{78 Fackaro

>

EWLETT !
wARD.

- fable of Contents
Section 1
BALROBUCHION .o eeee e e e e e T [N}
Section 2
Verston HentIICAtIOn oooan o e 2.0
Section 3
Working Environment
31 Printer ASIERMEDLS ... oooooo oo e M
3.2 Required Modules ... oot e T T 32
3.3 CaRG RERAET ... ocoanoneereesns ome e LoN2
3 4 Memory REQUITEMERIS .. ooooossn ooensrnss s sns i mrer e e . S
Section 4
User Environment Preservation ..
PR T L T 8]
GAFIAES oo oe o oree e A 5.
‘ ‘ € 3 1/O ABIBRMERIE. ..o smssss cossss e 4.3
4 4 Display AREDULES. oo ooeeno e T 4-3
4.5 Allernate Character Sel.ooooon coeesrern i 4-4
G EIATTNIKEY .. ooomr enssnmene s 1-4
47 NUMETIC SEUNES oo oneeocomen ooessns s 4.4
A BKeEY FUES oo oo e s
49 Manual COMBIBERAUOR ..o oor oo mensss s en s R
Section § ¢ .
Messages To The Useroooooeee rmesmmnrnrn sty ¥ s
Sectlon 6
\ Waiting For The User: KEYWAITS ... RAARRELIRE 3 6-l
' ‘.
Section 7 f
I Optlon Selection
7.1 Command ERUFIES o oveoeereneanns oems s R 2
7.7 Immediate Execute Menug.ooooooemnrrnr it S S 12
‘ B 2

7.3 Fixed Option Menusoooece

Table of Contents

Section 8
I, oo -1

Sectlon 9
faput Routines

@ 1 CUISOE COMMEOL .« et m e et n e s T 9-1
9 2 NUMEHC ENUEY . . oottt manae e e s s e s o n e es s 9-1
9 3 Numeric Entry With OpliOnooutoimie et 9-3
QASIENG ENtry ... e . 94
9. 8§ Y 08 NOT. . ..ottt 9.5
9.6 Protected Field ERUIY . ..o oo oot ne s 9-6
Section 10

INPUT Alternative: EINLINE ... ooo oo e 10-1
Section 11

File Name Verification

101 File Names FOF LOAAIRG - o onnvoono s immnremeen s s m s e 1-4
T1.2 File Names FOr SRVIRE. . .. oovvnreneensnrnmnrs st ns s s s s m et 11-3
L1 3 NamEs OFf SUBPrORFAME <. - . oo ons s eeaeman s s s s e s oo s et bttt 11-4

Sectlon 12
Output Routines

Section 13
Internal Calculations

13,1 Changing ATray SiZe8. ..o oo conneonnsoee e nsnee e e
1}. 2 Adding And Deleting Rows
13.3 Adding And Deleting COIUIMIE - .o oovovensrrnen e e r s n T

Section 14 ‘
Error Messages: MSG$ & Translator

14. 4 MSGS S 14-1
18,2 TEANSILOTS -« o ovneenn o en e oo s s e e s 14-2

¢

ot B

Ta. le of Contents

Section 1§
Speed and Space
5.1 Variable NAMES oo e e A5
15.2 Line References. L1540
15. 3 Multi-line Statements 151
DS A LOOPE o ov et et e 15-2
15.5 Clearing Arrays and Strings o182
15.6 Logical Expressions.ot 182
15.7T Device Addressing ... 18
Section 16
HPAF File Standard
16. 1 Header infOrMBTION cooneornns e 62
16,2 DALE FECOTAN . .o vee oo e e aem e oes st ih-2
16,3 Descriptor BIOCK ..o ou vt e e T A6
Section 17
String Functions
P70 MEMBER . ..o\ oie it e e e s AT
17,2 LTRIMS, RTRIMS, TRIMS ..o e L1712
17.3 LWCS, LWRCS e A
ITAREVS ..o 74
B7 8 ROTS - oot e nmeee e s e e e e 17.5
FI6 RPTS oo eeeenan s e ean st s s 17-6
BT SBIT « o oot ee e e 177
I B SBITS oot A7
DE9 SPAN .t eeene e e LA
Section 18)
BREAKPT: BASIC Breakpoint Systom.ooocoveincmemrersiomremsn RLN
i
5 I
Section 19 | s ,
KEYBOARD IS - Using A Terminal I f .
19. 1 KEYBOARD IS With HP-150.......... Liieeens e A9t
19.2 KEYBOARD IS With HP-2648 Terminal . ; L4922
19.3 Disabling KEYBOARDIS .0 19
Section 20 ,
Graphics .
20.1 GEDIT - Graphics EIOr ..o orons s s s st 20t
2002 PATTERNS -« coeemnomareaan s e s se s e piiN}
0.3 ERRMPIE - o cveeonii s e PP -1
!

Table of Contents

Section 21 ‘
Forth Ulilitles ' ~

21.1 Loading FORTH Unility Files e 21-1
21 DeCOMPIINE . . oot e 24-2
. 3 SINRIE S P PINE. - oo e e 21-3
2.4 Memory EXamination i e et 21-5
2 S OULPUL . oo oot e e e 21-6
206 MISCOIBRCOUS . - - . it e e 21-7
.I. [
i .
Lo ' i

AT

SEGTION.

Py

Introduction A
1]

This document is a 'cookbook’ for applicati 1s programmers working with the HP-71. Two goals are
envisioned: [irst to serve as a timesaver, and ccond 1o suggest a measure of consistency among programs
written for the HP-71. While there is no ope of addressing all posible applications on the HP-71,
common subjects such as user interface, envir :nment preservation, and error trapping are discussed. The
specifics of each application are left to the pri grammer.

¢"

By

Version ldentification ’ SECTION]
2

Any BASIC, BIN, or LEX file which is a. likely to hit a wide market, b} not so trivial as to be 190%
perfect, and c) likely to have software w itten to interface to it, is a candidate for requiring version
numbering. Like the mainframe version n:.mber (eg: 1EEEE), a version number is useful in identifving
the version of a piece of software which m 1y go through several revisions. Service and swpport personnel
may need to know which version of softwa, ¢ is in use to help answer questions.

LEX files contain a poll handler which an wers the VERS poll. For instance, the KF YROARD lex file
returns the string "EE: 4" For more inl «rmation about the VERS poll, refer to the Software Internal
Design Specification, Volume |.

BASIC and BIN files should include a suoprogram named “‘EF,; that returns the version string. For

example:
SUB VERECRI Y R AE="001Y @ EHDIUB

This occupies 34 bytes. A L1l stateme it may be used to determine the version of the softwars as .

fotlows:
CARLL * ERCHED TH <file name»

Nonexecutable files (eg. DATA) cannot res.ond to the VERS polf, or contain a subprogram. If such a file
is revised, some method of identifying 1.e version should be provided, such as a dedicated reiord
containing a version number. If a data filc is in the HPAF format, a tag in the descriptor block might bhe
used to contain a version number. Section 1 4 contains a description of the HPAF file format.

Ao L

s

SECTION

Working Environment ‘ 2 }

The “working environment” defines the physi al environment, hardware and software configuration uader
which tasks are performed. This “environme at" may have varying impact upon software considerations
For instance, if the HP-71 is being built into n instrument as & “front panel®, the hardware configuration
is likely to remain fixed, with only dedicated ioftware in use. At the other end of the scale, a mechanical
application program might be found in 8 ..umber of different situations, from the classroom to the
drafting table 1o the machine shop. In each « [these situations the number or type of peripherals attached
to the HP-71 may be different. Software . »utines which produce reports may, under some conditions,
need to be sensitive to varying configurations

3.1 Printer Asslgnments

When different printers may be used, & di:. inction between printer types is desirable. The following
subprogram PRTYPE examines the current p: nter assignment and returns:

A = 0 Where the printer is LCD, *, or there is no HP-1L interface.

A = 1 Where the printes isa 24-colu an strip printer, or 32-column
video interface.

A = 2 For anything else.

D$ = Assignmeat string
10 SUBR FRTYPECR,DED .
20 OH ERRORE GOTO 1360 ‘-,'E
30 AS=FEEKS{"ZFTAC" 1> @ IF BITCHTOCAEY 300 THEH 120
49 PESTORE 10 @ PRIMT ""§ i
59 A$=FEEETCZF74", 3D @ IF Af="00F" OR REE"FFF" THCH 130
&0 RE=ATL3 $L2,2J0A%C1,1) @ A=HTDCAE> X e
78 L=A DIV 441 B IF A$L2)="00" THEHW 136, .

ic

&0 R=BINANDCA, 31)+EIHANDCA, S 32> DIV 32/100 s :
ap E=FEEK$: "2FEDC", 20 @' STL i oy

B IF Lot THEM Di=5TRECAMS' :"85TRECL) ELSE DF=STRE(N:

g e

110 POKE "ZFEDCY,0f
120 GOTO 149 :
130 R=D @ DF="%" @ GOTO 160 ' Y S
140 R=DEVAIDCOD$Y :

150 IF R=22 OF A=4% THEN A=1 ELSE A=Z
160 OFF ERROR # END SUE

Lmnfan

L - s
P

Working Environment

PRTYPE provides a non-intrusive examination of the printer assignment. The principal advantage is that
output routines can customize themselves to the existing machine configuration without disturbing the
configuration or asking the user any.questions. Depending upon the result from a call to PRTYPE, the
software may choose to send results to the printer, or send a line at a time to the display, waiting for &
keystroke between results 1o avoid hurrying the user.

i
b
3.2 Required Modules

!

In cases where an application pac qu‘llt! the presence of another module, a test should be made early on
to verify that module's presence. This avoids the situation where an application halts at some line in a
program with a mainframe error, leaving the user suspended in an environment with little hope of clean
departure.]

A simple test involves examining the string returned by the “EF$ function for that module. For
instance, suppose you wish to verify that the MATH module is in the machine:

20 IF HOT FOSOVERS, HHTH:") THEH OISF "Ho MATH F‘a\:* @ GOTO 928
. ‘ t
3.3 Card Reader

—— i 3 wran

If 2 card reader is required, its presence may be detected by examining location 2C01 4. A non-zero value
at this location indicates a card reader is installed:

‘
1289 IF FEEEF("2CD14", 13="0" THEHW DISF "Ho Card Reader®

3.4 Memory Requlrements

Calculatirg the amount of memory needed to run an apphlication at any given time can be difficult. One
procedure for estimating memory requirements involvel a trick:

1) Execute a EHD' ALL and a DESTEQY ﬁLL to collapse environments and vunblel. Purge
any key assignments that may be utlbhshed wi!hm the program. :

. .

2) Do a MEM, and write this figure down.

3) Run the application, aligi piuu at a place you suspect takes the most memory. Do a MEM '.l‘nin.
| , .

The difference between the two results represents the amounl of memory used by the program at that
point. Next compute an overhe:& figure to accomodale unexpected events, such as interrupt processing,
string operations, and so on,. , it 'fudge factor' is an insurance policy agrinst unexpected program craslfes,
such as interrupts from olher pacn, hqer than expected bul’fcr requirements, and lo on

The ‘fudge factor’ may vuy in dlc from application 10 application. Actions lhlb take lots of memory

include concatenation of Targe ttrmdl calls to user defined functions: FHACA, B, 0¥, calls to other
- L) \

4 v o ot

}-2 .

"

"

Working Environment

sub-programs, use of 1MAGE statements, a \d oppn file channels. Some experimentation may be required
to determine an appropriate ‘fudge hc(_o.. In; previous applications, 300 bytes seems to have been a
reasonable size. i

1 .

In cases where a file is to be added to mair memory (filez MR TH), & check should be made to ensure that
sufficient memory exists prior lo creation. Simply putling an error trap around a CFEATE and a MEM
test afterwards has proven dangerous. Inst; nces have occurred where sulficient memory was available for
file creation, but the program crashed imr ediatly thereafter due to lack of scratch memory for normal
execution. The amount of available mem ry fdr file creation should be equal to the file size plus the
'fudge factor’. ;

"

Y

SECTION

User Environment Preservation l 4 J

LGN

At .'/

Preserving the user's environment can be & tirly difficult 1sue, depending upon the application. In the
case where the HP-71 is being used in a ded :ated environment, for one purpose only, there may be httle
need to worry. In cases where an applicat n is being marketed st a general purpose solution, careful
preservation of the environment is extrem.iy important. The HP-71 has many settings that control
display attributes, math functions, and so n. These settings are 'global’ in nature - they affect all
programs and actions. In addition, variables . re global, so they might be used by the user 10 store pervoral
information. It is inappropriate to destroy th user's information.

4.1 Varlables

The simplest way to preserve user variab s is to run the new application in ils own subprogriin
environment. Create 5 subprogram with the .ame name as the user would type. For example:

File: AUDIT

| AUDIT Copuright o2 LAE Inc.e, 1334

14

28 CALL AUDIT

20 SUE AUDTT v

40 1F MEM: 299 THEH DISP MSG) o243 & GOTO 2450

2450 EHND SUR

]

R
Y

In this case, the UWr’ cah press [RUN] when the file pointer indicates the file ALILI) T, or he can type
CALL AUOIT or EUM AUDIT. When i UOIT terminates, the user's environment 1s restored, along

with his variables.

)) S O R B

& o

-
-
-,
—
~.
-~
o
o~

tiser Environment Preservation User Environment Preservation

’. ’ 4.31/0 Asslgnmenfs

4.2 Flags
If the application requires changing 1°O assignments, the FRIMTER I3 and DUSFLAY 1%
assignments may be preserved and restored
Although the application is running within its own environment, it is vital to remember that system flags
(-64 10 -1) and user {lags (0 to 63) are global ~ their states are the same regardiess of which environment
it active. There are two ways to preserve these flags - individually, or as a group. To preserve an

individual flag, allocate an integer and store the old value of the flag there until it can be restored. Yo save:
Example:

DISPLAY 1S: 78 [9%= EEKFC“ZFT20",7)

PRINTER IS: 20 FPI¥= EEK$("ZF734",7)
100 FS=FLAGL-1,13 Set quict mode, saving old value in F$
119 3=T-H Perform questionable operation KEYBOARD IS: 20 K%4= EEK$C"ZF73E", 7
120 FS=FLAGC~1,FS* Restore original value of flag - 1.

To restore:

The system flags are located at 2F6D9 (16 nibbles), and the user flags are located at 2F6E9 (16 nibbles). DISPLAY 1S: 2480 FOL E (O 0=k
The IEEE traps are located after the flags at 2F6F9 (S nibbles). If an application is going to work with a adin FOE "ZFFEL 4T & RESTORE [0

largé number of system flags, they can be saved as a group:
PRINTER IS: 3420 PO E “ZF74", Fas

a0 DIM FEFISIFPFI16),F2F05] Tosave RAM, dimension smali strings KEYBOARD 1S: 3448 i E "IF7HE",H9% & FOEE "2F il om0t

100 Fes=FEEK$<"ZFEDI",5) Save user-seitable system flags

19 FV . ZFEEI", 16D Save user flags

170 Fas=FEEKFC"2FEFI",5) Save IEEE traps ‘ ” Another approach 1o preserving the print r amsignment might include prompting the user fur alicynale
assignment. In the case where having a n. e “human readable” representation of the printer assicnnent

-or- is desired, use the subprogram FET'FE (i chapter 2).
100 0IM Fasl: Create on string (or all flags i
1189 FRF=FEEE$ " 2FR0A", 37 Save all flags in the same atring

4.4 Display Attributes

When the program terminates, restore the flags with & poke:

2943 POEE "2FeD2",F9% Restore original flag values 3

. Display attributes such as WIHOOKM, ELRY, l-lIDTHpa‘}‘i PHIDTH. and ENHOL THE mav be
preserved and restored. Use FEELE and F E to preserve these settings.
Note that using FEEK and FOEE for preserving and selting numerous flags results in a significant code : C

saving over the same procedure using CF LAG and SFLAG. For instance, if an application nceds Lo assert R
quiet mode and continuous operation, leaving other system settings in their default (power on) settings: ' ’ ’ Address Length Descrlpt:on 4
2F4TY 4 Window 81 11t and length
200 F3$=PEEKSC"2FE&0?", 5> @ FOKE "2Fel3", "Seaan 2F946 4 Scroll and lelay rate timer
2F94F 2 Display w ith
~instead of -) 2F958 2 Printer wi- th
2F95A 7 ENDLINE length and characters

200 F3$=PEEE$("2FED9",5) @ SFLAG -1 # CFLAG -2 @ SFLAG -3
10 FoR I=-20 to -4 @ CFLAS I R HEXT I (Lowercase mode is system flag -15)

s
—
-~

—

User Environment Presesvation

4.5 Alternate Character Set

Characters with ASCII character codes from §28 through 255 may be redefined by the user to represent
alternate forms, or letters. Il an application needs to define some alternate characters, any existing
character definitions should be saved and restored.

1100 DIN CEILEHCCHARSETS)Y) @ CE=CHARSETS

1
4% CHRRSET ©F @ END

=1

4.6 [ATTN] Key

The {ATIN] key may be locked out, preventing the user from suspending the program. There are (wo
methods of locking the [ATTN] key: redefining the key and using a FIOKE statement.

DISABLE: FOKE “ZF441%,"F"

ENABLE: FOKE “ZF441","a"

The FIOEE statement will prevent the [ATTN} key from suspending a program. In the event of

catastrophe, an THIT: 1 will usually bring back the HP-71.

To prevent the [ATTN] key from suspending an executing IMFUT statement, use 2 DEF KEY
assignment, eg: DEF KEY "#42",""{ In this case the user'’s keys file will need 1o be preserved and
restored.
Past experience indicates that if the [ATTN] key is to be locked out, both methods should be used.

;
4.7 Numerlc Settings
The settings that control the format of numbers, F 1%, STD, and EHG may be preserved and restored.
These settings are controlled by system flags. A quick way to preserve them is with 2 FEE}:

259 FI4=FEEK$C"ZFEOC",2) @ STD @ A$=STRICG) € POKE "2F6DC“,FS$

4-4

\ -
T T S S S aay e s

('

U B

"

"

User Environment Presccvation

4.8 Key Files

An application that redefines the keyboard will have to prescrve and restore the user's key deflinitions.
Several existing pacs have dealt with this i .ue; Finance, Curve Fit, and Text Editing In each case, the
current keys (if they exist) are kept in a emporary file "VSERKE'VS”. To prevent any chance of a
program ‘crash’ leaving the user suspended v ith a redeflined keyboard, restrict the duration of redefsnition

as much as possible. For example:

i

I=FLAGC~1, 10 @ I1=sFLAGY 2,10 } Set quiet mode, gzar mode
FLUEGE WIEREEYS # OH ERFOF GOTO 130 .

FEHARME EEYWS TO USERKEYS
MERGE PACEEYS @ OH ERRO. GOTO 1S9 @ POKE "2F441","F*
OISF MEGEC1EDs @ THRUT 1

OFF ERROR 2 FURGE KE 4 QH EFFEOR GOTO 170

REHAME LSEREENS T KE'

=

1%

Dol

d

oy

o

Poghiod]

el X oy e
A o T e a0 T e S

FORE “"ZF441","a", » v FROCESS!
3 DISF ERERMS$ @ GOTO 149
S8 'PROCESS':

'

This routine is useful when entering a strin or responding to hidden key deﬁnili«lms Lor instance, with
this routine the user could either enter a s ring, or press a previously defined kev to branch (o anniber
part of the program. This is one instance here key definitions terminated with a colon ' : * are very
handy. Suppose the following keys are defiy ¢d:

DEF KEYV '+°

y'addT1
DEF KEY *‘~'y'zubii’':
DEF KEY '$9',''; . Lock < at USER key
DEF EEY '#50',''; Lock «ut [*)
OEF KEY '#51','"'; Lock « ut [v]

If the user presses the {+] key, 1$ would take the value 3447 1, and the display woukl remain unchanged.
Likewise, if the user presses the [~] key, I$ -ould take the value ‘gub?l. If needed, the contents of Yhe
display after the-prompt can be read will: th- QI ZF ¥ statement. |

In the above example, the U. ER mode key and the keys for the command

stack have been 'locked (ut’. While each application has different

requirements, there may be ¢ ie or more keys which should be locked out to -
provide a ‘cleaner’ interface. This merits careful examination.

&

: € s
U=
W ey S D GEEE, N (WSS) BN, W R T -

User Eavironment Preservation

When delining keys for an application, keep in mind that a foreign language might use a different letter
for a cerlain response, so M55 § should supply the definitions. For example, if you want [Y] to display the

word "Yes", use:

419 DEF EEY HEGHEI1423001001,13, 264014

instead of:

4 l':‘ ['EF HE-‘- nesn . " s..'.:_'_:.: " 3

4.9 Manual Consideration

This technique depends on each option having a different letter for each
response. When translating an application ensure that each command ina
prompt begins with a unique letter!

While an application may preserve global system settingy, it is still important to indicate their use in the
owner's manual. In the event of a breakdown of the software, the user should be able to recover his
environment with help from the manual. Information in the manual should include a list of settings that

are changed and a list of any temporary files that are created.

"

"

™

—~~

Messages To The lser

L5 |

Prompts, status messages, and error messa; -§ destined for the LCD should be easy to understand and
wpelled correctly. When shorlening & me: age, do not introduce ambiguity by eliminaling tov many
words. Also, to shorten individual words, on t as few letters as possible. Try to avoid cryptic messages. In
addition, messages should fit within the disp 1y window.

’A
The following is a guideline for messages in he display:
1) A question mark implies that so ae response is required:

If a cursor is present. the entr. is terminated with the IENI)LINF.I keystroke {such as lile
name entry).

If no cursor ia present, the first letter of each word denotes the appropriate key to press The
first letter shoutd be capitalized the rest should be in lowercase.

2) If 2 long operation is in progre: ., a stalus message is suggested. No reSponse is required. 1'or
fong calculations, use "Working. .

3) Use mainframe messages as muc 1 as possible, or use similar internal words

Some examples:

Status message
Morking. . . J

I:Qa-:lirn-;. .] Status micssage
i
tr
Data Edit Fit oQuit? Immediate executé menu (no cursor)
' fyt p
1::'3
£
File nane?, Prompt with cursor . .
i
MARHING: Low Yoltags Warning message |

Memtaea To The Drer Waiting For The User: KEYWAITS
WFH: Undert Low Found Warning message ‘ ~ 6 J

EFFOR: Tera Tolerance Error mesmage There are many circumstances where the 1.P-71 is doing little more than sitting, waiting for a keystroke.
During these times, the machine is still aw. ke, consuming battery power, while accomplishing little fos the
user. A keyword called KEHATTE is available, and presents some unique opportunsties | EVHAITE
places the HP-71 into a low-power state) ntil a key is pressed, then returns that key in the same (ormat
as FEW'$. IMPORTANT: If the attentior key is not disabled, KEYHRATITE will return "#4 3" but the

EFF: Insufficient Men Error mesage machine will still pause.
Example:
Total= 247,232 Result . . . _ .
50 KE=KE. 8 2 IF Ef="" THEH 250
\ is replaced by: 390 Es8=KE HAIT#

I an application is destined for a world market, M1Z0GE should be used to generate all messages (and all

comparison strings for incoming messages.) The HZG$ Keyword fetches messages from a LEX file table,

allowing them 1o be accessed by number. More importantly, HEG$ performs a translating function. For

example, the message . The key buffer can contain up to 15 keys or keystroke combinations. The format in which the key lata
‘ ~ is returned is the same as that for EEV#. " he string returned for a given key is deterimined as follows

Mok ireg. .. o If there is a single ASCII chara iter that uniquely identifiea the key, FE'VHIT T1 returns thas
character. For example, & iden ifics the [Q] key and 3 identifics the {gl-slulted (Q] key

¢ 1f the key is an [f}-shifted o: (g)-shifted key, and the key's primary function is umiquely

conld be displayed with: V identified by a single ASCHI ch .racter, then KEVHALTH returns a two-character string. s
string consists of or3 follow :d by the corresponding primary character Forexample, -1 ix
120 DISF MSGECIO403E) ! the [g}-shift of the [0] key.

o If neither of the above apply, ! E'.'n"I-IHITf- returns # followed by the decimal numbered key
so that a localized Spanish language version of the application pac would display: code for that key. For exampl: KEYHRITE returns#4c" for the IRUN| key
. : "
i s
. . The LC statement does not affect the retus aed string. :

Trrabajando. .. I“ v

A

IR

"N

ws-z§ B (& ‘ . @'«-n

v At At

"™

™

)

Ci 0))

Option Selection

L7

At first appearance, the 22-character d: play on the HP~71 might seem to be an obstacle to creating
friendly menus. Actually the architectus - of the HP-71 provides for several possibilities Regardless of
the specific application, option selection n a handheld/portable environment should be reduced 1o the
bare minimum of keystrokes. Prompts in : ne display should be as legible as possible

7.1 Command Entrles

When an application is command driven, - he Text Editor, for example), consistency in movement hetween
states becomes of paramount importance. If a command is defined in some places as a handy ‘escape’ key,
it should work the same way at all ti-ies. Entries should be case independent if possible, so that
commands work regardless of the case of he entry. If possible, build the display prompt with soine ‘clue’
as to the state of the program. For inst. ace, the Text Editor uses different prompts between command
and editing levels.

Some examples:

Input/Result
IF:e-:r.nrd irng option? | Command prompt
Lewel S¢ Command? l Command prompt w/ status

Option Selection

7.2 immedlate Execute Méenus

When a tree-structure of options is used, immediate execute menus should be used. This reduces the
selection of an option to 2 single keystroke. For example:

1 lDats Edit Report Quit?

L_——o END

2 |Load Save Print Quit? 3 |Weekly Monthly Yearly?

Edltor

fn each display, the key choices are indicated by the capital letters. Pressing the (D] key in the first box
Jeads to box 2, and 50 on. In this application, Quit is the escape mechanism. In box 3, the [Q] key should
alse be active Lo enable a return to box 1, 50 as to be consistent with the other menus. An example

implementation of box 1 locks like:

0 DISF "Data Edil Feport Quit?"
J P DERD" S WFRCECKEYHAT T2+
20 OH P GOTO 2789, OTA' . TEDT, "RFT', OUIT

Notice that this handles an unusual circumstance with little extra effort. Suppose the user presses the
attention key and suspends the program. When the user presses f} {CONT), execution of line 280 will
proceed with the result of KEYMAIT# being “#43% The FI35 command will return zero, causing the
branch to line 270. This restores the prompt in the display, so the users may’ continue without confusion
s to where they are in the application.

Some shifted keystrokes will return “* or “g" as the first character of the
resuit of KEVHAITS. 1f 'F or " are allowable keys, they should appear
fast in the match string to avoid possible input errors.

M

"

€N

Option Selection

7.3 Fixed Optlon Menus

Configuration of a device or a sel of precon. itions for & calculation can be reduced toa few keystrokes by
presenting a two-dimensional picture of b ¢ options. This ‘picture’ would conlam all available, (ixed
options. '

For instance, suppose & mullimeler is being configured for an experiment. There are four settings to be
made: the type of measurement, accuracy of the measurement, choice of input channels, and data rele
Each setting has a number of different opt ons. A common approach is to prompt for cach setting. A
faster method is to present a menu that can ¢ scrolled by the user.

CURRENT OPTION AVAILABLE OPTIONS

MEASURE: Ohms hms Resistance Current
ACCURACY: 3 Diglts . Digits 4 Digits S Digite
INPUT: Front ront Back

l;ATA RATE(Pt/min) 100 | 00 200 500 1000 S000

Define the vertical arrow keys 1*] & {v) 1459 and #51) t0 sctoll in wrap-around fashicn between
MEASURE, ACCURACY, INPUT, and DATA RATE. Define thellliorilonlnl arrow keys [<] & D>l H IV
and #:12) to scroll in wrap-around fashion | ctween the options n}he current setting.

G
Selection of an option could be made simply by leaving the option’; f the display, or requiring a keystrrke
to select the option. Another key would be sed to exit the menw. %, wie

: 1 :

The user can now examine atl four settings wnd exit the menu wit 1':Iour keyn}okes. If the user wishes o
alter just one option, the maximum number »f keystrokes ever nee 'éd would ba 7, including the exit frym:
the menu! ! 4 i

i
Option Selection ' .

i .

) . L. s .
Suppose the user wishes to change the accuracy from 3 digits to 4 digits. In this example, & horizontal
opticn is selected merely by being in the display, and the {ENDLINE) key exits the menu. The sequences
on the left and right yield identical results. The right column shows the user taking advantage of the
wrap around selection of chgices. |

MEASURE: Ohms

IOTEASURE: Ohms ;

{vl Goto ACCURACY .lulnq (v} Goto ACCURACY sstting
h

)

[ACCURACY: 3 oigite |

ACCURACY: 3 Digite '

[>] Select 4 Diglts option {[<] Select S5 Digits option

¥
ACCURACY: 4 Digits ACCURACY: S Diglts |

. ;
[>] Select S Digitsloption [ENDLINE) Exit menu
! i

Press any key to begin

ACCURACY: S Diglts

]

[ENDLINE] Exit menu

Press any key to begln

Three keystrokes

TOTAL: Four keystrokes

'y ‘

i1l be § digits. . "
Lo : N

Note that an implementation of this technique can be;‘uqarl'. For instance, suppose that the magimum

data rate for § digit accuracy is SO0 readings per minute, ’ If the user enters the data rate option, qaly the

100, 200, and 500 options are presented. If the user enters the accuracy option while the dﬂ‘l“"‘tﬁle is

2000, only the 3 digit accuracy oplioq is visible. Possibilities abound! k2

When the user returns to the menu again, the ‘accuracy

AT

™

o

™

If an application uscs a variety of commar Js that must be obtained from the manual. or a possibly mising
keyboard overlay, a heip file deserves .onsi eration. There are many ways to implementl 3 help
function ~ each application's needs will | : different. The following rouline suggests one method. This
routine reads lines from a text file, mak ng foreign language translation possible. In this example, the
help routine is activated by pressing the [> key yhen a menu prompt is in the display.

126 DISP "Dsts Edil Report Quit?" .
120 K$=UPFCECEEVHAITE) @ F=POSCUDERL?" K2
200 OH P+1 GOTO 190, 'OATA', "EDT', 'EFT', 'QUIT'y ‘HELF'

1900 'HELF': A=1 @ HM=16 ! H=Hunber of records in hele Hile
1310 RASSIGH #3539 TO "HELPTL T®

1026 READ #82,RiZ¢ @ DISFLAY 2% @ EE=UFRCFCEEYHRITE

1928 IF Ef="0" THEH RASTIGL #39 TO « @ GOTO 189

1040 IF Ef="#50" THEHN R=M[O{A-2,H2+1 -

1856 IF K$="#51" THEH A=MCOCAHO+1
1969 GOTO 1328 ’

Note that i the application is driven fro. 1 specific keys on the Keyboard, thej help routine above may be
extended. For instance, if pressing the V] key always triggers 8 specific kclion, such as computing an
interest rate, the help routine could respo id to [W] In the above eumple,p“ the Sth record in the help

file describes the interest rate calculdtion, the following line of code could be'(l‘ddcd:
: K

1855 IF K$="M" THEN A=5 - ;

. 0
Clearly there are many possibilities for help files beyond this eun%ple. Expe“mentation is encopra;hl i
an application can be easily run willhoul s manual and keybourd overlay,’using just the built-in help
commands, the user will spend more time thinking about the lllkfll hand, 'rg(her than computer scrence

problems. N

i

r"

"

) SECTION
input Routines -

Lo]

Standard input routines for an applicatio : reduce the chance of error, add consistency to a program. and
make the programmer's job easier. Th. following input routines are suggested for normal entry of
npumbers and strings.

9.1 Cursor Control

¢

When the user is editing an entry, the cui :or may not be placed over characters in the display buffes that
were written when the cursor was of". This technique is used in the implementation of the THein
statement, where the cursor may not over ide the prompt. This may be used in the construction of custom
input sequences.

To create non-editable c#ﬂucters in the display, send a ‘cursor of I* sequence before the characiers tha
you wish to protect, then send the ‘curso on’ sequence. The ‘cursor on’ sequence 13 PR TES R SR

and the ‘cursor off* scquence is CHR$CZ 38" <", The cursor control characters are not counted in llnc‘
96 character length of the display buffer.

Section 9.6 has an example of protected {1:1d entry which uses cursos control sequences to enter s date.

9.2 Numeric Entry

This routine accepts a single number froi the keyboard. For non-real data types, a declaration «f the
type is suggested at the start of the progr m. Note that if the type of incoming data is invahid, such as a
string “=4&F%", the system error message will be displayed and the user will be prompted agam Line
1300 requires a quantity that is greater th.un or equal to |, and is;not a Hal or Int

. K]

o . "\
199 RERL @ : ? P
1270 OH ERFOR GOTO 1299 i

280 INPUT fRuant itu?";0 & OFF ERFOR 2 QOTD 1386

A 1F @¢71 THEN DISF “EFR: Inwalid Duantitu® @ GOTO 1270

. Input Routines

If the application is going to have foreign language capability, the roul_ine Ic_)okl a little different. For the
following example, assume that message 5023 reads "Ent ot quant ity?™

O EFFOR GOTD 1=
THFT

OISk ERRME @ GOTO 1230
1F ‘1 THEH DISF HIGECSRI4) @ GOTI 1279

The escape codes in line 1280 are used to turn off the cursor while displaying the prompt, and then turn
on the cursor again. The trick is that when the user is editing the response, the cursor cannot be
positioned over a character that is written to the display when the cursor is of f. All of this is done g that
the user can pause the program with the [ATTN] key, press [f} [CONT), and get the prompt restored in the
display.

1f a default answer is going to appear, say 24, line 1280 would look Jike this:

1280 THFUT “" CHRECET 8" < eSO ECHRE (278 > 24" 30

Enter quantity?24

Leftmoat poasible position for curesor

NOTE

For convenience and ROM savings, the c;scape codes can be imbedded in the

HZG T message table itself. "

1
s

"™

(|

()

Input Routines

9.3 Numeric Entry With Option

The Curve Fitting ROM has a situatios where the user may sclect a single row from an array for
evaluation, or all rows a5 a group. A hybi d input module was devised which would let the user enter the
character [A] to evaluate all rows, or ente the number of an individual row. Pressing the [A] key reslts
in immediate printing of all rows, with no ENDLINE] keystroke required.

The following code (altered slightly for th. example) was used:

OIZP “"Fow 8 <or AL12) 'iCHES: PR OOF=KEYINITTS
© FEVHAITE="#42" THE | 1600
DISF CHRESY ; B OIF UPRCECOE»="A" THEH 190
1920 FUT of @ ON ERROR GOT 0 1056

1a48 THFUT ““3R @ OFF ERF Y @ GOTO 1060

1939 DISF ERFM$ @ OFF ERFEN @ GOTO 1000

198 OISF A @ STOF :

1979 DISP "ALL" ® STOP

Line 1000 displays the prompt, turns the ursor on, and waits for a keyv. If the [ATTN} key 18 returned
indicating that the program was suspended the prompt is displayed again.

Line 1020 turns off the cursor, and tests or the character "A” If the character 15 an "A" the propram
branches to the module for printing al rov s in the array.

Line 1030 places the character back in t ¢ input buffer, and uses an [HFLIT statement to ohtain an
individual row number. If an error is ence intered, it is important to rebuild the prompt. so the error trap
branches back to line 1000.

Experimentation with this technique is « wcouraged - it may be useful in simplifying uscr inter‘aces

and/or reducing the number of questions f: 1t to the user.

Input Routines

9.4 String Entry
Entry of strings is similar to that of numbers:

1) DIM F¥l=l

2170 o EFFOR GOTO 21720

Fpan JHRPOT "LOAD: File nane?"iFE @ OFF EFFOR B GOTO 22090
a0 01=F EFEME @ GOTO 212

0 IF LEHF#3=0 THEM DISF “irmealicd Filespec” 2 GoTO 2170

=
=

Or, for foreign languages:

7o oM ERFOR GOTO
Y THPUT " THRES W MEGE SRR LIHRECET IR > " F S
LOFF ERFOR ® GOTO 2218

Zran DISF EFFMS B GOTO 2180

510 1F Fi=ev THEM DISF MSGE(SHI2Y @ GOTO 2170

Again, the same technique with the cursor used in the numeric input module is used for string entry. I
there is a default answer, it may be included after the cussor-on command.

()

L)

Input Routines

9.5 Yes of No?

Answering yes/no questions should requi e just one keystroke. If an application has many of fhese
questions, a function may be created to sinoHolify the process:

OISF 0f ® [=P0SO H" U FLY CPEVHAITEC1, 1202 -1
IF I<@ THEHW 17
@3 FHy¢=1 @ EWD DEF

If the user suspends the program during tl s function with {ATTN], and then restarls, the prompt will be
restored to the display. .
NOTE
For foreign lan uage purposes, line 170 might read:

170 QISP 0f @ [=FOSIMSGE G ERET G URRCECKEYHATTE(L 10 -1

{uput Routines

9.6 Protected Fleld Entry r 1

Some entries, such as dates may require either a limited number of characters, or a specific number of
characters. This may be made more apparent to the user with the use of profected field data entry. For
example, suppose the user is going to enter a date. A protected field template may be constructed to
indicate the number of required characters, as well as the sequence of month, day, and year fields:

lalte?mm/dd/yy The user is prompted for the date.

The following routine may be used to sel up the date template:

1 OFTIOH BRZE 1
20 a1n 1Etital
) CE=UHE R ;
401 :
USRS 23 E 2218
e Tati1a)=" "
TOOIHRUT Ut TEIDE

2 D1EF DF
™

Notice that 1 # is 110 characters long. The cursor on and cursor of f sequences are not included in the 96
character count for the limit of the display buffer.

The user may type over the characters (9, dd. and Ut only. The HP-T1 will beep after the last 'J is
cdited, and the cursor will remain in that position. The cursor keys may still be used to edit the entry.

)

j = B o= N W N O

INPUT Alternative: INLINE

10 |

The IHLIME keyword (available in 1l : TUSTUTIL" LEX file) adds extended cursor conirol and

exlended lesrmination

capability for us: input. Editors, menus, protected fields, and custom <nlry

sequences are possible with IHL THE.

Syntax

Parameters

input string

Jirst character

cursor start

terminator string

terminator variable

IHLTHE 18,0 JC1 TH VY2 YE]]

The tnput tring (1 F in the example) will appear in the display Cnrsor
control chaacters may be imbedded to control which characlers my be
edited by tl e user.

The first c. aracter (.1 in the example) is the index 10 which character
the input s ring will appear in the lefimost posihion of the LCD windew
For instanc :, if the first character is 3, the third character of 1§ would
appear in 1 D position 1.

The cursor start parameter {C1 in the example) specilies the starting
localion an.: type of the cursor. A negative value specifies the msert crrsor
The express on must round to X, such that f¢=)X|<=96.

The termir. wor string (TF in the example) specifies which keys may
terminate 1 1put. Normally, only the JENDLINE] key will terminate wnput
from the }:yboard (such as with the IHFUT statement) The HHH THIP
keyword us s the terminator string to extend termination to a spectfied hst
of keys. K. ysare specified by their physical key code, such as #:4:0 for the
{ATTN] ke . Keys are numbered!in row-major order, from 1 1o b For
f-shifted k ys, add 56; for g-shifted keys, add 112. Yor instance. to allow
terminatior with the lENDLINEl‘ key and the vertical arrow kevs, the
terminator tring would be HIEB?SBMSX "

3
Upon term nation of IHL IHE execution, the ferminator variable (1 in
the exampl-) contains & number indicating which key the user pressed to
terminate i put. If the key pressed was the second in the ferminator string
list, the ter: sinator variable will contain 2.

OPTIONAL PARAMETERS The follo sing parameters are optional, und need not be used.

cursor position variable

The cursor position variable (/2 in the example) contains the (inal ¢ ursor
position an« type. A negative value indicates the inser! cursor

window position variable The windo v position variable (2 in the example) contains 2 numbher

indicating vhich character was in LCD position } when PHL Le
terminated -xecution.

-1

INPUT Alternative: INLINE

NOTE

The values returned in the cursor position variable and the window position
variable are affected by the M IHDDH settings. For more information, refer
to the HP-71 Reference Manual's discussion of the 1 THOOW statement.

IHL IHE is a statement that extends the capability given in the HP-71's IHFUT statement and EE'(¥
statement. THL THE allows you to specily:

s The prompt string.

o The number of prompt string characlers (o be scrolled off the left side of the display.

« Where in the display the cursor is to come up flashing.

o The type of cursor to appear (insert or replace).
THL IHE allows the user to press any combination of keys for input and editing, just like the THFUT
satement. While THFLIT terminates execution only when specific keys are pressed (such a3 {ENDLINE),
any number of different keys can be defined to terminate THLIHE execution. When one of these
terminating keys is pressed, THL IHE returns 2 number that indicates which key caused termination.
IHL 1HE will optionally return additional values indicating the cursor position/type and number of
characters scrolled off the lcft side of the display on exit.
For increased customization, the input string may contain cursor on and cursor off characters to make
certain portions of the string are non-editable. For more on cursor control, see sections 9. | and 9.6 of this

document.

There are three additional limitations placed on the inpul parameters for Jirst character, and cursor start:

1} If first character is greater than cursor start, then Jirst character is set equal to cursor start.

2) first character is limited to 97-H THDO M size.

3) If cursor start exceeds first character ¢ l-lllﬂﬂm'hile, then the specified cursor start takes
precedence, and the first character is incremented until the cursor start character appears in the
display window. '

For example:)
IHLIHE A%, 91,30, T, A

According to #1 above, first ch;lracter becomes 80, intead of 91. Then, according to #2 above, first
character is further reduced to 73 (assuming the default W IHO W size of 22).

To 1llustrate #3 above:

THUTHE A$, 60,25, T3 A,

«c™

(A)

INPUT Alternative INLINE

In order to get character #9$ in the displ y window, character #74 is put in LCD position |
Example

The following is an example illustrating he use of protected fields (non-editable characters) in the input
string:

F =default input string

Ef -escape character: CHREFLZTD

IHLIME Ef&"<Enbter Hame "4 85" TRCE s 1y THIDHEANS) GHVET

in this example the user cannot back 11 - cursor up over the: prompt since the cursor was tuined off
However, they can edit the default input string since the cursor was turned back on. The replace ¢ ursor
will come up on the (itst “readable” char: :ter, that is, the first character of CS$. The first character of the
input string will be scrolled off the lef1 side of the display - this was specified by the fust character
parameler.

IHLIHE will terminate on one of three keys (ENDLINE], lup-arrow], and [down-arrow] If
Idown-arrowl is pressed, 1 will be 3on ¢ it. If the user typed in a five character name before presung a
terminator key (assuming nv backspaces), B will be 17 on exit {the cursor originally came up on the 1 2th
character and was advanced five position-), and £ will be 1

Note that the cursor start argument “ yunts" readable characters only. Also, DISFE “sees” readable
characters only, so that a B1ZF$ done ia the above example returns only the user input {including the
default input), not the prompt itrelf.

Note that the cursor position argument and the value returned in the first optional variable do not
operate exactly the same way. The curso: position argument counts readable characters only, whereas the
value returned in E {in the example abov) reflects the total number of characters in the “free portion” of
the display, readable and non-readable.

Also note that because of unreadable ¢ aracters in the display, the sbove example is not affectzd by
limitation (1) on the previous page. Even hough the first character appears 1o be bigger than cursor start,
because of unrcadable characlers in the d splay, cursor start ncpullly designates character 12

g

>

"

™

) ' Y -

) SECTION
File Name Verlification -

il

11.1 Flle Names For Loading

1
An applications program may wish to veri v the name of a file or subprogram that has been entered hy
the user. The following routine is useful H>r trimming unneeded spaces and detecting invalid charas ters
in a file name F$ prior to loading data.

IF F801,11=" * THEN F =F1(2) @ GOTO 7o
1=LENCF 82 & IF F$0I1= * THEN FECI1="" & GOTO 7216
J=FOECFE,":%) & IF J= OR FOSCEE," “) OR HOT [THEN 7230
BOTO 7240
DISF "Invalid Filespe " @ RETURH

"Losdirg, .. " ® 01 ERROR GOTO 7260 & IF . THEN 7200
EF 8y @ BOTO 770
- “ERROR: File Mot Found® @ RETURH
ASSIGH #1 TO FE ...

Line 7200 strips leading blanks, and line 7 10 strips trailing blanks, leaving the fength of the string 1'$ in
I. This will be used later. These lines may be replaced with the keyword TETHE (described elsewheee 1a
this document) as follows:

720 Ff-="l'l€lfli(FiI- @ 1= EHiF§D

In Jine 7220 the variable) takes the positi -n, if any, of 2 colonJ:_Thrce tests follow, each of which would
indicate an invalid name. The first is the « resence of an embedded space. The operating sysiem will by
use the characters in front of the space, p. ssibly confusing the ustr. The first test looks for a nall name
before a device specifier. The second test ejects a name with ln"lembedded space, even if an expenienced
user understands the implications. The thi d test is obvious - ifithere are no character«in the name there
is no file, right? Mostly. There is a bug in an carly relesse version (1 EEBR) of the mainframe code that
can damage the file chain if a file is accessed in tMFIH with a null name. [T IS IMPORTANT TO

MAKE THIS TEST!!
NOTE

This precludes one situatior - that where a user wishes to load a file from
LOOF. If the HP-71 is not a system controller, a different procedure
will be needed.

File Name Venfication File Name Verification

specifier is present, the file will have to be in RAM or in a porl.

The variable J is used again in line 7240 1o decide if a file contawns any device specifier. If no device r ﬂ .
11.2 Fille Names For Saving

An RSSIGH # statement will create a null fength data file in main The following routine is useful for chec ing file aames when saving to a data file. It bears much
memory if the file does not exist and no device specifier (3 MAIH™ is in similarity to the routine used for loading. The routine assumes the file name in F ¥, the desired number
the name string F$. If there is a colon in F$, there is no danger of creating of records is in F, and that the aumber f bytes per record is in H. Note that 1940 and 1950 can be
an empty fite. replaced with TR TI¥, as shown earlier. ‘

In order to prevent the creation of an empty file, the ADOIRS function is used in line 7250 to verify the
file's existence. Line 7250 actually plays s dual purpose. First, it parses the string F$, and will yield an
error il there are any strange characters present. Secondly, if the file is nol in memory, an error will
occur. Both errors result in a return with an error message in line 7260.

IF F$01.,11=" " THEH F [1,11="" & GOTO 1249
I=LEM<F$» @ IF FECId=" " THEW F¥[I1]="" # GOTO 1340
! SCFE,"s"» B IF J= OR HOT 1 OF POSCF$," "3 THEH
1970 ELSE 1320 -

Again, the use of MSG ¥ is encouraged in place of fixed error metsages and prompts. 1978 OISF "Ireealid Filespe " # RETURH
. 14 OI3F “"Saving..." 2 OH ERROE GUOTO 28006
13 CREATE DATA FE,H,P 2 1Z3IGH #1 IO F$ & OFF ERROF # GIOTO
\ 20e0
! 1F ERFH#SS OF ERRH#1D .2 OF ERFH #2556G20 OF ERFN #ITN15E
. THEH 2659 . .
IF HOT FHy < "Ouerwrite ¢ile O M27"» THEH RETURN
DISF ™ inu..." @ FU'GE F¥
O EFROR GOTO 250
r. ‘ CREATE DATA F,H,F 2 1SSIGH #1 TO F$ & OFF ERFOF ® 000
> 29E8
' OFF ERROF @ DISF ERREME @ RETURH
IF MEH 0 AHD HOT 0 HEH FURGE F§ 2 OISP "Inzutficient
Menora® B RETUREH
70 ...
This routine accounts for null files, dupl cate files in both ram and on a device. and for ansuflicient
R memory in either ram or a device. The ro tine FH'Y may be found in the chapter “Input Routines”. FHY
returns & one for yes and zero for no. s Iotice the offscts used. with EFFH that acceunt for (oreign
language localization. Further informatio- on errors may be foudd in the chapter “Eeror Messages™ ¥ rror
ity : $9 is the mainframe error for "File Lxists" as is 255030 for HP-1L. Errors 1059 and 1551 5K
§ i M account for localization of the 'File Ex izt s"error.) kY
' s i Lo A
X Bl : p Y
) N ! R W s
s ‘ ') ‘;-f&
i

-

o
~i
o~

N 0 f ‘ ‘ L) iy st

File Name Verification

11.3 Names Of Subprograms

Verifying the name of a subprogram for existence is similar to the system used for checking data file
names. First, the name is checked for valid characters with ADE $, and then a dummy call is made with
intentionally mismatched parameters. The resulting error message will cither indicate that the
subprogram is not present, or that it is there, but the parameters do not match the teat. This routine
assuines the subprogram name in A13 and the file name containing the subprogram in A2S. REMEMBER:
the subprogram name can be the same as a file name!

@ GOTO ZR4o
% THEHW OIZF EREMS

0N ERFOR GOTO 2020 @ Of=RDOFECATED
OFF ERFOF @ IF EREH=S52 0OR ERFEH=1G3
e RETURH

O ERFOR GOTO 3050 @ 08=R0DEEAE @ GOTO 2050

DIZF EREME @ RETUEH

T ERFOR GOTO 3079 @ CALL AL FCHaM Hal, Hal, HaM, Hally Hal
I RAZE

OFF EFFOR @ IF ERFH=3& OR ERRN=1A3%¢ THEH 3990

DIZF "ERROR: “3ERFHE & RETURH

U

™

|12 |

Output Routines

Output routines on the HP-71 may take a wide variety of forms, using everything from the 22 characters
in the display to 80 column printers. Reg. rdless of the specific form sclected, it is vital to insure that the
user is able 10 view the entire result, with 1l relevant digits of the mantima and {(if applicable) the entire
exponent. Further, there should be no time pressure on the user.

12.1 Configuration And Data Volume

Output routines should be sensitive 1o bot! the volume of data to be presented to the user and the system
configuration. If varying configuration are anticipated, multiple output routines are suggested 1o
mazximize legibility of the results and usab. ity of the software.

Results best expressed in tabular form may need one routine for the L.CD or strip printer, and another for
wide output devices.

Unless specific configurations are going to oe used, use of specific printer features must be evaluated with
care. If an output routine depends on such fealures as vertical half spacing (for superscrnipts and
subscripts), the application will not run w th conventional printers, such ss an 1IP82905B. Conventional
printer features such as form feed capsoility are generally scceptable. When in donbt. check the
capability of several possible target printes : for common features The subprogram FFTVFE can be used
to determine what class of printer is assign d.

Output routines should u- FEINT statements, while message routines
(such as prompts, warning: and errors) use DIISP statements. This will
insure that the user's PRI TER I3 assignment will route the output to

the desired Jocation. .i v
k.
b v
ks |
The following table may be used to hel; select a wuitable output routine given varying results from

FRTYPE: :

i
PRTYPE REPOR S HAIT?

0 Narro / Yes
1 Narrc ¢ No i
2 Wide No

Output Routines

12.2 Some HP Printer Features

.

For reference, the following table contains a listing of common printer features in the HP product line,

and the escape sequences that enable them.

OPERATION FEATURE ESCAPE SEQUENCE PRINTER
CR CHR$(13) 1,2,3,4,5
Formfeed CHR$(12) 1,2,3,4
Linefeed CHR$(10) 1,2,3,4
Backspace CHR$(8) 1,2,3,4
Vertical 6 L/in ESC k16D 1.2,3,4
Spacing B L/In ESC &18D 1,2,3,4
Perforation On ESC &Il 1,2,3,4
Skip off £SC &kLO1 1,2,3,4
Select Normal ESC kkOS 1,2,3,4,5
Print Expanded £SC kkiS 1,2,3,4,5
Mode Compressed ESC &k2S 1,2,3,4 ‘
Comp, Exp £SC kk3S 1.4
Emphasized ESC kk9S 1,4
Underlining On ESC &dD 3,4
Underlilining off ESC &kd@ 3,4

Printers: 1=HPB29058 2=HP26T71 3=HP2631

4sThinkJet S5=HPB2162A

o

2

Qutput Roulines

12.3 Multiple Resuits In The LCD

Results presented in the LCD are eapec ally vulnerable to being lost or forgotten. Since the user may at
any lime answer the phone, sneeze, or { r some reason look away from the machine, a result must he held
in the LCD until reciept of the inf. rmation is acknowledged. A simple way to do this is 1o call
KEYHRITS, and then continue.

if a long string of results is anticipat. J, a method of scrolling back and forth through the results
suggested, along with an escape method The following routine assumes that the resulls are in an atray A,
with 9 answers, and their titles in a me -age file from positions 17 to 25. The L.EX (1) of the mess+re flle
is 12

CUZF 48", 4 @ DELAY 9.0

EVHRLTS. 3

aFEgeRt THEH 2026
FOFE “ZF94€",0F8 @ RETURN ' Restore DELAY and TCRDLL

X " OAHD GFH #S1" THEW 203530

H=25 THEH BEEFP @ SOTO 2028 ELSE H=H+1 2 G010 20ldg
= CERUHSR"Y THEN 2600
z M=17 THEM BEEF ® S0TQ 2020 ELSE H=H-1 @ GOT0 2vja
2 QFE="#162" THEH M= 17 & GOTO Z01a
2 oF="#153" THEH H= 35 @ GOTD 291
2

The routine will advance to the next res it when either the {v] or the [ENDLINE] keys are pressed I the
{~} key is pressed, the previous resuit will appear. The {gI~] and {g1v} keys go to the first and last results
The [Q] key exits the routine. If the use: attempls to go bcyond out of range, a heep sounds

The use of EEVYHRAITSE can go even fur her in the case of a Iu'e table that hhs been generated Suppose
the program creates a table of results, &) d the user may only be interested in a subsel of the resul's. One
way to address this issue is to ask the u::r for the location in the table that he wishes fo view. Anuther
scheme might be to place the user "in the table”, and let him move aboul with the arrow kevegin a

two-dimensional version of the routine presented above. _h u

'.n .
0 L
B

A
3

| Internal Calculations | -
' r [13 |

J
12.4 Large Results In The LCD :.

Output Routines

SECTION

If & result is simply too large to [it wifhin 22 characters, scrolling the display is the last resort. The best

way to implement this is to preserve the display, set DELAY 949 and call KEYMAITH. The following 13.1 Changling Array Slzes

routine illustrates the technique: } i

19 OIM ASLIO0D) The size of an array may be changed with 2 new 01 1 statement. This can oaly be done in the originating

z0 FII="Liif~.|H[lLK-.|[lSFOGFIFfEIHtEEJF LALERLHDSY MO T a" ' environment. Data is stored in row major order and is not zeroed out during redimension. The foliowing

20 DF=FEEK$C"ZF346",4) @ DELAY 9,9 paragraphs address techniques for changir 4 the size of arrays. The examples use an array A with R rows

49 DISE "Hame: “iA$ @ OF=kEYHAITE 2 POKE "2F345%,0¢ and C columns. The array is of type REt L, and & 300 byte 'Tudge factor’ id used Variables I and § sre
' scratch integers, and the array isin OPTI M BAZE 1.

Another approach to the scrolling technique *windows” the title:

| 13.2 Adding And Deleting Rows’
19 DIM AREC132 ’ |
20 A" LIES0AFLJESDLJKSOF LJUHEF L JKSOFLJER JS0KJH" ' ,
20 DF=FEEKF "2FI46" 42 B DELAY 9,9 : Add 2 new, empty row at N:
4% DISF "Mame: " @ WINOOM 7 ® DISP A$: ,
SO GEsKEVMAITE @ WINDOM 4 & FOKE "2F946%,0f .
i 1009 IF MEM-Cs= 3 THEM CISP "Insufficierd Men” & FETHEM
' e . “b 1819 IF H<1 OF H:F+1 THEN DISP "Horesiztent Fow® B PETUFN
: 1028 DISF "Horking..." @ F=R+1 2 DIM RCR,CY & IF H=F THEN FETUSH
4 1020 FOR I=k TO H+1 STEP -1 @ FOR J=1 TO €
é 1048 ACL, D=ACI-1,0% @ NEST J @ HEST I
12.5 Numerlc Formatting 1953 FOR I=1 TO C @ ACH,1,=20 @ MEXT I @ RETURH

Delete a row at N:

Numbers that occupy a very large dynamic range (say, 2 hundred orders of magnitude) will present a

challenge when presenting results in the LCD. If the title for the result is very small, there may be room -
in the display for both the title and the number as displayed in ST format. If there is doubt about 1aoa IF H{1 OF HXR THEM 01 3F "Monesjst ent Fow" @ PETURH
available room, an IHAGE statemént is suggested. The disadvantage of the IMAGE statement is that the 1213 IF FE=1 THEH DISF "ERFOR: Yau Meed 1 Row® & EETURN
user's display digit setting is overridden.) 1028 DISP "Morking..." @ 1F H=R THEH 19850
N . ! 1028 FOR I=H TO E-1 @ FOR J=t TO C ; 1':-":“‘
vk . iy - 1048 AT, . D=RCTI+1,.) @ NE:T J @ HESXT 1 '2 C
.!'J:,‘,l,‘{‘ ’ ; " ‘ 1953 R=R-1 @ DIM ACR,C) & RETURHM Yo l‘g"}
e RS h i
C "o ‘I'Ik" : i»l . i‘,‘ll
v 4 .1]
' lg B ":1.2
; i ‘ it
' ; “l
= .
St : o
! |
. -) i
H 1‘i ", . ;? N
“ il . ! | : l"“. N '
! ; A f' !
1 =t

Internal Calculations

13.3 Adding And Deleting Columns

Add a column at N. The data will be scrambled after the D11 is executed so a shuffle must occur. Data
is inoved from positions at T8,T9 to new locations G8,G9. The pattern works backwards, shifting data up
to 11! the new top locations, straightening out the columns, and setting the new column to zero.

oo IF
lnln
[

MEM-R*2<200 THEH OISF "Insufficient Mem" & RETLUEH

IF H:i1 “+1 THEH DISP "Honexisztent Col" B RETURH
Dl‘:'F‘ "Horking..." @ C=C+1 @ DIM AR, CH

X C W GA=0-C0=Hy » To=R @ 7TI=0

ME 1=t TO R ® T2=T3-1 & IF HOT

HE T 1

He 'a-,'a.q:-‘=ﬁ':T:3_‘T9)

3 T2=T73-1 @ IF HOT T2 THEH T9=C @ T2

i Go=G2-1 @ IF HOT G2 THEH G2=C @ o2

Ay IF HOT 63 THEN ll‘“

11y IF H THEH ROGEGR*0=0 2 5070

1110 IF ¥ RHD TR0 THEH 1989

1120 FETURH

T3 THEHW T2=C @ Ta=T&-1

1050

Delete a column at N. Again, the data will be scrambled, 50 a shuffle occurs in & similar manner. First,
the data is column shifted so that the column to be removed is the last one. Then the data is shifted down
starting at the front and working up. The last locations in the array will be lost when the dimension

statement is executed. *
1903 IF H<1 OF H:C THEH DISF "Honexistent Col* @ RETURN
10 DISP “Horking...” @ IF H=C THEH 1940
=3 FOF I=1 T R @ FOR J=H T C-1
1 RCT =R 4+ B HEST J @ HEXT 1
lHN GE=) @ GI=1 @ T9=1 @ T9s1
{050 rnF I=t TO R @ FOR =1 TO -1
fead L2, G =ACT3, T2 @ L3= Ld+l] IF G THEH £2=1
GEi+]
T-'=T:'*l B IF T9>C THEM T9=1 @ TB =Ta+1
HEXT 3 B T9=T9+1 @ IF 190 THEM T3=1 @

T2=T3+1)

1eny HEAT 1 @ C=C-1 @ DIM ACR,CH» @ RETURH

"M

L

[14]

Error Messages: MSG$ & Translator

14.1 MSG$

The MSLF keyword provides retrieval o error memage text from the mainframe, plug-in modules, ar
LEX files. Each MZ5§F LEX file should « ontain prompts and messages for an application program. This
leaves a hook for foreign lnguage transla s to work with. The syntax for the keyword is

M= ¥ Cnumeric expression?

The first three digits of ttlue message num er contain the LEX id, and the second three digits contain the
message number. Leading zeros may be suopressed. As an example, suppose the 21st message of a F FN (ile
id 94 is needed: HF=MIGFI 4021).

The H2G$ keyword will work with trans itors. If a translator is present, MSGEF Y 21 wonld return the

same mesage as MS6E S 1Q24) if a mais (rame translator is present.

The heaviest use of M=LF will be to displ: y prompts, error messages and status messages in an applic ition
package. MSGE used in this way allows ¢ stomization for foreign languages. Keeping messages in a VFX
file message table may also save ROM spac -. For example, if your LEX file number 15 17, use

7O THPUT “*,MoGFITO0 508
instead of:
7R IHFUT "".iHF!(""": "l'-‘-l--r“’"?f‘HP:f{’*"\&" A 4

M!

which will allow other language tnmln ws to handle the prompt.

Olhnt examples are provided in
previous sections. " .

The M35G¥ keyword is in LEX file 82. Tie use of MSGE ina particular pac requires a LEX file wuha
built-in message table. This can be constru :ted using the HP-71 IDS votume [as a guide

>

.

Error Messages: MSGS$ & Translator

+

14.2 Translators

A transiator is a LEX file whose sole purpose is to translate messages from the resident English to a
forqign language. These LLEX files are composed of tables and s poll handler which intercepts the pMEM,
pERROR, pWARN, and pTRANS polls to substitute alternate message numbers.

The following convention has been set up to [acilitate error trapping with language translators.

For mainframe messages:
Translated message number = ERRH-+ 1800
For other LEX files:

Y=y

Translated message number = ERFEH I 22

For example, mainframe error $7 is "File Not Found®. If an OH ERROF routine is trapping for this error
and must allow for foreign language messages, the appropriate statement is:

IF ERRN=ST OF ERRH=1857 THEH

The HP-IL error 255031 is "Disectory Full®. If an OH EFRFOR routine is trapping for this error and
must allow for foreign language messages, the appropriate statement is:

IF EFRH=Z55931 OF ERREM=255159 THEH
This extended error trapping can be shortened with the user-defined function:

OEF FHE(®3= (H=ERRH» OR ¢X=ERRH+123+0X<1000>872)
and the previous two ;nmples above can be compressed to:

IF FHECST THEN enen

IF FHECZSS931» THEH

M

R

"

Speed and Space

[15_]

The disadvantages of packing code need | tle enumeration: the risks are extreme. M packing must ovcur,
caution is advised. If a working progran is being packed in order to fit into available ROM space, we
suggest that the author maintain a very ¢ ‘mplete audit trail. Some packing techniques actually improve
speed as well, however combining code in o user defined functions (IEF FHA< <) can slow down the
program, as additional time is required b: the operaling system to set up the call 1o the function. Thix
slowdown can be up to . 6 second for a fun tion, and | second for & subprogram.

156.1 Variable Names

Single letter variable names save a byte | r each refereace, and slightly improve speed. Large groups of
variables under one letter slow down the : -arching. For example, it would be better to use variables A B,
C,and D than C0,C1,C2,and C3.

15.2 Line References

When entering a label reference, such as & 1T3 HELF, don't enter the quotes. This will save a byte The
quote will appear on decompile. Rememb r: if you edit the line later on, use the [- CHAR]) key to avoul
re-entering quotes!

A GOTO pointing to # line that has a sit gle letter Jabel will save 2 byte as cmhpare«l to using a 1HMTH
pointing to a line number. This works be t in instances where many GOTO statements refer 1o a ngle
line.

Don't use SOT after THEH or ELSE. Simnply use the line number or or a label.

1y

PRI

15.3VMuItl-|Ine Statements

Multi-line statements save two bytes for ¢ ch line number nvcd..'

Speed and Space
15.4 Loops

EVF ... HEST loops can be a source of speed improvement under some conditions. For instance,
suppose each element in a § by 100 element array is to be incremented by 3. The following two blocks of
code would do the saine job, but the one on the right would execute [aster.

103 FORE I=1 TO 109 100 FOR J=1 TO 5
119 FOR =1 T S 119 FOR I=1 T0 199
120 ROLI=RCT, 0043 120 AL, DI=ACT, Jd+32
120 128 HEAT 1

144 149 HEXT J

The speed increase comes from the inner loop having less stack searching to perform for each HEX
statement.

15.5 Clearing Arrays and Strings
Numeric arrays may be cleared (all elements set to zero) very quickly by DESTROVing them and

executing a new [statement. The operating system defaults all elements to zero.

In cases where a long string is to be set to spaces, a similar technique may be used. For instance, suppose a
100 character string of all spaces is nceded:

D340 GE="U R GEO1ER1=" ¢

\

The operating system will "pad” the missing characters from the beginning to 99 with spaces.
15.6 Loglcal Expressions

|.ogical expressions can be very useful in constructing numeric expressions, and generally save code.
l.ogical expressions return a | or 0 depending on the evaluation of a comparison. For instance,
Use: 133 H=3-0y=7 OF LEHCKEX)D

Instead of: 109 IF V=7V OF KF#"" THEN ¥=2 ELZE #=3

')

-

Speed and Space

15.7 Device Addressing

Addresiing devices with the HP-IL modu ¢ may be accomplished with a variety of commands. Generally,
as the ease and luxury of the addressii 4 mode increases, the amount of work the HP-71 has to do
increases. The following table illustrates ine relative times required to address a device as compared ether
addressing methods.

METHOD SPEED

(:L00P) fast
<addr> .
%50

DISPLAY

HPB29058

Volume Lioel Slow {Limited by media access times)

The fastest method of addressing a devic - i3 by ils address on the loop. The loop will slow down e the
aumber of devices present increases, and Jepending on the type of devices and their response funes, the
rate of increase in addressing times may | : non-linear. A simple way to maximize the speed of addeesing
is to search once for the address of a du vice, and save thal address in a variable for future use e the
program. For example:

196 R=DEY IDDRC"HRFSZ164A" Y R = Address of RS-232 interlace

1200 OUTF IT tR3T$ @ ENTER =R LISIHG FESDF

sS40 OUTFIT :R30F & RETURH

\—-’ ‘__ Iy
N ! oo ’ ; e) -

M

L

™

HPAF File Standard

16|

The Applications File format (HPAF), is intended to allow exchange of data belween various programs
The format provides room for inform: tion that describes the structure of the data, so that various
programs may make use of and exchange the data.

HPAF files are of type RTH, and may reside in either the HP-71 or a mass storage device, such s the
HP82161 A digital cassette drive.

The HPAF files are composed of thre- major sections: a header, the data records and an optinpal
descriptor block. An example of such a f ¢ looks like this:

Rec # Contents Description
0 | "HPAFNNS"™ Type string: two numbers, one string
] 4 There are four records of data
2 12 The descriptor block startsat |2
3 77,9.3,"RED" First data cecord
4| 78,9.4,"BLUE" .
) 81.5,10.3,"GREEN’ .
6 | 82.9,10.4,"GREEN" Last data record

Emply data records
.a Empty data records
12 "COLNAMS",3,"TEMP" Descriptor block
“VISCOSITY", " "COLOR
“DEGREES",1,"KELVY "
pR—

The following sections describe the heade |, the data records, and the descriptor block

In 1

HPAF File Standard

16.1 Header Information

The header must contain the following itemns:

1) Record zero contsins a type string. The type string serves two purposes. The first four
characters indicate the file in 8 HPAF file. The remaining characters describe the number of
data items in each record, and their type. For example: HFAFHHS. The characters HH=
indicate that there sre three items in each record: the first two are numbers, and the thirdisa
siring.

2) Record | contains the number of data records that contain information. This number may
be less than the total number of available records, allowing room (or additional records to be
added later, or the optional descriptor block.

. 3) Record 2 contains the addsess of the optional descriptor block. If no descriptor block 1
present, this number should be zero.

16.2 Data records

The data records begin in record 3, and must end before the descriptor block. Note that all dats items for
each record must fit within each logical record, so that any record may be accessed randomly. To
compute the optimal logical record length for the file, remember that esch number written in the record
occupies 8 bytes, and each string occupies 3 bytes plus the number of bytes in the string. In addition, there
must be one byte for the end of record mark. For example, if each record is going to hold two numbers
and a ten character siring, the record length must be at least 24843+10+1, or 30 bytes. For more
information aboul creating DATA files, see the HP~71 owner's manual, section 4.

Al

HPAF File Standacd

16.3 Descriptor block

The descriptor block is optional. The descri stor block must come after the data records, and record 2 must
contain the address of the first item in 01 ¢ block. Information in the descriptor block consists of fags
which identify the type of information th. t follows, followed by the number of items associated with the
tag, followed by the items themselves. Th tag must be 2 string, the number of items must be a number,
and the ifems must be strings. I aus.eric values are to be in the lems, they should be sinng
representations (STE#).

tag, numbe. of items, ltem one litem two...}

The information in the descriptor block m. y be written serially, or, if the logical record size is sufficiently
large, writien one tag to a record. In eithe: case, the descriptor block must be able to be read serially

For example, 1o describe the names of the columns, a temperature offset, and the fact that the
temperature units are degrees Kelvin, the ¢ sscriptor block for the file might look like this:

Recf File contents Comments
67) “COLNAMS" ,3," TEMP" ,"VISCOS1 ry” ,"DENSITY" Column names
"OFFSET",1,"2.172" (Offset
“UNITS™, 1, "KELVIN" Units information
(E0F) '

R 4] - tnot

(g

N

<
e

ECTION

String Functioﬁs

L7]

The LEX file STRIHGLY provides 1| key vords that enhance the string manipulation capabilities of the
HP-71.

17.1t MEMBER

The MEHEEF keyword returns the location of the first character in & subject string thal is 2 member of 2
sel stiring.

Syntax:

MEMEEF Y subject string.sc string [starting position)?

Examples: -

MEMEERCRE, "RI2340 a783" 2
Returns the location of the first numeric character in AS.

MEMGERA$, "O1 2345 6783 122
Returns the focation of ist wmeric character at/after position 12

E=HMEMEFR A B, C

3

String Functions String Functions

17.2 LTRIMS, RTRIMS, TRIMS 17.3 LWCS, LWRCS

These keywords trim specified characters {rom the ends of string arguments. LTRIME trims characters These keywords convert all uppercase chari :ters in a string to their lowercase counterparts. The keywerds

from the left end, FTRIH$ trims characters from the right end, and TR IM$ trime characters from both are identical except in name.
ends.
Syntax: Syntax:

LIS < string expression?

LTRIMS < string expression |string expression 1»
LR $ ¥ string expression)

RTR1ME string expression [string expression]?

TRIMS < string expression [string expression]) Examples:
LHCES"THIS I3 } ICE™)
. ="thiz iz nice’
The first string expression contains the string to be trimmed. The second, optional string expression
specifies which character is to be trimmed, if found. Only the first character of the second string
parameter is used. The default is 10 trim spaces. AF="THIS IS HIVE"
DIZF As

r b "this ig nice"

Examples:
LTRIMEC" abzd " LTRIMEC "Hhhpeace on earth","h")
="zbzd ="peace on 2arth”]
FTRIN$C" abce " FTRIMNEC "peace on earthppe”s "p") f}
=" abce" " =*peace on earth" i
l.::'x
TRIHg” abeod "2 TRIME: "zzzpeace on earthz","z") F%
=" gbcd” ="peace on eparth” ' [Jb ;
T . 3 t
TH=TRIM$ (5D g b b !
b l
try !
B
n E !
'
, b
|
— i
((\ { [S U R G B S BN)) ' i

Siring Funclions

17.4 REVS

This keyword reverses the order of the characters in a string.

Syntax:

FEY $ 7 string expression’®

Examples:

FEVEC"2FRCRD . FEYEC "palindirone")
IF2” ="epordni lap”

AE=REYEBED

An address stored in memory is backwards when obtained with a PEEK. FEVE in useful when converting
the address into decimal:

OISk "The decimal address i_A";HTU(RE'-N’-ﬁF'EEHi("2F€-4?",5)))

~ ™

String Fuaclions

17.56 ROTS

This keyword rotates the contents of & stni g a specified number of places to the right i the number of
spaces is negative, the string will be rotated o the left.

Syntax:

0T $¢ string expressionnu: ieric expression K

Examples:

12345, 17 RFOTHC 12345, -1
gn ="23451"

FE=ROTH0E, 50

-

String Functions

17.6 RPTS

The FFTE keyword concatenates multiple copies of a string expression together to form the resulting

string.

Syntax:

Examples:

FEFT ¥ Cstring expressionnumeric expression K

FETSC"RK" 40 EFT$C"FRED", 32

String Functions

17.7 SBIT

The SB17T keyword returns the value of a wpecific bit in a character string. It is most uscful when
analyzing the contents of the HP~71 graph cs display. o]

1
]

Syntax:

SE 1T string expressionnu: seric expressionnumeri¢ expression?

The string expression ia the string to be ex: mined. The first numeric exprestion specifies which character
to examine. The second numeric expressior specifies which bit in the specified character to examine Pits

are numbered 0-7.

=" HRHEY ="FFEDFREDOFRED"
. \ Examples:
2= SR ITOGOISFE, 1,0 * Returns the bit value of the upper left
pixel in the display.
p ‘b BITCRAE M, 40 Returns the value of bit 4 in the Nth
Y character of the string AS.
X
M
i))"'l ! gg .
ydt i B v
A . o3 [I1S
‘}7-! ¢) }z f’:
i } t}lf o
i ! “‘.:I ;:.}5, i
' " A
H ,'!l :1
‘ i .'\:’ 4
, A it \
" N ‘l ;_ ' ’
| ‘
<. '
Y L : < e g e
1 1 " ! y Y { N i N - \— e— e L — —

String Functions
17.8 SBITS

The “EITH keyword allows enhanced bit manipulation of data in strings.

Syntax:

SEITSHY str exp, num exp |.num expnum expl]?

The first numeric expression specifies which byte in the string is to be modified. Other bytes in the string
will be unchanged.

The second numeric expression specifies the bit to be manipulated. If not present, the byte specified by
the first expression will be complemented. Bits are numbered 0-1.

The third numeric expression specifies the new value for the bit specified by the previous numeric
expressian. |f not present, the bit will be complemented :

Examples:

I T AE D) Complement the fifth byte
ITHiAE,: Complement the bit one of byte 3
TTECAT Uyttt Clear bit J in byle N

String Funclions

17.9 SPAN

The SFHAH keyword returns the location o first character found in a subject string that is not s member
of a set string.

Syntax:

SFAH Y subject string.set str 1g {.starting position).

Example:

Returns 7
Returns 10

- ————

S

e

~D

T N

BREAKPT: BASIC Brkrakpolnt System

'
[

The BEFRERAKFPT program is a LEX fil. whidh provides breakpoint capability for debugging BASIC
programs. When EREFAEFT is in t ¢ HP-71, three new keywords become available: EFEAE,
UHERERAE, and BELIST. These keywo: Is allow setting, clearing, and listing of breakpoints in BASIC
program execution. Setting a breakpoint n thig mannes is equivalent to inserting a FALIZE statement at
the beginning of & program line.

The EREAKFT program works by interc :pting a poll-each time a statement is executed. This will slow
down an application program significantl and so should be used with caution in 1ime sensitive situalinns.

BLIST
Lists all breakpoints in order of entr .
ERERK <line number> [<line nu nber> ...]

Sets breakpoints at specified line nur ;bers. Any number of breakpoints
may be apecified, separated by comn: 8.

UHEREFK

Clears all breakpoints,

oy
.;:i:
&
i
. 1
g " !l:‘-'_“‘l
PR
i A
l._":'
e
H
o
' 3 !
E
)
g
{
PR |

a

J

KEYBOARD IS - Using A Terminal

[19

The FORTH/Assembler ROM provides a set of keywords that permit keyboard entries to originate from
devices on the HP-IL loop. Thesx keywords sre ESCHFE, KEVEGARD I3, and
FESET EZCAHFE. The EEVEDARD [Z statement assigns one HP-IL device to acl as a remote
keyboard for the HP-7t. The ESCRI E statement specifies that a particular one-character escape
sequence received by the HP-71 from th. current EEYEOARD 15 device will be replaced by an 1iP- 7}
key code. This permits mapping of terminal-specific features to the HP-71 keyboard The
FESET ESURFE statement clears out ny existing mapping specified by ESUAFE statements. Reler to
the FORTH/Assembler ROM Owner's Ma 1ual for a detailed discussion of these keywords.

19.1 KEYBOARD IS With HP-150

The following routine is useful when con! guring an HP-150 as a remote keyboard and display device
1

19 IF POSOVERS, "FEO " =R HEH BEEF 1458,.60 @ DISF “Hesd FEVE

filet" @ EHD

20 HFE @ FEARL A v DIM EF @ Ef=CHR¥CZT)
e]x] CLERR sRS23 @ REMOTE 2 QUTFUT R32232 $“SFEOI3E™

b

" R IF 0 323 THEH 'RS232ZHT' ELZE R=0EYRODF.

EN
D]

;'LT!", 195 ® ESCAFE "H",109% @ ESCAFE "R",10%) 1
"i" 103 v Back ’
"O",47 @ ESCAFE O, 42 @ EZCAFPE “A",50 @ ESURAFE "R

-t en
S Ry
Pl

"E'ed2 @ ESCAFE "q",32 @ ESCAPE “r " 150 0 ESVARE "
"o 1@ 0 ATTHy FETCH, Cev 24 Uzer h
20 ESCAFE "t", 162 2 ESCAPE “u", 199 @ ESCRFE "', 1e0 & ECCAFE
"y 1623 L Tops <4225 Botton
198 ESCAFE "h"“, ® ESCRIE “F",45
YK, 187 ! s Runy-Line,~Line
ESCAFE "@",32 ! Auto R
QUTFUT A (EF:“"&§1Kk0)1 5420 Attn KoHy T8Ef:
OUTRFUT A sEF:"2F2k0a1 2d2L FETCH ¥ fREYE
OUTFUT A FEFL"2§3k0a1ad2LCommand Stack “8ET
OUTFUT R GEFL & 4k031592L User (togale)"8E$i=
OQUTPUT 18 (E$2"%§5SkD31 3420 Top - "REFL"L";
QUTPUIT :H | "LEEkBal Sd2L F ar Left S&EEL"u"3
QUTFUT A 3 :Qatsdz2l Far Right "2E$: "oy
QUTPUT A 3 N3l ad2l Bottom CEEFR "
GUTFUT th AR E LTS GENY V Set strap to o cet esoape

sequences, User keus

D]
-,
=)

2 ESCAFE “J", 160 © EE5AFE

)
Ly

T LT e 0 e
DT

DOTRIS e oY
Lo]

1o ok b et b ek ek e b

X
-
A

b

KEYRBOARD IS - Using A Terminal

210

pael Y

L
DIZFLAY

OFF @ SFLAG -

1

s B

1% RS2 ® EEVEIARD 1%

19.2 KEYBOARD IS With HP-2648 Terminal

The following routine will configure an HP-2648 termi

keys are aclive, as

{CTLIBACKSPAC

The [CLEAR DSP

20 CECAFE "
" 10 AL
a ELCARFE "

Tty e !
iy ELORFE
110 ELCAFE

B A Y
12 ESUAFE
o OTROT
1400 DTEUT
{0 TR

el ETFNT
LT OUTRUT

S0 DUTRUT

ay ITFRUT

A QUTRUT

1 OUTFUT

[

Fuze s

s

DISFLAY

T

SCRFE @ FEAL A @ OlH Ff @ EF=CHRE$:

LC OFF @

nal as the remote keybosrd. The terminal cursor

are the insert/delete character keys. Pressing ESC twice gives the {ATTN] keystroke.
E) pives the [BACK] character. [f1] is fATTNY (£2) is FETCH, [£3] is the command
stack, [f 4] is the user mode 1D COMMANDS) is g1~), {161 is gl<], 1f 7} is g{>} and (£8) is plvl

LY] key also gives the ~LIHE command. The 'home’ key recalls the first line of the
current workfile, and ([C'VL] ‘home’ key recalis the fast line of the current workfile.

v: CLERR $RES23S @ FEMOTE @ OUTFUT 232 8

vy @ IF H#9Z9 THEM ‘RSEIEWT' ELSE A=DEYADDR

@ ESCAFE “RAY, S0 @ ESCAFE "B

.43 @ ESCR " ® ESCAFE "r", 158 @ ESCRFE "
tn FETCH, Cads, User
P e @ ESCAFE "u® 159 # ESCRFE "w", 160 @ ESCAFE

Tops
163)V Top, Eotton
46 @ ESCRFE "J", 197 2 ESCRFE

1=

N

19.3 Disabling KEYBOARD IS

Use the following routine when turning of{ the remote keyboard:

SEFLAY @ KR BOARD IS = @ RESET ESCHFE

'

p

»

Graphics

20 |

The L.CD display of the HP-71 may be u: d to depict graphic images using the LU SF statement. The
contents of the LCD display may be read 1 - a string with the GOISF ¥ statement. The HP-71 Owner's
Manual (p. 117) has a discussion of these s atements. Several tools are provided 1o assist in preparation of
a graphics image. They are a graphics ¢ !itor, a keyword FRTTERHS$, and the keywords ZEIT and
SEITE, found in the STRINGLX file (see he chapter String Functions.)

20.1 GEDIT - Graphics Edltor

i

The GEDOIT program provides a facility for interactiviv creating a graphics unage on the LCD. To
create an image, run GEDI T and use re. cfined keys to move the cursor and sel or clear ponts The
following keys are active when GEQII T is unning:

{.1 Turn pixel on
[SPC] Turn pixel off

Move cursor one pixe left

[<]
{») Move cursor one plixe right
(8] Move cursor one plixe up
[v] Move cursor one pixe down
c} Copy column, shiftin, display to right
(0] Delete column, ehift ng display to left.
[G] Goto x,y locatlon in display N
{1}) Insert blank column
L] Display current loca: lon X
{P) Print graphlc image ::n ThinkJet printeh
(R} Read lmage from file ;
Is) Save image to file (s 132 character st¥ing) !
(al Exit program S . ‘ “?; éﬁ{
o 3 X
B4 i
| a0
ft N ,f

NI

Graphics

U GERIT - nrsehics BEdrtor cRejuires HF-TL kewuwords)
CRLE GEDIT @ SUE GEDIT
OIM ASEESE).EF013
OIsF & AF=GOISFE @
GOIZF HE

pg="" @ CFLAG S
TEFLAG O BT TUHUM AELE Ty

vl @ FoeFLAGYRY @ FI=FLAGIS)

M=l B

Ef=ft @ BICH =CHFE FCBTHEDR CHUMCES L, 1T, 2700
O TIMER #1,.3 GNSUE 290

Lo b E=LETE B IF EE="" THEN 108

110 FazFO3 8. SRIDCLGRO®, UPECECEEIL, 1)004]

L0 01 FS GOTH SO, 150, 1200 140, 190, 200, 210, 220, 230, 249, 260
f

Mg 2O
T B ;
+1 @ GOTO S

X el @ GOTO SO

VMO0V -1, @ GOTO S0 :

YEHODE V41,3 @ GOTO S8 ELSE 59

2300 @ FRINT #1,05RE 2 GOTD S50
3 @ FEAD #1,093AF @ GOTO 59

120 2 1= HR ECETHTOR QRN AL
148 $J=rHEECETHANDCHUM R L
150 IF ba="# HOD

IF Ki="#45
IF KE="psa
IF K$="#s1

nE=Asll,
LI L B=3 SR R Y y
&0 1F EEVOOHH THEW 250 ELSZE SE

B Y=HODC IMT V-1, 8) @ GOTO 50

SRS B GOTO S0

VEMOOCINT
FEINT CHE. :
FA=FLAGY S, 10T FLA
IF Ki#"" THEM EETURH

IF A THEH GOISF Bf ELSE GDISF RA$
FETUEN

[HFUT "File: “iF¥

IF FE="" THEH FPOF 2 5OTO SO
Assiotl #1 TO Ff @ FETURH

PHAE
Gy

CELAG B @ DISF "Done” @ FES=FLAGCO,F3) B FI=FLAG(S:F27
EHD ZUE o

I

"-:. 1

2

'

~

™

‘h

Graphics

20.2 PATTERNS

The FRTTEFHT Xeyword returns a char cter string which contains the GOISF3 equivalent of an ascn
string in the display. The resulting string \ 11l contain 6 byles for each character in the string argnment

SYNTAX: FRTTEFRIEY string expr ssion’

EXAMPLE: LOISF FATTERHE ' 123"
AE=FATTERFNEC"H (1 1onD

20.3 Example

A graphic image may be frozen on the feft of the display with the WIHOOH statement

applications may find this useful when im lementing a user interface. In this example. a train s created

in TS, placed in the display, and frozen in | iace for a prompt

’E‘_! .:‘
COISFE T§ @ MIHDOM 4 @ [IFUT “Oeztinat ions"i0%
WIMOOM 1 @ DISP "Going o “i0F # EHD 3UB

DI =%
oD

1
i
¢
£
N [
31) n"
A," e
I i
i Y
a.

13 CALL GEX @ SUE GEX @ OF 10H E 1
20 DIM THO12) @ FOR I=s1 T 1S EAD T @ TECII=CHRE T @ NEDT
20 DATA 1,0, 86, 126, 124,66, 5 L TR T3 208, 200, Lonia o e

Some

- m——— . .

:
)

-

H

h

- LA |

Forth Utilities :

Vo
Tk
e
‘{‘:’1'
el !
‘ ¢

The following is a description of a collec ion of utilitics devel o
debugging. There are five categories of v ords: ' N

4

N £ A
Decomplling: UH: and FS.. hese words are used;X producé’a map of a colon-compiled
dictionary entry, and to decompile the contents of the reldfhn stack. i

o Single-stepping: EF, EFERAK, OHT, FIHIZH, é F, and ‘,J(ST These words are usrd to
interrupt execution of a FORTH s conddry word and singR{step elch‘-’;rord or group of words
Y

o Memory examination; OLIMF, O P+, LIZT, F\‘ENZIMI

AN
S, lndi" HUWE These words are used
to examine the contents of memor . ;

4 "]".!‘
e Output; O-%, D-0, D-F, D=}, ['E‘.Fl"n‘"f"fl, F'ﬂl_'SE%?‘F'Ff“"T',.'.lnd “F 1F. These words are
used 1o assign the display, pause dv ing execution, and con(ure the p:otlnler. ’

N

+ Miscellaneous: EASET, TINE,.nd TIMED.
3

L

21.1 Loading FORTH Utllity Flles .

There are three FORTH utility files F HUTILRA, FTHUTICF, and FTHUT L L #f you have aot
established a FORTHFFM file, use the F HUTILL file as follovfh

COFY FTHUTILCE: TAFE} TO FOI THRAM

If you have already established FORTH <A, the new wordl' \
from within the FORTH environment: LY

“ETHUTILAI: TAPE]" ASSEMBLE
ma s :
"FTHUTILF{: TAFE]" Lc-ﬂoﬁflvjsg, 5

; .

‘”:"bl -d:ﬁr'lt. as its words,§
FTHUTILF file. ik !

The FTHUTILA file must be a

Forth Utilitics

21.2 Decompiling

[UN: -

Decompile the word following 1M1 in the input stream. Used in the form:

1IH: <word name>

12 produces a complete map of a colon-compiled dicticnary entry, showing the contents of the word
header, and an addressed list of the words comprising the decompited word’s definition. For example,
execution of

W KO - produces outpat like thix

o ofs AODE-
LERS ol

NFH:
Lhhe

‘Fhe first column of numbers show the address of each element of the word; the second column show the
content of the address. After the CFA, the content is the TFF of a FORTH word, which is also identified

[4 .

by its name. From the above we can read of f that the definition of RODF - is ¢ RODR- S- #® 3
Ihe rate al which U displays successive words in a definition is controlled by the FHLIZELH variable.

1112 does not necessanly give a definition listing exactly the same as the original definition, because of
the nature of certain common FORTH werdy. BEGIN and THEM, for example, have no compiled
representations 1L does allow you fo determine the location of these structures by displaying the
dectination address for all branches. An IF word, for example, is displayed like this:

IF 0 xxexx
\

) I8 .
where vxxax is the address of the word that will be executed next if the flag tested by IF is false.

A second class of words for which the decompilation does not match the original definition exactly
consists of words that are compiled as multiple words. Examples are OF and LERVE. QF is compiled ay
WYERE = IF DFOP, LEAVE is compiled as B> F> ZOROF ELSE (the ELSE’s here are just
unconditional branchen).

Finally, LIH: does not recognize the headerless words used in the FORTH ROM dictionary, which may
cause problems if you attempt to decompile 8« ROM word. In most cases, IH: will just display Link rown
for a word it doesn't know. If the unknown word advances the instruction pointer when execuled, (2 H
will get out of synch and Qruducc garbage or hang up. The headerless words are listed in the FORTH IMS.

€ 4

p

~

T T Ty " —— — -_— . T - O U

Forth Utilsties

RS. - 1

Decompilea the contents of the return sta k. F'=. lists each item on the return stack, in bottom-ta-top
order, each followed by the name of the w .rd identified by the address The lowest two levels, which refer
to the ouler inlerpreter, are omitted. p

i

21.3 Single Stepping

The words STEF, S57, EBRERAK, E , COHT, and FIHISH enable you tu antervupt 4 FORH
secondary word at any potnl in its executy -n and single step each successive word or granp of words s
definition. A separate return-stack and i struction peinter environment is set up Lor the word, so that
you can carry out various FORTH operati \ns between steps, and 50 that return-stack aperations son hinted
in the word will not confuse the normal .uter interpreter. The interrupted word nses the normal data
stack, 5o that any operalions you perform selween steps musl leave the stack in the state expected by the
next step.

Interrupled execution of a word iU is i itiated by cither STEP XXX or <address> BEFEFIE Y ¥ X
Both methods set up the interrupt environ:ent, then begin executing XY X X. STEF exccutes onty the fust
word (after the * = "} in X X X's definition ERERE exccules XXX vp to <address>, or to the Jinal v
whichever is encountered lirst.

Esecution of an interrupted word is resum d by the words 55T, COHT,and FTHIZH 251 executes the
next word in the definition; CIIMT resum s continuous execution, stopping at the next encounter of the
breakpoint address (which can be reset vith EF), or at the end of the word. | HIH1-H clrars any
breakpoint selling and completes execulion. of the word through the final " 3 "

Each time a word is interrupied, a user-s lectable vectored word is executed. The VP11 of the vectored

word is stored in the variable SSTOUT. rhe default ZETOUT word is =., which displays the stach in
bottom-to-lop ordes (reverse of . =

) with u square brackets £ J.

Single stepping proceeds through a word's . efinition at the level off the definition - each secondary n the
definition is executed entirely as a single .lep. ST does not wapder up and down through the various
levels of secondaries in a definition. ERE! . and COMT will stop 4t a breakpoint addrest set at any level,
but a subsequent - =T will halt back : t the top-level of th§ original word'’s defimition You can
effectively single-step through lower leve 1 by setting brelkpointﬁ‘ in the low level definihion and using

CONT. : 1 L

. LH ¢
The single-step words use two user variabl 4 during their executiole' #2FBTF is used to pass the address
of the start of the single step environmen: to the single step primllives. #2F B, which is also used hy
the colon compiler, is vsed to hold the ¢ rent breakpoint address. FORTH!words that are tested wal,.

"

EFEAE or Z5T must not disturb the cont -nts of these varisbler Furthermore, they must not disturh n@:’
return stack pointer stored in FFD, nor 1:0ve the return stack iteelf. In ptticular, do nor EFERE of
32T words containing GRUH or SHRIHI at any level. ' B . |

i '
i

BP . n—»]

Set a breakpoint at agdress n, for use with ONHT.

€ ¢

- L)

T gman | amme 0 gmnn 0 a0 gm0 aaam

@

Forth Utihitics '

BREAK ! n-»

Used in the form <addr> ERERAE. <wordname>.

Create a single step environment fof the word named next, then execute the word, stopping when the
instruchion pointer reaches the addrdss on the top of the data stack. The addreses for BEEERLE can be
obtained using 1JH: on the word to be single stepped. EFERL. can stop at any word address in &
definition after the first address following the = (use STEF if you want to stop on the first address) and
before the final § {stopping on the { is the same as executing the full word).

4 !
CONT ‘: "

i
Resume execution of a word that was interrupted with STEF, EFERK, or 35T, Exccute up to the
break point address, or to the final * 3 ", whichever comes first.

. : ; i
' f

FINISH

3
1)

Complelte execution of an interrupted word through the final " §
¢

i

~]

Display the name of the word identified by the next address in the current linlle-;lep word’s definition,
then execute the named word. Then exccute the word whose UFF is stored in the variable SSTOUT.
The default “STOMIT word is 5. which displays the stack in bottom-to-top order (reverse of . S)

[ssr

STEP "

Used in the form ZTEF <wordname>.

. .) - , . .
Create a single step environment for the word named ‘next, then S5T the first wo?d following the ¢ in

the word's definition. . 1 R
. o h

L ht

bl

v

VY o
B gl

~

“

™

(. ()

Forth Utilities

21.4 Memory Examination

addr n —»

bDumMP

Display n nibbles, starting at addr, as AS: (1 hu‘chlnclen. "

DUMP +

addr n —» addr+n l

Display n nibbles, starting at addr, as ASt il hex characters. Leave the next address (addr +n) on the stack.
13 N .

-]

LIST

'

Display s list of user-dictionary words, st rting with the most recently created.

L_ =)

Display the number of nibbles available 1 the FORTHEARN file.

s. -]

Display the dala stack contents, in bottos first, top last order (opposite of . S), inside |) brackets.

" — addr+5n ‘
o

ROOM?

SHOW . ot

Display the address and contents of n co secutive S-nibble cells st
on the stack. Display time is controlied b PRUSELEH. : ';
!

NI

torth Unihies Poth Eiliyes

21.5 Output ’ ~

PRINT I ’
[6_0 — Used in the form FETHT vavur, whi b canses the display output of the FORTH word vvvaa to be
_ directed to the printer GFFTHTERECL) The original HILVSFLEY 15 device as restoresl automati alty
after axsrx has finished exceution, FEGHT DN TRE O for example, will print the decomplatyn of
Frecte “DEFLAY TS+ BACTCN FFI#E.0 on 2 printer instead of the display :
[D—-D -»J SKIP v o T .
Freeute "DILAY T5 (‘I'TFA'I_HT R = R R Send ESC 2111 towhe sPFIHTER 10 set perforation vkip mode
lo—v -
Faente “OIWFLAY TS PRTHTER" BOGD 21.6 Miscellaneous
[o-n - |
BASE? S l
Fxeaste "DSFLAY ‘ h e
-~ - Display the current base in decimal.
[DELAYOO - J
TIME o '-;—",
Jxecute "DELIY 108" BRI DL N - -

Pushes the current BP-71 Jdock time o to the floating pont stack. Time s rxpressed i weoonds Yo
PAUSE . ——] midmight, rounded 1o the nearest . 0} seco «d.

Panse for the number of milliseconds stored in the variable F1LISEL EM. (Does an empty DO Li20F). TIMED ‘ ! . l
Iitensbed for use with ontputs to the HIP-71 display. = e =

Used in the form TTHED xuxx, which lisplays the execution time of the word vxve in secomds ite the
PAUSELEN —» addr nearest 01 second). For timing floating | vint words, be aware that T THED will change the 1 gexeston o
input, and the - and Z- registers on out ut.

Return the address of the variable containing the delay in milliseconds produced by FARIVEE.

	Introduction
	Version Identification
	Working Environment
	User Environment Preservation
	Message To The User
	Waiting For The User: KEYWAIT$
	Option Selection
	Help!
	Input Routines
	INPUT Alternative: INLINE
	File Name Verification
	Ouput Routines
	Internal Calculations
	Error Messages: MSG$ & Translator
	Speed and Space
	HPAF File Standard
	String Functions
	BREAKPT: BASIC Breakpoint System
	KEYBOARD IS - Using a Terminal
	Graphics
	Forth Utilities

