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Vector Operations

This program provides solutions to the most common vector operations,
such as addition, subtraction, dot and cross products, included angle,
multiplication of a vector by a scalar, finding the length of a
vector, and determining unit vectors. The program will allow vectors
to be entered in either rectangular (x, y, z) or cylindrical (r,
theta, z) coordinates, and will also display the result in either
form. Conversion between these two formats is also an option. A useful
feature of this program is the ability to chain vector operations by
using the result from one operation as an operand for the next one.

Let V1 = alX + blY + clZ and V2= a2X + b2¥Y + c2%Z

Vil + V2 (al+a2)X + (bl+b2)Y + (cl+c2)2
Vl - V2 = (al-a2)X + (bl-b2)Y + (cl-c2)2
Vl X V2 = (bl*c2-b2*cl)X + (cl*a2-cl*c2)Y + (al*b2-a2*bl) 2
Vl . V2 = (al*a2)X + (bl*b2)Y + (cl*c2)z
V1*(s) = (al*s)X + (bl*s)Y + (cl*s)Z
norm(Vl) = (al*al + bl*bl + cl*cl)”.5
unit vector(vVl) = (al/norm(V1l))X + (bl/norm(vl))Y + (cl/norm(vl))2

included angle
between V1 & V2

(norm (V1) "2 +norm(V2)"“2-norm(V3)“~2) }

"
o
O
o
7]
—

2*norm (V1) *norm(Vv2)

V3 = vector between points defining V1 and V2
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User Instructions

Comments

1) Run the program,

2) The user may enter vectors

in either rectangular or
cylindrical form. Press [R]
to enter x, y, z components
of the vector or [C] to enter
r, theta and z components of
the vector. If [C] is chosen,
user flag 1 will be set as

a visual reminder of the

input format required. [R] or [C]

3) If the result of a vector
operation is a vector, the
program will display the
result in either rectangular
or cylindrical form. Press
[R] to see the x, y, and z
components of the result, or
press [C] to see the result
expressed in terms of r,
theta and z. If [C] is
chosen, user flag 2 will be
set as a visual reminder of

the display format. [R] or [C]

4) The program is prompting for
the vector operation to be
performed. The options are
described below and grouped
according to their input
requirements. V1 represents
the first vector entered,
and V2 the second (if
necessary) .

khkhkhkkkhkhhkhhhkhkhkhhkkhkhkhhkhkhkkhkkdhkhkkk

* SINGLE VECTOR OPERATIONS *
Rhkkhhhkhkhhkhhkhkhkkkkhhhk ko khhk

N: calculate the norm or
magnitude of a vector and
return the scalar result. ([N]

M: multiply a vector by a
scalar and return the
vector result in the
proper format. (M]
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INPUT R/C ?

DISPLAY R/C ?

A,S,X,I ,D,N’M’U'C,F'Q?



C:

User Instructions

Comments Input

calculate the unit vector
with the same direction

as the input vector and

with a norm of 1. Return

the vector result in the
proper format. [0]

convert the input vector
from rectangular to cyl-
indrical or vice versa.
This option requires that
the input and display
formats chosen by the user
correspond to the desired
conversion. If they do
not, the message 'I/0
INCORRECT' will appear and
the program will again ask
for input and display
formats. [C]

For these single vector
operations, one of the
following two sets of input
prompts will appear, depend-
ing on the input mode
selected.

* rectangular * <x> [ENDLINE]
* coordinates <y> [ENDLINE]
<z> [ENDLINE]

%

* cylindrical * <r>[ENDLINE]
* coordinates *
<z>[ENDLINE]

khkkhkhkhkhhkkhhkhkhhhkhkhhkhkhkhkhkhhkhkkkktkk

*

TWO VECTOR OPERATIONS *

hkkkkkhkhhhhhhkhkhkhhhhkhhkhkhhhhhkhkhkhk

A:

add vl and V2 and return
the result in the proper
format. (A]
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<theta> [ENDLN] 2z=



subtract v2 from V1 and
return the result in the
proper format.

calculate the cross

product V1 x V2 and

return the result in
the proper format.

calculate the included
angle between V1 and V2
and return the result
in degrees.

calculate the dot or
scalar product V1.V2 and
return the scalar result.

For these two-vector opera-
tions, one of the following
two sets of input prompts
will appear, depending on
the input mode selected.

* rectangular *
* coordinates *

* cylindrical *
* coordinates *

Instructions

khhkhhkhkhhkhhkhhkhhkhkhhkkkhkkkhkkkkhkkkkk

*

OTHER OPTIONS

*

hhkhdhdhhkddddddkddhhdkddhkdkdkkkkkikik

F:

allows the user to change

input and/or display
formats from cylindrical
to rectangular or vice
versa.

(sl

(X]

[1]

(D]

<x1> [ENDLINE]
<yl> [ENDLINE]
<z1> [ENDLINE]
<x2> [ENDLINE]
<y2> [ENDLINE]
<z2> [ENDLINE]

<r1> [ENDLINE]

Display

VECTOR
VECTOR

l: x=

1
VECTOR 1

2

2

2

Zz=
VECTOR =
VECTOR

P y=
VECTOR =

VECTOR 1l: =
VECTOR 1l: theta=

<thetal) [ENDLN]VECTOR 1l: z=

<z1> [ENDLINE]
<x2> [ENDLINE]

VECTOR 2: =
VECTOR 2: theta=

<theta2> [ENDLN]VECTOR 2: 2=

<z2> [ENDLINE]

[F]
page 4
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User Instructions

Comments Input NDisplay

‘ i T TP (T S, 1

Q: exit program. [Q] >

5) After an operation is chosen,
the program will return the
result in one of the formats
listed below, depending on
whether it is a vector or
scalar. Pressing any key
(except [ON]) will display
the next component or move
on to step 6. (

dkkkkhhkhkkhhhhhhkhhhrhkkhhhhhhkhk
* VECTOR RESULTS *

hhhhhkkhhkhkhkhkhhkhhhhhhhhkhrhhhhhhhkhx

(al,[s],[Xx]),[M],[uU],([C) :
These options will return a
vector result in either
rectangular or cylindrical
coordinates, depending on
. the display option chosen
(h in step 3.

X=
* rectangular * <any key> y=
* coordinates * <any key> z=
<any key> <go tn step 6>
r=
* cylindrical * <any key> theta=
* coordinates * <any key> z=
<any key> <go to step 6>
hhkhhhhhkhkkhkhhkhhhkhhhhdhhkhkdhhikhdkk
* SCALAR RESULTS *
khkhhhkhkhhhhhfhdhdhkhhhhhdhdhkhhkihkdi
[1) INCLUDED ANGLE =
<any key> <go to step 6>
[D] DOT PRODUCT =
<go to step 6>
[N] NORM =
(ﬂ {go to step 6>
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User Instructions

Comments Input Display
- e [-mmm e Imm e I

6) At this point, the user is
given the option of exiting
the program or running it

again. RUN AGAIN (Y/N)?
To exit program, press 'N'. [N] >
To run again, press 'Y'. (Y] <go to step 7>

7) If the result of the last
operation was a scalar,
the program will return to
step 4.

If it was a vector, the

program provides the option

of using it in subsequent

calculations. USE RESULT (Y/N)?

To discard the result, press
'N'. To use the result,
press 'Y’', [N] or [Y] <go to step 4>

If 'Y' is chosen and the
next operation requires

one vector, the program will
skip the prompt for the
components and display the
result. If two vectors are
required, the program will
assume the result is the
first vector and will ask
only for the second vector.

v

REFERENCES:
Salas, S. and Hille, E.; "Calculus", Xerox.

Hudson, R.; "The Engineer's Manual", Wiley and Sons, Inc.
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EXAMPLES

A) Find the cross product of (3,5,8) and (4,¢,1), and then calculate
the angle the result vector makes with the x-axis (1,0,0).

B) Find the length (norm) of the vector (12.66,-4.5,-7).

C) Convert (-4,7,0) to cylindrical coordinates.

Comments Input Display
I e ettt ol bt I e == e bt I
1) Run the program. [RUN] INPUT R/C ?
2) Specify input in rectang-
ular coordinates. [R] DISPLAY R/C ?
3) Specify output in rectang-
ular coordinates. {R] A,S,X,1,D,N,M,U,C,F,Q?
4) Select cross product option. [X] VECTOR 1l: x=
5) Enter x, y, z for vectors. 3[ENDLINE] VECTOR 1: y=
5 [ENDLINE] VECTOR 1l: z=
@ [ENDLINE] VECTOR 2: x=
4 [ENDLINE] VECTOR 2: y=
@ [ENDLINE] VECTOR 2: z=
1 [ENDLINE]
6) Display result,. x=5
<any key> ==3
<any key> z=-20
7) Run program again. <any key> RUN AGAIN (Y/N)?
8) Use result. (Y] USE RESULT (Y/N)?
9) Calculate included angle. (Yl A,S,X,1,D,N,M,U,C,F,Q?
19) Enter second vector. [I] VECTOR 2: x=
1 [ENDLINE] VECTOR 2: y=
g [ENDLINE] VECTOR 2: 2z=
§ [ENDLINE]
11) Display result. ANGLE = 76.1130063355
12) Run program again. <any key> RUN AGAIN? (Y/N)
13) Calculate norm. [Y] A,S,X,1,D,N,M,U0,C,F,Q7
14) Input vector. [N] X=

12.66 [ENDLINE] y=
-4.5 [ENDLINE] z=
-7 [ENDLINE]

15) Display result. NORM = 15.1501023099
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Comments Input Display
] ) QR ) e I
16) Run program again. <any key> RUN AGAIN? (Y/N)
17) Convert from rectangular (Y] A,S,X,1,D,N,M,U0,C,F,Q?
to cylindrical.
18) Change output format to [C] I/0 INCORRECT
match conversion. INPUT R/C?
19) Specify rectangular input. [R] DISPLAY R/C?
20) Specify cylindrical output. [C] A,s,X,I,N,M,U0,C,F,Q?
21) Choose conversion now that [C] X=
I1/0 format is correct.
22) Input vector. -4 [ENDLINE] y=
7 [ENDLINE] z=
@ [ENDLINE]
23) Display result. r= 8.0622577483
<any key> theta= 119.744881297
<any key> z= 0
24) End program. <any key> RUN AGAIN? (Y/N)

EXAMPLES

(N]
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0019
0020
0030
0040
0859
0060
ge70
0080
ge99
0100
2110
2120
2130
0140
9159
gl60
0170
g184
3190
0200
9210
9220
9230
0240
3250
0260
0270
0289
2290
2300
9310
9320
2330
2340
@350
2360
@370
2380
@390
0400
0410
0420
0439
04409
3450
p460
0470
04890
0499
2500
9510
3520
2530
0540
8550

LISTING

! VECTOR OPERATIONS
! Revision 1.0 3/28/84
t

DEGREES @ DELAY 4,0 @ CFLAG 1,2,3,4
K@$="ASXIDNMUCFQ" @ I@S$="CR" @ I1l$="yN"

'I0':

DISP "INPUT R/C 2?2 “;

'I1': K1$=UPRCS(KEYS) @ IF NOT POS(I®$,K1S) THEN 'I1' ELSE DISP
IF K1$="C" THEN SFLAG 1 ELSE CFLAG 1

IF FLAG(l) THEN X1$="r=" @ Y1S$="theta=" ELSE X1$="x=" @ Yl$="y="
DISP "DISPLAY R/C ? ";

'0l': K1$=UPRCS$(KEYS) @ IF NOT POS(I@$,K1$S) THEN 'Ol' ELSE DISP
IF K1$="C" THEN SFLAG 2 ELSE CFLAG 2

IF FLAG(2) THEN X2$="r=" @ Y2$="theta=" ELSE X2$="x=" @ Y2$="y="
‘op': DISP "a,Ss,x,I,D,N,M,U0,C,F,Q"

'WAIT': K1$=UPRCS(KEYS) @ K@=POS(KOS$,K1l$) @ IF NOT K@ THEN 'WAIT'
IF K@=11 THEN 'Q°

IF K@=1¢ THEN CFLAG 1,2,3 @ GOTO 'IO' B
IF KO#9 THEN 'Al’ @;Sb
IF NOT FLAG(l) EXOR FLAG(2) THEN DISP 'I/O INCORRECT' @ WAIT 2+ Al'
GOTO 'IO'

'"Al': IF K@<6 THEN 'I2VA'

'I11v': IF FLAG(3) THEN 'SUBCALL®

DISP X1§$; @ INPUT "";X1

IF FLAG(l) AND X1<@ THEN DISP "INVALID ENTRY" @ GOTO 'IlV’

DISP Y1$; @ INPUT "";Yl

INPUT “z=";Z1

GOTO 'SUBCALL'

'I2VA': IF FLAG(3) THEN 'I2VB'

DISP "VECTOR 1:"&X1$; @ INPUT "";X1

IF FLAG(l) AND X1<@ THEN DISP "INVALID ENTRY" @ GOTO 'I2VA'

DISP "VECTOR 1l:"&Y1$; @ INPUT "";Y1l

INPUT "“VECTOR 1l:z=";2Z1

'I2VB':

DISP "VECTOR 2:"&X1$; @ INPUT "";X2

IF FLAG(l) AND X2<@ THEN DISP "INVALID ENTRY" @ GOTO ‘'I2VB'

DISP "VECTOR 2:"&Y1$; @ INPUT "“;Y2

INPUT "VECTOR 2:2=";Z2

IF FLAG(l) THEN CALL C2R(X2,Y2)

'SUBCALL"':

IF FLAG(l) THEN CALL C2R(X1,Yl)

GOSUB K18

'"CYCLE':

DISP "RUN AGAIN? (Y/N) “;

'A2': K1S$=UPRCS(KEYS) @ ON POS(I1l$,K1$)+1 GOTO 'A2','USEIT','Q’
'USEIT': DISP @ IF IP((K@-1)/3)=1 OR K@=9 THEN CFLAG 3 @ GOTO 'OP'
DISP "USE RESULT? (Y/N)";

'A3': K1$=UPRCS$(KEYS) @ IF NOT POS(I1$,K1$) THEN 'A3' ELSE DISP
IF POS("N",K1$) THEN CFLAG 3 @ GOTO 'OP'

IF NOT POS("Y",K1$) THEN 'USEIT'

IF FLAG(2) THEN CALL C2R(X@,Y@)

X1=X0 @ Y1l=Y0 @ 21=Z0 @ SFLAG 3 @ GOTO 'OP’

A

X0=X1+X2 @ YO=Y1+Y2 @ Z0=Z1+Z2

GOSUB 'OV’

page 9



9560
057¢
9580
3590
p600
0610
2620
9630
0640
2650
0660
0670
2680
9690
0700
@710
0720
2730
0740
8750
0760
6770
780
2790
0800
0810
0820
0830
0840
2850
9860
p870
0880
9899
2909
9910
0920
9930
0940
9950
2960
0970
2980
0990
1000
1910
1929
1930
1040
1950
1060
1970
1980
1090
1100
1119

LISTING

RETURN

|S':

X@=X1-X2 @ Y@=Y1-Y2 @ Z20=21-22

GOSUB 'OV’

RETURN

'D':

D@=X1*X2+Y1*Y2+721*2Z2

DISP "DOT PRODUCT =";D0 @ GOSUB 'W'
RETURN

X'

X@=Y1*Z2-Y2*Z1 @ YQ=21*X2-22*X]1 @ Z@=X1*Y2-X2*Yl
GOSUB 'ov!

RETURN

'M': INPUT "“SCALAR ="-.30

X@=X1*S @ Y@=Y1*S @ Z@=Z1*S

GOSUB 'oVv'

RETURN

b

SFLAG 4 @ GOSUB 'N' @ CFLAG 4
M3=SQR((X2-X1) "2+ (Y2-Y1) "2+ (22-21)"2)
Ag= (M1*M1+M2*M2-M3*M3) / (2*M1*M2)
C9=.00000000002

IF FP(FP(ABS(A0))+C9)<.000000000045 THEN A@=IP (AQ+SGN(AQ)*C9)
Al1=ACOS (AQ)

DISP "“INCLUDED ANGLE =";Al @ GOSUB 'W'
RETURN

'N':

M1=SQR(X1*X1+Y1*Y1+Z1%*21)
M2=SQR(X2*X2+Y2*Y2+22*Z2)

IF NOT FLAG(4) THEN DISP "NORM =";M1 @ GOSUB 'W'
RETURN

‘'

SFLAG 4 @ GOSUB 'N' @ CFLAG 4
X0=X1/M1 @ Y@=Y1/M1 @ 2Z0=2Z1/M1

GOSUB 'ov!

RETURN

'W': IF KEY$="" THEN 'W' ELSE RETURN
lcl:

X@3=X1 @ Y@=Y1 @ Z@=21

'ovV':

IF FLAG(2) THEN CALL R2C(X@,Y®)
DISP X2$;X0 @ GOSUB 'W'
DISP Y2$;Y0 @ GOSUB 'W'
DISP "z=";zZ0 @ GOSUB 'W'
RETURN
'Q': CFLAG 1,2,3,4 @ DISP @ PUT "#43" @ END
SUB R2C(R,T)
I=R @ J=T
R=SQR(I*I+J*J)
T=ANGLE (I,J)
SUB END
SUB C2R(I,J)
R=I @ T=J
I=R*COS(T)
J=R*SIN(T)
SUB END
page 10



Numerical Integration

This program will perform numerical integration whether a function
is known explicitly or at a finite number of equally spaced points.

For the explicit case, a 16 point Gaussian quadrature is provided
for a finite interval. Also, the integral may be found for the
explicit case using Simpson's or the Trapezoidal methods. The
quadrature is more accurate, however.

Given a finite set of points, Simpson's rule or the Trapezoidal
rule may be used to find the integral.

Equations:
Gaussian Quadrature:
N
(b-a)/ 2 3, w<i>f((a+b+x<3j>(b-a))/2)
j=1

where w<j>,x<j> are the weights and nodes, respectively. The
weights and nodes are for an integral from -1 to 1.

Simpson's Rule:
h{f(x@) + 4f(x1) + 2£(x2) + .. + 2f(x<n-2>) + 4f(x<n-1>) + £(x<n>)1/3

where h is the (equally spaced) interval distance.
'n' must be even for the method to work.

Trapezoidal Rule:

n=1

h/2[f(x0) +2 %, (£(x<3>) + £(x<n>)]
3=1

where h = (b-a)/n for interval (a,b).
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User Instructions

Comments Input

1) Run the program.

2) Choose desired method.

a. Gauss

b. Simpson

c. Trapezoidal
d. Quit

O3 ne

Go to desired option to
continue.

kkkkkk Gauss *kkkkk

Gl)

G2)

G3)

Key in the function with

variable 'x'. <function>

[ENDLINE]
Key in the lower and upper

bound separated by a comma. <L,U>

To continue, press any key. <any key>
Go to step 1 to continue.

¥ % J do ok k Simpson % % d k kK

S1)

S2)

$3)

54)

S5)

If the function is known: Y
Go to the explicit case (S5).
If the function is unknown: N

(Implicit case)

Key in the number of points.

For Simpson's rule, this must

be an odd number. <number>

Key in the interval length

for the partitions. This

routine requires that parti-

tions be the same length. <length>

You are now in the matrix
editor. Continue at that
section (El) and return.

To continue, press any key. <any key>
Go to step 1 to continue.

(Explicit Case)

Key in the number of

partitions desired. This must

be an even value. <number>

page 12

Display

Gauss,Simp,Trap,Quit

f(x)=

Explicit (Y/N)
Explicit (Y/N)
<blinking cursor>

Lwr ,Upr bounds=

calculating..
Result= <val.>

Gauss,Simp,Trap,Quit

$ of Partitons=<val.>

Nmbr of pnts=<val.>

Interval length=<val.>

E(@)=<val.>

calculating..
Resul t=<val.>

Gauss,Simp,Trap,Quit

f(x)=



€ User Instructions

Comments Input Display
Imm e [mmm e T I

S6) Key in the function with
variable 'x°', <function>
[ENDLINE] calculating..
Result= <val.>

S7) Key in the lower and
upper bound separated by
a comma. <1b,ub> calculating..
Result= <val.>

S8) To continue, press any key. <any key> Gauss,Simp,Trap,Quit
Go to step 1 to continue.

khkkkhk Trapezoidal kdkdkkkk

Tl) If the function is known: Y # of Partitons=<val.>
Go to the explicit case (T5). ‘
If the function is unknown: N Nmbr of pnts=<val.>

T2) (Implicit case)
Key in the number of points. <number> Interval length=<val.>

T3) Key in the interval length
for the partitions. <length> E(@)=<val.>

You are now in the matrix
editor. Continue at that

section (El1) and return. calculating..
Result=<val.>

T4) To continue, press any key. <any key> Gauss,Simp,Trap,Quit
Go to step 1 to continue.

T5) (Explicit Case)
Key in the number of
partitions desired. <number> f(x)=

T6) Key in the function with
variable 'x"'. <function>
[ENDLINE] calculating..
Result= <val.>

T7) Key in the lower and
upper bound separated by
a comma. <1lb,ub> calculating..
Result= <val.>

T8) To continue, press any key. <any key> Gauss,Simp,Trap,Quit
Go to step 1 to continue.
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User Instructions

Comments Input Display
L T TR U Tmmmmmee e o I T T e —— I

kkkkk* Matrix Editor ***xxx

The points E(@) through E(n)

may be entered. The value
displayed is the current value
of the point. You may change the
value, move to a previous value,
move to the next value, or
specify a point to move to.
Pressing [Q] exits the matrix
editor, and the program finds

the value of the integral. E(I)=<value>
El) To change value: [ENDLINE]

<new val.>

[ENDLINE] E(I+1)=<value>

To move to next

value (this is the

arrow key, not the

greater than char.): [>] E(I+1)=<value>

To move to previous
value (this is the
arrow key, not the

less than char.): [<] E(I-1)=<value>

To move to a specific

point: [SPC] Element=

Key in the desired

element index: <index> E(<index>)=<val.>
To quit the routine: [Q] calculating..
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EXAMPLE PROBLEMS
Problem 1.
Given the approximations below for f(x), compute the approximations

to the integral from the bounds #-2 by the trapezoidal rule and
by Simpson's rule. The interval length is #.25.

i ] 1 2 3 4 5 6 7 8

f(x) 2 2.8 3.8 5.2 7 9.2 12.1 15.6 20
Comments Input Display

L e e (O ISP, I

1) Run the program. Gauss,Simp,Trap,Quit

2) Choose trapezoidal
method: T Explicit (Y/N)

3) Since the function is
unknown, choose implicit

case: N Nmbr of pnts=0
4) Key in the number of points. 9fe~oiwel] Interval length=0
5) Key in the interval length
for the partitions. «25[evoLivg] E (@) =0
6) Enter the function values: [ENDLINE] value=
2
[ENDLINE] E(l)=0
[ENDLINE] value=
2.9
[ENDLINE] E(2)=0

The previous value was
supposed to have been 2.8.

Edit it. [<] E(1)=2.9
[ENDLINE] value =
2.8
[ENDLINE] E(2)=0

Continue entering the rest of
of the values in the same manner.

To quit: 0 calculating..
Result=16.6750
7) To continue, press any key. <any key> Gauss,Simp,Trap,Quit
8) Now use Simpson's rule. S Explicit (Y/N)

9) Since the function is
unknown, choose implicit
case: N Nmbr of pnts=9
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Comments Input Display
I e Tmm e I T T — I
19) Since this is the correct
number, just press: [ENDLINE] Interval length=.2500
11) This value is also okay. [ENDLINE] E(@)=2
12) Since the program leaves
the values the same, simply
press [Q] to finish. Q calculating..
Result=16.5833
13) To continue, press any key. <any key> Gauss,Simp,Trap,Quit
Problem 2.
Find the value of the integral of f(x) from @ to 2*pi where
f(x) = 1/(1l-cos(x)+ .25).
Comments Input Display
T e (RS ) I
1) Run the program. Gauss,Simp,Trap,Quit
2) Choose Gauss's
method: G f(x)=
3) Key in the function with
variable 'x'. 1/(1l-cos(x)+.25)
[ENDLINE] Lwr,Upr bounds=
4) Key in the lower and
upper bound separated by
a comma. @,2*%pi
[ENDLINE] calculating..
result= 8.3776
5) To continue, press any key. <any key> Gauss,Simp,Trap,Quit

User Instructions
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LISTING
Note that some of the comments are not preceded by line numbers.

@310 DEF FNKS$ (D@S,K0S) ! Find which key was pressed function
@020 DISP D@$

@030 'KEY': KS$=KEYS

@040 IF NOT POS (K@S$,KS$) THEN "KEY"

#0350 FNKS=K$

0360 END DEF

% kK K k% Kk dk Kk k ok kk INITIALIZATION **kkkkkdhhkdkdk

@076 OPTION BASE @

g08@ DESTROY A,H,P,TS$,KS$,K1$
0090 DIM KS[4],K18[1],TS[1]
@190 INTEGER N,P

kkkk BEGIN **+*%

#1109 'START': K1$=FNKS$ ("Gauss,Simp,Trap,Quit","GsTQ")
@126 GOTO K1$ :

**** SIMPSON, TRAPEZOIDAL START ****

@130 'S': 'T': TS$=FNKS$("Explicit?(¥/N)","YN")
§14¢ IF TS="Y" THEN "PRT"

**** For implicit case, get function values

@150 'PL': INPUT "Nmbr of pnts= ",STRS(N);N

@160 IF N<=0 THEN DISP "Must be positive" @ GOTO 'PL'

@178 IF K1$8="S" AND MOD(N-1,2) THEN DISP "MUST BE ODD NUMBER" @ GOTO
" PL ”n

#1880 INPUT "Interval Length= ",STRS$(H);H

@199 DIM A(N-1)

#2006 CALL EDIT1(A,N-1)

@214 GOTO "CALC"

**x** For explicit case, get number of partitions ***x*

@220 'PRT': INPUT "# of Partitions= ",STRS$(P);P

@230 IF P<=@ THEN DISP "Must be positive" @ GOTO 'PRT'

@249 IF K1$="S" AND MOD(P,2) THEN DISP "MUST BE EVEN, NONZERO" @ GOTO
L 1] PRT“

**** Por explicit case, get function ***x
@250 'G': INPUT "f(x)= ",F$;F$

@260 IF K1$="G" THEN TS$="N"

@27@ IF F$="" THEN "G"

**** Get the bounds for the integral *#***

@280 'B': INPUT "Lwr,Upr bounds= ",STRS$(L)&","&STRS(U);L,U
@290 IF L=U THEN DISP "THE INTEGRAL VALUE IS @#" @ GOTO "B"
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0300
9319
0320

LISTING

'CALC': O=FLAG(-16,0) @ T=FLAG(-19,1) ! Temporarily set radians

DISP "calc
GOSUB Kl$Ss&

ulating.."

TS

@330 O=FLAG(-16,0) @ T=FLAG(-18,T) ! Re-establish angular mode

0340

#350 DISP "Result=";R
@360 POKE "2F946",D1$

@370

D1$=PEEKS (

GOTO "STAR

¥kxk%* SUB PROG

2380
0390
G400
410
0420
0430
0440

'GN': CALL
'SN': CALL
'TN': CALL
'SY': CALL
'TY': CALL
'Q': pUT v

"2F946",4) @ DELAY INF,INF ! Save wait period
! Display result
! Re-establish wait period

Tll
RAM CALL SECTION ***ikk¥

GAUSS (F$,L,U,R) @ RETURN

SIMPSON(A,N-1,H,R) @ RETURN

TRAP(A,N-1,H,R) @ RETURN

SIMPSONE (F$,L,U, (P) ,R) @ RETURN
TRAPE(F$,L,U, (P) ,R) @ RETURN

#38™ @ END ! Restore cursor and end program

**k** Trapezoidal rule, explicit case ***#

0450
p460
0470
9480
6490
9500
@519
2520
0530
9540
0554
9560

* k% k

9570
2580
2590
0600
o610
0620
96390
0640
9650

SUB TRAPE (
H=(U-L) /P
Q=0

F$,L,U,P,R)

X=L @ R=VAL (FS)

X=U @ R=R+
FOR I=1 TO
X=L+H*I !
Q=Q+VAL (F$
NEXT I

R= (R+2*Q) *
END SUB

!

Trapezoida

VAL (FS)
p-1
what is A?

)
H/2

1 rule, implicit case ****

SUB TRAP(A() ,N,H,R)
R=A (G)+A (N)

Q=0

FOR I=1 TO
Q=Q+A(I)
NEXT I

R= (R+2*Q) *
END SUB

1

N-1

H/2

**%* Simpson's rule, implicit case ***#

0660 SUB SIMPSON(A(),N,H,R)
@670 R=A(@)+A(N)

968¢ FOR I=1 TO N-3 STEP 2
0690 R=R+4*A(I)+2*A(I+1)

0700

NEXT I

@710 R=(R+4*A(N-1))*H/3
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0720
@730

%k k%

0749
9750
9760
6770
2780
@790
2800
0810
0820
0830
0840
@850

hhdk

0860
2870
2880
2890
9900
2919
2920
2930
0940
@959
09649
9970
9980
2990
1000
1010
1020

*hkxk

1030
1040
1950
1060
1070
10989
10990

1100

1110
1129
1130
11409

LISTING

END SUB
!

Simpson's rule, explicit case ****

SUB SIMPSONE(FS,L,U,P,R)
H=(U-L) /P

X=L @ R=VAL (FS$)

X=U @ R=R+VAL (F$)

FOR I=1 TO P-3 STEP 2
X=L+H*I @ R=R+4*VAL (F$)
X=X+H @ R=R+2*VAL (FS$)
NEXT I

X=U-H
R=(R+4*VAL (F$)) *H/3
END SUB

[}

16 point Gaussian method *#**x*

SUB GAUSS (F$,L,U,R)

DIM N(1,7)

DATA .9894%%934992,.944575%23@73,.8656312%2388,.7554%44%8355
DATA .6178762444%3,.458016777657,.28160355@779,.95%125ﬂ98376E-1
DATA .271524594118E—l,.622535239386E-1,.951585116825E—1,.124628971256
DATA .149595988817,.169156519395,.182603415045,.189450610455
READ N¢(,)

R=§

C=(U-L)/2

FOR I=@¢ TO 7

X=N(@,I)*C+(L+U) /2

R=N(1,I)*VAL (F$)+R

X=-N(@,1)*C+(L+U)/2

R=N(1,I)*VAL(FS$)+R

NEXT I

R=R*C

END SUB

Matrix Editor **#*x*

SUB EDIT1(A(),N)

DEF FNK$(D@$,K0$) ! Find which key was pressed function
DISP D@$

'KEY': K$=KEYS

IF NOT POS(K@$,K$) THEN "KEY"

FNK$=K$
END DEF
DEF FNFS$ (Y) ! Fix display function. Temporarily alters,
! then returns to original setting.
DS=PEEKS$ ("2F6DC",2) @ STD

FNF$=STR$ (Y)

POKE "2F6DC",DS

END DEF

naaca 149



LISTING

1150 1I=0

1160 'LOOP': K1$=FNKS ("E("&FNFS(I)&") = "&STRS(A(I)),"Q #38#474#48")
1170 IF K1$=" " THEN 'M'

1180 IF K1S="Q" THEN 'Q'

1190 IF LEN(K1S$)#3 THEN 'LOOP’

1200 K1${1,1]="K"

1210 GOSUB K1$

1220 GOTO 'LOOP'

1230 'K47': I=MOD(I-1,N+1) ! Move to previous position
1249 RETURN

1250 'K38': INPUT "Value= ";A(I) ! Change value

1260 'K48': I=MOD(I+1,N+1) ! Move forward

1273 RETURN

1280 'M': INPUT "Element= ";I ! Get desired position
1290 IF I<0 OR I>N THEN DISP "EXCEEDS BOUNDS" @ WAIT 1 @ GOTO 'M'
1308 GOTO "LooOP"

1310 'Q': PUT "#38" ! Quit routine
1320 END SUB
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Solution to F(x) = 0 on an Interval

This program provides two methods to find a real root of the
equation f(x) = @. They are Newton's Method and the Pegasus Method.
In addition, the program allows the user to find the value of the
function for an input x.

Input for the Newton's method consists of the function to be solved,
one initial guess, and as an option, the derivative of the function.
If the derivative is not input, a numerical approximation is used.

Input for the Pegasus method consists of the function to be solved
and two initial guesses that must bound the root. This implies that
f(x0@)*f(x1)<@. The routine to calculate function values may be used
to establish a legal interval.

When a root is found, the output will consist of the x value
displayed to the setting of the computer and the value f(x), where x
is the displayed root. It is possible that f(x) will not be exactly
@. However, it will generally be within an acceptable range around
zero based on the number of significant digits in the input. If the
desired accuracy is not obtained, it may be possible to decrease the
value used to check for acceptance (the variable E in both sub
programs). In some instances, the function may have to be modified.

Newton's method converges to a root quickly in cases where it can
find one. Its ability to locate a root depends on the function and
the initial guess. It is not guaranteed to find a root. If the
derivative is @ or 50 iterations are peformed, the routine exits,
displaying an appropriate message to the user. The number of
iterations may be changed by altering the program.

The Pegasus Method is a modified regula falsi method with an
estimated order of convergence superior to a secant method. For any
legal interval, the method is guaranteed to converge.
The equations:
Newton's Method:

Xx<n+l1> = x<n>-£(x<n>) /£ (x<n>)

The exit criteria is abs(x[n+l]-x[n]) <= epsilon

where epsilon is a small value.

f'(x) Approximation:

When the derivative is not given, the program uses
the following approximation:

£'(x) <== (f(x+1/2) - f(x-1/2))/1

where I = .0001(x) or .000001 if x= 0.
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Pegasus Method:
The Regqula Falsi method used is:

x<n+1> = x<n> - £(x<nd>) [ (x<n>-x<n-1>) /(£ (x<n>)-f (x<n-1>))]
The approximations for the next iteration are chosen by:

if f£(x<n+1>)f(x<n>) < @ then
(x<n=1>,f (x<n-=1>)) <K== (x<n>, £ (x<n>))
if £(x<n+1>)f(x<n>) > @ then

(x<n-1>,£f (x<n-1>)) <== (x<n-1>, £(x<n-1>)/(f(x<n>)+f(x<n+1>)))

References:

Dowell, M. & Jarrett, P.; "The Pegasus Method for Computing the Root
of an Equation", BIT 12 (1972) pp. 503-508

Atkinson, Kendall E., "An Introduction to Numerical Analysis", Wiley
and Sons

Carnahan, B., Luther, H.A., and Wilkes, J.0., "Applied Numerical
Methods", Wiley and Sons, Inc.
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USER INSTRUCTIONS

page 23

Comments Input Display
R et - e e = I L i I
1) Run program. f(x)=
2) Key in the function using <function> Root,F(x),Chngf,Quit
the character 'x' as the
variable.
3) Press the capital letter
of the desired operation.
'R' begins the solve R Pegasus, Newton
routine.
'F' finds function F X=
values for given x's.
'C' allows the function C f(x)=<function>
to be changed.
'Q' quits the program. 0 Done
Go to the appropriate
heading to continue.
kkkxkkx ROOT OPTION ***kkk* Pegasus, Newton
R1l) Choose desired method by
pressing the appropriate
capital letter.
For Pegasus, press P. P lower bound:
Go to step R2.
For Newton, press N. N derivative=
Go to step RS8.
R2) PEGASUS METHOD lower bound:
R3a) Key in a lower bound. <value>
{ENDLINE] upper bound:
R3b) To exit, press: [ENDLINE] Root,F(x) ,Chngf,Quit
R4a) Key in upper bound. <value>
[ENDLINE] calculating..
R4b) To exit, press: [ENDLINE] Root,F(x) ,Chngf,Quit
R5a) The answer will be x= <result>
displayed.
R5b) If the interval does
not bound a root a
message will be dis-
played and you will
return to step R4.
R6) To see the function
value at the root,
press any key. <any key> f (x) =<value>



USER INSTRUCTIONS

Comments Input Display
T T T ) G - ) (T I
R7) To exit, press any key. <any key> Root,F (x) ,Chngf,Quit
R8) NEWTON METHOD derivative =
R9a) If you want to use the

derivative, key it in, <derivative>
[ENDLINE] initial guess=
R9b) If you do not wish to
enter the derivative: [ENDLINE] initial guess=
R10) Key in initial guess. <{guess>
[ENDLINE] disp convergence?
R11l) If you wish to watch
the convergence, press Y or calculating..
'Y', else press any <another key>
other key.
R12) If a root is found, the x= <result>

result will be found.
If a root is not found,
an appropriate error
message will be given.

R13) To see the function
value at the root,

press any key. <any key> f(x)=<value>
R14) To exit, press any key. <any key> Root,F (x) ,Chngf,Quit
kkkkk** FIND FUNCTION VALUES **kkk* X=
Fl) Key in the value of x <value>
at which you wish the [ENDLINE] f(x) = <result>
function evaluated at.
F2) Press any key to <any key> X=
continue.

F3a) Continue at step F2 for
more values.

F3b) To exit, press: [ENDLINE] Root,F(x),Chngf,Quit
kkkkk*x CHANGE FUNCTION **x*%kx% f(x)=<crnt function>
Cl) Key in desired function. <function>

[ENDLINE] Root,F(x),Chngf,Quit
kkk%kk* QUIT PROGRAM ***kikx Done
Ql) To get the prompt back: <any key> <blinking prompt>

press any key.
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EXAMPLE

This example demonstrates the various options of the program. It
must be started at the beginning and followed to completion for the
given keystrokes to work as listed. The display should be FIX 11.

Find a root for the function f(x) = In(x) + 3x - 10.80674. Use the
Pegasus method, then Newton's method. Then find a root for the
function f(x) = 3x"6 - 22x°5 + 11.

Comments

Display

L — = e e ) I

l) Run program.

2) Key in function. Note that
it is entered in a BASIC
format.

3) Call the solve section.

4) Choose Pegasus method.

5) Guess at a bound:

6) Guess at an upper bound.
7) The interval did not bound

the root. Use F(x) to find
an interval.

8) Find f(5).

9) Find £(19)

10) Try £(1)

11) Since the function is
continuous on the
interval [1,5], and the
values of the function
at these points are of
opposite sign, this
interval bounds a root.
Exit and move to the
solve section.

12) Key in lower bound

In(x)+3*x-10.8074

[ENDLINE]

R
P
5 [ENDLINE]

10 [ENDLINE]

[ENDLINE]
F

5 [ENDLINE]
[ENDLINE]

10 [ENDLINE]
[ENDLINE]

1 [ENDLINE]
[ENDLINE]

[ENDLINE]
R
P

1 [ENDLINE]

page 25

Root,F(x),Chngf,Quit

Pegasus,Newton
lower bound:
upper bound:

intrvl must bound root
lower bound:

Root,F(x),Chngf,Quit
X=

f(x) = 5.8020379124
X=

21.495185093

X=

f(x)= -7.8074
X=

Root,F(x) ,Chngf,Quit
Pegasus ,Newton
lower bound:

upper bound:



) USRS A

14)

15)

16)

17)

18)
19)

20)

21)

22)

Comments
Key in upper bound.
See how close f(3.21..)
is to 4.
Continue
Solve using Newton's

Method.

Let routine approximate
the derivative.

Key in an initial guess.

Let's not display it.

We must now solve the
second function.

Use the derivative
this time.

The intermediate
results are displayed.

Quit the program.

EXAMPLE

5 [ENDLINE]

[ENDLINE]

[ENDLINE]

[ENDLINE]
1 [ENDLINE]
N

[ENDLINE]
[ENDLINE]

C
3*x"6-22*x"5+11

R

N

18*x"5-110*x"4
[ENDLINE]
5 [ENDLINE]

Y

[ENDLINE]
[ENDLINE]

Q
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Display

calculating..
x= 3.21336087018

f(x) =0

Root,F (x) ,Chgf,Quit

Pegasus, Newton
derivative=

initial guess=
disp convergence?

calculating..

x= 3.21336087017
f(x)= @
Root,F (x) ,Chngf,Quit

f(x)=LN(X)+3*X-10.8074
Root,F(x) ,Chngf,Quit
Pegasus,Newton
derivative=

initial guess=
disp convergence?
calculating..
2.25088
2.4794542177
1.93158885068

.89346784412

Xx= .893467844031
f(x)= 0@
Root,F(x),Chngf,Quit

DONE

AR,



LISTING
Note that some of the comments are not preceded by a line number.

@g31d ! SOLUTION TO F(X)=0

@926 ! REV 1.0 -- 1/25/84

@939 rFs=""

@@4@ 'C': INPUT "“f(x)=",F$;F$ ! get function

¢g¢5¢ 'D': DISP "“Root,F(x),Chngf,Quit"™ ! main prompt

@063 AS=KEYS @ IF AS="" THEN 60

@g7¢d IF POS(“RFQC",UPRCS(AS[1,1]1))THEN GOTO UPRCS(AS[1,1]) ELSE GOTO

*kkxkk*kk* Find the Root % & K de Kk kK

go98d 'R': DISP "Pegasus,Newton" ! get desired method

§@9¢9 M$S=KEYS$S @ IF MS$="" THEN 90.

¢gl9@ IF POS("PN",UPRC$(MS$[1,1])) THEN GOSUB M$[l1l,1] ELSE GOTO 'R
0110 IF R<>INF THEN GOTO 'DISPR'

@120 DISP "NO ROOT FOUND"

9130 GOTO 'RTN'

@140 'DISPR': X=R ! display result

#1590 DISP "x= “;X

@160 AS=KEYS$S @ IF AS$="" THEN ié&#

@170 DISP "f(x)= “";VAL(FS$) ! display function value

@180 'RTN': AS=KEY$ @ IF AS="" THEN GOTO 'RTN' ELSE GOTO 'D'

*kkkkkk Find values of f£(X) given x **x*xk*%

@190 'F': ON ERROR GOTO 'XIT'

@20@ INPUT "X= ";X

921¢ Y=VAL(FS)

@22¢ DISP "f(x)= ";Y

@230 AS=KEYS @ IF AS="" THEN 230 e.5& “F"
9240 GOTO 'F'

@25¢ 'XIT': OFF ERROR @ GOTO 'D’

kkkkk**x Sot up to call Pegasus method ****x**

@260 'P': ON ERROR GOTO 'XIT'

@27¢ INPUT "lower bound:";L

@280 INPUT "upper bound: ";

2290 X=L ! see if interval contains root

@309 Y1=VAL (FS)

@310 X=U

9320 Y2=VAL(FS)

9330 IF YL*Y2>@ THEN DISP "intrvl must bound root"™ @ GOTO 'P'
#3400 CALL PEG(FS,L,U,R)

#35@ RETURN

*kkkkkk Got up to call Newton method ****k*xx%

@360 'N': DESTROY N$

@379 ON ERROR GOSUB 'NEWTERR' ! catches no derivative option
@380 INPUT "derivative= ";D$ :

@39¢ INPUT "initial guess= ","1";X0

@408 DISP "disp convergence?"
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LISTING

@419 AS=KEYS @ IF AS$="" THEN 410

0420 IF UPRCS(AS)="Y" THEN D=1 ELSE D=0
9430 CALL NEWT(F$,D$,X0,D,R)

7440 RETURN

0450 'NEWTERR': OFF ERROR

@460 ON ERROR GOTO 'XIT'

[EX X R R &4 Quit program % % d k% Kk *
@470 'Q': DISP " DONE"™ @ END

*kkk*x** pPegasus subprogram **x*xx%

The inputs are the function (F$), lower limit (X@), and upper limit
(X1). The result is returned through variable 'R'. The function
string must be a legal BASIC expression in variable 'x'; the limits
must bound a root.

480 SUB PEG(F$,X%,X1,R)

@490 DISP "calculating.."

9500 E=.0000000001 ! error tolerance
@510 C=2*X1-X0

@520 X=X@ ! init y@,yl

@530 Y@=VAL (FS)

9540 X=X1
@550 Y1=VAL (F$)
@560 !

@57@ 'LP': X2=X1-Y1*((X1-X@)/(Y1-YQ))
@580 IF ABS(X2-C)<=E THEN R=X2 ELSE GOTO 'CT'
@598 GOTO 'ND'

@608 'CT': X=X2

g61@ Y2=VAL (FS)

9620 Cl=Y2*Y1l

9630 IF Cl<@ THEN X@=X1 @ Y@=Y1

@640 IF C1>@ THEN YO@=Y@*Y1l/(Y1+Y2)
@650 X1=X2

#6609 Yl=Y2

0670 C=X2

¢680 GOoTO 'LP'

@690 'ND': SUB END

kkkxxk* Newton subprogram **x*xxx

The inputs are the function (F$), optional derivative (D$), initial
guess, and the display-convergence boolean. The result is returned
through 'R'. The functions must be in variable 'x'. If no root is
found, 'R' is set to the value 'inf'.

@780 SUB NEWT(F$,DS,X0,D,R)

@710 DISP "calculating.."

9720 E=.000000000]1 ! error tolerance

0730 L=¢ ! INIT LOOP COUNTER

@740 'LP': IF DS="" THEN GOSUB 'AD' ELSE X=X# @ Y1=VAL(DS)
@750 IF Y1=@ THEN R=INF @ DISP "DERIVATIVE=g" @ GOTO 'ND'
0760 X=X0

@779 Y=VAL(FS)
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0780
9790
0800
g81@
9820
9830
0840
850
0860
9870
p880
98990
2900
9910

X1=X-Y/Y1
IF ABS (X1-X)<=E THEN R=X1 @ GOTO 'ND'

X0=X1
L=L+1

IF D THEN DISP X@

LISTING

IF L=50 THEN DISP "50 ITERATIONS" @ R=INF @ GOTO 'ND’
GOTO 'LP'

'AD':

IF X0=¢ THEN I=.000@01 ELSE I=.0001*X0¢

X=X0+1/2

Y1=VAL

(F$)

X=X0-1/2

Y1=(Y1-VAL(FS$)) /I

RETURN
'ND':

SUB END
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Matrix Operations

This program allows the user to caculate the determinant of a real
valued matrix and find the inverse or solve a system of equations
for real or complex valued systems.

The method used is Gaussian elimination with partial pivoting. The
matrix is decomposed into an LU form and the pivoting strategy is
kept track of in a separate matrix. For a more in-depth discussion,
please refer to the references.

The determinant is calculated from the decomposed matrix by

multiplying the values in the main diagonal. It is found only for a
real valued matrix.

The inverse is found by solving the system Ax (i) = I(i), where T (i)
is the ith column of the identity matrix and x(i) is the ith column
of A inverse. This is performed N times as i ranges from 1 to N.

If the inverse or solution to a system of equations is attempted that
involves a singular matrix, the message "MATRIX IS SINGULAR" will be
displayed.

Remarks:

The program will use the particular number display you specify
before running the program.

If you pause the program during the listing of values, then exit
the program, your delay will be set to inf.

References:

Johnston, R.L., "NUMERICAL METHODS, a Software Approach", John
Wiley and Sons, 1982

Anton, Howard, "Elementary Linear Algebra", John Wiley and Sons,
1981

Atkinson, Kendal E., "An Introduction to Numerical Analysis",
John Wiley and Sons, 1978 !
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USER INSTRUCTIONS

Comments Input Display
) bt | ) I
1) Run the program., Real or Complex?
2) For real values: R
For complex values: c order?
3) Key in the number of rows: <value> A(l,1l)=<value>

4)

5)

6)

The matrix must be square.

You are now in the matrix
editor. Please refer to that
section, then continue with
step 4.

If you want to perform some
operations and then make a
few changes to the matrix,
keep a copy of the original:
If no copy is desired:

Choose desired action.

To create a new matrix:
Cont. at step 1.

To edit the current matrix:
Refer to the editor
instructions, then cont.
at step 4.

To perform matrix operations:
Continue at step 6.

To quit the program:

Calculation options.

To solve system of equations:
You are now in the matrix
editor. Enter the values of
the B vector for Ax=B. When
you are done, you will see:
Continue at solve section.

To find the determinant:
Continue at the determinant
section.

To find the inverse:

Cont. at the inverse secton.

To return to the main menu:
Continue at step 5.

To quit the program:
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or
R(1l,1)=<value>

keep a copy?

Newmat,Edit,Calc,Quit

Real or Complex?
A(l,l)=<value>

or
R(1l,1)=<value>
Solv,Det,Inv,Main,Quit

<blinking prompt>

B(l)=<value>

calculating..

calculating..

calculating..
Newmat,Edit,Calc,Quit

<blinking display>



USER INSTRUCTIONS

Comments Input Display
) T T i [ e e = e ettt etk kel 1
* %k kkkk SOLVE % % d k Kk
S1) If a solution exists: <value x(1)>
These are the values of [ENDLINE] <value x(2)>
the result vector. [ENDLINE] .
Continue at step S2.
If a solution does not
exist, a message will be
displayed: SINGULAR SYSTEM
Newmat,Edit,Calc,Quit
Return to step 6. ‘
S2) Once the last value has been
displayed, you will see: solve for new B?
§3) If you want to solve for

a new B vector: Y
Enter the values according

to the edit instructions.

Continue at step Sl.

If you are done: N
Return to step 6.

kkkkk* DETERMINANT **k*kkk

D1)

The determinant will be
dislayed:

Press any key to continue. <any key>
Go to step 6.
% % % % d k INVERSE % % Jo de K %
I1) If the inverse exists:
Cont. at step I2.
If no inverse exists:
Return to step 6.
I12) To list result by columns: C
[ENDLINE]
To list result by rows: R
[ENDLINE]
I3) Once all values have been

listed, you will see:
Go to step 6.
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B(l)=<value>

Solv,Det,Inv,Main,Quit

det = <value>
Solv,Det,Inv,Main,Quit

list by Col or Row?

SINGULAR SYSTEM
Newmat ,Edit,Calc,Quit

<value A(1,1)>
<value A(1,2)>

<value A(1,1)>
<value A(1l,2)>

Solv,Det,Inv,Main,Quit

X



USER INSTRUCTIONS
*#kk*kk MATRIX EDITOR *¥**%*

The matrix editor allows the user to move through a matrix
and change element values. For complex valued matrices, the
real and complex parts of an element are edited one at a time.

Movement through a matrix is accomplished with the arrow keys
(left, right, up, and down), and element indices input. The
movement wraps around when the boundary of a row or column is
passed.

Comments Input Display
-t J-rrrrrr e - e e I
El) To move from the current A(I,J)
position:

Move left: < A(I,J-1)= <value>

Move right: > A(I,J+1)= <value>

Move up: <up arrow key> A(I-1,J)= <value>

Move down: <dwn arrow key> A(I+1,J)= <value>

E2) To move to a desired

element: {spC] enter ROW,COLUMN
<row>,<column>
[ENDLINE] A(<row>,<col>)= <val>
E3) To quit the editor: Q
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Example 1.

EXAMPLES

Find the determinant and inverse of the matrix below. It is

assumed that the display is fix 4.

6 3 -2 2 3
1 4 =3 4 2
2 3 -1 =2 9
4 3 @ 2 1
3 5 -6 6 2
Comments Input Display
e e e T et Pt E o etttk R e Tt T [———rmrr e - I
1) Run the program. Real or Complex?
2) The values are real. R order?
3) Key in the number of rows: S5Ewoewe] A(l,l)= 0.0000
(avsiine] °
6
[ENDLINE] A(l,2)= 0.0000
[ENDLINE] ?
3
Enter the values of [ENDLINE] A(l1,3)= 0.0000
the matrix and use the [ENDLINE] ?
editing features to adjust -2
any incorrect values. [ENDLINE] A(l,4)= 6.0000
[ENDLINE] ?
2
[ENDLINE] A(l,5)= 0.0009
[ENDLINE] ?
3
[ENDLINE] A(5,4)= 0.0000
[ENDLINE] ?
6
[ENDLINE] A(5,5)= 0.0000
[ENDLINE] ?
2
[ENDLINE] A(l1,1)= 6.0000
Q keep a copy?
4) No copy will be needed. N Newmat,Edit,Calc,Quit
5) Choose calculation
options. C Solv,Det,Inv,Man,Quit
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EXAMPLES

calculating..
det = -200.0000

6) Calculate the determinant. D

Press any key to continue. [ENDLINE] Solv,Det,Inv,Main,Quit
7) To find the inverse: I calculating..
list by Col. or Row?
8) Choose to list by column. C C(l,1)= 0.2000
[ENDLINE] Cc(2,1)=-1.7500
[ENDLINE] C(3,1)= 0.7000
[ENDLINE] C(4,1)= 1.7250
[ENDLINE] c(5,1)= 1.0000
[ENDLINE] C(1,2)=-0.1200
[ENDLINE] C(2,2)=-2.0000
[ENDLINE] C(3,2)= 1.2800
[ENDLINE] C(4,2)= 2.5400
[ENDLINE] C(5,2)= 1.4000
[ENDLINE] Cc(1,3)=-0.0400
[ENDLINE] C(2,3)= 0.5000
[ENDLINE] C(3,3)=-0.2400
[ENDLINE] C(4,3)=-0.5700
[ENDLINE] C(5,3)=-0.2000
[ENDLINE] C(l,4)= 0.0000
[ENDLINE] C(2,4)= 1.7500
[ENDLINE] C(3,4)=-0.5000
[ENDLINE] C(4,4)=-1.6250
[ENDLINE] C(5,4)=-1.0000
[ENDLINE] C(1,5)=-3.3333E-12
[ENDLINE] C(2,5)=-1.5000
{ENDLINE] c(3,5)=-1.0000
[ENDLINE] C(4,5)=-1.7500
[ENDLINE] c(5,5)=-1.0000
[ENDLINE] Solve,Det,Inv,Main,Quit
9) Now find the determinant. D calculating..
det = -200.0000
[ENDLINE] Solve,Det,Inv,Main,Quit
10) Return to the main menu
to perform the next problem. M Newmat,Edit,Calc,Quit

Problem 2.
Solve the following system of complex valued equations.

2 + 3i .7 - 1i zl 2 + 21i

4 - 1,31 4 + 0i z2 1 + 3i
Because the matrix created in problem 1 is real valued, a new
matrix must be created. Therefore the example problem must start

with the new matrix option.
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I--

1)

2)
3)

4)

5)
6)
7)
8)

9)

EXAMPLES

Comments
_____________________________ I

Start by creating a new
matrix.

Choose complex.
The order is 2.

You are now in the
editor,

The 'R' indicates that
the real portion of
element (1,1) is being
prompted for.

'I' indicates that the
imaginary portion is
being prompted for.

Continue entering the
values in the same manner.
Refer to the editor
instructions for editing
features.

When done, press:

Keep a copy this time.

Move to calculation options.
Choose solve option.

You are now in the editor.The
prompt is for the real portion

of element (1l,1) from the
b vector ( Ax = b).

Continue until all
values are correctly entered.

10) To quit editing:

You may use the arrow
to view the entire display.

2
[ENDLINE]

[ENDLINE]
2
[ENDLINE]
[ENDLINE]
3
[ENDLINE]
[ENDLINE]
.7
[ENDLINE]

Q
Y

[ENDLINE]
2
[ENDLINE]
[ENDLINE]
21
[ENDLINE]

Q

[ENDLINE]
[ENDLINE]
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Display

Real or Complex?

order?

R(1)= 0.0000

?

I1(1,1)= -6.0000
?

R(1,2)= 3.0000
s

1(1,2)= 2.0000

keep a copy?
Newmat,Edit,Calc,Quit
Solv,Det,Inv,Main,Quit

BR(1 )=4.0000

?

BI(l)= 0.0060
?

BR(2)= 0.0000

calculating..

X(l)= 4.3565, 1.4203 i
X(2)=-4.5681, @0.7456 i
solve for new B?



EXAMPLES

Comments Input Display
[~ - - e I bt ettt DL D T
11) Let's solve for a new b

vector. Y BR(1)= 1.0000
[ENDLINE] ?
9
[ENDLINE] BI(l)= 21.0000
[ENDLINE] ?
-.22
[ENDLINE] BR(2)= 1.4794
[ENDLINE] ?
-3.5
[ENDLINE] BI(2)= 3.0000
1
[ENDLINE] BR(1)= 9.0000
Q calculating..

X(l)= 0.4800,-2.0302 i
[ENDLINE] X(2)=-0.6952, 2.4362 i
[ENDLINE] solve for new B?

12) Let's exit. N Solv,Det,Inv,Main,Quit
Q <blinking display>
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0010
0020
0330
0o40
9050
g060
ga70

0080
2090

21009
20119
g129

@130
0140
2150
0160
2170
2184

3190
9200
9210
9229
0230
0240
9250
9260
0270
9280

9290
@300

0310
9320
@330
0340
@350
0360
8370
@380

3390
0400
0410
0429
9430
o440
0450
0460

PROGRAM LISTING

! rev 1.0

DEF FNKS$S (DOS,K0S) ! Find which key was hit

DISP D@S$S

'KEY': KS$S=KEYS$S

IF NOT POS (K@$,K$S) THEN "KEY"

FNKS$=KS$

END DEF

'N': T=POS("RC",FNKS$ ("Real or Complex?","RC"))

INPUT "order?";N ! Get the number of rows and columns.
N=T*N @ M=N ! Set dimensions based on type.

DIM A(M,N),S (M)

R2=0 @ C2=¢

'E': IF NOT C2 THEN GOTO 'El'

FOR I=1 TO M

FOR J=1 TO N

A(I,J)=Al1(I,d) ! Read in original matrix if copy was made
NEXT J

NEXT 1

'El': CALL EDIT(A(,),M,N,T)

R2=0 1 Indicate that the determinant has not been calculated.
IF FNKS$ (“"keep a copy?","YN")=“Y" THEN C2=1 ELSE C2=0
IF NOT C2 THEN GOTO 'M!'

DIM Al (M,N)

FOR I=1 TO M

FOR J=1 TO N

Al(I,J)=A(I,J) ! Save a copy if desired.

NEXT J

NEXT I

'M': GOTO FNKS$ ("Newmat,Edit,Calc,Quit","NECQ") ! main menu
'C': GOTO FNKS("Solv,Det,Inv,Main,Quit","SDIMQ")

's': DIM B(M,T),X(M,1) ! solve invocation,

'S1': CALL EDIT(B(,) ,M,T,Hd)

DISP "calculating.."

IF NOT R2 THEN CALL DECOMP(A(,) ,M,N,S()) @ R2=1

IF S(M)=0 THEN DISP “SINGULAR SYSTEM" @ GOTO 'M'

CALL SOLVE(A(,),X(,),B(,),S(),N)

CALL LIST(X(,),M,1,T,"x")

IF FNKS("solve for new B?","YN")="Y" THEN “"s1" ELSE "C"
'1': DIM C(M,N),B(M,1),X(M,1) ! Inverse calculation
DISP "calculating.."

IF NOT R2 THEN CALL DECOMP(A(,),M,N,S()) €@ R2=1

IF S(M)=0 THEN DISP "SINGULAR SYSTEM" @ GOTO 'M'

FOR J=1 TO N

FOR I=1 TO M

B(I,1)=0

NEXT I
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PROGRAM LISTING

9470 B(J,1)=1

@480 CALL SOLVE(A(,) ,X(,),B(,),S(),N)
9496 FOR I=1 TO M

@500 C(1,J)=X(I,l)

0510 NEXT I

@520 NEXT J

9530 CALL LIST(C(,),M,N,T,"C")

@540 GOTO 'C!

@55@ 'D': IF T=2 THEN DISP "NOT DONE FOR COMPLEX" @ GOTO 'C' ! det.
@569 DISP “calculating.."

@578 IF NOT R2 THEN CALL DECOMP(A(,),M,N,S()) @ R2=1

@580 D=A(1,1)

#5906 FOR I=2 TO M

#6003 D=D*A(I,I)

@610 NEXT I

@620 D=S(M)*D

3630 DISP "det= "“;D

@640 AS=KEYS$ @ IF A$="" THEN 640 ELSE "C" ! display till key hit

@658 'Q': PUT "#38" @ END ! restore blinking prompt and end.

MATRIX EDITOR. Allows a matrix of dimension MxN to be edited.

The type (T) can be 1 or 2. 1 indicates real, 2 indicates complex.
If T=0, then the routine assumes a vector has been passed. The
value of T is then changed to the correct type indicator value.

660 SUB EDIT(A(,) ,M,N,T)

#67@ DEF FNK$(DOS$,K@S) ! Get which key was hit
@680 DISP D@$

@g69d 'KEY': KS=KEYS

@700 IF NOT POS (K@$,KS) THEN "KEY"

@710 FNKS$S=KS$S

@720 END DEF

@730 DEF FNFS$(Y) ! temporarily change display setting for index vals.
@740 D9S=PEEKS ("2F6DC",2) @ STD

@75@¢ ENFS$=STRS(Y)

@760 POKE "2F6DC",D9S

@770 END DEF

@786 DEF FNDS$ ! Create array elemnt prompt

@798 IF NOT (T=1] OR MOD(J,2)) THEN D$=S$ ELSE D$=RS

@809 D1S=DS&" ("&FNFS$S((I+T-1)/T)

@810 IF DS$[1,1]1<>"B"™ THEN D1$=D1S&","&FNFS (INT((J+T-1)/T))
982¢ IF T=2 AND NOT MOD(J,2) THEN V=-A(I,J) ELSE V=A(I,J)
@830 FND$=D1S&")= "&STRS (V)

§849 END DEF

9850 I=1 @ J=1 @ R=2 @ TS$="BRBI"

9860 IF T=2 THEN R$="R" @ S$="1"

g87@ IF T=1 THEN R$="A"

@880 IF T=0 THEN R$=TS[1,N] @ S$=TS[3,N+2] @ T=N
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PROGRAM LISTING

Figure out which key has been hit and branch to legal choice.
9890 'LOP': AS=FNKS (FNDS$,"Q #38#47#48#50#51") @
IF POS("@134578#",A$) THEN "LOP"
g9¢@9 IF LEN(AS)=1] THEN GOSUB UPRCS (CHRS (NUM(A$)+33)) @ GOTO "LOP"
g91¢9 AS[1l,1]="K"
@920 GOSUB AS @ GOTO "LOP"

930 'K38': INPUT A(I,J) @ IF T=1 THEN GOTO 'K48' ! enter a value
9940 IF MOD(J,2) THEN A(I+1,J+1)=A(I,J) ELSE A(I+1,J-1)=A(I,J) @ A(I,
J)=-A(1,7J)

§950 ‘'K48': J=J+1 @ IF J<=N THEN RETURN ! move right
g96@¢ J=1 @ I=I+T @ IF I>M-T+l1 THEN I=1
@979 RETURN

¢98¢ 'K47': J=J-1 @ IF J THEN RETURN ! move left
998 J=N @ I=I-T @ IF I<1 THEN I=M-T+l
1960 RETURN

1019 'K506': I=I-T @ IF I>@J THEN RETURN ! move up
1920 1=M-T+1 @ J=J-1 @ IF NOT J THEN J=N
1039 RETURN

1040 'K51': I=I+T @ IF I<=M-T+1 THEN RETURN ! move down
1950 I=1 @ J=J+1 @ IF J>N THEN J=1
1660 RETURN

167@¢ 'A': ON ERROR GOTO 'A' ! user specified move

1084 INPUT "enter ROW,COLUMN";I,J

16909 IF I<1 OR J<1 THEN I=M+1l

11686 IF T-1 THEN I=2*I-1 @ J=2*J-1

1116 IF I>M OR J>N THEN DISP "OUT OF BOUNDS" @ GOTO 'A'
1120 OFF ERROR @ RETURN

1130 'R': POP @ SUB END

LIST MATRIX SUB PROGRAM. Allows a matrix to be listed by row
or column. The array name is passed through parameter BS$. The
matrix is MxN, and the type (T) is 1 for real values, and 2
for complex values. If a vector is passed, the routine will
list by column. A vector is implied by BS$ = 'X'.

114¢ SUB LIST(A(,),M,N,T,BS)

1150 DEF FNF$(Y) ! Create index integer prompts
1160 D9S=PEEKS$("2F6DC",2) @ STD

1170 FNF$=STRS (Y)

1184 POKE "2F6DC",D9$

1190 END DEF

1200 DEF FND$ ! Create element prompt

1219 IF BS$="X" THEN FNDS$=FNF$((I+T-1)/T) ELSE
FNDS=FNFS$((I+T-1)/T)&","&FNFS$ ((J+T-1)/T)

1220 END DEF
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1230
1240

1250
1260
12790
1280

1290
1300
1310
1320
1330
1340
1350
1360

1370
1380
1390
1400
1410
1420
1430
1440

1450

PROGRAM LISTING

D1$=PEEKS ("2F946",4) @ DELAY INF,INF ! Temporarily change delay
IF BS="X" THEN GOTO 'C’

'p': DISP "list by Col. or Row?" ! get display choice

AS=KEYS$

IF NOT POS("CR",UPRCS$(AS$[1,1])) THEN 'P'
GOTO UPRC$(AS[1,1])

'C': FOR J=1 TO N STEP T ! display by column
FOR I=1 TO M STEP T

DISP BS&" ("&FNDS&")=";A(I1,J);

IF T=2 THEN DISP ",";A(I+1,J);"i";

DISP

NEXT I

NEXT J

I=1 @ J=1 @ GOTO 'E'

'R': FOR I=1 TO M STEP T ! display by row
FOR J=1 TO N STEP T

DISP BS&" ("&FNDS&")=";A(I,J);

IF T=2 THEN DISP “,";A(I+1,J);"i";

DISP

NEXT J-

NEXT I

I=1 @ J=1

'E': POKE "2F946",D1$ @ SUB END ! restore delay and exit

DECOMPOSITION OF MATRIX. Performs an LU decomposition of an MxN
matrix using partial pivoting. The pivoting strategy is recorded
in vector S.

1460
1470
1480
1490
1500

1510
1520
1539
1549
1550
1560

1570
1580
1590
1600
1610
1620

1639

SUB DECOMP(A(,) ,M,N,S())
S (M)=1

FOR RO=1 TO M-1

PO=R0

Pl=A (RO, R0)

FOR I=R@+1 TO M ! choose largest absolute value for pivot
IF ABS(A(I,R0))>ABS(Pl) THEN P@=I @ P1l=A(I,RO)

NEXT I

IF A(PO,R@)=0 THEN S(M)=@ @ GOTO 'END' ! quit if singular
S (RO)=Pg

IF P@=R@# THEN GOTO 'C'

FOR I=R@ TO N ! row exchange
T=A (RO, I)

A(RG,I)=A(PG,I)

A(P@,I)=T

NEXT 1

S (M) =-S (M)

'‘C': FOR R1=R@+1 TO M ! row rl <--rl-mult*rg
Y
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PROGRAM LISTING

16490 M1=A(R1,R0)/A(RO,RO) ! form multiplier
1650 A(R1,R@)=M1 ! and save it.

1668 FOR E=R@g+1 TO N

167¢ A(Rl,E)=A(R]l,E)-M1*A(RG,E)

1680 NEXT E

169@ NEXT R1

1700 NEXT R@

1719 IF A(M,N)=0 THEN S (M)=0

1728 ‘'END': SUB END

SOLVE ROUTINE. Takes an LU form matrix, pivot strategy vector, B
vector, and calculates the X vector for the matrix equation
Ax=b,

1730 SUB SOLVE(A(,) ,X(,).B(,),S(),N)
1749 M=N

1750 FOR I=1 TO M-1 ! Permute B and perform reduction
1768 T=B(S(I),1)

1770 B(S(I),1)=B(I,1l)

1780 B(I,1)=T

1798 FOR J=1 TO M-1

1866 B(J+1,1)=B(J+1,1)-B(I,1)*A(J+1,I)

1810 NEXT J )

1820 NEXT I

1830 FOR I=N TO 1 STEP -1 ! back substitution
18409 X(1,1)=B(I,1)

1850 FOR J=I+1 TO M

1860 X(I1,1)=X(1,1)-A(I,J)*X(J,1)

1870 NEXT J

1884 X(I,1)=X(1,1)/A(1,I)

1890 NEXT 1

1908 SUB END
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Fourier Transforms

This program calculates a fast Fourier transform from a set of time
domain points to a set of frequency domain points. The inverse fast
Fourier transform, calculating the set of time domain points from a
set of frequency domain points, may also be calculated.

The method used is a modification of the basic FFT algorithm. The
modified algorithm takes advantage of the fact that series data is
real, and uses the space normally reserved for the imaginary part of
the complex sequence to calculate a double-length real transform,
This is represented for two "N" length transforms as:

Z(n) = X(n) + i¥(n) @ < n < N data points

The transform is:

Z(m) = X(m) + i¥Y(m)
Z(m) + Z(N-m)*
where X(M) = ——ccmmmmee e
2
Z(m) - Z(N-m)*
Y(M) = —-meemmmm——me e

Zz* is the complex conjugate of Z.
The time series F(n) is given by:

F(n) = X(2n) + Y(2n+l)

The transformation of this is:

N-1 N-1
F(m) = E: X(2n)w™mn + E: Y(2n+l)w mn
n=0 n=0
N-1 N-1
= ¥ X(p)w"2mp + T Y(p) (w'2mp) (w'm)
p=0 p=0
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and:

F (m) X(m) + Y(m)w™m (1)

F (N-m) X*(m) - [Y(m)w'm]* (2)

Similarly, the inverse transform may be obtained from (1) and (2):

F(m) + F(N-m)* F(m) - F(N-m)*
Z(m) = ——rmmrm—e—e e + Wt (-m) e
2 2

F(m) + F(N-m)* * F(m) - F(N-m)* *
Z(N=m) =T  coccommcmme—c———— - iwt(-m) ,—mmm——————————

This is simply an interchange of Z(m) and F(m) in (1) and (2), and
substitution of -w"(-m) for w'm.

The advantages gained from this adaptation of the general FFT
algorithm for time series data are:

(a) A transform of twice the length can be handled with no increase
in storage for input data.

(b) Since the calculation of the transform is structured as an

interactive process, intermediate and final results are stored in
the same locations used for input.

NOTE:

1. Since F(@#) and F(N) are real only, F(N) can be stored in the
imaginary location of F(6), i.e., £(1).

2. w'm = ¢c”(-2im*pi/2N). This is half the minimum value of rotation
normally used in an N-point transfer.

3. * denotes the complex conjugate.

REFERENCES
Brigham, E. 0., THE FAST FOURIER TRANSFORM, Prentice-Hall, Inc. 1974.

FAST FOURIER TRANSFORM, HP-85 Math Pac, Hewlett-Packard, 1979.
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USER INSTRUCTIONS

Comments Input Display
St ) e e 1

1) Run the program. TIME/FREQ. DATA? (T/F)

2) If time data is to be input,
press T and continue with
step 3. If frequency data is
to be input, go to step 1ll. [T] # OF DATA POINTS?

***TTME DOMAIN DATA***

3) Enter number of time domain
data points to be used. Must
be an integer power of 2 and
>2. If it is not, the message
"INPUT OUT OF RANGE" will be
displayed and you will be
prompted to enter the number
again. If available memory is
insufficient for the specified
# of points, the message "NOT
ENOUGH MEMORY" will be dis-
played and the program will
again prompt for the number
of points. <N> [ENDLINE] DATA POINT(nnn)?

4) The program will now prompt
for data points 1 through N,
where N is the # specified
in 3). <value> [ENDLN] DATA POINT (nnn)?
<value> [ENDLN] .

. .

. DATA POINT( N )?
<value> [ENDLN]

5) If any mistakes were made in CHANGES? (Y/N)
input, you now have the
opportunity to correct the
data. Press [Y] to make any
changes, or [N] to go to

step 6). [yl DATA POINT TO CHANGE?
Enter point # to change. <nnn>
[ENDLINE] <old value>
Original entry will be
displayed for reference. <new value>
[ENDLINE] CHANGES? (Y/N)

If no (further) changes are
necessary, press [N]. [N] TRANSFORMING...
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USER INSTRUCTIONS

Comments

) (RS QIR (RPN I

6) Calculation of FFT has begun.

7) Calculation ends and DC term
is displayed. Press any key
to continue.

8) Display maximum frequency.
Press any key to resume
output.

9) Display complex data pairs of
calculated frequency domain.
First the real, and then the
imaginary part of the data
pair will be displayed. Press
any key to display each value.

19) For a new problem, go to
step 1.

***FREQUENCY DOMAIN DATA***

11) If frequency data is to be
input, press [F].

12) Enter the number of coeffic-
ient pairs. This number must
be one less than an integer
power of 2 (1,3,7,...). If
it is not, the message
“INPUT OUT OF RANGE" will be
displayed and you will be
prompted to enter the number
again. If available memory is
insufficient for the number
of pairs specified, the
message "NOT ENOUGH MEMORY"
will be displayed and the
program will again ask for
the number of coefficient
pairs.

13) Enter the DC term.

<any key>

<any key>

<any key>
<any key>
<any key>

<any key>
<any key>

[F]

<N> [ENDLINE]

<DC term>
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Display

DC TERM =

MAX FREQ.

FREQ. DOMA

1R=<value>
li=<value>
2R=<value>

NR=<value>
NI=<value>
>

# OF COEFF

DC TERM=

MAX FREQ.

IN OUTPUT:

. PAIRS?

TERM=



USER INSTRUCTIONS

Comments Input Display
e e e e I e b R e L e Lt I
14) Enter the maximum frequency
term, <max freg> FREQ. DOMAIN DATA -
15) Enter the real and imaginary
coefficients for each data REAL( 1 )?
pair as prompted. <real coeff.> IMAG( 1 )?
<imag coeff.> REAL( 2 )?
<real coeff.> .
. REAL( N )?
<real coeff.> IMAG( N )?
<imag coeff.> CHANGES? (Y/N)

16) If any mistakes were made
in entering the coefficient
pairs, they may be corrected
by pressing ([Y].
are necessary, press [N] and
go to step 17).

Enter # of coefficient pair
to correct.

Original entry is displayed
for reference.

If no (further) changes are
necessary, press [N].

17) Calculation of inverse FFT
has begun.

18) Calculation ends and data
points are displayed. Press
any key to move to next
data point.

19) For a new problem,
step 1).

go to

If no changes

(Y]

<n> [ENDLINE]

<{new value>
[ENDLINE]

<new value>
[ENDLINE]

[N]

<any key>
<any key>

<any key>
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DATA PAIR TO CHANGE?
REAL( n )<old entry>
IMAG( n )<old entry>
CHANGES? (Y/N)
TRANSFORMING...

TIME DOMAIN OUTPUT:

PT( 1 )=<value>
PT( 2 )=<value>

PT( N )=<value>
>



EXAMPLES

A) For the following set of time domain data points, calculate the
Fourier transform to frequency data.

P(1)=1 P(9)=-1
P(2)=1.3066 P(10)=-1.3066
P(3)=1.4142 P(11)=-1.4142
P(4)=1.3066 P(12)=-1.3066
P(5)=1 P(13)=-1
P(6)=.5412 P(14)=-.5412
P(7)=0 P(15)=0
P(8)=-.5412 P(16)=.5412

USER INSTRUCTIONS

Comments Input Display
- e [ e e [mmmmr e e I
1) Run the program. TIME/FREQ. DATA?
2) Choose time data input. [T] # OF DATA POINTS?
3) Enter # of points., 16 [ENDLINE] DATA POINT( 1 )?
4) Enter point values. 1 [ENDLN] DATA POINT( 2 )?

1.3066 [ENDLN] DATA POINT( 3 )?
1.4142 [ENDLN] DATA POINT( 4 )?
1.3066 [ENDLN] DATA POINT( 5 )7
1 [ENDLN] DATA POINT( 6 )?
.5412 [ENDLN] DATA POINT( 7 )?
g [ENDLN] DATA POINT( 8 )?
-.5412 [ENDLN] DATA POINT( 9 )?
-1 [ENDLN] DATA POINT( 10 )?
-1.3066 [ENDLN] DATA POINT( 11 )?
-1.4142 [ENDLN] DATA POINT( 12 )?
~-1.3066 [ENDLN] DATA POINT( 13 )?
-1 [ENDLN] DATA POINT( 14 )?
-.5412 [ENDLN] DATA POINT( 15 )?
"] [ENDLN] DATA POINT( 16 )?
.5412 [ENDLN]
5) FFT calculation begins. TRANSFORMING...
6) Frequency domain output. FREQ DOMAIN OUTPUT:
DC TERM=0

<any key> MAX FREQ. =0

<any key> FREQ Darmea 0w PuTY

<any key> 1R=-1.000010E+000

<any key> 2R= (.000G000E+000

<any key> 2I= 0.000000E+000
<any key> 3R=-1.339454E-006
<any key> 3I1=-1.339454E-006
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USER INSTRUCTIONS

Comments Input Display

<any key> 4R= 0.000000E+00G0
<any key> 4I= 0.000000E+G00
<any key> 5R= 6.134477E-006
<any key> 5I=-6.134477E-006
<any key> 6R= 0.000000E+000
<any key> 61= 0.000000E+000
<any key> 7R=-1,502234E-005
, <any key> 71=-1.502234E-005
Done. <any key> >

B) For the following set of frequency domain data pairs, perform the
inverse Fourier transform to calculate the set of time domain data
points. The DC term and the maximum frequency term are @.

REAL (1) =1 IMAG(1l)=-1
REAL (2) =0 IMAG(2) =0
REAL (3)=-1.3395E-6 IMAG(3)=-1.3395E-6
REAL (4)=0 IMAG (4) =0
REAL(5)=6.1345E-6 IMAG(5)=-6.1345E-6
REAL (6) =0 IMAG(6) =0
REAL(7)=-1.5022E-5 IMAG(7)=-1.5022E-5

USER INSTRUCTIONS

Comments Input Display
) (RS I I
1) Run the program. TIME/FREQ. DATA? (T/F)
2) Enter frequency data. [F] # OF COEFF. PAIRS?
3) Seven frequency data pairs. 7 [ENDLINE)] DC TERM=
4) DC term is 0. @ [ENDLINE] MAX FREQ. TERM=

5) Maximum frequency term is 4. @ [ENDLINE] FREQ. DOMAIN DATA -

6) Begin entry of frequency REAL( 1 )?
domain data pairs. 1 [ENDLINE] IMAG( 1 )?
-1 [ENDLINE] REAL( 2 )?
/] [ENDLINE] IMAG( 2 )?
() [ENDLINE] REAL( 3 )?
-1.3395E-6
[ENDLINE] IMAG( 3 )?
-1.3395E-6
[ENDLINE] REAL( 4 )?
"] [ENDLINE] IMAG( 4 )?
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USER INSTRUCTIONS

Comments

7) Inverse FFT calculation
begins.

8) Display time domain data
points. '

Done.

) [ENDLINE]

6.1345E-6

[ENDLINE]

-6.1345E-6

[ENDLINE]
"] [ENDLINE]
g [ENDLINE]

-1.5022E-5

[ENDLINE]

-1.5022E-5

[ENDLINE]

<any
{any
<any
<any
{any
<any
<any
<any
<any
<any
<any
<any
<any
<any
<any
<any
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key>
key>
key>
key>
key>
key>
key>
key>
key>
key>
key>
key>
key>
key>
key>
key>

TRAN

TIME

PT(
PT(
PT (
PT(
PT(
PT(
PT (
PT(
PT(
PT(
PT(
PT(
PT(
PT(
PT(
PT(
>

i spl -
Display . (

— —
~N OO w
~ ~—
J V]

o~
~]
~—
)

SFORMING...

DOMAIN OUTPUT:

9.999898E-001
1.306587E+000
1.414186E+000
1.306587E+000
9.999898E-001
5.411945E-001
1.000000E~-012 (
8)=-5.411945E-001
9)=-9,999898E-001
1¢)=-1.306587E+000
11)=-1.414186E+000
12)=-1.306587E+000
13)=-9.999898E-001
14)=-5.411945E-001
15)=-1.000000E-012
16)= 5.411945E-001

N o wio -
' N s st ot s Sutl
wnwwawnunn



LISTING

@19 ! FOURIER TRANSFORM

g@29 ! Revision 1.8 4/16/84

o330 !

@040 F9=FLAG(5,FLAG(-10))

¢05¢ OPTION BASE 1 @ OPTION ANGLE RADIANS @ STD @ DELAY 2,0
@968 ON ERROR GOTO 'ERR'

gg70¢ I1S="TF" @ 12$="YN"

g980 01$="3D,'R=',MZ.6DE" @ 02$="3D,'I=',MZ.6DE"

g@9@ 03%="'pPT(',3D,')="',MZ.6DE"

¢100¢ DISP 'TIME/FREQ. DATA? (T/F)’

#9110 'Wl': K1S$=UPRCS(KEYS$) @ IF NOT POS(I1$,K1$) THEN "wl'®
@120 IF K1$='F' THEN SFLAG 1 @ F=-1 ELSE CFLAG 1 @ F=1

**** Input data points for FFT, or coefficient pairs for ***¥*
**** jinverse FFT. Number of data points must be a power *kkk
x*** of 2 and greater than 2. Number of coefficient kkk
. *%** pairs must be one less than a power of 2. %k

@130 'IN':

@140 IF NOT FLAG(l) THEN INPUT '$# OF DATA POINTS?';N @ GOTO 'INA'
150 INPUT '# OF COEFF. PAIRS?';N

P160 N=N*2+2

@170 'INA': P=1

918¢ IF N=2 THEN 'OR'

@190 FOR L=1 TO 10

@200 P=P*2

@21¢ IF P=N THEN Pl=L @ N2=N/2 @ GOTO 'START'

@220 NEXT L

@23@ 'OR':

@240 DISP 'INPUT OUT OF RANGE' @ WAIT 1 @ GOTO 'IN'
@25@¢ 'START':

2260 DIM R(N2),I(N2)

¢270 IF FLAG(l) THEN 'IFFT'

*k*x* Input time domain data for FFT ****

@280 'FFT':

0290 J=0

@300 FOR L=1 TO N2

@319 J=J+1 @ DISP 'DATA POINT(';J;')'; @ INPUT R(L)
@320 J=J+1 @ DISP 'DATA POINT(';J;')'; @ INPUT I(L)

@339 NEXT L

*k** Changes to FFT data ****

g340 'Cl':

¢35¢ DISP 'CHANGES? (Y/N)'

9360 'W2': K2$=UPRCS(KEY$) @ IF NOT POS(I2$,K2$) THEN 'W2'
@370 IF K2$="N" THEN DISP 'TRANSFORMING...' @ GOTO 'FFTC'
@389 'C2': INPUT 'DATA POINT TO CHANGE?';L

9390 IF L<=0 OR L>2*N2 THEN 'C2'

0400 12=L/2

@410 IF I2=INT(I2) THEN J=I2 ELSE J=INT(I2)+1

@420 DISP 'DATA POINT(';L;')';
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G430
g440

* k kX
* % k%

0450
0460
0479
2480

LISTING

IF J=I2 THEN INPUT '',STRS$(I(J));I(J) ELSE INPUT ",STR$(R(J));R(Jﬂ’

GOTO 'C1'
Input DC term, maximum frequency and *kk %
frequency domain data for inverse FFT. ****
'IFFT':
INPUT 'DC TERM=';R(1l)
INPUT 'MAX FREQ. TERM=';I(1l)
DISP 'FREQ. DOMAIN DATA -' @ WAIT 1

@490 FOR L=2 TO N2

#5000 DISP 'REAL(';L-1;')'; @ INPUT R(L)

@519 DISP 'IMAG(';L-1;')'; @ INPUT I(L)

@520 NEXT L

**** Changes to inverse FFT data ****

#530 'C3':

¢540 DISP 'CHANGES? (Y/N)'

@550 'W3': K3$=UPRCS(KEYS) @ IF NOT POS(I128,K3S) THEN 'w3'
#5608 IF K3S$='N' THEN DISP '"7TRANSFORMING...' @ GOTO 'IFFTC'
@570 'C4': INPUT 'COEFF. PAIR TO CHANGE?';L

9580 IF L<=@ OR L>N2-1 THEN 'C4'

§59¢ DISP 'REAL(';L;'")'; @ INPUT '',STRS(R(L+1l));R(L+1l)
@600 DISP 'IMAG(';L;')'; @ INPUT 'V USTRS (I (L+1));I(L+1)
@613 GOTO 'C3'

kxk* GStart FFT calculation ***¥*

#6290 'FFTC':

@630 K=0

#6460 FOR J=1 TO N2-1

@650 L=2

#6693 IF K<N2/L THEN 680

0670 K=K-N2/L @ L=L+L @ GOTO 660

3680 K=K+N2/L

@690 IF K<=J THEN 710

9700 A=R(J+1) @ R(J+1)=R(K+1l) @ R(K+l)=A @ A=I(J+1l) @ I(J+1)=I(K+1)
@ I(K+1l)=A

@718 NEXT J

g720 G=.5 @ pP2=1

@736 FOR L=1 TO Pl-1

§740 G=G+G @ C=1 @ E=0 @ Q=SQR((1-P2)/2)*F

0750 P2=(1-2%*(L=1))*SQR((1+P2)/2)

@768 FOR M=1 TO G

0770
0780
6790
28009
2810
9820
@830
@840

FOR J=M TO N2 STEP G+G

K=J+G @ A=C*R(K)+E*I(K) @ B=E*R(K)-C*I (K)

R(K)=R(J)-A @ I(K)=I(J)+B @ R(J)=R(J)+A @ I(J)=I(J)-B
NEXT J

A=E*P2+C*Q @ C=C*P2-E*Q @ E=A

NEXT M

NEXT L

IF FLAG(l) THEN 'IFFTO'
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LISTING
x*k** Start inverse FFT calculation ****

¢g85¢ 'IFFTC':

@860 A=PI/N2 @ P2=COS(A) @ Q=F*SIN(A)

@87¢ A=R(1) @ R(1)=A+I(1l) @ I(1l)=A-I(l)

g88¢ IF NOT FLAG(l) THEN R(1)=R(1l)/2 @ I(1)=I(1)/2

9890 C=F @ E=0

900 FOR J=2 TO N2/2

@910 A=E*P2+C*Q @ C=C*P2-E*Q @ E=A @ K=N2-J+2 @ A=R(J)+R(K)
g920 B=(I(J)+I(K))*C-(R(J)-R(K))*E @ U=1I(J)-I(K)

g938 V=(I(J)+I(K))*E+(R(J)-R(K))*C

3949 R(J)=(A+B)/2 @ I(J)=(U-V)/2 @ R(K)=(A-B)/2 @ I(K)==-(U+V)/2
#9508 NEXT J

@960 I(N2/2+1)=-I(N2/2+1)

¢97¢ IF FLAG(l) THEN' 'FFTC'

¢g98¢ FOR J=1 TO N2

3990 R(J)=R(J)/N2 @ I(J)=I(J)/N2

1000 NEXT J

% % %k * FFT output % %k ¥k %

101¢ ‘'FFTO':

1¢2¢ DISP 'DC TERM =';R(1l) @ GOSUB 'WAIT'
1639 DISP 'MAX FREQ. =';I(l) @ GOSUB 'WAIT'
10409 DISP 'FREQ DOMAIN OUTPUT:' @ WAIT 1
195¢ FOR L=2 TO N2

1068 DISP USING Ol$;L-1,R(L) @ GOSUB '"WAIT'
107¢ DISP USING 02$;L-1,I(L) @ GOSUB 'WAIT'
1080 NEXT L

1096 GOTO 'DONE'

k*x%* Inverse FFT output ****

1100 'IFFTO':

111¢ DISP 'TIME DOMAIN OUTPUT:' @ WAIT 1

1120 J=1

1130 FOR L=1 TO N2

1140 J=J+1

115¢ DISP USING 03$;J-1,R(L) @ GOSUB 'WAIT'

1160 DISP USING 03$;J,I(L) @ GOSUB 'WAIT'

1170 J=J+1

1180 NEXT L

119¢ 'DONE': F9=FLAG(-10,FLAG(5)) @ PUT '#43' @ END
120¢ 'WAIT': IF KEYS$='' THEN 'WAIT' ELSE RETURN
121¢ 'ERR': IF ERRL=268 THEN DISP 'NOT ENOUGH MEMORY' @ GOTO 'IN'
1220 DISP ERRM$ @ GOTO 'DONE'

page 53



Polynomial Root Finder

This program finds all solutions, both real and complex, of P(x)=0,
where P is a polynomial of the form: :

P(x)=a(n)x"n + a(n-)x"(n-1) + ... + a(l)x + a(@) = @

Inputs to the program are the degree of the polynomial, the real
coeficients a(n)...a(d), tolerances for the evaluation of the function
and for each root, and the maximum number of iterations per root.

This program uses Laguerre's method to find the roots of the specified
polynomial by computing a sequence of approximations 2z(1l), 2(2),...,
to a root using the formula Z(k+1l)=Z(k)+S(k). S(k) is called the
Laguerre step, and is defined as:

-nP (2 (k))

P'(Z(k))+[(n=-1)"2(P'(Z(k)) "2-n(n-1)P'*(z(k))]".5

where P, P', and P'' are the value of the polynomial and its first and
second derivatives evaluated at the current iterate k, and n is the
degree of the polynomial. The sign in the denominator is chosen to
give the Laguerre step of smaller size, which in most cases insures
that the roots will be found in order of increasing magnitude.

After an iterate is accepted as a root, synthetic division is used to
deflate the polynomial by the factor (x-r) if the root is real, or
(x"2-2Re(r)+!1rt!"2) if the root is complex. This saves arithmetic
operations, and prevents repetitive convergence to the same root.

For polynomials with only real roots, Laguerre's method will always
converge to a root for any choice of real initial estimate. However,
for roots of high multiplicity, some loss of accuracy may be observed.
If complex roots are present, this method will usually converge to a

valid root. If it does not, provisions are made for supplying a new
initial estimate and starting the process again.

REFERENCES
Dahlquist, G. and Bjorck, A. NUMERICAL METHODS. Prentice-Hall, 1974.

HP-75 MATH PAC. Hewlett-Packard, 1983
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1)

2)

3)

4)

5)

6)

USER INSTRUCTIONS

COMMENTS INPUT . DISPLAY
----------------------------- ) (I JUPICEPEREEISE PR

Run the program. POLYNOMIAL ROOT FINDER
ORDER OF POLYNOMIAL?

Input degree of polynomial.

Must be a positive integer

greater than 1. If it is not,

you will be asked to enter

it again. <n> A(n)=?

Enter coefficients of each
term, starting with the

highest-ordered term. <a(n)>

[ENDLINE] A(n-1)=?

<a(n-1)>
[ENDLINE] .
. A(0)=?
<a(@)>

[ENDLINE] TOL. FOR ROOTS=1.E-10
Input tolerance for roots.
Default value of 1E-10 is
displayed. If the magnitude
of the Laguerre step is less
that this value (and 5) is
also satisfied) then the
current iterate is accepted
as a root. <new value>

[ENDLINE] TOL. FOR FCN=1.E-8
Input tolerance for evaluation
of function. default value of
1E-8 is displayed. If P(x) for
the current iterate is less
than this value, and step 4)
has been satisfied, the current
iterate is accepted as a root. <new value>

[ENDLINE] MAX # OF ITERATIONS=
Input maximum number of
iterations for each root. If
this number is exceeded before
a valid root is found, the
message 'NO CONVERGENCE' will
be displayed and the user will
be allowed to specify a new
initial iterate and start the
search again. <nnn>

[ENDLINE] LOOKING FOR ROOTS...
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USER INSTRUCTIONS

COMMENTS INPUT DISPLAY
e el R it | et I
7) Calculation of roots has begun. # OF ROOTS FOUND =1

As each root is found, the # OF ROOTS FOUND = 2
program will indicate how many .
roots have been found to this .
point. .
# OF ROOTS FOUND = n

ROOT# 1l: R=<value>
8) The real and imaginary parts
of each root are displayed.
Pressing any key will continue

the displaying of the roots. <any key> ROOT# 1l: I=<value>
<any key> ROOT# 2: R=<value>
<any key> .

. ROOT# N: R=<value>
<any key> ROOT# N: I=<value>
<any key> >

9) Done.
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EXAMPLES

A) Find the roots of the polynomial given below. Use default values
for the tolerances and limit iterations to 10.

P(x) = 5%"6-45x"5+225x"4-425x"3+170x"2+370x-500

USER INSTRUCTIONS

COMMENTS INPUT DISPLAY
T e L L L Tt Jremmmmr e e = et e = I
1) Run the program. POLYNOMIAL ROOT FINDER

ORDER OF POLYNOMIAL?
2) Enter order of polynomial. 6 [ENDLINE] A(6)=?
3) Enter the coefficients,
starting with the highest
order term. 5 [ENDLINE] A(5)=?
-45 [ENDLINE] A(4)=?
2A5 [ENDLINE] A(3)=?
-425 [ENDLINE] A(2)=?
rrp [ENDLINE] A(1)=?
317¢ [ENDLINE] A(@)=?
-5¢¢ [ENDLINE] TOL. FOR ROOTS=1.E-10
4) Use default value. [ENDLINE] TOL. FOR FCN=1.E-8
5) Use default value. [ENDLINE] MAX # OF ITERATIONS=

6) Limit to 14 iterations.

7) Calculation of roots begins.

8) Display real and imaginary
parts of each root.

9) Done.

10 [ENDLINE]

<any
<any
<any
<any
<any
<any
<any
<any
<any
<any
<any
<any

LOOKING FOR ROOTS...

# OF ROOTS FOUND
# OF ROOTS FOUND
¥ OF ROOTS FOUND
# OF ROOTS FOUND

ROOT# 1:

key> ROOT# 1:
key> ROOT# 2:
key> ROOT# 2:
key> ROOT# 3:
key> ROOT# 3:
key> ROOT# 4:
key> ROOT# 4:
key> ROOT# 5:
key> ROOT# 5:
key> ROOT# 6:
key> ROOT# 6:

key> >
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N W

R= 1.000000E+000

I= [.000000E+000
R= 1.000000E+000
1=-1.000000E+000
R=-1.000000E+000
1= 2.000000E+000
R= 2.000000E+000
1= 0.000000E+000
R= 3.000000E+000
1=-4.000000E+000
R= 3.000000E+000
I= 4.000000E+000



P10
0029
0230
0040
0050
pe6o
0e70
080

* d & X
% %k % %

00690
0100
0110
9120
0130
0149
9150
9160
2170
p18a
2190
0200
9210
9229
@230
0240
0250
6260

%k %k

6270

kkkk

0280
8290

% e Kk k

0300
310
2320
0330
U340
@350
0360
2370
@380
0390
0400
0410
0420

LISTING

DEFAULT ON

! POLYNOMIAL ROOT FINDER

! Revision 1.00 4/8/84

STD @ OPTION BASE @ @ INTEGER I,J3,K,N
AQS="'YN' @ A7S='R' @ A8S="'T1"
A9$="'ROOT#',DD,': ',A,'='",MZ,.6DE"

DEF FNF2(U1l,V1)=SQRT(Ul*Ul+V1*Vl)

DISP "POLYNOMIAL ROOT FINDER" @ WAIT .5

INPUT ORDER, COEFFICIENTS, TOLERANCES ‘***%
AND MAXIMUM NUMBER OF ITERATIONS kkxk

'ORD':
INPUT "ORDER OF POLYNOMIAL? ";N

IF N<=1 OR N#IP(N) THEN DISP "INVALID ORDER" @ GOTO 'ORD'
ON ERROR GOTO 'MEM'

DIM A@(N),RO(N,2),L(2),C9(N)

FOR I=N TO @ STEP -1

DISP 'A(';STRS(I);') ='; @ INPUT AQ(I)
NEXT I

'TOL"':

El=.0000000001 @ SCI @

INPUT 'TOL. FOR ROOTS=',STRS (El);El
INPUT 'TOL. FOR FCN=',STRS$ (E1*100);E2
STD

'IT': INPUT 'MAX # OF ITERATIONS="';10
IF IP(I@)#I@ OR NOT I@ THEN 'IT'

DISP 'LOOKING FOR ROOTS...' @ WAIT .5
J=N @ K=0 @x=¢ @ v=g

'FINDR':

IS ZERO A ROOQT? ****
IF NOT A@ (@) THEN 'FAR'
INPUT NEW GUESS IF ITERATION LIMIT EXCEEDED %%

'LOOP': K=K+1
IF K>I¢ THEN DISP 'NO CONVERGENCE' @ WAIT 1 @ GOSUB 'NUROOT'

CALCULATE P, P', AND P'' AT Z(x,y) ****

R=X*X+Y*Y @ D=X+X

D@=¢ @ D1=0 @ CO=0 @ Cl=0
B1=A@(J) @ B@=AG(J-1)+D*AQ (J)
FOR I=J-2 TO @ STEP -1

IF I=0 THEN D=X

IF I>J-4 THEN 380

V=D1*R @ D1=D@
D@=Cl+D*D@-V

V=Cl*R @ Cl=C@
CO=Bl+D*C@-V

V=Bl*R @ Bl=B@

BO=AQ (I)+D*BO-V

NEXT I
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*kkk

0430
0440
2450
0460
g470@
0489
34909
@500
@510
2520
9530
@540
@550

kkkk
kkkx

2560
@570

*kk kK

@580
#2590

*kkk*k

0600
o610
2620

%k kX
* %k *

2630
0640
7650
2660
0670
9680

kkkk

2690
2709
07109
3720
@730
3749
@750
2760

BEGIN CALCULATION OF LAGUERRE STEP

LISTING

P(1,1)=B@ @ P(l,2)=Bl*Y
P(2,1)=Bl-2*Y*Y*Cl @ P(2,2)=2*Y*C0

P(3,1)=

bk dek

CALL MULT(P(1,l),P(1,2),P(3,1),P(3,2),S1,S82)
S1=-S1*J*(J-1) @ SZ=-S2*J*(J—1)
CALL MULT(P(2,1),P(2,2),P(2,1),P(2,2),53,54)
S3=83*(J-1)"2 @ S4=S4*(J-1)"2

CALL
CALL
CALL
CALL
CALL
CALL

ADD(S3,S54,51,S2,51,52)

SQAROOT (S1,S82,51,52)
ADD(P(2,1),P(2,2),S81,s82,L1,L2)
ADD(P(2,1),P(2,2),-S1,-S2,L3,L4)
pivio(p(i,l),p(i,2),L1,L2,L1,L2)
pivip(p(i,l),pP(1,2),L3,L4,L3,L4)

CHOOSE SIGN OF DENOMINATOR TO **#**
PRODUCE SMALLER LAGUERRE STEP ***%*

2*CP-8*Y*Y*D@ @ P(3,2)=2*Y* (3*Cl-4*Y*Y*D1l)

IF FNF2(L1,L2)<FNF2(L3,L4) THEN S1=L1 @ S2=L2 ELSE S1=L3 @ S2=L4
L(l)=-J*s1 @ L(2)=-J*S2

FORCE REAL ROOT ****

IF ABS(L(2))<.09001*FNF2(L(1),L(2)) THEN L(2)=# @ Y=0
X=X+L (1) @ Y=Y+L (2)

CHECK FOR VALID ROOT ***¥*

IF FNF2(L(1l),L(2))>ABS(El) THEN 'LOOP'
IF FNF2(P(1,1),P(1,2))<ABS(E2) THEN 'FAR'

DISP

'INVALID ROOT FOUND' @ WAIT 1 @ GOSUB

FOUND VALID ROOT(S) - IF COMPLEX ***¥*
ROOT ASSUME CONJUGATE IS A ROOT kkxk

'FAR':

RO(J,

DISP

1)=X @ R@(J,2)=Y @ IF Y THEN GOSUB
'# OF ROOTS FOUND =';N-J+1

IF NOT FNF2(R#(J,1l),RO(J,2)) THEN GOSUB
J=J-1 @ K=¢ @ IF NOT J THEN 'DR'
IF J=1 THEN R@(1,1)=-A@(06)/A@(1l) ELSE K=0 @ X=0 @ Y @ @ GOTO 'FINDR'

DISPLAY ROOTS ***%*

DISP

'DR':

'# OF ROOTS FOUND =';N

FOR I=N TO 1 STEP -1
DISP USING A9$;N-I+1,A7$,RO(I,1l) @ GOSUB 'WAIT'
DISP USING A9$;N-I+1,38$,R0(I,2) @ GOSUB 'WAIT'

NEXT

I

'DONE': PUT "#43" @ END
'WAIT': IF KEYS$='' THEN 'WAIT' ELSE RETURN
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'ROOTI'

'ROOTH"

'NUROOT' @ GOTO

ELSE GOSUB

'LOOP’

'DEFLATE’



d &k k %k
%k k%
kkkk

0770
2780
9790
9800
9810
9820
0830
0840
#9850
@860
870
p880
2890
2900
9910

*kkk

9920
@930
9940

% k% k
kkkk

@950
@960
3970

kkkk

g98@
29990
1000
1910
1029
1930
1040
1050
1060
1670
1089

*k k%

1099
1100
1110

LISTING

DEFLATION ROUTINES - IF ROOT IS REAL, DEFLATE BY ***%*
LINEAR FACTOR (x-r). IF ROOT IS COMPLEX, DEFLATE ****
BY BINOMIAL X"2-2Re(r)X+!!rt!1”2, kedkek ok

'DEFLATE':

IF Y THEN 'DEFLATEI'

C9(J-1)=A0(J)

FOR I=J-1 TO 1 STEP -1
C9(I-1)=ABG(I)+C9(I)*RO(J,1)

NEXT I :

FOR I=@ TO J-1 @ AQ(I)=C9(I) @ NEXT I

RETURN

'DEFLATEI':

C9(J-1)=A0(J+1) @ C9(J)=0 @ IF J=1 THEN RETURN
FOR I=J-1 TO 1 STEP -1
C9(I—l)=AG(I+l)+C9(I)*RG(J,l)*Z-(RQ(J,l)“2+R0(J,2)“2)*C9(I+1)
NEXT I

FOR I=@ TO J-1 @ AG(I)=C9(I) @ NEXT I

RETURN

DEFLATE FOR ZERO ROOT ****

'ROOT@":
FOR I=@ TO J-1 @ AQ(I)=AQ(I+1l) @ NEXT I
RETURN

SET NEXT ROOT TO COMPLEX CONJUGATE ****
OF COMPLEX ROOT JUST FOUND kkkk
'ROOTI':
J=J-1 @ RO(J,1)=X @ RO(J,2)=-Y

RETURN

ASK FOR NEW GUESS IF FAILURE TO CONVERGE ***%*

"NUROOT':

DISP 'NEW GUESS? (Y/N)'

'WO': A1lS$=KEYS @ IF NOT POS(A@S,UPRCS(AlS)) THEN 'wo'
IF UPRCS(21$)='N' THEN 'DONE'

INPUT 'NEW u =',STRS(X);X

INPUT 'NEW v =',STRS$(Y);Y

K=0

RETURN

'MEM' :

IF ERRN#24 THEN DISP ERRMS$ @ GOTO 'DONE'

DISP 'LOW MEM - REDUCE ORDER' @ WAIT 1 @ GOTO 'ORD'

ADDITION OF COMPLEX NUMBERS ****
suB ADD(U1,V1,U02,V2,0,V)

U=01+U2 @ V=V1+V2
END SUB
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LISTING

k%% MULTIPLICATION OF COMPLEX NUMBERS ****

112¢ suB MuLT(Ul,V1,02,V2,U0,V)
1130 U=U1*U2-V1*V2 @ V=U1l*V2+U2*Vl
1140 END SUB

*x*x* DIVISION OF COMPLEX NUMBERS ***%*

115¢ suB DIVID(U1,V1,U2,V2,U0,V)

1160 CALL MULT(U1l,V1,U02,-V2,21,Z2)

117¢ D5=U2*U2+V2*V2 @ IF NOT D5 THEN U=0 @ V=0 @ GOTO 1200
1180 U=z1/D5

1190 v=z2/D5

1200 END SUB

**%* SOQUARE ROOT OF A COMPLEX NUMBER ***%

1216 SUB SQAROOT(U1,V1,U,V)

1220 A2=SQR((SQR(U1*Ul+V1*V)+ABS(Ul))/2)
1230 IF NOT A2 THEN U=0 @ V=0 @ GOTO 1280
1240 B2=V1/(2*A2)

125¢ IF Ul>=0 THEN U=A2 @ V=B2 @ GOTO 1280
1260 U=ABS (B2)

1276 IF B2>=0 THEN V=A2 ELSE V=-A2

1280 END SUB
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Page 57:

N\

5/16/84

ERRATA: HP-71 MATH SOLUTIONS BOOK

L

3) Enter the coefficients,
starting with the highest
order term.

S[ENDLINE]
-45[ENDLINE]
225(ENDLINE]

-425 [ENDLINE])

170 [ENDLINE)

370 (ENDLINE]

=590 [ENDLINE]

\~7) Calculation of roots begins.

}~8) Display real and imaginary
parts of each root.

Page
6259
270
. Page
0720
0730
Page

1220

c8:

J=N @ K=0 @ X=0 @ Y=0 .
IF NOT AG (@) THEN 'FAR'

59:

<any key>
<any key>
<any key>
<any key>
<any key>

A(5)=
A(4)=
A(3)=
A(2)=
A(l)=
A(0)=

TOL.

# OF
# OF
# OF
4 OF

ROOT#.

ROOT#
ROOT#
ROOT#

ROOT#
-ROOT#

?
?
?
?
?
?
FOR ROOTS=1.E-18

ROOTS FOUND= 2
ROOTS FOUND= 3
ROOTS FOUND= 4
ROOTS FOUND= 6

l: R= 1.000%00E+003
l: I= 1.000300E+000
2: R= 1.0000Q0E+000
2: 1=-1.003000E+000
3: R=-1.009%0GE+000
3: I= 0.009000E+000

DISP USING A9S;N-I+1,A7S5,R0O(I,1) @ GOSUB 'WAIT'
DISP USING A9S N-I+1,A8$,R0(I,2) @ GOSUB 'WAIT'

61:

A2=SQR ((SQR(U1*Ul+V1*V1)+ABS(Ul))/2)



‘ 5/16/84

ERRATA: HP-71 MATH SOLUTIONS BOOK

Page 9:

\‘GZGO IF NOT FLAG(l) EXOR FLAG(2) THEN DISP 'I/O INCORRECT' @ WAIT 2 ELSE ‘Al
~851@ IF FLAG (2) THEN CALL C2R(X0@,Y0)

Page 15;
N 4) Key in the number of points. 9 [ENDLINE] 1Interval length=0
\\5) Key in the interval length
for the partitions. .25 [ENDLINE] E(0)=0
Page 18:

™ 9580 R=A(8)+A(N)

Page 27:

IF M$="" THEN 90
IF A$="" THEN 160
IF A$="" THEN 238 ELSE "F"

\ @290 MS=KEYS
@168 AS=KEYS
©\ 0230 AS=KEYS

(O N

Page 28:

410 AS=KEYS @ IF AS="" THEN 410

[~

Page 34:
‘P \3) Key in the number of rows. S [ENDLINE] A(1l,l)= 0.0000

Page 36:
"N\'3) The order is 2. 2 4
[ENDLINE] R(1,1)= 0.0000
\”8) Choose solve option. S BR(1)= 4.0000
Page 48:
? AN .
f 6) Frequency domain output. DC TERM=0

<any key> MAX FREQ. =0
<any key> FREQ DOMAIN OUTPUT:
1R= 1.000010E+900
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