
FliDW HEWLETT
~a11 PACKARD

Users' Library Solutions

Math

HEWLETT 71 pp] PACKARD

~i.l ~:~K~~6
USERS' LIBRARY ORDER FORM

f HP-71 Solutions Books are available at a cost of $12.50 each. To order, please call toll free (800)
538-8787, contact your local dealer, or use the form provided below to order directly from the Users'
Library. If ordering from the Users' Library, please include a handling charge of $3.50 per order.

(

(

REMEMBER •••
You can further customize your HP-71 with software available through the Users' Library.

A Users' Library Membership includes 2 free Solutions Books (a $25.00 value) plus periodic updates
containing:

-Product Information -New Software Availability
-Contests -Third-Party Products
-Discounts

YES! I want to subscribe to the Users' Library. Solution Books Requested

o $20.00 U.S. and Canada (5851-1011)
(plus state and local taxes)

1. ________________________ __

Title Part Number

o $35.00 OUTSIDE the U.S. and Canada (5851-1012)

2. ________________________ __
Title Part Number

HP-71 Solutions Book Selection includes:
00071-90064/Math 00071-90066/General Utilities
00071-90065/Games

Please contact the Users' Ubrary for further information regarding recorded material.

Solutions Book Request

Solutions Book Title Part Number
00071-900 __

00071-900 __

00071-900 __

Users' Ubrary SubSCription
State and Local Taxes

Solutions Book handling charge ($3.50)
TOTAL

All payments must be in U.S. dollars and drawn on a U.S. bank.
Send all orders (with payment) directly to: HEWLETT-PACKARD USERS' LIBRARY

Dept. 39UL
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

Price

D Payment enclosed D Master Card D VISA 0 Purchase order
($20.00 minimum)

Card Number/Company Purchase Order

Name

Company (If applicable)

Address

City State/Country Zip

(

(

(

CONTENTS

vector Operations ••• 1

User Instructions.
Program listing •••2 . .. • .9

Numerical Integration .••••••••••••••••••••••••••••.•••••••••• ll

User Instructions.
program Listing ••••

...•••• . 12
.17

solution to F(x}=0 on an Interva1 •••••••••••••••••••••••••••• 21

User Instructions ••
Program Listing •••• •••• • 23

• .27

Matrix Operations •• 30

User Instructions.
Program Listing •••

••• 31
..38

Fast Fourier Transform •••••• • •••. ~ •••.•.•.•...•••.•.•••• • 43

User Instructions •••
Program Listing •••• • ••••• • 45

••• 51

polynomial Solutions ••• 54

User Instructions.
Program Listing ••••

page i

55
• •• 58

(

Vector Operations

This program provides solutions to the most common vector operations,
such as addition, subtraction, dot and cross products, included angle,
multiplication of a vector by a scalar, finding the length of a
vector, and determining unit vectors. The program will allow vectors
to be entered in either rectangular (x, y, z) or cylindrical (r,
theta, z) coordinates, and will also display the result in either
form. Conversion between these two formats is also an option. A useful
feature of this program is the ability to chain vector operations by
using the result from one operation as an operand for the next one.

Let Vl = alX + blY + clZ and V2= a2X + b2Y + c2Z

Vl + V2 =

Vl V2 =

Vl X V2 =

Vl V2 =

Vl*(s) =

norm(Vl) =

unit vector (Vl) =

included angle
between Vl & V2 =

(al+a2)X + (bl+b2)Y + (cl+c2)Z

(al-a2)X + (bl-b2)Y + (cl-c2)Z

(bl*c2-b2*cl)X + (cl*a2-cl*c2)Y + (al*b2-a2*bl)Z

(al*a2)X + (bl*b2)Y + (cl*c2)Z

(al*s)X + (bl*s)Y + (cl*s)Z

(al*al + bl*bl + cl*cl) 5

(al/norm(Vl»X + (bl/norm(vl»Y + (cl/norm(vl»Z

acos [-~~~:~~~::=~-~~~:~~~~:=~=~~:~~~::=~:-]
2*norm(Vl)*norm(V2)

V3 = vector between points defining Vl and V2

page 1

User Instructions

Comments Input Display
1-------------------------------1--------------1---------------------1
1) Run the program.

2) The user may enter vectors
in either rectangular or
cylindrical form. Press [R)
to enter x, y, z components
of the vector or [C) to enter
r, theta and z components of
the vector. If [C) is chosen,
user flag 1 will be set as
a visual reminder of the
input format required. [R] or [C)

3) If the result of a vector
operation is a vector, the
program will display the
result in either rectangular
or cylindrical form. Press
[R] to see the x, y, and z
components of th~ result, or
press [C) to see the result
expressed in terms of r,
theta and z. If [C) is
chosen, user flag 2 will be
set as a visual reminder of
the display format. [R] or [C)

4) The program is prompting for
the vector operation to be
performed. The options are
described below and grouped
according to their input
requirements. VI represents
the first vector entered,
and V2 the second (if
necessary) •

* SINGLE VECTOR OPERATIONS *

N: calculate the norm or
magnitude of a vector and
return the scalar resul t. [N)

M: multiply a vector by a
scalar and return the
vector result in the
proper format. [M]

page 2

INPUT RIC ?

DISPLAY RIC ?

A,S,X,I,D,N,M,U,C,F,Q?

(

(

User Instructions

Comments Input Display
I-------------------------------I--------------I---------------------I

U: calculate the unit vector
with the same direction
as the input vector and
with a norm of 1. Return
the vector result in the
proper format. [U]

C: convert the input vector
from rectangular to cyl­
indrical or vice versa.
This option requires that
the input and display
formats chosen by the user
correspond to the desired
conversion. If they do
not, the message 'I/O
INCORRECT' will appear and
the program will again ask
for input and display
formats. [C]

For these single vector
operations, one of the
following two sets of input
prompts will appear, depend­
ing on the input mode
selected.

* rectangular *
* coordinates *

* cylindrical *
* coordinates *

<x> [ENDLINE]
<y>[ENDLINE]
<z>[ENDLINE]

x=
y=
z=

r=
<r> [ENDLINE] theta=
<theta> [ENDLN] z=
<z>[ENDLINE]

* TWO VECTOR OPERATIONS *

A: add VI and V2 and return
the result in the proper
format. [A]

page 3

User Instructions

Comments Input Display
1-------------------------------1--------------1---------------------1

S: subtract V2 from VI and
return the result in the
proper format. [S]

X: calculate the cross
product VI x V2 and
return the result in
the proper format. [X]

I: calculate the included
angle between VI and V2
and return the result
in degrees. [I]

D: calculate the dot or
scalar product Vl.V2 and
return the scalar result. [D]

For these two-vector opera­
tions, one of the following
two sets of input prompts

(

will appear, depending on ("
the input mode selected.

* rectangular *
* coordinates *

* cylindrical *
* coordinates *

* OTHER OPTIONS *

F: allows the user to change
input and/or display
formats from cylindrical
to rectangular or vice
versa.

VECTOR 1: x=
<xl> [ENDLINE] VECTOR 1: y=
<yl> [ENDLINE] VECTOR 1: z=
<zl> [ENDLINE] VECTOR 2: x=
<x2>[ENDLINE] VECTOR 2: y=
<y2> [ENDLINE] VECTOR 2: z=
<z2> [ENDLINE]

VECTOR 1: r=
<rl> [ENDLINE] VECTOR 1: theta=
<thetal> [ENDLN]VECTOR 1: z=
<zl> [ENDLINE] VECTOR 2: r=
<r2> [ENDLINE] VECTOR 2: theta=
<theta2> [ENDLN]VECTOR 2: z=
<z2>[ENDLINE]

[F] <go to step 2>

page 4

c

(

User Instructions

comments Input Oisplay

l-------------------------------1--------------T---------------------T
Q: exit program.

5) After an operation is chosen,
the program will return the
result in one of the formats
listed below, depending on
whether it is a vector or
scalar. Pressing any key
(except [ON]) will display
the next component or move
on to step 6.

* VECTOR RESULTS *

[A] , [S] , [X] , [M] , [U] , [C1
These options will return a
vector result in either
rectangular or cylindrical
coordinates, depending on
the display option chosen
in step 3.

* rectangular *
* coordinates *

[Ql

<any key>
<any key>
<any key>

* cylindrical *
* coordinates *

<any key>
<any key>
<any key>

* SCALAR RESULTS *

[I 1
<any key>

[DJ

[N]

page 5

>

x=
y=
z=
<go to step 6>

r=
theta=
z=
<go to step (;>

INCLUOED ANGLE =
<go to step 6>

DOT PRODUCT =
<go to step ~>

NORM =
<go to step 6>

User Instructions

Comments Input Display
1-------------------------------1--------------1---------------------1
6) At this point, the user is

given the option of exiting
the program or running it
again.

To exit program, press 'N'.

To run again, press 'Y'.

7) If the result of the last
operation was a scalar,
the program will return to
step 4.

If it was a vector, the
program provides the option
of using it in subsequent
calculations.

To discard the result, press
'N'. To use the result,

[N]

[Y]

press 'Y'. [N] or [Y]

If 'Y' is chosen and the
next operation requires
one vector, the program will
skip the prompt for the
components and display the
result. If two vectors are
required, the program will
assume the result is the
first vector and will ask
only for the second vector.

REFERENCES:

Salas, S. and Hille, E.; "Calculus", Xerox.

RUN AGAIN (YIN)?

>

<go to step 7>

USE RESULT (YIN)?

<go to step 4>

Hudson, R.; "The Engineer's Manual", Wiley and Sons, Inc.

page 6

(

(

(,

EXAMPLES

A) Find the cross product of (3,5,0) and (4,0,1), and then calculate
the angle the result vector makes with the x-axis (1,0,0).

B) Find the length (norm) of the vector (12.66,-4.5,-7).

C) Convert (-4,7,0) to cylindrical coordinates.

Comments Input Display
1-------------------------------1--------------1---------------------1
1) Run the program.

2) Specify input in rectang-
ular coordinates.

3) Specify output in rectang-
ular coordinates.

4) Select cross product option.

5) Enter x, y, z for vectors.

6) Display result.

7) Run program again.

8) Use result.

9) Calculate included angle.

10) Enter second vector.

11) Display result.

12) Run program again.

13) Calculate norm.

14) Input vector.

15) Display result.

[RUN]

[R]

[R]

[X]

3[ENDLINE]
5[ENDLINE]
o [ENDLINE]
4[ENDLINE]
0[ENDLINE]
l[ENDLINE]

<any key>
<any key>

<any key>

[Y]

[Y]

[I]
l[ENDLINE]
o [ENDLINE]
0[ENDLINE]

<any key>

[Y]

INPUT RIC ?

DISPLAY RIC ?

A,S,X,I,D,N,M,U,C,F,Q?

VECTOR

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR

x=5
y=-3
z=-20

1: x=

1: y=
1: z=
2: x=
2: y=
2: z=

RUN AGAIN (YIN)?

USE RESULT (YIN)?

A,S,X,I,D,N,M,U,C,F,Q?

VECTOR 2: x=
VECTOR 2: y=
VECTOR 2: z=

ANGLE = 76.1130063355

RUN AGAIN? (YIN)

A,S,X,I,D,N,M,U,C,F,Q?

[N] x=
l2.66[ENDLINE] y=
-4.5 [ENDLINE] z=
-7 [ENDLINE]

NORM = 15.1501023099

page 7

EXAMPLES

Comments Input Display
1-------------------------------1--------------1---------------------1
16) Run program again. <any key>

17) Convert from rectangular [Y]
to cylindrical.

18) Change output format to [C]
match conversion.

19) Specify rectangular input. [R]

29) Specify cylindrical output. [C]

RUN AGAIN? (Y/N)

A,S,X,I,D,N,M,U,C,F,Q?

I/O INCORRECT
INPUT R/C?

DISPLAY R/C?

A,S,X,I,N,M,U,C,F,Q?

21) Choose conversion now that [C] x=
I/O format is correct.

22) Input vector. -4 [ENDLINE] y=

23) Display result.

24) End program.

7 [ENDLINE] z=
9 [ENDLINE]

<any key>
<any key>

<any key>
[N]

page 8

r= 8.9622577483
theta= 119.744881297
z= 9

RUN AGAIN? (Y/N)
>

(

(

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550

VECTOR OPERATIONS
Revision 1.0 3/28/84

LISTING

DEGREES @ DELAY 0,0 @ CFLAG 1,2,3,4
K0$="ASXIDNMUCFQ" @ 10$="CR" @ Il$="YN"
, IO' :
DISP "INPUT RIC? ";
'Il': Kl$=UPRC$(KEY$) @ IF NOT POS(I0$,Kl$) THEN 'Il' ELSE DISP
IF Kl$="C" THEN SFLAG 1 ELSE CFLAG 1
IF FLAG(l) THEN Xl$="r=" @ Yl$="theta=" ELSE Xl$="x=" @ Yl$="y="
DISP "DISPLAY R/C ? ";
'01': Kl$=UPRC$(KEY$) @ IF NOT POS(I0$,Kl$) THEN '01' ELSE DISP
IF Kl$="C" THEN SFLAG 2 ELSE CFLAG 2
IF FLAG(2) THEN X2$="r=" @ Y2$="theta=" ELSE X2$="x=" @ Y2$="y="
'OP': DISP "A,S,X,I,D,N,M,U,C,F,Q"
'WAIT': Kl$=UPRC$(KEY$) @ K0=POS(K0$,Kl$) @ IF NOT K0 THEN 'WAIT'
IF K0=11 THEN 'Q'
IF K0=10 THEN CFLAG 1,2,3 @ GOTO 'IO'

rUc.,t:. IF K0*9 THEN 'Al'
IF NOT FLAG(l) EXOR FLAG(2) THEN DISP 'I/O INCORRECT' @ WAIT 2VAl i

GO TO 'IO'
'Al': IF K0<6 THEN 'I2VA'
'I1V': IF FLAG(3) THEN 'SUBCALL'
DISP Xl$; @ INPUT "";Xl
IF FLAG(l) AND Xl<0 THEN DISP "INVALID ENTRY" @ GOTO 'I1V'
DISP Yl$; @ INPUT "";Yl
INPUT "z=";Zl
GOTO 'SUBCALL'
'I2VA': IF FLAG(3) THEN 'I2VB'
DISP "VECTOR l:"&Xl$; @ INPUT "";Xl
IF FLAG(l) AND Xl<0 THEN DISP "INVALID ENTRY" @ GOTO 'I2VA'
DISP "VECTOR l:"&Yl$; @ INPUT "";Yl
INPUT "VECTOR l:z=";Zl
, I 2VB' :
DISP "VECTOR 2:"&Xl$; @ INPUT "";X2
IF FLAG(l) AND X2<0 THEN DISP "INVALID ENTRY" @ GOTO 'I2VB'
DISP "VECTOR 2:"&Yl$; @ INPUT "";Y2
INPUT "VECTOR 2:z=";Z2
IF FLAG(l) THEN CALL C2R(X2,Y2)
'SUBCALL' :
IF FLAG(l) THEN CALL C2R(Xl,Yl)
GOSUB Kl$
'CYCLE' :
DISP "RUN AGAIN? (Y/N) ";
'A2': Kl$=UPRC$(KEY$) @ ON POS(Il~,Kl$)+l GOTO 'A2','USEIT','Q'
'USEIT': DISP @ IF IP«K0-1)/3)=1 OR K0=9 THEN CFLAG 3 @ GOTO 'OP'
DISP "USE RESULT? (YIN)";
'A3': Kl$=UPRC$(KEY$) @ IF NOT POS(Il$,Kl$) THEN 'A3' ELSE DISP
IF POS("N",Kl$) THEN CFLAG 3 @ GOTO 'OP'
IF NOT POS("Y",Kl$) THEN 'USEIT'
IF FLAG(2) THEN CALL C2R(X0,Y0)
Xl=X0 @ Yl=Y0 @ Zl=Z0 @ SFLAG 3 @ GOTO 'OP'
'A' :
X0=Xl+X2 @ Y0=Yl+Y2 @ Z0=Zl+Z2
GOSUB 'ov'

page 9

LISTING

0560 RETURN
0570 IS':
0580 X0=X1-X2 @ Y0=Y1-Y2 @ Z0=Zl-Z2
0590 GOSUB lOVe
0600 RETURN
0610 'D':
0620 D0=X1*X2+Y1*Y2+Z1*Z2
0630 DISP "DOT PRODUCT =";D0 @ GOSUB 'WI
0640 RETURN
0650 'X':
0660 X0=Y1*Z2-Y2*Zl @ Y0=Zl*X2-Z2*X1 @ Z0=X1*Y2-X2*Y1
0670 GOSUB lOVe
0680 RETURN
0690 'M': INPUT "SCALAR =";S
0700 X0=X1*S @ Y0=Y1*S @ Z0=Zl*S
0710 GOSUB lOVe
0720 RETURN
0730 'I':
0740 SFLAG 4 @ GOSUB 'N' @ CFLAG 4
0750 M3=SQR«X2-X1)A2+(Y2-Y1)A2+(Z2-Z1)A2)
0760 A0=(M1*M1+M2*M2-M3*M3)/(2*M1*M2)
0770 C9=.00000000002
0780 IF FP(FP(ABS(A0»+C9)<.000000000045 THEN A0=IP(A0+SGN(A0)*C9)
0790 A1=ACOS(A0)
0800 DISP "INCLUDED ANGLE =";A1 @ GOSUB 'WI
0810 RETURN
0820 'N':
0830 M1=SQR(X1*X1+Y1*Y1+Z1*Zl)
0840 M2=SQR(X2*X2+Y2*Y2+Z2*Z2)
0850 IF NOT FLAG(4) THEN DISP "NORM =";M1 @ GOSUB 'Wi
0860 RETURN
0870 'U':
0880 SFLAG 4 @ GOSUB 'N' @ CFLAG 4
0890 X0=X1/M1 @ Y0=Y1/M1 @ Z0=Zl/M1
0900 GOSUB lOVe
0910 RETURN
0920 'WI: IF KEY$="" THEN 'WI ELSE RETURN
0930 'C':
0940 X0=X1 @ Y0=Y1 @ Z0=Zl
0950 'OV':
0960 IF FLAG(2) THEN CALL R2C(X0,Y0)
0970 DISP X2$iX0 @ GOSUB 'WI
0980 DISP Y2$iY0 @ GOSUB 'WI
0990 DISP "z=";Z0 @ GOSUB 'We
1000 RETURN
1010 'Q': CFLAG 1,2,3,4 @ DISP @ PUT "#43" @ END
1020 SUB R2C(R,T)
1030 I=R @ J=T
1040 R=SQR(I*I+J*J)
1050 T=ANGLE(I,J)
1060 SUB END
1070 SUB C2R(I,J)
1080 R=I @ T=J
1090 I=R*COS(T)
1100 J=R*SIN(T)
1110 SUB END

page 10

(

Numerical Integration

This program will perform numerical integration whether a function
is known explicitly or at a finite number of equally spaced points.

For the explicit case, a 16 point Gaussian quadrature is provided
for a finite interval. Also, the integral may be found for the
explicit case using Simpson's or the Trapezoidal methods. The
quadrature is more accurate, however.

Given a finite set of points, Simpson's rule or the Trapezoidal
rule may be used to find the integral.

Equations:

Gaussian Quadrature:

N
(b-a)/2 r: w<j>f((a+b+x<j>(b-a»/2)

j=l

where w<j>,x<j> are the weights and nodes, respectively. The
weights and nodes are for an integral from -1 to 1.

Simpson's Rule:

h[f(x0) + 4f(xl) + 2f(x2) + •• + 2f(x<n-2» + 4f(x<n-l» + f(x<n»]/3

where h is the (equally spaced) interval distance.
In' must be even for the method to work.

Trapezoidal Rule:

n=l
h/2 [f (x.0) +2 I: (f (x<j» + f (x<n»]

j=l

where h = (b-a)/n for interval (a,b).

page 11

User Instructions

I-----------~~~~~~~------------I-----:~:~~----I-------~~~::~:-------I (

1) Run the program.

2) Choose desired method.
a. Gauss
b. 5impson
c. Trapezoidal
d. Quit

Go to desired option to
continue.

****** Gauss ******

Gl) Key in the function with
variable 'x'.

G2) Key in the lower and upper
bound separated by a comma.

G3) To continue, press any key.
Go to step 1 to continue.

****** 5impson ******

51) If the function is known:
Go to the explicit case (55).
If the function is unknown:

52) (Implicit case)
Key in the number of points.
For 5impson's rule, this must
be an odd number.

53) Key in the interval length
for the partitions. This
routine requires that parti­
tions be the same length.

You are now in the matrix
editor. Continue at that
section (El) and return.

S4) To continue, press any key.
Go to step 1 to continue.

S5) (Explicit Case)
Key in the number of
partitions desired. This must
be an even value.

G
5
T
Q

<function>

Gauss,5imp,Trap,Quit

f(x)=
Explicit (yiN)
Explicit (YIN)
<blinking cursor>

[ENDLINE] Lwr,Upr bounds=

<L,U> calculating ••
Result= <val.>

<any key> Gauss,5imp,Trap,Quit

Y

N

<number>

<length>

<any key>

<number>

of Partitons=<val.>

Nmbr of pnts=<val.>

Interval length=<val.>

E(0)=<val.>

calculating ••
Result=<val.>

Gauss,Simp,Trap,Quit

f(x)=

page 12

(

User Instructions

Comments Input Display
I-------------------------------I--------------I---------------------I

S6} Key in the function with
variable 'x'.

S7} Key in the lower and
upper bound separated by
a comma.

S8} To continue, press any key.
Go to step 1 to continue.

****** Trapezoidal ******

Tl} If the function is known:
Go to the explicit case (T5).
If the function is unknown:

T2} (Implicit case)
Key in the number of points.

T3} Key in the interval length
for the partitions.

You are now in the matrix
editor. Continue at that
section (El) and return.

T4} To continue, press any key.
Go to step 1 to continue.

T5} (Explicit Case)
Key in the number of
partitions desired.

T6} Key in the function with
variable 'x'.

T7} Key in the lower and
upper bound separated by
a comma.

T8} To continue, press any key.
Go to step 1 to continue.

<function>
[ENDLINE]

<lb,ub>

<any key>

y

N

<number>

<length>

<any key>

<number>

<function>
[ENDLINE]

<lb,ub>

<any key>

paqe 13

calculating ••
Result= <val.>

calculating ••
Result= <val.>

Gauss,Simp,Trap,Quit

of Partitons=<val.>

Nmbr of pnts=<val.>

Interval length=<val.>

E(0}=<val.>

calculating ••
Result=<val.>

Gauss,Simp,Trap,Quit

f(x}=

calculating ••
Result= <val.>

calculating ••
Result= <val.>

Gauss,Simp,Trap,Quit

User Instructions

Comments Input Display
1-------------------------------1--------------1---------------------1

****** Matrix Editor ******

The points E(0) through E(n)
may be entered. The value
displayed is the current value
of the point. You may change the
value, move to a previous value,
move to the next value, or
specify a point to move to.
Pressing [0] exits the matrix
editor, and the program finds
the value of the integral.

El) To change value:

To move to next
value (this is the
arrow key, not the
greater than char.) :

To move to previous
value (this is the
arrow key, not the
less than char.):

To move to a specific
point:
Key in the desired
element index:

To quit the routine:

[ENDLINE]
<new val.>

E (I) =<val ue>

[ENDLINE] E(I+l)=<value>

[>] E(I+l)=<value>

[<] E(I-l)=<value>

[SPC] Element=

<index> E«index»=<val.>

[Q] calculating ••

page 14

(

(

EXAMPLE PROBLEMS

Problem 1.

Given the approximations below for f(x), compute the approximations
to the integral from the bounds 0-2 by the trapezoidal rule and
by Simpson's rule. The interval length is 0.25.

i
f (x)

o
2

1
2.8

2
3.8

3
5.2

4
7

5
9.2

6
12.1

7
15.6

8
20

Comments Input Display
1-------------------------------1--------------1---------------------1
1) Run the program.

2) Choose trapezoidal
method:

3) Since the function is
unknown, choose implicit
case:

4) Key in the number of points.

5) Key in the interval length
for the partitions.

6) Enter the function values:

The previous value was
supposed to have been 2.8.
Edit it.

Continue entering the rest of

Gauss,Simp,Trap,Quit

T Explicit (Y!N)

N Nmbr of pnts=0

9&N!l1..'NI!'1 Interval length=0

[ENDLINE]
2

[ENDLINE]
[ENDLINE]

2.9
[ENDLINE]

[<]
[ENDLINE]

2.8
[ENDLINE]

value=

E(1)=0
value=

E(2)=0

E(1)=2.9
value =

E(2)=0

of the values in the same manner.

To quit:

7) To continue, press any key.

8) Now use Simpson's rule.

9) Since the function is
unknown, choose implicit
case:

Q

<any key>

S

N

paqe 15

calculating ••
Result=16.6750

Gauss,Simp,Trap,Quit

Explicit (Y!N)

Nmbr of pnts=9

User Instructions

Comments Input Display
I-------------------------------I--------------I---------------------1

10) Since this is the correct
number, just press:

11) This value is also okay.

12) Since the program leaves
the values the same, simply
press [Q] to finish.

13) To continue, press any key.

Problem 2.

[ENDLINE]

[ENDLINE]

Q

<any key>

Interval length=.2500

E(0)=2

calculating ••
Result=16.5833
Gauss,Simp,Trap,Quit

Find the value of the integral of f(x) from 0 to 2*pi where
f(x) = l/(l-cos(x)+ .25).

Comments Input Display
I-------------------------------I--------------I---------------------1

1) Run the program.

2) Choose Gauss's
method:

3) Key in the function with
variable 'x'.

4) Key in the lower and
upper bound separated by
a comma.

5) To continue, press any key.

Gauss,Simp,Trap,Quit

G f(x)=

1/(1-cos(x)+.25)
[ENDLINE] Lwr,Upr bounds=

0,2*pi
[ENDLINE]

<any key>

page 16

calculating ••
result= 8.3776

Gauss,Simp,Trap,Quit

(

(

iii
~.

(.' . ,
.. '

LISTING

Note that some of the comments are not preceded by line numbers.

0010 DEF FNK$(D0$,K0$) ! Find which key was pressed function
0020 DISP D0$
0030 'KEY': K$=KEY$
0040 IF NOT POS(K0$,K$) THEN "KEY"
0050 FNK$=K$
0060 END DEF

************** INITIALIZATION *************

0070 OPTION BASE 0
0080 DESTROY A,H,P,T$,K$,K1$
0090 DIM K$ [4] ,K1$ [1] ,T$ [1]
0100 INTEGER N,P

**** BEGIN ****

0110 'START': K1$=FNK$("Gauss,Simp,Trap,Quit","GSTQ")
0120 GOTO K1$

**** SIMPSON, TRAPEZOIDAL START ****

0130 IS': 'T': T$=FNK$("Exp1icit?(Y/N)","YN")
0140 IF T$="Y" THEN "PRT"

**** For implicit case, get function values

0150 'PL': INPUT "Nmbr of pnts= ",STR$(N);N
0160 IF N(=0 THEN DISP "Must be positive" @ GOTO 'PL'
0170 IF K1$="S" AND MOD(N-1,2) THEN DISP "MUST BE ODD NUMBER" @ GOTO
"PL"
0180 INPUT "Interval Length= ",STR$(H);H
0190 DIM A(N-1)
0200 CALL EDITl(A,N-1)
0210 GOTO "CALC"

**** For explicit case, get number of partitions ****

0220 'PRT': INPUT "i of Partitions= ",STR$(P);P
0230 IF P(=0 THEN DISP "Must be positive" @ GOTO 'PRT'
0240 IF K1$="S" AND MOD(P,2) THEN DISP "MUST BE EVEN, NONZERO" @ GOTO
"PRT"

**** For explicit case, get function ****

0250 'G': INPUT "f(x)= ",F$;F$
0260 IF K1$="G" THEN T$="N"
0270 IF F$="" THEN "G"

**** Get the bounds for the integral ****

0280 'B': INPUT "Lwr,Upr bounds= ",STR$(L)&","&STR$(U);L,U
0290 IF L=U THEN DISP "THE INTEGRAL VALUE IS 0" @ GOTO "B"

page 17

LISTING

0300 'CALC': O=FLAG(-16,O) @ T=FLAG(-10,1) ! Temporarily set radians
0310 DISP "calculating •• "
0320 GOSUB Kl$&T$
0330 O=FLAG(-16,O) @ T=FLAG(-10,T) ! Re-establish angular mode
0340 Dl$=PEEK$("2F946",4) @ DELAY INF,INF ! Save wait period
0350 DISP "Result="~R Display result
0360 POKE "2F946",Dl$! Re-establish wait period
0370 GOTO "START"

****** SUB PROGRAM CALL SECTION ******

0380 'GN': CALL GAUSS(F$,L,U,R) @ RETURN
0390 'SN': CALL S1MPSON(A,N-l,H,R) @ RETURN
0400 'TN': CALL TRAP(A,N-l,H,R) @ RETURN
0410 'SY': CALL S1MPSONE(F$,L,U,(P) ,R) @ RETURN
0420 'TY': CALL TRAPE{F$,L,U,{P) ,R) @ RETURN
0430 'Q': PUT "#38" @ END ! Restore cursor and end program
0440

***** Trapezoidal rule, explicit case ****

0450 SUB TRAPE(F$,L,U,P,R)
0460 H=(U-L)/P
0470 Q=0
0480 X=L @ R=VAL(F$)
0490 X=U @ R=R+VAL{F$)
0500 FOR 1=1 TO P-l
0510 X=L+H*1 ! what is A?
0520 Q=Q+VAL(F$)
0539 NEXT I
9549 R=(R+2*Q)*H/2
0559 END SUB
9560

**** Trapezoidal rule, implicit case ****

9579 SUB TRAP(A{),N,H,R)
0580 R=A (0) +A (N) I

0599 Q=9
9609 FOR 1=1 TO N-l
9619 Q=Q+A (I)
9629 NEXT I
9639 R=(R+2*Q)*H/2
9649 END SUB
9659

**** Simpson's rule, implicit case ****

0660 SUB S1MPSON{A{) ,N,H,R)
9679 R=A(0)+A(N)
0689 FOR 1=1 TO N-3 STEP 2
9690 R=R+4*A(1)+2*A(1+l)
0799 NEXT I
9710 R=(R+4*A(N-l»*H/3

page 18

(

(

f -;

It,.'
~'

0720 END SUB
0730

**** Simpson's rule, explicit

0740 SUB SIMPSONE(F$,L,U,P,R)
0750 H=(U-L)/P
0760 X=L @ R=VAL (F$)
0770 X=U @ R=R+VAL(F$)
0780 FOR I=l TO P-3 STEP 2
0790 X=L+H*I @ R=R+4*VAL(F$)
0800 X=X+H @ R=R+2*VAL(F$)
0810 NEXT I
0820 X=U-H
0830 R=(R+4*VAL(F$»*H/3
0840 END SUB
0850

**** 16 point Gaussian method

0860 SUB GAUSS(F$,L,U,R)
0870 DIM N(1,7)

LISTING

case ****

0880 DATA .989400934992,.944575023073,.865631202388,.755404408355
0890 DATA .617876244403,.458016777657,.281603550779,.950125098376E-1
0900 DATA .271524594118E-1,.622535239386E-1,.951585116825E-1,.124628971256
0910 DATA .149595988817,.169156519395,.182603415045,.189450610455
0920 READ N (,)
0930 R=0
0940 C=(U-L)/2
0950 FOR I=0 TO 7
0960 X=N(0,I)*C+(L+U)/2
0970 R=N(l,I)*VAL(F$)+R
0980 X=-N(0,I)*C+(L+U)/2
0990 R=N(l,I)*VAL(F$)+R
1000 NEXT I
1010 R=R*C
1020 END SUB

**** Matrix Editor ****

1030 SUB EDITl(A() ,N)
1040 DEF FNK$(D0$,K0$) ! Find which key was pressed function
1050 DISP D0$
1060 'KEY': K$=KEY$
1070 IF NOT POS(K0$,K$) THEN "KEY"
1080 FNK$=K$
1090 END DEF

1100 DEF FNF$(Y) ! Fix display function. Temporarily alters,

(

"1' ! then returns to original setting.
,,' 1110 D$=PEEK$("2F6DC",2) @ STD

1120 FNF$=STR$(Y)
1130 POKE "2F6DC",D$
1140 END DEF

n~('f~ lQ

LISTING

1150 1=0
1160 'LOOP': K1$=FNK$("E("&FNF$(I)&")= "&STR$(A(I» ,"0 #38#47#48")
1170 IF K1$=" " THEN 'M'
1180 IF K1$="0" THEN '0'
1190 IF LEN(K1$)#3 THEN 'LOOP'
1200 K1$[1,l]="K"
1210 GOSUB K1$
1220 GOTO 'LOOP'
1230 'K47': I=MOD(I-1,N+1) Move to previous position
1240 RETURN
1250 'K38': INPUT "Va1ue= "~A(I) Change value
1260 'K48': I=MOD(I+1,N+1) Move forward
1270 RETURN

1280 'M': INPUT "E1ement= "~I ! Get desired position
1299 IF 1<9 OR I)N THEN DISP "EXCEEDS BOUNDS" @ WAIT 1 @ GOTO 'M'
1399 GOTO "LOOP"

1310 '0 1
: PUT "#38"

1320 END SUB
! Ouit routine

page 29

(

(

Solution to F(x) = 0 on an Interval

This program provides two methods to find a real root of the
equation f(x) = 0. They are Newton's Method and the Pegasus Method.
In addition, the program allows the user to find the value of the
function for an input x.

Input for the Newton's method consists of the function to be solved,
one initial guess, and as an option, the derivative of the function.
If the derivative is not input, a numerical approximation is used.

Input for the Pegasus method consists of the function to be solved
and two initial guesses that must bound the root. This implies that
f(x0)*f(xl)<0. The routine to calculate function values may be used
to establish a legal interval.

When a root is found, the output will consist of the x value
displayed to the setting of the computer and the value f(x), where x
is the displayed root. It is possible that f(x) will not be exactly
0. However, it will generally be within an acceptable range around
zero based on the number of significant digits in the input. If the
desired accuracy is not obtained, it may be possible to decrease the
value used to check for acceptance (the variable E in both sub
programs). In some instances, the function may have to be modified.

Newton's method converges to a root quickly in cases where it can
find one. Its ability to locate a root depends on the function and

1(((the initial guess. It is not guaranteed to find a root. If the
'~\ derivative is 0 or 50 iterations are peformed, the routine exits,

displaying an appropriate message to the user. The number of
iterations may be changed by altering the program.

The Pegasus Method is a modified regula falsi method with an
estimated order of convergence superior to a secant method. For any
legal interval, the method is guaranteed to converge.

The equations:

Newton's Method:

x<n+l> = x<n>-f(x<n»/f' (x<n»

The exit criteria is abs(x[n+l]-x[n]) <= epsilon
where epsilon is a small value.

f' (x) Approximation:

When the derivative is not given, the program uses
the following approximation:

f' (x) <== (f(x+I/2) - f(x-I/2))/I

where I = .0001 (x) or .000001 if x= 0.

page 21

Pegasus Method:

The Regula Falsi method used is:

x<n+l> = x<n> - f(x<n» [(x<n>-x<n-l»/(f(x<n»-f(x<n-l»)]

The approximations for the next iteration are chosen by:

if f(x<n+l»f(x<n» < 0 then
(x<n-l>,f(x<n-l») <== (x<n>, f(x<n»)

if f(x<n+l»f(x<n» > 0 then
(x<n-l>,f(x<n-l») <== (x<n-l>, f(x<n-l»/(f(x<n»+f(x<n+l»})

References:
Dowell, M. & Jarrett, P.; "The Pegasus Method for Computing the Root

of an Equation", BIT 12 (1972) pp. 503-508
Atkinson, Kendall E., "An Introduction to Numerical Analysis", Wiley

and Sons
Carnahan, B., Luther, H.A., and Wilkes, J.O., "Applied Numerical

Methods", wiley and Sons, Inc.

page 22

(

(

USER INSTRUCTIONS

f Comments Input Display
I-------------------------------I--------------I---------------------I

1) Run program.

2) Key in the function using
the character 'x' as the
variable.

3) Press the capital letter
of the desired operation.
'R' begins the solve

routine.
'F' finds function

values for given XIS.
'C' allows the function

to be changed.
'Q' quits the program.

Go to the appropriate
heading to continue.

****** ROOT OPTION ******

Rl) Choose desired method by
pressing the appropriate
capital letter.
For pegasus, press P.
Go to step R2.
For Newton, press N.
Go to step R8.

R2) PEGASUS METHOD

R3a) Key in a lower bound.

R3b) To exit, press:

R4a) Key in upper bound.

R4b) To exit, press:

RSa} The answer will be
displayed.

RSb} If the interval does
not bound a root a
message will be dis­
played and you will
return to step R4.

R6) To see the function
value at the root,
press any key.

<function>

R

F

C

Q

P

N

<value>
[ENDLINE]
[ENDLINE]

<value>
[ENDLINE]
[ENDLINE]

<any key>

page 23

f(x)=

Root,F(x} ,Chngf,Quit

Pegasus, Newton

X=

f(x)=<function>

Done

Pegasus, Newton

lower bound:

derivative=

lower bound:

upper bound:
Root,F(x) ,Chngf,Quit

calculating ••
Root,F(x) ,Chngf,Quit

x= <result>

f(x)=<value>

USER INSTRUCTIONS

Comments Input Display
I-------------------------------I--------------I---------------------I

R7) To exit, press any key.

R8) NEWTON METHOD

R9a) If you want to use the
derivative, key it in.

R9b) If you do not wish to
enter the derivative:

Rl0) Key in initial guess.

Rll) If you wish to watch
the convergence, press
'Y', else press any
other key.

Rl2) If a root is found, the
result will be found.
If a root is not found,
an appropriate error
message will be given.

Rl3) To see the function
value at the root,
press any key.

R14) To exit, press any key.

<any key>

<derivative>
[ENDLINE]

[ENDLINE]

<guess>
[ENDLINE]

Root,F(x) ,Chngf,Quit

derivative =

initial guess=

initial guess=

disp convergence?

Y or calculating ••
<another key>

x= <result>

<any key> f(x)=<value>

<any key> Root,F(x) ,Chngf,Quit

******* FIND FUNCTION VALUES ****** X=

Fl) Key in the value of x
at which you wish the
function evaluated at.

F2) Press any key to
continue.

F3a) Continue at step F2 for
more values.

F3b) To exit, press:

****** CHANGE FUNCTION ******

Cl) Key in desired function.

****** QUIT PROGRAM ******

Ql) To get the prompt back:
press any key.

<value>
[ENDLINE]

<any key>

[ENDLINE]

<function>
[ENDLINE]

<any key>

page 24

f(x) = <result>

X=

Root,F(x) ,Chngf,Quit

f(x)=<crnt function>

Root,F(x) ,Chngf,Quit

Done

<blinking prompt>

(

\.

EXAMPLE

This example demonstrates the various options of the program. It
must be started at the beginning and followed to completion for the
given keystrokes to work as listed. The display should be FIX 11.

Find a root for the function f(x) = In(x) + 3x - 10.8074. Use the
Pegasus method, then Newton's method. Then find a root for the
function f(x) = 3x~6 - 22x~5 + 11.

Comments Input Display
I-------------------------------I--------------I---------------------I

1) Run program.

2) Key in function. Note that
it is entered in a BASIC
format.

3) Call the solve section.

4) Choose Pegasus method.

5) Guess at a bound:

6) Guess at an upper bound.

7) The interval did not bound
the root. Use F(X) to find
an interval.

8) Find f (5) •

9) Find f (10)

10) Try fell

11) Since the function is
continuous on the
interval [1,5], and the
values of the function
at these points are of
opposite sign, this
interval bounds a root.
Exit and move to the
solve section.

12) Key in lower bound

f (x) =

In(x)+3*x-10.8074
[ENDLINE] Root,F(x),Chngf,Quit

R

P

5 [ENDLINE]

10 [ENDLINE]

[ENDLINE]
F

5 [ENDLINE]
[ENDLINE]

10 [ENDLINE]
[ENDLINE]

1 [ENDLINE]
[ENDLINE]

[ENDLINE]
R
P

1 [ENDLINE]

page 25

Pegasus,Newton

lower bound:

upper bound:

intrvl must bound root
lower bound:

Root,F(x) ,Chngf,Quit
x=

f(x) = 5.8020379124
x=

21.495185093
x=

f(x)= -7.8074
x=

Root,F(x) ,Chngf,Quit
Pegasus,Newton
lower bound:

upper bound:

EXAMPLE

Comments Input Display
I-------------------------------I--------------I---------------------I

13) Key in upper bound.

14) See how close f(3.21..)
is to 0.

15) Continue

16) Solve using Newton's
Method.

17) Let routine approximate
the derivative.

18) Key in an initial guess.

19) Let's not display it.

20) We must now solve the
second function.

21) Use the derivative
this time.

The intermediate
results are displayed.

22) Quit the program.

5 [ENDLINE]

[ENDLINE]

[ENDLINE]

R
N

[ENDLINE]

1 [ENDLINE]

N

[ENDLINE]
[ENDLINE]

C
3*x"6-22*x"5+ll

R
N

l8*x"5-1l0*x"4
[ENDLINE]
5 [ENDLINE]

y

[ENDLINE]
[ENDLINE]

Q

page 26

calculating ••
x= 3.21336087018

f (x) = 0

Root,F(x) ,Chgf,Quit

Pegasus, Newton
derivative=

initial guess=

disp convergence?

calculating ••
x= 3.21336087017
f(x)= 0
Root,F(x) ,Chngf,Quit

f(x)=LN(X)+3*X-10.8074
Root,F(x) ,Chngf,Quit
Pegasus,Newton
derivative=

initial guess=
disp convergence?
calculating ••
2.25088
2.4794542177
1. 93158885068

.89346784412
x= .893467844031
f(x)= 13
Root,F(x) ,Chngf,Quit

DONE

(

(

(

I:
I'

LISTING

Note that some of the comments are not preceded by a line number.

0010 ! SOLUTION TO F(X)=0
0020 ! REV 1.0 -- 1/25/84
0030 F$=""
0040 'C': INPUT "f(x)=",F$~F$! get function
0050 'D': DISP "Root,F(x) ,Chngf,Quit" ! main prompt
0060 A$=KEY$ @ IF A$="" THEN 60
0070 IF POS("RFQC",UPRC$(A$[l,l]»THEN GOTO UPRC$(A$[l,l]) ELSE GO TO 'D'

******* Find the Root *******

0080 'R': DISP "Pegasus,Newton" ! get desired method
0090 M$=KEY$ @ IF M$="" THEN q0
0100 IF POS("PN",UPRC$(M$[l,l]» THEN GOSUB M$[l,l] ELSE GOTO 'R'
0110 IF R<>INF THEN GOTO 'DISPR'
0120 DISP "NO ROOT FOUND"
0130 GOTO 'RTN'
0140 'DISPR': X=R ! display result
0150 DISP "x= "~X
0160 A$=KEY$ @ IF A$="" THEN "~
0170 DISP "f(x)= "~VAL(F$) ! display function value
0180 'RTN': A$=KEY$ @ IF A$="" THEN GOTO 'RTN' ELSE GOTO 'D'

******* Find values of f(x) given x *******

0190 'F': ·ON ERROR GOTO 'XIT'
0200 INPUT "X= "~X
0210 Y=VAL(F$)
0220 DISP "f(x)= "~Y
0230 A$=KEY$ @ IF A$="" THEN 23_ ELSS ~Fu
0240 GOTO 'F'
0250 'XIT': OFF ERROR @ GOTO 'D'

******* Set up to call Pegasus method *******

0260 'p': ON ERROR GOTO 'XIT'
0270 INPUT "lower bound:"~L
0280 INPUT "upper bound: "~U
0290 X=L ! see if interval contains root
0300 Y1=VAL(F$)
0310 X=U
0320 Y2=VAL(F$)
0330 IF Yl*Y2>0 THEN DISP "intrv1 must bound root" @ GOTO 'pI
0340 CALL PEG(F$,L,U,R)
0350 RETURN

******* Set up to call Newton method *******

0360 'N': DESTROY N$
0370 ON ERROR GOSUB 'NEWTERR' ! catches no derivative option
0380 INPUT "derivative= "~D$
0390 INPUT "initial guess= ","1"~X0
0400 DISP "disp convergence?"

page 27

LISTING

0410 A$=KEY$ @ IF A$="" THEN 410
0420 IF UPRC$(A$)="Y" THEN D=l ELSE D=0
0430 CALL NEWT(F$,D$,X0,D,R)
0440 RETURN
0450 'NEWTERR': OFF ERROR
0460 ON ERROR GOTO 'XIT'

******* Quit program *******

0470 'Q': DISP " DONE" @ END

******* Pegasus subprogram *******
The inputs are the function (F$), lower limit (X0), and upper limit
(Xl). The result is returned through variable 'R'. The function
string must be a legal BASIC expression in variable 'x'; the limits
must bound a root.

0480 SUB PEG(F$,X0,Xl,R)
0490 DISP "calculating •• "
0500 E=.000000000l ! error tolerance
0510 C=2*Xl-X0
0520 X=X0 ! init y0,yl
0530 Y0=VAL(F$)
0540 X=Xl
0550 Yl=VAL(F$)
0560
0570 'LP': X2=Xl-Yl*«Xl-X0)/(Yl-Y0»
0580 IF ABS(X2-C)<=E THEN R=X2 ELSE GOTO 'CT'
0590 GOTO 'ND'
0600 'CT': X=X2
0610 Y2=VAL(F$)
0620 Cl=Y2*Yl
0630 IF Cl<0 THEN X0=Xl @ Y0=Yl
0640 IF Cl>0 THEN Y0=Y0*Yl/(Yl+Y2)
0650 Xl=X2
0660 Yl=Y2
0670 C=X2
0680 GOTO 'LP'
0690 'ND': SUB END

******* Newton subprogram *******
The inputs are the function (F$), optional derivative (D$), initial
guess, and the display-convergence boolean. The result is returned
through 'R'. The functions must be in variable 'x'. If no root is
found, 'R' is set to the value 'inf'.

0700 SUB NEWT(F$,D$,X0,D,R)
0710 DISP "calculating •• "
0720 E=.0000000001 ! error tolerance
0730 L=0 ! INIT LOOP COUNTER
0740 'LP': IF D$="" THEN GOSUB 'AD' ELSE X=X0 @ Yl=VAL(D$)
0750 IF Yl=0 THEN R=INF @ DISP "DERIVATIVE=0" @ GOTO 'ND'
0760 X=X0
0770 Y=VAL(F$)

page 28

(

LISTING

0780 X1=X-Y/Y1
0790 IF ABS (Xl-X) <=E THEN R=X1 @ GOTO 'NO'
0800 X0=X1
0810 L=L+1
0820 IF 0 THEN DISP X0
0830 IF L=50 THEN DISP "50 ITERATIONS" @ R=INF @ GOTO 'NO'
0840 GOTO 'LP'
0850 'AD': IF X0=0 THEN 1=.000001 ELSE I=.0001*X0 ! derive approx.
0860 X=X0+I/2
0870 Y1=VAL(F$)
0880 X=X0-I/2
0890 Y1=(Y1-VAL(F$»/I
0900 RETURN
0910 'NO': SUB END

page 29

Matrix Operations

This program allows the user to caculate the determinant of a real
valued matrix and find the inverse or solve a system of equations
for real or complex valued systems.

The method used is Gaussian elimination with partial pivoting. The
matrix is decomposed into an LU form and the pivoting strategy is
kept track of in a separate matrix. For a more in-depth discussion,
please refer to the references.

The determinant is calculated from the decomposed matrix by
multiplying the values in the main diagonal. It is found only for a
real valued matrix.

The inverse is found by solving the system Ax(i) = I(i), where T(i)
is the ith column of the identity matrix and x(i) is the ith column
of A inverse. This is performed N times as i ranges from 1 to N.

If the inverse or solution to a system of equations is attempted that
involves a singular matrix, the message "MATRIX IS SINGULAR" will be
displayed.

Remarks:

The program will use the particular number display you specify
before running the program.

If you pause the program during the listing of values, then exit
the program, your delay will be set to info

References:

Johnston, R.L., "NUMERICAL METHODS, a Software Approach", John
Wiley and Sons, 1982

Anton, Howard, "Elementary Linear Algebra", John Wiley and Sons,
1981

Atkinson, Kendal E., "An Introduction to Numerical ~nalysis",
John Wiley and Sons, 1978

page 30

(

USER INSTRUCTIONS

Comments Input Display
1-------------------------------1--------------1---------------------1
1}

2}

3}

Run the program.

For real values:
For complex values:

Key in the number of rows:
The matrix must be square.

You are now in the matrix
editor. Please refer to that
section, then continue with
step 4.

4} If you want to perform some
operations and then make a
few changes to the matrix,
keep a copy of the original:
If no copy is desired:

5} Choose desired action.
To create a new matrix:

Cont. at step 1.
To edit the current matrix:

Refer to the editor
instructions, then cont.
at step 4.

To perform matrix operations:
Continue at step 6.

To quit the program:

6} Calculation options.
To solve system of equations:

You are now in the matrix
editor. Enter the values of
the B vector for Ax=B. When
you are done, you will see:
Continue at solve section.

To find the determinant:
Continue at the determinant
section.

To find the inverse:
Cont. at the inverse secton.

To return to the main menu:
Continue at step 5.

To quit the program:

R
C

<value>

Y
N

N

E

C

Q

S

D

I

M

Q

page 31

Real or Complex?

order?

A(l,l}=<value>
or

R(1,1}=<va1ue>

keep a copy?

Newmat,Edit,Calc,Quit

Real or Complex?

A(l,l}=<value>
or

R(l,l}=<value>

Solv,Det,Inv,Main,Quit

<blinking prompt>

B (l) =<va1ue>

calculating ••

calculating ••

calculating ••

Newmat,Edit,Calc,Quit

<blinking display>

USER INSTRUCTIONS

Comments Input Display (
1-------------------------------1--------------1---------------------1

****** SOLVE ******

51) If a solution exists:
These are the values of
the result vector.

Continue at step 52.
If a solution does not
exist, a message will be
displayed:

Return to step 6.

52) Once the last value has been
displayed, you will see:

53) If you want to solve for
a new B vector:

Enter the values according
to the edit instructions.
Continue at step Sl.

If you are done:
Return to step 6.

****** DETERMINANT ******

01) The determinant will be
dislayed:
Press any key to continue.
Go to step 6.

****** INVERSE ******

II) If the inverse exists:
Cont. at step 12.

If no inverse exists:

Return to step 6.

12) To list result by columns:

To list result by rows:

I3) Once all values have been
listed, you will see:
Go to step 6.

[ENDLINE]
[ENDLINE]

Y

N

<any key>

C
[ENDLINE]

R
[ENDLINE]

page 32

"

<value x(l»
<value x(2»

SINGULAR SYSTEM
Newmat,Edit,Calc,Quit

solve for new B?

B(l)=<value>

Solv,Det,Inv,Main,Quit

det = <value>
Solv,Det,Inv,Main,Quit

list by Color Row?

SINGULAR SYSTEM
Newmat,Edit,Calc,Quit

<value A(l,l»
<value A(l,2»

<value A(l,l»
<value A(l,2»

(

Solv,Det,Inv,Main,Quit ,

USER INSTRUCTIONS

****** MATRIX EDITOR ******

The matrix editor allows the user to move through a matrix
and change element values. For complex valued matrices, the
real and complex parts of an element are edited one at a time.

Movement through a matrix is accomplished with the arrow keys
(left, right, up, and down), and element indices input. The
movement wraps around when the boundary of a row or column is
passed.

Comments Input Display
I-------------------------------I--------------I---------------------I

El) To move from the current
position:

Move left:
Move right:
Move up:
Move down:

E2} To move to a desired
element:

E3) To quit the editor:

A{I,J)

< A{I,J-l)= <value>
> A{I,J+l)= <value>

<up arrow key> A{I-l,J}= <value>
<dwn arrow key> A{I+l,J}= <value>

[SPC] enter ROW,COLUMN
<row>,<column>
[ENDLINE] A{<row>,<col»= <val>

Q

page 33

EXAMPLES

Example 1. (
Find the determinant and inverse of the matrix below. It is
assumed that the display is fix 4.

6 3 -2 2 3

1 4 -3 4 2

2 3 -1 -2 9

4 3 (3 2 1

3 5 -6 6 2

Comments Input Display
1-------------------------------1--------------1---------------------1
1) Run the program. Real or Complex?

2) The values are real. R order?

3) Key in the number of rows: 5 [j;.VJ)LIIJG] A(l,l)= {3.{3{3{3{3
1Ji.t.I r> ~ I t.I.:.J ? ,

(6
[ENDLINE] A(1,2)= (3.{3{3{3{3
[ENDLINE] ?

3
Enter the values of [ENDLINE] A(1,3)= (3.{3{3{3{3
the matrix and use the [ENDLINE] ?
editing features to adjust -2
any incorrect values. [ENDLINE] A(1,4)= (3.{3{3{3{3

[ENDLINE] ?
2

[ENDLINE] A(l,S)= 13.13131313
[ENDLINE] ?

3

[ENDLINE] A(S,4)= (3.{3{3{3{3
[ENDLINE] ?

6
[ENDLINE] A(5,5)= (3.{3{3{3{3
[ENDLINE] ?

2
[ENDLINE] A(l,l)= 6.13131313

Q keep a copy?
4) No copy will be needed. N Newmat,Edit,Calc,Quit

5) Choose calculation
options. C Solv,Det,Inv,Man,Quit \

page 34

6) Calculate the determinant.

Press any key to continue.

7) To find the inverse:

8) Choose to list by column.

9) Now find the determinant.

l~) Return to the main menu
to perform the next problem.

Problem 2.

EXAMPLES

o

[ENDLINE]

I

C
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]
[ENDLINE]

o

[ENDLINE]

M

calculating ••
det = -2~~.~~~~

Solv,Det,Inv,Main,Quit

calculating ••
list by Col. or Row?
C(l,l)= ~.2~~~
C(2,1)=-1.75~~
C(3,1)= ~.7~~~
C(4,1)= 1.725~
C(5,1)= l.~~~~
C(1,2)=-~.12~~
C(2,2)=-2.~0~~
C(3,2)= 1.28~~
C(4,2)= 2.54~~
C(5,2)= 1.4~~~
C(1,3)=-~.04~~
C(2,3)= ~.5~~~
C(3,3)=-~.24~~
C(4,3)=-0.57~~
C(5,3)=-~.20~~
C(1,4)= ~.~~~~
C(2,4)= 1.7500
C(3,4)=-~.500~
C(4,4)=-1.6250
C(5,4)=-1.00~0
C(1,5)=-3.3333E-12
C(2,5)=-1.5~~~
C(3,5)=-1.~0~0
C(4,5)=-1.750~
C(5,5)=-1.0000
Solve,Det,Inv,Main,Quit

calculating ••
det = -2~0.0~~~
Solve,Det,Inv,Main,Quit

Newmat,Edit,Calc,Quit

Solve the following system of complex valued equations.

2 + 3i .7 - li zl 2 + 21i
=

4 - 1.3i 4 + ~i z2 1 + 3i

Because the matrix created in problem 1 is real valued, a new
matrix must be created. Therefore the example problem must start
with the new matrix option.

page 35

EXAMPLES

Comments Input Display ('
1-------------------------------1--------------1---------------------1
I) Start by creating a new

matrix.

2} Choose complex.

3) The order is 2.

4} You are now in the
editor.
The 'R' indicates that
the real portion of
element (l,l) is being
prompted for.
'I' indicates that the
imaginary portion is
being prompted for.

Continue entering the
values in the same manner.
Refer to the editor
instructions for editing
features.

5) When done, press:

6) Keep a copy this time.

7) Move to calculation options.

8} Choose solve option.

9) You are now in the editor.The
prompt is for the real portion
of element (1,1) from the
b vector (Ax = b).

Continue until all
values are correctly entered.

10} To quit editing:

You may use the arrow
to view the entire display.

N

C

2
[ENDLINE]

[ENDLINE]
2

[ENDLINE]
[ENDLINE]

3
[ENDLINE]
[ENDLINE]

.7
[ENDLINE]

Q

Y

C

S

[ENDLINE]
2

[ENDLINE]
[ENDLINE]

21
[ENDLINE]

Q

[ENDLINE]
[ENDLINE]

page 36

Real or Complex?

order?

R (1 ,1) = 0. 0000

?

I(l,l}= -6.0000
?

R(1,2)= 3.0000
?

I(1,2}= 2.0000

keep a copy?

Newmat,Edit,Ca1c,Quit

Solv,Det,Inv,Main,Quit

BR(l }=4.0000

?

BI(l)= 0.0000
?

BR(2)= 0.0000

calculating ••
X(l)= 4.3565, 1.4203 i
X(2)=-4.5681, 0.7456 i
solve for new B?

(

EXAMPLES

Comments Input Display
1-------------------------------1--------------1---------------------1

11) Let's solve for a new b
vector.

12) Let's exit.

y
[ENDLINE]

9
[ENDLINE]
[ENDLINE]

-.22
[ENDLINE]
[ENDLINE]

-3.5
[ENDL1NE]

1
[ENDLINE]

Q

[ENDLINE]
[ENDLINE]

N
Q

page 37

BR(l)= 1. 0(.HH~
?

BI (1) = 21.0000
?

BR(2)= 1. 4794
?

B1(2)= 3.0000

BR (1) = 9.0000
calculating ••
X{l)= 0.48~0,-2.03~2 i
X(2)=-0.6952, 2.4362 i
solve for new B?

Solv,Det,Inv,Main,Quit
<blinking display>

PROGRAM LISTING

0010 ! rev 1. 0
0020 DEF FNK$(D0$,K0$) ! Find which key was hit
0030 DISP 00$
0040 'KEY': K$=KEY$
0050 IF NOT POS(K0$,K$) THEN "KEY"
0060 FNK$=K$
0070 END DEF

0080 'N': T=POS("RC",FNK$("Rea1 or Comp1ex?","RC"»
0090 INPUT "order?"iN ! Get the number of rows and columns.

0100 N=T*N @ M=N ! Set dimensions based on type.
0110 DIM A(M,N),S (M)
0120 R2=0 @ C2=0

0130 'E': IF NOT C2 THEN GOTO 'El'
0140 FOR I=l TO M
0150 FOR J=l TO N
0160 A(I,J)=A1(I,J) Read in original matrix if copy was made
0170 NEXT J
0180 NEXT I

0190 'El': CALL EDIT(A(,) ,M,N,T)
0200 R2=0 ! Indicate that the determinant has not been calculated.
0210 IF FNK$("keep a copy?","YN")="Y" THEN C2=1 ELSE C2=0
0220 IF NOT C2 THEN GOTO 'M'
0230 DIM A1(M,N)
0240 FOR I=l TO M
0250 FOR J=l TO N
0260 A1(I,J)=A(I,J) Save a copy if desired.
0270 NEXT J
0280 NEXT I

0290 'M': GOTO FNK$("Newmat,Edit,Ca1c,Quit","NECQ") main menu

0300 leI: GOTO FNK$("Solv,Det,Inv,Main,Quit","SDIMQ")

0310 'S': DIM B(M,T) ,X(M,l) ! solve invocation.
0320 'Sl': CALL EDIT(B(,),M,T,0)
0330 DISP "calculating •• "
0340 IF NOT R2 THEN CALL DECOMP(A(,) ,M,N,S(» @ R2=1
0350 IF S(M)=0 THEN DISP "SINGULAR SYSTEM" @ GO TO 'M'
0360 CALL SOLVE(A(,) ,XC,) ,B(,) ,SO ,N)
0370 CALL LIST(X(,) ,M,l,T,"X")
0380 IF FNK$("solve for new B?","YN")="Y" THEN "Sl" ELSE

0390 'I': DIM C(M,N) ,B(M,l),X(M,l) ! Inverse calculation
0400 DISP "calculating •• "
0410 IF NOT R2 THEN CALL DECOMP(A(,) ,M,N,S(» @ R2=1
0420 IF S(M)=0 THEN DISP "SINGULAR SYSTEM" @ GOTO 'M'
0430 FOR J=l TO N
0440 FOR I=l TO M
0450 B(I,1)=0
0460 NEXT I

page 38

"C"

PROGRAM LISTING

B(J,l)=l 0470
0480
0490
0500
0510
0520
0530
0540

CALL SOLVE(A(,) ,X(,) ,B(,) ,SO ,N)
FOR 1=1 TO M
C(I,J)=X(I,l)
NEXT I
NEXT J
CALL LIST(C(,) ,M,N,T,"C")
GOTO 'c'

0550
0560
0570
0580
0590
0600
0610
0620
0630
0640

'D': IF T=2 THEN DISP "NOT DONE FOR COMPLEX" @ GOTO 'c' det.
DISP "calculating •• "
IF NOT R2 THEN CALL DECOMP(A(,) ,M,N,S(» @ R2=1
D=A (1,1)
FOR 1=2 TO M
D=D*A(I,I)
NEXT I
D=S(M)*D
DISP "det= ";D
A$=KEY$ @ IF A$="" THEN 640 ELSE "c" ! display till key hit

0650 'Q': PUT "#38" @ END! restore blinking prompt and end.

MATRIX EDITOR. Allows a matrix of dimension MxN to be edited.
The type (T) can be 1 or 2. 1 indicates real, 2 indicates complex.
If T=0, then the routine assumes a vector has been passed. The
value of T is then changed to the correct type indicator value.

0660 SUB EDIT (A (,) ,M, N ,T)
0670 DEF FNK$(D0$,K0$) ! Get which key was hit
0680 DISP D0$
0690 'KEY': K$=KEY$
0700 IF NOT POS(K0$,K$) THEN "KEY"
0710 FNK$=K$
0720 END DEF

0730 DEF FNF$(Y) ! temporarily change display setting for index valse
0740 D9$=PEEK$("2F6DC",2) @ STD
0750 FNF$=STR$(Y)
0760 POKE "2F6DC",D9$
0770 END DEF

0780 DEF FND$! Create array elemnt prompt
0790 IF NOT (T=l OR MOD(J,2» THEN D$=S$ ELSE D$=R$
0800 D1$=D$&"("&FNF$«I+T-1)/T)
0810 IF D$[l,l]<>"B" THEN D1$=D1$&","&FNF$(INT«J+T-1)/T»
0820 IF T=2 AND NOT MOD(J,2) THEN V=-A(I,J) ELSE V=A(I,J)
0830 FND$=D1$&")= "&STR$(V)
0840 END DEF

0850 1=1 @ J=l @ R=2 @ T$="BRBI"
0860 IF T=2 THEN R$="R" @ S$="I"
0870 IF T=l THEN R$="A"
0880 IF T=0 THEN R$=T$[l,N] @ S$=T$[3,N+2] @ T=N

page 39

PROGRAM LISTING

Figure out which key has been hit and branch to legal choice. (
0890 'LOP': A$=FNK$(FND$,"Q #38#47#48#50#51") @

IF POS("0134578#",A$) THEN "LOP"
0900 IF LEN(A$)=l THEN GOSUB UPRC$(CHR$(NUM(A$)+33» @ GOTO "LOP"
0910 A$[l,l]="K"
0920 GOSUB A$ @ GOTO "LOP"

0930 'K38': INPUT A(I,J) @ IF T=l THEN GOTO 'K48' ! enter a value
0940 IF MOD(J,2) THEN A(I+l,J+l)=A(I,J) ELSE A(I+l,J-l)=A(I,J) @ A(I,
J) =-A (I ,J)

0950 'K48': J=J+l @ IF J<=N THEN RETURN! move right
0960 J=l @ I=I+T @ IF I)M-T+l THEN 1=1
0970 RETURN

0980 'K47': J=J-l @ IF J THEN RETURN! move left
0990 J=N @ I=I-T @ IF 1<1 THEN I=M-T+l
1000 RETURN

1010 'K50': I=I-T @ IF 1)0 THEN RETURN! move up
1020 I=M-T+l @ J=J-l @ IF NOT J THEN J=N
1030 RETURN

1040 'K51': I=I+T @ IF I<=M-T+l THEN RETURN
1050 1=1 @ J=J+l @ IF J)N THEN J=l
1060 RETURN

move down

1070 'A': ON ERROR GOTO 'A' ! user specified move
1080 INPUT "enter ROW,COLUMN";I,J
1090 IF 1<1 OR J<l THEN I=M+l
1100 IF T-l THEN 1=2*1-1 @ J=2*J-l
1110 IF I)M OR J)N THEN DISP "OUT OF BOUNDS" @ GO TO 'A'
1120 OFF ERROR @ RETURN

1130 'R': POP @ SUB END

LIST MATRIX SUB PROGRAM. Allows a matrix to be listed by row
or column. The array name is passed through parameter B$. The
matrix is MxN, and the type (T) is 1 for real values, and 2
for complex values. If a vector is passed, the routine will
list by column. A vector is implied by B$ = 'X'.

1140 SUB LIST(A(,) ,M,N,T,B$)

1150 DEF FNF$ (Y) ! Create index integer prompts
1160 D9$=PEEK$("2F6DC",2) @ STD
1170 FNF$=STR$(Y)
1180 POKE "2F6DC",D9$
1190 END DEF

1200 DEF FND$! Create element prompt
1210 IF B$="X" THEN FND$=FNF$«I+T-l)/T) ELSE

FND$=FNF$«I+T-l)/T)&","&FNF$«J+T-l)/T)
1220 END DEF

page 40

PROGRAM LISTING

123113 D1$=PEEK$(12F946",4) @ DELAY INF,INF 1 Temporarily change delay
124113 IF B$="X" THEN GOTO 'C'

125113 'pI: DISP "1ist by Col. or ROW?" 1 get display choice
126113 A$=KEY$
127113 IF NOT POS(ICR",UPRC$(A$[l,l]» THEN 'pI
128113 GOTO UPRC$(A$[l,l])

129113 'C': FOR J=l TO N STEP T ! display by column
13113113 FOR 1=1 TO M STEP T
131113 DISP B$&"("&FND$&")="~A(I,J)~
132113 IF T=2 THEN DISP 1,I~A(I+1,J)~li"~
133113 DISP
134113 NEXT I
135113 NEXT J
136113 1=1 @ J=l @ GOTO 'E'

137113 'R': FOR 1=1 TO M STEP T ! display by row
138113 FOR J=l TO N STEP T
139113 DISP B$&"("&FND$&")="~A(I,J)~
14113113 IF T=2 THEN DISP 1,"~A(I+1,J) ~"i"~
141113 DISP
142113 NEXT J
143113 NEXT I
144113 1=1 @ J=l

145113 'E': POKE 12F946",D1$ @ SUB END! restore delay and exit

DECOMPOSITION OF MATRIX. Performs an LU decomposition of an MxN
matrix using partial pivoting. The pivoting strategy is recorded
in vector S.

146113 SUB DECOMP(A(,) ,M,N,S(»
147113 S(M)=l
148113 FOR Re=l TO M-1
149113 PII3=RII3
15113113 P1=A(Re,RII3)

151113 FOR I=RII3+1 TO M ! choose largest absolute value for pivot
152113 IF ABS(A(I,RII3»>ABS(P1) THEN PII3=I @ P1=A(I,RII3)
153113 NEXT I
154113 IF A(PII3,RII3)=1I3 THEN S(M)=1I3 @ GOTO 'END' 1 quit if singular
155113 S(RII3)=PII3
156113 IF PII3=RII3 THEN GOTO 'c'

157113 FOR I=RII3 TO N row exchange
158113 T=A(RII3,I)
159113 A(RII3,I)=A(PII3,I)
16113113 A(pe,I)=T
161113 NEXT I
162113 S(M)=-S(M)

163113 'C': FOR R1=RII3+1 TO M row r1 <--r1-mu1t*rll3
\

page 41

PROGRAM LISTING

164~ Ml=A(Rl,R0}/A(R~,R~} form multiplier
1650 A(Rl,R0}=Ml ! and save it.
1660 FOR E=R0+1 TO N
1670 A(Rl,E}=A(Rl,E}-Ml*A(R0,E}
1680 NEXT E
1690 NEXT Rl
170~ NEXT R0
171~ IF A(M,N}=~ THEN S(M)=~

1720 'END': SUB END

SOLVE ROUTINE. Takes an LU form matrix, pivot strategy vector, B
vector, and calculates the'X vector for the matrix equation
Ax=b.

1730 SUB SOLVE (A (,) , X (,) , B (,) , S () , N}
1740 M=N

1750 FOR I=l TO M-l ! Permute B and perform reduction
176~ T=B(S(I) ,1)
177 ~ B (S (I) ,1) =B (I ,1)
1780 B(I,l)=T
179~ FOR J=I TO M-l
1800 B(J+l,l}=B(J+l,l}-B(I,l)*A(J+l,I}
1810 NEXT J
1820 NEXT I

1830 FOR I=N TO 1 STEP -1 ! back substitution
1840 X(I,l)=B(I,l)
1850 FOR J=I+l TO M
1860 X(I,l}=X(I,l)-A(I,J)*X(J,l)
1870 NEXT J
1880 X(I,l}=X(I,l)/A(I,I)
1890 NEXT I
19~0 SUB END

page 42

«

(

Fourier Transforms

This program calculates a fast Fourier transform from a set of time
domain points to a set of frequency domain points. The inverse fast
Fourier transform, calculating the set of time domain points from a
set of frequency domain points, may also be calculated.

The method used is a modification of the basic FFT algorithm. The
modified algorithm takes advantage of the fact that series data is
real, and uses the space normally reserved for the imaginary part of
the complex sequence to calculate a double-length real transform.
This is represented for two "N" length transforms as:

Z(n) = X(n) + iY(n) ~ < n < N data points

The transform is:

Z (m) = X(m) + iY (m)

Z (m) + Z(N-m)*
where X (m) = ----------------

2

Z (m) - Z(N-m)*
Y (m) = ----------------

2i

Z* is the complex conjugate of Z.

The time series F(n) is given by:

F(n) = X(2n) + Y(2n+l)

The transformation of this is:

N-l
F(m) = L X(2n)w Amn

n=0

N-l
= L X (p) wA2mp

p=0

page 43

N-l
+ L Y(2n+l)wAmn

n=0

N-l
+ r: Y (p) (w A2mp) (wArn)

p=0

and:

F(m) = X(m) + Y(m)wAm

F (N-m) = X* (m) - [Y (m) wArn] *

(1)

(2)

Similarly, the inverse transform may be obtained from (1) and (2):

F(m) + F(N-m)* F(m) - F(N-m)*
Z(m) = ---------------- + iwA(-m)----------------

2 2

F(m) + F(N-m)* * F(m) - F(N-m)* *
Z (N-m) = - iwA(-m) _______________ _

2 2

This is simply an interchange of Z(m) and F(m) in (1) and (2), and
substitution of _wA(_m) for wArn.

The advantages gained from this adaptation of the general FFT
algorithm for time series data are:

(a) A transform of twice the length can be handled with no increase
in storage for input data.

(b) Since the calculation of the transform is structured as an
interactive process, intermediate and final results are stored in
the same locations used for input.

NOTE:

1. Since F(0) and F(N) are real only, F(N) can be stored in the
imaginary location of F(0), i.e., f(l).

2. wArn = c A (-2im*pi/2N). This is half the minimum value of rotation
normally used in an N-point transfer.

3. * denotes the complex conjugate.

REFERENCES

Brigham, E. 0., THE FAST FOURIER TRANSFORM, Prentice-Hall, Inc. 1974.

FAST FOURIER TRANSFORM, HP-85 Math Pac, Hewlett-Packard, 1979.

page 44

(

USER INSTRUCTIONS

Comments Input Display

1-------------------------------1--------------1---------------------1
1) Run the program.

2) If time data is to be input,
press T and continue with
step 3. If frequency data is
to be input, go to step 11.

TIME DOMAIN DATA

3) Enter number of time domain
data points to be used. Must
be an integer power of 2 and
>2. If it is not, the message
"INPUT OUT OF RANGE" will be
displayed and you will be
prompted to enter the number
again. If available memory is
insufficient for the specified
of points, the message "NOT
ENOUGH MEMORY" will be dis­
played and the program will
again prompt for the number

TIME/FREQ. DATA? (T/F)

[T] # OF DATA POINTS?

of points. <N> [ENDLINE] DATA POINT(nnn)?

4) The program will now prompt
for data points 1 through N,
where N is the # specified
in 3).

5) If any mistakes were made in
input, you now have the
opportunity to correct the
data. Press [Y] to make any
changes, or [N] to go to
step 6).

Enter point # to change.

Original entry will be
displayed for reference.

If no (further) changes are
necessary, press [N].

<value> [ENDLN] DATA POINT(nnn)?
<value> [ENDLN]

<value> [ENDLN]

[Y]

<nnn>
[ENDLINE]

<new value>
[ENDLINE]

[N]

page 45

DATA POINT(N)?

CHANGES? (yiN)

DATA POINT TO CHANGE?

<old value>

CHANGES? (YIN)

TRANSFORMING •••

USER INSTRUCTIONS

Comments Input Display (
1-------------------------------1--------------1---------------------1
6) Calculation of FFT has begun.

7) Calculation ends and DC term
is displayed. Press any key
to continue.

8) Display maximum frequency.
Press any key to resume
output.

9) Display complex data pairs of
calculated frequency domain.
First the real, and then the
imaginary part of the data
pair will be displayed. Press
any key to display each value.

10) For a new problem, go to
step 1.

FREQUENCY DOMAIN DATA

11) If frequency data is to be
input, press [F].

12) Enter the number of coeffic­
ient pairs. This number must
be one less than an integer
power of 2 (1,3,7, •••). If
it is not, the message
"INPUT OUT OF RANGE" will be
displayed and you will be
prompted to enter the number
again. If available memory is
insufficient for the number
of pairs specified, the
message "NOT ENOUGH MEMORY"
will be displayed and the
program will again ask for
the number of coefficient
pairs.

13) Enter the DC term.

<any key>

<any key>

<any key>
<any key>
<any key>

<any key>
<any key>

[F]

DC TERM =

MAX FREQ. =

FREQ. DOMAIN OUTPUT:

lR=<value>
lI=<value>
2R=<value>

NR=<value>
NI=<value>
>

* OF COEFF. PAIRS?

<N> [ENDLINE] DC TERM=

<DC term> MAX FREQ. TERM=

page 46

USER INSTRUCTIONS

Comments Input Display
I-------------------------------I--------------I---------------------I
14) Enter the maximum frequency

term.

15) Enter the real and imaginary
coefficients for each data
pair as prompted.

16) If any mistakes were made
in entering the coefficient
pairs, they may be corrected
by pressing [Y]. If no changes
are necessary, press [N] and
go to step 17).

Enter # of coefficient pair
to correct.

Original entry is displayed
for reference.

<max freq>

<real coeff. >
<imag coeff.>
<real coeff.>

<real coeff.>
<imag coeff.>

[Y]

<n>[ENDLINE]

<new value>
[ENDLINE]

<new value>

FREQ. DOMAIN DATA -

REAL (1 }?
IMAG (1)?
REAL (2)?

REAL (N)?
IMAG(N)?
CHANGES? (yiN)

DATA PAIR TO CHANGE?

REAL (n }<old entry>

IMAG(n }<old entry>

[ENDLINE] CHANGES? (yiN)

If no (further) changes are
necessary, press [N].

17) Calculation of inverse FFT
has begun.

18) Calculation ends and data
points are displayed. Press
any key to move to next
data point.

19) For a new problem, go to
step 1).

[N]

<any key>
<any key>

<any key>

page 47

TRANSFORMING •••

TIME DOMAIN OUTPUT:

PT (1)=<value>
PT (2)=<value>

PT (N)=<value>
>

EXAMPLES

A) For the following set of time domain data points, calculate the (
Fourier transform to frequency data.

P(l)=l
P(2)=1.3066
P(3)=1.4l42
P(4)=1.3066
P(5)=1
P(6)=.5412
P(7)=0
P(8)=-.5412

P(9)=-1
P (10) =-1. 3066
P (11) =-1. 4142
P (12) =-1. 3066
P(13)=-1
P(14)=-.5412
P(15)=0
P(16)=.5412

USER INSTRUCTIONS

Comments Input Display
I-------------------------------I--------------I---------------------I

1) Run the program. TIME/FREQ. DATA?

2) Choose time data input. [T] # OF DATA POINTS?

3) Enter # of points. 16 [ENDLINE] DATA POINT (1) ?

4) Enter point values. 1 [ENDLN] DATA POINT(2) ?
1.3066 [ENDLN] DATA POINT(3) ?
1. 4142 [ENDLN] DATA POINT(4) ?
1.3066 [ENDLN] DATA POINT(5) ?
1 [ENDLN] DATA POINT(6) ?
.5412 [ENDLN] DATA POINT(7) ?
0 [ENDLN] DATA POINT(8) ?
-.5412 [ENDLN] DATA POINT (9) ?
-1 [ENDLN] DATA POINT(10) ?
-1.3066 [ENDLN] DATA POINT(11)?
-1. 4142 [ENDLN] DATA POINT (12) ?
-1.3066 [ENDLN] DATA POINT(13) ?
-1 [ENDLN] DATA POINT(14) ?
-.5412 [ENDLN] DATA POINT(15) ?
0 [ENDLN] DATA POINT(16)?
.5412 [ENDLN]

5) FFT calculation begins. TRANSFORMING •••

6) Frequency domain output. FREQ DOMAIN OUTPUT:

DC TERM=0
<any key> MAX FREQ. =0
<any key> F:I\~<O) 01:.> ""nc ",I l.' Tf'vf':-
<any key> lR=-1.000010E+000
<any key> 2R= 0.000000E+000
<any key> 2I= 0.000000E+000
<any key> 3R=-1.339454E-006
<any key> 3I=-1.339454E-006

page 48

USER INSTRUCTIONS

Comments Input Display
1-------------------------------1--------------1---------------------1

Done.

<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>

4R= ~.~~~~~~E+~~~
41= ~.~~~~~~E+~~~
5R= 6.134477E-~~6
5I=-6.134477E-0~6
6R= ~.~~~~~~E+~~~
61= ~.~~~~~~E+~~~
7R=-1.5~2234E-~~5
7I=-1.5~2234E-~~5

>

B) For the following set of frequency domain data pairs, perform the
inverse Fourier transform to calculate the set of time domain data
points. The DC term and the maximum frequency term are ~.

REAL(l)=l
REAL(2)=~
REAL(3)=-1.3395E-6
REAL(4)=~

REAL(5)=6.1345E-6
REAL(6)=~
REAL(7)=-1.5~22E-5

USER INSTRUCTIONS

IMAG(l)=-l
IMAG(2)=~
IMAG(3)=-1.3395E-6
IMAG(4)=~

IMAG(5)=-6.1345E-6
IMAG(6)=~

IMAG(7)=-1.5~22E-5

Comments Input Display
1-------------------------------1--------------1---------------------1
1) Run the program. TIME/FREQ. DATA? (T/F)

2) Enter frequency data. [F] # OF COEFF. PAIRS?

3) Seven frequency data pairs. 7 [ENDLINE] DC TERM=

4) DC term is ~. ~ [ENDLINE] MAX FREQ. TERM=

5) Maximum frequency term is ~. ~ [ENDLINE] FREQ. DOMAIN DATA -

6) Begin entry of frequency REAL(1) ?
domain data pairs. 1 [ENDLINE] IMAG(1) ?

-1 [ENDLINE] REAL(2) ?
~ [ENDLINE] IMAG(2) ?
~ [ENDLINE] REAL (3) ?
-1. 3395E-6

[ENDLINE] IMAG(3) ?
-1.3395E-6

[ENDLINE] REAL (4) ?
~ [ENDLINE] IMAG(4) ?

page 49

USER INSTRUCTIONS

I-----------:~~:~:~------------I-----~~:~:----I--------~~:::~:------I (

7) Inverse FFT calculation
begins.

8) Display time domain data
points.

Done.

~ [ENDLINE1
G.1345E-G

[ENDLINE]
-G.1345E-G

[ENDLINE]
~ [ENDLINE]
~ [ENDLINE]
-1. 5~22E-5

[ENDLINE1
-1. 5~22E-5

[ENDLINE]

<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>
<any key>

page 5~

REAL (5) ?

IMAG(5) ?

REAL (G) ?
IMAG (6)?
REAL (7) ?

IMAG(7) ?

TRANSFORMING •••

TIME DOMAIN OUTPUT:

PTe 1)= 9.999898E-~~1
PTe 2)= 1. 3~G587E+~~~
PTe 3)= 1. 4l418GE+~~~

PTe 4)= 1. 3~G587E+~~~
PT (5)= 9.999898E-~~1
PT (G)= 5.411945E-~~1
PT (7)= 1.~~~~~~E-~12 C
PTe 8)=-5.4ll945E-~~1

PT (9)=-9.999898E-~~1

PT (1~)=-1.3~G587E+~~~
PTe 11)=-1.4l418GE+~~~

PT (l2)=-1.3~G587E+~~~
PTe l3)=-9.999898E-~~1

PTe 14)=-5.411945E-~~1
PTe 15)=-1.~~~~~~E-~12

PT (1G)= 5.411945E-~~1
>

0010 ! FOURIER TRANSFORM
0020 ! Revision 1.0 4/16/84
0030
0040 F9=FLAG(5,FLAG(-10»

LISTING

0050 OPTION BASE 1 @ OPTION ANGLE RADIANS @ STD @ DELAY 0,0
0060 ON ERROR GOTO 'ERR'
0070 Il$="TF" @ I2$="YN"
0080 Ol$="3D,'R=',MZ.6DE" @ 02$="3D,'I=' ,MZ.6DE"
0090 03$="'PT(',3D,')=' ,MZ.6DE"
0100 DISP 'TIME/FREQ. DATA? (T/F) ,
0110 'W1': K1$=UPRC$(KEY$) @ IF NOT POS(I1$,K1$) THEN 'W1'
0120 IF K1$='F' THEN SFLAG 1 @ F=-l ELSE CFLAG 1 @ F=l

**** Input data points for FFT, or coefficient pairs for
**** inverse FFT. Number of data points must be a power
**** of 2 and greater than 2. Number of coefficient
**** pairs must be one less than a power of 2.

0130 'IN':

0140 IF NOT FLAG(l) THEN INPUT 'i OF DATA POINTS?'iN @ GOTO 'INA'
0150 INPUT 'i OF COEFF. PAIRS?'iN
0160 N=N*2+2
0170 'INA': P=l
0180 IF N=2 THEN 'OR'
0190 FOR L=l TO 10
0200 P=P*2
0210 IF P=N THEN P1=L @ N2=N/2 @ GOTO 'START'
0220 NEXT L
0230 'OR':
0240 DISP 'INPUT OUT OF RANGE' @ WAIT 1 @ GOTO 'IN'
0250 'START':
0260 DIM R (N2) , I (N2)
0270 IF FLAG(l) THEN 'IFFT'

**** Input time domain data for FFT ****

0280 'FFT':
0290 J=0
0300 FOR L=l TO N2
0310 J=J+1 @ DISP 'DATA POINT('iJi') 'i @ INPUT R(L)
0320 J=J+1 @ DISP 'DATA POINT('iJ;') 'i @ INPUT I(L)
0330 NEXT L

**** Changes to FFT data ****

0340 'C1':
0350 DISP 'CHANGES? (Y/N) ,
0360 'W2': K2$=UPRC$(KEY$) @ IF NOT POS(I2$,K2$) THEN 'W2'
0370 IF K2$="N" THEN DISP 'TRANSFORMING ••• ' @ GOTO 'FFTC'
0380 'C2': INPUT 'DATA POINT TO CHANGE?'iL
0390 IF L<=0 OR L>2*N2 THEN 'C2'
0400 I2=L/2
0410 IF I2=INT(I2) THEN J=I2 ELSE J=INT(I2)+1
0420 DISP 'DATA POINT('iLi') 'i

page 51

, I

LISTING

0430 IF J=I2 THEN INPUT ",STR$(I(J»;I(J) ELSE INPUT ",STR$(R(J»;R(J){
0440 GOTO 'Cl'

**** Input DC term, maximum frequency and ****
**** frequency domain data for inverse FFT. ****

0450 'IFFT':
0460 INPUT 'DC TERM=';R(l)
0470 INPUT 'MAX FREQ. TERM=';I(l)
0480 DISP 'FREQ. DOMAIN DATA -' @ WAIT 1
0490 FOR L=2 TO N2
0500 DISP 'REAL(';L-l;') '; @ INPUT R(L)
0510 DISP 'IMAG (' ;t-l;') '; @ INPUT I (L)
0520 NEXT L

**** Changes to inverse FFT data ****

0530 'C3':
0540 DISP 'CHANGES? (Y/N) ,
0550 'W3': K3$=UPRC$(KEY$) @ IF NOT POS(I2$,K3$) THEN 'W3'
0560 IF K3$='N' THEN DISP 'TRANSFORMING ••• ' @ GOTO 'IFFTC'
0570 'C4': INPUT 'COEFF. PAIR TO CHANGE?';L
0580 IF L(=0 OR L>N2-l THEN'C4'
0590 DISP 'REAL(';L;')'; @ INPUT ",STR$(R(L+l»;R(L+l)
0600 DISP 'IMAG(';L;')'; @ INPUT ",STR$(I(L+l»;I(L+l)
0610 GOTO 'C3'

**** Start FFT calculation ****

0620 'FFTC':
0630 K=0
0640 FOR J=l TO N2-l
0650 L=2
0660 IF K(N2/L THEN 680
0670 K=K-N2/L @ L=L+L @ GOTO 660
0680 K=K+N2/L
0690 IF K(=J THEN 710
0700 A=R(J+l) @ R(J+l)=R(K+l) @ R(K+l)=A @ A=I(J+l) @ I(J+l)=I(K+l)
@ I(K+l)=A
0710 NEXT J
0720 G=.5 @ P2=1
0730 FOR L=l TO Pl-l
0740 G=G+G @ C=l @ E=0 @ Q=SQR«1-P2)/2)*F
0750 P2=(1-2*(L=1»*SQR«1+P2)/2)
0760 FOR M=l TO G
0770 FOR J=M TO N2 STEP G+G
0780 K=J+G @ A=C*R(K)+E*I(K) @ B=E*R(K)-C*I(K)
0790 R(K)=R(J)-A @ I(K)=I(J)+B @ R(J)=R(J)+A @ I(J)=I(J)-B
0800 NEXT J
0810 A=E*P2+C*Q @ C=C*P2-E*Q @ E=A
0820 NEXT M
0830 NEXT L
0840 IF FLAG(l) THEN 'IFFTO'

page 52

, I

(

LISTING

**** Start inverse FFT calculation ****

0850 'IFFTC':
0860 A=PI/N2 @ P2=COS(A} @ Q=F*SIN(A}
0870 A=R (1) @ R (1) =A+I (1) @ I (1) =A-I (1)
0880 IF NOT FLAG(l} THEN R(1}=R(1}/2 @ I(1}=I(1}/2
0890 C=F @ E=0
0900 FOR J=2 TO N2/2
0910 A=E*P2+C*Q @ C=C*P2-E*Q @ E=A @ K=N2-J+2 @ A=R(J}+R(K)
0920 B=(I(J)+I(K})*C-(R(J)-R(K)}*E @ U=I(J)-I(K)
0930 V=(I(J)+I(K»*E+(R{J)-R(K»*C
0940 R(J}=(A+B}/2 @ I(J)=(U-V}/2 @ R(K}=(A-B}/2 @ I(K)=-{U+V}/2
0950 NEXT J
0960 I(N2/2+1}=-I(N2/2+1}
0970 IF FLAG(l} THEN' 'FFTC'
0980 FOR J=l TO N2
0990 R(J)=R(J)/N2 @ I(J}=I(J}/N2
1000 NEXT J

**** FFT output ****

1010 'FFTO':
1020 DISP 'DC TERM ='iR(l} @ GOSUB 'WAIT'
1030 DISP 'MAX FREQ. =';I(l} @ GOSUB 'WAIT'
1040 DISP 'FREQ DOMAIN OUTPUT:' @ WAIT 1
1050 FOR L=2 TO N2
1060 DISP USING 01$iL-1,R(L) @ GOSUB 'WAIT'
1070 DISP USING 02$iL-1,I(L} @ GOSUB 'WAIT'
1080 NEXT L
1090 GOTO 'DONE'

**** Inverse FFT output ****

1100 'IFFTO':
1110 DISP 'TIME DOMAIN OUTPUT:' @.WAIT 1
1120 J=l
1130 FOR L=l TO N2
1140 J=J+1
1150 DISP USING 03$iJ-l,R(L} @ GOSUB 'WAIT'
1160 DISP USING 03$;J,I(L) @ GOSUB 'WAIT'
1170 J=J+l
1180 NEXT L
11913 'DONE': F9=FLAG{-113,FLAG(5)> @ PUT '#43' @ END
1200 'WAIT': IF KEY$=" THEN 'WAIT' ELSE RETURN
1210 'ERR': IF ERRL=260 THEN DISP 'NOT ENOUGH MEMORY' @ GOTO 'IN'
1220 DISP ERRM$ @ GOTO 'DONE'

page 53

, I

Polynomial Root Finder

This program finds all solutions, both real and complex, of P(x)=0,
where P is a polynomial of the form:

p(x)=a(n)xAn + a(n-)xA(n-l) + ••• + a(l)x + a(0) = 0

Inputs to the program are the degree of the polynomial, the real
coeficients a (n) ••• a (0), tolerances for the evaluation of the function
and for each root, and the maximum number of iterations per root.

This program uses Laguerre's method to find the roots of the
polynomial by computing a sequence of approximations Z(l),
to a root using the formula Z (k+l) =Z (k) +S (k). S (k) is called
Laguerre step, and is defined as:

-nP(Z(k»

p' (Z (k)) + [(n-1) A 2 (P' (Z (k)) A 2-n (n-1) p' , (z (k))] A • 5

specified
Z(2), ••• ,
the

(

where P, pi, and pIt are the value of the polynomial and its first and
second derivatives evaluated at the current iterate k, and n is the
degree of the polynomial. The sign in the denominator is chosen to C
give the Laguerre step of smaller size, which in most cases insures
that the roots will be found in order of increasing magnitude.

After an iterate is accepted as a root, synthetic division is used to
deflate the polynomial by the factor (x-r) if the root is real, or
(x A2-2Re(r)+!!r!!A2) if the root is complex. This saves arithmetic
operations, and prevents repetitive convergence to the same root.

For polynomials with only real roots, Laguerre's method will always
converge to a root for any choice of real initial estimate. However,
for roots of high multiplicity, some loss of accuracy may be observed.
If complex roots are present, this method will usually converge to a
valid root. If it does not, provisions are made for supplying a new
initial estimate and starting the process again.

REFERENCES

Dahlquist, G. and Bjorck, A. NUMERICAL METHODS. Prentice-Hall, 1974.

HP-75 MATH PAC. Hewlett-Packard, 1983

page 54

. I

(

USER INSTRUCTIONS

COMMENTS INPUT DISPLAY

1-------------------------------1--------------1---------------------1
l} Run the program.

2} Input degree of polynomial.
Must be a positive integer
greater than 1. If it is not,
you will be asked to enter
it again.

3} Enter coefficients of each
term, starting with the
highest-ordered term.

4} Input tolerance for roots.
Default value of lE-l0 is
displayed. If the magnitude
of the Laguerre step is less
that this value (and 5) is
also satisfied) then the
current iterate is accepted
as a root.

5} Input tolerance for evaluation
of function. default value of
lE-8 is displayed. If P(x) for
the current iterate is less
than this value, and step 4)
has been satisfied, the current

<n>

<a(n»
[ENDLINE]

<a(n-l»
[ENDLINE]

<a(0»
[ENDLINE]

<new value>
[ENDLINE]

iterate is accepted as a root. <new value>
[ENDLINE]

6) Input maximum number of
iterations for each root. If
this number is exceeded before
a valid root is found, the
message 'NO CONVERGENCE' will
be displayed and the user will
be allowed to specify a new
initial iterate and start the
search again. <nnn>

[ENDLINE]

page 55

, I

POLYNOMIAL ROOT FINDER
ORDER OF POLYNOMIAL?

A(n)=?

A(n-l}=?

A(0)=?

TOL. FOR ROOTS=l.E-10

TOL. FOR FCN=1.E-8

MAX * OF ITERATIONS=

LOOKING FOR ROOTS •••

USER INSTRUCTIONS

COMMENTS INPUT DISPLAY (-

1-------------------------------1--------------1---------------------1
7) Calculation of roots has begun.

As each root is found, the
program will indicate how many
roots have been found to this
point.

8) The real and imaginary parts
of each root are displayed.
Pressing any key will continue
the displaying of the roots.

9) Done.

<any key>
<any key>
<any key>

<any key>
<any key>

page 56

. I

i OF ROOTS FOUND = 1
i OF ROOTS FOUND = 2

i OF ROOTS FOUND = n

ROOTi 1: R=<value>

ROOTi 1: I=<value>
ROOTi 2: R=<value>

ROOTi N: R=<value>
ROOTi N: I=<value>
>

(

EXAMPLES

A) Find the roots of the polynomial given below. Use default values
for the tolerances and limit iterations to l~.

US R INSTRUCTIONS

COMMENTS INPUT DISPLAY
I--------------------------- ---I--------------I---------------------I

1) Run the program.

2) Enter order of polynomial.

3) Enter the coefficients,
starting with the highest
order term.

4) Use default value.

5) Use default value.

6) Limit to l~ iterations.

7) Calculation of roots begins.

8) Display real and imaginary
parts of each root.

9) Done.

, I

POLYNOMIAL ROOT FINDER
ORDER OF POLYNOMIAL?

6 [ENDLINE] A(6)=?

5 [ENDLINE] A(5)=?
-45 [ENDLINE] A(4)=?
.1:a.5 [ENDLINE] A(3)=?

-ti:25 [ENDLINE] A(2)=?
rr~ [ENDLINE] A(l)=?

J.. 7~ [ENDLINE] A(~)=?
-5~~ [ENDLINE] TOL. FOR ROOTS=l.E-l~

[ENDLINE] TOL. FOR FCN=l. E-8

[ENDLINE] MAX • OF ITERATIONS=

l~ [ENDLINE] LOOKING FOR ROOTS •••

• OF ROOTS FOUND = ,.
§-

OF ROOTS FOUND = 3
OF ROOTS FOUND = 4
OF ROOTS FOUND = 6

ROOT# 1: R= 1.~~~~~~E+~~~

<any key> ROOT# 1: I= '.~~~~~~E+@@~
<any key> ROOT# 2: R= 1.@~~~~~E+~~~

<any key> ROOT# 2: I=-l.~~~~~~E+~~~
<any key> ROOT# 3: R=-l.~~~~~~E+~~~
<any key> ROOT# 3: I= 2.~~~~~~E+~~~
<any key> ROOT# 4: R= 2.~~~~~~E+~~~
<any key>. ROOT# 4: I= ~.~~~@~~E+@~~
<any key> ROOT# 5: R= 3.@@@~~@E+~~~

<any key> ROOT# 5: I=-4.~~~~~~E+~~~
<any key> ROOT. 6: R= 3.~@@~~~E+~~~

<any key> ROOT# 6: I= 4.~~~~~~E+~~~
<any key> >

page 57

(HH0
0020
0030
0040
0050
0060
0070
0080

DEFAULT ON
1 POLYNOMIAL ROOT FINDER
1 Revision 1.00 4/8/84

LISTING

STD @ OPTION BASE 0 @ INTEGER I,J,K,N
A0$='YN' @ A7$='R' @ A8$='I'
A9$="'ROOT#' ,DD,': ',A,'=',MZ.6DE"
DEF FNF2(U1,V1)=SQRT(U1*U1+V1*V1)
DISP "POLYNOMIAL ROOT FINDER" @ WAIT .5

INPUT ORDER, COEFFICIENTS, TOLERANCES
AND MAXIMUM NUMBER OF ITERATIONS

0090 'ORD':
0100 INPUT "ORDER OF POLYNOMIAL? "~N

0110 IF N<=l OR N#IP(N) THEN DISP "INVALID ORDER" @ GOTO 'ORD'
0120 ON ERROR GOTO 'MEM'
0130 DIM A0 (N) ,R0 (N,2) ,L (2) ,C9 (N)
0140 FOR I=N TO 0 STEP -1
0150 DISP 'A('~STR$(I)~') ='; @ INPUT A0(I)
0160 NEXT I
0170 'TOL':
0180 E1=.0000000001 @ SCI 0
0190 INPUT 'TOL. FOR ROOTS=' ,STR$(E1);E1
0200 INPUT 'TOL. FOR FCN=',STR$(E1*100)~E2
0210 STD
0220 'IT': INPUT 'MAX # OF ITERATIONS='~I0
0230 IF IP(I0)#I0 OR NOT 10 THEN 'IT'
0240 DISP 'LOOKING FOR ROOTS ••• ' @ WAIT .5
0250 J=N @ K=0 @X=0 <!. Y.::.¢
0260 'FINDR':

**** IS ZERO A ROOT? ****

0270 IF NOT A0 (0) THEN IpAft,'

**** INPUT NEW GUESS IF ITERATION LIMIT EXCEEDED ****

0280 'LOOP': K=K+1
0290 IF K> I 0 THEN DI SP 'NO CONVERGENCE' @ WAIT -1 @ GOSUB 'NUROOT'

**** CALCULATE P, pi, AND pi' AT Z(x,y)

0300 R=X*X+Y*Y @ D=X+X
0310 D0=0 @ D1=0 @ C0=0 @ C1=0
0320 B1=A0{J) @ B0=A0(J-1)+D*A0(J)
0330 FOR I=J-2 TO 0 STEP -1
0340 IF 1=0 THEN D=X
0350 IF I>J-4 THEN 380
0360 V=D1*R @ D1=D0
0370 D0=C1+D*D0-V
0380 V=C1*R @ C1=C0
0390 C0=B1+D*C0-V
0400 V=B1*R @ B1=B0
0410 B0=A0(I)+D*B0-V
0420 NEXT I

page 58

, I

(--

(

LISTING

**** BEGIN CALCULATION OF LAGUERRE STEP ****

0430 P(1,1)=B0 @ P(1,2)=B1*Y
0440 P(2,1)=B1-2*Y*Y*C1 @ P(2,2)=2*Y*C0
0450 P(3,1)=2*C0-8*Y*Y*D0 @ P(3,2)=2*Y*(3*C1-4*Y*Y*D1)
0460 CALL MULT(P(1,1) ,P(1,2) ,P(3,1) ,P(3,2) ,S1,S2)
0470 S1=-S1*J*(J-1) @ S2=-S2*J*{J-1)
0480 CALL MULT {P (2 , 1) , P (2,2) , P (2,1) , P (2,2) , S 3, S 4)
0490 S3=S3*(J-1)A 2 @ S4=S4*(J-1)A2
0500 CALL ADD(S3,S4,S1,S2,S1,S2)
0510 CALL SQAROOT(S1,S2,S1,S2)
0520 CALL ADD(P(2,1) ,P(2,2) ,S1,S2,L1,L2)
0530 CALL ADD (P (2 , 1) , P (2 , 2) , - S 1, - S 2 , L 3, L 4)
0540 CALL DIVID(P{1,1) ,P{1,2) ,L1,L2,L1,L2)
0550 CALL DIVID(P(1,1) ,P(1,2) ,L3,L4,L3,L4)

**** CHOOSE SIGN OF DENOMINATOR TO ****
**** PRODUCE SMALLER LAGUERRE STEP ****

0560 IF FNF2(L1,L2)<FNF2(L3,L4) THEN S1=L1 @ S2=L2 ELSE S1=L3 @ S2=L4
0570 L(1)=-J*S1 @ L(2)=-J*S2

**** FORCE REAL ROOT ****

0580 IF ABS(L(2»<.0001*FNF2(L(1) ,L(2» THEN L(2)=0 @ Y=0
0590 X=X+L(1) @ Y=Y+L(2)

**** CHECK FOR VALID ROOT ****

0600 IF FNF2(L(1) ,L(2»>ABS(E1) THEN 'LOOP'
0610 IF FNF2(P(1,1) ,P(1,2»<ABS(E2) THEN 'FAR'
0620 DISP 'INVALID ROOT FOUND' @ WAIT 1 @ GOSUB 'NUROOT' @ GOTO 'LOOP'

FOUND VALID ROOT(S) - IF COMPLEX
ROOT ASSUME CONJUGATE IS A ROOT

'FAR' :

GOSUB 'ROOTI'
0630
0640
0650
0660
0670
0680

R0(J,1)=X @ R0(J,2)=Y @ IF Y THEN
DISP 'i OF ROOTS FOUND =';N-J+1
IF NOT FNF2(R0(J,1) ,R0(J,2» THEN
J=J-1 @ K=0 @ IF NOT J THEN 'DR'
IF J=1 THEN R0(1,1)=-A0(0)/A0(1)

GOSUB 'ROOT0' ELSE GOSUB 'DEFLATE'
.

ELSE K=0 @ X=0 @ Y=0 @ GOTO 'FINDR'

**** DISPLAY ROOTS ****

0690 DISP 'i OF ROOTS FOUND =';N
0700 'DR':
0710 FOR I=N TO 1 STEP -1
0720 DISP USING A9$;N-I+1,A7$,R0(I,1) @ GOSUB 'WAIT'
0730 DISP USING A9$;N-I+1,A8$,R0(I,2) @ GOSUB 'WAIT'
0740 NEXT I
0750 'DONE': PUT "i43" @ END
0760 'WAIT': IF KEY$=' , THEN 'WAIT' ELSE RETURN

page 59

. I

LISTING

**** DEFLATION ROUTINES - IF ROOT IS REAL, DEFLATE BY
**** LINEAR FACTOR (x-r). IF ROOT IS COMPLEX, DEFLATE
**** BY BINOMIAL XA2-2Re{r)X+!!r!!A2.

0770 'DEFLATE':
0780 IF Y THEN 'DEFLATEI'
0790 C9{J-1)=A0{J)
0800 FOR I=J-1 TO 1 STEP -1
0810 C9{I-1)=A0{I)+C9{I)*R0{J,1)
0820 NEXT I
0830 FOR 1=0 TO J-1 @ A0{I)=C9{I) @ NEXT I
0840 RETURN
0850 'DEFLATEI':
0860 C9{J-1)=A0{J+l) @ C9{J)=0 @ IF J=l THEN RETURN
0870 FOR I=J-1 TO 1 STEP -1

0880 C9{I-1)=A0{I+1)+C9{I)*R0{J,1)*2-{R0{J,1)A2+R0{J,2)A2)*C9{I+1)
0890 NEXT I
0900 FOR 1=0 TO J-1 @ A0{I)=C9{I) @ NEXT I
0910 RETURN

**** DEFLATE FOR ZERO ROOT ****

0920 'ROOT0':
0930 FOR 1=0 TO J-1 @ A0{I)=A0{I+1) @ NEXT I
0940 RETURN

**** SET NEXT ROOT TO COMPLEX CONJUGATE ****
**** OF COMPLEX ROOT JUST FOUND ****

0950 'ROOTI':
0960 J=J-1 @ R0{J,1)=X @ R0{J,2)=-Y
0970 RETURN

**** ASK FOR NEW GUESS IF FAILURE TO CONVERGE ****

0980 'NUROOT':
0990 DISP 'NEW GUESS? (YIN)'
1000 'W0': A1$=KEY$ @ IF NOT POS{A0$,UPRC${A1$» THEN 'W0'
1010 IF UPRC$(A1$)='N' THEN 'DONE'
1020 INPUT 'NEW u =' ,STR${X);X
1030 INPUT 'NEW v =',STR${Y);Y
1040 K=0
1050 RETURN
1060 'MEM':
1070 IF ERRN#24 THEN DISP ERRM$ @ GOTO 'DONE'
1080 DISP 'LOW MEM - REDUCE ORDER' @ WAIT 1 @ GOTO 'ORO'

**** ADDITION OF COMPLEX NUMBERS ****

1090 SUB ADD(U1,V1,U2,V2,U,V)
1100 U=U1+U2 @ V=V1+V2
1110 END SUB

, I

page 60

(

LISTING

**** MULTIPLICATION OF COMPLEX NUMBERS ****

1120 SUB MULT(U1,V1,U2,V2,u,V)
1130 U=U1*U2-V1*V2 @ V=U1*V2+U2*V1
1140 END SUB

**** DIVISION OF COMPLEX NUMBERS ****

1150 SUB DIVID(U1,V1,U2,V2,U,V)
1160 CALL MULT(U1,V1,U2,-V2,Zl,Z2)
1170 D5=U2*U2+V2*V2 @ IF NOT D5 THEN U=0 @ V=0 @ GOTO 1200
1180 U=Zl/D5
1190 V=Z2/D5
1200 END SUB

**** SQUARE ROOT OF A COMPLEX NUMBER ****

1210 SUB SQAROOT(U1,V1,U,V)
1220 A2=SQR«SQR(U1*U1+V1*VO+ABS(U1»/2)
1230 IF NOT A2 THEN U=0 @ V=0 @ GOTO 1280
1240 B2=V1/(2*A2)
1250 IF U1>=0 THEN U=A2 @ V=B2 @ GOTO 1280
1260 U=ABS(B2)
1270 IF B2>=0 THEN V=A2 ELSE V=-A2
1280 END SUB

page 61

. I

••

(

)

'! ft

00071-90064

Flin- HEWLETT
~~ PACKARD

: I

Printed In USA

5/16/84

ERRATA: HP-71 MATH SOLUTIONS BOOK

Page 57:

\. 3) Enter the coefficie~~:,
starting with the highest
order term.

\ 7) Calculation of roots begins.

\. 8) Display real and imaginary
parts oJ each root.

"" Page 58:

0259 J=N @ K=0 @ X=0 @ Y=0
0270 IF NOT A0(0) THEN 'FAR'

. Page 59:

5[ENDLINEJ A(5)=?
-45[ENDLINE) A(4)=?
225[ENDLINE) A(3)=?

-425[ENDLINE) A(2)=?
170[ENDLINE} A(l)=?
370[ENDLINE} A(0)=?

~590[ENDLINEJ TOL. FOR ROOTS=I.E-18

<any key>
<any key>
<any key>
<any key>
<any key>

• OF ROOTS FOUND= 2
, OF ROOTS FOUND= 3
OF ROOTS FOUND= 4
OF ROOTS FOUND= 6

ROOT' 1: R= I.B00900E+900
ROOT# 1: 1= 1.000300E+000
ROOT#: 2: R= 1.009000E+000
ROOT' 2.: 1=-1.003000£+000
ROOTi 3: . R=-1.000900E+099

. ROOTI 3: 1= 0.900000E+000

0720 DISP USING A9$:N-I+l~A7$,R9(I,I) @ GOSUB 'WAIT'
0730 DISP USING A9$ N-I+l,A8$,R0(I,2) @ GOSUB 'WAIT'

Pag-e 61:

1220 A2=SQR«SQR(Ul*Ul+Vl*VI)+ABS(Ul»/2)

2

: I

r

7

5/16/84

ERRATA: HP-71 MATH SOLUTIONS BOOK

Page 9:

\ 0200 IF NOT FLAG(l) EX OR FLAG(2) THEN DISP 'I/O INCORRECT' @ WAIT 2 ELSE 'AI
'0510 IF FLAG (2) THEN CALL C2R(X0,Yo)

Page 15:

" 4) ~ey in the number of points. 9 [ENDLINE] Interval length=3

\5) Key in the interval length
for the partitions. .25[ENDLINE] E(0)=0

Page 18:

'-. 0580 R=A(0)+A(N)

Page 27:

"\0~90 M$=KEY$ @ IF M$="" THEN 90
\. 0160 A$=KEY$ @ IF A$="" THEN 160

. \ 0230 A$=KEY$ @ IF A$="" THEN 233 ELSE "F"

Page 28:

"'-.0410 A$=KEY$ @ IF A$="" THEN 410

Page 34:

'\ 3) Key in the number of rows. 5 [ENDLINE] A(l,l)= 0.0300

Page 36:

"3) The order is 2. 2
[ENDLINE] R(l,l)= 0.3000

"" 8) Choose solve option. S BR(I)= 4.0000

Page 48:

? '-.... 6) Frequency doma i n ou tpu t. DC TERM=0
MAX FREQ~ =0

I

, I

<any key>
<any key> FREQ DOMAIN OUTPUT:

IR= I.000'10E+900

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

