

HP-67/HP-97

Users' Library Solutions COGO-Surveying

INTRODUCTION

In an effort to provide continued value to its customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

SPECIAL NOTE

This Library Solutions book is based entirely on a set of HP-65 programs submitted by Carl M. King of Sarasota, Florida and translated for the HP-67/97 by Hewlett-Packard. Special thanks are due to Mr. King for this complete set of interrelated programs.

TABLE OF CONTENTS

COGO-SURVEYING: GENERAL DESCRIPTION AND INSTRUCTIONS	1
A general description of the COGO surveying programs with notes on their use and a set of general instructions.	
COGO-01: BASIC TRAVERSE, INVERSE AND SIDESHOTS	7
This general program calculates a bearing or deflection angle traverse or inverse. Sideshots may also be calculated without disruption of the flow of the calculations.	
COGO-02: BEARING-BEARING INTERSECTION AND TRAVERSE	12
The special feature of this program is calculation of an intersection from 2 known bearings. The program also performs the basic bearing or deflection angle traverse calculations.	
COGO-03: BEARING-DISTANCE INTERSECTION AND TRAVERSE	18
The special feature of this program calculates an intersection from bearing-distance data. Basic traverse calculations are included.	
COGO-04: DISTANCE-DISTANCE INTERSECTION AND TRAVERSE	23
This program calculates an intersection from two known distances. Basic traverse calculations are included.	
COGO-05: TRAVERSE OF CURVE	28
Included with the basic traverse calculations in this program is calculation of a curve as in a part of a subdivision or legal boundary. Tan., arc, chord and segment area are calculated.	
COGO-06: CURVE INVERSE AND TRAVERSE	33
This program calculates a curve of given radius between two known points as a part of the traverse. Tan., arc, chord and segment area are calculated. Basic traverse routines are included.	
COGO-07: COMPASS RULE ADJUSTMENT	38
This program performs traverse adjustment by the compass rule. Basic traverse routines are included.	
COGO-08: ROTATION OF AXES	43
The special feature of this program rotates axes of a survey by an angle of your choice. Translation of the traverse can also be accomplished.	
COGO-09: CRANDALL'S RULE ADJUSTMENT	48
This program, on two cards, performs adjustment of a traverse by Crandall's rule.	
COGO-10: TRANSIT RULE ADJUSTMENT	54
This program performs adjustment of a traverse by the transit rule.	
COGO-11: TO INSCRIBE CURVE	59
Special feature of this program is the calculation of a curve inscribed at an angle of a traverse, so that the existing point becomes the point of intersection of the curve.	
COGO-12: SLOPE SHOT TRAVERSE	64
This program calculates slope shots as well as the basic traverse routine.	

Program Description I

1

Program Title COGO - SURVEYING: GENERAL DESCRIPTION AND INSTRUCTIONS

This Hewlett-Packard translation is based on the COGO Series of HP-65
programs written by CARL M. KING
2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables These COGO programs constitute a comprehensive and self consistent series that solve all the CoOrdinate GeOmetry relationships regularly employed by surveyors and plat designers. The raw data from the surveyors' field notes are reduced to rectangular coordinates for ease of plotting and for detection of errors. From any given PAIR of coordinates, you advance a direction and a distance to a new POINT, identified by a new PAIR of computed coordinates. ALL the programs in this COGO series have certain features in COMMON, so that you can switch from one program to another without losing the thread of your calculations. The BEARING TRAVERSE and the DEFLECTION ANGLE traverse are common to all. The INVERSE TRAVERSE is shared by eight of them. When proceeding around a CLOSED traverse, along straight legs and circular arc segments, they automatically accumulate the AREA. In addition to the COMMON options, each program has a SPECIALTY:

COGO-01: SIDE SHOTS COGO-07: COMPASS RULE ADJ.

COGO-02: BRG.-BRG. INTERSECT'N COGO-08: ROTATION OF AXES

COGO-03: BRG.-DIST. INTERSECT'N COGO-09: CRANDALL'S RULE ADJ.

COGO-04: DIST.-DIST. INTERSECT'N COGO-10: TRANSIT RULE ADJ.

COGO-05: TRAVERSE OF CURVE COGO-11: TO INSCRIBE CURVE

COGO-06: INVERSE OF CURVE COGO-12: SLOPE SHOT TRAVERSE

These programs are based upon the HP-65 User's Library COGO series submitted by Carl M. King.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

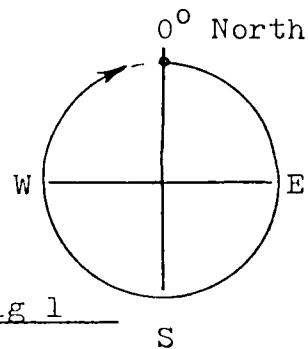


Fig 1

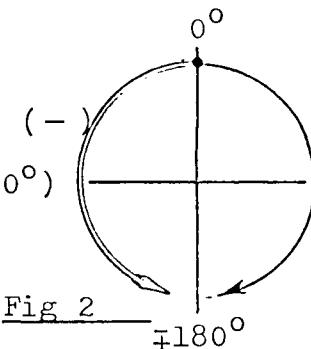


Fig 2

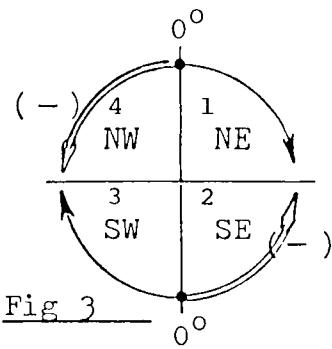


Fig 3

Three systems for denoting HEADINGS in angular degrees:

Fig 1 - This is how a navigator reads his compass, and surveyors call it North AZIMUTH. It is a positive angle reading from the North 0° to 360° .

Fig 2 - Also with the zero point at the North, you can read the W'ly quadrants as a negative (-) angle. This is equivalent AZIMUTH, and this is how the CALCULATOR displays its answers. It reads the whole circle from -180° to 0° to $+180^\circ$.

Fig 3 - Shows two zero points, at North and South points, and angles are read either CW or CCW, depending on the "quadrant". Headings read in this fashion are called BEARINGS, and their numerical values never exceed 90° .

Systems #1 and #2 are mathematically equivalent. The calculator produces the same answers for input expressed in either of these ways.

System #3 is equivalent only in the NE quadrant. However the relationships in the other quadrants are exceedingly simple. NW and SE bearings turn CCW. Think of them as negative (-) angles. SE and SW bearings face opposite to the N'ly quadrants. Think of their distances as negative numbers. YOU CAN INDEED ENTER BEARING AND DISTANCE DATA DIRECTLY INTO THESE PROGRAMS. You merely attach a negative (-) sign to the proper numbers (press [CHS]), as follows:

<u>Quadrant no.</u>	<u>Quadrant</u>	<u>Bearing</u>	<u>Distance</u>
1	NE	+	+
2	SE	-	-
3	SW	+	-
4	NW	-	+

IMPORTANT: Calculator output must at first be read as AZIMUTH. For the Users' convenience, routines for inputting bearing/quadrants, converting Azimuths to bearings and calculating supplementary angles have been included in these programs.

GENERAL DISCUSSION

This COGO series has been designed to provide you with a convenient means of closing and balancing a traverse, and for computing an entire subdivision plat, with a minimum of program CARD changes. Data entry and data read out are consistent throughout. It is as though it were one continuous program.

Each program CARD provides some specialized function, but it also contains many of the standard options for advancing the traverse. Thus, having selected a CARD, you can usually continue the traverse until you have need for a different special function. The standard options are as follows:

Key [A] stores Northings and Eastings (coordinates) of the Point of Beginning (P.O.B.) and initializes the program.

Key [f] [A] converts Azimuth outputs to bearing/quadrants.

Key [f] [C] calculates the supplement of an angle. This is useful for converting Bearings to Azimuths; or Interior Angles to Deflection Angles; and vice versa.

Key [B] calculates the traverse to a new set of coordinates, when the Azimuth and distance are given.

Key [f] [B] performs the above traverse using bearing/quadrant inputs.

Key [C] calculates (in seven of the programs) the inverse traverse. The Azimuth and distance are calculated when the respective coordinates are input.

Key [C], otherwise, initiates the special option, which is characteristic of the respective program.

Key [D] calculates the traverse to a new set of coordinates, when the Deflection Angle (Field Angle) and distance are given.

Key [E] is the ROLL DOWN print function which provides you with convenient single-key means of manipulating and reading the data in the "stack". The answers are always in the same relative order as follows:

x = Northings; y = Eastings; z = Azimuth; t = distance

Key [f] [E] in most of the programs, recalls the area enclosed by the travers.

NOTES:

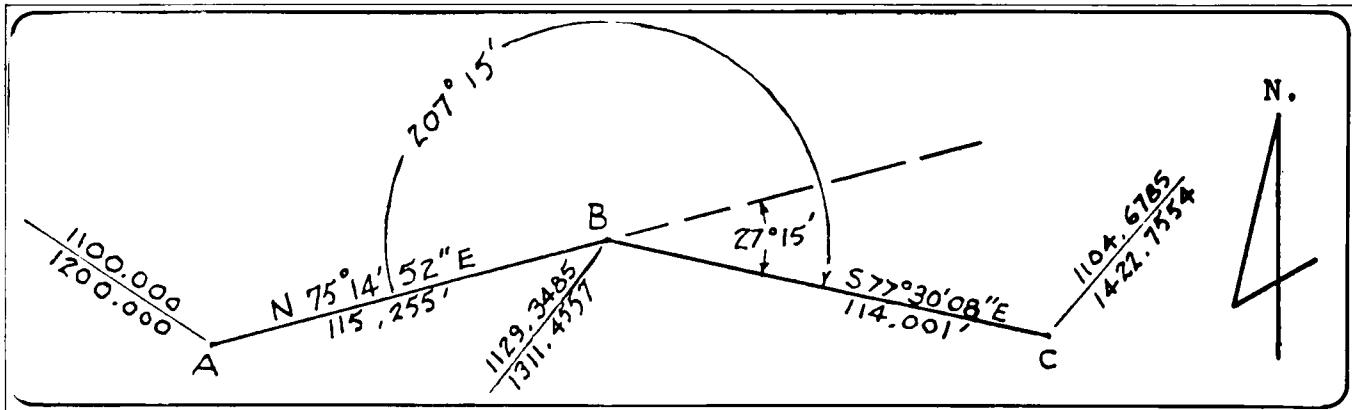
- (1) In these COGO programs angles are always entered and read out in Degrees, Minutes, Seconds (the DD.MMSS format).
- (2) Except for the "side shot", you are advanced to the new point after each traverse calculation, ready to advance again from the new coordinates and to utilize the completed backsight, all of which data are stored in the calculator.
- (3) Every COGO program accumulates AREA as you go, so that when you close upon the P.O.B., you can recall the enclosed area immediately. Areas of curve segments enclosed along the way are also included.

STANDARDIZED DATA ENTRY & TRAVERSE OPTIONS

COGO is a closely knit family of programs, and a diligent effort has been made to standardize the data entry procedures within the family. However, certain Traverse Options could not be included in every program. Following is a listing indicating which options were omitted from the respective programs. The missing options are indicated with an X:

COGO

NO.	SPECIALTY	fC Supplement	B Bearing	C Inverse	D Deflection
-01	BASIC w/SIDE SHOTS	=	=	=	=
-02	BRG.-BRG. INTERSECT'N	=	=	X	=
-03	BRG.-DIST. INTERSECTION	=	=	X	=
-04	DIST.-DIST. INTERSECTION	=	=	=	=
-05	TRAVERSE OF CURVE	=	=	X	=
-06	INVERSE OF CURVE	=	=	=	=
-07	COMPASS RULE ADJUST	=	=	=	=
-08	ROTATION OF AXES	=	=	=	=
-09	CRANDALL'S RULE ADJUST	=	=	=	=
-10	TRANSIT RULE ADJUST	X	=	=	=
-11	TO INSCRIBE CURVE	=	=	X	=
-12	SLOPE SHOT TRAVERSE*	=	=	=	=


*Note: In the Slope Shot (COGO-12) the "B" and "D" routines are modified for slope data entry.

Another interesting feature of all these COGO programs, which you should be aware of, has to do with turning to a new heading while remaining at the same point. If you enter a Bearing angle, and attempt to traverse exactly a zero (0) distance, the calculated "backsight" will always be exactly N 0°00'00"E. In other words, you cannot establish a new heading by traversing exactly a zero (0) distance.

However, establishing a new heading while remaining at the same point is an operation that you occasionally wish to perform, and a provision has been designed into the COGO programs to make it easy for you. You enter the heading information in the usual fashion, (when you press [B] for "Bearing" or press [D] for "Deflection"), and at the STOP where you enter the distance, the programs always provide you with a reading that is a very small number (an infinitesimal) equal to 10^{-9} . This number will serve in lieu of zero, and will introduce no error. Unlike zero, though, it performs normally in the calculator, and you can attach a negative sign to it, if need be.

When this small number is referred to elsewhere in these User Instructions, it is represented by 1.0000-09.

Program Description II

Sample Problem(s) Deflection Angles can be turned either to the right (CW) or the left (CCW). CW angles are always positive (+), and CCW angles are negative (-).

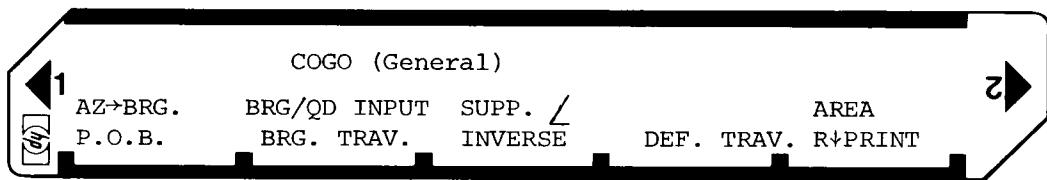
Azimuth Angles also known as "Angles Right" are turned from a backsight. In this case a negative (-) value is used for the traverse distance; or alternatively you can find the equivalent deflection angle, which numerically is its supplement. Always refer to your sketch to get the signs correct.

Given:

Northings = 1100.000

Point "A": Eastings = 1200.000

Thence run N75°14'52"E, 115.255'; thence deflect 27°15'00", 114.001' to point "C".


<u>Solution(s)</u>	<u>Field Angle</u>	<u>distance</u>	<u>Bearing</u>	<u>Northings</u>	<u>Eastings</u>	<u>Point</u>
	---	---	----	1100.000	1200.000	"A" (Given)
	---	115.255	N75°14'52"E	1129.3485	1311.4557	"B"
	+27°15'00"	114.001	S77°30'08"E	1104.6785	1422.7554	"C"
Alternate:	---	---	---	1100.000	1200.000	"A"
	---	115.255	N75°14'52"E	1129.3485	1311.4557	"B"
	+207°15'00"	-114.001	S77°30'08"E	1104.6785	1422.7554	"C"

(Azimuth Angle calls for negative distance.)

IMPORTANT: Always start from a set of given or assumed coordinates.

ALWAYS make at least one BEARING TRAVERSE before proceeding with DEFLECTION ANGLE traverses.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load card, sides 1 and 2			
2	Input point of beginning (P.O.B.)	Northing Easting	ENT↑ A	
	<u>Bearing Traverse:</u>			180
3	enter Bearing* OR Azimuth.	DD.MMSS		
4	IF angle is CCW (negative):			
5	with proper sign attached:			
6	Enter distance.	d_2		
7	IF angle is SE or SW Bearing:			
8	with proper sign attached:			
9	roll down to read: Eastings			
10	roll down to read: Azimuth			
3'	*If bearing/quadrants are input	+bearing quadrant	ENT↑ f B	1.0000-09
	<u>Deflection Angle or Angles Right:</u>			
11	enter ANGLE.	DD.MMSS		
12	IF angle is CCW (negative):			
13	with proper sign attached:			
14	enter distance.	d_2		
15	IF angle is from BACKSIGHT:			
16	with proper sign attached:			
17	roll down to read Eastings			
18	roll down to read Azimuth			
19	<u>Inverse Traverse:</u> enter Northings	N_n	ENT↑	
20	enter Eastings	E_n	C	North'gs
21	roll down to read Eastings		E	Eastings
22	roll down to read Azimuth		E	Azimuth
23	roll down to read distance		E	distance
	<u>Angle Supplement Routine:</u> for converting 2nd or 3rd quadrant AZIMUTHS to BEARINGS, INTERIOR ANGLES to DEFLECTION ANGLES, and vice versa.			
24	(Output = 180° - input) (DD.MMSS) Azimuth		f C	Bearing
25	TO READ enclosed AREA, traverse to POB, then		f E	Sq. Ft.
26	To convert Azimuth to bearing/quadrants	AZ	f A	Bearing Quadrant

Program Description I

7

Program Title COGO-01: BASIC TRAVERSE, INVERSE, & SIDE SHOTS

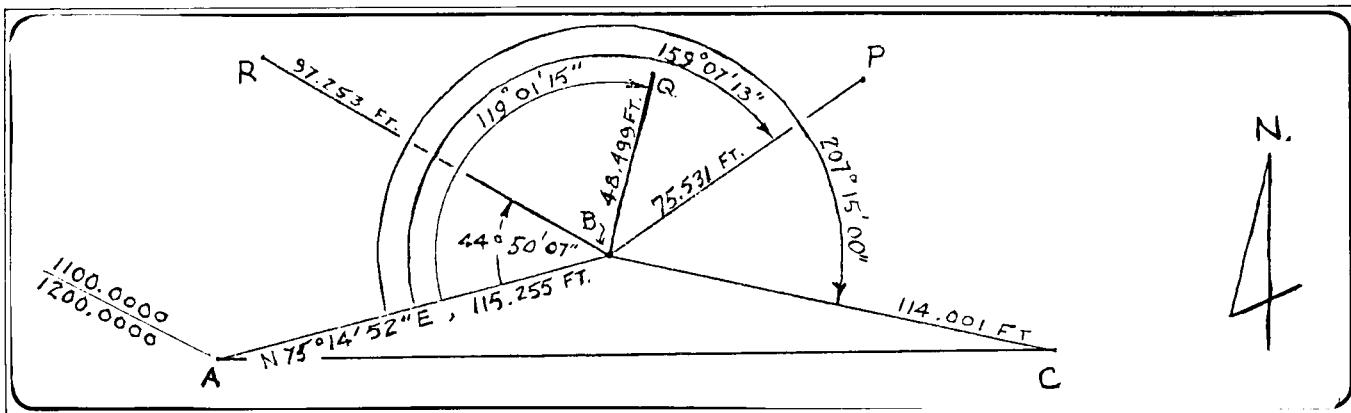
This Hewlett-Packard translation is based on program 02825A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-01 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the SIDE SHOT, which can be exceedingly useful when there are numerous structures and objects in the field to be located. Having set up the instrument and taken a "backsight", you can then take numerous readings from the same set-up, without relocating the instrument. Each of the SIDE SHOTS has no bearing on the area that you might enclose in your traverse, and they are unrelated to each other; i.e., they do not alter the "backsight" setting.

Any traverse leg can be a SIDE SHOT. You merely set the program "mode switch" to the correct mode and then it is treated as a SIDE SHOT. If you wish to make just one SIDE SHOT, you press 1[f] [D] and the program automatically cancels the side shot flag after the shot. If you wish to make several SIDE SHOTS, you press 2 [f] [D] and then all subsequent traverses are SIDE SHOTS from the same originating point and from the same "backsight". When you wish to move the instrument, and advance the traverse again, you will need to reset the "mode switch" to traverse mode. Just press 0 [f] [D]


This program is a modification of the Users' Library Program #02825A submitted by Carl M. King.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) Commence at point A, for a P.O.B. Traverse to point B; make SIDE SHOTS (set multiple side shot mode) to points P, Q. Continue traverse (reset to traverse mode) to point C. Make inverse traverse to close on point A.

For calls \overline{BP} , \overline{BQ} , & \overline{BC} , use DEFLECTION TRAVERSE.

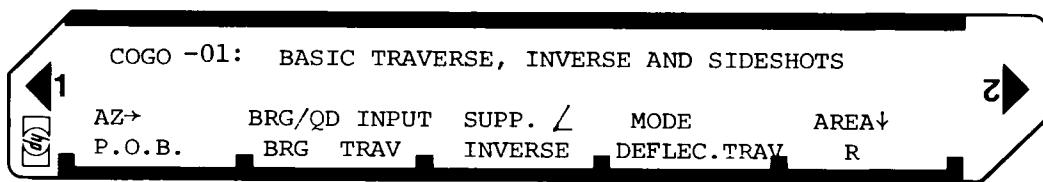
(i.e., "angles right" and negative distance.)

For call \overline{CA} use INVERSE TRAVERSE.

See solutions below. Quantities in parentheses are calculated; others are given as shown in sketch.

		Angles					
	Leg	Right	Azimuth	Distance	Northings	Eastings	
P.O.B.		--	--	--	1100.0000	1200.0000	
Brg. Trav.	AB	--	75°14'52"	115.255	(1129.3485)	(1311.4557)	
Side shots	BP	159°07'13"	(54°22'05")	-75.531	(1173.3510)	(1372.8455)	
	BQ	119°01'15"	(14°16'07")	-48.499	(1176.3513)	(1323.4092)	
Inv. Trav.	BC	207°15'00"	(102°29'52")	-114.001	(1104.6785)	(1422.7554)	
	CA	--	(-91°12'11")	(222.805)	1100.0000	1200.0000	

Area enclosed in triangle ABC = 3008.0442


Solution(s)

0 [f] [D]* 1100 [ENT↑] 1200 [A] 75.1452 [B] 115.255 [R/S] → 1129.3485, N_B
 [E] → 1311.4557, E_B
 2 [f] [D]* 159.0713 [D] 75.5310 [CHS] [R/S] → 1173.3510, N_p ;
 [E] → 1372.8455, E_p ; [E] → 54.2205, AZ \overline{BP}
 119.0115 [D] 48.499 [CHS] [R/S] → 1176.3513, N_Q ; [E] → 1323.4092, E_Q
 [E] → 14.1607, AZ \overline{BQ} .
 0 [f] [D] * 207.15 [D] 114.001 [CHS] [R/S] → 1104.6785, N_C ;
 [E] → 1422.7554, E_C ; [E] → 102.2952, AZ \overline{BC} ,
 1100 [ENT↑] 1200 [C] → 1100.0000; N_A ; [E] → 1200.0000; E_A ;
 [E] → -91.1211, AZ \overline{CA} ; [E] → 222.8045, DIST. \overline{CA} .
 [f] [E] → 3008.0442, AREA.

*setting "Mode Switch" for traverse, multiple sideshots and back to traverse, respectively.

Reference(s) This program is a modification of the Users' Library Program #02825A submitted by Carl M. King.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B.	057	ST07	35 07	
002	ST02	35 02	Easting	058	RCL2	36 02	
003	RV	-31		059	+	-55	
004	ST01	35 01	Northing	060	RCL8	36 08	
005	CLX	-51		061	RCL1	36 01	
006	ST06	35 06		062	+	-55	
007	1	01		063	RCL7	36 07	
008	8	08		064	RCL8	36 08	
009	0	00		065	+P	34	
010	ST09	35 09	Initialize	066	ST04	35 04	
011	RTN	24		067	RV	-31	
012	*LBL0	21 13	Inverse	068	+HMS	16 35	
013	RCL2	36 02		069	ST03	35 03	
014	-	-45	Dep.	070	F1?	16 23 01	Multiple sideshots?
015	X#Y	-41		071	GT01	22 01	
016	RCL1	36 01		072	F2?	16 23 02	Single sideshot?
017	-	-45	Lat.	073	GT01	22 01	Yes
018	GT00	22 00	Go to calc. SBR.	074	LSTX	16-63	No, set up for
019	*LBLb	21 16 12	Bearing/qd input	075	ST05	35 05	traverse
020	X#Y	-41		076	RV	-31	
021	HMS+	16 36	Bearing	077	RV	-31	
022	X#Y	-41		078	ST01	35 01	
023	ENT↑	-21		079	RV	-31	
024	ENT↑	-21		080	ST02	35 02	
025	2	02		081	RCL7	36 07	
026	÷	-24		082	2	02	
027	INT	16 34		083	÷	-24	
028	RCL9	36 09		084	-	-45	
029	X	-35		085	RCL8	36 08	
030	X#Y	-41		086	X	-35	
031	RCL9	36 09		087	ST-6	35-45 06	
032	X	-35		088	RCL2	36 02	
033	COS	42		089	RCL1	36 01	
034	R↑	16-31		090	RCL3	36 03	
035	X	-35		091	*LBL1	21 01	Setup for side shots
036	-	-45	Azimuth	092	RCL4	36 04	
037	GT02	22 02	Go to calc. SBR.	093	X#Y	-41	
038	*LBLB	21 12	Azimuth input	094	RV	-31	
039	HMS+	16 36		095	*LBL1	21 15	Rollover & print
040	GT02	22 02		096	RV	-31	
041	*LBLD	21 14	Deflection angle	097	PRTX	-14	
042	HMS+	16 36	input	098	RTN	24	
043	RCL5	36 05		099	*LBL8	21 08	Distance entry set
044	+	-55		100	X#Y	-41	up
045	*LBL2	21 02	Calc. SBR.	101	R1	-31	
046	EEX	-23		102	RTN	24	
047	CHS	-22		103	*LBLa	21 16 11	Azimuth → Bearing
048	9	09		104	HMS+	16 36	
049	CF3	16 22 03		105	ENT↑	-21	
050	R/S	51	Distance input	106	SIN	41	
051	F3?	16 23 03	Was distance input	107	SIN↑	16 41	
052	GBB8	23 08	Yes	108	X<0?	16-45	
053	+R	44		109	CHS	-22	
054	*LBL0	21 00	Calc. SBR	110	+HMS	16 35	Bearing
055	ST08	35 08		111	PRTX	-14	
056	X#Y	-41		112	RV	-31	

REGISTERS

0	1 N	2 E	3 A Z	4 d	5 A Z	6 AREA	7 dep	8 lat	9 180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D		E		I

97 Program Listing II

11

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	9	09					
114	0	00		170			
115	÷	-24					
116	1	01					
117	+	-55					
118	INT	16 34					
119	PRTX	-14					
120	RTN	24					
121	*LBLd	21 16 14	Quadrant				
122	STOI	35 46	Mode Switch				
123	GTOI	22 45					
124	*LBL0	21 00	Traverse Mode	180			
125	CF1	16 22 01					
126	CF2	16 22 02					
127	RTN	24					
128	*LBL1	21 01	Single sideshot				
129	SF2	16 21 02					
130	CF1	16 22 01					
131	RTN	24					
132	*LBL2	21 02	Multiple sideshot				
133	SF1	16 21 01					
134	CF2	16 22 02					
135	RTN	24					
136	*LBLe	21 16 15	Area	190			
137	RCL6	36 06					
138	ABS	16 31					
139	PRTX	-14					
140	RTN	24					
141	*LBLc	21 16 13	Supplementary				
142	ABS	16 31	angle				
143	RCL9	36 09					
144	XZY	-41		200			
145	CHS	-22					
146	HMS+	16-55					
147	RTN	24					
150							
160							
210							
220							

LABELS					FLAGS	SET STATUS		
A P.O.B.	B AZIMUTH IN	C INVERSE	D DEFLEC. <u>✓</u>	E R↓PRINT	0	FLAGS	TRIG	DISP
^a AZ→BRG.	^b BRG. INPUT	^c SUPP. <u>✓</u>	^d MODE	^e AREA	¹ MULT. SIDE.	ON <input type="checkbox"/> OFF <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
⁰ USED	¹ USED	² USED	3	4	² SING. SIDE	0 <input type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8 DATA SETUP	9	3 DATA ENTRY	1 <input type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						2 <input type="checkbox"/>		n-4
						3 <input type="checkbox"/>		

Program Description I

Program Title COGO-02: BEARING-BEARING INTERSECTION & TRAVERSE

This Hewlett-Packard translation is based on program 02826B written by
 CARL M. KING
 2206 Siesta Drive, Sarasota, Florida 33579

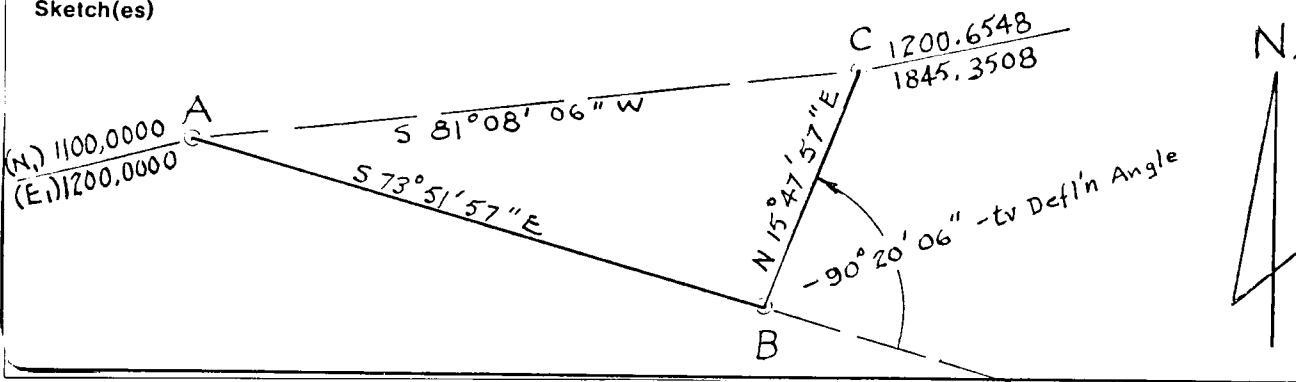
Program Description, Equations, Variables

UNKNOWN DISTANCE

An important feature of all these COGO programs is the method employed when taking a sighting on a new heading, when the distance is unknown. This situation comes up in the INTERSECTION routines.

You enter the Azimuth or heading information in the usual fashion, (when you press [B] for Azimuth or press [D] for "Deflection"), but at the STOP where you would normally enter the distance, the program automatically provides you with a reading of 1.0000-09. This number (i.e.an infinitesimal) will serve in lieu of zero (0), and will introduce no error. At the same time it performs normally in the calculator, AND YOU SHOULD USE IT TO REPRESENT THE UNKNOWN DISTANCE in the calculations, rather than absolute zero. The INFINITESMAL(1.000-09) may be given a negative sign, with proper significance, if you are making a "backsight".

When this number is referred to in the User Instructions, it is represented by 1.0000-09.


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

Start at point A, Enter P.O.B. coordinates. Make 1.0000-09 distance

BEARING traverse toward point B. (Azimuth = $+106^\circ 08' 03''$). Imagine that you are at point B. Make 1.0000-09 distance BEARING traverse toward point C. (Azimuth = $+15^\circ 47' 57''$) (or you may use DEFLECTION ANGLE routine). Enter point C coordinates using [C]. READ: Coordinates of point B and length of side \overline{AB} . REPEAT, moving toward point C.

Make 1.0000-09 distance BEARING traverse toward point C. Imagine that you are at point C. Make 1.0000-09 distance BEARING traverse toward point A. Enter point A coordinates, using [C]. READ: Coordinates of point C and length of side \overline{BC} .

Change to another COGO program having INVERSE capability, (i.e. COGO-01) and complete the triangle, C to A, and recall the AREA, [f] [E].

SIDE \overline{AB} : Azimuth = $+106^\circ 08' 03''$, Length = 593.5759.

Point B: Coordinates: Northings = 935.0526, Eastings = 1770.1971

Side \overline{BC} : Azimuth = $+15^\circ 47' 57''$, Length = 276.0300

Side \overline{CA} : Azimuth = $-98^\circ 51' 54''$, Length = 653.1534

AREA = -81921. sq. ft.

Notes: (1) Negative sign occurs when counter-clockwise turns enclose area, as in this example. (2) If measured distances were in meters, the area would be interpreted in square meters.

Reference(s)

Program Description II

Sketch(es)

Solution(s)

Using Bearing/Quadrant Inputs:

1100 [ENT↑] 1200 [A] 73.5157 [ENT↑] 2 [f] [B] [R/S]

15.4757 [ENT↑] 1 [f] [B] [R/S]

1200.6548 [ENT↑] 1845.3508 [C] → 935.0526, N_B ;

[E] → 1770.1971, E_B ; [E] → 106.0803 AZ \overline{AB}

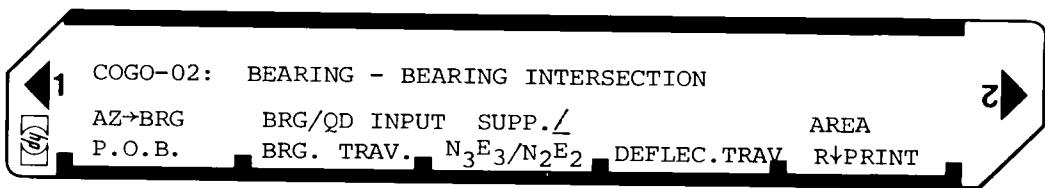
[E] → 593.5759, Dist. \overline{AB}

Continue, now using Azimuth inputs:

15.4757 [B] [R/S] 98.5154 [CHS] [B] [R/S] 1100 [ENT↑]

1200 [C] → 1200.6554, N_A ; [E] → 1845.3510, E_A ;

[E] → 15.4757, AZ \overline{BC} ; [E] → 276.0307, Dist. \overline{CA} .


If desired, change to COGO-01 with inverse capability, complete the traverse and obtain the area. (81921.1828 sq. ft.)

Reference(s) Davis, R.E., Foot, F.S., Kelly, J.W., SURVEYING THEORY AND PRACTICE.

5th Edition. 1966. McGraw-Hill Book Co. (Bearings & Azimuth page 260);
(Deflection Angles page 262).

This program is a modification of the Users' Library Program #2826B submitted by Carl M. King.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B. N+E	057	*LBLD	21 14	Deflection angle
002	ST02	35 02		058	HMS+	16 36	traverse
003	R↓	-31		059	RCL5	36 05	
004	ST01	35 01		060	ST08	35 08	
005	CLX	-51		061	F1?	16 23 01	
006	ST06	35 06		062	CLX	-51	
007	1	01		063	+	-55	
008	8	08		064	EEX	-23	
009	0	00		065	CHS	-22	
010	ST09	35 09	Initialize	066	S	09	
011	RTN	24		067	CF3	16 22 03	
012	*LBLC	21 13	Terminal Coord	068	R/S	51	Input distance
013	RCL2	36 02		069	F3?	16 23 03	Was dist. input?
014	-	-45	Dep.	070	GT08	22 08	Yes
015	X?Y	-41		071	SF2	16 21 02	No - nonprint
016	RCL1	36 01		072	*LBL1	21 01	Calculation subroutine
017	-	-45	Lat.	073	→R	44	
018	→P	34		074	ST03	35 03	
019	X?Y	-41		075	X?Y	-41	
020	ST04	35 04		076	ST04	35 04	
021	RCL8	36 08		077	2	02	
022	-	-45		078	÷	-24	
023	RCL5	36 05		079	RCL2	36 02	
024	RCL4	36 04		080	+	-55	
025	-	-45		081	X	-35	
026	+	-55		082	ST-6	35-45 06	
027	LSTX	16-63		083	RCL4	36 04	
028	SIN	41		084	RCL2	36 02	
029	X?Y	-41		085	+	-55	
030	SIN	41		086	ST02	35 02	
031	÷	-24		087	RCL3	36 03	
032	X	-35		088	RCL1	36 01	
033	RCL8	36 08		089	+	-55	
034	X?Y	-41		090	ST01	35 01	
035	GT01	22 01	Go to calc. SBR.	091	RCL4	36 04	
036	*LBLb	21 16 12	Bearing/Qd input	092	RCL3	36 03	
037	X?Y	-41	Brg.	093	→P	34	
038	HMS+	16 36		094	ST04	35 04	
039	X?Y	-41		095	X?Y	-41	
040	ENT↑	-21	Qd.	096	ST05	35 05	
041	ENT↑	-21		097	→HMS	16 35	
042	2	02		098	ST03	35 03	
043	÷	-24		099	R↓	-31	
044	INT	16 34		100	CF1	16 22 01	Roll down
045	RCL9	36 09		101	*LBLc	21 15	
046	X	-35		102	R↓	-31	
047	X?Y	-41		103	F3?	16 23 02	Display only
048	RCL9	36 09		104	R/S	51	
049	X	-35		105	PRTX	-14	
050	COS	42		106	RTN	24	
051	R↑	16-31		107	*LBL9	21 08	Input setup
052	X	-35		108	X?Y	-41	
053	-	-45		109	R↓	-31	
054	→HMS	16 35	Az.	110	GT01	22 01	
055	*LBLb	21 12	Azimuth input	111	*LBLa	21 16 11	Azimuth →Bearing
056	SF1	16 21 01		112	HMS+	16 36	

REGISTERS

0	1 N	2 E	3 A°	4 Used, d	5 A ₂	6 AREA	7	8 A ₁	9 180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D		E		I

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	ENT↑	-21					
114	SIN	41		170			
115	SIN-1	16 41					
116	X<0?	16-45					
117	CHS	-22					
118	→HMS	16 35	BRa				
119	PRTX	-14					
120	R↓	-31					
121	9	09					
122	0	00					
123	÷	-24					
124	1	01		180			
125	+	-55					
126	INT	16 34	QD.				
127	PRTX	-14					
128	RTN	24					
129	*LBLc	21 16 13	Supplementary angle				
130	ABS	16 31					
131	RCL9	36 09					
132	X≠Y	-41					
133	CHS	-22					
134	HMS+	16-55		190			
135	RTN	24					
136	*LBLe	21 16 15	Area				
137	RCL6	36 06					
138	ABS	16 31					
139	PRTX	-14					
140	RTN	24					
141	R/S	51					
150				200			
160				210			
170				220			

LABELS					FLAGS		SET STATUS		
A P.O.B.	B BRG. TRAV	C N ₃ E ₃ /N ₂ E ₂	D DEF. TRAV.	E R↓	0	FLAGS		TRIG	DISP
a AZ→BRG	b BRG/QDINPUT	c T SUPP. ANG	d	e AREA	1 USED	0 <input type="checkbox"/>	<input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0	1 CALC. SBR	2	3	4	2 NON PRINT	1 <input type="checkbox"/>	<input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8	9	3 DATA INPUT	2 <input type="checkbox"/>	<input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
					DATA SETUP	3 <input type="checkbox"/>	<input checked="" type="checkbox"/>		n 4

Program Description I

Program Title COGO-03: BEARING-DISTANCE INTERSECTION AND TRAVERSE

This Hewlett-Packard translation is based on program 02827A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

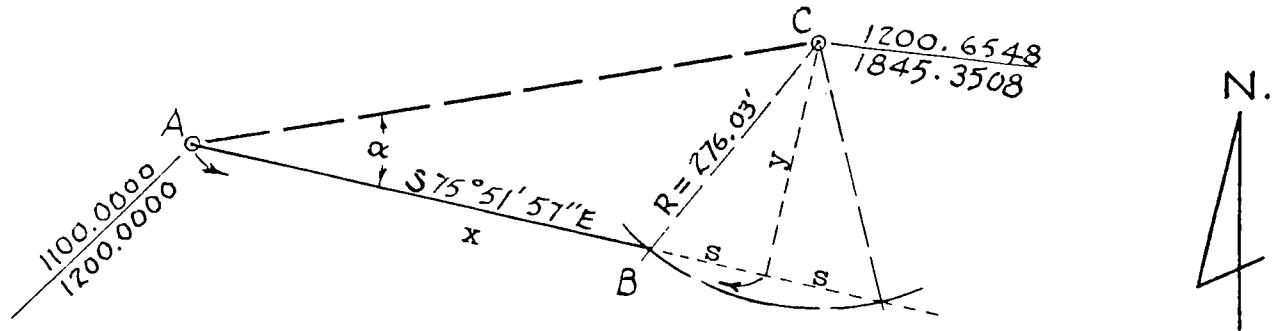
Program Description, Equations, Variables

UNKNOWN DISTANCE:

An important feature of all these COGO programs is the method employed when taking a sighting on a new heading, when the distance is unknown. This situation comes up in the INTERSECTION routines.

You enter the Azimuth or heading information in the usual fashion, (when you press [B] for "Bearing" or [D] for "Deflection"), but at the STOP where you would normally enter the distance, the program automatically provides you with a very small number (an infinitesimal) equal to 0.000000001. This number will serve in lieu of zero (0), and will introduce no error. At the same time it performs normally in the calculator, and YOU SHOULD USE IT TO REPRESENT THE UNKNOWN DISTANCE in the calculations, rather than absolute zero.

When this number is referred to in the User Instructions, it is represented as 1.0000-09. The INFINITESMAL(1.0000-09.) may be given a negative sign, with proper significance, if you are making a "backsight".


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

19

Sample Problem(s)

Start at point A. (Enter P.O.B. coordinates.) Take sighting on point B.

(Azimuth = $+104^{\circ}08'03''$, press [B], [R/S].) Enter coordinates of point C. (Northing = 1200.6548, press [ENT↑], Eastings = 1845.3508, press [C], Radius = 276.03, press [R/S].)

READ $x = 496.0369$; or $y = 706.4322$

Select one value to remain in the x-register.

Press: [R/S]. Program completes TRAVERSE to selected point.

Having found point B, change to another COGO program having INVERSE capability, and complete the traverse: B to C to A, and recall the AREA.

<u>Side</u>	<u>Bearing</u>	<u>Azimuth</u>	<u>distance</u>	<u>Northing</u>	<u>Eastings</u>	<u>Point</u>
				1100.0000	1200.0000	A
AB	S75°51'57"E	+104°08'03"	(496.0369)			
				(978.8711)	(1681.0202)	(B)
				1200.6458	1845.3508	C

Change programs, and complete closure. AREA = 63291.6476

Note: Quantities above in parentheses are calculated in the program.

Solution(s) 1100[ENT↑] 1200 [A] 104.0803 [B] → 1.0000-09
 [R/S] → 1100.0000 } (Display only
 1200.6548 [ENT↑] 1845.3508 [C] → 601.2346 } ignore
 276.03 [R/S] → 496.0369, d
 [E] → 706.4322, d'
 choose d [R↑] → 496.0369 (Display only)
 [R/S] → 978.8711 Northing
 [E] → 1681.0202 Easting

OR for Bearing/Qd input 1100[ENT] 1200 [A] 75.5157 [ENT] 2 [f] [B] → etc.

Reference(s) This program is a modification of the Users' Library Program #02827A submitted by Carl M. King.

SURVEYING THEORY AND PRACTICE - 5th Edition - 1966 - McGraw-Hill Bk.Co.
 Raymond E. Davis (Bearings & Azimuth page 260
 Francis S. Foote (Deflection Angles page 262
 Joe W. Kelly (Rectangular Coords. page 454

User Instructions

97 Program Listing I

21

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LPLA	21 11	P.O.B. N & E	057	RCL9	36 09	
002	ST02	35 02		058	x	-35	
003	R↓	-31		059	X \neq Y	-41	
004	ST01	35 01		060	RCL9	36 09	
005	CLX	-51		061	x	-35	
006	ST06	35 06	Clear area	062	COS	42	
007	1	01		063	R↑	16-31	
008	8	08		064	x	-35	
009	8	08		065	-	-45	Azimuth
010	ST09	35 09	Initialize	066	+HMS	16 35	Azimuth input
011	RTN	24		067	*LBLB	21 12	
012	*LBLD	21 13	Radius point	068	0	00	
013	RCL2	36 02	distance calc.	069	ST05	35 05	CLR 5
014	-	-45	Dep.	070	+	-55	Deflection ↘
015	X \neq Y	-41		071	*LBLD	21 14	
016	RCL1	36 01		072	HMS+	16 36	
017	-	-45	Lat.	073	*LBL1	21 01	
018	+P	34		074	RCL5	36 05	
019	X \neq Y	-41		075	+	-55	
020	RCL5	36 05		076	EEX	-23	
021	-	-45		077	CHS	-22	
022	X \neq Y	-41		078	9	09	
023	+R	44		079	CF3	16 22 03	
024	R/S	51	Enter radius	080	R/S	51	Input dist.
025	ENT1	-21		081	*LBL0	21 00	
026	X	-35		082	F3?	16 23 03	Was dist. input?
027	R↑	16-31		083	GT08	22 08	Yes
028	R↑	16-31		084	SF2	16 21 02	No, input 10^{-9} and
029	X	-35		085	*LBL2	21 02	set for non print
030	-	-45		086	+R	44	
031	JX	54		087	ST08	35 08	Calculation sub-
032	+	-55		088	X \neq Y	-41	routine
033	X \neq Y	-41		089	ST07	35 07	
034	LSTX	16-63		090	2	02	
035	-	-45		091	÷	-24	
036	0	00		092	RCL2	36 02	
037	ENT1	-21		093	+	-55	
038	R↓	-31		094	x	-35	
039	*LBL0	21 15	Roll down and	095	ST-6	35-45 06	
040	R↓	-31		096	RCL7	36 07	
041	F2?	16 23 02		097	RCL2	36 02	
042	R/S	51	Display or	098	+	-55	
043	PRTX	-14		099	ST02	35 02	
044	R/S	51	Print	100	RCL8	36 08	
045	RCL5	36 05		101	RCL1	36 01	
046	X \neq Y	-41		102	+	-55	
047	GT02	22 02		103	ST01	35 01	
048	*LBL6	21 16 12	BRG/QD input	104	RCL7	36 07	
049	X \neq Y	-41	BRG	105	RCL8	36 08	
050	HMS+	16 36		106	+P	34	
051	X \neq Y	-41	QD	107	ST04	35 04	
052	ENT1	-21		108	X \neq Y	-41	
053	ENT1	-21		109	ST05	35 05	
054	2	02		110	+HMS	16 35	
055	÷	-24		111	ST03	35 03	
056	INT	16 34		112	R↓	-31	

REGISTERS

0	1	2	3	4	5	6	7	8	9	
N		E		A° (DMS)		d	A ₂	AREA	DEP.	LAT.
S0		S1		S2		S3	S4	S5	S6	S7
A		B		C		D		E		I

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	GT0E	22 15	Display				
114	*LBL8	21 08	Input setup	170			
115	X#Y	-41					
116	R↓	-31					
117	GT02	22 02					
118	*LBLa	21 16 11	Azimuth to				
119	HMS+	16 36	Bearing/QD				
120	ENT↑	-21					
121	SIN	41					
122	SIN⁻¹	16 41					
123	X<θ?	16-45					
124	CHS	-22		180			
125	→HMS	16 35					
126	PRTX	-14					
127	R↓	-31					
128	9	09					
129	0	00					
130	÷	-24					
131	1	01					
132	+	-55					
133	INT	16 34					
134	PRTX	-14		190			
135	RTN	24					
136	*LBLb	21 16 13	Supplementary angle				
137	ABS	16 31					
138	RCL9	36 09					
139	X#Y	-41					
140	CHS	-22					
141	HMS+	16-55					
142	RTN	24					
143	R/S	51		200			
150							
160							
				210			
				220			

LABELS

LABELS					FLAGS	SET STATUS		
A P.O.B.	B BRG. TRAV	C BRG.-DIST	D DEFLECTION	E R↓, PRINT	0	FLAGS	TRIG	DISP
a AZ→BRG	b BRG INPUT	c SUPM'T /	d	e	1	ON OFF 0 <input type="checkbox"/> <input checked="" type="checkbox"/> 1 1 <input type="checkbox"/> <input checked="" type="checkbox"/> 2 2 <input type="checkbox"/> <input checked="" type="checkbox"/> 3 3 <input type="checkbox"/> <input checked="" type="checkbox"/> 4	DEG <input checked="" type="checkbox"/> GRAD <input type="checkbox"/> RAD <input type="checkbox"/>	FIX <input checked="" type="checkbox"/> SCI <input type="checkbox"/> ENG <input type="checkbox"/> n <u> </u>
0 DATA INPUT	1 USED	2 CALC	3	4	2 PRINT?			
5	6	7	8 DATA SETUP	9 DISTANCE INPUT	3 DISTANCE INPUT			

Program Description I

23

Program Title COGO-04: DISTANCE - DISTANCE INTERSECTION AND TRAVERSE.

This Hewlett-Packard translation is based on program 2828A written by

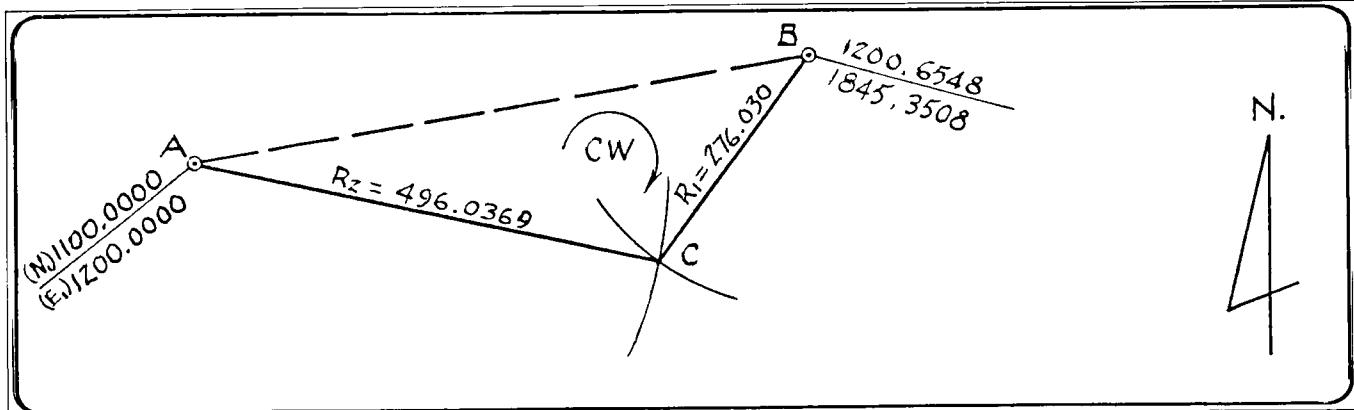
CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-04 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the DISTANCE - DISTANCE INTERSECTION or the CURVE - CURVE INTERSECTION, which ever way you want to think of it.

THE PROBLEM: to calculate the coordinates of a point and the heading and distance of a line to it, when the coordinates and respective distances of two known points are given. In general two circles intersect in two points. When you swing arcs about two known points, if they intersect at all, they are most apt to have two intersection points.

When you proceed from one known point to another by way of an intermediate point, you have a choice. You can either go in the direction that provides a clockwise (CW) deflection at the intermediate point, or going in the opposite direction a (CCW) deflection.


In this program we shall always choose the CW deflection, and thereby calculate the intersection point so identified.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

Start at known point A, (Enter P.O.B. coordinates.)

Make INVERSE TRAVERSE to known point B. (Use defined function [C].)

Enter radius length R_1 ; press [R/S].

Enter radius length R_2 ; press [R/S]. Program completes traverse to C.

READ: Northings, Eastings and Azimuth and distance of side \overline{BC} .

Make INVERSE TRAVERSE to point A.

Read area.

Note: Sequence of points A, B, C must be in clockwise (CW) order.

Side	Bearing	Azimuth	distance	Northings	Eastings	Point
\overline{AB}	N81°08'06"E	(+81°08'06")	(653.1532)	1100.0000	1200.0000	A
\overline{BC}	S36°32'12"W	(-143°27'48")	276.0300	1200.6548	1845.3508	B
\overline{CA}	N75°51'57"W	(-75°51'57")	496.0369	(978.8711)	(1681.0202)	(C)

AREA = 63293.8059

Note: Quantities in parentheses tabulated above are calculated in the program.

Solution(s) 1100 [ENT↑] 1200 [A] 1200.6548 [ENT↑] 1845.3508 [C] → 1200.6548, NB;

[E] → 1845.3508, E_B , [E] → 81.0806, AZ \overline{AB}

[E] → 653.1532, Dist \overline{AB}

276.03 [R/S] 496.0369 [R/S] → 978.8711, N_C

[E] → 1681.0202, E_C

[E] → -143.2748, AZ \overline{BC}

[E] → 276.03, Dist. \overline{BC}

1100 [ENT↑] 1200 [C] → 1100.0000, N_A

[E] → 1200.0000, E_A

[E] → -75.5157, AZ \overline{CA}

[E] → 496.0369, Dist. \overline{CA}

[f] [E] → 63293.8059, AREA

Reference(s) This program is a modification of the Users' Library Program #02828A submitted by Carl M. King.

User Instructions

COGO-04: DISTANCE-DISTANCE INTERSECTION

AZ→BRG.
P.O.B.

BRG/QD INPUT SUPP. /
BRG. TRAV. INVRS/DI

AREA
REPRINT

2

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LELA	21 11	P.O.B. N & E	057	RCL4	36 04	
002	ST02	35 02		058	RCL3	36 03	
003	R↓	-31		059	x	-35	
004	ST01	35 01		060	2	02	
005	CLX	-51		061	x	-35	
006	ST06	35 06	Clear area	062	÷	-24	
007	1	01		063	CHS	-22	
008	8	08		064	COS ⁻¹	16 42	
009	0	00		065	RCL5	36 05	
010	ST09	35 09	Initialize	066	+	-55	
011	RTN	24		067	RCL3	36 03	
012	*LBL0	21 13	Inverse traverse	068	GT01	22 01	
013	RCL2	36 02		069	*LBLb	21 16 12	Bearing/QD input
014	-	-45		070	X↓Y	-41	Bearing
015	X↓Y	-41	Dep.	071	HMS+	16 36	
016	RCL1	36 01		072	X↓Y	-41	QD
017	-	-45		073	ENT↑	-21	
018	*LBL0	21 00	Lat.	074	ENT↑	-21	
019	ST08	35 08	Calculation sub- routine	075	2	02	
020	X↓Y	-41		076	÷	-24	
021	ST07	35 07		077	INT	16 34	
022	2	02		078	RCL9	36 09	
023	÷	-24		079	x	-35	
024	RCL2	36 02		080	X↓Y	-41	
025	+	-55		081	RCL9	36 09	
026	x	-35		082	x	-35	
027	ST-6	35-45 06		083	COS	42	
028	RCL7	36 07		084	R↑	16-31	
029	RCL8	36 08		085	x	-35	
030	→P	34		086	-	-45	Azimuth
031	ST04	35 04		087	→HMS	16 35	
032	X↓Y	-41		088	*LBLB	21 12	Azimuth input
033	ST05	35 05		089	B	00	
034	→HMS	16 35		090	ST05	35 05	Clear 5
035	ST03	35 03		091	+	-55	
036	RCL7	36 07		092	*LBLD	21 14	Deflection angle
037	RCL2	36 02		093	HMS+	16 36	
038	+	-55		094	RCL5	36 05	
039	ST02	35 02		095	+	-55	
040	RCL8	36 08		096	EEX	-23	
041	RCL1	36 01		097	CHS	-22	
042	+	-55		098	9	05	
043	ST01	35 01		099	CF3	16 22 03	
044	RCL4	36 04		100	R/S	51	Input distance
045	*LBL0	21 15	Rolldown/print	101	F3?	16 23 03	
046	R↓	-31		102	GSB8	23 08	Was dist. input?
047	PRTX	-14		103	*LBL1	21 01	Yes
048	R/S	51		104	→R	44	No, input 10-9
049	ST03	35 03	Input R ₁	105	GT00	22 00	
050	X↓	53		106	*LBL8	21 08	Go to calculation
051	R/S	51	Input R ₂	107	X↓Y	-41	SBR
052	X↓	53		108	R↓	-31	Input setup
053	-	-45		109	RTN	24	
054	RCL4	36 04		110	*LBL0	21 16 15	Area
055	X↓	53		111	RCL6	36 06	
056	+	-55		112	ABS	16 31	

REGISTERS

0	1	2	3	4	5	6	7	8	9
0	N	E	R ₁ , A°	C=d	A ₂	AREA	DEP	LAT	180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E				I	

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	PRTX	-14					
114	RTN	24		170			
115	*LBLa	21 16 11	Azimuth to				
116	HMS+	16 36	Bearing/Qd				
117	ENT↑	-21					
118	SIN	41					
119	SIN-1	16 41					
120	X<0?	16-45					
121	CHS	-22					
122	+HMS	16 35					
123	PRTX	-14	Bearing				
124	R4	-31		180			
125	9	09					
126	0	00					
127	÷	-24					
128	1	01					
129	+	-55					
130	INT	16 34					
131	PRTX	-14	QD				
132	RTN	24					
133	*LBLc	21 16 13	Supplementary angle				
134	ABS	16 31		190			
135	RCL9	36 09					
136	X \neq Y	-41					
137	CHS	-22					
138	HMS+	16-55					
139	RTN	24					
140	R/S	51					
150				200			
160				210			
				220			

LABELS					FLAGS		SET STATUS		
A P.O.B.	B BRG. TRAV.	C INVERSE	D DEF. ANG	E ROLL DOWN	0	FLAGS		TRIG	DISP
^a AZ→BRG	^b BRG. INPUT	^c SUPP. ANG.	^d	^e AREA	1	0	<input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0 CALC. SBR	¹ USED	²	³	⁴	2	1	<input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	⁶	⁷	⁸ DATA SETUP	⁹	³ DIST. INPUT	2	<input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
					?3		<input type="checkbox"/> <input checked="" type="checkbox"/>		n <u>4</u>

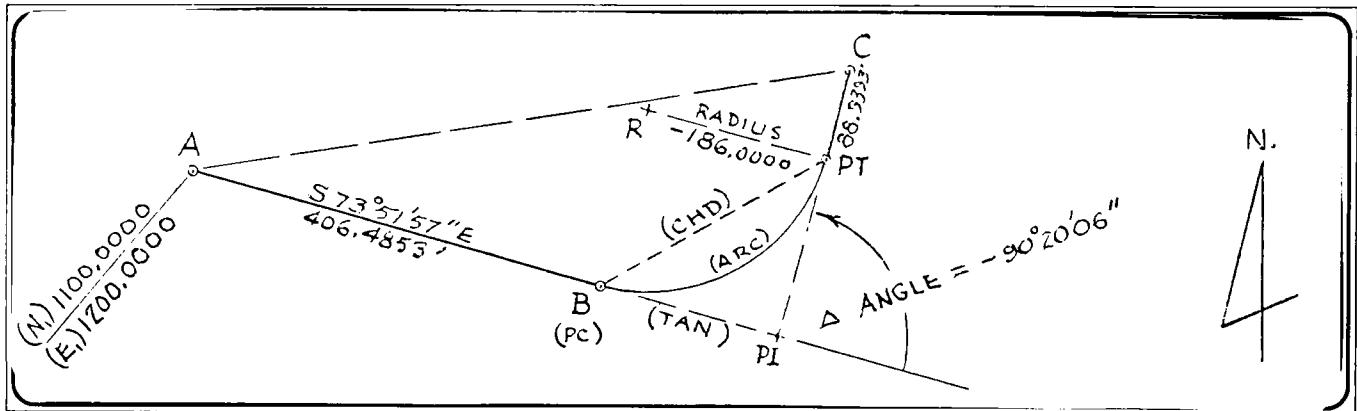
Program Description I

Program Title COGO-05: TRAVERSE OF CURVE

This Hewlett-Packard translation is based on program 02829A written by
 CARL M. KING
 2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-05 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the calculation of a curve as a part of a subdivision boundary or legal description.

INVERSE TRAVERSE is not included in this program. However all the other COGO traverse functions operate the same as in the other COGO programs.


In the usual situation you approach a curve tangentially. You are given the DELTA angle (or central angle) and the RADIUS length. These two quantities are positive (+) if bearing to the right, and negative (-) if bearing to the left. At the "point-of-curvature" (PC) you enter the DELTA angle, press [C]; enter the RADIUS, press [R/S], (giving each the same sign); and the program computes the chord (CHD) traverse to the "point-of-tangency". Read the data for that leg; press [R/S], and the program accumulates the area of the arc segment, and displays the Tangent (TAN) and the arc (ARC) lengths.

Operating Limits and Warnings You may wish to use Cogo-01 to continue this traverse. If so, when loading Cogo-01, be sure to convert the contents of Register 5, which is in Radians in this program. To degrees. The following keystroke procedure will accomplish this: RCL5, R→D, STO 5.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

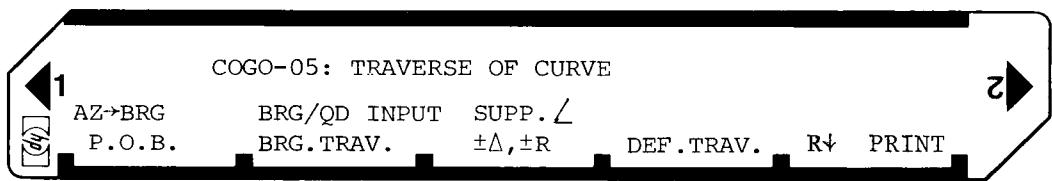
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

- 1) Start at point A, for a P.O.B.
- 2) Make a BEARING TRAVERSE to point B, utilizing above data.
- 3) Obtain coordinates of B, also known as Point-of-Curvature (PC).
- 4) Enter: DELTA angle + $-90^\circ 20' 06''$, press: [C].
- 5) Enter: RADIUS = -186.0000, press: [R/S].
- 6) Obtain PT coordinates and CHD Azimuth and length.
- 7) Press: [R/S]; obtain: TAN and ARC. DO NOT neglect this step!
- 8) Find coordinates of Pt.C by doing 0° deflection angle traverse
- 9) Load COGO-01 program card to complete traverse.
- 10) Make SIDE SHOTS to calculate the radius point (R) and to the (PI).
- 11) Return to traverse mode and complete traverse of figure. Make zero angle DEFLECTION ANGLE traverse to point C, and INVERSE TRAVERSE to close on point A.

Side	Bearing	Azimuth	Distance	Northings	Eastings	Point
AB	S 73° 51' 57" E	+106° 08' 03"	406.4853	1100.0000	1200.0000	A
B(PT)	N 60° 58' 00" E	(+60° 58' 00") (263.8116)		(987.0428)	(1590.4753)	(B)
				(1115.0754)	(1821.1357)	(PT)
(PT)C	N 15° 47' 57" E	(+15° 47' 57")	88.9393			
CA	S 81° 08' 06" W	(-98° 51' 54")	(653.1532)	(1200.6548)	(1845.3508)	(C)
				1100.0000	1200.0000	A


AREA enclosed in figure = (74394.8968)

Note: Quantities in parentheses are calculated in the programs.

Solution(s): 1100 [ENT↑] 1200 [A] 73.5157 [ENT↑] 2 [f] [B] 406.4853 [R/S] → 987.0428, N_B
 [E] → 1590.4753, E_B ; [E] → 106.0803, AZ; [E] → 406.4853, Dist
 90.2006 [CHS] [C] 186 [CHS] [R/S] → 1115.0754, N_{PT} ; CHD.
 [E] → 1821.1357, E_{PT} ; [E] → 60.5800, AZ; [E] → 263.8116,
 [R/S] → 187.0907, TAN; [E] → 293.2556, ARC.
 O [D] 88.9393 [R/S] → 1200.6548, N_C ; [E] → 1845.3508, E_C ,
 [E] → 15.4757, AZ; [E] → 88.9393, Dist. PT to C.
 Then load COGO-01 and inverse to point A and obtain AREA = 74394.8968

Reference(s) This program is a modification of the Users' Library Program
 #02829A submitted by Carl M. King.

User Instructions

97 Program Listing I

31

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B.	057	+	-55	
002	ST02	35 02	E.	058	*LBLD	21 14	
003	R↓	-31		059	RAD	16-22	Deflection angle
004	ST01	35 01	N.	060	HMS+	16 36	input
005	CLX	-51		061	D+R	16 45	
006	ST06	35 06		062	RCL5	36 05	
007	1	01		063	+	-55	
008	8	08		064	EEX	-23	
009	0	00		065	CHS	-22	
010	ST09	35 09	Initialize	066	9	09	
011	RTN	24		067	CF3	16 22 03	
012	*LBLC	21 13	Traverse of curve,	068	R/S	51	
013	HMS+	16 36	input $\pm\Delta$	069	*LBL0	21 00	Calc. SBR
014	D+R	16 45		070	F3?	16 23 03	Data input?
015	RAD	16-22		071	GSB8	23 08	Yes
016	2	02		072	*LBL1	21 01	No
017	÷	-24		073	+R	44	
018	ST07	35 07		074	ST03	35 03	
019	RCL5	36 05		075	X \pm Y	-41	
020	+	-55		076	ST04	35 04	
021	EEX	-23		077	2	02	
022	CHS	-22		078	÷	-24	
023	9	09		079	RCL2	36 02	
024	R/S	51	Input $\pm R$	080	+	-55	
025	X \pm Y	-41		081	X	-35	
026	R↓	-31		082	ST-6	35-45 06	
027	ST08	35 08		083	RCL4	36 04	
028	RCL7	36 07		084	RCL2	36 02	
029	SIN	41		085	+	-55	
030	X	-35		086	ST02	35 02	
031	2	02		087	RCL3	36 03	
032	X	-35		088	RCL1	36 01	
033	GTO1	22 01	GTO calc. SBR	089	+	-55	
034	*LBL6	21 16 12	BRG/QD input	090	ST01	35 01	
035	DEG	16-21		091	RCL4	36 04	
036	X \pm Y	-41	BRG	092	RCL3	36 03	
037	HMS+	16 36		093	+P	34	
038	X \pm Y	-41	QD	094	X \pm Y	-41	
039	ENT↑	-21		095	ST05	35 05	
040	ENT↑	-21		096	R+D	16 46	
041	2	02		097	+HMS	16 35	
042	÷	-24		098	R↓	-31	
043	INT	16 34		099	GTOE	22 15	Print northing
044	RCL9	36 09		100	*LBL8	21 08	
045	X	-35		101	X \pm Y	-41	Data input setup
046	X \pm Y	-41		102	R↓	-31	
047	RCL9	36 09		103	RTN	24	
048	X	-35		104	*LBL8	21 15	
049	COS	42		105	R↓	-31	Rolldown & print
050	R↑	16-31		106	PRTX	-14	
051	X	-35		107	R/S	51	
052	-	-45	Azimuth	108	RCL7	36 07	Calc. TAN & ARC
053	+HMS	16 35		109	ENT↑	-21	
054	*LBLB	21 12	Azimuth input	110	ST+5	35-55 05	
055	0	00		111	SIN	41	
056	ST05	35 05		112	RCL7	36 07	

REGISTERS

0	1 N	2 E	3 (n)	4	5 A ₂ (RAD)	6 AREA	7 Δ/2	8 ± R	9 180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D		E			I	

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS						
113	COS	42		170									
114	X	-35											
115	-	-45											
116	RCL8	36 08											
117	X ²	53											
118	X	-35											
119	ST+6	35-55 06											
120	0	00											
121	RCL7	36 07											
122	2	02											
123	X	-35		180									
124	RCL8	36 08											
125	X	-35											
126	RCL8	36 08											
127	RCL7	36 07											
128	TAN	43											
129	X	-35											
130	PRTX	-14	Print tan										
131	R/S	51											
132	*LBLa	21 16 11	AZ→BRG										
133	DEG	16-21											
134	HMS+	16 36	Azimuth	190									
135	ENT1	-21											
136	SIN	41											
137	SIN ⁻¹	16 41											
138	X<0?	16-45											
139	COS	-22											
140	→HMS	16 35											
141	PRTX	-14	BRG										
142	R↓	-31											
143	S	09		200									
144	0	00											
145	÷	-24											
146	1	01											
147	+	-55											
148	INT	16 34											
149	PRTX	-14	QD										
150	RTN	24											
151	*LBLb	21 16 13	Supp. Angle										
152	ABS	16 31											
153	RCL9	36 09											
154	X ² Y	-41		210									
155	COS	-22											
156	HMS+	16-55											
157	RTN	24											
158	R/S	51											
160				220									
LABELS													
A P.O.B	B BRG. TRAV.	C CURVE TRAV	D DEF. TRAV	E R↓PRINT	0	FLAGS	SET STATUS						
^a AZ→BRG	^b BRG/QD INP.	^c SUPP. L	^d	^e AREA	1	FLAGS	TRIG	DISP					
0 CALC. SBR	1 USED	2	3	4	2	ON OFF	DEG	FIX					
5	6	7	8 DATA SETUP	9	3	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	3 <input type="checkbox"/> <input checked="" type="checkbox"/>	4 <input type="checkbox"/>	SCI	RAD	ENG
											n		

Program Description I

Program Title COGO-06: CURVE INVERSE AND TRAVERSE

This Hewlett-Packard translation is based on program 02830A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

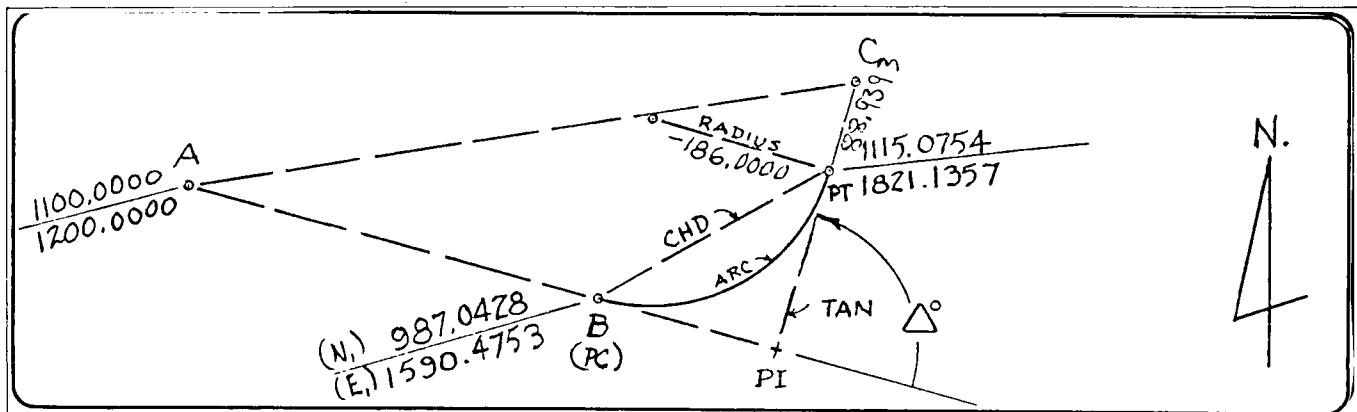
Program Description, Equations, Variables COGO-06 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the calculation of a curve of given radius between two known points in the coordinate plane.

The standard options operate the same in this program as in other members of the COGO series.

In this program, whenever you have completed a traverse leg, you may consider the point just left as the PC and the new point arrived at as the PT of a curve. You then enter the radius of curvature that you want. (Make it positive, if it bears right. Make it negative if it bears left.) Press: [R/S], and the program computes the TAN, ARC and DELTA angle, and you display them in that order, using the rolldown - print routine, [E]. The CHD is the distance between the PC and the PT, which you have just completed. The program accumulates the AREA enclosed by the curved boundary.

After completing a curve, you will find it convenient to reload COGO-01, and use the SIDE SHOT routine to find the PI and the radius point.

This program is a modification of the Users' Library Program #02830A submitted by Carl M. King.


Operating Limits and Warnings You may wish to use Cogo-01 to continue this traverse.

If so, when loading Cogo-01, be sure to convert the contents of Register 5, which is in Radians in this program. To degrees. The following keystroke procedure will accomplish this: RCL 5, R →D, STO 5.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

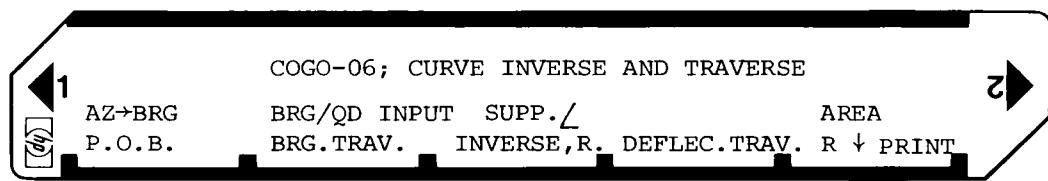
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

- 1) Start at point B, for a P.O.B. (Or you could be continuing from B).
- 2) Make an INVERSE TRAVERSE to the PT.
- 3) Obtain the chord (CHD) Azimuth and length.
- 4) Enter: RADIUS = -186.0000 (Use negative sign, since curving left.)
- 5) Press: [R/S]; obtain: TAN, ARC and DELTA angle.
- 6) Continue traverse with zero deflection angle to point C.
- 7) Complete figure with INVERSE traverses to point A, and finally close on point B.
HINT: If you were to switch to program CARD: COGO-01 after step 6 you could calculate the PI and radius points as SIDE SHOTS.
- 8) After closing on the P.O.B., read the AREA: press [f] [E].

Side	Bearing	Azimuth	distance	Northings	Eastings	Point
B(PT)	N60°58'00"E	(+60°58'00")	(263.8116)	987.0428	1590.4753	B


CURVE PARTS							
RADIUS	= -186.	TAN	= (187.0907)	ARC	= (293.2557)	DELTA	= (-90°20'06")
(PT)C	N15°47'57"E	(+15°47'57")	88.9393				
CA	S81°08'06"W	(-98°51'54")	(653.1532)	(1200.6547)	(1845.3509)	C	
AB	S73°51'57"E	(+106°08'03")	(406.4853)	1100.0000	1200.0000	A	
				987.0428	1590.4753	B	

AREA enclosed in figure = (74394.9005)

Note: Quantities in parentheses are calculated in the programs.

Solution(s): 987.0428 [ENT↑] 1590.4753 [A] 1115.0754 [ENT↑] 1821.1357 [C] → 1115.0754, N_B, [E] → 1821.1357, E_B; [E] → 60.5800, A_Z; [E] → 263.8116, Chord Length.
 186 [CHS] [R/S] → 187.0907, TAN; [E] → 293.2557, ARC; [E] → -90.2006, DELTA.
 0 [D] 88.9393 [R/S] → 1200.6547, N_C; [E] → 1845.3509, E_C; [E] → 15.4757, A_Z; [E] → 88.9393, DIST.
 1100 [ENT↑] 1200 [C] → 1100, N_A; [E] → 1200, E_A; [E] → -98.5154, A_Z CA
 [E] → 653.1532, DIST. CA
 987.0428 [ENT↑] 1590.4753 [C] → 987.0428, N_B; [E] → 1590.4753, E_B;
 [E] → 106.0803, A_Z AB; [F] → 406.4853, DIST AB.
 [f] [E] → 74394.9005, AREA

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B.	057	*LBL0	21 00	
002	ST02	35 02	Easting	058	ST03	35 03	Calculation
003	R↓	-31		059	X↓Y	-41	subroutine for
004	ST01	35 01	Northing	060	ST04	35 04	traverse
005	CLX	-51		061	2	02	
006	ST06	35 06		062	÷	-24	
007	1	01		063	RCL2	36 02	
008	8	08		064	+	-55	
009	0	00		065	X	-35	
010	ST09	35 09	Initialize	066	ST-6	35-45 06	
011	RTN	24		067	RCL4	36 04	
012	*LBL6	21 16 12	BRG/QD input	068	RCL2	36 02	
013	DEG	16-21		069	+	-55	
014	X↓Y	-41	Bearing	070	ST02	35 02	
015	HMS+	16 36		071	RCL3	36 03	
016	X↓Y	-41		072	RCL1	36 01	
017	ENT1	-21	QD	073	+	-55	
018	ENT1	-21		074	ST01	35 01	
019	2	02		075	RCL4	36 04	
020	÷	-24		076	RCL3	36 03	
021	INT	16 34		077	→F	34	
022	RCL9	36 09		078	ST04	35 04	
023	X	-35		079	X↓Y	-41	
024	X↓Y	-41		080	ST05	35 05	
025	RCL9	36 09		081	R→D	16 46	
026	X	-35		082	→HMS	16 35	
027	COS	42		083	ST03	35 03	
028	R1	16-31		084	R↓	-31	
029	X	-35		085	*LBL6	21 15	Rolldown & print
030	-	-45		086	R↓	-31	results
031	→HMS	16 35	Azimuth	087	PRTX	-14	
032	*LBL6	21 12	Azimuth input	088	R/S	51	Input radius
033	0	00		089	ST08	35 08	
034	ST05	35 05	Clr R5	090	RCL4	36 04	
035	+	-55		091	2	02	Calculate curve
036	*LBLD	21 14	Deflection angle	092	÷	-24	parameters
037	RAD	16-22	traverse	093	RCL8	36 08	
038	HMS+	16 36		094	÷	-24	
039	D→R	16 45	Convert to radians	095	ENT1	-21	
040	RCL5	36 05		096	SIN-1	16 41	
041	+	-55		097	ST07	35 07	
042	EEX	-23		098	ST+5	35-55 05	
043	CHS	-22		099	COS	42	
044	9	09		100	X	-35	
045	CF3	16 22 03		101	RCL7	36 07	
046	R/S	51		102	-	-45	
047	F3?	16 23 03	Distance input?	103	RCL8	36 08	
048	GSB8	23 08	Yes	104	X ²	53	
049	→R	44		105	X	-35	
050	GT00	22 00	Go to calc.routine	106	ST-6	35-45 06	
051	*LBLC	21 13	Inverse inputs	107	RCL7	36 07	
052	RCL2	36 02		108	2	02	
053	-	-45	Dep.	109	X	-35	
054	X↓Y	-41		110	R→D	16 46	
055	RCL1	36 01		111	LSTX	16-63	
056	-	-45	Lat.	112	X↓Y	-41	

REGISTERS

0	1 N	2 E	3 n, A°	4 e, d ₂	5 A _z (RAD)	6 AREA	7 ±1/2Δ	8 ±R	9 180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

97 Program Listing II

LABELS					FLAGS		SET STATUS			
A P.O.B.	B AZIM.	C INVERSE, R	D DEFLECT.	E ROLLODOWN	0		FLAGS	TRIG	DISP	
a AZ→BRG	b BRG/QD INPUT	c SUPP./	d	e AREA	1		ON 0 <input type="checkbox"/>	OFF <input checked="" type="checkbox"/>	DEG <input type="checkbox"/>	FIX <input checked="" type="checkbox"/>
TRAVERSE CALCULATION	1	2	3	4	2		1 <input type="checkbox"/>	<input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8 INPUT SETUP	9	3 DATA ENTRY		2 <input type="checkbox"/>	<input checked="" type="checkbox"/>	RAD <input checked="" type="checkbox"/>	ENG <input type="checkbox"/>
							3 <input type="checkbox"/>	<input checked="" type="checkbox"/>		n 4

Program Description I

Program Title

COGO-07: COMPASS RULE ADJUSTMENT

This Hewlett-Packard translation is based on program 02831A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables

COGO-07 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION, hereof. The special option of this program is the COMPASS RULE adjustment, which can be used in an open traverse as well as in a closed traverse. At the end of the traverse you "force" a closure on a point known with precision. During the course of the initial traverse calculations, the latitude (n), departure (e) and length (d) are accumulated, so that the following equations can be evaluated for each traverse leg:

$$(\text{adjusted latitude}) \quad n_{(aj)} = \pm n + d \left(\frac{\pm n'}{\Sigma d} \right); \quad \text{Precision Ratio}$$

$$(\text{adjusted departure}) \quad e_{(aj)} = \pm e + d \left(\frac{\pm e'}{\Sigma d} \right); \quad P/R = \frac{\Sigma d}{d'}$$

 $\pm n$ = unadjusted latitude

 $\pm n'$ = latitude of error of closure

 $\pm e$ = unadjusted departure

 $\pm e'$ = departure of error of closure

 n = absolute latitude

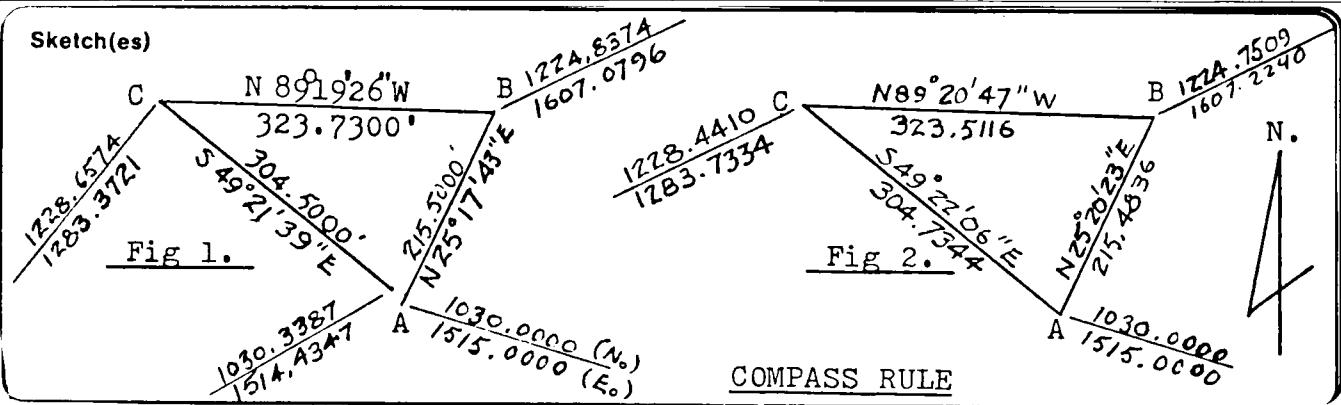
 Σn = sum of absolute latitudes

 e = absolute departure

 Σe = sum of absolute departures

 d' = absolute error

 Σd = total perimeter


Operating Limits and Warnings This is a three part program. Part 1 calculates and accumulates summed quantities. Part 2 calculates the error, n' , e' , the bracketed quotients and the Precision Ratio. Part 3 repeats the traverse, making all the adjustments as it goes. The Azimuth to bearing conversion routine is not included because of program space limitations.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

COMPASS RULE

Sample Problem(s)

- (1) Initialize the program: set for part 1 (1 [f] [D]).
- (2) Start at point A, for P.O.B.
- (3) Make BEARING TRAVERSE to point B, utilizing data in Fig. 1.
- (4) Continue traverse to succeeding points of figure, using standard options of your choice. (Bearing, Deflection or Inverse Traverses.)
- (5) Note: computed coordinates are not identical to known coordinates of closing point. Go to part 2 of program (2 [f] [D]).
- (6) Enter known coordinates and make INVERSE TRAVERSE to compute closing error. Press [D] to read PRECISION RATIO.
- (7) Set for part 3 of program (3 [f] [D]). Begin at step (2) above, repeat traverse in same order as before, utilizing same data, (Fig 1.) (We chose to use inverse in this example).
- (8) Obtain the adjusted coordinates and calls, as in Fig 2.
- (9) Recall computed area of closed traverse: press [f] [E].

Closing Error: Azimuth = $120^{\circ}55'34''$, distance = 0.6590
(Bearing = S $59^{\circ}04'26''$ E)

PRECISION RATIO = 1280.3425

Adjusted traverse, as shown in Fig 2., closes precisely.
For CCW traverse, enclosed AREA = 31670.2331 sq. ft.

Solution(s)

Traverse 1 [f] [D] 1030 [ENT↑] 1515 [A] 25.1743 [B] 215.5 [R/S]→1224.8374, N_B ; [E]→1607.0796, E_B .
89.1926 [ENT↑] 4 [f] [B] 323.73 [R/S]→1228.6574, N_C ; [E]→1283.3721, E_C .
49.2139 [ENT↑] 2 [f] [B] 304.5 [R/S]→1030.3387, N_D ; [E]→1514.4347, E_D .
(Calc. errors)
2 [f] [D] 1030 [ENT↑] 1515 [C]→1030.0000, N_O ; [E] → 1515.0000, E_O ;
[E]→ 120.5534, AZ_{error} ; [E]→ 0.6590, $DIST_{\text{error}}$.
[D]→1280.3425, P/R.
(Adjust)
3 [f] [D] 1224.8374 [ENT↑] 1607.0796 [C]→1224.7509, $N_{B\text{corr}}$.
[E]→ 1607.2240, $E_{B\text{corr}}$;
1228.6574 [ENT↑] 1283.3721 [C]→1228.4410, $N_{C\text{corr}}$; [E]→1283.7334,
 $E_{C\text{corr}}$; [E]→ -89.2047, AZ_{corr} ; [E]→ 323.5116, $DIST_{\text{corr}}$.
1030.3387 [ENT↑] 1514.4347 [C]→1030.0000, N_A ; [E] → 1515.0000, E_A ;
[E]→ 130.3754, AZ_{corr} ; [E]→304.7344, $DIST_{\text{corr}}$.
[f] [E]→31670.2331, AREA

Reference(s): SURVEYING THEORY AND PRACTICE - 5th Edition - McGraw-Hill, 1966 Davis, Foote and Kelly, Pages 461, 462 and 463.

This program is a modification of the Users' Library Program #02831B submitted by Carl M. King.

User Instructions

COGO-07: COMPASS RULE ADJUSTMENT

PART NO.

BRQ/QD INPUT SUPP. / AREA
P.O.B., INIT BEARING TRAV. INVERSE DEF TRAV/P/R R↓, PRINT

97 Program Listing I

41

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL1	21 01		057	R↓	-31	
002	R/S	51		058	ST01	35 01	
003	*LBLc	21 16 13	Calculate supp. angle	059	1	01	
004	ABS	16 31		060	ST01	35 46	
005	1	01		061	1	01	
006	8	08		062	8	08	
007	8	08		063	0	00	
008	X#Y	-41		064	ST0A	35 11	
009	CHS	-22		065	GT01	22 01	
010	HMS+	16-55		066	*LBLC	21 13	Inverse
011	RTN	24		067	RCL2	36 02	
012	*LBLb	21 16 12	BRG/QD inputs	068	-	-45	
013	X#Y	-41		069	X#Y	-41	
014	HMS+	16 35		070	RCL1	36 01	
015	X#Y	-41		071	-	-45	
016	ENT↑	-21		072	GT09	22 09	
017	ENT↑	-21		073	*LBL4	21 04	
018	2	02		074	DSZI	16 25 46	Reset I register
019	÷	-24		075	DSZI	16 25 46	
020	INT	16 34		076	DSZI	16 25 46	
021	RCLA	36 11		077	*LBL9	21 09	
022	X	-35		078	CF1	16 22 01	
023	X#Y	-41		079	ST+1	35-55 01	
024	RCLA	36 11		080	ABS	16 31	
025	X	-35		081	ST+7	35-55 07	
026	COS	42		082	CLX	-51	
027	R↑	16-31		083	LSTX	16-63	
028	X	-35		084	X#Y	-41	
029	-	-45		085	ST+2	35-55 02	
030	+HMS	16 35		086	ABS	16 31	
031	*LBLB	21 12	Bearing input	087	ST+8	35-55 08	
032	0	00		088	CLX	-51	
033	ST05	35 05		089	LSTX	16-63	
034	+	-55		090	X#Y	-41	
035	*LBLD	21 14	Deflection angle input	091	+P	34	
036	HMS+	16 36		092	ST04	35 04	
037	RCL5	36 05		093	ST+3	35-55 03	
038	+	-55		094	X#Y	-41	
039	EEX	-23		095	ST05	35 05	
040	CHS	-22		096	+HMS	16 35	
041	9	09	Distance input	097	RCL2	36 02	
042	CF3	16 22 03		098	RCL1	36 01	
043	R/S	51		099	R↑	16-31	
044	F3?	16 23 03		100	GT0E	22 15	
045	GSB8	23 08	Set subroutine	101	*LBL2	21 02	Prog part 2
046	+R	44	number in I register	102	R/S	51	
047	ISZI	16 26 46		103	*LBLA	21 11	Initialize
048	ISZI	16 26 46	Go to proper sub-	104	CLX	-51	
049	ISZI	16 26 46	routine	105	ENT↑	-21	
050	GT0I	22 45	Program part	106	ENT↑	-21	
051	*LBLd	21 16 14	Go to proper program	107	RCL2	36 02	
052	ST0I	35 46	part	108	RCL1	36 01	
053	GT0I	22 45	Program part 1	109	GT02	22 02	
054	*LBLA	21 11	P.O.B. & initialize	110	*LBLC	21 13	Enter closing point
055	CLRG	16-53		111	F1?	16 23 01	and calc. error
056	ST02	35 02		112	GT02	22 02	

REGISTERS

0	1 N	2 E	3 USED	4 d/E	5 A _Z /±e	6 AREA	7 USED	8 USED	9 P/R
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	180	B	C	D	E	F	G	H	I PART NO.

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	SF1	16 21 01		169	GT07	22 07	
114	RCL2	36 02		170	*LBL6	21 06	
115	-	-45		171	DSZI	16 25 46	Reset I register
116	ST+2	35-55 02		172	DSZI	16 25 46	
117	ST08	35 08		173	DSZI	16 25 46	
118	X#Y	-41		174	*LBL7	21 07	
119	RCL1	36 01		175	ST+3	35-55 03	Adjust traverse
120	-	-45		176	X#Y	-41	points
121	ST+1	35-55 01		177	ST+4	35-55 04	
122	ST07	35 07		178	ST05	35 05	
123	RCL3	36 03		179	X#Y	-41	
124	ST÷7	35-24 07		180	+P	34	
125	ST÷8	35-24 08		181	ENT↑	-21	
126	R↓	-31		182	ENT↑	-21	
127	+P	34		183	LSTX	16-63	
128	ST÷3	35-24 03		184	X#Y	-41	
129	RCL3	36 03		185	RCL7	36 07	
130	ST09	35 09		186	X	-35	
131	R↓	-31		187	+	-55	
132	X#Y	-41		188	ST+1	35-55 01	
133	+HMS	16 35		189	RCL8	36 08	
134	RCL2	36 02		190	R↑	16-31	
135	ST04	35 04		191	X	-35	
136	RCL1	36 01		192	RCL5	36 05	
137	ST03	35 03		193	+	-55	
138	R↑	16-31		194	ST+2	35-55 02	
139	GTOE	22 15	Obtain closure	195	ST05	35 05	
140	*LBL0	21 14	errors	196	2	02	
141	F1?	16 23 01	Precision ratio	197	÷	-24	
142	GT05	22 05		198	RCL2	36 02	
143	GT02	22 02		199	-	-45	
144	*LBL5	21 05		200	X#Y	-41	
145	CLX	-51		201	X	-35	
146	ENT↑	-21		202	ST+6	35-55 06	
147	ENT↑	-21		203	RCL5	36 05	
148	ENT↑	-21		204	LSTX	16-63	
149	ST06	35 06		205	+P	34	
150	RCL9	36 09	P/R	206	X#Y	-41	
151	R↑	16-31		207	ST05	35 05	
152	GTOE	22 15		208	+HMS	16 35	
153	*LBL3	21 03	Program part 3	209	RCL2	36 02	
154	R/S	51		210	RCL1	36 01	
155	*LBLA	21 11	Initialize & store	211	R↑	16-31	
156	0	00	P.O.B.	212	*LBL0	21 15	Roll down & print
157	ST06	35 06		213	R↓	-31	routine
158	RCL2	36 02		214	PRTX	-14	
159	ST04	35 04		215	GTO1	22 45	
160	RCL1	36 01		216	*LBL8	21 08	Data entry setup
161	ST03	35 03		217	X#Y	-41	
162	GT03	22 03		218	R↓	-31	
163	*LBL0	21 13	Input coord. and	219	RTN	24	
164	RCL4	36 04	calc. corrected	220	*LBL0	21 16 15	Recall area
165	-	-45	points (i.e. inverse)	221	RCL6	36 06	
166	X#Y	-41		222	ABS	16 31	
167	RCL3	36 03		223	PRTX	-14	
168	-	-45		224	R/S	51	

LABELS

LABELS					SET STATUS			
A P.O.B / INITIAL	B BRG. TRAV.	C INV. & CLOSE	D DEFL/P/R	E R↓PRINT	0	FLAGS	TRIG	DISP
a	b BRG/QD	c SUPP. <u>1</u>	d PART NO.	e AREA	1 FIRST CLOSURE?	ON 0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG 1 <input type="checkbox"/> <input checked="" type="checkbox"/>	FIX 2 <input type="checkbox"/> <input checked="" type="checkbox"/>
0	1 PART NO.	2 PART NO.	3 PART NO.	4 USED	2	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD 1 <input type="checkbox"/> <input checked="" type="checkbox"/>	SCI 2 <input type="checkbox"/> <input checked="" type="checkbox"/>
5 USED	6 USED	7 USED	8 DATA SETUP	9 USED	3 DATA ENTRV	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD 3 <input type="checkbox"/> <input checked="" type="checkbox"/>	ENG 4 <input type="checkbox"/> <input checked="" type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 4

Program Description I

Program Title COGO-08: ROTATION OF AXES

This Hewlett-Packard translation is based on program 02832A written by
 CARL M. KING
 2206 Siesta Drive, Darasota, Florida 33579

Program Description, Equations, Variables COGO-08 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION, hereof. The special option of this program is the ROTATION OF AXES, which may be desirable in order to make a new survey match an earlier one.

When you have closed and balanced the survey, you may find that a line common to an earlier survey has a different computed Azimuth than in the earlier survey. By rotating the new survey in its entirety you can exhibit agreement between the two, and facilitate interconnecting computations.

You start with a given set of coordinates in the calculator as a P.O.B., then you initialize the program by entering the computed Azimuth of the line you wish rotated, followed by the desired Azimuth. The program computes the difference, and stores the constant by which succeeding computations will be rotated. (If you wish to "translate" the traverse as well, you may enter a different pair of P.O.B. coordinates again AFTER initialization, and the coordinates will all be shifted as well as rotated.)

Then you proceed to run your survey calls using any of the standard options, and the result of each TRAVERSE will be rotated by the desired amount, and the common line will be as desired.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

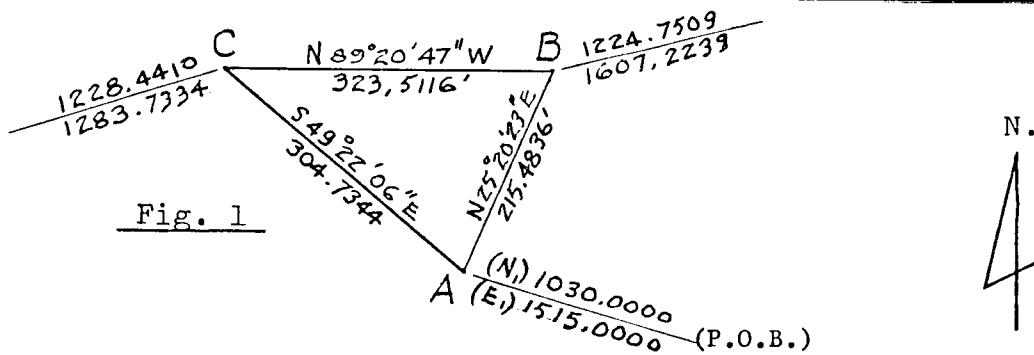


Fig. 1

Sample Problem(s)

- (1) Enter coordinates of beginning point.
- (2) Enter old and new Azimuths.
- (3) Run BEARING traverses or FIELD ANGLE traverses, point A to point B to point C to point A. Traverse should close with reasonable accuracy. (Since we only work with integral seconds, there may be some loss of accuracy.)
- (4) Obtain traverse data calculated for each leg as shown in Fig. 2 below. This represents the rotated traverse. All sides remain the original lengths.

Note: Rotation takes place about P.O.B. as center.

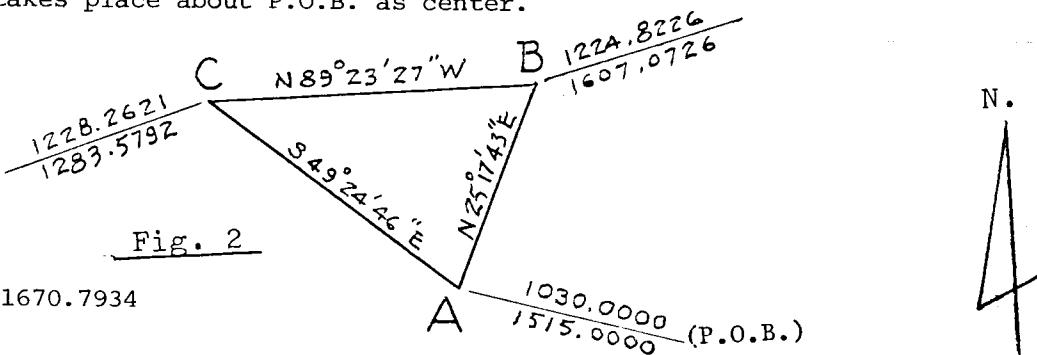


Fig. 2

Enclosed AREA = 31670.7934

Solution(s) 1030 [ENT↑] 1515 [A] 25.2023 [ENT↑] 25.1743 [R/S]→ -0.0240, Diff. Angle (Display only)
 25.2023 [B] 215.4836 [R/S]→ 1224.8226, N_B ; [E]→ 1607.0726, E_B ; [E]→ 25.1743, AZ.
 89.2047 [ENT↑] 4 [f] [B] 323.5116 [R/S]→ 1228.2621, N_C ; [E]→ 1283.5792, E_C ; [E]→ -89.2327, AZ.
 49.2206 [ENT↑] 2 [f] [B] 304.7344 [R/S]→ 1030.0004, N_A ; [E]→ 1514.9995, E_A ; [E]→ 130.3514, AZ.
 [f] [E]→ 31670.7934, AREA

Reference(s) This program is a modification of the Users' Library Program #02832B submitted by Carl M. King.

Davis, R.E., Foot, F.S., Kelly, J.W., SURVEYING THEORY AND PRACTICE. 5th Edition. 1966. McGraw-Hill Book Co. (Bearings & Azimuth page 260); (Deflection Angles page 262); (Rectangular Coords page 454).

User Instructions

COGO-08: ROTATION OF AXES

1

2

AZ→BRG BRG/QD INPUT SUPP.
P.O.B. & INIT. BRG. TRAV. INVERSE DEFLEC. TRAV.

AREA
R↓ PRINT

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B. & initialize	057	+	-55	
002	ST02	35 02	Easting	058	F3?	16 23 03	
003	ST04	35 04		059	GSB1	23 01	
004	R↓	-31		060	EEX	-23	
005	ST01	35 01	Northing	061	CHS	-22	Distance input
006	ST03	35 03		062	9	09	Was distance input?
007	R/S	51		063	CF3	16 22 03	Data setup
008	X↓Y	-41	AZ	064	R/S	51	
009	CHS	-22		065	F3?	16 23 03	Calculation SBR.
010	HMS+	16-55	AZ' - AZ	066	GSB2	23 08	
011	HMS+	16 36		067	+R	44	
012	ST07	35 07		068	*LBLB	21 00	
013	LSTX	16-63		069	ST+3	35-55 03	
014	0	00	Diff. Angle	070	X↓Y	-41	
015	ST06	35 06	Initialize	071	ST+4	35-55 04	
016	1	01		072	X↓Y	-41	
017	8	08		073	+P	34	
018	0	06		074	ST08	35 08	
019	ST09	35 09		075	X↓Y	-41	
020	+	-55		076	RCL7	36 07	
021	R↓	-31	Diff. Angle	077	+	-55	
022	RTN	24		078	ST05	35 05	
023	*LBLC	21 13	Inverse	079	X↓Y	-41	
024	RCL4	36 04		080	+R	44	
025	-	-45		081	ST+1	35-55 01	
026	X↓Y	-41		082	X↓Y	-41	
027	RCL3	36 03		083	ST+2	35-55 02	
028	-	-45		084	2	02	
029	GT00	22 00		085	÷	-24	
030	*LBL6	21 16 12	Bearing/Quadrant	086	RCL2	36 02	
031	X↓Y	-41	input	087	-	-45	
032	HMS+	16 36		088	x	-35	
033	X↓Y	-41		089	ST+6	35-55 06	
034	ENT↑	-21		090	RCL8	36 08	
035	ENT↑	-21		091	RCL5	36 05	
036	2	02		092	→HMS	16 35	
037	÷	-24		093	RCL2	36 02	
038	INT	16 34		094	RCL1	36 01	Rolldown & print
039	RCL9	36 09		095	R↑	16-31	routine
040	x	-35		096	*LBL6	21 15	
041	X↓Y	-41		097	R↓	-31	Azimuth→ bearing
042	RCL9	36 09		098	PRTX	-14	
043	x	-35		099	RTN	24	
044	COS	42		100	*LBL1	21 01	
045	R↑	16-31		101	RCL7	36 07	
046	x	-35		102	-	-45	
047	-	-45		103	RTN	24	
048	→HMS	16 35	Azimuth	104	*LBL6	21 16 11	
049	*LBLB	21 12	Azimuth input	105	HMS+	16 36	
050	0	00		106	ENT↑	-21	
051	ST05	35 05		107	SIN	41	
052	+	-55		108	SIN-	16 41	
053	CF3	16 22 03	Deflection angle	109	X<0?	16-45	
054	*LBLD	21 14	input	110	CHS	-22	
055	HMS+	16 36		111	→HMS	16 35	
056	RCL5	36 05		112	PRTX	-14	

REGISTERS

0	¹ NEW N	² NEW E	³ OLD N	⁴ OLD E	⁵ A'2	⁶ AREA	⁷ ROT. L	⁸ d ₂	⁹ 180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D		E		I

97 Program Listing II

47

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	PRTX	-14					
114	RTN	24		170			
115	*LBL _a	21 16 15	Recall area				
116	RCL6	36 06					
117	ABS	16 31					
118	PRTX	-14					
119	RTN	24					
120	*LBL _b	21 08	Data setup SBR.				
121	X#Y	-41					
122	R↓	-31					
123	RTN	24					
124	*LBL _c	21 16 13	Supplementary angle	180			
125	ABS	16 31					
126	RCL9	36 09					
127	X#Y	-41					
128	CHS	-22					
129	HMS+	16-55					
130	RTN	24					
131	R/S	51					
140				190			
150				200			
160				210			
				220			

LABELS					FLAGS		SET STATUS		
A P.O.B., AZ	B BEARING TRAV.	C INVERSE	D DEFLEC./	E R↓PRINT	0		FLAGS	TRIG	DISP
^a AZ→BRG.	^b BEARING/QD	^c SUPP. ∠	^d	^e AREA	1		ON OFF	DEG	FIX
0 CALC. SBR	1	2	3	4	2		0 <input type="checkbox"/> <input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
5	6	7	8 DATA SETUP	9	3	DATA ENTRY	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD	SCI
							2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD	ENG
							3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 4

Program Description I

Program Title

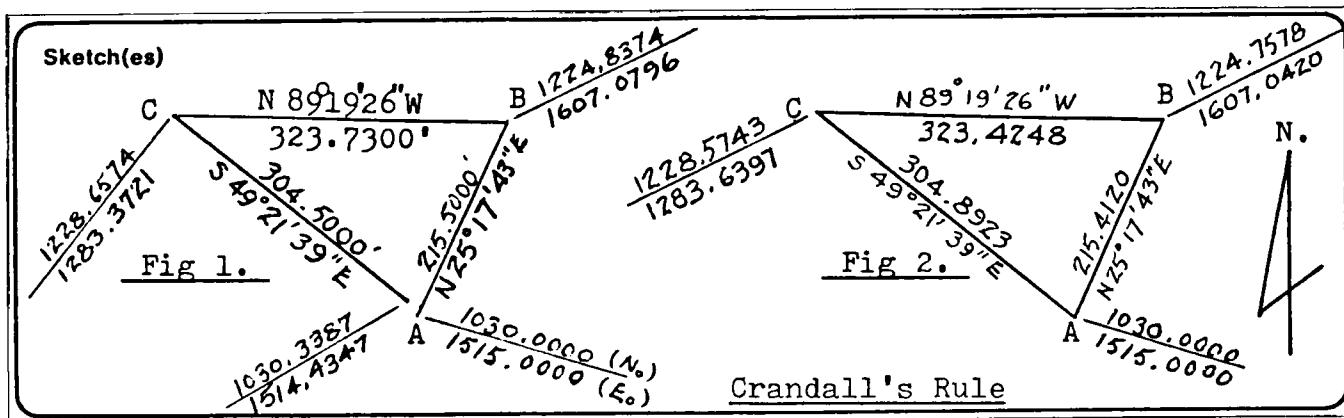
COGO-09: CRANDALL'S RULE ADJUSTMENT

This Hewlett-Packard translation is based on program 04172A written by
 CARL M. KING
 2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables

COGO-09 is a member of the coordinate geometry series described in the general description, hereof. The special option of this program is Crandall's Rule Adjustment, which can be used in an open traverse as well as in a closed traverse. At the end of the traverse you "force" a closure on a point known with precision. During the course of the initial traverse calculations (card I, part 1), the latitude (n), departure (e) and length (d) are accumulated.

Equations for Crandall's Rule Adjustment may be found in: Davis, Foote, Kelly "SURVEYING THEORY AND PRACTICE", 5th edition, p. 461, McGraw-Hill, 1966.


Operating Limits and Warnings

This is a 2 card, 3 part program. Part 1 of card I calculates and accumulates summed quantities. Part 2 calculates the error, n', e' , the bracketed quotients and the Precision Ratio. Card II repeats the traverse, making all the adjustments as it goes.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

- (1) Load Card I and go to Program Part 1
- (2) Start at point A, for P.O.B.
- (3) Make BEARING TRAVERSE to point B, utilizing data in Fig. 1.
- (4) Continue traverse to succeeding points of figure, using standard options of your choice. (Bearing, Deflection or Inverse Traverses.)
- (5) Note: computed coordinates are not identical to known coordinates of closing point. Now go to program Part 2.
- (6) Enter known coordinates and make INVERSE TRAVERSE to compute closing error. Press [D] to read PRECISION RATIO.
- (7) Enter program CARD II. Begin at step (2) above, repeat traverse in same order as before, utilizing same data. (Fig 1.)
- (8) Read the adjusted coordinates and calls, as in Fig 2.
- (9) Recall computed area of closed traverse: press [f][E].

Closing Error: Azimuth = $120^{\circ}55'34''$, distance = 0.6590
(Bearing = S $59^{\circ}04'26''$ E)

PRECISION RATIO = 1280.3425

Adjusted traverse, as shown in Fig 2., closes precisely.

For CCW traverse, enclosed AREA = 31668.2018 sq. ft.

Solution(s) CARD I (Traverse)

1[f][D] 1030 [ENT[†]] 1515[A] 25.1743[B] 215.5[R/S] → 1224.8374, N_B; [E] → 1607.0796, E_B.
89.1926[ENT[†]] 4[f][B] 323.73[R/S] → 1228.6574, N_C; [E] → 1283.3721, E_C.
49.2139 [ENT[†]] 2[f][B] 304.5 [R/S] → 1030.3387, N; [E] → 1514.4347, E.

(Calc. Errors)

2[f][D] 1030[ENT[†]] 1515[C] → 1030.0000, N_{CLOSE}; [E] → 1515.0000, E_{CLOSE};
[E] → 120.5534, AZ_{error}; [E] → 0.6590, DIST_{error}
[D] → 1280.3425, P/R.

CARD II (Adjust)

25.1743 [B] 215.5 [R/S] → 1224.7578, N_{corr.}; [E] → 1607.0420, E_{corr.}
[E] → 25.1743, AZ_{corr.}; [E] → 215.4120, DIST_{corr.}.
89.1926 [ENT[†]] 4[f][B] 323.73 [R/S] → 1228.5743, N_{corr.}; [E] → 1283.6397, E_{corr.}
[E] → -89.1926, AZ_{corr.}; [E] → 323.4248, DIST_{corr.}.
49.2139[ENT[†]] 2[f][B] 304.5[R/S] → 1030.0000, N_{CLOSE}; [E] → 1515.0000, E_{CLOSE};
[E] → 130.3821, AZ_{CLOSE}; [E] → 304.8923, DIST_{CLOSE}
[f][E] → 31668.2018, AREA.

REFERENCE(S) Davis, R.E., Foot, F.S., Kelly, J.W., SURVEYING THEORY AND PRACTICE.
5th Edition. 1966. McGraw-Hill Book Co. Pages 461-463.

This program is a modification of the Users' Library Program #04172A submitted by Carl M. King.

User Instructions

1 COGO -09: CRANDALL'S RULE ADJUSTMENT CARD 1 2
AZ→BRG BRG/QD input SUPP. / PART NO.
P.O.B, init BRG TRAV INVERSE DEF. TRAV/P/R R+PRINT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load CARD I, sides 1 and 2			
2	Set to part 1 for initial traverse	1	f D	1
3	Enter P.O.B.	Northing	ENT [†]	
		Easting	A	180
4	Proceed with traverse according to "COGO General Instructions" until final point is reached			
5	Switch to Part 2	2	f D	2
6	Enter coordinates of closing point and calculate errors	Northing	ENT [†]	
		Easting	C	Northing
			E	Easting
	Read error Azimuth		E	Error Azimuth
	Read error Distance		E	Error Distance
	Precision Ratio		D	P/R

1 COGO-09 CRANDALL'S RULE ADJUSTMENT
CARD II
2
BRG/QD INPUT AREA
Initialize BRG.Trav Inverse Def. Trav. R+Print

97 Program Listing I

51

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	CARD I	COMMENTS
001	*LBL1	21 01		057	ROL1	36 01		
002	R/S	51		058	-	-45		
003	*LBLb	21 16 12	Bearing/Quadrant	059	+P	34		
004	X#Y	-41		060	*LBL9	21 09		
005	HMS+	16 36		061	ABS	16 31		
006	X#Y	-41		062	ST04	35 04		
007	ENT†	-21		063	ST+3	35-55 03		
008	ENT†	-21		064	CLX	-51		
009	2	02		065	LSTX	16-63		
010	÷	-24		066	+R	44		
011	INT	16 34		067	ST09	35 09		
012	RCLA	36 11		068	ENT†	-21		
013	X	-35		069	ENT†	-21		
014	X#Y	-41		070	ROL4	36 04		
015	RCLA	36 11		071	÷	-24		
016	X	-35		072	X	-35		
017	COS	42		073	ST+3	35-55 08		
018	R†	16-31		074	CLX	-51		
019	X	-35		075	LSTX	16-63		
020	-	-45		076	X	-35		
021	+HMS	16 35	Azimuth	077	ST+6	35-55 06		
022	*LBLB	21 12	Azimuth input	078	CLX	-51		
023	0	00		079	ROL4	36 04		
024	ST05	35 05		080	÷	-24		
025	+	-55		081	X	-35		
026	*LBLD	21 14	Deflection angle input	082	ST+7	35-55 07		
027	HMS+	16 36		083	CLX	-51		
028	RCL5	36 05		084	ROL2	36 02		
029	+	-55		085	+	-55		
030	EEX	-23		086	ST02	35 02		
031	CHS	-22		087	ROL1	36 01		
032	9	09		088	ROL9	36 09		
033	CF3	16 22 03		089	+	-55		
034	R/S	51	Distance input	090	ST01	35 01		
035	F3?	16 23 03		091	R†	16-31		
036	GSBS	23 08	Data set-up	092	LSTX	16-63		
037	GT09	22 09		093	+P	34		
038	*LBLd	21 16 14	Program part number	094	X#Y	-41		
039	ST01	35 46	input	095	ST05	35 05		
040	GTO1	22 45		096	+HMS	16 35		
041	*LBLA	21 11	Input P.O.B. and	097	CF1	16 22 01		
042	CLRG	16-53	initialize	098	R†	-31		
043	ST02	35 02		099	GT0E	22 15		
044	R†	-31		100	*LBL2	21 02		
045	ST01	35 01		101	R/S	51		
046	1	01		102	*LBLA	21 11		
047	ST0J	35 46		103	CLX	-51		
048	1	01		104	ENT†	-21		
049	8	06		105	ENT†	-21		
050	0	06		106	ROL2	36 02		
051	ST0A	35 11		107	ROL1	36 01		
052	GT01	22 01		108	GT02	22 02		
053	*LBLC	21 13	Inverse traverse	109	*LBLC	21 13		
054	RCL2	36 02		110	F1?	16 23 01		
055	-	-45		111	GT02	22 02		
056	X#Y	-41		112	SF1	16 21 01		

REGISTERS

0	¹ N	² E	³ ΣD , N_o	⁴ d, E_o	⁵ A_2 , e'	⁶ $\Sigma ne/d$	⁷ e^2/d , A	⁸ $\Sigma n^2/d$, B	⁹ P/R
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A 180	B	C			D	E		I Program Part Number	

97 Program Listing II

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	CARD II KEY CODE	COMMENTS
001	*LBLA	21 11	Initialize	057	R↑	16-31	
002	0	00		058	+F	34	
003	ST05	35 06		059	X#Y	-41	
004	RCL2	36 02		060	ST05	35 05	
005	ST04	35 04		061	CLX	-51	
006	RCL1	36 01		062	LSTX	16-63	
007	ST03	35 03		063	RCL7	36 07	
008	RTN	24		064	X	-35	
009	*LBL0	21 13	Inverse	065	R↑	16-31	
010	RCL4	36 04		066	RCL8	36 08	
011	-	-45		067	X	-35	
012	X#Y	-41		068	+	-55	
013	RCL3	36 03		069	+	-55	
014	-	-45		070	ENT↑	-21	
015	ST00	22 00		071	ENT↑	-21	
016	*LBL6	21 16 12	BRG/Quadrant input	072	RCL5	36 05	
017	X#Y	-41		073	X#Y	-41	
018	HMS+	16 36		074	+R	44	
019	X#Y	-41		075	ST+1	35-55 01	
020	ENT1	-21		076	X#Y	-41	
021	ENT↑	-21		077	ST+2	35-55 02	
022	2	02		078	2	02	
023	÷	-24		079	÷	-24	
024	INT	16 34		080	RCL2	36 02	
025	RCLA	36 11		081	-	-45	
026	X	-35		082	X	-35	
027	X#Y	-41		083	ST+6	35-55 06	
028	RCLA	36 11		084	CLX	-51	
029	X	-35		085	RCL5	36 05	
030	COS	42		086	+HMS	16 35	
031	R↑	16-31		087	RCL2	36 02	
032	X	-35		088	RCL1	36 01	
033	-	-45	Azimuth	089	R↑	16-31	
034	+HMS	16 35		090	*LBL0	21 15	Adjusted results
035	*LBL0	21 12	Azimuth input	091	R↓	-31	
036	0	00		092	PRTX	-14	
037	ST05	35 05		093	RTN	24	
038	+	-55		094	*LBL0	21 08	
039	*LBL0	21 14	Deflection angle input	095	X#Y	-41	
040	HMS+	16 36		096	R↓	-31	
041	RCL5	36 05		097	RTN	24	
042	+	-55		098	*LBL0	21 16 15	
043	EEX	-23		099	RCL6	36 06	
044	CHS	-22		100	ABS	16 31	
045	S	09		101	PRTX	-14	
046	CF3	16 22 03		102	RTN	24	
047	R/S	51	Input distance	103	R/S	51	
048	F30	16 23 03	Was distance input?				
049	DSBS	23 08	Data set up				
050	+R	44					
051	*LBL0	21 00	Adjustment	0	FLAGS		SET STATUS
052	ST+3	35-55 03	calculation	1		FLAGS	TRIG
053	X#Y	-41	subroutine	110	ON OFF	DEG	FIX
054	ST+4	35-55 04		2	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD	SCI
055	ENT1	-21		3	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD	ENG
056	ENT↑	-21			3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n <u>4</u>

REGISTERS									
0	1 N _{AJ}	2 E _{AJ}	3 N _{UNAJ}	4 E _{UNAJ}	5 A ₂	6 Area	7 A	8 B	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	I				

Program Description I

Program Title COGO-10: TRANSIT RULE ADJUSTMENT

This Hewlett-Packard translation is based on program 04173A written by

CARL M. KING

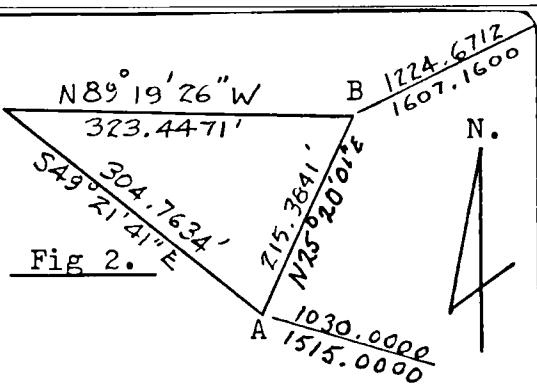
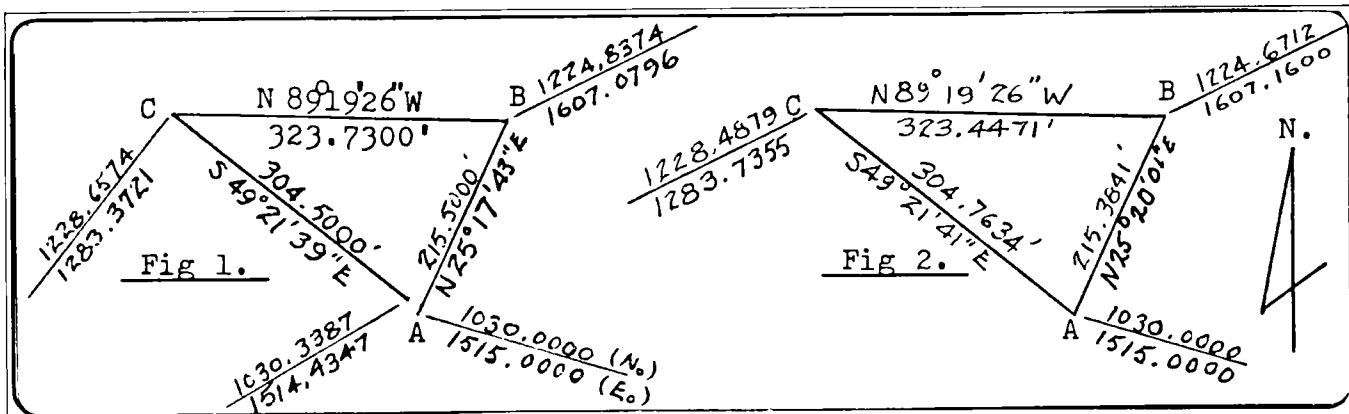
2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-10 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the TRANSIT RULE adjustment, which can be used in an open traverse as well as in a closed traverse. At the end of the traverse you "force" a closure on a point known with precision. (Part II) During the course of the initial traverse calculations (Part I) the latitude (n), departure (e) and length (d) are accumulated, so that the following equations can be evaluated for each traverse leg:

$$\text{(adjusted latitude)} \quad n_{(aj)} = \pm n + n \left(\frac{\pm n'}{\sum n} \right); \text{ Precision Ratio}$$

$$\text{(adjusted departure)} \quad e_{(aj)} = \pm e + e \left(\frac{\pm e'}{\sum e} \right); P/R = \frac{\sum d}{d'}$$

$\pm n$ = unadjusted latitude
 $\pm e$ = unadjusted departure
 n = absolute latitude
 e = absolute departure
 d' = absolute error



$\pm n'$ = latitude of error of closure
 $\pm e'$ = departure of error of closure
 $\sum n$ = sum of absolute latitudes
 $\sum e$ = sum of absolute departures
 $\sum d$ = total perimeter

Operating Limits and Warnings This is a three part program. Part 1 calculates and accumulates summed quantities. Part 2 calculates the error, n' , e' and the bracketed quotions and the Precision Ratio. Part 3 repeats the traverse, making all the adjustments as it goes. Neither Azimuth to bearing nor supplementary angle routines are included because of program space limitations.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

- (1) Initialize the program: set for part 1 (1 [f] [D])
- (2) Start at point A, for P.O.B.
- (3) Make BEARING TRAVERSE to point B, utilizing data in Fig 1.
- (4) Continue traverse to succeeding points of figure, using standard options of your choice. (Bearing, Deflection or Inverse Traverses.)
- (5) Note: computed coordinates are not identical to known coordinates of closing point. Go to part 2 of program (2 [f] [D])
- (6) Enter known coordinates and make INVERSE TRAVERSE to compute closing error. Press [D] to read PRECISION RATIO.
- (7) Set for part 3 of program (3 [f] [D]) Begin at step (2) above, repeat traverse in same order as before, utilizing same data. (Fig 1.)
- (8) Copy the adjusted coordinates and calls, as in Fig 2.
- (9) Recall computed area of closed traverse: press [f] [E].

Closing Error: Azimuth = $120^{\circ}55'34''$, distance = 0.6590
(Bearing = S $59^{\circ}04'26''$ E)

PRECISION RATIO = 1280.3425

Adjusted traverse, as shown in Fig 2., closes precisely.

For CCW traverse, enclosed AREA = 31656.5953 sq. ft.

Solution(s) (Traverse)

1 [f] [D] 1030 [ENT↑] 1515 [A] 25.1743 [B] 215.5 [R/S] → 1224.8374, N_B
[E] → 1607.0796, E_B

89.1926 [ENT↑] 4 [f] [B] 323.73 [R/S] → 1228.6574, N_C; [E] → 1283.3721, E_C
49.2139 [ENT↑] 2 [f] [B] 304.5 [R/S] → 1030.3387, N_A; [E] → 1514.4347, E_A

(Calc. Errors)

2 [f] [D] 1030 [ENT↑] 1515 [C] → 1030.0000, N_{close}; [E] → 1515.0000, E_{close}
[E] → 120.5534, AZ_{error}; [E] → 0.6590, DIST_{error} [D] → 1280.3425, P/R

(Adjust)

3 [f] [D] 25.1743 [B] 215.5 [R/S] → 1224.6712, N_{Bcorr}; [E] → 1607.1600, E_{Bcorr}
[E] → 25.2001, AZ_{corr}; [E] → 215.3841, DIST_{corr}.

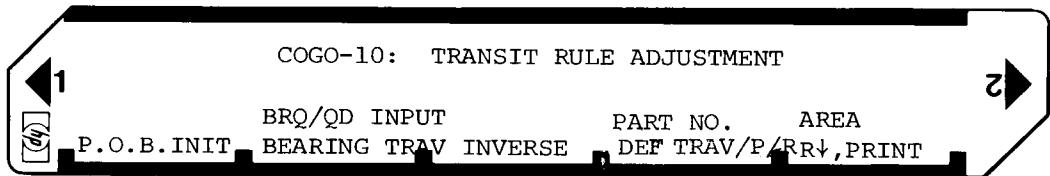
89.1926 [ENT↑] 4 [f] [B] 323.73 [R/S] → 1228.4879, N_{Ccorr};

[E] → 1283.7355, E_{Ccorr}; [E] → -89.1926, AZ_{corr}; [E] → 323.4471, DIST_{corr}.

49.2139 [ENT↑] 2 [f] [B] 304.5 [R/S] → 1030, N_A; [E] → 1515, E_A

[E] → 130.3819 AZ_{corr}, [E] → 304.7634, DIST_{corr}.

[f] [E] → 31656.5953, AREA


Reference(s)

This program is a modification of the Users' Library Program #04173A submitted by Carl M. King.

Davis, R.E., Foot, F.S., Kelly, J.W., SURVEYING THEORY AND PRACTICE.

5th Edition. 1966. McGraw-Hill Book Co., page 461, 462 and 463.

User Instructions

97 Program Listing I

57

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL1	21 01		057	*LBL0	21 13	
002	R/S	51		058	RCL2	36 02	
003	*LBLb	21 16 12	BRG/QD input	059	-	-45	
004	X \leftrightarrow Y	-41		060	X \leftrightarrow Y	-41	
005	HMS+	16 36		061	RCL1	36 01	
006	X \leftrightarrow Y	-41		062	-	-45	
007	ENT \uparrow	-21		063	GTO9	22 09	
008	ENT \uparrow	-21		064	*LBL4	21 04	
009	2	02		065	DSZI	16 25 46	Reset I register
010	\div	-24		066	DSZI	16 25 46	
011	INT	16 34		067	DSZI	16 25 46	
012	RCL4	36 11		068	*LBL9	21 09	Calc. SBR. for traverse
013	x	-35		069	CF1	16 22 01	
014	X \leftrightarrow Y	-41		070	ST+1	35-55 01	
015	RCL4	36 11		071	ABS	16 31	
016	x	-35		072	ST+7	35-55 07	
017	COS	42		073	CLX	-51	
018	R \uparrow	16-31		074	LSTX	16-63	
019	x	-35		075	X \leftrightarrow Y	-41	
020	-	-45		076	ST+2	35-55 02	
021	+HMS	16 35	Azimuth	077	ABS	16 31	
022	*LBLB	21 12	Azimuth input	078	ST+8	35-55 08	
023	0	00		079	CLX	-51	
024	ST05	35 05		080	LSTX	16-63	
025	+	-55		081	X \leftrightarrow Y	-41	
026	*LBLD	21 14		082	+P	34	
027	HMS+	16 36	Deflection angle input	083	ST04	35 04	
028	RCL5	36 05		084	ST+3	35-55 03	
029	+	-55		085	X \leftrightarrow Y	-41	
030	EEX	-23		086	ST05	35 05	
031	CHS	-22		087	+HMS	16 35	
032	9	09		088	RCL2	36 02	
033	CF3	16 22 03		089	RCL1	36 01	
034	R/S	51	Distance input	090	R \uparrow	16-31	
035	F3?	16 23 03		091	GTOE	22 15	
036	GSB8	23 68		092	*LBL2	21 02	Program part 2
037	\rightarrow R	44		093	R/S	51	
038	ISZI	16 26 46	Set subroutine number	094	*LBLA	21 11	
039	ISZI	16 26 46	in I register	095	CLX	-51	Initialize
040	ISZI	16 26 46		096	ENT \uparrow	-21	
041	GTO1	22 45	GTO proper subroutine	097	ENT \uparrow	-21	
042	*LBLd	21 16 14	Set program part	098	RCL2	36 02	
043	ST01	35 46		099	RCL1	36 01	
044	GTO1	22 45		100	GTO2	22 02	
045	*LBLA	21 11		101	*LBL0	21 13	Input closing points
046	CLRG	16-53	P.O.B. & initialize	102	F1?	16 23 01	& calculate errors
047	ST02	35 02		103	GTO2	22 02	
048	R \downarrow	-31		104	SF1	16 21 01	
049	ST01	35 01		105	RCL2	36 02	
050	1	01		106	-	-45	
051	ST01	35 46		107	ST+2	35-55 02	
052	1	01		108	ENT \uparrow	-21	
053	8	08		109	ENT \uparrow	-21	
054	0	00		110	RCL8	36 08	
055	ST0A	35 11		111	\div	-24	
056	GTO1	22 01		112	ST08	35 08	

REGISTERS

0	1 N	2 E	3 $\Sigma d, N_O$	4 d, E_O	5 A2	6 AREA	7 $\Sigma n, \bar{E}_n$	8 $\Sigma e, \bar{e}$	9 P/R
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A 180	B	C	D	E				I PART NO.	

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	R↓	-31		169	*LBL6	21 06	
114	X#Y	-41		170	DSZI	16 25 46	Reset I register
115	RCL1	36 01		171	DSZI	16 25 46	
116	-	-45		172	DSZI	16 25 46	
117	ST+1	35-55 01		173	*LBL7	21 07	Adjust traverse
118	ENT↑	-21		174	ST+3	35-55 03	points
119	ENT↑	-21		175	X#Y	-41	
120	RCL7	36 07		176	ST+4	35-55 04	
121	÷	-24		177	ENT↑	-21	
122	ST07	35 07		178	ABS	16 31	
123	R↓	-31		179	RCL8	36 08	
124	+P	34		180	X	-35	
125	RCL3	36 03		181	+	-55	
126	X#Y	-41		182	X#Y	-41	
127	÷	-24		183	ENT↑	-21	
128	ST09	35 09		184	ABS	16 31	
129	CLX	-51		185	RCL7	36 07	
130	LSTX	16-63		186	X	-35	
131	X#Y	-41		187	+	-55	
132	+HMS	16 35		188	ST+1	35-55 01	
133	RCL2	36 02		189	X#Y	-41	
134	ST04	35 04		190	ST+2	35-55 02	
135	RCL1	36 01		191	2	02	
136	ST03	35 03		192	÷	-24	
137	R↑	16-31		193	RCL2	36 02	
138	GT0E	22 15	Obtain closing errors	194	-	-45	
139	*LBLD	21 14	P/R	195	X#Y	-41	
140	F1?	16 23 01		196	X	-35	
141	GT05	22 05		197	ST+6	35-55 06	
142	GT02	22 02		198	CLX	-51	
143	*LBL5	21 05		199	LSTX	16-63	
144	CLX	-51		200	+P	34	
145	ENT↑	-21		201	X#Y	-41	
146	ENT↑	-21		202	ST05	35 05	
147	ENT↑	-21		203	+HMS	16 35	
148	ST06	35 06		204	RCL2	36 02	
149	RCL9	36 09		205	RCL1	36 01	
150	R↑	16-31		206	R↑	16-31	
151	GT0E	22 15		207	*LBL6	21 15	
152	*LBL3	21 03	Program part 3	208	R↓	-31	Rollover & print routine
153	R/S	51		209	PRTX	-14	
154	*LBLA	21 11	Initialize & store P.O.B.	210	GT01	22 45	
155	0	00		211	*LBL8	21 08	Data entry setup
156	ST06	35 06		212	X#Y	-41	
157	RCL2	36 02		213	R↓	-31	
158	ST04	35 04		214	RTN	24	
159	RCL1	36 01		215	*LBL6	21 16 15	Recall area
160	ST03	35 03		216	RCL6	36 06	
161	GT03	22 03		217	ABS	16 31	
162	*LBLC	21 13	Input coord. & calculate corrected	218	PRTX	-14	
163	RCL4	36 04	points	219	RTN	24	
164	-	-45	(i.e. inverse)	220	R/S	51	
165	X#Y	-41					
166	RCL3	36 03					
167	-	-45					
168	GT07	22 07					

LABELS

LABELS					FLAGS	SET STATUS		
A	B	C	D	E	0	FLAGS	TRIG	DISP
P.O.B. INIT	T.BRG. TRAV.	INV. & CLOSE	DEFLEC/P/R	R↓, PRINT	0	ON OFF	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
a	b	c	d	e	1	FIRST CLOSURE?	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
0	1	PART NO.	2	PART NO.	3	2	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
5	6	USED	7	USED	8	3	DATA ENTRY	n-4
USED	USED	USED	DATA SETUP	USED				

Program Description I

Program Title COGO-11: TO INSCRIBE CURVE

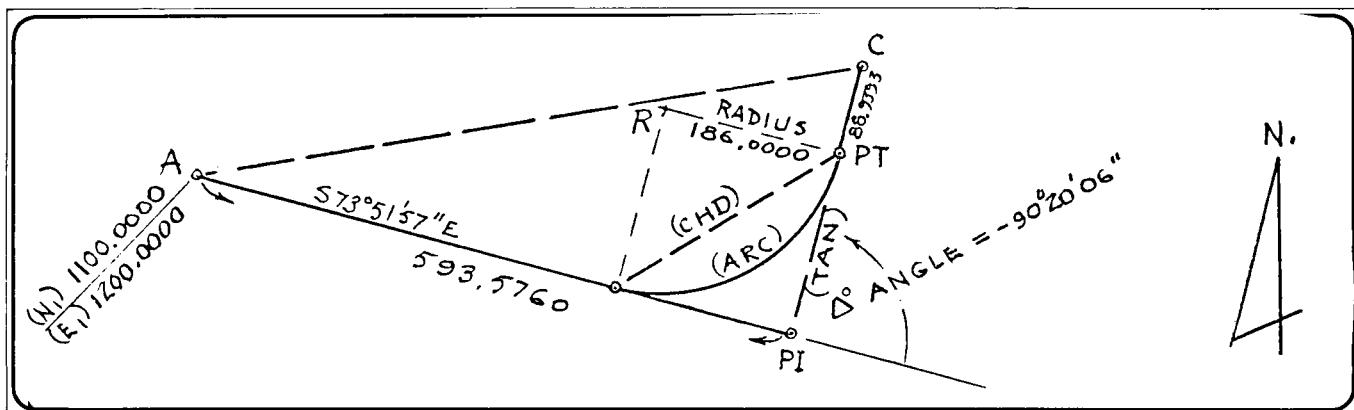
This Hewlett-Packard translation is based on program 04550A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-11 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION, hereof. The special option of this program is the calculation of a curve inscribed at an angle of a traverse, so that the existing point becomes the P.I. (point-of-intersection) of the curve.

The INVERSE TRAVERSE function is not included in this program. However, all the other COGO traverse functions operate the same as in the other COGO programs.


As in the usual situation the curve fits tangentially to the line along which you approach the curve. You are given the heading of the exit tangent and the length of the RADIUS. You take a "sighting" on the new heading, and enter the RADIUS length, press [C], and the program computes the "curve parts". Press [R/S] and the traverse is automatically extended to the P.T. (point-of-tangency). The program computes and accumulates the area enclosed by the ARC as a portion of the total traverse.

Operating Limits and Warnings You may wish to use Cogo-01 to continue this traverse. If so, when loading Cogo-01, be sure to convert the contents of Register 5, which is in Radians in this program. To degrees. The following keystroke procedure will accomplish this: RCL 5, R →D, STO 5.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

- (1) Start at point A, as P.O.B.
- (2) Make a BEARING TRAVERSE to the PI, utilizing the above data.
- (3) Obtain the coordinates of the PI (point-of-intersection)
- (4) Enter the deflection angle = $-90^\circ 20' 06''$, press [D].
- (5) You will see 1.0000-09, press [R/S].
- (6) Input RADIUS = 186.0000, press [C].
- (7) Copy: TAN, ARC, CHD
- (8) Press: [R/S]; obtain coordinates and traverse to PT (point-of-tangency).
- (9) Make DEFLECTION ANGLE TRAVERSE ($\Delta = 0^\circ$) to point C.
- (10) Load program COGO-01, make INVERSE TRAVERSE to P.O.B.

Side	Bearing	Azimuth	distance	Northings	Eastings	Point
A(PI)	S73°53'57"E	+106°08'03"	593.5760	1100.0000	1200.0000	A
				(935.0526)	(1770.1972)	(PI)
	$\Delta^\circ = -90^\circ 20' 06''$, $(+15^\circ 47' 57'')$	0				
	RADIUS = 186.0000	(TAN = 187.0907; ARC = 293.2556; CHD = 263.8116)				
		$(+15^\circ 47' 57'')$ (187.0907) $\Delta -90^\circ 20' 06''$				
				(1115.0754)	(1821.1357)	(PT)
(PT)C	N15°47'57"E	$(+15^\circ 47' 57'')$	88.9393			
				(1200.6548)	(1845.3508)	(C)
CA	S81°08'06"W	$(-98^\circ 51' 54'')$	(653.1532)	1100.0000	1200.0000	A

AREA enclosed in figure = (74394.8957)

Note: Quantities in parentheses are calculated in the programs.

Solution(s): 1100 [ENT↑] 1200 [A] 73.5157 [ENT↑] 2 [f] [B] 593.576 [R/S] → 935.0526, N_{PI}; [E] → 1770.1972, E_{PI}; 90.2006 [CHS] [D] [R/S] → 935.0526 (display only, ignore) 186 [C] → 187.0907, TAN; [E] → 293.2556, ARC; [E] → 263.8116, CHD; (optional) [E] → -90.2006, Δ [R/S] → 1115.0754, N_{PT}; [E] → 1821.1357, E_{PT}; [E] → 15.4757, AZ; [E] → 187.0907, DIST. PI → PT. 0 [D] 88.9393 [R/S] → 1200.6548, N_C; [E] → 1845.3508, E_C; (optional) [E] → 15.4757, AZ Load COGO-01 and complete 1100 [ENT↑] 1200 [C] → 1100, N_A; [E] → 1200 E_A; [E] → -98.5154, AZ [E] → 653.1532, DIST. [f] [E] → 74394.8957, AREA

Reference(s):

This program is a modification of the Users' Library Program #4550A, submitted by Carl M. King.

User Instructions

COGO-11: TO INSCRIBE CURVE

1

AZ→BRG BRG/QD INPUT SUPP. ✓
P.O.B., INIT AZ TRAV RAD↑

2

R↓PRINT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load card; sides 1 & 2			
2	Enter point of beginning of Traverse, and initialize <u>TO INSCRIBE CURVE:</u>	Northing Easting	ENT↑ A	180
	Note: The curve is made tangent to the traverse leg most recently completed. Therefore it is necessary to have calculated at least one traverse leg prior to calculating a curve with this program. (This prior leg may have been calculated using any of the other COGO programs of this series.)			
3	Proceed around traverse using "COGO GENERAL INSTRUCTION" sheet until you reach PI			Northing _{PT} Easting _{PT}
4	Calculate a new "sighting" using either a bearing or deflection angle traverse	Bearing	ENT↑ f	1.0000-09
	OR	Deflec./	D	1.0000-09
	and "zero" distance	1.0000-09	R/S	
5	Input the given radius & read tangent read ARC read CHORD (optional) read Central Angle	Radius	C E E E	TAN ARC CHD ±Δ°
6	Complete the traverse to the P.T. and read Northing & Easting read Azimuth (optional) read Tangent (always use a positive value for the radius, in this routine. The direction you are looking has been elected by your new "sighting".)		R/S E E E	Northing _{PT} Easting _{PT} AZ TAN

97 Program Listing I

62

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B. & initialize	057	DEG	16-21	
002	ST02	35 02	E	058	X#Y	-41	BRG
003	R↓	-31	N	059	HMS↑	16 36	
004	ST01	35 01	Initialize	060	X#Y	-41	QD
005	CLX	-51		061	ENT↑	-21	
006	ST06	35 06		062	ENT↑	-21	
007	1	01		063	2	02	
008	8	08		064	÷	-24	
009	0	00		065	INT	16 34	
010	ST09	35 09		066	RCL9	36 09	
011	RTN	24		067	X	-35	
012	*LBLC	21 13	Inscribe radius	068	X#Y	-41	
013	RAD	16-22		069	RCL9	36 09	
014	ST08	35 08	Calc. routine	070	X	-35	
015	ENT↑	-21		071	COS	42	
016	X	-35		072	R↑	16-31	
017	RCL7	36 07		073	X	-35	
018	2	02		074	-	-45	Azimuth
019	÷	-24		075	+HMS	16 35	
020	TAN	43		076	*LBLB	21 12	Azimuth input
021	ST03	35 03		077	0	00	
022	LSTX	16-63		078	GT01	22 01	
023	-	-45		079	*LBLD	21 14	Deflection angle
024	X	-35		080	RCL5	36 05	input
025	ST-6	35-45 06		081	*LBL1	21 01	
026	RCL8	36 08		082	RAD	16-22	
027	RCL3	36 03		083	X#Y	-41	
028	ABS	16 31		084	HMS↑	16 36	
029	X	-35		085	D+R	16 45	
030	ST04	35 04		086	+	-55	
031	LSTX	16-63		087	EEX	-23	
032	TAN↑	16 43		088	CHS	-22	
033	ST03	35 03		089	9	09	
034	COS	42		090	CF3	16 22 03	
035	X	-35		091	R/S	51	Data entry
036	2	02		092	F3?	16 23 03	Was data input?
037	X	-35		093	GT08	22 08	Yes
038	RCL3	36 03		094	SF2	16 21 02	
039	ENT↑	-21		095	*LBL2	21 02	If not, set flag
040	+	-55		096	+R	44	for non print
041	RCL8	36 08		097	ST+1	35-55 01	Calc. SBR.
042	X	-35	ARC	098	ST03	35 03	
043	RCL4	36 04	Set up for display	099	X#Y	-41	
044	RCL7	36 07		100	ST+2	35-55 02	
045	R+D	16 46	Δ(RAD)→Δ DMS	101	ST04	35 04	
046	+HMS	16 35		102	2	02	
047	*LBLLE	21 15	R↓ & print	103	÷	-24	
048	R↓	-31		104	RCL2	36 02	
049	F2?	16 23 02	Print?	105	-	-45	
050	R/S	51		106	X	-35	
051	PRTX	-14	No	107	ST+E	35-55 06	
052	R/S	51	Yes	108	RCL4	36 04	
053	RCL5	36 05		109	RCL3	36 03	
054	RCL4	36 04		110	+P	34	
055	GT02	22 02		111	X#Y	-41	
056	*LBLB	21 16 12	Bearing, QD input	112	RCL5	36 05	

REGISTERS

0	1 N	2 E	3 n, Δ/2	4 e, Tan	5 A ₂	6 AREA	7 ±Δ	8 R	9 180
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

97 Program Listing II

LABELS					FLAGS	SET STATUS		
A P.O.B. INIT	B AZIMUTH	C RAD. INPUT	D DEFLEC.	E R↓PRINT	0	FLAGS	TRIG	DISP
^a AZ→BRG	^b BEARING/QD	^c SUPP.	^d	^e	¹ NON PRINT	ON OFF 0 <input type="checkbox"/> <input checked="" type="checkbox"/> X	DEG <input checked="" type="checkbox"/> X	FIX <input checked="" type="checkbox"/> X
0	¹ USED	² CALC. SUBR.	³	⁴	²	1 <input type="checkbox"/> <input checked="" type="checkbox"/> X	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	⁶	⁷	⁸ DATA SETUP	⁹	³ DATA ENTRY	2 <input type="checkbox"/> <input checked="" type="checkbox"/> X	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/> X		n <u>4</u>

Program Description I

Program Title COGO -12 SLOPE SHOT TRAVERSE

This Hewlett-Packard translation is based on program 04782A written by

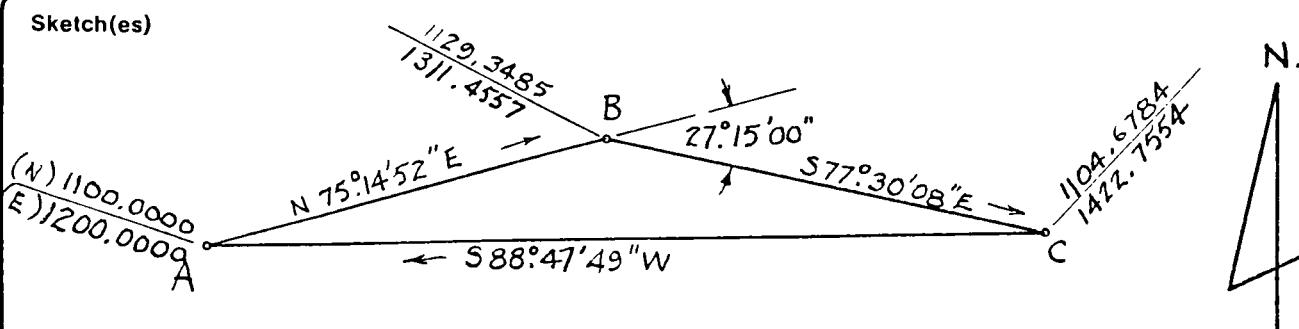
CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-12 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I, hereof. This program differs from the others in that it contains an extra STOP where you can enter the VERTICAL ANGLE for all those SLOPE SHOTS where you are measuring distances on the slope.

COGO-12 calculates coordinates as projected on a horizontal plane, and accumulates area, also projected on the horizontal plane.

In the substantial majority of surveying instruments the vertical circles measure VERTICAL ANGLE starting from 0° at the horizontal plane. Angles looking up hill are considered positive, and angles looking down hill are negative.


For those users, who have instruments with the vertical circles calibrated to read ZENITH ANGLE rather than vertical angle, the program can be modified. (See Program Listing Addendum)

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Traverse the above figure obtaining results shown below:

SYMBOLS:

AZ = Azimuth
 d_s = Slope distance
 V_A = Vertical angle (*)
 d = Horizontal distance
 d' = Vertical distance

SIDE \overline{AB}

$AZ = 75^{\circ}14'52"$
 $d_s = 116.1812$
 $V_A = +7^{\circ}14'23" (z_A = 82^{\circ}45'37")$
 $d = 115.2550$
 $d' = +14.6413$

SIDE \overline{BC}

$AZ = 102^{\circ}29'52"$
 $d_s = 114.6091$
 $V_A = -5^{\circ}54'17" (z_A = 95^{\circ}54'17")$
 $d = 114.0010$
 $d' = -11.7904$

SIDE \overline{CA}

$AZ = -91^{\circ}12'11"$
 $d_s = 222.8228$
 $V_A = -0^{\circ}43'59" (z_A = 90^{\circ}43'59")$
 $d = 222.8046$
 $d' = -2.8508$

Upon completion of closed traverse, recall the area = 3007.3999

Solution(s)

$1100[\text{ENT} \uparrow] 1200[\text{A}] 75.1452[\text{B}] 116.1812[\text{R/S}]$
 $7.1423[\text{R/S}] \rightarrow 1129.3485 \text{ N}_B$
 1311.4557 E_B
 $[E] \rightarrow 75.1452, \text{AZ}; [E] \rightarrow 115.2550, \text{d}; [E] \rightarrow 14.6413, \text{d}'.$
 $27.15 [\text{D}] 114.6091 [\text{R/S}] 5.5417 [\text{CHS}][\text{R/S}] \rightarrow 1104.6784, \text{N}_C$
 $\rightarrow 1422.7554, \text{E}_C$
 $[E] \rightarrow 102.2952, \text{AZ}; [E] \rightarrow 114.0010, \text{d}; [E] \rightarrow -11.7904, \text{d}'.$
 $88.4749 [\text{ENT} \uparrow] 3[\text{f}][\text{B}] 222.8228[\text{R/S}] .4359[\text{CHS}][\text{R/S}] \rightarrow 1100.0005, \text{N}_A$
 $1199.9999, \text{E}_A$
 $[E] \rightarrow -91.1211, \text{AZ}; [E] \rightarrow 222.8046, \text{d}; [E] \rightarrow -2.8508, \text{d}'.$
 $[\text{f}][\text{E}] \rightarrow 3007.3999, \text{AREA}$

Reference(s) This program is a modification of the Users' Library Program
#04782A submitted by Carl M. King.

User Instructions

COGO-12: SLOPE SHOT TRAVERSE

AZ → BRG BRG/QD INPUT SUPP. AREA
P.O.B init. AZIMUTH INP INVERSE DEFLEC. R+PRINT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load card, sides 1 and 2			
2	Enter point of beginning and initialize	Northings	ENT↑	
		Eastings	A	180
	<u>For Bearing Traverse:</u>			
3	Input Bearing and Quadrant	BRG	ENT↑	
		QD	f B	1.0000 -09
	OR: Azimuth	AZ	B	1.0000 -09
4	Input Slope Distance	d_s	R/S	0
5	Input Vertical Angle	VA	R/S	
	and read Northings and Eastings			Northings
6	Read Azimuth		E	AZ
7	Read Horizontal distance		E	d
8	Read Vertical distance		E	d'
	<u>For Deflection Angle Traverse:</u>			
9	Input Deflection angle and repeat steps 4 through 8	$\pm \Delta^\circ$	D	1.0000 -09
	<u>For Inverse Traverse:</u>			
10	See "COGO General Instruction" Sheet			
11	After closure of traverse obtain area		f E	AREA
12	NOTE: If you prefer to use Zenith Angles* rather than vertical angles modify the program as shown on the Addendum on Program Listing II (* definition: $Z_A = 90 - V_A$)			

97 Program Listing I

67

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B	057	ST04	35 04	
002	ST02	35 02	E	058		00	
003	R↓	-31		059	CF3	16 22 03	
004	ST01	35 01	N	060	R/S	51	Vertical angle input
005	CLX	-51	Initialize	061	F3?	16 23 03	Data input?
006	ST06	35 06		062	GSB8	23 08	Yes
007	1	01		063	HMS→	16 36	
008	8	08		064	X↓Y	-41	
009	0	00		065	→R	44	
010	ST09	35 09		066	X↓Y	-41	
011	RTN	24		067	ST03	35 03	
012	*LBL0	21 13	Inverse	068	R↓	-31	
013	RCL2	36 02		069	RCL0	36 00	
014	-	-45		070	X↓Y	-41	
015	X↓Y	-41		071	→R	44	
016	RCL1	36 01		072	*LBL0	21 00	Calc. SBR
017	-	-45		073	ST07	35 07	
018	GT00	22 00	Go to Calc. SBR.	074	X↓Y	-41	
019	*LBLb	21 16 12	BRG/QD Input	075	ST08	35 08	
020	X↓Y	-41	BRG.	076	2	02	
021	HMS+	16 36		077	÷	-24	
022	X↓Y	-41	QD	078	RCL2	36 02	
023	ENT↑	-21		079	+	-55	
024	ENT1	-21		080	×	-35	
025	2	02		081	ST-6	35-45 06	
026	÷	-24		082	RCL2	36 02	
027	INT	16 34		083	RCL8	36 08	
028	RCL9	36 09		084	+	-55	
029	X	-35		085	ST02	35 02	
030	X↓Y	-41		086	RCL1	36 01	
031	RCL9	36 09		087	RCL7	36 07	
032	X	-35		088	+	-55	
033	COS	42		089	ST01	35 01	
034	R↑	16-31		090	RCL8	36 08	Set up to read
035	X	-35		091	RCL7	36 07	
036	-	-45	Azimuth	092	→P	34	
037	→HMS	16 35		093	ST04	35 04	
038	*LBLB	21 12	Azimuth input	094	X↓Y	-41	
039	HMS+	16 36		095	ST05	35 05	
040	ST00	35 06	STO AZ	096	→HMS	16 35	
041	GT01	22 01		097	SF2	16 21 02	
042	*LBLD	21 14	Deflection angle	098	R↓	-31	
043	HMS+	16 36		099	*LBL0	21 15	Roll down and print
044	RCL5	36 05		100	R↓	-31	
045	+	-55	AZ	101	PRTX	-14	
046	ST00	35 00	STO AZ	102	F2?	16 23 02	
047	*LBL1	21 01		103	GT02	22 02	Include vert dist.
048	0	00		104	RTN	24	in stack
049	ST03	35 03		105	*LBL2	21 02	
050	EEX	-23		106	R↓	-31	
051	CHS	-22		107	RCL3	36 03	Vertical Dist.
052	9	09		108	GT0E	22 15	in stack
053	CF3	16 22 03		109	RTN	24	
054	R/S	51	Slope Dist. Input	110	*LBL0	21 06	Data Set up
055	F3?	16 23 03	Data input?	111	X↓Y	-41	
056	GSB8	23 08	Yes	112	R↓	-31	

REGISTERS

0	AZ or A	1	N	2	E	3	d'	4	d	5	AZ	6	AREA	7	n(LAT.)	8	e(DEP.)	9	180
S0	S1			S2	S3			S4		S5	S6	S7	S8	S9					
A		B			C			D		E			F		G		H		

97 Program Listing II

For those desiring to use
Zenith rather than
Vertical angles modify
program as shown:

063	HMS+	16	36
064	9	89	
065	8	88	
066	XZY	-41	
067	-	-45	
068	XZY	-41	

► Insert these 4 steps

Formerly step 64

LABELS					FLAGS	SET STATUS		
A P.O.B., init	B Azimuth	C Inverse	D Deflec /	E R+, Print	0	FLAGS	TRIG	DISP
^a AZ → BRG	^b BRG/QD	^c Supp /	^d	^e AREA	1	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0 Calc SBR	1 Used	2	3	4	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8 Data setup	9	3 Data entry	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 4

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pac's contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
Real Estate Investment
Taxes
Home Construction Estimating
Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

COGO

These COGO (Coordinate Geometry) Surveying programs constitute a comprehensive and self consistent series of programs to solve relationships regularly employed by surveyors and plot designers. All the programs have certain features in common so that they may be used consecutively without loss of continuity.

COGO - SURVEYING: GENERAL DESCRIPTION AND INSTRUCTIONS

COGO - 01: BASIC TRAVERSE, INVERSE AND SIDESHOTS

COGO - 02: BEARING - BEARING INTERSECTION AND TRAVERSE

COGO - 03: BEARING - DISTANCE INTERSECTION AND TRAVERSE

COGO - 04: DISTANCE - DISTANCE INTERSECTION AND TRAVERSE

COGO - 05: TRAVERSE OF CURVE

COGO - 06: CURVE INVERSE AND TRAVERSE

COGO - 07: COMPASS RULE ADJUSTMENT

COGO - 08: ROTATION OF AXES

COGO - 09: CRANDALL'S RULE ADJUSTMENT

COGO - 10: TRANSIT RULE ADJUSTMENT

COGO - 11: TO INSCRIBE CURVE

COGO - 12: SLOPE SHOT TRAVERSE

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14020 Printed in U.S.A. 00097-90195
Revision C 7-78

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.