
•

..

HEWLETT-PACKARD

Assembly Language I/O
Reference Manual

HP-83/85

- -,' -. . ","~
.r...: ...

•

•

Print ed In U.S.A.

HEWLETT
PACKARO

Assemb1 y ~nglleg"
1/ 0 Reference Manllel

HP-83/85

November 15182

Reorder Number
09085-ge818

CHewlett-Packllrd Company 1982

,

-

CONTENTS

Section

I INTRODUCTION

1.1
1.2
1.3
1. .
1. 4 . 1
1. 4 . 2
1. 4. 3

Overview of Low-Level I/O•...•......
Interface ~"unctionlll Description ...•......... • ...•.........•
Interpr eting' t he Tr<'lnslllto r Bytes•...•......•..... . .
RAM Hooks Ava i l"ble to the I/O Progr"~er ..•...•.... .• • _

tRQ21) (192470) ••...........•....•••• • .•• • ••••••• • ••••••• ••
10SP (lO24(7) .•....••.•.•..••••••••••••••••••••• ,_ •••••••••
NEWIRQ •.•••••.••••.•••••••••.•••.•.•••••••••••• • •.••••••••

I I 110 PROCESSOR CCJ!oIMANOS AND PROTOCOL

P"ge

1-1
1-2
1-3
1-1
1-1
1- 12
1-14

2 . 1 Communications Protocol Betlol"en the CPU and the 101' ...• _ • .. • . 2-1
2 . 2 Command Protocol Flo ... charts ..•.....•...• _ .. ,_•.. 2-3
2 . 3 I/O Processor COmlTl(lnds • . ..•...•.......... • 2-9
2 . 3.1 Re.!ld St.!ltus 000 Il 2-9
2 . 3.2 Input 00 II 1 2-9
2.3.3 B ... rs t I/O 0 II 1 I) 2-10
2 . 3 . 4 Inte rr ... pt Cont r ol 0 II 1 1 2-1 11
2 . 3 . 5 Interface Cont r ol 0 1 II II 2-11
2.3 . 6 Re.!ld Kili a ry 01 1 1 2-11
2 . 3.7 Write Cont rol 1 II 0 2-11
2.3 . 8 Outp ... t 1 0 I 0 2-12
2.3 . 9 Sand Commanrls 1 0 1 1 2-12
2.3.10 Wrlt-e Auxili;uy 1110 2-12
2.4 ~~at Happens w~en the I/O Processo r Interrupts the CPU? • 2- 13

III PERFORMING I/O OPERATIONS

)'. 1
3,2
3,3
3.3 . 1
3 . 3 . 2
3, •
3 . 4 . 1
) . 4.2

11

Introduction
I/O Operilltlon Flo charts
I/O Operilltlons, Utilities ilInd Sample Code ••

Register Conventions
Inter r upti ng Ve r sus Nonlnterrupting lOP Comm.!lnds•....

Definition of an I/O Operation
Corncand H.!Indshaking Utility Subroutines ... ••.•.•
Sl.!l t us and Cont r ol Opera t ions •..........•.•...•

3-1
3-l
3-13
3-13
3-13
3- 14
3-15
3-18

3.4. 3
3 . 4.4
3 . 4 . 5
3 .4. 6
3 . 4.7
3 . 4 . I!
3 . 4.9
3 . 4.10
3 . 4.11
3 . 4.12
3 . 4 . 13
3 . 4 . 14
3 . 4 . 15
3.4. 16

Status and Control Utility Subroutines•......... 3- 19
Special Contml Ope r ations N.ot Available With BASIC•.. 3-20
Simple Input/Output • • 3-22
Simple Input and Simplo Output Utility Subroutines 3-27
Primary Add ressing tlnd liP-II! Inte rf .. ce Messages 3-28
Primary Add ressing lind Inter f ace Messillge subroutin.s ..••... 3- 30
Miscellaneous rio Utilities 3-32
!luest Input/Ou t put •.....•..•....... 3- 34
!lu est -In and !lur st-Out Uti lity Subrou t ines 3-37
Bu r st Comm .. nd Protocol • ..•.....• 3-39
Burst E)(ecution Speed••.............. .• ..•...... 3-40
In t e rrupt ing Ope r ations•.....•.•.... 3-411
Simultltion of I/O ROf'\ Stateme n t s • ...•..• ••...... 3-41!
Timl ng Me t hodology•......•... • .•• ••...... 3-52

IV SAMPLE CODE

4.1 Int roduction 4-1
4. 2 Keywo r ds 4-1

,

figure

I-I
1-2
I-l

2-1
2-2
2- 3
H 2-,
2-6

3-1
3-2
l-l
l-4
3-'
l-6
l-7

3-'
3-9
3-10
3-11

ILWSTRATlONS

TI tle

110 Hard"'are Diag r am • ... • ..•••.. , ... ••..
Calc:" l<l to r Control Register • ...•...•... •
Processor Status Register•..... •...• ... • ... •

Reset One lOP ..•.•.••......•....•........ , ... , .•••..........•
Cornnand Handshake•...•... • ... • •..... •••..
Revive An Interrupted lOP•... •.. . • .•. ,•..••.•..
Interrupt Service Routine•... • ... • ... , •.. , ..•
Interrupt Output•...•...•..••...•..•........
Interrupt Input•... • ... • ... , .. • • ..•..••....

Read Status•.............. ••••.
Simple Input•... , ..•.............
Surst I/O • ..•.......•.. .•......
Burst LoopS , .. " ..•... , .•• , .• ,
Disable AU Inter t uptS ,
Re--enablc All Interrupts • ..•.... •. . ,•.... . ..••
Write Control ,•.. , ..•............•
Initiate Interrupt Inpu t•.•..• _ , •. • •......... . ..
Initiate lnte rr upt OU t put
Send Byte Count ••..••..••. . •
Simple OUtput , ,

-

I

,

P"ge

1-3
H
1-'
2-l
2-'
2-'
2-6
2-'
2-'

3-2
3-3
H
3-'
l-6
3-'
l-9
3-9
)-10
) - 11
3-12

TABLES -
Table TI tIe Page

1-1 Tr a nslator Add r essing • ..• • .. , 1-6
1-2 Select Code Byt e Int e rpret ation , 1-8

2-1 Comma nd By t es .•..•..................•..••.... , ... ,•.. 2-2
2-2 In t e rface Cont r ol Fields , 2-11
2- 3 IOP Interrupt Byte 2-13

3-l
3- 2
3-3

Execut ion Times
Execution Times
Execution Times

(milli s econds) , .•...... ,
fo r HP- IB Interface Ope r ations .•.... , .•......

3-18
3-31
3-34

v/vl

INTRODUCTION

1.1 Overview of Low-Level I/O

Section
I

The p<.lrpose of this manual is to document HP-83/BS input/outP<.lt operations.
For example, YO<.l may need to speed up a specific data transfer, or do a
custom I/O oper"'tiorl . These are pr oblems that cannot be solved with a
BAStC prog r am lind an riO ROM. This mlln<.lal should be <.Ised with the
Assembler ROM manual (your reference for "'riting biMry programs).

This documentation Is arranged in the following sections:

Section 1 . lntroduetion-- Read this section first. It Is an overview of
how I/O Is used on the HP-B3/85.

Section 11. I/O Processor Commands and Protocol·-Use as a reference for
the commands that communicate '.11th the I/O processor on each interface
card, and t he protocol fo r communications in this m<.lItI-processor system.
You will find a flowchart outlining the prot ocol required to pass a command
to the I/O processor. Refer back to this section after yo<.l analy~e your
I/O operation using section 3.

Section III. Performing I/O Operations--Each I/O operation is discussed
along with the programming steps required for execution. You will find a
detailed discussion of Simple input/output operations, burst input/output,
Interrupt operations , and s t atus and control operations. Documentation on
the fastest rates possible to do I/O operations for each interface Is
Included , as well as slImple I/O utilities.

Section IV . A Sample Program--Thls example contains simple , burst, and
inter r upt trllnsfer routines. It also ine:ludes II hardware vector hook
Interrupt service routine, 3nd other general purpose utilIties such as a
varlllble set-up utility.

If you are trying to speed up an 1/0 operation, you should first make sure
the computer Is capable of attaining your speed requirements. To do this,
compare your req<.llrements with the rates documented In section 3 .

1-1

--------'

Section 1: Introduction

A tradeoff of speed is requi red to gain the power of using BAStC with the
110 ROM. The more general your application, the mo re speed you will gain
using binary code . for example. if you are doing a SIMPLE ENTER from a
GPIO interf",c .. at select code 4 (ENTER 4 in BASIC), you can write a binilry
program that sends a SIM PLE INPUT command and handshakes each byte into a
string var i able un t il the GPIO device is out of data or the string is fUll.
This program bypasses the extra image checking. data formatting. and other
options that the I/O ROM a l lows, making execution at least three times
faster.

Once you
followl [19

have de t ermined
gllidel ines:

the feasibility of your requirements, USe

1. Read section 1.
2. Refer to t he appropriate flowchart and sample code in

section 3.
3 . Use section 2 as a reference fen commands and protocol.
4. Design a program using the example in section 4.
5. Code and debug your program.

1.2 Interface Functional Description

The purpose of
memory and some
data may be a
interaction.

interface operations is to transfer data between computer
other device or devices. The source or destination of the
data storage a rea (buffer) in RAM of direct program

Interface devices uSe a variety of methods
interfaces are available with selec t able options
specific method of communication.

to communicate. Different
to allow cus t omizIng to a

Between the interface and the comput er, every attempt has been made to have
only one method of communication. The only difference between interfaces
(as Seen by t he HP-83/85 low level code) is their respective interface
select code numbers Which do not affect interface type. Bven though
different interfaces have different capabilities, they all speak the Same
language. For example, conSider the statement,

OUTPUT 5 ; "1"

I f t here is a serial interface at select code 5, then the ASCI! character
"I" will be output serially. If there is a BCD interface at select code 5,
then "I" will be output as a BCD digit. In both cases the computer program
operations (data values and instructions executed) are identical.

To maintain uniformity there is a microcomputer in each interface . This
microcomputer acts as an interpreter able to listen in one language and
speak in ano t her .

I

I

I
I

I

I

Seetlon 1, Introduction

I

~ C ~ , ,~ ,~

I
I f 1
I I ~ I I k

I

Figure 1- 1. I /O Hardware 01<19r_

The CPU Is the central processing unit whICh eKecutes machine language
Instructions lei theT SYSTEM/BASIC or ROl'ofBINARY) . It has unlque
designations of logic levels, tl~ln9. etc. Terminology used In the above
diagram and throughQut this manual Includes :

Input/Output Processor (lOP): An 8049 microcomputer which executes
preproqrammed microcode. This code allows the processor to converse
through inte rf~C'e dependent dn:ultry (IOC) according to the selected
options (SO).

T ranslator (T) : A two-byte wide
timing, and control on one
control on the other side .

channel
litde and

with
81149

HP-83/85 logic levels,
logic l evels, timing , and

Select Code (SC) : Indicates to the tranSlato r where to appear tn memory
address space.

1. 3 Interpreting the TranSlator Bytes

As an I/O progr(lmmer, the only access you have to the I/O processor Is
through the tranSlator. Each tranSlator appears as t ... o consecutive bytes
in memory. The I/O processor also sees two bytes . These are full dupleK
bytes. Unli ke memory bytes, what you read from these t ... o bytes Is not what
you just wrote there. What you read Is wha t the I/O processor wrote into
them (with the eKceptlon of two control bits). What you write to these
bytes is what the I/O processo r receives neKt time It reads them (with the
same eKceptlon).

= -
Section 1, Introduction

Because of t his read and write process, four names are associated with these two bytes. The first byte (lower, eyen address) is called the calculator control r~ister (eeR) when you write to it and the processor status regis t er (PSR) when you read from it. In general, ·calculator" refers to the co~puter CPU, and ·processor" refers to the I/O processor . The second byte (higher. odd address) is called t he output buffer (OB) when wri tten to , and input buffer (IB) when read from •

•. ,
Ill'f'It'tunt 'u

Figure 1-2 . Calculator Control Register

RST (reset): When set. the I/O processor Initiates the reset operation .
CED (calculator end data) : When set, the CEO bit Indicates to the I/O processor that the computer has declared the current data byte to be the last of the current sequence .

COM (command)' This bit tells the I/O processor to inte r pre t the byte it findS in the output buffer . If the COM bit Is set then the outpUt bu ff er contains a protocol command . If the COM bit i s clear. then the output buffer conta i ns a byt e of data .

INT (interrupt) , Setting INT Interrupts t he I/O proce ssor .

I

Section 1, Introduction

,
BIV"~::C'"' L,-_...J_'_~_'JI_'~_'...J __ ...J_'_'_~...JI_~_...J_~:::"...JI_'_F.I

t. . ' ~ . ,"."Ie.
I\oqu .. ,

Figu~e 1-3 . P~ocessor St~tus Reqiste~

L
'ugnl' IO.,, ' ."

OSF (output buffer full), Writing ~ byte to the output buffer sets oar.
It is clear"d wh"n th" I/O proc"ssor reads the output buffer .

TFLG (tr~nsfer fl~g), There are times "'hen more th~n one byte can be
transferred during a single interrupt (for example, with ~ multi-digit
BCD field). When TFLC is set it indic~tes that the I/O processor has or
"'~nts additional bytes.

FDPX (full duplex), When set, FPDX indicates that this I/O processor can
do interrupt transfers in both directions concurren t ly .

PACK (processor ackno",ledge): This bit is set to confirm that the CPU
has interrupted the I/O processor.

PED (processor end d~ t~): When se t , PED indicates to the computer that
the current byte is to be the last of the current input sequence.

BUSY (not idle): When set, BUSY indicates that the I/O processor Is
occupied.

lBF (input bu f fer full): lBF is set when the I/O processor ",rites a byte
to the input buffer and is cleared when the CPU reads the input buffer.

The input and output buffers are both eight-bit by t es . The meaning of the
bits is entirely situ~tion dependent. For the CCR/PSR, six of the bi t s are
read by t he I/O processor as what "'as "'ritten there. Wh~t yo~ re~d is wh~t
the I/O processor "'fote there . The highest ~nd lowest order bits are
control bits. They ~fe read like this:

L ""e" ,"e ,/0 processor reads ,"e '" bi t, " rece I \les output buffer
full. , . When the ,/0 processor reads 'he lNT bit, " rece i \les input buffer
full. ,. Where you read output buffer full , 'h' I/O processor ",rites HALT .

•• Where you read input buffer full, 'he ,/0 processor wr I tes '" (interrupt) .

-

I

I

5ec t iorl 1: Introduction

The t renslators are positioned In sddress space according to the three select code settings as Indicated in table 1-1.

Table 1-1. Translator Addressing

Address N~me SIoI!tches

177520 CCR/PSR , , ,
117521 OB/I8

177522 eCR/PER , , ,
177523 DB/IS

177524 CCR/PSR , , ,
171525 08/18

177526 CCR/PSR , , ,
177521 OB/18

177530 eCR/PSR , , ,
111531 OB/IS

177532 eCR/PSR , , ,
177533 00/18

177534 eCR/PSR , , ,
177SJS OB/18

177536 eeR/PSR , , ,
177537 OB/18

These bytes are accessed using Instructions such with the eKeeption of multi-byte instructions
."pected . If you read from lin ... ddre5s which translator, you will read alII ' s . It you write data will be lost .

'-6

Select Code

l

•
,
6

7

,
9

"

as UD, ST , PU, and PO,
which do !'lOt work liS

Is not claimed by a
to such an address your

-

•

Section 1: Introduction

The mapping of select codas Into memory space is used by the

the st~ndard 1(0 interfaces. A similar set of addresses exists

to 177517. This IIdditional set has some di ff enmces which "'ce:

I/O ROM and
from 177506

• The I/O ROM
translator
branches to

does not handle these locations . If en interrupting

is 1n one of these locations. the 1/0 ROM service routine

the hook NEWIRO.

• A factory mask option, rather t hen a select code switch, causes e

translator to occupy this region .

• The IDeations 177500 end 117501 (which correspond to switch

of 0 II II or select code 3 in this reqion) are unavailable for

coda bece ... "e of the global uses of these addresses .

1 . 4 RAM Hooks Available to the I/O Progra..er

1.4 . 1 IRQ21 (1112478)

settin'Ols
a select

In the system reserved aree of RAM memory, IRQ20 is e loeetlon thet is

called when an lOP interrupts the cpu . The system code does not use t his

hook except to i nitialize it with a RTN instruction at power-on.

Control passes to IRQ20 when t he cpu is interrupted by an lOP . This is how

the tranSition l ooks at t he hardware level:

1. 'Ille CPU, rather than executing the next instruction in Its nOriMI

s equence, pushes the address of that next instruction onto the R6

(return) staCk. It then notifies the interrupting device (transla t or)

that it's feady.

2. 'l1le translator
for the CPU.
vectors.

returns the number
Other types o(

20 (octal) as
interrupting

an interrupt vector
devices return other

1. The Cpu reads location 20 (in system ROM), gets the address of IRQ20

(Which is stored there), and commences execution at IRQ20. Thus , when

considering the code for IR020 and the inte rrup t service routIne which

It calls, the following conditions can be assumed from the fact that

the code at IRQ20 is executing: there is III return address on the R6

staCk; and the interrupting ~evice is an lOP.

1-7

,

Section 1: Introduction

In order for the Interfaces to function, ROM or binary code must take the
hook at IRQ20 . The lOPs need inter r upt service to complete their power-on
rese t routines (they must Interrupt to report the self-test results) . If
anyone of the th ree ROHs which use interfaces (1/0, Plotter/Printer, and
Mass Storage) is present i n the system, this power-on r ese t protocol will
be handled by the ROMs befo r e your binary program Is loaded . If none of
these three is present, then you must ta ke the IRQ20 hook and complete t he
reset yourself before you can use the interfaces .

Yo u ~y do simple I/O without tak i ng lRQ29 if another ROM Is handling
power-on reset. A.lso , if t he other ROM is the I/O o r Mass Stor"ge ROM,
then the se r vice routine hooked In TRQ20 by one o r the other (I/O If both
ROMs ~re present), wil l be able to handle your bur st te rmin~t ion inter r upt
and t erminate the In!inite loop. For ~ll other situations you will want to
~nage your own interrupt service procedures so you will take the hook at
tR020.

If you h~ve one of the above ROMs doing the power-on res~t, you will miss
the opportunity to Identify the selec t codes of ~ll tr~ns la tors present .
I n this case , l oad a copy of the byte at 100667 (octa l) . This is a system
10c <l tlon used by these ROMs as a ·select codll pn ,sent- indic ... tor . H the
bit Is set . the slIlect code is there .

Table 1-2. Select Code Syte Interpretation

"SO Si t Number 1 , , 4 J 2 1

Select Code "
, , 1 6 , 4

If you need to write <In interrupt servIce rou t ine (ISR).
s ect ion provides an explanation of the code required.
code at the hoo k.

• !.S,

J

the rest o f this
Following is t he

10 247e tR020 HTN (be f o r e the hook is firs t taken)

Once It ' s bpen taken:

102470
l e 2471
H! 2474
102477
102501
102592
102505
192506

IRQ21J SIU)
STSD RI,GtNTDS
JSS _ROMJSS

IRQ21l+ DEF ISR
8'1'1 ROM,
STBD RI .GINTEN

IRQ PAD PAD
IRORTN RTN

Section 1: Introduction

Taking the hook at
at !RQ20 (IRQ20t
operations) .

1RQ20
" ,

is accomplished by storing
convenience label to allow

the above instructIons
two multi-byte store

The individual instructions are discussed next. Basically these
instructions are the first and the last of your interrupt service routine
(ISH). Recall that 11 p r oper ISR leaves no trace of its execution as far as
the interrupted code is concerned. On the HP-S3/85 this means that the ISR

\ must preserve the CPU state, current ROM selection, the CPU reqisters. "'nd
the stacks (R6 and R12).

»,
STBD RI,GINTDS

'" =ROMJSB

'" '" m "'M'
STBD Rt,GINTEN
'AO

'"

Saves the CPU state .
Assures that the ISR cannot be interrupted.
Calling through ROMJSB preserves the current ROM
selection.
Address of service routine.
ROM number of service routine (or 0 for bin~ry
program ISR).
Re-enables global interrupts.
Restores the CPU state.
Pops the return ~ddress off the R6 stack and resumes
execution whe re I t was interrupted (except at burst
I/O termination where the return address is
Intentionally altered by the ISR).

The code at the hook handles preservation of the CPU state and ROM
selection. Preservation of the CPU registers and stack conditions is
handled by the ISR code. For the CPU registers this amounts to pushing the
contents of registers that might be used onto the R6 stack. For stack
conditions this ~mounts to popping them back off before your ISR returns.
There is, however, a possibility for stack overflow whiCh must be addressed
by the ISR. To understand the problem, we need a picture of the R6 stack
f rom the moment of interrupt to th " time when your ISR checks for this
condition.

Start with th" address pushed by the CPU when it is interrupted. Next,
there is a SAD instruction at IRQ20 which pushes the CPU status in three
bytes . The jump instruction to ROMJSB saves the return address on the
stack. ROMJSB increments this ~ddress by three (to step past the DEF ISR
and BYT ROM, locations that it uses as the desired JSB target) and then
pushes CPU registers R0 and Rl, the currently selected ROM number, and its
own return address ~s it jumps (JSB) to th" ISR. The first thing the ISR
does is to push any CPU registers that it might use .

1-'

,

,

I

Section 1: tnt~oductlon

Second, the ISR checks for stack overflow. The R6 Stack at the time of the
cheek looks like this:

, bytes Interrupted return address.
3 bytes SAD. , b'l"-es ... lRQ2~ r e1/.urn address . ,. , bytes R~ "nd Rl. \ ROMolSB pllts these
1 byte ROM nllmber. /) bytes 00 . , bytes ROoI\JSB raturn address .
n bytes

R6-----------
Pushed by ISR.

Now go back and look at the last three instructions at the lRQ2.0 hook:

S11I0 RI,GINTEN
,AD

'"
These instructions are executed after the lSR has finished and returned to
ROMJSB. At the time of execution the R6 stack appears like this:

2 bytes
3 bytes

R6-----------

Interrupted return address .
SAD.

and after the execution of the PAD Instruction:

2. bytes Inte~~upted return address.
,,---------
and "ftar execution of the RTN instruction:

Empty, the state before the interrupt . ,,----------
The problem arises because interrupts are enabled by the STBO Rt, GINTEN,
but the stack is not empty until after the execution of RTN. If a fast
int erface is interrupting, the next interrupt will occur while ISR is still
busy. As soon as S11I0 R',GINTEN is execllted, the intenupt ill be
recognized and PAD will not be executed.

1-18

I

,

Section 1, Introduction

The ~dd ress will be pushed as the Interrupted return ~ddress and the st~ck

~ ill look like this at the stack overflow cheek'

2 bytes
) bytes
2 bytes

trouble----
) bytes
2 bytes
2 bytes
1 byte
2 bytes
n byt es

R6--- ----------

Real Interrupted return address.
Real SAD data.
Extra Interrupted return address.

Extra SAD dat~.

If the In t errupt should occur afte r the PAD instruction but before the RTN,

the stack appears like this'

2 bytes
trouble- ---

2 bytes
) bytes
2 bytes
2 bytes
1 byte
2 bytes
n bytes

R6------- ------

Real interrupted return address .

Extra interrupted return address.

If there are many faSt interrupt s, the extra byt es will build up until the

stack exceedS the allocated size. The ISR knows how many bytes It pushed

for CPU r&gister preservation. It takes a copy of R6 and subtracts this

numbe r pl us 12 (decimal), from the 12 bytes known to be there from the

saving done by the CPU, IRQ20, and ROHJSB . This qlves it a point er to the

" interrupted return address" on the R6 stack. To distinguish "real" froDi

"extra ," the ISR compares this address to the t~o known addresses (102505

and 102506) of the PAD and RTN Instructions . The names tRQPAO and IRQRTN

~il1 be used to refer to the add resses of these two instr~ctlons. If the

address found is IRQRTN, the ISR knows that the previous ISR was one

instruction short of completion when ~he current interropt occurred and

that the real address is just in f ront of the cu r rent one .

To fi x t he problem, the ISR moves the top contents of the R6 sUck (the

three bytes used by SAC through "n" bytes used by the ISR) down two bytes

(eliminat i ng the extra return address to tRQRTN) and dec r ements R6 by two.

Nothing is lost because the return to IRQRTN woul d simply have executed the

RTN instruction there ~hich wo~ld have returned to the real address .

1-11

I

,

Section 1: Introduction

If the ~ddress found is IRQPAD, the ISR knows that the previous I SR did not
execute the PAD Instruction, so there are five extra bytes . It moves the
stack top contents (stllr tl nq at the return address for IR020 through the
bytes occupied by ISR) down five bytes and decrements R6 by five. Aqaln.
nothing Is lost because the extra SAD data WilS about to be replaced by the
real SAD data when the PAD instrl,,::tion was lntermptecl .

¥ou can see t hat every time the ISR Is called for an In t errupt, it must
clean up the stack If the previous ISR did not .

1.4.2 lOOP (U2417)

rosp Is also a location in the RAM system reserved area . The executive
loop jumps to lOSP when it gets t o the end of a BAStC progra~ line and
finds that the service request bit is set (bit 4 in XCOH (R11» ~nd the I/O
int errupt bit is set (bit 1 In the RAM loca tion SVCWRD (Hl01~1». This
hook 15 the means of implementing end-of-line branches. When an
end-of-llne br<lnch condition 15 noticed while e)(eclltln'J a BASIC line , the
type of the condition is stored in RAM . The bits are set In XCOH and
SVCWRD and the code goes on executing the cu r~ent BASIC program line. At
the end of the line, the executive loop branches through IOSP to the
end-of-llne service routine (roLSV) whose address was set up In the IOSP
hook. rOLSV notes the condition a nd executeS the appropriate GOTO or
GOSUB.

Note: Use the rest o f this section to c re"te an ISR that performs an
end-of-line braneh.

To take the hook at IOSP, store t hese instructions at I OSP (102407) .

1112 401
1112412
102414
102415

IOSP JSB -ROMJSB
OEF EOLSV
BYT RCJIoII
Rn<

(0 fo r binary proqr"ms)

End-of-line branching requires a GOTO oT GOSUS as part of the statement
th"t set s It up. The pa r sing mus t be done cor rectly . so let ' s discuss ~
s ampl e st~ tement. -ON 5ELFTEST <select code> COTe/COSUS llnel . - This
statement is to set up an end-of-llne branch which will be triggered by the
select code ' s l OP interrupting fo r a self- test report {after being reset) .
The parse code will be e xecuted when the keyword ON SELFTEST is scanned .

At first things a r e fairly normal; the Instr ucti on PUSD R43,+R6 is used to
Save the keyword token . The instruction JS8 _NUHVA+ Is used to parse the
select code and then t o pop the keyword token back and push it onto the R12
stack with a 310 , RCIfoII o r a)71,0.

1-12

- -

,

Section 1, Introduction

At this point YOll mllst h~ndle the GOTQ or GOSUB . NUMVA+ called SCAN before
it retllrned (if yOll don ' t h3ve any argllments you mllst do an explicit call
to SCAN in place of NUMVA+) and SCAN left the primary attribute byte of the
next token in R47. If R47 contains octal 210, then the next token is a
GOTO or GOSlJB. If R47 is not 2H!, you have a syntax error .

Having confirmed the 210 in R47, the parse code executes ,

JSB ~ROMJSB
DEO' GOTOSU
BYT 0
GTO ROMRTN

GOTOSU is t he system routine t o parse GOTO/GOSUB and is at DAD 17435 . If
the syntax is correct, this routine pushes three bytes onto the R12 stack
(and thus appends them to the program line being p~rsed) after the bytes
put there by the ON SELO'TEST parse code.

The run time code for this keyword token has t~o t~sks. The first is to
recover the select code value from R12 and an indicator in RAM . The ISR
~ill then know that a self-test interrupt from this select code is the
cauSe for setting the service reguest bits (in XCOM and XVCWRD) for an
end-of-line branch.

The second task is to set up (but not ex"cute) ~h" GOTO or GOSUB. Taking a
look ~t the compiled BASIC line we See:

Tok"n foe Token foe Tok"n foe
Petch sel"ct code Execute ON SELFTEST GOTO/GOSUB lInel

When th" ON SELFTEST run time code is execllted, the BASIC program count"r
(R10) is poin ting to the GOTO/GOSUB token which is a random GOTO/GOSUB
token parsed by t he system routine GOTOSU . Th" run time code mllst store
the contents of R10 somewhere in RAM for flltur" use by the end-of-line
service routlne. The rUn time code should also increment R10 by three to
skip ex"cution of the GOTO/GOSlJB when the ON SELFTEST statement is
executed.

After execution of the ON SELFTEST statement, the chosen select code
interrupts with a self-test report. The {SR, noting that ON SELO'TEST is
active for that sel"ct code, sets an indicator to state that this
partic ular end-of-line branch condition has been m"t. It th"n sets the
XCOM and SVCWRD bits. Note that the complementary OFF SELFTEST statement
needs only to reset the "active" indicator set by the ON SELFTEST
statement.

1-13

Section 1: Introduction

The first
execution
loop, the
.... ay. '(ou
execution

thing
passed

EOLSV
should
of the

the end-of-llne service routine does Is to determine why
to it . Due to the structure of the system ' s executive

routine must Interact with the system code In • complex
copy these portions of code from the sample program. The
OOLSV is explained next.

If more than one ·on condition" stlltement is ~ctive. the desired statement
is selected . When the token from this statement was executed, the G010 or

I COSUS token following it was bypassed, but the Rlll BASIC program counter
pointing to It was saved. The EOLSV routine now recovers that copy of Rlil.
It stores the current RIll In a system RAM location (UIl1l41l) called ONFLAG
as a return address in case the branch is a GOSUB, It sets CS'l'A'l' (RI6) t o
7 to indicate that a GOTO or GOSUB is taking pl~ce ~s part of the execution
of a line. Then it places the recovered pointer Into R10 and returns to
the executive loop which perfor~ the actual branch. The EOLSV routine
keeps the request bits in XCOM and SVCWRO set so that 10SP will be called
again. When EOLSV is clllled 1I<;1l1ln. It then decides whether or not It has
finished with end-of-Ilne branchin<;1 and If It has, the request bits will be
cleared.

1.4.) HEWIRO

This Is a hook provided by Lhe I/O ROM in Its stolen RAM at IOBASE plus 630
oc t al . When the ISR from the I/O ROM get s to t he point of reading the
address of the interrupting translator's CCR/P$R and the address turns out
to be In the lower block of select codes not r ecognized by the I/O ROM, the
ISR (from tha I/O ROM) jumps to NEW IRQ . It has already saved everything
(including the CPU registers listed below), performed the stack overflow
check, and set up three register pairs: RD and R24 point to the CCR/PSR and
R26 points to the OB/IB of the Interrupting translator. When the NEWIRQ
routine returns through the hook, the ISR resto res everything and returns
through IRQ20. The hook should be taken with the following code:

JSB -ROH,JSB
DEF NEWISR
BYT ROM •
'TN

The CPU registers saved by the ISR are: R2-3; R14-15; R20-27; R3~-37;
R40-47; and R60-67 .

1- 14

I

,

•

I/O PROCESSOR CQro\MANDS AND PROTOCOL

2. 1 CoQDunic~tions Protocol Between t he CPU and the lOP

Section
H

The way the CPU and the rop communicate is re f e rred t o d5 lOP protocol.
This prot ocol defines commands and ~ handshaking system for int erfacing at
the machine l evel . The location of the input and output buffers al l ows
transfer of Ind ivi dual bytes between the CPU and the 110 processor. Bytes
from the I/O processor to the CPU are ,,110'''1'5 interpreted as data bytes
(some of this data is I/O processor status information but there is no
indicator bit to flag this; it is iI matter of context) . Bytes from the CPU
to the I/O processor mill' be either data bytes or commilnd bytes. The I/O
processor reads the calcul"tor control register before i t reads the output
buffer and ~ses the COM bit to decide If t he byte in the o~tp~t buffer Is a
data byt e or a command byte. If it is a command byte (COM. 1). the I/O
processor interprets it according to the protocol command lang~age.

Each comm~nd byte is an opcade and a field . The apcodes and their field
Iden t ifiers are sho ... n in table 2-1.

,

,

\

Section 2: I/O Processor COlMlan(ls and Pro t ocol

Table 2-1 . Command Sytes

Opcode (4 8 1 tal Field ,. Si ts)

"''' • , • , Re<'ld Status
Signi f lc;lnt

'" , , , , 1nput

, , , , Burst ,,0
, , , , Interrupt control

, , , , Interface control

, , , , (unused)

, , , , (unused)

, , I , Read <l uxi li;HY

, , , - Write Control

I , I , Output

I , I I Send

, I , , (unused)

, I , I (unused)

, I , , Write auxili'H'I

, I I I Extension

Of the 16 possible four-bit opcodes, one disappears because opcodes 1 9 9 B
and 1 B 0 1 are (0<'1 11'1 one cpcade with a five - bit field . The tour unusod
numbers and "extension" l",'lVe 10 opeade, of Inte rest Which wi ll be
discussed individually . It Is conceptually helpful to note that opcades
with the most significant bit set are ·walt for d<'lta- commands. The first
thing t he 1/0 processor has to do after receiving the comm<'lnd is walt for a
related data byte from the CPU . The low-numbered opcodes are " immediate
eKecute" comm~nds as they start off by doing something other t han wait for
the CPU to release a byte .

I

,

•

•

Section 2, liD Processor Commands and Protocol

2.2 Command Protocol Flowcharts

The following flowcharts demonstrate the handshaking system used in lOP
protocol.

(SUrt)

lIo"b ••• to ,77.0 '

.... AS1 . ' I

W.n . t I ••••
&0 .,e"o .. <ondo

j
~ .. ~ ,gnor. "

j
Sot 1>91 ~ •

j
Q..,.b ... to 177"'10

j
..It ~oo

olllU .. ondo

j
(000'

Figure 2-1. Reset One lOP

-

I

Section 2 : I/O Processor CoMtnal'lds lind Protocol

•

•

.' •

- -10 111'-"1;

$01 INT - I

0 10 177400;
C-- 10 011; _& 1_. '1;
""COM.~ INT_Q

Figure 2-2. Colmand Hilndshake

I

I

•

Section 2: I/O Processor COQm~nds end Protocol

(,~-

J-
• ..~ ,

•

$01 lh'T - ,

•• U , . ,

_,orO ••• "" ..

.. IJHl - O

• ..~ ,
•

(~ ..

Figure 2-3 . Rev!.ve An Interrupted lOP

'-5

Section 2: I/O Processor Commands and Protocol

(......)

..a ~G ' INTOS dono o. nook

""on Cf'U .. ogleU"o:
c..on .ho" o'o .. fl.,",

"'00 Insoo lor .. IOn 00 •• "

'<$.> I"-? •

I ~ .. II ond 'gnoro " I

~
... cm·o:

~ .. IB Ur~
IM Y~. 'nl "~U

I ,.. ... n .uon •• no vi"

I
\

"'",.r. "." "' 1"'0"': _ nsoo

I OINTEI<W o. ~ .. k

I
(-.)

I
Piqure 2-1.. Interrupt Service Routine

,-,

\

•

•

I

Section 2: I/O Processor Commands and Protocol

1000. J.,

"'CUI-'

ktcm_O

~".

"'" " .. 0 lo~ ,

IOood ,..

Figure 2-5. Interrupt Output

2-7

-

I - Section 2, I/O Processor COmDands and Protocol

(u)

I flood PM -----...,.,,1. ""od '01'
t h : ,
I

• I .• , ------4
I

• I
I
I

~ .. 18: I
It..,. . d ... I

-,'
--'

• r-
I ... o:tIl - I - "-• "- u •• te <Ill I

I • I - "' 00 you I
w m" I O,t" • ,., I X ,

' d I'M -- / -h.CEC-O Thlo !>ood f.~' /
log Igl 1ft . n ... ho" : __ /

I
I • r------ - .• ,
I
I • (~"') I
I
I • I

~" I
I .., • L _________ -'

F1gure 2-6. Interrupt Input

'-8

I

Sec ti on 2, I/O Processor Commands and Protocol

2.3 I/O Processor Commands

2.3.1 Read Sta t us e 0 e e

The four~bit field is t he number of the status regis t er to be read first .
Successive reads get consecutive r egisters . This command implements the
STATUS statement .

2 . 3 . 2 Input eeel

The field is ,

'" Count Char . INTR W, "" Term . Term . SIMPLE Term .

3 , 1 ,

This opcode is used for both simple input Bnd interrupt input. If bit I i s
~Il,~ it ' s II s i mple input:. If bit 1 is " I , " it ' s lin interrupt input:. Bit 0
set also indicates that the I/O p r ocessor Should terminate the input i f the
interface dependent condition is met (EOI) . To terminate an input
operation the I/O processor sets the PED bi t in the processor status
rcqister . If the operation is an inte r rupt input, bits 3 lind 2 may be set
to enable two other termination c r iteria . For bi t 3 se t the I/O processor
will te rminate the transfer if t he number of bytes transferred is equal to
the number stored in control reg isters 25 and 26 (refer to opcode I Il Il l .
For bi t 2 set the lOP will t ermi nate the transfer upon r eceipt of a byte
equa l to t he one stored in control register 27 (refer to op<:odc 1 {I Il l .
The CPU may terminate t he input opera t ion by set t ing C~D ~ 1 .

In fact , the CPU mus t set CED = 1 if PED s 1. Bet"'een the time that the
command is received and Some termination takes place the I/O processor
fetches bytes fr om the I/O device a rid sends t hem to the CPU. For simple
input, it does s o by putt ing them into the input buf fer because t he CPU is
waiting to take them out. For an inte rr upt input, the I/O processor
inte rrupts the CPU with the r eason for interrupting being the availability
of one or more bytes for transfe r in.

'-9

-
Section 2: I/O Processor Comrn~nds and Protocol

2.3 . 3 Burst 1/0 eel &

The field is ,

"" w, '" INPUT '" ,
""" 0"' OUTPUT

J , , ,
This opcode Is for burst I/O, both input ~nd output. Bit 0 indicates input
(-1-, or output ("e"). If It is an output , settinq bit 1 will cause the
I/O processor ' s programmed EOL sequence to be sent out at the end of the
transfer (otherwise the Interface EOl condition will be asserted with the
last byte). If the oper<ltion Is lin input. clearing bit 2 allows the tlO
processor to terminate the burst If Its EOt termination condition is met.
The CPU must always qive the lOP /I byte count (control r~isters 25 and 26)
before a burst operation. After giv I ng the burst co~nd . the CPU enters II
very tight Infinite loop to transfer data as fast as It can. this burst is
~lwilYs terminilted by the I/O processor which interrllpts the CPU .. ith the
reason for interrupting beln .. burst termination . By tilmperlng with the
interrupt service rOlltlne ' s return stack the CPU breakS out of the Infinite
loop.

2. 3.4 Inter rllpt Control 8 8 1 1

The field Is 0. this optode is a special "no op" command. When protOCol
co~ands are ~ssed by int errupting the lOP It sets PACK - 1 and enters an
"interrupted" state for the duration of the command execution. The 1/0
processor will reMin in this sute (with nO[lDIIl operations suspended)
un t il the CPU declares t he command's operation t o be complete by strobln ..
the 1/0 processor ' s HIT bit. For burst oparation , the global Interrupt
disilble feature can ' t be used because the ac t ive 1/0 processor must be able
to interrupt the CPU to terminate the burst. Before a burst operation, all
resident 110 processors are sent this -no op" and are put into the
-interrupted" state by the command handshaking. The interrupt bit of the
I/O processor to be used for burst Is strobed and that 1/0 processor
"r evives" to perform the burst . Af t er the burst, all 1/0 processors with
PACK. 1 are strobed, revivln .. them (by allowing completion of the "no op·
command) to continue with their normal operations.

2-HI

,

•

I
I

-
Section 2, I/O Processor Co~ands and Protocol

2.3 . 5 Interface Control & 1 B B

The field, fro~ a t o 9. selects one of the 1& interface control ope rations.
These ~re Immed iate execution with no data Involved (except a parallel poll
response byt e which is placed in the Input buffer af ter that operation).

Table 2-2. Interface Control Fields

Field COllUlUlnd

• ABORT I/O •
I So< "" • 1.
2 So< "" • •• 3 Set ATN · ,. , Perform Parallel Poll.
S S"nd "MY TALK ADDRESS.'
6 "'00 "MY LISTEN ADDRESS."
7 Send EOL cha racter sequence .
B BREAK I/O .

• RESUME I/O,

2.3 . 6 Read Auxiliary 9 1 1 1

This is a diagnostic not used by t he I/O ROM.

2.3 . 7 Write Control 1 B 0

The field Is ... five-bit register number. This opeode causes the lOP to
wa lt for da ta bytes which are to be writte n Into consecutive control
reqi s te r s beginning with the one indicated in the field. The CPU sets the
CCD bit equal to 1 with the last byte sent. This opcode implements the
CONTROL statement . However, the re a r e f I ve control regIste rs (R25 through
R29) that the I/O ROM hides from BASIC programmers . These regi sters are:

R25 (least signif icant byt e) characte r count

R26 (.cst significant byte) character count

These t WO bytes contain a 16-bit binary Integer which t he I /O processor
uses t o terminate a data transfer by charac t er count .

2-11

Section 2, 1/0 Processor Commands and Protocol

R27 ~ Input ter mination characte r

This byt e is used by the I/O processor as a termination match character
when bit 2 is set on an Input interrupt command .

R2B ~ ASSERT byte

The ASSERT opera tion Is performed by writing the byte to be asserted into
this control register.

R29 - Service Request Byte

This Is the byte t hat Is to be sent to the HP-IB bus if this processor Is
sedally polled .

2.3.8 Output 1 8 1 8

The field is ,

"" wrn ,,;, , , ,
SIMPLE:

3 2 1 ,
This opcode commands a simple ibit 1 • 0) or inter r upt (bit 1· 1) output
operation. The I /O processor either w.,lts for data bytes to output
(simple) or Interrupts the CPU with the reason fo r Inte rrupting being
read iness t o t ransmit one o r more bytes . In both cases the ope rat ion is
terminated by the CPU setting CEO. 1 In t he calculator cont rol registe r
just before the last byte is put in t o the output bu ff er .

2.3.9 Send Commands 1 8 1 1

The field i s 0. The send commands tell
should be in command .ade as opposed to data
and causes t hat Interface t o handshake the
with ATN .. 1 (t r ue) .

2.3.111 Wr ite Auxiliary 1 1 1 8

the processor the next bytes
mode . This is en HP-IB opcode
da ta bytes over the HP-IB buS

Like read aux ilia ry, th i s opcode is 8 diagnostic no t used by the I/O ROM.

2- 12

I

Section 2: I/O Proc~SSo r CommandS and Protocol

2. 4 What Happens When t he I/O Processo r Interrupts the CPU?

When an I/O processor Interrupts the CPU, th~ first thing the CPU servic~
routine does after identifying the prQcessor is to read the Input ouffer to
l et the processor know that the service request Is now being handled. The
processor then places a byte Into the Input ouff~r to tell the CPU why i t
was II,terrupted . The recognized values of t his byte life:

Table 2-3. rop Inte rrrupt Byte

Byt~ Interrupt Reason

, , , , .. , , Interrupt output. , , , , , , , 1 Burst ter~ination. , , , , , , 1 , "" lNTR condition met. , , , , , , 1 1 Self-test passed. , , , , , 1 , , Interrupt input. , , , , , 1 1 , finished EOL sequence .
1 1 1 1 1 , 1 1 Self -test fIIiled .
1 1 1 1 1 1 1 1 Inva lid I/O operation. , , , , , , 1 1 Interface t ype dependent error .

Interrupt OUtput: The lOP is prepared to process onl!
bytes (during an output transfer by interrupt) and 15
sorne data from the CPU.

or more output data
Interrupting to get

Burst Termination: The rop has determined
Is finished and the CPU should abandon its

that the current burst operation
Infinite loop.

ON INTR Condition Met: Some Interrupt condition masked In control register
1 (Interrupt mask) has occurred.

Self-Test Passed : The lOP has completed Its reset procedure and passed the
self-test .

Interrupt I nput : Li ke interrupt output with the l OP Indicating It has bytes
for the CPU.

Finished eOL Sequence: The lOP hilS completed sending the eOL character
sequence after an interrupt output .

Self-Test failed: The lOP has eo~pleted Its reset procedure and has failed
the self-test .

2-13

I

Section 2: I/O PrOCeSSQr C~nds and Protocol

Invalid I/O Operation: The lOP cannot execute the protocol
received (for example , II serial interface was sent a
cOlMIsnci) •

COlI'III'Iands it has
parallel poll

Dependent Error: The lOP is reporting an interface dependent
err<lOl's are documented in the I/O flO#!llllllnual. Mdlng 112

bits 6 through 2 In the interrupt byte will give you the error

Interface-Type
error. Th_
(decimal) to
number .

Following Is an Interpreta tion of the "reason byte."

Reason byte: X X X X X XII - -Reports·

These are error reports or t he · sel f-cest
displays II message for the errors . You need
lOP Is concerned.

passed" rep,nt. The 1/0 ROM
not do anything as far as the

Reason byte: B B B gel L B "FiniShed EOL sequence"

0 BIllleB13 "ON WTR cr 19ger"

These two are also reports in the sense th~t the lOP is telling the CPU It
is finished sending t he preprogrammed end-of-Line character sequence in the
first case and one of the register 1 interrupt mask condi t ions has been met
in the second case . The I/O ROM records arl EOL branch indicator for the
appropria t e ON EDT or ON INTR. You need not do anyth ing.

The above re~sons for interrupting don ' t re~lly obligate you , as the I/O
programmer, t o do anything beSides acknowledge the interrupt in your
servi ce routIne. Burst termination, inte rrupt input, and interrupt output
do require you t o t~ke appropriate action .

Reason byte: 0 0 0 0 0 0 0 1 - "Burst termination"

You must break the CPU out of its \rlflnite loop. Refer to Burst I/O.

Reason byte: 0 0 0 0 0 0 0 0 "Interrupt output"

00000100 "Interrupt Input"

See figures 2- 5 and 2-6 at the beginning of thi s lIection for detailS o f
these reason bytes.

2-14

,

• , ,

PEIU"ORMING I /O OPERATIONS

3 . 1 Introduction

Section
m

This section defines and illu$tr~tes t he opera t ion high-level I /O . I t is
divi ded Into t hree pa r ts ' llololch'Hts Which illust rilte the operation of
h i gh-level and utility routines. utilities and sample code. and the
description of the steps involved in performing an I/O operation .

3 . 2 1/0 Ope ration flowcharts

The flowcharts shown assume that the reset and interrupt facilities are set
"p o

)·1

,

•

Section), Per f orming I/O Operations
,

(......)

-~=
'"I:

•
I ••

I'
.... d al

r oU .. or
f ro. t.

1 , ..
l ... 0"01 ""m_\
y.,

g"rb ••• ' . CI8
~-~?

)'

,~-

(~"')

Figure 3-1. Read Status

3-2

I
Section 3l Performing I/O Operation~

I (It ... t)
I -000100"

• -,
•

.. ~cm_G

II, .. " PIIA _,~u "".d lo~

eorbogo to 011

A
t~ ... uou:

I • I
,~ I --- ----;

• I
I ,

/
.... ~ 11 ... " /

/
n uu /

/
/

/
/

/

•
" . .-..-<' ,,,,- • "Y

~-. ~ .-_-.o? , , ..
"'

"tC£D_! (-. ;

Figure 3-2 . Simple Input

I
Section), Performing I/O Operations

l It ""')

~,

DI",,":
,~~

- •

T'
o!U COOl • I "

I o.u to bII

"~V.-o1
.,

"l'"
... CCII _ •

A -- M
D' • • c U , '" ... 1111

../
I

~,~

I -,)

Figure 3-3. Rurst I /O

3-4

Section 3: Performing I/O Operations

(~

I
1'01> by"

I
Byu '0 ~

-- .. ltod ~o~ •

•

"")
I

Uor D .. O '0 ~

• "" od I.

r -- .. IUd no,o

""." Dr'.

Figure]-4. Burst Loops

-

I
I

Section J:

3-6

r
Performing I/O Operati ons

(DU11tT ')

"'u •• ... I tlon .77~o~ to
.... Dl • ,1\. _.,0

• • Pt .

.. n. . ~ '.Il"~ I'" "". a •
DY\ .. to '''. lontlon , 77.12 to

010 •• 10 .~ U ... I" • • ,.,.u ... :
•• 10 1. m. ~ . IoChll .

..... _to
•• nO I"to.ruot

eon\roJ co_o" .. to on ... IH",
,~.

(- ')

Figure 3-5. Disable All Interrupts

Section 3: PeTfor~ln9 1/0 Operations

(~M)

~. IN'TIN! on .. ch r no ,~ .

~ '"' loot on •• w ... un1l1
OF __ v _ o •

...... • , '" locotlon .n_02
to n.blo tb ... bo.rd .

•
""- ... 'OllOw,nl •• ~ nco

.. o.t .. '" lou"o" 177_12 to
•• -o".blo '"' " .. r.,

•• ... ~. ~. (o.toU

(~".)

Figure 3-6. Re-.eru.ble All InteHupts

3-7

Section J : Pe r fo rmi n." 1/0 Oper~tio"s

......

-IOO,O.,.U

I ... ' 0 01

•

Fiqure 3- 7. '"''rite Control

3-'

~".

•

Sect ion 3: Performing 1/0 Operations

(1\)

~

A
•

~'/

• •

-Ooouxu

•
~,

•

I ... CCII_O I
I

• .m_

(~.)

Figure 3-8 . Init1llte Interrupt Input

3-9

I
Section 3: Performing I/O Operations

, .u~t
j -10100010

• _ .
./ •

L ... eg,~o I
j

,~-

, -)

Pigure 3-9. Initiate Interrupt Output

3-10

•

Sect i on 3: Performing I/O Operations

-1001100.

&0. cao _ 0:

L911 01 .ouM .. ~

_ . f •• unt .. ~

~"

,

,

".

Figure 3-10. Send Byte Count

T.r.ln.tlO~ o~.r . .. ~

•

3-11

I Section 3: Performing I/O Uperatlons

... "')

-, g , OOODO

,
-,

•
... <;COO _ D

.... . ~. " ...
0, " "0

, -,
•

,., "tao - I:
l .. t on. l '0 01

••

..~ "" to .. CIIW-8l/SY_O?

".
(-.

Figure 3-11 . ~lmple OUtput

3- 12

Section 3: Performing I/O Operations

3.3 1/0 Operations: Utilities and Sample Code

3. 3.1 Register Conventions

In the examples of binary code throughout this manual, it
all data transfers take place between the rop and the
There f ore, the Choice of registers, data sources, and sinks

is assumed tha t
CPU registers.
is up to you .

The sample code is written for a binary proqr~m. If you are going to wr ite
ROM-based code , re fer to the Assembler ROM marlllal fo r a dlsCllssion of the
changes yOll should make to convert f r om the binary program format. To make
things easier to llnderstand, a few register conventions are adopted here:

3. 3 . 2

R22,23

I/O Addresses:

R24,25

R25,27

Base address (BINTAB or stolerl RAM
pointer, if you are writing ROM code).

Pointer to the lOP calculato r control
registe r / processor status register po r t .

Pointer to the lOP output buffer/input buffe r
port .

ror SUing ~nter or Output:

R3~,3l

R)2,3)

Ot her:

Strin<) length.
Strln<J pointer .

Command byte for SEND CMD ope rations (se nd
a bus protoco l command , that i s , unlisten) .
Comm~nd byte for I/O protocol commands .
Scra t ch for flag tests , et c .

In t er r upti ng Ve rsus Noninte r r upt i ng l OP Commands

In gene ral, the lOPs Should be dea lt
operations. One exception to this is
duplex interface or · ... i t h tlo/O or marc
p rotocol commands that must be able
in t er f ace is busy at the t ime .

with in discrete, mut~al ly exclusive
when doing int errupt 1/0 with a full
different In t erfaces . There a re some

to operate at once, even If the

3-13

Section 3: Performing I/O Operations

They lire passed to the rop by a handshllke method which interrupts the lOP
f rom whlltever It is currently doln9 . Because they are either
noninterfering (read. s t a t us) or benevolently interfering (llbort. resume) .
these interrupting commands are 9iven the privilege of bypassing the normal
wait when the lOP is busy .

The best way t o haMIe the different command pllss l ng procedures is t o
simply have two command handshaking routines (one for the interrupting
co~nds lind another for direct cOlflmllnds) . and two operll t ion ter mination
routines (re fer to the DIRCM.D. INTOID. INTCHK. and 0-8_0 utilities) . If
you are doing inte rr upt I/O with a full duplex int l'!rface . the Inte rrupt i ng
commands will allow you to do those operations t hat will work. In all
other caSeS , the dif fere nce between the two types o f commands Is one of
hllndshaking method, because the CPU is pr esumably only doing one thing at /I
t ilne .

We will discuss the I/O operations as individual events with a beginning. /I
middle, IInc! lin end . The handshllklng difference shows up in the beginning
of an operation as the method of passing the command , and al so at the end
liS t he method used to terminate the opera t ion . (Wai t until the l OP hilS
finished the operation In the case of direct commands ~nd make SU r e that
the t OP is "uninterrupted" and returned to its p r esumably interrupted taSk
in the cllse of the interrupt-type co~nds). In the following discussions,
It is assumed thllt all operations are discrete (inte rrupt I/O is discussed
separately) and the only task Interrupted by an Inte rrupt- type command I s
the task of idling "'hlle waiting for a coll'ltllllnd .

] . 4 Definition o f an I /O Operation

An operation is one complete Interaction "'ith 3n lOP . For Instance, an
input opernion inclUdes the conflgur .. tlon and 3ddressing (if needed) as
we ll as the transfer ot dat3 . A prot OCol co~nd Is an order to an l OP to
execute some part of an operation . A typical d .. tll transfe r operation wil l
involve II number of protocol commands.

An interrupt-type protocol command involves three stages of execution ,

3-14

1 . The lOP is Interrupted by tne CPU .
2. The command is given and executed by the lOP (using the CPU

if necessary).
3. The rop then returns to its pr evious task .

I

-
Section 3: Performing [/0 Opera t ions

The utility routine INTCMO will interrupt the lOP ~nd pass the protocol
command to It . The utility routi n e INTCHK will unlnterrupt the lOP. A
direct command Is passed to the IOP by the utility routine DIRCMD. This
routine will walt until the lOP is not busy and t hen handshake the command.
The l OP does not need to be uninter r upted after a direct command but it is
common to wait until the lOP r e turns to Idle after the command by calling
the utility routine 0-8-0.

For purposes of discussion t he operations will be grouped into these
categories:

• Status and Control .
• Simple Input/Output.
• Prl~ry Addressing and HP-IB Interface Message.
• Miscellaneous Utilities.
• Burst Input/Output.
• Interrupt Operations.

For II dlseussiorl of the
explllrllltion of bits, ports,

prot ocol commands liS
lind Ilddresses refer to

3 .4 . I Command Handshaking Uti l i t y SUbroutines

an instruction
section 2. '" ,ed

There are II few common walts and handsh~kes involved In many 110 operations
lind they are present ed here liS subroutines whiCh you can inclUde In t he
binllry code you write . These ~ re e !C llmpies that make the code that follows
easier to understand.

These utilities follow the register conventions outlined at the beginning
of this section .

Wait until the input buffer Is full:

rBF- l LOBO R37, R24
JEV IBFal

""
! READ THE PSR
!JIF IBF - B

Wait until the output buffer Is empty,

LOBO
J"
'TN

R37,R24
OBF"B

! READ THE PSR
!JIF OBF .. 1

3-15

I

I

Section): Performing 110 operations

Send the co~nd byte in R36 to the tOP by direct method:

DIRCMD '")[22.0"B~ 1l !WAIT FOR OBf_aUSy_e

"'" R)7 , _2)S£T CMD BIT TO 1
STBD R37, R24 , IN eeR
STBD RJ6,R26 lSENO THE COMMAND BYTE ro OS
Jsa X22,OBF~1l !WAI T TrLL TfiE IOP "" H

'" '" ICLEAR THE CMD BIT
STBD RJ7. R24 , IN eeR

'''"
W!l t until the output buffer Is empty and the lOP Is not busy . This will
terminate direct command operations.

LOBO

"'''
'"' RTN

R37 , R24
R37,_21l2
D"S·0

! READ THE: PSR
!MASK OFF oaF AND BUSY
!Jtf THEy'RE NOT BOTH"

Send the command in R)6 to the lOP by interrupting It:

INTCMD STBD R)7.-GINTDS
LOB R31, - 1

INTel'll

3-16

S'l'SD R37,R24

LOBO

"" '" STBD
STBD
LOBO
LD' ".,
'" '" STBD

"'"

R37,R24
R37 ... 19
IHTOIl
RJ7 , -GIN1'EN
R]6,R26
R37,R26
R37 ,-2
R37,R24
X12,OBF .. 11

'" Rn ,R24

!DISASLE ALL INTERRUPTS
!SET THE INT SIT TO 1
! IN THE CCR

!WAIT UNTIL THE lOP SEES IT
! AND ACKNa.-ILEIXiES
! (JIF PACK· e)
!OTHER INTERRUPTS OK NOW
!STurr THE COMMAND INTO OB
!SE SURE THE IB IS EMPTY
!SET CMD BIT, CLEAR tNT SIT
! IN THE CCR TO START lOP
!WAIT TILL lOP GETS COMMAND
lCLEAR THE CHO BIT
! IN TIlE CCR

•

•

Section 3: Performing J/o Opera t ions

Check t o see if the lOP is busy . If it is, the interrupt bit (INT In the

CCR) must be strobed. The test for PACK-l allows this routine to be called

for an JOP which wasn't interrupted in the first place . Use this code to

terminate Interrupt-type command operations:

INTCHK

IN'rRTN
HITCHl

INTCH2

"'.0
"'" m

"" CD'
'TeD

'" m
STBO
U"O
;U;"

"" ""

R37 , R24
R37,-10
HITCHI

R)7 . -1
R)7. R24
X22, INTRTN

'" RJ7,R24
RJ7,R2<I
RJ7.~10

INTCH2

! READ THE PSR
[MASK OFF THE PACK BIT
lIP PACK. 1
!ELSE, IT'S DONE; AL.REAO'i

!STR08E TIlE INT BIT
IN THE eeA

! (waste some time)
! RESET THE BIT TO II

!NOW WAIT UNTIL. PACK· "

3-17

Section): Perfo rming 1/0 Oper3tions

Send the byte in register R35 as a bus command (that is, the equivalent to
SE NO (s.c .) ; CMO (R35») :

SNOCMO Ul6

".
LOll
51'80
51'80

".
''"

R36 , -269
X22,DIRCMO
R)7, _4
R37 , R24
R35, R26
Xn,O-B-9

[PROTOCOL COKMAND FOR SEND
[GOES TO THE lOP

3. 4. 2

!ONLY ONE BYTE , SO SET CEO
[IN THE CCR
[THE BY'tE (OIRCMO OlD OBF-0)
! WAI't UNTIL THE lOP IS DO NE

Status and Control Operations

These operations co r respond to the STATUS and CON'tROL keywords In the I/O
ROM and are implemented in assembler code through the I/O protocol co~nds
"Read Status" (opcode" 0909) and "write Control" (opcade _ 19110 or 19111) .
There are SODe con trol registers available tu the assembly l anguage t/O
programmer which are not directly 3ccessible through the 1/0 ROM. They
will be discussed separately at the end of this section.

The status oper~tion Is an Interrupt-type command because it might be
needed \.Ihile an interface Is bllSY \.lith an interrupt Input or output
t r ansfer . Control operations are considered direct commands because they
should not be executed while a transfer is in progress . (They chang' the
configuration of the interface.)

Table 3-1. Execution Times (milliseconds)

HP-IB Serial .CO GP-lO

Assembler 0 . 9/9 . 1S II.8S/0 . 3 11 . 7/0 . 18 11 . 65/0 . 15

BAStC 9/3 11/3 9/3 9/3

'these times are given as :

<time to do one byte ' s worth>

<time for each extr3 byte>

3-18

r

•

Section 3: Performing I/O Operations

3.4 .] Status and Cont rol Utility Subroutines

These examples assume t hat the CPU registers are already set up as shown
under Register Conventions. The string length in register pair R3~,31 is
the number of bytes to be read in the status operation and written in the
control operation. In addition, the sta r ting status and control register
number is In CPU register R34 and is assumed to be valid.

STATUS

STATl~

STAT20

CONTRL

CONT10

CONT20

we
O~

'" '" LOBO
PUBD
'x,"
m
STBO

'" we
STBD

'" '" ""
we
ORe

'" '" POBO
OCM
m
STBD

'" we
STBD
STBD

'" 'n<

R36,"0
R36,R34
X22, INTCMD
X22,IBf'~1

R31,R26
R37 , +R32

'" STAT20
RI,Rl6
STATU
R37, =4
R37,R24
X22, 0 .. B .. 0
X22 , rNTCHK

R36,5200
R36,R34
xn,DIRCMO
X22, OSF .. 0
R36,+R32

'" CONT20
R36,R26
CONTl0
R37, .. 4
R37,R24
R36 , R26
X22,O"B"0

!Status opcode .. 0
!Starting register is field
!Tell the lOP to do status
!Walt till lOP gets a byte
!Read the st~tus byte
!Store it
!\~as that the last one?
! (J!F yes - l~st one)
! else ask for another one
! and go get it
lWe're done so set CED
! in the CCR
!Wait fo r rap to finish up
!Unlnterrupt the lOP

!Control (opcode " 100)
! field" starting reg. I
!Tell lOP to do control write
lWait till lOP is ready for
1 this next byte .
l Is this t he l ast one?
1 (J!F yes - last one)
! otherwise just send the byt e
J and go for the next one
10n last one s et CEO
! i n the CCR
! and then send the byte.
!Wait till the rop is done

The contro l lind status
registers which are
operations correspond
s t atements : STATUS and

operations differ in various interfaces only in the
implemented by a particular interface . Legol

t o those that ore legol to use with the I/O ROM
CONTROL .

3-19

Section 3, Performing I/O Ope rations

3.4.4 Special Cont rol Operations Not Available With BASIC

There are five cont rol registe r s I n each Interface which are not visible t o
the 8ASIC pr oqrammer . These a r e cont rol registers 25 th rough 29 . The fi ve
reg ist ers implement the following four functions :

1 . Transfer Count. Before each burst transfer or interrupt Input
transfer, the lOP must receive a byte count . This is the Co llnt that
terminates a bllrst t ransfer and, among other possible conditions , an
inte rrupt Input t r ansfer . this count is specified by wr iting it t o
control regis t e rs 25 (leas t significant byte) and 26 (most
significant byt e) .

2. Delimiter Character . I nterrupt Input t ransfers can also be
terminated by the receipt of a particu lar byte value . This value is
specified by writ ing it to control register 27 . Th is co rresponds t o
t he keyword ·DE~IM" in the I/O ROM.

3. Assert Byte . The ASSERT operation is performed by wr i ti ng the byt e
to be asserted to control register 28 . The difference between this
operation and a write to control register 2 (they both put the byte
into con trol register 2) Is that ASSERT 15 implemented as an
interrupt-type command. Thus, the operat i on can take place even
Whil e the i nt erface is busy .

4. Service Reques t . The REQUEST o peration is performed by wr iting the
response byt e t o cont rol register 29 . This sets up a service request
on the HP- IB interface, sends a break over the serial interface and
is ~n error fo r the BCD and GPID Inte rfaces.

These special con tro l write ope rations are dis t inguished from the no rma l
control wri te ope rations by the commMd h.ndsh~k ing method llsed . For the
Assert and Request operations the handshaking is always interrupt-type.
For the writing o f byte count and input t ermination match byte , the
handshaking Is inter r upt-type if the interface is f ull dupl ex (FDPX bit in
PSR is equal to 1) . Otherwise t he handshaking Is direct-type . These
cont rol registers can be accessed using the sample CONTROL code above by
ma king the following two substituti ons when interrupt-type handshake is
needed: repl ace DIRCMO with INTCMD and rephce O·B·~ wi th INTCHK. Because
the byte counts are known , the simpll(led versi ons a r e presented below.
The assert , response, or termination byte is aSsumed to be in R34 . The
count is aSSUmed t o be In regis ter pair R34 , 35 .

3-20

Section 3: Performing I/O Operations

Send byte count to ~ full duplex interface:

tCDUNT t.DB R36,a231
JSa X22,INTCMD
STSO R34, R26
JSB X22, OBP-~

LOB R37 , _4
STBO R37 , R24
STSO R35,R26
JSB X2 2 , INTCHK
>TN

!Pro t ocol .. write control 25
! (full duplex)
!Send least significa nt byte
!Walt ti l l lOP gets first one
!Thls Is last , So set CEO
I in the CCR
!Send roost significant byte
IWait till lOP is done

Send count to a nonfull duplex interface:

DCOUNT LOB R36 , -231
JSB X22,DIRCHO
STSO RJ4,R26
JSB X22,OBP_a
t.DB R37 ,_4
STBO R37 , R24
SWO R35,R26
JSB X22,O=B_"
'TN

!Protocol .. write control 25
! (NOT full duplex)
! first byte (OIRCHO did OBF)
!Wait for lOP to get fi rs t
!Second is l~st so set CEO
! In the CCR
!Second (lIIOst significant)
!Wah till lOP is done

Send dell~lter characte r to a full duplex Interface:

lTERM CD'

'" eo,
S180

"'0
J"

""

R36, =233
X22 , IN1'OIO
R37, -4
R37 ,R24
R34, R26
X22,lNTCHK

!protocol .. write control 27
! (full duplex)
!Flrst is last, so set CEO
! In the CCR
!Send the byt e
!Unlnterrupt the tOP

Send deli~l t er character to a nonfull duplex interface:

'''''''' co,
'" 1.D80
"'1m
STBD
J"
'TN

R36 ,-233
X22, OtRCMO
R37 ,_4
R37 , R4
R34,R26
X22,OaS-"

lProtocol _ write control 27
! (NOT full dupl ex)
!F l rst Is last, so set CEO
! In the CCR
!Send the byt"
lWeit till l OP Is done

Note that the count and ter~ination character can be specified in one

ope ration by sending the three bytes in or der .

3-21

Section): Performing I/O Operations

Assert the byte in RJ4 (ar'ly kind of interface):

ASSERT LOB R36,a234
JSB X22, WTCHO

... LOB &31 , -4 ".
S'l'BO R37,R24
STBO R34, R26
JSB X22,INTCHK ,,,.

Request service or break:

RQUEST '-",

'" CO,

"'" ".0
'" ,,,.

R36, -235
X22,INTOID
R37,_4
R)1, R24
R34, R26
X22,lN'l'CHK

3.4.5 Sillple Input/Output

JProtocol • write control 28
!Thls is ALWAVS interrupting
JOnly one byte so set Jlf.:D
J In the CCR
!Send the assert byte
!Walt till IOP is done

lProtocol - write command 29
IThis Is ALWAYS interrupting
!Only one byte so set CEO
! In the CCR
lSend the response byte
!Wait till tOP Is done

These operations per f orm programmed I/O where the handshaking of

transferred da ta is handled directly by the CPU In the normal eKecution

flow o f its binary program. They co rrespond to but need not be limited to

the t/O ROM keywords ENTER and OUTPUT . Multiple concurrent I/O transfers

can be performed with these simple operations so long as no inter face needs

to ope rate in a full dupleK mode . A binary program Which manages enough of

an interrupt service routine to reset the interfaces at power-on could run

four concurrent t/O operations on Lour Inter faces. By polling the input

interfaces fo r input buffer full and the output interfaces for output

buffer empty, t he CPU c an control the data transfers entirely.

The opera ti onS described here assume that the interface involved has been

configured and addressed as needed (send bus command operations are

discl.lssed later). I t is assl.lmed that the nl.lrober of bytes t o be tranSferred

is indicated by the st ri ng length In R39,31 a nd the data source o r sink Is

pointed to by the contents of R32,33. Where data comes from and where It

goes is, of cou rse, up to the I /O prograll\ll\er. The transfers t o and from

all Inte rfaces always involve one or more bytes .

3-22

-_R ______ ==:--:"":::::::::--,

,

I

Section 3: Performing I/O Operations

The BASIC language I/O progra~r has II large variety of data types and
stn.,.::tures that Carl be specififld In ENTER and OUTPUT statements. The
keyword code In the I/Q ROM translates these data types and structures into
a string of bytes before It out puts the~ to an Interface (using identical
t ranslation procedure regardless of interface type) . They ace t r anslated
Into /I string of bytes after they are Input for an ENTER operation (89ain
the Interface type makes no difference). When coding I/O operations
directly in assembly language you must ~nage your own data formats. The
content of the byte or bytes transferred depends upon your application and
the type of Interface.

In general, the HP-IB interface Isn ' t affected by the content of a given
da ta by tel nelthe~ Is the serid Interface (except for SOme control codes).
The BCD interface requires a rest~lcted set of ASC II symbols In a
particular form.at depending on the conflgurlltlon of the ports. The GPIO
expects only to handle even numbers If you are using one of the I6-bit
ports.

Output

For outputs, an interface must be configured (refer to Control), addressed
(refer to Send), given the output protocol command, and given a byte o~ a
series of bytes to output with the CEO (calculator end datil) bit in the CCR
set to I just before t~ansfer of the last byte . The Interface will send
its end-of-line character seqtlence (as specified in cont rol registers 16
through 23) and then go into its nonbusy st .. t e (recall th .. t the BCD
interface does not have an end-of-line character sequence) .

The configuration and addressing need not be repeated before each output
operation if you know that it has already been done . The output protocol
COlllmlllnd IllUst be used before a data byte Is output to an interface if t he
CEO bit waS set for the previoUS data byte output to the sa~ interface.
You may omi t the setting of the ceo bit and the sending o f the nex t output
protocol command if you keep track of whether or not the Interface is busy
(the I/O ROM does this to allow the OUTPUT USING' option) .

Input

Inputs are similar to outputs In configurat i on, addressing,
sequence . There are some added complications involved in the
of the transfer . The CPU may terminate an input at any time by
ceo bit in the CCR, similar to the OUTPUT te rmination .

and canaan<!
termination
setting the

The lOP may also decide to terminate an input opera t ion by setting the peD
bit (processor end datil) in the PSR . Whether or not this occurs depends
upon the particular interface and the option bits included in the input
protocol cOl\'lll'lllnd . The th ree option bits are; bit 3 (count), bit 2
(character), and bit 0 (EOI) . Bits 1 th r ouqh 4 are the command opcode
(0001) . Bit 1 specifies whether the input is a Simple input (bit 1 • 0) or
lin interrupt input (bit 1 • 1). W~ will examine these options for each
interface.

3-23

I

Section 3, Performing I/O Oper~tions

HP-IS Input

The HP-IB interface allows you to use any of the three options. If you
specify ter~ination by count , you must provide the count (by writing to
control registers 25 and 26) before beginning the input operation. The
same holds true for the character termination option (you must provide the
termination match character by wri t ing It into control register 27). The
£01 condition on the HP-IB Inter f ace 15 taken to be the receipt of a data
byte (device dependent message) wi t h the ENO message (EOI) true.

Sedal I npu t

The serial Interface also allows you to use any of the three options, but
this int erface will use the EOl condition whether or not you specify it!
For th i s interface, the E01 condition is an incoming character that matches
one of the terminat i on characters specified in the control registers 12,
13 , 14, or 15 along with the enabli ng bits In control register 11. Note
that these four te r mination match characters are In addition to the one
that you mayor may not have specified as the termination character in
special control register 27 .

BCD I nput

The BCD interface does not use or allow any of these Input
operations . The BCD inte r hce 111 on l y accept the protocol
(oc t al) as the simple input command .

GPIO Input

termination
command 21

The CPtO interface allows the count and character termination options and
completely ignores t he EOl bit. If you are opera t ing in 16- bit mode, the
count termination opt ion may be used but the Character terminat i on option
may not be used .

Besides these specified input termination conditions , the BCD interface
will s e t the PED bit when it h~s e~hausted the bytes needed t o transfer the
d~t~ defined by its current primary address and port configuration . The
othe r In t erfaces will JUSt keep on sending bytes until the CED bit Is set ,
or one o f the enabled and allowed conditions is met.

It is the responsibility of the CPU to recogni~e the assertion of the PED
bit, set CEO In response, and send a new Input protocol command before
asking for additional input bytes .

3- 24

I

Section 3, Performing 1/0 Operations

Execution Speeds for Si mple Ente r and OUtput

Execution speeds for simple enter and output operations depend upon
external events as well as 1/0 pro t ocol execut ion $0 they will be discussed
rather than simply listed . The BASIC e xecution times for equivalent
ope rations depend heavily on forma tting options and will be mentioned but
not discussed in detail .

HP-18 (nterface

The HP-IS interface requIres 0.3 milliseconds to process an input protocol
co~nd and 0 . 25 milliseconds to output each data byte (device dependent
message) . It will process an out put protoco l command in 0 . 4 milliseconds
and send each data byte in 0. 16 milliseconds . This means that about 4,000
bytes pe r second can be input and about 6,009 bytes per second can be
output. These times assume that any devices on the HP-IB interface bus are
fast enough to keep up with the interface at these speeds .

Serial Interface

The serial interface requires about 0. 5 milliseconds to process ei t her an
input or output protocol command. Due to the timing methodology used and
the inter face, the execution time for the protocol command is lost in the
baud ra t e , FI FO (first in, first out) operations, and external device
response. Because 9600 baud is the maximum data t ransfe r rate avai lable on
t he serial interface, t his will limit the speeds at which bytes can be
t r ansferred to about 960 bytes per second (assuming 10 bi ts per cha racter).
The CPU has no trouble keeping up with this speed . If you are operating
under conditions that guarantee you will be inputting bytes tha t are
al r eady in the FIfO !luteer then you can expect to get them out in
approx imately ~.3 milliseconds each.

BCD Inte rface

The BCD interface requires 6. 3 milliseconds to process an input protocol
command and 0.25 milliseconds for each byte actually input. The time for
the output prot ocol command is 0 . 6 milliseconds and 0.25 milliseconds per
d"t" byte . Remember that each data byte co rresponds t o one port digit (in
the BCD inte r f"cej "nd that the numbe r of bytes transferred depends upon
signs , exponents, and punctuation , as well as the number of port digits
involved. The BCD int erface will always Include a line feed charact~r at
the end of each reading where it sets the PED bit .

If we assume t hat t he externall y connected device is as fast as the
interface , then we can get some "transfers per second" figures . If we just
us e one digit , we ean output one data byte but must input two data bytes
(digit and line f.ed; recall that there Is a sign character if you're using
the mantissa inst.ad of the function digit as assumed here) so we can
expect to get about 1,190 t ransfers out per second and about 1,200
t ransfers in per second.

3- 25

Sect ion 3: Performin9 I / O Oper~tions

I f we look ~t ~ large lorm~ t number with eight mantissa digits and an
exponent (which is alwIIYS three digits ~s far as the BCD interfllce is
concerned) then we need to output 14 di9its and input lS digits. The
result will be ~bout 250 trllnfers per second in either direction.

GPIO Inter face

The protocol command handshake and the transler of a 16-bit number (two
data bytes) takes one millisecond in either direction using the GPIO
int e rface . For eight-bit format transfers, the command handsh~kln9 ta kes
0. 4 mi lliseconds and each d~t~ byte transferred also t~kes 0.4 milliseconds
in either direction . This translates Into Ieee tr~nsfers per second for
16-bit d~ta and 2500 transfers per second tor eight- bit data.

The comparable t imes in BASIC depend upon the overhead required for the
IMAGE specifie r s . In general, there will be approximately 20 milliseconds
fo r the Interpreter and statement set-up. '!'here will ~lso be at least SO
microseconds per character t ransferred depending upon What kind of
transformations a r e being done to the data . While you can escape this
ove r head by doing your I/O operations directly from assembler code, you
must do something in the way of sourcing and/or sinking dat~. This will
take some time In addItIon to the time for the CPU - lOP transfer .

3-26

I
I

•

Section 3: Performing I/O Operations

3.4.6 Si~ple Input and Simple OUtput Utility Subrout i nes

The e xamples below assume the correct number of bytes to be trilnsferred is
In register pair R30,31 and the source/sink pointer is in register pair
R32,33 . For Input, it Is assumed thllt a valid bit mask for the termination
options Is available in register R34. It Is also assumed that the
interface Involved has already been addressed as needed and pointers to its
CCR/PSR and OB/IB ~re tn register pairs R24,25 and R26 ,27 .

INPIJ1"

INloop

INPend

OUTPUT

OUT lop

OUTend

w.
0'" ". m
1..0BO

"''" """ '" OCM
m
".0
'" ". STeD

'" >TN

".
J" "'.0 ". oc.
m
STBD
J.'
C08
',"0
,,"0

".
''''

RJ6, .. 211
RJ6,RJ4
X22,DIRCMO
X22,IBF_l
RJ6,R26
RJ6, +R32
RJ7 , -4
INPend

'" INPend
R',R26
IN lop
R37,-4
R37,R24
X22,O.S- 1I

R36, :24~
X22,D!RCMD
R36,+R32
x22,OBF-1l

'" OUTend
RJ6,R26
OUTloop
R37 . _4
R37.R24
R36.R26
X22.0 .. S .. 11

[p[otocol • simple input
! or In the options
JTell rap t o do Input
!Walt till there ' s It byte
! qet It from lOP
! and sink it
!Was PED set?
! JIF yes - lOP says ·StoP!"
lIs sink slit i sflad?
I JIF yes - CPU says ·StoP"
I Request another
! byte and go to get it
iSet CEO to declare/confirm
! that the operation is over
!Walt till lOP Is all done

!Pr otocol .. simple outpUt
ITell lOP to do output
lGet the next data byte
lWait till lOP is re~dy
lIs this the l~st byte?
! JIF yes - time to stop
1 else byte t o 101' end
! go for the next one
lSet CEO

ll..ast data byte to lOP
!Wait till lOP Is all done

Note that any end-of-llne charecter sequence whiCh Is
interface will be sent at the end of the output operetion
as its response to the setting of the CED bit.

set up for the
by the Interface

Also note th~t outputtiM9
to writing a ser i es of
protocol commend pessed.

a series of data
control registers

bytes 15
except

Identical In procedure
for the value of the

3-27

I

I

Section 3: Performing I/O Oper~tlon5

3. 4.7 Primary Addressing and "P~IB Interlace Messages

Primary addressing is ~n operation that is implied by the use of three or
four digits in the dey ice selector in the I/O ROM. The second two of these
digits are the primary address portion of the selector (the first one or
two digits are the interface select code) _ For the serial Inte rface.
primary addressing has no meaning and causes an er rof. For the HP-I B
interface, the primary address Is the HP-IB bus address of the intended
data source or destination device. For the BCD and GPIO interfaces, the
prl~ry address Is the meanS of choosing a~ng the various partial field
options for the BCD and port formats for the GPI O.

The areas of configuration lind addressing tend to ove rl ~p ~ bit; ~ couple
of the following oper~ t lons are ~ccomplished by writing to control
registers . What Is being established Is: the direction of the da ta flow,
and its source o r destination as far as the Interface Is conce rned.
Because the GPIO and BCD interfaces handle prllDllry addressing In a simple
way , we'll look at them first, and then go through the liP-IS Interface In
some dellll!.

BCD and GPIO Addressll'l9

Setting the proper direction of data flow [or the GPIO and BCD Inte rfaces
Is a matter of enabling any needed output s (CONTROL and/or switch settings)
end being sure that the BCD digits have been properly assigned . The
operation of Interest Is the passing of the primary address to the
Interface. this is done by pretending that the interface Is an HP-IB
interface and sending a "Ta lk Address· or "Listen Address" Interface
_ssage .

Where the HP-IB interface will actually send the specified interf~ce
message, the BCD and GPIO interfaces set their primary address to the
address specified by the "Talk Address" or "Listen Address' message. These
two interfaces don ' t distinguish between "Talk" and "Listen," they JUSt
take the address . A "Listen Address" message byte is octal 40 plus the
primary address and a "T~lk Address " message byte is octal 100 p~us the
primary address . The e~ample he re will select primary address 03 (channe l
A mantissa and exponent for 0CD and eight-bit input B ~nd output 0 for
GPIO) .

-'DDRS3

3- 28

LDB
J"

""
R35,-43 !Llsten Address 3
X22,SNOCMD !flP-lS interface message util

or fUrther code .

I

I

•
Section 3: Performing I/O Operations

HP-IB Addressing

The HP- IB Interface has a lot o f addressing requ irement s . First, there is
the distinction between a protocol command and an HP-18 interface message .
A pro tocol eo~nd is a byte from the CPU t o the lOP chat tells the lOP to
do something . An HP-IB Interface messBge is a byte from t he CPU to be
sourced on the HP-IB bus by the t OP with t he ATN message true and is
supposedly destined for the interface functions In the devices on the HP-IB
bus.

The direction of data transfer is declared by sending the HP-IB Interface
one of the two protocol cOllllllands: ' Send My Talk Addrf'ss' (opcode: BHlII,
field: sun, that Is. tnterfllce control - 5) or ' Send My Listen Address'
(opcode:B100, field: 0110, that is, Interface cont rol - 6). The HP-IB
interface getS the HP-IB bus address, PUtS toget her the appropriate "Listen
Address" or "Talk Address " Interface message and sources it onto the HP-IB
bus in order that all other devices know (these operations are Illegal
unless the HP-IB is the active controller currently) whether to source or
sink data.

Note that we have sent a protocol command only and the interface has sent
an interface message independently. We could have sent the same inter face
message by first sending the protocol co~nd (opcode and field: 260 octal)
and then writing t he HP-IB COlllll1and (octal 077) t o the output buffer.

The HP-IB Interface is configured for output if the TA (talker active)
state is true and configured for input If the LA (listene r active) state is
true . The Interface maintains these states In accordance with the HP-IB
protocol and the interface messages on the bus . This is true whethe r or
not the Interface is the active controller .

In addition t o setting up the HP- IB interface for the ensuing data
t r ansfer, the source or sink(s) on the HP- IB bus need to know whether to
talk or listen . This Is done by forming the appropriate address command
byte (listen: 40 octal + address, t alk: 100 octal + address) and sending it
out <IS an HP-IB int erface message. It Is prudent to send t he "Unl1sten"
Inte r face message before a transfer to be sure that any devices left
addressed to listen are unllstened . These addressing and unaddressing
ope rat ions are all done by putting together the appropri ate interface
message byte and sending It to the lOP usIng a "Send" protocol command .

3-29

Section 3: Performing I/O Operations

3.4.8 Primary Addressing and Interface Message Subroutines

If you ' re about to output to one or more devices, you should: send
"Unlisten" (interface message) , send "My Ta l k Address " (protocol command
"'hose execution includes the sourcing of an interface message), and then
send a listen address interface message to each device which is supposed to
receive the data that is about to be output. If you're about to input from
a device on the buS you Should: send "Unlisten" (interface message), send
"My Listen Address" (protocol command "'hose execution inclUdes the sourcing
of an in t erface message) and then send talk address interface message to
the source device (interface message). tf you \oIant other devices to listen
also, jus t send t heir listen addresses (interface message) any time after
the "Unlisten."

Some examples:

1. Set-up to output to device 5.

we

'" w,
'" we

'"

R35,E77
X22,SNOCMD
R36, _HIS
X22, DIRCMIJ
R35, =45
X22,SNOCMD
no'" ready to

! Send Unl isten
(Interface message)

!Send My Talk Address
(Protocol co~and)

! Send Listen Address 5
(Interface message)

execute code at "OUTPUT."

2. Set-up to input from device 5.

3-3~

t.DB R3S,-77
JSB X22,SNOCMO
LOO R36,"l~6
JSB X22,OIRCMO
LOB RJ5,·l~5

JS8 xn,SNOCMD
.... now ready to

!Send Unlisten
! (Interfllce message)
! Send My t.isten Address

(Protocol command)
ISend Talk Address 5

(Interface message)
execute code lit "INPUT."

i

I

•

Section 3: Perfo rming I/O Operations

3. Set up to input from device 5 and have devices 6 lind 7

also listen to the data from device S.

eo.
m

"'" m eo.
m
'oo ".
'''' JSO

R35,~77

X22,SNDCMD
R36,~Hl6

x22,DtRCMD
RJ5. ~ H15

X22,SNOCHD
RJS,=46
X22,SND01D
R15,-47

ISend Unlisten
I (Interface message)
ISend My Listen Address
! (Protocol cOfMIllnd)
!Send Talk Address 5
! (Interface mess!lge)
!Send Lis t en ~ddress 6
! (Interf(lce message)
ISend Listen Address 7
I (Int.r h ee message) X22, SNOCMD

now [elldy to execute code at "INPUT."

Table 3-2 . Execut i on Times

Primary address to BCD: C.S3 milliseconds .

Primary "ddn!!:" to GPIO: 0 . 58 milliseconds .

Interface message to HP- IB: 0.7 milliseconds for the
first byte and 0.35
milliseconds for each
additional byte.

Send "My Talk Address"
and "Hy Listen" Address: 0.45 milliseconds .

Interface messages In gene ral are another consideration when using the

HP-I B interface (they also haye some limited uses with the GPIO interface

as lis t ed in the 1/0 ROM manua l under t he SEND statement) . In addition to

device add resses, there are Interface messages which select secondary

addresses and perform assorted operations (trigger, clear, poll). These

interhce messages are sent from the CPU t o tha rop in exactly the same way

as data bytes fo r output except that the protocol command used Is oc t al 269

(send) Instead of octal 249 (output data) . The utility routine 5NOCHO that

is used in pr i mary add ressing and other places is a special case of the

send oper,,"tion where t here is only one byte to be sent ""90 an interhce

message .

3-31

Section 3: Performing I/O Operations

The following example wil l trigger the device at HP-IB bus address 11.
Note t hat all t hree messages involved (Unl isten, Listen Address 11, Group
Execute Trigger) are interface messages and the HP-IB Interhce doesn't
need to be configured for input or output because there won't be any actual
input or output of data.

TRGRll

TRIGlp

COM
C'"
CO,
,~,

'C,
OM'

'"' ,n;

R6S,~17, 53, III
R~, ~65

R3S,R*
X22,SNDCMD

" R~,~711

TRtGlp

lThe three messages
!Pointer t o the messages
lGet next message
lSend it
!Point to next one
lOone them ,.II?

JlF no - not yet
otherwise, done

This same operation could have been
messages as i'I three - byt e string to a
labeled "OUTPUT" except that when.
(octal 240) is used in "OUTPUT" you
(octal 2611) inste"d.

done by supplying the three interface
routine which is i dentical to the one
the protocol command simple output
would use the send protocol command

3. 4.9 Miscellaneous 1/0 Utilities

There "re fou r protocol commands which perform utility functions on almost
all of the inte rfaces; Abort, Halt, Resume, and Send End-of-Line Character
Sequence (the GPIO interface won't accept Resume and t h e BCD interface
won't accept Resume or Send EOL) . There are five additional protocol
commands which perform utility functions on t he HP- IB interface only . Two
of these, (Send "My Talk Address" and Send - My listen Address") were
discussed in Primary Addressing. The other three, (Set RE:N True, Set REN
False and Parallel Poll) will be discussed here.

These protocol commands are sent to the lOP using one of the command
handshaking utility routines (there is no transfer of da t a with the
e){ception of the parallel poll operation which returns a response byte) and
the action is done when the command handShake routine has returned. Some
of these are interrupt-type commands (Abort, Halt, Resume, and the two REN
operations) and the others are direct-type commands. The difference shows
up In the protocol command handshake used and the method of waiting for the
lOP to say it's finished with the operation.

3-32

Sect i on], Performing I/O Operations

The specific operations performed by t he four general utility protocol
commands are those e}(plained in the I/O ROM manual I.mder ABORTIO, HALT,
RESUME, ~nd SEND;data ••. EOL . For this last one, it i s the "EOL" that is
performed by the utility protocol command . The "SEND;data ... " part is at
your opt ion on the assembly language level and would have been done
~ccording to the "OUTPUT" operation just described.

ABORT

RESUME

SNDEOL

LDB R]6,-100
JSB X22,lNTCMD
JSB X22, INTeRK

'"
LDB RJ6,.11 0
JSB X22,INTCMO
JSB X22, INTeR;;

'"
LOB R36, ~ 1l1

JSB X22,INTCMO
JSB X22, INTeRK

'"
LDB R36, ~137
JSB X22,D I RCMO
JSB X22,O~B=0 ,no

lProtocol - Abort
1 (interrupting type)
lUninterrupt the lOP

lProtoco l • Halt
! (interrupting type)
lUnint errupt the lOP

lProtocol = Resume
1 (interrupting type)
!Unjnterrupt t he lOP

!Protocol • Send EOL sequence
! (direct type command)
!Walt till lOP is finished

follOWing
discussed

examples show usage of the three RP-IB utilities that
in Primary Address i ng . The first two allow the

programmer t o set the "Remote Enable" int erface single line message
li ne) true or false.

REMOTE

LOCAL

LDB R36,,,,101
JSB X22, INTCMD
JSB X22,INTCHK

'"
LDB R36, ~ 102

JSB X22, INTeMD
JSB X22,INTCHK

'"

!Protocol ~ set REN True
! (i nte rrupt ing type)
!Uninterrupt the lOP

!Protocol = set REN False
! (i nterrupting type)
!Uninterrupt the lOP

were
'/0

(REN

Th is las t utility performs a parallel poll operation on the HP- IB interfa~e
bus . I t is assumed tha t al l requir ed para llel poll configuring operations
have been done using the send operation to handshake the appropriate
Interface messages . The r esponse byte wh ich ~ame in from the parallel poll
operation (ATN and EOI both set true and then the da ta lines read) will be
re t urned by this exampl e in R34.

3- 33

Section J: Performing I/O Operations

PPOLL c'"
'" OS,
LOBO
OS,

'"

RJ6,~HI4

xn,DIRCMD
X22, tBF~l
RJ4,R26
X22,0~B"1I

lProtocol • parallel poll
(direct type)

lWalt till response is ready
lCet the responSe byte
lWait till lOP is done

Table J-J . Execution Times for HP- IB Inter f ace Operati ons

Set REN true or false ~ . 66 milliseconds

Parllllel poll ~ . 43 milliseconds

Execution times for sending the EOL sequence are shorter than those for
outputting data bytes because the lOP already has the bytes to send. For
the serial interface, this doesn't m~tter because the baud rate determines
the speed. The BCD interfllce doesn't have such a sequence. For HP-IB and
GPIQ figure 11.7 milliseconds to handShake the comm~nd and ~.05 (HP-IB) or
0.15 (GPIO) milliseconds per character sent.

3.4 . 16 Burst Input/OUtput

Burst I/O is the fastest method available for data tr~nsfer and is also the
most restricted in terms of handshakes and formats. There is considerable
overhead required to set up and terminate a burst tr~nsfer so it shouldn't
be used for very short strings of data.

Burst I/O corresponds to the TRANSFER FHS statement in the I/O ROM. Recall
that the serial interface does not support this kind of tr~nsfer and that
Severe restrictions apply in the C3seS of the BCD and CPIO interfaces .

Prior to 3 burst transfer you must configure and address the appropriate
int erface as discussed under Prlm3ry Addressing. Termination of a burst
transfer Is discussed with interrupt service routines and will be handled
by the I/O ROM or the M3SS Storage ROM (if ei t her one is present). We will
aSSume for noW that a RD.'" is handling the termination .

It is the tOP and not the CPU that decides when the time for transfer
termination has arrived; the I/O programmer, therefore, must be sure t o let
the lOP know the proper c r iteria for it. The two possible criteria are:
the specified number of bytes has been transferred, and the interface is an
HP- IB. The transfer must be an input and a device dependent message has
been accepted with the EOI line true (that is, it was an end message) . The
count is sent to the lOP before the burst using the technique discussed in
Special Control Operations Not Available With BASIC. The EOI option Is
selected by a bit in the protocol command Which will be discussed next.

3-34

,

I

Section), Per formlog 110 Ope ra tions

The protocol command
direct command. The
bit 0.

that tells the
opcode is 00U

,oe
'"'

execute a burst
field Is 0, bit

transfer is ill
2, bit L, and

Bit 2 - Set for an Input burst If you don 't want the EO! condition to
terminate the burst. This Is a disable bit {unlike all the others). If
you want the t ransfer to be able to terminate on receipt of an EOr as
well as upon exhaustion of the byte count, have this bit clear (II).
Bit 2 has no meaning for output bursts.

Bit 1 - Set for an output burst If you want the interface to send the
end-of-Ilne character sequence after It has fin ished the burst output .
If bit 1 Is set , and the Interface Is lin HP-IB interface, and It has
the number 128 deci~l in control register 16 (EOl enabled . character
count· 0) then the END message will ba sent true along With the last
character in the burst (that is, It will be sent as an E:ND message
rather than a data byte message) .

If the Interface sends an EOL character sequence, it will do so lifter it
has interrupted the CPU to brellk it out of its bu rst loop . If you leave
this bit clellr and the interface is lin HP~ IB, It will send the last byte
as an END message and will not send the EOL charllcter sequence
regardless of the contents of control register 16 . The BCD interface
either has (bit is set) or does not have (bit is claar) lin EOL sequence.

Bit 0 - this bit Indicates the direction of the burst.
set to I, then an input tr<lnsfi!r will be done. If the
then an output transfer ' .. ill be done .

If the bit is
bit is claar (0)

The four valid versions of the bu r st protocol command In terms of each
Inte r face <Ira:

044 (octal): Output with no EOL ch<lractar sequence at the end. The
HP-IB interface will sand the last byte liS an END message. The BCD and
GPIO Interfaces will simply terminate the transfer .

046 (octal): Output using the EOL character sequence at the end of the
transfer . The HP-IB Interface will send the EOL sequence if it Is one
or more character s long . !f It is zeto characters tha E:OI enable bit is
set (control register 16 • 128 decimal) then the last byte will be aent
as an END message as thOUgh this were pn;ltocol cOl!¥nand 44. If control
regi ste r 16 contains a 0, the HP-IB interface will not 00 anything <It
the end of the burst except t erminate it. The BCD interface doeSn ' t
have an E:OL sequence. The GPIO i nte r face will send its EOL character
sequence after it has termin<lted the transfer.

3-35

I

Section 3: Performing I/O Oper.!ltions

1141 (octlll), Input with termlMtlon upon recei pt of lin END lQesslI<je or
8Khaustion of the byte count on the HP-IB interf"ce. The BCD and GPIO
Interfaces regard this protocol co~and as an error.

045 (octal); Input with tar-dnatlon on exhllustion of byte count only.
This Is the normal protocol for burst Input . All three interfaces will
simply transfer as ~ny bytes liS were requested lind then terminate the
transfer.

Once the Interface is properly configured, addressed, and supplied with the
appropriate pro t ocol comrnllnd the CPU must prepare for burst operlltion and
then enter II burst loop by /I jump (JSB) to it . When the transfer is
finished the CPU will return to the code following this jump Instruction .

3-36

•

•

Section 3: Performing I/O Operations

3 . 4 . 11 Burst -In and Burst-out Ut ili t y Subroutines

Assume the same CPU register conventions as in previous examples: R311,31 is
the byte count, R32,33 is the buffe r pointer and R22 through R27 contain
the base address , CCR/PSR address, and the OB/18 address . Assume also tha t
R3 4 contains your choice of burst commands as described previously.

BURST'!'

BOUTS8

BOUTLP

BURS'I'N

BINSUB

BINLOP

'" '" '" CD'
STBO
STBO

'" '" STBO ",,,
'" '" '" '"
'" '" POBD
STBl
OM'

'" '" '" '" STBD
STBD

'" '" STBD
STMD

'" '" '" '"
Be,

'" STBI
LOBI
PUBD
OM'

X22,SCOUNT
X22, DISINT
X22,OBF-0
R37,-2
R37 , R24
R34,R26
X22,0-B~II

'" R37,R24
R26 , .. TEMP2
X22, BOUTSB
X22,REINT
)(22,0"80<0

" " Rt. +RI
Rt, ~TE:MP2

BOUTLP

X22, SCOUNT
)(22,DISINT
xn,OBF- 0
R37,_2
R37,R24
RJ 4,R26
X22,0=B~0

'" R37, R24
R26,_TEMP2
x22,BINSUB
X22,REINT
X22,0"B"0

" " Rt, =TEMP2
R',a'J'EMP2
RI,+R'
BI N LOP

lSend the byte coun t
!Disable all interrupters
!Wait till t he OB is empty
1 Set the CMD bi t
! in the CCR
lWr ite the burst command
! then wait for not busy

! Set the CCR to 0
!Prepare OB index address
lGo do the burst lmagic R'J'N)
lUnda the DISINT above
!Wait till 10.1' is done

!Data bytes go through here
! with this stack pointer
!G~t next byte to send
!Se nd it (th is halts the CPU)
tRepeat apparently foreve r!

!Give byte cOUnt t o lOP
!Disable all i nte rrupters
!''''' it till DB empty
ISet the CMD bit
! in the CCR
!Write the burst command
! then wait for not busy

! Set the CCR to II
!Prepare DB Index address
!Go do the burst (magic RTN)
ITurn interrupters back on
!W~it till 10.1' Is done

!Data bytes pass here
1 using t his stack pointer
15ig nal to start up the lOP
lRead a byte (halt til IBF)
!Put i t into the buffer
IRepea t apparentl y forever!

• •

3-37

Sec t ion 3: Pe rfo rMing I/O Operations

Here lire the utility routines called from the burst eKampl es. SCOUNT sends
the byte count to the lOP. DISINT d i sables all interrupting devices so the
burst operation will not be interrupted (91o~1 interrupt disable is not
"v<l i lable for t his bec ... us e the lOP must Interrupt the CPU in orde r to
terminate the burst). RE INT (e-enables all interrupting devices to restore
no rma l ope r ation lifter II burst is finished.

SCQUNT

DI SINT

'-""
J"
'"'' J"

'"'' J" ,.,.,

R36,-Z31
X22 , INTCMD
RJe,R26
X22 , OBf' -il
R31 ,R26
X22 , OBF-0

LOB 1'137 , - 2
STBn R37,_KEYD! S
LOB R37,-1
STBD R37,ooTIM!S
LOB R37 ,-191
STBD R37,ooTIMDlS
WB Rn,"291
STBD Rn, -TIMOIS
LOB R37,-3'1l1
STBD R37,ooTI MDlS
I I I
I I I

!Protocol a write control 25
! (Interruptin,. type)
lLeast significant byte
!Wait till lOP h(ls it
IMast significant byte
!W"it till lOP has It

)Disable keyboard Inte r rup t s
! (DAD 171402)
]Disable the first timer
J (DAD 177412)
!second tilrler

[third timer

[last. timer

Note: the next operlltion (disabling the rops fr om In t errupting) must be
done to e/lC'h 101' ... hiC'h is present (including the one ... hlch is going to do
the burst; It ' s Plitt of the COmlll/lnd hIIndshak ing for burst) . tf you kno ...
which lOPs a r e present, they can be disabled individually. In this
e xample, we assume that the I/O ROM is present (o r the Mass Storage ROM or
the Plotter/Pri nter ROM) and that the system RAM variable byte which we ' ll
call SCt.ClG (DAD 199667) has a bit set f o r eaC'h select C'ode (101') present .
Do not just do all e ight possible seleC't C'odes (because of the IIlC'k of
handshaking f rom nonresident seleC't codes) . This note applies also to the
R£lNT operation that follows.

DlST01)

3-38

I
I
pUMD
PUMD

'''' "'" U>8

'OB"
I
I

I
I I

R24, +R6
R26,+R6
R24 , - 1211, 377
R26,-121 , 377
R29,_19
R21,-SCLOG

I I
I I

!Save pointers to the
! buestlng 101'
!Staet at select code 3

!There are 8 select codes
lGet the presence Indicator

I

I

• " "

Section), Performing I/O Operations

DISTel

OIS'U2

REINT

RENT01

RE:lN02

3. 4 .12

,so
m

''''' ".
'" "'" ADM oc.
m
""'" POMD

'" ''''

'" DISTII2
R)6,~60

X22,INTCMD

'21
R24,"2,1I
R26 , .o;2,9

'" DISTill
R26,-R6
R24. -R6
X22 , INTCHK

PUMD R24, + R6
PUMD R26, +R6
L.08 R20, =IIlI
LOBO R21, =SCLOG
LDM R24, =120,377
UDM R26,-121,377
TS8 R21
JEV RENTe2
JSB X22, INTCHK
LRB R2l
ADM R24, &Z,8
ADM R26, =2,0
DeB R21l
JNZ REIN01
POMD R26. - R6
POMD R24 ,-R6
Ul8 R37 ,=1
STaD R)7, "'KEYDIS
LOB R)7,_2
STBD R37, ~TIMDlS

we RJ7, "HJ2
STBD R)7,"TIMDIS
LOB R)7, "21l 2
STBD R)7,wTIKDIS

LOB R37,,,,3112
STBD R37 .~TIMOI S

""

! Is this one here?
!.JIF No - not this one
!Protocol .. Interrupt control
! (inte rrupt i ng type)
!Set up fo r next select code

!Have we tried all a select codes?
!.lIF No - try the next

else restore pointers to the
lOP we ' re going to uSe
~nd un Interrup t It

! S~ve pointers to the lOP
! we've burst ed with
!There ~re 8 select codes
!This tells which ones to do
! start with select code J

!ls this select code present?
IJIF No - not this one
! else uninterrupt it
!Set up lor next select code

!Have we done ~ll 8 of the~?
!J I F No - go for the next one
!Restore pointe rs t o lOP we've
! just done burst with
!Re-enable the keyboard

lAnd the time rs

Before proceeding to burst termina tion, let ' s take a look

command h~ndshakinq that ' s used with burst I/O because I t' s

interrupting.

~t the p rotocol
both direct and

3-39

I

I
Section 3, Performing I/O Operations

As already roentloned, each interrupting device must be disabled prior to a
burst operation and re-enabled afterward. The keyboard and the timer will
be disabled and re - enabled according to the examples. The procedure for
handling lOPs is explained next .

TO prevent an lOP from interrupting the CPU, the CPU sends the protocol
command Interrupt Control (opcode 0~11. fi e ld is 0, which Is equal to 60
octa l) . There is an Interrupting command handshake procedure sent to each
l OP currently on the bus (cQuld be u p t o four, one for e"ch 1/0 backplane
slot cu rrently in use for burst I/O). The lOP interprets this command as a
no operat i on command and goes through al l the motions of accepting an
inte rrupting protocol command from the CPU but does nothing about I/O in
response.

Ouring this time, t he lOPs cannot interrupt the CPU; therefore, the lOP
interrupts are said to be disabled, and the bu rst transfer will be
protected. The last thing the DISINT procedure does is execute the lNTCHK
procedure on the current lOP. The other IOPs will remain in the
interrupted state throughout the burst transfer.

The lOPs can continue their previous
the INTCHK opera t ion . This is the
protocol commend .

3 .4.1 3 Burst Execution Speed

operations after the CPU has eXllcuted
normal termina t ion to an interrupting

Dlltll trllnsfer
in te r hce and

Hites are approximlltely 25K
20K bytes per second for the

bytes per second for the
BCD and GPlO Interhces .

HP-IB

3 . 4 . 14 Interrupting Operations

We have seen interrupt-type protocol co~nds t hat involve the tOP being
interrupted by the CPU. There is a set of operations which Involve the CPU
being interrupted by the lOP and t his is re fe rr ed to as -Interrupting
Operations . " Because these operations are involved in mor e than just input
and output data t ransfers, they will be discussed from the standpo i nt of
the reason the lOP is int errupting . These discussions will include t he
action to be taken by t he CPU interrupt service routine. Following this
will be a discussion on the general requirements for this service routine
and how and when you can l et some of the enhancement ROMs work fo r yo~ .

The shel l of the CPU interrupt service routine will f i nd out which lOP
inte rrupted and why . The reasons for interruptin" are each discussed here.
The binary numbe r shown ith the name o f each reason is the byte that
explains why t he l OP interrupted the CPU .

3-49

I

I
Section 3: Performing 1/0 Oper~tions

I nterrupt Output Ready (1111 I IIB)

this is the lOP interrupting to get the next byte during ~ transfer out by
interrupt. The tOP Is ready to output ano t her byte. The procedure is to
find the next byte that should be output to that se l ect code and write it
to the DB ,.., •
Beware of ~ultiple byte operations and termination of the tranSfer. If the
interface Is BCD of GPIO doing 16-bit format, the T~LG bit in t he PSR (bit
6J will be set and you will be expe cted to transfer bytes until TFLG Is
clear. (The interfaces interrupt lor each handshake operation and will
accept as many byt es per interrupt as are needed to set up the next output.
The number of bytes Is determined by the Inter face.)

Termi nation of the transfer is done by the CPU when it decides that the
transfer is completed ithllt Is, It doesn't want to be Interr(lptEld for II

~next~ out put operation). This Is done by settln~ the CEO bit in the OCR
befo r e writing the last byte to the output buffer just as Is done In simple
output. The difference is in the response o f the tOP . It will execute an
end- of-line character sequence [if It has one) and will then interrupt the
CPU on'" last time to verify that the end-of-line charllcter sequence hilS
been sent (even if no chllracters were trllnslIllttEld).

INTOUT

INTT"l

INTT02

OCM R30
JNZ INTT"2
LOB RJ7,-4
STaO R37 , R24
POSO R37 , +R32
STBO RJ7 , R26

!Procedure pointer and count for this tranSfer
J RJ0,ll <-count , RJ2,JJ<~ pointer

lIs this the lllst byte?
IJlf No - not !lIst byte yet
! otherwise , set the CEO bit
! in the CCR
IGet the next byte to send
! and give It to the tOP

!Update the pointer and count now in case
TfLG is ~

'" LOBO

"'" '" OM'

X22,08FzII !Walt till the IOP ukes It
RJ7,R24 lDoes the lOP wllnt another?
R37,-lllll ! (that is, Is TfLG set?)
IN'I'T01 lJIF Yes - get another one
common end of Interrupt Service Routine

Bur s t Te .-.ll\at!on ("8118 8811)

This is the lOP interrupting to terminate the burst operation (i.n this case
the next Instruc t ion In the burst loop) . It Is on the R6 stack .. long with
other entr i es put there .. s part of the inte rrupt service routine . Th i s
seetlon of the interrupt service routine performs burst te rmination as
described next .

J-41

Section 3, Perfor ming 1/0 Operations

The location of the return address (the "Interrupted address," that of the burst loop) Is a known distance down the R6 stack . Servicing this interrupt amounts to finding that address and replacing it with a special address in sys t em ROM . This address Is t hat of a RTN instruction In ill system routine .
When the common code at the end of the Interrupt service routine has cleaned up and retu r ns (to what would normally have been the next Instruction) , CPU control passes to the special system address and executes an additional RTN Instruction . This addi t ional RTN Is what does the return operation from the burst loop to the code following the jump (JSB) into the bu r s t loop .

BRSTRM R30,-3H'l,0
R6,_OSTNCE
R30,R6
R6,-OSTNC£
Common I SR

IThe special ilddress
IPoint to re t urn address
!Replace the address
!Restore R6 to original

end code

Registe r 1 Condition J'Je t Interrupt (011B 8111)

When you have written an interrupt mask to control register 1 of an Interface and the masked condition Is met, the interface will interrupt the CPU with this condition . What you do about It is pretty much applica t ion dependent . for e~ampl e , we ' ll assume that you at least want to read s t atus register 1 to see what the condition was and cl.ilr the occurrence .
REGSTL

3-4 2

eo,
OS,
OS,
""'0 eo,
,TaO
OS,
OS,

R36 , -1
X22, INTCMO
X22, IBP"1
R36,fl26
R31, - 4
R31 , R24
X22,0-B .. g
X22, I N1'CHK

[Protocol - Read StatUS 1
! (interrupting type)
!Walt f or lOP to get it
!Read it
!Set CEO
[to say tha t' s all
!Wal ~ t ill roP ' s got It
!Un lnt errupt the r op

lTake whatever action is appropr iate
! to fl ag t he OCCll rrence of th i s
[Interrllpt .

JMP Common End of ISR code

Section 3 , Perfor~in9 I/O Operat ions

Reset Finished ••• Self-Test Passed (eeee eell)

The l OP int errupts the CPU afte r it has completed t he reset ope rat ion
(RESET statement, power-on initiali~ation, or you did the reset in assembly
Code) . This Inte rr upt occu rs when t he self-test is successfully passed .
If it is at power-on , then the select code should be logged in (re fer to
SCLOG in the discussion of burst--disabling all interrupters), o t herwise
you don't need to do anything here . Whether or not it Is at power - on is
something you must flag In the RAM area if you are going to handle this
procedure.

R£STOK

RSTKlp

RSTm<;h

RSTrtn

CD"
m
LOBO eo,
"'" m

"" c'"
'" "'" ''''' ."

R37, x22, PWRON?
RSTr tn
R24, - SCLOG
R35 ,-1
R24, - 121l , 377
RSTmch
R24,-2 , 0

'" RSTKlp
R34, R35
R34,_SCLOG

lIs this power on time?
1 JIF no - not power on
! otherwise, log It In
ITentative select code 3
JRI9ht select code?
IJIF Yes - this one
! else bump to next
! select code

try again
!Set this bi t into log
! byte and put it back.

Reset Not Finished ••• Self-Test Pailed (xxxx xxll)

This is how the lOP notifi es the CPU of an error condition . There are
three main types . If the reason for Interrupting is 1111 lSll, then the
lOP is reporting self-test failure i n response to a feSet ope ration (just
like RESTOK except it flunked the test). If the byte is 1111 1111, then
the lOP is reporting an " Invalid I /O Opera t ion" error (in BASIC thet's
"Er ror Ill : I /O OPER") . The only othe r kind of error reason byte is SOxx
xxll and this presents an interface-type dependent erroL The
co rresponding error n~mher reported by BASIC is obtained by adding 112
dec i mal to "xxxx ,· giving an error number between 11 3 and 122 decimal.
What you do in response to anyone o f these e rror conditions is application
dependent. It is reCommended t hat you set an appropriate flag In your RAM
area and have your binary routines check such a flag at those times when
such an error ~19ht occur . If you abort directly out of the interrupt
service routine, you ' d better be careful handling the stack pointers.

Interrupting With Availabl e Input Data (BBBB 11S0)

This is much like Inter rupting when ready for OUtput . In addition to
checking If the CPU has had enough Input, you m~st also check to see if the
lOP has decided that the tnnsfer should terminate (refer to the option
b its discussed under Inter rupt Input) . Multi-byte transfers are possible
here just as they were for Interrupt output .

3-43

Section 3: Performing I/O Operations

INTIN

INTlop

INTwat

INTend

INTbsy

INTdne

[Get count and pointer for this transfer
! R3e , 31 <~ COllnt, R32 , 33 <_ pointer

'" LOBO
PUBD

"'" '" "",,
'"' STBD
LOBO

"''' '" '" OM' "',
STBO
LOBO

""' '" STBO

X22, IBF~l
R36 , R26
R36,+R32

'" INTend
R37 , "'4
INTend
RI,R26
R37,R24
INTlop
R37,~lee

INTwat
INTdne
R37,"'4
R37,R2.4
R37,R24
R37,~2

INTbsy
R37,R24

lWait for first data byte
!Get this data byte
lPut it into the buffer
! End of bllffer?
!JIF Yes - no more wanted
[toP wants to stop?
[JIF Yes (R37 from IBF~I)
lAsk for another byte
1 Read PSR
!JIF IBF (got another)
lIs TFLG set?
!JIF Yes - worth waiting
! otherwise done for now
!Set CEO to end transfer

[Wait till BUSY = e
[(forget OBF)

!Clesr CEO

[Log the fact tha t the transfer is finished

JMP Common ISR End Code

End-of-Line Character Sequence Has Been Sent (0088 9118)

This inte rrupt occu rS when , after an interrupt output transfer operation,
the lOP has finished sending an end-of-line character sequence according to
control reqisters 16 through 23. The BCD interface does i t immediately
because it has no such seqllence . The only thing you need to do is to log
the fact that the transfer operation is now complete . The lOP will
interrupt with this reason whether or not any cha racters were actually
sent.

Interrupt Service

The above examples of code mllst be in the shell of an interrupt service
routine to ge t ready for the specific response code to be executed, and
t hen to clean up after such exeClltion . It is the pllrpose of the shell to
i nsllr e that proceSSing the interrupt (which can occur bet~een any two
consecutive assembly language i nstructions) does not in any way leave
al tera tions in the machine s t ate .

3-44

•

I

•

Sec t ion 3: Performi ng I /O Operations

In addition to saving and restoring the ~chine state. it is necessary to

chec k for the R6 return address overflow condition . The shell gets the

select code (actually. the CCR add r ess) of the interrupting lOP iIInd the

reason for the interrupt . The code can branch appropriately to process the

Interr upt.

All of these code
restores registers

sections end by
and returns CPU

branching t o
execution to

a COmPOn end segment
Its no rllWll flow.

which

For this example we will save CPU reqisters

here does not Include the hook at tRQ20

occurrence. That will be discussed next.

20 thr~uqh 47. The
which vectors the

MOVSTK

HVSTKI

STCKok

""MO

"'" PUMD
W<
PUMD
U><
sa,

'OM
W<O

'"" '" "" m
"'" W<

'OM eo,
",,"0
PUMD

OC'

'"' ""0
PUMD
sa,
CU<
OCM U,,"
STMO ",,,
w<0

'" LOBO

'" CLB

R40 ,+R6
R41!. R30
R40, +R6
R40,R2B
R4il, +R6
R21l , R6
R20,"44,0

R31l,-S,0
R46 , R20
R46 , "'IRQPAO
MOVSTK
R46, "1 RQR'I"N
STACK ok
R3~,"2,0

R32 , R20
R32,R30
R37, _4
R40, +R32
R40,+R20
m
MVSTKl
R44,+R32
R44,+R23
R6,R33

'" '" R26, _WTRSC
R26. R24

'" R22 , "StNTAS
X22, IB F_l
R37 ,R6
X22,Isr'"l

'"

!Save reqisters

!Test for over f low
point to return address
(this number is decimal 12
plus the numbe r of saved
reqisters on the R6 stack)
assume tRQPAD

JI F IRQPAD was interrupted

(IRQRTN was i nter rupted)

this moves 32 of 36

this does the last 4

ad just R6
!Get interrupting select code
! addresses for CCR & 06
! (DAD 177500)
!R24 <_ pointer to CCR/PSR
!R26 <'" pointer to OB/IB
!Get ou r base address
!Wait for dummy byte
!Acknowledge inter r upt
!Wal t fo r r eason byte

code shown
Interrupt

3-45

I

I

Section 3: Performing I/O Operations

smD R34. R24
LOBO R34, R26

!Clear the CCR
!Read the reason for Interrupt

branch as appropriate to the
! individual routines

Common End Code for the Interrupt Se r vice Routine

[LABELl POMD R4B.-R6
STHD R49,R20
POMD R4B,-R6
STMO R40,R30
POMD R4i1,-R6
STBO R I , • HITRSC

"'"

!Resto re registers

!lOPs need this .

INTRSC (DAD 1775811) Is a spec:i.:o l translator address. When it Is read In
response to an lOP Inter rupt, the interrupting translator provides the
least significant byte of Its own CCR/PSR address.

Taking t he I nterrupt Vector

'l1le hardware o f the CPU, the l OP , lind the tranSlator will make sure t hat
when lin lOP needs to interrupt for s ervice. It wil l eventually get the
char.ce t o do so . When it does, the CPU will first save II retu r n address on
tha R6 stack , t hen branch to a speci a l RAM location called IRQ20. If you
ara 90in9 to have an interrupt se r vice routine, the only way you can get
control of the Interrupts is t o take the hook at IRQ211 .

What we're going to discuss is when to take the hook and how to return
control to the system . If the 1/0 ROM, the Mass St orage ROM, or the
Plotter /Printe r ROfo\ (or any combina t ion of these) is plugged in, then the
hook wi ll have been taken Immediately . Anyone of these ROMs will handle
power-on, errors, and resetting. The I/O and Mass Storage ROMs will also
handle burst termination for you. You might want to do s~e Interrupt
operations In your own interrupt service rou t ine and have a ROM handle
others . You can do this If you follow a few precautions:

• Before you
vector and

take the hook by stori09
store it In your RAM area .

your veetor in it, read the old

• If the fi rst byte of the old vec t or was a RTN Instruction, then the
hook hasn ' t been taken since powe r -on.

• Disable interrupts 910bally before you chang' the code at IRQ20
whether t",klng it over or 91vin9 It back. Th is Is cdtlclIl code.
Remember to re-enable them afte r you ' ve ~de the change.

3-46

Section 3, Performing I/O Operations

I nter r upt Input and OUt put Operat ions

We have already discussed the interrupt service routine and it is this
routine's response segments for input .. nd output that do most of the \>lark
for an interrupt input or output operation. It is perhaps misleading to
call it a procedure . It is moce like a process.

The CPU initiates this process {as described nel(t) , the lOP and
cooper .. te during the process, and some occurrence termin .. tes the
The cooper .. tion and termination .. re wh .. t the interrupt service
does. NeKt is a discussion of the preparations required for the
initiate the process.

the CPU
process.

rout i ne
CPU to

Preparation for an interrupt input or output Includes everything you must
manage fo r the simple case such as configuration .. nd addressing . You must
also .. rrange a byte counter and pointer in your RAM .. rea so that the
interrupt service routine, knowing which select code is interrupting, .. nd
knowing the direction of the transfer, knows ',,"hen! to find them. You must
be SUre that the process will be legal, the interface I s either not busy,
or it is full dupleK and not busy in this direction . If you are using any
of the input termination options, you must be sure th .. t t he necessary
preparationS have been made (count to control registe r s 25 and 26, and/or
Delim character to control ! eglster 27).

The protocol comm .. nd handsh .. ke types for interrupt input and output are,

• If the interface is not full duplex, both commands .. re di rect because
the int er f ace cannot begin 11 new transfer while it is still busy .

• If the interface is full dupleK, the output command i s the
interrupt-type. The input command is unique l y handled by skipping the
usu .. l test for OBF-BUSY~0 before the command is written to t he DB in a
manner simila r to that used for direct commands.

The interrupt output protocol comm .. nd has no options . It is 242 octal and
the transfer te rminates when the CPU sets the CED bi t. The corresponding
input command has three bits which specify optional conditions . The lOP
decl .. r es the tranSfer finished by setting the PEa bit . These correspond to
the conditions explained under simple input . In the syntax of the
TRANSFER; I~TR statement: Bit 0 set _ EOI, Bit 2 set · DELIM, .. nd Bit 3 set
'" COUNT.

Once the .. ppropdate protocol command for interrupt input or output has
been properly passed to the IQP the process has been initia t ed . The CPU
can continue and let the lOP and the inter r upt service routine take over.
I n the following examples it is assumed that all of the .. bove- mentioned
preparation has t .. ken place and, for the input examples, the termination
option bits are In R34.

3-47

Section 3: Perfo rmi ng I/O Operations

Full Duplex Input W, R)6 , _n ! Protocol • input, intr

'"" R36,R34 ! Fold '0 the optIons
J" x22,OBF~a IMustn't crash ch, " CO, R37,'"2 ! Set 000 bi t
STBD R37,R24 , '0 ch, '" STBD R36,R26 !Write ", command
J" X22,OBF-a jWai t till IDP has " '''' '" !Clellr CCR
STBD R37, R24

'" iNo wait fo, BUS "

Flll! Duple>: Olltput "'" R36, -24 2 !Protocol .. olltput, lntr

'" X22,INTCMD ! (interrupting type)
Joe X22,INTCHK iUninterrupt ", W,

'" INa wa i t fo, Busy ="

'0' Full o..p '0 CO, R)6,_22 I Protocol • input, intr
0'" R36,R34 ! Fold '0 ", options
Joe X22,DIRCMD , (direct type) ,m iNo wai t fo, BuS e

'0' Full Oup Out CO, R36,'"242 !Protocol - output,intr
Joe X22,DIRCMD , (direct type) ,m iNa wa i t fo, BUSY="

Data transfer rates for interrupt input and Olltput from assembler code will
not be much ["ster th"n those for BASIC la ng uage operation because of the
large overhead for the inte rrupt service routine. For higher speed
concurrent I/O, you should consider a pol li ng operation over simple input
and output pr ocesses . To do this, the CPU must poll each card to See if it
is ready for data transfer .

3.4 . 15 Simulation of I/O ROM Statements

In this section , those statements provided by the I/O ROM will
In terms of t he protocol commands they use. These statements
useful for simulating the operation of your binary code.

be analyzed
can be very

ABORTIO : The protocol command "Abort"
interface.

(elell Illlllll) is sent to the

ASSERT : The given byte is written in t o cont rol register 28.

3-48

Section), Performing I/O Oper~tlons

CLEAR, This statement has two forms: one with prl.ary ~ddresslng ~nd one

without . If there is no primary address then the HP-IB interface message

· OCL" or "Device Cle~r" is Sent. If there is ~ pri~ry address (or ~ batch

of them). an addressing routine will be done. this will send the

·Unlisten" Interface message, execute the ~Send My Talk Address" protocol

command. send a "Listen Address" interface message for each primary address

given. and then send the HP-IB Interface message "SCO" or "Selected Device

Clear. "

CONTROL: This statement performs the control operation

t/O ROf1 will not allow you to access control registers

this s t atement.

ENABLE INTR: Identical to CONTR01. to Register L

as described. The
25 through 29 with

ENTER: This state~ent performs addressing if a primary addr~ss is given and

then sends the simple input protocol command and inputs bytes until its

argument list is satisfied. The addressing done consis t s of sending the

"Unlisten· interface message, executing the ·Send My Listen Address"

protocol command, and slHldlng the appropriate "Talk Address· Interface

message.

HALT: This statement sends the "Halt" (0100 11100) protocol command .

LOCAL: This statement mayor may not have a primary address. If it does,

then the addressing sequence o[send the "Unlisten~ interface message,

execute the "Send My Talk Address~ protocol command. send a "Listen

Address " interfaclI message to each prtmary address given. and then sends

the HP-IB "Go to Local" interface message . If no primary address is given

then t he protocol cOlMland "Set REN to false· (9Hlll 110Ia) Is executed.

LOCAL LOCKOUT: This statement sends the HP-IB "Local Lockout" interface

message .

OUTPUT: This statement will do the addressing routine if there is a primary

address (or addresses) provided, and will then handshake the simple output

protocol co~nd (illill lIaaa) and output however many bytes it takes to

satisfy the argument list . The addressing routine consists of sending the

"Unlist en" interface message. exacuting the ·Send My Talk Address" protocol

command, and sending the appropriate "Listen Address" interface message(s).

PASS CONTROL: If a prl.ary address Is Indicated, this statement will send

the corresponding "TiIlk Address" interface message. With or without the

talk address it will then send the HP-IH "Take Cont rol" interface message

and then exit the controller active state.

PPOLL:
(0100

This function
01a0) and returnS

executes the Parallel
the response byte.

"

Poll protocol command

3-49

Section J, Perfo rming 1/0 Operations

REMOTE: If a primary address (or addresses) is provided this statement will
send an addressing sequence and then execute the Set REN True (0100 0001)
protocol command. If no primary address is given, only the protocol
command will be execllted . The 3ddressing sequence is: send the "Unlisten"
interface message, execute the "Send My Talk Address" protocol command then
send <'I "l.lsten Address" interface message for each primary ilIddress given.

REQUEST: The given "response byte" is wri tten to control register 29.

RESET: The RESET bit in the CCR for the given select code is strobed to
initiate the reset for the lOP. The CPU enters 3 w3it loop for abo..,t 4110
milliseconds to give the lOP time to complete its reset operation and
interrupt with the self-test results. The interrupt service routine log s
an error if the reason for interrupting is the one that Indicates the
self-test failed.

RESUME: This statement e xec..,tes the "Resume" protocol command (0100 1001).

SEND: This is <'I very useful statement for Simulation p..,rposes. These are
its field options:

CMO: All expressions following this keyword ~re converted
stdngs 3nd are sent as interface messages (that is, they
the lOP using the "Send" protocol command (0100 0000».

DATA: All expressions following this keyword <'Ire converted
strings and are sent as data bytes (that is, they are sent
llslng the simple output protocol command (1010 00(0).

into byte
are sent to

into byte
to the lOP

TALK: The expression following is redllced to five bits and added to
octal 100 to f o rm a ~Talk Address" inter face message. This result Is
sent to t he lOP USing the WSend" protocol command (1011 0000).

LISTEN: The expressions following this keyword are red..,ced to five bits
and added to octal 40 to form a WListen Address" interface message which
is sent to the lOP using t he "Send" protocol command (0100 00(0) .

SCG: The expressions following this keyword are reduced to five bits and
are added to octal 140 to f orm a Secondary Address Interface message
which is sent t o the lOP using the "Send" protoco l command (1011 0000).

lINL, Octal 77 ("Unlisten") is sent to the lOP using the ·Send" protocol
command (1 011 0000).

UNT: Octal 137
command (1 011

J-50

("lIntalk")
0000) .

is sent to the lOP using the ·Send" protocol

Section 3, Perfo rming I/O Operations

MLA, this keyword executes the ~Send My Listen Address" protocol command
(0100 0110).

MTA: This keyword executes the "Send My Talk Address" protocol c~nd
(11100 0UIl.

SPOLl: This function executes an addressing routine if a primary address
Is provided and then pe rfo rms the following sequence:

• Octal 30 ("Serial Poll Enable ") Is sent to the lOP using the "Send "
protocol command .

• The simple input protocol command (0001 0001) Is sent and one byte
Is Input.

• Two bytes
~Untalk")

co_and.

(octal 31,
are then

"Serial Poll
Sent to the

0lsabl8" and then octal 137,
lOP using the "Send" protocol

The addressing sequence used for II primary add ress is:

e Send the "Unllsten" interface message (that is, send It to the lOP
using the "Send~ protocol command).

• E;xecl.lto tho ·Send My Listen Address" protocol command.

• Send the appropriate "Talk Address· inter f ace message.

This function statement returns the single byte which was input .

STATUS: This statement executes the read s t a t us protocol operation as
discussed above .

TRANSFE;R: This statement executes Interrupt I/O and burst 1/0 according
to the INTR o r FHS keyword. Three bytes are written to cont rol
r~isters 2S through 27 to set the count and delimiter options . If no
count is specified, the length of the buffer string is sent as the
count. The del i miter byte is always written (as a coding abbreviation) ,
but It only has a defined value if It hilS been specified for an
In t er rupt input and it won't be used unless that specification Is made
(the enable bi t must be set in the protocol command) . The EOt keyword
causes the corresponding bit to be set in the protocol comm&nd . After
the protocol cOlMland has been assembled , it is sent to the ZOP and the
CPU either enters a burst loop or returns from s tart ing an Interrupt
process.

3-51

-

Section 3: Performing I/O Operations

TRIGGER : This statement performs an addressing opf!r~tion if " primary
address (addresses) is specified, and then sf!nds the HP- IB "Group
Execu te Trigger" interface mf!ssage . The addressing operation consIsts
of sending t he "Unlisten" interface message, executing the "Send My Talk
Address" protocol command and then se nding a " Listen Address" interface
messllge for each pri mary ~ddress indicated .

Notice that
same in all
sUmmar i'l'e:

the addressing operation invoked by a
the ~bove sta t ements ~nd functions

primary address is
in the I/O ROM .

• Fo r inputs : send Unlisten , My Listen Address , and the t alk ilddress given
as the primary address .

• For outputs: send Unlisten, My Talk Address , and a listen address for
each primary address given .

3.4.16 Timinq Methodology

The I/O protocol command set was timed with the clock in t he HP- 85 usIng a
BASIC proqram to repetitively call iI binary program which e xecuted the
command. In order to obt ain usable timing d~t~ for the I/O programmer who
wishes to do I/O in assembly language, the times repo rted (except for the
ones given as BAS IC language compariSonS) are the times required for
execution and/or data transfe r between the lOP and the CPU registers . All
times having to do with fetching and storing BASIC variables and calling
the bInary code through BASIC sta t ement execution have been Subt racted out
as described next.

The time required for calling the binilry code from BASIC was removed by
,epeating the timing loop twice . A flag variable w"s set to 11 before the
timing loop was entered t he first time and was tested for 11 after the loop
finished. If the flag was found t o be 0, it was gIven some other value
(depending on the operation) and the loop was fe-entered by a GOTO command.
When the test after the loop found the flag to be not ~ , the f1~s t time was
subtracted from the second time and the difference divided by the number of
repetitions . The resulting time w"s take~ as the execution tIme of the
operation.

The binary code accepted the f lag as one of several parameters. After
fetching all parameters into CPU reg i sters "nd preparing all items whIch
are assumed to be done prior t o executing an t/O operation (such as loading
the contents of BINTA8 into a pair of CPU registers) , the binary code
t ested the flag for~. If it was~, t he binary retllrned immed i ately (this
was the first pass through timing the loop).

• •• -
3- 52

Section 3: Performing I/O Oper~tions

If it was not e, the binary performed whatever operation had been coded

into It. The fl~9 was set to the nlmber of bytes to be transferred. If

appropriate, the binary code then transferred that many bytes into or out

of t he CPU r99isters. Usually, none of the data bytes transfered in such

cases came from or returned to the BAStC code variables. If bytes were

input, they were simply ignored. If bytes were to be output, the binary

simply sent 0'5 for control operations and string output .

For formatted areas (sending to the BCD Interface and needing '.' and 'E'

for instance) a string variabl e '",,/IS used. The pointers were set up in the

CPU registers r99ardless of the value of the flag so t he time needed for

t his was subtracted out.

The only remaining variation in timing between the 0-fl/lg run and the -not"

0-flag run was the value of the flag. Because a system routine used by the

binary was argument dependent, the difference showed up In the loop time

dif f erences. A special binary program that called the system [outlne ONEB,

used with a series of parameters from 0 to 1110 (the largest flag value

used) gave a set of e~ecution time d i fferences than that with the parameter

II. These were subtracted fro~ the measured times.

The timing loop went through 1,11110 repetitions of each binary call.

Because the accuracy of the BASIC timer and resolution are on the order of

a millisecond, we start with an upper limit on the accuracy of the timing

data of "microsecond. Several Influencing factors lower this accuracy to

Some unknown, lesser accuracy . The coincidence of handshaking signal

assertions and tests is probably able to account for ten or so microseconds

of jigg l e, but this Should average out ove r a thousand operations.

The main erfor Is the argument dependent execut ion times of nUmber

conversion routines used by the BASIC code 1n taking the system time. The

results tended to be repeatable to within ~ few microseconds per operation.

However, with the resolution of the timers being on the order of the times

being measured , no statistics on the variability at the individual

operation times could be taken. The times are given in milliseconds as one

or two digit numbers. They should be taken as good to ten percent or so if

it really makes a difference in your application . You should test and time

as appropriate to your needs.

For operations that don't involve any actual data transfer, the times are

listed. If data trilnster is involved, there is a base time given which is

what is required for a single-byte transfer and an incremental time whiCh

shoUld be added to the b~se time tor e~ch additional byte transferred.

)-53

Section): Performing I/O Oper~tions

3- 54

'" ,,,
99'

1 ~0~
HIlIl
H12~

11130
U40
1050
10611
107.,
1.,80
1090
111lll
11111

BASIC timing loop:

!Previous code has set C to the select code and
! h~s set S to the protocol command selected.

F~0

TO«TIME
FOR I ~l TO 101111
BINARY F,C,S
NEXT I
Tl-1'IME
IF F THEN llllil
T2-1'I-TO
F~l

GOTO 10111
T)""l-1l

!Flag is initially set to II
! Time of statt through loop

!Ca ll the binary

!'rime ~t end of loop
lBranch if second time through
! otherwise T2 ge t s t he fl rst time
! Flag now says second dme through

! second time to T3

1120 PRINT "Execution time:·; (T3-T2)/ 1 ~1I~; " seconds·

The Binary:

10110 ! Above code ," up lind Pllt "" flag into R20
IBl0 T" '" 1020 '" SECOND
1 11 311 'T' !Jllst return f i rst time
1040 SECOND ! Ensuing code performs operation S at
1050 , se l ect code , for second time throllgh loop.

•

I

SAAPLE CODe

4. 1 In t r oducti on

Section
tv

Ttle binary program In this section Il l ustrates several [/0 operations. The
register conventions used are'

R20,21
R22 , 23
R24,25
R26 . 27
R3e .31
Rl2 , n

'" '" R36,31

SCfiltch
BINTAB
CCR/PSR address
OS/IS "ddress
Character count
SLlffer pointer
Active? (Boole!ln \I_false)
EOL request (Boole an 0&f 515e)
GOTOjGOSUB pointer

The code assumes that the Interface of Interest is at select code lB.
Additional Inter f aces (notably HP-IB at select code 7) are allowed. All
I/O ROM keywo rd usage shOUld occur either before the binary Is loaded or
between a RELINQUISH statement and an UNRELINQUISH statement.

4.2 Keywords

The sample program keywo rds are:

RELINQUISH
Returns the IR02e and IOSP hooks to the ROM that had the~ before SELFIO
was loaded.

UNREL.INOUISH
Takes IR02B and
control can be
program.

IOSP back. 1 f
passed back and

al tern/lted wi th
forth between t he

GIVES (string e xpression)
Sends the string using simple OUtput protocol .

RELINQUISH,
1/0 ROM Md

interrupt
the binary

'-1

I

Section 4 : Sa~ple Code

T"KES (s tring expression)
Enters the string ~slng simple Input protocol. It won't terminate until the dimensioned size of the strinq has been fill ed . Line feeds are I'\Ot specially recognized.

GIVEr (string expression) AFTERWARD GOTO!COSUB Line. SendS the string using interrupt output protocol. equivalent t o · ON EDT 10 GOTO/GOSUB Line' TRANSFER (string expression) INTR."

TAKEr (st ring reference) AFTERWARD GOTOfGOSUB Line.
Enters the strim:l using interrupt Input protocoL Eq",lv .. lent to "ON EDT HI OOTO/COSUS Line' TRANSFER 10 TO (string reference) tNTR."

ON BREAK OOTO/GOSUS Line'
Sets up an end-of-Ilne branch thet takes place upon receipt of a BREAK character (for serid interface; for HP-IB, read "ON Ire"; for GPIO, read ·ON STl"; for BCD, read "ON FUNCTION B MSB") . Eqlliv lI lent to "ON INTR le GOTO/GOSUB Linel ENABLE INTR Ie ; 12B . "

ACKNCMLEIX;E BREAK
This is the first statement which ShOllld be executed afte r the ON BREAK end-of-line branch has taken place . It is equivalent to "STAruS IB,1 ; Z9" where Z9 is ignored .

GIVEB (string expr essiQn)
Sends the s tring llsing burst output protocol {not. in t erfaces have format restrict i ons for bllrst interface does not sllpport burst I/O) .

TAK£B {string reference)

that
'10

the BCD and GPIO
and the serial

Enters the st r ing using burst inpllt protocol . siz. for the string.
Fills the dimensioned

SHOVE {register number) , {data)
Does CONTROL 10 . (reg ister nur.tber) ; (d .. ~a) for times when the I/O ROM isn't avalhble.

'-2

,

I
Section 4, S~mpl e Code

,,, , ;H
'0 ' t t •• p " j"~ ••• **U '.f" t~· l 't l". FYI' r11''l ~ ,n BINAr"'1 ,'h(.r;R>-\I·'

~," GlO GLOf<,.1
oF' II..,.. ~FlFtO
-,. " nE> R'IJN1Af'
6" '" I\'>CTAE<
70" 0<> P,>fc H\f!
RI) r'FF EPf-' 1 AI<

"', OEf. Hili.
Itl" F,-,F.T"'l8 IW1 • I, <)

I 11". nE' kf.L r N- , ,
I :on 0<> UNf<l1
1 '~f' 'E> GIVES -
14u [lEF T'-"-E"" "
I C;" 0<> OIVFI-

~
J , nE' HIIFT- "
I 7(, '" ONB!'>, -
I 8(, ,,> r.; I VEI'<- ,,,
1 Q{, '" TAf EEI- '" ;'0', DE> An'R- ,
',' 1 ,-, 0<> "'HOI,'

.":cr' RIINIA£< !:>l'T .. , • t'

2~'~ nE> PEl IN_
'_' 4 ' , on UNREL. ,
~5'" DE> I;IVP;. ,-

:.'60 nE> IA. E·~. "

:'!,(, ""> '~IVEI "
;'RO D£F r':'l F I "
:'<;1(1 DE> DNBR~. .-
~(,(, OF> Gl')~b. ' 1"
"':1(> DE> TAl lOB. '" 3::'0 m I'If"HR. ' L,:
',(0 DE!- SHO·~. ' I ,.

;4" D<> DllMI1V " • :S(I OEr OUMHI' <S
-<:hO DE> DlIM,1 " ,.
""7fl DE> OIIMMV 'P
~.I'I'l '" C,FIE:R, , 0

3<;1(, ,n ~:n. ;11
4O" DII I'IMY RIN
4 !<~) ASCTAB ASP "R(I INOUISH" , ,
4;:" ; .51" "I INRH /NfOUISH" "
431) ASF "GIVE'S" ,-
44(, ASP "TAf ES" '. 4 !.i(' ASP ~GIVEIM '5
4<,>(, ASP ·'fAIE'· '. 47', ASP " ON BkEAf ~ "
480 ASP .'f, I VEB'· , 1('

,on ASP "TAIFfl" ' "
~O(' ASP "An NOWLEOGE F<RF.{,I , , 1"2

=>1(1 A" "SHf1VE" , I ~

"l";;'(, '" 21"> ' "
4-3

-

Section 4: Sample Code

'" Z l ~ , \ ::.

'" 21~, ' "
'" 21~ , "
A'" ~AF'fERwARD" , ::0

'" 7>7;1
ERRTAB '" 200.200.200.2'011, •)C, • X>, ::'~lO. ;>,)f, . :'{ ,,)

A," "lnt<'rf"cE' In, "'.' ng~
A<;P "Interf .. "., un I) ,.

A'P " Int ... f .. "" df>pE'nd!>nt "'r..-o..- "
"'P " 1 ... " .. II<J oper.:.t,Qn"
nVT '"

:53(,
"i4(,

~~n

!lbO
:'17('1
~,)

'5~O

.00
61(,
62()
630
.'0
6~m

000

.'0

'P t. U * U4U U U. :t U:l lH t*" IN]-\ lill I Ud ION
lIHT. IHN

",0
6~0 ",,,
''0
no
nn
"0
>50
760 INiT. +
770 UHT •.
7RO ,.0
B",l
.>0
820
1330:'1
.'0
B5(,
B60
870
880 .·0
q/H',

qlO
q2('
q30

~4r,

"',
qb()

·'0
•• 0
•• 0

, """
1010
1020
1030
1040

LOMD R?7,~~INTA~
LOBO R20,~ROMFL
CMB R::(J . ,,::.
JlR INIL.
CMf! R20,=4
JNZ INIT.~

l.DM R20,"INIT.I
ADM 1'12(' . 1'122
OCM 1'120
5TM R20. R4
RON
LDM 1'126 , ~ I RU2v
LOBO 1'12('.1'126
LDH R74.R::h
LOM R>O •• IOSAVE
ADM R~r" R:.?2
POMI) R~('. +1<74
PUMO 1<40. +R~O
POMP R'! {I. + R::>~

PUI10 R4n. +1<30
STFD R. ,·GINTDS
LDI'1 R71. -23::'
STFO R •• "GINTDS
JSf! "ROM·158
PUMO R71. ~"26
LDM R7 -151'1
9VT (l

SlRD R GINTEN
PAO
"N
LOM 1'124,1<70
ADM R::>'4.1<22
STM 1<'24.1<70
PUND R7(). ~R26

LOM 1'171.=,16
DEF ROMJSB
DEF EOLSV
BYT (I
RO N

'1..0 1.~rH' I N­
J IFtES

'R(IN.nUI ~

·.JIF NO
'fl "F 1:1 ~A" POHHERS

'1(;101Nl1.ll

'S,AVE F(!I' 1 (\ 11'"1'"
SA~'F IJ!HF.O< I-(OM S 11-(0.'<) H~

'TAKE:. HOQI 5
, ISt.D~

FIt:;:
-fi75

'H..,.LF OF I RO~(I
'kELAl l VE AOOj;·ES,;
, .. 1'<72

'- ,'RT".
,- R76
'- .-1'::77

'REST
'IJSF)
,- ·R72
'- " ,- e>.
,- en

"" !RO:")

-

•

•

Section 4: Sample Code

h''''''
\ (>h'_'

\1'7"
I (lFI';,
J 0'"',)

1 1' "1

1 I t n
1 1:'0
t I ,,-,
1 140',
t t ",,-,
I I b'-'
I L ' ,',
1 I ~,',
1 I",)
1 ;:,-,"
\;:1"
I;:;~O INIT F
1~"'~-'

1 '4" FFiRORII
! '~O IN1-r."
1::6"
L''''
1 :'FI'"
17'"'0 HIll 1
1 -::, u)

1-::1"
1 -:'(,
1 -::-;,-,
! '.4,)
I-,-,r,
1 ',h,)

I ~.l"
1 :.fl"
1,0,',
I 4 •• ,
I 4 I '

IflN 1<','4.R74
AOH P~4. R:?7
5TH R:"4 .R74
STMO R71. ~ IOSP
STFO f;-lt."GINTEI~
cm; R:'O. --.:--,b
,TNZ INIT.!
n, F< R';'"
STBO I<:'d,~; '2. ST£51
IDA 1i"""1.~4
JSR "CNl h' It.
STBD RM._INI~SC
lori 1-'"':\,0:1
,lSi'< "CNTI-'TN
l['I-<[) F'.'f,.X:.-,STE';1
,1N l INIl_('
LOR R::O, "_;66
!'Tf<O RXO.~: '. ERPOh.
,_'<;1'< ~EI-(RnF<+

ElS!
t:M(! R:"fl, o'~
l1R 1~11f. 1

LOfl I'<:Y" _ ',,,c;
JHf' IHll_E
um P24.-1 ~<>.~'

SlMI, 1'<:'4.~: ': . l'"Ch't'.!'I·'
leM R~<l

5THO R:'.l. X ' ~. 0[<0'41'
111M R;::4._[f.U1IN1
ADI1 f,';'I!. F'

CLt" "'~.-,
FIJIi0 R7(.... ";_:4

PI'MI) 1>7". 'R' :4
PlIMD R7r, . ,,1<'.'4

• DRn 1-".' I • ~c;rl_ 'G
"N" 1<.'1.".""'"
JlF' IIJ! J.f

14"" INJl.1i" RTf\! ,4 ~(,
1 4 /I, ,
14";0,
14..,r,
! ~]o',
141"(,
149(,
1";'-'"

1 !'" "
! s;"n
1 "": .. ,
1 0;/1.,

!s:o;n

, ~~. It • • ;., ' ••• ;,, ; ; ,I,. "'" t I ~'L':'('
ISR BIN

N.-t :'

PUMD R". "1-06

PUMD 1'4(,. "FI"
l DM R~iJ.k;"

EI'Ii q ...
PUN" A~(' • .-R6
lDM f<,10.Ii',:,'
PllMn R 4" . +~I-o
rl1I1 1'6. :-1'61,,111.

'N' I SR",OI
lOR 1']:7."'11
,I SI:' "'SYSl;:kf;

l~"'O ISRbt'll CO" R20.R'"

'RELATIVE:

'ARSOl UTE

'DOW' HDOI-, S
'n1l1 I IAIE 11 FlkST-'
',lIF 110

• i-<<;SIJI-IE l~ll ! I-HERf-ACE

'101.\ 11 ,,>,) liS
'1IEAf,:AI I "STf<I!S

'Wo'oIT 4(0(, "I ..

111SSIN(i"

II! .,fll-ItSlm
"~I"RfA'-"E 1"~WI;.lt

!1-I!l1,~Ll ~ R';M

II~I! f,RUPl SERVII:F ROUTINF

,,-,'JI ;-;-, Cf'lj f<fGlsrEPS
M .. t It.; fl .. t:~ ~

,1" IIC 11',1

'I'H~lI SIIl I '! OVFI<! I Ulol

'f-HEC , F"sr IN1U<RUf-'TS

I

I

.-s

- •

l

Section 4, S~mple Code

157<',
I ~A,l
I '5Qn

"00
16 1':-
16-;>0
16"':0
]"'4(0
16~(' ~,nVSH

161->· ,
1..,7n
161'1" 110V LP
,,.,9«
17('on

I 7' ','
17:'0
17-;'-, Rbr.OOO
174"
, I':;':'
17""
1771"0
171'1"
\7<;1(, 1 I':R I
I fir".,
1810
I B:'Ct I ~R7
If"!)
lAM'
I A '
I A!.':'
1870
IARO

'S'" ,
I ",..",

'''In
1"';;>(1 , "".
'''4.-,
,,,00;,,
1<;I6()

1""'-'
, "1'1('

I""" ::,n.-,(,
;:'0)10

SBM R::"',"N+12
LDM R'j(I."". (I
l.0~1D R4/:o . k2l'
~MM k40 . ~[RnpAD

,IlR MOVSI.
CMN R46.~[kORTN
JNl Rb(',OOO
l OM I~'~, •• ~::. (,
LOM 1'1:;::". R:I)
Al"lM f,' ~:'. I·' "."
LOll R'./.~"".

HJMO 1'14 '. +1-\",:.'
PIIMII p.\. ' ... r,~'o
orr. f;" 7

JNl ",,1\'_1 P
SBM Ro. R-,',
LDMO 1'"0': . ·BIIHAEI
CLM R:'b
OC~] R":6
l nfm R2 oll'JIRSC
"TIl R;'6, k24
IrM k::6
I Dl'l1 1'1::>(" R>1
JFV ISRI
LORD R:"'.R:','"
I llF<o 1'<::'-'.1' " .)
JEV I SF'~
CI 1'< k:'(l
~'I fill .. '.;r'.I-1:'·\
l ORr, I~::'". feb
.Ilk ,\-'" to
C11" 1'1;:''', __ 4
.I1R r h"'\1
CMf! R:'(',~,

,I7R I f;RflT

eM" R;"). "'''
,11A I "AFOI
eM' A:'(" _:;77
.J1R ISRltrJ
eM' A::.:'._:;T?
17R) Sfi'f> r~
('NB 1'1:" I, ,
", I SR!>fO
CHI' R:::r,. ,."
nR 15RI'11
,1';1'1 '(RR('R
Rn "': ... 4
,IMF< IsAOON

2n-.n
:;,(,4 ,',

::'0">('
:,,11.(,

::07('
2')S(o

' i~j.j".'JIIII.I.I" •• A,~J B~ ~

'-6

ISR5TE Limn k~". L.CCF'AOf<
CM!1 1'1"'''1. R:"·i>
Jill ISf\'StO

'F WD RETURN ADDI'IEGS
'M;SUI1F I ROP,'oP
'!;ET RFTUFlN ADPFESS

',)II' IROPAD

'~[F Nnl IFlORTN
'!'L~F o'IDJlJST ilJS1 •• NI·F

,~" DEC BVH,5 WI lL 11nVF
'MiNI' 1 HEi'1

'"uJ"';I STACt !'"OIIH!'!'"

"'" r IN rERRlIP r J Nli {TF .:I/,]If,'E5S

'1<>1 CCR/PSI;'
'f.;'",- 0[<1 Ii'

',,1·/0"0\ r II<~

"" MIeLLO In lOP

'1>(;t.IN JBF <]

'~'·'·;(IFcE IH .. , ell) "
' [,I' r IllTEflFUPT I'<t "SON
, lIn ERF<UPT nUl

'[IJT~"'RUPT IN

'RIJf,"H TEflH/NArl(lN

'IN\lHLID 1'0

'!·u F rES) Uf

'I,EbISTEF I \lH~IIf;'11l-'l

n 'I FF<FcOR
'111 INrEF<FArF

',111' YFS

)

•

I

Section 4, Sample Code

;·'(,"n
:: I (,r,

" H,
71 .,<,)

O. '" ;>14(1
? I "I,)
~16<')

7170
:'18"
::'1 <k,
;~:',,(,

~'::10

':" .. :'0
::>:'~,)

::''24(/
::>:'50
::'::' ... 0
::':'7(1
:':'RO
::::,,,-,
, .. . ,,,,,
731(>
~~'!'"
:'-::-.0)
)-·40
~ -,,,;,)

Z":
:' +, 70

[,EI' ,
~ .. ,' .

, '<I' ,,',
2'1 p,
;"4' "
" '" ~44"

:'4
~ ,,(0

.:47(,
~"4A'"
:"40r.

7<;"''''
::>~, I , •
','''1;'''
:''5"''':0
;'''141)

7'5'50
::"'
~!'I70

:;>5R"
::>~qn

::6('<)

JM!-" J SR!lIE
' I'HH'","" ·hhIU'HIH <;ELF TEST Of
I~R<;Tn I.[)MO R30, ~2.",CCRAOR 'MY SELECT CODE'"

CMM R::>4 , R"JO
,m2 ISRsrp ',I If' NO

I!'lRHTP

I'5RLOr:;

15R1.0+

I~PDON

[!'ll"11O

lSR I O
1 5P II
ISRIH

SlEO P=O.X~~.STE5T'"
LflfI 1'-1:;>I,R;:4
lREI R21
ANM R21.- '
lOI:l R:'(' . _I
Del:! R21
JCY ISR .. O'"
l.Ll'o R;:',
Jt1P ISf<L(X,
l {lRO R:'I, _SCLOG
ORB 1<21,1(2')
SlBD J<.'I."f,CI.Ofo
J liP I !,;I"PTl
,l'_fl ·f~'f<I1'"

en :,6-,
,IMP ISF<DON
'MP IRRl'J.
'MP 151':11.
.JMP IHRFtT

• 1 •• '-I.~". t.,,,. to t ... , I. •• I EOI
ISREOl lDf<D R;" + ~' _,0'::'('1'_'

J!F lSf<DON
l.['M P~',-" ,n,
;TM[lI'.·, .•• r::;::.fI/lCl.

f.m,F.'OL .1SI-I x .. '.SI1FOL
IOGEOF. Jf1P I!,;ROOl,

' LtJG- IN THIS SFLECI COf"lF

INVI-<LI 0 OPERlolTQN"'

~E:OUENCf SENT
'I-<f<.,(-ICH SET Uf"

IF NO

, f U,l"i F!1t
'F'FOIJESl ELlL SfI<V[rF

• _"'U ••• u .. ~.~ .. ' .. U.lf~H,lhlEI< ONF INlu ... kI.pr
SF.T UP'" I<;RRII LOEoO R~''', (::Z,CAcn''- 'BRANCH

,17R ISI'-r.nl~ '.llf NO
I 11M :' ~,), ~77
SlMO R:;"',~; :: . ,'1'11.:1 J'

JHP lOGHlL

'Fl I.G E:.llL

, Ju ~. * • .;. t •••• t •• •• ~ •••••• Hod 1h51 1 ERM ItlAT ION
['O'RI<1. LOM R;:U,R.;, 'GEl STAO

SSM P;"', ~!H-I;:' 'F INti RETURN HUUI<FSS

IS"RTI
ISRJO .

10M R::;~,~S"SRTN 'GET RTN TO R1N
51 Mfl 1<:'4, R2"
Jt1I' JS~'Rr2

JMI I SF< 104

'f\FCf THE SIA('1

' •• !"'''';I.II",,~,~;,''**TRi,NSFEI< IN
ISRII. I DMO R4<), ~;!2, ICOUNT ' .. FT POtNTE:.f<~

tHRill

15RI12

STM R4"',"~"
l ORI "Z", _Z2.cr:;R,:,r,F
JEV 151<111
I Olll R:!I.~22,OBADR
F'Ul!f"I R21. +1<32
DeN R'.~0

'h~AD PSR
' •• WAIT I EoF"'1
'GFT D,Hr.
'STORE IT
'DROP COUI,a

'-7

I

I

Section 4: S4mple Code

~'610

:.'6:.'.)
:',", ~<l
:>640
4:'6"i"
266.]
26;'0 1<:RIl,)
:.'68'-,
:.'6<;0<:,
;>-:"". ,

7 I "
.7~~ ISRil4
:'-'~r,

~74,) ISR11o;
:::?~O

:' 7/. ... ,
,:-no
','7BO
~' .'<;on
78"U
>'RI n
'''S'?I' 1'-;1'.' 116
'H t"

,'84,1 I<;R)'.;T7

, "' R:'('
eR' R20
,)00 ISRll'!

"" R:;,)
J?R ISRIl4
5T!'!! RIt,X';.';:',DB"[")R
lDBI R20,~:'2,C("I<"'lJk

JOD lSRII2
LLEl R:',>
,II*, ISRI I'
.1M~ ISRIII-
l.[.f< R_·C,. ~,l
!'TB! R:;,''-',l _,1:"1'01.1'
LDR I 1'<8, •. ' __ ',C · ... if.Fo,
I I'll'< R;:,)
JOD ISRII5
Clf' 1;'=0
STB I R:;,'f.,)',: - • r _ k'-,I,"
!."LM R3~
Del. R3S
JSE< ~2::.SETEnl

lDM R40, R3"
STMD li-4,), ~2-'.lC()PNf
,1I1f' I bkRTN

'.lif' PED=1

',Ill" COIINI USFn U~
'<REOUEsr 110RE'
'RE'~O ",SR
'NE~T ('INE'S R[~r,'.

'.lIF 1H_G=l
t SE PI" T FOP /·1'-'10,1

:, CED--'

!;f-: 1 CEO.,.
Ik(',NSF ER NOT fiCTIVE"

'''I.EED EOL 'iEli-VICE"
REQUES T EO L 5ERVI~E

'~'IIT i',Wh' I-'OINTFI'I';

':'R"i" ·tl.I~*" ' *"*".~'I"""'H''''1~..'''ER OUT
:;,'1'I"OIGRln . LuHf, P4'),x~ ,nrlWIr-H 'F [H POIIHI--f-'S
~" .. '"
.. '88" I SF" Cli
:'89n
:-<;0 • ..-,
:-9 II.
~'O;>--:' I

--:"_',n 'SF< I O:!
~'q4" 1~,F'lO~

."",' ,

.'0;>"" ,
-''1-'"
::O<;lH·:'
,'q<ll',
'\(,<)(, 'Sli-~' I N
">'01"
~,):?, ,

-<c,)-."
:So .4,:.
,:(,,,,;(,

;"'6' ,
-.'~>711

5TH p~o, P-<CO'
POi'n F~;'.~'"

r·r:H p~,._,

,Il', IS"'IO~

_DE< R::'I,--"
snn 1'-: 1, , - ~ ,r-o 1-"".1<
ST E< I Fe::',:,. ~;!:" r'f< ... "f,

I !Jlon !<''',~~',:,rl ;''-,])~

JNG !<;Fell':
I. I!' f.-S'
1I>JG 1'if'JlII
LD~l r'~L-'. J'- ;"
:;1 NU R~.', < ••• 11(" ' ''HI
~' iJMI) R~'-I, '-PI>

,1M Ii-·l"."~"
F-r,HIJ P4.). -FI>
'HN f;"I·,.R-_"
pOlm Fol", -I' f
H-'MD t.::. -
S.ED F<:',=INTFSr.

"'"

'GF U~ ~T ... 11:-
• !"I'UF COUIJT
,'IF !',,,I I. ,<31

'no: SET CE()~I

'W , IIE 0 •• 1 .. L •• n
'R~,,11 PSF,
'(.w.-, I 1 OBF~, I

'I'I"I-E JI Tf-tr,.,
'~L .. I F'l.Ir i\W'l,)OOINTH,'"

'f<f"ln'p~ (f'U REbl5HRS

'f;'E"'11/£ rt 5

~"HO' '~ "'.""*"" " '.".""ll'Nt'-OF ·Llf~E E<f;f.!~LH '~H'VIL~ t,-,,\IIII'lE
~,"o;>" EOLSI,.' BIN
'.lvo.> 5180 RII,B(jINTDS
3110
~I:?"

4-8

LUHD li-22,~"INIAl<

CNfI Rlb.-? 'UNE in A TINF'

•

•

I
Section 4, Sample Code

:'1 13(0 JlR EOLSV3
:5 I 40 C" 6 RI6 . -2
31~O "R EOl.SV I 'JIF RUNNII~G
~160 MAGIC CO," R~(o . R6 'SYSTEM REOUIRF.D
3171) 56" R::?O._II . O • INTERACTION
J la,) L"" R46. -CL~:HIT
31QU ON" R32. '"376. 7-77
3200 '" R':'"'" '-
,:>10 'N) CNOHIT
-:":27" CO" R~6. 'CHREDT
,\23(,> LO{<U R4-.• ~SVCWRTl
:C:>4U '00 CNDHtT
"':'·2~(,> CO" R46."'~Cfolr:

,'Ml CNUHIT STf'1D R46.R20
3270 CO, R:;n.fiI7
,:>ao LUI 1'<'37
'32QO LL' R>6
~3<"l<.) Le' R~7
C:.3 t n Le' ""37
3370 '" R32
33,(0 Sllll'> RII ._G INTEN
,}4fo RTN
,,"iO EOLSVI CMMO RH'. " PCF
3''<'0 'N' M>'IC,If' ' ,! t F ~, ',T ,NO p~ f<A':iIC LINE
3":7(, lOfiO R7'5. ~22. S,,"'JEOL
,;;f'I(l '" FOI 51,.'4 'JIF N<JJ~E PH~[ll NC,
~3QO CLf.' '" . " ~E • UNPEND n
,400 STf<O R7~. X27. ~I<V~ III
341" 1::01 SV2 CO, R:::'7 .RI 7
~,4 '.'(I ON" R37.~lO
34~0 JZf,' EOI SI,I, • .1\ F !lOT TR,)t:F MIJI)F
-'.4 4" .1SI' ""ROM.1SB
'.4""" £IFF TfiA"
"-4b') flYT (. • ";470 EOlSV"; .1/1F- EOLS~
:·48~' Enl c:.V4 JSEI II 77' • EOLW/-IO ' '-.N(REIltJES I 5
'_4QO .17R EOI SV2 '.11 F NO
..,~(>,-. CLe R7S 'rl ~c!R ,~ PEl'lI!;-ST
, "i I .) PI)8D RJ"i , .. P76
~!5:>(' OCR fn~

3"i~P "111'<0 R7"5, X2-:' . 5R\,'Ffli · ~-;~ r F'Er~ Dlr'IG

'''i4(1 POMD R56 • • R7b '[.;ET ~nORED RIC)
-::~'50) .JSR ' <;FTTRI (FOR TRAC1Nhi
~, ,-, STr1D RIO. ~ONH Af'; 'SAVF CLiRRENT Eo""'6 J I' ee
?· ... 7" 1 LlM Rl".I<"'><'. ' ,:n MSIC BRANCH
-.~!'1I LO' RIb, -7 • <ll_EPT C;V'iTF,.,
-:.~q(, ''''' FOL SVh
,6·1., I=OLSV"i .1'01-' r::-:. EOLWHlI
_\6 1 (I JI~ 7 EOI.SV6 I 1\1= MORF 11\1 TFiS

36:'(' LO' R' 2. ··_\75 'ELSE CLEAR fOilS
-::6 . ~,) .15/) ..,rlRBtT
":640 'M' EOLSV7

4-9

-

Section 4, S~mple Code

:>":,,.-, EOLSVI> , Dr· RI-,5. =~.
".1>1>,) LOBD R64. ~SVOjRD
31>70 0'" R64. RI>S
31>8<, STEID R64. "'SVr:WRV
"'.f,qf> LO> R"4.~2<)
c·7f>,) ORB R17.R64
'Ul() FIJI. 5\'7 ,

'" R2" . =lPHERF
'; "':'.0:' JNZ EDt !'tva
""7"'.0 SHlD R It • ,_>, I !HF!'1
~74" EOLS'IB R"T r<

37"'i() F O! WHn , 'M R7 o..-IF01FL
"':760 "\D!~ r.76. R::':'
",77,' , Dill' ,,····,.ft7'"
',78',> ,ml EDLHIM

",,9", l. D'1 R7i, •• =f)!'OL.FL
,R('" AO~I R76.R22
,BJ () LOBO R7~.R"6
"'1020 ,11,1 Z EOLHH1
"n,) , OM r;76.~CEOLFI

"'84" I\[IM R76. ft~7
-'·Ol~' , , OBD P-'''.R'i.'
;e,,() eo, "" FiHI
,87,', L 1·1I E~.;Mr'l I-' C;','

4-Hl

' ,;SSI IF:E flN()THFR [O<;f' f;(iLL

'[lflN"T RE-t=r<fiBl,E lillfOr,F'UPTS
IF IPfilN IS HER'F

,11F FOl 11\1

,'IF lOCH Ollr

.,

•

•

Section 4, S~mple Code

I' ' ~ "" ~"'.~ 'I." 'W ".'t" ,j"" "'1"5E [Ot>lo
70 ~f'l IN 8!:lt V
,,' Ilt-ll'lE.L- ElSZ 1I
40/.leAr.:- j OR Fl, -.R'1 t ;HPj n.:oTEtt'IHS
".0)
lo(>

'" "n
'h, h1VES-
1'-'" 01'_11;

"" 1 ,.',)
I .y" Pi\F-FlI
I ·}o
1"\0

Il,n
17'-, Tnt ES­
I "It Tt.!· U<-
1"(\
70"
:': 10
~';>"J f'ARFI'I"

::'4r1
,'~" , 1.;1 1110 I -
~'. /:'"
:'70:,
:'8'-,

:,<" lAfEI
;on
-FI
. ~;}
~1(, Ai- rEf<
--:~)

';"in ,. ,
"'.'"
-·8',
.~,

4'-") nNI-<Rf

" 4C''''
'IV,
44<>
~~'-'
46n
·17,:,
~ 8(O

4"" SHOV­
'~Ol'

";1i)
52(' SHO~'-E

530

LOl, ",~"!i . ";";71
FIJI1D "":, +(;: 1"
J~;8 "SColt~

RH~

R"".;· '.1
Hlr_D I" - R~

.I~[' ';;11-1 •
11:. ~ h'hf .f..'

"IIHI1 I· ,' • 1'0
1 Of< fO,!> • .. "".)
PUMO R'.'!'.' r, I

'" RSZ (,
Pllf<O ! 4:.~R6
,lSI< -scr,~l

.)58 'SlR"f~

Jt!J PAr-'PtJ
F'nrm R·I-. · -f<~

,10;f; '''I:~ I'OR.

L'¥I '-'.'1)
F IJ[:<I' R4 ~" ,'·1"6
JS" '$1hD'
IE;' PflkLF..

,IMF .. ,~·rF~ ·

PLI1'<P I_~- • • f<,.,
,lSI' -f-'I AN
.lq. _~; Tf-'RF.J=

.I1':! h\"'~f<

rHe ~'I·.

,INl ~''''''FR
1:111. R~·-.- ' ••
.1N' PAREf>R
pnr." F.77.-F.~

I Of< 1""'5 •• -"" 1
F·,IMO f- "" '~R 1 •
1'111'" R~ ' 1"6
.151'< - sr •• N
(Mil f'41._ ,'1'
.Hr F"REI·f;
P(}('Ii ,,'!'. -k'"
L Of< r~'~. _:O:"!
PIIMO R7!' •• +R I.
JSfi -GnrnSIJ
RTI~

PLiBO R1~ . "I</ •
. rR" - f,.' 1 _'I~
JFN !'; f((lV' I

POi<D R'\ '. -1';6
.1S8 -~RROIH

AF' Ef'W.IRO'

• PUSH 'GIVEl'- Of' • T.:o. f 1
"A'F "ONB:J-'EAI Uf<' "(.FTEr.-W".R[l~

PUSH '(1NflFf'::'K"' rll-' "':" U:fooW.,I<U"
,'(STEM HAIJDLES J,UTO/GUStI!"

4-11

Sec t i on 4: Sample Code

54·.
",>E,.) SHO~

56"
~p"

r,ao
"i ':f(.

lon" .,"
02(.

b ".
,,4()
... ~.,
0",)

fill p.~n

l'Ol<h k.P" .. 1.
HmD RS7, 'F",
LDR H:',"'. 71
"liMn P~'·:; • • RI:':
RIll

"'8", i'il 0, ·11
/,<;1,) ;:.,. IEf;' 1'0 TN

700 · 1~ * . .. _t" "+ 'f.l ••••• ;h'dl\
7 1 "
-~ , -. PEL ! loj,
7"~,-,

740
-'~. , ,
7 f:,C,

r',)
',' 8,_'
7<;'01

8'-" •
;Oll •. ' REI IN!

''''; "
S" •

84"
8~::;r,

86'

I'll"

Ef,T ':',.41
bIN
I !)MIJ f .. _ ')11Hf"r,
II.lM 1<:2" , l'h,,"1
"m'l 1',:",'.1'0'
f'r 'Mi' h,l" •• f'
r MH l'd'l. ~ ...
IN.' f..'U INI
.1rm ,ER':'t.tl:.
"','I ~,,'"
I T.M Fo'.:~, JRl'.~0

fltHn 1'.4' ••• ~ ,!

f'OMT> 1',1' ,';
1'1)1,1\, R~, .~

H'MI. 1';-.1':0. OR;
RIM) ,',I', ," ~f,)t

FH-l
•• , IJ",' ~ ' H 1; . 11 , I ...

•

~w

'1·\"

"''''",
··6()
<;17.,
980-,

I v'_" .
1"11)
1 ,-, ~'-.
I ,-, -,<:,
1"4,,
1 ,',,,r,,

4-12

•
EdT ('. ~1

f< Jlt
lllM(' i<~

L 11M Fo.
FIrm P','(',R:
ION 1<;"\,' thU.' ..
f'UMu R4", .. R;'·1
f'!!/in ~·-'" •• r
HIM.-, 1-<'\<'. ,0;;,_ '4

f"I!~I' "'4". ~I
I PHI. R'I". 1,11,,,'

Fill-H,!', ., .. I-, "

nc'", r<:'4
111M tH", l"~

flY T '.'
BH<O F.'II. GII'UFI!
eoo

, : FOfi f;~_ r":II'

Ttl I'~I IJl1F iLE ''-',f- IL-Wl.! U'

l!lOllI';H

, '~n 1.(011'

, . HIS['I

,110 !

'kE •• ··,·f } 1 ~fR H X'

'R~I'lr,t r 1111~F

Sect ion 4, S~mpl e Code

1 vb"
107(0
1('80
1,)9<)
1 l' ,,)
I lit.
1 I :,:(.
1 I -:":0
I I 41,
1 t 5')
! 16n
1 1 7(,

118n
I1QO

R1N
LOM R2(,. R40
AnN R';'CI, r<2Z
5TI1 RZO.R40
P1IM[O R40, -1<24
LON 1'(41. -232
STEm RII."GIIHOS
JSF "ROf1JSB
FllMn 1<41. -1<24
LOI1 1<20. " EOLSV
(\01'11<20.1'<:;:2
5 rN "'-"J. 1<4~
ur, ... ,,?
5TI10 "4S.~E5HQ(W

>0.

'fI!:oSOl.un.: A[)I'I~ S

15,,0. ETC.'

'RE-TAfE IOSP

1200
121"
1220

"t l .. . ~.' . t t"H .•• tt.'r.]'}E SIHPlE

1230 GIVES.
124(,
I 2i5>..l
1260
127u
1290
IZQO

130v
1"3-10
1320 GIVESI
133(,
1 "'\4<)
1~5n

136(' G] VES2
1~70 GIV E S:;
I ~·8~'
1 -:O:QO
14(10
141(1
14::'0
1430
1440
1 ~'50

G1VES4

146(' GIVES5
1470
1480
14QO

'""" 1 151 (I
15:20
1:5::::0
1540
1:5:50
15t.0
1 :57('

G1VESR

TA/<:E5.

I'IYT 0,';!41

".
LOMD 1<22."'BINT':"'B
POMO 1'(32. -I< 1::
POMD R30.-1<12
J7R GIVESI'(
1.11110 1'<24, ~22,CCR(\0f,'
LD110 R26. ~::'~, OBAr'fi
LDB R:::0.=::4"
JSB ~Z:,CHOHS
LOBO R:':I, R:".:4
JNG GIVESI
n B 1'<21
!'>ri<J) R21,R"'::4
POEiO R20, +R3::'
LOBO R21. R24
JNG GIVES:·
OOt f'n,,',
J]R GIVES4
steD RZv.R26
JNP GIVF:S:C
I,OR R21. ~4
STeo 1'1:'1,R:':4
SleD R20.1<2",
I neD R21,R21J
ANM RZ!. =2':>:;.'
JNZ GIVES~
Rm

E!YT (,.241 ...
1.0110 R22._eINTAB
Jse _Z2.5ETSTR
T5M R30
JZP TAl ESP
LOMD R2Q . X22 , CCRADR

• ,;l)DI'i'E;:SS
'I. ENGTH

·OUTFlIT. SIMPLE

'CLEAR CCR
'GFT NEH BY1E

',fIF LAST [HTF
'W"] TE OE<

'CED - I
'WP1TE I.AST eVTE

".RRANGE OAT(, SIN~

'JIF NO BYTES

4-13

Sect i on 4: S~mple Code

158('
15<;1(1
1 <'>UI.!
1<'>10 TAI:ES.:>
1 6~(I

1<'>30
1<'>4(.
105(') TA>:1:51
16<'>"
167 ...
168t>
In<,>"
I "00
17)<:,

1720
I ., -~"

174n
Il!>'_· lA ~ ES~'

176u
177<_. Tr,~·ES-:'

\ 7B.)
1 !Q(I

LOMO R:'<,>.X22 . 0£<ADR
LOB 1'<::'0. "::'0
,IS£< ~22.CMDH\<

LOBO 1'1::0.1'1::'4
JNG TAt ES"
CUI RZ,)
"'Tfll1 R~''' . 1'124
LDBO 1'1::1.1'124
IFV IlltE51

LOEIO F,::,.,.R:.:'"
f.'IIl<D 1'1:: '.' f' -:!
ANM R21 ...
,IIU lIot ~_s;
OCM 1'1'0')
,J:" l .. t ~S:
SlflO R·_".R.!,.,
JN t' l,'~E51
LOI:< Fi~,""" r4
S-IHl! R::'.1.fi'~

LDI:IV P:;::I.H~'4

ANI1 R.' I . -','n:
JNl lAt ~b-:'

lBUU rAJ I;SR "TN

• "INPUT. 51MPLI: fi

'(.W.HT OI<F=v

'CED'_ -u

.;.wA I T I <'IF_j
'READ OATA
'STORE IT

,IIF FiED=1
I)hOP COON f

',T IF WI MPhl· "lOul'l
fiEOUIOST MORE

'eu) -1

181(0 ' * •• ;. •••••• # ~j.J •• r ,lv~ lNa_rd~>JPT

1 R::'(J
18;0 liJVI-L
184 (0
IS) GIVEI!
180. ')
I g '.'"
188n
18<;1(·
I <'>"0
\<,11 ...
I <;I: '0
1"'-'
'''4''
1 'i'~'-J
1 0
1<;110
1<,18,)
I "I'l. '
-;":',,,. f;IVEI
201('
:::0:'··
:'0-, ,0
Z(,.;O
Z"5(' GIVEIf<

ElYT (' . ,., 1

" /tJ
LOMD R:':':. '!:I I Nll-<['
,I·toll 1"2'.' . -..,''-',0(0' IV
JNZGIVFII
LONn k.'4 . ,=~.t:r:F'.,])fo

LUMD R:'n. i_ ".r.I.'.D"
FHMb h'~::.-f<I~
POMD R:;".-f'l:"
.1lR (;!'.·I-IR
ll~" "'$4. -?i.U
.1DM RI':'. r·-."
STH "'I".I'<~,.,

ADI1 1"'1'.'."'-,(>
LDH FlII<,. R.
STMD f'4, •• '·.:::.'.or.{lU1~'
lOR Fi;"'d, .'~':

,J511 ~ ;0:'. r:110H!:i
l.O"r, f.,;:,'·.'.R'~

IN(, GIVEI:'
L l f! Fl;''-,
S T lHI fi·· .. ' '. r,;' q
lSB ' :':'. INjun

"'"

t ... l"lIHIi

,.[HJf<ESS

'l.ENGTH

A,TlVE BUT '10 EDT
:;rEf' Po-Sf ~AFTERW4RIO"
f'onHER TO GOTO/GOSll8
STEP P AST GOTO/GOSUE:o
STORE POIt.llERS

'OUTPUT . ItnERRUFT~

'I:'rf' -.::>
'N' ,Rr1f\LIZIo IO~

~'('6" ' ••• f.fj-.~ ••• *., •••• " . t . ·1j. 1At F INTH<kI.lPT
2070
-:'080 TM E I •
20'i'0

4-14

E:oYl ',',241

'" L OMD R2Z , .. e IN rAB

•

•

•

I

" -

Section 4: Sample Code

~. 1 '.";'
:'::1 ,c,
O. '",

':1 ""0
~I ~('

:>I~O)

21(>0

." 1 ",
',: 1 A')
'!'h,
..'2')"
;;:1"
-;';:'2,) .. ., ' .. . ,. ".,
'<'24,-.
.' .. ·.n
"';',,(1

;::'7':,
2280
22'U!
:,,-,.:,
7~' "
."'"",
2;n~,

2 ",, 4,)
7,_~0:,

.~'·60

..:",,70:'
",:-.!ilr.
Z~",,-,

L 4' 0(,

;('11 "
24:'"

,' 4 """
~4 'l "
::' 4:';"
2460
~' 4 70
=,48'.>
~ Qq"
:;;"':;'-"',
251 [,
:>~2')

2~30
·~5 4r,

:-5~'1

2~d>'"
:>57< ,
2~H(>

259"
260(0
2bJO

TAt EI_

1111 Fel'"

LOBD f;:'O, ~.':;:. IAI fV
JIII1 TA/EII
LN1fl R24 . ,'2;- . LTfiAPF
LOND R:'6, ~ 2..', OBADH
JSfO X;'.<,SETSlf;'
TSM 1<3(0
JlR TA l F IH
um A34 . 1.'1
.. OM R11.1.~~.'"

STN 1'<1.,,1'-::'"
,-,uM 1'1,:'.=-.. "
LDH f'-4 •. ,.R'
"-HiD R·I'" 12..'. If:OUNT
lSI'< ''':::.~"u·''-rH
LOB 1'1::'0, =:-.
JSEl ~L':.(,MflH<;

1_ DIm R2", R::'4
JNG T.jf·ET','
eLF< R:'i.
STFm R:'<'I. R::>4
.1SI:> ':C:='. lInt H'
RTIJ

'()NF HT A T INF

'{,RRANGE IJA1A SII.jI
, ILENGTH l

'/ICTIVE BUT NO EDT
'STEP PAST "AFTERWART'"
'H)INTEFo- TO GOTO/GOSI.lI-o
'STEP FAST (3I)TO'"OSI)I'o
'~TOFo-E PO I I<rE"'S

'foYlE COl!tIY TO IIIP
1~lrJFUT. lNTEFI'<IIPT"

'I, ' !'<-, -.J

'HE '. ' I ''-E Ci,HD

••• • • l*. ~ .UU.U •• HH.j.riJ'.·F H.IFSl
,,"YI 0.241

lHVf-[o,

I3IVF~1

'"lIVE8:'

(,oIVFB'

Ilil.
LDM[o F':=';:."ElJNTAJ<
LDI~1'r Fo-:'4. ~"L.CCh.-,I'
1 OMO R:;>b. ~::~. Ol:<AOFI
I ORr, R:'". ~. ~ . ll'-" •
·'N1 GIVEEol

PUHO 1'3"2. -R I
POND 1'<':;". -I'.-L
,feR GIVEE<R
JSB >:::2. RNDnll
JSI'< >:"22 . 11~1[)~F
J51'< X?2. INI1:HI
LDI'<D R2". R~" !
Jr~h GIVEf!~'

LDFo 1'<;.:'0 . .. :"
5T8D R::''-,.V.'4
LDB R::'). '-4:­
SI[<D H:.:''-'.ft;'b
LOBO R21, h:.:'4
I:.IIIM R:: I . -;'1)_
JNZ GIVEf<;:
5T8'-' R:::l.rCQ
LOMD Rbb. ~::.:. , lIEoHDI'.

STMIJ R,,". - IfNFe-:'
DRP ""k)
J5B X22.BOUTLF'
JSB X22 . INTON

81VEBR RTN

:;iN i<T il ! 1lil

, HH1F'E55
·1!'IJ('IH

HJ HJI ,,,.11' CDUNT
'1lISA&LE m.l
'Rf' -EN"i<LE MY

'"Wi,IT 081"="

'('ON -I

I col I ERRUf-'lEPS
WP

'''lIIJTPU1. BURST '

'AW.,IT OEoF=f<lJS"."_,
'O-R ."

'\NIU!"ECT AODRESS

TO TIGI-H
DOI~E '

I f)O~

4-1 5

I

I

• ,

Section 4: Sftmple Code

76;.'0
263(>
2M"
2.'"
2660
267(1
26f10
26'?(1
:'7nn
7710
27:'0
2130
;P'I n
27~('

7.76('
Z77()
278.'
2790
2800
7810
2820
2S::;n
2840
28)
286('
287.,
2880)
289"
2 900
7910
:'920
29"';0
:>';>4(0

29~0

2"","
2<;17(1

29An
299(>

-':000
301('
3020
3030
J'04{1

3QSu
3060
307(1

3080
309fl
3100
3 1 10
312<1
31:\0

4-16

".* tu*n;.n~.fUH •• *T (1Ir BURSl
BI'I 0.241

TAI'EB. "IN
LDHD R2~. -8INTAB

LDMD R24.X22,CCRAOR
LDMD R26.X22.0Br.OR

TA+-EElI LOBO R20, X22. IACTV" '1 AT .. fIMf-'
JNI Tt'WEBI
JSa X:':::'.SI?TSTR ' ARRI\I~(;e: DATA SINI
TSM R30 '(Lf:::NGTH)
·JZR H<i'EI"R
JSB ~22.SNOCNI 'ST'TE couln 10 lOP
Jse ~ ;:'2.INTOFF 'DIS(lEoLE ALL INTFfmUPTERS
JSR X22 . iNrCHf 'REVIVE MV lOP

TAlcES:' LOBO RZO.R24
JNG TAI'FK' ·<'!wr.n OB~ "

TA,fEoR

BOUTLP
BOUTL

LOB R20 . ":;'
Elfla R20.R::4
LOB R20. "4~
STEm R2' ... R2c.
LOBO R2 J • R;'4
ANM R21. ~·;:o)2
JNZ T~ EEr3
SHm R21 . R74
LOMD R66, Y::'2.0BAOf<
STMD R66.~Tf'J1F:
DRP R4"
JS~ ~22.t<lNLOf·

JSB Q2.1NTON

"'"

ARP R32
POBD RIO ... ",.
SUli "'".-TEMP:;>

"'H •• HALTED HEhE. tt*'fIU
JMP flOUT!

BINLOP ARP R32
ST81 1'111. -=TEMP2

'COM· 1
HHIPUT . £<fiRST"

'A,"AIT OBF"ErUSV~O

'INllIRI:CT POlNTER

, ! lBHT LOCl1-'
'ALL DD!~E

, iJSI< X'::2 EA1S MP)
'NE(I BYTE F"R'OM BUFFER
'ON ro TOP

, (JSB)(22 EATS ARP)
' TRIGGER TO DB

•

Section 4, Sample Code

3140 flINI.P",
, ~~ • • * . ~At..TED ~EAE " u ", ,~

PUBO RII, "'RII
JHP BINLP ..

'NEXT B'TE FADM TOF

'ON TO BUFFER

315(1

31"'0
,170
319(l
31'M

3"""

'ttl l l' . t 't t •• * •• 't ••••• • ~~INTEAAUPrERs OFF
INTOFI' LOB R20," '.EyaOAAD

STEID R2n ~E"yOl~
';210 "'EYDIS
3220
373'-'
324n OTHROS
3250
3260
.:271)
3280
379(,
33(){,

3" I 0
3320
3:>30
3340
33sn iNTOFI
3360
3370
3380
33"0
3 4 (.1(1

3 4 1 (> I NTDF2
, 4:;>0
3 '1 30
34'1"
3'150

DAD 1174":'
LOR l"av."1
STBD R2':>,,"'OIHPOS
['Ir,D J7741.
LO,," R20,,_101
STI)O 1';:0" .. OIHkDS
LOB R:;>n, ":'<:lJ
SH'D R::!(' " y01HkDS
LOB 1'20, -::'01
STeD R:;>lo,"OTHkDS
IDBR20,,~10

LOBO R2I,"SCLOG
LOM R24,"12n,377
LOM 1'-:1/:1,"121 , 377
TSB R::! 1
JEV lNTDF:':
PUMD R20, +Rb
l...D8 R:'O" "'/:It)
JSB ~:;>2 " CMO~S

POMO R20, -P/:I
LRB R;;'1
ADM R~'4. .ll
t.OH l'<:b,-,2.0
DCB R::!O
JNZ INTnl' 1

340.0 IOMD R:24 . x.' •• (:[:l<l\r""
:';'170 LOND R:2/:1.X;:".OEoAOR'
~.480 f':TN

, IINEFS

'''AC' ' SELECT CODE

'SC 3 CtR
' SC ,,' Of<

'NOT RES IllEN r

'''TURN OFF'"

'NEXT SELEcr CODE

3490 " 'tl t ' .I'.Iftl"~ I .' •• • ol • • I TNI ... RAI'P1ERS ON
3500 INTON LOB R2'1.=I'" 'E+lCH SELECT CODE
::o.~IO l.DBD fI::!I.·SLLO('
3520 LOM R::4,"I~V . ~· 'SC CCf,
3:;30 LDM ":,o.. " 121, ~" 'Sf" ". 08
3~40 INTaNl TSS R'::L
3550 .1EV INTON;': 'NOT RESIDENT
3~b(' PUI10 R;:o, *ko.
3570 JSB)(2:2 . INTCHI
~~o l...011 R74.R:4
3590 PONn R::,·" ·RI>

.3600 I NTON::!
3/:110
3/:1:20)
3630
3/:1'10
36::10

CR'
... OM ,,<
DC'

'" " M

R2>
A::!4. " :: . O
A2/:1 , _2,O
R20
INTONI
A7'1.R::!'I

'FIEVIVE lOP
'FOFl UBF.I:lUSV CHECI LATER

'NE~T SELECT CODE

4- 11

Section 4, Sample Code

3660 INTON3
3670
3680
3690
370(>
3710
3720
3730
3740
::>750
:>760
3770
3780
3790
3800
3810

LurID R21. R2 4
I1NM R21. -202
JNZ I NTON3
LOB R20.'"1
ST eD R20. ~v.EYDrS
LDfi R20. _2
sum R2".=OlHRDS
LD8 R2'),"'102
ST80 R20.=orHROS
LD8 R20. K202
S190 R20 . ~DTHROS
LOB R2". -302
ST80 R20. "'OTHRDS
LDr1D R24.ll22.CCRAtJR
LDMtJ R26. ~22.n9AOR
RON

'F\WA I T 08F~9US'r'~·'j
, LEYBOARD

'TI 11ERS

3820
3830
3840
,850

1~* * ;' i:.H rfn • .t.t'J.** * "' ;'RE~'lVE JT~rERRlll TE.D lOP
INTCHl LDflD R21,R24

ANM R21 .= lll
JNZ INTCH I

386(>
387(' HITCH 1
388('
3890
:';9(>(,

391 (J

39:8) I NTCH:>
3930
394'-'
39!':·0

"N
LDB R20.=1
S rl'!) R2u, R24
JSB)(22. DUMMY
CLB R20
5T80 R:;:(l.fClI
LDBD R:;' I. R':':4
liNM r<21.~I':'

JNZ ilHCH
RTN

, INT I

'WASTE lIME

INT'-(i

39bO
3970
;'0990
39<;>"
4000
401n
4"2"
4(Y>:0
4040
40";0
4(')60
4<)7(,
4 ~18~l

4090
41 r,n
4 1) (>

4120
41 30
4140
41 50
41 60
4170

, .t ~. _ I . , . ~.t:o . ! • •• :t. ;. *~ ., * to ·, • _C011111'NI' '" 1l1P ROUI II~E
CMDHS '" R:;'(·

JLZ IlHHS '.r I F STATUS
LDBD R21.R~>1
ANI1);::'1. "'4n
JZR CMDHS" ' J IF 1~01 HILL DUPLEX
CM' R::"' . = 2::
JZR (;MDHS:':: .11 F ~FER '" eM' R2(,. =24:
JZR ltlfHS ' J I F XFI:'.R ou,
CM' R:';'O . = 2:."1
m IN1HS • J 11- WRITE 1 ERl1S

CMDHSCt eM' R:20. "'::',5
,17 Fi' HHHS 'J IF SERVICE REQUESl
eM' R.20.":.234
JiR I NTHS ' ,1 if· f\SSERl
CMB R:;" =lll
m IIHHS '.1 IF RESUMJ,
eM' R2(,. ~I jt',

m IftrHS • J J f' .:mel •
CMB R2('. "'1(1'3
oe, CMDHSI 'J IF SET RE:N~O

4- 18

lOP •

•

Section 4: Sample Code

418' •
4 I <;Il'

4~nn

4710
4':;;Y'
4;:'-:0:.
4;:' 4 0
4.' 01

·l:':h"
4:;>7,)
4:'B.-)
4:'<;1"
4,,'<1
4~·1 (I

4';'?()
4~·-:O

4 :_4",
4,";0
4'0')
4:,/(1
II -:8il
4:::<;1.-,
44f)(,

4410
44:'(1
44VI
4440
44";'"
44/i(,
~41"

'l1lR"
~4"''''

Il~on

~~d "
4",:'0
4'; :'>(l

·1~4"
4 ,!,"i1)

4';6"
4'".7 ...
·1~8"
4'5<;10
4611 ..
461':'
4"'~'i.>

46~"

4 t./!('
4",,<;,1
4661)
4 67(1
4680
409"

CHf! F!:'O. "0':'
,K>(I NTH<=;

LOIlO R21. R:>4

'J1F DISABLE INI[f-'kLlI-'T<;

r MDHSI

["MOH'

INIHSI

AN li R21._:'n;":
.1NZ CHDHSI
I DEI R?l.ToC
"n,n R:':I.R:'4
SlOW R;:,n.R:'6

" TI~
LN_R.:'.] . "-I
ST«(i R~I . ~IiINTDR

5T80 R21,R24
LDBO R~I. 1":'·1
{,NH R:'I,=IU
JZI" INTHSI
STFID R21 . --GlJ'II1'EN
STeo R2<", R:>c
LtlFlO R2('. R:'6
LOB R:!O.":':
STRD P::,(" R:~
R'N

'''Wi,11 1J8F ·8USY"""

'nf< -COI1MA I ~[l

'IN] -I

'WRI1E COHM(,ND
'li:f,AD IB

'COI1 -I. INT -,-,

' * ••• • #tt*~H ••• J' ••••• 'U. ,,€l U~' tlATA BUFH'R
SETSTR , r.DllRESS

'If-NG1H
I BAS!:. AtlDRF.:~<;

'[';Fl lRUE" l'nINTEf'
1n1 .II< Mto~ lEflI '

'A' 1 - MAX
'R:;" - FI·'le COUN1

P0t10 Ret6.-RI~
POMD R"et.-Rl
fOMO RQo" -k 12
Jse "FEHNA
pnHD Ret" • • f<~.4
PtlMl> Roo •• R ',~

STM 1"66. ,,-~, .. ,
Llll1 f<~_'. R ~" ' t<;Z-(-HIIfFEP. "'DURESS

"'" " t ••••• ~.~ •••• 't ••••••• ' • • -;"'ND «(fE COUNT TO I(I~

S I·mnH LDE! R:'O . -:' ,1 ' ·Wf.,TTE TERMS"
JSB _::~:.UI DHS

SNlWNl LD! 'u F::'l.R~·.'

S]~ OrN",

.JNG SN[OC~J I '"w ...] T DElI-'"
CLEo R;:'O
S1l:!D k2'-"R·Z4 ·I:~O· -,)
STf<D R;'O. R:'/:o I SEND COUNT LSE<
LOBO 1'<:" ' . R:'4
JNt.' sr~OCN:
snm k7.L . R26
LOBO R2(" R24
ING SNDcrr
R'N

AI~', IT OE<f'''''
END COUNT MSIo'

'AW,l) T fJ",F ... ',

' i1 •• '.s t •• •• .. •••• ll'.' .. Jl lN f<RFrol-- GOTO/OOSlIll
B>(T 0.241

Q!,mRr . "I N
LOHO R::~,=eINTAe
LDMO R24 . X~:: . CCRAOR
LOMO R2b,_::2.08AOR
51M RI(o ,h;46 'POI N1ER10 GOTO/GflSUII

i ,

4-19

I

l

. • " .

Section 4, S~mple Code

4700
4710,)
41'20
4 73l'
4740
47:5(>

4760
4 770
4 78,)
47<;>0

4800
4 8Hl
4820
4830
4840
4 8<;0
4860
4 870
488('
48<;>0

'"00
4 910
4920
4 9":>0
4940
4950
4960
4 'nO
4980
4 <;><;10
5ClOO
:501n
502(1

:50-::0
504n

'0""
51)60
5070
~n8n

50010
51 (.....
:5110
512'"
.5 1 .~(>

51 4 0
51:50

50'"
S 17()
5180
:5190
5200
5 2 10

4-20

"" RlO .=3.0 'STEP PAST GOTO/GOSUF<
LOB R44._377 'CONOl TlON /;I;T JVE
LD' R45. _(. 'ARMI;:O . Ell !! '0 TA 1 G(,ER fEo 1
Sl MD R44 . X:;'>:>, t:ACTV'" , STORF TH~ S~,1LIP
LOB R20 . =201 ' "IoIRIT£ CONTROL REb • 1 ..
,S> ~2:. CN[)IoI~

GNSRI I LOBO R:'I,R24

'" ONRRf I 'llWAIT OBI' "'.1
L" R21.=4
STRD R:'I.R2'1 'CED',-l
L" RZ I • -20(1 , eREA! INTERRUFl
SHeD R21,R::?6 ;cNr,BLE 11A&1

at'Bfi'l :2 LOB!) 1'01. R24

"" Fal . =:;>02

'N' ON8R~_2 ',-.IoIAI1 O~F··I1US·("'"

'59 ~2::!. lNTCHI , rJDf<T1AL I zt, lOP

"" ' UU*HUUUH'UI"~H' UTEL-L- SI'SlFI'! TO CALl IO~P HOOf
SETEOL STilI) RIt._GINTI)S ''''EOI.IE5T END OF LINE BR"rKH

LOB R20."' ;:>
LOBI) R:o!l. "SVCWRO
OR B R21.R20
STIlO R~I •• SVCWRD
LOI'< R:!I.=2'j
DRS Rl7. R;:']
STBD R# .~GIIHEN

· .l • ••••• 1_.tJoJ.J · ,t • • r,·frm ... ~[.(';E BRf .. t

ACRR .

ACBR. I

ACBR. :.>

ACBR. -,

SHOV.

BYT (,.=41
B I I~
LDMD R22.-BIN1AB
LDMO R::'<l.)'2:'. CCRAOR
LOHO R26.~7~ . OBA&P

LOr. R2'-'. "'I
JSB X22. CMOHS
LOBO R21.R:"4
JNG AGBR. I
CLB R~'1

SHll) R21 . R2'1
LO£:oO R21 . R24
JEV ACElR.'"
LOnO R:' t • R:;>6
LOE< R2 1. ~4
snm R21.R::'4
LOBO R21. R::'4
ANI'! R:! I • =;:,n;;
JNl ACSR . 3
JS8 X2:'.I NTCHf

"'"
BYT (' , 241
JSB -TWOB

• "Sr,HI.IS (M'11 1 i"

, 11101. fir OBF "'"

'eCF<' -.)

'':'WAIT IBFa!
'REf.o REG I

'CEO -\

• ~WAI r OBF",P.USY"'('
'r<EYIVF llJ~

'R'56 -REGIII R46· -DATA

•

Section 4: Sample Code

o· ' .. "N -" -
··;>'10 LD!10 R22. "'BINTAB
524.) LDMD R;>4.)[22, CCRADR
5?5() LDMD R26.X;>;>,CJBANI
5::>61"1 LOI'< Fr:;O~' . ~ 2c.o
~2h' LOO R:'I. R56
~·2R" ON' R21."'37
:"'ie'Q(, 0"' 1'<2(',R21
5"':(,,) OS. x::,.::. CMUH"
..,-; 1" '<HOV. 1 , 0.0 R:"I.R?4
0;:;;>0 JNG SHOV. ,

I 53"':0 LO' 11~'I,~~
534n SH'O k:C I. R:C~
~.., ... O SHm 1'14 .. , R':'(>
~~.b(J S~fOV. -..- LDBO R;2I , P24 • ~37(1 ANI1 R21. ~0'('2
:'>38') .1N~ sm,v. ~
~3Q(, RTt~

54"n U. F~AMPI ES:'

'·WRITE CONTROl
'REGISTER II

'i"oW/.ll r OFf- .. ,)

'(E[} ' ~I

'01, ' -1."'1'011'1

4-21

,

Sect i on 4, S~mpl~ Code

1(. " f~.~.j;;t'I· '*;lU;I'II~" "" ' *Ell l ~""P,(PRUGR,', ~I" O"T,', "f~' tf'
:"(, IO<;AVE ElSl -" 'nIH!':p Ron-; HOOI' SIOfi-;.",
-.,(, CCR;:'OR 'MY lOP' <; (-n;, FSf< .1[![)I>ES',
4" OflA[lR ''1~ IlIP'!> Utii II' 'll.{H-IfSS.

)1,1

";0 lrOUIH
b" [POI NT
7(. Hlrrv
S"" If 01 FL
q() [FOLI')
I')" (lrnUNT
11" fir " JlNl
1 :-(, nI'lCTV'

1-:" nFOIF!.
14" rtFOI I'
15<) r rrv­
J f." ,HiLFI
170 CFnL In
IBn C;TF"'r~

I q" ~F;'VEDL

:.'.-." PI POPH

!<5Z
BS7

'" Et':; I
[lSI
f<''lI

1'0<:'1

I'R 1
H~f
1<5 .

fo'il
1<<;"
f<Sl
1<;;7
FlSZ

"' f<57

2

,
,
, ,
, , ,
,
• ":1" ' • ••• ;;. ' ~ i .. ".' ·* n ~ .~ ~ . ;u . n: ,-,I

"':>" rNH:' rt~ rV,1j ' ."""_
-, ~(,

~ 4':,
::,,,;,,

:::."r,
_-'70,

::8, ,
~<;,)

-:0.,
~. I "
'.;,'0

-:4.)
~.~ ...
":6'-,
"':"7"
-:8'-,
-,q,1

4':~)

4-22

<;n Or:; 1.,,1'
F. .. , I M~. 0,0.1·
SV~;F.F.f;), .. , ,
lfiQPll[l II" [1
J h,1R n, I,t,r,
IIHR'" 1),.,[\

c; '~'f.'TtI D"n
(;II H 1T ".1,)
('Hf;'I'!,T (,.,(1

;:rFq T ~ (v,1)

rR,~' (1, .1.
" URI r'i-Ip
r:I PI'll (".\1)

I ~'HEFiF »i.1"I
,;nl n';u [or.! •

11' MIO:' I) , ,f,
";H·1I11< . '. " \)

F ! "I

1'" ,/""
I I '1 r:
'6.' I

U·
., ,

. " '; ' " .
,f"

'. I ..
' -.,

,' . \
.c' ,
I • '.
,-

",.1..,

1··].,,4'

• ,
1 "1 1 ' .
hl; ,1 I

'H '~'lll (H,.I<';'CTE R CDl lmFR
,,, f<I JFFId· P!1 INTEf..'
, .. TRAr'5FFfl ftC 11~'E r'om Eflf~

EOL BR .. NI·I-! PFP(I~ <;! BOOI 0::,,')
60TO/6{J':lUI' PO I III n'k

, ! 11.11 P lil CH"Fi'I,{"lEF< COI.IrH
.' lJ l.IFFrr. /·(jiNTER

TR(,N"F r r; i.e r I 'Jf HOIlI "'AN
EDI t<1'<'\IJt'H RFO: 'E~>T &001 F(.N
h"I" 'It'',II& POINfER

lr~ I'<Rfi,1 ",'l'V!:' MIHllE(,I ~

En(ftl':I, I Jr H REQUIoSl ""JOlIc',N
1;"10,'81.1',1.1,, PUIN1/'-H

'f·M'·'J"'.,f<~ "'~I f TF';' ""ESIlll STORo.hE
!:"jL B"';:"WI-! IN F"'lf'f,f,SS f.<O!l1 F.;r~
~'iof F H~! (!i.L I U.! /fIN E':'S •

fi r ,!" . "' fS',l~.' ~! ... ! IN ""L(l~';:' I "

~i.r 1 f~""ll ; U 1111 1',1 ... IJIHlS
I I I '"lI ,'I· hi l(,~Nr .F IOcr ·'.'lJF~
.\ I ,~",. 1101 r"f~('"

!- 110 I,'l-. "-".;;!!J,; .;UUl II<

r'I··'F' I,., ,1"r l 1"!£R,ClfIW I~O:;T
" .»11:

'I' RI.>n f 001" r(' Cor·ITRlIl .• fTC.
)I'·~ IF.; RHI l!~SH"lI flON
S ",'1 ,1'1 ·t'R'.'![,. HHRV

'=>,"111'
""''11-

'<Y' IfM ll:r •• r ~I1Tj"

~ ',''11,
,.;'11 ".~! ", I n· FOl.. forOIlESr

,>r~ 1'~lj IFI'Illl HII~I;~"{ [S I.UI'!).
'<=i, ,l~n ,. ' l IO;hl 'SI'.' ~'.; RSF 1<lll)'fl loj E
.,," If. , .1'[".1-"<; 1'1")' 1."f""", ,]tll"lEYED
I'" III~ ,,[,(,f, f r , IN II1;r Hun.

,
ABORT, 3- 33
ABORTIO s t ate ment, 3-48
~rt I/O ut ility, 3-32
Addresses, I/O,) - 13
Add r essing

BCD, 3-28
GPIO , 3-28
HP-IB, 3- 29
prlm"ry , 3- 28

AOORS3 keyword, 3-28
I;5SERT, 3-22
Asser t byte , 2- 12 , J-2~
ASSERT StBtement , 3-48
"TN, 2-12

•
BAS I C timing l oop, 3-54
BCD addressing, 3-28
BCD input, 3-24
BINLOP , 3- 37
BWSU8, 3- 37
BINTAB, 3- 13
BOI1l'LP, 3-37
BOU'l'SB, 3-37
BRS'l'RM. , 3-42
Burst execut ion speed , 3-46
Burst I/O , 2- 2 , 3-34
Bu r st I/O processor command,

2-LII
Burst terminat i on,

3-41
BURSTN, 3- 37
BURST!, 3-37
Busy bit, 1-5

2-L3, 2-1 4,

INDEX

Calcul"tor control register ,
1-4

CalCUlator end d"ta bit, 1-4
CCR , 1-4
CEO bit, 1-4, 3-41
CLEAR st"tement, 3-49
COM bit, 1-4
Command b i t , 1-4
Commands, 2-1
Command bytes, 2-2
Common end code, 3-46
CONT20 ,)-19
CONTi'lL,]-19
CONTROL,)-18
Connol bits, L-3
Cont r ol fields, 2-11
CONTROL sta t ement , 2-11, 3-49
CSTAT, 1-14

OCOUNT, 3-21
Delimiter chllr"cte r, 3- 211
Device selecto r, 3-28
DIRCMD, 3-L5, 3-16
DIS I tn' , 3-38, 3-4'"
DISTill, 3-39
DISTill) , 3-38
DISTII2 , 3-39
OTE RI'I, 3-21

,
ENABLE INTR Statement, 3-49
End-of-llne cha r acter sequence

sent , 3-44
ENTER s t atement, 3-22, 3- 49

EOLSV, 1- 14
Execution speeds

BASIC , 3-27
BCO, 3-25
GPI O, 3- 26
HP-IB, 3-25
Se r ial, 3-25

Extension , 2-2

F

fOPX bi t, 1-5
finished EOL sequence, 2-13
full duplex bit, 1-5
Full duplex Input routine,

3-4B
full duplex output routine,

3-48

G

GOTOSU, 1- 13
GPIO Addressing , 3-28
GPIO Input, 3-24
Group Execute Trigger message,

3-52

H

Halt I/O utility, 3-32
HALT s t a temen t, 1- 5, 3- 49
Iiooks, 1- 7
UP-IS Add ressing, 3-29
HP-IB Input , 3- 24
UP- IB Interface messages, 3- 28

1

rBF bit, 1-5
ICOUNT , 3- 21
IllIIledlate execute commands ,

2-2
IN loop utility subroutine,

3-27
INPend utility subroutine ,

3-27
Input , 2-2,)-2)

1-2

Inpu t utili t y subrou ti ne , 3-27
Input buffer , 1-4
Input buffer full bit, 1-5
I nput/Output p rocessor, 1-3
Input processo r co~ands, 2-9
fNT bit, 1-4
lNTlop, 3-44
INTbsy, 3-44
INTCHl, 3-17
TNTCH2, 3-17
I NTCHK, 3-17, 3-40
INTCHl, 3-16
INTCMD, 3-15, 3-16
I NTdne , 3-44
INTend, 3-44
tnte r face control, 2-2
Inte rface control processor

command , 2-11
Interrupt byte, 2- 13
Inter f ace-type dependent er ror,

2- 14
Interrupt bit , 1-4
Interrupt control, 2- 2, 3-49
Inter r upt control processor

command, 2-10
Interrupt Input , 2-13, 2-14
Interrupt Output , 2-13 , 2- 14
Inter r upt Output Ready, 3-41
Interrupt service cO<.ltine, 1-8
Inte r rup t ing with available

inp<.lt data , 3-43
INTIN, 3-44
INTOUT, 3-41
INTRTN, 3-17
INTTIII, 3-41
INTT02 , 3- 41
lNTwat, 3-44
Invalid I/O ope rat ions , 2-14
I/O ROM statement simulation,

3-48
IOBASE, 1-14
lOP, 1-3
lOP protocol, 2-1
IOSP, 1-12
IR0211, 1-7
IRQ211, taking the hook, 1- 9
IRQ2D -+-, taking the hook, 1- 9
lRQPAD, 1- 12
lRQRTN, 1-11
ISR, 1-8

ISR routine. 3-45
IT.ERM. 3-21

(.01, 3-29
Listen Address, 3-28
Listen address command. 3-29
Listener lIcttve. 3-29
LOCAL. 3-33
LOCAL LOCKOUT statement, 3-49
LOCAL stlltement, 3-49

•
Happlnq of select codes. 1-7
Hask option, 1-7
MOVSTK routine. 3-45
MVSTKI routine. 3-45
My talk address protocol

COlll/llllnd. 3-30

N

NEWIRO, 1-7. 1-14
Not Full Oup In routine, 3- 48
Not Full Oup OUt routine. 3-48
NUHVA+, 1-12

o

OBF bit. 1-5
OFF SELFTEST. 1-13
ON INTR Condition Met. 2- 13
ON INTR trigqer, 2-14
ON SELFTEST. 1-13
Opcodes, 2-1
OUTend utility subroutine.

3-27
OUTlop utility subroutine,

3-27
OUtput. 2-2, 3-23
OUtput buffer, 1- 4
Output buffer full bit, 1-5
OUTPUT keyword . 3-22
Output processor co","snd, 2-12

OUTPUT statement. 3-23. 3-49
OUTPUT utility subroutine.

3-27

,
Plick bit. 1- 5
PASS CONTROL statement. 3-49
PtO bit. 1-5
PPOLL statement. 3-34. 3-39
Primary addressing. 3-28
Processor, 1-4
Processor acknowledge bit. 1-5
Processor end data bit. 1-5
Processor status register, 1-4
Processor status register

diaqrllm, 1-5
PSR. 1-4

,
Read auxilitory. 2-2
Read auxiliary processor

coml!land, 2-11
Reild status. 2-2 . 3-18
Read Status processor commands.

'-'
Reason byte, 2-\4
Register 1 Condition Het

Interrupt , 3-42
REGSTI. 3-42
REHH!2, 3-39
REINT, 3-39
Remote enllble message, 3-33
REMOTE statement.]-33 . 3-50
RENT013-39
ReportS, 2-14
REQUEST statement. 3-50
Reset bit, 1-4
Reset finished

Sel f -Test fa lied. 3-43
Self-Test passed, 3-43

RESET statement. 3-56
RESTOK, 3-43
RESUME, 3-])
Resume I/O utility, 3-32
RESUME statement, 3-50
RQUEST, 3-22
RST bit. 1-4

RSTklp, 3- 43
RST!och, 3-43
RSTrtn. 3-43

s

SCAN, 1-13
SCOUNT, 3- 38
Select code. 1-3
Select code byte

interpretation, 1-8
Select codes , mapping, 1-7
Self-Test failed. 2-13
S.lf-Test passed, 2-13
Self-Test results, 1-8
Send, 2-2
Send end-of-line character

sequence I/O utility, 3-32
SENO statement. 2-12, 3-511
Serial Input, 3-24
Service Request, 3-20
Service Request byte, 2-12
SNOOIO, 3-18, 3-31
SNOEOL, 3-33
SRO, 1-5
STATUS, 3-18, 3-19
STATUS Statement, 2-9, 3- 51
S'l'CKok rou t ine, 3-45
Suck ovedlow. 1-10
Stack, return. 1-7
STATU, 3-19
STAT2~, 3-19
String Enter. 3-13
String Output. 3-13
SVOIRO, 1-12. 1-13

T

Til, 3-29
Talk address, 3-28
Talk address consnand, 3-29
Talker active. 3- 29
Termination character, 2-12
TfLG bit. 1-5, 3-41
Ti.ing, 3- S2
Token, L-12
Transfer Count, 3-20
TRANSFER FIlS statement, 3-34
Transfer flag bit, 1-5

TRANSFER statement. 3-51
Translator, 1-3
Translator Addressing table,

1-6
TRGRll, 3-32
TRIGGER statement, 3-52
TRIGlp, 3-32

"
Unlisten interface message.

3-29, 3-30
Unl isten

My List:en Address, 3-52
I'Iy Talk Address. 3-52

Utilities, 3-13
Utility subroutines

w

Command Handshaking, 3-15
INPUT, 3-2/
INLOOP, 3-2'1
INPend, 3-27
OUTPUT, 3-2/
OUTlop, 3-27
OUTend, 3-27

Write auxiliary, 2-2
Write au:dliary processor

CO!T1l!land, 2-12
• ... rite control . 2-2, 3-18
Write control processor

cOlJIDllnd. 2-11

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

