
Printed in Singapore

Flin- HEWLETT
a=~ PACKARD

HP 82478A

Debugger

Owner's Manual

For the HP-71

July 1986

~247~-90001

Hewlett-Packard Company makes no express or implied warranty with
regard to the keystroke procedures and program material offered or their
merchantability or their fitness for any particular purpose. The keystrokc
procedures and program material are made available solcly on an "as is"
basis, and the entire risk as to their quality and performance is with the
user. Should the keystroke procedures or program material prove
defective, the user (and not Hewlett-Packard nor any other party) shall
bear the entire cost of all necessary correction and all incidental or
consequential damages. Hewlett-Packard Company shall not be liable for
any incidental or consequential damages in connection with or arising out
of the furnishing, use, or performance of the keystroke procedures or
program material.

.

Introducing the Debugger for the HP-71

The HP-71 debugger offers programmers the ability to simulate assembly language on thL' HP-71 B
handheld computer.

If your programming experience IS 111 BASIC, you may be drawn to assembly IanguagL' by its
promise of greater speed and flexibility. Software development at this Ic\'el requires thL' samL'
approach to inspection and proof - the tempering of logic often referred to as the debugging
stage. In assembly language this process is much more focused since execution flow and rc'gister
usage is at the lowest leveL in the Central Processing Unit (CPU), where the built-in protections
afforded by an operating system are not available. In many cases the best method to certify
programming logic is by direct testing. You need a tool which allows you to follow execution and
register contents at each step - a debugger.

In tandem with the FORTH/Assembler ROM or with PC-based Saturn Assemblers, the debugger
provides an accurate, affordable, and portable tool for assembly language development on the HP-
71. Its many options allow you to customize its operation, even midway through a debugging
session. Its modularity is designed to allow the addition of more features through assemblY
language enhancements. .

This manual provides a description of the file setup, CPU emulation, output. and register
manipulation. For details on HP-71 file structure, keywords, and Independent RAMs (IRAMs).
refer to the HP-71 OW/ler's Ma/lual.

Contents

How to Use This Manual

Section 1: Assembly Language Development on the HP-7l

Section 2: The Debugger System ..
Debugger Files

Debugger Version
Debugger Files in Memory

Svstem Limitations
-Operating Precautions ..
Specific to HP-71

Equipment Needed ...

Section 3: Setting Up the Debugger ..
File Setup
Activating and Deactivating the Debugger ..
Entering the Debugger

The DEBUG Statement
The DEBUG * Statement .. .
Debugger Non-programmable

Exiting the Debugger ..
[Q][Q]
RECOVER: 2

Errors in File Setup .. .
DBGLEX Files in MAIN ..
Renaming the DBGLEX Files ..

Stacks and Registers ...
Accessing the Stacks . .
Register Overview .. .

Section 4: Using the Keyboard ..
Operating in View Mode

Cursor Keys ..
Digit Keys
[Z]
[=]
[(] and I)] ..
f[EDIT] .. .­
f[DELETE]
f[PURGE] ...
Address Increment/Decrement .
IS]
[M] ..
[RUN] ...

9

11

13
13
13

.. 14
14
15
15
15

17
17
18
19
19
20
20
21
21
21
23
24
24
25
25
27

31
32
32
32
32
32
33
33
33
33
33
34
34
34

Contents

[0][0]
[J][J]
Memory Window Keys .. .
f[USER]
g[lUSER] ..
f[LIST]
[ENDLINE]
[ATIN] .. .
f[OFF]
f[DISP]
f[AUTO]
g[CMDS]

Operating in Edit Mode .. : . .
Entering Edit Mode
Returning to View Mode .
[Z] .. .
Digit Keys [0]-[9]. [A]-[F]
Cursor Keys ..
[=] .. .
[(] and I)] .. "
f[EDIT]
Menu Editing Keys .

Section 5: Register Details
The User's Stack.
PC Stack .. .

PC Register ..
PCcy Register .
xa AC Register .. .

A-D Stack .. .
RO-R4 Stack .. .
RSTK Stack
DO-IN Stack

DO and Dl Registers .
ST Register
HS Register ..
OUTIIN Register

Horne Register .
Window Stack
Break Point Stack ..

BPs Register .
Break Point Registers ..

Options Stack
OPTIONS Register.
TRC Register
BIAS Register .
AUTO DSASSMBL Register
XQT Register

34
34
34
36
36
37
37
37
37
37
38
38
39
39
39
40
40
40
40
40
40
41

43
43
43
44
44
44
45
46
46
47
47
47
47
48
50
50
53
53
53
56
56
57
58
59
59

Section 6: The Emulator
Emulating at the PC

Return to Home Register
Single-stepping
Macro-stepping
Running ...
BASIC Main Loop ..

Controlling Emulator Breaks
Break Points and the PC
AC Hierarchy

Effects of Options
Effects of P Option
Effects of K Option
Effects of 0 Option
Effects of S Option
Effects of L Option
Effects of C Option
Effects of R Option
Effects of B Option
Effects of H Option
Effects of E Option
Effects of V Option
Effects of D Option

Instruction Set
Encountering Problems. . . .

Section 7: Back and Forth from BASIC
Separate Key Buffers

Controlling the Key Buffers
The [ON]g Toggle

Dropping into BASIC
[Q][Q] to Main Loop
[1][J] for Hard Jump
RECOVER Methods

Reentering the Debugger
The RECOVER Sequence
RECOVER: 0..
RECOVER: 1
RECOVER: 2
RECOVER: 3

Hard Jump and Assembly Language Reenter ..
Hard Jump to PC
Assembly Language Reenter

Contents

63
63
63
64
64
65
65
66
66
66
67
67
67
67
68
68
69
69
69
69
69
69
69
70
70

71
71
72
72
72
73
73
73
73
74
74
75
75
75
76
76
77

Contents

Section 8: Using HP-IL
The Debugger Display Device

The DDISPLA Y IS Statement .
Recovery from Errors ..

The 80-Column Video Interface
Using a Keyboard Device .. .

Restrictions
Keyboard Without Debugger
Key Mapping

Section 9: Additional Features and Operating Details
The Extended Command Menu ..

Oear Display
Restore Debugger 10
Reset HPIL
Wndw + DBGADDR$(l)
Wndw + DBGADDR$(2)
Wndw + DBGADDR$(3)
Initialize Debugger
Set Checksum .
Verify Checksum .

The Disassembler
Hardware Status Bits .
NOPs

Debugging Techniques
Avoiding Cold Start
System Timers
Configuration ..
Emulating Poll Handlers
Conflicts with VECTOR

Modifying the Debugger Software .
Annunciator Control .
Display Control Strings .. .
Modifying the KEYBOARD IS Mapping
Customizing REENTER ..
Code Modification

Appendix A: Warranty and Service Information
Limited One-Year Warranty
Service.
When You Need Help.

79
79
79
81
82
84
84
84
84

87
87
87
87
88
88
88
88
88
89
89
90
90
90
92
92
92
93
93
93
94
94
95
96
96
96

97
97
99

101

Appendix B: BASIC Keywords)03
DBGADDR$.. 103
DDISPLA Y IS ..) 03
DEBUG .. 104

Appendix C: Addresses of Entry Points)05

.

How to Use This Manual

Sections 1 and 2 of this manual present basic characteristics and limitations of the debugger system.
All programmers should be familiar with these principles.

First-time users of the debugger should read section 3, "Setting Up the Debugger." This section
will show you how to prepare the files, how to enter and exit the debugger system, and how to

examine the emulated CPU registers.

Important information on the input and display features of the debugger is contained in section 4,
"Using the Keyboard," and section 5, "Register Details." You need this information to set up and
interpret registers during a debugging session. These two sections are central references for all
users of the debugger.

After you are familiar with the structure of the debugger system, you will be ready to perform
actual debugging. To do this, you need to know how to run the emulator and how to interface to
BASIC. These are the topics of section 6, 'The Emulator," and section 7, "Back and Forth from
BASIC."

If you plan to use an HP-IL display device or remote keyboard for a more productive debugging
session, read section 8, "Using HP-IL."

Users familiar with the debugger svstem, or those interested in customizing the debugger software
should read section 9, "Additio~al Features and Operating Details." ~ This secti~n describe~
advanced interfaces to assembly language routines and techniques to use when emulating in the
HP-71 operating system.

For reference information about the BASIC keywords II1 the debugger. refer to appendix B.
"BASIC Keywords."

Throughout this manuaL keystrokes are indicated as follows:

• unshifted keys:

• shifted keys:

[K], [.'i], [RUN], etc.

f[DELETE] (the f-shifted [M] key),
HEDIT] (the f-shifted [Z] key),
g["] (the g-shifted [2] key),
g[CMDSj (the g-shifted [ENDLINE] key), etc.

For clarity, the g-shifted keystrokes for characters "less-than" ("< ") and "grcater-t han" ("> ") ,-trl'
shown as g[<] and g[>], respectivcl y. The four arrow keys are shown as [-j, I ~], [! J and III. The
four corresponding g-shifted arrow keys are g[-]. g[~]. gl ! 1 and g[l). .

Section 1

Assembly Language Development on the HP-71

Programming with assembly language on the HP-71 should be attempted only after thoroughly
understanding the characteristics of the operating system. The HP-71 Software /llIeJ"l/ol Desigl/
Specifications (IDS), Volumes I through IlL are available to help programmers understand and
work with the computer. The IDS part numbers for HP-71 version IBBBB are HP 00071-<}006H.
00071-90069, and 00071-90070. Determine the version of your HP-71 from the VER$ function.

Since assembly language controls the computer at the CPU leveL you have
access to memory contents without the built-in protections of the BASIC
operating system. Although damage to the computer itself. as well as any
peripherals, is unlikely, files and data in memory can be easily corrupted.
As protection against Memory Lost. you should copy any important files to
a mass memory device before working with assembly language or the
debugger. Without the overhead of the operating system, the assembly
language programmer assumes responsibility for the integrity of memory.

To use the debugger, you should be familiar with section 6 of the HP-71 OIl'I/{?r'S Mal/l/ol, "File
Operations." You need to know how to copy files between memory devices. In particular, you
should understand the creation and use of Independent RAMs.

The HP-71 Software IDS provides details on memory usage, file structure, internal data storage,
and interfaces to assembly language routines, This information is required for virtually all software
development. Chapter 16, IDS Volume L is indispensable when working with the debugger. It
describes the Saturn CPU instruction set and some of the CPU and bus architecture.

The HP-71 Hardware IDS (part number HP 00071-90071) may also prove valuable, as it gOl'S into
more detail on the CPU and bus. Chapter 3 of that document also shows the CPU instruction set.
If you plan to use the HP-IL module extensively in assembly language applications, you may also
need the HP-IL IDS (part number HP 82401-90(23).

You need to be familiar with the source document for your assembler, for debugging often involves
frequent code changes and reassemblies. Typically, this will be the IlP-7/ FOR~iIl!A'\"sclllhl('/" ROAJ
OWI/er's Mal/I/al. part number HP 82441-90001. That document also lists the CPU instruction set
and capabilities.

Section 2

The Debugger System

The debugger is a RAM-based program of less than 12K bytes which resides in HP-71 mL.'mory
along with the target assembly language. It is designed in three modules. comprising four files
which can be copied into and out of memory as desired.

Before using the debugger. you should write-protect the original medium. make copies of the files
onto another disk or cassette. and keep the original in a safe place for a back-up, copy. This will
offer protection against inadvertent changes to the debugger file contents in RAM.

Once the debugger is copied into HP-71 memory. no other equipment is necessary to run the
debugger. You need to have enough RAM to read in the debugger files (from 8K to 12K.
depending on your configuration). preferably set up as Independent RAM (IRAM). If this does
not leave enough memory for your assembly language application. you may need to purchase more
plug-in memory modules.

TIle debugger is compatible with the HP-71 operating system. and may reside in memory without
affecting the operating characteristics of the computer. Activating the debugger places the HP-71
operating system in a state of suspension. where individual CPU registers and memory locations
can be examined and edited. Assembly language routines can be emulated with interrupt. singlc­
step. and break point capability. The HP-71 keyboard is used to direct the debugger. and output
may be sent to both the LCD and an HP-IL display device.

Debugger Files

TIle HP-71 debugger system consists of four LEX files:

1. Main file DBGMAINA: a LEX file which contains the keywords and controlling routines for
accessing the debugger from BASIC. It also responds to the VER$ function. and generates
the errors and warnings when using the keywords.

2. Core files DBGLEX1A and DBGLEX2A: two LEX files which contain the core of the
debugger system. including RAM storage. emulator. and input/output routines.

3. Options file DBGLEX3A: a LEX file which provides additional enhancements and options
to control output from the debugger.

Debugger Version

VER$ String. The version of the debugger that you are running can be dctemlil1ed from the
VcR$ string. which returns a vaiue such as "DBG:A". The version designation appears as part of
each file name - in the names above. it is the "A" as the last character. If you are running
version "DBG:B" of the debugger. you will be working with files DBGMAINB, DBGLEX1B, and
so on. TIlroughout this manual. the files arc referred to with the "A" designation, even though you
may have a later version.

1':t

Section 2: The Debugger System

Compatibility. If reVISIOns to the debugger are published with subsequent VER$ designations,
they will be incompatible with previous versions. For example, if you have version "DBG:B", you
cannot run the debugger with the DBGLEX2A file. The debugger will issue an error if you try to
activate it with unmatched files, as they are encoded internally with the VER$ designation.

Debugger Files in Memory

Not all of the debugger files need to be copied into memory to run the debugger. The core
module files (DBGLEX1A and DBGLEX2A) are the only ones necessary to work through a
debugging session. DBGMAINA is required to activate the debugger. but not to continue a
debugging session. File DBGLEX3A is optional.

The core and options modules are meant to be copied into and run from IRAM. This gives them
relatively fixed locations for storage of key registers. The main file DBGMAINA may be run in
MAIN RAM.

The Purpose of Each File. File DBGMAINA contains the necessary keywords to set up and
activate the debugger. It must be in memory in order to run the debugger, but once activated,
DBGMAINA may be purged if the additional room is required for other applications. However, if
you deactivate the debugger, you will need to copy DBGMAINA back into memory to access the
system again.

With DBGMAINA in memory, the following features are available:

• The debugger's response to the VER$ function ("DBG:A").
• Three BASIC keywords:

- DEBUG (and its variant DEBUG *);
- DBGADDR$, for ascertaining base addresses for the DBGLEX files;
- DDISPLAY IS, to set up the debugger HP-IL display device.

In addition, the errors and warnings associated with the keywords are generated by the
DBGMAINA file. The keywords are explained below and in appendix B, "BASIC Keywords."

Files DBGLEX1A and DBGLEX2A are required to run a debugger session. They contain the key
detection and display routines, register manipulation and editing capabilities, as well as RAM
storage and CPU emulator.

File DBGLEX3A may be omitted to increase the amount of memory available to your application.
When present, it provides the following features:

• Disassembler, to display opcode mnemonics.
• 80-column interface for the HP-IL display device.
• Adjustment of displayed addresses to match listings.
• Extended command menu.

Systenl Linlitations

Running the debugger out of IRAM permits it to use relatively fixed RAM locations for its buffer
requirements. However, this makes it vulnerable to low-level configuration commands which de­
address chips, so by necessity there are a few things the debugger cannot emulate. It is expected
that fewer than 2% of debugger applications will encounter this limitation. In addition, since the

14

Section 2: The Debugger System

debugger's emulator runs at about 1175 real speed, critical timing loops in assembly language must
be adjusted accordingly. Aside from these cautions, the debugger can handle almost any assembly
language application.

The debugger is particularly vulnerable to the precise thing it is used to uncover - bugs in
assembly language code. Because it resides in RAM, writing data to any address within its file
boundaries may render the debugger inoperable. Thus, encountering a bug which clears or moves
a large chunk of memory will likely corrupt the debugger on its way to a Memory Lost. For this
reason, you should always have a write-protected backup copy of the debugger availablc on disk or
other medium.

Operating Precautions

When you have activated the debugger in your HP-71, there are some actions you should never
attempt without first deactivating the debugger. These include:

1. Removing or installing a plug-in module.
2. Executing FREE PORT or CLAIM PORT.
3. Removing and installing batteries.
4. Copying, purging, or otherwise moving a DBGLEX file.

Performing any of the above actions with the debugger active may disrupt the operation of the
HP-71, causing a Memory Lost condition or requiring an INIT: 3 to recover control of your
computer.

The operating manual for each HP-71 plug-in device contains directions for installing and removing
the module. In addition to deactivating the debugger, you must observe the precautions for
inserting plug-ins in the HP-71 ports.

Specific to HP-71

The debugger is HP-71 specific; that is, it will not run on other Saturn CPU systems. Several
mainframe utility routines and RAM pointers are used in the debugger, and they are expected to
reside at the addresses found in all versions of the HP-71.

The emulator will run on all versions of the HP-71, and is designed for complete compatibility with
the Saturn CPU instruction set published in Chapter 16 of the IDS, Volume I. Later versions of
the Saturn CPU may be used in HP-71s with serial numbers above 2623AOOOOO, and may contain
new additional opcodes. Although the resident operating system will not use these new opcodes,
custom assembly language routines might be written which do. The debugger will not cmulate
them properly. (Because the emulator is RAM-based, advanced users can change or add ncw
instructions by changing the DBGLEX files. Guidelines for this are given in section 9, "Additional
Features and Operating Details. ")

Equipnlent Needed

No extra equipment or peripherals are needed to run the debugger in the HP-71. However,
debugging is easiest when you use an HP-IL display device - which can be a printer - for
viewing registers and emulator results. This requires the HP-71 HP-IL interface and a display
device or printer. Not all debugging sessions can run with the external display device, hO\\'evcr.

15

Section 2: The Debugger System

Refer to section 8, "Using HP-IL," for details.

For the safest use of an external display, you should use the HP-71 Dual HP-IL Adapter (part
number HP 82402A). This will allow you to dedicate one loop for the debugger to display
registers, while the other loop can be used by the HP-71 operating system in emulation.

You may also use a KEYBOARD IS device in some debugging situations. This requires an HP-IL
module, a remote keyboard, and the LEX file "KEYBOARD". available from the HP-71 User's
Librarv or found in the FORTH/Assembler ROM and HP-IL LINK. Section 8, "Using HP-IL,"
has mZ)fe information regarding the use of Dual HP-IL and a remote keyboard. ~

Using peripherals with the debugger requires a certain knowledge of HP-IL. You should become
familiar with operation and control of the loop by consulting the HP-IL Ill1er/ac(' 011'11('1"'.1' Malll/al.

You may also find that using a calculator with lk";ldccimal capability will greatly SImplify address
calculations. In most cases, you cannot interrupt a debugging session to have the HP-71 perform
these calculations.

16

.

Section 3

Setting Up the Debugger

The debugger is invoked from BASIC, after you have copied the LEX files into memory. This
section describes the steps needed to prepare for a debugging session. as well as an overview of the
main feature of the system - the stack structure.

File Setup

The debugger LEX files are provided on mass media. which you should keep as a write-protected
backup. In preparation for a debugging session. you need to copy DBGLEX1A and DBGLEX2A
into memory as outlined below. The options module, DBGLEX3A. is needed only to access
several enhancements for debugger output.

Copying DBGLEX3A into memory provides the following capabilities:

• A disassembler, to display opcode mnemonics.
• An 80-column interface for the HP-IL display device.
• Adjustment of displayed addresses to match listings (BIAS).
• An extended command menu.

This is the recommended procedure for loading the debugger LEX files:

1. Use the FREE PORT statement to create IRAMs. Unless you have a plug-in RAM module
larger than 4K, you will need to free one port for each DBGLEX file. If you have larger
RAMs, you can copy two or all three DBGLEX files into a single IRAM (provided
DBGLEX1A is the first file in the IRAM). The HP-71B has more than 16K of RAM built­
in. so you do not need plug-in memory modules unless your assembly language routines
require more memory.

2. Copy DBGLEX1A and DBGLEX2A. and, if desired. DBGLEX3A into the IRAMs. The
file DBGLEXIA mllst reside at an address ending with "008". Copying it into an IRAM as
the first (or only) file guarantees this to he the casc. DBGLEX2A and DBGLEX3A may
reside at any address. All three files may he put in memory in any order.

3. Copy DBGMAINA into MAIN memory (or IRAM if desired).

For example,

FREE PORT(O)
FREE PORTe .01)
FREE PORTe .03)
COPY DBGLEX 1 i\ : Tl\PE TO : PORT (. 03)
COpy DBGLEX2A:TAPE TO : PORT (.01)
COpy DBGLEX3A:TAPE TO :PORT(O)
COpy DBGMAINA:TAPE

Create one lRAM for
each DBGLEX fi Ie.

Now the debugger is ready to run. Whether the target assembly language is a mainframe routine,

17

Section 3: Setting Up the Debugger

a LEX file, a BIN file, or a FORTH primitive created by the FORTH/Assembler ROM, you can
activate the debugger and start emulating the code.

Debugger Display Device. With the file DBGMAINA in memory and the HP-IL interface
plugged in, the BASIC statement DDISPLA Y IS can be used to specify a display device for
debugger output. If you have a display device on the loop, you can direct debugger registers to
HP-IL for a more productive debugging session. Details on using this statement are in section 8.
"Using HP-IL."

It is not necessary to use HP-IL for debugger displays. In fact, in some debugging situations you
should avoid doing so. The debugger defaults to using the LCD only, if DDISPLA Y IS is not
specified. Until you are familiar with the keyboard interface and register structure, it is advisable
to use the LCD as the default display device.

Activating and Deactivating the Debugger

Activating the debugger implies that the built-in protections of the BASIC operating system are left
behind, even when you temporarily suspend the debugger to drop into the BASIC environment.

With the debugger active. there are some actions you should never attempt without first
deactivating the debugger. These include:

1. Removing or installing a plug-in module.
2. Executing FREE PORT or CLAIM PORT.
3. Removing and installing batteries.
4. Copying, purging. or otherwise moving a DBGLEX file.

Activate with DEBUG Statement. You activate the debugger with the DEBUG statement (or its
variant. DEBUG *) provided in the DBGMAINA file. The DEBUG statement is described below.

Deactivate with RECOVER Sequence. You deactivate the debugger with the RECOVER: 2 or
RECOVER: 3 sequences. These are described below.

18

Section 3: Setting Up the Debugger

Entering the Debugger

The file DBGMAINA must be in memory to activate the debugger. as it contains the DEBUG
statement. Once activated. DBGMAINA can be purged from memory if the additional space is
required for your application. However, if deactivated. you will need to copy DBGMAINA into
memory to activate the debugger again.

To become familiar with the debugger system, perform the following three steps. The subsequent
paragraphs explain the actions in detail.

1. Activate the debugger:*

Keystroke Display

DEBUG fENDLINE] PC:OOOOO: 2034EE100060

The debugger system is now ready for viewing registers or emulating code. However, be
careful not to press any keys other than those described below. You will be learning how to
control the debugger shortly.

2. Drop into the BASIC operating system, momentarily suspending the debugger:

Keystroke Display

[0][0] > (the BASIC prompt)
(press [0] twice, within 1% seconds)

You are now back in the BASIC environment, with the debugger still in charge of the HP-71.
(The alarm annunciator (e)) indicates this.) The full BASIC operating system is available.
You can execute "BEEP", "RESTORE 10", "CAT ALL", or run programs. etc.

3. Deactivate the debugger. Press the [ON] and [I] keys simultaneolls/y; instead of the familiar
INIT: 1 prompt, you will see the debugger prompt RECOVER: 1.

Keystroke

rON][/]
[2]
IENDLINE]

Display

RECOVER: 1
RECOVER: 2
> (the BASIC prompt)

The debugger is deactivated, and the BASIC operating system has regained complete control
over the computer.

The DEBUG Statement

TIle BASIC statement DEBUG is lIsed to first enter the debugger. Executing DEBUG displays the
debugger's PC (CPU Program Counter) register. It is the PC which points to the opcodc for
emulation, so the address in this register is crucial to further debugging.

• If the DEBllG statement causes an error, you need to check your file setup. Directions for copying in the debugger
files are given at the heginning of the section.

19

Section 3: Setting Up the Debugger

A discussion of register usage and editing follows in section 5, "Register Details. "

Register Contents. When first activated, some debugger control registers need to be set to the
address of the target assembly language. Typically, you set a debugger Break Point register to the
address of your target routine, allow the operating system to execute within the vicinity of the
routine, then direct the debugger to take over. It will halt at the break point you set, where you
can examine registers or continue execution with the emulator. This process is described in the
succeeding sections.

Example: Suppose you have a BIN file "BINTEST" which you have assembled with the
FORTH/Assembler ROM. Before entering the debugger, execute the following:

ADDR$ ("BINTEST")

to get the address of the code. Although this is the address of the file header, It IS 111 the
general area of the code you will be debugging. Using this address and your assembler
listing, determine the address of the target routine. You need to remember this value for
later entry into a Break Point register.

Other than possibly specifying an HP-IL display device, there is no initialization required when
activating the debugger. All registers are cleared when the debugger is activated for the first time.
Subsequently, executing DEBUG causes registers to be restored to their contents from when the
debugger was last exited. * Since occasionally you will want to reset the registers, there arc methods
to clear them or re-initialize the entire system. These are explained in section 4, "Using the
Keyboard."

The DEBUG * Statement

An alternate form of the DEBUG statement is DEBUG * which causes the debugger to take over
and begin emulation immediately. It sets up its registers for an exit through the ~~ainframe entry
point "NXTSTM" (address 08A48) and runs from there. If you use this in a multi-statement
command· or program line to exercise your target code, you can make the debugger start emulating
your code without keyboard direction. Using the example above, if you execute:

DEBUG * @ CALL BINTEST

the debugger will take over and begin emulation of your binary file.

Register Contents. Executing DEBUG * will cause the previous values of the emulated registers to
be lost. The registers take on values necessary for an exit through "NXTSTM".

Debugger Non-programmable

The DEBUG statement is programmable; but the debugger, except for a few specific actions, is
not. Executing DEBUG in a program will suspend the HP-71 operating system and give keyboard
control to the debugger, for manual direction. Executing DEBUG * acts similarly, but starts
emulation automatically.

• All registers are restored except CPU status bits SI5-S12. In addition. RAM contents may have been changed when
working in the BASIC environment.

20

Section 3: Setting Up the Debugger

Exiting the Debugger

When you exit the debugger you may continue through your target assembly language, drop into
the HP-71 warm start code where the actions of an "INIT: 1" are taken, or, in extreme cases, you
can reset memory before returning to the BASIC environment.

There are four methods of manually exiting the debugger, each with different effects. Only two
are described in detail here so the first-time user can feel comfortable with entering and exiting the
debugger. Methods 1 and 2 leave the debugger in control of the keyboard, whereas methods 3 and
4 deactivate the debugger.

1. Pressing [Q][Q] (the [Q] key twice, within Ph seconds) drops the debugger into the HP-71
main loop, where the full BASIC operating system is available. Dehugger registers arc
preserved so that a debugging session may be resumed at later reentry.

2. Pressing [1][J] (the [J] key twice, within Ph seconds) while the PC register is in the display
performs a hard jump to the Pc. Thi', key sequence is described in section 7, "Back and
Forth from BASIC."

3. The RECOVER: 2 sequence is used to deactivate the debugger and return complete control
of the computer to the HP-71 operating system.

4. The RECOVER: 3 sequence performs a Memory Lost, clearing all of memory and
deactivating the debugger. This key sequence is described in section 7, "Back and Forth from
BASIC."

[QUQ]

You will find that the [Q][Q] sequence is very useful for interrupting debugging sessions to
perform BASIC functions - purge or edit files, print CATalogs, check and set TIME, RUN
programs, change output devices, etc. Then, if you want to resume your debugging session where
you left off. execute the DEBUG statement. This restores all emulated CPU registers to their
values before you performed [O][Q]. *

When you drop into the BASIC environment with [Q][Q], t the debugger retains control of the
keyboard, although this is transparent to the user. This condition (operating in BASIC wi th the
debugger in control of the keyboard) is indicated by the «.») annunciator being lit. Other than the
annunciator being on, the computer operates as a normal HP-71. (Since the debugger is not
deactivated, however, observe the precautions listed above, under "Activating and Deactivating the
Debugger. ")

RECOVER: 2
The familiar "INlT:" message generated by the [ON][/] keystroke (pressing the [ON] and [I] keys
simultaneously) is replaced by "RECOVER:" when the debugger is active. Selecting RECOVER
level 2 deactivates the debugger, so that complete control of the computer is returned to the
BASIC operating system.

• Except CPU status bits S15·S12 and RAM contents which might have been changed while in the BASIC environmcnt.

The effect on the HP·71 operating systcm is identical to performing an INIT: 1, including turning off USER mode and
reconfiguring all memory devices.

21

Section 3: Setting Up the Debugger

The RECOVER sequence can be used any time the debugger is active. whether viewing registers
or after dropping into the BASIC environment with [0][0].

Follow these steps to deactivate the debugger with RECOVER: 2 :

1. If you have not activated the debugger yet. enter the DEBUG statement and press
[ENDLINE]. This will activate the debugger with the PC register displayed.

2. Press and release both the ION] key and the [I] key at the same time. This will generate the
"RECOVER: I" prompt.

3. Select RECOVER: 2 by pressing the [2] key. then [ENDLINE]. This deactivates the
debugger and returns control to the BASTC environment.

For more details on leaving the debugger. different ways to reenter. and other methods of exiting.
refer to section 7. "Back and Forth from BASIC."

22

Section 3: Setting Up the Dehugger

Errors in File Setup

The debugger LEX files will not prevent you from copying them into any location in memory, but
the DEBUG statement will generate an error or warning if you have not copied them into
"protected" RAM (i.e .. IRAM). You can run the debugger if any of the DBGLEX files reside in
MAIN memory. but the HP-71 will report warnings. since you should be aware that MAIN
memory is much more volatile than IRAMs. In any case, the debugger will error if DBGLEXIA
docs not reside at an "xx008" address.

Executing the DEBUG statement will display an error or warning under the following conditions:

Filename

DBGMAINA

DBGLEXIA
DBGLEX1A
DBGLEXIA
DBGLEXIA
DBGLEXIA
DBGLEXIA
DBGLEXIA

DBGLEX2A
DBGLEX2A
DBGLEX2A
DBGLEX2A

DBGLEX3A
DBGLEX3A
DBGLEX3A
DBGLEX3A

Errors and Warnings when executing DEBUG

In In ROM. Missing Result
IRAM MAIN PROM

X ERR:Excess Chars

X "'1 OK.
X "'2 WRN:Verify Address
X *3 ERR:Verify Address

X *4 WRN:File DBGLEXIA in MAIN
X *5 ERR:Verify Address

X ERR:Verify Address
X ERR:Missing Module

X OK.
X WRN:File DBGLEX2A in MAIN

X OK.
X ERR:Missing Module

X OK.
X WRN:File DBGLEX3A in MAIN

X OK.
X OK.

'" 1 : First file in IRAM.
*2 : Not first file in IRAM. but at address "xx008".
*3 : Not first file in IRi\.f\T1 and not at address "xxOO~".
"4 : At address "xx008" in MAIN.
*5 : Not at an "xx008" address.

Section 3: Setting Up the Debugger

The above errors and warnings reported by the DBGMAINA file show the prefix DBG to identify
the source; for example.

DBG ERR:Missing Module

DBG LEX Files in MAIN

Running the debugger with any of the DBGLEX files in MAIN RAM is extremely risky. If vou
keep at it long enough. a Memory Lost is unavoidable. since the file chain in MAIN memory
moves frequently.

Renaming the DBGLEX Files

Several copies of the DBGLEX files can reside in memory simultaneously. The debugger wi1l
choose which modules are in the most stable memory -locations (in IRAM. or in the case of
DBGLEX2A and DBGLEX3A. in IRAMJROMJPROM) and use these in execution.

You can rename the files as you wish without affecting the debugger's operation. DBGLEXIA
contains all the register information needed to restore a debugging session. including all options
settings and HP-IL display control (but not including CPU status bits S15-S12 and RAM locations
which might have been changed while in the BASIC environment). Hence. you can keep copies of
it under different names for different sessions. If you rename the DBGLEX files. the above
warnings will report their actual names. However. this manual refers to them as DBGLEXIA.
DBGLEX2A. and DBGLEX3A.

When the DEBUG statement is executed. the controlling routines search memory for the
DBGLEX files. The files are not found by name, but by internal coding which identifies their
origin (whether DBGLEXIA, DBGLEX2A. or DBGLEX3A) and their version (VER$ response).
Only two characteristics are required for the debugger to accept a DBGLEX file. regardless of its
name:

1. It must reside in an appropriat.e device and address.
2. It must be the same VER$ designation as the DBGMAIN file.

24

Section 3: Setting Up the Debugger

Stacks and Registers

This section provides an overview of the debugger stacks and registers. Detailed information, as
well as directions for editing, can be found in section 5, "Register Details."

Conceptually, the debugger's registers are arranged in stacks. ll1ere are six stacks of emulated
CPU registers and four control stacks. Figure 1 shows the relative positions of stacks and registers.

Accessing the Stacks

Each of the ten stacks can be accessed with a "direct access" digit key, as indicated in Figure 1. In
addition. the six CPU stacks make up a revolving set, accessible by scrolling left and right (with
wrap-around) with the arrow keys. Within each stack, the registers are viewed by mlling the stack
with the up- and down-arrows.

For example, when the debugger is first entered, the User's stack is empty and the PC register is
displayed:

PC displayed: PC:OOOOO: 2034EE100060

Pressing [-] moves to the A-D stack, at the top level:

[-] to the A-D stack: A: 000000000000000 0

[l] rolls the stack to B: B: 000000000000000 0

[l] rolls the stack to C: C: 000000000000000 0

[q rolls the stack to D: D: 000000000000000 0

[l] wrap-around to A: A: 000000000000000 0

[-] to the RO-R4 stack: RO: 0000000000000000

[-] to the RSTK stack: LO: 00000

[-] to the DO-IN stack: DO:OOOOO: 2034EEIOOO60

[r] wrap-around to OUT/IN: OUT: 000 IN:OOOO(O) I : E

Pressing [-] now wraps around the set of CPU stacks back to the User's stack. If the User's stack
is empty, it is skipped and the PC stack is brought up:

[-] to the PC stack: PC:OOOOO: 2034EEI00060

The control stacks can only be selected by the direct access keys. Pressing [7] brings up the
Window stack:-

[7J to select Windmv stack:

[8] to select Break Point stack:

[9] to select Options stack:

OOOOO.2034EEI00060F481

o BPs. RTN Level :NONE

OPTIONS: pkos I c rbhevd

25

Section 3: Setting Up the Debugger

CPU Stacks Control Stacks

[0] * [1] [2] [3] [4] [5] [6] [7] [8] [9]

User's PC A-D RO-R4 RSTK DO-IN Home Window BrkPts OQtions

< > PC A RO LO DO Home W1 #BPs OPTIONS
< > PCcy B Rl L1 Dl W2 BP 1 TRC
< > XOAC C R2 L2 ST W3 BP2 BIAS
< > D R3 L3 HS W4 BP 3 AUTO
< > R4 L4 OUTIIN W5 BP4 XQT
< > L5 W6 BP 5
< > L6 W7 BP6
< > L7 W8 BP 7

W9 BP 8
WlO BP 9
Wll BPlO

[-] --------- scroll --------- [-] Wl2 BPl1
through with W13 BPl2
arrow keys Wl4 BPB

Wl5 BPl4
BPl5

* direct access keys

PC: CPU Program Counter Home: Last register displayed
PCcy: PC. Carry. Pointer. and Mode
XC: Last executed PC Wl-Wl5: RAM/memory windows
AC: Action Completed

#BPs: Number of Break Points
A-D: CPU arithmetic registers BP1-BP15: Break Point registers
RO-R4: CPU scratch registers
LO- L 7: Levels 0-7 of CPU RSTK OPTIONS: Control Options

TRC: Trace register
DO-Dl: CPU data pointers BIAS: Address Bias register
ST: CPU software Status bits AUTO: Auto disassemble
HS: CPU Hardware Status bits XOT: Single opende execute
OUf/IN: OUT and IN registers

Figure 1. Debugger Stacks and Registers

26

Section 3: Setting Up the Debugger

The direct access keys can also be used to select CPU stacks:

[1] to select PC stack:

[2] to select A-D stack:

[3] to select RO-R4 stack:

[4] to select RSTK stack:

[5] to select DO-IN stack:

PC:ooooo: 2034EEI00060

A: 000000000000000 0

RO: 0000000000000000

LO: 00000

DO:OOOOO: 2034EEI00060

The "Home" register is the last register displayed before running the emulator. It is useful for
tracking the contents of a register between emulation steps. Upon first entering the debugger the
Home register defaults to the PC register. When the User's stack is empty, selecting it with the
direct access key [0] displays "< > ".

r 6] to select Home register:

[0] to select User's stack:

Register Overview

PC:OOOOO: 2034EEI00060

< >

The following is an overview of the debugger stacks and registers. More information on each
register is provided in section 5, "Register Details."

User's Stack. The User's stack is an expandable set of registers, from zero to eight, which you can
select. When the debugger is first entered, this stack is empty.

PC Stack. The PC stack is the principal stack for the debugger. It directs the emulator to the
address for emulation. provides a one-step history of emulation. and shows important CPU control
registers.

PC register:

PCcy register:

XCiAC register:

PC:OOOOO:

PC:OOOOO

XC:OOOOO:

2034EE100060

C:O P:O M:H

-ATTN-

• The PC register shows the current PC (CPU Program Counter) for emulation and 12 nibbles
of memory. (Setting the "D" option. in the OPTIONS register. with DBGLEX3A in memory
will display the opcode mnemonic instead.)

• The PCcy register shows the current Pc. the Carry. Pointer, and arithmetic Mode.

• The XCiAC register shows the address of the last executed PC and the Action Completed -
the reason for interrupting the emulator. AC codes are listed in section 5. "Register Details."

A-D Stack. The four registers in the A-D stack emulate the arithmetic registers in tbe CPU: A. B.
C. and D.

A register:

B register:

C register:

A: 000000000000000 0

B: 000000000000000 0

C: 000000000000000 0

27

Section 3: Setting Up the Debugger

D register: D: 000000000000000 0

Since the P register (Pointer) greatly affects operations on the arithmetic registers. the value of P is
indicated by separation within the digits of the registers. In the above displays, nibhle 0 (the
right-most digit) is separated from the rest, indicating that the P register has a value of O. This is
explained fully in section 5.

RO-R4 Stack. The five registers in the RO-R4 stack represent the emulated CPU scratch registers:
RO, Rl, R2, R3, and R4.

RO register: RO: 0000000000000000

R1 register: R1 : 0000000000000000

R2 register: R2: 0000000000000000

R3 register: R3: 0000000000000000

R4 register: R4: 0000000000000000

RSTK Stack. The eight registers in the RSTK stack represent the emulated return levels: LO
through L 7. The LO register is the "top" return stack level - the next one to he popped off for a
"RTN" or "C= RSTK" instruction.

LO register: LO: 00000

L 7 register: L7: 00000

DO-IN Stack. The five registers in. the DO-IN stack keep track of data pointers, status bits, and the
OUT and IN registers.

DO register:

Dl register:

ST register:

HS register:

OUr/IN register:

DO:OOOOO: 2034EE100060

Dl : 00000: 2034 EE 10 a 060

ST:OOOO 0000 0000 0000

NW:O SR:O SB:O XM:O

our : 0 0 0 IN: 0 0 0 0 (0) I: E

• The DO and Dl registers show the address of each data pointer and 12 nibbles from memory
at that address.

• The ST register shows the sixteen CPU status bits. S15 is the left-most digit; SO is the right­
most digit.

• The HS register shows the four hardware status bits.

• The OUr/IN register shows the last value written to the our register, the user-specified
contents of the IN register (as read by an "A = IN" or "C= IN" instruction). and' the cllrrent
status of the Interrupt register. (More information on these is provided in section 5.)

Home Register. The Home register is that register which was displayed at the last time the
emulator was run. It is useful for tracking a register between steps of the emulator, when you
nlight be looking at several different stacks.

28

Section 3: Setting Up the Debugger

Window Stack. The debugger provides 15 memory windows, WI through WIS. When the
debugger is activated for the first time, they are all set to address 00000. Each window register
shows 16 nibbles of memory for the address specified.

W 1 register: 00000.2034EEI00060F481

W15 register: 00000.2034EEI00060F481

There are seven types of windows, described in section 5. The default type is "Direct", indicated
with a "." symbol in the display.

Break Point Stack. The Break Point stack always contains at least one register - the #BPs
register. Up to 15 break points can be added to this stack.

BPs register: o BPs. RTN Level :NONE

BP 1 register: BP l~OOOOO (__)Halt

Next available BP: BP 5~ ____ _)Ha I t

The #BPs register indicates how many break point addresses are in the stack. The RTN Level
indicator tells at which RSTK level the emulator will break: 0-7, ALL, or NONE.

For each Break Point register the break address and two special fields are shown. The field in
parentheses is the Show register - the name of the register to be displayed if the break point is
encountered. When not specified (indicated by " __ ", the default), the Show register becomes the
top level of the User's stack, or, if empty, the PC register. The term "Halt" is the Break Point
Action. You can choose between three actions: "Halt", "Cant", or "Jump". More information on
these is in section 5, "Register Details. "

Options Stack. This stack contains five registers to control the options and flow of the debugger.

OPTIONS register:

TRACE register:

BIAS register:

A UTO register:

XQT register:

OPTIONS: pkoslcrbhevd

TRC #00000 (_ _) Ha I t

BIAS:OOOOO,OOOOO-OOOOO

AUTO DSASSMBL @ 00000

XQT: 00

• The OPTIONS register shows twelve options available to control the emulator and debugger
output. .

• The TRACE register allows you to specify a register for continuous display during emulation,
as well as the frequency of display. The first five digits are the count (in hex) between
displays. The next two fields are the Trace Show and Trace Action fields, identical to the
Break Point Show and Break Point Action fields described above. .

• The BIAS register allows you to adjust displayed addresses, in a designated range, to a
different base address. 1l1is is useful for following code on a printout where the assembler
address does not match the machine address, as is often the case. 1l1C bias is applied to
address registers only if the "B" option is set in the OPTIONS register. The BIAS option can

29

Section 3: Setting Up the Debugger

be active only if DBGLEX3A is present in memory .

• The AurO register specifies an address which is used for automatic opcode disassemble
(available only if DBGLEX3A is in memory). Pressing f[AurO] causes a continuous stream
of opcode mnemonics to be displayed, starting at the AurO address. The stream is
interrupted by pressing [A TIN] .

• The XQT register is used to execute single opcodes through the emulator. Opcodes are
entered as hex digits. Entering an opcode causes the emulator to be stepped once, as if the
opcode were found at the current Pc.

30

,

I
I
f

L

Section 4

Using the Keyboard

The debugger is a keystroke-driven processor overlaid upon the HP-71 operating system. To use
the debugger to its full potential you should Jearn the stack structure (containing the emulated
CPU registers) and the keyboard interface (for controlling the debugger/emulator).

Two factors complicate the keyboard interface: 1) the debugger shares the keyboard with the HP-
71 operating system, and 2) the system offers many features, so that many of the keys. are used to
select special functions. You will find that these functions have been chosen to match the typing
aids on the HP-71 , so a keyboard overlay, which might interfere with a target application, is not
necessary.

Figure 2 is a representation of the HP-71 keyboard, with the debugger's keys highlighted. The
keys in bold outline are the only keys used in the debugger, and the typing aids shown are the ones
used as mnemonics for corresponding debugger functions.

II PC:OOOOO: 2034EE100060 IIII ~
KEY

(]] ~ [I] [BJ IT] [TI [ill OJ [QJ [£J m []] m [Z]
DISP m (]] [[J [El [QJ [ill m [E] [IJ G m m []] GJ

EDIT PURGE usr DEl£TE AlITO • "
mlIJlI1~[[][illt:mmmmmmmQ
r§fuITJC2J8E1I2lEJG1G ~ I~IDDGJ

CIoIDS I USER < > ?

Figure 2. HP-71 Debugger Keyboard

31

Section 4: Using the Keyboard

The debugger operates in two modes: view mode and edit mode. In view mode the cursor is ofL
the arrow keys scroll through the stacks, and the digit keys are used as direct access keys to select
stacks. In edit mode the cursor is on (blinking), the right- and left-arrow keys control the cursor,
and the digit keys are used to edit register contents. In most cases the up- and down-arrow keys
are inactive.

Key action with the debugger is similar to that of the HP-71 operating system. Keys repeat if held
down for more than one-half second. The most notable difference is that the debugger does nOl
detect multiple keys. For instance, in the BASIC environment you can press the [A] key, and while
holding it down, press in turn [B], [C], rD], and [E]. All these characters will be detected and
displayed. In the debugger, only one key at a time can be detected, including the f- and g-shift
keys. You mllst let up on the shift key before you press the second key ill the kcystroke. You will
become accustomed to this after a few debugging sessions.

As in the HP-71 operating system, the debugger allows type-ahead. If you press keys faster than
the system can process them visibly, they are stored in the key buffer. Up to 15 keystrokes can be
stored during type-ahead.

Key definitions made in the BASIC environment are inaccessible when directing the debugger,
regardless of the User mode setting. The debugger detects and processes keys without intervention
from the operating system.

Operating in View Mode

In view mode all keys are direct-execute. That is, they are executed immediately, with no need to
press [ENDLINE].

Cursor Keys

The four cursor (arrow) keys, [-], [-], [r], and [~], are used to scroll through the set of six CPU
stacks. As each stack is brought up, the top level is displayed. Figure 1 illustrates the stack
structure.

Digit Keys

The ten digit keys, [0] through [9], are used as direct access keys to bring up the corresponding
debugger stacks. Figure 1 shows the direct access key for each stack.

[Z]

Pressing [Z] (the key with the "EDIT" typing aid) enters edit mode. The next subsection,
"Operating in Edit Mode," explains this mode.

[=]

Pressing [=] when viewing a menu edit register enters edit mode and allows selection of a menu
address. The next subsection, "Operating in Edit Mode," describes the menu edit registers.

32

Section 4: Using the Keyboard

[(] and [)]

Pressing either [(] or f)] when viewing a Break Point or TRACE register enters edit mode and
allows selection of a Show register or Action. The next subsection, "Operating in Edit Mode,"
explains edit mode and Show and Action editing.

f[EDIT]

Pressing f[EDIT] allows you to edit memon' cOlltellfs in an address register. The next subsection,
"Operating in Edit Mode," explains memory editing.

f[DELETE]

Pressing f[DELETE] resets the register to the default contents. In almost all cases, this- means to
set all digits to zeroes. Special cases are as follows:

Mode. In the PCcy register, Mode is reset to show "M:H" (Hex).

RTN Level Indicator. Resets the RTN Level indicator in the #BPs register to "NONE".

Break Point Register. Deleting a Break Point register removes it from the Break Point stack,
reducing the number of break points by one. The Show register is reset to " __ " (nUll), which
causes the User's stack (or, if empty, the PC register) to be displayed at a break. The Action field
is reset to "Halt".

OPTIONS Register. Clears all options (sets all to lower case).

XQT Register. Resets the opcode to "00" without executing it.

Trace Show and Action. Resets the Show register to " __ " (nUll), and the Action to "Halt".

f[PURGE]

Pressing f[PURGE] resets the entire current stack and brings up the top level in the stack as the
new current register. Use this keystroke to "delete" all break points, or to set registers A through
D to zeroes, for example. f[PURGE] is ignored in the User's stack.

Address Increment/Decrement

Several debugger registers are address moniTors - that is, the\'o or the areas of memory to which
they point, ~ight r~quire frequent changes to control the f]~ow of a debugging sessiZm. These
registers are:

• PC and PCcy registers (PC address)
• DO and Dl
• WI througJ) Wl5
• BPI through BPI5
• A UfO DSASSMBL register

Four keys can be used to increment or decrement the address in these registers without. switching
the debugger to edit mode:

[+] Increments address by 1.
[-] Decrements address by 1.
[*] Increments address by lObex (16dec).
[I] Decrements address by 10hex (16dec).

33

I

Section 4: Using the Keyboard

[S]

Pressing [S] single-steps the emulator at the address in the PC register. Section 6 provides more
details on running the emulator.

[M]
Pressing I M] macro-steps the emulator starting at the address in the PC register. A macro-step is
identical to a single-step, except when a GOSUB (or GOSUBL or GOSBVL) instruction is
executed. Then the emulator runs through the subroutine, breaking at the return (or any other
break point if it occurs within the subroutine). A break will also occur if the flagged RSTK level is
popped off with a "C= RSTK" instruction.

Section 6 provides more details on running the emulator.

[RUN]

Pressing [RUN] runs the emulator, starting at the address in the PC register. Emulation continues
until a break is encountered, corresponding to one of the AC codes described under the heading
"xa AC register" in section 5, "Register Details." You can always break the emulator with the
[ATIN] key; other breaks are caused by break points or special opcodes. Section 6 provides more
details on running the emulator.

[Q][Q]

Pressing [Q][Q] (the [Q] key twice, within Ph seconds) exits the debugger, back to the BASIC
main loop, in effect executing an "INIT: I". Refer to section 7, "Back and Forth from BASIC," for
details.

[J][J]

Pressing [1][J] (the [1] key twice, within Ph seconds) causes a hard jump to the address in the PC
register. This keystroke can only be executed if the PC or PCcy register is in the display. Refer to
section 7, "Back and Forth from BASIC" for details.

Memory \Vindow Keys

Most debugger registers will display a memory window or opcode mnemonic from the address (or
address field) they contain. These registers are:

• PC and PCcy
• XC
• The arithmetic (A-D) and scratch (RO-R4) registers, which frequently hold an address in the

low five nibbles.
• LO through L7
• DO and DI
• WI through WI5
• BPI through BP15
• AUTO DSASSMBL

Momentary Nibble Window. Several keys are used to display memory windows from the address
T'.on~C."tprC' "'rh.o \'l,;",rlnn/ ~c r1;cnl-:nrf.Jorl IH.,t~l thp 1 .. .0" ;c r.ol.o":llC'oPrl
J.'"'5hu ~. "'.1'." .. "1.11. \"..1'" J.J UJ.JPJU)'-'U UJ.lLJ.J 1..1.1"-' n'._) J.J .l'-'.1 UJ""-'u.

34

Section 4: Using the Keyboard

[.] key. Pressing [.] momentarily displays a direct window - 16 to 19 nibbles read directly from
the register address.

Example: Suppose a Break Point register is set as follows:

BP 1--09656)Ha I t

To see memory contents at the BP address,

press and hold [.]: BP 1. 71801F4869011B8A

The "." in the display indicates a direct window, matching the character of the key pressed.

g[<] key. Pressing g[<] momentarily displays an indirect window. A five-nibble address is read
from memory at the window and the memory contents at the new address are displayed.

Example: From the above example, you can see that the indirect address at 09656 is 10817.
The indirect address is found by reading the first five nibbles (in reversed order, as
performed in the CPU) from memory.

To see indirect memory contents from the BP address (the memory contents from address
10817),

press and hold g[<] : BP 1< 9169028902AD9B2B

The "<" in the display indicates an indirect window, matching the character of the key
pressed.

Momentary Disassemble Windows. Several keys are also used to display disassembled opcodes
from the address registers. The mnemonic is displayed until the key is released.

The disassembler is available only if DBGLEX3A is in memory.

[,] key. Pressing [,] momentarily displays a direct disassemble - the opcade mnemonic read
directly from the register address.

Example: Using the above example, you can display the opcade mnemonic at the address in
the Break Point register, address 09656:

press and hold [,]: BP 1. GOSUB 096DB

The"." in the display indicates a direct window disassemble.

g[>] key. Pressing g[>] momentarily displays an indirect disassemble - a five-nibble address is
read from the memory at the window, and the mnemonic found at the new address is displayed.

Example: From the above example, you can see that the indirect address at 09656 is 10817.
To display the opcode mnemonic from address 10817,

press and hold g[>]: BP 1< ?C#A ~/GOYES 10823

(Only the last 22 characters are displayed in the LCD, so, in this case, the characters "BP "
are not shown.)

I'he "< II in the display indicates an indirect \\lindo\-\' disassemble.

35

Section 4: Using the Keyboard

Relative Windows. TIlere are five relative window keys:

• gIl]
• g["]
• g[#]
• g[$]
• g[%]

to display a REL(l) window.
to display a REL(2) window.
to display a REL(3) window.
to display a REL(4) window.
to display a REL(5) window.

Note that each relative window key corresponds to the digit on the primary key face.

Pressing any of the relative window keys momentarily displays the relative address computed from
the window address. The display wilI continue for 1% seconds after you release the key. During
that time, you can press [.] or I,] for a nibble or disassemble window, respectively, on the relative
address.

Example: Suppose you are viewing the PC register:

PC in display:

g[#] for REL(3) window:

and then, within 11,4 seconds,

[.] for memory window:

PC:01CC9: 47172F385885

PC# [01CC9]=> 01E3D

PC# 1BB74F215C06F2D739

TIle REL(3) offset is found by reading three nibbles from memory - in this case, "174". The
REL(3) address from 01CC9 is computed by adding 01 CC9+ 00174, giving the address
01E3D. At address 01E3D are found the nibbles 1BB74F215C06F2D739.

The "#" in the display indicates a REL(3) window, matching the character of the key
pressed.

Relative memory windows are computed using a five-nibble sign extension in the same manner as
the CPU; that is, if the high bit is set in the offset field, the entire offset is taken as negative.

f[USER]

To add a register to the User's stack, press f[USER] when the desired register is in the display. A
becl' \yill hc sounded to signal that it has been pushed onto the User's stack. This docs not make
the l'",-'r's stack the current stack; to do that, prcss the direct acccss key [0].

If thc rcgister is alrcady in the Uscr's stack, f[USER] wilI be ignored. A maximum of eight
registers may reside in the User's stack. If a ninth register is pushed in, the last rcgister in the
stack is pushcd off and lost.

Break point registers cannot be select cd for the User's stack. However, the top lcvel of the BP
stack, the # BPs register, can be selected.

g[l USER]

To remove a register from thc User's stack, select the Uscr's stack and, using thc up- and dowl1-
arrow keys, bring up the desircd register in the display. Prcssing g[l USER] rcmoves it from thc
stack.

\\'hcl1 all eight levcls of thc Uscr's stack havc bccn deleted, sclecting thc stack will show an empty

36

Section 4: Using the Keyboard

register: "< >".

f[LIST]

Pressing f[LIST] sends to the display all registers selected in the User's stack. The current register
is redisplayed after this operation. f[LIST] is most useful for sending a quick listing of selected
registers to the HP-IL display device.

[ENDLINE]

In view mode, pressing [ENDLINE] sends the display contents to the HP-IL display device, if it is
active (i.e., if the "H" option is set). If the "E" option is also set, this is the only time registers are
sent to the display device, except for a display generated by an emulator break.

[ATTN]

Pressing the [ATTN] key in view mode clears the key buffer and rebuilds the current register in
the display. Pressing [A TIN] clears any type-ahead keys, avoiding action on them.

f[OFF]

Pressing f[OFF] causes the HP-71 to turn off, with the debugger still active. It also clears the
debugger's key buffer, restores the LCD row data, and resets display contrast to the default value
of "9".

The f[OFF] keystroke is most useful for restoring the display in the case that emulated routines
have written to the display control area. The debugger can be turned back on with the [A TIN]
key.

It is recommended that you not tum off your computer for any length of time when you are in the
debugger, as it does not process wakeups as comprehensively as the mainframe does. To turn the
computer off for any length of time, you should first drop into the BASIC environment using one
of the four methods described in section 7, "Back and Forth from BASIC."

f[DISP]

Pressing f[DISP] momentarily displays the HP-71 emulated display buffer, which otherwise cannot
be seen since the debugger overwrites the LCD. The display is maintained until you release the
key. The display image is built in the LCD only and is not sent to the HP-IL device.

If the "L" option is set in the OPTIONS register, pressing f[DISP] will display the LCD image from
the emulated routines. If this option is clear, pressing f[DISP] will dis'play the colllents of the
emulated display bllffer. In many instances, these will result in the same display. But frequently,
when running in the HP-71 operating system, the LCD does not reflect the display buffer contents.
In fact, between sending a new string to the display buffer and building it in the LCD, the two
could not match, since the LCD still contains the old display.

There are two other situations where the difference between the LCD image and the display buffer
contents is important: during scrolling and when WINDOW is in effect. If the emulated routines
are using either of these features and you want to see the effect on the display, then set the "L"
option in the OPTIONS register before using f[DISP).

37

Section 4: Using the Keyboard

f[AUTO]

Pressing f[AUTO] invokes the disassembler at the address specified in the AUTO DSASSMBL
register. Opcode mnemonics are sent to the display continuously until r A TIN] is pressed.
Opcodes are disassembled sequentially in memory, not by execution flow. The address in the
AUTO DSASSMBL register is updated as each mnemonic is displayed.

There is no "DEL A Y" time in the debugger, so f[AUTO] is most useful with a display or printer.
The disassembler is available only if DBGLEX3A is in memory.

g[CMDS]

When the file DBGLEX3A is in memory, you have access to a menu of extended commands to
control special debugger actions. Pressing g[CMDS] in view mode gains access to nine commands
which can be scrolled up and down with the arrow keys. When the desired command is in the
display, pressing [ENDLINE] will execute it. The extended command menu can be aborted by
pressing the [ATTN] key.

The nine extended commands are:

Clear Display
Restore Debugger 10
Reset HPIL
Wndw + DBGADDR$(l)
Wndw + DBGADDR$(2)
Wndw + DBGADDR$(3)
Initialize Debugger
Set Checksum
Verify Checksum

When in the extended command menu only four keys are active:

1. [ATTN] key: aborts the command menu and redisplays the current register.

2. [I] key: rolls the menu to the next lower entry (with wrap-around to the top).

3. [t] key: rolls the menu to the next higher entry (with wrap-around to the bottom).

4. [ENDLINE] key. Pressing [ENDLINE] executes the indicated command and returns the
display to the current register.

The nine extended commands are explained fully in section 9, "Additional Features and Operating
Details."

38

Section 4: Using the Keyboard

Operating in Edit Mode

As explained in the previous subsection, "Operating in View Mode," you can change the contents
of registers without the need to edit them, with keystrokes such as f/ DELETE], f/PURGE], and
increment/decrement. But these methods are limited. For full control over the contents of
debugger registers you must enter edit mode.

Every register except XC! AC is editable, although certain registers will accept only appropriate
digits, such as 0 and 1 for status bits.

When in edit mode the debugger will respond only to edit keys. That is, stacks cannot be scrolled,
nor can the emulator be run. The normal method for leaving edit mode is to press /ENDLINE],
which enters the edited register contents and returns to view mode.

This section describes the general use of keys in edit mode. In section 5, "Register Details," you
will find detailed descriptions of each register and specific editing actions. In particular, consult
that section for details on:

• IN register editing
• RTN Level indicator
• Break Point Show register and Action
• Trace Show register and Action
• OPTIONS editing
• XQT register editing

Entering Edit Mode

Pressing [Z] (the key with the "EDIT" typing aid) switches to edit mode and allows you to edit the
displayed register. When in edit mode the cursor blinks in the display, indicating that the digit or
character at that position is ready to be changed.

For selected registers other keystrokes will also enter edit mode. These keystrokes are f[EDIT].
[=]. [(]. and [)]. The affected registers are described in the following paragraphs.

Returning to View Mode

The following keystrokes will exit edit mode and return to view mode. Refer to the descriptions of
these keys in the previous subsection. "Operating in View Mode."

IENDLINE] Enters the edited contents. The [ENDLINE] key also causes the register
display to be sent to HP-IL if the "H" option is set.

lATIN]

f[OFF]

trDELETEl , -,

f[PURGE]

Pressing [A TIN] aborts the edit, returning the register to its previous contents.
It also clears the debugger's key buffer.

Performs the same action as [A TIN]. and in addition turns off the computer
and restores the display control RAM.

Resets the register to tbe default contents (zeroes. in most cases)" or. with a
Break Point register. removes it from the stack. f[DELETE] may be executed
in either edit or view mode.

Resets the entire current stack. f[PURGE] may be executed in either edit or
view mode.

39

Section 4: Using the Keyboard

[Z]

The [Z] key (the key with the "EDIT" typing aid) is used to enter edit mode for changing the
contents of a debugger register. (Contents of memory can be edited with the f[EDIT] keystroke,
described below.)

Digit Keys [0]-[9], [A]-[F]

In edit mode, the digit keys [0]-[9] and rA]-[F] enter hex digits to change the contents of the
register or memory as applicable. In some registers such as ST, only [0] or [1] are allowed.

Cursor Keys

The two cursor keys, [-] and [-], are used to move the cursor to an editahle digit or character.
The two shifted cursor keys, g[-] and g[-], move the cursor to far-left and far-right. respectively.

Example: Suppose the routine you are emulating requires the value of P to he 0, but it is
currently set to "F" (15 dec). Edit the P register to set it to the desired value.

PCcy register in display: PC: 136 4C C: 0 P:F M:H

[Z] to edit (cursor on '1'): PC: 13 64C C: 0 P:F M:H

[-16 times (cursor on 'F'): PC: 136 4C C: 0 P:F M:H

[0] to change P value: PC: 136 4C C: 0 p:o M:H

rENDLINE] to enter: PC:1364C C: 0 p:o M:H

[=]

The [=] key when viewing a menll edit register will enter edit mode and allow selection of a menu
address. Menu edit registers are described under "Menu Editing Keys," below.

[(] and [)]

The r(] and I)] keys when viewing a Break Point or TRC register will enter edit mode and allow
selection of a Show register or Action. These are described under the appropriate headings in
section 5, "Register Details."

f[EDIT]

Several debugger registers are address moniTOrs - that is, they, or the areas of memory to which
they point, might require frequent changes to control the flow of a debugging session. These
registers are:

• PC and PCcy registers (PC address)
• DO and DI
• WI through W15
• BPI through BP15
• AUTO DSASSMBL register

l~he f[EDIT] key is used to edit i11e;;iory at the address shown in an address monitor register. In
the Window stack, even though a register might be an indirect or relative window, f[EDIT] always

40

.

Section 4: Using the Keyboard

works on the memory at the address shown in the display.

f[EDIT] may be pressed in view mode or in edit mode. Repeatedly pressing f[EDIT] allows you to pull up indirect addresses for memory editing. For example, at address 00005 of the mainframe you will find the nibbles: ElDOO. If the PC is set to address 00005, pressing f[EDIT] will allow you to edit memory at that address (although, in this case, 00005 is in ROM, so the contents cannot be changed). At address 0001E are the nibbles 47190; at address 09174 are the nibbles 0003A.

PC in display:

f[EDIT] (cursor on 'E'):

f[EDIT] (cursor on '4'):

f[EDIT] (cursor on '0'):
and so on.

PC:00005: EI00060F4812

00005:EI00060F4812C136

0001E:47190115071902AF

09174:003A41CFBE2AF8EF

The debugger provides 110 protection for editing mem01}·. Not only can you write to private files, system pointers, and even the debugger itself, but there is no check made on the type of memory device. Using f[EDIT] for memory in ROM or EPROM will do no harm (and do nothing), but using it in EEPROM may wipe out the device's memory.

Menu Editing Keys

Several registers allow speed editing by means of a stack menu. Using this, you can set the address in your register to the value in any other debugger register.

The menu edit registers are the following, with examples of their displays:

• PC register:

• DO and D1 registers:

• W1 through W15:

• BP1 through BP15:

• AurO DSASSMBL:

PC:OOOOO=

DO:OOOOO=

W 1/00000= Type/D.

BP 1~00000= (..) ..

AUTQgXJ 0 0 0 0= __

In these registers, menu editing is indicated by the "= __ " symbol that follows the address. To use menu editing, press [=]. You may have already entered edit mode (with [Z], [=] or, in the case of a Break Point register, [(] or f)]), or you can press f =] directly from view mode. This moves the cursor over the "=" character, and gives you a window on the debugger register stacks. Then the arrow keys, along with the direct access keys, can be used to select any register in the stacks.

Example: Suppose you have just stepped the emulator through a few instructions and found that you need to set the Dl register to the value in the C register (A field). You can use menu editing to do this:

[5] to select DO-IN stack:

[!) to Dl register:

[=] for menu edit, cursor on '=':

DO:2F43C: 000000000303

D1 :2F599: OOOA3000AJOO
D1 :2F599=

The null menu entry signals that the address is not being copied from any debugger register; ihe address is the iast vaiue found in the edit buffer.

41

I

Section 4: Using the Keyboard

Now the digit keys [0] through [9] act as direct access keys for the debugger stacks, and the
arrow keys are used to scroll through the stack registers.

[2] to select A-D stack in menu: D1 :04009=A

The address in the A register (A field) has heen copied into the Dl edit huffer.

[!] to B register in menu: Dl : OOOOO=B

The A field of the B register has been copied into the Dl edit buffer.

[!] to C register in menu: D1:3A558=C

The A field of the C register has been copied into the Dl edit buffer.

[ENDLINE] to enter new Dl value
and return to view mode: D1 :3A558: 15AF215AF208

During menu editing the User's stack is ignored. Pressing the direct access key [0] instead shows
the null menu entry. Any register in the User's stack can be found in its normal place in the
debugger stacks.

When editing a Break Point register, the Show and Action fields, because of the limited display,
both appear as " .. " to indicate their presence:

[Z] to edit: BP 1-00000= (..) . .

They are restored when you return to view mode or when you edit either of the fields.

All registers can be selected in the edit menu, but some do not have valid addresses associated with
them. ~ The following registers, if called up in the edit menu, will show the address 00000:

• ST register
• HS register
• OUT/IN register
• # BPs register
• OPTIONS register
• TRC register
• BIAS register
• XQT register

You can select the Home register for a menu address by pressing [6]. The name of the Home
register will appear and you can scroll throughout the stack structure from that point.

42

Section 5

Register Details

This section explains each register in detail, with information on special editing actions. General
editing procedures are described in section 4, "Using the Keyboard."

Some operations on certain registers can only be performed when the optional file DBGLEX3A is
in memory; these operations are identified in the descriptions which follow. Attempting to execute
them with DBGLEX3A missing will display the message "Missing Module."

At the start of each register description is a list of actions available to you when viewing or editing
the specified register.

The User's Stack

As described in section 4, the keystrokes f[USER] and g[lUSER] are used to add and remove
registers from the User's stack. This stack has two special purposes:

1. It makes for convenient access to the most frequently viewed registers.
2. It is the default display stack for several operations, such as encountering a break point

during emulation.

The USER annunciator is turned on when the User's stack is in the display. * This will help you
keep track of where you are in the stack structure.

Press the direct access key [0] to move to the User's stack. If you have placed more than one
register in the stack, you can scroll through with the up- and down-arrow keys. If you select this
stack with the [0] key and it is empty, the null register "< >" will be displayed.

PC Stack

Press the direct access key [1] to move to the PC stack. Each of the registers can be viewed hy
scrolling with the up- and down-arrow keys.

• You can select another annunciator if this conflicts with your application. Refer to section 9, "Additional Features and
Operating Details."

43

Section 5: Register Details

PC Register

• [Z] to edit PC address
• [=] for menu editing
• f[EDIT] to edit memory contents
• Address increment/decrement: 1+] 1-] 1*] II]
• Memory window keys: [.] gl<] [,] g[>] gil] gl"] g[#] g[$] g[%]

The PC specifies the address for emulation. Both the PC and PCcy registers display the same PC
address. The PC address is updated continuously during emulation, between each step.

The PC register displays 12 nibbles from memory or the disassembled opcode at the PC address,
according to the "D" option setting. The disassembler is available only if DBGLEX3A is in
memory.

PCcy Register

• [Z] to edit Pc' Carry, Pointer, and arithmetic Mode
• f[EDIT] to edit memory contents
• PC address increment/decrement: 1+] 1-] I"] II]
• Memory window keys: I·] gl<] [,] g[>] gIll gl"] g[#] g[$] g[%]

Both the PC and PCcy registers display the same PC address. The PCcy register does not use
menu editing. TI1e Carry register accepts only digits "0" or "1 ". The Pointer register is displayed as
a single hex digit, "0" through "F". The Mode is displayed as, and accepts in editing, only "D" for
decimal and "H" for hex.

The P value can also be determined when viewing an arithmetic register, A through D, bv
separation between nibbles.

XC/AC Register

• Not editable
• Memory window keys: [.] g[<] [,] gl>] g[!] g["] g[#] g[$] g[%]

TI1is shows the address of the last executed pc, and the Action Completed - the reason for
interrupting the emulator. Using the memory window keys, you can determine the opcode or
mnemonic of the last instruction. The XC address is copied from the PC before the PC is updated
during emulation.

AC Codes. The Action Completed codes displayed in the XC! AC register are as follows:

-AITN-

SSTEP

TRACE

MSTEP

The emulator was stopped by pressing the! A TrN] key. This is also the AC
code when first entering the debugger.

The emulator was single-stepped through an opcode, either by pressing the
IS] key or the [M] key.

The emulator was interrupted by a Trace action -- either Trace Halt, which
stops the emulator, or Trace Cont, which displays registcrs and continucs
emulation. .

The emulator was macro-stepped through a subroutine with the [M] key. A
break occurred because the RSTK level was popped off by a "RTN"
instruction or by a "C= RSTK".

44

Section 5: Register Details

BRK PT The emulator was interrupted by a break point action - either Break Point
Hait, which stops the emulator, or Break Point Cont, \vhich displays registers
and continues emulation.

SHUTDN The emulator encountered a "SHUfDN" instruction (opcode 807), along
with option "S" being set.

X RSTK The emulator's RSTK stack was exceeded; that is, a return level flagged for
a break was pushed off the end of the RSTK. A return level can be flagged
for a break through macro-stepping (which normally breaks when the
subroutine returns) or with the RTN Level indicator in the Break Point
stack.

RTN BK The emulator encountered a return level break. A return level break is set
with the RTN Level indicator in the Break Point stack.

IN PROMPT An "A=IN" or "C=IN" instruction was encountered (opcodes 802 or 803),
along with the "?Prompt" setting in the IN register.

UNCNFG ll1e emulator encountered an "UNCNFG" instruction (opcode 804) which
would unconfigure a device containing any of the DBGLEX files. The
instruction cannot be emulated.

RESET The emulator encountered a "RESET" instruction (opcode 80A). The
instruction cannot be emulated. (Refer to the description of the "C' option
in the OPTIONS register for a way to handle the most frequent occurrence
of the RESET instruction.)

SHtffDNfPC=O The emulator encountered a "SHUTDN" instruction (opcode 807) with the
emulated our register having bit 0 cleared. Further emulation may result
in a Memory Lost.

REENTER The debugger was reentered from BASIC or assembly language, such as with
DEBUG *, using the REENTR entry point, or from skimming the
configuration routine (refer to the "C" option description). (The "P" option
must be set in the OPTIONS register to obtain a Trace display with AC code
of "REENTER".)

INITLZ The debugger was initialized, or reset, with the "Initialize Debugger"
command in the extended command menu.

A-D Stack

Press the direct access key [2] to move to the A-D stack:. Each of the registers can be viewed by
scrolling with the up- and down-arrow keys.

The four registers in this stack are identical in their operation .

• [ZJ to edit contents
• Memory window keys, for A field address: I·] gl<] [,] gl>] g(!] gin] g[#] g\$j g\%]

The value of the Pointer is reflected in these registers by separation of the digit to which it points.
For instance, a P value of 3 causes the registers to show nibble 3 separated from the rest:

45

Section 5: Register Details

With P=3:

With P=B (=l1dec):

With P=F (=15dec):

With P=O:

A: 6D031F9003E4 C 125

A: 6D03 1 F9003E4C125

A: 6 D031F9003E4C125

A: 6D031F9003E4C12 5

If you want to edit the C register, you can also use the XQT register to perform an "LCHEX"
instruction.

RO-R4 Stack

Press the direct access key [3] to move to the RO-R4 stack. Each of the registers can be viewed by
scrolling with the up- and down-arrow keys.

The five registers are identical in their operation .

• [Z] to edit contents
• Memory window keys, for A field address: [.] g[<] [,] g[>] gIll g["] g[#] g[$] g[%]

Note that the low five nibbles of R4 are unusable in assembly language, reserved for use in the
interrupt routine. Since the debugger does not perform emulated interrupts, these nibbles do not
change unpredictably as they do in real-time execution. The low five nibbles of the R4 register
'cannot be depended upon to represent the true contents of the real CPU.

RSTK Stack

Press the direct access key [4].to move to the RSTK stack. Each of the registers can be viewed by
scrolling with the up- and down-arrow keys.

The eight registers LO through L7 are identical in their operation .

• [Z] to edit contents
• Memory window keys: [.] g[<] [,] g[>] g(!] g["] g[#] i$] g[%]

If you want to push and pop values off the debugger's RSTK, you can execute opcodes "06"
("RSTK=C") and "07" ("C=RSTK") in the XQT register. Executing "OOSOO" and "RTN"-type
instructions with XOT will also do this, but in addition these change the pc.

You can set a one-time break at a return level, or specify a break at all returns, with the RTN
Level indicator ii1 the #BPs register. This will help you to monitor RSTK usage by making use of
several features:

- The emulator will break (AC code "f{TN BK") when the indicated level is popped off by a
"R1N" or "C= RSTK" instruction.

- You can monitor the shifting of the RSTK by tracing the RTN Level indicator.

- The emulator will break (AC code "X RSTK") if the indicated level is pushed off the RSTK
by a "OOSUB" or "RSTK = C".

46

Section 5: Register Details

DO-IN Stack

Press the direct access key l5] to move to the DO-IN stack. Each of the registers can be viewed by
scrolling with the up- and down-arrow keys.

DO and Dl Registers

These two registers are identical in their operation.

• [Z] to edit address
• l =] for menu editing
• f[EDIT] to edit memory contents
• Address increment/decrement: [+] [-I [*] [I]

• Memory window keys: [.] g[<] [,] g[>] gIll g["] g[#] g[$] g[%]

You can set a break point in the Break Point stack so that a data read or write with DA TO or
DATI will halt the emulator. If a read or write occurs at (or spans) a break point address, this will
cause a break.

ST Register

• [Z] to edit status bits

The ST register shows the sixteen CPU software status bits, in groups of four for readability. They
are ordered the same as in standard CPU representation: S15 is the left-most digit, SO is the right­
most digit. Only digit keys [0] and [1] are accepted during editing.

Shared Status Bits. The debugger does not emulate the upper four status bits, SI5-S12. Since
these bits cannot be manipulated together as a register, the debugger allows direct access to them
rather than emulating them in RAM. In the HP-71 BASIC operating system, these status bits are
used almost exclusively for the following purposes:

- SI5-, when set, indicates TRACE mode is in effect within a BASIC program.

- S14, when set, indicates "Halt BASIC program."

- S13, when set, indicates "Program running."

- S12, when set, indicates "An exception has occurred." An exception is an event which may
cause special processing by the BASIC main loop, such as the [A TfN] key being hit, or an
HP-IL interrupt.

The debugger uses S12 to indicate "the [ATIN] key was pressed." Thus, no contlict arises because
of the sharing of status bits SI5-S12. However, if you drop into the BASIC environment and
subsequently return to the debugger with the DEBUG statement, the previous values of S15-S12
might have bee~ lost.

HS Register

• [Z] to edit hardware status bits

TIle hardware status bits are identified by name, and their relative positions are the same as in
st(lndard CPU representation:

47

Section 5: Register Details

MP :0 SR: 0 SB:O '>"''V1:0

Where

- MP is the Module Pulled bit
- SR is the Service Request bit
- SB is the Sticky Bit
- XM is the External Module Missing bit

Only digit keys [0] and [1] are accepted during editing.

OUT/IN Register

• [Z] to edit contents

This register shows three emulated read-only or write-only CPU registers. Although the our
register is not truly readable, the debugger maintains a record of the last value from an emulated
"OUT=C" or "OUT=CS".

Similarly, the IN register is read-only, but the debugger allows you to specify what value to read
for an "A=IN" or "C=IN" instruction.

The Interrupt register is for information only, and reflects the last "INTON" ("E" for "Enabled") or
"INTOFF" ("D" for "Disabled") instruction. It is not editable, and has no real effect on the
emulator.

Editing the IN Register. There are four ways to specify the contents of the IN register. They arc
selected by pressing certain keys when the cursor is on the first digit of the IN register (the fourth
digit in the display).

Digits. This is the default method. When first entering the debugger, the OUT/IN register reads:

OUT : 0 0 0 IN: 0 0 0 0 (0) I: E

which specifies that "A = IN" or "C= IN" will read all zeroes. The digits method is selected by
pressing any digit key ([0]-[9] or [A]-[F]) when the cursor is on the first digit of the IN register.

The digit in parentheses indicates a mask for the OUT register bits. For instance,

our : 0 0 0 IN: 0 8 0 0 (4) I: E

Bit 2 (the 4's bit) of the our register corresponds to the second key row from the top ([Al
through [*]). Thus, if the emulated OUT register has this bit set, a "C= IN" instruction will read
"0800" - the [5] key - in this example. If bit 2 of the OUT register is not set. zeroes will be
read.

Other examples of lIsing the IN register:

To read only:
[0] or [1] keys:

[W] or [T] keys:

Digit keys [1] through [9]:

Set the IN register to:
OUT:OOF IN:0400(3)

OUT:OOF IN:0012(8)

OUT : 0 0 FIN: 1 CO 0 (E)

I : E

J : E

I : E

This method of specifying the IN register al1o\\'5 the most flexibility, for you are not limited to one
key, and you have available all input lines.

48

Section 5: Register Details

KEY #. You can specify one key for the input register. This will cause an "A = IN" or "C= IN"
instruction to read the appropriate input value only when the right keyboard row is energized in the
output register.

To select this method of specifying the IN register. press f[KEY] when the cursor is in the first IN
position. The display will prompt:

OlH : 0 0 0 IN: KEY # I : E

and you can fill in the key number. Key numbers are found in the HP-71 Oll'llCr'S Manual. page
123. They must be entered in decimal form. from 00 to 56. Key number 00 is a special code for
the debugger which means "IN register=OOOO". The f- and g-shift keys are allowable. with key
numbers 44 and 45. respectively. Key numbers greater than 56. or containing hex digits. arc
rejected; an error beep is issued and the debugger waits for proper input.

Note that key numbers are a subset of the digits method of specifying the IN register. For
example. the following two displays are equivalent and specify the [5] key:

OUT:OOO IN:KEY#26 l:E

OUT : 0 0 0 I 1': : 0 S 0 0 (4) I: E

KEYBD. You can have the emulator read the actual HP-71 keyboard when it encounters an
"A = IN" or "C= IN" instruction when running. This will cause the low four bits of the emulated
OUT register to be copied to the real OUT register (regardless of the "0" option setting). Then
the true IN register is read from the keyboard into A or C.

Select this method of specifying the IN register by pressing I K) when the cursor is in the first IN
position. The display shows:

OUT:OOO IN:KEYBD I:E

When single-stepping (or macro-stepping) an "A = IN" or "C= IN" instruction. this option will cause
a.prompt. for certainly the IS] (or [M]) key will still be down. The next item explains an IN
pirompt.

IN PROMPT. ,'you can have the emulator prompt for an IN register value when an "j\ .. IN" or
"C= IN" instruction is encountered. Select this option by pressing g[?] when the cursor IS in the
first IN position. The display will show:

our: 0 0 0 IN:? Pro m p t I: E

\Vhen the emulator encounters an "A= IN" or "C= IN". this will cause an "IN PROMPT" break.
The IN PROMPT register will be displayed. already in edit mode:

or.

our: 001

our: 001

<A=It'\>:

<C=I1':>:

')

.)

This dispiay is uniike any other in the debugger. because it indicates the el11uiator has paused for
input - as shown by the question mark. This is not a time to edit other registers. including the
OUT register. After entering a value for the A or C register. pressing [ENDLINE] will resume
emulation automatically.

49

Section 5: Register Details

The our value shown is the current value of the emulated OUT register. This would be
important in order for you to determine what value-to supply for the A or C register.

During an "IN PROMPT" only three keys are active besides the digit and cursor keys:

[ENDLINE]

[ATTN]

f[OFF]

Enters the desired IN register value and resumes emulation. If not all four
spaces have been filled, the debugger prompts again.

Aborts the edit and returns to view mode, with OUTIIN the current register.
You can view and edit other stacks, if desired. Resuming the emulator (with
[RUN], IS], or [M]) will pick up at the "A=IN" or "C=IN" instruction and
reprompt.

As [A TIN], plus it turns off the debugger.

Filling in the digits for an IN PROMPT does not assign a value to the IN register; it merely
provides a one-time value for this "A= IN" or "C= IN" instruction.

Honle Register

The Home register is reset upon pressing IS]' [M], or [RUN]. After any emulator action (single­
step, macro-step, or run) you may move around the stack structure to view different registers.
You can always return to the last register displayed before emulation by recalling the Home
register.

The direct access key [6] recalls the Home register.

Window Stack

Press the direct access key [7] to move to the Window stack. Each of the registers can be viewed
by scrolling with the up- and down-arrow keys.

All fiftl'Cn registers are identical in their operation.

• [Z J to edit window address
• [=] for menu editing
• f[EDIT] to edit memory contents
• Address increment/decrement: !+] !-] !*] !/]
• Memory window keys: !.] g!<] L] g!>] gil] g!"] g!#] g!$] g!%]
• [I] to e9it window-type, in edit mode

Because of the limited display, the register number is not shown. To obtain the register number,
press a window key (such as [.]) or go into edit mode with [Z].

F.~~mnlp~ SlInno,p VOII h~IVP :l window rCIJister in the disnhlv~ :lnd VOIl W:lnt to move clown -·-----r--- --rr--- J -- --_. - - ..• ---- .. - ·0----- --- ---- ---r---.1 J ---- .i - -~ . ---- -- ---- - --"--

in the stack to W 7. To find the window number of the current display, do the following:

Window register in the display: 00005.EI00060F4812C136

50

.

Section 5: Register Details

[.] for momentary direct window: W 2. EI00060F4812C1361

Or [Z] to enter edit mode: W,2/00005= Type/D.

There are seven types of windows. Each displays 16 nibbles from the indicated address.

Direct window - shown with '.'. The address of memory is the window address itself.

Indirect window - shown with '<'. ReJds the address (five nibbles in reversed order. as
performed in the CPU) from the the window memory.

REL(l) window - shown with '!'. Reads one nibble from the window and uses it as an
offset to compute a new address.

REL(2) window - shown with "". Reads a two-nibble offset from the window and uses it
to compute a new address.

REL(3) window - shown with' #'. Reads a three-nibble offset from the window and ·uses it
to compute a new address.

REL(4) window - shown with '$'. Reads a four-nibble offset from the window and uses it
to compute a new address.

REL(5) window - shown with '%'. Reads a five-nibble offset from the window and uses it
to compute a new address.

To select the window type, enter edit mode with [Z]. Press [I], which moves the cursor to the
'Type/" position, on the "/" character. Now the up- and down-arrow keys are used to roll through
the window-type menu.

Example: Suppose you are testing a routine which writes to the start of the operating
system's available memory. The RAM location AVMEMS (address 2F594) stores a five­
nibble pointer to the start of available memory. If you want to monitor memory contents at
that location, use an indirect window:*

Window register in display:

[Z] to enter edit mode:

00000.2034EE100060F481

W 7/00000= Type/D.

Digits to edit A VMEMS address: W 7 1 2 F 5 94=

[I] to edit window-type, cursor on 'I': W 7 1 2 F 594=

Type/D.

Type/D.

[~] to roll window-type menu:

[ENDLINE] to enter:

W 7/2F594= Type/I<

2F594<45574DOF00442474

The contents of memory at available-memory-start are 45574DOF00442474. Now while you
emulate your routine you can view the contents of memory without having to determine the
address of available-memory-start.

To determine the address of available-memory-start, press [.]. This displays a direct window
from which you can read the five-nibble indirect address.

• The memory displays are for example only. The contents of RAM in your HP-71 are certain to be different.

51

Section 5: Register Details

Window register in display:

[.] for direct window:

2F594<45574DOF00442474

2F594.5D873DEF93DEF93D

You can see that the address stored 10 A VMEMS is "378D5". This is the address of
available-memory-start.

Example: A routine you are emulating uses a table of REL(3) offsets for computed
GaTOs. Your table resides at address 312EA. and you want to determine the memory
contents at the jump addresses.

Window register in display:

[Z] to enter edit mode:

Digits to edit table address:

[ENDLINE] to enter:

OOOOO.2034EE100060F481

W 1/00000= Type/D.

W 1/312EA= Type./D.

312EA.11507902AF41S07A

This is a direct window on the REL(3) table. The first three-nibble entrv in the table IS

"511". When used as a three-nibble relative offset. the REL(3) address is
312EA + 00511 = 317FB.

[Z] to reenter edit mode:

[I] to edit window-type, cursor on 'I':

[I] to roll window-type menu:

[1] to roll window-type menu:

[1] to roll window-type menu:

[ENDLINE] to enter:

W 1/312EA= Type/D.

W 1 /31 2EA= Type/D.

Vv' 1/312EA= Type/R%

W 1/312EA= Type/R$

W 1/312EA= Type/R#

312EA#8502B70E3F41507A

The relative window is indicated by 'R' when editing the window type. and the
accompanying symbol corresponds to the g-shifted digit key - in this example, the symbol
'R#' indicates a REL(3) window. The display shows that address 317FB contains the
nibbles 8502B70E3F41507 A.

The second three-nibble entry in the table. at address 312ED, was "970" (this can be sec!!
from the direct window display above). The REL(3) address using this offset is
312ED + FF970 = 30C5D. (A five-nibble sign extension is performed when the high bit of
the offset is set.)

Press [+] three times to
increment the window address: 312ED#812F9624007314F7

The di~pJay shows that address 30CiD contains the nibbles 812FlJ624007314F7.

Window registers can be used for memory edit with the f[EDIT] keystroke. E\'cn though a
window register might be an indirect or relativc window, f[EDIT] always works on the mcmory at
the address sllo\\'!! i!! the display. To edit memory at the indirect address, press i[EDIT] again.
Repcatedly pressing f[EDIT] will pull up successive indirect addresses for memory editing.
Memory at a relative address cannot be edited with f[EDIT].

Similarlv. USilH' the momentary disassemble kev r.l disnlavs the o[)code mnemonic at the address
,~jl~~;:'li:l'thc di~play. That is. I:] always displays'tl~e' mn~m;)l)ic at tile direct memory only, cven for

52

Section 5: Register Details

a Window register which is set for indirect or relative type. For an indirect disassemble, press
g[>].

Break Point Stack

Press the direct access key [8] to move to the Break Point stack. Each of the registers can he
viewed hy scrolling with the up- and down-arrow keys.

BPs Register

• [Z] to edit RTN Level indicator

The #BPs register shows how many hreak point addresses have been entered in the stack, from 0
to 15. The RTN Level indicator is editable, and provides a way to emulate the remainder of a
subroutine and to monitor RSTK usage.

The allowable selections for the RTN Level indicator are 0 through 7, "ALL", and "NONE". The
default is "NONE". To edit the indicator, press [Z] to enter edit mode. For () through 7, press the
appropriate digit key. For "ALL", press [A]; for "NONE", press [N].

If a RTN Level break is set for 0 through 7, the level indicator will track the level number as the
RSTK is pushed and popped. Any action which pops that level off the stack (any type of "RTN",
or a "C= RSTK" instruction) will cause a "RTN BK". If the level is pushed off the end of the stack
(any type of "GOSUB", or a "RSTK=C" instruction), an "X RSTK" break will occur. This is
useful to insure that routines do not use too many return levels. After either a "RTN BK" or an
"X RSTK" break, the RTN Level indicator is automatically reset to "NONE".

If you set the RTN Level indicator for "ALL", any type of "RTN" will cause a "RTN BK".
However, a "C= RSTK" will not cause a hreak, nor will any type of RSTK push cause an
"X RSTK" break.

Break Point Registers

All fifteen registers are identical in their operation.

• [Z] to edit Break Point address
• [=] for menu editing
• f[EDIT] to edit memory contents
• Address increment/decrement: [+] [-] [*] [I]

• Memory window keys: [.] g[<] L] g[>] g[!] g[n] g[#] g[$] g[%]

• [(] to edit Break Point Show field
• I)] to edit Break Point Action field

Registers BPI through BP15 (the break point addresses) can be entered and deleted as desired. A
typical break point register looks like this:

(Dl)Ha I t

The address "00209" tells the emulator to break if the PC executes an instruction at this address
(whether the opcode begins at this address, or if it spans this address). Also, the emulator will
break if a data operation (reading or writing to memory with DATO or DATl) occurs at this

53

Section 5: Register Details

address (whether the read/write begins at or spans this address).

If the emulator encounters a break point on the first nibble of an instruction. it will break before
executing it. If a break is set on any other nibble of an opcode, it will first execute and then
break. For a data operation (read/write with DA TO or DATI) the break always occurs before the
instruction is executed. When single-stepping (or macro-stepping at a non-GOSUB instruction). all
break points are ignored.

If the break point stack is not full (Jess than 15 break points entered). the last level appears as a
prompt. For instance, if there are already three Break Points in the stack. rolling down to level 4
will show:

BP 4- ____ _)Ha I t

indicating that break point #4 is next to enter.

Break point registers are sorted in increasing order as you add. edit, or delete them. As you edit a
break point. you may notice its register number change as it takes a new place in the stack.
Ordering the break points greatly enhances the speed of the emulator.

Setting the "K" option in the OPTIONS register will cause a beep when a break point is
encountered. as well as any other break except "-ATTN-". "s STEP". or 'TRACE".

The break point registers allow you to specify a Show register (a register to display) and an Action
to take when the break point is encountered by the emulator.

Editing the Show Field. Press [(] to edit the Show field. You may have already entered edit
mode (with [Z], [=], or f)]), or you can press [(] directly from view mode. This places the cursor
on the "(" and you now have a window on all the debugger stacks to select a Show register. Use
the direct access digit keys and the arrow keys to select a register.

Example: You want to change a Break Point address to 3AB19, and direct the emulator to
display the ST register when it halts there.

Desired break point in display:

[Z] to enter edit mode:

Digits to edit BP address:

BP 1-3A41C (__

BP 1-3A41C=

BP 1-3ABI9= __

)Ha I t

(..)

(..)

When editing a break point. the Show and Action fields. because of the limited display. both
appear as " .. " to indicate their presence.

[(] to edit Show, cursor on '(': BP 1-3AB19)Ha I t

The Show and Action fields are restored. Now while editing the Show register. you have a
window on the debugger stacks. The arrow keys and the direct access keys are active to
scroll through the stacks and bring up the name of any register.

[5] select DO-IN stack for Show:

[I] roll down to Dl register:

[I] roll down to ST register:

54

BP 1-3AR19

BP 1-3AB19

BP 1-3AB19

(DO

(Dl

(ST

)Ha! t

)Ha I t

)Ha I t

Section 5: Register Details

[ENDLINE] to enter: (ST) Ha 1 t

Now when running the emulator, if this break point is encountered, the ST register will be
brought up to the display immediately.

During Show editing the User's stack is ignored. Pressing the direct access key [0] instead shows
the null entry: "C-)". (Any register in the User's stack can be found in its normal place in the
debugger stacks.) A null Show entry indicates that, when encountering this break point, the
debugger will display the top level of the User's stack by default. If the User's stack is empty the
PC register will be displayed.

During Show editing, the Home register is not accessible by its contents - it is referred to by its
formal name, "Home". Selecting "Home" as the Show register means that the debugger will display
the Home register (the last displayed before running the emulator) at the break point.

A Break Point register can be selected for the Show register. As break points are reordered or
deleted, the Show register number will change accordingly.

If you want the PC address displayed along with the Show register, set the "P" option in the
OPTIONS register.

Special Show Register: XQT. Selecting the XQT register for ShO\\' causes a special action:
instead of displaying the XQT register, the debugger also executes it. This option can be useful for
"programming" the debugger. If you find, say, that a "P=O" instruction is missing from your
routine, you can put the "20" opcode in the XQT register, set "XQT" and "Cant" for the BP Show
and Action, respectively, and the missing instruction will be executed at the break point. If several
instructions are missing, you can set the XQT register to perform a "GOSBVL" to some unused
area of RAM where you have filled in the opcodes, or to an existing subroutine in the operating
system.

Editing the Action Field. Press f)] to edit the Action field. You may have already entered edit
mode (with [Z], [=], or [<D, or you can press l)] directly from view mode. This places the cursor
on the ")" and allows you to select a Break Point Action.

Tl~tre are three Break Point Actions available:

1. Halt - display Show register and stop emulator.
2. Cant - display Show register and continue.
3. Jump - display Show register and perform hard jump to Pc.

Example: You want to trace the ST register through the instruction at address 3AB19; that
is, you want to see the status bit settings every time the instruction is executed.

Desired break point in display:

f)] ·to edit Action, cursor on ')':

BP I-3AB 19

BP 1-3AB19

(ST

(ST

)Hal

)Hal

While editing the Action field, you have a window on the Action-type stack; the up- and
down-arrows are used to roll through this stack and make a selection:

[I] to roll Action-type menu:

[ENDLINE] to enter:

BP 1-3AB19

BP 1-3AB19

(ST

(ST

) Con t

)Cont

l'~ow when running the emulator, if this break point is encountered, the ST register will be

55

Section 5: Register Details

brought up to the display immediately and the emulator will continue. This method can bc
used to trace any register. including tracking thc R1N Level indicator to monitor the numbcr
of stack levels used.

The "Jump" option returns to the HP-71 BASIC opcrating system. restoring all rcal CPU registcrs
from their emulated counterparts. This would be useful when a critical timing loop needs to be
run at real speed. for instance. For information regarding hard jumps to the PC and recntering thc
debugger. refer to section 7. "Back and Forth from BASIC."

Options Stack

Prcss the direct access key [9] to move to the Options stack. Each of the rcgistcrs c<ln be vicwcd
by scrolling with the up- and down-arrow keys.

OPTIONS Register

• [Z] to edit options

To set or clear options, press [Z] to enter edit mode. Now the up- and down-arrow keys arc used
to change the option lctters to upper case or lower case. respcctively. Thc arrow kcys opcrate on
thc lettcr at which the cursor is blinking. An uppcr case letter indicates the option is set, while
lower case indicates it is clcar. When the debugger is first entcred. all options are clear:

OPTIONS: pkoslcrbhcvd

Somc of the options have side effects on the running of the emulator. Refer to section 6, 'The
Emulator," for details.

P Option causes the PC address to be displayed along with the Show register for a Break Point or
Tracc .

. ',: The PC address is an abbreviated display of the PC register. which docs not includc the mcmory
contents. For example. if the Trace Show register is ST. and "P" is set, the trace display might
show:

PC: 3ABI 9 :
ST:0110 0101 0100 0000

Since the debugger does not have a "DELAY" timc this is most useful with an HP-IL display
devicc.

K Option causes the emulator to beep when emulation is stopped for any rcason other than AC
codes of "-A TIN-". "s STEP", and 'TRACE". (Note that "RESET". "UNCNFG". and
"SHUTDN/PC=O" will always beep, regardless of the "K" option.)

o Option causes an "OUT=C" or "OUT=CS" (opcodes 800 and 801) to be suppressed during
emulation. That is, the true OUT register will not be written to. .

S Option causes the emulator to break at a "SHUTDN" instruction (opcode 807). With "S" clear,
emulation will continue through a "SHUJDN". (Regardless of the "S" setting, encountering a
"SHUTDN" with bit 0 of the OUT register set to zero will always cause an emulator break, with an
AC code of "SHUTDN/PC=O".)

56

Section 5: Register Details

L Option causes the LCD to be restored to its emulated image when invoking the emulator. With
"L" clear, the display wiII be used to show the starting PC address for a run.

The "L" option also affects the action of the f[DISP] keystroke. Refer to the description in section
4, "Using the Keyboard."

C Option causes the debugger to allow the mainframe configuration routines to execute properly if
the "RESET" instruction at address 10233 is encountered by the emulator. This is done by
momentarily jumping into the operating system at that address. and intercepting the configuration
poll at address lOFOC to recover. This action is referred to as "skimming the configuration
routine. "

If the "C" option is not set, the configuration routines will cause a break at the "RESET"
instruction at address 10233.

R Option causes the debugger to handle service requests when it is idle in view mode .. (This is
done by issuing a service request poll when the hardware status bit SR is set.) This option is
necessary to use KEYBOARD IS with the debugger, and also to keep the clock system up to date.

B Option causes the address bias (in the BIAS register) to be applied to the address registers.
This is useful for adjusting displayed addresses to match program listings. For a list of affected
registers, refer to the description for the BIAS register, below. The "B" option can be active only if
DBGLEX3A is in memory.

H Option causes debugger register displays to be sent to the HP-IL display device. You must
have first specified a debugger display device with the DDISPLA Y IS statement.

E Option causes the debugger to output its display to HP-IL only when you press [ENDLINE]. If
this option is not set, every display will be sent to the display device as you view registers.
Regardless of the "E" option setting. any register display generated by the emulator (such as after a
single-step, Break Point, or Trace) is always sent to the display device. If the "H" option is not set,
this option has no effect.

V Option causes the debugger to display all CPU registers in an 80-column format, suitable for
any HP-IL 80-column video device. Details on this are in section 8, "Using HP-IL." If the "H"
option is not set, this option has no effect. The "Y" option can be active only if DBGLEX3A is in
memory.

D Option causes the PC register to dispJay the disassembled opcode at its address, rather than 12
nibbles of memory. The "D" option can be active only if DBGLEX3A is in memory.

TRC Register

• [Z] to edit Trace count
• [(] to edit Trace Show field
• f)] to edit .Trace Action field

The appearance of the TRC register is similar to that of a Break Point register. However, the first
five digits are a hex count of the number of emulated opcodes between displays. A value of 00000
means no trace is in effect (actually 16'12, essentially an infinite count). The Trace Show and
Trace Action fields are identical to those of Break Point Show and Action described above.

Example: Your routine enters a loop of 26 instructions, and you want to monitor the value
of the D1 register at every loop. Set the TRACE register as follows (26dec= lAhex) and run
the emulator:

57

Section 5: Register Details

TRC #OOOlA (Dl)Cont

If you want the PC address displayed along with the Show register. set the "P" option 10 the
OPTIONS register.

BIAS Register

• [Z] to edit BIAS fields

There are three five-nibble fields in the BIAS register: the base address for adjustment, the lower
limit, and the upper limit of the applicable range. Addresses within the lower and upper limits
(inclusive) are adjusted for display relative to the base address. That is, let:

B= base address
L= lower limit,
U= upper limit, and
A = an address in a debugger register.

Then, if L < = A < = U , the displayed address will be computed as B + (A - L) .

The registers to which the bias is applied are the following. The bias is only applied at time of
display, not within the register itself.

• PC and PCcy registers (PC address)
• XC register
• LO through L7
• DO and Dl
• W1 through W15
• BP1 through BP15
• A UTa DSASSMBL register
• Addresses of GaTOs, GOSUBs, etc., displayed by the disassembler.

The BIAS is active only if the "B" option is set and the DBGLEX3A file is in memory.

Example: You are emulating routines in the HP-IL ROM. The HP-IL IDS, Volume II,
publishes source listings for the module with a starting address of FO008. In your HP-71, the
ADDR$("HPILROM") function shows the ROM resides at address 40008. To adjust
displayed addresses within the HP-IL module to match the listings, set the "B" option and
edit the BIAS register as follows:

BIAS:F0008,40008-47FFF

This specifies that all absolute addresses between 40008 and 47FFF, inclusive, would be
adjusted (for display only) to start at address FOOOS. Thus, in the example, address 40008
would be'displayed as FOOOS, address 4I2CO as FI2CO, etc. Addresses outside the range are
not affected.

Example: A LEX file you assembled with the FORTH/Assembler ROM resides. in memory
at 2FE14, extending to 301A 7. The listing begins at address 00000. To display addresses
within the file to match the listing, set the "B" option and edit the BIAS register to show:

BIAS:00000,2FE14-30IA7

58

Section 5: Register Details

Tize BIAS is applied only wizen displayillg all address register, lIot wlzell editing. When you enter edit
mode, the absolute address is displayed and you must enter absolute addresses only. Upon
pressing [E:r--~DLli'"~E], the address will be rcdisplayed adjusted for the BIAS (if it falls within the
BIAS range).

AUTO DSASSMBL Register

• [Z] to edit AUTO address
• [=] for menu editing
• f[EDIT] to edit memory contents
• Addr'(ss increment/decrement: [+) [-) [*) [I)
• Memory window keys: [.J g[<) (,J g[» g[!) g["J g[#J g[$J g[%J

The AUTO DSASSMBL register specifies where the debugger is to start displaying opcode
mnemonics when f[AUTO] is pressed. Using the keystroke in view mode starts a continuous
display of mnemonics until the lATIN] key is pressed. Opcodes are disassembled sequentially in
memory, not by execution flow. The address in the A UTa DSASSMBL register is updated as each
mnemonic is displayed, so it can be resumed after being interrupted with the [A TIN] key.

TIle debugger, of course, has no way of determining if nibbles in memory are opcodes, BASIC
tokens, or tables, or if the disassembly is being started at a correct opcode boundary.

The disassembler is available only if DBGLEX3A is in memory.

Example: You are emulating a subroutine at address OECBB, and you want to set a break
point at the RTN instruction. Although you don't know the address of the RTN, the
AUTO DSASSMBL register can be used to find it. Set:

AUTO DSASSMBL @ OECBB

and press f[AUTO]. The debugger will display a list of addresses and mnemonics:

o ECBB@I B= 0 W
OECBE@ SB=O
OECC1@ CSRB
OECC4@ ?SB=O/GOYES OECCC
OECC9@ B=B+A W
OECCC@ A=A+A W
o ECCF«-i1 ?C#O W/GOYES OECBE
OECD4@ A=B W
OECD7@ C=B W
OECDA@ RTNCC

At this point, press [ATfN] to stop the disassembler. The address OECDA is the address of
the subroutine RTN.

XQT Register

• [Z] to edit XQT opcode

The XQT register provides a means to execute a single opcode in the emulator. To execute an
opcode, press [Z] to enter edit mode. Type in the desired opcode; the debugger interprets each

59

Section 5: Register Details

nibble to determine the appropriate length of your opcode, and will expand or contract the
available nibbles to match it. When the opcode is entered, press IENDLlNE], which does two
things:

1. executes the opcode in the emulator, and
2. sets the contents of the XOT register.

Once the contents of the XOT register are set, you can recxccute an opcode mcrcly by prcssing
I Z], then [ENDLlNE]. If you view othcr registers and come back to the XOT rcgister, it will
display the last opcode which was entered and exccuted (or the default "00", if the debuggcr was
just initialized).

Example: The entry conditions for a certain subroutine rcquirc that P= 5 and DO= 2E2F8,
but these registcrs are not set properly. You sct a brcak point at the subroutinc, and after
the emulator breaks you use thc XOT registcr to set P and IX):

[Z] to edit XOT:

Digits to enter P= 5 opcodc:

[ENDLINE] to execute opcode:

The P register is now set to 5. , ~

[Z] to edit XOT:

Digits to enter IX)=2E2FS opcode:

IENDLlNE] to execute opcode:

XOT: 00

XOT: 2:"

XOT: 25

XOT: 25

XQT : 1 B S F 2 E 2

XOT : 1 B S F 2 E 2

The IX) register is now set to 2E2FS. Now you can press [RUN] to reswne emulation in the
subroutine. Notice that when you typed in the opcode digits, the register expanded to match
the length of the opcode.

If while editing the XOT register, you decide to abort the edit and avoid execution, press [A liN].
This will return the XOT register to its previous contents with no opeode exccution. Similarly,
pressing f[DELETE] resets the XOT register to "00" without executing the opcode.

The XOT register is also executed automatically by the emulator when it is selected as the Show
register for Break Point or Trace.

Effect on PC. Using the XOT register is like inserting an instruction at the PC address - the
instruction is executed, but unlcss the opcode involves a jump or return, the PC is not updated.
The following paragraphs describe the effect on the PC for each class of opcode.

Non-PC Related Instructions. The majority of opcodes are in this class. These are:

- Arithmetic, such as "B=C", "A=A+A", "CR2EX", "LCHEX", etc.
- Pointer and data pointer, such as "P=2", "Dl=C", "A=DATO", "Dl=Dl+S", etc.
- ControL such as "SETHEX", "OUT= C, "INTOFF", "C= RSTK", etc.

These instructions are executed and the PC is not changed.

Relative .Jump Instructions. These are:

- GOC (with carry set); GONC (with carry clear)
- A test instruction, jumping when true
- GOTO and GOLONG

For this class of opcode, XOT causes the PC to be adjusted by the relative offset of the jump.

60

Section 5: Register Details

Thus. if the PC address is currently "1A041 ". and you edit and enter Il1 the XOT register a
"GOTO + lOB relative" instruction:

XOT: 6AO 1

the PC will be incremented by + lOB to 3A14C.

For a GOC or GONC which does not branch. or for a test which fails. the PC is not changed.

Relative Subroutine Instructions. These arc:

- GOSUB
- GOSUBL

For this type of instruction. the current PC is pushed into LO of the RSTK as the return address.
Then the PC is adjusted by the relative offset. as for a GOTO. The entire subroutin,c is not
executed. * but only the single GOSUB instruction.

GOVLNG and GOSBVL. For a GOVLNG. the PC is simply set to the address of the jump. For
a GOSBVL. the current PC is pushed into LO of the RSTK as the return address. and then the PC
is set to the address of the jump.

Return Instructions. All types of returns (RTN. RTNC. RTNCC. RTNYES. etc.) are handled
by popping level LO off the RSTK and setting the PC to this value.

For a RTNC. RTNNC. or RTNYES which does not return. the RSTK is not affected nor is the
PC changed.

Similar to S STEP. Any action which could be expected when running the emulator may happen
with the XQT register. For example. executing a "RESET" instruction (opcode SOA) will cause a
beep and display the XCI AC register. The only exception is for an IN PROMPT. caused by
executing an "A= IN" or "C= IN" (802 or 8m) instruction with the l~ register sct to "?Prompt".
This will cause the XCiAC register to be displayed. rather than the U";ll,t1 IN PROMPT register.

Although the XQT register allows up to 16 digits. only one opcode at a time can be executed. All
instructions are allowed. except that an "LC(15)" (17 nibbles long) or "LC(16)" (18 nibbles long)
can only be edited out to the 16th nibble. To execute these two instructions in the XQT register as
a Break Point or Trace Action. you can edit two nibbles in RAM (location RegXO+ in
DBGLEXIA) to extend the opcodes. Refer to appendix C. "Addresses of Entry Points." for
details.

The AC code for XOT is "S STEP".

Unless the XOT register is heing executed as a Break Point or Trace Show register, and the Action = Con!.

61

Section 6

The Emulator

Once you have mastered the debugger's stacks and registers. you will find the emulator easy to use.
It emulates assembly language by manipulating RAM buffers as the real CPU manipulates its
registers. The real power of the debugger is in its viewing and editing capabilities when the
emulator is suspended.

The emulator runs at about 1175th real speed. Routines which take about five seconds to- execute
in the BASIC environment will take more than six minutes to emulate. assuming no break points
are encountered. One of the most noticeable effects will be to make the display building process
visible. For those applications which use the display routines. you may find this a good way to
study the display procedures.

Emulating at the PC

Make sure the PC is set to the correct address for emulation. Once you have set up the emulated
registers as needed (either by editing them. or through the RECOVER sequences described 111

section 7). the emulator can be invoked from view mode by three methods:

1. Single-step: [S]
2. Macro-step: [M]
3. Run: [RUN]

Return to Home Register

In each method, when the emulator breaks. the debugger will display the Home register - the
register displayed before [S]. [M], or [RUN] was pressed - unless the break is for one of the
following reasons, shown by AC code in the XCI AC register:

BRK PT. If the emulator is running. encountering a break point will cause it to display the Show
register you selected.

After the break. you can run the emulator through the break point location with IS]. [M]. or
[RUN].

TRACE. If the emulator is running and the TRC register is nonzero. after the specified number
of instructions it will break and display the Show register you selected.

After the break. you can run the emulator through the trace location with IS]. [M]. or [RUN].

IN PROMPT. Encountering an "A = IN" or "C= IN" instruction with the IN register set to
"?Prompt" will cause a break with AC code "IN PROMPT". The IN PROMPT register will be
displayed in edit mode. You need to supply a value for the IN register to resume emulation.

63

Section 6: The Emulator

SHVTDN. If the "S" option is set and a "SHUTDN" instruction (opcode 807) is encountcred. the
emulator will break and display the XCiAC register, AC code "SHUTDN".

After the break, you can run the emulator through thc SHUTDN location with [S1, [M1, or
[RUN].

SHVTDN/PC=O. If a "SHlJrDN" instruction is encountered and the emulatcd our rcgister has
bit 0 set to zero, the emulator will beep and break with the XCiAC registcr displayed, AC code
"SHUTDNlPC= 0". This break action will take place regardless of the "S" option setting.

In this case, you can run the emulator through the "SHUTDN" instruction with IS], 1M]. or
[RUN]. But since the PC has been set to 00000, this will execute the cold start routine, clearing
memory and inevitably causing a Memory Lost.

VNCNFG. If an "UNCNFG" instruction is encountered (opcode 804) and thc addrcssed dcvicc
contains any of the DBGLEX files, the emulator will bcep and break with thc XCI AC registcr
displayed, AC code "UNCNFG". You cannot step or run the emulator through this instruction.

RESET. If a "RESET" instruction is encountered (opcode SOA), the emulator will becp and break
with the XCiAC register displayed, AC code "RESET".

If the "RESET' encountered is at address 10233 (in the operating systcm's configuration routinc).
you can run or single-step at this point after setting option "C". This causes thc dcbugger to "skim
through" the configuration routine: it performs a hard jump to 10233 and automatically resumes
emulation at address lOFOC by intercepting the configuration poll.

If the "RESET" encountered is at any other address in memory, you cannot step or run the
emulator through the instruction.

Single-Stepping

Press IS] to single-step the emulator. Holding down thc I S] key will cause repeated single-steps.

After each single-step, the PC is incremented to the next instruction (cxcept for AC codes
"IN PROMPT", "UNCNFG " , and "RESET", describcd above). You can singlc-stcp through a
break point or a "SHUTDN" instruction.

The AC code after a single-step is "s STEP", unless one of the abovc spccial brcaks occurs. Sctting
the "K" option will help to identify them, since a beep will be sounded at an\' brcak othcr than
"-ATTN-", "s STEP", or 'TRACE". .

Macro-Stepping

Prcss 1M] to macro-step. This is identical to single-stcpping in all cases cxcept for GOSUBs
(including GOSUBL and GOSBVL). For a GOSUB, thc emulator will continuc running until thc
subroutine returns or until anothcr reason for break occurs within thc subroutinc. If a "C= RSTK"
instruction pops thc flagged level, a brcak will also occur.

For macro-step the AC code is "s STEP" unless a GOSUB is cncountcrcd. In this ca~e, whcn the
flagged RSTK level is popped off, the emulator will break with AC code "M STEP". Setting the
"K" option will cause a beep at any break other than "-ATrN-", "s STEP", or 'TRACE"; this will
alert you to a break when macro-stepping a subroutine.

Executing a GOSUB causes the emulator to begin running. If the "L" option is set, the display will

64

Section 6: The Emulator

be rebuilt with the emulated LCD image. If the ilL" option is clear, the debugger will display the
PC at the GOSUB address, as follows:

PC: 3A14C: * RUN *

If trace is in effect (TRC count is nonzero), the emulator will break and display the Trace Show
register after the specified number of instructions.

If you macro-step into a subroutine and a break occurs within the subroutine for any reason
(including "-ATTN-"), the break flag on the RSTK level is lost. If you want to restore the break
at the same return address, you must set the RTN Level indicator in the #BPs register or set a
break point in a Break Point register.

When macro-stepping, there are five common reasons for the emulator to be interrupted: •

• For a non-GOSUB instruction, the emulator will single-step and result in an AC code of
"s STEP".

• The flagged RSTK level is popped off with a RTN-type instruction, resulting in an AC code
of "M STEP".

• The flagged RSTK level is popped off with a "C= RSTK" instruction, also resulting in
"M STEP".

• The flagged RSTK level is pushed off the RSTK by too many "GOSUB" instructions (or
"RSTK=C"), resulting in "X RSTK".

• Another break occurred in the subroutine, such as "-A TIN-", "BRK PT", "SHlJTDN", etc.

Running

Press [RUN] to run the emulator. This causes the emulator to execute instructions continuously,
until [ATTN] is pressed or until another reason for breaking. Setting the "K" option will alert you
with a beep when the emulator stops running, except for an [ATTN] or TRACE break.

If the "L" option is set, the display will be rebuilt with the emulated LCD image. If the "L" option
is clear, the debugger will display the PC at the starting address, as follows:

PC: 3A14C: * RUN *

This will remain in the display until one of the following occurs:

1. The emulator breaks and displays a register.
2. A trace display is generated (Break Point or Trace with Action= Cont).
3. The emulated routines write to the display, which you will see happen in "slow motion."

If trace is in effect (TRC count is nonzero), the emulator will break and display the Trace Show
register after the ·specified number of instructions.

BASIC Main Loop

The BASIC main loop - entry point MAINLP, at address 002FD - is a good place to start
emulation, since it requires almost no special entry conditions or register contents. Emulating from
the MAINLP address will not disrupt the operating system, for, in fact, this is the entry point
called to recover from system disruptions. (Some locations in memory are crucial for recovery,
such as CMOSTW or the configuration table. If they have been corrupted, a Memory Lost may be

65

Section 6: The Emulator

inevitable. Refer to the HP-71 IDS. Volume L for details.)

If you are just becoming familiar with the emulator. you will find the MAINLP entry point useful
for following examples. At any time during a debugging session. you can reset the debugger to
MAINLP by changing the PC address to 002FD. and setting HEX mode in the PCcy register.
You can single-step or run from this address.

Controlling Emulator Breaks

The PC register always contains the address of the next instruction to be executed. When the
emulator halts. regardless of the reason. the instruction at the PC address has not been executed
yet. The address in XC points to the last instruction executed. .

Break Points and the PC

The emulator detects breaks before or after executing the affected instruction, depending on the
type of break. The table below describes this action. according to AC code.

AC Hierarchy

The Action Completed code. shown in the XOAC register, reflects the most significant reason for
break. Since anyone instruction may have several break actions associated with it. the AC code is
chosen according to the following hierarchy CA' being the highest).

AC Code

BRK PT (*1)
BRK PT (*2)
X RSTK
RTNBRK
IN PROMPT
UNCNFG
RESET
MSTEP
S STEP ("3)
SHUTDN/PC= 0
SHUTDN
BRK PT (*4)
TRACE
-ATTN-

AC Hierarchy

A
B
B
B
B
B
B
B

C
D

E
F

G

Notes: (* 1) Break point at first nibbie of instruction.

H

Break before or after
executing the

affected instruction:
before
before
after
after
before
before
before
after
after
before
before
after
after
after

(*2) Break point for DATO/DAT1 memory access operation.
(*3) When single-stepping, BRK PT interrupts are ignored.
("'4) Break point at other than 1st nibble of instruction.

66

Section 6: The Emulator

For example, if while running the emulator, a "RTN" instruction was encountered which had the
following break actions associated with it:

1. A RTN Level indicator break;
2. A break point set on the first nibble;
3. The [AITN] key had been hit;

then the emulator would break and report "BRK PT" for the AC code.

Note that AC codes at the same level of hierarchy are mutually exclusive, because each is caused
by a different type of instruction or action.

Effects of Options

Some of the options specified in the OPTIONS register have interactions and side effects which
should be taken into consideration when running the emulator. These are described in this section.

Effects of P Option

Setting the "P" option causes the PC address to be displayed whenever a break point or trace
display occurs during emulation. The address will be displayed along with the Show register that
you have selected. For instance, suppose a Break Point register reads:

BP 1-3AB19 (ST)Cont

If the emulator encounters an instruction at this address, it will display first the PC, then the ST
register:

PC: 3AB19 :
ST:0110 0101 0100 0000

Since the debugger does not have a "DELAY" time, this is most useful with an HP-IL display
device.

The debugger does not automatically display the PC address after an AC code of REENTER
(caused by executing DEBUG *, using the assembly language REENTR address, or after
skimming the configuration routine). If you want the PC address displayed (or the SO-column
display rebuilt) in these instances, the "P" option must be set.

Effects of K Option

Setting the "K" option causes a beep at any emulator break other than "-ATfN-", "s STEP", or
'TRACE". There are no special considerations for this option.

Effects of 0 Option

Setting the "0" option causes an emulated "OUT= C" or "OUT= CS" instruction to be suppressed;
that is, the real our register is not written to. With the "0" option clear, you will hear emulated
beeps (greatly slowed down). But one serious effect of running the emulator with this option clear
is that, when the (e» annunciator is on (the mainframe key buffer receives keys), multiple

67

Section 6: The Emulator

interrupts will occur when a key is held down.

Example: (This refers to the [ON]g key buffer toggle, explained in section 7, "Back and
Forth from BASIC. ") Clear the "0" option in the OPTIONS register. Set the debugger's PC
to the MAINLP address, 002FD. Then press [RUN] to run the emulator at the BASIC main
loop. While it is running, toggle the «e» annunciator on with [ON]g. Now press and hold
the f-shift key for several seconds. You will notice the f annunciator flicker off and on.

Now, with the f annunciator ofL press and hold a character key - [X], say - for several
seconds. Halt the emulator by turning off the ((en annunciator (with the [ON]g keystroke)
and pressing [ATTN]. Now press [1][1] (with thc PC register in the dispiay) to perform a
hard jump into the BASIC main loop. You wiIl see the "X" character displayed as if you
pressed the key several times.

These effects occur because the emulated keyscan routines do many 110l}T~ CSI! instrucrjons.
which, since the "0" option is clear, are written to the real our register. Since a key is
down, this causes multiple interrupts and continuously detects the key. Each time the key is
detected it is placed in the operating system's key buffer.

If this is a problem, you should either set the "0" option or not use the [ON]g toggle during
emulation.

Effects of S Option

Setting the "S" option causes the emulator to break at a "SHUfDN" instruction. However,
regardless of the "s" setting, a break will occur at a "SHUTDN" if the low bit of the OUT re.gister
is zero. When this happens, the debugger will beep and display the AC code "SHUTDN/PC=()".

Effects of L Option

Setting the "L" option causes the emulated LCD image to be rebuilt in the display when invoking
the emulator. When first activated, the debugger stores the LCD image in RAM, where it is
retrieved for emulation if "L" is set. Regardless of the "L" setting, the mainframe display buffer is
not disturbed by the debugger, only the LCD.

When "t" is clear, the display is used by the debugger to indicate the status of the emulator. If
you run the emulator (or macro-step into a subroutine), the debugger immediately displays the PC
address, as follows:

PC:3A41C: *RUN*

When "L" is set. the debugger does not display this message. The LCD im;]gc is retrieved from
RAM each time the emulator is invoked (with IS], [M], or [RUN]) and copied back to RAM
whenever the emulator is interrupted. During a periodic register display (such as a Break Point or
Trace with Action = Cont) the LCD image is first stored, the debugger displays its registers, then
the LCD image is restored before emulation continues.

The "L" option also affects the f[DISP] keystroke. Refer to the description in seetioll 4, "Using the
Keyboard."

68

Section 6: The Emulator

Effects of C Option

Setting the "C" option causes the emulator to skim the configuration routines by performing a hard
jump, then reentering by means of the configuration poll. While this jump is in progress, the
VECTOR address is cleared (it would be disastrous otherwise, since IRAMs are unconfigured), so
any keys are detected and stored by the mainframe, not the debugger. The keyboard interface is
restored in less than .3 seconds, including the (Ce») annunciator status. The configuration jump
action is accompanied by a short beep.

Effects of R Option

Setting the "R" option causes the debugger to issue a service request poll when it is idle and waiting
for keys. The two main purposes for this are to implement the KEYBOARD IS interface and to
keep the clock system current. However, in the debugger this poll is sent out between emulated
instructions, when the state of memory is unknown. Poll handlers would expect that the operating
system is stable, and this could cause problems. In some cases, the "R" option may have to be
clear and the accuracy of the clock system will have to be sacrificed.

Effects of B Option

Displays generated by the emulator might be adjusted for BIAS, if the the "B" option is set, the
register is an address register. and the address is within the adjustment range. Otherwise, the "B"
option has no effect on the emulator.

Effects of H Option

Setting the "H" option causes the debugger to send displays to HP-IL (you must first have specified
a DDISPLA Y IS device). There is a noticeable increase in response time when "H" is set
(especially if "Y" is set, too) because of the additional processing. This slows down the keyboard
action as well as the emulator.

Section 8, "Using HP-IL," goes into detail on the possible problems and best use of HP-IL with the
debugger.

Effects of E Option

Th~ "E" option does not affect displays generated by the emulator, such as after a single-step or
bre~k point. These arc always sent to the HP-IL device, contingent upon the "H" option setting.

Effects of V Option

Setting the "V" ·option causes all debugger registers to be displayed wi~h the 80-column video
interface. 111e most noticeable effect is to greatly slow down execution of the emulator, especially
if you are single-stepping or you specify frequent displays. Section 8, "Using HP-IL," describes the
80-column interface.

Effects of D Option

Setting the "D" option causes the PC register to display disassemble mnemonics, instead of nibbles,
from the PC address. There are no special considerations for this option.

69

Section 6: The Emulator

Instruction Set

The debugger emulates all instructions shown in Chapter 16 of the HP-71 Software IDS, Volume 1.
Future versions of the Saturn CPU may include new, additional opcodes. Although the HP-71
operating system will not use these, custom assembly language routines might. The debugger will
not emulate properly any opcodes not shown in the instruction set of Chapter 16 of the IDS.
However, since the debugger is RAM-hased, advanced programmers can modify the code to
handle new opcodes. Some details for modifying the debugger software are provided in section 9.

Encountering Problenls

If the debugger does not respond to keys while you are running the emulator, check the following
possibilities:

1. Make sure the «e») annunciator is off if you want the keys to be detected by the debugger
rather than the operating system. Refer to section 7, "Back and Forth from BASIC," for
instructions on how to use the [ON]g toggle to control the key huffers.

2. If you are using an HP-IL device, you may have caused the loop to "hang up" by trying to
access it simultaneously from both systems. Refer to the subsection "Recovery from Errors,"
in section 8.

3. If you have been working with any of the DBGLEX files in MAIN RAM, it is likely that
some operation has moved the file chain and disrupted the debugger system. Try to
deactivate the debugger (using the RECOVER: 2 sequence described in the next section) and
reenter using the DEBUG statement.

4. If none of the above methods help in regaining keyboard response, it is possible that your
emulated assembly language routines have corrupted the RAM-based debugger files. If this
is the case, the only recourse is to purge the DBGLEX files from memory and recopy them
from your backup medium. (Remember to deactivate the debugger before purging any
DBGLEX files.)

70

Section 7

Back and Forth from BASIC

The debugger system offers several methods for moving between operating cnvironmcnts. The
most powerful of these allow you to work in the BASIC opcrating system and switch to emulation
in the debugger in mid-execution.

The following methods are provided for accessing the debugger from BASIC. The keywords arc
described in section 3, "Setting up the Debugger." The other methods are described bclow.

• The DEBUG statement activates the debugger and waits for uscr control from the keyboard.

• The DEBUG * statement also activates the debugger, starting emulation automatically.

• The RECOVER: 0 key sequence passes all CPU register values to thc debuggcr so it can
continue processing in emulation.

• Thc REENTR entry point can be called from asscmbly language.

The following methods are provided for accessing the BASIC environment from the debugger. All
require that the debugger has been activated with the DEBUG statcment. The Illethods arl'
described in the following paragraphs.

• [Q][Q] drops you into the BASIC environment.

• [J][J] performs a hard jump to the PC address.

• The RECOVER: 2 sequence deactivates the debugger and rcturns control of the HP-71 to
the operating system.

• The RECOVER: 3 sequcnce dcactivates thc dcbugger and clcars all of mcmory, causing a
Memory Lost. Control of the HP-71 is return cd to thc operating system.

• A Break Point Action or Trace Action selection of "Jump" causes the elllulator to perform a
hard jump to the PC address.

~. The [ON]g keystroke is used to direct keys to the mainframe's key buffcr or to the dcbuggcr's
kc\' buffer.

Separate Key Buffers

The debugger uses its own key detection routincs and key buffer. Whcn the debuggcr is acti"atcd,
keystrokes are stored in its own kcy buffer. From thcre, the debugger rcmoves and act!> upon cach
kcy for direction.

Having its own key routines means the debugger takes over keyboard interrupts. This allows you
to set up cxecution in thc BASIC cnvironmcnt, thcn intcrrupt the opcrating system so the debugger
can recover all CPU register information and take ovcr proccssing in cmulation.

71

Section 7: Back and Forth from BASIC

Controlling the Key Buffers

Normally, the choice of where to put a keystroke - into the mainframe's key buffer, or into the
debugger's - is made automatically by the system. But during a debugging session there are
several actions you can take to force keys to be sent to the mainframe. Then the operating system
(whether emulated or real-time) will process them. Any time this condition is in effect (the
debugger sending keys to the HP-71 key buffer), the ((en annunciator is lit in the display."

One time when you want to feed keys to the HP-71 operating system is when you drop into the
BASIC environment from the debugger. This is the topic of the next subsection.

The other time you may want to send keys to the HP-71 operating system is when you run tile
emulator and want emulated routines to detect keys.

The [ON]g Toggle

When within the debugger. pressing rON]g causes the «e» annunciator to toggle. When it is Oil,

keys are sent to the HP-71 key buffer; when it is of(, keys are sent to the debugger's key buffer.
TIle annunciator (and the keyboard action) can be toggled at any time the debugger is active,
except when you have dropped into the BASIC operating system. In this case. the annunciator will
remain on at all times.

The [ON]g keystroke must be performed as follows:

1. Press the [ON] key first.
2. Press the g-shift key while still holding down the [ON] key.
3. Release both keys.

The (e» annunciator will toggle, and as soon as the g-shift key is detected, processing will
continue (even though the [ON] key is still down). This processing is done in the interrupt
handler, so no key code is generated by this action. [ON]g is not the same keystroke as g[ONj; in
fact. the debugger does not interfere with any grON] key definition when you arc in the BASIC
environment.

t.

Example: Set the debugger's PC to the BASIC main loop address, 002FD. Before you run
the emulator, turn on the (Ce» annunciator by pressing [ON]g. Now send some ke~'s into the
mainframe key buffer - press PI*2 [ENDLlNE], for example. (The characters will not
show up in the display yet because the operating system is suspended.) Turn off the (e»
annunciator with [ON]g, then press [RUN] to run the emulator. The operating system will
find the keys in its buffer and process them. After several seconds the characters "PI <~" will
appear and the expression will be evaluated in emulation.

Dropping Into BASIC

When within the debugger, you can manually drop into the HP-71 BASIC operating system with

You can select a different annunciator for this purpose if this conflicts with your application. Refer to section 9,
"Additional Features and Operating Details. "

72

Section 7: Back and Forth from BASIC

four methods. Two of the methods leave the debugger active so you can resume emulating. The
other two methods deactivate the debugger, returning the computer to the control of the operating
system.

The HP-71 operating system, of course, does not detect the debugger break points. Only the
emulator can do this, so you must reenter the debugger for break point capability.

[Q][Q] to Main Loop

Pressing r Q][Q] (the [Q] key twice within Pf2 seconds) drops processing into the BASI C main loop,
essentially performing an "INIT: 1 ". From here you can enter BASIC commands, run programs,
change HP-IL devices, etc. The «e) annunciator remains on to signal that any keys you press will
be put into the HP-71 key buffer for the mainframe to process.

You can remain in this state indefinitely, if desired, although since interrupts are being vectored
into DBGLEXIA, any change to the DBGLEX files may cause a Memory Lost. For this reason
you should not drop into BASIC if your DBGLEX files are in MAIN RAM.

The effect of [Q][Q] on the HP-71 operating system is identical to that of an "INIT: 1". This
includes turning off User mode and reconfiguring all memory devices.

[J][J] for Hard Jump

Pressing [J][J] (the 11] key twice within Ph seconds) performs a hard jump to the PC address. All
restorable registers in the CPU are restored from their emulated counterparts and execution picks
up at the PC address. (A list of restorable registers is shown under "Hard Jump to PC" later in this
section.)

I1HJ] can only be executed when the PC or PCcy register is in the display.

As with [Q][Q], the «e» annunciator is lit to indicate that keys are being processed by the
mainframe, although the debugger is active. You can remain in this state indefinitely, if desired,
with the risks mentioned above.

RECOVER Methods

The other two methods of returning to BASIC are described below, under "RECOVER: 2" and
"RECOVER: 3".

Reentering the Debugger

If you are in the BASIC environment - including not having yet activated the debugger - you
can always execute the BASIC statement DEBUG. This will re-establish all em~lated CPU
registers to the contents held at the time you last left the debugger, except for status bits S15-S12
and any RAM contents that might have been changed in BASIC.

If you have dropped into BASIC with [Q][Q] or [J][J], the "RECOVER: 0" seyuence will be most
u"eful for reenterinQ the debuQQer. As described below. thi" sets lIn the nehll(l(ler for emllbtinn ~t
- '- -- 0...,;>'-' ' -- - - -- - r- ---- --- -~C>C'-- --- -------~." ~

the point of the [ON][/] interruption.

73

Section 7: Back and Forth from BASIC

111ere is a third way to reenter the debugger: through an assembly language jump to the debugger
reenter address. This is described in the next subsection.

The RECOVER Sequence

The familiar INIT message in the HP-71 mainframe is replaced by the RECOVER prompt. When
the debugger is active. pressing [ON][/] (both keys simultaneously) causes the prompt
"RECOVER: 1". You can select four levels of recovery by pressing one of the digit keys [0]
through [3]. followed by [ENDLINE].

You must perform the I ON][I] keystroke with the following sequence:

1. Press the [ON] key first.
2. Press the [I] key while still holding down the [ON] key.
3. Release both keys.

If you press [I] first, you may cause an "INIT": 1" instead of a "RECOVER: 1" since the operating
system may detect both keys in a synchronous keyscan.

RECOVER: 0

When operating in the debugger. "RECOVER: 0" is not allowed. The computer will beep and
reprompt for the RECOVER level.

When in BASIC with the debugger active - you get there by pressing I QJ[QJ or [JJ[J] from within
the debugger - the "RECOVER: 0" sequence interrupts the operating system and copies all
recoverable CPU registers into their emulated counterparts. At this point the debugger displays
the PC register and waits for manual direction. (A list of restorable registers is shown under
"Assemblv Language Reenter" later in this section.) . ~ ~

The "RECOVER: 0" sequence is a powerful method of directing the debugger. With precise
timing you can interrupt the real-time execution of a target routine and set up all emulator register~
for debugging.

Example: You have written a new keyword, "SCALE", which calls the math routine IDlv
in the mainframe (address OEC7B) to perform a division. You suspect that the registers arc
not set up properly for entry into IDIV, and you want to examine them when that routine i~
called. Perform the following steps:

1. Execute DEBUG to enter the debugger. Select the Break Point stack and enter thE
address of IDIV, OEC7B, in the first available break point register. Now press lOll o.
to drop into the HP-71 main loop.

2. Type SCALE to execute the keyword. but don't press IENDLINE] yet.

3. Now press [ENDLINE], and quickly press [ON]!!] to interrupt the operating systcn'
and get the RECOVER prompt. Press [0] to select "RECOVER: (J", tllcr
[ENDLlNE].

4. The debugger is now ready to usc, with all registers. including the Pc. at· the point oj

the [ONU/] interrupt. Press [RUN] to run the emuiator, and soon the break point a1
OEC7B will be encountered. (If the interval between [ENDLINE] and [ON]!!] was toc
long, you might have already passed the OEC7B address. You should examine the PC
before you press [RUN] to make sure you haven't passed the break point. You will
soon get the feci of how iong an intervai is needcd to get close to the target addres~
witho~t passing it.) ~ ~

74

Section 7: Back and Forth from BASIC

RECOVER: 1
When within the debugger, the "RECOVER: 1" sequence returns you to a stable point. displaying

the PC register.

When you are in BASIC with the debugger active - after [0][0] or [1][J] - the "RECOVER: 1"
sequence performs an "INIT: 1", returning you to the stable point of the BASIC main loop.

In either case, a "RECOVER: 1" is not guaranteed to be a safe action. If memory is being altered
or moved at the time of the [ON][/] interrupt, the system may not be able to recover from the
disruption and cause a Memory Lost. "RECOVER: 1" (and. for that matter, "INIT: 1") should not

be performed lightly.

RECOVER: 2
This deactivates the debugger. returning complete control to the BASIC operating system.
including re-establishing keyboard control and the INIT prompt. The effect on the BASIC system
is identical to performing an "INIT: 1 ". To reenter the debugger you must execute the DEBUG
statement.

When you are done with a debugging session, you should routinely perform a "RECOVER: 2" to
deactivate the debugger. This will prevent problems in the case (unlikely, unless the files are in
MAIN) that the DBGLEX files are moved or changed.

RECOVER: 3
This performs an "INIT: 3" - a Memory Lost. deactivating the debugger in the process.

75

Section 7: Back and Forth from BASIC

Hard Jump and Assembly Language Reenter

Two powertul features of the debugger allow you to access assembly language from the debugger
and vice versa. You can use the debugger to examine registers in mid-execution of a routine. Or
you can make adjustments to register contents and exit through the routine in real-time.

Example: You want to determine the status bit settings at a certain point in the execution of
your new keyword, "SCALE". You can do this in the debugger without keyboard
intervention by "programming" with the following steps. Suppose the address of your routine
is 3A14C, the location where you want to display the ST register.

1. Activate the debugger with DEBUG and select the Break Point stack.

2. Edit the first available Break Point register (assume here BP 1) to show: •

BP 1~3A14C (ST) Jump

3. Drop into the BASIC environment with [Q][Q], and enter

DEBUG * @ SCALE [ENDLINE]

The debugger will begin emulation automatically. When the emulator encounters the break
point at 3A14C, it will display the ST register and exit through your routine by performing a
hard jump to 3A14C.

Example: You are in the debugger emulating a BASIC program, and you want to skip
through a FOR/NEXT loop to the next occurrence of the "SCALE" keyword. Instead of
having the emulator run through the loop, at its slow speed, you can pertorm a hard jump
into it and pop back into the debugger with RECOVER: 0 for the "SCALE" execution.
(Timing is important here, in order to catch the processor hefore executim-, of the "SCALE"
keyword.)

Hard Jump to PC

Pressing [J][J] when the PC is in the display, or executing the "Jump" Action for Break Point or
Trace will cause the dehugger to perform a hard jump to the Pc. This causes real-time execution
of the code at the PC address. You can reenter the debugger with the "RECOVER: 0" sequence,
with the DEBUG statement from BASIC, or with an assembly language reenter (sec below).

A 1~~iO .jump to the PC causes the (e» annunciator to be lit, indicating that keys arc sent to the
operating system's key buffer. Whereas [0][QJ performs an "INIT: 1" and turns off User mode,
the [.TH J] keystroke docs not. What effect it has on the operating system depends entirely upon the
routine into which you jump.

Before jumping to the PC address the following restorable registers arc copied from the emulator to
their CPU counterparts (these also apply to the "Jump" action for a Break Point register or TRC):

76

Registers restored:
ABC D
RO Rl R2 R3 R4
First 7 levels of RSTK (LO - L6)
ST
HS bits: SB and XM only
our
Interrupt
DO Dl
Carry, Pointer, Mode
PC

Registers not restored:
8th level of RSTK (L 7) (set to zeroes)

Section 7: Back and Forth from BASIC

HS bits: SR and MP (retain their current real CPU values)

Assembly Language Reenter

Your assembly language routine can jump directly back to the debugger without using the DEBUG
statement or the manual "RECOVER: 0" sequence. The entry point "REENTR" in the debugger is
for this purpose.

To use the "REENTR" feature you must hav~ a strategically placed "GOSBVL REENTR" in your
RAM-based assembly language application. You need to first compute the actual address of the
REENTR label according to the address of DBGLEXIA in memory. You can specify the address
in your assembly source file, or fill it in afterwards with a POKE or by memory editing in the
debugger.

Appendix C contains a list of offsets to important entry points in the DBGLEX files. That
appendix also includes directions for computing absolute addresses of entry points.

Example: You want to examine the execution of your new keyword, "SCALE", at a certain
point in the routine, starting at "LABEL3". Your assembly language code should look like
this (the four instructions marked "*,, are for example only):

A=C A * Opcodes
CDIEX * as desired ...
GOSBVL #00000 Fill in address of REENTR !

LABEL3 B=B+C A * More opcodes
DO=A * as desired ...

Follow this procedure:

1. Assemble ;md load the LEX file in memory.

2. Compute the address of "REENTR" as described in appendix C and remember the
address.

3. Now enter the debugger by typing DEBUG - this sets up some addresses and pointers
required for later reentry. Set a window register to the address of the "GOSBVL" in
yaur file. Using f[EDIT] to edit memory, fill in the address at that apcade (remember
to reverse the five nibbles within the "GOSBVL" instruction). The instruction is now a

77

Section 7: Back and Forth from BASIC

"GOSBVL REENTR".

4. Press [0][0] to drop into BASIC. Now type the keyword SCALE and prcss
[ENDLINE]. The debugger will take over at the "GOSBVL REENTR" with the PC
displayed (it is the address of "LABEL3"). waiting for direction.

When reentering the debugger, the emulator's CPU registers are recovered from the real CPU
registers. The recoverable registers. which also apply to the "RECOVER: 0" sequence, are:

Registers recovered:
A B
RO Rl

C
R2

First 7 levels of RSTK
ST

D
R3 R4

(LO - L6) (see note below)

HS bits: all (MP, SR. SB, XM)
DO Dl
Carry, Pointer, Mode
PC (see note below)

Registers not recovered:
8th level of RSTK (L 7) (set to zeroes)
our (retains last debugger value)
Interrupt (retains last debugger value)

The following registers are untouched; they retain their values from when the debugger was last
exited:

User's stack
Window stack
Break Point stack
Options stack

In addition, the XC register is reset to 00000 and the two RSTK break indicators (the macro-step
indicator and the RTN Level indicator) are cleared.

The AC code after a "RECOVER: 0" is "-ATTN-". The AC code for a reentry through the
REENTR address is "REENTER".

The RSTK levels recovered are actually levels LO through L6 at the moment before the [ONJf/]
interrupt (in the case of "RECOVER: 0") or at the momeTlt before "GOSBVL REENTR" (in the case
of atsembly language reenter). When the debuggcr is reentered with either of these two methods,
the PC is set to the address of the return (from interrupt, or from REENTR) and level L7 is lost.
This is why, in the example above, a "GOSBVL REENTR" is used to set the emulator's PC to
LABEL3.

You can have more control over the debugger when using the REENTR entry point by setting
options in certain RAM locations. Refer to section 9, "Additional Features and Operating
Details."

78

Section 8

Using HP-IL

Debugging sessions are more productive when you can view several registers at once. The
debugger allows you to specify an HP-IL display device for its output. The device can be a video
interlace, a printer, or another character-oriented device, such as an HP-ILlRS232 interface.

You should not run the debugger with the HP-IL ROM copied into RAM if you plan to use a
debugger display device. Doing so will result in a Memory Lost when the HPILROM file moves in
memory.

The Debugger Display Device

In order to use an HP-IL display device, you need to execute the DDISPLA Y IS statement and set
the "H" option in the OPTIONS register.

The DDISPLA Y IS Statement

The file DBGMAINA provides the BASIC statement DDISPLA Y IS, which is used to specify the
debugger display device. The device is encoded and stored in the debugger's RAM, so once you
specify the DDISPLA Y IS device you do not have to respecify it. even if you deactivate the
debugger. However, if you change the loop by removing or reordering the devices, you should
execute DDISPLA Y IS again.

The DDISPLA Y IS statement will execute only if the HP-IL interface is plugged in. If the module
is missing, the statement will cause the error "ERR:XWORD Not Found".

You should execute DDISPLAY IS in BASIC before entering the debugger. If not specified. the
device defaults to "DDISPLA Y IS *", and all debugger output is sent only to the LCD. Statement
Sy~ltax is identical to the DISPLAY IS keyword in the HP-IL module, except that certain device
specif.i.ers are not allowed.

The following device specifiers are allowed for DDISPLA Y IS (refer to page 75 of the IIP-1L
IllTerfacc Owner's Mallllal):

• Accessory type. Example: DDISPLA Y IS 7<-48:2

• Device word. Example: DDISPLA Y IS RS232

• HPIL address. Example: DDISPLA Y IS 4

• Assign code. Example: DDISPLA Y IS ":TY" (after executing an ASSIGN 10 statement
which assigns ":TY" to a device).

Certain device specifiers cause a system buffer to be created and search cd at display time. These
are not allowed by DDISPLA Y IS because during emulation the unknown state of memory

79

Section 8: Using HP-IL

prohibits searching for system buffers. The following device specifiers are not allowed for
DDISPLA Y IS:

• Device type. Example: DDISPLA Y IS :HP82905B
Causes: DBG ERR:IIIegal Device Spec

• Volume label. Example: DDISPLA Y IS .STORE
Causes: DBG ERR:Illegal Device Spec

As with the HP-IL command DISPLAY IS, you can cancel the debugger's HP-IL display device
with the following equivalent forms of DDISPLA Y IS:

• DDISPLA Y IS *,
• DDISPLAY IS "*", or
• DDISPLAY IS ""

These forms of the statement also have another important effect: they disable the debugger HP-IL
by clearing the "H" option and the display handler address. The reasons for this arc twofold. You
should execute DDISPLA Y IS * :

1. Whenever you remove the HP-IL module from the HP-71 with the debugger in memory.
The proper way to do this is to deactivate the debugger, execute DDISPLA Y IS *, then
remove the HP-IL module. You can then reactivate the debugger, if desired. Failing to
execute DDISPLAY IS * before removing the HP-IL module may disrupt the system and
cause a Memory Lost when you reenter the debugger.

2. When attempting to recover from an HP-IL error generated from within the debugger. More
details on this are given below.

Sharing a Display Device. You can specify the debugger's display device as the same one used by
the BASIC operating system. However, there are some precautions you should take.

Occasionally the HP-IL interface may become confused because the debugger and the emulated
routines try to access the loop simultaneously. The result may be to swap display devices or to
"hang" the loop (from which only a RECOVER:2 will recover). This can happen if your
debugging session causes frequent displays (such as single-stepping or tracing) and you arc
emulating in the HP-IL module. The best approach in this case is to clear the "H" option to avoid
the problem.

Running the emulator through such routines should not cause problems as long as debugger
displays are not sent out periodically. Potential problems occur only when the emulated routines
send control frames on the loop, followed by characters from the debugger display routines.

Separate Display De,,-ices. You can share one loop between the operating system and the
debugger, while specifying different display devices for each. This makes it much easier to
distinguish output from the two systems, but you may still experience problems if they both try to
access the loop simultaneously during emulation.

Dedicated Loop. You will get best results with the debugger display device if you use the Dual
HP-IL Adapter. (part number HP 82402A) and dedicate one loop specifically for debugger output.
This will completely separate the debugger's actions from the emulated routines and minimize the
possibility of loop disruption.

Alternatively, if you are using only one loop. you can emulate the operating system \l_;ith OFF 10
and use the loop exclusively for debugger output.

Specifying a Printer. If you designate a printer for the debugger display device, you may want to
modify the debugger's output routines to avoid overstrike. Otherwise, when editing registers, the
printer will perform many carriage reiurns and prini over the current iine. The debugger has three

80

Section 8: Using HP-IL

fields similar to the ENDLlNE string in BASIC for controlling the output device - except that the
debugger's fields are sent out prior to displaying a line. Modify the "EdtLin" field, as directed in
appendix C, to prevent overstrike. The "NewLin" and "VdoLin" strings can be changed, too, to
format the output as you like.

Recovery From Errors

If you are sharing one loop between the debugger and the operating system, you will probably
experience a "lockup" eventually, when both systems try to access the HP-IL mailbox
simultaneously. This situation is avoidable by following the precautions described in the previous
paragraphs.

When lockup occurs, the debugger will not respond to keys except for the RECOVE~ sequence.
RECOVER: 1 will not restore the PC register since HP-IL again hangs during display. The first
step to take is to use the [ATTN][ATTN] interrupt feature of the HP-IL interface. The HP-IL
routines which detect this keystroke use the mainframe key buffer.

1. Toggle on the (Ce» annunciator with [ON]g .

2. Press [ATTN] twice.

3. Toggle off the (Ce» annunciator with [ON]g .

The debugger's keys should again be active. You may need to execute the "Restore Debugger 10"
command in the extended command menu to regain the HP-IL display. Refer to section 9,
"Additional Features and Operating Details."

If the above steps do not recover control of the debugger, you need to deactivate the debugger to
restore the HP-IL interface. Use the following procedure:

1. Perform the RECOVER: 2 sequence to deactivate the debugger.

2. Execute DDISPLA Y IS * to clear the debugger HP-IL interface.

3. Activate the debugger with the DEBUG statement. The debugger should now be active and
respond to keys. Only the LCD will be used for displays since the DDISPLA Y IS *
statement cleared the "H" option. You can set it again at this point.

4. You can drop into the BASIC environment now to execute the DDISPLA Y IS statement,
specifying the desired device.

If the debugger HP-IL is not restored with this procedure, you should repeat the process, executing
RESTORE 10 before step 2 (remember to specify the correct loop number if you are using the
Dual HP-IL Adapter). If you still have difficulties, it may be necessary to execute RESET HPIL.
also.

Rarely, the HP-IL module may issue an error while under the control of the debugger (this might
happen if you break the loop in the middle of the 80-column display, for example). Since errors
return to the BASIC environment, this will put the debugger system in a strange state - the
operating system has taken over without control of the keyboard. If an HP-IL error occurs during
a debugger display and the keyboard responds sluggishly, you should perform a RECOVER: 1 to
restore the debugger. You should also check the integrity of the loop; you may need t-o use the
"Restore Debugger 10" command in the extended command menu (refer to section 9).

81

Section 8: Using HP-IL

The 80-Column Video Interface

If you have set up the debugger to use an HP-IL display device, you can have all CPU registers
displayed in an 80-column template. You can use any 80-column device for this purpose, such as a
Mountain Computer™ HP-IL 80-Column Video Interface, an HP-ILlRS232 interface with a
terminal device, or a printer.

To enable the 80-column display you must specify a display device with DDISPLA Y IS, set the "H"
option (to send displays to HP-IL), and set the "V" option (which initiates the 80-column
interface) .

An illustration of the 80-column register template is shown in Figure 3. All CPU registers (except
I - interrupt EnablelDisable) are displayed, along with the first seven Break Point registers and
the first four Window registers. •

The first 10 lines of the display device are used for the 80-column template. The remaining lines
are used for normal register displays, such as moving around the stacks. When you are working in
the debugger the 80-column template is updated whenever:

1. You press the [ENDLINE] key; or
2. The emulator is interrupted to display registers (such as after a single-step, halting for

[A TIN], or for a trace display).

For example, as you single-step through a routine, after each [5] keystroke the template is updated
to show the effects of the single-step. If you select the PC as the current register and set the "D"
option, after each single-step the PC wiII be displayed, with its mnemonic, underneath the 80-
column template. In this manner you can display a history of the last 14 or so instructions.

The 80-column template is separate from normal register displays. That is, moving around in the
register stack does not cause the template to be updated. The "E" option has the same effect
whether or not the 80-column display is in effect: if "E" is set, normal register displays are not sent
to HP-IL except when you press [ENDLINE] or when generated by an emulator break.

The 80-column display significantly increases the response time for keyboard input as well as
slowing down emulation, since much time is spent in rebuilding the display. You may want to
clear the "H" or "V" options occasionally to speed up a routine, or during register manipulations.

The default control string for the video interface assumes your device has 24-line by SO-column
capability. If your display has less than 24 lines, you can modify this action by changing the
"VdoLin" string to fit your device. Refer to section 9 for details. That section also describes the
extended command menu, which contains some commands for controlling the HP-IL device.

Mountain Computer is a trademark of Mountain Computer, Incorporated.

82

Section S: Using HP-IL

PC:43C9E C:0 P:4 M:H

?A=0 A/GOYES 43CBB
)(C:43C88: -ATTN-

2F599.0008300083000830
2FS99<0000000000000000
1BBAO.76CSS9024007F855
3C801 10000000000000000

A:000000000000000A
B:0000000000001C44
C:02FA0300020FF000
O:00050000000F2401

00:37FF4: 02237008
01 :2FA50: 100F0000
OUT:000 IN:0000(0)

R0:0270000000000001
R1 :0000002FAB737FF6
R2:0000000000000005
R3:0275000000000001
R4:0C0000000F000063

1 000 1 1 01 01 1 1 1 01 1
MP:0 SR:0 S8:0 XM:0

0:43581
1 :01 cn
2:01C48
3:00000
4:00000
5:00000
6:00000
7:00000

5 BP
13665
18BAO
2F780
3C801
43C9E

Explanations:

DisasSCI11hlcd PC opcodc_
P regisTcr I'alll(' and
nibble indicatur for Break PoillT rcgislcr,l

XC:43C88: -ATTN-

ariThmctic rcgist('J's, BP 1 Ihroll!{h BP 7

--------------------------~----
A:000000000000000A R0:0270000000000001 0:43681 5 BP
B:0000000000001C44 Rl :0000002FAB737FF6 1 :01C72 13665
C:02FA0300020FF000 R2:0000000000000005 2:01C48 18BAO
D:00050000000F240 R3:0275000000000001 3:00000 2F78D

2F599.0008300083000830 R4:0C0000000F000063 4:00000 3C801
2F599(0000000000000000 00:37FF4: 02237008 5:00000 43C9E
1BBAD.76C5590240D7F855 01 :2FA5D: 100F0000 1000 1101 0111 1011 6:00000

~=~~~~~~~~~~~~~~~~~~~~--~~~~~~~-~~~~~~~~~:~~-~~~~-=~~~-~~:(~ ~~~~~~~-------

\l'ine/ml' rcgiST('J',1
I\' 1 Til/'Ougil II' 4.

ST r('giltC1', STalll,1 biT
S15 is The hiT-mosT RSTK 1('I'c!.1 LO
digiT: SO is The riglzT- TilJ'()ugil L7,
mosT digit.

Figure 3, Debugger HO-Colul1lll Display

-

Section 8: Using HP-IL

Using a Keyboard Device

A KEYBOARD IS device can be used with the debugger in some situations. This requires an HP­
IL interface, a remote keyboard, and the LEX file "KEYBOARD", available from the HP-71
User's Library or found in the FORTH/Assembler ROM and HP-IL LINK (part number
HP82477A). The "R" option must be set in order for the KEYBOARD LEX file to pass keys to
the debugger.

Restrictions

There are several conditions which restrict the use of KEYBOARD IS with the debugger:

1. The debugger does not have a dedicated KEYBOARD IS device, but shares one with the
BASIC operating system. •

2. Setting the "R" option causes a service request poll to be sent out when the debugger expects
keys. In the operating system, polls are sent out only when activity allows it. In the
debugger, sending out a poll between emulated instructions may find memory suspended in a
disrupted state. You should carefully consider the state of emulation hefore proceeding with
the "R" option set.

3. The KEYBOARD LEX file uses a system buffer to store ESCAPE assignments. For each
keystroke from the remote keyboard, the LEX file needs to access the system buffer, whether
you have made any ESCAPE assignments or not. In between emulated instructions, memory
might be suspended in a disrupted state where system buffers should not be accessed. If you
are unsure of the state of memory, you should avoid using the remote keyboard.

4. The increased activity on the loop makes for a greater possibility of hanging HP-IL. If some
action causes the loop to abort, you may need to drop into the BASIC operating system to
execute RESTORE 10 or RESET HPIL.

5. Some important control actions cannot be performed by the KEYBOARD IS device. For
instance, you cannot interrupt the emulator with the mapped [ATTN] key and you cannot
generate the RECOVER sequence. You need to perform these with the HP-71 keyboard.

In most debugging situations, where you have a self-contained assembly language routine, the
KEYBOARD IS device will work properly. However, if your emulation involves memory
movement or you are simulating a large portion of the HP-71 operating system, you may easily run
into difficulties. In these cases, you should use only the HP-71 keyboard to direct the debugger.

Keyboard Without Debugger

You can always use the KEYBOARD IS device to direct the operating system, without the
dehugger interpreting the keys. Having dropped into the BASIC operating system with [0][Q] or
[J][J], keys are always interpreted by the mainframe only.

You don't have to deactivate the KEYBOARD IS device when you pop back into the debugger.
You can clear the "R" option so that the device will not be detected by the debugger. Or, if the
"R" option is set, simply don't press any keys on the device.

Key Mapping

Keys on the KEYBOARD IS device may be pressed in either upper case or lower case. The only
exceptions are the [0][0] and [JJ[J] keystrokes, v./hich need to be upper casco

84

Section S: Using HP-IL

All character and digit keys are mapped one-to-one with the equivalent debugger keys. Several
keystrokes on the HP-71 are not available on a KEYBOARD IS device. The following key
mappings have been made for debugger keystrokes. Each uses a control (CfRL) sequence.

Debugger action

f[AUTO]
f[DELETE]
f[USER]
g[lUSER]
f[KEY]
f[UST]
f[OFF]
f[PURGE]
[RUN]
g[CMDS]
f[EDIT]

KEYBOARD IS
equivalent

CTRLA
CTRLD
CTRLF
CTRLG
CTRLK
CTRLL
CTRLO
CTRLP
CTRLR
CTRLX
CTRLZ

If you have copied file DBGLEX2A into RAM, you can change these mappings or add new ones.
Refer to appendix C for details concerning the CrRL TB location.

85

Section 9

Additional Features and Operating Details

This section describes some of the features you will find useful as you become more familiar with
the debugger system.

The Extended Conlnland Menu

When the file DBGLEX3A is in memory, you have access to a menu of extended commands to
control special debugger actions. Pressing g[CMDS] in view mode gains access to nine commands
which can be scrolled up and down with the arrow keys. When the desired command is in the
display, pressing [ENDLINE] will execute it. The extended command menu can be aborted by
pressing the [A TIN] key.

The nine extended commands are:

Clear Display
Restore Debugger 10
Reset HPIL
Wndw + DBGADDR$(l)
Wndw + DBGADDR$(2)
Wndw + DBGADDR$(3)
Initialize Debugger
Set Checksum
Verify Checksum

\Vhen in the extended command menu only four keys are active:

1. [A TIN] key: aborts the command menu and redisplays the current r~gister.

2. [I] key: rolls the menu to the next lower entry (with wrap-around to the top).

3. [1] key: rolls the menu to the next higher entry (with wrap-around to the bottom).

4. [ENDLINE] key. Pressing lENDLI~E] executes the indicated command and -- unless
indicated below - returns the display to the current register.

Clear Display-

This sends escape sequences to the HP-IL display device to clear the screen. (The escape
sequences are: Escape H, Escape R, Escape J.)

Restore Debugger 10

This attempts to restore the loop with the specified DDISPLA Y IS device as well as the
KEYBOARD IS device. This is not as robust as the HP-IL command "RESTORE 10", and
therefore will work only in simple cases, such as after aborting HP-IL by hitting [ATTN] twice. If

87

Section 9: Additional Features and Operating Details

"Restore Debugger 10" does not re-establish the debugger's HP-IL you may need to execute the
"Reset HPIL" command, described next.

Reset HPIL

This attempts to execute a "RESET HPIL" command for the loop specified in the DDISPLA Y IS
device. This is not as robust as the HP-IL command "RESET HPIL". If an error occurs, the
debugger will beep and show "Reset HPIL Failed" for 1 % seconds. In this case, the only recourse
may be to drop into the operating system and execute "RESET HPIL" in BASIC.

If the "Reset HPIL" command is successful, it will also perform the "Restore Debugger 10"
command automatically.

Wndw + DBGADDR$(l)

If the current register (before enabling the extended command menu) is in the Window stack,
executing this command will add the value returned by the DBGADDR$(1) function to the
window address; the resulting address is replaced in the window register. If the current register is
not a window register, the debugger will only beep and redisplay the unaffected register.

This command is useful when modifying parts of the debugger RAM map, control locations, or
code. Using the addresses published in appendix C of this manuaL you can set a window register
to any location in the DBGLEX files. Then with RAM edit (frEDIT]), you can modify the
contents of memory at that location.

Wndw + DBGADDR$(2)

This command is identical to the previous one, except that it adds the value of DBGADDR$(2) to
the window register address.

\Vndw + DBGADDR$(3)

ll1is command is identical to the previous one, except that it adds the value of DBGADDR$(3) to
the window register address.

Initialize Debugger

This command resets all debugger CPU registers to zeroes, clears the User's stack, the Window
stack, and the Break Point stack. It sets one break point at address 00209, the location where the
VECTOR storage is cleared. This break point will offer protection from inadvertently emulating
through the cold start code.

The "Initialize Debugger" command does not clear the OPTIONS stack, nor docs it change the
HP-IL device control locations or the display strings (EdtLin, NewLin, and VdoLin - used to
control the'display during output).

Executing the "Initialize Debugger" command sounds a shari beep. The current register becomes
the PC (set to address 00000) and the AC code is "INITLZ".

88

Section 9: Additional Features and Operating Details

Set Checksum

This command causes the debugger to compute and store a checksum byte for each of the three
DBGLEX files. The display will show each byte as it is computed; for example,

Set Checksum DA B5 6B

This indicates that the checksums are DA, B5 and 6B for each of the files DBGLEX1A,
DBGLEX2A, and DBGLEX3A, respectively. The checksum for file DBGLEX1A does not
include the RAM storage area, so it is not affected by emulated CPU register contents.

Since the DBGLEX files are in RAM, they are vulnerable to bugs which clear or overwrite
memory. Any time you suspect the files have been corrupted, you should execute the "Verify
Checksum" command (described below) which will report checksum errors. Checksums are
computed and verified only by explicitly executing these two commands.

The source copies of the DBGLEX files have the checksum bytes filled in. If you make
modifications to the debugger software, you should execute the "Set Checksum" command to
afford protection against corruption of the files.

Verify Checksum

This command verifies the checksum bytes for the three DBGLEX files by recomputing the
checksums and comparing them against the stored values. Results are displayed for 1% seconds.
For example,

Verify Checksum G G B

This indicates that file DBGLEXIA is "Good", DBGLEX2A is "Good", and DBGLEX3A is
"Bad". If a checksum indicates "Bad", it is likely that the RAM-based software has been
corrupted. In this case, it is advisable to purge the affected file and recopy from your backup on
mass medium. (Remember to deactivate the debugger before purging any of the DBGLEX files.)

89

Section 9: Additional Features and Operating Details

The Disassembler

All opcode mnemonics generated by the disassembler are the standard ones as shown in the HP-71
Software IDS, Volume I, Chapter 16. The few exceptions concern non-standard instructions
involving hardware status bits. and NOPs (no-ops).

Jump instructions (GONe. GOTO, GOSBVL. GOYES, etc.) display an absolute address. The
jump address will be adjusted for the BIAS if it falls within the BIAS range and the "B" option is
set. GOYES and RTNYES instructions are displayed on one line with the accompanying test
mnemonic. For example.

PC: 04C5D: ?D#C WP I GOYES 04C3D

For displays which exceed 22 characters. only the last 22 characters are shown in the LCD.

Hardware Status Bits

The following table lists the hardware status bit instructions. The ones which affect more than one
HS bit are non-standard; these mnemonics show an "H" and the second character of the HS bit
names.

Opcode Mnemonic Opcade Mnemonic HS bits cleared/tested

820 NOP820 830nn ?HO= O/GOYES none
821 XM=O 831nn ?XM=O/GOYES XM
822 SB=O 832nn ?SB= O/GOYES SB
823 HBM=O 833nn ?HBM = O/GOYES SB.XM
824 SR=O 834nn ?SR=O/GOYES SR
825 HRM=O 835nn ?HRM = O/GOYES SR,XM
826 HRB=O 836nn ?HRB= O/GOYES SR,SB
827 HRBM=O 837nn ?HRBM = OIGOYES SR,SB.XM
828 MP=O 838nn ?MP= O/GOYES MP
829 HPM=O 839nn ?HPM = O/GOYES MP,XM
82A HPB=O 83Ann ?HPB= O/GOYES MP,SB
82B HPBM=O 83Bnn ?HPBM= O/GOYES MP,SB,XM
82C HPR=O 83Cnn ?HPR=O/GOYES MP.SR
82D HPRM=O 83Dnn ?HPRM = O/GOYES MP.SR.XM.
82E HPRB=O 83Enn ?HPRB= O/GOYES MP.SR.SB
82F CLRHST 83Fnn ?HPRBM = O/GOYES MP.SR.SB.XM

l\'OPs

A "NOP," or "no-op," is an opcode which has no defined operational effect on any CPU register
(otber than incrementing the PC). The debugger does not ignore a NOP. but executes it as it docs
any other opcode in its class.

TIle disassembler treats the following opcodes as NOPs and displays the indicated mnemonics:

90

Opcode
420
520
6300
818
819
81A
81B
820
8C4000

Mnemonic
NOP420
NOP520
NOP6300
NOP818
NOP819
NOP81A
NOP81B
NOP820
NOP8C4000

Section 9: Additional Features and Operating Details

Meaning
GOC to next instruction
GONC to next instruction
GOTO to next instruction
Unspecified SRB (shift-right-bit) instruction
Unspecified SRB instruction
Unspecified SRB instruction
Unspecified SRB instruction
Clear no HS bits.
GOLONG to next instruction

91

Section 9: Additional Features and Operating Details

Debugging Techniques

'1l1ere are some special considerations when debugging in the HP-71 mainframe, The debugger
system uses some of the features of the BASIC operating system to pass control hack and forth
l~etween the environments. Assembly language routines must insure that they do not interfere with
these actions.

A voiding Cold Start

You can take precautions so that you don't emulate through the cold start code (address 000(0)
since these routines clear all of memory. Many assembly language bugs show up as a Memory
Lost, so you will probably find the emulator jumping here occasionally.

Since the debugger uses the interrupt vector, the VECfOR location in main RAM must not be
cleared. Doing so would send the debugger into oblivion, emulating without any way to detect
keys. If this does happen, "INIT: 1" may bring back the computer, but "INIT: 3" might be the only
way to recover. In any case, if the RAM clearing has already taken place, it may be too late to
avoid a Memory Lost.

You may want to set a break point at address 00000 to prevent emulation of the cold start routine.
Breaking at this address will prevent any RAM from being cleared and you can almost always reset
the debugger without causing a Memory Lost.

You can provide protection from clearing VECTOR if you set a break point at address 0020<), the
location where VECTOR is cleared. Executing the "Initialize Debugger" command in the
extended command menu will set an automatic break point at this address, after clearing all
debugger registers. Thus, it is good practice to initialize the debugger at the start of any debugging
session. If the debugger ever runs through the cold start section, it will halt at break point 00209
with Dl=2F43C. You should not continue emulation. Usually, if you set the PC to the address
of the BASIC main loop ("MAINLP", address 002FD) and set HEX mode (in the PCcy register),
you can recover with no further register manipulation.

System Timers

Each of the three display chips contains a six-nibble countdown timer. When working with these
system timers, special handling may be required during emulation. The CLKSPD routine (address
OE9Fl) is a trap for the debugger. This routine computes the CPU speed in reference to a timer.
waiting for a specific timer value to exit a counting loop. Since the dehugger runs so slo"ly in
relationship to the HP-71 operating system. it can run indefinitely in this counting loop as the timer
speeds along. There are actually three locations in the CLKSPD routine where the timer is read
and compared. so if you want to run the debugger through this routine you must adjust the A and
C registers for each comparison. Use the HP-71 IDS, Volume III, as a guide.

Other routines which read timers (such as WRTrMR, address 15392) will not hang up the
debugger indefinitely, since they do not enter a loop. Howevcr, the timer valuc read by the
debugger will reflect the fact that it is running relatively slowly; if you are concerned al?out critical
tinle intervals, you should halt the debugger at locations like this and edit a specific value into the
A or C register.

92

Section 9: Additional Features and Operating Details

Configuration

Because the debugger resides in soft-configured RAM, it cannot allow .emulation of the
configuration routines. The following BASIC statements or actions cause the computer to
reconfigure memory:

1. FREE PORT and CLAIM PORT.
2. OFF, BYE, or the f[OFF] keystroke, then wakeup.
3. Inserting or removing plug-in modules.
4. Copying a LEX file into memory or purging a LEX file.
5. Reconfiguration forced by an assembly language application.
6. Cold start.

If you try to emulate any of the above, the debugger will encounter the "RESET" instruction at
address 10233 in the configuration routine. If you have set option "C", the debugger will "skim
through" the configuration code and recover with the configuration poll. If option "C" is not set,
the emulator will break, beep, and display the AC code "RESET".

Unless a poll handler performs unexpected actions, there should be no problems arising from using
the "C" option since the configuration poll is issued at a known location and state in the operating
system. This assumes, of course, that you have not affected configuration addresses by inserting or
removing modules or executing FREE PORT or CLAIM PORT. The debugger may not be able
to restore properly if the configuration of the computer undergoes a change. Specifically, the
addresses of the DBGLEX files may change, and if this happens a Memory Lost will be inevitable.
To guard against this, you should deactivate the debugger with "RECOVER: 2" before inserting or
removing plug-ins and before executing FREE PORT or CLAIM PORT.

You cannot emulate an "UNCNFG" instruction which would affect a DBGLEX file, or a "RESET"
instruction at an address other than 10233. In these cases, you can either increment the PC past
the instruction or perform a hard jump with [1][J] into the code and recover quickly with the
"RECOVER: 0" sequence.

Emulating Poll Handlers

When you set the "C" option, the debugger intercepts the configuration poll by replacing the poll
return address with its own address. Thus, if you are emulating a configuration poll handler which
takes similar actions, you should not set the "C" option. To prevent reentry into the debugger
when skimming the configuration routine, a pCONFG poll handler should never call the REENTR
entry point.

For similar reasons, a service request poll handler (pSREO poll) should never jump into the
debugger with REENTR. The debugger "R" option causes a service request po1J to be issued, so if
you need to emulate such a poll handler you should not set the "R" option.

Conflicts with VECTOR

If your assembly language application uses the VECTOR interrupt RAM location, you can only
emulate those parts of the application which do not depend on the VECTOR. If Y0U alter your
code to not use the VECfOR iocation, you can use the debugger to simulate an interrupt for
testing your interrupt handler. Only when you are done using the debugger would you reinstall the
VECTOR interception in your code.

93

Section 9: Additional Features and Operating Details

Modifying the Debugger Software

If your DBGLEX files are in RAM, you can modify portions of the code or the RAM map to
customize the debugger's operation. You should always keep a backup copy of the debugger
source files on a write-protected medium, in case the files in memory are corrupted.

Annunciator Control

The two annunciators used by the debugger system can be changed if they conflict with your
application. The defaults are:

1. The «e» annunciator, to indicate that keystrokes are being sent to the BASIC operating
system key buffer.

2. The USER annunciator. to indicate when the User's stack is being oisplayed.

Each annunciator is controlled by specifying its address and bit mask (a nibble value with the
required bit to turn it on). In addition, the keyboard annunciator, «e», is also controlled within
the operating system by a system flag. (Refer to page 201 of the HP-71 Owner's Manllal for a list
of these flags.) By writing a five-nibble address and a one-nibble bit mask to the appropriate
RAM locations with DBGLEX1A, you can use any annunciator or bit in the display (or
combinations within one nibble).

For the keyboard annunciator. «e», you need to change the DBGLEX1A locations ANCTRL and
ANFLAG. For the User's stack annunciator, you need to change USCTRL. Each of these
locations stores an address and a mask. You can disable all annunciator usage by writing 000000 to
each of these fields. The following table shows the values to put into the RAM locations for each
of the annunciator selections. Some annunciators are not available to the debugger, since the
operating system changes them frequently (these are indicated with "nJa" in the table). Directions
for locating the RAM locations points are in appendix C, "Addresses of Entry Points."

User stack Keyboard
Annunciator annunciator annunciator

(USCTRL) (ANCTRL) (ANFLAG)

none 000000 000000 000000
001E28 nJa nJa

AC 101E21 101E21 7E6F21
USER 101E22 nJa nJa
RAD 101E24 n/a nJa
BAT 301E21 n/a nJa

0 C43E28 C42E28 9E6F21
D43E21 D43E21 9E6F22

2 O43E22 O43E22 9E6F24
3 D43E24 D43E24 9E6F28
4 D43E28 D43E28 AE6F21

«e» E43E28 E43E28 7E6F28
F43E21 n/a nJa

PRGM F43E22 nJa nJa
SUSP F43E24 _/~ _/~

IIJd JIJd

CALC F43E28 n/a n/a

94

Section 9: Additional Features and Operating Details

Display Control Strings

Three strings are used by the debugger to control the HP-IL display device before displaying a
register. The strings are similar to the ENDLINE string in BASIC. except that the debugger sends
these strings before displaying a register, not after.

Appendix C. "Addresses of Entry Points," gives directions for finding the locations of these control
strings.

You can modify the contents of these strings to customize the debugger output. They are designed
for controlling output devices, and not for labelling or printing extra characters. Normally you
cannot specify printable characters in these strings, but only c01ltrol characters - that is, characters
such as CR or LF, or escape sequences. If you include printable characters they must be followed
by a CR; otherwise the cursor action will not match the correct editable positions. Also. the
debugger ignores null characters (CHR$(O)), even if included in an escape sequence.

The NewLin string is used when a register is about to be sent to the display device in view mode.
Its default contents are: CRILF and six "FF" terminators. You can specify any eight control
characters for this string; if less than eight are used, the string should end in an "FF" terminator.

The EdtLin string is used when a register is about to be sent to the display device in edit mode. Its
default contents are: CR and seven "FF" terminators. You can specify any eight control characters
for this string; if less than eight are used, the string should end in an "FF" terminator.

For example, if your HP-IL display device is a printer. you might want to change the EdtLin string
to a CRILF. Otherwise. when in edit mode the printer would overstrike the line as new characters
are sent out.

The V doLin string is used when a register is about to be sent to the display device in view mode
and the "V" option is set. Its purpose is to "roll" up the display screen without disturbing the 80-
column register template. The VdoLin location actually contains a five-nibble address of the
desired string; if this field is 00000, the default string V80Lin (in DBGLEX3A) is used. V80Lin
contains:

1. Escape> (to make the template-building visible on an HP-IL video interface);
2. Escape H (home cursor);
3. 10 line feeds;
4. Escape M (delete line);
5. 12 line feeds;
6. CRILF and an "FF" terminator.

The V80Lin string is followed by 16 unused bytes; if DBGLEX3A is in RAM. you can expand the
string up to 46 control characters and an "FF" terminator. Alternatively, you can find an available
area of RAM to store the string and place its address in the VdoLin field. Since the debugger's
display buffer accommodates only 32 characters, if you choose to output printable characters you
cannot include· more than 32.

For example, if your device has 16-line by 80-column capability, you would want to delete eight of
the line feeds from item 5 in the V80Lin string. If the device is a printer, you could also delete the
line feeds to save paper. .

95

Section 9: Additional Features and Operating Details

Modifying the KEYBOARD IS Mapping

The debugger allows the KEYBOARD IS device to direct the system by mapping non-ASCII
keystrokes to control characters. At the location CTRL TB in DBGLEX2A resides a table of 26
entries corresponding to the control codes CTRL A through CTRL Z. Each two-nibble entry is a
keycode for mapping the corresponding control sequence to a keystroke recognized by the
debugger. For example, the eighteenth entry is "kcRUN" (OF hex) to map CTRL R to the [RUN]
key. An "FF" entry indicates no corresponding key mapping.

Section 8, "Using HP-IL," contains a table of the default key mappings for KEYBOARD IS. If
the file DBGLEX2A is in RAM, you can modify or add to the entries in the CTRL TB table to
map other keystrokes into the debugger.

Note that mapping the [ATTN] key in the CTRL TB table is not a simple matter, since some
actions performed in the interrupt routine must be duplicated. These include setting status bit S12
and writing an "F' to location "DA 1NFL" ("debugger ATTN flag"). Without these actions the
mapped [ATTN] key will not work properly. However, the KEYBOARD LEX file has provisions
for assigning the [ATfN] key to an ESCAPE code.

Customizing REENTR

The assembly language reentry point, REENTR, uses the nibble at location "EmRntr" in
DBGLEX1A to set up entry conditions for the emulator. You can set or clear bits in this nibble
before you call REENTR for the following effects:

e Bit 3 (lxxx): when set, a break point on the first instruction will be ignored.

e Bit 2 (x1xx): when set, the single-step flag will be set, causing a break after the first
instruction.

e Bit I (xxIx): not used.

e Bit 0 (xxxI): when set, the (e» annunciator will be turned on, indicating that keystrokes are
sent to the mainframe key buffer.

After reading and testing this nibble, the emulator clears it. If you are using the EmRntr features,
your routines need to set the nibble each time they call REENTR.

Code Modification

The modular design of the debugger allows relatively easy customization. There are built-in
features to let applications use the display routines, intercept keys, or extend the instruction set of
the emulator. This manual does not describe interfaces to debugger routines, but advanced users
- with the debugging and disassembling capabilities of the system - can use the list of entry
points in appendix C to make incremental enhancements to the software.

There are several empty areas in the code space which can be used for "GOTO" links or bug fixes.
The file DBGLEX3A takes less than 3K bytes, leaving a large area in an IRAM for
enhancements. Refer to appendix C for locations of these and other important entry points.

96

.,

Appendix A

Warranty and Service Information

Limited One-Year Warranty

What We Will Do

The HP 82478A Debugger medium is warranted by Hewlett-Packard against defects in matcrials
and workmanship affecting electronic and mechanical performance, but not software content, for
one year from the date of original purchase. If you sell your unit or give it as a gift, the warranty
is transferred to the new owner and remains in effect for the original one-year period. During the
warranty period, we will repair, or, at our option, replace at no charge a product that proves to be
defective, provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the
result of service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive
remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS
LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states,
provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above
limitation may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD BE LIABLE
FOR CONSEQUENTIAL DAMAGES. Somc states, provinces, or countries do not allow thc
exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion
may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from
state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In rclation to such transactions, thc rights and obligations of Sellcr and Buyer shall be
determined by statute.

97

Appendix A: Warranty and Service Information

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. HeWlett­
Packard shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard
dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please
contact:

• In the United States:

• In Europe:

• In other countries:

Hewlett -Packard
Personal Computer Group

Customer Support
11000 Wolfe Road

Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

Hewlett-Packard S.A.
150, route du Nant-d'Avril

P.O. Box CH-1217 Meyrin 2
Geneva

Switzerland
Telephone~ (022) 83 81 11

Note: Do 1I0t send units to this address for repair.

Hewlett -Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Telephone: (415) 857-1501

Note: Do lIor send units to this address for repair.

98

Appendix A: Warranty and Service Information

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may
have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the
unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of
receipt at any service center. This is an average time and could vary depending upon the time of
year and the work load at the service center. The total time you are without your unit will depend
largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is
located in Corvallis, Oregon:

Hewlett-Packard Company
Service Department

P.O. Box 999
Corvallis, Oregon 97339, U.S.A.

or
1030 N.E. Circle Blvd.

Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2002

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the
dealer or sales office where you purchased your unit.

AUSTRIA
HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)
Telephone: (0222) 23 65 11

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100
B-1200 Brussels
Telephone: (02) 762 32 00

99

DENMARK
HEWLETT-PACKARD A/S
Datavej 52
DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETI'-PACKARD OY
Revontulentie 7
SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

Appendix A: Warranty and Service Information

FRANCE
HEWLETI-PACKARD FRANCE
Division lnformatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLET[-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale
Berner Strasse 117
Postfach 560 140
D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY
HEWLETI-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)
Via G. Di Vittorio, 9
1-20063 Cernusco SuI Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS
HEWLETr-PACKARD NEDERLAND B.V.
Van Heuven Goedhartiaan 121
NL-1181 KK Amstelveen (Amsterdam)
P.O. Box 667
Telephone: (020) 472021

International Service Information

NORWAY
HEWLETI-PACKARD NORGE A/S
P.O. Box 34
Oesterndalen 18
N-1345 Oesteras (Oslo)
Telephone: (2) 17 11 SO

SPAIN
HEWLETI-PACKARD ESPANOLA S.A.
Calle Jerez 3
E-Madrid 16
Telephone: (1) 4582600

SWEDEN
HEWLETI-PACKARDSVERIGE AB
Skalholtsgatan 9, Kista
Box 19
S-163 93 Spanga (Stockholm)
Telephone: (08) 7502000

SWITZERLAND
HEWLE1T-PACKARD (SCHWEIZ) AG
Kleinrechner-Service
Allmend 2
CH-8967 Widen
Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETI-PACKARD Ltd
King Street Lane
G B-Winnersh, Wokingham
Berkshire RG11 5AR ~
Telephone: (0734) 784774

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if
you bought your product from an authorized Hewlett-Packard dealer. you can he sure that service
is available in the country where you bought it.

If you happen to be outside the country where you bought your unit. you can contact the local
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please
ship the unit ·to the address listed above under Obtaining Repair Service in the United States. A list
of service centers for other countries can be obtained by writing to that address. All shipping,
reimportation arrangements. and customs costs are your responsibility.

Service Repair Charge

There is a standard repair char.ge for out-of-warranty repairs. The repair charges include all labor
and materials. In the United states, the full charge is subject to the customer's local sales tax.· In

100

Appendix A: Warranty and Service InformatIOn

European countries, the full charge is subject to Value Added Tax (VAT) and similar taxes
wherever applicable. All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In
these situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a
period of 90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

• A completed Service Card, including a description of the problem .

• A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of
purchase date should be packaged in adequate protective packaging to prevent in-transit damage.
Such damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you
insure the shipment to the service center. The packaged unit should be shipped to the nearest
Hewlett-Packard designated collection point or service center. Contact your dealer for assistance.
(If you are not in the country where you originally purchased the unit, refer to "International
Service Information" above.)

Whether the unit is under warranty or not. it is your responsibility to pay shipping charges for
delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On
out-of-warranty repairs in the United States and some other countries, the unit is returned C. O.D.
C covering shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to
customers.

Should other problems or questions arise regarding repairs, please call your nearest Hewlett­
Packard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our
customer support department has established phone numbers that you can call if you have
questions about this product.

101

I

J

Appendix A: Warranty and Service Information

Product Information. For information about Hewlett-Packard dealers, products, and prices, call
the toll-free number below:

(800) FOR-HPPC
(800) 367-4772

Technical Assistance. For technical assistance with your product, support specialists are available
to assist you Monday through Friday, from 8:00 a.m. to 3:00 p.m. Pacific Time. Call:

(503) 757-2004

For either product information or technical assistance, you can also write to:

Hewlett -Packard
Handheld Computer and Calculator Operation

Calculator Technical Support
1000 N.E. Circle Blvd.

Corvallis, OR 97330

102

Appendix B

BASIC Keywords

The DBGMAINA file provides three BASIC keywords to access and set up the debugger.

DBGADDR$

DBGADDR$(file llumber)

Thefile number is 1,2, or 3, corresponding to DBGLEX1A, DBGLEX2A, or DBGLEX3A. This
function returns the main entry address of the active DBGLEX file; this is not the same address as
returned by ADDR$.

DBGADDR$ returns 00000 if the corresponding DBGLEX file is not found or if it resides in an
unacceptable device or address. The DBGLEX files are found by internal coding, not by file
name. You can rename the DBGLEX files as desired, and DBGADDR$ will still return the main
entry addresses.

File
DBGLEX1A

DBGLEX2A

DBGLEX3A

Acceptable devices and addresses for DBGLEX files

Acceptable
Must reside in RAM
or IRAM, at an address
ending in "OOS".

RAM, IRAM, ROM, PROM.

RAM, IRAM, ROM, PROM.

103

Unacceptable
ROM, PROM, any address
not ending in "OOS".

None.

None.

Appendix B: BASIC Keywords

DDISPLAY IS

DDISPLA Y IS del'ice specifier

This statement specifics an HP-IL display device for debugger output. Syntax for this statement is
identical to the DISPLAY IS statement in the HP-IL ROM. Refer to page 75 of the HP-IL
1ll1eliace Owner's Manila/ for details on device specifiers.

DDISPLA Y IS accepts the following device specifiers:

• Accessory type. Example: DDISPLAY IS 0/c48:2

• Device word. Example: DDISPLA Y IS RS232

• HPIL address. Example: DDISPLA Y IS 4

• Assign code. Example: DDISPLAY IS ":TV" (after executing an ASSIGN 10 statement
which assigns ":TV" to a device).

DDISPLA Y IS does not accept the following device specifiers:

• Device type. Example: DDISPLAY IS :HP82905B
Causes: DBG ERR:lllegal Device Spec

• Volume label. Example: DDISPLA Y IS .STORE
Causes: DBG ERR:lllegal Device Spec

In addition, DDISPLA Y IS * not only cancels the display assignment, but clears the "H" option in
the debugger and zeroes the display handler address.

DEBUG

DEBUG
DEBUG *

The DEBUG statement activates the debugger, sending control to the keyboard. The DEBUG *
statement is similar, but it begins emulation immediately without requiring keyboard direction.

Files DBGLEXIA and DBGLEX2A must be in HP-71 memory in acceptable memory devices to
activate the debugger. File DBGLEX3A is optional. (Refer to the DBGADDR$ keyword for a
list of acceptable devices.)

104

Appendix C

Addresses of Entry Points

The following list of entry points is for the "DBG:A" version of the debugger. The offsets should
be used with the DBGADDR$ function __ which is included in the DBGMAINA file_

DBGADDR$ is used to find the address of the active DBGLEX files_ Its syntax is as follows:

DBGADDR$(file number)

where file number is 1, 2, or 3, corresponding to DBGLEXIA, DBGLEX2A, or DBGLEX3A If
a file is not found (or is located in an unacceptable device) DBGADDR$ returns "00000". The
addresses returned are those of main entry points in each file.

For instance, after you copy DBGLEXIA into IRAM, DBGADDR$(1) might return "68055".
Use this address to locate entry points in file DBGLEXIA For example, to locate the absolute
address of REENTR, evaluate the following expression:

DTH$(HTD(DBGADDR$(l)) + HTD("OOOAS"))

When working in the debugger, you can easily determine absolute addresses of the DBGLEX entry
points by using the three "Wndw + DBGADDR$" commands in the extended command menu.
First, select a register in the Window stack, then edit and place in it one of the offsets from the
following tables. Enter the command menu with g[CMDS) and select the appropriate
"Wndw + DBGADDR$" command. Press [ENDLINE) and the window address will be adjusted
to the absolute address of the entry point.

The debugger affords easy access to memory, anywhere in the HP-71. Whether you use the
BASIC command "POKE" or the memory edit feature of the debugger, you should not change the
contents of memory without double-checking your procedure. A siight error in address or nibble
values can result in a Memory Lost or the corruption of files or data. Be sure you understand the
requirements of HP~ 71 file structure and memory management before you modify RAM contents
or the debugger code.

Table of offsets for DBGLEXIA:

• GN1JMP - 00000. General-purpose jump point for DBGLEXIA.

• REENTR - 000A8_ Entry point for reentering the debugger from assembly language.

• INTVCT - 000F2. Interrupt vector address.

• SpaceA - 00775. 20 free nibbles, available for bug fixes or code enhancements ..

• BegRAM - 00789. Beginning of the debugger RAM map.

• RCVRA - 00789. Storage of A register for RECOVER; all CPU registers arc stored in
this area for the RECOVER sequence.

105

Appendix C: Addresses of Entry Points

• VSO:PC - 007 AB. Output buffer for SO-column video interface.

• MANHOL - OOS5D. Control nibble for key buffers. If bit 0= 1, then keys are put into the
mainframe KEYBUF. If bit 0=0, keys are put into DKYBUF.

• ANCfRL - OOS6E. [ON]g annunciator control. The first five nibbles are the address of
the annunciator, the next nibble is the mask to set it.

• ANFLAG - OOS74. [ON]g annunciator flag control. The first five nibbles are the address
of the system flag, the next nibble is the mask to set it. (Refer to page 201 of the HP-71
OWller's Manual for a list of flags which control annunciators.)

• DA TNFL - OOS7B. Debugger's [A TIN] key flag, used similarly to A TNFLG in the
mainframe.

• DKYPTR - 0087C. Debugger's key buffer pointer; used similarly to KEYPTR m the
mainframe.

• DKYBUF - 0087D. Debugger's key buffer; 15 bytes used similarly to KEYBUF in the
mainframe.

• Reg:A - OOSAB. Start of register storage for CPU emulation.

• EmRntr - 0095S. Control for reentering the emulator (such as from a configuration jump).
If bit 3 is set, a break point on the first instruction will be ignored. If bit 2 is set, the single­
step flag will be set. If bit 0 is set, the alarm annunciator «.» will be turned on. (Bit 1 is not
used.) After reading and testing this nibble, the emulator clears it.

• ChkSml - 00AA7. Storage location for the checksum byte for DBGLEXIA. Bytes for
DBGLEX2A and DBGLEX3A follow immediately.

• USCfRL - OOAAD. User stack annunciator control. The first five nibbles are the address
of the annunciator, the next nibble is the mask to set it.

• DB3Kbd - OOAEF. Nibble in RAM which indicates if an application in DBGLEX3A needs
to intercept keys from DBGLEX2A. (Bit 0 is used by the extended command menu; the
other three bits are available for enhancements.)

• ChrBuf - OOAF3. Buffer for building debugger displays.

• Dspchx - OOB3B. Storage of the address of the HPIL display code. Normally, this would
be the same address as found in the mainframe RAM location DSPCHX.

• NewLin - OOBSF. String of eight characters to send out when displaying a new line in view
mode. Default: DOAOFFFFFFFFFFFF (CR,LF and six terminators). These eight bytes can
be changed to any desired characters, much like the ENDLINE statement in BASIC. If less
than eight are used, they should be terminated with an "FF" byte.

• EdtLin - OOBAI. String of eight characters to send out when rebuilding a display during
editing. Default: DOFFFFFFFFFFFFFF (CR and seven terminators). These eight bytes can
be changed to any desired characters, much like the ENDLINE statement in BASIC. If Jess
than eight are used, they should be terminated with an "FF" byte. If the display device is a
printer, you will probably want to change the first two bytes to a CR,LF.

• VdoLin - 00BB3. Five nibble storage of address for display string to maintain the 80-
column template. If this field is 00000, the default string VSOLin in DBGLEX3A is used.
To change the output string; you can choose an unused area of RAM to fil! in' a different
string, and fill in the address in VdoLin. Or you can modify the V80Lin string if
DBGLEX3A is in RAM.

• RegXQ+ - OOBBS. Two nibbles following the XQT register. available for editing for
extended opcodes ("LC(15)" and "LC(16)").

106

Appendix C: Addresses of Entry Points

• HPILfl - OOBEA. Active HPIL device flag. When this flag is "0", the mainframe HPIL
control locations are set up for the mainframe display device. When this flag is "F", the
mainframe HPIL control locations are set up for the debugger display device. If your display
devices become swapped for some reason (this may happen if HPIL issues an error while in
the debugger, for instance), you can change the value of this nibble to reswap the devices.

• mbox' - OOBEB. Debugger's equivalent to MBOX' field. Along with the following three
fields (loopst, is-dsp, and dspset), these are swapped to change display devices between the
mainframe and the debugger.

• loopst - OOBEE. Debugger's equivalent to LOOPST nibble.

• is-dsp - OOBEF. Debugger's equivalent to IS-DSP field.

• dspset - 00BF6. Debugger's equivalent to DSPSET nibble.

• MFDRAM - OOBF7. Location for storage of the mainframe display buffer, 224 nibbles,
starting with DSPSTA+3.

• Annadl - 00CD7. Location for storage of 96 nibbles from display driver at address 2E100.
Following this are two more 96 nibble blocks for display drivers as 2E200 and 2E300.

• RUN19 - 0114C. Entry point for emulator, to set up registers and controls.

• NSSX-R - 011F3. Main loop address for the emulator.

• BpVol - 01F6F. Debugger beep volume control. This nibble is an "8" for low beep
volume; change to a "4" for loud volume. It controls all beeps issued by the debugger.

• DBGIEN - 0lF92. End of DBGLEXIA. If the file is the last in an IRAM, there are 23
free nibbles before the end of the IRAM, available for bug fixes or code enhancements.
(The file length in the DBGLEXIA header would need to be adjusted if code were added
here.)

Table of offsets for DBGLEX2A:

• GN2JMP - 00000. General-purpose jump point for DBGLEX2A.

• SpaceB - 00022. 18 free nibbles, available for bug fixes or code enhancements.

• DSPREG - 00034. Routine to display a debugger register.

• SpaceC - 00AE3. 18 free nibbles, available for bug fixes or code enhancements.

• POPCHK - 00AF5. Wait Ph seconds for key, but don't pop it from key buffer.

• DPOPBF - 00B28. Routine to pop a key frorr the debugger's key buffer.

• CfRL TB - OOC2C. Table of control codes for mapping to debugger keys. 26 entries
correspond with the keystrokes CfRL A through CTRL Z.

• SLWTKY - OOE24. Idle loop, "go to sleep, wait for a key."

• SpaceD - 01457. 18 free nibbles, available for bug fixes or code enhancements.

• SpaceE - OlB83. 18 free nibbles, available for bug fixes or code enhancements.

• CBf2DS - 01 B98. Display the debugger character buffer, ChrBuf.

• DspCHC - OIC9D. Display a character, byte in C(B).

• BldDsp - 01DD8. Routine which builds the debugger's display buffer in the LCD.

107

Appendix C: Addresses of Entry Points

• DspUpd - 01DFO. Update the LCD, using the debugger's display buffer.

• DspRst - 01EC2. Reset the debugger's display.

• DBG2EN - 01F90. End of DBGLEX2A. If the file is the last in an IRAM, there are 25
free nibbles before the end of the IRAM, available for bug fixes or code enhancements.
(The file length in the DBGLEX2A header would need to be adjusted if code were added
here.)

Table of offsets for DBGLEX3A:

• GN3JMP - 00000. General-purpose jump point for DBGLEX3A.

• SpaceF - 00021. 27 free nibbles, available for bug fixes or code enhancements. This space
immediately follows the jump table at GN3JMP, so that more entries can be included for
future enhancements.

• BIASap - 0004B. Routine which applies the BIAS to an address.

• V80COL - 00137. 80-column video interface output routines.

• V80Lin - 00159. The string used by default for the 80-column video interface. This string
is sent out before displaying a register when the "V" option is set.

This default string consists of an Escape >, Escape H, 10 LFs (line feeds), an Escape M, 12
LFs, a CRlLF, an "FF" terminator, and 16 unused bytes. There are 47 bytes available here;
if DBGLEX3A is in RAM, you can change the contents of this default VdoLin string as
desired. (For an alternative to changing V80Lin, refer to the VdoLin entry point in
DBGLEX1A.)

• JpHPIL - 00619. Jump into HPIL module, using the U~pd1X address and an offset to the
desired routine.

• SpaceG - 00741. 24 free nibbles, available for bug fixes or code enhancements.

• DCMPL - 0079E. Decompile routine.

• gCMD - 01155. Extended command menu routines.

• SpaceH - 0129D. 52 free nibbles, available for bug fixes or code enhancements. This space
is in the table of command menus, so that more can be added for future enhancements.

• Space I - 0131A. 18 free nibbles, available for bug fixes or code enhancements. This space
immediately precedes the DB3Key entry point, and is available for enhancements which
might intercept keys.

• DB3Key - 0132e. Routine in DBGLEX3A which intercepts keys. (For example, used by
the extended command stack to interpret the up- and down-arrow keys, as well as [A lIN]
and [ENDLINE].) If a routine in DBGLEX3A does not use the key, it is handled by the
main loop at SL WTKY in DBGLEX2A.

• DBG3EN'- 01645. End of DBGLEX3A. If the file is the last in an IRAM, there are 2404
free nibbles before the end of the IRAM, available for bug fixes or code enhancements.
(The file length in the DBGLEX3A header would need to be adjusted if code were added
here.)

108

Page 9

11 1:
13 2:
17 3:
31 4:
43 5:

·63 6:
71 7:
79 8:
87 9:

97 A:
103 B:
105 C:

European Headquarters
150, Route Ou Nent-O'Avril

P.O. Box, CH-1217 Meyrin 2
Geneva-Switzerland

82478-90001 English

How to Use This Manual

Assembly Language Development on the HP-71
The Debugger System
Setting Up the Debugger
Using the Keyboard
Register Details
The Emulator
Back and Forth from BASIC
Using HP-IL
Additional Features and Operating Details

Warranty and Service Information
BASIC Keywords
Addresses of Entry Points

Flidl HEWLETT
a:~ PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Wokingham
Berkshire RG11 3U.

Printed in Singapore 7/86

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	71debug_Page_001
	71debug_Page_002
	71debug_Page_003
	71debug_Page_004
	71debug_Page_005
	71debug_Page_006
	71debug_Page_007
	71debug_Page_008
	71debug_Page_009
	71debug_Page_010
	71debug_Page_011
	71debug_Page_012
	71debug_Page_013
	71debug_Page_014
	71debug_Page_015
	71debug_Page_016
	71debug_Page_017
	71debug_Page_018
	71debug_Page_019
	71debug_Page_020
	71debug_Page_021
	71debug_Page_022
	71debug_Page_023
	71debug_Page_024
	71debug_Page_025
	71debug_Page_026
	71debug_Page_027
	71debug_Page_028
	71debug_Page_029
	71debug_Page_030
	71debug_Page_031
	71debug_Page_032
	71debug_Page_033
	71debug_Page_034
	71debug_Page_035
	71debug_Page_036
	71debug_Page_037
	71debug_Page_038
	71debug_Page_039
	71debug_Page_040
	71debug_Page_041
	71debug_Page_042
	71debug_Page_043
	71debug_Page_044
	71debug_Page_045
	71debug_Page_046
	71debug_Page_047
	71debug_Page_048
	71debug_Page_049
	71debug_Page_050
	71debug_Page_051
	71debug_Page_052
	71debug_Page_053
	71debug_Page_054
	71debug_Page_055
	71debug_Page_056
	71debug_Page_057
	71debug_Page_058
	71debug_Page_059
	71debug_Page_060
	71debug_Page_061
	71debug_Page_062
	71debug_Page_063
	71debug_Page_064
	71debug_Page_065
	71debug_Page_066
	71debug_Page_067
	71debug_Page_068
	71debug_Page_069
	71debug_Page_070
	71debug_Page_071
	71debug_Page_072
	71debug_Page_073
	71debug_Page_074
	71debug_Page_075
	71debug_Page_076
	71debug_Page_077
	71debug_Page_078
	71debug_Page_079
	71debug_Page_080
	71debug_Page_081
	71debug_Page_082
	71debug_Page_083
	71debug_Page_084
	71debug_Page_085
	71debug_Page_086
	71debug_Page_087
	71debug_Page_088
	71debug_Page_089
	71debug_Page_090
	71debug_Page_091
	71debug_Page_092
	71debug_Page_093
	71debug_Page_094
	71debug_Page_095
	71debug_Page_096
	71debug_Page_097
	71debug_Page_098
	71debug_Page_099
	71debug_Page_100
	71debug_Page_101
	71debug_Page_102
	71debug_Page_103
	71debug_Page_104

