

HEWLETT-PACKARD

# HP-67/HP-97

Users' Library Solutions

## Test Statistics



## INTRODUCTION

In an effort to provide continued value to its customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

## A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

**REMEMBER!** To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

## TABLE OF CONTENTS

|                                                                                                                                                                                                                       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ONE SAMPLE TEST STATISTICS FOR THE MEAN . . . . .                                                                                                                                                                     | 1  |
| Computes the z statistic for testing the mean if the variance is known. If the variance is unknown, then the t statistic is computed.                                                                                 |    |
| TEST STATISTICS FOR THE CORRELATION COEFFICIENT . . . . .                                                                                                                                                             | 5  |
| The t statistic can be used to test if the true correlation coefficient is zero. The z statistic, which can be used to test if the correlation coefficient equals a given number (usually non-zero) is also computed. |    |
| DIFFERENCES AMONG PROPORTIONS . . . . .                                                                                                                                                                               | 9  |
| Computes the chi-square statistic for testing if several independent binomial distributions have equal means.                                                                                                         |    |
| BEHRENS-FISHER STATISTIC . . . . .                                                                                                                                                                                    | 13 |
| Given random samples from two independent normal populations with unequal variances (unknown), this program computes the Behren-Fisher statistic for testing the means.                                               |    |
| KRUSKAL-WALLIS STATISTIC . . . . .                                                                                                                                                                                    | 17 |
| The Kruskal-Wallis statistic can be used to test if the independent random samples come from identical continuous population                                                                                          |    |
| MEAN-SQUARE SUCCESSIVE . . . . .                                                                                                                                                                                      | 23 |
| The mean-square successive difference is used to test if a given sample is random. Suppose the sample size is large and the population is normal, then a z statistic is used instead.                                 |    |
| THE RUN TEST FOR RANDOMNESS . . . . .                                                                                                                                                                                 | 27 |
| For a given sequence, the z statistic is computed for testing the randomness of the sequence.                                                                                                                         |    |
| INTRACLASS CORRELATION COEFFICIENT . . . . .                                                                                                                                                                          | 32 |
| Calculates the intraclass correlation coefficient which measures the degree of association among individuals within classes or groups.                                                                                |    |
| FISHER'S EXACT TEST FOR A 2 X 2 CONTINGENCY TABLE . . . . .                                                                                                                                                           | 37 |
| Fisher's exact probability test is used to analyze a 2 x 2 contingency table when the two independent samples are small in size.                                                                                      |    |
| BARTLETT'S CHI-SQUARE STATISTIC . . . . .                                                                                                                                                                             | 42 |
| This chi-square statistic can be used to test the homogeneity of variances. Error corrector for erroneous input data is provided.                                                                                     |    |
| MANN-WHITNEY STATISTIC . . . . .                                                                                                                                                                                      | 46 |
| Computes the Mann-Whitney statistic on two independent samples of equal or unequal sizes. Error corrector for erroneous input data is provided.                                                                       |    |
| KENDALL'S COEFFICIENT OF CONCORDANCE . . . . .                                                                                                                                                                        | 50 |
| Calculates Kendall's coefficient of concordance to test agreement between rankings. Error corrector for erroneous input data is provided.                                                                             |    |

# Program Description I

Program Title

## ONE SAMPLE TEST STATISTICS FOR THE MEAN

Contributor's Name

Hewlett-Packard

Address

1000 N.E. Circle Blvd.

City

Corvallis

State

Oregon

Zip Code 97330

### Program Description, Equations, Variables

Suppose  $\{x_1, x_2, \dots, x_n\}$  is a sample from a normal population with a known variance  $\sigma^2$  and unknown mean  $\mu$ . A test of the null hypothesis

$$H_0: \mu = \mu_0$$

is based on the z statistic which has a standard normal distribution.

If the variance  $\sigma^2$  is unknown then the t statistic, which has the t distribution with  $n - 1$  degrees of freedom, is used instead.

#### Equations:

$$z = \frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma}$$

$$t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s}$$

where  $\bar{x}$  and  $s$  are sample mean and sample standard deviation.

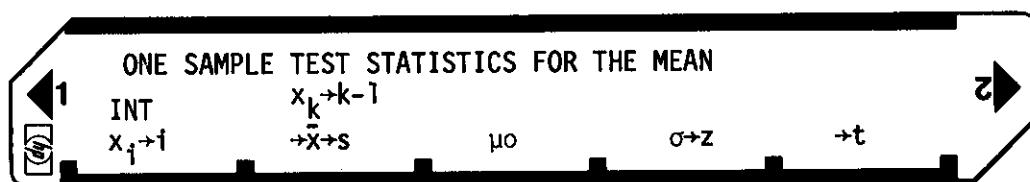
### Operating Limits and Warnings

#### Remark:

$n > 1$ .

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.


## Program Description II

|                          |                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <b>Sample Problem(s)</b> | <b>Example:</b><br>Compute the z and the t statistics for the following set of data if $\mu_0 = 2$ and $\sigma = 1$ . |
|                          | $\{ 2.73, 0.45, 2.52, 1.19, 3.51, 2.75, 1.79, 1.83, 1, 0.87, 1.9, 1.62, 1.74, 1.92, 1.24, 2.68 \}$                    |

**Reference(s)** This program is a translation of the HP-65 Stat Pac 2 program.

# User Instructions

3



| STEP | INSTRUCTIONS                                        | INPUT DATA/UNITS | KEYS    | OUTPUT DATA/UNITS |
|------|-----------------------------------------------------|------------------|---------|-------------------|
| 1    | Enter program                                       |                  |         |                   |
| 2    | If $\bar{x}$ and $s$ are known, go to 8             |                  |         |                   |
| 3    | Initialize                                          |                  | RTN R/S | 0.00              |
| 4    | Perform 4 for $i = 1, 2, \dots, n$                  | $x_i$            | A       | $i$               |
| 5    | Optional—delete erroneous data $x_k$ ( $k \neq 1$ ) | $x_k$            | f A     |                   |
| 6    | Compute $\bar{x}$ and $s$                           |                  | B       | $\bar{x}$         |
|      |                                                     |                  | B       | $s$               |
| 7    | Go to 9                                             |                  |         |                   |
| 8    | Store $\bar{x}$ and $s$                             | $\bar{x}$        | STO 2   |                   |
|      |                                                     | $s$              | STO 5   |                   |
| 9    | Input $\mu_0$                                       | $\mu_0$          | C       |                   |
| 10   | Input $\sigma$ and compute $z$                      | $\sigma$         | D       | $z$               |
|      | or                                                  |                  |         |                   |
|      | Compute $t$                                         |                  | E       | $t$               |
| 11   | For a new case, go to 2                             |                  |         |                   |

## 97 Program Listing I

| STEP | KEY ENTRY              | KEY CODE | COMMENTS                                                         | STEP                        | KEY ENTRY         | KEY CODE       | COMMENTS             |
|------|------------------------|----------|------------------------------------------------------------------|-----------------------------|-------------------|----------------|----------------------|
| 001  | *LBLa                  | 21 16 11 |                                                                  | 057                         | -                 | -45            |                      |
| 002  | CLRG                   | 16-53    |                                                                  | 058                         | X $\bar{z}$ Y     | -41            | $\bar{x}-\mu_0$      |
| 003  | RTN                    | 24       |                                                                  | 059                         | $\div$            | -24            |                      |
| 004  | *LBLA                  | 21 11    |                                                                  | 060                         | RCL1              | 36 01          |                      |
| 005  | RCL2                   | 36 02    |                                                                  | 061                         | $\sqrt{X}$        | 54             |                      |
| 006  | -                      | -45      | Accumulate sums<br>for the mean and<br>the standard<br>deviation | 062                         | X                 | -35            |                      |
| 007  | RCL4                   | 36 04    |                                                                  | 063                         | RTN               | 24             | Display z            |
| 008  | -                      | -45      |                                                                  | 064                         | *LBLB             | 21 15          |                      |
| 009  | RCL1                   | 36 01    |                                                                  | 065                         | RCL2              | 36 02          |                      |
| 010  | 1                      | 01       |                                                                  | 066                         | RCL6              | 36 06          |                      |
| 011  | +                      | -55      |                                                                  | 067                         | -                 | -45            | $\bar{x}-\mu_0$      |
| 012  | $\div$                 | -24      |                                                                  | 068                         | RCL5              | 36 05          |                      |
| 013  | ENT↑                   | -21      |                                                                  | 069                         | $\div$            | -24            |                      |
| 014  | ENT↑                   | -21      |                                                                  | 070                         | RCL1              | 36 01          |                      |
| 015  | RCL4                   | 36 04    |                                                                  | 071                         | $\sqrt{X}$        | 54             |                      |
| 016  | +                      | -55      |                                                                  | 072                         | X                 | -35            | Display t            |
| 017  | ENT↑                   | -21      |                                                                  | 073                         | RTN               | 24             |                      |
| 018  | ENT↑                   | -21      |                                                                  | 074                         | *LBLb             | 21 16 12       | Delete data          |
| 019  | RCL2                   | 36 02    |                                                                  | 075                         | RCL1              | 36 01          |                      |
| 020  | +                      | -55      |                                                                  | 076                         | CHS               | -22            |                      |
| 021  | ST02                   | 35 02    |                                                                  | 077                         | ST01              | 35 01          |                      |
| 022  | LSTX                   | 16-63    |                                                                  | 078                         | R↓                | -31            |                      |
| 023  | -                      | -45      |                                                                  | 079                         | GSBA              | 23 11          |                      |
| 024  | -                      | -45      |                                                                  | 080                         | R/S               | 51             |                      |
| 025  | ST04                   | 35 04    |                                                                  |                             |                   |                |                      |
| 026  | R↓                     | -31      |                                                                  |                             |                   |                |                      |
| 027  | X                      | -35      |                                                                  |                             |                   |                |                      |
| 028  | RCL1                   | 36 01    |                                                                  |                             |                   |                |                      |
| 029  | X                      | -35      |                                                                  |                             |                   |                |                      |
| 030  | 1                      | 01       |                                                                  |                             |                   |                |                      |
| 031  | LSTX                   | 16-63    |                                                                  |                             |                   |                |                      |
| 032  | +                      | -55      |                                                                  |                             |                   |                |                      |
| 033  | ABS                    | 16 31    |                                                                  | 090                         |                   |                |                      |
| 034  | ST01                   | 35 01    |                                                                  |                             |                   |                |                      |
| 035  | X                      | -35      |                                                                  |                             |                   |                |                      |
| 036  | ST+3                   | 35-55 03 |                                                                  |                             |                   |                |                      |
| 037  | RCL1                   | 36 01    |                                                                  |                             |                   |                |                      |
| 038  | RTN                    | 24       |                                                                  |                             |                   |                |                      |
| 039  | *LBLB                  | 21 12    | Display the mean                                                 |                             |                   |                |                      |
| 040  | RCL2                   | 36 02    |                                                                  |                             |                   |                |                      |
| 041  | R/S                    | 51       |                                                                  |                             |                   |                |                      |
| 042  | *LBLB                  | 21 12    |                                                                  |                             |                   |                |                      |
| 043  | RCL3                   | 36 03    |                                                                  | 100                         |                   |                |                      |
| 044  | RCL1                   | 36 01    | Compute the<br>standard deviation                                |                             |                   |                |                      |
| 045  | 1                      | 01       |                                                                  |                             |                   |                |                      |
| 046  | -                      | -45      |                                                                  |                             |                   |                |                      |
| 047  | $\div$                 | -24      |                                                                  |                             |                   |                |                      |
| 048  | $\sqrt{X}$             | 54       |                                                                  |                             |                   |                |                      |
| 049  | ST05                   | 35 05    | Store s                                                          |                             |                   |                | SET STATUS           |
| 050  | RTN                    | 24       |                                                                  |                             |                   |                |                      |
| 051  | *LBLC                  | 21 13    |                                                                  |                             |                   |                |                      |
| 052  | ST06                   | 35 06    | Store $\mu_0$                                                    |                             |                   |                |                      |
| 053  | RTN                    | 24       |                                                                  |                             |                   |                |                      |
| 054  | *LBLD                  | 21 14    |                                                                  |                             |                   |                |                      |
| 055  | RCL2                   | 36 02    |                                                                  |                             |                   |                |                      |
| 056  | RCL6                   | 36 06    |                                                                  |                             |                   |                |                      |
| 0    | <sup>1</sup> n (or -n) |          | <sup>2</sup> running mean                                        | <sup>3</sup> sum of squares | <sup>4</sup> Used | <sup>5</sup> S | <sup>6</sup> $\mu_0$ |
|      | S0                     | S1       | S2                                                               | S3                          | S4                | S5             | S6                   |
|      |                        |          |                                                                  |                             |                   | S7             | S8                   |
|      |                        |          |                                                                  |                             |                   |                | S9                   |
|      | A                      | B        | C                                                                | D                           | E                 |                | I                    |

# Program Description I

|                    |                                                        |          |        |
|--------------------|--------------------------------------------------------|----------|--------|
| Program Title      | <b>TEST STATISTICS FOR THE CORRELATION COEFFICIENT</b> |          |        |
| Contributor's Name | Hewlett-Packard                                        |          |        |
| Address            | 1000 N.E. Circle Blvd.                                 |          |        |
| City               | Corvallis                                              | State    | Oregon |
|                    |                                                        | Zip Code | 97330  |

## Program Description, Equations, Variables

Under the assumptions of normal correlation analysis, the  $t$  statistic, which has the  $t$  distribution with  $n - 2$  degrees of freedom, can be used to test the null hypothesis that the true correlation coefficient  $\rho = 0$ .

To test the null hypothesis  $\rho = \rho_0$ , where  $\rho_0$  is a given number, the  $z$  statistic is used.  $z$  has approximately the standard normal distribution.

### Equations:

$$t = \frac{r \sqrt{n - 2}}{\sqrt{1 - r^2}}$$

$$z = \frac{\sqrt{n - 3}}{2} \ln \left[ \frac{(1 + r)(1 - \rho_0)}{(1 - r)(1 + \rho_0)} \right]$$

where  $r$  is an estimate (based on a sample of size  $n$ ) of the correlation coefficient  $\rho$ .

## Operating Limits and Warnings

### Remarks:

1. This program requires that  $n > 3$ ,  $|r| < 1$  and  $|\rho_0| < 1$ ; otherwise, flashing zeros will result.
2. Usually, the  $z$  statistic is used when the sample size is large.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

### Sample Problem(s)

**Example:**

Given  $r = 0.12$ ,  $n = 31$ , and  $\rho_0 = 0$ , find  $t$  and  $z$ .

### Keystrokes:

$$.12 \boxed{A} 31 \boxed{B} \boxed{C} \longrightarrow 0.65 (t)$$

$$0 \boxed{D} \boxed{E} \longrightarrow 0.64 (z)$$

### Solution(s)

Reference(s) 1. Hogg and Craig, Introduction to Mathematical Statistics,  
Macmillan Co., 1970

Macmillan Co., 1970

2. J. Freund, Mathematical Statistics. Prentice-Hall 1971

3. This program is a translation of the HP-65 Stat Pac 2 program

# User Instructions

7



| STEP | INSTRUCTIONS                   | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------|------------------|------|-------------------|
| 1    | Enter program                  |                  |      |                   |
| 2    | Input $r$ and $n$ in any order | $r$              | A    |                   |
|      |                                | $n$              | B    |                   |
| 3    | Compute $t$                    |                  | C    | $t$               |
|      | or                             |                  |      |                   |
|      | Input $\rho_0$ and compute $z$ | $\rho_0$         | D    |                   |
|      |                                |                  | E    | $z$               |
| 4    | For a new case, go to 2        |                  |      |                   |

## 97 Program Listing I

| STEP | KEY ENTRY      | KEY CODE | COMMENTS                                                      | STEP | KEY ENTRY | KEY CODE | COMMENTS |
|------|----------------|----------|---------------------------------------------------------------|------|-----------|----------|----------|
| 001  | *LBLA          | 21 11    |                                                               | 057  | ÷         | -24      |          |
| 002  | ST01           | 35 01    |                                                               | 058  | RTN       | 24       |          |
| 003  | *LBL0          | 21 00    |                                                               | 060  |           |          |          |
| 004  | ABS            | 16 31    |                                                               |      |           |          |          |
| 005  | 1              | 01       |                                                               |      |           |          |          |
| 006  | X#Y            | -41      |                                                               |      |           |          |          |
| 007  | X>Y?           | 16-34    | Test if r or $p_0$ has absolute value less than or equal to 1 |      |           |          |          |
| 008  | GT09           | 22 09    |                                                               |      |           |          |          |
| 009  | LSTX           | 16-63    |                                                               |      |           |          |          |
| 010  | RTN            | 24       |                                                               |      |           |          |          |
| 011  | *LBLB          | 21 12    |                                                               |      |           |          |          |
| 012  | ST02           | 35 02    |                                                               |      |           |          |          |
| 013  | 3              | 03       | Store n                                                       | 070  |           |          |          |
| 014  | X#Y            | -41      |                                                               |      |           |          |          |
| 015  | X≤Y?           | 16-35    | Test if $n > 3$                                               |      |           |          |          |
| 016  | GT09           | 22 09    |                                                               |      |           |          |          |
| 017  | RTN            | 24       |                                                               |      |           |          |          |
| 018  | *LBLC          | 21 13    | Compute t                                                     |      |           |          |          |
| 019  | RCL2           | 36 02    |                                                               |      |           |          |          |
| 020  | 2              | 02       |                                                               |      |           |          |          |
| 021  | -              | -45      | $n-2$                                                         |      |           |          |          |
| 022  | 1              | 01       |                                                               | 080  |           |          |          |
| 023  | RCL1           | 36 01    |                                                               |      |           |          |          |
| 024  | X <sup>2</sup> | 53       |                                                               |      |           |          |          |
| 025  | -              | -45      | $(n-2)/(1-r^2)$                                               |      |           |          |          |
| 026  | ÷              | -24      |                                                               |      |           |          |          |
| 027  | JX             | 54       |                                                               |      |           |          |          |
| 028  | RCL1           | 36 01    |                                                               |      |           |          |          |
| 029  | x              | -35      |                                                               |      |           |          |          |
| 030  | RTN            | 24       |                                                               |      |           |          |          |
| 031  | *LBLD          | 21 14    |                                                               |      |           |          |          |
| 032  | ST03           | 35 03    | Store $p_0$                                                   | 090  |           |          |          |
| 033  | GT00           | 22 00    |                                                               |      |           |          |          |
| 034  | *LBL E         | 21 15    | Test if $ p_0  \leq 1$                                        |      |           |          |          |
| 035  | RCL1           | 36 01    | Compute z                                                     |      |           |          |          |
| 036  | 1              | 01       |                                                               |      |           |          |          |
| 037  | +              | -55      |                                                               |      |           |          |          |
| 038  | 1              | 01       |                                                               |      |           |          |          |
| 039  | RCL1           | 36 01    |                                                               |      |           |          |          |
| 040  | -              | -45      | $(1+4)/(1-r)$                                                 |      |           |          |          |
| 041  | ÷              | -24      |                                                               |      |           |          |          |
| 042  | 1              | 01       |                                                               |      |           |          |          |
| 043  | RCL3           | 36 03    |                                                               | 100  |           |          |          |
| 044  | -              | -45      |                                                               |      |           |          |          |
| 045  | x              | -35      |                                                               |      |           |          |          |
| 046  | 1              | 01       |                                                               |      |           |          |          |
| 047  | RCL3           | 36 03    |                                                               |      |           |          |          |
| 048  | +              | -55      |                                                               |      |           |          |          |
| 049  | ÷              | -24      |                                                               |      |           |          |          |
| 050  | LN             | 32       |                                                               |      |           |          |          |
| 051  | RCL2           | 36 02    |                                                               |      |           |          |          |
| 052  | 3              | 03       |                                                               |      |           |          |          |
| 053  | -              | -45      | $n-3$                                                         | 110  |           |          |          |
| 054  | JX             | 54       |                                                               |      |           |          |          |
| 055  | x              | -35      |                                                               |      |           |          |          |
| 056  | 2              | 02       |                                                               |      |           |          |          |

## REGISTERS

|    |    |   |    |   |    |       |    |    |    |    |    |    |
|----|----|---|----|---|----|-------|----|----|----|----|----|----|
| 0  | 1  | r | 2  | n | 3  | $p_0$ | 4  | 5  | 6  | 7  | 8  | 9  |
| S0 | S1 |   | S2 |   | S3 |       | S4 | S5 | S6 | S7 | S8 | S9 |
| A  | B  |   | C  |   | D  |       | E  |    | I  |    |    |    |

## SET STATUS

| FLAGS | TRIG                     |                                     | DISP                                    |
|-------|--------------------------|-------------------------------------|-----------------------------------------|
|       | ON                       | OFF                                 |                                         |
| 0     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | DEG <input checked="" type="checkbox"/> |
| 1     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | GRAD <input type="checkbox"/>           |
| 2     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>            |
| 3     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | SCI <input type="checkbox"/>            |
|       |                          |                                     | ENG <input type="checkbox"/>            |
|       |                          |                                     | n <input type="checkbox"/>              |
|       |                          |                                     | 2 <input type="checkbox"/>              |

# Program Description I

Program Title

DIFFERENCES AMONG PROPORTIONS

Contributor's Name

Hewlett-Packard

Address

1000 N.E. Circle Blvd.

City

Corvallis

State Oregon

Zip Code 97330

## Program Description, Equations, Variables

Suppose  $x_1, x_2, \dots, x_k$  are observed values of a set of independent random variables having binomial distributions with parameters  $n_i$  and  $\theta_i$  ( $i = 1, 2, \dots, k$ ).

A chi-square statistic  $\chi^2$  can be used to test the null hypothesis  $\theta_1 = \theta_2 = \dots = \theta_k$ . The  $\chi^2$  statistic has the chi-square distribution with  $k - 1$  degrees of freedom.

### Equation:

$$\chi^2 = \sum_{i=1}^k \frac{(x_i - n_i \hat{\theta})^2}{n_i \hat{\theta} (1 - \hat{\theta})} = \sum_{i=1}^k n_i \left[ \frac{1}{\sum_{i=1}^k x_i} \sum_{i=1}^k \frac{x_i^2}{n_i} \right. \\ \left. + \frac{1}{\sum_{i=1}^k (n_i - x_i)} \sum_{i=1}^k \frac{(n_i - x_i)^2}{n_i} - 1 \right]$$

where

$$\hat{\theta} = \frac{\sum_{i=1}^k x_i}{\sum_{i=1}^k n_i}$$

## Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

**Sample Problem(s)**

---

**Example:**

---

|                 | $n_i$ | $x_i$ |
|-----------------|-------|-------|
| <b>Sample 1</b> | 400   | 232   |
| <b>Sample 2</b> | 500   | 260   |
| <b>Sample 3</b> | 400   | 197   |

---

**Keystrokes:**

---

**A** 400  $\blacktriangleleft$  232 **B** 500  $\blacktriangleleft$  260 **B** 400  $\blacktriangleleft$  197 **B**  $\rightarrow$  3.00 (k)  
**C**  $\rightarrow$  6.47 ( $\chi^2$ )  
**D**  $\rightarrow$  2.00 (df)  
**E**  $\rightarrow$  0.53 ( $\theta$ )

---

**Solution(s)** \_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

Reference(s) 1. J. Freund, Mathematical Statistics, Prentice-Hall, 1971.  
2. This program is a translation of the HP-65 Stat Pac 2 program.

Reference(s) 1. J. Freund, Mathematical Statistics, Prentice-Hall, 1971.

2. This program is a translation of the HP-65 Stat Pac 2 program.

# User Instructions



| STEP | INSTRUCTIONS                       | INPUT DATA/UNITS | KEYS       | OUTPUT DATA/UNITS |
|------|------------------------------------|------------------|------------|-------------------|
| 1    | Enter program                      |                  |            |                   |
| 2    | Initialize                         |                  | A          | 0.00              |
| 3    | Perform 3 for $i = 1, 2, \dots, k$ | $n_i$            | $\uparrow$ |                   |
|      |                                    | $x_i$            | B          | $i$               |
| 4    | Compute $\chi^2$ statistic         |                  | C          | $\chi^2$          |
| 5    | Compute df                         |                  | D          | df                |
| 6    | Compute $\hat{\theta}$             |                  | E          | $\hat{\theta}$    |
| 7    | For a new case, go to 2            |                  |            |                   |

## 97 Program Listing I

# Program Description I

13

Program Title

## BEHRENS-FISHER STATISTIC

Contributor's Name **Hewlett-Packard**Address **1000 N.E. Circle Blvd.**City **Corvallis**State **Oregon**Zip Code **97330**

### Program Description, Equations, Variables

Suppose  $\{x_1, x_2, \dots, x_{n_1}\}$  and  $\{y_1, y_2, \dots, y_{n_2}\}$  are independent random samples from two normal populations having means  $\mu_1, \mu_2$  (unknown). If the variances  $\sigma_1^2, \sigma_2^2$  cannot be assumed equal, then the Behrens-Fisher statistic  $d$  is used instead of the  $t$  statistic to test the null hypothesis

$$H_0: \mu_1 - \mu_2 = D.$$

Equation:

$$d = \frac{\bar{x} - \bar{y} - D}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where  $\bar{x}, \bar{y}$  and  $s_1^2, s_2^2$  are sample means and variances.

Critical values of this test are tabulated in the Fisher-Yates Tables for various values of  $n_1, n_2, \alpha$  and  $\theta$ , where  $\alpha$  is the level of significance and

$$\theta = \tan^{-1} \left( \frac{s_1}{s_2} \sqrt{\frac{n_2}{n_1}} \right).$$

### Operating Limits and Warnings

Remark:

$$n_1 > 1, n_2 > 1.$$

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

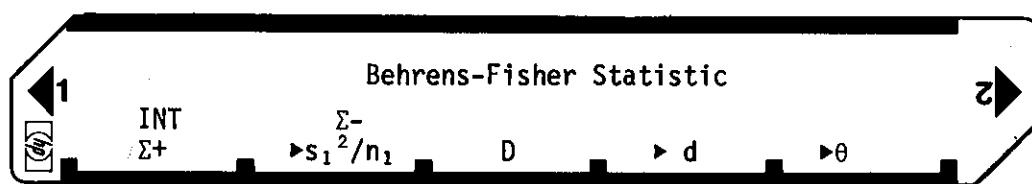
## Program Description II

### Sample Problem(s)

### Example:

Compute the Behrens-Fisher statistic for  $D = 0$ .

x: 79, 84, 108, 114, 120, 103, 122, 120  
y: 91, 103, 90, 113, 108, 87, 100, 80, 99, 54


### Keystrokes:

[f] [A] 79 A 84 A ... 120 A → 8.00 ( $n_1$ )  
 B → 34.60 ( $s_1^2 / n_1$ )  
 [f] [A] 91 A 103 A ... 54 A → 10.00 ( $n_2$ )  
 0 C D → 1.73 (d)  
 E → 47.88° ( $\theta$ )  
 or 0.84 radians  
 or 53.20 grads

### Solution(s)

Reference(s) 1. Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical Research, Hafner, Publishing Co., 1970.  
2. This program is a translation of the HP-65 Stat Pac 2 program.

# User Instructions



| STEP | INSTRUCTIONS                                                           | INPUT DATA/UNITS                                     | KEYS                             | OUTPUT DATA/UNITS |
|------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|-------------------|
| 1    | Enter program                                                          |                                                      |                                  |                   |
| 2    | If $\bar{x}$ , $\bar{y}$ and $s_1^2$ , $s_2^2$ are known, go to 11     |                                                      |                                  |                   |
| 3    | Initialize                                                             |                                                      | f A                              | 0.00              |
| 4    | Perform 4 for $i = 1, 2, \dots, n_1$                                   | $x_i$                                                | A                                | $i$               |
| 5    | Optional—delete erroneous $x_k$ ( $k \neq 1$ )                         | $x_k$                                                | f B                              |                   |
| 6    | Compute and store $\bar{x}$ , $s_1^2/n_1$                              |                                                      | B                                | $s_1^2/n_1$       |
| 7    | Initialize                                                             |                                                      |                                  | 0.00              |
| 8    | Perform 8 for $i = 1, 2, \dots, n_2$                                   | $y_i$                                                | A                                | $i$               |
| 9    | Optional—delete erroneous $y_h$ ( $h \neq 1$ )                         | $y_h$                                                | f B                              |                   |
| 10   | Go to 12                                                               |                                                      |                                  |                   |
| 11   | Store $\bar{x}$ , $\bar{y}$ and $s_1^2/n_1$ , $s_2^2/n_2$ in any order | $\bar{x}$<br>$s_1^2/n_1$<br>$\bar{y}$<br>$s_2^2/n_2$ | STO 5<br>STO 6<br>STO 2<br>STO 3 |                   |
| 12   | Input D                                                                | D                                                    | C                                |                   |
| 13   | Compute d and $\theta$                                                 |                                                      | D                                | d                 |
|      |                                                                        |                                                      | E                                | $\theta$          |
| 14   | Optional—recall means                                                  |                                                      | RCL 5                            | $\bar{x}$         |
|      |                                                                        |                                                      | RCL 2                            | $\bar{y}$         |
| 15   | For a different D, go to 12                                            |                                                      |                                  |                   |
| 16   | For a new case, go to 2                                                |                                                      |                                  |                   |

## 97 Program Listing I

| STEP | KEY ENTRY | KEY CODE | COMMENTS          | STEP | KEY ENTRY         | KEY CODE | COMMENTS              |
|------|-----------|----------|-------------------|------|-------------------|----------|-----------------------|
| 001  | *LBLA     | 21 16 11 |                   | 057  | RTN               | 24       |                       |
| 002  | 0         | 00       |                   | 058  | *LBLD             | 21 14    |                       |
| 003  | ST01      | 35 01    | Initialize        | 059  | RCL5              | 36 05    | Compute d             |
| 004  | ST02      | 35 02    |                   | 060  | RCL2              | 36 02    |                       |
| 005  | ST03      | 35 03    |                   | 061  | -                 | -45      |                       |
| 006  | ST04      | 35 04    |                   | 062  | RCL7              | 36 07    |                       |
| 007  | RTN       | 24       |                   | 063  | -                 | -45      |                       |
| 008  | *LBLA     | 21 11    |                   | 064  | RCL3              | 36 03    |                       |
| 009  | RCL2      | 36 02    | Accumulate sums   | 065  | RCL1              | 36 01    |                       |
| 010  | -         | -45      |                   | 066  | 1                 | 01       |                       |
| 011  | RCL4      | 36 04    |                   | 067  | -                 | -45      |                       |
| 012  | -         | -45      |                   | 068  | ÷                 | -24      |                       |
| 013  | RCL1      | 36 01    |                   | 069  | RCL1              | 36 01    |                       |
| 014  | 1         | 01       |                   | 070  | ÷                 | -24      |                       |
| 015  | +         | -55      |                   | 071  | ST08              | 35 08    | Store $s_2^2/n_2$     |
| 016  | ÷         | -24      |                   | 072  | RCL6              | 36 06    |                       |
| 017  | ENT↑      | -21      |                   | 073  | +                 | -55      |                       |
| 018  | ENT↑      | -21      |                   | 074  | JX                | 54       |                       |
| 019  | RCL4      | 36 04    |                   | 075  | ÷                 | -24      |                       |
| 020  | +         | -55      |                   | 076  | RTN               | 24       |                       |
| 021  | ENT↑      | -21      |                   | 077  | *LBLE             | 21 15    |                       |
| 022  | ENT↑      | -21      |                   | 078  | RCL6              | 36 06    | Compute θ             |
| 023  | RCL2      | 36 02    |                   | 079  | RCL8              | 36 08    |                       |
| 024  | +         | -55      |                   | 080  | ÷                 | -24      |                       |
| 025  | ST02      | 35 02    |                   | 081  | JX                | 54       |                       |
| 026  | LSTX      | 16-63    |                   | 082  | TAN <sup>-1</sup> | 16 43    |                       |
| 027  | -         | -45      |                   | 083  | RTN               | 24       |                       |
| 028  | -         | -45      |                   | 084  | *LBLB             | 21 16 12 |                       |
| 029  | ST04      | 35 04    |                   | 085  | RCL1              | 36 01    |                       |
| 030  | R↓        | -31      |                   | 086  | CHS               | -22      | Delete erroneous data |
| 031  | x         | -35      |                   | 087  | ST01              | 35 01    |                       |
| 032  | RCL1      | 36 01    |                   | 088  | R↓                | -31      |                       |
| 033  | x         | -35      |                   | 089  | GTOA              | 22 11    |                       |
| 034  | 1         | 01       |                   | 090  |                   |          |                       |
| 035  | LSTX      | 16-63    |                   |      |                   |          |                       |
| 036  | +         | -55      |                   |      |                   |          |                       |
| 037  | ABS       | 16 31    |                   |      |                   |          |                       |
| 038  | ST01      | 35 01    |                   |      |                   |          |                       |
| 039  | x         | -35      |                   |      |                   |          |                       |
| 040  | ST+3      | 35-55 03 |                   |      |                   |          |                       |
| 041  | RCL1      | 36 01    |                   |      |                   |          |                       |
| 042  | RTN       | 24       |                   |      |                   |          |                       |
| 043  | *LBLB     | 21 12    | Store $\bar{x}$   |      |                   |          |                       |
| 044  | RCL2      | 36 02    |                   |      |                   |          |                       |
| 045  | ST05      | 35 05    |                   |      |                   |          |                       |
| 046  | RCL3      | 36 03    |                   |      |                   |          |                       |
| 047  | RCL1      | 36 01    |                   |      |                   |          |                       |
| 048  | 1         | 01       |                   |      |                   |          |                       |
| 049  | -         | -45      |                   |      |                   |          |                       |
| 050  | ÷         | -24      |                   |      |                   |          |                       |
| 051  | RCL1      | 36 01    |                   |      |                   |          |                       |
| 052  | ÷         | -24      |                   |      |                   |          |                       |
| 053  | ST06      | 35 06    | Store $s_1^2/n_1$ |      |                   |          |                       |
| 054  | RTN       | 24       |                   |      |                   |          |                       |
| 055  | *LBLC     | 21 13    |                   |      |                   |          |                       |
| 056  | ST07      | 35 07    | Store D           |      |                   |          |                       |

## REGISTERS

| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|----|----|----|----|----|----|----|----|----|----|
| S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
| A  | B  | C  |    |    | D  |    | E  |    | I  |

## SET STATUS

| FLAGS | TRIG                                | DISP                                |
|-------|-------------------------------------|-------------------------------------|
| ON    | OFF                                 |                                     |
| 0     | <input type="checkbox"/>            | <input checked="" type="checkbox"/> |
| 1     | <input type="checkbox"/>            | <input checked="" type="checkbox"/> |
| 2     | <input type="checkbox"/>            | <input checked="" type="checkbox"/> |
| 3     | <input type="checkbox"/>            | <input checked="" type="checkbox"/> |
| GRAD  |                                     |                                     |
| RAD   |                                     |                                     |
| DEG   | <input checked="" type="checkbox"/> |                                     |
| SCI   |                                     | <input type="checkbox"/>            |
| RAD   |                                     | <input type="checkbox"/>            |
| ENG   |                                     | <input type="checkbox"/>            |
| n     | 2                                   |                                     |

# Program Description I

Program Title

**KRUSKAL-WALLIS STATISTIC**

Contributor's Name

Hewlett-Packard

Address

1000 N.E. Circle Blvd.

City

Corvallis

State

Oregon

Zip Code

97330

## Program Description, Equations, Variables

Suppose we want to test the null hypothesis that  $k$  independent random samples of sizes  $n_1, n_2, \dots, n_k$  come from identical continuous populations.

Arrange all values from  $k$  samples jointly (as if they were one sample) in an increasing order of magnitude. Let  $R_{ij}$  ( $i = 1, 2, \dots, k, j = 1, 2, \dots, n_i$ ) be the rank of the  $j^{\text{th}}$  value in the  $i^{\text{th}}$  sample.

The Kruskal-Wallis statistic  $H$  can be used to test the null hypothesis.

When all sample sizes are large ( $> 5$ ),  $H$  is distributed approximately as the chi-square with  $k - 1$  degrees of freedom. For small samples, the test is based on special tables.

### Equation:

$$H = \frac{12}{N(N+1)} \sum_{i=1}^k \frac{\left( \sum_{j=1}^{n_i} R_{ij} \right)^2}{n_i} - 3(N+1)$$

where

$$N = \sum_{i=1}^k n_i$$

## Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description I

|                    |                          |       |                |
|--------------------|--------------------------|-------|----------------|
| Program Title      | KRUSKAL-WALLIS STATISTIC |       |                |
| Contributor's Name | Hewlett-Packard          |       |                |
| Address            | 1000 N.E. Circle Blvd.   |       |                |
| City               | Corvallis                | State | Oregon         |
|                    |                          |       | Zip Code 97330 |

## Program Description, Equations, Variables

### Table for small samples ( $k = 3$ ):

Alexander and Quade, *On the Kruskal-Wallis Three Sample H-statistic*, University of North Carolina, Department of Biostatistics, Inst. Statistics Mimeo Ser. 602, 1968.

## Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

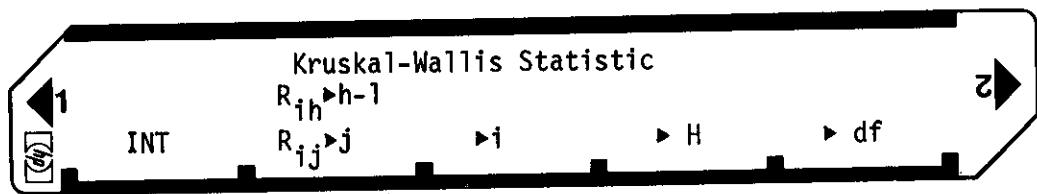
### Sketch(es)

### Sample Problem(s)

**Example:**

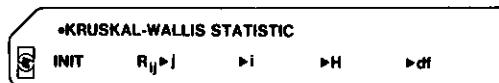
|   |    | Ranks $R_{ij}$ |    |    |    |    |    |    |    |    |    |
|---|----|----------------|----|----|----|----|----|----|----|----|----|
|   |    | 1              | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| i | j  | 1              | 29 | 5  | 26 | 10 | 33 | 30 |    |    |    |
|   |    | 2              | 11 | 12 | 9  | 7  | 20 | 18 | 19 | 21 |    |
| 3 | 14 | 28             | 8  | 25 | 17 | 15 | 32 | 4  | 2  |    |    |
| 4 | 6  | 27             | 3  | 16 | 24 | 13 | 1  | 31 | 22 | 23 |    |

### Keystrokes:


|      |      |          |     |           |
|------|------|----------|-----|-----------|
| A 29 | B 5  | B ... 30 | B   | 6.00      |
| C    |      |          |     | 1.00      |
| 11   | B 12 | B ... 21 | B C | 2.00      |
| 14   | B 28 | B ... 2  | B C | 3.00      |
| 6    | B 27 | B ... 23 | B C | 4.00      |
| D    |      |          |     | 2.29 (H)  |
| E    |      |          |     | 3.00 (df) |

### Solution(s)

### Reference(s)


1. W.J. Conover, Practical Nonparametric Statistics, John Wiley and Sons, 1971.
2. This program is a translation of the HP-65 Stat Pac 2 program.

## User Instructions



# User Instructions

21



| STEP | INSTRUCTIONS                         | INPUT DATA/UNITS | KEYS  | OUTPUT DATA/UNITS |
|------|--------------------------------------|------------------|-------|-------------------|
| 1    | Enter program                        |                  |       |                   |
| 2    | Initialize                           |                  | A     | 0.00              |
| 3    | Perform 3-6 for $i = 1, 2, \dots, k$ |                  |       |                   |
| 4    | Perform 4 for $j = 1, 2, \dots, n_i$ | $R_{ij}$         | B     | $j$               |
| 5    | Optional—delete erroneous $R_{ih}$   | $R_{ih}$         | GTO 1 |                   |
|      |                                      |                  | R/S   |                   |
| 6    | End of the $i$ th sample             |                  | C     | $i$               |
| 7    | Compute $H$ statistic                |                  | D     | $H$               |
| 8    | Compute $df$                         |                  | E     | $df$              |
| 9    | Optional—recall $N$                  |                  | RCL 5 | $N$               |
| 10   | For a new case, go to 2              |                  |       |                   |

## 97 Program Listing I

| STEP | KEY ENTRY        | KEY CODE | COMMENTS                                               | STEP | KEY ENTRY | KEY CODE | COMMENTS                                                       |
|------|------------------|----------|--------------------------------------------------------|------|-----------|----------|----------------------------------------------------------------|
| 001  | *LBLA            | 21 11    |                                                        |      |           |          |                                                                |
| 002  | CLRG             | 16-53    | Initialize                                             |      |           |          |                                                                |
| 003  | 0                | 00       |                                                        |      |           |          |                                                                |
| 004  | RTN              | 24       |                                                        | 060  |           |          |                                                                |
| 005  | *LBLB            | 21 12    |                                                        |      |           |          |                                                                |
| 006  | ST+2             | 35-55 02 | Accumulate sums                                        |      |           |          |                                                                |
| 007  | RCL1             | 36 01    |                                                        |      |           |          |                                                                |
| 008  | 1                | 01       |                                                        |      |           |          |                                                                |
| 009  | +                | -55      |                                                        |      |           |          |                                                                |
| 010  | ST01             | 35 01    |                                                        |      |           |          |                                                                |
| 011  | RTN              | 24       |                                                        |      |           |          |                                                                |
| 012  | *LBLC            | 21 13    | Prepare for a new sample                               |      |           |          |                                                                |
| 013  | RCL1             | 36 01    |                                                        | 070  |           |          |                                                                |
| 014  | ST+5             | 35-55 05 |                                                        |      |           |          |                                                                |
| 015  | RCL2             | 36 02    |                                                        |      |           |          |                                                                |
| 016  | X <sup>2</sup>   | 53       |                                                        |      |           |          |                                                                |
| 017  | X <sup>2</sup> Y | -41      |                                                        |      |           |          |                                                                |
| 018  | ÷                | -24      |                                                        |      |           |          |                                                                |
| 019  | ST+3             | 35-55 03 |                                                        |      |           |          |                                                                |
| 020  | RCL4             | 36 04    |                                                        |      |           |          |                                                                |
| 021  | 1                | 01       |                                                        |      |           |          |                                                                |
| 022  | +                | -55      |                                                        |      |           |          |                                                                |
| 023  | ST04             | 35 04    | Reinitialize registers R <sub>1</sub> , R <sub>2</sub> | 080  |           |          |                                                                |
| 024  | 0                | 00       |                                                        |      |           |          |                                                                |
| 025  | ST01             | 35 01    | Display sample number                                  |      |           |          |                                                                |
| 026  | ST02             | 35 02    |                                                        |      |           |          |                                                                |
| 027  | RCL4             | 36 04    |                                                        |      |           |          |                                                                |
| 028  | RTN              | 24       |                                                        |      |           |          |                                                                |
| 029  | *LBLD            | 21 14    | Compute H                                              |      |           |          |                                                                |
| 030  | RCL3             | 36 03    |                                                        |      |           |          |                                                                |
| 031  | 4                | 04       |                                                        |      |           |          |                                                                |
| 032  | X                | -35      |                                                        |      |           |          |                                                                |
| 033  | RCL5             | 36 05    |                                                        | 090  |           |          |                                                                |
| 034  | ÷                | -24      |                                                        |      |           |          |                                                                |
| 035  | RCL5             | 36 05    |                                                        |      |           |          |                                                                |
| 036  | 1                | 01       |                                                        |      |           |          |                                                                |
| 037  | +                | -55      |                                                        |      |           |          |                                                                |
| 038  | ÷                | -24      |                                                        |      |           |          |                                                                |
| 039  | LSTX             | 16-63    | N + 1                                                  |      |           |          |                                                                |
| 040  | -                | -45      |                                                        |      |           |          |                                                                |
| 041  | 3                | 03       |                                                        |      |           |          |                                                                |
| 042  | X                | -35      |                                                        |      |           |          |                                                                |
| 043  | RTN              | 24       |                                                        |      |           |          |                                                                |
| 044  | *LBL E           | 21 15    | Compute df                                             | 100  |           |          |                                                                |
| 045  | RCL4             | 36 04    |                                                        |      |           |          |                                                                |
| 046  | 1                | 01       |                                                        |      |           |          |                                                                |
| 047  | -                | -45      |                                                        |      |           |          |                                                                |
| 048  | RTN              | 24       |                                                        |      |           |          |                                                                |
| 049  | *LBL B           | 21 16 12 | Delete erroneous data                                  |      |           |          | SET STATUS                                                     |
| 050  | ST-2             | 35-45 02 |                                                        |      |           |          |                                                                |
| 051  | RCL1             | 36 01    |                                                        |      |           |          |                                                                |
| 052  | 1                | 01       |                                                        |      |           |          |                                                                |
| 053  | -                | -45      |                                                        |      |           |          |                                                                |
| 054  | ST01             | 35 01    |                                                        |      |           |          | FLAGS                                                          |
| 055  | RTN              | 24       |                                                        |      |           |          | TRIG                                                           |
|      |                  |          |                                                        |      |           |          | DISP                                                           |
|      |                  |          |                                                        |      |           |          | ON OFF                                                         |
|      |                  |          |                                                        |      |           |          | 0 <input type="checkbox"/> <input checked="" type="checkbox"/> |
|      |                  |          |                                                        |      |           |          | 1 <input type="checkbox"/> <input checked="" type="checkbox"/> |
|      |                  |          |                                                        |      |           |          | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> |
|      |                  |          |                                                        |      |           |          | 3 <input type="checkbox"/> <input type="checkbox"/>            |
|      |                  |          |                                                        |      |           |          | DEG <input checked="" type="checkbox"/>                        |
|      |                  |          |                                                        |      |           |          | GRAD <input type="checkbox"/>                                  |
|      |                  |          |                                                        |      |           |          | RAD <input type="checkbox"/>                                   |
|      |                  |          |                                                        |      |           |          | SCI <input type="checkbox"/>                                   |
|      |                  |          |                                                        |      |           |          | ENG <input type="checkbox"/>                                   |
|      |                  |          |                                                        |      |           |          | n _____                                                        |

| REGISTERS |                             |                               |                                                                                 |     |     |    |    |    |
|-----------|-----------------------------|-------------------------------|---------------------------------------------------------------------------------|-----|-----|----|----|----|
| 0         | <sup>1</sup> n <sub>i</sub> | <sup>2</sup> ΣR <sub>ij</sub> | <sup>3</sup> Σ[(ΣR <sub>ij</sub> ) <sup>2</sup> / <sup>4</sup> n <sub>i</sub> ] | 5 k | 6 N | 7  | 8  | 9  |
| S0        | S1                          | S2                            | S4                                                                              | S5  | S6  | S7 | S8 | S9 |
| A         | B                           | C                             | D                                                                               | E   |     | I  |    |    |

# Program Description I

Program Title

**MEAN-SQUARE SUCCESSIVE DIFFERENCE**Contributor's Name **Hewlett-Packard**Address **1000 N.E. Circle Blvd.**City **Corvallis**State **Oregon**Zip Code **97330**

## Program Description, Equations, Variables

When test and estimation techniques are used, the method of drawing the sample from the population is specified to be random in most cases. If observations are chosen in sequence  $x_1, x_2, \dots, x_n$ , the mean-square successive difference  $\eta$  can be used to test for randomness.

If the sample size  $n$  is large (say, greater than 20) and the population is normal, then a  $z$  statistic has approximately the standard normal distribution. Long trends are associated with large positive values of  $z$  and short oscillations with large negative values.

### Equations:

$$\eta = \sum_{i=2}^n (x_i - x_{i-1})^2 \left/ \sum_{i=1}^n (x_i - \bar{x})^2 \right.$$

$$= \sum_{i=2}^n (x_i - x_{i-1})^2 \left/ \left[ \sum_{i=1}^n x_i^2 - \frac{\left( \sum_{i=1}^n x_i \right)^2}{n} \right] \right.$$

$$z = \frac{1 - \eta/2}{\sqrt{\frac{n-2}{n^2-1}}}$$

## Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

**Sketch(es)**

### Sample Problem(s)

### Example:

Find the mean-square successive difference for the following set of data:

$\{0.53, 0.52, 0.39, 0.49, 0.97, 0.29, 0.65, 0.30, 0.40, 0.06, 0.14, 0.16, 0.68, 0.22, 0.68, 0.08, 0.52, 0.50, 0.63, 0.20, 0.67, 0.44, 0.64, 0.40, 0.97, 0.03, 0.73, 0.24, 0.57, 0.35\}$

### Keystrokes:

|     |     |           |   |         |
|-----|-----|-----------|---|---------|
| A   | .53 | B         | → | 1.00    |
| .52 | C   | .39       | C | → 30.00 |
| D   | →   | 2.81 (η)  |   |         |
| E   | →   | -2.29 (z) |   |         |

### Solution(s)

Reference(s) 1. This program is a translation of the HP-65 Stat Pac 2 program.  
2. Dixon and Massey, Introduction to Statistical Analysis, McGraw-Hill,  
1969.

# User Instructions

25



| STEP | INSTRUCTIONS                       | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|------------------------------------|------------------|------|-------------------|
| 1    | Enter program                      |                  |      |                   |
| 2    | Initialize                         |                  | A    | 0.00              |
| 3    | Input $x_1$                        | $x_1$            | B    | 1.00              |
| 4    | Perform 4 for $i = 2, 3, \dots, n$ | $x_i$            | C    | $i$               |
| 5    | Compute $\eta$                     |                  | D    | $\eta$            |
| 6    | Compute $z$                        |                  | E    | $z$               |
| 7    | For a new case, go to 2            |                  |      |                   |

## 97 Program Listing I

# Program Description I

Program Title

## THE RUN TEST FOR RANDOMNESS

Contributor's Name

Hewlett-Packard

Address

1000 N.E. Circle Blvd.

City

Corvallis

State

Oregon

Zip Code

97330

### Program Description, Equations, Variables

Consider a sequence of symbols such that the symbols are of two types only. A run is a continuous string of identical symbols preceded and followed by a different symbol or no symbol at all. For example, the sequence 1110100011 has five runs.

Let the total number of runs in a given sequence be  $u$ , and let  $n_1$  and  $n_2$  represent the number of symbols of type 1 and type 2 respectively. If the sample sizes are large (say,  $n_1$  and  $n_2$  are both greater than 10), then the randomness of the sequence may be tested using a  $z$  statistic which has the standard normal distribution.

#### Equations:

The sample distribution of the run has the mean  $\mu$  and the standard deviation  $\sigma$ .

$$\mu = \frac{2 n_1 n_2}{n_1 + n_2} + 1$$

$$\sigma = \sqrt{\frac{2 n_1 n_2 (2 n_1 n_2 - n_1 - n_2)}{(n_1 + n_2)^2 (n_1 + n_2 - 1)}}$$

The test is based on the statistic

$$z = \frac{u - \mu}{\sigma}$$

### Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description I

|                    |                             |          |        |
|--------------------|-----------------------------|----------|--------|
| Program Title      | THE RUN TEST FOR RANDOMNESS |          |        |
| Contributor's Name | Hewlett-Packard             |          |        |
| Address            | 1000 N.E. Circle Blvd.      |          |        |
| City               | Corvallis                   | State    | Oregon |
|                    |                             | Zip Code | 97330  |

## Program Description, Equations, Variables

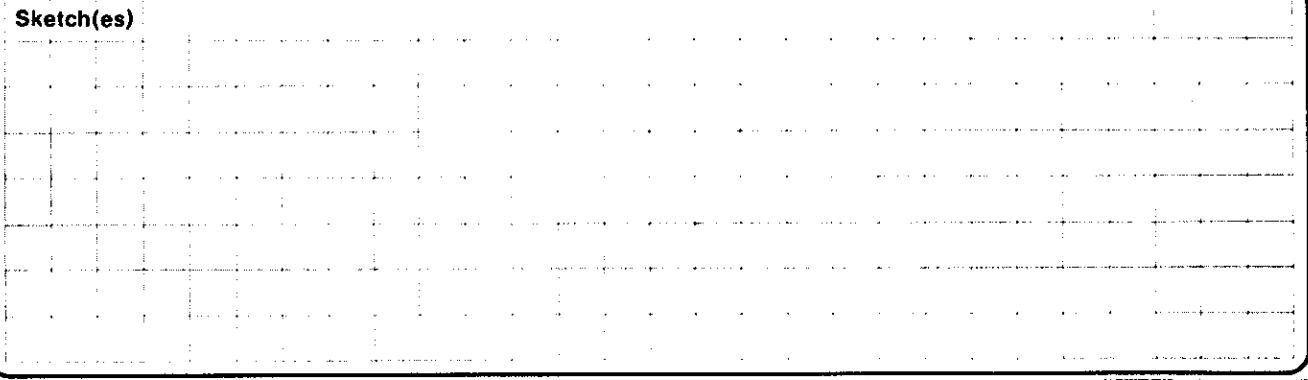
### Remarks:

1. For small samples, the test is based on special tables.
2. This program can also be used for other tests involving runs. For example, one might want to test runs of scores above and below the median based on the order in which the scores were obtained. In this case, a sequence could be constructed in which each score would be replaced by a 1 if it was above the median or a 0, if below the median.

The run test for randomness can then be applied to the sequence of 0's and 1's.

Another use might be for Wald-Wolfowitz run test, which tests the null hypothesis that two random samples have been drawn from identical populations. The data from both groups are combined into one sequence according to magnitude. Each value may be assigned a 0 or 1 depending on which population it came from, and the run test for randomness then performed on the resulting sequence.

## Operating Limits and Warnings


This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

29

## Sketch(es)



## Sample Problem(s)

### Example:

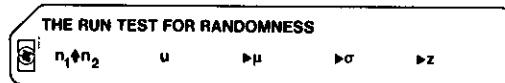
A statistician sits by the roulette table one night in a Las Vegas casino, suspiciously watching the house rake in stake upon stake. To test the null hypothesis that the sequence of numbers is random, the statistician observes the following sequence of red (R) and black (B) numbers (ignoring 0 and 00):

RRRR B RRR BBBB RR BBB RR BB RRR

In the sequence are 14 R's, 11B's, and a total of 9 runs. Find the mean and standard deviation of the sampling distribution and the z statistic.

### Keystrokes:

14 **A** 11 **B** 9 **C**  $\rightarrow 13.32 (\mu)$   
**D**  $\rightarrow 2.41 (\sigma)$   
**E**  $\rightarrow -1.79 (z)$


(His suspicion is not entirely unjustified.)

## Solution(s)

**Reference(s)**

1. Freund and Williams, Dictionary/Outline of Basic Statistics, McGraw-Hill, 1966.
2. This program is a translation of the HP-65 Stat Pac 2 program.

# User Instructions



| STEP | INSTRUCTIONS                   | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|--------------------------------|------------------|------|-------------------|
| 1    | Enter program                  |                  |      |                   |
| 2    | Input                          |                  |      |                   |
|      | number of symbols of type 1    | $n_1$            | ↑    |                   |
|      | number of symbols of type 2    | $n_2$            | A    | $n_1$             |
| 3    | Input number of runs           | $u$              | B    | $u$               |
| 4    | Compute the mean               |                  | C    | $\mu$             |
| 5    | Compute the standard deviation |                  | D    | $\sigma$          |
| 6    | Compute the z statistic        |                  | E    | $z$               |
| 7    | For a new case, go to 2        |                  |      |                   |

# 97 Program Listing I

31

| STEP | KEY ENTRY | KEY CODE | COMMENTS                       | STEP | KEY ENTRY | KEY CODE | COMMENTS |
|------|-----------|----------|--------------------------------|------|-----------|----------|----------|
| 001  | *LBLA     | 21 11    |                                |      |           |          |          |
| 002  | ST02      | 35 02    |                                |      |           |          |          |
| 003  | R↓        | -31      | Store $n_2$                    |      |           |          |          |
| 004  | ST01      | 35 01    | Store $n_1$                    | 060  |           |          |          |
| 005  | RTN       | 24       |                                |      |           |          |          |
| 006  | *LBLB     | 21 12    |                                |      |           |          |          |
| 007  | ST03      | 35 03    | Store $u$                      |      |           |          |          |
| 008  | RTN       | 24       |                                |      |           |          |          |
| 009  | *LBLC     | 21 13    |                                |      |           |          |          |
| 010  | RCL1      | 36 01    | Compute the mean               |      |           |          |          |
| 011  | RCL2      | 36 02    |                                |      |           |          |          |
| 012  | X         | -35      |                                |      |           |          |          |
| 013  | 2         | 02       |                                | 070  |           |          |          |
| 014  | X         | -35      |                                |      |           |          |          |
| 015  | ST07      | 35 07    |                                |      |           |          |          |
| 016  | RCL1      | 36 01    |                                |      |           |          |          |
| 017  | RCL2      | 36 02    |                                |      |           |          |          |
| 018  | +         | -55      |                                |      |           |          |          |
| 019  | ST08      | 35 08    |                                |      |           |          |          |
| 020  | ÷         | -24      |                                |      |           |          |          |
| 021  | 1         | 01       |                                |      |           |          |          |
| 022  | +         | -55      |                                |      |           |          |          |
| 023  | ST04      | 35 04    |                                | 080  |           |          |          |
| 024  | RTN       | 24       |                                |      |           |          |          |
| 025  | *LBLD     | 21 14    |                                |      |           |          |          |
| 026  | RCL7      | 36 07    | Compute the standard deviation |      |           |          |          |
| 027  | RCL8      | 36 08    |                                |      |           |          |          |
| 028  | -         | -45      |                                |      |           |          |          |
| 029  | RCL7      | 36 07    |                                |      |           |          |          |
| 030  | X         | -35      | $(n_1 + n_2)^2$                |      |           |          |          |
| 031  | RCL8      | 36 08    |                                |      |           |          |          |
| 032  | ENT↑      | -21      |                                |      |           |          |          |
| 033  | X         | -35      |                                |      |           |          |          |
| 034  | RCL8      | 36 08    |                                | 090  |           |          |          |
| 035  | 1         | 01       |                                |      |           |          |          |
| 036  | -         | -45      | $n_1 + n_2 - 1$                |      |           |          |          |
| 037  | X         | -35      |                                |      |           |          |          |
| 038  | ÷         | -24      |                                |      |           |          |          |
| 039  | JX        | 54       |                                |      |           |          |          |
| 040  | ST05      | 35 05    |                                |      |           |          |          |
| 041  | RTN       | 24       |                                |      |           |          |          |
| 042  | *LBLE     | 21 15    | Compute the z statistic        | 100  |           |          |          |
| 043  | RCL3      | 36 03    |                                |      |           |          |          |
| 044  | RCL4      | 36 04    |                                |      |           |          |          |
| 045  | -         | -45      |                                |      |           |          |          |
| 046  | RCL5      | 36 05    |                                |      |           |          |          |
| 047  | ÷         | -24      |                                |      |           |          |          |
| 048  | ST06      | 35 06    |                                |      |           |          |          |
| 049  | RTN       | 24       |                                |      |           |          |          |

| LABELS    |         |         |         |            | 0          | FLAGS                      | SET STATUS                          |                          |  |
|-----------|---------|---------|---------|------------|------------|----------------------------|-------------------------------------|--------------------------|--|
| A $n_1$   | B $n_2$ | C $u$   | D $\mu$ | E $\sigma$ | 1          | FLAGS                      | TRIG                                | DISP                     |  |
| A         | B       | C       | D       | E          | 1          | ON OFF                     | DEG                                 | FIX                      |  |
| $n_1$     | $n_2$   | $u$     | $\mu$   | $\sigma$   | 0          | 0 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |
| a         | b       | c       | d       | e          | 2          | 1 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |
| 0         | 1       | 2       | 3       | 4          | 3          | 2 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |
| 5         | 6       | 7       | 8       | 9          | 3          | 3 <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |  |
| REGISTERS |         |         |         |            |            |                            |                                     |                          |  |
| 0         | 1 $n_1$ | 2 $n_2$ | 3 $u$   | 4 $\mu$    | 5 $\sigma$ | 6 $z$                      | 7 $\bar{z}$                         | 8 $n_1 + n_2$            |  |
| S0        | S1      | S2      | S3      | S4         | S5         | S6                         | S7                                  | S8                       |  |
| A         | B       | C       | D       | E          |            |                            | I                                   |                          |  |

# Program Description I

Program Title

**INTRACLASS CORRELATION COEFFICIENT**Contributor's Name **Hewlett-Packard**Address **1000 N.E. Circle Blvd.**City **Corvallis**State **Oregon**Zip Code **97330****Program Description, Equations, Variables**

The intraclass correlation coefficient  $r_I$  measures the degree of association among individuals within classes or groups.

|        |  | Observations |          |     |          |
|--------|--|--------------|----------|-----|----------|
|        |  | $x_{11}$     | $x_{12}$ | ... | $x_{1n}$ |
|        |  | $x_{21}$     | $x_{22}$ | ... | $x_{2n}$ |
| Groups |  | .            | .        | .   | .        |
| .      |  | .            | .        | .   | .        |
| .      |  | .            | .        | .   | .        |
| k      |  | $x_{k1}$     | $x_{k2}$ | ... | $x_{kn}$ |

The coefficient is most easily calculated using the analysis of variance techniques.  $r_I$  is the sample estimate of the population intraclass correlation coefficient  $\rho_I$ . If we can assume that the individuals within groups are random samples from normal populations with the same variance, then the hypothesis  $\rho_I = 0$  can be tested using the F statistic.

**Equations:**

## 1. Sums

$$\text{Group} \quad T_i = \sum_{j=1}^n x_{ij} \quad i = 1, 2, \dots, k$$

**Operating Lin**

Total

$$T = \sum_{i=1}^k T_i$$

## 2. Sums of squares

Mean

$$MSS = T^2 / k n$$

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description I

|                    |                                    |          |        |
|--------------------|------------------------------------|----------|--------|
| Program Title      | INTRACLASS CORRELATION COEFFICIENT |          |        |
| Contributor's Name | Hewlett-Packard                    |          |        |
| Address            | 1000 N.E. Circle Blvd.             |          |        |
| City               | Corvallis                          | State    | Oregon |
|                    |                                    | Zip Code | 97330  |

## Program Description, Equations, Variables

Among groups

$$ASS = \sum_{i=1}^k T_i^2/n - MSS$$

Within groups

$$WSS = \sum_{i=1}^k \sum_{j=1}^n x_{ij}^2 - MSS - ASS$$

### 3. Intraclass correlation coefficient

$$r_I = \left( \frac{ASS}{k-1} - \frac{WSS}{k(n-1)} \right) \Big/ \left( \frac{ASS}{k-1} + \frac{WSS}{k} \right)$$

### 4. F statistic

$$F = \frac{ASS}{k-1} \Big/ \frac{WSS}{k(n-1)}$$

with  $df_1 = k - 1$  and  $df_2 = k(n - 1)$  degrees of freedom.

## Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

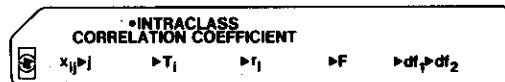
### Sample Problem(s)

### Example:

|        |   | Observations |    |
|--------|---|--------------|----|
| Groups | 1 | 71           | 71 |
|        | 2 | 69           | 72 |
|        | 3 | 59           | 65 |
|        | 4 | 65           | 64 |
|        | 5 | 66           | 60 |
|        | 6 | 73           | 72 |
|        | 7 | 68           | 67 |
|        | 8 | 70           | 68 |

### Keystrokes:

**f REG 71 A 71 A B** → 142.00 (T<sub>1</sub>)  
**69 A 72 A B** → 141.00 (T<sub>2</sub>)


### Solution

|             |                            |
|-------------|----------------------------|
| 70 A 68 A B | → 138.00 (T <sub>8</sub> ) |
| C           | → 0.70 (r <sub>1</sub> )   |
| D           | → 5.61 (F)                 |
| E           | → 7.00 (df <sub>1</sub> )  |
| E           | → 8.00 (df <sub>2</sub> )  |

Reference(s) 1. This program is a translation of the HP-65 Stat Pac 2 program.  
2. B. Ostle, Statistics, in Research, Iowa State University Press, 1972.

# User Instructions

35



| STEP | INSTRUCTIONS                         | INPUT DATA/UNITS | KEYS  | OUTPUT DATA/UNITS |
|------|--------------------------------------|------------------|-------|-------------------|
| 1    | Enter program                        |                  |       |                   |
| 2    | Initialize                           |                  | f REG |                   |
| 3    | Perform 3-5 for $i = 1, 2, \dots, k$ |                  |       |                   |
| 4    | Perform 4 for $j = 1, 2, \dots, n$   | $x_{ij}$         | A     | j                 |
| 5    | Compute the group mean               |                  | B     | $T_i$             |
| 6    | Compute the coefficient              |                  | C     | $r_i$             |
| 7    | Compute the F statistic              |                  | D     | F                 |
| 8    | Compute the degrees of freedom       |                  | E     | $df_1$            |
|      |                                      |                  | E     | $df_2$            |
| 9    | For a new case, go to 2              |                  |       |                   |

## 97 Program Listing I

| STEP | KEY ENTRY | KEY CODE | COMMENTS | STEP | KEY ENTRY | KEY CODE | COMMENTS           |
|------|-----------|----------|----------|------|-----------|----------|--------------------|
| 001  | *LBLA     | 21 11    |          | 057  | RCL8      | 36 08    |                    |
| 002  | ST+6      | 35-55 06 |          | 058  | +         | -55      | Display $r_1$      |
| 003  | $X^2$     | 53       |          | 059  | $\div$    | -24      |                    |
| 004  | ST+5      | 35-55 05 |          | 060  | RTN       | 24       |                    |
| 005  | 1         | 01       |          | 061  | *LBLD     | 21 14    |                    |
| 006  | RCL1      | 36 01    |          | 062  | RCL7      | 36 07    | Compute F          |
| 007  | +         | -55      |          | 063  | RCL8      | 36 08    |                    |
| 008  | ST01      | 35 01    |          | 064  | RCL1      | 36 01    |                    |
| 009  | RTN       | 24       |          | 065  | $\div$    | -24      |                    |
| 010  | *LBLB     | 21 12    |          | 066  | $\div$    | -24      |                    |
| 011  | RCL6      | 36 06    |          | 067  | RTN       | 24       |                    |
| 012  | ST08      | 35 08    |          | 068  | *LBLB     | 21 15    |                    |
| 013  | ST+3      | 35-55 03 |          | 069  | RCL2      | 36 02    | Compute degrees of |
| 014  | $X^2$     | 53       |          | 070  | 1         | 01       | freedom            |
| 015  | ST+4      | 35-55 04 |          | 071  | -         | -45      |                    |
| 016  | RCL1      | 36 01    |          | 072  | R/S       | 51       |                    |
| 017  | ST07      | 35 07    |          | 073  | *LBLB     | 21 15    |                    |
| 018  | 0         | 00       |          | 074  | RCL1      | 36 01    |                    |
| 019  | ST01      | 35 01    |          | 075  | RCL2      | 36 02    |                    |
| 020  | ST06      | 35 06    |          | 076  | x         | -35      |                    |
| 021  | 1         | 01       |          | 077  | RTN       | 24       |                    |
| 022  | RCL2      | 36 02    |          |      |           |          |                    |
| 023  | +         | -55      |          |      |           |          |                    |
| 024  | ST02      | 35 02    |          | 080  |           |          |                    |
| 025  | RCL6      | 36 08    |          |      |           |          |                    |
| 026  | RTN       | 24       |          |      |           |          |                    |
| 027  | *LBLC     | 21 13    |          |      |           |          |                    |
| 028  | RCL4      | 36 04    |          |      |           |          |                    |
| 029  | RCL3      | 36 03    |          |      |           |          |                    |
| 030  | $X^2$     | 53       |          |      |           |          |                    |
| 031  | RCL2      | 36 02    |          |      |           |          |                    |
| 032  | $\div$    | -24      |          |      |           |          |                    |
| 033  | -         | -45      |          |      |           |          |                    |
| 034  | RCL7      | 36 07    | ASS/k-1  | 090  |           |          |                    |
| 035  | ST01      | 35 01    |          |      |           |          |                    |
| 036  | $\div$    | -24      |          |      |           |          |                    |
| 037  | RCL2      | 36 02    |          |      |           |          |                    |
| 038  | 1         | 01       |          |      |           |          |                    |
| 039  | -         | -45      |          |      |           |          |                    |
| 040  | $\div$    | -24      |          |      |           |          |                    |
| 041  | ST07      | 35 07    |          |      |           |          |                    |
| 042  | RCL5      | 36 05    |          |      |           |          |                    |
| 043  | RCL4      | 36 04    |          |      |           |          |                    |
| 044  | RCL1      | 36 01    |          |      |           |          |                    |
| 045  | $\div$    | -24      |          |      |           |          |                    |
| 046  | -         | -45      |          |      |           |          |                    |
| 047  | RCL2      | 36 02    |          |      |           |          |                    |
| 048  | $\div$    | -24      |          |      |           |          |                    |
| 049  | ST08      | 35 08    |          |      |           |          |                    |
| 050  | RCL1      | 36 01    |          |      |           |          |                    |
| 051  | 1         | 01       |          |      |           |          |                    |
| 052  | -         | -45      |          |      |           |          |                    |
| 053  | ST01      | 35 01    |          |      |           |          |                    |
| 054  | $\div$    | -24      |          |      |           |          |                    |
| 055  | -         | -45      |          |      |           |          |                    |
| 056  | RCL7      | 36 07    |          |      |           |          |                    |

| FLAGS |   | SET STATUS                 |                                         |                                         |
|-------|---|----------------------------|-----------------------------------------|-----------------------------------------|
| 0     |   |                            |                                         |                                         |
| 1     |   | FLAGS                      | TRIG                                    | DISP                                    |
| 100   |   | ON OFF                     | DEG <input checked="" type="checkbox"/> | FIX <input checked="" type="checkbox"/> |
|       | 2 | 1 <input type="checkbox"/> | GRAD <input type="checkbox"/>           | SCI <input type="checkbox"/>            |
|       | 3 | 2 <input type="checkbox"/> | RAD <input type="checkbox"/>            | ENG <input type="checkbox"/>            |
|       |   | 3 <input type="checkbox"/> |                                         | n <input type="checkbox"/>              |

| LABELS       |         |         |     |                |
|--------------|---------|---------|-----|----------------|
| A $\Sigma +$ | B $T_i$ | C $Y_1$ | D F | E $df_1, df_2$ |
| a            | b       | c       | d   | e              |
| 0            | 1       | 2       | 3   | 4              |
| 5            | 6       | 7       | 8   | 9              |

## REGISTERS

| 0  | 1 n-1 | 2 k | 3 $\Sigma T_i$ | 4 $\Sigma T_i^2$ | 5 $\Sigma x_{ij}^2$ | 6 $T_i$ | 7 ASS/k-1 | 8 $T_i$ | 9 WSS/k | 0 |
|----|-------|-----|----------------|------------------|---------------------|---------|-----------|---------|---------|---|
| S0 | S1    | S2  | S3             | S4               | S5                  | S6      | S7        | S8      | S9      |   |
| A  | B     | C   | D              | E                |                     |         |           | I       |         |   |

# Program Description I

Program Title

## FISHER'S EXACT TEST FOR A 2 x 2 CONTINGENCY TABLE

Contributor's Name

Hewlett-Packard

Address

1000 N.E. Circle Blvd.

City

Corvallis

State Oregon

Zip Code 97330

### Program Description, Equations, Variables

Fisher's exact probability test is used for analyzing a 2 x 2 contingency table when the two independent samples are small in size.

|   |   |
|---|---|
| a | b |
| c | d |

Suppose a, b, c, d are the frequencies and a is the smallest frequency, this program computes the following:

1. The exact probability  $p_0$  of observing the given frequencies in a 2 x 2 table, when the marginal totals are regarded as fixed.
2. The exact probability  $p_i$  ( $i = 1, 2, \dots, a$ ) of each more extreme table having the same marginal totals.
3. The sum  $S_i$  of the probabilities of the first  $i + 1$  tables.
4. The sum  $S$  of the probabilities of all tables with the same margins (i.e.,  $S = S_a$ ).

### Equations:

$$1. \quad p_0 = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N! a! b! c! d!}$$

where

$$N = a + b + c + d.$$

### Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description I

Program Title

## FISHER'S EXACT TEST FOR A 2 x 2 CONTINGENCY TABLE

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

### Program Description, Equations, Variables

2. For the more extreme table (with the same margins)

|       |       |
|-------|-------|
| a - i | b + i |
| c + i | d - i |

$$p_i = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N! (a-i)!(b+i)!(c+i)!(d-i)!}$$

where

i can be 1, 2, ... or a.

3.

$$S_n = \sum_{i=0}^n p_i$$

where

n can be 1, 2, ..., a.

4.

$$S = \sum_{i=0}^a p_i$$

### Operating Limits and Warnings

#### Remarks:

1. a must be the smallest among the frequencies. Rearrange the table if necessary.
2. This program requires  $N \leq 69$ . However, Fisher's exact test is normally used for  $N \leq 30$ .

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

### Sample Problem(s)

### Example:

Compute  $p_0, p_1, p_2, S_4$  and  $S$  for the following table

|   |    |
|---|----|
| 7 | 10 |
| 8 | 5  |

**Note:**

The table must be rearranged as

|    |   |
|----|---|
| 5  | 8 |
| 10 | 7 |

### Keystrokes:

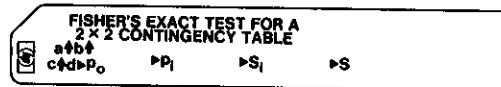
$$5 \uparrow 8 \uparrow 10 \uparrow 7 \text{ A} \longrightarrow 0.16 (p_0)$$

$$B \longrightarrow 0.06(p_1)$$

8 → 0.01 (p<sub>2</sub>)

B B C → 0.23 ( $S_4$ )

D → 0.23 (S)


So |

### Reference(s)

1. S. Siegel, *Nonparametric Statistics*, McGraw-Hill, 1956.
2. Sir R. A. Fisher, *Statistical Methods for Research Workers*, Oliver and Boyd, 1950.

This program is a translation of the HP-65 Stat Pac 2 program.

# User Instructions



| STEP | INSTRUCTIONS                           | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
|------|----------------------------------------|------------------|------|-------------------|
| 1    | Enter program                          |                  |      |                   |
| 2    | Enter frequencies and compute          |                  |      |                   |
|      | p <sub>0</sub>                         | a                | ↑    |                   |
|      |                                        | b                | ↑    |                   |
|      |                                        | c                | ↑    |                   |
|      |                                        | d                | A    | p <sub>0</sub>    |
| 3*   | Optional—perform 3 or 3-4 for          |                  |      |                   |
|      | i = 1, 2, ..., a                       |                  | B    | p <sub>i</sub>    |
| 4    | Optional—recall current S <sub>i</sub> |                  | C    | S <sub>i</sub>    |
| 5    | Compute the sum of all                 |                  |      |                   |
|      | probabilities                          |                  | D    | S                 |
| 6    | For a new case, go to 2                |                  |      |                   |
|      |                                        |                  |      |                   |
|      | * It is not necessary to com-          |                  |      |                   |
|      | plete the loop of 3 and 4. Go to       |                  |      |                   |
|      | 5 for S when desired.                  |                  |      |                   |

# 97 Program Listing I

41

| STEP | KEY ENTRY     | KEY CODE | COMMENTS                       | STEP | KEY ENTRY | KEY CODE | COMMENTS             |
|------|---------------|----------|--------------------------------|------|-----------|----------|----------------------|
| 001  | *LBLA         | 21 11    |                                | 057  | ST+3      | 35-55 03 |                      |
| 002  | ST04          | 35 04    |                                | 058  | ST-4      | 35-45 04 |                      |
| 003  | R↓            | -31      | Stored, c,b,a                  | 059  | ST-8      | 35-45 08 |                      |
| 004  | ST03          | 35 03    |                                | 060  | RCL7      | 36 07    |                      |
| 005  | R↓            | -31      |                                | 061  | GT00      | 22 00    |                      |
| 006  | ST02          | 35 02    |                                | 062  | *LBL0     | 21 13    | Recall the sum $S_n$ |
| 007  | X $\approx$ Y | -41      |                                | 063  | RCL5      | 36 05    |                      |
| 008  | ST01          | 35 01    |                                | 064  | R/S       | 51       |                      |
| 009  | ST08          | 35 08    |                                | 065  | *LBL0     | 21 14    | Compute the sum S    |
| 010  | +             | -55      |                                | 066  | RCL8      | 36 08    |                      |
| 011  | ST05          | 35 05    |                                | 067  | 0         | 00       |                      |
| 012  | R↓            | -31      |                                | 068  | X=Y?      | 16-33    |                      |
| 013  | +             | -55      |                                | 069  | GSB1      | 23 01    |                      |
| 014  | ST06          | 35 06    |                                | 070  | GSBB      | 23 12    |                      |
| 015  | N!            | 16 52    | (c+d)!                         | 071  | GT00      | 22 14    |                      |
| 016  | RCL5          | 36 05    |                                | 072  | *LBL1     | 21 01    |                      |
| 017  | N!            | 16 52    | (a+b)!                         | 073  | RCL5      | 36 05    |                      |
| 018  | X             | -35      |                                | 074  | R/S       | 51       |                      |
| 019  | RCL5          | 36 05    |                                | 075  | RTN       | 24       |                      |
| 020  | RCL6          | 36 06    |                                |      |           |          |                      |
| 021  | +             | -55      |                                |      |           |          |                      |
| 022  | N!            | 16 52    |                                |      |           |          |                      |
| 023  | ÷             | -24      |                                |      |           |          |                      |
| 024  | RCL1          | 36 01    |                                |      |           |          |                      |
| 025  | RCL3          | 36 03    |                                |      |           |          |                      |
| 026  | +             | -55      |                                |      |           |          |                      |
| 027  | N!            | 16 52    |                                |      |           |          |                      |
| 028  | X             | -35      |                                |      |           |          |                      |
| 029  | RCL2          | 36 02    |                                |      |           |          |                      |
| 030  | RCL4          | 36 04    |                                |      |           |          |                      |
| 031  | +             | -55      |                                |      |           |          |                      |
| 032  | N!            | 16 52    |                                |      |           |          |                      |
| 033  | X             | -35      |                                |      |           |          |                      |
| 034  | ST07          | 35 07    |                                |      |           |          |                      |
| 035  | 0             | 00       |                                |      |           |          |                      |
| 036  | ST05          | 35 05    |                                |      |           |          |                      |
| 037  | R↓            | -31      |                                |      |           |          |                      |
| 038  | *LBL0         | 21 00    |                                |      |           |          |                      |
| 039  | RCL1          | 36 01    | Loop for computing probability |      |           |          |                      |
| 040  | N!            | 16 52    |                                |      |           |          |                      |
| 041  | ÷             | -24      |                                |      |           |          |                      |
| 042  | RCL2          | 36 02    |                                |      |           |          |                      |
| 043  | N!            | 16 52    |                                |      |           |          |                      |
| 044  | ÷             | -24      |                                |      |           |          |                      |
| 045  | RCL3          | 36 03    |                                |      |           |          |                      |
| 046  | N!            | 16 52    |                                |      |           |          |                      |
| 047  | ÷             | -24      |                                |      |           |          |                      |
| 048  | RCL4          | 36 04    |                                |      |           |          |                      |
| 049  | N!            | 16 52    |                                |      |           |          |                      |
| 050  | ÷             | -24      |                                |      |           |          |                      |
| 051  | ST+5          | 35-55 05 | Accumulate the sum             |      |           |          |                      |
| 052  | RTN           | 24       | Display $P_0$                  |      |           |          |                      |
| 053  | *LBL8         | 21 12    | Compute $P_1$ for more extreme |      |           |          |                      |
| 054  | 1             | 01       | tables                         |      |           |          |                      |
| 055  | ST-1          | 35-45 01 |                                |      |           |          |                      |
| 056  | ST+2          | 35-55 02 |                                |      |           |          |                      |

Registers

Registers

| FLAGS |   | SET STATUS |                                                                |                                         |                                         |
|-------|---|------------|----------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| 0     | 1 | FLAGS      | TRIG                                                           | DISP                                    |                                         |
|       |   | 0          | ON OFF                                                         |                                         |                                         |
|       |   | 1          | 0 <input type="checkbox"/> <input checked="" type="checkbox"/> | DEG <input checked="" type="checkbox"/> | FIX <input checked="" type="checkbox"/> |
|       |   | 2          | 1 <input type="checkbox"/> <input checked="" type="checkbox"/> | GRAD <input type="checkbox"/>           | SCI <input type="checkbox"/>            |
|       |   | 110        | 2 <input type="checkbox"/> <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>            | ENG <input type="checkbox"/>            |
|       |   | 3          | 3 <input type="checkbox"/> <input checked="" type="checkbox"/> | n <input type="checkbox"/>              |                                         |

| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|----|----|----|----|----|----|----|----|----|----|
| S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
| A  | B  | C  |    |    | D  | E  | F  |    |    |

# Program Description I

Program Title BARTLETT'S CHI-SQUARE STATISTIC

Contributor's Name Hewlett-Packard  
 Address 1000 N.E. Circle Blvd.  
 City Corvallis

State Oregon Zip Code 97330

**Program Description, Equations, Variables, etc.**

$$\chi^2 = \frac{f \ln s^2 - \sum_{i=1}^k f_i \ln s_i^2}{1 + \frac{1}{3(k-1)} \left[ \left( \sum_{i=1}^k \frac{1}{f_i} \right) - \frac{1}{f} \right]}$$

where  $s_i^2$  = sample variance of the  $i^{\text{th}}$  sample

$f_i$  = degrees of freedom associated  $s_i^2$

$i = 1, 2, \dots, k$

$k$  = number of samples

$$s^2 = \frac{\sum_{i=1}^k f_i s_i^2}{f}$$

$$f = \sum_{i=1}^k f_i$$

This  $\chi^2$  has a chi-square distribution (approximately) with  $k - 1$  degrees of freedom which can be used to test the null hypothesis that  $s_1^2, s_2^2, \dots, s_k^2$  are all estimates of the same population variance  $\sigma^2$ ; i.e.  $H_0$ : Each of  $s_1^2, s_2^2, \dots, s_k^2$  is an estimate of  $\sigma^2$ .

Note: Erroneous data can be corrected by using the **D** key.

**Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

**Sketch(es)**

| Time | Distance | Speed |
|------|----------|-------|
| 0    | 0        | 0     |
| 1    | 1        | 1     |
| 2    | 2        | 2     |
| 3    | 3        | 3     |
| 4    | 4        | 4     |
| 5    | 5        | 5     |
| 6    | 6        | 6     |
| 7    | 7        | 7     |
| 8    | 8        | 8     |
| 9    | 9        | 9     |
| 10   | 10       | 10    |
| 11   | 11       | 11    |
| 12   | 12       | 12    |
| 13   | 13       | 13    |
| 14   | 14       | 14    |
| 15   | 15       | 15    |
| 16   | 16       | 16    |
| 17   | 17       | 17    |
| 18   | 18       | 18    |
| 19   | 19       | 19    |
| 20   | 20       | 20    |
| 21   | 21       | 21    |
| 22   | 22       | 22    |
| 23   | 23       | 23    |
| 24   | 24       | 24    |
| 25   | 25       | 25    |
| 26   | 26       | 26    |
| 27   | 27       | 27    |
| 28   | 28       | 28    |
| 29   | 29       | 29    |
| 30   | 30       | 29    |
| 31   | 30       | 28    |
| 32   | 29       | 27    |
| 33   | 28       | 26    |
| 34   | 27       | 25    |
| 35   | 26       | 24    |
| 36   | 25       | 23    |
| 37   | 24       | 22    |
| 38   | 23       | 21    |
| 39   | 22       | 20    |
| 40   | 21       | 19    |
| 41   | 20       | 18    |
| 42   | 19       | 17    |
| 43   | 18       | 16    |
| 44   | 17       | 15    |
| 45   | 16       | 14    |
| 46   | 15       | 13    |
| 47   | 14       | 12    |
| 48   | 13       | 11    |
| 49   | 12       | 10    |
| 50   | 11       | 9     |
| 51   | 10       | 8     |
| 52   | 9        | 7     |
| 53   | 8        | 6     |
| 54   | 7        | 5     |
| 55   | 6        | 4     |
| 56   | 5        | 3     |
| 57   | 4        | 2     |
| 58   | 3        | 1     |
| 59   | 2        | 0     |
| 60   | 1        | 0     |
| 61   | 0        | 0     |

### Sample Problem(s)

Apply the program to the following data:

| i       | 1   | 2   | 3   | 4   | 5   | 6   |
|---------|-----|-----|-----|-----|-----|-----|
| $s_i^2$ | 5.5 | 5.1 | 5.2 | 4.7 | 4.8 | 4.3 |
| $f_i$   | 10  | 20  | 17  | 18  | 8   | 15  |

**Solution(s)**   **Keystrokes:**

[A]

5.5[ENT↑] 10[B], 5.1[ENT↑] 20[B], . . . .

4.3[ENT<sup>↑</sup>] 15[B] -----> 6.00

[C] -----> 0.25 ( $\chi^2$ )

[R/S] -----> 5.00 (df)

### Reference(s)

1. Statistical Theory with Engineering Applications, A. Hald, John Wiley and Sons, 1960.
2. This program is a translation of the HP-65 Stat Pac 1 program.

## User Instructions

# 97 Program Listing I

45

| STEP | KEY ENTRY        | KEY CODE | COMMENTS           | STEP | KEY ENTRY        | KEY CODE | COMMENTS |
|------|------------------|----------|--------------------|------|------------------|----------|----------|
| 001  | *LBLA            | 21 11    |                    | 057  | R↓               | -31      |          |
| 002  | CLRG             | 16-53    | Initialize         | 058  | ENT↑             | -21      |          |
| 003  | 0                | 00       |                    | 059  | ENT↑             | -21      |          |
| 004  | RTN              | 24       | Clear storage      | 060  | RCL1             | 36 01    |          |
| 005  | *LBLB            | 21 12    | registers          | 061  | x                | -35      |          |
| 006  | ST01             | 35 01    | Accumulate sums    | 062  | ST-8             | 35-45 08 |          |
| 007  | ST+3             | 35-55 03 |                    | 063  | X <sup>2</sup> Y | -41      |          |
| 008  | 1/X              | 52       |                    | 064  | LN               | 32       |          |
| 009  | ST+4             | 35-55 04 |                    | 065  | RCL1             | 36 01    |          |
| 010  | R↓               | -31      |                    | 066  | x                | -35      |          |
| 011  | ENT↑             | -21      |                    | 067  | ST-7             | 35-45 07 |          |
| 012  | ENT↑             | -21      |                    | 068  | RCL5             | 36 05    |          |
| 013  | RCL1             | 36 01    |                    | 069  | 1                | 01       |          |
| 014  | x                | -35      |                    | 070  | -                | -45      |          |
| 015  | ST+8             | 35-55 08 |                    | 071  | ST05             | 35 05    |          |
| 016  | X <sup>2</sup> Y | -41      |                    | 072  | RTN              | 24       |          |
| 017  | LN               | 32       |                    |      |                  |          |          |
| 018  | RCL1             | 36 01    |                    |      |                  |          |          |
| 019  | x                | -35      |                    |      |                  |          |          |
| 020  | ST+7             | 35-55 07 |                    |      |                  |          |          |
| 021  | RCL5             | 36 05    |                    |      |                  |          |          |
| 022  | 1                | 01       |                    |      |                  |          |          |
| 023  | +                | -55      |                    |      |                  |          |          |
| 024  | ST05             | 35 05    |                    |      |                  |          |          |
| 025  | RTN              | 24       |                    |      |                  |          |          |
| 026  | *LBLC            | 21 13    | Compute shi-square |      |                  |          |          |
| 027  | RCL8             | 36 08    |                    |      |                  |          |          |
| 028  | RCL3             | 36 03    |                    |      |                  |          |          |
| 029  | ÷                | -24      |                    |      |                  |          |          |
| 030  | LN               | 32       |                    |      |                  |          |          |
| 031  | RCL3             | 36 03    |                    |      |                  |          |          |
| 032  | x                | -35      |                    |      |                  |          |          |
| 033  | RCL7             | 36 07    |                    |      |                  |          |          |
| 034  | -                | -45      |                    |      |                  |          |          |
| 035  | RCL4             | 36 04    |                    |      |                  |          |          |
| 036  | RCL3             | 36 03    |                    |      |                  |          |          |
| 037  | 1/X              | 52       |                    |      |                  |          |          |
| 038  | -                | -45      |                    |      |                  |          |          |
| 039  | RCL5             | 36 05    |                    |      |                  |          |          |
| 040  | 1                | 01       |                    |      |                  |          |          |
| 041  | -                | -45      |                    |      |                  |          |          |
| 042  | ST02             | 35 02    |                    |      |                  |          |          |
| 043  | 3                | 03       |                    |      |                  |          |          |
| 044  | x                | -35      |                    |      |                  |          |          |
| 045  | ÷                | -24      |                    |      |                  |          |          |
| 046  | 1                | 01       |                    |      |                  |          |          |
| 047  | +                | -55      |                    |      |                  |          |          |
| 048  | ÷                | -24      |                    |      |                  |          |          |
| 049  | R/S              | 51       |                    |      |                  |          |          |
| 050  | RCL2             | 36 02    |                    |      |                  |          |          |
| 051  | RTN              | 24       |                    |      |                  |          |          |
| 052  | *LBLD            | 21 14    |                    |      |                  |          |          |
| 053  | ST01             | 35 01    |                    |      |                  |          |          |
| 054  | ST-3             | 35-45 03 |                    |      |                  |          |          |
| 055  | 1/X              | 52       |                    |      |                  |          |          |
| 056  | ST-4             | 35-45 04 |                    |      |                  |          |          |

Compute shi-square

Display chi-square

Error corrector

## REGISTERS

|    |                             |                 |                           |                             |                |                |                                   |                |                |
|----|-----------------------------|-----------------|---------------------------|-----------------------------|----------------|----------------|-----------------------------------|----------------|----------------|
| 0  | <sup>1</sup> f <sub>i</sub> | <sup>2</sup> df | <sup>3</sup> $\Sigma f_i$ | <sup>4</sup> $\Sigma l/f_i$ | <sup>5</sup> k | <sup>6</sup> 0 | <sup>7</sup> $\Sigma f_i \ln f_i$ | <sup>8</sup> 0 | <sup>9</sup> 0 |
| S0 | S1                          | S2              | S3                        | S4                          | S5             | S6             | S7                                | S8             | S9             |
| A  | B                           | C               | D                         | E                           |                |                | I                                 |                |                |

## SET STATUS

| FLAGS | TRIG | DISP | ON   | OFF                                 |
|-------|------|------|------|-------------------------------------|
|       |      |      | 0    | 1                                   |
|       |      |      | DEG  | <input checked="" type="checkbox"/> |
|       |      |      | GRAD | <input type="checkbox"/>            |
|       |      |      | RAD  | <input type="checkbox"/>            |
|       |      |      | SCI  | <input type="checkbox"/>            |
|       |      |      | ENG  | <input type="checkbox"/>            |
|       |      |      | n    | <u>2</u>                            |

# Program Description I

Program Title MANN-WHITNEY STATISTIC

Contributor's Name Hewlett-Packard  
 Address 1000 N.E. Circle Blvd.  
 City Corvallis

State Oregon Zip Code 97330

## Program Description, Equations, Variables, etc.

This program computes the Mann-Whitney test statistic on two independent samples of equal or unequal sizes. This test is designed for testing the null hypothesis of no difference between two populations.

Mann-Whitney test statistic is defined as

$$U = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - \sum_{i=1}^{n_1} R_i$$

where  $n_1$  and  $n_2$  are the sizes of the two samples. Arrange all values from both samples jointly (as if they were one sample) in an increasing order of magnitude, let  $R_i$  ( $i = 1, 2, \dots, n_1$ ) be the ranks assigned to the values of the first sample (it is immaterial which sample is referred to as the "first").

When  $n_1$  and  $n_2$  are small, the Mann-Whitney test bases on the exact distribution of  $U$  and specially constructed tables. When  $n_1$  and  $n_2$  are both large (say, greater than 8) then

$$z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{n_1 n_2 (n_1 + n_2 + 1)/12}}$$

is approximately a random variable having the standard normal distribution.

## Operating Limits and Warnings

For small samples (say, less than or equal to 8) the specially constructed tables should be used. For example:

Handbook of Statistical Tables, D. B. Owen, Addison-Wesley, 1962

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

## Sketch(es)

## Sample Problem(s)

Find U and Z for the following data:

|            |      |      |      |      |      |      |      |      |      |
|------------|------|------|------|------|------|------|------|------|------|
| Sample 1   | 14.9 | 11.3 | 13.2 | 16.6 | 17   | 14.1 | 15.4 | 13   | 16.9 |
| Rank $R_i$ | 7    | 1    | 4    | 12   | 14   | 5    | 10   | 3    | 13   |
| Sample 2   | 15.2 | 19.8 | 14.7 | 18.3 | 16.2 | 21.1 | 18.9 | 12.2 | 15.3 |
| Rank       | 8    | 18   | 6    | 15   | 11   | 19   | 16   | 2    | 17   |

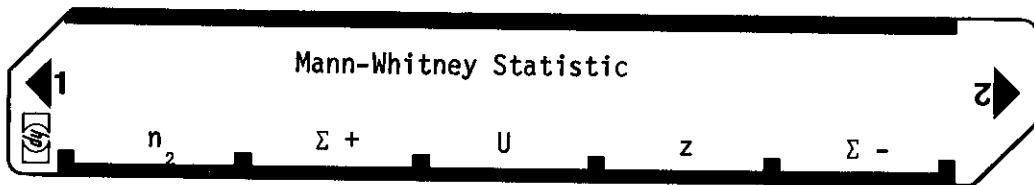
Note: 1.  $n_1 = 9, n_2 = 10$

2. The ranks have already been assigned in the example.

## Solution(s) Keystrokes:

10[A] 7[B] 1[B] 4[B] -----

3[B] 13[B] -----> 9.00


[C] -----> 66.00 (U)

[D] -----> 1.71 (Z)

## Reference(s)

1. Mathematical Statistics, J.E. Freund, Prentic Hall, 1962.
2. This program is a translation of the HP-65 Stat Pac 1 program.

## User Instructions



# 97 Program Listing I

49

| STEP       | KEY ENTRY | KEY CODE       | COMMENTS | STEP           | KEY ENTRY                   | KEY CODE                                | COMMENTS                                |
|------------|-----------|----------------|----------|----------------|-----------------------------|-----------------------------------------|-----------------------------------------|
| 001        | *LBLA     | 21 11          |          |                |                             |                                         |                                         |
| 002        | ST02      | 35 02          |          |                |                             |                                         |                                         |
| 003        | 0         | 00             |          |                |                             |                                         |                                         |
| 004        | ST01      | 35 01          |          |                |                             |                                         |                                         |
| 005        | ST03      | 35 03          |          |                |                             |                                         |                                         |
| 006        | RTN       | 24             |          |                |                             |                                         |                                         |
| 007        | *LBLB     | 21 12          |          |                |                             |                                         |                                         |
| 008        | ST+3      | 35-55 03       |          |                |                             |                                         |                                         |
| 009        | RCL1      | 36 01          |          |                |                             |                                         |                                         |
| 010        | 1         | 01             |          |                |                             |                                         |                                         |
| 011        | +         | -55            |          |                |                             |                                         |                                         |
| 012        | ST01      | 35 01          |          |                |                             |                                         |                                         |
| 013        | RTN       | 24             |          |                |                             |                                         |                                         |
| 014        | *LBLC     | 21 13          |          |                |                             |                                         |                                         |
| 015        | RCL2      | 36 02          |          |                |                             |                                         |                                         |
| 016        | RCL1      | 36 01          |          |                |                             |                                         |                                         |
| 017        | 1         | 01             |          |                |                             |                                         |                                         |
| 018        | +         | -55            |          |                |                             |                                         |                                         |
| 019        | 2         | 02             |          |                |                             |                                         |                                         |
| 020        | ÷         | -24            |          |                |                             |                                         |                                         |
| 021        | +         | -55            |          |                |                             |                                         |                                         |
| 022        | x         | -35            |          |                |                             |                                         |                                         |
| 023        | RCL3      | 36 03          |          |                |                             |                                         |                                         |
| 024        | -         | -45            |          |                |                             |                                         |                                         |
| 025        | RTN       | 24             |          |                |                             |                                         |                                         |
| 026        | *LBLD     | 21 14          |          |                |                             |                                         |                                         |
| 027        | RCL1      | 36 01          |          |                |                             |                                         |                                         |
| 028        | RCL2      | 36 02          |          |                |                             |                                         |                                         |
| 029        | x         | -35            |          |                |                             |                                         |                                         |
| 030        | 2         | 02             |          |                |                             |                                         |                                         |
| 031        | ÷         | -24            |          |                |                             |                                         |                                         |
| 032        | -         | -45            |          |                |                             |                                         |                                         |
| 033        | RCL1      | 36 01          |          |                |                             |                                         |                                         |
| 034        | RCL2      | 36 02          |          |                |                             |                                         |                                         |
| 035        | +         | -55            |          |                |                             |                                         |                                         |
| 036        | 1         | 01             |          |                |                             |                                         |                                         |
| 037        | +         | -55            |          |                |                             |                                         |                                         |
| 038        | RCL1      | 36 01          |          |                |                             |                                         |                                         |
| 039        | x         | -35            |          |                |                             |                                         |                                         |
| 040        | RCL2      | 36 02          |          |                |                             |                                         |                                         |
| 041        | x         | -35            |          |                |                             |                                         |                                         |
| 042        | 1         | 01             |          |                |                             |                                         |                                         |
| 043        | 2         | 02             |          |                |                             |                                         |                                         |
| 044        | ÷         | -24            |          |                |                             |                                         |                                         |
| 045        | JX        | 54             |          |                |                             |                                         |                                         |
| 046        | ÷         | -24            |          |                |                             |                                         |                                         |
| 047        | RTN       | 24             |          |                |                             |                                         |                                         |
| 048        | *LBLE     | 21 15          |          |                |                             |                                         |                                         |
| 049        | ST-3      | 35-45 03       |          |                |                             |                                         |                                         |
| 050        | RCL1      | 36 01          |          |                |                             |                                         |                                         |
| 051        | 1         | 01             |          |                |                             |                                         |                                         |
| 052        | -         | -45            |          |                |                             |                                         |                                         |
| 053        | ST01      | 35 01          |          |                |                             |                                         |                                         |
| 054        | RTN       | 24             |          |                |                             |                                         |                                         |
| SET STATUS |           |                |          |                |                             |                                         |                                         |
|            |           |                |          | FLAGS          |                             | TRIG                                    | DISP                                    |
|            |           |                |          | 0              | ON <input type="checkbox"/> | OFF <input checked="" type="checkbox"/> | DEG <input checked="" type="checkbox"/> |
|            |           |                |          | 1              | ON <input type="checkbox"/> | OFF <input checked="" type="checkbox"/> | GRAD <input type="checkbox"/>           |
|            |           |                |          | 2              | ON <input type="checkbox"/> | OFF <input checked="" type="checkbox"/> | RAD <input type="checkbox"/>            |
|            |           |                |          | 3              | ON <input type="checkbox"/> | OFF <input checked="" type="checkbox"/> | SCI <input type="checkbox"/>            |
|            |           |                |          |                |                             | ENG <input type="checkbox"/>            | n <u>2</u>                              |
| REGISTERS  |           |                |          |                |                             |                                         |                                         |
| 0          | 1         | n <sub>1</sub> | 2        | n <sub>2</sub> | 3                           | ΣR <sub>1</sub>                         | 4                                       |
| S0         | S1        |                | S2       |                | S3                          |                                         | S4                                      |
| A          | B         |                | C        |                | D                           | E                                       | I                                       |

# Program Description I

|                    |                                      |          |        |
|--------------------|--------------------------------------|----------|--------|
| Program Title      | KENDALL'S COEFFICIENT OF CONCORDANCE |          |        |
| Contributor's Name | Hewlett-Packard                      |          |        |
| Address            | 1000 N.E. Circle Blvd.               |          |        |
| City               | Corvallis                            | State    | Oregon |
|                    |                                      | Zip Code | 97330  |

## Program Description, Equations, Variables, etc.

Suppose  $n$  individuals are ranked from 1 to  $n$  according to some specified characteristic by  $k$  observers, the coefficient of concordance  $W$  measures the agreement between observers (or concordance between rankings).

$$W = \frac{12}{k^2 n(n^2 - 1)} \left( \sum_{i=1}^n \left( \sum_{j=1}^k R_{ij} \right)^2 - \frac{3(n+1)}{n-1} \right)$$

Where  $R_{ij}$  is the rank assigned to the  $i^{\text{th}}$  individual by the  $j^{\text{th}}$  observer.

$W$  varies from 0 (no community of preference) to 1 (perfect agreement). The null hypothesis that the observers have no community of preference may be tested using special tables, or if  $n > 7$ , by computing

$$\chi^2 = k(n-1)W$$

which has approximately the chi-square distribution with  $n-1$  degrees of freedom (df).

## Operating Limits and Warnings

For small samples (say, less than or equal to 7) the specially constructed tables should be used. For example:

Rank Correlation Methods, M.G. Kendall, Hafner Publishing  
Co., 1962

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Description II

### Sample Problem(s)

1. Find  $W$ ,  $\chi^2$ , and  $df$  for the following data:

Table for  $R_{ij}$  ( $n = 10, k = 3$ )

|   |    | Table for $R_{ij}$ ( $n = 10, k = 3$ ) |    |    |
|---|----|----------------------------------------|----|----|
|   |    | 1                                      | 2  | 3  |
| i | j  | 1                                      | 2  | 3  |
|   |    | 6                                      | 7  | 3  |
| 1 | 1  | 1                                      | 4  | 2  |
| 2 | 3  | 9                                      | 3  | 5  |
| 3 | 4  | 2                                      | 6  | 1  |
| 4 | 5  | 10                                     | 8  | 9  |
| 5 | 6  | 3                                      | 2  | 6  |
| 6 | 7  | 5                                      | 9  | 8  |
| 7 | 8  | 4                                      | 1  | 4  |
| 8 | 9  | 8                                      | 10 | 10 |
| 9 | 10 | 7                                      | 5  | 7  |

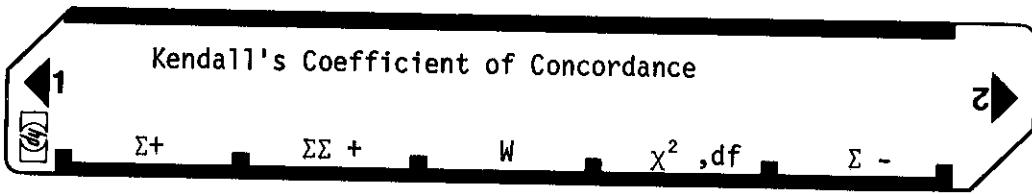
**Solution(s)** **Keystrokes:**

[f] [CL REG]

6[A] 7[A] 3[A] [B],  
1[A] 4[A] 2[A] [B]

7[A] 5[A] 7[A] [B]

[C] -----> 0.69 (W)


[D] -----> 18.64 (c)

[R/S] -----> 9.00 (df)

### Reference(s)

1. Nonparametric Statistical Inference, J.D. Gibbons, McGraw-Hill, 1971.
2. This program is a translation of the HP-65 Stat Pac 1 program.

## User Instructions



# 97 Program Listing I

53

| STEP | KEY ENTRY ~ KEY CODE | COMMENTS | STEP | KEY ENTRY | KEY CODE | COMMENTS        |
|------|----------------------|----------|------|-----------|----------|-----------------|
| 001  | *LBLA                | 21 11    | 057  | RCL4      | 36 04    |                 |
| 002  | ST+2                 | 35-55 02 | 058  | 1         | 01       |                 |
| 003  | RCL1                 | 36 01    | 059  | -         | -45      |                 |
| 004  | 1                    | 01       | 060  | RTN       | 24       |                 |
| 005  | +                    | -55      | 061  | *LBLLE    | 21 15    |                 |
| 006  | ST01                 | 35 01    | 062  | ST-2      | 35-45 02 | Error corrector |
| 007  | RTN                  | 24       | 063  | RCL1      | 36 01    | (i is fixed)    |
| 008  | *LBLB                | 21 12    | 064  | 1         | 01       |                 |
| 009  | RCL1                 | 36 01    | 065  | -         | -45      |                 |
| 010  | ST05                 | 35 05    | 066  | ST01      | 35 01    |                 |
| 011  | RCL2                 | 36 02    | 067  | RTN       | 24       |                 |
| 012  | X <sup>2</sup>       | 53       |      |           |          |                 |
| 013  | ST+3                 | 35-55 03 |      |           |          |                 |
| 014  | RCL4                 | 36 04    |      |           |          |                 |
| 015  | 1                    | 01       |      |           |          |                 |
| 016  | +                    | -55      |      |           |          |                 |
| 017  | ST04                 | 35 04    |      |           |          |                 |
| 018  | 0                    | 00       |      |           |          |                 |
| 019  | ST01                 | 35 01    |      |           |          |                 |
| 020  | ST02                 | 35 02    |      |           |          |                 |
| 021  | RCL4                 | 36 04    |      |           |          |                 |
| 022  | RTN                  | 24       |      |           |          |                 |
| 023  | *LBLC                | 21 13    |      |           |          |                 |
| 024  | RCL3                 | 36 03    |      |           |          |                 |
| 025  | 1                    | 01       |      |           |          |                 |
| 026  | 2                    | 02       |      |           |          |                 |
| 027  | X                    | -35      |      |           |          |                 |
| 028  | RCL5                 | 36 05    |      |           |          |                 |
| 029  | X <sup>2</sup>       | 53       |      |           |          |                 |
| 030  | ÷                    | -24      |      |           |          |                 |
| 031  | RCL4                 | 36 04    |      |           |          |                 |
| 032  | ÷                    | -24      |      |           |          |                 |
| 033  | RCL4                 | 36 04    |      |           |          |                 |
| 034  | X <sup>2</sup>       | 53       |      |           |          |                 |
| 035  | 1                    | 01       |      |           |          |                 |
| 036  | -                    | -45      |      |           |          |                 |
| 037  | ÷                    | -24      |      |           |          |                 |
| 038  | RCL4                 | 36 04    |      |           |          |                 |
| 039  | 1                    | 01       |      |           |          |                 |
| 040  | +                    | -55      |      |           |          |                 |
| 041  | 3                    | 03       |      |           |          |                 |
| 042  | X                    | -35      |      |           |          |                 |
| 043  | RCL4                 | 36 04    |      |           |          |                 |
| 044  | 1                    | 01       |      |           |          |                 |
| 045  | -                    | -45      |      |           |          |                 |
| 046  | ÷                    | -24      |      |           |          |                 |
| 047  | -                    | -45      |      |           |          |                 |
| 048  | RTN                  | 24       |      |           |          |                 |
| 049  | *LBLD                | 21 14    |      |           |          |                 |
| 050  | RCL5                 | 36 05    |      |           |          |                 |
| 051  | X                    | -35      |      |           |          |                 |
| 052  | RCL4                 | 36 04    |      |           |          |                 |
| 053  | 1                    | 01       |      |           |          |                 |
| 054  | -                    | -45      |      |           |          |                 |
| 055  | X                    | -35      |      |           |          |                 |
| 056  | R/S                  | 51       |      |           |          |                 |

Display answer W  
Compute  $X^2$  and df  
k  
Display  $X^2$

| SET STATUS |                          |      |                                     |      |                                     |
|------------|--------------------------|------|-------------------------------------|------|-------------------------------------|
| FLAGS      |                          | TRIG |                                     | DISP |                                     |
| ON         | OFF                      | DEG  | <input checked="" type="checkbox"/> | FIX  | <input checked="" type="checkbox"/> |
| 0          | <input type="checkbox"/> | GRAD | <input type="checkbox"/>            | SCI  | <input type="checkbox"/>            |
| 1          | <input type="checkbox"/> | RAD  | <input type="checkbox"/>            | ENG  | <input type="checkbox"/>            |
| 2          | <input type="checkbox"/> |      | <input checked="" type="checkbox"/> | n    | <u>2</u>                            |
| 3          | <input type="checkbox"/> |      | <input checked="" type="checkbox"/> |      |                                     |

## REGISTERS

|    |                     |    |                       |     |     |    |    |    |    |
|----|---------------------|----|-----------------------|-----|-----|----|----|----|----|
| 0  | 1 j $\Sigma R_{ij}$ | 2  | 3 $(\Sigma R_{ij})^2$ | 4 n | 5 k | 6  | 7  | 8  | 9  |
| S0 | S1                  | S2 | S3                    | S4  | S5  | S6 | S7 | S8 | S9 |
| A  | B                   | C  |                       | D   |     | E  |    | I  |    |

## **NOTES**

## **Hewlett-Packard Software**

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

### **Application Pacs**

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pac's contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

**Statistics**  
**Mathematics**  
**Electrical Engineering**  
**Business Decisions**  
**Clinical Lab and Nuclear Medicine**

**Mechanical Engineering**  
**Surveying**  
**Civil Engineering**  
**Navigation**

### **Users' Library**

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

### **Users' Library Solutions Books**

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

**Options/Technical Stock Analysis**  
**Portfolio Management/Bonds & Notes**  
**Real Estate Investment**  
**Taxes**  
**Home Construction Estimating**  
**Marketing/Sales**  
**Home Management**  
**Small Business**  
**Antennas**  
**Butterworth and Chebyshev Filters**  
**Thermal and Transport Sciences**  
**EE (Lab)**  
**Industrial Engineering**  
**Aeronautical Engineering**  
**Control Systems**  
**Beams and Columns**  
**High-Level Math**  
**Test Statistics**  
**Geometry**  
**Reliability/QA**

**Medical Practitioner**  
**Anesthesia**  
**Cardiac**  
**Pulmonary**  
**Chemistry**  
**Optics**  
**Physics**  
**Earth Sciences**  
**Energy Conservation**  
**Space Science**  
**Biology**  
**Games**  
**Games of Chance**  
**Aircraft Operation**  
**Avigation**  
**Calendars**  
**Photo Dark Room**  
**COGO-Surveying**  
**Astrology**  
**Forestry**

## **TEST STATISTICS**

Test Statistics includes many of the non-parametric tests and others.

ONE SAMPLE TEST STATISTICS FOR THE MEAN  
TEST STATISTICS FOR THE CORRELATION COEFFICIENT  
DIFFERENCES AMONG PROPORTIONS  
BEHRENS-FISHER STATISTIC  
KRUSKAL-WALLIS STATISTIC  
MEAN-SQUARE SUCCESSIVE  
THE RUN TEST FOR RANDOMNESS  
INTRACLASS CORRELATION COEFFICIENT  
FISHER'S EXACT TEST FOR A 2 X 2 CONTINGENCY TABLE  
BARTLETT'S CHI-SQUARE STATISTIC  
MANN-WHITNEY STATISTIC  
KENDALL'S COEFFICIENT OF CONCORDANCE



Scan Copyright ©  
The Museum of HP Calculators  
[www.hpmuseum.org](http://www.hpmuseum.org)

Original content used with permission.

Thank you for supporting the Museum of HP  
Calculators by purchasing this Scan!

Please do not make copies of this scan or  
make it available on file sharing services.