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PREFACE

This unit shows you ways in which the computer can extend your knowledge
and understanding of introductory quantum mechanics. The unit presents
numerical solutions to Schrédinger's equation; the solutions are easy to under-
stand and yet include solutions to many Schrodinger equation problems
which can't be handled by analytic methods. The emphasis in the unit will
be on ways the computer can extend the quantum mechanics you under-
stand. The unit assumes some knowledge of introductory quantum mechanics,
specifically analytic solutions for the infinite square well, and matching wave
functions at boundaries.

Your instructor can assign chapters and exercises out of this unit in much the
same way as out of a textbook. Lectures on the material may be presented,
but you should be able to understand the material without lectures. The
harder exercises can be used as the basis of projects if your instructor wishes.

Each chapter in the unit starts with a brief discussion of the physics dis-
cussion of the physics discussed in the chapter and then moves on to an
explanation of the numerical procedure used with the computer. Exercises
follow with one exercise completely worked out in the text so that you can
see what a sample solution looks like. This sample exercise is sometimes a
problem for which the answer is already known and therefore provides an
extra check on the computer method. Some exercises are marked with
asterisks. One asterisk means the exercise is fairly demanding while two aster-
isks indicates a very challenging problem. Numerical methods will not be
discussed much in the text; there is a section in the appendix which dis-
cusses the half-step integration used in the first two chapters.

There are, of course, other problems concerning quantum mechanics which
can be done with a computer. On the one hand, the computer can calculate
energies and wave functions for analytic solutions like the finite square well
or the harmonic oscillator or the hydrogen atom. On the other hand; the
computer can sometimes do the matrix operations which occur in perturba-
tion theory or in the matrix formulation of quantum mechanics. These other
applications are not included because this unit emphasizes extensions of
introductory quantum mechanics byond ordinary analytic methods.

There are also ways to solve the Schrodinger equation directly as a partial
differential equation using the computer. These applications will not be in-
cluded because of their extra sophistication. When dealing with partial differ-
ential equations on a computer, you have to worry about convergence,
stability, and representation. Even though the one dimensional, time-
dependent Schrodinger equation is a relatively simple partial differential
equation of the parabolic type, the most straightforward approaches using a
computer turn out to be unstable. The solutions for such problems are
discussed in reference (1).

The three-dimensional, time-independent Schrodinger equation is an example
of an elliptic partial differential equation (as are Laplace’s equation and
Poisson’s equation). These solutions are more straightforward; examples of
elliptic partial differential equations are discussed in references (2) and (3).
Most of the interesting potentials of quantum mechanics have symetries
which do not allow you to use partial differential equation techniques.

Throughout the booklet the atomic units introduced by Hartree {Proc. Camb.
Phil. Soc. 24, 89 (1928)) will be used. The units have the advantage that the
numbers being calculated stay near 1; numbers rarely get too small or too
large for the computer. Atomic units are often used in quantum mechanics;
the units have the effect of settingh=e=m_ = 1. In atomic units.

PREFACE O
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quantity unit

charge e

mass m,

distance first Bohr radius (.62917A)

velocity first Bohr speed (2.2 X 10% cm/sec)

energy twice the ionization potential of hydrogen
(27.21eV)

time first Bohr period/2m(2.419 X 1077 sec)

Often graphical output is useful. If you have a plotter or a CRT terminal
available, fine. If not, terminal plotting {using the teletype to plot a graph)
can be helpful. The appendix gives a program to convert printing programs
{programs which type out lists of numbers) to programs which plot on the
terminal. This terminal plotting will be used several times in the unit to give
you several examples.

John Merrill
Hanover, New Hampshire

This unit was written while the author was on the faculty of the Department
of Physics and Astronomy at Dartmouth College, Hanover, New Hampshire.
John Merrill has used computers to support his classwork and research since
joining the Dartmouth faculty in 1966. During the period of 1970-72 he was
part of a team of professors who developed computer classroom use in engin-
eering, mathematics and physics under the auspices of NSF funded project
COEXIST.

John has written many journal articles on specific uses of computers in
physics teaching, particularly in the two main physics teaching journals, The
Physics Teacher and The American Journal of Physics. He has written several
booklets on computer use in physics teaching including another unit in the
Hewlett-Packard series, Electric and Magnetic Fields. John is also the author
of the book, Computers in Physics, soon to be published by Houghton-
Mifflin Company. He is now the Director of the Center for Educational Design
at Florida State University.

Special credits go to Gregory Hughes, a recent PhD in physics from Dart-
mouth who helped develop the exercises and to Chris Doerr of Hewlett-
Packard who learned quite a bit of quantum mechanics while copy editing
the manuscript.
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ONE-DIMENSIONAL BOUND STATES 0O 1

CHAPTER ONE: ONE-DIMENSIONAL BOUND STATES
- INTRODUCTION

The one-dimensional, time-independent, Schrodinger equation for the wave
function, P, of a particle in a potential, V{x), is

12 d*P(x)
o E% +V(x)P(x) = EP(x) (1

where E is the energy of the state with wave function P. In Hartree atomic
units (see the Preface) this equation becomes

1 d%P
- E—C]? + V(x)P = EP (2)

or
P’ = 2(V(x) -E) P (3)

When V(x) > E for both large, positive x and large, negative x, a discrete set
of allowed energies occurs. This set occurs because, when E > V(x), the wave
function is oscillatory; this is the “‘classically allowed’’ region of space. When
E < V(x), the wave function decays toward zero; this is the "classically for-
bidden’ region of space since, classically, when the total energy, E, of the
particle is less than the potential energy, V(x), the kinetic energy of the
particle must be negative, In classical physics, a negative kinetic energy,
Y,mv2, implies an imaginary velocity, v, which is the mathematical way of
saying such motion cannot occur (in classical physics).

in quantum mechanics, the particle can spend some time in regions of space
where E < V(x). These are the classically forbidden regions outside the edges
of a finite square well, for example. Quantum mechanical tunneling through
barriers is also a result of this quantum mechanical penetration of classically
forbidden regions of space.

Consider a region of space where E < V(x) and where V{x) =~ a constant Vo.
The Schrodinger equation (3) becomes P! = 2(V°—E)P. The two solutions
to this equation (two because the equation is a second order differential
equation) are P « e ™ where a = V2(V,-E). If the region where E < V(x) is
bounded, both solutions can occur, but if the region is unbounded, then one
of the two solutions is not allowed. If the region is unbounded towards +°,
then e*®* grows without bound; this implies that P12 (the probability
density for the particle) is arbitrarily large the farther out you go. Such an
infinite probability of finding the particle at infinity is not allowed physically.
Hence, the wave function must decay towards zero {in this case exponentially)
as x becomes large. A similar argument holds for x tending toward —co; now it
is the e™®* term which diverges. The result is still that, as I x | gets large, P
tends to zero.

These demands on the wave function’s behavior at large positive and negative
x are the boundary conditions used both by the analytical methods of solu-
tion (those in which the solution is an equation for P} and by the numerical,
computer-based methods presented in this booklet. Because the wave function
must go smoothly to zero at large x, the particle can have only certain, dis-
crete (i.e. separated from each other) total energies. As you will see, for other
energies, the wave functions will not go to zero at large x.
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P(x)
E<E,
E=Eq
X
E>E,
E, = an eigenvalue
P(x)
E>E,
E=E, X
E<E,

One of the big differences between analytical methods (leaving out approxi-
mate methods you learn in higher level quantum mechanics) and the method
presented here is that analytical approaches can only solve five quantum me-
chanical problems (the infinite square well, the finite square well, the finite
square barrier, the harmonic oscillator, and the hydrogen atom). The com-
puter method can solve almost any Schrodinger equation problem for almost
any potential, V. In this bookiet we will limit ourselves to symmetric poten-
tials since the vast majority of interesting potentials are symmetric (i.e. are
such that V(-x)} = V(x)).

THE COMPUTER APPROACH

The computer (or numerical) method is an “"algorithmic” (or “iterative” or
‘‘step-by-step’) method of solution. The computer approach integrates the
Schrodinger equation by taking small steps, Ax, and finding the new values
of the wave function, P, and its derivative, P’ = dP/dx, after each little step.

Suppose you know the wave function, P, and its first derivative, P’, at some
point x. Suppose you also know how P should behave at some other x (for
example, that P should go to zero as x gets large). Given any potential,
V({x), you try an energy, E; you set the initial values of P and P’ at the point
they are known; you take a small step Ax and calculate the new values of P
and P' by using P{x+Ax) = P(x) + P (x+Ax/2)Ax and P'(x+Ax) = P'{x) +
P’ (x+Ax/2)Ax. Schrodinger’s equation gives you the value of the second deriva-
tive, P"" = d2P/dx2. You now use the same procedure again to go from x+Ax
to the point x+2Ax, and so forth. In this way, you walk out x (integrating
the Schrodinger equation step-by-step as you go) until you reach the other
place at which you know the behavior of P. You then just look at the be-
havior of P; if E was one of the allowed energies (eigenvalues), then P will




pehave correctly (e.g., P will go smoothly to zero for large x}; if E was not a
correct energy, then P will not behave (e.g., P will diverge for large x). if E
is just more than an eigenvalue, P will diverge towards one infinity; if Eis
just below that eigenvalue, P will diverge to the other infinity. You can home
in on eigenvalue energies quite quickly.

Figure 1 shows a block diagram {a simplified computer flow chart) for this
procedure. One possible BASIC implementation of this procedure is:

1¢ DEF FNVGO=...... potential, V(x)
___»26 PRINT "END OF INTERVAL, DELTA-X, PARITY (@=EVENS 1=0DD), ENERGY?”
3@ INPUT X9,X7,P,E
4¢ LET Pe=plexo=8
$8 LET X6=X9/28 L
68 IF Psl THEN 90 Initialization
79 LET Pe=1
86 GOTO 109
98 LET Pisl

188 LET P2¢2#(FNV(XO0X7/2)-E)!(PDfPltx1I2)} /ntegration of the

-Schrodinger equation

110 LET POeP@e(P1+P26X7/2)%X7

128 LET P1=P1+P2#X7

138 LET X@wX0+X7

148 1F XB<X6 THEN 170

158 LET X68X6+X9/28 Print loop
168 PRINT X8, P2, PO%P2

176 1F Xe<x9 THEW 186— Return for next Ax step
186 PRINT

L 190 aoTo 28 — Return for new parameters
208 IEND
N .
Ve - + !
.

ONE-DIMENSIONAL BOUND STATES O 3

Define
V(x)

Initialize
P, P, x

Calculate
new P, P', x

Y

Output
x, P

Figure 1. Flow Chart of Computer Approach One-
Dimensional Quantum Mechanics
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A few comments on the program are in order: First, there is no one “right’”
implementation of the procedure. Any program that calculates the quantities
correctly is “right.” The program shown is just one such correct implementa-
tion. Second, notice the use of the half-step method (see the Appendix) in
the lines calculating P2 = d2P/dx? from the Schrédinger equation and P@ = the
wave function, P, from the first derivative, P1 = dP/dx. Third, the print-test
lines are not necessary, but it is convenient not to print out on the terminal
the results of all several hundred steps, Ax, you will be taking. Fourth, the
potential, V{x), is given as a defined function, FNV(X), to emphasize that
this short program solves any {symmetric potential) Schrodinger equation
problem. All you do is type the potential into the DEF line. Finally, the
initialization of P@ = the wave function and P1 = the first derivative of the
wave function with respect to x will be discussed in the next section.

INITIALIZATION

Much of upper level quantum mechanics hinges on the development of
theorems concerning the Schrodinger equation {or its equivalents). One such
theorem states:

The wave functions for the stationary states (i.e. the solutions of the
time-independent Schrodinger equation) for a symmetric potential,
V(x), can always be written as completely even (i.e., P(-x) = P(x}) or
completely odd (i.e., P(-x) = -P(x)).

At first glance that theorem (which is proved in the Appendix for those of
you with sufficient mathematical background) has little to do with our prob-
lem. In fact, the theorem gives our initial values of P and P’ at x = 0. If P is to
be even, then P'(0) must be zero, and P(0) cannot then be zero. If P is to be
odd, then P(0) must be zero, and P'(0) cannot be zero. If both P and P’ are
zero anywhere, then, as you can see from the numerical procedure, P”, P', and
P will be zero everywhere. The “‘correct’”” non-zero values for P(0) (in the
even case) or P'(0) (in the odd case) would be given by the normalization
oo oo
condition [ |P|2dx = { P2dx = 1 . The easiest thing to do, however,
—o0 -00

is to make P(0) = 1 (or P'(0) = 1), calculate the right shapes and energies for
the states and, then, make the normalization correct. After all, as you can see
from the Schrédinger equation, if P is a solution, then any constant times P is
also a solution. We can normalize the wave function after we find it. This
theorem has allowed us to set the initial values of P and P’ at x = 0 and then
integrate out to large x before examining the behavior to the tail of the wave
function. There are other ways to start the procedure: that is, there are other
ways to initialize P and P’ at some known x. The procedure we’'re using works
for all symmetric potentials.

THE HARMONIC OSCILLATOR

Let's work through a representative exercise. In fact, let’s start with a problem
that analytic methods can solve—the harmonic oscillator. The potential for a
harmonic oscillator is V{(x) = kx2/2 where k is the so-called “spring constant.”
The prototype of a harmonic oscillator is a mass oscillating on a spring, but
we're actually treating the problem of an electron in a potential proportional
to x2. For definiteness, let’s set the spring constant, k, equal to 1, so that
Vix) = x?/2.

The harmonic oscillator can be solved analytically. The result is that the wave
functions are Hermite polynomials and that the allowed energies are £ =
(n+1/2)hwy where w = v/k/m. tn atomic units E_ = (n+1/2)w which means
that, for our problem, E, = (n+1/2) or E = .5, 1.5, 2.5, . . . Each energy
has a wave function that obeys the boundary conditions; no other energies




will work. Since these energies are known, we can check the numerical cal-
culations by seeing if these energies work and others don't. Furthermore, if
some other potential, V(x), looks sort-of like a harmonic oscillator potential,
then these energies can also be used as first guesses at the energies for
that potential.

SAMPLE SOLUTION
1. Plot the potential.

It's always a good idea to get a feeling for the potential the particle
experiences. You can do this by a short program which prints out
values which you then plot on graph paper. One such program {with its
RUN for this problem) would be:

POTENT

18 FOR X@=8 TO J STEP .2
20 PRINT X0,X0xX@/2

38 NEXT %@
4@ END
END
RUN
POTENT
[} ]
2 82
.4 « 88
6 - 18
8 »32
1 5
1.2 72
1.4 .98
1.6 1.28
1.8 1.62
-4 2
2.2 2.42
2.4 2.88
2.6 3.38
2.8 3.92
3. 4.3

ONE-DIMENSIONAL BOUND STATES [l 5




6 U QUANTUM MECHANICS

You can also use the terminal plotting subroutines discussed in the
Appendix. The program changes you write (and a RUN for this prob-
lem) could be:

S READ XB,X9,Y8,Y9,20

6 DATA £,3,0,5,1

7 GOSUB 9008

18 FOR X@=8 TO 3 STEP .2
18 LET YoeXxgsX0/2

28 QOSUB 9188

39 NEXT X8

35 aOoSup 92ee

48 END

APPEND=-TTYPLO
RUN
POTENT

MAX Y= §
AXXXAAXXXARXXX XXX KX XXX XKXAKXXAXXXXXKAAXKX KX XX XXXXXK XXX XXX A XK KXXAXXKXA XXX

R R R T T

! 1 i
AXXAAXAAOOOCEXAAAXA XK XX XXX XK XX XK K0COOXAXOOOEAXXXXRXAA XXX XXXAXKXK XX
MIN Y= 2 MIN X= @ MAX X= 3

The potential is, of course, just a parabola. It is symmetric (V(-x) =
V(x}) so we can use our computer approach as discussed above.

2.(a} Sketch the wave function for the lowest energy (the ground state)
of the potential V(x) = x2/2. Now find the wave function and energy of that
state with the computer.

Let’s use a program like that discussed above with the defined function
for the potential. Then we just try different energies until the wave
function behaves at large x. Large x usually means x several times the
classical turning point {where E = V(x)); for this lowest state “large x’*
(the end of the interval of integration) can be 3 or 4,

Usually the lowest state for a symmetric potential is even; higher states
usually alternate odd, even, odd, even, . . . A sensible expectation is to
try for an even ground state. Notice, if the lowest state weren't even,
the lowest odd state would just come out with a lower energy. The
program and a RUN look like:




IDSGHR
18 DEF V() sxsxs2 - Potential, V(x)
— =28 PRINT "END OF INTERVAL, DELTA-X, PARITY (@wEIVENS {=0DD)>, ENERGY?"
38 INPUT X9,X7,P,E
48 LET Po=plaxesg
S9 LET X6m%9/20 .
68 1F Pa] THEN 98 Initialization
78 LET pPo=l
1 §8 GOTO 190
98 LET Pi=l
199 LET P2e2e(FNV(XE+XT/2)~E)&(PA+PIsX7/2) .
118 LET P@ep@+(P1ePReXT/2)9X7 } Integration of the
126 LET Pl=PleP2eX7 Sdi 7
B L Fexeen Schrodinger equation
140 IF X8<X6 THEN 178 .
158 LET X6sX6+X9/28 Print loop
168 PRINT X@, P8, POsPO
176 IF xo<x9 THEN 188 — Return for next N\x
186 PRINT
L_—198 Goto 28— Return for new parameters
200 END
10 Y
IDSCGHR
END OF INTERVAL, DELTA-X, PARITY (OWEVENS 1=0DD), ENERGY?
135401, 0, .48
.18 +989934 «9799 69
3 95782 «917a19
<48 989852 .82783
“6l «B478ST «718861
.76 «775826 « 681986
*989999 698178 « 487448
106 $ 619367 .38361%
121 - 543639 - 295544
136 ~aT4765 . 225482
151 ~ 418995 « 173052
1+ 66 .378122 13609
1e81 +339714 « 115406
196 «327534 .107279
2.1 «33576 .112738
2.28 . 370878 .137326
2. as00) . 24953 +194067
2455001 «559386 .312913
270001 «749984 «562476
2.85082 1.05051 1. 10356
3. 0002 1.52538 2.32678
END OF INTERVAL, DELTA-X, PARITY (@=EVEN] |eO0DD), ENERGY?
23,+81,8,.55%
.15 «987693 «975536
.31 «94836 «899386
.26 «889394 .791821
.61 «812719 « 668512
«76 .722762 ©522385
«989999 « 624298 +389748
186 <5219 66 . 272449
te21 +419833 .17626
1.36 .32104 . 183266
1e51 « 227548 5.1778 1E-02
1.66 +139977 1.95935E-02
1+81 5.74888E-82 3.3049 7E-83
1.96 -2.23332E-82 4.98771E~84
2.1 -9.81286E-82  9.62922E~03
2,25 -+ 186798 3.48935E-82
2.40001 -.292506 8.5559 6E~82
2.55021 ~.429581 . 184471
2.790801 -. 619738 384071
2.85002 -.898843 «80643 1
3. 00002 -1.32131 1.74585%
END OF INTERVAL, DELTA=X, PARITY (@sEVEN} i=0DD), ENERGY?
13,00150,45
.18 .988813 .977751
.31 .953086 .998373
46 +899 685 «889238
. 61 .830232 . 689285
.76 $749162 .561244
«989999 . 6689 68 .436878
1.06 +578181 +325187
1.21 +488921 .231285
1.36 <39 6689 . 157299
1.81 «319801 .182272
1466 .252129 603569 1E~02
1.81 ©194353 3.77732E-082
1596 5146482 .821457
241 -11824 1.21528E-02
2425 « 879544 60 32724E-03
2. 40081 5.61128E~02 3. 14868E-23
2.55001 3.8 9 ATE-02 1.49728E-83
2. 70061 246077 1E~82 6.80016E-84
2.85002 1.71633E-02 2.94579E-84
380002 1410143E-02 1.21314E-84

END OF INTERVAL, DELTA-X, PARITY (@=wEVENS 1=20DD), ENERGY?
K

END

ONE-DIMENSIONAL BOUND STATES O 7




8 0O QUANTUM MECHANICS

As we expected, the energy of the state is near .5. You can get higher
accuracy by using a smaller step size (Ax}, but because the computer
keeps numbers to only finite accuracy and because the calculational
method is not perfectly accurate, the computer may not give you ex-
actly .5 as an answer. The difference from .5 is a measure of the accuracy
of the method.

2.(b) In which regions of x is the probability of finding the particle nearly
zero? In which regions of x is the probability of finding the particle relatively
large?

Since P is real, | P12 = P2, By looking at the printout you can see there
is one loop {or anti-node) in P2 and there are no nodes. The probability
is near zero only for large positive and large negative x, The probability
is large near x = 0. You can also plot the wave function and its square
on the terminal. The changes you make and the RUN are:

S LET X8=Y8=g
6 LET Y9mi

35 40SUB 9008
168 LET Z@=1
162 LET Y@=pP8
163 GOSUB 91ee

164 LET Z@mu2

165 LET Y@sPaxpe
166 GOSUB 9188
188 GOSUB 9200
APPEND-TTYPLO
RN

1DSCHR

END OF INTERVAL, DELTA-X, PARITY (O=EVENs 1=0DD), ENERGY?

10 +01,8:.5

MAX Y= |

) 900/9.900009000000900P00rPPOPIOPIIIIPIPIPLLOLET eI 0009 L0000 Peeoe e

Y 1

Y 2 1

Y

Y 2 1

Y

Y 1

Y 2

Y

Y 1

Y 2

Y 1

Y

Y

Y 2 1

Y

Y

Y 1

Y 2

Y 1

Y

Y 2 1

Y

Y i

Y 2

Y !

Y 2

Y 1

Y 2 1

Y 2 11
Y 2 2 1 1 1
Y 2 2 2 2 2 2
P2.0.0.0.00.0.0.000.0000200009000000000020r000000000000902209923980¢0eeL e
MIN Y= 8 MIN Xs § MAX X® 3

BID OF INTERVAL, DELTA-X, PARITY (@=EVENS {=0DD), ENERGY?
?
END




2.(c) Find the normalization constant for the wave function of this state.

o
To normalize a wave function, you calculate A = [ |P|?dx. Since
— oo

P(x) is real, | P|2 = P2, The normalization constant (i.e., the number

. o0
you multiply P by everywhere) is then 1A/A. The total integral [

00
P2dx is just twice the sum of P2Ax from x = 0 to your end of interval.

Thus, with a minor change in your wave function program, you can
calculate A directly.

45 LET P3=@

115 LET PJ3=Pl+PO=pPO*XT
160 PRINT X8.,P0,P0«P2,P3
RUN

tDSCHR

END OF INTERVAL, DELTA-X, PARITY (@wEVENJ 1=0DD), ENERGY?
23,421,0,45

.15 «988813 «977751 « 148 769
«3t +953086 «998373 +299887
« 46 -899 605 «809288 4285855
«61 «830232 . +689288 5408528
«76 «T49162 «561244 « 633699
«929999 . 6629 68 +436878 787828
1.06 -570181 «325t07 « 764219
1.21 «482921 «23128% -805237
1.36 « 396609 « 157299 +833765
1.51 «319881 - 102272 «B5273%
166 «252129 6.3569 1E-82 864797
1.81 « 194353 3.77732E~082 «87213

1.96 146482 «821457 876393
2.1 «11024 1.21828E-02 «8 78648
2.25 « 0879544 64 32724E-03 87996

2. 40001 $.61128E~02 3.1486SE-03 -88063

2.58%001 3.86947E-82 1.49728E-03 882957
2.70001 26077 1E-82 6.80016E-04 «881189
2.85002 1.7 1633E-02 2.94879E-084 881176
3.00002 1.18143E-02 1.2)314E-84 «881204

- The normalization constant is 1/4/2(.881) = .753.

2.(d) Find the position xq such that the probability of finding the particle
between ~x, and +x is 1/2.
X
0
What you really want is the x4 such that { |P]2dx = 1/2whenPis
~X
0

normalized. All you need to do is look down the printout from Part 2(c)

to find the point where the sum of P2Ax = A/2. The point is very near

x = .47 atomic units = .150 A, {(For higher accuracy you could change

the print-test so values are printed more often on the terminal. You

might also plot the P2Ax function and estimate the point x,, graphically.)

3.(a) Sketch the wave function for the second lowest energy of V(x) = x2/2.
Now find the energy and wave function for this state with the computer.

3.(b) In which regions of x is the probability of finding the particle nearly zero?
In which regions of x is the probability of finding the particle relatively large?

3.{c) Find the normalization constant for this state.

ONE-DIMENSIONAL BOUND STATES O 9




10 [J QUANTUM MECHANICS,

tween X, and +xo is 172

The RUNs for this part of the problem follow:

IDSCHR

END OF INTERVAL, DELTA-X, PARITY (@wEVEN} 1=0DD),

74,8101, 1448
«21 « 2088476 A4+ 22204E-02
«4}] «37737S o 142412
6] +587786 »257846
+809999 «586386 «3423848
fe81 « 611624 « 374084
1.21 +58987 « 347947
141 +53302 «284l11
161 0455398 « 287388
181 «37085 « 13753
2.61 « 290693 8+.4502RE-02
2.2 « 225838 S.10013E-02
2. 49001 « 174084 3.02774E-62
24 68001 + 141619 «2320856
2,808082 130921 1+ 71403E-02
3. 00802 + 146246 2.13873E-02
34200883 «197919 3.91718E-82
3. 40003 « 399367 9.57079E~82
3. 68003 «531873 « 282889
3.88004 «977555 «955614
A. 90004 1489648 3459665

END OF INTERVAL, DELTA-X, PARITY (@=EVEN: 1=0DD).»

T4s081, 1,152
21 « 285354 4.21783E-82
<4l « 376501 -« 141753
e 61 «585872 2550897
«809999 +388517 337
1.01 « 681299 «361561
le21 «87397 « 320441
14} «5106% ~260763
1. 61 425769 - 181279
1.81 «332998 - 110888
2.01 «243017 $S.98874E-82
2.2 «166152 2+ 76065E~82
2. 40881 9.6609 |IE-@2 9. 33332E-03
2. 60001 3.72863E~0R 1439@31E~923
2.80802 ~1¢67988E-02 2.82199E~-84
3. 20082 =7+45786E~22 S+S56196E-03
3. 200063 -+ [5}041 2.28133E-02
3.48083 - 272922 T+.448 6TE-02
3. 680683 -+ 492061 - 242124
388004 -s916108 «839253
4. 00004 . =1.78854 3.17833

END OF INTERVAL,

74,481,1,1.5

21 - 2035413 4.21983E-02
oAl «376938 142082
«61 « 5086427 « 256469
+ 889999 « 583447 «3JaB4l 1l
f.01 * 68645 « 367782
1e21 «581894 «338601
1«41 «521783 «272257
1461 .« 44049 « 194831
181 «351766 « 123739
2421 <2666 7+ 18753E~ 02
2.2 «1986 J.82593E-08
2. 40001 « 132691 1.81416E-02
2468001 8.84811E-22 7.82890E-83
280002 « 055496 3. #4798 IE-23
3. 00002 «2833239 1+ 1 A8 3E-83
3. 20003 «818984 34 60393E-24
3.40003 f.02688E-22 1« @5S44A9E-04
3. 68003 S.11185E-23 2+ 61310E-05
J.8e0ea 2402241E-03 4. 09812E-06
4. 200604 “1421169E~-82 1 T20SAE-08

END OF INTERVAL.,
?

END

DELTA-X.,

PARITY (@=EVEN}

DEL TA-Xs PARITY (@=EVEN} t=0DD),

1=0DDY,

3.(d) Find the position such that the probability of finding the particle be-

ENERGY ?

ENERGY?

ENERGY ?

ENERGY?




To plot the functions, start again with the basic program and add:

S READ X8,Y8,Y9
6 DATA 2,0,

35 GOSUB 92@R
1680 LET 2@=1
163 LET Y@=P@
162 GOSUB 9102
163 LET 2@=2
164 LET YOupPOxPR
165 GOSUB 91882
18@ GOSUB 9209
APPEND-TTYPLO
RUN

1DSCHR

END OF INTERVAL, DELTA-X, PARITY (@=EVEN} 1=0DD), ENERGY?

T4,00101, 18

MAX Y= 1}

[ 0000990000900 000990990800000900999900r0000t9000009000009900.00000096,¢99.0

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y 1 1

Y 1

Y 1

Y 1

Y

Y 1

Y

Y 1 2 1

Y 2 e

Y

Y 2 e 1

Y

Y 1 2 1

Y

Y 2 2 1

Y ]

Y 2 1

Y 2 2 2 1 1

Y e 2 2 2 2 2 2
KXAXKKXKXERAXX XXX XXX XXX XXX XX XXX XXX XX XAXA XXX XX KX X AR LX KKK XXX KXXXKK

MIN Y= @ MIN X= @ MAX X= 4

3.fe) How many nodes are there in [P(x)]??

There are 2 loops and 1 node between -oo and +eo, The rule of thumb
is that the lowest energy state has O nodes, the next state has 1 node,
etc. The probability is nearly zero around x = 0 and for large positive
and negative x. The probability is large near x = +1 and x = - 1.

3.(f) Find the normalization constant.

3.fg) Find the point x, such that the probability of finding the particle be-
tween —-x and xq is 1/2.

Starting again from the basic program, add:

45 LET Pas=p

118 LET paspaspespesx? — adds up P2 Ax
1628 PRINT X0,P0, PSP, P3

RUN

1DSCHR

END OF INTERVAL, DELTA-X, PARITY (@=EVEN) 1=0DD), ENERGY?
14,+81,1, 145

21 » 285415 4.21953E-82 3.22062E-083
<4t « 376938 142082 2.15039E-02
«61 « 586427 « 256469 6. 20956E~-02
«889999 « 583447 «34a8411 « 123005
181 « 68645 «367782 + 194978
1.21 «581894 «33866! + 266289
1.4l «521783 272257 «327448
1.61 * 44049 « 194831 +37369

1.81 «351766 « 123739 «4B4872
2.01 + 2666 T+ 18753E~82 « 423768

2.2 «19%6 3.82595E-82 «433746

2. 40001 134691 1.81416E~082 «439881

2. 600861 8.84811E-082 7.82890E-83 «A41582
2.800802 «855496 J3.907981E-23 422505
3.00002 «833239 1. 1048 3E-03 «442883
3.20003 218984 3.68393E-04 843014

J. 488203 1.02688E-22 1.85449E-04 443084
J.66003 S.11185E-03 2.613]1RE-05 « 443866
3.83004 2.02241E-023 4.89012E-26 443868

4. 080084 ~1+31169E-24 1.72054E-08 +443068

ONE-DIMENSIONAL BOUND STATES 0O 11

Note: Curve 1 is wave function x = 0 to x =4,
curve 2 is the square of the wave function.
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The normalization constant is 1//2(.443) = 1.062. The point at which
the sum of P2Ax = .221 is approximately x = 1.1 atomic unit = .532 A.

4. Find the difference in energy between these states in eV, Hertz, and A.

5.(a)

5.(b)

E = 1 atomic unit = 27.210; eV = 6.58 x 1075 Hertz; lambda = 456 A.
(Using 1 eV = 1.602 x 10712 ergs; h = 6.624 x 10727 erg-sec; ¢ =
2.998 x 1019 cm/sec)

Find the behavior of each state near x = 0.

Consider 2n{P{0)-P) versus ¥n{x) for small x. What is the power de-
pendence of P for small x?

The slope of a straight line on a log-log plot is the power, B, to which x
is raised in (P(0)-P) ~ xB. You may want to plot your results on graph
paper although you can calculate the result directly from printout.

Starting again from the basic program:

GET- 1DSCHR

140

185

160 PRINT LQG(X2),LO0GC1-P2)
17¢ IF X0<el THEN 120

RUN

1DSCHR

END OF INTERVAL, DELTA~X, PARITY (@=EVEN} 1=0DD), ENERGY?
13,e01,0,65

~&4e 60517 “9.98451
«3e912082 -8.51762
-3.58656 =7.70676
~3+21888 =7+13148
-2499573 =6+ 68535
-2.81341 ~6¢32093
-2 65926 ~6.983294
-2452873 «5474623
-2 40798 -5.51187
-2+ 30259 -5, 30083

END OF INTERVAL, DELTA~X, PARITY (@=EVEN} i=0DD), ENERGY?
?
END

So this wave function comes off of its value at x = 0 (P(0)=1) quad-
ratically. The normalization doesn’t change this fact. The first exicted
state (the second one found above) comes out of P{Q) = 0 linearly in x.
Any even state must come off its x = O value as an even power of x; any
odd state must start out from x = 0 as an odd power of x.

You actually know a good deal about a wave function before you start
a problem. Often the Schrodinger equation can be approximated in
some regions of space by an equation with known solutions. The idea
of these asymptotic solutions for small and large x will be important
again in Chapter two.

Find the behavior of each state for large x.

Consider 2n(P) versus x for large x. Is the dependence of the wave
function beyond the classical turning point faster than e™** where « is
some constant? :

t¥ the potential became a constant, VO, for large enough x, the tail of
the wave function would approach exp(-ax) where a =4/2(V0-E). Many
notentials do approach constant values, but V(x) = x2/2 clearly ap-
proaches infinity. So, you expect the wave function to tail off to zero
faster than exponentially. You may want to plot the results on graph
paper.
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Starting again from the basic program, change:

14@ IF X@<2.9 THEN 170
160 PRINT X0,LOG(P3)

RUN

IDSCHR

END OF INTERVAL, DELTA-X, PARITY (@sEVEN} I=0DD), ENERGY?

73,+0158,+5
2.90002 -4.2099
2.91002 -4423922
2e92002 ~4.268 67
2.93882 -4e 29823
2.54002 -4432791
2.950082 ~4435771
2.96002 -4438763
2.970802 ~4s,41768
2.93002 ~4444785
2.99082 -43.47814
3. 00002 -4.50856

So the tail of the wave function falls off faster than exponentially be-
cause V(x) is still rising fast. The normalization doesn’t affect this re-
sult either. Interestingly, if you assume that the tail behaves as
exp(-(a(x)x) where a(x) = +/2{V(x)-E), you can get good agreement
with the asymptotic behavior of P at large x.

EXERCISES — Use computer when appropriate

I. For the potential V{x) = x2:
1. Plot the potential for 0 << =x <=5,
2.(a} Find the ground state energy and wave function.
2.(b) How many nodes are there in [P(x)]2?

2.(c) Find the normalization constant.

2.(d) Find the point X Such that the probability of finding the particle
between -x, and x is 1/2.

3.{a) Find the first excited state wave function and energy.
3.(b) How many nodes are there in [P(x)]2?
3.(c) Find the normalization constant.

3.(d) Find the point X such that the probability of finding the particle
between -x,and xq is 1/2.

4. Calculate the energy difference between these two lowest states, \E,
in atomic units, eV, Hertz, and A.

5.(a) Find the behavior of each state near x = 0.

5.(b) Find the behavior of each state for large x.

Hint: The energies are known from the harmonic oscillator with k = 2,
. For the potential V(x) = (x2/2) + 4 exp(-x2), which is a harmonic oscil-
lator with a Gaussian bump in the center (a model of the potential of the

nitrogen atom in an ammonia molecule):

1. Plot the potential for 0 < = x < = 5,

2.(a) Find the ground state energy and wave function.
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2.(b) How many nodes are there in [P(x)]2?
2.{c) Find the normalization constant.

2.{d} Find the point x, such that the probability of finding the particle
between -x, and x is 1/2.

3.fa) Find the first excited state wave function and energy.
3.(b) How many nodes are there in [P(x)]2?
3.{c) Find the normalization constant.

3.(d) Find the point x such that the probability of finding the particle
between -x o and xq is 1/2.

4. Calculate the energy difference, AE, between these two lowest states
in eV, Hertz, and A.

b.(a) Find the behavior of each state near x = 0.
5.(b) Find the behavior of each state for large x.

6. Compare the energies and wave functions of these two states to those
discussed in the chapter (i.e., the two lowest energy states for the har-
monic oscillator x2/2).

Hint: Use the proper harmonic oscillator energies as first guesses and
then hunt.

I1l. For the potential V(x) = 16x2/(x2+16) which starts out as a harmonic
oscillator but then becomes constant for x >>4",

1. Plot the potential for 0<=x <=5,

2.({a) Find the ground state energy and wave function.
2.(b) How many nodes are there in [P(x}] 22

2.(c} Find the normalization constant.

2.(d) Find the point x, such that the probability of finding the particle
between -x, and x is 1/2.

3.(a) Find the first excited state wave function and energy.
3.(b) How many noises are there in [P(x)]?2?
3.(c) Find the normalization constant.

3.(d} Find the point x such that the probability of finding the particle
between -xq and x is 1/2.

4. Calculate the energy difference, AE, between these two lowest states
in eV, Hertz, and A.

5.(a) Find the behavior of each state near x = 0.
b.(b) Find the behavior of each state for large x.

6. Compare the energies and wave functions of these two states to those
discussed in the chapter (ie., the two lowest energy states for the har-
monic oscillator x2/2.)

Hint: Use the proper harmonic oscillator energies as first guesses and
then hunt.
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IV. For the potential V{x) = - 10 exp{-x2/2), which is a Gaussian well:

1. Plot the potential for 0 < =x =<=25,

2.(a) Find the ground state energy and wave function.
2.(b) How many nodes are there in [P(x)]2?

2.(c) Find the normalization constant,

2.{d) Find the point x4 such that the probability of finding the particle
between -xq and x is 1/2.

3.(a) Find the first excited state wave function and energy.
3.(b) How many nodes are there in [P(x)]2?
3.{c) Find the normalization constant.

3.(d) Find the point x4 such that the probability of finding the particle
between -x o and xq is 1/2.

4. Calculate the energy difference, AE, between these two lowest states
in eV, Hertz, and A.

5.(a) Find the behavior of each state near x = 0.
5.(b) Find the behavior of each state for large x.
6. Compare the energies and wave functions of these two states to those
discussed in the chapter (i.e., the two lowest energy states for the har-

monic oscillator x2/2).

Hint: Use the proper harmonic oscillator energies as first guesses and
then hunt.

*V. For the potential V(x) = —exp(~|x|/10)/|x|, which is the one-dimensional
equivalent of the screened Coulomb potential (important in many electron
atoms):

1. Plot the potential for 0 < x <=5,

2.(a) Find the ground state energy and wave function.
2.(b) How many nodes are there in [P(x)]2?

2.(c) Find the normalization constant,

2.(d) Find the point xq such that the probability of finding the particle
between -xq and x, is 1/2.

3.(a) Find the first excited state wave function and energy.
3.(b}) How many nodesare there in [P(x)]2?
3.(c) Find the normalization constant.

3.(d) Find the point Xgq such that the probability of finding the particle
between -x, and x is 1/2.

4. Calculate the energy difference, AE, between these two lowest states
ineV, Hertz, and A.
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VI.

VI,
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5.(a) Find the behavior of each state near x = Q.
5.(b) Find the behavior of each state for large x.

Hint: Because the potential is infinite at x = 0, only odd states are
allowed. The (unscreened) Coulomb potential (the hydrogen atom)
energies for these states are -.5 and -.125; you will find both energies
moved up. This potential is important in three dimensional quantum
mechanics (Chapter Two). There, it turns out, the wave function is
R(r) = P(r)/r where P(r) is the wave function you derive in this problem.
You might look at the behavior of P(r)/r in your printout.

For the potential V(x) = (Ix|-1)2/2, the biharmonic oscillator:
1. Plot the potential for 0< =x <=5,
2.(a) Find the ground state energy and wave function.
2.(b) How many nodes are there in [P(x)]2?
2.(c) Find the normalization constant.

2.(d} Find the point x, such that the probability of finding the particle
between -x, and x is 1/2.

3.(a) Find the 4th excited state wave function and energy.
3.(b) How many nodes are there in [P(x)]2?
3.(c) Find the normalization constant.

3.(d) Find the point x, such that the probability of finding the particle
between -x, and x is 1/2.

4. Calculate the energy difference, AE, between these two lowest states
ineV, Hertz, and A,

5.(a) Find the behavior of each state near x = 0.

5.(b) Find the behavior of each state for large x.

6. Compare the energies and wave functions of these two states to those
discussed in the chapter (i.e., the two lowest energy states for the har-
monic oscillator x2/2).

Hint:Use the proper harmonic oscillator energies as first guesses and
then hunt.

For the potential V(x) = x2/2:
1. Plot the potential for 0 <=x <=5,

2.(a) Find the 3rd excited state (the fourth state) energy and wave
function.

2.(b) How many nodes are there in [P(x)]2?
2.(c) Find the normalization constant.

2.(d) Find the point x, such that the probability of finding the particle
between —xy and x is 1/2.

3.(a) Find the 4th excited state wave function and energy.
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3.(b) How many nodes are there in [P(x)]2?
3.(c) Find the normalization constant.

3.(d) Find the point Xxq such that the probability of finding the particle
between -x, and x is 1/2.

4. Calculate the energy difference, A\ E, between these two lowest states
ineV, Hertz, and A.

5.(a) Find the behavior of each state near x = 0,
5.(b) Find the behavior of each state for large x.
6. Compare the energies and wave functions of these two states to those
discussed in the chapter (i.e., the two lowest energy states for the har-

monic oscillator x2/2).

Hint: Use the proper harmonic oscillator energies as first guesses and
then hunt.

**VII. The family of potentials, V(x) = | x |™ for different integers, m. form
an interesting progression, the m = 2 member is a harmonic oscillator with

energies, E, = {n + 1/2)4/2; the limit as m — %o is the infinite square well.

1. Find the wave functions and energies for the ground state with m=2,
4,6,8 and 10.

2. Find the wave functions and energies for the first excited state with
m=2,4,6, 8 and 10.

3. Plot the energies as functions of the power, m.
4. Interpret the shapes of the curves from Part 3,
**IX. For the potential V(x) = {-x2/2) + A exp(-x2):

1. Find the energies and wave functions of the ground and first excited
states as functions of the height, A, of the Gaussian bump.

2. Plot the energies and their difference versus the height of the bump.

3. Explain the changes in shapes of the wave functions. What conclu-
sions can you draw about the energies? Consider the extrapolations to
A = 0and A = o consider the relationship of the kinetic and potential
energy terms in the Schriodinger equation.




18 O QUANTUM MECHANICS



THREE-DIMENSIONAL BOUND STATES 0O 19

CHAPTER TWO: THREE-DIMENSIONAL BOUND STATES
INTRODUCTION

In general, three-dimensional quantum mechanics is thought to be much
more difficult than the one-dimensional case. For spherically symmetric po-
tentials, the computer makes three-dimensional quantum mechanics just as
easy as one:dimensional.

The three-dimensional time-independent Schrédinger equation is

hz
= 5 V2Y(T) + VIFIY(F) = EY(P) (4)

where ¥ is the wave function for the energy E and V(F) is the potential.
In polar coordinates {r, 8, ¢) this equation becomes

B ] i Iy W - I
2mr2 9r|  or 2mr2 |sing 30 \*'" 96 sin20 0¢2

+Vir, 0,9 ¢ = EY

If V(r, 8, ¢} is spherically symmetric, i.e., V(F) = V(r}, then Equation (5)
separates in polar coordinates. The wave function can be written as
¥ = R(r)Y{0, ¢). You substitute this product in for ¥, put all the terms
containing R(r) on one side and all those containing Y (0, ¢) on the other;
then set both sides equal to a constant (£(¢+1) where £ is any integer that is
convenient). This provides the following equations for R(r) and Y{(8, ¢):

h2 1 df ,dR(r h20(e+1) -
“om 3 dr[rz P :|+ l:V(r) + P~ ]R(r) ER({r} (6)

)]+ Qe+1) Y (0.6) = 0 (7)

[, a0, 1 92Y(0,8
sind 20 |° 30 sin20 902

THE EQUATIONS IN 6 and ¢

The equation for Y can be separated again as Y{(8, ¢) = O(0)P({¢) with the

result that
1 df . ,d® m?2 _
i (o0 57 ) (e - 7)o = o ®
d2o
Wz—-l— m2d = 0 (9)

The ®(¢) equation has the solutions

®(p) = e M?P and gtim?e (10}

where m is an integer such that | m | < = €. Since we will only use ® in
applications involving | ¥ |2 for the ¢ =0 - ¢ = 180° plane, we don’t have
to worry about @ at all. If you need to use ®, you can call the SIN{ ) and
COS( ) functions on the computer.
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The equations for ©(f) is the associated Legendre equation; its solutionsare
known as associated Legendre polynomials, £f™, so

89) = LJ" {cos ) (11)

The other solution to this second order differential equation for @ isn't finite
throughout the range of § and so is not allowed to occur in most physics
problems. So the solution for the angular parts of the full wave function, V, is

Y{0,¢) = Ny Lg" (cosf) gt imé (12)
where Ny _is just a normalization constant.

You can calculate values for ®(0) and ®(¢) easily on the computer. To cal-
culate © you could integrate the differential equation numerically. However,
like sines and cosines, associated Legendre polynomials are well known and
can be looked up in books. The first few angular wave functions, Y™ (0, ¢) are

Yg = 1/\/én

Y? =~/ % cosf , Y} =/ 3 sinf et ™9 Y;1 = 4/ ?:i- sind ¢”'m?

8n

One possible program to calculate the YQ"‘ s is the following:

—» 18 PRINT "L (@ OR 1), M (/M/<sL)?"
26 INPUT L.M .
30 LET Pl=3.14159 )
48 LET N@=1/SQR(&sP1) |
s¢ LET m-sema/uumn)
68 LET N2=SQR(3/(8#P1))
— 78 FOR Ti=d TO Pl STEP P1/6-+—Step across 0
86 LET CIwCOSCTI)
90 LET SIsSINCTD)
198 PRINT “THETA > I8¢sT1/P]
) —= 118 FOR Te=® TO S*Pl STEP 2#P1/8 «——Step across ¢
188 PRINT 180«T2/P1,
138 1F L>3 THEN 168 0
148 PRINT N@ Y

Useful constants for calculation

188 GOTO 238 0

| 168 1rm <o e RN 199
176 PRINT N1sC1 :
189 GoTO 230 {1

190 IF Mse) THEN 220 } 1

200 PRINT N25S16COSC(T2),N2¢S1sSINC(T2) . Y,

218 GOTO 230 §

220 PRINT N2wS1#COS(T2), W2+ SI1#SIN(TD) ey, -1
7

e1e aoto 18<——Return for new parameters
288 END

THE RADIAL EQUATION

The real problem of three-dimensional, spherically-symmetric-potential, quan-
tum mechanics is to solve the radial wave equation, equation (6). Only one
problem (the hydrogen atom, which is the unscreened Coulomb potential)
can be solved analytically. All other problems need approximate methods of
one sort or another (perturbation theory or variational methods), and sooner
or later even these approximate methods need a computer.

Using the computer, an entirely different approach can be taken. You can
integrate iteratively to find the radial wave function and the energy. Such a
procedure can be carried out for any potential, V{r}. Just as was true in
Chapter One on one-dimensional bound states, the computer approach for
three-dimensional bound states is easy to understand but very general.
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First, we reduce the three-dimensional radial wave equation to one that looks
just like the one-dimensional Schriodinger equation discussed in Chapter One.
Let P(r} = rR(r). You then plug P(r) into the radial wave equation (6) and
find the equation P{(r) satisfies. The result is

h2 d2P(r)

h2Q(L+1)
2m dr2

¥ [V(r) F T ome2

]P(r) = EP(r) (13)

In atomic units (for which h=m=e=1; see the Preface) this equation becomes

1 d2P(r) Le+1)
T + [V(r) + >3 }P(r) = EP(r) (14)
or
" 248+1)
P’ = 2,:V(r)+ 22~ :|P (15)

This last equation looks just like the one-dimensional Schrodinger equation
discussed in Chapter One. The only differences are (1) that you are integrating
with respect to r instead of x (so, for example, the range of r is 0 to +°°) and
(2) that the potential V(x) is replaced by the effective potential Vaielr) = Vir)
R+1)
2r2
Schrodinger equation.

+

. We can solve this equation just as we did the one-dimensional

Suppose you know the reduced radial wave function, P(r}, and its first deriva-
tive, P'(r) = c(jj—I: at some point r, . Suppose you also know the behavior of P
somewhere else (for example, (1) that P(r) must go smoothly to zero as r
approaches zero (because R{r) must remain bounded)). Then, for any poten- e
tial, V(r), you can choose an energy E, set P(r} and P'(r) at that first point ry . PP

integrate from r, to the second region, and examine P(r). If the energy you
chose was an eigenvalue (one of the allowed energies for the system), then
P(r) {and R({r}) will behave correctly. If E was not an eigenvalue, P(r) will Colculate

diverge. The divergence will be to opposite infinities on opposite sides of New P, P',r
an eigenvalue.

B

Using a computer, the integration can be performed in a step-wise way. Output
Knowing P(r) and P'(r) at some point r, you find the values at r+Ar from rP
o Ar y‘l/—
P(r+Ar) = P(r) +P (r+?) Ar (16)
@ no
' ' " Ar
P'(r+Ar) = P'(r) + P (I‘+3)AI’ (17 ves

d2P/dr? can be calculated from the radial wave equation for P. The derivatives
are evaluated in the middle of each interval [r, r+Ar] so that the calculations
are more accurate (see the Appendix).

End

I8

Figure 2 shows a simplified flow chart for the strategy of the computer calcu-
lation. Before we can discuss an implementation of this strategy, we must

. el . . !
discuss the initialization of P and P’ further. Figure 2. Flow Chart of Computer Approach Three-

Dimensional Quantum Mechanics
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INITIALIZATION

There are a number of ways to initialize P{r) and P'(r). Two ways are most
common: the first initializes the (reduced) wave function, P, and its derivative
at large r (and then observes the behavior at small r) ; the second initializes the
(reduced) wave function, P, and its derivative at small r (and then observes the
tail at large r). Large r in these contexts means several times the classical turn-
ing radius {where the effective potential equals the chosen energy). Both
methods involve asymptotic expansions of the wave function for some values
of r. We'll discuss each method in turn.

The first method expands the (reduced) wave function, P, and its derivative,
P’, for large r. If the potential is such that, beyond some point, rq. the varia-
R(£+1)
2r?
say Vg. The Schrodinger equation for P takes on its asymptotic form

tion of the effective potential is negligible, then V(r) + is a constant,

P" = 2(V, - E)P (18)

whose solutions are exp{-ar) and exp{+ar} where a=+/2(V, - E}. Because there
must not be infinite probability of finding the particle at infinity, the solution
e*a" is not allowed. The result is that, beyond the point ry, P{r}=~exp(-ar) and
therefore P'(r) = —a exp(-ar). You can initialize P and P’ far enough out in r and
then integrate step-by-step back towards r = 0. The boundary condition
imposed then at r = 0 is that R(r) must be bounded (hence P(r} must go to
zero smoothly). Again the reason for this boundary condition is that infinite
probabilities are not allowed physically. When you use this strategy, you will
have to watch the behavior of P(r) and R(r) = P{r}/r carefully very near the
origin (r=0). An implementation of the program using this initialization
might look like:

16 DEF FNUCR)=a@@s (Rt (-12)-R1(-6))— Potential, V(r)
— » 28 PRINT “RCSTART), RCEND),DELTA-R, ORBITAL #(L),ENERGY?"
38 INPUT R9,RB,RT,L,E
4@ LET R7=-ABSCRT)
58 LET POSEXP(~SQRC2% (FNV(RO)-E))*P9)> e
62 LET Plw-SQR(2# (FNVCR9)-E))»P@ Initialization at large r
76 LET RepR9
8@ PRINT R,P®,P@/R
92 LET RS=(R8-R9) /20
166 LET R6=ReR7/2

118 LET P2=2x(FNV(R6I+L*(L+1)/(2*R6*REI-E)*(PB+P1%RT/2) /ntegrat/on of

12¢ LET P@eP@e(P1+P24R7/2)*R7 the Schrodinger
138 LET P1=P1+P2%R7 .

148 LET R=ReR7 equation

156 IF R>RS THEN 188 (

160 LET RS=RSe(RB-R9) /26 | Print loop
17¢ PRINT R,PO®,PR/R

18¢ 1F R-R8 THEN 18e-Return for next OAr
198 PRINT

L— cee coTo 20— Return for new parameters
21@ END
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The second method of initialization uses expansions of the reduced wave
function, P(r), near the origin. Sometimes the Schradinger equation reduces
to a simple form for small r; sometimes the solution near the origin reduces to
a solution already known. In either of these cases this second method of
initialization is the easier to use. A common example is the screened Coulomb
potential, —exp(-r/ry)/r. This potential is a good approximation to the poten-
tial experienced by the electrons in many electron atoms. For small r, this
potential reduces to the unscreened Coulomb potential, -1/r. The analytic
solution for the hydrogen atom (the unscreened Coulomb potential) can be
expanded for small r, as R{r}~r%. So the small r behavior of the wave function
for any potential which reduces to -1/r for small r (in particular for the
screened Coulomb potential) is given by:

P(r) ~ r&+1 (19)
so that
P'(r) ~ (2+1)r% (20)

In this method of initialization, you set P and P’ near r=0 and then integrate
step-wise out to large r. At large r, if the energy, E, you chose was an allowed
energy (an eigenvalue), the reduced wave function, P, will go smoothly to
zero as will, therefore, the radial wave function R(r) = P(r)/r. (This is the
behavior of P and P’ whenever V(r) is dominated by the angular momentum
term Q(2+1)/(2r2) for small r. The asymptotic equation for small r is then

P =-Q(Q_;” P which has the solution P = rQH.)
; .

A SCREENED COULOMB POTENTIAL PROGRAM

- One implementation of this computer strategy, based on initialization by
expansion for small r, is shown below. The potential is a screened Coulomb
potential which is relatively weak; the screening distance is 8 Bohr radii = 4 A,

SET-3DSCH?2
LIST
3DSCH2

12 DEF FNV(R)=-EXP(-R/8)/R— POtential, V(r)
20 PRINT “R(START),R(END), DELTA~R, ORBITAL #(L),RADIAL #(N), ENERGY?"

38 INPUT R8,R9,R7,L.N,E

4P LET P@sEXP(-RB/N)*R81(L+ 1)

5S¢ LET Pl=P@«(-R8/N¢(L+1)/RB) > [njtialization at small r

66 LET ReRS8

76  PRINT R,P@,P8/R

8¢ LET RSe(R9~R8)/26

9@ LET R6=ReR7/2

180 LET P2=2#(FNV(RG)+L*(L+1) /(2¢R6%xR6)-E)*(P@+P1¢#R7/2) ' /ntegrat/on of

118 LET P@=P@s(P1+P24R7/2)%R7 the Schrodinger
120 LET P1sP1+P2xR7 ( .
136 LET ReRe¢R7 ! equation

148 IF R<RS THEN 170 |

156 LET RS=RS+(R9-R8)>/20 ' Print /oop
168 PRINT R, P8,P8/R f

170 IF R<R9 THEN 98- Return for next Ar
182 PRINT

19¢ GOTO 20

208 END
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The variables PO, P1, and P2 are the values of P, P', and P"' for each radial dis-
tance r in turn. The print-test is not a necessary part of the strategy, but it saves
printing out every answer—all several hundred of them for each energy guess.

The ground state is expected to have the orbital angular momentum quantum
number, £ = 0. I f some other state has lower energy, you’ll find out when you
search for that state. The unscreened Coulomb potential {the hydrogen atom)
has energies (in atomic units) E = -1/(2n2). So we hunt near E = -.5; the dif-
ference from E = -.5 that you will see in a moment is real and is due to the
screening.

You need not use the analytic result for the hydrogen atom to guess your
energies; you could look at experimental results instead. From optical experi-
ments on the spectrum of hydrogen, the energy levels can be written as
E = -Ryd/n?, where Ryd = .5. You need not have a good guess for your first
energy trial; you'll home in on the eigenvalue sooner or later, It heips to think
about your first energy guess because you will home in on the answer
more quickly.

SAMPLE EXERCISE
Let’s walk through a typical exercise. For the potential V({r) = -exp(-r/8)/r:

1. Plot the 2 =0 (s state) and =1 (p state) effective potentials from r=0
through r=2>5,

The program is very simple, A printing version might look like this:

3pPOT

16 FOR X@=.2 TO 5 STEP .2
280 LET Um=EXP(=X@/8) /X8

30 PRINT X0, Vs V+2/(2%X04X0)>
4@ NEXT X@

5@ END
END
RUN
3pPOT

.2 -4.B87655 £@.1235

.4 ~2.37887 3.87193

.6 ~1.54624 1.23154

.8 ~1.13185% 431453

1 ~.882497 «117583

le2 -.717257 -2.28122E-02
1.4 “e599612 -8.94082E-082
1.6 -.511787 -.121082

1.8 ~.44362 -e 134978

2 -+ 3894 -+ 1394

2.2 -« 34526 -+ 138648

2.4 ~.308674 -. 135863

2.6 -.277895 -+ 129966

2.8 ~.251674 -. 124123

3. - 229897 ~. 117985

3.2 ~. 289478 -.111819

3.4 -. 192288 -. 18578

3.6 -e 177119 ~9.99885E-82
3.8 -+ 163654 ~9.44819E-82
Q. -« 151633 -8.91327E-82
a.2 ~. 140847 ~8.41572E~82
4.4 -+ 131125 -7.94721E-82
4.6 ~. 122327 -7.50682E-082
4.8 . 114336 -.270933

S -. 107052 -6.70523E-02
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Terminal plotting (as discussed in the Appendix) could also be used. The
changes in the program and output might look like:

S READ X8,X9.,Y8,Y9

6 DATA 9,5,-~1,1

7 GOSUB 908¢

18 FOR XP=2¢2 TO 5 STEP .2
20 LET V=-EXP(-X8/8) /X8
30 LET zes]

31 LET Y@=V

32 GOSuUB 9198

33 LET z@=2

34 LET YomuV+2/(2¢X8%X0)
35 GOSUB 9100

49 NEXT X@

4] LET ZgwX@dsYQud

42 GOSUB 9188

45 GOSUB 9220

Sg¢ EBND

APPEND-TTYPLO
RUN
3DPOT

MAX Y= |
L2,30,0.9.0.0.9,0.29.09.9.999009090900020900000000099000990900000rrIeereseereesed

4<<<*44444444««:«<<<<4<<<<4<4§*

©

N

[V
- N
-
- N
- N
-
- N

XXXXXXAXXXOCKXAK KKK KX XA XXX XXAX XXX XX XXX XXXXXXXAXKXXXAXK XXX KKK XXXX
MIN Y==) MIN X= § MAX X= 5
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2.(a) Sketch the radial wave function of the lowest $=0 state. Now find the
energy and wave function for this state with the computer.

We use the second three-dimensional Schrodinger equation program dis-
cussed above {the one which initializes P and P’ near r=0. Theenergy of
the hydrogen atom for this state is E = -.5. From the RUN you can see
that the equivalent screened Coulomb energy is about -.384. So the
state has been shifted in energy due to the screening. The wave function
is very similar to that of the hydrogen atom at small r but falls off faster
than the unscreened wave function at large r.

RUN
3DSCH2

R¢START), RCEND) , DELTA-R, ORBITAL #(L),RADIAL #(N), ENERGY?
TIE=8, 10,001,085 123

1+ 000B8BE~28
«S1

1.21
1.51
2.91
2.50001
3.dee02
3.50003
4002004
4. 50006
S.920887
S.52008
6. 208089
6.5801
T«0881)
T.58012
3.0¢014
8.5@80815
9.00Q16
950017
1¢. 2002

1.80002E~-08
«31611S5
« 390447
«392198
« 381889
«391614
+441881
+552675
«752022
1.88464
162346
2.48724
J.86882
6.0281023
9+6318
15. 3447
2445615
39+ 4649
63+ 6137
102.815
1664556

1e

*« 6868869
+386582
259734
+ 18998
» 156645
147293
« 157986
« 188004
. 241029
« 324689
-452219
« 644793
«935528
1437591
2. 04592
3.07814
4.64285
T-86807
18.822%
1646553

RCSTART) . RCEND) » DELTA=R, ORBITAL #(L), RADIAL #(N),ENERGY?
71E=8,10,+01,08, 1,-+35

1.08080E-028
51
181
151}
2.21

2. 58001
3.20002
350083
4000004
4o SBBRE
S. 000807
S. 50008
60 02009
6. 5881
7.20011
7.50012
8.028814
8.50015
9.20016
9.58017
10. @002

1.330008E-08
+385322
+ 362477
«319217
«241372
159243
T+92664E-22
3+ 6999 TE~83
=T+17993E-22
-« 154642
-+ 255851
-+.386882
-+569407
=-.830197
~1.2095
-1.76683
-2+59081
-3.81401
-5.63528
~84+35338
~12.4177

1o

« 59867

- 358888

«21%402

« 120086

6. 369 6BE-22

«@26422

1.85713E-€3
=~1e. 7949 6E~-B2
-3+43646E-02
-5. 1009 6E~82
-7.@3412E-C2
~9.48997E-02
-. 127721
-. 172784
~e 235574
~+323846

- Q487
-+ 626131
~e879285
=1.24178S

R(START), RCEND), DELTA-R, ORBI TAL #(L),RADIAL #(N),ENERGY?
71E=8, 190,891, 0,1,-+384

1. 00980E-08
« 51
l.f1
1«51
2.01
2450091
J.88002
3. 50803
4+ 22084
4. 50006
S.ee0a7
S.50808
6o 02009
6+ 5881
T.28011
7+5081¢8
8.00014
B.56E15
9.00816
9.58617
18. 0062

1. 20000E~-28
+ 306405
«36873
«335219
«£71278
«208678
«149724
« 183993
6.85428E-02
4. |B3SYE-£2
1.88119E-82
~8+ 18361E-04
~2+B5754E-82
=4.J539S5E-@2
-7434854E~22
-« 115534
-+ 177238
-+268917
=+ 487663
~e+ 618411
=e939641

1.

« 680794
«365879
221999

« 1349 64
8.27118E~-02
4.99B77E-022
«929712

1. 71355E-82
9+ 11898E-03
3.76233E~-03
~1e47336E-04
-3.489 1B8E-83
~6+ 69827E=£3
~1.049 77E~02
=1.54042E-02
~2021294E-02
=34 16367E-02
-4 52951E-02
«6+ 5S@94ABE-02
=939 624E- 02

RCSTART), RCEND) , DELTA~R, ORBITAL #(L), RADIAL #(N),ENERGY?
?

END
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2.(b) Sketch the radial wave function for the first excited 8=0state. Now find
the energy and wave function for this state with the computer.

We use the same program. The energy for a hydrogen atom in this state
is E = ~.125. From the RUN you can see that this state is almost lost to
the continuum (i.e., E = -.0375 is nearly positive),

RUN
JDpscH2

R(START), RCEND), DELTA-R, ORBITAL #(L),RADIAL #<(N), ENERGY?

T1IE~8, 10,4+ 01:0,2,-0 185

1.00800K-08 1.068000E~-08 1s

81 - 298207 «38472
1.01 « 322358 +319167
151 .« 220945 « 146321
2.81 6.97935E~02 3.47232E~02
2. 50091 ~8.90025E-02 ~3.56889E-02
J. 80002 =. 244826 ~+B881508
J. 56003 -+387851 ~e 110814
4. 03004 -+519923 =+ 129979
4.50086 -+ 645218 -+ 14338
S.20007 ~e770876 ~e 154013
S.58008 ~e92191 ~e 163981
s.008809 ~1.84896 ~e 174824
6. 5801 ~1.220838 -+ 187748
T.00011 ~1s42686 -+203792
7.50¢212 ~1.67963 -+ 223947
8.88014 ~1.99409% -. 249257
8.50815 ~-2.38768 -+ 280899
908816 ~2.88243 ~+ 320265
9.50017 -3.50595 ~.3600a
10. 80802 ~43.29308 - 4293

RCSTART), RCEND), DEL.TA=R, ORBI TAL #(L), RADIAL #(N), ENERGY?

?71E-8,20,.01,0,2,~.03

1.8000808E-28

1. 00000E-028

e

1.21 « 306065 + 303635
2.981 1.88067E-02 4.97845E-03
3. 20002 -« 320202 =+ 106733
4480004 -+53714 ~+ 134284
S« 00007 -+ 626289 -. 1252856
6. 20009 -+ 619001 -+ 183165
7T.000211 -« 558657 -+278664
8.00014 =+ 44896 ~+ 886119
9.08816 ~+33225%3 «3. 69 163E-02
10.8002 ~+211838 -2+ 11834E-02
11. 9002 ~9.0Q0691E~02 -8+ 18795E~03
12.00802 2498S37E-02 2. 48 776E-03
13. 0002 - 15861 1. 19852E~02
14. 2803 « 275959 819711
15.8083 «4l1112% 2+74878E-82
16.0003 «562671 3.51663E-02
17.8001 -« 738602 4. 34468E-02
i8.81 + 9509 62 S+280Q19E-02
19.0098 1.20758 6. 35242E-02
20.0096 1.52516 7.62213E-082

RCSTART) » RCEND) » DELTA-Rs ORBITAL #(L),RADIAL #¢(N)>, ENERGY?

71E~8,20,+81,0,2,-.035%

1. 808GBE-0R8 1. 00BPPE-08 1.

101 «306913 «38387S
2.01 1.29796E-02 6+45783E~023
3.008082 ~+316965 -+ 185654

4. 80004 -+ 537928 =+ 13448

S« 00007 -+ 636199 =. 127238

6. 28009 =+ 64284 =. 107138
7.00011 =+592335 =8+ 46466E~02
8.08014 ~«5123%4 =6+ 40432E-82
9.20816 -e 428293 =4+ 66984E-082
18.8202 =+326891 ~3.2688 6E~02
11. 00082 =+237352 =2+ 15771E=-02
12. 0832 -+ 153334 =1.27776E-82
13. 00882 =7+ 42306E-02 =S. 7099 4E~-83
14.8063 2. 00354E-03 1+43187E-84
15. 2083 7+839B4E~02 Se22592E~83
16.8803 « 158723 9+928PLE~92
17.80081 » 247585 1.45619E-862
18.81 «351452 1495143E-02
19.02898 s 47502 2.4988 1E-82
20.0096 « 627367 3. 13532E-82

RCSTART), RCEND), DELTA-Rs, ORBI TAL #(L),RADIAL #(N)>, ENERGY?

?
END
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Plots of these two 2=0 states can be made on the terminal (as discussed
in the Appendix). The changes in your program and a RUN are:

S READ X8,X9.Y8,Y9
6 DATA @, 18,=2,51
7 GOSUB 9980

70 LET X@=R

71 LET Y®2PO/R

72 LET Z@=l

73 GOSUB 9102

168 LET X@=R

161 LET Y@»PO/R
162 GOSUB 9180

175 LET L@xX@aYQu@
176 GOSUB 9186

1868 GOSUB 92688
APPEND=TTYPLO

RUN

JDSCH2

RCSTART) , RCEND) , DELTA=R, ORBI TAL #(L), RADIAL #(N), ENERGY?

71E-8,10,¢021,8,1,~-.384

MAX Y= 1
P30.0.0000.00.99.0.00000909.0.9.9.29.9.9058000080008920.00,0.9.8.9.0.9989.09398990999082904

PR R L E R R

PP 00.00.0000000000009090900090¢2900000000029999009990000000000000v8 0904
MIN Ye~-,2 MIN X= @ MAX X= 18

RCSTARTY » RCEND) » DEL TA-R, ORBL TAL #(L), RADIAL #¢N). BIERGY?
T1E=6,10,+61,0,2,-4838
MAX Y& |

P R P R R R R R P R R R R L P R R T

P20 009909.000000090900000000900000000¢e0e0t0IIINS 0092092929200
MIN Y=-,2 MIN X= @ NAX X= @
RCSTART)» RCEND) , DEL TA=R, ORBITAL #(L), RADIAL #(N),ENERGY?

?

END
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2 (c) Sketch the radial wave function for the lowest energy =1 state. Now
find the energy wave function for this state with the computer.

We use the same program. The hydrogen atom energy for this state is

=-.125. The lowest p state and the second lowest s state are degenerate
in hydrogen. This state is again nearly lost to the continuum for this
screened Coulomb case. If the state were lost to the continuum, a RUN
for E=0 would not produce enough curvature (the kinetic energy term
in the Schrodinger equation) to bring the tail to zero. This state starts
out from R(0)=0 and has one (positive) lobe before the tail goes
smoothly to zero, The RUN shows that E is about -.0325 atomic units.

RUN
3DSCH2

RCSTART)» RCEND), DELTA~R, ORBITAL #(L),RADIAL ¢(N), ENERGY?
112-8,20,401,1,2,0

1.00000E-28 1. 900BOGE~-16 1.00080E-08
1.81 3+ B4730E~06 3.81713E-06
2.01 T«26512E-06 36 61449E-36

3.00002 9+ 63828E-06 J.21274E-06
4. 00004 9.83324E~06 2445828E-06
S.g8007 8+28370E~26 1. 65672E-06
6+ 00009 S« 61402E~06 9.38655E~07
700011 2+3%942E-06 3.370542-07
8.008ja “l.@9131E-06 ~1.36411E-07
9.008016 =44 48446E-06 ~4+98265E-07
19. 8002 «T+ 6709 8E~86 =7+ 6T8T6E~97
11.0002 =1.05752E-0S =9+ 61363E-27
12.0002 =131706E~-85 =1.297S3IE-86
13. 0002 ~1+5460SE-05 =1+ 18925E~-026
14. 8803 =1+74658E-08% =§e247S3E~06
15.0003 =1.92160E-0% =1+ 28 104E-026
16.0003 =2087441E-08 =129 648E~B6
17.8001 “R+ 288 J2E-0S =1.29988E-086
18401 «2+32757E-0S5 ~1+892)8E-06
1940098 =2443268E-05 =1+279 7RE~R6
200996 ~2.5274SE-89% ~1¢26312E-86

RCSTART), RCEND) , DELTA~R, ORBI TAL #(L), RADIAL #(N), ENERGY ?
?

Since these last two states have different energies, the degeneracy of
the unscreened Coulomb potential is broken by even this fairly weak
screening.

3. Calculate the difference in energy between the two £=0 states in atomic
units, eV, Hertz, and A.

(1eV=1602x10""2 ergs; h = 6.624 x 10727 erg-sec; ¢ = 2.998 x 1010
cm/sec)

E = - .038 +.384 = .346 atomic units = 9.41 eV = 1.51 x 10°17 ergs.
frequency = 2.28 x 1075 Hertz; lambda = 1317 A.

Note that the wavelength for emission from this transition compares
well with the Lyman alpha line {1216 A). The difference between the
second £=0state and the lowest £=1 state is .005 atomic units=.136 eV.
The spectral line for this transition has lambda=91110 A (in the infrared).

4. Plot the probability distribution of the full wave function Y(r0,p) =
R(r}Y(9,0) in the =0~ ¢ =180 plane for the ground state (the lowest-lying

=0 state).

Terminal plotting can be used. The following program stores the radial
and angular parts of the wave function and then finds the current com-
bination for each point plotted.
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3DR-T

18 DEF FNV(R)=-EXP(-R/8) /R— Potential, V(r)

26 DIM TC4@1),RC402}

38 PRINT “R(START), RCEND),ORBITAL #(L), ENERGY 7"
49 INPUT RB,R9,L.E |

S8 LET R7=(R9-R8)/408 | , ... ,._ .

80 LET T7=3.1a1s9sage ( [Nitialization

76 LET Re=To=g@ )

8@ FOR I=1 TO 4d1

98 LET Te=-3.14159/24C1~1)%T7

188 LET T(1)=1 Calculation of
118 IF L@ THEN 136 .

126 LET TC1)=(COSCT>>r2 ©0), .

138 IF TC1)1<T@ THEN 158 stored in T( )
148 LET T@=TCI1)

158 NEXT 1

166 LET ReR8
178 LET P@=Rr(L+1) L
189 LET Pls(Le1)#RIL Initialization of R(r)
19¢ LET I=1
288 LET RC1}=sP@+P8/(R*R)
218 LET R6sReR7/2
226 LET P2=24(FNV(R6)+L*(L+1) /¢ 2+R6«R6) -E)* (P@+P1%R7/2)
230 LET P@sPd+(P1+P2#R7/2)%R7
| 248 LET PisP1+P2#R7 )
258 LET R=R+R? L
268 LET I=l+}
276 LET R{I)=p@+PB/(Re¢R)
280 1IF RU1)<RO THEN 388 | _.
298 LET RO=RCI) Find [R2(r)/r2]
L_3pe IF R<R9+R7/2 THEN 210
31¢ PRINT "MAX. Rs'; R@3 " MAX. T=";T@

2
 store F0 i o )
r

max

338 INPUT X8.X9,Y8,Y9,29

342 GOSUB 9@08

358 FOR X@=X8 TO X9 STEP (X9-X8)/1a— SlEp across x

360 FOR Y@=Y8 TO Y9 STEP (Y9-Y8)/18— Step across y

376 IF ABS(X@)+ABS(Y8)=8 THEN 490

388 LET R=SQR(XB*XB+Y@+YE)

39¢ 1F R>(RO-R8) THEN 49@ . .

488 LET 1@s1¢INTC(R/RT+.S) Find right elements

220 LET Tier | N 440 of R( Jand T( )

4386 GOTO 450
440 LET 11=28)+INTCATN(YB/XB)/T7+.5)

460 1F 28+(Z8-8) <= 8 THEN 488 .
47¢ LET 20=9 } Force all too-big | l]/ |2 to
488 GOSUB 9186—Store point in plot
49¢ NEXT Y0
500 NEXT X0 .
si1e GOSUB 9gee— Print out the plot
S28 PRINT
—s3e aoTO 328— Return for new plot
sag  STOP

Integration
of the

Schrodinger
equation

326 PRINT "LEFT X, RIGHT X, BOTTOM Y, TOP Y, MAX. FOR ZO?"( Initialize

| plot

456 LET zBINT(9sRLI@ISTLI1)/29+.5)— Find right character for |y |2

be 9
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RUN
3DR-T

RCSTART), RCEND), ORBI TAL #CL), ENERGY 7

?1E-8,5,8,-+384

MAXe R= 975235 MAXe T»

LEFT X, RIGHT X, BOTTOM Y, TOP Y, MAX. FOR Z@?

P=ledsleds=l,1,1

MAX Y= 1
}19.0.9.0.9.0.0.¢.0.0.009990990000009080090009980009999039040009906009+0900e0999
Ye [ 4 i 1 1 |} 1 i 1 1 1 1 1 [}
Y

A 4

Ye 1 1 1 1 H 2 2 2 ] 1 1 1 1
Y

Y

Ye 1 1 1 2 2 3 3 3 2 2 1 1 1
Y

Y

Yo 1 1 1 -4 3 4 4 4 3 2 1 1 1
Y

Y

Yt 1 i 2 3 4 5 6 S 4 3 2 1 1
Y

Y

Yt 1 1 2 3 4 6 9 6 4 3 2 1 1
Y

Y

Yi 1 1 2 3 4 5 é E) 4 3 2 1 1
Y

Y

Yo 1 1 1 2 3 4 4 4 3 2 1 1 1
Y

Y .

Yo 1 1 1 2 2 3 3 3 2 2 1 1 t
Y

Y
Yo 1 1 1 1 1 2 2 2 1 1 1 1 t
Y

Y

Ye L] 1 1 3 1 1 1 1 1 1 ! 1 []
RXXXXXXAAXXXXXXXXXA XX XXX XXX XX XXX XXX KX X XXX XK K XAKXXXKX
MIN Y=-] MIN X==].4 MAX xX= 1.4

LEFT X, RIGHT X, BOTTOM Y, TOP Y, MAX. FOR Z67

?

END

EXERCISES — Use computer when appropriate.
I. For the screened Coulomb potential V(r) = -exp(-r/10}/r:
1. Plot the effective potential for L =0 and £ = 1.

2.(a) Find the radial wave function and the energy for the lowest energy
¢ = 0 state.

2.(b) Find the radial wave function and the energy for the first excited
¢ = O state.

2.(c) Find the radial wave function and the energy for the lowest energy
L =1 state.

3. Calculate the difference in energy between the two 2 = 0 states in
atomic units, eV, Hertz, and A.

4. Plot the probability distribution of the full wave function {(r,0,¢) =
R(r)Y(8,0) in the ¢ = 0 - ¢ = 180° plane for the lowest lying p state.

Hint: Use the program which initializes P(r) near the origin.
Il. For the screened Coulomb potential V(r) = -exp(-r/5)/r:
1. Plot the effective potential for £ =0and £ = 1.

2.(a) Find the radial wave function and the energy of the lowest =0
state.
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2.(b) Find the radial wave function and the energy for the first excited
¢ = 0 state.

2.(c) Find the radial wave function and the energy for the lowest energy
£ =1 state,

3. Calculate the difference in energy between the two =0 states in
atomic units, eV, Hertz, and A.

4. Plot the probability distribution of the full wave function (r,0,p) =
R(r)Y(0,0) in the ¢ = 0 - ¢ = 180° plane for the lowest-lying p state.

Hint: Use the program which initializes P(r) near the origin.
Itl. For the Lennard-Jones 6-12 potential, V(r)=400 (1/r12-1/r8):
1. Plot the effective potential for 8=0and 2=1.

2.(a) Find the radial wave function and the energy of the lowest {=0
state.

2.(b) Find the radial wave function and the energy for the first excited
¢ =0 state.

2.(c) Find the radial wave function and the energy for the lowest energy
£ =1 state.

3. Calculate the difference in energy between the two 2=0 states in
atomic units, eV, Hertz, and A.

4. Plot the probability distribution of the full wave function Y(r,0,9) =
R(r)Y(8,0) in the $=0-¢= 180° plane for the lowest-lying p state.

Hint: Use the program which initializes P(r) at large r.
1V. For the screened Coulomb potential V(r) = -exp(-r)/r:
1. Piot the effective potential for ¢=0and 2= 1.

2.(a) Find the radial wave function and the energy of the lowest 2=0
state.

2.(b) Find the radial wave function and the energy for the first excited
¢ =0 state.

2.(c) Find the radial wave function and the energy for the lowest energy
Q=1 state.

3. Calculate the difference in energy between the two £=0 states in
atomic units, eV, Hertz, and A.

4. Plot the probability distribution of the full wave function y(r,0,¢) =
R(r)Y(6.,4) in the  =0- ¢ = 180° plane for the lowest-lying p state.

Hint: Use the program which initializes P(r) near the origin.

*V. For the potential family, V(r) = 400 * (r-12-r-m):
1. Find theground state energy and wave function for m=3,4, 6, and 10.
2. Plot the energy of the ground state as a function of m.

3. Find the small r and large r behaviors of each wave function.
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4. Can you extrapolate your results to all m?

. For the potential family, V{r) = -exp(-r/rg)/r:

1. Find the ground state energies and wave functions for r=1, 2, 4, 8,
and 12,

2. Plot the energies versus the screening parameter, ro-
3. Find the small r and large r behavior of each wave function.

4. Can you generalize your results to all screening parameters, re?

**VII. For the potential family, V{r) = -1/r™:

1. Find the ground state energies and wave functions for m= 1,3 6,
and 10.

2. Plot the energies of the ground states as a function of m.
3. Find the small r and large r behavior of each wave function.

4. Can you extrapolate your results to the behavior of these ground
states for all m?
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CHAPTER THREE: THE ONE-DIMENSIONAL, TIME-DEPENDNT,
SCHRODINGER EQUATION FOR TIME-INDEPENDENT POTENTIALS

INTRODUCTION

The time-dependent Schrédinger equation in one dimension is

h2 32y -1
~om a)<2+V(x,t)tl/ = Ihat (21)

If the potential, V(x,t), is independent of time, V=V(x]}, then the equation
separates by setting Y({x,t) = P(x)T(t). The equation for P(x) is the time-
independent Schrodinger equation

h2 d2p
-.2;5;(7+V(X)P = EP (22)
The equation for T(t) is
dT  E
praiii hT (23)

E is the separation constant and, as you can see from its position in Equation
(22), plays the role of the energy.

The equation for T(t) (Equation (23)) solves immediately to

LE,
T(t) = Ae N (24)

which in Hartree atomic units (see the Preface) is

T(t) = Ae 't (25)
The constant A is just a normalization constant.
The spatial equation (Equation (1)) can be solved analytically (for a few
problems) or numerically as discussed in Chapter One. This chapter empha-
sizes the effects of the time part of the full wave function Y(x,t) = P(x)exp
(-iEt).
STATES OF THE INFINITE SQUARE WELL
The infinite square well,
o x<0
Vix) =¢ 0 0<x<L (26)
o x>L

can be solved analytically. The result is standing waves whose spatial wave
functions are

P.(x) = B, sin{nmx/L) n=1,2,--- (27)

B,, being a normalization constant. The full wave function for these discrete
states are then

Yo (x,1) = C_ sin{nax/L)e Ent (28)
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The energies of the states are

2
E, = —2'<‘|:> n2 n=1,2,--- (29)

THE BEHAVIOR OF SETS OF DISCRETE STATES

Consider setting up a particular shape for the electron’s distribution at time = 0.
For definiteness, let's set up (an approximation to) a square wave with
% wavelength in the well, By the ideas of Fourier Series, we know that we
want to add up a number of these discrete states (in particular, those with
n=1,3,5,7,..) with varying amounts for each n. If we write

square wave = X A P, (x)
then the A ‘s are proportional to 1/n in order to produce a square wave.

After setting up such a shape at t=0, you then let time start passing. Each
mode of the well will oscillate in time with its own angular frequency w, =
E./h or w, = E_ in atomic units. The energy depends on the wavelength
squared or the wave vector of the state squared. The higher energy modes-run
ahead of the lower energy modes, and the shape distorts away from a square
wave.

This result is unlike the result of a square standing wave on a stretched string,
On a stretched string, the speeds of the various waves are independent of the
wavelengths (or wave vectors k_ = nm/L for the discrete states). The speed, v,
of waves on a string depends only on the parameters of the string (tension, etc.).

In the case of these electron waves, the speed of the wave, v= w/k = E/hk =
hk/2m or v = k/2 in atomic units. The speed depends on the wave vector
(that is, the wavelength). This is an example of what is called a dispersive
medium. The vacuum (where V(x) = 0 everywhere} is a dispersive medium
for electron waves.

Let's watch the time development of our electron square wave in the infinite
square well. A program (and its RUN) to perform the sums and products
necessary might be:

VELSET

18 DIM AC1S,211,EC151,CC15),SC1S)
28 LET P1=3.141%9
38 LET Lela— Length of well
48 FOR 1=1 TO 18— Step through 15 states
S8 LET Nu2e(l-1)+1
68 LET KO=sNsP1/L ;
78 LET Et1lskosxkes2<Energy of each state St(;re engr}q;es
8@ FOR Jul TO 21w _ and spatia
9@ LET X@=(J-1)*L/20 Step across x wave functi
188 LET AL1.J)=SINCK@+X8) /N=-Spatial wave function ave runction
116 NEXT J for each state
120 NEXT I
= 130 PRINT “TIME?"
14¢ INPUT T
158 FOR I=i TO 15
168 LET CLII=COSCECI1sT@) .
[ 178 LET s:n-sm(-ztnnm} Store exp (-iEt)
! 18¢ NEXT 1
5 198 FOR J=i TO 21«—St€p across x
200 LET X@=(J-1)%L/20
218 LET Al=a2sg /Step through 15 states

228 FOR I=1 TO IS
[239 LET almaleal1,J1sCe11e— Real part of Y(x,t)
248 LET A2%A2+AT1,JI*S01 ) ;

256 NEXT 1 Imaginary part

260 PRINT X0,Al®Al+A2%A2

276 NEXT J

280 PRINT

298 GOTO 138« Return for new time
300 END




TIME?

[

« 646566
+ 7826895
«613192
«373336
618071
« 649561
« 616355
- 889667
«616991
- 643279
«616989
589667
- 616355
« 649561
«618072
«57 3338
«61319
«70268%
*« 646569
1.06422E~-12

[

- 1089818
6.21948E-082
+295673
+551871

« 6908341

+ 434205

« 689529
«740919
1.58383
1.88855
1.58383
«T4092
689528
«434204

« 69834
«55187

« 295672
6.21952E-92
- 109818
1.74860E~13

[]

« 124334
4.38288E-02
9.81896E-02
« 44567
148464
+651564
«942334
123172
135741
2.25539
13574}
1.23172
942334

« 651561

o« 148464

« 344566
9.81895E-02
4+38286E-02
« 124333

S5+ 16428E-13
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Terminal plotting (as discussed in the Appendix) can also be used. The changes
you might make in the program and a RUN follow:

S READ X8,X9,Y8,Y9
6 DATA 0,1,@,2.5

7 GOSUB 9006

260 LET YB=AISAI+AZRAZ
279 LET z0s1

27@ NEXT J

262 LET Z@e1

264 GOSUB 9188

289 GOSUB 9288
APPEND-TTYPLO

RUN

WELSET

TIME?

79

MAX Ys 2.5
XXXXXXXXXXXAXAXXXXXXXXXXAXXAXX XXX XK XXX KIKXX XXX KX XKL X XXX XXX

[ Y R L L R L T T

1 1

JOOXAXXKXXXXNOCAXXXXXXXXAXAKXXKX XXX XK A XXX XXX XAAXXAXIOOCXXXXXIOOKKXAAXKAANXX
MIN Y= @ MIN X= 8 MAX X= |

TIME?

1

MAX Y= 2.9

KRXKAKXXXXXAXXXXAXXXXAXKIOCKAXKKAIXAX XXX XXXXXEXAXKXXXCK XXX XX XXX AXXXXK

11 1 )
1 1
XXXXXXRXXXXXAXXXXKXXXXXX XXX AKX XXX XXXXAKXCKXXXX XXX XXX XX XXX XXX XXX XX XXKXXX
MIN Y= ¢ MIN X= § MAX X= |

PP L L L LR E T
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TiNE?

MAX Y= 2.5
XXAXXXXAXXXXXAXKIOXXAX XXX XAXAXLXXXXAXXX XXX XXX XXXAXXAAXXXXAXKX

P R P L L L LTI T T I R Y

t 1 1 1 ! 1
Y 1
h.0.0.0.0909.9.9.0 0000090009200 00000000¢0009099909090000800000000 0020398939994
MIN Y= @ MIN X= @ MAX X= |
TIME?
1
END

This same sort of procedure can be carried out for the discrete states of any
one-dimensional potential. If an analytic solution to the problem exists, it is
usually more efficient to use that. If an analytic solution does not exist, you
can solve numerically for the spatial wave function, P(x), as discussed in
Chapter One. The same sort of procedure can be carried out for states in a
continuum (for example, the states of a finite square well whose energies lie
above the top of the well). Before we discuss the behavior of sets of continuum
states as time passes, we need to discuss the spatial wave function solutions
for one-dimensional continuum states.

ONE-DIMENSIONAL CONTINUUM STATES

Suppose we have some potential well such that, for | x| > x4, the potential,
V(x), is essentially zero. Then, for | x | > x4, the Schrédinger equation for the
spatial wave function, P(x), becomes

P"(x) = -2EP(x) (30)

The solution for P(x) is P(x) = exp(+ikx), exp(-ikx) or, equivalently, P(x) =
cos(kx), sin(kx). Neither solution must be discarded because of boundary
conditions; both solutions are well-behaved everywhere; there is no classi-
cally forbidden region for large x which forces one or the other solution to be
unphysical, There are two solutions to the equation for every energy, E.
Furthermore, since there are no boundary conditions which limit the accept-
able energies, every energy, E, is allowed. Hence the states form a continuum
of pairs of states.

if the potential, V(x), is symmetric, the theorem discussed in Chapter One
{and the Appendix) tells us we can choose the states to be wholly even in x or
wholly odd in x if we wish. Since any linear combination of solutions to the
Schrodinger equation is itself a solution, we could choose any arbitrary phase
and make sin{kx+@) one of our two solutions; the other solution (by ortho-
gonality) woul!d then be cos(kx+¢).




40 [0 QUANTUM MECHANICS

The simplest potential of the sort we’ve just been discussing is V(x) = 0 every-
where (the free particle). The even and odd wave functions for energy, E, in
this potential are cos(kx) and sin(kx) where k = V/2E in atomic units. The
full solutions, ¥ (x,t), for the states of energy, E, are then

.2 e 2
Yix,t) = coslkx)e ™ V2 and sin(kx)e k12 (3N
We will now put together sets of these states to make pulses, or wave packets.

FREE WAVE PACKETS

Since for the continuum we have a large range of closely-spaced allowed
energies and wave vectors, we can build up a shaped pulse. Such a pulse is
usually known as a wave packet. To make a Gaussian-shaped wave packet,
exp(—(x/xo)z), for example, you use a range of wave vectors, k (around k =
some central kq), each with its own amplitude, A(k}, where A(k) x, exp
(—(k-k0)2 x02/2). (This is just a formula you can find in books on Fourier
transforms.)

You can build up almost any shaped free packet you wish. For a square wave
packet with width x,, A(k) = xosin((k—k )x0/2)/((k—ko)x0/2). For a trian-
gular wave packet with basic width 2x, A?k) = Xg sinz((k-ko)xo/2)/((k—ko)
x°/2)2. The central wave vector, kg, determines the speed of the packet. The
group velocity is v = dE/dK = hk,/m or k, in atomic units.

The next section discusses what happens when you set up such a wave packet
at time equals zero and then let go. Remember that the wave packet is travel-
ing through a dispersive medium; the packet shape will distort and deform as
the higher energy states in the packet shift out ahead of the lower states.

THE PROPAGATION OF FREE WAVE PACKETS

A program can easily calculate and add up the amplitudes of the various com-
ponents of a packet. Because of limitations on how many amplitudes can be
stored and how long it may take a program to RUN, an approximation to the
continuous distribution of amplitudes, A(k), must be made. Using twenty k’s,
for example, across the Gaussian A(k) produces a reasonably good Gaussian
wave packet in space.

We set up a packet, centered at the origin, at time = 0; we then let time pass
and calculate each component’s time factor, exp(-iEt). This part of the full
wave function shifts the relative phases of the various components of the
wave packet (since each component has its own energy, E). At some later
time, you add the phase-shifted components back up. The packet has moved
and distorted. Notice that the time parts of the wave functions do nothing to
the amplitudes of the states because | exp(-iEt) | = 1.

Figure 3 shows a block diagram of this strategy. One implementation of this
strategy is the following program:

Figure 3.

Input
E, Width

Calcutate
x, Wavefunction

Last
Component

Input
———
To

Calculate
vi(x, T)

no

Last
Component

Qutput
x, 1 wix, T

no

Flow Chart of Computer Approach to
Wavepacket Strategy



FREPAC

19
2e
3
40

DIM PC2),263,Q02),263,E021),CC21),5021)

PRINT “CENTRAL ENERGY, HALF-WIDTH OF PACKET?"
INPUT E8,X6
LET KBHSQR(Ztu)/Centra/ wave vector
LET K9#=3/¢1+X6)+— NK

FOR I=s! TO 2}l
LET KBoKBeCeot1yeKe Step through states
LET EL11=K0sKe/2<— Energy of each state

LET K1%K8-K8 .

LET As.3995694X64EXP(-X 6eX 64K 19K | 12y —AMplitude
FOR J=1 T0 26+——— Step across x of each state
LET X@=-2.5¢(J-1)%.5 .

LET Pt1.J1=ascoSckpaxe)<—Real part of spatial

LET QUI,JI=a+SINCKO*X®_ wave function

NEXT J \ .
NEXT 1 Imaginary part
PRINT “TIME THE PACKET HAS PROPAGATED?"
INPUT TO

FOR 1=} TO 21

LET CCIJ=COSCECII*TO) _;
LET s:n-smc-s:nno)} Store exp(-iEt)
NEXT 1

FOR J=1 TO 26 «————— Step across x
LET X0==2.5¢(J=1)%.9S

LET PlsP2e@
FOR I=1 10 214——o Step through states

LET P1e=P1+K9#(PL1,JI%CCT1-Q01,J25t1r<—Real part of Y(x,t)
LET P2-P20K9-(OtloJ]-C[l)oPt!,J):uSt!))k/magjnary part

NEXT 1
PRINT X@,Pi*Pl1+P2%P2

NEXT o

PRINT . .
aoTo 178-.—Return for new propagation time
END
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Store energies
and wave
functions for
several states
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GET~-FREPAC
RUN
FREPAC

CENTRAL ENERGY.,
21
TIME THE PACKET
170
=25
-2
-1.8
-1
-3
[}
*5
1
1.5
2
2.5
3
3.5
4
4.5
5
$.5
6
6e5
M
TS
8
8eS
9
9e5
18

TIME THE PACKET
11
=2¢5
-2
~1e8
-1
-5
]
5

6eS

T8
8
8.5
9
9.5
10

TIME THE PACKET

S5
6
68
7

748
8
8.5
9
9.8
18

TIME THE PACKET
?
END

HALF-WIDTH OF PACKET?
HAS PROPAGATED?

2.61288E-03
1.88537E~02
. 188321

« 370809
781667

1.

«781667
«370809
195321
1.80837E-02
2.91288E-03
1+ 44G26E~ 84
1+86646E-86
7. 61904E-08
9.58167E~07
17588 6E-27
8+03676E~07
7.47309E-88
7.27233E-87
2.83461E-08
64 63SS4E-87
7.77853E~09
60 1569TE=07
4. 21349E-10
5.85946E-87
1+53330E-09

HAS PROPAGATED?

2¢36933E-05
2.61658E-04
1.59568E-~03
T+97562E-03
3+ 12888E-02
9.52993E~02
. 22992

« 431434
«626177

« 708069

« 626177
«431434

e 22992
952989E-02
3. 128S7E~02
797564E~03
1459562E~03
2.61660E-84
23691 1E-05
2.82795E-06
3. 28551 E-27
1.98938E-07
6.8386SE-07
1e 1279QE~07
8¢47568E-87
Q. B0029E~ 08

HAS PROPAGATED?

2. 46894E-04
4.37928E-84
1« 11567E-023
2.31684E-03
4.5471SE~@3
« 228767
1.538S4E-@2
«@26273
4+ 20155E-@22
60 3T406E~-82
9.31364E~-82
128852
«169734
«21322%
« 253389
. 286229
* 389387
3188079
« 309387
« 286228
+ 253389
«213224
¢ 169734
128882
9+31303E-82
6+ 3740SE~82

HAS PROPAGATED?




To use terminal plotting you might make the following changes:

S READ X8,X9,Y8,Y9,20
6 DATA ~2:.5,10,8,14,8

7 GOSUB 98808

360 LET YS=PisPi+sPRePe
362 aOsSuUB 9100

326 GOSUB 9288
APPEND=TTYPLO

RUN

FREPAC

CENTRAL ENERGY, HALF-VIDTH OF PACKET?
12 1

TIME THE PACKET HAS PROPAGATED?

160

MAX Yo |

XARXAXXXKOOBXXAXAXXXAXXXXAXX XX XXX XIOCXXX XX XXX XAXXAX XXX XX XLKXXXX XXX KX

R R T L L L

Yo e &6 8¢ 3 ¢ 9 00 O © B8 00 & O
XXAXXRXAXKXXXXAXXAX XXX XXX XXX XXX XAXLXXXX XX LHAXXXXK XX XXX KKK XXXKXK

MIN Y= & MIN X=-2.%

TIME THE PACKET HAS PROPAGATED?
1t
MAX Y= |

RXAXXARXLAXXXXXKXXXAXAXXAXXXXXXXXARXAXXXXAXXKXKXXKX XX XAXKXXA XXX XXX XXAX LXK

R Ry e e

[]
Ye # 90

MIN Y= § MIN X==2.8

TIME-DEPENDENT SCHRODINGER EQUATION O 43

MAX X= i@

e 0 890 @ 0 @ 02 B8 o
XAXAXAXAXXAXAXXXXXK
MAX X= 18
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TIME THE PACKET HAS PROPAGATED?

3

MAX Y= |

RAXXXXAKXAAXXXX KKK XXX AXXX XXX XXX LXXXXXL XXX XXX XAKAX XXX K XXX XX XXX KKK KKK

D R L LT R R

8

Y @ 66 o ¢ 06
XXAXKAXKIAXAXAXKLXXXXAXXKAXXXAXXARX X XXX XX KIXXEAX AL XXX XXX XKXXXKXAXXKXKAX
MIN Y= 0 MIN X=-2.5 MAX X= 10

THE PROPAGATION OF A PACKET
OVER APOTENTIAL WELL

You can also use this strategy to propagate wave packets by potential wells.
For a general (symmetric) potential well, you could calculate the spatial wave
functions numerically as discussed in Chapter One. The strategy of the calcu-
lation is the same as that for free packets. The only difference is the calculation

of the spatial wave function.

We will form our packet at x = 0 to the left of the well; we will then start the
packet towards the well. In the end, part of the packet will get past the well;
part will be reflected. Some of you may have seen the films of the quantum
mechanical scattering of packets off the finite square well. The smoother the
potential, the easier it is for the packet to get past. Smooth edges on the
potential also diminish the rapid oscillations (the interference effects) at the

edges of the well.




A program to propagate wave packets by potential wells might look like the

following:
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GET-VPAC
LIST
VPAC

18
28
3
48
50
60
78
80
98
100
11e
120
130
148
1508
160
170
189
199
208
21e
220
230
240
250
260
27¢
280
290
300
31e
320
338
340
350
360
310
380
390
age
419
4208
430
440
450
460
a1
480
490
—» 588
Sie
520
530
540
550
568
570
s82

590
639
610
620

630
649
658
6680
610

DIM PC21,261,0021,263,EL213,C0211,5021) .
DEF FNV(X)=~1@B*EXP(~(X-6)%(X~-6))>+———Potential, V(x)
PRINT “CENTRAL ENERGY, MALF-VIDTH OF PACKET?"

INPUT ES,X6
LET K8=SQR(2«ES)

LET K9=3/¢ 128%X6)

-

tﬁ; f:,','.o 21«———Step through states
LET K@=K8+(I=11)#K9

LET EL131=K@xKe/2 -«—Energy of each state

LET K7=K@-K8 ___—Amplitude of
LET A=.3995694X 64 EXP(-X6+X6kKT#KT /2)

LET QC1,1)=Q@=pl=g each state
LET PCI,11sP@=A riali i

UET Slskoen /n/t/a/{ze ca/cu/atlon'

LET XQeX5=0 of radial wave function

LET N=1

LET Ki=p]

LET Mi=Ql

LET LO=2%(FNV(X2)-EL1))

LET L1=L@+P@

LET Ni=LB*Q0

LET Ko=Pl+L1#X1/2

LET M2=QieN1#X1/2

LET L@=2¢(FNV(X@+X1/2)-EC1])

LET L2sL@=(P@+K[xX1/2) Fourth Order

LET N2sL@*(QO+M1%X1/2) Runge-Kutta

LET K3=PleL2#X1/2 .

LET MImQ1+N2#X[/2 calculation of

LET L3aL@#(PR+K2%X1/2) real and /'maginary
LET N3=sLO*(QO+M22X1/2) .

LET KawPleL3%X1} parts of radial

LET MAsQleN3IsX | wave function

LET L@=2#(FNV(X@+X1)~E[1])

LET L4=L@»(PR+K3=X 1)

LET N4s=LOx(Q@+M3xX1)

LET P@aPR+¢X1*(K1+2%K2+2sK3+K4) /6

LET PlsPl+X1#(L}+2%L2+2*L3+L4) /6

LET Q8=Q@+X1x(Mi+25M2+ 20MI+ ML) /6

LET QiI=Ql+X1x(N1+2%«N2+2%N3+N4) /6

LET X@eX@8+X!

LET XS=X8$+X1

IF ABS(XS-.5)>X1/2 THEN 488 ) Store real and

LET XS=@ - i

LET NeN+1 imaginary parts

LET PL1,N1=P@ : ;

LET QI .N1=0a of spatial wave functions
NExsds12-6 THEN 188<—peryrn for next Ax

PRINT "TIME THE PACKET HAS PROPAGATED?"

INPUT T8 )
FOR 1=1 TO 21

LET C{1)COSCECII=TO) {
LET SCIJ=SINC-ECII#TO) |
NEXT I )
FOR J=] TO 26— __

LET X0aCJ~11%25 Step across x

LET Pl=p2=¢

FOR 1=) To 21«———Step through states

LET PIsEl+KO#(PCI,JIsCl13-0t1,J1xs01)——FReal Y(x,t)

LET P2=P2+K9#(QLI,J3#CLI1)+PCI,JI0SCI) ) e ;

BExT o Imaginary y(x,t)
PRINT X, Pl#PleP24P2

NEXT J

PRINT . .

aoro see-«———Return for now propagation time

END

Store exp(-iEt)
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RUN
VPAC

CENTRAL ENERGY, HALF<WIDTH OF PACKET?
716, 1

TIME THE PACKET HAS PROPAGATED?

e

[} le

5 + 781693

] «371724

1eS « 1086117

2 «818311

2.8 2.0S5115E-83
3 1.47756E~04
3.8 1+ 792S55E~06
a 6.09511E-28
408 2. 1527SE-07
L] 3.11307E~-07
Se 8 1. 37568E~87
6 2+ 79572E-08
6.5 2.5S129E-99
7 1.56037E-08
TeS T+41130E-08
8 6.41502E-08
85 2+ 068 62E-07
9 1.98623E-07
9.8 1.21317E~07
18 12 01854E~86
18.5 2+39367E~26
1 1+ 7139SE-06
11e5 3+ 1468SE~06
12 2:97387E-06
1245 1. 72569E-06

TIME THE PACKET HAS PROPAGATED?
715

[ 4 2. 67713E-06
5 4.86381E-86
1 J«57881E~-025
1.8 1.418087E-04
] 6+ 599 B3E-G4
2.5 2¢39183E-03
3 8.04A472E-03
3.5 2.29857E-82
4 $.23398E-02
4e S 6. |1069SE~02
L] 5.44877E~02
5.5 4e 349 22E-02
6 3.81167E-02
6e S 2. 628P9E-02
7 3.84742E-02
T8 7.70667E-02
8 «141367

8.5 «17333

9 « 160835

9.5 ¢ 121498

10 T«60528E~02
16.5 3.8%898E-02
11 1. 65678E~-02
118 $.88771E-83
12 1471766E-83

12.8 4.59441E-84
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Using terminal plotting you get:

CENTRAL ENERGY, HALF-VIDTH OF PACKET?

710, 1

TIME THE PACKET HAS PROPAGATED?

79

MAX Ys }

XXXXRACOOOEOCE KKK XAXXRXKIKK KK XK KXKOOKKK XXX IO XXX XXKXXXK
Y1

1

P R L T e

| I T U SN NS RS SN NS NS N N AN AN RO N N N L .
AXXAXXXXXXXXAAKKCOOOCRICOCOXXXX XXX XK XXX XXLXXXA XK XXX X X KX XOOKX XXX
MIN Y= ¢ MIN X= § MAX X= [2.8

TIME THE PACKET HAS PROPAGATED?

18

MAX Yo |
XAXXXXXXRAXXOCOCOEXXXXAXRKX XXX XXX XXX X KKAK YK XX XXX XX XX XXX AXLKXAAXXXXAKX

1 1 1 1 ]
I ) S B B | 1
Ye 1111 tr 1 1
AXAXXAXXXXXXALXXXXRXX XXX XXX XXX XXX K XXX X OXKLX XXX XK KLXLX XXX XXX AKX XK
MIN Y= @ MIN X= @ MAX X= 12.5
TIME THE PACKET HAS PROPAGATED?
?

P R R L L L LR LR L LT L

END

The program uses a fourth-order Runge-Kutta method of integration to find
the spatial wave function. Adding up wave functions to make packets demands
that not only the amplitudes of the wave functions but also the phases must be
very accurate. You must be careful to use a small enough space step.

Because of the limitations of some computers, only 21 different wave vectors
are used in the program presented, Sums over only 21 wave vectors are hardly
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integrals over all wave vectors. This compromise leads to ““ghost’”’ packets
which image the main packet but lie at large positive and negative x. The com-
promise also means that the packet shape is only approximate. This last pro-
gram takes a fong time to RUN. On some machines it is a half hour before the
program finishes finding the spatial wave functions.

EXERCISES — Use computer when appropriate

Using the fact (from Fourier Series calculations) that a triangle wave has

only odd harmonics in the ratios of 1/{2n+1)2 n=1,2,3, ... :

*
I.

1. Set up such an initial electron distribution in an infinite square well.

2. Find the shape of the combination of states after 1 through 5 units
of time.

3. Identify times when certain modes seem dominant. Explain this
phenomenon in terms of the periods of the modes you used.

Using the fact {(from Fourier Series calculations) that a linear periodic

wave (a ramp or sawtooth wave) has harmonic content in the ratios +1, -1/2,
+1/3, -1/4, ... :

1. Set up such an initial electron distribution in an infinite square well,

2. Find the shape of the combination of states after 1 through 5 units
of time.

3. Identify times when certain modes seem dominant. Explain this
phenomenon in terms of the periods of the modes you used.

*1tl, Form a combination of the 3 lowest states of the infinite square well,

1. Find the form of your combination for T = 0, 1, 2,9, and 16 units
of time.

2. Is the motion periodic in time? What is (half) the lowest common
multiple of the periods of the states?

IV. Form a Gaussian free wave packet at the origin at time equals zero. Use a
central energy of 8 and a packet half-width of .5. See figure at right.

v,

1. Propagate the wave packet for 0,.5, 1, 1.5, 2, and 2.5 units of time.
Observe and discuss the behavior of the packet,

2. From your calculations, measure the group velocity of the wave
packet. Compare this result to the central wave vector of the pulse and
to the phase velocities for the lowest, highest, and central energy com-
ponents of the packet.

3. From your calculations, measure the full-width at half maximum for
the packet at each time. The width is predicted (for a Gaussian packet)
to go as W(t) = ((W(0))2+ t2/(W(0})2)%. Do your measurements of the
propagated packets agree?

4. By integrating (crudely) |¥|* across the whole range of x, see if the
total probability for the particle remains constant.

Form a triangular free wave packet at the origin at time equals zero. Use

a central energy of 8 and a packet half-width of .5. See figure at right.

1. Propagate the wave packet for 0,.5, 1, 1.5, 2, and 2.5 units of time.
Observe and discuss the behavior of the packet.

T ———=
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2. From your calculations, measure the group velocity of the wave
packet. Compare this result to the central wave vector of the pulse and
to the phase velocities for the lowest, highest, and central energy com-
ponents of the packet.

3. From your calculations, measure the full-width at half maximum for
the packet at each time. The width is predicted (for a Gaussian packet)
to go as W(t) = (W(0))2 + t2/(W(0)2)%. Do your measurements of the
propagated packets agree?

4. By integrating (crudely) | y |2 across the whole range of x, see if the
total probability for the particle remains constant.

*VI. Form a square free wave packet at the origin at time equals zero. Use a
central energy of 8 and a packet half-width of .5.

1. Propagate the wave packet for 0,.5, 1, 1.5, 2, and 2.5 units of time.
Observe and discuss the behavior of the packet.

2. From your calculations, measure the group velocity of the wave
packet., Compare this result to the central wave vector of the pulse and
to the phase velocities for the lowest, highest, and central energy com-
ponents of the packet.

3. From your calculations, measure the full-width at half maximum for
the packet at each time. The width is predicted (for a Gaussian packet)
to go as W(t) = ((W(0))* + t*/(W(0)* ). Do your measurements of the
propagated packets agree?

4. By integrating (crudely) | Y |2 across the whole range of x, see if the
total proability for the particle remains constant.

**VIl. Usinga Gaussian wave packet {of central energy E = 50) and a Gaussian
well (of depth 100 and half-width 1):

1. Propagate the packet for times of 0, .2, .4,.6,.8, and 1.

2. Describe and discuss the results in terms of reflection coefficients,
transmission coefficients, and interference effects.

**VIII. Using a triangular wave packet (of central energy E = 10) and a
Gaussian well (of depth 100 and half-width 1):

1. Propagate the packet for times of 0, 1, 2, 2.5, 3, 4, and 5.

2. Describe and discuss the results in terms of reflection coefficients,
transmission coefficients, and interference effects.
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CHAPTER FOUR: THREE-DIMENSIONAL CONTINUUM STATES
- FOR SPHERICALLY SYMMETRIC POTENTIALS

INTRODUCTION

With the computer you can solve for the continuum states of any spherically
symmetric potential. The method is very similar to that described for calcu-
lating the discrete states for these potentials (Chapter Two). The three-
dimensional time independent Schrodinger equation is

h2 o

—2—v2w<r)+vmw(?) = EY(T) (32)

m
As we did in Chapter Two, you can separate this differential equation into
polar coordinates when V is spherically symmetric, i.e., when V(¥) = V(r}.
You set Y(r) = R(r)Y(8,¢) and substitute this expression into Equation (32).
The result is {1) an equation for R{r) which includes the effective potential
and the energy, and (2) an equation for Y{8,¢) are spherical harmonics:

Y 0,8 = N, LT (cos@) e*'™? (33)

where N, = is a normalization coefficient, £ and m are integers such that
fm|<=¢, and .C;Z“ is an associated Legendre function.

The equation for R(r} can be simplified by transforming to an equivalent for
P(r) = rR(r). The equation for P{(r) looks very much like the one-dimensional
Schrodinger equation:

d2P(r)
dr?

= 2(V(r) + &+1)/(2r2) - E) P(r) (34)

This equation can be solved iteratively in the manner discussed in Chapters
One and Two.

BOUNDARY CONDITIONS FOR P(r)

P{r) must go to zero smoothly as r goes to zero. This is just a consequence of
the fact that R(r) must be bounded everywhere. {f R(r) were infinite at some
fy. then [ ¢ (r, 0,9) |2 would also be infinite at that point. This would mean in-
finite probability of finding the particle at ry which is unphysical.

This demand that P{r) go to zero as r goes to zero demands that the solution
for P(r) be unique. Hence, unlike the case of continuum states in one dimen-
sion (Chapter Three), there is only one radial wavefunction for each continuum
energy in three dimensions.

If V(r) can be approximated by some simpler potential (for example, the
Coulomb potential for the hydrogen atom) for small r, then you can approxi-
mate the behavior of R(r) in this region by that of the solutions to the simpler
potential. Then the behavior of P(r) is also known for small r. (For the Cou-
lomb case P{r) = r%*1), This allows you to initialize the wave functions for
such cases near r = 0 and then integrate step-by-step out to large r. When this
is possible, it is the easiest strategy to use.

Assume now that V(r) goes to zero for large r. Most important, three-

dimensional potentials do go to zero far enough from the force center. Then,

as you can see from Equation (34), the form of the Schrédinger equation for
P(r) becomes P"' = -2EP. The continuum states for such a potential have posi-
tive energies, E, so this equation for P has the (asymptotic) solution P(r) =
Asin (kr) + Bcos{kr) for larger, k = \/_Z_E Since there is only one state for each
energy, we can conveniently write this solution as P(r) = A sin{kr-8m/2+38 )

for large r. 6,2 is called the phase shift. The equation for R(r) at large r is then

spherical Bessel functions, R(r} = sin(kr-£m/2+8) /r.




Notice there is no reason that P(r) should go to zero as r gets large. This is un-
like the situation for discrete states; in discrete states, the wave function
entered a classically forbidden region for large r, and P(r) had to go smoothly
to zero. For continuum states, the only demand on R{r) and P(r) forlarger
is that they remain bounded.

THE ITERATIVE PROCEDURE

You can solve the equation for P(r) (Equation (34)) iteratively in much the
same way we solved the same equation for discrete states in Chapter Two.

Suppose you know P(r) at some point r; and the behavior of P(r) somewhere
else (say at r,). You can initialize P{r) and P'(r) at ry; you can then take a
small step Ar towards r and find the next values of P and P’ from

P{r+Ar) = P(r) + P'Q+%>Ar (39)
, ' " Ar
P'(r+Ar) = P'(r) +P <r+7>Ar (36)

The value of P" is obtained from Equation (34). The use of the half-step
(r+Ar/2) is discussed in the Appendix.

in this manner, you walk your way in (or out) r until you reach r,. If the be-
havior at r, is correct, you have the state for that energy.

If you do not know the asymptotic expansion for P(r) near r = 0 (that is, if
V{r} is not approximated by a potential whose solutions you know), then
initialize P(r) to sin{kr-2a/2+8,) at iarge r; integrate back to r = 0; and guess
phase shifts, 82, until you find the one for which P(r) goes smoothly to zero.
One possible implementation of this strategy is:

SCAT!

186 DEF FNV(R)=4@@#(Rt(-12)-Rr(~6))>e—— Potential, V(r)

28 LET Pal. 14159

—— 38 PRINT “RCSTART), RCEND), DELTA=R?"

4@ INPUT R9,R8,R7

S8 PRINT "ORBITAL #(L), ENERGY, PHASE(DEGS.) ?"

68 INPUT L,E,D

70 LET D=PxD/188 W

80 LET K=SQR(2+E)><+— |[//ave vector itializati
06 LET RI-ABSC(RT Initialization
188 LET P@=SINCK*R8+D)

118 LET P1=K#COS(X%R8+D)

128 LET ReR9

138 LET Nxg

140 PRINT R, P@,P8/R

15¢ LET RSwR9+(R8-R9)/28

— 168 LET R6=R+R7/2
17€ LET P2=2+«(FNV(R6)+L*(L+1)/(2¢R6xR6)-E)*(PB+P1*R7/2) /ntegfat,‘e
188 LET P3=F8 Schrodinger
196 LET PO=P@+(Pl+P2+RT /2)#R7 .

200 LET Pi=P1eP2+R7 equation

218 LET R=ReR7 .
228 1F SGN(P@)=SGN(P3) THEN 260+« Jest for zero crossing
239 LET NsN+le—— COUNt Zero crossings

248 1F N>1 THEN 269 .

256 LET R@=((R=R7 )apa-mpa)/(pa-pa)} Store asymptotic

266 IF R>RS THEN 290 ;

270 LET RS=R5+(R8-R9)/20 ! Print loop Zero crossing

280 PRINT R,P2,P8/R

L -20¢ 1F Rem8 THEN 168-«———FReturn for next Ar

300 LET PI9sNxP-K«R@+L*xP/2 . .
318 PRINT “PHASE SHIFT (DEGS.) ---usetpwp} Print phase shift, 6,
328 PRINT

336 4070 30— Return for new parameters

348 END
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The parts of the program dealing with phase shift calculations will be discussed
in a section below on Scattering Theory.

If you do know the small r behavior of P(r}, then the solution is completely
determined. You initialize the wave function P(r) near r = 0 and integrate out
to large r. You can then measure the phase shift, §, , from the positions of
zeros of P at large r. At a zero, ry, in the large r region, kro—Qn/Z +6,=nm,
where n is the number of zeros of P(r) betweenr=0andr =r,; k = E.rgis
measured so 8, can be calculated. nm is the actual phase of the wave function
at that zero; kry - £7/2 is the phase the wave function would have if V(r) were
zero everywhere (i.e., when P(r} = sin(kr-27/2) everywhere); so 8, is the
phase shift of the true wave function relative to a free particle. Let’s look
at a specific problem—continuous states for the screened Coulomb potential,
V(r} = -exp(-r/8)/r.

CONTINUUM STATES FOR A SCREENED COULOMB
POTENTIAL

You already know {before you start) a good deal about the solution. Since the
potential is approximated by the unscreened Coulomb potential for small r,
the wave function, P, comes out of r = 0 as r2*1 ; the derivative then behaves
as (2+1)r2. At large r, P(r) becomes a sine wave of constant amplitude. In this
sine wave region, we will measure the phase shifts for a given energy and vari-
ous orbital angular momentum quantum numbers, £.

Find the wave function of the state with E = 4 and £ = 0 using the computer.

A program implementing the strategy we just discussed follows:

SCAT2

18 DEF FNV(R)=-EXP(-R/8)/R«— Potential, V(r)
2@ LET P=3.14159%
— = 38 PRINT "R(START),RCEND), DELTA-R, ORBITAL #(L),ENERGY?"
a@ INPUT R8,R9,RT,L,E
S8 LET K=SQR(2+«E)>«——|/gve vector
63 LET PO=RBr(L+1) ) A
7@ LET Pl=s(L+ D*R8TL Initialization
80 LET R=RS
9@ PRINT R, P8,P@/R
182 LET Nag
11@ LET RSe(R9-R8)/20
= 120 LET R6sR+R7/2
132 LET P2e28(FNV(R6)+L#*(L+ 1) /(2¢R6+R6) -E)# (PO+PI*RT /2) ( Integrate
146 LET PIspe Sdi
156 LET P@sPB+(P1+P2¢R7/2)4R7 Schroq/nger
1680 LET PI=sPlsP2sRT equation
178 LET R=ReR7 )
182 1F SGN(P@)=SGN(P3) THEN 218 <-—7est for zero crossing
19¢ LET NeNe| = :
208 LET R@s((R-R7>sPG-R#P3) /(PO-P3) Count zero crossings
210 1F R<RS THEN 240 | po: Save last zero crossing
228 LET RS=RS+(R9-R8)/28 . Print /oop
238 PRINT R, PO, PB/R
248 1F R<R9 THEN 120«— Return for new Ar step
258 LET P9sN#pP-KeR@+L*P/2 -
260 PRINT “PHASE SHIFT (DEGS.> =3 18exposp | [ 1INt phase
286 G070 38 b shift, b
298 END ~——Return for new parameters
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SCAT2

RCSTART), RCEND), DELTA-R, ORBI TAL #(L), ENERGY ?

71E-8,20,.01,8,4

1. 3QAGBE~B8 1.68000E-28
101 -« 104641
2.91 8+ 31046E-02
3.00002 ~3.2669 |E~82
4. 238004 -2 22426E-02
Se. 00807 8.23536E-02
6. 20009 -+ 135673
7.00011 « 180357
8.e22014 ~s21112
9.00016 223709
16.0002 -.216279
11.0802 - 188997
12.2002 -e 1424843
13.8802 - «@85408

14. 02003 ~1.85095E-02
15.02803 -5.@83436E-082
16. 0083 « 114574
17.0001 -+ 16799
i8.81 « 202769
19.0098 -+ 222403
20.0096 22866

PHASE SHIFT (DEGS.) = 76.8723

1
-+ 103605
4+ 13456E-02
~1+08896E-02
~5.56658E-03
1.68705E-82
~2.25118E-02
2.57649E~02
~2+63895E-02
2.48561E-02
-2+ 16275E~02
1.71812E-02
-1+20833E-02
6¢56972E-23
~1.32208E-023
-3+35618E-23
7.16873E-083
~9+.88166E-03
1. 1258 7E-82
-1.16994E-082
1.18277E-02

R(START), RCEND), DELTA-R, ORBI TAL #(L), ENERGY ?

?71E~8,20,.061, 1,4

1.00000E-08 1.000Q0@8E-16
1.901 9.95304E-07
2.01 ~1+89195E-06
J. Q00082 1+ 11603E-06
4.806004 ~1«BS1P6E-06
S. 608087 8.99266E-27
6. 20209 ~6.67755E-07
T.000811 3.73776E-07
8.00814 ~4.285669E-08
9.20016 ~2+.95826E-27
10.e002 6. 09 248E-07
11.8082 =84+ 67447E-07
12. 90802 1. B4499E-26
13. 8002 -1« 12398E-06
14.0083 1.09680E-06
i15.08803 -9+.63026E-07
16.02003 7.37329E-07
17.08881 «4.40326E-07
18,01 1+32242E-07
19.2098 2.18111E-07
20.9896 -5.47601E-07

PHASE SHIFT (DEGS.) = 58.1798

1.08000E~-08
9+85450E-07
-5.43257E-07
3.72006E-07
~2¢62762E-07
1.79851E~07
-1«11291E-67
5. 339%8E-08
-5.31327E-09
~3.28692E-08
6+ 09237E-08
-7.88574E-08
8.78805E~08
-8+64581E-08
7.828 4BE-08
~6.42004E-08
4.60822E-028
~2.59013E~28
T«34273E-069
1 14736E-98
~2.73668E-08

R(START), R(END), DELTA~R, ORBITAL #(L)>, ENERGY ?

7iE~8,2@,.81,2,4

1.80000E-08 1.00800E-24
1.01 4+ 58785E~12
2.01 ~1+86842E-12
J.80002 =1+84727TE-13
4.30004 le 63441E~12
S.0p007 ~3.63941E-12
6.00009 4+06160E~12
T.008011 ~4e 68Q43E-12
8.08814 4.84206E~12
S.0080816 ~4.53217E~12
12.2002 3.78059E-12
1i.8802 -2+ 65989E~12
12.08802 1.27886E-12
13. 8082 2.27821E-13
14.8003 ~1.71282E-12
15.0003 3.BJ065E~12
16. 0803 ~4.B85205E-12
17.2881 4. 6T676E-12
18.081 ~4eB4TILE-12
19.0298 4.58227E~12
20.8096 -3.86771E~12

PHASE SHIFT (DEGS.) = S5p.2172

1.08Q8BE~-16
4.54243E-12
~9+29564E-13
-3,49089E~ 14
4.23598E-13
“6eB7874E~13
6+ T6924E-13
-6+ 68622E-13
6. Q@5247E-13
~5.@3565E-13
3.780S3E-13
~2+41863E~-13
1.06570E-13
1.75243E~14
~1+422342E-13
2.92040E-13
-2453248E-13
2.751@1E-13
-2.69181E~13
2+.41D4TE-13
~1+93292E-13

R(START), RCEND), DELTA-R, ORBI TAL #(L), ENERGY ?

?71E-8,208,.81,3,4

1.20088E~-08 I.82000E-32
1.81 9.29985E-18
2.01 1.39632E-17
3.00002 ~1+87301E~17
4. 00004 1.85872E~17
S5.02007 =1.5T158E-17
6. 00009 1411726E-17
T.80011 -5.51514E-18
8.020014 -6+ 24636E-19
9.00016 6. 61048E-18
18.0002 =1.18457E-17
1i.8002 1.58172E-17
12. 0002 ~1481431E-17
13. 8802 1.86881E~17
14. 6803 -1«71823E-17
15.00083 1.49227E~-17
16.0083 ~9+4567T4E-18
17.8001 3.94849E-18
18.91 14 42276E-18
19.0098 ~7+15816E~18
20.0096 1.21736E-17

PHASE SHIFT (DEGS.) = 46.7426

1.00800E-24
9.20778E~18
69468 6E-18
-6424333E-18
4. 62674E- 18
~3+14311E-18
1.86208E-18
«7.87864E-19
~7.80032E-26
Te34476E-19
=1+ 18455E-18
1+43792E-18
~1.%51190E-18
1.43137E-18
-1.22728E-18
9.34829E~19
~5.9 1834E-19
2.32262E-19
7.89985E-20
=3.765S1E~19
€6+28387E-19

RCSTART), RCEND), DELTA-R, ORBI TAL #(L), ENERGY ?

?
END
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A terminal plot of this wave function can be obtained by using the subroutines
in TTYPLO (as discussed in the Appendix). The changes you might make and
a RUN are:

S READ X8,X9,Y8,Y9
6 DATA ©,208,-+15,1
7 GOSUB 90200

8 LET XP=Y@»Z@=0

9 GOSUB 91086

90 LET z20=}

91 LET X@=R

92 LET Yo=PO/R

93 GOSUB 91868

230 LET X@=R

231 LET Y@=PO/R
232 GOSUB 9109

270 GOSUB 9229
APPEND-TTYPLO

220 LET R5=RS+(R9=-R8)/79
RUN

SCATZ

RCSTART), RCEND), DELTA~R, ORBI TAL #(L), ENERGY ?

71E-8,28,¢81,0:4

PHASE SHIFT (DEGS.) = 76.8723

MAX Y= |

200OEXXXXOA A XXX XX XXX XXX XX XXX XA XOOKAX XXX XX XXX XX KAX X KOO A XXX XXXXXX
Y1

1 1 11 i
| B R N PR R R R P R R R R RN R R DR R R R R R R B

R L E R R

XXX00OX XXX XXX XXX XXX XL XX XX XX XXX XXX XAXAX XXX A XXX XXX KX XXXARAXK XX
MIN Yes=,15 MIN X= & MAX X= 28
RCSTART), RCEND), DELTA-R, ORBI TAL #(L), ENERGY?
?

END

SCATTERING THEORY

The presence of a potential V{r) modifies the wave function (compared to
the wave function for the free particle). Scattering theory deals with the
phase shifts in terms of the differential and total cross sections. ¢ (6} and
0,0, - Using the ideas developed in the last section, you can use the computer
to find these phase shifts and cross sections for general, spherically sym-
metric potentials.

First, (to make ciear the meaning of the phase shift) let’'s RUN the program
for a continuum state of the free particle (V = 0 everywhere). You are actually
producing the free particle wave function as expanded in polar coordinates.
The radial function R(r) will be a spherical Bessel function.

We can use the program which initializes the wave function and its derivative
at small r. For £ = 0 the differential equation for P is P"" = -2EP which gives
the only acceptable solution, P = A sin(kr) where k = /2E. This solution is
true everywhere so we already know that R(r) = A sin{kr)/r for £ = O states.
Notice that the small r behavior of P is P ~ r2+1
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For 2> =1, the Schrédinger equation for P becomes for small r
P"(r) = (RL+1)/r2)P(r) (37)

The solution for P has P ~ r#+1_So these solutions can be initialized at small r
to P~ r2*1 P’ ~ (R+1)r?, (These are the same arguments necessary to justify
this initialization for the Coulomb potential; these arguments work for any
potential which is dominated by the angular momentum term, £(2+1)/(2r2),
at small r.)

A RUN of the program for V=0,E=4,and =0 is:

GET-SCAT2

16 DEF FNV(R)=@
RUN

SCAT2

RCSTART), RCEND), DELTA-R, ORBI TAL. #(L), ENERGY ?
11E~8,20,.01,0,4

1.P0P0OE-~28 1.20020E-28 1

1.21 9.93218E~-82 9.83384E-02
2,01 =« 198986 ~+ 898998

J. 20082 285323 9.51869E-22
4e BRO0A ~e 335738 -8.+39335E~£2
5. 98067 +2353813 78701 7E-02
6. 20029 -+336922 ~8. 61528E-2R
T.00011 +287577 4. 10817E~82
8.20814 -.210827$5 =2.62839E-02
S.208816 «11283 1425031E-0@2
19. 2022 =3.84594E-83 =3.84587E~-84
11.0002 -« [0S212 -9+ 56454E~-83
12. 0002 204042 1. 70031E-02
13. g002 -+283035 =2+ 1771SE~02
14. 2203 «334514 24 38934E-02
15.0003 -+ 353472 «2435643E-02
16.0003 «338067 2.11288E-02
17.8221 -+289797 =1+ 70467E-02
18.21 «221241 1.22843E-92
19. 0098 -+ 125566 =60 68SIIE-0I
20.900896 1 76845E=022 8.83797E~-24

PHASE SHIFT (DEGSe) = +164799
RCSTART) » RCEND), DELTA=R, ORBI TAL. #(L), ENERGY ?
?

IND

A terminal plot of this state is:

18 DEF FNV(R)s@
RUN
SCATE

RCSTART) , RCEND) » DELTA-R, ORBITAL #(L), ENERGY?

71E-8,20,.01,0, 4

PHASE SHIFT (DEGS.) = .164799

MAX Y= | ’

X200 20X 00X IOO00EXAOOCA XA XXX XA XXX AAXRXAX XXX XXX XKXXXXXN XX
Y

11 111 1 11 1 1
11 111 11 et
1 111 11 3] i i

R L L LR L L

AXXXXAXXAXXKXXXXXXXL XXX XXXX X XXX XXKK KX XXXAXX XKL LXK XXX KL XXX XXX XK XXX XXX
MIN Y=-,25 MIN X= @ MAX X= 28
RCSTART),» RCEND), DELTA-R, ORBITAL. #(L), ENERGY?
?

END
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‘You can see the relationship between the V = 0, £ = 0 state and the { = 0
state shown before for the screened Coulomb potential. First, the behavior
of R{r) at small r is very s-state-like for the screened Coulomb potential;
the small r region is very reminiscent of the discrete spectrum s states for
this potential. Second, there is a clear phase shift between the free particle
and the screened Coulomb wave functions at large r. This difference in phase
is the phase shift, BQ, so central to scattering theory.

You can calculate BQ directly from your results: Count the number, n, of
zero crossings of the wave function between the origin and some zero cross-
ing at rg in the asymptotic region. The phase shift, 8¢, is defined in scatter-
ing theory by setting the asymptotic behavior of P(r) = A sin{kr-£m/2+6,),
where k = +/2E. (kr-7/2) would be the phase of the free particle at fo SO
8y = nm—kry +87/2.

Scattering theory points out that you can measure the shape of a potential
by observing the interference pattern between a particle scattered off the
potential and free particles which were not scattered. The parameters which
are important in the interference pattern are the phase shifts, 6 g, defined above.

In scattering theory, you write the asymptotic wave function as f(6) exp(ikr)/r.

The differential scattering cross section, o(f), is then o(f) = |f(0)|2. By ex-
panding everything in spherical harmonics you find that

fley =

x| -

Z (22+1) exp(i8y)sind, Lo{cosd)
2=0

where 8¢ is the phase shift and Ly(cos 0) is the £th Legendre polynomial; k is
still \/2E.

You can calculate the Legendre polynomials most easily by using the recursion
relation

QLy(cosf) = (2€-1) cosf L,_, (cosB) ~{L-1) Lo 5 (cosd)
with the two lowest order polynomials, £, = 1 and £, = cos 0.

A program to do this calculation (and its RUN) might look like:

— 18 PRINT “ANGLE (DEGSs) 7"
20 INPUT T
30 LET T=3.14159¢7/180
4@ LET C=COS(T)
50 LET Lowie— —— [
68 PRINT " 8",L®
70 LET LisC e —
| 88 PRINT " 1", L1 1
A 96 FOR L=2 TO 10
196 LET L2w((2%L~1)&CeL1=(L-1)*L@) /L 4——— i i
e LT Recursion relation for £,
120 LET L@=L)
138 LET Li=L2

128 NEXT L
IS8  PRINT
—— 160 40T0 18 «——— Return for new angle
178 END
END
RUN
LEGEN
ANGLE (DEGS.)?
745
[4 ]
1 .187107
2 +250001
3 -4 176776
4 -.40625
5 -.375651
6 ~+ 148439
7 127057
s +29834
9 +285536
10 +115114
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You can measure the phase shifts, 6Q, for a given potential and given energy
from your computer-based calculation of P(r). You can calculate the Legendre
polynomials using the program given earlier. Finally, you can calculate f(f)
and, from f(8), a(8), the differential cross section.
You can calculate the total cross section, 0, ., even more easily. The total
cross section (from scattering theory) is given by

tot

g, = 4—;2(2Q+1)sin269
k% ¢=0

O, 15 very easily measured from the computer derived phase shifts.

To calculate cross sections you need to calculate phase shifts for a number of
orbital angular momentum quantum numbers, €. You need phase shifts for all
¢ up to that for which the phase shift is negligibly smali. Scattering theory
suggests that, if R is a characteristic radius of the potential, then: when
kR >>1,8,’'s for all £ are needed; when kR <<'1, only 6, and 8, are impor-
tant, k =+/2E. This fact makes these calculations well suited to individual pro-
ject work, You could also divide up the different { states and have some
people find certain phase shifts and other people find others. Everyone can
then use all the results to derive cross section information.

The simplest way to calculate phase shifts using the continum wave function
program is to remove the lines which print out the wave functions, Since
phase is very sensitive to small inaccuracies in the calculation, the phase
shifts are only good to a few degrees. You can check the method by calcu-
lating phase shifts for V = 0 everywhere. You could use a higher convergence
method for more accuracy. You would still need to integrate far out to get
the phase of the asymptotic wave function correct. Even for V =0 (excluding
¢ = 0), you must integrate far enough out to make 2(2+1)/(2r2) completely
negligible with respect to the energy. Notice that, if V(r) becomes negligible
then both the free particle and the particle in V(r) are obeying P"" = 2(£(¢+1)/
{(2r2)-E)P. You can get an approximation to the phase shift by comparing the
phases of the V =0 and V(r) particles when V(r) is negligible (even though
neither solution is truly in its asymptotic region}.

For example, find the £ = 0, 1, 2, and 3 phase shifts for the screened Coulomb
potentiat V(r) = -exp(-r/8)/r. Use an energy, E, of 4,

The results of RUNing the program are:

8, = 76.8- 0.1 = 76.7; §, = 58.2- 1.1 = 57.1;

]
Il
Il

5, 50.2- 3.1 = 47.1; &, 46.7- 6.4 = 40.3

If we take the screening parameter, 8, as the measure of the size, R, of the
potential, then, for E = 4, kR = 22.6 which is large with respect to £. We
expect to need a large number of £ to produce a good approximation to the
cross sections, Other kR are illustrated in the exercises.

Now let’s calculate an approximation to the total cross section using the 4
phase shifts calculated above.
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A program to combine the phase shifts into cross sections might look like:

CROSS

——» 1@ PRINT *MAX. L, ENERGY, ANGLE (DEGS.)?"
28 INPUT NLE,A
30 LET A=A%3.14159/188
46 LET K=SQR(2«E) -—— [lave vector
S@% LET C=COSCRA)
60 LET SlaFlsF2=g Initialization
78 PRINT “DELTA FOR EACH L (DEGS.) 7™
—» 88 FOR L=8 TO N
9@ PRINT “"L="jL
) 188 INPUT D
116 LET D=D+3.14159/188
126 1F L=¢ THEN 180
138 1F Ls1 THEN 209 .
148 LET L2=¢(2eL=1)¢CaL1~(L-1)2L0) L +—— L, by recursion
15 LET L@aL]
168 LET LlsL2
17¢ GOTO 218
188 LET LO=L2e|<— [,
198 GOTO 219
280 LET ListL2ac<— [,
210 LET S=SINC(D>
220 LET FlsF1+(24L+ 1)%COSCDI#5%L2 «——Real part of 1{0)
238 LET F2aF2+(2¢Le1)%S#SeL2 w0 [maginary part
240 LET S1=S1+(2%L+1)%SeS - .
L 289 NEXT L Total cross section
268 PRINT "F(THETA)="
270 PRINT F1/K,F2/K
286 PRINT "SIGMACTHETA)="
2908 PRINT (FIsF1+F29F2) /(K*K)
308 PRINT “SIGMA TOTALs*"
318 PRINT ax3.14159%51/(K*K)
328 PRINT
338 GoOTO 10 «— Return for new parameters
348 END

Finally, let's calculate an approximation to the differential cross section, o(8)
at § = 0 degrees.

MAX. L, ENERGY, ANGLE (DEGS.)?
?73,4,0
DELTA FOR EACH L (DEGS.)>?
L= @
2767
Ls |
187, 1
L= 2
47}
L= 3
740.3
FC(THETA)=
24 66521 3. 86652
SIGMACTHETA) =
16.59869
SIGMA TOTAL=
13. 6242

MAX. L, ENERGY, ANGLE (DEGS.)?
?

END

EXERCISES — Use computer when appropriate.
|. For the potential, V(r) = -exp(-r/8)/r, and an energy of E = 10:

1. Plot the effective potential for L = 0, 1, 2, and 3. What is kR for
this situation?

2. Plot the radial wave function for 8 =Qand 2 = 1.
3. Find the phase shifts for =0, 1, 2, and 3.

4. Calculate an approximation to the differential cross section at 0, 90,
and 180 degrees using the four phase shifts from Part 3.

5. Calculate an approximation to the total cross section using these
four phase shifts.

Hint: Use the program which initializes the wave function at small r. To
get better accuracy for the phase shifts, subtract the corresponding
values of the phase shifts for V = 0.
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1. For the potential, V(r) = -exp(-r/8)/r, and an energy of E = 1:

v,

**V.

1. Plot the effective potential for £ =0, 1, 2, and 3. What is kR for this
situation?

2. Plot the radial wave function for £ = Qand £ = 1.
3. Find the phase shifts for =0, 1, 2, and 3.

4. Calculate an approximation to the differential cross section at 0, 90,
and 180 degrees using the four phase shifts from Part 3.

5. Calculate an approximation to the total cross section using these
four phase shifts.

Hint: Use the program which initializes the wave function at small r. To
get better accuracy for the phase shifts, subtract the corresponding
values of the phase shifts for V =0,

For the potential, V(r) = -exp(-r/.b)/r, and an energy of E = 1:

1. Plot the effective potential for £ = 0, 1, 2, and 3. What is kR for
this situation?

2. Plot the radial wave function for $ =0and { = 1.
3. Find the phase shifts for =0, 1,2, and 3.

4. Calculate an approximation to the differential cross section at 0, 90,
and 180 degrees using the four phase shifts from Part 3.

5. Calculate an approximation to the total cross section using these
four phase shifts.

Hint: Use the program which initializes the wave function at small r. To
get better accuracy for the phase shifts, subtract the corresponding
values of the phase shifts for V = 0,

For the potential, V(r) = 400(1/r'2 - 1/r8), and an energy of E = 1:

1. Plot the effective potential for £ = 0, 1, 2, and 3. What is kR for
this situation?

2. Plot the radial wave function for L=0and £ = 1.
3. Find the phase shifts for$ =0, 1, 2, and 3.

4. Calculate an approximation to the differential cross section at 0, 90,
and 180 degrees using the four phase shifts from Part 3.

5. Calculate an approximation to the total cross section using these
four phase shifts.

Hint: Use the program which initializes the wave function at large r.
For the family of (Mie) potentials, V(r) = 100{(1/r™ - 1/r"):
1. Find the (=0, E = 1) and (L= 1, E = 1) phase shifts for m = 12 and

n=1,2, and 6. Disucss how the behaviors of 60 and &, reflect the shape
of the potential.
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2. Now write the potential as V(r) = 100((ry/r)"? - (ry/r)8). Find the
(% = 0, E = 1) phase shifts, 8, for ro =1, 4, 8, and 16. Compare the
results to 50 from Part 1. Discuss how the behavior of § o "eflects the
characteristic diameter of the potential.

Hint: Use the program which initializes the wave function at large r.

1. Find the £ =0, E = 1 phase shift for ro =.1,.5,1,5,and 10. Discuss
how the behavior of & o reflects the screening.

2. Find the 2 = 1, E = 1 phase shift for ro =.1,.5,1,5,and 10. Discuss
how the behavior of 61 reflects the screening,
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APPENDIX

INTRODUCTION

This appendix covers several topics: the terminal plotting performed by the
subroutines in TTYPLO, the proof that symmetry of a one-dimensional poten-
tial {for potentials which are finite for finite x) determines that the states can
be written as wholly even or wholly odd, and a short discussion of the half-
step method of iterative integration,

TERMINAL PLOTTING

The subroutines in TTYPLO (listed below) allow you to plot a set of curves
on your terminal. The subroutines use the O variables, so you should not use
these variables in your programs. The output from the subroutinesis a 7" by
5" x-y plot (assuming 6 lines/inch and 10 characters/inch) with the x-axis
across the page and the y-axis up the page.

You set the range of x values on the plot by defining values for X8 = the left
side of the plot, X9 = the right side of the plot, Y8 = the bottom of the plot,
and Y9 = the top of the plot. You then call the subroutines with “GOSUB
2000.”

To plot a point on the graph, you define the values of X = the x coordinate
and Y@ = the y coordinate of the point. You also specify avalue for Z@, which
will be the character plotted at the point (X0, Y@) on the graph. You then call
“GOSUB 9100.” The allowed values of Z@ are 0 throuth 9. Since these var-
jables X8, X9, Y8, Y9, X@, Y@, Z0 are used in these special ways for the
plotting, you should be careful how you use them in your programs.

To product the final plot on your terminal, you call “GOSUB 9209."

A sample of the use of TTYPLO follows. The program plots a sine curve (as
the character ““1”') and a cosine curve {as the character ''2").

16 READ X8,X9,Y8,Y9 |
20 DATA 9,6.28318,~1,1 ‘ Initialize plot

3@ GOSUB 90¢0 )

48 FOR X@=X8 TO X9 STEP (X9-X8)/70¢-+—Step across angle
S@ LET z@=1 ‘

68 LET Y@=SIN(X@) .
76 GOSUB 9108 }
88 LET z@=2 |
9@ LET Y@=COS(X®) Store cosine in plot
180 GOSUB 9188

Store sine in plot

110 NEXT X@

126 GOSUB 928¢--— Print out plot

13¢ STOP
APPEND-TTYPLO +—— Add plotting subroutines to program

MaxX Y= |
D8.0.0.0.9.9.9.9.0.:90.¢.9.0.¢.9.9:9.0.9.9.0.9.9.9.9.0.0.9.:¢.¢.9.0 0990469 0095030 E SOV AR AI PGP0 ¢, 0,08, ¢ .8 R ¢ ¢
Y222 1111t 222
Y 222 I 11 222
Y 2 1t 11 2

Y 2 1 1 2
Y 21 H 2

Y 12 i 2

Y i 2 H 2

Y 1 2 1 z

Y 1 2 1 2

Y 2 2

Y 1 2 1 2

Y o 1

Y 1 2 1 2

Y 2 2

Y 1 2 1 2

Y1 1 !
Y 2 1 2 |
Y 2 2

Y 2 1 2 1
Y 1 i

Y 2 1 2 i

Y 2 2

Y 2 1 2 t

Y 2 1 2 1

Y e 1 2 1

Y 2 12 1

Y 2 21 1

Y 2 2 |1 H

Y 2 2 11 1

Y 222 222 it 1

Y 22222 111111

180 0.9.0.9.99.09.0.9.05.4.:9.9.9.90.$200.0.0¢¢990.06060.29.00.009290098 0088000080000 0P 0009,64
MIN Y=-1 MIN X= @ MAX X= 6.28318

APPENDIX O
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A LISTing of TTYPLO gives:

99008 REM INITIALIZE PLOT

9818 DIM OL3001 .
9628 FOR Ol=1 TO 300 Initialize the

9038 LET OL013=9 storage vector

9840 NEXT Of

9850 LET 0C76)=76

9860 RETURN

9108 REM STORE POINTS

9118 IF (X@-X8)%(XB-X9)>8 THEN 9190 ;
9128 IF (Y@-YB)#(Y2-Y9)>@ THEN 9192} Test for off:s‘ca/e points
9138 LET 0761=0t761+1 -———————— Count points plotted
9146 LET OCOL76)1=1088xINT(30%(Ya-Y8) /(YI-YB)+1.5)

9158 LET OCOC7611=0L0( 7631+ 18*xINT(TB%(XD=X8) /(X9-XB)+1+5)+Z¢
9.168 IF 0L76)<320 THEN 9198 «————]est for too many points
917¢ PRINT "PART OF THE PICTURE NOW™

9188 GOTO 9200 =——_ print out picture Store X0, Y0, Z0

9190 RETURN i f
92090 REM PRINT OUT PLOT in one element o

9218 PRINT 'MAX Y="3Y9 storage vector
9220 PRINT " XXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXKXKXXAKXXK XXX XX XXXXNXXXKK
—»923¢ FOR 02231 TO | STEP -1-w—Step down
9248 FOR 03=1 T0 75 . Step page
E9250 LET 0(031=-1 Initialize line
9260 NEXT 03 § .
927@ LET 0622 Step through stored points
#9280 FOR 03s77 TO 0{76)
9298 IF Of031<@ THEN o360 a— | €St for unused or already used elements
9300 IF INT(O[031/100@> <> 02 THEN 936¢ «——/s element in this line?
9310 LET 0i=0[03)-1888+*INTCOL 031/1000) - __
9328 LET OCINT(O1/1€>1=01-1@%INT(O1/1@) Remove Y@ to get X0
9338 IF 06>INTCO1/18) THEN 9358 Remove X@ to get Z0
9349 LET 06=INT(01/1@) I Find largest X@ in line

9358 LET 0{03)3-1 - ____
L9368 NEXT 03 Reset element

9370 PRINT 'v"; .

9388 FOR 03=1 TO 06 w—tep across line
9390 GOTO 0C031+2 OF 9488,9420,9448,9462,9488,95082,9520,954€,9560,5580
94088 PRINT ™ "3
9416 GOTO 9610
9428 PRINT 03
943@ GOTO 9610
9442 PRINT *r1*3
9458 GOTO 9618

y 9468 PRINT *2°13
947@ GOTO 9610

948@ PRINT "33 ;

9450 GOTO 9610 Print correct

9586 PRINT "4 ) character (Z0)

3:;3 ‘,‘,3{332;‘.’., at each position

9538 GOTO 96180

9548 PRINT 65

955@ GOTO 9610

9568 PRINT 7'

9572 GOTO 9610

9586 PRINT "8

95908 GOTO 9610

968€ PRINT "9

9618 NEXT 03
9620 PRINT

L9638 NEXT 02

9648 PRINT * XXXXNXXXXAXXKRXXXXXAXAX KX XXX OO X XXX XXX XXX XXXX XXX

965@ PRINT "MIN Y=*"3Y83" MIN Xs='3X8,* *, "MAX X="IX9

96680 GOSUB 9000 w— . . .. .

9678 RETURN Re-initialize plot

9680 END

SYMMETRY PROOF FOR ONE-DIMENSIONAL POTENTIALS

If the potential is symmetric, then the probability density (the probability per
unit length), |Y|2, will also be symmetric, i.e., {Y(-x)12 = |{(x}]|2. When the
wave function is real (which usually just means “‘when the potential is real’’),
we have that

Yl=x) = £ Y(x) (A1)

as the only possibilities. If Y were a mixture of some even and some odd, then
[¥12 would not be symmetric. Hence the wave functions can be written as
wholly even (Y{-x} = Y(x}) or wholly odd (y(-x) = -y(x)). If there is only
one wave function for a certain energy, E, then that wave function must be
either even or odd; it cannot be a mixture.




A more mathematical proof goes as follows:

Consider a potential, V, such that V(-x) = V(x). Define an opera-
tor, P, called the parity operator, by P[f(x)] = f(-x).

1. The parity operator is Hermitian.

Ut PIT dx = [ (PLY (] Wi dy

where * means complex conjugate.
2. The eigenvalues of the parity operator are +1 and -1.
Py (x)] = ay(x)
P2[Y(x)] = aP[Y(x}] = a2y(x)
But P2 [f(x}] = P [f(-x)] = f(x) for any f
Hence 2 = 1 or @ = +1o0r~1
3. The eigen functions of the parity operator are even and odd.
From2:  P[Y(x)] = ¥(x} or PlY(x)] = -Y(x)
for any eigen function
That means Y (-x} = Y(x) or  Yl{-x) = -Y(x)
i.e., that the functions are even or odd, respectively.
4. Finally, then, the parity operator operating on the Schrodinger
equation with a symmetric potential is the same as the Schré-
dinger equation for Yy/(-x).

This in turn implies that the eigen functions of the Schrodinger
equation can be written as eigen functions of the parity operator.

THE HALF-STEP ITERATIVE INTEGRATION

Numerical methods are a subject in mathematics. Y ou may want to study the
subject someday. For the moment, all we need to show you is that the half-
step method used heavily in Chapters One and Two would seem to give better
answers than the simplest approximation {which is called Euler’'s method). The
problem we're discussing is a general one. A physical law often can be stated
in terms of the derivative of a function you wish to find; you integrate the
differential equation to find the answer.

Consider a general curve for y = f(x}; suppose you know the value of y at
x = Xo and you have a way to calculate the derivative of y with respect to x
anywhere. The problem is to get as good an approximation to the correct
value y = f(xy+ax} as reasonably possible. The simplest method (Euler’s
method) uses the derivative at x5 and approximates f(x,+Ax) as f{xy+Ax) =
fixg) + f'(xg)Ax.

APPENDIX O 65



66 [1 QUANTUM MECHANICS

Euler’s method is shown on the sketch by the dashed line. Clearly, although
in the limit as x = O the method is correct, for finite Ax the method is not
very good.

The geometrical interpretation of the theorem which mathematicians call the
Mean Value Theorem says that there is some point on the continuously differ-
entiable curve y = f(x) such that the derivative at that point has the same
value as the slope of the chord from (xg, f(xo)) to (xg + Ax, flxg + Ax)).
If the theorem told us where that point was, everything would be easy.
So-called higher order methods of iterative integration (such as the fourth-
order Runge-Kutta method) are ways to approximate better and better this
“correct’’ value of slope.

Our half-step method is based on the fact that, in general, evaluating the deri-
vative near the center of the interval {xq, xqo+Ax) is better than using a deriva-
tive at the end of the interval. In fact, you can show that, if f(x) is a parabola,
then a half-step method is exact. This means that, if you expand f(x) around
Xg in a Taylor series, the half-step method will be correct through terms in
{ax)2. That's why half-step methods are called ‘‘second-order’’ Runge-Kutta
methods,

f(x)
% step method
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SELECTED ANSWERS

- CHAPTER ONE

Exercise Il. 2(a) E = 2.418

2(b) none {except t - )
2{c) .224
2(d) 1.41

3(a) E = 2507
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3(b) one {and + - o)
3(c) 0.389
3(d) 1.52

4. E = 089 a.u. = 2.42 eV = 3.88x10™"? ergs = 5.86x10™
Hertz = 5120A.

Exercise 1ll. 2(a) E = .6845

2(b) none (except + - =)
2{(c) .812
2(d} .40

3(a) E=2.008




3(b) one (and + - =)
3(c) 1.294
3(d) 0.95

4. E = 1.324 a.u. = 36.03 eV = 577x10™"" ergs = 8.71x10"™
Hertz = 344A,

Exercise IV. 2(a) E=-8513

2(b} none (except + - o)
2(c) 0.983
2(d) 0.28

3(a) E=-5.743
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3(b} one {and + - =)
3(c) 2.214
3(d) 0.67

4, E = 2.76 a.u. = 75.1 eV = 1.20x107 ergs = 1.82x10"®
Hertz = 165A.

Exercise V. 2(a} E =-.407

2(b) one (and + - =)
2{c) 1.407
2(d) 1.33

3(a) E=-.0499
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3(b) three (and + - =)
3(c) 0.452
3(d) 6.18

4, E = .370 a.u. = 10.1 eV = 1.61x10™"" ergs = 2.43x10"®
Hertz = 1230 A.

CHAPTER TWO

Exercise . 2(a) E =-.407

2(b) E =-,0499
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2(c) E =-.0465

3. E = .357 au. = 9.71 eV = 1.566x10™"" ergs = 2.36x10"®
Hertz = 1280A.

Exercise HI. 2(a) E =-.327
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2(b) E=-0113

2(c) E=-.00399
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3. E = .316 a.u. = 8.60 eV = 1.38x10™"" ergs = 2.08x10"
Hertz = 1440A.

Exercise |11, 2(a) E = -66.27

2(b) E=-2298
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2(c) E=-2244

3. E =43.29 a.u. = 1177 eV = 1.89x10™ ergs = 2.85x10"7
Hertz = 10.5A.

Exercise 1V, 2{a) E =-.0100

2(b) apparently lost to the continuum
2(c) apparently lost to the continuum

3. Since the second state is apparently in the continuum, you
can set a lower bound on the energy difference.

E = .0100 a.u. = .272 eV = 4.36x10" ergs = 6.68x10™
Hertz = 45600 A.
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CHAPTER FOUR

Exercise |.

Exercise 11,

3. Integrating to 20:

8, = 54.8 - 0.4 = 54.4 degrees
5, =428 -1.1=41.7 degrees
8, =37.7 - 2.4 = 35.3 degrees
8; =36.4 - 4.2 = 31.4 degrees
4, 0(0) = 4.31

0{90) =.0264

a(180) = .197

5. 0,,,=3.49

3. Integrating to 20:

8y = 124.4 - 0 = 124.4 degrees
8, =90.1 - 2.2 = 87.9 degrees
8, =74.4 - 6.1 = 68.3 degrees

8, = 68.2 - 13.0 = 55.2 degrees

4. 0(0) =91.6
0(90) = 1.97

¢(180) = 5.98
5. 0,5, =79.9

Exercise |11, 3. Integrating to 20:

80 =29.3 - 0 = 29.3 degrees
8, =6.5-2.2=4.3 degrees
8, =7.0-6.1=0.9 degrees

83, =13.2-13.0 = 0.2 degrees

4, 0(0) =.317
0(90) =.104
0(180) = .058

5. 0y, = 1.62
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