

**WATER SURFACE PROFILES**  
**(STANDARD STEP METHOD)**

**for the**

**HP-41 C/CV/CX**

## Table of Contents

|                                                                           |         |
|---------------------------------------------------------------------------|---------|
| Program description -----                                                 | page 1  |
| Program description, equations, variables, etc. -----                     | page 1  |
| The value of "L" -----                                                    | page 2  |
| The value of $\bar{S}_f$ - (Representative Friction Slope Equation) ----- | page 3  |
| Representation of terms in the Energy Equation (Figure 1) -----           | page 4  |
| Conveyance "K" -----                                                      | page 4  |
| Velocity coefficient "α" -----                                            | page 5  |
| Computation procedure -----                                               | page 5  |
| Critical depth -----                                                      | page 6  |
| Expansion and contraction "Shock" loss coefficients "C" -----             | page 7  |
| Friction loss coefficient - (Manning's "n") -----                         | page 8  |
| Basic data requirements -----                                             | page 8  |
| Flow Regime -----                                                         | page 8  |
| Discharge -----                                                           | page 9  |
| Cross-section geometry -----                                              | page 9  |
| Reach lengths -----                                                       | page 10 |
| Program input -----                                                       | page 11 |
| Program output -----                                                      | page 11 |
| Output data description -----                                             | page 12 |
| Operator limits and warnings -----                                        | page 13 |

|                                                                   |         |
|-------------------------------------------------------------------|---------|
| Equipment requirements -----                                      | page 13 |
| Typical values for Manning's "n" - (Table 1) -----                | page 14 |
| Some helpful hints for the programmer -----                       | page 16 |
| Example of input for a divided flow situation -----               | page 18 |
| Example of input for a tributary section -----                    | page 18 |
| Users "Failsafe" -----                                            | page 19 |
| Users Instructions - Part One - (The Input) -----                 | page 20 |
| Users Instructions - Part Two - (The Output) -----                | page 28 |
| Users Instructions - Part Three - (Purging Files) -----           | page 33 |
| Example One - Simple overbank flow -----                          | page 35 |
| Input -----                                                       | page 39 |
| Output -----                                                      | page 41 |
| Example of a prepared rating curve -----                          | page 42 |
| Example Two - Excavated Channel -----                             | page 43 |
| Input -----                                                       | page 43 |
| Output -----                                                      | page 45 |
| Rerun forcing a critical depth assumption -----                   | page 46 |
| Example Three - Dealing with a divided flow section -----         | page 47 |
| Example Four - How to execute reruns -----                        | page 50 |
| Example Five - How to execute reruns with non-constant flow ----- | page 50 |
| Registers Used -----                                              | page 52 |

|                                    |         |
|------------------------------------|---------|
| Listing of program "SECTION" ----- | page 57 |
| Listing of program "WASPIMP" ----- | page 61 |
| Listing of program "WASPMET" ----- | page 71 |
| Final Notes -----                  | page 81 |

## APPENDIX

|                              |                |
|------------------------------|----------------|
| Complete file listings ----- | starts page 82 |
|------------------------------|----------------|

## PROGRAM DESCRIPTION

Program Title: Water Surface Profiles - Standard Step Method

Programmer: Paul B. Winslow (P. Eng.)

Location: Winnipeg, Manitoba

Date: October 24, 1983

---

Program Description, Equations, Variables, etc: This program is intended for calculating water surface profiles for steady gradually varied flow in natural or man-made channels. The computational procedure (generally known as the Standard Step Method) is based on the solution of the One-Dimensional Energy Equation with energy loss due to friction evaluated with Manning's equation. The program was developed following the methodology of the HEC-2 Computer Program developed by Bill S. Eichert of the US Army Corps of Engineers Hydrologic Engineer Center. The following two equations are solved by an iterative procedure to calculate an unknown water surface elevation at a cross-section:

$$WS_2 + \frac{\alpha_2 V^2}{2g} = WS_1 + \frac{\alpha_1 V^2}{2g} + h_e \quad (1)$$

$$h_e = \bar{S}_f + C \quad \left| \quad \frac{\alpha_2 V^2}{2g} - \frac{\alpha_1 V^2}{2g} \quad \right| \quad (2)$$

Where:

$WS_1, WS_2$  = Water surface elevations at ends of reach  
(see Figure 1).

$V_1, V_2$  = Mean velocities (total discharge / total flow area)  
at ends of reach.

$\alpha_1, \alpha_2$  = Velocity coefficients for flow at each end of reach.  
 $g$  = acceleration of gravity  
 (32.174 feet/second<sup>2</sup> - Imperial System)  
 (9.807 metres/second<sup>2</sup> - Metric System)  
 $h_e$  = Energy head loss.  
 $L$  = Discharge-weighted reach length (feet or metres).  
 $\bar{S}_f$  = Representative friction slope for reach.  
 $C$  = Expansion or Contraction loss coefficient.  
 $| |$  = Absolute Value.

### THE VALUE OF L:

If the option of the user is not overbank flow, L is equal to the input value of the thalweg length of the main channel. However, if the option of overbank flow is selected by the user, the discharge-weighted reach length, L, is calculated as:

$$L = \frac{L_{lob} \bar{Q}_{lob} + L_{ch} \bar{Q}_{ch} + L_{rob} \bar{Q}_{rob}}{\bar{Q}_{lob} + \bar{Q}_{ch} + \bar{Q}_{rob}} \quad (3)$$

Where:

$L_{lob}, L_{ch}, L_{rob}$  = Reach lengths specified for flow in the left overbank, main channel and right overbank, respectively.  
 $\bar{Q}_{lob}, \bar{Q}_{ch}, \bar{Q}_{rob}$  = Arithmetic average of flows at the ends of the reach for the left overbank, main channel and right overbank, respectively.

## THE VALUE OF $\bar{S}_f$ :

The user of this program has the option to select one of two methods for the calculation of the representative friction slope:

$$\bar{S}_f = \frac{(Q_1 + Q_2)^2}{(K_1 + K_2)} \quad (4)$$

$$\bar{S}_f = \frac{\bar{S}_{f1} + \bar{S}_{f2}}{2} \quad (5)$$

Where:

$K_1, K_2$  = Conveyance at ends of reach.

$Q_1, Q_2$  = Discharge at ends of reach.

$\bar{S}_{f1}, \bar{S}_{f2}$  = Friction slope at ends of reach.

Equation (4) is known as the Average Conveyance Equation. This option has been used by HEC2 since 1971 and is the "Default" equation used by this program; that is, the user specifically requested for an affirmative response to use this equation in the program.

Equation (5) is known as the Average Friction Slope Equation. This option was used by HEC2 prior to 1971. The user can override the "Default" and select this equation.

Both of these equations produce satisfactory results provided that reach lengths are not too long. The advantage sought in either equation is to be able to maximize reach lengths without sacrificing profile accuracy. Research has indicated that Equation (5) is the most suitable for M1 profiles; that is the friction slope at the current cross-section is greater than the friction slope at the preceding cross-section. Equation (4), the "Default", is generally the most suitable for all conditions, and therefore should be used unless the user knows that all profiles in the calculation will be of the M1 type.

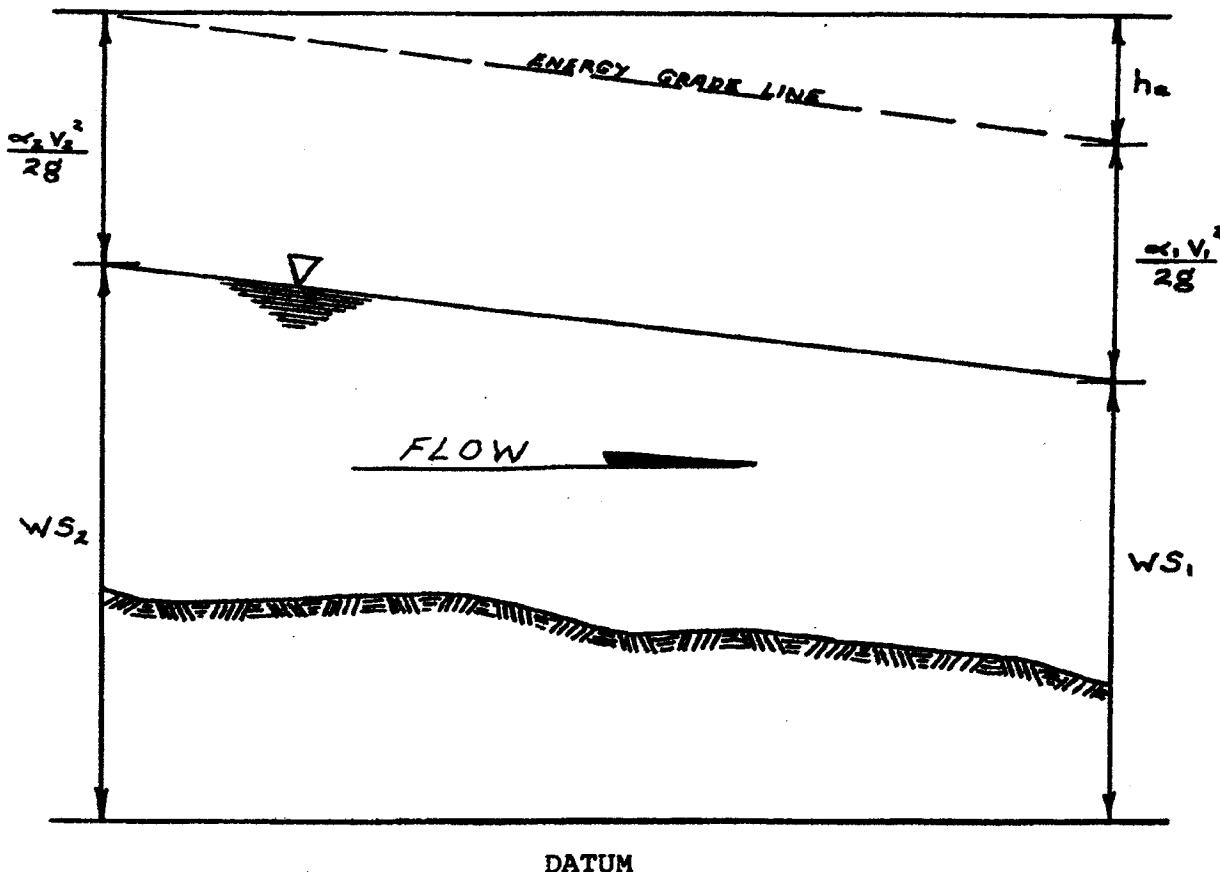



FIGURE 1  
REPRESENTATION OF TERMS IN THE ENERGY EQUATION

The determination of total conveyance and the velocity coefficient for a cross-section requires that flow be subdivided into units for which velocity is uniformly distributed. The approach used in this program is to subdivide flow in the overbank areas using the input cross-section stations (zero or negative X coordinates) as the basis for subdivision. Conveyance is computed within each subdivision by the equation:

$$K = \frac{1.486}{n} a r^{2/3} \quad - \text{Imperial Units} \quad (6)$$

$$K = \frac{a r^{2/3}}{n} \quad - \text{Metric Units} \quad (7)$$

Where:

$K$  = Conveyance for the subdivision.

$n$  = Manning's "n" for the subdivision.

$a$  = Flow area for the subdivision.

$r$  = Hydraulic radius for subdivision (area divided by wetted perimeter).

Flow in the main channel is not subdivided in normal applications. Total conveyance for the cross-section is obtained by summing the incremental conveyances.

### VELOCITY COEFFICIENT $\alpha$ :

The velocity coefficient,  $\alpha$ , is obtained with the following equation:

$$\alpha = \frac{(A_t)^2 [(K_{lob})^3 / (A_{lob})^2 + (K_{ch})^3 / (A_{ch})^2 + (K_{rob})^3 / (A_{rob})^2]}{(K_t)^3} \quad (8)$$

Where:

$A_t$  = Total flow area of the cross-section.

$A_{lob}$ ,  $A_{ch}$ ,  $A_{rob}$  = Flow areas of the left overbank, main channel and right overbank, respectively.

$K_t$  = Total conveyance of the cross-section.

$K_{lob}$ ,  $K_{ch}$ ,  $K_{rob}$  = Conveyance of the left overbank, main channel and right overbank, respectively.

## COMPUTATION PROCEDURE

The unknown water surface elevation at a cross-section is determined by an iterative solution of equations (1) and (2). The procedure is as follows:

1. Assume ("GUESS") a water surface elevation at the upstream cross-section.
2. Based upon the assumed water surface elevation, determine the corresponding total conveyance and velocity head.
3. With values from Step 2, compute  $\bar{S}_f$  and solve equation (2) for  $h_e$ .
4. With values from Step 2 and 3, solve equation (1) for  $WS_2$ .
5. Compare the computed value of  $WS_2$  with the assumed in Step 1; repeat Steps 1 through 5 until the values agree to within 0.01 feet for the Imperial System or 0.01 metres for the Metric System.

Criteria used for assuming water surface elevations in the iterative procedure is to assume on the first trial an upstream stage higher by 0.01 feet for the Imperial System or 0.01 metres for the Metric System. For subsequent trials the error between the computed value and the assumed water surface elevation is multiplied by 0.92, and then this value is subtracted from the previous guess for the next trial. (Tests have indicated that this 0.92 value generally provides the quickest convergence of equations (1) and (2). Lack of remaining program room in the HP-41CV prevents the use of the same method of convergence as used by HEC-2).

## CRITICAL DEPTH:

For the first cross-section, the user is asked to input the starting water level. A check is then made to ascertain if the starting water level that has been input is greater than or equal to critical depth. If it is, the water surface elevation that has been input, will be the starting elevation. If it is not, then the nearest one-half foot mark higher in the Imperial System is tried (or 0.20 metres is added to the input level in the Metric System). The check is then repeated until the starting elevation is greater than or equal to critical depth. When it is, then that elevation is used for the starting water elevation. Once the "balanced" water surface elevation has been obtained for the upstream cross-section, a check is also made to ascertain if it is indeed, greater than critical depth. If it is, the computed value for the water surface elevation will be printed. If it is not, repeated trials are made at 0.01 feet for the Imperial System (or 0.01 metres for the Metric System) until critical depth (or higher) is calculated. At all times, when the water surface elevation is less than critical depth, a

message to that effect is printed by the program:

-- WARNING --  
CRITICAL DEPTH ASSUMED

The user should be aware of critical depth assumptions and determine the reason for their occurrence. In many cases, they can result from reach lengths being too long or from misrepresentation of the effective flow areas for cross-sections. (See Note 5 in the Helpful Hints Section).

The check on critical depth is made from the formula:

$$A^3 = \frac{Q^2 T \alpha}{g} \quad (9)$$

Where:

**A** = Area of the cross-section.

**Q** = Flow.

**T** = Top width of the cross-section.

**$\alpha$**  = Velocity coefficient.

**$g$**  = acceleration of gravity.

(32.174 feet/second<sup>2</sup> - Imperial System)

(9.807 metres/second<sup>2</sup> - Metric System)

#### EXPANSION OR CONTRACTION "SHOCK" LOSS COEFFICIENTS, "C":

The user has the option of selecting the expansion or contraction loss coefficients. The program automatically assigns a standard value for these coefficients (namely .3 and .1 respectively) unless directed otherwise. It also automatically determines which of those values to use and multiplies it by the Absolute Value of the change in velocity head between adjacent cross-sections. When the velocity head increases in the downstream direction, a contraction coefficient is used; or conversely, when the velocity head decreases in the downstream direction, an expansion coefficient is used. Typical values are shown below for transition "Shock" losses:

## COEFFICIENTS, C

|                     | <u>Contraction</u> | <u>Expansion</u> | <u>Comment</u>          |
|---------------------|--------------------|------------------|-------------------------|
| No transition loss  | 0.0                | 0.0              |                         |
| Gradual transitions | 0.1                | 0.3              | Standard in the program |
| Bridge transitions  | 0.3                | 0.5              |                         |
| Abrupt transitions  | 0.6                | 0.8              |                         |

NOTE: The maximum value for the expansion coefficient would be 1.0. Note that the expansion coefficient is always greater than the corresponding contraction coefficient.

## FRICITION LOSS COEFFICIENTS:

Because Manning's coefficient of roughness "n" depends on such factors as type and amount of vegetation, channel configuration and stage, the user has the option to describe the channel and overbank roughness with three "n" values. Both the friction loss coefficients and "transition" loss coefficients are inserted by the user upon prompt along with the cross-section data. (Refer to a table of commonly used Manning's "n" values on Page 14).

For automatic operation, the user must input all of the friction loss coefficients and 'transition' loss coefficients before the main program is run. The user should be aware of this limitation and carefully describe to the best judgement, the values that may fit over the entire range of stage and discharge, otherwise, for subsequent jobs of the same run, if it is desired to modify the "n" values and/or "transition" losses as specified, the user has no other alternative than to purge the old cross-section data files and re-input new ones.

## BASIC DATA REQUIREMENTS:

The program objective is quite simple – compute water surface elevations at all locations of interest for given flow values. Data needed to perform these computations include: The starting water surface elevation, discharge, loss coefficients, Manning's "n" values, cross-section geometry and reach lengths.

## FLOW REGIME:

Profile computations for sub-critical flow begin at a downstream cross-section with known (or assumed) starting conditions and proceeds upstream. (Note: - super critical flow, that

is, proceeding downstream, can not be handled by this program). In other words, the program will not allow profile computations to cross the critical depth.

### DISCHARGE:

Discharge is specified by the user upon prompt along with the cross-section data. If, for subsequent jobs of the same run (ie: re-runs), the initial flows can be modified. To do this, the user may "over-ride" the initial discharge that has been recorded on the data files upon prompt. For the re-runs, if the flow is constant, that is, it does not change for the entire profile to be calculated, the program will execute automatically. If the flow is not constant, the user has no alternative other than "babysitting" the calculator while that profile calculation proceeds to key in the new flow when required upon prompt.

### CROSS-SECTION GEOMETRY:

Boundary geometry for the analysis of flow in natural streams is specified in terms of ground surface profiles (cross-sections) and the measured distances between them (reach lengths). Cross-sections are located at intervals along a stream to characterize the flow carrying capability of the stream and its adjacent flood plains. They should extend across the entire flood plain and should be perpendicular to the anticipated flow lines (approximately perpendicular to contour lines). Occasionally, it may be necessary to lay out cross-sections in a curved or dog-leg alignment to meet this requirement. Every effort should be made to obtain cross-sections that accurately represent the stream and flood plain geometry. However, ineffective flow areas of the flood plain, such as stream inlets, small ponds or indentations in the valley floor should generally not be included in the cross-section geometry.

Cross-sections are required at representative locations throughout a stream length and at locations where changes occur such as discharge, slope, shape or roughness, locations where levees begin or end and at bridges or control structures such as weirs. Where abrupt changes occur, several cross-sections should be used to describe the change regardless of the distance. Cross-section spacing is also a function of stream size, slope and the uniformity of cross-section shape. In general, large uniform rivers of flat slope normally require the fewest number of cross-sections per mile. The purpose of the study also affects the spacing of cross-sections.

The choice of friction loss equation may also influence the spacing of cross-sections. For instance, cross-section spacing may be maximized when calculating an M1 profile with the average friction slope equation.

Each cross-section in a data set is identified automatically in the program by succeeding numbers commencing at FILENAME: 1.00. The section numbers are used to identify the files in which the data for each cross-section stored on the cassette tape. Each data point in the cross-section is given a station number corresponding to the horizontal distance from the first point on the left. The elevation and a corresponding station number of each data point are input as variables, (with stations as integers). Entry of a zero or negative station integer will cause prompts for the user to input an "n" value. Up to 25 data points may be used to describe the cross-section geometry.

Cross-section data is traditionally oriented looking downstream, since the program considers the left side of the stream to have the lowest station numbers and the right side to have the highest. The left and right station separating the channel from the overbank areas are specified by an "n" value. End points of a cross-section that are too low (below the computed water surface elevation) will automatically be extended vertically.

The user should always check the output against the input to determine, if in fact, the computed water surface elevation at a particular cross-section is greater than the highest ground elevation that has been entered. The user will then know, if or if not, a vertical extension has been applied.

There are numerous options in this program which will allow the user to easily add, or modify cross-section data. For example, when the user wishes to repeat a surveyed cross-section, subsequent files are set up to identify the cross-section, provide reach length information, and to allow the user to modify the vertical dimensions of the repeated cross-section data. This feature saves valuable input time and for instance, can be applied to uniform dimensioned canals with both zero or sloping gradients.

#### REACH LENGTHS:

The measured distances between cross-sections are referred to as reach lengths. The reach lengths for the left overbank, right overbank and main channel used in computations are specified input. Channel reach lengths are typically measured along the thalweg. Overbank reach lengths should be measured along the anticipated path of the center of mass of the overbank flow. Often, these three values will be equal. There are however, conditions where they will differ, such as at river bends, or where the main channel meanders considerably but the overbanks are straight. Where the distance between cross-sections for channel and overbanks are different, the program determines a discharge-weighted reach length which is based on the discharges in the main channel and left and right overbank segments of the reach. Refer to Equation (3) for an explanation on how this is done.

## PROGRAM INPUT:

The program is divided into two parts. Part one is for data input and part two evaluates the input and computes the output.

File name for data input for either Imperial or Metric units is "SECTION".

Program "SECTION", automatically assigns the file name, allows the user to input the cross-sections geometry, friction and shock loss coefficients, reach lengths and flows.

The program follows the convention of HEC-2 for the description of the cross-section. This convention is; elevation first followed by the corresponding station.

There are options to allow the user to select single channel or overbank flow, and the repetition of cross-section geometry without having to manually re-key the data. If the latter option is chosen, that is, the channel configuration is identical except that it may or may not have a slope, the channel cross-section data can be modified by vertical adjustments of the repeated cross-section.

In the case of accidental entries, the program contains a "Failsafe" which will allow the user to input corrected data. Refer to Page 19.

## PROGRAM OUTPUT:

Program output is computed by 'WASPIMP' for Imperial units or "WASPMET" for Metric units. There are options which allow the user to select the method of calculation for the representative friction slope and to initiate reruns of the same job for the computation of a water surface profile with different starting water levels and/or flow.

A special note is printed to inform the user of critical depth assumption. Cross-section data output prints the section number, starting water surface elevation, total flow, "shock" loss coefficients, length of reaches, the cumulative length of the main channel since start, the total submerged area and the computed water surface elevation. If the user selects the overbank flow option, both submerged area and length of reach is printed for the left overbank, main channel and right overbank subdivisions. All values are displayed to two decimal places.

## OUTPUT DATA DESCRIPTION

|                             |                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Section No:</b>          | Number of the current cross-section is automatically set up by the calculator and used for the FILE NAME. The first cross-section is numbered 1.00, second cross-section is numbered 2.00, and etc.                                                                                                                       |
| <b>Q cfs or cms:</b>        | Total flow for the entire cross-section.                                                                                                                                                                                                                                                                                  |
| <b>C<sub>c</sub>:</b>       | Contraction flow loss coefficient. (Standard, unless otherwise specified is 0.10).                                                                                                                                                                                                                                        |
| <b>C<sub>e</sub>:</b>       | Expansion flow loss coefficient. (Standard, unless otherwise specified is 0.30).                                                                                                                                                                                                                                          |
| <b>L<sub>lob</sub>:</b>     | Length of reach input for the left overbank subdivision.                                                                                                                                                                                                                                                                  |
| <b>L<sub>rob</sub>:</b>     | Length of reach input for the right overbank subdivision.                                                                                                                                                                                                                                                                 |
| <b>L<sub>mn. chl</sub>:</b> | Length of reach input for the main channel subdivision.                                                                                                                                                                                                                                                                   |
| <b>A<sub>lob</sub>:</b>     | Submerged area in the left overbank subdivision.                                                                                                                                                                                                                                                                          |
| <b>A<sub>rob</sub>:</b>     | Submerged area in the right overbank subdivision.                                                                                                                                                                                                                                                                         |
| <b>A<sub>mn. chl</sub>:</b> | Submerged area in the main channel subdivision.                                                                                                                                                                                                                                                                           |
| <b>A<sub>total</sub>:</b>   | Total submerged area.                                                                                                                                                                                                                                                                                                     |
| <b>WS INPUT:</b>            | The starting water surface elevation that was input by the user for cross-section 1.00.                                                                                                                                                                                                                                   |
| <b>WS START:</b>            | If the starting water surface elevation input by the user is greater than or equal to critical depth, both WS INPUT and WS START will coincide. If WS INPUT is less than critical depth, WS START will be computed and output to the next nearest one-half foot (Imperial System) or 0.20 metre interval (Metric System). |
| <b>CWSEL:</b>               | Computed water surface elevation.                                                                                                                                                                                                                                                                                         |

-- WARNING --

**CRITICAL DEPTH ASSUMED:** Message to inform the user if WS INPUT or balanced CWSEL is less than critical depth.

**OPERATING LIMITS AND WARNINGS:**

The following assumptions are implicit in the analytical expressions used in the program. Flow is steady, gradually varied and one-dimensional. River channels must have small slopes, say less than 1:10.

A maximum of twenty-five data points are allowable per cross-section. (Each cross-section elevation and its corresponding station is one data point).

Other limitations have been described such as loss coefficients and super-critical flow.

Cross-sections are extended vertically if the two end points of the cross-section are not entered high enough. The user should analyze the output VERSUS the input to ascertain if the cross-section end points have indeed been extended. The user may find this extension a powerful and useful feature in the case of confined channel flow by a dyke. However, if no artificial confinement in reality is desired, the user must ensure that the two end points inserted in the cross-section data are high enough to eventually confine the water, no matter what distance they occur from the main channel. Sometimes, this can lead to other problems and the user may have to modify the cross-section to counteract this problem. (Refer to the HELPFUL HINTS section - Item 6b).

All station values (that is X coordinates) must be input as integers. Upon entry of a zero or negative X coordinate value, this will always prompt the user to specify an "n" value. This latter requirement of the program is necessary as it is used to define the left overbank, main channel and right overbank subdivisions.

**EQUIPMENT REQUIREMENTS:**

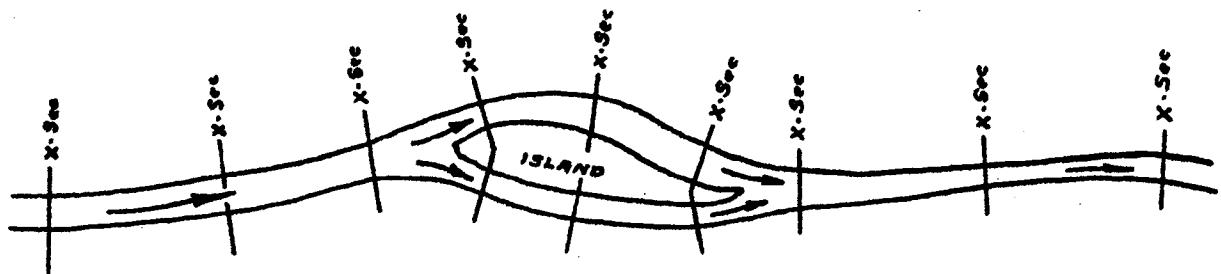
1. HP-41CV, HP-41CX or HP-41 with four memory modules.
2. HP digital cassette drive #82161A.
3. HP thermal printer #82162A.
4. HP-IL module #82160A.

## MANNING'S "n"

Manning's "n" is a dimension less number that defines the flow resistance to a unit of bed surface. Resistance is a function of size, bed shape, and constructional bed forms (eg: ripples). Manning's "n" incorporates many physical factors including the channel roughness, irregularity of the channel cross-section, channel alignment and bends, vegetation, sedimentation, scouring and channel obstructions. The following table presents a list of commonly used values for Manning's "n":

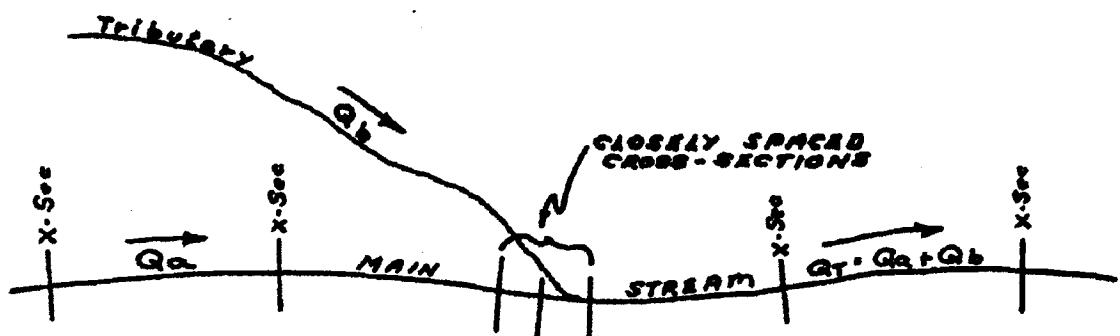
| Type and Description                                                | Min.   | Design | High  |
|---------------------------------------------------------------------|--------|--------|-------|
| Earth bottom, rubble sides                                          | 0.028  | 0.032  | 0.035 |
| Drainage ditches, large, no vegetation                              |        |        |       |
| with < 2.5 hydraulic radius                                         | 0.040  |        | 0.045 |
| with 2.5 - 4.0 hydraulic radius                                     | 0.035  |        | 0.040 |
| with 4.0 - 5.0 hydraulic radius                                     | 0.030  |        | 0.035 |
| with > 5.0 hydraulic radius                                         | 0.025  |        | 0.030 |
| Small drainage ditches                                              | 0.035  | 0.040  | 0.040 |
| Stony bed, weeds on bank                                            | 0.025  | 0.035  | 0.040 |
| Straight and uniform                                                | 0.017  | 0.0225 | 0.025 |
| Winding, sluggish                                                   | 0.0225 | 0.025  | 0.030 |
| (A) Clean straight bank, full stage, no rifts or deep pools         | 0.025  |        | 0.033 |
| (B) Same as (A) but some weeds and stones                           | 0.030  |        | 0.040 |
| (C) Winding, some pools and shoals, clean                           | 0.035  |        | 0.050 |
| (D) Same as (C), lower stages, more ineffective slopes and sections | 0.040  |        | 0.055 |
| (E) Same as (C), some weeds and stones                              | 0.033  |        | 0.045 |
| (F) Same as (D), stony sections                                     | 0.045  |        | 0.060 |
| (G) Sluggish river reaches, rather weedy or with very deep pools    | 0.050  |        | 0.080 |
| (H) Very weedy reaches                                              | 0.075  |        | 0.150 |

In the case of large, clean excavated ditches with no vegetation, Manning's "n" values could be assumed on the basis of the hydraulic radius. The hydraulic radius (R) is the area of the cross-section (A) divided by its wetted perimeter (WP). For parabolic channels where the water surface width is greater than the depth of water, the hydraulic radius may approximate a value close to two-thirds the depth. For those channel geometries that approximate trapezoidal or rectangular cross-sections and where the bottom width is greater than the average depth, the hydraulic radius will be close to the average depth. The hydraulic radius of a channel with a triangular cross-section, the hydraulic radius may be approximated as one-half the depth.


For natural channels, many uncertainties associated with Manning's equation can be minimized by basing the variables on accurately measured data. Specifically, the channel cross-section must be accurately surveyed to obtain measurements of the width, depth and hydraulic radius.

## SOME HELPFUL HINTS FOR THE PROGRAMMER

1. Unlike HEC-2, this program will not insert interpolated cross-sections upon request. Therefore, it is necessary for the programmer to insert cross-sections that are close enough if the velocity head becomes too great to accurately determine the energy gradient. Such an occurrence can happen if the channel raises or lowers, or expands or contracts abruptly while the reach lengths are excessive. Whenever there is a substantial difference in shape between previous and current cross-sections, the user should try to interpolate intermediate cross-section data for the program, provided that such interpolation is actually representative of the stream geometry. The number of interpolated cross-sections to be added may vary with discharge.
2. It has been generally been proven that best results can be attained if the first two cross-sections that are input into the program occur over a fairly short reach length. Length of reach for these cross-sections will vary according to flow and/or the starting water surface elevations. There generally is no real "rule of thumb" that can be suggested, except the user through experience, can fairly well tell the optimum reach length to use. If data is lacking, the user can set up dummy cross-sections between the first two known cross-sections by interpolation.
3. The user has the option available in this program to compute water surface profiles for channels with tributary stream systems. This is taken into account by the "CHANGE IN FLOW" option. To ensure profile accuracy, when in the vicinity of tributary confluences, the user should ensure that representative short reach lengths are used in the close proximity of the tributary confluence with the main stream.
4. Divided flow of the main channel can be handled by this program. Such occurrences may happen when flow splits around an island or some unsubmerged obstacle. Close reach lengths should be inserted prior to, by it and following the obstacle in order to give a true representation of the actual stream. As the velocity is computed using the total flow and total area of the main channel, the programmer may have to make allowances by reforming the cross-sections at the obstacle particularly if the reach lengths are not identical and/or velocities on each side are not proportionally divided. It may be advantageous for the user to use the option of overbank flow (provided it is not already used). Example three shows the method. This process can be quite tricky. Example three outlines three methods that can be used and the priority of usage.


5. The message "Assumed Critical Depth" should be verified by inspection of the channel properties. Additional cross-sections may be needed for insertion in order to preserve the assumption of gradually varied flow if the critical depth occurrence is not justified.
6. The user should be aware that ineffective flow areas of the flood plain in overbank flows should be excluded. Ineffective flow areas often include stream inlets, small ponds or indent in the valley floor.
- 6b. The user should always carefully analyze the output for inaccuracies that can sometimes occur particularly in a wide, flat flood plain with water flowing a relatively low depth. This inaccuracy can occur because the computed area will be a small value while on the other hand, the computed wetted perimeter will be large. In this case, the programmer, through experience, can slightly alter the geometry of a wide a flat flood plain to more truly represent the flow in the subdivision by introducing a slight slope to shorten the overall width of the flood plain.
7. Cross-section end points are automatically projected vertically if they were not originally input high enough. If this vertical extension could produce unreasonable results, the input data should be corrected and the job rerun. (Refer to 6b).
8. Page 18 shows an example of cross-section data input in a divided flow situation, followed by example for cross-section input in the vicinity of a tributary situation.
9. Time of computation with the calculator and this program varies and depends upon many factors such as length of reach, flow, number of data points entered to describe the cross-section, and the starting water surface elevation. Usually the computation time to compute the CWSEL for each section is relatively small. On the average, I would say that a "balanced" condition can be established at a cross-section between one to five minutes. Sometimes less.

### EXAMPLE OF DIVIDED FLOW INPUT



Cross-Sections closely spaced prior to, around and after the obstacle.

### EXAMPLE OF X-SECTION INPUT BY A TRIBUTARY



Cross-Sections closely spaced prior to and after the tributary confluence.

10. A User's "Failsafe" is provided for Data Input. In the program used for input, ie: "SECTION", the user will find a label, namely A. This is the User's Failsafe which can be used for any "Goof-ups" of any data input for the cross-section. In order to use this label, the user must first complete the input for one data point (X and Y coordinates). Then execute the label. Upon doing so, this will return the program for entry of new and correct data. The following example shows how this works and exhibits two errors that have initially been entered for input.

|                |      |     |                                     |
|----------------|------|-----|-------------------------------------|
| No. of points? | 4    | R/S | Four data points are to be entered  |
| Elev?          | 10   | R/S |                                     |
| Sta?           | 0    | R/S | First data point completed.         |
| n?             | .040 | R/S | Prompt for Manning's "n".           |
| Elev?          | 0    | R/S |                                     |
| Sta?           | 11   | R/S | Second data point completed.        |
| Elev?          | 10   | R/S | ← Oops. Should have been zero.      |
| Sta?           | 31   | R/S | ← The "X" coordinate was completed. |

The second data point being completed, the user can:

|                   |    |     |                              |
|-------------------|----|-----|------------------------------|
| XEQ Alpha A Alpha |    |     | ← Execute label A            |
| Elev?             | 0  | R/S | ← Correct value was entered. |
| Sta?              | 21 | R/S | ← Oops. Should have been 31. |

The second data point being completed, the user can:

|                   |    |     |                              |
|-------------------|----|-----|------------------------------|
| XEQ Alpha A Alpha |    |     | ← Execute label A            |
| Elev?             | 0  | R/S |                              |
| Sta?              | 31 | R/S | Third data point completed.  |
| Elev?             | 10 | R/S |                              |
| Sta?              | 41 | R/S | Fourth data point completed. |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                  | INPUT<br>DATA/<br>UNITS  | KEYS    | OUTPUT<br>DATA/<br>UNITS |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--------------------------|
|      | <b>PART ONE</b><br>This assumes the program "SECTION" has been placed on tape.                                                                                                                                                                                                                                                                                                |                          |         |                          |
| 1    | Connect the calculator, thermal printer and digital cassette drive in series.                                                                                                                                                                                                                                                                                                 |                          |         |                          |
| 2    | Execute Alpha SIZE Alpha 093.                                                                                                                                                                                                                                                                                                                                                 |                          | XEQ 093 |                          |
| 3    | Key Alpha SECTION Alpha.                                                                                                                                                                                                                                                                                                                                                      |                          |         |                          |
| 4    | Execute Alpha READP Alpha. The input portion of the program will be read into the calculator, at which time a tone will be heard.                                                                                                                                                                                                                                             |                          |         |                          |
| 5    | Execute Alpha SECTION Alpha.                                                                                                                                                                                                                                                                                                                                                  |                          | XEQ     |                          |
| 6    | The user will first be prompted by the question: "NO. OF SECTIONS?". Key in the number of cross-sections, including the first, that are intended to be input over the entire profile. Then press R/S.                                                                                                                                                                         | Number of cross-sections |         | R/S                      |
| 7    | The user will be prompted with the question: "IDENTICAL SECTIONS?". If all cross-section station points throughout the entire intended profile and including the Manning's "n" values are identical, then the answer is YES and key 1. If the cross-section station points and/or Manning's "n" are not identical, key any other number. Press R/S after the number is keyed. | 1 or eg: 0               |         | R/S                      |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INPUT DATA/ UNITS            | KEYS | OUTPUT DATA/ UNITS |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|--------------------|
| 8    | If NO was the reply to the previous question, go to step 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |      |                    |
| 9    | The user will be prompted with the question: "HAS CHANNEL A SLOPE?" This means that if the channel has a slope, a factor can be added to all previous elevation points at each cross-section. <u>The user should be aware that not only does the channel bottom increase or decrease to conform with the slope, but also will all other elevation points of the cross-section.</u> If this is correct, then YES is the answer and key 1. If NO is the answer, then all cross-sections up the channel will remain unmodified from the first (that is, the slope of the channel is zero). Key any other number. After this number is keyed, press R/S. | 1 or eg: 0                   |      |                    |
| 10   | The user will be prompted by the question: "OVERBANK FLOW?" If the flow is overbank; that is each cross-section subdivision can be assigned a different Manning's "n" value, and/or reach length, then the answer is YES and key 1. If NO, that is, a singular main channel exists with no change in "n" values occurring across the cross-section, key any other number. After the numbers are keyed, press R/S.                                                                                                                                                                                                                                    | 1 or eg: 0                   |      |                    |
| 11   | The user will be prompted by the question: "CHANNEL FLOW?" Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q in cfs or m <sup>3</sup> s |      |                    |

## USER INSTRUCTIONS

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                             | INPUT DATA/<br>UNITS                                                                                                          | KEYS                                                                                                                                                                                                                                                                                                                        | OUTPUT DATA/<br>UNITS |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 16   | Prompt now will be "ELEV?" Key the elevation of the second data point, then press R/S.                                                                                                                                                                                                                                                                                                                                                   | Elevation?<br>feet or<br>metres                                                                                               | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> R/S                                                                                                                                                                                                                                  |                       |
| 17   | Prompt now will be "STA?" If the overbank flow has not been specified, key the corresponding station as a positive integer. If overbank flow has been specified, the user has the option of declaring this station point as the end of the left overbank subdivision and the beginning of the main channel. If this is true, key the station as a negative integer. If not, key the station as a positive integer, then press R/S.       | Station?<br>feet or<br>metres<br>Key as<br>integer.<br>Positive or<br>negative<br>value if<br>an "n"<br>value is<br>requested | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> R/S |                       |
| 18   | If a negative integer was keyed in Step 17, prompt will be "N?". If a positive integer was keyed in Step 17, prompt will be "ELEV?". Repeat Steps 16 and 17, or if overbank flow is specified, repeat Steps 15, 16 and 17 until all data points have been keyed into the calculator. <u>If overbank flow is specified, three "n" values must be keyed, to designate the left overbank, main channel and right overbank subdivisions.</u> | Elevation<br>or "n"<br>value.<br><br>After each<br>input the<br>user must<br>press R/S.                                       | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> R/S |                       |
| 19   | All pertinent data for the first section will now be set up on file on the digital cassette, designated as file 1.00. A print message will indicate that this has been completed with "SECTION 1.00 OK". The registers being read and verified, the user now                                                                                                                                                                             | Filename<br>1.00 is<br>filed on<br>the tape<br>in the<br>cassette.                                                            | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                            |                       |

## USER INSTRUCTIONS

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                               | INPUT<br>DATA/<br>UNITS        | KEYS                                                                                                                                                                                                                                                                       | OUTPUT<br>DATA/<br>UNITS                                                                                                                                                                                                                                                   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | YES is the answer, key 1. If NO, key any other number. Press R/S.                                                                                                                                                                                                          |                                | <input type="text"/> <input type="text"/>                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |
| 25   | If NO was keyed to the question in Step 24, go to Step 29.                                                                                                                                                                                                                 |                                | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| 26   | Prompt now will be the question: "NEW CONTRACTION VALUE? 0 to 1". Key the new value, then press R/S.                                                                                                                                                                       | New Cc.<br>from 0<br>to 1      | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                           | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                           |
| 27   | Prompt now will be the question: "EXPANSION VALUE CHANGE?" <u>If this number is to be changed, YES is the answer</u> , key 1. If NO, key any other number. After the numbers are keyed, press R/S.                                                                         | New Ce?<br>1 or eg: 0          | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                           | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                           |
| 28   | If NO was the answer to the question in Step 26, go to Step 30.                                                                                                                                                                                                            |                                | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| 29   | Prompt now will be the question: "NEW EXPANSION VALUE? 0 to 1. Key the new value and press R/S.                                                                                                                                                                            | New Ce.<br>from 0<br>to 1      | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                        | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                        |
| 30   | If overbank flow was not specified, go Step 33.                                                                                                                                                                                                                            |                                | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| 31   | Prompt now will be the question: "DIST. LOB?" (Length of reach for the left overbank subdivision between the two cross-sections). Overbank lengths should be measured along the anticipated path of the center of mass of the overbank flow. Key the number and press R/S. | $L_{lob}$<br>feet or<br>metres | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> |

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                      | INPUT<br>DATA/<br>UNITS                                                        | KEYS                                                                                                                                                                                         | OUTPUT<br>DATA/<br>UNITS                                                                                                                                                                     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32   | Prompt now will be the question: "DIST. ROB?" (Length of reach for the right overbank subdivision between the two cross-sections). Measured as per instructions in Step 31. Key the number and press R/S.                                                                                         | $L_{rob}$<br>feet or<br>metres                                                 | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> |
| 33   | Prompt now will be the question: "DIST. M. CHL?" (Length of reach for main channel between the two cross-sections). This reach length is typically measured along the thalweg. Key the number and press R/S.                                                                                      | $L_{mn. chl}$<br>feet or<br>metres                                             | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> |
| 34   | If in Step 6, identical sections were requested, go to Step 36.                                                                                                                                                                                                                                   |                                                                                | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> |
| 35   | The user will now be prompted for the description of the cross-section; that is the number of points, the elevation, station, Manning's "n" value, etc. The procedure follows exactly the same format and user input as Steps 12 through 18. Go to Step 38.                                       |                                                                                | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> |
| 36   | If the user indicated in Step 9 that the channel had no slope, go to Step 38.                                                                                                                                                                                                                     |                                                                                | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> |
| 37   | Prompt now will be: "ADD FACTOR?" The user in this Step has indicated that the cross-section stations are identical and that all cross-section elevations can be added to by some factor to compensate for the channel slope. For example, suppose the channel has a uniform slope of one percent | Factor to<br>be added<br>to all<br>elevation<br>values<br>in feet<br>or metres | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> | <input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/><br><input type="text"/> |

## USER INSTRUCTIONS

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                | INPUT<br>DATA/<br>UNITS | KEYS                                                                                                                                | OUTPUT<br>DATA/<br>UNITS |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|      | <b>PART TWO</b><br>This assumes the programs used for analysis have been placed on tape.                                                                                                                                    |                         | <input type="text"/> <input type="text"/>                                                                                           |                          |
| 1    | Connect the calculator, thermal printer and digital cassette drive in series.                                                                                                                                               |                         | <input type="text"/> <input type="text"/>                                                                                           |                          |
| 2    | Execute Alpha SIZE Alpha 093. (Disregard this Step if the calculator has not been altered since Step 2 of Part One.)                                                                                                        | SIZE                    | <b>XEQ</b> <input type="text"/> 093<br><input type="text"/> <input type="text"/>                                                    |                          |
| 3    | If Metric Units are input, go to Step 5.                                                                                                                                                                                    |                         | <input type="text"/> <input type="text"/>                                                                                           |                          |
| 4    | Key Alpha WASPIMP Alpha. (Water Surface Profiles Imperial System). Go to Step 7.                                                                                                                                            |                         | <input type="text"/> <input type="text"/>                                                                                           |                          |
| 5    | Key Alpha WASPMET Alpha. (Water Surface Profiles Metric System).                                                                                                                                                            |                         | <input type="text"/> <input type="text"/>                                                                                           |                          |
| 6    | Execute Alpha READP Alpha. The program used for analysis will now be read into the calculator, at which time a tone will be heard.                                                                                          |                         | <input type="text"/> <input type="text"/><br><b>XEQ</b> <input type="text"/>                                                        |                          |
| 7    | Execute Alpha WASPIMP Alpha (Imperial System) or Alpha WASPMET Alpha (Metric System).                                                                                                                                       |                         | <input type="text"/> <input type="text"/><br><b>XEQ</b> <input type="text"/>                                                        |                          |
| 8    | The user will be prompted with the question: "TITLE?" A combination of 16 letters, numbers and spaces can be keyed into the calculator in the Alpha mode to describe the stream or project. After the title is keyed, press | Job Name                | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> |                          |

## USER INSTRUCTIONS

## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INPUT DATA/ UNITS                    | KEYS | OUTPUT DATA/ UNITS |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|--------------------|
|      | cross-section (ie: cross-section 1.00) and press R/S.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |      |                    |
| 12   | Unless the user requests a rerun, the prompt of Step 11 will be the last that is required of the user. The calculator will automatically compute the water surface profile for each cross-section that has been input and will stop after the last cross-section file set up from Part One has been read and analyzed. The user will be alerted that the computation is finished by two BEEPS. The program automatically terminates. Refer to the examples that follows for input and output. |                                      |      |                    |
| 13   | For multiple water surface profiles, (subsequent jobs of the same run), execute Alpha RERUN Alpha. If it is desired to compute the water surface profile using a different representative friction equation in a subsequent job, go to Step 22.                                                                                                                                                                                                                                               | Reruns                               |      |                    |
| 14   | The user will be prompted with the question: "CHANGE Q?". <u>If flows already set up on files from Part One are to be modified for the next run, then YES is the answer, key 1.</u> If NO, key any other number. After the numbers are keyed, press R/S.                                                                                                                                                                                                                                      | Is flow to be changed?<br>1 or eg: 0 |      |                    |
| 15   | If NO was keyed to the question in Step 14, go to Steps 20 and 21.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |      |                    |

## USER INSTRUCTIONS

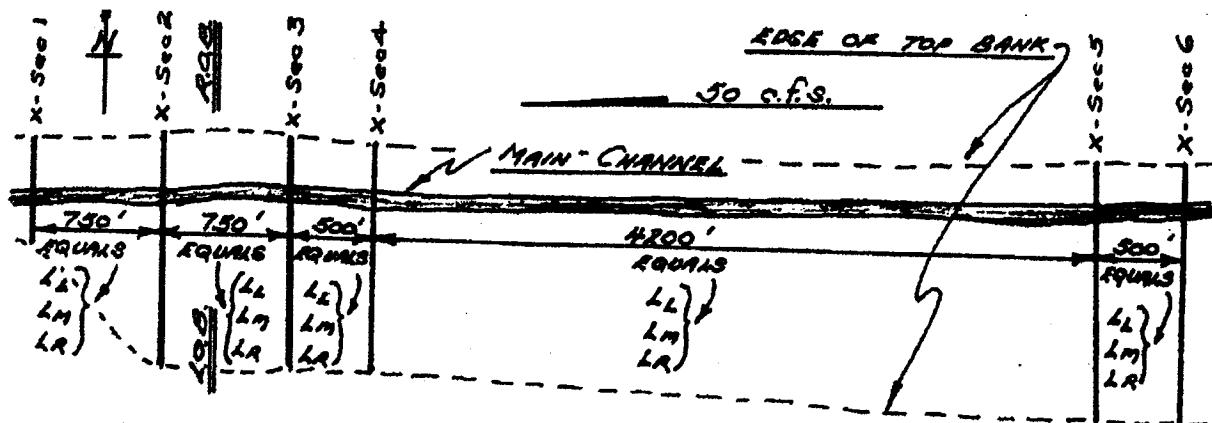
| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INPUT DATA/<br>UNITS            | KEYS                                                                                                                                                                                                                                                                                                                                                                 | OUTPUT DATA/<br>UNITS |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 16   | Prompt will be the question: "CONST. Q?" <u>If the flow to be input is constant throughout, key 1.</u> If not, key any other number. After the numbers are keyed, press R/S.                                                                                                                                                                                                                                                                                                                                                                                                        | Is flow constant?<br>1 or eg: 0 | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> R/S                                                                                                                                                                                                                              |                       |
| 17   | If NO was the response in Step 16, go to Step 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                                                                                                                                                               |                       |
| 18   | Prompt now will be: "NEW Q?". Key the new flow and press R/S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q in cfs or cms                 | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> R/S                                                                                                                                                                                                                                                                           |                       |
| 19   | The program will now begin with the reading of file 1.00. Refer to Steps 11, 12 and 13 of Part Two.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                                                                                                                                                                                                               |                       |
| 20   | The program will now begin with the printing of Section 1.00 at which time a tone will be heard to alert the user along with a prompt: "NEW Q?" Key the new flow and press R/S.                                                                                                                                                                                                                                                                                                                                                                                                     | Q in cfs or cms                 | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> R/S                                                                                                                                                                                                                              |                       |
| 21   | Refer to Steps 11 and 12 of Part Two. As new files are subsequently read, after the section number has been printed, the user will again be alerted by a tone, and prompted for the input of new flows. If it is inconvenient for the user to "babysit" the calculator for the input of new flows, then it is advisable to set up new files as per Part One with the new flows. This can be done using the same tape after purging the initial files that were set up in Part One and making up new ones. Alternatively, it can be done by setting up new files on a separate tape. |                                 | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> |                       |

## USER INSTRUCTIONS

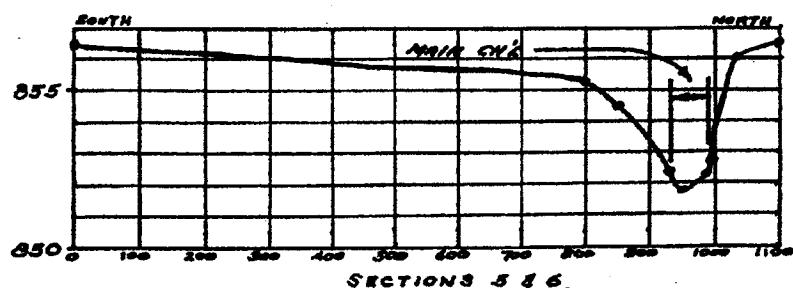
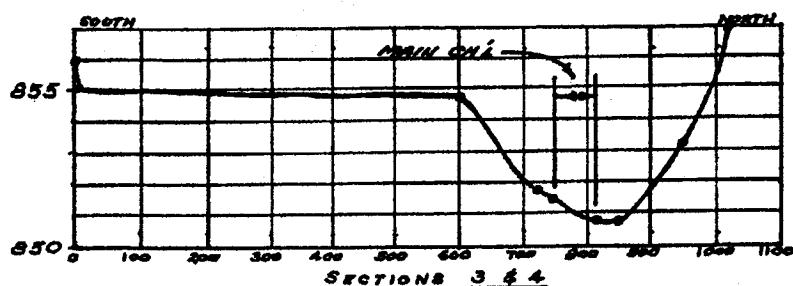
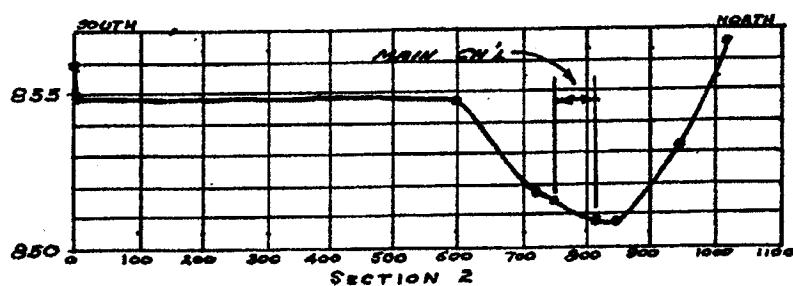
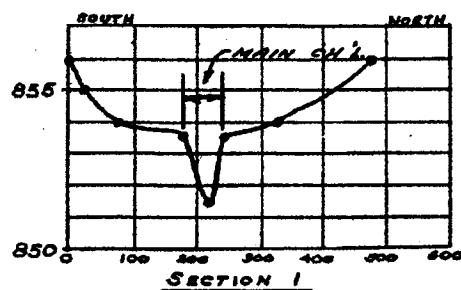
## USER INSTRUCTIONS

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                   | INPUT<br>DATA/<br>UNITS | KEYS                                                                                                                                                                                                                                                                                                                                                                 | OUTPUT<br>DATA/<br>UNITS |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|      | <u>PART THREE</u>                                                                                                                                                                                                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                      |                          |
| 1    | The user is probably aware that the files set up for the cross-sections are permanently recorded on the tape contained in the cassette drive. Once the user is satisfied with the results of the computation, the files must be erased as no new file can be set up on the same cassette with the same file name for new jobs. | Purging old files.      | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/> |                          |
| 2    | Three methods are available to the user to purge the tapes. Two of these methods are manual and the third is automatic.                                                                                                                                                                                                        |                         | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                                                                           |                          |
| 3    | <u>Method One (Manual).</u><br>a Key Alpha FILENAME Alpha where FILENAME is file name is 1.00, 2.00, 3.00, etc.<br>b Execute Alpha PURGE Alpha.<br>c Repeat Steps a and b until all the cross-section files are purged.                                                                                                        |                         | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                              |                          |
| 4    | <u>Method Two (Manual).</u><br>a Key 1 STO 00 and f FIX 2.<br>b Key Alpha f CLA Alpha.<br>c Execute Alpha ARCL Alpha 00.<br>d Execute Alpha PURGE Alpha.<br>e Key 1 and Alpha ST+ Alpha 00.<br>f Repeat steps b through e until all the cross-section files are purged.                                                        |                         | <input type="text"/> <input type="text"/><br><input type="text"/> <input type="text"/>                                              |                          |

## USER INSTRUCTIONS


| STEP | INSTRUCTIONS                                                                                                                                                                                                                  | INPUT DATA/ UNITS                                    | KEYS | OUTPUT DATA/ UNITS |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|--------------------|
| 5    | <u>Method 3 (Automatic)</u>                                                                                                                                                                                                   |                                                      |      |                    |
| a    | Key Alpha BYE Alpha.                                                                                                                                                                                                          | Using a program that has been set up on the cassette |      |                    |
| b    | Execute Alpha READP Alpha.                                                                                                                                                                                                    |                                                      |      |                    |
| c    | Execute BYE.                                                                                                                                                                                                                  |                                                      |      |                    |
| d    | This program will ask for the starting file number.                                                                                                                                                                           |                                                      |      |                    |
| e    | In this case, the usual answer is 1. Key 1 then press R/S.                                                                                                                                                                    |                                                      |      |                    |
| f    | The program will ask the ending file number. Key the ending file number.                                                                                                                                                      | Filename is BYE                                      |      |                    |
| g    | The program will automatically purge files from 1.00 to N.00. When completed the program will clear all storage registers, automatic memory stack, X register, alpha register, all flags and will set the fixed display to 4. |                                                      |      |                    |

## EXAMPLE ONE





## A Simple Example of Overbank Flow - Imperial System Units

Name of Job: Tidewater Creek

## PLAN VIEW OF THE AREA (Not to scale)



Cross-sections for the channel length to be studied are shown on Page 36.



### Cross-Sections For Tidewater Creek

Scales: Horizontal      1" = 200 Feet  
 Vertical      1" = 5 Feet

Cross-Section 1ElevationStation

|                       |            |                    |
|-----------------------|------------|--------------------|
| Q - 50 cfs            | 856.0      | 0 ←                |
| $n_{lob}$ - 0.085     | 855.0      | 20 left overbank   |
| $n_{mn\ chl}$ - 0.040 | 854.0      | 80                 |
| $n_{rob}$ - 0.085     | 853.6 ←    | 180 ←              |
| $C_c$ - 0.10          | 851.4 open | 210 main channel   |
| $C_e$ - 0.30          | 853.6 ←    | 240 ←              |
|                       | 854.0      | 320 right overbank |
|                       | 856.0      | 480 ←              |

Cross-Section 2ElevationStation

|                                    |                 |                    |
|------------------------------------|-----------------|--------------------|
| Q - no change                      | 856.0           | 0 ←                |
| $n_{lob}$ - 0.100                  | 854.9           | 1 left             |
| $n_{mn\ chl}$ - 0.040              | 854.8 ← heavily | 600 overbank       |
| $n_{rob}$ - 0.100                  | 851.8 wooded    | 720                |
| $C_c$ - 0.00                       | 851.5 ←         | 750 ← main         |
| $C_e$ - 0.00                       | 850.9 ← open    | 810 ← channel      |
|                                    | 850.9 heavily   | 850                |
| Length of Reach equal at 750 feet. | 853.1 ← wooded  | 950 right overbank |
|                                    | 856.7           | 1020 ←             |

Cross-Section 3ElevationStation

|                                    |                 |                    |
|------------------------------------|-----------------|--------------------|
| Q - no change                      | 856.0           | 0 ←                |
| $n_{lob}$ - 0.100                  | 855.0           | 1                  |
| $n_{mn\ chl}$ - 0.040              | 854.8 ← heavily | 600 left overbank  |
| $n_{rob}$ - 0.100                  | 851.8 wooded    | 720                |
| $C_c$ - 0.00                       | 851.5 ←         | 750 ← main         |
| $C_e$ - 0.00                       | 850.9 ← open    | 810 ← channel      |
|                                    | 850.9 heavily   | 850                |
| Length of Reach Equal at 750 feet. | 853.1 ← wooded  | 950 right overbank |
|                                    | 857.0           | 1020 ←             |

Cross-Section 4ElevationStation

|                       |                 |                    |
|-----------------------|-----------------|--------------------|
| Q - no change         | 856.0           | 0 ←                |
| $n_{lob}$ - 0.090     | 855.0           | 1 left overbank    |
| $n_{mn\ chl}$ - 0.040 | 854.8 ← heavily | 600                |
| $n_{rob}$ - 0.090     | 851.8 wooded    | 720                |
| $C_c$ - 0.00          | 851.5 ← open    | 750 ← main channel |
| $C_e$ - 0.00          | 850.9 ←         | 810 ←              |
|                       | 850.9 heavily   | 850                |
| Length of Reach       | 853.1 ← wooded  | 960 right overbank |
| Equal at 500 feet.    | 857.0           | 1020 ←             |

Cross-Section 5ElevationStation

|                       |                 |                     |
|-----------------------|-----------------|---------------------|
| Q - no change         | 856.5           | 0 ←                 |
| $n_{lob}$ - 0.090     | 855.2           | 800 left overbank   |
| $n_{mn\ chl}$ - 0.040 | 854.5 ← heavily | 850                 |
| $n_{rob}$ - 0.090     | 852.4 ← wooded  | 930 ←               |
| $C_c$ - 0.00          | 851.8 open      | 950 main channel    |
| $C_e$ - 0.00          | 852.2           | 990                 |
|                       | 852.6 ← heavily | 995 ←               |
| Length of Reach       | 856.0 ← wooded  | 1035 right overbank |
| Equal at 4200 feet.   | 856.5           | 1100 ←              |

Cross-Section 6ElevationStation

|                       |                 |                     |
|-----------------------|-----------------|---------------------|
| Q - no change         | 856.5           | 0 ←                 |
| $n_{lob}$ - 0.090     | 855.2           | 800 left overbank   |
| $n_{mn\ chl}$ - 0.040 | 854.5 ← heavily | 850                 |
| $n_{rob}$ - 0.090     | 852.4 ← wooded  | 930 ←               |
| $C_c$ - 0.00          | 851.8 open      | 950 main channel    |
| $C_e$ - 0.00          | 852.2           | 990                 |
|                       | 852.6 ← heavily | 995 ←               |
| Length of Reach       | 856.0 ← wooded  | 1035 right overbank |
| Equal at 500 feet.    | 856.5           | 1100 ←              |

## The Input Using 'PART ONE'

"SECTION" program is loaded into the calculator and is now ready for Section 1.00

|                     |         | <u>Keys</u> |
|---------------------|---------|-------------|
| NUMBER OF SECTIONS? | 6       | R/S         |
| IDENTICAL SECTIONS? | No      | R/S         |
| OVERBANK FLOW?      | Yes     | R/S         |
| CHANNEL FLOW?       | 50      | R/S         |
| NO. OF POINTS?      | 8       | R/S         |
| ELEV?               | 856.0   | R/S         |
| STA?                | 0       | R/S         |
| N?                  | .085    | R/S         |
| ELEV?               | 855.0   | R/S         |
| STA?                | 20      | R/S         |
| ELEV?               | 854.0   | R/S         |
| STA?                | 80      | R/S         |
| ELEV?               | 853.6   | R/S         |
| STA?                | (-) 180 | R/S         |
| N?                  | .040    | R/S         |
| ELEV?               | 851.4   | R/S         |
| STA?                | 210     | R/S         |
| ELEV?               | 853.6   | R/S         |
| STA?                | (-) 240 | R/S         |
| N?                  | .085    | R/S         |
| ELEV?               | 854.0   | R/S         |
| STA?                | 320     | R/S         |
| ELEV?               | 856.0   | R/S         |
| STA?                | 480     | R/S         |

The data for Section 1.00 was saved on the cassette. Now ready for Section 2.00

|                           |         | <u>Keys</u> |
|---------------------------|---------|-------------|
| CHANGE IN FLOW?           | No      | 0           |
| LOSS COEFF. CHG?          | Yes     | 1           |
| CONTRACTION VALUE CHANGE? | Yes     | 1           |
| NEW CONTRACTION VALUE?    | 0.0     | R/S         |
| EXPANSION VALUE CHANGE?   | Yes     | 1           |
| NEW EXPANSION VALUE?      | 0.0     | R/S         |
| DIST. LOB?                | 750.0   | R/S         |
| DIST. ROB?                | 750.0   | R/S         |
| DIST. M. CHL?             | 750.0   | R/S         |
| NO. OF POINTS?            | 9       | R/S         |
| ELEV?                     | 856.0   | R/S         |
| STA?                      | 0       | R/S         |
| N?                        | .100    | R/S         |
| ELEV?                     | 854.9   | R/S         |
| STA?                      | 1       | R/S         |
| ELEV?                     | 854.8   | R/S         |
| STA?                      | 600     | R/S         |
| ELEV?                     | 851.8   | R/S         |
| STA?                      | 720     | R/S         |
| ELEV?                     | 851.5   | R/S         |
| STA?                      | (-) 750 | R/S         |
| N?                        | .040    | R/S         |
| ELEV?                     | 850.9   | R/S         |
| STA?                      | (-) 810 | R/S         |
| N?                        | .100    | R/S         |
| ELEV?                     | 850.9   | R/S         |
| STA?                      | 850     | R/S         |
| ELEV?                     | 853.1   | R/S         |
| STA?                      | 950     | R/S         |
| ELEV?                     | 856.7   | R/S         |
| STA?                      | 1020    | R/S         |

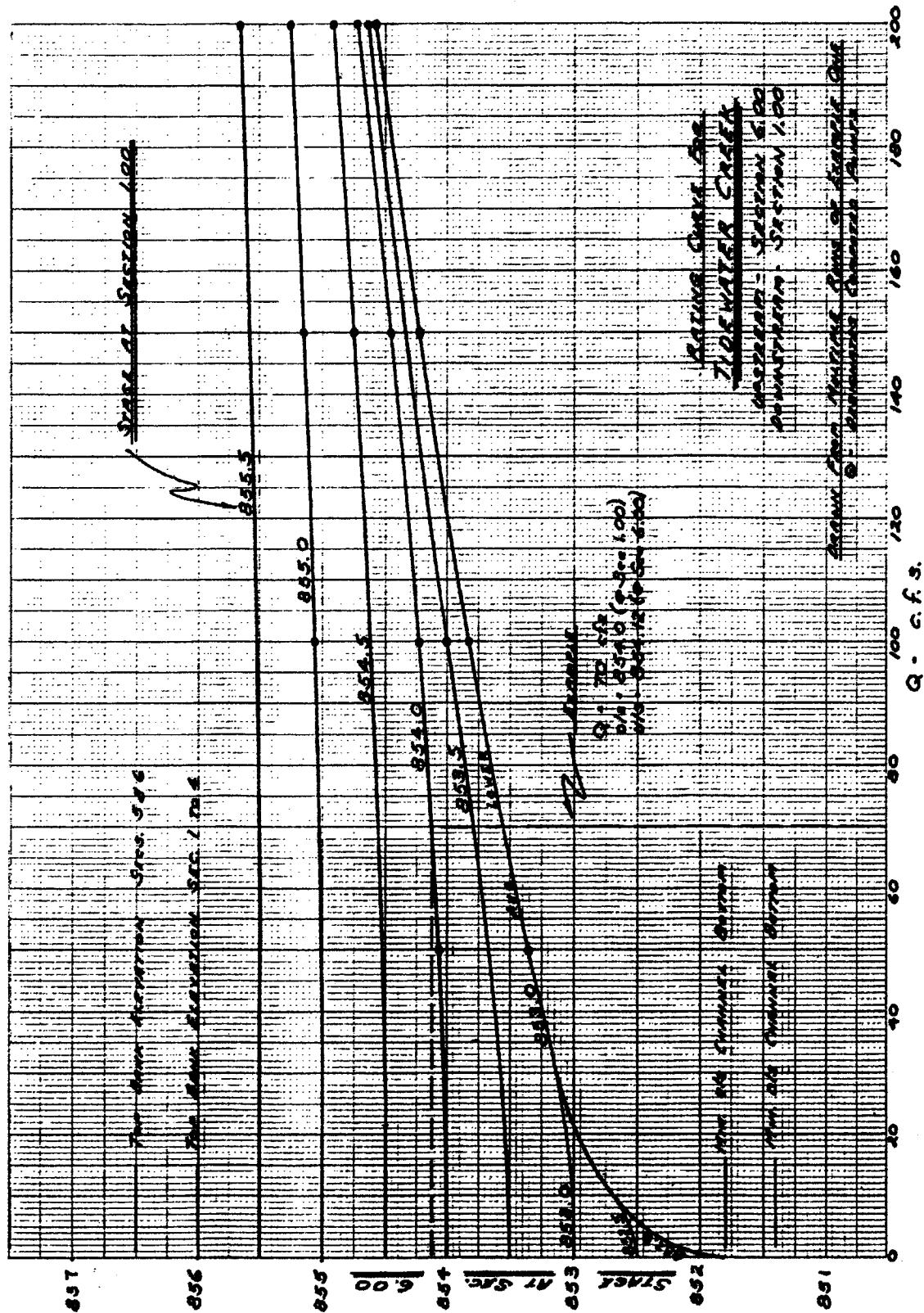
The data for Section 2.00 was saved on the cassette. Now ready for Section 3.00

|                 |    |   |     |
|-----------------|----|---|-----|
| CHANGE IN FLOW? | No | 0 | R/S |
|-----------------|----|---|-----|

and etc. for the rest of the cross-sections. Finally once Section 6 has been recorded and verified on tape in the cassette drive, program "SECTION" Stops.

## PART TWO of Example One

Program "WASPIMP" is loaded into the calculator

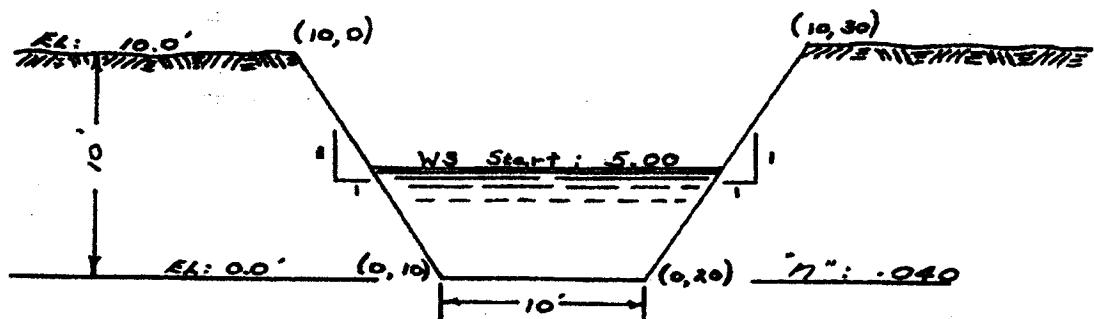

### Keys

|                     |                 |     |
|---------------------|-----------------|-----|
| TITLE?              | TIDEWATER CREEK | R/S |
| OVERBANK Q?         | Yes             | 1   |
| AV. CONVEYANCE EQN? | Yes             | 1   |
| WS START?           | 853.0           | R/S |

## OUTPUT FOR EXAMPLE ONE

| N. S. PROFILES         | SECTION NO: - 4.00    |
|------------------------|-----------------------|
| TITLE: TIDEWATER CREEK |                       |
| SECTION NO: - 1.00     | Q. cfs - 50.00        |
| Q. cfs - 50.00         | Cc. - 0.00 Ce. - 0.00 |
| Cc. - 0.10 Ce. - 0.30  | L. lob - 500.00       |
| HS. INPUT: 853.00      | L. rob - 500.00       |
| HS. START: 853.00      | L. nn. chl - 500.00   |
| R. lob - 0.00          | Cum. L. - 2,000.00    |
| R. rob - 0.00          | R. lob - 77.34        |
| R. nn. chl - 34.91     | R. rob - 205.99       |
| R. total - 34.91       | R. nn. chl - 114.40   |
|                        | R. total - 402.23     |
|                        | CSEL: 853.11          |
| SECTION NO: - 2.00     | SECTION NO: - 5.00    |
| Q. cfs - 50.00         | Q. cfs - 50.00        |
| Cc. - 0.00 Ce. - 0.00  | Cc. - 0.00 Ce. - 0.00 |
| L. lob - 750.00        | L. lob - 4,200.00     |
| L. rob - 750.00        | L. rob - 4,200.00     |
| L. nn. chl - 750.00    | L. nn. chl - 4,200.00 |
| Cum. L. - 750.00       | Cum. L. - 4,200.00    |
| R. lob - 75.03         | R. lob - 14.63        |
| R. rob - 195.48        | R. rob - 2.69         |
| R. nn. chl - 112.92    | R. nn. chl - 78.97    |
| R. total - 304.23      | R. total - 96.29      |
| CSEL: 853.00           | CSEL: 853.28          |
| SECTION NO: - 3.00     | SECTION NO: - 6.00    |
| Q. cfs - 50.00         | Q. cfs - 50.00        |
| Cc. - 0.00 Ce. - 0.00  | Cc. - 0.00 Ce. - 0.00 |
| L. lob - 750.00        | L. lob - 300.00       |
| L. rob - 750.00        | L. rob - 500.00       |
| L. nn. chl - 750.00    | L. nn. chl - 500.00   |
| Cum. L. - 1,500.00     | Cum. L. - 6,700.00    |
| R. lob - 77.02         | R. lob - 17.92        |
| R. rob - 197.53        | R. rob - 3.49         |
| R. nn. chl - 113.00    | R. nn. chl - 85.04    |
| R. total - 308.34      | R. total - 106.44     |
| CSEL: 853.10           | CSEL: 853.37          |

Several runs were made with varied flows and starting water surface elevations. Page 42 shows a RATING CURVE for Tidewater Creek from Cross-Section 1 to Cross-Section 6.




## EXAMPLE TWO

This is a simple example for main channel flow.

Name of job: IDEAL CHANNEL

This example is an excavated trapezoidal channel with zero gradient, bottom width of 10 feet and side slopes 1 to 1. The elevation and station coordinates for this channel is shown using Y and X HEC-2 convention coordinates. Dimensions are Imperial.



Program "SECTION" is loaded into the calculator and ready for Section 1.00.

### Keys

|                      |      |     |
|----------------------|------|-----|
| NO. OF SECTIONS?     | 6    | R/S |
| IDENTICAL SECTIONS?  | Yes  | R/S |
| HAS CHANNEL A SLOPE? | No   | R/S |
| OVERBANK FLOW?       | No   | R/S |
| CHANNEL FLOW?        | 100  | R/S |
| NO. OF POINTS?       | 4    | R/S |
| ELEV?                | 10.0 | R/S |
| STA?                 | 0    | R/S |
| N?                   | .040 | R/S |
| ELEV?                | 0    | R/S |
| STA?                 | 10   | R/S |
| ELEV?                | 0    | R/S |
| STA?                 | 20   | R/S |
| ELEV?                | 10   | R/S |
| STA?                 | 30   | R/S |

This data is filed on tape in the digital cassette drive. Now ready for Section 2.00

| <u>Keys</u>              |      |   |     |
|--------------------------|------|---|-----|
| CHANGE IN FLOW?          | No   | 0 | R/S |
| LOSS COEFFICIENT CHANGE? | No   | 0 | R/S |
| DIST MN CHL?             | 50.0 |   | R/S |
| CHANGE IN FLOW?          | No   | 0 | R/S |

and etc. for the rest of the cross-sections having lengths of reach of 100, 500, 1000, and 2000 for cross-sections 3, 4, 5 and 6 respectively.

Program "WASPIMP" is now loaded into the calculator.

| <u>Keys</u>         |               |   |     |
|---------------------|---------------|---|-----|
| TITLE?              | IDEAL CHANNEL |   | R/S |
| OVERBANK FLOW?      | No            | 0 | R/S |
| AV. CONVEYANCE EQN? | Yes           | 1 | R/S |
| WS START?           | 5.00          |   | R/S |

The calculator will now run and stop after the computation for cross-section 6.00 is completed.

A rerun is then executed, but this time it will make use of the average friction slope equation.

| <u>Keys</u>           |      |         |     |
|-----------------------|------|---------|-----|
| Clear Flag 8          |      | f CF 08 |     |
| XEQ Alpha RERUN Alpha |      |         | R/S |
| CHANGE Q?             | No   | 0       | R/S |
| WS START?             | 5.00 |         | R/S |

The calculator will now run and stop after the computation for cross-section 6.00 is completed. (Note that in this rerun, the program does not ask for input for the "TITLE".

The output for EXAMPLE TWO is shown on page 45.

## OUTPUT FOR EXAMPLE TWO

$\bar{S}_f$  - average conveyance equation.

$\bar{S}_f$  - average friction slope equation.

TITLE: IDEAL CHANNEL

SECTION NO: - 1.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 HS. INPUT: 5.00  
 HS. START: 5.00  
 A. total - 75.00

SECTION NO: - 2.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 50.00  
 Cum. L. - 50.00  
 A. total - 75.20  
 CHSEL: 5.01

SECTION NO: - 3.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 100.00  
 Cum. L. - 150.00  
 A. total - 75.74  
 CHSEL: 5.04

SECTION NO: - 4.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 500.00  
 Cum. L. - 650.00  
 A. total - 78.43  
 CHSEL: 5.17

SECTION NO: - 5.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 1,000.00  
 Cum. L. - 1,650.00  
 A. total - 83.19  
 CHSEL: 5.40

SECTION NO: - 6.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 2,000.00  
 Cum. L. - 3,650.00  
 A. total - 91.23  
 CHSEL: 5.78

SECTION NO: - 1.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 HS. INPUT: 5.00  
 HS. START: 5.00  
 A. total - 75.00

SECTION NO: - 2.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 50.00  
 Cum. L. - 50.00  
 A. total - 75.20  
 CHSEL: 5.01

SECTION NO: - 3.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 100.00  
 Cum. L. - 150.00  
 A. total - 75.74  
 CHSEL: 5.04

SECTION NO: - 4.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 500.00  
 Cum. L. - 650.00  
 A. total - 78.44  
 CHSEL: 5.17

SECTION NO: - 5.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 1,000.00  
 Cum. L. - 1,650.00  
 A. total - 83.28  
 CHSEL: 5.40

SECTION NO: - 6.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 2,000.00  
 Cum. L. - 3,650.00  
 A. total - 91.33  
 CHSEL: 5.79

Note that the results in this particular case are nearly identical.

The following output is a rerun for IDEAL CHANNEL with a very low starting water surface elevation. Critical depth assumption is noted. (Note that normally the programmer might have inserted additional cross-sections in this particular case).

$\bar{S}_f$  - average conveyance equation.

SECTION NO: - 1.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 WS INPUT: 0.50

--WARNING--  
 CRITICAL DEPTH ASSUMED

WS. START: 1.50  
 A. total - 17.25

SECTION NO: - 2.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 50.00  
 Cum. L. - 50.00  
 A. total - 27.33  
 CWSSEL: 2.27

SECTION NO: - 3.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 100.00  
 Cum. L. - 150.00  
 A. total - 34.00  
 CWSSEL: 2.68

SECTION NO: - 4.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 500.00  
 Cum. L. - 650.00  
 A. total - 47.61  
 CWSSEL: 3.52

SECTION NO: - 5.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 1,000.00  
 Cum. L. - 1,650.00  
 A. total - 60.49  
 CWSSEL: 4.25

SECTION NO: - 6.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 2,000.00  
 Cum. L. - 3,650.00  
 A. total - 75.14  
 CWSSEL: 5.01

$\bar{S}_f$  - average friction slope equation.

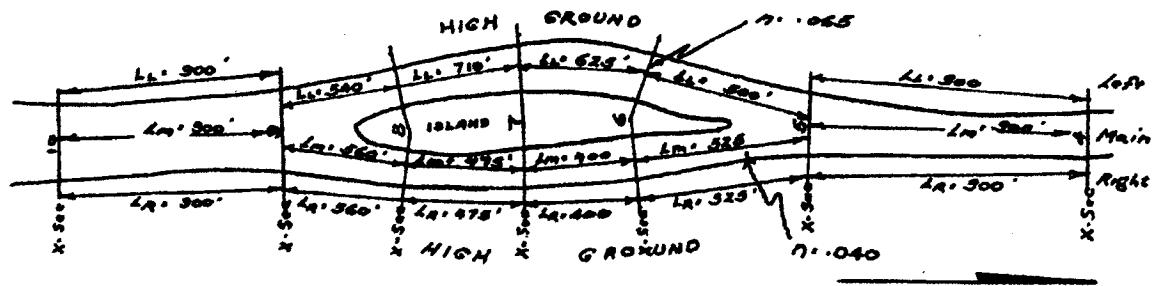
SECTION NO: - 1.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 WS. INPUT: 0.50

--WARNING--  
 CRITICAL DEPTH ASSUMED

WS. START: 1.50  
 A. total - 17.25

SECTION NO: - 2.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 50.00  
 Cum. L. - 50.00  
 A. total - 30.50  
 CWSSEL: 2.45

SECTION NO: - 3.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 100.00  
 Cum. L. - 150.00  
 A. total - 35.68  
 CWSSEL: 2.79


SECTION NO: - 4.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 500.00  
 Cum. L. - 650.00  
 A. total - 49.73  
 CWSSEL: 3.64

SECTION NO: - 5.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 1,000.00  
 Cum. L. - 1,650.00  
 A. total - 62.42  
 CWSSEL: 4.35

SECTION NO: - 6.00  
 Q. cfs - 100.00  
 Cc. - 0.10 Ce. - 0.30  
 L. mn. chl - 2,000.00  
 Cum. L. - 3,650.00  
 A. total - 77.84  
 CWSSEL: 5.10

### EXAMPLE THREE

This is an example for using overbank flow to define a divided flow section of channel. The following drawing shows the area of concern:



This demonstrates a divided flow condition around an island. There are three methods which can be used to define a divided flow condition.

## **METHOD ONE:**

This method can be used provided that the overflow option has not previously been selected. All cross-sections must be set up using the overbank option. The left and right overbanks must be defined, however, if they do not exist, they can be given a small width on high ground of say, one foot. Cross-sections 1 to 3 (not shown), 4, 5, 9, 10 and upwards (not shown) would be set up in this manner. Cross-sections 6, 7 and 8 would be set up using the left overbank to define the channel division on the left side and the main channel to define the channel division on the right side of the island. The right overbank subdivision for cross-sections 6 to 8 would again be non-existent, but they could be described using a small width. Caution should be the "watchword" to define the division of flow particularly if the flow is not proportionally split in relation to the submerged channel areas. In addition, the Manning's "n" values that are selected for each subdivision should be carefully chosen to be representative.

## METHOD TWO:

If the overbank flow option has previously been requested, then the main channel can incorporate the left and right subdivisions around the island. Using this method, the user cannot describe separate reach lengths and Manning's "n" values. The program automatically computes the total submerged area of the main channel and the flow for the main channel is applied to this area. Provided that reach lengths around both sides of the island are reasonably identical and the flow is proportionate with respect to the submerged area, this method will produce satisfactory results. However, if more than three cross-sections are necessary to describe the obstruction or if conditions exist whereby the

conditions for reach lengths and Manning's "n" values are not satisfied, the user should invariably try Method Three.

#### METHOD THREE:

Method Three should only be used when running a backwater around any obstacle where more than three cross-sections are required to define the flow spit particularly if the flows are not proportionate with respect to the submerged area and/or reach lengths and the Manning's "n" values are not identical for each divided channel. With this method, separate runs must be undertaken up each divided channel assuming a flow split through each channel and the process repeated until a "balanced" condition on the upstream end is obtained.

Referring to the drawing, the user would stop the program at cross-section 5.00. The CWSEL (computed water surface elevation) for that particular section would be used as the starting water surface level for each divided channel, endeavouring to obtain a "match" for the CWSEL at cross-section 9.00. Once a "balanced" condition has been found, the user would commence cross-section 9.00 using the CWSEL for the match as the starting water level for the rest of the upstream cross-sections.

Separate tapes will be needed. Each would define the downstream cross-sections (1.00 to 5.00), each divided channel (5.00 to 9.00) assuming some proportional flow split and the upstream cross-sections (9.00, 10.00 and upwards). (The user will recall that each starting file is designated a FILENAME 1.00. No two files can be set up on the same tape with the same filename).

#### PRIORITY:

1. Use Method Two, provided reach lengths are reasonably identical, the flow proportionate with respect to the submerged area, and no more than three cross-sections are necessary to define the obstacle.
2. Use Method One, provided the overbank flow option has not been previously used.
3. Use Method Three as a last resort. Method Three will entail several trials to guess at the split in flow in order to obtain a balanced condition at the upstream end of the obstacle. It may prove difficult when a range of differing starting water levels and flows are used on reruns beginning at downstream end (cross-section 1) in order to prepare an overall rating curve for the entire reach. In this case, a balanced condition at the upstream end of the obstacle may be found satisfactory using a particular starting flow split and water surface elevation at the start of the obstacle but this balanced condition may not be necessarily satisfied when a differing combination of flows and starting water levels are applied. If that happens, then separate reruns will be necessary to find the individual balanced conditions

which can be applied to each of the several range of flows and starting water levels.

## EXAMPLE FOUR

This example demonstrates how to do reruns. Using Example Two as the input data, a subsequent job is to be run to obtain a water surface profile using a differing flow and starting water surface elevation. It is assumed that a previous profile was computed using the average friction slope equation, but in this rerun, it was deemed advisable to use the average conveyance equation.

|                       | <u>Keys</u> |
|-----------------------|-------------|
| Set Flag 8            | f SF 08     |
| XEQ Alpha RERUN Alpha | R/S         |
| CHANGE Q?             | 1           |
| NEW Q?                | R/S         |
| WS START?             | R/S         |

The output for this rerun is shown below.

SECTION NO: - 1.00  
Q. cfs - 200.00  
Cc. - 0.10 Ce. - 0.30  
WS. INPUT: 6.00  
WS. START: 6.00  
A. total - 96.00

SECTION NO: - 2.00  
Q. cfs - 200.00  
Cc. - 0.10 Ce. - 0.30  
L. nn. chl - 50.00  
Cum. L. - 50.00  
A. total - 96.61  
CNSEL: 6.03

SECTION NO: - 3.00  
Q. cfs - 200.00  
Cc. - 0.10 Ce. - 0.30  
L. nn. chl - 100.00  
Cum. L. - 150.00  
A. total - 97.79  
CNSEL: 6.08

SECTION NO: - 4.00  
Q. cfs - 200.00  
Cc. - 0.10 Ce. - 0.30  
L. nn. chl - 500.00  
Cum. L. - 650.00  
A. total - 103.65  
CNSEL: 6.34

SECTION NO: - 5.00  
Q. cfs - 200.00  
Cc. - 0.10 Ce. - 0.30  
L. nn. chl - 1,000.00  
Cum. L. - 1,650.00  
A. total - 113.46  
CNSEL: 6.77

SECTION NO: - 6.00  
Q. cfs - 200.00  
Cc. - 0.10 Ce. - 0.30  
L. nn. chl - 2,000.00  
Cum. L. - 3,650.00  
A. total - 128.55  
CNSEL: 7.39

## EXAMPLE FIVE

This example demonstrates the execution of a rerun with non-constant flows.

As per Example Four, choose the method for computing  $\bar{S}_f$ . If in doubt which method was previously chosen and how the calculator was set:

f FS? 08. If YES, then the average conveyance equation was used. If NO, then the average friction slope was used.

### Keys

|                       |     |   |     |
|-----------------------|-----|---|-----|
| XEQ Alpha RERUN Alpha |     |   | R/S |
| CHANGE Q?             | Yes | 1 | R/S |
| CONST. Q?             | No  | 0 | R/S |

Now cross-section 1.00 is read from tape. A tone will be heard.

|           |       |     |
|-----------|-------|-----|
| NEW Q?    | 102.0 | R/S |
| WS START? | 5.00  | R/S |

Cross-section 1.00 is computed and File 2.00 is read from tape. A tone will be heard.

|        |       |     |
|--------|-------|-----|
| NEW Q? | 105.0 | R/S |
|--------|-------|-----|

and etc., for subsequent cross-sections. The output for this rerun is shown below.

SECTION NO: - 1.00  
Q. cfs - 102.00  
Cc. - 0.18 Ce. - 0.38  
WS. INPUT: 5.00  
WS. START: 5.00  
A. total - 75.00

SECTION NO: - 2.00  
Q. cfs - 105.00  
Cc. - 0.18 Ce. - 0.38  
L. mn. chl - 500.00  
Cum. L. - 500.00  
A. total - 75.20  
CHSEL: 5.01

SECTION NO: - 3.00  
Q. cfs - 107.00  
Cc. - 0.18 Ce. - 0.38  
L. mn. chl - 100.00  
Cum. L. - 150.00  
A. total - 75.79  
CHSEL: 5.04

SECTION NO: - 4.00  
Q. cfs - 130.00  
Cc. - 0.18 Ce. - 0.38  
L. mn. chl - 500.00  
Cum. L. - 650.00  
A. total - 79.31  
CHSEL: 5.21

SECTION NO: - 5.00  
Q. cfs - 135.00  
Cc. - 0.18 Ce. - 0.38  
L. mn. chl - 1,000.00  
Cum. L. - 1,650.00  
A. total - 87.20  
CHSEL: 5.59

SECTION NO: - 6.00  
Q. cfs - 139.00  
Cc. - 0.18 Ce. - 0.38  
L. mn. chl - 2,000.00  
Cum. L. - 3,650.00  
A. total - 100.07  
CHSEL: 6.18

## REGISTERS USED IN THE PROGRAM

00 - |

01 - | Used for the cross-section points of the current computation.

02 - |

03 - |

04 - | WS<sub>1</sub> for the first cross-section, (ie: WS START) and WS<sub>2</sub> for trials.

05 - | K<sup>3</sup>/A<sub>2</sub> for subdivisions lob, mn. chl and rob.  
also for  $\bar{Q}_{lob} L_{lob} + \bar{Q}_{mn.chl} L_{mn.chl} + \bar{Q}_{rob} L_{rob}$ .

06 - | Area and  $\bar{S}_f$ .

07 - | The current Manning's "n" value.

08 - | Location of register.

09 - | Intermediate Values

10 - | Total area,  $\bar{Q}_{lob}$  and  $\bar{Q}_{lob} + \bar{Q}_{mn.chl} + \bar{Q}_{rob}$ .

11 - | Total conveyance and  $\bar{Q}_{mn.chl}$ .

12 - | Wetted perimeter (WP) and  $\bar{Q}_{rob}$ .

13 - | Top width.

14 - | Loop control.

15 - | Loop control.

16 to 64 - | Even numbered registers Elevation ("Y") values.

17 to 65 - | Odd number registers Station ("X") values and "n" as fractional.

66 - | Section number.

67 -  $L_{lob}$ .

68 -  $L_{rob}$ .

69 -  $L_{mn.chl}$ .

70 -  $Q_1$ .

71 -  $Q_2$ .

72 - Shock Loss Coefficient "C". (The  $C_c$  value multiplied by ten is the integer and  $C_e$  value is the fraction).

73 - Number of cross-sections.

74 -  $K_{T1}$ .

75 -  $A_{T1}$ .

76 -  $\alpha_1$ .

77 -  $K_{T2}$ .

78 -  $A_{T2}$ .

79 -  $\alpha_2$ .

80 -  $A_{1lob}$ .

81 -  $A_{1rob}$ .

82 -  $A_{1mn.chl}$ .

83 -  $A_{2lob}$ .

84 -  $A_{2rob}$ .

85 -  $A_{2mn.chl}$ .

86 - The discharge-weighted reach length "L" and the "balance" error for equations (1) and (2).

87 - WS<sub>1</sub>.

88 - The cumulative length.

89 - Velocity Head:  $\alpha_1 v_1^2 / 2g$ .

90 - Velocity Head:  $\alpha_2 v_2^2 / 2g$ .

91 -  $C | \alpha_2 v_2^2 / 2g - \alpha_1 v_1^2 / 2g |$

92 - New rerun flow.

## FLAGS

Flags set and/or cleared at various times:

- 00 - If the left side of a subdivision is submerged.
- 01 - If the right side of a subdivision is submerged.
- 02 - Upstream cross-section.
- 03 - Downstream and upstream cross-sections.
- 04 - Cross-sections are identical.
- 05 - Overbank flow or if cleared, single channel flow.
- 06 - Flows will change.
- 07 - Transition "Shock" loss coefficient change.
- 08 - Average Conveyance or if cleared, the average Friction Slope equation.
- 09 - Set if the cross-sections are identical but the invert elevation change. Also set if the water surface elevation is below critical.
- 10 - Rerun with new flow.
- 11 - Downstream cross-section.
- 13 - Prints lowercase letters or if cleared, prints upper case letters.

## LISTING

## PROGRAM "SECTION" LISTING

|                       |                                                                                                                                                               |                      |                                                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
| 01♦L3L "SECTION"      | ← Program "SECTION" for either the Imperial or Metric system data input.                                                                                      | 40 "OVERBANK FLOW?"  | Is the overbank option wanted? Yes or no.                                                                      |
| 02 R3V                |                                                                                                                                                               | 41 PROMPT            |                                                                                                                |
| 03 CLX                |                                                                                                                                                               | 42 1.0000            |                                                                                                                |
| 04 CF .04             |                                                                                                                                                               | 43 X=YP?             | ← FLAG 5 is set if overbank flow exists.                                                                       |
| 05 CF .05             |                                                                                                                                                               | 44 SF .05            | ← This is the standard transition "shock" loss coefficient. Cc is the integer & Ce the fraction.               |
| 06 CF .06             |                                                                                                                                                               | 45 1.3               | ← What is the flow?                                                                                            |
| 07 CF .07             |                                                                                                                                                               | 46 STO 72            | ← Q <sub>1</sub> = Q <sub>2</sub> for the first cross-section in registers 70 and 71.                          |
| 08 CF .08             |                                                                                                                                                               | 47 "CHANNEL FLOW?"   |                                                                                                                |
| 09 CLR6               |                                                                                                                                                               | 48 PROMPT            |                                                                                                                |
| 10 1                  |                                                                                                                                                               | 49 STO 70            |                                                                                                                |
| 11 STO 66             | ← Section number.                                                                                                                                             | 50 STO 71            |                                                                                                                |
| 12♦L3L 00             |                                                                                                                                                               | 51 GTO 10            |                                                                                                                |
| 13 FIX 4              |                                                                                                                                                               | 52♦L3L 02            |                                                                                                                |
| 14 SF 11              |                                                                                                                                                               | 53 RCL 66            |                                                                                                                |
| 15 1                  |                                                                                                                                                               | 54 RCL 73            |                                                                                                                |
| 16 RCL 66             | ← Section number.                                                                                                                                             | 55 X=YP?             | ← Is there a change in flow? Yes or no.                                                                        |
| 17 X=YP?              |                                                                                                                                                               | 56 GTO 19            |                                                                                                                |
| 18 GTO 02             |                                                                                                                                                               | 57 FCP .04           |                                                                                                                |
| 19 "NO. OF            |                                                                                                                                                               | 58 XEQ 15            |                                                                                                                |
| SECTIONS"             |                                                                                                                                                               | 59 "CHANGE IN FLOW?" |                                                                                                                |
| 20 "1?"               |                                                                                                                                                               | 60 PROMPT            |                                                                                                                |
| 21 PROMPT             |                                                                                                                                                               | 61 1.0000            |                                                                                                                |
| 22 1                  |                                                                                                                                                               | 62 X=YP?             | ← FLAG 6 is set if the flows change. This flag is tested, then cleared.                                        |
| 23 *                  |                                                                                                                                                               | 63 SF .06            |                                                                                                                |
| 24 STO 73             |                                                                                                                                                               | 64 F5PC .06          |                                                                                                                |
| 25 "IDENTICAL SECTI"  | ← Are all cross-sections identical. Yes or no.                                                                                                                | 65 XEQ .03           |                                                                                                                |
| 26 "1-ONS?"           |                                                                                                                                                               | 66 "LOSS COEFF. CHG" |                                                                                                                |
| 27 PROMPT             |                                                                                                                                                               | 67 "1-EP?"           | ← Do you want to change the transition "Shock" loss coefficient? Yes or No.                                    |
| 28 1.0000             |                                                                                                                                                               | 68 PROMPT            |                                                                                                                |
| 29 X=YP?              |                                                                                                                                                               | 69 1.0000            |                                                                                                                |
| 30 SF .04             |                                                                                                                                                               | 70 X=YP?             | ← FLAG 7 is set when a change to the transition loss coefficients is wanted. The flag is tested, then cleared. |
| 31 FCP .04            | ← FLAG 4 is set if all cross-sections are identical in shape. (ie: having a uniform base width and side slopes. The invert elevations may or may not differ). | 71 SF .07            |                                                                                                                |
| 32 GTO 01             |                                                                                                                                                               | 72 F5PC .07          |                                                                                                                |
| 33 "HRS CHAR NEL A 5" | ← FLAG 9 is set if the cross-sections are identical in shape but the invert elevations are different.                                                         | 73 GTO .04           |                                                                                                                |
| 34 "1-LOPE?"          |                                                                                                                                                               | 74 GTO .07           |                                                                                                                |
| 35 PROMPT             |                                                                                                                                                               | 75♦L3L 03            |                                                                                                                |
| 36 1.0000             |                                                                                                                                                               | 76 "NEW CHANNEL FLO" |                                                                                                                |
| 37 X=YP?              |                                                                                                                                                               | 77 "1-W?"            | ← If yes, what is the new channel flow?                                                                        |
| 38 SF .09             |                                                                                                                                                               |                      |                                                                                                                |
| 39♦L3L 01             |                                                                                                                                                               |                      |                                                                                                                |

## PROGRAM "SECTION" LISTING

|                       |              |                                                                                                                                                                                                                                                                                |
|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 78 PROMPT             | 113 ST+ 72   |                                                                                                                                                                                                                                                                                |
| 79 STO 71             | 114♦L3L 07   | ← FLAG 5 is tested and cleared.                                                                                                                                                                                                                                                |
| 80 RTN                | 115 F5P 05   |                                                                                                                                                                                                                                                                                |
| 81♦L3L 04             | 116 GTO 08   |                                                                                                                                                                                                                                                                                |
| 82 "CONTRAC           | 117 "DIST. M |                                                                                                                                                                                                                                                                                |
| TION VAL"             | . CHL?"      |                                                                                                                                                                                                                                                                                |
| 83 "T"UE CHAR         | 118 PROMPT   | ← What is the length of                                                                                                                                                                                                                                                        |
| NGE?"                 | 119 STO 69   | reach for the main channel? <u>No overbank</u>                                                                                                                                                                                                                                 |
| 84 PROMPT             | 120 GTO 09   | <u>flow.</u>                                                                                                                                                                                                                                                                   |
| 85 1.0000             | 121♦L3L 08   |                                                                                                                                                                                                                                                                                |
| 86 X-Z?               | 122 "DIST. L | ← What is the length of                                                                                                                                                                                                                                                        |
| 87 GTO 05             | 03?"         | reach for the left overbank subdivision?                                                                                                                                                                                                                                       |
| 88 GTO 06             | 123 PROMPT   |                                                                                                                                                                                                                                                                                |
| 89♦L3L 05             | 124 STO 67   | ← What is the length of                                                                                                                                                                                                                                                        |
| 90 RCL 72             | 125 "DIST. R | reach for the right overbank subdivision?                                                                                                                                                                                                                                      |
| 91 FRC                | 03?"         |                                                                                                                                                                                                                                                                                |
| 92 STO 72             | 126 PROMPT   | ← What is the length of                                                                                                                                                                                                                                                        |
| 93 "NEW CONTRACTION"  | 127 STO 68   | reach for the main channel subdivision?                                                                                                                                                                                                                                        |
| 94 "T" VALUE          | 128 "DIST. M |                                                                                                                                                                                                                                                                                |
| 95 STO 1"             | . CHL?"      |                                                                                                                                                                                                                                                                                |
| 96 10                 | 129 PROMPT   |                                                                                                                                                                                                                                                                                |
| 97 *                  | 130 STO 69   |                                                                                                                                                                                                                                                                                |
| 98 ST+ 72             | 131♦L3L 09   |                                                                                                                                                                                                                                                                                |
| 99 "EXPANSION VALUE"  | 132 F5P 09   |                                                                                                                                                                                                                                                                                |
| 100 "T" CHANG E?"     | 133 XE0 16   |                                                                                                                                                                                                                                                                                |
| 101 PROMPT            | 134 F5P 04   |                                                                                                                                                                                                                                                                                |
| 102 1.0000            | 135 GTO 14   |                                                                                                                                                                                                                                                                                |
| 103 X-Z?              | 136♦L3L 10   |                                                                                                                                                                                                                                                                                |
| 104 GTO 06            | 137 "NO. OF  | ← How many data points (Y and X coordinates) are there in this cross-section? Each data point consists of a Y (Elevation) and a X (Station). Up to 25 points to describe a cross-section can be entered. This label also sets up the control loop for storage of these values. |
| 105 GTO 07            | POINTS?"     |                                                                                                                                                                                                                                                                                |
| 106♦L3L 06            | 138 PROMPT   |                                                                                                                                                                                                                                                                                |
| 107 RCL 72            | 139 2        |                                                                                                                                                                                                                                                                                |
| 108 INT               | 140 *        |                                                                                                                                                                                                                                                                                |
| 109 STO 72            | 141 1 12     |                                                                                                                                                                                                                                                                                |
| 110 "NEW EXPANSION V" | 142 *        |                                                                                                                                                                                                                                                                                |
| 111 "T" VALUE?        | 143 1000     |                                                                                                                                                                                                                                                                                |
| 0 TO 1"               | 144 /        |                                                                                                                                                                                                                                                                                |
| 112 PROMPT            | 145 16.00002 |                                                                                                                                                                                                                                                                                |
|                       | 146 *        |                                                                                                                                                                                                                                                                                |
|                       | 147 STO 14   |                                                                                                                                                                                                                                                                                |
|                       | 148 .002     |                                                                                                                                                                                                                                                                                |
|                       | 149 *        |                                                                                                                                                                                                                                                                                |
|                       | 150 STO 15   |                                                                                                                                                                                                                                                                                |

## PROGRAM "SECTION" LISTING

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre> 15 ♦L3L 11 152 RCL 15 153 INT 154 STO 00 155♦L3L 12 156 "ELEV?" 157 PROMPT 158 STO IN0 00 159 "STATION?" 160 PROMPT 161 X10P 162 GTO 13 163 "NP?" 164 PROMPT 165 CHS 166 + 167♦L3L 13 168 RCL 00 169 1 170 + 171 X25Y 172 STO IN0 x 173 ISG 15 174 GTO 11 175♦L3L 14 176 FIX 2 177 CLR 178 RRCLE 66 179 60 180 CREATE 181 0 182 SEEKR 183 14.073 184 WRTRx 185 VERIFY 186 RCL 11 187 STO 10 188 "SECTION" 189 "+" 190 RRCLE 66 </pre>                                                                                                                                                                                                                                                                                                                                                                                               | <pre> 191 "+ OK." 192 PRR 193 GTO 18 194♦L3L R 195 DSE 15 196 GTO 11 197 GTO 11 198♦L3L 15 199 RCL 73 200 1000000 201 / 202 STO 66 203 RCL 66 204 RCL 70 205 RCL 71 206 RCL 72 207 CLR6 208 STO 72 209 RBN 210 STO 71 211 RBN 212 STO 70 213 RBN 214 STO 66 215 RCL 66 216 FRC 217 1000000 218 * 219 STO 73 220 RCL 66 221 INT 222 STO 66 223 RTN 224♦L3L 16 225 "R33 FRC TDR?" 226 PROMPT 227 STO 01 228 RCL 14 229 STO 15 230 16 231 STO 02 232 RCL 01 </pre>                                                                                                                         |
| <p>← What is the Elevation (Y value)?</p> <p>← What is the station (X value) that corresponds to the elevation? This value is input as an integer. It can be entered as a zero, positive or negative number. Upon entering a zero or negative integer, this will cause a prompt for the input of a Manning's "n" number. The Y values and X values (either positive or negative integers) are stored in even and odd registers (from 16 up to 65 inclusive) respectively. Manning's "n" values are stored as a fractional of the X value.</p> <p>← This label contains the routine for creating a file for the cross-section on the cassette drive tape.</p> <p>← The data stored on tape for the cross-section is now verified. When this has been completed, the user will be notified if all input data has been correctly stored.</p> | <p>← This label is the user's "FAILSAFE".</p> <p>← This label temporarily moves pertinent data into the stack. All storage registers are then cleared. Following this, the stack is moved back into the appropriate storage registers. This readies the program to receive data for the next cross-section.</p> <p>← This asks if a factor can be added to all Elevation (Y values) for the current cross-section with respect to the previous. If the cross-section is identical to the previous one, (not necessarily slope), this feature can save the user valuable input time.</p> |

## **PROGRAM "SECTION" LISTING**

233 ST+ INE  
02  
234♦L3L 17  
235 2  
236 ST+ 02  
237 RCL 01  
238 ST+ INE  
02  
239 T56 15  
240 GTO 17  
241 RTN  
242♦L3L 18  
243 1  
244 ST+ 66  
245 GTO 00  
246♦L3L 19  
247 "ALL SEC  
TIONS IN"  
248 RCR  
249 "PUT"  
250 RCR  
251 PR3UF  
252 CF 04  
253 CF 05  
254 CF 09  
255 STOP  
256 .ENE.

**NOTE:** This feature should not be used if an addition to all ground elevations may actually misrepresent the actual condition. This program automatically prevents overtopping of a channel by the addition of a vertical "WALL". Any adjustment to the ground elevation could prevent this feature from occurring. Therefore, the user should always check the output versus the input.

← This label reports and prints a notification to the user that all cross-section data for the entire channel length have now been input. Before stopping, the program readies the calculator for the user to call-up the output program. (This is either "WASPIMP" the Imperial version or "WASPMET" - the Metric version).

## PROGRAM "WASPIMP" LISTING

|              |                              |             |                             |
|--------------|------------------------------|-------------|-----------------------------|
| 01 LBL "WAS  | ← Imperial version for the   | 39 RERUN    | ← This and the following    |
| PIMP"        | output of the computed       | 40 LBL 01   | label is used for printing  |
| 02 R3V       | water surface profile .      | 41 "SECTION | the section number          |
| 03 FMT       |                              | NO: ~ "     | (excluding the first), the  |
| 04 "W. S. P  |                              | 42 RCA      | subdivision reach lengths   |
| ROFILES"     |                              | 43 RCL 66   | for the left and right      |
| 05 RCA       |                              | 44 REX      | overbanks (if any) and/or   |
| 06 PR3UF     |                              | 45 PR3UF    | the length of the main      |
| 07 R3V       |                              | 46 FS? 18   | channel reach. Following    |
| 08 "TITLE:   |                              | 47 XEQ 41   | this, the computed          |
| "            |                              | 48 XEQ 40   | discharge-weighted reach    |
| 09 RCA       |                              | 49 XEQ 23   | length "L" will be printed. |
| 10 "TITLE?"  | ← What is the title for this | 50 FCP 02   | FLAG 10 is set if a         |
| 11 PROMPT    | job? The title will be       | 51 GTO 03   | RERUN is executed with      |
| 12 RCA       | printed.                     | 52 FCP 05   | new flow. Subroutine 23     |
| 13 PR3UF     |                              | 53 GTO 02   | prints the "C" values       |
| 14 R3V       |                              | 54 "L. "    | selected.                   |
| 15 FIX 2     |                              | 55 RCA      |                             |
| 16 CLR6      |                              | 56 SF 13    |                             |
| 17 CF 02     |                              | 57 "L03 ~"  |                             |
| 18 CF 04     |                              | 58 RCA      |                             |
| 19 CF 05     |                              | 59 CF 13    |                             |
| 20 CF 08     |                              | 60 RCL 67   | ← L <sub>lob</sub>          |
| 21 CF 18     |                              | 61 REX      |                             |
| 22 "OVERBANK | ← Does this run have         | 62 PR3UF    |                             |
| K 0?"        | overbank flows? If yes,      | 63 "L. "    |                             |
| 23 PROMPT    | FLAG 5 is set.               | 64 RCA      |                             |
| 24 1.00      |                              | 65 SF 13    |                             |
| 25 X2Y?      |                              | 66 "R03 ~"  |                             |
| 26 SF 05     |                              | 67 RCA      |                             |
| 27 "RV. COV  |                              | 68 CF 13    |                             |
| NCE EQN?"    | ← Do you want to use the     | 69 RCL 68   | ← L <sub>rob</sub>          |
| 28 PROMPT    | "Default" average            | 70 REX      |                             |
| 29 1.00      | conveyance equation? If      | 71 PR3UF    |                             |
| 30 X2Y?      | yes, FLAG 8 is set.          | 72 LBL 02   |                             |
| 31 SF 08     |                              | 73 "L. "    |                             |
| 32 GTO 55    |                              | 74 RCA      |                             |
| 33 LBL 00    | ← Routine to read the files  | 75 SF 13    |                             |
| 34 CLR       | set up by the input          | 76 "MN. CHL |                             |
| 35 RCL 66    | program "SECTION"            | ~"          |                             |
| 36 0         | stored on tape in the        | 77 RCA      |                             |
| 37 SEEKR     | cassette drive. Register 66  | 78 CF 13    |                             |
| 38 14.073    | is the station number.       | 79 RCL 69   | ← L <sub>Ma. Ch</sub>       |

## PROGRAM "WASPIMP" LISTING

|                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre> 80 RCL 81 PR3UF 82 RCL 69 83 ST+ 88 84 "C" 85 RCR 86 SF 13 87 "UM. " 88 RCR 89 CF 13 90 "L. ~" 91 RCR 92 RCL 88 93 REX 94 PR3UF 95 GTO 04 96 LBL 03 96 "WS. STA T?" 98 PROMPT 99 STO 04 100 "WS. INP UT:" 101 "+" 102 RRCL 04 103 PRA 104 LBL 04 105 SF 03 106 XEQ 25 107 XEQ 06 108 XEQ 05 109 F5P 02 110 GTO 16 111 RCL 11 112 STO 74 113 3 114 X7X 115 RCL 10 116 STO 75 117 X72 118 / 119 1/X 120 RCL 05 </pre> | <pre> 121 * 122 STO 76 123 RCL 70 124 XEQ 34 125 RCL 76 126 XEQ 35 127 RCL 75 128 X2Y? 129 GTO 31 130 F5P 09 131 XEQ 33 132 "WS. STA RT:" 133 "+" 134 RRCL 04 135 PRA 136 F5P 05 137 XEQ 48 138 XEQ 28 139 F5P 05 140 XEQ 52 141 SF 02 142 GTO 53 143 LBL 05 144 RCL 06 145 F5P 03 146 STO 83 147 FCP 03 148 STO 84 149 CF 03 150 X2Y? 151 RTN 152 RCL 12 153 RCL 06 154 X2Y? 155 / 156 ENTER? 157 .666667 158 X7X 159 RCL 06 160 * 161 1.486 162 * </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <p>← Cumulative Length.</p> <p>← What is the Starting Water Level? After input, that input number will be stored in reg. 4 and unless it is below critical, it is printed.</p> <p>← K<sub>1</sub> (d/s) total.</p> <p>← A<sub>1</sub> (d/s) total.</p>                                                                                                                                                                    | <p>← <math>\alpha_1</math> (d/s).</p> <p>← A test is made to find if the water surface elevation that been input is on the "RIGHT SIDE" of critical by the formula:</p> $A = [Q^2 \alpha T/g]^{1/2}$ <p><math>T_1</math> (d/s) in reg. 13</p> <p><math>Q_1</math> (d/s) in reg. 70</p> <p><math>A_1</math> (d/s) in reg. 75</p> <p><math>\alpha_1</math> (d/s) in reg. 76</p> <p>← The input starting water surface elevation is printed, or if the test for critical failed, then a water surface elevation equal to or greater than critical is used for the starting water surface elevation and that number is printed. Subroutine 48 computes the areas. Subroutine 28 prints the data, ie:</p> <p><math>A_{1 \text{ lob}}</math> (d/s) in reg. 83</p> <p><math>A_{1 \text{ rob}}</math> (d/s) in reg. 84</p> <p><math>A_{1 \text{ mn ch}}</math> (d/s) in reg. 85</p> <p><math>A_{1 \text{ total}}</math> (d/s) in reg. 75</p> <p>Subroutine 52 sets up the registers ready for the reading of the upstream cross-section. FLAG 2 is set and Label 53 initiates the next trial.</p> <p>← This is the computation for Manning's Equation.</p> |

## PROGRAM "WASPIMP" LISTING

|             |             |
|-------------|-------------|
| 163 RCL 07  | 203 X23Y    |
| 164 /       | 204 X2=YP   |
| 165 ST+ 11  | 205 GTO 08  |
| 166 3       | 206 GTO 09  |
| 167 X7X     | 207 L3L 08  |
| 168 RCL 06  | 208 SF 00   |
| 169 X72     | 209 L3L 09  |
| 170 /       | 210 CF 01   |
| 171 ST+ 05  | 211 RCL 08  |
| 172 RCL 06  | 212 2       |
| 173 ST+ 10  | 213 +       |
| 174 0       | 214 RCL INB |
| 175 ST0 12  | X           |
| 176 ST0 06  | 215 RCL 04  |
| 177 RTN     | 216 X23Y    |
| 178 L3L 06  | 217 X2=YP   |
| 179 CF 00   | 218 SF 01   |
| 180 CF 01   | 219 F5P 00  |
| 181 RCL 15  | 220 GTO 10  |
| 182 INT     | 221 F5P 01  |
| 183 ST0 08  | 222 GTO 14  |
| 184 1       | 223 IS6 15  |
| 185 +       | 224 GTO 06  |
| 186 RCL INB | 225 RTN     |
| X           | 226 L3L 10  |
| 187 X50P    | 227 RCL INB |
| 188 GTO 07  | 08          |
| 189 RTN     | 228 ST0 00  |
| 190 17      | 229 RCL 08  |
| 191 XE YP   | 230 1       |
| 192 XE0 05  | 231 +       |
| 193 RCL 08  | 232 RCL INB |
| 194 1       | X           |
| 195 +       | 233 INT     |
| 196 RCL INB | 234 R35     |
| X           | 235 ST0 01  |
| 197 CH5     | 236 F5P 01  |
| 198 FRC     | 237 GTO 13  |
| 199 ST0 07  | 238 L3L 11  |
| 200 L3L 07  | 239 RCL 08  |
| 201 RCL INB | 240 2       |
| 08          | 241 +       |
| 202 RCL 04  | 242 RCL INB |

← Labels 6 through 14 do the examination of each subdivision of the channel. They determine if the subdivisions are partially or wholly submerged. If the left side is submerged, then FLAG 0 is set. If the right side is submerged, then FLAG 1 is set. If the subdivisions are partially submerged, then the intersection of the water surface with the ground level is computed.

← X is not equal to Y XEQ Alpha X f SIN Y? Alpha

Area, wetted perimeter and etc., for each subdivision of the cross-section can then be calculated.

← The absolute "n" value of a subdivision is placed in register 7.

## PROGRAM "WASPIMP" LISTING

|     |        |            |
|-----|--------|------------|
| X   |        |            |
| 243 | RCL IN | 280 RCL 09 |
| 08  |        | 281 F5P 00 |
| 244 | -      | 282 STO 03 |
| 245 | X=07   | 283 F5P 01 |
| 246 | GTO 12 | 284 STO 01 |
| 247 | 1/X    | 285 XEQ 15 |
| 248 | STO 09 | 286 LBL 12 |
| 249 | RCL 08 | 287 ISG 15 |
| 250 | 3      | 288 GTO 06 |
| 251 | +      | 289 RTN    |
| 252 | RCL IN | 290 LBL 13 |
| X   |        | 291 RCL 08 |
| 253 | INT    | 292 2      |
| 254 | R35    | 293 +      |
| 255 | RCL 08 | 294 RCL IN |
| 256 | 1      | X          |
| 257 | +      | 295 STO 02 |
| 258 | RCL IN | 296 RCL 08 |
| X   |        | 297 3      |
| 259 | INT    | 298 +      |
| 260 | R35    | 299 RCL IN |
| 261 | X25Y   | X          |
| 262 | R3N    | 300 INT    |
| 263 | -      | 301 R35    |
| 264 | ST* 09 | 302 STO 03 |
| 265 | RCL 04 | 303 XEQ 15 |
| 266 | F5P 00 | 304 ISG 15 |
| 267 | STO 02 | 305 GTO 06 |
| 268 | F5P 01 | 306 RTN    |
| 269 | STO 00 | 307 LBL 14 |
| 270 | RCL IN | 308 RCL 08 |
| 08  |        | 309 2      |
| 271 | -      | 310 +      |
| 272 | ST* 09 | 311 RCL IN |
| 273 | RCL 08 | X          |
| 274 | 1      | 312 STO 02 |
| 275 | +      | 313 RCL 08 |
| 276 | RCL IN | 314 3      |
| X   |        | 315 +      |
| 277 | INT    | 316 RCL IN |
| 278 | R35    | X          |
| 279 | ST* 09 | 317 INT    |
|     |        | 318 R35    |

## PROGRAM "WASPIMP" LISTING

|             |                            |                                                                                              |
|-------------|----------------------------|----------------------------------------------------------------------------------------------|
| 319 ST0 03  | 362 RCL 05                 |                                                                                              |
| 320 ST0 11  | 363 *                      |                                                                                              |
| 321 ♦L3L 15 | 364 ST0 79                 | ← $\alpha_2$ total (u/s).                                                                    |
| 322 RCL 04  | 365 F5? 09                 |                                                                                              |
| 323 RCL 00  | 366 G70 21                 |                                                                                              |
| 324 ~       | 367 RCL 70                 | ← $Q_1$ (d/s).                                                                               |
| 325 RCL 04  | 368 RCL 71                 | ← $Q_2$ (u/s).                                                                               |
| 326 RCL 02  | 369 *                      |                                                                                              |
| 327 ~       | 370 ST0 11                 | ← $Q_1 + Q_2$ .                                                                              |
| 328 *       | 371 FCP? 08                | ← If FLAG 8 is clear, go to subroutine 24.                                                   |
| 329 2       | 372 G70 24                 |                                                                                              |
| 330 /       | 373 RCL 74                 | ← $K_1$ (d/s) total.                                                                         |
| 331 X=0?    | 374 RCL 77                 | ← $K_2$ (u/s) total.                                                                         |
| 332 RTN     | 375 *                      | ← $K_1 + K_2$                                                                                |
| 333 RCL 03  | 376 1/X                    |                                                                                              |
| 334 RCL 01  | 377 RCL 11                 | $S_t$ is computed by equation [4], (or [5] if subroutine 24 is used) and is stored in reg. 6 |
| 335 ~       | 378 *                      |                                                                                              |
| 336 *       | 379 X72                    |                                                                                              |
| 337 ST+ 06  | 380 ST0 06                 |                                                                                              |
| 338 RCL 02  | 381 ♦L3L 17                |                                                                                              |
| 339 RCL 00  | 382 RCL 70                 | ← $Q_1$ (d/s).                                                                               |
| 340 ~       | 383 RCL 75                 | ← $A_1$ total (d/s).                                                                         |
| 341 X72     | 384 XE0 54                 |                                                                                              |
| 342 RCL 03  | 385 RCL 76                 | ← $\alpha_1$ (d/s).                                                                          |
| 343 RCL 01  | 386 *                      |                                                                                              |
| 344 ~       | 387 ST0 89                 | ← $\alpha_1$ (d/s) $v_1^2$ (d/s) / 2g                                                        |
| 345 ST+ 13  | 388 RCL 71                 | ← $Q_2$ (u/s).                                                                               |
| 346 X72     | 389 RCL 78                 | ← $A_2$ total (u/s).                                                                         |
| 347 *       | 390 XE0 54                 |                                                                                              |
| 348 SQRT    | 391 RCL 79                 | ← $\alpha_2$ (u/s).                                                                          |
| 349 ST+ 12  | 392 *                      |                                                                                              |
| 350 RTN     | 393 ST0 90                 | ← $\alpha_2$ (u/s) $v_2^2$ (u/s) / 2g                                                        |
| 351 ♦L3L 16 | 394 RCL 89                 |                                                                                              |
| 352 SF 03   | 395 ~                      |                                                                                              |
| 353 RCL 11  | 396 R35                    |                                                                                              |
| 354 ST0 77  | 397 ST0 91                 | ← $ \alpha_2 v_2^2 / 2g - \alpha_1 v_1^2 / 2g $                                              |
| 355 3       | 398 XE0 18                 | ← This subroutine obtains the proper "C" value.                                              |
| 356 Y7X     | 399 ST* 91                 |                                                                                              |
| 357 RCL 10  | 400 RCL 69                 |                                                                                              |
| 358 ST0 78  | 401 ST0 86                 | ← L                                                                                          |
| 359 X72     | 402 F5? 05                 | ← If FLAG 5 is set, the discharge-weighted length is computed.                               |
| 360 /       | 403 XE0 20                 |                                                                                              |
| 361 1/X     | 404 RCL 86                 |                                                                                              |
|             | ← Total $A_2$ total (u/s). |                                                                                              |
|             | ← Total $K_2$ total (u/s). |                                                                                              |

## PROGRAM "WASPIMP" LISTING

|            |                                                                                                                                                                                  |             |                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|
| 405 RCL 86 |                                                                                                                                                                                  | 448 XEQ 46  |                                                                           |
| 406 *      | ← L $\bar{S}_1$                                                                                                                                                                  | 449 RCL 10  |                                                                           |
| 407 RCL 91 |                                                                                                                                                                                  | 450 XEQ 47  |                                                                           |
| 408 *      | ← Equation [2] and<br>Equation [1] is ready to be<br>solved.                                                                                                                     | 451 STO 10  | ← $\bar{Q}_{lob}$                                                         |
| 409 RCL 89 |                                                                                                                                                                                  | 452 RCL 67  | ← $L_{lob}$                                                               |
| 410 *      |                                                                                                                                                                                  | 453 *       |                                                                           |
| 411 RCL 87 | ← WS <sub>1</sub>                                                                                                                                                                | 454 STO 05  | ← $\bar{Q}_{lob} L_{lob}$                                                 |
| 412 *      |                                                                                                                                                                                  | 455 RCL 85  | ← $A_2 mn\ chr$                                                           |
| 413 STO 86 |                                                                                                                                                                                  | 456 XEQ 46  |                                                                           |
| 414 RCL 04 | ← WS <sub>2</sub>                                                                                                                                                                | 457 RCL 11  |                                                                           |
| 415 RCL 90 | ← $\alpha_2 v_2^2 / 2g$                                                                                                                                                          | 458 XEQ 47  |                                                                           |
| 416 *      |                                                                                                                                                                                  | 459 ST+ 10  | ← $\bar{Q}_{lob} + \bar{Q}_{mn\ chr}$                                     |
| 417 RCL 86 |                                                                                                                                                                                  | 460 RCL 69  | ← $L_{mn\ chr}$                                                           |
| 418 ~      |                                                                                                                                                                                  | 461 *       |                                                                           |
| 419 STO 86 | ← The balance "Error"<br>for equations [1] and [2].                                                                                                                              | 462 ST+ 05  | ← $\bar{Q}_{lob} L_{lob} + \bar{Q}_{main} L_{lob}$                        |
| 420 ABS    |                                                                                                                                                                                  | 463 RCL 84  | ← $A_2 rob$                                                               |
| 421 GTO 26 |                                                                                                                                                                                  | 464 XEQ 46  |                                                                           |
| 422♦L3L 18 | ← This subroutine<br>computes the proper "C"<br>value. If $(\alpha_2 v_2^2 / 2g) >$<br>$(\alpha_1 v_2^2 / 2g)$ , then C <sub>c</sub> is<br>used. If not, C <sub>c</sub> is used. | 465 RCL 12  | ← $\bar{Q}_{lob} + \bar{Q}_{main} + \bar{Q}_{rob}$                        |
| 423 RCL 90 |                                                                                                                                                                                  | 466 XEQ 47  | ← $L_2 rob$                                                               |
| 424 RCL 89 |                                                                                                                                                                                  | 467 ST+ 10  |                                                                           |
| 425 X2Y2   |                                                                                                                                                                                  | 468 RCL 68  | ← $\bar{Q}_L L_L + \bar{Q}_M L_M + \bar{Q}_R L_R$                         |
| 426 GTO 19 |                                                                                                                                                                                  | 469 *       |                                                                           |
| 427 RCL 72 |                                                                                                                                                                                  | 470 ST+ 05  |                                                                           |
| 428 FRC    |                                                                                                                                                                                  | 471 RCL 10  |                                                                           |
| 429 RTN    |                                                                                                                                                                                  | 472 1/X     |                                                                           |
| 430♦L3L 19 |                                                                                                                                                                                  | 473 RCL 05  |                                                                           |
| 431 RCL 72 |                                                                                                                                                                                  | 474 *       | ← $\bar{Q}_L L_L + \bar{Q}_M L_M + \bar{Q}_R L_R = L$                     |
| 432 INT    |                                                                                                                                                                                  | 475 STO 86  | ← $QL + QM + QR$                                                          |
| 433 10     |                                                                                                                                                                                  | 476 RTN     |                                                                           |
| 434 /      |                                                                                                                                                                                  | 477♦L3L 21  | ← This and the next                                                       |
| 435 RTN    |                                                                                                                                                                                  | 478 RCL 71  | subroutine is used to check                                               |
| 436♦L3L 20 | ← This subroutine solves<br>equation [3] for "L".                                                                                                                                | 479 XEQ 34  | if the computed WS <sub>2</sub> is<br>on the "RIGHT SIDE" of<br>critical. |
| 437 XEQ 48 | ← A <sub>1</sub> lob                                                                                                                                                             | 480 RCL 79  | T <sub>2</sub> (u/s) in reg. 13                                           |
| 438 RCL 80 |                                                                                                                                                                                  | 481 XEQ 35  | Q <sub>2</sub> (u/s) in reg. 71                                           |
| 439 XEQ 45 |                                                                                                                                                                                  | 482 RCL 78  | A <sub>2</sub> (u/s) in reg. 78                                           |
| 440 STO 10 | ← Q <sub>1</sub> lob                                                                                                                                                             | 483 X2Y2    | $\alpha_2$ (u/s) in reg. 79                                               |
| 441 RCL 82 | ← A <sub>1</sub> mn chr                                                                                                                                                          | 484 GTO 36  | If the balanced WS <sub>2</sub> is<br>"OK", this subroutine is            |
| 442 XEQ 45 |                                                                                                                                                                                  | 485♦L3L 22  | used to set up the registers<br>for the next cross-section.               |
| 443 STO 11 | ← Q <sub>1</sub> mn chr                                                                                                                                                          | 486 F57E 09 |                                                                           |
| 444 RCL 81 | ← A <sub>1</sub> rob                                                                                                                                                             | 487 XEQ 33  | ← Q <sub>2</sub> becomes Q <sub>1</sub> .                                 |
| 445 XEQ 45 |                                                                                                                                                                                  | 488 RCL 71  |                                                                           |
| 446 STO 12 | ← Q <sub>1</sub> rob                                                                                                                                                             | 489 STO 70  |                                                                           |
| 447 RCL 83 | ← A <sub>2</sub> lob                                                                                                                                                             | 490 RCL 77  |                                                                           |

## PROGRAM "WASPIMP" LISTING

|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre> 491 STO 74 492 RCL 78 493 STO 75 494 RCL 79 495 STO 76 496 XEQ 28 497 F5? 05 498 XEQ 52 499 "CWSEL: " 500 "+" 501 RRCL 04 502 PRA 503 GT0 53 504♦L3L 23 505 "Cc. -" 506 RCR 507 RCL 72 508 INT 509 10 510 / 511 REX 512 FMT 513 "Cl. -" 514 RCR 515 RCL 72 516 FRC 517 REX 518 PR3UF 519 RTN 520♦L3L 24 521 RCL 70 522 RCL 74 523 / 524 X72 525 STO 06 526 RCL 71 527 RCL 77 528 / 529 X72 530 RCL 06 531 XEQ 47 532 STO 06 533 GT0 17 </pre> | <pre> ← K<sub>2</sub> Total becomes K<sub>1</sub> Total ← A<sub>2</sub> Total becomes A<sub>1</sub> Total ← α<sub>2</sub> total becomes α<sub>1</sub> total ← Subroutine to print the areas. ← See subroutine 52. ← Prints the CWSEL. ← This subroutine prints the transition "SHOCK" losses that were selected. That is: "Cc." and "Ce." respectively. ← S<sub>f</sub> in this subroutine is computed by the average friction slope equation. </pre> | <pre> 534♦L3L 25 535 RCL 14 536 STO 15 537 0 538 STO 10 539 STO 11 540 STO 12 541 STO 13 542 STO 06 543 STO 05 544 RTN 545♦L3L 26 546 .005 547 X5Y? 548 GT0 21 549♦L3L 27 550 RCL 86 551 .92 552 * 553 GT0 39 554♦L3L 28 555 FCP? 05 556 GT0 29 557 "R. " 558 RCR 559 SF 13 560 "R03 -" 561 RCR 562 CF 13 563 RCL 83 564 REX 565 PR3UF 566 "R. " 567 RCR 568 SF 13 569 "R03 -" 570 RCR 571 CF 13 572 RCL 84 573 REX 574 PR3UF 575 "R. " 576 RCR </pre> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <p>← This subroutine sets up the registers for the next loop.</p> <p>← This computes the balance error. If the absolute error is less than .01 (ie: +/- .005) it's okay.</p> <p>← The balance error is multiplied by 0.92 and readied for the next trial.</p> <p>← Subroutines 28 to 30 inclusive are used for the printout of areas.</p> <p>← A<sub>rob</sub></p> <p>← A<sub>rob</sub></p>                                                            |

# PROGRAM “WASPIMP” LISTING

|               |                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 577 SF 13     | 618 ---WARNI                                                                                                                                                                                                                                                                                                         |
| 578 "MN. CHL  | NG---"                                                                                                                                                                                                                                                                                                               |
| ~"            | 619 RCR                                                                                                                                                                                                                                                                                                              |
| 579 RCR       | 620 PR3UF                                                                                                                                                                                                                                                                                                            |
| 580 CF 13     | 621 FMT                                                                                                                                                                                                                                                                                                              |
| 581 RCL 85    | 622 "CRITICA                                                                                                                                                                                                                                                                                                         |
| 582 RCR       | L DEPTH "                                                                                                                                                                                                                                                                                                            |
| 583 PR3UF     | 623 RCR                                                                                                                                                                                                                                                                                                              |
| 584♦L3L 29    | 624 "ASSUMED                                                                                                                                                                                                                                                                                                         |
| 585 "R. "     | "                                                                                                                                                                                                                                                                                                                    |
| 586 RCR       | 625 RCR                                                                                                                                                                                                                                                                                                              |
| 587 SF 13     | 626 PR3UF                                                                                                                                                                                                                                                                                                            |
| 588 "TOTAL" " | 627 R3V                                                                                                                                                                                                                                                                                                              |
| "             | 628 RTN                                                                                                                                                                                                                                                                                                              |
| 589 RCR       | 629♦L3L 34                                                                                                                                                                                                                                                                                                           |
| 590 CF 13     | 630 X72                                                                                                                                                                                                                                                                                                              |
| 591 F5? 02    | 631 RCL 13                                                                                                                                                                                                                                                                                                           |
| 592 G70 30    | 632 *                                                                                                                                                                                                                                                                                                                |
| 593 RCL 75    | 633 RTN                                                                                                                                                                                                                                                                                                              |
| 594 RCR       | 634♦L3L 35                                                                                                                                                                                                                                                                                                           |
| 595 PR3UF     | 635 *                                                                                                                                                                                                                                                                                                                |
| 596 RTN       | 636 32. 174                                                                                                                                                                                                                                                                                                          |
| 597♦L3L 30    | 637 /                                                                                                                                                                                                                                                                                                                |
| 598 RCL 78    | 638 3                                                                                                                                                                                                                                                                                                                |
| 599 RCR       | 639 1/X                                                                                                                                                                                                                                                                                                              |
| 600 PR3UF     | 640 Y7X                                                                                                                                                                                                                                                                                                              |
| 601 RTN       | 641 RTN                                                                                                                                                                                                                                                                                                              |
| 602♦L3L 31    | 642♦L3L 36                                                                                                                                                                                                                                                                                                           |
| 603 RCL 04    | 643 .01                                                                                                                                                                                                                                                                                                              |
| 604 FRC       | 644 G70 38                                                                                                                                                                                                                                                                                                           |
| 605 .5        | 645♦L3L 37                                                                                                                                                                                                                                                                                                           |
| 606 X2= Y?    | 646 RCL 04                                                                                                                                                                                                                                                                                                           |
| 607 G70 32    | 647 INT                                                                                                                                                                                                                                                                                                              |
| 608 XEQ 37    | 648 ST0 04                                                                                                                                                                                                                                                                                                           |
| 609 .5        | 649 RTN                                                                                                                                                                                                                                                                                                              |
| 610 G70 38    | 650♦L3L 38                                                                                                                                                                                                                                                                                                           |
| 611♦L3L 32    | 651 ST+ 04                                                                                                                                                                                                                                                                                                           |
| 612 XEQ 37    | 652 SF 09                                                                                                                                                                                                                                                                                                            |
| 613 1         | 653 G70 04                                                                                                                                                                                                                                                                                                           |
| 614 G70 38    | 654♦L3L 39                                                                                                                                                                                                                                                                                                           |
| 615♦L3L 33    | 655 ST- 04                                                                                                                                                                                                                                                                                                           |
| 616 R3V       | 656 G70 04                                                                                                                                                                                                                                                                                                           |
| 617 EMT       | 657♦L3L 40                                                                                                                                                                                                                                                                                                           |
|               | ← This and the next subroutine is part of the upstream critical depth computation. Value "T" is stored in register 13.                                                                                                                                                                                               |
|               | ← A <sub>1</sub> total for the first cross-section.                                                                                                                                                                                                                                                                  |
|               | ← A <sub>2</sub> total for all other cross-sections.                                                                                                                                                                                                                                                                 |
|               | ← This subroutine is used if the input WS <sub>1</sub> is actually on the "WRONG SIDE" of critical. Labels 31 and 32 are used to find which side of a half foot mark that the input number is. A new number is then generated to the next highest and nearest one half foot interval to use for the next test trial. |
|               | ← The upstream cross-sections are retried at a .01 foot increase.                                                                                                                                                                                                                                                    |
|               | ← This subroutine obtains the integer value of WS <sub>1</sub> .                                                                                                                                                                                                                                                     |
|               | ← FLAG 9 is set if on the "WRONG SIDE" of critical.                                                                                                                                                                                                                                                                  |
|               | ← This subroutine sets up a new trial for WS <sub>2</sub> .                                                                                                                                                                                                                                                          |

## PROGRAM "WASPIMP" LISTING

|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre> 658 "Q. " 659 RCR 660 SF 13 661 "CFS ~" 662 RCR 663 CF 13 664 RCL 71 665 REX 666 PR3UF 667 RTN 668♦L3L 41 669 RCL 92 670 STO 70 671 F5P 04 672 STO 42 673 BEEP 674 "NEW Q?" 675 PROMPT 676 STO 92 677♦L3L 42 678 STO 71 679 F5P 04 680 RTN 681 1 682 RCL 66 683 X≠Y? 684 RTN 685 RCL 92 686 STO 70 687 RTN 688♦L3L "RER UN" 689 R3V 690 CLR6 691 CF 02 692 CF 04 693 CF 10 694 "CHANGE Q?" 695 PROMPT 696 1.00 697 X=Y? 698 XEQ 43 </pre> | <p>← This subroutine prints out the flow values.</p> <p>← Q<sub>2</sub> (Note for the first cross-section, Q<sub>1</sub> and Q<sub>2</sub> are stored in registers 70 and 71).</p> <p>← This subroutine is part of the "RERUN" label.</p> <p>← The user is alerted to manually input new flows when the flow is not constant over the entire length of the channel.</p> <p>← Q<sub>2</sub>.</p> <p>← Section Number.</p> <p>← X is not equal to Y<br/>XEQ Alpha X f SIN Y? Alpha</p> <p>← For the first cross-section Q<sub>2</sub> becomes Q<sub>1</sub>.</p> <p>← This is the RERUN label.</p> | <pre> 699 GTO 55 700♦L3L 43 701 SF 10 702 "CONST. Q?" 703 PROMPT 704 1.00 705 X=Y? 706 XEQ 44 707 RTN 708♦L3L 44 709 SF 04 710 "NEW Q?" 711 PROMPT 712 STO 92 713 RTN 714♦L3L 45 715 RCL 75 716 / 717 RCL 70 718 * 719 RTN 720♦L3L 46 721 RCL 78 722 / 723 RCL 71 724 * 725 RTN 726♦L3L 47 727 + 728 2 729 / 730 RTN 731♦L3L 48 732 RCL 83 733 RCL 84 734 + 735 CHS 736 F5P 02 737 GTO 50 738♦L3L 49 739 RCL 75 740 GTO 51 </pre> <p>← FLAG 10 is set if new flows are to be input.</p> <p>← FLAG 4 is set if the new flows are constant over the entire length of the channel.</p> <p>← This, and the next subroutine computes the value of "L".</p> <p>← A<sub>1Total</sub> and Q<sub>1</sub> are stored in registers 75 and 70 respectively.</p> <p>← A<sub>2 Total</sub>.</p> <p>← Q<sub>2</sub>.</p> <p>← This subroutine computes the "MEANS".</p> <p>← Subroutines 48 to 51 do part of the calculation for the channel areas. A<sub>1ob</sub> and A<sub>1ob</sub> are stored in registers 83 and 84 respectively</p> <p>← A<sub>1</sub> total.</p> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## PROGRAM "WASPIMP" LISTING

```

74 1♦L3L 58
742 RCL 78      ← A2 total.
743♦L3L 51
744 +
745 STO 85      ← Amain (1 or 2).
746 RTN
747♦L3L 52
748 RCL 83      ← Subroutine to set up the
749 STO 80      areas for another run.
750 RCL 84      ← A2 rob becomes A1 rob.
751 STO 81      ← A2 rob becomes A1 rob.
752 RCL 85
753 STO 82      ← A2 main becomes A1 main.
754 RTN
755♦L3L 53
756 RCL 84      ← Subroutine to set the
757 STO 87      WS elevation for next run.
758 .01
759 ST+ 84      ← "OUR FIRST GUESS"
760 1            at WS2.
761 ST+ 66
762 RCL 66      ← Section Number.
763 RCL 73      ← Checks to see whether
764 X=YP        or not, all cross sections
765 STO 56      have been computed.
766 R3V
767 STO 00
768♦L3L 54
769 /
770 X72
771 64.348      ← This subroutine is used
772 /            to compute V2/2g.
773 RTN
774♦L3L 55
775 1            ← This subroutine assigns
776 STO 66      the section number 1.00.
777 STO 00
778♦L3L 56
779 BEEP
780 BEEP
781 STOP
782 .END

```

## PROGRAM "WASPMET" LISTING

|             |                            |             |
|-------------|----------------------------|-------------|
| 01 LBL "WAS | ← Metric version for the   | 38 GTO 55   |
| PMET"       | output of the computed     | 39 LBL 00   |
| 02 R3V      | water surface profile.     | 40 CLR      |
| 03 FMT      | This program is similar to | 41 RCL 66   |
| 04 "W. S. P | the Imperial version. For  | 42 0        |
| ROFILES"    | clarity, all "GO TO"       | 43 SEEKR    |
| 05 RCR      | statements and             | 44 14.073   |
| 06 PR3UF    | "SUBROUTINE" labels        | 45 RER3RX   |
| 07 FMT      | are identical with respect | 46 LBL 01   |
| 08 SF 13    | to the Imperial version.   | 47 "SECTION |
| 09 "METRIC  |                            | NO: - "     |
| VERSION"    |                            | 48 RCR      |
| 10 RCR      |                            | 49 RCL 66   |
| 11 CF 13    |                            | 50 REX      |
| 12 PR3UF    |                            | 51 PR3UF    |
| 13 R3V      |                            | 52 FS? 10   |
| 14 "TITLE:  |                            | 53 XEQ 41   |
| "           |                            | 54 XEQ 40   |
| 15 RCR      |                            | 55 XEQ 23   |
| 16 "TITLE?" |                            | 56 FC? 02   |
| 17 PROMPT   |                            | 57 GTO 03   |
| 18 RCR      |                            | 58 FC? 05   |
| 19 PR3UF    |                            | 59 GTO 02   |
| 20 R3V      |                            | 60 "L. "    |
| 21 FIX 2    |                            | 61 RCR      |
| 22 CLR6     |                            | 62 SF 13    |
| 23 CF 02    |                            | 63 "L03 -"  |
| 24 CF 04    |                            | 64 RCR      |
| 25 CF 05    |                            | 65 CF 13    |
| 26 CF 08    |                            | 66 RCL 67   |
| 27 CF 10    |                            | 67 REX      |
| 28 "OVERBAN |                            | 68 PR3UF    |
| K 0?"       |                            | 69 "L. "    |
| 29 PROMPT   |                            | 70 RCR      |
| 30 1.00     |                            | 71 SF 13    |
| 31 X-Z?     |                            | 72 "R03 -"  |
| 32 SF 05    |                            | 73 RCR      |
| 33 "RV. COV |                            | 74 CF 13    |
| NCE EON?"   |                            | 75 RCL 68   |
| 34 PROMPT   |                            | 76 REX      |
| 35 1.00     |                            | 77 PR3UF    |
| 36 X-Z?     |                            | 78 LBL 02   |
| 37 SF 08    |                            | 79 "L. "    |

## PROGRAM "WASPMET" LISTING

|              |              |
|--------------|--------------|
| 80 RCR       | 120 X7X      |
| 81 SF 13     | 121 RCL 10   |
| 82 "MN. CBL  | 122 STO 75   |
| ..           | 123 X72      |
| 83 RCR       | 124 /        |
| 84 CF 13     | 125 1/X      |
| 85 RCL 69    | 126 RCL 05   |
| 86 REX       | 127 *        |
| 87 PRBUF     | 128 STO 76   |
| 88 RCL 69    | 129 RCL 70   |
| 89 ST+ 88    | 130 XEQ 34   |
| 90 "C"       | 131 RCL 76   |
| 91 RCR       | 132 XEQ 35   |
| 92 SF 13     | 133 RCL 75   |
| 93 "UM. "    | 134 X2X?     |
| 94 RCR       | 135 GTO 31   |
| 95 CF 13     | 136 FS?C 09  |
| 96 "L. .."   | 137 XEQ 33   |
| 97 RCR       | 138 "WS. STA |
| 98 RCL 88    | RT:"         |
| 99 REX       | 139 "T "     |
| 100 PRBUF    | 140 RRCL 04  |
| 101 GTO 04   | 141 PRA      |
| 102 LBL 03   | 142 FS? 05   |
| 103 "WS STA  | 143 XEQ 48   |
| TP"          | 144 XEQ 28   |
| 104 PROMPT   | 145 FS? 05   |
| 105 STO 04   | 146 XEQ 52   |
| 106 "WS. INP | 147 SF 02    |
| UT:"         | 148 GTO 53   |
| 107 "T "     | 149 LBL 05   |
| 108 RRCL 04  | 150 RCL 06   |
| 109 PRA      | 151 FS? 03   |
| 110 LBL 04   | 152 STO 83   |
| 111 SF 03    | 153 FC? 03   |
| 112 XEQ 25   | 154 STO 84   |
| 113 XEQ 06   | 155 CF 03    |
| 114 XEQ 05   | 156 X=0?     |
| 115 FS? 02   | 157 RTN      |
| 116 GTO 16   | 158 RCL 12   |
| 117 RCL 11   | 159 RCL 06   |
| 118 STO 74   | 160 X2X?     |
| 119 3        | 161 /        |

## PROGRAM "WASPMET" LISTING

```

162 ENTERY
163 .666667
164  $\sqrt[7]{X}$  ←This is the computation
165 RCL 06 for Manning's Equation.
166 *
167 RCL 07
168 /
169 ST+ 11
170 3
171  $\sqrt[7]{X}$ 
172 RCL 06
173  $X^{7/2}$ 
174 /
175 ST+ 05
176 RCL 06
177 ST+ 10
178 0
179 STO 12
180 STO 06
181 RTN
182  $\downarrow LBL$  06
183 CF 00
184 CF 01
185 RCL 15
186 INT
187 STO 08
188 1
189 +
190 RCL IND
X
191  $X \neq 0?$ 
192 GTO 07
193 RTN
194 17
195  $X \neq Y?$  ← X is not equal to Y
196 XEQ 05 XEQ Alpha X f SIN Y? Alpha
197 RCL 08
198 1
199 +
200 RCL IND
X
201 CHS
202 FRC
203 STO 07
204  $\downarrow LBL$  07
205 RCL IND
08
206 RCL 04
207  $X^{2/3}Y$ 
208  $X^{2/3}Y^2$ 
209 GTO 08
210 GTO 09
211  $\downarrow LBL$  08
212 SF 00
213  $\downarrow LBL$  09
214 CF 01
215 RCL 08
216 2
217 +
218 RCL IND
X
219 RCL 04
220  $X^{2/3}Y$ 
221  $X^{2/3}Y^2$ 
222 SF 01
223 F5? 00
224 GTO 10
225 F5? 01
226 GTO 14
227 ISG 15
228 GTO 06
229 RTN
230  $\downarrow LBL$  10
231 RCL IND
08
232 STO 00
233 RCL 08
234 1
235 +
236 RCL IND
X
237 INT
238 ABS
239 STO 01
240 F5? 01
241 GTO 13

```

## PROGRAM "WASPMET" LISTING

|             |             |
|-------------|-------------|
| 242♦L3L 11  | 280 RCL IND |
| 243 RCL 08  | x           |
| 244 2       | 281 INT     |
| 245 ÷       | 282 R35     |
| 246 RCL IND | 283 ST+ 09  |
| x           | 284 RCL 09  |
| 247 RCL IND | 285 F5P 00  |
| 08          | 286 ST0 03  |
| 248 -       | 287 F5P 01  |
| 249 x=0?    | 288 ST0 01  |
| 250 GTO 12  | 289 XE0 15  |
| 251 1/x     | 290♦L3L 12  |
| 252 ST0 09  | 291 I56 15  |
| 253 RCL 08  | 292 GTO 06  |
| 254 3       | 293 RTN     |
| 255 +       | 294♦L3L 13  |
| 256 RCL IND | 295 RCL 08  |
| x           | 296 2       |
| 257 INT     | 297 +       |
| 258 R35     | 298 RCL IND |
| 259 RCL 08  | x           |
| 260 1       | 299 ST0 02  |
| 261 *       | 300 RCL 08  |
| 262 RCL IND | 301 3       |
| x           | 302 +       |
| 263 INT     | 303 RCL IND |
| 264 R35     | x           |
| 265 X23Y    | 304 INT     |
| 266 R3N     | 305 R35     |
| 267 -       | 306 ST0 03  |
| 268 ST* 09  | 307 XE0 15  |
| 269 RCL 04  | 308 I56 15  |
| 270 F5P 00  | 309 GTO 06  |
| 271 ST0 02  | 310 RTN     |
| 272 F5P 01  | 311♦L3L 14  |
| 273 ST0 00  | 312 RCL 08  |
| 274 RCL IND | 313 2       |
| 08          | 314 +       |
| 275 -       | 315 RCL IND |
| 276 ST* 09  | x           |
| 277 RCL 08  | 316 ST0 02  |
| 278 1       | 317 RCL 08  |
| 279 *       | 318 3       |

## PROGRAM "WASPMET" LISTING

|     |        |     |     |        |    |
|-----|--------|-----|-----|--------|----|
| 319 | ÷      | 361 | RCL | 10     |    |
| 320 | RCL    | IND | 362 | STO    | 18 |
| x   |        | 363 | x72 |        |    |
| 321 | INT    | 364 | /   |        |    |
| 322 | R35    | 365 | 1/x |        |    |
| 323 | STO    | 03  | 366 | RCL    | 05 |
| 324 | GT0    | 11  | 367 | *      |    |
| 325 | L3L    | 15  | 368 | STO    | 79 |
| 326 | RCL    | 04  | 369 | F5?    | 09 |
| 327 | RCL    | 00  | 370 | GT0    | 21 |
| 328 | -      | 371 | RCL | 70     |    |
| 329 | RCL    | 04  | 372 | RCL    | 71 |
| 330 | RCL    | 02  | 373 | +      |    |
| 331 | -      | 374 | STO | 11     |    |
| 332 | ÷      | 375 | FC? | 08     |    |
| 333 | 2      | 376 | GT0 | 24     |    |
| 334 | /      | 377 | RCL | 74     |    |
| 335 | x=0?   | 378 | RCL | 77     |    |
| 336 | RTN    | 379 | +   |        |    |
| 337 | RCL    | 03  | 380 | 1/x    |    |
| 338 | RCL    | 01  | 381 | RCL    | 11 |
| 339 | -      | 382 | *   |        |    |
| 340 | *      | 383 | x72 |        |    |
| 341 | ST+ 06 | 384 | STO | 06     |    |
| 342 | RCL    | 02  | 385 | L3L    | 17 |
| 343 | RCL    | 00  | 386 | RCL    | 70 |
| 344 | -      | 387 | RCL | 75     |    |
| 345 | x72    | 388 | XE0 | 54     |    |
| 346 | RCL    | 03  | 389 | RCL    | 76 |
| 347 | RCL    | 01  | 390 | *      |    |
| 348 | -      | 391 | STO | 89     |    |
| 349 | ST+ 13 | 392 | RCL | 71     |    |
| 350 | x72    | 393 | RCL | 78     |    |
| 351 | ÷      | 394 | XE0 | 54     |    |
| 352 | SORT   | 395 | RCL | 79     |    |
| 353 | ST+ 12 | 396 | *   |        |    |
| 354 | RTN    | 397 | STO | 90     |    |
| 355 | L3L    | 398 | RCL | 89     |    |
| 356 | SF 03  | 399 | -   |        |    |
| 357 | RCL    | 11  | 400 | R35    |    |
| 358 | STO    | 77  | 401 | STO    | 91 |
| 359 | 3      |     | 402 | XE0    | 18 |
| 360 | x7x    |     | 403 | ST* 91 |    |

|    |             |    |            |
|----|-------------|----|------------|
| 22 | 7E7♦68h     | 5h | 03x 9h     |
| 9E | 0:5 88h     | 28 | 7C7 5h     |
|    | * 7x 78h    | 01 | 0:5 4h     |
| 8L | RC7 98h     | 5h | 03x Eh     |
| 55 | 0:5 xE8 58h | 08 | 7C8 2h     |
| 79 | RC7 98h     | 8h | 03x 1h     |
| 4E | 0:3 xE8 34h | 02 | 7E7♦0h     |
| 12 | RC7 71h     |    | RTN 6Eh    |
|    | 7E7♦8h      |    | / 8Eh      |
|    | RTN 08h     | 01 | LEh        |
| 98 | 0:5 6Lh     | 2L | 7C7 5Eh    |
|    | * 8Lh       | 61 | 7E7♦EH     |
| 50 | 7C8 47h     |    | RTN EEh    |
|    | 1/x 9Lh     |    | FC FRC 2Eh |
| 01 | RC7 45h     | 2L | 7C8 1Eh    |
| 50 | * 5h        | 61 | 0:5 0Eh    |
|    | * E3h       |    | * 62h      |
| 89 | 7C8 2Lh     | 68 | 7C8 82h    |
| 01 | * 5 1Lh     | 06 | 7C8 L2h    |
| 7h | 0:3 xE8 0Lh | 81 | 7E7♦92h    |
| 21 | RC7 69h     | 92 | 0:5 52h    |
| 9h | 0:3 xE8 89h |    | 5E8 h2h    |
| 48 | 7C8 19h     | 98 | 0:5 E2h    |
| 50 | * 5 99h     |    | - 22h      |
|    | * 59h       | 98 | 7C8 12h    |
| 69 | 7C8 h9h     |    | 02h        |
| 01 | * 5 E9h     | 06 | 7C8 61h    |
| 7h | 0:3 xE8 29h | 48 | 7C8 81h    |
| 11 | 7C8 19h     | 98 | 0:5 L1h    |
| 9h | 0:3 xE8 09h |    | * 19h      |
| 58 | 7C8 65h     | 15 | RC7 87     |
| 50 | 0:5 85h     |    | +          |
|    | * 15h       | 68 | 7C8 E1h    |
| 19 | 7C8 55h     |    | 21h        |
| 01 | 0:5 55h     | 16 | 7C8 11h    |
| 7h | 0:3 xE8 45h |    | *          |
| 01 | 7C8 E5h     | 90 | 7C8 60h    |
| 9h | 0:3 xE8 25h | 98 | 7C8 80h    |
| E8 | 7C8 15h     | 02 | 0:3 xL0h   |
| 21 | 0:5 05h     | 50 | 5F 90h     |
| 5h | 0:3 xE8 9h  | 98 | 0:5 50h    |
| 18 | 7C8 84h     | 69 | 7C8 69     |
| 11 | 0:5 11      |    |            |

## PROGRAM "WASPMET" LISTING

|            |           |            |          |
|------------|-----------|------------|----------|
| 490        | F5P C 09  | 533        | X72      |
| 491        | XEQ 33    | 534        | RCL 06   |
| 492        | RCL 71    | 535        | XEQ 47   |
| 493        | STO 70    | 536        | STO 06   |
| 494        | RCL 77    | 537        | GTO 17   |
| 495        | STO 74    | 538♦L3L 25 |          |
| 496        | RCL 78    | 539        | RCL 14   |
| 497        | STO 75    | 540        | STO 15   |
| 498        | RCL 79    | 541        | 0        |
| 499        | STO 76    | 542        | STO 10   |
| 500        | XEQ 28    | 543        | STO 11   |
| 501        | F5P 05    | 544        | STO 12   |
| 502        | XEQ 52    | 545        | STO 13   |
| 503        | "CWSSEL:" | 546        | STO 06   |
| 504        | "F "      | 547        | STO 05   |
| 505        | RRCL 04   | 548        | RTN      |
| 506        | PRA       | 549♦L3L 26 |          |
| 507        | GTO 53    | 550        | .005     |
| 508♦L3L 23 |           | 551        | X3Y?     |
| 509        | "C. . "   | 552        | GTO 21   |
| 510        | RCA       | 553♦L3L 27 |          |
| 511        | RCL 72    | 554        | RCL 86   |
| 512        | INT       | 555        | .92      |
| 513        | 10        | 556        | *        |
| 514        | /         | 557        | GTO 39   |
| 515        | RCX       | 558♦L3L 28 |          |
| 516        | FMT       | 559        | FCP 05   |
| 517        | "C. . "   | 560        | GTO 29   |
| 518        | RCA       | 561        | "R. "    |
| 519        | RCL 72    | 562        | RCA      |
| 520        | FRC       | 563        | SF 13    |
| 521        | RCX       | 564        | "L03 . " |
| 522        | PR3UF     | 565        | RCA      |
| 523        | RTN       | 566        | CF 13    |
| 524♦L3L 24 |           | 567        | RCL 83   |
| 525        | RCL 70    | 568        | RCX      |
| 526        | RCL 74    | 569        | PR3UF    |
| 527        | /         | 570        | "R. "    |
| 528        | X72       | 571        | RCA      |
| 529        | STO 06    | 572        | SF 13    |
| 530        | RCL 71    | 573        | "R03 . " |
| 531        | RCL 77    | 574        | RCA      |
| 532        | /         | 575        | CF 13    |

← This computes the balance error. If this is less than .01m (ie: +/- .005) it's okay.

## PROGRAM "WASPMET" LISTING

|                     |                |
|---------------------|----------------|
| 576 RCL 84          | 616 "CRITICA   |
| 577 REX             | L DEPTH "      |
| 578 PRBUF           | 617 RCR        |
| 579 "R. "           | 618 "ASSUMED   |
| 580 RCR             | "              |
| 581 SF 13           | 619 RCR        |
| 582 "MN. EHL        | 620 PRBUF      |
| "                   | 621 R3V        |
| 583 RCR             | 622 RTN        |
| 584 CF 13           | 623♦L3L 34     |
| 585 RCL 85          | 624 X72        |
| 586 REX             | 625 RCL 13     |
| 587 PRBUF           | 626 *          |
| 588♦L3L 29          | 627 RTN        |
| 589 "R. "           | 628♦L3L 35     |
| 590 RCR             | 629 *          |
| 591 SF 13           | 630 9.807 ← g. |
| 592 "TOTAL -        | 631 /          |
| "                   | 632 3          |
| 593 RCR             | 633 1/X        |
| 594 CF 13           | 634 Y7X        |
| 595 FS? 02          | 635 RTN        |
| 596 GTO 30          | 636♦L3L 36     |
| 597 RCL 75          | 637 .0 1       |
| 598 REX             | 638 GTO 38     |
| 599 PRBUF           | 639♦L3L 38     |
| 600 RTN             | 640 ST+ 04     |
| 601♦L3L 30          | 641 SF 09      |
| 602 RCL 78          | 642 GTO 04     |
| 603 REX             | 643♦L3L 39     |
| 604 PRBUF           | 644 ST- 04     |
| 605 RTN             | 645 GTO 04     |
| 606♦L3L 31          | 646♦L3L 40     |
| 607 .2              | 647 "0. "      |
| 608 GTO 38          | 648 RCR        |
| 609♦L3L 33          | 649 SF 13      |
| 610 R3V             | 650 "CMS --"   |
| 611 FMT             | 651 RCR        |
| 612 "----WARNING--" | 652 CF 13      |
| 613 RCR             | 653 RCL 71     |
| 614 PRBUF           | 654 REX        |
| 615 FMT             | 655 PRBUF      |
|                     | 656 RTN        |

← This subroutine is used if the input WS<sub>1</sub> is actually on the "WRONG SIDE" of critical. If so, a new WS<sub>1</sub> number, 0.2M higher than the previous is used for the next trial.

## PROGRAM "WASPMET" LISTING

```

657♦L3L 41
658 RCL 92
659 STO 78
660 F5? 04
661 GT0 42
662 BEEP
663 "NEW 0?"
664 PROMPT
665 STO 92
666♦L3L 42
667 STO 71
668 F5P 04
669 RTN
670 1
671 RCL 66
672 X≠Y?
673 RTN
674 RCL 92
675 STO 70
676 RTN
677♦L3L "RER
UN"
678 A3V
679 CLRG
680 CF 02
681 CF 04
682 CF 10
683 "CHANGE
0?"
684 PROMPT
685 1.00
686 X=?
687 XEQ 43
688 GT0 55
689♦L3L 43
690 SF 10
691 "CONST.
0?"
692 PROMPT
693 1.00
694 X=?
695 XEQ 44
696 RTN

```

← X is not equal to Y  
XEQ Alpha X f SIN Y? Alpha

```

697♦L3L 44
698 SF 04
699 "NEW 0?"
700 PROMPT
701 STO 92
702 RTN
703♦L3L 45
704 RCL 75
705 /
706 RCL 70
707 *
708 RTN
709♦L3L 46
710 RCL 78
711 /
712 RCL 71
713 *
714 RTN
715♦L3L 47
716 +
717 2
718 /
719 RTN
720♦L3L 48
721 RCL 83
722 RCL 84
723 +
724 CHS
725 F5? 02
726 GT0 50
727♦L3L 49
728 RCL 75
729 GT0 51
730♦L3L 50
731 RCL 78
732♦L3L 51
733 +
734 STO 85
735 RTN
736♦L3L 52
737 RCL 83
738 STO 80
739 RCL 84

```

## PROGRAM "WASPMET" LISTING

740 STO 81  
741 RCL 85  
742 STO 82  
743 RTN  
744 LBL 53  
745 RCL 84  
746 STO 87  
747 .01  
748 STO 84  
749 1  
750 STO 66  
751 RCL 66  
752 RCL 73  
753 X=2?  
754 STO 56  
755 RCL  
756 STO 00  
757 LBL 54  
758 /  
759 X>2  
760 19.6 14 ← 2g.  
761 /  
762 RTN  
763 LBL 55  
764 1  
765 STO 66  
766 STO 00  
767 LBL 56  
768 BEEP  
769 BEEP  
770 STOP  
771 .END.

## FINAL NOTES

If the output portion of this program, in particular WASPIMP, is to be keyed in by hand, the user will need to execute a "PACK" several times in order to get the last few lines into the calculator.

For computing water surface profiles in a channel which contains structures such as controls, culverts or bridges in the reach, end the program at the downstream end of the structure. Compute the head loss through the structure using the computed downstream water surface elevation and flow. Add the calculated head loss through the structure to the computed downstream water surface elevation to obtain an upstream water surface elevation. Use the calculated upstream water surface elevation to resume the computation of the channel water surface profile upstream of the structure. If multiple runs are to be conducted, the most efficient method would be to have the channel downstream and upstream portions below and above the structure described on separate cassette tapes.

Computing water surface profiles by the Standard Step Method using an HP-41C, CV or CX calculator pushes them to their ultimate capabilities. Swiftness of calculation is obviously no match to the lightning speed of HEC2 and HEC-RAS and the lack of program room certainly prevents the use of the many options that these two programs offer to the user. Nevertheless, programs WASPIMP and WASPMET does provide a practical demonstration of the powerful capabilities of a high-end HP hand-held Alpha-Numeric calculator.

Even with the program limitations, used in the field, without the benefit of a Mainframe or PC computer on hand containing a version of either HEC-2 or HEC-RAS, this set of programs embracing the capability to handle such tasks as channel improvement, provided a very suitable alternative for the solution of water surface profiles over the span of many years.

A future practical development could be a set of programs which include the ability to compute a set of Mannings "n" values for a channel derived from accurately surveyed cross-sectional data, varying stream flows and a series of water surface elevations gauged at every cross-section of the channel reach corresponding to each varying discharge.

## APPENDIX

|                                             |         |
|---------------------------------------------|---------|
| Complete File Listing Program SECTION ----- | page 83 |
| Complete File Listing Program WASPIMP ----- | page 85 |
| Complete File Listing Program WASPMET ----- | page 90 |
| Complete File Listing Program BYE -----     | page 95 |

|              |              |               |
|--------------|--------------|---------------|
| 81♦LBL "SEC  | 51 GTO 18    | 99 "EXPANSI   |
| TION"        | 52♦LBL 02    | ON VALUE"     |
| 02 ADV       | 53 RCL 66    | 100 "I CHANG  |
| 03 CLX       | 54 RCL 73    | E?"           |
| 04 CF 04     | 55 X=Y?      | 101 PROMPT    |
| 05 CF 05     | 56 GTO 19    | 102 1.0000    |
| 06 CF 06     | 57 FC? 04    | 103 X=Y?      |
| 07 CF 07     | 58 XEQ 15    | 104 GTO 06    |
| 08 CF 09     | 59 "CHANGE   | 105 GTO 07    |
| 09 CLRG      | IN FLOW?"    | 106♦LBL 06    |
| 10 1         | 60 PROMPT    | 107 RCL 72    |
| 11 STO 66    | 61 1.0000    | 108 INT       |
| 12♦LBL 08    | 62 X=Y?      | 109 STO 72    |
| 13 FIX 4     | 63 SF 06     | 110 "NEW EXP  |
| 14 SF 11     | 64 FS?C 06   | ANSION Y-     |
| 15 1         | 65 XEQ 03    | 111 "I-VALUE? |
| 16 RCL 66    | 66 "LOSS CO  | 0 TO 1"       |
| 17 X>Y?      | EFF. CHG"    | 112 PROMPT    |
| 18 GTO 02    | 67 "I-E?"    | 113 ST+ 72    |
| 19 "NO. OF   | 68 PROMPT    | 114♦LBL 07    |
| SECTIONS"    | 69 1.0000    | 115 FS? 05    |
| 20 "I?"      | 70 X=Y?      | 116 GTO 08    |
| 21 PROMPT    | 71 SF 07     | 117 "DIST. M  |
| 22 1         | 72 FS?C 07   | . CHL?"       |
| 23 +         | 73 GTO 04    | 118 PROMPT    |
| 24 STO 73    | 74 GTO 07    | 119 STO 69    |
| 25 "IDENTIC  | 75♦LBL 03    | 120 GTO 09    |
| AL SECTI"    | 76 "NEW CHA  | 121♦LBL 08    |
| 26 "I-ONS?"  | NNEL FLO"    | 122 "DIST. L  |
| 27 PROMPT    | 77 "I-W?"    | 0B?"          |
| 28 1.0000    | 78 PROMPT    | 123 PROMPT    |
| 29 X=Y?      | 79 STO 71    | 124 STO 67    |
| 30 SF 04     | 80 RTN       | 125 "DIST. R  |
| 31 FC? 04    | 81♦LBL 04    | 0B?"          |
| 32 GTO 01    | 82 "CONTRAC  | 126 PROMPT    |
| 33 "HAS CHA  | TION VAL"    | 127 STO 68    |
| NNEL A S"    | 83 "I-UE CHA | 128 "DIST. M  |
| 34 "I-LOPE?" | NGE?"        | . CHL?"       |
| 35 PROMPT    | 84 PROMPT    | 129 PROMPT    |
| 36 1.0000    | 85 1.0000    | 130 STO 69    |
| 37 X=Y?      | 86 X=Y?      | 131♦LBL 09    |
| 38 SF 09     | 87 GTO 05    | 132 FS? 09    |
| 39♦LBL 01    | 88 GTO 06    | 133 XEQ 16    |
| 40 "OVERBAN  | 89♦LBL 05    | 134 FS? 04    |
| K FLOW?"     | 90 RCL 72    | 135 GTO 14    |
| 41 PROMPT    | 91 FRC       | 136♦LBL 10    |
| 42 1.0000    | 92 STO 72    | 137 "NO. OF   |
| 43 X=Y?      | 93 "NEW CON  | POINTS?"      |
| 44 SF 05     | TRACTION"    | 138 PROMPT    |
| 45 1.3       | 94 "I VALUE  | 139 2         |
| 46 STO 72    | ? 0 TO 1"    | 140 *         |
| 47 "CHANNEL  | 95 PROMPT    | 141 12        |
| FLOW?"       | 96 10        | 142 +         |
| 48 PROMPT    | 97 *         | 143 1000      |
| 49 STO 70    | 98 ST+ 72    | 144 /         |
| 50 STO 71    |              |               |

|     |          |     |           |     |       |
|-----|----------|-----|-----------|-----|-------|
| 145 | 16.00002 | 198 | LBL 15    | 249 | "PUT" |
| 146 | +        | 199 | RCL 73    | 250 | ACA   |
| 147 | STO 14   | 200 | 100000    | 251 | PRBUF |
| 148 | .002     | 201 | /         | 252 | CF 04 |
| 149 | +        | 202 | ST+ 66    | 253 | CF 05 |
| 150 | STO 15   | 203 | RCL 66    | 254 | CF 09 |
| 151 | LBL 11   | 204 | RCL 70    | 255 | STOP  |
| 152 | RCL 15   | 205 | RCL 71    | 256 | .END. |
| 153 | INT      | 206 | RCL 72    |     |       |
| 154 | STO 00   | 207 | CLRG      |     |       |
| 155 | LBL 12   | 208 | STO 72    |     |       |
| 156 | "ELEV?"  | 209 | RDH       |     |       |
| 157 | PROMPT   | 210 | STO 71    |     |       |
| 158 | STO IND  | 211 | RDH       |     |       |
| 00  |          | 212 | STO 70    |     |       |
| 159 | "STA?"   | 213 | RDH       |     |       |
| 160 | PROMPT   | 214 | STO 66    |     |       |
| 161 | X>0?     | 215 | RCL 66    |     |       |
| 162 | GTO 13   | 216 | FRC       |     |       |
| 163 | "N?"     | 217 | 100000    |     |       |
| 164 | PROMPT   | 218 | *         |     |       |
| 165 | CHS      | 219 | STO 73    |     |       |
| 166 | +        | 220 | RCL 66    |     |       |
| 167 | LBL 13   | 221 | INT       |     |       |
| 168 | RCL 00   | 222 | STO 66    |     |       |
| 169 | 1        | 223 | RTN       |     |       |
| 170 | +        | 224 | LBL 16    |     |       |
| 171 | X<>Y     | 225 | "ADD FAC  |     |       |
| 172 | STO IND  | 226 | PROMPT    |     |       |
| Y   |          | 227 | STO 01    |     |       |
| 173 | ISG 15   | 228 | RCL 14    |     |       |
| 174 | GTO 11   | 229 | STO 15    |     |       |
| 175 | LBL 14   | 230 | 16        |     |       |
| 176 | FIX 2    | 231 | STO 02    |     |       |
| 177 | CLA      | 232 | RCL 01    |     |       |
| 178 | ARCL 66  | 233 | ST+ IND   |     |       |
| 179 | 60       | 92  |           |     |       |
| 180 | CREATE   | 234 | LBL 17    |     |       |
| 181 | 0        | 235 | 2         |     |       |
| 182 | SEEKR    | 236 | ST+ 02    |     |       |
| 183 | 14.073   | 237 | RCL 01    |     |       |
| 184 | WRTRX    | 238 | ST+ IND   |     |       |
| 185 | VERIFY   | 82  |           |     |       |
| 186 | RCL 71   | 239 | ISG 15    |     |       |
| 187 | STO 70   | 240 | GTO 17    |     |       |
| 188 | "SECTION | 241 | RTN       |     |       |
| -   |          | 242 | LBL 18    |     |       |
| 189 | "-"      | 243 | 1         |     |       |
| 190 | ARCL 66  | 244 | ST+ 66    |     |       |
| 191 | "-OK.-"  | 245 | GTO 00    |     |       |
| 192 | PRA      | 246 | LBL 19    |     |       |
| 193 | GTO 18   | 247 | "ALL SEC  |     |       |
| 194 | LBL A    | 248 | TIONS IN" |     |       |
| 195 | DSE 15   |     |           |     |       |
| 196 | GTO 11   |     |           |     |       |
| 197 | GTO 11   |     |           |     |       |

|               |              |                    |
|---------------|--------------|--------------------|
| 01+LBL "WAS   | 51 GTO 03    | 104+LBL 04         |
| PIMP-         | 52 FC? 05    | 105 SF 03          |
| 02 ADV        | 53 GTO 02    | 106 XEQ 25         |
| 03 FMT        | 54 "L. "     | 107 XEQ 06         |
| 04 "W. S. P   | 55 ACA       | 108 XEQ 05         |
| ROFILES-      | 56 SF 13     | 109 FS? 02         |
| 05 ACA        | 57 "LOB --"  | 110 GTO 16         |
| 06 PRBUF      | 58 ACA       | 111 RCL 11         |
| 07 ADV        | 59 CF 13     | 112 STO 74         |
| 08 "TITLE:    | 60 RCL 67    | 113 3              |
| -             | 61 ACX       | 114 Y $\uparrow$ X |
| 09 ACA        | 62 PRBUF     | 115 RCL 10         |
| 10 "TITLE? -" | 63 "L. "     | 116 STO 75         |
| 11 PROMPT     | 64 ACA       | 117 X $\uparrow$ 2 |
| 12 ACA        | 65 SF 13     | 118 /              |
| 13 PRBUF      | 66 "ROB --"  | 119 1/X            |
| 14 ADV        | 67 ACA       | 120 RCL 05         |
| 15 FIX 2      | 68 CF 13     | 121 *              |
| 16 CLRG       | 69 RCL 68    | 122 STO 76         |
| 17 CF 02      | 70 ACX       | 123 RCL 70         |
| 18 CF 04      | 71 PRBUF     | 124 XEQ 34         |
| 19 CF 05      | 72+LBL 02    | 125 RCL 76         |
| 20 CF 08      | 73 "L. "     | 126 XEQ 35         |
| 21 CF 10      | 74 ACA       | 127 RCL 75         |
| 22 "OVERBAN   | 75 SF 13     | 128 X $\times$ Y?  |
| K Q??"        | 76 "MN. CHL  | 129 GTO 31         |
| 23 PROMPT     | --           | 130 FS?C 09        |
| 24 1.00       | 77 ACA       | 131 XEQ 33         |
| 25 X=Y?       | 78 CF 13     | 132 "WS. STA       |
| 26 SF 05      | 79 RCL 69    | RT: -              |
| 27 "AV. COV   | 80 ACX       | 133 "F -           |
| NCE EQN??"    | 81 PRBUF     | 134 ARCL 04        |
| 28 PROMPT     | 82 RCL 69    | 135 PRA            |
| 29 1.00       | 83 ST+ 88    | 136 FS? 05         |
| 30 X=Y?       | 84 "C"       | 137 XEQ 49         |
| 31 SF 08      | 85 ACA       | 138 XEQ 28         |
| 32 GTO 55     | 86 SF 13     | 139 FS? 05         |
| 33+LBL 00     | 87 "UM. "    | 140 XEQ 52         |
| 34 CLA        | 88 ACA       | 141 SF 02          |
| 35 ARCL 66    | 89 CF 13     | 142 GTO 53         |
| 36 0          | 90 "L. --"   | 143+LBL 05         |
| 37 SEEKR      | 91 ACA       | 144 RCL 06         |
| 38 14.073     | 92 RCL 88    | 145 FS? 03         |
| 39 READRX     | 93 ACX       | 146 STO 83         |
| 40+LBL 01     | 94 PRBUF     | 147 FC? 03         |
| 41 "SECTION   | 95 GTO 04    | 148 STO 84         |
| NO: - "       | 96+LBL 03    | 149 CF 03          |
| 42 ACA        | 97 "WS STAR  | 150 X=0?           |
| 43 RCL 66     | T??"         | 151 RTN            |
| 44 ACX        | 98 PROMPT    | 152 RCL 12         |
| 45 PRBUF      | 99 STO 04    | 153 RCL 06         |
| 46 FS? 10     | 100 "WS. IMP | 154 X $\times$ Y   |
| 47 XEQ 41     | UT: -        | 155 /              |
| 48 XEQ 40     | 101 "F -     | 156 ENTERT         |
| 49 XEQ 23     | 102 ARCL 04  | 157 .666667        |
| 50 FC? 02     | 103 PRA      | 158 Y $\uparrow$ X |

|             |             |             |
|-------------|-------------|-------------|
| 159 RCL 06  | 212 2       | 261 X<>Y    |
| 160 *       | 213 +       | 262 RDN     |
| 161 1.486   | 214 RCL IND | 263 -       |
| 162 *       | X           | 264 ST* 09  |
| 163 RCL 07  | 215 RCL 04  | 265 RCL 04  |
| 164 /       | 216 X<>Y    | 266 FS? 00  |
| 165 ST+ 11  | 217 X<=Y?   | 267 ST0 02  |
| 166 3       | 218 SF 01   | 268 FS? 01  |
| 167 Y+X     | 219 FS? 00  | 269 ST0 00  |
| 168 RCL 06  | 220 GTO 10  | 270 RCL IND |
| 169 X+2     | 221 FS? 01  | 08          |
| 170 /       | 222 GTO 14  | 271 -       |
| 171 ST+ 05  | 223 ISG 15  | 272 ST* 09  |
| 172 RCL 06  | 224 GTO 06  | 273 RCL 08  |
| 173 ST+ 10  | 225 RTN     | 274 1       |
| 174 0       | 226+LBL 10  | 275 +       |
| 175 ST0 12  | 227 RCL IND | 276 RCL IND |
| 176 ST0 06  | 08          | X           |
| 177 RTN     | 228 ST0 08  | 277 INT     |
| 178+LBL 06  | 229 RCL 08  | 278 ABS     |
| 179 CF 00   | 230 1       | 279 ST+ 09  |
| 180 CF 01   | 231 +       | 280 RCL 09  |
| 181 RCL 15  | 232 RCL IND | 281 FS? 00  |
| 182 INT     | X           | 282 ST0 03  |
| 183 ST0 08  | 233 INT     | 283 FS? 01  |
| 184 1       | 234 ABS     | 284 ST0 01  |
| 185 +       | 235 ST0 01  | 285 XEQ 15  |
| 186 RCL IND | 236 FS? 01  | 286+LBL 12  |
| X           | 237 GTO 13  | 287 ISG 15  |
| 187 X>0?    | 238+LBL 11  | 288 GTO 06  |
| 188 GTO 07  | 239 RCL 08  | 289 RTN     |
| 189 RDN     | 240 2       | 290+LBL 13  |
| 190 17      | 241 +       | 291 RCL 08  |
| 191 X<=Y?   | 242 RCL IND | 292 2       |
| 192 XEQ 05  | X           | 293 +       |
| 193 RCL 08  | 243 RCL IND | 294 RCL IND |
| 194 1       | 08          | X           |
| 195 +       | 244 -       | 295 ST0 02  |
| 196 RCL IND | 245 X=0?    | 296 RCL 08  |
| X           | 246 GTO 12  | 297 3       |
| 197 CHS     | 247 1/X     | 298 +       |
| 198 FRC     | 248 ST0 09  | 299 RCL IND |
| 199 ST0 07  | 249 RCL 08  | X           |
| 200+LBL 07  | 250 3       | 300 INT     |
| 201 RCL IND | 251 +       | 301 ABS     |
| 08          | 252 RCL IND | 302 ST0 03  |
| 202 RCL 04  | X           | 303 XEQ 15  |
| 203 X<>Y    | 253 INT     | 304 ISG 15  |
| 204 X<=Y?   | 254 ABS     | 305 GTO 06  |
| 205 GTO 08  | 255 RCL 08  | 306 RTN     |
| 206 GTO 09  | 256 1       | 307+LBL 14  |
| 207+LBL 08  | 257 +       | 308 RCL 08  |
| 208 SF 00   | 258 RCL IND | 309 2       |
| 209+LBL 09  | X           | 310 +       |
| 210 CF 01   | 259 INT     | 311 RCL IND |
| 211 RCL 08  | 260 ABS     | X           |

|     |                  |     |     |                  |    |     |      |    |
|-----|------------------|-----|-----|------------------|----|-----|------|----|
| 312 | STO              | 82  | 367 | RCL              | 70 | 423 | RCL  | 90 |
| 313 | RCL              | 88  | 368 | RCL              | 71 | 424 | RCL  | 89 |
| 314 | 3                |     | 369 | +                |    | 425 | X>Y? |    |
| 315 | +                |     | 370 | STO              | 11 | 426 | GTO  | 19 |
| 316 | RCL              | IND | 371 | FC?              | 08 | 427 | RCL  | 72 |
| X   |                  |     | 372 | GTO              | 24 | 428 | FRC  |    |
| 317 | INT              |     | 373 | RCL              | 74 | 429 | RTN  |    |
| 318 | ABS              |     | 374 | RCL              | 77 | 430 | LBL  | 19 |
| 319 | STO              | 83  | 375 | +                |    | 431 | RCL  | 72 |
| 320 | GTO              | 11  | 376 | 1/X              |    | 432 | INT  |    |
| 321 | LBL              | 15  | 377 | RCL              | 11 | 433 | 10   |    |
| 322 | RCL              | 84  | 378 | *                |    | 434 | /    |    |
| 323 | RCL              | 80  | 379 | X $\downarrow$ 2 |    | 435 | RTN  |    |
| 324 | -                |     | 380 | STO              | 06 | 436 | LBL  | 20 |
| 325 | RCL              | 84  | 381 | LBL              | 17 | 437 | XEQ  | 48 |
| 326 | RCL              | 82  | 382 | RCL              | 70 | 438 | RCL  | 80 |
| 327 | -                |     | 383 | RCL              | 75 | 439 | XEQ  | 45 |
| 328 | +                |     | 384 | XEQ              | 54 | 440 | STO  | 10 |
| 329 | 2                |     | 385 | RCL              | 76 | 441 | RCL  | 82 |
| 330 | /                |     | 386 | *                |    | 442 | XEQ  | 45 |
| 331 | X=0?             |     | 387 | STO              | 89 | 443 | STO  | 11 |
| 332 | RTN              |     | 388 | RCL              | 71 | 444 | RCL  | 81 |
| 333 | RCL              | 83  | 389 | RCL              | 78 | 445 | XEQ  | 45 |
| 334 | RCL              | 01  | 390 | XEQ              | 54 | 446 | STO  | 12 |
| 335 | -                |     | 391 | RCL              | 79 | 447 | RCL  | 83 |
| 336 | *                |     | 392 | *                |    | 448 | XEQ  | 46 |
| 337 | ST+              | 06  | 393 | STO              | 90 | 449 | RCL  | 10 |
| 338 | RCL              | 82  | 394 | RCL              | 89 | 450 | XEQ  | 47 |
| 339 | RCL              | 80  | 395 | -                |    | 451 | STO  | 10 |
| 340 | -                |     | 396 | ABS              |    | 452 | RCL  | 67 |
| 341 | X $\downarrow$ 2 |     | 397 | STO              | 91 | 453 | *    |    |
| 342 | RCL              | 83  | 398 | XEQ              | 18 | 454 | STO  | 05 |
| 343 | RCL              | 81  | 399 | ST*              | 91 | 455 | RCL  | 85 |
| 344 | -                |     | 400 | RCL              | 69 | 456 | XEQ  | 46 |
| 345 | ST+              | 13  | 401 | STO              | 86 | 457 | RCL  | 11 |
| 346 | X $\downarrow$ 2 |     | 402 | FS?              | 05 | 458 | XEQ  | 47 |
| 347 | +                |     | 403 | XEQ              | 20 | 459 | ST+  | 10 |
| 348 | SQRT             |     | 404 | RCL              | 86 | 460 | RCL  | 69 |
| 349 | ST+              | 12  | 405 | RCL              | 06 | 461 | *    |    |
| 350 | RTN              |     | 406 | *                |    | 462 | ST+  | 05 |
| 351 | LBL              | 16  | 407 | RCL              | 91 | 463 | RCL  | 84 |
| 352 | SF               | 03  | 408 | +                |    | 464 | XEQ  | 46 |
| 353 | RCL              | 11  | 409 | RCL              | 89 | 465 | RCL  | 12 |
| 354 | STO              | 77  | 410 | +                |    | 466 | XEQ  | 47 |
| 355 | 3                |     | 411 | RCL              | 87 | 467 | ST+  | 10 |
| 356 | Y $\downarrow$ X |     | 412 | +                |    | 468 | RCL  | 68 |
| 357 | RCL              | 10  | 413 | STO              | 86 | 469 | *    |    |
| 358 | STO              | 78  | 414 | RCL              | 84 | 470 | ST+  | 05 |
| 359 | X $\downarrow$ 2 |     | 415 | RCL              | 90 | 471 | RCL  | 10 |
| 360 | /                |     | 416 | +                |    | 472 | 1/X  |    |
| 361 | 1/X              |     | 417 | RCL              | 86 | 473 | RCL  | 05 |
| 362 | RCL              | 85  | 418 | -                |    | 474 | *    |    |
| 363 | *                |     | 419 | STO              | 86 | 475 | STO  | 86 |
| 364 | STO              | 79  | 420 | ABS              |    | 476 | RTN  |    |
| 365 | FS?              | 09  | 421 | GTO              | 26 | 477 | LBL  | 21 |
| 366 | GTO              | 21  | 422 | LBL              | 18 | 478 | RCL  | 71 |

|              |              |              |
|--------------|--------------|--------------|
| 479 XEQ 34   | 535 RCL 14   | 589 ACA      |
| 480 RCL 79   | 536 STO 15   | 590 CF 13    |
| 481 XEQ 35   | 537 0        | 591 FS? 02   |
| 482 RCL 78   | 538 STO 10   | 592 GTO 30   |
| 483 X<Y?     | 539 STO 11   | 593 RCL 75   |
| 484 GTO 36   | 540 STO 12   | 594 ACX      |
| 485+LBL 22   | 541 STO 13   | 595 PRBUF    |
| 486 FS?C 09  | 542 STO 06   | 596 RTN      |
| 487 XEQ 33   | 543 STO 05   | 597+LBL 39   |
| 488 RCL 71   | 544 RTN      | 598 RCL 78   |
| 489 STO 70   | 545+LBL 26   | 599 ACX      |
| 490 RCL 77   | 546 .005     | 600 PRBUF    |
| 491 STO 74   | 547 X>Y?     | 601 RTN      |
| 492 RCL 78   | 548 GTO 21   | 602+LBL 31   |
| 493 STO 75   | 549+LBL 27   | 603 RCL 04   |
| 494 RCL 79   | 550 RCL 86   | 604 FRC      |
| 495 STO 76   | 551 .92      | 605 .5       |
| 496 XEQ 28   | 552 *        | 606 X<=Y?    |
| 497 FS? 05   | 553 GTO 39   | 607 GTO 32   |
| 498 XEQ 52   | 554+LBL 28   | 608 XEQ 37   |
| 499 -CMSEL:- | 555 FC? 05   | 609 .5       |
| 500 -+ -     | 556 GTO 29   | 610 GTO 38   |
| 501 ARCL 04  | 557 -A. -    | 611+LBL 32   |
| 502 PRA      | 558 ACA      | 612 XEQ 37   |
| 503 GTO 53   | 559 SF 13    | 613 1        |
| 504+LBL 23   | 560 -LOB --  | 614 GTO 38   |
| 505 "Ce. --" | 561 ACA      | 615+LBL 33   |
| 506 ACA      | 562 CF 13    | 616 ADV      |
| 507 RCL 72   | 563 RCL 83   | 617 FMT      |
| 508 INT      | 564 ACX      | 618 ---HARMI |
| 509 10       | 565 PRBUF    | NG---        |
| 510 /        | 566 -A. -    | 619 ACA      |
| 511 ACX      | 567 ACA      | 620 PRBUF    |
| 512 FMT      | 568 SF 13    | 621 FMT      |
| 513 "Ce. --" | 569 -ROB --  | 622 "CRITICA |
| 514 ACA      | 570 ACA      | L DEPTH -    |
| 515 RCL 72   | 571 CF 13    | 623 ACA      |
| 516 FRC      | 572 RCL 84   | 624 "ASSUMED |
| 517 ACX      | 573 ACX      | -            |
| 518 PRBUF    | 574 PRBUF    | 625 ACA      |
| 519 RTN      | 575 -A. -    | 626 PRBUF    |
| 520+LBL 24   | 576 ACA      | 627 ADV      |
| 521 RCL 70   | 577 SF 13    | 628 RTN      |
| 522 RCL 74   | 578 "MN. CHL | 629+LBL 34   |
| 523 /        | --           | 630 X†2      |
| 524 X†2      | 579 ACA      | 631 RCL 13   |
| 525 STO 06   | 580 CF 13    | 632 *        |
| 526 RCL 71   | 581 RCL 85   | 633 RTN      |
| 527 RCL 77   | 582 ACX      | 634+LBL 35   |
| 528 /        | 583 PRBUF    | 635 *        |
| 529 X†2      | 584+LBL 29   | 636 32.174   |
| 530 RCL 06   | 585 -A. -    | 637 /        |
| 531 XEQ 47   | 586 ACA      | 638 3        |
| 532 STO 06   | 587 SF 13    | 639 1/X      |
| 533 GTO 17   | 588 "TOTAL - | 640 Y†X      |
| 534+LBL 25   | -            | 641 RTN      |

|              |              |            |
|--------------|--------------|------------|
| 642•LBL 36   | 696 1.00     | 751 ST0 81 |
| 643 .01      | 697 X=Y?     | 752 RCL 85 |
| 644 GTO 38   | 698 XEQ 43   | 753 ST0 82 |
| 645•LBL 37   | 699 GTO 55   | 754 RTN    |
| 646 RCL 04   | 700•LBL 43   | 755•LBL 53 |
| 647 INT      | 701 SF 10    | 756 RCL 04 |
| 648 ST0 04   | 702 "CONST.  | 757 ST0 87 |
| 649 RTN      | Q?"          | 758 .01    |
| 650•LBL 38   | 703 PROMPT   | 759 ST+ 04 |
| 651 ST+ 04   | 704 1.00     | 760 1      |
| 652 SF 09    | 705 X=Y?     | 761 ST+ 66 |
| 653 GTO 04   | 706 XEQ 44   | 762 RCL 66 |
| 654•LBL 39   | 707 RTN      | 763 RCL 73 |
| 655 ST- 04   | 708•LBL 44   | 764 X=Y?   |
| 656 GTO 04   | 709 SF 04    | 765 GTO 56 |
| 657•LBL 40   | 710 "NEW Q?" | 766 ADV    |
| 658 "Q. "    | 711 PROMPT   | 767 GTO 00 |
| 659 ACA      | 712 ST0 92   | 768•LBL 54 |
| 660 SF 13    | 713 RTN      | 769 /      |
| 661 "CFS" -" | 714•LBL 43   | 770 X†2    |
| 662 ACA      | 715 RCL 75   | 771 64.348 |
| 663 CF 13    | 716 /        | 772 /      |
| 664 RCL 71   | 717 RCL 70   | 773 RTN    |
| 665 ACX      | 718 *        | 774•LBL 55 |
| 666 PRBUF    | 719 RTN      | 775 1      |
| 667 RTN      | 720•LBL 46   | 776 ST0 66 |
| 668•LBL 41   | 721 RCL 78   | 777 GTO 00 |
| 669 RCL 92   | 722 /        | 778•LBL 56 |
| 670 ST0 70   | 723 RCL 71   | 779 BEEP   |
| 671 FS? 04   | 724 *        | 780 BEEP   |
| 672 GTO 42   | 725 RTN      | 781 STOP   |
| 673 BEEP     | 726•LBL 47   | 782 .END.  |
| 674 "NEW Q?" | 727 +        |            |
| 675 PROMPT   | 728 2        |            |
| 676 ST0 92   | 729 /        |            |
| 677•LBL 42   | 730 RTN      |            |
| 678 ST0 71   | 731•LBL 48   |            |
| 679 FS? 04   | 732 RCL 83   |            |
| 680 RTN      | 733 RCL 84   |            |
| 681 1        | 734 +        |            |
| 682 RCL 66   | 735 CHS      |            |
| 683 X=Y?     | 736 FS? 02   |            |
| 684 RTN      | 737 GTO 50   |            |
| 685 RCL 92   | 738•LBL 49   |            |
| 686 ST0 70   | 739 RCL 75   |            |
| 687 RTN      | 740 GTO 51   |            |
| 688•LBL "RER | 741•LBL 50   |            |
| UN-          | 742 RCL 78   |            |
| 689 ADV      | 743•LBL 51   |            |
| 690 CLRG     | 744 +        |            |
| 691 CF 02    | 745 ST0 85   |            |
| 692 CF 04    | 746 RTN      |            |
| 693 CF 10    | 747•LBL 52   |            |
| 694 "CHANGE  | 748 RCL 83   |            |
| Q?"          | 749 ST0 80   |            |
| 695 PROMPT   | 750 RCL 84   |            |

|              |              |              |
|--------------|--------------|--------------|
| 01•LBL "WAS  | 50 ACX       | 104 PROMPT   |
| PMET"        | 51 PRBUF     | 105 STO 04   |
| 02 ADV       | 52 FS? 10    | 106 "WS. INP |
| 03 FMT       | 53 XEQ 41    | UT: "        |
| 04 "W. S. P  | 54 XEQ 40    | 107 "-"      |
| ROFILES-     | 55 XEQ 23    | 108 ARCL 04  |
| 05 ACA       | 56 FC? 02    | 109 PRA      |
| 06 PRBUF     | 57 GTO 03    | 110•LBL 04   |
| 07 FMT       | 58 FC? 05    | 111 SF 03    |
| 08 SF 13     | 59 GTO 02    | 112 XEQ 25   |
| 09 "METRIC   | 60 "L. "     | 113 XEQ 06   |
| VERSION-     | 61 ACA       | 114 XEQ 05   |
| 10 ACA       | 62 SF 13     | 115 FS? 02   |
| 11 CF 13     | 63 "LOB --   | 116 GTO 16   |
| 12 PRBUF     | 64 ACA       | 117 RCL 11   |
| 13 ADV       | 65 CF 13     | 118 STO 74   |
| 14 "TITLE:   | 66 RCL 67    | 119 3        |
| "            | 67 ACX       | 120 Y+X      |
| 15 ACA       | 68 PRBUF     | 121 RCL 10   |
| 16 "TITLE? " | 69 "L. "     | 122 STO 75   |
| 17 PROMPT    | 70 ACA       | 123 X+2      |
| 18 ACA       | 71 SF 13     | 124 /        |
| 19 PRBUF     | 72 "ROB --   | 125 1/X      |
| 20 ADV       | 73 ACA       | 126 RCL 05   |
| 21 FIX 2     | 74 CF 13     | 127 *        |
| 22 CLRG      | 75 RCL 68    | 128 STO 76   |
| 23 CF 02     | 76 ACX       | 129 RCL 70   |
| 24 CF 04     | 77 PRBUF     | 130 XEQ 34   |
| 25 CF 05     | 78•LBL 02    | 131 RCL 76   |
| 26 CF 08     | 79 "L. "     | 132 XEQ 35   |
| 27 CF 10     | 80 ACA       | 133 RCL 75   |
| 28 "OVERBAN  | 81 SF 13     | 134 X<Y?     |
| K Q? "       | 82 "MN. CHL  | 135 GTO 31   |
| "            | "            | 136 FS?C 09  |
| 29 PROMPT    | 83 ACA       | 137 XEQ 33   |
| 30 1.00      | 84 CF 13     | 138 "WS. STA |
| 31 X=Y?      | 85 RCL 69    | RT: "        |
| 32 SF 05     | 86 ACX       | 139 "-"      |
| 33 "AV. COV  | 87 PRBUF     | 140 ARCL 04  |
| NCE EQN? "   | 88 RCL 69    | 141 PRA      |
| 34 PROMPT    | 89 ST+ 88    | 142 FS? 05   |
| 35 1.00      | 90 "C"       | 143 XEQ 48   |
| 36 X=Y?      | 91 ACA       | 144 XEQ 28   |
| 37 SF 08     | 92 SF 13     | 145 FS? 05   |
| 38 GTO 55    | 93 "UM. "    | 146 XEQ 52   |
| 39•LBL 00    | 94 ACA       | 147 SF 02    |
| 40 CLA       | 95 CF 13     | 148 GTO 53   |
| 41 ARCL 66   | 96 "L. --"   | 149•LBL 05   |
| 42 0         | 97 ACA       | 150 RCL 06   |
| 43 SEEKR     | 98 RCL 88    | 151 FS? 03   |
| 44 14.073    | 99 ACX       | 152 STO 83   |
| 45 READRX    | 100 PRBUF    | 153 FC? 03   |
| 46•LBL 01    | 101 GTO 04   | 154 STO 84   |
| 47 "SECTION  | 102•LBL 03   | 155 CF 03    |
| NO: - -      | 103 "WS STAR | 156 X=0?     |
| 48 ACA       | T? -         | 157 RTN      |
| 49 RCL 66    |              |              |

|             |             |             |
|-------------|-------------|-------------|
| 158 RCL 12  | 211+LBL 08  | 261 +       |
| 159 RCL 06  | 212 SF 08   | 262 RCL IND |
| 160 X<>Y    | 213+LBL 09  | X           |
| 161 /       | 214 CF 01   | 263 INT     |
| 162 ENTER†  | 215 RCL 08  | 264 ABS     |
| 163 .666667 | 216 2       | 265 X<>Y    |
| 164 Y†X     | 217 +       | 266 RDN     |
| 165 RCL 06  | 218 RCL IND | 267 -       |
| 166 *       | X           | 268 ST* 09  |
| 167 RCL 07  | 219 RCL 04  | 269 RCL 04  |
| 168 /       | 220 X<>Y    | 270 FS? 00  |
| 169 ST+ 11  | 221 X<=Y?   | 271 ST0 02  |
| 170 3       | 222 SF 01   | 272 FS? 01  |
| 171 Y†X     | 223 FS? 00  | 273 ST0 00  |
| 172 RCL 06  | 224 GTO 10  | 274 RCL IND |
| 173 X†2     | 225 FS? 01  | 08          |
| 174 /       | 226 GTO 14  | 275 -       |
| 175 ST+ 05  | 227 ISG 15  | 276 ST* 09  |
| 176 RCL 06  | 228 GTO 06  | 277 RCL 08  |
| 177 ST+ 10  | 229 RTN     | 278 1       |
| 178 0       | 230+LBL 10  | 279 +       |
| 179 ST0 12  | 231 RCL IND | 280 RCL IND |
| 180 ST0 06  | 08          | X           |
| 181 RTN     | 232 ST0 00  | 281 INT     |
| 182+LBL 06  | 233 RCL 08  | 282 ABS     |
| 183 CF 08   | 234 1       | 283 ST+ 09  |
| 184 CF 01   | 235 +       | 284 RCL 09  |
| 185 RCL 15  | 236 RCL IND | 285 FS? 00  |
| 186 INT     | X           | 286 ST0 03  |
| 187 ST0 08  | 237 INT     | 287 FS? 01  |
| 188 1       | 238 ABS     | 288 ST0 01  |
| 189 +       | 239 ST0 01  | 289 XEQ 15  |
| 190 RCL IND | 240 FS? 01  | 290+LBL 12  |
| X           | 241 GTO 13  | 291 ISG 15  |
| 191 X>0?    | 242+LBL 11  | 292 GTO 06  |
| 192 GTO 07  | 243 RCL 08  | 293 RTN     |
| 193 RDN     | 244 2       | 294+LBL 13  |
| 194 17      | 245 +       | 295 RCL 08  |
| 195 X=Y?    | 246 RCL IND | 296 2       |
| 196 XEQ 05  | X           | 297 +       |
| 197 RCL 08  | 247 RCL IND | 298 RCL IND |
| 198 1       | 08          | X           |
| 199 +       | 248 -       | 299 ST0 02  |
| 200 RCL IND | 249 X=0?    | 300 RCL 08  |
| X           | 250 GTO 12  | 301 3       |
| 201 CHS     | 251 1/X     | 302 +       |
| 202 FRC     | 252 ST0 09  | 303 RCL IND |
| 203 ST0 07  | 253 RCL 08  | X           |
| 204+LBL 07  | 254 3       | 304 INT     |
| 205 RCL IND | 255 +       | 305 ABS     |
| 08          | 256 RCL IND | 306 ST0 03  |
| 206 RCL 04  | X           | 307 XEQ 15  |
| 207 X<>Y    | 257 INT     | 308 ISG 15  |
| 208 X<=Y?   | 258 ABS     | 309 GTO 06  |
| 209 GTO 08  | 259 RCL 08  | 310 RTN     |
| 210 GTO 09  | 260 1       | 311+LBL 14  |

|                      |                      |            |
|----------------------|----------------------|------------|
| 312 RCL 08           | 366 RCL 05           | 422 -      |
| 313 2                | 367 *                | 423 STO 86 |
| 314 +                | 368 STO 79           | 424 ABS    |
| 315 RCL IND          | 369 FS? 09           | 425 GTO 26 |
| X                    | 370 GTO 21           | 426+LBL 18 |
| 316 STO 02           | 371 RCL 70           | 427 RCL 99 |
| 317 RCL 08           | 372 RCL 71           | 428 RCL 89 |
| 318 3                | 373 +                | 429 X>Y?   |
| 319 +                | 374 STO 11           | 430 GTO 19 |
| 320 RCL IND          | 375 FC? 08           | 431 RCL 72 |
| X                    | 376 GTO 24           | 432 FRC    |
| 321 INT              | 377 RCL 74           | 433 RTN    |
| 322 ABS              | 378 RCL 77           | 434+LBL 19 |
| 323 STO 03           | 379 +                | 435 RCL 72 |
| 324 GTO 11           | 380 1/X              | 436 INT    |
| 325+LBL 15           | 381 RCL 11           | 437 10     |
| 326 RCL 04           | 382 *                | 438 /      |
| 327 RCL 00           | 383 X <sup>1/2</sup> | 439 RTN    |
| 328 -                | 384 STO 06           | 440+LBL 20 |
| 329 RCL 04           | 385+LBL 17           | 441 XEQ 48 |
| 330 RCL 02           | 386 RCL 70           | 442 RCL 80 |
| 331 -                | 387 RCL 75           | 443 XEQ 45 |
| 332 +                | 388 XEQ 54           | 444 STO 10 |
| 333 2                | 389 RCL 76           | 445 RCL 82 |
| 334 /                | 390 *                | 446 XEQ 45 |
| 335 X=0?             | 391 STO 89           | 447 STO 11 |
| 336 RTN              | 392 RCL 71           | 448 RCL 81 |
| 337 RCL 03           | 393 RCL 78           | 449 XEQ 45 |
| 338 RCL 01           | 394 XEQ 54           | 450 STO 12 |
| 339 -                | 395 RCL 79           | 451 RCL 83 |
| 340 *                | 396 *                | 452 XEQ 46 |
| 341 ST+ 06           | 397 STO 90           | 453 RCL 10 |
| 342 RCL 02           | 398 RCL 89           | 454 XEQ 47 |
| 343 RCL 00           | 399 -                | 455 STO 10 |
| 344 -                | 400 ABS              | 456 RCL 67 |
| 345 X <sup>1/2</sup> | 401 STO 91           | 457 *      |
| 346 RCL 03           | 402 XEQ 18           | 458 STO 05 |
| 347 RCL 01           | 403 ST+ 91           | 459 RCL 85 |
| 348 -                | 404 RCL 69           | 460 XEQ 46 |
| 349 ST+ 13           | 405 STO 86           | 461 RCL 11 |
| 350 X <sup>1/2</sup> | 406 FS? 05           | 462 XEQ 47 |
| 351 +                | 407 XEQ 20           | 463 ST+ 10 |
| 352 SQRT             | 408 RCL 86           | 464 RCL 69 |
| 353 ST+ 12           | 409 RCL 06           | 465 *      |
| 354 RTN              | 410 *                | 466 ST+ 05 |
| 355+LBL 16           | 411 RCL 91           | 467 RCL 84 |
| 356 SF 03            | 412 +                | 468 XEQ 46 |
| 357 RCL 11           | 413 RCL 89           | 469 RCL 12 |
| 358 STO 77           | 414 +                | 470 XEQ 47 |
| 359 3                | 415 RCL 87           | 471 ST+ 10 |
| 360 Y <sup>1/X</sup> | 416 +                | 472 RCL 68 |
| 361 RCL 10           | 417 STO 86           | 473 *      |
| 362 STO 78           | 418 RCL 04           | 474 ST+ 05 |
| 363 X <sup>1/2</sup> | 419 RCL 90           | 475 RCL 10 |
| 364 /                | 420 +                | 476 1/X    |
| 365 1/X              | 421 RCL 86           | 477 RCL 05 |

|               |              |              |
|---------------|--------------|--------------|
| 478 *         | 534 RCL 06   | 589 "A. "    |
| 479 STO 06    | 535 XEQ 47   | 590 ACA      |
| 480 RTN       | 536 STO 06   | 591 SF 13    |
| 481+LBL 21    | 537 GTO 17   | 592 "TOTAL - |
| 482 RCL 71    | 538+LBL 25   | -            |
| 483 XEQ 34    | 539 RCL 14   | 593 ACA      |
| 484 RCL 79    | 540 STO 15   | 594 CF 13    |
| 485 XEQ 35    | 541 0        | 595 FS? 02   |
| 486 RCL 78    | 542 STO 10   | 596 GTO 30   |
| 487 X>Y?      | 543 STO 11   | 597 RCL 75   |
| 488 GTO 36    | 544 STO 12   | 598 ACX      |
| 489+LBL 22    | 545 STO 13   | 599 PRBUF    |
| 490 FS?C 09   | 546 STO 06   | 600 RTN      |
| 491 XEQ 33    | 547 STO 05   | 601+LBL 30   |
| 492 RCL 71    | 548 RTN      | 602 RCL 78   |
| 493 STO 70    | 549+LBL 26   | 603 ACX      |
| 494 RCL 77    | 550 .005     | 604 PRBUF    |
| 495 STO 74    | 551 X>Y?     | 605 RTN      |
| 496 RCL 78    | 552 GTO 21   | 606+LBL 31   |
| 497 STO 75    | 553+LBL 27   | 607 .2       |
| 498 RCL 79    | 554 RCL 86   | 608 GTO 38   |
| 499 STO 76    | 555 .92      | 609+LBL 33   |
| 500 XEQ 28    | 556 *        | 610 ADV      |
| 501 FS? 05    | 557 GTO 39   | 611 FMT      |
| 502 XEQ 52    | 558+LBL 28   | 612 ---WARNI |
| 503 "CWSEL: - | 559 FC? 05   | NG---        |
| 504 "F -      | 560 GTO 29   | 613 ACA      |
| 505 ARCL 04   | 561 "A. "    | 614 PRBUF    |
| 506 PRA       | 562 ACA      | 615 FMT      |
| 507 GTO 53    | 563 SF 13    | 616 "CRITICA |
| 508+LBL 23    | 564 "LOB --  | L DEPTH "    |
| 509 "Cc. -"   | 565 ACA      | 617 ACA      |
| 510 ACA       | 566 CF 13    | 618 "ASSUMED |
| 511 RCL 72    | 567 RCL 83   | -            |
| 512 INT       | 568 ACX      | 619 ACA      |
| 513 10        | 569 PRBUF    | 620 PRBUF    |
| 514 /         | 570 "A. "    | 621 ADV      |
| 515 ACX       | 571 ACA      | 622 RTN      |
| 516 FMT       | 572 SF 13    | 623+LBL 34   |
| 517 "Ce. -"   | 573 "ROB --  | 624 X†2      |
| 518 ACA       | 574 ACA      | 625 RCL 13   |
| 519 RCL 72    | 575 CF 13    | 626 *        |
| 520 FRC       | 576 RCL 84   | 627 RTN      |
| 521 ACX       | 577 ACX      | 628+LBL 35   |
| 522 PRBUF     | 578 PRBUF    | 629 *        |
| 523 RTN       | 579 "A. "    | 630 9.807    |
| 524+LBL 24    | 580 ACA      | 631 /        |
| 525 RCL 70    | 581 SF 13    | 632 3        |
| 526 RCL 74    | 582 "MN. CHL | 633 1/X      |
| 527 /         | --           | 634 Y†X      |
| 528 X†2       | 583 ACA      | 635 RTN      |
| 529 STO 06    | 584 CF 13    | 636+LBL 36   |
| 530 RCL 71    | 585 RCL 85   | 637 .01      |
| 531 RCL 77    | 586 ACX      | 638 GTO 38   |
| 532 /         | 587 PRBUF    | 639+LBL 38   |
| 533 X†2       | 588+LBL 29   | 640 ST+ 04   |

|              |              |            |
|--------------|--------------|------------|
| 641 SF 09    | 694 X=Y?     | 750 ST+ 66 |
| 642 GTO 04   | 695 XEQ 44   | 751 RCL 66 |
| 643+LBL 39   | 696 RTN      | 752 RCL 73 |
| 644 ST- 04   | 697+LBL 44   | 753 X=Y?   |
| 645 GTO 04   | 698 SF 04    | 754 GTO 56 |
| 646+LBL 40   | 699 "NEW Q?" | 755 ADV    |
| 647 "Q. "    | 700 PROMPT   | 756 GTO 00 |
| 648 ACA      | 701 STO 92   | 757+LBL 54 |
| 649 SF 13    | 702 RTN      | 758 /      |
| 650 "CMS --" | 703+LBL 45   | 759 XT2    |
| 651 ACA      | 704 RCL 75   | 760 19.614 |
| 652 CF 13    | 705 /        | 761 /      |
| 653 RCL 71   | 706 RCL 70   | 762 RTN    |
| 654 ACX      | 707 *        | 763+LBL 55 |
| 655 PRBUF    | 708 RTN      | 764 1      |
| 656 RTN      | 709+LBL 46   | 765 STO 66 |
| 657+LBL 41   | 710 RCL 78   | 766 GTO 00 |
| 658 RCL 92   | 711 /        | 767+LBL 56 |
| 659 STO 70   | 712 RCL 71   | 768 BEEP   |
| 660 FS? 04   | 713 *        | 769 BEEP   |
| 661 GTO 42   | 714 RTN      | 770 STOP   |
| 662 BEEP     | 715+LBL 47   | 771 .END.  |
| 663 "NEW Q?" | 716 +        |            |
| 664 PROMPT   | 717 2        |            |
| 665 STO 92   | 718 /        |            |
| 666+LBL 42   | 719 RTN      |            |
| 667 STO 71   | 720+LBL 48   |            |
| 668 FS? 04   | 721 RCL 83   |            |
| 669 RTN      | 722 RCL 84   |            |
| 670 1        | 723 +        |            |
| 671 RCL 66   | 724 CHS      |            |
| 672 X=Y?     | 725 FS? 02   |            |
| 673 RTN      | 726 GTO 50   |            |
| 674 RCL 92   | 727+LBL 49   |            |
| 675 STO 70   | 728 RCL 75   |            |
| 676 RTN      | 729 GTO 51   |            |
| 677+LBL "RER | 730+LBL 50   |            |
| UH-          | 731 RCL 78   |            |
| 678 ADV      | 732+LBL 51   |            |
| 679 CLRG     | 733 +        |            |
| 680 CF 02    | 734 STO 85   |            |
| 681 CF 04    | 735 RTN      |            |
| 682 CF 10    | 736+LBL 52   |            |
| 683 "CHANGE  | 737 RCL 83   |            |
| Q?"          | 738 STO 80   |            |
| 684 PROMPT   | 739 RCL 84   |            |
| 685 1.00     | 740 STO 81   |            |
| 686 X=Y?     | 741 RCL 85   |            |
| 687 XEQ 43   | 742 STO 82   |            |
| 688 GTO 55   | 743 RTN      |            |
| 689+LBL 43   | 744+LBL 53   |            |
| 690 SF 10    | 745 RCL 04   |            |
| 691 "CONST.  | 746 STO 87   |            |
| Q?"          | 747 .01      |            |
| 692 PROMPT   | 748 ST+ 04   |            |
| 693 1.00     | 749 1        |            |

01♦LBL "BYE  
02 CLRG  
03 FIX 2  
04 "STARTIN  
G FILE N"  
05 "NUMBER?  
-  
06 PROMPT  
07 STO 01  
08 "ENDING  
FILE NUM"  
09 "IBER?"  
10 PROMPT  
11 STO 02  
12♦LBL 01  
13 CLA  
14 ARCL 01  
15 PURGE  
16 1  
17 ST+ 01  
18 RCL 02  
19 RCL 01  
20 X<=Y?  
21 GTO 01  
22 GTO 02  
23♦LBL 02  
24 CLRG  
25 CLST  
26 CLX  
27 CLA  
28 CLΣ  
29 CF 00  
30 CF 01  
31 CF 02  
32 CF 03  
33 CF 04  
34 CF 05  
35 CF 06  
36 CF 07  
37 CF 08  
38 CF 09  
39 CF 10  
40 CF 11  
41 CF 12  
42 CF 13  
43 FIX 4  
44 STOP  
45 END

Scan Copyright ©  
The Museum of HP Calculators  
[www.hpmuseum.org](http://www.hpmuseum.org)

Original content used with permission.

Thank you for supporting the Museum of HP  
Calculators by purchasing this Scan!

Please do not make copies of this scan or  
make it available on file sharing services.