o 3-2
BASIC Command Lineooiiiii i, 3-2
BASIC FUNCHONS .« .\ttt 5-12
Bits, Masking i 2-15
Bits, Mergingcoii i 2-15
BLOAD .o 6-6
Braces ...t e xi
Brackets oii e xi
Branching Statements i 5-8
Branching To Another Programt 5-9
Branching, Conditional oo 5-9
Branching, Unconditional, 5-9
BSAVE . 6-8
C
CALL .o e e 6-9, D-3
CALLS .o e 6-10
Capital Letters xi
CDBL .t 6-11
CHAIN L e 6-12
Chapter Format i 6-2
Character COmMPparisonsoviinirrireneenaannenenns 2-17
Character Setttt 1-5
CHR . s 6-17
CINT i s 6-17
CLEAR . . e s 6-18
Clearing The Screenc.oiiirieiiiiniinieaaiieanonn. 5-7
CLOSE .. e s 6-20

Index-2

Colon As Statement Separator o000 1-5

Column Positioniiiiiiiiiiii i 6-85
CommandLevelo i 1-2
Commands Used As Program Statements 5-4
COMMON .. e 6-21
Computer Control Statements i, 5-7
Concatenationiiiiiiiiiiii e 2-17
Conditional Branching Statements 5-9
Constantsttt 2-2
CON T o e e e 6-23
Control Characters.............cooiiiiiiiiiiin ... 1-7, 6-95
Control-C, Cancelling AUTO 0. 6-4
Control-C, Cancelling INKEY$t 6-65
Control-C, Cancelling LINEINPUT 6-78
Control-C, Cancelling LISTt 6-81
Control-C, Cancelling WAITt 6-151
Control-C, Returning To Command Level 1-7, 6-142
O i 6-25
COSECANt . . .ottt e 5-15
Cotangentc.iiitiiii i e 5-15
C NG .ot 6-25
CV D e 6-26
Ve 6-26
VS e 6-26

Index-3

D AT A .. 6-27
Data Operators 2-1
DATA Statements, Rereading 6-27, 6-130
Data Variables 2-1
DATES Function i, 6-28
DATES Statementttt 6-29
Debugging Statements L 5-11
Declaration Characterst 2-4,2-5
DEF FN .. e 6-30
DEF SEG oottt e 6-32
DEF USR i e 6-33
DEERD B . ..t e 6-34
DEFINT . 6-34
DEFSNG ..o e e 6-34
DEFST R .. e 6-34
Defining Data Or Variables 5-6
Defining Error Codes 6-45
DELETE . e e e 6-36
Deleting Text 1-12
Derived FUNCHONS i e et e e 5-15
DIM e e 6-37
Direct Mode e 1-2
Disc File Namesot e et e 4-1
Division By Zero 2-12
Documenting Your Program 1-18
Double Precisionccouiiiiiiiitien ittt 2-3

Index-4

B e 6-47
BDIT .. e 6-38
EditKeys 1-7
Edit Mode Subcommands ool 1-9
EIEPSIS . ..o xi
ELSE ... i 6-61
END ..o 6-39
Entering AProgram i 1-8
BOF . o 6-40
Equality Testing i 6-63
EQV (Equivalent)o 2-15
ERASE ..t 6-42
Erasing Text 1-12
BRL .\t 6-43
ERR .. e 6-43
21 S 0 6-45
Error Codesttt e A-1
Error Codes, Definingo, 6-45
Error Messagescooiiiiiiiiiiiiiiiiii ., 1-18, A-1
EScape SeqUENCESttt B-1
Evaluation Order, 2-10, 2-13
Exchanging Values.................... oL 6-141
Exclusive OR i 2-14
Executable Statement il 1-5
EXP 6-47
Exponent, Floating Point 2-2
Exponential Format o ool 6-115
Exponentiation i 2-10, 6-47
EXPressions 2-10

Index-5

“Falling Through” i e 6-57
FIELD ..ot 6-48
File Operationsot 4-1, 5-5
FILES ..ottt 6-50
Finding Text ... e 1-12
FIX ot 6-51
Fixed Point Constantso i, 2-2
Floating Point Constants, 2-2
FOR o s 6-52
FOR/NEXT LCOPS . ..ot eeeee 5-9, 6-52
Format For Functions i, 6-2
Format For Instructionso i, 6-2
Formatting A Program Lineo, 1-4
Formatting Numbers i 6-113
Formatting Strings i 6-112
Formatting The Random- f11e Buffer 6-48
FRE .o 6-55
Functional Operators oo 2-16
G
General Purpose Functions i 5-13
Generating Line Numbers Automatically 6-4
) 6-56
GOSUB . ..t 6-57
GOT O . e e 6-59
H
Hex Constantsouiiiiiiin e 2-2
HEXS . 6-60
Hyperbolic Trigonmetric Functions 5-15

Index-6

I 6-61
IMP (Implied) 2-14
Inclusive OR 2-14
Indirect Mode 1-3
Infinite Loop With WAITl 6-151
INKEYS .. e 6-65
IN P L e 6-65
INPUT e 6-66
Input Statements i 5-10
Input Editing s 1-11
Input/Output Functions 5-13
INPUTH .« i 6-69
INPUTS .. e 6-71
Inserting Text e 1-11
Installing BASIC i 1-1, E-1, E-1
INSTR ... 6-72
Instructions e X
INT 6-73
Integer Constants i 2-2
Integer Division i 2-11
Inverse Trigonmetric Functions 5-15
Ttalicized Words i xi
J
Justifying Text 6-87
K
KILL .. e 6-74

Index-7

LEFT G ..ot e 6-76
Left-justifying A String i 6-87
LEN e 6-76
LB .ttt e 6-77
Line Formatt 1-4
LINEINPUT ... e 6-78
LINEINPUTH ... e 6-79
Line Modify i 1-15
0 1 S PP 6-81
LIS T ettt e 6-81
LOAD . .ot e 6-83
LOC i e 6-84
LOF .t e 6-84
LOG ittt 6-85
Logical Lineo i 1-4
Logical Operatorsttt 2-13
Looping Statementsot 5-9
Lower Case Letterst xi
LPOS e 6-85
LPRINT .. e 6-86
LPRINT USINGt i 6-86
LSBT ..t e 6-118

Index-8

Machine Infinity 2-12
Making A Backup Copy For BASIC 1-1
Mantissa, Floating Point i il 2-2
Masking Bits 2-15
Memory Allocation i i D-2
Memory Image File i i 6-6
MERGE ... 6-88
Merging Bits 2-15
MID$ FUnction 6-90
MID$ Statementuuuun 6-91
MKDS . . 6-92
MK e 6-92
MKSS . 6-92
MOD . 2-12
Modes Of Operationc i, 1-2
Modify Mode 1-14
Modifying Textuuu 1-9
Modulus Arithmetic i 2-11
Moving The Cursoruuu i 1-10
N
NAME .. 6-93
Natural Logarithms oo i 6-47, 6-85
Nesting FORLoopst 6-52
Nesting IF Statements 6-62
Nesting Subroutines oL 6-57
Nesting WHILE Loops, 6-152
NEW . 6-94
NEXT o 6-52
Non-executable Statementl 1-5
NOT 2-13
Notation Conventionscoiiiiiiiiiniiiiiiaiannans xi
NULL e 6-95
NumericFields 6-113
Numeric Variableso oo 2-5

Index-9

Octal Constantsuuuirriiiiiiiiiiiniiiiiaaaaans 2-3
O T ettt 6-96
ONERRORGOTO ... e 6-97
ON..GOSUB e 6-99
ONL.GOTO ..o e e 6-100
OPEN ..ot 6-101
OPEratorsot 2-10
OPTION BASE 6-104
OR e e 2-14
Order Of Precedenceccooiiiiiiiienneiinna... 2-10, 2-13
OUT .o e 6-105
Output Statementst 5-10
Output Functions i, 5-13
Overflow In Arithmetic Operations 2-12
P
Parentheses And Order Of Evaluation 2-11
PEEK . . oo 6-106
POKE ..ttt 6-107
PO . o 6-108
Preface ... X
PRINT ..ttt 6-109
Print Operationsoiiiiiiiiiiiiieniennannn... 1-19
PRINTUSING ... e 6-112
Print Zones ... s 6-109
PRINTH .t e 6-117
PRINTH USING . ..o 6-117
Printing Numbers i 6-113
Printing Stringsooiiiiiiiiiiii 6-112
Program Control Statementst 5-8
Program Lines i 1-4
Programming Guidelines oL 11
Programming Tasks il 5-1
Protected Files i i 4-8
Punctuation e xi
PUT o 6-120

Index-10

Question Markot 1-3, 6-109
Question Mark Promptl 6-66, 6-78
Question Mark Prompt, Suppressing 6-66, 6-69
Quick Computation 1-3
R
“Random” Numbersiiuiinintiiiii e 6-133
Random-Access Fileso i 4-3
RANDOMIZE . . .ttt e 6-121
READ . e s 6-123
Reference Tableso oottt e C-1
Relational Operators ... 2-12
REM o e e e e 6-125
RENUM . e e e e e e e 6-127
Replacing Textot e 1-12
Rereading DATA Statements 6-27, 6-130
Reseeding Random-number Generator 6-121
Reserved Words . ..o it e iae e 2-4, C-10
RESET............. E e e e e 6-129
RESTORE . . ot e e e e 6-130
RESTORE With CHAIN i i e 6-14
RESUME .o e e et i 6-131
RETURN .ottt et ettt 6-132
RIGHT S . oo e e et e e 6-133
Right-justifying A String oo 6-87
RN D oot e 6-133
ROET . i 6-87
RUN 6-134

Index-11

SAVE 6-135
Secant 5-15
Sequential Files 4-1
SGN 6-136
SIN 6-136
Single Precisioneeeuriiiiiiiiiiiiii.. 2-3
Space Bar 1-11
SPACES ... e 6-137
P C 6-137
Special Functions 5-17
Square Brackets xi
SOR . e 6-138
Start of Text Pointer......... i, 1-16
Starting BASIC e 1-2
STEP With FOR Statement 6-52
STOP ottt e 6-139
STRS ..t 6-140
String Fields 6-112
String Functions 5-16
String Operationsiiiiiiiiiiiiiiiiiiii 2-17
String Operatorsttt 2-17
String Variables 2-5
STRINGS . .o 6-140
Subroutine Statements o i 5-9
SWAD .. e 6-141
SYSTEM ... e 6-142
System Commandsot 5-3

Index-12

TAB ... 6-143
TAN 6-143
Terminal I/O Statements 5-10
Testing Equality o i 6-63
THEN .. e 6-61
TIMES Function i 6-144
TIMES$ Statement i 6-145
Trace Flag e 6-146
TROFE . e 6-146
TRON . oo e 6-146
Truth Tables o 2-13
Two's Complemento 2-16
Type CONVersionoouuuiimiiiiiiiiiiiineeannns 2-7
Type Declaration Characters 2-4, 6-34
U
User-defined Functions 6-33
Using Commands As Program Statements....................... 5-4
USR FUNCHION . ..ottt e et et e et e 6-147, D-8
v
VAL Function i i 6-148
Variable Length String Field 6-113
Variables e 2-3
VARPTR . . 6-149
Vertical Bar () e xi
W
WAIT 6-151
WHILE.WEND e 6-152
WIDTH ... 6-154
WIld Cards 6-50, 6-74
WRITE ... 6-155
WRITEH .. e 6-156
Writing A Simple Program i 1-20
X
XOR e 2-14

Index-13

Series 100/BASIC

MANUAL CUSTOMIZATION
PACKAGE

For the Portable PLUS by Hewlett-Packard

Your Series 100/BASIC manual originally was designed for use with
the HP 150 and The Portable (HP 110). To use this manual with your
Portable PLUS, replace the pages noted in the table below with the
corresponding pages in this package.

Remove Page: Add Page:

Table of Contents, ii | Table of Contents, ii (Portable PLUS)

1-1, 1-2 1-1 (Portable PLUS), 1-2 (Portable PLUS)
1-13, 1-14 1-13 (Portable PLUS), 1-14 (Portable PLUS)
1-21, 1-22 1-21 (Portable PLUS), 1-22 (Portable PLUS)
5-7, 5-8 5-7 (Portable PLUS), 5-8 (Portable PLUS)
B-1, B-2 B-1 (Portable PLUS), B-2 (Portable PLUS)

(bp HEWLETT

PACKARD

82862-90001 Printed in U.S.A. 6/85

Table of Contents

Preface X
Manual Organization i X
Notation Conventions.o .ttt i, xi

Chapter 1: Getting Started

The HP BASIC User. 1-1
Making a Working Copy of BASIC. 1-1
Starting BASIC 1-2
Modes of Operation............... i 1-2
Direct Mode 1-2
Quick Computation. 1-3
Indirect Modeo il 1-3
Line Format. 1-4
Character Set......... ... 1-5
Entering a Program i 1-8
Modifying a Program 0 i 19
Edit Mode. 1-9
Edit Mode Subcommands.ooo oL 1-9
Entering Edit Mode from a Syntax Error.................... 1-14
Modify Mode. 1-14
Using Modify Mode. 1-15

Start of Text Pointer.........., 1-16

Error Messages i il 1-18

Chapter 1: Getting Started

Documenting Your Program..................., 1-18
Printing Operations i i, 1-19

L Commands and Statements, 1-19
Writing a Simple Program. oo oo 1-20

Chapter 2: Data, Variables, and Operators

Introduction 2-1
Constants. s 2-2
Single and Double Precision Form for Numeric Constants. 2-3
Variables 2-3
Variable Names and Declaration Characters.................... 2-4
Special Type Declaration Characters........................... 2-4
Reserved Wordso i 2-4
String Variablesl 2-5
Numeric Variables. o i i 2-5
Array Variables.l 2-6
Type CONVersion 2-7
Expressions and Operators.o, 2-10
Arithmetic Operators. 2-10
Integer Division and Modulus Arithmetic.................. 2-11
Overflow and Division by Zero........................... 2-12
Relational Operators o i, 2-12
Logical Operators i 2-13
Functional Operators.......... o i 2-16
String Operations. i 2-17
Concatenationt 2-17
COMPAriSONS.\t 2-17

Chapter 3: The BASIC Environment

ii

Chapter 1

GETTING STARTED

The HP BASIC User

To be a successful HP BASIC user, you should be familiar with general
programming concepts and the BASIC language. If you are unfamiliar
with BASIC, we recommend that you either read one of the introductory
texts on programming in BASIC or take a beginning-level course on this
language.

Making A Working Copy Of BASIC

You should always make a back-up copy of your application software as
a safeguard against possible damage or loss. This procedure is simple, but
the actual steps vary depending upon which computer you are using.
Appendix E provides details for installing BASIC on an HP 110 while
Appendix F provides this information for the HP 150.

After you have made a back-up copy, you should use this copy for your
daily work and store the “master” disc in a safe place.

1-1

Starting BASIC

To start BASIC, simply insert your back-up disc into your disc drive,

press then select BASIC, and press

EEEETTIEN The appropriate appendices (E or F) provide more
information and alternate ways of accessing BASIC.

Modes Of Operation

Once the BASIC interpreter assumes control, it prompts you for
information by displaying the symbol 0k. This manual refers to that
state (where the interpreter is awaiting your next command) as the
command level. After BASIC issues its first 0k prompt, it remains at the
command level until you enter a RUN command.

At the command level, you may converse with the interpreter in one of
two modes: Direct Mode or Indirect Mode.

Direct Mode

Direct Mode is useful for debugging programs and for quick
computations.

In Direct Mode, you do not precede BASIC statements or functions with
line numbers. Rather, you “talk” interactively with the BASIC
interpreter, and BASIC executes each instruction as you enter it.

For example,

Ok

PRINT *HELLO MOM*" [Return]
HELLO MOM

Ok

You may use Direct Mode to display the results of mathematical and
logical operations (using PRINT statements) or to store the results for
later use (using the LET statement). However, instructions that produce
these results are lost after the interpreter executes the instruction.

1-2

Ending and Restarting Edit Mode

Pressing the key prints the remainder of the
line, saves any changes you have made, and exits Edit
mode.

The E subcommand has the same effect as pressing the
key except the remainder of the line is not
printed.

The 8 subcommand returns control to the BASIC
command level, but cancels any changes that were
made to the line during Edit mode.

The L subcommand lists the remainder of the line,
saves any changes that you made, and repositions the
cursor to the beginning of the line. Edit mode remains
active. You usually use this subcommand to list a line
when you first enter Edit mode.

The A subcommand allows you to edit a line over again.
It restores the line to its original state and positions the
cursor at the beginning of the line.

Simultaneously pressing the and (A] keys enters
Edit mode on the line that you are currently typing.
BASIC responds by doing a carriage return, printing an
exclamation point (!) and a space. It positions the cursor
at the first character in the line. You may now enter an
Edit mode subcommand.

NOTE
If you have just entered a line and wish to go back and
edit it, typing EDIT . enters Edit mode at the current
line. (In this context, the special symbol (.) always
refers to the current line.)

When BASIC receives an unrecognizable command or illegal character
while in Edit mode, it ignores the character and sends a Control-G (Bell
character) to ring the computer’s bell.

1-13

Entering Edit Mode From A Syntax Error

When BASIC encounters a syntax error while executing a program, it
automatically enters Edit mode at the line that caused the error. For
example:

10 K=2(4) [Return]
RUN [Return]

Syntaxerror in 10
Ok
10

When you finish editing the line and either press the key or use
the E subcommand, BASIC replaces the line. However, modifying a line
causes all variable values to be lost. If you want to preserve variable
values for further examination, first exit Edit mode with the @
subcommand. This action returns BASIC to the command level and
preserves all variable values.

Modify Mode

The following discussion only pertains to the HP 150 as Modify mode is
inapplicable to the HP 110.

With the HP 150, you may use Modify mode to edit program lines with a
minimum of typing;:

e L15T the desired portion of the program to the screen.

« Enter Modify mode (as described below).

+ Use the cursor control keys to move the cursor to the line you wish to
modify.

¢ Make any changes by using the keyboard’s character editing keys.
¢ DPress the key to store the edited line into memory.

NOTE
When a BASIC statement occupies more than one screen line (that is,
you pressed to insert a line feed character while entering the
line), you must use Edit mode to modify that line.

1-14

The following steps lead you through a simple exercise where you use
each of these commands.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Turn on your system and insert the back-up disc that
contains your copy of BASIC. (See the appropriate
appendix for the procedure to create this back-up disc
on your computer.)

When the P.A.M screen appears, select BASIC by
pressing ETETENTTISEN

After MS-DOS loads BASIC into memory, the following
message appears:
Microsoft BASIC Versionn.nn
[MS-DOS Versionl
Copyright 1977-1983 (C) by Microsoft
Created: dd-mmm-yy
xxxxx Bytes free

where:
is the BASIC revision number.

dd-mmm-yy is the date when this version was
created.

X X X X X is the number of bytes available in
memory for programs and data.

Ok is the BASIC prompt. Whenever this
prompt appears, BASIC is waiting for
your next command.

To start programming, type:

Hereafter, BASIC automatically prompts you with line
numbers. The first number to appear is 10.

Now type the following program:

10FOR T = 170 10 [Return]
20 PRINT I [Return]
0 NEXT 1

40 PRINT “LOOP DONE, I =" I [Return]
50 END [Return]

(=20]

1-21

Step 6.

Step 7.

Step 8.

Step 9.

1-22

Simultaneously press the and keys to stop
the line number prompt.

To see what output this program produces, type the
command:

RUN [Return]

The program prints the following display to your
screen:
1

0 ~NO U WM

9

10
LOOP DONE, T =11
Ok

To see a complete listing of the program on your screen,
type:

LIST
BASIC responds by printing the following display:

10FORI =1TO 10

20 PRINT I

30 NEXT I

40 PRINT "LOOP DONE, T =" 1
50 END

Ok

BASIC provides a variety of ways to modify an existing
program. This step uses the Edit mode subcommands to
change the first line of the program so the loop
proceeds backwards from 10 to 1.

« Enter Edit mode on line 10 by typing:
EDIT 10

Computer Control

BASIC provides several statements that interface with your
computer. The following list summarizes these statements.

DATES$ Sets the current date.

INP Returns a byte which is read from a
microprocessor port.

ouT Sends a byte to a microprocessor port.

POKE Writes a byte into a memory location.

TIMES Sets the current time.

WAIT Suspends program execution while monitoring

the status of a microprocessor input port.

You must use escape sequences to perform other computer-control tasks.
For example, the sequence ESC H “homes” the cursor, and the sequence
ESC J clears the screen from the cursor’s current position. Therefore, you
may clear the entire display screen by executing the following PRINT
statement.

PRINT CHR$(27) + "H" + CHR$(27) + "J"

(CHR$ (27) is the ASCII code for the escape character.)

You may use other escape sequences to position the cursor, define
function keys or display enhancements, and so on. Appendix B
introduces these concepts, but you should refer to the following manuals
for a complete list of applicable escape sequences.

* For the HP 110: HP 110 Portable Computer Owner’s Manual
* For the HP 150: HP 150 MS-DOS User’s Guide

57

Program Control, Branching, and
Subroutines

BASIC provides several statements that control the flow of program
execution. This includes branching to other lines, subroutines, and
programs. The following list summarizes these statements.

CALL
CALLS

CHAIN

DEF FN

DEF SEG

DEF USR

END

FOR...NEXT

GOSUB. ..RETURN

GOTO

IF

ON ERROR GOTO

ON...GOSUB
ON...GOTO
RESUME

5-8

Calls an assembly-language subroutine.
Calls a subroutine with segmented addresses.

Calls a program and passes variable values to it
from the current program.

Names and defines a user-written function.

Assigns the current segment address. Subsequent
CALL, CALLS, POKE, PEEK, or USR instructions
refer to this address.

Assigns the starting address of an assembly-
language subroutine.

Ends program execution, closes all files, and
returns control to the command level.

Loops through a series of instructions a given
number of times.

Branches to and returns from a subroutine.

Branches unconditionally to the specified line
number.

Determines program flow based on the result
returned by a logical expression.

Enables error trapping and specifies the first line
number of the error-handling subroutine.

Branches to a subroutine, or subroutines,
depending upon the value returned by the
governing expression.

Branches to one of several specified line numbers,
depending upon the value returned by the
governing expression.

Continues program execution after BASIC has
performed an error recovery procedure.

Appendix B

USING TERMINAL
FEATURES IN BASIC

Introduction

You can program the terminal portion of your computer to perform
many of the functions of an intelligent terminal. By using these features,
the BASIC programmer can be more productive by allowing the
computer to perform tasks that would otherwise be done within each
application program.

NOTE
Although the general concepts presented in this chapter apply to the
HP 110 and the HP 150, the HP 110 implements a subset of the HP 150
escape sequences. You should refer, therefore, to Appendix D in your
HP 110 Portable Computer Owner’s Manual to determine which escape
sequences the HP 110 supports.

You are probably aware of the various features available to the computer
user via the keyboard. Most of the features that can be performed at the
keyboard can also be done under program control by using the escape
sequences described in the HP 150 MS-DOS User’s Guide. Additionally,
to offer compatibility with other Hewlett-Packard terminal products, the
escape sequences used by the HP 150 are the same sequences used on
other Hewlett-Packard display terminal products.

In the following discussion, £ SC represents the escape character. (The
escape character has an ASCII code of 27.)

An escape sequence is simply a series of ASCII characters preceded by
. For example, sequentially pressing the key then the key
"homes” the cursor to the upper left-hand corner of the screen.

B-1

Escape sequences fall into two categories: two-character escape sequences
and multiple-character escape sequences.

NOTE
For clarity, this appendix shows a space between each character in an
escape sequence. You must press the required keys in sequences
WITHOUT inserting any space characters!

In two-character sequences, both characters must identically match the
sequence that is shown. For example, ESC B moves the alphanumeric
cursor down one row. (You generate the "B” by simultaneously pressing
the and keys.) On the other hand, ESC b unlocks the
keyboard. (You generate the "b” by simply pressing the key.)

With multiple-character escape sequences, you may usually interchange
the various parameters.

A multiple-character sequence begins with an ESC, followed by other
characters. These characters consist of one or more numeric/character
string parameters, each followed by an alphabetic character. All of these
alpha characters should be lowercase letters, except for the last letter. The
last letter terminates the sequence and must be capitalized.

This requirement exists since a multiple parmater list can be combined
or shortened until an uppercase alpha character is received.

An example is the cursor-positioning escape sequence. One way of
positioning the cursor in the upper left-hand corner of the display is to
use the home-up escape sequence (ESC h). An alternate way is to use the
cursor addressing sequence. To position the cursor to row zero, column
zero, use the following sequence:

ESC s a0 r0C
The uppercase C ends the sequence.

Multiple-character escape sequences allow you to interchange
parameters. Therefore, you may obtain identical results by using the
following escape sequence:

ESC 4 a 0 c 0OR

The uppercase R ends the sequence. The order of the parameters is not
critical as long as the last parameter ends in an uppercase letter.

B-2

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	Untitled

