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PREFACE

This unit shows you ways in which the computer can extend your
knowledge and understanding of introductory electricity and magnetism.
The unit presents numerical solutions for field lines and equipotentials.
The solutions are easy to understand and yet include solutions to many
problems which can’t be handled by analytic methods. The emphasis in
the unit will be on ways the computer can extend the electricity and
magnetism you understand. The unit assumes some knowledge of intro-
ductory e and m, specifically the fields for simple charge distributions.

Your instructor can assign chapters and exercises out of this unit in much
the same way as out of a textbook. Lectures on the material may be
presented, but you should be able to wunderstand the material without
lectures. The harder exercises can be used as the basis of projects if your
instructor wishes.

Each chapter in the unit starts with a brief discussion of the physics
discussed in the chapter and then moves on to an explanation of the
numerical procedure used with the computer. Exercises follow with one
exercise completely worked out in the text so that you can see what a
sample solution looks like. This sample exercise is sometimes a problem
for which the answer is already known and therefore provides an extra
check on the computer method. Some exercises are marked with asterisks.
One asterisk means the exercise is fairly demanding while two asterisks
indicates a very challenging problem. Numerical methods will not be
discussed much in the text; there is a section in the appendix which
discusses the half-step integration used.

Throughout the booklet normalized or natural units will be used. The
units have the advantage that the numbers being calculated stay near 1;
therefore rarely getting too small or too large for the computer. Natural
units are often used in e and m; the units have the effect of setting
1/(4meg) and ug/(4m) all equal to one.

Often graphical output is useful. |f you have a plotter or a CRT terminal
available, fine. If not, terminal plotting (using the teletype to plot a graph)
can be helpful. The appendix gives a program to convert printing programs
{programs which type out lists of numbers) to programs which plot on the
terminal. This terminal plotting will be used several times in the unit to
give you several examples.

John Merrill
Tallahassee, Florida

This unit was written while the author was on the faculty of the Depart-
ment of Physics and Astronomy at Dartmouth College, Hanover, New
Hampshire. John Merrill has used computers to support his classwork and
research since joining the Dartmouth faculty in 1966. During the period of
1970-72 he was part of a team of professors who developed computer uses
for the classroom in engineering, mathematics and physics under the
auspices of NSF funded project COEXIST.

John has written many journal acticles on specific uses of computers in
physics teaching, particularly for the two main physics teaching journals,
The Physics Teacher and The American Journal of Physics. He has written
several booklets on computer use in physics teaching including another
unit in the Hewlett-Packard series, Quantum Mechanics. John is also the
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author of the book, Computers in Physics, soon to be published by
Houghton-Miffin Company. He is now the Director of the Center for
Educational Design at Florida State University.

Special credits go to Gregory Hughes, a recent PhD in physics from
Dartmouth, who helped develop the exercises and Christine Doerr, who
copyedited the manuscript.
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CHAPTER ONE: ELECTROSTATICS

INTRODUCTION

Electrostatics introduces the basic concept of fields, a concept used widely
in electricity and magnetism (e & m) as well as in other areas of physics.
The purpose of this chapter is to deepen your understanding of fields by
using the computer to map electrostatic fields in various ways. You will
map electrostatic patterns both by using the electrostatic potential and by
using the electrostatic field itself.

THE ELECTROSTATIC FIELD, Eir)

A field is a way to visualize a vector whose magnitude and direction vary
as you move around space. Consider the Coulomb force, F,, on a charge,
d,, due to a charge, q;, a distance, ? away,

>
> qmay [ F
F21 = ko 1_22 <—> (1)
r r

where r = [f| and ko defines the units. ko = 1/4meq = 9x10° in mks units;
ko = 1 in Gaussian (cgs) units. This force means that q, reaches out over
the distance, 'r) in order to create the force felt by q,. Originally, the
electrostatic field, E, was introduced into physics so that g, would be
interacting with something (namely, the E field) right where g, was. The
idea is that g, produces an E)field everywhere, and that g, interacts with
the _E) field at q, s position.

The Efield turns out to be a very convenient way to handle electrostatics
problems because you can separate the effects of q,, the so-called source
charge, from the effects of the field upon qg,. You can separate each
problem into a part dealing with what field is produced by the source
charges and another separate part dealing with the behavior of other
charges placed in that field.

The electrostatic field at some point, F= (x,y,z), is defined as the force per
unit charge on a test charge, q,, placed at 7.

> .'?_,
En = £ 2)
92

=2 . >
where F(r) is the force felt by q, at the point r.

-
Equations for the electrostatic field, E, for simple kinds of source charges
are derived in regular textbooks. A short table of the fields looks like the
following:

>
Charge Distribution E Field

Single Point Charge kg a/r? (F/r) A = the line charge density

Single Line Charge k, A/t {FIr)

ELECTROSTATICS O 1
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The total electrostatic field due to some set of source charges is just the
{vector) sum of the fields due to each source charge individually.

Practice Exercise: Show that the force experienced by a test charge, q,,
placed at the point 7 is the Coulomb force when the source charge is a
point charge.

THE ELECTROSTATIC POTENTIAL, V()

Another useful concept in electrostatics is the electrostatic potential, V(?).
You can define or introduce the potential in several different ways:

1. When the source charge distribution does not extend to oo, the
potential can be defined as the work per unit charge done to bring a
test charge, d,, from infinite separation to the point, .

b > > [ > —
The work done by a force F between r; and r, is definedas |/~ F-dX,

so the potential is n
>
r oo
> > > - >
V(ir) = q E-d¢ =-g JE-d? (3)

8
=y

Even when the source charge distribution does extend to infinity,
some convenient position, ?0, can be chosen, and potentials can be
measured from that point.

>

—

> -
Vi) =q | E - d8 (4)

>
To

2. The poterl)tial can also be introduced from its other relationship to
the field, E, namely

E(f) = -grad (V{7) (5)

The gradient, called grad, is just a vector derivative.

These two definitions of potential are essentially equivalent. We will not
do much with the second definition for the potential, V(F), but it is the
more general of the two forms. This second definition is also the one used
most in upper levels of e & m study. One very useful result of this second
definition is that the electrostatic field, E(:), at the point, i'), points in the
direction of steepest decrease of the electrostatic potential, V(-r>), at that
point ¥. The force on a test charge at [4 always point directly down the
potential hill,




The first definition points out most clearly that, unlike the Efield, which
is a vector function of position, the electrostatic potential, V(?), is a scalar
function of position. E(?) has both magnitude and direction at each point,
'r’, whereas the potential, V(?), has only a value at each point, ¥. The fact
that V is a scalar makes it very easy to use, which is one of the reasons the
potential appears so often.

Again, textbooks derive the potentials for various simple charge distribu-
tions. A table follows:

Charge Distribution Potential
Point Charge, q ko alr \ = the line charge density
Line Charge, A -2 kg, Alnfr/r )

Practice Exercise: Show that the potential due to a point charge follows
from the integral definition of potential and the earlier equation for the
electrostatic field due to a point charge.

Analytical methods which solve electrostatics problems are generally
limited to those which can be integrated easily. Numerical, computer-
based solutions are not so limited. For a general charge distribution, you
can break the distribution up into pieces {which can be treated as point
charges or line charges or whatever) and then just add up the fields or
potentials due to each piece. The computer-based methods are very general
and yet are based only on the simple equations for fields and potentials
(those quoted above).

VISUALIZING ELECTROSTATIC FIELDS

There are several ways to visualize electrostatic fields, E The first way uses
the electrostatic potential, V. The starting point is a plot of the potential
everywhere in space. (Everywhere means at lots of points throughout some
region of interest.} You then connect all the points having the same value
of potential. The resulting surfaces in three dimensions (or contours in two
dimensions) are called equipotentials. No work is done on or by a test
charge moved around on any equipotential surface. The forces on any test
charge are always perpendicular to equipotential surfaces. Because th_e)
electrostatic field is the force per unit charge on a test charge, g5, the E
field is always perpendicular to equipotential surfaces. Thus you can
visualize what happens to a test charge (in some field set up by given
source charges) by finding the equipotentials in the field. You can also
(crudely) find the electrostatic field, E, at any point, ?, by discovering in
which direction away from ¥ the potential decreases fastest. The greater
the rate of change of potential, the stronger is the electric field, E

All you need to be able to do to use this method is to be able to calculate
the potential everywhere due to any given source charge distribution.
However, the equation for an equipotential, is difficult to derive even for
fields as simple as that due to three point charges. With the computer you

ELECTROSTATICS O 3
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just add up the potentials due to whatever set of source charges you have:
for three point charges, q;, 92, 93 at ?,, ?2 and ?3 and for any point, 'r),
you sum kg (ql/l?—?ll + q2/|?—?2| + q3/|?) —'r>3|). For N charges, you add
up N such terms. If the source distribution is some mixture of point
charges, line charges and whatever else, you must remember to put the
right form of the potential in each term. The method is easy and very
general. A block diagram of this strategy for potentials is shown below:

INPUT
Charges and Their Positions

Set Range of 7

!

For Each ? Calculate V {r)

v

OuTPUT

>

rvin

A second method is occasionally used to visualize electrostatic fields. In
this method, the vectors E(?) are calculated at lots of points ox)e!; the
whole region of interest. Arrows representing the various fields, E(r), at
the various points will be short where IEI is small and long where Il_E>| is
large. You can then visualize the Efield in terms of constant IEI surfaces
{or contours in two dimensions). Although this is a valid way to visualize
fields, it is not very common. This method is illustrated by a problem at
the end of this chapter. :

The third and most common way to visualize electrostatic field patterns
uses field lines. One of the main points of this chapter is to allow you to
use simple computer programs to generate field line patterns for numbers
of different source charge distributions.

The two-part definition of a field line is deceptively simple:

N
1. At every point, 'r), the electrostatic field, E, is tangent to (that is, is
locally paraliel to) the field line.

2. The number of field lines passing through a (unit, perpendicular}
>
cross sectional area atris proportional to |E{r)|.
This second part of the definition simply means that the field is strong
where field lines bunch together and weak where lines are spread apart.

Notice a few points about field lines:

N
a. {E| is usually not constant along a field line. Any line usually goes
-
through regions where E is weak and regions where E is strong.




b. Field lines start on positive charges and end on negative charges. If
the total net charge of a charge distribution is not zero (that is, if
there is more positive charge than negative, or vice versa) then some
field lines may begin or end at infinity, since the lines will keep on
searching for some charge on which to terminate. '

c. The number of lines that start on a +2 charge is twice the number
that start on a +1 charge. Similarly, twice as many lines will end on a
-2 charge as end on a -1 charge. You can choose arbitrarily how
many lines start on a +1 charge (note that the second part of the
field line definition says “‘proportional to’’), but having chosen that
number, all else follows.

At first sight the definition of field line seems very simple: after all, there
are only two defining characteristics. At second glance, the definition
seems to make field lines very complicated. Analytical solutions for field
lines can only be performed for very simple source charge distributions,
and even then the expressions look very complicated. Using a computer
the field lines can be mapped using just the definition and a very short
program,

Consider the following way to trace out a field line. Suppose you know
some point, 7= (x,y,z), on a field line. {Any point lies on some field line,
so you define the field line you are going to trace by choosing the first
point.) Suppose further that you want to take a step of size As along that
field line. You calculate the field at r, E)(?), and then use the first defining
property (the line is parallel to Eat ?) to calculate

> -
Ax = As E, /|E{

-
Ay = As Ey/IE|

—
Az = As E,/IE| {6)

. > > o> > > > o
These equations say that As = Ax + Ay + Az is parallel to E = E, + Ey +E,
which is equivalent to the first defining property.

—>

Practice Exercise: _l{)l/hen E ,=0, show that the triangle [x, Ay, As is similar
>
to the triangle E ., E v E.

The next point along the field line is then (x+Ax, y+Ay, z+Az), and you
can repeat the process at this new point. You walk along the field line
step-by-step. Such a method of solution is called “‘algorithmic” (because
the solution is an algorithm or procedure) or “iterative’’ (because you
iterate or repeat the same steps over and over). Notice that the procedure
breaks down if IEI = 0 at any point on the field line. Such methods are

ELECTROSTATICS O 5
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easy on computers. A block diagram of this procedure is shown below:

INPUT
Charges and their positions;
Step size, As

l Choose point, F, on

field line

v

galculate the total field, ‘__

E,atr

Calculate Ax = As Ex/E
Ay = AsEy/E
Az = As EL/E

!

Calculate new 1 =
(x + Ax,y + Ay, z + Az)

v

>
Print r

yes

Notice that you could perform the calculation yourself if you had the
patience; there is nothing magic about the method at all.

What about the second part of the field line definition? How do you
ensure that your pattern will obey that property, too? The answer lies in
how you choose to start field lines. Close enough to any charge, the field
lines will be radial since all the other charges are so far away their effects
are negligible. Close to each positive charge you can choose the number of
lines (g times the number you choose to start on a +1 charge) to start
radially and at equal angles. Once the lines are started correctly, the whole
pattern will remain correct. More lines will bend around so that they go -
through regions of strong field, and fewer lines will bend around so as to
go through weak field regions. This simple method produces results
automatically.

The same sort of procedure can be used to trace out equipotentials. Since
equipotentials are aIw_a)ys perpendicular to field lines, we moys perpen-
dicularly to the field, E, at each point (rather than parallel to E}). In two
dimensions {or symmetrical three-dimensional systems such as those we
consider below) this procedure is particularly_sasy. The steps Ax_)and Ay,
parallel to x and y, are given by Ax = -As Ey/IEI and Ay = As E,/|E].




FIELD LINES AND EQUIPOTENTIALS WITH THE
COMPUTER

Let us do an example of this procedure which is similar to the problems at
the end of the chapter. We will choose a relatively simple example: two
opposite charges (+1 and-1) at (+.5, 0} and (~.5, 0) respectively. Far away
from the charges (|?|>>1) this pattern reduces to a dipole pattern. (This is
actually one of the few problems which can be solved analytically. Hence
this example can also serve to verify the numerical method; this verifica-
tion is discussed in a problem.)

Since the pattern is symmetric under rotations around the x-axis, we can
limit our discussion to the x-y plane. That is to say, the z direction is just
like the y direction, so the full three-dimensional picture is just the one we
will produce rotated around the x-axis. Two-dimensional pictures are
easier to put on paper; the method, of course, works just as well in three
dimensions. Most of the physical intuition can be derived from two-
dimensional pictures.

Example 1. Find the potential for the above charge distribution. Consider
-56<x<b and -5<y<5.

The potential is just V = ko (+1/[distance from (+.5,0)]) + ko (-1/[distance

from (-.5, 0)]). One program which calculates and prints-out the values of
the potential is listed below:

POTENT

112 INPUT X8,Y8,X9,Y9 of interest
12¢ LET K@=1- Setunits
138 LET Q=+ 1 — Magnitude of changes
148 LET N@=9 — #o0f points across x and y
1S@ LET X73(X9-X8)/N@ - &x
168 LET Y7=(Y9-Y8)/N@ -4y
[T 176 FOR J=N@ TO @ STEP -1 — Stepdowny
180 LET Y@=Y8+J*Y7 - Eschyinturn
A 19@ FOR I=8 TO N@ — Step across x
20@ LET X@=X8+I1%xX7- Eachx in turn
2128 LET R=2SQR((XB-+5)*%(XB=-+ 5)+YB*Y Q) — Distance from (+.5,0)
A 228 LET R1=SQR((X@++5)%(X0++5)+YO%Y Q) — Distance from (-.5,0}
230 LET V=K@*xQ/R-K@*Q/R1 - Potential
240 PRINT V, — Print potential
250 NEXT I
26@ PRINT
TTere NEXT J
280 PRINT
290 S30TO 1280 — Return for new region
300 END

166 PRINT '(X,Y) OF LEFT-BOTTOM & R!GHT‘TOP?"] Specify Region

Practice Exercise: Modify the program so that it computes the potential
for two equal, positive charges at (+.5, 0}, (-.5, 0).

ELECTROSTATICS O 7
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A RUN of this program produces the following output. Notice that each
value of y produces two lines of printing; the second line gives the values
another page width to the right of the first line.

RUN
POTENT

(X,Y) OF LEFT-BOTTOM & RIGHT-TOP?
?=e5,~05,05545

-1.10557 -«971852 -+746108 ~.46410! -+ 156889
+ 156889 «4641 «746108 «971852 1.18587
-1.63942 ~1.44181 -1.08265 -« 656786 -.21868
«21868 « 656706 1.88265 1.44181 163942
-2+ 63648 -2.26873 -1.60832 ~.920048 ~+298028
- 298028 «9200848 1. 68832 2.26873 2.63648
-5.21361 -3.88657 -2.34283 -1.22807 -+382654
« 382654 1.22807 2. 34283 3.88657 5.01361
-17.2015 ~6.927064 -3.28319 ~1.46436 -+«441558
441558 1.46436 3.088319 6.927083 17.6015
-17.8015 ~6.927 04 -3.08319 -1.46436 -.441558
«441558 146436 3.08319 6.92703 17.0815
-5.81361 -3.88657 -2.34283 -1.22807 -+382653
« 382653 1.22807 2+34283 3.88657 $.01361
-2.63648 -2.26873 ~1. 60232 ~.920048 ~.298028
298028 «920048 1. 60832 2.26873 2. 63648
-1.63942 “1.44181 ¢ ~-1.08265 -- 656706 -.21868
.21868 « 656706 1.08265 1.44181 1.63942
~1.108557 ~+971852 -.746108 ~e464101 -.156889
« 156889 <4641 «746108 «97185¢2 1.18557

¢(X,Y¥> OF LEFT-BOTTOM & RIGHT-TOP?

20,95 1,1

@ 7.87228E-02 « 152839 -218173 «27 1447
« 310716 « 335603 «34721 3477 « 339727
] + 102363 200662 «285002 «351774
- 398157 . 423933 «431343 «424242 s 406995
] « 138997 « 268 648 «379908 «465109
«519762 « 543989 « 542308 «521774 - 489 679
[] « 189937 +367195 «518171 « 629794
+ 693829 «711@05 - 6987 67 .« 646572 «5908792
[ «263806 512489 « 725627 «87843

«952723 «950207 «892262 «8C6114 «712763
] «369911 - 728777 1.04792 1.27458
1. 3595 1.30575S 1.16882 1.8@755 «85562

4 «515818 1.084749 1.56911 1.96072
2.85579 1.85912 15474 1.25226 1.81331
2 « 694781 1.48774 244052 3.33496
3.43859 2.758 2. 04009 1.52167 t.16815
[ «862522 1.974 3.8@283 6.99827
7.10768 4. 13902 2.56285 1.75478 1.28753
] «935065 2.21538 4.8 16.9412
17.08526 Se 14286 2.81739 1.85143 1.33333

(X,Y) OF LEFT-BOTTOM & RIGHT-TOP?
?

The largest positive numbers for the potential lie near the positive charge,
the largest negative values of potential lie near the negative charge.

Sometimes plotting the potential helps you to see the pattern. You can
plot characters on the terminal which represent the size of the potential at
each (x,y) point on the plot. One way to produce such a plot involves
several changes (shown below) in the potential program, POTENT, listed




on page 8. The characters represent the size of the potential; the position
of each character is the point {x,y). Terminal plotting is sometimes crude
since on most terminals the characters can only appear at definite places
on the paper.

GET-POTENT

10 DIM ASC36)

20 LET A$='"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ "
112 PRINT "MIN. & MAX. V?*"

114 INPUT VB,V

14@ LET N@=3¢

160 LET Y7=10%(Y9-Y8)/(6xNDB)

179 FOR J=INT(.6xN@++5) TO @ STEP -1
240 LET I9=1+INT(354(V-VB)/(V9=-VB)+.5)
241 1F 19>=] THEN 243

242 LET 19=]

243 IF 19<«=36 THEN 245

244 LET 19=36

245 PRINT AS(19,19);

A RUN of this modified program looks like:

RUN
POTENT

(X,Y) OF LEFT-BOTTOM & RIGHT-TOP?
?-e55,=405,-445,.05

MIN & MAX V7

?7-100,9
UUUUUUTTTTTTSSSSSSSTTTTTTUUUUUY
UUUTTTTTSSSSSSRRRSSSSSSTTTTUUUU
UUTTTTSSSRRRRAGQQQQRRRRSSSTTTTUU
UTTTSSSRRQQQAPPPPPPPRQQRRSSSTTTU
TTTSSRRQQPPONNNNNNN OPPQQRRSSTTT
TTSSRRAPOONMLKKKKKLMN GOPQRRSSTT
TSSRRAPONMKJHGFEFGHJLMN OPQRRSST
TSSRAPONMKIFC85458 CFIKMN OPQRSST
SSRRQAPOMLIFBS220025BFILNOPQRRSS
SSRROQPOMKIE9@O0Z 0029 EIKMOPQRRSS
SSRRQPOMLIFBS5@2Q@@S5SBFILN OPQRRSS
TSSRQPONMKIFCE5458 CFIKMNOPQRSST
TSSRRQPONMKJHGFEFGHJLMN OPQRRSST
TTSSRRQPOONMLKKKKKLMN OOPQRRSSTT
TTTSSRRAQPPONNNNNNN OPPQQRRSSTTT
UTTTSSSRRQRQQAPPPPPPPQAQRRSSSTTTU
UUTTTTSSSRRRRQQQQQARRRRSSSTTTTUU
UUUTTTTTSSSSSSRRRSSSSSSTTTTUUUU
UUUUUUTTTTTTSSSSSSSTTTTTTUUUUUY

(X,Y) OF LEFT-BOTTOM & RIGHT-TOP?
T=e5,=0%,45,45

MIN & MAX V?

?=-25,25
HHHHHHHHHHHHHHHIRITLIZEIITIIILILI
HHHHHHHHHHHHHHHIIIITXIIIIZIIILII
GGGGHHHHHHHHHHHIIIIIIIILII11JJJS
GGGGGGHHHHHHHHHIIIILIIIIIIJJJJJIJ
GGGGGGGGHHHHHRHIIIILIIIIJJJUJJJJIJI
FFFFGGGGGHHHKHHIII1111JJJJJKKKK
EEEFFFGGGGHHHHHIIIIIIJJJJKKKLLL
CCDEEFFGGGHHHHHIII!1lJJJKKLLMNN
67ACDEFFGGGHHHHIIII IJJJKKLMNPST
ZQ8BDEFFGGGHHHHIIIIIJJJKKLMORZZ
67T ACDEFFGGGHHHHI 111 IJJJKKLMNPST
CCDEEFFGGGHHHHHIIIIII1JJJKKLLMNN
EEEFFFGGGGHHHHHII1II1JJJJKKKLLL
FFFFGGGGGHHHHHHIIII1II1JJJJJIKKKK
GGGGGGGGHHHHHHHII111111JJJJJJJIJ
GGGGGGHHHHHHHHHIIIIIIIIIIJJJJJIJ
GGGGHHHHHHHHHHHIIIIIIIIIIIIJJJJ
HHHHHHHHHHHHHHHIIIIZIIIZIIIIILIII
HHHHHHHHHHHHHHHIIIIIILIITIIRIILI

(X,Y) OF LEFT-BOTTOM & RIGHT-TOP?
?

(The character @ represents V< = the minimum potential; the character Z
represents V> = the maximum potential.)

Example 2. Sketch three equipotentials (approximately) on a plot of
potentials.

ELECTROSTATICS O 9
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Using the terminal plots you can connect the points having approximately
equal values of potential. Points having the same character are connected
(but not @ or Z); sometimes it is necessary to interpolate between char-
acters (for example to find where 6 would come between printed 5 and 7
characters). The breadth of a region having a given character is broadest
when the potential is changing slowly.

Practice Exercise: On the second terminal plot, find the boundary be-
tween the | and J equipotentials. What is the shape of this equipotential off
the plot?

Practice Exercise: On the first terminal plot, find the K equipotential.

Practice Exercise: Find the contour on which the value of the potential is
actually zero on the first terminal plot. Explain its behavior. (It is possible
to have the computer hunt through and interpolate between points to find
points on a given equipotential.)

Example 3. Sketch three field lines (approximately} on a plot of
potentials.

You can find field lines by moving in the direction of the fastest decrease
in potential at each point. Using terminal plots the field lines are crude,
but you can still get a feeling for this behavior.

Practice Exercise: Starting near the lower left corner of the first terminal
plot, follow a field line inward.

Practice Exercise: On the second terminal plot, follow a field line which
leaves the positive charge at 135° to the x-axis.

Example 4. Using an algorithmic method, compute three field lines for
this charge distribution.

You can use a program which implements the algorithmic strategy
discussed above. One program which does this is the following:




EMAP

7100 LET N@=2 - #of charges
116 FOR J=1 TO N@
120 READ X{J1,Y(J1,QUJII | positions and
138 NEXT J Values of Charges
148 DATA 5,0, 15-+5,8,~1
15¢ LET K@8=9.E+@9 — Units
1686 LET D=.85 - Stepsize, As
17¢ PRINT *"(X,Y) STARTING PT. ON FIELD LINE?"
18@ INPUT X5,Y5
190 LET X@=XS — x along line
200 LET Y@=YS5 — yalong line
219 LET X1=8-Ax
22¢ LET Y1=@-A4y
23@ LET S$@=«5 — Print out every S@ along line
248 LET S§=@ — Distance S along line
L.25@ PRINT "X, "y"”
[[[26¢ LET El=@
279 LET E2=20
260 FOR J=1 TO NGO — Add up fields for each charge
299 LET R3=(X@+X1/2-X[J1)*(X@+X1/2-X{JD) }-,
386 LET R3=R3+(YB+Y1/2-YLJ DI w(Yosy1/2-Yed 2o M
3186 LET R3=R3t l.s,l’,’la

i
Initialization

AA | 320 LET E=xexatJi/r3- |27

3| 338 LET EI=EI+(X@+X1/2-X(J1>+E-E,
S| 348 LET E2=E2+(YO+Y1/2-YIJDI*E £,
5| 350 nExT 4 .

S| 368 LET E@=SQR(EIXE1+E2%E2)— £l

€| 376 LET X1=DxEl1/E@-Ox

E| 388 LET X0xXB+X1-Newx

S| 39¢ LET Y1=D*E2/E@ -4y

2| 486 LET Yo=vo+Y1-Newy

418 LET S=S+D

420 IF 5<S@ THEN 45@ | prnrout

43¢ LET S=0 Lines

448 PRINT X0,Y®Q

459 FOR J=1 TO N@

460 IF ABS(X@-X[J1)+ABS(YB-Y[J1)<.9%xD THEN 45¢
472 NEXT J

L L4880 IF ABS(X@)+ABS(Y®)<1@ THEN 260- Faroff page
499 PRINT X@.,YQ — Print out last point

5@ PRINT
S1@ GOTO 171 — Return for new line
52 END

Tests to end
a line

All calculations of the distance from each charge and of the fields use an
estimate of the position one-half step ahead of the present point on the
line. This half-step method is quite accurate even with a relatively large
step size {(and hence relatively few iterations to complete a line). The
question of accuracy and the idea of a half-step method are discussed

further in Appendix B.

A RUN of this program looks like the following:

EMAP

(X,Y) STARTING PT. ON FIELD LINE?
?.55,.085

X Y
«879727 «425224
1. 13562 «853816
1.2977 1.32582
1.35226 1.82174
1.28674 2.31608
1.29879 2.77418
«762383 3.14798
«321695 3.37725
-+ 173504 3.40938
-+ 638683 3.23573
-l.90482 2.89915
~1e24142 20 46087
-1434563 1.97332
-1.32623 1e47485
“1. 1954 «993281
~+966379 «549795
=+ 655836 « 1587 64
-«515865 «@15919

(X»Y> STARTING PT. ON FIELD LINE?

2+.55,.01

X Y
1.83884 «114918
1.52333 238369
2.00277 .380176
247694 538725

2494573 «712554

ELECTROSTATICS O 11
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3. 40997 «9 80448
3.86689 11814

4.31915 131457
4.7 6582 153924
S5.20685 1.77478
5. 64222 202064
627188 2.27634
6049579 254145
6.91394 2,81588
7.97958 2492767

(X,Y) STARTING PT. ON FIELD LINE?
?

The field lines start at the positive charge and end at the negative charge.
Some lines are much longer than others; the longer ones bend around from
the back side of the positive charge to the back side of the negative charge.
The line leaving the back side of the positive charge directly away from the
negative charge must go through infinity to get back to the negative
charge.

Practice Exercise: Modify the program to find field lines for four point
charges: +1 at (+1, +1), -1 at (-1, +1), +1 at (-1,-1)and -1 at (+1,-1).

Plotting can be helpful in this exercise. If you have a plotter system or a
plotting terminal, use it; if not, terminal plotting can serve. The changes
required to use terminal plotting with EMAP refer to subroutines in
Appendix A and are as follows:

GET-EMAP

12 READ X8,X9,Y8,Y9,20
20 DATA ~5,5,-5,5,1

3¢ GOSUB 9688

205 GOSUB 9160

259

440 GOSUB 9100

499 GOSUB 9160

492 GOSUB 9200

APP-TTYPLO

RUN
EMAP

(X,Y) STARTING PT. ON FIELD LINE?

7055,.05

MAX Y= 5
PO.0.0.0.0.0.0.0.0.9.9.9.999099900000008800809¢086090020900280.02d

R L R R R

P 9.9.9.9.99.0.9.9.9.9.9.0.9.9.9.09.0.¢.00099990990.00000000809909990991
MIN Y=~5 MIN X=-5 MAX X= §




(X,Y> STARTING PT. ON FIELD LINE?
7¢55,-.23

MAX Y= S
D009 0000 SOOI N VSO0 9,009 0.0.0.0.9.0.9:9.$.0.0,0¢.0.00.9,9,0,888,0,9$.59

1 1
i

P R D R R e e

1
P00 00990 OV GO OO OGS0 9.90.9.9.0.6.0.0.0.09.9.9,¢,00.0,8,¢.0,8.0¢09
MIN Y==-5 MIN X=-S MAX X= 5

(X5Y)> .STARTING PT. ON FIELD LINE?

XXXXXKXKXXKXXXXXRKXXKXKL XXX XX KK XXX LXK A XL XXX XAXXKKKXK

D e R L L L L T BT

D0.0.0.0.0.8:0,0.0.0.9.0.9.6.9.19.9.0,0,0.9.9:¢,0,:6,9,0:9.0.8,9,0.9.:0.9,0.9.9,0,0,9.9.0,0,8,¢.9,9,0,0.4
MIN Y=-5 MIN X=-5 MAX X= 5

(X,Y) STARTING PT. ON FIELD LINE?
?

Sometimes it is useful to have several lines on one piot. The following
changes in the original field line program, EMAP, listed on page 11,
accomplish this.

ELECTROSTATICS OO0 13
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GET-EMAP

18 READ X8,X9,Y8,Y9.20
20 DATA -5,5,-5.5,0

30 GOSUB 90200

182 IF X52999 THEN 515
183 LET Z@=20@+1

205 GOSUB 91882

250

44Q GOSUB 9100

4990 GOSUB 91¢@0

515 GOSUB 9200

APP=-TTYPLO

A RUN of this modified program is shown below:

RUN
EMAP
(X»Y) STARTING PT. ON FIELD LINE?
?7.55,.05
(X,Y) STARTING PT. ON FIELD LINE?
7+ 55,~.03
(X,¥> STARTING PTe. ON FIELD LINE?
245, 0
(X,Y) STARTING PT. ON FIELD LINE?
7999, @
MAX Y= 5
P9.9.9.0.9.0.9.9.9.90.90.99.9.0.009 09990000000V V0009999030000 vd
Y
Y
Y
Y
Y
Y S S |
Y 1 1
Y 1
Y 1 1
Y 1
Y 1
Y 1 i
Y i 1
Y 1
Y 1
Y 23 3 32
Y 2 2
Y 2 2
Y 2 2
Y 2
Y 2 2
Y 2
Y 2 2
Y 2
Y 2
Y 2 2
Y 2
Y 2
Y 2 2
Y 2
Y 2
XAXXXAXXAXAXXKX KX XX XXX XK KAX KX XX XXAXXLXXXXAXKKXAKXKXX
MIN Y®=-5 MIN X=-§ MAX X= §

(The terminal plotting programming prints the last character plotted at

each position.)

Finally, it is possible to modify the field line program to follow equi-
gotential contours instead. All you do is move perpendicularly to the field
E at each point (instead of parallel). The modified program is listed below,

followed by a run and a terminal plot.




VMAP

189 LET N@=2

118 FOR J=]1 TO Ne@

120 READ X[J1,Y{J),Q(J)

130 NEXT J

1480 DATA +5,@,1,-+5,08,-1

158 LET K2=9.E+029

166 LET D=.05

176 PRINT "(X,Y) STARTING PT. ON FIELD LINE?"
188 INPUT X5,YS

192 LET X@8=X5

200 LET Y@=YS

2120 LET X1=@

2286 LET Y1=0

230 LET S@=.5

248 LET S=0

25@ PRINT X", 'Y"

268 LET El=0

27¢ LET E2=¢

28@ FOR J=1 TO N@

29@ LET R3=(X0+X1/2-XCJ1)*(X@B+X1/2-XLJI)
382 LET R3=R3+(YB+Y1/2-Y[J))I*(YB+Y1/2-Y(J))
318 LET R3=R3t!.5

320 LET E=K@+QLJI/R3

338 LET EI1=El+(X2+X1/2-X{J1)*E

340 LET E2sE2+4(Y@+Y1/2-Y[(J1)*E

356 NEXT J

360 LET E@aSQR(EI*EI+E2%xE2)

378 LET X1=-DxE2/E@

388 LET X@=X@+X!

39@ LET YI1=DxEI/E@

408 LET Y@=Y0@+Y1

410 LET S=S+D

428 IF S<S@ THEN 4S@

4390 LET S=¢

44@ PRINT Xg.,Y®@

450 1F ABS(X@-X5)+ABS(Y@-YS5)<.9%xD THEN 470
460 1F ABS(X@)>+ABS(Y@)><1@ THEN 269

476 PRINT X@.Y@

48@ PRINT

490 GOTO 178

580 END

VMAP

(X,Y) STARTING PT. ON FIELD LINE?
23,0

X Y

« 655171 -+ 166054
«5444) «21990S
293041 3.07172E-82
(X,Y) STARTING PT. ON FlELD LINE?
21,0

X Y

+ 263284 -.459612
719458 -+ 610559
1.12219 =+ 339661
1.28455 « 140735
«921518 «536615

-« 440887 « 588765
127082 «214304
9.85179E-02 1. 68651E-082
(X.Y) STARTING PT. ON FIELD LINE?
7=e1,0

X Y

=+ 263204 ~+459 612
=7 19458 -+ 610559
-1.12219 -+ 339661
-1.20455 « 140735
-.921519 «536616

~« 440887 « 580765

-+ 127082 «214304
~9.85179E-02 1. 68656E-02

(X,Y) STARTING PT. ON FIELD LINE?
7
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GET-VMAP

18 READ X8,X9.,Y8,Y9,280
28 DATA -3,3,-3.,3,0

38 GOSUB 908¢

185 IF X5=3999 THEN 495
186 LET Z@=Z@+1

2¢5 GOSUB 9100

25e

44@ GOSUB 9160

47@ GOSUB 9100

495 GOSUB 9200

APP-TTYPLO

RUN
VMAP

(X»,Y) STARTING PT. ON FIELD LINE?
7.3, 0

(X,Y> STARTING PT. ON FIELD LINE?
?.1,0

(X,Y> STARTING PT. ON FIELD LINE?
7-+1,0

(X,Y) STARTING PT. ON FIELD LINE?
2999, 0
MAX Y= 3
10,0.:9.0.0.0.€.9.0,9.9.9.9.9.9,0.0.9,:0.0.0.9.9.9.0,09 ¢.0.0.9.99.0.9.99990909900 0604

B R R R R R R R R R R TR
(2]
L1+

P9,9.9.9.9,0.9.,9,0,0.9.0,9,0,9,0,9,9,0,0,0.0.0.9,0,9,0.9.9,0,0,9.9,0.2.9.0.9,¢.9,9.¢.9.9.¢.9.9,9.9.4
MIN Y=-3 MIN X=-3 MAX X= 3

Practice Exercise: Annotate the program with comments by each line or
group of lines explaining what calculation the line or group perform. You
may use the annotations on the earlier program as a guide.

Practice Exercise: Modify either of the algorithmic programs so that the
program follows either a field line or an equipotential. Allow the user to
decide which type of contour to follow each time he starts a new contour.

CONCLUSION

The methods discussed here are very general. Field lines and equipotentials
can be found for any source charge distribution. By writing and running
your own programs for several different charge distributions, you will gain
a very good feeling for the behavior of field lines and equipotentials. Field
line mapping is fundamental to every part of electricity and magnetism, so
it will be helpful to gain this intuition now.




CHAPTER ONE EXERCISES

1. Consider the line charge distribution: +3 at (+.5,0) and -1 at (-.5,0).
(This potential is symmetric around the x-axis so we only need to

view it in the x-y plane).

a)

b}

c)

d)

e

Find the potential for this charge distribution. Use the char-
acter plotting method to observe the potential. (You will need
to print the values in the region first in order to know the
largest and smallest values of the potential to plot.) Consider
the regions: -.55 < x <-.45, -.05 <y <.05, +.45 <x < .55,
—05<y<.05;and -5 <x<5,-5<y<5.

Sketch several equipotentials on each of the character plots.
Since the change in potential is linear with the character set, if
you sketch the equipotentials for every third character (eg., 2,
5, 8 etc.), then the contour lines are close together when the
change in the potential is large (and the field is strong).

Sketch four field lines on the character plots.

Using an algorithmic method, compute four field lines for the
large region considered in (a).

Using an algorithmic method, compute four equipotential lines
for the large region considered in (a).

2. Consider the line charge distribution A = +1 at (+.5, ~.25), A = +1 at

(-.5, -.25) and X\ = +1 at (0, +.62), an equilateral triangle. The line
charges are perpendicular to the x-y plane.

a)

b)

c}

d)

e)

f)

Find the potential for this charge distribution. Use the char-
acter plotting method. Consider the region -2 <x <2,-2<y
<2

Sketch several equipotentials on the character plot.

Sketch three field lines starting at each charge on the character
plot. .
Using an algorithmic method, compute four field lines starting
at each charge of this charge distribution.

Using a algorithmic method, compute several equipotential
lines. Pick equipotentials close to each charge and then far
away from all of them.

How would you compare the potential near each charge and
far away from all of them to a single line charge distribution?

ELECTROSTATICS O 17
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3. Consider the line charge distribution of A = +1 at (.6, .B); A =-1at
(.5, -5); A = +1 at (-.5, -.5); and A = -1 at (-.56, +.6). The line
charges are perpendicular to the x-y plane.

al Find the potential for this charge distribution. Use the char-
acter plotting method. Consider the region -2 < x <2, -2<
y<2

b)  Sketch several equipotentials on the character plot.

c)  Sketch three field lines starting at each charge on the character
plot.

d) Using an algorithmic method, compute four field lines for this
charge distribution.

el Using an algorithmic method, compute several equipotential
lines. Pick equipotentials close to each charge and then far
away from all of them,

f) Locate the planes on which the potential is zero.

4. Modify Exercise 3 so that each of the line charges has A = +1. Sketch
your idea of the equipotential and the field lines before you calcu-
late them,

a) Using an algorithmic method, compute four field lines starting
at each positive charge for this charge distribution.

b) Using an algorithmic method, compute equipotential lines for
the distribution.

c) How would you compare the potential near each charge and
far away from all of them to a single charge distribution.

b. Let us examine the idea that a set of point charges can be used to
approximate any field distribution. To do this, let us approximate a
line charge by a set of point charges. Consider the point charge
distribution with nine +1 charges from (-2,0) to (2,0) at .b intervals.

a) Compute the field line distribution for this charge distribution.
b)  Compute the equipotential lines for this distribution.

c) Since you know the analytical expression for the field and
potential from a line charge, compare your point charge ap-
proximation to it. Where does the point charge approximation
to field lines and potential differ from the line charge? (There
are three regions where the two differ most).

d) How would you make a better approximation to the line
charge?




Consider the line charge distribution of A = +1 at (0,0); A = -1 at
(-10:;A=-1at (+1,0); A = +1 at (-2,0); A=+1at (2,0};A=-1 at
(-3,0); A =-1at(3,0); A\ =+1 at (-4,0); and A = +1 at (4,0).

a) Compute the field line distribution for this charge distribution
of -5<x<.5-1<y<1.

b)  Compute the equipotential lines for this distribution.

c) On what surfaces is the potential zero?

In Exercises 3 and 6, and in the dipole example, the charge distribu-
tion leads to planes of zero potential. These problems illustrate the
image phenomena. The field pattern of these charge distributions is
the same as that of conducting sheets at zero potential and the
charge distribution on one side. For example, Exercise 3 can be
thought of as +1 at (.5, .b); ~1 at (.5, -.5) and a conducting plane at
zero potential along the y-axis. The way to solve the conducting
sheet problem is to set it up as if each charge has an image of
opposite sign an equal distance on the other side of the plane.
Thus, Exercise 3 is the solution to the two charges and the con-
ducting plane.

a) Exercise 3 is also the solution to another charge distribution
and a plane. What is it?

b)  Exercise 3 can be seen as the solution to the charge distribu-
tion for two conducting planes and a point charge. Where are
the planes?

c) How can Exercise 6 be restated in terms of conducting planes?

d)  Consider the line charge distribution X\ = +2 at (.5,0), \=-1 at
(.5, .5); \=~-1at (.5, -.5) and a conducting plane along the yz
axis. How would you solve this problem using the method of
images?

Consider the charge distribution caused by an infinite solid cylinder

of charge centered on the z-axis with a radius of .5. This can be

approximated by a set of line charges parallel to the z-axis.

a) Compute the field line distribution for this charge distribution.

b)  Compute the equipotential lines for this distribution.

c) What is the potential inside the cylinder?

d)  What should the field be according to Gauss’s law inside the

cylinder? How does the potential and field outside of the
cylinder compare to those of a single line charge?

We have visualized fields by either equipotentials or field lines. We
can also visualize fields by surfaces of constant field magnitude.
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10.

Consider the dipole charge distribution we used in the text.

a) Print the magnitude of the field over the region used in the
text.

b)  Convert the character printing program so that the characters
represent magnitudes of fields.

c) Draw in the equifield regions on the character plots.
d)  How do the equifield regions differ from equipotential lines?

el Is there any relationship between the constant field contours
and the directions in which the fields point?

The analytical solution of a dipole is:
the potential V = p cos 8/r?

and E, =3psin @ cos 6/
E,= p(3cos? 8§ -1)/r®

are the field components when the dipole p is centered at the origin
and is parallel to the z direction. The angle § is measured with respect
to the z direction, and r is measured from the center of the dipole.

If the dipole is caused by two single charges on the z-axis, then {p} =
gs where s is the distance between the charges (the positive charge is
assumed to be in the positive z direction).

a) Compare the program results obtained for the potential calcu-
lated from two point charges with the analytical dipole ap-
proximation. (Compare the values on the x- and z-axes at the
distances 1, 5, 20.)

b)  Compare the calculated results for the field with the analytical
approximation. To do this, see if the two solutions are parallel
to each other along the x-axis at 1, 5, 20 and along the 45°
line between the x- and z-axes at the distances 1, 5, 20 from
the origin.
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CHAPTER TWO: MAGNETOSTATIC
FIELDS

INTRODUCTION

Magnetic fields —B)(-r>) result from currents. (We will use the term magnetic
field even though magnetic induction is strictly correct; the distinction is
really only important when you deal with magnetic materials.) If the
currents are steady (that is, do not change with time), the magnetic field
is magnetostatic. The purpose of this chapter is to find how to map
magnetostatic fields by means of flux lines.

MAGNETIC FIELDS FOR VARIOUS CURRENT
DISTRIBUTIONS

Physics textbooks derive equations for the magnetic field due to simple
current distribution, such as the long straight wire. The texts also intro-
duce the Biot-Savart law {sometimes called the Biot law) which gives the
magnetic field everywhere in space due to a short segment of current, |&§.
These are the only results for magnetic field that we will need in this
chapter. The Biot-Savart law is sufficiently general and, when you use a
computer, sufficiently easy to use that any current distribution can be
handied.

For a long straight wire the magnetic field is given by _B) = 2ky Wr
(tangential around the wire with sense by the right-hand rule), where r is
the perpendicular distance to the wire, and ky is a constant which
determines the units. kg = /4w = 107 in mks units in which B is
measured in Tesla; kg = 1/c = 1/3x10' % in Gaussian (cgs) units in which
B is measured in Gauss. In mixed units where currents are measured in
amperes and magnetic field in Gauss, kg =.1. {One Tesla is 10* Gauss.)

-
The Biot-Savart law states that the magnetic field, dB, due to a small
element of current, Id—ﬁ, is

—>

= > >
dB = ko 1 d€ x r/|r] (7)

where T is the distance from d_§ to the point, (x, y, z), that the field, d_lg is
measured. This relationship allows you to compute the magnetic field due
to any circuit by breaking the circuit up into little pieces and then adding
up all the dB’s. This relationship for d_é is an inverse square law but has the
complication of the vector cross product in the numerator. The cross
product (in Cartesian coordinates especially) is quite easy to calculate on a
computer.
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MAPPING FIELD LINES

There are two ways to visualize magnetic field patterns. The first is not
often used but is easy to understand. In this first method, the magnetic
field, E), is computed at a large number of points throughout the region of
interest. The entire field is then visualized in terms of contours (or surfaces
in three dimensions) of constant I—B)l. This method is not in common use
but is considered further in a problem at the end of the chapter.

The second (and very common) way to visualize magnetic field patterns
uses flux lines. The definition of a flux line has two parts: (1) the
magnetic field, _g(_r)), is tangential to the flux line at each point, ?,
and (2) the number of flux lines passing through a (unit, perpendicular)
cross section placed at any point, ?, is proportional to the magnitude of
the magnetic field, II_B)(-r))I, at that point.

To calculate the shapes of flux lines analyticaily (the result then being an
equation for the lines) is very difficult. With a computer, such calculations
are straightforward. Suppose you know a point, (x, y, z), on a flux line.
(Any point (x, y, z) lies on some flux line. So choosing an arbitrary starting
point defines a particular flux line which will be followed.) Suppose further
that you want to take a step of size As along the flux line. The first
defining property for flux lines (§ is parallel to the line} implies that

N
Ax = As B, /|B|
N
Ay = As By/IBI
.
Az = As B,/|B|

These equations say that E; = A_))( + A_)y + A_; is parallel to ES) = Ex + Ey +
EZ. At the point (x, vy, z) you calculate §; and then calculate Ax, Ay and
Az. The next point along the flux line is (x + Ax, y + Ay, z + Az). Since
you now know another point on the flux line, you can repeat the process.
In this way the computer is used to walk along the flux line in small steps,
As.




Flux lines never end, so the process continues until we return to the
starting point. A block diagram of this strategy 1ooks like this:

INPUT
Currents and Their Positions

> Choose a Point, F,

on the Flux Line

v

Calculate the Total
. kd > "
Field, B, at r

v

Calculate Ax = As Bx/lél
>

Ay = As By/I§I

Az = As B,/IB|

v

Calculate new T
={(x + Ax,y + Ay, z + A2)

The fact that flux lines never end is a consequence of the fact that the
next flux through any region must be zero (¢ _B> . &7\ = 0}, As much flux
must enter as leaves; hence, no flux line can end. (The corresponding
statement for electrostatic fields is § E . d_/i = 4mkoqg. This implies that
electrostatic field lines end or start only on charges, which may, if
necessary, be at infinity.)

Notice that this iterative procedure for following flux lines will break
>
down if |B| = 0 at any point on the line,
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FLUX LINES FOR A SET OF LONG STRAIGHT WIRES

Let's consider a simple case.

Example 1. Map the magnetic induction pattern due to four long straight
wires parallel to the z-axis. The currents and the points (x, y} at which the
wires cut the x-y plane are: +1 at (+1, +1); -1at (-1, +1); -1 at (-1, +1);

and +1 at (+1, - 10).

Schematically the situation in the x-y plane is:

This is a relatively simple current distribution, but analytical methods
cannot calculate the flux lines. A plus one current means a current of one
ampere (in mks units) which is coming out of the page (by the right-hand

rule).

—>
By symmetry, the magnetic field, B, has no z-component. All planes
parallel to the x-y plane are equivalent, so we need only consider the x-y
ptane itself. A program implementing the strategy discussed above might

® | ®
® | ®

look like the following:

BMAP
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DIM X[ 43,Y[41,104)

LET N@=4 Currents and
FOR J=1 TO N@ Geometry for
READ X(JJ,Y[J],ICJ) long, straight
NEXT J wires

DATA l1slsls=1sls=1ls~lo=1s=1sls=1,1

LET K@=1eE=@7 - Units

LET D=.@5 — Stepsize, As

PRINT "(X,Y> STARTING PT. ON FIELD LINE?"
INPUT XS,Y5S

LET X@=X5-«x

LET Y@=YS-vy

LET X1=0-Ax

LET Yi=@¢ -4y

LET S@=.5 — Print every S@ along line

LET S$=0 - Distance, S, along line

PRINT X', v

LET Bl=0

LET B2=¢g

FOR J=1 TO N@

LET R2=(X0+X1/2=X[J11*x(XP+X1/2=XLJI1) :I—>1
LET R2=R2+(YO+Y1/2-YLJ1I*(YB+Y1/2-YLJ12] /")
LET B=2+K@*ICLJI/R2_ 5/

LET Bl=Bl=(Y@+Y1/2-Y(J1)*B-8,

LET B2=B20(X0+Xl/2-xfd])*B—Ey

NEXT J N

LET BO=SQR(Bl%*B1+B2%B2)-|8]|

LET X1=DxB1/B8- Ax

LET X@=X0+X - New x

LET Y1=DxB2/B0 - Ay

LET YQ2=Y@+Y |- Newy

LET S=5+D

IF S<S@ THEN 450 | prine our

LET S=0 Lines

PRINT X0,Y0

IF ABS(X2)+ABS(Y®)> 18 THEN 470 - Far off page

IF ABS(X@-X5)+ABS(YB-YS)>.9%D THEN 270 - Backto
PRINT X8,Y@ — Last point on line start
PRINT

GOTO 188@ — Return for new line

END

Catculate B
(half-stepped)

Tests for
End of Line




The calculation of the magnetic field, E(?), in this program uses a point
(approximately) one-half a step ahead of the present point on the line. A
discussion of convergence and the half-step method are found in Appendix
B. A run of this program looks like this:

RUN

BAP

(X,Y)> STARTING PT. ON FIELD LINE?
7+8, 48

X Y
1.2319 «640183
1.40682 1.66023
1.8171 1+ 38555
«743917 «945335
«792453 «B804443
(X,Y) STARTING PT. ON FIELD LINE?
2.5,0

X Y

« 435075 - 494747
« 382484 -e998777
. 49 6948 ~1.4741)
«7908066 ~1.87544
1.2€665 -2.14756
1. 68808 -2.27552
2418638 ~2426245
2. 66452 ~2. 12079
3. 09446 ~1.8678
3.45537 -1.52326
37323 -1.10812
3.9151 ~e 643715
3997 67 -+ 151479
3.97737 347228
3.85484 «831059
3+ 63404 1.27863
3. 3226 1. 66852
2.93244 1.97947
2. 48867 2. 19889
1.99¢78 228379
1449415 2+ 24244
1.23185 2.905738
« 656388 1.73115
« 428638 1.28974
« 388341 «794198
« 471962 « 381455
« 580743 3.20055E~03

(X+Y)> STARTING PT. ON FIELD LINE?
?

Practice Exercise: Modify this program to follow flux lines due to two
wires both with [ = +1 with (x,y) position (-.5,0) and (+.5,0).

Terminal plotting is sometimes useful to display flux lines. f you have a
plotter system or a plotting terminal, you may want to use that. Terminal
plotting can be performed as discussed in Appendix A. The necessary
changes in the flux line program BMAP on page 24 (and then a run) to do
terminal plotting might look like:

GET-BMAP

18 READ X8,X9.,Y8,Y9,2Z0
20 DATA -5,5,-5,5,1

38 GOSUB 908820

205 GOSUB 9109

250

4309 GOSUB 91¢@

45@ GOSUB 9162

452 GOSUB 9200

MAGNETOSTATIC FIELDS 0O 25
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RUN
BMAP

(X,Y) STARTING PTe. ON FIELD LINE?
207207
MAX Y= S
D 0.9,9,9.9,0.9.9,9.9.9,0.9,9.9.0.0.0.0.0.990,¢99.080.90090000099098099099094

R R R R R R R R L L™

P2 0.0.2.9.0.9.9,9.0,00.9.9,0,0.9,0.9.0.9,:¢.9,0.9,9.¢.0,0.9.0.9,.9.9,9.9.9.9.99,0,¢9.9.09 9,094
MIN Y=-5 MIN X=-S5 MAX X= S

(X,Y> STARTING PT. ON FIELD LINE?
7.5, 8
MAX Y= S
3 0.00.0.0,9,9.00,0,0,0,0.0.9.0.9.0.009.9.0.9.9.9,9.$.09.0.0.0.0.909.9.00.0,0.9.¢.9.9.0.¢01

R R R R R R R R R I R0 R0 S0 SRV LD SO R0 SV

Ri0.0,0.0,0.9.9.9,0,9,0.0.0.9,0.9.9,0,0,0.9,9.9,:9.9,9.9,9.9,9:9,0,0.9,:0.9.0,9,.9.9.9.9,9.9.9.0.¢.¢,9.9.¢
MIN Y==-5 MIN Xa=5 MAX X= §

(X,Y> STARTING PTe ON FIELD LINE?
?

Practice Exercise: By hand, plot the positions of the line currents on the

terminal plots.

The flux lines bend around and close on themselves. The field is higher
halfway between the oppositely-directed currents and lower halfway be-
tween the like-directed currents. The field is quite uniform (that is, the

flux lines are nearly parallel over a fair-sized region) at the center of the

pattern.




THE DENSITY OF FLUX LINES

If the flux lines are started correctly somewhere in the pattern, the density
of the lines will be correct everywhere. That is, if the second defining
property is obeyed somewhere by all the flux lines, it will be obeyed
everywhere. The difficulty is that there is no easy way to make the density
correct anywhere. (This is unlike the case for electrostatic field lines in
Chapter One. For electrostatic field lines you can start the lines correctly
near the charges.)

You might be interested in thinking about this difficulty. Can you see a
way to start the lines with the correct density? How about calculating the
flux through small regions across, say, the line from (-1,0) to (+1,0) in our
example? You might then start the correct number of lines in each region.

FIELD LINES FOR COMPLICATED CURRENT
DISTRIBUTIONS

The same algorithmic procedure to follow flux lines can be used for more
complicated current distributions. You can use the Biot-Savart law quoted
at the beginning of this chapter. By breaking up any current distribution
into little pieces, 1d¥, using the Biot-Savart law to calculate the d—ﬁs for
each piece, and then adding the dBs to find the total magnetic field, E
you can calculate the magnetic field anywhere in space for any current
distribution. Using the resulting values of §= (By. By, B,), you can foll)ow
the flux lines for any current distribution by making As parallel to B as
above.

Let's find the field pattern for a Helmholtz pair of circular coils. A
Helmholtz pair has two parallel, circular coils carrying equal currents and
having a separation equal to the coils’ (common) radius.

Example 2. Map the magnetic field pattern in the x-y plane due to a pair
of Helmholtz coils of radius one carrying a current of +1A. Both coils are
parallel to the y-z plane.

MAGNETOSTATIC FIELDS O 27
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—>
A program which calculates the magnetic field, B, using the Biot-Savart
law and follows flux lines algorithmicaily might look like the following:

CoILMP

16¢ DiM Ct20],sC202

118 LET ng=2

120 FOR J=1 TO Ng

136 READ X(J1,R0JI,104J)

142 NEXT J

159 DATA ¢5,1,1,-45, 1,1

160 LET P2=6.28318

172 LET N9=1¢

188 FOR I=1 TO N9

19¢ LET T=P2x(I1=-.5)/N9 | Store
206 LET CL11=COS(T) sines and
219 LET SC{I)=SINC(T> cosines
22¢ NEXT I

230 LET K@=1.E-¢7

240 LET D=.1

25@ PRINT "(X,Y)> STARTING PT. OV FIELD LIWE?"
260 INPUT X5,Y5

27@ LET X@=X5

28¢ LET Ye=YS

292 LET X!1=8

3086 LET Y1=0

31¢ LET S@=.5

320 LET S$=¢

330 PRINT "X, 'y"

342 LET Bi=@

358 LET B2=0

360 LET B3=¢

37@ FOR J=1 TO N@ — step through coils
388 FOR 1=1 TO N9 — step around each coil
39@ LET L1=0

422 LET L2=-P2xRCJI*SL1]1/N9
41¢ LET L3=P2xRC{JI*CL1I/N9

420 LET L7=X{J1l

432 LET L8=RCJI*CLI1]

44@ LET L9=RI{JI%S[1]

450 LET X63X@+X1/2-L7

46@ LET Yé6=Y@+Y1/2-L8

4@ LET z6=-L9

480 LET R6=SQAR(XE6EXX6+Y6XY6+Z6%Z6)
4902 LET R6=R6%R6%R6

S80 LET Cl1=L2%Z6=L3%xY6

518 LET C2=L3*X6<L 1%2 6 |Cross product
520 LET C3=L1%Y6=-L2%X6

530 LET BI=BI+K@*I[JI*C1/R6- 8,
544 LET B2=B2+K@*I1{J3*C2/R6-8
S5¢ LET B3=B3+KQ*I[J]*C3/R6—BI
568 NEXT 1!

S72 NEXT J

580 LET B@=SQR(EI*E1+B2%B2+RB3%xEJ)
59¢ LET X1=DxE)/Be

608 LET X@=Xg+X1

61¢ LET Y1=DxB2/B2

62@ LET VE=YQ+Y1l

632 LET S$=S+D

64¢ 1F S<S@ THEN 670

650 LET S=¢

668 PRINT X6,Y0

672 IF ABS(XQ@)+ABS(Y@)>1@ THEN 69@
688 IF ABS(X@-X5)+ABS(Y®@-Y5)>.9%D THEN 340
692 PFINT X0@,Y@

708 PRINT

718 GOTO 25¢

726 END




Practice Exercise: Annotate the program by written comments by each
line.

A run looks like this:

RUN

COILMP

(X,Y) STARTING PT. ON FIELD LINE?
78,1

X Y

« 469244 «857036
»789097 1.18179
-« 615597 1. 63534
180641 1.86649
-. 312249 1.83218
~+700194 1.52856
-+757882 1. 25049
-+341947 -869398
~6.54586E-¢2 «985284
(X,Y) STARTING PT. ON FIELD LINE?
Tels o9

X Y

« 7607 49 1.13971
« 596547 1.59283
« 152584 1.885Q4
-+ 33987 1.756€6
~e711667 1.43789
-+ 684021 «9 65799
-+ 226359 «939789
« 235256 «932256
« 325676 «889544
(X,Y) STARTING PT. ON FIELD LINE?
708545
X Y

4997 65 <4973
«97 69 « 635858
1.37464 935003
1. 68635 1.32485
192196 1.7 6524
2.08598 2.23709
2. 17837 2.728804
2. 1968 3.22724
2. 13798 3.72326
1.99862 4.20284
1.77646 40 65
1.47184 S«B4543
1.89204 5.3667
« 6440855 S5.5901
« 156582 5.69515
- 341449 5. 6708
~«816714 55197
~1.24089 S.25712
=159496 4.90542
~1.86911 4e48822
-2.06025 4.0269
-2.16923 3+ 53949
-2.19883 3. 04085
-2.15247 2454345
-2.23318 2.25834
~1.84265 1.59658
=1+5795% 1.17213
-1.23706 «809351
-+806264 « 56055
-«313676 «492408

-1.38063E-02 «50097

(X,Y) STARTING PT. ON FIELD LINE?
?
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And, finally, a terminal plot of the program, COILMP on page 28, is
shown below:

GET-COILMP

18 READ X8,X9.,Y8,Y9,28
20 DATA -5,5,-5,5,8¢

3¢ GOSUB 9ene

265 IF X5=999 THEN 715
266 LET Z0=20+1

285 GOSUB 9106@

338

668 G0SUB 9108

69@ G0SUB 9100

715 GOSUB 92068

APP-TTYPLO
RUN
COILMP
(X,¥) STARTING PTe. ON FIELD LINE?
0.1
(X.Y) STARTING PT. ON FIELD LINE?
Telds o9
(X,Y) STARTING PTe. ON FIELD LINE?
i{-7%%-1
(X,Y) STARTING PTe ON FIELD LINE?
7999, 0
MAX Y= S
$u2,9.9,0,0,0.0.0,:9.9.9.9.9,9.90.9.9.9.0.0.9.09.0 $.9.9.0¢.9.0.9.90.099999999990¢0.094
3
3
3 3
3
3 3
3
3
3 3
3
3 1
3 12 22 3
3 2 1 3

1212122 2 3
3 3 3 3
3 3

R R T I T Y™

1.9.0.9.9.9,0.9.0,0,0,0,0,0.9,0.0.0.0.9¢.0.0.0.¢.9.00.020090.9.90.00.00,8.00.¢999¢009
MIN Y=-5 MIN X==$§ MAX X= 5

Again, the strategy used in this program is entirely general. The magnetic
field, B(?), for any current distribution can be calculated from the Biot-
Savart Law: sets of short wire segments; open-wound, short solenoids; sets
of square coils; anything at all. A number of possible cases are treated in
the exercises at the end of the chapter.

CONCLUSION

This chapter has introduced a general method to map magnetic field
patterns. Both simple sets of long straight wires were discussed and a
completely general procedure based on the Biot-Savart law was presented,
By running several situations you can get a good intuitive feel for the
behavior of magnetic fields.
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CHAPTER TWO EXERCISES

1. Consider two long, straight, current-carrying wires parallel to the
z-axis. The currents and the points {x,y)} at which the wires cut the
x-y plane are: +1 at (1,0); +1 at (- 1,0).

al Determine the magnetic field along the x-axis from -3 to 3.

b)  In the region .5 <x < 1.5, -.5 <y <5, calculate six magnetic
flux lines such that the number of flux lines through a given
area on the x-axis is proportional to the flux in that region.
(Since the field is independent of z, the number of flux lines
through a Ax should be proportional to the average magnetic
field on that region.)

c) In the region -3 < x < 3, -3 <y < 3, calculate six magnetic
flux lines such that the number of flux lines through a given
region is proportional to the field in that region.

d)  In the region close to each wire, how does the field compare to
that of a single current-carrying wire? In the region far away
from all the wires, how does the field compare to that of a
single current-carrying wire?

2. Consider two long current-carrying wires parallel to the z-axis. The
currents and the points (x,y} at which the wires cut the x-y plane
are: +1at (1,0); -1 at (-1,0).

a) Determine the magnetic field along the x-axis from - 3 to 3.

b)  In the region .5 <x < 1.5, -.5 <y <5, calculate six magnetic
flux lines such that the number of flux lines through a given
area on the x-axis is proportional to the flux in that region.
(Since the field is constant in the z direction the number of
flux lines through a Ax should be proportional to the average
magnetic field on that region.)

c) In the region -3 < x < 3, -3 <y < 3, calculate six magnetic
flux lines such that the number of flux lines through a given
region is proportional to the field in that region.

d) In the region close to each wire, how does the field compare to
that of a single current-carrying wire? In the region far away
from all the wires, how does the field compare to a single
current-carrying wire?

3. Consider the simple case of a single loop of current-carrying wire.
Say the loop lies in the y-z plane centered at the origin with a radius
of one and carries a current of one,

a) Using the Biot-Savart law and the computer integration
method, calculate the magnetic field at several points along the
x-axfs. (x=0,1,5, 10).
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b) It is possible to calculate these axial fields analytically. Do so
and compare the analytical results with the ones obtained from
the computer method.

c) Evaluate the magnetic field along the y-axis out to the edge of
the coil.

d)  Calculate the flux line pattern in the y-z plane through the
coil.

4, Consider the case of four current-carrying wires parallel to the z-axis.
The currents and the points (x,y) at which the wires cut the x-y
plane are: +1 at (1.5,1); -1 at (- 1.5,1}; +1 at {.5,-1); and -1 at
(-.5-1).

a) Sketch the flux lines close to each wire. Now sketch the whole
flux line distribution.

b)  Calculate the flux line pattern for this distribution.

5. Consider the case of four current-carrying wires parallel to the z-axis.
The currents and the points (x,y) at which the wires cut the x-y
plane are +3 at (2,0); -3 at (-2,0); -1 at {1,0) and +1 at (- 1,0).

a) Sketch the flux lines close to each wire, Now sketch the whole
flux line distribution.

b) Calculate the flux line pattern for this distribution.

6. Consider a square Helmholtz pair of coils. Let the corners of the
square loops be defined by the (x,y,z) points: (+.5,1,1), (.5,1,-1),
(6-1-1, (5-1,1) and (-5,1,1), (-51,-1), {-5,-1,-1),
(-.5,~1,1).

al Calculate the flux line pattern for this distribution. Since it is
not rotationally symmetric about the x-axis, calculate it in the
x-z plane and then in the plane defined by the point (0,1,1)
and the z-axis (i.e., the plane at 45° to both the x-z and y-z
planes).

b)  Compare the axial field to that of the true (circular)
Helmholtz pair. Compare both the magnitude of the field and
the uniformity of the field in the center of each pair.

7. Consider an infinite current-carrying cylinder of radius one. Model
the cylinder as sixteen infinitely long wires parallel to the z-axis.

a) Calculate the field distribution for this pattern.

b)  How well does this compare to the Biot-Savart law inside the
cylinder? Qutside the cylinder how does it compare in magni-
tude and shape to a single wire at the origin with a current of
sixteen?




10.

The field for an electric dipole was given in Chapter 1, Exercise 10.
How well does the magnetic field of a simple loop in the x-y plane of
radius 1 compare to the dipole equation when you are far away from
the loop? Use the distance of ten for your comparison. What dipole
moment, p, is necessary to make the magnitudes agree? How does
this dipole moment vary with the current in the loop?

Flux lines are not the only method of studying magnetic fields.
Write a program similar to the equipotential character mapping
program to print like characters for regions with the magnitude of
|B| equal. This method could be useful for determining regions of
constant field.

a) Use your program to study the field pattern in Exercise 1.

b) Use your program to study the field pattern in Exercise 2.

Consider a solenoid of radius 1 along the x-axis five units long

centered at the origin. (Approximate the solenoid by five current-

carrying loops).

a) Calculate the field line distribution.

b} Using the field line mapping program or the field magnitude
program of Exercise 9, determine what current should be run

through the end coils to make the field inside the solenoid
more uniform,
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CHAPTER THREE: THE MOTION OF
CHARGED PARTICLES IN ELECTRO -
STATIC AND MAGNETOSTATIC FIELDS

INTRODUCTION

Many students believe that charged particles move along field lines. Except
in very rare instances, charged particles do not move along field lines.
Although the direction of the field line at any point defines the direction
of the force at that point, the force only changes the velocity not the
position itself. Once it is moving, the charged particle will, in general, cross
field lines because of inertia. (If the particle moves through a very viscous
medium, you can force the particle to stay on a field line.)

This chapter introduces a way to calculate the trajectories of charged
particles in any (combination of) electrostatic and magnetostatic fields.
Those of you who have seen ?= mgalgorithmic solutions with a computer
before (probably in mechanics) will recognize the discussion in this
chapter. The chapter is based on an algorlthmlc solution for particle
trajectories when the forces are due to E and B

The forces on charged particles in electrostatic and magnetostatic fields are
discussed in physici textbook_s).*The forc;e on a charged particle in an
electrostatic field, E, is just F(r} = qg(r), where q is the value of the
charge. The force on a charged particle in a magnetic field (or, more cor-
rectly, magnetic induction), B’, is the Lorentz force, E(?) = q(z('r)) X g(?)). In
combined electrostatic and magnetostatic fields, the force is f-? = q(Eﬁ/)xB)).

AN ALGORITHMIC SOLUTION TO NEWTON'S SECOND
LAW

F = ma is Newton’s Second Law and is the basis of classical calculations of
particle trajectories. In most physical situations, you know the force, E(?).
Hence, you know the acceleration 5(?) = I?(‘r))/m. Given a way to find the
acceleration at any point in space, the computer can easily be programmed
to find the trajectory of any particle.

Suppose you know a point, ?= (x ,Y¥.z), on the trajectory of a particle and
also know the particle’s velocity, = (vy, v v v,) at that point. (You usually
know ¥ and ¥ at the initial point of the trajectory.}) Suppose you want to
find the position a short time, At, later. From the acceleration, you can
find the change in the velocity of the particle in the time, At: AV = aAt.
Then, the new velocity after the time, At, is

> —>
‘Tnew =voig t Av (8)

From the velocity, you can find the change in position ?during the time
At, since

r=vAt (9)
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Hence, the next position on the particle’s trajectory is

?new = ?old + VAt (10)

The new time is thaw = tolg + At.

Now that you know another point on the trajectory, the process can be
repeated over and over. TI’_\E_)result is the trajectory of the particle as it
moves through the force, F(r). We will discuss two cases: the first is the
motion of charged particles in electrostatic fields, and the second is the
motion of charged particles in combinations of electrostatic and magneto-
static fields. The second case is somewhat more complicated because the
force on a charged particle in a magnetic field is velocity-dependent.

THE MOTION OF A CHARGED PARTICLE IN AN ELEC-
TROSTATIC FIELD,

The force on a charged particle in an electrostatic field, E, is just I—:)= qE
You can calculate the electrostatic field, E for any distribution of point
source charges and line source charges. The field for a point source charge
is E ko Q/r? (r/r) where Q is the value of the source charge and Y is the
distance from the source charge, r = lrI The field for a line source charge is
E) = koM/r (r/r) where A is the charge per unit length of the line charge and
r is the perpendicular distance from the line charge. ky defines the units;

=9 x 10% in mks units and ko = 1 for cgs units. Any general source
charge distribution can be treated as a set of point or line charges.

Example 1. Find the trajectory of a positron (a particle with the mass of
an electron but opposite {positive) charge} moving under the influence of a
uniform E field parallel to the y-axis. Start the trajectory at the origin with
velocity (4,0,0).

One program which implements the algorithmic solution discussed above is
shown below:

MTONE

108 READ E1,E2,E3
118 DATA ©,1,0
12¢  PRINT "INITIAL X,Y,Z,VX,VUr,VZ & FINAL T?"] Initial 7,V and
138 INPUT X,Y»2,V1i,V2,V3,TO final time
14¢ LET D=.@5- At

150 LET Q@=1-q9/m

168 LET T=0

170 LET T9=8

188 REM COMPUTE FIELDS, ACCELS., VEL., POSITION, TIME
198 LET Al=Q@xE1-2,

202 LET A2=Q@%E2-3

21@ LET A3=Q0*E3-3,

226 1F T>@ THEN 270

2380 LET Vi=Vi1+AlxD/s2

24@ LET V2=V2+A2xD/2 |/nitial half step

250 LET V3=V3+A3%xD/2

260 GOTO 3¢¢

27@ LET VI=VI+Al*D-V

2808 LET Ve=V2+A2%D-V,

298 LET V3=V3+A3%D- v,

306 LET X=X+V1%D - New X

3180 LET Y=2Y+V2%D— New Y

32¢ LET Z=Z+V3%D-— NewZ

338 LET T=T+D-Newt

342 LET T9=T9+D

35¢ 1F ABS(T9-TO/10)/7T9>.200201 THEN 38 | Print results
36 LET T9=Q every T@/10
370 PRINT T:X3Y:Z

389 IF T<TO THEN 18@ — Return for next point on trajectory

390 PRINT

400 GOTO 120 - Return for new trajectory

418 END

-
]Set E field
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The program uses a half-step method (the velocity is one-half a time step,
At, away from the position). This half-step method increases the con-
vergence of the procedure and is discussed further in Appendix B. The
units used in the program are normalized {because g/m is set to 1) so that
fields are measured in units of the charge-to-mass ratio of the particle. For
example, since the particle is a positron, g/m = +1.759 x 10'! in mks
units, so a field with |E| = 1 actually has |[E| = 5.685 x 107'? V/m.

A run of this program looks like the following:

RUN
MTONE

INITIAL X,Y,2,VX,VY,VZ & FINAL T?
20, 0,0,4,8,0,10

le 40 5 0

2e 7499999 2. @

3. 12. 4.5 2

4.20001 16. 8. @

S.0Q0681 20. 12.5 @

6. 20001 24.0001 18. @
7.80002 28.08001 24.5 0
8.00002 32.0001 32.02001 0
9.20001 36. 42.5001 @
9.99999 40. S52.02001 0

INITIAL X,Y,2,VX,VY,VZ & FINAL T?
?

You can plot the trajectory of the particle using MTONE and the terminal
plotting discussed in Appendix A. The required changes in the program
and a run of the modified program are shown below:

GET-MTONE

18 READ X8,X9,Y8,Y9,20
20 DATA 2.,50,8,58,1

38 GOSUB 9269

132 LET X@=X

134 LET Y@=Y

136 GOSUB 9100

379 LET X@=X

372 LET Y@=Y

374 GOSUB 9180

39¢ GOSUB 9208

APP-TTYPLO

RUN
MTONE

INITIAL X,Y,Z,VX,VY,VZ & FINAL T?

70,0,0,4,0,0,10

MAX Y= 5@

XXXXXXXXXXX KX XXX XKL KKK XX XL XXX L X XXX L XXX XXXX KX XK XXX

1

R I I I I Y™

-

1
XXXXAXAXXXXXXXXRXXXXNXXKALXXLXXX XXX XXX XL XX KXXXKXKKKX
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MIN Y= § MIN Xw @ MAX X= 5@
INITIAL X,Y,Z,VX,W,VZ & FINAL T?
?

For a uniform electrostatic field, the trajectory is a parabola (as can be
derived analytically). Consequently, the motion is just like that in a
uniform gravitational field. Thus, this particular example can be used to
check the numerical method. This check is pursued in a problem at the
end of the chapter.

Practice Exercise. Modify the program, MTONE, so that it calculates the
electrostatic field inside the integration loop. Use the electrostatic field
due to a point charge at the origin.

A terminal plot of several orbits in the field of a -1 charge at the origin
looks like:

16 READ X8,X9,Y8,Y9,Z0
20 DATA -2,3,-2.5,2.5
38 GOSUB 9609

12¢

118

131 1F X=999 THEN 4@¢5
132 LET Z@=Z@+1

133 LET X@=X

134 LET Y@=y

185 LET R3s((X1+X1/2)t2+(Y1+Y1/2)12)1 1.5
198 LET Al=0

206 LET A2=¢

218 LET A3=#@

37¢ LET X@=X

372 LET Yo=Y

374 GOSUB 91e@

390

485 GOSUB 9220

APP=-TTYPLO

RUN
MTONE

INITIAL X,Y,2,VX,VY,VZ & FINAL T?

?-1,2,2,8,1,0,7

INITIAL X,Y,Z,VX,VY,VZ & FINAL T?

?2«1,0,2,0, 12,8, 15

INITIAL X,Y,2,VX,VY,VZ & FINAL T?

1999,0,0,0,0,2,0

MAX Y= 2.5
210.0.9,0.9,0,0.9,9.9.9,9,9,9.9,0.9,0,9,:0.9,9.9,:9.9,:0.9.9.0.9.:9.0.9.¢.9,¢.9.9.9.9.9,9.9.9.0.9.9.¢.¢ ¢

Y
Y

Y

Y

Y

Y 2

Y

Y 2 2

Y

Y 1

¥ 1

Y 1 o 2
Y

Y 1

Y

Y 2 2
Y

e 1

¥

Y 1 2
Y 1

s 1

Y

Y 2 2

Y

Y 2

Y

Y

e

Y

Y

PA0I0919.0.9,0:6.9:9.9.9.9,0.9,9.0.9,¢,9,0.9,:¢,,9.9,0,0,9 9,9,:¢,9,9.0.9.9.9,9.9.9,9.9,:¢ ¢.6 9,.¢.9.9 4
MIN Y==2,5 MIN X==2 MAX X= 3

END




THE MOTION OF CHARGED PARTICLES O 39

Practice Exercise: Plot the position of the source charge on the terminal
plot.

These trajectories can also be calculated analytically, although with some
difficulty. The trajectories are exactly similar to the orbits of a satellite
around the earth.

Practice Exercise: Modify the program to find the trajectories of a posi-
tron in the electrostatic field due to a +1 point charge at (+.5,0,0) and a -1
point charge at (-.5,0,0).

These trajectories cannot be derived analytically. Other source charge
distributions are considered in the problems at the end of the chapter.

THE MOTION OF CHARGED PARTICLES IN COMBINED
ELECTROSTATIC AND MAGNETOSTATIC FIELDS

The algorithmic solution for charged particle trajectories becomes more
difficult when the force is velocity-dependent. The program discussed
above for electrostatic fields calculates the velocity a half-At time step
away from the position and the acceleration. Since the acceleration needs
the value of the velocity at the acceleration’s own time, an estimate of this
un-half-stepped velocity must be made. This estimated velocity can then
be used to find the acceleration.

Example 2. Find the trajectory of a positron starting at (-1,0,0) with
velocity (0,1,0) in a uniform magnetic field of magnitude (q/m) parallel to
the z-axis.

The following listing is for a program which implements the algorithmic
trajectory calculation for charges moving in combined electrostatic and
magnetostatic fields.

MTONEB

t@@ READ EI1,E2,E3,Bl,B2,B3

118 DATA 0,08,0,08.2,1

120 PRINT “INITIAL X.Y,Z,VUX,VY,VZ & FINAL T?"
139 INPUT X,Y,Z,V1,V2,V3,TQ

149 LET D=.85

156 LET Qe=1

160 LET T=0

17 LET T9=¢

1880 LET Al=0

19€¢ LET A2=0

20@ LET A3=9

219 REM COMPUTE FIELDS, ACCELS., VEL., POSITION, TIME
22@¢ LET Ul=Vi+AalxD/2

238 LET U2=V2+A2«D/2

240 LET U3=V3+A3xDs2

25@ LET Al1=Q@*x(El+(U2%B3-U3%B2)>
268 LET A2=Q@*(E2+(U3%B1-Ul*B3))
27@ LET A3=QO%x(E3+(U1%xB2-U2xBl))
e8¢ 1F T>@ THEN 330

29¢ LET ViI=VI]+AlxD/2

3828 LET V2=V2+A2%D/2

318 LET V3=V3+A3xD/2

328 GOTO 360

332 LET Vi=aVIi+Al*D

348 LET V2=V2+A2%D

3590 LET V3=V3+A3*D

368 LET X=X+VI%*D

378 LET Y=Y+V2%D

380 LET Z=Z+V3*D

390 LET T=T+D

4@ LET T9=T9+D

418 1F ABS(T9-T@/1@)/T9>.000081 THEN 440
428 LET T9=0
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430 PRINT T,%X,Y,2Z
44@. 1F T<T@ THEN 218
458 PRINT

460 GOTO 120

47¢ END

Practice Exercise: Annotate the program by written comments next to
each line.

A run of this program for the initial conditions given is:

RUN
MTONEB

INITIAL X,Y,2,VX,VY,VZ & FINAL T?
?7-1,0,0,0,1,0, 10

te -+539729 «841534 4
2 «417183 «987916 a
3. «989278 « 137948 [
4.00601 64953 -+ 759143 [}
S.¢0001 -«2891S ~e956982 [
6. 00081 ~+962105 -.273279 ]
T.000082 =e749406 . 662207 [}
8.20002 « 153869 «987741 [
9.200Q01 «914p21 .« 4934029 [
999999 «832466 -+552571 [

INITIAL X,oY,Z,VX,VY,VZ & FINAL T?
?

The motion is a circle as is expected from the analytic solution. A sensitive
test of the accuracy of this computer-based method is an examination of
the magnitude of the velocity as the particle moves around the circle, The
matter of accuracy is examined further in an exercise at the end of the
chapter.

Motion in a magnetic field often involves all three directions, x, y and z.
Hence, the motion is often hard to plot on a two-dimensional piece of
paper.

Practice Exercise: Modify the program to compute trajectories when both
a uniform electric field in the y direction and a uniform magnetic field in
the z direction are present.

Such a field configuration is called a velocity selector. When the initial
velocity of the charged particle has magnitude IEI/IE)I and is perpendicular
to both fields, the trajectory is a straight line. Thompson used this field
arrangement in his early measurement of {(e/m) for electrons. When the
velocity is not perpendicular to both fields, the motion can be quite
complicated.

Practice Exercise: Modify the program to find the trajectories of a posi-
tron when both the electrostatic field due to a point charge at the origin
and a uniform magnetic field in the z direction are present.

Analytical methods won't produce these trajectories even though the
changes necessary in the algorithmic program are minimal. Further physi-
cal field situations are considered in the problems at the end of the
chapter.
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CONCLUSION

This chapter introduced a way to calculate the trajectories of charged
particles in electrostatic and magnetostatic fields. The method works for
arbitrary fields and for any charged particle. The method is general but
easy to understand. By running several examples you can gain a good
understanding of the motions of charged particles in e & m fields.

CHAPTER THREE EXERCISES

1. Consider the motion of a positron in the electric field created by an
infinitely long line charge. The charge is along the z-axis and has a
magnitude of +1 coulomb/m.

a) Determine the trajectory of a positron initially travelling in the
Z direction starting at (1,0,0) with a velocity of one.

b)  Determine the trajectory of a positron initially travelling with
a velocity of (6,0,0) and an initial position of (-40,1,0).

c) Does the angle of deflection of the positron change with the
different y values for its starting point in part (b)? Try y=.5,
y=2, and y=5.

d) What happens when the charge on the line is changed to the
charge on a (negative) electron?

e) Will the electric field ever be able to hold the positron (i.e.,
will the positron ever orbit the line charge)?

2. Consider the motion of an electron in the electric field created by
two infinitely long line charges. The charges are parallel to the z-axis,
each with a line charge density of ~1. The line charges intersect the
x-y plane at the points (0,2) and (0,~2).

a) Determine the trajectory of an electron initially travelling in
the z direction starting at the origin with a velocity of one.

b)  Determine the trajectory of an electron initially travelling with
" a velocity of (5,0,0) and an initial position of (-20,0,0).

c) Does the angle of deflection of the positron change with the
different y values for its starting point in part (b)? Try y=-1,
y=-.5,y=.5, y=1.

d)  What happens when the charge on the line is changed to the
charge on one (negative) electron?
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3. Consider the motion of a positron in the electric field created by
two point charges. The charges and positions are: ~1 at (3,0,0) and
-1at (-3,0,0).

al

What happens to the positron with the initial conditions:
position (0,8,0) and velocity (.45,0,0)?

b) What happens to the positron with the initial conditions:
position (4,0,0) and velocity (0,1,0)?
c) What happens to the positron with the initial conditions:
position (3,0,3) and velocity (0,.5,0)?
d) Try other trajectories that you think might be interesting.
4, Consider the motion of a positron in the electric field created by a

dipole charge distribution. The charges and positions are: -1 at
(3,0,0) and +1 at (-3,0,0).

al

b)

c)

d)

e

What happens to the positron with the initial conditions:
position (0,8,0) and velocity (.45,0,0)?

What happens to the positron with the initial conditions:
position (-4,0,0) and velocity (0,1,0)?

What happens to the positron with the initial conditions:
position (4,0,0) and velocity (0,1,0)?

What happens to the positron with the initial conditions:
position (3,0,3) and velocity (0,.5,0)?

Try other trajectories you think might be interesting.

5. Constant magnetic fields are sometimes used as simple electron beam
collimators. Suppose we have a constant magnetic field in the z
direction of magnitude (e/m).

a)

b)

c)

d)

What happens to an electron with initial position at the origin
and initial velocity (0,0,1)?

What happens to an electron with initial position at the origin
and initial velocity (0,1,1).

What happens to an electron with initial position at the origin
and initial velocity (0,1,0).

How does this field act as a simple collimator?

6.  Consider the diverging field B, =0, B, = 1/x*,and B, = 1/x%.

a)

What happens to a positron with initial position of (20,0,0)
and initial velocity of (-1,0,0). This is often called a magnetic
mirror because the field pattern reflects charged particles. Two
such mirrors contain charged particles between them and are
often called magnetic bottles.
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b) What happens to the velocity in the x direction?
c) Is energy conserved?

Consider the combined electric and magnetic field problem discussed

in the chapter (the velocity selector with a uniform E = g/m in the y
>

direction and a uniform B = g/m in the z direction).

a) Verify that those particles thgt are perpendicular to both b?
- ->
and B and have a velocity of |E|/\B| pass through this field as if
the field did not exist.

> >
b) In what direction do the particles move if |\E|/|B| is greater
than or less than the velocity ?

c) In what direction do the particles move if the x-component of
> -
velocity is |E\/|B| but the electron has some velocity in the y
direction?

d) In what directior; do the particles move if the x-component of
ik
velocity is |E|/|B| but the electron has some velocity in the z
direction?

-> -
e) Determine analytically that V, = |E\/\B| for the velocity
selector.

Consider a uniform magnetic field of .1 in the z direction and a
point charge of +1 at the origin.

a) If an electron has an initial position of (1,0,0} and velocity of
(0,1,0), what does its trajectory look like?

b) If an electron has an initial position of (1,0,0) and velocity of
(0,0,1}, what does its trajectory look like?

The uniform electric field problem is similar to the acceleration of a
body under the influence of gravity.

al Write down the analytical expression in component form for
the position of a particle as a function of time fincluding its
initial velocity).

b)  Compare the results of the program MTONE to the analytical
expression at the times t =2, 5, and 10.

The solution to the problem of a positron moving in a constant
magnetic field is a good problem to check the iterative solution
because there is an analytical solution, Start the charged particle
with initial velocity perpendicular to the magnetic field.

al Determine (analytically) the radius of the (circular) orbit as a
function of the charge, mass, magnetic field, and velocity.
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b)

cl

d)

Determine the period of the motion as a function of the
magnetic field, charge, and mass. (The frequency associated
with this period is called the cyclotron frequency.)

Compare your results with that obtained by the algorithmic
method.

—>
The analytical solution has |V| = constant. Check your iter-
-»
ative solution by examining how constant |V| remains as time
passes.
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CHAPTER FOUR: GAUSS’S,
AMPERE’S, AND FARADAY’S LAWS
FOR STATIC FIELDS

INTRODUCTION

Gauss’'s, Ampere’s and Faraday’s Laws represent the original forms of
Maxwell’s four equations. Aside from the term Maxwell added to Am-
pere’s Law (which made the set of equations agree with conservation of
charge and also predict electromagnetic waves), these four equations
represent the basis of all classical electricity and magnetism.

This chapter shows you a way to use the computer to calculate the
integrals in Gauss's Laws for E and for E) Ampere’s Law and Faraday’s
Law. You can then deal with questions such as “’Can this given field be an
electrostatic field? If so, where are the charges and what values of charge
are present?’’ or ““Can this given field be a magnetostatic field, and, if so,
where and of what size are the currents?”’ (Again we will use the term
magnetostatic field for —B) even though magnetostatic induction is strictly
correct.) In the forms we shall use, the laws can be written as follows:

— > >

Gauss's Law for E $E+dA = 4nkyq (11)
- - >

Gauss's Law for B $8°dA =0 (12)
-

Ampere’s Law $B+df = ko (13)

Faraday's Law 99355 =0 (14)

(In the general case Faraday’s Law says that fg'd—é = —-d®/dt, but we are
dealing with static cases. Currents are constant in time so the flux, ® does
not change.} The symbol § means the closed integral: in Gauss's Laws the
closed integral is taken over some surface completely enclosing some
volume of space; in Ampere’s and Faraday’s Laws the closed integral is
taken along some contour completely enclosing a surface in space. Ko
defines the units, and g and | are the net enclosed charge and current,
respectively.

These laws give a _v;/ay to examine an_y; f_ifld to see if it can represent an
el_gct_r)ostatic field E (in which case §E*df must be zero everywhere and
$E-dA can tell you the values of the charges present) or a magnetostatic
field B (in which case $B*dA must be zero everywhere and §§°d2 can tell
you the values of the currents present). These integral forms of the four
basic laws also determine the four differential forms for Maxwell’s equa-
tions which use vector derivatives (the divergence and the curl).

The chapter starts by presenting a number of pictures representing possible
vector fields. These pictures will be examined to see which might represent
electrostatic or magnetostatic fields. The chapter will then move on to
show you how the computer can be used to deal more quantitatively with
fields using the four basic laws in their integral forms. The most general
question of how to deal with fields if you are given only a set of measured
values throughout some region of space is considered in the exercises at
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the_gnd of)the chapter. The discussion in the chapter will be given in terms
of E and B fields, but the methods are applicable to any vector field (such
as the gravitational field or the velocity field of a flow pattern).

PICTURES OF VECTOR FIELDS

It is sometimes helpful to see a number of pictures of possible vector
fields. Inspecting the pictures to determine whether or not each picture
might represent an electrostatic or magnetostatic (or gravitational or
whatever) field exercises your knowledge and comprehension of the basic
laws. By inspection, you can often guess whether or not a particular
picture could represent an E or B field; you can often guess where the
source charges or source currents would lie. To be more quantitative, say
to find the values of the charges or currents, you need to perform the
necessary integrations. The computer helps in two ways: first, the com-
puter can be used to produce the pictures of the fields, and second, the
computer can perform the integrations.

There are two common kinds of pictures which are used to represent
vector fields for discussion. The first is a figure that shows the vector field
represented as arrows at a number of points throughout a region. The
second is a field line map such as those discussed in Chapters One and
Two. We will concentrate on pictures of the first kind. Let us look at
several examples:

Figure (a)
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igure (b)
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Figure (d)

RN
N

A N
/ \
—> _ 4 Ay
. . RN &

4
<&
S

v

/1

f

X

\

Figure (e}




.
S
DN [
V/V PR
VI \
[T TN

/

e e e
e e
© e .
A
s s x s s

Figure (g)

LAWS FOR STATIC FIELDS O 49



50 O ELECTRIC AND MAGNETIC FIELDS

P £ =3 P33 << -
o 2 Z& Pl P o
& & & pe V- &
2 2 P Yz Z Z
% 2 ¢ ¢ Z J
v v v v " J
Figure (h)
;
N / \ I 7
N N ~ — 7 <t
- ~—a —_— —= = =
e —= —_— ——— T "
” 74 - T~ ) ~
s T \
y

Figure (i)




Which of these figures could represent an electrostatic field? You need to
identify those fields for which fgé& =0 for all (clo_s)ed) paths. Figure (a)
is such a field; it appears possible that adding up E-A? for small pieces
around a contour made up of radial and circumferential pieces would
result in zero. In principle, you would have to show that the integral was
zero for any possible contour; in practice, if one type of contour has
fE df = 0, it is likely that almost any contour will also have §E dQ 0.1In
the case of Figure (a), it seems clear that any contour which can be
approximated by_)a _s)et of radial and circumferential pieces might obey
Faraday’s Law (§E-d{ = 0), and that is certainly a wide class of contours.

On those figures you believe could be electrostatic fields, identify the
positions and relative values of the source charges. In Figure (a) there
seems to be a positive charge at the center of the figure (and an equal
amount of negative charge at = on which to terminate the field lines).
When several charges are present, you can estimate the relative magnitudes
and the signs of the charges by considering the field near each charge.

Which of these figures could represent a magnetostatic field? This is a
harder question because you really need to find fields for which §§)‘d_7°\= 0
and the figures are only two-dimensional. Let us agree that the physical
situations represented in the figures have no dependence upon z, that is,
that every plane parallel to the x-y plane is equivalent to the x-y plane.
Then the x-y plane sho_\ivn_)in the figures tells the whole story. Figure (b)
seems likely to have $§B-dA = 0 for surfaces which are pieces of circular
cylinders wnth z-axns axes connected by radial planes. Again you cannot
prove that §B dA 0 for all possible surfaces without doing some integrals,
but the result looks right.

On those figures you believe could be magnetostatic fields, identify the
positions and relative values of the source currents. in figure (b) there
seems to be only one source current at the center of the picture. The
current appears to come out of the page (by the right-hand rule), so the
current is positive although its magnitude cannot be determined without
more information. If there were several currents, their relative values could
be estimated from the relative strengths of the fields nearby; the directions
of the currents could be determined from the directions of the fields
nearby.

Now you can try the rest of the figures. It is not difficult for anyone to
produce pictures such as those shown. You can do it yourself.

-> -
Practice Exercise: Write a program to calculate |\E| and the angle E makes

with the x-axis for a number of points on the x-y plane. You may assume
E, E v E, are given as equations.
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SURFACE AND LINE INTEGRALS WITH THE COMPUTER

Now let us see how to be more quantitative. It is easy to do the integrals
involved in Gauss’s, Ampere’s and Faraday’s Laws on the computer. An
exact integration would have to be analytical, but most field patterns
cannot be integrated analytically. The method of integration we will
present is approximate (although the method can be made accurate as
desired) but it can integrate the necessary surface and line integrals for any
vector field.

To perform the line integral, _you break the contour up into small seg-
ments, AQ evaluate the field, F at the center o_f) each segment, and form
the dot-products F°AQ Adding up the terms F AR foLaII the segments that
form a closed loop yields an approximation to $F-d% for the vector field
F Again, in the limit of the sum of infinitesimal segments, d!Z the result
would be exact.

To perform the surface mtegral you break the surface up into small areas,
AA evaluate Lhe field, F at the center of each small area, and form the
dot-products F*AA. Adding up the terms F AA for all the small areas
forming a closed sqiface is then an approximation to the |ntegraL99F dA
for the vector fieid F. In the Iimit_)of the sum infinite simal areas, dA, is by
definition the integral; for finite AA, the sum is an approximation.

- = —>
Example 1. Evaluate $§F*dA for the vector electrostatic field, F, due to a
line charge coinciding with the z-axis. Consider rectanguiar parallelepiped
surfaces.

A program to find this surface integral might look like the following:

GAUSS

126 PRINT "(X,Y.Z) FOR 2 CORNERS?"} Set region
110 INPUT X1,Y1,21.X2,Y2,22

120 LET PO=@2- Flux

130 LET N@=16 — #ofsegmentsinx,yandz

140 LET K@=1- Units

158 LET Q=+ 1— Magnitude of chsrge

166 LET X@=(X2-X1)/N@-Ax

170 LET Y@=(Y2-Y1)/N@ - Dy

188 LET Z@=(22-Z1)/NO -4z

198 LET A@=X0*xYQ-AA _
208 FOR X=X1+X@/2 TO X2-X@/2 STEP X@
21¢ FOR Y=Y1+Y@/2 TO Y2-Y@/2 STEP Y@
22¢ LET F3=KO%Q#*Z2/(X*kX+YxY+Z2%Z2)

230 LET P@=Po+F3*AD o XY
240 LET F3sKOxQAZ1/(XAX+YAY+Z2%Z2) | By,
25¢ LET PB=PO-F3%xAQ

266 NEXT Y

278 NEXT X |

288 LET AB=YO*Z8-AA _
29@ FOR YaYi+Y@s/2 TO Y2-Y@/2 STEP Y@
300 FOR Z=Z1+Z@/2 TO Z2~Z8/2 STEP 20
318 LET FISK@*QaX2/(X24X2+Y*Y+Z42)
326 LET P@=PO+F1+AQ Two ¥-Z
336 LET F1=K@*Q&X1/(X 1£X 1+Y*Y+Z*Z) | Planes
348 LET PE=P@-F1*AQ

356 NEXT Z

366 NEXT Y .
378 LET A@X0*Z2-AA i
388 FOR X=X1+X@8/2 TO X2-X8/2 STEP X0
398 FOR z=z1+28/2 TO 22-208/2 STEP 20
408 LET FouKO*QrY2/(XAX+Y24Y24Z%2)
419 LET P@sP@+F2+A0

42@ LET F2mK@#QrY1/(XEX+Y LAY 1+2%2) ;‘;’:,’s"z
439 LET P@=P@-F2xAQ

448 NEXT 2

450 NEXT X

468 PRINT “FLUX ="; P8 J
478 PRINT

488 GOTO 100

498 END




The field, ?= (F1,F2,F3), is the electrostatic field due to a line charge at
the origin [koklr(F/IF)I)], SO ff—:)d_z\ should be zero unless the region
enclosed by the recta_rlgﬂar parallelepiped encloses the z-axis. When the
z-axis is enclosed, $F*dA should equal 47kyA(Z2-Z1). A run of this
Gauss’s Law program looks like:

RUN
GAUSS

(XsY,2Z)> FOR 2 CORNERS?
=le-l=1s1s1s1
FLUX = 15.3683

(X,Y,Z> FOR 2 CORNERS?
. 10102,2,2
FLUX = .217896

(X,Y,Z) FOR 2 CORNERS?
71,1,1,2,2,3
FLUX = .355734

(X,Y,Z> FOR 2 CORNERS?
?

Practice Exercise: How much charge lies along the line charge between Z =

0 and z = 2? What is the linear charge density, \? Does this value agree
with the equations in the program?

Practice Exercise: Modify the program for line charges having \ = +1 and
~1 which are parallel to the z-axis and cut the x-y plane at (+.5,0) and
(-.5,0), respectively, Where should the surface integral be zero and where
non-zero?

Practice Exercise: Modify the program for a long, straight wire carrying
. . - - - 9 »

current | which coincides with the z-axis. (Remember that B is perpen-

dicular to 7.) Where should the surface integral be zero and where non-

zero?

Further ex_a)mples are considered in the exercises at the end of the chapter.
The field, F, can be given as equations or even as data.

-
Example 2. Evaluate fF‘dz for the vector magnetostatic field due to a
fong, straight wire carrying a current of 1 ampere and coinciding with the
z-axis. Consider rectangular contours lying in the x-y plane.
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A program to evaluate the line integral might look like:

AMPFAR

18@ PRINT *(X,Y> FOR 2 CORNERS?"
118 INPUT Xl,Yl1,X2,Y2

12@ LET LO=0

1390 LET N@=512

148 LET K@=1.E~-07

158 LET I=1

160 LET X@=(X2-X1)/N2

17@ LET Yo=(Y2-Y1)/N@

188 FOR X=X1+X@8/2 TO X2-X0/2 STEP X@
199 LET Fe=2%K@xIxY 1 /(X%X+Y %Y 1)
209 LET LO=LO+FxXa

210 LET F=-2xK@xI%xY2/(X*X+Y2%xY2)
226 LET LO=LO-F*X0

238 NEXT X

240 FOR Y=Yi+YB/2 TO Y2-Y@/2 STEP Y@
2580 LET F=2xK@x1xX1/(X1*X1+Y*Y)
26¢ LET L@aLO-FxYQ

278 LET Fx24«K@%1%X2/(X2%X2+Y*Y)
280 LET LO=L@+F%xYQ

298 NEXT Y

360 PRINT “LINE INTEGRAL =*;L@
318 PRINT

32¢ GOTO 100

338 END

Since ? = (F1,F2,F3) is due to a long straight wire (uol/2nr, tangential
with sense by the right-hand rule}, you expect f?&_f)l to equal zero unless
the rectangular contg;.lr_gncloses the z-axis. When the contour encloses the
z-axis, you expect $F+d¥ = uol in mks units. A run of this line integral
program looks like:

RUN
AMPFAR

(X,Y) FOR 2 CORNERS?
=1l,=1,1,1

LINE INTEGRAL = 1.25664E-@6
(X,Y) FOR 2 CORNERS?
T1,1.2,2

LINE INTEGRAL =-3.77476E-1S

(X,Y> FOR 2 CORNERS?
?

Practice Exercise: Modify the program for two, long straight wires parallel
to the z-axis, carrying currents of +1 and -1, and cutting the x-y plane at
(+.5,0) and (-.5,0), respectively. Where should the line integral be zero and
where non-zero?

Practice_Exercise: Modify the program for a single line charge coinciding
with the z-axis and having a linear charge density, N, of +1. Where should
the line integral be zero and where non-zero?

Further examples are considered in the problems at the end of the chapter.
-
The vector field F could be given as equations or as data.

CONCLUSION

This chapter has displayed pictures of several vector fields. You were asked
to try to identify which pictures could represent electrostatic and mag-
netostatic fields. The chapter then showed you a way to compute the
surface and line integrals necessary for Gauss’'s, Ampere’s and Faraday’s
Laws in order to check vector fields quantitatively. By working a few
examples from the exercises, you can deepen your understanding further.
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CHAPTER FOUR EXERCISES

1. Consider the field distribution created by four line charges parallet to
the z-axis. The line charge densities are: +1 at (1,1}, +1 at (1, -1}, -1 at
(-1,1) and -1 at {-1,-1).

a) Consider the region around the (1,1) line. What is the surface
integral? Is it dependent on the size of the box around the charge? If
so, is it dependent on all lengths or just one? What js the line integral
around this point (ff/?'dz)? Is it dependent on the size of the
contour?

b) Consider the region of space for positive x that mcludes both the
lines at (1,1) and (1,-1). What is the surface integral (§F dA)? Is it
dependent on the size of the box7 If so, on what does it depend?
What is the line integral (fF dQ} around this region? Is it dependent
on the size of the contour?

¢) Consider t’lf ggion including all the line charges. What is the surface
integral ($F+dA)? Is it dependent on the S/ze of the box? If so, how
is it dependent? What is the line integral (§F dQ} around the region?
Is it dependent on the size of the contour?

d) Consider the reg/on inside the four pomtf What is the surface
integral (fﬁF dA)? What is the line integral ($F+ dQ)?

e) Do your results agree with Gauss’s and Faraday’s Laws?

2. Consider the magnetostatic field distribution created by four current
lines paraliel to the z-axis. The positions and currents are: +1 at {1,1),
+1 at (1,-1), -1 at (1,1} and -1 at (-1,-1).

a) Consider E/Ze _Cegion around the (1,1) line. What is the surface
integral ($F-dA)? Is it dependent on the size of the box around the
charge? If so, is it dependent on a/L lengths or just one? What is the
line integral around this point ($F+d%)? Is it dependent on the size of
the contour?

b) Consider the region of space for positive x that /nc/udes both the
lines at (1,1) and (1,~1). What is the surface integral (§F dA)? Isit
dependent on the size of the box? If so, on what does it depend?
What is the line integral (fF d%) around this region? Is it dependent
on the size of the contour?

c) Consider t/_7)e Ce;gion including all the line charges. What is the surface
integral ($F+dA)? Is it dependent on the S/ze of the box? If so, how
is it dependent? What is the line integral (§F dQ} around the region?
Is it dependent on the size of the contour?

d) Consider the _;eglon inside the four pomts What is the surface
integral (§F dA)? What is the line integral (fF dQ}?

e) Do your results agree with Gauss’s and Faraday’s Laws?
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3. Consider a combined electrostatic and magnetostatic field distribution.
Part of it is created by two line charges paralliel to the z-axis: +3 linear
charge density at {1,1) and -3 linear charge density at (-1,1). The other
part is created by two line currents parallel to the z-axis with currents
and positions: +2 at (1,~-1) and -2 at {—1,-1).

a) Consider t_/ze __)reg/'on around the (1,1) line. What is the surface
integral ($F+dA)? Is it dependent on the size of the box around the
charge? If so, is it dependent on all /engths or just one? What is the
line integral around this point (ﬁF dSZ}? Is it dependent on the size of
the contour?

b) Consider the region of space for positive x that inc/ud_gs Qeth the
lines at (1,1) and (1,—1). What is the surface integral ($F+dA)? Is it
dependent on the size of Epe box? If so, on what does it depend?
What is the line integral ($F+d%) around this region? Is it dependent
on the size of the contour?

¢) Consider t/_7)e ggion including all the line charges. What is the surface
integral ($F<dA)? Is it dependent on the S/{f c_af the box? If so, how
is it dependent? What is the line integral ($F+d%) around the region?

Is it dependent on the size of the contour?

d) Consider Elze_)region inside the four poin§. What is the surface
integral ($F+dA)? What is the line integral ($F 'd_ﬁ)?

e) Do your results agree with Gauss’s and Faraday’s Laws?

4. Consider the following field.

F,=0
Fy=0
F,=1forz>0
F,=0forz=0

F,=-1forz<0

a) What is the surface integral for the box defined by (-1,-1,~-1) and
(1,1,1)? If itis not zero, is the surface integral dependent on the size
of the box centered at (0,0,0)? In what way?

b) If the surface integral is not zero, can you identify the charge
distribution that creates this field?

¢) What are the line integrals for the square loops defined by (1,1,0)
and (-1,-1,0); (1,0,1) and (-1,0,-1), (0,1,1) and (0,—-1,-1).

d) If the line integral is not zero, can you identify the current distri-
bution that creates this field?
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5. Consider the following field.

Fy=0
Fy=0
F,=1forx>0
F,=0forx=0

F,=-1forx<0

a) What is the surface integral for the box defined by (-1,~1,~1) and
(1,1,1)? If it is not zero, is the surface integral dependent on the size
of the box centered at (0,0,0)? In what way?

b) If the surface integral is not zero, can you identify the charge
distribution that creates this field?

c) What are the line integrals for the square loops defined by (1,1,0)
and (-1,-1,0); (1,0,1) and (-1,0,-1); (0,1,1) and (0,-1,-1).

d) If the line integral is not zero, can you identify the current distri-
bution that creates this field?

6. Consider the following field:
-> A
F=r*r(2+?)
a) What is the surface integral for the box defined by (-1,~1,-1) and
(1,1,1)? If it is non-zero, is the surface integral dependent on the size

of the box centered at (0,0,0)? In what way?

b) If the surface integral is not zero, can you identify the charge
distribution that creates this field?

c) Carl> you prove that the line integral for any field that can be written
A
as F = rf(r) is zero?

7. Not all fields are electric or magnetic. For example, it is often worth-
while to consider velocity fields of fluids. Consider the following fluid

velocity field:
V,=0
VV =0
Vy=(1-y2/4)

a) What is the surface integral for the box defined by (-1,~1,-1) and
(1,1,1)? If it is non-zero, is the surface integral dependent on the size
of the box centered at (0,0,0)? In what way?

b) What does this surface integral mean physically (ie., are there
sources or sinks for the fluid within the region)?
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c) What are the line integrals for the square loops defined by (1,1,0)
and (-1,-1,0); (1,0,1) and (-1,0,~1),; (0,1,1) and (0,-1,-1)?

d) What is the line integral around the square loop defined by (0,0,0)
and (1,1,0)?




CHAPTER FIVE: THE LAPLACE AND
POISSON EQUATIONS

INTRODUCTION

A combination of Laplace’s and Poisson’s equations represents one of the
fundamental ways to describe electrostatic potentials. (Similar equations
arise in many other branches of e & m and of physics in general.) You
sometimes know the potential, V, everywhere on some surface that encloses
a definite volume, and you want to find the potential throughout that vol-
ume. If the volume has a known volume charge density, p(x,y,z) (measured
as charge per unit volume), then you can calculate the potential everywhere
using Poisson’s equation. If the volume charge density, p is zero through
the region, then Poisson’s equation reduces to Laplace’s equation, one of
the simplest partial differential equations used commonly in physics.

Poisson’s equation in three dimensions is

9°v 3*v 9%V
W+ay—2+?=4ﬂkop(x,y,z) (15)

When p(x,y,2) = 0 you have Laplace’s equation

2*v 22V 22v_
ox2 +8y2 +822 =0 (16)

Derivations of these equations and discussions of their analytical solutions
can be found in standard physics textbooks.

These equations can be solved easily on a computer, and they represent
simple examples of how partial differential equations can be solved nu-
merically. For convenience in displaying results, we will consider two
dimensional cases involving only x and y. The method of solution is valid
for three dimensions, too, but more complicated partial differential
equations sometimes demand more sophisticated methods of numerical
solution than the method we will present.

DIFFERENCE EQUATIONS

The simplest method for solving partial differential equations numerically
is based on replacing the differential equation {involving infinitesimal dx,
dy, dz} by a difference equation (involving finite differences Ax, Ay, Az).
There are three criteria that the resulting difference equation must satisfy:
1) it must represent the partial differential equation correctly in the limit
as Ax—>0, Ay—=0 and Az—~0; 2} it must be stable (which means that, if a
small error occurs at some numerical step, the error must not grow); and
3) it must converge to some value (in other words, it must produce an
answer). Laplace’s equation is such that a simple difference equation
approach can be shown to satisfy all three requirements. If the volume
charge density, p, does not vary too wildly in space, the method will also
work for Poisson’s equation.
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We start by defining a grid of points, labelled by i and j (for our two
dimensional problems), covering the region where we want to compute the
potential, V. How would the first partial derivative, 3V/dx, be written in
terms of the values of Vi,j on the grid points? You could use the forward
difference expression for a derivative 9V/0x~(Viyq ; — Vj ;)/Ax or you
could use the corresponding backward derivative. A better approximation
is called the central difference approximation and uses grid points in front

of and behind the grid point (i,j} in question. Then 0V/0x~(Vj+1,j -
Vi_1’j)/(2AX).

The second partial derivative, 92V/dx?, equals 3(0V/dx)/dx so we can
apply the same idea of approximating the partial derivatives by difference
quotients. Using the central difference approximation, 82 V/be%(ViH g
2Vi,j + Vi_»],j)/(AX)z .

Practice Exercise: Show that the difference equation approximating
9% Vv/0x? comes from two applications of the central difference approxi-
mation for the first derivative. The first application gives the first deri-
vatives at (i+.5,j) and (i-.5); the second application yields the second
derivative at (i j).

THE DIFFERENCE EQUATIONS FOR LAPLACE'S AND
POISSON’S EQUATIONS

Using the expression for approximations to the second partial derivatives
of V on the grid of points, the (two-dimensional) Laplace’s equation
becomes

Vis1,j* Vic1,j+ Vije1 + Vij-1 - 4Vij=0 (17)

assuming Ax = Ay.

Practice Exercise: Derive this difference equation for Laplace’s equation.

Practice Exercise: Derive the three-dimensional difference equation for
Laplace’s equation.

This difference equation can be solved for the potential at the grid point

(i.j):
Vi Vis it Victjt Vi V-4 (18)

which says the potential at (i,j) is the average of the potentials at the nearest
neighbor grid points. This equation for V suggests a simple strategy on the
computer: Start with any values of the potential inside the region and with
the known values on the grid points on the surface; moving sequentially
through the interior grid points, replace the inside values by the average of
nearest neighbor values; then repeat the process until interior values of the
potential stop changing. The boundary values, which remain constant, will
gradually influence the values throughout the interior. When all the inside
values become equal to the average of their nearest neighbors {(that is,after




all the values of the potential at interior points stop changing), then you
have found the solution of Laplace’s equation with the given potentials on
the surface.

Poisson’s equation is just as simple. The difference equation (in two
dimensions) becomes

(Vi+1,j + Vi—1,j + Vi,j+1 + Vi,j—1 - 4Vi,j) = Ri,j (AS)2 (19)
where Ax = Ay = AS and where Rij is just the {known) quantity,
4k p(x,y), at the grid point (i,j). ko sets the units. Since Rij does not
change value at each particular (i,j) as you iterate over the grid, programs

solving Poisson’s equation by the difference equation approach look very
similar to those solving Laplace’s equation.

Example 1. Find the potential V in a charge-free, two-dimensional, square
region given that the potential varies linearly around the edge from V=0
at one corner to V = 18 at the opposite corner.

A program implementing the iterative strategy to solve Laplace’s equation
for this problem might look like the following:

LAPLAC

160
110
120
136
140
150
16@

DIM VC18,18],UC108,102

READ VC1,13,V018,13,V016,101,VL 1, 18]
DATA 0.9,18,9

LET V@=V[1,13+V[1,10)+VL10,18)+VL 10,11
FOR 1=2 TO 9

LET VEl1,11=1-1

LET. VL 18,11=9+1~1

170
186
150
200
210
229
238
240

LET
LET
LET

Vi, 11=1-1
VE1,181=9+1~1
VOsV@+VL 1,131+VE 18, 13+VLI,11+4V(1, 10)

NEXT 1

FOR

FOR J=2 TO 9

LET

NEXT J

I=2 T0 9

Initialize Interior Values
to Avsrage of

Boundary Values

VL1,41=VR/36

Initialize
Potential
Matrix

259
260
2re
280
290
3208
3te
320
33e
340
358
360
370
380
39¢
400
410
420
430
440
459
460
410
4860

NEXT I

FOR I=1 TO 10
FOR J=t TO 18
LET ULI,JI=V(I1,J]
NEXT J

NEXT 1

LET Vi=8

FOR I=2 TO 9 .

FOR J=2 TO 9 Find New
LET VLI,J1=CUCI+1,J1+UCI-1,J1+UCL I+ 13+ULTd=13) Z4] poponinse b,
IF ABSC((VI1,J3=-UCI1,J3>/VC(1,J3)<Vl THEN 370
LET V1=ABS((VI1,J1=UL1,J1)/V01,J1) |Voew - You
NEXT J Voew
NEXT 1

LET MaM+1

IF V1>.001 THEN 260 — Test for.1% Accuracy

PRINT "# OF ITERATIONS =';M
FOR J=10 TO 1 STEP -1

FOR 1=1 TO 1@

PRINT VC1,dJ3,

NEXT I

PRINT

NEXT J

END

Save Old
Potentials

Averaging
Neighbor
Values

Print out
Potential
Matrix

The program initializes the potential at interior points of the region to the
average of the values on the boundary. It is a property of Laplace’s
equation that the absolute maximum and absolute minimum values of
potential must lie on the boundary. Initializing the interior points to the
average value saves some time in the calculation.
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It turns out that Laplace’s equation has the interesting (and unusual)
property that, when you average the nearest neighbor potentials, you can
use some old values (from the last iteration over the grid) and some new
values (from the present iteration). This allows you to use only one storage
matrix for the potential.

Practice Exercise: Modify the program so that you use only the matrix V

and average two old and two new nearest neighbor potentials.

A RUN of the program given above looks like:

RUN
LAPLAC

# OF ITERATIONS = 34

9 11 12 13

14 15 16 17 18

8 e 9.99882 18.996 11.992
12.9885 13.9868 14.9885 15.9932 17

7 8.808119 9.00080! 999541 10.988S
11.9818 12.9783 13.9883 14.9885 16

6 7.00402 8.008461 9.080001 999137
10.9823 11.9767 12.9783 13.98 68 15

S 6. 00802 7.01156 8.908 65 9.20201
9+98955 10.9823 11.9818 12.9885 14

4 5.91156 6.01848 7.21771 8.01047
9.206001 9499137 10.9885 11.992 13

3 4.981325 S.92172 6.8233 781771
8.00865 9.02008081 9.99541 18.996 12

2 3.0115S 4.01967 S.82172 6-01848
T+.081156 8.00461 9.02001 9.99882 11

1 2.00683 3.81185 4.81328% 5.81156
6.208@2 T.008401 8.080119 9. 10

] 1 2 3 4

S 6 7 8 9

Example 2. Find the potential V throughout a square region, given that
the potential on the boundary varies linearly from 0 at one corner to 18 at
the opposite corner and that a uniform surface charge density of +.5¢¢
coulombs per m? fills the region.

The problem calls for the solution of Poisson’s equation in a situation very
similar to that above for Laplace’s equation. A program that solves this
Poisson equation situation might look like:

POISSO

169 DIM V(16,101,UC18,10]

118 READ VC1,11,V(1@,13,VI18,101,V(1,18]
126 DATA 0,9,18,9

136 LET V@=V[1,11+V(1,101+V010,103+V0 18,11}
146 FOR 1=2 TO 9

1S@ LET V{1,I1=1-1}

168 LET VI1€,1)=0+1~]

178 LET V{1, 1)=I=-]

18¢ LET VL1, 181=9+]-1

198 LET Vo=V@+VL 1,13+VI16,13+4V01,13+V(1,10)
200 NEXT I

2186 FOR I=2 TO 9

220 FOR J=2 TO 9

230 LET V(1,J1=V@/36

240 NEXT J

2S¢ NEXT 1

268 FOR I=] TO 10

27¢ FOR J=1 TO 10@

288 LET ULl,J1=V(I1,J]

200 NEXT J




308 NEXT 1

316 LET Vi=@

320 FOR I=2 TO 9

33¢ FOR J=2 TO 9

340 LET R=.S

350 LET VOIL,J1=(UCI+1,J1+UCI-1,J]1+UCI,J+11+UC1,J~13+R)/4
360 IF ABS((V(1,J1-ULI,J1)/V[1,J))<V] THEN 380
376 LET Vi=ABS((VC(I,J1-UL1,J1)>/V(1,J]>

380 NEXT J

398 NEXT I

400 LET M=M+]

419 IF V1>.908)1 THEN 260

420 PRINT "# OF ITERATIONS =";M

430 FOR J=16 TO | STEP -1

448 FOR 1=} TO 1@

45@ PRINT V(1,J31,

468 NEXT I

47@ PRINT
489 NEXT J
4309 END

Practice Exercise: Annotate the Poisson program by written comments by
each line.

A run of this program looks like:

RUN
POISSO '
# OF ITERATIONS = 48

9 10 11 12 13

14 15 16 17 18

g 9.58738 18.927 12.1182 13.2048
14. 2044 15.1172 15.9259 16.58 66 17

7 8.92723 1@.5112 11.8531 13.0106
14.0099 14.8513 15.5091 15.9259 16

6 8.11906 9.85412 11.2951 12.5807
13.4998 14.2926 14.8513 15.1172 15

5 7.20652 9.8131 18.5626 11.7322
12.7311 13. 4998 14.2099 14.20844 14

4 6. 2069 8.81384 9458357 16.7333
11.7322 12. 5807 13.8106 13.2048 13

3 5.12085 685596 829763 950357
18.50826 11.2951 11.8531 12.1182 12

2 3.92835 5.51334 6.85596 8.01384
9.0131 9.85412 18.5112 1B8.927 11

1 2458811 3.92835 5.12025 6.2069
7.20652 8.119€6 8.92723 9.58738 12

] 1 2 3 4

5 6 7 8 9

Notice that the final interior values have changed from those of the
Laplace solution. The symmetries have been maintained because the
charge density is uniform.

Practice Exercise: Identify lines of symmetry in the values of potential.

Terminal plotting can also be used in a manner similar to the terminal
piotting of potential done in Chapter One.

Practice Exercise: Modify the Laplace and Poisson programs to print out
characters representing the values of the potential at each point on the
grid.
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CONCLUSION
The Laplace and Poisson equations are very basic to electrostatics. This
chapter showed you one way to solve these equations with the computer.

The numerical method of solution presented is also applicable to other
partial differential equations arising in physics.

CHAPTER FIVE EXERCISES

1. Consider the square region with the boundary potentials:

0 9 0
2 —a
41— -—18
6 |— —12
8- —16
10 p— —] 20
sl — 16
6 —2
4 —Is
2~ —] 4
0 = 0

(constant zero potential on two sides and increasing linearly to the
midpoint then decreasing to zero again on the other sides).

a) Determine the potential inside the region.

b) From a character plot of the potential in the region, draw several
equipotentials.

¢) Describe the symmetries in the potential,

2. With the boundary potential described in Exercise 1, calculate the
potential in the region when there is a uniform charge density of —.5¢,
coulombs/m? throughout the region.

a) From a character plot of the potential in the region, draw several
equipotentials.

b) Describe the symmetries in the potential.

3. Consider the following line charges parallel to the z-axis: +1 at (6,0); +1
at (-6,0); +1 at (0,6); and +1 at (0,-6).

a) Using the method discussed in Chapter 1, determine the potential in
the square defined by the corners [5,5] and [-5,-58]. (Find the
value of the potential on a grid with ten points on each side.)

b} Use the values of the potential obtained in Part (a) for the potentials
on the edges of the square region defined by the corners [5,5] and
[-6,-5]. Use Laplace’s equation and determine the potential inside
this region.




c) Compare the results obtained by the two methods (Parts (a) and
(b)) for interior points.

. The symmetries observed in the potential pattern in the text and
Exercise 1 can be used to cut down the number of points at which the
potential needs to be evaluated. For any symmetric pattern, we only
need to calculate the potential for a smaller region of space and then
use the symmetry to copy the potential into the other regions.

Consider the potential in Exercise 1. If you consider the pattern
centered at the origin the pattern above the x-axis is mirrored below the
x-axis. To solve the problem using the symmetry, set the potential the
same way for positive y but when you solve for the potential along the
x-axis (the line of symmetry), consider the value of each point just
below the axis to be the same as the value of the point just above the
axis. The grid point equation for this line of symmetry becomes:

Vii= Vigq j* Vieq j+ 2V j1)/4

a) Resolve the potential for Exercise 1 taking advantage of the
symmetry.

b) Resolve the potential in Example 2 in the text using the symmetry
along the diagonal.

. Consider the square region with the potential along the edges defined
by:

0 24681086 4 2 g
JTTT T T T T,
al— —a4
6 |— —6
8 —|s
10— —J 10
8 —{s
61— —s
4 —a
2 —
eyl
0 2468108642 0

(with all edges identical, with the corners at zero potentials, and the
potential increasing linearly in from the corners to the midpoint where
the potential is ten.)

a) What are the symmetries?

b) Taking advantage of all of the symmetries, calculate the potential
inside the region. Make a character plot of the potential values.

c) Draw in some of the equipotentials.

. Consider the same square region as Exercise 4 but with a uniform
charge density of .Beg(lx| + lyl} coulombs per m? throughout the
region.
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a) What are the symmetries?

b) Taking advantage of all of the symmetries, calculate the potential
inside the region.

¢) Make a character plot of the full region and draw the equipotential
lines.,

7. Consider the following potential: a square boundary with a potential of
zero on it. Let the square be defined by the corners (-9,-9) and (9,9).
Inside the boundary is a square defined by the corners (-3,-3) and
(3,3) at a constant potential of 100. The potential in the region in
between can be solved by the techniques described in the text. You
must check to see if the point being evaluated is one of the center
points with a fixed potential and, if it is, go on to the next point leaving
that grid point’s potential at 100 as initially defined.

y

0

(9,9)

(|3, 3)

(-9, -9)

a) What are the symmetries in this problem?

b) Using the symmetries, determine the value of the potential inside the
region and make a character plot of the full region.

¢) Draw in some of the equipotentials.

8. Consider the potential caused by a +1 and ~1 point charge enclosed in a
square whose edges are held at zero potential. In order to approximate
this situation, assume that the potential near the charge is constant and
is unaffected by the rest of the region (i.e., assume the potential near
the +1 charge is determined by the equation ko q/r).

Y

(5,5)

(-5, -5)

Let the corners of the zero potential box be defined by (-5,~5) and
{5,5) and the plus and minus charge positions: +1 at (+2.5,0) and -1 at
(-2.5,0).




a) What are the symmetries in the problem?
b) What can you say about the potential on the y-axis?

¢) How can the solution of Part (b} be used to simplify this problem?

d) Compute the potential and make an expanded character plot of the-

potential,
e) Draw in the equipotential lines.

f) Compare your results in shape to the simple dipole charge
distribution.
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APPENDIX A: TERMINAL PLOTTING

The subroutines in TTYPLO (listed below) allow you to plot a set of
curves on your terminal. The subroutines use the letter O variables, so you
should not use these variables in your programs. The output from the
subroutines is a 5 by 5” x-y plot (assuming 6 lines/inch and 10
characters/inch) with the x-axis across the page and the y-axis up the page.

The range of x values on the plot are set by defining values for X8 = the
left side of the plot, X9 = the right side of the plot, Y8 = the bottom of
the plot, and Y9 = the top of the plot. The subroutines are called with
“GOSUB 92000".

To plot a point on the graph, you define the values of X0 = the x coordi-
nate and Y@ = the y coordinate of the point, Also, specify a value for Z0,
which will be the character plotted at the point {X0,Y®) on the graph.
You then call “GOSUB 9100".

The allowed values of Z0 are O through 9. Since these variables
X8,X9,Y8,Y9,X0,YD,Z0 are used in these special ways for the plotting,
you should be careful how you use them in your programs.

To produce the final plot on your terminal, call “GOSUB 09200". A sample
of the use of TTYPLO follows. The program plots a sine curve {as the
character “1").

SINE

160 READ X8,X9,Y8,Y9,20

118 DATA ©,6.28318,-1,1,1

128 GOSUB 9000

130 FOR X@=X8 TO X9 STEP (X9-X8)/58
148 LET Y@=SIN(X®

156 GOSUB 9120

168 NEXT X8

176 GOSUB 9209

188 STOP
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APP-TTYPLO
RUN
SINE

MAX Y= 1
D, 00.9.9.0.0.0.99.0.0.0.9.9.9.0.9.09.6.090.909.099¢9609600809¢0999¢e4
1111

R I I T ™
-

1111
P9 0.9.00.00.0.0.0.000000.9.09¢9009¢909990900.9099909,9099999,909
MIN Y=~1 MIN X= @ MAX X= 6.28318

END

TTYPLO

906@ REM INITIALIZE PLOT

901@ DIM Of 38@]

922¢ FOR Ol=1 TO 300

9038 LET 0[O0ll=g

9048 NEXT 01

905¢ LET 0[S2)=52

9860 RETURN

9180 REM STORE POINTS

9185 IF (X@=-X8)*(X@-X9)>8 THEN 9165
9110 IF (YP-Y8)%(YB-Y9)>@& THEN 9165
9115 1IF zZ@ >= @ THEN 9125

9120 LET 20=¢

9125 IF Z® <= 9 THEN 9135

9130 LET Z@=9

9135 LET 0[521=0[52]+1

9140 LET OCOLS5211=10@0xINT(30%(YB-YE) /(YF-YB)+1+5)
9145 LET O0{0{S5211=000C521)+ 13xINT(58%(XB~XB) /(X9=XB)+1.5)+28
9150 IF 00(S521<308 THEN 9165

9155 PRINT "PART OF THE PICTURE NOW"
9168 GOTO 9280

9165 RETURN

9200 REM PRINT OUT PLOT

9218 PRINT *MAX Y=';Y9

9228 PRINT " XXXXXXXAXXXXXAXXXXXXXXXXXAXXKXXXKXXXXXKAXAXKXKXXXKXKXK "
9238 FOR 02=3! TO 1 STEP -1

9248 FOR 03=1 TO S1

9258 LET 0{03)==]

926¢ NEXT 03

9278 LET 06=g

9280 FOR 03353 TO 0C52]

9298 1IF 0{031<@ THEN 9368

9388 IF INT(OCO031/1008) <> 02 THEN 9360
931@ LET 01=0£033-100@xINT(OL03)/1000)
9320 LET OLINT(O1/12))=01-10%INTCO1/10)
9330 IF 06>INT(01/18) THEN 9350

9340 LET 06=INTCO0I/10Q)

935¢ LET 0C03)=-]

9368 NEXT 03

9379 PRINT "Y*;

9388 FOR 03=1 TO 06

9392 GOTO 0L031+2 OF 940@0,9420,9440.9460,94806,9500,9520,9540,9560,9580,

9598




9400
9410
9420
94308
9440
9458
9460
947@
9488
9490
9509
9518
9520
9538
9548
9558
9560
957¢
9580
959@
9600
9610
9620
9638
9648
9650
9668
9678
9680

PRINT * 3
GOTO 9610
PRINT @3
GOTO 96102
PRINT 1%
GOTO 9618
PRINT "2
GOTO 9610
PRINT "33
GO0TO 9618
PRINT "4'3
GOTO 9610
PRINT "S"3
GOTO 9610
PRINT "6*3
GO0TO 9618
PRINT "7*3
GOTO 9619
PRINT "8
GOTO 9618
PRINT "9'3
NEXT 03
PRINT
NEXT 02
PRINT *
PRINT "MIN Y="3Y8} "
GOSUB 9088
RETURN
END

KOOEXX XX KX XX XXAXAKKKX ™
MIN X="3X8, *MAX X="3X9
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APPENDIX B: THE HALF-STEP
INTERATIVE INTEGRATION

Numerical methods comprise an entire subject in mathematics. For the
moment, all we need to show you is that the half-step method used heavily
in the text would seem to give better answers than the simplest approxi-
mation {which is called Euler’s method). The problem we are discussing is
a general one. A physical law often can be stated in terms of the derivative
of a function you wish to find; you integrate the differential equation to
find the answer.

Consider a general curve for y=Ff(x); suppose you know the value of y at
x=xo and you have a way to calculate the derivative of y with respect to x
anywhere. The problem is to get as good an approximation to the correct
value y=f(xo+Ax) as possible. The simplest method (Euler’s method) uses
the derivative at Xo and approximates fxotAx) as
Fxg+Ax)=F(xg )+ (% }AX.

Euler's method is shown on the sketch by the dashed line. Clearly, the
method is correct in the limit as Ax—>0. For finite Ax the method
produces excessive errors.

f(x)
* Euler approximation
-
”~
X

~ true

/_ fix)

X X+ AX X —>

The geometrical interpretation of the theorem mathematicians call the
Mean Value Theorem says that there is some point on the (continuously
differentiable) curve y=f{x) such that the derivative at that point has the
same value as the slope of the chord from (x¢,f{xg)) to (xq+Ax,f{xe+Ax)).
If the theorem told us where that point was, everything would be easy.
So-called higher order methods of iterative integration (such as the fourth-
order Runge-Kutta method or predictor-corrector method) are better and
better ways to approximate this ‘‘correct’’ value of siope.

Our half-step method is based on the fact that, in general, evaluating the
derivative near the center of the interval [xg,xo+Ax] is better than using a
derivative at the end of the interval. In fact, you can show that, if f(x) isa
parabola, then a true half-step method is exact. This means that, if you
expand f(x) around xo in a Taylor series, the half-step method will be
correct through terms in (Ax)?. That is why half-step methods are called
“second-order’’ Runge-Kutta methods.
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In several cases used in the text of this unit an approximate half-step
method, one that approximates xo+Ax/2 by using the Ax calculated at the
last step, is used instead of a true half-step. Practically always, such an
approximate xq+Ax/2 lies near the center of the interval [xq,xo+Ax] and
actually increases the accuracy of the method.

Practice Exercise: Using any of the iterative integration programs from the

text, compare Euler’s method (which uses the derivative at the point x,)
to the half-step method. Show that, for any given step size, the half-step
method is more accurate and that, to achieve the same accuracy as the
half-step method, a much smaller step size (and hence many more iter-
ations) must be used by Euler’s method.




ANSWERS TO SELECTED
EXERCISES

CHAPTER ONE

Exercise 1.

XsY) OF LEFT=-BOTTON & RISHT-TOP?
? ~e58,-.085, »¢4%,.05

MIN. & MAX, V7

T -100, -1
BLYTYTTXXXXXXXAXXAXXXXYYYYYZTRZ
ITYYYUXX XUV DWIVUXXXXXYYYY S
YWYXXX WY VOVSVENE VYT VIX XX YYTY
YIXXXWEVSYSVTTTTTT TVVUVY WUXXXTY
XXV VVEUTSSRAGRARRS STUUVY VUXXY
XXWWVVUTSRAPOSNNN 08 PARSTY VY UWIX
XVVVUTSRPOMKIHHRJIKMO PRSTUVV WX
XIVVUTSRANLL EASSBAEILN PRSTUVVIX
XIVVUTSANI D6 000006 DIND QS TEV WX
NYBUTRGOLHB1 00000 1 BHLOGRTUVV WX
WVVUTSANNL D6 000006 DI NG ESTUV WX
YVETSRMIL] EARSSAEILNPRSTYVVIX
TXWVVYT SRPOMNJHHHIXMO PRSTYVY ¥XX
XXVEVEUTIRGPOONNNO S PARS TUVV VXX
YXXVYYVVYUTSSRREGORASISTUWVIWXXY
TIXXXYYVVUWITT TTTY TUUVIW WX XX YY
TYIXXX WY VVIVISV VUV VIVUX XX YY Y
TTYTYXXXX W YOW VYN Y VWX XXXYYYY
RITYYYVAX XXX XXXXXXAAXXYYYYYLRLE

Ke¥) OF LEPT«BOTTOMN & RIGHT-TOP?
? 045,°008 «585,.08

WM. & NAX. ¥?

7 40.200
0111282333344444444433332221110
11222334448586666635554843322211
1223344S5697788888 7076654432382
223245667899 AABBBAMI8266544322
BAAI6TII ABUDEEFEEDEBAIE 1653433
4456 ADDFELIIKLKSI BT DEAP 265543
MS$679 ACEBIN PSUUUSPNJIGLEA? 7654
BOTSACESXOTIIZILIL TOXGESAS D654
AB6TOADPINSEZLZLLZZESNIFDAY Y684
AMBOTIRNEJOUZETIZLIZEIVOJEADIN 7684
BCTIADPINSETLITIZIZZLE SNEFDW 7654
WMOTSASESXOTIIZZLLZ TOXKOECAS 7654
MS6T9ASEUIHPSYUUS RJEEOAY F6 543
JIASETIABDPGIJIKLKI I B DB 765543
VALSETES ABSDLEIPELDEBAE 7658430
223445667899 AABBBANYE 1665442332
122334483677768888 7776634433221
11R823344455566668555544332221 12
011 1222333344444444433332221110

(Xa¥) OF LEFT-BOTTON & RIGHTTOP?
? 58,55

MN. & MAX. ¥?

10,8
022292222233333333333333322022
WL222L23IIIIZIIIII3I3IINIIIIINGG
2232222333333334444444333333332
2RE22I3JIIIINAR24424444444333333
2222333330444435353855544443333
228RIJIIVAAABI6667866653344423)
2223333444586 0099988 76658544432
2B2IJIIIINALIECTIBEEDEAP 776834443
2333334444094 TVOHDAYTE 334440
SR333333444300038LLLPD9 76654443
223333334444409J TVEH DAY 76554440
WLIIIIIAGASETIBEEDEAY PTE 554443
20233333404485678999887665354443)
WIRIIIII4443366677666558444333
22223333334444883885555444432333
R222333I3334444444444444333370
RBL22223333333344444443333333232
29292£2333333332333333333333122
WL2IFRLR2233333333333333302822
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(5, 5)

(-5, -5}

Exercise 2.

(2,2)

+1

+1 |

+1

(-2, -2)
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f} Near enough to each line charge, all other charges can be neglected
and the equipotential is that of a single line charge (circular). Far
away from all three line charges, the equipotential lines are again
circular and appear in value as if they were created by a single line
charge with a linear charge density of +3.

Exercise 3.

(2,2)

(-2,-2)

f) The x-z and y-z planes are the zero potential planes.

Exercise 4.

c) Near enough to each line charge, all other charges can be neglected
and the equipotential is that of a single line charge (circular). Far
away from all three line charges, the equipotential lines are again
circular and appear in value as if they were created by a single line
charge with a linear charge density of +4.
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Exercise 5.

(4, 4)

(-4, -4)

¢) The point charge model of a line charge and the true line charge
differ in three places: (1) at the ends of the nine charges, (2) very
close to the line, and (3) very far away from the line segment.

d) To make a better approximation, increase the number of charge

points on the line and make the point charge line segment longer.

Exercise 6.
c) The plane defined by all points with x =.5 and the plane defined by
all points with x = -5 have zero potential.
Exercise 7.

a) A zero potential plane on the y-z plane and the charges +1 at (.5,.5)
and -1 at (-~.5,+.5}).

b) The x-z and y-z planes. The charge is +1 at (.5,.5).




c) Exercise 6 is (an approximation to) the potential for a point charge
at the origin and two conducting planes of zero potential defined by
the set of prints with x = -.5 and the set of points with x = .5.

d) Solve this by using the following charge distribution: The original
charges and the image charges ~-2 at (-.5,0); +1 at (-.5,.5) and +1
(-.5,-.5).

Exercise 8.
c) The potential inside the cylinder is constant.
- =

d) Gauss’s Law is $E°dA = 4mkyq. Since any surface constructed inside
the surface will contain no charge, the field is zero, Outside the
cylinder, the field is the same as that of a single line charge with a

linear charge density equal to the sum of the line charges used to
make the cylinder.

CHAPTER TWO
Exercise 1.

(3,3)

(-3, -3}

d)} Close to each wire, the field is similar to a single current wire of that
wire's current. Far away, the field is similar to a single current-
carrying wire with a current given by the (algebraic) sum of the
currents (for this case +2 current).
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Exercise 2.

(3, 3)

(-3, -3)

Exercise 3.

b) On the axis of the loop,

_ko2mb?

e AL

where 1 is the current, b is the radius of the current loop, and x is
the distance along the x-axis. You derive this result by using the
Biot-Savart taw analytically and noticing that, by symmetry, BV and
B, are zero. You can integrate the equation for dB,.




(3. 3)
(-3, -3)
c)y Bx
0 6.28319 E-7
0.3 6.74652 E-7
0.6 8.86302 E-7
0.9 2.46628 E-6
1.2 -6.69063 E-7
1.5 -1.78912 E-7
1.8 -8.13398 E-8
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Exercise 5.

(3,3

@

/'—x//’—_\
©,

(-3, -3)

Exercise 7.

a) Inside the field is zero (as well as this approximation will allow).
Outside the field is the same as if it were from a single line current of
magnitude 16 at the origin.

b} The Biot-Savart law is sﬁg'd_§= kol. Since any line integral inside the
cylinder will contain no current, the B field must be zero. Qutside
the cylinder, any line integral completely outside will contain all the
current. Therefore, since the system is radially symmetric it will be
the same magnitude and shape as the field from a single conductor at
the origin. '

c) The field inside both and outside both is zero. The field between the
two is B = 2kq i/r where r is the radius from the origin. (This agrees
with the Biot-Savart law and is similar to the problem of a Toroid.)




Exercise 10.

(7,7)

(-7,-7)

CHAPTER THREE
Exercise 1.

a) The trajectory moves away from the line charge but becomes
straighter as the positron gets farther away (at constant z velocity).

c) Note the angle is almost independent of distance but those really
close get bent more.

d) The positron is deflected toward the wire.

e) Yes, but since the force goes as 1/r {instead of 1/r*), the orbits are
(generally) more complicated than elliptical {satellite) orbits.
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9

(40, 20)

(-40, 0)

Exercise 2.

(+50, +5)

(-10, -5)




a) The electron will always be equally repelled by both line charges.
Therefore, there are never any net forces on the electron and it will
remain traveling straight along the z-axis at constant velocity.

b

The electron will always be equally repelled by both line charges.
Initially, the electron slows up because of a net force in the —x
direction. If the electron did not have energy enough to pass the
origin, it would turn around and go back the negative x-axis. Once
the electron passes the origin, it will accelerate out the positive
x-axis.

¢} Yes, and in such a way as to cause the x-axis crossing to be at the
same point for all of the trajectories near the center. This can be

thought of as a two-dimensional electron lens. You can also see the
spherical aberration of trajectories near the line charges.

Exercise 3.
a) The positron circles both charges but the orbit does not close.

b) The positron orbits just the charge at {3,0,0) but is perturbed by the
field of the other charge.

c) The positron orbits just the charge at (3,0,0) but is perturbed by the
other charge so that its orbit changes.

Exercise b.

a) The electron’s motion is unaffected by the field since the velocity is
parallel to the magnetic field.

b) The electron travels with a constant velocity in the z direction but
spirals around an axis parallel to the z-axis.

c) The electron just spirals around a circle in the x-y plane.

d) The field collimates the electrons by forcing them to spiral around

the magnetic field and not escape in some unwanted direction.
Exercise 6.

a) The positron when traveling into the converging field starts to travel
in the y+z direction. Eventually, all of the positron’s velocity is
gone, and the positron is just traveling in the y-z plane. Then the
positron starts coming back out.

b} 1t decreases to zero, then changes direction.

¢} Energy is conserved, v? stays constant.
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Exercise 7.

b) 1f the charge is positive, then the positron with V,>|E|l/IB| wilt move
in the +y direction. When V,<|E|/|BI, the positron will move in the
-y direction. If the charge is an electron (a negative charge), the
results are just reversed.

—~—

c) A pc:)sitively charged particle gets accelerated in the x direction (by
>

Vysz). This acceleration then causes the velocity, Vy. to grow
which, in turn, creates an increase in Vy. If the charge is negative,
V decreases and Vy increases.

d} The z motion is unaffected. The xy motion is just that already
discussed.

e} If there is no change in velocity of the particle, the forces due to E
and B must be equal.

- -> >
qE =qVxB
Ey = V,B,

Vg = Ey/Bz with no requirements on V,

Exercise 9.

I
3
By

—>

It

/m
- >
V(initial) * at

ni <y o Ty

—> V >
Sinitial) * V(initial) t+ 1/2at

[
"

since ay = Eqg/m

Sy = Sy(initial) * Vy(initial) t + (1/2)(Eq/m) ¢*
Sy = Sy(initial) * Vx(initial) t

Sz = Sz(initial) * Vz(initial) t

For the example in the text:

The initial conditions are Sy =S
V,=0andV, =4

y = Sz = 0 and initial velocities are Vy =

Sy=1/2Eq/mt* =1/2+*
Sy =4t

Sx =0
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Exercise 10.

mV

. A
a rq_IE‘TB

.
when [B| is measured in units of g/m.

N

g

el

1
b)  T=:=

o
=13

in normalized units.

CHAPTER FOUR

Exercise 1. '

a) The surface integral equals +1 times the iength of the box along the
z-axis. The line integral is zero.

b) The surface integral equais +2 times the length of the box along the
z-axis. The line integral is zero.

c & d) Both the surface and line integrals are zero.

Exercise 2.

a) The surface integral is zero. The line integral is +1 and independent
of the contour.

b) The surface integral is zero. The line integral is +2 and independent
of the contour.

c &d) Both the surface and line integrals are zero.

Exercise 3.

a) The surface integral is +3 times the length of the box along the
z-axis. The line integral is zero.

b} The surface integral is +3 times the length of the box along the
z-axis. The line integral is 2.

c&d) Both the surface and line integrals are zero.

Exercise 4.

a) 8. The surface integral is +1 times the total area of the box perpen-
dicular to the z-axis.

b) Itis caused by a plane of charge along the x-y axis.

c) zero
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Exercise 5.
a) zero
c) 0,4,0

d) It is caused by a plane {defined by the y-z plane) of current traveling
in the y direction.

Exercise 6.
b} zero

> -> A —>
c) $F-dL = $rf(r)-d¥
> [
If we pick any circle around the origin, then 7 1 dR. Therefore the

integral is zero.

Exercise 7.
a) zero

b) There are no sources or sinks for the fluid, that is, there are no
places where fluid is being created or destroyed.

c) zero

d) -.75

CHAPTER FIVE

Exercise 1.

a)

# OF ITERATIONS = 60
0 [ 0. [ 0 (-] ] 0 o [+ [

] 167 18 1a4 led 13 1e7 2.1 246 3.3 A
L} Js8 29 847 2.6 2.8 3.3 4 Ss1 6.4 8

[ L} 42 3T JeT7 IJe9 A6 5.7 T.2 9.4 12
8 6e3 Sal &S A 46 5.4 68 8.9 11.9 16
10 7 Be8 48 A6 Ae? 8.7 T.2 9.6 13.3 20
8 603 Sel 4e5 4ed 46 5.4 68 8.9 11.9 16
[} 1] Ae2 34T 307 309 46 3.7 T.2 9.4 12
4 3e4 2.9 2.7 2.6 2.8 3.3 & S.1 Gea 8

2 1e7 13 led 14 18 1.7 2.1 2.6 3.3 &




c) The pattern is symmetric across the x-axis (i.e., across the line
joining the +10 and +20 potential points.)

Exercise 2.

a)
# OF ITERATIONS = 186
0 0 0

b} The pattern is symmetric across the x-axis (i.e., across the line
joining the +10 and +20 potential points.)

Exercise 5.

a) The symmetries are along the x- and y-axes and also along the two

b)

0

Re 4

37

4

Se6

4.9

3.7

2.4

13

201

3.1

'.3

[ 2%}

0.8

l.a

0.8

diagonals of the square.

# OF ITERATIONS
[}

I8

[T ]

3.4

Qo t

4.8

Se A

6.7

7.8

1.‘

7.8

- 190

Se?

(1%}

6.6

3.6

$e9

6.3

6e7

‘I’

Tel

8.2

‘.‘

3

609

0.3

009

le6

2e3

0e9

0¢3

6e 6

‘la

6.9

0.8

19

0.8

1.6

.4

6.3

7.2

6.5

g" ‘

s.‘ ‘

10.% 16

11.9 20

105 16

Tel 361
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Exercise 6.

a) The symmetries are along the x- and y-axes and also along the two
diagonals of the square.

b)

# OF ITERATIONY = S52
0

2 2.8 Jo7

3 3.8 4.8 S8

[ 604 648 To2 7.6 8 8.3

9 8«6 Boa 8.5 8.6 8.8 9 9¢1 9.3 9.4
10 9 8,86 B+s6 8.7 8.8 9 9.2 9.3 9.4 9:4b

Exercise 7.

a) The symmetries are along the x- and y-axes and also along the two
diagonals of the square.
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100 100 100 100 81 62 46 30 15 0
(0,0) (9,00

Exercise 8.
a) The pattern is symmetric across the x-axis.
b} The potential along the y-axis is zero.
c) Since we know the potential along the y-axis is zero, we can use the

axis as one of the boundaries to the problem. In this way, the region
to be solved only contains one charge.
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