R TR SRR R R
HEWLEIT-PACKARD

Programming Ex

HP-28C

amples

(ot and

SR AR A
= SRy

ey * o .]

7 2201

AN

:
AR A
el

¥

2
b
B b'.”""’lll TEES

Welcome to the HP-28C

This booklet, HP-28C Programming Examples, contains 19 program for
your HP-28C. These programs are useful and, more importantly, they
demonstrate a variety of programming techniques. You'll find a list of the
techniques on page 6.

Before trying the examples in this booklet, please read “How To Use This
Booklet” on page 7. It contains important information on the conventions
observed in this booklet.

This booklet assumes you've read the HP-28C Getting Started Manual. At
a minimum, you should know:

m How to enter numbers and expressions.
m How to enter programs and edit existing programs.
m How to use menus.

You can find detailed information about pfogramming in the HP-28C
Reference Manual, especially in the following sections.

= Programs

u PROGRAM BRANCH
= PROGRAM CONTROL
= PROGRAM TEST

HP-28C

Programming Examples

ﬂﬂ HEWLETT

PACKARD

Edition 1 June 1987
00028-90099

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warran-
ties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsiblity for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© 1987 by Hewlett-Packard Co.

This document contains proprietary information that is protected by copy-
right. All rights are reserved. No part of this document may be photo-
copied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 June 1987 Mig No. 00028-90099

Contents
7 How To Use This Booklet
9 Programming Examples
9 RENAME (Renaming a Variable)
11 Box Functions
11 BOXS (Surface of a Box)
13 BOXS Without Local Variables
14 BOXR (Ratio of Surface to Volume of a Box)
16 Fibonacci Numbers
16 FIB1 (Fibonacci Numbers, Recursive Version)
17 FIB2 (Fibonacci Numbers, Loop Version)
19 Comparison of FIB1 and FIB2
20 Single-Step Execution
23 Expand and Collect Completely
23 MULTI (Multiple Execution)
24 EXCO (Expand and Collect Completely)
26 Displaying a Binary Integer
26 PAD (Pad With Leading Spaces)
27 PRESERVE (Save and Restore Previous Status)
28 BDISP (Binary Display)
32 Summary Statistics
33 SUMS (Summary Statistics Matrix)
34 ZGET (Get an Element of ZCOV)
35 X2 (Sum of Squares of x)
35 LY2 (Sum of Squares of y)
36 IXY (Sum of Products of x and y)
39 Median of Statistics Data
39 SORT (Sort a List)
41 LMED (Median of a List)
42 MEDIAN (Median of Statistics Data)
45 Index

Contents

List of Techniques

9 Basic stack manipulations
11 Local-variable structure
12 User function
14 Nested user functions
16 IFTE (If-Then-Else function)
16 Recursion
17 IF...THEN...ELSE... END (conditional)
17 START ... NEXT (definite loop)
23 DO...UNTIL... END (indefinite loop)
23 Programs as arguments
23 Evaluation of local variables
25 Structured programming
26 WHILE...REPEAT...END (indefinite loop)
26 String operations
27 RCLF and STOF
27 Local-variable structure
28 IFERR...THEN...END (error trap)
29 Enabling LAST
29 FOR...NEXT (definite loop with index)
29 Subprograms
32 Matrix operations
32 Programs usable in algebraic objects
32 XPAR convention
39 Bubble sort
39 Nested definite loops
39 Nested local-variable structures
39 FOR...STEP and FOR ... NEXT (definite loops)
41 FLOOR and CEIL
42 Arrays, lists, and stack elements
42 FOR...NEXT (definite loop with index)

6 List of Techniques

How To Use This Booklet

For each program you’ll find the following information.
m A description of its purpose.

m A diagram showing its effect on the stack.

A list of techniques that it demonstrates.

m A list of other programs that it requires (if applicable).
m A program listing with comments.

m An example that shows how to use it.

Each type of information is described in more detail below.

Stack Diagram. A stack diagram is a two-column table showing
“Arguments” and “Results”. “Arguments” shows what must be on the
stack before the program is executed; “Results” shows what the program
leaves on the stack.

Note that the stack diagram doesn’t show everything; a program that
changes user memory or displays objects might have no effect on the stack.

Techniques. This is the most interesting part. When you understand
how a technique is used in this booklet, you can use it in your own pro-
grams.

Required Programs. Some programs call others as subroutines.
You can enter the required programs and the calling program in any
order, but you must enter all of them before executing the calling pro-

gram.

The HP-28C can’t hold all the programs in this booklet at one time.
Before purging one program to make room for another, make sure the
program you’re purging isn’t required by another program that interests
you.

How To Use This Booklet 7

Program and Comments. This booklet formats the program listing
to show a program’s structure and process. You don’t need to follow the
format of the listing when you enter a program. However, be sure to key
in spaces where they appear in the listing or between objects’appearing on
separate lines.

You can key in a program character by character, or you can use the
menus to key it in command by command. It makes no difference as long
as the result matches the listing.

When you key in the program you can omit all closing parentheses and
delimiters that appear at the very end of the program; when you press
the closing parentheses and delimiters are added for you.
Example. The examples observe the following conventions.

The illustrations assume STD display format. To select STD display for-
mat, press STD or use the MODE menu.

A box represents a key on the calculator keyboard.

STO
EVAL

In some cases a box represents a shifted key on the HP-28C. The shift key
is not shown explicitly.

STAT

The “inverse” highlight represents a menu label.

i
(@]

LE

I+

i

, and £ NE Z in the STAT menu.

b

SST = and EKILL £ in the CTRL menu.
Z DEC £ in the BINARY menu.

Variable names in the USER menu also appear as menu labels.

Menus typically include more than one menu level. Press and
to roll through the menu levels. In the examples, and are not
shown explicitly.

How To Use This Booklet

Programming Examples

The most important technique demonstrated in this booklet is structured
programming: small programs used to build other programs. The following
programs are used in other programs.

m BOXS is used in BOXR.

= MULTI is used in EXCO.

m PAD and PRESERVE are used in BDISP.
® XGET is used in £X2, ¥Y2, and £XY.

m SORT and LMED are used in MEDIAN.

RENAME (Renaming a Variable)

Recall the contents of a variable, purge the variable, and store the con-
tents in a new variable.

Arguments Results
2: 'name' (old) 2:
1: 'name' (new) 1:
Techniques:

m Basic stack manipulations.

RENAME (Renaming a Variable) 9

Program Comments

« Begin the program.
OVER Copy the old name to level 1.
RCL Recall the contents of the variable.
ROT Move the old name to level 1.
PURGE Purge the old variable.
SWAP Put the contents and new name in

the correct order.

STO Create the new variable.

» End the program.

Put the program on the stack.

' RENAME Store the program as RENAME.

Example. Create a variable A with contents 10, then rename A to B,
then evaluate B to check that its value is 10.

Clear the stack and select the USER menu.

USER

Create a variable A with contents 10.

10 [ENTER]
'A [sT0]

Rename variable A to B.

'A
'B |ENTER

S RENAMEE

Check the value of B.

B

1
I

|

10 RENAME (Renaming a Variable)

Box Functions

This section contains two programs:
m BOXS calculates the total surface area of a box.

m BOXR uses BOXS to calculate the ratio of surface to volume for a
box.

BOXS (Surface of a Box)

Given the height, width, and length of a box, calculate the total area of its
six sides.

Arguments Results
3: height :
2 width 2:
1: length 1: area
Techniques:

@ Local-variable structure. Local variables allow you to assign names to
arguments without conflicting with global variables. Like global vari-
ables, local variables are convenient because you can use arguments
any number of times without tracking their positions on the stack;
unlike global variables, local variables disappear when the program
structure that creates them is done€.

A local-variable structure has three parts.

1. A command named “<”. When you key in this command,
remember to put spaces before and after it. (Like any command,
= is spelled using normal characters and is recognized only when
it’s set off by spaces. Don’t confuse this one-character command
with delimiters like # or «.)

2. One or more names.

3. A procedure (expression, equation, or program) that includes
the names. This procedure is called the defining procedure.

BOXS (Surface of a Box) 11

When a local-variable structure is evaluated, a local variable is created
for each name. The values for the local variables are taken from the
stack. The defining procedure is then evaluated, substituting the values

of the local variables.

To appreciate the power of local variables, compare the version of
BOXS given below with the version that appears on page 13.

m User function. This type of program works in either RPN or algebraic
syntax. A user function is a program with two characteristics: (1) It
consists solely of a local-variable structure. (2) The defining procedure

is an expression.

Program

<«

> hwl

12% (h*w+h*1+wl) !

»

' BOXS

Comments

Begin the program.

Create local variables for height,
width, and length. By convention,
lower-case letters are used. The
values are taken from the stack (in
RPN) or from the arguments to the
user function (in algebraic syntax).
The defining expression for the sur-
face area. Evaluating the user func-
tion causes evaluation of this expres-
sion, returning the area to the stack.
End the program.

Put the program on the stack.
Store the program as BOXS.

Example. One of the advantages of user functions is that they work in
either RPN or algebraic syntax. Calculate the surface of a box 12 inches
high, 16 inches wide, and 24 inches long; make the calculation first in RPN

and then in algebraic syntax.

For the RPN version, first enter the height and width.

12 [ENTER]
16 [ENTER]

12 BOXS (Surface of a Box)

3:

23 12
1: 16
euiis |k Tekn] T 1]

Then key in the length and execute BOXS.

24 =BOXS=

3
2
1 1728
EIFE CEE T N S .

The surface area is 1728 square inches.

Now try the algebraic version.
'BOXS(12,16,24

Again, the surface area is 1728,

BOXS Without Local Variables

The following program uses only stack operations to calculate the surface
of a box. Compare this program with BOXS.

Arguments Results
3: height 3:
2: width 2:
1: Jength 1: area
Program Comments
« Begin the program.
DUP2 * Calculate wi.
ROT Move w to level 1.
4 PICK Copyh tolevel 1.
* Calculate wh .
+ Calculate wi +wh .
ROT ROT Move A and ! to levels 2 and 1.
* Calculate hl.
+ Calculate wi +wh +hl.
2 * Calculate 2 (wl +wh +hl).

»

End the program.

Because this version of BOXS isn’t a user function, it can’t be used in alge-

braic syntax.

BOXS Without Local Variables 13

BOXR (Ratio of Surface to Volume of a Box)
Given the height, width, and length of a box, calculate the ratio of its sur-

face to its volume.

Arguments Results
3: height 3:
2: width 2:
1: length 1: area/volume
Techniques:

m Nested user functions. BOXR is a user function whose defining
expression uses BOXS in its calculation. In turn, BOXR could be used

to define other user functions.

Recall that BOXS was defined using 2, w, and ! as local variables, and
note below that BOXS takesx,y, and z as arguments in the definition
for BOXR. It makes no difference if the local variables in the two
definitions match, or if they don’t match, because each set of local
variables is independent of the other. However, it’s essential that local
variables be consistent within a single definition.

Program

<«

?P XYy 2Z

'BOXS(x,yY.,2)

/(x*y*z)!

>»

"BOXR

Comments

Begin the program.

Create local variables for height,
width, and length. This program uses
x,y,and z, rather than h, w, and /.
Begin the defining expression with
the user function BOXS.

Divide by the volume of the box.
End the program.

Put the program on the stack.
Store the program as BOXR.

14 BOXR (Ratio of Surface to Volume of a Box)

Example. Calculate the ratio of surface to volume for a box 9 inches
high, 18 inches wide, and 21 inches long; make the calculation first in RPN

and then in algebraic syntax.

For the RPN version, first enter the height and width.

(UsER]
9 [ENTER]
18 [ENTER]

Then key in the length and execute BOXR.

21 =BOXRE

The ratio is .428571428571.

Now try the algebraic version.
'BOXR(9,18,21

Again, the ratio is .428571428571.

kH

2: g
1: 18
B0k [Eois | & |RENAL |]
3t

1: . 428571428571
Eviih | buiis | b [FENA] |]
e

2: . 428571428571
i: -428571428571
(Guiih | buis | €] REN |

BOXR (Ratio of Surface to Volume of a Box) 15

Fibonacci Numbers

Given an integer n , calculate the nth Fibonacci number F,, where
Fyg=0, Fy=1, F,=F, ,+F,

This section includes two programs, each demonstrating an approach to
this problem.

m FIB1 is a user function that is defined recursively - its defining expres-
sion contains its own name. FIB1 is short, easy to understand, and
usable in algebraic objects.

m FIB2 is a program with a definite loop. It’s not usable in algebraic
objects, it’s longer and more complicated than FIB1, but it’s faster.

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Results

1: n 1: F,

Techniques:
m User function. See the description on page 12.

s IFTE (If-Then-Else function). The defining expression for FIB1 con-
tains the conditional function IFTE, which can be used in either RPN
or algebraic syntax. (FIB2 uses the program structure IF . . .
THEN...ELSE...END)

m Recursion. The defining expression for FIB1 is written in terms of
FIBL1, just as F, is defined in terms of F,, _; and F,, _,.

16 FIB1 (Fibonacci Numbers, Recursive Version)

Program Comments

« Begin the program.
s n Define a local variable.
' Begin the defining expression.
IFTE (n<i, Ifn <1,
n, Then F, =n;

FIB1(n-1)+FIB1(n-2))EkeF,=F,_ +F,_,
! End the defining expression.

» End the program.
Put the program on the stack.
'FIB1 Store the program as FIB1.

Example. Calculate Fg using RPN syntax and F,, using algebraic syn-
tax.

First calculate Fg using RPN.

3

6 ZFB1Z et 8
[F161 [Boxk [boxs | & [KeNn]]

Next calculate F 1 using algebraic syntax.

' ZfpB1= (10 3:
it 52
[Fiee |v1b) Looue |evss | & | KENA]

FIB2 (Fibonacci Numbers, Loop Version)

Arguments Results
1: n 1

y

Techniques:
m Local-variable structure. See the description on page 11.

m IF.. . THEN...ELSE... END. FIB2 uses the program-structure
form of the conditional. (FIB1 uses IFTE.)

m START ... NEXT (definite loop). To calculate F,, , FIB2 starts with
Fyand F, and repeats a loop to calculate successive F;’s.

FIB2 (Fibonacci Numbers, Loop Version) 17

Program

<«

2 n

<<
IF nl1gcK
THEN n
ELSE
01
2 n
START

DUP

ROT

+
NEXT
SWAP DROP
END
»
»

"FIB2

Comments

Begin the program.

Create a local variable.

Begin the defining program.

Ifn <1,

Then F, =n;

Begin ELSE clause.

Put Fy and F, on the stack.
From2ton,

Do the following loop:

Make a copy of the latest F (initially
F)).

Move the previous F (initially Fy) to
level 1.

Calculate the next F (initially F,).
Repeat the loop.

Drop F,, _;.

End ELSE clause.

End the defining program.

End the program.

Put the program on the stack.
Store the program as FIB2.

Example. Calculate Fg and F,. Note that FIB2 is faster than FIB1.

Calculate Fg.

[¢)}
I
n
@
N
i

Calculate Fy,.
10 =FB2E

3:

: :
[FIE2 | FIEL | BONR BoRs | B [RENR |
3:

2: 2
1: 59
|FIE2 | FIEL J B0 JEoRs | B JKENA]

18 FIB2 (Fibonacci Numbers, Loop Version)

Comparison of FIB1 and FIB2

FIB1 calculates intermediate values F; more than once, while FIB2 calcu-
lates each intermediate F; only once. Consequently, FIB2 is faster.

The difference in speed increases with the size of n because the time
required for FIB1 grows exponentially with n , while the time required for
FIB2 grows only linearly with .

The diagram below shows the beginning steps of FIB1 calculating F .
Note the number of intermediate calculations: 1 in the first row, 2 in the
second row, 4 in the third row, and 8 in the fourth row.

/ \
F/ \ﬂ / \
AATATAY

Comparison of FIB1 and FIB2 19

Single-Step Execution

It’s easier to understand how a program works if you execute it step by
step, seeing the effect on the stack of each step. Doing this can help you
“debug” your own programs or help you understand programs written by
others.

This section shows you how to execute FIB2 step by step, but you can
apply these rules to any program. The general rules are:

1.

6.

Use VISIT to insert the command HALT in the program. Place
HALT where you want to begin single-step execution. (Youw'll see
how the position of HALT within FIB2 affects execution.)

Execute the program. When the HALT command is executed, the
program stops (indicated by the “stopsign” annunciator).

Select the PROGRAM CONTROL menu.

Press = SST = once to see the next program step displayed and then
executed.

You can now:
m Keep pressing = SST = to display and execute sequential steps.

m Press to continue normal execution.

m Press Z KILL = to abandon further program execution.

When you want the program to run normally again, use VISIT to
remove HALT from the program.

For the first example, insert HALT as the first command in FIB2.

Clear the stack and select the USER menu.

3
%
[F1e2 [FIBL JEosk JEOAS | B | RENA]

Use VISIT to return FIB2 to the command line.

' EFB2E

20

£ »*»n« IFNn1 £
TH nELSE @1 2n
START DUP ROT + NEXT
SWAP DROP END » »

Single-Step Execution

Use the cursor menu keys to insert HALT as shown.

«HALT » n €« IF n 1 £
THEN n ELSE 8 1 2 n
START DUP ROT + NEXT
SWAP DROP END #» »

Store the edited version of FIB2.

3
1:
| FIE2 | FIEL | BoRk |BoRs | B | KENA |

Calculate F,. At first, nothing happens except that the “stopsign” annunci-
ator appears.

1 =FB2=

Select the PROGRAM CONTROL menu and execute SST (single-step).
{Watch the top line of the display to see the first step displayed before it’s
executed.)

CTRL 3:
SsST= ¢

Note that 2 n constitutes one step; “step” is a logical unit rather than
simply the next object in the program.

Look at the general rules at the beginning of this section. You’ve per-
formed the first four steps, and now you can choose one of the three alter-
natives for step 5. For this example, press = SST = repeatedly until the
“stopsign” annunciator disappears, indicating that FIB2 is completed.
(These single-steps not shown here.)

The calculation for F; executes only the THEN clause in FIB2. For the
second example, execute 3 FIB2 and single-step through the calcula-
tion for F3. This executes the ELSE clause, including the START ...
NEXT loop. You'll see that, for n =3, the START ... NEXT loop is exe-
cuted twice.

For the third example, suppose you want to single-step the START . ..
NEXT loop as a whole - seeing the stack before each iteration of the loop,
but not single-stepping all the steps in FIB2 or in the loop itself. To do so,
move the HALT command inside the loop. Then FIB2 won’t halt until it

Single-Step Execution 21

reaches the loop, and you can use [CONT]| (continue) to execute the loop
one iteration at a time.

Use VISIT to return FIB2 to the command line.

i TR
LI = &= n
=FlB2= (VISIT n START DUP_ROT +
NEXT SWAP DROP END »

Use the cursor menu keys to delete HALT. Then insert HALT as shown
(on the third line, after START).

€ +nsIFni
£ THEN n ELSE B 1 2
n_START HALT DUP ROT +
NEXT SWRP DROP END »
Store the edited version of FIB2.
ENTER g:
1:
[FIE2 [FIEL [Eodk JEouS | B T RENA]

Start the calculation for F3. FIB2 will halt before performing the loop.

3 =FB2E 3
o : ?
@“m

Continue execution of the loop. FIB2 will halt before performing the loop
a second time.

CONT 3:
i %
(F1ee | FI61 [Bouk [6ous | B | KEN#|
Continue execution of the loop. Because this is the last iteration of the
loop, FIB2 will execute to completion.
3t
i 2
[Fee [riei [Eoin [60is | b _|heNnd

When you’re done experimenting with FIB2, don’t forget to use VISIT to
remove the HALT command.

22 Single-Step Execution

Expand and Collect Completely

This section contains two programs:
® MULTI repeats a program until the program has no effect.
® EXCO uses MULTI to expand and collect completely.

MULTI (Multiple Execution)

Given an object and a program that acts on the object, apply the program
to the object repeatedly until the object is unchanged.

Arguments Results
2: object 2:
1: « program » 1: resulting object
Techniques:

®m DO...UNTIL... END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit (if
true).

= Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put on
the stack and used as arguments to other programs.

m Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It’s handy to store an object in a
local variable when you don’t know beforehand how many copies you’ll
need.

MULTI demonstrates one of the differences between global and local
variables: if a global variable contains a name or program, the contents
of the variable are evaluated when the name is evaluated; but the con-
tents of a local variable are always simply recalled. Consequently,
MULTI uses the local name to put the program argument on the stack
and then executes an explicit EVAL command to evaluate the pro-
gram,

MULTI (Multiple Execution) 23

Program

<«

> p

<<
DO
DUP
p EVAL

UNTIL
DUP

ROT
SAME

END
»
»

[ENTER]
'MULTI

Comments

Begin the program.

Create a local variable p that con-
tains the program argument.

Begin the defining program.

Begin the DO clause.

Make a copy of the object.

Apply the program to the object,
returning a new version. (The
EVAL command is necessary to exe-
cute the program because local vari-
ables always return their contents to
the stack unevaluated.)

Begin the UNTIL clause.

Make a copy of the new version of
the object.

Move the old version to level 1.
Test whether the old version and the
new version are the same.

End the UNTIL clause.

End the defining program.

End the program.

Put the program on the stack.
Store the program as MULTI.

Example. MULTI is demonstrated in the next program.

EXCO (Expand and Collect Completely)

Given an algebraic object, execute EXPAN repeatedly until the algebraic
doesn’t change, then execute COLCT repeatedly until the algebraic
doesn’t change. In some cases the result will be a number.

Arguments

Results

1: ‘algebraic'

1: ‘'algebraic"

1: ‘'algebraic'
1:

V4

24 EXCO (Expand and Collect Completely)

Techniques:

m Structured programming. EXCO calls the program MULTI twice.
Even if you don’t use MULTI anywhere else, the efficiency of repeat-
ing all the commands in MULTI by simply including its name a second
time justifies writing MULTI as a separate program.

Required Programs:

= MULTI (page 23) repeatedly executes the programs that EXCO pro-
vides as arguments.

Program Comments
« Begin the program.
« EXPAN » Put EXPAN on the stack.
MULTI Execute EXPAN until the algebraic
object doesn’t change.
« COLCT » Put COLCT on the stack.
MULTI Execute COLCT until the algebraic
object doesn’t change.
» End the program.
ENTER Put the program on the stack.
'EXCO Store the program as EXCO.

Example. Expand and collect completely the expression
3x(4y +2)+(8x -52)2

Enter the expression.

2:
13 %X I !3%X%(4%Y+Z2)+(B*X-5%
rdler-d

* (4%Y+Z) [ExcoJmury |]]]
+(8*X-5%2) A2

Expand and collect completely.

ZEXCO= 28
13 '12%KxY-772K*Z+64%K"

2+25*2°2"

TN IV I S . .

Expressions with many products of sums or with powers can take many
iterations of EXPAN to expand completely, resulting in a long execution
time for EXCO.

EXCO (Expand and Collect Completely) 25

Displaying a Binary Integer
This section contains three programs:
m PAD is a utility program that converts an object to a string for right-
justified display.
m PRESERVE is a utility program for use in programs that change the
calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.
It calls PAD to show the displayed numbers right-justified, and it calls
PRESERVE to preserve the binary base.

PAD (Pad With Leading Spaces)

Convert an object to a string and, if the string contains fewer than 23 char-
acters, add spaces to the beginning.

When a short string is displayed by using DISP, it appears left-justified —its
first character appears at the left end of the display. The position of the
last character is determined by the length of the string.

By adding spaces to the beginning of a short string, PAD moves the posi-
tion of the last character to the right. When the string is 23 characters
long, it appears right-justified — its last character appears at the right end of
the display.

PAD has no effect on strings that are longer than 22 characters.

Arguments Results
1: object i: " object"
Techniques:

m WHILE ... REPEAT... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT

clause and test again (if true) or to skip the REPEAT clause and exit
(if false).

m String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two
strings.

26 PAD (Pad With Leading Spaces)

Program

<«

5STR

WHILE
DUP SIZE 23 <

REPEAT
" " SWAP +
END

»

[ENTER]
'PAD [STO]

Comments

Begin the program.

Make sure the object is in string
form. (Strings are unaffected by this
command.)

Begin WHILE clause.

Does the string contains fewer than
23 characters?

Begin REPEAT clause.

Add a leading space.

End REPEAT clause.

End the program.

Put the program on the stack.
Store the program as PAD.

Example. PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, store the current status, execute the pro-
gram, and then restore the previous status.

Arguments

1: « program »

1: (resuit of program)

Techniques:

m RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the
current status of the calculator in a binary integer and STOF (store
flags) to restore the status from that binary integer.

® Local-variable structure. PRESERVE creates a local variable just to
remove the object from the stack briefly; its defining program does lit-
tle except evaluate the program argument on the stack.

PRESERVE (Save and Restore Previous Status) 27

Program Comments

« Begin the program.

RCLF Recall a 64-bit binary integer
representing the status of all 64 user
flags.

> f Store the binary integer in a local
variable f .

« Begin the defining program.

EVAL Execute the program argument.
f STOF Restore the status of all 64 user
flags.

» End the defining program.

» End the program.
ENTER Put the program on the stack.
' PRESERVE Store the program as PRESERVE.

Example. PRESERVE is demonstrated in the program BDISP.

BDISP (Binary Display)
Display a number in HEX, DEC, OCT, and BIN bases.

Arguments Results
: n 1: n
L (] tn
Techniques:

m IFERR ... THEN. ... END (error trap). To accomodate real
numbers, BDISP includes the command RSB (real-to-binary). How-
ever, this command causes an error if the argument is already a binary
integer.

To maintain exccution if an error occurs, the R®B command is placed
inside an IFERR clause. Because no action is required when an error
occurs, the THEN clause contains no commands.

28 BDISP (Binary Display)

m Enabling LAST. In case an error occurs, LAST must be enabled to
return the argument to the stack. BDISP sets flag 31 to programmati-
cally enable the LAST recovery feature.

m FOR ... NEXT loop (definite loop with index). BDISP executes a
loop from 1 to 4, each time displaying # in a different base on a
different line.

The loop index (named j in this program) is a local variable. It’s
created by the FOR . . . NEXT program structure (rather thanbya -
command) and it’s automatically incremented by NEXT.

m Subprograms. BDISP demonstrates three uses for subprograms.

1. BDISP contains a main subprogram and a call to PRESERVE.
The main subprogram goes on the stack and is evaluated by
PRESERVE.

2. When BDISP creates a local variable for n, the defining pro-
gram is a subprogram.

3. There are four subprograms that “customize” the action of the
loop. Each subprogram contains a command to change the
binary base and a marker (h, d, o, or b) to indicate the base.
Each iteration of the loop executes one of these subprograms.

Required Programs:

m PAD (page 26) expands a string to 23 characters so that DISP shows it
right-justified.

m PRESERVE (page 27) stores the current status, executes the main
subprogram, and restores the status.

BDISP (Binary Display) 29

Program

<«

<«

»

PRESERVE

»

DUP
31 SF
IFERR
R-B
THEN
END

s> n

<<
CLLCD
« BIN
« OCT
« DEC
« HEX
1l 4
FOR j
EVAL

"b“
"oll
Ild"
"hll

n -STR

SWAP +

PAD

j DISP

NEXT

»

[ENTER]
'BDISP

30

BDISP (Binary Display)

»
»
>»

»

Comments

Begin the program.

Begin the main subprogram.
Make a copy of n.

Set flag 31 to enable LAST.

Begin error trap.

Convert n to a binary integer.

If an error occured,

Do nothing (no commands in THEN
clause).

Create a local variable n.

Begin the defining program.
Clear the display.

Subprogram for BIN.
Subprogram for OCT.
Subprogram for DEC.
Subprogram for HEX.

First and last index values.

Start loop with index j .

Evaluate one of the base subpro-
grams (initially the one for HEX).
Make a string showing n in the
current base.

Add the base marker.

Pad the string to 23 characters.
Display the string in the j th line.
Increment j and repeat the loop.
End the defining program.

End the main subprogram.

Store the current status, execute the
main subprogram, and restore the
status.

End the program.

Put the program on the stack.
Store the program as BDISP.

Example. Switch to DEC base, display # 100 in all bases, and check

that BDISP restored the base to DEC.

Clear the stack and select the BINARY menu.

CLEAR

b HER | acT | BIN [STHS [RChE

Make sure the current base is DEC and key in # 100.

#100

3:
23
1: # 108
QL) HEx | ocT | BEIN JSTHE [RCHS |

Execute BDISP. (Don’t switch menus, since youw’ll want to see the

BINARY menu in the next step.)
BDISP

Return to the normal stack display and check the current base.

65
16
14

19

4h
Ad
40
1108166b

3:
2%
1: # 108
(L3P Hex L ocT | BIN J3STHE [Rekis]

Although the main subprogram left the calculator in BIN base,

PRESERVE restored DEC base.

To check that BDISP also works for real numbers, try 144,

144 =BDISP=

BDISP (Binary Display) 31

Summary Statistics

For paired-sample statistics it’s often useful to calculate the sum of the
squares (£x2 and y?) and the sum of the products (Zxy) of the two vari-
ables. This section contains five programs:

m SUMS creates a variable SCOV that contains the covariance matrix
for the current statistics matrix CDAT.

m TGET extracts a number from the specified position in ZCOV.
m IX2 uses SGET to extracts £x? from ZCOV.

m TY?2 uses EGET to extracts £y? from ZCOV.

m TXY uses EGET to extracts 2xy from ZCOV.

If SDAT contains n columns, ZCOV is an n Xn matrix. The programs
£X2, £Y2, and EXY refer to TPAR (statistics paramelers) to determine
which columns contain the x data (called C,) and they data (called Cy).

Techniques:

m Matrix operations. These programs demonstrate how to transpose a
matrix, how to multiply two matrices, and how to extract one element
from a matrix.

m Programs usable in algebraic objects. Because £X?2, £Y2, and EXY
conform to algebraic syntax (no arguments from the stack, one result
put on the stack), you can use their names like ordinary variables in an
expression or equation.

m YPAR convention. Several paired-sample statistics commands usc a
variable named EPAR to specify a pair of columns in EDAT. ZPAR
contains a list with four numbers, the first two specifying columns.
(The other.two numbers are the slope and intercept from linear
regression.)

SUMS ensures that TPAR exists by executing 0 PREDV DROP; the
command PREDV (predicted value) creates TPAR with default values
if TPAR doesn’t already exist, and DROP removes the predicted value
computed for 0.

X2, £Y2, and EXY use the values stored in LPAR to determine
which element to extract from XCOV.

32 Summary Statistics

SUMS (Summary Statistics Matrix)

Create a variable ZCOV that contains the covariance matrix of the statis-
tics matrix EDAT.

As an example, if ZDAT is the n X2 matrix

X1 0N
X2 Y2

Xn Vn

then ZCOV will contain the covariance matrix

Zx? Txy
Ixy Ty? |
Arguments Resulits
1: 1:
Program Comments
« Begin the program.
RCLE Recall the contents of the n xm
statistics matrix ZDAT.
DUP Make a copy.
TRN Transpose the matrix. The result is
anm Xn matrix.
SWAP * Multiply the matrices to produce the

m xXm covariance matrix. (Without
swapping the matrices, the product
would be an n xn matrix.)

'LCovV' STO Store the covariance matrix in a vari-
able ZCOV.
0 PREDV DROP Make sure ZPAR exists.
» End the program.
Put the program on the stack.
'SUMS Store the program as SUMS,

SUMS (Summary Statistics Matrix) 33

YGET (Get an Element of XCOV)

Given p and g, each indicating either the first or second position in
TPAR, extract the rs element from ZCOV, where r and s are the
corresponding first or second elements in LPAR.

LGET is called by £X2, £Y2, and XY with the following arguments.

m ForXX2, p=1and g =1
m ForXY2, p =2 and g =2.
m ForZXY, p =1 and g =2.

Arguments Results

2: 1 or 2 2:

1: 1 or 2 1: rselement of LCOV
Program Comments
« Begin the program.

zcov Put the covariance matrix on the

stack.
TPAR Put the list of statistics parameters
on the stack.

DUP Make a copy.

5 ROLL Move p to level 1.

GET Get r, the p th element in EPAR.

SWAP Move ZPAR to level 1.

4 ROLL Move g to level 1.

GET Get s, the g th element in ZPAR.

2 SLIST Put { r,s } on the stack.

GET Get the rs element from ZCOV.
» End the program.
Put the program on the stack.
'LGET Store the program as EGET.

34 EGET (Get an Element of COV)

¥X2 (Sum of Squares of x)

Calculate TxZ, where the x’s are the elements of C; (the column specified
by the first parameter in ZPAR).

Arguments Resuilts

1: 1: x?
Program Comments
« Begin the program.

11 Specify C; twice.

IGET Extract Zx2,
» End the program.
Put the program on the stack.
'vX2 Store the program as LX2.

XY2 (Sum of Squares of y)

Calculate Zy?, where the y’s are the elements of C,, (the column specified
by the second parameter in ZPAR).

Arguments Results

1: 1: xy?
Program Comments
« Begin the program.

2 2 Specify C,, twice.

LGET Extract Sy2.
» End the program.
Put the program on the stack.
'Ty2 Store the program as XY2.

ZY2 (Sum of Squares ofy) 35

TXY (Sum of Products of x and y)

Caleulate Sxy, where the x’s and y’s are corresponding elements of C,
and C, (the columns specified by the first and second parameters in
LPAR).

Arguments Results

1: 1: Zxy
Program Comments
« Begin the program.

12 Specify C; and C,,.

TGET Extract Lxy .
» End the program.
Put the program on the stack.
'EXY Store the program as £XY.

Example. Calculate X2, £Y2, and ZXY for the following statistics
data:
18 12
4 7
3 2
1 1
31 48
20 17

The general steps are as follows.

Enter the statistical data.

Execute SUMS to create the covariance matrix ZCOV.
Execute ©X2, Y2, and £XY.

> » NP

If EDAT contains more than two columns (that s, if each data point
contains more than two variables):

a. Execute COLY to specify new values for C; and Cy. The
values are stored in ZPAR.

b. Execute X2, ¥Y2, and EXY.

36 XIXY (Sum of Products of x and y)

Now try the example given above.

Clear the stack, select the STAT menu, and clear EDAT.

3:
STAT ?
EczE [] - [N: iz Joriz]hoiz)]

Enter the data and then check that you entered all six data points.

whw

6
2 L Eo [N [JeTes]heLs

Hil

~
N
o

-
=
~
1|
[}
+
n

3
1:
[T] E- I NZ [oL [SToz|RELE
Create the covariance matrix ZCOV.
3:
SSUMSE '
[ZFakfZcov [TonT] Tuv | Tve | Tue |
Calculate Tx2.
= = 3:
2!
i: 1831
[ZFaR] Toov [ZonT] Fuv [Eva [Fia |
Calculate Zy?
ExpY2= 3:
2: 1831
1t 2791
[ZFrkjEcov [ZonT] Zav | Zva [Zue]

EXY (Sum of Products of x and y) 37

Calculate Xxy .

i
1l

3: 1831
23 2791
1: 2089
[Zpan | Ecov [ZonT] Tuv | Eva | Zk2 |

If the statistics matrix had more than two columns, you could specify new

values for C; and C,. For practice, specify C; =1 and C,=2 (the current
values).

The command COLY is available in the STAT menu, but here it’s easier
to spell out the command name and stay in the USER menu.

1 :

1831
2 coLs : 2520
{ ZFak] Zcov | ZoAT] Z4v | Eva | Fha |

You could now execute £X2, £Y2, and ZXY for the new pair of columns
Cl and Cg.

Don’t forget the execute SUMS again whenever you add or delete data
from the statistics matrix ZDAT.

38 XXY (Sum of Products of x and y)

Median of Statistics Data

This section contains three programs:
m SORT orders the elements of a list.
m LMED calculates the median of a sorted list.

m MEDIAN uses SORT and MED to calculate the median of the
current statistics data.

SORT (Sort a List)

Sort a list into ascending order.

Arguments Results
1: { list } 1: { sortedlist }
Techniques:

= Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the larg-
est number to the last position in list, then again to move the next larg-
est to the next-to-last position, and so on.

m Nested definite loops. The outer loop controls the stopping position
each time the process is done; the inner loop runs from 1 to the stop-
ping position each time the process is done.

m Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining program of the first. This
nesting is done for convenience; it’s easier to create the first local vari-
able as soon as its value is computed, thereby removing its value from
the stack, rather than computing both values and creating both local
variables at once.

@ FOR...STEP and FOR ... NEXT (definite loops). SORT uses two
indexes: -1 STEP decrements the index for the outer loop each itera-
tion; NEXT increments the index for the inner loop by 1 each itera-
tion.

SORT (Sorta List) 39

Program

<«

DUP STIZE 1

FOR j
13
FOR k
k GETI » nl

<«

GETI - n2

«
DROP
IF nl1 n2 >

THEN
k n2 PUTI

nl PUT
END
»

»

NEXT
-1 STEP

>»

'SORT

Comments

Begin the program.

From the last position to the first
position,

Begin the outer loop with index j .
From the first position to the jth
position,

Begin the inner loop with index k.
Get the k th number in the list and
store it in a local variable n ;.
Begin outer defining program.

Get the next number in the list and
store it in a local variable n,.
Begin inner defining program.
Drop the index.

If the two numbers are in the wrong
order,

Then do the following:

Put the second one back in the k th
position.

Put the k th one back in the next
position.

End of THEN clause.

End inner defining program.

End outer defining program.
Increment k and repeat the inner
loop.

Decrement j and repeat the outer
loop.

End the program.

Put the program on the stack.
Store the program as SORT.

Example. Sort the list { 8,3,1,2,5 }.

{8,3,1,2,5 =SORT

40 SORT (Sort a List)

3:
2:
1: {1 2395817
[SokT [Tkak] ZCov] FoAT] Sav | TV]

LMED (Median of a List)

Given a sorted list, calculate the median. If the list contains an odd
number of elements, the median is the value of the center element. If the
list contains an even number of elements, the median is the average value
of the elements just above and below the center.

Arguments

Results

1: { sortedlist }

1: median of sorted list

Techniques:

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a non-integer, FLOOR and CEIL return successive
integers that bracket the non-integer.

Program

<<
DUP
p FLOOR GET

SWAP
p CEIL GET

+ 2/

»
»

[ENTER]
' LMED (sT0]

Comments

Begin the program.

The size of the list.

The center position in the list (frac-
tional for even-sized lists).

Store the center position in local
variable p .

Begin the defining program.

Make a copy of the list.

Get the number at or below the
center position.

Move the list to level 1.

Get the number at or above the
center position.

The average of the two numbers at
or near the center position.

End the defining program.

End the program.

Put the program on the stack.
Store the program as LMED.,

LMED (Median of a List) 4t

Example. Calculate the median of the list you sorted using SORT.

3:
SLMEDS o

: 3
LHED | S0KT | ZFak] Zcov § S0AT] ERY |

LMED is called by MEDIAN.

MEDIAN (Median of Statistics Data)

Return a vector representing the medians of the columns of the statistics

data.

Arguments Results
1: 1: [xyxg " X]
Techniques:

m Arrays, lists, and stack elements. MEDIAN extracts a column of data
from ZDAT in vector form. To convert the vector to a list, MEDIAN
puts the vector elements on the stack and then combines them into a
list. From this list the median is calculated using SORT and LMED.

The median for the m th column is calculated first, and the median for
the first column is calculated last, so as each median is calculated, it is
moved to the stack level above the previously calculated medians.

After all medians are calculated and positioned correctly on the stack,

they’re combined into a vector.

m FOR ... NEXT (definite loop with index). MEDIAN uses a loop to
calculate the median of each column. Because the medians are calcu-
lated in reverse order (last column first), the index is used to reverse

the order of the medians.

Required Programs:

m SORT (page 39) arranges a list in ascending order.

s LMED (page 41) calculates the median of a sorted list.

42 MEDIAN (Median of Statistics Data)

Program

<«

RCLE

DUP SIZE

LIST-> DROP

s nm
«

'YDAT' TRN

1m
FOR 7
E_

ARRY- DROP

n SLIST
SORT
LMED
j .ROLLD

NEXT
m 1 -LIST
ARRY

»
SWAP
STOZ

»

[ENTER]
'"MEDIAN

Comments

Begin the program.

Put a copy of the current statistics
matrix EDAT on the stack for safe-
keeping.

Put the list { n m } on the stack,
where n is the number of rows in
EDAT and m is the number of
columns.

Putn and m on the stack. Drop the
list size.

Create local variables forn and m .
Begin the defining program.
Transpose EDAT. Now n is the
number of columns in ZDAT and m
is the number of rows.

The first and last rows.

For each row, do the following;
Extract the last row in ZDAT. Ini-
tially this is the 7 th row, which
corresponds to the m th column in
the original TDAT.

Put the row elements on the stack.
Drop the index list { n }, since n is
already stored in a local variable.
Make an n -element list.

Sort the list.

Calculate the median of the list.
Move the median to the proper stack
level.

Increment j and repeat the loop.
Make the list { m }.

Combine all the medians into an m -
element vector.

End the defining program.

Move the orginal ZDAT to level 1.
Restore TDAT to its previous value.
End the program.

Put the program on the stack.
Store the program as MEDIAN,

MEDIAN (Median of Statistics Data) 43

Example. Calculate the median of the data on page 36. (This example
assumes you’ve keyed in the data.) There are two columns of data, so
MEDIAN will return a two-element vector.

Calculate the median.

3 5

= MEDIAN = 1: [14.5 9.5 1]
FEUAT [MECT [LMED] 20KT] 2k] ZC0v]

The medians are 14.5 for the first column and 9.5 for the second column.

44 MEDIAN (Median of Statistics Data)

Index

A Defining procedure, 11

Algebraic syntax and user func- Defining program, 18
tions, 12 Definite loop, 17, 39

Array operations, 42 with index, 29, 39, 42

B

Basic stack manipulations, 9
BINARY menu, 8
Binary-integer display, 28
Box functions, 11

BOXS without local variables, 13

Bubble sort, 39

C

CEIL, 41

CLEAR, 8

Clear display, 30
CLLCD, 30

CLL, 8, 37

COLCT, 25

Conditional structure, 17
CONT, 8,20

Covariance matrix, 33
Creating local variables, 12
CTRL menu, 8

D

Debugging, 20

DEC, 8

Decrementing an index, 39
Defining expression, 12

nested, 39
DISP, 30
Display format, 8

Displaying a binary integer, 26

DO, 23
DUP2, 13

ELSE, 17
Enabling LAST, 29
Error trap, 28
EVAL, 23, 28, 30

Evaluation of local variables, 23

Examples, conventions in, 8
EXPAN, 25
Expand and collect, 23, 24

F
Fibonacci numbers, 16
loop version, 17
recursive version, 16
two versions compared, 19
FLOOR, 41
FOR, 29, 39, 42

Format of displayed numbers, 8
Format of program listings, 8

45

G

GET, 34

Get an element of ZCOV, 34
Global variables, 11

Global variables, evaluation, 23

H
HALT, 20

1
IF, 17
IFERR, 28
If-Then-Else function, 16
Indefinite loop, 23, 26
Index, 29, 39, 42
as local variable, 29
decrementing, 39

K
Keys, shifted, 8
KILL, 8, 20

L
Labels, in menu, 8
Lists, 42
Local variables
evaluation, 23
lower-case convention, 12
Local-variable structure, 11, 27
nested, 39
Loop, single-stepping, 20
Loop index
as local variable, 29
decrementing, 39

M

Matrix operations, 32

Median of a list, 41

Median of statistics data, 39, 42

Menu labels, 8

Menus
next and previous levels, 8
used in program entry, 8

46 Index

Multiple execution, 23

N
Nested definite loops, 39

Nested local-variable structures, 39

Nested user functions, 14
NEXT, 8, 29, 39, 42
NZ, 8, 37

(o)

Order of program entry, 7
OVER, 10

P
Pad with leading spaces, 26
PICK, 13
PREDV, 32
PREV, 8
Procedure, defining, 11
Program entry, format, 8
Programs

as arguments, 23

usable in algebraic objects, 32
PURGE, 10
Purging a variable, 9
Purging programs, 7

R

RCL, 10

RCLF, 27

Real-to-binary, 28

Recalling a variable, 9

Recursion, 16

Renaming a variable, 9

REPEAT, 26

Required programs, order of
entry, 7

Restore status, 27

ROLL, 34

ROT, 10, 13

RPN, and user functions, 12

S \'J

T+, 8,37 Variable names, in USER menu, 8
-, 43 Variables, 9

2COL, 38 evaluation, 23

Shifted keys, 8 local and global, 11

Single-step execution, 20 Vectors, 42

Sort a list, 39 VISIT, 8, 20

YPAR convention, 32

SST, 8, 20 w

Stack diagram, defined, 7 WHILE, 26

Stack elements, 42

Standard display format, 8
STAT menu, 8, 37

Status, restoring, 27

STD, 8

STEP, 39

STO, 10

STOF, 27

Storing a variable, 9

String operations, 26
Structured programming, 9, 25
Subprograms, 29

Sum of products of x and y, 36
Sum of squares of x, 35

Sum of squares of y, 35
Summary statistics, 32
Summary statistics matrix, 33
Surface of a box, 11

SWAP, 10

T

Techniques, list of, 6
THEN, 17, 28

U

UNTIL, 23

User function, 12
in algebraic syntax, 12
nested, 14

USER menu, 8

Index

47

Contents

Page 7

9

9
11
16
20
23
26
32
39

45

How To Use This Booklet

Programming Examples
RENAME (Renaming a Variable)
Box Functions

Fibonacci Numbers

Single-Step Execution

Expand and Collect Completely
Displaying a Binary Integer
Summary Statistics

Median of Statistics Data

Index

ﬂﬂ HEWLETT

PACKARD

00028-90099 English
Printed in U.S.A. 6/87

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

