
50S-II

F.?-41C Software Development -System
For MS-DOS Computers

HP Portal::>"ie Computer Division

January 30, 1986

SDS-II

1. Acknowledgements.. 1-:

2. Introduction " 2-2..

3. contents of SDS-II..................................... . 3-2.
3.1 What SDS-II Includes.............................. 3-1
3.2 What SDS-II Does Not Include...................... 3-2.

4. Comparison With Old SDS................................. 4-1

5. configuring Your SDS-II System.......................... 5-~
5.1 Configuring the HP-150.. 5-:

5.1.1 Receiving From HP-41...................... ~-_
5.1.2 Controlling the EPROM Programmer.......... ~-~

5.2 Configuring the PORTABLE Series................... ~-~
5.2.1 Receiving From HP-41..... 5-3
5.2.2 Controlling the EPROM Programmer.......... 5-3

5.3 Configuring IBM, Vectra, and Compatibles.......... 5-~
5.3.1 Receiving From HP-41. 5-3
5.3.2 Controlling the EPROM Programmer.......... 5-4

6. Step 1: writing HP-41 Software. 6-1

7.

8.

step

Step
8.1
8.2
8.3

8.~

8.5

2: Reading HP-41 Software into 8DS-II,

3: BUILDing the ROM Image
Two Types of .41T Files
T':"',e ROM Image File
The DEFINE File
8. 3 . 1 ROM~ Directive
8. 3 . 2 ORDER Directive
8.3.3 XE:Q Directive
8.3.4 KE:YS Directive
8 . 3 . 5 Co mm e n t s . • . • . . . • .
E:xample cf DEFINE File
3CILD Errors
3.5.1 Errors in DEFINE File
8.5.2 Errors in READ41P Files
8.5.3 Key Definition Errors
8.5.4 Ou~-of-room Errors
8. 5. 5 ROH I:) = 0 ..•.............................
2.5.6 Speci:y Errors
8 .. 5 .. 7 >:SQ Er~8rs " " " "
2 . 5 . 3 Label E?,RORS •.............................
8.5.9 Errors in E?-41 Program
8 .. 5 .. lD !,,:ic!."'ocode E~roys
3~·I=-:J ?~1:.. ... ~ ... z... ... ~ E~~8~S ~

- i -

7-1

3-1
8-1
8-1
8-1
8-2
8-3
8-4
8-:'
8-5
8-5
S -7

8-8
s-s
S-9
:=:_C<

8-l8
c-1J

2-l~

9.. Microcode Library .. 4 4 4

9.1. Type 2 MICROCODE Files•.......
9.1.1 All' (ALPHA Integer Part) •.................
9.1.2 ALENG (ALPHA Length)•.................
9.1.3 ANUM (ALPHA Number) ..••...................
9.1. 4 AROT (ALPHA Rotate)
9.1.5 ATOX (ALPHA to X) •••••••••••••••••••••••••
9.1.6 CLKEYS (Clear Keys) ...•.•.................
9.1.7 ENROMl (Enable ROM 1) ..•..••••••..•••...•.
9.1.8 ENROM2 (Enable ROM 2) ..••.•.••••••••..•.•.
9.1. 9 GETKEY (Get Ke.y~ ...•..••.•...•.•.....••...
9.1.10 PASN (programmable Assign)•.••.......
9.1.11 PCLPS (Programmable Clear

Programs)
9.1.12 POSA (Position in ALPHA) .•.....•..•.......
9.1.13 PSIZE (Programmable Size)•...........
9.1..14 RCLSTFLG (Recall/Store Flags)••.•.
9.1.15 REGMVSWP (Register Move/Swap) •.•....••.•..
9.1.16 SIZE (Determine Current SIZE) .••••..•.•...
9.1..17 XTOA eX to ALPHA)
9.1.18 XF (X Exchange Flags) •••..••.•....•.....•.

9.2 Type 1. MICROCODE Files •••••..••.••.•...•.•••••....
9 .. 2. .. '1 ALEN ... '"
9 .. 2 .. 2 AWAM2 '" ••. '
9.2.3 BIND
9.2.4 XB .. .

9.3 Type 0 MICROCODE Files•...............•.......
9.3.1 AUTOST (Autostart)•..•...•.......••.
9 • 3 • 2 PRIVACY " ",
9 " 3 • 3 KEYASN ", "
9 .. 3 • 4: MeODE. f " ... "

9.4 Microcode Library File Requirements .•.••..........

10. Emulating ROMs
10.1 EPROM Box ROM Emulation •......••••••.••.•.•..••.•.
10. :2 RAM BOX Emulation "

11. Burning EPROMs For The ERAMCO-???? .•.•....•.•..........

12. Bank-swi tchinq
12.1 A Word About Terminology •.....•..........•........
12 .. 2 Basic Bank-Switching
12.3 Advanced Bank-switching•.••...................

13. 80S-II Basic utilities .. .
13 .. 1 CHECKSUM .. " ,
13.2 EPROM
13 .. 3 LIFPACK .. " .. .
13" 4 LISTFAT
13.5 SDSCAT

- ii -

9-1
9-1
9-2
9-2
9-2-
9-3
9-3
9-3
9-3
9-3
\)-4
9-4

9-4
9-4
9-5
9-5
.9-5
9-6
9-6
9-7
9-8
9-8
9-8
9-8
9-8
9-8
9-9
9-9
9-9
9-9

9-10

10-1
10-1
1Q-1

11-1

12-1
12-1
12-1
12-2

13-1
13-1
13-1
13-1
)''3-i.
13-2

14.. Advanced Applications
14.1 using the RAM-Based ROM Emulator ...•....•...•.....

14.1.1 WRITMLDL
14.1.2 READMLDL

14.2 Other Advanced utilities •...••..••..•.......•...•.
14 . 2 .. 1 ASSEMB41

14.2.1.1 Invocation
14.2.1.2 Assembler Syntax

Conventions
14.2.1. 2 • 1 Comments ..•.......•.
14.2.1.2.2 Fields ••...•.•.....•
14.2.1. 2.3 Expressions ..•......
14.2.1.2.4 Global

14-1
14-1
14-1
14-2
14-2
14-2
14-3

14-3
14-3
14-3
14-4

Labels. • 14-4
14.2.1.3 Mnemonics........................ 14-5

14.2.1.3.1 Type 0 Opcodes -­
Alphabetical
Order............... 14-5

14.2.1.3.2 Type 0 Opcodes --

14.2.1.4

14.2.1. 3.3
14.2.1. 3 • 4
14.2.1. 3 • 5
14.2.1.3.6
14.2.1.3.7

Numeric
Order
Arithmetics •.......•
Pseudo-Ops .••......•
FAT Entries •••.•..••
Branches
Peripheral
Com.mands

EX.A11PLES
14.2.1.4.1 An Assemb1y­

Language

14-7
14-9

14-10
14-11
14-12

14-13
14-13

Keyword•..••... 14-13
14.2.1.4.2 A Function Address

Table
14 • 2 • 2 LINK41
14 .. 2 . 3 ASMBINFO •....•••... -......................... .
14.2.4 DISASM41
14.2.5 EPROM •....•...•••.••....•.••......•..••...
14 • 2 . 6 EXTRACT
14.2 .. 7 MUCODE

14.3 1LG9 configuration

14-14
14-14
14-16
14-17
14-17
14-18
14-19
14-21

A. HP-41 Keycodes.. A-l

B. special Characters.. B-1

C. SDS-II ROM Image Submission Form........................ C-l

D. Handing STACK OVERFLOW Errors........................... D-l

E. Program Invocation Summary.............................. E-l

- iii -

F.

G.

ROM ID Allocation.

of Disks.
1.

contents
G.l Disk
G.2 Disk 2

.

iv

F-l

G-l
G-l
G-l

2. Introduction

The new Software Development System (SDS-II) provides the necessary
tools to collect and prepare your 41C programs for translation into
an HP-41 ROM (Read-Only Memory) plug-in. Each plug-in consists of
1, 2, or 3 ROMs, each containing 4096 bytes of HP-41 program code
and/or microcode.

The process of creating a plug-in ROM consists of three major steps:

z Writing HP-41 programs and saving them on mass storage.

Z Reading your HP-41 programs into the SDS-II development system
(the "READ41P" process).

z Building a ROM image containing your HP-41 programs and any
necessary microcode support functions (the "BUILD" process).

Once the ROM image is built, it can be burned into EPROM boxes for
testing, and, when fully tested, can be submitted to the HP custom
ROM program for processing into plug-in ROMs. Full details on the
procedures and expenses associated with producing custom ROMs are
explained in an accompanying brochure.

2-1 SDS-II 2-1

3. contents of SOS-II

3.1 What SOS-II Includes

SDS-II is a software package distributed on one of two possible
media:

[1] Two 3.5" single-sided microfloppy MS-DOS disks, or

[2] Two 5.25" double-sided floppy MS-DOS disks in low-density (IBM
PC) format.

SDS-II is compatible with all MS-DOS and PC-DOS computers running
DOS version 2.0 or higher.

3.2 what SOS-II Ooes Not Include

SDS-II requires additional hardware, some of which is dependent on
the choice of host system. Specifically:

[1] An HP-41CjCVjCX and HP-IL module (82160A).

[2] Mass storage for the HP-41 (82161A cassette drive or 9114 disk
drive). The 9114 is strongly recommended over the 82161A.

[3]

[4 J

Depending on your configuration, you may require an accessory
for communicating with the HP-41 mass storage device (detailed
below, in the section on configuration) .

ROM emulation hardware.

~ If you are using EPROMs for ROM emulation, you need an
EPROM programmer, EPROMs, an EPROM eraser, and an EPROM
emulator box. As a programmer, SOS-II supports and
recommends the Data I/O 21A, a powerful, reasonably priced
product that was recently introduced. For emulation,
SDS-II supports and recommends the ERAMCO-???? because of
its complete emulation of HP ROMs.

~ If you are using RAM for ROM emulation, you need a RAM box
and the facilities to load it. Recommended is the ERAMCO
ES16S, which provides complete emulation of HP ROMs. Use
of this box requires the ERAMCO MLDL software, usually
distributed in the ERAMCO ESMLDL 1. (Note: EPROM
emulation is recommended over RAM emulation, although
support is provided for the latter, as explained in the
chapter on advanced applications.)

[5] An interface for communicating with the EPROM programmer
(typically an asynchronous communications port).

3-1 SOS-II 3-1

4. Comparison With Old SOS

SDS-II
based
in the

is intended as a replacement for and upgrade from the HP-85-
SDS. The system differs substantially from the original SDS
following ways:

[lJ

[2 J

[3 J

[4 J

[5J

4-1

The software runs under
instead of on the
approximately 20x.

the MS-DOS or PC-DOS operating system
HP-85. The speed improvement is

The system no longer relies on specialized custom hardware for
communications with the HP-4l. Programs are read directly from
HP-4l mass storage media, and ROM emulation is provided through
commercially available EPROM- and RAM-boxes.

SDS-II does not provide special editors. The DEFINE file is a
text file that you create using any text editor (EDLIN,
WORDS TAR , EMACS, etc.). This replaces the special editors used
in the old SDS for creating the list of TODISK files, the XEQ
list, the specified order list, and the key assignment list.

SDS-II supports the bank-switching 12K ROM for the HP-4l. This
is explained in more detail in the chapter on bank-switching.

SDS-II includes a comprehensive set of tools for ROM
development, including an assembler, linker, and various
related tools and utilities. These are explained in the
section on advanced applications.

SDS-II 4-1

S. configuring Your SDS-II system

50S-II requires an MS-DOS or PC-DOS computer with 128K bytes of
available memory (after DOS, device drivers, and other resident
applications are loaded). This chapter tells you how to configure
your computer for two important communications tasks:

~ Receiving programs from your HP-41, in which SDS-II reads the
HP-41 disk or cassette tape, and

~ Controlling the EPROM programmer, in order to program EPROMs
for testing your software in an EPROM box. Instructions here
are specific to the Data I/O 21A. If your system includes a
different programmer, the chapter on utilities explains how you
can use 50S-II utilities for interfacing with your programmer.

S.l configuring the HP-1SO

SDS-II is not installed as an application in PAM
Applications Manager). That is, it is only accessible
MS-DOS commands. In order to use SDS-II, you must enter
command environment.

S.l.l Receiving From HP-41

(Personal
through the
the MS-DOS

If you are using a 9114 with your HP-41, and your HP-1SO has a
double-sided micro-floppy (3.S") disk drive, you can directly read
the HP-41 disk without any extra communications hardware.

Otherwise, your HP-lSO can communicate directly with
82161A through the Extended I/O Accessory (4S643A).
accessory consists of two steps:

the 9114 or the
Installing the

~ Physically installing the accessory card, and

~ Installing the HP-IL driver software. To install the software,
you must modify the CONFIG.SYS file (in the root directory of
the boot disk) to include the directive:

S-l

DEVICE = HPIL1SO.SYS

If there is no CONFIG.SYS in your root directory, create one
containing the directive. The driver software (HPIL1SO.SYS) is
included on the disk that accompanies the Extended I/O
Accessory, and must be copied to the root directory of the boot
disk (alternatively, the "DEVICE =" directive can be modified
to specify another disk and/or directory) .

Some important details to keep in mind:

SDS-II S-l

~ If the CONFIG.SYS file contains a "SHELL =" directive, the
"DEVICE =" directive must occur before the "SHELL ="
directive.

~ Some editors (notably EMACS) do not automatically append a
trailing <CR><LF> to the last line of a file. The
"DEVICE =" directive will not work if it is the last line
of a file without the trailing <CR><LF>.

~ The HP-IL driver redefines the "PRN:" device to be the
first printer on the HP-IL loop. Any output directed to
"PRN:" will be sent to that printer. If there is no
printer on the loop, the "PRN:" device is not accessible.
This is true both in the MS-DOS environment and in the PAM
environment.

~ The HP-IL loop can support up to eight mass storage
devices. Because the HP-150 reserves disk drive ID's "A:"
through "L:", mass storage devices on the loop are named
"M:" through "T:". For example, if the loop contains a
single 9114 disk drive, it is addressed as drive "M:".

Once CONFIG.SYS has been modified, the HP-IL driver will be
installed whenever the HP-l50 boots up (either from power-up or
SHIFT-CTL-RESET). You will now have access to HP-IL devices
connected to the accessory card.

5.1.2 controlling the EPROM Programmer

Both the HP-150 and the Data I/O 21A have female RS-232 connectors
configured for DTE. Communications between them requires a male­
male RS-232 connector reversing the signals from pins 2 and 3. In
addition, the 21A requires that pins 4 and 5 be tied together. The
specific connections are:

to to
HP-150 21A
----- -----

M 2 \----\/----\ 2 M
A 3 \----/\----1 3 A
L 1 /--\ 4 L
E 1 \--1 5 E

7 1----------\ 7
----- -----

5.2 Configuring the PORTABLE Series

EJS-II is not installed as an application in PAM
~;plications Manager). That is, it is only accessible
,,:3-DOS commands. In order to use SDS-II, you must enter
c~~mand environment.

5-2 SDS-II

(Personal
through the
the MS-DOS

5-2

5.2.1 Receiving From HP-41

The built-in HP-IL on the PORTABLE series is capable of direct
communications with the 9114 and the 82161A. No additional hardware
is needed. You must enter the System Config template (invoked as a
softkey from PAM) and set the "External disk drives" entry to
reflect the presence of one or more mass storage devices on HP-IL.

5.2.2 Controlling the EPROM Programmer

The optional RS-232 cable for the PORTABLE series is terminated with
a male DTE connector. Communications with the Data I/O 21A requires
a female-male RS-232 connector reversing the signals from pins 2 and
3. In addition, the 21A requires that pins 4 and 5 be tied together
on its side. The specific connections are:

5.3

to
cable from

PORTABLE

F 2 \----\/----\
E 3 \----/\----\
M \ /---\
A \ \---\
L 7 \----------\

to
21A

2
3
4
5
7

E \

M
A
L
E

Configuring IBM, vectra, and Compatibles

5.3.1 Receiving From HP-41

Your computer can communicate directly with the
or the 82161A cassette drive through the
(82973A). Installing the accessory consists of

HP-9114 disk drive
HP-IL Interface card
two steps:

~ Physically installing the accessory card, and

~ Installing the HP-IL driver software. To install the software,
you must modify the CONFIG.SYS file (in the root directory of
the boot disk) to include the directive:

5-3

DEVICE = HPIL.SYS

If there is no CONFIG.SYS in your root directory, create one
containing the directive. The driver software (HPIL.SYS) is
included on the disk that accompanies the interface card, and
must be copied to the root directory of the boot disk
(alternatively, the "DEVICE =" directive can be modified to
specify another disk and/or directory).

SDS-II 5-3

,------------ -~ "'--

Some important details to keep in mind:

~ If the CONFIG.SYS file contains a "SHELL -" directive, the
"DEVICE -" directive must occur before the "SHELL-"
directive.

~ Some editors (notably EMACS) do not automatically append a
trailing <CR><LF> to the last line of a file. The
"DEVICE -" directive will not work if it is the last line
of a file without the trailing <CR><LF>.

~ The HP-IL loop can support up to eight mass storage
devices. The exact drive designator will depend on system
configuration. For example, a typical IBM PC with two
floppy drives will address it~ HP-IL disks as "C:" (first
drive on the loop) through "J:" (eighth drive on the
loop). A typical IBM PC/AT with a hard disk drive at "C:"
will address disks on the loop starting with "0:".

Once CONFIG.SYS has been modified, the HP-IL driver will be
installed whenever the computer boots up. You will now have
access to HP-IL devices connected to the HP-IL interface card.

5.3.2 Controlling the EPROM Programmer

The IBM, Vectra and compatibles offer two different types of RS-232
interfaces:

~ A built-in 25-pin interface, and

~ A 9-pin "D-shell" interface, which requires a cable.

Both the cable and the built-in interface terminate with a male RS-
232 connector configured for DTE. Communications with the Data I/O
2lA requires a female-male RS-232 connector reversing the signals
from pins 2 and 3. In addition, the 2lA requires that pins 4 and 5
be tied together on its side. The specific connections are:

5-4

to
cable or
computer

F 1 2 I----V----I
E 1 3 1----/\----1
M 1 1 /---1
A'I 1 \---1
L 1 7 1----------1

to
2lA

2
3
4
5
7

E 1 1 -----

SDS-II

M
A
L
E

5-4

6. step 1: Writing HP-41 Software

The software to be contained in the ROM will consist of various HP-
41 programs written by you and microcode support programs obtained
from the microcode library (explained in a separate chapter). As
you write each piece of software, save it on the mass storage device
using the WRTP command.

At this stage, the program is not in ROM form. Before you have a
ROM image, SOS-II will pack the program, compile GOTO's for fast
execution, and convert all global labels into ROM entries. That is,
each global label will be associated with an XROM number, and XEQs
referencing those global labels will be compiled into XROMs.

For now, however, your
referencing each other
another) and for keywords

6-1

programs will contain alpha XEQs for
(i.e., when one of your programs calls
obtained from the microcode library.

SDS-II 6-1

7. step 2: Reading HP-4~ Software into SOS-II

Each program created on your HP-4l must be read into 50S-II using a
program called REA041P. This program is included on the 50S-II
distribution disk #1, and is invoked from the MS-DOS environment as:

REA041P <disk>:<programname> <filename>

REA041P will read the program from the mass storage device
containing the HP-41 programs, analyze it, report any errors, print
an informational listing, and create a file on the MS-DOS machine.
If the programname contains blanks, you must replace those with a
period (".") in the invocation. If the programname contains HP-4l
special characters (such as not-equal, angle, or sigma), use the
substitute characters explained in the appendix on special
characters.

Since REA041P will usually generate more output than will fit on one
screen (and faster than most people can read), it may be desirable
to redirect its output to a file or a printer. The second example
below demonstrates this.

EXAMPLE: The invocation

READ41P M:XYZ XYZ

will read the program "XYZ" from the mass storage medium
"M:", process it, and produce a READ41P file called
"XYZ.41T" in the current directory on the current disk.

EXAMPLE: The invocation:

READ41P B:A.B C:AB >PRN

will read program "A B" from the disk in drive "B:",
process it, and produce a READ41P file called "AB.41T" in
the current directory on disk "C:". output from the
REA041P program is directed to the computer's PRN device.

The READ41P processing detects several error or potential error
conditions, and reports on them:

NOTICES

7-1

A "NOTICE" is not an error, merely a warning that the
program contains an XROM reference. This may be
intentional (for example, use of an HP-IL function in an
Advanced I/O ROM) or unintentional. The presence of
this XROM reference in the final ROM will require that
the referenced ROM be plugged in for your program to
function properly.

50S-II 7-1

ERRORS An error will be generated
conditions:

under the following

~ The program being read contains
occurrences of a global label.

multiple

~ The program contains an unresolved reference to a
local label.

~ A global label, alpha XEQ or alpha GTO contains an
illegal character.

~ The program contains more than 64 labels.

READ4lP will not generate an output file if any errors
are found.

In addition to errors and notices, READ41P prints
informational listing giving all global and local labels.
label list includes information on how many times a local
used and how many references appear to that label.

out an
The local
label is

When all of your HP-41 programs have been collected in READ41P
files, you can proceed to step 3 (BUILD) to assemble them into a ROM
image.

NOTE

Some important details:

~ The HP-4l program name in the READ41P invocation is case­
sensitive. These two commands are not equivalent:

7-2

READ4lP M:ABC ABC
READ4lP M:abc ABC

The name of the output file, however, is case-insensitive,
since MS-DOS only supports uppercase filenames.

z The choice of MS-DOS filename for your READ4lP file is entirely
up to you. Good programming practice suggests that it have the
same name as the HP-41 file, but this is not always possible
(either because of upper/lower case differences, name
conflicts, or special characters). When you do not use the
same name, be sure to choose a name that suggests what the file
contains. The choice of READ41P file name has absolutely no
effect on the contents of the final ROM image.

SDS-II 7-2

z Some error and warning conditions cannot be detected by
READ41P, but are noted in BUILD:

~ Local GTO's that are too distant to be compiled cannot be
discovered until BUILD has packed the alpha XEQs into XROM
references. This situation is explained more fully in the
chapter on BUILD.

~ Multiple use of global labels in different programs cannot
be detected until the BUILD phase.

~ XROM references (as pointed out in a NOTICE) to the ROM
being built are illegal (for example, an occurrence of
XROM 2l,XX when you are BUILDing a ROM with an ID of 21).
This cannot be detected until BUILD, when the ROM ID is
assigned.

z The mass storage medium used by the HP-4l is in LIF format, not
MS-DOS. Any attempt to access it as an MS-DOS medium (such as
performing a DIR) will fail. Likewise, it is not possible to
put a READ41P file on the LIF medium (e.g., READ4lP D:PRG
D:ABC) .

7-3 SDS-II 7-3

8. step 3: BUILDing the ROM Image

Once all of the READ41P files have been gathered, the ROM image can
be generated. 50S-II will allow you to build a ROM image for a 4K,
8K, or 12K ROM plug-in (using 12K requires the use of bank­
switching, explained in another chapter) .

The following command causes a ROM image to be built:

BUILD <define-file-name> <ROM-file-name>

Following commands in the DEFINE file, BUILD collects the READ41P
files (and MICROCODE files, explained below) together into a ROM
image.

BUILD does its work in two passes. In the first pass, it reads all
of the specified READ41P and MICROCODE files, copies them to a
temporary working file, and collects all of the global labels. In
the second pass, it does the "dirty work" of compiling label
references, converting alpha-XEQ's to XROM's, and so on.

8.1 Two Types of .41T Files

So far this document has dealt with READ41P files, which are read
from your HP-41 mass storage and stored on the host computer system
with an extension of ".41T".

There is another type of ".41T" file that can be specified in the
DEFINE file: MICROCODE. A MICROCODE file allows you to add
assembly-language programs to your ROM. Use of MICROCODE files will
be fully explained in another chapter; this chapter will restrict
its discussion and examples to usercode.

8.2 The ROM Image File

Build will create 1, 2 or 3 ROM image files, depending on whether
you are creating a 4K, 8K or 12K ROM. The files will be named with
the first seven characters of <ROM-file-name> appended by the ROM
sequence number (that is, 0, 1, or 2). The filename extension will
be "41R". This file is ready to be programmed into EPROMs for
testing (explained in another chapter) .

8.3 The DEFINE File

The DEFINE file contains all of the instructions needed to assemble
the ROM image. The define file is created using any text editor
(such as EDLIN, WORDSTAR, EMACS, etc.). For each 4K ROM (there are
1, 2 or 3), the DEFINE file contains several parts:

8-1

z A ROM# directive with optional ROM header and optional privacy
specifier. This is followed by a list of READ41P and MICROCODE

SDS-II 8-1

files.

§!! An optional
are to be
followed by

ORDER directive, specifying how the global labels
ordered within the ROM catalog. This is sometimes

a list of labels and headers.

§!! An optional XEQ directive, used to specify any labels for which
alpha XEQs will not be converted into XROMs. This is followed
by a list of labels.

§!! An optional KEYS
be set up by
assignments.

directive, used to specify key assignments to
the ROM. This is followed by a list of key

§!! optional comments anywhere within the DEFINE file.

All directives
Following is
section of the

and comments
a detailed
BUILD file.

are preceded
explanation of

by the "&" character.
each directive and its

8.3.1 ROMi Directive

For each 4K ROM,
with the ROM.
which allows you
optional PRIVACY

this line specifies what ROM# is to
It is followed by an optional HEADER
to specify a CATalog header for the
specification. For example:

&ROM# = 31, HEADER=CUSTOM.ROM

be associated
specification,

ROM, and an

will assign ROM# 31 to this 4K ROM, and the catalog header
"CUSTOM ROM". Use of the "." as a placeholder for a space is
explained in the appendix on special characters. The first function
in this ROM will be XROM 31,1; the second will be XROM 31,2 and so
on. The directive:

&ROM# = 31, HEADER=MY.ROM, PRIVATE

will assign ROM #31 to this ROM with the catalog header "MY ROM".
In addition, all programs in the ROM will be PRIVATE, preventing the
user from viewing the contents. If your plug-in consists of
multiple ROMs, PRIVATE must be specified in each &ROM# directive.

The following rules apply to this directive:

8-2

§!! The "&ROM#" must begin in the first character position on the
line.

§!! Legal ROM ID's are
ROM contains no
ROM only contains
keywords.

1-31. An
labels or
MICROCODE

ID of zero can be used only if
headers -- that might occur if
files that do not define

SDS-II

the
the
any

8-2

= The HEADER is optional. If no header is specified, the ROM
will not have a catalog header (making it much harder for the
user to find).

= If a HEADER is specified,
Special characters can
discussed in the appendix

maximum length is 11
be specified using the
on special characters.

characters.
substitutes

This directive is followed by a list of READ41P and MICROCODE files
to be included in the ROM. BUILD will automatically append the
"41T" file extension to the filenames. Specification of these files
follows the usual MS-DOS rules of finding files: you can specify
just the file name (if the file is in the current directory on the
current disk) or a path (and disk drive designator, if appropriate).

8.3.2 ORDER Directive

This directive allows you to specify the order in which your global
labels will appear in the ROM catalog. If you do not include this
directive, the labels will appear in the order in which they are
encountered while reading the READ41P files. If this directive is
included, it takes the following forms:

&ORDER = E

to specify that the labels are to appear in the order encountered
(the default) .

&ORDER = A

to specify that the labels are to appear in alphabetical
Special characters (sigma, angle, and not~equal) are
according to their internal HP-41 representation: sigma as
126, angle as ASCII 13, not-equal as ASCII 29.

&ORDER = S

order.
sorted

ASCII

to specify that the labels are to appear in a specified order. If
(and only if) this last form is specified, the directive is followed
by the list of labels, one per line, in the order in which they are
to appear. In addition, this ORDER option allows something not
allowed with the other options: specifying additional CATalog
headers. That is, you can specify a header of up to 11 characters
by prefixing it with a tilde ("-"). See the examples below for an
illustration.

8-3 SDS-II 8-3

-

8.3.3 XEQ Directive

Normally, all alpha XEQ's that refer to labels within your ROM are
compiled into XROMs. This saves space in the ROM and execution
speed when the program is run. However, an XROM behaves differently
from an XEQ. An XEQ command will first search user memory and then
search all ROMs to find the named program; an XROM will always
execute the program out of the ROM.

Sometimes it is desirable to prevent
into an XROM. For example, you may
a program in memory that overrides a
directive allows you to specify
compiled into XROM references.

an alpha XEQ from compiling
want to allow the user to place
function in the ROM. The XEQ
that certain alpha XEQs not be

The form of the XEQ directive is:

&XEQ

followed by a list of labels. Any alpha XEQ that refers to any of
the specified labels will not be compiled into an XROM.

Alternatively, specifying:

&XEQ ALL

will prevent all alpha-XEQs from being compiled.

8.3.4 KEYS Directive

It is possible to specify that the calculator automatically assign
certain keys on power-up. The directive:

&KEYS

can be followed by a list of keys to be automatically assigned by
the ROM. Each item in the list is of three possible forms:

[1] Assigning an HP-41 function to a key:

<function-name> <keycode>

[2] Assigning an XROM function to a key (for example, a card reader
function) :

XROM <ROM-ID> <function-number> <keycode>

[3] Assigning a function from the ROMs being built to a key:

<function-name> <keycode>

8-4 SDS-II 8-4

Some important things to keep in mind about key assignments:

z The automatic key assignment occurs whenever the machine is
turned on or memory is lost.

z The <keycode> is the same keycode displayed by the ASN
function. A map of keycodes in shown in the appendices.

z Functions will automatically be assigned only to keys that do
not have current assignments. If a key is currently assigned,
this will not override that assignment.

z specifying automatic key assignments requires the inclusion in
the ROM of MICROCODE files that take up additional space. This
is explained in the chapter on the microcode library.

z The XROM option can only be used to assign ROM numbers not in
the ROMs being built. For example, if you are building a ROM
with an ID of 21, you cannot assign an XROM 21,xx to a key. To
assign functions in the XROM being built, use the function
name.

z If you are building more than one ROM, all key assignments
should be performed in the first ROM. It wastes space to
include key assignments in more than one ROM, and assignments
in the second ROM might be overriden by assignments in the
first ROM.

8.3.5 Comments

Comments may be included anywhere within the DEFINE file.
format is:

&& <comment>

8.4 Example of DEFINE File

Their

The following example illustrates the various sections of the DEFINE
file. Consider an 8K ROM to be built of three programs. All three
programs were written on the HP-4l and read into SDS-II using the
READ41P utility. The first program contains the following labels
(these labels are made up; any resemblance to real HP-41 programs
living or dead is purely coincidental):

"MAIN"
"Sl "
1152"
"53"
"PRINT"
"RESET"

8-5 SDS-II 8-5

The second program contains the following labels:

"PROG2"
"FIXUP"

The third program contains the following labels:

"EDITOR"
"ADDLINE"
"EDTLINE"
"PACKFIL"
"PURGFIL"
"TIMEOUT"
"CLRFILE"
"RMVLINE"

The first program was read (by READ41P) into a file named MAIN. 41T,
the second program into PROG2.41T, the third into EDITOR.41T. The
first two programs are to go into the first ROM, the third program
into the second ROM. We wish to assign some keys and, for the
second ROM, specify a CATalog order for the functions. In addition,
we want XEQ "TIMEOUT" commands not to be compiled into XROMs
(allowing the user to override "TIMEOUT" with his own program). The
DEFINE file (with some comments added for clarity):

&ROM#=21,HEADER=--UTILITIES , PRIVATE
&& READ41P files in first ROM:
MAIN
PROG2
&KEYS
&& assign }{ROM "EDITOR" to sigma+ key
EDITOR 11
&& assign XROM "PRINT" to LN key
PRINT 15
&& assign mainframe FACT function to SIN key
FACT 23
&& assign mainframe EAX-l function to f-SIN key
EAX-1 -23
&& assign XROM 1,5 to ENTERA key
XROM 1 5 41
&ROM#=31,HEADER=--MY.EDITOR,PRIVATE
&& READ41P files in second ROM
EDITOR
&ORDER=S
EDITOR
---FILE.CMDS
PACKFIL
PURGFIL
CLRFILE
---LINE.CMDS
ADD LINE

8-6 SDS-II 8-6

EDTLINE
RMVLINE
---TIMEOUT
TIMEOUT
&XEQ
TIMEOUT

The resulting catalog will be:

--UTILITIES
"MAIN"
"51"
"52"
"S3"
"PRINT"
"RESET"
"PROG2"
"FIXUP"
--MY EDITOR
"EDITOR"
--FILE CMOS
"PACKFIL"
"PURGFIL"
"CLRFILE"
--LINE CMDS
"ADDLINE"
"EDTLINE"
"RMVLINE"
--TIMEOUT
"TIMEOUT"

The catalog headers (all of which are prefixed with "--" in this
example) serve to conceptually separate the sections of the ROM.
While all catalog entries appea~ du~ing a C~T 2 operat~on on the
HP-41C and CV, only the catalog headers appear on the CX (as
explained in the HP-41CX owners manual).

8.5 BUILD Errors

BUILD detects three levels of exceptional conditions:

ERRORS Serious problems that must be corrected before the ROM can
be built.

WARNINGS Conditions that do not prevent ROM building, but which may
be errors. All warnings should be investigated to insure
that you have not introduced an inadvertent error.

NOTICES Less serious than a warning, but a condition to be noted.

8-7

All notices should be investiqated to insure that you have
not introduced an inadvertent error.

50S-II 8-7

Following is a summary of exceptions that can occur during BUILD.
When appropriate, the error message will indicate which line of the
DEFINE file caused the offending error.

8.5.1 Errors in DEFINE File

ERROR: cannot open READ41P file <filename>
indicates that a file was specified that could not be found.

WARNING: Header truncated to 11 chars
A header longer than 11 characters was specified.

NOTICE: Header has non-std chars
A header (specified either in the uHEAD~R=u directive
U&ORDER=SU list) contains characters that are not legal
names.

ERROR: Duplicate ROM ID

or in an
in program

A "&ROM#U directive has specified the same ROM ID for more than one
ROM.

ERROR: Expected <something>
indicates that something unexpected was encountered in the DEFINE
file. The message will indicate on what line the error occurred.
One of the <something>'s is end-of-file, which is expected if a
U&ROM#U directive is encountered after three U&ROM#U directives have
already been processed -- BUILD can define at most three ROMs.

8.5.2 Errors in READ41P Files

ERROR: READ41P file is not recognizable
indicates that the a READ41P file is not recognizable either as
READ41P or MICROCODE.

ERROR: unexpected EOF in READ41P file
ERROR: READ41P file is corrupt
ERROR: Address not found for label "<label>"
ERROR: unexpected global label on program line #<line#>
all indicate that the READ4lP file is corrupt or
information that is internally inconsistent.

8.5.3 Key Definition Errors

ERROR: Illegal key definition for XROM <xx>,<xx>

contains

A key definition was attempted for a ROM ID that is being built.
For example, XROM 21,xx was assigned to a key while ROM ID 21 is one
of the ROMs being built.

ERROR: Cannot assign key to <function>; function not found
A function specified in the key assignment list was not found either
in the ROMs being built or in the HP-41 function list.

8-8 SDS-II 8-8

NOTICE: ROM label "<label>" overrides HP-4l function for key
assignment
A key assignment was made to a ROM function that has the same name
as an HP-4l mainframe function.

KEY ASSIGN ERROR: Bad ROM number
A ROM number was specified for an XROM key assignment that was not
in the range from 1 to 31.

KEY ASSIGN ERROR: Bad function number
A function number was specified for an XROM key assignment that was
not in the range from 0 to 63.

KEY ASSIGN ERROR: Bad keycode
An illegal keycode was specified for a key assignment.
appendix on HP-4l keycodes for a map of legal keycodes.

KEY ASSIGN ERROR: Illegal
A function label in a
characters.

chars in label
key assignment line

KEY ASSIGN ERROR: Multiple assignment to same key

contains

See the

illegal

An attempt has been made to assign more than one function to the
same key. This error will not occur if the multiple assignment
occurs in two different ROMs (although, as explained above, all
definitions should be performed in the first ROM) .

8.5.4 Out-of-room Errors

The following
ROM to hold
overhead:

errors can occur if there is not enough room in the
all of the READ41P and MICROCODE files and the ROM

ERROR: Not enough room for key assignment table
ERROR: ROM address space overflow
ERROR: Not enough space for MCODE

8.5.5 ROM ID = 0

ERROR: &ORDER=S not allowed with ROM ID = 0
An "&ORDER=S" directive is not valid if the ROM ID specified in the
"&ROM#" directive is zero.

ERROR: Labels not allowed when ROM 10 = 0
READ41P and MICROCODE files containing any function labels are not
allowed if the ROM ID is zero.

ERROR: HEADER not allowed if ROM 1D = 0
A HEADER specification is not allowed in the "&ROM#" directive if
the ROM ID is zero.

8-9 SDS-II 8-9

8.5.6 specify Errors

The following errors can occur if you use the "&ORDER=S" directive:

SPECIFY ERROR: Following labels not specified:
Not all labels in the ROM were specified in the list.

SPECIFY ERROR: Label "<label>" does not exist in this ROM
A label was specified that does not exist in this ROM.

SPECIFY ERROR: Label "<label>" already specified
A label was specified more than once.

SPECIFY ERROR: Illegal chars in label
A label was specified that contained illegal characters.

SPECIFY ERROR: Too many labels in ROM
A header added in the specify list causes the number of labels +
headers in the ROM to exceed 64.

8.5.7 XEQ Errors

The following error can occur if you use the "&XEQ" directive:

XEQ ERROR: Label "<label>" does not exist in this ROM
A label was specified that does not exist.

XEQ ERROR: Illegal chars in label
A label was specified that contained illegal characters.

8.5.8 Label ERRORS

The following errors relate to the function names used in the ROM:

ERROR: Too many labels in ROM
A ROM contains more than 64 labels + headers.

ERROR: Duplicate label in this ROM
A label occurs more than once in this ROM.

ERROR: Duplicate label in previous ROM
A label in ROM 2 or 3 also occurs in an earlier ROM.

8.5.9 Errors in HP-41 Program

WARNING: Unresolved XEQ "<label>" on program line #<line#>
An alpha-XEQ references a label that does not occur in the ROMs
being built. The reference will not be compiled into an XROM.
(When the statement is executed, it will search main memory and all
ROMs to find the label.)

8-10 SDS-II 8-10

WARNING: Unresolved GTO "<label>" on program line #<line#>
An alpha-GTO references a label that does not occur in the ROMs
being built. (When the statement is executed, it will search main
memory and all ROMs to find the label.)

WARNING: Label "<label>" conflicts with HP-4J. mainframe keyword
A label is used in the ROM that conflicts with an HP-4l mainframe
keyword.

NOTICE: GTO <label> on program line #<line#> jumps >J.27 bytes, not
compiled
A short-form GTO (GTO 00 through GTO 14) references a label that is
more than 127 bytes away. The GTO will not be compiled, resulting
in slower execution speed.

NOTICE: XROM <xx>,<xx> on program line #<line#>
The program contains an XROM statement. Execution of this statement
will require that the corresponding ROM be plugged in.

ERROR: Unresolved GTO/XEQ <label> at progr~ line #<line#>
A local GTO or XEQ references a label which does not exist. since
this situation is also trapped in READ4lP, this error should never
occur.

ERROR: Illegal XROM <xx>,<xx> on program line #<line#>
The program contains an XROM statement that references a ROM being
built.

8.5.10 Microcode Errors

The following errors can occur if any MICROCODE files are included
in the ROMs being built:

ERROR: Unresolved reference(s) to <microcode-label>
A MICROCODE file contains an unresolved reference to a label. This
can occur if a MICROCODE file (such as ALENG) is included but the
files it depends on (such as ALEN and BIND) are not. The chapter on
the MICROCODE library specifies the dependencies that must be
satisfied.

ERROR: Reference to <microcode-label> out of range
ERROR: Internal reference out of range: address <hex-address>
These errors will not occur with the MICROCODE library provided with
50S-II, but could occur with an independently-developed MICROCODE
file.

ERROR: MICROCODE label <microcode-label> multiply defined
A global label at the microcode level occurs more than once. The
message will list the offending modules. This error will only occur
if a multiply-defined label is actually referenced.

8-11 50S-II 8-11

WARNING: ROM label <microcode-label> overrides HP-41 mainframe label
A global label at the microcode label conflicts with a label in the
HP-41 mainframe.

8.6 BUILD FATAL Errors

certain conditions may cause BUILD to fail with a
immediately halting execution before completion of the
These errors are generally related to the condition of
(intermediate) files used by BUILD, and can usually be
one of the following conditions:

fatal error,
current pass.
the temporary
attributed to

Z Default disk is write-protected, preventing BUILD from creating
its temporary files. (BUILD creates its temporary files,
UCODE.TMP and MCOOE.TMP, in the current directory of the
default disk, regardless of where the actual ROM image files
are being created).

Z Default disk is out of disk space or directory space to hold
the temporary files.

z In some cases, corrupted ".41T" files can cause BUILD to fail
with a "temp file is corrupt" message.

8-12 SOS-II 8-12

9. Microcode Library

This chapter contains important information if you are

m using files from the microcode library,

m creating a PRIVATE ROM,

m utilizing the automatic key definition capability, or

m writing your own microcode utilities.

In addition to collecting usercode programs into a ROM, SDS-II can
collect microcode. Microcode files add two capabilities to the HP-
41:

m Definition of new keywords. A microcode file can add a new
function to the HP-41.

m special interrupt processing. A microcode file can execute
special processing at power-on, power-off, coldstart, and
several other times. The automatic assignment of keys is an
example of a microcode file that does special interrupt
processing.

microcode library,
Privacy and key

Information on
in the chapter on

The purpose of this chapter is to describe the
which is included with SDS-II on disk #1.
processing are special cases of microcode files.
creating your own microcode files is contained
advanced applications.

Microcode files fall into three categories:

Type 2

Type 1

Type 0

Routines which can be executed from the HP-41 keyboard.

Routines called only by other microcode routines.

System microcode routines.

9.1 Type 2 MICROCODE Files

Most of the type 2
are available in
into the HP-41CX.
however, you make
what machine it is

9-1

MICROCODE files implement popular functions that
the extended functions ROM and are already built

By including these functions in your ROM,
them available for your application regardless of
plugged into.

SDS-II 9-1

WARNING

When using one of these functions, it is important that
your program contain an alpha-XEQ, not an XROM. For
example, if using the ALENG function in your application,
your program must contain XEQ "ALENG", not ALENG. To
insure that this happens, place the labels of the
microcode functions you will use somewhere in the HP-41
program memory (not in the programs under development!).
This will ensure that the HP-41 compiles them as alpha­
XEQ's and not as references to the extended functions ROM.

Some of these type 2 microcode functions require type 1 or type 0
microcode functions. A table of these dependencies occurs at the
end of the chapter. .

9.1.1 AI~ (ALPHA Integer Part)

Not from the Extended Functions ROM.

This function appends the integer part of
ALPHA register. It ignores the fractional
useful for constructing prompts.

9.1.2 ALENG (ALPHA Length)

the X-register to the
part and the sign, and is

This function exists in the Extended Functions ROM.

ALENG returns the number of characters in the ALPHA register to the
X-register.

9.1.3 ANUM (ALPHA Number)

This function exists in the Extended Functions ROM.

ANL~ scans the ALPHA register
number is found, its value
flag 22 is set. If no number
are unchanged.

for an alpha-formatted number. If a
is recalled to the X-register and user
is found, the X-register and flag 22

The digits in the ALPHA register can represent values in any display
format. Number separators and radix marks are interpreted according
to calculator flags 28 and 29. For example, if the ALPHA register
contains the string "PRICE: $1234.50", executing ANUM returns the
following results, depending on the status of flags 28 and 29 (using
'.' radix for consistency):

9-2 50S-II 9-2

Flag 281 Flag 291 Number Returned 1
-==---I~~--_I------~~~--I set 1 set 1 1234.5 1
set 1 clear 1 1234.5 1
clear 1 set 1 123450 1
clear 1 clear 1 1234 1

______ I 1 I

If the digits in the ALPHA register are preceded by a minus sign, a
negative number will be placed in the X-register when ANUM is
executed.

9.1.4 AROT (ALPHA Rotate)

This function exists in the Extended Functions ROM.

AROT rotates the contents of the ALPHA register by the number of
characters in the X-register to the left (if the X-register is
positive) or to the right (if the number is negative).

9.1.5 ATOX (ALPHA to X)

This function exists in the Extended Functions ROM.

ATOX shifts the leftmost character out of the
places its character code in the X-register.
is empty, zero is placed in the X-register.

9.1.6 CLKEYS (Clear Keys)

ALPHA register and
If the ALPHA register

This function exists in the Extended Functions ROM.

CLKEYS clears all USER mode key assignments.

9.1.7 ENROM1 (Enable ROM 1)

Not from the Extended Functions ROM.

This function is used to enable ROM 1 when a 12K (bank-switching)
ROM is being used. It should only be placed in the first ROM of a
three-rom plug-in. For more information, see the chapter on bank­
switching.

9.1.8 ENROM2 (Enable ROM 2)

Not from the Extended Functions ROM.

This function is used to enable ROM 2 when a 12K (bank-switching)
ROM is being used. It should only be placed in the first ROM of a
three-rom plug-in. For more information, see the chapter on bank-

9-3 SDS-II 9-3

switching.

9.1.9 GETKEY (Get Key)

This function exists in the Extended Functions ROM.

When a program executes GETKEY, execution halts until a key is
pressed or an interval of approximately ten seconds elapses. If a
key is pressed, its keycode is placed in the X-register. If no key
is pressed, a zero is placed in the X-register at the end of the
timed interval.

GETKEY responds to the first key pressed, so there can be no shifted
responses to GETKEY. If you press the gold key during a GETKEY
pause, its keycode (31) is placed in the X-register.

GETKEY
entry
key.

enables you to branch to a subroutine on the basis of an
from the keyboard, even when the key pressed is not a digit

9.1.10 PASN (programmable Assign)

This function exists in the Extended Functions ROM.

PASN enables you to assign functions or programs to a key location.
However, PASN requires you to enter the keycode for the key which
you wish to assign the function or program. PASN is executed after
placing the keycode in the X-register. The function or program name
is placed in the ALPHA register. To assign BEEP to the [COS) key,
place 24 in the X-register and "BEEP" in the ALPHA register, then
execute PASN.

9.1.11 PCLPS (programmable Clear Programs)

This function exists in the Extended Functions ROM.

PCLPS clears one or more of the programs in main memory. All
programs beginning with the one named in the ALPHA register (or the
current program if the ALPHA register is clear) and continuing to
the end of program memory are cleared. If a running program names
itself (or clears the ALPHA register) and executes PCLPS, that
program and all following it will be cleared and program execution
will terminate.

9.1.12 POSA (Position in ALPHA)

This function exists in the Extended Functions ROM.

POSA scans the ALPHA register for the
specified in the X-register. There
character or string. You can enter the

9-4 SDS-II

ALPHA character or string
are two ways to specify the

character code for a single

9-4

character, or you can enter an actual character or
characters (up to 6 characters) using ASTO. If the
character or string is found in the ALPHA register, the
position of the character (or the position of the leftmost
in the string) is returned in the X-register.

string of
specified
character
character

Character positions are counted from left to right, starting with
position zero. If the specified string occurs more than once in the
ALPHA register, only the position of the first occurrence is
returned. If the target string is not found in the ALPHA register,
negative one is returned.

9.1.13 PSIZE (programmable size)

This function exists in the Extended Functions ROM.

PSIZE works like the SIZE function provided with the calculator
except that it can be executed from within a program. It makes it
possible for a running program to reallocate the registers in main
memory as required. To use: place the number of data storage
registers desired into the X-register and execute PSIZE.

9.1.14 RCLSTFLG (Recall/store Flags)

These functions exist in the Extended Functions ROM.

This file provides two functions: RCLFLAG and STOFLAG.

RCLFLAG recalls the status of flags 00 through 43 to the X-register
as ALPHA data. The contents of the X-register can then be stored
for later use. When RCLFLAG is executed, the display will not be
intelligible.

If the flag status from a previously
the X-register, executing STOFLAG
through 43.

executed RCLFLAG is placed in
restores calculator flags 00

If you want to restore only some of the flags, place the flag status
in the Y-register and a number in the form (bb.ee) in the X­
register. Executing STOFLAG will then restore flags starting with
(bb) and ending with (ee). .

9.1.15 REGMVSWP (Register Move/swap)

These functions exist in the Extended Functions ROM.

This file provides two functions: REGMOVE and REGSWAP.

REGMOVE sss.dddnnn copies a block of registers, specified by
beginning at register (sss), to a block of the same
beginning at register (ddd). Any data that was already

9-5 SDS-II

(nnn) ,
length,
in the

9-5

destination block is lost. For example, to move ten registers of
data from registers 2-11 to registers 20-29, place 2.020010 in the
X-register and execute REGMOVE.

REGSWAP sss.dddnnn exchanges the contents of
registers beginning at register (sss) with the
of the same length beginning at register (ddd).
with 2.020010 in the x-register would exchange
registers 20-29.

a block of (nnn)
contents of a block

Executing REGSWAP
registers 2-11 with

9.1.16 SIZE (Determine current SIZE)

This function exists in the Extended Functions ROM.

The MICROCODE file SIZE provides the SIZE? function. SIZE? places
the number of registers currently allocated to data storage into the
X-register.

SIZE? can be used within a program to inhibit execution of PSIZE
when a memory reallocation is not required:

01 LBL ABC

02 SIZE?

03 nn

04 X>Y?

05 PSIZE

The number of data storage registers
allocated is placed in the X-register.

presently

The number of registers this program needs. The
results of the previous step are now in the Y-register.

Is the number of storage registers required by the
program (X-register) greater than the number presently
allocated (Y-register)?

If so, this step is executed. If not, this step is
skipped.

9.1.17 XTOA (X to ALPHA)

This function exists in the Extended Functions ROM.

XTOA, when executed with a character code in the x-register, appends
the character represented by the character code to the right-hand
end of the string in the ALPHA register. XTOA may be executed with
any number from 0 to 255 in the x-register. The null byte, which
corresponds to the decimal value 0, has a special meaning in the
ALPHA register. Because of this, under some circumstances you
cannot retrieve a null byte from the ALPHA register. This is
discussed in more detail in volume 2 of the HP-41CX owners manual.

9-6 50S-II 9-6

9.1.18 XF (X Exchange Flags)

This function exists in the Extended Functions ROM.

The MICROCODE file XF provides the function X<>F. X<>F uses the
number in the x-register to set flags zero through seven. At the
same time, it transfers the previous status of those flags to the
X-register.

In the X-register, the flag status takes the form of an 8-bit number
from 0 through 255. Each flag corresponds to one bit in that
number. The number in the X-register is the sum of xCi) [i=O to 7J,
where x(i)=O if flag i is clear, and x(i)=2 A i if flag i is set. The
flags and their power-of-two equivalents are:

Flag Number 1 71 61 51 41 31 21 11 01
I-,~I--_I--_I--_I--I--I--I--I

Equivalent I 1281 641 321 161 81 41 21 11
~ _______ I 1--_1--_1--_1--1--1--1--1

For example, suppose flags 0, 3, 5, and 7 are set, while flags 1, 2,
4, and 6 are clear. To determine what number is placed into the X­
register when X<>F is executed, add up the numeric equivalents of
the flags that are set:

1 Flag Numeric Equivalent I
I I
I 0 1 I
I 3 8 I
I 5 32 I
I 7 128 1
I I
I 169 I
1 I

The number in the X-register would be 169.

If you enter zero in the X-register and execute X<>F, flags zero
through seven are cleared, and their previous status is placed in
the X-register.

You can use X<>F to create extended general purpose flags by storing
numbers representing the status of flags zero through seven in a
register. For example, to check the status of an extended flag,
recall the flag status code in the X-register using RCL, execute
X<>F, then execute [FS?J as usual.

X<>F enables you to use large numbers of flags in programs. Flags
are grouped by eights and transferred into and out of the first

9-7 SDS-II 9-7

eight flag positions by means of X<>F. The number representing the
status of a particular group of eight flags is placed in a storage
register until it is needed. When it is needed, it is recalled to
the X-register, exchanged with the flags presently in those eight
positions, and the status of specific flags in that group can be
examined or altered.

9.2 Type 1 MICROCODE Files

The type 1 microcode files are those which contain utilities used by
two or more of the type 2 microcode files. For example, the file
BIND contains a utility used by ALENG, AROT, ATOX, POSA, SIZE?, and
X<>F. If one or more of those files is used, BIND must be included
in the file list in the DEFINE file.

For each type 1 microcode file, this section will list the microcode
labels that are defined within. This information can be used to
determine which file is missing if BUILD fails with an unresolved
microcode reference.

9.2.1 ALEN

ALEN defines the following microcode labels:

ALEN, CNTBYT, and FAHED.

9.2.2 ALNAM2

ALNAM2 defines the following microcode label:

ALNAM2.

9.2.3 BIND

BIND defines the following microcode label:

BIN D.

9.2.4 XB

XB defines the following microcode labels:

X_256, X_999.

9.3 Type 0 MICROCODE Files

Type 0 microcode routines perform miscellaneous functions not
covered by types 1 and 2.

9-8 SDS-II 9-8

9.3.1 AUTOST (Autosta~t)

AUTOST is
processing.
functions.
files) .

an example of a
Unlike the type

Nor is it called by

file that does special interrupt
2 files, AUTOST does not define any

other routines (as are the type 1

AUTOST, when included in your ROM, causes the HP-4l, whenever it
powers on, to search memory (user memory and ROMs) for a program
named "RECOVER". When the program is found, it is executed. If it
is not found, the calculator exhibits strange behavior -- AUTOST
should not be used in a ROM that does not contain a "RECOVER"
program.

AUTOST is useful for taking control of the machine as soon as it is
turned on.

9.3.2 PRIVACY

PRIVACY is a short microcode file that must exist in every private
ROM. This file is not included with the microcode library because
it is built into BUILD -- automatically installed if the ROM is
private. Its length is 13 bytes, plus one entry in the MCODE table
(explained below).

9.3.3 KEYASN

KEYASN is a microcode file that must exist in every ROM which
performs automatic key assignments. Like PRIVACY, KEYASN is build
into BUILD. Its length is variable, requ~r~ng 150 bytes plus 2
bytes per key assignment. In addition, it requires 2 entries in the
MCODE table (explained below) .

9.3.4 MCODE

MCODE is a microcode file that must exist in every ROM in which a
microcode file is doing special interrupt processing. All of the
type 0 files mentioned above perform special interrupt processing.
Its length is variable and dependent on several factors:

III For the second or third' ROM of a 3-ROM plug-in, MCODE begins at
ROM address 4014 and ends at 4083.

III For other ROMs (first ROM of a 3-ROM plug-in or any ROM of a l­
or 2-ROM plug-in), MCODE begins at ROM address 4020 and ends at
4083.

In addition, MCODE creates a table (immediately below the starting
address) used for handling the special interrupt processing. The
length of the table is 2n+l bytes, where n is the number of table
entries required by all of the MICROCODE files performing special

9-9 SDS-II 9-9

processing.

Additional information about creating special processing is contained applications.

MICROCODE files
in the chapter

9.4 Microcode Library File Requirements

to
on

perform
advanced

For each file in the microcode library, the table on the following page gives the type, number of .bytes required, and list of dependencies. Files listed in the dependency column are type 1 and type 0 microcode files that must be included for the corresponding type 2 file to work. If they are not included, BUILD will fail with unresolved references. Files lis~ed in parentheses are automatically included by BUILD, and should not be specified in the DEFINE file.

9-10 SDS-II 9-10

I Microcode I Type I Bytes I Dependencies I
I File I I Required I I
I I I I I
I AlP I 2 I 29 I I
I I I I
I ALEN 1 I 81 I I
I I I I
I ALENG 2 I 13 I ALEN I
I I I BIND I
I I I I
I ALNAM2 1 I 98 I I
I I I I
I ANUM 2 I 114 I ALEN I
I I I I
I AROT 2 I 49 I ALEN I
I I I BIND I
I I I I
I ATOX 2 I 23 I . ALEN I
I I I BIND I
I I I I I
I AUTOST I 0 I 98 I (MCODE) I
I I I I I
I BIND I 1 I 28 I I
I I I I I
I CLKEYS I 2 I 55 I I
I I I I I
I ENROM1 I 2 I 9 I I
I I I I I
I ENROM2 I 2 I 9 I I
I I I I I
I GETKEY I 2 I 60 I I
I I I I I
I KEYASN I 0 I see I (MCODE) I
I I I text I I
I I I I I
I MCODE I 0 I see I I
I I I text I I
I I I I I
I PASN I 2 . I 83 I ALNAM2 I
I I I I I
I PCLPS I 2 I 127 I ALNAM2 I
I I I I I
I POSA I 2 I 84 I ALEN I
I I I I BIND I
I I I I XB I
I I I I I
I PRIVACY I 0 I 13 I (MCODE) I
I I I I I
I PSIZE I 2 I 95 I XB I
I I I I I
I I I I I

9-11 50S-II 9-11

Microcode I Type I Bytes Dependencies I
File I Required I

I I
RCLSTFLG I 2 108 I

I I
REGMVSWP I 2 121 I

I I
SIZE I 2 19 BIND I

I I
XB I 1 29 I

I I
XF I 2 42 BIND I

I XB I
I I

XTOA I 2 18 XB I
I I

9-12 SDS-II 9-12

10. Emulating ROMs

SOS-II supports two techniques for emulating ROMs: EPROM boxes and
RAM boxes.

10.1 EPROM Box ROM Emulation

A number of EPROM boxes are commercially available for emulating
HP-4l ROMs. Through the BURN4l utility, SOS-II supports the
ERAMCO-???? EPROM box. Unlike other commercially-available
products, the ERAMCO-???? supports the bank-switching scheme used in
the Hewlett-Packard bank-switching ROM (explained in the chapter on
bank switching).

*** CONTINUE HERE with instructions for ERAMCO-???? ***
10.2 RAM Box Emulation

A number of RAM boxes are commercially available for emulating HP-4l
ROMs. Typically, these boxes are programmed by the HP-4l using
specialized software. For more information on using RAM boxes, see
the sections on WRITMLDL and READMLOL in the chapter on advanced
applications.

10-1 SOS-II 10-1

11. Burning EPROMs For The ERAMCO-????

Completion of this chapter awaits information about the product.
*** CONTINUE HERE ***

11-1 50S-II 11-1

12. Bank-switching

The HP-41 address space layout allows a plug-in ROM to use up to SK
of memory. Each plug-in port has an address space of SK, divided
into two 4K segments known as the "lower half" and the "upper half".
In the past, a 4K or SK plug-in was produced by using 1 or 2
(respectively) 4K ROM chips (HP part number lLE9). Typically
(although not always), a 4K application would use the lower half of
the port's address space, and SK applications would use the entire
address space.

The HP-41 custom ROM program is now using a 12K ROM
lLG9. The lLG9 can be programmed to act either as a
ROM. This not only reduces the chip count from 2 to
plug-in, it allows even larger plug-ins: 12K.

known as
4K, SK, or
1 for an

the
12K

SK

Using a 12K plug-in in an SK address space requires, understandably,
special techniques to address the entire 12K. This is achieved
through bank-switching. The following sections explain the
requirements and limitations imposed by bank-switching.

12.1 A Word About Terminology

This document has been using the term "ROM" to describe a 4K block
of HP-41 ROM address space, and "plug-in" to describe the collection
of 4K blocks housed in a single package. Strictly speaking, the
lLG9 is a single ROM containing three programmable 4K blocks. For
consistent terminology, however, "ROM" will designate a 4K block,
and a lLG9 plug-in conceptually treated as containing 1, 2, or 3
ROMs.

12.2 Basic Bank-Switching

Using SDS-II, you can specify that your plug-in consist of 1, 2, or
3 ROMs (by using 1, 2, or 3 "&ROM#" directives in the DEFINE file).
The following table illustrates where these ROMs are addressed.

ROMs ROM # Where Addressed 1
1

1 1 lower half 1
1

2 1 lower half 1
2 upper half 1

I
3 1 lower half 1

2 upper half, bank 11
3 upper half, bank 21

1

The 1- and 2-ROM cases are straightforward. For a 3-ROM plug-in,

12-1 SDS-II 12-1

bank 1 is enabled
ENROM2 command (from
disabled and bank
command enables bank

when the plug-in is first inserted. When the
the MICROCODE library) is executed, bank 1 is
2 appears in its place. Similarly, the ENROMI
1 and disables bank 2.

In effect, there are two different ROMs occupying the upper half of
the port, but only one is available at a time. Once a bank is
enabled, it remains enabled until the opposite bank is enabled or
until the ROM is removed from the machine. On being plugged back
into a machine, BANK 1 is re-enabled.

certain critical limitations apply to the ENROMI and
commands:

ENROM2

m These commands should be placed in the first ROM of the plug­
in. Placing these commands in the bank-switching ROMs can
cause unpredictable (and generally disastrous) results when
they are executed.

m These commands will only affect the
resident. If, for example, the
switching plug-ins in two different
executing the ENROM2 keyword in
plug-in in port 1.

plug-in in which they are
HP-41 contains two bank­

ports (say, ports 1 and 2),
port 1 will only affect the

m Because of the possibility that more than one plug-in in the
user's HP-41 will be bank-switching, and that ENROMI and ENROM2
will subsequently be multiply defined, it is recommended that
your application not rely on having the user execute the ENROMI
and ENROM2 commands. You should place all major labels (those
to be XEQ'd by the user) in the first ROM, and only use ENROMI
and ENROM2 within your application to enable the ROMs
containing your utilities.

12.3 Advanced Bank-Switching

The material in this section assumes
assembly-language programming, and
operating system of the HP-41.

a familiarity with HP-41
with the architecture and

The lLG9 has a number of configuration options, more fully explained
in the section on lLG9 configuration in the chapter on advanced
applications. Each 4K core of the lLG9 can be programmed as either
bank a (always enabled), bank 1 (enabled on power-up), or bank 2
(alternately enabled/disabled with bank 1). While it is possible to
create other configurations than that shown in the previous section
(ROM l=low/bankO, ROM 2=high/bankl, ROM 3=high/bank2), that
configuration should be usable for all applications.

Using bank-switching places certain requirements on the code within
the ROM:

12-2 SDS-II 12-2

~ The bank-switching itself is accomplished through the use of
the assembly-language instructions ENROMl (instruction code
lOOH) and ENROM2 (instruction code lBOH). These instructions
must occur somewhere within the address space of the lLG9 being
bank-switched. That is, an ENROMx instruction will only affect
the lLG9 out of which it is read. (Note that the ENROMx
instruction only takes effect when it is read as a CPU
instruction, and not when it is read as data by the CXISA
instruction.)

~ The ILG9 requires that the ENROMx instruction be preceded by an
instruction whose high bit is zero. This is customarily
handled by placing a "GOTO $+l" instruction before the ENROMx.

~ In general, an ENROMx instruction should not occur within a
bank-switching ROM. It can, however, be done with careful
planning. Keeping in mind that executing an ENROMx instruction
will immediately enable the selected ROM, instructions can be
placed within both ROMs to insure that execution continues
properly. For example, using the typical 3-ROM configuration
described above, if the CPU executes an ENROMl instruction from
address FOOH in BANK 2, it will read the following instruction
from address FOlH in BANK l.

~ Requirements of the self-test ROM and production testing impose
the following restrictions (these are both handled
automatically by BUILD, but must be accounted for if you create
your own ROM images using the advanced tools):

N The data at address FFDH within any core must
'l' in at least one of the upper two bits if
that core is a bank-selecting core.

contain a
and only if

N If a core is bank-selecting, it must contain the following
instructions at the following addresses:

FC7
FCB
FC9
FCA

ENROMl
RTN
ENROM2
RTN

The restrictions mentioned
of major label are not
through careful planning.
ADVANTAGE ROM.

in the previous section about placement
absolute; they can also be circumvented

This was done, for example, in the HP-4l

The ADVANTAGE places major labels in the first two ROMs. The third
ROM has a ROM ID of zero and, subsequently, an empty FAT table. It
only contains microcode, which is always called from BANK 0 after
performing an ENROM2. The microcode in the ROM never relinquishes
control with BANK 2 enabled. Rather, whenever code in BANK 2

l2-3 SDS-II 12-3

relinquishes control or calls a mainframe function that might not
return, it does so through code in BANK 0 that re-enables BANK 1
before relinquishing control (or executing the call). Obviously,
such techniques require writing code to jump between pages in HP-41
ROM space.

These steps
user, and
functions.

12-4

have the effect of completely hiding BANK 2 from the
making two ROMs (and therefore two FATs) available for

SDS-II 12-4

13. SOS-II Basic utilities

SDS-II disk #1 contains the following utilities in addition to
READ41P, BUILD, and BURN4l.

13.1 CHECKSUM

The checksum utility can be used to verify the checksum of a ROM
image file. The invocation is:

CHECKSUM <filename> [<filename> ...]

This utility accepts filename wild-carding in the command line. For
example,

CHECKSUM *

will verify the checksums of all *.41R files in the current
directory.

13.2 EPROM

The EPROM utility ~enerates data to be downloaded to an EPROM
programmer. It ~s used by the BURN4l program. Instructions on
using the EPROM utility itself can be found in the utilities section
in the chapter on advanced applications.

13.3 LIFPACK

The LIFPACK utility allows you to pack an HP-4l mass storage medium,
reclaiming space lost when files are purged by the HP-41. Its use
is not recommended for the 82l61A cassette drive. To invoke:

LIFPACK <disk_designator>

For example, to pack the LIF disk in drive C:

LIFPACK c:

13.4 LISTFAT

The LISTFAT utility lists the catalog of a ROM image file.
Invocation:

LISTFAT <ROMfilename> [<ROMfilename>]

If a second ROMfilename is specified, LISTFAT will correctly find
functions in the second ROM whose FAT (function address table) entry
is in the first ROM, and vice versa. such ROMs will never be
created by BUILD, but can be created using the advanced programming
tools.

13-1 SDS-II 13-1

13.5 SOSCAT

The SOSCAT utility provides a catalog of HP-41 program files and
MLOL-format files (created by WRITMLOL, explained in the chapter on
advanced applications) on an HP-41 mass storage medium. Both
catalogs are listed in alphabetical order, not the order the files
are encountered on the disk. HP-41 program files are listed with
the special characters substituted as described in the appendix on
special characters.

Invocation:

50S CAT <disk designator>

For example:

SOSCAT C:

13-2 50S-II 13-2

14. Advanced Applications

This chapter describes
ROM development, as
based ROM emulator.

the advanced tools supplied with SDS-II for
well as the tools needed to support the RAM-

The advanced programming tools are provided on an AS-IS basis. HP
makes no warranty, expressed or implied, as to their performance.
HP provides no support for assembly-language code development, and
shall not be responsible for any loss or damage to the user, its
customers or any third parties caused by inaccuracies in the
materials or documentation.

14.1 Using the.RAM-Based ROM Emulator

Several RAM-based devices, known as Q-ROM, have been marketed to
allow ROM emulation. Recommended for use with SDS-II is the ERAMCO
ES16S, which emulates the full functionality of the lLG9 ROM,
including the bank-switching capabilities.

Data is loaded in Q-ROM devices by writing to them from the HP-4l.
Software is also available for programming Q-ROM devices. For
example, the GETROM keyword in the MLDL operating system (which is
distributed on EPROM for use in the ERAMCO ESMLDL 1) allows transfer
of a ROM image from an HP-41 mass storage medium into an Q-ROM
device.

To emulate the bank-switching lLG9 with the ERAMCO Ram Storage Unit,
load the images from ROM 1 and ROM 2 (respectively) into bank 1, and
the images from ROM 1 and ROM 3 (respectively) into bank 2. By
virtue of its presence in both banks, ROM 1 is always present,
providing emulation of lLG9 bank o.

Details on using the various Q-ROM devices are included in the
documentation with each product, and will not be discussed here.

5DS-II includes two programs on disk #2 to support use of Q-ROM
devices: READMLDL and WRITMLDL.

14.1.1 WRITMLDL

The WRITMLDL utility will copy a ROM image file created by BUILD (or
the advanced utilities) onto a LIF medium in the "standard format".
That is, it will create a file on the HP-41 medium that is directly
readable by the GETROM keyword (mentioned above) and other such
utilities.

The invocation is:

WRITMLDL <ROMfile> <disk_designator>:<filename>

14-1 SDS-II 14-1

For example,

WRITMLDL MYROMl C:ROMIMAGE

will take ROM image file
HP-41 media in drive
readable by GETROM.

MYROM1.41R and create file ROMIMAGE on the
C: containing the ROM image in a format

A word of caution: Under certain circumstances, the GETROM keyword
can be fooled into reading the wrong file. The problem, which is
not easily repeatable, can best be characterized with an example:

If the HP-41 medium has two files, named ABCDEF and ABCDEFG, and
ABCDEFG occurs earlier in the disk directory than ABCDEF, attempting
to retrieve ABCDEF with GETROM will sometimes retrieve ABCDEFG.
This problem can be avoided by appending a space to the filename
specified in the ALPHA register.

14.1.2 READMLDL

READMLDL is the inverse of WRITMLDL. It will read a ROM image file
from an HP-41 mass storage medium into a .41T ROM image file. The
ROM image file can then be manipulated using such tools as LISTFAT,
EXTRACT, etc.

Invocation:

READMLDL <disk_designator>:<filename> <ROMfile>

14.2 other Advanced utilities

This section assumes prior knowledge of HP-41 assembly language, and
the HP-41 architecture and operating system. Recommended reading on
this topic is the manual for the ZENROM (from Zengrange Ltd., in
England).

14.2.1 ASSEMB41

ASSEMB41 is an HP-41 assembler. It assembles source files (suffixed
with .41A) into relocatable object files (.410) that can either be:

B Collected into ROM image files (.41R) using LINK41, or

B Turned into microcode library files (.41T) using MUCODE.

The assembler uses HP mnemonics, which differ in many
mnemonics used in many third-party products.
sUbsections list the mnemonics and their opcodes,
facilitate translation from other assembly languages.

14-2 SDS-II

ways from the
The following

which should

14-2

14.2.1.1 Invocation

The assembler is invoked by:

ASSEMB41 [-ls8) [-0 <outputfile» <inputfile>

Command line options:

-1 Produce a source code listing.

-s Print a symbol table.

-8 Print addresses and opcodes in octal. If not specified, the
assembler will print addresses and opcodes in hex.

-0 Use the following argument as the name of the output file. If
this option is not specified, the input filename will be used.
In either case, the output file will have extension ".410".

The <inputfile> must have the extension ".41A" to be found by
ASSEMB41.

If the -lor -s option is specified, the listing will be formatted
for a printer, and should be redirected to one using the '>' command
line feature of MS-DOS.

14.2.1.2 Assembler syntax Conventions

Following are the general syntax rules for ASSEMB41.

14.2.1.2.1 Comments

Any line beginning with a "*" is interpreted as a comment.

A semicolon (':') can be used to begin an in-line comment.

14.2.1.2.2 Fields

A line consists of three fields: label, opcode, and operand.

1111 A label must
character,
characters.
by ASSEMB41.

begin in column 1, must begin with an alphabetic
and can contain any number of alphanumeric
Only the first 20 characters of a label are used

1111 An opcode can
used, there
label and the

begin anywhere but
must be at least
opcode.

in column 1. If a label is
one space (or tab) between the

1111 The operand, if required for the opcode, must be separated from
the opcode by one or more spaces (or tabs) .

14-3 SDS-II 14-3

If a field begins with a semicolon, the remainder of the line is
treated as a comment and ignored by the assembler.

14.2.1.2.3 Expressions

Most opcodes that can
pseudo-ops SPACE,
expressions combining

take numeric operands (with the exception of
FILLTO, BSS, and ORG) can take arbitrary
labels, constants, and special symbols.

CONSTANTS Constants can be in hex (terminated with 'H'), octal
(terminated with '0' or 'Q') or decimal. A hex constant
beginning with a non-decimal digit must be prefixed with
a zero to avoid confusion with labels (for example,
OFH) •

LABELS Local labels (those that can be resolved within this
module) can be included in expressions.

SPECIAL The special symbol '$' designates the current address.
For example, GOTO $+1 means GOTO the next statement.

The following operators can be used in expressions: +, -, *, /, and
% (modulus). An expression consisting of one label or '$' plus or
minus a constant is considered a "relative" expression. All other
expressions are considered "absolute". The purpose of this
distinction becomes clear in the section below on global labels. If
the '-s' option is specified, labels with "absolute" values are
indicated in the symbol table with a "*".
The pseudo-ops mentioned above that cannot take arbitrary
expressions can take constants in decimal, hex, or octal.

14.2.1.2.4 Global Labels

ASSEMB41 supports global references for the following opcodes:

Z All branches (short and long).

z CON.

z DEFP4K, DEFR4K, DEFRSK, U4KDEF, USKDEF.

z GSB41C, GSBSAM, GOL41C, GOLSAM.

z LC3.

A global reference is one that is resolved by the
rather than by the assembler. A global expression
a label preceded by '='. For example, to call the
CLLCDE, use "GOSUB =CLLCOE". A global expression
a single label; it cannot contain any arithmetic.

14-4 SOS-II

1 inker (LINK41)
takes the form of
mainframe routine
must only contain

14-4

To declare a label as global, the GLB opcode (explained below) is
used. When the linker resolves global references, it updates
relative expressions to reflect the load address of the assembly
module; absolute expressions are not updated.

In addition to supporting global references, the opcodes mentioned
above support "relocation fixups". This means that a local
reference to a relative expression (such as CON <label» is updated
by the linker to reflect the load address of the assembly module.
An error message in LINK4l or BUILD about an internal reference out
of range is caused by a relocation fixup being out of range.

14.2.1.3 Mnemonics

The mnemonics used here reflect the history of mnemonics used in
past internal HP-41 software; they do not reflect a conscious choice
made for this product (exception: the addition of the WMLDL
mnemonic). The type 0 opcodes are presented both in alphabetical
and numeric order, to facilitate understanding this set of
mnemonics.

For the opcodes that take
compiled word is shown.
the value of the operand.
legal range of operands.

an operand, only the base value of the
The actual choice of bytes is dependent on

Where appropriate, this table gives the

14.2.1.3.1 Type 0 opcodes Alphabetical Order

See the commentary after this list for an explanation of opcodes
designated with. '*'.

14-5

MNE

?FO=l
?F10=1
?Fll=l
?F12=1
?Fl3=1
?Fl=l
?F2=1
?F3=1
?F4=1
?F5=1
?F6=1
?F7=1
?F8=1
?F9=1
?LLD
?P=Q

OPRND

?PT= 0-13
?SO=l

OPC

3ACH
OECH
lACH
36CH
2ECH
32CH
22CH
02CH
06CH
OACH
16CH
2ACH
12CH
26CH
160H
120H
014H
38CH

SDS-II

MNE

IFCR?
INCPT
LC

*LC3
LDI
LLD?
M=C
MCEX
N=C
NCEX
NOP
ORAV?
P=Q?
PFAD=C
POWOFF
PT=
PT=?
PT=A

OPRND OPC

l6CH
3DCH

0-15 OlOH
<expr> OlOH, OlOH, OlOH

DOH
160H
158H
lD8H
070H
OFOH
OOOH
OECH
120H
3FOH
060H, OOOH

0-13 OlCH
0-13 014H

3E8H

14-5

?S10=1 OCCH PT=B 3A8H
?Sll=l 18CH RABCL 3F8H
?S12=1 34CH RABCR 3B8H
?S13=1 2CCH RCR 0-13 03CH
?Sl=l 30CH RCTIME 078H
?S2=1 20CH RDALM OB8H
?S3=1 OOCH RDINT 178H
?S4=1 04CH RDSCR 138H
?S5=1 08CH RDSTS OF8H
?S6=1 14CH RDTIME 038H
?S7=1 28CH READEN 178H
?S8=1 lOCH REGN=C 0-15 028H
?S9=1 24CH RSTKB 3C8H
ALARM? 36CH RTN 3EOH
C=C!A 370H RTNC 360H
C=C&A 3BOH RTNNC 3AOH
C=C.A 3BOH SO= 0-1 384H
C=CORA 370H S10= 0-1 OC4H
C=DATA 038H S11= 0-1 184H
C=G 098H S12= 0-1 344H
C=KEYS 220H S13= 0-1 2C4H
C=M 198H Sl= 0-1 304H
C=N OBOH S2= 0-1 204H
C=REGN 1-15 038H S3= 0-1 004H
C=ST 398H S4= 0-1 044H
C=STK 1BOH S5= 0-1 084H
CGEX OD8H S6= 0-1 144H
CHKKB 3CCH S7= 0-1 284H
CLRABC 1AOH S8= 0-1 104H
CLRST 3C4H S9= 0-1 244H
CMEX 1D8H SB=F 298H
CNEX OFOH SELP OAOH

*CON <expr> OOOH SELPF 0-15 024H
CRDFLG 3E8H SELQ OEOH
CRDINF 268H SET DEC 2AOH
CRDOHF 1E8H SETHEX 260H
CRDWPF 168H SLLABC 1A8H
CSTEX 3D8H SLLDAB 168H
CXISA 330H SLSABC 3E8H
DADD=C 270H SLSDA 2A8H
DATA=C 2FOH SLSDAB 368H
DECPT 3D4H SLSDB 2E8H
DISOFF 2EOH SPOPND 020H
DISTOG 320H SRLABC 128H
DSALM 2A8H SRLDA 028H
DSWKUP 228H SRLDAB OE8H
ENALM 2E8H SRLDB 068H
ENREAD OA8H SRLDC OA8H
ENROMl 100H SRQR? 2ACH
ENROM2 lBOH SRSABC 3ABH
ENWKUP 268H SRSDA 1E8H

14-6 SDS-II 14-6

ENWRIT
F=5B
FEX5B
FLG=l? 0-13
FLLABC
FLLDA
FLLDAB
FLLDB
FLLDC
FL5DA
FL5DAB
FLSDB
FLSDC
FRAV?
FRNS?
FRS ABC
FRSDA
FRS DAB
FRSDB
FR5DC
G=C
GOKEY5
GOTOC
HPIL=C 0-7
HPL=CH 0-7

02BH
25BH
2DBH
02CH
l3BH
03BH
OFBH
07BH
OBBH
2BBH
37BH
2F8H
lB8H
l2CH
26CH
3B8H
lF8H
338H
23BH
27BH
05BH
230H
lEOH
200H
024H

5R5DAB
5R5DB
5RSDC
5T=O
ST=l
5T=1?
ST=C
5TARTC
STK=C
STOPC
5TPINT
STREAD
STWRIT
TCLCRD
TRPCRD
T5TBUF
WDTlME
WMLDL
WRALM
WRSCR
WRST5
WRTEN
WRTIME
W5INT

0-13
0-13
0-13

328H
22BH
26BH
004H
OOBH
OOCH
358H
368H
l70H
32BH
lE8H
OE8H
068H
368H
328H
2E8H
06BH
040H
OABH
l2BH
OEBH
2FOH
028H
l68H

The CON mnemonic compiles into the low 10 bits of the expression
the operand field. Unlike most of these opcodes, it does
perform a range check on the operand to require that it be in
range 0-3FFH.

in
not
the

The LC3 compiles into three successive LC's, loading nibbles 2, 1,
and 0 of the expression. For example, LC3" l23H compiles into
LC ljLC 2jLC 3. Like CON, it does not perform a range check on the
operand to require that it be in the range O-OFFFH.

14.2.1.3.2 Type 0 Opcodes Numeric Order

14-7

MNE

CON
NOP
S3=
ST=O
5T=1
?53=1
ST=l?
LC
LC3
?PT=
PT=?

OPRND

<expr>

0-1
0-13
0-13

0-13
0-15
<expr>
0-13
0-13

OPC

OOOH
OOOH
004H
004H
OOBH
OOCH
OOCH
010H
010H, OlOH, OlOH
014H
014H

5DS-II

MNE

C=STK
FLSDC
CMEX
MCEX
GOTOC
CRDOHF
SRSDA
STPINT
FRSDA
HPIL=C
52=

OPRND

0-7
0-1

OPC

lBOH
1BBH
lD8H
lDBH
1EOH
1EBH
lEBH
lEBH
1F8H
200H
204H

14-7

PT= 0-13 01CH ?S2=1 20CH
SPOPND 020H C=KEYS 220H HPL=CH 0-7 024H DSWKUP 228H SELPF 0-15 024H SRSDB 228H ENWRIT 028H ?F2=1 22CH REGN=C 0-15 028H GOKEYS 230H SRLDA 028H FRSDB 238H
WRTIME 028H S9= 0-1 244H
?F3=1 02CH ?S9=1 24CH FLG=1? 0-13 02CH F=SB 25SH
C=DATA 03SH SETHEX 260H
C=REGN 1-15 03SH CRDINF 268H
FLLDA 03SH ENWKUP 26SH
RDTIME 03SH SRSDC 268H RCR 0-13 03CH ?F9=1 26CH
WMLDL 040H FRNS? 26CH
S4= 0-1 044H DADD=C 270H
?S4=1 04CH FRSDC 278H G=C 058H S7= 0-1 284H
POWOFF 060H, OOOH ?S7=1 2SCH SRLDB 06SH SB=F 298H
STWRIT 06SH SET DEC 2AOH WDTIME 06SH DSALM 2ASH ?F4=1 06CH SLSDA 2ASH N=C 070H ?F7=1 2ACH
FLLDB 078H SRQR? 2ACH RCTIME 078H FLSDA 2BSH S5= 0-1 084H S13= 0-1 2C4H ?S5=1 OSCH ?S13=1 2CCH C=G 098H FEXSB 2DSH SELP OAOH DISOFF 2EOH ENREAD OA8H ENALM 2ESH SRLDC OASH SLSDB 2ESH WRALM OASH TSTBUF 2E8H ?F5=1 OACH ?F13=1 2ECH C=N OBOH DATA=C 2FOH FLLDC OBSH WRTEN 2FOH
RDALM OBSH FLSDB 2FSH S10= 0-1 OC4H S1= 0-1 304H ?S10=1 OCCH ?Sl=1 30CH CGEX ODSH DISTOG 320H SELQ OEOH SRSDAB 32SH SRLDAB OESH STOPC 32SH STREAD OESH TRPCRD 328H WRSTS OESH ?F1=1 32CH
?FI0=1 OECH CXISA 330H ORAV? OECH FRS DAB 33SH CNEX OFOH S12= 0-1 344H NCEX OFOH ?S12=1 34CH FLLDAB OFSH 5T=C 35SH RD5TS OFSH RTNC 360H

14-S 5D5-II 14-8

ENROMl 100H SLSOAB 368H
S8= 0-1 104H STARTC 368H ?S8=1 lOCH TCLCRO 368H
?P=Q 120H ?F12=1 36CH P=Q? 120H ALARM? 36CH
SRLABC 128H C=C!A 370H
WRSCR 128H C=CORA 370H
?F8=1 12CH FLSOAB 378H
FRAV? 12CH SO= 0-1 384H
LOI 130H ?SO=l 3BCH
FLLABC 138H C=ST 398H
ROSCR 138H RTNNC 3AOH
S6= 0-1 H4H PT=B 3A8H
?S6=1 HCH SRSABC 3A8H
M=C 158H ?FO=l 3ACH
?LLO 160H C=C&A 3BOH LLO? 160H C=C.A 3BOH
CROWPF 168H FRS ABC 3B8H
SLLOAB 168H RABCR 3B8H
WSINT 168H CLRST 3C4H
?F6=1 16CH RSTKB 3CBH
IFCR? 16CH CHKKB 3CCH
STK=C 170H OECPT 3D4H
ROINT 17BH CSTEX 3D8H REAOEN 178H INCPT 3DCH
ENROM2 180H RTN 3EOH Sll= 0-1 184H CROFLG 3E8H
?Sl1=l lBCH PT=A 3E8H C=M 198H SLSABC 3EBH
CLRABC lAOH PFAO=C 3FOH SLLABC lA8H RABCL 3F8H
?F11=l lACH

14.2.1. 3 . 3 Arithmetics

All of these mnemonics require a time-enable field, consisting of one of the fallowing: PT, X, WPT, W, PQ, XS, M, S.

MNE OPRNO OPC MNE OPRNO OPC ----- -----
?A#O TE 342H B#O? TE 2C2H
?A#C TE 362H B=O TE 022H
?A<B TE 322H B=A TE OB2H
?A<C TE 302H B=C TE OE2H, OC2H ?B#O TE 2C2H BAEX TE 062H
?C#O TE 2E2H BCEX TE OE2H A#O? TE 342H BSR TE 3A2H
A#C? TE 362H C#O? TE 2E2H A<B? TE 322H c=-c TE 282H A<C? TE 302H C=-C-l TE 2A2H A=O TE 002H c=o TE 042H

14-9 SOS-II 14-9

A=A+l TE 162H C=A TE OA2H, 102H
A=A+B TE 122H C=A+C TE 202H
A=A+C TE l42H C=A-C TE 242H
A=A-l TE lA2H C=B TE OC2H
A=A-B TE 182H C=C+l TE 222H
A=A-C TE lC2H C=C+A TE 202H
A=B TE 062H, 082H C=C+C TE lE2H
A=C TE 102H C=C-l TE 262H
ABE X TE 062H CAEX TE OA2H
ACE X TE OA2H CBEX TE OE2H
ASL TE 3E2H CSR TE 3C2H
ASR TE 382H

14.2.1.3.4 Pseudo-Ops

The following pseudo-ops are used in ASSEMB4l:

BSS <number> LEGAL
EJECT LIST
END ORG <number>
EQU <expr> SKIP <number>
FILLTO <number> SPACE <number>
GLB <label> TITLE "<text>"
LCDCHAR "<text>" UNLIST

An explanation of their functions:

BSS Fill specified number of words with zeroes and skip them.

EJECT

END

EQU

FILLTO

GLB

LCDCHAR

14-10

Operand field specifies number of words.

Formfeed the listing.

End of source; do not read rest of the file.

Equate a label with a value. For example, "ABC EQU 5"
will equate the label ABC to the absolute value 5.

Fill the o~ject file with zeroes up to the address
specified ~n the operand field. This pseudo-op fills to
the specified address relative to the start of the file.
For example, if ORG 1000H was specified, then FILLTO OFOOH
will actually fill from the current address to address
lFOOH.

Declares the label specified in the operand
global, which allows it to be found by the
the LINK4l phase. Its use is illustrated in

field to be
linker during
the examples.

The expression in quotes is encoded in the LCD character
format. This pseudo-op only accepts characters that are
legal in labels. A '!' is used to designate that the

SDS-II 14-10

LEGAL

LIST

ORG

SKIP

SPACE

TITLE

UNLIST

character following it should be encoded with bit 7 set.
The special characters sigma, not-equal, and angle use the
alternate representation explained in the appendix on
special characters. The use of this pseudo-op is
illustrated in the examples.

Normally, the assembler complains if certain potentially
erroneous combinations of opcodes exist. For example, a
LOI followed by anything other than a CON causes an error.
A test of any sort followed by anything other than a
conditional branch/return causes an error. A GOTO,
GOLONG, or GOSUB preceded by a command that might set
carry causes an error. By placing the LEGAL pseudo-op
before the offending code, these errors are suppressed.

If the -1 option was specified, this pseudo-op turns off
the UNLIST mode. Default behavior is to list until an
UNLIST is encountered.

Specifies that the relocatable file is to start at an
absolute address. This forces the linker to place the
module at that address, and all labels within the module
to be considered absolute expressions. Operand field
specifies the address. Files assembled with the ORG
directive cannot be used as microcode library files.

Same as EJECT.

Skip the specified number of spaces in the output listing.
Number of spaces specified in the operand field.

Specify a title to appear on each page of the listing.
Title is also stored in the object file, and displayed by
LINK4l and ASMBINFO when this file is referenced. The
title string must appear between quotes.

Turn off listing (if -1 option is specified) until a LIST
directive is encountered.

14.2.1.3.5 FAT Entries

The following pseudo-ops create two-word entries for the Function
Address Table (FAT):

~E OPRNO OPC ~E OPRNO OPC
----- -----

OEFP4K <expr> OOOR, lOOH U4KOEF <expr> 200R, OOOR
OEFR4K <expr> OOOR, OOOR U8KOEF <expr> 200H, OOOR
OEFR8K <expr> OOOR, OOOR

Their functions are as follows:

14-11 SOS-II 14-11

DEFR4K Creates a FAT entry for a microcode function somewhere
within the current 4K block. <expr> is the execution
address of the function. Immediately preceding the target
address is the function name, in LCD character
representation, backwards, terminating with bit 7 set on the
last character.

DEFR8K Like OEFR4K, but capable of pointing to a function in the
adjacent 4K block as well. Can be used to create a FAT
entry in the lower half of the port address space pointing
to a function in the upper half, and vice versa.

U4KOEF Creates a FAT entry for a usercode function somewhere within
the current 4K block. <expr> is the address of the GLOBAL
token in a LBL statement.

U8KDEF Like U4KOEF, but capable of pointing to a function in the
adjacent 4K block as well. Can be used to create a FAT
entry in the lower half of the port address space pointing
to a function in the upper half, and vice versa.

DEFP4K The purpose of this mnemonic is lost to the modern memory.

14.2.1.3.6 Branches

These opcodes provide branching of various sorts:

MNE OPRNO OPC MNE OPRNO OPC
----- -----

GOC <expr> 007H G05UB <expr> OOlH, OOOH
GOL41C <expr> 0OlH, OOOH; OOOH GOTO <expr> 003H
GOLC <expr> OOlH, 003H G5B41C <expr> OOlH, OOOH,
GOLNC <expr> OOlH, 002H GSB5AM <expr> OOlH, OOOH,
GO LONG <expr> OOlH, 002H GSUBC <expr> OOlH, OOlH
GOLSAM <expr> OOlH, OOOH, OOOH GSUBNC <expr> OOlH, OOOH
GONC <expr> 003H

Explanation:

GOC Local goto target address if carry is set.

GONC Local goto target address if carry is clear.

oaaH
oaaH

GOTO Same as GONe, but the assembler complains if it follows
anything that might set the carry.

GOLC Long goto target address if carry is set.

GOLNC Long goto target address if carry is clear.

14-12 505-II 14-12

GO LONG

GSUBC

GSUBNC

GOSUB

GSB4lC

GSBSAM

Same as GOLNC, but the assembler complains if it follows
anything that might set the carry.

Long gosub target address if carry is set.

Long gosub target address if carry is clear.

Same as GSUBNC, but the assembler complains if it follows
anything'that might set the carry.

Compiles into GOSUB GOSUBO/GOSUBI/GOSUB2/GOSUB3/GOSUB
(whichever is appropriate) followed by CON <addr>. Uses
HP-4l mainframe routines to achieve local gosub within
current 4K block.

Compiles into GOSUB GOSUB followed by CON <addr>.
Assembler complains if target address is not within
current lK block.

GOL4lC Like GSB4lC, but for GOSUB GOLO/GOLI/GOL2/GOL3/GOL.

GOLSAM Like GSBSAM, but for GOSUB GOL.

14.2.1.3.7 Peripheral Commands

These commands are for smart peripherals.

MNE OPRNO OPC MNE

?PFSET 0-15 003H PRINTC
C=HPIL 0-7 024H, 03AR, 003H ROPTRN
CH= 0-255 OOlH ROPTRR
PFSET? 0-15 003H RTNCPU

14.2.1.4 EXAMPLES

14.2.1.4.1 An Assembly-Language Keyword

OPRNO

OPC

007H
03AR
03BH
005H

The following example, the code for the AlP keyword, illustrates
some of the assembler's features:

xqAIP

AIPIO

14-13

TITLE
GLB
LCOCHAR
C=REGN
GOSUB
C#O?
GONC
C=O
ST=l
GOSUB

"AlP function"
xqAIP
"!PIA"
3

AlP
Read X

=CHK NO S ; Check for alpha
XS ; Exponent negative?
AIPIO No.
W
5

data

=INTFRC ; C=integer part, A.X=exponent

SOS-II 14-13

PT= 13
AIP20 B=A X ; Save exponent in B

LC 3
G=C · G=ASCII'ized digit ,
PT=? 2 ; Down at exponent?
GONC AIP30 · No. ,
INCPT Yes. stay here.
M=C · Hold mantissa , AIP30
SELQ
GOSUB =APNDNW ; Append to alpha register
SELP
C=M ; Retrieve mantissa
ABE X X
A=A-1 X ; Done?
GONC AIP20
RTN

14.2.1.4.2 A Function Address Table

The following code, which would occur at the beginning of the ROM
image, illustrates a ROM with ID=21, a header, and a single function
(AlP, above).

*
HDR

CON 21 ROM ID=21
CON 2 2 entries in FAT
DEFR4K HDR . Point to my header ,
DEFR4K =xqAIP ; Point to my function
CON 0
CON 0 . End of table ,

LCDCHAR "!MOR YM--"
RTN

; "--MY ROM"

14.2.2 LINK41

o

The LINK41 utility is used to collect.one or more assembler output
files into a ROM image file. Even if an assembler output file has
no external references, it must be run through LINK41 to put it into
the proper form. LINK41 expects all of its assembler input files to
have the filename extension ".410", and it creates ROM image files
with the filename extension ".41R".

LINK41 is command-driven, either from a command file
keyboard. The output is formatted for printing
formfeeds, and such), and should be re-directed to a
the '>' command line feature of MS-DOS.

Invocation:

LINK41 «command_file>]

14-14 SDS-II

or from the
(page headers,
printer using

14-14

If a command file is specified,
commands are read from it. If
console (prompting is provided).

that file is opened and LINK41
not, commands are accepted from the

LINK41 creates from 1 to 4 ROM image files. All commands can be
abbreviated to their first two characters. The commands are:

NEwrom [<pagenumber>]
OUtput <ROMfilename>
LOcate <address>
CHecksum [<address>]
SEarch <assemblyfilename>
REloc <assemblyfilename>
LIst XRef
SUppress XRef
COmment
ENd
?

and have the following meanings:

NEWROM

OUTPUT

LOCATE

Analogous to the "&ROM#" directive in BUILD. Used to
begin a new 4K ROM image. The optional <pagenumber> can
be from 0 to 15, and determines the starting address of
the ROM code. This information is not encoded in the
output file in any way, but can be important for LINK41's
resolving of references. with a few exceptions (noted
below), most of the other commands cannot occur before the
first NEWROM command.

Designates the output file (extension
automatically be appended) to contain
image (that designated by the most recent
If not specified, a ROM image file for
not created.

".41R" will
the current ROM

NEWROM command) .
this 4K block is

The address, specified in hex (without a trailing
determines where the next RElocated file will go.
analogous to the FILLTO command in the assembler.

'H') ,
It is

CHECKSUM This command instructs LINK41 to compute a checksum word
for the current 4K ROM image. If the optional address is
specified, the checksum word will be placed at that
address. If not, the checksum word will be placed into
its customary position in the last word of the 4K block.

SEARCH This command can occur before the first NEWROM command.

14-15

Its action is independent of where it occurs in the
command file. The command causes the specified filename
to be searched for labels to be resolved. The file
MFENTRY.410, included on disk #2, contains the HP-41

SDS-II 14-15

mainframe entry points.

RELOC This command causes the named ".410" file to be read into
the current ROM image (that designated by the most recent
NEWROM command) . Normally, files are RElocated
successively in address space, without any dead space
between then. This can be overriden either by the LOCATE
command (above) or use of the ORG directive in the
assembler file.

LIST XREF If this command occurs before the first NEWROM command, it
causes listing of a cross-reference table to occur for all
ROM image files. Otherwise it causes listing of a cross­
reference table to occur for the current ROM (that defined
by the most recent NEWROM command).

SUPPRESS XREF If this command occurs before the first NEWROM
command, it suppresses listing of a cross-reference table
for all ROM image files (this is the default condition).
Otherwise it suppresses listing of a cross-reference table
for the current ROM.

COMMENT Causes this line of the command file to be treated as a
comment. That is, ignored.

END

?

The
ROM
two

Indicates the end of the command file; anything left in
the file is not read.

Displays the command list.

format of the ".41R" file is straightforward:
is represented by two bytes. The first byte

bits, the second contains the lower eight.

each word of HP-41
contains the upper

14.2.3 ASMBINFO

The ASMBINFO utility is used to
files and 50S-II microcode files.

dump information about
The invocation is:

ASMBINFO <filename>

assembly

Unlike most of the other 50S-II utilities, ASMBINFO requires that
the full filename and extension be specified. This is because
ASMBINFO works on both ".410" files and ".41T" files containing
microcode. It will not work on ".41T" files containing usercode.

The information dumped by ASMBINFO consists of global labels,
external references, fixups, and other miscellanea of interest to
LINK41 and BUILD.

14-16 50S-II 14-16

14.2.4 DISASM41

The DISASM4l utility will disassemble an entire file, interpreting
it as consisting of HP-4l assembly-language. The invocation is:

DISASM4l <filename> [<filename> [<filename>]]

Like ASMBINFO, DISASM41 requires the full filename; no extension is
assumed. This utility is most useful for disassembling ROM image
files, which only contain HP-4l code. The overhead contained in
other types of files (such as ".410" and 1.41T") not only
disassembles into meaningless garbage, but may put the disassembler
one byte out of sync when it reaches the actual code.

The output consists of
representation in hex,
finally, HP-4l mnemonic.

an address, followed by the opcode's
octal, decimal, ASCII, LCD characters, and
Some other points:

z When the target address of a
mainframe entry point, DISASM41
point.

long branch is a recognized
provides the name of that entry

z When a word disassembles into a two-word command, the second
word is shown, disassembled, in parentheses.

z DISASM4l does not properly interpret the smart peripheral
commands.

z DISASM4l errors out if the file has an odd length.

14.2.5 EPROM

The EPROM utility is used by BURN41, hence its inclusion on disk #1.
This utility produces EXORMACS format listings of ROM image files.
The invocation is:

EPROM [-lhc] [-0 <outputfile>] <filename> [<filename> ••.]

options:

-1 Output low 8 bits of each word.

-h Output high 2 bits of each word, packed four per byte.

-c output CMT format: low 8 followed by high 2 (unpacked).

-0 Send output to specified file. If this option is not
output is to standard out. By sending output
asynchronous port, you can download the ROM image to an
programmer through its RS-232 interface.

14-17 SDS-II

used,
to an

EPROM

14-17

Following the options is a list of files. This list supports wild­
carding. The extension 1.41T" is automatically appended to the
filenames, so, for example, specifying '*' would specify all 1.41R"
files in the current directory.

The EXORMACS format output by the program is compatible with many of
the EPROM programmers on the market. The data records are of the
following format:

Slxxyyyydddddddd ...• ddcc

where:

xx is the byte count (3 + number of da~a-bytes).

yyyy is the start address.

dd are the data bytes.

cc is a checksum of all bytes (including xx and yyyy). The bytes
on the line should sum to FFH (without wrap-around carry).

All of the above characters represented by x, y, and d are ASCII
representations of a hex nibble: O-F.

The end record consists of:

S9030000FC

The exact usage of this utility depends on the configuration of your
EPROM box.

*** CONTINUE HERE *** with instruction specific to the HHP-????

14.2.6 EXTRACT

The EXTRACT utility extracts usercode from a ROM image file in a
format compatible with ASSEMB41. This allows you to use READ41P and
BUILD to create a ROM-format image of the user code program (with
GOTO's and XROM's compiled, links resolved, etc.), and then
incorporate that program into a ROM being developed with ASSEMB41
and LINK41.

The invocation is:

EXTRACT [-<blocknumber>] <funcnumber> <ROMfile> [<ROMfile>]

The optional parameters will never be necessary for a ROM image
produced by BUILD, but they add flexibility to the program. First,
the mandatory parameters:

1~-18 SDS-II 14-18

FUNCNUMBER Is the function number to be extracted from the file.
If the global label referenced by the function number
is not at the beginning of the program, EXTRACT will
nevertheless extract the entire program.

ROMfile The ROM image file from which the program is to be
extracted.

using the mandatory parameters,
the 4K ROM image specified
allow specifying two files, for
for extracting a program which
entry is in the other 4K block.

EXTRACT will extract a program from
by ROMfile. The optional parameters
a total 8K image. This is useful
exists in one 4K block but whose FAT

The optional <blocknumber> indicates in which 4K block the FAT entry
lies. If zero (default), the FAT of the first 4K block is used, if
one, the FAT of the second block is used.

EXTRACT sends its output to standard out, which can be redirected to
a file with the '>' command line feature of MS-DOS. The output
consists of CON statements defining the actual words, with comments
(to the right) identifying the usercode being compiled.

A global assembler label is placed at each
EXTRACT is not completely intelligent
simply the text of the usercode label, and
assembler label.

GLOBAL
about
might

in the
this: the
not be

program.
label is
a legal

14.2.7 MUCODE

The MUCODE utility allows you to create MICROCODE files for
inclusion into a ROM image file being created by BUILD. The
difference between an assembly file (.410) and a MICROCODE file
(.41T) is, largely, the addition of information at the front of the
MICROCODE file identifying keywords and interrupt handlers contained
therein.

The invocation is:

MUCODE <assemblyfi+ename> [<microcodefilename»

The <assemblyfilename> will automatically have the
appended. The MICROCODE file will have the
assembly file (if <microcode filename> is not
<microcodefilename>; in either case, the extension

extension ".410"
same name as the

specified) or
will be ".41T".

In order to create a useful MICROCODE file, it is necessary to
identify where the labels occur, and where the entry points are for
the interrupt handlers. This is done through the use of special
global labels:

14-19 SDS-II 14-19

xq

epPSLOOP

epMRLOOP

epDSWNK

epPWROFF

epIOSRV

epDSWKUP

epCOLDST

Any global label beginning with "xq" (lowercase only) is
recognized by MUCODE as the beginning of a function. The
examples subsection of the ASSEMB41 section shows a
function, AIP, for which this is done. (MUCODE will
examine the code to verify that the microcode label is
valid, printing an error message if it is not.)

If the global label epPSLOOP occurs in the assembly file,
it is recognized as the entry point of the interrupt
handler for the pause loop interrupt. Please see below
for important considerations about writing interrupt
handlers.

Like .epPSLOOP, but for the main running loop interrupt.

Like epPSLOOP, but for deep-sleep wakeup no-key interrupt.

Like epPSLOOP, but for the power-off interrupt.

Like epPSLOOP, but for the I/O service interrupt.

Like epPSLOOP, but for the deep-sleep wakeup interrupt.

Like epPSLOOP, but for the coldstart interrupt.

When processing a file, MUCODE creates a list of function labels and
addresses in the format needed by BUILD. It is not necessary (or
even possible) to LINK41 the assembly file before using MUCODE;
BUILD will resolve all global references between MICROCODE modules.
In addition, BUILD contains a list of the mainframe entry points
contained in MFENTRY.41A, and will resolve all references to those
entry points.

The "encountered order" of labels within the file (as far as BUILD
is concerned) is alphabetical order of the microcode labels. For
example, if function "ABC" occurs at microcode label xqRST, and
function "XYZ" occurs at microcode label xqBCD, then "XYZ" appears
before "ABC" in the "encountered" order of functions in the file.

Writing interrupt handlers for BUILD is very different from writing
conventional interrupt handlers. BUILD is designed to accept an
arbitrary number of interrupt handlers; it works by building a table
of all interrupt handlers found in the various MICROCODE files, and,
through the MCODE driver, calling them all at appropriate times.

This raises two very important considerations for writing interrupt
handlers:

~ The handler must terminate with GOTOC (returning control to
MCODE) instead of the conventional GOLONG =RMCK10.

14-20 SDS-II 14-20

•

B The handler must preserve
following return conditions:
up, chip a selected.

14.3 lLG9 Configuration

the C-register, and meet the
HEX mode, P selected, status set a

The lLG9 12K ROM chip consists of three 4K cores, with a variety of
configuration options. For most ROMs being built, the standard
configurations shown in the basic bank-switching section of the
bank-switching chapter are adequate. However, it is possible to
request alternate configurations. For each 4K core, the following
options are available:

+---+
1 Enabled/Disabled 1

+---+
1 Hard-Configured 1 Port-Configured 1

+-----------------1-------------------------+
1 Address 1 Lower Half 1 upper Half 1

+---+
1 Bank a/Bank 1/Bank 2 1

+---+
An explanation of the options:

B If a core is disabled, it does not exist for the HP-41.
is how the 1LG9 is used for 4K and BK ROMs.

This

B If the core is hard-configured, a configuration address must be
selected (it must be on a 4K boundary) .

B If the core is port-configured, it must be configured for the
lower or upper half of the port's address space.

B A core (whether hard- or soft-configured) can be placed in:

bank a Always present.

bank 1 Present at power-up; enabled with ENROM1; disabled
with ENROM2.

bank 2 Not present at power-up; enabled with ENROM2;
disabled with ENROM1.

Note that, as mentioned earlier, the ENROMx instruction only
affects the 1LG9 out of which it is read. It can, however, be
read out of any core of the target 1LG9 to affect all of the
cores.

14-21 50S-II 14-21

A. HP-41 Keycodes

This chart shows the keycodes for the primary (unshifted) keys. The
keycode for a shifted key is obtained by prefixing the unshifted
keycode with a minus. For example, the keycode for the shifted
ENTERA key is -41.

*** HP-41C ***
I onluser prgmlalpha I

I 11 I 12 I 13 I 14 I 15 I

I 21 I 22 I 23 I 24 I 25 I

I I 32 I 33 I 34 I 35 I

I 41 I 42 I 43 I 44 I

I 51 I 52 I 53 54

I 61 I 62 I 63 64

I 71 I 72 I 73 74

I 81 I 82 I 83 84

A-1 SDS-II A-1

B. Special Characters

Following are most of the HP-41 display characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ~? abcde%<>A$-+*/0123456789

There are a few special characters, however, that are not defined as
part of the ASCII character set, and cannot be displayed or entered
on the MS-DOS computer hosting SDS-II. For purposes of data entry
and display, the following substitutes are used for these
characters:

APPEND CHARACTER · . 'x' (normally represented by ASCII 127) · .
MU · . 'm' (normally represented by ASCII 12) · .
NOT EQUAL · . 'n' (normally represented by ASCII 29) · .
SIGMA · . 's' (normally represented by ASCII 126) · .
ANGLE · . 'g' (normally represented by ASCII 13) · .
OVERBAR · . '0' (normally represented by ASCII 0) · .

Only three of these characters, NOT EQUAL,
legal characters in a global label; the
specified in a header.

SIGMA, and ANGLE are
others can, however, be

In addition, whenever the spaCe character is to be used, either in a
program invocation or in a DEFINE file, it is replaced with "." as a
placeholder.

EXAMPLE: To read in a program named "A <NOT EQUAL>B" from the HP-41
disk, use:

EXAMPLE

B-1

The program
Note that
labels will
referencing

READ41P M:AnB ANEQB

will be read into READ41P file ANEQB.41T.
this does not change the program itself -- the
be the same. It merely provides a handle for
the programs from the host MS-DOS machine.

To read in a program named "A B" from the HP-4l disk, use:

READ4lP C:A.B AB

The program will be read into READ41P file AB.41T.

SDS-II B-1

C. SDS-II ROM Image Submission Form

Include this form with the custom ROM submission paperwork.

Size of ROM: 4K 8K 12K

Name of BUILD file(s): .41R [ROM #1]

.41R [ROM #2)

.41R [ROM # 3]

Configuration: Standard Custom:

FOLLOWING SECTION FOR CUSTOM CONFIGURATION ONLY

C-l

Bank 0 / Bank 1 /

ROM #1

Bank 2

Hard-Configured: Configuration Address (in octal) :

Port-Configured:

Bank 0 / Bank 1 /

Lower Half / ___ Upper Half

ROM #2

Bank 2

Hard-Configured: Configuration Address (in octal) :

Port-Configured: Lower Half / ___ Upper Half

ROM #3

Bank 0 / ___ Bank 1 /" ___ Bank 2

Hard-Configured: Configuration Address (in octal):

Port-configured: ___ Lower Half / ___ Upper Half

SDS-II

(8K & 12K only)

(12K only)

C-l

I

O. Handing STACK OVERFLOW Errors

Although unlikely, a STACK OVERFLOW error can occur with the SOS-II
utilities. In this case, the problem can usually be corrected by
adding "=<stacksize>" to the command line, where <stacksize> is the
size of stack the program should use. The default stack size is
2048 bytes.

Several of the SOS-II utilities use unbalanced binary trees as data
structures. The recursion used in traversing such a tree can be
responsible for a stack overflow if the tree is filled in a worst­
case or near worst-case order. This might occur in ASSEMB4l if the
file being assembled contains hundreds of labels, and they occur in
alphabetical or reverse alphabetical order. Other than ASSEMB4l,
the default stack space in SOS-II utilities is believed to be
sufficient for worst-case behavior.

0-1 SOS-II D-1

E. Program Invocation summary

Where a specific filename extension is specified, that extension is
assumed by the utility. Where "ext" is indicated, extension must be
specified in the command line.

ASMBINFO <file. ext>

ASSEMB41 [-ls8] [-0 <object.410>] <source.41A>

BUILD <DEFINE file name> <output file.41R>
«output_file> name appended by BUILD with 0, 1, or 2)

BURN41 ????

CHECKSUM <file.41R> [<file.41R> ••.]
(wild-carding supported in file name)

DISASM41 <file.ext> [<file.ext> [<file.ext>]]
(wild-carding supported in file name; max 12K words)

EPROM"<file.41R> [<file.41R> •••]
(wild-carding supported in file name)

EXTRACT [-<blocknumber>] <funcnumber> <file.41R> [<file.4lR>]

LIFPACK <disk designator>
(disk designator must include ':')

LINK41 [<command_file>]

LISTFAT <file.41R> [<file.41R>]
(wild-carding supported in file name; max 8K words)

MUCODE <file.410> [<file.41T>]

READ41P <disk>:<41_prog_name> <file.41T>

READMLDL <disk>:<filename> <file.41R>

SDSCAT <disk_designator>

WRITMLDL <file.41R> <disk>:<filename>

E-l SDS-II E-l

F. ROM lD Allocation

In order to prevent unpredictable results, it is important that all
of the ROMs plugged into the machine at a given time have a
different ROM 10. Since everyone of the available 31 ROM lO's has
been used (some many times), it is difficult to recommend a good
choice.

Following is a list of ROM ID's used in ROMs from HP:

1 ROM IDI Assignment
1 1

1 1 1 Math
1 1

1 2 1 statistics
1 I
I 3 Surveying
1

1 4 Finance
1

1 5 Standard
I
1 6 circuit Analysis
I
1 7 Structures
1 I
1 8 Stress Analysis 1

1 I
I 9 Home Management 1

1 I
I 10 Games 1

1 1
11 Real Estate 1

12 Machine Design
I
1

I
13 Thermal and Transport Sciences I

1
14 Navig<;ition 1

15 Petroleum

16 Petroleum

17 Plotter

18 Plotter

19 Securities
Structures

F-l SDS-II F-l

ROM 101 Assignment I
I I
I clinical Lab I
I Aviation I
I I

20 I I
I I

21 I Reserved for custom modules I
I I

22 I HP-IL Development I
I ADVANTAGE \
I I

23 I Extended I/O I
I I

24 I HP-IL Development I
I ADVANTAGE I
I I

25 I Extended Functl.ons I
I I

26 I Time I
I I

27 I Wand I
I I

28 I Mass storage I
I I

29 I Prl.nter I
I I

30 I Card Reader I
I I

31 I Reserved for custom modules I
I I

F-2 SDS-II F-2 "\
c

G. contents of Disks

The two disks shipped with SDS-II contain the following files:

G.l Disk 1

BUILD.EXE
BURN41.EXE
CHECKSUM.EXE
EPROM.EXE
LIFPACK.EXE
LISTFAT.EXE
READ4lP.EXE
SOSCAT.EXE
AIP.4lT
ALEN.41T
ALENG.41T

G.2 Disk 2

G-l

ASMBINFO.EXE
ASSEMB41.EXE
DISASM41.EXE

ALNAM2.41T
ANUM.41T
AROT.4lT
ATOX.4lT
AUTOST.4lT
BIND.4lT
CLKEYS.41T
ENROM1.41T
ENROM2.4lT
GETKEY.41T

EXTRACT.EXE
LINK41.EXE
MUCOOE.EXE

SOS-II

PASN.41T
PCLPS.4lT
POSA.41T
PSIZE.41T
RCLSTFLG.4lT
REGMVSWP.4lT
SIZE.41T
.XB.41T
XF.41T
XTOA.41T

REAOMLOL.EXE
WRITMLDL.EXE
MFENTRY.41A

G-1

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	sdsii_Page_01
	sdsii_Page_02
	sdsii_Page_03
	sdsii_Page_04
	sdsii_Page_05
	sdsii_Page_06
	sdsii_Page_07
	sdsii_Page_08
	sdsii_Page_09
	sdsii_Page_10
	sdsii_Page_11
	sdsii_Page_12
	sdsii_Page_13
	sdsii_Page_14
	sdsii_Page_15
	sdsii_Page_16
	sdsii_Page_17
	sdsii_Page_18
	sdsii_Page_19
	sdsii_Page_20
	sdsii_Page_21
	sdsii_Page_22
	sdsii_Page_23
	sdsii_Page_24
	sdsii_Page_25
	sdsii_Page_26
	sdsii_Page_27
	sdsii_Page_28
	sdsii_Page_29
	sdsii_Page_30
	sdsii_Page_31
	sdsii_Page_32
	sdsii_Page_33
	sdsii_Page_34
	sdsii_Page_35
	sdsii_Page_36
	sdsii_Page_37
	sdsii_Page_38
	sdsii_Page_39
	sdsii_Page_40
	sdsii_Page_41
	sdsii_Page_42
	sdsii_Page_43
	sdsii_Page_44
	sdsii_Page_45
	sdsii_Page_46
	sdsii_Page_47
	sdsii_Page_48
	sdsii_Page_49
	sdsii_Page_50
	sdsii_Page_51
	sdsii_Page_52
	sdsii_Page_53
	sdsii_Page_54
	sdsii_Page_55
	sdsii_Page_56
	sdsii_Page_57
	sdsii_Page_58
	sdsii_Page_59
	sdsii_Page_60
	sdsii_Page_61
	sdsii_Page_62
	sdsii_Page_63
	sdsii_Page_64
	sdsii_Page_65
	sdsii_Page_66
	sdsii_Page_67
	sdsii_Page_68
	sdsii_Page_69
	sdsii_Page_70
	sdsii_Page_71
	sdsii_Page_72
	sdsii_Page_73
	sdsii_Page_74
	sdsii_Page_75
	sdsii_Page_76
	sdsii_Page_77

