
Manual Part No.
45445-90007

Series IOO/BASIC

F/iOW HEWLETT
~~ PACKARD

Printed in U.s.A.
7/84

Table of Contents

Preface .. x
Manual Organization. .. x
Notation Conventions xi

Chapter 1: Getting Started

The Series 100/BASIC User 1-1
Before You Begin ... 1-1
Starting BASIC ... 1-2
Modes of Operation 1-2

Direct Mode ... 1-2
Quick Computation 1-3

Indirect Mode .. 1-3
Line Format .. 1-4

Character Set .. 1-5
Entering a Program 1-8
Modifying a Program 1-9

Edit Mode ... 1-9
Edit Mode Sub commands 1-9
Entering Edit Mode from a Syntax Error 1-14

Modify Mode ... 1-14
Using Modify Mode 1-15
Start of Text Pointer 1-16

Error Messages .. 1-18

Chapter 1: Getting Started

Documenting Your Program 1-18
Printing Operations 1-19

L Commands and Statements 1-19
Writing a Simple Program 1-20 ---

Chapter 2: Data, Variables, and Operators

Introduction ... 2-1
Constants ... 2-2

Single and Double Precision Form for Numeric Constants 2-3
Variables .. 2-3

Variable Names and Declaration Characters 2-4
Special Type Declaration Characters 2-4

Reserved Words 2-4
String Variables 2-5
Numeric Variables 2-5

Array Variables ... 2-6
Type Conversion .. 2-7
Expressions and Operators 2-10

Arithmetic Operators 2-10
Integer Division and Modulus Arithmetic 2-11
Overflow and Division by Zero 2-12

Relational Operators 2-12
Logical Operators 2-13
Functional Operators 2-16
String Operations 2-17

Concatenation 2-17
Comparisons .. 2-17

Chapter 3: The BASIC Environment

Introduction ... 3-1
BASIC .. 3-2

ii (Portable PLUS)

Chapter 4: File Operations

Disc Filenames .. 4-1
Disc Data Files-Sequential and Random Access 4-1

Sequential Files ... 4-1
~ Random Files ... 4-3

Creating a Random File 4-3
Accessing a Random File 4-4

Protected Files .. 4-8

Chapter 5: Programming Tasks

Introduction .. 5-1
System Commands . 5-3

Using Commands as Program Statements 5-4
File Operations .. 5-5
Defining and Altering Data and Variables 5-6
Computer Control ... 5-7

"--- Program Control, Branching, and Subroutines. 5-8
Terminal Input and Output. 5-10
Debugging Aids .. 5-11
BASIC Functions ... 5-12

General Purpose Functions 5-13
Input/Output Functions 5-13
Arithmetic Functions 5-14

Derived Functions 5-15
String Functions ... 5-16
Special Functions .. 5-17

III

Chapter 6: BASIC Statements, Commands, Functions, and
Variables

Introduction .. 6-1
Chapter Format ... 6-2
ABS Function ... 6-3 ~
ASC Function ... 6-3
ATN Function ... 6-3
AUTO Command ... 6-4
BLOAD Command/Statement 6-6
BSAVE Command/Statement 6-8
CALL Statement ... 6-9
CALLS Statement .. 6-10
CDBL Function .. 6-11
CHAIN Statement .. 6-12
CHR$ Function .. 6-17
CINT Function ... 6-17
CLEAR Statement .. 6-18
CLOSE Statement .. 6-20
COMMON Statement ... 6-21
CONT Command .. 6-23
COS Function .. 6-25
CSNG Function .. 6-25
CVI, CVS, CVD Functions 6-26
DATA Statement ... 6-27
DATE$ Function ... 6-28
DATE$ Statement ... 6-29
DEF FN Statement .. 6-30
DEF SEG Statement ... 6-32
DEF USR Statement .. 6-33
DEFINT /SNG/DBL/STR Statements 6-34
DELETE Command ... 6-36
DIM Statement ... 6-37
EDIT Command .. 6-38
END Statement .. 6-39

iv

Chapter 6: BASIC Statements, Commands, Functions, and
Variables

EOF Function .. 6-40
ERASE Statement. .. 6-42

'--..../ ERR and ERL Variables .. 6-43
ERROR Statement .. 6-45
EXP Function . 6-47
FIELD Statement ... 6-48
FILES Command/Statement 6-50
FIX Function ... 6-51
FOR. .. NEXT Statement .. 6-52
FRE Function .. 6-55
GET Statement ... 6-56
GOSUB ... RETURN Statement 6-57
GOTO Statement ... 6-59
HEX$ Function ... 6-60
IF Statement ... 6-61
INKEY$ Function .. 6-65
INP Function .. 6-65
INPUT Statement .. 6-66
INPUT# Statement ... 6-69
INPUT$ Function .. 6-71
INSTR Function .. 6-72
INT Function .. 6-73
KILL Command/Statement 6-74
LEFT$ Function .. 6-76
LEN Function .. 6-76
LET Statement ... 6-77
LINE INPUT Statement 6-78
LINE INPUT# Statement. 6-79
LIST and LLIST Command 6-81
LOAD Command ... 6-83
LOC Function .. 6-84
LOF Function .. 6-84

v

Chapter 6: BASIC Statements, Commands, Functions, and
Variables

LOG Function .. 6-85
LPOS Function ... 6-85
LPRINT and LPRINT USING Statements 6-86 ---
LSET and RSET Statements 6-87
MERGE Command ... 6-88
MID$ Function ... 6-90
MID$ Statement .. 6-91
MKI$,MKS$,MKD$ Functions 6-92
NAME Statement ... 6-93
NEW Command .. 6-94
NULL Statement ... 6-95
OCT$ Function ... 6-96
ON ERROR GOTO Statement. 6-97
ON ... GOSUB Statement 6-99
ON ... GOTO Statement 6-100
OPEN Statement .. 6-101
OPTION BASE Statement 6-104
OUT Statement ... 6-105
PEEK Function .. 6-106
POKE Statement .. 6-107
pas Function ... 6-108
PRINT Statement. ... 6-109
PRINT USING Statement. 6-112
PRINT# and PRINT# USING Statements 6-117
PUT Statement .. 6-120
RANDOMIZE Statement 6-121
READ Statement .. 6-123
REM Statement 6-125

vi

Chapter 6: BASIC Statements, Commands, Functions, and
Variables

RENUM Command .. 6-127
RESET Command/Statement 6-129
RESTORE Statement ... 6-130
RESUME Statement. ... 6-131
RETURN Statement .. 6-132
RIGHT$ Function ... 6-133
RND Function .. 6-133
RUN Command/Statement 6-134
SAVE Command .. 6-135
SGN Function ... 6-136
SIN Function ... 6-136
SPACE$ Function .. 6-137
SPC Function ... 6-137
SQR Function ... 6-138
STOP Statement ... 6-139
STR$ Function .. 6-140
STRING$ Function .. 6-140
SWAP Statement .. 6-141
SYSTEM Command/Statement 6-142
TAB Function ... 6-143
TAN Function ... 6-143
TIME$ Function ... 6-144
TIME$ Statement .. 6-145
TRON /TROFF Statements 6-146
USR Function ... 6-147
VAL Function ... 6-148
VARPTR Function ... 6-149
WAIT Statement ... 6-151
WHILE. .. WEND Statement 6-152
WIDTH Statement ... 6-154
WRITE Statement ... 6-155
WRITE# Statement .. 6-156

vii

Appendix A: Error Codes and Error Messages A-I

Appendix B: Using Terminal Features in BASIC

Introduction .. B-1
Sample Functions ... B-4

Appendix C: Reference Tables C-I

Appendix D: Assembly Language Subroutines

Introduction ... 0-1
Memory Allocation. .. 0-2
CALL Statement. .. 0-3
USR Function. .. 0-8

Appendix E: Installing BASIC on the HP 110

Introduction .. E-l
Copying the Program Disc for Back-up E-2

Formatting the Back-up Disc E-3
Making the Back-up Copy E-4

Running Series IOO/BASIC E-6
Running BASIC Using P.AM E-6

Running from an External Disc E-6
Running from the Electronic Disc E-7

Running BASIC Using MS-DOS E-8
Running from an External Disc E-8
Running from the Electronic Disc E-8

viii

Appendix F: Installing BASIC on the HP 150

Introduction .. F-l
Making a Working Copy of BASIC F-l

For Dual Disc Drive Users F-2
For Hard Disc Drive Users F-4

Starting BASIC .. F-4

Index . .. 1-1

ix

Preface
This manual describes the version of Interpretive BASIC by Microsoft®
that Hewlett-Packard supports. For a description of the compiled version
of Microsoft® BASIC, you should consult the Microsoft® BASIC Compiler
manual.

Manual Organization
Throughout this manual, the term "instruction" is a generic term that
groups commands, statements, and functions under one name.

Chapter 1 introduces the Hewlett-Packard BASIC language and gives
guidelines so you may start writing your own BASIC programs.

Chapter 2 describes general features about BASIC, such as data types and
operations.

Chapter 3 gives specific information about the BASIC command line.

Chapter 4 describes files.

Chapter 5 groups the BASIC instructions together, according to the tasks
that you may want to perform.

Chapter 6 is a comprehensive listing of all the BASIC commands,
statements, functions, and variables. The listing is alphabetical.

The appendices provide further information on error codes and error
messages, using your computer's terminal features, and assembly­
language subroutines, as well as supplying necessary reference tables.

x

Notation Conventions
The notation conventions that we use in this manual adhere to the
following rules:

CAP I TAL LETTERS

i(llccr Cil~C ietters

[square brackets 1

Ibracesi

vertical bar I

ellipsis (...)

punctuation

You must enter those words that appear in capital
letters exactly as they are shown. However, this
only aids reading the syntax charts as BASIC
automatically shifts variable names and key words
to upper case letters.

Words shown in italicized, lower case letters are
words that you must supply.

Square brackets enclose items that are optional.

Braces enclose multiple items when you must
select between the available choices.

A vertical bar divides the selection of items that
are enclosed by braces.

Items that are followed by an ellipsis may be
repeated any number of times (up to the length of
the input line).

The punctuation symbols that serve special
functions have been described above. You must
include all other punctuation symbols (such as
commas, semicolons, parentheses, quotation
marks, etc.) exactly as they appear within the
format charts.

Consider this example:

I NPUT[; 1 ["prolllpt"i; I, fjl'ariil/J/c [, l'ilriilb/c]. ..

To be valid, an I NPUT statement must contain the keyword I NPUT and at
least one variable. Since variable is italicized, you must replace this
descriptive term with an appropriate name. Square brackets surround
optional parameters. For example, the semicolon and prompt string are
both optional. However, if you include a prompt, you must enclose the
string in quotation marks and end the string with either a semicolon or a
comma. You may list several variables, but you must separate them with
commas.

xi

1
1
1
1
1
1
1
1 -.../ 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter I

GETTING STARTED

The Series IOO/BASIC User
To use Series 100 /BASIC successfully, you only need to be familiar
with general programming concepts and the BASIC language. If you
are not familiar with BASIC, we recommend that you either read one
of the introductory texts on programming in BASIC or take a begin­
ning-level course on this language.

Before You Begin
If you have not yet installed the Series 100 /BASIC software module
into the software drawer in your computer, you need to do that now.
Here's the procedure:

Step 1.

Step 2.

Step 3.

If your computer's Edisc has any files that you don't
want to lose, copy those files to an external disc. (To
learn how to copy files from Edisc, refer to the sec­
tion on "Copying Discs" in Chapter 5 of Using the
Portable PLUS.)

Install the BASIC software module in your
HP 82982A Software Drawer. Just follow the Software
Module Installation Instructions that came with your
BASIC software package.

Install the software drawer in a drawer receptacle on
the bottom of your computer. Follow the Drawer In­
stallation Instructions that came with your software
drawer.

(Portable PLUS) 1-1

Starting BASIC
You start Series IOO/BASIC just as you would any other application
program on your Portable PLUS. First, go to the main P.A.M. screen on
your computer. Move the display pointer over to the box labeled
BAS I C and then press (lliJ). Start AppIle

Modes of Operation
Once you start BASIC, it shows you a symbol like this: 0 k. This sym­
bol, called a prompt, means that the BASIC interpreter is waiting for
you to tell it what to do. This condition, where BASIC shows you a
prompt and you respond, is called the command level. BASIC will re­
main at the command level until you enter a RUN command.

At the command level, you may converse with the BASIC interpreter
in one of two modes: Direct Mode or Indirect Mode.

Direct Mode
In Direct Mode, you do not precede BASIC statements or functions
with line numbers. Rather, you "talk" interactively with the BASIC in­
terpreter, and it executes each instruction as you enter it.

For example,

Ok

PR I NT "HELLO MOM" I Return I
HELLO MOM

Ok

Direct Mode is useful for debugging programs and for quick computa­
tions. You may use Direct Mode to display the results of mathematical
and logical operations (using PR I NT statements, as in the preceding
example) or to store the results for later use (using the LET statement).
However, the instructions that produce these results are lost after the
interpreter executes the instruction.

1-2 (Portable PLUS)

Quick Computation
You may use BASIC as a calculator to perform quick calculations without
writing a program. You can perform numeric operations in Direct Mode
by entering a question mark (,) , then the expression. (BASIC interprets
the question mark as an abbreviation for F' PIN r.) For example, to
calculate two times the sum of four plus two where the sum is raised to
the third power, type:

BASIC performs the calculation and prints the result:

When you assign values to variables with the LET statement, the values
are not displayed. You can only view these values by printing them to
the screen. Furthermore, the values that you assigned to variables are lost
when you subsequently run a program or exit BASIC.

In the next example, the two LET statements set the value for X and Y.
BASIC does not display these values. The last line is a PR I NT statement
that displays the answer for this simple problem.

LET x- :; I Return I
L E r y = - 8 • X I Return I
P R I N TAB S (X • Y) I Return I

72

Indirect Mode
You use Indirect Mode to enter programs. In this mode, you precede each
line with a unique line number, and BASIC stores these lines in your
computer's memory. You then execute the program by entering the RUN

command.

For example,

Ok

1 0 P R I NT" H ELL 0 MOM" I Return I
RUN I Return I
HELLO MOM

Ok

1-3

Line Format
Program lines in a BASIC program have the following format:

II 1/ 1/ II II represents a line number that may be from 1 to 5 digits in length.
Permissible values range from 0 to 65529.

A program line always begins with a line number, may contain a
maximum of 255 characters, and ends when you press the [Return I key.
When a line contains more than 255 characters, BASIC truncates the
excess characters.

Line numbers indicate the order in which BASIC stores the line in
memory. They must be whole numbers. Numbers also serve as labels for
branching and editing.

You may use a period with the ED IT, L I 5T, AUTO, and DE LETE

commands to refer to the current line. For example, ED IT. enables Edit
mode on the last referenced or entered line.

A program line may contain a maximum of 255 characters. You may
accomplish this in one of two ways. The simplier procedure is to type
continuously, without pressing the [Return I key. In this case, if the line
width remains at its default setting of 80 characters per line, a blank line
appears in the program listing. It does not affect program execution. You
can avoid printing the blank line by using the ;J I DTH statement to set the
line width to 255.

However, if you want to "format" the line (for example, put the THEN

and E L 5E parts of an I F statement on separate lines), you may end a
screen line by pressing [CTRL I [I] . This generates a line feed character
which moves the cursor to the next screen line without terminating the
logical line. A logical line is a string of text that BASIC treats as a unit.
When you finish typing the logical line, pressing the [Return I key ends
the line at that point.

NOTE
You must always end the last screen line of a logical ("program") line by
pressing the [Return I key.

1-4

-

Il.\.'>/C "!IIII'Ii!('Il! is any legal BASIC instruction.

A BASIC statement is either executable or non-executable. Executable
statements instruct BASIC on what action it should undertake next. For
example, L[T PI = 3. 141593 is an executable statement. DATA and REM

statements are non-executable statements. They result in no direct action
"--' by BASIC when BASIC encounters them.

'---

You may enter multiple statements on one line, but you must separate
each statement with a colon (:).

Character Set
The BASIC character set contains the alphabetic characters, numeric
characters, and a selected set of special symbols.

Alphabetic characters are either upper-case or lower-case letters.

Numeric characters are the decimal digits 0 through 9.

Table 1-1 lists the special characters that BASIC supports.

1-5

Table 1-1. BASIC Special Characters

Character Description

Blank
= Equal sign or assignment symbol
+ Plus sign or concatenation symbol -
- Minus sign
* Multiplication sign or asterisk
/ Division sign or slash character
\ Integer division symbol or backslash
A Exponentiation symbol or caret
% Percent sign or integer type declaration character
! Exclamation point or single-precision type declaration

character
Number sign or double-precision type declaration

character
$ Dollar sign or string type declaration character
(Left parenthesis
) Right parenthesis
[Left bracket
1 Right bracket
, Comma

Period or decimal point
; Semicolon
: Colon or program statement separator
& Ampersand
? Question mark
< Lesser than symbol
) Greater than symbol
@ At sign

Underscore -, Apostrophe or remark delimiter

" Quotation mark or string delimiter

1-6

~

BASIC also recognizes the following keyboard keys:

Key
[DELI

[Backspace I

Function
Deletes the last-typed character; also performs an
automatic carriage return when all the characters on the
line are deleted.

"Escapes" Edit mode subcommands.

Backspaces over and deletes the last-typed character.

Moves the cursor to the next tab stop. (BASIC sets tab
stops at every eighth column position beginning with
the first column or at columns 1,9, 17, and so on.)

Serves several functions. These include terminating an
input line and leaving Edit mode.

BASIC recognizes the following control characters:

[CTRlI0

[CTRl I @]

[CTRll @]

[CTRl I [E]

[CTRl I OJ

[CTRl I QJ

[CTRll @]

[CTRll @]

[CTRl I []]

Enters Edit mode on the line being typed.

Stops program execution and returns control to the
BASIC command level.

Rings the computer's bell.

Backspaces over (and deletes) the last-typed character.
(This duplicates the operation of the [Backspace I key.)

Moves the cursor to the next tab stop. (This duplicates
the operation of the [Tab I key.)

Generates the line feed character.

Halts program output, but execution continues.

Resumes program execution after it was suspending by
a Control-So

Prints the line that you are currently entering. (You
might use this keystroke combination to "clean" a line
of the highlighting characters produced by the [DEL I

key.)

Suspends program execution.

Deletes the line that you are currently typing.

1-7

Entering A Program
You enter a program by simply typing the required text. As you type the
characters over the keyboard, the editor interprets each keystroke. You
may use this feature to reduce your typing. For example, the editor --
interprets a question mark (?) as the reserved word PR I NT.

BASIC considers any line of text that begins with a number to be a
BASIC statement. It then takes one of the following actions:

• adds a new line to the program if the line number doesn't currently
exist

• replaces the line if the line number does exist

• deletes an existing line if requested to do so

• displays an error message if:

• you attempt to delete a nonexistent line

• program memory is exhausted

If BASIC prints a Direct Mode message on the screen, the editor
automatically erases the message when you move the cursor to that line.
This prevents the message from being entered as program text and
producing syntax errors.

When you are using BASIC in Direct Mode, BASIC only recognizes those
keys that were described previously. For example, you may delete a
character on the line you are typing by pressing the I Backspace I key, the
I DEL I key, or by simultaneously pressing the I CTRL I and [EJ keys. If you
attempt to "backspace" by using the cursor control keys, the characters
are still transmitted to the BASIC interpreter. They are not deleted as you
might expect.

When you delete characters by pressing the I DEL I key, BASIC surrounds
the deleted text with backslashes (\). Pressing I CTRL I [EJ has the same
effect as pressing the I Backspace I key. After you delete any undesirable
characters, you can continue typing the line from that point.

You may delete the line that you are currently typing by simultaneously
pressing the I CTRL I and [ill keys. After it deletes the line, BASIC
automatically performs a carriage return (moves the cursor to the
beginning of that line.)

You may delete the program that is currently residing in computer
memory by entering the NEW command. You normally use this
command before you begin entering a new program.

1-8

Modifying A Program
The BASIC program editor is a "line" editor. That is, you can only
modify one line at a time. You incorporate the changes into a line by

,-. pressing the I Return I key while the cursor is anywhere within that line.

NOTE
You need not move the cursor to the end of a logical line before you
press the I Return I key. The editor "knows" where each line ends, and it
processes the entire line, regardless of the cursor's position when you
press the I Return I key.

You may choose between two methods to modify a line that currently
resides in your computer's memory: retyping the line in its entirety, or
entering Edit mode (by using the ED I T command). Additionally when
running BASIC on the HP 150, you may use "Modify Mode" to edit text.
(For details of this feature, see the discussion under Modify Mode.)

Edit Mode
Edit mode requires special one-character subcommands to edit a line.
You enter Edit mode by typing the command ED I T and either a line
number or a period (if you want to modify the last line). BASIC responds
by displaying the line number of the specified line and a space character,
then waits for you to enter a subcommand.

Edit Mode Subcommands

You may use Edit mode subcommands for either moving the cursor or
performing edit operations. Edit operations include inserting or deleting
text, replacing text, of searching for text within a line. The subcommands
are not displayed. You may precede most of the Edit mode subcommands
with an integer. This causes the command to be executed that number of
times. When you omit the number, BASIC executes the subcommand
once.

1-9

Edit mode subcommands may be categorized by the following functions:

• Moving the cursor

• Inserting text

• Deleting text

• Finding text

• Replacing text

• Ending and restarting Edit mode

Moving the Cursor

I Space bar I

I Backspace I

1-10

Use the I Space bar I to move the cursor to the right.
When you precede this action by a number, the cursor
moves right that number of spaces.

Use the I Backspace I key to move the cursor to the left.
When you precede this action by a number, the cursor
moves left that number of spaces.

Inserting Text

x

The I subcommand inserts text into a line. Any text you
type after you enter Insert mode is inserted into the
line.

You may end Insert mode by pressing the I ESC I key.
Pressing the I Return I key moves the cursor to the
beginning of the next line and ends both Insert mode
and Edit mode.

While using the Insert (I) command, you may delete
characters to the left of the cursor by pressing the
I Backspace I , I DEL I , or I UNDERSCORE I key. Pressing the
I Backspace I key repositions the cursor under the deleted
character. Pressing either the I DEL I or I UNDERSCORE I
key prints an underscore for each character you delete.

When you attempt to insert a character into a line and
that character would make the line longer than 255
characters, BASIC rejects the character and rings the
computer's bell.

The x subcommand extends a line. It moves the cursor
to the end of the line, puts the keyboard into Insert
mode, and then functions as if you had enter the Insert
command (I). You may end this function by pressing
either the I ESC I key or the I Return I key. (Pressing the
I Return I key also terminates Edit mode.)

1-11

Deleting Text

H

Finding Text

S

K

Replacing Text

c

1-12

The D subcommand deletes characters to the right of the
cursor. To delete multiple characters, type the required
number before you enter the D subcommand. BASIC
echoes all deleted characters to the screen, with the
deleted text surrounded by backslashes. BASIC
positions the cursor to the right of the last character
deleted. When there are fewer than the given number
of characters to the right of the cursor, BASIC erases the
remainder of the line.

The H subcommand deletes all characters to the right of
the cursor and automatically enters Insert mode. You
may find this subcommand useful for replacing text at
the end of a line.

The S subcommand searches for a character. When you
precede the subcommand with· a number, BASIC
searches for that occurrence of the character. For
example, if you give the command:

SSp

BASIC searches for the fifth occurrence of the letter "p".
BASIC positions the cursor before the character when
the search is successful. If the search fails, the cursor
stops at the end of the line. BASIC displays all
characters that it passes over while conducting the
search.

The K subcommand resembles the S subcommand
except that BASIC deletes all the characters it passes
over while conducting the search. BASIC positions the
cursor before the specified character, and it displays all
deleted characters enclosed by backslashes.

The c subcommand changes the next character in the
line to the specified character. When you want to search
for a specific occurrence of a character before changing
it, precede the letter" c" with the appropriate number.

Ending and Restarting Edit Mode

Q

Pressing the I Return I key prints the remainder of the
line, saves any changes you have made, and exits Edit
mode.

The E subcommand saves any changes you have
made and exits Edit mode.

The Q subcommand exits Edit mode without saving
any changes that you made to the line during Edit
mode.

The L subcommand lists the remainder of the line,
saves any changes that you made, and repositions the
cursor at the beginning of the line. Edit mode re­
mains active. (You usually would use this
subcommand to list a line when you first enter Edit
mode.)

The A subcommand restores the line to its original
state (cancels any changes) and repositions the cursor
at the beginning of the line so you can start again.

Simultaneously pressing the I Ctrl I and 0 keys takes
you into Edit mode on the line that you are currently
typing. BASIC executes a carriage return, prints an
exclamation point (I) and a space, and positions the
cursor at the first character in the line. You may now
enter any Edit mode subcommand.

NOTE
If you have just entered a line and decide you want
to edit it, just type ED IT .. BASIC takes you into Edit
mode at that line. In this context, the period (.) is a
special symbol that refers to the line you just entered.

When BASIC receives an unrecognizable command or illegal charac­
ter while in Edit mode, it ignores the command and sends a Control-G
("Bell" character) to ring your computer's bell.

(Portable PLUS) 1-13

Entering Edit Mode From A Syntax Error

When BASIC encounters a syntax error while executing a program, it
automatically takes you into Edit mode at the line that caused the error.
For example:

. ') I Return 1

. I Return 1

When this happens, modify the line to correct the error and then ei­
ther press I Return 1 or use the E subcommand to exit Edit mode. How­
ever, modifying the line this way destroys all variable values. If you
want to preserve the variable values, first exit Edit mode with the Q

subcommand. BASIC will go back to the command level where you
can examine the variable values.

Modify Mode

You cannot use Modify mode with your Portable PLUS. This section
applies only to the HP 150.

With the HP 150, you may use Modify mode to edit program lines
with a minimum of typing:

• the lines of the program you want to edit.

• Enter Modify mode (as described in the next subsection).

• Move the cursor to the first line you want to modify.

• Use the keyboard's character editing keys to modify the line.

• Press I Return 1 to store the edited line into memory.

NOTE
When a BASIC statement takes up more than one screen line (that is,
you pressed I Ctrl IQJ to insert a line feed character while entering the
line), you cannot use Modify mode to edit that statement. You must
use Edit mode instead.

1-14 (Portable PLUS)

Using Modify Mode
You access the Modify mode softkeys by pressing the , System' key.

The function key labels assume the following values:

Pressing function key [EJ or touching the +" ". softkey label assigns
the following values to the function keys:

After these softkey labels appear, you may select between one of two
modify modes.

LINE MODIFY You select this mode by pressing function key [IT] or by
touching the label. When this mode is
active, an asterisk appears in the screen label. You may
then use the keyboard edit keys to modify the line.
Pressing the , Return I key enters the line into the
program and simultaneously ends Line Modify mode.

'- MODIFY ALL You select this mode by pressing function key [ill or by
touching the label. When this mode is
active, an asterisk appears in the screen label. The
operation resembles Line Modify mode, except Modify
All mode remains active until you explictly turn it off
by again pressing function key [ill or touching the

MODIFY ALL label. (The asterisk disappears from the
screen label.) Pressing the, Return I key does not end
Modify All mode.

While in either Modify mode, you can use the cursor control keys to
position the cursor. You can also use the editing keys 'Insert char I and
, Delete char I to modify existing program lines.

To delete a character, place the cursor under the character you wish to
delete, then press' Delete char I. To delete multiple characters, you must
press , Delete char I once for each character you wish to delete.

1-15

The I Insert char I key acts as a toggle switch. That is, alternate presses of
this key turns Insert Character mode on then off. When Insert Character
mode is active, the message I ns Char appears on the screen's Status Line
(the bottom line of the display). While the keyboard is set for Insert
Character mode, any character you type is inserted before the cursor's
current position.

Control-C has no effect in Modify mode.

NOTE
You can only use the 1r-I-ns-e-rt-c-:-h-ar'l and Ir:O=-e-:-le-te-c"""h-a---r I keys while you are in
Line Modify or Modify All mode. Pressing these keys at any other time
produces unpredictable results.

CAUTION
NEVER use either of the Modify modes when the AUTO command is
active. Furthermore, as the BASIC interpreter does not recognize the
I Insert line I or I Delete line I keys, you must avoid using these keys while in
Modify mode.

Start of Text Pointer

In Modify mode, pressing the I Return I key transmits all characters
beyond the start-of-text pointer (or the start-column pointer if no start­
of-text pointer exists) to the BASIC interpreter.

Initially, lines of text have no start-of-text pointer. A line of text acquires
a start-of-text pointer under these conditions:

• the line that you are editing is at the bottom of the display (that is, it is
the last line you entered).

• the line was entered from the keyboard and not transmitted from a
host computer.

• the first character must be an alphanumeric character, the space
character, a backspace, or a control character.

If all these conditions exist, the start-of-text pointer points to the first
character in the line.

1-16

When no start-of-text pointer exists, transmission begins from the start­
column pointer. You may assign a value to the start-column pointer in
one of two ways:

(1) You may configure this value in the Terminal Configuration menu by
following these steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Press the I System I key. This displays the following
function key labels:

Press function key [][] or touch the conflg keys

screen label. This changes the softkey labels to the
folloWing values:

- --Pressing function key lKl or touching the
termInal conflg softkey label displays the

TERMINAL CONFIGURATION menu.

This menu contains an entry for S tar t Col umn. It is
normally set to "1 ". If you want to set another value,
touch this field or press the I Tab I key until the cursor is
positioned at this location. You may now type in the
number you want for S ta r t Co 1 umn.

Pressing function key [ill or touching the
SAVECONFIG softkey label activates your selection. It

also returns your screen to the state where you left it. If
you decide to leave the menu in its current state, you
can press function key [][] or touch the

confl keys softkey label to remove the menu and
return the screen to its last display.

1-17

(2) You may set the start-column pointer manually by following these
steps:

Step 1.

Step 2.

Step 3.

Press the I System I key. This displays the following
function key labels:

-Press function key em or touch the
margIns/tabs/col screen label. This changes the

softkey labels to the following values:

Pressing function key [IT] or touching the
START COLUMN. softkey label sets the value of the

start-column pointer to the cursor's current position.
(This requires your moving the cursor to the proper
column before you set the value.)

Error Messages
When the BASIC interpreter detects a fatal error (that is, one that halts
program execution), it prints an appropriate error message. Appendix A
provides a complete list of error codes and their meanings.

Documenting Your Program
As a general rule for writing good programs in BASIC, we recommend
that you include plenty of comment lines to document the program
properly. See the REM statement for further information.

1-18

Printing Operations
You may choose between two methods for accessing a printer from
BASIC. You may use the printer control softkeys or you may use the

~ BASIC "L" commands and statements. Refer to your Owner's Manual for
information on the printer control softkeys.

L Commands And Statements
The L commands and statements print to the MS-DOS general list device
and are not affected by the printer control softkeys. The L commands
are:

LLIST Prints a program listing directly to the printer.

LPRINT Prints information that is supplied by a program.

LPR I NT US I NG Formats information that is supplied by a program.

1-19

Writing A Simple Program
You need a working knowledge of several commands to start
programming in BASIC. The following discussion treats these
commands in their simplest form. They represent the rudimentary
commands that you need to begin working with the BASIC interpreter.

AUTO

LIST

DELETE

RENUM

RUN

SAVE

FILES

KILL

NEW

SYSTEM

1-20

Generates line numbers automatically when you press
the I Return I key. You may end this feature by
simultaneously pressing the I CTRL I and @] keys
(Control-C).

Displays all or part of a program on the computer's
screen.

Removes a line or lines from a program.

Resequences the lines in a program.

Executes a program.

Stores a copy of a program in a file on disc.

Lists the names of all the files on the disc.

Deletes a file from the disc.

Clears the program that is currently stored in your
computer's memory. This frees memory so you may use
the area for other purposes, such as starting a new
program.

Leaves BASIC and returns system control to the
operating system.

Stops execution and returns control to the BASIC
command level.

The following steps lead you through a simple exercise where you use
each of these commands.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Go to the main P.A.M. screen on your computer.

Move the display pointer to the box labeled: 8A 5 I C

Press ([]]) and wait for the
command level prompt: 0 k •

To start programming, type:
AUTO I Return I

This command tells BASIC to automatically prompt
you with the next line number after you finish each
line in your program. Notice how BASIC starts you
with the first line number, 1 o.

Now type the following short program:

10 FOR I = 1 TO 10 IR~urnl
20 PRINT I I Return I
30 NEXT I I Return I
40 P R I NT II L 0 0 P DON E , = "; I I Return I
5 0 END I Return I
60

(Portable PLUS) 1-21

Step 6.

Step 7.

Step 8.

Step 9.

Simultaneously press the I Ctrl I and @] keys to stop
the automatic line number prompt.

Type:

RUN I Return I
The program prints the output from the program to
your screen:

1
2
3
4
5
6
7
8
9
10
LOOP DONE, 1-11
Ok

To list your program on the screen, type:

LIS T I Return I
BASIC shows you the listing:

10 FOR I - 1 TO 10
20 PRINT I
30 NEXT I
40 PRINT "LOOP DONE, 1=11 ; I
50 END
Ok

BASIC provides a variety of ways to modify an ex­
isting program. In this step, you will use the Edit
mode subcommands to change the first line of the
program so the loop counts back from 10 to l.

• Type:

ED I T 1 0 I Return I

BASIC takes you into Edit mode on line 10.

1-22 (Portable PLUS)

Step 10.

Step 11.

• Move the cursor to the number 1 (after the equal
sign) with the space command:

d I Space bar I

(This assumes that you have used the same spacing
as shown in the example.)

• Erase the remainder of the line and enter Insert
mode by typing:

• Complete the FOR statement by typing:

1 0 TO 1 STEP - 1 I Return I

List the program by using the LIS T command.

BASIC responds by printing:

10 FOR I = 10 TO 1 STEP - 1

20 PRINT I

30 NEXT I

40 PR I NT "LOOP DONE, =";

50 END

Ok

Use the RUN command to see how your changes have
affected program execution.

The following display appears on your screen:

10

9

8

7

6

5

4

3

2

1

LOOP DONE, I = 0

Ok

1-23

Step 12.

Step 13.

Step 14.

Step 15.

1-24

Delete line 40 by typing:

DELETE 40 I Return I

LIST your program again and notice that BASIC has
deleted line 40 from the program.

If you wish to have the program lines in sequential
order, renumber the lines by typing:

REtWM I Return I

Listing the program shows that the line numbers have
been resequenced starting with 10 and incrementing by
10 at each step.

You save your program by giving it a name so the
system can retrieve it. For example, if you want to name
the file PROG1, type:

SAVE IPROG1"1 Return I

Since the name for the program is a character string,
you must surround the name with quotation marks.
Additionally, since you omitted any reference as to
which drive should receive the file, BASIC stores the
file on the currently active disc drive.
To save the program on a different disc, type:

SAVE lin: PROG 1" I Return I

Here, n: names the disc drive that you selected. If you
selected drive C, for example, the command appears as:

SAVE IC:PROG1"

BASIC supplies the MS-DOS file type . 8A S for you.
After it has successfully written your file to disc, BASIC
responds with its 0 k prompt.

To see a listing of all the files on the default disc
(including the one you just saved), type:

FILES I Return I

Step 16.

Step 17.

Step 18.

If you want to delete your program file from the default
disc, type:

KILL "PROG1.BAS"!Returnl

NOTE
When using the KILL command, you must supply the
file type . BA S as BASIC provides no default file
extension for you.

If you want to erase the program file from your
computer's memory, type:

NEW I Return I

This clears the memory area for BASIC so you can enter
a program or begin another application.

NOTE
Using the NEW command does not clear the file from
your disc.

When you are ready to leave BASIC and return control
to the operating system, type:

SYSTEM! Return I

NOTE
Before exiting, be sure to SAVE your program if you
wish to use it again.

1-25

Chapter 2

DATA, VARIABLES, AND
OPERATORS

Introduction
This chapter discusses both data representation and also the
mathematical and logical operators that BASIC provides.

Numeric values may be integers, single-precision numbers, or double­
precision numbers. BASIC stores all numeric values in binary

~ representation:

• Integers require two bytes of memory storage

• Single-precision numbers require four bytes of memory storage

• Double-precision numbers require eight bytes of memory storage

An integer value may be any whole number between -32768 and
+32767.

BASIC stores single-precision numbers with 7 digits of precision (or 24
bits of precision), and prints up to seven digits, although only six digits
may be accurate.

BASIC stores double-precision numbers with 17 digits of precision (or 56
bits of precision), and prints the number with up to 16 decimal digits.

2-1

Constants
The actual values that BASIC uses during program execution are called
constants. Constants may be numeric values or string values.

A string constant is a sequence of up to 255 alphanumeric characters that
are enclosed between quotation marks. Examples of string constants are:

"HELLO"
"Linda Kay"
"$75,000.00"

Numeric constants are positive or negative numbers. In BASIC, numeric
constants never contain commas.

There are five types of numeric constants:

Integer constants

Fixed point
constants

Floating point

Hex constants

2-2

Integer constants are whole numbers between
-32768 and + 32767. They never contain decimal
points.

Fixed point constants are positive or negative real
numbers (that is, numbers that contain decimal
points). For example, 1.0 is a fixed point constant;
not an integer constant.

Floating point constants are positive or negative
numbers that are given in exponential form
(similar to scientific notation.) A floating point
constant consists of an optionally signed integer
or fixed point number (the mantissa), followed by
the letter E and an optionally signed integer (the
exponent). The allowable range for floating point
constants is lOE-38 to lOE+38. For example,

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double-precision floating point constants use the
letter D instead of E, as in 235. 988D7 .

Hexadecimal numbers use a Base-16 numeric
system. The letters A through F correspond to the
numbers 10 through 15. You must prefix
hexadecimal numbers with the symbols &H.

For example,

&HFF
&H32F

Octal constants Octal numbers use a Base-8 numeric system. To
signify an octal number, you must precede the
number with an & 0 or & • For example,

& 03~ 7

&777

Single and Double Precision Form for Numeric
Constants
A single-precision constant is any numeric constant that has:

• seven or fewer digits: <10 . 8

• exponential form using E: 1 . 0 '3, 0;:

• a trailing exclamation point (I): 3 . 1 4 1 593 I

A double-precision constant is any numeric constant that has:

• eight or more digits: 345f;92811

• exponential form using '): 1 . C '.14 ~i 2 r i. t

• a trailing number sign (#): 3.14159:5#

Variables
Variables are names that represent values within a BASIC program. You
mayexplictly assign the value to a variable (for example, by using the

. statement). A variable may also obtain a value as the result of a
computation (for example, ARE A = PI' R (, [; IUS ~. 2). BASIC assumes all
numeric variables have the value of zero and all string variables have the
value of the null string until you actually assign them a value.

2-3

Variable Names and Declaration Characters
BASIC variable names may contain a maximum of 40 characters.
Allowable characters are letters, the decimal digits, and a period. The
first character must be a letter. The last character may be a type
declaration character (either %, !, #, or $).

Examples of valid variable names are:

PAGELENGTH
SALES. 1983
OUTER.LIMIT

BASIC would reject the following variable names:

A.HORRENDOUsLY.LONG.VARIABLE.NAME.FOR.THE.VALUE.OF.PAGELENGTH
exceeds the limit of 40 characters.

1983sALES starts with a digit. The first character must be a letter.

OUTER LIM I T contains an embedded space.

Special Type Declaration Characters
BASIC recognizes several special type declaration characters and
reserved words.

Reserved Words
Reserved words include all BASIC commands, statements, function
names, and operator names. Appendix C provides a complete list of
BASIC reserved words.

A variable name may not be a reserved word, but can contain embedded
reserved words. For example, LOG and WIDTH are both BASIC reserved
words, but LOG. WIDTH is a valid variable name.

BASIC assumes that a series of characters beginning with the letters FN is
a call to a user-defined function. Therefore, you should never use these
characters as the first two letters of a variable's name.

2-4

String Variables
You may designate string variable names with a dollar sign ($) as the last
character, or you may declare them in a DE F S T R statement.

For example,

T I TLE$

or

10 DEFSTR T
20 TITLE = "1983 Sales Report"

The dollar sign is a variable type declaration character. It "declares" that
the variable represents a string. See Chapter 6 for a full discussion of the
DE F 5 T R statement.

Numeric Variables
Numeric variable names may declare themselves to be integer, single­
precision, or double-precision values. The type declaration characters for
these variables names are:

%

Integer variable

Single-precision variable

Double-precision varialbe

The default type for a numeric variable name is single precision.

Examples:

P I # Declares P I to be a double-precision variable

M A X ! Declares M A X to be a single-precision variable

COUNT% Declares COUNT to be an integer variable

LEN G T H Defaults to a single-precision variable

BASIC provides another method for declaring numeric variable types.
This involves using the BASIC statements DEF I NT to define integer
variables, DEFSNG to define single-precision variables, and DEFDBL to
define double-precision variables.

2-5

Array Variables
An array is a group of values (or a table) that you reference with a single
variable name. The individual values in the array are called elements.
You refer to each element by using the array's name and a subscript. The
subscript may be an integer or an integer expression.

You declare an array by dimensioning it. You normally do this with the
DIM statement. For example, DIM I D$ (11 > creates a one-dimensional,
string array called I D$. Eleven is the index number for the "last" element
of the array. When no OPT I ON BASE statement has executed, the "first"
element of the array is I D $ (0 >. Therefore, this DIM statement creates an
array of twelve elements. Each element is a variable-length string. An
implicit act of declaring an array is assigning initial values for each array
element. BASIC sets the elements of a string array equal to the null string
(that is, the "empty" string or a string with zero length).

~_ID_(O_) __ ~ __ ID_(1_)~~_ID_(2_) __ ~ __ ID_(3_)~ES: :23~ ___ ID_(_9) __ ~_I_D(_1_0)~ ___ ID_(1_1_)~

As another example, consider the statements:

OPT! ON BASE 1

DIM SALES(3,4)

These statements also create an array of twelve elements, but in this case
the elements are grouped together in 3 rows of four columns each. (The
columns could represent the four fiscal quarters of a year, and the rows
could represent the years 1981 to 1983.) Since the array name has no type
declaration character, BASIC sets the elements of the array to single­
precision numbers and assigns the value of zero to each element.

SALES SALES SALES SALES
(1.1) (1.2) (1.3) (1.4)

SALES SALES SALES SALES
(2.1) (2.2) (2.3) (2.4)

SALES SALES SALES SALES
(3.1) (3.2) (3.3) (3.4)

2-6

An array variable name has as many subscripts as there are dimensions
in the array. For example, when OPT! ON BASE 1 is used, VECTOR(10}

refers to the tenth value in a one-dimensional array, and MATR! X (1 ,4)

refers to the fourth element in the first row of a two-dimensional array.

The maximum number of dimensions for an array is 255. The maximum
~ number of elements per dimension is 32767.

Type Conversion
When necessary, BASIC can convert a numeric constant from one type to
another. The following examples illustrate the rules and operation of this
automatic conversion.

1. When a numeric variable of one type is set equal to a numeric
constant of a different type, BASIC stores the number as it was
declared in the variable name. Trying to set a string variable equal to a
numeric value, or vice versa, however, results in a Type m i sma t c h

error.

Example:

10 ROUND% = 23.42

20 PRINT ROUND%
30 ROUND% = 23.55

40 PRINT ROUND%
RUN

23

24

2-7

2. When evaluating an expression, BASIC converts all operands in an
arithmetic or relational operation to the degree of precision of the
most-precise operand. BASIC also calculates the result to this degree
of precision.

2-8

Consider these examples:

a. BASIC performs the following calculation in double-precision
arithmetic because the numerator is given as a double-precision
number. BASIC also stores the result as a double-precision value.

10 TWO.THIRDSI = 21/3

20 PRINT TWO.THIRDSI
RUN

.6666666666666667

b. BASIC performs the following calculation in double-precision
arithmetic because the numerator is given as a double-precision
number. Since the variable is a single-precision variable (by
default), BASIC rounds the result and stores the value as a single­
precision value.

10 TWO.THIRDS = 21/3

20 PRINT TWO.THIRDS
RUN

.6666667

c. Logical operators convert their operands to integers and return an
integer result. Operands must be in the range of -32768 to +32767,
or an Ove r f 1 0111 error occurs.

10 FALSE = 0
20 PRINT FALSE
30 PRINT NOT FALSE
40 TRUE = 99.44
50 PRINT NOT TRUE
60 PRINT TRUE AND FALSE
RUN
a

-1
-100
0
Ok

d. When a floating point value is converted to an integer, BASIC
rounds the fractional portion.

10 r~~;ROMISE% = 55.88

2(; ;"i r COMPROMISE%

10 COMPROMISE% = 55.44

20 FRINr COMPROMISEZ
Rl:'"

S'·

e. When you assign a single-precision value to a double-precision
variable, only the first seven digits, rounded, of the converted
number are valid. This happens because only seven digits of
accuracy were supplied with the single-precision value. The
absolute value of the difference between the printed double­
precision number and the original single-precision value is less
than 6.3E-8 times the original single-precision value. For example,

10 PI = 3.141593

20 BA=,PI# = PI

30 PRINT PI, BADPI#

Rur,
3.141593 3.141592979431152

2-9

Expressions and Operators
An expression may be a string or numeric constant, or a variable; or it
may be a combination of constants and variables with suitable operators
to produce a single value. \....../

Operators perform mathematical or logical operations on values. BASIC
provides the following four categories of operators:

• Arithmetic

• Relational

• Logical

• Functional

Arithmetic Operators
Table 2-1 lists the arithmetic operators.

Table 2-1. BASIC Arithmetic Operators

Operator Operation Sample Expression

'" Exponentiation RADIUS"'2
- Negation -DEBITS

* Multiplication BASE * HEIGHT
I Point Division AREA I PI
+ Addition WAGES + DIVIDENDS
- Subtraction INCOME - TAXES

BASIC evaluates an expression based upon the order of precedence of the
included operators. Exponentiation is evaluated first, followed by
negation. Next, any multiplication or division is performed, and finally,
all addition or subtraction operations are performed. In the case of
multiple operators with equal precedence, BASIC evaluates the
expression from left to right.

2-10

You may change the order of evaluation by using parentheses. BASIC
first evaluates all operations within parentheses. (Within a parentheses
grouping, the order precedence shown above is maintained.) Consider
these examples:

Without parentheses: 4'"'3'"'2 = 4096

With parentheses: 4"'(3'"'2) = 262144

The following expanded version of the first example uses parentheses to
show the implicit grouping of operations by supplying all parentheses.

((4'"'3)'"'2) = (64)'"'2 = 4096

The following list shows how you would write algebraic expressions in
BASIC.

Algebraic Expression
X + 2Y
X-V

Z
XY
Z

X+Y
Z

X2y

xyZ

X(-Y)

NOTE

BASIC Expression
x + 2 • Y

X - Y I Z

x • Y I Z

(X + Y> I Z

X"'(y"'Z>

X • (-Y)

You must always separate two consecutive operators by parentheses.

Integer Division and Modulus Arithmetic
You specify the integer division operation with a backslash (\). With
integer division, BASIC rounds the operands to integers before it
performs the division. It then truncates the quotient to an integer value.
(The operands must be within the range -32768 to +32767.) For example,

10\4 = 2

25.68\6.99 = 3

In the order of precedence, integer division follows multiplication and
floating point division.

2-11

You specify modulus arithmetic with the MOD operator. The MOD operator
returns the remainder from an integer division operation. For example,

10 MOD 4 = 2 (10\4 = 2 with a remainder of 2)
25.68 MOD 6.99 = 5 (26\7 = 3 with a remainder of 5)

The precedence of modulus arithmetic is just after integer division.

Overflow and Division by Zero

When BASIC is evaluating an expression, if it encounters an zero divisor,
it displays a D i v i 5 ion by z e r 0 error message, sets the result to machine
infinity with the sign of the numerator, and continues program
execution. If the evaluation of an exponentiation results in zero being
raised to a negative power, BASIC again displays the Di v i 5 i on by zero

error message, sets the result to positive machine infinity, and continues
program execution.

When BASIC encounters a number whose absolute value is too large for
it to store, it displays the ave r flow error message, sets the result to
machine infinity with the appropriate sign, and continues program
execution.

Machine infinity is approximately equal to 1.7 * 10"38.

Relational Operators
Relational operators compare values or variables. The result of the
comparison is either "true" (-1) or "false" (0). You may use this result to
control the flow of a program. (See the description of the I F statement.)

Table 2-2 summarizes the relational operators.

Table 2-2. BASIC Relational Operators

Operator Relation Sample Expression

. Equality COUNTER _ LIMIT

() Inequality LENGTH () HEIGHT

(Less than COLUMN (80

) Greater than ROW) 24

(= Less than or equal to YEAR (- 1984

)= Greater than or equal to L1NECOUNT)& PAGESIZE

2-12

You may also use the equal sign to assign a value to a variable. (See the
description of the L. E T statement.)

When arithmetic and relational operators are combined in one
expression, BASIC performs all arithmetic operations first. For example,
the expression:

TMARGIN + BMARGIN + LINECOUNT (= PAGESIZE/2

is true when the sum of TMARG I N, BMARG I N, and L I NECOUNT is less than
or equal to half the P AGE 5 I Z E •

Logical Operators
Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns a bitwise result that
is either true (not zero) or false (zero). In an expression, logical
operations are performed after arithmetic and relational operations. The
outcome of the logical operators are summarized in the following truth
tables. The operators are listed in their order of precedence.

NOT

Purpose:

Truth Table:

AND

Purpose:

Truth Table:

NOT inverts its operand. That is, a true bit is set to false
and a false bit is set to true.

X NOT X

1 0
0 1

AND requires both operands to be true
if the result is to be true.

x Y XANDY

1 1 1
1 0 0
0 1 0
0 0 0

2-13

OR - Inclusive OR

Purpose:

Truth Table:

OR returns true when either operand or both operands
are true.

x Y XORY

1 1 1
1 0 1
0 1 1
0 0 0

XOR-Exclusive OR

Purpose:

Truth Table:

IMP - Implied

Purpose:

Truth Table:

2-14

XOR returns true when either operand is true.

x Y XXORY

1 1 0
1 0 1
0 1 1
0 0 0

I MP returns true when both operands are the same. If
they differ, the result is the same as the second operand.

x Y XIMPY

1 1 1
1 0 0
0 1 1
0 0 1

v

EQV - Equivalent

Purpose: EQV returns true when both operands have the same
value.

Truth Table: x Y XEQVY

1 1 1
1 0 0
0 1 0
0 0 1

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a value that determines program flow. For example,

IF VALUE < 0 OR VALUE> 100 THEN 480
IF QUARTER < 4 AND YEAR = 1983 GOTO 1000
IF NOT LIMIT THEN 100

Logical operators convert their operands to sixteen bit, signed, two's­
complement integers in the range -32768 to + 32767. (If either operand is
outside this range, an error occurs.) When both operands are given as 0

G or -1, logical operators return 0 or -1. The given operation is performed
on these integers in bitwise fashion, that is, each bit of the result is
determined by the corresponding bits in the two operands.

You may use logical operators to test bytes for a particular bit pattern.
For instance, you may use the AND operator to mask all but one of the
bits of a status byte. Similarly, you may use the OR operator to merge two
bytes to create a particular binary value.

2-15

The following examples demonstrate how you may use the logical
operators in this fashion. (Each number is represented in two bytes, or 16
bits; however, the examples ignore all leading zeros.)

Operation

63 AND 16 16

15 AND 14 = 14

-1 AND 8 = 8

4 OR 2 6

10 OR 10 10

-1 OR -2 -1

TWOCOMP =
(NOT X)+1

Calculation

63 is binary 111111 and 16 is binary 10000 so
111111 AND 10000is10000(orI6).

15 is binary 1111 and 14 is binary 1110 so
1111 AND 1110 is 1110 (or 14).

-1 is binary 1111111111111111 and 8 is binary
1000 so 1111111111111111 AND 1000 is 1000
(or 8).

4 is binary 1 0 0 and 2 is binary 1 0 so 1 0 0 0 R 1 0 is
110 (or 6).

10 is binary 1010, so 1010 OR 1010 is 1010 (or
10).

-1 is binary 1111111111111111 and -2 is binary
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 so 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OR 1111111111111110 is 1111111111111111
(or -1).

The two's-complement of any integer is the bit
complement plus one. For example, if X is equal to
2, NOT X would be binary 1111111111111101.
This is decimal -3, and -3 plus 1 is -2, or the
complement of 2.

Functional Operators
A function is a predetermined operation that performs the specified task
on its operand. BASIC has Wintrinsicw functions that reside in tile system,
such as SQR (square root) or 5 I N (sine).

BASIC also allows "user-defined" functions that you write. See the
DEF FN statement for further details.

2-16

v

String Operations
BASIC provides two string operations. These operations are string
concatenation and string comparisons. (See the section on WString
Functions· in Chapter 5 for a listing of the built-in functions that
manipulate strings.)

Concatenation
You can join strings together (concatenate them) by using the plus sign
(+). For example,

10 A$ = "File" : B$ "Name"
20 PRINT A$ + B$
30 PRINT "Another" + AS + BS
RUN
FileName
Another FileName

Comparisons
You can compare strings by using the same relational operators that you
use for numeric comparisons:

<> (=)=

BASIC compares strings by taking one character at a time from each
string and comparing their ASCII codes. When all the ASCII codes are
the same, the strings are equal. When the ASCII codes differ, the lower
code number precedes the higher number. If, during a string
comparison, BASIC reaches the end of one string while characters still
remain in the other, the shorter string is said to be smaller. Leading and
trailing blanks are significant. For example,

"AA" ("AB"
"FILENAME" = "FILENAME"
"FILENAME" () "filename"
"kg") "KG"
"123 ") "123"
"SMYTH" ("SMYTHE"
B$ ("52/4/24" (where 8$ = "47/5/10")

~ You may use string comparisons to test string values or to alphabetize
strings. When using string constants in comparison expressions, you
must enclose the constant in quotation marks.

2-17

Chapter 3

THE BASIC ENVIRONMENT

Introduction
Chapter 1 describes the easiest procedure for running BASIC on your
computer. However, entering BASIC through an MS-DOS system
command gives you added flexibility in establishing the BASIC
environment.

This chapter describes BAS I C, the MS-DOS system command that you
must you use to enter BASIC.

3-1

BASIC
Format:

Purpose:

Remarks:

3-2

BASIC

BAS I C [filename]
[I F : numfiles] [I S: reel]
[1M: highest.mem.loe]

Loads the BASIC interpreter program into your
computer's memory.

filename directs BASIC to run the specified BASIC
program immediately. You may use this parameter to
run programs in batch mode by including the filename
in the command line of a . BAT file (such as
AUTOEXEC. BAT). You must end each program with a
SYSTEM statement. This allows the next command from
the. BAT file to execute.

IF: sets the number of files that you can open
simultaneously. Each file requires 62 bytes for the File
Control Block (FCB) and 128 bytes for the data buffer.
You may alter the size of the data buffer with the IS

v

option switch. When you omit the I F parameter, BASIC ~
sets the value to 3.

The number of open files that MS-DOS supports
depends upon the value of the F I LES= parameter in the
CONF I G. SYS file. When you are using BASIC, we
recommend that you set the F I L E S parameter to 1 o.
BASIC allocates the first three files to Stdin, Stdout,
Stderr, Stdaux, and Stdprn, then it sets aside an
additional file for LOAD, SAVE, CHA IN, NAME, and
ME RGE commands. When you set F I L E S· 10, six files
remain for BASIC input/output files. Thus, IF: 6 is the
maximum number of files that you may request when
F I LES= 1 0 appears in the CONF I G. SYS file.
Attempting to open a file after all the file handles have
been taken results in a Too man y f i 1 e 5 error message.

Examples:

IS: sets the maximum record size for random-access
files to reel. When you omit this parameter, BASIC sets
the value to 128 bytes.

NOTE
The record size option for the OPEN statement cannot
exceed this value.

1M: sets the highest memory location that BASIC uses.
Normally, BASIC allocates 64K bytes of memory for the
Data and Stack segment. When you omit this parameter
or set it to zero, BASIC attempts to allocate as much
memory as it can, up to a maximum of 65536 bytes.

NOTE
You may use decimal, octal, or hexadecimal numbers for
numfiles, highest.mem.loc, and reel. You must precede
octal numbers with &0, and hexadecimal numbers
with &H.

The first example uses the default settings. Thus, it uses
64K of memory, permits 3 opened files, then loads and
executes PAYROLL. BAS;

A> BASIC PAYROLL

The second example also uses 64K of memory but
permits 6 opened files. It loads and executes
INVENT. BAS:

A> BASIC INVENT/F:6

The next example uses the first 32K bytes of memory.
The memory above 32K is free for the user:

A> BASIC IM:32767

The last example uses 4 files and sets a maximum record
length of 512 bytes:

A> BASIC IF:4/S:512

3-3

Chapter 4

FILE OPERATIONS

Disc Filenames
Disc filenames obey the standard MS-DOS naming conventions. (Refer
to your Owner's Guide.) All filenames may include a letter and a colon as
the first two characters to specify a disc drive. For example, A: refers to
drive A. If you omit this special symbol combination, BASIC assumes
that all files refer to the currently selected disc drive. When you use
either the LOA D, 5 AV E, MER G E, or RUN statements, BASIC attaches the

o file type extension . BAS to the filename if the filename is less than 9
characters long and you omitted a file extension. (No" ." appears in the
filename.)

Disc Data Files - Sequential and
Random Access
You may create two different types of disc data files for a BASIC program
to access. They are sequential files and random access files.

Sequential Files
Sequential files have a simpler structure than random-access files, but
they are limited by their flexibility and their speed of accessing data.
When you write data to a sequential file, BASIC writes the information
to the file in sequential order, one item after the other, in the order that it
is sent. BASIC reads back the information in the same way.

4-1

You may use the following statements and functions with sequential
files:

CLOSE
EOF
INPUT#
LINE INPUT#
LOC
OPEN
PRINT#
PRINT# USING
WRITE#

You must follow these steps to create a sequential file, then
access its data:

Step 1.

Step 2.

Step 3.

Step 4.

Open the file in 0 mode. For example,

OPEN "O",#l,"DATA"

Write data to the file using the PR I NT# or WR ITE#
statement. For example,

WRITE #1, A$;B$;C$

To access the data in the file, you must close the file then
reopen it in I mode. For example,

CLOSE #1
OPEN "I", #1, "DATA"

Use the I NPUT# statement to read data from the
sequential file into the program. For example,

INPUT #1, XS,Y$,Z$

A program that creates a sequential file can also write formatted data to
the disc with the PR I NT# US I NG statement. For example, you could use
the following statement to write numeric data to disc without using
explicit delimiters:

PRINT #l,USING "###.##,"; A,B,C,D

In this example, the comma at the end of the format string (before the
closing quotation mark) separates the items in the disc file.

4-2

v

Random Files
It takes more programming steps to create and access random files than
sequential files. However, you may find the advantages of random-access
files outweigh the time required to enter the extra steps.

With random files, BASIC stores and accesses information in distinct
units called records. Since each record is numbered, you may access data
anywhere in the file without reading through the file sequentially.

You may use the following statements with random-access files:

CLOSE
CVI CVS CVD
FIELD
GET
LOC
LSET/RSET
MKI$ MKS$ MKD$

OPEN
PUT

Creating a Random File
You must follow these steps to create a random file:

Step 1. Open the file for random access (R mode). The
following example sets a record length of 32 bytes.
When you omit the record length parameter, BASIC
uses 128 bytes as the default record size.

OPEN "R", 11,"FILE",32

NOTE
The maximum logical record number is 32767.
Theoretically, if you set the record size to 256 bytes, you
may access files up to 8 megabytes in size.

Step 2. Use the FIELD statement to allocate space in the
random file buffer for the variables that you plan to
write to the random file. For example,

FIELD 11, 20 AS NS, 4 AS AS, 8 AS PS

4-3

Step 3.

Step 4.

Use LSET to move the data into the random file buffer.
Before you can place numeric values into this buffer,
you must convert these values to strings by using one of
the following functions:

MK I $ Converts an integer value to a string
MKS$ Converts a single-precision value to a string
MKD$ Converts a double-precision value to a string

Examples of the LSET statement are:

LSET N$ X$

LSET AS & MKS$(AMT)

LSET P$ & TEU

Write the data from the buffer to the disc using the PUT

statement:

PUT 11,CODEX

Accessing a Random File

You must follow these steps to access the data in a random-access
file:

Step 1.

Step 2.

Step 3.

4-4

Open the file for random access (R mode). For example,

OPEN "R", 11, FILEI,32

Use the FIELD statement to allocate space in the
random file buffer for the variables that you plan to
read from the file. For example,

FIELD 11,20 AS N$, 4 AS A$, 8 AS P$

NOTE
In a program that performs both input and output on
the same random file, you can usually use one OPEN

statement and one FIELD statement.

Use the GET statement to move the desired record into
the random file buffer. In the following example, CODEX

contains the record number.

GET 11, CODEX

v

~

Step 4. Your program may now access the data in the buffer.
However, numeric values must be converted from
strings back to numbers. You do this with the convert
functions:

CV I Converts the data item to an integer
CVs Converts the data item to a single-precision

value
CVD Converts the data item to a double-precision

value

For example:

PRINT CVSCA$)

In the following example, the user accesses the random file called FILE
by entering a 2-digit code at the keyboard. The program then reads the
information that is associated with the code and displays it on the
computer screen.

10 OPEN "R", #1,"FILE",32
20 FIELD #1,20 AS 1'1$, 4 AS AS, 8 AS P$
30 INPUT "2-DIGIT CODE"; CODEX
40 IF CODEX = 0 THEN CLOSE 1 : END
50 GET #1, CODEX
60 PRINT 1'1$

70 PRINT USING "$$###.##"; CVSCA$)
80 PRINT P$: PRINT
90 GOTO 30

4-5

The following program illustrates random file access. In this program,
the record number serves as the part number. (It is assumed that the
inventory never contains more than 100 different part numbers.) Lines
900 through 960 initialize the data file by writing C H R $ (255) as the first
character of each record. Later, lines 270 and SOO use this character to
determine whether an entry already exists for that part number.

110 OPEN "R",11,"INVEN.DAT",39
120 FIELD 11, 1 AS F$, 30 AS D$,

2 AS Q$, 2 AS R$, 4 AS P$
130 PRINT : PRINT "FUNCTIONS:" : PRINT
140 PRINT 1, "INITIALIZE FILE"
150 PRINT 2, "CREATE NEW ENTRY"
160 PRINT 3, "DISPLAY INVENTORY FOR ONE PART"
170 PRINT 4, "ADD TO STOCK"
180 PRINT 5, "SUBTRACT FROM STOCK"
190 PRINT 6, "DISPLAY ALL ITEMS

BELOW REORDER LEVEL"
200 PRINT 7, "END PROGRAM"
210 PRINT : PRINT : INPUT "FUNCTION"; FUNCTION
220 IF (FUNCTION (1) OR (FUNCTION> 7)

THEN PRINT "BAD FUNCTION NUMBER" : GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680,860
240 GOTO 130
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$) (> 255 THEN INPUT "OVERWRITE"; A$~

IF A$ (> "Y" THEN RETURN
280 LSET F$ = CHR$(O)
290 INPUT "DESCRIPTION", DESC$
300 LSET D$ = DESC$
310 INPUT "QUANTITY IN STOCK", QX
320 LSET Q$ = MKI$(QX)
330 INPUT "REORDER LEVEL", RX
340 LSET R$ = MKS$(RX)
350 INPUT "UNIT PRICE"; P
360 LSET P$ = MKS$(P)
370 PUT 11, PARTX
380 RETURN

4-6

390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(FS) = 255 THEN PRINT "NULL ENTRY" RETURN
420 PRINT USING "PART NUMBER ","; PART%
430 PRINT DS
440 PRINT USING "QUANTITY ON HAND ",,"; CVI(Q$)
450 PRINT USING "REORDER LEVEL ",,"; CVI(R$)
460 PRINT USING "UNIT PRICE "".""; CVS(PS)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$) = 255 THEN PRINT "NULL ENTRY" RETURN
510 PRINT D$: INPUT "QUANTITY TO ADD ", A%
520 Q% = CVI(QS) + A%
530 LSET QS = MKI$(Q%)
540 PUT '1, PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(FS) = 255 THEN PRINT "NULL ENTRY" RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT"; S%
610 Q% = CVI(Q$)
620 IF (Q% - S$) < 0 THEN PRINT "ONLY"; Q%;

" IN STOCK" : GOTO 600
630 Q% = Q% - S%
640 IF Q% =< CVI(RS) THEN PRINT "QUANTITY NOW"; Q%;

"REORDER LEVEL"; CVI(RS)
650 LSET QS = MKIS(Q%)
660 PUT '1, PART%
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I = 1 TO 100
700 GET '1, I
710 IF ASC(FS) = 255 THEN GOTO 730
720 IF CVI(QS) < CVI(RS) THEN PRINT DS; "QUANTITY";

CVI(Q$) TAB(50) "REORDER LEVEL"; CVI(R$)
730 NEXT I
740 RETURN

4-7

840 INPUT "PART NUMBER"; PART%
850 IF (PART% (1) OR (PART% > 100)

THEN PRINT "BAD PART NUMBER" : GOTO 840
ELSE GET 11, PART% : RETURN

860 END
900 REM I N IT! ALiZE FILE
910 INPUT "ARE YOU SURE"; B$

: IF B$ (> "Y" THEN RETURN
920 LSET F$ • CHR$(255)
930 FOR I = 1 TO 100
940 PUT 11, I
950 NEXT I
960 RETURN

Protected Files
If you wish to save a program in a special binary format, you must use
the "Protect" (p) option with the SAVE command. For example, the
following statement saves the program named ETERNAL so it cannot be
listed or edited:

SAVE "ETERNAL", P

As no command exists to "unprotect" the file, you may also want to save ~
an unprotected copy of the program that you can list and change.

4-8

Chapter 5

PROGRAMMING TASKS

Introduction
When programming, you normally have a specific task that you wish to
perform. The experienced programmer has no difficulty determining
which BASIC instruction is appropriate for the task at hand. However, if
some features of the language are new to you, you may have trouble
isolating the best instruction. This chapter groups the various BASIC
commands, statements, and functions into task-oriented areas. For

~ example, if you want to review a document, you may know that you
need an "output" statement, but you may not know which one. By
looking under the terminal input and output section in this chapter, you
would discover that BASIC provides five "printing" statements: PR I NT,

LPR I NT, PR I NT US lNG, LPR I NT US I NG, and WR I TE. You can get an
indictation of each statement's use by reading its general description.
Then you should consult Chapter 6 for full details on using the
statement that you selected.

5-1

This chapter contains the following sections:

• System commands

• Using system commands as program statements

• File operations v
• Defining and altering data and variables

• Computer control

• Program control, branching, and subroutines

• Terminal input and output

• Debugging aids

• General purpose functions

• Input/Output functions

• Arithmetic functions

• Derived arithmetic functions

• String functions

• Special functions

5-2

\.--;

System Commands
System Commands are those commands that you enter on the BASIC
command line and/or those that return control to the command line.
The following list summarizes the system commands that BASIC
provides.

AUTO

BLOAD

BSAVE

CONT

DELETE

EDIT

FILES

Automatically generates line numbers for
program entry.

Loads the specified memory image file into your
computer's memory.

Saves the contents of the specified area of memory
to a disc file.

Continues program execution after you type a
Control-C, or your program executes a STOP or
END statement.

Removes the specified lines from a BASIC
program.

Enables Edit mode on the specified line.

Lists the names of the files residing on a specified
disc.

V KILL Deletes one or more files from a specified disc.

Lists all or part of the program that is currently
stored in memory to either the computer screen or
a printer.

LIST and LLI ST

LOAD

MERGE

NEW

RENUM

RESET

RUN

SAVE

SYSTEM

Loads a BASIC program file from disc into
memory.

Incorporates statements contained in the specified
disc file into the program that is currently stored
in computer memory.

Deletes the program that is currently stored in
computer memory and clears all variables.

Renumbers the lines of a program so they occur in
a specified sequence.

Closes all disc files and prints the directory
information to every disc with open files.

Executes the program that is currently stored in
your computer's memory.

Saves the program currently stored in computer
memory to a specified disc file.

Exits BASIC and returns control to the
operating system.

5-3

Using Commands as Program Statements
You may use several of the BASIC commands as program statements.
Refer to the preceding discussion for each of the commands,
then consult this section for its use within a program.

BLOAD

BSAVE

FILES

KILL

RESET

RUN

SYSTEM

5-4

Programmatically loads code or data into a given
area of memory.

Programmatically copies code or data from
memory to a specified disc file.

Programmatically lists directory information.

Programmatically deletes the specified disc files.

Programmatically closes all disc files and prints
the directory information to every disc with open
files. (You should use this statement in any
program that performs disc access.)

Programmatically re-executes a program from a
specified line.

Programmatically exits BASIC.

v

G

G

File Operations
BASIC provides the following instructions or handling files and their
contents.

CLOSE

EOF

FIELD

GET

INPUT'

LINE INPUT'

LOC

LOF

LSET and RSET

NAME

OPEN

PR I NT' and
PRINT' USING

PUT

WIDTH

WRITE'

Concludes all input/output to a disc file.

Returns end-of-file for sequential and random­
access files.

Allocates space for variables in a random file
buffer.

Reads a record from a random disc file into a
random file buffer.

Reads values from a sequential disc file and
assigns them to program variables.

Reads an entire line (up to 254 characters) from a
sequential disc file and assigns the line to a string
variable.

Returns the last record number in a GET or PUT
statement.

Returns the length of the file in bytes.

Moves data from memory into a random file
buffer in preparation for a PUT statement.

Changes the name of a disc file.

Allows access to a file for either reading and/ or
writing.

Writes data to a sequential disc file.

Writes a record from a random file buffer to a
random disc file.

Sets the printer line width by specifying the
number of characters per line.

Writes data to a sequential file.

5-5

Defining and Altering Data and
Variables
BASIC provides several statements that you may use within a program to
define and manipulate data, variables, expressions, and arrays. The
following list summarizes these statements.

CLEAR

COMMON

DATA

DEFINT/DEFSNG
DEFDBL/DEFSTR

DIM

ERASE

LET

MID$

OPTION BASE

READ

RESTORE

SWAP

5-6

Sets numeric and string variables to zero or null,
closes all files, and optionally sets the end of
memory and the amount of stack space.

Passes variable values to a chained program.

Stores data for later access by a program's READ
statements.

Declares that BASIC should automatically treat
certain variable names as integer, single-precision,
double-precision, or string variable types.

Sets the maximum values for an array's subscripts,
allocates storage, and assigns an initial value to
array elements.

Removes an array from a program.

Assigns the value of an expression to a variable.

Replaces a portion of one string with another
string.

Determines if the minimum value for an array
subscript should be zero or one.

Reads values from a DAT A statement and assigns
them to variables.

Permits a program to reread DATA statements
from a specified line.

Exchanges the values of two variables.

v

Computer Control
Several BASIC statements let you control your computer from the
program. These statements are:

V DATES Sets the current date.

'----I

INP

OUT

POKE

TIMES

WAIT

Returns a byte, which is read from a
microprocessor port.

Sends a byte to the microprocessor port.

Writes a byte into a memory location.

Sets the current time.

Suspends program execution while monitoring
the status of a microprocessor input port.

To control your computer from the program, you can also use escape
sequences. For example, the sequence ESC H "homes" the cursor, and
the sequence ESC J clears the screen from the cursor to the end.
Therefore, you could clear the entire display by executing this
statement:

PRINT CHRS(27) + "H" + CHRS(27) + "J"

(CHRH27> is the ASCII code for the escape character.)

For details on using escape sequences, refer to Appendix B. For a
complete list of escape sequences that you can use with your Portable
PLUS, refer to the Portable PLUS Technical Reference Manual
(HP 45559K), which is available from your HP sales representative.

(Portable PLUS) 5-7

Program Control, Branching, and
Subroutines

,r.----

Several BASIC statements let you control the flow of your program \ j

through branching to other lines, subroutines, and programs. These '-"
statements are:

CALL

CALLS

CHAIN

DEF FN

DEF SEG

DEF USR

END

FOR ... NEXT

GOSUB ... RETURN

GOTO

IF

01'1 ERROR GOTO

ON ... GOSUB

01'1 ... GOTO

RESUME

5-8 (Portable PLUS)

Calls an assembly-language subroutine.

Calls a subroutine with segmented addresses.

Calls a program and passes variable values to
it from the current program.

Names and defines a user-written function.

Assigns the current segment address. Subse­
quent CALL, CALLS, POKE, PEEK, or USR in­
structions refer to this address.

Assigns the starting address of an assembly­
language subroutine.

Ends program execution, closes all files, and
returns control to the command level.

Loops through a series of instructions a given
number of times.

Branches to and returns from a subroutine.

Branches unconditionally to the specified
line number.

Determines program flow based on the result
returned by a logical expression.

Enables error trapping and specifies the first
line number of the error-handling subroutine.

Branches to a subroutine, or subroutines, de­
pending on the value returned by the govern­
ing expression.

Branches to one of several specified line
numbers, depending on the value returned by
the governing expression.

Continues the program after an error recov­
ery procedure.

RETURN Returns control to the next statement in a
program after a GOSUB or an ON GOSUB statement.

STOP Suspends program execution and returns control
to the BASIC command level.

~ WHILE ••• WEND Loops through a series of statements as long as a
given condition is true.

You may divide the branching and subroutine statements into the
following categories:

Unconditional branching:
GOTO

ON ••• GOTO

Conditional branching:
IF ••• THEN [••• ELSE]

IF ••• GOTO

ON ERROR GOTO

WHILE ••• WEND

Branching to another program:
CHAIN

Looping:
FOR ••• NEXT

WHILE ••• WEND

Subroutines:
CALL

CALLS

DEF FN

DEF SEG

DEF USR

GOSUB ••• RETURN

ON ••• GOSUB

RETURN

5-9

Terminal Input and Output
You may use BASIC Input statements for entering information into
programs from either the keyboard, disc files, or the DATA statement.
You may use BASIC Output statements to copy information to the
computer screen, a printer, a file, and/or a memory location. The
following list summarizes these statements.

II'IPUT

LI I'IE II'IPUT

LPRII'IT and
LPRII'IT USII'IG

I'IULL

PRINT

PRII'ITUSII'IG

WIDTH

WRITE

5-10

Takes input from the keyboard.

Enters an entire line (up to 254 characters) to a
string variable, without the use of delimiters.

Prints data to a line printer.

Sets the number of nulls to be printed at the end
of each line. This applies to both the display and
the printer.

Prints data to the computer screen.

Uses a specified format to print string!! or
numbers.

Sets the printer line width by specifying the
number of characters per line.

Writes data to the computer screen.

v

Debugging Aids
You use debugging statements to trace program execution, to define
error codes, or to simulate error conditions. Since well-documented

V programs help prevent errors, we treat the REM statement as a debugging
aid.

The following list summarizes the debugging statements that BASIC
provides.

ERROR

REM

TRON/TROFF

Simulates the occurrence of a BASIC error; or
allows you to define error codes.

Inserts explanatory remarks into a program.

Traces the execution of program statements.

5-11

BASIC Functions
BASIC provides several intrinsic functions. You may call these functions,
without further definition, from any point in a program.

You must enclose a function's argument(s) in parentheses. Most function
formats abbreviate the arguments as follows:

x and y
iand j
x$and y$

Represent numeric expressions
Represent integer expressions
Represent string expressions

If you give a function a floating point value when the function takes an
integral argument, BASIC rounds the fractional portion and uses the
integer result.

NOTE
The results that the BASIC interpreter returns to function calls are either
integer, single-precision, or string values. Only the BASIC compiler
returns double-precision values.

You may divide the functions into five general categories. These
categories are:

• General Purpose Functions

• Input/Output Functions

• Arithmetic Functions

• String Functions

• Special Functions

5-12

v

General Purpose Functions
BASIC provides the following general-purpose functions:

DATE$

V TIME$

Returns the current date.

Returns the current time.

Input/Output Functions
The Input/Output functions send or return information to the computer
or a printer.

CVI,CVS,CVD

EOF

INKEY$

INPUH

LOC

LOF

LPOS

MKl$,MKS$,MKD$

POS

SPC

TAB

Convert string values to numeric values.

Returns end-of-file for sequential and random­
access files.

Returns a one-character or null string from the
computer's keyboard.

Returns a string from either the keyboard or a disc
data file.

Returns the last record number in a GET or PUT
statement.

Returns the length of the file in bytes.

Returns the current position of the printer print
head within the printer buffer.

Convert numeric values to string values.

Returns the print head's column position.

Prints spaces (blank characters) on the display.

Moves to a specified position on a line.

5-13

Arithmetic Functions
The RAHDOM I ZE statement and the arithmetic functions manipulate
numeric expressions.

A8S

ATH

CD8L

CIHT

cos

CSHG

EXP

FIX

IHT

LOG

RAHDOMIZE

RHD

SGH

SIH

SQR

TAH

5-14

Returns the absolute value of the numeric
expression.

Returns the arctangent of a numeric expression
which you must give in radians.

Converts a numeric expression to a double­
precision number.

Converts a numeric expression to an integer by
rounding off the fractional part.

Returns the cosine of a numeric expression which
you must give in radians.

Converts a numeric expression to a si'ngle­
precision number.

Returns e (where e = 2.71828 ...) to the power of X.
X must be less than 88.02969.

Returns the truncated integer part of a numeric
expression.

Returns the largest integer value that is less than
or equal to a given numeric expression.

Returns the natural logarithm of a numeric
expression.

Reseeds the random number generator.

Returns a pseudo-random number between 0 and
1.

Returns 1 if a numeric expression is positive,
returns 0 if the expression is equal to zero, and
returns -1 if the expression is negative.

Returns the sine of a numeric expression which
you must give in radians.

Returns the square root of a numeric expression.

Returns the tangent of a numeric expression
which you must give in radians.

V

G

~

Derived Functions
BASIC provides intrinsic functions for your immediate use. From these
intrinsic functions, you may derive the following functions:

Function Equivalent

Secant SECCX) = 1/COSCX)

Cosecant CSC(X) = 1/SIIHX)

Cotangent COHX> = 1/TAIHX)

Inverse Sine ARCSIIHX) = ATlHX/SQR(-X*X

+ 1»

Inverse Cosine ARCCOSCX) = -ATI'HX/SQR(-X*X

+1» +1.5708

Inverse Secant ARCSECCX) = ATlHX/SQRCX*X-1»

+SGN(SGN(X)-1)*1.5708

Inverse Cosecant ARCCSCCX) = ATNCX/SQRCX*X-1»

+ (SGIHX>-1) * 1.5708

Inverse Cotangent ARCCOHX> = -ATN(X) + 1.5708

Hyperbolic Sine SINHCX) = (EXP(X)-EXP(-X»/2

Hyperbolic Cosine COSHCX) - (EXP(X>+EXP(-X»/2

Hyperbolic Tangent TANHCX) - (EXPCX)-EXP(-X»I

(EXP(X>+EXP(-X»

Hyperbolic Secant SECHCX) = 2/(EXP(X> + EXP(-X»

Hyperbolic Cosecant CSCH(X) = 2/(EXPCX) - EXP(-X»

Hyperbolic Cotangent COTH(X) = EXP(X>+EXP(-X»I

(EXP(X>-EXP(-x»
Inverse Hyperbolic Sine ARCSINHCX) = LOG (X+SQR(X*

X+ 1»

Inverse Hyperbolic Cosine ARCCOSHCX) = LOG CX+SQRCX*X-

1»

Inverse Hyperbolic Tangent ARCTANHCX) = LOG«1+X>/(1-X»

12

Inverse Hyperbolic Secant ARCSECH CX) = LOG« SQR (-

X*X+ 1)+ 1)/X)

Inverse Hyperbolic ARCCSCHCX) = LOG«SGN(X)

Cosecant *SQR(X*X+1) + 1) IX>

Inverse Hyperbolic ARCCOTHCX) = LOG«X+1)/CX-1»

Cotangent 12

5-15

String Functions
The string functions manipulate string expressions.

ASC

CHR$

HEX$

INSTR

LEFTS

LEN

MID$

DCTS

RIGHTS

SPACES

STR$

STRING$

VAL

5-16

Returns a numeric value that is the ASCII code of
the first character of a string expression.

Returns the character that corresponds to a given
ASCII code.

Returns a string expression that represents a
hexadecimal value for a decimal argument.

Searches for the first occurrence of a substring and
returns the position where the match is found.

Returns a string expression comprised of the
requested, leftmost characters of a string
expression.

Returns the number of characters in a string
expression.

Returns a substring from a given string
expression.

Returns a string that represents the octal value of a
decimal argument.

Returns a string expression comprised of the
requested, rightmost characters in a string
expression.

Returns a string of spaces the length of a numeric
expression.

Returns a string representation of the value for a
numeric expression.

Returns a given length string whose characters all
have the same ASCII code.

Returns the numeric value of a string expression.

v

Special Functions
BASIC provides the following special functions:

ERR and ERL

FRE

PEEK

USR

VARPTR

Direct program flow in an error-trap routine.

Forces "garbage collection".

Returns the byte (decimal integer in the range 0
(eight zeros) to 255 (eight ones» read from a
memory location.

Calls an assembly-language subroutine.

Returns the address of the first byte of data
identified by a variable's name.

5-17

v

Chapter 6

BASIC STATEMENTS, COMMANDS,
FUNCTIONS, AND VARIABLES

Introduction
This chapter contains a comprehensive listing of the commands,
statements, functions, and variables that BASIC provides.

The distinction between commands and statements is mainly traditional.
In general, commands operate on programs, and you usually enter them
in Direct Mode. Statements direct the flow of control within a BASIC
program.

Functions are predefined operations that perform a specific task. They
return a numeric or string value. You can put the built-in functions and
variables to immediate use.

6-1

Chapter Format
The statement and command descriptions take the following form:

Format:

Purpose:

Remarks:

Example:

Shows the correct syntax for that instruction.

Describes the instruction and what it does.

Provides details on the instruction's use and supplies
pertinent notes and comments.

Gives an example of the instruction's use.

Since most of the functions perform familiar operations (such as taking
the square root of a number or returning the sine of an angle), the
chapter simplifies their treatment. Each description contains the
function's format, its action, and an example:

Format:

Action:

Example:

6-2

Shows the correct syntax for the function.

Describes what the function does.

Shows sample program segments that demonstrate the
function's use.

ABS Function
Format:

Action:

Example:

ABS(x)

Returns the absolute value of the expression x.

PRINT ABSe-5 * 7)
35

Ok

ASC Function
Format:

Action:

Example:

Ascex$)

Returns a numeric value that is the ASCII code of the
first character in the string x$. (Appendix C lists the
ASCII codes.)

If x$ is the null string, an Illegal funct ion call

occurs.

See the CHR$ function for ASCII-to-string conversions.

10 X$ = "TEST"
20 PRINT ASCeX$)
RUN

84

Ok

ATN Function
Format:

Action:

Example:

ATNex)

Returns the arctangent of x, where x is given in radians.
The result is in radians and ranges between -pi/2 and
pi/2. The expression x may be any numeric type, but
BASIC evaluates ATN in single-precision arithmetic.

10 INPUT X
20 PRINT ATNCX)
RUN
? 3

1.249046
Ok

6-3

AUTO Command
Format:

Purpose:

Remarks:

6-4

AUTO [line# [, increment)]

Generates a line number automatically when you press
the I Return I key. You normally use this command when
you are entering a program to free yourself from typing
each line number.

AUTO begins numbering at line# and increments each
subsequent line number by increment. The default
setting for both values is 10. If you follow line# with a
comma but omit the increment, BASIC uses the
increment specified in the last AUTO command.

When the AUTO command generates a line number that
is already being used, BASIC prints an asterisk after the
number to warn you that any characters you type will
replace the existing line. If this is not your intent, you
may press the I Return I key to preserve the old line and
generate the next line number.

NOTE
Pressing the [RetUffi] key must be your first action
after the warning asterisk appears. If you happened
to press a character before pressing the I Return I key,
BASIC would replace the current line with that
character.

Simultaneously pressing I CTRL I @) stops the
automatic generation of line numbers. Since pressing
the I Return I key to end a line generates a new number
for the next line, BASIC discards the line in which you
press I CTRL I @) . However, when the line in which you
type I CTRL I @) has an asterisk after the line number
(showing that the line currently exists), BASIC
preserves the line. BASIC returns control to the
command level.

v

Examples: This first example generates line numbers beginning at
10 and incrementing by 10. (Ten is the default value for
both the starting line number and the increment.):

AUTO

The next example generates the line numbers 100, 150,
200, etc.:

AUT0100,50

The last example generates line numbers beginning
with 1000 and increasing by 50 at each step. (This
example assumes that the next command follows the
preceding command where the increment was 50.):

AUT01000,

NOTE
The BASIC compiler offers no support for this command.

6-5

BLOAD Command/Statement
Format:

Purpose:

Remarks:

6-6

BLOAD filename [, offset]

Loads·the specified memory image file from disc into
your computer's memory.

filename is a string expression that contains the filename V
and an optional device designation. The filename
portion may be 1 to 8 characters long.

When you omit the device designation in filename,
BASIC assumes you are referring to the current drive.

offset is a numeric expression that returns an unsigned
integer which may range between 0 and 65535. This is
used in conjunction with a DEF SEG statement to specify
an alternate location where loading begins.

As a command, you can use BLOAD to load assembly­
language routines immediately into memory. A
program can use BLOAD as a statement to selectively
load assembly-language routines.

The 8LOAD statement loads a program or data file
(which you saved as a memory image file) anywhere in
memory. A memory image file is a byte-for-byte copy ~
of what was orginally in memory. For example, you
may use 8LOAD to load assembly-language programs,
compiled Microsoft® Pascal programs, and Microsoft®
FORTRAN routines. See the 8SAVE command in this
chapter for information about saving memory files.

When you omit the offset parameter, BASIC uses the
segment address and offset that are contained in the
file. (That is, the address you specified in the 8SAVE

statement when you created the file.) BASIC loads the
file, therefore, back to the same location from which it
was originally saved.

When you give an offset, BASIC uses the segment
address from the most recently executed DEF SEG

statement. Therefore, a program should execute a DEF

SEG statement before it executes a 8LOAD statement. If
BASIC fails to encounter a DEF SEG statement, it uses
the BASIC Data Segment (OS) as the default address.

Example:

CAUTION
Since 8LOAD never performs an address range check,
you may load a file anywhere in memory. You must be
careful, therefore, to avoid loading a file over the BASIC
interpreter program or the MS-DOS operating system.

The following example sets the segment address at 6000
Hex and loads PRO G 1 at FOOO:

10 REM Load subroutine at 6FOOO
20 DEF SEG = &H6000 'Set segment to 6000 Hex
30 BLOAD "PROG1", &HFOOO 'Load PROG1

NOTE
The BASIC compiler offers no support for this command.

6-7

BSAVE Command/Statement
Format:

Purpose:

Remarks:

Example:

BSAVE filename, offset, length

Saves the contents of the specified area of memory as a
disc file. (Also see the BLOAD statement.)

filename is a string expression that contains the filename \...,I
and an optional device designation. The filename
portion may be 1 to 8 characters long.

offset is a numeric expression that returns an unsigned
integer which may range between 0 and 65535. This is
the offset address into the segment that you declared in
the last DEF SEG statement. It specifies the exact location
of the first byte of memory that is saved to disc.

length is a numeric expression that returns an unsigned
integer which may range between 1 and 65535. This
gives the length in bytes of the memory image file that
you want to save.

The syntax for BSAVE requires all three parameters:
filename, offset, and length. If you enter an improper
filename, a Bad f i 1 e name error occurs. Omitting offset
or length produces a Syn t ax err 0 r. Under any of these
circumstances, BASIC cancels the BSAVE operation.

Since the address given in the most recently executed
DEF SEG statement determines the starting point from
which BASIC calculates the offset, you should execute a
DEF SEG statement before you execute a BSAVE

statement.

The following example saves 256 bytes, beginning at
6FOOO, in file PROG1:

10 REM SAVE PROG1
20 DEF SEG = &H6000
30 BSAVE IPROG1", &HFOOO, 256

NOTE
The BASIC compiler offers no support for this command.

6-8

CALL Statement (for Assembly Language Subroutines)
Format:

Purpose:

Remarks:

Example:

CALL varname [(argument [,argument). .. >]

Calls an assembly-language subroutine.

varname contains the segment offset that is the starting
point in memory of the called subroutine. It cannot be
an array variable name. You must assign the segment
offset to the variable before you use the CALL statement.

argument is a variable or constant that is being passed to
the subroutine. No literals are allowed. You must
separate the items in the list with commas.

The CALL statement is the recommended way of calling
machine-language programs with BASIC. You should
avoid the USR function. See Appendix 0, Assembly
Language Subroutines.

The CALL statement generates the same calling
sequence that is used by Microsoft® FORTRAN and
Microsoft® BASIC compilers.

When the CALL statement executes, BASIC transfers
control to the routine via the segment address given in
the last DEF SEG statement and the segment offset
specified by the varname parameter of the CAL L

statement. You may return values to the calling
program by including within the list of arguments
variable names to receive the results.

This example sets the segment address to 8000 Hex. The
variable FDD is set to &H7FA, so that the call to FDD

executes the subroutine located at 8000:7FA Hex
(equivalent to absolute address 807FA):

100 DEF SEG = &HBOOO
110 FDD = &H7FA
120 CALL FDD (A,B$,C)

NOTE
Refer to the BASIC compiler manual for differences between the
interpretive and compiled versions of BASIC when using the CALL

statement.

6-9

CALLS Statement
Format:

Purpose:

Remarks:

CALLS varname [(argument.list>]

Calls a subroutine with segmented addresses.

The CALLS statement resembles the CALL statement,
except the segmented addresses of all arguments are
passed. A CAL L statement passes unsegmented
addresses. You should use the CALLS statement when
accessing MS-FORTRAN subroutines, since all
MS-FORTRAN parameters are call-by-reference
segmented addresses.

As with the CAL L statement, CAL L S uses the segment
address defined by the most recently executed DEF SEG

statement to locate the routine being called.

NOTE
For more information, refer to Appendix 0, "Assembly Language
Subroutines" .

6-10

CDBL Function
Format:

Action:

Example:

CDBLex)

Converts x to a double-precision number.

10 A • 454.67
20 PRINT Ai CDBL(A)
RUN

454.67 454.6700134277344
Ok

6-11

CHAIN Statement
Formal:

Purpose:

Remarks:

6-12

CHA I N [MERGE]filename [, [lineH, ALLH, DELETE range))

Calls a program and passes variables to it from the
current program.

filename is the name of the program that you are calling.

In the example:

CHAIN "PROG1"

BASIC searches the currently active disc for the file
PROG 1. BAS. When it locates the file, it loads then
executes the program. Once the program resides in
memory, you may list and modify it.

If BASIC fails to locate the file, it prints a F i 1 e no t

found error message, and when no ON ERROR statement
is active, halts execution and returns the user to
command mode.

You may specify a different drive than the currently
active one by including a letter specifer for the drive
(followed by a colon) as part of filename. For example,

CHAIN "C:PROG2"

line is either a line number or an expression, which
evaluates to a line number, in the called ("chained-to")
program. It becomes the starting point for executing the
called program. When you omit this parameter, BASIC
begins executing the called program at the first line.
The following statement begins executing PROG 1 at line
1000:

CHAIN "PROG1", 1000

If BASIC fails to find the given line number, an
Undef i ned 1 i ne number error results.

Since line refers to a line in another program, a RENUM

command has no effect on it. (RENUM only affects line
numbers in the current (or calling) program.)

During the chaining process, the C H A I N statement
leaves open any files that were opened.

The ALL option passes every variable in the current
program to the called. program. When you omit this
parameter, the current program must contain a COMMOI'!

statement to list the variables that are being passed.. An
example of a CHA I I'! statement with the ALL option is:

CHAIN "PROG1" , 1000, ALL

The arguments for the CHA I I'! statement are position
dependent. For example, when you use the ALL option
but omit the starting line, you must include a comma to
hold the place for the line parameter. That is,
CHA I I'! "I'!EXTPROG", ,ALL is correct while
CHA I I'! "I'!EXTPROG", ALL is illegal. (In the latter
statement, BASIC assumes ALL is a variable name for a
line number expression.)

Including the MERGE option allows a subroutine to be
brought into the BASIC program as an overlay. That is,
BASIC merges the called. program with the current
program. The called program must be in ASCII format
before you can merge it.

CHAIN MERGE "OVERLAY", 1000

When using the MERGE option, you should place any
user-defined functions before any CHA I I'! MERGE

statements in that program. If they are not defined. prior
to the merge, they remain undefined after the merge
operation is completed.

The CHA I I'! statement with MERGE option leaves files
open and preserves the current OPT I o I'! BASE setting.

When you omit the MERGE option, the CHA I I'! statement
does not preserve variable types or user-defined
functions for use by the called program. That is, you
must reissue any DEF I I'!T, DEFSI'!G, DEFDBL, DEFSTR. or
DEFFI'! statements within the called program.

6-13

6-14

Mter an overlay is brought in and finishes processing,
you may delete it with the DELETE option. This allows
BASIC to bring in a new overlay if one is needed.

CHAIN MERGE "OVRLAY2", 1000, DELETE 1000-5000

The above statement deletes lines 1000 to 5000 in the
current program, merges in the file OVRLAY2. BAS, and
resumes execution at line number 1000.

NOTE
The CHA I N statement does a RESTORE before running
the chained program. Therefore, the next READ

statement accesses the first item in the first DATA

statement that the program contains. The read
operation does not continue from where it left off in the
chaining program.

The RENUM command affects the line numbers in range
since they refer to lines in the current program.

v

Example 1: 5 REM -----------THIS IS PROGRAM 1 -----------
10 REM THIS EXAMPLE PASSES VARIABLES
15 REM USING THE "COMMON" STATEMENT
20 REM SAVE THIS MODULE ON DISK AS "PROG1" USING

THE A OPTION
30 DIM A$(2), B$(2)
40 COMMON A$(), B$()
50 A$(1) = "VARIABLES IN COMMON MUST BE ASSIGNED"
60 AS(2) = "VALUES BEFORE CHAINING."
70 BS< 1) • " " : B$(2)
80 CHAIN "PROG2"
90 PRINT : PRINT BS< 1) PRINT BS(2) PRINT
100 END

5 REM -----------THIS IS PROGRAM 2 -----------
10 REM STATEMENT 30 ABOVE "DIM A$(2), B$(2)"

MAY ONLY BE EXECUTED ONCE.
20 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE.
30 REM SAVE THIS MODULE ON THE DISC AS "PROG2"

USING THE A OPTION.
40 COMMON A$(), B$()
50 PRINT PRINT A$(l)j A$(2)
60 B$(l) • "NOTE HOW THE OPTION OF SPECIFYING A

STARTI NG LI NE NUMBER"
70 B$(2) • "WHEN CHAINING AVOIDS THE DIMENSION

STATEMENT IN 'PROG1'."
80 CHAIN "PROG1",90
90 END
RUN "PROG 1" I Return I
VARIABLES IN COMMON MUST BE ASSIGNED VALUES
BEFORE CHAINING.
NOTE HOW THE OPTION OF SPECIFYING A STARTING
LINE NUMBER WHEN CHAINING AVOIDS THE
DIMENSION STATEMENT IN 'PROG1'.
Ok

6-15

Example 2: 5 REM -----------MAI~PRG --------------------
10 REM THIS EXAMPLE USES THE MERGE, ALL, A~D

DELETE OPT! ONS.
20 REM SAVE THIS MODULE ON THE DISC AS "MAINPRG".
30 AS = "MAINPRG"
40 CHAIN MERGE "OVRLAY1",1010,ALL
50 END

1000 REM SAVE THIS MODULE ON DISC AS "OVRLAY1"
USING THE A OPTION.

1010 PRINT AS; " HAS CHAINED TO OVRLAY1."
1020 AS = "OVRLAY1"
1030 BS = "OVRLAY2"
1040 CHAIN MERGE "OVRLAY2", 1010, ALL,

DELETE 1000-1050
1050 END

1000 REM SAVE THIS MODULE ON DISC AS "OVRLAY2"
USING THE A OPTION.

1010 PRINT A$; " HAS CHAINED TO "; B$;
RUN "MA I NPRG" I Return I
MAINPRG HAS CHAINED TO OVRLAY1.
OVRLAY1 HAS CHAINED TO OVRLAY2.
Ok

NOTE

II ..

The BAS I C compiler offers no support for the ALL, MERGE, and DELETE

options to the CHA I N statement. If you want to maintain compatibility
with the BASIC compiler, you should pass variables with the COMMON

statement and avoid using overlays.

6-16

CHR$ Function
Formal:

Action:

Examples:

CHRHi}

Returns the character that corresponds to a given ASCII
code.

You normally use CHR$ to send special characters to the
computer. For example, you could send the BELL
character (C H R H 7 }) as a preface to an error message.

See the ASC function for ASCII-to-numeric conversions.

PR I I'IT CHRSC66}

B

Ok

The following PR I I'IT statement uses escape sequences
to home the cursor and clear the display:

PRII'IT CHR$(27} + "H" + CHR$(27} + "J"

CINT Function
Formal:

Action:

Example:

C II'ITex}

Converts x to an integer by rounding off the fractional
part.

x must be within the range of -32768 to 32767. If x is
outside this range, an Over flow error occurs.

See the COBl and CSI'IG functions for converting
numbers to double-precision and single-precision data
types. See also the F I X and I I'IT functions, both of
which return integers.

PRII'IT CII'IT(4S.67}

46

Ok

6-17

CLEAR Statement
Format:

Purpose:

Remarks:

6-18

CLEAR [, [expression 1] [, expression2]]

Sets all numeric variables to zero and all string variables
to the null string, closes all files, and, optionally, sets the
end of memory and the amount of stack space.

expression 1 sets the maximum number of bytes for the
BASIC workspace. When you omit this parameter,
BASIC uses all available memory up to the starting
point of the MS-DOS operating system.

expression2 sets aside stack space for BASIC. When you
omit this parameter, BASIC sets aside either 512 bytes or
one-eighth of the available memory, whichever is
smaller.

The CLEAR statement performs the following functions:

• Frees all memory used for data without erasing the
program currently in memory

• Closes all files

• Clears all COMMOI'! and user variables

• Resets the stack and string space

• Releases all disc buffers

• Resets all numeric variables and arrays to zero

• Resets all string variables and arrays to null

• Clears definitions set by any DEF statements. (This
includes DEF FI'!, DEF SEG, and DEF USR, as well as
DEF I I'!T, DEFSI'!G, DEFDBL, and DEFSTR.)

v

Examples: The first example clears all data from memory without
erasing the program:

CLEAR

The next statement clears all data and sets the
maximum workspace size to 32K bytes:

CLEAR,32768

The next example clears all data and sets the size of the
stack to 2000 bytes:

CLEAR,,2000

The last example clears all data and sets the maximum
workspace size to 32K bytes and the stack size to 2000
bytes:

CLEAR,32768,2000

NOTE
If you intend to compile your program, consult the BASIC compiler
manual for differences in implementation between the compiled and

o interpretive version of this command.

6-19

CLOSE Statement
Format:

Purpose:

Remarks:

Example:

6-20

CLOSE [[']filenum [,[']filenum . ..]]

Concludes input and output to a disc file.

filenum is the number you gave the file when you
opened it. A CLOSE statement with no arguments closes
all open files and devices.

The association between a particular file and its file
number ceases when the file is closed. Therefore, you
may then reopen the file using the same or a different
file number. Similarly, you may use the freed file
number to open a new file.

A CLOSE for a sequential output file writes the final
buffer of output to the file.

The following instructions close all disc files
automatically:

• END

• NEW

• RESET

• RUN without the R option

• SYSTEM

The STOP statement, however, never closes any disc
files.

100 OPEN "0", '2, "OUTFILE"
110 PRINT '2, CNAMES, ADDRESSS, ZIPS, PHONES
120 CLOSE 12

v

COMMON Statement
Format:

Purpose:

Remarks:

COMMON variable [, variable] ...

Passes variables to a chained program.

variable is the name of the passed variable. You specify
array variables by appending a pair of parentheses "()"
to the variable's name.

The BASIC interpreter accepts the number of
dimensions for an array as in:

COMMON EMPLOYEE(3)

but treats it as equivalent to:

COMMON EMPLOYEE()

Also, the number in parentheses is the number of
dimensions, not the dimensions themselves. For
example, EMPLOYEE(3) could correspond to either of
the following 0 I M statements:

DIM EMPLOYEE(20,4,2)
or

DIM EMPLOYEE(10,S,12)

You use the COMMON statement in conjunction with the
CHA I N statement. You pass variables in the main
program to variables in the chained program by listing
each variable name in a COMMON statement.

Although COMMON statements may appear anywhere
within a program, good programming practice dictates
grouping them at the program's beginning.

You cannot name the same variable in multiple COMMON
statements.

When you want to pass all the variables within a
program, you should use the CHA I N statement with the
ALL option and omit the COMMON statement.

6-21

Example: (Listing for F I L E 2)
10 COMMON CUSTS,A,F()
20 PRINT CUSTS,A,F(1)

(Listing for F I L E 1)
10 A = 10 : CUSH = "MADELAIN" B = 20
20 COMMON A, CUSTS, B
30 CHAIN "FILE2"
RUN
MADELAIN 10 0
Ok

Notice in the above example that BASIC prints the
value for the variable F (1) as o. Since the COMMON
statement for F I L E 1 omitted the array variable F,

BASIC assigns a value of zero to F (1).

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compile and interpretive versions of this
statement.

6-22

CONT Command
Format:

Purpose:

Remarks:

COtH

Continues program execution after execution was
suspended by either your typing I CTRL I @] or the
program encountering a STOP or END statement.

You enter this command in Direct Mode.

Execution resumes at the pOint where the break
occurred. If the break occurred after a prompt from an
I NPUT statement, execution continues by reprinting the
prompt (? or prompt string).

You normally use the CONT statement in conjunction
with the STOP statement to debug a program. After
execution stops, you may examine intermediate values
by using Direct Mode statements. You may resume
execution with the CONT statement (which continues
with the next executable statement) or the Direct Mode
GOTO statement (which continues execution at the
specified line number).

You may also use CONT to resume execution after BASIC
suspends execution upon its detecting an error
condition. However, you may not use CONT to resume
execution if you have modified the program (through
edit commands) during the break.

6-23

Example: The following program and interactive session
illustrates how you might use the c DtH statement:

10 INPUT "ENTER PRICE", AMOUNT
20 IF AMOUNT < 20! THEN SURCHG=l!
30 STOP
40 TOTAL = AMOUNT + SURCHG
50 PRINT TOTAL
RUN
ENTER PRICE

(you type 15 I Return I)

Break in 30
Ok

(you type PR I NT SURCHG I Return I)
1

Ok

(you type CONT I Return I)
16

Ok

For more information, see the STOP statement.

NOTE
The BASIC compiler offers no support for this command.

6-24

COS Function
Format:

Action:

Example:

COSCx)

Returns the cosine of x, where x is given in radians.

To convert degrees to radians, multiply the angle by
PI/ISO, where PI = 3.141593.

BASIC evaluates cos in single-precision arithmetic.

10 X = 2 • COSC.4)
20 PRINT X
RUN

1.842122
Ok

CSNG Function
Format:

Action:

Example:

CSNGCx)

Converts x to a single-precision number.

See the C I NT and CDBL functions for converting
numbers to the integer and double-precision data types.

10 AI = 975.3421241
20 PRINT AI; CSNGCAI)
RUN
975.342124 975.3421

Ok

6-25

eVI, evs, eVD Functions
Format:

Action:

Example:

6-26

CV I C 2-byte string>
CVSC4-byte string>
CVOCS-byte string>

Converts string values to numeric values.

Random-access disc files store numeric values as strings.
Therefore, when you read values from a random disc
file, you must convert the strings into numbers.

CV I converts a 2-byte string to an integer.

CVs converts a 4-byte string to a single-precision
number.

CVo converts an 8-byte string to a double-precision
number.

See also MK I $, MKS$, MKO$.

70 FIELD '1,4 AS i'lS, 12 AS BS

80 GET #1

90 CODE = CVSCi'I$)

DATA Statement
Formal:

Purpose:

Remarks:

Example:

DATA constant [,constant]

Stores information (that is, numeric or string constants)
for later access by a program's READ statements.

constant may be a numeric or string constant.

Numeric constants may assume either an integer, fixed­
point, or floating-point format. Numeric expressions are
illegal.

You must place quotation marks around a string
constant only if the string contains embedded commas
or colons, or if it has significant leading or trailing
spaces. Otherwise, you may omit the quotation marks.

DATA statements are nonexecutable. You may place
them anywhere within the program.

A DATA statement may contain as many constants as
you may fit on the input line. (You must separate the
DATA items by commas or spaces.) A program's READ

statements access the DATA statements in sequential
order (by line number). Therefore, you may envision
the data to be a continuous list of items, regardless of
how many items are on a line or where the lines occur
within the program.

The variable type given in the READ statement must
agree with the corresponding constant in the DATA

statement or a Type mi sma t ch error occurs.

You may reread the information stored in a DATA

statement by using the RESTORE statement.

10 DATA 80, 90, tonight, II dinner", 25
20 FOR I = 1 TO 5
30 READ AS
40 PRINT AS; II II. ,
50 NEXT
60 END
RUN
80 90 tonight dinner 25
Ok

6-27

DATE$ Function
Format:

Action:

Example:

6-28

DATE$

Retrieves the current date.

The DATE$ function fetches the date, which BASIC
derives from the date set with the DATE$ statement.

The DATE$ function returns a 10-character string in the
form:

mm-dd-yyyy

where:

mm is the month of the year. Values range from 01
to 12.

dd is the day of the month. Values range from 01
to 31.

yyyy is the year. Values range from 1980 to 2099.

PRItH DATES

02-27-1984
Ok

v

DATES Statement
Format:

Purpose:

Remarks:

Example:

DATE$ • string

Sets the current date for use by the DATE $ function.

string represents the current date. You may enter it in
one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

where:

mm is the month of the year. Values range from 01
to 12.

dd is the day of the month. Values range from 01
to 31.

yy or yyyy is the year. Values range from 1980 to
2099. When you include only two digits, BASIC
assumes 19 for the first two digits.

This example demonstrates both forms for the year
entry:

DATES· "01-01-1984"
Ok

PRINT DATES
01-01-1984
Ok

DATES • "02-27-84"
Ok

PRINT DATES
02-27-1984
Ok

6-29

DEF FN Statement
Formal:

Purpose:

Remarks:

6-30

DEF FN name [<parameter [,parameter] ... >] definition

Names and defines a function which the user writes.

name must be a legal variable name. This name,
preceded by the letters F 1'1, becomes the name of the
function.

parameter is a variable name in the function definition
that BASIC replaces with a value when the function is
called. You must separate multiple parameters with
commas.

definition is an expression that performs the operation of
the function. You must limit the definition to one line
(255 characters). Variable names that appear in this
expression serve only as formal parameters to define the
function. They have no effect on program variables that
have the same name. A variable name used within the
function definition might appear as a parameter. If it is a
parameter, BASIC supplies its value when the function
is called. Otherwise, BASIC uses the variable's current
value.

The parameter variables correspond on a one-to-one ~
basis to the argument variables or values that are given
in the function call.

User-defined functions may be numeric or string.
When the function name contains a type definition
character, the value of the expression is forced to that
type before BASIC returns the result to the calling
statement. When you omit the type definition character,
BASIC considers the result to be a single-precision
value. When a type is specified in the function name
and the argument type differs, a Type mi 5ma tch error
occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a function is called
before it has been defined, an Undef i ned U5er

fun c t ion error occurs.

The DEF FN statement is illegal when you are using the
BAStC interpreter in Direct Mode.

Example 1:

Example 2:

If a program contains the following lines:

30 VALUE(I) • A+Y/F-D

80 VALUE(I) • B+Y/F-E

200 VALUE(I) = C+Y/F-G

Then defining a function such as:

10 DEF FHHUM(S,T) • S+Y/F-T

simplifies the progQffi to:

30 VALUE(I) FHHUM(A,D)

80 VALUE(I) = FHHUM(B,E)

200 VALUE(I) • FHHUM(C,G)

10 DEF FHMULT(I,J) • I*J+(I A2)*J+(I A3)*J
20 = 2 : J = 3
30 A = FHMULHI,J)
40 B = FHMUL H3,4)
50 PRIHT A, B
RUH

42 156
Ok

6-31

DEF SEG Statement
Formal:

Purpose:

Remarks:

Example:

6-32

DEF SEG [=address]

Assigns the current "segment" for storage. A
subsequentBLoAD,BSAVE,CALL,CALLS,POKE,PEEK,or
USR instruction defines the actual physical address that
it requires as an offset into this segment. \...,I

address is a numeric expression that returns an unsigned
integer which may range between 0 and 65535.

Entering an address outside the permissible range
results in an 111 ega 1 fu nc t i on ca 11. Under these
circumstances, any previous value remains in effect.

BASIC saves the address you specify for use as the
segment needed by a BLOAD, BSAVE, CALL, CALLS,
POKE, PEEK, or USR instruction.

When you give an address, you should ensure that it is
based on a 16-byte boundary. The value is multiplied by
16 (shifted left by 4 bits) to form the segment address
for the subsequent operation. BASIC does not check the
validity of the specified address.

When you omit the address parameter, BASIC sets the
segment address to that of the BASIC Data Segment
(OS). This is the setting for the current segment when
you initialize BASIC.

NOTE
You must separate DEF and SEG with a space.
Otherwise, BASIC interprets the statement:

DEFSEG = 1000

as "assign the value of 1000 to the variable DEFSEG".

This example sets the segment address to &HBBOO Hex.
Later, a second statement (with no specified address)
restores the address to the BASIC Data Segment (OS):

10 DEF SEG = &HB800

90 DEF SEG

DEF USR Statement
Format:

Purpose:

Remarks:

Example:

DEF USR [digit] = offset

Gives the starting address of an assembly-language
subroutine.

digit may be any integer from 0 to 9. The digit
corresponds to the number of the USR routine that you
are specifying. When you omit the digit parameter,
BASIC assumes the reference is to USRO.

offset is an integer expression whose value may range
from 0 to 65535. BASIC adds offset to the value of the
current storage segment to get the actual starting
address of the USR routine. (See Appendix D for
information about assembly-language subroutines.)

DEF USR lets the programmer define starting addresses
for user-defined assembly language functions that are
called from BASIC programs. You must use this
statement to set the starting address prior to its actual
use.

A maximum of 10 user-defined functions are available
for use at any given time. The routines are identified as
USRO to USR9. When you need access to more
subroutines, you can use multiple DEF USR statements
to redefine a subroutine's starting address. However,
BASIC only saves the last-executed value as the offset
for that subroutine.

NOTE
The CALL statement is the preferred way of calling
subroutines. You should avoid using the USR statement.

This example calls the user function at the Data
Segment relative memory location 24000:

200 DEF SEG = 0
210 DEF USRO = 24000
220 X = USRO (yA2/2.89)

6-33

DEFINT ISNG/DBL/STR Statements
Format:

Purpose:

Remarks:

6-34

DEF I NT letter [-letterH ,letter [-letter)]. ..
DEFSNG letter [-letterH , letter [-letter)]' ..
DEFD8L letter [-letterH ,letter [-letter)]. ..
DEFSTR letter [-letterH , letter [-letterll ..

Declares that BASIC should automatically treat certain
variable names as integer, single-precision, double­
precision, or string variables, respectively.

letter is a letter of the English alphabet (A-Z).

BASIC considers any variable names beginning with
the specified letter(s} to be of the requested type.
However, when assigning variable types, BASIC always
gives precedence to a type declaration character (X,! ,#,
or $) over an assignment set by a DEFtype statement.

In the following example, BASI!2 prints the variable C as
an integer because of the type declaration character (x),
even though C is within the range of the DEFD8L

declaration.

10 DEFDBL B-D ~

20 D = S.2D+17 CX= 20.2
30 PRINT D,CX
RUN

S.2D+17
Ok

20

When you use these statements, you should place them
at the beginning of a program. (BASIC must execute the
DEFtype statement before you use any variables that it
declares.)

If a program contains no type declaration statements,
BASIC assumes that any variable without a declaration
character is a Single-precision variable.

Examples: The first example defines all variables that begin with
either the letter L, M , 1'1 , 0, or P to be double-precision
variables:

10 DEFDBL L-P

The next statement defines all variables that begin with
the letter A to be string variables:

10 DEFSTR A

The last example defines all variables that begin with
either the letter I , J , K , L , M, 1'1, W , X , Y , or Z to be
integer variables:

10 DEFIHT I-H,W-Z

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the interpretive and compiled version of this
statement.

6-35

DELETE Command
Formal:

Purpose:

Remarks:

Examples:

DELETE [starUine1 [-end.line]

Deletes the specifed line(s) from a BASIC program.

starUine is the line number for the first line you want to
delete.

end.line is the line number for the last line you want to
delete.

NOTE
You may use a period (.) in place of a line number when
you want to delete the current line.

If BASIC fails to find the line number you supplied, it
returns an Illegal function call.

BASIC always returns control to the command level
after the DELETE command executes.

The first example only deletes line 40:

DELETE 40

The next statement deletes from the beginning of the
program through line 40:

DELETE -40

The last example deletes all lines between 40 and 80,
inclusively:

DELETE 40-80

NOTE
The BASIC compiler offers no support for this command.

6-36

DIM Statement
Format:

Purpose:

Remarks:

Example:

DIM array name C subscripts) [, arrayname C subscripts)] . ..

Sets the maximum values for the subscripts of an array
variable, allocates the necessary storage, and initializes
the elements of the array to zero or null.

arrayname is a variable that names the array.

subscripts is a list of numeric expressions, separated by
commas, that define the array's dimensions.

When you fail to dimension an array with the DIM
statement, BASIC assumes the maximum subscript is
10. If you subsequently use a subscript that exceeds this
number, a Sub5cr i pt ou t of range error occurs.

If you attempt to dimension an array more than once, a
Dup 1 i ca t e De fin i ti on error occurs. (See the ERASE

statement.)

The minimum value for an array subscript is zero
unless you use the OPT ION BASE statement to change it
to one.

The maximum number of dimensions for an array is
255. The maximum number of elements per dimension
is 32767. However, these values are theoretical limits as
both values are limited by the size of memory and the
number of characters that you can enter on the input
line.

The DIM statement sets all elements of numeric arrays
to an initial value of zero and all elements of string
arrays to the null string.

10 DIM ID(20)
20 FOR I = 0 TO 20
30 READ IDCI)
40 NEXT I

NOTE
If you plan to compile your program, see the BASIC complier manual for
differences between the compiled and interpretive version of the DIM
statement.

6-37

EDIT Command
Formal:

Purpose:

Remarks:

Examples:

EDIT line
EDIT •

Enables Edit mode on the specified line.

The ED I T command displays the specified line number,
then waits for an Edit subcommand. You may then
modify the line with any of the techniques presented in
Chapter 1.

When you specify a line number, the ED I T command
edits that line. If no such line exists, an Undef i ned

1 i ne number error occurs.

When you enter ED IT. , the ED I T command edits the
last line that you typed, the last line that a LIS T

statement displayed, or the last line that an error
message referenced.

Both of the following groups of commands display Line
10 for editing:

EDIT 10

LIST 10

EDIT

NOTE
The BASIC compiler offers no support for this command.

6-38

END Statement
Formal: END

Purpose:

Remarks:

Example:

Stops program execution, closes all files, and returns
control to the command level.

You may place END statements anywhere in a program
to end execution. The END statement at the end of a
program, however, is optional. When you omit it,
execution stops after the last line in the program
executes.

The END statement differs from the STOP statement in
two important ways:

• END closes all files

• END terminates the program without printing a
Break message

BASIC always returns control to the command level
after an END statement executes.

This program segment tests to see if more data exists.
END statements terminate the program when no data
exists and prevent program flow from falling into the
subroutine section:

520 IF EOF(l) THEN END ELSE GOTO 200

850 END
1000 REM THE FOLLOWING SECTION CONTAINS
1010 REM THE INPUT SUBROUTINES

NOTE
If you plan to compile your program, refer to the BASIC Compiler
Manual for programming differences when using the END statement.

6-39

EOF Function
Format:

Action:

Example:

6-40

EOF(filenum>

For sequential files, the EOF function returns true (-1)
when no more data exists in the file. BASIC considers
the file empty if the next input operation (for example,
I NPUT or LI NE I NPUT) would cause an I npu t pa5 tend
error. Using the EOF function to test for the end-of-file
while inputing information avoids such errors.

For random-access files, EOF returns true (-1) if the most
recently executed GET statement attempts to read
beyond the end-of-file.

Because BASIC allocates 128 bytes to a file at a time, it is
possible that EO F will not accurately detect the end of a
random-access file that was opened with a record
length of less than 128 bytes. For example, if you open a
file with a record length of 64 bytes and you write one
record to the file (that is, PUT # 1, 1), EOF returns false if
a GET statement is attempted on the file's record (for
example, GET # 1 , 1). This occurs even though the record

v

has not actually been written. "--/

This sample program lists the titles of the books
cataloged in the file LI BRA R Y . 0 AT. It also counts the
books in the library by counting the number of records
that it reads from LIBRARY. OAT before it encounters
the end-of-file.

Each record of LIBRARY. OAT contains information on
one book. The record length is 128 bytes. The first 35
bytes contain the title of the book. The remaining 93
bytes contain additional information such as the author,
publisher, print date, and so on.

10 REM
20 REM Open the library catalog file,
30 REM LIBRARY.DAT.
40 OPEN "R",l,"LIBRARY.DAT"
50 REM The first 35 bytes of the
60 REM record contain the title,
70 REM the remaining 93 bytes contain
80 REM additional information that
90 REM this program does not use.
100 FIELD 1, 35 AS TITLE$, 93 AS G$
110 REM
120 REM Initialize the number of books seen.
130 REM
140 NBOOKS = 0
150 REM Attempt to fetch the next record.
160 REM Note that the record number
170 REM of GET isn't specified
180 REM so the next record of the file
190 REM is fetched.
200 GET 1
210 REM
220 REM Is this the end of the file?
230 REM
240 IF EOF(1) THEN 1000
250 REM If no: increment the count of books,
260 REM print the current title, and
270 REM loop back to read the next record.
280 REM
290 NBOOKS = NBOOKS +

300 PRINT TITLE$
310 GOTO 200
1000 REM Control passes here when the end of
1010 REM file has been reached, so:
1020 REM print a blank line and the number of
1030 REM books, close the file, and terminate
1040 REM the program.
1050 PRINT "There are "; NBOOKS; " books in ";
1060 PRINT "your library."
1070 CLOSE
1080 END

6-41

ERASE Statement
Format:

Purpose:

Remarks:

Example:

ERASE arrayname [,arrayname] ...

Deletes the named arrays from the program.

arrayname names the array that you want to delete.

After you delete an array, you may redimension that
array or use the previously allocated array space for
another purpose.

Attempting to redimension an array without first
erasing it causes a Dup 1 i ca t e De fin it i on error.

450 ERASE ID, STATS
460 DIM ID(99)

NOTE
The BASIC compiler offers no support for this statement.

6-42

ERR and ERL Variables
Format: ERR

Action:

ERL

When BASIC enters an error-handling routine, the
variable ERR contains the error code for the error, and
the variable ERL contains the line number of the line in
which BASIC detected the error.

You normally use these variables in IF ••• THEN

statements to direct program flow in the error trap
routine.

When the statement causing the error was a Direct
Mode statement, ERL contains the value 65535. To test if
an error occurred in a Direct Mode statement requires
the following statement:

IF ERL = 65535 THEN • • •

You may also test for other error conditions by using
the following statements:

IF ERR = error. code THEN

or

IF ERL = line# THEN

You could also enter the previous statement as:

IF line# = ERL THEN

However, when line# appears on the left side of the
equal sign, the RENUM command fails to adjust the value
for line# if its value changes while resequencing the
program.

6-43

6-44

CAUTION
Numeric constants following an ERL variable in a given
expression may be treated as line references and thus
modified by a RENUM statement. To avoid this problem, V
you should use statements similar to these:

L = ERL : PRINT L/10

rather than this statement:

PRINT ERLl10

ERL and ERR are variables that BASIC reserves for its
use. Therefore, BASIC prevents you from assigning
values to these variables. For example, the following
assignment is illegal:

LET ERR = 65535

Appendix A lists the BASIC error codes.

ERROR Statement
Format:

Purpose:

Remarks:

Example 1:

ERROR number

Either simulates the occurrence of a BASIC error or
allows you to define error codes.

number must be an integer expression between 0 and
255. When the value of number is equal to a BASIC error
message, the ERROR statement simulates the occurrence
of that error (which includes the printing of the
corresponding error message). (See Example 1.)

To define your own error code, select a value that is
greater than those used by the BASIC error codes. (We
recommend that you use the highest available values,
for example numbers over 200, so your program can
maintain compatability if BASIC adds more error codes
in later version of this package.) This user-defined error
code may then be conveniently handled in an error­
trap routine. (See Example 2).

When an ERROR statement specifies a code for an error
message that is undefined, BASIC responds with the
message Unpr i ntab 1 e er ror.

Executing an ERROR statement for which no error-trap
routine exists prints an error message and halts
execution.

10 S = 10
20 T • 5

30 ERROR S + T

40 END
Ok
RUN
Strin9 too 10n9 in line 30

6-45

Example 2:

6-46

If you are using the BASIC interpreter in Direct Mode,
you may enter an error number at the Ok prompt.

For example, if you enter:

ERROR 15

BASIC responds:

String too long
Ok

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET"; WAGER
130 IF WAGER> 5000 THEN ERROR 210

400 IF ERR·210 THEN PRINT "HOUSE LIMIT IS 5000"
410 IF ERL·130 THEN RESUME 120

EXP Function
Format:

Action:

Example:

EXP(x)

Returns e (where e = 2.71828 ...) to the power of x. The
number e is the base of the natural logarithms.

,
x must be less than 88.02969.

If EXP overflows, BASIC displays the Overf low error
message, sets the result to machine infinity witb the
appropriate sign, and continues execution.

10 X • 5
20 PRINT EXP (X-1)
RUN

54.59815
Ok

6-47

FIELD Statement
Format:

Purpose:

Remarks:

6-48

FIELD [#]filenum ,field. width AS stringvar
[,field.width AS stringvar] ...

Allocates space for variables in the random file buffer.

BASIC reads and writes random files through a file V
buffer that holds the file record. You must assemble and
disassemble this buffer into individual variables.
Therefore, this requires your using the FIELD statement
to specify the layout of the file buffer before you get
data out of a random file buffer after a GET, or to enter
data before a PUT.

filenum is the number you gave the file when you
opened it.

field. width is the number of character positions that you
want to allocate to stringvar. For example, the following
statement allocates the first 20 positions (bytes) in the
random file buffer to the string variable CNAMESS, the
next 10 bytes to I DS, and the next 40 bytes to ADDRESSS:

FIELD #1, 20 AS CNAME$, 10AsID$, 40 AsADDREss$

stringvar is a string variable that is used for random file '-....J
access.

The FIELD statement is a template for formatting the
random file buffer. It never places any data into the
buffer. (See the GET and LSET IRSET statements for
information on moving data into and out of the random
file buffer.)

You may execute any number of FIELD statements for a
given file. Once it executes, a FIELD statement remains
in effect. Each new FIELD statement redefines the
buffer from the first character position. This permits
multiple field definitions for the same data.

The total number of bytes you allocate with a FIELD

statement must not exceed the record length that you
set when you opened the file. (When you omit
specifying the length parameter, BASIC sets the record
length to 128 bytes.) Attempting to allocate more bytes
than the record can hold results in a Fie 1 d 0 v e r flo \AI

error.

Example:

If your definition of a record's layout requires more
than 255 characters, you must divide the definition into
two or more FIELD statements. For example:

10 OPEN "R", #1, "FILE", 120
20 FIELD #1, 2 AS ACODE$, 2 AS BCODE$, 4 AS ACTNM$,

2 AS DCODE$, 6 AS CITY$, 10 AS LASTNAME$,
2 AS ALTCODES, 4 AS OPFLAG$, 2 AS KYNUM$,
8 AS BDATE$, 8 AS LOANDATE$, 2 AS PAYCODE$,
5 AS PYMTCRD$, 5 AS CHECKNUM$

30 FIELD #1, 62 AS DUMMY$, 40 AS COMMENTS$,
18 AS FRSTNAME$

In this example, DUMMY$ is a string variable whose
width is equal to the combined width of all the
variables in the previous FIELD statement. It provides a
way of skipping over the buffer space that you allocated
to variables in the first FIELD statement. Never assign a
LSET or RSET value to these dummy variables.

NOTE
Be careful how you use a field variable name in an
I NPUT or LET statement. After you assign a variable
name to a field, it points to the correct place in the
random file buffer. If a subsequent I NPUT or LET
statement with that variable's name executes, the
variable's pointer moves to string space and ceases to be
in the file buffer.

10
20
30
40
50
60
70
80
90

OPEN "R", 11, "FILE", 40
FIELD #1, 20 AS CUST$, 4 AS PRICE$, 16 AS CITY$
INPUT "CUSTOMER NUMBER", CODEX
INPUT "CUSTOMER NAME"; CNAME$
INPUT "TOTAL ORDER"; AMT
INPUT "CITY"; TOWN$
LSET CUST$ = CNAME$
LSET PRICE$ = MKS$(AMT)
LSET CITY$ = TOWN$

100 PUT 11, CODEX
110 GOTO 30

6-49

FILES Command/Statement
Format:

Purpose:

Remarks:

Examples:

6-50

F I L E S [filename]

Lists the names of the files that reside on the specified
disc.

filename is a string expression that contains the file's
name and an optional device designation.

filename may contain question marks (?) or asterisks (*)
as wild cards. A question mark matches any single
character in the filename or extension. For example,
CHAp? would match CHAP 1, CHAP2, CHAPS, and so on.
An asterisk matches one or more characters, beginning
at that position. For example, CHAP* not only matches
all the files listed above but also matches CHAPTER,

CHAPLA IN, CHAPEAU, and so on.

Omitting filename lists all the files on the currently
selected drive.

This statement lists all the files on the current disc:

FILES

The next statement lists all files with the BASIC file
type extension (. BAS):

FILES "*.BAS"

This statement lists all the BASIC files with a PROG

prefix and one trailing character, such as PROGS. BAS or
PROG 1. BAS:

FILES "PROG?BAS"

The last statement lists all the files on the disc in drive
B:

FILES "B:*.*"

v

FIX Function
Format:

Action:

Examples:

F I X<x)

Returns the truncated integer portion of x.

F I X< x) is equivalent to SGtH X) * I NT< ABS C X». The
major difference between F I X and I NT is that F I X does
not return the next lower number for negative x.
For example,

F I XC -3.99) returns -3

whereas
I NT< -3.99) returns -4.

PRINT FIX (58.75)
58

Ok

PRINT FIX (-58.75)
-58
Ok

6-51

FOR ... NEXT Statement
Format:

Purpose:

Remarks:

6-52

FOR variable = x TO Y [STEP z]

[loop statements] ...
N EXT [variable] [, variable] ...

Loops through a series of statements a given number of
times.

variable serves as a counter.

x, y, and z are numeric expressions.

x is the initial value of the counter.

y is the final value of the counter.

z is the increment. When you omit this parameter,
BASIC increments the count by one on each iteration
through the loop. If STEP is negative, the final value of
the counter is set to be less than the initial value. Under
these circumstances, BASIC decrements the counter on
each iteration through the loop, and looping continues
until the counter is less than the final value.

BASIC executes the program lines that follow the FOR

statement until it encounters the NEXT statement.
BASIC then increments the counter by the amount
specified by STEP. It then checks to see if the value of
the counter exceeds the final value (y). If it is not greater
than the final value, BASIC branches back to the first
statement within the loop and repeats the process.
When the counter finally exceeds the final value,
execution continues with the statement after the NEXT

statement.

You may modify the value of variable from inside the
loop. However, we do not recommend this practice.

If the initial value of the loop times the sign of the step
exceeds the final value times the sign of the step, BASIC
skips over the FOR ••• NEXT loop.

You may place a FOR ••• NEXT loop within the context of
another FOR ••• NEXT loop. When you nest loops

v

Examples:

in this fashion, each loop must have a unique variable
name for its counter. Furthermore, the NEXT ,tatement
for the inner loop must appear before the NEXT
statement of the outer loop. When nested loops have
the same end point, you may use a single N EXT
statement for all of them.

The variable name(s) in the NEXT statement are
optional.

If a NEXT statement is encountered before its
corresponding FOR statement, BASIC displays a NEXT
wi thou t FOR error and halts execution.

Although the following example modifies the loop's
final value, it has no effect on program execution since
BASIC calculates this value only once when it first
enters the FOR statement:

10 K • 10
20 FOR I • 1 TO K STEP 2
30 PRINT
40 FOR J • 1 TO 3
50 K = K + 1
60 PRINT K;
70 NEXT J

80 NEXT
90 END
RUN

11 12 13
14 15 16
17 18 19
20 21 22
23 24 25

Ok

BASIC skips the FOR loop in the following example
since the inital value of the loop exceeds the final value
and a negative STEP doesn't appear:

10 J = 0
20 FOR I = 1 TO J

30 PRINT
40 NEXT I

6-53

The loop in the next example executes ten times since
BASIC always calculates the final value for the loop
value before it sets the initial value.

NOTE
Previous versions of BASIC set the initial value of the
loop variable before setting the final value. Were this
still true in the following example, the loop would have
executed 6 times and not 10.

10 I = 5
20 FOR I = 1 TO I + 5
30 PRitH I;

40 NEXT
RUN

234 5 6 7 8 9 10
Ok

In the statement,
FOR 1= 45 TO 45.8 STEP 0.2

BASIC executes the loop four times; and not five times
as you would expect. This results from the computer's
attempt to represent decimal digits in a binary format.

On each iteration of the loop, the value for the counter
takes on these values:

45
45.20000076293945
45.40000152587891
45.60000228881836
45.80000305175781

As the last value exceeds 45.8, the FOR loop terminates
after the fourth iteration.

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compiled and interpretive versions of this
statement.

6-54

v

FRE Function
Format:

Action:

Example:

FRE(O)
FRE(x$)
FRE(III1)

Returns the number of bytes of memory that are
available for the user's program.

The FRE arguments are dummy arguments.

F R E (II ") forces the system to reorganize the memory
that BASIC uses, so no space is used by unreferenced
variables. It then returns the number of free bytes.
BE PATIENT: this process can take from one to two
minutes.

BASIC does not initiate memory consolidation until it
uses its allotment of free memory. Therefore, using
F R E< II ") periodically results in shorter delays for each
memory reorganization.

PRINT FRE(O)
14542

Ok

6-55

GET Statement
Format:

Purpose:

Remarks:

Example:

6-56

GET [#]filenum [, recnum]

Reads a record from a random disc file into the random
file buffer. V
filenum is the number you gave the file when you
opened it.

recnum identifies the record to be read. The value for
recnum may range from 1 to 32767.

When you omit recnum, BASIC reads the next record,
which followed the last GET, into the buffer.

NOTE
After a GET statement, you may use the INPUT#

statement and/or the LI NE I NPUT# statement to read
characters from the random file buffer.

10 OPEN "R", "1, "FILE", 40 \----../
20 FIELD "1, 20 AS CUSTS, 4 AS PRICES, 16 AS CITYS
30 INPUT "ENTER CUSTOMER NUMBER"; CODEX
40 IF CODEX = 0 THEN END
50 GET "1, CODEX
60 PRINT CODEX
70 PRINT USING "SS"""."""; CVSCPRICE$)
80 PRINT CITYS : PRINT
90 GO TO 30

GOSUB ... RETURN Statement
Format:

Purpose:

Remarks:

GOSUB line/I

RETURH

Branches to and returns from a subroutine.

line# is the first line of the subroutine.

Subroutines allow you to key in a group of statements
once, yet access them from different parts of a program.
The GO S U 8 statement directs program flow to a
subroutine, and sets up the mechanism to return
control to the line following the GOSU8 statement when
the subroutine finishes execution.

A subroutine may be called any number of times in a
program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

A subroutine's RETURH statement causes BASIC to
branch back to the statement following the most
recently executed GOSU8 statement. A subroutine may
contain more than one RETURN statement when
program logic dictates returning from different parts of
the subroutine.

Although subroutines may appear anywhere within a
program, good programming practice recommends that
subroutines be readily distinguishable from the main
program. You may precede a subroutine with a STOP.

END. or GO TO statement to direct program control
around the subroutine. (This prevents program control
from inadvertantly "falling through" a subroutine.)

6-57

Example:

6-58

10 PRIHT "MAIH PROGRAM"
20 GOSUB 60
30 PRIHT "BACK FROM SUBROUTIHE"
40 EHD
50 REM ***** SUBROUTIHE SECTIOH *****

60 PR I HT "SUBROUTI HE ";
70 PRIHT "11'1 ";

80 PRIHT "PROGRESS"
90 RETURH
RUH
MAIH PROGRAM
SUBROUTIHE 11'1 PROGRESS
BACK FROM SUBROUTIHE
Ok

The END statement in line 40 prevents the subroutine
from being executed a second time.

v

GOTO Statement
Format:

Purpose:

~ Remarks:

Example:

GOTO line

Branches directly to the specified line number.

line is the line number of a statement in the program.

When line is an executable statement, BASIC executes
that statement and program flow continues from there.
When line is a nonexecutable statement (such as REM or
DATA), execution continues at the first executable
statement following line.

In Direct Mode, you may use the GOTO statement to
reenter a program at a desired point. This can aid
debugging.

Indirect Mode

10 READ RADIUS
20 PRINT "RADIUS = "; RADIUS,
30 AREA = 3.14 * RADIUSA 2
40 PRINT "AREA "; AREA
50 GOTO 10
60 DATA 5,7,12
RUN
RADIUS 5
RADIUS = 7
RADIUS = 12
Out of DATA in 10
Ok

Direct Mode

GOTO 20
RADIUS 12
Out of DATA in 10
Ok

AREA = 78.5
AREA 153.86
AREA 452.16

AREA 452.16

NOTE
~ You may use the GO TO statement in Direct Mode. However, if you

precede this command with any other command that might change the
values of variables (such as CLEAR or RESTORE), your results will differ.

6-59

HEX$ Function
Formal:

Action:

Example:

6-60

HEX$(x)

Returns a string that represents the hexadecimal value
of the decimal argument.

BASIC rounds x to an integer before it evaluates
HEXseX).
See the aCTS function for octal conversions.

10 INPUT X
20 AS = HEX$(X)
30 PRINT X " DECIMAL IS " AS " HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

Ok

IF Statement
Format 1:

Format 2:

\...../ Purpose:

Remarks:

I F expression [,] THEN jclause I [GOTO] line} [ELSE jclause I

line}]

I F expression GOTO line [ELSE jclause I line}]

Determines program control based upon the result of
the logical expression.

expression is any logical (numeric) expression.

clause is either a BASIC statement or a sequence of
statements that you separate with colons (:).

line is the line number of a statement in the program.

When the result of the expression is true (not zero),
BASIC executes the THEN or GOTO clause. Consider this
example:

10 IHPUT
20 PRIHT
30 IF I THEH GOTO 50
40 STOP
50 PRIHT "HI !"
60 EHD
RUH
? 11 Return I

1
HI!

6-61

Nesting of IF
Statements:

6-62

When expression is false (zero), BASIC disregards the
THEN or GOTO clause and executes the ELSE clause if it is
present. Otherwise, execution continues with the next
executable statement. Consider this example:

10 INPUT I

20 PRINT I

30 IF I THEN GOTO

40 STOP

50 PRINT "HI !"

60 END

RUN

? 0 I Return I
o

Break in 40
Ok

CONT I Return I
HI!

Ok

50

You may follow the reserved word THEN with either a
line number where program control should branch, or
with one or more statements to be executed.

You may place a comma before THEN.

You can only use a line number after the reserved word
GOTO o

You may nest IF 000 THEN 000 ELSE statements to any
depth, limited only by the length of the input line (255
characters). For example, the following statement is
legal:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X THEN PRINT
"LESS THAN" ELSE PRINT "EQUIVALENT"

When an I F statement contains a different number of
ELSE and THE!'! clauses, BASIC pairs each ELSE with the
closest unmatched THE!'!. In the following example, the
single ELSE clause pairs with the second THE!'!; not the
first.

IF A=B THEN IF B-C THEN PRINT "A-C"
ELSE PRINT "A<>C"

When you are conversing with the BASIC interpreter in
Direct Mode and if you follow an IF ••• THE!'! statement
with a line number, the interpreter displays an
Undef i ned 1 i ne number error message unless you
have previously entered that line while in Indirect
Mode.

NOTE
When using the I F statement to test equality for a value
that results from a floating point computation, you
should remember that the internal representation of
the value is not exact. (This happens because a decimal
number is being represented in binary format.)
Therefore, you should conduct the test against the range
of values over which accuracy may vary. For example, to
test a computed variable A against the value 1.0, use:

IF ABS (A-1.0) < 1.0E-6 THEN ...

rather than:

IF A=1.0 THEN ...

The recommended method returns true if the value of A
is between .999999 and 1.000001 (a relative error of less
than 1.0E-6).

6-63

Examples:

6-64

This statement gets record number I if I is not zero:

200 IF I THEN GET 11, I

The following program segment tests whether I is
between 10 and 20. If I is within this range, BASIC
calculates a value for DB and branches to line 300. If I is
outside this range, execution continues with line 110:

100 IF (1)10) AND (1<20)
THEN DB=1979 • I : GOTO 300

110 PRINT "VALUE OUT OF RANGE"
120 GOTO 100

The next example selects a destination for printed
output, depending on the value of a variable (I OFLAG).

If I OFLAG is zero (false), output goes to the line printer;
otherwise, output goes to the computer screen:

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT AS

v

INKEY$ Function
Format:

Action:

Example:

INKEVS

Returns a one-character string that contains a character
read from the computer's keyboard or the null string
when no character is pending. I NKEV$ suppresses the
echoing of the character to the screen.

Control-C terminates the program. All other characters
are passed directly to the program.

10 PRINT "PRESS A KEV"
20 AS • INKEVS
30 IF AS ."" THEN GOTO 20
40 PRINT "VOU PRESSED THE ". A$; .. KEV" ,
50 END

INP Function
Format:

Action:

Example:

I NP(j)

Returns the byte read from the input port j. j may range
from 0 to 65535.

NOTE
The input port is a microprocessor port. It does not refer
to your computer's datacomm (or peripheral) ports.

I NP is the complementary function to the OUT
statement.

100 A· INP(2)

6-65

INPUT Statement
Format:

Purpose:

Remarks:

6-66

INPUT [;] ["prompt" {; I , I variable [, variable] ...

Takes input from the keyboard during program
execution. BASIC accepts the data after you press the
I Return I key.

prompt is a string constant that assists the user in
entering the proper information.

variable is the name of the numeric or string variable
that receives the input. The variable may be a simple
variable or the element of an array.

When BASIC encounters an I NPUT statement, it prints a
question mark (?) to show that the program is waiting
for data. When you include prompt, BASIC displays that
string before the question mark. You may then enter
the requested data from the keyboard.

You may use a comma (,) instead of a semicolon after
the prompt string to suppress the question mark. For
example, the following statement prints the prompt
without the trailing question mark:

INPUT "ENTER BIRTHDATE ", BDAYS

When you place a semicolon immediately after the
reserved word I N PUT, pressing the I Return I key does not
echo a carriage return/line feed sequence:

10 PRINT "FOR EXAMPLE"

20 INPUT; AS

30 INPUT; BS

RUN

FOR EXAMPLE

? A I Return I? 8 I Return I
Ok

As you enter the necessary data, BASIC assigns the
values to the listed variable(s). You must separate a
series of items with commas, and the number of items
you enter must agree with the number of variables in
the list.

v

Example 1:

Responding to a prompt with too many or too few
items, or the wrong type of value (string instead of
numeric, for instance), prints the message ?Redo from

5 tar t. BASIC makes no assignment of values until it
receives a completely acceptable response. For example,

10 INPUT "ALPHA PLEASE :" .
20 INPUT "NUMBER ONLY :11 .
30 PRINT .. ········AS· .. , AS
40 PRINT .. ·······*B
RUN
ALPHA PLEASE :ALFA
NUMBER ONLY :24
................ AS· ALFA

········B . 24
Ok
RUN
ALPHA PLEASE :BETA
NUMBER ONLY :B
?Redo from start
NUMBER ONLY :48
................ AS· BETA
................ B· 48

Ok

." . B

AS
B

When entering string information to an INPUT
statement, you may omit surrounding the text with
quotation marks.

If the prompt requests a single respond, you may press
the I Return I key to enter a zero for a numeric item or the
null string for a string variable.

10 INPUT X
20 PRINT X " SQUARED IS " XA 2
30 END
RUN

? (you type 51 Return I)

5 SQUARED IS 25
Ok

6-67

Example 2:

Example 3:

Example 4:

6-68

10 PI = 3.14
20 IHPUT "WHAT IS THE RADIUS"; R
30 A = PI· R"2
40 PRIHT "THE AREA OF THE CIRCLE IS "; A
50 EHD
RUH
WHAT IS THE RADIUS?

(you type 7 • 4 I Return I)

THE AREA OF THE CIRCLE IS 171.9464
Ok

10 IHPUT "EHTER THREE VALUES: ", A,B,C
20 AVE = (A+B+C)/3

30 PRIHT "THE AVERAGE IS "; AVE
RUH
EHTER THREE VALUES:

(you type: 5, 1 0 , 9 I Return I)

THE AVERAGE IS 8
Ok

10 IHPUT; "EHTER EMPLOYEE HUMBER"; ID
20 IF ID<25 THEH PRIHT " IHCORRECT VALUE"

RUH

(you type 51 Return I to the prompt)

EHTER EMPLOYEE HUMBER? 5 IHCORRECT VALUE

v

INPUT# Statement
Formal:

Purpose:

Remarks:

I HPUT # filenum. variable [. variable} ...

Reads data values from a sequential disc file and assigns
them to program variables.

filenum is the number you gave the file when you
opened it for input.

variable is the name of a numeric or string variable that
receives the value read from the file. The variable may
be a simple variable or an array element.

The I HPUT# statement suppresses printing of the
question mark as a prompt character.

Data items in a file should appear exactly as they would
if you were typing the information as a response to an
I HPUT statement.

The items read must match the variable type of each
variable.

For numeric values, BASIC discards any leading spaces,
carriage return characters, or line feed characters. The
first character that BASIC encouters that is not a space,
carriage return, or line feed character is taken to be the
beginning of a number. The number terminates on a
space, comma, carriage return, or line feed character.

When BASIC scans a sequential file for a string value, it
also discards any leading spaces, carriage returns, or
line feed characters. The first character that it
encounters that is not one of these three characters is
taken to be the start of a string item. When the first
character is a quotation mark ("), the string consists of
all characters that occur between the first quotation
mark and the second. Thus a quoted string cannot
contain embedded quotation marks. When the first
character is not a quotation mark, BASIC considers the
string to be unquoted. In this case, the string terminates
on a comma, carriage return, or line feed, or after 255
characters have been read.

6-69

Example:

6-70

If BASIC reaches the end-of-file while reading a
numeric or string value, it terminates the item
immediately.

10 OPEN "I", 11, "BUDG"
20 INPUT 11, CHCKNUM$, PAYEE$
30 PRINT CHCKNUM$, PAYEE$
40 GO TO 20
RUN
2134

2136

ELECTRIC COMPANY
GAS BILL

INPUTS Function
Format:

Action:

Examples:

II'IPUH (i[,[']j])

Returns a string of i characters.

i is the number of characters to be read from the file.

j is the file number that you used to open a file.
Including the j parameter reads the string from that file.
If you omit the j parameter, I I'IPUH reads the string
from the computer's keyboard. When the keyboard
serves as the source of input, I I'IPUH suppresses the
echoing of characters to the screen and passes through
all characters including control characters. The only
exception is Control-C, which you may use to interrupt
the execution of the I 1'1 P U H function and return
control to the BASIC command level.

The first example lists the contents of a sequential file in
Hex:

10 OPEN "I",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,'1»)j
40 GOTO 20
50 PRINT
60 END

The next program segment determines program flow
based upon a user's response:

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$ = INPUT$(1)
120 IF X$ "P" THEN 500
130 IF X$ = "S" THEN 700 ELSE 100

6-71

INSTR Function
Format:

Action:

Example:

6-72

INSTRC[i,]x$, y$>

Searches for the first occurrence of string y$ in x$, and
returns the position where the match occurs. \J
i is an offset that determines the starting position for
the search. Its value may range from 1 to 255. If the
value for i is outside this range, an 111 ega 1 fu nc t ion

call occurs. When the value of i exceeds the number of
characters in x$, the function returns a value of zero.

x$ and y$ may be string variables, string expressions, or
string literals.

If either x$ is the null string or y$ is not within x$, the
function returns a value of zero.

When y$ is the null string, the function returns i (or 1 if
you omitted the offset parameter) ..

In the following example, when the search starts at the
string's beginning, the first occurrence of "B" is position
2. However, when an offset parameter skips the first ~

"B", the function returns the position for the next
occurrence (that is, position number 6):

10 XS • "ABCDEB"
20 YS = "B"
30 PRINT INSTR(XS,YS)j INSTR(3,XS,YS)
RUN

2 6
Ok

INT Function
Format:

Action:

V Examples:

INHx)

Returns the largest integer that is less than or equal to x.
See the F I X and C I NT functions which also return
integer results.

PRINT INT(99.89)
99

Ok

PRINT INT(-12.11)
-13

Ok

6-73

KILL Command/Statement
Format:

Purpose:

Remarks:

6-74

KILL filename

Deletes the named file from disc.

filename is a string expression. When filename is a literal,
you must enclose the name in quotation marks.

filename must include the extension designator, if one
exists. Although BASIC provides the. BAS designator as
a default file type extension when you save a file, it does
not supply a default designator for the KILL statement.
For example, if you save a program with the statement:

SAVE "MYPROG"

BASIC supplies the extension. BAS for you. However, if
you later decide to delete that program, you must
supply the file's complete name as in:

KILL "MYPROG.BAS"

filename may contain question marks (?) or asterisks (*)
as wild cards. A question mark matches any single
character in the filename. An asterisk matches one or ~

more characters, beginning from that position.

CAUTION
You should exercise extreme caution if you use wild
cards with this command. See second example.

If you give the KILL statement for an open file, BASIC
closes the file and then deletes it.

Example:

You may use the K ILL statement for all types of disc
files (program files, random data files, and sequential
data files).

The first example deletes DATA 83. BAS:

KILL "DATA 83.BAS"

The second example deletes CHAP. 1 , CHAP. 2, and so
on, but would also delete CHAP .NEW, CHAP. FINAL,

and C HAP. 0 U T if these files existed:

KILL "CHAP.*"

6-75

LEFT$ Function
Format:

Action:

Example:

LEFH(x$,i)

Returns a string comprised of the leftmost i characters
of x$.

i must be in the range of 0 to 255. When i is greater than
the number of characters in x$, LEFTS returns the
entire string. When i equals zero, the function returns
the null string (a string with zero length).

Also see the M I OS and RIGHTS functions.

10 AS z "BASIC"
20 BS = LEFTS(AS,2)
30 PRIHT BS
RUH
BA
Ok

LEN Function
Format:

Action:

Example:

6-76

LEH(X$)

Returns the number of characters in x$. LEti counts all
non-printing and blank characters.

In this example, because BASIC initializes all string
variables to the null string, the first PR I tiT statement
prints a value of zero:

20 PRIHT LEH(XS)
30 XS • "PORTLAHD, OREGOH"
40 PRIHT LEH(XS)
RUH
o
16

Ok

LET Statement
Format:

Purpose:

\......I Remarks:

Example:

[LET] variable = expression

Assigns the value of an expression to a variable.

The reserved word LET is optional as the equal sign
suffices when assigning an expression to a variable
name.

variable is the name of a string or numeric variable that
receives the value. It may be a simple variable or the
element of an array.

BASIC evaluates expression to determine the value that it
assigns to variable. The type for expression must match
the variable type (string or numeric), or a Type
mi 5ma t ch error occurs.

BASIC interprets the leftmost equal sign in an
expression to be the assignment operator. It treats
subsequent equal signs as relational operators. For
example, in evaluating the following expression, BASIC
sets the value of A to true (-1) if B is equal to c.

A = B z C

The first example demonstrates the use of the LET

statement:

110 LET D z 12

120 LET E • 12"2

130 LET F • 12"4

140 LET SUM· D + E + F

The following statements make the identical
assignments but omit the word LET:

110 D· 12

120 E = 12"2

130 F • 12"4

140SUM=D+E+F

6-77

LINE INPUT Statement
Formal:

Purpose:

Remarks:

Example:

6-78

LINE INPUT [;] ["prompt";] stringvar

Enters an entire line (up to 254 characters) to a string
variable. No string delimiters are necessary.

prompt is a string literal that BASIC displays upon the
computer screen prior to accepting keyboard input.
Including a question mark as part of the prompt
requires your putting the question mark character at
the end of prompt.

BASIC assigns all characters that occur between the end
of the prompt and the end of the line to stringvar.
(BASIC determines that a line has ended when you
press the I Return I key, or it has read 254 characters.)
However, if BASIC reads a linefeed/carriage return
combination, both characters are echoed, but the
carriage return is ignored. BASIC includes the linefeed
character in stringvar and continues reading the input
data.

When you immediately follow the reserved words LINE
I NPUTwith a semicolon, pressing the I Return I key to end
the input line does not echo a carriage return/line feed
sequence. (That is, the cursor remains on the line where
you entered your response.)

You may interrupt the entering of data to a LINE INPUT
statement by simultaneously pressing the I CTRL I and
@] keys. BASIC returns control to the command level
and issues the interpreter's 0 k prompt. You may then
use the CONT state to resume execution at the LINE
I NPUT statement.

80 LINE INPUT "CUSTOMER INFORMATION? ";C$
90 PRINT "VERIFY ENTRY: "; C$

RUN
CUSTOMER INFORMATION? BEATRICE ISOLDA 95073
VERIFY ENTRY: BEATRICE ISOLDA 95073

LINE INPUT# Statement
Format:

Purpose:

Remarks:

LI!'IE I !'IPUTI filenum, stringvar

Reads an entire line (up to 254 characters) from a
sequential disc data file and assigns them to the string
variable. No string delimiters are required.

filenum is the number you gave the file when you
opened it for input.

BASIC assigns the line to stringvar. This parameter may
be either a string variable or an array element.

The L I!'IE I !'IPUTI statement reads all characters in the
sequential file up to, but not including, a carriage
return character. It then skips over the carriage return
(or a carriage return/ line feed sequence). The next
LI!'IE I !'IPUTI statement then reads all the following
characters up to the next carriage return character.

NOTE
The L I !'IE I !'IPUTI statement preserves a line feed/
carriage return sequence. For example, if a file contains
the following ASCII characters:

A CR LF B CR C LF D CR LF E LF CR F CR LF

then the following program:

10 OPEN "I", '1, "FILE"

20 FOR J = 1 TO 4

30 LINE INPUT '1, C$
40 NEXT J

returns the following values to C $:

1st iteration: A

2nd iteration: B

3rd iteration: C LF D

4th iteration: E LF CR F

6-79

Example:

6-80

You will find the LINE I NPUT' statement especially
useful if each line of a data file contains several fields, or
if a BASIC program that was saved in ASCII mode is
being read as a data file by another program.

10 OPEN "0", 1, "LIST"
20 LINE INPUT "BIRTH STATS? ", CS
30 PRINT 11, C$
40 CLOSE 1
50 OPEN "I", 1, "LIST"
60 LINE INPUT 11, C$
70 PRINT C$
80 CLOSE 1
RUN
BIRTH STATS? ELAINA MICHELLE 8 2, 20, SOQUEL
ELAINA MICHELLE 8 2, 20, SOQUEL
Ok

LIST and LLIST Command
Format:

Purpose:

Remarks:

LIST [jirst.lillc][-{last.lillc]]

LL I ST [jirst.linc][-[last.lillc]]

Lists all or part of the program currently in computer
memory to the screen; or, if L LIS T is used, to a line
printer.

first.line is the first line to be listed while last.line is the
last line to be listed. Both must be valid line numbers
within the range of 0 to 65529.

When you omit both line number parameters, the
listing begins with the first line of the program and
goes to the end of the program.

Specifying fir 5 t . 1 i ne prints only that line.

Specifying fir 5 t . 1 i ne - prints that line through the
end of the program.

Specifying - 1 a 5 t . 1 i n e prints all lines from the
beginning of the program through the given line.

Specifying fir 5 t . 1 i n e - 1 a 5 t . 1 i n e prints all the lines
within that range.

NOTE
You may stop the listing of a program by pressing
ICTRLI @].

You may use a period (.) for either line number to
indicate the current line. For example, you could list all
the lines from the beginning of the program to the
current line with this command:

LIST -

6-81

Examples:

BASIC always returns control to the command level
after a LIST or LL I ST command executes.

NOTE
The LL I ST command assumes a printer line width of
132 characters.

The first example lists the program currently stored in
your computer's memory:

LIST

The next statement lists only line 500:

LIST 500

The next example lists all program lines from line 50
through the end of the program:

LIST 50-

The next statement lists all program lines from the
program's first line through line 50:

LI ST -50

The last example lists lines 50 through 80, inclusively.

LIST 50-80

NOTE
The BASIC compiler offers no support for this command.

6-82

LOAD Command
Format:

Purpose:

Remarks:

Example:

LOAD filename [, R]

Loads a BASIC program file from disc into your
computer's memory.

filename is the string expression that you used to name
the file when you saved it. When filename is a literal,
you must enclose the name in quotation marks.

When you omit the MS-DOS file type extension from
the file's name, BASIC adds the default extension. BAS
to the filename if the name is less than nine characters.

Before it loads the named program, BASIC closes all
open files and deletes all variables and program lines
that currently reside in BASIC memory_ However, by
using the R option, you can run the program after it is
loaded. Furthermore, all opened data files remain open.
Thus, you may use the LOAD command with the R

option to chain together several program (or segments
of the same program). You pass information between
the programs through shared data files.

The first example loads and runs the program TESTRUN:

LOAD "TESTRUN",R

The next example loads the program MYPROG from the
disc in drive C but does not run the program:

LOAD "C:MVPROG"

NOTE
The BASIC compiler offers no support for this command.

6-83

LOC Function
Format:

Action:

Example:

LOC(filenum>

With random-access files, LOC returns the record
number of the last record referenced in a GET or PUT

statement.

With sequential files, LOC returns the number of sectors
(that is, 256 byte blocks) read from or written to the file
since it was opened.

When you open a file for sequential input, BASIC reads
the first sector of the file. Therefore, LOC always returns
a" 1" even before any input from the file occurs.

filenum is the number you gave the file when you
opened it.

200 IF LOC(1> > 50 THEN STOP

LOF Function
Format:

Action:

Example:

6-84

LOHfilenum>

Returns the length of the file in bytes.

filenum is the number you gave the file when you
opened it.

In this example, the variables REC and RECS I ZE contain
the record number and record length. The calculation
determines whether the specified record is beyond the
end-of-file.

90 IF REC * RECSIZE > LOF(1)

THEN PRINT "INVALID ENTRY"

LOG Function
Format:

Action:

'--" Example:

LOGex)

Returns the natural logarithm of x.

x must be a positive number.

PRINT LOG(4517)
1.860752

Ok

LPOS Function
Format:

Action:

Example:

LPOSex)

Returns the current position of the line printer print
head within the line printer buffer. This may differ
from the physical position of the print head.

x is a dummy argument.

100 IF LPOSeX) > 132 THEN LPRINT CHR$(13)

6-85

LPRINT and LPRINT USING Statements
Format:

Purpose:

Remarks:

Example:

6-86

LPR I liT [list.ot.expressions]

LPR I liT US I IiG stringexp; list.ot.expressions

Prints data to a line printer.

These $tatements are identical to PR I liT and PR I liT

US I IiG, except output goes to a line printer. For details of
operation, see the PR I liT and PR I liT US I IiG statements
in this chapter.

LPR I liT assumes that the printer has a line width of 132
characters.

LPRIIiT "THIS IS A TEST"

LSET and RSET Statements
Formal:

\....; Purpose:

Remarks:

Example:

LSET stringvar = stringexp
RSET stringvar = stringexp

Moves data from memory to a random file buffer (in
preparation for a PUT statement).

stringvar is the name of a variable that you defined in a
FIELD statement.

stringexp identifies the information that is to be placed
into the field named by stringvar.

When stringexp requires fewer bytes than were allocated
to stringvar, LSET left-justifies the string in the field,
while RSET right-justifies the string. (Spaces pad the
extra positions.) When a string is too long for the field,
the excess characters are dropped from the right.

You must use the MK 1$, MKS$, or MKD$ function to
convert numeric values to strings before you move
them into the random file buffer with a LSET or RSET

statement.

NOTE
You may also use LSET and RSET to left-justify or right­
justify a string in a given field. For example, the
following program lines right-justify the string NOTE $

in a 20-character field:

110 LSET AS SPACES(20)
120 RSET AS NOTES

You will find these statements helpful when formatting
output to a printer.

10 OPEN "R",'1,"FILE",24
20 FIELD '1, 4 AS AMT$, 20 AS DESC$
30 INPUT "PRODUCT CODE"; CODEX
40 INPUT "PRICE"; PRICE
50 INPUT "DESCRIPTION"; DSCRPN$
60 LSET AMT$ = MKSS(PRICE)
70 LSET DESC$ = DSCRPN$
80 PUT , 1, CODEX
90 (lOTO 30

6-87

MERGE Command
Format:

Purpose:

Remarks:

6-88

MERGE filename

Incorporates statements contained in the specified file
into the program that currently resides in your
computer's memory.

filename is the string expression that you used to name
the file when you saved it. When filename is a literal,
you must enclose the name in quotation marks.

When you omit the MS-DOS file type from the file's
name, BASIC provides the default type . BA S for you.

You must use ASCII format when you save the file that
you want to merge. (That is, you must specify the A

option when you give the SAVE command.) When
BASIC detects another format, it displays a Bad f i 1 e

mode error message. If this happens, BASIC cancels the
MERGE command and the program in memory remains
unchanged.

You may view the MERGE command as "inserting" the
lines from the program on disc into the program in ~

memory. When both programs have identical line
numbers, the lines from the disc file replace the
corresponding lines in memory.

Example: This example shows how the merge command replaces
or adds lines to the program currently in memory based
upon each program's line numbers.

(Merge File = F I LE2)

15 REM THIS FILE CHANGES THE LOOP CONTENTS
30 COUNT = COUNT + I
40 PRINT COUNT

LOAD "FILE1" I Return I
Ll ST I Return I
10 REM THIS FILE IS THE RESIDENT FILE
20 FOR I = 1 TO 10
30 PRINT "HELLO";
50 NEXT I
60 PRINT "DONE"
Ok
MERGE "F I LE2" I Return I
Ok
LIST I Return I
10 REM THIS FILE IS THE RESIDENT FILE
15 REM THIS FILE CHANGES THE LOOP CONTENTS
20 FOR I = 1 TO 10
30 COUNT = COUNT + I
40 PRINT COUNT
50 NEXT I
60 PRINT "DONE"
Ok

NOTE
The BASIC compiler offers no support for this command.

6-89

MID$ Function
Format:

Action:

Example:

6-90

MIDS<X$,i[,j]>

Returns a string of length j characters that begins with
the ith character in string x$.

x$ is any string expression.

i is an integer expression that may range between 1 to
255. j is an integer expression that may range between 0
and 255. Numbers outside these ranges propuce an
Illegal functioncall.

When you omit the length parameter j, or if fewer than
j characters exist to the right of the ith character, MID $

returns all the characters beginning with the ith
character.

When the starting point i exceeds the length of x$, MID $

returns the null string.

Also see the L E F T$ and RIG H T$ functions.

10 AS = "GOOD"
20 BS = "MORNING EVENING AFTERNOON"
30 PRINT AS; MID$(B$,9,7)
RUN
GOOD EVENING
Ok

v

MID$ Statement
Format:

Purpose:

V Remarks:

Example:

MIDCX,i[,j]> = y$

Replaces a portion of one string with another string.

x$ is a string variable or an array element. BASIC
replaces the designated characters of this string.

i is an integer expression that may range from 1 to 255.
It marks the starting position in x$ where replacement
begins.

j is an integer expression that may range from 0 to 255.
It gives the number of characters from y$ that BASIC
uses in the replacement. When you omit this parameter,
BASIC uses the entire y$ string.

NOTE
The length of x$ is fixed. Therefore, if x$ is five
characters long and y$ is ten characters long, BASIC
only replaces x$ with the first five characters of y$.

10 AS = "KANSAS CITY, MO"
20 MIDS(AS,14) = "KS"
30 PRINT AS
RUN
KANSAS CITY, KS
Ok

6-91

MKI$, MKS$, MKD$ Functions
Format:

Action:

Example:

MK I $ (integer.expression >
MK 5 $ (single-precision.expression >
M K D $ (double-precision .expression >

Converts numeric values to string values.

Random-access disc files store numeric values as strings.
Therefore, when you place values in a random disc file
by using the LSET or RSET statement, you must first
convert the numbers to strings.

MK I $ converts an integer to a 2-byte string.

MKS$ converts a single-precision number to a 4-byte
string.

MKD$ converts a double-precision number to a 8-byte
string.

See also CV I, CVS, and CVD for the complementary
operations.

100 AMT z (K+T>
110 FIELD 11, 8 AS D$, 20 AS N$
120 LSET DS MKS$(AMT>
130 LSET N$ = AS
140 PUT 11

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compiled and interpretive versions of these
functions.

6-92

NAME Statement
Format:

Purpose:

\....; Remarks:

Example:

NAME oldname AS new name

Changes the name of a file to the newly given name.

oldname is a string expression for the name you gave the
file when you opened it or saved it.

neumame is also a string expression that conforms to the
rules for a valid filename. If the file is a . BA S file, you
must include the file type. BAS in the file's name.
BASIC does not supply. BAS as a default type for you.

When either oldname or newname is a literal, you must
enclose the string in quotation marks.

A file must exist with old name. Similarly, no file can
exist with new name. When BASIC fails to find old name,
it gives a File not found error. Likewise, if BASIC
finds that a file already exists with newname, it displays
the message Fi Ie already exists.

oldname must be closed before the renaming operation.

If old name and newname contain a drive designator, the
drive must be the same. Attempting to rename a file on
a different disc produces a Re name a c r 0 s s dis k s error.

A free file handle must exist for performing the open
check. Otherwise, a Too many files error occurs.

The following statement changes the name of the file
ACCTS to LEDGER on drive C. After the NAME statement
executes, the file still resides on the same area of disc
space on the same disc, but with the new name.

NAME "C:ACCTS" AS "C:LEDGER"

6-93

NEW Command
Format: HEW

Purpose:

Remarks:

Deletes the program that currently resides in computer
memory and clears all variables.

You use the NEW command in Direct Mode to clear
extraneous information from your computer's memory
before you enter a new program.

You must enter the NEW command at the command
level. Control remains at the command level after this
statement executes.

Example: Ok

HEW

Ok

NOTE
The BASIC compiler offers no support for this command.

6-94

NULL Statement
Format:

Purpose:

Remarks:

Example:

NUL L integer. expression

Sets the number of nulls that BASIC prints at the end of
each line. This number applies to both the display and a
printer.

integer.expression is the number of null characters (00
Hex) that BASIC appends at the end of each line. The
default setting is zero.

The ASCII characters between 00 Hex and 20 Hex are
called Control Characters. (For example, this range
includes the backspace character, carriage return
character, and line feed character.) As some devices take
longer to process certain control characters, they require
an extra amount of time before they receive the next
significant character.

When using Hewlett-Packard peripherals, you may
omit using the NULL statement.

NULL 2

6-95

aCTS Function
Format:

Action:

Example:

6-96

OCH(x)

Returns a string that represents the octal value of the
decimal argument. BASIC rounds x to an integer before V
it evaluates OCTHX>.

See the HEX $ function for hexadecimal conversion.

PRINT OCTH24)

30
Ok

ON ERROR GOTO Statement
Formal:

Purpose:

Remarks:

ON ERROR GOTO linc

Enables error trapping and specifies the first line of the
error-handling subroutine.

linc is the line number of the first line of an error­
handling routine. If the line number does not exist, an
Undef i ned 1 i ne number error occurs.

Once you have enabled error trapping, BASIC sends
program control to the specified line number whenever
it detects an error. (This also includes Direct Mode
errors, such as syntax errors.)

You use the RESUME statement to leave an error­
handling routine.

You may disable error trapping by executing an ON

ERROR GOTO 0 statement. Any subsequent errors print
an error message and halt execution. Within an error­
trapping subroutine, the ON ERROR GOTO 0 statement
halts BASIC and prints the error message for the error
that triggered the trap. We recommend that all error­
trapping subroutines execute an ON ERROR GOTO 0

statement if an error is encountered for which no
recovery action exists.

NOTE
If an error occurs during execution of an error-handling
subroutine, BASIC prints an error message and halts
execution. Further error trapping does not occur within
a error-handling subroutine.

6-97

Example: The following program segments illustrate the effects of
the ON ERROR and RESUME statements:

5 REM Example without RESUME
10 ON ERROR GOTO 40
20 Y = 9 : Z = 0
30 L = 30 : X = Y/Z 'Division by zero
40 PR I NT "ERROR ENCOUNTERED IN LI NE "; L
50 END
RUN
ERROR ENCOUNTERED IN LINE 30
Ok

8 REM With RESUME, execution continues
9 REM on line where the error occurred

10 ON ERROR GOTO 60

20 Y = 9 : Z = 0
30 L = 30 : X = Y/Z

40 PRINT "CONTINUE PROGRAM"
50 GOTO 90
60 PRINT "ERROR ENCOUNTERED
70 Z = 5
80 RESUME
90 PRINT "END"
100 END
RUN
ERROR ENCOUNTERED IN LINE 30
CONTINUE PROGRAM
END
Ok

IN LINE II. , L

While in Direct Mode, all errors default to the 0 N ERR 0 R
statement:

30 PRINT "THIS SYNTAX IS NO GOOD!!"
ON ERROR GOTO 30
Ok

PRING "ERROR"
THIS SYNTAX IS NO GOOD!!
No RESUME in 30
Ok

NOTE
If you plan to compile a program that uses the ON ERROR GOTOstatement,
please refer to the BASIC compiler manual. Also, set the compiler
switches properly so your event trapping routine works correctly.

6-98

v

G

ON ... GOSUB Statement
Format:

Purpose:

Remarks:

Example:

ON result GOSUB line [,line] ...

Branches to a subroutine or subroutines depending
upon which value is returned from the governing
expression.

result is a numeric expression which must return a
value between 0 and 255. (BASIC rounds the expression
to an integer value when necessary.) Any value outside
this range causes an 111 ega 1 fu net ion ca 11 error.

line is the beginning line number for a subroutine.

In the ON ... GOSUB statement, each line number in the
list must be the first line number of a subroutine.

When the value of result is zero or greater than the
number of items in the list, BASIC continues with the
next executable statement.

20 INPUT "ENTER TRIG FUNCTION"; A$
30 IF AS "SIN" THEN F 1 GoTo
40 IF AS = "COS" THEN F = 2 : GO TO
50 IF AS = "TAN" THEN F = 3 : GoTo
60 PRINT "ILLEGAL ENTRY TRY AGAIN"
70 FOR K = 0 TO 360 STEP 10
80 PRINT K;
90 A = K/180*3.14159
100 ON F GoSUB 1000, 2000, 3000
110 NEXT K
120 STOP
999 REM SUBROUTINE SECTION
1000 PRINT SINCA) RETURN
2000 PRINT CoSCA) RETURN
3000 PRINT TANCA) RETURN

70
70
70
: GoTo 20

6-99

ON ... GOTO Statement
Format:

Purpose:

Remarks:

Example:

6-100

ON result GO TO line [,line] ...

Branches to one of several specified line numbers,
depending upon which value BASIC returns when it
evaluates the controlling expression.

result is a numeric expression which must return a
value between 0 and 255. (BASIC rounds the expression
to an integer value when necessary.) Any value outside
this range causes an III ega 1 fu nc t i on ca 11 error.

line is the line number where you want program control
to go.

The value of result determines to which line number
program control branches. For example, if the returned
value were 3, program control branches to the third line
number in the list.

When the value of result is zero or greater than the
number of items in the list, BASIC continues with the
next executable statement.

10 REM Simple selection program
20 INPUT "ENTER SELECTION FROM MENU"; K
30 ON K GOTO 50, 70, 90
40 PRINT "INVALID SELECTION" : GOTO 20
50 PRINT "YOU CHOSE SELECTION NUMBER 1"

60 GOTO 20
70 PRINT "YOU CHOSE SELECTI ON NUMBER 2"
80 GOTO 20
90 PRINT "YOU CHOSE 3 TO END THIS PROGRAM"
100 END
RUN
ENTER SELECTION FROM MENU? 0 iRerurnl
INVALID SELECTION
ENTER SELECTION FROM MENU? 2 iR~urnl
YOU CHOSE SELECTION NUMBER 2
ENTER SELECTION FROM MENU? 3 iR~urnl
YOU CHOSE 3 TO END THIS PROGRAM
Ok

v

OPEN Statement
Format 1:

Format 2:

\...,; Purpose:

Remarks:

OPEN filename [FOR mode] AS [#]filenum [LEN = reel]

OPEN mode2, [#]filenum, filename [, reel]

Grants access to a file for reading or writing.

In Format 1, mode can be:

INPUT for sequential input mode

OUTPUT for sequential output mode

APPEND for sequential output mode.
Additionally, BASIC positions the file
to the end of the data when you open
the file.

When you omit the mode parameter, the program
assumes random access.

NOTE
Even though mode is a string constant, you must not
enclose the string in quotation marks.

In Format 2, mode2 can be:

o

R

for sequential input mode

for sequential output mode

for random input or output

Disc files allow all modes.

filename is a string expression that names the file. It may
include a file type (. x x x) and a drive specifier if the file
is not on the current disc. When filename is a literal, you
must enclose the string in quotation marks (").

filenum is an integer expression that gives that file's
identifying number. Its value may range from 1 to the
maximum number of files allowed. The normal
maximum setting is 3, but you may change this value
with the / F: switch on the BASIC command line.

6-101

6-102

Once you assign a number to the file, BASIC associates
this number to that file for as long as the file remains
open. You use filenum when using other disc
I/O statements with the file.

reeI is an integer expression that sets the record length.
You can define reeI for random-access files. The default
is 128 bytes. The value you use for reeI must not exceed
the value you set on the BASIC command line for the
IS: switch when you initialized BASIC.

NOTE
You may also set the maximum record length by using
the I S option when initializing BASIC with the MS­
DOS BAS I C command. However, you cannot use this
option with sequential files.

A program must execute an OPEN statement before you
can use any of the following commands:

PRINT', PRINT' USING, INPUT', LINE INPUT'

WRITE', INPUTI, and GET & PUT

You must open a disc file before you can perform any
read or write operation on that file.

The OPEN statement allocates an I/O buffer to the file
and determines the buffer's mode of access.

You may open a file for sequential input or random
access on more than one file number at a time. You may
only open a file for output, however, on one file number
at a time.

Examples: This program segment accepts input to an inventory
file:

10 OPEN "I", 2, "INVEN"
20 INPUT 12, PARTS, DESC$
30 PRINT PART$i DESC$
40 GO TO 20

The next example opens the file MAIL . OAT so data is
added to the end of the file:

10 OPEN "MAIL.DAT" FOR APPEND AS 1

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences in the interpretive and compiled versions of this statement.

6-103

OPTION BASE Statement
Formal:

Purpose:

Remarks:

Example:

6-104

OPT ION BASE n

Sets the minimum value for array subscripts.

n may be either 1 or O.

BASIC normally numbers arrays from a base of zero.
When you want an array index to begin at 1, you must
use the OPT! ON BASE statement.

If you decide to use the OPT! ON BASE statement, you
must include it within your program before you define
or use any arrays.

This example sets up a string array with ten elements
(1..10) and a numeric array with 20 elements (1..20):

10 OPT! ON BASE

20 DIM LNAME$, 10(20)

OUT Statement
Format:

Purpose:

\.....; Remarks:

Example:

OUT i, j

Sends a byte to the specified output port.

i is an integer expression that ranges between 0 and
65535. It is a microprocessor port number.

NOTE
The output port is a microprocessor port. It does not
refer to your computer's datacomm (or peripheral)
ports.

j is an integer expression that ranges between 0 to 255. It
is the byte of data that you want to send. For example, a
zero sets all eight bits to zeroes while 255 sets all eight
bits to ones.

OUT is the complementary command to the I NP

function.

100 OUT 12345,255

6-105

PEEK Function
Format:

Action:

Example:

6-106

PEEK(i)

Returns the byte read from memory location i.

The result is a decimal integer that ranges between 0
(eight zeros) to 255 (eight ones).

i must be within the range of -32768 to 65535. (It is an
offset from the current segment, which you set with the
DEF SEG statement.) When the function returns a
negative value, you should add 65536 to that value to
obtain the actual address.

PEEK is the complementary function to the POKE

statement.

A = PEEKUHSAOO)

POKE Statement
Formal:

Purpose:

Remarks:

Example:

POKE address, data

Writes a byte of information into a memory location.

address is an integer expression for the address of the
memory location to be poked. (It is an offset from the
current segment, which you set with the DEF SEG

statement.) The value must be within the range of 0 to
65535.

data is an integer expression for the data to be poked. It
must be within the range of 0 (which would set all eight
bits to zeroes) to 255 (which would set all eight bits to
ones).

PEEK is the complementary function to POKE. PEEK's

argument is an address from which a byte of
information is read.

You can use PE E K and PO K E for efficiently storing data,
loading assembly-language subroutines, and passing
arguments and results to and from assembly-language
subroutines.

CAUTION
BASIC does not check the address. Therefore, use this
statement with extreme care so you do not
inadvertently overwrite meaningful data.

This example places hex value FF (decimal 255, or a byte
with l's in all eight positions) into the Data Segment
relative memory location at hex 5AOO:

10 POKE &HSAOO, &HFF

6-107

POS Function
Format:

Action:

Example:

6-108

POSCO)

Returns the cursor's current column position. The
leftmost column is position number 1. The rightmost
column is position number 80.

o is a dummy argument.

See also the LPOS function and the WIDTH statement.

IF POSCO) > 60 THEN PRINT CHRS(13)

v

PRINT Statement
Format:

Purpose:

0' Remarks:

PR I NT [list.of.expressions]

Copies data to the computer screen.

list.of.expressions is a list of numeric and/or string
expressions. You must separate multiple items with
commas, blanks, or semicolons and enclose any string
constants with quotation marks.

Including list.of.expressions prints the values of those
expressions on the screen.

Omitting list. oJ. expressions prints a blank line.

Print Positions: The punctuation symbols that separate the listed items
determine the position where BASIC prints each item.

BASIC divides the line into print zones of 14 spaces
each. Within list.of.expressions, a comma prints the next
value at the beginning of the next zone. A semicolon
prints the next value immediately after the last value.
Typing one or more spaces between expressions has the
same effect as typing a semicolon.

When a comma or semicolon ends the list of
expressions, the next PR I NT statement continues
printing on the same line, spacing accordingly. If the
list ends with no comma or semicolon, BASIC ends the
line by printing a carriage return character. (That is, it
advances the cursor to the next line.)

When the printed line exceeds the width of the screen,
BASIC wraps the line to the next physical line and
continues printing.

For numbers, BASIC reserves the first character position
for a numeric sign. It precedes positive numbers with a
space. It precedes negative numbers with a minus sign.
BASIC always prints a space as a separator after any
number.

You may enter a question mark (?) as an abbreviation
for the word PR I NT in a PR I NT statement. When BASIC
lists the program, it automatically replaces the question
mark with the reserved word PR I NT.

6-109

6-110

To send output to a line printer, use the LPR I tiT and
LPR I NT US I NG statements.

NOTE
When single-precision numbers can be represented
with 7 or fewer digits in unsealed format no less
accurately than they can be represented in sealed
format, BASIC prints the numbers using unsealed
format (either integer or fixed point). For example,
BASIC prints 1 E - 7 as . 000000 1 whereas it prints
1 E - 8 as 1 E - 08.

When double-precision numbers can be represented
with 16 or fewer digits in unsealed format no less
accurately than they can be represented in scaled
format, BASIC prints the numbers using the unsealed
format. For example, BASIC prints 1 D- 16 as
• 00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 whereas it prints 1 D - 1 7 as
1 D-17.

Examples: The commas in the following PR I NT statement prints
each succesive value at the next print zone:

10 X = 5
20 PRINT X+5, X-5, X*5, XIS
30 END
RUN

10 o 25
Ok

In the following program segment, the semicolon at the
end of line 20 prints the information from lines' 20 and
30 on the same line. Line 40 prints a blank line before
the next prompt:

10 I NPUT X
20 PRINT X "SQUARED IS " X"2 "AND";
30 PRINT X "CUBED IS " X"3
40 PRINT
50 GO TO 10
RUN
? 9 I Return I

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21 I Return I
21 SQUARED IS 441 AND 21 CUBED IS 9261

In the following example, the semicolons in the PR I NT
statement print each value immediately after the
preceding value. Remember, positive numbers are
preceded by a space, and all numbers are followed by a
space. Line 40 uses the question mark as an
abbreviation for PR I NT:

10 FOR X TO 5
20 J J + 5
30 K K + 10
40 ?J;K;
50 NEXT X
RUN
5 10 10 20 15 30 20 40 25 50

Ok

6-111

PRINT USING Statement
Format:

Purpose:

Remarks and
Examples:

PR I NT US I NG stringexp; list.of.expressions

Uses a specified format to print strings or numbers.

list.of.expressions contains the string or numeric
expressions that you want to print. You must separate
the items in the list with commas or semicolons.

stringexp is either a string constant or a string variable
that is comprised of special formatting characters. These
formatting characters (see below) determine the field
and format of the printed strings or numbers.

When entering program lines, you may use a question
mark p) as an abbreviation for the reserved word
PR I NT. BASIC automatically replaces this symbol with
PR I NT when you list the program.

String Fields: When you use the PR I NT US I NG statement to print
strings, you may select one of three characters to format
the string field:

An exclamation point limits printing to the first
character in the string.

\ n 5 pac e 5 \ Two back slash characters separated by n spaces prints
that number of characters (that is, n + 2). For example,
typing just the backslashes prints two characters; typing
one space between the backslashes prints three
characters; and so on. When the field is longer than the
string, BASIC left-justifies the string within the field
and pads the remainder of the field with spaces.
Consider this example:

10 A$ = "LOOK" : B$ = "OUT"
20 PRINT USING "1 11 • A$;B$,
30 PRINT USING "\ \11 ; A$;B$
40 PRINT USING "\ \11 j A$;B$;"!!"
RUN
LO
LOOKOUT
LOOK OUT ! !
Ok

6-112

& An ampersand specifies a variable length string field.

Numeric
Fields:

"

Using this formatting character echoes the string
exactly as you entered it.

10 AS = "LOOK" : BS = "OUT"
20 PRINT USING "!"; AS;
30 PRINT USING "&"; BS
RUN
LOUT
Ok

When printing numbers with the PR I NT US I NG
statement, you may use the following special characters
to format the numeric field.

The number sign signifies a digit position. BASIC fills
in all requested digit positions. When a number has
fewer digits than the positions specified, BASIC right­
justifies the number in the field (that is, leading unused
positions are replaced with spaces).

You may insert a decimal point at any position within
the field. When the format string specifies that a digit
should appear before the decimal point, BASIC always
prints a digit (0 if necessary). BASIC also rounds
numbers as required to fit the format.

Consider these examples:
PRINT USING "##.##"; .78

0.78

PRINT USING "###. ##"; 987.654
987.65

PRINT USING
10.20 5.30

"##.## "; 10.2,5.3,66.789, .234
66.79 0.23

In the last example, the three spaces at the end of the
format string provide spacing between the printed
values.

6-113

6-114

+ A plus sign at the beginning or end of the format string
prints the sign of the number (plus or minus) before or
after the number, depending upon the placement of the
plus sign in the format string.

**

PRI~T USI~G "+11.11 ";

-68.95 +2.40 +55.60
-68.95, 2.4,55.6, -.9
-0.90

A minus sign at the end of the format field prints a
trailing minus sign after negative numbers.

PRI~T USI~G "11.11- "; -68.95, 22.449, -7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format string
replaces leading spaces with asterisks. The double
asterisk also reserves two more digit positions.

PRI~T USI~G ""1.1 "; 12.39, -0.9, 765.1
*12.4 '-0.9 765.1

$ $ A double dollar sign prints a dollar sign to the
immediate left of the formatted number. The double
dollar symbol reserves two more digit positions, one of
which is the dollar sign. You cannot use the exponential
format in conjunction with $ $. Furthermore, you can ~

print negative dollar amounts only if the minus sign
trails to the right.

PRI~T USI~G "$$111.11-"; 456.78, -45.54
$456.78 $45.54-

* * $ Placing * * $ at the beginning of a format string
combines the effects of the two previous symbols.
BASIC replaces leading spaces with asterisks and prints
a dollar sign before the number. Additionally, * * $

reserves three digit positions, one of which is used for
the dollar sign.

PRI~T USI~G "**$##.##"; 2.34
**'$2.34

AAAA

A comma that appears to the left of the decimal point in
a formatting string prints a comma as a thousands
separator. When the comma appears at the end of the
formatting string, the comma is printed following the
number. The comma represents another digit position.
It has no effect when used with the exponential format
(AAAA).

PRINT USING 11####,.##11; 1234.5

1,234.50

PRINT USING "####.##,"; 1234.5

1234.50,

You may place four carets (or circumflexes) after the
digit position characters to specify exponential format.
The four carets reserve space to print E + x x (or 0 + x x).
Any decimal point position may be specified. BASIC
left-justifies the significant digits and adjusts the
exponent accordingly. Unless you include either a plus
formatting character or a trailing plus or minus
formatting character, BASIC reserves one space to the
left of the decimal point to print a space (for positive
numbers) or a minus sign (for negative numbers).

PRINT USING "##.##"""""; 234.56

2.35E+02

PRINT USING ".###""""_"; -88888

.889E+05-

PRINT USING "+.##"""""; 123

+ .12E+03

An underscore character in the format string prints the
next character as a literal character.

PRINT USING "_!##.##_!"; 12.34

! 12.34!

6-115

6-116

You may include the underscore character within the
formatting string by preceding it with an underscore.
The next example contains a string constant within the
format string.

PRINT USING "EXAMPLE
EXAMPLE 1

, "; 1

BASIC prints a percent sign (%) before a number when
the printed value exceeds the specified numeric field.
When rounding causes the number to exceed the field
length, BASIC prints the percent sign before the
rounded number.

PRINT USING "#1.#1"; 111.22

% 111. 22

PRINT USING ".""; .999
XL 00

If the number of digits exceeds 24, an I 11 e 9 a 1

fun c t ion c a 1 1 results.

v

PRINT# and PRINT# USING Statements
Format:

Purpose:

Remarks:

PRINT" Jilenum, [USING stringexp;]
list .of.expressions

Writes data to a sequential disc file.

filenum is the number you gave the file when you
opened it for output.

stringexp consists of the formatting characters as
described for the PR I NT US I NG statement.

The expressions in /isLoJ.expressions are the numeric
and/or string values that you want to write to the file.

P R I 1'1 T" does not compress data on the disc. With this
statement, BASIC writes an image of the data to disc,
just as it would display the information on your
computer screen. For this reason, you must carefully
delimit the data on the disc so that future input
statements can correctly read the data.

In list.oJ.expressions, you should separate all numeric
expressions with semicolons (;). For example,

PRINT #1, A;B;C;X;Y;Z

If you use commas to separate the expressions, BASIC
copies the extra blanks between the print fields to the
disc file.

You must separate string expressions in the list with
semicolons. To format the string expressions correctly
on the disc, use explicit delimiters in the list of
expressions.

For example, let AS = "CAMERA" and BS = "93604-1".

The statement:

PRINT #1, A$;B$

writes the following data to the disc:

CAMERA93604-1

6-117

6-118

Since the P R I NT # statement omitted explicit delimiters,
you would be unable to use an I NPUT# statement to
read both strings back in. To correct this problem, insert
explicit delimiters into the PR I NT # statement as follows:

PRINT 11, A$;",";B$

This statement writes the following image to disc:

CAMERA,93604-1

In this form, you may use the I NPUT# statement to read
both values.

When the strings themselves contain commas,
semicolons, significant leading spaces, carriage return,
or line feed characters, you must surround the string
with explicit quotation marks, that is CHRH34).

For example, let A$ = "CAMERA, AUTOMAT I C" and B$ =

" 93604-1".

The statement:

PRINT 11, A$;B$

writes the following image to disc:

CAMERA,AUTOMATIC 93604-1

Therefore, the following I NPUTI statement:

INPUT 11, AS,B$

assigns "CAMERA" to A$ and "AUTOMAT I C 93604-1" to
B$.

To separate these strings properly on the disc, include
double quotes within the string by using CHRH34).

The statement:

PRINT 11, CHRS(34);AS;CHRH34);",";CHRH34);

B$; CHRH34)

writes the following image to disc:

"CAMERA, AUTOMATIC"," 93604-1"

Therefore, the statement:

INPUT 11, A$,B$

assigns "CAMERA, AUTOMAT! C" to A$ and
93604-1"to 8$.

You may also use the PR I NT' statement with the US I NG

option to format the data printed to the disc file. For
example,

PRINT 11, USING "$$"'.""; J;K;L;
!

See WRITE' for more examples.

6-119

PUT Statement
Formal:

Purpose:

Remarks:

Example:

6-120

PUT ["1 filenum [, recnum1

Writes a record from the random file buffer to a
random-access disc file.

filenum is the number you gave the file when you
opened it.

recnum identifies the record to be written. It may range
from 1 to 32767.

When you omit recnum, BASIC uses the next available
record number (after the last PUT).

NOTE
You may use PRINT", PRINT" USING, and WRITE" to
put characters in the random file buffer before a PUT
statement executes. When you use the W R I T E"

statement, BASIC pads the buffer with spaces up to the
carriage return character. Attempting to read or write

v

beyond the end of the buffer causes a Fie 1 d 0 v e r flo w '-...J
error.

10 OPEN "R", #1, "BDGT", 30
20 FIELD #1, 18 AS PAYEES, 4 AS AMTS, 8 AS DATES
30 INPUT "ENTER CHECK NUMBER"; CK%
40 INPUT "PAYEE"; PAYS
50 INPUT "DOLLAR AMOUNT"; A
60 INPUT "DATE"; DS
70 LSET PAYEES = PAYS
80 LSET AMTS = MKSS(A)
90 LSET DATES = DS
100 PUT # 1, CK%
110 GOTO 30

RANDOMIZE Statement
Format:

Purpose:

~ Remarks:

Example:

RANDOM I ZE [expression]

Reseeds the random-number generator.

When you omit expression, BASIC suspends program
execution and asks for a value by printing:

Random number seed (-32768 to 32767)?

After you enter a value, BASIC executes the RANDOM I ZE

statement.

If you fail to reseed the random-number generator the
RND function returns the same sequence of "random"
numbers each time you run the program. To change the
seed each time the program runs, place a RANDOMIZE

statement at the beginning of the program and change
its argument before each run.

10 RANDOMIZE
20 FOR I = 1 TO 5

30 PRINT RND;
40 NEXT I
50 END
RUN
Random number seed (-32768 to 32767)?

(you type 3 I Return I)

.2226007 .5941419 .2414202 .2013798
5.361748E-02

Ok

6-121

RUN
Random number seed (-32768 to 32767)?

(you type 4 1 Return I)

.628988 .765605 .5551516 .775797 .7834911
Ok

RUN
Random number seed (-32768 to 32767)?

(you type 31 Return I which produces the first sequence)

.2226007 .5941419 .2414202 .2013798
5.361748E-02

Ok

6-122

READ Statement
Format:

Purpose:

Remarks:

Examples:

READ variable [, variable] ...

Reads values from DATA statements and assigns these
values to the named variables.

variable is a numeric or string variable that receives the
value read from a DATA statement. It may be a simple
variable or an array element.

You always use READ statements in conjunction with
DATA statements. READ statements assign DATA items to
variables on a one-to-one basis. The READ-statement
variables may be numeric or string. The values in the
DAT A statement must agree, however, with the specified
variable types. If they differ, a S y n t a x err 0 r occurs.

A single READ statement may access one or multiple
DATA statements, or several READ statements may access
the same DATA statement. If the number of variables
exceeds the number of elements in the DATA
statement(s), BASIC prints an Ou t of DATA error
message. If the number of variables is less than the
number of elements in the DATA statement, subsequent
READ statements begin reading data at the point where
the last READ operation finished. When no subsequent
READ statements occur, BASIC ignores the extra data.

You may reread DATA statements by using the RESTORE
statement. (See the RESTORE statement for more
information.)

This example reads the values from the DATA statements
into the array A. After the FOR loop, the value of A (1) is
3.08, A(2) is 5.19, and so on:

80 FOR I = 1 TO 10
90 READ A(I)
100 NEXT
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

6-123

6-124

The following program segment reads both string and
numeric data:

10 PRINT "CITY", "STATE", "ZIP"
20 READ CS, SS, Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT CS,SS,Z
50 END
RUN
CITY STATE ZIP
DENVER, COLORADO 80211

Note that you may omit placing quotation marks
around the string COLORADO since it contains no
commas, semicolons, or significant spaces. However,
you must place quotation marks around DENVER,
because of the comma.

This program reads string and numeric data from two
consecutive DATA statements until all variables have
been assigned a value. The excess data is ignored:

10 FOR K = 1 TO 5
20 READ AS : PRINT AS;
30 NEXT K
40 DATA "TONI,", "NICO,"
50 DATA "BOB,", BERNADETTE,
60 END
RUN
TONI,NICO,BOB,BERNADETTE52

52, 50, PRINGLE

v

REM Statement
Formal:

Purpose:

Remarks:

REM remark

Inserts explanatory remarks into a program without
affecting program execution.

remark may be any sequence of characters.

BASIC prints REM statements exactly as you entered
them when you list the program. REM statements are
never executed.

You may branch to a REM statement from a GOTO or
GOSUB statement. In this case, execution continues with
the first executable statement after the REM statement.

You may append remarks at the end of a program line
by preceding the remark with a single quotation mark
or apostrophe (,) instead of : REM. However, you must
avoid using this method at the end of a DATA statement.
In this event, BASIC would interpret the remark as part
of the data.

NOTE
Never append programming statements to a REM line
since BASIC will interpret the statements as part of the
remark. For example, the following statements do not
print a blank line:

500 REM Begin New Section: PRINT

Rather, make the REM statement the last statement in
the line:

500 PRINT REM Begin New Section

6-125

Examples:

6-126

The first example uses the REM statement as a header for
the FOR ••. NEXT loop:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I = TO 20
140 SUM = SUM + V(I)
150 NEXT I

The next example shows the use of the apostrophe (')
for REM:

120 'CALCULATE AVERAGE VELOCITY
130 FOR I = TO 20
140 SUM = SUM + V(I)
150 NEXT I

The last example attaches the comment to the end of the
first statement of the FOR loop:

130 FOR I = TO 20 'CALCULATE AVERAGE VELOCITY
140 SUM = SUM + V(I)
150 NEXT I

RENUM Command
Format:

Purpose:

Remarks:

R E 1'1 UM [[newllumber] [,[aldlll/lIlller] [, illcrement]]]

Renumbers the lines within a program.

newnumber is the first line number in the new sequence.
When you omit this parameter, BASIC sets the value to
10.

oldllumber is the line in the current program where
renumbering begins. When you omit this parameter,
BASIC begins with the first line in the program.

increment is the amount by which the numbering
increases at each step. The default value is 10.

RENUM also changes all references to line numbers in
GOTO, GOSUB, THEN, ON ••• GOTO, ON .•• GOSUB, and ERL

statements to reflect the new line numbers. When
BASIC detects a nonexistent line number after one of
these statements, the error message Undef i ned 1 i ne

xxxxx in yyyyy appears. RENUM leaves the incorrect
line number reference xxx xx as it was. However, the
reference to line number yyyyy may have changed.

CAUTION
Numeric constants following an ERL variable in a given
expression may be treated as line references and thus
modified by a RENUM statement. To avoid this problem,
you should use statements similar to these:

L = ERL : PRINT L/10

rather than this statement:

PRINT ERL/10

6-127

Examples:

You cannot use RENUM to change the order of program
lines. For example, if a program contains three lines
numbered 10, 20, and 30, attempting to change line 30
to line 15 to produce the new sequence 10, 15, 20 with
the statement

RENUM 15,30

is illegal.

You cannot create line numbers greater than 65529.
Attempting to do so causes an III ega 1 fu nc t i on

ca 11.

The first example renumbers the entire program. The
first line number is 10 and following line numbers are
incremented by 10:

RENUM

The next example also renumbers the entire program.
However, the first line number is 300, and subsequent
lines are incremented by 50:

RENUM 300,,50

The last example renumbers the lines beginning from
900 so they start at 1000 and increase by 20 at each step:

RENUM 1000,900,20

NOTE
The BASIC compiler offers no support for this command.

6-128

v

RESET Command/Statement
Format:

Purpose:

Remarks:

RESET

Closes all disc files and writes the directory information
to every disc with open files.

RESET closes all open files on all drives and writes the
directory track to every disc with open files.

All files must be closed before you remove a disc from
its drive.

BASIC always returns to the command level after
executing aRE SET command.

6-129

RESTORE Statement
Format:

Purpose:

Remarks:

Examples:

6-130

RESTORE [line#]

Permits a program to reread DATA statements

After a program executes a RESTORE statement, the next
READ statement accesses the first item in the program's
first DATA statement. If you specify iine#, however, the
next READ statement accesses the first item in the given
DATA statement.

This program segment produces an Ou t of DATA error:

10 READ A,B,C
20 READ D,E,F
30 DATA 57,68,79
40 PRINT AjBjCjDjEjF
50 END
RUN
Out of DATA in 20
Ok

Adding a RESTORE statement between lines 10 and 20
assigns a value to all six variables:

10 READ A,B,C
15 RESTORE
20 READ D,E,F
30 DATA 57,68,79
40 PRINT AjBjCjDjEjF
50 END
RUN

57 68 79 57 68 79
Ok

v

RESUME Statement
Format:

Purpose:

Remarks:

Example:

RESUME

RESUME 0

RESUME NEXT

RESUME lillc#

Continues program execution after BASIC has
performed an error recovery procedure.

You select between the various formats depending upon
where you want execution to resume.

RESUME or
RESUME 0

RESUME NEXT

RESUME linet!

Execution resumes at the statement
that caused the error.

Execution resumes at the statement
that immediately follows the one
that caused the error.

Execution resumes at linc#.

A RESUME statement that is not in an error-handling
routine causes a RESUME VI it hou t e r ro r error message.

BASIC always returns to the command level after
executing a RESUME statement.

80 ON ERROR GOTO 900

900 IF (ERR-230) AND (ERL-90)

THEN PR I NT "PRESS RETURN TO CONTI NUE"

910 RESUME 80

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between implementations.

6-131

RETURN Statement
Format:

Purpose:

Remarks:

RETURN

Returns program control to the line immediately
following the most recently executed GOSUB or
ON ••• GOSUB statement.

See the GOSUB and ON ••• GOSUB statements in this
chapter for an example on the RETURN statement.

NOTE
If you plan to compile your program, check the BASIC compiler manual
for differences between the interpretive and compiled version of this
statement.

6-132

RIGHT$ Function
Format:

Action:

Example:

RIGHH(X$,i)

Returns the rightmost i characters of string x$. When i is
equivalent to the number of characters in x$, RIGHT $

returns x$. When i is zero, the function returns the null
string (a string of zero length).

Also see the MID $ and L E F H functions.

10 AS = "BASIC"
20 PRINT RIGHT$(AS,3)
RUN
SIC
Ok

RND Function
Format:

Action:

Example:

RND[(x)]

Returns a random number between 0 and 1. RND

generates the same sequence of "random" numbers
each time a program runs unless you use the
RANDOM I ZE statement to reseed the random-number
generator. However, a negative value for x always
restarts the same sequence for any given x.

Setting x to 0 repeats the last number that was
generated.

Omitting x or specifying a positive x generates the next
random number in the sequence.

10 FOR I = 1 TO 5
20 PRINT INT (RND • 100);
30 NEXT
RUN

12 65 86 72 79

Ok

6-133

RUN Command/Statement
Format 1:

Purpose:

Remarks:

Format 2:

Purpose:

Remarks:

Example:

RUN [line#]

Executes the program currently stored in your
computer's memory.

When you include line#, execution begins on that line.
Otherwise, execution begins with the lowest line
number. BASIC always returns control to the command
level when program execution finishes.

RUN filename [, R]

Loads a file from disc into your computer's memory and
then executes it.

filename is the name you gave the file when you saved
it. (You may omit the MS-DOS file type. BAS, as BASIC
supplies it for you.)

RUN closes all open files and deletes the current contents
of computer memory before loading the named
program. However, when you use the R option, all data
files remain open.

For further information on files, see Chapter 4.

The first example executes the program currently in
memory:

RUN

The next example loads the program NEWF I L from disc
then runs it while keeping data files open:

RUN "NEWFIL", R

The last example uses RUN as a statement to re-execute
the current program from its beginning:

9999 RUN 'Re-run program

NOTE
Differences exist between the interpretive and compiled version of the
RUN command. See the BASIC compiler manual if you plan to compile
your program.

6-134

v

SAVE Command
Format:

Purpose:

Remarks:

Examples:

SAVE filename [{ , A I , pH
Stores a program file from your computer's memory to
disc.

filename is a quoted string that "names" the file for
future references.

When the filename is less than nine characters and if
you omit a file extension, BASIC supplies the default
file type. BAS for you.

BASIC normally writes the file to the currently active
disc. Saving a file to another disc requires your
including a drive specifier as part of filename.

When a file already exists on the disc with filename,
BASIC overwrites it. No warning is given.

The A option saves the file in ASCII format. Otherwise,
BASIC saves the file in a compressed binary form.
ASCII format uses more disc space, but some disc
accesses require that files be in ASCII format. For
instance, the MERGE command requires ASCII formatted
files. Also, any programs that you save in ASCII format
may be read as data files.

The P option protects the file by saving it in an encoded
binary format. When the protected file is later loaded or
runned, any attempt to list or edit it fails. No command
exists to "unprotect" such a file.

The first example saves the program MYPROG in ASCII
format:

SAVE "MVPROG", A

The next command saves the program STATS as a
protected file that cannot be altered:

SAVE "STATS", P

The last example saves the program BDG T to the disc on
drive C:
SAVE "C:BDGT"

6-135

SGN Function
Format:

Action:

Example:

SGN(x)

If x is positive, SGN returns l.
If x is equal to zero, SGN returns O.
If x is negative, SGN returns -l.

10 INPUT X
20 ON SGN(X) + 2 GOTO 30, 40, 50
30 PRINT "X<O" GOTO 60
40 PRINT "X-O" GOTO 60
50 PRINT "X>O"
60 END

SIN Function
Format:

Action:

Example: _

6-136

SIN(x)

Returns the sine of x, where x is given in radians.

BASIC evaluates 5 I 1'1 (X) with single-precision
arithmetic.

NOTE
To convert degrees to radians, multiply the angle by
PI/lBO, where PI = 3.141593.

PRINT SIN (1.50)
.9974951

Ok

v

SPACES Function
Format:

Action:

Example:

SPACE$(x)

Returns a string of x spaces, where x may range
between 0 and 255.

When necessary, BASIC rounds x to an integer.

Also see the S P C function.

10 FOR I = 1 TO 5
20 X$ = SPACES(I>

30 PRitH X$; I
40 NEXT
50 END
RUN

2
3

4

5

Ok

SPC Function
Format:

Action:

Example:

SPC(j)

Prints j blanks. You may only use the SPC statement
with the P R I NT or L P R I NT statements.

j is the number of spaces to be printed. When j is
negative, SPC prints the null string. When j is greater
than 255, SPC prints the number of blanks equal to
J MOD 255.

5 P C rounds floating point numbers to an integer value
to determine the number of blanks to print.

Also see the 5 PAC E $ function.

In the following PR I NT statement, BASIC assumes that
a semicolon follow& 5 P C (1 5):

PRINT "OVER" SPC(15) "THERE"
OVER
Ok

THERE

6-137

SQR Function
Format:

Action:

Example:

6-138

SQR(x)

Returns the square root of x. x must be a positive
number or zero.

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
40 END
RUN

10
15
20
25

Ok

3.162278
3.872984
4.472136
5

v

STOP Statement
Formal: STOP

Purpose:

Remarks:

Example:

Ends program execution and returns control to the
command level.

You normally use this statement when debugging a
program. However, you may use STOP statements
anywhere within a program to stop execution. Upon
encountering a STOP statement, BASIC prints the
following message (where n n n n n is the line number
causing the break):

Break in nnnnn

The S TOP statement differs from the END statement
since the S TOP statement leaves all files open.

BASIC always returns control to the command level
when a STOP statement executes. You may resume
exection by giving the CONT" command.

10 INPUT A,B,C

20 K = A"2 * 5.3 : L = B"3 I .26

30 STOP

40 M = C * K + 100 : PRINT M
RUN

? 1,2,3 I Return I
Break in 30

Ok

PRINT L I Return I
30.76923

Ok

CONT I Return I
115.9

Ok

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the interpretive and compiled version of this
statement.

6-139

STRS Function
Format:

Action:

Example:

STR$(x)

. Returns a string representation of the value of x.

Also see the VAL function.

10 INPUT "ENTER X", X
20 PRINT STR$(X)
RUN
ENTER X45 IR~uml

45
Ok

STRINGS Function
Format:

Action:

Example:

6-140

STRING$(i,j)
STR I NGS< i, x$)

Returns a string of length i whose characters all have
ASCII code j or the first character of x$.

i must be an integer between 0 and 255.

10 REM THE ASCII CODE FOR THE DASH SYMBOL IS 45
20 X$ • STRING$(10,45)
30 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------­
Ok

SWAP Statement
Format:

Purpose:

o Remarks:

Example:

SWAP variablel, variable2

Exchanges the values of two variables.

variable1 and variable2 are the identifiers for two
variables or array elements.

You may SWAP variables of any type (integer, single
precision, double precision, or string) as long as both
variables are of the same type. If the types for the
variables differ, a T y P e m i 5 mat c h error occurs.

10 AS = " OI'tE"
20 PRII'tT A$ CS
30 SWAP AS, B$
40 PRII'tT AS CS
RUI't

OI'tE FOR ALL
ALL FOR OI'tE

Ok

: B$ = " ALL" : C$ = " FOR"
B$

B$

6-141

SYSTEM Command/Statement
Format:

Purpose:

Remarks:

SYSTEM

Leaves the BASIC environment and returns control to
the operating system.

The SYSTEM command closes all files and reloads the
MS-DOS operating system without deleting any
programs or memory except BASIC itself.

You may enter this statement as a Direct Mode
command or you may include it as a program
statement. For example, if you called BASIC through a
Batch file from MS-DOS, the SYSTEM command returns
control to the Batch file. The Batch file then continues
its execution from the point where it left off.

NOTE
Simultaneously pressing the I CTRL I and @] keys
always returns you to the BASIC command level.

NOTE
The BASIC compiler offers no support for this command.

6-142

v

TAB Function
Formal:

Action:

Example:

TAB(j)

Spaces to the jth position on the line. If the current print
position is beyond space j, TAB proceeds to that position
on the next line.

Values for j may range between 1 and 255. 1 is the
leftmost position on a line; the rightmost position is the
width minus one.

When j is negative, TAB treats it as the first character
position (that is, j = 1).

When j is greater than 255, TAB rounds the value then
calculates the value of J MOD 256. TAB uses the resulting
value.

You may only use the TAB statement with either the
PR I NT or LPR I NT statements.

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "MALLORY ALL! SON", "$25.00"
RUN
NAME

MALLORY ALLISON
Ok

AMOUNT

$25.00

TAN Function
Formal:

Action:

Example:

TAN (x)

Returns the tangent of x, where x is given in radians.

To convert degrees to radians, multiply the angle by
PI/lBO, where PI = 3.141593.

BASIC evaluates TAN (X) with single-precision
arithmetic. If the calculation overflows, BASIC displays
the 0 v e r flo IN error message, sets the result to machine
infinity with the appropriate sign, and continues
execution.

PRINT TAN(2.22)
-1.317612

6-143

TIME$ Function
Format:

Action:

Example:

6-144

TIME$

Retrieves the current time.

The T I ME $ function returns an eight-character string in \.../
the form:

where:

hh:mm:ss

hh is the hour of the day, based upon a 24-hour
clock. Values range from 00 to 23.

mm is the number of minutes. Values range
from 00 to 59.

ss is the number of seconds. Values range from
00 to 59.

This example assumes that the current time is 8:45 P.M.:

PRINT TIME$

20:45:00

TIMES Statement
Format:

Action:

Example:

TIMES = string

Sets the time for subsequent use by the T I ME S function.

string represents the current time. It may take one of the
following forms:

hh

hh:mm

hh:mm:ss

Sets the hour. (Values may range
from 0 to 23.) BASIC sets both
minutes and seconds to 00.

Sets both hour and minutes. (Values
for minutes may range from 0 to
59.) BASIC sets seconds to 00.

Sets hour, minutes, and seconds.
(Values for seconds may range from
o to 59).

Since the computer uses a 24 hour dock, you must add
12 hours to all times after 12 noon. For example,
8:00 P.M. is 20:00.

TIMES = "14:"

Ok

PRINT TIMES

14:00:07

Ok

TIMES = "14:34:04"

Ok

PRINT TIMES

14: 34: 10

Ok

6-145

TRON /TROFF Statements
Format: TRON

Purpose:

Remarks:

Example:

TROFF

Traces the execution of program statements.

You may use the TRON statement as a debugging aid in
either Direct or Indirect Mode.

The TRON statement enables a trace flag. Once set, the
trace prints each line number (surrounded by square
brackets) when BASIC executes that line.

You can disable the trace flag by giving either a TROFF
statement or a NEW command.

TRON
Ok
10 K ~ 10
20 FOR J = 1 TO 2
30 L ~ K + 10
40 PRINT JjKjL
50 K = K + 10
60 NEXT
70 END
RUN
[10][20][30][40] 1 10 20
[50][60][30][40] 2 20 30
[50][60][70]
Ok
TROFF
Ok
RUN

1 10 20
2 20 30

Ok

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences in the implementation of these statements.

6-146

v

USR Function
Format:

Action:

Example:

USR [digit] [Cargument>]

Calls an assembly-language subroutine.

digit specifies which USR function routine is being
called. digit may range between 0 and 9 and corresponds
to the digit you gave the function with the DEF USR

statement for that routine.

When you omit digit, BASIC assumes USRO. See DEF USR

for further details.

argument is the value you are passing to the subroutine.
It may be any numeric or string expression.

In this implementation, if you use a segment other than
the default Data Segment (OS), you must execute a DEF

SEG statement before giving a USR function call. The
address given in the DEF SEG statement determines the
address of the subroutine.

The type (numeric or string) of the variable receiving
the function call must be consistent with the argument
passed.

100 DEF SEG = &HFOOO
110 DEF USRO = 0
120 X = Y
130 Y = USRO(x)
140 PRINT Y

6-147

VAL Function
Format:

Action:

Example:

6-148

VAUx$)

Returns the numeric value for the string x$. For
example, evaluating the following function gives a
result of -3:

VAL("-3")

The VAL function strips leading blanks, tabs, and line
feed characters from the argument string.

In the following program, lines 20 and 30 show how
you may format an I F statement by using the line feed
character (Control-J).

10 READ FIRSTS, CITYS, STATES, ZIPS
20 IF VAL(ZIPS) < 90000 OR VAL(ZIPS)) 96699

THEN PRINT FIRSTS TAB(2S) "OUT OF STATE"
30 IF VAL(ZIPS))= 90801 AND VAL(ZIPS) < 90815

THEN PRINT FIRSTS TAB(2S) "LONG BEACH"
40 DATA MARY, CORVALLIS, OREGON, 97330

VARPTR Function
Format:

\.....; Action:

VARPTR (variable>
VARPTR (Ifilenum >

filenum is the number associated with a currently
opened file.

variable is a string expression associated with a variable.

When using the variable format, the command returns
the address of the first byte of data identified with
variable.

You must assign a value to variable before you use it as
an argument to VARPTR. Failing to follow this
procedure results in an 111 ega 1 fu nc t i on ca 11.

You may use a variable name of any type (numeric,
string, or array).

You normally use VARPTR to obtain the address of a
variable or an array so you may pass the address to an
assembly-language subroutine.

When passing an array, the best procedure is to pass the
lowest-addressed element of that array. Therefore, you
should make the function call in the following form
when accessing arrays:

VARPTR(A(O»

For string variables, VARPTR returns the first byte of the
string descriptor.

NOTE
You should assign all simple variables before you use
VARPTR with an array argument. This is a safeguard
since array addresses change whenever you assign a
new simple variable.

6-149

Example:

6-150

If you use the filenum option, VARPTR returns the
starting address of the disc I/O buffer assigned to
filenum. For random files, VARPTR returns the address of
the FIELD buffer assigned to filenum.

For either format, the function returns a number that
ranges between 0 and 65535. This number is the V
required offset into the BASIC's Data Segment (OS).

100 X = U5RCVARPTRCY»

WAIT Statement
Format:

Purpose:

\......; Remarks:

Example:

WA I T port, i [, j]

Suspends program execution while monitoring the
status of a machine input port.

port is a port number, which may range from 0 to 65535.

NOTE
This port is a microprocessor port; not one of your
computer's datacomm (or peripheral) ports.

i and j are integer expressions that may range from 0 to
255.

The WA I T statement suspends program execution until
the specified machine input port develops a specified
bit pattern. The data read at the port is xOR'ed with the
integer expression j , and then Atmed with i. When the
result is zero, BASIC loops back and reads the data at
the port again. When the result is not zero, execution
continues with the next statement.

CAUTION
You could possibly enter an infinite loop when using
the WA I T statement. To avoid this situation, you must
ensure that the specified value appears at the port
sometime during program execution. If the program
enters an infinite loop, you may exit the loop by
simultaneously pressing the I CTRL I and @] keys.

This example suspends program execution until port 32
receives a 1 bit in the second bit position:

100 WAIT 32, 2

6-151

WHILE . .. WEND Statement
Format:

Purpose:

Remarks:

6-152

WH I LE expression

[loop statements]

WEND

Loops through a series of statements as long as the
given condition is true.

expression is a numeric expression which BASIC
evaluates. If it is true (not zero), BASIC executes the loop
statements until it encounters WEND. BASIC then
returns to the WH I LE statement and checks expression. If
it is still true, BASIC repeats the entire process. When
the expression becomes false, BASIC resumes execution
with the statement that follows the WEND statement.

You may nest WH I LE/WEND loops to any level. Each
WEND matches the most recently encountered WH I LE.

An unmatched WH I LE statement causes a WH I LE

loll thou t WEND error. An unmatched WEND statement
causes a WEND wi thou t WHILE error.

If you are directing program control to a WH I LE loop,
you should always enter the loop through the WH I LE

statement.

Example: 10 OPTION BASE 1
20 DIM A(10)
30 REM ---------GET DATA----------
40 DATA 3,2,4,1,5,8,7,6,9,0
50 FOR I = 1 TO 10
60 READ A(I)
70 PRINT A(I)j
80 NEXT I
90 REM -------BUBBLE SORT---------
100 J = 10
110 FLIPS = 1
120 WHILE FLIPS
130 FLIPS z 0

'FORCE ONE PASS THRU LOOP

140 FOR I = 1 TO J-l
150 IF A(I) (= A(I+l) THEN 170
160 SWAP A(I), A(I+l) : FLIPS = 1
170 NEXT I
180 WEND
190 PRINT
200 FOR I 1 TO 10 : PRINT A(I)j NEXT I
RUN
324 1 5 8 7 690
o 2 3 4 5 6 789

Ok

NOTE
If you plan to compile your program, see the BASIC compiler manual for
differences between the compiled and interpretive version of this
statement.

6-153

WIDTH Statement
Format:

Purpose:

Remarks:

Example:

WIDTH [LPR I NT] size

Sets the line width in number of printed characters for
the computer screen or a printer.

size is a numeric expression that may range between 0
and 255. It gives the maximum number of characters
that BASIC prints on a logical line. The default setting is
80 characters.

A size setting of 255 gives an "infinite" line width. (That
is, BASIC never inserts a carriage return character.) Both
the PO 5 and L P 0 5 functions return 0 after the 255th
character is printed on a line.

Including the LPR I NT option sets the line width at the
line printer. Omitting this option sets the line width for
your computer's screen.

10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok

WIDTH 13
Ok

RUN
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
Ok

NOTE
If you plan to compile your program, check the BASIC compiler manual
for differences between the interpretive and compiled versions of this
statement.

6-154

WRITE Statement
Format:

Purpose:

~ Remarks:

Example:

/

WR I TE [list.of.expression5]

Copies data to the computer's screen.

list. oJ. expressions is a list of numeric and/or string
expressions. You must separate the different items in
the list with commas or semicolons.

When you include list.oJ.expressions, BASIC prints the
values for the expressions on the computer screen.

Omitting list.of.expressions prints a blank line on the
screen.

When it prints the line of values, BASIC separates each
item from the last with a comma. After it prints the last
item in the list, BASIC inserts a carriage return/line
feed. BASIC prints quotation marks around any strings
within the list.

The WR I TE statement prints numeric values using the
same format as the P R I N r statement.

10 A = 80 : B = 90 : C$ = "THAT'S ALL"
20 WRITE A,B,C$
RUN
80,90,"THAT'S ALL"
Ok

6-155

WRITE# Statement
Format:

Purpose:

Remarks:

Example:

6-156

WR ITEI tilenum, list.ot.expressions

Writes data to a sequential disc file.

tilenum is the number you gave the file when you
opened it in 0 mode.

list. at. expressions may contain numeric or string
expressions or both. You must separate the items in the
list with commas or semicolons.

The lAIR ITEI statement differs from the PR I tiTI

statement by the way it writes data to disc.

lAIR I TE I inserts commas between the items as it writes
them to disc and surrounds strings with quotation
marks. Therefore, you may omit putting explicit
delimiters in the list. BASIC inserts a carriage return/
line feed character after it writes the last item in the list
to disc.

Let A$ • "CAMERA" and B$ = "93604-1" then the
statement:

WRITE 11, A$,B$

writes the following image to disc:

"CAMERA","93604-1"

A subsequent I tiPUTI statement, such as:

INPUT 11, AS ,B$

assigns "CAMERA" to A $ and "93604 - 1" to 8$.

-

Appendix A

ERROR CODES AND ERROR
G MESSAGES

This appendix lists the BASIC error messages and describes each one.

Code Number Message

NF 1

SN 2

RG 3

00 4

NEXT wi thou t FOR

A variable in a N EXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

Syntax error

A line is encountered that contains some incorrect
sequence of characters (such as a misspelled
command, unmatched parentheses, or incorrect
punctuation).

RETURN wi thou t GOSUB

BASIC encounters aRE T URN statement for which
no previous, unmatched GOSUB statement exists.

Ou t of DATA

BASIC is executing aRE A D statement but no data
remains to be read from any DATA statement.

A-I

Code Number Message

FC 5 Illegal function call

You are attempting to pass a parameter that is out
of the permissible range to either a string or
mathematical function. V
This error message also appears under these
circumstances:

1. a negative or extremely large subscript

2. a negative or zero argument to LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

5. a call to an USR function for which no starting
address exists.

6. an improper argument to MID$, LEFH,

R I GHT$, PEEK, POKE. TAB. SPC. STR I NG$ •

SPACE$, I NSTR. or ON •.. GO TO

OV 6 Overflow

The result of a calculation is too large to be
represented in BASIC's number format. When
underflow occurs, BASIC sets the result to zero
and continues execution.

OM 7 Ou t of memory

A program is too large, has too many FOR loops or
GOSUB5, has too many variables, or too many
complicated expressions.

UL 8 Undefined line number

A line referenced in a GOTO, GOSUB,

IF .•• THEN •.• ELSE, or DELETE statement is to a
nonexistent line.

BS 9 Sub5cript out of range

An array element is referenced either with a
.~

subscript that is outside the dimensions of the
array, or with the wrong number of subscripts.

A-2

Code Number Message

DD 10 DuplicateDefinition

Two DIM statements are given for the same array;
or a DIM statement is given for an array after the
default dimension of 10 has been established for
that array.

/0 11 Division by zero

BASIC has either encountered a division by zero
within an expression or is trying to raise zero to a
negative power in an exponentiation. For division
by zero, BASIC sets the result to machine infinity
with the sign of the numerator. For involution,
BASIC sets the result to positive machine infinity.
In both cases, execution continues.

ID 12 Illegal direct

You have attempted to enter a command that is
illegal in Direct Mode.

TM 13 Type mismatch

A string variable name is assigned a numeric
value or vice versa. Otherwise, a function that
expects a numeric argument is given a string
argument or vice versa.

OS 14 Out of string space

String variables have caused BASIC to exceed the
amount of free memory remaining. BASIC
allocates string space dynamically, until it runs
out of memory.

LS 15 String too long

An attempt is made to create a string more than
255 characters long.

ST 16 String formula too complex

A string expression is too long or too complex. You
should break the expression into smaller
expressions.

A-3

Code Number

CN 17

UF 18

Message

Can't continue

An attempt is made to continue a program that:

1. has halted due to an error

2. has been modified during a break in execution

3. does not exist

Undefined U5er function

A US R function is called before the function
definition (OEF statement) is given.

The following error messages have no error codes.

A-4

19 1'10 RESUME

An error-trapping rountine is entered that
contains no RESUME statement.

20 RESUME wi thou terror

21

A RESUME statement is encountered before an
error-trapping routine is entered.

Unprintable error

No error message exists for the detected error
condition. This usually results from an ERROR

statement with an undefined error code.

22 Mi55ing operand

An expression contains an operator with no
operand following it.

23 Linebufferoverflow

An attempt is made to input a line that has too
many characters.

24-25 Unprintable error

No error message exists for the detected error
condition. This usually results from an ERROR

statement with an undefined error code.

26 FOR wi thou t NEXT

A FOR was encountered without a matching 1'1 EXT.

\.-I

Code Number Message

27-28 Un p r i n tab 1 per r 0 r

No error message exists for the detected error
condition. This usually results from an ERR 0 R

statement with an undefined error code.

29 WHILEwith'~utWEND

A W H I L E statement does not have a matching
WEND.

30 WEND wi thou t WH I LE

A WEND was encountered without a matching
WHILE.

31-49 Unprintable error

No error message exists for the detected error
condition. This usually results from an ERROR

statement with an undefined error code.

50 FIELD overflow

A FIELD statement is attempting to allocate more
bytes than were specified for the record length of
a random file.

51 Internal error

An internal malfunction has occurred in BASIC.
Report to your Hewlett-Packard service office the
conditions under which the message appeared.

52 Bad file number

A command references a file with a file number
that is not opened or is beyond the range of file
numbers specified at initialization.

53 Filenotfound

A LOAD, KILL, or OPEN statement references a file
that does not exist on the current disc.

54 Bad f i 1 e mode

An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOA D a random file, or to
execute an 0 PEN with a file mode other than I, 0,

or R.

A-5

Code Number Message

55 Filealreadyopen

A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for an
opened file.

\...."I
56 Unprintable error

No error message exists for the detected error
condition. This usually results from an ERROR

statement with an undefined error code.

57 Device 110 error

An I/O error occurred on an I/O operation. It is a
fatal error since the operating system cannot
recover from this error.

58 File already exi5t5

The filename specified in. a N A M E statement is
identical to a filename already in use on the disc.

59-60 Unprintable error

No error message exists for the detected error
condition. This usually results from an ERROR

statement with an undefined error code.

61 Di5kfull

All disc storage space is in use.

62 I npu t pa5 tend

An I NPUT statement is executed after all the data
in the file has been I NPUT, or for a null (empty)
file. Using EoF to detect the end of file avoids this
error.

63 Bad record number

In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767)
or is equal to zero.

64 Bad f i 1 e name

An illegal form is used for the filename with
LOAD. SAVE. KILL, or OPEN. (For example, the
filename may contain too many characters.)

A-6

Code Number Message

65 Unprintable error

No error message exists for the detected error
condition. This usually results from an ERR 0 R

statement with an undefined error code.

66 Dlrect5tatementinfile

A Direct Mode statement is encountered while
loading an ASCII-formatted file. The LOA D is
terminated.

67 roo man y fl j e '"

An attempt is made to create a new file (using
S AV E or 0 PEN) when all directory entries are full.

70 D 1 S k w r 1 t e pro tee ted

Your disc has a write protect tab or is a disc that
cannot be written to.

71 D 15k not Rea d y'

You have probably inserted the disc improperly.

72 r)t~:;krfleJlae'~ror

A hardware or disc problem occurred while the
disc was being written to or read from. (For
example, the disc drive may be malfunctioning or
the disc may be damaged.)

74 i\enameacro5"u'oks

An attempt was made to rename a file with a new
drive destination. As this is not allowed, the
operation is canceled.

A-7

Appendix B

USING TERMINAL
~ ~-FEATURES IN BASIC

Introduction
You can program the terminal portion of your computer to perform
many of the functions of an intelligent terminal. By using these fea­
tures, you can tell the computer to perform tasks that would other­
wise be done within each application program.

Most tasks that you do at the keyboard can also be done under pro­
gram control with escape sequences. An escape sequence is simply a
series of ASCII characters preceded by the escape character, ESC
(ASCII code 27). Each escape sequence tells the computer to do a cer­
tain task. For example, the escape sequence ESC h "homes" the cursor
to the upper left-hand corner of the screen.

This appendix shows some examples of how you might use escape
sequences. For a list of all the escape sequences that you can use on
your Portable PLUS, refer to the Portable PLUS Technical Reference
Manual (HP 45559K), which is available from your HP sales
representative.

(Portable PLUS) B-1

NOTE
For clarity, this appendix shows a space between each character in an
escape sequence. When you type in the sequence .. do NOT insert
spaces.

Escape sequences fall into two categories: two-character sequences
and multiple-character sequences. For two-character sequences, you
must press the keys in order and use the correct case (upper- or
lower-case). For example, ESC B (I Esc I then the shifted [[) key) moves
the cursor down one row whereas ESC b 0 ESC I then the unshifted [[)
key) unlocks the keyboard. The difference appears subtle but is quite
important to your computer.

Multiple-character escape sequences have one or more groups of
characters. Each group, consisting of a number or other character fol­
lowed by a letter, specifies one parameter of the sequence. Generally,
you can arrange these groups in any order or even leave some out en­
tirely, depending on the task you want your computer to do. In this
type of escape sequence, a capital letter defines the end of the escape
sequence, so you would capitalize only the last letter and type the rest
in lower case. An example is the cursor-positioning escape sequence.
Here is an escape sequence that positions the cursor at row zero, col­
umn zero rhome"):

ESC & a 0 roe

The uppercase C ends the sequence. But since you can interchange the
order of groups in a multiple-character escape sequence, you could also
use:

ESC & a 0 cOR

This escape sequence does the same task as the other one. Only the
order of groups of characters is different. Again, the capital letter ended
the sequence. The order of the groups of characters is not critical as
long as the last character is an uppercase letter.

8-2 (Portable PLUS)

You may also truncate this command. To position the cursor to the top
line, without affecting the column position, use the following sequence:

ESC 8. a 0 R

Notice that the c or column parameter is simply omitted. The upper case
'--" R terminates the sequence.

You must be aware of two situations when using escape sequences with
BASIC.

1. The PR I NT statement forces a carriage return/line feed after every
P R I NT statement unless the string to be printed is followed by a
semicolon (;). If you print a sequence that positions the cursor, and
forget to end the P R I NT statement with a semicolon, the cursor
automatically moves to the next line.

2. BASIC monitors the number of characters printed on each line so that
a carriage return /line feed can be added after every 80 characters.
When you are using PR I NT statements to generate escape sequences,
you may not want these characters added automaticillly. When you
use the WIDTH statement with a value of 255, BASIC stops inserting
the automatic carriage return/line feed and permits your program to
fully utilize terminal control sequences.

B-3

Sample Functions
An example of using escape sequences within a BASIC program is
illustrated below. By using these sample functions as a model, you
should be able to program any of the remaining functions that are
described in the HP 150 MS-DOS User's Guide.

The function definitions have been entered on multiple lines just as you
see them. If the program lines were entered normally, each line could
contain a maximum of 80 characters. This makes it difficult to format the
program listing as you see it here. However, by pressing I CTRL I QJ at
the end of each line, BASIC allows single line statements to be entered
on multiple lines.

1000 'DEFINE ESCAPE SEQUENCES AS FUNCTIONS
1010 ESC$ • CHR$(27)
1020 DEF FNHOME$ = ESC$ + "h" + ESC$ + "J"
1030 DEF FNCURSOR$(C,R) ESC$ + "&a" + STR$(C) + "c" +

STR$(R) + "R"
1040 DEF FNKEY$(K,A$,B$) • ESC$ + "&fOa" + STR$(K) + "k" +

STR$(LEN(A$» + "d" + STRS<LEN(BU + 1) + "L" + A$ + B$ +

CHRS< 13)

1050 DEF FNIV$(A$) ESC$ + "&dB" + A$ + ESC$ + "&d@"

Before exploring how these functions might be used within a program,
let's take a closer look at each one.

FNHOME$ executes a Home-up, clear-display sequence. This places the
cursor at the top of the display and clears the screen (by deleting the
contents of display memory).

FNCURSOR$ positions the cursor to the row and column specified by R
and C. Note that you must use STR$ to convert the numeric values of C
and R into a string representation of the desired values.

F N KEY $ allows you to define any of the User Keys. The key to be defined
is specified as K, the label as A$, and the definition ~s B$. Note that the
string representation of the length of each field must be specified. As
with the cursor function above, you must convert the numeric value to a
string.

v

F N I V $ prints the string of characters in A $ in inverse video at the current ~.
cursor position. F N I V $ also guarantees that only A $ is shown in inverse
video by specifically disabling all character enhancements after printing
A$.

B-4

Now look at how these functions might be used in a program. This small
program segment defines two softkeys. One causes program execution to
continue, while one terminates the program. The prompt requesting
operator input appears in the center of the display in inverse video.

1060 WIDTH 255
1070 PRIHT FHHOME$j
1080 PRIHT FHKEY$(l,"COHTIHUE","PROCEED")j
1090 PRIHT FHKEY$(8, "EXIT TO MS-DOS", "EXIT")j
1100 PRIHT ESC$ + "'jB"j
1110 PRIHT FHCURSOR$(10,20)j
1120 PRIHT FHIV$("COHTIHUE?")j
1130 PRIHT FHCURSOR$(20,20)j
1140 IHPUT " ", AS
1150 IF A$ • "PROCEED" GOTO 2000
1160 IF AS • "EXIT" GOTO 5000
2000 GOTO 1000
5000 STOP
5010 EHD

Remember, the semicolon is used after each PR I NT statement to allow
the programmer to position the cursor wherever necessary. This
prevents BASIC from performing an automatic carriage return as it

~. normally would.

For further information on programming with escape sequences, refer to
the appropriate sections in the HP 150 MS-DOS User's Guide.

v

Appendix C

REFERENCE TABLES

ASCll Character Codes
ASCII
Code Character Description

()()() NUL Null
001 SOH Start of heading
002 STX Start of text
003 ETX End of text

G
004 Ear End of transmission
005 ENQ Enquiry
006 ACK Acknowledge
007 BEL Bell
008 BS Backspace
009 HT Horizontal tabulation

010 LF Line feed
011 VT Vertical tabulation
012 FF Form feed
013 CR Carriage return
014 SO Shift out
015 SI Shift in
016 OLE Data Link Escape
017 DQ Device control 1 or X-ON
018 DC2 Device control 2
019 DC3 Device control 3 or X-OFF

G 020 DC4 Device control 4
021 NAK Negative acknowledge
022 SYN Synchronous idle

C-l

Ascn
Code Character Description

023 ETB End of transmission block
024 CAN Cancel
025 EM End of medium
026 SUB Substitute
027 ESC Escape \J
028 FS File separator
029 GS Group separator-

030 RS Record separator
031 US Unit separator
032 SPACE Space
033 Exclamation point
034 " Quotation mark
035 # Number sign (pound sign or hash mark)
036 $ Dollar sign
037 % Percent sign
038 & Ampersand
039 Apostrophe (closing single quote)

040 (Opening parenthesis
041) Closing parenthesis
042 * Asterisk
043 + Plus
044 Comma
045 Hyphen (minus)
046 Period (point)
047 I Slant (solidus)
048 0 Zero
049 1

050 2
051 3
052 4
053 5
054 6
055 7
056 8
057 9
058 . Colon
059 Semicolon '---.../

C-2

Ascn
Code Character Description

060 < Less than sign
061 Equal
062 > Greater than sign
063 ? Question mark

~ 064 @ Commercial at sign
065 A
066 B
067 C
068 D
069 E

0'70 F
071 G
CJ72 H
(JJ3 I
CJ74 J
CJ7S K
CJ76 L
(JJ7 M
(JJ8 N
(JJ9 0

~ OBO P
081 Q
082 R

C-3

ASCII
Code Character Description

083 S
084 T
085 U
086 V
087 W V
088 X
089 Y
090 Z

091 [Opening square bracket
092 \ Back slant
093] Closing square bracket
094 " Caret (upward arrow)
095 Underscore
096 Opening single quote
0fJ7 a
098 b
099 .c
100 d
101 e
102 f
103 g
104 h
105
106 j
107 k
108 I
109 m

110 n
111 0

112 P
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x '~

121 Y
122 z

C-4

ASCII
Code Character

123 {
124 I
125 }
126

\.-I 127 DEL
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

G 144
145
146
147
148
149

Description

Opening brace (curly bracket)
Vertical line
Closing brace (curly bracket)
TIlde
Delete (rub out)
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code
Undefined control code

C-5

ASCII
Code Character Description

150 Undefined control code
151 Undefiried control code
152 Undefined control code
153 Undefined control code
154 Undefined control code
155 Undefined control code
156 Undefined control code
157 Undefined control code
158 Undefined control code
159 Undefined control code

160 Do not use
161 A Uppercase A accent grave
162 A Uppercase A circumflex
163 E Uppercase E accent grave
164 ~ Uppercase E circumflex
165 E Uppercase E umlaut or diaeresis

A

166 I Uppercase I circumflex
167 t Uppercase I umlaut or diaeresis
168 Accent acute
169 Accent grave

170 A Circumflex accent
171 Umlaut (diaeresis) accent
172 Tilde accent
173 U Uppercase U accent grave

A 174 U Uppercase U circumflex
175 £. Italian lira symbol
176 Overline (high line)
177 Undefined control code
178 Undefined control code
179 0 Degree (ring)

180 9 Uppercase C cedilla
181 C; Lowercase c cedilla
182 N Uppercase N tilde
183 n Lowercase n tilde
184 i Inverse exclamation mark
185 {, Inverse question mark
186 n General currency symbol

'--~

187 £. British pound sign
188 ¥ Japanese yen symbol
189 § Section sign

C-6

Ascn
Code Character Description

190 f Dutch guilder symbol
191 ¢ Cent sign
192 A Lowercase a circumflex a
193 e Lowercase e circumflex

\...; 194 A Lowercase 0 circumflex 0

195 A Lowercase u circumflex u
196 a Lowercase a accent acute
197 e Lowercase e accent acute
198 <> Lowercase 0 accent acute
199 u Lowercase u accent acute

200 a Lowercase a accent grave
201 e Lowercase e accent grave
202 0 Lowercase 0 accent grave
203 U Low~rcase u accent grave
204 a Lowercase a umlaut or diaeresis
205 e Lowercase e umlaut or diaeresis
206 0 Lowercase 0 umlaut or diaeresis
2(J7 U Lowercase u umlaut or diaeresis
208 A Uppercase A degree
209 t Lowercase i circumflex

G 210 g Uppercase 0 crossbar
211 IE Uppercase AE ligature

0

212 a Lowercase a degree
213 1 Lowercase i accent acute
214 0 Lowercase 0 crossbar
215 CE Lowercase ae ligature
216 A Uppercase A umlaut or diaeresis
217 1 Lowercase i accent grave
218 b Uppercase 0 umlaut or diaeresis
219 (j Uppercase U umlaut or diaeresis

220 E Uppercase E accent acute
221 1 Lowercase i umlaut or diaeresis
222 (J Sharp s
223 6 Uppercase 0 circumflex
224 A Uppercase A accent acute
225 A Uppercase A tilde

.~ 226 a Lowercase a tilde
2ZJ [) Uppercase D with stroke
228 d' Lowercase d with stroke
229 i Uppercase I accent acute

C-7

ASCII
Code Character Description

230 i: Uppercase I accent grave
231 6 Uppercase 0 accent acute
232 b Uppercase 0 accent grave
233 6 Uppercase 0 tilde
234 0 Lowercase 0 tilde V
235

v
Uppercase S with caron 5

236 v Lowercase s with caron s
237 U Uppercase U accent acute
238 y Uppercase Y umlaut or diaeresis
239 y Lowercase y umlaut or diaeresis

240 P Uppercase thorn
241 ~ Lowercase thorn
242 Undefined
243 Undefined
244 Undefined
245 Undefined
246 Long dash (horizontal bar)
247 1/4 One fourth
248 1fz One half
249 jl Feminine ordinal indicator
250 ~ Masculine ordinal indicator
251 « Opening guillemets (angle quotes)
252 • Solid
253 » Closing guillemets (angle quotes)
254 ± Plus/minus sign
255 Do not use

C-8

bo 0 0

b. 0 0

bo 0 0

bo 0 1

bobo bo b. 0 1

o 0 o 0 0 NUL DI.E

o 0 o 1 1 SO,", DC1

o 0 1 0 2 STX DC2

o 0 1 1 3 ETX DC3

o 1 o 0 4 EOT DC4

o 1 o 1 5 Ellie NAK

o 1 1 0 6 ACK SYN

o 1 1 1 7 BEL ETB

1 0 o 0 6 BS pAN

1 0 o 1 9 HT EM

1 0 1 0 10 LF SUB

1 0 1 1 11 VT ESC

1 1 o 0 12 FF FS

1 1 o 1 13 CR GS

1 1 1 0 14 so RS

1 1 1 1 15 SI US

ROMANI CHARACTER SET
(USASCII PLUS ROMAN EXTENSION)

0 0 0 0 0 0 1 1 1

0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0

2 3 4 5 6 7 6 9 10

SP 0 @ p . p

! 1 A Q a q A

" 2 B R b r A
3 C S c s E
$ 4 0 T d t ~
% 5 E U e u E
& 6 F V f v "-

I

· 7 G W 9 w t
(8 H X h x

) 9 I y 1 Y

· : J Z j z "-

+ ; K [k {
..

· < L \ I I
~

· = M I m } U
> N A

"-n - U

I ? 0 0 DEL ~

1 1 1 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 0 1

11 12 13 14 15

3 A A l'
3 t A ~
a g i

0 "- .E £) U

9 a a cf

Cf e 1 I
N 6 8 t -
;; u ae 0 1.

4

i a A 0 1

2"
l- Et 1 0 a

n 0 0 0 II

J: U 0 S «
¥ a E s •
§ e 1 U »
f 0 (J y ±

C (j 0 y

C-9

Reserved Words
The following table lists all the reserved words in BASIC.

ABS ERASE LPOS RND
AND ERL LPRINT RSET
ASC ERR LSET RUN
ATN ERROR MERGE SAVE V
AUTO EXP MID$ SGN
BLOAD FIELD MKD$ SIN
BSAVE FILES MKI$ SPACES
CALL FIX MKS$ SPC
CDBL FNxxxxxxxx MOD SQR
CHAIN FOR NAME STEP
CHR$ FRE NEW STOP
CINT GET NEXT STR$
CLEAR GOSUB NOT STRINGS
CLOSE GOTO OCTS SWAP
COMMON HEX$ OFF SYSTEM
CONT IF ON TAB
COS IMP OPEN TAN
CSNG INKEY$ OPTION THEN
CVD INP OR TIMES
CVI INPUT OUT TO
CVS INPUT' PEEK TROFF
DATA INPUTS POKE TRON
DATE$ INSTR POS USING
DEF INT PRINT USR
DEFDBL KILL PRINT' VAL
DEFINT LEFTS PUT VARPTR
DEFSNG LEN RANDOMIZE WAIT
DEFSTR LET READ WEND
DELETE LINE REM WHILE
DIM LIST RENUM WIDTH
EDIT LLiST RESET WRITE
ELSE LOAD RESTORE WRITE'
END LOC RESUME XOR
EOF LOF RETURN
EQV LOG RIGHTS

C-lO

Appendix D

ASSEMBLY LANGUAGE
~ SUBROUTINES

Introduction
This appendix is provided for users who call assembly-language
subroutines from their BASIC programs. If you do not use assembly­
language subroutines, you may omit reading this appendix.

The USR function allows assembly-language subroutines to be called in
the same way that BASIC intrinsic functions are called. However, we
recommend that you use the CALL or CALLS statement for interfacing
machine-language programs with BASIC. These statements produce
more readable source code and can pass multiple arguments. In addition,
the CAL L statement is compatible with more languages than the US R

function.

0-1

Memory Allocation
You must set aside memory space for an assembly-language subroutine
before you can load it. You accomplish this through the 1M: switch in
the BASIC command line. (The 1M: switch sets the highest memory
location that BASIC uses.)

In addition to the BASIC Interpreter code area, BASIC uses up to 64K of
memory beginning at the Data Segment (OS).

When calling an assembly-language subroutine, if you need more stack
space, you can save the BASIC stack and set up a new stack for the
assembly-language subroutine. You must restore the BASIC stack,
however, before the program returns from the subroutine.

You can load an assembly-language subroutine into memory through
the operating system or the POKE statement. If you have the software
package for your microprocessor, routines may be assembled with the
MACRO Assembler and linked, but not loaded, using the LINK Linking
Loader. To load the program file, observe these guidelines:

• Make sure the subroutines do not contain any long references

• Skip over the first 512 bytes of the MS-LINK output file,. then read in "-....../
the rest of the file

D-2

CALL Statement
The CAL L statement is the recommended way of interfacing machine­
language programs with BASIC. Do not use the US R function unless you
are running previously written programs that already contain US R

functions.

\.-I Format:

Remarks:

CAL L variable. name [(argument.list>]

variable. name contains the segment offset that is the
starting point in memory of the subroutine that you are
calling.

argument.list contains the variables or constants that are
passed to the routine. You must separate the items in
the list with commas.

Invoking the CALL statement causes the following
events:

• For each parameter in the argument list, the 2-byte
offset of the parameter's location within the Data
Segment (OS) is pushed onto the stack.

• The BASIC return address code segment (CS) and
offset (IP) are pushed onto the stack.

• Control is transferred to your routine through a long
call to the segment address given in the last DEF SEG

statement and the offset given in variable. name.

0-3

D-4

The following table illustrates the state of the stack at
the time the CALL statement executes.

High
addresses

Stack
counter

Low
addresses

Parameter 0
Parameter 1

Parameter n

Return segment address

Return offset

Each
parameter is V
a 2-byte
pointer into
memory

Stack
pointer (SP)
register
contents

Your routine now has control. You may refer to
parameters by moving the stack pointer to the base
pointer, then adding a positive offset to the base
pointer.

The following figure shows the condition of the stack
during execution of the called subroutine.

High
addresses Parameter 0 Absent if any

Parameter 1 parameter is
referenced
within a
nested

Parameter n procedure

Return segment address Absent in
local
procedure

Return offset Stack pointer
(SP) register
contents

New stack
marker

Stack
counter Local variables

Only in
reentrant
procedure

This space may Stack
be used during pointer may
procedure excecution change

during
procedure
execution

~/
Low
addresses

D-5

D-6

The following rules apply when coding a subroutine:

1. The called routine may destroy the AX, BX, CX, DX,
SI, and DI registers.

2. The called program must know the number and
length of the parameters passed. References to
parameters are positive offsets to BP (assuming the
called routine moved the current stack pointer into
BP).

3. The called routine must do a RET n statement, where
n is twice the number of parameters in t4e argument
list. This statement adjusts the stack to the start of the
calling sequence.

4. Values are returned to BASIC by including a variable
name in the argument list to receive the result.

5. If the argument is a string, the parameter's offset
points to three bytes, which, as a unit, is called the
string descriptor.

Byte 0 of the string descriptor contains the length of the
string. This number may vary from 0 (if all 8 bits are
zero) to 255 (if all 8 bits are ones).

Bytes 1 and 2, respectively, are the lower and upper 8
bits of the starting string address in string space.

CAUTION
If the argument is a string literal in the program, the
string descriptor points to program text. Be careful not
to alter or destroy your program this way. To avoid
unpredictable results, add +" " to the string literal in
the program. For example, the following statement
forces the string literal to be copied into string space:

20 A$ = "BASIC" + II II

You may now modify this string without affecting the
program.

v

Example:

6. Strings may be altered by user routines, but their
length MUST REMAIN THE SAME. BASIC cannot
correctly manipulate strings if their lengths are
modified by external routines.

100 DEF SEG = &H800
110 FDD = &H7A
120 CALL FDD(A,B$,C)

Line 100 sets the segment address to 8000 Hex. The
value of the variable F a a is added to the address as an
offset to the DEF SEG segment value. (See a book on
8086/8088 microprocessors for a complete discussion of
segment addressing.) Here Faa is set to &H7FA, so that
the call to F a a executes the subroutine at location
8000:7FA Hex (equivalent to absolute address 807FA).

The following sequence in assembly-language code
demonstrates access of the parameters passed. The
return result is stored in variable "Co.

PUSH BP ;Save BP register
MOV BP,SP ;Get current stack position in BP
MOV BX,[BP+8] ;Get address of B$ dope
MOV CL,[BX] ;Get length of B$ in CL
MOV DX,[BX + 1] ;Get address of B$ text in OX

MOV SI,[BP+lO] ;Get address of 'A' in SI
MOV DI,[BP+6] ;Get pointer to'C' in DI
MOVS WORD ;Store variable' A' in 'C'.
POP BP ;Restore BP register
RET 6 ;Restore stack, return

NOTE
The called program must know the variable type for the
numeric parameters passed. In the previous example,
the instruction MOVS WORD copies only 2 bytes. This
suffices when variables A and C are integers. However,
you have to copy 4 bytes if the variables are single­
precision values and 8 bytes if they are double-precision
values.

D-7

USR Function
Although the CALL statement is the recommended way of calling
assembly-language subroutines, the USR function is still available for
compatibility with previously written programs.

Formal:

Remarks:

D-8

USR [digit] (argument>

digit is an integer that ranges from 0 to 9. It specifies
which USR routine is being called and corresponds with
the digit supplied in the DEF USR statement for that
routine. If you omit digit, BASIC assumes the call is to
USRO.

argument is any numeric or string expression.

In BASIC, you must execute a DEF USR statment before
calling a USR function to ensure that the code segment
points to the subroutine being called. The address given
in the DEF SEG statement determines the starting
address of the subroutine.

For each USR function, you must execute a DEF USR

statement to define the USR function offset. This offset
and the currently active DEF SEG statement determines
the starting segment of the subroutine.

When the USR function call is made, register AL
contains a value that specifies which type of argument
was given. The value in AL may be one of the
following:

Value in AL
2
3
4
8

Type of Argument
Two-byte integer (two's complement)
String
Single-precision floating point number
Double-precision floating point
number

If the argument is a number, the BX register pair points
to the Floating Point Accumulator (FAC) where the
argument is stored.

The Floating Point Accumulator is the exponent minus
128. (The radix point is to the left of the most significant
bit of the mantissa.)

Example:

If the argument is an integer:

FAC-2 contains the upper 8 bits of the argument.
FAC-3 contains the lower 8 bits of the argument.

If the argument is a single-precision floating point
number:

FAC-2 contains the middle 8 bits of the argument.
FAC-3 contains the lowest 8 bits of the argument.

If the argument is a double-precision floating point
number:

FAC-7 through FAC-4 contain four more bytes of the
mantissa (FAC-7 contains the lowest 8 bits).

If the argument is a string, the OX register pair points to
three bytes. These three bytes are called the string
descriptor.

Byte 0 contains the length of the string. This value
varies from 0 (if all 8 bits are zeros) to 255 (if all 8 bits
are ones).

Bytes 1 and 2, respectively, are the lower and upper
eight bits of the starting string address in the BASIC
Data Segment.

CAUTION
If the argument is a string literal in the program, the
string descriptor points to program text. Be careful not
to alter or destroy your program this way.

Usually, the value returned by a USR function is the
same type (integer, single-precision, double-precision,
or string) as the argument that was passed to it.

100 DEF USRO=&H800 'Assumes user gave IM:32767

120 X = 5
130 Y = USRO
140 PRINT Y

The type (numeric or string) of the variable receiving
the function call must be consistent with the argument
passed.

D-9

1
1
1
1
1
1
1
1 °1
1
1
1
1
1
1
1
1
1
1
1
1
1 .~ 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1 .~ 1

1
1
1
1
1
I

Appendix E

'--' INSTALLING BASIC ON THE HP 110

Introduction
This appendix provides details on installing BASIC on the HP 110
Portable Computer. It tells you how to make a back-up copy of your
master disc and the simpliest procedures for getting BASIC up and
running on your computer.

You have two major options. You may either modify P.A.M. so you can
use P.A.M.'s friendly interface to run BASIC or you may simply enter
BA 5 I C as an MS-DOS system command. This appendix describes both
methods.

E-l

Copying The Program Disc For Back­
Up
Before using Series 100/BASIC for the first time, you should make a
back-up copy of the master BASIC disc. To accomplish this, you need the
following:

• the Portable

• the Series 100/BASIC program disc

• an HP 9114A 3th-Inch Single Flexible Disc Drive (or another
compatible disc drive)

• a back-up disc, formatted as a single-sided disc

CAUTION
Before going through the install procedure, you should write-protect
your master disc to prevent any accidental "over-writing". For
information on write-protecting your disc, refer to the owner's manual
that accompanied your disc drive.

The Portable encorporates many new technologies into its design,
including the use of double-sided discs. It is important, however, that the
Portable remains compatible with other Hewlett-Packard Series 100
products. Since all existing Series 100 software uses single-sided disc
format, you should copy your master BASIC disc as a single-sided disc.
This requires your using the format program on the UTILITIES disc that
came with your Portable as the Portable's built-in format command
formats a disc in double-sided format.

NOTE
The UTILITIES disc is a double-sided disc. This means that you must
read it in a double-sided disc drive. If you have a single-sided disc drive,
you should use P.A.M. or the MS-DOS FORMAT command to format the

v

back-up disc. ~

Double-sided disc drives (such as the HP 9114A) can use single-sided
discs without any problems.

E-2

Formatting The Back-Up Disc
If you are using a new disc, you must format it first.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Connect and turn on all the equipment. You should also
ensure that the Portable's System Configuration menu
correctly show the number of disc drives that you have
connected to your Portable. (The HP 110 Portable
Computer Owner's Manual provides the necessary
details.)

Insert the UTILITIES disc that you received with your
Portable into a double-sided disc drive.

To copy the formatting program to your electronic disc,
type:

COpy C: FORMAT. COM A: I Return I

Remove the UTILITIES disc from the disc drive and
insert the blank, unformatted disc.

Type A:FORMAT C: /WIReturnl

Then press the I Return I key to begin formatting. It takes
about two minutes for the system to format the disc.

After formatting finishes, you are ready to copy the
master disc. But first, erase the formatting program
from the electronic disc by typing:

ERASE A: FORMAT. COMI Return I

E-3

Making The Back-Up Copy
Once you have a single-sided, formatted disc, you can use the MS-DOS
command D I SKCOPY to copy the "Source" disc (the Series 100/BASIC
program disc) to the formatted "Target" disc (your back-up disc).

The master BASIC disc contains these files:

• BAS I C. COM (the BASIC interpreter program)

• BAS I C . IN $ (the HP 150 install file)

• RANDOM. BAS (a sample BASIC program)

• PAM.MNU (the HP 110 P.A.M. menu file)

• HP 11 0 \BAS I C. I N$ (an HP 110 file for a future install program)

You must copy all these files to your back-up disc. The Portable provides
the necessary prompts to lead you through this process.

If you have a dual disc drive, type:

DIS K COP Y C: D: I Return 1

Now follow the instructions on the display. (They direct you to place the
"Source" (your master) disc in drive C and the 'Target" (your back-up)
disc in drive D).

The procedure for a single disc drive involves a few more steps but the
Portable again provides assistance.

Step 1.

E-4

If you have a single disc drive connected to your system,
type:

DISKCOPY C: C: I Return 1

Step 2.

Step 3.

Step 4.

Step 5.

At this point, the Portable prompts you to insert the
"Target" disc (your formatted back-up disc) into the disc
drive and press any key when you are ready to
continue.

NOTE
Your Portable detects the I CTRL I , I Shift I , and
I Extend char I keys as keys that are used in combination
with other keys. Therefore, it does not respond to your
pressing any of these keys by themselves. Although you
may press any other key to continue the operation, the
remainder of this procedure directs you to press the
I Return I key.

The Portable then tells you when to insert the Source
disc, when to insert the Target disc again, the Source
disc, the Target disc, and so on. To continue the copying
process, swap the discs and press the I Return I key. Keep
swapping discs in the external drive as the Portable
directs until all of the master files are copied. The
copying process is done when you see the message
Copy complete.

As soon as the copying is finished, you are asked if you
want to make another copy. If you do, press the [YJ key
and repeat the above procedure with another formatted
back-up disc. If your answer is no, press the 00 key
then the I Return I key to return to P.A.M ..

Once you have Series lOO/BASIC on a back-up disc, you
should use this back-up disc as your work disc and store
the master program disc in a safe place. (When you
remove the back-up disc from the disc drive, don't
forget to label it for future reference.)

E-5

Running Series lOO/BASIC
You can load Series lOO / BASIC through P.A.M. or directly from the MS­
DOS operating system. P.A.M. provides a "friendlier" inte rface but
requires more steps in the set-up procedure. Entering BASIC through an
MS-DOS system command gives you more flexibility in establishing the
BASIC envi ronment (see Chapter 3 for furth er information). This
appendix uses the simpliest form of the BAS I C command .

Running BASIC Using P.A.M.
You can use P.A.M. to run Series lOO/ BASIC from either an external disc
drive or the internal electronic disc.

Running From An External Disc

Step 1. Display the main P.A.M. menu on your screen. If some
other information currently appears, you can return to
P.A.M. by entering the MS-DOS E x I T command, or by
performing a ha rd reset. (You may reset your Portable
by simultaneously pressing the I Shift I I CTRL I and

Step 2.

Step 3.

Step 4.

Step 5.

I Break I keys.)

Place your back-up copy of the BASIC disc into the
external disc drive.

Press [ill (RereadD1SCS).

This action updates the P.A.M. menu to include the
BASIC label as a possible selection .

Use the I Tab I key or the cursor-control ("a rrow") keys
to move the pOinter to the BAS I C field .

Press I Select I or [ill Start AppllC).

Appendix F

INSTALLING BASIC ON THE
HP150

Introduction
This appendix provides details on installing BASIC on the HP ISO
Personal Computer. It tells you how to make a back-up copy of your
master disc and the simplest procedures for getting BASIC up and
running on your computer.

Making A Working Copy Of BASIC
You should always make a back-up copy of your application software as
a safeguard against possible damage or loss. Since the HP ISO supports a
variety of peripheral, mass-storage devices, the actual procedure depends
upon which disc drive you are using. The following sections describe
making a working copy of BASIC using either a dual disc drive or a hard
disc drive. As the system directs you on each step you must take, you
may follow the instructions on the screen if you have a different type of
disc drive.

CAUTION
Before going through the install procedure, you should write-protect
your master disc to prevent any accidental "over-writing". For
information on write-protecting your disc, refer to the owner's manual
that accompanied your disc drive.

F-I

For Dual Disc Drive Users
The following discussion lists the steps that you should follow to make a
back-up copy of your BASIC master disc. For this procedure, you need
the following discs:

• Your back-up copy of the HP ISO SYS_ MASTER

• Your back-up copy of DISC APPLICATIONS

• Your master copy of BASIC

• An unformatted disc

Your computer assumes drive A (the left-hand drive) is the currently
active drive, unless you have taken steps to instruct it differently. This
procedure, therefore, requires your inserting the "controlling" discs into
drive A.

Inserting a disc into a drive is an easy task:

• Hold the disc by its label end to prevent soiling the shutter
mechanism.

• Inspect both sides of the disc. You can recognize the top since it has
printing on the shutter and also contains the larger portion of the
label. The most obvious feature on the bottom is the circular head.

• Ensure that the top of the disc is facing up when you insert the disc
into a drive. The engraved arrow shows which way you enter the
disc.

The following discussion uses the touch fields of the HP ISO, but you
may select each operation by pressing the function key that corresponds
to the operation you wish to perform.

Step 1.

Step 2.

Step 3.

Step 4.

F-2

Put your back-up copy of the HP ISO Sys_ Master (the
one containing uP.A.M.") into drive A.

Put the disc you wish to format in drive B.

Do a System Reset (by simultaneously pressing the
I Shift I ,I CTRL I , and I Reset I keys) to put the system in its
initial, power-on state.

Select the FORMAT program by touching this field, then
touch 1I ••• IIIi111i

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

Select dr 1 ve B by pressing this field and type a label for
the disc (for example, BAS I c) . Then press the I Return I
key.

To include a copy of P.A.M. on the disc while it is being
formatted, touch (An asterisk appears
in the screen label to show that you have selected this
option.)

Touch Start Format to read in P.A.M .. When the
message Press Return to contlnue appears,pressthe
I Return I key to format your disc on drive B.

After formatting finishes, touch
leave this application.

Ex 1 t FORMAT to

Remove the back-up copy of P.A.M. from drive A and
insert your back-up copy of DISC APPLICATIONS into
drive A. (This disc contains the " Install" utility.)

Touch Reread DISCS

Select I NSTALL, then touch StartAppllC

After the Install program has been loaded, remove the
disc from drive A and insert your BASIC master into
drive A.

Touch

Touch

Insta l l Applies

ShowAppI 1 CS

Select BAS I C by touching this field .

Touch Start I nstall

After the installation procedure finishes, touch
EXlt Select

NOTE
Step 18 applies to the initial version of P.A.M. (version
number A.Ol.02). If you have a later version of P.A.M.,
proceed to Step 19.

F-3

Step 18.

Step 19.

Touch . This is your last step when
using version number A.01.02 of P.A.M ..

Touch ';681,;A'4';;+, and after the Main Menu appears
touch l.i'.;;S8,+,

You have now successfully installed P.A.M. and BASIC on a single back­
up disc.

For Hard Disc Drive Users
This section details the steps that you must take to place a working copy
of Series IOO / BASIC on a hard disc.

For this procedure, you need the following discs:

Your back-up copy of the HP 150 SYS_ MASTER

• Your back-up copy of DISC APPLICATIONS

• Your master copy of Series lOO/ BASIC

Your hard disc drive

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

F-4

If you have not already done so, format your hard disc.
(The owner's manual for your hard disc supplies the
necessary details.)

Put your back-up copy of the SYS_MASTER (the disc
containing P.A.M.) into the flexible disc drive A and
bring up the main P.A.M. menu.

Remove the SYS_ MASTER disc and insert your copy
of DISC APPLICATIONS into the flexible disc drive A.
(This disc contains the " Install" utility.)

Touch Reread DISCS

P.A.M. updates the list of possible selections to include
the INSTALL utility.

Touch the 1 NSTALL field to select this option. (You
know you have successfully selected Install when the
field becomes highlighted.)

Touch StartAppllC

The message Load1 ng I n5 ta 11 appears on your screen.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

When the red light on the disc drive goes out, remove
the DISC APPLICATIONS disc and insert your Series
100/ BASIC master disc.

Inspect the current screen display. The message 5.1. c t
a func t 10n below appears on the screen. Since you
want to install an application program and not remove
one, touch Install ApplIes

The next screen asks you to select the correct disc drives.
Remember, you are installing BASIC "FROM:" the
flexible disc drive A "TO:" the fixed disc drive B.

Touch " A" in the FROM column until this field is
highlighted.

Touch " E" in the TO column until this field is
highlighted.

Touch Sho AppllCS

The message Select the applicatlons to be

ins ta 11 ed appears on the screen.

Select EA 5 I C by touching this field.

Touch Start Install

When the installation procedure finishes, the message
I nstall completed appears on the screen. Touch
Exit Select

NOTE
Step 16 applies to the initial version of P.A.M. (version
number A.OI.02). If you have a later version of P.A.M.,
proceed to Step 17.

Touch . This is your last step when
using version number A.OI.02 of P.A.M ..

Touch .;ep;,;A" and after the Main Menu appears
touch ""'AF,;.I.

F-S

Starting BASIC
After you have both the operating system and BASIC on a single disc,
running BASIC becomes a simple task. You only need to insert this disc
into drive A, simultaneously press the I Shift I ,I CTRL I , and I Reset I keys to
" reboot" the system, and touch to load BASIC into
your computer's memory. (Refer to Chapter 3 for information on
increasing your flexibility when entering BASIC.)

F-6

Running From The Electronic Disc

Before you can use P.A.M:s facilities to run Series lOO/ BASIC, you must
copy the BAS I C. COM file into the electronic disc. Next, you must install
the program in P.A.M. by modifying the PAM. MNU file in the electronic
disc. You do this by placing two lines into the existing PAM. MNU file to
reserve space for the label and file name. These lines are:

• Ba 5 i c

• BAS 1 C

If the electronic disc doesn ' t have a' PAM . MNU file, you can copy the one
from your back-up disc to the electronic disc.

To remove BASIC from P.A.M., you must return the PAM. MNU file to its
original state. (Since the install procedure added two lines to the
PAM. MNU file, you must delete those same two lines.)

For information on these tasks, refer to "Copying a File" and "Installing
Application Programs in P.A.M." in chapter 2 of your HP 110 Portable
Computer Owner's Manual.

Step 1.

Step 2.

Step 3.

Step 4.

Display the main P.A.M. menu on your screen. (You can
return to the P.A.M. menu by entering the MS-DOS
E X I T command, or by performing a hard reset.)

Use the MS-DOS " list-directory" command (D I R) to
verify that the BAS I C. COM file is in the electronic disc.

If the application program is installed, use the I Tab I key
or the "arrow" keys to move the pointer to the BAS I C
selection.

Press I Select I or m::J I S ta r tAppl l C).

E-7

Running BASIC Using MS-DOS
You can also run Series l OO / BASIC from an external disc or the electronic
disc by typing the appropriate MS-DOS comma nd . The following
discussion gives the simpliest form of the BAS I C command. Refer to
Chapter 3 if you want to tailor the BASIC environment for your specific
needs.

Running From An External Disc
Step 1. Insert your back-up copy of the BASIC disc into the

external disc drive.

Step 2. Type C: BAS! C I Return I

When drive C (the drive with the BASIC disc) is the
default drive, you may omit typing the drive specifier
C: .

Running From The Electronic Disc

Before using MS-DOS to run Series IOO/ BASIC from the electronic disc,
you must copy the BAS! C. COM file into the electronic disc. For
information on how to do this, refer to "Copying a File" in chapter 2 of
your HP 110 Portable Computer Owner's Manual.

Step 1.

Step 2.

Step 3.

E-8

Use the MS-DOS "list-<lirectory" command (D! R) to
verify that the BAS Ie. COM file is in the electronic disc.

Type A: BAS! C I Return I

If drive A is the default drive, you may omit typing the
drive specifier A:.

Remove the SYS_ MASTER disc and insert your copy
of DISC APPLICATIONS into the flexible disc drive A.
(This disc contains the " Install" utility.)

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Touch Reread D1SCS

P.A.M. updates the list of possible selections to include
the INSTALL utility.

Touch the I NSTALL field to select this option. (You
know you have successfully selected Install when the
field becomes highlighted.)

Touch Start Appile

The message Load i n9 In 5 ta 11 appears on your screen.

When the red light on the disc drive goes out, remove
the DISC APPLICATIONS disc and insert your Series
lOO/ BASIC master disc.

Inspect the current screen display. The message Se 1 ec t
a fu nc t 1 on be 1 ow appears on the screen. Since you
want to install an application program and not remove
one, touch

The next screen asks you to select the correct disc drives.
Remember, you are installing BASIC "FROM:" the
flexible disc drive A "TO:" the fixed disc drive B.

Touch " A" in the FROM column until this field is
highlighted.

Touch " E" in the TO column until this field is
highlighted.

Touch Show AppllCS

Themessage5~1~ct theappllcetion!!l tobe

i n!5 tal led appears on the screen.

Select BAS I C by touching this field.

Touch Start Install

E-9

Step 15.

Step 16.

Step 17.

E-IO

When the installation procedure fi nishes, the message
Ins t i!! 11 C omp 1 e t ed appears on the screen. Touch
EXlt Select

NOTE
Step 16 applies to the initial version of P.A.M. (version
num ber A.OI.02). If you have a later version of P.A.M.,
proceed to Step 17.

Exlt Install Touch . This is your last step when
using version number A.OI.02 of P.A.M ..

and after the Main Menu appears
touch

Index

A

ABS .. 6-3
Absolute Value ... 6-3
Adding Text .. 1-8, 1-11
Algebraic Expressions .. 2-11
Alphabetizing Strings .. 2-17
Altering Data And Variables 5-6
AND ... 2-13
Arctangent .. 6-3
Arithmetic Functions ... 5-14
Arithmetic Functions, Derived 5-15
Arithmetic Operators ... 2-10
Arithmetic Overflow ... 2-12
Array Variables. .. 2-6
Arrays, Deleting .. 6-42
Arrays, Dimensioning .. 6-37
Arrays, Initial Subscript 6-104
ASC ... 6-3
Assembly Language Subroutines 0-1
Assigning Values To Variables .. 6-77
Asterisk After Line Number 6-4
ATN .. 6-3
AUTO ... 6-4

Index-l

B

Back-up Copy For BASIC 1-1, E-l, F-l
BASIC ... 3-2
BASICConnnnand Line .. 3-2
BASIC Functions .. 5-12
Bits, Masking ... 2-15
Bits, Merging ... 2-15
BLOAO ... 6-6
Braces .. xi
Brackets .. xi
Branching Statennents .. 5-8
Branching To Another Progrann 5-9
Branching, Conditional 5-9
Branching, Unconditional 5-9
BSAVE .. 6-8

C

CALL .. 6-9,0-3
CALLS ... 6-10
Capital Letters .. xi
COBL .. 6-11
CHAIN .. 6-12
Chapter Fornnat .. 6-2
Character Connparisons 2-17
Character Set .. 1-5
CHR$.. 6-17
CINT .. 6-17
CLEAR ... 6-18
Clearing The Screen .. 5-7
CLOSE ... 6-20

Index-2

Colon As Statement Separator 1-5
Column Position .. 6-85
Command Level .. 1-2
Commands Used As Program Statements 5-4
COMMON ... 6-21
Computer Control Statements 5-7

~ Concatenation .. 2-17
Conditional Branching Statements 5-9
Constants. .. 2-2
CONT .. 6-23
Control Characters .. 1-7,6-95
Control-C, Cancelling AUTO 6-4
Control-C, Cancelling INKEY$ 6-65
Control-C, Cancelling LINE INPUT 6-78
Control-C, Cancelling LIST 6-81
Control-C, Cancelling WAIT 6-151
Control-C, Returning To Command Level 1-7,6-142
COS ... 6-25
Cosecant .. 5-15
Cotangent .. 5-15
CSNG .. 6-25
CVD ... 6-26
CVI .. 6-26
CVS .. 6-26

Index-3

D

DATA ... 6-27
Data Operators ... 2-1
DATA Statements, Rereading 6-27, 6-130
Data Variables. .. 2-1
DATE$ Function .. 6-28 __
DATE$ Statement. .. 6-29
Debugging Statements 5-11
Declaration Characters 2-4, 2-5
DEF FN .. 6-30
DEF SEC ... 6-32
DEF USR ... 6-33
DEFDBL .. 6-34
DEFINT .. 6-34
DEFSNC ... 6-34
DEFSTR .. 6-34
Defining Data Or Variables .. 5-6
Defining Error Codes .. 6-45
DELETE .. 6-36
Deleting Text ... 1-12
Derived Functions ... 5-15
DIM ... 6-37
Direct Mode ... 1-2
Disc File Names .. 4-1
Division By Zero .. 2-12
Documenting Your Program 1-18
Double Precision ... 2-3

Index-4

E

e .. 6-47
EDIT ... 6-38
Edit Keys. .. 1-7
Edit Mode Subcommands 1-9
Ellipsis .. xi
ELSE ... 6-61
END ... 6-39
Entering A Program .. 1-8
EOF .. 6-40
Equality Testing ... 6-63
EQV (Equivalent) .. 2-15
ERASE ... 6-42
Erasing Text. .. 1-12
ERL .. 6-43
ERR .. 6-43
ERROR ... 6-45
Error Codes .. A-I
Error Codes, Defining .. 6-45
Error Messages .. 1-18, A-I
Escape Sequences .. B-1
Evaluation Order .. 2-10, 2-13
Exchanging Values .. 6-141
Exclusive OR .. 2-14
Executable Statement ... 1-5
EXP .. 6-47
Exponent, Floating Point 2-2
Exponential Format ... 6-115
Exponentiation .. 2-10, 6-47
Expressions ... 2-10

Index-5

F

"Falling Through" .. 6-57
FIELD .. 6-48
File Operations .. 4-1, 5-5
FILES .. 6-50
Finding Text .. 1-12
FIX .. 6-51
Fixed Point Constants ... 2-2
Floating Point Constants 2-2
FOR ... 6-52
FOR/NEXT Loops .. 5-9, 6-52
Format For Functions ... 6-2
Format For Instructions 6-2
Formatting A Program Line 1-4
Formatting Numbers 6-113
Formatting Strings ' " 6-112
Formatting The Random-file Buffer 6-48
FRE , , . , . , , , ... , .. 6-55
Functional Operators 2-16

G

General Purpose Functions , 5-13
Generating Line Numbers Automatically , ,. 6-4
GET , . , , , , , , , , , , , , , , , , ... , , , ,. 6-56
GOSUB , , , , , , , . , , , , , , , , , , , . , " 6-57
GOTO , , , , , , , , , , , , , , , , , , .. " 6-59

H

Hex Constants "', ,"""""""""'".",2-2
HEX$ """, .. , " .. ,." ... ,","""""", 6-60
Hyperbolic Trigonmetric Functions , ... , , , , , , , , , , , , , , " 5-15

Index-6

I

IF ... 6-61
IMP (Implied) ... 2-14
Inclusive OR .. 2-14
Indirect Mode .. 1-3

""-- Infinite Loop With WAIT 6-151
INKEY$.. 6-65
INP .. 6-65
INPUT ... 6-66
Input Statements .. 5-10
Input Editing ... 1-11
Input/Output Functions 5-13
INPUT# .. 6-69
INPUT$.. 6-71
Inserting Text 1-11
Installing BASIC 1-1, E-l, F-l
INSTR ... 6-72
Instructions . x
INT .. 6-73
Integer Constants. .. 2-2
Integer Division ... 2-11
Inverse Trigonmetric Functions 5-15
Italicized Words ... xi

J

Justifying Text ... 6-87

K

KILL .. 6-74

Index-7

L

LEFT$... 6-76
Left-justifying A String 6-87
LEN ... 6-76
LET .. 6-77
Line Format. .. 1-4
LINE INPUT .. 6-78
LINE INPUT# .. 6-79
Line Modify .. 1-15
LIST ... 6-81
LLIST .. 6-81
LOAD .. 6-83
LOC ... 6-84
LOF .. 6-84
LOG ... 6-85
Logical Line ... 1-4
Logical Operators. .. 2-13
Looping Statements. .. 5-9
Lower Case Letters .. xi
LPOS .. 6-85
LPRINT .. 6-86
LPRINT USING .. 6-86
LSET .. 6-118

Index-8

M

Machine Infinity ... 2-12
Making A Backup Copy For BASIC 1-1
Mantissa, Floating Point. .. 2-2
Masking Bits .. 2-15

~ Memory Allocation ... 0-2
Memory Image File .. 6-6
MERGE .. 6-88
Merging Bits .. 2-15
MIO$ Function .. 6-90
MID$ Statement ... 6-91
MKO$.. 6-92
MKI$.. 6-92
MKS$.. 6-92
MOO .. 2-12
Modes Of Operation .. 1-2
Modify Mode ... 1-14
Modifying Text .. 1-9
Modulus Arithmetic ... 2-11
Moving The Cursor .. 1-10

N

NAME .. 6-93
Natural Logarithms 6-47, 6-85
Nesting FOR Loops .. 6-52
Nesting IF Statements. .. 6-62
Nesting Subroutines .. 6-57
Nesting WHILE Loops 6-152
NEW ... 6-94
NEXT .. 6-52
Non-executable Statement. .. 1-5
NOT ... 2-13
Notation Conventions ... xi
NULL .. 6-95
Numeric Fields ... 6-113
Numeric Variables .. 2-5

Index-9

o

Octal Constants ... 2-3
OCT$.. 6-96
ON ERROR GOTO .. 6-97
ON ... GOSUB .. 6-99
ON ... GOTO .. 6-100 __
OPEN ... 6-101
Operators ... 2-10
OPTION BASE ... 6-104
OR ... 2-14
Order Of Precedence 2-10,2-13
OUT ... '" 6-105
Output Statements ... 5-10
Output Functions ... 5-13
Overflow In Arithmetic Operations 2-12

p

Parentheses And Order Of Evaluation 2-11
PEEK ... " 6-106
POKE ... 6-107
POS ... " 6-108
Preface ... '" x
PRINT .. 6-109
Print Operations .. 1-19
PRINT USING ... 6-112
Print Zones .. " 6-109
PRINT# ... 6-117
PRINT# USING .. " 6-117
Printing Numbers .. 6-113
Printing Strings .. 6-112
Program Control Statements .. 5-8
Program Lines ... 1-4
Programming Guidelines .. 1-1
Programming Tasks. .. 5-1
Protected Files ... 4-8
Punctuation .. xi
PUT .. 6-120

Index-lO

Q

Question Mark .. 1-3,6-109
Question Mark Prompt 6-66,6-78
Question Mark Prompt, Suppressing 6-66,6-69

____ Quick Computation ... 1-3

R

"Random" Numbers ... 6-133
Random-Access Files .. 4-3
RANDOMIZE .. 6-121
READ ... 6-123
Reference Tables .. C-1
Relational Operators ... 2-12
REM .. 6-125
RENUM ... 6-127
Replacing Text ... : 1-12
Rereading DATA Statements 6-27, 6-130
Reseeding Random-number Generator 6-121
Reserved Words ... 2-4, C-lO
RESET : 6-129
RESTORE .. 6-130
RESTORE With CHAIN .. 6-14
RESUME .. 6-131
RETURN .. 6-132
RIGHT$... 6-133
Right-justifying A String 6-87
RND .. 6-133
RSET ... 6-87
RUN .. 6-134

Index-ll

s

SAVE .. 6-135
Secant .. " 5-15
Sequential Files .. 4-1
SGN .. 6-136 --
SIN ... 6-136
Single Precision .. 2-3
Space Bar ... " 1-11
SPACE$... 6-137
SPC ... 6-137
Special Functions .. " 5-17
Square Brackets ... xi
SQR ... 6-138
Start of Text Pointer .. " 1-16
Starting BASIC. .. 1-2
STEP With FOR Statement 6-52
STOP ... 6-139
STR$.. 6-140
String Fields ... 6-112
String Functions ... " 5-16
String Operations ... 2-17
String Operators ... " 2-17
String Variables .. 2-5
STRING$.. 6-140
Subroutine Statements .. 5-9
SWAP ... 6-141
SYSTEM ... 6-142
System Commands ... 5-3

Index-12

T

TAB .. 6-143
TAN .. 6-143
Terminal I/O Statements 5-10

'---- Testing Equality ... 6-63
THEN .. 6-61
TIME$ Function .. 6-144
TIME$ Statement ... 6-145
Trace Flag ... 6-146
TROFF .. 6-146
TRON ... 6-146
Truth Tables .. 2-13
Two's Complement .. 2-16
Type Conversion ... 2-7
Type Declaration Characters 2-4, 6-34

u

User-defined Functions 6-33
Using Commands As Program Statements 5-4
USR Function .. 6-147, D-8

'---

v

VAL Function ... 6-148
Variable Length String Field 6-113
Variables .. 2-3
VARPTR ... 6-149
Vertical Bar (I) ... xi

w

WAIT .. 6-151
WHILE ... WEND .. 6-152
WIDTH ... 6-154
Wild Cards ... 6-50, 6-74
WRITE .. 6-155
WRITE# ... 6-156
Writing A Simple Program 1-20

x

XOR .. 2-14

Index-13

Series lOO/BASIC

MANUAL CUSTOMIZATION
PACKAGE

For the Portable PLUS by Hewlett-Packard

Your Series 100/BASIC manual originally was designed for use with
the HP 150 and The Portable (HP 110). To use this manual with your
Portable PLUS, replace the pages noted in the table below with the
corresponding pages in this package.

Remove Page:

Table of Contents, ii

1-1, 1-2

1-13, 1-14

1-2 1, 1-22

5-7, 5-8

B-1, B-2

82862-90001

Add Page:

Table of Contents, ii (Portable PLUS)

1-1 (Portable PLUS), 1-2 (Portable PLUS)

1-13 (Portable PLUS), 1-14 (Portable PLUS)

1-21 (Portable PLUS), 1-22 (Portable PLUS)

5-7 (Portable PLUS), 5-8 (Portable PLUS)

B-1 (Portable PLUS), B-2 (Portable PLUS)

F/iill HEW LETT
~r..II PACKARD

Printed in U.S.A. 6/ 85

Table of Contents

Preface. x
Manual Organization x
Notation Conventions xi

Chapter 1: Getting Started

The HP BASIC User 1·1
Making a Working Copy of BASIC. 1-1
Starting BASIC. 1-2
Modes of Operation. 1-2

Direct Mode 1-2
Quick Computation. 1-3

Indirect Mode. 1-3
Line Format. 1-4

Character Set. 1-5
Entering a Program. 1-8
Modifying a Program . 1-9

Edit Mode. 1-9
Edit Mode Subcommands. 1-9
Entering Edit Mode from a Syntax Error. 1-14

Modify Mode. 1-14
Using Modify Mode. 1-15

'-- Start of Text Pointer. 1-16
Error Messages 1-18

Chapter 1: Getting Started

Document ing Your Program 1-18
Printing Operations............... 1-19

L Commands and Statements 1-19
Writing a Sim ple Program 1-20 \...J

Chapter 2: Data, Variables, and Operators

Introduction 2-1
Constants. 2-2

Single and Double Precision Form for N umeric Constants 2-3
~~hl~....................... N

Variable Names and Declaration Characters 2-4
Special Type Declaration Characters 2-4

Reserved Words 2-4
String Variabl~ 2-5
Numeric Variables 2-5

Array Variabl~ 2-6
Type Con version 2-7
Expr~ions and Operators 2-10

Arithmetic Operators 2-10
Integer Div ision and Modulus Arithmetic 2-11
Overflow and Division by Zero 2-12

Relational O perators 2-12
Logical Operators 2-13
Functional O perators 2-16
String Operations 2-17

Concatenat ion 2-17
Comparisons 2-17

Chapter 3: The BASIC Environment

Introduction 3-1
BASIC 3-2

ii

Chapter 1

GETTING STARTED

The HP BASIC User
To be a successful HP BASIC user, you should be familiar wi th general
programming concepts and the BASIC language. If you are unfamiliar
with BASIC, we recomme nd that you either read one of the introductory
texts on programming in BASIC or take a beginning- level course on this
language.

Making A Working Copy Of BASIC
You should always make a back-up copy of your application software as
a safeguard against possible damage or loss. This procedure is si mple, but
the actual steps va ry dependi ng upon which computer you are using.
Appendix E provides deta ils for insta lling BASIC on an HP 11 0 w hile
Appendix F provides this information for the HP ISO.

After you have made a back-up copy, you should use this copy for your
daily work and store the "master" disc in a sa fe place.

I - I

Starting BASIC
To start BASIC, simply insert your back-up disc into your disc drive,
press then select BA 5 I C, and press

Sta rt AppIle . The appropriate appendices (E or F) provide more
information and alternate ways of accessing BASIC.

Modes Of Operation
Once the BASIC interpreter assumes control, it prompts you for
information by displaying the symbol Ok . This manual refers to that
state (where the interpreter is awaiting your next command) as the
command level. After BASIC issues its fi rst 0 k prompt, it remains at the
command level until you enter a RUN command.

At the command level. you may converse with the interpreter in one of
two modes: Direct Mode or Indirect Mode.

Direct Mode
Direct Mode is useful for debugging programs and for quick
computations.

In Direct Mode, you do not precede BASIC statements or functions with
line numbers. Rather, you "talk" interactively with the BASIC
interpreter, and BASIC executes each instruction as you enter it.

For example,

Ok

PR I NT "HELLO MOM" I Return I
HELLO MOM

Ok

You may use Direct Mode to display the results of mathematical and
logical operations (using PR 1 NT statements) or to store the results for
later use (using the LET statement). However, instructions that produce
these results are lost after the interpreter executes the instruction.

1-2

Ending and Restarting Edit Mode

E

Q

L

A

Pressing the I Return I key prints the remainder of the
line, saves any changes you have made, and exits Edit
mode.

The E subcommand has the same effect as pressing the
I Return I key except the remainder of the line is not
printed.

The Q subcommand returns control to the BASIC
command level, but cancels any changes that were
made to the line during Edit mode.

The L subcommand lists the remainder of the line,
saves any changes that you made, and repositions the
cursor to the beginning of the line. Edit mode remains
active. You usually use this subcommand to list a line
when you first enter Edit mode.

The A subcommand allows you to edit a line over again .
It restores the line to its original state and positions the
cursor at the beginning of the line.

Simultaneously pressing the I CTRL I a nd 0 keys en ters
Edit mode on the line that you are currently typi ng.
BASIC responds by doing a carriage return, printing an
exclamation point (!) and a space. It positions the cursor
at the first character in the line. You may now enter an
Edit mode subcommand.

NOTE
If you have just entered a line and wish to go back and
ed it it , typing ED 1 T . enters Edit mode at the current
line. (In this context, the special symbol (.) always
refers to the current line.)

When BASIC recei ves an unrecognizable command or illega l character
while in Ed it mode, it ignores the character a nd sends a Control-G (Bell
character) to ring the computer's bell.

1 -13

Entering Edit Mode From A Syntax Error
When BASIC encounters a syntax error while executing a program, it
automatically enters Edit mode at the line that caused the error. For
example:

10 K-2(41[Return l

RUN [Return I
Syntax error in 10

Ok

10

When you fini sh editing the line and e ither press the I Return I key or use
the E subcommand, BASIC replaces the line. However, mod ifying a lin e
causes all variable values to be lost. If you want to preserve variable
values for furth er examination, first exit Edit mode with the Q

subcommand. This action returns BASIC to the command level and
preserves all variable values.

Modify Mode
The following discussion only pertains to the HP 150 as Modify mode is
inapplicable to the HP 110. '--/

With the HP 150, you may use Modify mode to edit program lines with a
min imum of ty ping:

LIST the desired portion of the program to the screen .

Enter Mod ify mode (as described below).

• Use the cursor control keys to move the cursor to the line you w ish to
modify.

Make any cha nges by using the keyboard 's character editing keys.

Press the I Return I key to store the edited line into memory.

NOTE
When a BASIC statement occupies more than one screen line (that is,
you pressed [CTRL I QJ to insert a line feed character while entering the
line), you must use Edit mode to modify that line.

1-14

The following steps lead you through a simple exercise where you use
each of these commands.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Turn on your system and insert the back-up disc that
contains your copy of BASIC. (See the appropriate
appendix for the procedure to create this back-up disc
on your computer.)

When the P.A.M screen appears, select BASIC by
pressing StartAppllC

After MS-DOS loads BASIC into memory, the following
message appears:

Mlcrosoft BASICVe:rSlon n.nn

(MS-DOS VersIon]

Copyright 1977-1983 ee) by Microsoft

Created: dd-mmm-yy

xxxxx Bytes free

Ok

where:

n. n n is the BASIC revision number.

dd-mmm-yy is the date when this version was
created.

xxxxx is the number of bytes available in
memory for programs and data.

Ok is the BASIC prompt. Whenever this
prompt appears, BASIC is waiting for
your next command.

To start programming, type:

AUTO I Return I

Hereafter, BASIC automatically prompts you with line
numbers. The first number to appear is 10 .

Now type the following program:

10 F OR I • 1 TO 10 I Aeturn l

20 PRINTl lAeturnl

30 NEXT I I Aeturn l
40 PRINT "LOOP DONE, • "; I IAeturnl

50 END I Return I
60

1-21

Step 6.

Step 7.

Step 8.

Step 9.

1-22

Simultaneously press the I CTAL I and @] keys to stop
the line number prompt.

To see what output this program produces, type the
command:

RUN I Aeturn I

The program prints the following display to your
screen:

2

3
4

5
6

7

8

9

10

LOOP DONE. I - 11

Ok

To see a complete listing of the program on your screen,
type:

LIST I Aeturn I

BASIC responds by printing the following d isplay:

10 FOR I - 1 TO 10

20 PRINTI

30 NEXT I

40 PR I NT "LOOP DDI'IE . '"' ";

50 END

Ok

BASIC provides a variety of ways to modify an exist ing
program. This step uses the Edit mode subcommands to
change the fi rst line of the program so the loop
proceeds backwards from 10 to I.

• Enter Edit mode on line 10 by typing:

EDIT 10 IAeturn l

Computer Control
BASIC provides several statements that interface with your
computer. The following list summarizes these statements.

DATES

INP

OUT

POKE

TIMES

Sets the current date.

Returns a byte which is read from a
microprocessor port.

Sends a byte to a micro processor port.

Writes a byte into a memory location.

Sets the current time.

WAlT Suspends program execution while monitoring
the status of a microprocessor input port.

You must use escape sequences to perform other computer-control tasks.
For example, the sequence ESC H "homes" the cursor, and the sequence
ESC J clears the screen from the cursor's current position . Therefore, you
may clear the entire display screen by executing the following PR I NT
statement.

PRINT CHR$ (27) + " H" + CHR $(27) + "J "

(CHRSC27> is the ASCII code for the escape character.)

You may use other escape sequences to position the cursor, define
function keys or display enhancements, and so on . Appendix B
introduces these concepts, but you should refer to the following manuals
for a complete list of applicable escape sequences.

For the HP 110: HP 110 Portable Computer Owner's Manual

• For the HP 150: HP 150 MS-DOS User's Guide

5-7

Program Control, Branching, and
Subroutines
BASIC provides several statements that control the fl ow of program
execution . This includes branching to other lines, subroutines, and
programs. The following list summarizes these statements.

CALL

CALLS

CHAIN

DEF FN

DEF SEG

DEF USR

END

FOR . •• NEXT

GOSUB ••• RETURN

GOTO

IF

ON ERROR GOTO

ON ••• GOSUB

ON •.• GOTO

RESUME

5-8

Calls an assembly-language subroutine.

Calls a subroutine with segmented addresses.

Calls a program and passes variable values to it
from the current program.

Names and defines a user-written function .

Assigns the current segment address. Subsequent
CAL L) CALLS , POKE. PEEK . or USR instructions
refer to this address.

Assigns the starting address of an assembly­
language subroutine.

Ends program execution, closes all fil es, and
returns control to the command level.

Loops through a series of instructions a given
number of times.

Branches to and returns from a subroutine.

Branches unconditionally to the specified line
number.

Determines program flow based on the result
returned by a logical expression.

Enables error trapping and specifies the first line
number of the error-hand ling subroutine.

Branches to a subroutine, or subroutines,
depending upon the value returned by the
governing expression.

Branches to one of several speci fied line numbers,
depending upon the value returned by the
governing expression.

Continues program execution after BASIC has
performed an error recovery procedure.

Appendix B

USING TERMINAL
\....; FEATURES IN BASIC

Introduction
You can program the terminal portion of your computer to perform
many of the functions of an intelligent terminal. By using these features,
the BASIC programmer can be more productive by allowing the
computer to perform tasks that would otherwise be done within each
application program.

NOTE
Although the general concepts presented in this chapter apply to the
HP lID and the HP 150, the HP 110 implements a subset of the HP ISO
escape sequences. You should refer, therefore, to Appendix D in your
HP 110 Portable Computer Owner's Manual to determine which escape
sequences the HP 110 supports.

You are probably aware of the various features available to the computer
user via the keyboard. Most of the features that can be performed at the
keyboard can also be done under program control by using the escape
sequences described in the HP ISO MS-DOS User's Guide. Additionally,
to offer compatibility with other Hewlett-Packard terminal products, the
escape sequences used by the HP ISO are the same sequences used on
other Hewlett-Packard display terminal products.

In the following discussion, ESC represents the escape character. (The
escape character has an ASCII code of 27.)

An escape sequence is simply a series of ASCII characters preceded by
ESC . For example, sequentially pressing the I ESC I key then the [ill key
"homes" the cursor to the upper left-hand corner of the screen.

B-1

Escape sequences fall into two categories: two-character escape sequences
and multiple-character esca pe sequences.

NOTE
For clarity, this appendix shows a space between each character in an
esca pe sequence. You must press the required keys in sequences
WITHOUT inserting any space characters!

In two-character sequences, both characters must identically match the
sequence that is shown. For example, ESC B moves the alphanumeric
cursor down one row. (You generate the "8" by Simultaneously pressing
the I Shiff I and [[] keys.) On the other hand, ESC b unlocks the
keyboard. (You generate the "b" by simply pressing the [[] key.)

With multiple-character escape sequences, you may usually interchange
the various parameters.

A multiple-character sequence begins with an ESC, followed by other
characters. These characters consist of one or more numeric/ character
string parameters, each followed by an alphabetic character. All of these
alpha characters should be lowercase letters, except for the last letter. The
last letter terminates the sequence and must be capitalized.

This requirement exists since a multiple parmater list ca n be combined
or shortened until an uppercase alpha character is received .

An example is the cursor-positioning escape sequence. One way of
positioning the cursor in the upper left-hand corner of the display is to
use the home-up escape sequence (ESC h). An alternate way is to use the
cursor addressing sequence. To position the cursor to row zero, column
zero, use the following sequence:

ESC & a 0 r oe

The uppercase C ends the sequence.

Multiple-character escape sequences allow you to interchange
parameters. Therefore, you may obtain identical results by using the
following escape sequence:

ESC & a 0 cOR

The uppercase R ends the sequence. The order of the parameters is not
critical as long as the last parameter ends in an uppercase letter.

B-2

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	Untitled

