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MECHANICS

INTRODUCTION

This Physics Lab Book was developed to provide you the opportunity to use a
computer as a problem solving tool. You will write computer programs which will
enable you to investigate the great ideas of physics. Using just one program, you
will be able to perform many different experiments. You can make your own
generalizations.

To use the Lab Book for Mechanics, you will need the following. First, you
should have a background in algebra and some trigonometry. Second, the Lab
Book assumes that you already know how to write a simple computer program
using the BASIC language. If you do not, you will want to study this before you
attempt the material. Consult the BASIC Manual for the computer you use. Last,
use of this Lab Book requires that you have access to a computer for at least two
hours per week. If more time is available, you may be able to experiment further
on your own, either to improve your program or to investigate other aspects of
physics that interest you.

As you will discover, there is no one “‘right” way to use a computer as a problem
solving tool. There are many different ways to solve one problem by program-
ming. Experiment and learn as you go. You’ll find you are learning something
new each time, both about your subject matter and about using the computer to
solve problems.

This book was designed to help you by providing several different kinds of
material. First, there are the exercises with the preparatory explanatory material.
These exercises are sequenced so that you can apply what you have learned in the
previous problem in solving the next one. Often you can take your preceding
program and simply add to it to create a program that will provide answers to the
more general or more advanced problem.

Sections of advanced problems are provided for any student interested in further
work in this area. You may wish to tackle these after you have completed the
basic exercises.

An example program and flow chart follow the exercises. You may wish to review
this flow chart and program before you begin using the Lab Book. The example
demonstrates planning a solution (the flow chart) and the coding of the solution
(the program). When you do begin using the Lab Book, you may choose to flow
chart your solutions first. This is good programming practice. Drawing the flow
chart provides a check of your logic, and the finished flow chart can then be used
as a guide in writing each step of your program.

Introduction
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MECHANICS

MECHANICS

If physics is the king of scientific knowledge, then mechanics must certainly be
the queen of physics. No other part of physics has such a long and rich history.
The father of mechanics as we know it today was Galileo. His three laws of
motion were first presented in 1686 in his Principia Mathematica Philosophiae
Naturalis and laid the foundation for mechanics. In the year of Galileo’s death,
the person responsible for the full flowering of mechanics was born. This was
Isaac Newton — one of the most famous scientists of all time. Between the ages of
23 and 25 he made an incredible number of most important advances in physics.
Among these was the invention of calculus which he needed to explain the
motion of the planets, his universal law of gravitation, and his three laws of
motion. A steady succession of mathematicians and physicists elaborated upon
and extended the structure of Newton’s mechanics throughout the 18th and 19th
centuries. Today the subject of classical mechanics is one of the most complete
and well investigated parts of physics. It is not accidental that most studies of
physics begin with mechanics.

Mechanics
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MECHANICS

RATES

The concept of rate is one which finds its way into every part of physics. It is
particularly important in the study of mechanics. Consequently, we should look
carefully at the concept and be certain that it is thoroughly understood.

Suppose you watch the second hand on a watch move around the dial. How fast is
it moving? Or, consider the motion of an automobile as it slows down on the
highway. How fast is it stopping? These examples all involve the central idea of
rate.

By rate we mean change in a variable with respect to a change in another variable.
For example, we could look at the rate of change of displacement with respect to
time which is defined as velocity. Or, similarly, acceleration is the rate of change
of velocity with respect to time. Electrical current is the rate of change of charge
with respect to time, and so on. To make the concept clear, we will look at an
example in some detail.

Consider an object moving along a straight line such that its position is given by
x=t3+2

It is easy to determine where the object is at any time t since we have only to
substitute the appropriate value of t into (1). The more interesting question is
how fast is the object moving at some value of t? Or, phrased differently, what is
the rate of change of x with respect to t? The computer provides an effective tool
to investigate this and other similar questions.

One way to attack the problem is to locate the object at two different times and
then compute the average rate of change as the difference in position divided by
the corresponding difference in time. In this example we would get the average
velocity over the time interval.

This concept of average velocity is in agreement with our common experience
with automobiles. If, for example, we are at point A which is 10 miles from the
starting point 1 hour after beginning a journey along a straight line path and are
at point B which is 30 miles from the starting point 2 hours after starting, we
should all agree that the average velocity between A and B is 20 miles per hour.
We know nothing about the instantaneous velocity at any specific time in the 2-
hour interval. All we can say is that an average of 20 miles was covered in one
hour.

Rates

(1)
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Returning to the object described by (1), if we want to find the average velocity
of the object over the time span fromt =1 to t = 3, we would obtain

(32 +2)-(1° +2)
V,oon = =13

ave 3_-1

Now, suppose we repeat the process except over the time span from t=1.5 to
t = 2.5. The result is

(2.5% + 2) - (1.5% +2)
25-15

v =12.25

ave

If we continue the process, computing the average velocity for time intervals
which narrow down around t =2, it seems reasonable to conclude that we are
getting progressively closer to the notion of how fast the object is moving at t = 2.
Thus, the critical difference between instantaneous and average velocities is the
size of the time increment used in the computation. If the time increment is
sufficiently small, there is no sensible difference between the two. The instan-
taneous velocity tells us how fast the object is moving at a particular instant in
time. On the other hand, the average velocity tells us how fast the object is
moving, averaged over some time interval.

We can put this in a more convenient and powerful mathematical notation.
Suppose that x = f(t). This is read as “x equals a function of t.”” The f(t) denotes
any function of time. It is not necessary at this point to define which particular
one is under consideration. A function must be defined, of course, in the
computer program. We want to compute the average velocity over a time span At
divided equally around t. (At is read “deltat” and stands for an increment, or
small value of time.) If we refer to the calculations in (2) or (3) we can easily see
that the correct relationship which we are seeking is

£t + At/2) - £(t - AL/2)
At

Vave

Figure 1 shows a BASIC program to compute v, assuming that f(t) = t3 + 2,
With this program we can investigate the velocity of the object.

(2)

(3)

(4)
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100
110
120
138
140
158
160
170
180
199
999

The printout in Figure 2 shows the results for several values of t. In each case,
decreasing values of D (which stands for At) are used until there is no further
change in v, .. At this point we are certain that we do have the instantaneous
velocity at the point in time under consideration. Note that if we keep decreasing
D, vaye begins to change. This is caused by round-off error in the particular com-

puter used here.

REM PROGRAM FOR AVERAGE VELOCITY
PRINT "INPUT VALUE OF T DESIRED":
INPUT T

PRINT “INPUT VALUE OF D*";

INPUT D

DEF FNA(T)=T1t3+2

LET V=(FNA(T+D/2)~-FNA(T-D/2))/D
PRINT “AVERAGE VELOCITY IS ™3V
PRINT

GOTO 110

END

Figure 1. Program to Compute Velocities

Exercise 1 — Computing Velocity

Use the program in Figure 1 to determine the instantaneous velocities of an object

moving according to x =Sin(t) +t? att=1, and t = 2.

Exercise 2 — Applications

Use the program in Figure 1 to investigate the following functions:

(a) x=3t2-4t> +5

(b) x=e'+t

(c¢) x=Cos(t?) - eSin(t)

Rates
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RUN

INPUT VALUE OF T DESIRED?1
INPUT VALUE OF D?1
AVERAGE VELOCITY 1S 3.25

INPUT VALUE OF T DESIRED?1
INPUT VALUE OF D?.1
AVERAGE VELOCITY IS 3.8825

INPUT VALUE OF T DESIRED?!
INPUT VALUE OF D?.01

AVERAGE VELOCITY IS 3.000807

INPUT VALUE OF T DESIRED?1
INPUT VALUE OF D?.001!
AVERAGE VELOCITY IS 2.99978

INPUT VALUE OF T DESIRED?!
INPUT VALUE OF D?.000!
AVERAGE VELOCITY IS 2.99931

INPUT VALUE OF T DESIRED?1
INPUT VALUE OF D?7.00001
AVERAGE VELOCITY IS 3.00487

INPUT VALUE OF T DESIRED?2
INPUT VALUE OF D?1
AVERAGE VELOCITY IS 12.25

INPUT VALUE OF T DESIRED?2
INPUT VALUE OF D?.1
AVERAGE VELOCITY IS 12.00825

INPUT VALUE OF T DESIRED?2
INPUT VALUE OF D?.01
AVERAGE VELOCITY IS 12.0001

INPUT VALUE OF T DESIRED?2
INPUT VALUE OF D?.001
AVERAGE VELOCITY IS 12.00!

INPUT VALUE OF T DESIRED?2

INPUT VALUE OF D?.0001
AVERAGE VELOCITY IS 12.0163

Figure 2. Printout from Velocity Program
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Exercise 3 — Automatic Accuracy

Devise a way to modify the program in Figure 1 such that N values of t are read
from DATA statements, and the instantaneous velocity, correct to 4 significant
digits, is computed and printed out for each t. Assume that the appropriate f(t) is
defined in the DEF statement in the program, Test your revised program on x =
t2;t=1, 2, 3, 4.

Exercise 4 — Advanced — Plotting Results

Run the program from Exercise 3, except use x = t. Plot the resultant values of
instantaneous velocity (as well as those from Exercise 3) versus time. See if you
can detect any relationship that may be present. Do not hesitate to ask your
instructor for assistance,

Exercise 5 — Advanced — Rates and Trigonometric Functions

Run the program from Exercise 3 with x = Sin(t); t =0, .1, .2, ..., 1.0. Plot t,
Cos(t), Sin(t), and the values of velocity on the same graph. Can you write an
expression for v as a function of time?

Rates
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FROM RATES TO DISPLACEMENTS

The preceding discussion can be turned around. Suppose that we know the
instantaneous velocity of an object is given by

v=2t2+4

and that when t = 0, x = 0. It is easy to determine how fast the object is moving
since we have only to substitute the appropriate value of t into (5). The
interesting question now is, where is the object at time t?

Remember that in the previous discussion we were able to develop the idea of
average velocity as a change in distance divided by the associated change in time,
or

Vave = AX/At

where Ax stands for change in distance, and At stands for change in time. We
know also that if At is small enough there is no sensible difference between the
average and instantaneous values of the velocity in the time interval At. Con-
sequently, for small enough At, we can write

v=Ax/At

where v represents instantaneous velocity. Substituting (5) in this we have

Ax =(2t% + 4)At

But this gives only the change in position that took place during the time interval
At. A little thought reveals that the correct expression for the new position is

Xnew ~ ¥old T £

From Rates to Displacements

(5)

(6)

(7

(8)

9

11
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or

If, when t = 0, x;;

Xnew = Xold T (2t* + 4)At,

d=0,andif t = 0.1, we have

Xpew = 0 + (2(0)2 + 4)(.1) = 0.4

If we repeat the process once more we have

We could go on, stepping forward in time, computing the new position at each
step, but we must pause to consider carefully what is taking place. We compute
the change in position taking place during a time interval At. However, we use the
value of the velocity at the beginning of the time interval and assume that it
remains constant. Obviously this is in general not true. However, if At is kept

Xpew = 0.4 + (2(.1)2 + 4)(.1) = 0.802

small the error can be controlled.

100
110
120
130
140
158
160
170
180
198
200
218
999

12

REM PROGRAM TO FIND DISPLACEMENT

REM GIVEN VELOCITY

PRINT "INPUT INITIAL VALUE OF X
INPUT X@

PRINT *INPUT TIME INCREMENT *3
INPUT D '
DEF FNA(T)=2%Tt2+4

FOR T=6 TO 1 STEP D

PRINT T,X9

LET X1=X@+FNA(CT)*D

LET X0@=X1

NEXT T

END

Figure 3. Program to Compute Displacements

"3

(10)

(11)

(12)
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From Rates to Displacements

The program in Figure 3 carries out this process in time steps of D from O to 1.
X0 stands for the old displacement, while X1 stands for the new displacement. As
before, D is the symbol for At. Figure 4 gives the printouts for D = 0.2, 0.1, and
0.05. Note that the values of the displacements change as D is changed. Generally,
the smaller D is, the more accurate the displacement is down to some critical
point. If D is decreased past this point, the error starts to build up due to round
off error in the computer.

RUN RUN

INPUT INITIAL VALUE OF X 1?70 INPUT INITIAL VALUE OF X 270
INPUT TIME INCREMENT ?.85 INPUT TIME INCREMENT ?.2
"] @ " 6

«@5 o2 2 8

ol « 400825 od) Teb16

«15 +68125 o6 2.48

2 + 8835 o8 3e424

25 [.0875 1 4.48

«3 121375

«35 1.42275 DONE

o4 1.635

.45 1.851 RUN

o5 2.07125 INPUT INITIAL VALUE OF X 1?0

«55 2429625 INPUT TIME INCREMENT ?.1

6 245265 0 0]

65 207625 ol «4

o7 3008475 2 +« 802

«75 325375 «3 1.21

o8 351 o4 1.628

«85 3.774 5 2.06

9 4.04625 6 251

«95 4.32725 o7 2.982

1. 4.6175 8 3.48

+9 4.008
DONE 1 4457
DONE

Figure 4. Printouts from Displacement Program

Exercise 6 — Displacement

Let v = Cos(t), and x = 0 when t = 0. Use the program in Figure 3 to find how x
varies with time.

13



PHYSICS
Hewlett-Packard Computer Curriculum

Exercise 7 — Increasing the Accuracy -

If we know the expression for v, as in Exercise 6, we can compute the velocity at
the end of each time increment as well as at the beginning. If the average of these
two velocities is used to compute the change in x taking place during that
increment, the error should decrease significantly. Write a program to do this.
Run the problem in Exercise 6 again using this new program.

Exercise 8 — Finding Displacement From Acceleration

We know that v = Ax/At, but acceleration in turn is defined by a = Av/At. Thus,
we can begin with a known acceleration, compute AV from Av = a/At, and compute
Ax from Ax = vAt. All we need to know is a = f(t), and the values of v and x at
t=0. Write a BASIC program to carry out this process. Test your program on
a=t At=20.1, fort from 0 to 1, with x = 0and v = 0 at t = 0. Have the program
compute and print out t, v, and x at each step.

Exercise 9 — Advanced — Average Values of Velocity and Acceleration

Arrange the program in Exercise 8 to use the average value of a and v in each
time step as in Exercise 7.

Exercise 10 — Advanced — A Generalization

Run the program developed for Exercise 9 in time steps of 0.1 fromt = 0tot = 4.
Plot a, v, and x for each value of t. Can you generalize your results?

14
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NEWTON’S SECOND LAW

Now that we have discussed rates we can profitably proceed to Newton’s second
law. It is very difficult to think of a single man whose work has had a more direct
and far reaching effect upon western civilization than Isaac Newton’s. His laws
occupy a position of pivotal importance in mechanics, which is probably the most
well developed part of physics, which in turn lies at the heart of much of today’s
technology.

Newton’s Second Law is

Unfortunately, it is possible to get the impression that this is nothing more than
an algebraic equality involving three variables stating that force equals mass times
acceleration. To do so is to miss completely the rich content in the law. With the
foundation laid in the last section we can proceed to discover much more than a
simple equality.

Recall that we can write acceleration as a = Av/At, and velocity as v = Ax/At. The
only restriction we must be careful to observe is that At must be small enough so
that there is no signlificant difference between average and instantaneous values of
the acceleration and velocity. Replacing a in (13) with Av/At we can write

and

Equation (14) gives Newton’s Second Law in a form not generally seen in
introductory books. The important difference between (14) and (13) is the idea
of rate which is apparent in (14). Velocity is written to emphasize the same idea
in (15). To sense the significance of this we must ask what is the point in the
Second Law? What kind of answers does it provide?

The fundamental problem is to predict the motion of an object if we know the
forces acting on it as well as the object’s position and velocity at some particular
instant. In simpler terms, we are trying to find out how things move when forces
act on them. Newton’s Second Law provides the key.

Newton’s Second Law

(13)

(14)

(15)

15
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If (14) and (15) are rearranged slightly we can compute the change in velocity and
position during a time increment. If the changes are added to the previous values
of velocity and position we can compute new values whereupon the process is
repeated, stepping forward in time. The equations needed to carry out this
process are

1
= v g +— FAt
Vold ™

Vnew

and

Xnew = ¥old * Vold2t

These simple equations, coupled with the calculating speed of the digital com-
puter, are much more powerful than you might imagine. All we need is the initial
position and velocity and the force acting during each time increment. With this
information we can indeed find out how things move, and can solve problems
which are hopeless with analytical methods.

At this point, an example should firm up the ideas. Suppose that we want to find
out how an object of mass m = 1, located initially at x = 2, with velocity v=-4
will move if subjected to a constant force of F = +2, Assume that the quantities
above are given in some consistant system of units. You may wish to discuss the
question of units further with your instructor. We shall not be overly concerned
with units in this treatment.

The program in Figure 5 solves equations (16) and (17) and follows the motion of
the object. The program uses D for the time step, X0 and VO for the old values of
position and velocity, and X1 and V1 for the new position and velocity respec-
tively. The program is arranged to print out the time, velocity, and position every
N computations. The time limit on the computation is L. The printout for the
program is contained in Figure 6. Study both the program and printout until you
are certain you understand the process.

Exercise 11 — Force and Motion
Run the program in Figure 5 with m = 2, Run it again with m returned to the

initial value, but with F = 8. Plot the velocity and position data from Figure 6 as
well as the data from this exercise versus time. Explain your results.

16
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108
110
120
130
140
150
160
170
180
190
200
210
220
239
2480
250
260
270
800
8a1
999

REM NEWTON'S SECOND LAW
READ X8,V@.,M

READ D,N,L

LET F=2

PRINT

PRINT *T™,"U™, X"
PRINT

LET C=N

FOR T=8 TO L STEP D
I¥ C<N THEN 220
PRINT T,V@.,X0

LET C=0

LET VI1=V@+F*D/M
LET X1=X@8+V@x%xD
LET V@=Vi}

LET X@=X1

LET C=C+1

NEXT T

DATA 2,-4,1

DATA +1,18,5

END

Figure 5. Program for Newton's Second Law

2
3.
4.

DONE

Figure 6. Printout from Newton’s Second Law Program

v X
-4 2
-2 -1.1
=1.84774E-06 -2.2
2o -13
4. 159999

-1
Newton’s Second Law

17
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Exercise 12 — Converging on Accuracy
Run the program in Figure with the following values of D and N:
(¢) D=.1,N=10
(b) D=.05,N=20
(¢c) D=.01,N=100
(d) D=.005 N =200

Compare the four printouts and see if you can explain what is taking place. Which
set of data do you feel is the most accurate?

Exercise 13 — A Variable Force

Run the program in Figure 5 except set F = 4Cos(t). Note that F must now be
computed inside the time loop. Plot your results.

Exercise 14 — Advanced — A Challenge

Suppose that for x| <5, F = 0;forx >=5F=-4; forx <=-5F=+4;m =1,
xo = 0 and v, = +5. Develop a program to follow the object. Plot your results.

Exercise 15 — Advanced — Barrier Penetration

Given a force described by F =0 forx <Qorx>5 and F=-5for 0 <=x <= 5.
If the initidl position is 0 and m = 1, find the initial velocity such that the object
arrives at x = +5 with a positive velocity less than .1. Do the problem by a trial
and error technique. This is a simulation of a barrier penetration.

18



HALF STEP METHOD

It may have occurred to you that we have been using a rather simple-minded
method to solve the exercises up to this point. In all instances we have computed
the change in velocity, for example, assuming that the velocity remained constant
throughout the time interval. Except in trivial cases, this isn’t true. We have been
able to keep the error down by using very small time increments. However, it
turns out that a very simple device may be used to improve the method. This
device is known as the half step method.

The strategy is to compute a single change in velocity at the beginning of the
program utilizing a half time step. If subsequently we proceed as usual, the
velocity and position will be out of step by one half time step. The advantage lies
in the fact that now the change in position is computed with a value of velocity
that is half way through the time step. This simple procedure produces a dramatic
increase in accuracy.

Exercise 16 — Half Step Computation

Modify the program in Figure 5 to include an initial half step computation in the
velocity. Compare your results to those obtained initially.

Exercise 17 — Half Step Computation

Using the program developed in Exercise 16, rework Exercise 12 and compare
your results to those obtained initially.

MECHANICS

]
Half Step Method

19
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THE HARMONIC OSCILLATOR

A number of interesting phenomena in physics are associated with the concept
of the harmonic oscillator. The simplest type of harmonic oscillator is a mass
hanging on a spring. We assume that the force generated when the spring is
stretched is governed by Hooke’s law which states that the force is proportional
to the displacement of the spring from the equilibrium position and is directed
opposite to the displacement.

Here, k is the constant of proportionality, and x measures the displacement of the
system from equilibrium. But we already have a computer program which can be
used to solve for the motion of the mass on the spring since we are given the force
in (18) and we know how to solve Newton’s Second Law.

Exercise 18 — Harmonic Oscillator

Use the program in Figure 5 to solve the harmonic oscillator problem if m =k
=xo = 1, and vy = 0. Note that the force depends upon x and consequently must
be inside the calculation loop. Use a time step of n/100, print out every ten steps,
and follow the motion of a time limit of 2n. The easiest way to handle m in your
program is to set P = 3.14159 in the program and then work with multiples of
this value.

Exercise 19 — Half Step Computation

Modify the program in Exercise 18 to include an initial half step in the velocity
calculation. Run the program and plot the results. Write down a mathematical
function which would generate the response you have plotted. From this can you
make any generalizations about the behavior of harmonic oscillators?

Exercise 20 — Changing the Mass

Run the program from Exercise 19 with m = 1/2, and m = 2. Do the results seem
consistant with your understanding of rates and Newton’s Second Law?

The Harmonic Oscillator

(18)

21
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Exercise 21 — Advanced — The Pendulum

Consult your physics textbook about the motion of a simple pendulum. Write a
computer program to follow the motion once the initial values of angle and

velocity have been specified.

22
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MORE COMPLICATED FORCES

Once we have a good program for the harmonic oscillator, it is very easy to
modify the program to account for more interesting cases. For example, if you
observe a mass oscillating on a spring it is clear that the oscillations gradually die
out. Yet, there is nothing in the computer results so far to account for this. The
problem is that forces are present which are not included in the program. The
damping force is generally described by

F=-8v

It is extremely important to note that if, for example, the damping had been
proportional to the square of the velocity, it would have made little difference in
the manner in which we accounted for damping in the computer program. This is
emphatically not so for analytical methods. Minor changes in the description of
the forces which govern a problem may well produce equations which cannot be
solved by analytical methods. However, with the computer we are in the fortu-
nate situation of requiring only a description of the force which we can compute
at the proper place in the program, and we can then usually reach a solution with
no difficulty.

Exercise 22 — Damped Harmonic Oscillator

To examine demping, use F = -kx - v in the program in Exercise 19. Let k=m =
B = 1. Run the program and plot the results.

Exercise 23 — An Experiment

Set up an experimental mass spring system and measure m and k. Set the system
into oscillation and measure the time required for the amplitude of the oscil-
lations to decrease to half their initial value. Using a trial and error approach,
input values of (8 into the program from Exercise 22 until the predicted time for
the amplitude to decrease to half its initial value agrees with the experimental
measurement. You will be using the computer to discover the damping constant
of proportionality. Since your program will probably have to follow several
cycles, use the half step method with a small time step.

More Complicated Forces

(19)
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Exercise 24 — Advanced — Driven, Damped Harmonic Oscillator

Use the same conditions as in Exercise 22, except add the force F = 2Cos(t).
Compare your results to those of Exercise 22.
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ORBITAL MOTION

One of the greatest achievements of Newtonian mechanics was the discovery of
the planet Neptune in 1846 on paper before a visual sighting through a telescope
was made. The new planet was invented to account for the observed perturbations
in the orbit of the planet Uranus. When telescopes were pointed to the predicted
location, the new planet was indeed there.

We can easily adapt the developments thus far to follow the motion of planets or
other bodies moving under the influence of gravitational forces. The main dif-
ference is that now we can have motion in two dime.sions. Newton’s law of
gravitation states that

F-= (20)

G is the universal gravitation constant, M is the mass of one body, m the mass of
another, and r is the distance between them. Moreover the force is directed from
one body towards the other along a line joining them.

Figure 7 portrays an object of mass M which we will assume is fixed at the origin,
and a second object of mass m located at the point (x,y) which is assumed to be

Figure 7. The Gravitational Forces
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moving under the influence of the gravitational force between the two objects.
The strategy we will use is to split the motion up into that parallel to the x axis
and that parallel to the y axis. Thus we must resolve the gravitational force F into
its x and y components. If we do this we have

GMm GMm GMmx

Fy = == Cos(6) = - ——(x/) = - — (21)
GMm GMm GMmy

Fy=- > Sin(0) = - " (y/r)=- (22)

r r r

r=y x2 +y? (23)

The two forces represented by (21) and (22) are coupled. In other words, a
change in y can produce a change in Fy and a change in x can produce a change in
Fy. The coupling occurs because of the dependence of r in (23) on both x and y.

If we now use these forces, we can write a set of equations equivalent to (16) and
(18) for both the x and y directions.

vxnew = vxold + (Fy/m)At (24)

Xnew = Xold + (onld)At (25)

vynew = vyold + (Fy/m)At (26)

Ynew = Yold * (vy At (27)

Note that m in (24) and (26) has no effect since it cancels out when Fy and Fy
are used according to (21) and (22). To simplify matters and to avoid large
numbers we will assume that we are in a coordinate system such that GM = 1.
This enables us to study the shapes of various orbits without becoming involved in
messy mathematics. Now we require initial position and velocity in both the x
and y directions. The procedure is precisely the same as for the exercises involving
Newton’s Second Law, except we have two sets of equations.

26



Exercise 25 — Orbital Motion

Write a program to follow the motion of an object moving under the influence of
gravity. Assume that GM = 1. Use an initial half step computation for both x and
y velocities. To test your program, assume x, = 1, y, = 0, Ux, = 0, and Uy, = 1.
These conditions produce a circular orbit. Consequently, with the initial half
step, and a reasonably small time step, your program should produce a circular
orbit. You can check on this by having the program output r at each step.

Exercise 26 — Experimentation

Using the program from Exercise 25, try out various initial positions and
velocities to acquire a feel for the types of motion that can be produced,

Exercise 27 — A Challenge

Use the program from Exercise 25 with x, = 1, y, = 0 and both initial velocities
equal to zero. Run the program and explain the results.

Exercise 28 — Advanced — A Double Force Center

Repeat the development for gravitational motion but have two fixed objects of
mass M as well as the moving object of mass m. Develop a computer program to
handle this and investigate the types of motion that result. You must fix the two
masses with mass M at two points in space. Compare the orbits you get with those
from Exercise 26.

MECHANICS
Orbital Motion
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NOTES
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Application Program

APPLICATION PROGRAM

The program for the solution of Newton’s Second Law which is given in Figure 5
is an interesting case to document in detail. The program itself is not particularly
difficult or involved, but it does illustrate the concepts of input, initialization,
looping, computation, and output which are common to most programs.

The variables X, and V,, and M define the initial position, initial velocity, and
mass, respectively. D is the time increment used in the computation. N is the
number of computations carried out between printout. L is the time limit on the
computations.

The variable C is used as a counter to shift the program to the output statement
every N times around the loop.

You should study the flow chart representation of the program until you are
certain you understand the relation between the graph and the program. For
introductory level programs it is generally not necessary to flow chart the
problem first. If there is complicated branching, however, this is of great
advantage.
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INPUT
VARIABLES
X0, VO, M,
D,N, L

v

F<2
C<N
T<0

YES

V1 <VO0+F *D/M
X1 <X0+V0+D

v

T«<T+D

V0O < V1
X0 < X1
C «C+1

NO

YES




MECHANICS
Application Program

Line Description

100 }- States object of program.

110 7 Sets variables X0, VO, M (the initial position, velocity and the mass)
120 and variables D, N, L (D is time increment, N sets the number of passes
J4  before printing, L is the time length).

130 } Sets variable F.

-—

140

160 |~ Prints the heading.

160 |

170 .

180 }— Sets the point counter, C, to the number of passes.
;gg Examines C: If equal to N then print T (time), VO, and X0 and reset
210 | C to zero.

220 | . .

230 [~ Computes new velocity and position.

240 ]

250 Sets VO and X0 equal to V1 and X1.

260 }— IncrementsC.

270 }= Testsif T > = L and increments T by D or goes to end.
800 .

801 }— Data for Variables.

999 End.
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106 REM NEWTON'S SECOND LAV
118 READ X@,V@,M

120 READ D,N,L

136 LET F=2

140 PRINT
1S6 PRINT "T",™y", X"
168 PRINT

176 LET C=N

188 FOR T=6 TO L STEP D
190 IF C<N THEN 22¢
208 PRINT T,V0.,X0
218 LET C=8

220 LET Vi=V@+F%xD/M
238 LET X1=X@+V@x%D
248 LET V@=V]

250 LET X@=X1

260 LET C=C+1

270 NEXT T

880 DATA 2,-4,1

861 DATA +.1,18,5

999 END
RUN
T Y X
0 -4 2
1 -2 =11
2. =1+84774E=N6 -2.2
30 2. °103
4. 4. 1459999
DONE
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