

HP-67/HP-97

Users' Library Solutions

Pulmonary

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

PULMONARY MEDICINE/MALE SPIROMETRY STANDARDS	1
This program predicts normal values and percent of predicted values for males in spirometric tests.	
PULMONARY MEDICINE/FEMALE SPIROMETRY STANDARDS	6
This program performs the above calculations for female subjects.	
PULMONARY PROGRAM SERIES	11
A short note about use of the following series of self-consistent programs.	
LUNG DIFFUSION	13
The program calculates lung diffusion capacity from the carbon monoxide diffusion test.	
WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS	17
Conversions among three commonly used systems of respiratory gas volume measurement are made with this program. In addition the saturated vapor pressure of water at the given ambient temperature may be calculated.	
VENTILATOR SETUP AND CORRECTIONS (RADFORD)	23
Initial tidal volume is calculated (according to the Radford Nomogram) and corrected for dead space volume, activity, body temperature, altitude, use of a tracheotomy tube or metabolic acidosis.	
ARTERIAL CO ₂ NORMALIZATION	30
The program calculates necessary additional dead space to compensate for hypocapnia produced by hyperventilation of the patient.	
BLOOD ACID-BASE STATUS	34
This program calculates the total plasma CO ₂ and base excess from PCO ₂ , pH and hemoglobin concentration.	
VIRTUAL PO ₂ AND O ₂ SATURATION AND CONTENT	39
This program calculates virtual oxygen tension, then uses it to calculate % oxygen saturation from the hemoglobin dissociation curve. Given the hemoglobin content it calculates the oxygen content of the blood.	
ANAEROBIC PCO ₂ AND pH CHANGE	46
A program to correct PCO ₂ and pH from 37°C to body temperature. It also converts PCO ₂ and pH between any two temperatures.	

TABLE OF CONTENTS (CONTINUED)

ANAEROBIC PO ₂ CHANGE	50
This program corrects PO ₂ , measured at 37°C, to body temperature and converts PO ₂ between any two temperatures.	
DEAD SPACE FRACTION	54
The respiratory exchange ratio, alveolar minute volume and ratio of dead space to tidal volume may be calculated with this program.	
ALVEOLAR - ARTERIAL OXYGEN TENSION DIFFERENCE	59
The A-aO ₂ difference and the ideal alveolar blood O ₂ tension may be calculated with this program.	
PHYSIOLOGIC SHUNT AND FICK	63
Calculation of the Fick cardiac output and physiologic shunt fraction are performed with this program.	
BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS	67
This program calculates body surface area by either the Dubois or Boyd methods. In addition it calculates cardiac index if cardiac output is known.	

Program Description I

Program Title 67 - Pulmonary Medicine/Male Spirometry Standards

Contributor's Name Richard C. Rodgers M.D.

Address 2045 Oak Street Apt 3

City San Francisco

State CA

Zip Code 94117

Program Description, Equations, Variables Provides calculation of predicted & percent predicted values of the following for male subjects:

Predicted values of: (Ht in cm, age in yrs.)

VC = $(0.58 \cdot \text{Ht}) - (0.025 \cdot \text{Age}) - 4.24$ (liters)

Vital Capacity

FEV = $(0.036 \cdot \text{Ht}) - (0.032 \cdot \text{Age}) - 1.26$ (liters)

Forced Expiratory Volume*

MEFR = $(0.043 \cdot \text{Ht}) - (0.047 \cdot \text{Age}) + 2.07$ (liters/sec)

Max. Expiratory Flow Rate

MVV = $(0.9 \cdot \text{Ht}) - (1.51 \cdot \text{Age}) + 27$ (liters)

Max. Ventilatory Volume **

RV = $(0.03 \cdot \text{Ht}) + (0.015 \cdot \text{Age}) - 3.75$ (liters)

Residual Volume

TLC = $(0.094 \cdot \text{Ht}) - (0.015 \cdot \text{Age}) - 9.17$ (liters)

Total Lung Capacity

FRC = $(0.051 \cdot \text{Ht}) - 5.05$ (liters)

Funct. Residual Capacity

FEF = $(0.02 \cdot \text{Ht}) - (0.04 \cdot \text{Age}) + 2$ (liters/sec)

Forced Expiratory Flow

Actual FEF is = $(0.5 \cdot \text{VC}) / \Delta t$ (liters/sec)

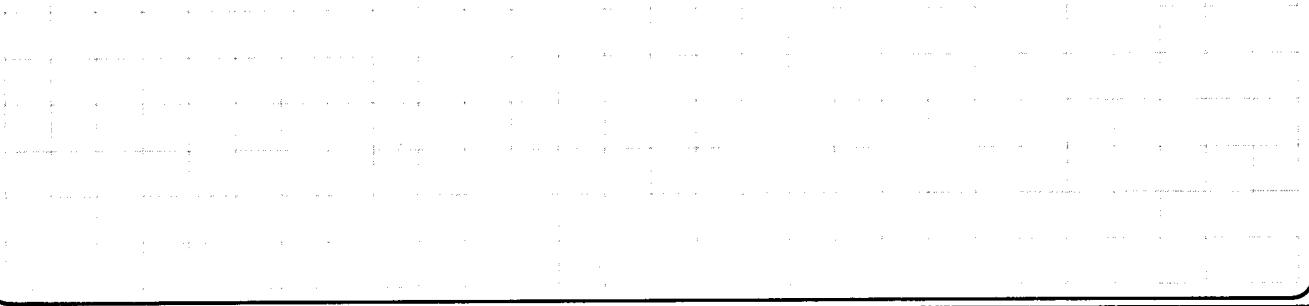
(from 25% to 75%)

25% VC = .25·VC

75% VC = .75·VC

* After one second

** After twelve seconds

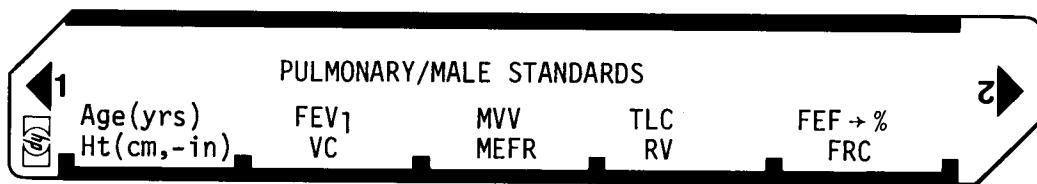

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)


Sample Problem(s) Given Ht. = 72 in, Age = 28, measured VC = 5.2, calculate all predicted levels, % predicted for VC & FEF. ($t_{25\%} = .4$, $t_{75\%} = 1.0$).

Solution(s) 72[CHS][A] 28[f][A] 5.2[B] ----> 5.67 ℓ , VC pred; 91.76% predicted
 [f] [B] -----> 4.43 ℓ , FEV,
 [C] -----> 8.62 ℓ/s , MEFR
 [f] [C] -----> 49.31 ℓ/MVV
 [D] -----> 2.16 ℓ , RV
 [f] [D] -----> 7.60 ℓ , TLC
 [E] -----> 4.28 ℓ , FRC
 [f][E] -----> 4.54 ℓ/s FEF_{PRED}; 1.30 (display only)
 .40[R/S] --> 3.90 (display only)
 1.0[R/S] --> 4.33 ℓ/s , FEF_{AC}.
 95.50% PRED.

Reference(s)

- 1) Morris, J.F., Koski, A., & L.C. Johnson, AM. REV. RESP. DIS., 57: 103 (1971)
- 2) Bates et.al ., RESP. FTN, IN DISEASE, Saunders (1971)
- 3) HP 65 program #00189A.

User Instructions

97 Program Listing I

4

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Convert & store HT	057	*LBLC	21 13	MEFR routine
002	X>0?	16-44		058	RCL0	36 00	
003	GT00	22 00		059	.	-62	
004	CHS	-22		060	0	00	
005	2	02		061	4	04	
006	.	-62		062	3	03	
007	5	05		063	X	-35	
008	4	04		064	RCL1	36 01	
009	X	-35		065	.	-62	
010	*LBL0	21 00		066	0	00	
011	ST00	35 00	HT→(o)	067	4	04	
012	RTN	24		068	7	07	
013	*LBLa	21 16 11	Store age	069	X	-35	
014	ST01	35 01	Age →(1)	070	-	-45	
015	RTN	24		071	2	02	
016	*LBLB	21 12	VC routine	072	.	-62	
017	ST02	35 02	VC →(2)	073	0	00	
018	RCL0	36 00		074	7	07	
019	.	-62		075	+	-55	
020	0	00		076	GT02	22 02	
021	5	05		077	*LBLc	21 16 13	MVV routine
022	8	08		078	RCL0	36 00	
023	X	-35		079	.	-62	
024	RCL1	36 01		080	9	09	
025	.	-62		081	X	-35	
026	0	00		082	RCL1	36 01	
027	2	02		083	1	01	
028	5	05		084	.	-62	
029	X	-35		085	5	05	
030	-	-45		086	1	01	
031	4	04		087	X	-35	
032	.	-62		088	-	-45	
033	2	02		089	2	02	
034	4	04		090	7	07	
035	-	-45		091	+	-55	
036	GT02	22 02		092	GT02	22 02	
037	*LBLb	21 16 12	FEV, routine	093	*LBLD	21 14	
038	RCL0	36 00		094	RCL0	36 00	
039	.	-62		095	.	-62	
040	0	00		096	0	00	
041	3	03		097	3	03	
042	6	06		098	X	-35	
043	X	-35		099	RCL1	36 01	
044	RCL1	36 01		100	.	-62	
045	.	-62		101	0	00	
046	0	00		102	1	01	
047	3	03		103	5	05	
048	2	02		104	X	-35	
049	X	-35		105	+	-55	
050	-	-45		106	3	03	
051	1	01		107	.	-62	
052	.	-62		108	7	07	
053	2	02		109	5	05	
054	6	06		110	-	-45	
055	-	-45		111	GT02	22 02	
056	GT02	22 02					

REGISTERS

0 HT (CM)	1 Age (yrs)	2 VC actual	3 t _{25%}	4 FEF pred	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
112	*LBLd	21 16 14		168	5	05	
113	RCL0	36 00		169	x	-35	
114	.	-62		170	R/S	51	
115	0	00		171	ST03	35 03	$t_{25\%} \rightarrow (3)$
116	9	09		172	RCL2	36 02	
117	4	04		173	.	-62	
118	x	-35		174	7	07	
119	RCL1	36 01		175	5	05	
120	.	-62		176	x	-35	
121	0	00		177	R/S	51	
122	1	01		178	RCL3	36 03	
123	5	05		179	-	-45	
124	x	-35		180	RCL2	36 02	
125	-	-45		181	.	-62	
126	9	09		182	5	05	
127	.	-62		183	x	-35	
128	1	01		184	X \neq Y	-41	
129	7	07		185	\div	-24	
130	-	-45		186	PRTX	-14	
131	GT02	22 02		187	RCL4	36 04	
132	*LBL E	21 15	FRC routine	188	SF3	16 21 03	
133	RCL0	36 00		189	GT03	22 03	
134	.	-62		190	*LBL2	21 02	
135	0	00		191	PRTX	-14	
136	5	05		192	*LBL3	21 03	
137	1	01		193	F3?	16 23 03	
138	x	-35		194	GT04	22 04	
139	5	05		195	RTN	24	
140	.	-62		196	*LBL4	21 04	
141	0	00		197	\div	-24	
142	5	05		198	EEX	-23	
143	-	-45		199	2	02	
144	GT02	22 02		200	x	-35	
145	*LBL E	21 16 15	FEF routine	201	PRTX	-14	
146	RCL0	36 00		202	RTN	24	
147	.	-62		203	R/S	51	
148	0	00					
149	2	02					
150	x	-35					
151	RCL1	36 01					
152	.	-62					
153	0	00		210			
154	4	04					
155	x	-35					
156	-	-45					
157	2	02					
158	+	-55					
159	ST04	35 04	FEF pred				
160	PRTX	-14					
161	F3?	16 23 03					
162	GT01	22 01					
163	RCL2	36 02		220			
164	*LBL1	21 01					
165	ST02	35 02					
166	.	-62					
167	2	02					

LABELS

LABELS						FLAGS	SET STATUS			0	FLAGS	TRIG	DISP
A	HT	B	VC	C	MEFR	D	RV	E	FRC	0	FLAGS	TRIG	DISP
a	AGE	b	FEV	c	MVV	d	TLC	e	FEF	1	ON OFF	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0		1		2		3		4		2	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5		6		7		8		9		3	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
											2 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 2

Program Description I

Program Title 67 - PULMONARY MEDICINE/ FEMALE SPIROMETRY STANDARDS

Contributor's Name Richard C. Rodgers, M.D.

Address 2045 Oak Street Apt 3

City San Francisco

State Calif.

Zip Code 94117

Program Description, Equations, Variables

Predicted values of: (Ht in cm, age in yrs.)

VC= (.045·Ht) - (.024·age) - 2.852 (liters) **Vital Capacity**

FEV₁ = (.035·Ht) - (.025·age) - 1.932 (liters) **Forced Expiratory Volume***

MEFR= (.057·Ht) - (.036·age) - 2.532 (liters/sec.) **Max.Expiratory Flow Rate**

MVV= (.762·Ht) - (.81·age) - 6.29 (liters) **Max.Ventilatory Volume****

RV= (.024·Ht) + (.012·age) - 2.63 (liters) **Residual Volume**

TLC= (.078·Ht) - (.01·age) - 7.36 (liters) **Total Lung Capacity**

FRC= (.047·Ht) - 4.86 (liters) **Funct.Residual Capacity**

FEF= (.02·Ht) - (.03·age) - (.00006·age²) + 1.3 (liters/sec.) **Forced Expiratory Flow (from 25% to 75%)**

Actual FEF= (.5 VC)/Δt, where Δt = [t_{75%} - t_{25%}]

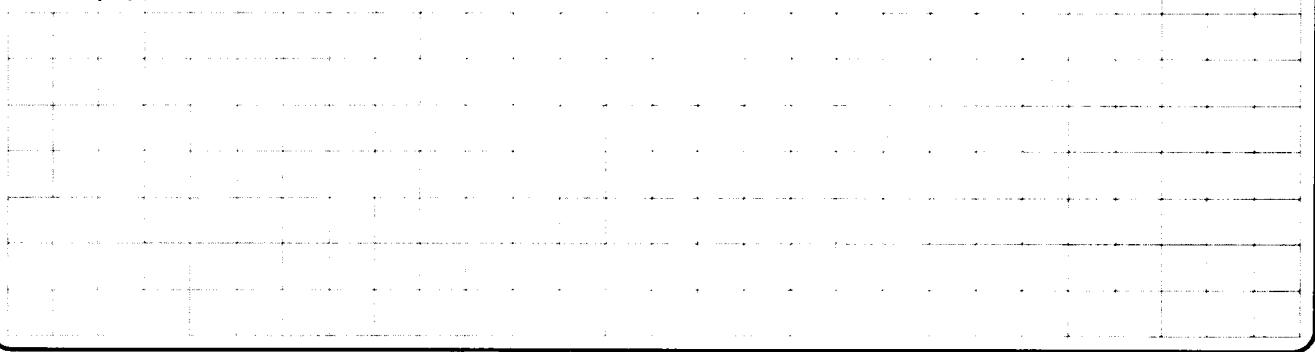
25%VC = .25VC

75%VC = .75VC

*After one second

**After twelve seconds

Operating Limits and Warnings


This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

7

Sketch(es)

Sample Problem(s) Given Ht. = 60 in., age = 28 yrs., measured VC = 3.0 liters.

$t_{25\%} = .4$, $t_{75\%} = 1.0$, calculate all predicted levels and % predicted values for VC & FEF.

Solution(s) Load male spirometry card sides 1 & 2: 60 [CHS] [A] 28[f] [A] load female spirometry card sides 1 & 2: 3[B] \rightarrow 3.33l., VC_{pred}, 89.98% predicted

[f] [B] \rightarrow 2.70l, FEV₁

[C] \rightarrow 5.15l/s, MEFR

[f] [E] \rightarrow 3.46l/s, FEF_{pred}, 0.75 (display only)

[f] [C] \rightarrow 87.16l, MVV

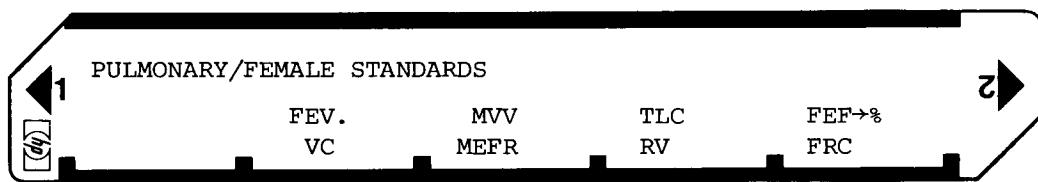
.40 [R/S] \rightarrow 2.25 (display only)

[D] \rightarrow 1.36l, RV

1.0 [R/S] \rightarrow 2.50 l/s, FEF_{ac}

[f] [D] \rightarrow 4.25l, TLC

72.23 % predicted


[E] \rightarrow 2.30l, FRC

Reference(s) 1) Morris et al., AM. REV. RESP. DIS., 57: 103 (1971).

2) Bates et al., RESP FTN. IN DISEASE, Saunders (1971).

3) HP-65 program #00190A

User Instructions

97 Program Listing I

9

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLB	21 12	VC routine	057	-	-45	
002	ST02	35 02	VC→(2)	058	2	02	
003	RCL0	36 00		059	.	-62	
004	.	-62		060	5	05	
005	0	00		061	3	03	
006	4	04		062	2	02	
007	5	05		063	-	-45	
008	x	-35		064	GT02	22 02	
009	RCL1	36 01		065	*LBLc	21 16 13	MVV routine
010	.	-62		066	RCL0	36 00	
011	0	00		067	.	-62	
012	2	02		068	7	07	
013	4	04		069	6	06	
014	x	-35		070	2	02	
015	-	-45		071	x	-35	
016	2	02		072	RCL1	36 01	
017	.	-62		073	.	-62	
018	8	08		074	8	08	
019	5	05		075	1	01	
020	2	02		076	x	-35	
021	-	-45		077	-	-45	
022	GT02	22 02		078	6	06	
023	*LBLb	21 16 12	FEV, routine	079	.	-62	
024	RCL0	36 00		080	2	02	
025	.	-62		081	9	09	
026	0	00		082	-	-45	
027	3	03		083	GT02	22 02	
028	5	05		084	*LBLD	21 14	
029	x	-35		085	RCL0	36 00	
030	RCL1	36 01		086	.	-62	
031	.	-62		087	0	00	
032	0	00		088	2	02	
033	2	02		089	4	04	
034	5	05		090	x	-35	
035	x	-35		091	RCL1	36 01	
036	-	-45		092	.	-62	
037	1	01		093	0	00	
038	.	-62		094	1	01	
039	9	09		095	2	02	
040	3	03		096	x	-35	
041	2	02		097	+	-55	
042	-	-45		098	2	02	
043	GT02	22 02		099	.	-62	
044	*LBLc	21 13	MEFR routine	100	6	06	
045	RCL0	36 00		101	3	03	
046	.	-62		102	-	-45	
047	0	00		103	GT02	22 02	
048	5	05		104	*LBLd	21 16 14	
049	7	07		105	RCL0	36 00	
050	x	-35		106	1	01	
051	RCL1	36 01		107	7	07	
052	.	-62		108	4	04	
053	0	00		109	X>Y	-41	
054	3	03		110	X>Y?	16-34	
055	6	06		111	GT05	22 05	
056	x	-35					

REGISTERS

⁰ HT (Cm)	¹ AGE (yrs)	² VC actual	³ t _{25%}	⁴ FEF pred	⁵	⁶	⁷	⁸	⁹
S0 A	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C			D	E		I	

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
112	X#Y	-41		168	CHS	-22	
113	CLX	-51		169	X	-35	
114	*LBL6	21 06		170	-	-45	
115	+	-55		171	1	01	
116	.	-62		172	.	-62	
117	0	00		173	3	03	
118	7	07		174	+	-55	
119	8	08		175	ST04	35 04	FEF pred
120	X	-35		176	PRTX	-14	
121	RCL1	36 01		177	F3?	16 23 03	
122	.	-62		178	GT01	22 01	
123	0	00		179	RCL2	36 02	
124	1	01		180	*LBL1	21 01	
125	X	-35		181	ST02	35 02	
126	-	-45		182	.	-62	
127	7	07		183	2	02	
128	.	-62		184	5	05	
129	3	03		185	X	-35	
130	6	06		186	R/S	51	
131	-	-45		187	ST03	35 03	$t_{25\%} \rightarrow (3)$
132	GT02	22 02		188	RCL2	36 02	
133	*LBL5	21 05		189	.	-62	
134	X#Y	-41		190	7	07	
135	CLX	-51		191	5	05	
136	1	01		192	X	-35	
137	GT06	22 06		193	R/S	51	
138	*LBL6	21 15	FRC routine	194	RCL3	36 03	
139	RCL0	36 00		195	-	-45	
140	.	-62		196	RCL2	36 02	
141	0	00		197	.	-62	
142	4	04		198	5	05	
143	7	07		199	X	-35	
144	X	-35		200	X#Y	-41	
145	4	04		201	÷	-24	
146	.	-62		202	PRTX	-14	
147	8	08		203	RCL4	36 04	
148	6	06		204	SF3	16 21 03	
149	-	-45		205	GT03	22 03	
150	GT02	22 02		206	*LBL2	21 02	
151	*LBL6	21 16 15	FEF routine	207	PRTX	-14	
152	RCL0	36 00		208	*LBL3	21 03	
153	.	-62		209	F3?	16 23 03	
154	0	00		210	GT04	22 04	
155	2	02		211	RTN	24	
156	X	-35		212	*LBL4	21 04	
157	RCL1	36 01		213	÷	-24	
158	.	-62		214	EEX	-23	
159	0	00		215	2	02	
160	3	03		216	X	-35	
161	X	-35		217	PRTX	-14	
162	-	-45		218	RTN	24	
163	RCL1	36 01		219	R/S	51	
164	X ²	53					
165	6	06					
166	EEX	-23					
167	5	05					

LABELS

FLAGS

SET STATUS

A	B VC	C MEFR	D RV	E FRC	0	FLAGS	TRIG	DISP
a	b FEV ₁	c MVV	d TLC	e FEF	1	ON OFF 0 <input type="checkbox"/> <input checked="" type="checkbox"/> 1 <input type="checkbox"/> <input checked="" type="checkbox"/> 2 <input type="checkbox"/> <input checked="" type="checkbox"/> 3 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/> GRAD <input type="checkbox"/> RAD <input type="checkbox"/> n <input type="checkbox"/>	SCI <input type="checkbox"/> ENG <input type="checkbox"/> n <input type="checkbox"/>
0	1	2	3	4	2			
5	6	7	8	9	3			

PULMONARY PROGRAM SERIES

The following programs may be used in a series to carry out the many calculations in a particular medical procedure. The following is an example from a respiratory intensive care unit. This example is fairly complicated. Before attempting it, read over the detailed instructions for each of the programs and try the included examples. In these examples values stored in memory for later use are underlined. When recalled from memory (so that they do not need to be reentered), they are enclosed in brackets.

Respiratory Intensive Care Example:

This is an example of the types of complicated calculations that might be done in a respiratory intensive care situation with integral blood gas lab. Many entered and calculated parameters are used by later programs. Calculations start from uncorrected blood parameters and it is assumed that O_2 saturations are not measured. Venous blood parameters are computed first, so that arterial values will be left in memory for later use in the ventilation/perfusion calculations. O_2 saturation and content is calculated before temperature correction.

PROGRAM	INPUTS	OUTPUTS
<u>VENOUS BLOOD:</u>		
BLOOD ACID - BASE STATUS	<u>PCO₂</u> =44 mmHg; <u>pH</u> =7.375; <u>Hgb</u> =15 gm/100 ml	<u>TCO₂</u> =26.22 mmol/l <u>BE</u> =0.01 mEq/l
VIRTUAL PO ₂ & O ₂ SATURATION & CONTENT	<u>PO₂</u> =40 mmHg; <u>(PCO₂)</u> ; <u>(pH)</u> : <u>BT</u> =39°C <u>(VPO₂)</u> ; <u>(Hgb)</u>	<u>VPO₂</u> =34.64 mmHg (in display, reg.) Est. Sat. =66.54%; <u>C_vO₂</u> = 13.48 Vol. %
ANAEROBIC PCO ₂ & pH CHANGE	<u>(PCO₂)</u> ; <u>(pH)</u> ; <u>(BT)</u>	<u>PCO₂</u> =4802 mmHg; pH = 7.35
ANAEROBIC PO ₂ CHANGE	<u>(SAT)</u> ; <u>(PO₂)</u> ; <u>(BT)</u>	<u>PO₂</u> =46.15 mmHg
<u>ARTERIAL BLOOD:</u>		
BLOOD ACID-BASE STATUS	<u>PCO₂</u> = 40mmHg; <u>pH</u> =7.4; <u>(Hgb)</u>	<u>TCO₂</u> =25.18 mmol/ l <u>BE</u> = -0.04mEq/ l
VIRTUAL PO ₂ & O ₂ SATURATION & CONTENT	<u>PO₂</u> = 90mmHg; <u>(PCO₂)</u> ; <u>(pH)</u> : <u>(BT)</u> <u>(VPO₂)</u> ; <u>(Hgb)</u>	<u>VPO₂</u> = 80.59 mmHg (in display reg.) Est. Sat. =95.91% <u>C_aO₂</u> =19.53 Vol. %
ANAEROBIC PCO ₂ & pH CHANGE	<u>(PCO₂)</u> ; <u>(pH)</u> ; <u>(BT)</u>	<u>PCO₂</u> =43.65 mmHg; pH=7.37
ANAEROBIC PO ₂ CHANGE	<u>(SAT)</u> ; <u>(PO₂)</u> ; <u>(BT)</u>	<u>PO₂</u> =102.19 mmHg

VENTILATION/PERFUSION:

DEAD SPACE FRACTION

$$\dot{V}CO_2 = 240 \text{ ml/min};$$

$$\dot{V}O_2 = 300 \text{ ml/min}; (P_aCO_2);$$

$$\dot{V}_E = 7.4 \text{ l/min}$$

$$R_Q = 0.80; \dot{V}_A = 4.74 \text{ l/min};$$

$$V_D/V_T = 0.36$$

ALVEOLAR-ARTERIAL OXYGEN
TENSION DIFFERENCE

$$P_1O_2 = 200 \text{ mmHg}; (P_aO_2);$$

$$(P_aCO_2); (R_Q)$$

$$A-a \text{ Diff} = 46.12 \text{ mmHg};$$

$$P_aO_2 = 148.31 \text{ mmHg}$$

$$(\text{in display reg.})$$

VIRTUAL PO₂ & O₂ SATURATION

$$(P_aO_2); (Hgb)$$

$$Sat. = 98.91\%$$

$$C_aO_2 = 20.34 \text{ Vol. \%}$$

$$(\text{in display reg.})$$

PHYSIOLOGIC SHUNT & FICK

$$(C_aO_2); (C_aO_2); (C_vO_2);$$

$$(\dot{V}O_2)$$

$$CO = 4.96 \text{ l/min};$$

$$SHUNT = 11.85\%$$

BODY SURFACE AREA (Dubois)

$$Ht = 69 \text{ in.}; Wt = 52 \text{ kg}$$

$$(CO)$$

$$Ht = 175.26 \text{ cm}; BSA = 1.63 \text{ m}^2;$$

$$C_T = 3.04 \text{ l/min/m}^2.$$

For repetitive series of calculations we recommend that you make up a work sheet for recording the entries and results, and make copies of it. This will not only serve as a guide to insure that programs are run in the correct sequence, but it will also serve as a record of calculations completed. It should be in a format which will permit direct inclusion in the patient's record.

Program Description I

Program Title LUNG DIFFUSION

Contributor's Name Hewlett Packard

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

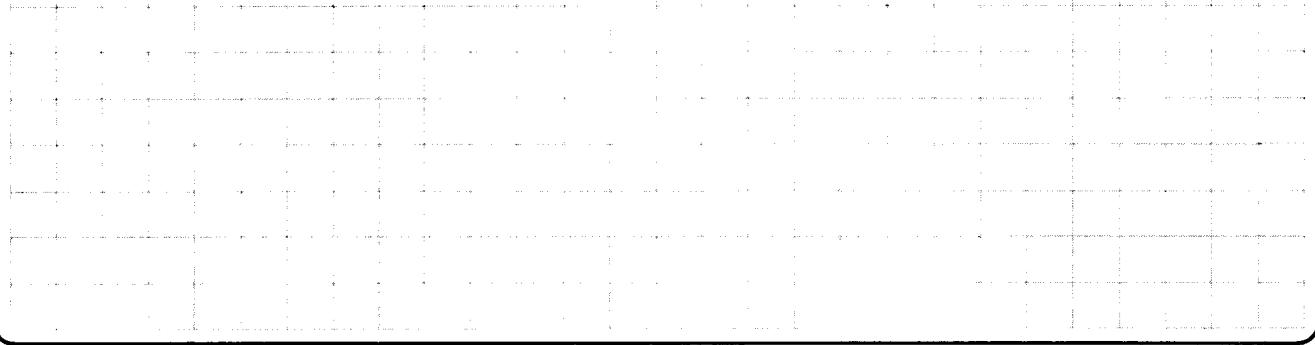
Program Description, Equations, Variables This program evaluates the equation to calculate the lung diffusion capacity (DLCO) using the single breath method.

Equation Used:

$$DLCO = \frac{V_A (0.084)}{t_{BH}} \ln \frac{F_A^{CAR}}{F_I^{CAR}} \frac{0.3}{F_A^{CO}}$$

Note:

The initial concentration of carbon monoxide (F_I^{CO}) is assumed to be 0.3%. If a different standard value for F_I^{CO} is desired, it may be entered for use as desired by pressing [f] [A].


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

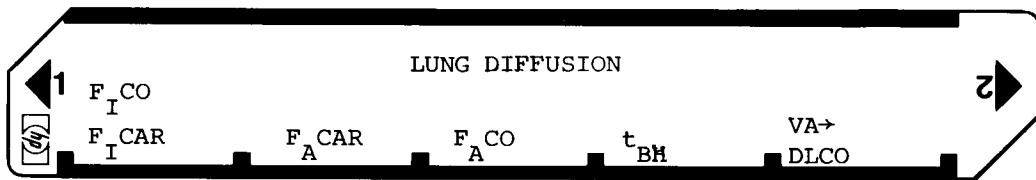
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

- 1) In this example, the carrier gas is helium. Calculate the lung diffusing capacity using an initial helium concentration of 10%, an alveolar helium concentration of 8%, an alveolar carbon monoxide concentration of 0.159%, an initial carbon monoxide concentration of 0.3%, a breath holding time of 10 seconds, and an alveolar volume of 4930 milliliters.
- 2) For same data; calculate lung diffusing capacity assuming an initial carbon monoxide concentration of 0.45%.


Solution(s)

- 1) 10 [A] 8[B] .159 [C] 10 [D] 4930 [E] \rightarrow 17.05 ml CO/min./mmHg
- 2) If problem 1) has already been run:
 $.45 [f] [A] 4930 [E] \rightarrow$ 33.84 ml/CO/min/mmHg.
 If problem 1) has not been run then do: .45 [f] [A] and return to 1).

Reference(s) This program is a modification of the Users' Library program #00191A submitted by Hewlett Packard.

Comroe, et.al., The Lung, Year Book Medical Publishers Inc., 1962.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL0	21 16 11	Store F_I^{CO} (%)				
002	ENT↑	-21					
003	ENT↑	-21					
004	.	-62		060			
005	3	03					
006	÷	-24					
007	ST04	35 04	Sto modified F_I^{CO}				
008	SF0	16 21 00					
009	R↓	-31	Display F_I^{CO}				
010	RTN	24					
011	*LBLA	21 11	Input F_I^{CAR}				
012	ST01	35 01					
013	RTN	24					
014	*LBLB	21 12	Input F_A^{CAR}	070			
015	ST02	35 02					
016	RTN	24					
017	*LBLC	21 13	Input F_A^{CO}				
018	ST03	35 03					
019	RTN	24					
020	*LBLD	21 14	Input t_{BH}				
021	ST08	35 08					
022	RTN	24					
023	*LBL E	21 15	Input VA & calculate				
024	ENT↑	-21	DLCO	080			
025	.	-62					
026	0	00					
027	8	08					
028	4	04					
029	x	-35					
030	RCL8	36 08					
031	÷	-24					
032	RCL2	36 02					
033	ENT↑	-21					
034	RCL1	36 01		090			
035	÷	-24					
036	.	-62					
037	3	03					
038	F0?	16 23 00	Was F_I^{CO} stored?				
039	GSB1	23 01	Yes				
040	RCL3	36 03					
041	÷	-24					
042	x	-35					
043	LN	32					
044	x	-35		100			
045	PRTX	-14	DLCO				
046	RTN	24					
047	*LBL1	21 01	Recall reg 4 &				
048	RCL4	36 04	calc. F_I^{CO}				
049	x	-35					
050	RTN	24					
051	R/S	51					
REGISTERS							
0	1 F_I^{CAR}	2 F_A^{CAR}	3 F_A^{CO}	4 $F_I^{CO}/.3$	5	6	7
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C			D	E	I

FLAGS		SET STATUS		
0 F_I^{CO}				
1		ON	OFF	
110	2	0	<input type="checkbox"/>	DEG <input checked="" type="checkbox"/>
		1	<input type="checkbox"/>	GRAD <input type="checkbox"/>
		2	<input type="checkbox"/>	RAD <input type="checkbox"/>
		3	<input type="checkbox"/>	SCI <input type="checkbox"/>
				ENG <input type="checkbox"/>
				n.2

REGISTERS

Program Description I

Program Title WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS

Contributor's Name Users' Library, Hewlett-Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis **State** Oregon **Zip Code** 97330

Program Description, Equations, Variables This program allows the user to convert among three commonly used systems of respiratory gas volume measurement. The first part calculates water vapor pressure at a given ambient temperature; the result is used in converting to or from ambient conditions. It may be used alone if only the partial pressure of water vapor is desired. The balance of the program is used for the actual conversion of the gas volumes.

Equations Used:

$$P_{H_2O} = 10^{a+bT_A^{-1} + cT_A^{-2} + dT_A^{-3}}$$

where

T_A = ambient temperature, K

a = 7.522467

b = -1223.31

c = -222 613.7

d = 12 323 432

P_{H_2O} = water vapor pressure, torr

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS

Contributor's Name

Address

City

State

Zip Code

Program Description, Equations, Variables

$$V_{STPD} = \frac{P_{BAR} - P_{H2O}}{T_A} V_{ATPS} \frac{273}{760}$$

$$V_{STD} = \frac{P_{BAR - 47}}{310} V_{BTPS} \frac{273}{760}$$

$$V_{ATPS} = \frac{T_A}{(P_{BAR} - P_{H_2O})} V_{STPD} \frac{760}{273}$$

$$B_{BTPS} = \frac{310}{(P_{BAR} - 47)} V_{STPD} \frac{760}{273}$$

ATPS = Ambient temperature and pressure saturated with water vapor:

$$P = P_{\text{BAR}} - P_{\text{H}_2\text{O}}, \quad T = T_A$$

BTPS = Body temperature and pressure saturated with water vapor:

$$P_{H_2O} = 47 \text{ mmHg}, \quad T = 310 \text{ K}$$

STPD = Standard temperature and pressure dry: $P=760 \text{ mmHg}$, $T=273K$

P_{BAR} = Barometric pressure, mmHg or torr

V = Volume at condition indicated by subscript

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

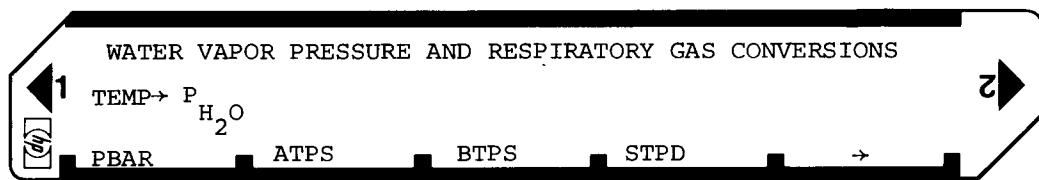
Sketch(es)

Sketch(es) area, currently empty.

Sample Problem(s)

1. Convert 4.3 liters BTPS at a barometric pressure of 743 mmHg to the equivalent volume at STPD.
2. Convert a volume of 4.81 liters ATPS at 83° Fahrenheit and a pressure of 765 mmHg to BTPS.

Solution(s)


1. 743 [A] 4.3 [C] [E] [D] \rightarrow 3.47 liters, STPD
2. 83 [CHS] [f] [A] \rightarrow 28.94 mmHg, P_{H_2O}
765 [A] 4.81 [B] [E] [C] \rightarrow 5.07 liters, BTPS

Reference(s) This program is a modification of the Users' Library program # 00192A submitted by Hewlett-Packard.

The water vapor pressure program is an approximation to the water vapor pressure table in Scientific Tables published by Ciba-Giegy Limited, 7th Edition, 1970, and is valid for temperatures T , such that $0 < T \leq 100^\circ\text{C}$.

The gas conversions are based on the ideal gas laws and closely approximate the tables in Scientific Tables.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 If conversion between BTPS and STPD only is needed go to 3; otherwise go to 2.			
2	Input ambient temp and calculate water vapor pressure	°C or -°F	f A	P_{H_2O} (mmHg)
3	Input PBAR and volume at ATPS or volume at BTPS or volume at STPD	P_{BAR} (mmHg) volume volume volume	A B C D	P_{BAR} (mmHg) volume volume volume volume
4	Calculate desired volume at ATPS BTPS STPD		E B C D	volume volume volume
5	For a new case with same water vapor conditions go to step 3 otherwise go to step 2			
	Detailed User Instructions: In order to convert between BTPS volumes and STPD volumes, only steps 3 & 4 need be used. In such a case input the barometric pressure in millimeters of mercury and press [A]. Next, input the volume of the gas in either BTPS units or STPD units, and press either [C] or [D] to define the volume system. Next, press [E] and then either [D] or [C] depending on the conversion desired.			
	If conversion is desired to or from ATPS conditions the entire program must be used. To do this, input the ambient temperature (positive for °C, negative for °F), and press [f] [A]. Next, input the barometric pressure in millimeters of mercury and press [A]. Then, input the volume to be converted, followed by the units of volume. (For example, if 5 liters STPD is to be converted, press [5] then press [D].) Next, press [E] then press the key corresponding to the system in which the volume is desired.			

97 Program Listing I

21

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL0	21 16 11		057	4	04	
002	X>0?	16-44		058	3	03	
003	GT00	22 00		059	2	02	
004	3	03		060	RCL1	36 01	
005	2	02		061	x	-35	
006	+	-55		062	RCL1	36 01	
007	1	01		063	ENT↑	-21	
008	.	-62		064	x	-35	
009	8	08		065	x	-35	
010	CHS	-22		066	+	-55	
011	÷	-24		067	10 ^X	16 33	
012	*LBL0	21 00		068	ST08	35 08	
013	2	02		069	PRTX	-14	Store & print water
014	7	07		070	RTN	24	vapor pressure
015	3	03		071	*LBL0	21 11	
016	+	-55	°K = °C + 273	072	ST01	35 01	Store P _{BAR}
017	ST02	35 02		073	RTN	24	
018	1/X	52		074	*LBL0	21 12	
019	ST01	35 01	Calculate water	075	F1?	16 23 01	Input or output?
020	7	07	vapor pressure	076	GT01	22 01	
021	.	-62		077	ST04	35 04	Convert ATPS to STPD
022	5	05		078	RCL2	36 02	
023	2	02		079	RCL1	36 01	
024	2	02		080	RCL8	36 08	
025	4	04		081	*LBL4	21 04	
026	6	06		082	-	-45	
027	7	07		083	÷	-24	
028	ENT↑	-21		084	÷	-24	Convert to STPD
029	1	01		085	.	-62	
030	2	02		086	3	03	
031	2	02		087	5	05	
032	3	03		088	9	09	
033	.	-62		089	2	02	
034	3	03		090	x	-35	
035	1	01		091	ST03	35 03	
036	RCL1	36 01		092	RCL4	36 04	
037	x	-35		093	RTN	24	
038	-	-45		094	*LBL1	21 01	
039	2	02		095	RCL3	36 03	Convert STPD prev-
040	2	02		096	RCL2	36 02	iously stored to
041	2	02		097	RCL1	36 01	ATPS
042	6	06		098	RCL8	36 08	
043	1	01		099	*LBL3	21 03	
044	3	03		100	-	-45	
045	.	-62		101	÷	-24	
046	7	07		102	x	-35	
047	RCL1	36 01		103	2	02	
048	ENT↑	-21		104	.	-62	
049	x	-35		105	7	07	
050	x	-35		106	8	08	
051	-	-45		107	4	04	
052	1	01		108	x	-35	Print result
053	2	02		109	PRTX	-14	Clear flag
054	3	03		110	CF1	16 22 01	
055	2	02		111	RTN	24	
056	3	03		112	*LBL0	21 13	

REGISTERS

0	¹ 1/T, P _{BAR}	² T(K)	3	4	5	6	7	⁸ P _{H₂O}	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E			I		

97 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113	F10	16 23 01					
114	GT02	22 02		170			
115	ST04	35 04					
116	3	03					
117	1	01	Set stack for conversion from BTPS to STPD and go to 4				
118	0	00					
119	RCL1	36 01					
120	4	04					
121	7	07					
122	GT04	22 04					
123	*LBL2	21 02					
124	RCL3	36 03		180			
125	3	03					
126	1	01					
127	0	00	Set stack for conversion from STPD to BTPS				
128	RCL1	36 01					
129	4	04					
130	7	07					
131	GT03	22 03					
132	*LBL0	21 14					
133	F10	16 23 01					
134	GT00	22 00	Input, output?	190			
135	ST03	35 03					
136	RTN	24	Store STPD				
137	*LBL0	21 00					
138	RCL3	36 03					
139	PRTX	-14	Recall and print STPD				
140	CF1	16 22 01					
141	RTN	24	Clear flag				
142	*LBL0	21 15					
143	SF1	16 21 01					
144	RTN	24	Set flag for calculations	200			
145	R/S	51					
150							
160				210			
				220			

LABELS

LABELS					FLAGS		SET STATUS						
A	P _{BAR}	B	ATPS	C	BTPS	D	STPD	E	calculate	0	FLAGS	TRIG	DISP
^a ₀ 5	^b ₁ 6	^c ₂ 7	^d ₃ 8	^e ₄ 9						ON OFF	DEG	FIX	
^{H₂O}	const	const	calc	STPD						0 <input type="checkbox"/> <input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	
										1 <input type="checkbox"/> <input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	
										2 <input type="checkbox"/> <input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	
										3 <input type="checkbox"/> <input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	

Program Description I

Program Title VENTILATOR SETUP AND CORRECTIONS (RADFORD)

Contributor's Name Users' Library, Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables This program calculates the initial tidal volume for a ventilator patient. The first part calculates an approximation to the Radford nomogram tidal volume with correction for ventilator dead space only. The second part corrects the tidal volume for altitude, patient's temperature, daily activity, use of a tracheotomy tube, and metabolic acidosis in anesthesia.

Equations Used:

$$V_A = \text{Alveolar minute volume} = 10^{(C_1 \log WT + C_2) / 100} \text{ ml/min.}$$

$$TV_A = \text{Alveolar tidal volume} = \frac{V_A}{r} \text{ ml}$$

$$TV_{\text{bas}} = \text{Basal tidal volume} = (V_{T_A} + Wt \text{ (lbs)}) \text{ ml}$$

$$TV_{\text{corr}} = \text{Basal tidal volume} + \text{ventilator dead space}$$

where

$$r = \text{Breathing rate (breaths per minute)}$$

Operating Limits and Warnings

Warning:

This program yields an approximation to the Radford nomogram. The nomogram may not be applied with confidence to patients with muscular activity or abnormal lung function.

Apply only the corrections which pertain to the patient for whom the program is being run.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title MEDICAL: VENTILATOR SETUP AND CORRECTIONS (RADFORD)

Contributor's Name

Address

City

State

Zip Code

Program Description, Equations, Variables

For females:

124; $Wt \leq 8\text{kg}$

$C_1 = 61; 8\text{kg} < Wt \leq 23\text{kg}$

44.2; $Wt > 23\text{kg}$

Corrections:

Temperature: +5% per $^{\circ}\text{F}$ above 99° (rectal)

Altitude: +5% per 2000' above sea level

Activity: +10%

$C_2 = 193; Wt \leq 8\text{kg}$

249; $8\text{kg} < Wt \leq 23\text{kg}$

Tracheotomy: - $\frac{1}{2}$ body weight in pounds

For males:

Metabolic acidosis in anesthesia: +20%

$C_1 = 124; Wt \leq 8\text{kg}$

61; $Wt > 8\text{kg}$

$C_2 = 193; Wt \leq 8\text{kg}$

249; $Wt > 8\text{kg}$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sketch(es) area, consisting of a large rectangular box with a grid pattern for drawing.

Sample Problem(s)

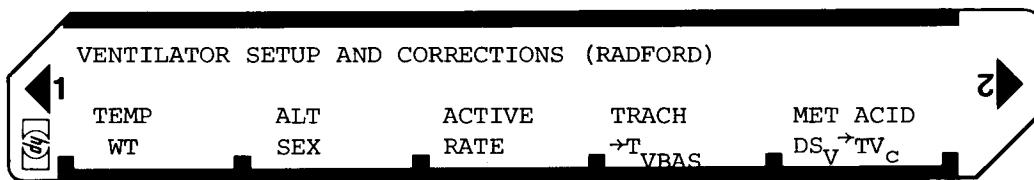
Example:

- 1) Calculate the predicted tidal volume for a 170 pound comatose male having a breath rate of 15 breaths per minute, ventilator dead space of 25 milliliters, fever of 101° Fahrenheit, who is located 500 feet above sea level.
- 2) What would be the corrected tidal volume if this patient were in metabolic acidosis?

Solution(s) 1) 170 [CHS] [A] 1[B] 15[C] [D] \rightarrow 462.15ml, Basal Tidal Volume

25 [E] \rightarrow 487.15ml, Tidal Volume Corrected for Deadspace

101 [CHS] [f] [A] \rightarrow 535.86ml, TVcorr (body temp corr.)


500 [CHS] [f] [B] \rightarrow 542.56ml, TVcorr (altitude corr.)

2) [f] [E] \rightarrow 651.07ml, TVcorr. for metabolic acidosis

Reference(s) This program is a modification of the Users' Library Program #00193A submitted by Hewlett-Packard.

Radford, Edward P., "Ventilation Standards for Use in Artificial Respiration," Journal of Applied Physiology, 7:451, 1955.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load sides 1 and 2			
2	Input weight (+Kg or -lb.)	Kg or -lb	A	Wt, (Kg)
3	Input sex (0 for female, 1 for male)	0=F, 1=M	B	0=F, 1=M
4	Input breathing rate	BR/min	C	BR/min
5	Calculate basal tidal volume		D	TV _{bas} (ml)
6	Input ventilator dead space	DS _V , ml	E	TV _{corr} (ml)
7	Input patient temperature (+°C, -°F)	°C or -°F	f A	TV _{corr} (ml)
8	Input altitude (+meters, -feet)	m or -ft	f B	TV _{corr} (ml)
9	For minor daytime activity (non comatose) or, for tracheotomy or, for metabolic acidosis during anesthesia		f C f D f E	TV _{corr} (ml) TV _{corr} (ml) TV _{corr} (ml)
Detailed User Instructions:				
To calculate the tidal volume required by a patient, load the program into the calculator. Then input patient's weight in kilograms will be displayed. Next, input patient's sex: [0] for female, or [1] for male, and press [B]. Input breathing rate at which the patient will be ventilated and press [C]. To calculate basal tidal volume (uncorrected) press [D]. This value is the tidal volume approximation to the Radford nomogram.				
Next, input ventilator dead space, followed by [E], giving the tidal volume corrected for the ventilator dead space.				
The remainder of the program applies the corrections specified in the Radford nomogram.				
Input patient's temperature in degrees Celsius or in degrees Fahrenheit negatively and press [f] [A] to obtain the tidal volume corrected for patient temperature. Next input altitude in meters or in feet negatively and press [f] [B] to obtain tidal volume corrected for altitude. To correct tidal volume for minor daytime activity of a non-comatose patient,				

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	2	02	
002	X<0?	16-45		058	x	-35	
003	GSB0	23 00		059	+	-55	
004	ST06	35 06	Store wt as Kg	060	ST01	35 01	
005	RTN	24	Convert LB to Kg	061	PRTX	-14	
006	*LBL0	21 00		062	RTN	24	
007	2	02		063	*LBL1	21 01	Tidal volume for females
008	.	-62		064	2	02	
009	2	02		065	3	03	
010	CHS	-22		066	RCL6	36 06	Constant inputs
011	÷	-24		067	X≤Y?	16-35	
012	RTN	24		068	GT02	22 02	
013	*LBLB	21 12		069	2	02	
014	ST03	35 03	Store sex	070	7	07	
015	RTN	24		071	2	02	
016	*LBLC	21 13		072	ENT↑	-21	
017	ST08	35 08	Store heart rate	073	4	04	
018	RTN	24		074	4	04	
019	*LBLD	21 14		075	.	-62	
020	RCL3	36 03		076	2	02	
021	X=0?	16-43	Male or female?	077	GT04	22 04	
022	GT01	22 01		078	*LBL0	21 15	Calculate DS_V
023	*LBL2	21 02	Tidal volume for male	079	RCL1	36 01	
024	8	08		080	+	-55	
025	RCL6	36 06	Constant inputs	081	ST01	35 01	
026	X≤Y?	16-35		082	PRTX	-14	
027	GT03	22 03		083	RTN	24	
028	2	02		084	*LBL0	21 16 11	Temperature correction
029	4	04		085	X>Y?	16-44	
030	9	09		086	GT00	22 00	
031	ENT↑	-21		087	GT01	22 01	
032	6	06		088	*LBL0	21 00	Convert °C to °F
033	1	01		089	1	01	
034	GT04	22 04		090	.	-62	
035	*LBL3	21 03		091	8	08	
036	1	01		092	x	-35	
037	9	09		093	3	03	
038	3	03		094	2	02	
039	ENT↑	-21		095	+	-55	
040	1	01		096	CHS	-22	
041	2	02		097	*LBL1	21 01	
042	4	04		098	CHS	-22	
043	*LBL4	21 04	Common male/female calc.	099	9	09	
044	RCL6	36 06		100	9	09	
045	LOG	16 32		101	-	-45	
046	x	-35		102	0	00	
047	+	-55		103	X>Y?	16-34	Is temp <99°F ?
048	EEX	-23		104	GT00	22 00	Yes, no correction
049	2	02		105	+	-55	
050	÷	-24		106	.	-62	Do temperature correction
051	10 ^x	16 33		107	0	00	
052	RCL8	36 08		108	5	05	
053	÷	-24		109	x	-35	
054	RCL6	36 06		110	RCL1	36 01	
055	2	02		111	x	-35	
056	.	-62					

REGISTERS

0	1	2	3	4	5	6	7	8	9
TV		SEX				WT. (Kg)	RATE		
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D			E		I	

97 Program Listing II

29

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
112	ROL1	36 01		167	*LBL _a	21 16 15	
113	+	-55		168	ROL1	36 01	Metabolic acid
114	ST01	35 01		169	.	-62	correction of +20%
115	PRTX	-14		170	2	02	
116	RTN	24		171	x	-35	
117	*LBL _b	21 00		172	ROL1	36 01	
118	ROL1	36 01		173	+	-55	
119	RTN	24		174	PRTX	-14	
120	*LBL _b	21 16 12	Altitude correction	175	RTN	24	
121	X<0?	16-45	Meters or feet	176	R/S	51	
122	GT02	22 02					
123	3	03	Convert meters to	180			
124	.	-62	feet if necessary				
125	2	02					
126	8	06					
127	CHS	-22					
128	x	-35					
129	*LBL ₂	21 02					
130	CHS	-22					
131	2	02					
132	EEX	-23	Do altitude correct-				
133	3	03	ion	190			
134	÷	-24					
135	ROL1	36 01					
136	x	-35					
137	.	-62					
138	0	00					
139	5	05					
140	x	-35					
141	ROL1	36 01					
142	+	-55					
143	ST01	35 01		200			
144	PRTX	-14					
145	RTN	24					
146	*LBL _c	21 16 13					
147	ROL1	36 01					
148	.	-62	Activity addition of				
149	1	01	+10%				
150	x	-35					
151	ROL1	36 01		210			
152	+	-55					
153	ST01	35 01					
154	PRTX	-14					
155	RTN	24					
156	*LBL _d	21 16 14	Trach. correction				
157	ROL1	36 01					
158	ROL6	36 06					
159	1	01					
160	.	-62					
161	1	01					
162	x	-35					
163	-	-45		220			
164	ST01	35 01					
165	PRTX	-14					
166	RTN	24					

LABELS

FLAGS

SET STATUS

A WT	B SEX	C RATE	D TV _{RAS}	E DS _V →TV	0	FLAGS	TRIG	DISP
a TEMP	b ALT	c	d ACTIVE	e MET ACID	1	ON OFF	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0 USED	1 USED	2 USED	3 CONST.	4 CALC.	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8	9	3	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>

Program Description I

Program Title ARTERIAL CO₂ NORMALIZATION

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Boulevard

City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables The Arterial CO₂ Normalization Program calculates the additional dead space (DS_{ADD}) needed in a hypocapnic ventilator patient's breathing circuit to raise the arterial CO₂ partial pressure (P_aCO₂) to 40 millimeters of mercury (mmHg).

Equations Used:

$$DS_{ADD} = \frac{TV-DS}{40-\Delta P_{CO_2}} (40-P_a CO_2)$$

$$\Delta P_{CO_2} = P_a CO_2 - P_E CO_2 \text{ or } P_a CO_2 - 5 \text{ if } P_E CO_2 \text{ is not entered}$$

$$TV-DS = TV - [1.47Wt(kg) + DS_p]$$

Operating Limits and Warnings

The additional dead space required by this program must be inserted into the patient's breathing circuit without changing the ventilator rate or tidal volume.

Measure and input the mixed expired CO₂ partial pressure if lung function is abnormal.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

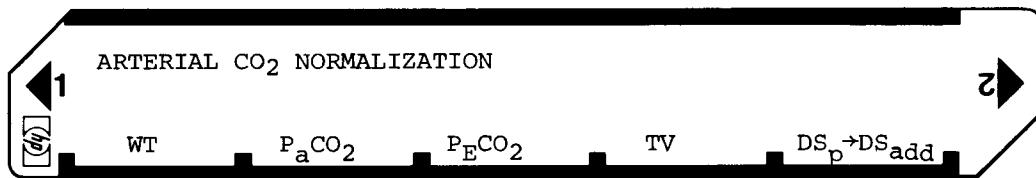
Program Description II

Sketch(es)

Sketch area for drawing.

Sample Problem(s)

Calculate the additional dead space required by a 50 kilogram patient with a P_aCO_2 of 25 mmHg with normal lung status having a tidal volume of 900 ml and a present dead space of 25ml.


Solution(s)

50 [A] 25 [B] 900 [D] 25 [E] +343.50ml, additional dead space

Reference(s) This program is a translation of the HP-65 Users' Library Program #00194A, submitted by Hewlett-Packard.

Suwa, Kunio; Geffin, Bennie; Pontoppidan, Hennigg; Bendixen, Henry; "A Nomogram for Dead Space Requirement During Prolonged Artificial Ventilation," Anesthesiology, v 29, 1968 Nov-Dec.

User Instructions

97 Program Listing I

33

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Input weight				
002	X<0?	16-45	Lb?				
003	GSB1	23 01	Yes	060			
004	ST06	35 06	Sto wt in Kg				
005	RTN	24					
006	*LBL1	21 01	Convert lb. to Kg				
007	2	02					
008	.	-62					
009	2	02					
010	CHS	-22					
011	÷	-24					
012	RTN	24					
013	*LBLB	21 12	Input $P_a \text{CO}_2$ & calculate $P_E \text{CO}_2$	070			
014	ST01	35 01					
015	5	05					
016	-	-45					
017	ST08	35 08					
018	RCL1	36 01					
019	RTN	24					
020	*LBLC	21 13	Store $P_E \text{CO}_2$				
021	ST08	35 08					
022	RTN	24					
023	*LBLD	21 14	Store TV	080			
024	ST07	35 07					
025	RTN	24					
026	*LBLE	21 15	Calculate additional dead space.				
027	RCL6	36 06					
028	1	01					
029	.	-62					
030	4	04					
031	7	07					
032	x	-35					
033	+	-55					
034	RCL7	36 07		090			
035	X \neq Y	-41					
036	-	-45					
037	4	04					
038	0	00					
039	RCL1	36 01					
040	RCL8	36 08					
041	-	-45					
042	-	-45					
043	÷	-24					
044	4	04		100			
045	0	00					
046	RCL1	36 01					
047	-	-45					
048	x	-35					
049	PRTX	-14					
050	RTN	24					
051	R/S	51					
SET STATUS							
FLAGS							
ON OFF				DEG <input checked="" type="checkbox"/> SCI <input type="checkbox"/>			
0 <input type="checkbox"/> <input checked="" type="checkbox"/>				RAD <input type="checkbox"/> ENG <input type="checkbox"/>			
1 <input type="checkbox"/> <input checked="" type="checkbox"/>				n <input type="checkbox"/> 2 <input checked="" type="checkbox"/>			
2 <input type="checkbox"/> <input checked="" type="checkbox"/>				3 <input type="checkbox"/> <input checked="" type="checkbox"/>			
REGISTERS							
0	1 $P_a \text{CO}_2$	2	3	4	5	6 Wt.	7 TV
S0	S1	S2	S3	S4	S5	S6	S7
A	B	C	D	E	F	G	I
S8	S9						

Program Description I

Program Title BLOOD ACID-BASE STATUS

Contributor's Name Users' Library, Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables This program computes total plasma CO_2 and base excess from PCO_2 , pH and hemoglobin concentration.

Equations:

Total plasma CO_2 is calculated from the Henderson-Hasselbalch equation:

$$\text{TCO}_2 = s \cdot \text{PCO}_2 [1 + 10^{\frac{\text{pH} - \text{pK}}{10}}]$$

where

TCO_2 = total CO_2 in plasma, mmol/l

s = solubility of CO_2 in plasma, mmol/l (taken to be 0.0307)

PCO_2 = partial pressure of CO_2 in the blood, mmHg

pK = 6.11

This does not take into account the small temperature dependence of both s and pK , nor the pH dependence of pK . For this reason the formula for TCO_2 will be most accurate if 37° C values for PCO_2 and pH are used.

Operating Limits and Warnings

While Thomas has shown that this equation may produce large errors for very abnormal conditions, it matches the Siggaard-Andersen nomogram for $[\text{BE}]_b$, to within $\pm 1 \text{ mEq/l}$ in most cases.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title BLOOD ACID - BASE STATUS

Contributor's Name

Address

City

State

Zip Code

Program Description, Equations, Variables

The base excess is calculated from an equation suggested by Siggaard-Andersen:

$$[\text{BE}]_b = (1 - 0.0143 \text{ Hgb}) \cdot ([\text{HCO}_3] - (9.5 + 1.63 \text{ Hgb}) (7.4 - \text{pH}) - 24)$$

where

$[\text{BE}]_b$ = Base Excess in m Eq/l of blood

Hbg = Hemoglobin concentration in g/100 ml

and plasma $[\text{HCO}_3]$ is calculated from the Hendersen-Hasselbalch equation in the form

$$[\text{HCO}_3] = s \cdot \text{PCO}_2 \cdot 10^{\text{pH} - \text{pK}}$$

Siggaard-Andersen used 38°C values for PCO_2 and pH. Only small errors will result from using 37°C values, but body temperature corrected values should not be used if the patient has any significant hyper or hypothermia. If only body temperature values are known, the "Anaerobic PCO_2 and pH change" program may be used to correct them back to 37°C. (See special instructions for that program).

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

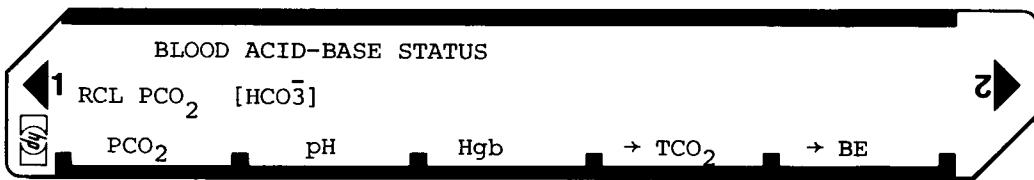
Program Description II

Sketch(es)

Sample Problem(s)

$$\text{PCO}_2 = 45 \text{ mmHg}$$

pH = 7.35


Hgb = 16 g/100 ml

Solution(s) 45 [A] 7.35 [B] 16 [C] [D] \rightarrow 25.39 mmol/l TCO₂
 [E] \rightarrow -1.36 mEq/l, [BE]_b
 [f] [B] \rightarrow 24.01 mmol/l, HCO₃⁻

Reference(s) This program is a translation of the HP-65 Users' Library Program # 00195A submitted by Hewlett-Packard Company.

Siggaard-Andersen, "Titratable Acid or Base of Body Fluids." Annals New York Academy of Sciences 133: 41-48, 1966. Thomas, L.J. Jr., "Algorithms for Selected Blood Acid-Base and Blood Gas Calculations," J.Appl.Physiol. 33: 154-158, 1972.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 16 11		057	PRTX	-14	
002	RCL5	36 05	Recall PCO ₂	058	RTN	24	
003	EEX	-23		059	*LBLE	21 15	Calculate base excess
004	2	02		060	RCL9	36 09	
005	÷	-24		061	1	01	
006	RTN	24		062	.	-62	
007	*LBLA	21 11	Input PCO ₂	063	6	06	
008	EEX	-23		064	3	03	
009	2	02		065	x	-35	
010	x	-35		066	9	09	
011	INT	16 34		067	.	-62	
012	RCL5	36 05		068	5	05	
013	FRC	16 44		069	+	-55	
014	+	-55		070	RCL1	36 01	
015	ST05	35 05	Store PCO ₂	071	7	07	
016	RCL6	36 06		072	.	-62	
017	EEX	-23	Recall pH	073	4	04	
018	3	03		074	-	-45	
019	÷	-24		075	x	-35	
020	RTN	24		076	RCL8	36 08	
021	*LBLB	21 12		077	+	-55	
022	EEX	-23		078	2	02	
023	3	03		079	4	04	
024	x	-35		080	-	-45	
025	INT	16 34	Input pH	081	1	01	
026	RCL6	36 06		082	RCL9	36 09	
027	FRC	16 44		083	7	07	
028	+	-55		084	0	00	
029	ST06	35 06		085	÷	-24	
030	RCL9	36 09	Recall Hgb	086	-	-45	
031	RTN	24		087	x	-35	
032	*LBLC	21 13	Input Hgb	088	PRTX	-14	
033	ST09	35 09		089	RTN	24	
034	RTN	24		090	*LBLb	21 16 12	Recall [HCO ₃ ⁻]
035	*LBLD	21 14		091	RCL8	36 08	
036	RCL6	36 06		092	PRTX	-14	
037	EEX	-23		093	RTN	24	
038	3	03		094	R/S	51	
039	÷	-24					
040	ST01	35 01					
041	6	06					
042	.	-62					
043	1	01					
044	1	01					
045	-	-45					
046	10 ^x	16 33					
047	RCL5	36 05					
048	3	03					
049	2	02					
050	5	05					
051	7	07					
052	÷	-24					
053	x	-35					
054	ST08	35 08					
055	LSTX	16-63					
056	+	-55					

REGISTERS

0	1 USED	2	3	4	5 PCO ₂ · PO ₂	6 pH · BT	7	8 HCO ₃ ⁻	9 Hgb
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B		C		D		E		I

SET STATUS		FLAGS	TRIG	DISP
ON	OFF	DEG	GRAD	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

ON	OFF	DEG	GRAD	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Program Description I

Program Title VIRTUAL PO₂ AND O₂ SATURATION AND CONTENT

Contributor's Name Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables The first part of this program computes virtual PO₂ for use in estimating O₂ saturation. Generally, it will be more convenient to calculate venous values first, as arterial values are frequently needed in other programs and, thus, will be left in the storage registers after both calculations.

The equation solved is

$$VPO_2 = PO_2 \cdot 10^{[0.024(37-BT) + 0.48(\text{pH}-7.4) + 0.06(\log PCO_2)]}$$

which is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.

The second part of the program estimates O₂ saturation of blood from virtual PO₂ and computes O₂ content. If the actual O₂ saturation is known, O₂ content may be computed directly.

Equations:

The part of the program for estimating O₂ saturation is based on the polynomial curve fit of Thomas, where VPO₂ is in mmHg.

$$O_2 \text{ Sat} = \frac{(VPO_2)^4 - 15(VPO_2)^3 + 2045(VPO_2)^2 + 2000(VPO_2)}{(VPO_2)^4 - 15(VPO_2)^3 + 2400(VPO_2)^2 - 31,100 (VPO_2) + 2,400,000}$$

This calculation assumes that the oxygen dissociation curve for the hemoglobin is normal. The O₂ content is computed from

$$C_x O_2 (\text{Vol.}\%) = 1.34 \cdot \frac{\text{SAT}(\%)}{100} \cdot \text{Hgb(g/100ml)} + 0.0031 \text{ PO}_2 (\text{mmHg})$$

Operating Limits and Warnings Virtual PO₂ is not in any way a real physiologic PO₂. Its only function is for use in estimating O₂ saturation, and it should never be confused with PO₂ corrected to body temperature. Furthermore, it must always be calculated from blood parameters measured at or corrected to 37°C. The calculation will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO₂ and O₂ saturation are measured, the program may be used as a convenient means to check for the normality of the dissociation curve.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

DETAILED USER INSTRUCTIONS:

Input P_0_2 , PCO_2 , and pH measured at 37°C. Input body temperature in degrees C. If P_0_2 has been previously input, recall it by pressing [f] [A] then press [f] [B]. Otherwise, input P_0_2 and press [f] [B]. For each variable after P_0_2 , stored values will be recalled. If none have been input, recalled values will generally be zero. It is important to input pH and body temperature exactly, as these have a great influence on the calculation of virtual P_0_2 . Errors, especially in body temperature, can result in large errors in VPO_2 and, hence, estimated saturation. PCO_2 has relatively little influence. Press the buttons from left to right and do not skip any. The virtual P_0_2 remains in the display for immediate entry in calculation of O_2 saturation and content. It is not stored in place of the measured P_0_2 . The P_0_2 , PCO_2 , and pH remain in memory. Note that separate storage registers are not maintained for arterial and venous values, only the most recent ones will be stored.

To compute O_2 content, input the P_0_2 , O_2 saturation, and hemoglobin concentration. After P_0_2 is input, an estimated O_2 saturation is calculated, based on a standard dissociation curve. This will only be meaningful if a virtual P_0_2 (VPO_2) from the first part of the program is input. The estimated O_2 saturation may be accepted simply by pressing [B], or a measured value can be input. If Hgb was previously input, it will be recalled. If the calculated O_2 content is to be stored as arterial or venous for later use in Fick cardiac output or physiologic shunt calculations, press the appropriate button. Regardless of which content is computed first, CaO_2 is left in the display for convenience in case the ANATOMIC SHUNTS program is to be run next.

If O_2 saturation of blood is to be estimated from P_0_2 , it is important to input the virtual P_0_2 calculated in the first part of the program. A large error can result from inputting measured P_0_2 without the corrections. The program may be used to compare estimated O_2 saturation with measured O_2 saturation, to obtain a rough idea of the variation of the dissociation curve from normal. This will be especially sensitive with partly unsaturated venous blood where the slope of the curve is fairly steep. When computing content for purposes of estimating physiologic shunt and Fick cardiac output, it is always best to measure the saturation. Small variations in the dissociation curve can cause considerable error in the shunt and cardiac output calculations and because the effect is not the same on venous blood as on the higher saturation arterial blood.

The calculated O_2 content includes both the dissolved oxygen and the hemoglobin bound oxygen. If only O_2 saturation was measured, and not P_0_2 , an estimated P_0_2 should be input to obtain the maximum accuracy in the content calculation. The estimate for P_0_2 need only be rough as the effect is very small, unless the patient is breathing an oxygen-enriched atmosphere and P_0_2 is well above 100 mmHg.

To compute equivalent alveolar blood O_2 content, enter the equivalent PAO_2 , rather than the virtual P_0_2 . The PAO_2 can be calculated by the A-a O_2 DIFFERENCE program. In this case, the resulting O_2 content should not be stored as either arterial or venous, but simply left in the display register

for use at the beginning of the PHYSIOLOGIC SHUNT AND FICK programs which should be executed next. Thus, the over-all sequence should be to compute venous content first, arterial content second, and alveolar content last. The PHYSIOLOGIC SHUNT AND FICK program may then be run without having to enter any new O_2 content data.

Program Description II

Sketch(es)

Sample Problem(s)

1) For the following patient data calculate virtual PO_2 and from it estimated O_2 saturation and O_2 content. Store the value as venous O_2 content.

$$PO_2 = 75 \text{ mmHg}$$

PCO₂ = 45 mmHg

pH = 7.35

BT = 40°C

Hgb = 16 gm/100 ml

2) Calculate est. O_2 saturation and O_2 content assuming the PO_2 was actually 75 mmHg.

Solution(s) 1) 75 [f] [B] 45 [f] [C] 7.35 [f] [D] 40 [f] [E] \rightarrow 59.71 mmHg VPO₂

[A] \rightarrow 90.92 est. SAT%

[B] 16 [C] → 19.68 O₂ Content %

[E] → 0.00

ored as venous

(19.68% stored as venous O_2 content.
No previously stored arterial O_2
content is present.)

2) [f] [A] [A] \rightarrow 95.08 est SAT%

[B] [C] \rightarrow 20.62 O₂ Content

Reference(s) Thomas, L.J. Jr., "Algorithms for Selected Blood Acid-Base and Blood Gas Calculations," *J. Appl. Physiol.* 33: 154-158, 1972

Kelman, G. Richard, "Digital Computer Subroutine for the Conversion of Oxygen Tension into Saturation," J. Appl. Physiol. 21: 1375-1376, 1966.

This program is a modification of the Users' Library Programs 00196A and # 00197A submitted by Hewlett-Packard.

User Instructions

1 VIRTUAL PO₂ AND O₂ SATURATION AND CONTENT

RCL PO₂ PO₂ PCO₂ pH BT→VPO₂
VPO₂, PAO₂ SAT Hgb→Cont CaO₂ CvO₂

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLa	21 16 11		057	X	-35	
002	RCL5	36 05	Recall PO ₂	058	X ² Y	-41	
003	FRC	16 44		059	3	03	
004	EEX	-23		060	7	07	
005	3	03		061	-	-45	
006	X	-35		062	2	02	
007	RTN	24		063	.	-62	
008	*LBLb	21 16 12		064	4	04	
009	EEX	-23		065	X	-35	
010	3	03		066	-	-45	
011	ST08	35 08	Input PO ₂ and recall PCO ₂	067	4	04	
012	÷	-24		068	EEX	-23	
013	ST01	35 01		069	3	03	
014	RCL5	36 05		070	RCL5	36 05	
015	EEX	-23		071	÷	-24	
016	2	02		072	LOG	16 32	
017	÷	-24		073	6	06	
018	RTN	24		074	X	-35	
019	*LBLc	21 16 13		075	+	-55	
020	EEX	-23		076	EEX	-23	
021	2	02	Input PCO ₂ and recall pH	077	2	02	
022	X	-35		078	÷	-24	
023	INT	16 34		079	10 ^X	16 33	
024	RCL1	36 01		080	GSBa	23 16 11	
025	+	-55		081	X	-35	
026	ST05	35 05		082	PRTX	-14	
027	RCL6	36 06		083	RTN	24	
028	RCL8	36 08		084	*LBLA	21 11	
029	÷	-24		085	ST01	35 01	
030	RTN	24		086	ENT↑	-21	
031	*LBLd	21 16 14		087	X	-35	
032	RCL8	36 08		088	ST08	35 08	
033	X	-35	Input pH	089	ENT↑	-21	
034	INT	16 34		090	X	-35	
035	ST01	35 01		091	RCL8	36 08	
036	RCL6	36 06		092	RCL1	36 01	
037	FRC	16 44		093	X	-35	
038	RCL8	36 08		094	1	01	
039	X	-35		095	5	05	
040	RTN	24		096	X	-35	
041	*LBLe	21 16 15		097	-	-45	
042	ENT↑	-21		098	ENT↑	-21	
043	ENT↑	-21		099	ENT↑	-21	
044	RCL8	36 08		100	RCL8	36 08	
045	÷	-24		101	2	02	
046	RCL1	36 01		102	4	04	
047	+	-55		103	0	00	
048	ST06	35 06	Calculate VPO ₂	104	0	00	
049	RCL8	36 08		105	X	-35	
050	÷	-24		106	+	-55	
051	7	07		107	X ² Y	-41	
052	.	-62		108	RCL8	36 08	
053	4	04		109	2	02	
054	-	-45		110	0	00	
055	4	04		111	4	04	
056	8	08		112	5	05	

REGISTERS

0	1 Used PO ₂	2	3 CvO ₂	4 CaO ₂	5 Used	6 Used	7	8 Used SAT	9 Hgb
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

97 Program Listing II

45

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS						
113	X	-35		169	ST03	35 03	Store CvO ₂						
114	+	-55		170	RCL4	36 04	Recall CaO ₂						
115	RCL1	36 01		171	RTN	24							
116	2	02		172	R/S	51							
117	EEX	-23											
118	3	03											
119	X	-35											
120	+	-55											
121	X*Y	-41											
122	RCL1	36 01											
123	3	03											
124	1	01		180									
125	1	01											
126	0	00											
127	0	00											
128	X	-35											
129	-	-45											
130	2	02											
131	4	04											
132	EEX	-23											
133	5	05		190									
134	+	-55											
135	÷	-24											
136	EEX	-23											
137	2	02											
138	X	-35											
139	ST08	35 08	Est. SAT										
140	PRTX	-14											
141	RTN	24											
142	*LBLB	21 12	Input SAT										
143	ST08	35 08											
144	RCL9	36 09											
145	RTN	24		200									
146	*LBLC	21 13											
147	ST09	35 09											
148	RCL8	36 08	Calculate Content										
149	1	01											
150	3	03											
151	4	04											
152	X	-35											
153	X	-35											
154	RCL1	36 01		210									
155	3	03											
156	1	01											
157	X	-35											
158	+	-55											
159	EEX	-23											
160	4	04											
161	CHS	-22											
162	X	-35											
163	PRTX	-14											
164	RTN	24		220									
165	*LBLD	21 14	Store CaO ₂										
166	ST04	35 04											
167	RTN	24											
168	*LBLE	21 15											
LABELS													
A	PO ₂	B	SAT	C	Hgb	D	CaO ₂	E	CvO ₂	0	FLAGS	SET STATUS	
a	PO _a	b	PO ₂	c	PCO ₂	d	pH	e	VPO ₂	1	ON OFF	TRIG	DISP
0		1		2		3		4		2	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
5		6		7		8		9		3	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
											2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
											3 <input type="checkbox"/> <input checked="" type="checkbox"/>	n 2	

Program Description I

Program Title ANAEROBIC PCO₂ and pH CHANGE
Contributor's Name Hewlett-Packard
Address 1000 N.E. Circle Boulevard
City Corvallis **State** Oregon **Zip Code** 97330

Program Description, Equations, Variables

Corrections of PCO₂ and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C.

Equations Used:

$$\text{PCO}_2(\text{BT}) = \text{PCO}_2(37) \cdot 10^{0.019(\text{T}-37)}$$

$$\text{pH(BT)} = \text{pH}(37) - 0.0146 (\text{T}-37)$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

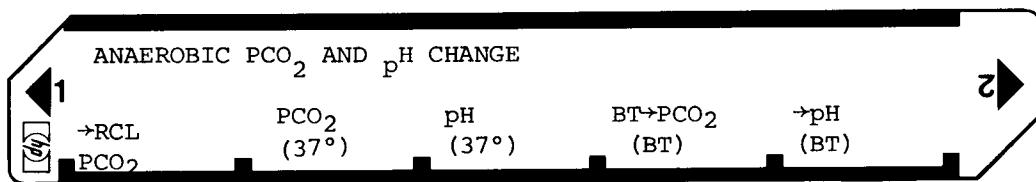
Large empty rectangular box for drawing sketches.

Sample Problem(s)

$$\text{PCO}_2 = 45 \text{ mmHg}$$

$$\text{pH} = 7.35$$

$$\text{BT} = 40^\circ\text{C}$$


Solution(s)

$$45[\text{B}] \quad 7.35 \quad [\text{C}] \quad 40[\text{D}] \rightarrow 51.31 \text{ mmHg, } \text{PCO}_2 \\ [\text{E}] \rightarrow 7.31 \text{ pH (BT)}$$

Reference(s) This program is a translation of the HP-65 Users' Library Program #00198A submitted by Hewlett-Packard.

Severinghaus, John W., "Blood Gas Calculator," Journal of Applied Physiology, May 1966.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If PCO_2 was previously stored recall it		A	PCO_2
3	Input PCO_2 (37°)	PCO_2 (mmHg)	B	pH (if stored)
4	Input pH (37°)	pH (37°)	C	BT (if stored)
5	Input BT and calculate PCO_2 (BT)	BT (°C)	D	PCO_2 (mmHg)
6	Compute pH (BT)		E	pH (BT)
Detailed User Instructions:				
<p>If Sat. was previously stored in memory, it can be recalled by pressing [A]. If not, skip [A] and input Sat. press [B]. If PO_2 (37°) was previously stored, it will appear. If not, input it. Press [C]. If body temperature was previously stored, it will appear. If not, input it in °C. Press [D]. PO_2 (BT) will appear and be stored in memory.</p>				
<p>PO_2 (BT) replaces the 37°C value in memory with the body temperature value. Therefore, calculation based on the 37°C values in programs for virtual PO_2 and O_2 saturation & content should be accomplished before this program is run. If O_2 saturation has not been measured, it should be estimated by using program for "Virtual PO_2 and O_2 Saturation & Content."</p>				
<p>This program may also be used to convert PO_2 between any two temperatures, for example, from body temperature to 37°C. To do this, first determine what the desired temperature change is in °C. Add this to 37°C algebraically, and enter the result as BT. For example, suppose values known at 41°C are to be converted to 37°C. The temperature change is -4°C. Add this to 37°C, resulting in 33°C. Executing the program with BT=33°C will then result in the 37°C value for PO_2.</p>				

97 Program Listing I

49

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Recall PCO ₂	057	RTN	24	
002	RCL5	36 05		058	*LBLE	21 15	
003	EEX	-23		059	RCL1	36 01	
004	2	02		060	3	03	
005	÷	-24		061	7	07	
006	RTN	24	Display PCO ₂	062	+	-55	
007	*LBLB	21 12	Enter PCO ₂	063	EEX	-23	
008	EEX	-23		064	3	03	
009	2	02		065	÷	-24	
010	x	-35		066	RCL6	36 06	
011	INT	16 34		067	RCL1	36 01	
012	RCL5	36 05		068	1	01	
013	FRC	16 44		069	4	04	
014	+	-55		070	.	-62	
015	ST05	35 05		071	6	06	
016	RCL6	36 06		072	x	-35	
017	EEX	-23		073	-	-45	
018	3	03		074	INT	16 34	
019	÷	-24		075	+	-55	
020	RTN	24	Display pH	076	ST06	35 06	
021	*LBLC	21 13	Enter pH	077	EEX	-23	
022	EEX	-23		078	3	03	
023	3	03		079	÷	-24	
024	x	-35		080	PRTX	-14	
025	INT	16 34		081	RTN	24	
026	RCL6	36 06		082	R/S	51	
027	FRC	16 44					
028	+	-55					
029	ST06	35 06					
030	LSTX	16-63					
031	EEX	-23					
032	3	03					
033	x	-35					
034	RTN	24	Display BT	090			
035	*LBLD	21 14	Enter BT				
036	3	03					
037	7	07					
038	-	-45	Calculate PCO ₂				
039	ST01	35 01					
040	.	-62					
041	0	00					
042	1	01					
043	9	09					
044	x	-35		100			
045	10 ^x	16 33					
046	RCL5	36 05					
047	x	-35					
048	INT	16 34					
049	RCL5	36 05					
050	FRC	16 44					
051	+	-55					
052	ST05	35 05					
053	EEX	-23					
054	2	02					
055	÷	-24					
056	PRTX	-14					
SET STATUS							
FLAGS							
				ON	OFF		
				0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	
				1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	
				2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	
				3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	
TRIG							
				DEG	<input checked="" type="checkbox"/>		
				GRAD	<input type="checkbox"/>	SCI	<input type="checkbox"/>
				RAD	<input type="checkbox"/>	ENG	<input type="checkbox"/>
				n	<input type="checkbox"/>	2	
REGISTERS							
0	1	ΔT	2	3	4	5	PCO ₂ · PO ₂
S0	S1		S2	S3	S4	S5	pH · BT
A	B		C			D	E
							I

Program Description I

Program Title ANAEROBIC PO₂ CHANGE

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Boulevard

City Corvallis State Oregon

Zip Code 97330

Program Description, Equations, Variables

This program corrects PO₂, measured at 37°C, to Body Temperature.

Equation Used:

Correction of PO₂ for anaerobic temperature change is calculated taking into account the exchange of oxygen between HgbO₂ and the dissolved state at high saturation. Below 80% Sat., the relation is approximately

$$\frac{\Delta \text{ Log PO}_2}{\Delta T} = 0.031$$

This factor falls at higher saturations, approaching 0.006 at 100% Sat. The curve given by Severinghaus has been approximated by the following equation in this program.

$$\frac{\Delta \text{ Log PO}_2}{\Delta T} = \frac{3130 - 62.5 \text{ Sat} + 0.312008 \text{ Sat}^2}{100,000 - 1993 \text{ Sat} + 9.9313 \text{ Sat}^2}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

51

Sketch(es)

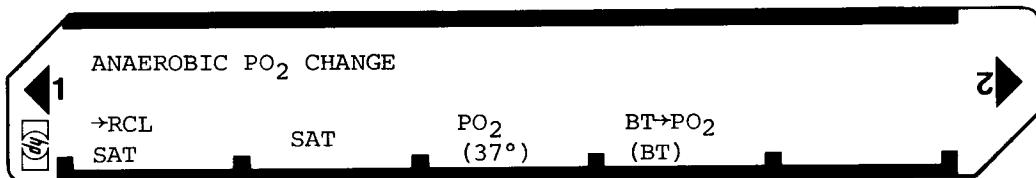
Sketch area for drawing diagrams or sketches related to the program description.

Sample Problem(s)

Sat. =90%

PO₂ =75 mmHg

BT =40°C


Solution(s)

90 [B] 75 [C] 40 [D] → 92.31 mmHg, PO₂ (BT)

Reference(s) Severinghaus, John W., "Blood Gas Calculator," J.Appl. Physiol., 21 (3): 1108-1116, 1966.

This program is a translation of the HP-65 Users' Library Program #00199A submitted by Hewlett-Packard.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If it was previously stored recall SAT		A	SAT (%)
3	Input SAT%	SAT%	B	PO ₂ (if stored)
4	Input PO ₂ (37°)	PO ₂ (mmHg)	C	BT (if stored)
5	Input BT and compute PO ₂ (BT)	BT (°C)	D	PO ₂ (mmHg)
<u>Detailed User Instructions:</u>				
This program corrects PCO ₂ and pH, measured at 37°C, to body temperature. It replaces 37°C values in memory with the body temperature values. Therefore, calculation based on the 37°C values in programs for "Blood Acid-Base Status" and "Virtual PO ₂ " should be accomplished before this program of "Anaerobic PO ₂ Change" is run.				
If PCO ₂ (37°) was previously stored in memory, it can be recalled by pressing [A]. If not, skip [A] and input PCO ₂ (37°). Press [B]; if pH (37°) was previously stored, it will appear. If not, input it. Press [C], if body temperature was previously stored, it will appear. If not, input it in °C. Press [D]; PCO ₂ (BT) will appear and be stored in memory. Press [E]; pH(BT) will appear and be stored in memory.				
This program may also be used to convert PCO ₂ and pH between any two temperatures, for example, from body temperature to 37°C. To do this, first determine what the desired temperature change is in °C. Add this to 37°C algebraically, and input the result as BT. For example, suppose values known as 41°C are to be converted to 37°C. The temperature change is -4°C; this, when added to 37°C, results in 33°C. Executing the program with BT=33° will then result in 37°C values for PCO ₂ and pH.				

97 Program Listing I

53

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Recall Sat if stored	057	1	01	
002	RCL8	36 08		058	3	03	
003	RTN	24		059	x	-35	
004	*LBLB	21 12	Enter Sat.	060	RCL8	36 08	
005	ST08	35 08		061	1	01	
006	RCL5	36 05		062	9	09	
007	GSBE	23 15	Display PO ₂	063	9	09	
008	RTN	24		064	3	03	
009	*LBLC	21 13	Enter PO ₂	065	x	-35	
010	EEX	-23		066	-	-45	
011	3	03	Entangle with PCO ₂	067	EEX	-23	
012	÷	-24	in R ₅	068	5	05	
013	RCL5	36 05		069	+	-55	
014	INT	16 34		070	÷	-24	
015	+	-55		071	RCL1	36 01	
016	ST05	35 05		072	3	03	
017	RCL6	36 06	Display BT	073	7	07	
018	GSBE	23 15		074	-	-45	
019	RTN	24		075	x	-35	
020	*LBLD	21 14	Enter BT	076	10 ^x	16 33	
021	ST01	35 01		077	RCL5	36 05	
022	EEX	-23		078	GSBE	23 15	
023	3	03		079	x	-35	
024	÷	-24		080	GSBC	23 13	
025	RCL6	36 06		081	RCL5	36 05	
026	INT	16 34	Calculate PO ₂	082	GSBE	23 15	
027	+	-55		083	PRTX	-14	Display PO ₂
028	ST06	35 06		084	RTN	24	
029	RCL8	36 08		085	*LBL E	21 15	Subroutine
030	X ²	53		086	FRC	16 44	
031	.	-62		087	EEX	-23	
032	3	03		088	3	03	
033	1	01		089	x	-35	
034	2	02		090	RTN	24	
035	0	00		091	R/S	51	
036	0	00					
037	8	08					
038	x	-35					
039	RCL8	36 06					
040	6	06					
041	2	02					
042	.	-62					
043	5	05					
044	X	-35					
045	-	-45					
046	3	03					
047	1	01					
048	3	03					
049	0	00					
050	+	-55					
051	RCL8	36 08					
052	X ²	53					
053	9	09					
054	.	-62					
055	9	09					
056	3	03					

REGISTERS

0	1	BT (°C)	2	3	4	5	PCO ₂ · PO ₂	6	pH · BT	7	8	SAT.	9
S0	S1		S2	S3	S4	S5		S6		S7	S8		S9
A	B		C			D		E			I		

FLAGS	TRIG		DISP	
	ON	OFF	DEG	FIX
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

DEG
GRAD
RAD
ENG
n 2

Program Description I

Program Title DEAD SPACE FRACTION

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Boulevard

City Corvallis

State

Oregon

Zip Code 97330

Program Description, Equations, Variables

This program calculates respiratory exchange ratio, alveolar minute volume, and ratio of dead space to tidal volume.

Equations Used:

Respiratory exchange ratio,

$$R_Q = \frac{VCO_2 \text{ (ml/min STPD)}}{VO_2 \text{ (ml/min STPD)}}$$

Alveolar minute volume,

$$V_A \text{ (l/min BTPS)} = \frac{0.863 VCO_2 \text{ (ml/min STPD)}}{PaCO_2 \text{ (mmHg)}}$$

Ratio of dead space to tidal volume,

$$V_D/V_T = \frac{V_E - V_A \text{ (l/min BTPS)}}{V_E \text{ (l/min BTPS)}}$$

These may be found in most standard texts on respiratory gas exchange.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sketch area for drawing physiological diagrams or graphs.

Sample Problem(s)

$$VCO_2 = 266 \text{ ml/min STPD}$$

$$VO_2 = 280 \text{ ml/min STPD}$$

$$P_a CO_2 = 45 \text{ mmHg}$$

$$V_E = 7 \text{ l/min BTPS}$$

Solution(s) 266 [A] 280 [B] $\rightarrow 0.95, R_Q$
 [C] 45 [D] $\rightarrow 5.10 \text{ l/min, BTPS}$

$$7 [E] \rightarrow 0.27, V_D/V_T$$

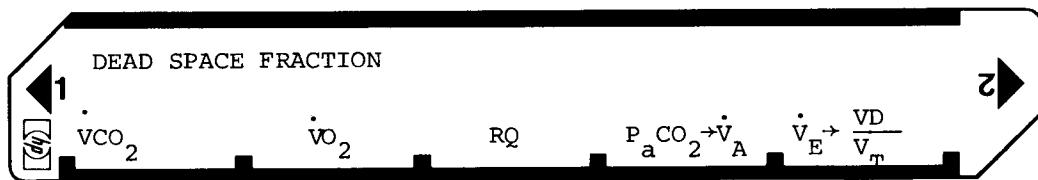
or if desired:

$$280 [B] .95 [C]$$

$$45 [D] \rightarrow 5.10 \text{ l/min, BTPS}$$

$$7 [E] \rightarrow 0.27, V_D/V_T$$

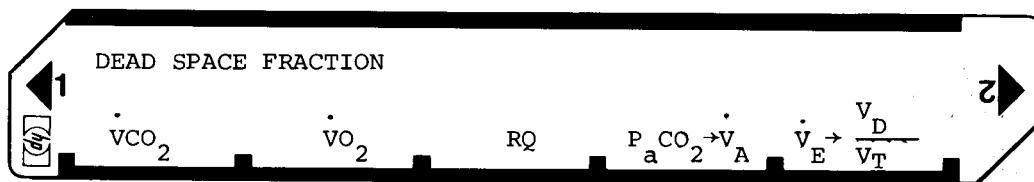
or, if R_Q is not desired:


$$266 [A] 45 [D] \rightarrow 5.10 \text{ l/min, BTPS}$$

$$7 [E] \rightarrow 0.27, V_D/V_T$$

Reference(s) Otis, A.B., Handbook of Physiology, VOL 1, Sec 3, P.681-698.

This program is a translation of the HP-65 Users' Library Program #00200A submitted by Hewlett-Packard.


User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input $\dot{V}CO_2$	$\dot{V}CO_2$ (ml/min)	A	$\dot{V}O_2$ (if stored)
3	Input $\dot{V}O_2$	$\dot{V}O_2$ (ml/min)	B	R_Q
4	Input R_Q if not displayed	R_Q	C	P_aCO_2 (if stored)
5	Input P_aCO_2 and calculate V_A	P_aCO_2 (mmHg)	D	V_A (l/min)
6	Input V_E and calculate V_D/V_T	V_E (l/min)	E	V_D/V_T
Detailed User Instructions:				
<p>$\dot{V}CO_2$ output ($\dot{V}CO_2$) and O_2 uptake ($\dot{V}O_2$) are input in milliliters per minute, STPD. If the experimental values are not measured in STPD, they should be converted prior to input. The HP-67/97 may be used as a four-function calculator between input entries for purposes of unit conversion. If a separate program is to be used for conversion the conversion should be done prior to running this series of programs, as some patient data may be lost from memory.</p>				
<p>The values of $\dot{V}CO_2$ and $\dot{V}O_2$ are stored in memory for use by later programs. If $\dot{V}O_2$ has been previously stored by the Fick calculation program, it will be recalled automatically. After R_Q appears, press [C] to store $\dot{V}CO_2$ and $\dot{V}O_2$. P_aCO_2 will appear if previously stored.</p>				
<p>The V_A is output (displayed) in liters per minute BTPS. If, after computing V_A, it is desired to calculate the ventilation/perfusion ratio (V_A/Q), and $Q(CO)$ is already known, simply enter Q, press [÷], and the V_A/Q ratio will be displayed. Input total ventilation, V_E in l/min. BTPS. The V_D/V_T ratio will appear. To compute actual dead space, utilize the HP 67/97 as a four-function calculator and either multiply by tidal volume, if known, or enter V_E again, divide by respiratory rate to obtain tidal volume, and then press [X] to obtain actual dead space volume.</p>				
<p>It is possible to input R_Q and either $\dot{V}CO_2$ or $\dot{V}O_2$, rather than both $\dot{V}CO_2$ and $\dot{V}O_2$. When doing this, press only the button for which data</p>				

(con't)

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Enter VCO_2	057	EEX	-23	
002	SF0	16 21 00		058	2	02	Entangle P_aCO_2
003	ST01	35 01		059	X	-35	with PO_2 in R_5
004	RCL2	36 02	Display stored VO_2	060	INT	16 34	
005	RTN	24		061	RCL5	36 05	
006	*LBLB	21 12	Enter VO_2	062	FRC	16 44	
007	SF1	16 21 01		063	+	-55	
008	ST08	35 08		064	ST05	35 05	
009	F0?	16 23 00	If VCO_2 entered cal-	065	R↓	-31	
010	GT00	22 00	culate R_Q	066	ST01	35 01	Display V_A
011	CLX	-51	Else display 0	067	PRTX	-14	
012	RTN	24		068	RTN	24	
013	*LBL0	21 00	Calc. of R_Q	069	*LBL0	21 15	Enter V_E
014	RCL1	36 01		070	ENT↑	-21	
015	X#Y	-41		071	ENT↑	-21	
016	÷	-24		072	RCL1	36 01	Calc. V_D/V_T
017	PRTX	-14		073	-	-45	
018	RTN	24		074	X#Y	-41	
019	*LBL0	21 13	Enter R_Q	075	÷	-24	
020	F0?	16 23 00	Was VCO_2 entered	076	PRTX	-14	Display V_D/V_T
021	GT00	22 00	Yes	077	RTN	24	
022	GT01	22 01	No, calc. VCO_2	078	*LBL1	21 01	Calculate VCO_2
023	*LBL0	21 00		079	F1?	16 23 01	Was VO_2 input?
024	F1?	16 23 01	Was VO_2 entered	080	GT00	22 00	Yes, go to 0
025	GT02	22 02	Yes, go to 2	081	CLX	-51	No, error
026	RCL1	36 01	No, calc. VO_2	082	÷	-24	
027	X#Y	-41		083	RTN	24	
028	÷	-24		084	*LBL0	21 00	
029	ST08	35 08	Save VO_2	085	RCL8	36 08	
030	*LBL2	21 02		086	X	-35	
031	RCL1	36 01		087	ST01	35 01	
032	EEX	-23		088	GT02	22 02	
033	4	04	Entangle VO_2 & VCO_2	089	R/S	51	
034	÷	-24					
035	FRC	16 44					
036	RCL8	36 08					
037	INT	16 34					
038	+	-55					
039	ST02	35 02	Store in R_2				
040	CF0	16 22 00					
041	CF1	16 22 01					
042	RCL5	36 05					
043	EEX	-23					
044	2	02					
045	÷	-24					
046	RTN	24	Display P_aCO_2				
047	*LBLD	21 14	Enter P_aCO_2				
048	RCL1	36 01					
049	.	-62					
050	8	08					
051	6	06					
052	3	03	STPD → BTPS				
053	X	-35					
054	X#Y	-41					
055	÷	-24	Calc. V_A				
056	LSTX	16-63					

REGISTERS

0	¹ VCO_2/VA	² $VO_2 \cdot VCO_2$	³ VCO_2	⁴	⁵ $P_aCO_2 \cdot PO_2$	⁶	⁷	⁸ VO_2	⁹
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E			I		

FLAGS		SET STATUS		
0 $\dot{V}CO_2$?				
1 $\dot{V}O_2$?		ON	OFF	TRIG
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	DEG <input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	GRAD <input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	RAD <input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	SCI <input type="checkbox"/>
				ENG <input type="checkbox"/>
				FIX <input checked="" type="checkbox"/>
				n-2

Program Description I

Program Title : ALVEOLAR-ARTERIAL OXYGEN TENSION DIFFERENCE

Contributor's Name : Users' Library, Hewlett-Packard Company

Address : 1000 N.E. Circle Boulevard

City : Corvallis State : Oregon Zip Code : 97330

Program Description, Equations, Variables

This program calculates the difference between alveolar and arterial oxygen concentration. One approximation has been made in the equation for $P_A O_2$. In the third term, which is a small correction factor, the $F_1 O_2$ has been derived by dividing the $P_1 O_2$ by 760, the nominal barometric pressure at sea level. The error introduced will be negligible unless measurements are being made at a very high altitude and very high inspired oxygen tension.

Equations Used:

$$A-aO_2 = P_A O_2 - P_a O_2 \text{ (mmHg)}$$

$$P_A O_2 = P_1 O_2 - \frac{P_a CO_2}{R_Q} + \frac{P_1 O_2}{760} \cdot P_a CO_2 \cdot \frac{1-R_Q}{R_Q} \text{ (mmHg)}$$

where

$$P_1 O_2 = \frac{F_1 O_2 (\%)}{100} \cdot P_{\text{Barometer}} \text{ (mmHg)}$$

$$R_Q = \frac{VCO_2 \text{ (ml/minSTPD)}}{VO_2 \text{ (ml/min STPD)}}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

$$P_{1\ O_2} = 150 \text{ mmHg}$$

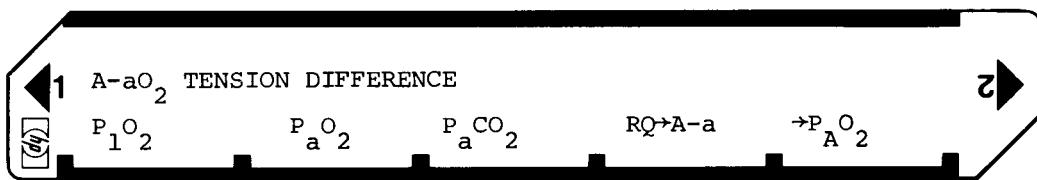
$$P_{a\ O_2} = 100 \text{ mmHg}$$

$$P_{a\ CO_2} = 45 \text{ mmHg}$$

$$R = 0.95$$

Solution(s)

150 [A] 100 [B] 45 [C] .95 [D] \rightarrow 3.10 mmHg, A-a diff.


$$[E] \rightarrow 103.10 \text{ mmHg}, P_{A\ O_2}$$

Reference(s) This program is a translation of the HP-65 Users' Library Program

#00201A submitted by Hewlett-Packard

West, John B., "Ventilation/Blood Flow and Gas Exchange", 2nd ed., Blackwell Scientific Publication, Oxford, 1970.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL4	21 11	Enter $P_{I\bar{O}_2}$	057	-	-45	
002	ST08	35 08		058	ROL1	36 01	
003	ROL5	36 05		059	X	-35	
004	FRC	16 44		060	ROL8	36 08	
005	EEX	-23	Untangle PO_2	061	7	07	
006	3	03		062	6	06	
007	X	-35		063	0	00	
008	RTN	24		064	+	-24	
009	*LBLB	21 12	Enter P_{aO_2}	065	X	-35	
010	EEX	-23		066	+	-55	
011	3	03	Entangle with PCO_2	067	ROL8	36 08	
012	÷	-24	in PO_2	068	+	-55	
013	ROL5	36 05		069	ST01	35 01	
014	INT	16 34		070	ROL5	36 05	
015	+	-55		071	FRC	16 44	Compute A-a diff.
016	ST05	35 05		072	EEX	-23	
017	EEX	-23	Untangle PCO_2	073	3	03	
018	2	02		074	X	-35	
019	÷	-24		075	-	-45	
020	RTN	24		076	PRTX	-14	
021	*LBLC	21 13	Enter P_{aCO_2}	077	RTN	24	
022	ST01	35 01		078	*LBLB	21 15	Display P_{AO_2}
023	EEX	-23	Entangle with P_{aO_2}	079	ROL1	36 01	
024	2	02	in R_5	080	PRTX	-14	
025	X	-35		081	RTN	24	
026	INT	16 34		082	R/S	51	
027	ROL5	36 05					
028	FRC	16 44					
029	+	-55					
030	ST05	35 05	Save Hgb				
031	ROL9	36 09					
032	ROL2	36 02					
033	FRC	16 44					
034	ROL2	36 02					
035	INT	16 34					
036	0	00					
037	X=Y?	16-33					
038	GTO1	22 01					
039	R↓	-31					
040	EEX	-23	Compute R_Q				
041	4	04					
042	÷	-24					
043	÷	-24					
044	*LBL1	21 01	Restore Hgb	100			
045	R1	16-31					
046	ST09	35 09					
047	R↓	-31	Display O or R_Q				
048	RTN	24					
049	*LBLD	21 14	Enter R_Q				
050	ROL1	36 01	Compute P_{AO_2}				
051	CHS	-22					
052	X≠Y	-41					
053	÷	-24					
054	LSTX	16-63					
055	1/X	52					
056	1	01					

REGISTERS

0	1 P_{aCO_2}/P_{aO_2}	2 USED	3	4	5 USED	6	7	8 $P_{I\bar{O}_2}$	9 Hgb
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D		E		I		

SET STATUS

FLAGS	TRIG		DISP	
	ON	OFF	DEG	SCI
0	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
1	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
2	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

FIX
 SCI
 ENG
 n 2

Program Description I

Program Title	PHYSIOLOGIC SHUNT AND FICK		
Contributor's Name	HEWLETT-PACKARD		
Address	1000 N.E. Circle Boulevard		
City	Corvallis	State	Oregon
		Zip Code	97330

Program Description, Equations, Variables

The Fick cardiac output and physiologic shunt fraction are calculated from arterial, venous and alveolar oxygen concentration and oxygen intake.

Equations Used:

$$CO(\text{ml/min}) = \frac{VO_2 \text{ (ml/minSTPD)} \cdot 100(\%)}{(C_aO_2 - C_vO_2 \text{ (vol. \%)}) \cdot 1000 \text{ (ml/l)}}$$

$$\text{Phys. Shunt} = \frac{C_aO_2 - C_AO_2}{C_AO_2 - C_vO_2}$$

These are the standard Fick cardiac output and physiologic shunt equations. If measured O_2 saturations are used, these equations will be accurate.

Operating Limits and Warnings

If the content values have been derived from saturation estimates on PO_2 measurements for arterial and venous blood, the results should be viewed with caution unless the patients oxygen dissociation curve has been established to be normal.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

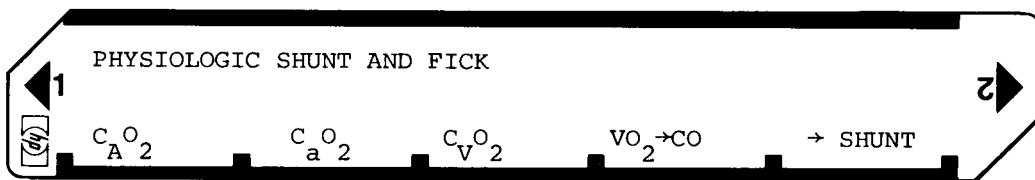
$$C_{A2} = 20 \text{ vol.\%}$$

$$C_{a2} = 18 \text{ vol.\%}$$

$$C_{V2} = 15 \text{ vol.\%}$$

$$VO_2 = 250 \text{ ml/min. STPD}$$

Solution(s)


$$20 \text{ [A]} \quad 18 \text{ [B]} \quad 15 \text{ [C]} \quad 250 \text{ [D]} \rightarrow 8.33 \text{ l/min (CO)}$$

$$[E] \rightarrow 40.00\% \text{ (SHUNT)}$$

Reference(s) This program is a translation of the HP-65 Users' Library Program #00202A submitted by Hewlett-Packard.

Comroe, Julius H., Jr., et al. The Lung, 2nd ed., Year Book Medical Publishers, Inc. Chicago, 1962, p.345. Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters, F.A.Davis Co., Phil., 1972, p.21.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS		
001	*LBLH	21 11	Enter $C_A O_2$						
002	STO1	35 01							
003	RCL4	36 04	Display $C_A O_2$	060					
004	RTN	24							
005	*LELB	21 12	Enter $C_A O_2$						
006	STO4	35 04							
007	RCL3	36 03	Display $C_V O_2$						
008	RTN	24							
009	*LBLC	21 13	Enter $C_V O_2$						
010	STO3	35 03							
011	RCL2	36 02	Display $V O_2$						
012	RTN	24							
013	*LBLD	21 14	Enter $V O_2$	070					
014	INT	16 34							
015	RCL2	36 02							
016	FRC	16 44							
017	+	-55							
018	STO2	35 02							
019	RCL4	36 04							
020	RCL3	36 03							
021	-	-45							
022	÷	-24							
023	1	01		080					
024	0	00							
025	÷	-24							
026	STO8	35 08							
027	EEX	-23							
028	2	02							
029	x	-35							
030	INT	16 34							
031	RCL7	36 07							
032	FRC	16 44							
033	+	-55							
034	STO7	35 07	Display CO	090					
035	RCL8	36 08							
036	FRTX	-14							
037	RTN	24							
038	*LELE	21 15	Compute shunt						
039	RCL1	36 01							
040	RCL4	36 04							
041	-	-45		100					
042	RCL1	36 01							
043	RCL3	36 03							
044	-	-45							
045	÷	-24							
046	EEX	-23							
047	2	02							
048	x	-35							
049	PRTX	-14							
050	RTN	24							
051	R/S	51							
							SET STATUS		
							FLAGS		
							ON OFF		
							0 <input type="checkbox"/> <input checked="" type="checkbox"/>		
							1 <input type="checkbox"/> <input checked="" type="checkbox"/>		
							2 <input type="checkbox"/> <input checked="" type="checkbox"/>		
							3 <input type="checkbox"/> <input checked="" type="checkbox"/>		
				110			DEG <input checked="" type="checkbox"/>		
							GRAD <input type="checkbox"/>		
							RAD <input type="checkbox"/>		
							SCI <input type="checkbox"/>		
							ENG <input type="checkbox"/>		
							n ₂ <input type="checkbox"/>		
							REGISTERS		
0	¹ $C_A O_2$	² USED	³ $C_V O_2$	⁴ $C_a O_2$	5	6	7 USED	8 CO	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	B	C	D	E	F	G	H	I	J

Program Description I

Program Title BODY SURFACE AREA FOR CARDIO PULMONARY

Contributor's Name Hewlett-Packard Company

Address 1000 N.E. Circle Boulevard

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables This program calculates body surface area by either the method of DuBois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in., lb.) units. Quantities in English units should be input as negative numbers. If cardiac output is given, the cardiac index can also be calculated.

Equations:

Let Ht be height, Wt be weight, and BSA be the body surface area in m^2 .

$$\text{Ht (cm)} = 2.54 \text{ Ht (in.)}$$

$$\text{Wt (kg)} = 0.45359237 \text{ Wt (lb.)}$$

DuBois:

$$\text{BSA (m}^2\text{)} = \text{Ht (cm)}^{0.725} \cdot \text{Wt (kg)}^{0.425} \cdot 7.184 \times 10^{-3}$$

Boyd:

$$\text{BSA (m}^2\text{)} = \text{Wt (g)}^{0.7285} - 0.0188 \log \text{Wt} \cdot \text{Ht (cm)}^{0.3} \cdot 3.207 \times 10^{-4}$$

$$\text{CI} = \frac{\text{CO(l/min)}}{\text{BSA (m}^2\text{)}}$$

Operating Limits and Warnings The DuBois formula for BSA is undefined for children with a BSA less than 0.6 m^2 . In such cases BSA should be calculated by the Boyd formula.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

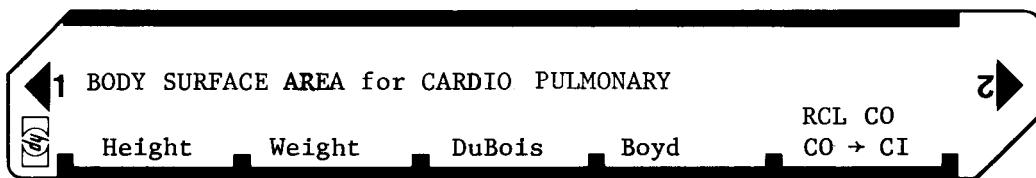
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) 1) Patient is 176 cm. in height and weighs 63.5 kg. What is his body surface area by both the DuBois and Boyd methods?

2) A patient 60 inches in height and 100 pounds in weight has a cardiac output of 5 l/min. Calculate the body surface area and cardiac index by DuBois. What is the cardiac index using the Boyd BSA?


[f] [E] → 5.00 (Recalls CO, Stored above)
 [E] → 3.57 l/min m² (CI, Boyd)

Reference(s) D. DuBois and E.F. DuBois, Clin. Cal. 10, Arch. Int. Med., 17, 863, 1916.

Edith Boyd, Growth of the Surface Area of the Human Body, U. of Minnesota Press, 1935, p. 132.

This program is a modification of the Users' Library Programs # 00203A and # 00204A submitted by Hewlett-Packard.

User Instructions

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057	.	-62	
002	X>0?	16-44		058	3	03	
003	GT01	22 01	If cm store	059	YX	31	
004	CHS	-22		060	RCL6	36 06	
005	2	02		061	EEX	-23	
006	.	-62		062	3	03	
007	5	05		063	X	-35	
008	4	04		064	ENT↑	-21	
009	X	-35		065	LOG	16 32	
010	*LBL1	21 01		066	.	-62	
011	ST05	35 05	Store Ht.	067	0	00	
012	RTN	24		068	1	01	
013	*LBLB	21 12		069	8	08	
014	X>0?	16-44	Enter Wt.	070	8	08	
015	GT02	22 02	If kg store	071	X	-35	
016	CHS	-22		072	.	-62	
017	2	02		073	7	07	
018	.	-62		074	2	02	
019	2	02		075	8	08	
020	÷	-24		076	5	05	
021	*LBL2	21 02		077	-	-45	
022	ST06	35 06	Store Wt.	078	YX	31	
023	RTN	24		079	÷	-24	
024	*LBLC	21 13	Calculate BSA	080	3	03	
025	RCL5	36 05	by DuBois	081	1	01	
026	.	-62		082	1	01	
027	7	07		083	8	08	
028	2	02		084	÷	-24	
029	5	05		085	ST01	35 01	
030	YX	31		086	EEX	-23	
031	RCL6	36 06		087	2	02	
032	.	-62		088	÷	-24	
033	4	04		089	RCL7	36 07	
034	2	02		090	INT	16 34	
035	5	05		091	+	-55	
036	YX	31		092	ST07	35 07	
037	X	-35		093	RCL1	36 01	
038	1	01		094	PRTX	-14	
039	3	03		095	RTN	24	
040	9	09		096	*LBL4	21 16 15	
041	.	-62		097	RCL7	36 07	
042	2	02		098	EEX	-23	
043	÷	-24		099	2	02	
044	ST01	35 01		100	÷	-24	
045	EEX	-23		101	RTN	24	
046	2	02	Tangle with CO	102	*LBL4	21 15	
047	÷	-24	and store as	103	EEX	-23	
048	RCL7	36 07	100 CO + .01 BSA	104	2	02	
049	INT	16 34		105	X	-35	
050	+	-55		106	INT	16 34	
051	ST07	35 07		107	RCL7	36 07	
052	RCL1	36 01		108	FRC	16 44	
053	PRTX	-14		109	+	-55	
054	RTN	24		110	ST07	35 07	
055	*LBLD	21 14	Calculate BSA	111	LSTX	16-63	
056	RCL5	36 05	by Boyd	112	÷	-24	

REGISTERS

0	1	BSA	2	3	4	5	HT.	6	WT.	7	Used	8	9
S0	S1		S2	S3	S4	S5	S6	S7	S8	S9			
A		B		C		D		E		I			

97 Program Listing II

LABELS					FLAGS	SET STATUS		
A Ht.	B Wt.	C DuBois	D Boyd	E CI	0	FLAGS	TRIG	DISP
a	b	c	d	e RCL CO	1	0 <input type="checkbox"/> <input checked="" type="checkbox"/>	DEG <input checked="" type="checkbox"/>	FIX <input checked="" type="checkbox"/>
0	1 Sto. Ht.	2 Sto. Wt.	3	4	2	1 <input type="checkbox"/> <input checked="" type="checkbox"/>	GRAD <input type="checkbox"/>	SCI <input type="checkbox"/>
5	6	7	8	9	3	2 <input type="checkbox"/> <input checked="" type="checkbox"/>	RAD <input type="checkbox"/>	ENG <input type="checkbox"/>
						3 <input type="checkbox"/> <input checked="" type="checkbox"/>		n 2

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
Real Estate Investment
Taxes
Home Construction Estimating
Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

PULMONARY

A group of programs for carrying out common pulmonary function calculations. A number of programs may be used in sequence for extensive calculations such as required in a respiratory intensive care unit. Included are programs for ventilator setup and adjustment, blood-gas, acid-base and respiratory status calculations.

PULMONARY MEDICINE/MALE SPIROMETRY STANDARDS
PULMONARY MEDICINE/FEMALE SPIROMETRY STANDARDS
PULMONARY PROGRAM SERIES
LUNG DIFFUSION
WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS
VENTILATOR SETUP AND CORRECTIONS (RADFORD)
ARTERIAL CO₂ NORMALIZATION
BLOOD ACID-BASE STATUS
VIRTUAL PO₂ AND O₂ SATURATION AND CONTENT
ANAEROBIC PCO₂ AND pH CHANGE
ANAEROBIC PO₂ CHANGE
DEAD SPACE FRACTION
ALVEOLAR - ARTERIAL OXYGEN TENSION DIFFERENCE
PHYSIOLOGIC SHUNT AND FICK
BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14037 Printed in U.S.A. 00097-90212
Revision B 3-78

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.