SD5-IT

EF-41C Scftware Develaopment System
For M5-2035 Computars

HP Portable Computer Division

January 30, 1988

SDS-IT

Acknowledgements
Introduction......v.... .

Contents of SDS~IT

“ o 3-
3.1 What SDS-IT INnCludeS. . vttt nesenestseennconness 3-
3.2 What SDS-II Does Not Include.. ..ot enenens, 3=
Comparison With 01d SDS.......cvvuuen cen . e 4-
Configuring Your SDS-II SysSteM..:uveeeevoan, e e 5-
5.1 Coﬂflgurlng The HP=150. .ttt tteettnntenneensennnnnn 5-
5.1.1 Receiving From HP-41. . Ceen e 5-
5.1.2 Controlling the EPROM Programmnr 5-
3.2 Conflgurlng the PORTABLE Series........ e 5-
5.2.1 Receiving From HP-41. e et et s e e e 55—
5.2.2 Controlling the EPROM Programmer 5-
5.3 Configuring IBM, Vectra, and Compatibles.. e 5-
5.3.1 R=c=1v1ng From HP=41 .t ittt it eononoonnenan 5-
5.3.2 Contreolling the EPROM Programmer.......... 5=
Step 1: Writing HP-41 Software........... e 6-
Step 2: Reading HP-41 Software into SDS=IT....veuvvrnnn.. 7-
Step 3: BUILDing the ROM Image...+..v... e 8-
3.1 Two Types of .41T7 FilesS.vveunoenn. e e 8~
8.2 The ROM Image Flle. . iiueien et it ee et innennnnnnnen g~
3.3 The DEFINE Fill . i ittt nosoenesueeesoneneeeenen. 8~
8.3.1 ROM% Directive........... e R g~
8.3.2 ORDER Directive...vsveeeee... e . 8~
8§.3.3 XEQ Directive.. i e it ettt i iiniiine.. 8-
8.3.4 KZYS Directive..iivii i, e e e g-
8.3.5 CommentS. it iiienaanas et e e 8-
8.4 Example ¢f DEFINE File..... e e e e 8~
8.5 BUILD ErrOr S . i v s vt v s ottt e vt s oe ot anensneenseennas 8-
2.5.1 Errors 1n DEFINE Fille. .o i it cnin i oo g~
8.3.2 Errors in READ4ALIP FillesS. . v v nnnenenn.. g8~
8.5.3 Key Definition ErrorS. .t ntnnvenninnnn . 5-
8.5.4 (SI0hebdobabeb afoTo) 1B 25 ob of « b of O g~
8.5.5 ROM ID = Ottt ittt ittt ettt ittt e ineenen. &=
8.5.6 1S5 oT=ToR oV b ob ol = or =S 8-
£.5.7 HEQ ZrrorS.. e enseses e e e e e e e z=-1
2.5.8 I2pel ERRORS . it ittt ittt ettt et e e £-1
8.35.9 Irrors 1n HP-=41 Program. ..o ee e vnnnnneen.. . g-1
B.5.10 MiCroCode Err0rS . ittt nnnne e e-1
2.5 BUILD FTATRAL ZrrorsS...... S et e e e e e -1

]

S G Lo L G) Bty

=

=

KNI T N S SR

Lo 1D OO WO oMo,

9.

10.

1l.

i2.

13.

Microcede Library.....svseeaes

9.1

S.4

Emulating ROMS. . .oeiecnressscasen
10.1 EPROM Box ROM Emulation.......c...se.
10.2 RAM Box Emulation.....cesessases
Burning EPROMs For The ERAMCO-7777....

Bank-Switching........

l2.2
12.3

13.1
13.2

- 13.3

13.4
13.5

Type 2 MICROCODE FllesS...:cvsuessan

9.1.1

PSIZE (Programmable Size).....

MICROCODE Files"“ll'...‘.l.l.

code Library File Reguirements...

L N L T T T U O) + ¢ 2 e e . a

AIP (ALPHA Integer Part)...........
ALENG (ALFHA Length).........c.....
ANUM (ALPHA Number)...sovaoosonn .
AROT (ALPHA Rotate)....eoecevveranes
ATOX (ALPHA 20 X)ievovvnnnonannoens
CLKEYS (Clear ReysS).iverssssarensanassnnns
ENROM1 (Enable ROM 1)...¢s400ra4
ENROM2 (Enable EOM 2)..vevevinan
GETKEY (Get Key).vir i enannnas
PASN (Programmable Assign)......
PCLPS (Programmakle Clear
ProQgramS) cnvsscansssrasnnrsans
POSA (Position in ALPHA)......

RCLSTFLEG (Recall/Store Flags).
REGMVSWP (Register Move/Swap}.
SIZE (Determine Current SIZE).
¥TOA (X to ALPHAY . ..ovitvvonans
XF (X Exchange Flags)...:ves.+

N

« w * & e & 8 & ¢ ® o

ALEN.!‘I"\!ll.!.‘........
ALNAMZ......-.-....--‘.-.......
BIND. v essonssssusssssnannnsssts

B s v e v rcersreterstsnsnnans

« v s

a 4 * m s * w » * 3
* # * 2 » ® »

s » & & & * w a

-

LU I

e e s A

AUTOST (Butostart)....veevenan
PRIVACY cusnertucearsacs
KEYASN, ceovesnovones
MCODE.,+esvenss

PRI B R N S R I S R)

* ¢ ®» ® P 8 w = 3 @

-
.
LR B A N
.
-

s € 4 4 8 =«
* & s % # = a =

L R R R R R N L Y B A]

P s S 5 8 B S S B A A LN

R R R RN R B R]

P N R R L L R R R A S A S A N)

12.1 A Word About Terminology....sieiersacannivsossaenn
Basic Bank-Switching. . v .t ennorossnanssessnasns
Advanced Bank~S5Witching....eeeeceennnensessssanas

SDS-II Basic Utilities...iieeinnenvrvecnnannanann b
CHECKSUM'.J[‘Ill.'.lll'llll""i‘lﬁli'l!IIl‘l‘l -
EPROM..‘III.I.I‘ll-'v!.'hcl llllll ¥ s ® e " A AR PR -
LIFPACKII'I'."lll.l.l‘ll" llllll LI I B BN B - " L] .
LIS TFAT . s v vasnasnsnsssssssnnsssssssosannnes cres s
SDSCATo----.------.-.---von-o lllllll . 4 & & 8 . L

- ii -

1 UL
LS.V

W DD o
) i
L G G W L

G0 wyw
1 1
S

1

1

f:mtaf’wt?UDmxa
1 1
! (o W E S, L SN

1
Woo 0o 0000000 N

WO O W0 D DD
| 1
0D O

o
i
(™
<«

e
©co
P

11-1

12-1
12-1
12-1
12-2

13-1
13-1
13-1
13=-1
13~
13-2

14.

D.

E.

Advanced Applications........
14.1 Using the RAM-Based ROM Emulator.
14.1.1 WRITMIDL......
14.1.2 READMIDL....
14.2 Other Advanced Utilities.......
14.2.1 ASSEMB41l....

14.2.1.1
14.2.1.2

14.2.1.3

14.2.1.4

14.2.2 LINK41...
14.2.3 ASMBINFO.
14.2.4 DISASM4l.
14.2.5 EPROM....

14.2.6 EXTRACT...uvenns
14.2.7 MUCODE..::2voveus
14.3 1LG9 Configuration.....
HP-41 KeycodeS. it ieenss

Special Characters.........

LRI)
- s 8

LI)

- a4

LI R Y

LI B L I)

L R B

LI I T R T)

LA B B R A A N N N]

Invocation........
Assembler Syntax
Conventions.......

14.2.1.2.1

14.2.1.

14.2.

2.2
14.2.1.2.3
l.2.4

Mnemonics...

Ccomments.....

LI I) - .
LI I Y L]
* 5 v a8 »
- s 0 8 L]

® % 8 8 a 0w
L N
. [L

Fields.......
ExXpressions..

Global

. .
LR)
LI -

14.2.1.3.1 Type 0 Opcodes ==
Alphabetical

Order.

14.2.1.3.2 Type 0 Opcodes -=-
Numeric

LI T T . e
LI I I
L N I I N]
L I I I I]
..

..

- s

4 88 * 0

SDS~-II ROM Image Submission Form.

Handing STACK OVERFLOW Errors....

Program Invocation Summary...

- iii -

-

. 2+ ® & ¥ * &
- - [] . * L] L]

Order.

Arithmetics..
Pseudo-0Ops...
FAT Entries..
Branches.....
Peripheral

CommandsS.....

8 4 8 0 v

An Assembly-
Language

Keyword..... .
A Function Address

Table.

LI I T
* s 0 r e a
*« e o -

» % % % B w ®

14-1
14-1
14-1
1l4-2
14-2
14-2
14-3

14-3
14-3
14-3
l4-4

14-4
14-5

14-5

14-7
14-9
14-10
14-11
14-12

14-13
14-13

14-13

l4-14
14-14
14-16
14-17
14=-17
14-18
14-19
14-21

A-1

B-1

ROM ID Allocation........

Contents of Disks......
G.1 Disk l..ivesncensa
G-2 Disk 2!‘...'.

- iv =

[y

2. Introduction

The new Software Development System (SDS-II) provides the necessary
tools to collect and prepare your 41C programs for translation into
an HP-41 ROM (Read-Only Memory) plug-in. Each plug-in consists of

1, 2, or 3 ROMs, each containing 4096 bytes of HP-41 program code
and/or microcode.

The process of creating a plug-in ROM consists of three major steps:
® Writing HP-41 programs and saving them on mass storage.

® Reading your HP=-41 programs into the SDS-IT development system
(the "READ41P" process).

® Building a ROM image containing your HP-41 programs and any
necessary microcode support functions (the "BUILD" process).

Once the ROM image is built, it can be burned into EPROM boxes for
testing, and, when fully tested, can be submitted to the HP custom
ROM program for processing into plug-in ROMs. Full details on the
procedures and expenses associated with producing custom ROMs are
explained in an accompanying brochure.

2=1 SDS-IT 2=1

3.

Contents of SDS-II

3.1 What SDS-II Includes

SDS-11 1s a software package distributed on one of two possible
media:

[1] Two 3.5" single-sided microfloppy MS-DOS disks, or

(2]

SDS~-

DOS
3.2

SDs-

the
(1]
[2]

(31

(4]

(5]

Two 5.25" double-sided floppy MS-DOS disks in low-density (IBM
PC) format.

II is compatible with all MS-DOS and PC-DOS computers

running
version 2.0 or higher.

What SDS-II Does Not Include

II requires additional hardware, some of which is dependent

on
choice of host system. Specifically:

An HP-41C/CV/CX and HP-IL module (82160A).

Mass storage for the HP-41 (82161A cassette drive or 9114 disk
drive). The 9114 is strongly recommended over the 82161A.

Depending on your configuration, you may reguire an accessory
for communicating with the HP-41 mass storage device (detailed
below, in the section on configuration).

ROM emulation hardware.

8 If you are using EPROMs for ROM emulation, you need an
EPROM programmer, EPROMs, an EPROM eraser, and an EPROM

emulator box. As a programmer, SDS-II supports and
recommends the Data I/0 21A, a powerful, reasonably priced
product that was recently introduced. For emulation,

SDS-IT supports and recommends the ERAMCO-??7?? because of
its complete emulation of HP ROMs,

B If you are using RAM for ROM emulation, you need a RAM box
and the facilities to load it. Recommended is the ERAMCO

ESl6S, which provides complete emulation of HP ROMs. Use
of this box requires the ERAMCO MLDL software, usually
"~ distributed in the ERAMCO ESMLDL 1. (Note: EPROM

emulation 1is recommended over RAM emulation, although
support is provided for the latter, as explained in the
chapter on advanced applications.)

An interface for communicating with the EDPROM programmer
(typically an asynchronous communications port).

SDS-II 3-1

4.

Comparison With 0ld SDS

SDS-II is intended as a replacement for and upgrade from the HP-85-

based SDS. The system differs substantially from the original SDs
in the following ways:

(1]

(2]

(31

(4]

(51

The software runs under the MS-DOS or PC-DOS operating
instead of on the HP-85, The speed
approximately 20x.

system
improvement is

The system no longer relies on specialized custom hardware for
communications with the HP-41. Programs are read directly from
HP-41 mass storage media, and ROM emulation is provided through
commercially available EPROM- and RAM-boxes.

SDS~II does not provide special editors. The DEFINE file is a
text file that you create wusing any text editor (EDLIN,
WORDSTAR, EMACS, etc.). This replaces the special editors used
in the o0ld SDS for creating the list of TODISK files, the XEQ
list, the specified order list, and the key assignment list.

SDS~II supports the bank-switching 12K ROM for the HP-41. This
is explained in more detail in the chapter on bank-switching.

SDS-II includes a comprehensive set of tocls for ROM

development, including an assembler, 1linker, and variocus
related tools and utilities. These are explained in the
section on advanced applications.

SDS-IT 4=1

5. Configuring Your SDS-II System

SDS-II requires an MS-DOS or PC-DOS computer with 128K bytes of
available memory (after DO0OS, device drivers, and other resident
applications are loaded). This chapter tells you how to configure
your computer for two important communications tasks:

® Receiving programs from your HP-41, in which SDS-II reads the
HP=-21 disk or cassette tape, and

= Controlling the EPROM programmer, in order to program EPROMs
for testing your software in an EPROM box. Instructions here
are specific to the Data I/0 21A. If your system includes a
different programmer, the chapter on utilities explains how you
can use SDS-II utilities for interfacing with your programmer.

5.1 Configuring the HP=-150

SDS-II is not installed as an application in PaM (Personal
Applications Manager). That is, it is only accessible through the

MS-D0OS commands. In order to use SDS-II, you must enter the MS-DOS
command environment.

5.1.1 Receiving From HP-41

If you are using a 9114 with your HP-41, and your HP-150 has a

double-sided micro-floppy (3.5") disk drive, you can directly read
the HP-41 disk without any extra communications hardware.

Otherwise, your HP~150 can communicate directly with the 9114 or the

82161A through the Extended I/0 Accessory (45643A). Installing the
accessory consists of two steps:

® Physically installing the accessory card, and

@ Installing the HP-IL driver software. To install the software,
you must modify the CONFIG.SYS file (in the root directory of
the boot disk) to include the directive:

DEVICE = HPIL150.5Y¥S

If there is no CONFIG.SYS in your root directory, create one
containing the directive. The driver software (HPIL150.S8YS) is
included on the disk that accompanies +the Extended I/0
Accessory, and must be copied to the root directory of the boot
disk (alternatively, the YDEVICE =" directive can be modified
to specify another disk and/or directory).

Some important details to Keep in mind:

5-1 SDS-II 5-1

B If the CONFIG.SYS file contains a "SHELL =" directive, the

"DEVICE =" directive must occur befeore the V“SHELL ="
directive.

® Some editors (notably EMACS) do not automatically append a
trailing <CR><LF> to the last 1line of a file. The
"DEVICE =" directive will not work if it is the last line
of a file without the trailing <CR><LF>.

® The HP-IL driver redefines the "PRN:" device to be the
first printer on the HP-IL loop. Any output directed to
"PRN:" will be sent to that printer. If there 1s no

printer on the loop, the "PRN:" device is not accessible.

This is true both in the MS-DOS environment and in the PaM
environment.

8 The HP-IL lecop can support up to eight mass storage
devices. Because the HP-150 reserves disk drive ID's "A:"
through "L:", mass storage devices on the loop are named
"M:" through "“T:V. For example, 1if the loop contains a
single 9114 disk drive, it is addressed as drive "M:",

Once CONFIG.SYS has been modified, the HP-IL driver will be
installed whenever the HP-150 boots up (either from power-up or
SHIFT-CTL-RESET). You will now have access to HP-IL devices
connected to the accessory card.

5.1.2 Controlling the EPROM Programmer

Beth the HP~150 and the Data I/0 21A have female RS-232 connectors
configured for DTE. Communications between them requires a male~
male RS~-232 connector reversing the signals from pins 2 and 3. In

addition, the 21A requires that pins 4 and 5 be tied together. The
specific connections are:

to to
HP-150 21Aa
M| 2 |omem\/----) 2 | M
A3 |=-==/\~===1 3 | &
L | | /==1 4 | L
E | | \--| 5 | E
| 7 Jmmmmmmme L7 |

.2 Configuring the PORTABLE Series

£28-I1 1is not 1installed as an application in PAM (Personal
~rplications Manager). That is, it is only accessible through the

¥3-DOS commands. In order to use SDS-II, you must enter the MS-DOS
command environment.

in
1
i8]

SDS-TI 5-2

5.2.1 Receiving From HP-41

The built-in HP-IL on the PORTABLE series is capable of direct
communications with the 9114 and the 82161A. No additional hardware
is needed. You must enter the System Config template (invoked as a
softkey from PAM) and set the "External disk drives" entry to
reflect the presence of one or more mass storage devices on HP-IL.

5.2.2 Contreolling the EPROM Programmer

The optional RS-232 cable for the PORTABLE series is terminated with
a male DTE connector. Communications with the Data I/0 21A requires
a female-male RS-232 connector reversing the signals from pins 2 and

3. In addition, the 21A requires that pins 4 and 5 be tied together
on its side. The specific connections are:

to

cable from to

PORTABLE 21A

F | 2 J=e==\/--—-] 2 | M
E | 3 |====/\===~} 3 | A
M | I /=== 4 | L
A | I \===| 5 | E
L | 7 |===—m————- 7
E | I

5.3 Configuring IBM, Vectra, and Compatibles

5.3.1 Receiving From HP-41

Your computer can communicate directly with the HP-9114 disk drive
or the 82161A cassette drive through the HP-IL Interface card
(82973A). 1Installing the accessory consists of two steps:

® Physically installing the accessory card, and

@ Installing the HP-IL driver software. To install the software,

you must modify the CONFIG.SYS file (in the root directory of
the boot disk) to include the directive:

DEVICE = HPIL.S5Y¥S

If there is no CONFIG.SYS in your root directory, create one
containing +the directive. The driver software (HPIL.SYS) is
included on the disk that accompanies the interface card, and
must be copied to the root directory of the boot disk
(alternatively, the "DEVICE =" directive can be modified to
specify another disk and/or directory).

5-3 SDS-II 5-3

Some important details to keep in mind:

@ If the CONFIG.SYS file contains a "SHELL =" directive, the
"DEVICE =" directive must occur before the "SHELL ="
directive.

@ Some editors (notably EMACS) do not automatically append a
trailing <CR><LF> to the 1last 1line of a ¥file. The
"DEVICE =" directive will not work if it is the last 1line
of a file without the trailing <CR><LF>.

® The HP-IL loop can support up to eight mass storage
devices. The exact drive designator will depend on system
configuration. For example, a typical IBM PC with two
floppy drives will address its HP-IL disks as "C:" (first
drive on the loop) through "J:" (eighth drive on the
loop). A typical IBM PC/AT with a hard disk drive at "c:"
will address disks on the loop starting with "D:w,

Once CONFIG.SYS has been modified, the HP-IL driver will be
installed whenever the computer boots up. You will now have
access to HP-IL devices connected to the HP~IL interface card.

5.3.2 Controlling the EPROM Programmer

The IBM, Vectra and compatibles offer two different types of RS-232
interfaces:

B A built-in 25-pin interface, and
® A 9-pin "D-shell" interface, which requires a cable.

Both the cable and the built-in interface terminate with a male RS-
232 connector configured for DTE. Communications with the Data I/0
21A requires a female-male RS-232 connector reversing the signals
from pins 2 and 3. In addition, the 21A recuires that pins 4 and §
be tied together on its side. The specific connections are:

to

cable or to

computer 21Aa

F | 2 [====\/===--] 2 | M
E | 3 |=-===/\---=-| 3 | A
M | | /=== 4 | L
Al | \--=| 5 | E
L | 7 |=====e—m [7 |
El | mmme-

5«4 SDS-II E-4

6. Step 1l: Writing HP-41 Software

The software to be contained in the ROM will ceonsist of various HP-
41 programs written by you and microccde support prograns obtained
from the microcode library (explained in a separate chapter). As

you write each piece of software, save it on the mass storage device
using the WRTP command.

At this stage, the program is pnot in ROM form. Before vyou have a
ROM image, SDS-II will pack the program, compile GOTO's for fast
execution, and convert all global labels into ROM entries. That is,
each global 1label will be associated with an XROM number, and XEQs
referencing those global labels will be compiled into XROMs.

For now, however, your programs will contain alpha XEQs for
referencing each other (i.e., when one of your programs calls
ancother) and for keywords cobtained from the microcode library.

6-1 SDS~1II

7. &Step 2: Reading HP-41 Scftware into SDS8S-II

Each program created on your HP-41 must be read into SDS-II using a
program c¢alled READ41P, This program is included on the SDS-IT
distribution disk #1, and is invoked from the MS-DOS environment as:

READ41P <disk>:<programname> <filename>

READ41P will read the program from the mass storage device
containing the HP-41 programs, analyze it, report any errors, print
an informational listing, and create a file on the MS=-DOS machine.
If the programname contains blanks, you must replace those with a
period (".") 1n the invocation. If the programname contains HP-41
special characters (such as not-equal, angle, or sigma), use the

substitute characters explained in the appendix on spec¢ial
characters.

Since READ41P will usually generate more output than will fit on one
screen (and faster than most people can read), it may be desirable

to redirect its output to a file or a printer. The second example
below demonstrates this.

EXAMPLE: The invocation

READ41P M:XYZ XY32

will read the program "XYZ" from the mass storage medium

'"M:", process it, and produce a READALIP file called
"XYZ,41T" in the current directory on the current disk.

EXAMPLE: The invocation:

READ41P B:A.B C:AB >PRN

will read program "A B" from the disk in drive "B:vw,
process it, and produce a READ41P file called "AB.41T" in
the current directory on disk "c:v, Output from the
READ41P program is directed to the computer's PRN device.

The READ41lP processing detects several error or potential

: error
conditions, and reports on them:

NOTICES A "NOTICE" is not an error, merely a warning that the
program contains an XROM reference. This may be
intentional (for example, use of an HP-TI function in an
Advanced I/O0 ROM) or unintenticnal. The presence of
this XROM reference in the final ROM will require that
the referenced ROM be plugged in for your program to
functicn properly.

7-1

S5D5-IT 7=-1

ERRORS An error will be generated under the following
conditions:

& The program being read contains multiple
occurrences of a global label.

® The program contains an unresolved reference to a
local label.

® A global label, alpha XEQ or alpha GTO contains an
illegal character.

& The program contains more than 64 labels.

READ41P will not generate an output file if any erraors
are found.

In addition to errors and notices, READ41P prints out an
informational listing giving all global and local labels. The local
label list includes information on how many times a local label is
used and how many references appear toc that lakel.

When all of your HP-41 programs have been collected in READ41P

files, you can proceed to step 3. (BUILD) to assemble them into a ROM
image.

NOTE

Some important details:

® The HP-4]1 program name in the READ41P invocation is case-
sensitive. These two commands are not ecquivalent:

READ41P M:ABC ABC
READ41P M:abc ABC

The name of the output file, however, is case-insensitive,

since MS-DOS only supports uppercase filenames.

® The choice of MS-DOS filename for your READ41P file is entirely
up to you. Good programming practice suggests that it have the
same name as the HP-41 file, but this is not always possible
(either because of upper/lower case differences, name
conflicts, or special characters). When you do not use the
Same name, be sure to choose a name that suggests what the file
contains. The choice of READ41P file name has absolutely no
effect on the contents of the final ROM image.

7-2 SDS-II 7-2

® Some

error and warning conditions cannot be detected by

READ41P, but are noted in BUILD:

Local GTO's that are too distant to be compiled cannot be
discovered until BUILD has packed the alpha XEQs intoc XROM

references. This situation is explained more fully in the
chapter on BUILD.

Multiple use of global labels in different programs cannot
be detected until the BUILD phase.

XROM references (as pointed out in a NOTICE) to the ROM
being built are illegal (for example, an occurrence of
XROM 21,xx when you are BUILDing a ROM with an ID of 21).

This cannot be detected until BUILD, when the ROM ID is
assigned.

® The mass storage medium used by the HP-41 is in LIF format, not
M5-DOS. Any attempt to access it as an MS-D0OS medium (such as
performing a DIR) will fail. Likewise, it is not possible to

put

a READ41P file on the LIF medium (e.g., READ41P D:PRG

D:ABC).

SDS-IT : 7=3

8. Step 3: BUILDing the ROM Image

Once all of the READ41P files have been gathered, the ROM image can
be generated. SDS-II will allow you to build a ROM image for a 4K,

8K, or 12K ROM plug-in (using 12K requires the use of bank-
switching, explained in another chapter).

The following command causes a ROM image to be built:
BUILD <define-file-name> <ROM-file-name>

Following commands in the DEFINE file, BUILD collects the READ4LP

files (and MICROCODE files, explained below) together into a ROM
image.

BUILD does its work in two passes. In the first pass, it reads all
of the specified READ41P and MICROCODE files, copies them to a
temporary working file, and collects all of the global labels. In
the second pass, it doces the "dirty work" of compiling label
references, converting alpha-XEQ's to XROM's, and so on.

8.1 Two Types of .41T Files

So far this document has dealt with READ41P files, which are read

from your HP-41 mass storage and stored on the host computer system
with an extension of ".41T".

There is another type of ".41T" file that can be specified in the
DEFINE file: MICROCODE. A MICROCODE file allows vyou to add
assembly-language programs to your ROM. Use of MICROCODE files will
be fully explained in another chapter; this chapter will restrict
its discussion and examples to usercode.

8.2 The ROM Image File

Build will create 1, 2 or 3 ROM image files, depending on whether
you are creating a 4K, 8K or 12K ROM. The files will be named with
the first seven characters of <ROM-file-name> appended by the ROM
sequence number (that is, 0, 1, or 2). The filename extension will

be "41R". This file is ready to be programmed intoc EPROMs for
testing (explained in another chapter).

8.3 The DEFINE File

The DEFINE file contains all of the instructions needed to assemble
the ROM image. The define file is created using any text editor
(such as EDLIN, WORDSTAR, EMACS, etc.). For each 4X ROM (there are
1, 2 or 3), the DEFINE file contains several parts:

= A ROM# directive with optional RCM header and optional privacy
specifier. This is followed by a list of READ41P and MICROCODE

g=1 SDS-TT ' g-1

files.

& An optional ORDER directive, specifying how the global 1labels
are to be ordered within the ROM catalog. This is sometimes
followed by a list of labels and headers.

= An optional XEQ directive, used to specify any labels for which

alpha XEQs will not be converted into XROMs., This is followed
by a list of labels.

® An optional KEYS directive, used to specify key assignments to

be set up by the ROM. This 1is followed by a list of key
assignments.

u Optional'comments anywhere within the DEFINE file.

All directives and comments are preceded by the "&" character.

Following is a detailed explanation of each directive and its
section of the BUILD file.

8.3.1 ROM# Directive

For each 4K ROM, this line specifies what ROM# is to be associated
with the ROM. It is followed by an optional HEADER specification,
which allows you to specify a CATalog header for the ROM, and an
optional PRIVACY specification. For example:

&ROM# = 31, HEADER=CUSTOM.ROM

will assign ROM# 31 to this 4K ROM, and the catalog header
"CUSTOM ROM". Use of the "." as a placeholder for a space is
explained in the appendix on special characters. The first function

in this ROM will be XROM 31,1; the second will be XROM 31,2 and so
on. The directive:

&ROM# = 31, HEADER=MY.ROM, PRIVATE
will assign ROM #31 to this ROM with the catalog header "MY ROM".
In addition, all programs in the ROM will be PRIVATE, preventing the
user from viewing the contents. If your plug-in consists of
multiple ROMs, PRIVATE must be specified in each &ROM# directive.
The following rules apply to this directive:

® The "&ROM#" must begin in the first character position on the
line.

2 Legal ROM ID's are 1-31. An ID of zero can be used only if the

ROM contains no 1labels or headers -- that might occur if the
ROM only contains MICROCODE files that do not define any
keywords.

B=2 SDS-ITI B-2

@ The HEADER is optional. 1If no header is specified, the ROM

will not have a catalog header (making it much harder for the
user to find).

® If a HEADER is specified, maximum 1length is 11 characters.
Special characters can be specified using the substitutes
discussed in the appendix on special characters.

This directive is followed by a list of READ41lP and MICROCODE files
to be included 1in the ROM. BUILD will automatically append the
"41T" file extension to the filenames. Specification of these files
follows the usual MS-DOS rules of finding files: you can specify
just the file name (if the file is in the current directory on the
current disk) or a path (and disk drive designator, if appropriate).

8.3.2 ORDER Directive

This directive allows you to specify the order in which your global
labels will appear in the ROM catalog. If you do not include this
directive, the labels will appear in the order in which they are
encountered while reading the READ41P files. If this directive is
included, it takes the following forms:

&ORDER = E

to specify that the labels are to appear in the order

encountered
{the default).

SORDER = A

to specify that the labels are +to appear in alphabetical order.
Special characters (sigma, angle, and not-equal) are sorted
according to their internal HP-41 representation: sigma as ASCII
126, angle as ASCII 13, not-eqgual as ASCII 29.

&ORDER = S
to specify that the labels are to appear in a specified order. If

{and only if) this last form is specified, the directive is followed
by the list of labels, one per line, in the order in which they are

to appear. In addition, this ORDER option allows something not
allowed with the other options: specifying additiocnal CATalog
headers. That is, you can specify a header of up to 11 characters

by prefixing it with a tilde ("~"). See the examples bhelow for

an
illustration.

B-3 SD5~-IT 8-3

8.3.3 XEQ Directive

Normally, all alpha XEQ's that refer to labels within your ROM are
compiled into XROMs. This saves space in the ROM and execution
speed when the program is run. However, an XROM behaves differently
from an XEQ. An XEQ command will first search user memory and then
search all ROMs to find the named program; an XROM will always
execute the program out of the ROM.

Sometimes it is desirable to prevent an alpha XEQ from compiling
inte an XROM. For example, you may want to allow the user to place
a preogram in memory that overrides a function in the ROM. The XEQ
directive allows you to specify that certain alpha XEQs not be
compiled into XROM references.

The form of the XEQ directive is:

&XEQ

followed by a list of labels. Any alpha XEQ that refers to any of
the specified labels will not be compiled into an XROM.

Alternatively, specifying:
&XEQ ALL
will prevent all alpha-~XEQs from being compiled.

8§.3.4 KEYS Directive

- It is possible to specify that the calculator automatically assign
certain keys on power-up. The directive:

&KEYS

can be followed by a list of keys to be automatically assigned by
the ROM. Each item in the list is of three possible forms:

(1] Assigning an HP-41 function to a key:
<function-name>» <keycode>

t2] Assigning an XROM function to a Key (for example, a card reader
function);

XROM <ROM-ID> <function-number> <keycode>
[3)] Assigning a function from the ROMs being built to a key:

<function-name> <keycode>

8=4 SDS-II 8-4

Some important things to keep in mind about Xey assignments:

®E The automatic key assignment occurs whenever the machine is
turned on or memory 1is lost.

® The <keycode> 1is the same keycode displayed by the ASN
function. A map of keycodes in shown in the appendices.

m Functions will automatically be assigned only to keys that do

not have current assignments. If a key is currently assigned,
this will not override that assignment.

® Specifying automatic key assignments requires the inclusion in
the ROM of MICROCCDE files that take up additional space. This
is explained in the chapter on the microcode library.

® The XROM option can only be used to assign ROM numbers not in
the ROMs being built. For example, if you are building a ROM
with an ID of 21, you cannot assign an XROM 21,xx to a key. To

assign functlons in the XROM being built, use the function
name.

® If you are building more than one ROM, all key assignments
should be. performed in the first ROM. It wastes space to
include key assignments in more than one ROM, and a551gnments

in the second ROM might be overriden by assignments in the
first ROM.

8.3.%5 Comments

Comments may be included anywhere within the DEFINE file. Their
format is:

&& <comment>

8.4 Example of DEFINE File

The following example illustrates the various sections of the DEFINE

file. Consider an 8K ROM to be built ¢f three programs. All three
programs were written on the HP-41 and read into SDS-IT u51ng the
READ41P utility. The first program contains the following labels

(these labels are made up: any resemblance to real HP-41 programs
living or dead is purely coincidental):

PMAIN"
ngn
ngon
rg3n
"PRINT"
"RESET"

8-5 SDS-II 8-5

The second program contains the following labels:

"PROG2"
"FIXUPM

The third program contains the following labels:

"EDITOR"

"ADDLINE"
"EDTLINE"
"PACKFIL"
"PURGFIL"
"TIMEOUT"
"CLRFILE"
"RMVLINE"

The first program was read (by READ41P) into a file named MAIN.41T,
the second program into PROG2.41T, the third into EDITOR.41T. The
first two programs are to go into the first ROM, the third program
into the second ROM. We wish to assign some keys and, for the
second ROM, specify a CATalog order for the functions. In addition,
we want XEQ "TIMEOUT" commands not to be compiled into XROMs
(allowing the user to override "TIMEOUT" with his own program). The
DEFINE file (with some comments added for clarity):

&ROM#=21,HEADER=—~UTILITIES,PRIVATE
&& READ41lP files in first ROM:

MAIN

PROG2

&KEYS

&& assign XROM "EDITOR" to sigma+ key
EDITOR 11

&& assign XROM "PRINT" to IN key
PRINT 15

&& assign mainframe FACT function to SIN key
FACT 23

&& assign mainframe E~X-1 function to f-SIN key
E~X-1 =23

&& assign XROM 1,5 to ENTER” key
XROM 1 5 41
&ROM#=31,HEADER==-~MY.EDITOR, PRIVATE
&& READ41P files in second ROM
EDITOR

&ORDER=S

EDITOR

~-=-FILE.CMDS

PACKFIL

PURGFIL

CLRFILE

~=~LINE.CMDS

ADDLINE

8-6 SDs-II B-6

EDTLINE
RMVLINE
~==TIMEOQUT
TIMEOUT
&XEQ
TIMEOUT

The resulting cataleg will be:

—--UTILITIES
I!MAINII

nwgn

n S 2 n

nga "
W"PRINT"
HRESET"
"pROGZY
n"EpIXUPp"
--M¥ EDITCR
"EDITOR"
--FILE CMDS
"PACKFIL"
WPURGFIL"
"CLRFILE"
--LINE CMDS
YADDLINE"
"EDTLINE"
"RMVLINE"
--TIMEQUT
"TIMEOUT"

The cataleog headers (all of which are prefixed with "--" in this
example) serve to conceptually separate the sections of the ROM.
While all catalog entries appear during a CAT 2 operation on the

HpP-41C and CV, only the catalog headers appear on the CX (as
explained in the HP-41CX owners manual).

8.5 BUILD Errers
BUILD detects three levels of exceptional conditions:

ERRORS. Serious problems that must be corrected before the ROM can
be built.

WARNINGS Conditions that do not prevent ROM building, but which may
be errors. All warnings should be investigated teo insure
that you have not intrcduced an inadvertent error,

NOTICES Less serious than a warning, but a conditicn to be noted.

All notices should be investigated to insure that ycu have
not introduced an inadvertent error.

8-7 SDS-II 8~7

Follewing is a summary of exceptions that can occur during BUILD.

When appropriate, the error message will indicate which line of the
DEFINE file caused the offending error.

8.5.1 Errors in DEFINE File

ERROR: cannot open READ41P file <filename>
indicates that a file was specified that could not be found.

WARNING: Header truncated to 11 chars)
A header longer than 11 characters was specified.

NOTICE: Header has non=-std chars
A header (specified either in the "HEADER=" directive or in an

"&ORDER=8" 1list) contains characters that are not legal in program
names.

ERROR: Duplicate ROM ID

A "&ROM#" directive has specified the same ROM ID for more than one
ROM.

ERROR: Expected <something>

indicates that something unexpected was encountered in the DEFINE
file. The message will indicate on what line the error occurred,
One of the <something>'s is end-of-file, which is expected if a
"&ROM#" directive is encountered after three "&ROM#" directives have
already been processed -- BUILD can define at most three ROMs.

B.5.2 Errors in READ41P Files

ERROR: READ41P file is not reccgnizable

indicates that the a READ41P file is not recognizable either as
READ41P or MICROCODE.

ERROR: Unexpected EOF in READ41P file

ERROR: READ41P file is corrupt

ERROR: Address not found for label "<lahels"

ERROR: Unexpected global label on program line #<line#»>

all indicate that <the READ41P file is corrupt . or contains
information that is internally inconsistent.

8.5.3 Key Definition Errors

ERROR: Illegal key definition for XROM <xx>,<Xx>
A key definition was attempted for a ROM ID that is being built.

For example, XROM 21,xx was assigned to a key while ROM ID 21 is one
of the ROMs being built,

ERROR: Cannot assign key to <function>; function not found

A function specified in the key assignment list was not found either
in the ROMs being built or in the HP=-41 function list.

8-8 5DS-IT 8-8

NOTICE: ROM label ‘'<label>" overrides HP-41 function for key
assignment

A key assignment was made to a ROM function that has the same name
as an HP-41 mainframe function.

KEY ASSIGN ERROR: Bad ROM number

A ROM number was specified for an XROM key assignment that was not

in the range from 1 to 31.

EEY ASSIGN ERROR: Bad function number

A function number was specified for an XROM key assignment that .was
not in the range from 0 to 63.

KEY ASSIGN ERROR: Bad keycode

An illegal keycocde was specified for a key assignment. See the
appendix on HP-41 keycodes for a map of legal keycodes,

KEY ASSIGN ERROR: Illegal chars in label

A function 1label in a Xey assignment 1line contains illegal
characters.

KEY ASSIGN ERROR: Multiple assignment to same key
An attempt has been made to assign more than one function to the

same Kkey. This error will not occur if the multiple assignment
occurs in two different ROMs (although, as explained above, all
definitions should be performed in the first ROM) .

8.5.4 out-of-room Errcrs

The folleowing errors can occur if there is not encugh room in the

ROM to hold all of the READ41P and MICROCODE files and the ROM
overhead:

ERROR: Not enough room for key assignment table
ERROR: ROM address space overflow
ERROR: Not enough space for MCODE

8.5.5 ROM ID = 0

ERROR: &ORDER=S not allowed with ROM ID = 0

An "&ORDER=S" directive is not valid if the ROM ID specified in the
"&ROM#" directive is zero. -

ERROR: Labels not allowed when ROM ID = 0

READ41P and MICROCODE files containing any function labels are not
allowed if the ROM ID is zero.

ERROR: HEADER not allowed if ROM ID = 0

A HEADER specification is not allowed in the "&ROM#" directive if
the ROM ID is zero.

8~9 ' SDS~-TI 8-9

8.5.6 Specify Errors

The following errors can occur if you use the "&ORDER=S" directive:

SPECIFY ERROR: Following labels not specified:
Not all labels in the ROM were specified in the list.

SPECIFY ERROR: Label "<label>" does not exist in this ROM
A label was specified that does not exist in this ROM.

SPECIFY ERROR: Label "<label>" already specified
A label was specified more than once.

SPECIFY ERROR: Illegal chars in label
A label was specified that contained illegal characters.

SPECIFY ERROR: Tooc many labels in ROM
A header added in the specify list causes the number of labels +
headers in the ROM to exceed 64.

8.5.7 XEQ Errors

The following error can occur if you use the "&XEQ"™ directive:

XEQ ERROR: Label "<label>" does not exist in this ROM
A label was specified that does not exist.

XEQ ERROR: Illegal chars in label
A label was specified that contained illegal characters.

8.5.8 Label ERRORS

The following errors relate to the function names used in the ROM:

ERROR: Too many labels in ROM '
A ROM contains more than 64 labels + headers.

ERROR: Duplicate label in this ROM
A label occurs more than once in this ROM,

ERROR: Duplicate label in previcus ROM
A label in ROM 2 or 3 also occurs in an earlier ROM.

8.5.9 Errors in HP-41 Program

WARNING: Unresolved XEQ "<label>" on program line #<line#>
An alpha-XEQ references a label that does not occur in the ROMs
being built,. The reference will not be compiled into an XROM.

(When the statement is executed, it will search main memory and all
RCMs to find the label.)

8-10 SPS-II 8-10

WARNING: Unresolved GTO "<label>" on program line #<line#s
An alpha-GTO references a label that does not occur in +the ROMs

being built. (When the statement is executed, it will search main
memory and all ROMs to find the label.)

WARNING: Label '"<label>'" conflicts with HP=-41 mainframe kKeyvworad

A label is used in the ROM that conflicts with an HP-41 mainframe
keyword.

NOTICE: GTO <label> on program line #<line#> jumps >127 bytes, not
compiled
A short-form GTO (GTO 00 through GTO 14) references a label that is

more than 127 bytes away. The GTO will not be compiled, resulting
in slower execution speed.

NOTICE: XROM <XX>,<XX> on program line #<line#>
The program contains an XROM statement. Execution of this statement
will require that the corresponding ROM be plugged in,

ERROR: Unresolved GTO/XEQ <label> at program line #<line#>
A local GTO or XEQ references a label which does not exist, Since

this situation is also trapped in READ41P, this error should never
occur.

ERROR: Illegal XROM <XX>,<XX> on program line #<line#>

The program contains an XROM statement that references a ROM being
built.

8.5.10 Microcode Errors

The following errors can occur if any MICROCODE files are included
in the ROMs being built:

ERROR: Unresolved reference(s) to <microcode=label>

A MICROCODE file contains an unresolved reference to a label. This
can occur 1if a MICROCODE file (such as ALENG) is included but the
files it depends on (such as ALEN and BIND) are not. The chapter on

the MICROCODE library specifies the dependencies that must be
satisfied.

ERROR: Reference to <microcode=-label> out of range
ERROR: Internal reference out of range: address <hex-address»>
These errors will not occur with the MICROCODE library provided with

SDS-II1, but could occur with an independently-developed MICROCODE
file.

ERROR: MICROCODE label <microcode-label> multiply defined

A global label at the microcode level occurs more than once. The
message will list the offending modules. This error will only occur
if a multiply-defined label is actually referenced.

8=-11 SDS-II 8-11

WARNING: ROM label <microcode-label> overrides HP-41 mainframe label

A global label at the microcode label conflicts with a label in the
HP-41 mainframe.

8.6 BUILD FATAL Errors

Certain conditions may cause BUIID to fail with a fatal error,
immediately halting execution before completion of the current pass,
These errors are generally related to the condition of the temporary

(intermediate) files used by BUILD, and can usually be attributed to
one of the following conditiens:

® Default disk is write-protected, preventing BUILD from creating
“its temporary files. (BUILD creates i1ts temporary files,
UCCDE.TMP and MCODE.TMP, in the Gcurrent directory of the

default disk, regardless of where the actual ROM image files
are being created).

® Default disk is out of disk space or directory space to hold
the temporary files.

E In some cases, corrupted ".41T" files can cause BUILD to fail
with a "temp file is corrupt" message.

8=-12 SDs-1II g-12

9. Microcede Library

This chapter contains important information if you are
® using files from the microcode library,

® creating a PRIVATE ROM,

m utilizing the automatic key definition capability, or

® writing your own microcode utilities.

In addition to collecting usercode programs into a ROM, SDS=II can

collect microcode. Microcode files add two capabilities to the Hp-
41:

® Definition of new keywords. A microcode file can add a

new
function to the HP-41.

& Special interrupt processing. A microcode file can execute
special processing at power-on, power-off, coldstart, and
several other times. The automatic assignment of keys is an

example of a microcode file that does special interrupt
processing.

The purpose of this chapter is to describe the microcode
which is included with SDS-IT on disk #1. Privacy and key
processing are special cases of microcode files. TInformation on

creating your own microcode files is contained in the chapter on
advanced applications.

library,

Microcode files fall into three categories:

Type 2 Routines which can be executed from the HP-41 keyboard.
Type 1 Routines called only by other microcode routines.
Type 0 System microcode routines.

9.1 Type 2 MICROCODE Files

Most of the type 2 MICROCODE files implement popular functions that
are available in the extended functions ROM and are already built
intoc the HP-41CX. By including these functions in your ROM,

however, you make them available for your application regardless of
what machine it is plugged into.

9~1 SDS-II 9-1

WARNING

When using one of these functions, it is important that
your program contain an alpha-XEQ, not an XROM. TFor
example, if using the ALENG function in your application,
your program must contain XEQ "ALENG", not ALENG. To
insure that this happens, place the labels of the
microcode functions you will use somewhere in the HP-41
program memory (not in the programs under development!).
This will ensure that the HP-41 compiles them as alpha-
XEQ's and not as references to the extended functions ROM.

Some of these type 2 microcode functions require type 1 or type 0

microcode functions. A table of these dependencies occurs at the
end of the chapter.

9.1.1 AIP (ALPHA Integer Part)

Not from the Extended Functions ROM.

This function appends the integer part of the X-register to the

ALPHA register. It ignores the fractional part and the sign, and is
useful for constructing prompts.

9.1.2 ALENG (ALPHA Length)
This function exists in the Extended Functions ROM.

ALENG returns the number of characters in the ALPHA register to the
X-reglister.

9.1.3 ANUM (ALPHA Number)
This function exists in the Extended Functicns ROM.

ANUM scans the ALPHA register for an alpha-fofmatted number. If a
number is found, its value is recalled to the X-register and user

flag 22 is set. If no number is found, the X-register and flag 22
are unchanged.

The digits in the ALPHA register can represent values in any display
format. Number separators and radix marks are interpreted according
to calculator flags 28 and 29. For example, if the ALPHA register
contains the string "PRICE: $1234.50", executing ANUM returns the
following results, depending on the status of flags 28 and 29 (using
'.' radix for consistency):

9-2 SDS-II 9=2

| Flag 28| Flag 29| HNumber Returned]|
| | I !
| set | set | 1234.5 i
set	"clear	1234.5
clear	set	123450
clear	clear	1234
I | | I

If the digits in the ALPHA register are preceded by a minus sign, a

negative number will be placed in the X-register when ANUM is
executed.

9,1.4 AROT (ALPHA Rotate)
This function exists in the Extended Functiocns ROM.

AROT rotates the contents of the ALPHA register by the number of
characters 1in the X-register to the left (if the X-register is
positive) or to the right (if the number is negative).

9.1.5 ATOX (ALPHA to X)
This function exists in the Extended Functions ROM.

ATOX shifts the leftmost character out of the ALPHA register and
places its character code in the X~-register. If the ALPHA register
is empty, zero is placed in the X-register.

9.1.6 CLEKEY¥S (Clear Keys)
This function exists in the Extended Functions ROM.

CLKEYS clears all USER mode key assignments.

9.1.7 ENROM1 (Enable ROM 1)
Not from the Extended Functions ROM.

This function is used to enable ROM 1 when a 12K (bank-switching)
ROM 1is being used. It should only be placed in the first ROM of a

three~-rom plug-in. For more information, see the chapter on bank-
switching.

9.1.8 ENROM2: (Enable ROM 2)
Not from the—Extended Functions ROM.
This function is used to enable ROM 2 when a 12K (bank-switching)

ROM 1is being used. It should only be placed in the first ROM of a
three-rom plug-in. For more information, see the chapter on bank-

9-3 SDS-II 9-3

switching.
9.1.9 GETKEY (Get Key)

This function exists in the Extended Functions ROM.

When a program executes GETKEY, execution halts until a key is
pressed or an interval of approximately ten seconds elapses. If a
key is pressed, its keycode is placed in the X-register. If no key

is pressed, a zero 1is placed in the X-register at the end of the
timed interval.

GETKEY responds to the first key pressed, so there can be no shifted

responses to. GETKEY. If vyou press the gold key during a GETKEY
pause, its keycode (31) is placed in the X-register.

GETKEY enables you to branch to a subroutine on the basis of an

entry from the keyboard, even when the key pressed is not a digit
key.

9.1.10 PASN (Programmable Assign)
This function exists in the Extended Functions ROM.

PASN enables you to assign functions or programs to a key location.
However, PASN requires vyou to enter the keycode for the key which
you wish to assign the function or program. PASN is executed after
placing the keycode in the X-register. The function or program name
is placed in the ALPHA register. To assign BEEP to the [C0S] Xkey,

place 24 in the X-register and "BEEP" in the ALPHA register, then
execute PASN. ' -

9.1.11 PCLPS (Programmable Clear Frograms)
This function exists in the Extended Functions ROM.

PCLPS clears one or more of the programs in main memory. all
programs beginning with the one named in the ALPHA register (or the
current program if the ALPHA register is clear) and continuing to
the end of program memory are cleared. If a running program names
itself (or clears the ALPHA register) and executes PCLPS, that

program and all feollowing it will be cleared and program executicn
will terminate.

9.1.12 ©POSA (Position in ALPHA)
This function exists in the Extended Functions ROM.
POSA scans the ALPHA register for the ALPHA character or string

specified in the X-register. There are two ways to specify the
character or string. You can enter the character code for a single

SDs-IT 9~4

character, or you can enter an actual character or string of
characters (up to 6 characters) wusing ASTO. If the specified
character or string is found in the ALPHA register, the character

position of the character (or the position of the leftmost character
in the string) is returned in the X-register.

Character positions are counted from left to right, starting with
position zero. If the specified string occurs more than once in the
ALPHA register, only the position of the first occurrence is

returned. If the target string is not found in the ALPHA register,
negative one is returned.

9,1.13 PSIZE (Programmable Size)

This function exists in the Extended Functions ROM.

PSIZE works like the SIZE function provided with the calculator
except that it can be executed from within a program. It makes it
possible for a running program to reallocate the registers in main
memery as reguired. To use: place the number of data storage
registers desired into the X-register and execute PSIZE.

9.1.14 RCLSTFLG (Recall/Store Flags)

These functions exist in the Extended Functions ROM.

This file provides two functions: RCLFLAG and STOFLAG.

RCLFLAG recalls the status of flags 00 through 43 to the X-register

as ALPHA data. The contents of the X-register can then be stored

for later use. When RCLFLAG is executed, the display will not be
intelligible.

If the flag status from a previously executed RCLFLAG is placed in

the X-register, executing STOFLAG restores calculator flags 00
through 43.

If you want to restore only some of the flags, place the flag status
in the Y-register and a number in the form (bb.ee) in the X-

register. Executing STOFLAG will then restore flags starting with
{bb) and ending with (ee).

9.1.15 REGMVSWP (Register Move/Swap)

These functions exist in the Extended Functions ROM.

This file provides two functions: REGMOVE and REGSWAP.

REGMOVE sss.dddnnn copies a block of registers, specified by (nnn),

beg;nn;ng at reglister (sss), to a block of the same length,
beginning at register (ddd). &aAny data that was already in the

9-5 SDS~1I1 g-5

destination block is lost. For example, to move ten registers of

data from registers 2-11 to registers 20-29, place 2.020010 in the
X-register and execute REGMOVE.

REGSWAP sss.dddnnn exchanges the contents of a block of (nnn)
registers beginning at register (sss) with the contents of a block
of the same length beginning at register (ddd). Executing REGSWAP

with 2.020010 in the X-register would exchange registers 2-11 with
registers 20-29.

9.1.16 BSIZE (Determine Current SIZE)
This function exists in the Extended Functions ROM.

The MICROCODE file SIZE provides the SIZE? function. SIZE? places

the number of registers currently allocated to data storage into the
X-register.

SIZE? can be used within a program to inhibit execution of PSIZE
when a memory reallocation is not required:

01 LBL ABC

02 SIZE? The number of data storage registers presently
allocated is placed in the X-register.

03 nn The number of registers this program needs. The
results of the previous step are now in the Y-register.

04 X>Y? Is the number of storage registers regquired by the
program (X-register) greater than the number presently
allocated (Y-register)?

05 PSIZE If so, this step is executed. If not, this step is

skipped.
9.1.17 ITOA (X to ALPHA)
This function exists in the Extended Functions ROM.

XTOA, when executed with a character code in the X-register, appends
the character represented by the character code tc the right-hand
end of the string in the ALPHA register. XTOA may be executed with
any number from 0 to 255 in the X-register. The null byte, which
corresponds to the decimal value 0, has a special meaning in the
ALPHA register. Because of this, under some circumstances you
cannot retrieve a null byte from the ALPHA register. This is
discussed in more detail in volume 2 of the HP-41CX owners manual.

9~6 SDS-IT 9-6

9.1.18 XF (X Exchange Flags)
This function exists in the Extended Functions ROM.

The MICROCODE file XF provides the function X<>F. ¥<>F uses the

number in the X-register to set flags zero through seven. At the

same time, it transfers the previous status of those flags to the
X-register.

In the X-register, the flag status takes the form of an 8-bit number
from ¢ through 255. Each flag corresponds to one bit in that
number. The number in the X-register is the sum of x(i) [i=0 to 7],
where x(i)=0 if flag i is clear, and x(i)=2»~i if flag i is set. The
flags and their power-cf-two equivalents are:

Flag Number| 7| 6| 4 3 2 1 O

|

I |
2|7 L]

!

8 4

! E| 3] 2]
| , | ! | | N
| Equivalent | 128 64 | 32| 16| | |
I 1 | | | |

For example, suppose flags 0, 3, 5, and 7 are set, while flags 1, 2,
4, and 6 are clear. To determine what number is placed into the X-

register when X<>F is executed, add up the numeric equivalents of
the flags that are set:

Flag Numeric Equivalent

I

I

|70 1
|3 8
| 5 32
| 7 - 128
I

|

I

169

The number in the X-register would be 169.

If you enter zero in the X-register and execute X<>F, flags zero

through seven are cleared, and their previous status is placed in
the X-register.

You can use X<>F to create extended general purpose flags by storing
numbers representing the status of flags zero through seven in a
register. For example, to check the status of an extended flayg,

recall the flag status code in the X-register using RCL, execute
X<>F, then execute [FS?] as usual.

X<>F enables you to use largé numbers of flags in programs. Flags
are grouped by eights and transferred into and out of the first

SDS-II 9=7

eight flag positions by means of X<>F. The number representing the
status of a particular group of eight flags is placed in a storage
register until it is needed. When it is needed, it is recalled to
the X-register, exchanged with the flags presently in those eight

positions, and the status of specific flags in that group can be
examined or altered.

9.2 Type 1 MICROCODE Files

The type 1 microcecde files are those which contain utilities used by
two or more of the type 2 microcode files. For example, the file
BIND contains a utility used by ALENG, AROT, ATOX, POSA, SIZE?, and
X<>F. If one or more of those files is used, BIND must be included
in the file list in the DEFINE file.

For each type 1 microcode file, this section will list the microcode

labels that are defined within. This information can be used to

determine which file is missing if BUILD fails with an unresolved
microcode reference.

9.2.1 ALEN

ALEN defines the following microcode labels:
ALEN, CNTBYT, and FAHED.

9.2.2 ALNAM2

ALNAM2 defines the following microcode label:
ALNAaMZ.

9.2.3 BIND

BIND defines the following microcode label:

BIN D.
9.2.4 XB

XB defines the following microcode labels:
X_256, X_999.
9.3 Type 0 MICROCODE Files

Type 0 microcode routines perform miscellanecus functions not
cevered by types 1 and 2.

9-8 Sbs-IY 9-8

9.3.1 AUTOST (Autostart)

AUTOST 1is an example of a file that does special interrupt
processing. Unlike the type 2 files, AUTOST does not define any

functions. ©Nor is it called by other routines (as are the type 1
files).

AUTOST, when included in your ROM, causes the HP-41], whenever it
powers on, to search memory (user memory and ROMs) for a program
named "RECOVER". When the program is found, it is executed. If it
is not found, the calculator exhibits strange behavior -- AUTOST

should not be used in a RCOM that does not contain a "RECCVERY
program.

AUTOST is useful for taking control of the machine as soon as it is
turned on.

9.3.2 PRIVACY

PRIVACY is a short microcode file that must exist in every private
ROM. This file is not included with the microcode library because
it is built into BUILD ~~ automatically installed 1f the ROM 1is

private. Its length is 13 bytes, plus one entry in the MCODE table
{explained below).

9.3.3 KEYASN

KEYASN 1is a microcode file that must exist in every ROM which
performs automatic key assignments. Like PRIVACY, KEYASN is build
into BUILD. Its length is variable, requiring 150 bytes plus 2

_bytes per key assignment. In addition, 1t requires 2 entries in the
MCODE table (explained below).

9.3.4 MCCDE

MCODE is a microcode file that must exist in every ROM in which a
microcode file 1is doing special interrupt processing. Aall of the
type 0 files mentioned above perform special interrupt processing.
Its length is variable and dependent on several factors:

For the second or third ROM of a 3-ROM plug-in, MCODE kegins at
ROM address 4014 and ends at 4083.

®m For other ROMs (first ROM of a 3-ROM plug-in or any ROM of a 1-

or 2-ROM plug=-in), MCODE begins at ROM address 4020 and ends at
4083,

In addition, MCODE creates a table (immediately below the starting
address) used for handling the special interrupt processing. The
length of the table is 2n+l bytes, where n is the number of table
entries required by all of the MICROCODE files performing special

9-9 SDS-II1 5-9

processing.

Additional information about creating MICROCODE files to perform

special processing is contained™ in the chapter on advanced
applications.

9.4 Microcode Library File Requirements

For each file in the microcode library, the table on the following
page gives the type, number of bytes required, and 1list of
dependencies. Files listed in the dependency column are type 1 and
type 0 microcode files that must be included for the corresponding
type 2 file to work. If they are not included, BUILD will fail with
unresolved references., Files listed in parentheses are

automatically included by BUILD, and should not be specified in the
DEFINE file.

9-10 SDS-II 9=10

o e e . o e ———— —— — . o et — e — i T ey e, A e T e o . i A e S et Tt o st 1 it T L o e

0
Q
=
4}
o
e Lo Ea™ ——
T 53] =] o N 49]
(o (a] O M M (]
v = O Z= =0 a0 [0 O =0 [e]
(o}] M ke MK (O 0D w M K] = &,
o] H H =98 dAd = = HHM = m
A < M G | /@ — S W
™
[}
w M H +
d-A o [™ o | [s)] ™ m | Ty} o)) 1) o Q ¥ Q K ™ t~ < m
+_@ o el [+ T o | < ™ o | Ty} o Q@ Q Q w ™~ | — h
™ — np 0n P —
m e
~
W
W‘ o I P T (o = I (2 (s o |1 N e v v O o (o) B [B (o O |
O
jal
9] >
o o |S a 2EEEB G | » 2 o
HoO zZ & m = e = o 9 || |0 (O H 5 [A TR = [
Ut Iy | | w 2 O O H O oM (|[B o O 42 T I B [H |H
an ocan R | T e S [MM = D H 4d = |5 B K &) [N L B (] [a A | V]
bl ST I S 1 S L = P < S [T 15 B 122 B | B = [sTR [P [i % oy

S S ———————— e L et st e e £ b

9-11

SDS-IT

9=-11

o
1
I
o
0
o
L
O
o
a
o
| o}
(1} a [an}
0, = =
U — MM M
[a] 18] mae oS
o
@
m M
gA |o jJ+ [on o |0 oo A
tw.02124l H
nw‘ll n“.
]
2 o]
)
o
0,
=T {2 IO o SO [I o BN 14" B {4
H
o
T |0 &
o iK1 |2
0 | |
OTW
MO | 3} £
O~ |3 | |3 O
bl (O I KM (e [H
-0 CPRR [+ /B s AN (/) T O O
(']
—

10. Emulating ROMs

SDS-II supports two techniques for emulating ROMs: EPROM boxes and
RAM bhoxes.

10.1 EPROM Box ROM Emulation

A number of EPROM boxes are commercially available for emulating
HP~41 ROMs. Through the BURN41 utility, SDS-II supports the
ERAMCO-?777? EPROM box. Unlike other commercially-available
products, the ERAMCO-7777 supports the bank-switching scheme used in

the Hewlett-Packard bank-switching ROM (explained in the chapter on
bank switching).

%% CONTINUE HERE with instructions for ERAMCO=7777 #%

10.2 RAM Box Emulatioen

A number of RAM boxes are commercially available for emulating HP-41
ROMs. Typically, these boxes are programmed by the HP-41 using
specialized software. For more information on using RAM boxes, see

the sections on WRITMLDL and READMLDL in the chapter on advanced
applications.

10-1 SDS-IT 10-1

11. Burning EPROMs For The ERAMCO=2227

Completion of this chapter awaits information
k CONTINUE HERE =***

11-1 SDS-II

about the

product.

1l1-1

12. Bank-sSwitching

The HP-41 address space layout allows a plug-in ROM to use up to 8K
of memory. Each plug-in port has an address space of 8K, divided
into two 4K segments known as the "lower half" and the "upper half".
In the past, a 4K or 8K plug-in was produced by using 1l or 2
(respectively) 4K ROM chips (HP part number 1LE9). Typically
(although not always), a 4K application would use the lower half of

the port's address space, and 8K applications would use the entire
address space.

The HP-41 custom ROM program is now using a 12K ROM known as the
1LGS. The 1LG9 can be programmed to act either as a 4K, BK, or 12K
ROM. This not only reduces the chip count from 2 to 1 for an 8K
plug-in, it allows even larger plug-ins: 12K.

Using a 12K plug-in in an 8K address space requires, understandably,
special technigques to address the entire 12K. This is achieved
through bank-switching. The following sections explain the
requirements and limitations imposed by bank-switching.

12.1 A Word about Terminology

This document has been using the term "ROM" to describe a 4K block
of HP-41 ROM address space, and "plug=-in" to describe the collection
of 4K blocks housed in a single package. Strictly speaking, the
11G9 1is a single ROM containing three programmable 4K blocks., For
consistent terminology, however, "ROM" will designate a 4K block,

and a 1169 plug-in conceptually treated as containing 1, 2, or 3
ROMs.

12.2 Basic Bank-Switching
Using SDS-II, you can specify that your plug-in consist of 1, 2, or

3 ROMs (by using 1, 2, or 3 "&ROM#" directives in the DEFINE file).
The following table illustrates where these ROMs are addressed.

ROMs ROM & Where Addressed

| |
| 1 1 lower halft !
| |
| 2 1 lower half |
| 2 upper half |
| ' |
| 3 1 lower half !
| 2 upper half, bank 1|
| 3 upper half, bank 2|
| |

The 1- and 2-ROM cases are straightforward. For a 3-ROM plug-in,

12=-1 SDS-II 12-1

bank 1 1s enabled when the plug-in is first inserted. When the
ENROM2 command (from the MICROCODE library) is executed, bank 1 is
disabled and bank 2 appears in its place. Similarly, the ENROM1
command enables bank 1 and disables bank 2.

In effect, there are two different ROMs occupying the upper half of
the port, but only one is available at a time. ©Once a bank is
enabled, it remains enabled until the opposite bank is enabled or
until the ROM 1is removed from the machine. ©On being plugged back
into a machine, BANK 1 is re-enabled.

Certain critical 1limitations apply to the ENROM1 and ENROM2
commands:

@ These commands should be placed in the first ROM of the plug-
in. Placing these commands in the bank-switching ROMs can

cause unpredictable (and generally disastrous) results when
they are executed.

® These commands will only affect the plug=-in in which they are
resident. If, for example, the HP-41 contains two bank-
switching plug=-ins in two different ports (say, ports 1 and 2),

executing the ENROM2 keyword in port 1 will only affect the
plug=-in in port 1. _

® Because of the possibility that more than one plug-in in the
user's HP-41 will be bank-switching, and that ENROM1l and ENROM2
will subsequently be multiply defined, it is recommended that
your application not rely on having the user execute the ENRCM1
and ENROM2 commands. You should place all major labels (those
to be XEQ'd by the user) in the first ROM, and only use ENROM1

and ENROM2 within vyour application to enable the ROMs
containing your utilities.

12.3 Advanced Bank=-Switching

The material in this section assumes a familiarity with HP-41

assembly-lanquage programming, and with the architecture and
operating system of the HP-41.

The 1LG9 has a number of configuration options, more fully explained
in the section on 1LG9 configuration in the chapter on advanced
applications. Each 4K core of the 1LGY9 can be programmed as either
bank 0 (always enabled), bank 1 (enabled on power=-up), or bank 2
(alternately enabled/disabled with bank 1). While it is possible to
create other configurations than that shown in the previous section
(ROM l=low/banko, ROM 2=high/banki, ROM 3=high/bank2), that
configuration should be usable for all applications.

Using bank-switching places certain requirements on the code within
the ROM:

12-2 SDsS-1II 12-2

® The bank-switching itself is accomplished through the use of
the assembly-language instructions ENROM1 (instruction code
100H) and ENROM2 (instruction code 180H). These instructions
must occur somewhere within the address space of the 1LG9 being
bank-switched. That is, an ENROMx instruction will only affect
the 1LG9 out of which it 1is read. (Note that the ENROMx
instruction only takes effect when it is read as a cCpPU

instruction, and not when it is read as data by the CXISsa
instruction.)

® The 1LGY9 requires that the ENROMx instruction be preceded by an
instruction whose high bit is zero. This 1is customarily
handled by placing a "GOTO $+1" instruction before the ENROMx.

= In general, an ENROMx instruction should not occur within a
bank-switching ROM. It can, however, be done with careful
planning. Keeping in mind that executing an ENROMx instruction
will immediately enable the selected ROM, instructions can be
placed within both ROMs to insure that execution continues
properly. For example, using the typical 3-ROM configuration
described above, if the CPU executes an ENROM1 instruction from

address FOOH in BANK 2, it will read the following instruction
from address FOlH in BANK 1.

® Requirements of the self-test ROM and production testing impose
the following restrictions (these are both handled
automatically by BUILD, but must be accounted for if you create
your own ROM images using the advanced tools):

8 The data at address FFDH within any core must contain a

'l' in at least one of the upper twoe bits if and only if
that core is a bank-selecting core. .

® If a core is bank-selecting, it must contain the following
instructions at the following addresses:

FC7 ENROM1

FCs8 RIN
FC9% ENROM2
FCA RTN

The restrictions mentioned in the previous section about placement
of major 1label are not absolute; they can also be circumvented

through careful planning. This was done, for example, in the HP-41
ADVANTAGE ROM.

The ADVANTAGE places major labels in the first two ROMs. The <third
ROM has a ROM ID of zero and, subseguently, an empty FAT table. It
only contains microcede, which is always called from BANK 0 after
performing an ENROM2. The microcode in the ROM never relinquishes
control with BANK 2 enabled. Rather, whenever code in BANK 2

12-3 SDS-TI 12-3

relinquishes control or calls a mainframe function that might not
return, it does so through code in BANK 0 that re-enables BANK 1
before relingquishing control (or executing the call). Obviously,

such techniques require writing cocde to jump between pages in HP=-41
ROM space.

These steps have the effect of completely hiding BANK 2 from the

user, and making two ROMs (and therefore two FATs) available for
functions.

12-4 SD5-IT 12-4

12. 8D8-II Basic Utilities

SDS-II disk #1 contains the following utilities in

addition to
READ41F, BUILD, and BURN41l.

13.1 CHECKSUM

The checksum utility can be used to verify the checksum of a2 ROM
image file. The invocation is:

CHECKSUM <filename> [<filename>...]

This utility accepts filename wild-carding in the command line. For

example,

CHECKSUM =

will verify the checksums of all *.41R files in the

current
directory.

13.2 EPROM

The EPROM utility generates data to be downlocaded to an EPROM
programmer. It 1s used by the BURN4l program. Instructions on
using the EPROM utility itself can be found in the utilities section
in the chapter on advanced applications.

13.3 LIFPACK

The LIFPACK utility allows you to pack an HP-41 mass storage medium,
reclaiming space lost when files are purged by the HP-41. Its use
is not recommended for the 82161A cassette drive. To invoke:

LIFPACK <disk designator>
For example, to pack the LIF disk in drive C:
LIFPACK C:

13.4 LISTFAT

The LISTFAT utility 1lists the catalog of a ROM image file.
Invocation:

LISTFAT <ROMfilename> [<ROMfilename>]

1f a second ROMfilename is specified, LISTFAT will correctly find
functions in the second ROM whose FAT {function address table) entry
is in the first ROM, and vice versa,. Such ROMs will never be

created Dby BUILD, but can be created using the advanced programming
tools.

13-1 SDs~IX 13-1

13.5 SDSCAT

The SDSCAT utility provides a catalog of HP-41 program files and
MIDL-format files (created by WRITMLDL, explained in the chapter on
advanced applications) on an HP-41 mass storage medium. Both
catalogs are listed in alphabetical order, not the order the files
are encountered on the disk. HP-41 program files are listed with

the special characters substituted as described in the appendix on
special characters.

Invocation:

SDSCAT <disk designator>

For example:

SDSCAT C:

13-2 SDs5-1I 13-2

14. Advanced Applications

This chapter describes the advanced tools supplied with SDS-IT for

ROM development, as well as the tools needed to support the RAM-
based ROM emulator.

The advanced programming tools are provided on an AS-IS basis. HP
makes no warranty, expressed or implied, as to their performance,
HP provides no support for assembly-language code development, and
shall not be responsible for any loss or damage to the user, its

customers or any third parties caused by inaccuracies in the
materials or documentation.

14.1 Using the RAM-Based ROM Emulator

Several RAM-based devices, known as Q-ROM, have been marketed to
allow ROM emulation. Recommended for use with SDS-IT is the ERAMCO

E51l6S, which emulates the full functionality of the 1LG9 ROM,
including the bank-switching capabilities.

Data is loaded in Q-ROM devices by writing to them from the HP-41.
Software is also available for programming Q-ROM devices. For
example, the GETROM keyword in the MLDL operating system (which isg
distributed on EPROM for use in the ERAMCO ESMLDL 1) allows transfer

of a ROM image from an HP-41 mass storage medium into an Q-ROM
device.

To emulate the bank-switching 1LG9 with the ERAMCO Ram Storage Unit,
load the images from ROM 1 and ROM 2 (respectively) into bank 1, and
the images from ROM 1 and ROM 3 (respectively) into bank 2. By

virtue of its presence in both banks, ROM 1 is always present,
providing emulation of 1LG9 bank 0.

Details on using the various Q-ROM devices are included in the
documentation with each preduct, and will not be discussed here.

SDS~II includes two programs on disk #2 to support use of Q-ROM
devices: READMLDL and WRITMLDL.

14.1.1 WRITMLDL

The WRITMLDL utility will copy a ROM image file created by BUILD (or
the advanced utilities) onto a LIF medium in the "standard format".
That is, it will create a file on the HP-41 medium that is directly

readable by the GETROM keyword (mentioned above) and other such
utilities.

The invocation is:

WRITMLDL <ROMfile> <disk designator>:<filename>

14-1 SDS-TII ld-1

For example,

WRITMLDL MYROM] C:ROMIMAGE

will take ROM image file MYROM1.41R and create file ROMIMAGE on the

HP-41 media in drive C: containing the ROM image in a format
readable by GETROM.

A word of caution: Under certain circumstances, the GETROM keyword
can be fooled into reading the wrong file. The problem, which is
not easily repeatable, can best be characterized with an example:

If the HP-41 medium has two files, named ABCDEF and ABCDEFG, and

ABCDEFG occurs earlier in the disk directory than ABCDEF, attemptlng
to retrieve ABCDEF with GETROM will sometimes retrieve ABCDEFG.
This problem can be avoided by appending a space to the filename
specified in the ALPHA register.

14.1.2 READMLDL

READMLDL is the inverse of WRITMLDL. It will read a ROM image file
from an HP-41 mass storage medium into a .41T ROM image file. The

ROM image file can then be manipulated using such tools as LISTFAT,
EXTRACT, etc.- .

Invocation:

READMLDL <disk designator>:<filename> <ROMfile>

1l4.2 Other aAdvanced Utilities

This section assumes prior knowledge of HP-41 assembly language, and
the HP-41 architecture and cperating system. Recommended reading on

this topic is the manual for the ZENROM (from Zengrange Ltd., in
England).

14.2.1 ASSEMB41l

ASSEMB41l is an HP-41 assembler. It assembles source files (suffixed
with .41A) into relocatable object files (. 410) that can either be:

® Collected into RCOM image files (.41R) using LINK41l, or

® Turned into micrcocode library files (.417) using MUCODE.
The assembler uses HP mnemonics, which differ in many ways from the
mnemonics used in many third-party products. The following

subsections list the mnemonics and their opcodes, which should
facilitate translatlon from other assembly languages.

14=-2 SDS-IT 14-2

14.2.1.1 Invocation
The assembler is invoked by:
ASSEMB41 [-1s8] [-o <outputfile»] <inputfile>
Command line options:
-1 Produce a source code listing.

-5 Print a symbol table.

-8 Print addresses and opcodes in octal. If not specified, the
assembler will print addresses and opcodes in hex.

-0 Use the fellowing argument as the name of the output file. If
this option is not specified, the input filename will be used.
In either case, the output file will have extension ".410",

The <inputfile> must have the extension ".41A" +to be found by
ASSEMB41l.

If the -1 or ~s option is specified, the listing will be formatted
for a printer, and should be redirected to one using the '>' command
line feature of MS-DOS.

14.2.1.2 Assembler Syntax Conventions

Following are the general syntax rules for ASSEMB41l.
14,2.1.2.1 Comments

Any line beginning with a "#*" is interpreted as a comment.

A semicolon (';') can be used to begin an in-line comment.

14.2.1.2.2 Fields

A line consists of three fields: label, opcode, and operand.

® A label must begin in column 1, must begin with an alphabetic
character, and can contain any number of alphanumeric

characters. Only the first 20 characters of a label are used
by ASSEMB41. '

® An opcode can begin anywhere but in column 1. If a label is

used, there must be at least one space (or tab) between the
label and the opcode.

® The operand, if reguired for the opcode, must be separated from
the opcode by one or more spaces (or tabs).

14=-3 SDS-IT 14-3

If a field begins with a semicolon, the remainder of +the 1line is
treated as a comment and ignored by the assembler.

14.2.1.2.3 Expressions

Most opcodes that can take numeric operands (with the exception of
pseudo-ops SPACE, FILLTO, BSS, and ORG) can take arbitrary
expressions combining labels, constants, and special symbols.

CONSTANTS Constants can be in hex (terminated with 'H'), octal
(terminated with '0' or 'Q') or decimal. A hex constant
beginning with a non-decimal digit must be prefixed with

a zero to aveid confusion with labels (for example,
OFH) .

LABELS Local labels (those that can be resoclved within this
module) can be included in expressions.

SPECIAL The special symbol '$' designates the current address.
For example, GOTO $+1 means GOTO the next statement.

The following operators can be used in expressions: +, =, *, /,

r = and
% (modulus). An expression consisting of one label or '$' plus or
minus a constant is considered a "relative" expression. All other
expressions are considered ‘"absolute", The purpose of this
distinction becomes clear in the section below on global labels. If
the '-s' option is specified, 1labels with "absolute" values are
indicated in the symbol table with a "#w,
The pseudo-ops mentioned above that cannot take arbitrary

expressions can take constants in decimal, hex, or octal.

14.2.1.2.4 Glebal Labels

ASSEMB41 supports global references for the following opcodes:
® All branches (short and long).
® CON,.

® DEFP4K, DEFR4K, DEFR8K, U4KDEF, UBKDEF.

® GSB41lC, GSBSAM, GOL41C, GOLSaM.
B LC3.

A global reference is one that is resolved by the 1linker (LINK41)
rather than by the assembler. A global expression takes the form of
a label preceded by '='. TFor example, to call the mainframe routine

CLLCDE, use "GOSUB =CLLCDE". A global expression must only contain
a single label; it cannot contain any arithmetic.

1l4-4 SDS-IT 14-4

To declare a label as global, the GLB opcode (explained below) is
used. When the linker resolves global references, it updates
relative expressions to reflect the load address of the assembly

module; absolute expressions are not updated.

In addition to supporting glckal references, the opcodes menticned
above support ‘'"relocation fixups". This means that a 1local
reference to a relative expression {(such as CON <label>») is updated
by the 1linker to reflect the lcad address of the assembly module.
An error message in LINK41 or BUILD about an internal reference out
of range is caused by a relocation fixup being out of range.

14,2.1.3 Mnemonics

The mnemonics used here reflect the history of mnemonics used in
past internal HP-41 software; they do not reflect a consciocus choice
made for this product (exception: the addition of the WMLDL
mnemonic). The type 0 opcodes are presented both in alphabetical

and numeric order, to facilitate understanding this set of
mnemonics. .

For the opcodes that take an operand, only the base wvalue of the
compiled word is shown. The actual choice of bytes is dependent on

the value of the operand. Where appropriate, this table gives the
legal range of operands.

14.2.1.3.1 Type 0 Opcodes ~- Alphabetical Order

See the commentary after this list for an explanation of opcodes
designated with '*!',

MNE OPRND opC MNE OPRND QoPC

?2F0=1 3ACH IFCR? 16CH
7F10=1 OECH ~ INCPT 3DCH
?F11=1 1ACH LC 0-15 010H
?Fl2=1 36CH *L.C3 <expr>» 010H, 010H,
?F13=1 2ECH LDI 130H

7F1=1 32CH LLD? 160H

?F2=1 22CH =C 158H

?F3=1 02CH MCEX 1D8H

7F4= 06CH =C 070H

?F5=1 0ACH NCEX OFOH

?F6=1 16CH NOP Q00H

?F7=1 2ACH ORAV? OECH

?F8=1 12CH P=Q7? 120H

?F9=1 26CH PFAD=C 3FO0H

?LLD 160H POWOFF 060H, 0O0CH
2P=Q 120H PT= 0-13 01CH

7PT= 0-13 014H PT="? 0-12 0Cl1l4H

750=1 38CH PT=A 3E8H

14-5 SDS=-11I 14-5

010H

14-6

?510=1
?511=1
?812=1
?513=1
251=1
?82=1
?83=1
?54=1
?85=1
?56=1
757=1
?58=1
?59=1
ALARM?
C=C!A
C=C&A
Cc=C.A
C=CORA
C=DATA
c=G
C=KEYS
c=M
C=N
C=REGN
C=ST
C=STK
CGEX
CHKKB
CLRABC
CLRST
CMEX
CNEX
*CON
CRDFLG
CRDINF
CRDOHF
CRDWPF
CSTEX
CXISA
DADD=C
DATA=C
DECPT
DISOFF
DISTOG
DSALM
DSWKUP
ENALM
ENREAD
ENROM1
ENROM2
ENWKUP

<expr>

0CCH
18CH
34CH
2CCH
30CH
20CH
O0CH
04CH
08CH
14CH
28CH
10CH
24CH
36CH
370H
3BOH
3BOH
370H
038H
098H
220H
198H
O0BOH
038H
398H
1BOH
OD8H
3CCH
1A0H
3C4H
1D8H
OFCH
C0OH
3E8H
268H
1E8H
168H
3DE8H
330H
270H
2FQH
3D4H
2EQH
320H
2A8H
228H
2E8H
CA8H
100H
18CH
268H

5DS-II

PT=B
RABCL
RABCR
RCR
RCTIME
RDALM
RDINT
RDSCR
RDSTS
RDTIME
READEN
REGN=C
RSTKB
RTN
RTNC
RTNNC
S50=
510=
Sll=
slz2=
S13=
Sl=
S2=
S3=
54=
SE=
Se=
S7=
S8=
59=
SB=F
SELP
SELPF
SELQ
SETDEC
SETHEX
SLLABC
SLLDAB
SLSARC
SLSDA
SLSDAB
SLSDB
SPOPND
SRLABC
SRLDA
SRLDAB
SRLDE
SRLDC
SRQR7?
SRSABC
SRSDA

o
1

13

0-15

ooo
R RO
PRHMHHHMHHAEHEEPH

OCOO0O0OO0O00O00
|

Q
|
[
un

3A8H
3F8H
3B8H
03CH
078H
OBBH
178H
138H
CF8H
038H
178H
028H
3C8H
3EQH
3J60OH
3AQH
384H
0C4H
184H
344H
2C4H
304H
204H
004H
044H
084H
144H
284H
104H
244H
298H
OAOH
024H
0ECH
2A0H
260H
1A8H
l68H
3JE8H
2ABH
368H
2E8H
020H
128H
028H
OE8H
068H
0ASH
2ACH
3A8H
1E8H

14-6

ENWRIT 028H SRS5DAB 328H

F=SB 258H SRSDB 228H
FEXSB 2DBH SRSDC 268H
F1G=17 0-13 02CH ST=0 0-13 Q04H
FLLABC 138H 5T=1 0-13 008H
FLLDA 038H 5T=17 0=-13 00CH
FLLDAB CFBH ST=C 358BH
FLLDB 078BH STARTC 3&BH
FLLDC 0BgH STKR=C 170H
FLSDA 2B8H STOPC 328H
FLSDAB 378H STPINT 1EBH
FLSDB 2F8H STREAD OEE8H
FLSDC 1B8H STWRIT 0GE8H
FRAV?) 12CH TCLCRD 368H
FRNS? 26CH ' TRPCRD 328BH
FRSABC JBBH TSTBUF 2E8H
FR5DA 1FB8H WDTIME O0&6BH
FRSDAB 338H WMLDL 040H
FRSDB 238H WRALM 0A8H
FRSDC 278H WRSCR 128H
G=C 058H WRSTS OE8H
GOKEYS 230H WRTEN 2F0H
GOTOC 1E0OH WRTIME 028H
HPIL=C 0=7 200H WSINT 168H
HPL=CH 0-7 024H '

The CON mnemonic compiles into the low 10 bits of the expression in
the operand field. Unlike most of these opcodes, it does not

perform a range check on the operand to require that it be in the
range O0-3FFH.

The LC3 compiles into three successive LC's, loading nibbles 2, 1,
and 0 of the expression. For example, LC3 123H compiles into
IC 1/LC 2/LC 3. Like CON, it does not perform a range check on the
operand to require that it be in the range 0-0FFFH.

14.2.1.3.2 Type 0 Opcodes == Numeric Order

MNE OPRND QPC MNE OPRND oPC

CON <expr> O000H - C=STK 1BOH
NOP 000H FLSDC 1B8H
53= 0-1 004H CMEX 1D8H
ST=0 0=13 C04H MCEX 1DBH
ST=1 0-13 008H GOTOC 1E0H
?783=1 00CH CRDOHF 1E8BH
ST=17? 0-13 O0CH SRSDA 1E8H
LC 0-15 010H STPINT 1EBH
LC3 <expr> O010H, 010H, Ol0H FRSDA 1F8H
7PT= 0=-13 014H HPII=C O0=7 200H
PT=? 0=-13 014H 82= 0-1 204H

14-7 SDS-IT 14-7

1l4-8

PT=
SPOPND
HPL=CH
SELPF
ENWRIT
REGN=C
SRLDA
WRTIME
?F3=1
FLG=1"7
C=DATA
C=REGN
FLLDA
RDTIME
RCR -
WMLDL
S4=
754=1
G=C
POWOFF
SRLDB
STWRIT
WDTIME
?F4=1
N=C
FLLDB
RCTIME
§h=
755=1
c=G
SELP
ENREAD
SRLDC
WRALM
?F5=1
C=N
FLLDC
RDATM
Slo0=
?510=1
CGEX
SELQ
SRLDAB
STREAD
WRSTS
?F10=1
ORAV?
CNEX
NCEX
FLLDAB
RDSTS

1-15

0-13

01CH
020H
024H
024H
028H
028H
028H
028H
02CH
02CH
038H
038H
038H
038H
03CH
040H
044H
04CH
058H
060H,
068H
068H
068H
06CH
070H
078H
078H
084H
08CH
098H
0AOH
0ASH
0ASH
OA8H
OACH
0BOH
0B8H
0BSH
0C4H
0CCH
0D8H
0EOH
OESH
OESH
OESH
OECH
0ECH
OFOH
OFOH
OF8H
OF8H

000H

SDS-II

782=1
C=KEYS
DSWKUP
SRSDB
?F2=1
GOKEYS
FRSDB
S9=
7589=1
F=SB
SETHEX
CRDINF
ENWKUP
SRSDC
7F9=1
FRNS?
DADD=C
FRSDC
S7=
?87=1
SB=F
SETDEC
DSALM
SLSDA
?F7=1
SRQR?
FLSDA
S13=
?513=1
FEXSB
DISOFF
ENALM
SLSDB
TSTBUF

?F13=1

DATA=C
WRTEN
FLSDB
51=
751=1
DISTOG
SREDAB
STOPC
TRPCRD
?F1=1
CXISA
FRSDAB
512=
?2512=1
ST=C
RTINC

0-1

20CH
220H
228H
228H
22CH
230H
238H
244H
24CH
258H
260H
268H
268H
268H
26CH
26CH
270H
278H
284H
28CH
298H
2A0H
2ABH
2ABH
2ACH
2ACH
2B8H
2C4H
2CCH
Z2P8H
2ECH
2E8H
2EBH
2E8H
2ECH
2FOH
2F0H
2F8H
304H
30CH
320H
328H
328H
328H
32CH
330H
338H
344H
34CH
358H
360H

ENROM1
58=
?58=1
?P=Q
P=0Q7?
SRLABC
WRSCR
7F8=1
FRAV?
LDI
FLILABC
RDSCR
S6=
?56=1
M=C
?LLD
LLD?
CRDWPF
SLLDAB
WSINT
?F6=1
IFCR?
STK=C
RDINT
READEN
ENROM2
S511=
?811=1
C=M
CLRABC
SLLABC
?Fll=1

14.2.1.3.3

100K
104H
10CH
120H
120H
128H
128H
12CH
12CH
130H
138H
138H
144H
14CH
158H
160H
160H
168H
168H
168H
16CH
16CH
170H
178H
178H
180H
184H
18CH
198H
1A0H
1A8H
1ACH

Arithmetics

SLSDAB
STARTC
TCLCRD
?Fl2=1
ALARM?
C=ClA
C=CORA
FLSDAB
50=
780=1
C=ST
RTNNC
PT=B
SRSABC
?F0=1
C=C&A
C=C.A
FRSABC
RABCR
CLRST
RSTKB
CHKKEB
DECPT
CSTEX
INCPT
RTN
CRDFLG
PT=3A
SLSABC
PFAD=C
RABCL

All of these mnemonics require a time-enable

cne of the following:

MNE

7A$#0
?A$C
TA<B
?A<C
?B#0
?2CH#0
A#07?
A#C?
A<B?
A<C?
A=0

l4-9

PT, X, WPT, W, PQ,

OFC

342H
362H
322H
302H
2C2H
2E2H
342H
362H
322H
302H
C02H

SDS-IT

XS, M

MNE

B#07?
B=0

field,
’ Sl

368H
3&68H
3€8H
36CH
36CH
370H
370H
378H
384H
38CH
398H
3A0QH
3ABH
3ABH
3ACH
JBOH
3BOH
3B8H
3B8H
3C4H
3C8H
3CCH
3D4H
3DBH
3DCH
3EOH
IE8H
JE8H
3E8H
2FOH
3F8H

consisting of

OPC
2C2H
022H
082H
OE2H,
062H
OE2H
3A2H
2E2H
282H

2A2H
042H

CC2H

14-9

A=A+1

162H

C= TE OA2H, 10zH

A=A+B TE 122H C=A+C TE 202H
A=A+C TE 142H C=A-C TE 242H
A=A-]1 TE 1A2H =B TE 0C2H
A=A-B TE 182H C=C+1 TE 222H
A=A~C TE 1C2H C=C+A TE 202H
A=B TE 062H, 082H C=C+C TE 1E2H
A=C TE 102H Cc=C-1 TE 262H
ABEX TE 062H CAEX TE 0A2H
ACEX TE OAZH CBEX TE OE2H
ASL TE 3E2H CSR TE 3C2H
ASR TE 382H

14.2.1.3.4 Pseudo-0ps

The following pseudo-ops are used in ASSEMB41:
BSS <number> LEGAL
EJECT LIST
END ORG <number:>
EQU <expr> SKIP <number:>
FILLTO <number> SPACE <number>
GLB <label> TITLE "<text>"
LCDCHAR "<text>" UNLIST

An explanation of thelr functions:

BSS

EJECT
END
EQU

FILLTO

GLB

LCDCHAR

14-10

Fill specified number of words with zeroes and skip them.
Operand field specifies number of words.

Formfeed the listing.
End of source; do not read rest of the file.

Equate a label with a value. For example, "“ABC EQU 5"
will equate the label ABC to the absolute value 5.

Fill the object file with zeroes up to the address
specified in the operand field. This pseudo-op fills to
the specified address relative to the start of the Ffile.
For example, if ORG 1000H was specified, then FILLTO OFOOH

will actually fill from the current address to address
1FOOH.

Declares the label specified in the operand field to be
global, which allows it to be found by the linker during
the LINK41 phase. Its use is illustrated in the examples.

The expression in quotes is encoded in the 1I1CD character

format, This pseudo-op only accepts characters that are
legal in labels. A '{' is used to designate that the

SDS~-IT 14-10

LEGAL

LIST

ORG

SKIP

SPACE

TITLE

UNLIST

14.2.1.3.5

character following it should be encoded with bit 7 set.
The special characters sigma, not-equal, and angle use the
alternate representation explained in the appendix on
special characters. The wuse of this pseudo-op is
illustrated in the examples.

Normally, the assembler complains if certain potentially
erroneous combinations of opcodes exist. For example, a
IDI followed by anything other than a CON causes an error.
A test of any sort followed by anything other than a
conditional branch/return causes an error. A GOTO,
GOLONG, or GOSUB preceded by a command that might set
carry causes an error. By placing the LEGAL pseudc-op
before the offending code, these errors are suppressed.

If the -1 option was specified, this pseudoc-op turns off
the UNLIST mode. Default behavior is to list until an
UNLIST is encountered.

Specifies that the relocatable file is to start at

an
absolute address, This forces the linker to place the
module at that address, and all labels within the module
to be considered absolute expressions. Operand field

specifies the address. Files assembled with the ORG
directive cannot be used as microcode library files.

Same as EJECT.

Skip the specified number of spaces in the output listing.
Number of spaces specified in the operand field.

Specify a title to appear on each page of the listing.
Title is also stored in the object file, and displayed by
LINK41l and ASMBINFO when this file is referenced. The
title string must appear between quotes.

Turn off listing (if -1 option is specified) until a LIST
directive is encountered.

FAT Entries

The following pseudo-ops create two-word entries for +the Function
Address Table (FAT):

MNE OPRND oPC - MNE OPRND oPC
DEFP4K <expr> 000H, 100H U4KDEF <expr> 200H, 00CH
DEFR4K <expr> 000H, O000H USKDEF <expr> 200H, 000H

DEFRBK <expr> O000H, 00Q0H

Their functions are as follows:

14-11

5DS-1T 14-11

DEFR4K

DEFREK

U4KDEF

USBKDEF

DEFP4K

Creates a FAT entry for a microcode function somewhere

within the current 4X block. <expr> 1is the execution
address of the function. Immediately preceding the target
address is the function name, in LCD character

representation, backwards, terminating with bit 7 set on the
last character.

Like DEFR4K, but capable of pointing to a function in the
adjacent 4K block as well. Can be used to create a FAT
entry in the lower half of the port address space pointing
to a function in the upper half, and vice versa.

Creates a FAT entry for a usercode function somewhere within

the current 4K block. <expr> is the address of the GLOBAL
token in a LBL statement.

Like U4KDEF, but capable of peinting to a function in the
adjacent 4K block as well. Can be used to create a FAT
entry in the lower half of the port address space peinting
to a functien in the upper half, and vice versa.

The purpose of this mnemonic is lost to the modern memory.

l14.2.1.3.6 Branches

These opcodes provide branching of various sorts:

MNE OPRND QPC MNE OPRND oPC
GOC <expr> 0Q07H GOSUB <expr> 001H, 00CH
GOL41C <expr> O00lH, 000H, 000H GOTO <exXpr> 003H
GOLC <expr> 001lH, 0Q03H GSB41C <expr> 001lH, O0OO0OH,
GOLNC <eXpr> 001H, 002H GSBSAM <expr> O001H, O0O0O0H,
GOLONG <expr> 001H, 002K GSUBC <expr> O001H, O0OlH
GOLSAM <expr> O00lH, 000H, O0O0H GSUBNC <expr> 001H, 0QOQOH
GONC <exXpr> 003H

Explanation:

GocC Local goto target address if carry is set.

GONC Local goto target address if carry is clear.

GOTO Same as GONC, but the assembler complains if it follows

anything that might set the carry.

GOLC Long goto target address if carry is set.

GOLNC Long goto target address if carry is clear,

14-12

SDS-II l4-12

000H
C0QH

GOLONG Same as GOLNC, but the assembler complains if

anything that might set the carry.

GSUBC Long gosub target address if carry is set.

GSUBNC Long gosub target address if carry is clear.

GOSUB Same as GSUBNC, but the assembler complains if it
anything 'that might set the carry.

GSB41C Compiles into GOSUB GOSUBO/GOSUB1/GOSUB2/GOSUB3/GOSUB
(whichever

is appropriate) followed by CON <addr>.

HP-41 mainframe routines to achieve
current 4X block.

GSBSAM Compiles ' into

Assenmbler

current 1X¥X block.

GOL41C Like GSB41C, but for GOSUB GOLO/GOL1/GOL2/GOL3/GOL.,

GOSUB GOSUB
complains

followed

it

follows

follows

Uses

local gosub within

if target address

GOLSAM Like GSBSAM, but for GOSUB GOL.

14.2.1.3.7 Peripheral Commands

These commands are for smart peripherals.

MNE OPRND
?PFSET 0-15
C=HPIL 0-7
CH= 0-255
PFSET? 0-15

14.2.1.4 EXAMPLES

oPC MNE

003H PRINTC
024H, 03AH, 003H RDPTRN
001lH RDPTRR
003H RTNCPU

14.2.1.4.1 &an Assembly-Language Keyword

The following example, the code for +the
some of the assembler's featpres:

TITLE
GLB
LCDCHAR

xgAIP C=REGN
GOSURB
c40?
GONC
c=0

ATIP1O ST=1
GOSUB

14-13

"ATP function®

XgAIP

" ! PIA "

3
=CHK_NO
XS

ATIP10O

W

5
=TINTFRC

: ATP

r
-
r
8
.
!’
.
’

-
’

Read X

AIP Xkeyword,

by

CON <addr>.
not within

QPC

007H
03AH
03BH
005H

illustrates

¢ Check for alpha data
Exponent negative?

No.

C=integer part, A.X=exponent

SDS=-IX

14=13

PT= 13

ATIP20 B= X ; Save exponent in B
LC 3
G=C ; G=ASCII'ized digit
PT=? 2 ; Down at exponent?
GONC ATIP30 ; No.
INCPT ; Yes, Stay here.
AIP30 M=C ; Hold mantissa
SELQ
GOSUB =APNDNW ; Append to alpha register
SELP '
C=M ; Retrieve mantissa
ABEX X
A=a~-]1 X ; Done?
GONC AIP20
RTN

14.2.1.4.2 A Function Address Table

The following code, which would occur at the beginning of the ROM
image, illustrates a ROM with ID=21, a header, and a single function
(AIP, above).

CON 21

CON 2
DEFR4K HDR
DEFR4K =xqAIP

ROM ID=21

2 entries in FAT
Point to my header
Point to my function

Ty W ™ 8

CON v}

CON 0 ; End of table
*

LCDCHAR "!MOR ¥YM--" ; W—=MY ROMM
HDR RTN

14.2.2 LINEK41

The LINK41l utility is used to collect .one or more assembler output
files into a ROM image file. Even if an assembler output file has
no external references, it must be run through LINK41 to put it into
the proper form. LINK41l expects all of its assembler input files to
have the filename extension ".410", and it creates ROM image files
with the filename extension ".41R".

LINK41 is command-driven, either from a command file or from the
keyboard. The output is formatted for printing (page headers,
formfeeds, and such), and should be re-directed to a printer using
the '>' command line feature of MS-DOS.

Invocation:

LINK41l [<command file>]

1l4-14 SDs-1I 14-14

If a command_file is specified, that file is opened and LINK4]

commands are read from it. If not, commands are accepted from the
console (prompting is provided).

LINK41l creates from 1 to 4 ROM image files. All commands can be
abbreviated to their first two characters. The commands are:

NEwrom [<pagenumber:>]
OUtput <ROMfilename>
LOcate <address>
CHecksum [<address>)
SEarch <assemblyfilename>
REloc¢ <assemblyfilename>
LIst XRef -

SUppress XRef

COmment

ENd

r

and have the following meanings:

NEWROM Analogous to the "&ROM#" directive in BUILD. Used to
begin a new 4K ROM image. The optional <pagenumber> can
be from 0 to 15, and determines the starting address of
the ROM code. This information is not encoded in the
output file in any way, but can be important for LINK4l's
resolving of references. With a few exceptions (noted

below), most of the other commands cannot occur before the
first NEWROM command.

OUTPUT Designates the output file (extension ",41R" will
automatically be appended) to contain the current ROM
image (that designated by the most recent NEWROM command) .

If not specified, a ROM image file for this 4K bleeck is
not created.

LOCATE The address, specified in hex (without a trailing 'H'),
determines where the next RElocated file will go. It is
analogous to the FILLTC command in the assembler.

CHECKSUM This command instructs LINK41 to compute a checksum word
for the current 4K ROM image. If the optional address is
specified, the checksum word will be placed at that
address, If not, the checksum word will be placed into
its customary position in the last word of the 4X block.

SEARCH This command can occur before the first NEWROM command .
Its action is independent of where it occurs in the
command file. The command causes the specified filename
to be searched for 1labels to be resolved. The file
MFENTRY. 410, included on disk #2, contains the HP-41

14-15 SDS-IT 14-15

mainframe entry points.

RELOC This command causes the named ".410" file to be read into
the current ROM image (that designated by the most recent
NEWROM command) . Normally, files are RElocated

successively in address space, without any dead space
between then. This can be overriden either by the LOCATE

command (above) or use of the ORG directive in the
assembler file.

LIST XREF If this command occurs before the first NEWROM command, it
causes listing of a cross-reference table to occur for all
ROM image files. Otherwise it causes listing of a cross-
reference table to occur for the current ROM (that defined
by the most recent NEWROM command).

SUPPRESS XREF If this command occurs before the first NEWROM

command, it suppresses listing of a cross-reference table
for all ROM image files (this is the default condition).

Otherwise it suppresses listing of a cross-reference table
for the current ROM.

COMMENT Causes this line of the command file to be treated as a
comment. That is, ignored.

END Indicates the end of the command file; anything left in
the file is not read.

? Displays the command list.

The format of the ",.41R" file is straightforward: each word of HP-41

ROM is represented by tweo bytes. The first byte contains the upper
two bits, the second contains the lower eight.

14.2.3 ASMBINFO

The ASMBINFO utility is used to dump information about assembly
files and SDS-II microcede files. The invocation is:

ASMBINFQ <filename>

Unlike most of the other SDS-II utilities, ASMBINFO requires that
the full filename and extension be specified. This is because
ASMBINFO works on both ".,410" files and ".41T" files containing
microcode. It will not work on ".41T" files containing usercode.

The information dumped by ASMBINFO consists of global labels,

external references, fixups, and other miscellanea of interest to
LINK41 and BUILD., '

14-156 SDS-TII 14-1s6

14.2.4 DISASM4l

The DISASM41l utility will disassemble an entire file, interpreting
it as consisting of HP-41 assembly-language. The invocation is:

DISASM41 <filename> [<filename> [<filename>])

Like ASMBINFO, DISASM4l requires the full filename:; no extension

is
assumed. This wutility is most useful for disassembling ROM image
files, which only contain HP-41 code. The overhead c¢ontained in
other types of files (such as ".410" and ".41T") not only

disassembles into meaningless garbage, but may put the disassembler
one byte out of sync when it reaches the actual code.

The output consists of an address, followed by the opcode's

representation in hex, octal, decimal, ASCII, LCD characters, and
finally, HP-41 mnemonic. Some other points:

® When the target address of a 1long branch 1is a recognized

mainframe entry point, DISASM41 provides the name of that entry
peint.

2 When a word disassembles into a two-word command, the second
word is shown, disassembled, in parentheses.

® DISASM41l does not properly interpret the smart peripheral
commands.

® DISASM4l errors out if the file has an odd length.
14.2.5 EPROM

The EPROM utility is used by BURN41l, hence its inclusion on disk #1.

This wutility produces EXORMACS format listings of ROM image files.
The invocation is:

EPROM [-lhc] [-o <outputfile>] <filename> [<filename>...]
Options:
-1 Output low 8 bits of eaéh word.,
=h Output high 2 bits of each word, packed four per byte.
-c output CMT format: low 8 followed by high 2 (unpacked).
-0 Send output to specified file. If this option is not used,

output is to standard out. By sending output to an

asynchronous port, you can download the ROM image to an EPROM
programmer through its RS=232 interface.

14-17 SDs-I1 14-17

Following the options is a list of files. This list supports wild-
carding. The extension ".41T" is automatically appended to the
filenames, so, for example, specifying '*' would specify all ".41R"
files in the current directory.

The EXORMACS format output by the program is compatible with many of

the EPROM programmers on the market. The data records are of the
following format:

Slxxyyyydddddddd....ddcc
where:
XX is the byte count (3 + number of data-bytes).
¥YYYy is the start address.
dd are the data bytes.

ce is a checksum of all bytes (including xx and yyyy). The bytes
on the line should sum to FFH (without wrap-around carry). ‘

All of the above characters represented by %X, vy, and d are ASCII
representations of a hex nibble: 0-F.

The end record consists of:
S9030000QFC

The exact usage of this utility depends on the configuration of your
EPROM box.

*** CONTINUE HERE *** with instruction specific to the HHP-772?7?.
14.2.6 EXTRACT

The EXTRACT utility extracts usercode from a ROM image file in a
format compatible with ASSEMB41. This allows you to use READ41P and
BUILD to create a ROM-format image of the usercode program (with
GOTO's and XROM's compiled, 1links resolved, etec.), and then

incorporate that program into a ROM being developed with ASSEMB41
and LINK41.

The invocation is:
EXTRACT [-<blocknumber>] <funcnumber> <ROMfile> [<ROMfile>]

The optional parameters will never be necessary for a ROM image

produced by BUILD, but they add flexibility to the program. First,
the mandatory parameters:

l:-18 SDS=II l4-18

FUNCNUMBER Is the function number to be extracted from the file.
If the global label referenced by the function number

is not at the beginning of the program, EXTRACT will
nevertheless extract the entire program.

ROMfile The ROM image file from which the program is to be
extracted.

Using the mandatory parameters, EXTRACT will extract a Program from
the 4K ROM image specified by ROMfile. The optional parameters
allow specifying two files, for a total 8K image. This is useful

for extracting a program which exists in one 4K block but whose FAT
entry is in the other 4K block.

The optional <blocknumber> indicates in which 4K block the FAT entry

lies. If zero (default), the FAT of the first 4K block is used, if
one, the FAT of the second block is used.

EXTRACT sends its output to standard out, which can be redirected to
a file with the '>' command line feature of MS-DOS. The output
consists of CON statements defining the actual words, with comments
(to the right) identifying the usercode being compiled.

A global assembler label is placed at each GLOBAL in the program.
EXTRACT is not completely intelligent about this: the label is

simply the text of the usercode label, and might not be a legal
assembler label.

14.2.7 MUCODE

The MUCODE utility allows you to create MICROCODE files for
inclusion into a ROM image file being created by BUILD. The
difference between an assembly file (.410) and a MICROCODE file
(.41T) 1is, largely, the addition of information at the front of the

MICROCODE file identifying keywords and interrupt handlers contained
therein.

The invocation is:

MUCODE <assemblyfilename> [<micrococdefilename>]

The <assemblyfilename> will automatically have the extension ".410"
appended. The MICROCODE file will have the same name as the
assembly file (if <microcodefilename>» is not specified) or

<microcodefilename>; in either case, the extension will be ".41T".

In order to create a useful MICROCODE file, it is necessary to
identify where the labels occur, and where the entry points are for

the interrupt handlers. This is done through the use of special
global labels:

14-19 SDS-IX 14-19

XQewens Any global label beginning with "xg" (lowercase only) is
recognized by MUCODE as the beginning of a function. The
examples subsection of the ASSEMB41 section shews a
function, AIP, for which this is done. {MUCCDE will
examine the code to verify that the microcode label is
valid, printing an error message if it is net.)

epPSLOOP If the global label epPSLOCP occurs in the assembly file,
it is recognized as the entry point of the interrupt

handler for the pause loop interrupt. Please see below
for important considerations about writing interrupt
handlers.

epMRLOOP Like epPSLOOP, but for the main running loop interrupt.
epDSWNK Like epPSLOQOP, but for deep-sleep wakeup no-key interrupt.
epPWROFF Like epPSLOOP, but for the power-off interrupt.

epIOSRV Like epPSLOQP, but for the I/0 service interrupt.

epDSWKUP Like epPSLOOP, but for the deep-sleep wakeup interrupt.
epCOLDST Like epPSLOOP, but for the coldstart interrupt.

When processing a file, MUCODE creates a list of function labels andg
addresses in the format needed by BUILD. It is not necessary (or
even possible) to LINK41l the assembly file before using MUCODE;
BUILD will resolve all glocbal references between MICROCODE modules,
In addition, BUILD contains a list of the mainframe entry points

contained in MFENTRY.41lA, and will resolve all references to those
entry points.

The "encountered order" of labels within the file (as far as BUILD
is concerned) is alphabetical order of the microcode labels. For
example, if function "ABC" occurs at microcode label XgRST, and
function "XYZ" occurs at microcode label XgBCD, then "XYZ" appears
before "ABC" in the "encountered" order of functions in the file.

Writing interrupt handlers for BUILD is very different from writing
conventional interrupt handlers. BUILD is designed to accept an
arbitrary number of interrupt handlers; it works by building a table
of all interrupt handlers found in the various MICROCODE files, and,
through the MCODE driver, calling them all at appropriate times.

This raises two very important considerations for writing interrupt
handlers:

@ The handler must terminate with GOTOC (returning control to
MCODE) instead of the conventional GOLONG =RMCK10.

la~20 SDS-II 14-20

® The handler must preserve the C-register, and meet the
following return conditions: HEX mode, P selected, status set 0

up, chip 0 selected.

14.3 1LG9 Configuration

The 1LG9 12K ROM chip consists of three 4K cores, with a variety of

configuration options. For most ROMs being built, the standard
configurations shown in the basic bank-switching section of the
bank-switching chapter are adequate. However, it is possible to

request alternate configurations. For each 4K core, the following
options are available:

R Emabled/pisabiea T 1
| Hara—contigured | | port-contigired |
I hadress | Tower maif | Uoper malz |
T Bank oyBank Lymank 2 i

An explanation of the options:

@ If a core is disabled, it does not exist for the HP-41. This
is how the 1LG9 is used for 4K and 8K ROMs.

® If the core is hard-configured, a configuration address must be
selected (it must be on a 4K boundary).

@ If the core is port-configured, it must be configured for the
lower or upper half of the port's address space.

® A core (whether hard- or soft-configured) can be placed in:

bank 0 Always present.

bank 1 Present at power-up; enabled with ENROM1l; disabled
with ENROM2.

bank 2 Not present at power-up; enabled with ENROM2 ;
disabled with ENROM1.

Note that, as mentioned eariier, the ENROMx instruction only
affects the 1LG9 out of which it is read. It can, however, be

read out of any core of the target 11LG9 to affect all of the
cores,

14-21 SDS-IX 14-21

A. HP-41 Keycodes

This chart shows the keycodes for the primary (unshifted) keys. The
keycode for a shifted key is obtained by prefixing the unshifted

keycode with a minus. For example, the keycode for <the shifted
ENTER* key is =41,

——————————————————————————
——————————————————————————
——————————————————————————
——————————————————————————
——————————————————————————

| 41 | 42 | 43 | 44 |
1’51 |52 |53] s4]
|61 | 62 | 63 | ea |
V71 72 173) 74]
| 81 | 82 | 83 | 84 |

A-1 5DS-II A-1

B. Special Characters
Following are most of the HP-41 display characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ=? abcdef<>"~$=+*%/0123455789

There are a few special characters, however, that are not defined as
part of the ASCII character set, and cannot be displayed or entered
on the MS~DOS computer hosting SDS-II. For purposes of data entry

and display, the following substitutes are used for thesea
characters:

APPEND CHARACTER :: 'x' (normally represented by ASCII 127)

MU :: 'm' (normally represented by ASCII 12)
NOT EQUAL it 'n' (normally represented by ASCII 29)
SIGMA HIH

's' (normally represented by ASCIT 126)
ANGLE i1 'g' {(normally represented by ASCII 13)
OVERBAR i1 'o' (normally represented by ASCIT 0)

Only three of these characters, NOT EQUAL, SIGMA, and ANGLE are

legal characters in a global 1label; the others can, however, be
specified in a header.

In addition, whenever the space character is to be used, either in a

program invocation or in a DEFINE file, it is replaced with ".," as a
placeholder.

EXAMFLE: To read in a program named "A<NOT EQUAL>B" from the HP-41
disk, use:

READ41P M:AnRB ANEQB
The program will be read into READ41P file ANEQB.41T.
Note that this does not change the program itself -- the
labels will be the same. It merely provides a handle for
referencing the programs from the host MS-DOS machine.
EXAMPLE To read in a program named "A B" from the HP-41 disk, use:
READ41P C:A.B AR

The program will be read into READ41P file AB.41T.

B-1 SDS-II B-1

C. 8DS-II ROM Image Submission Form

Include this form with the Custom ROM submission paperwork.

Size of ROM: 4K BK 12K

Name of BUILD file(s): .41R [ROM #1)

.41R [ROM #2] (8K & 12K only)

.41R [ROM #3] (12K only)

Configuration: Standard Custom:

FOLLCWING SECTION FOR CUSTOM CONFIGURATION ONLY

ROM #1

Bank 0 / Bank 1 / Bank 2

Hard-Cocnfigured: Configuration Address (in octal):

Port-Configured: Lower Half / Upper Half
ROM #2
Bank 0 / Bank 1 / Bank 2

Hard-Configured: Configuration Address (in octal):

Port-Configured: Lower Half / Upper Half
ROM #3
Bank 0 / Bank 1 /. Bank 2

Hard-Configured: Configuration Address (in octal):

Port-Configured: Lower Half / Upper Half

c-1 SD5-1II c-1

D. Handing STACK OVERFLOW Errors

Although unlikely, a STACK OVERFLOW error can occur with the SDS-II
utilities. In this case, the problem can usually be corrected by
adding "=<stacksize>" to the command line, where <stacksize> is the

size of stack the program should use. The default stack size is
2048 bytes.

Several of the SDS-II utilities use unbalanced binary trees as data
structures. The recursion used in traversing such a tree can be
responsible for a stack overflow if the tree is filled in a worst-
case oOr near worst-case order. This might occur in ASSEMB41 if the
file being assembled contains hundreds of labels, and they occur in
alphabetical or reverse alphabetical order. Other than ASSEMB41,

the default stack space in SDS-II utilities is believed to be
sufficient for worst-case behavior.

D-1 SDS-IT D-1

E. Program Invocation Summary

Where a specific filename extension is specified, that extension
assumed by the utility. Where "ext" is indicated, extension must be

specified in the command line.

ASMBINFO <file.ext>

ASSEMB41l [-1s8] [-o <object.410>] <source.41A>

BUILD <DEFINE file name> <output file.41R>
(<output_file> name appended by BUILD with 0, 1, or 2)

BURN41 22272

CHECKSUM <file.41R> [«<file.41R>...]
(wild-carding supported in file name)

DISASM41 <file.ext> [<file.ext> [<file.ext>]]
(wild-carding supported in file name; max 12K words)

EPROM <file.41R> (<file.41R>...]
(wild-carding supported in file name)

EXTRACT [-<blocknumber>] <funchumber> <file.41R> [<file.41lR>]

LIFPACK <disk designator>
(disk_designator must include ':!')

LINK41l [<command filex>]

LISTFAT <file.41R> [<file.41R>]
(wild-carding supported in file name; max 8K words)

MUCODE <file.410> [<file.41T>]

READ41P <disk>:<41 prog name> <file.41T»>
READMIDL <disk>:<filename> <file.41R>
SDSCAT <disk designator>

WRITMLDL <file.41R> <disk>:<filename>

SDS-IT

i=

F. ROM ID Allocation

In order to prevent unpredictable results, it is important that all
of the ROMs plugged inte the machine at a given time have a
different ROM ID. Since every one of the available 31 ROM ID's has

been used (some many times), it is difficult to recommend a good
choice.

Following is a list of ROM ID's used in ROMs from HP:

| ROM ID| Assignment |
l 1]| Math I|
1 2 % Statistics 1
{ 3 H Surveying }
{ 4 % Finance %
i 5__} Standard 1
1 6 m Circult Analysis %
I 7—_h Structures {
I 8 5 Stress Analysis }
l 9 ‘ Home Management 1
! 10 % Games - i
} 11 H Real Estate }
I 12 % Machine Design %
{ 13 % Thermal and Transport Sciences%
} 14 i Navigation 1
| 15 % Petroleum 1

16 = Petroleum }
| 17 1 Plotter %
| 18 } Plotter 5
i 1g H Securities %
| E Structures ;

SDS-IT F-1

Asslgnment

Clinical Lab

|
E Aviation
75|
21 5 Reserved for custom modules
22 i HP-1IL Development
| ADVANTAGE
23 1 Extended I/0
24 5 HP-IL Development
| ADVANTAGE
25 } Extended Functions
26 Time
27 5 Wand
28 Mass Storage
29 Printer
30 } Card Reader
31 Reserved for custom modules

SDS-TI

— e ——— o —— — e . —

— e — e — ——

G.

Ccontents of Disks

The two disks shipped with SDS-II contain the following files:

G.1

G.2

bisk 1

BUILD.EXE
BURN41l.EXE
CHECKSUM. EXE
EPROM.EXE
LIFPACK.EXE
LISTFAT.EXE
READ41P.EXE
SDSCAT.EXE
ATP.41T7
ALEN. 41T
ALENG. 41T

Disk 2
ASMBINFO.EXE

ASSEMB41.EXE
DISASM41.EXE

ALNAMZ2,41T
ANUM, 41T
AROT. 41T
ATOX. 41T
AUTOST.41T
BIND. 41T
CLKEYS.41lT
ENROM1.41T7
ENROMZ2.41T
GETKEY. 41T

EXTRACT.EXE
LINK41l.EXE
MUCODE.EXE

Sps-II

PASN.41T7T
PCLPS.41T
POSA.41T
PSIZE.41T
RCLSTFLG.41T
REGMVSWP. 41T
SIZE.41T

XB.41T

XF.41T
XTOA.41T

READMIDL.EXE
WRITMLDL.EXE
MFENTRY.41lA

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	sdsii_Page_01
	sdsii_Page_02
	sdsii_Page_03
	sdsii_Page_04
	sdsii_Page_05
	sdsii_Page_06
	sdsii_Page_07
	sdsii_Page_08
	sdsii_Page_09
	sdsii_Page_10
	sdsii_Page_11
	sdsii_Page_12
	sdsii_Page_13
	sdsii_Page_14
	sdsii_Page_15
	sdsii_Page_16
	sdsii_Page_17
	sdsii_Page_18
	sdsii_Page_19
	sdsii_Page_20
	sdsii_Page_21
	sdsii_Page_22
	sdsii_Page_23
	sdsii_Page_24
	sdsii_Page_25
	sdsii_Page_26
	sdsii_Page_27
	sdsii_Page_28
	sdsii_Page_29
	sdsii_Page_30
	sdsii_Page_31
	sdsii_Page_32
	sdsii_Page_33
	sdsii_Page_34
	sdsii_Page_35
	sdsii_Page_36
	sdsii_Page_37
	sdsii_Page_38
	sdsii_Page_39
	sdsii_Page_40
	sdsii_Page_41
	sdsii_Page_42
	sdsii_Page_43
	sdsii_Page_44
	sdsii_Page_45
	sdsii_Page_46
	sdsii_Page_47
	sdsii_Page_48
	sdsii_Page_49
	sdsii_Page_50
	sdsii_Page_51
	sdsii_Page_52
	sdsii_Page_53
	sdsii_Page_54
	sdsii_Page_55
	sdsii_Page_56
	sdsii_Page_57
	sdsii_Page_58
	sdsii_Page_59
	sdsii_Page_60
	sdsii_Page_61
	sdsii_Page_62
	sdsii_Page_63
	sdsii_Page_64
	sdsii_Page_65
	sdsii_Page_66
	sdsii_Page_67
	sdsii_Page_68
	sdsii_Page_69
	sdsii_Page_70
	sdsii_Page_71
	sdsii_Page_72
	sdsii_Page_73
	sdsii_Page_74
	sdsii_Page_75
	sdsii_Page_76
	sdsii_Page_77

