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PREFACE 
This unit shows you ways in which the computer can extend your knowledge 
and understanding of introductory quantum mechanics. The unit presents 
numerical solutions to Schrodinger's equation; the solutions are easy to under­
stand and yet include solutions to many Schrodinger equation problems 
which can't be handled by analytic methods. The emphasis in the unit will 
be on ways the computer can extend the quantum mechanics you under­
stand. The unit assumes some knowledge of introductory quantum mechanics, 
specifically analytic solutions for the infinite square well, and matching wave 
functions at boundaries. 

Your instructor can assign chapters and exercises out of this unit in much the 
same way as out of a textbook. Lectures on the material may be presented, 
but you should be able to understand the material without lectures. The 
harder exercises can be used as the basis of projects if your instructor wishes. 

Each chapter in the unit starts with a brief discussion of the physics dis­
cussion of the physics discussed in the chapter and then moves on to an 
explanation of the numerical procedure used with the computer. Exercises 
follow with one exercise completely worked out in the text so that you can 
see what a sample solution looks like. This sample exercise is sometimes a 
problem for which the answer is already known and therefore provides an 
extra check on the computer method. Some exercises are marked with 
asterisks. One asterisk means the exercise is fairly demanding while two aster­
isks indicates a very challenging problem. Numerical methods will not be 
discussed much in the text; there is a section in the appendix which dis­
cusses the half-step integration used in the first two chapters. 

There are, of course, other problems concerning quantum mechanics which 
can be done with a computer. On the one hand, the computer can calculate 
energies and wave functions for analytic solutions like the finite square well 
or the harmonic oscillator or the hydrogen atom. On the other hand; the 
computer can someti mes do the matrix operations which occur in perturba­
tion theory or in the matrix formulation of quantum mechanics. These other 
applications are not included because this unit emphasizes extensions of 
introductory quantum mechanics byond ordinary analytic methods. 

There are also ways to solve the Schrodinger equation directly as a partial 
differential equation using the computer. These applications will not be in­
cluded because of their extra sophistication. When dealing with partial differ­
ential equations on a computer, you have to worry about convergence, 
stability, and representation. Even though the one dimensional, time­
dependent Schrodinger equation is a relatively simple partial differential 
equation of the parabolic type, the most straightforward approaches using a 
computer turn out to be unstable. The solutions for such problems are 
discussed in reference (1). 

The three-dimensional, time-independent Schrodinger equation is an example 
of an elliptic partial differential equation (as are Laplace's equation and 
Poisson's equation). These solutions are more straightforward; examples of 
elliptic partial differential equations are discussed in references (2) and (3). 
Most of the interesting potentials of quantum mechanics have symetries 
which do not allow you to use partial differential equation techniques. 

Throughout the booklet the atomic units introduced by Hartree (Proc. Camb. 
Phil. Soc. 24, 89 (1928)) will be used. The units have the advantage that the 
numbers being calculated stay near 1; numbers rarely get too small or too 
large for the computer. Atomic units are often used in quantum mechanics; 
the units have the effect of setting h = e = me = 1. I n atomic units. 
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quantity 

charge 

mass 

distance 

velocity 

energy 

time 

unit 

e 

me 
first Bohr radius (.52917 A) 
first Bohr speed (2.2 X 108 cm/sec) 

twice the ionization potential of hydrogen 
(27.21eV) 

first Bohr period/21T( 2.419 X 10-17 sec) 

Often graphical output is useful. If you have a plotter or a CRT terminal 
available, fine. If not, terminal plotting (using the teletype to plot a graph) 
can be helpful. The appendix gives a program to convert printing programs 
(programs which type out lists of numbers) to programs which plot on the 
terminal. This terminal plotting will be used several times in the unit to give 
you several examples. 

John Merrill 
Hanover, New Hampshire 

This unit was written while the author was on the faculty of the Department 
of Physics and Astronomy at Dartmouth College, Hanover, New Hampshire. 
John Merrill has used computers to support his classwork and research since 
joining the Dartmouth facu Ity in 1966. During the period of 1970-72 he was 
part of a team of professors who developed computer classroom use in engin­
eering, mathematics and physics under the auspices of NSF funded project 
COEXIST. 

John has written many journal articles on specific uses of computers in 
physics teaching, particularly in the two main physics teaching journals, The 
Physics Teacher and The American Journal of Physics. He has written several 
booklets on computer use in physics teaching including another unit in the 
Hewlett-Packard series, Electric and Magnetic Fields. John is also the author 
of the book, Computers in Physics, soon to be published by Houghton­
Mifflin Company. He is now the Director of the Center for Educational Design 
at Florida State University. 

Special credits go to Gregory Hughes, a recent PhD in physics from Dart­
mouth who helped develop the exercises and to Chris Doerr of Hewlett­
Packard who learned quite a bit of quantum mechanics while copy editing 
the manuscript. 
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ONE-DIMENSIONAL BOUND STATES D 1 

CHAPTER ONE: ONE-DIMENSIONAL BOUND STATES 
INTRODUCTION 

The one-dimensional, time-independent, Schrodinger equation for the wave 
function, P, of a particle in a potential, V(xl. is 

h
2 

d
2

P(x) + V(x)P(x) 
2m dx2 EP(x) (1 ) 

where E is the energy of the state with wave function P. In Hartree atomic 
units (see the Preface) this equation becomes 

1 d2 P 
- 2" dx2 + V(x)P EP (2) 

or 

pI! = 2(V(x) _ E) P (3) 

When V(x) > E for both large, positive x and large, negative x, a discrete set 
of allowed energies occurs. This set occurs because, when E > V(x), the wave 
function is oscillatory; this is the "classically allowed" region of space. When 
E < V(x), the wave function decays toward zero; this is the "classically for­
bidden" region of space since, classically, when the total energy, E, of the 
particle is less than the potential energy, V(x), the kinetic energy of the 
particle must be negative. In classical physics, a negative kinetic energy, 
%mv2 , implies an imaginary velocity, v, which is the mathematical way of 
saying such motion cannot occur (in classical physics). 

In quantum mechanics, the particle can spend some time in regions of space 
where E < V(x). These are the classically forbidden regions outside the edges 
of a finite square well, for example. Quantum mechanical tunneling through 
barriers is also a result of this quantum mechanical penetration of classically 
forbidden regions of space. 

Consider a region of space where E < V(x) and where V(x) ~ a constant Vo. 
The Schrodinger equation (3) becomes pI! = 2(V 0 -E)P. The two solutions 
to this equation (two because the equation is a second order differential 
equation) are P ex e±ax where 0: = V2(V 0 -E). I f the region where E < V(x) is 
bounded, both solutions can occur, but if the region is unbounded, then one 
of the two solutions is not allowed. If the region is unbounded towards +00, 
then e+ ax grows without bound; this implies that 1 P 12 (the probability 
density for the particle) is arbitrarily large the farther out you go. Such an 
infinite pr;)bability of finding the particle at infinity is not allowed physically. 
Hence, the wave function must decay towards zero (in this case exponentially) 
as x becomes large. A similar argument holds for x tending toward -00; now it 
is the e-ax term which diverges. The result is still that, as 1 x 1 gets large, P 
tends to zero. 

These demands on the wave function's behavior at large positive and negative 
x are the boundary conditions used both by the analytical methods of solu­
tion (those in which the solution is an equation for P) and by the numerical, 
computer-based methods presented in this booklet. Because the wave function 
must go smoothly to zero at large x, the particle can have only certain, dis­
crete (i.e. separated from each other) total energies. As you will see, for ot~er 
energies, the wave functions will not go to zero at large x. 
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One of the big differences between analytical methods (leaving out approxi­
mate methods you learn in higher level quantum mechanics) and the method 
presented here is that analytical approaches can only solve five quantum me­
chanical problems (the infinite square well, the finite square well, the finite 
square barrier, the harmonic oscillator, and the hydrogen atom). The com­
puter method can solve almost any Schrodinger equation problem for almost 
any potential, V. In this booklet we will limit ourselves to symmetric poten­
tials since the vast majority of interesting potentials are symmetric (i.e. are 
such that VI-x) = V(x)). 

THE COMPUTER APPROACH 

The computer (or numerical) method is an "algorithmic" (or "iterative" or 
"step-by-step") method of solution. The computer approach integrates the 
Schrodinger equation by taking small steps, 6x, and finding the new values 
of the wave function, P, and its derivative, p' = dP/dx, after each little step. 

Suppose you know the wave function, P, and its first derivative, pI, at some 
point x. Suppose you also kn9w how P should behave at some other x (for 
example, that P should go to zero as x gets large). Given any potential, 
V(x), you try an energy, E; you set the initial values of P and p' at the point 
they are known; you take a small step 6x and calculate the new values of P 
and P' by using P(x+6x) = PIx) + P' (x+6x/2)6x and P' (x+6x) = P' (x) + 
P" (x+6x/2)6x. Schrodinger's equation gives you the value of the second deriva­
tive, p" = d2 P/dx2 . You now use the same procedure again to go from x+6x 
to the point x+26x, and so forth. I n this way, you walk out x (integrating 
the Schrodinger equation step-by-step as you go) until you reach the other 
place at which you know the behavior of P. You then just look at the be­
havior of P; if E was one of the allowed energies (eigenvalues), then P will 



behave correctly (e.g., P will go smoothly to zero for large x); if E was not a 
correct energy, then P will not behave (e.g., P will diverge for large x). If E 
is just more than an eigenvalue, P will diverge towards one infinity; if E is 
just below that eigenvalue, P will diverge to the other infinity. You can home 
in on eigenvalue energies quite quickly. 

Figure 1 shows a block diagram (a simplified computer flow chart) for this 
procedure. One possible BASIC implementation of this procedure is: 

III DEY FNV(Xla .... '. potential, V(x) 
21 PIUNT "END OF lNTERVAL, DELTA-X, PARITY (lllaEVENI '-ODD), ENERGY?" 

3a INPUT X9'X7'P"1 41 LIT pI-PI-xe-a 

:: i:T,!~::;e 98 Initialization 
7. LET PI-I 
II" GOTO 188 
9. LET PI-I 

[

Ia. LET P~2.(FNV(XI+X7/21-El*(P"+PI*X7/2)} Integration of the 
III LET P"-PI+(PI+P2*XT/2l.XT 
12. LET PI-PI+P2*X7 . Schrodinger equation 
13a LET X"-XI+X7 
141 IF XIICX6 THEN 1711} . 
15" LET X6-X6t-X9/21 Print loop 
161 PIUNT XI.PI.PI.PII 
ITII IF XlcX9 THEN 1""- Return for next 6x step 
188 PRINT 
1911 GOTO 211- Return for new parameters 2.. END 

\ , 

\ 
( 
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Figure 1. Flow Chart of Computer Approach One­
Dimensional Quantum Mechanics 



A few comments on the program are in order: First, there is no one "right" 
implementation of the procedure. Any program that calculates the quantities 
correctly is "right." The program shown is just one such correct implementa­
tion. Second, notice the use of the half-step method (see the Appendix) in 
the lines calculating P2 = d2 P/dx2 from the Schrodinger equation and P0 = the 
wave function, P, from the first derivative, P1 = dP/dx. Third, the print-test 
lines are not necessary, but it is convenient not to print out on the terminal 
the results of all several hundred steps, /'>.x, you will be taking. Fourth, the 
potential, V(x), is given as a defined function, FNV(X), to emphasize that 
this short program solves any (symmetric potential) Schrodinger equation 
problem. All you do is type the potential into the DEF line. Finally, the 
initialization of P0 = the wave function and P1 = the first derivative of the 
wave function with respect to x will be discussed in the next section. 

INITIALIZATION 

Much of upper level quantum mechanics hinges on the development of 
theorems concerning the Schrodinger equation (or its equivalents). One such 
theorem states: 

The wave functions for the stationary states (i.e. the solutions of the 
time-independent Schrddinger equation) for a symmetric potential, 
V(x}, can always be written as completely even (i.e_, P(-x) = P(x}} or 
completely odd (i.e., P(-x) = -P(x}}. 

At first glance that theorem (which is proved in the Appendix for those of 
you with sufficient mathematical background) has I ittle to do with our prob­
lem. In fact, the theorem gives our initial values of P and p' at x = O. If P is to 
be even, then P'IO) must be zero, and P(O) cannot then be zero. If P is to be 
odd, then P(O) must be zero, and P'IO) cannot be zero. If both P and p' are 
zero anywhere, then, as you can see from the numerical procedure, p", p', and 
P will be zero everywhere. The "correct" non-zero values for P(O) (in the 
even case) or P'IO) (in the odd case) would be given by the normalization 

condition foo I PI 2 dx = foo P2 dx = 1 . The easiest thing to do, however, 
-00 -00 

is to make P( 0) = 1 (or p' (0) = 1), calculate the right shapes and energies for 
the states and, then, make the normalization correct. After all, as you can see 
from the Schrodinger equation, if P is a solution, then any constant times P is 
also a solution. We can normalize the wave function after we find it. This 
theorem has allowed us to set the initial values of P and p' at x = 0 and then 
integrate out to large x before examining the behavior to the tail of the wave 
function. There are other ways to start the procedure: that is, there are other 
ways to initialize P and p' at some known x. The procedure we're using works 
for all symmetric potentials. 

THE HARMONIC OSCILLATOR 

Let's work through a representative exercise. I n fact, let's start with a problem 
that analytic methods can solve-the harmonic oscillator. The potential for a 
harmonic oscillator is V(x) = kx2 /2 where k is the so-called "spring constant." 
The prototype of a harmonic oscillator is a mass oscillating on a spring, but 
we're actually treating the problem of an electron in a potential proportional 
to x2

. For definiteness, let's set the spring constant, k, equal to 1, so that 
V(x) = x2 /2. 

The harmonic oscillator can be solved analytically. The result is that the wave 
functions are Hermite polynomials and that the allowed energies are En = 

(n+1/2)hw where w = Yk/m. In atomic units En = (n+1/2)w which means 
that, for our problem, En = (n+1/2) or E = .5, 1.5, 2.5, ... Each energy 
has a wave function that obeys the boundary conditions; no other energies 



will work. Since these energies are known, we can check the numerical cal­
culations by seeing if these energies work and others don't. Furthermore, if 

....- some other potential, V(x), looks sort-of like a harmonic oscillator potential, 
then these energies can also be used as first guesses at the energies for 
that potential. 

-

SAMPLE SOLUTION 

1_ Plot the potential. 

It's always a good idea to get a feeling for the potential the particle 
experiences. You can do this by a short program which prints out 
values which you then plot on graph paper. One such program (with its 
RUN for this problem) would be: 

POTDIT 

II! FOR xe-9 TO 3 STEP .2 
2. PRINT x •• X._XII/2 
3a NIXT XII ... DID 

DID 

RUN 
POTDIT 

a " .2 .92 
.4 .98 
.6 .18 
.8 .32 
I .5 
1.2 .72 
1.4 .98 
106 1.28 
108 1.62 
2 2 
2.2 2.42 
2.4 2.88 
2.6 3.38 
2.8 3.92 
3. 4.5 

DID 
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You can also use the terminal plotting subroutines discussed in the 
Appendix. The program changes you write (and a RUN for this prob· 
lem) could be: 

5 READ X8.X9.Y8.Y9.Z1 
6 DATA e. 3. I. 5. I 
1 (JOSUS 91 •• I. rOft x ... TO 3 STEP .2 
18 LET y .. xI.xIn 
2. (JOSU8 1111. 
31 NEXT X. 
35 (Josue 92 •• 
II. DID 

APPENI>-TTYPLO 
RUN 
POTENT 

MAX y. 5 
XXXJOClOO(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXlCXX 

Y 
Y 
y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
y 
y 
y 
y 
Y 
Y 
y 
Y 
y 
Y 
Y 
Y 
Y 
y 

Y 
y 
y 

Y 
Y 
Y 
YI I I 

XXXXXXXXXXXXXlO(JO(XlO(XXXXXXXXXXXXXXXXXXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN y. I MIN X. I MAX X· 3 

The potential is, of course, just a parabola. It is symmetric (V(-x) 
V( x)) so we can use our computer approach as discussed above. 

2. (a) Sketch the wave function for the lowest energy (the ground state) 
of the potential V(x) = x 2 /2. Now find the wave function and energy of that 
state with the computer. 

Let's use a program like that discussed above with the defined function 
for the potential. Then we just try different energies until the wave 
function behaves at large x. Large x usually means x several times the 
classical turning point (where E = V(x)); for this lowest state "large x" 
(the end of the interval of integration) can be 3 or 4. 

Usually the lowest state for a symmetric potential is even; higher states 
usually alternate odd, even, odd, even, ... A sensible expectation is to 
try for an even ground state. Notice, if the lowest state weren't even, 
the lowest odd state would just come out with a lower energy. The 
program and a RUN look like: 



I DSQlR 

II DEI' FNVeX)-X*X/2 - Potential, V(x) 
28 PRINT "DID 01' INTERVAL. DELTA-X. PARITY e .. EVEN, I-ODD). ENEROY7" 

38 INPUT lC9.X1. P. E ~ 
4. l.ET PI-Pl-X.-I 
5. l.ET X600X9/21 
6. U' pal THill 91 Initialization 
11 l.ET P .. , 
8t OOTO 11. 9. l.ET PI-I 

[

It. l.ET p2a2*CPNVeX.+X1/1>-E>*ePI+PI*X7/2)} 
11. l.ET p .. p.+epl.p2*X1/2)*X1 
12. 1.£1 PI-PI+P2*X1 
13. 1.£1 X .. XI+X7 
14' I' XleX6 'niDi 171} 
15. LET X600X6+X9/2. Print loop 
16. PIIINT XI. P •• P ... PIII 
178 IF XfCX9 'nIEN lee - Return for next t:"x 
III PIIINT 
191 ClOTO 21- Return for new parameters 
218 END 

RIll 
I DSQlR 

Integration of the 
Schriidinger equation 

DID 0' INTERVAL. DELTA-X. PARITY (III-EVEN' 1-000), ENERClY7 
l' 3, • II" e" • 1&5 
.15 
.31 
.46 
• 61 
.76 
.989999 
1 •• 6 
1.11 
1.36 
1.51 
1.66 
1.81 
1.96 
2.1 
1.25 
1 ...... 1 
2.55." 
a.718.1 
2.85182 
3.1.111.2 

.989934 

.95782 

.9.9852 

.841857 

.775826 

.698112 

.619367 

.543639 

.474165 

.415995 

.37111122 

.339114 

.327534 

.33576 

.31.575 

.44.53 

.559386 

.1499S4 
1.1115851 
1.52538 

.979969 

.917419 

.82783 

.718861 
• 611J 1916 
.487445 
.383615 
.295544 
.225482 
.173.52 
.13699 
.115486 
.111279 
.112735 
.137326 
.194.61 
.312913 
.562476 
1.1.356 
2.32678 

DID 0' INTERVAL, DELTA-X. PARITY ( .. EVDI' I-ODD). DlERClY7 
13 ... '1.1". 5!5 
.15 
.31 
.46 
.61 
.76 
.989999 
1.86 
1~21 
1.36 
1.51 
1.66 
1.81 
1.96 
2.1 
2.25 
2 .... 1IJ1IJ1 
2. 5511J1II1 
2.1111'1111 
2.85882 
3. 8811J1II2 

.987692 

.94836 

.889394 

.812719 

.722762 

.624298 

.521966 

.419833 

.321.4 
• a27548 
.139977 
5.74888 E-82 

-2.23332£-82 
-9.81286E-82 
-.186798 
-.292586 
-.429581 
-.619735 
-.898843 
-1.32131 

.975536 

.899386 

.79111J21 

.668512 

.522385 

.389148 

.272449 

.17626 

.1113866 
5017781E-82 
1.95935E-82 
3.38497E-83 
4.9877IE-84 
9. 629 22E-1l3 
3.48935E-82 
8.55596E-82 
.184471 
.384071 
.886481 
1.74585 

END OF INTERVAL, DELTA-X. PARITY (8-EVDI' I-ODD), ENERClY7 
13,.81" 1".5 
.15 
• 31 
.46 
.61 
.76 
.919999 
1.1116 
1.21 
1.36 
1.51 
1.66 
1.81 
1.96 
2. I 
2.25 
2.41.11 
2.SSllJIIJI 
2.78 •• 1 
2.85.82 
3.8"'112 

.9881113 

.953886 

.8996"5 

.8311J232 

.749162 

.661/1968 

.578181 

.4811921 

.396689 

.319801 

.252129 

.194353 

.146482 

.111IJ24 

.1179544 
5.61128E-1I2 
3.86947E-82 
2.6117 I E-12 
1.71633E-82 
1.18143£-1IJ2 

.977751 

.911J8373 

.81119288 

.689285 

.561244 

.4368 75 

.325187 

.231285 

.157299 

.11112272 
6.35691 E-1II2 
3. 17732E-1II2 
.11121457 
1.21528E-1II2 
6.32724E-1II3 
3. 148 65E-1II3 
1.49728E-1II3 
6.811J11J 16E-'4 
2.94579E-84 
1.21314E-.4 

DID 0' INTERVAL. DELTA-X. PARITY ("EVEII' 1-000), ENERClY7 
7 
END 

E 
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As we expected, the energy of the state is near .5. You can get higher 
accuracy by using a smaller step size (t.x), but because the computer 
keeps numbers to only finite accuracy and because the calculational 
method is not perfectly accurate, the computer may not give you ex­
actly .5 as an answer. The difference from .5 is a measure of the accuracy 
of the method. 

2. (b) In which regions of x is the probability of finding the particle nearly 
zero? In which regions of x is the probability of finding the particle relatively 
large? 

Since P is real, 1 P 12 = p2. By looking at the printout you can see there 
is one loop (or anti-node) in p2 and there are no nodes. The probabil ity 
is near zero only for large positive and large negative x. The probability 
is large near x = O. You can also plot the wave function and its square 
on the terminal. The changes you make and the RUN are: 

5 LET XS-YS-II 
6LETY9-1 
35 G OSUB 91181 
161 LET 2:1-1 
162 LET Y.-PII 
163 GOSUB 9111111l 

164 LET tl-2 
165 LET Y"-PIII.PIIl 
166 GOSUB 911" 
lSI GOSUB 9211111 
APPDlD-TTYPLO 
RIll 
I DSQlR 

DID or INTERVAl.. DEl.TA-X. PARITY (IIl-EVDlI I-ODD). DlERII'f' 
'3 ••• 1 •••• 5 
"AX y. I 

XXXXXXXXXlOOOOOOOClOOOCxxlCXXlOOOCXXlOCXXXXXXXXXXxXXxxxxXXXXXXXXXlOOOCXXXXXX 
Y I 
Y 2 
Y 
Y 2 
Y 
Y 
T 2 
Y 
Y 
Y 2 
Y 
Y 
Y 
Y 2 
Y 
Y 
Y 
Y 2 
Y 
Y 
Y 2 
Y 
Y 
Y 2 
Y 
Y 2 
Y 
Y 2 
Y 2 
Y 2 2 1 1 1 
T 222222 

XXXXlOCXXXXlOCXlOOOCXlOCXXlOOOCXXlOCXXXlOOOCXXlOCXXlOOOCxXXXXXXXxxxXX"-,,XXXXXXXX 
"IN Y- III MIN X. I MAX x- 3 
DID or INTERVAl.. DEl.TA-X. PAlIITY (I-EVENI I-ODD). DlERGY? , 
DID 



2. (c) Find the normalization constant for the wave function of this state. 

00 

To normalize a wave function, you calculate A = f 1 P 12 dx. Since 
-00 

P(x) is real, 1 P 12 = p2. The normalization constant (i.e., the number 

you mUltiply P by everywhere) is then 1/..;A. The total integral 
00 

f 

P2 dx is just twice the sum of p2 t.x from x = 0 to your end of interval. 
Thus, with a minor change in your wave function program, you can 
calculate A directly. 

45 I.ET P3-111 
115 I.ET P3-P3+PIII"PIII"X7 
1611 PRINT XII. PII. Pili. Pili. P3 
RUN 
1DSCHR 

END OF INTERVAl.. DEI. TA-X. PARI TV (II-EVENJ I-ODD). ENERGY? 
13 ... el .. 0".5 

• 15 .988813 .977751 .148769 
• 31 .9531186 .9118373 • 299887 
.46 .8996115 .8119288 .428555 
.61 .8311232 .689285 .5411528 
.76 .749162 .561244 .633699 
.9119999 .6611968 .436878 .7,,7828 
1 •• 6 .5711181 .3251117 .764219 
1.21 .481921 .231285 .8115237 
1.36 .3966119 .157299 .833765 
1.51 .319881 .1112272 .852735 
1.66 .252129 6.35691 E-1I2 .86"1797 
1.81 .194353 3.77732E-82 .87213 
1.96 .146482 •• 21457 .876393 
2.1 • I UI2" \.21528E-1I2 .8786"5 
2.25 .8795""1 6. 3272A1E-1I3 .67996 
2.48"81 5.61 128E-1I2 3.111665E-1I3 .861163 
2.55111111 3.86947E-"2 1.49728E-1I3 .881951 
2.1"881 2.6871 I E-1II2 6.8I11BI6E-1lI4 .8811"9 
2.851182 1.7 1 633E-1I2 2.94579E-1lI4 .881176 
3.BU12 1.IIBlII3E-"2 1.21314E-"4 .8812"" 

/ The normalization constant is 1IY2(.881) = .753. 

2.(d) Find the position Xo such that the probability of finding the particle 
between -xo and +xo is 1/2. 

Xo 
What you really want is the Xo such that f 1 P 1 2 dx = 1/2 when Pis 

-xo 

normalized. All you need to do is look down the printout from Part 2(c) 
to find the point where the sum of p2 t.x = A/2. The point is very near 
x =.47 atomic units = .150 A. (For higher accuracy you could change 
the print-test so values are printed more often on the terminal. You 
might also plot the p2 t.x function and estimate the point Xo graphically.) 

3.(a) Sketch the wave function for the second lowest energy of V(x) = x 2 /2. 
Now find the energy and wave function for this state with the computer. 

3. (b) In which regions of x is the probability offinding the particle nearly zero? 
In which regions of x is the probability of finding the particle relatively large? 

3. (c) Find the normalization constant for this state. 
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3. (d) Find the position such tbat the probability of finding the particle be­
tween -x and +x is 1/2. o 0 

The RUNs for this part of the problem follow: 

IDSQlR 

DID or INTERVAL. 
741.81.1.1.48 
.21 
"41 
.61 
.8.9999 
1.11 
1.11 
1"41 
1"61 
1.81 
2 ... 1 
2 .. 2 
2.4 •• 11 
2.6.881 
2.81 .. 2 
3 ...... 2 
3.2 .. 13 
3 .... 8883 
3.".13 
3.8 ••• 4 
4 ...... 4 

.2.5416 

.311315 

.5.1786 

.586386 

.611624 

.58987 

.533.2 

.455398 
"37185 
.29.693 
"225835 
.17 .... 4 
.1 .. 1619 
"138921 
"1 .. 6246 
·197919 
"389367 
.531873 
.977555 
1.89648 

".2228"E-82 
.142"12 
• 2!57846 
.343848 
.37 ... 84 
.3 .. 19 .. 7 
.284111 
.287388 
.13753 
8. 4512IE-12 
5.11115£-12 
3 •• 271 olE-'2 
•• 2 •• 56 
1.71"'3£-112 
2.13878£-112 
3"917181:-.2 
9.57,79E-.2 
.282889 
.955614 
3.59665 

DiD or INTI:RVAI.. DELTA-X. PARITY (IJaEVDlJ I-ODD). DiERGY? 
7 ... 11. I. 1052 

.11 

.41 

.61 

.819999 
I •• 1 
1.11 
1.41 
1.61 
1.11 
2 .. 11 
2.e 
1 ...... 11 
2.6 .. 11 
2.8".2 
3.8.882 
3.2.8113 
3.4 ... 3 
3." •• 3 
3 .. 8 ... .. 
4 ...... 4 

.2115354 

.316511 

.5.5.,2 

.5811511 

.611299 
"51397 
.51165 
... 25769 
.332998 
.243117 
"166152 
9.6689IE-82 
3.728681:-.2 

-I" 67988E-il2 
-1.45786E-il2 
-.151'41 
-.272922 
-.492.61 
-.916188 
-1.78154 

DID or INTERVAL. DaTA-X. 
7 .... 1.1.1.5 
.21 
... 1 
.61 
.819999 
1.81 
1 .. 21 
I ..... 
1.61 
1"81 
2.111 
2 .. 2 
2 .... 8.81 
2.6811111 
2"8.11112 
3"'111112 
3"211113 
3.411113 
3.611883 
3.81 •• 4 
4.111 .... 

.2.5415 

.376938 

.516 .. 27 
"5831&47 
.61645 
.581894 
"511183 
... 4149 
.. 351166 
.2666 
.1956 
.134691 
8.848IIE-02 
.855496 
'-.33239 
.·118984 
1 •• 2688E-I2 
5. I 1185E-1I3 
2"'2241£-113 

-1.31169£-'4 

4.2111131:-112 
.141753 
.255119 7 
.337 
.361561 
.3291&41 
.2611763 
.181279 
.111888 
5.91151 .. E-.2 
2.768651:-.2 
9.33332E-1I3 
1.39113IE-13 
2.82199 £-'4 
5.56196£-83 
2.18 I 33E-1I2 
1. 44861E-1I2 
.242124 
.839253 
3.171133 

4.21953E-1II2 
.1421182 
.256469 
.34111411 
.367782 
.338681 
.212251 
.-.94131 
.123739 
1. I 8753E-.2 
3.82595E-1I2 
1.81416£-il2 
1.82898£-13 
3. '798 IE-1I3 
1.lil483E-13 
3 .. 6i1393E-1II4 
1.1115449 E- 14 
2.6131IE-il5 
4.119112E-86 
1.72154£-88 

DID or INTERVAl.. DELTA-X. PARITY (II-EVINI 1-000). DlERGYl 
7 
DID 



To plot the functions, start again with the basic program and add: 

5 !lEAD X8.Y8.Y9 
6 DATA 11.11.1 
35 GOSUB 911111 
161 l.£T ZI-I 
161 l.ET YI-PII 
162 GOSUB 9111 
163 l.ET ZII-2 
164 l.ET YII-P.,_PI 
165 GOSUB 9111 
181 GOSUB 9211l 
APPEN 0-TTY PI. 0 
RlII 
IDSCHR 

END OF INTERVAl.. DEl.TA-X. PARITY (II-EVENI I-ODD). ENERGY? 
14". e1, 1". 1.!5 
MAX ·Y- I 

XXXXJ()()(XXXXXXXXXXXXXXXXXXXJ()()(XXXXXXXXXXXXXXXXXXXXXXXJ()()(XXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
y 
y 
Y 2 
Y 2 2 
y 
Y 2 2 
y 
Y 2 
Y 
Y 2 2 
Y 
Y 2 
Y 2 2 2 
Y e 2 2 2 222 

XXlOOOClOOCXXXXXXXXXXXXXXXXXXXlOCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
KIN Y- 1 KIN x- II MAX x- 4 

3.(e) How many nodes are there in [P(x)] 2 ? 

There are 2 loops and 1 node between -00 and +00. The rule of thumb 
is that the lowest energy state has 0 nodes, the next state has 1 node, 
etc. The probability is nearly zero around x = 0 and for large positive 
and negative x. The probability is large near x = +1 and x = -1. 

3. (f) Find the normalization constant. 

3.(g) Find the point Xo such that the probability of finding the particle be­
tween -xo and Xo is 1/2. 

Starting again from the basic program, add: 

45 l.ET P3-1l 
115 l.ET p3.P3+PII"PII"X7 - adds up p2/:,x 
161 PRINT XI!, PIl, PII"PIl, P3 
RUN 
IDSCHR 

END OF INTERVAl., DEl.TA-X, PARITY (II-EVENJ I-ODD), ENERGY? 
14,.ell 1, 1.5 

.21 

.41 

.61 

.819999 
1.11 
1.21 
1.111 
1.61 
1.81 
2. II 
2.2 
2.11111111 
11.6111111 
2.8911112 
3.111892 
3.291113 
3.411113 
3.6111113 
3.811111" 
4.11111l1li 

.205"15 

.376938 

.51l6427 

.583447 

.611645 

.581894 

.521783 

.440119 

.351766 

.2666 

.1956 

.134691 
8.84811 E-1I2 
.1155496 
.1133239 
.0189811 
1.92688E-1I2 
5. 1118 5E-03 
2.022111 E- 03 

-1.31169E-"" 

4.21953E-1I2 
.142082 
.256469 
.3411111 
.367782 
.338611 
.272257 
.1941131 
.123739 
7.11753E-02 
3.82595£-02 
1.811116E-02 
7.82890E-"3 
3.1798IE-03 
1.10"83E-13 
3.6"393£-1111 
1 oI~54119 £- 04 
2.6131IE-1I5 
11.119112£-"6 
1.72.54£- 08 

3.221162E-03 
2. 15039E-02 
6.211956E-12 
.123105 
.194978 
.266289 
.327448 
.37369 
.404872 
.423768 
.4337116 
... 39181 
.41115113 
.442515 
.442883 
.4113014 
.443054 
.4431166 
.4431168 
.11431168 
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Note: Curve 1 is wave function x = 0 to x = 4; 
curve 2 is the square of the wave function. 



The normalization constant is 1/Y2(.443) = 1.062. The point at which 
the sum of p2[:,x = .221 is approximately x = 1.1 atomic unit = .532 A. 

4. Find the difference in energy between these states in eV, Hertz, and A. 

E = 1 atomic unit = 27.210; eV = 6.58 x 1015 Hertz; lambda = 456 A. 
(Using 1 eV = 1.602 x 10-12 ergs; h = 6.624 X 10-27 erg-sec; c = 
2.998 x 1010 cm/sec) 

5.(a) Find the behavior of each state near x = O. 

Consider Qn(P(O)-P) versus Qn(x) for small x. What is the power de­
pendence of P for small x? 

The slope of a straight line on a log-log plot is the power, B, to which x 
is raised in (P(O)-P) ~ x B . You may want to plot your results on graph 
paper although you can calculate the result directly from printout. 

Starting again from the basic program: 

GET-IDSCHR 
IU 
I Sill 
1611 PRINT !.OoeXIJ).l.OGe I-pel 
1711 IF XIlI<.1 THEN IIlII!I 
RUN 
IDSCHR 

END OF INTERVAl.. DELTA-X. PARITY (iI-EVENJ IEODDI. 91ERGY7 
13,.1',8 ... 5 
-4.611517 
-3.912112 
-3.5"656 
-3.21888 
-2.99573 
-2.81341 
-2.65926 
-2.52573 
-2.41l1795 
-2.311259 

-9.911451 
-8.51762 
-7.70616 
-7"'3148 
-6·68535 
-6.32893 
-6.81294 
-5.74623 
-5.'5111l17 
-5.311111183 

DID OF INTERVAl.. DELTA-X. PARITY (S-EVEN' I-ODD). 91ERGY7 
7 
END 

So this wave function comes off of its value at x = 0 (P(0)=1) quad­
ratically. The normalization doesn't change this fact. The first exicted 
state (the second one found above) comes out of P(O) = 0 linearly in x. 
Any even state must come off its x = 0 value as an even power of x; any 
odd state must start out from x = 0 as an odd power of x. 

You actually know a good deal about a wave function before you start 
a problem. Often the Schrodinger equation can be approximated in 
some regions of space by an equation with known solutions. The idea 
of these asymptotic solutions for small and large x will be important 
again in Chapter two. 

5. (b) Find the behavior of each state for large x. 

Consider £n(P) versus x for large x. Is the dependence of the wave 
function beyond the classical turning point faster than e-C<x where a is 
some constant? 

if the potential became a constant, VO, for large enough x, the tail of 
the wave function would approach exp(-ax) where a = Y2(VO-E). Many 
:Jotentials do approach constant values, but V(x) = x2 /2 clearly ap­
proaches infinity. So, you expect the wave function to tail off to zero 
faster than exponentially. You may want to plot the results on graph 
paper. 



Starting again from the basic program, change: 

141 I' XI<2.9 THEN 171l 
161 PRINT XI.LOG(PIl) 
RUN 
IDSCHR 

END OF INTERVAL, DELTA-X. PARITY (Il-EVENI .-000). ENERGY? 
? 3,. • 81 .. ", • 5 

2.91!1002 
2~9111102 

2.92002 
2~93112 
2.94002 
2.951112 
2.96002 
2.97112 
2.98112 
2.991182 
3.1/111111112 

-4.2099 
-4.23922 
-4~26867 

-4.29823 
-4~32791 
-4."35771 
-4.38763 
-4~41768 
-4~44785 
-4.47814 
-4.50856 

So the tail of the wave function falls off faster than exponentially be­
cause V(x) is still rising fast. The normalization doesn't affect this re­
sult either. I nterestingly, if you assume that the tail behaves as 
exp(-(a(x)x) where a(x) = v'2(V(x)-E), you can get good agreement 
with the asymptotic behavior of P at large x. 

EXERCISES - Use computer when appropriate 

I. For the potential V(x) = x2 : 

1. Plot the potential for 0 < = x < = 5. 

2. (a) Find the ground state energy and wave function. 

2.(b) How many nodes are there in (P(x)} 2? 

2.(c) Find the normalization constant. 

2.(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3. (a) Find the first excited state wave function and energy. 

3. (b) How many nodes are there in (P(x)} 2? 

3. (c) Find the normalization constant. 

3. (d) Find the point Xo such that the probability of finding the particle 
between -xoand Xo is 1/2. 

4. Calculate the energy difference between these two lowest states, !:::.E, 
in atomic units, eV, Hertz, and A. 

5.(a) Find the behavior of each state near x = O. 

5. (b) Find the behavior of each state for large x. 

Hint: The energies are known from the harmonic oscillator with k = 2. 

II. For the potential V(x) = (x2 /2) + 4 exp(-x2 ), which is a harmonic oscil­
lator with a Gaussian bump in the center (a model of the potential of the 
nitrogen atom in an ammonia molecule): 

1. Plot the potential for 0 < = x < = 5. 

2.(a) Find the ground state energy and wave function. 
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2. (b) How many nodes are there in [P(x)} 2? 

2.(c) Find the normalization constant. 

2. (d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3. (a) Find the first excited state wave function and energy. 

3. (b) How many nodes are there in [P(x)} 2? 

3. (c) Find the normalization constant. 

3.(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

4. Calculate the energy difference, 6E, between these two 10 west states 
in eV, Hertz, and A. 

5.(a) Find the behavior of each state near x = o. 

5. (b) Find the behavior of each state for large x. 

6. Compare the energies and wave functions of these two states to those 
discussed in the chapter (i.e., the two lowest energy states for the har­
monic oscillator x 2 /2). 

Hint: Use the proper harmonic oscillator energies as first guesses and 
then hunt. 

III. For the potential V(x) = 16x2 /(x 2 + 16) which starts out as a harmonic 
oscillator but then becomes constant for x »4'. 

1. Plot the potential for 0 < = x < = 5. 

2.(a) Find the ground state energy and wave function. 

2. (b) How many nodes are there in [P(x)} 2? 

2. (c) Find the normalization constant. 

2. (d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3. (a) Find the first excited state wave function and energy. 

3. (b) How many noises are there in [P(x)} 2? 

3.(c) Find the normalization constant. 

3.(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

4. Calculate the energy difference, 6E, between these two lowest states 
in eV, Hertz, and A. 

5.(a) Find the behavior of each state near x = o. 

5. (b) Find the behavior 0 f each state for large x. 

6. Compare the energies and wave functions of these two states to those 
discussed in the chapter (i.e., the two lowest energy states for the har­
monic oscillator x 2 /2.) 

Hint: Use the proper harmonic oscillator energies as first guesses and 
then hunt. 

IiiiiiiiiiiII 
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IV. For the potential V(x) = -10 exp(-x 2 /2), which is a Gaussian well: 

1. Plot the potential for 0 < = x = < = 5. 

2. (a) Find the ground state energy and wave function. 

2,(b) How many nodes are there in (P(x)] 2? 

2. (c) Find the normalization constant. 

2,(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3.(a) Find the first excited state wave function and energy. 

3.(b) How many nodes are there in (P(x)]2? 

3,(c) Find the normalization constant. 

3. (d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

4. Calculate the energy difference, 6E, between these two lowest states 
in eV, Hertz, and A. 

5. (a) Find the behavior of each state near x = O. 

5. (b) Find the behavior of each state for large x. 

6. Compare the energies and wave functions of these two states to those 
discussed in the chapter (i.e., the two lowest energy states for the har­
monic oscillator x 2 /2). 

Hint: Use the proper harmonic oscillator energies as first guesses and 
then hunt. 

*V. For the potential V(x) = -exp(-lxl/1 O)/Ix!, which is the one-dimensional 

equivalent of the screened Coulomb potential (important in many electron 

atoms) : 

1. Plot the potential for 0 < x < = 5. 

2.(a) Find the ground state energy and wave function. 

2,(b) How many nodes are there in (P(x)] 2? 

2,(c) Find the normalization constant. 

2,(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3,(a) Find the first excited state wave function and energy. 

3. (b) How many nodes-are there in (P(x)] 2? 

3. (c) Find the normalization constant. 

3,(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

4. Calculate the energy difference, 6E, between these two lowest states 
in eV, Hertz, and A. 



5.(a) Find the behavior of each state near x = O. 

5. (b) Find the behavior of each state for large x. 

Hint: Because the potential is infinite at x = 0, only odd states are 
allowed. The (un screened) Coulomb potential (the hydrogen atom) 
energies for these states are -.5 and -.125; you will find both energies 
moved up. This potential is important in three dimensional quantum 
mechanics (Chapter Two). There, it turns out, the wave function is 
R(r) = P(r)/r where P(r) is the wave function you derive in this problem. 
You might look at the behavior of P(r)/r in your printout. 

VI. For the potential V(x) = (ixi-H 2 /2, the biharmonic oscillator: 

1. Plot the potential for 0 < = x < = 5. 

2.(a) Find the ground state energy and wave function. 

2.(b) How many nodes are there in [P(x)} 2? 

2.(c) Find the normalization constant. 

2.(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3.(a) Find the 4th excited state wave function and energy. 

3.(b) How many nodes are there in [P(x)] 2? 

3.(c) Find the normalization constant. 

3.(d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

4. Calculate the energy difference, 6E, between these two lowest states 
in eV, Hertz, and A. 

5.(a) Find the behavior of each state near x = O. 

5. (b) Find the behavior of each state for large x. 

6. Compare the energies and wave functions of these two states to those 
discussed in the chapter (i.e., the two lowest energy states for the har­
monic oscillator x 2 /2). 

Hint:Use the proper harmonic oscillator energies as first guesses and 
then hunt. 

VII. For the potential V(x) = x2/2: 

1. Plot the potential for 0 < = x < = 5. 

2.(a) Find the 3rd excited state (the fourth state) energy and wave 
function. 

2.(b) How many nodes are there in [P(x)] 2? 

2. (c) Find the normalization constant. 

2. (d) Find the point Xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

3.(a) Find the 4th excited state wave function and energy. 



3. (b) How many nodes are there in [P(x)} 2? 

3.(c) Find the normalization constant. 

3.(d) Find the point xo such that the probability of finding the particle 
between -xo and Xo is 1/2. 

4. Calculate the energy difference, 6. E, between these two lowest states 
in e V, Hertz, and A. 

5.(a) Find the behavior of each state near x = O. 

5.(b) Find the behavior of each state for large x. 

6. Compare the energies and wave functions of these two states to those 
discussed in the chapter (i.e., the two lowest energy states for the har­
monic oscillator x 2 /2). 

Hint: Use the proper harmonic oscillator energies as first guesses and 
then hunt. 

**VIII. The family of potentials, V(x) = I x 1
m for different integers, m. form 

an interesting progression, the m = 2 member is a harmonic oscillator with 
energies, En = (n + 1/2).,,12; the limit as m -+ 00 is the infinite square well. 

1. Find the wave functions and energies for the ground state with m = 2, 
4,6,8, and 10. 

2. Find the wave functions and energies for the first excited state with 
m = 2, 4, 6, 8, and 10. 

3. Plot the energies as functions of the power, m. 

4. Interpret the shapes of the curves from Part 3. 

**IX. For the potential V(x) = (-x2 /2) + A exp(-x2 ): 

1. Find the energies and wave functions of the ground and first excited 
states as functions of the height, A, of the Gaussian bump. 

2. Plot the energies and their difference versus the height of the bump. 

3. Explain the changes in shapes of the wave functions. What conclu­
sions can you draw about the energies? Consider the extrapolations to 
A = 0 and A = 00; consider the relationship of the kinetic and potential 
energy terms in the Schrddinger equation. 

5 
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CHAPTER TWO: THREE-DIMENSIONAL BOUND STATES 
INTRODUCTION 

In general, three-dimensional quantum mechanics is thought to be much 
more difficult than the one-dimensional case. For spherically symmetric po­
tentials, the computer makes three-dimensional quantum mechanics just as 
easy as one,dimensional. 

The three-dimensional time-independent Schrodinger equation is 

(4) 

where 1/1 is the wave function for the energy E and V(r) is the potential. 
In polar coordinates (r, e, ¢) this equation becomes 

(5) 

+ V(r, 0, ¢)I/I = EI/I 

If V(r, e, ¢) is spherically symmetric, i.e., V(7) = V(r), then Equation (5) 
separates in polar coordinates. The wave function can be written as 
1/1 = R(r)YW, ¢). You substitute this product in for 1/1. put all the terms 
containing R(r) on one side and all those containing y(e, ¢) on the other; 
then set both sides equal to a constant (Q(Q+ 1) where Q is any integer that is 
convenient). This provides the following equations for R(r) and Y(e, ¢): 

_ ~ ~ -~Jr2dR(r)J + [V(r) + h2Q(Q+l~ R(r) = ER(r) 
2m r2 drl dr 2mr2 J (6) 

1 a [. ay(O ,¢) 1 a2YW,¢)] 
sine ae sine -a-e- + sin20 a0 2 + Q(Q+l) Y (e,¢) = 0 (7) 

THE EQUATIONS IN e and ¢ 

The equation for Y can be separated again as YW, ¢) = E>(())¢(¢) with the 
resu It that 

-- sine - + Q(Q+l) --- e 1 d ( dE» ( m
2 

) 
sine de de sin 2e 

o (8) 

o (9) 

The ¢(¢) equation has the solutions 

¢(¢) = e-im<j> and e+im<j> (10) 

where m is an integer such that 1 m 1 < = Q. Since we will only use ¢ in 
appl ications involving 1 1/1 12 for the ¢ = 0 - ¢ = 180

0 
plane, we don't have 

to worry about ¢ at all. If you need to use ¢, you can call the SIN( ) and 
COS( ) functions on the computer. 

b 



The equations for 8(0) is the associated Legendre equation; its solutions are 
known as associated Legendre polynomials, £r, so 

(11 ) 

The other solution to this second order differential equation for 8 isn't finite 
throughout the range of 8 and so is not allowed to occur in most physics 
problems. So the solution for the angular parts of the full wave function, 1/1, is 

( 12) 

where NQm is just a normalization constant. 

You can calculate values for 8(8) and <I>(cp) easily on the computer. To cal· 
culate 8 you could integrate the differential equation numerically. However, 
like sines and cosines, associated Legendre polynomials are well known and 
can be looked up in books. The first few angular wave functions, Y t (8, cp) are 

yO = 1/y41T o 

yO = H cos8 y1 = ~ sin8 e+ imlll y-1 = ~ sin8 e- imlll 
1 41T '1 81T '1 81T 

One possible program to calculate the Y t s is the following: 

1111 PRINT "I. (III OR 1>. M (1M/cat.)?" 
III INPUT 1. •• 
311 t.i:T Pl a 3.1.-159 
U t.ET NflaI/SQR("P I) " Useful constants for calculation 
5111 t.ET NlaSQR(3/<"PI»1 
68 t.ET Ne-SQR(3/<S*PI») 
11 'OR Tla, TO PI STEP pl/8-Step across 8 
8. t.ET CI-COS<TI) 
9' L.ET SI-SIN<TI) 
II. PRINT "THETA -"IIS'*TIIPI 
11. 'OR Te-l TO R*PI STEP e*PI/8 _Step across cp 
II. PRINT 18B*TII/P I. :!: !~=;IIIN~DI 161} YoO 
1111 aOTO 113' 

::: !~I:Tc;I:C~DI 1911 i yO 
188 aOTO 238 , 1 
198 l' "'-1 THDI III. I 1 
21111 PRINT N2*SI*COS<T2).IIe.SI*SIII<T2) \ Y 
1111 (JOTO 1131 1 
elllll PRINT Ne.SI*COS<T2),-Ne.SI*SIN<T2)_ y- 1 
113. IIIXT T2_ cP 1 
114. PIUNT 
IlSi IIEXT TI--8 
116. PRINT 
111. (JOTO Ie-Return for new parameters 
21. END 

THE RADIAL EQUATION 

The real problem of three-dimensional, spherically-symmetric-potential, quan­
tum mechanics is to solve the radial wave equation, equation (6). Only one 
problem (the hydrogen atom, which is the unscreened Coulomb potential) 
can be solved analytically. All other problems need approximate methods of 
one sort or another (perturbation theory or variational methods), and sooner 
or later even these approximate methods need a computer. 

Using the computer, an" entirely different approach can be taken. You can 
integrate iteratively to find the radial wave function and the energy. Such a 
procedure can be carried out for any potential, V( r). Just as was true in 
Chapter One on one-dimensional bound states, the computer approach for 
three-dimensional bound states is easy to understand but very general. 

5 __ 
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First, we reduce the three-dimensional radial wave equation to one that looks 
just like the one-dimensional Schrodinger equation discussed in Chapter One, 
Let P(r) = rR(rl. You then plug P(r) into the radial wave equation (6) and 
find the equation P(r) satisfies, The result is 

EP(r} (13) 

In atomic units (for which h=m=e=l; see the Preface) this equation becomes 

or 

1 d2 P(r) 
----+ 

2 dr2 [ 
£(£+l)J VIr) + 2T P(r) = EP(r) 

P" = 2 [vIr) + £(£+1) - EJ P 
2r2 

( 14) 

( 15) 

This last equatiol\ looks just like the one-dimensional Schrodinger equation 
discussed in Chapter One, The only differences are (1) that you are integrating 
with respect to r instead of x (so, for example, the range of r is 0 to +00) and 
(2) that the potential V(x) is replaced by the effective potential Veff(r) == VIr) 

£(£+1) W I h' " d'd h d' , I + 2T' e can so ve t IS equation Just as we I t e one- Imenslona 

Schrodinger equation, 

Suppose you know the reduced radial wave function, P( r), and its first deriva­

tive, pI(r) = ~~, at some point r1 ' Suppose you also know the behavior of P 

somewhere else (for example, (1) that P(r) must go smoothly to zero as r 
approaches zero (because R (r) must remain bounded)), Then, for any poten­
tial, VIr), you can choose an energy E, set P(r) and pI(r) at that first point r1 ' 

integrate from r1 to the second region, and examine P(r). If the energy you 
chose was an eigenvalue (one of the allowed energies for the system), then 
P(r) (and R(r)) will behave correctly, If E was not an eigenvalue, P(r) will 
diverge, The divergence will be to opposite infinities on opposite sides of 
an eigenvalue, 

Using a computer, the integration can be performed in a step-wise way, 
Knowing P(r} and p'(r) at some point r, you find the values at r+6r from 

P(r+6r) 
I 6r 

P(r) + P (r+2 ) 6r ( 16) 

I '" 6r P (rMr) = P (r) + P (r+-) 6r 
, 2 

( 17) 

d2 P/dr2 can be calculated from the radial wave equation for p, The derivatives 
are evaluated in the middle of each interval [r, r+6r 1 so that the calculations 
are more accurate, (see the Appendix), 

Figure 2 shows a simplified flow chart for the strategy of the computer calcu­
lation, Before we can discuss an implementation of this strategy, we must 
discuss the initialization of P and pi further, 

yes 

yes Any More 
E," r 

( End) 

Figure 2, Flow Chart of Computer Approach Three­

Dimensional Quantum Mechanics 



INITIALIZATION 

There are a number of ways to initialize P(r) and p'(r). Two ways are most 
common: the first initializes the (reduced) wave function, P, and its derivative 
at large r (and then observes the behavior at small r); the second initializes the 
(reduced) wave function, P, and its derivative at small r (and then observes the 
tail at large r). Large r in these contexts means several times the classical turn­
ing radius (where the effective potential equals the chosen energy). Both 
methods involve asymptotic expansions of the wave function for some values 
of r. We'll discuss each method in turn. 

The first method expands the (reduced) wave function, P, and its derivative, 
pI, for large r. If t'he potential is such that, beyond some point, r 0' the varia­

£(£+1 ) 
tion of the effective potential is negligible, then V(r) + ~ is a constant, 

say Va. The Schrodinger equation for P takes on its asymptotic form 

p" = 2(Va - E) P ( 18) 

whose solutions are exp(-ar) and exp(+ar) where a=V2(Va-E). Becausethere 
must not be infinite probability of finding the particle at infinity, the solution 
e+ar is not allowed. The result is that, beyond the point ra , P(r)"'='exp(-ar) and 
therefore p' (r) "'=' -a exp( -ar). You can initialize P and p' far enough out in rand 
then integrate step-by-step back towards r = O. The boundary condition 
imposed then at r = 0 is that R(r) must be bounded (hence P(r) must go to 
zero smoothly). Again the reason for this boundary condition is that infinite 
probabilities are not allowed physically. When you use this strategy, you will 
have to watch the behavior of P(r) and R(r) = P(r)/r carefully very near the 
origin (r=O). An implementation of the program using this initialization 
might look like: 

10 DEI' fNv<1n-40e*IR'I-12)-R'I-6ll-Potential, V(r) 
20 PRINT "RISTART)'RIEND).DE1.TA-R.ORBITAI. flL).ENERGY?" 
30 INPUT R9, R8, R7, L, E } 
40 LET R7--ABSIR7) 

~: ~~~ ~~:~:~;~~~~~::;~~::~~)*R91 Initialization at large r 
70 LET R-R9 
80 PRINT R. P0, pe/R 
90 LET RS-CR8-R9) 1211l 

[

100 LET R6-R+R7/2 } Integration of 
110 LET P2-2*lfNVIR6l+L*IL+ 111(2*R6-R6)-E)*(pe+Pl*R712) 
120 LET P0-P8+(Pl+P2*R712)*R7 the Schrodinger 
:~: ~~~ :~;:~;P2.R7 equation 
150 IF R>R5 THEN 180 t 
160 LET RS-RS+II\8-R9) 120 \ Print loop 
170 PRINT R.FIIl.FI/R 
182 II' R.Re THEN lee-Return for next 6r 
190 PRINT 
20e GOTO 20- Return for new parameters 
210 END 
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The second method of initialization uses expansions of the reduced wave 
function, P(r), near the origin. Sometimes the Schrodinger equation reduces 
to a simple form for small r; sometimes the solution near the origin reduces to 
a solution already known. In either of these cases this second method of 
initialization is the easier to use. A common example is the screened Coulomb 
potential, -exp(-r!ro)/r. This potential is a good approximation to the poten­
tial experienced by the electrons in many electron atoms. For small r, this 
potential reduces to the unscreened Coulomb potential, -1/r. The analytic 
solution for the hydrogen atom (the unscreened Coulomb potential) can be 
expanded for small r, as R (r) "" rQ. Sb the small r behavior of the wave function 
for any potential which reduces to -l/r for small r (in particular for the 
screened Coulomb potential) is given by: 

( 19) 

so that 

p'(r) ~ (Q+1)r Q (20) 

In this method of initialization, you set P and P' near r=O and then integrate 
step·wise out to large r. At large r, if the energy, E, you chose was an allowed 
energy (an eigenvalue), the reduced wave function, P, will go smoothly to 
zero as will, therefore, the radial wave function R(r) = P(r)/r. (This is the 
behavior of P and P' whenever VIr) is dominated by the angular momentum 
term Q(Q+1)/(2r2 ) for small r. The asymptotic equation for small r is then 

P" = Q(£+1) P which has the solution P = rN1 .) 
r2 

A SCREENED COULOMB POTENTIAL PROGRAM 

One implementation of this computer strategy, based on initialization by 
expansion for small r, is shown below. The potential is a screened Coulomb 
potential which is relatively weak; the screening distance is 8 Bohr radii = 4 A. 

,~ET- 3DSCH 2 
l.IST 
JDSCH2 

10 DEF FNV(R)--EXP(-R/8)/R- Potential, V(r) 
20 PRINT ·'R(START)'IHEND).DELTA-R.ORBITAl. '(L).RADIAl. '(N),ENERGY?" 
30 INPUT RB.R9.R7.L.N.E } 
40 LET PI'J-EXP(-R8IN).RS'(L+ I) 
50 LET PI-P0.(-RBIN+(L+\)/RB) Initialization at small r 
60 LET R-RB 
70 PRI NT '" PI!. PII/R 
80 LET RS-(R9-RB)/21l 

[

ge LET R6-R+R7/2 Integration of 
100 LET P2-2.(FNV(R6)+L.(L+I)/(2.R~R6)-E)·(PIl+PUR7/2) I 
110 LET P0-P0+( P\+P2.R7/2).R7 ( the Schrodinger 
120 LET PI-P\+P~R7 , . 
130 I..ET R-R+R7 equation 
140 11' R<R5 THEN 170 I 
:~: ;~iN~S~~;~ :;:;~8)/20 I Print loop 
170 IF RcR9 THEN 9.-Return for next f::,r 
180 PRINT 
190 GOTO 211 
200 END 



The variables PO, Pl, and P2 are the values of P, pI, and p" for each radial dis­
tance r in turn_ The print-test is not a necessary part ofthe strategy, but it saves 
printing out every answer-all several hundred of them for each energy guess_ 

The ground state is expected to have the orbital angular momentum quantum 
number, £ = O. If some other state has lower energy, you'll find out when you 
search for that state_ The unscreened Coulomb potential (the hydrogen atom) 
has energies (in atomic units) E = -1/(2n2). So we hunt near E = -.5; the dif­
ference from E = -.5 that you will see in a moment is real and is due to the 
screening. 

You need not use the analytic result for the hydrogen atom to guess your 
energies; you could look at experimental results instead. From optical experi­
ments on the spectrum of hydrogen, the energy levels can be written as 
E = -Ryd/n2 , where Ryd = .5. You need not have a good guess for your first 
energy trial; you'll home in on the eigenvalue sooner or later. It helps to think 
about your first energy guess because you will home in on the answer 
more quickly. 

SAMPLE EXERCISE 

Let's walk through a typical exercise. Forthe potential VIr) = -exp(-r/8)/r: 

1. Plot the £ = 0 (s state) and £ = 1 (p state) effective potentials from r= 0 
through r= 5. 

The program is very simple. A printing version might look like this: 

3DPOT 

10 ~O~ xe-.2 TO 5 STEP .2 
21l LET V--EXP(-XIl/8llXll 
30 PRINT X0, V, V+2/( 2.XIl.X0l 
40 NEXT X0 
51l END 

END 
RUN 
3DPOT 

.2 

.4 

.6 

.8 
I 
102 
1.4 
1.6 
1.8 
2 
2.2 
2.4 
2.6 
2.8 
3. 
3.2 
3.4 
3.6 
3.8 
4. 
4.2 
4.4 
4.6 
4.8 
5. 

END 

-4.816~5 

- 2.31891 
-1.54624 
-I. 1319~ 
-.882491 
-.111251 
-.599612 
-.511101 
-.44362 
-·3694 
-.34526 
-.308614 
-.277895 
-.251674 
-.229897 
-.209 .. 15 
-.192285 
-.111119 
-.163654 
-.1~1633 
-.140847 
-0131125 
-.122321 
·0114336 
-.101052 

20.1235 
3.87193 
1.23154 
.431453 
.111503 

-2.28122E-02 
-8.94082E-02 
-.121082 
-·134918 
-.1394 
-·138646 
-.135063 
-.129966 
-.124123 
-.111985 
-.111819 
-.10518 
-9.99585E-02 
-9.441019 E- 02 
-8.91 J21E- 92 
-8.41572E-e2 
-7.9472IE-02 
-7.50682E-02 
-.010933 
-6.70523£-02 
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Terminal plotting (as discussed in the Appendix) could also be used. The 
changes in the program and output might look like: 

5 READ X8.X9.YB.Y9 
6 DATA 1.5. -I. I 
7 GOSUB 911111111 
1111 FOR xIII-.a TO 5 STEP .2 
21 LET V--ICCP( -XIII/S) IXII 
311 LET ZIII-I 
31 LET 'I'll-V 
32 GOSUB 91ee 
33 LET ZIII-2 
34 LET YIII-V+2/(2.XII.XIII) 
35 GOSUB 91II1II 
41 NEXT XIII 
41 LET Z .. XIII-Y .. 1 
42 GOSUB 911. 
45 G OSUB 92111111 
5111 DID 

APPDI D- TTYPLO 
RUN 
3DPOT 

MAX Y­
XXXXXXXXXXXXXXX~~xxxxxxxxxxxxxxxxxxxxxxXXXXXXXxxXXXXXXXXXXXXXXXXXX 

Y 
.Y 

Y 
Y 
Y 
Y 
Y 
'I' 
Y 
Y 2 
Y 
Y 
Y 
Y 2 
Y 
Y. 2 
Y 2 2222222 
Y 2222222222111111 
Y I I I I 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
HIN '1'--1 KIN x- 1 HAX X. 5 

o 25 



2.(a) Sketch the radial wave function of the lowest Q=O state. Now find the 
energy and wave function for this state with the computer. 

We use the second three·dimensional Schrodinger equation program dis­
cussed above (the one which initializes P and p' near r=O. The'energy of 
the hydrogen atom for this state is E = -.5. F rom the R UN you can see 
that the equivalent screened Coulomb energy is about -.384. So the 
state has been shifted in energy due to the screening. The wave function 
is very similar to that of the hydrogen atom at small r but falls off faster 
than the unscreened wave function at large r. 

RUN 
3DSCH2 

R( START), Re END). DEl. TA-R. ORBI TAl. ~e1.).RADIAl. leN), m£RGY? 
1 IE-8" 19 ... SI .. 0" 1 .. -. 5 

1.00000E-II8 J, 110"0"E-88 1. 
• 51 .31il115 .6"81169 
1.01 • 39"44? • 386582 
1.51 .392198 .259734 
2."1 ·381859 .18998 
2.5o"o1 .391614 • 156645 
3.00002 .441881 .147293 
3.5''''03 • 552675 .151906 
4.00004 .752022 .18811"" 
4. se0e6 1.881164 .241029 
5.00007 1.623116 .324689 
5.50008 2.46724 .1152219 
6.00009 3.86882 .6114793 
6.5001 6.08103 .935528 
7.0"011 9.6315 1.37591 
7.50012 15.34117 2.04593 
6.011014 24.5615 3.07il14 
8.50015 39.46119 4.64285 
9.00016 63.6137 7.06807 
9.50017 102.615 !S.8225 
10.1'1002 166.556 16.6553 

Re START!. Re EN D), DEl. TA-R. ORBI TAl. I( 1.), RADI AI. '(N)dNEI'lC;Y? 
? 1£-8" 1 0", • 01 .. 0,. I" -.35 

1.00000E-08 1.00000E-08 I • 
.51 • 305322 .59867 
1.111 .362477 .358868 
1.51 .319217 .211402 
2.el .241372 ; 120086 
2.59001 .159243 6.36968E-02 
3.e0002 7.92664E-1l2 .026422 
3.50003 3.69997 E-03 1.05713E-03 
4.00004 -7. 17993E-02 -1.191196£-02 
... 58006 -.154643 -3.43646£-02 
5.00007 -.255051 -5.10096E-02 
5.50008 -.386862 -7.e3412E-e2 
6.00009 -.5691107 -9.48997£-02 
6. 5 III I -.830197 -.127721 
7.00011 -1.2095 -.17278_ 
1.511012 -1.76683 -.235514 
8.011814 -2.59081 -.323846 
6.50015 -3.8111111 -.411137 
9.00016 -5; 63528 -.626131 
9.5111017 -8.35335 -.8792135 
III. '''il2 -12.4117 -1.24175 

Re START), Re mD). DEl. TA-R. ORllI TAl. 1(1.), RADIAl. I( N), mERGY? 
11£-8",11,,.1.01,0, ........ 3811. 

1.1II0111I10E-1II6 I.UlllilIllE-e8 I • 
• 51 .306405 .6e0794 
1.'1 .36873 .365979 
1.51 .335219 .221999 
2.1111 .271278 .134964 
2. 5il00 I .2"6113 8.27118E-02 
3.18il82 .149724 1I.9911177E-e2 
3.511111113 .183993 .11129712 
4~el'1I4 6.85428£-82 1.71355E-02 
4.511il86 4.18359£-02 9.118913E-03 
5~0"1111 1.88119£-112 3.76233£-83 
5.508118 -8.1.361£-1114 -1.47336E-84 
6.lIil1l1l9 -2.85154£-1112 -3.42918E-1II3 
6.5il11l -4.35395£-02 -6.69827E-03 
1.08811 -70 34854£-02 -1.1lI4977£-1lI1! 
7.5111112 -.115534 -1.54142£-1lI2 
801'8814 -.1711!138 -2.21294£-112 
8.511115 -.268911 -3. 16367E-.2 
9 •••• 16 -.401663 -4.52951£-"2 
9.5""17 -.618411 -6.51l948£-'2 
1I •• ilII2 -~939641 -9. 39624E-02 

R( START), R( END). DEloTA-R. ORB1 TAl. 1C1.),RADIAl. ICN),DlERGY? 
7 
END 
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2. (b) Sketch the radial wave function for the first excited Q=Ostate. Now find 
the energy and wave function for this state with the computer. 

We use the same program. The energy for a hydrogen atom in this state 
is E = -.125. F rom the R UN you can see that this state is al most lost to 
the continuum (i.e., E = -.0375 is nearly positive). 

1M! 
3DSCH2 

RC START). RCEND). DELTA-R. ORBITAL 
?lE-8.1 •••• 1 ••• 2.-.125 

ICL).RADIAL I(N).ENERGY? 

1.1I.1I.IIE-1I8 1 •• I1I1I1E-i8 
• 111 .2982., 
1.111 .322358 
1.5J .2211945 
2 •• 1 6.97935E-1I2 
2.5111.1 -8.911.25E-1I2 
3.1.1112 -.244526 
3.511113 -.387851 
4.11 ••• 4 -.519923 
4~ 5.11116 -.645218 
5 •• 1111.7 -.771176 
5~5'11I -.911191 
6.1111.19 - 1.114896 
6.5111 -1.221138 
7.11111111 -1.42656 
7.51111112 -1.67963 
8.S1114 -1.99409 
8.51115 -2.38768 
9.88816 -2.88243 
9.511117 -3.58595 
Ill. Belli 2 -4.293118 

1 • 
.58472 
.319167 
.146321 
3.47232£-112 

-3. 56SI9£-1I2 
-.11151118 
-.1111814 
-.129979 
-.14338 
-.15411113 
-.163981 
-.1741!1!II 
-.181748 
-.203792 
-.223947 
-.249251 
-.288899 
-.320265 
-.36904 
-.4293 

RC START). RC EN Db DEL TA- II. ORBI TAl. I( L). RADI AI. 
7IE-8,. 221".01,. 0 .. 2, -. 83 

1.1II1110111l£-1!i8 I. 1I111l01lE- 08 I. 
1.1111 .3"6065 .3031l35 
2.1111 1.00067£-02 4.97845E-03 
3. 011 II Il 2 -.3211202 -.106733 
4.1l1l1l1l4 -.53114 -.13426" 
5.00007 -.626289 -.125256 
6.001109 -.619081 -0I1l3165 
7.1111111111 -.550657 -.078664 
8.0111114 -.44896 -.056119 
9.01le16 -.332253 -3. 69 I 63l!:-02 
10.11002 -.211038 -2.1103I1E-02 
11.0111l2 -9.0069IE-02 -8.18795E-03 
12.1l1l02 2.98537E-02 2. "8 776E-03 
13.1l01l2 .151161 1.15652E-1I2 
14.001l3 .275959 .019711 
15.00113 .411125 2.74078E-02 
16.11003 .56267 I 3.51663E-02 
17.8001 .73861l2 4.34466E-02 
18.81 .950962 5.28019E-02 
19.011198 1.20758 6. 35242E-02 
20.0096 1.52516 7.62213E-02 

RC STARTl. Re END). DEl.TA-R. ORSI TAL ICL).IIADIAL 
? IE-8. 211 •• 111.1. 2. -.1135 

1. III11IS£- S8 1.IIIIIII1I1S£-S8 1. 
1~1I1 .31116913 .3113875 
2.111 10 2979 6E-1II2 6.45753E-S3 
3. III illS III 2 -.316965 -.IS5654 
4.11111114 -.537928 -.13448 
5.SSIIS7 -.636199 -. 121238 
6.IIIIIS9 -.64284 -.1117138 
7.SS1I11 -.592535 -8. 46466E-"2 
8.S11014 -.512354 - 6. 4"432£- 112 
9.S"SI6 -.42"293 -4. 66984£-S2 
1".11""2 -.326891 -3·26886E-12 
11 •• 1182 -.237352 -2015771£-1112 
12.IIIS2 -.153334 -1.27776E-12 
13.S"1I2 -1. 423"6E-1II2 -5. 79994E-1I3 
14.1111183 2. "1I354E-,,3 1.431 "7E-14 
15.U"3 7.839114£-1112 5.22592£-113 
16.1l""3 • 158723 9.92SI112E-13 
17.""01 .247555 1.45619E-12 
18. "I .351452 1.95143E-02 
19. SS98 .475112 2.49881£-112 
211.""96 .627367 3.13532£-112 

RC STARTl. RC END). DEI. TA-R. ORB I TAL ICL) .IIADI AI. 
? 
END 

leN)", ENERGY1 

ICN). ENERGY? 

ICN). EN£RGY? 
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Plots of these two Q=O states can be made on the terminal (as discussed 
in the Appendix). The changes in your program and a RUN are: 

5 READ X8.X9.Y8.Y9 
6 DATA 1.11.-.2.1 
7 0051JB 9111111111 
7111 LtT XI2I-R 
71 LtT YIII~P"/R 
112 LET til-I 
13 0051JB 911111 
1611 I.tT XII-R 
161 I.tT YIII-P0/R 
162 G 051JB 9110 
175 LET tlil-XI-YII-II 
176 0051JB 91118 
1811 005U8 921111 
APPDlD-TTYPLO 
RUN 
3DSCHI 

RC START). RC DID). DELTA-a. ORBI TAL 1(1.). MOl AL '(N). !NEIIGY' 
Ilt-8.III •• I!II.e.I.-.384 
MAX y. I 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Y 
y 
Y 
Y 
Y 
Y 
v 
Y 
v 
y 
v 
v 
y 
y 
y 
y 
y 

Y 
Y 
Y 
Y 
Y 
Y 
v 
y 

VII 
V 
Y 
Y 
Y 
Y 
XXXXXXXXlOCXl()O(XlO(XXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

MIN Y--.2 MIN x- iii MAX x- III 

R(STAIlT).R(DlD). DD.TA-L ORBITAL ICL).JlAD1AL ".) ... nGY' 
'11-8.11 •• 111.1.20-.135 
MAX y- 1 

XXXXXXXXXXXXXXXXXXXXXXXXXlOlXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
YIII 
Y 
Y 
Y 
Y 
Y 

XXXxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXxXXXXXXXXXX 
MIN Y.-.2 KIN X. II KAX X. 18 
R( START). R( DID). DELTA-a. ORBI TAL '(I.). RADIAL '(N). ENERGY? 
? 
DID 
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2 (c) Sketch the radial wave function for the lowest energy Q= 1 state. Now 
find the energy wave function for this state with the computer. 

We use the same program. The hydrogen atom energy for this state is 
E = -.125. The lowest p state and the second lowest s state are degenerate 
in hydrogen. This state is again nearly lost to the continuum for this 
screened Coulomb case. If the state were lost to the continuum, a RUN 
for E =0 would not produce enough curvature (the kinetic energy term 
in the Schrodinger equation) to bring the tail to zero. This state starts 
out from R(O) =0 and has one (positive) lobe before the tail goes 
smoothly to zero. The RUN shows that E is about -.0325 atomic units. 

JUt 
3DSCH2 

R( START). R( END). DELTA-a. ORBI TAl. '(1..). RADIAL '(N). ENERGY? 
? IE-8. 2 •••• 1. 1.2 •• 

1.81 ••• 1-18 I •••••• £-16 I. ""III.IIIE-1I8 
1 •• 1 3."473.£-.6 3 •• 1713£-"6 
2."1 7.26512£-86 3.6IU9£-.6 
3." ••• 2 9.63128£-86 3.21274£-'" 
4 ••••• 4 9.83324£-86 2.45828£-.6 
5./111.87 8.2837.£-.6 1.656721-.6 
6'; ••• 19 5.614.2£-16 '.35655£-87 
7 •••• 11 2.359411£-.6 3. 37.5U-17 
8 •••• 14 -1.191311-.6 -1.36411£-.7 
9 ••• 116 -4.48446£-.6 -4.98265£-.7 
a .•• "2 -7.67.9.£-.6 -7.67.76£-.7 
J 10 ••• 2 -10.5752£-.5 -9.61363£-.7 
12 .... 2 -1.31716£-.5 -1.197531:-.6 
13 ••• 12 -1.546.51:-.5 -10 18925£-.6 
14.8.13 -1.74658£-1& -1024753£-16 
15.8.13 -10911168£-85 -1.281.4£-.6 
16 .... 3 -11 •• 7441£-.5 -1029648£-16 
17./11111 - 2. 2.8 32£-85 -10 299 •• £-16 
18';.1 -2.32757£-.5 -1029238£-86 
19 •• 198 -11.43268£-.5 -1.2797.E-.6 
2 ••• 196 -11.527451:- .5 -1026312£-86 

RCSTART). RCIND).DELTA-a. ORBITAl. '(I.). RADIAL '(I().INERSY? 
? 
DID 

Since these last two states have different energies, the degeneracy of 
the unscreened Coulomb potential is broken by even this fairly weak 
screeni ng. 

3. Calculate the difference in energy between the two Q=O states in atomic 
units, eV, Hertz, and A. 

(1 eV = 1.602 x 10- 12 ergs; h = 6.624 X 10-27 erg-sec; c = 2.998 x 1010 

em/sec) 

E = - .038 + .384 = .346 atomic units = 9.41 eV = 1.51 x 10-11 ergs. 

frequency = 2.28 x 1015 Hertz; lambda = 1317 A. 

Note that the wavelength for emission from this transition compares 
well with the Lyman alpha line (1216 A). The difference between the 
second Q =0 state and the lowest Q= 1 state is .005 atomic units =.136 eV. 
The spectral line for th is transition has lambda = 9111 0 A (in the infrared). 

4. Plot the probability distribution of the full wave function 1/1 (r,8 ,cp) = 
R(r)Y(8,cp) in the cp=O-cp= 180 plane for the ground state (the lowest-lying 
Q=O state). 

Terminal plotting can be used. The following program stores the radial 
and angular parts of the wave function and then finds the current com­
bination for each point plotted. 



3DR-T 

10 DEF FNV(R)--F:J<P(-R/8)IR~Potential, V(r) 
20 DIM Tt401).Rt412) 
38 PRINT "R(START).R(END).ORBITAL .(L).ENERClY7" 
4111 INPUT RS. R9 .1.. E '/ 
58 LET R7-(R9-R8)/48" •.•. 
60 LET T7-3.14159/411111 ( InttlallzatlOn 
7. LET RIII-TII-III ) 

18. LET Tt n-I 
III I,. 1.-0 THEN 13111 

Calculation of 
8(8),' 

[

:: ~~~ ~:~3:~4~:~/2+(I-I).T7~ 
1211 LET TtI)-(COS(T»t2 
131 IF TtIleTIII THEN 1511 stored in T( ) 
141 LET TI-Ttl] 
158 NF:J<T I 

17111 LET PIII-Rt(L+1> • 
ISIII LET PI-(L+ I )"RtL InitIalization of R(r) 
19111 LET I-I 

16111 LET R-RS } 

2111111 LET R[ n-PIII·PII/(R.R) Integration 
21111 LET R6-R+R7/2 f 
22111 LET P2-2.(FNV(R6)+L"(L+1>/(2"R6.R6)-E)*CPI!+PI.R7/2) of the 
23111 LET PI!-PI!+(PI+P2 .. R7/2).R7 Schrodinger 
24e LET PI-PI+P2"R7 
25111 LET R-R+R7 l R2 (r) equation 
26111 LET 1-1+ I Store ---in R( 
27111 LET RtIl-PIII.PIII/(R>JR)\ r2 
2811 IF R[ IleRIil THEN 3C!111 t 2 2 
29111 LET Rlil-Rt I] \ Find {R (r)/r ] max 
311111 IF ReR9+R7/2 THEN 21111 
31111 PRINT "MAX. R-"IRll" MAX. T-"ITIII 
32111 PRINT "LEFT X. RI GHT X. BOTTCI! Y. TOP Y. MAl(. 
33. INPUT X8.X9.YS.Y9.Z9 

FOR Z07" t Initialize 

34111 GOSUB 91111111 
35111 FOR XIII-X8 TO X9 STEP (X9-XB) 114- Step across x 
361 FOR YI-YB TO Y9 STEP (Y9-Y8)/II-Stepacrossy 

38111 LET R-SQR(XIII.XI+YIII.YII) 
39111 I,. R> (R9-RS) THEN 491 
4111 LET U-I+INT(R/R7+.5) Find right elements 
41111 I,. XI e> III THEN 448 of R( ) and T( ) 
4211l LET II-I 
4311 GOTO 45111 

\ plot 

37111 IF ABS(XIII)+ABS(YIII)-1 THEN 49111 ~ 

44111 LET 11-21111+INTCATNCYIIIIXI)/T7+.S) 
45111 LET ZIII-INTchR[ 18].Ttll) IZh. 5)- Find right character for 11/112 
:~: ~~/::!!'-8) e_ II THEN 481!} Force a/l too-big 11/112 to be 9 
48111 GOSUB 9lC!111-Store point in plot 
4911 NF:J<T YI! 
511111 NF:J<T XII 
51111 GOSUB 921l1-Printout the plot 
5211 PRINT 
531 GOTO 3alll-Return for new plot 
54111 STOP 

END 

iiiiiiiiiiiI 



--

RUN 
3DR-T 

RC START). RC DID). ORBI TAL lel.). DlERGY 1 
lIE-S. 5. I. -. 384 
MAX. R- .975235 MAX. T- I 
I.EFT x. RIGHT X. BOTTOM Y. TOP Y. MAX. FOR til 
1-1.'" 1.4 ... -1 .. 1" 1 
MAX Y- I 
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xxxxxxxxxXXXXXX1O<lCXXXXXlClCXXXXXXXlClCXXXXXXXlClCXXXXXXXXXXXlClCXXXXXXlClCXXXX 
YIII I I I I I I I I I I I I I 
Y 
T 
YI 2 2 2 
Y 
Y 
YI 2 2 3 3 3 2 2 
Y 
Y 
YI 2 3 4 4 4 3 2 
Y 
Y 
YI 2 3 4 5 6 5 4 3 2 
Y 
Y 
YI 2 3 4 6 9 6 4 3 2 
Y 
Y 
YI 2 3 4 5 6 5 4 3 2 
Y 
Y 
YB 2 3 4 4 4 3 2 
Y 
Y 
YI 2 2 3 3 3 2 2 
Y 
Y 
YI 2 2 2 
Y 
Y 
YI • I I I I I I I I I I 

xxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXxXXXXxXXxxxXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y--I MIN X--I.II MAX x-

I.EFT X. RlGMT x. BOTTOM Y. TOP Y. MAX. FOR te, 
1 
END 

EXERCISES - Use computer when appropriate. 

104 

I. For the screened Coulomb potential VIr) = -exp(-r/l0)/r: 

1. Plot the effective potential for Q = 0 and Q = 1. 

2.(a) Find the radial wave function and the energy for the lowest energy 
Q = 0 state. 

2. (b) Find the radial wave function and the energy for the first excited 
Q = 0 state. 

2. (c) Find the radial wave function and the energy for the lowest energy 
Q = 1 state. 

3. Calculate the difference in energy between the two Q = 0 states in 
atomic units, eV, Hertz, and A. 

4. Plot the probability distribution of the full wave function 1jJ(r,8,¢) = 
R(r)Y(8,¢) in the ¢ = 0 - ¢ = 180

0 
plane for the lowest lying p state. 

Hint: Use the program which initializes P(r) near the origin. 

II. For the screened Coulomb potential VIr) = -exp(-r/5)/r: 

1. Plot the effective potential for Q = 0 and Q = 1. 

2. (a) Find the radial wave function and the energy of the lowest Q = 0 
state. 
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2. (b) Find the radial wave function and the energy for the first excited 
Q = 0 state. 

2. (c) Find the radial wave function and the energy for the lowest energy 
Q = 1 state. 

3. Calculate the difference in energy between the two Q = 0 states in 
atomic units, eV, Hertz, and A. 

4. Plot the probability distribution of the full wave function l/J(r,8,I/J) = 
R(r)Y(8,I/J) in the I/J = 0 - I/J = 180

0 
plane for the lowest-lying pstate. 

Hint: Use the program which initializes P(r) near the origin. 

III. For the Lennard-Jones 6-12 potential, V( r) = 400 (1 Ir 12 - 1 Ir6 ): 

1. Plot the effective potential for Q = 0 and Q= 1. 

2.( a) Find the radial wave function and the energy of the lowest Q = 0 
state. 

2.(b) Find the radial wave function and the energy for the first excited 
Q=O state. 

2.(c) Find the radial wave function and the energy for the lowest energy 
Q = 1 state. 

3. Calculate the difference in energy between the two Q=O states in 
atomic units, eV, Hertz, and A. 

4. Plot the probability distribution of the full wave function l/J(r,8,I/J) = 
R(r)Y(8,I/J) in the I/J = 0- I/J= 180

0 
plane for the lowest-lying p state. 

Hint: Use the program which initializes P(r) at large r. 

IV. For the screened Coulomb potential V(r) = -exp(-r)/r: 

1. Plot the effective potential for Q = 0 and Q = 1. 

2.(a) Find the radial wave function and the energy of the lowest Q=O 
state. 

2. (b) Find the radial wave function and the energy for the first excited 
Q=O state. 

2. (c) Find the radial wave function and the energy for the lowest energy 
Q = 1 state. 

3. Calculate the difference in energy between the two Q = 0 states in 
atomic units, eV, Hertz, and A. 

4. Plot the probability distribution of the full wave function l/J(r,8,I/J) = 
R(r)Y(8,I/J) in the I/J = 0- I/J= 180

0 
plane for the lowest-lying p state. 

Hint: Use the program which initializes P(r) near the origin. 

*V. For the potential family, V(r) = 400 * (r- 12 _r- m ): 

1. Find the ground state energy and wave function for m=3, 4, 6, and 10. 

2. Plot the energy of the ground state as a function of m. 

3. Find the small r and large r behaviors of each wave function. 
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4. Can you extrapolate your results to all m? 

*VI. For the potential family, V(r) = -exp(-rlro)/r: 

1. Find the ground state energies and wave functions for r= 1, 2, 4, 8, 
and 12. 

2. Plot the energies versus the screening parameter, roo 

3. Find the small r and large r behavior of each wave function. 

4. Can you generalize your results to all screening parameters, r o? 

**VII. For the potential family, V(r) = -l/rm: 

1. Find the ground state energies and wave functions for m= 1,3, 6, 
and 10. 

2. Plot the energies of the ground states as a function of m. 

3. Find the small r and large r behavior of each wave function. 

4. Can you extrapolate your results to the behavior of these ground 
states for all m? 
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CHAPTER THREE: THE ONE-DIMENSIONAL, TIME-DEPENDNT, 
SCHRODINGER EQUATION FOR TIME-INDEPENDENT POTENTIALS 

INTRODUCTION 

The time-dependent Schrodinger equation in one dimension is 

h 2 a 2 1/J a1/J ---+V(xt)1/J = ih-
2m ax2 ' at 

(21) 

If the potential, V(x,t), is independent of time, V=V(x), then the equation 
separates by setting 1/J(x,t) = P(x)T(t). The equation for PIx) is the time­
independent Schrodi nger equation 

h2 d2 P 
- 2m dx2 + V(x)P EP (22) 

The equation for T(t) is 

(23) 

E is the separation constant and, as you can see from its position in Equation 
(22), plays the role of the energy. 

The equation for T(t) (Equation (23)) solves immediately to 

(24) 

which in Hartree atomic units (see the Preface) is 

T(t) = Ae- iEt (25) 

The constant A is just a normal ization constant. 

The spatial equation (Equation (1)) can be solved analytically (for a few 
problems) or numerically as discussed in Chapter One. This chapter empha­
sizes the effects of the time part of the full wave function 1/J(x,t) = P(x)exp 
(-iEt). 

STATES OF THE INFINITE SQUARE WELL 

The infinite square well, 

VI,) = {~ x<O 
O<x<L 
x>L 

(26) 

can be solved analytically. The result is standing waves whose spatial wave 
functions are 

n = 1,2, --- (27) 

Bn being a normalization constant. The full wave function for these discrete 
states a re then 

(28) 
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The energies of the states are 

1 (11)2 
En = "2 L n

2 n = 1,2, --- (29) 

THE BEHAVIOR OF SETS OF DISCRETE STATES 

Consider setting up a particular shape for the electron's distribution at time = O. 
For definiteness, let's set up (an approximation to) a square wave with 
'12 wavelength in the well. By the ideas of Fourier Series, we know that we 
want to add up a number of these discrete states (in particular, those with 
n = 1, 3, 5, 7, ... ) with varying amounts for each n. I f we write 

square wave = LAn Pn (x) 

then the An's are proportional to 1/n in order to produce a square wave. 

After setting up such a shape at t=O, you then let time start passing. Each 
mode of the well will oscillate in time with its own angular frequency wn = 
En/h or wn = En in atomic units. The energy depends on the wavelength 
squared or the wave vector of the state squared. The higher energy modes run 
ahead of the lower energy modes, and the shape distorts away from a square 
wave. 

This result is unlike the result of a square standing wave on a stretched string. 
On a stretched string, the speeds of the various waves are independent of the 
wavelengths (or wave vectors kn = n11/L for the discrete states). The speed, v, 
of waves on a string depends only on the parameters of the string (tension, etc.). 

I n the case of these electron waves, the speed of the wave, v = w/k = E/hk = 
hk/2m or v = k/2 in atomic units. The speed depends on the wave vector 
(that is, the wavelength). This is an example of what is called a dispersive 
medium. The vacuum (where V(x) = 0 everywhere) is a dispersive medium 
for electron waves. 

Let's watch the time development of our electron square wave in the infinite 
square well. A program (and its RUN) to perform the sums and products 
necessary might be: 

WELSET 

10 DIM A( 15. 21l. E( 15l. C( 15l, S( ISl 
21 LET PI-3.14159 Length of well 
31 LET L-I--

~
111!1 FOR I-I TO 15-Step through 15 states 
51 LET N-2* (1- 1)+ I 
60 LET KIIl-N.PIIL 
78 LET ECll-K0*KIIl/2 .. Energy of each state 
88 FOR .I-I TO 2 I-Step across x 
911 LET XII-(J-I)*L/211 

[ IIIlIll LET ACl,Jl-SIN(KIIl*xe)/N--Spatial wave function 
lIe NEXTJ 
121/1 NEXT I 
130 PRINT "TIME?" 
I liB INPUT Till 

[ 

1511l FOR I-I TO 15 
16111 LET CCll-COS(ECll*T0) . 
171'1 LET SC Il-SIN( -EC I1*T0)} Store exp (-lEt) 
181! NEXT I 

_ 1911 FOR .I-I TO 2 I_Step across x 

~ 
2110 LET XIII-(J-I)*L/211 
2111 LET AI-A2-0 .___Step through 15 states 
22111 FOR I-I TO 15~ 

[
2311 LET AI-AI+A[I,JhC[ll-Real part of !J;(X,t) 
2110 LET A2-A2+A[I,Jl*SCI '-Imaginary part 
2511 NEXT I 
260 PRINT X0, AI.AI+A2*A2 
2711 NEXT .I 
260 PRINT 
290 GOTO 130_ Return for new time 
311J11J END 

Store energies 
and spatial 
wave function 
for each state 



TIME-DEPENDENT SCHRODINGER EQUATION 0 37 

II1N 
WELS£T 

TlM£7 
11 
8 8 
.85 .646566 
.1 .182685 
.15 .613192 
.2 .513336 
.25 .6181111 
.3 .649561 
.35 .616355 
.4 .589667 
.115 .616991 
.5 .643279 
.55 .616989 
.6 .589667 
.65 .616355 
.7 .649561 
.15 .61811172 
.8 .573335 
.85 .61319 
.9 .7112685 
.95 .646569 
I 1.1116422£-12 

TIM£7 
71 

8 • • IlS .1119818 
.1 6.21948£-82 
.15 .295613 
.2 .551871 
.25 .6911341 
.3 .113421115 
.35 .689529 
.4 .71111919 
.45 1.58383 
.5 1.88855 
.55 1.58383 
.6 .1411192 
.65 .689528 
.7 .43421114 
.15 .691134 
.8 .55187 
.85 .295612 
.9 6.21952£-12 
.95 .1119818 
I 1.7411611£-13 

TIM£1 
72 

II III 
.1115 .124334 
.1 4.38285£-82 
• IS 9.81896£-1112 
.2 .34"567 
.25 .148464 
.3 .651564 
• 35 .942334 
.4 1.23172 
.45 1.35741 
.5 2.25539 
.55 1.35741 
.6 1.23172 
.65 .942334 
.7 .651561 
.75 .1481164 
.8 .3411566 
.85 9.81895E-1II2 
.9 4.38286£-112 
.95 .124333 
1 5.1611211£-13 

TIME7 
7 
END 



Terminal plotting (as discussed in the Appendix) can also be used. The changes 
you might make in the program and a RUN follow: 

5 RIAD X8.X9.Y8.Y9 
6 DATA fil.I.(I!.2.5 
7 GOSUB 9fil00 
260 LET YI-AI.AI+A2.A2 
2111 LET Z0-1 . 
2711 NEXT oJ 
262 LET ZII-I 
264 GOSUB 91110 
2S11 GOSUB 920B 
APPEN D-TTY PI. 0 
RUN 
WELSET 

TIME? 
?0 
MAX Y- 2.5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXl(XX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
YI I 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxXXXXXXXXXXXXXXXXXXXXXXXXXXX 
"IN Y-' "IN x- • MAX x- I 

TIME? 
?I 
MAX Y- 2.5 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
YI I 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
"IN y.. "IN x- • MAX X· I 



TillE' 
18 
IIAX y. II. !I 
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
Y 
YI I 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

HIN y. e MIN X. • MAX X. I 
TIME? 
1 
END 

This same sort of procedure can be carried out for the discrete states of any 
one-dimensional potential. If an analytic solution to the problem exists, it is 
usually more efficient to use that. If an analytic solution does not exist, you 
can solve numerically for the spatial wave function, P(x), as discussed in 
Chapter One. The same sort of procedure can be carried out for states in a 
continuum (for example, the states of a finite square well whose energies lie 
above the top of the well). Before we discuss the behavior of sets of continuum 
states as time passes, we need to discuss the spatial wave function solutions 
for one-dimensional continuum states. 

ONE-DIMENSIONAL CONTINUUM STATES 

Supposp we have some potential well such that, for I x I > xc' the potential, 
V(x), is essentially zero. Then, for I x I > xc' the Schrodinger equation for the 
spatial wave function, P(x), becomes 

p"(X) = -2EP(x) (30) 

The solution for P(x) is P(x) = exp(+ikx), exp(-ikx) or, equivalently, P(x) = 

cos(kx), sin(kx). Neither solution must be discarded because of boundary 
conditions; both solutions are well-behaved everywhere; there is no classi­
cally forbidden region for large x which forces one or the other solution to be 
unphysical. There are two solutions to the equation for every energy, E. 
Furthermore, since there are no boundary conditions which limit the accept­
able energies, every energy, E, is allowed. Hence the states form a continuum 
of pairs of states. 

If the potential, V(x), is symmetric, the theorem discussed in Chapter One 
(and the Appendix) tells us we can choose the states to be wholly even in x or 
wholly odd in x if we wish. Since any linear combination of solutions to the 
Schrodinger equation is itself a solution, we could choose any arbitrary phase 
and make sin( kx+4» one of our two solutions; the other sol ution (by ortho­
gonality) would then be cos(kx+4». 



The simplest potential of the sort we've just been discussing is V(x) = 0 every­
where (the free particle)_ The even and odd wave functions for energy, E, in 
this potential are cos(kx) and sin(kx) where k = V2E in atomic units_ The 
full solutions, 1/1 (x,t). for the states of energy, E, are then 

(31 ) 

We will now put together sets of these states to make pulses, or wave packets. 

FREE WAVE PACKETS 

Since for the continuum we have a large range of closely-spaced allowed 
energies and wave vectors, we can build up a shaped pulse. Such a pulse is 
usually known as a wave packet. To make a Gaussian-shaped wave packet, 
exp(-(x/xo )2), for example, you use a range of wave vectors, k (around k = 
some central ko!. each with its own amplitude, A(k), where A(k) ex: Xo exp 
(-(k-ko )2 xo

2/2). (This is just a formula you can find in books on Fourier 
transforms. ) 

You can build up almost any shaped free packet you wish. For a square wave 
packet with width xo ' A(k) = xosin((k-k )xo/2)/((k-~)xo/2)' For a trian­
gular wave packet with basic width 2xo , A~k) = Xo sin2((k-ko )xo /2)/((k-ko ) 
xO/2)2. The central wave vector, ko' determines the speed of the packet. The 
group velocity is v = dE/dK = hko/m or ko in atomic units. 

The next section discusses what happens when you set up such a wave packet 
at time equals zero and then let go. Remember that the wave packet is travel­
ing through a dispersive medium; the packet shape will distort and deform as 
the higher energy states in the packet shift out ahead of the lower states. 

THE PROPAGATION OF FREE WAVE PACKETS 

A program can easily calculate and add up the amplitudes of the various com­
ponents of a packet. Because of limitations on how many amplitudes can be 
stored and how long it may take a program to RUN, an approximation to the 
continuous distribution of amplitudes, A(k), must be made. Using twenty k's, 
for example, across the Gaussian A( k) produces a reasonably good Gaussian 
wave packet in space. 

We set up a packet, centered at the origin, at time = 0; we then let time pass 
and calculate each component's time factor, exp(-iEt). This part of the full 
wave function shifts the relative phases of the various components of the 
wave packet (since each component has its own energy, E). At some later 
time, you add the phase-shifted components back up. The packet has moved 
and distorted. Notice that the time parts of the wave functions do nothing to 
the amplitudes of the states because I exp(-iEt) I = 1. 

Figure 3 shows a block diagram of this strategy. One implementation of this 
strategy is the following program: 

La~t no 
Component ~-­

) 

Component >-,n;:",o_-, 

Figure 3. Flow Chart of Computer Approach to 
Wave packet Strategy 



FREPAC 

I. DIM PC 21. 26). QC 21. 26). EC 21). CC 21]. SC 21] 
21 PRINT "CENTRAL. INEROY. HALF-VIDTH OF PACKET?" 
31 INPUT ES.X6 C I 
41 LET K8-SQRC2*ES)- entra wave vector 
5111 LET K9-3/C IIII*X6)- 6k 
~: [~~ ~;!K~~C~~~Step through states 
8111 LET EC 1)-KIII*KII2-Energy of each state 
9111 LET KI-KIII-K8 . 
III LET A-. 399569*X6*EXPC-X6*X6*K I*K 1/2)_Amplltude 

[

II' FOR J-I TO 26_ Step across x of each state 
12111 LET XII--2.5+CJ-J) •• 5 . 
1311 LET PC I.J)-A*COSCKII*XII)_Real part of spatial 
14111 LET Q[ I.J)-A*SINCKIII*XI/I), wave function 
1511 NEXT J '" 
161/1 NEXT I Imaginary part 
17111 PRINT "TIME THE PACKET HAS PROPAGATED?" 
18111 INPUT Til 
19. rOR I-I TO 21 } 
21!l1l LET CCI]-COSCEClhTI/I) Store exp(-iEtj 
21111 LET S[I)-SIN<-ECI)*TII) 
22111 NEXT I 
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Store energies 
and wave 
functions for 
several states 

~
231/1 FOR J- I TO 26 ---- Step across x 
24111 LET XIII--2.S+CJ-I)*.5 
25111 LET PI-P2-' S h h 
2611 rOR I_ I TO 21"- tep t roug states 

[
27111 LET JOI-PI+K9*C PCI.JhCC I l-QC I.J) .. SCI l>_Real part of if; (X,tj 
28" LET P2a P2+K9*CQCI.JhCCIl+PCI.Jl.SC1])_lmaginary part 
29111 NEXT I 
31111/1 PRINT XIII.PI*PI+P2*P2 
31111 NEXT J 
32111 PRINT 
3311 aOTO I7IJ_Return for new propagation time 
3411 DID 



GET-P'UPAC 
RUN 
FRl:PAC 

CENTRAL ENERGY, HALF-WIDTH OF PACKET' 
12.1 
TIII£ THE PACKET HAS PROPAGATE!)l 
111 
-2.5 
-2 
-1.5 
-I 
-.5 

I 
.5 
I 
1.5 
2 
2.5 
3 
3.5 
II 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
8 
8.5 
9 
9.5 
II 

2. 11288 E- 03 
1.81537E-12 
.115321 
.371819 
.781667 
1. 
.781667 
.371819 
.105321 
1.80537 E-'2 
2. II 288E-13 
1.1I4026E-III 
1.566116£-06 
7.6191114E-18 
9.51167E-87 
1.75886E-1Il7 
8.1Il3676E-1Il7 
7.473.9E-18 
7.27233E-1Il7 
2.8346IE-18 
6. 635 511E- 87 
7.771153E-19 
6.15697£-07 
4.21349E-10 
5. 85946E-1Il7 
1.5333I1lE-1Il9 

TIME THE PACKET HAS PROPAGATEDl 
11 
-2.5 
-2 
-1.5 
-I 
-.5 

I 
.5 
I 
1.5 
I 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
8 
8.5 
9 
9.5 
II 

TIME 
13 
-2.5 
-2 
-1.5 
-I 
-.5 

I 
.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
8 
8.5 
9 
9.5 
II 

2.36933E-IilS 
2.61658E-011 
1.5956I11E-1Il3 
7.97562E-13 
3. 12858E-12 
9.52993E-1Il2 
.22992 
.1131434 
.626177 
.718169 
.626177 
.4311134 
.22992 
9.52989E-1Il2 
3.12857 E-12 
7.9756I1E-1Il3 
10 59562E-13 
2.6166IE-.1I 
2. 369 liE-illS 
2.82195E-.6 
3."551E-1Il7 
1098935£-17 
8.83815E-'7 
I. 1 279I1E-87 
8.47568E-11 
4 •••• 29E-.1I 

THE PACKET HAS PROPAGATEDl 

2.4689 4E- 04 
4.87908E-14 
1. 11567E-03 
2.31684E-03 
4.54115E-13 
.008767 
1.5385I1E-02 
.126273 
4.20155E-02 
6. 37416£-02 
9.3131I1E-02 
.128852 
.169734 
.213225 
.253389 
.286229 
.319357 
.318179 
.319357 
.286228 
.253389 
.2132211 
.1697311 
.128852 
9.31313E-12 
6.374151-12 

TIME THE PACKET HAS PROPAGATEDl 
1 
DID 

n 
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To use terminal plotting you might make the following changes: 

I RIAD xa.X9.VI.Y9.Z. 
6 DATA -1.5. I •••• I •• 
7 losua 91 •• 
3 •• l.ET V •• PI*PI+P .. PI 
311 a05ua .1 •• 
31. G osua 91 •• 
APPDlD-TTYPLO 
l1\li 
FREPAC 

CENTRAl. ENERGY. HAl.F-VIDTH OF PACKET? 
' .. I 
TIME THE PACKET HAS PROPAGATED? 
11 
MAX y. I 

XXXXXXXXXXXXlCl«iOCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y I 
Y 
Y 
Y 
Y 
Y 
Y 
Y I I 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
T 
Y 
Y 
Y I I 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y I 8 
Y 
Y 8 • 

- YI e I e 8 8 I I lee I • e 9 e I 
xxxxxxxxxxxxx""XXXXXXXXXXXXXXXXXXXXXXXXXXXX"""XXXXXXXXXXXXXXXXXXXXXXXXX 

MIN y- e MIN X--2.5 MAX X- II 

TIME THE PACKET HAS PROPAGATED? 
11 
MAX y. I 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y I 
Y 
Y e 9 
Y 
Y 
Y 
Y 
Y 
Y e I 
Y 
Y 
Y 
Y 
Y 
Y I I 
Y 
T 
Y 
Y I I 
Y 
Y I I 
YI I I I I I I I I I • I. • I 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX""XXXXXXXXXXXXxxxXXXXXXXXXXXXXXXXXX 
MIN y.. HIN X--2.5 MAX X. II 



TIME THE PACKET MAS PROPAGATED? 
?3 
MAX Y- I 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
y 
y 
y 
y 
Y I!J 
Y I!J III I!l" 
Y III III 
Y 
Y I!l 0 
Y III I!l 
Y 0 III 
Y 0 0 
Y I!l II 
Y 0 0 
YI III I!J I 0 I I 

XlIlIXXllllllllXXXXXXXlQ(XXXJ(XXlIlIlIlIlIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN Y- e MIN X--2.5 MAX X- 18 

THE PROPAGATION OF A PACKET 
OVER A POTENTIAL WELL 

You can also use this strategy to propagate wave packets by potential wells. 
For a general (symmetric) potential well, you could calculate the spatial wave 
functions numerically as discussed in Chapter One. The strategy of the calcu­
lation is the same as that for free packets. The only difference is the calculation 
of the spatial wave function. 

We will form our packet at x = 0 to the left of the well; we will then start the 
packet towards the well. In the end, part of the packet will get past the well; 
part will be reflected. Some of you may have seen the films of the quantum 
mechanical scattering of packets off the finite square well. The smoother the 
potential, the easier it is for the packet to get past. Smooth edges on the 
potential also diminish the rapid oscillations (the interference effects) at the 
edges of the well. 

ht m 
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A program to propagate wave packets by potential wells might look like the 
following: 

(JET-VPAC 
LIST 
VPAC 

II 
28 
31 
41 
51 
61 
78 
S8 
98 
I III III 
III 
lilll 
13111 
IIIIlI 
15111 
I 6 III 
17" 
IS III 
I 9 III 
2 III III 
2111 
220 
23111 
24111 
25" 
26111 
27 III 
288 
2911 
3 BIll 
3 III 
32111 
330 
340 
350 
360 
370 
380 
390 
4 III 0 
41111 
42111 
43" 
440 
450 
460 
470 
48111 
49111 
500 
51111 
521i1 
5311 
540 
559 

~
S611 
57111 
58111 

[

590 
6.0 
61111 
62111 
63111 
641 
65111 
66. 
679 

DIH PC21.26].QC21.26].E.C21].CC2Il.5C2Il 
DEF FNVCX)--I00*EXPC -CX-6'*CX-6»" Potential, V(x) 
PRINT "CENTRAL ENERGY. HALF-WIDTH OF PACKET?" 
INPUT U.X6 
LET KS-SQRC 2*£8) 
LET K9-3/C 19*X6) 
LETXI-.I S h h 
rOR I-I TO 21--- tep t roug states 
LET KIII-KS+CI-II)*K9 

LET EC Il-K0*KIII/2 -Energy of each state 
LET K7-KIil-KS Amplitude of 
LET A-. 399569*X6*EXPC -X6*X6*K7*K7/2)....---- h 
LET Q[I.I]-QILL-PI-0} eac state 
LET P[I.ll-P0-A Initialize calculation 
LET QI-K0*A 
LET XIII-XS-lil of radial wave function 
LET N-I 
LET KI-PI 
LET MI-QI 
LET L0-2.CFNVCX"'-E[Il) 
LET I. I-L0.P0 
LET N I-L0*Q0 
LET K2-PI+LI*XI/2 
LET M2-QI+NI*XI/2 
L·ET 1.0-2*CP'NVCX0+XII2)-ECll) 
LET 1.2-I.IiI*CP0+KI*XI/2) 
LET N 2-LIlI* ( QIlI+M I *X 1/2) 
LET K3-PI+L2*XI/2 
LET M3-QI+N2*XI/2 
LET 1.3-1.0.CPIlI+K2*XI/2) 
LET N3-1.1lI*(QIlI+M2*XI/2) 
LET KII-PI+1.3*XI 
LET M4-QI+N3*X I 
LET 1.8-2*CFNVCXIlI+XI)-EC IJ) 
LET 1.4-1."*CPIlI+K3*XI) 
LET N4-1.1lI* C Q0+113*X I) 
LET PIiI-PIlI+XI*(KI+2*K2+2*K3+K4)/6 
LET PI-PI+XI*CI.I+2*1.2+2*1.3+1.4)/6 
LET Q.-Q0+XI*CMI+2*M2+2*M3+1111)/6 
LET QI-QI+X I*CN 1+2*N2+2*N3+N4) /6 
LET X"-XIlI+XI 
LET X5-X5+XI 

Fourth Order 
Runge-Kutta 
calculation of 
real and imaginary 
parts of radial 
wave function 

IF ABSCX5-.S»XI/2 THEN 480} Store real and 
LET XS-0 . . 
LET N-N+ I Imagmary parts 
LET P[I.Nl-PIlI of spatial wave functions 
LET QCI.N]-QIlI 

!:::X~0; 12. 6 nlEN Isa-Return for next 6.x 
PRINT "TIME nlE PACKET HAS PROPAGATED?" 
INPUT Till 
FOR I-I TO 21 I 
LET CCIJ-COSCE[ll*TIlI) \ Storeexp(-iEt) 
~~TS~IJ-SINC-E[IhTIII) .1 

FOR .]-1 TO 26_S LET XIlI-C,J-IJ*. 5 tep across x 
LET 1'1-1'2-111 
FOR I-I TO 21 __ Step through states 
LET PI-"I+K9*C P[I.,JhCCl ]-Q[ I.,J]*5Cl] )_Real 1/I(X,t) 
LET P2-P2+K9*(Q[1.,Jl*C[1l+PCl.,J]*S(1lJ-lmaginary 1/I(x t) 
NEXT 1 ' 
PRINT X0,PI*PI+P2*P2 
NEXT,J 
PRINT 
aOTO sal-Return for now propagation time 
END 

t. 
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RUN 
VPAC 

CDITRAL DI&RGY. HALF-VI DTII OF PACK£T? 
711. I 
TIM£ TII£ PACKET HAS PROPAGATED? 
78 

8 
.5 
I 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
8 
8.5 
9 
9.5 
II 
11.5 
II 
11.5 
12 
12.5 

TIME 
?1.5 

8 
.5 
I 
1.5 
e 
2.5 
3 
3.5 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 
8 
8.5 
9 
9.5 
I' 
1 •• 5 
II 
11.5 
12 
12.5 

THE 

&. 
.781693 
.371724 
0116117 
.118311 
2.85115&:-83 
1.41756&:-84 
1.79255&:-116 
6.19511 &:-18 
2.15275&:-17 
3.113117£-87 
1.37568£-117 
2.795'12£-118 
2.55129£-19 
I. 56837E-88 
7.4113I1E-1I8 
6.415112E-18 
2.116862£-117 
1.98623£-87 
1.21517E-1I7 
1.111854£-116 
2.39367E-1I6 
1.71395£-86 
3.14185£-116 
2.97387E-86 
1.72569£-86 

PACK£T HAS PROPAGATED? 

2.67713&:-116 
4.8638IE-116 
3.57881&:-115 
1.41887&:-114 
6.599113E-114 
2.39183£-83 
8.84472£-83 
2.29557&:-12 
!S.1I3398E-12 
6.1116951:-112 
5.448771:-le 
4.34922£-12 
3. II I 671:-12 
2.62889£-12 
3.84742£-12 
7.711l667£-flJ2 
.141367 
.17333 
.168835 
.121498 
7.68528£-82 
3.85898E-flJ2 
1.65678£-.2 
5.88771£-83 
1.717661:-83 
4.59441£-.4 



Using terminal plotting you get: 

cmnRAL El'IEJlGY. HAl..r-VIDTH or PAQ(ET7 
7111. I 
TIHE THE PAQ(ET HAS PROPAGATED? 
?II 
HAX y. I 
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XXXX""lOClMlCnx",,,,YXXlM,,nxxncxxxxxxxxxxxxxxxx,,,,,,xx,,,,,, XXXXXX"<X"''''""","XXXXXXXXXXXXXXlOtxxx 
YI 
Y 
Y 
Y 
Y 
Y 
y 
y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
y 
Y 
Y 
Y 
Y 
y 
y 
y 
Y I I I I I I I I I I I I I I I I I I I I I 

XXXXXX"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
MIN y.. "IN X. • HAX X. 12.5 

TINI: THI: PAQ(£T HAS PROPAGATED? 
!I.5 
MAX y. I 

XXXXXYXXXltYlxnXt1IXJ~lC'YXXYXXXXonnnrxX'YXXYXYXJr"lXnXMlX'YX'YXxYlOCIn<>XXnrxXYlC"",,XICXr"llClCnMlx'YX'Y"xYXltlxnXMlX~XYXYXXICXXXXXXXXXXXXXXXlOtXXX 

Y 
y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y I I 
Y 
Y 
Y 
Y I I 
YI I I I 1 I I I I I 1 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
HIN y. II HIN X. e HAX X. 12.5 
T1HE THE PAQ(ET HAS PROPAGATED? 
? 
El'ID 

The program uses a fourth-order Runge-Kutta method of integration to find 
the spatial wave function. Adding up wave functions to make packets demands 
that not only the ampl itudes of the wave functions but also the phases must be 
very accurate. You must be careful to use a small enough space step. 

Because of the limitations of some computers, only 21 different wave vectors 
are used in the program presented. Sums over only 21 wave vectors are hardly 



integrals over all wave vectors. This compromise leads to "ghost" packets 
which image the main packet but lie at large positive and negative x. The com­
promise also means that the packet shape is only approximate. This last pro­
gram takes a long time to RUN. On some machines it is a half hour before the 
program finishes finding the spatial wave functions. 

EXERCISES - Use computer when appropriate 

I. Using the fact (from Fourier Series calculations) that a triangle wave has 
only odd harmonics in the ratios of 1/(2n+ 1)2 n = 1, 2, 3, ... : 

1_ Set up such an initial electron distribution in an infinite square well. 

2. Find the shape of the combination of states after 1 through 5 units 
of time. 

3_ Identify times when certain modes seem dominant. Explain this 
phenomenon in terms of the periods of the modes you used. 

*11. Using the fact (from Fourier Series calculations) that a linear periodic 
wave (a ramp or sawtooth wave) has harmonic content in the ratios + 1, -1/2, 
+1/3, -1/4, ... : 

1. Set up such an initial electron distribution in an infinite square well. 

2. Find the shape of the combination of states after 1 through 5 units 
of time. 

3_ Identify times when certain modes seem dominant. Explain this 
phenomenon in terms of the periods of the modes you used_ 

*111. Form a combination of the 3 lowest states of the infinite square well. 

1. Find the form of your combination for T = 0, 1, 2,9, and 16 units 
of time. 

2. Is the motion periodic in time? What is (half) the lowest common 
multiple of the periods of the states? 

IV. Form a Gaussian free wave packet at the origin at time equals zero. Use a 
central energy of 8 and a packet half-width of .5. See figure at right. 

1. Propagate the wave packet for 0, .5, 1, 1.5,2, and 2.5 units of time. 
Observe and discuss the behavior of the packet. 

2. From your calculations, measure the group velocity of the wave 
packet. Compare this result to the central wave vector of the pulse and 
to the phase velocities for the lowest, highest, and central energy com­
ponentsof the packet. 

3. From your calculations, measure the full-width at half maximum for 
the packet at each time. The width is predicted (for a Gaussian packet) 
to go as W(t) = ((W(O)j2+ t 2/(W(0)j2)'/:,. Do your measurements of the 
propagated packets agree? 

4. By integrating (crudely) 1'l112 across the whole range of x, see if the 
total probability for the particle remains constant. 

*V. Form a triangular free wave packet at the origin at time equals zero. Use 
a central energy of 8 and a packet half-width of .5. See figure at right. 

1. Propagate the wave packet for 0, .5, 1, 1.5,2, and 2.5 units of time. 
Observe and discuss the behavior of the packet. 

1-----

1/2 

o 
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2. From your calculations, measure the group velocity of the wave 
packet. Compare this result to the central wave vector of the pulse and 
to the phase velocities for the lowest, highest, and central energy com­
ponents of the packet. 

3. From your calculations, measure the full-width at half maximum for 
the packet at each time. The width is predicted (for a Gaussian packet) 
to go as W(tJ = (W(O))2 + t 2 /(W(0)2)'Y2. Do your measurements of the 
propagated packets agree? 

4. By integrating (crudely) 1 1/112 across the whole range of x, see if the 
total probability for the particle remains constant. 

*VI. Form a square free wave packet at the origin at time equals zero. Use a 
central energy of 8 and a packet half·width of .5. 

1. Propagate the wave packet for 0, .5, 1, 1.5,2, and 2.5 units of time. 
Observe and discuss the behavior of the packet. 

2. From your calculations, measure the group velocity of the wave 
packet. Compare this result to the central wave vector of the pulse and 
to the phase velocities for the lowest, highest, and central energy com· 
ponents of the packet. 

3. From your calculations, measure the full· width at half maximum for 
the packet at each time. The width is predicted (for a Gaussian packet) 
to go as W(t) = ((W(0))2 + t 2/(W(0)2;Y'. Do your measurements of the 
propagated packets agree? 

4. By integrating (crudely) 1 1/112 across the whole range of x, see if the 
total proability for the particle remains constant. 

** VII. Using a Gaussian wave packet (of central energy E = 50) and a Gaussian 
well (of depth 100 and half·width 1): 

1. Propagate the packet for times of 0, .2,.4, .6, .8, and 1. 

2. Describe and discuss the results in terms of reflection coefficients, 
transmission coefficients, and interference effects. 

**VIII. Using a triangular wave packet (of central energy E 
Gaussian well (of depth 100 and half·width 1): 

1. Propagate the packet for times of 0, 1,2,2.5,3,4, and 5. 

10) and a 

2. Describe and discuss the results in terms of reflection coefficients, 
transmission coefficients, and interference effects. 
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CHAPTER FOUR: THREE-DIMENSIONAL CONTINUUM STATES 
- FOR SPHERICALLY SYMMETRIC POTENTIALS 

INTRODUCTION 

With the computer you can solve for the continuum states of any spherically 
symmetric potential. The method is very similar to that described for calcu­
lating the discrete states for these potentials (Chapter Two). The three­
dimensional time independent Schrodinger equation is 

112 2.f, -> -> ,f, (-> ,f, -> - 2m \l '¥ ( r ) + V ( r) '¥ r) = E,¥ ( r ) (32) 

As we did in Chapter Two, you can separate this differential equation into 
polar coordinates when V is spherically symmetric, i.e., when VCt) = V(r). 
You set 1/1(r) = R(r)Y(8,</» and substitute this expression into Equation (32). 
The result is (1) an equation for R(r) which includes the effective potential 
and the energy, and (2) an equation for Y( e,¢) are spherical harmonics: 

(33) 

where NQm is a normalization coefficient, Q and m are integers such that 
1 m 1< = Q, and.c~ is an associated Legendre function. 

The equation for R(r) can be simplified by transforming to an equivalent for 
P(r) = rR(r). The equation for P(r) looks very much like the one-dimensional 
Schrodinger equation: 

d2 P(r) 
dr2 = 2(V(r) + Q(Q+1) /(2r2) - E) P(r) (34) 

This equation can be solved iteratively in the manner discussed in Chapters 
One and Two. 

BOUNDARY CONDITIONS FOR P(r) 

P(r) must go to zero smoothly as r goes to zero. This is just a consequence of 
the fact that R(r) must be bounded everywhere. If R(r) were infinite at some 

ro ' then 11/1 (r, e, ¢) 12 would also be infinite at that point. This would mean in­
finite probability of finding the particle at ro which is unphysical. 

This demand that P(r) go to zero as r goes to zero demands that the solution 
for P(r) be unique. Hence, unlike the case of continuum states in one dimen­
sion (Chapter Three), there is only one radial wavefunction for each continuum 
energy in three dimensions. 

If V(r) can be approximated by some simpler potential (for example, the 
Coulomb potential for the hydrogen atom) for small r, then you can approxi­
mate the behavior of R(r) in this region by that of the solutions to the simpler 
potential. Then the behavior of P(r) is also known for small r. (For the Cou­
lomb case P(r) ~ rQ+1). This allows you to initialize the wave functions for 
such cases near r = a and then integrate step-by-step out to large r. When this 
is possible, it is the easiest strategy to use. 

Assume now that V(r) goes to zero for large r. Most important, three­
dimensional potentials do go to zero far enough from the force center. Then, 
as you can see from Equation (34), the form of the Schrodinger equation for 
P(r) becomes P" = -2EP. The continuum states for such a potential have posi­
tive energies, E, so this equation for P has the (asymptotic) solution P(r) = 
Asin (kr) + Bcos(kr) for large r, k =.J2E. Since there is only one state for each 
energy, we can conveniently write this solution as P(r) = A sin(kr-Q1T/2+o Q) 
for large r. 0Q is called the phase shift. The equation for R(r) at large r is then 
spherical Bessel functions, R(r) = sin(kr-Q1T/2+o Q)/r. 
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Notice there is no reason that P(r) should go to zero as r gets large. This is un­
like the situation for discrete states; in discrete states, the wave function 
entered a classically forbidden region for large r, and P(r) had to go smoothly 
to zero. For continuum states, the only demand on R(r) and P(r) for large r 
is that they remain bounded. 

THE ITERATIVE PROCEDURE 

You can solve the equation for P(r) (Equation (34)) iteratively in much the 
same way we solved the same equation for discrete states in Chapter Two. 

Suppose you know P(r) at some point r, and the behavior of P(r) somewhere 
else (say at r2 ). You can initialize P(r) and p'(r) at r,; you can then take a 
small step 6 r towards r and find the next values of P and p' from 

P(r+6r) If 6r) P(r) + P ~+2 6r (35) 

p'(r+6r) I Iff. 60 P (r) + P ~+2 6r (36) 

The value of P" is obtained from Equation (34). The use of the half-step 
(r+6r/2) is discussed in the Appendix. 

In this manner, you walk your way in (or out) r until you reach r2 . If the be­
havior at r 2 is correct, you have the state for that energy. 

If you do not know the asymptotic expansion for P(r) near r = 0 (that is, if 
VIr) is not approximated by a potential whose solutions you know), then 
initialize P(r) to sin(kr-£rr/2+oQ) at large r; integrate back to r = 0; and guess 
phase shifts, o£, until you find the one for which P(r) goes smoothly to zero. 
One possible implementation of this strategy is: 

SCAT I 

III DEI' fNV(R)-"""*(R'(-12)-Rrc-6ll_Potential, V(r) 
21 ~ET 1'-3.1"159 
311 PRINT "R( START), R( END), DEL TA-II 1" 4. INPUT R9, R8, R7 
51 PRINT "ORBIT~ '(L),ENERGY,PHASE(DEGS.) 1" 
611 INPUT L, E. D 
7 II LET D-P*DI1811 
811 LET K-SQR(2*E) __ Wave vector 
911 LET R7--ABS(R7) 

Initialization 
I liB LET P8-SIN(K*R8+D) 
I IS LET PI-K.COS(K*R8+D) 
1211 LET R-R9 
1311 LET N-8 
I"" PRINT II. PB, PII/R 

1611 LET R6-R+R7/2 
17 I! LET 1'2-2* (fNV( R6) +L"(L+ I) /( 2*R6*R6) - E) "( PI!+P I*R7 /2) 
IBII LET 1'3-1'1 

Integrate 
Schr6dinger 

lSI LET RS-R9+(R8-R9)nl t 
198 LET PB-PII+(PI+P2*R7/2)*R7 
211' LET PI-PI+1'2*R7 equation 
21 I! LET R-R+R7 
228 IF SGN(PB)-SGN(P3) THEN 2611" Test for zero crossing 
23B LET N-N+ 1_ Count zero crossings 
248 IF N> I THEN 261 } . 
2S1 LET RII-( (R-R7 ).PII-R*P3) /(1'11-1'3) Store asymptotIc 
2611 1 F R>RS THEN 2911 I . zero crossing 
2711 LET RS-RS+(R8-R9)/211 Print loop 
2811 PRINT II. PI!, PI/R I 
291 1 F R-R8 THEN 161! __ Return for next 6r 
3BIl LET P9-N*P-K"RI+L*P/2 }. . 
311l PRINT "PHASE SHIFT (DEGS.) -"J 181*1'9/1' Pont phase shift, 0Q 
328 PRINT 
3311 BOTO 3'-Return for new parameters 
34. DID 
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The parts of the program dealing with phase shift calculations will be discussed 
in a section below on Scattering Theory. 

If you do know the small r behavior of P(r), then the solution is completely 
determined. You initialize the wave function P(r) near r = 0 and integrate out 
to large r. You can then measure the phase shift, 02 ' from the positions of 
zeros of P at large r. At a zero, ro ' in the large r region, kro-Q1T/2 + ~= n1T, 
where n is the number of zeros of P(r) between r = 0 and r = ro; k = VLE. ro is 
measured so 02 can be calculated. n1T is the actual phase of the wave function 
at that zero; kro - Q1T/2 is the phase the wave function would have if V(r) were 
zero everywhere (i.e., when P(r) = sin(kr-Q1T/2) everywhere); so 02 is the 
phase shift of the true wave function relative to a free particle. Let's look 
at a specific problem-continuous states for the screened Coulomb potential, 
V(r) = -exp(-r/8)/r. 

CONTINUUM STATES FOR A SCREENED COULOMB 
POTENTIAL 

You already know (before you start) a good deal about the solution. Since the 
potential is approximated by the un screened Coulomb potential for small r, 
the wave function, P, comes out of r = 0 as r2+1 ; the derivative then behaves 
as (Q+1 )r2. At large r, P(r) becomes a sine wave of constant amplitude. In this 
sine wave region, we will measure the phase shifts for a given energy and vari· 
ous orbital angular momentum quantum numbers, Q. 

Find the wave function of the state with E = 4 and Q = 0 using the computer. 

A program implementing the strategy we just discussed follows: 

SCAT2 

II DE,. rnv(R)'-F:J{P<-R/8)/R_Potential, V(r) 
21 LET P-3.14159 
30 PRINT "R(STARTl,R(END),DELTA-R,ORBITAL '(L),ENERGY?" ~ 
40 lNPUT R8, R9. R1 ,t, E 
51 LET K-SQR(2.E)--Wave vector 
60 LET P0-RB'(L+I) 
70 LET PI-(L+I).RB'L Initialization 
81 LET R-RS 
91 PRINT R.P0,PI/R 
I el LET N-0 
110 LET RS-(R9-RB)/20 

:~: ~~~ ~~:~:~;~~(R6)+L.(L+Il/(2.R6.R6)-E).(P0.PI.R7/2) Integrate 
140 
1511 
168 
170 
IS0 
191 
2011 
210 
220 
231 
240 
258 
261 
270 
2S1 
290 

LET P3-PI Schrddinger 
LET PI-PS+(PI+P2.R7/2).R7 \ 
LET PI-PI+P2.R7 equation 
LET R-R+R7 
IF SGN(PI!I)-SGN(P3) THEN 211-Test for zero crossing 

~i~ ~;~~ ~ R:R7 ,*P0-R.P3) I( P0-P3) Count zero crossings 
1 .. RCRS THEN 2"0 I ----Save last zero crossing 
LET RS·RS+(R9-R8)/21 Print loop 
PRINT R.P0,P0/R \ 
11' RcR9 THEN 12s_Return for new /':,r step 
LET P9-N.p-K.Re+L.P/2 ' p. h 
PRINT "PHASE SHII'T (DEGS.) ."Jlse.P9/pl nntp ase 
PRINT \ shift,oQ 
(lOTO 31 
END --Return for new parameters 



SCAT2 
R( START>, R( END), DEL TA-R, ORBI TAL 
1IE-8,ee,.el,0,4 

I(l.), ENERGY 1 

I. e001leE-1II8 1.1II000I11E-08 
1.1111 -.11II4~41 

2.01 8.3104~E-02 
3.00002 -3.2669IE-1II2 
4.01110111~ -2. 22426E-Il2 
5.0001117 8.03536E-02 
6.00009 -.135073 
7.00011 0180357 
8.00014 -.21112 
9.0S11116 .223709 
10.0002 -.216279 
11.1lil02 .188997 
12.0002 -.144943 
13.801112 .11185408 
14. ee03 -1.85095E-1I2 
15.0003 -5.03436E-02 
16.0ee3 0114574 
17.0001 -.16799 
18.01 .202769 
19.0098 -.222403 
20.0096 .22066 

PHASE SHifT (DEGS.) ~ 76.8723 

I 
-.103605 

4.13456E-02 
- I. 0889 6E-1II2 
-5.56058E-03 

1.60705E-02 
-2.25118E-02 

2.57649 E-02 
-2. 63895E-1II2 

2.4856IE-e2 
-2.16275E-02 

1.71812E-02 
-1.2e033E-02 

6.56972E-03 
-1.32208 E-03 
-3.35618E-e3 

7. 1607 3E-03 
-9.88166E-03 

1.12581E-02 
- I. 1699 4E- e2 

1.10277E-02 

R( START>, R( END), DEL TA-R, ORBI TAL I(l.), ENERGY 1 
11 E-8, 20, .0 I, 1,4 

1.00000E-08 1.00000E-16 
1.01 9.95304E-07 
2.01 -loIl9195E-06 
3.210""2 1.11603E-06 
4.00004 -1.05106E-06 
5.00007 8.99266E-07 
6.00009 -6.67755E-07 
7.00011 3.73776E-07 
8.11111111114 -4. 25069E-1I8 
9.0"016 -2.95826E-07 
1111. U02 6.09248 E-07 
11.1111111112 -8. ~7 441 E-07 
12.eee2 1.04499E-06 
13.8002 -1.12398E-06 
14.0003 101119 600E-06 
15.0903 -9.63026E-07 
16.01103 1.37329 E- 07 
17.0001 -4.40326E-07 
18.SI 1.322421:-07 
19.0098 2.18111 E-07 
21.0096 -5.4760IE-07 

PHASE SHirT (DEllS,) • 58.I79S 

1.900110E-08 
9.85450E-07 

-5."3257£-07 
3.72006£-07 

-2.62762E-07 
1.7985IE-17 

-10I129IE-07 
5.33958E-08 

-5.31327E-09 
-3. 28690E-S8 

6.09237E-08 
-7.88574£-08 

8.7S8115E-08 
-8.64581£-08 

7.82840E-1II8 
-6.4200"E-08 

4.68822E-S8 
-2.591113£-08 

7.34273£-09 
1.14736E-08 

-2.73668£-08 

R( START>, R( EN 0), DEl. TA- R. ORBI TAL I( l.), EN ERGY 1 
11£-8,20,.'1,2,4 

1.00001111:-S8 1.000I11eE-21l 
1.1111 4.58785E-12 
2.01 -1.66842E-12 
3.1110002 -1.04727E-13 
4. ° III 1lil4 I. 69441 E- 12 
5.00007 -3.0394IE-12 
6.00009 4.06160E-12 
7.11111011 -4.68043E-12 
8.0S011l 4.81l206E-12 
9.SS816 -4.53217E-12 
1110 811102 3.78059 E-12 
11.00e2 -2.65989E-12 
12.0ee2 1.2788 6E-12 
13.SS02 2.2782IE-13 
14.0SIl3 -1.71282E-12 
15.0003 3.0311165E-12 
16.IS03 -1l.0521115E-12 
l7.n01 1l.67676E-12 
18.SI -4.84794E-12 
19.11398 ".58227E-12 
2111.0096 -3.8677IE-12 

PHASE SHifT (DEOS.) • 5S.2172 

I. 08000E- 16 
4.54243E-12 

-9.29564E-13 
-3.49089E-14 

4.23598 E-13 
-6.07874E-13 

6.76924E-13 
-6.68622E-13 

6.05247E-13 
-5.03565E-13 

3.78053E-13 
-2.418113E-13 

1.06570E-13 
1.752"3E-14 

-1.22342E-13 
2.0204I1E-13 

-2.53248E-13 
2.15IeIE-13 

-2.6918IE-13 
2. 41047E- 13 

-1.93292E-13 

R( START>, R( END), DEL TA-R. ORBI TAL I(l.), EN ERay 1 
1IE-8,2111,.SI,3,4 

I. 111II808E- 08 I. 11101111110E- 32 
.. " I 9.2998 5E- 18 
2.1111 1.39 632E-17 
3.0011102 -1.8730IE-17 
4.01111lS4 1.85S72E-17 
5.0B1!JS7 - I. 51158E-17 
6.SSBl!J9 10I1726E-17 
7.011111111 -5.51514E-18 
8.01l014 -6.24036£-19 
9.S0016 6.611"1£-18 
II.SII02 -1.18451E-17 
11.1002 1.58 172£- 17 
12.0SS2 -1.8143IE-17 
13.S1!J02 1.8608IE-17 
1".8S03 -1.71823E-17 
15.80S3 1.40221E-17 
16.80S3 -9.45674E-18 
17.0001 3.9"849E-18 
18.SI 1.42216E-18 
19.0098 -7015816E-18 
20.SS96 1.21136E-17 

PHAS£ SHifT (DEGS.) • 46.7426 

I. SIBe0E- 24 
9 ~ 20718 E- 18 
6.94686E-18 

-6.24333E-18 
4.62674E-18 

-301"31IE-18 
1.86208E-18 

-7.87864£-19 
-7.8S032E-20 

7.34"76E-19 
-1.18455E-18 

1.43790£-18 
-1.51190£-18 

1.43137E-18 
-1.22728E-18 
9.34829E-19 

-5.91034E-19 
2.32262E-19 
7.89985E-20 

-3.7655IE-19 
6.08387E-19 

R( START), R( END), DEL TA-R. ORBI TAL '(l.), ENERGY 1 
1 
ENe 
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A terminal plot of this wave function can be obtained by using the subroutines 
in TTYPLO (as discussed in the Appendix). The changes you might make and 
a RUN are: 

5 READ X8,X9,Y8,Y9 
6 DATA 0,20,-.15, I 
1 GOSUB 9000 
8 LET X"-Y"-Z0-" 
9 GOSUB 91"0 
9" LET Z"-I 
91 LET X"mR 
92 LET Y"-P0/R 
93 IlOSUB 91110 
2311 LET X0-R 
231 LET Y0-P0/R 
232 GOSUB 91U 
270 GOSUB 92"" 
APPEND-TTYPLO 
220 LET R5-R5+(R9-R8)/7" 
RUN 
SCAT2 

R( START>, R( END), DEL TA-IV ORBI TAL I(L), ENERGY? 
? IE-8, 2 ••• "I.e. II 
PHASE SHIFT (DEllS.) - 76.8723 
MAX Y- I 
~orn~~~~orn~~~~~~~~~~~~~ 

YI 
Y 
Y 
T 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
T 
T 
Y 
Y 
Y 
Y 
T 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
VI 
Y 
Y 
Y 
Y 

I I 

II 
I 

I 
II II I 

I I II I II II 111111 11111111111111111111111111 
I III III II II 

II 

XlOCXXXXXXXXXJOXxxxlOOtxxxlCXlCXlOCXXlOCXXlO=lCX~lCXlCXlCX 
MIN Y--.15 MIN x- II MAX X. 28 
R( START>. R( END). DELTA-IV ORBITAL I(L). ENERGY? 
7 
DID 

SCATTERING THEORY 

The presence of a potential V(r) modifies the wave function (compared to 
the wave function for the free particle). Scattering theory deals with the 
phase shifts in terms of the differential and total cross sections. G (8) and 
Gtot ' Using the ideas developed in the last section, you can use the computer 
to find these phase shifts and cross sections for general, spherically sym­
metric potentials. 

First, (to make clear the meaning of the phase shift) let's RUN the program 
for a continuum state of the free particle (V = 0 everywhere). You are actually 
producing the free particle wave function as expanded in polar coordinates. 
The radial function R(r) will be a spherical Bessel function. 

We can use the program which initializes the wave function and its derivative 
at small r. For Q = 0 the differential equation for P is P" = -2EP which gives 

... the only acceptable solution, P = A sin(kr) where k = V2E. This solution is 
true everywhere so we already know that R(r) = A sin(kr)/r for Q = 0 states. 
Notice that the small r behavior of P is P ~ rQ+1 . 



For Q > = 1, the Schrodinger equation for P becomes for small r 

P"(r} = (Q(Q+1}/r2}P(r) (37) 

The solution for P has P ~ rQ+1. So these solutions can be initialized at small r 
to P ~ rQ+1 , p' ~ (Q+ 1) rQ. (These are the same arguments necessary to justify 
this initialization for the Coulomb potential; these arguments work for any 
potential which is dominated by the angular momentum term, Q(Q+1}/(2r2 ), 

at small r.) 

A RUN of the program for V = 0, E = 4, and Q = 0 is: 

GET-SCAT2 
III DEF FNV(R)-II 
RUN 
SCAT2 

R( STARn.R(IND). DELTA-R. ORBITAL '(I.). ENERGY? 
lIE-8. III •• 111.11. 4 

I. 1111 II 1 III E'; 1118 I. ell1lJ1IJ1IJE-II8 
1.1111 9.93218E-1I2 
I~III -.198986 
3.1111111112 .285323 
4.11111111114 -.335138 
5~1II1I1I1I1 .353513 
6.11 •• 19 -~336922 

1~1II"11 .281577 
8.1.114 -.21111275 
9~11'16 ~11253 
1 •• 11112 -3.84594E-II3 
11~1II1I1I2 -.115212 
12.11112.' 2141142 
13;.· .. 112 -~28311135 

14~1I11113 .334514 
15.1113 -.353472 
16.81113 .338167 
17~111I1 -.289797 
18.11 .221241 
19.1I1!198 -.125566 
211.11!I96 1.76845E-1II2 

PHASE SHI FT (DEGS.) - .164799 

I 
9.833841-1112 

-.1198998 
9.5111691-112 

-8.393351-112 
7.17111171-1!12 

-5.61528E-IIII 
4.111811E-12 

-2. 62839E-1II2 
I ~ 251131 E-12 

-3~84587E-'4 
-9~56454E-13 

1.11111113IE-"2 
-2.17715E-1I2 

2. 38934E-f112 
-2.3S643E-"2 

2.11288E-12 
-1.71461E-II2 

1.22843E-1I2 
-6.611533E-1II3 

8.83197E-1I4 

R( START).R(UlD). DEl..TA-R. ORBI TAL '(I.). ENERGY 1 
1 
IND 

A terminal plot of this state is: 

I. DE' FNV(R).II 
RUN 
SCAT2 

R( START). R(END). DEl..TA-R. ORBI TAL #(1..). DlERGYl 
111-8.211 •• 111 ••• " 
PHASE SHI'T (DIGS.) - .16"'99 
MAX Y- I 

lOCXxXXlOCXXXXXXXXXXXXXXXX>O<XXlOClCXl\XXXXXXXXXXXXXXXXXXXXXXXXlOCXXlOCXXXXXXXX 
VI 
Y 
V 
V 
V 
V 
Y 
Y 
V 
Y 
V 
V ,. 
V 
V 
Y 
V 
Y 
V 
Y 
Y 
V 
V 
Y 
YII 
V 
Y 
V 
Y 
Y 
Y 

I 
I 

I 
I I 

III 

I 
I I 

I I I 
III 

III II 
I II II II 
II II 

II I 
II II III III 1111111111111 

II I 

XXXXXXXXXXXXXXXXXXXXXXXXXXXlOCXlOOXXXXXXXXXXXXxxxxxxxXXXXXXXXXXXXXXXXXX 
MIN 1'--.25 MIN x- II MAX x- 211 
H( START). RC IND). DIl.TA-R. ORBITAL #(1..). ENERGYt 
1 
DD 
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You can see the relationship between the V = 0, Q = 0 state and the Q = 0 
state shown before for the screened Coulomb potential. First, the behavior 
of R(r) at small r is very s-state-like for the screened Coulomb potential; 
the small r region is very reminiscent of the discrete spectrum s states for 
this potential. Second, there is a clear phase shift between the free particle 
and the screened Coulomb wave functions at large r. This difference in phase 
is the phase shift, oQ' so central to scattering theory. 

You can calculate oQ directly from your results: Count the number, n, of 
zero crossings of the wave function between the origin and some zero cross· 
ing at rO in the asymptotic region. The phase shift, oQ, is defined in scatter­
ing theory by setting the asymptotic behavior of P(r) = A sin(kr-Q1T/2+o Q), 
where k = v'2E. (kr-Q1T/2) would be the phase of the free particle at ro so 
oQ = n1T-kro +Q1T/2. 

Scattering theory points out that you can measure the shape of a potential 
by observing the interference pattern between a particle scattered off the 
potential and free particles which were not scattered. The parameters which 
are important in the interference pattern are the phase sh ifts, 0 Q, defined above. 

I n scattering theory, you write the asymptotic wave function as f(e) exp( ikr) /r. 
The differential scattering cross section, 0(8), is then ale) = If(8)i2. By ex­
panding everything in spherical harmonics you find that 

00 

where~ is the phase shift and £Q(cos e) is the Qth Legendre polynomial; k is 
still Y2E. 

You can calculate the Legendre polynom ials most easily by using the recursion 
relation 

Q£Q(cose) = (2Q-l) cose £Q-1 (cose) -(Q-l) £Q_2(cose) 

with the two lowest order polynomials, £0 = 1 and £1 = cos e. 

A program to do this calculation (and its RUN) might look like: 

II PRINT "ANG1.E; (DEGS.)?" 
2e INPUT T 
le I.ET T-3.14159.T/lse 
411 l.iT C-COS(Tl 
58 I.ET I.I-I"'~O----- £0 
68 PRINT" 1".1.1!1 

~: ;~JN; I:C I .. ~1-.-1.-I--- £1 

[

911 rOR 1.-2 TO 10 
III I.ET 1.2-«2.1.-I).C.1.I-(1.-ll.1.e) 11._ Recursion relation for £ 
III PRINT 1..1.2 Q 
128 I.ET 1..-1.1 
131 I.ET 1.1-1.2 
141 NEXT 1. 
lSI PRINT 
1611 GOTO II ... ~o---- Return for new angle 
111 DID 

DID 
RUN 
I.EGEN 

ANG1.E (DtaS.)? 
?45 

• I 
2 
3 
4 
5 
6 
1 
S 
9 
II 

I 
.11!11111 
• 251!1011 I 

-.116116 
-.4f11625 
-.315651 
-.148439 

.121051 

.29834 

.285536 

.115114 
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You can measure the phase shifts, 0Q' for a given potential and given energy 
from your computer-based calculation of P( r). You can calculate the Legendre 
polynomials using the program given earlier. Finally, you can calculate f(8) 
and, from f(8), 0(8), the differential cross section. 

You can calculate the total cross section, 0tot' even more easily. The total 
cross section (from scattering theory) is given by 

00 

0tot is very easily measured from the computer derived phase shifts. 

To calculate cross sections you need to calculate phase shifts for a number of 
orbital angular momentum quantum numbers, £. You need phase sh ifts for all 
£ up to that for which the phase shift is negligibly small. Scattering theory 
suggests that, if R is a characteristic radius of the potential, then: when 
kR » 1, 0Q's for all £ are needed; when kR« 1, only 00 and 01 are impor­
tant, k = -J2E. This fact makes these calculations well suited to individual pro­
ject work. You could also divide up the different £ states and have some 
people find certain phase shifts and other people find others. Everyone can 
then use all the results to derive cross section information. 

The simplest way to calculate phase shifts using the continum wave function 
program is to remove the lines which print out the wave functions. Since 
phase is very sensitive to small inaccuracies in the calculation, the phase 
shifts are only good to a few degrees. You can check the method by calcu­
lating phase shifts for V = 0 everywhere. You could use a higher convergence 
method for more accuracy. You would still need to integrate far out to get 
the phase of the asymptotic wave function correct. Even for V = 0 (excluding 
£ = 0), you must integrate far enough out to make £(£+1)/(2r2 ) completely 
negligible with respect to the energy. Notice that, if VIr) becomes negligible 
then both the free particle and the particle in VIr) are obeying P" = 2(£(£+1)/ 
(2r2 )-E)P. You can get an approximation to the phase shift by comparing the 
phases of the V = 0 and VIr) particles when VIr) is negligible (even though 
neither solution is truly in its asymptotic region). 

For example, find the £ = 0, 1,2, and 3 phase shifts for the screened Coulomb 
potential VIr) = -exp(-r/8)/r. Use an energy, E, of 4. 

The results of RUNing the program are: 

76.8- 0.1 76.7; 01 58.2- 1.1 57.1 ; 

02 = 50.2- 3.1 = 47.1; 03 46.7- 6.4 = 40.3 

If we take the screening parameter, 8, as the measure of the size, R, of the 
potential, then, for E = 4, kR = 22.6 which is large with respect to £. We 
expect to need a large number of £ to produce a good approximation to the 
cross sections. Other kR are illustrated in the exercises. 

Now let's calculate an approximation to the total cross section using the 4 
phase shifts calculated above. 
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A program to combine the phase shifts into cross sections might look like: 

CROSS 

1111 
211 
30 
40 
5111 
68 
711 
88 
98 
11111 
III! 
121! 
131 
141 
150 
16111 
170 
180 
191 
2 I! III 
21111 
228 
238 
2411 
258 
268 
211 
28111 
290 
300 
310 
32111 
330 
34111 

PRINT ''HAX. L. ENERGY. ANGl.E. C DEGS') 1" 
INPUT N. E. A 
LET A-A*3.14159/188 
LET K-SQRC 2*E) - Wave vector 
LET c- cOSe A) 
LET SI-FI-F2-0 
PRINT "DELTA FOR EACH L CDEClS') 7" 
FOR L-0 TO N 
PRINT ''L.-''J1.. 

INPUT 0 
LET 0-0.3.141591180 
IF L-II THEN 180 
IF L-I THEN 20111 

Initialization 

LET L2-«2*L-Il*C*LI-CL-Il*L0)/L_.cQ by recursion 
LET L8-LI 
LET LI-L2 
GOTO 218 
LET L8-L2-1 - .co 
GOTO 210 
LET LI-L2-C-.c, 
LI:T S-SINeD) Re I t ff(e) 
LU n-n+C2*L+I)*COSCD>*S*L2-- a par 0 
LET F2-F2+(2*L+I>*S*5*L2 .. Imaginary part 
LET S 1-5 I+< 2*L+1 )*S*S _~ ______ _ 
NElCT L Total cross section 
PRINT "F(THETA)." 
PRINT FlIK. F21K 
PRINT "51 GMAC THETA)-" 
PRINT (FI*FI+F2*F2)/(K*K) 
PRINT "SIGMA TOTAL-" 
PRINT 4*3.14159*SI/(K*K) 
PRINT 
G OTO I III 4-- Return for new parameters 
END 

Finally, let's calculate an approximation to the differential cross section, 0(8) 

at e = 0 degrees. 

MAX. L. ENERGY. ANGLE (OEGS.)7 
13,4,0 
DELTA FOR EACH L (OEGS,)1 
L- 8 
176.7 
L- I 
157. I 
L- 2 
147. I 
L- 3 
14Q1.3 
F(THETA)-

2.66521 3.06652 
SIGMAC THETA)-

16.5.69 
SIGMA TOTAL-

13.6242 

MAX. L. ENERGY. ANGLE (OEGS.) 1 
1 
END 

EXERCISES - Use computer when appropriate. 

I. For the potential, V(r) = --exp(-r/8)/r, and an energy of E = 10: 

1. Plot the effective potential for £ = 0, 1, 2, and 3. What is kR for 
this situation? 

2. Plot the radial wave function for £ = ° and £ = 1. 

3. Find the phase shifts for £ = 0, 1, 2, and 3. 

4. Calculate an approximation to the differential cross section at 0, 90, 
and 180 degrees using the four phase shifts from Part 3. 

5. Calculate an approximation to the total cross section using these 
four phase shifts. 

Hint: Use the program which initializes the wave function at small r. To 
get better accuracy for the phase shifts, subtract the corresponding 
values of the phase shifts for V = 0. 

5m3 



II. For the potential, VIr) = -exp(-r/8)/r, and an energy of E = 1: 

1. Plot the effective potential for Q = 0, 1,2, and 3. What is kR for this 
situation? 

2. Plot the radial wave function for Q = 0 and Q = 1. 

3. Find the phase shifts for Q = 0, 1,2, and 3. 

4. Calculate an approximation to the differential cross section at 0, 90, 
and 180 degrees using the four phase shifts from Part 3. 

5. Calculate an approximation to the total cross section using these 
four phase shifts. 

Hint: Use the program which initializes the wave function at small r. To 
get better accuracy for the phase shifts, subtract the corresponding 
values of the phase shifts for V = o. 

III. For the potential, VIr) = -exp(-r/.5)/r, and an energy of E = 1: 

1. Plot the effective potential for Q = 0, 1,2, and 3. What is kR for 
this situation? 

2. Plot the radial wave function for Q = 0 and Q = 1. 

3. Find the phase shifts for Q = 0, 1, 2, and 3. 

4. Calculate an approximation to the differential cross section at 0, 90, 
and 180 degrees using the four phase shifts from Part 3. 

5. Calculate an approximation to the total cross section using these 
four phase shifts. 

Hint: Use the program which initializes the wave function at small r. To 
get better accuracy for the phase shifts, subtract the corresponding 
values of the phase shifts for V = o. 

*IV. For the potential, VIr) = 400(1/r12 - 1/r6), and an energy of E = 1: 

1. Plot the effective potential for Q = 0, 1,2, and 3. What is kR for 
this situation? 

2. Plot the radial wave function for Q = 0 and Q = 1. 

3. Find the phase shifts for Q = 0, 1, 2, and 3. 

4. Calculate an approximation to the differential cross section at 0,90, 
and 180 degrees using the four phase shifts from Part 3. 

5. Calculate an approximation to the total cross section using these 
four phase shifts. 

Hint: Use the program which initializes the wave function at large r. 

**V. For the family of (Mie) potentials, VIr) = 100(1/rm - l/rn): 

1. Find the (Q = 0, E = 1) and (Q = 1, E = 1) phase shifts for m = 12 and 
n = 1,2, and 6. Disucsshowthebehaviors of 80 and 8 1 reflect the shape 
of the potential. 
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2. Now write the potential as V(r) = 100((ro/r)'2 - (ro/r) 6). Find the 
(Q = 0, E = 1) phase shifts, Do, for r 0 = 1, 4, 8, and 16. Compare the 
results to Do from Part 1. Discuss how the behavior of Do reflects the 
characteristic diameter of the potential. 

Hint: Use the program which initializes the wave function at large r. 

*VI. For the family of potentials, V(r) = -exp(-rlro)/r: 

1. Find the Q = 0, E = 1 phase shift for ro = .1, .5, 1,5, and 10. Discuss 
how the behavior of Do reflects the screening. 

2. Find the Q = 1, E = 1 phase shift for ro = .1, .5, 1,5, and 10. Discuss 
how the behavior of D, reflects the screening. 
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APPENDIX 
INTRODUCTION 

This appendix covers several topics: the terminal plotting performed by the 
subroutines in TTYPLO, the proof that symmetry of a one-dimensional poten­
tial (for potentials which are finite for finite x) determines that the states can 
be written as wholly even or wholly odd, and a short discussion of the half­
step method of iterative integration. 

TERMINAL PLOTTING 

The subroutines in TTYPLO (listed below) allow you to plot a set of curves 
on your terminal. The subroutines use the 0 variables, so you should not use 
these variables in your programs. The output from the subroutines is a 7" by 
5" x-y plot (assuming 6 lines/inch and 10 characters/inch) with the x-axis 
across the page and the y-axis up the page. 

You set the range of x values on the plot by defining values for X8 = the left 
side of the plot, X9 = the right side of the plot, Y8 = the bottom of the plot, 
and Y9 = the top of the plot. You then call the subroutines with "GOSUB 
9000." 

To plot a point on the graph, you define the values of X0 = the x coordinate 
and Yf/J = the y coordinate of the point. You also specify a value for Z0, which 
will be the character plotted at the point (X0, Y0) on the graph. You then call 
"GOSUB 9100." The allowed values of Z0 are 0 throuth 9. Since these var­
iables X8, X9, Y8, Y9, X0, Y0, Z0 are used in these special ways for the 
plotting, you should be careful how you use them in your programs. 

To product the final plot on your terminal, you call "GOSUB 9200." 

A sample of the use of TTYPLO follows. The program plots a sine curve (as 
the character "1 ") and a cosine curve (as the character "2"). 

I" READ X8. X9. Y8. Y9 I 
21l DATA 0.6.26318.-1. I r· Initialize plot 
30 G OSUB 9 """ 

[ 

41l FOR XIl-X8 TO X9 STEP (X9-X8) /71l_Step across angle 
5" ~ET ZIlal I 
~: ~~;U~"~~~~(X0) \ Store sine in plot 
61l LET Z"z2 I 
9" LET Y"·COS(X0) \ Store cosine in plot 
10" G OSUB 9100 
IIIl NEXT X0 
120 GOSUB 9201l-Printoutplot 
130 STOP 

APPEND-TTYP~o_Add plotting subroutines to program 
MAX y. I 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx~X~XXXXXXXXXxxxxxxxx 

Y222 111111 222 
Y 222 II I I 222 
Y 2 II II 
Y 2 I I ? 
Y 21 
Y 12 
Y I 2 
Y I 2 
Y 2 
Y 2 
Y I 
Y I 
Y I 
Y 
Y I 
YI 
Y 
Y 

2 

2 
2 

2 

2 
2 

I 2 
I 

I 

I 
I 

I 2 
2 

2 
2 

2 

2 

2 
2 

2 

2 

Y 2 I 
I 

2 I 
Y 
Y 
Y 
Y 
Y 

2 
2 

2 
2 

Y 2 I 2 
Y 2 12 
Y 2 21 

2 
2 

2 
2 

Y 221 
Y 2 2 11 11 
Y 222 222 I I I I 
Y 22222 111111 

I 
I 

I 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
MIN Yz_1 MIN X. Il MAX X= 6-28318 

5 t 
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A LiSTing of TTYPLO gives: 

9000 
gelll 
9020 
912130 
9040 
905121 
906121 
910e 
9110 
9120 
913121 
91"0 
9150 
9.16121 
911121 
9180 
9190 
9200 
921121 
9220 
9230 

[

9240 
9250 
9260 
9270 

[
~~:: 
930121 
9310 
9320 
9330 
934121 
9350 
9360 
9310 
9380 
9390 
9408 
941121 
942121 
9438 
94110 
9115121 
946121 
941121 
9"80 
9"90 
958121 
9510 
9520 
9530 
95118 
9558 
956121 
951121 
95S0 
9590 
9600 
96111 
9620 
9638 
96110 
9650 
9660 
9610 
9680 

REM INITIALIZE PLOT} 

~~~ ~~~~0~0 300 Initialize the 
;~T ~~11-0 storage vector 
I.ET OC161-16 
RETURN 
REM STORE POINTS 
IF (XI2I-X8)*(X0-X9»12I THEN 91ge} Testforoffscalepoints 
IF (V0-Y8)*(Y0-Y9»0 THEN 91ge 
I.ET OC761 c OC761+1" Count points plotted 
I.£T OCOC7611-1000*INT(3e*(YI2I-V8)/(Y9-Y8)+1.51 } 
I.ET OC OC 7611-0C OC 7611+ 1I2I*lNT( 7121* (XI2I-X8 ) I(X9-'(8)+ I. 5) +Z0 ~ 
IF OC 761 < 30121 THEN 9190 .. Test for too many points I 
PRINT "'PART OF THE PI CTURE NOW"' 
GOTO 920121 .... Print out picture ~tore XrJ, YrJ, ZrJ 
:~U~INT OUT peOT In one element of 
PRINT "MA,'( Y-"';Y9 storage vector 
PRINT "' XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX,(XXXX,(XXXXXXXXX 

~~: ~~:~IT~O,~ STEP -I-Step down page 
LET OC 031--1 jllnitialize line 
NEXT 03 
LET 06'0 .______Step through stored points 
i~R 0~g;;;0 T~~7~;60 _Test for unused or already used elements 
IF INT(0[03111000) <> 02 THEN 936e-lselementinthisline? 
~~~ ~~;~~~~~;::~~:~~~~~;~~~~b~~~~;--Remove YrJ to get XrJ 
II' 06>INT(01/112I) THEN 9350 I ---Remove XrJ to get ZrJ 
I.ET 06-IN!:01/10) '--FindlargestXrJinline 
~~T 0~g31 I-Reset element 
PRINT "Y"; 
FOR 03-1 TO 06 _Step across line 
GOTO 0[031+2 OF 9400,9420,9440,9461l.9480.9500.9520.954V.9560.9S80 
PRINT"' "'I 
GOTO 9610 
PRINT "'0"'; 
GOTO 9610 
PRINT "'I"; 
GOTO 9610 
PRINT "2"; 
30TO 9610 
PRlNT "3'" 
GOTO 9610 
PRINT "'4"'; 
GOTO 961121 
PRINT "'5"'; 
GOTO 9610 
PRINT "'6"; 
(lOTO 9610 
PRINT "1"'; 
GOTO 9610 
PRINT "S"'; 
(JOTO 9610 
PRINT "'9"'; 
NEXT 03 
PRINT 
NEXT 02 

Print correct 
, character (ZrJ) 

at each position 

PRINT "' XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
PRINT "MIN Y_"IY8;U MIN X- tlJX8," .. , "MAX X. tlJX9 
(Josue 911100 ...... 
RETURN ~--- Re-initialize plot 
END 

SYMMETRY PROOF FOR ONE-DIMENSIONAL POTENTIALS 

If the potential is symmetric, then the probability density (the probability per 

unit length), 11/112, will also be symmetric, i.e., 11/I(-x)i2 = 11/I(x)12. When the 
wave function is real (which usually just means "when the potential is real"), 
we have that 

1/;(- x) = ± 1/1 (x) (A1) 

as the only possibilities. If 1/1 were a mixture of some even and some odd, then 
11/112 would not be symmetric. Hence the wave functions can be written as 
wholly even (1/I(-x) = 1/I(x)) or wholly odd (1/I(-x) = -1/I(x)). If there is only 
one wave function for a certain energy, E, then that wave function must be 
either even or odd; it cannot be a mixture. 



A more mathematical proof goes as follows: 

Consider a potential, V, such that V(-x) = V(x). Define an opera­
tor, P, called the parity operator, by P[f(x)] = f(-xl. 

1. The parity operator is Hermitian. 

00 00 

f I/I*(x) P[I/I(x)] dx = f (P[I/I(x)] *I/I(x)dy 
-00 -00 

where * means complex conjugate. 

2. The eigenvalues of the parity operator are +1 and -1. 

P[I/I(x)] = o:l/I(x) 

p2 [I/I(x)] = 0: P[I/I(x)] = 0:21/1(x) 

But p2 [f(x)] = P [f(-x)] = f(x) for any f 

Hence 0:2 = 1 or 0: = +1 or-1 

3. The eigen functions of the parity operator are even and odd. 

From 2: P[I/I(x)] = 1/1 (x) or P[I/I(x)] = -1/1 (x) 

for any eigen function 

That means 1/1 (-x) = 1/1 (x) or 1/1 (-x) = -1/1 (x) 

i.e., that the functions are even or odd, respectively. 

4. Finally, then, the parity operator operating on the Schrooinger 
equation with a symmetric potential is the same as the Schro­
dinger equation for 1/1 (-xl. 

This in turn implies that the eigen functions of the Schrodinger 
equation can be written as eigen functions of the parity operator. 

THE HALF-STEP ITERATIVE INTEGRATION 

Numerical methods are a subject in mathematics. You may want to study the 
subject someday. For the moment, all we need to show you is that the half­
step method used heavily in Chapters One and Two would seem to give better 
answers than the si mplest approximation (which is called Euler's method). The 
problem we're discussing is a general one. A physical law often can be stated 
in terms of the derivative of a function you wish to find; you integrate the 
differential equation to find the answer. 

Consider a general curve for y = f(x); suppose you know the value of y at 
x = Xo and you have a way to calculate the derivative of y with respect to x 
anywhere. The problem is to get as good an approximation to the correct 
value y = f(XO+6X) as reasonably possible. The simplest method (Euler's 
method) uses the derivative at Xo and approximates f(xo +l1x) as f(xo +l1x) = 
f(xo) + f'(xo)l1x. 
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Euler's method is shown on the sketch by the dashed line. Clearly, although 
in the limit as x -+ 0 the method is correct, for finite 6X the method is not 
very good. 

The geometrical interpretation of the theorem which mathematicians call the 
Mean Value Theorem says that there is some point on the continuously differ­
entiable curve y = f(x) such that the derivative at that point has the same 
value as the slope of the chord from (xo ' f(xo )) to (xo + !ix, f(xo + !ix)). 
If the theorem told us where that point was, everything would be easy. 
So-called higher order methods of iterative integration (such as the fourth­
order Runge-Kutta method) are ways to approximate better and better this 
"correct" value of slope. 

Our half-step method is based on the fact that, in general, evaluating the deri­
vative near the center of the interval (xo ' xo+L\x) is better than using a deriva­
tive at the end of the interval. I n fact, you can show that, if f(x) is a parabola, 
then a half-step method is exact. Th is means that, if you expand f(x) around 
Xo in a Taylor series, the half-step method will be correct through terms in 
(6X)2. That's why half-step methods are called "second-order" R unge- Kutta 
methods. 

y 

I 

Euler 

metho~ 

/1 
/ 1 

~--6X---~~: 

f(x) 

x 



SELECTED ANSWERS 
- CHAPTER ONE 

Exercise II. 2(a) E = 2.418 

2( b) none (except t - 00) 

2(c) .224 

2(d) 1.41 

3(a) E = 2.507 
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3(b) one (and + - 00) 

3(c) 0.389 

3(d) 1.52 

4. E = .089 a.u. 2.42 eV = 3.88x10-12 ergs = 5.86x1014 

Hertz = 5120A. 

Exercise III. 2(a) E = .6845 

2(b) none (except + - 00) 

2(c) .812 

2(d) .40 

3(a) E = 2.008 



3(b) one (and + - 00) 

3(c) 1.294 

3(d) 0.95 

4. E = 1.324 a.u. = 36.03 eV = 5.77x10·" ergs = 8.71x10'5 
Hertz = 344A. 

Exercise IV. 2(a) E = -8.513 

2(b) none (except + - 00) 

2(c) 0.983 

2(d) 0.28 

3(a) E=-5.743 
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3(b) one (and + - 00) 

3(c) 2.214 

3(d) 0.67 

4. E = 2.76 a.u. = 75.1 eV = 1.20x10·10ergs = 1.82x1016 
Hertz = 165.!\.. 

Exercise V. 2(a) E = -.407 

2(b) one (and + - 00) 

2(c) 1.407 

2(d) 1.33 

3(a) E = -.0499 



3(b) three (and + - 00) 

3(c) 0.452 

3(d) 6.18 

4. E = .370 a.u. = 10.1 eV = 1.61xl0-11 ergs = 2.43xl015 

Hertz = 1230 A. 

CHAPTER TWO 

Exercise I. 2(a) E = -.407 

--

2(b) E = -.0499 
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2(c) E = -.0465 

3. E = .357 a.u. = 9.71 eV = 1.56x10·11 ergs = 2.35x1015 
Hertz = 1 280A. 

Exercise III. 2(a) E = -.327 
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2(b) E = -.0113 

2(c) E = -.00399 



3. E = .316 a.u. = 8.60 eV = 1.38x10·11 ergs = 2.08x1015 

Hertz = 1440A. 

Exercise III. 2(a) E = -66.27 

2(b) E = -22.98 



2(c) E = -22.44 

3. E = 43.29 a.u. 1177 eV 1.89x 1 0-9 ergs = 2.85x 1 017 

Hertz = 10.5A. 

Exercise IV. 2(a) E = -.0100 

2(b) apparently lost to the continuum 

2(c) apparently lost to the continuum 

3. Since the second state is apparently in the continuum, you 
can set a lower bound on the energy difference. 

E = .0100 a.u. = .272 eV = 4.36xl0-13 ergs = 6.58xl013 

Hertz = 45600 A. 
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CHAPTE R FOU R 

Exercise I. 3. I ntegrat i ng to 20: 

80 = 54.8 - 0.4 = 54.4 degrees 

8, =42.8-1.1 =41.7 degrees 

82 = 37.7 - 2.4 = 35.3 degrees 

83 = 35.4 - 4.2 = 31.4 degrees 

4. a (0) = 4.31 

a (90) = .0264 

a(180) = .197 

5. atot = 3.49 

Exercise II. 3. Integrating to 20: 

80 = 124.4 - 0 = 124.4 degrees 

8, = 90.1 - 2.2 = 87.9 degrees 

82 = 74.4 - 6.1 = 68.3 degrees 

83 = 68.2 - 13.0 = 55.2 degrees 

4. a(O) = 91.6 

a(90) = 1.97 

a( 180) = 5.98 

5. atot = 79.9 

Exercise III. 3. I ntegrat i ng to 20: 

80 = 29.3 - 0 = 29.3 degrees 

8, = 6.5 - 2.2 = 4.3 degrees 

82 = 7.0 - 6.1 = 0.9 degrees 

83 = 13.2 - 13.0 = 0.2 degrees 

4. a(O) = .317 

a(90) = .104 

a(180) = .058 

5. atot = 1.62 
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