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PREFACE 

This unit shows you ways in which the computer can extend your 
knowledge and understanding of introductory electricity and magnetism. 
The unit presents numerical solutions for field lines and equipotentials. 
The solutions are easy to understand and yet include solutions to many 
problems which can't be handled by analytic methods. The emphasis in 
the unit will be on ways the computer can extend the electricity and 
magnetism you understand. The unit assumes some knowledge of intro­
ductory e and m, specifically the fields for simple charge distributions. 

Your instructor can assign chapters and exercises out of this unit in much 
the same way as out of a textbook. Lectures on the material may be 
presented, but you should be able to 'lJnderstand the material without 
lectures. The harder exercises can be used as the basis of projects if your 
instructor wishes. 

Each chapter in the unit starts with a brief discussion of the physics 
discussed in the chapter and then moves on to an explanation of the 
numerical procedure used with the computer. Exercises follow with one 
exercise completely worked out in the text so that you can see what a 
sample solution looks like. This sample exercise is sometimes a problem 
for which the answer is already known and therefore provides an extra 
check on the computer method. Some exercises are marked with asterisks. 
One asterisk means the exercise is fairly demanding wh ile two asterisks 
indicates a very challenging problem. Numerical methods will not be 
discussed much in the text; there is a section in the appendix which 
discusses the half-step integration used. 

Throughout the booklet normalized or natural units will be used. The 
units have the advantage that the numbers being calculated stay near 1; 
therefore rarely getting too small or too large for the computer. Natural 
units are often used in e and m; the units have the effect of setting 
1/(411'eo) and J10 /(411') all equal to one. 

Often graphical output is useful. If you have a plotter or a CRT terminal 
available, fine. If not, terminal plotting (using the teletype to plot a graph) 
can be helpful. The appendix gives a program to convert printing programs 
(programs which type out lists of numbers) to programs which plot on the 
terminal. This terminal plotting will be used several times in the unit to 
give you several examples. 

John Merrill 
Tallahassee, Florida 

This unit was written while the author was on the faculty of the Depart­
ment of Physics and Astronomy at Dartmouth College, Hanover, New 
Hampshire. John Merrill has used computers to support his classwork and 
research since joining the Dartmouth faculty in 1966. During the period of 
1970-72 he was part of a team of professors who developed computer uses 
for the classroom in engineering, mathematics and physics under the 
auspices of NSF funded project COEXIST. 

John has written many journal acticles on specific uses of computers in 
physics teaching, particularly for the two main physics teaching journals, 
The Physics Teacher and The American Journal of Physics. He has written 
several booklets on computer use in physics teaching including another 
unit in the Hewlett-Packard series, Quantum Mechanics. John is also the 
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author of the book, Computers in Physics, soon to be published by 
Houghton-Miffin Company. He is now the Director of the Center for 
Educational Design at Florida State University. 

Special credits go to Gregory Hughes, a recent PhD in physics from 
Dartmouth, who helped develop the exercises and Christine Doerr, who 
copyedited the man~script. 
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CHAPTER ONE: ELECTROSTATICS 

INTRODUCTION 

Electrostatics introduces the basic concept of fields, a concept used widely 

in electricity and magnetism (e & m) as well as in other areas of physics. 

The purpose of this chapter is to deepen your understanding of fields by 

using the computer to map electrostatic fields in various ways. You will 

map electrostatic patterns both by using the electrostatic potential and by 

using the electrostatic field itself. 

~+ 

THE ELECTROSTATIC FIELD, E(r) 

A field is a way to visual ize a vector whose magnitude and direction vary 
~ 

as you move around space. Consider the Coulomb force, F2 I, on a charge, 

q2, due to a charge, q I, a distance, t, away, 

(1) 

where r = 111 and ko defines the units. ko = 1/41TEo = 9x109 in mks units; 

ko = 1 in Gaussian (cgs) units. This force means that ql reaches out over 

the distance, 1. in order to create the force felt by q2' Originally, the 
~ 

electrostatic field, E, was introduced into physics so that q2 would be 
~ 

interacting with something (namely, the E field) right where q2 was. The 
~ 

idea is that ql produces an E field everywhere, and that q2 interacts with 
-~ 

the E field at q2 's position. 

~ 

The E field turns out to be a very convenient way to handle electrostatics 

problems because you can separate the effects of q I, the so-called source 

charge, from the effects of the field upon q2' You can separate each 

problem into a part dealing with what field is produced by the source 

charges and another separate part dealing with the behavior of other 

charges placed in that field. 

The electrostatic field at some point, 1 = (x,y,z), is defined as the force per 

unit charge on a test charge, q2, placed at t. 

(2) 

~+ + 
where F (r) is the force felt by q2 at the point r . 

..... 
Equations for the electrostatic field, E, for simple kinds of source charges 

are derived in regular textbooks. A short table of the fields looks like the 

following: 

+ 
Charge Distribution E Field 

Single Point Charge ko q/r' (tId A = the line charge density 

Single Line Charge ko AIr (ttr) 
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The total electrostatic field due to some set of source charges is just the 

(vector) sum of the fields due to each source charge individually. 

Practice Exercise: Show that the force experienced by a test charge, qz, 
placed at the point t is the Coulomb force when the source charge is a 
point charge. 

THE ELECTROSTATIC POTENTIAL, Vm 

Another useful concept in electrostatics is the electrostatic potential, V(t). 

You can define or introduce the potential in several different ways: 

1. When the source charge distribution does not extend to 00, the 

potential can be defined as the work per unit charge done to bring a 

test charge, q2, from infinite separation to the point, 1. 

-+ ...... rz -+ -+ 
The work done by a force F between rl and r2 is defined as f F • dQ, 

so the potential is 

... 

... 
VIr) Jr -+ -+ 

q E • dQ 

00 

00 

J-+ -+ 
-q E • dQ 

... 
r 

rl 

(3) 

Even when the source charge distribution does extend to infinity, 

some convenient position, to, can be chosen, and potentials can be 

measured from that point. 

-+ 
dQ (4) 

2. The potential can also be introduced from its other relationsh ip to 
-+ 

the field, E, namely 

-+... ... 
E(r) == -grad (V(r)) (5) 

The gradient, called grad, is just a vector derivative. 

These two definitions of potential are essentially equivalent. We will not 

do much with the second definition for the potential, V(t), but it is the 

more general of the two forms. This second definition is also the one used 

most in upper levels of e & m study. One very useful result of this second 
-+ ... 

definition is that the electrostatic field, E (r), at the point, t, points in the 

direction of steepest decrease of the electrostatic potential, V(t), at that 

point t. The force on a test charge at t always point directly down the 

potential hill. 



-+ 
The first definition points out most clearly that, unlike the E field, which 

is a vector function of position, the electrostatic potential, V (t), is a scalar 
-++ 

function of position. E(r) has both magnitude and direction at each point, 

1, whereas the potential, Vm, has only a value at each point, 1. The fact 

that V is a scalar makes it very easy to use, which is one of the reasons the 

potential appears so often. 

Again, textbooks derive the potentials for various simple charge distribu· 

tions. A table follows: 

Charge Distribution Potential 

Point Charge, q ko q/r A = the line charge density 

Line Charge, "A -2 ko "Aln(r/ro ) 

Practice Exercise: Show that the potential due to a point charge follows 

from the integral definition of potential and the earlier equation for the 

electrostatic field due to a point charge. 

Analytical methods which solve electrostatics problems are generally 

limited to those which can be integrated easily. Numerical, computer· 

based solutions are not so limited. For a general charge distribution, you 

can break the distribution up into pieces (which can be treated as point 

charges or line charges or whatever) and then just add up the fields or 

potentials due to each piece. The computer·based methods are very general 

and yet are based only on the simple equations for fields and potentials 

(those quoted above). 

VISUALIZING ELECTROSTATIC FIELDS 

-+ 
There are several ways to visualize electrostatic fields, E. The first way uses 

the electrostatic potential, V. The starting point is a plot of the potential 

everywhere in space. (Everywhere means at lots of points throughout some 

region of interest.) You then connect all the points having the same value 

of potential. The resulting surfaces in three dimensions (or contours in two 

dimensions) are called equipotentials. No work is done on or by a test 

charge moved around on any equipotential surface. The forces on any test 

charge are always perpendicular to equipotential surfaces. Because the 
-+ 

electrostatic field is the force per unit charge on a test charge, q2, the E 

field is always perpendicular to equipotential surfaces. Thws you can 

visualize what happens to a test charge (in some field set up by given 
source charges) by finding the equipotentials in the field. You can also 

(crudely) find the electrostatic field, E, at any point, t, by discovering in 

which direction away from t the potential decreases fastest. The greater 
-+ 

the rate of change of potential, the stronger is the electric field, E. 

All you need to be able to do to use this method is to be able to calculate 

the potential everywhere due to any given source charge distribution. 

However, the equation for an equipotential, is difficult to derive even for 

fields as simple as that due to three point charges. With the computer you 
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just add up the potentials due to whatever set of source charges you have: 

for three point charges, q 1, q2, q3 at 11, 12 and 13 and for any point, t, 
you sum ko (q 1/11 -111 + q2/1t -121 + q3 /It - t31). For N charges, you add 

up N such terms. If the source distribution is some mixture of point 

charges, line charges and whatever else, you must remember to put the 

right form of the potential in each term. The method is easy and very 

general. A block diagram of this strategy for potentials is shown below: 

INPUT 

Charges and Their Positions 

Set Range of; 

For Each ;, Calculate V (r) 

A second method is occasionally used to visualize electrostatic fields. In 
~+ 

this method, the vectors E(r) are calculated at lots of points over the 
~+ 

whole region of interest. Arrows representing the various fields, E(r), at 

the various points will be short where lEI is small and long where lEI is 

large. You can then visualize the E field in terms of constant lEi surfaces 

(or contours in two dimensions). Although this is a valid way to visualize 

fields, it is not very common. This method is illustrated by a problem at 

the end of this chapter. 

The third and most common way to visualize electrostatic field patterns 

uses field lines. One of the main points of this chapter is to allow you to 

use simple computer programs to generate field line patterns for numbers 

of different source charge distributions. 

The two-part definition of a field I ine is deceptively simple: 

~ 

1. At every point, 1, the electrostatic field, E, is tangent to (that is, is 

locally parallel to) the field line. 

2. The number of field lines passing through a (unit, perpendicular) 

cross sectional area at 1 is proportional to IE(;) I. 

This second part of the definition simply means that the field is strong 

where field lines bunch together and weak where lines are spread apart. 

Notice a few points about field lines: 

~ 

a. lEI is usually not constant along a field line. Any line usually goes 
~ ~ 

through regions where E is weak and regions where E is strong. 



b. Field lines start on positive charges and end on negative charges. If 

the total net charge of a charge distribution is not zero (that is, if 

there is more positive charge than negative, or vice versa) then some 

field lines may begin or end at infinity, since the lines will keep on 

searching for some charge on which to terminate. 

c. The number of lines that start on a +2 charge is twice the number 

that start on a +1 charge. Similarly, twice as many lines will end on a 

- 2 charge as end on a -1 charge. You can choose arbitrarily how 

many lines start on a +1 charge (note that the second part of the 

field line definition says "proportional to"), but having chosen that 

number, all else follows. 

At first sight the definition of field line seems very simple: after all, there 

are only two defining characteristics. At second glance, the definition 

seems to make field lines very complicated. Analytical solutions for field 

lines can only be performed for very simple source charge distributions, 

and even then the expressions look very complicated. Using a computer 

the field lines can be mapped using just the definition and a very short 

program. 

Consider the following way to trace out a field line. Suppose you know 

some point, r = (x,y,z), on a field line. (Any point lies on some field line, 

so you define the field line you are going to trace by choosing the first 

point.) Suppose further that you want to take a step of size /':;s along that 
~+ 

field line. You calculate the field at r, E(r), and then use the first defining 

property (the line is parallel to Eat n to calculate 

(6) 

-+ -+ -+ -+ -~ -~ ~ -~ 

These equations say that /':;s = /':;x + /':;y + /':;Z is parallel to E = Ex + Ey + Ez 
which is equivalent to the first defining property. 

~ 

Practice Exercise: When E z=O, show that the triangle &, /':;y, & is similar 
::; ~ ~ 

to the triangle Ex, E y, E. 

The next point along the field line is then (x+/':;x, y+/':;y, z+/':;z), and you 

can repeat the process at this new point. You walk along the field line 

step·by-step. Such a method of solution is called "algorithmic" (because 

the solution is an algorithm or procedure) or "iterative" (because you 

iterate or repeat the same steps over and over). Notice that the procedure 
""* breaks down if lEI = 0 at any point on the field line. Such methods are 

.. 
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easy on computers~ A block diagram of this procedure is shown below: 

yes 

INPUT 
Charges and their positions; 
Step size, As 

Choose point, ;, on 
field line 

¥alcu!ate the total field, 
E, at r 

Calculate Ax = As Ex/E 
Ay = As Ey/E 
Az = As Ez/E 

Calculate new ; = 

(x + Ax, y + Ay, z + Azl 

no 

Notice that you could perform the calculation yourself if you had the 

patience; there is nothing magic about the method at all. 

What about the second part of the field line definition? How do you 

ensure that your pattern will obey that property, too? The answer lies in 

how you choose to start field lines. Close enough to any charge, the field 

lines will be radial since all the other charges are so far away their effects 

are negligible. Close to each positive charge you can choose the number of 

lines (q times the number you choose to start on a +1 charge) to start 

radially and at equal angles. Once the lines are started correctly, the whole 

pattern will remain correct. More lines will bend around so that they go 

through regions of strong field, and fewer lines will bend around so as to 

go through weak field regions. This simple method produces results 

automatically. 

The same sort of procedure can be used to trace out equipotentials. Since 

equipotentials are always perpendicular to field lines, we move perpen-
~ ~ 

dicularly to the field, E, at each point (rather than parallel to E). In two 

dimensions (or symmetrical three·dimensional systems such as those we 

consider below) this procedure is particularly easy. The steps f"..x and f"..y, 
-~ ~ 

parallel to x and y, are given by f"..x = -f"..s Ey/lEI and f"..y = f"..s Ex/IEI. 



FIELD LINES AND EQUIPOTENTIALS WITH THE 
COMPUTER 

Let us do an example of this procedure which is similar to the problems at 

the end of the chapter. We will choose a relatively simple example: two 

opposite charges (+1 and -1) at (+.5, 0) and (- .5,0) respectively. Far away 

from the charges (Itl»1) this pattern reduces to a dipole pattern. (This is 

actually one of the few problems which can be solved analytically. Hence 

this example can also serve to verify the numerical method; this verifica· 

tion is discussed in a problem.) 

Since the pattern is symmetric under rotations around the x-axis, we can 

limit our discussion to the x-y plane. That is to say, the z direction is just 

like the y direction, so the full three-dimensional picture is just the one we 

will produce rotated around the x-axis. Two-dimensional pictures are 

easier to put on paper; the method, of course, works just as well in three 

dimensions. Most of the physical intuition can be derived from two­

dimensional pictures. 

Example 1. Find the potential for the above charge distribution. Consider 

-5<X<5 and -5<y<5. 

The potential is just V = ko (+1/[distance from (+.5,0)]) + ko(-1/[distance 

from (-.5,0) 1). One program which calculates and prints-out the values of 

the potential is listed below: 

POTENT 

100 
110 
120 
130 
140 
150 
160 
IHI 
180 

t~H 
220 
230 
240 
250 
260 
270 
280 
290 
300 

PRINT "(X,Y) OF L.EFT-BOTTOM & RIGHT-TOP?"] 5p«:ifyROf/ion 
INPUT X8,Y8,X9,Y9 ofint-r 
L.ET K0= I-Setuni .. 
LET Q=-+ 1- MllfJfIitudeofclMngtll 
LET N0=9 - # of points acro$$ x Bndy 

L.ET X7= (X9-X8) /N0 - 11K 
L.ET Y7=(Y9-YS)/N0-lW 
FOR J=N0 TO 0 STEP -I-Stepdowny 
L.ET Y0=Y8+J*Y7 - ElICh y in turn 
FOR I =0 TO N0- Step IICfOSS X 

LET X0 a X8+I*X7-Eschxinturn 
L.ET R=SQR( (X0-. 5) * (X0-. 5) +Y0*YI1I) - Dirt.nee from (+.5,0) 
L.ET R I- SeRe (XI1I+. 5) * (X0+. 5) +Y0*YI1I) - Dirt.nce from (-.5,0) 

L.ET V=KI1I*Q/R-K0*Q/RI-PotentiBl 
P R I N TV, - Print potentis' 
NEXT I 
PRINT 
NEXT J 
PRINT 
3 0 TO 1 00 - Return for new region 

END 

Practice Exercise: Modify the program so that it computes the potential 

for two equal, positive charges at (+.5, 0), (-.5,0). 
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A RUN of this program produces the following output. Notice that each 

value of y produces two lines of printing; the second line gives the values 

another page width to the right of the first line. 

RUN 
POTENT 

(X,Y) OF L.EFT-BOTTOM & RI GHT-TOP? 
1-.5" -.5" • 5 ... 5 
-1.1"'557 -.971852 -.7461"'8 -.464101 -.156889 

• 156889 .4641 • 74611118 .911852 1.1111551 

-1.63942 -1.44181 -1.1118265 -.656706 -.21868 
.21868 .656706 1.1118265 1.44181 1.63942 

-2.63648 -2.26813 -1.60032 -.92011148 -.29611126 
.296028 .92"'11148 1.6011132 2.26873 2.63648 

-50111361 -3.88657 -2.34283 -1.2281117 -.362654 
.382654 1.2281117 2.34283 3.88657 5.01361 

-17.0015 -6.92104 -3.08319 -1.46436 -.441558 
.441558 1.46436 3.08319 6.92H13 17.0015 

-17.0015 -6.92104 -3.1118319 -1.46436 -.441558 
.441558 1.46436 3.08319 6.92703 17·0015 

-5."'1361 -3.86651 -2.34283 - I • 22601 -.362653 
.382653 1.22807 2.34283 3.66651 5.01361 

-2.63646 -2.26813 -1.60032 - .920048 -.29811126 
.298026 .920048 1.60032 2.26813 2.63648 

- I. 63942 -1.44181 . -I. "'8265 -.656106 -.21868 
.21868 .656106 1.06265 1.44181 1.63942 

-1.10551 -.911652 -.146108 -.464101 -.156889 
• 156669 .4641 .146108 .911652 1.113551 

(X,Y) OF L.EFT-BOTTOM & RIGHT-TOP? 
10" 0" I .. 1 

0 1.87226E-02 0152639 .216113 .271447 
.310716 .335603 .34721 .3477 .339727 

0 .1111363 .2111111662 .2651111112 .351774 
.396157 .423933 .431343 .424242 .41116995 

0 • 136997 .266646 .37991116 .465109 
.519762 .543989 .54231116 .521774 .489679 

111 .189937 .367195 .516171 .629194 
.693829 .7111111115 .690767 .646572 .59111792 

111 .26361116 .512469 .725627 .87843 
.9527 23 .9511121117 .692262 .606114 .712763 

111 .369911 .728777 1.04792 1.27458 
1.3595 1.30575 1.16682 1.00755 .85562 

0 .515618 1.04749 1.56911 1.96072 
2.05579 1.85912 1.5474 1.25226 1.01331 

0 .694761 1.46774 2.44052 3.33496 
3.43859 2.758 2.04009 1.52167 1016615 

0 .662522 1.974 3.8111283 6.99827 
7.1111766 4.13902 2.56265 1.75476 1.26753 

111 .93511165 2.21536 4.6 16.9412 
17dl526 5.14266 2.81739 1.65143 1.33333 

(X,Y) OF L.EFT-BOTTOM & RIGHT-TOP? 
? 

The largest positive numbers for the potential lie near the positive charge, 

the largest negative values of potential I ie near the negative charge. 

Sometimes plotting the potential helps you to see the pattern. You can 

plot characters on the terminal which represent the size of the potential at 

each (x,Y) point on the plot. One way to produce such a plot involves 

several changes (shown below) in the potential program, POTENT, listed 



on page 8. The characters represent the size of the potential; the position 

of each character is the point (x,Y). Terminal plotting is sometimes crude 

since on most terminals the characters can only appear at definite places 

on the paper. 

GET-POTENT 

1111 DIM AS( 36) 
2" J..ET AS-"0123456789ABCDEFGHIJKJ..MNOPQRSTUVWXYZ '" 
112 PRINT ''MIN. & MAX. V?'" 
114 INPUT V8, V9 
14" J..ET NQI=3Q1 
16" J..ET Y7=1"*(Y9-Y8)/(6*NQI) 
17" FOR J-INT(. 6*NQI+. 5) TO 0 STEP -I 
24111 J..ET I9-I+INT(35*(V-VS)/(V9-VS)+.5) 
241 1 F 19>-1 THEN 243 
242 J..ET 19-1 
243 1 F I9c-36 THEN 245 
244 J..ET 19-36 
245 PRINT AS(I9,I9); 

A RUN of this modified program looks like: 

RUN 
POTENT 

(X,Y) OF J..EFT-BOTTOM & RIGHT-TOP? 
1-.55.-.05,-.45,.05 
MIN' MAX V? 
1-10". III 
UUUUUUTTTTTTSSSSSSSTTTTTTUUUUUU 
UUUTTTTTSSSSSSRRRSSSSSSTTTTUUUU 
UUTTTTSSSRRRRQQQQQRRRRSSSTTTTUU 
UTTTSSSRRQQQPPPPPPPQQQRRSSSTTTU 
TTTSSRRQQPPONNNNNNNOPPQQRRSSTTT 
TTSSRRQPOONMJ..KKKKKJ..MNOOPQRRSSTT 
TSSRRQPONMKJHGFEFGHJJ..MNOPQRRSST 
TSSRQPONMKIFC85458CFIKMNOPQRSST 
SSRRQPOMJ..IFB5""1110I11SBFIJ..NOPQRRSS 
SSRRQPOMKIE911l"0Z"Ql09EIKMOPQRRSS 
SSRRQPOMJ..IFBSIIlQl"QlIIlSBFIJ..NOPQRR55 
TSSRQPONMKIFC8S458CFIKMNOPQRS5T 
TSSRRQPONMKJHGFEFGHJJ..MNOPQRRSST 
TTSSRRQPOONMJ..KKKKKJ..MNOOPQRR55TT 
TTTSSRRQQPPONNNNNNNOPPQQRRSSTTT 
UTTTS55RRQQQPPPPPPPQQQRRSSSTTTU 
UUTTTTSSSRRRRQQQQQRRRRSSSTTTTUU 
UUUTTTTTSSSSSSRRRSSSSSSTTTTUUUU 
UUUUUUTTTTTTSSSSSSSTTTTTTUUUUUU 

(X.Y) OF J..EFT-BOTTOM & RIGHT-TOP? 
1-.5 .. -. ~ ... 5 ... 5 
MIN & MAX V? 
?-25.25 
HHHHHHHHHHHHHHHIIIIIIIIIIIIIIIl 
HHHHHHHHHHHHHHHIIIIIIIIIIIIIIII 
GGGGHHHHHHHHHHHIIIIIIIIIIIIJJJJ 
GGGGGGHHHHHHHHHIIIIIIIIIIJJJJJJ 
GGGGGGGGKHKKHHKIIIIIIIIJJJJJJJJ 
FFFFGGGGGHHHHHHIIIIIIIJJJJJKKKK 
EEEFFTGGGGHHHKHIIIIIIJJJJKKKJ..J..J.. 
CCDEEFFGGGHHHHHIIII 1 IJJJKKJ..J..MNN 
67ACDEFFGGGKKKKIIIIIJJJKKJ..MNPST 
Z08BDEFFGGGHHHHIIIIIJJJKKJ..MORZZ 
67ACDEFFGGGHHHHIIIIIJJJKKJ..MNPST 
CCDEEFFGGGKHKKHIIIIIIJJJKKJ..J..MNN 
EEEFFFGGGGKHHHHIIIIIIJJJJKKKJ..J..J.. 
FFFFGGGGGHHHHHHIIIIIIIJJJJJKKKK 
GGGGGGGGHHHHHHHIIIIIIIIJJJJJJJJ 
GGGGGGHHHHHKHHHIIIIIIIIIIJJJJJJ 
GGGGHHHHHHHHHHKIIIIIIIIIIIIJJJJ 
HKHHHKHKKHKHHKKIIIIIIIIIIIIIIII 
HHHHHHHHHHHHKHHIIIIIIIIIIIIIIII 

(X.Y) OF J..EFT-BOTTOM & RIGHT-TOP? 
? 

(The character 0 represents V< = the minimum potential; the character Z 

represents V> = the maximum potentiaL) 

Example 2. Sketch three equipotentials (approximately) on a plot of 

potentials. 
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Using the terminal plots you can connect the points having approximately 

equal values of potential. Points having the same character are connected 

(but not 0 or Z); sometimes it is necessary to interpolate between char­

acters (for example to find where 6 would come between printed 5 and 7 

characters). The breadth of a region having a given character is broadest 

when the potential is changing slowly. 

Practice Exercise: On the second terminal plot, find the boundary be­
tween the I and J equipotentials. What is the shape of this equipotential off 
the plot? 

Practice Exercise: On the first terminal plot, find the K equipotential. 

Practice Exercise: Find the contour on which the value of the potential is 
actually zero on the first terminal plot. Explain its behavior. (It is possible 
to have the computer hunt through and interpolate between points to find 
points on a given equipotential.) 

Example 3. Sketch three field lines (approximately) on a plot of 

potentials. 

You can find field lines by moving in the direction of the fastest decrease 

in potential at each point. Using terminal plots the field lines are crude, 

but you can still get a feeling for this behavior. 

Practice Exercise: Starting near the lower left corner of the first terminal 
plot, follow a field line inward. 

Practice Exercise: On the second terminal plot, follow a field line which 
leaves the positive charge at 135

0 to the x-axis. 

Example 4. Using an algorithmic method, compute three field lines for 

this charge distribution. 

You can use a program which implements the algorithmic strategy 

discussed above. One program which does this is the following: 



EMAP 

100 
110 
120 
130 
140 
150 
160 
110 
180 
190 
200 
210 
220 
230 
240 
250 
.260 
210 
280 
290 
300 
310 
320 

"- 330 
~ 3413 
~ 350 
.g 360 
_~ 370 
, 380 
] 390 
... 400 

LET N0=2 - #ofcharges 

FOR J=1 TO N0 J 
READ X(J], YCJ), Qe J) Positions and 
NEXT J Values of Charges 
DATA .5,0,1,-.5,13,-1 
LET K0 2 9. E+ 09 - Units 
LET D=. 135 - Step size,!:::.s 
PRINT "CX,Y) STARTING PT. ON FIELD LINE?" 
INPUT X5,Y5 
LET X0=X5 -x along line 
LET Y0=YS - yalongline 
LET Xl=0-Llx 
LET Yl=0-Lly 
LET 513=.5 -PrintouteverySfJalongline 
L E1 5= 0 - Distance S along line 
PRINT '"X", '"(" 
LET E1 2 0 
LET E2 2 0 
FOR J= 1 TO N 0 - Add up fields for each charge 

LET R3=CX0+XI/2-XCJJ)*CX0+XI/2-XCJJ) J-' 
LET R3=R3+CY0+YI/2-YCJ»*CY0+YI/2-YCJ» Irl 
LET R3=R3' 1.5-1:1' 
LET E=K0*QCJJ/R3-IEI1171 
LET El=El+CX0+XI/2-XCJJl*E-Ex 
LET E2=E2+CY0+YI/2-YCJJl*E-E 
N~TJ 4 Y 
LET E0=SQRCE1*El+E2*E2)-IEI 
LET Xl=D*El/E0-LlX 
LET X0 2 X0+Xl-Newx 
LET YI 2 D*E2/E"'-Lly 
LET Y0=Y0+Y 1- New y 

IF S< S0 THEN 450 Print-out 
LET 5=0 Lines 

410 
420 
430 
440 
450 
460 
410 
480 
490 
500 
510 
520 

LET S=S+D J 
PP.INT X0,Y0 
FOR J= 1 TO N0 
IF ABSCX0-XCJJ)+ABSCY0-yeJJ)<.9*D 
NLXT J a line 

IF ABSCX0)+ABSCY0)< 10 THEN 
PRINT X0"Y0 -PrintoutJastpoint 
PRINT 

TH EN 49 ~J Tests to end 

260 - Far off page 

G OTO 170 - Return for new line 

END 

All calculations of the distance from each charge and of the fields use an 

estimate of the position one-half step ahead of the present point on the 

line, This half-step method is quite accurate even with a relatively large 

step size (and hence relatively few iterations to complete a line). The 

question of accuracy and the idea of a half-step method are discussed 

further in Appendix B. 

A RUN of this program looks like the following: 

EMAP 

CX,Y) STARTING PT. ON FIELD LINE? 
?55,.05 
x 

.819121 
1.13562 
1.2977 
1.35226 
1.28674 
1 "~9"'79 
.162383 
.321695 

-.173504 
-.638683 
-1. "'0482 
-1.24142 
-1.34563 
-1.32623 
-1.1954 
-.966379 
-.655836 
-.515865 

Y 
.425224 
.853816 
1.32582 
1.82174 
2.31608 
2.77418 
3.14198 
3.37725 
3.40938 
3.23513 
2.89915 
2.46087 
1.97332 
1.47465 
.993281 
.549795 
.158764 
• "'15919 

CX,Y) STARTING PT. ON FIELD LINE? 
1.55 .... 01 
X 

1.03884 
1.52333 
2.00277 
2.47694 
2.94573 

Y 
-114918 
.238369 
.380176 
.538725 
.712554 
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3.41il91!7 
3.86689 
4.31915 
4.76582 
5.21il685 
5.64222 
6.1il7188 
6.49579 
6.91394 
7.07958 

.900448 
1.11il14 
1.31457 
1.53924 
1.77478 
2.02064 
2.27634 
2.54145 
2.81558 
2.92767 

(x.Y) STARTING PT. ON FIELD LINE? 
? 

The field lines start at the positive charge and end at the negative charge. 

Some lines are much longer than others; the longer ones bend around from 

the back side of the positive charge to the back side of the negative charge. 

The line leaving the back side of the positive charge directly away from the 

negative charge must go through infinity to get back to the negative 

charge. 

Practice Exercise: Modify the program to find field lines for four point 

charges: +1 at (+1, +1), -1 at (-1, +1), +1 at (-1, -1) and -1 at (+1, -1). 

Plotting can be helpful in this exercise. If you have a plotter system or a 

plotting terminal, use it; if not, terminal plotting can serve. The changes 

required to use terminal plotting with EMAP refer to subroutines in 

Appendix A and are as follows: 

GET-EHAP 
IIil READ X8.X9.Y8.Y9.ZIil 
21il DATA -5.5.-5.5. I 
31il GOSUB 91il1il1il 
21il5 GOSUB 911il1ll 
251il 
441il GOSUB 911111il 
49111 GOSUB 911111il 
492 GOSUB 9200 

APP-TTYPLO 

RUN 
EHAP 

(X.Y) STARTING PT. ON FI El..D LINE? 
1.55 •• 05" 
MAX y. 5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y I I 
Y I 
Y I 
Y I I 
Y I 
Y I 
Y I I 
Y I I 
Y 
Y I 
Y I 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y.-5 MIN X.-5 MAX x- 5 



(X.Y) STARTING PT. ON FIELD L.INE? 
?55,-.~3 

MAX Y= 5 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 1 
Y 1 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 1 
Y 1 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y=- 5 MIN X=- 5 MAX X= 5 

(X.Y) • .sTARTING PT. ON FIEL.D L.INE? 
1.45. iii 
MAX y. 5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
y 
y 
Y 1 1 1 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
~lIN Y--5 MIN X=-5 MAX X= 5 

(X.Y) STARTING PT. ON FIEL.D L.INE? 

Sometimes it is useful to have several lines on one plot. The following 

changes in the original field line program, EMAP, listed on page 11, 

accomplish this. 
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GET-EIMP 
10 READ XS.X9.YS.Y9.Z0 
20 DATA -5.5.-5.5.0 
30 GOSUB 9000 
IS'2 IF X5a 999 THEN 515 
183 l.ET Z13aZ0+ 1 
205 GOSUB 91130 
250 
440 GOSUB 911313 
490 GOSUB 9100 
515 GOSUB 92130 

APP-TTYPl.O 

A RUN of this modified program is shown below: 

RUN 
EMAP 

<X.Y> STARTING PT. ON FI El.D l.INE7 
7.55 •• (/15 

<X.Y> STARTING PT. ON FIELD l.INE7 
7.55.-.(/13 

<X.Y> STARTING PT. ON FI ELD l.INE7 
7.45.13 

<X.Y> STARTING PT. ON FI ELD l.INE 7 
7999.13 
MAX Y- 5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 1 1 
Y 1 
Y 1 
Y 1 1 
Y 1 
Y 1 
Y 1 1 
Y 1 1 
Y 1 
Y 1 
Y 23 3 32 
Y 2 2 
Y 2 2 
Y 2 2 
Y 
Y 2 
Y 2 
Y 2 
Y 
Y 2 
Y 2 
Y 
Y 2 
Y 2 

2 
2 

2 
2 

Y 2 
Y 2 

2 
2 

2 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y--5 MIN X--5 MAX x- 5 

(The terminal plotting programming prints the last character plotted at 

each position.) 

Finally, it is possible to modify the field line program to follow equi­

potential contours instead. All you do is move perpendicularly to the field 
4 
E at each point (instead of parallel). The modified program is listed below, 

followed by a run and a terminal plot. 



VMAP 

1"0 !.ET N0=2 
110 FORJ=ITON0 
120 READ XeJ),YeJ),QeJ) 
13" NEXT J 
140 DATA. 5, 0, 1" -.5" 0, - 1 
150 !.ET K0=9.E+09 
160 !.ET D=.05 
170 PRINT "(X,Y) STARTING PT. ON FIE!.D !.INE?" 
180 INPUT X5,Y5 
190 !.ET X0=X5 
200 !.ET Y0=Y5 
210 !.ET XI-0 
220 !.ET Y 1=0 
230 !.ET 50=.5 
240 !.ET 5=0 
250 PRINT "X", ''Y'' 
260 !.ET EI=0 
27 0 !.ET E2=0 
280 FOR J= I TO N0 
290 LET R3=(X0+XI/2-XCJ)*(X0+XI/2-XCJ) 
300 !.ET R3=R3+(Y0+YI/2-YeJ)*(Y0+YI/2-YCJ) 
310 LET R3=R3' 1.5 
320 !.ET E=K0*QCJ)/R3 
330 LET EI=EI+(X0+XI/2-XCJ)*E 
340 !.ET E2=E2+ (Y0+Y I 12-yeJ) )*E 
350 NEXT J 
360 LET E0=SQR(EI*EI+E2*E2) 
370 !.ET XI=-D*E2/E0 
380 !.ET X0=X0+XI 
390 !.ET YI=D*EI/E0 
400 !.ET Y0=Y0+YI 
4 I 0 1. ET 5= 5+ D 
420 IF 5< 50 THEN 450 
430 !.ET 5-0 
440 PRINT X0,Y0 
450 IF ABS(X0-X5)+ABS(Y0-Y5)<.9*D THEN 470 
460 IF ABS(X0l+ABS(Y0)< 10 THEN 260 
470 PRINT X0. Y0 
480 PRINT 
490 GOTO 17111 
500 END 

VMAP 

ex,y) STARTING PT. ON FIE!.D !.INE? 
? 3," 
X 

• 655171 
.54441 
• 293041 

Y 
-.166054 

.219905 
3.07172E-02 

ex,y) STARTING PT. ON FIE!.D LINE? 
? 1,0 
X 

.263204 

.719458 
1.12219 
1.20455 
.921518 
.440887 
.127082 
9.85179E-02 

Y 
-.459612 
-.610559 
-.339661 

.140735 

.536615 

.580765 

.214304 
1.6B65IE-02 

ex,y) STARTING PT. ON FIE!.D LINE? 
1-. 1,," 
X 
-.263204 
-.719458 
-1.12219 
-1.20455 
-.921519 
-.440887 
-.127082 
-9.85179E-02 

Y 
-.459612 
-.610559 
-.339661 

.140735 

.536616 

.580765 

.214304 
1.68 656E-rII2 

(X,Y) STARTING PT. ON FIE!.D !.INE? 
? 
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GET-VMAP 
10 READ X8,X9,Y8,Y9,Z0 
20 DATA -3,3,-3,3,0 
30 G OSUB 9000 
185 IF X5=999 THEN 495 
186 LET Z0=Z0+ 1 
205 GOSUB 9100 
250 
440 GOSUB 9100 
470 GOSUB 9100 
495 GOSUB 9200 

APP-TTYPLO 

RUN 
VMAP 

(X,Y) STARTING 
? 3, 0 

(X,Y) STARTING 
1.1,0 

(X,Y) STARTING 
?-. 1,0 

PT. ON 

PT. ON 

PT. ON 

FIELD LINE? 

FIELD LINE? 

FI ELD LINE? 

(X,Y) STARTING PT. ON FIELD LINE? 
?999,0 
MAX Y= 3 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

3 

3 

3 3 

3 
3 

2 2 

3 2 2 
3 211 

2 2 
2 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y.-3 MIN X=-3 MAX X= 3 

Practice Exercise: Annotate the program with comments by each line or 
group of lines explaining what calculation the line or group perform. You 

may use the annotations on the earlier program as a guide. 

Practice Exercise: Modify either of the algorithmic programs so that the 
program follows either a field line or an equipotential. Allow the user to 
decide which type of contour to follow each time he starts a new contour. 

CONCLUSION 

The methods discussed here are very general. Field lines and equipotentials 

can be found for any source charge distribution. By writing and running 

your own programs for several different charge distributions, you will gain 

a very good feeling for the behavior of field lines and equipotentials. Field 

line mapping is fundamental to every part of electricity and magnetism, so 

it will be helpful to gain this intuition now. 



CHAPTER ONE EXERCISES 

1. Consider the line charge distribution: +3 at (+.5,0) and -1 at (-.5,0). 

(This potential is symmetric around the x-axis so we only need to 

view it in the x-y plane). 

a) Find the potential for this charge distribution. Use the char­

acter plotting method to observe the potential. (You will need 

to print the values in the region first in order to know the 

largest and smallest values of the potential to plot.) Consider 

the regions: -.55 < x < -.45, -.05 < y < .05; +.45 < x < .55, 
-.05 < y <.05; and -5 <x <5, -5 < y <5. 

b) Sketch several equipotentials on each of the character plots. 

Since the change in potential is linear with the character set, if 

you sketch the equipotentials for every third character (eg., 2, 

5, 8 etc.), then the contour lines are close together when the 

change in the potential is large (and the field is strong). 

c) Sketch four field lines on the character plots. 

d) Using an algorithmic method, compute four field lines for the 

large region considered in (a). 

e) Using an algorithmic method, compute four equipotential lines 

for the large region considered in (a). 

2. Consider the line charge distribution A = +1 at (+.5, -.25), A = +1 at 

(-.5, -.25) and 11.=+1 at (0, +.62). an equilateral triangle. The line 
charges are perpendicular to the x-y plane. 

a) Find the potential for this charge distriiJution. Use the char­

acter plotting method. Consider the region -2 < x < 2, -2 < y 

<2. 

b) Sketch several equipotentials on the character plot. 

c) Sketch three field lines starting at each charge on the character 

plot. 

d) Using an algorithmic method, compute four field lines starting 

at each charge of this charge distribution. 

e) Using a algorithmic method, compute several equipotential 

lines. Pick equipotentials close to each charge and then far 

away from all of them. 

f) How would you compare the potential near each charge and 

far away from all of them to a single line charge distribution? 
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3. Consider the line charge distribution of A = +1 at (.5, .5); A = -1 at 

(.5, -5); A = +1 at (-.5, -.5); and A = -1 at (-.5, +.5). The line 

charges are perpendicular to the x·y plane. 

a) Find the potential for this charge distribution. Use the char­

acter plotting method. Consider the region -2 < x < 2, -2 < 
y<2. 

b) Sketch several equipotentials on the character plot. 

c) Sketch three field lines starting at each charge on the character 

plot. 

d) Using an algorithmic method, compute four field lines for this 

charge distribution. 

e) Using an algorithmic method, compute several equipotential 

lines. Pick equipotentials close to each charge and then far 

away from all of them. 

f) Locate the planes on which the potential is zero. 

4. Modify Exercise 3 so that each of the line charges has A = +1. Sketch 

your idea of the equipotential and the field lines before you calcu­

late them. 

a) Using an algorithmic method, compute four field lines starting 

at each positive charge for this charge distribution. 

b) Using an algorithmic method, compute equipotential lines for 

the distribution. 

c) How would you compare the potential near each charge and 

far away from all of them to a single charge distribution. 

5. Let us examine the idea that a set of point charges can be used to 

approximate any field distribution. To do this, let us approximate a 

line charge by a set of point charges. Consider the point charge 

distribution with nine +1 charges from (-2,0) to (2,0) at .5 intervals. 

a) Compute the field line distribution for this charge distribution. 

b) Compute the equipotential lines for this distribution. 

c) Since you know the analytical expression for the field and 

potential from a line charge, compare your point charge ap­

proximation to it. Where does the point charge approximation 

to field lines and potential differ from the line charge? (There 

are three regions where the two differ most). 

d) How would you make a better approximation to the line 

charge? 



6. Consider the line charge distribution of A = +1 at (0,0); A = -1 at 

(-1,0); A = -1 at (+1,0); A = +1 at (-2,0); A = +1 at (2,0); A = -1 at 

(-3,O);A=-1 at(3,O);A=+1 at(-4,O);andA=+1 at (4,0). 

a) Compute the field line distribution for this charge distribution 

of -.5 < x < .5, - 1 < y < 1. 

b) Compute the equipotential lines for this distribution. 

c) On what surfaces is the potential zero? 

7. In Exercises 3 and 6, and in the dipole example, the charge distribu­

tion leads to planes of zero potential. These problems illustrate the 

image phenomena. The field pattern of these charge distributions is 

the same as that of conducting sheets at zero potential and the 

charge distribution on one side. For example, Exercise 3 can be 

thought of as +1 at (.5, .5); -1 at (.5, -.5) and a conducting plane at 

zero potential along the y-axis. The way to solve the conducting 

sheet problem is to set it up as if each charge has an image of 

opposite sign an equal distance on the other side of the plane. 

Thus, Exercise 3 is the solution to the two charges and the con­

ducting plane. 

a) Exercise 3 is also the solution to another charge distribution 

and a plane. What is it? 

b) Exercise 3 can be seen as the solution to the charge distribu­

tion for two conducting planes and a point charge. Where are 

the planes? 

c) How can Exercise 6 be restated in terms of conducting planes? 

d) Consider the line charge distribution A = +2 at (.5,0), A = -1 at 

(.5, .5); A = -1 at (.5, -.5) and a conducting plane along the yz 

axis. How would you solve this problem using the method of 

images? 

8. Consider the charge distribution caused by an infinite solid cylinder 

of charge centered on the z-axis with a radius of .5. This can be 

approximated by a set of I ine charges parallel to the z-axis. 

a) Compute the field line distribution for this charge distribution. 

b) Compute the equipotential lines for this distribution. 

c) What is the potential inside the cylinder? 

d) What should the field be according to Gauss's law inside the 

cylinder? How does the potential and field outside of the 

cylinder compare to those of a single line charge? 

9. We have visualized fields by either equipotentials or field lines. We 

can also visualize fields by surfaces of constant field magnitude. 
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Consider the dipole charge distribution we used in the text. 

a) Print the magnitude of the field over the region used in the 

text. 

b) Convert the character printing program so that the characters 

represent magnitudes of fields. 

c) Draw in the equifield regions on the character plots. 

d) How do the equifield regions differ from equipotential lines? 

e) Is there any relationship between the constant field contours 

and the directions in which the fields point? 

10. The analytical solution of a dipole is: 

the potential V = p cos e /r2 

and Ex = 3p sin e cos e/r3 

Ez = p (3cos 2 e -1 }/r3 

are the field components when the dipole p is centered at the origin 

and is parallel to the z direction. The angle e is measured with respect 

to the z direction, and r is measured from the center of the dipole. 

If the dipole is caused by two single charges on the z-axis, then ipi = 
qs where s is the distance between the charges (the positive charge is 

assumed to be in the positive z direction). 

a) Compare the program results obtained for the potential calcu­

lated from two point charges with the analytical dipole ap­

proximation. (Compare the values on the x- and z-axes at the 

distances 1, 5, 20.) 

b) Compare the calculated results for the field with the analytical 

approximation. To do this, see if the two solutions are parallel 

to each other along the x-axis at 1, 5, 20 and along the 4fJ 
line between the x- and z-axes at the distances 1, 5, 20 from 

the origin. 



CHAPTER TWO: MAGNETOSTATIC 
FIELDS 

INTRODUCTION 

--++ 
Magnetic fields B (r) result from currents. (We will use the term magnetic 

field even though magnetic induction is strictly correct; the distinction is 

really only important when you deal with magnetic materials.) If the 

currents are steady (that is, do not change with time), the magnetic field 

is magnetostatic. The purpose of this chapter is to find how to map 

magnetostatic fields by means of flux lines. 

MAGNETIC FI ELDS FOR VARIOUS CURRENT 
DISTRIBUTIONS 

Physics textbooks derive equations for the magnetic field due to simple 

current distribution, such as the long straight wire. The texts also intro­

duce the Biot-Savart law (sometimes called the Biot law) which gives the 

magnetic field everywhere in space due to a short segment of current, IdQ. 

These are the only results for magnetic field that we will need in th is 

chapter. The Biot-Savart law is sufficiently general and, when you use a 

computer, sufficiently easy to use that any current distribution can be 

handled. 

--+ 
For a long straight wire the magnetic field is given by B = 2ko I/r 

(tangential around the wire with sense by the right-hand rule). where r is 

the perpendicular distance to the wire, and ko is a constant which 

determines the units. ko = l1o/41T = 10"7 in mks units in which B is 

measured in Tesla; ko = lIc = 1/3x1010 in Gaussian (cgs) units in which 

B is measured in Gauss. In mixed units where currents are measured in 

amperes and magnetic field in Gauss, ko = .1. (One Tesla is 104 Gauss.) 

---+ 
The Biot-Savart law states that the magnetic field, dB, due to a small 

element of current, IdQ, is 

---+ ---+ + + 
dB = ko I dQ x r/lrl3 (7) 

where r is the distance from dQ to the point, (x, y, z), that the field, dB, is 

measured. This relationship allows you to compute the magnetic field due 

to any circuit by breaking the circuit up into little pieces and then adding 

up all the dB's. This relationship for dB is an inverse square law but has the 

complication of the vector cross product in the numerator. The cross 

product (in Cartesian coordinates especially) is quite easy to calculate on a 

computer. 
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MAPPING FIELD LINES 

There are two ways to visualize magnetic field patterns. The first is not 

often used but is easy to understand. I n this first method, the magnetic 
-+ 

field, B, is computed at a large number of points throughout the region of 

interest. The entire field is then visualized in terms of contours (or surfaces 
-+ 

in three dimensions) of constant IBI. This method is not in common use 

but is considered further in a problem at the end of the chapter. 

The second (and very common) way to visualize magnetic field patterns 

uses flux lines. The definition of a flux line has two parts: (1) the 

magnetic field, B(;) , is tangential to the flux line at each point, r, 
and (2) the number of flux lines passing through a (unit, perpendicular) 

cross section placed at any point, r, is proportional to the magnitude of 
-++ 

the magnetic field, IB(r)l, at that point. 

To calculate the shapes of flux lines analytically (the result then being an 

equation for the lines) is very difficult. With a computer, such calculations 

are straightforward. Suppose you know a point, (x, y, z), on a flux line. 

(Any point (x, y, z) lies on some flux line. So choosing an arbitrary starting 

point defines a particularflux line which will be followed.) Suppose further 

that you want to take a step of size f'..s along the flux line. The first 
-+ 

defining property for flux lines (B is parallel to the line) implies that 

-+ 
f'..y = f'..s By/IBI 

.,.-+ .,.-+~~ -+-+-+ 
These equations say that f'..s = f'..x + f'..y + f'..z is parallel to B = Bx + By + 
-+ -+ 
Bz. At the point (x, y, z) you calculate B; and then calculate f'..x, f'..y and 

f'..z. The next point along the flux line is (x + f'..x, y + f'..y, z + f'..z). Since 

you now know another point on the flux line, you can repeat the process. 

In this way the computer is used to walk along the flux line in small steps, 

f'..s. 



Flux lines never end, so the process continues until we return to the 

starting point. A block diagram of this strategy looks like this: 

INPUT 

Currents and Their Positions 

Choose a Point, t, 
on the Flux Line 

Calculate the Total .. .. 
Field, B, at r 

Calculate ~x; ~s Bx/lSI 

~y ; ~s By/l~1 
~z ; ~s Bz/lBI 

Calculate new ; 
; (x + ~x, y + ~y, z + ~z) 

no 

The fact that flux lines never end is a consequence of the fact that the 
~ ~ 

next flux through any region must be zero (1 8 • dA = 0). As much flux 

must enter as leaves; hence, no flux line can end. (The corresponding 
~ ~ 

statement for electrostatic fields is 1 E • dA = 4rrko q. This implies that 

electrostatic field lines end or start only on charges, which may, if 

necessary, be at infinity.) 

Notice that this iterative procedure for following flux lines will break 
~ 

down if 181 = 0 at any point on the line. 

MAGNETOSTATIC FIELDS 0 23 



FLUX LINES FOR A SET OF LONG STRAIGHT WIRES 

Let's consider a simple case. 

Example 1. Map the magnetic induction pattern due to four long straight 

wires parallel to the z-axis. The currents and the points (x, y) at which the 

wires cut the x-y plane are: +1 at (+1, +1); -1 at (-1, +1); -1 at (-1, +1); 

and+1 at(+1,-10). 

Schematically the situation in the x-y plane is: 

y 

o 0 
--------------+-----------~~x 

(0,0) 

o G 

This is a relatively simple current distribution, but analytical methods 

cannot calculate the flux lines. A plus one current means a current of one 

ampere (in mks units) which is coming out of the page (by the right-hand 
rule). 

--+ 
By symmetry, the magnetic field, B, has no z-component. All planes 

parallel to the x-y plane are equivalent, so we need only consider the x-y 

plane itself. A program implementing the strategy discussed above might 
look like the following: 

EI'IAP 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
31"" 
310 
320 
33'l 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 

DIM X[4),Y[4J,I[4) ] 
LET N 0= 4 Currents and 
FOR Ja 1 TO N0 Geometry for 
READ X[ J), Y[J)" [J) long, straight 
NEXT J wires 
DATA 1~ 1, 1,,-1, 1,-},-I,-I,-I, 1,-1,1 
1. ET K 0= 1 • E- 07 - Units 
LET D=. 05 - Step size, t::.s 

PRINT "(X,Y) STARTING PT. ON n El.D LINE?" 
INPUT X5,Y5 
LET X0=X5 - x 
LET Y0=Y5 - y 

LET Xl=0-6x 
LET Yl c 0-6y 
LET S 0= • 5 - Print every S(I along line 
LET $= 0 - Distance. S. along line 

PRINT ''X'', '"(" 
LET Bl=0 

~;~ ~:~0 TO N0 J 
LET R2=(X0+XI/2-X[JJl*(X0+XI/2-X[JJ) J"" ~ 
LET R2=R2+(Y0+YI/2-Y[J)*(Y0+YI/2-Y[JJ) Irl CalculateB 
LET 8=2*K0*l[J) IR2-IBl/r (half-stepped) 
LET Bl=Bl-(Y0+YI/2-Y[JJ)*B-Bx 
LET B2=B2+(X0+XI/2-X[J) )*B-By 
NEXT J 
LET 80=SQR(81*Bl+B2*B2)-IBI 
LET Xl=D*81/80-6x 
LET X0=X0+X 1- New x 
LET Y l=o.B2/80 - 6y 
LET Y0 s Y0+Y 1- New y 

LET S=S+D J 
IF S< S0 THEN 450 Print out 
LET S=0 Lines 
PRINT X0,Y0 
IF ABS(X0)+A8S(Y0»10 THEN 470-Faroffpage Jrestsfor 
IF ABS(X0-X5)+A8S(Y0-Y5».9*D THEN 270-Backto End of Line 

L 
4?12l PRINT X0,Y0-Lastpointonfine 
"p- 0 PRINT 
:·90 GOTO 180-Returnfornewline 
~0 END 

start 



~~ 

The calculation of the magnetic field, B(r). in this program uses a point 

(approximately) one-half a step ahead of the present point on the line_ A 

discussion of convergence and the half-step method are found in Appendix 

B. A run of this program looks like this: 

RUN 
IlMAP 

(X,Y) STARTING 
? 8 .. 8 
X 

1.2319 
1.4"682 
I 011117 I 
.743917 
.792453 

(X,Y) STARTING 
? 5, 0 
X 

.435"75 

.382484 
• 49 6948 
.790""'6 
1.211l665 
1.688"'8 
2.18638 
2.66452 
3. "'9446 
3.45537 
3.7323 
3.9151 
3.99767 
3.977 37 
3.85484 
3.634"'4 
3.3226 
2.93244 
2.48"'67 
1.99078 
1.49415 
I. "'3185 
• 656388 
• 428638 
.388341 
.471962 
.5"'''743 

PT. ON FIELD LINE? 

Y 
.64"'183 
1.06"'23 
1.3"'555 
.945335 
.804443 

PT. ON FIELD LINE? 

Y 
-.494747 
-.99"'777 
-1.4741 
-1.87544 
-2.14756 
-2.27552 
-2.26245 
-2.12079 
-1.8678 
-1.52326 
-1.1121812 
-.643715 
-.151479 

.347228 

.831"'59 
1.27863 
1.66852 
1.97947 
2.19"'89 
2.28379 
2.24244 
2.05738 
1.73115 
1.28974 
.794198 
.301455 
3. 20"'55E-03 

(X.Y) STARTING PT. ON FIELD LINE? 
? 

Practice Exercise: Modify this program to follow flux lines due to two 

wires both with 1= +1 with (x,y) position (-.5,0) and (+.5,0). 

Terminal plotting is sometimes useful to display flux lines. If you have a 

plotter system or a plotting terminal, you may want to use that. Terminal 

plotting can be performed as discussed in Appendix A. The necessary 

changes in the flux line program BMAP on page 24 (and then a run) to do 

terminal plotting might look like: 

GET-SMAP 

10 READ X8,X9,Y8,Y9,ZIl 
2111 DATA - 5,5, -5, 5, I 
30 G OSUB 9000 
205 GOSUB 9100 
250 
430 GOSUB 9100 
450 GOSUB 9101!! 
452 G OSUB 9200 
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RUN 
BMAP 

ex.Y) STARTING PT. ON FIELD l.INE? 
?1 ~.7 
MAX y. 5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 1 1 1 
Y 1 
Y 1 
Y 1 
Y 1 1 
Y 1 
Y 
Y 1 
Y 1 1 1 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN y.- 5 MIN X.- 5 MAX X= 5 

ex.Y> STARTING PT. ON FIELD l.INE? 
? 5. 0 
MAX ya 5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
y 
y 
y 
y 
y 
y 
y 
y 
Y 1 1 
Y 
y 1 1 
y 1 1 
y 
Y 11 
y 1 
Y 1 
Y 1 
Y 1 
Y 1 
Y 
Y 
Y 1 1 1 1 
Y 
Y 
y 
Y 
Y 
Y 
Y 
Y 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y--5 MIN X--5 MAX Xa 5 

ex.Y) STARTING PT. ON FIELD l.INE? 
? 

Practice Exercise: By hand, plot the positions of the line currents on the 

terminal plots. 

The flux lines bend around and close on themselves. The field is higher 

halfway between the oppositely-directed currents and lower halfway be­

tween the like-directed currents. The field is quite uniform (that is, the 

flux lines are nearly parallel over a fair-sized region) at the center of the 

pattern. 



THE DENSITY OF FLUX LINES 

If the flux lines are started correctly somewhere in the pattern, the density 

of the lines will be correct everywhere. That is, if the second defining 

property is obeyed somewhere by all the flux lines, it will be obeyed 

everywhere. The difficulty is that there is no easy way to make the density 

correct anywhere. (This is unlike the case for electrostatic field lines in 

Chapter One. For electrostatic field lines you can start the lines correctly 

near the charges.) 

You might be interested in thinking about this difficulty. Can you see a 

way to start the lines with the correct density? How about calculating the 

flux through small regions across, say, the line from (-1,0) to (+1,0) in our 

example? You might then start the correct number of lines in each region. 

FIELD LINES FOR COMPLICATED CURRENT 
DISTRIBUTIONS 

The same algorithmic procedure to follow flux lines can be used for more 

complicated current distributions. You can use the Biot-Savart law quoted 

at the beginning of this chapter. By breaking up any current distribution 

into little pieces, IdQ, using the Biot-Savart law to calculate the dBs for 
-+ -~ 

each piece, and then adding the dBs to find the total magnetic field, B, 

you can calculate the magnetic field anywhere in space for any current 
--* 

distribution. Using the resulting values of B = (Bx , By, Bz)' you can fo~Low 

the flux lines for any current distribution by making £"s parallel to B as 

above. 

Let's find the field pattern for a Helmholtz pair of circular coils. A 

Helmholtz pair has two parallel, circular coils carrying equal currents and 

having a separation equal to the coils' (common) radius. 

Example 2. Map the magnetic field pattern in the x-y plane due to a pair 

of Helmholtz coils of radius one carrying a current of +lA. Both coils are 

parallel to the y-z plane. 
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--+ 
A program which calculates the magnetic field, B, using the Biot-Savart 

law and follows flux lines algorithmically might look like the following: 

COILMP 

II<lIl 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
360 
390 
400 
410 
420 
430 
440 
450 
460 
l(I0 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
560 
590 
600 
610 
620 
630 
640 
650 

DIM C(20J,5(20J 
LET [.0=2 
fOR J= I TO N0 
READ X(JJ,n(JJ,I(JJ 
NEXT J 
DATA .5,,1,,1,-.5,,1,,1 
LET P2=6-28318 
LET N9= 10 

fOR 1=1 TO N9 ] 
LET T=P2*<I-_5)/N9 Store 
LETC(IJ=C05CT) sines and 
LET 5(IJ=SINCT) cosines 
NEXT I 
LET K0=I.E-1l7 
LET D=. I 
PRICIT "CX,Y) STARTINCl PT. Oi~ rIELD Lll~E.?" 
INPUT X5,Y5 
LET X0=X5 
LET Y0=Y5 
LET Xl=0 
LET Y 1=0 
LET 50=- 5 
LET S=0 
PRINT ''X" .. 'OY" 
LET 81=0 
LET-- 82=0 
LET 83~(/J 

FOR J::l TO N0-stepthroughcoils 
FOR 1-1 TO N9 -steparoundeachcoil 
LET LI=0 
LET L2=-P2*R(JJ*S(IJ/N9 
LET L3=P2*R(Jl*C( Il/N9 
LET L7=X(JJ 
LET L8=R(Jl*C( Il 
LET L9=P.(JJ*S(IJ 
LET X6-X0+XI/2-L7 
LET Y6=Y0+YI/2-L8 
LET Z 6=-L9 
LET R6= SeRe X6*X6+Y6*Y6+Z o*Z 0) 
LET R6=R6*R6*R6 
LET CI=L2*Z6-L3*Y6] 
LET C2=L 3*X 6-L I *z 6 Cross product 

LET C3=L I*Y6-L2*X6 
LET 81=81+K0*I(JJ*CI/R6-Bx 
LET 82=82+K0*rrJl*C2/R6-By 
~~;T 8;=83+K0*l (Jl*C3/R6-B, 

NEXT J 
LET 80=SQRCEI*EI+E2*82+E3*E3) 
LET x I=D*81/80 
LET X0=X0+X I 
LET YI=D*82/80 
LET Y0=Y0+Y I 
LET 5=5+D 
If S< 50 THEN 670 
LET S=0 

660 PPINT X0,Y0 
670 If AGSCX0)+A8SeY0» 10 THEN 690 
680 If ABSCX0-X5)+A8SCY0-Y5».9*D THEN 340 
690 PFINT X0,Y0 
700 PRINT 
7 10 G OTO 250 
720 END 
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Practice Exercise: Annotate the program by written comments by each 
line. 

A run looks like this: 

RUN 
COILMP 

(X,Y) STARTING PT. ON FIELD LINE? 
?~, I 
X Y 

.469244 .851036 

.189091 1.18119 

.615591 1.63534 

.180641 1.86649 
-.312249 1.83'" 18 
-.100194 1.52856 
-.151882 1.1'5049 
-.341941 .869398 
- 6.5458 6E-e2 .985284 

(X,Y) STARTING PT. ON FIELD LINE? 
? 4,.9 
X Y 

.160149 1013911 

.596541 1.59283 
• 152504 1.80504 

-.33981 1.15606 
-.11 1661 1.43189 
-.684021 .965799 
-.226359 .939189 

.235256 .932256 

.325616 .889544 

(X,Y) STARTING PT. ON FIELD LINE? 
10, • 5 
X Y 

.499165 .4913 

.9769 .635058 
1.31464 .935~03 
1.68635 1.32485 
1.92196 1.16524 
2.08598 2.23109 
2.11831 2.12804 
2.1968 3.22124 
2. 13198 3.12326 
1.99862 4.20284 
1.71646 4.65 
1.41184 5.~4543 
1.09004 5.3661 
.644055 5. 59~ 1 
.156582 5.69515 

-.341449 5.6108 
-.816714 5.5191 
-I. 24~89 5.25112 
-1.59496 4.90542 
-1.86911 4.48822 
-2.06~25 4.0269 
-2.16923 3.53949 
-2.19883 3.04085 
-2.15247 2.54345 
-2.03318 2.05834 
-1.84265 1.59658 
-1.57955 1.11213 
-1.23706 .809351 
-.806264 .56055 
-.313676 .492408 
-1.38063E-02 .50091 

(X,Y) STARTING PT. ON FIELD LINE? 
? 



And, finally, a terminal plot of the program, COILMP on page 28, is 

shown below: 

G ET- COIL.MP 

10 READ XB.X9.YB.Y9.Z0 
20 DATA -5.5.-5.5.0 
30 G OSU8 9000 
265 IF X5-999 THEN 115 
266 LET Z0=l0+ 1 
265 GOSU8 9100 
330 
660 JOSU8 9100 
690.0SUB 9100 
115 GOSU8 9200 

APP-TTYPLO 

RUN 
COILMP 

(X.Y) STARTING 
?0 .. 1 

(X.Y) STARTING 
1.4 ... 9 

(X.Y) STARTING 
10 •• 5 

PT. ON 

PT. ON 

PT. ON 

FIELD LINE? 

FI ELD LINE? 

FIELD LINE1 

(X.Y) STARTING PT. (XII FIELD LINE? 
1999.0 
MAX Y- 5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 3 
Y 3 
Y 3 3 
Y 3 
Y 3 3 
Y 3 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

3 
3 

3 
3 

3 

1 
1 2 2 
2 
1212122 

3 3 3 
3 3 

3 
3 

2 3 
1 3 
2 3 

3 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
MIN Y--5 MIN X--5 MAX X= 5 

Again, the strategy used in this program is entirely general. The magnetic 
~+ 

field, B(r), for any current distribution can be calculated from the Biot· 

Savart Law: sets of short wire segments; open·wound, short solenoids; sets 

of square coils; anything at all. A number of possible cases are treated in 

the exercises at the end of the chapter. 

CONCLUSION 

This chapter has introduced a general method to map magnetic field 

patterns. Both simple sets of long straight wires were discussed and a 

completely general procedure based on the Biot·Savart law was presented. 

By running several situations you can get a good intuitive feel for the 

behavior of magnetic fields. 



CHAPTER TWO EXERCISES 

1. Consider two long, straight, current-carrying wires parallel to the 

z-axis. The currents and the points (x,y) at which the wires cut the 

x-y plane are: +1 at (1,0); +1 at (-1,0). 

a) Determine the magnetic field along the x-axis from -3 to 3. 

b) In the region .5 < x < 1.5, -.5 < y < 5, calculate six magnetic 

flux lines such that the number of flux lines through a given 

area on the x-axis is proportional to the flux in that region. 

(Since the field is independent of z, the number of flux lines 

through a &< should be proportional to the average magnetic 

field on that region.) 

c) In the region -3 < x < 3, -3 < y < 3, calculate six magnetic 

flux lines such that the number of flux lines through a given 

region is proportional to the field in that region. 

d) In the region close to each wire, how does the field compare to 

that of a single current-carrying wire? In the region far away 

from all the wires, how does the field compare to that of a 

single current-carrying wire? 

2. Consider two long current-carrying wires parallel to the z-axis. The 

currents and the points (x,y) at which the wires cut the x-y plane 

are: +1 at (1,0); -1 at (-1,0). 

a) Determine the magnetic field along the x-axis from - 3 to 3. 

b) In the region .5 < x < 1.5, -.5 < y < 5, calculate six magnetic 

flux lines such that the number of flux lines through a given 

area on the x-axis is proportional to the flux in that region. 

(Since the field is constant in the z direction the number of 

flux lines through a &< should be proportional to the average 

magnetic field on that region.) 

c) In the region - 3 < x < 3, - 3 < y < 3, calculate six magnetic 

flux lines such that the number of flux lines through a given 

region is proportional to the field in that region. 

d) In the region close to each wire, how does the field compare to 

that of a single current-carrying wire? In the region far away 

from all the wires, how does the field compare to a single 

current-carrying wire? 

3. Consider the simple case of a single loop of current-carrying wire. 

Say the loop lies in the y-z plane centered at the origin with a radius 

of one and carries a current of one. 

a) Using the Biot-Savart law and the computer integration 

method, calculate the magnetic field at several points along the 

x-axis. (x =0, 1,5, 10). 
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b) It is possible to calculate these axial fields analytically. Do so 

and compare the analytical results with the ones obtained from 

the computer method. 

c) Evaluate the magnetic field along the y-axis out to the edge of 

the coil. 

d) Calculate the flux line pattern in the y-z plane through the 

coil. 

4. Consider the case of four current-carrying wires parallel to the z-axis. 

The currents and the points (x.v) at which the wires cut the x-y 

plane are: +1 at (1.5,1); -1 at (-1.5,1); +1 at (.5,-1); and -1 at 

(- .5,-1). 

a) Sketch the flux lines close to each wire. Now sketch the whole 

flux line distribution. 

b) Calculate the flux line pattern for this distribution. 

5. Consider the case of four current-carrying wires parallel to the z-axis. 

The currents and the points (x.v) at which the wires cut the x-y 

plane are +3 at (2,0); -3 at (-2,0); -1 at (1,0) and +1 at (-1,0). 

a) Sketch the flux lines close to each wire. Now sketch the whole 

flux line distribution. 

b) Calculate the flux line pattern for this distribution. 

6. Consider a square Helmholtz pair of coils. Let the corners of the 

square loops be defined by the (x.v,z) points: (+.5,1,1), (.5,1,-1), 

(.5,-1,-1). (.5,-1,1) and (-.5,1,1), (-.5,1,-1), (-.5,-1,-1), 

(-.5,-1,1). 

a) Calculate the flux line pattern for this distribution. Since it is 

not rotationally symmetric about the x-axis, calculate it in the 

x-z plane and then in the plane defined by the point (0,1,1) 

and the z-axis (i.e., the plane at 45° to both the x-z and y-z 
planes). 

b) Compare the axial field to that of the true (circular) 

Helmholtz pair. Compare both the magnitude of the field and 

the uniformity of the field in the center of each pair. 

7. Consider an infinite current-carrying cylinder of radius one. Model 

the cylinder as sixteen infinitely long wires parallel to the z-axis. 

a) Calculate the field distribution for this pattern. 

b) How well does this compare to the Biot-Savart law inside the 

cylinder? Outside the cylinder how does it compare in magni­

tude and shape to a single wire at the origin with a current of 

sixteen? 



8. The field for an electric dipole was given in Chapter 1, Exercise 10. 

How well does the magnetic field of a simple loop in the x-y plane of 

radius 1 compare to the dipole equation when you are far away from 

the loop? Use the distance of ten for your comparison. What dipole 

moment, p, is necessary to make the magnitudes agree? How does 

this dipole moment vary with the current in the loop? 

9. Flux lines are not the only method of studying magnetic fields. 

Write a program similar to the equipotential character mapping 

program to print like characters for regions with the magnitude of 
~ 

\B\ equal. This method could be useful for determining regions of 

constant field. 

a) Use your program to study the field pattern in Exercise 1. 

b) Use your program to study the field pattern in Exercise 2. 

10. Consider a solenoid of radius 1 along the x-axis five units long 

centered at the origin. (Approximate the solenoid by five current­

carrying loops). 

a) Calculate the field line distribution. 

b) Using the field line mapping program or the field magnitude 

program of Exercise 9, determine what current should be run 

through the end coils to make the field inside the solenoid 

more uniform. 
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CHAPTER THREE: THE MOTION OF 
CHARGED PARTICLES IN ELECTRO -
STATIC AND MAGNETOSTATIC FIELDS 

INTRODUCTION 

Many students believe that charged particles move along field lines. Except 

in very rare instances, charged particles do not move along field lines. 

Although the direction of the field line at any point defines the direction 

of the force at that point, the force only changes the velocity not the 

position itself. Once it is moving, the charged particle will, in general, cross 

field lines because of inertia. (If the particle moves through a very viscous 

medium, you can force the particle to stay on a field line.) 

This chapter introduces a way to calculate the trajectories of charged 

particles in any (combination of) electrostatic and magnetostatic fields. 
-~ + 

Those of you who have seen F = ma algorithmic solutions with a computer 

before (probably in mechanics) will recognize the discussion in this 

chapter. The chapter is based on an algorithmic solution for particle 
-')0 -'>-

trajectories when the forces are due to E and B. 

The forces on charged particles in electrostatic and magnetostatic fields are 

discussed in physics textbooks. The force on a charged particle in an 
-'>- -'>-+::r+ 

electrostatic field, E, is just F(r) = ql::(r), where q is the value of the 

charge. The force on a charged particle in a magnetic field (or, more cor· 
-~ -'>- + + + -~ + 

rectly, magnetic induction), B, is the Lorentz force, F(r) = q(v(r) x B(r)). In 
-;)- -'>- + -, 

combined electrostatic and magnetostatic fields, the force is t- = q(E+vxBl. 

AN ALGORITHMIC SOLUTION TO NEWTON'S SECOND 
LAW 

-')0 

F = m~ is Newton's Second Law and is the basis of classical calculations of 
-')0 + 

particle trajectories. In most physical situations, you know the force, F(r). 

Hence, you know the acceleration t(n = F(;)/m. Given a way to find the 

acceleration at any point in space, the computer can easily be programmed 

to find the trajectory of any particle. 

+ 
Suppose you know a point, r = (x,y,z), on the trajectory of a particle and 

also know the particle's velocity, t = (vx ' vY' vz) at that point. (You usually 

know t and ~ at the initial point of the trajectory.) Suppose you want to 

find the position a short time, ilt, later. F rom the accelerati on, you can 

find the change in the velocity of the particle in the time, ilt: itt = tilt. 
Then, the new velocity after the time, ilt, is 

(8) 

From the velocity, you can find the change in position r during the time 

ilt, since 

-+ + 
ilr = vilt (9) 

iiiiiII 



Hence, the next position on the particle's trajectory is 

+ + + 
rnew = rold + v6t (10) 

The new time is t new = told + 6t. 

Now that you know another point on the trajectory, the process can be 

repeated over and over. The result is the trajectory of the particle as it 
4+ 

moves through the force, F(r). We will discuss two cases: the first is the 

motion of charged particles in electrostatic fields, and the second is the 

motion of charged particles in combinations of electrostatic and magneto­

static fields. The second case is somewhat more complicated because the 

force on a charged particle in a magnetic field is velocity-dependent. 

THE MOTION OF A CHARGED PARTICLE IN AN ELEC­
TROSTATIC FIELD, it 

4 -~ 4 
The force on a charged particle in an electrostatic field, E, is just F = qE. 

4 
You can calculate the electrostatic field, E, for any distribution of point 

source charges and line source charges. The field for a point source charge 

is E = ko Q/r2 (r/r) where Q is the value of the source charge and r is the 

distance from the source charge, r = Irl. The field for a line source charge is 

E = koA/r (tlr) where A is the charge per unit length of the line charge and 

r is the perpendicular distance from the line charge. ko defines the units; 

ko = 9 x 109 in mks units and ko = 1 for cgs units. Any general source 

charge distribution can be treated as a set of point or line charges. 

Example 1. Find the trajectory of a positron (a particle with the mass of 

an electron but opposite (positive) charge) moving under the influence of a 
-~ 

uniform E field parallel to the y-axis. Start the trajectory at the origin with 

velocity (4,0,0). 

One program which implements the algorithmic solution discussed above is 

shown below: 

MTWE 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
201!1 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
362 
370 
380 
390 
400 
410 

READ EI,E2,E3JsetEfield 
DATA 0,1,0 
PRINT "INITIAL X~Y~ZIVXIVYIVZ & FINAL T?,,],nitial-;;-:and 
INPUT X",Y",Z,Vl",V2",V3"T0 fina/time 

I..ET D-.05-M 
I..ET Q0= 1- qlm 
I..ET T~0 
I..ET T9=0 
REM CCX>IPUTE F1El..DS, ACCEl..S., VEl.." POSITI W, TIME 
I..ET AI- Q0*E 1- ax 
I..ET A2=Q0*E2-ay 
I..ET A3~Q0*E3-az 

IF T>0 THEN 270 J 
I..ET VI=Vl+AI*D/2 
1.. ET V2= V2+ A2* D/2 Initial half step 
I..ET V3=V3+A3* D/2 
GOTO 300 
I..ET VI=VI+AI*D- Vx 
I..ET V2-V2+A2*D- Vy 

I..ET V3=V3+A3*D- Vz 
I..ET X-X+VI*D-NewX 
I..ET Y-Y+V2*D-NewY 
I..ET Z=Z+V3*D- NewZ 
I..ET T=T+D-Newt 

I..ET T9=T9+D ] 
IF ABS(T9-T0/10)/T9>.\!!001!101 THEN 380 Print results 
I..ET T9-0 every rrAII' 
PRINT TlXlYlZ 
IF T< 10 TH EN J 8 0 - Return for next point on trajectory 

PRINT 
G OTO 120 - Return for new trajectory 

END 
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The program uses a half-step method (the velocity is one-half a time step, 

6t, away from the position). This half-step method increases the con­

vergence of the procedure and is discussed further in Appendix B. The 

units used in the program are normalized (because q/m is set to 1) so that 

fields are measured in units of the charge-to-mass ratio of the particle. For 

example, since the particle is a positron, qlm = +1.759 x 1011 in mks 
-+ -+ 

units, so a field with lEI = 1 actually has lEI = 5.685 x 10-12 V 1m. 

A run of this program looks like the following: 

RUN 
MT<J.jE 

INITIAl.. X.Y.Z.VX.\JY.VZ & f'lNAL T1 
10", ~ .. 0, 4 .. 0, 0 .. 10 

I. 4 •• 5 0 
2. 7.99999 2. 0 
3. 12. 4.5 0 
4.01111111111 16. 8. 111 
5.1111111111111 20. 12.5 0 
6.11!1!I001 24.0001 18. 0 
7.0001112 28.0001 24.5 111 
8.011111102 32.0001 32.111001 0 
9.1110001 36. 40.5001 0 
9.9999940.50.00010 

INITIAL X.Y.Z.VX.\JY.VZ & f'lNAL T1 

You can plot the trajectory of the particle using MTONE and the terminal 

plotting discussed in Appendix A. The required changes in the program 

and a run of the modified program are shown below: 

GET-MTONE 

10 READ X8.X9.YB.Y9.Z0 
20 DATA 0.50.0.50. I 
30 G OSUB 9000 
132 I.ET X0=X 
134 I.ET Y0 z y 
136 GOSUB 9100 
370 I.ET X0=X 
372 I.ET Y0=Y 
374 GOSUB 9100 
390 GOSUB 9201!1 

APP-TTYPI.O 

RUN 
MT<J.jE 

INITIAL X.Y.Z.VX.\JY.VZ & f'lNAL T1 
10" 0" 0" 4" 0" 0 .. 10 
MAX Y= 50 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
YI 1 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 



MIN y. fIJ MIN X- fIJ MAX X- 5111 
INITIAL X.Y.Z.VX.IJ'(.VZ & f'lNAL T? 
? 

For a uniform electrostatic field, the trajectory is a parabola (as can be 

derived analytically). Consequently, the motion is just like that in a 

uniform gravitational field. Thus, this particular example can be used to 

check the numerical method. This check is pursued in a problem at the 

end of the chapter. 

Practice Exercise: Modify the program, MTONE, so that it calculates the 
electrostatic field inside the integration loop. Use the electrostatic field 
due to a point charge at the origin. 

A terminal plot of several orbits in the field of a -1 charge at the origin 

looks like: 

1111 READ X8.X9.Y8.Y9.ZI1I 
20 DATA -2.3.-2.5.2.5 
3111 GOSUB 901110 
10111 
11111 
131 IF X z 999 THEN 41215 
132 1.ET ZI1I-ZI1I+1 
133 1.ET X0 z X 
134 1.ET YI2I-Y 
165 1.ET R3-«XI+XI/2)'2+(YI+YI/2lT2)'1.5 
190 1.ET AI-0 
200 1.ET A2=12I 
210 1.ET A3-11I 
370 1.ET X0-X 
372 1.ET Y0=Y 
374 GOSUB 911110 
390 
41215 G OSUB 9200 

APP-TTYP1.0 

RUN 
MTONE 

INITIAL X.Y.Z.VX.IJ'(.VZ & FINAL T? 
?- I .. 0 .. 0 .. 0" I .. 0 .. 7 
INITIAl. X.Y.Z.VX.IJ'(.VZ & f'lNAI. T? 
1- I .. 0" 0, 0 .. 1.2 .. 0 .. 15 
INITIAl. X.Y.Z.VX.IJ'(.VZ & FINAl. T? 
1999 .. 0 .. 0,0 .. 0 .. 0 .. 0 
MAX Y· 2.5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
y 

Y 2 
Y 
Y 2 2 
Y 
Y 
Y 
Y 2 
Y 
Y 
Y 
Y 2 2 
Y 
Y 
Y 
Y 2 
Y 
Y 
Y 
Y 2 2 
Y 
Y 2 
Y 
Y 
Y 
Y 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y=-2.5 MIN X=-2 MAX X= 3 

END 
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Practice Exercise: Plot the position of the source charge on the terminal 
plot. 

These trajectories can also be calculated analytically, although with some 

difficulty. The trajectories are exactly similar to the orbits of a satellite 

around the earth. 

Practice Exercise: Modify the program to find the trajectories of a posi­
tron in the electrostatic field due to a + 1 point charge at (+.5,0,0) and a -1 

point charge at (-.5,0,0). 

These trajectories cannot be derived analytically. Other sou rce charge 

distributions are considered in the problems at the end of the chapter. 

THE MOTION OF CHARGED PARTICLES IN COMBINED 
ELECTROSTATIC AND MAGNETOSTATIC FIELDS 

The algorithmic solution for charged particle trajectories becomes more 

difficult when the force is velocity-dependent. The program discussed 

above for electrostatic fields calculates the velocity a half-.0.t time step 

away from the position and the acceleration. Since the acceleration needs 

the value of the velocity at the acceleration's own time, an estimate of this 

un·half·stepped velocity must be made. This estimated velocity can then 

be used to find the acceleration. 

Example 2. Find the trajectory of a positron starting at (-1,0,0) with 

velocity (0,1,0) in a uniform magnetic field of magnitude (q/m) parallel to 

the z-axis. 

The following listing is for a program which implements the algorithmic 

trajectory calculation for charges moving in combined electrostatic and 

magnetostatic fields. 

MTONEB 

100 READ EI,E2,E3,BI,B2,B3 
I 10 DATA 0dl, 0, 0, 0, I 
120 PRIr~T "INITIAl.. X,Y,Z,VX,VY,VZ 8. FINAl.. T1" 
130 INPUT X,Y,Z,VI,V2,V3,T0 
140 l.ET 0=.05 
150 l.ET Q0 s I 
160 l.ET Te 0 
170 l.ET T9 s 0 
180 l.ET AI=0 
190 l.ET A2=0 
200 l.ET A3=0 
210 REM COMPUTE FIELDS, ACCELS., VEL., POSITION, TIME 
220 l.ET UI=VI+AI*D/2 
230 l.ET U2=V2+A2*D/2 
240 l.ET U3=V3+A3*D/2 
250 l.ET AI=Q0*(EI+(U2*B3-U3*B2ll 
260 l.ET A2=Q0*(E2+(U3*BI-UI*B3)) 
270 l.ET A3=Q0* (E3+ (UI*B2-U2*BI)) 
280 IF T.0 THEN 330 
290 l.ET VI=VI+AI*D/2 
300 l.ET V2=V2+A2*D/2 
310 l.ET V3=V3+A3*D/2 
320 GOTO 360 
330 l.ET VI=VI+AI*D 
340 l.ET V2=V2+A2*D 
350 l.ET V3=V3+A3*D 
360 l.ET X=X+VI*D 
370 l.ET Y=Y+V2*D 
380 l.ET Z=Z+V3*D 
390 l.ET T=T+ D 
4e0 l.ET T9=T9+D 
410 IF ABS(T9-T0/10)/T9 •• 000001 THEN 440 
420 l.ET T9=0 



430 PRINT T,X,Y,Z 
440. IF T<T0 THEN 210 
450 PRINT 
460 GOTO 120 
470 END 

Practice Exercise: Annotate the program by written comments next to 
each line. 

A run of this program for the initial conditions given is: 

RUN 
MTil"IEB 

INITIAL X,Y,Z,Vl{,W,VZ & FINAL T? 
1- 1 .. 0" 0 .. 0 ... 1 .. 0 .. 10 
I. -.539729 .841534 
2. .417183 .907916 
3. .989278 0137948 
4.00001 .64953 -.759143 
5.00001 -.28915 -.956982 
6.00001 -.962105 -.273279 
7.00002 -.749406 .662207 
8.1"'002 • 153069 .987741 
9.00001 .914021 .403409 
9.99999 .832466 -.552571 

INITIAL X,Y,Z,Vl{,W,VZ & FINAL T? 

0 
Ii! 
0 
0 
0 
0 

" 0 

" 0 

The motion is a circle as is expected from the analytic solution. A sensitive 

test of the accuracy of this computer-based method is an examination of 

the magnitude of the velocity as the particle moves around the circle. The 

matter of accuracy is exam ined further in an exercise at the end of the 

chapter. 

Motion in a magnetic field often involves all three directions, x, y and z. 

Hence, the motion is often hard to plot on a two-dimensional piece of 

paper. 

Practice Exercise: Modify the program to compute trajectories when both 

a uniform electric field in the y direction and a uniform magnetic field in 

the z direction are present. 

Such a field configuration is called a velocity selector. When the initial 

velocity of the charged particle has magnitude IEI/ISI and is perpendicular 

to both fields, the trajectory is a straight line. Thompson used this field 

arrangement in his early measurement of (elm) for electrons. When the 

velocity is not perpendicular to both fields, the motion can be quite 

complicated. 

Practice Exercise: Modify the program to find the trajectories of a posi­

tron when both the electrostatic field due to a point charge at the origin 

and a uniform magnetic field in the z direction are present. 

Analytical methods won't produce these trajectories even though the 

changes necessary in the algorithmic program are minimal. Further physi­

·~al field situations are considered in the problems at the end of the 

chapter. 
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CONCLUSION 

This chapter introduced a way to calculate the trajectories of charged 

particles in electrostatic and magnetostatic fields. The method works for 

arbitrary fields and for any charged particle. The method is general but 

easy to understand. By running several examples you can gain a good 

understanding of the motions of charged particles in e & m fields. 

CHAPTER THREE EXERCISES 

1. Consider the motion of a positron in the electric field created by an 

infinitely long line charge. The charge is along the z·axis and has a 

magnitude of +1 coulomb/m. 

a) Determine the trajectory of a positron initially travelling in the 

z direction starting at (1,0,0) with a velocity of one. 

b) Determine the trajectory of a positron initially travelling with 

a velocity of (5,0,0) and an initial position of (-40,1,0). 

c) Does the angle of deflection of the positron change with the 

different y values for its starting point in part (b)? Try y=.5, 

y=2, and y=5. 

d) What happens when the charge on the line is changed to the 

charge on a (negative) electron? 

e) Will the electric field ever be able to hold the positron (i.e., 

will the positron ever orbit the line charge)? 

2. Consider the motion of an electron in the electric field created by 

two infinitely long line charges. The charges are parallel to the z-axis, 

each with a line charge density of -1. The line charge~ intersect the 

x-y plane at the points (0,2) and (0,- 2). 

a) Determine the trajectory of an electron initially travelling in 

the z direction starting at the origin with a velocity of one. 

b) Determine the trajectory of an electron initially travelling with 

a velocity of (5,0,0) and an initial position of (-20,0,0). 

c) Does the angle of deflection of the positron change with the 

different y values for its starting point in part (b)? Try y=-1, 

y=-.5, y=.5, y=1. 

d) What happens when the charge on the line is changed to the 

charge on one (negative) electron? 



3. Consider the motion of a positron in the electric field created by 

two point charges. The charges and positions are: -1 at (3,0,0) and 

-1 at (-3,0,0). 

a) What happens to the positron with the initial conditions: 
position (0,8,0) and velocity (.45,0,0)? 

b) What happens to the positron with the initial conditions: 
position (4,0,0) and velocity (0,1,0)? 

c) What happens to the positron with the initial conditions: 
position (3,0,3) and velocity (0,.5,0)? 

d) Try other trajectories that you think might be interesting. 

4. Consider the motion of a positron in the electric field created by a 

dipole charge distribution. The charges and positions are: -1 at 

(3,0,0) and +1 at (-3,0,0). 

a) What happens to the positron with the initial conditions: 
position (0,8,0) and velocity (.45,0,0)? 

b) What happens to the positron with the initial conditions: 
position (-4,0,0) and velocity (0,1 ,OJ? 

c) What happens to the positron with the initial conditions: 
position (4,0,0) and velocity (0,1,0)? 

d) What happens to the positron with the initial conditions: 
position (3,0,3) and velocity (0,.5,0)? 

e) Try other trajectories you think might be interesting. 

5. Constant magnetic fields are sometimes used as simple electron beam 

collimators. Suppose we have a constant magnetic field in the z 

direction of magnitude (e/m). 

a) What happens to an electron with initial position at the origin 
and initial velocity (0,0,1)? 

b) What happens to an electron with initial position at the origin 
and initial velocity (0,1,1). 

c) What happens to an electron with initial position at the origin 
and initial velocity (0,1,0). 

d) How does this field act as a simple collimator? 

6. Consider the diverging field Bx = 0, By = 1 /x2 
, and Bz = 1 /x2

. 

a) What happens to a positron with initial position of (20,0,0) 
and initial velocity of (-1,0,0). This is often called a magnetic 
mirror because the field pattern reflects charged particles. Two 
such mirrors contain charged particles between them and are 
often called magnetic bottles. 
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b) What happens to the velocity in the x direction? 

c) Is energy conserved? 

7. Consider the combined electric and magnetic field problem discussed 
-+ 

in the chapter (the velocity selector with a uniform E = q/m in the y 
-+ 

direction and a uniform B = q/m in the z direction). 

-+ 
a) Verify that those particles that are perpendicular to both E 

-+ -+ -~ 
and 8 and have a velocity of IEI1181 pass through this field as if 

the field did not exist. 

-~ -~ 

b) In what direction do the particles move if IEI1181 is greater 

than or less than the velocity? 

c) In what direction do the particles move if the x-component of 
-)- -~ 

velocity is IEI1181 but the electron has some velocity in the y 

direction? 

d) In what direction do the particles move if the x-component of 

e) 

-)- -~ 

velocity is IEI1181 but the electron has some velocity in the z 

direction? 

Determine analytically that V x 

selector. 

-> -> 
IEI1181 for the velocity 

8. Consider a uniform magnetic field of .1 in the z direction and a 

point charge of +1 at the origin. 

a) If an electron has an initial position of (1,0,0) and velocity of 

(0,1,0), what does its trajectory look like? 

b) If an electron has an initial position of (1,0,0) and velocity of 

(0,0,1), what does its trajectory look like? 

9. The uniform electric field problem is similar to the acceleration of a 

body under the influence of gravity. 

a) Write down the analytical expression in component form for 

the position of a particle as a function of time (including its 

initial velocity). 

b) Compare the results of the program MTONE to the analytical 

expression at the times t = 2,5, and 10. 

10. The solution to the problem of a positron moving in a constant 

magnetic field is a good problem to check the iterative solution 

because there is an analytical solution. Start the charged particle 

with initial velocity perpendicular to the magnetic field. 

a) Determine (analytically) the radius of the (circular) orbit as a 

function of the charge, mass, magnetic field, and velocity. 



b) Determine the period of the motion as a function of the 

magnetic field, charge, and mass. (The frequency associated 

with this period is called the cyclotron frequency.) 

c) Compare your results with that obtained by the algorithmic 

method. 

-~ 

d) The analytical solution has IVI = constant. Check your iter· 
-~ 

ative solution by examining how constant I VI remains as time 

passes. 



CHAPTER FOUR: GAUSS'S, 
AMPERE'S, AND FARADAY'S LAWS 
FOR STATIC FIELDS 

INTRODUCTION 

Gauss's, Ampere's and Faraday's Laws represent the original forms of 

Maxwell's four equations. Aside from the term Maxwell added to Am­

pere's Law (which made the set of equations agree with conservation of 

charge and also predict electromagnetic waves!. these four equations 

represent the basis of all classical electricity and magnetism. 

This chapter shows you a way to use the computer to calculate the 

integrals in Gauss's Laws for E and for B. Ampere's Law and Faraday's 

Law. You can then deal with questions such as "Can this given field be an 

electrostatic field? If so, where are the charges and what values of charge 

are present?" or "Can this given field be a magnetostatic field, and, if so, 

where and of what size are the currents?" (Again we will use the term 
--+ 

magnetostatic field for B even though magnetostatic induction is strictly 

correct.) In the forms we shall use, the laws can be written as follows: 

--+ --+ --+ 
Gauss's Law for E ~E·dA = 41Tkoq (11 ) 

--+ -+ --+ 
Gauss's Law for B ~B·dA = 0 (12) 

--+ --+ 
Ampere's Law ~B·dQ = kol (13) 

--+ --+ 
Faraday's Law jE·dQ = 0 (14) 

-~ --+ 
(In the general case Faraday's Law says that ~E·dQ = -d<l>/dt, but we are 

dealing with static cases. Currents are constant in time so the flux, <I> does 

not change.) The symbol ~ means the closed integral: in Gauss's Laws the 

closed integral is taken over some surface completely enclosing some 

volume of space; in Ampere's and Faraday's Laws the closed integral is 

taken along some contour completely enclosing a surface in space. ko 

defines the units, and q and I are the net enclosed charge and current, 

respectively. 

These laws give a way to examine any field to see if it can represent an 
--+ --+ --+ 

electrostatic field E (in which case ~E ·dQ must be zero everywhere and 
--+ ~ 
~E·dA can tell you the values of the charges present) or a magnetostatic 

--+ --+~ --+--+ 
field B (in which case ~B·dA must be zero everywhere and ~B·dQ can tell 

you the values of the currents present). These integral forms of the four 

basic laws also determine the four differential forms for Maxwell's equa­

tions which use vector derivatives (the divergence and the curl). 

The chapter starts by presenting a number of pictures representing possible 

vector fields. These pictures will be examined to see which might represent 

electrostatic or magnetostatic fields. The chapter will then move on to 

show you how the computer can be used to deal more quantitatively with 

fields using the four basic laws in their integral forms. The most general 

question of how to deal with fields if you are given only a set of measured 

values throughout some region of space is considered in the exercises at 
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the end of the chapter. The discussion in the chapter will be given in terms 
-~ -~ 

of E and B fields, but the methods are applicable to any vector field (such 

as the gravitational field or the velocity field of a flow pattern). 

PICTURES OF VECTOR FIELDS 

It is sometimes helpful to see a number of pictures of possible vector 

fields. Inspecting the pictures to determine whether or not each picture 

might represent an electrostatic or magnetostatic (or gravitational or 

whatever) field exercises your knowledge and comprehension of the basic 

laws. By inspection, you can often guess whether or not a particular 
-+ -+ 

picture could represent an E or B field; you can often guess where the 

source charges or source currents would lie. To be more quantitative, say 

to find the values of the charges or currents, you need to perform the 

necessary integrations. The computer helps in two ways: first, the com­

puter can be used to produce the pictures of the fields, and second, the 

computer can perform the integrations. 

There are two common kinds of pictures which are used to represent 

vector fields for discussion. The first is a figure that shows the vector field 

represented as arrows at a number of points throughout a region. The 

second is a field line map such as those discussed in Chapters One and 

Two. We will concentrate on pictures of the first kind. Let us look at 

several examples: 
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Which of these figures could represent an electrostatic field? You need to 
--+ ~ 

identify those fields for which 1E'dQ = 0 for all (closed) paths. Figure (a) 
--+ --+ 

is such a field; it appears possible that adding up E'f',Q for small pieces 

around a contour made up of radial and circumferential pieces would 

result in zero. In principle, you would have to show that the integral was 

zero for any possible contour; in practice, if one type of contour has 
--+--+ --+--+ 

1E'dQ = 0, it is likely that almost any contour will also have 1E'dQ = O. In 

the case of Figure (a), it seems clear that any contour which can be 

approximated by a set of radial and circumferential pieces might obey 
--+ --+ 

Faraday's Law (1E'dQ = 0), and that is certainly a wide class of contours. 

On those figures you believe could be electrostatic fields, identify the 

positions and relative values of the source charges. In Figure (a) there 

seems to be a positive charge at the center of the figure (and an equal 

amount of negative charge at 00 on which to terminate the field lines). 

When several charges are present, you can estimate the relative magnitudes 

and the signs of the charges by considering the field near each charge. 

Which of these figures could represent a magnetostatic field? This is a 
--+ ~ 

harder question because you really need to find fields for which 1B'dA= 0 

and the figures are only two-dimensional. Let us agree that the physical 

situations represented in the figures have no dependence upon z, that is, 

that every plane parallel to the x-y plane is equivalent to the x-y plane. 

Then the x-y plane shown in the figures tells the whole story. Figure (b) 
--+ ~ 

seems likely to have 1B'dA = 0 for surfaces which are pieces of circular 

cylinders with z-axis axes connected by radial planes. Again you cannot 
--+ ~ 

prove that 1B'dA= 0 for all possible surfaces without doing some integrals, 

but the result looks right. 

On those figures you believe could be magnetostatic fields, identify the 

positions and relative values of the source currents. In figure (b) there 

seems to be only one source current at the center of the picture. The 

current appears to come out of the page (by the right-hand rule), so the 

current is positive although its magnitude cannot be determined without 

more information. If there were several currents, their relative values could 

be estimated from the relative strengths of the fields nearby; the directions 

of the currents could be determined from the directions of the fields 

nearby. 

Now you can try the rest of the figures. It is not difficult for anyone to 

produce pictures such as those shown. You can do it yourself. 

--+ --+ 
Practice Exercise: Write a program to calculate \E\ and the angle E makes 
with the x-axis for a number of points on the x-y plane. You may assume 

Ex, E y' E z are given as equations. 

IiiiiiiiiiI 

LAWS FOR STATIC FIELDS D 51 



SURFACE AND LINE INTEGRALS WITH THE COMPUTER 

Now let us see how to be more quantitative. It is easy to do the integrals 

involved in Gauss's, Ampere's and Faraday's Laws on the computer. An 

exact integration would have to be analytical, but most field patterns 

cannot be integrated analytically. The method of integration we will 

present is approximate (although the method can be made accurate as 

desired) but it can integrate the necessary surface and line integrals for any 

vector field. 

To perform the line integral, you break the contour up into small seg-
~ ~ 

ments, !:::'Q, evaluate the field, F, at the center of each segment, and form 
~-+- ~~ 

the dot-products F°!:::.Q. Adding up the terms F·!:::.Q for all the segments that 
~ ~ 

form a closed loop yields an approximation to pF'dQ for the vector field 
-~ ~ 

F. Again, in the limit of the sum of infinitesimal segments, dQ, the result 

would be exact. 

To perform the surface integral, you break the surface up into small areas, 
~ ~ 

!:::.A, evaluate the field, F, at the center of each small area, and form the 
~ ~ ~ ~ 

dot-products F·!:::.A. Adding up the terms F·!:::.A for all the small areas 
~ ~ 

forming a closed surface is then an approximation to the integralpF'dA 
~ ~ 

for the vector field F. In the limit of the sum infinite simal areas, dA, is by 
~ 

definition the integral; for finite!:::.A, the sum is an approximation. 

~~ ~ 

Example 1. Evaluate pF'dA for the vector electrostatic field, F, due to a 

line charge coinciding with the z-axis. Consider rectangular parallelepiped 
surfaces. 

A program to find this surface integral might look like the following: 

ClAUSS 

100 
110 
120 
130 
140 
15111 
160 
170 
180 
19111 
200 
21111 
220 
230 
240 
25111 
260 
270 
260 
290 
31110 
310 
320 
330 
340 
350 
360 
370 
36111 
39" 
4111111 
410 
420 
430 
440 
450 
460 
47111 
48111 
490 

PRINT "ex,y.Z) FOR 2 CORNERS?"J~tregiOn 
INPUT XI,YI,ZI,X2,Y2,Z2 
I.ET P0-0- Flux 
L.ET N "-16 - # of segments in x, yand z 
I.ET K0= 1- Units 
LET Q=+ 1- Magnitud~ of chlfge 
I.ET X0=eX2-XI)/N0-L'>x 
I.ET Y0=eY2-YI)/N0-L'>v 
I.ET Z0-eZ2-Z I) IN III - M 
I.ET A0-X0*Y0 - L'>A 

FOR X=XI+X0/2 TO X2-X0/2 STEP X0l 
FOR Y .. YI+Y0/2 TO Y2-Y0/2 STEP YIII 
I.ET F3=K0*Q*Z2/eX*X+Y*Y+Z2*Z2) 
I.ET P0-P0+F3*A0 ;,wo X-y 

I.ET F3-KIII* Q*Z I/eX*X+Y*Y+Z 2*Z2) Z~:::~2 
I.ET PIII=P0-F3*AIII 
NEXTY 
NEXT X 
LET A0=Y0*Z0- L'>A 

LET P0=P0+F I*A0 Two Y-Z 

FOR Y-YI+Y0/2 TO Y2-Y0/2 STEP YIII] 
FOR Z=ZI+Z"/2 TO Z2-Z0/2 STEP Z0 
LET FI=K0*Q*X2/eX2*X2+Y*Y+Z*Z) 

I.ET n=K0*Q*Xl/eXI*XI+Y*Y+Z*Z) Plan .. 

LET PI1:=PIII-Fl*AIII 
NEXT Z 
NEXTY 
I.ET A0-X0*Z0-f,A 
FOR X-XI+XIII/2 TO X2-X1II/2 STEP X0 
FOR Z=ZI+ZIII/2 TO Z2-Z0/2 STEP Z0 
LET F2"K0*Q*Y2/eX*X+Y2*Y2+Z*Z) 
LET P0=P0+ F2*A0 
I.ET F2-K0*Q*Yl/eX*X+YI*YI+Z*Z) 
LET P0=P"-F2*A0 
NEXT Z 
NEXT X 
PRINT "FLUX .... ; P0 
PRINT 
ClOTO 11110 
END 

TWoX-Z 
Pis". 



--+ 
The field, F = (F1,F2,F3). is the electrostatic field due to a line charge at 

the origin [ko A/r(~/Itl) 1, so 1F'dA should be zero unless the region 

enclosed by the rectangular parallelepiped encloses the z-axis. When the 
--+ -+ 

z-axis is enclosed, 1F'dA should equal 41Tk oA(Z2-Z1). A run of this 

Gauss's Law program looks like: 

RUN 
GAUSS 

(X.Y.Z) FOR 2 CORNERS? 
?- I. - I. - I. I. I. 1 
FLUX • 15.36113 

(X.Y.Z) FOR 2 CORNERS? 
11~ 1" 1,2 .. 2 .. 2 
FLUX •• 217896 

(X.Y.Z) FOR 2 CORNERS? 
?1.1.1.2.2.3 
FLUX a .355734 

(X.Y.Z) FOR 2 CORNERS? 
? 

Practice Exercise: How much charge lies along the line charge between Z = ° and z = 2? What is the linear charge density, A? Does this value agree 
with the equations in the program? 

Practice Exercise: Modify the program for line charges having A = + 1 and 
-1 which are parallel to the z-axis and cut the x-y plane at (+.5,0) and 
(-.5,0), respectively. Where should the surface integral be zero and where 
non-zero? 

Practice Exercise: Modify the program for a long, straight wire carrying 
--+ 

current I which coincides with the z-axis. (Remember that B is perpen-
dicular to ;.) Where should the surface integral be zero and where non­
zero? 

Further examples are considered in the exercises at the end of the chapter. 
--+ 

The field, F, can be given as equations or even as data. 

Example 2. Evaluate 1F'dQ for the vector magnetostatic field due to a 

long, straight wire carrying a current of 1 ampere and coinciding with the 

z-axis. Consider rectangular contours lying in the x-y plane. 
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A program to evaluate the line integral might look like: 

AMPFAR 

100 PRINT "CX.Y) FOR 2 CORNERS?" 
110 INPUT XI.YI.X2.Y2 
120 LET L0a 0 
130 LET N0a 512 
140 LET K0-I.E-07 
150 LET 1= I 
160 LET X0-CX2-XI)1N0 
170 LET Y0-CY2-YI)IN.0 
180 FOR x-x I+X0/2 TO X2-X0/2 STEP X0 
190 LET F--2*K0*UYI/CX*X+YI*YI) 
200 LET L0-L0+F*X0 
210 LET F=-2*K0*I*Y2/CX*X+Y2*Y2) 
220 LET L0a L0-F*X0 
230 NEXT X 
240 FOR Y=YI+Y0/2 TO Y2-Y0/2 STEP Y0 
250 LET Y-2*K0*I*XI/CXI*XI+Y*Y) 
260 LET L0=L0-F*Y0 
270 LET F-2*K0*I*X2/CX2*X2+Y*Y) 
280 LET L0-L0+F*Y0 
290 NEXT Y 
300 PRINT "LINE INTEGRAL ."; L0 
310 PRINT 
320 GOTO 100 
330 END 

~ 

Since F = (F1,F2,F3) is due to a long straight wire (JIol/21Tr, tangential 

with sense by the right-hand rule), you expect ~FodQ to equal zero unless 

the rectangular contour encloses the z-axis. When the contour encloses the 
~ ~ 

z-axis, you expect ~F'dQ = JIo I in mks units. A run of th is I ine integral 
program looks like: 

RUN 
AMPFAR 

CX.Y) FOR 2 CORNERS? 
1- 1, - 1, 1, 1 
LINE INTEGRAL = 1.25664E-06 

CX.Y) FOR 2 CORNERS? 
? I. 1.2.2 
LINE INTEGRAL =-3.77476E-15 

CX.Y) FOR 2 CORNERS? 
? 

Practice Exercise: Modify the program for two, long straight wires parallel 

to the z-axis, carrying currents of +1 and -1, and cutting the x-y plane at 

(+.5,0) and (-.5,0), respectively. Where should the line integral be zero and 

where non-zero? 

Practice Exercise: Modify the program for a single line charge coinciding 

with the z-axis and having a linear charge density, A, of +1. Where should 

the line integral be zero and where non-zero? 

Further examples are considered in the problems at the end of the chapter. 
~ 

The vector field F could be given as equations or as data. 

CONCLUSION 

This chapter has displayed pictures of several vector fields. You were asked 

to try to identify which pictures could represent electrostatic and mag­

netostatic fields. The chapter then showed you a way to compute the 

surface and line integrals necessary for Gauss's, Ampere's and Faraday's 

Laws in order to check vector fields quantitatively. By working a few 

examples from the exercises, you can deepen your understanding further. 



CHAPTER FOUR EXERCISES 

1. Consider the field distribution created by four line charges parallel to 

the z-axis. The I ine charge densities are: + 1 at (1,1). +1 at (1, -1). -1 at 

(-1,1) and -1 at (-1.-1). 

a) Consider the region around the (1,1) line. What is the surface 

integral? Is it dependent on the size of the box around the charge? If 

so, is it dependent on all lengths or just one? What is the line integral 

around this point (~F·dQ)? Is it dependent on the size of the 

contour? 

b) Consider the region of space for positive x that includes both the 

lines at (1,1) and (1,-1). What is the surface integral (~F·dA)? Is it 

dependent on the size of the box? If so, on what does it depend? 
~ ~ 

What is the line integral (~F·dQ) around this region? Is it dependent 

on the size of the contour? 

c) Consider the region including all the line charges. What is the surface 
~~ 

integral (~F·dA)? Is it dependent on the size of the box? If so, how 
~ ~ 

is it dependent? What is the line integral (~F·dQ) around the region? 

Is it dependent on the size of the contour? 

d) Consider the region inside the four points. What is the surface 
~~ -+~ 

integral (~F·dA)? What is the line integral (~F·dQ)? 

e) Do your results agree with Gauss's and Faraday's Laws? 

2. Consider the magnetostatic field distribution created by four current 

lines parallel to the z-axis. The positions and currents are: +1 at (1,1). 

+1 at (1,-1). -1 at (-1,1) and -1 at (-1,-1). 

a) Consider the region around the (1,1) line. What is the surface 
~ ~ 

integral (~F·dA)? Is it dependent on the size of the box around the 

charge? If so, is it dependent on all lengths or just one? What is the 
~ ~ 

line integral around this point (~F·dQ)? Is it dependent on the size of 

the contour? 

b) Consider the region of space for positive x that includes both the 
~ ~ 

lines at (1,1) and (1,-1). What is the surface integral (~F·dA)? Is it 

dependent on the size of the box? If so, on what does it depend? 
~ ~ 

What is the line integral (~F·dQ) around this region? Is it dependent 

on the size of the contour? 

c) Consider the region including all the line charges. What is the surface 
~ ~ 

integral (~F·dA)? Is it dependent on the size of the box? If so, how 
~ ~ 

is it dependent? What is the line integral (~F·dQ) around the region? 

Is it dependent on the size of the contour? 

d) Consider the region inside the four points. What is the surface 
~ ~ ~ ~ 

integral (~F·dA)? What is the line integral (~F·dQ)? 

e) Do your results agree with Gauss's and Faraday's Laws? 
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3. Consider a combined electrostatic and magnetostatic field distribution. 

Part of it is created by two line charges parallel to the z-axis: +3 linear 

charge density at (1,1) and -3 linear charge density at (-1,1). The other 

part is created by two I ine currents parallel to the z-axis with currents 

and positions: +2 at (1,-1) and -2 at (-1,-1). 

a) Consider the region around the (1,1) line. What is the surface 
-+ ~ 

integral (pF'dA)? Is it dependent on the size of the box around the 

charge? If so, is it dependent on aI/lengths or just one? What is the 
-+ -+ 

line integral around this point (pF'dQ)? Is it dependent on the size of 

the contour? 

b) Consider the region of space for positive x that includes both the 
-+ ~ 

lines at (1,1) and (1,-1). What is the surface integral (pF'dA)? Is it 

dependent on the size of the box? If so, on what does it depend? 
-+ -+ 

What is the line integral (pF'dQ) around this region? Is it dependent 

on the size of the contour? 

c) Consider the region including aI/ the line charges. What is the surface 
-+ ~ 

integral (pF'dA)? Is it dependent on the size of the box? If so, how 
-+ -+ 

is it dependent? What is the line integral (pF'dQ) around the region? 

Is it dependent on the size of the contour? 

d) Consider the region inside the four points. What is the surface 
-+~ -+-:1: 

integral (pF'dA)? What is the line integral (pF·d'X.)? 

e) Do your results agree with Gauss's and Faraday's Laws? 

4. Consider the following field. 

Fx = 0 

Fy = 0 

I 
Fz = 1 for z > 0 

F = 0 for z = 0 

F: = -1 for z < 0 

a) What is the surface integral for the box defined by (-1,-1,-1) and 

(1,1,1)? If it is no t zero, is the surface integral dependen t on the size 

of the box centered at (O,O,O)? In what way? 

b) If the surface integral is not zero, can you identify the charge 

distribution that creates this field? 

c) What are the line integrals for the square loops defined by (1,1,0) 

and (-1,-1,0); (1,0,1) and (-1,0,-1); (0,1,1) and (0,-1,-1). 

d) If the line integral is not zero, can you identify the current distri­

bution that creates this field? 



5. Consider the following field. 

Fx = 0 

Fy = 0 

I 
Fz = 1 for x> 0 

F = 0 for x = 0 

F:=-1 forx<O 

a) What is the surface integral for the box defined by (-1,-1,-1) and 

(1,1,1)? If it is not zero, is the surface integral dependent on the size 

of the box centered at (O,O,O)? In what way? 

b) If the surface integral is not zero, can you identify the charge 

distribution that creates this field? 

c) What are the line integrals for the square loops defined by (1,1,0) 

and (-1,-1,0); (1,0,1) and (-1,0,-1); (0,1,1) and (0,-1,-1). 

d) If the line integral is not zero, can you identify the current distri­

bution that creates this field? 

6. Consider the following field: 

a) What is the surface integral for the box defined by (-1,-1,-1) and 

(1,1, 1)? If it is non-zero, is the surface integral dependent on the size 

of the box centered at (O,O,O)? In what way? 

b) If the surface integral is not zero, can you identify the charge 

distribution that creates this field? 

c) Can you prove that the line integral for any field that can be written 
-+ A 

as F = rf(r) is zero? 

7. Not all fields are electric or magnetic. For example, it is often worth­

while to consider velocity fields of fluids. Consider the following fluid 

velocity field: 

Vz = 0 

Vy =0 

Vx = (1- y2/4) 

a) What is the surface integral for the box defined by (-1,-1,-1) and 

(1, 1,1)? If it is non-zero, is the surface integral dependent on the size 

of the box centered at (O,O,O)? In what way? 

b) What does this surface integral mean physically (i.e., are there 

sources or sinks for the fluid within the region)? 
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c) What are the line integrals for the square loops defined by (1,1,0) 

and (-1,-1,0); (1,0,1) and (-1,0,-1); (0,1,1) and (0,-1,-1)? 

d) What is the line integral around the square loop defined by (0,0,0) 

and (1,1,0)? 

iiiiiiI 



CHAPTER FIVE: THE LAPLACE AND 
POISSON EQUATIONS 

INTRODUCTION 

A combination of Laplace's and Poisson's equations represents one of the 

fundamental ways to describe electrostatic potentials. (Similar equations 

arise in many other branches of e & m and of physics in generaL) You 

sometimes know the potential, V, everywhere on some surface that encloses 

a definite volume, and you want to find the potential throughout that vol­

ume. If the volume has a known volume charge density, p(x,y,z) (measured 

as charge per unit volume), then you can calculate the potential everywhere 

using Poisson's equation. If the volume charge density, p is zero through 

the region, then Poisson's equation reduces to' Laplace's equation, one of 

the simplest partial differential equations used commonly in physics. 

Poisson's equation in three dimensions is 

(15) 

When p(x,y ,z) = 0 you have Laplace's equation 

(16) 

Derivations of these equations and discussions of their analytical solutions 

can be found in standard physics textbooks. 

These equations can be solved easily on a computer, and they represent 

simple examples of how partial differential equations can be solved nu­

merically. For convenience in displaying results, we will consider two 

dimensional cases involving only x and y. The method of solution is valid 

for three dimensions, too, but more complicated partial differential 

equations sometimes demand more sophisticated methods of numerical 

solution than the method we will present. 

DIFFERENCE EQUATIONS 

The simplest method for solving partial differential equations numerically 

is based on replacing the differential equation (involving infinitesimal dx, 

dy, dz) by a difference equation (involving finite differences 6x, 6y, 6z). 

There are three criteria that the resulting difference equation must satisfy: 

1) it must represent the partial differential equation correctly in the limit 

as 6x-+O, t>y-+O and t>z-+O; 2) it must be stable (which means that, if a 

small error occurs at some numerical step, the error must not grow); and 

3) it must converge to some value (in other words, it must produce an 

answer). Laplace's equation is such that a simple difference equation 

approach can be shown to satisfy all three requirements. If the volume 

charge density, p, does not vary too wildly in space, the method will also 

work for Poisson's equation. 
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We start by defining a grid of points, labelled by i and j (for our two 

dimensional problems), covering the region where we want to compute the 

potential, V. How would the first partial derivative, av lax, be written in 

terms of the values of Vi,j on the grid points? You could use the forward 

difference expression for a derivative av /aXR«Vi+l ,j - V i,j)/,0.x or you 

could use the corresponding backward derivative. A better approximation 

is called the central difference approximation and uses grid points in front 

of and behind the grid point (i,j) in question. Then av /aXR«Vi+l ,j -
Vi_l,j)/(2,0.x). 

The second partial derivative, a 2 v/ax2
, equals a(av/ax)/ax so we can 

apply the same idea of approximating the partial derivatives by difference 

quotients. Using the central difference approximation, a2 V /ax2 R«Vi+l j -
2 ' 

2Vi,j + Vi_l,j)/(,0.x) . 

Practice Exercise: Show that the difference equation approximating 
a2 V;ox 2 comes from two applications of the central difference approxi­
mation for the first derivative. The first application gives the first deri­
vatives at (i+.5,j) and (i-.5,j); the second application yields the second 
derivative at (i,j). 

THE DIFFERENCE EQUATIONS FOR LAPLACE'S AND 
POISSON'S EQUATIONS 

Using the expression for approximations to the second partial derivatives 

of V on the grid of points, the (two-dimensional) Laplace's equation 

becomes 

V'+l . + V· l' + V' '+1 + V .. 1 - 4Vi )' = 0 I ,) 1- ,) I,) 1,)- , 
(17) 

assuming & = ,0.y. 

Practice Exercise: Derive this difference equation for Laplace's equation. 

Practice Exercise: Derive the three-dimensional difference equation for 
Laplace's equation. 

This difference equation can be solved for the potential at the grid point 

(i,j) : 

V· . = (V'+l . + V· 1 . + V· '+1 + V·· 1 )/4 I,) I ,) 1- ,) I,) 1,)- (18) 

which says the potential at (i,j) is the average of the potentials at the nearest 

neighbor grid points. This equation for V suggests a simple strategy on the 
computer: Start with any values of the potential inside the region and with 

the known values on the grid points on the surface; moving sequentially 

through the interior grid points, replace the inside values by the average of 

nearest neighbor values; then repeat the process until interior values of the 

potential stop changing. The boundary values, which remain constant, will 

gradually influence the values throughout the interior. When all the inside 

values become equal to the average of their nearest neighbors (that is,after 



all the values of the potential at interior points stop changing), then you 

have found the solution of Laplace's equation with the given potentials on 

the surface. 

Poisson's equation is just as simple. The difference equation (in two 

dimensions) becomes 

where 6.x = 6.y = 6.S and where Ri,j is just the (known) quantity, 

4rrk op(x,y), at the grid point (i,j). ko sets the units. Since Ri,j does not 

change value at each particular (i,j) as you iterate over the grid, programs 

solving Poisson's equation by the difference equation approach look very 

similar to those solving Laplace's equation. 

Example 1. Find the potential V in a charge-free, two-dimensional, square 

region given that the potential varies linearly around the edge from V = 0 

at one corner to V = 18 at the opposite corner. 

A program implementing the iterative strategy to solve Laplace's equation 

for this problem might look like the following: 

I.API.AC 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
43121 
44121 
45121 
460 
47121 
48121 

DIM V( 1121. 1I2IJ.U( 1121. 1I2IJ 
READ V( I.IJ,V( 10.IJ.V( 112I.10J.V( 1.10J 
DATA 121.9.18.9 
I.ET V0-V( I. IJ+V( I. 10J+V( 10. 1I2IJ+V( 1121. IJ 
FOR 1=2 TO 9 
LET V(I.IJ=I-I 
I.ET V( 10.IJ-9+1-1 
LET vel" 13=1-1 Initialize 

LET V( 1" 10] =9+ I - 1 :t;7:;81 
1.. ET V0= V0+ V( I. Il + V( I 0. I J + V(I. I J + V( I. I 121 J 
NEXT I 

FOR J=2 TO 9 Initialize Interior Values 
FOR 1=2 TO 9 j 
I.ET V(I.JJ=V0/36 to Avwage of 
NEXT J Boundary Values 

NEXT I 

FOR 1=1 TO 10 ] 
FOR J= I TO 10 Save Old 
I. ET U(I. J J = V(I. J J Potentisl, 
NEXT J 
NEXT I 
LET VI=0 
FOR 1=2 TO 9 
FOR J=2 TO 9 
I.ET V(I.JJ=(U(I+I.Jl+U(I-I.JJ+U(I.J+IJ+U(I.J-IJ)/4 
IF ABS«V(I.JJ-U(I.J])/V(I.JJ)<VI THEN 37121 
LET VI=ABS«V(I.JJ-U(I.JJ>/V(I.JJ) Vnew - Void 
NEXT J 
NEXT I 
I.ET M=M+ I 
IF VI>.001 THEN 26121 - Test for.7'!6 Accurscy 

PRINT .. , OF ITERATIONS 
FOR J=10 TO I STEP -I 
FOR 1=1 TO 10 
PRINT V(I.JJ. 
NEXT I 
PRINT 
NEXT J 
END 

= .. lM] 
Print out 
Potential 
Matrix 

Find New 
Interior 
Potentials b, 
Averaging 
Neighbor 
Values 

The program initializes the potential at interior points of the region to the 

average of the values on the boundary. It is a property of Laplace's 

equation that the absolute maximum and absolute minimum values of 

potential must lie on the boundary. Initializing the interior points to the 

average value saves some time in the calculation. 
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It turns out that Laplace's equation has the interesting (and unusual) 

property that, when you average the nearest neighbor potentials, you can 

use some old values (from the last iteration over the grid) and some new 

values (from the present iteration). This allows you to use only one storage 

matrix for the potential. 

Practice Exercise: Modify the program so that you use only the matrix V 
and average two old and two new nearest neighbor potentials. 

A RUN of the program given above looks like: 

Rlfi 
L.APLAC 

, OF I TERATl ON 5 - 311 
9 18 II 12 13 
III 15 16 11 18 

8 9. 9.99882 18.996 11.992 
12.9885 13.9868 111.9885 15.9932 11 

7 8.88119 9.88881 9.995111 1111.9885 
11.9815 12.9783 13.9883 111.9885 16 

6 7.80482 8.881161 9.88081 9.99137 
18.9823 11.9167 12.9183 13.9868 15 

5 6.80802 1.01156 8.80865 9.8001111 
9.98955 10.9823 11.9815 12.9885 III 

II 5.1111156 6.018118 1.01711 8.011!l111 
9.000"1 9.99137 1".9885 11.992 13 

3 11.1111325 5.02172 6."233 7.81711 
8. ""865 9."0""1 9.995111 1111.996 12 

2 3. "1155 11.01967 5.1112112 6.01848 
1."1156 8."01161 9.00""1 9.99882 II 

I 2.00683 3.81155 11.1111325 5.1111156 
6.00802 1.00111!!1 8.00119 9. 10 

0 I 2 3 4 
5 6 7 8 9 

Example 2. Find the potential V throughout a square region, given that 

the potential on the boundary varies linearly from 0 at one corner to 18 at 

the opposite corner and that a uniform surface charge density of +.5€o 

coulombs per m2 fills the region. 

The problem calls for the solution of Poisson's equation in a situation very 

similar to that above for Laplace's equation. A program that solves this 

Poisson equation situation might look like: 

POISSO 

10111 DIM V[U,II1I],U[10,1I1I] 
118 READ V[ I, I], V[ 1111, I], V[ 10, 10], VII, 10] 
120 DATA 8,9,18,9 
130 L.ET V8-V[ I, Il+V[ I, lI!!l+V[ 10, 10]+VII0, I] 
140 FOR 1~2 TO 9 
150 L.ET V[ 1,1]-1-1 
160 L.ET V[10,1]-9+1-1 
17111 L.ET V[1, I] -1- I 
180 L.ET VII, 10]-9+1-1 
190 L.ET V0-VI1I+V[ 1,1l+V[ 111I,1]+V[1, 1]+V[1, 18] 
2"" NEXT I 
21 I!! FOR 1=2 TO 9 
220 FOR J=2 TO 9 
230 L.ET V[I,J].VI!!/36 
248 NEXT J 
250 NEXT I 
260 FOR I-I TO II!! 
270 FORJ~ITOI0 
280 L.ET U[I,J]~V[I,J] 
29" NEXT J 



300 NEXT I 
31111 I.ET VI=III 
320 FOR 1-2 TO 9 
33111 FOR J-2 TO 9 
34111 I.ET R-.5 
35111 LET V[I.Jl=eU[I+I.Jl+U[I-I.Jl+U[I.J+Il+U[I.J-Il+R)/4 
36111 IF ABseevO.Jl-U[l.Jll/V[l.Jll<VI TIIEN 36111 
37 III LET V I-ABse e V[l. J l-U[l.J II /V[l. J l ) 
360 NEXT J 
39111 NEXT I 
40111 LET MEM+ I 
4111 IF VI>.0111 TIIEN 2611 
420 PRINT '" OF ITERATIONS '""1M 
430 FOR J=10 TO I STEP -I 
440 FOR I-I TO 10 
450 PRINT V[I.Jl. 
460 NEXT I 
470 PRINT 
480 NEXT J 
490 END 

Practice Exercise: Annotate the Poisson program by written comments by 
each line. 

A run of this program looks like: 

RUN 
POISSO 

, OF ITERATIONS 
_ 48 

9 10 II 12 13 
14 15 16 17 16 

8 9.56738 1111.927 1201 182 13.2048 
14.2044 15.1172 15.9259 16.5866 17 

7 8.92723 10.5112 11.8531 13.111106 
14.011199 14.8513 15.511191 15.9259 16 

6 8.11906 9.85412 11.2951 12.5111117 
13.4998 14.2926 14.8513 1501172 15 

5 7.20652 9.111131 10.511126 11.7322 
12.7311 13.4998 14.111199 14.21144 14 

4 6.211169 8.01384 9.5111357 1111.7333 
1107322 12.51111117 13.1111116 13.211148 13 

3 5.121111115 6.85596 6.29763 9.5111357 
1111.511126 11.2951 11.8531 12.1182 12 

2 3.92835 5.51334 6.65596 8.01384 
9.111131 9.65412 10.5112 10.927 II 

I 2.58811 3.92835 5.12005 6.2069 
7.211652 6.11906 8.92723 9.58738 10 

11 I 2 3 4 
5 6 7 8 9 

Notice that the final interior values have changed from those of the 

Laplace solution. The symmetries have been maintained because the 

charge density is uniform. 

Practice Exercise: Identify lines of symmetry in the values of potential. 

Terminal plotting can also be used in a manner .similar to the terminal 

plotting of potential done in Chapter One. 

Practice Exercise: Modify the Laplace and Poisson programs to print out 
characters representing the values of the potential at each point on the 
grid. 
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CONCLUSION 

The Laplace and Poisson equations are very basic to electrostatics. This 

chapter showed you one way to solve these equations with the computer. 

The numerical method of solution presented is also applicable to other 
partial differential equations arising in physics. 

CHAPTER FIVE EXERCISES 

1. Consider the square region with the boundary potentials: 

0 0 0 
2 4 
4 8 
6 12 
8 16 

10 20 
8 16 

6 12 
4 8 
2 4 

0 0 0 

(constant zero potential on two sides and increasing linearly to the 

midpoint then decreasing to zero again on the other sides). 

a) Determine the potential inside the region. 

b) From a character plot of the potential in the region, draw several 
equipotentials. 

c) Describe the symmetries in the potential. 

2. With the boundary potential described in Exercise 1, calculate the 

potential in the region when there is a uniform charge density of -.5Eo 

coulombs/m2 throughout the region. 

a) From a character plot of the potential in the region, draw several 
equipotentials. 

b) Describe the symmetries in the potential. 

3. Consider the following line charges parallel to the z-axis: +1 at (6,0); +1 

at (-6,0); +1 at (0,6); and +1 at (0,-6). 

a) Using the method discussed in Chapter 1, determine the potential in 
the square defined by the corners [5,5] and [-5,-5]. (Find the 
value of the potential on a grid with ten points on each side.) 

b) Use the values of the potential obtained in Part (a) for the potentials 
on the edges of the square region defined by the corners [5,5] and 
[-5,-5]. Use Laplace's equation and determine the potential inside 
this region. 



c) Compare the results obtained by the two methods (Parts (a) and 
(b)) for interior points. 

4. The symmetries observed in the potential pattern in the text and 

Exercise 1 can be used to cut down the number of points at which the 

potential needs to be evaluated. For any symmetric pattern, we only 

need to calculate the potential for a smaller region of space and then 

use the symmetry to copy the potential into the other regions. 

Consider the potential in Exercise 1. If you consider the pattern 

centered at the origin the pattern above the x-axis is mirrored below the 

x-axis. To solve the problem using the symmetry, set the potential the 

same way for positive y but when you solve for the potential along the 

x-axis (the line of symmetry), consider the value of each point just 

below the axis to be the same as the value of the point just above the 

axis. The grid point equation for this line of symmetry becomes: 

a) Resolve the potential for Exercise 1 taking advantage of the 
symmetry. 

b) Resolve the potential in Example 2 in the text using the symmetry 
along the diagonal. 

5. Consider the square region with the potential along the edges defined 

by: 

0 0 

2 2 

4 4 

6 6 

8 8 

10 10 

8 8 

6 6 

4 4 

2 2 

0 2 4 6 8 10 8 6 4 2 0 

(with all edges identical, with the corners at zero potentials, and the 

potential increasing linearly in from the corners to the midpoint where 

the potential is ten.) 

a) What are the symmetries? 

b) Taking advantage of all of the symmetries, calculate the potential 
inside the region. Make a character plot of the potential values. 

c) Draw in some of the equipotentials. 

6. Consider the same square region as Exercise 4 but with a uniform 

charge density of .5€o (Ixl + Iyl) coulombs per m2 throughout the 

region. 
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a) What are the symmetries? 

b) Taking advantage of all of the symmetries, calculate the potential 

inside the region. 

c) Make a character plot of the full region and draw the equipotential 

lines. 

7. Consider the following potential: a square boundary with a potential of 

zero on it. Let the square be defined by the corners (-9,-9) and (9,9). 

Inside the boundary is a square defined by the corners (-3,-3) and 

(3,3) at a constant potential of 100. The potential in the region in 

between can be solved by the techniques described in the text. You 

must check to see if the point being evaluated is one of the center 

points with a fixed potential and, if it is, go on to the next point leaving 

that grid point's potential at 100 as initially defined. 
y 

0 
(9,9) 

- 1 ~- (3,3) 
0 I I 

~ ~ 

(5 0 
x 

I I 0 

(-3, -3)- 1 ~-

(-9 • -9) 
0 

a) What are the symmetries in this problem? 

b) Using the symmetries, determine the value of the potential inside the 

region and make a character plot of the full region. 

c) Draw in some of the equipotentials. 

8. Consider the potential caused by a +1 and -1 point charge enclosed in a 

square whose edges are held at zero potential. In order to approximate 

this situation, assume that the potential near the charge is constant and 

is unaffected by the rest of the region (i.e., assume the potential near 

the +1 charge is determined by the equation koq/r). 

y 

(5,5) 

-1 +1 
x 

(-5, -5) 

Let the corners of the zero potential box be defined by (-5,-5) and 

(5,5) and the plus and minus charge positions: +1 at (+2.5,0) and -1 at 

(-2.5,0). 



a) What are the symmetries in the problem? 

b) What can you say about the potential on the y-axis? 

c) How can the solution of Part (b) be used to simplify this problem? 

d) Compute the potential and make an expanded character plot of the­
potential. 

e) Draw in the equipotential lines. 

f) Compare your results in shape to the simple dipole charge 
distribution. 
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APPENDIX A: TERMINAL PLOTTING 

The subroutines in TTYPLO (listed below) allow you to plot a set of 

curves on your terminal. The subroutines use the letter 0 variables, so you 

should not use these variables in your programs. The output from the 

subroutines is a 5" by 5" x-y plot (assuming 6 lines/inch and 10 

characters/inch) with the x-axis across the page and the y-axis up the page. 

The range of x values on the plot are set by defining values for X8 = the 

left side of the plot, X9 = the right side of the plot, Y8 = the bottom of 

the plot, and Y9 = the top of the plot. The subroutines are called with 

"GOSUB 9000". 

To plot a point on the graph, you define the values of X0 = the x coordi­

nate and Y0 = the y coordinate of the point. Also, specify a value for Z0, 

which will be the character plotted at the point (X0,Y0) on the graph. 

You then call "GOSUB 9100". 

The allowed values of Z0 are 0 through 9. Since these variables 

X8,X9,Y8,Y9,X0,Y0,Z0 are used in these special ways for the plotting, 

you should be careful how you use them in your programs. 

To produce the final plot on your terminal, call "GOSUB 9200". A sample 

of the use of TTYPLO follows. The program plots a sine curve (as the 

cha racter "1 "I. 

SINE 

100 READ X8.X9.Y8.Y9.Z0 
11111 DATA 0.6.28316.-1. I. I 
120 GOSUB 9111111111 
130 FOR X0=X8 TO X9 STEP <X9-X8)/50 
149 LET Y0-SIN<X0) 
159 GOSUB 910111 
160 NEXT XIII 
170 GOSUB 9200 
180 STOP 
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APP-TTYPl.O 
RUN 
SINE 

MAX Y= I 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Y 1111 
Y II II 
Y I I 
Y I I 
Y 
Y I I 
Y I I 
Y 
Y I I 
Y I I 
Y 
Y 
Y 
Y 
Y 
YI 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

I 
I 

I 
I 

Y I 
Y I 
Y II 
Y 1111 

I 
I 

II 

I 
I 

I 
I 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y--I MIN X= Il MAX X" 6.28318 

END 

TTYPl.O 

911111l REM INITIALIZE Pl.OT 
91llil DIM 0[31lll) 
9112" FOR 01-1 TO 31lll 
9"3" l.ET 0[01l-" 
9"41l NEXT 01 
9"5" l.ET 0[52)=52 
9"60 RETURN 
911111 REM STORE POINTS 
91"5 IF eX"-X8)*eX"-X9»" THEN 9165 
9111!1 IF eYI!I-Y8)*eYI!I-Y9»" THEN 9165 
9115 IF ZB >- B THEN 9125 
912B l.ET ZI2I-12I 
9125 IF ZI!I <- 9 THEN 9135 
913121 l.ET ZIl-9 
9135 l.ET 0[52)-0[52)+1 
914B l.ET 0[0[52))-II2IIlB*INTe30*<Y"-Y8)/eY9-Y8)+1.5) 
9145 l.ET 0[0[52))-0[0[52))+IB*INTe51l*eX"-X8)/eX9-X8)+1.5)+ZI2I 
915121 IF 0(52)<3"" THEN 9165 
9155 PRINT "PART OF THE PICTURE NOW" 
9 16" G OTO 92"" 
9165 RETURN 
92"1!I REM PRINT OUT Pl.OT 
921" PRINT ''MAX Y-"; Y9 
922121 PRINT" XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" 
92311 FOR 02-31 TO I STEP -I 
92411 FOR 03=1 TO 51 
925B l.ET 0[03)--1 
926B NEXT 03 
927B l.ET 06-121 
928B FOR 03-53 TO 0[52) 
929121 IF 0[031<1!I THEN 93611 
93BI!I IF INTeO[031/IBI!IB) <> 02 THEN 936B 
931121 l.ET 01=0[03)-10"0*INTeO[03)/1"011) 
9320 l.ET O[INT(OI/II2l»)-OI-II2I*INTeOI/II2l) 
933121 IF 06>INTeOI/IIl) THEN 935" 
9340 l.ET 06-INT(01/Ill) 
9350 l.ET 0[03)--1 
9360 NEXT 03 
93711J PRINT "Y"; 
93811J FOR 03-1 TO 06 
9390 GOTO 0[03)+2 OF 941l1l,94211J,944",946121,94811,9512111J,95211,9541!1,956121,95811J, 

959121 



9488 PRIN T " "I 
9418 (lOTO 9618 
9428 PRINT "8"1 
9438 (lOTO 9618 
94411 PRINT "1"1 
94511 (lOTO 9618 
94611 PRINT "2"1 
94711 (lOTO 9610 
94811 PRINT "3"1 
9490 (lOTO 96111 
9508 PRINT "4"; 
95111 (lOTO 9610 
9520 PRINT "5"1 
9538 (lOTO 9610 
9548 PRINT "6"1 
9551 (lOTO 9618 
9561 PRINT "7"1 
9578 (lOTO 9610 
9581 PRINT "8"1 
95911 (lOTO 9618 
9681 PRINT "9"1 
9611 NEXT 03 
9628 PRINT 
9631 NEXT 02 
9641 PRINT" "X"",XXXY'Y''''XXXX'''''''''''",''XXXX'''''OOOOCXXXXXlOOCXXXXXXXXXXXXXXx",XXXXXXXX",'' 
9651 PRINT "MIN Y-";Y81" MIN X-"IX8. "MAX X-"IX9 
9661 (lOSUB 9118 
96711 RETUIIf 
9681 DID 
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APPENDIX B: THE HALF-STEP 
INTERATIVE INTEGRATION 

Numerical methods comprise an entire subject in mathematics. For the 

moment, all we need to show you is that the half-step method used heavily 

in the text would seem to give better answers than the simplest approxi­

mation (which is called Euler's method). The problem we are discussing is 

a general one. A physical law often can be stated in terms of the derivative 

of a function you wish to find; you integrate the differential equation to 

find the answer. 

Consider a general curve for y=f(x); suppose you know the value of y at 

X=Xo and you have a way to calculate the derivative of y with respect to x 

anywhere. The problem is to get as good an approximation to the correct 

value y=f(xo+6x) as possible. The simplest method (Euler's method) uses 

the derivative at Xo and approximates f(xo +6x) as 

f(xo+6x)=f(xo )+f'(xo )6x. 

Euler's method is shown on the sketch by the dashed line. Clearly, the 

method is correct in the limit as 6x~O. For finite 6x the method 

produces excessive errors. 

f(x) 

t 

x 

Euler approximation 

"" "" ...... 
./' 

.......... true 
~./' f(x) 

x + ~x 

The geometrical interpretation of the theorem mathematicians call the 

Mean Value Theorem says that there is some point on the (continuously 

differentiable) curve y=f(x) such that the derivative at that point has the 

same value as the slope of the chord from (xo ,f(xo)) to (xo+6x,f(xo+6x I). 
If the theorem told us where that point was, everything would be easy. 

So-called higher order methods of iterative integration (such as the fourth­

order Runge·Kutta method or predictor-corrector method) are better and 

better ways to approximate this "correct" value of slope. 

Our half-step method is based on the fact that, in general, evaluating the 

derivative near the center of the interval [xo ,xo+6xl is better than using a 

derivative at the end of the interval. In fact, you can show that, if f(x) is a 

parabola, then a true half-step method is exact. This means that, if you 

expand f(x) around Xo in a Taylor series, the half-step method will be 

correct through terms in (6X)2. That is why half-step methods are called 

"second-order" Runge-Kutta methods. 
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In several cases used in the text of this unit an approximate half-step 

method, one that approximates xo+fu/2 by using the !::.x calculated at the 

last step, is used instead of a true half-step. Practically always, such an 

approximate xo+!::.x/2 lies near the center of the interval [xo,xo+ful and 

actually increases the accuracy of the method. 

Practice Exercise: Using any of the iterative integration programs from the 
text, compare Euler's method (which uses the derivative at the point x 0) 

to the half-step method. Show that, for any given step size, the half-step 
method is more accurate and that, to achieve the same accuracy as the 
half-step method, a much smaller step size (and hence many more iter­
ations) must be used by Euler's method. 



ANSWERS TO SELECTED 
EXERCISES 

CHAPTER ONE 

Exercise 1. 

ClC.Y> .r LEJ:T-8ITT.II • R.IHT.TI~1 
,-.SL-.OI ..... 1 •• 05 
MIN •• MAX •• f 
'-100. -II 
"'TTYTTXXXXXx~XXXXXXTTYTYZZZ 
Z'rrYYlOCXX ......... IMf.~XYyyyZ 
Y'tYXxx ...... nn ...... VWXXXTTYY 
YrXXX ...... VTTTTTTTVVn •• ~ 
1KX .... ..,SSRR ••• ftft55TVv..VVXXY 
XXWW •• VT5R.~ ....... PIRI,. ... VXX 
~n •• T5RPlMXIHHHJKM.~RST •• V~X 
~ •• T5R,.LIEA ••• A&lLMPR.TUVVWX 
XW"VTSlIMI"OOOOO'D.NI""'V~ 
XW .. VTRIILIf 11100000 IIKLI 'RTUYV~ 
~'T5'''1D6000006.INI'5TV'~ 
~Y.T'R~IIA"'AE.LMPR'TV9V~ 
~VT'R"'KJKIfIfJXM'PR5""~X 
XXIW".TSR'~I •• IIII~'RSTVVVVWXX 
1XX .... nT"RR •• eRft'.T ... Y~ 
YrXXX ....... TTTTT'PTVUVW'VXXXn 
Y'tTlflOr ............ V ••• nxXXTTft 
I\"r'NlOtlCX ..... nn.VVftlOOCTYYYZ 
IIZTYYYYXX~lCXXlClCXXlClOCTYTYY&ZI 

OC.T) .. LIPT ... 'T .... RlIIfT-TI" 
' •• L-.OS. .1 ••• 0. 
MIll •• IIAX •• , 
, .0.100 
01111.23333 ......... 33331111110 
1121133 ••• '55 •••••• 555 •• 3321111 
11133 •• ' •• '" ••••• 7J' ••••• 33111 
113 ••••• "99AAllllllAAf9" •• ' •• 311 
83 •••• 'a'A .. DaEPEIDlIIAt.' •••• 33 
" ... .,AIIDnIIICLKIIIF ... 'U'.3 
~H"AllilII.I'S""PlUIEIA9"".3 
.. ,. AlDK.TlIlUIZ TIX.EI ... ., • 
.. MAllnllS&UUZUZ'1I1 PDAt''' • 
.. MlllIoI.ftIZZZZZU.I".DIIP1654 
... .".AfII!I.SZUUUZZ SIll PIMf'J". 
""AlEIKITlIZZZZITIX.E."'.'. 
~"'9AtE,,"psn"A&I'E'A9" •• 3 
,..56,. AII ... IJICI.X.II .. _At." '5.3 
., .... "9A111DEIFIEDlII •• '.5 •• 33 
213 •• ' •• '."AAII88AAf, •••• ' •• 31. 
WI33 ..... "' •• 8 •• "'." •• 33111 
IlflIU3 ... "56 .... '555U3321U 1 
01111183333 ......... 33331121110 

ClC.T) IP LIFT.BlTT." • RJIHT.TIP? 
, -50-•••• 5 
MIll •• "AX •• , , 0., 
11112.llla133333333333333312212 
11II1822333333333333333333333al 
lIa821133333333 ••••••• 33333333a 
121123333333 ••••••••••••• 333333 
1111333333 ••••• 558'." ••••• 3333 
11 •• 33333 ........ , .......... 333 
IIU3333 .. .,16."". ' .. '54 •• 33 
11.33333 ••• ""11£181." •• ' ... 3 
12333333 ••••• .,.,. ... ..,'.,' ••• 3 
12333333 ••• 3000Sl&IL..,' •• ' ••• 3 
.333333 ..... .,"TVIHDAt,." ... 3 
11133333 ••• 56"aEl"At??'5 ••• 3 
... 33333 •••••• ,.,,' •• ., •• 55 ••• 33 
.... 33333 ••• ,5 ••• ~ •• 6 •••••• 333 
111.333333 •••• 1' ••• ".' •••• 3333 
111.13333333 ••••••••••••• 333333 
12 ••••• 33333333 ••••••• 33333333' 
11.2111233333333333333333333311 
1121alll.a133333333333333311111 

iiiiII 
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(5,5) 

Exercise 2. 

(2,2) 

(-2, -2) 



f) Near enough to each line charge, all other charges can be neglected 

and the equipotential is that of a single line charge (circular). Far 

away from all three line charges, the equipotential lines are again 

circular and appear in value as if they were created by a single line 

charge with a linear charge density of +3. 

Exercise 3. 

f) The x-z and y-z planes are the zero potential planes. 

Exercise 4. 

c) Near enough to each line charge, all other charges can be neglected 

and the equipotential is that of a single line charge (circular). Far 
away from all three line charges, the equipotential lines are again 

circular and appear in value as if they were created by a single line 

charge with a linear charge density of +4. 
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Exercise 5. 

c) The point charge model of a line charge and the true line charge 

differ in three places: (1) at the ends of the nine charges, (2) very 

close to the line, and (3) very far away from the line segment. 

d) To make a better approximation, increase the number of charge 

points on the line and make the point charge line segment longer. 

Exercise 6. 

c) The plane defined by all points with x = .5 and the plane defined by 

all points with x = -.5 have zero potential. 

Exercise 7. 

a) A zero potential plane on the y-z plane and the charges +1 at (.5,.5) 

and -1 at (-.5,+.5). 

b) The x-z and y-z planes. The charge is +1 at (.5,.5). 



c) Exercise 6 is (an approximation to) the potential for a point charge 

at the origin and two conducting planes of zero potential defined by 

the set of prints with x = -.5 and the set of points with x = .5. 

d) Solve this by using the following charge distribution: The original 

charges and the image charges -2 at (-.5,0); +1 at (-.5,.5) and +1 

(-.5,-.5). 

Exercise 8. 

c) The potential inside the cylinder is constant. 

-+ -+ 
d) Gauss's Law is pEodA = 41Tkoq. Since any surface constructed inside 

the surface will contain no charge, the field is zero, Outside the 

cylinder, the field is the same as that of a single line charge with a 

linear charge density equal to the sum of the line charges used to 

make the cylinder. 

CHAPTER TWO 

Exercise 1. 

(3.3) 

d) Close to each wire, the field is similar to a single current wire of that 

wire's current. Far away, the field is similar to a single current­

carrying wire with a current given by the (algebraic) sum of the 

currents (for this case +2 current). 

iiiiiiI 
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Exercise 2. 

(3,3) 

(-3, -3) 

Exercise 3. 

b) On the axis of the loop, 

where I is the current, b is the radius of the current loop, and x is 

the distance along the x-axis. You derive this result by using the 

Biot-Savart law analytically and noticing that, by symmetry, By and 

Bz are zero. You can integrate the equation for dB x' 
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(3.3) 

c) y Bx 

0 6.28319 E-7 

0.3 6.74652 E-7 

0.6 8.86302 E-7 

0.9 2.46628 E-6 
1.2 -6.69063 E-7 
1.5 -1.78912 E-7 
1.8 -8.13398 E-8 



Exercise 5. 

(3,3) 

(-3, -3) 

Exercise 7. 

a) Inside the field is zero (as well as this approximation will allow). 

Outside the field is the same as if it were from a single line current of 

magnitude 16 at the origin. 

-+ -+ 
b) The Biot-Savart law is #BodQ = kol. Since any line integral inside the 

cylinder will contain no current, the B field must be zero. Outside 

the cylinder, any line integral completely outside will contain all the 

current. Therefore, since the system is radially symmetric it will be 

the same magnitude and shape as the field from a single conductor at 

the origin. 

c) The field inside both and outside both is zero. The field between the 

two is B = 2ko I/r where r is the radius from the origin. (Thi~ agrees 

with the Biot-Savart law and is similar to the problem of a Toroid.) 



Exercise 10. 

(7,7) 

CHAPTER THREE 

Exercise 1. 

a) The trajectory moves away from the line charge but becomes 

straighter as the positron gets farther away (at constant z velocity). 

c) Note the angle is almost independent of distance but those really 

close get bent more. 

d) The positron is deflected toward the wire. 

e) Yes, but since the force goes as 1/r (instead of 1 /r2), the orbits are 

(generally) more complicated than elliptical (satellite) orbits. 
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(40,20) 

(-40,0) 

Exercise 2. 

(+50, +5) 

(-10,-5) 



a) The electron will always be equally repelled by both line charges. 

Therefore, there are never any net forces on the electron and it will 

remain traveling straight along the z·axis at constant velocity. 

b) The electron will always be equally repelled by both line charges. 

Initially, the electron slows up because of a net force in the -x 

direction. If the electron did not have energy enough to pass the 

origin, it would turn around and go back the negative x·axis. Once 

the electron passes the origin, it will accelerate out the positive 

x·axis. 

c) Yes, and in such a way as to cause the x·axis crossing to be at the 

same point for all of the trajectories near the center. This can be 

thought of as a two·dimensional electron lens. You can also see the 

spherical aberration of trajectories near the line charges. 

Exercise 3. 

a) The positron circles both charges but the orbit does not close. 

b) The positron orbits just the charge at (3,0,0) but is perturbed by the 

field of the other charge. 

c) The positron orbits just the charge at (3,0,0) but is perturbed by the 

other charge so that its orbit changes. 

Exercise 5. 

a) The electron's motion is unaffected by the field since the velocity is 

parallel to the magnetic field. 

b) The electron travels with a constant velocity in the z direction but 

spirals around an axis parallel to the z·axis. 

c) The electron just spirals around a circle in the x-y plane. 

d) The field collimates the electrons by forcing them to spiral around 

the magnetic field and not escape in some unwanted direction. 

Exercise 6. 

a) The positron when traveling into the converging field starts to travel 

in the y+z direction. Eventually, all of the positron's velocity is 

gone, and the positron is just traveling in the y-z plane. Then the 

positron starts coming back out. 

b) It decreases to zero, then changes direction. 

c) Energy is conserved, V2 stays constant. 

iiiI 
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Exercise 7. 

b) If the charge is positive, then the positron with Vx>IEI/IBI will move 

in the +y direction. When Vx<IEI/IBI, the positron will move in the 

-y direction. If the charge is an electron (a negative charge). the 

resu Its are just reversed. 

c) A positively charged particle gets accelerated in the x direction (by 
--+ --+ 
VyxBz). This acceleration then causes the velocity, Vx, to grow 

which, in turn, creates an increase in Vy . If the charge is negative, 

V x decreases and Vy increases. 

d) The z motion is unaffected. The xy motion is just that already 

discussed. 

e) If there is no change in velocity of the particle, the forces due to E 

and B must be equal. 

--+ -~--+ 

qE = qVxB 

Ey = VxB z 

Vx = Ey/Bz with no requirements on Vz 

Exercise 9. 

since 

-~ + 
F = ma 
+ -~ 

a = F/m 
--+ --+ + 
V = V (initial) + at 
--+ --+ -~ 

S = S(jnitial) + V(jnitial) t + 1/2 iit2 
+ 
a = ay = Eq/m 

Sy = Sy(jnitial) + Vy(initial) t + (1/2)(Eq/m) t
2 

Sx = Sy(initial) + Vx(initial) t 

Sz = Sz(jnitial) + Vz(jnitial) t 

For the example in the text: 

The initial conditions are Sx = Sy = Sz = 0 and initial velocities are Vy = 
V z = 0 and V x = 4 

Sy = 1/2 E q/m t2 = 1/2 t2 

Sx = 4t 



Exercise 10. 

mV V 
a) r =qj8j"= B 

-+ 
when IBI is measured in units of q/m. 

in normalized units. 

CHAPTER FOUR 

Exercise 1. 

a) The surface integral equals +1 times the length of the box along the 
z·axis. The line integral is zero. 

b) The surface integral equals +2 times the length of the box along the 
z-axis. The line integral is zero. 

c & d) Both the surface and line integrals are zero. 

Exercise 2. 

a) The surface integral is zero. The line integral is +1 and independent 

of the contour. 

b) The surface integral is zero. The line integral is +2 and independent 

of the contour. 

c & d) Both the surface and line integrals are zero. 

Exercise 3. 

a) The surface integral is +3 times the length of the box along the 

z-axis. The line integral is zero. 

b) The surface integral is +3 ti mes the length of the box along the 

z-axis. The line integral is 2. 

c & d) Both the surface and line integrals are zero. 

Exercise 4. 

a) 8. The surface integral is +1 times the total area of the box perpen­

dicular to the z-axis. 

b) It is caused by a plane of charge along the x-y axis. 

c) zero 
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Exercise 5. 

a) zero 

c) 0,4,0 

d) It is caused by a plane (defined by the y·z plane) of current travel ing 

in the y direction. 

Exercise 6. 

b) zero 

--* -~ A --* 
c) pF'd£ = prf(r)'d£ 

--+ ' 
If we pick any circle around the origin, then r 1 d£. Therefore the 

integral is zero. 

Exercise 7. 

a) zero 

b) There are no sources or sinks for the fluid, that is, there are no 

places where fluid is being created or destroyed. 

c) zero 

d) -.75 

CHAPTER FIVE 

Exercise 1. 

a) 
, .F 'TIRAT'.! • 60 

0 0 0 0 0 0 0 0 0 0 0 

I 1.7 1.5 I ... I ... 1.5 1.7 I. I a.6 3.3 .. 
.. 3 ... 1.9 2.7 2.6 a.8 3.3 .. 5. I 6.4 8 

6 5 ... 2 3.1 3.1 3.9 ... 6 5.7 1.1 9 ... la 

8 6.3 5.1 ... 5 ... 3 ... 6 5 ... 6.8 8.9 11.9 16 

10 1 S •• ...8 ... 6 ... 9 S.1 7.1 9.6 13.3 10 

8 6.3 5001 ... 5 ... 3 ... 6 5 ... 6.8 8.9 II., 16 

6 I ... 1 3.1 3.1 3.9 ... 6 S.1 1.1 9." II 

.. 3 ... I •• 1.7 1.6 2.8 3.3 .. S. I 6 ... 8 

I 1.7 1.5 I." I ... I.S a." I. I 1.6 3.3 .. 
0 0 0 0 0 0 0 0 0 0 0 



c) The pattern is symmetric across the x-axis (j.e., across the line 

joining the +10 and +20 potential points.) 

Exercise 2. 

a) 

.... ITPATIMS • IS6 
0 0 0 0 0 0 0 0 0 0 0 

e I. I 0.5 0.1 0 0.1 0.3 0.8 1.6 e.6 • 
• a •• .. 3 0.6 0.3 0 •• 0.9 1.9 3 •• I •• 8 

6 3.1 2.1 I. I 0.' O.S 106 3 5. I S.I Ie 

8 ••• a.8 105 I.a a.1 3.8 6.5 10.1 16 

10 5.6 3.1 1.1 101 1.3 a.3 ... 7.2 11.9 20 

8 ••• a.s 1.5 I. a a.1 3.s 6.5 10.1 .. 
6 3.' a.1 I. I 0.' 0.8 1.6 3 1.1 S.I II 

• a •• 1.3 0.6 0.3 0.. 0 •• 109 3 •• 10. 8 

2 hi 0.5 0.1 0 0.1 0.3 0.8 1.6 a.6 • 
0 0 0 0 0 0 0 0 8 0 0 

b) The pattern is symmetric across the x-axis (i.e., across the line 

joining the +10 and +20 potential points.) 

Exercise 5. 

a) The symmetries are along the x- and y-axes and also along the two 

diagonals of the square. 

b) 
,., lTatATUN' • 190 

o 

1.8 

e e.1 3 •• 

3 3.1 •• 1 .. 6 

• ••• •• 8 s.a 

I I.a s •• 5.7 

• 6 ... 6.e 

, 6.15 6.f 6.6 

8 ,.6 1.a 1 

9 s.a ,.6 1.3 

10 S.II .,.1 , .. 

5.6 

1.9 6.a 

6.3 6.1 6.6 

6.7 6., 6.8 6.9 

6.9 6.9 6.9 7 , 
t.1 'I 7 , 7 'I. I 

'l.a 7. I ., , ,. I 7. I '.1 
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Exercise 6. 

a) The symmetries are along the x- and y-axes and also along the two 

diagonals of the square. 

b) 

• IP 1 TEIlATJ IN9 • III 
o 

1.9 

:2 8.11 3.7 

3 3.11 ... 1 1.1 

.. ... , 5.3 1.9 

I 1.1 6. I 606 

6 6 ... 6.11 '.2 
, , .. ,.S 1.1 

II II II II •• 

• 11.6 s ... 11.1 

10 9 S.6 lie 6 

Exercise 7. 

6.1 

'.& 1.6 

.,.6 • 11.3 

II 11.3 11.6 11.1 

II ... 11.6 1.11 9 9.1 

S.6 S.S , •• 1 '.3 9.4 

S., S.S 9 9 •• 9.3 9 ... 9 ... 

a) The symmetries are along the x- and y-axes and also along the two 

diagonals of the square. 

(9,9) 

0 

2 0 

9 5 0 

21 14 7 0 

37 27 18 9 0 

60 46 34 22 11 0 

100 73 55 39 26 13 0 

100 100 78 59 43 28 14 0 

100 100 100 80 62 45 29 14 0 

100 100 100 100 81 62 46 30 15 0 

(0,0) (9,0) 

Exercise 8. 

a) The pattern is symmetric across the x-axis. 

b) The potential along the y-axis is zero. 

c) Since we know the potential along the y-axis is zero, we can use the 

axis as one of the boundaries to the problem. In this way, the region 

to be solved only contains one charge. 
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