
5313
:3C

I HEWLETT-PACKARD 9830A CALCULATOR
9880A/B MASS MEMORY

OPERATING MANUAL

OPERATING MANUAL

HEWLETT-PACKARD 9880A / B MASS MEMORY

9880A/8 MASS MEMORY

HEWLETT - PACKARD CALCULATOR PRODUCTS DIVISION
P.O . Box 301, loveland, Colorado 80537, TeL (303) 667·5000

(For World -Wide Sales and Service OfhCe5 see rear of manual.)

COPYright bV Hewlett- Packard Company 1973

PREFACE

• • • • • • • • • • • • • • • •

The desire for speed and accuracy in calculations prompted scientists and
engineers to develop high -speed, sophist icated programmable calculators, like
the -hp- Model 9830A. The prob lem of limited storage space, however , has
always been frustrating. A calculator with the capability of manipulating large
amounts of information, accurate ly and quickly , w hen there is no equally fast
and accurate method of permanently storing th is information, is analogous to a
powerful navy in a land -locked country.

Your mass memory system represents a revolutionary solution to this prob lem
in the programmable calculator industry. Use of the mass memory system helps
fulfill the Mode l 30's potential, providing you with the kind of storage
unavailabl e in any se lf-contained calcu lator today.

A vast amount of informat ion can be stored and accessed on each p latter used
with the mass memory system. In fact, the informatio n contained on one
platter would require a tape cassette over 1 % mi les long or a stack of data
processing cards over 17 feet high! More than three hundred thousand 12-digit
items can fit onto one platter. Combine this storage capac ity with access time
on the order of milliseconds, and you can begin to apprec iate the power at
your fingertips with the mass memory system.

This book is organized so that it can be used in either of two ways:

• A logica l arrangement of top ics lets you read it straight through, if
desired.

• Major topics are self-contained, wherever possib le, so it is not necessary
to read an entire chapter to extract one idea.

Your mass memory system can be used easily for storing many entire programs_
The system is most powerful, however, when used to store and access large
quantiti es of data. Over half of this manual describes data accessing procedures_
An understand ing of the st ructure of mass memory f il es is indispensable for
eff icien t use of t he files you create: For this reason, Appendix A shou ld be
read over briefly to acquaint you with data file structure before you read
Chapter 3, wh ich describes particular methods of storing and retrieving data.

TABLE OF CONTENTS

• • • • • • • • • • • • • • • •

PREFACE

•••• •• CHAPTERS ••••••

CHAPTER 1: GENERAL INFORMATION

INTRODUCTORY DESCRIPTION
9830A Calculator
11273B I nterface Kit
11305A Controller
12869A Cartridge
9867 AlB Mass Memory Drive

EQUIPMENT SUPPLIED
ADDI TI ONAL EQUI PM EN T
MULTIPL E DRIVE/ CALCULATOR SYSTEMS
INSTALLATION AND TURN-ON PROCEDURES

Installin g the Plug-In ROM Block
T urn-On
Turn-Off

Un it Select and Data Protect Switches
Initializing New Platters
Loading and Verify ing Bootstraps
System Test Instruct ions

MAINTENANCE REQUIREMENTS

CHAPT ER 2: PROGRAM FILE OPE RAT IONS

PROGRAM COMMANDS
SAVE Command
CATA LOG Command
GET Co mmand
CHAI N Command
PROTECT Command
KILL Command
SAVE KEY Command
GET KEY Command

. I

1 -1
1-2
1-2
1-2
1-2
13
1-4

1-6
1-6
1-6
1-7
1-7
1-9
1-9

1-10
1-12
1-13
1-17

2-3
2-3
2-5
26
2-9

2-11

2-12
2-13
2-13

iii

iv

• • • • • • CHAPTERS

CHAPTER 3 : DATA FILE OPERATIONS

FUNDAMENTAL DATA COMMANDS
OPEN Command
CATALOG Command
PROT ECT Command
KI LL Command
FI LES Statement
ASSIGN Statement

SERIAL FILE ACCESS
Serial PRINT# Statement
Serial READ# Statement
Repositioning the Pointer
I F EN D# Statement
T Y P Function

RANDOM FILE ACCESS
Random PR I NT# Statement
Random READ# Statement
IF END# Statement
TYP Function

CHAPTER 4: SUPPLEMENTARY COMMANDS

MATRIX OPERATIONS
MAT PRIN T# Statement
MAT READ# Statement

MULTIPLE PLATTERS
UNIT Command
P LA TT E R.JllJ.E-L.1CAIE-grocedw:e

MISCELLANEOUS COMMANDS
DCOPY Command
OF DUMP Command
OF LOAD Command
OREN Command
DGET Command
DBYTE Command
DEXP Command

CHAPTER 5: APPLICATIONS

EXAMPLE # 1 - DATA BASE PROGRA M
EXAMPLE # 2 - RAINFALL PROGRAM

• • • • • •

3-3
3-3
3-4
3-4

3-5

3-6
3-7

3-9

3-9

3-12
3-13

. 3-16
3-17

3-21
. 3-21
3-23
3-24
3-26

4-1
4-1
4-2
4-4
4-5
4-6
4-7
4-7
4-8

4-10
4-11
4-11
4-12

. 4-12

5-1

5-6

• • • • • • APPENDICES • • • • • •

APP ENDIX A : MASS M EM ORY STRUCT UR E
DATA FILE STRUCTURE

Serial File Access
Random File Access
Serial vs . Random Fi le Access
End of Record (EOR) Markers
End of File (EO F) Markers
EOR and EOF Conditions

PLATT ER STRUCTURE

APPEND IX B: STORAGE REQUIREME NTS

PROGRAM SIZE
DATA ST ORAGE

APPENDIX C: INCREASING AVAILABL E MEMORY

DAVTP COMMAND
REPACK PROCEDURE

APPENDIX D : ACCESS T IME AND BOOTSTRAPS

APPENDIX E: SUMMA RY OF MASS MEMORY SYNTAXES

INDEX

ERROR M ESSAGES

A ·l
A·2
A -3
A -3
A -3
A -8

A -l0
A-l l

B-1
B-1

C-l
C-2

D-l

E-l

see back of manual

inside back cover

• • • • • • • TABLES • • • • • • •

Table 1-1. Equipment Supplied
Table A -l. Serial vs. Random File Access
Table AI EOR and EOF Markers
Table A·3 . EOR and EOF Conditions
Table B·l. Data Storage Space

1-4

A·3
A · l0
A-l0

B·l

v

vi

• • • • • • • FIGURES • • • • • • •
Figure 1-1. Possible Configurations 1-1

Figure 1-2. 9867A Mass Memory Drive 1-5

Figure 1-3. 9867B Mass Memory Drive with 13215A Power Supply 1-5
Figure 1-4. 11305A Controller 1-5
Figure 1-5. 11273B I nterface Kit 1-5
Figure 1-6 . 12869A Cartridge 1-5

Figure 1-7. 11304A Cart 1-5
Figure 4-1. A Five- Record File 4-9
Figure A -1. A Physical Record A-1

Figure A -2. A Logical Record A-2

Figure A-3. A Logical Record Can Be Any Length in Seri al File Access Mode A-2
Figure A -4. "MOM" A-4

Figure A -5. LEO R Marker Placed after Last Data Item A-4

Figure A -6. LEaR Marker Is Moved A-4

Figure A-7. Insufficient Space on One Physical Record A-5

Figure A-8. Reposition the Pointer

Figure A -9. Read Data in First Logica l Record

Figure A -10. Read Data in Rest of the File

Figure A -11. "DAD"

Figure A-12. LEO R Marker Placed after Last Data Item

Figure A-13 . Pri nting Another Logica l Record

Figure A-14. Data in the Second Record Is Read

Figure A-15. Data in the First Record Is Read
Figure A-16. Data Is Pri nted in the First and Second Records

Figure A -17. Data in the Second Record Is Read

Figure A -18. Mass Memory System Platter

Figure A-19. Storing and Retrieving Data
Figure 0-1 . Tran sfer of Programs (GET or CHAIN Command)

Figure 0-2. Data Element Transfer T ime
Figure 0 -3. Matrix Element T ransfer Time

A-5

A -5

A-6

A-6

A-7

A-7

A-8

A -8
A-9

A-9
A -1 1
A-12

0 -2

0-2
0 -3

Chapter 1
GENERAL INFORMATION

• • • INTRODUCTORY DESCRIPTION • • •
The -hp - 9880A/B Mass Memory System offers the advantages of a very large tape
cassette . The amount of available storage space is 2.4 mill ion data bytes (1.2 million
words) per platter. In addition, short data access time makes the system extremely
functional and easy to use . The average access time IS less than 50 milliseconds. With
optional applications pacs, the mass memory system is even more powerful; data and
program control is increased .

9830A
Calculator

and
Printer

--------, , , , , , ,
1--------

J ' "
_-- I "

.... -- I "-L _____________ _ J "

" " "
/,

//1

11305A
Controller

.... _ _ _ _ _ / I L-______ ----'

, I / / /
, I / I
,L-----f' I

-' I I ,_- I
L _____ ____ J I

,-- - - - \'
I II

f -----4
_, I

,- I
L ________J

I

,
I

I

I

I
I

I
I

I

I
I

I

r - - -- -- -,
I
I
I
I

I

I
~

II
I I L ____ _ _ _ .J

r --------,
I I
I I
J I

/'1 I
/ // I I

I /' L _______ .J
, //

.... " ,-------..,
" I I

..... I I
..... ..J I

I I
I I L _______ .J

9867AiB
Mass Memo ry Drive

Figure 1-1. Possib le Configurations

The mass memory system can consist of a variable number of components, depending on
your needs. Possib le configurations are shown above (Figure 1-1). Each component is
discussed briefly below .

1-1

1-2

• • • INTRODUCTORY DESCRIPTION • • •
(Continued)

9830ACALCULATOR ~.~---

The system is des igned to accommodate up to four 9830A Ca lculators. Only one
calcu lato r, however, can access the mass me mory at anyone instant. A 9866A Printer, or
any ot her printer, is required for each system .

11273B I NTER FAC E K IT ~---------------------------------------

The 11273B Interface Kit co nsists of a Mass Memory ROM, an interface cable, and a
system tape cassette . The RO M cont8 ins some of the system commands needed to
operate t he mass memory drive . When the ROM block is plugged in , it uses 300 words of
user read/write memory. The interface cable connects the calcu lato r to the control ler .

Finally, the mass memory system tape cassette contains programs to test the mass
memory syste m, initialize new platters and dupl icate the information contained on one
platte r to another platter. The system tape cassette a lso contains the system's
'bootstraps'. These are the remainder of the system commands and statements needed to
operate the mass memory. They are loaded onto each mass memory platter during the
in itialization process. Once the bootstraps are loaded onto a platter, the bootstrap
commands and statements are automati ca ll y transferred into the 300 word area
ment ioned above when needed (i.e ., whe n a program or a user requires them) .

One interface kit is req uired for each calcu lator connected to the contro ller.

11305A CONTROL L ER ~.~---------------------------------------

The contro ll er interfaces the calculator(s) and the mass memory drive{s). It serves as a
junction box for connecting one o r mo re calculators and one or more mass memory
drives. The 9868A I/O Expander cannot be used for this purpose; t he 11305A Controller
must be connected d irectly to the calculator(s). Of course, t he 9868A I/O Expander can
sti ll be used to connect peripheral equipment to a ca lcu lator, whether that ca lcu lator is
pa rt of the mass memo ry system or d isconnected f rom it.

12869A CARTR IDG E ~.~---

A removab le platter in its container is ca ll ed a 'cartridge'. The platte r is the heart of the
system. As ment ioned earlier, up to fou r platte rs at a time can be included in one
system, each one of which has a storage capac ity of 2.4 mil lion bytes. Cartrid ges can be
interchanged, of course, for an even greater storage capac ity per system. Each platter
must be in it iali zed before using it for the first time . For this in iti alization procedure,
refer to "Init iali zing New Platters", page 1-10.

---- -------- - ----... - 9867A/B MASS MEM ORY DR IVE

The 9867 A Mass Memory Drive holds and operates one cartridge; the 9867B Mass
Memory Drive holds and operates two platters. One of the two platte rs is permanen tl y
installed in the mass memory drive and the other (the cartridge) is removable. Several
configurations are possib le since you can incorporate up to four p latters per system (e.g .,
two 9867B's, one 9867B and two 9867A's, four 9867A's).

---------------------- NOTE --------------------

In order to operate the mass memory system, all drives connected to your
controller must be switched ON. If you don't plan to access a drive, the
LOAD switch may be set to its UN LOAD or OF F position, but power
must still be on.

1-3

1-4

• • • • • EQUIPMENT SUPPLIED • • • • •

The following equ ipment is supplied w ith the 9880A or 98808 -[Mass Memory and is
necessary to operate the system :

Table 1-1. Equipment Supplied

Description

Controller
Mass Memory Drive t
Interface Kit consists of :

Mass Memory ROM
System Tape Cassette
Interface Cable Assemb ly
Operating Manual
Training Cassette
Quick Reference Card
Data Base Routines PAC

Cartridge
Cart
Fuse. 1_5 amp
Fuse, _75 amp
Power Cab le

Quantity

1
1
1
2

1
1 (Optional)

3
3

-hp- Part Number

11305A
9867 A or 9867B

11273-67920
11273-60002

09830-90008
09830-90020
09830-90021
09830-76501

12869A
11304A

2110-0043
2110-0033
8120-1378

or
8120-1689

t The 9S67A drive is suppl ied with the 9880A system, while the 9867B drive and a separate -hp- 13215A Power
Supply are suppl ied w ith the 9a80B system. Of course, additional drives can be purchased for use with either system.

1-5

Figure 1-2. 9867 A Mass Memory Drive

. ,ft', :-.

Figure 1·3. 98678 Mass Memory Drive with 13215A Power Supply

Figure 1·4. 11305A Controller Figure 1-5. 112738 Interface Kit

• •

Figure 1-6. 12869A Cartridge Figure 1-7. 11304A Cart

1-6

• • • • ADDITIONAL EQUIPMENT • • • •

You can use string and matrix commands for greater flexibility in the mass memory
system. The matrix commands require the insta llation of an 11270 Matrix Operations
ROM to the calcu lator and the string commands require an 11 274 String Variables ROM.

Of course, all other Model 30 ROMs are compatible w ith your mass memory and can be
plugged into the calculator in any but the top ROM slot w hen the Mass Memory ROM
block is installed.

Once again, a 9866A Printer, or other printer, is required for operation of this system.

• • MULTIPLE DRIVE/CALCULATOR SYSTEMS • •

For purposes of instruction, it is assumed t hat you are work ing with one platter and one
calculator. Specific information for operating more than one platter at a t ime is available
in "MU LTIPLE PLA TT ERS", page 4-4.

If more than one ca lculator is connected to the contro ller, an interface kit is required for
each of them.

The calculator that is current ly accessing a p latter has contro l Priority over any other
calcu lator t hat attempts to access any platter in the system. The second ca lculator
automatically accesses the p latter it specifies when a delay of a half second or more
occurs in the first calcu lator's access operation. Any platter can be accessed by any
calculator connected to the contro ller, but two or more calculators cannot access the
same or different platters simu ltaneously.

There are certain protect ion features built into the mass memory system and discussed in
the fo ll ow ing chapters. If these protection features are not used, one user can access,
modify or even erase t he information on another user's platter.

~ INSTALLATION AND TURN-ON PROCEDURES ~

An -hp- service representat ive w ill install and inspect the mass memory system for you
ini t ially; loca l sales and service offices are listed at the back of th is manual.

CAUTION ----------­

SERIOUS DAMAGE CAN RESULT IF THE 9867A/B MASS MEMORY
DRIVE IS MOVED ABRUPTLY. DESPITE ITS SIZE, TH E MASS
MEMORY DRIVE IS AN EXTREMELY DELICATE INSTRUMENT AND
MUST BE HANDLED CAREFUL LY AT ALL TIMES.

--------------.~ INSTALLING THE PLUG- IN ROM BLOCK

T he complete procedure to insta ll a plug -in ROM block is in the Operating and
Programming Manua l for the 9830A Calculator. Following are some reminders; please
note the changes from the standard procedure:

• Switch the ca lcu lator OFF before installing or removing a ROM.

• The Mass Memory ROM must be installed in t he top ROM slot beh ind the ROM
door on t he left side of the ca lculator.

• The label on the ROM shou ld be right-side-up and facing the ROM door w hen the
RO M is proper ly inst al led.

• Ensure that t he ROM is properl y mated to the connecto r at the back of the slot
before switching the ca lculator ON.

------------- NOTE-------------

Use of the calculator w ith the plug-in ROM, but w ithout the loaded
bootstraps, may result in apparentl y illogical error messages. D ISP and
PR I NT statements, for example, cannot be executed_ For this reason,
remove t he Mass Memory ROM whenever the interface assembly is
d isconnected from the rear of the ca lculator or the mass memory drive 's
power switch is turned 0 F F.

---------------------------.-. TURN-ON

Following is a list of indicators wh ich are part of the 9867 A or 9867B Mass Memory
Drive. When lit, they indicate the conditions shown below. Parenthetical numbers refer to
the specific dr ive model .

DR IVE FAULT -

DATA PROTECT (9867A) -

LID PROT ECT (9867B) -

Uf D PROTECT (9867B) -

DOOR UNLOCKED -

DR IVE READY -

UN IT SELECT INDICATOR
(9867 A)

Malfunction in hardware or a read-write head
movement operat ion was not comp leted w ith in
850 mil li seconds.

Data protect switch is in the ON posit ion_ When
lit, the cartridge is protected aga inst any write
operati ons.

LID protect switch is in the ON position . When
lit, the lower, fixed platter is protected aga inst
any wri t e operat ions.

Uf D protect switch is in the ON position . When
lit, the upper, removable cartr idge is protected
aga inst any write operations.

LOAD switch is in the OFF or UNLOAD position
and th e drive sp in dle is stopped.

Drive spind le motor has reached 2400 RPM, the
air f iltration system has been purged of unclean
air, and the read -write heads are in a loaded
posit ion over the platter. Stays lit during mass
memory operations.

I ndicates the unit number of the platter ass igned
to the mass memory drive.

1-7

1-8

~ INSTALLATION AND TURN-ON PROCEDURES ~
(Continued)

The procedure shown be low must be fo llowed to turn your mass memory system on . It
is to be fol lowed on ly after your ·hp· service representat ive connects the mass memory
components. This procedure is also performed, initia ll y , by the serv ice representat ive w ho
installs your system.

• Once the Mass Memory ROM is installed in the calcu lator, switch the calculator
and printing device ON .

• Set the mass memory drive LOAD switch to the OF F or UN LOAD position and
press t he POWER switch of the drive ON (its ' in' or 'up ' position) . A ll drives
connected to your contro ller must be switched on in t his manner before the
system can be operated.

• Wait until t he l ight marked DOOR UN LOCKED is turned on. Th is wi ll take
approximately 5 seconds. 'j' Then turn the LOAD switch of the drive(s) to the ON
or LOAD pos ition.

• The DOOR UN LOCKED indicato r wi ll go off. Wa it until the light marked DRIVE
RE ADY is turned on. Th is w il l take approx imate ly 25 seconds. Then switch the
contro ller on by pressing the LINE button of the contro ller ON. Be sure the
intake fan at t he back of the contro ller is not b locked. Air must circu late free ly.
The controller must be the last component to be switched all. t-r

• Set the LOA D switch to t he UNLOAD or OFF posit ion on each drive which you
don't p lan to access.

- --------- CAUT ION --- ------­

IF, AT ANY TIME DURING MASS MEMORY OPERAT ION, YO U HAVE
REASON T O BELIEVE T HE DR IV E IS NOT WORKING PROPERLY,
TURN THE LOAD SWITCH OF T HE DR IVE T O THE OFF OR
UNLOAD POSIT ION FIRST. WH EN THE LIGHT MARKED DOOR
UNLOCKED IS ON, TURN OFF A LL OF T HE COM PON ENTS AND
CALL YOUR LOCAL ·hp· SALES AND SERV ICE OF FI CE. DO NOT
ATTE MPT TO RETR IEVE DATA STORED ON A CARTRIDGE BY
USIN G IT IN ANOTHER DR IVE. DAMAGE MAY RESULT TO THE
SECOND DRIVE.

t Th is procedure assum es a remov<lble cartridge is in your mass memory drive. (A 98678 also must have a cartridge
inserted at all times for syst em operation.) If your cartridge is not in the drive, wait until the DOOR UNLOCKED light
is on, then open the front door of the drive by pulling out and down from t he upper edge of the front door. Install
t h e cartridge carefully, with the -hp- label right si de up and facing you. Do not force the cartridge into the drive, as
this may damage the read -write floating heads . Close th e f ront door of the drive.

11 The controller should never be turned on while a 9830 program is running .

--~.~ TU RN - OFF

To turn off the mass memory system, reverse the steps in the above procedure.

CAUT ION

WHEN TURNING THE MASS MEMORY SYSTEM OFF, TURN TH E
LOAD SWITCH TO TH E OFF OR UNLOAD POSITION AND WAIT FOR
THE DOOR UNLOCKED INDICATOR TO LIGHT BEFOR E PRESS ING
THE DRIVE POWER SWITCH OFF. PROPER HEAD UNLOAD ING IS
GUARANTEED ON LY IF THE LOAD SWI T CH IS OPERAT ED WIT H
POWER ON. HEAD OR PLATTER DAMAGE MAY OCCUR UNLESS
TH IS PROCEDURE IS FO LLOW ED IN THE CORRECT ORDER .

--------------------------. UNIT SEL ECT AND DATA PROT ECT SWITCHES

In the 9867A Mass Memory Drive, the un it select switch and the data protect switch are
located beneath the cartr idge inside the front door. The un it select switch for the 9867B
drive is internal and is set by the ·hp- representative who initia lizes your system . The
nu mbers 0 or 2 are assigned to the upper cartridge, while 1 or 3 designate the
corresponding lower platter.

There are two data protect switches for the 9867B; one is for the upper, removable
cartridge and the other is for the lower platter. Both of these switches are locat ed
beneath the cartridge inside the front door. In the ON position, the data protect swit ch
prevents write operations (P RINT#, MAT PRINT# , SAVE, OPEN, KI LL and PR O) on the
the specified platter.

1-9

1-10

~ INSTALLATION AND TURN-ON PROCEDURES ~
(Continued)

INITIALIZING NEW PLATTERS -.------------------

I nitialization defines the tracks on the platter so that they may be referenced by the
system . The system tape cassette conta ins bootstraps which will be loaded on each platter
(one for a 9867 A and two for a 9867B) of your mass memory system initial ly by an -hp­
service representat ive. Each new p latter (f ixed or removab le) must be ini t iali zed in this
manner before it can be used with your system . The in itialization takes about one hour
per platter. Subsequent loading of the bootstra ps on each new p latter is accomplished
accord ing to t he follow ing procedure. Please note that, once the cassette is loaded onto a
platter, it remains there. This procedure does not have to be repeated each time the mass
memory system is turned on .

• Once the Mass Memory ROM is insta lled in the ca lcu lator, switch the ca lcu lator
and printing device ON.

• Set t he mass memory drive LOAD switch to the OF F or UN LOAD position and
press the POWER switch of the drive ON (its 'in ' or 'up' position).

• Wa it until the light marked DOOR UN LOCKED is tu rned on. This w ill take
approximate ly 5 seconds.

• Open the front door of t he drive by pu lling out and down fro m the upper edge
of the front door.

• Insta ll the ca rt ri dge carefully, with the HP label right side up and facing you . Do
not FJrce th e cartridge inlO the drive.

• Close the front door of the drive.

• Press the LOAD switch of the drive to the ON or LOAD position.

• The DOOR UNLOCKED indicator w ill go off . Wa it unti l the l ight marked DRIVE
READ Y is turned on. This w ill take approx imate ly 25 seconds. Then switch the
controller on by presssing the LINE button of the contro ller ON .

CAUTION

IF, AT ANY TI M E DURING MASS MEMORY OPERATION, YO U HAV E
REASON TO BEL IEVE T HE DRI VE IS NOT WO RKING PROPERLY,
TURN T HE LOAD SW IT CH OF THE DRIVE TO THE OFF OR
UNLOAD POSITION F IRST. WHEN THE LIGHT MARKED DOOR
UNLOCKED IS ON, TURN OF F AL L OF T HE COMPONENTS AND
CALL YOUR LOCAL -hp- SALES AND SERVICE OFF ICE. DO NOT
ATTEM PT TO RETRIE VE DATA STOR ED ON A CARTRIDG E BY
USING IT IN ANOTHER DRIVE. DAMAGE MAY RESU LT TO THE
SECOND DR IVE.

The in itial izat ion procedure is accomplished in two phases. Once all components of t he
mass memory system are switched on, follow the procedure below to load t he mass
memory system tape cassette bootstraps onto your p latter.

1 _ I nsert the mass memory system tape cassette in the tape transport of the
ca lcu lator and close the transport door.

2. Key in and execute: LOAD BIN 60.

3. When the cassette fi le has been loaded into the calculator memory and con t rol
returns to the calculator, key in and execute t he word, INITIALI ZE .

From this point on, your calculator printer will instruct you. The first message printed is:

4. The button next to the LINE button on the controller, marked CONTROLLER
MODE, should be switched to INITIALIZE (its 'in' position).

5. Key in and execute: CONT from the keyboard.

The next message printed is:

Ul·1

6. Input and execute the unit number of the platter you wish initialized .
(Remember: On the 98678 drive, the upper, removable cartridge is number 0 or
2, while the lower, fixed platter is correspondingly 1 or 3.)

The next message printed is :

1...I1··j IT IIUI'lt:: [.j , I) 1: ';: I i"1 F' IJT r I) I;: \ ' E: 110,

where 'N' is the unit number you specified.

7. If correct, key in and execute: 1. (A 0 executed from the keyboard will return
you to the point at which you switched the INITIALIZE button ON. Continue
this procedure from step #5.)

The next message printed IS:

[HIT T I CII'I 1 I,! IL.I.

---------------------- NOTE -----------------------

If an ERROR T occurs any time during execution of the initialization
procedure, re-execute the instructions from step # 1 and follow the
procedure again. If the same error message is displayed again, call your
local -hp- sales and service office for help.

After phase 1 is completed, the next message printed is:

I I~ C!lfr 1"". ' ... 1 1... I 1':1". 1'1 (I DE::: 1,1 IT

8. Set the CONTROLLER MODE button to NORMAL (its 'out' position) .

9 . Key in and execute: CO NT from the keyboard.

1-11

t ERROR 900 Defective t rack in sys tem area (tracks 0 -7 , 404, 405) of platt er, or 7 or more detect ive tracks in user area .
ERROR 90 1 T ransfe r of information between calcul<.ltor and platter is not oper<lt i ng normally .
ERROR 902 Boo tst raps are not verified cor rectly .

1-12

---- INSTALLATION AND TURN-ON PROCEDURES ----
(Continued)

The next message printed is:

1 HI' lOti L; ' l' i L \ ' II C)

At this point, a trac k-by-track verification routine is executed . This second phase is
automatic, wh il e the display flashes:

Hil T

The next message pri nted is:

When phase 2 is completed, a list of defective tracks on your platter is printed. If there
are no defective tracks, NONE is printed. The next message printed is:

THE t' If1):: ~: t'IEt'10E'i F; OClT)c:TRHF':,:HI'I\"IO: i;:: EFrl LOFiUED
DO 'iCII...! ·. Hfl',/E ·· fiNUTHEF: F'LJiTTEF: (UI;':U!-I I T > ro bE:
IF YES, TYPE INITIALIZE, PRESS EXECUTE.
I r·c 1·10 PF~E:3':: CO tlT , E>TCIJTE"

'~t.lII ',,'["r::' !' j= IE'!I I I I., 1 ," . . .'"' ' ~

1111111'11.. II

If another platter is to be initialized, key in and execute the word, INITI ALIZ E. Follow
the previous procedure from step #4 . Pressing CONT EXECUTE initializes the ca lcul ator .
Contro l is returned.

LOADING AND VERIFYING BOOTSTRAPS ~.--------------

Once a platter has been initialized, bootstraps can be loaded onto it or verified at any
t ime, without erasing information already on the platter. An E R RO R 902 message may
be avo ided by load ing the bootstraps again before verify ing that they were loaded
correctly.

To load the bootstraps on an ini tia lized platter, perform the following procedure:

• Key in and execute: LOAD BIN 2, with the mass memory system tape cassette in
your calculator tape transport.

• When contro l returns, key in and execute: UN IT N (where N is the unit number
of the platter you wish to load). This step can be ignored if your platter is
designated as unit O.

• Key in the word , BOOT, and execute it.

The tape cassette begins loading information onto the platter . After about three minutes,
contro l returns to th e calcu lator. At this point, the bootstraps are loaded onto your
platter.

To verify that the bootstraps were loaded correctly, perform the fol lowing procedu re:

• Key in and execute: LOAD BIN 3, with the mass memory system tape cassette in
your calcu lator tape transport.

• When contro l returns, key in and execute: UN IT N (where N is the unit number
of the platter you wish to verify). This step can be ignored if your platter is
designated as a unit O.

• Key in the word, VERIFY, and execute it .

The tape cassette begins verifying information on your platter. After about three minutes,
contro l returns to the ca lculator and the tape is rewound automatica ll y. Verification of
your bootstraps has been accomplished.

----------------------------------~.~ SYSTEM TEST INSTRUCTIONS

To test the operation of your mass memory system, be sure the Mass Memory ROM is
inserted in the top ROM slot of the ca lcu lator. Also, insert the ROMs you pian to use
with the mass memory system (i.e., String Variables ROM, Matrix Operations ROM, or
both - other ROMs can also be inserted). These ROMs can be inserted in any ROM slot
except the top one, reserved for t he Mass Memory ROM.

Make sure the mass memory system components are connected properly and switched
ON. An initial ized cartridge must be in the drive un it. If a 9867B drive is to be tested, its
fixed p latter must be initia lized a lso.

Insert the mass memory system tape cassette in the tape transport of the calculator and
close the transport door . Press SCRATCH A EXECUTE.

For an explanation of the system test, before it is executed, press LOAD EXECUTE .
After control returns to the calcu lator, press RUN EXECUTE. As the test is run, files are
created and take up avai lab le user space on your platter. The calcu lator prints the
information on the next page and beg ins runn ing the test automatica ll y.

1-13

1-14

~ INSTALLATION AND TURN-ON PROCEDURES ~

. ':.: .:

',." ,

,-'

:.:. -:.:
. :,'

:.; ... ;. :'",

,THE E::<ERC I '~C I" , I
',' UrHT

, OPEN ,,"'"
K I L,L (t,w ,, ~. ,-, T 'O,"1"T

FILES ' '"
.... '.' ".'.' , FI~$,:~; I

, ",' !~Ar",~E, :,

' THE E:x:.E kCI
CATR LOG,:

, : DA':!T P' '
-DFDUt·jF:" '

(Cont inued)

, ,~:,
-.. !
.~:,

' ... '
~~: P-IrlG kClj'1)

' 2 ")
,-.
"-
I
2
1
B

)

To run the test witho ut an exp lanation, key in and execute: LOAD 70. When control
returns to the ca lcu lator, press RUN EXECUTE. Regard less of whether an explanation is
printed. t he first question d isplayed on the ca lculator is:

!.dHfi"1 I ::; I HE Uf'~ I 'i:1* TC) BE "i E::;Tt:.D?

Key in the un it number (0-3) you wil l be work ing with and press EXECUT E.

The next question displayed is:

[c'"I-" T kJf""" ,_, r: .. L I •. .::

If a String Variab les ROM is inserted in yo ur ca lcu lator, key in 1 and press EXECUTE. If
you don't have a String Variables ROM, key in 0 and press EXECUTE .

The next question displayed is:

[MATRIX ROM INSiALLETI0 l-YES;O=NO

If a Matrix Operat ions ROM is inserted in yo ur calcu lator, key in 1 and press EXECUT E.
If you don't have a Matrix Operations ROM, key in 0 and press EXECUT E.

The final question disp layed is:

-',.'

Key in the number of t imes you want the test run. (To test the system comp letely one
t ime, press 1.) Press EX ECUTE.

At t h is point, the test is run. With both t he St ring Variables ROM and t he Matr ix
Operations ROM insta ll ed, one test takes approx imately 9 minutes; the test takes
approximately 15 minutes to run twice. After each test, a printed message informs you
how many times the test has run . Multip les of five tests, however, are ind icated by the
fo ll owing message:

When all tests are completed, the fo ll owing message is printed and displayed :

TE STING GO~~LET ED N TIME(

The tape cassette is rewound automatica ll y at the conclusion of t hese tests.

1-15

1-16

-- INSTALLATION AND TURN-ON PROCEDURES -
(Continued)

During the course of th e tests, the following disp lays occur with the freq uency shown
below:

MESSAGE

DATA FILES OPENED
CALCULA TING NUM BERS
SEF: I AL F'F: UH
f;: A t·m 0 t'l F'F: I IH
I' M READING SERIALLYI
I'M CHECKING READ ACCURA CY
SE RIAL REA D ONE DONE
I' M REA DING SERI ALLYI
I'M CHEC KING RE AD ACCU RAC Y
I'M REA DING RANDOML Y
RAN DOM REA DS COMPL ETE
I'M PRI NTING MATRIC ESI
I'M READING MAT RICESI
I'M CHECKING MA TRICESI
MATRI X REA COMPLETE
I ' M PRINTING STRINGSI
STRI NG PR INT COMPLETE I
I'M READING STR INGSI
STRING READ S CO MPLET E I
END OF FI LE FOU ND ON FILE 4
I'M CHECK ING KEYSI
I'M FI NI SHED CHECKING KEYS I

FREQUENCY

1
36
36
3

~ }
1

n
4
1
1

~ }
1
18
1
24
1
1
3
1

Combination repeated
4 times

Combination repeated
4 times

Combination repeated
4 times

The messages disp layed differ, according to the ROMs install ed in t he calculator.
Obviously, t he d isplays which mention MATRIX or MATRICES are only see n if th e
Matri x Operations ROM is insta lled, wh ile displays which mention STRI NG or STRINGS
require the String Variables ROM. In addition , th e message, END OF FILE FOUND ON
FILE 4, is displayed only when a Matri x Operations ROM is insta lled and the String
Variables ROM is not.

Once the test is begun, do not rewind or remove the tape cassette. The last section of the
test, usin g Special Function keys, is only run once, no matter how many times you
specify the rest of the test should be executed . Conseq uently, removing the tape cassette
before it is automatica ll y rewound by-passes th is section of the test and results in an
error message .

• • • MAINTENANCE REQUIREMENTS • • •

As mentioned before, t he mass memory system - especiall y t he mass memory dri ve - is
extremely del icate. If it is unintentionall y bumped, damage may resu lt . Even the most
elaborat e protection plans are not foolp roof . For this reason , data back-up systems are
strongly advised .

Make dup licate p latters or tape cassette recordings of all you r important files. When
work ing with data that is updated regularly (e.g ., payroll acco unting), use a 'leap-frog'
technique of updating th is data, if possible. Th at is , reco rd every other data transaction
on alternate platters so that, if a hardware malfunction does occur, you are never more
than one time-period out of date .

The importance of a clean environment in which to operate t he mass memory system
cannot be overemphasized. The platte r rotates at h igh speed and the read -write heads of
the drive actuall y f ly over t he surfaces of the platter, never contacting it. The f lying
alt itude is on ly t wo m icrons over the platter surface - on ly 1/30th the diameter o f a
human hair - so it is important to keep dust particles and other contam inants t hat can
impede head movement out of the system.

The read -write heads must be cleaned and the air fi lt er changed at leasl every 60 days to
ensu re proper operation of the system. For t his reason, purchase of a serv ice contract
with t he mass memory system is highly recommended . Besides clean ing the heads and
replacing air filters, your -hp - service representat ive checks head alignment to ensure
compatibi lity of cartridges reco rded in other systems and in your own system .

Finally, due to wear and tear, small anomalies occur on the surface of each platter. These
platters should be overhau led after every six months of normal use. Call yo ur loca l -hp­
sa les and se rvice office for t he name of t he organizat ion in your area that can perform
this se rvice.

After a per iod of months, weeks, or even days, it will become apparen t that the informat ion on
your platter(s) is more valuable to you than is the entire mass memory system. Needless to
say, wi th proper care of the system and regular check-ups, you will never have to worry about
losing your valuab le data.

----------- CAUTION ----------­

IF, AT ANY T IME DURING MASS MEMORY OPERATION, YOU HAVE
REASON TO BELIEVE TH E DR IVE IS NOT WOR KI NG PROPER LY,
TUR N THE LOAD SW ITCH OF T HE DRIVE TO TH E O FF OR
UNLOAD POS ITION FIRST . WHE N T HE LIGHT MARKED DOOR
UNLOCKED IS ON , T UR N O FF A L L OF TH E COMPONENTS AND
CA L L YOUR LOCAL -hp- SALES A ND SERVI CE OFFICE . DO NOT
ATTEMPT T O RETRIEVE DAT A STORED ON A CARTR IDGE BY
USING IT IN AN OTHER DR IV E. DAMAGE MAY RES ULT TO T HE
SECON D DRIVE.

1- 17

1-18

Chapter 2

PROGRAM FILE OPERATIONS

Mass Memory files can be used to hold data (data files), programs (program files), or
Special Function keys (key files). This chapter discusses program and key files and the
commands which are used to man ipul ate them. For purposes of instruction, it is assumed
that you are wo rking with one platter and one ca lculato r. Specific info rmation for
operating more than one platter at a time is available in "MULTIPLE PLATTERS", page
4-4.

The conventions show n below appear in the BASIC syntaxes .

brackets [] - items enclosed within brackets are optional.

coloring - co lored items must appear as shown.

All programming st atements must be preceded by a line number. Optional line number
parameters ind icate t hat the statement can be executed from the keyboard.

Following is an example using th e com plex version of the SAVE command, which is
discussed in deta il on page 2-3. Once you und erstand t hi s syntax, you should have no
trouble w ith any of the sy ntaxes in this manual.

Syntax:

[line nu mber] SAVE "fi le name" [, 1st line number [,2nd line number J J

Consider th e syntax, step by step, from left to righ t.

1. The 'line number' paramete r is optional. If included, the command can be
executed from a program; without a line number, this command can be executed
only from the keyboard .

2. The word, SAV E, in brown, is necessary to identify the command.

3. The 'fil e name' parameter is needed to spec ify the file that wi ll record the
program. Note that the quotation marks, in brown, enclosing the file name are
necessary.

4. The ' 1st line number' parameter is optional. If it is specified, however , a comma
is needed to separate the file name from the 1 st line number.

5. The '2nd li ne number ' paramete r is also optiona l; fo r it to be spec ified, the 1st
line number must also be specified; if both are specified, a comma is required to
separate the two items.

Since the brackets are nested in this command, for the most deepl y nest ed item to be
specified, all other items must also be specified . If, however, th e brackets had appeared
as:

1 2
[--J [----J

then this dependency between items would not ex ist; that is, the information within the
second bracket cou ld be specif ied without having t he other bracketed information
speci fied.

2-1

2-2

The syntax requirements for each command, statement and function are shown
individually throughout this manual and are shown all together in Appendix E of this
manual.

The terminology used in the following pages is shown below to help you understand the
syntax of mass memory system statements.

file name -

1 st line number -

2nd line number -

protection code -

the name used to define a specific file. This name can contain up
to six characters, with the following restrictions:

• no quotation marks (") in the name

• no commas U in the name

• no blanks (i.e., spaces) in the name

• a_ sin Ie asterisk *) should not be used
because that sing!lL..character - has special
s ignificance (see page 3-6). -- -

Unless otherwise specified, the file name may be a string variable.

the number that references the position of a statement in the
program designated. This number must be an integer; no variable
or expression is allowed.

the number that references the position of a statement in the
program designated. This number can appear only if the 1st line
number parameter is designated. The 2nd line number must be an
integer; no variable or expression is allowed.

the combination of the characters used to protect a file. This code
can contain up to six characters, but no quotation marks (") are
allowed in the code.
Unless otherwise specified, the protection code may be a string
variable.

When a parameter can consist of a string variable, two syntaxes are shown for the
statement. Note that the second syntax, which includes a string variable in place of a
given parameter, omits the quotation marks surrounding that parameter. The string
variable syntax is valid only when the String Variables ROM is installed in the calculator.
String variables, which may be used in the protection code, can consist of up to six
characters including blanks and commas between characters; for use in the file name,
however, blanks, commas and quotation marks cannot be used. Null and blank strings are
not allowed.

There are eight commands which are used most often when working with program files.

SAVE
GET
CATALOG
SAVE KEY

PROTECT
KILL
CHAIN
GET KEY

The PROTECT and CAT A LOG commands can be executed only from the keyboard. All
of the other commands (above) can be executed either from the keyboard or from a
program.

$ $.. $ __ PROGRAM COMMANDS 1.1>

The commands described on the following pages are used to store and retrieve programs,
kill and protect program files, catalog those files, and store and retrieve Special Function
keys.

--~o SAVE COMMAND

The SAVE command stores an entire program or part of it onto a specified file. This
command parallels the STO R E command of the Model 30 tape cassette instructions.

Syntax:

[line number] SAV E "file name" [,1st line number L2nd line number]]
[line number] SAVE file name [,1st line number [,2nd line number]]

Examples:

With a program in the calculator's memory, you need only execute the SAVE command
and the program will be stored on the platter. The specified program file takes up only
the space needed for the program.

The file name must be unique. If you attempt to save a program using a name that has
been used before for a data, program, or key file already on the platter, the SAVE
command is rejected and ERROR 97 is displayed.

-------------------- NOTE -------------------­

All file names that begin with the characters, HP, and are followed by any
combination of the characters, +, - , /, * (e.g., HP++/- , HP*+- -, etc.)
should not be used. These names are used and subsequently erased by
certain system programs. Aside from the restrictions mentioned on page
2-2, these are the only file names not allowed when operating the mass
memory system.

The optional line number parameters enable you to store part of your program rather
than all of it. With one line number specified, the SAVE command stores only the lines
after and including the specified line. With both parameters, the lines between and
including the specified lines are stored onto the platter. Of course, the whole program is
still present in the calculator, whether all or only a portion of it is saved on the platter.

Key in the following program.

2-3

2-4

• • • • PROGRAM COMMANDS -.-----.-..... - •• ~
(Continued)

You can store this program on a file named, COUNT, for example, by executing this
command from the keyboard:

I n the following program, a squaring program is tacked on to the original program, now
stored in the file, COUNT.

Lines 10 through 100 print ten consecutive numbers from the first number entered. Lines
110 through 170 print ten consecutive numbers and their squares, from the second
number entered.

Once this program has been keyed into the calculator, you can save it in its entirety on a
file named, MASTER, for example, by executing this command from the keyboard:

You can also store the second half of the program on a file named, SQUARE, for
example, by executing this command from the keyboard:

Finally, to store the first half of this program on a file named, FIRST, for example,
execute the following command from the keyboard.

In this way, you now have three programs stored under different file names. Once a
program is stored on a platter, it can be loaded back into the calculator by means of a
GET command , discussed later.

After a program is stored in the mass memory system, it still remains in the calculator
memory. When modifications must be made to the program, you can store the new,
modified program in the mass memory. This is done by executing the SAVE command
and using a different file name parameter. I n order to store the new program in a file of
the sallie name, the o ri ginal file must first be erased. This is accomplished by means of
the KI LL command, discussed on page 2-12.

-------------- ---------. CATALOG COMMAND

The CATALOG command lists every file on the platter with which you are working. The
lisLing also shows informatiun about each file.

Syntax:

CAT

Obviously, a listing of the contents of a given platter will vary with the contents
tD§ mselves. Consider the sample catalog listing below.

Notice that the column labelled NAME in the catalog listing above includes the file
names, COUNT, MASTER, SQUARE, and FIRST. The P's under the label TYPE signify
that these files are program files. The letters D and K (for data and key files) may appear
in this column. They are discussed later in this chapter (page 2-13) and in Chapter 3
(page 3-4).

The labels, TRACK and RECORD, designate the location of the particular file on your
platter. t Since the order in which the files were created may differ, these numbers vary
from system to system and from platter to platter.

Notice also for the program files listed, that the current length, in words, is specified.
The file COUNT uses only 22 words of memory on the platter. ABSOLUTE LENGTH(R)
indicates the number of physical records which were reserved for these programs. The
mass memory system determines how much memory, in records, is required to store a
program and rounds that number to the next higher whole record. In the case of the file,
COUNT, since the number of words required is less than 256 (i.e., less than one physical
record), the number of records marked, rounded to the next higher whole integer, is 1.

The CATALOG command is a keyboard operation only; it cannot be executed from a
program. Use the CATALOG command at any time to list the contents of your platter.

t See Appendix A , p<lge A-1 1 , for J com plete descrip t ion o f platter structure.

2-5

2·6

• . .. PROGRAM COMMANDS • • ... •
(Contin ued)

GET COMMAND - • .--

The GET command loads a program from the platter to the calculator ; the values of all
variables not defined in a COM statement are undefined. t The GET command can al so
renumber the statements of the program and run it without further instructions. This
command parallels the LOAD command of the Model 30 tape cassette instructions.

Syntax:

[line number) GET " file name" [,lst line number [,2nd line number])

[line number] GET file name ['lst line number [,2nd line number))

Examples:

Whenever the GET command is executed, all program lines in the specified file are loaded
into memory. All program linlls' previously in the calculator memory are erased unless the
1st line number is specified.

If the 1st line number is specified, the loaded program lines are renumbered with the
beginning line number corresponding to the specified 1st line number. Program lines
previously in memory, with line numbers lower than the 1st line number, are retained; all
other lines previously in memory are erased.

I n the calculator mode (after the program is loaded into memory):

• If the 2nd line number is not specified, the calculator halts.

• If the 2nd line number is specified, program execution begins at this line number.

t Wh en program s are loaded in t o calcu(alOr memory from the platter by means of a GET comm and, any st ring
variab les cu rrently i n memory ilre los t , including t hose stri ngs d ef ined in a C O M statemen t. (Numeric vur iables defined
in a CO M statement are , o f co urse, re tained ,) T hus, if GET must be exec uted , th en those st rings w hich must be saved
sh ou ld tirs t be stored on a separate f ile , so th at th ey can be IO<lded back in t o memory afterword s. A CHA IN com mand
(described be low) retai ns str ing va ri abl es defin ed in a COM sta tement .

In the programming mode (in this case, specifically after the GET command is executed
during program execution):

• If the 2nd line number is not specified, program execution is 'restarted' either
with:

the program line immediately following the GET command in the original
program, or with

the first line of the loaded program; that is, if there were no lines after the
GET command in the original program, or if the lines were destroyed by the
GET command.

• If the 2nd line number is specified, program execution is 'restarted' with this line
number.

Suppose the program shown below was stored on your platter under the file named,
MASTER.

The following command, executed from the keyboard, loads the program which is in file,
MASTE R into the calculator.

The program can be altered once in the calculator, but the information on the platter
remains unchanged.

The syntax below, in addition to loading the program into the calculator, renumbers the
statements starting with line number 200.

2-7

2-8

• • • • PROGRAM COMMANDS • • • •
(Cont inued)

A listing of the ca lculator memory at t his point is shown below.

10 REt'l THISrSTHECOijtHWGPORTIOI~ CiP THE PROG RAN .
2.1.} REt'~ rNORDERTO(.I).uAREnt~ tj r:OU t·H IW I'18 t;RS, Et:1T ER *1=1 00
30 REM THEN ~ ENTER THE NUMBER YOU WANT SQ UARED~
40 II ISP "E tHER AHnnEG£R" .;
5'\) !. NF~ I.JT, j
t,) 13 I F ,J) ~l9 THEH ,12{t
7(1 FORI"'·.) TG.J+ l(1
8(t FRItH I
90 IIE:<T I
100 EIIP
11 0 REt'lTHl::; ISTHE SQlJAPING PART OF' THE .PRi)GRAH~ HHICHCArlSTFiND AL ONE:.
120 DISP "EIITER AHOTHEP IHTEGER" ;
180 lNPlI i" K
140 FOR L=V TO K+l0
150 PRINT L.L1·2
160 NEXT L
170 END
2130 REt-I THIS IS THE COUtHH1G PORTION' OF HiE F'ROGRAN..
21G REM IN ORUER..-TO-5'CfUFfRE fftW ('omIT ~lUt'lBEF'S ;~ ENTf;:J;;: #t{H} FIRSH
220 REM THEIl EIITER THE IIUI1SER '(OU I·IANT SQUARE"TI .
2,0 DrSP "E lITE" All IflTEGEP":
240 JlIPUT .)
250 IF'J>99 THEN " 3 1B
260 FOR ·1 =-J TOJ+10
270 PRIIIT I
:;::.8 (I ,~H;}::T I
Z90 END
~~ ~:;) F:: E~l nUS H:; THE (;:!}J,JHPIHG 'f'HRl i)V THt:' PfW[,f:f1N. f.1LJ)Yl L
3 10 ntsp "THTERHU011 :1 ER HfrEG£R '! ~
321) lNPUTK
33.0 FOR L"=r· TOK+IO
340 PRHIT L,L'2
350 PRHIT I
3';0 EfID

As you can see, the program originally loaded has not been erased; the second program,
beginn ing on line 200. has been loaded after it. Had the second program been
renumbered from line 30, only lines 10 and 20 of the original program would have
remained; all line numbers from 30 on would have been either printed over or erased.

The GET command can also be used to begin program execution immediately.

By execut ing the command above, the program is renumbered from line number 200
again , and executed beginning at line 107. Since line 107 does not exist in this part icular
program, execut ion begins at the first avai lable line number greater than 107 - in this
case, line 110. The GET command with both optional parameters is usefu l for applying
ce rtain initial criteria to various application s.

-------------------------.~ CHAIN COMMAND

The CHAIN command is identical to the GET command discussed previously, except that
current values of variables are not erased. This command parallels the LINK command of
the Model 30 tape cassette instructions.

Syntax:

[line number] CHA IN " file name" [, 1st line number L2nd line number]]

[line number] CHA IN file name [,1st line number L2nd line number]]

Examples:

The CHAI N command is most often used in a program to link a program previously
stored on the platter.

The following three programs stored in files, BEGIN, MIDDLE and END, respectively,
illustrate several ways in which the CHAIN command can be used.

"BEGIN" (First Program Segment)

"MIDDLE" (Second Program Segment)

2-9

2-10

• • • • PROGRAM COMMANDS .. • .. •
(Continued)

"END" (Third Program Segment)

In the above program segments, the values of variable J are retained when chaining from
program to program. In this way, selected portions of the last two program segments are
run. These programs are run by executing the GET command.

, - .:.,... ----.- ~ .- --.,,"-, - ' '-"- --,- "' :"
.E, EI~ 1:1 . ,. 1-1;) ·,11"1 .

",-. .- '-' - '--',,-

See the printout below.

,, · /TH~. · · F iFgT "'pFi')GRHt1 ·~{~NffjTfl~IS. BEEli·. E:tECuhi:l . • ·

j· ~H8 ·Std;t~~ .~Rijl;~~I'~ · S~~~t~tit .. HA'7E~H ..•. " ...•..•.. . : . :"
..••.•••.•.•••• ...•.• :'C Hf, IIH~Lj · .. rqTHE ... F. IR:':J •• flIJI; •.. E>.:fC1JTED . FR o. loj . ~IJ.I~ ... ·16: '.'

/ .. T~E~Hl?1! ·~.~:6GR fHr XEQNEHlHH:3 E'E:EHCHi1Pl~I! . FPOI1 . . '.' . '.,
. . ' ". ". . THE. ·,gt t;lit)j} · J;'ROG.RAtl .. SEGMEHl ·. frtm ·['):EC(ITED :·FRf1t·1 .' .. - .' "," .,:. . -.', .- " -",.", -

: , SCoH p:. : Pr.: ;"~F:i\ l'I ' ~: E!;!'!EtitH AS£) rct iltHRjl4fih '.
. F,R 'Jd . n lE TH IRD. FR'lG Rfllt SEd-tEHr . fltm. I;X.Eq IJ1:EII .Jlj~ Fipt,.,, ·
. UIl'; ·· llf'lE .FRO tt LIIIE ' 4(1 '. " ·c ·; .

. ·7:;:~{:;;~~Sr;i~.D : .. ~k: i;d: ~).j S~~MEiit .. llHS 8t Eil (118 1 fj ~D : . · : .. :.:" .
· . · ··. (f,'::'ll . · . rH E: . IHrF:ti . PFOGRfli'f \':'~ !;FtE I 1T. FOF:· .'iHS \LHH . TINE ;

.\· IiHD ~ i't~ I,IT E.I' . FROr1 pIJ. E:,:O, \:. :.
,j ·. '!HE .T~!RD · PFiQGRi=lri sE'~;;EYI T"Hf!SSW:1 . cflR!+iED. F.F.:,o,.MTHE· '.,

.. .. : .·. :,E.C t;if il;\ .. tr;: f:GRHi·1 .. }: .~G(1BI1J ·."lllt' · .. Ei(E!:'rJJEn .. f": OI:l · . ··~ THE. ·' ;JYt:1BEg .t\(I.

Be careful when renumbering a program with a CHAIN or GET command in it. It is
possible that, when renumbering a program either from the keyboard or from another
program, either of the line number parameters will fall outside the range of the
calculator's line numbers (i.e., less than 1 or greater than 9999) . This causes ERROR 4.

---------- ---- - --------. PROTECT COMMAND

The PROTECT command prevents erasure of your program files wit hout the proper
protection code, by assigning a certain code to the specified file .

Syntax:

PRO "fil e name", " protection code"

Example:

. . . • • -... ~•.•.• - •...•......•.. -.- •.•.....•.••
.. -,. • F'F'!}

A protected file is not 'secure' in the Model 30 sense of the word. The program stored
on a protected file can be loaded in to calculator memory, modified, listed and executed
without specifying the file's protection code.

- - ------ ---- NOTE - --------------------

You can still load a program file which is protected and list or run it. The
protection code is only to prevent accidental erasure of the file ; it does
not 'secure' a file.

In order to secure a program in a file, key the program into the calculator, key in and
execute SEC , and then store it on the platter with a SAVE command. The file that
contains this secure program can be protected at this point with a PROTECT cor.lmand.
Now the program can be loaded into the calculator memory and executed, but it cannot
be listed or modified. It can only be e rased if you know its protection code.

Make sure the protection code you specify is not obvious, in order to avoid unauthorized
erasure of your protected file. Keep a record of your protection codes so that you can't
forget them. A pro tected program file cannot be erased without its correct protection
code."!"

A program file must first be created, before it can be protected . Use a separate
PROTECT command, after executing the SAVE command, to protect a spec ific file with
a protection code. The PROTECT com mand is a keyboard operation only; it cannot be
executed from a program .

. ;- It t he protect ion code for a f i le is lost or forgotte n, t hat f i le can not be erased . Under th ese circu mstances, you may
want to have the -llP- fac tory 'u np rote ct ' t he f il e, (Co ntact an -h p- office for a cost estimat e.)

2-11

2-12

• • • .. PROGRAM COMMANDS • • • •
(Continued)

KILL COMMAND ~---------------------------

The KI LL command erases the named file from the platter and releases t he space it
occupied for further storage.

Syntax:

[line number] K I L L " file name " [,"protection code "]

[line number] K ILL file name [,protection code]

Examples:

Use the KI LL command to erase files and the informat ion contained in them . A
protected file cannot be killed unless the protection code is included in the syntax.
Attempting to kill a protected file with an invalid protection code results in ERROR 92.
(Incidenta lly, this error message occurs if you include a protection code in the KI LL
command w here none is necessary.) Thi s makes it almost impossible for an unauthorized
person to erase your program.

On occasion, you may w ish to modify a program wh ich had been stored previously on
the mass memory system. To use the original file name for the updated program, follow
thi s proced ure:

1. Load the original program from the platter into the ca lculator with a GET
command.

2. Modify t he program in t he cal cu lator, as required , using the ca lculator edit keys
and the END OF LINE key . (At this point a li sting of the program is strongly
recommended.)

3. Execute a KI LL command from the keyboard to erase the outdated file from the
mass memory system. The new program is sti ll in the calculator memory; KI LL
com mands do not affect it.

4. Now execute a SAVE command, specifying the original file name, to store the
modified program .

The modified version of your original program is now stored on the mass memory
system, as well as in the ca lculator memory.

If more than one calculator is connected to your mass memory system, there is a
possibility that someone will be using the file you are trying to kill. In this case, your
KI LL command is temporarily held until the other user is finished. (A delay of one half
second or more is sufficient.) When your calculator regains control , the file is killed .


~~~~~~~~~~~~~~~~~~~~~-E>-E>- SAVE KEY COMMAND 

The SAVE K EY command stores Special Function key definit ions on a specified file. 
This command parallels the STOR E KEY command of the Model 30 tape cassette 
instructions. 

Syntax: 

[line number] SAVE K EY " file name" 

[line number] SAVE I(EY file name 

Examples: 

The information on all 20 Special Function keys is stored on the file at the same time. 
Since only key definitions and programs stored in keys are saved with this command, you 
need t wo files to save a program which uses Special Function keys : one to save the 
mainline program and one t o save the Special Function key definitions. 

A catalog listing of a platter in which Special Function key definitions are stored is 
indicated by the letter, K, in the column labelled TYPE. 

---------------- ------<.,0- GET KEY COMMAND 

The GET KEY command loads Special Function key definitions from a specifi ed file of 
the platter to the calculator Special Function keys. This command parallels the LOAD 
KEY command of the Model 30 tape cassette instructions. 

Syntax: 

[line number] GET KEY " fil e name" 

[line number ] GET I(EY file name 

Examples: 

'( 

When GET KEY has been executed, the original information is returned to the Special 
Function keys. All of the Special Function keys can then perform the same operations 
they previously did before you saved them on the file. 

In addition, when GET KEY is executed from the keyboard, previously defined variable values are 
saved, similar to the CHAIN command. ·f When executed from a program, however, GET KEY 
initializes all variables, similar to the GET command. 

t W hen programs are reproduced into calculator memory from t h e p latter by a means of a CHA IN command, al l 
variab les cu rren tly in memory al"e saved . It GET KEY is used t o reprod uce the p rogram , how ever, any str ing var iables 
cur ren t ly in memory are lost, including tho se str ings def ined in a COM sta t emen t. (Numeri c variab les d ef ined in a COM 
statement are , of course, retained .) T hus, i f GET KEY must be executed , then those str ings w hi ch m ust be saved 
should first be stored on a separate f il e, so tha t th ey can be loaded back into memory afterwards . 

2-13 



2-14 

...... •• NOTES ••••• •• 



Chapter 3 

DATA FILE OPERATIONS 

While Chapter 2 of this manual discusses mass memory program and key files, this 
chapter describes the commands, statements and functions which are useful when 
working with data files. Again, for purposes of instru ction, it is assumed that you are 
working with one platter and one ca lcu lator. Specific information for operating more 
than one platter at a t ime is avail ab le in "MULTIPLE PLATTERS", page 4-4 . 

A thorough understanding of data file structure is necessary before you can use the mass 
memory syst em efficiently. For this reason, refer to Appendices A and B of this manual 
to clarify the concepts presented in this chapter. Appendix A, especially, sho uld be read 
in conjunction with this chapter on data file operations. 

Th e conventions shown below appear in the BASIC syntaxes . 

brackets [J - items enclosed within brackets are optional. 
coloring - co lored items must appear as shown. 

All programming statements must be preceded by a line number. Optional line number 
parameters indicate t hat the statement can be executed from the keyboard. 

The synta x requi rements for each command, statement and function are shown 
individuall y throughout this manual and are shown a ll together in Append ix E of this 
manual. 

The terminology used in the following pages is shown below to he lp yo u understand the 
syntax of mass memory system statements . 

file name -

number of records -

protection code -

the name used to define a spec ific file. This name ca n contain 
up to six characters, with the following restrictions: 

• 
• 
• 

no quotation ma rks (") in t he name 
no commas U in the name 
no blanks (i.e., spaces) in the name 

• a single asterisk (*) shou ld not be used 
be.gE.lJse tl'iat 'c h'arac er as special 
sign ifica n ce( see page--3·6)-:" 

Unl ess otherwise specified, - the file name may be a string 
variab le. 

the tota l number of records in a file. This parameter can be an 
expression, as well as an integer. Single- and multiple-line 
funct ions are not allowed. 

the combination of characters used to protect a file. This code 
can contain up to six characters, but no quotat ion marks (") are 
allowed in the code. 

Unless otherwise specified, the protection code may be a string 
variable . 

3-1 



3-2 

file number -

return variable -

list -

record number -

line number -

the number delegated to a file by a FILES statement. This 
number can be any integer (constant, variable or expression) 
from 1 through 10. A non-integer's rounded value is 
automatically used. Single- and multiple-line functions are not 
allowed. 

the variable in an ASSIGN statement used to determine a file's 
status. This parameter can be a simple variable or an array 
variable, as defined in the Model 30 Operating and Programming 
Manual. 

the characters designated in a PRINT# or READ# statement. 
This parameter can consist of alphanumeric variables or string 
variables. Numeric constants and expressions are also allowed in 
PR INT# statements. Single- and multiple- line functions are not 
allowed. 

the number which represents the location of a record in a 
specific fil e. This number can be any integer (constant, variab le 
or expression) which does not exceed the number of records in 
the associated file. Single- and multiple-line functions are not 
allowed. 
the number that references the position of a statement in the 
program designated. This number must be an integer; no variab le 
or expression is allowed. 

When a parameter can consist of a string variab le, two syntaxes are shown for the 
statement. Note that the second syntax, which includes a string variable in place of a 
given parameter, omits the quotation marks surrounding that parameter. The string 
variable syntax is valid only w hen the String Variables ROM is installed in the calculator. 
String variables, which may be used in the protection code, can consist of up to six 
characters including blanks and commas between characters; for use in the file name, 
however, blanks, commas and quotation marks cannot be used. 

There are six fundamental stat ements and commands used most often when working with 
data fil es . 

OPEN 

CATALOG 

FI LES 

ASSIGN 

KILL 

PROTECT 

The following statements and function are used when reading and printing data. 

PRINT# 

IF END# 

READ# 

TYP 

These are discussed as they apply to seri al file access and then aga in as they apply to 
random file access. Some of these commands (CATALOG, PROTECT, KILL) are 
discussed in "PROG RAM COMMANDS", page 2-3, since they apply to both data and 
program files. If you have already read Chapter 2, you may wan t to review these 
commands briefly, as they work almost identically for program files and data files. 

PROTECT and CATALOG can be executed on ly from the keyboard, while IF END# can 
be executed only from a program . All of the other commands, statements, and functions 
(above) can be executed either from the keyboard or from a program. Please pay 
particular attention to the syntaxes described in the following pages; the (#) character 
must often be included in mass memory statements and commands to differentiate them 
from the BASI C language described in the Model 30 Operating and Programming Manual. 



..... - FUNDAMENTAL DATA COMMANDS -<Z> • 

The statements and commands described on the following pages are used to create, 
destroy and access data files. 

---------------------------------------------.-. OPEN COMMAND 

The OPEN command creates a data file with a specified number of physical reco rds, 
assigns it a name, and places a logical end of file (LEaF) marker in the first word of 
each record in the file. t 

Syntax: 

[line number] OPEN " file name", number of records 

[line number) OPEN file name, number of records 

Examples: 

.:.' ,.'" 

Before data can be printed onto a data file, that file must first be opened and its size 
specified. 

Each data file must be ass igned a uniqu e name" If you attempt to open a data fi le using a 
name wh ich has been used before for a data, program or key file already on the platte r, the 
OPEN command is rejected and ERROR 97 is displayed . 

----------------------- NOTE-----------------------

All file names that begin w ith the characte rs, HP, and are fo ll owed by any 
combination of the characters, +, -, I, • (e.g., HP++I -, HP *+- - , etc.) 
should not be used. These names are used and subsequently erased by 
certa in system programs. Aside from the restrictions mentioned on page 
3-1, these are the only fi le names not allowed when operat ing the mass 
memory system . 

The siz of aJile may vary JQDl_ minimum of o.Q.ELph sical record (256 words) to a 
lD.i'ximJ,!!!l oL 4752 re.s9Ids :U:-

The first statement in the samp le programs used to store data (included in thi s chapter), 
is generally an OPEN command. The OPEN command is included only to remind you 
that data files must be opened before data can be printed on them. Often, it is most 
convenient to execute the OP EN command from the keyboard, rather than from a 
program , since an erro r message results when you run t he same program twice. (The 
program attempts to create a previous ly opened data file.) 

Once a file has been opened (i.e ., created) and space has been reserved for it, you can use 
that file··t-hereafte"r. ·It can be erased onl y With. a K I_LL <;ommand, which is discussed later 
in this chapter (page 3-5). 

t See Append i x A for <l discussion of f i le structure , end of record (EOR) and end of file (EOF) marke rs . 

. ;. t See Appendix B for a detail ed d iscussion on h o w to estimate file size. 

3-3 



3-4 

-<&- ~ .. FUNDAMENTAL DATA COMMANDS • $ . -

(Conti n ued) 

CATALOG COMMAND ~.~----------------------------------------

The CATALOG command lists every file on the platter with which you are working. The 
listing also shows information about each file. 

Syntax: 

CAT 

Obviously, a I isting of the contents of a given platter will vary. Consider the sample 
catalog listing below. 

OF: IG I [.j 

RECORD 

In this sample listing, the column labelled NAME includes the name of each of the files 
currently on a platter. The D's under the label TYPE, signify that these files are data 
files. The letters P and K, which may appear in this column, are discussed in Chapter 2 
(pages 2-5 and 2-13). TRACK and RECORD designate the location of the particular file 
on your platter : r Since the order in which th e files were opened may differ, these 
numbers vary from system to system and from platter to platter . The column labelled 
ABSOLUTE LENGTH(R), shows the number of physical records you specified for the 
file. CURRENT LENGTH(W) is not applicable to data files; it is discussed in "CATALOG 
Command", page 2-5). 

The CATA LOG command is a keyboard operation only; it cannot be executed from a 
program. Use the CATALOG command at any time to list the contents of your platter. 

PROTECT COMMAND -.~-----------------------------------------

The PROTECT command prevents erasure of, or access to, your data files without the 
proper protection code, by assigning a certain code to the specified file. 

Syntax: 

PRO " file name", " protection code" 

"i" See Append i x A, pilgC A~ 1 1 , for a complete descri p t io n of platter structure . 



Example : 

"\',CICf'! '.;1 "1~1 E""".;, ............... " ...... ",," ...... : ...... ~ .......... " . .. .......... ~""""" .. ,,, .... " .......... .. . ~.~ .... ., ........ .-.~-- ............. .. 

Make sure the protection code you specify is not obvious, in order to avoid unauthorized 
access to your protected files. Keep a record of your protection codes so that you can't 
forget them. A protected data .ill§! cannot be acc~ssed or erased without its_ C£J./Xff1. 

I'rotec tiOj1 code 'i' 

A data file must first be opened, before it can be protected. Use a separate PROTECT 
command after executing the OPEN command, to protect a specific file with a protection 
code. The PROTECT command is UeyJ).ua[d. up.eLalip.ILuob/';J.u:annoLbe. exe.cute.d...fr.om. 
a program. 

------ - - - - - ------------- _ .. KILL COMMAND 

The KI LL command erases the named fi le from the platter and releases the space it 
occupied for further storage. 

Syntax: 

[line number] KILL " file name " [,"protection code"] 

[line number] KI LL file name [,protection code] 

Examples: 

• 
..... - - ....... ' ... - ......... ~ .. - ~ ....... . 

t~{IL~:. ::;;rl-J'! ~ ~Y:~~::~,·:~ ,~· ............................ ~ ....... , ......... . 
r: . .J. _ L ~ '" I ~ .. .1 """_' .... .. .. .. .. .. .. ... .. • .. " .............. .. 

I< XL.I.- f{$'~ F.:t" ~.... ...... .. .......... : ............................. OF '"- ...... : .. : ...... " ........................ .. 

••• A~ ••• ··"" ._ .......... . • • 

Use the KI LL command to erase files and the data contained in them . A protected file 
cannot be killed unless the protection code is included in the syntax. Attempting to kill a 
protected file with an invalid protection code results in ERROR 92. (Incidentally, this 
error message occurs if you include a protection code in the KI LL command where none 
is necessary.) This makes it almost impossible for an unauthorized person to access or 
erase your data. 

If more than one calculator is connected to your mass memory system, there is a 
possibility that someone will be using the file you are trying to kill. In this case, your 
KI LL command is temporarily held until the other user is finished. (A delay of one half 
second is sufficient .) When your calculator regains contro l, the file is killed. 

t If th e protecti o n code fo r a file is lost o r fo rgo t te n , that file co n not b e erased . Under these ci rcu mstonces, you may 
want to h ave the ·h p· factory 'unpro tect' the tile . (Co ntact a n -h p- off ice for a cost est imate. ) 

3-5 



3-6 

. . .. FUNDAMENTAL DATA COMMANDS • • • 
(Cont inued) 

FILES STATEMENT -$~------------------------------------------

The FI LES statement ®~ which data files are to be Llsed_. If a file specified in the 
FI LES statement has not been previously opened, an error message is displayed upon 
execution of the FILES statement. 

Syntax: 

[line number] F I LES file name or * Lfile name or * ] L ... J 

Examples : 

Up to_te'1 fijlL name:L,Can be listed in the FI LES_s.!atem~nt.syntax. These files, however, 
.caQQot be protected files. Notice also that y2,LJ cannot, use quotation ..Tar:!<~_arou!!f!...each 

file name. String variables cannot be used as file names. - _. ...... ~-- - --- ~- -'- ' ' - ' ~ 

Single asterisks (* ) can also be used in place of file names . They allow yo u to: 

• reference protected files 

• use strings for file names 

• reserve space for future files 

W.hen uslng_asterjsh, file assignment IS solTlr.>leted E.Y...1!!e.!'.!:'?-.of the_ASSLG l'!-sj ax!'.ment. 
(See next section, pag-; 3-7 .) -

A new FILES sta l:ID.'lDt. . ol;>sqlete,~..!he previous E.I LES statement, so you can include as 
many of these statements as you need in a given program . E:xec uting \!-.GET or .CJIAIN 
c2...'Tl mand does not destroy_the last . FI .LES statement. A new F .l LES stateme"t..also _resets 

-.!li!...P.Qi.'lters. f 

The files listed in the FILES statement syntax are assigned numbers in the order in which 
they appear. For example, in the following statement, GEORGE is file # 1, DATA is file 
#2, etc. 

The file numbers are convenient labels by which you can refe rence specific files in a 
program or from the keyboard. Their use is apparent in the discussion of subsequent 
statements. File assignments can be erased at the end of a program for greater data 
secu rity by executing FILES *. 

-;- A po inte r keeps track of the d<lt<l item curre n tly being accessed . Its use is d iscussed in detail later in t his chapter 
"S ER IAL FI LE ACCESS" (page 3·9) and in Appendix A . 



------------------------------------------~~ ASSIGN STATEMENT 

ASSIGN statements work in conjunction with a previous FI LES statement. ASSIGN 
allows you to : 

.. assign a fil e name to a certain file position 

.. determine the status of a given file 

co use a string variable for a file name 

• declare a protected file 

Syntax: 

[line number] ASS IG N " file name" , file number, return variable C" protection 
code" ] 

[line number] ASS IGN file name, file number, ret urn variable ['protection code] 

Exa mples: 
".'.,: 

::. 

In t he syntax above, the file number determines the position the file name is to take 
with reference to the previous FILES statement. Since a F ILES statement can contain up 
to 10 fil e na mes or ast erisks, the file number must be a positive integer from 1 through 
10. Consider the following program segment. 

In this example, the asterisk in the FI LES statement (in the file #2 position) is assigned 
the file name, CA RD . Of course , the data file , CARD must have been opened before the 
FILES statement can be executed. Additional ASSIGN statements can be placed later in 
the same program for the purpose of reass igning a different file name to any file position. 
An ASSIGN statement sets the pointer of the specified fil e to the first item of the first 
physica l record. 

You can use a return variable to determine the status of the file. Any variable can be 
used . 

In the previous example, K is the return variab le . Its value is determined during the 
ASSIGN execution and can be used any time in the program. The value of the return 
variable indicates ce rtai n conditions, as listed in the table be low. The return variable must 
be checked to avoid lat er unrecoverab le errors. 

Return Variable 

o 
3 
4 

Meaning 
file is avai lable 
fil e does not exist 
file number is out of range i i.e., it refers to a 
FILES statement position that does not ex ist) 

3-7 



3-8 

• .. • FUNDAMENTAL DATA COMMANDS • .. • 
(Conti nued) 

Example A 

To see how this can be useful, refer to the following 'OPEN FILES' program. 

In this exampl e, line 70 instructs the calculator to branch to line 100 if the file name 
you enter does not exist, and open the file. Without this IF statement, ERROR 97 
occurs w hen you attempt to create a file w hich has been previously opened. Use of the 
return variable (in this case, X ) avoids that error message. 

Although a string variable name cannot be included in a FILES statement, per se, you 
can use a string variable file name by referencing any file positi on with a st ring variable 
in the ASSIGN statement. This is done in the previous program by the FI LES and 
ASSIGN statements. Notice also that the ASSIGN statement (line 60) does not need to 
directly follow the FILES statement (line 30). 

Finally, the ASSIGN statement can be used to allow a protected data file to be accessed. 
For example, consider the following program segment. 

:.'. . ..... -. 

In this example, obviously the file MIMI had been previously protected w ith the 
protection code "S ISTER" . MIMI is assigned the second position in the FILES statement. 
The protection code of a protected file must be included in order to access it. Omitting 
the protection code resul ts in ERROR 92 in this case. 

Line 300 re-assigns the fourth position of the FILES statemen t (MARK) to the 
unprotected file named SUB. All references to fil e number 4 from this point (line 300) 
on in the program refer to file SUB, not file MA R K. File number 4 will refe r to SUB 
unl ess a subsequent ASSIGN statement changes it (or another FILES statement is 
executed) , as line 300 changed the ori gi nal FI LES assignment. 



~ SERIAL FILE ACCESS 

For each data file declared, a file pointer keeps track of the data item currently being 
accessed, The pointer moves through the file as you store or retrieve data items, Data is 
printed or read consecutively from the position of the pointer, which is set at the 
beginning of the file when a FILES or ASSIGN statement for that file is executed. 

Different syntaxes of the following serial file access statements are required for random 
file access (data printed or read in specific records of a file). They are discussed in 
"RANDOM FI LE ACCESS", page 3·21. 

------------------ ..... - SERIAL PRINT# STATEMENT 

The serial PRINT# statement prints data in the form of variables, numbers, or strings of 
characters. Data is printed serially on the specified file after the last item previously read 
or printed, or at the beginning of the file. 

Syntax: 

[line number] PR INT# file number; list [,END] 

[line number] PR INT# file number; END 

Examples: 

In general, the length of the data list is limited by the length of the BASIC statement (80 
characters), or by the size of the file. t 

When a PRINT# statement is executed, a logical end of record (LEOR) marker is placed 
after the last data item specified. When a data list is included in the PRINT# statement, 
the optional parameter, END, is used to print a logical end of file (LEOF) marker at the 
end of the data list. This LEOF marker replaces the LEOR marker which is placed at the 
end of each data list automatically when a serial PRINT# statement is executed. 

t S ee App end ix B, "STORAG E REQU IREMEN T S" . 

3-9 



3-10 

~ •• $0 _ SERIAL FILE ACCESS ~ •• ~ 
(Continued) 

Following is an example using the PR INT# statement to record five students' identifica­
tion numbers and test grades. 

Notice that no ASSIGN statement is used, since neither file is protected. Use this 
program to print the following identification numbers on the file, 1.0. and the 
corresponding grades on the file, GRADES. 

1.0. # Grade 

25009 91 
54362 88 
11243 99.5 
64597 62 
74532 89 

In the above program, two separate fil es are used: one for the students' identification 
numbers and one for their grades. The information can be combined into one fil e in the 
following manner. 

Line 60 prints the names and test scores of the students on the file , SCORES. The data 
items (1.0. numbers and grades) are printed alternately. Line 80 places an LEOF marker 
when the five sets of data elements are input. 



This LEOF marker can be printed over, but data on the other side of it cannot be read. 
In attempting to execute a serial READ# statement (see next section, page 3-12), an end 
of file condition is established as a result of encountering this LEOF marker. If a 
PRINT# statement that includes the optional END parameter, but no list of data 
elements, is executed at the beginning of a file, an LEOF marker is placed there. Data 
remaining in the file cannot be read in a se rial manner. 

In terms of serial READ# statements, therefore, the data beyond the point at which the 
LEOF marker is placed, is effectively erased. Some of this data may be accessed, 
however, by moving the pointer to the beginning of a subsequent record beyond the 
LEOF marker (see "Repositioning the Pointer", page 3- 13 ) or in a random manner (see 
" RANDOM FILE ACCESS", page 3-21). 

A String Variables ROM enables you to enter students' names, rather than I.D. numbers. 
The I.D. vari ab le, X, is replaced by a string variable and the program prints string names 
as data on the file. Using the data shown below, 

Name Grade 

AI Jackso n 91 
Jayne Lamfers 88 
Mark Levy 99.5 
Brian Smith 62 
Pat Stohrer 89 

key in and run the following program after installing a String Variables ROM in your 
calculator. 

3-11 



3·12 

• • .. • • SERIAL FILE ACCESS • 0 • ... 
(Continued) 

SERIAL READ# STATEMENT -.---------- ------ - --

The serial R EAD# statement reads numbers and strings into variables serially from the 
specified file, starting after the last item printed or read. Substrings are not allowed. 

Syntax: 

[line number] READ# file number ; list 

Examples: 

........ : .•..... iff kEI41i:.fd1fi,r:; . 
"-','"-. ~~~[L r(EfiD, __ -fh':;:-;- :}:d~' ~ B:$ ~' 

READ ···:#F;J- :::(~~ -_~:( ~ .'.' 

<"'. 

Before you can work with data which has been stored in a fil e, you must first read the 
data into the calculator. Remember that you are not erasing the data stored in the platter 
by reading it ; data is merely copied into the variables specified. (This data can be 
updated and re ·stored into the original file - without using a KI LL command - or into a 
new file.) 

Recall the program on page 3·10, used to print data on the files, I.D. and GRADES. To 
read the data from these files back into the calculator and print the information on the 
calculator printer, use the following program. 

In this program, the FILES statement serves two purposes; it references the file number 
parameters in the R EAD# statements (lines 40 and 50) and it resets the pointers to the 
beginning of both files before the READ# statements are executed. 

Upon execution of this program, E R RO R 99 IN LI N E 40 is displayed because you 
attempt to read data after an LEOR marker is detected. This automatically causes the 
READ# statement to attempt to get data from the next physical record. At this point, it 
encounters an LEOF marke r in the first word, which was placed there when the file was 
opened. It is actually detection of the LEOF marker which triggers ERROR 99 in this 
case. 

Data printed on the file , CLASS (see the program on page 3·11) can also be read back 
into the calculator. Use the fo llowing program to print this data on the calculator printer. 



Notice that the R EAD# statement must specify the types of data (data elements or string 
variables) in the order in which they were originally stored in the file. Line 60 reads a 
string variable and then a data point. This program can run only when the order of the 
data on file, CLASS is known. 

The variables into which you read data items do not necessarily have to be the same 
variables from which you printed the data items on the file. Although the variable name 
changes (from N$ and Z, when stored, to P$ and Y, when retrieved), the order in which 
the two data types are accessed is the same. 

If the FOR ... NEXT loop is set for D = 1 to 6, the READ# statement encounters the 
LEOF marker previously placed by the PRINT# 1; END statement. This marker replaced 
the LEOR marker at the end of the five sets of data items. Encountering the LEOF 
marker establishes an end of file condition which is discussed later in this section ("IF 
END# Statement", page 3·16). 

- --- - - - - - -------- - .... REPOSITIONING THE POINTER 

As mentioned earlier, a pointer is maintained by the mass memory system. The printer 
specifies where data storage or data retrieval begins. The pointer is automatically 
positioned at the beginning of the first physical record in a file after execution of a 
FILES statement or an ASSIGN statement. It is positioned at the next available storage 
location in the physical record after execution of a PRINT# statement. Finally, it is 
positioned at the next stored data item location of a physical record after execution of a 
R EAD# statement. The pointer is left unchanged in each file before execution of a serial 
PRINT# or READ# statement. 

It is often necessary to position the pointer to the beginning of a specific physical record 
in a file before executing a serial READ# statement. The following variation of the 
READ# statement is used for this purpose. 

Syntax: 

[line number] REA D# file number, record number 

Examples: 

3-13 



3-14 

• $ .. :a> • SERIAL FILE ACCESS .. <e _ • • 
{Continued) 

When a record number is specified and the list of vari ables is not included in the serial 
READ# statement, no data is read . Instead, the pointer is repositioned to the beginning 
of the record spec ified . A serial PRINT# or READ# statement can be executed after the 
pointer has been repositioned , to access the beginning of the specified physical record , 
rather than the beginning of only the first record of the file. 

To see how this works, first use the foll owing program to store consecutive numbers 
beginning from the eleventh record of a 15-record file named DATA 15. 

The FILES statement (line 20) sets the pointer to the beginning of the first record in the 
file. The pointer is simply repositioned to the beginning of the eleventh record of 
DATA 15 by executing line 40. 

After printing onto physical records 11 -15 of DATA 15, which takes about 25 seconds, 
ERROR 99 is displayed. Thi s indicates that a physical end of file (PEOF) marker is 
encountered and no additional data can be printed in the file. 

The following program is now used to read the data from the beginning of record 14. 

The FI LES statement (line 10) automatically sets t he pointer to the beginning of the first 
record. The pointer is simply repositioned t o the beginning of the fourteenth record in 
DATA 15 by executing line 20. The serial READ# statement begins reading data from 
that po int on. 



Since each full precision number uses four words of memory, 64 numbers can be printed 
onto a 256-word physical record. t On the file DATA15, the following numbers are 
stored on these corresponding records . 

Record # Numbers 

1·10 none 

11 1·64 

12 65-128 

13 129-192 

14 193-256 

15 257-320 

The previous program reads the data on records 14 and 15 (i.e ., numbers 193-320) and 
lists this information, eight numbers per row. The printout of this program is shown 
below. 

26 5 . ., 
t,t; ~~6 (;) ,.~, ,~:. 9 ~~:"7 e ~ ,~ ~-"'-.' ,-', 

:::. 
-;"'", 
t . .:. ~-:74 2'? 6 ;;~T '? 2 7';::; 

2::: J -:":'-:) 
':""-'::""- 2{34 2 -:~:::i ~I':)'::'-

.:,..' .. " .. ' 
2E: 9 29(i 2Si 2 ;~~93 2') 4 
297 .') 0 -0 

.:..... .'"!-' 30 ~~~ 30 1 30~'~ 
") [15 306 . ., 13 ::: "' , 13 9 :;:1 (I 
" 

~, ,) 

',", 1 '",iI .-, 1 4 - IS "'> :[ '? ") 1 ,'", ..::' '-<: .. :. -.:: ;. ,,::0 ' .. ' () 

ERROR 99 is displayed at this point, indicating a PEOF marker is detected and there is 
no more data to be read. This error message can be avoided by using the IF END# 
statement, discussed in the next section. 

t 58!! Appendix B tor a detai led d iscuss ion on how to esrimflte fi le siLeo 

3-15 



3-16 

SERIAL FILE ACCESS • ~ ot>----O ~ 
(Cont inued) 

IF END# STATEMENT ~~-----------------------------------------

The IF END# statemen t sets up a condition in the program. If a PEOF marke r is encountered 
during execution of a seria l PRINT# or READ# statement, or if an LEOF marker is encountered 
during execution of a serial READ# statement, the prog ram branches to the line number 
spec ified in the previous IF END# statement, thus avoid ing an ERROR. Thi s makes it possib le 
to use a file whose exact conten ts are unknown. 

Syntax: 

line number IF EN 0 # file number TH EN line number 

Examples: 

The IF END# statement is programmable only; it cannot be executed from the keyboard, 

In the previous program (page 3-14), ERROR 99 is displayed after the completion of the 
program, telling you that a PEOF marker is encountered and no more data can be read, 
This error message can be avoided by including an IF END# statement in the program. 

Upon detecting an end of file condition, the program branches to the line number 
specified in the IF END# statement.·f T h.i.s.s.Q]1dition remains in effect u ti another If 
END# statement,..li'LLth a differenU jne numbeL parame.teL for he same file, is exe.c~ . 
All previous IF EN 0 # conditions are cancelled when a FILES statemen1- i's- executed, 
while an ASSIGN statement cancels the IF END# condition only for the individual file 
specified in the ASSIGN statement. 

Consider the previous program (page 3-14) modified to include an IF END# statement. 

In this program, when all the data is read, the pointer comes to a PEOF marker. The IF 
END# statement (line 30) sets up a condition whereby the program branches to line 70 
when the READ# statement (line 40) encounters the PEOF marker. At this point, lines 
70 and 80 are executed, informing you that the PEOF marker is the next item in the 
file. 

t If t he lin e nu m be r to whic h t he IF ENO # statemen t refers d oes no t exi st, ER R O R 4 4 is d isp l'JVcd . T his e rro r refers 
to a PR INT # o r REAO # statemp. nt, no t the IF ENO# sta t eme nt , becau se it is Jctuil ily t he PRIN T # o r R EA O#wh ic h 
preci p i tat es t he er ro r . I F ENO#sirnp ly estClblishos a co nrlit ion. 



Notice that the IF END# statement is executed only once before entering the 
READ#/ PRINT loop. Since IF END# establishes the exit procedure for this loop, it has 
to be executed before entering the loop, but should not be included in the loop. 
Repeated, unnecessa ry execution of IF END# should be avoided because of the 
additional time needed to execute this statement. 

----------- NOTE -----------

An IF END# statement sets up a condition to detect an EOF marker. If 
you attempt to access a non ·existent or invalid record w ithout a 
previously executed IF END# statement, ERROR 99 is displayed. If a file 
has not been assigned into an • position which is referenced, or no FILES 
statement is given, executing the IF END# statement results in ERROR 
94. 

-----------------------~G TYPFUNCTION 

The TYP function is used to identify the type of the next item in a specified file. 

Syntax: 

TYP file number 

TYP (- file number) 

Examples: 

In some cases, the type of data item next on the file may be unknown . Use the TYP 
function to find out what that data item is. The TYP function returns a number code 
which can then be used for various purposes. The number codes and their meanings are 
listed below. 

1 Next item is a full precision number 

2 Next item is a character string 

3 Next item is an end of file marker 

4 Next item is an end of record marker 

5 Next item is a split precision number 

6 Next item is an integer precision number 

Although serial PRINT# and READ# statements can detect end of file (PEOF and 
LEOF) markers when an IF END# condition is established, there is no way to detect end 
of record (LEOR or PEOR) markers using the IF END# statement. 

The optional minus sign in the TYP syntax provides t he only means to check for end of 
record markers in serial file access mode. Use the minus sign before the file number 
parameter for this most general case. If a value of 4 is returned, the next item in a record 
is an LEOR or PEOR marker. 

3-17 



3-18 

~ :$ • • @ SERIAL FILE ACCESS ~ • $' <$ • 

(Continued) 

Execute the program shown below to store different types of data on the first record of 
the 5~record file, NU? 

Example B 

The following 'DATA CHECK' program checks the type of the next data item before 
reading the item. 

The GOTO ... OF statement (line 40) branches the program to one of six line numbers, 
depending on the value of TYP (~1). Notice that this statement must be executed before 
each READ# statement, to determine what type of data item is next on the record. The 
printout of this program is as follows: 



1111 
limR 

If the pointer is set to another record of NU? in line 30 (e.g., READ#l.4), when this 
program is run, TYP (-1) returns a value of 3, indicating an LEOF marker is 
encountered. This marker was placed in the first word of each record automatically when 
the file was opened. The LEOF marker disappears only when data is stored in the record. 

Example C 

To illustrate the principles involved in serial file access, consider the 'ADD DATA' 
program shown below. 

[0 1;:E1'1 fHI:~ PFOCFnt'l ;"3TClPE:=: DHfH ITEt'1:;;; :::;[OUEr1Tlfii.L\' JH f1 FI i_E, 
20 FILES * 
:30 11 [t'l liH61 
40 DlC,P ",""HT FleE IIt,,'lt ': i"C <-flf,,:"':, " : 
5~3 I HF'UT Hl 
60 fiS:::; I GH 8$ ~ ! ! :c< 
70 PEt'l THE t'~L:';; r L.UtE TE.:~; -f::~', H~E FCTlJkH 1,';:::F:lfiBLE CO . IF THE FILE DOES HUT 
e0 PEN E;q~)T (l"E. ~ >.:#(1) , THEJI 1J U'::: fH -'Er'mD. 
'7U IF ;<;=0 TH£H 150 
100 DlSP "HOH i'1I1NY PECOPI)~:; HI "; J'Hd 
! 1"3 ltlF'UT t' 
120 rlPEI-, fl'.!'1 
130 ASSIGN R$.l~X 
140 GOTO 2fW 
150 DISP "ERA SE OLD DATA? ':\'ES OR N0~ , 
1601 I HF'UI fi$ 
17~) IF F'O~:'~ <RJ) '''('' );::~;t THEN ;?lt1 
1:::0 PEN THE HDa L U1E EFFEI ... ::r J \/EL\' E~.J1:::;E .~. THe: nfnfi HI THI3 FILE f;'/ 
1'30 PHI F' Lflf;n-IG HI, UHI ,)1' FILE '- LEO'" t-lf,f-H'" III (HE f3EGltiflTliG (IF -'We ,'!i E. 
20<1 "'R J NT #!; Eilli 
210 IF EliUll THEil ~80 
220 REM THE l~EXT TNO STATEMElifS REPGSlfiON T~IE PDIN'fER, 
230 HE!'! TlB m ELE11F. fiT B', llnril EI.UiEi IT. ilHn, THI': ttill OF F li.E [.A-! f\lI/T_ iT I,:,,, 
240 PEH U; nETECTf;:D~ THE l-'i·,WGPr"1H bF.:fit'lCHL :;: TO THE L.HiE Ht.JNDE (LiNE 2G~J,:; 
~~50 PEH '::PECIFIED IN THE pr'~E"/lOl..! ::; IF LHllff ':;;TflTENEI'iT (LINE :~: 0). 
260 F::EHIr # 1; A 
27(1 (;D1"O 2f:,0 
2;:;::0 nIt:p "HHFf1 HUN8EF: SIGi',hiLS [HLI OF IlnTH"~ 
2 '~H) ItlPtlT (} 
3B0 IF END#l THEN 410 
3H1 r;:::;~:J 
32tl 111:':'" "IIIF'U I Dfilli ELEI-1EIH '; 
:3:3t1 IHPUT f1 
341.:) IF" ti'-::Cl THEN :3::::0 
358 PRl tiT #! ; H·EliD 
3Gfl I~I+l 
~:70 (;1)"[0 :~~ ;21.3 

:3:90 F'RIHT ''[In"Tn ENTF.: "i' COI'1FLr:rEI'I, "; l ~ " I"iEi'l;:; Pf~: lti':'L D IN FILt~," 
3913 DI';:::P "IiOf~E"; 
.\1313 EIID 
41~3 PPIHT "THEPE I::::; (-iO r'lOr:: E P'1jiAI Ii) THi,:'; FiLE.";:l; -'lTEt'i:::: HE;~:[ F'PIHTE)),' 
420 DI~P 'nONE-; 
436 Elm 

The remarks beginning on lines 10, 70, 180 and 220 explain the separate parts of this 
program. If the file you want already contains data, and if you want to add your new 
data to the file, lines 260 and 270 reposition the pointer to the end of t he old data. The 
IF END# statement (line 210) provides an exit procedure for the program. The program 
branches to line 280 when it encounters an LEOR, PEOR or PEOF marker which was 
previously placed in the file, or when it encounters the LEOF marker placed by line 200 
when all data is effectively erased. In either case, line 280 is eventually executed. 

3-19 



3-20 

• • • • ~ SERIAL FILE ACCESS • • '" • -
(Continued) 

Example 0 

The 'STATISTICS' program shown below reads data in an existing file and calculates the 
number of items read, the mean, standard deviation, largest and sma llest values of the 
data. Line 180 reads the data, element by e lement, until the end of record or end of file 
condition, set up by line 130, is met. 



-¢o • ¢ ~ RANDOM FILE ACCESS --<$ • .. $>-

Data stored in a random manner is stored into specified physical records within a file. 
Variations of the previously discussed PRINT# and READ# statement syntaxes are used 
to access data in particular records. As in serial file access, a pointer keeps track of the 
data item currently being accessed . Unlike serial file access, however, in random file 
access, a specific record number w ithin a file must be specified in each PR I NT# and 
R EAD# statement. Consequently, the pointer is positioned at the beginning of the 
specifi ed record before printing or reading operations occur. Data is printed or read 
consecutively from the beginning of the physical record. 

- ------- --- - - - --- - 00 .. RANDOM PRINT# STATEMENT 

The random PR INT# statement prints data in the form of variables, numbers or strings 
of characters from the beginning of a specified physical record. A variation of this syntax 
can also be used to erase the contents of an individual record. 

Syntax: 

[line number] PRINT# file number, reco rd number ; list [ ,EN D] 

[line number] PRI NT# file number, record number [ ;END] 

Examples: 

The parameters in this syntax are similar to the se rial PRINT# statement parameters in 
usage and restrictions. The pointer is positioned at the beginning of the specified record 
before the PRI NT# statement is executed. 

The program below prints consecutive numbers onto each odd- numbered physical record 
of a 10-record file named, TE N. 

In line 50, t he record number parameter is specified by the variable, R. Line 70 
increments this va riable by 2 so that onl y odd-numbered records are accessed. 

3-21 



3·22 

• 10 e • RANDOM FILE ACCESS . . ., . 
(Continued) 

By printing in specific records of the file TEN, previous data in those records is erased 
and replaced by the new data . An LEOR marker is automatically placed at the end of 
each data list (i.e., the one data item, A) in each odd-numbered record. 

File TEN now contains the following information. 

Record # Data 
1 
2 
3 2 
4 
5 
6 
7 
8 
9 

10 

3 

4 

5 

When no list is specified in a PRINT# statement, the following syntax erases the contents 
of a particular record. 

[line number] PR INT# file number, record number 

This syntax actually places an LEOR marker at the beginning of t he specified record, 
making the data contained in the physical record inaccessible to any READ# statement. 
When an LEOR marker is detected, a random READ# statement (see next section) 
encounters an end of record condition; a serial READ# statement sk ips over the entire 
record and attempts to access data in the next record . Of course, a subseq uent PRINT# 
statement writes over the LEOR marker. 

The following program erases every third record of file , TEN , which was opened and 
accessed in the previous program. 



The information which is now left in the file is shown below. 

Record # Data 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2 

3 

5 

An LEOF marker is stored by executing a statement with the following syntax. 

[line numberl PRINT# file number, record number; END 

This places an LEOF marker in the first word of a specified record in the same way that 
an LEaF marker is placed automatically when the file is originally opened. If a random 
R EAD# or a seria l R EAD# statement attempts to access a record with an LEaF marker 
at the beginning of that record, an end of file condition is established. 

By including a list of variables before the END parameter, an LEOF marker is stored 
after the data w ithin the physical record specified, in place of the LEaR marker usually 
written by the mass memory system. If the serial or random READ# list is greater than 
the PRINT# list which stored the data, the LEaF marker is detected, estab lishing an end 
of file condition. 

--- - - ----------- - -*.- RANDOM READ# STATEMENT 

The random READ# statement reads numbers and strings into variables from a specified record in 
a file, starting from the beginning of that record. Substrings are not allowed. A variation of this 
syntax can be used to reposition the pointer (see page 3-13). . -

Syntax: 

[line numberl READ# file number, record number [ ;Iistl 

Examples: 

-:'- -:.-0. 

As in the case of serial R EAD# statements, the variables into which you read data items 
do not necessarily have to be the same variables from which you printed the data items 
on the record. 

3-23 



3-24 

~ RANDOM FILE ACCESS -$>-$>- • ...-~.-... ---

(Continued) 

The data item list is omitted only when you arc repositioning the pointer as discussed on 
page 3-13. The pointer is positioned at the beginning of the specified record before the 
READ# statement is executed. 

The following program reads the data printed in the 5th and 9th records of the file, 
TEN. 

~::.· · {ii; ·· i:' .IL !(I: ' ihi ~': ... .... . ....... .' '.':. :.\. .':'\'.' < 

...... ' *i))'~BH'~ ". J l:·'~J;T:·.··:.. . .... ' ..? . ..... . .............. : ... ' 
' .. ·· '1g··fP f:ii rff !i+n:: 'j · c. 'r ···: \:rc ;j' . J I !· / V····.··:··j·:::y " lI'~ ' j " )-" -"1 :' 1'" ' ,. '" " " . . .•. . . i· · ~i\~~il:t(~T · · : ;/8~. ii~:t0 .:·.IT ~J; i.:. lJ i ·.··.: f[: .i:t:~;~~~; .I; . .']: .•. I'{ .~;~\;}t~ il~:··ig .• }:;:·.: ...... \ 

This data was originally printed onto odd-numbered records of file TEN (page 3-21). 
The data on records 1 and 7 was erased. The program above reads the data from records 
5 and 9 and then prints it on the calculator printer. If the calculator is programmed to 
read data from each record, ERROR 99 is displayed, indicating that an LEOR marker is 
detected at the beginning of record 1. 

The printout from this program is shown below. 

" ...... ·· .r~i ·~ .· n;:; l' I~" l' E: t'1 t l j {.~ r!: i: Dj;; J,I ' lie:: 
." T .. H~.rl;';:tf{> i:r:St1 J, ~ip f';t. !>PD . jt,~ . 

IF END# STATEMENT - • .-----------------------------------------

The IF END# statement sets up a condition in the prog ram . If any end of record marker or end 
of file marker is encountered dur ing the execu tion of a random READ# statement, or a PEOR 
or PEOF marker is encoun tered during the exec ution of a random PRINT# statement, the 
program branches to the line number spec ified in the previous IF END# statement , thus 
aVOid ing an ERROR. 

Syntax: 

line number IF END# file number THEN line number 

Examples: 
.'.- .... '-'~"'. , .- '. '." . 

-,,:-,.",.',.- "', ",-'J:q ·::·:, ·:J"E:··:~,.tr{ ~:~~,:~:-,:-::·:::]~,I:~·~:~r:~- :~::':--~~~~: ~~-.. :-._ ','.' :- .. 
...•.. . ;: (\ :JI .l \ h4.1!1!',." F(;.' :. J .rWli .. i t)} 

The IF END# statement is programmable only; it cannot be executed from the keyboard. 
As mentioned earlier in serial file access, the IF END# statement sets up a condition 
under which a PRINT# or READ# statement branches to the specified lind when an 
end of file marker is encountered. In random file access, however, the IF END# 
condition can be used to check for either an EOF marker or an EOR marker. If, for 
example, a random READ# data list includes more data items than were printed by the 
previous PRINT# statement, the end of record condition is detected. 

t If th e line n umbe r to whi ch the IF ENO # statement refers does no t I:!xist, ERR OR 44 is di sp lay ed. T his er ror refers 
to a PR INT# o r R EAO#statement , no t the IF ENO# statement, because it is act uall y the PRINT#or RE AO#wh ich 
precipitates the f)rror . IF END# si mply establ ish es a co nd it ion . 



Consider the following program. 

This program prints four data items onto each record of the file, POWER. When variable 
A is incremented to a value greater than 10 - the number of records in the file - the 
condition set up by the IF END# statement in line 40 is met. The program branches to 
line 80 when the PEOF marker is encountered in this case. In this way, ERROR 99 is 
avoided. 

Similarly, the IF END# statement can be used to avoid an error message when reading 
data from a file, as shown below. 

The printout for the above program is shown below. 

3-25 



3-26 

• • ... -- RANDOM FILE ACCESS -4 • <l: ___ 

(Continued) 

IF END# can also be used to branch to a spec ified program line when there is a 
possibility of printing mo re data onto a physical record than it can ho ld . In this case, IF 
END# sets up an ex it proced ure for the PRINT# st atement when it encounters a PEOR 
ma rker. 

- ---------- NOTE -----------

An IF END# statement sets up a condition to detect an EOF or an EOR 
marker. If you attempt to access a non -ex istent or invalid record without 
a previously executed IF END# statement, ERROR 99 is displayed. If a 
fil e has not been assigned into an * position wh ich is referenced, or no 
FILES statement is given, executing t he IF END# statement resu lts in 
ERROR 94. 

TYP FUNCTION ~ .. ~------------------------

The T YP f unction is used to identify the type of the next item in a specified file. 

Syntax: 

TYP fil e number 

TYP (-fi le number) 

Exa mples: 

In some cases, the type of data item next on the f il e may be unkn own. Use the T YP 
function to find out what that data item is. As discussed earlier in seria l file access, the 
TYP function returns a number code which can then be used for va rious purposes. The 
number codes and their meanings are listed below. 

Next item is a full precision number 

2 Next item is a character string 

3 Next item is an end of file marker 

4 Next item is an end of record marker 

5 Next item is a split precision number 

6 Next item is an integer precision num ber 



The TYP function provides an alternate method of determining whether an EOR or EOF 
marker will be encountered during a random PR I NT# or random R EAD# operation. 
While an IF END# statement sets up a condition to check for either of these markers, 
TYP can identify the specific marker encountered. This information can be used in a 
GOTO ... OF statement to branch to different parts of the program depending on the value 
returned for the funct ion. As mentioned earlier, the minus sign must be used before the 
file number parameter to detect an EOR marker. 

See "TYP Function" (page 3-17) for an exa mple of TYP function use. 

3-27 



3-28 

• • eo _ • • _ NOTES - 4> ., • _ '" • " 



Chapter 4 

SUPPLEMENTARY COMMANDS 

This chapter discusses matrix operations, the use of more than one platter in a system, 
and various other commands for increased control of your mass memory. 

__ • • ,. $ - MATRIX OPERATIONS ~. ~ • 

In order to work with matrices and your mass memory system, you need an 11270 
Matrix Operations ROM installed in your calculator. Then, with the MAT READ# and 
MAT PRINT# commands, you can print or read entire matrices onto a data file. As with 
the statements and commands discussed in Chapter 3, particular attention shou ld be paid 
to matrix command syntaxes. The '# ' character is included in the matrix commands to 
differentiate them from the BASIC matrix commands described in the Matrix ROM 
Operating Manual. 

--------------------------------------~.~ MATPRINT# STATEMENT 

The MAT PRINT# statement prints an entire matrix onto a specified record or file. 

Syntax: 

[line number] MAT PRINT# file number [,record number] ; list of matrix variables 

Examples : 

Matrices can only be printed on data files; the size of the matrix you want to store is 
limited by the number of records you specify when opening that file. For example, a 
one-record file, which contains 256 words, can hold up to 64 full precision numbers. 
This means that an 8 by 8 matrix is the largest matrix of full precision numbers that file 
(or one record of any other file) can hold. Of course, by printing a matrix serially (i.e., 
not specifying a particular record), the matrix size is not limited to 256 words. In this 
case it is limited by the number of records in the file multiplied by 256 words per 
record. 

4-1 



4-2 

... . 4l> __ MATRIX OPERATIONS _ ~ • <> • 
(Continued) 

The following example prints a 4 by 4 matri x seria ll y into the file, MATRIX. 

The elements of a matri x are printed consecutively in row-column order from the 
beginning of the fi le or record specified. With the record number parameter omitted, the 
matrix is printed onto the file from the position of the pointer. By including this 
optional parameter, the matri x is printed onto a si ngle specified record. 

If the matrix is t oo large for the file or record specified, an EOR or EOF marker is 
encountered and E R RO R 99 is displayed . Of course, an I F EN 0 # statement can be used 
to detect the EOR or EOF condi t ion and avoid t his error message. 

MATREAD# STATEMENT -------- --------------------------------

The MAT READ# statement reads the matrix f rom a specified record or f ile. 

Syntax: 

[line number] MAT REA D# file number Lrecord number] ; list of matri x variables 

Examples: 

To read the matrix created in the prev ious section and print it on the calculator printe r, 
use t he fol lowing program. 



Line 30 reads the matrix from MATRIX into the calculator, using the mass memory 
MAT R EAD# statement. Line 40 then prints the entire matri x, using the Matrix ROM 
MAT PR INT statement. Notice that although matrix variable A was used to define the 
original matrix, any variable can be used to read it back again (in this case, variable B is 
used) . This matrix must be dimensioned, as in line 10. The printout from this program is 
shown below. 

34 

44 

The matri x can be read in any format less than or equal to the original size. In the 
program below, a 4 by 4 matrix is read as an 8 by 2 matrix by dimensioning the matrix 
variable B in that manner. 

The printout follows. 

In the above prin to ut, data element (2,1) is 13. This is because the data elements of the 
original matri x were printed on the file point by point; they were not stored in unique 
random locations. 

4-3 



4-4 

• • 4' ;p ¢- MATRIX OPERATIONS ~ >$> • ~ .. 

(Continued) 

If you run a program in which a matrix was dimensioned larger than the original matrix, 
E R RO R 99 is displayed. This error message can be avoided, however, by using an IF 
END# statement to detect the end of record condition. 

An implicit REDIM statement can be included in the MAT READ# statement. To read 
the data in this matrix in a 3 by 4 format, use this program. 

Notice that the DIM statement (line 10) dimensions a matrix that is at least as large as 
that specified by the implicit REDIM statement in line 30. The printout of this program 
is as follows. 

• • • Go <>- MULTIPLE PLATTERS • <$ .. $ Go-

As you know, a mass memory system can contain from one to four platters. You must 
specify which platter you want to address, since only one platter can be accessed at a 
time. Once this has been specified, the platter is controlled with the commands and 
statements previously discussed. All control, program and data commands apply to the 
platter designated. 

Th e 98678 Mass Memory Drive, which contains two platters, must be set to one of the 
dual positions: 

o and 1 or 2 and 3 

The 9867 A Mass Memory Drive can be swit ched to any of the four pOSitions, provided 
that no other unit is switched to the same position. See page 1·9 for instructions on 
setting the unit select switch. 



----------------------------------------------~ UNIT COMMAND 

The UN IT command specifies the platter to be used for subsequent commands. 

Syntax: 

[li ne number] UN IT unit number 

Examples: 

Once the UNIT command is executed, all subsequent statements and commands reference 
the platter specified until a new UNIT command, SCRATCH A , or LOAD BIN is 
executed or the calculator is switched OFF. Under these conditions, a previous FILES 
statement is also destroyed. When the calculator is first switched ON , or after SCRATCH 
A or LOAD BIN is executed, UNIT 0 is automatica lly specified. 

Assume that you have the follow ing program stored in a program fil e named, PRINTO. 

To transfer this program from the file, PRINTO on platter 0 to a file (ca ll it PRINT2) on 
platter 2, execute the following steps from the keyboard: 

Notice that platter 0 does not have to be specified originally, since it is automatically 
specif ied when your calculator is turned ON. 

Now assume you have three data items stored on the fifth record of the file, GIVE on 
platter 2. To copy this data from that fi le to the sixth record of a new file named , 
TAKE on platter 3, execute the fo llowing program: 

Notice that a new FILES statement (line 60) must be executed so that subsequent 
statements refer to the correct (new) file . 

4-5 



4-6 

~ ~ ,., • ~ MULTIPLE PLATTERS --ct ~ .. $' • 

(Continued) 

The UNIT command obso letes all previous FILES statements. If the UNIT command 
references an uncon nected platter, no error occurs, but subsequent commands result in 
error messages. 

PLATTER-DUPLICATE PROCEDURE _e_----- - - - --- --- - -

All o f the information contained on one platter can be copied to another plattert by 
performing t he PLATTER -DUPLICATE procedure. 

It should be emphasized that all of the information contained on t he first platter -
including data, programs, EOR and EOF markers, and unused space - are duplicated on 
the second platter, erasing everything on the latter platter. 

The second platter, as well as the first, must be initialized before the 
PLATTER -DUPLICATE procedure is performed. 

Insert the mass memory system tape cassette in the calculator and execute: 

LOAD BIN 1 

After the display returns, perform this procedure: 

1. Key in PLATTER-DUPLICATE and press EXECUTE. 
The display w ill show: 

2. Key in (but don't execute) the unit number of the original platter. 
The display w ill then show: 

3 . Key in (but don't execute) the number of the second platter. 
The display wi ll show: 

[ SOU~ C E UN i T =N, DEST . UN IT =M OK0 

4. Carefully verify that you keyed in the correct numbers for N and M. I f so , press 
EX ECUTE. If the numbers are not correct, press STOP, CLEAR, and begin the 
procedure aga in f rom step 1. 

The platter is duplicated automatically at this point. Duplicat ion takes about 3 minutes. 
ERROR 903, if disp layed , indicates duplication is not allowed. See footnote. 

-j- In gene ral, if the seco nd, or 'des t inatio n ' pl ol1te r co ntil in s d efective tr ucks , the DUPLICAT E·PLATT ER proced ure is 
not pf!rfo rmf!d. Ddec Livc t racks on the f i rs t , or 's ource' p lath)r do not nffect the procedure. I t t h e d efect ive track s o n 
the d es t ination p latt er happen to co incide w ith those o n the sou rce platter , the proced ure ca n be e xecuted, <l Isa. 



~ MISCELLANEOUS COMMANDS ~ 

The following commands provide greater flexibility for controlling your mass memory 
system. 

DeOPY 
DFLOAD 
DGET 
DEXP 

DFDUMP 
DREN 
DBYTE 

A ...st(i[lg_ variable.. must b~ used in the DBYTE andDEXP command~....sJri.ngs_a[e_not . 
peunLtted .in-any_m _the other coruroandsJl it"ecrabove . 

--- --- --- --------- --- - - _.. DCOPY COMMAND 

The DeOPY command duplicates the contents of one data file onto another. These two 
data files can be located on separate platters. 

Syntax: 

[line number] DeOpy " 1st file name" Cunit number] 
TO " 2nd file name" Cunit number] 

Examples: 

The optional unit number parameters need not be used if both the first f il e and the 
second are located on the same platter. In any event, DeOPY does not change the unit 
number reference that existed previously in the calculator memory. 

The DeOPY command can be used to duplicate data onto a file as long as that file is 
large enough to accommodate it. This command copies data only, not available space. 
For example, a five ·record file can be copied into a two ·record file provided that no 
more than two of th e source file's five records are filled with data. 

ERROR 96 results if the second file is smaller than the current size of the first file. 

The second file must be opened before executing the DeOPY command. Also, both files 
must either have identical protection codes, or none at all. Remember that only a data 
file can be copied with the DeOPY command; a program or key file cannot. 

"- .--

4-7 



4-8 

-- ~ ~ MISCELLANEOUS COMMANDS -¢- ~ • 

(Continued) 

DFDUMP COMMAND -~_----------------------

The DFDUMP (data fil e dump) command stores a specified data file, presently on the 
platter, onto the calculator internal cassette(s). 

Syntax: 

DFDUMP "file name" 

Example : 

The DFDUMP command stores a platter data file of any si ze onto one o r more tape 
cassettes. The data file can be protected or unprotected; no protection code parameter is 
required. 

Each cassette can hold up to a 150-record fil e; larger files are stored on more than one 
tape cassette according to t he procedure explained below. 

The DFDUMP command is executed from the keyboard only, because calculator memory 
is erased when thi s command is executed. 

I f the file you wish to store is larger than 150 records, more than one tape cassette is 
necessary . Insert the first tape cassette in the tape transport, close the transport door and 
press REWIND. When the tape is on clear-leader, key in and execute the DFDUMP 
command from the keyboard, specifying the file you wish to store on the cassettes. The 
first 150 records of the file are stored, one by one, onto the first tape cassette. When the 
storing is completed, the tape cassette is rewo und to clear-leader automatica lly and the 
fo llowing message is displayed t : 

LOAD AND ' HER TAPE 

Remove the first cassette and mark it so that the order of cassettes remains the same 
when you want to load the information on another mass memory file . Insert the next 
cassette in the tape transport, close the transpo rt door and press REWIND. When the 
tape is on clear-leader, press EXECUTE to continue storing the file, from record number 
151. Follow this procedure until the entire file is stored on yo ur cassettes. The last 
cassette req uired is rewound and the display shows: 

t If th e f il e to be stored is less t han 150 record~ , t he sam e proced Ure must be foll owed . No m(!~sage is display!!c! , b Ul 
calculator COntro l ret urns a fte r lh e tape is com pletel y rewound. 



The following facts should be remembered when using the DFDUMP command . 

., The calculator memory is erased when DFDUMP is executed, so execute this 
command only from the keyboard. 

e The information (e.g., BOF control markers, data) currently on the cassette(s) in 
the space required for storage is replaced by the data stored from the platter. 

• The tape cassette(s) must be positioned on clear-leader before DFDUMP is 
executed. 

" Only consecutive, non ·empty records and the first empty record of a file is stored 
by the DFDUMP command. See below. 

• Once the data from the platter has been stored on the cassette(s), it cannot be 
randomly accessed from t he cassette(s) ; it can be loaded only onto another mass 
memory platter with the DFLOAD command, discussed in the next section. 

If every physical record in a file contains data, the entire file is stored onto the 
cassette(s) with the DFDUMP command. If, however, only some of the records of a file 
contain data, every consecutive data record, up to and including the first empty one in 
which an LEOF marker is placed, is stored on the cassette(s). 

Record # 1 Record #2 Record #3 Record #4 Record #S 

I ~ I I ~ I 
Figure 4-1. A Five-Record File 

Consider t he 5-record file above. Records 1, 2 and 5 conta in data, but records 3 and 4 
are empty. When the DFDUMP command is executed, records 1 and 2 are stored, one at 
a time. Then the mass memory system encounters the LEOF marker which was placed in 
the first word of the third record when the file was opened. This first empty record 
(record 3) is also stored on the cassette. 

NOTE --- - --- --- ­
Every consecutive data record, up to and including the first empty one, is 
stored on the cassette(s), regardless of whether the last record that 
contains data includes an EO R or an EO F marker. 

In the sam ple file above, the data in record 5 is not stored on the cassette because at 
least one empty record (in this case, two ) sepa rates the non-empty data records. The 
LEOF marker in record 3 signals the mass memory system to store the entire empty 
record and immediate ly rewind t he tape cassette. The DFDUMP command is completed 
at that point. 

In the case of a completel y empty file, the first record of the file is stored, since it is the 
first empty record and contains an LEOF marker in its first word. 

4-9 



4-10 

---<>--<>-<>- MISCELLANEOUS COMMANDS ~ 
(Con t inued) 

DFLOAD COMMAND -<>-

The DFLOAD (data file load) command loads th e data from the calculator internal tape 
cassette(s) to a specific file on the platter. 

Syntax: 

D F LO AD " fil e name" 

Example: 

The DFLOAD command loads the data which is on one or more tape cassettes onto a 
platter data file. If the data on the cassette(s) is protected (i.e., originally stored from a 
protected data file), D F LOAD loads it onto a protected data file as long as its protection 
code matches the original file's code; the data on an unprotected cassette (i.e., originally 
stored from an unprotected data file) can be loaded only onto an unprotected data file. 

Like DFDUMP, the DFLOAD command is executed from the keyboard only, because 
calculator memory is erased when this command is executed. 

If more than one cassette is to be loaded onto a platter data file (i.e., if more than 150 
records are required), insert the first tape cassette in the tape transport, close the 
transport door and press REWIND. When the tape is on clear·leader, key in and execute 
the DFLOAD command from the keyboard, specifying the file in which you wish to 
store the cassettes' data. The first 150 records are loaded, one by one. When the loading 
is completed, the tape cassette is rewound to clear· leader automatically and the following 
message is displayed'i' : 

..... Lj , .... ," ', .. ,' . 
,! ! .. " !, . 

. ... . . . 

Remove th e first cassette and insert the next cassette in t he tape transport. Close the 
transport door and press REWIND. When th e tape is on clear·leader, press EXECUTE to 
continue loading the file, from record 151. Follow this procedure until the entire file is 
loaded from your cassettes . The last cassette is rewound and the display shows: 

t I f the file to be loaded is less than 150 records, the s<Jme procedure m us t be followed . No message is disp layed, but 
calcu lator con t ro l retu rns after the t<Jpe is completely rewou nd. 



--------------------------------------------~O_ OREN COMMAND 

The OREN (renamel command allows you to change the name of any fi le. 

Syntax: 

[line number] OREN " old file name " TO "new file name" [' ''protection code" ] 

Examples: 

W ' DREN .. liHD " TO " SO 
flREr · " Ut." · TO "U ., " 1·IIFE " 

The OREN command renames your file. The contents of the fil e remain the same. A 
protection code, if present, must be specified . This protection code is t ransferred to the 
new fil e name automatically. The old fil e name no longer exists on the platter. 

------- - ------------------------------------_._0 DGETCOMMAND 

The DG ET command loads the source (non-compiled) program specified into the 
calculator and checks it for syntax errors . 

Syntax : 

[line number] OGET " file name" [0] 

Examples : 

..... 1 (,\ flGET 
D-GET 

A source program is a series of statements which are printed sequentially onto a data file 
as a se ries of string variables, one BASIC statement per string. After the last statement 
(string), an LEnLrnarke.r should be written by executing a PRINT# ... EJ'>ID statement to 
separate old data from the new, source program. Using OGET, you can load these 
statements into the calculator and p.(trform BASLC syntax chec!s~_at _!!:le sarn~ J ime. The 
fJrugram is executed immediately unless the optional parameter, 0, is included in the 
syntax. In this case, the program is loaded into calculator mem2lY , but not executed . 

The OGET command provides a means to use programs actually written by other 
programs (see Exa mple G, page 4-14). 

4-11 



4-12 

~ $ :0 MISCELLANEOUS COMMANDS --4 • * 
(Continued ) 

DBYTE COMMAND ~-----------------------

The DBYTE command converts the value of a specified variable to its binary equivalent 
character. This binary character is then stored as a single character in the specified string. 

Syntax: 

[line number] DBYT E variable, string name 

Examples: 

1 b: '~li8'~tr'E "-{::'-;-:-i($.-,.::," -- , 
' lJE:'{l'ERiR$ 

,': .. 
: . .". 

"'. :',". 

.: . ." 

.,'.: 

.'" ,.'" 

Obviously, the variable must be the decimal equivalent of an ASCII character. For 
example, if you set Y equal to 34, A$ will contain the quotation character (") when you 
execute the following syntax: 

Only simple variables (no expressions) and simple strings (no subscripts) are allowed. 

Example E 

The 'CHARACTER' program below generates the Model 9866A Printer characters 
associated with their decimal codes, from 1 to 126. The numbers less than 33 and greater 
than 95 are not needed for 9866A printer operation. For the characters and functions 
these codes represent on the 9861A Typewriter and the 38 ASR Teleprinter, see Table 
F-2 of the Model 30 Operating and Programming Manual. 

DEXPCOMMAND ~------------------------------

The DEXP command converts the value of the specified variable into a 4-digit character 
string w ith leading zeros. 

Syntax: 

[line number] DEXP variable, string name 



Examples: 
"," '," 

The DEXP command can be used, for example, to generate line numbers for BASIC 
statements. If you set X equal to 10, A$ will contain the 4-digit character string, 0010 
by executing the following command . 

. ' .. -

: .... . 
' ... . 

Example F 

Shown below is a 'CHECK-WRITING ' program that prints amounts (in dollars and cents) 
with leading asterisks. This is useful when writing checks. This program converts a dollar 
value (less than $10,000, but not negative) to a string with leading asterisks. 

4-13 



4-14 

~ MISCELLANEOUS COMMANDS ~ 
(Continued) 

Example G 

The program on the facing page illustrates one way in which the DREN, DGET, DBYTE 
and DEXP commands can be used. This program generates the 'source' program, 
overprinted on the listing in solid black. The new source program is used to ename an 
~g data flle .• 

The FILES statement in line 40 is referenced by ASSIGN statements in lines 50.120 and 
160. Line 190 sets the variable, Z. to 34. The subsequent DBYTE command (line 200) 
stores the equivalent printer character (") in D$. Variable L is set to 10, 20 and 30 as 
the program progresses. These values are used by the DEXP command (lines 220, 330 
and 400) to create 4·digit character strings which form line numbers in the source 
program. 

Lines 150 to 420 actually generate and store the 3·line source program on the data file. 
1111/. The DGET command (line 430) loads and runs this source program. 

Assume this program was run to change the name of a data file from DARK to LIGHT. 
The calculator memory, which now contains the source program, is listed below. 

The first statement in the source program uses the DREN command to change the file 
name. Although the DREN command cannot include string variables for the file name 
parameters, these names are generated using the string variable, C$, which is printed, as 
data, onto the data file, 11111. 



4-15 



4-16 



Chapter 5 
APPLICATIONS 

This chapter consists of two applications to give you an idea of the large amounts of data 
that can be manipulated quickly and easi ly, using the mass memory. 

-. • c>- EXAMPLE i-DATA BASE PROGRAM <> • 8 

This is called a 'data base' program because, by using it, data can be organized, stored 
and modified on a data fi le of the mass memory. I n the particu lar variation shown on the 
foll owing pages, the program stores employees' names and the number of hours they 
worked during the five weekdays. 

This program is stored on seven Special Function keys (FO through F6). Each of the key 
functions is discussed separately. A String Variables ROM is required to run this program. 

The program segment loaded on SF key 0, shown above, initiali zes the two stri ng 
variables which are used later in th is and other program segments. It opens a data file of 
200 records, if the file name input has not been previously opened. Finally, it d isplays 
the word, READY, when finished. 

To run this program segment , press R UN (but don 't execute it) and the Special Fun ction 
key O. (The RUN key must be pressed before S F key 0 to initialize variables, but RUN 
shou ld not be executed for subsequent SF keys.) 

The program segment loaded on SF key 1, shown above, allows you to enter up to 200 
employees' nam es on the data fi le specified in the previous program segment. To run this 
and all subsequent program segments, simply press the desired SF key . 

5-1 



5-2 

-<!(I> ... ~ EXAMPLE I-DATA BASE PROGRAM . ~ • 
(Conti nued ) 

The prog ram segment loaded on SF key 2 , shown above, allows you to enter the number 
of hours each employee worked in five days. 

The program segment loaded on SF key 3, shown above, prin ts a t able of the employees 
and their hours worked , on the printer. 



The program segment loaded on SF key 4, shown above, prints a tab le of the em ployees 
and the l o tal number of hours worked per employee and per day. 

10 R.E11 110DIFY WEI' 5) 
20 REI1 THIS F'ROGRRM ADDS "EC'ORD,; FIT THE Elm 
.lU I F EI IIt# 1 TH,II 7;J 
40 " FI)R' ··l_~I-_: TO".:20ij 
50 READ #1> I'; Fil 
60 NEXT I 
7(t ::- P'R I NT .• -:- "TP ':EHD" '.,R,tCOF: 1) E tTl [;:1 ES_~ T '/~ E 
'80:<PRlIff:_-::-·,'--.-.• _ > _ • • 

90 D IS? "HeME OF HEW ErtP.LO'lEE", 
100 INPUT R$ . 
IlD I F Al""]OIIE " THF.tJ 160 
120 Dl SP-_-._.·'HHA_"or---- flRE THE. . HOURS WDFd:::£lY·'; 
'130 I t~P-UJ R 1;Fr2" Yt3., ff4-',A5 

' 140 F:R IHT> :# '~ ~: 1 H~l ,.,fI, hA,2.:!, f!3 iH'l.i 115 
150 GCIY090 
16.0 DIS\='· ;'tlllHt" 
170 END 

The program segment loaded on SF key 5, show n above, allows you to add new 
employees and their hours worked to the existing file. Of course, SF keys 3 and 4 can be 
pressed anytime to give you an updated tab le of employees and their hours. 

5-3 



5-4 

• .. .. EXAMPLE I-DATA BASE PROGRAM • • • 
(Continued) 

The program segment loaded on SF key 6, shown above, allows you to delete specific 
employees from the file. Of course , SF keys 3 and 4 can be pressed anytime to give you 
an updated table of employees and their hours. 

This data base program can be easily modified for your particular needs. The number of 
employees listed, for example, is limited only by the size of the file used to store the 
data. In ventory, payroll, or any other app lication that requires a large amount of data to 
be added, changed or deleted, can be incorporated in this sort of program. 



Shown below are the tables generated by SF keys 3 and 4. The data stored on the file, 
MUSIC, respresents the number of hours worked by nine cashiers at a large musical 
instrument store. 

5-5 



5-6 

~ EXAMPLE 2-RAINFALL PROGRAM • @ . -

The program shown below illustrates how data can be sorted and li sted according to 
specific criteria. I n pa rticul ar, this program a ll ows you to average the amount of rainfall 
that fell during a certa in month in a particular area for up to 64 yea rs. A String Vari ab les 
ROM and a Matrix Operations ROM are required to run this program. 



The program is run when one or more data files, of 12 records apiece (one for each 
month of each year), con tain data. Since the 12 reco rds can each hold 64 data elements';' 
each file can conta in 64 years of data. Th e number of years of data rp.quired can be 
changed as needed . For example, if only 10 years of data are stored on your data files, 
change the variable A, in line 20, from 64 characters to 10. Line 350 must be changed, 
in that case, as follows: 

If you attempt to read more data than is physically present in the data file you are 
accessing, line 330 sets up a condition to branch to line 530 when the MAT READ# 
statement (line 340) encounters an end of record marker. 

The program asks you to input the number of files you wish to access and, one by one, 
their names . Once you specify the number of years over which you want to take 
averages, the program counts back from the last data entry. I n this way, averages can be 
taken over a short or long period of time. The number of months you are interested in 
must be input. After this, execute 1 for January, 2 for February, etc. Notice that any 
combination of months, up to 12, can be accessed to obtain the mean and standard 
deviation, month by month. 

A sample printout for 12 months rainfall over a 35·year period in Lafayette, Colorado is 
shown below. 

";' See Appendi x B for a d e tai led discuss ion on how to estim atl:l f ile size. 

5-7 



5-8 



APPENDIX A 
MASS MEMORY STRUCTURE 

The mass memory system is organized around user- defined areas of memory, called files, 
on the platter. Each platter can contain up to 768 files, depending on the size of each 
file. Files can be used to hold data (data files), programs (program fil es) , or Special 
Function keys (key files). 

As th e user, you create these files, name them and - for data files - specify their size. 
Special versions of BASIC programming statements enable you to store (i.e., print) 
information on and retrieve (i.e., read) information from your mass memory files. 

Each file contains one or more physical records. A record is the smallest addressable unit 
on the platter and contains 256 words of memory. Each record is actually a collection of 
one or more individual data items. 

Although you must specify the size, in records, of a data file when you create it, th e size 
of a program or key file is automatically determined; it is the number of records required 
to store the program. A file cannot be greater than 4752 records without exceeding the 
available storage space of the platter. 

Do not confuse the terminology associated with the Model 30 calculator internal cassette 
system with that of the mass memory system. The calculator cassette system refers to a 
group of data items as a 'file' . Actually, in the mass memory terminology, it is a 'record', 
while the group of cassette files marked the same comprise what is equivalent to a mass 
memory ' file' . 

• ~ • DATA FILE STRUCTURE -., <j> It ce-

As the user, you determine which method of data access best suits your needs; this 
decision is often based on the amount of available mass memory storage and the time 
required for your operations. An understanding of data file structure is therefore essential 
to make the best use of your system. 

When working with data fil es, it is important to und erstand the difference between 
physical records and logical records. A physical record contains a fixed amount of storage 
space. (See Figure A-1.) I n the mass memory system , a physical record is 256 16-bit 
words . (Eight bits equal one byte and two bytes equal one word.) A record is the 
smallest unit of data which can be accessed directly (i.e., randomly) by the system. 

I· 
256 Word~ F ixed I 
Storage Cilpacitv - - --oj. 

Figure A-1. A Physical Record 

A-l 



A-2 

$ $ -- DATA FILE STRUCTURE -<> ~ • 
(Cont inued) 

A logical record is a collection of items hand led (i.e., stored or retrieved) at one time. 
(See Figure A-2 .) This collection of items is specified by one or more READ# or 
PRINT# 'l ists' of data elements, which define the logical records of the syst em. You 
must deal with this list, or logical record, as a unit. 

Figure A-2 . A Logical Record 

----------- NOTE ----------

Because the number of items w hich may appear on one BASIC line is 
limited, more than one READ# or PRINT# statement may be required to 
handle all the data of one logica l group. In this case, the combined 
READ# or PRINT# list s define the logica l record. (See footnote on page 
A -7.) 

A logical record contains as many data items as necessary in a particular application to 
make up the worki ng unit of data. For this reason, logical and physical records mayor 
may not be rela ted. A logical record can use a fraction of one physical record or a 
substantial number of physical records. 

SERIAL FILE ACCESS -<>~--------------------

When work ing w ith data in the ser ial file access mode, you can define logical records to 
be any length. There is no correspondence between logical and physical records. t (See 
Figure A-3 .) 

r-- FI XED LENGT H PHYSI CAL RE CORD --.j 

I 1--'--+-1-- Loo, Log;'"' RKO,d ----+-; --~'I 
Figure A -3. A Logical Record Can Be Any Length in Serial File Access Mode 

Logica l records are stored next to each other, without any identifiable marker 
separati ons. Allor part of the in formation stored originally can be retrieved in one 
READ# statement . The list of data elements read comprise a logical record, but this list 
does not have to be identical to the list origina ll y prin ted on the file. I n other words, 
logica l records are defined as you print or read them. In order to retrieve all of the 
information stored, however, your READ# statement data list must match tt the 
PRINT# statement data lists stored previously. 

The beginning of a physical record is the only point where direct access is possib le. 
Storage space is utilized with max imum efficiency w hen seri al PR I NT# statements are 
used , since log ical records are packed so lid ly and no space is left unused between them . . 

t The only point ot 1:1 correspondence b et w een p hys ica l i1nd layie;]1 records is at the beginni ng of the file, where the 
beg inn ing of tile f irs t logical reco rd co incides wi th the beginning of t h e first ph y sica l record . 

+t Th esc d aHl lists mus t h;:lVe identical e leme n ts as far as size , type and or-d er are concern ed . T he n <J mes you ass ign to 
these e lements C<.Jrl st i ll va ry. 



---------------------~~ RANDOM FILE ACCESS 

When working with data in the random file access mode, you must specify which record 
within a file you want to access. There is a 1: 1 correspondence between logical and 
physical records. In this case, while any logical record can be (and generally is) shorter 
than a physical record, a logical record can never be longer than a physical record (256 
words). 

Since the beginning of a logical record coincides with the beginning of a physical record, 
short logical records do not utili ze storage space effective ly . Only the space required for 
storage is used; the rest of the space in the physical record is not used. 

Of course, the advantage of using random file access is that every logical record is 
directly accessible, in any order. 

--- --- ---- -----_0- SERIAL VS. RANDOM FILE ACCESS 

As mentioned before, you decide on which method of data accessing to use for your 
particular needs. This decision is usually not made easily, because of the inherent 
advantages and disadvantages of both methods. More efficient storage space utilization 
must be sacrificed for a shorter access time, and vice versa. Once your decision has been 
made, it is difficult to change later; so make your decision carefully. 

The fo llowing table summarizes the advantages and disadvantages of accessing data from a 
file serially and randomly. 

Feature 

Storage 
Efficiency 

Access Time 

Logical Record 
Length 

Table A-1. Serial vs. Random File Access 

Serial File Access 

GOOD-Data is packed 
sOlidly 

VA R I ES-Longer for 
higher-numbered 
records 

Any length that 
fits into a file 

Random File Access 

VA R I ES-Poorer for short 
logical records 

GOOD-Directly to any 
record 

Less than or equal to 
physical record length 

--- ----- ----- - - - .... END OF RECORD (EOR) MARKERS 

There are two types of end of record (EaR) markers: logical end of record (LEOR) and 
physical end of record (PEOR). These coincide with logical and physical records 
respectively. The LEOR marker indicates the end of data in a physical record, while the 
PEaR marker indicates the physical end of the record itself. An LEOR marker is actually 
stored in one word of each mass memory record, but PEOR markers are system· 
generated; they do not take up space on records. For purposes of discussion, they are 
called 'markers' although, technically, they are system-detected conditions. 

A-3 



A-4 

~ DATA FILE STRUCTURE ~ 
(Continued) 

LEOR markers are placed in certain positions and stored in the system in two ways. 
After execution of every PR I NT# statement, an LEO R marker is placed automatically 
after the last item in the PRINT# data item list. If a serial PRINT# statement instructs 
the system to print data over an existing PEO R marker, the system generates an LEO R 
marker internally near the end of the physical record in which it encountered the PEOR 
marker. 

Figure A-4 is a representation of a three-record file, MOM. When th e file is opened and 
a FILES statement is executed, the pointer is positioned at the beginning of the first 
physical record. 

Record # 1 

tpo inter 

P 
E 
o 
R 

Record # 2 

Figure A-4. "MOM" 

1 U C) F' L ! ,, ~ I I ["II::) I'I! " ,. _.:i 

~:: ij F' Ii " F: ~:::: i"1 () i"i 

P 
E 
o 
R 

Record # 3 

P 
E 
o 
R 

When a serial PRINT# statement is executed, an LEOR marker is placed immediately 
after the last data item. 

Record #1 

t poi nter 

P 
E 
o 
R 

Record # 2 

P 
E 
o 
R 

Record #3 

Figure A-5. LEOR Marker Placed after Last Data Item 

p , 
o 
R 

Executing another serial PR I NT# statement stores the new data list from the pointer 
position, moving the LEO R marker to the end of the last current data item. 

Record # 1 

P 
E 
o 
R 

I A I B I C$ I D 1---1 z III I 
t po il1ter 

Record # 2 

P 
E 
o 
R 

Figure A-6. LEOR Marker Is Moved 

" 
'i <" 

Record # 3 

P 
E 
o 
R 



If the remaining space in a physical record is inadequate for a data element in a subsequent PR INT# list, an LEOR marker is pla ced internally as close to the PEOR marker in record 1 as possible (i.e., after the last data element that fits in the record). The remainder of the data list is stored on the next physical record . 

Record # 1 

P 
E 
o 
R 

Record # 2 

I A I 8 1 C$I D 1---1 z H~ I I 81 I C1 I ~ I 

P 
E 
o 
R 

Record #3 

Figure A-7 . Insufficient Space on One Physical Record 

P 
E 
o 
R 

Use a READ # statement to reposit ion the pointer to the beginning of the first physical record. (This can also be accomplished by executing a FILES statement.) 

Record # 1 

tpo i nte~ 

P 
E 
a 
R 

Record # 2 

P 
E 
a 
R 

Figure A-S . Reposition the Pointer 

Record # 3 

P 
E 
a 
R 

Then use another serial READ# statement to retrieve the data in the first logical record . 

Record # 1 

tpointer 

P 
E 
a 
R 

Record # 2 

P 
E 
o 
R 

Figure A·9. Read Data in First Logical Record 

Record # 3 

P 
E 

o 
R 

A·5 



A-6 

DATA FILE STRUCTURE ~ • e> ..... 

(Continued) 

Another serial READ# statement retrieves data from the position of the pointer. 

Record # 1 

P 
E 
o 
R 

Record # 2 

I A 1 B 1 csl 0 1---1 z H~II B1 1 C1 I ~ I 

P 
E 
o 
R 

tpointar 

Figure A-l0_ Read Data in Rest of the File 

Record # 3 

P 
E 
o 
R 

Notice that when the LEOR marker in the first physical record is encountered , the 
system automatically skips over the marker and continues to read the data stored in the 
second physical record. If the READ# data item list includes more variables than there 
are data items stored, when the second LEOR marker is encountered, the system 
attempts to read the data (in this case, Xl) in the next physical record (record 3). There 
is no data in the third physical record, so an error message is returned. 

All of the data in this file can be retrieved as one logical record, even though it was 
stored as three logical records. After repositioning the pointer to the beginning of the 
file, execute a serial READ# statement that includes all of the data items in the list. That 
is, 

An LEOR marker is also placed as a result of a random PRINT# statement. Figure A-ll 
is a representation of another three-record file , DAD . Once again, when the FILES 
statement IS executed, the pointer is positioned at the beginning of the first record in the 
file. 

Record # 1 

tpointer 

P 
E 
o 
R 

Record # 2 

Figure A-ll. "DAD" 

10 (JF'Et··t " DAD"!, J 
::0 F I! I::; Dr'; ]! 

P 
E 
o 
R 

Record # 3 

P 
E 
o 
R 



As in the serial mode, when a random PRINT# statement is executed, the LEaR marker 
is placed immediately after the last data item. 

Record # 1 

t po inter 

P 
E 
o 
R 

Record # 2 

P 
E 
o 
A 

Record # 3 

Figure A·12. LEOR Marker Placed after Last Data Item 

P 
E 
o 
R 

Executing another random PR INT# statement stores the new data list from t he beginning 
of the physical record specified . 

Record # 1 

P 
E 
o 
A 

Record # 2 

tpo inter 

P 
E 
o 
A 

Figure A·13. Printing Another Logical Record 

Record #3 

P 
E 
o 
A 

The space between the end of the first physical record and the LEOR marker in that 
record is unused. t 

Of course, this second data list could have been stored in the third (or any) record, 
instead of the second record, as shown. Random PRINT# statements are used to store 
data in specified records and can be executed in any order. An LEaR marker is placed 
after the last item in each data list unless the data exactly fills the physical record. In 
this case, although an LEO R marker is not stored , the system acts as if it were. 

ti n generil l , this space ca n be used by exec ut ing a combinat ion of ser ial and random PR INT# st<Jteme nts. Use t he firs t 
random PRINT# stat ement to store data from the beg in ning of a specif ic reco rd . A ser ial PR INT# sta tement stores 
d ata items over the LEOR marker placed after t he random PR INT#dati) item list. 

For example, consi der a logical reco rd th at contains si x full precision items, each of which is a 12~d jgit number 
co ntai n ing ten deci mal p laces. S ince only four of t hese numbers f it com pletely in to a BAS IC line, two PR INT#" 
statements must be (!x~cuted . In t his example, the fi rst PRINT# sto res four items in the fi fth record of a f i le and the 
seco nd PR INT#st ores the last two items immediote ly after the fi rst four . 

PRINT # j.5;43 . 5476~09782 ,3~.~523~4J)87 , 20. 14235490 74, 19 . ~fa?51620 8 
PR INT 11;55 . 3254 7' 09~e6,59" 2b45 7 ~8841 

These data i t ems can be retrieved in six variables by execu t ing one rando m REAO#statement. 

Multiple R EAO# statements ca n be used in the same manner for longer logica l I-ecards. 

A-7 



A-8 

-.e '* ... $>-- DATA FILE STRUCTURE 
(Continued) 

To read the data in any given record, execute a random R EAD# statement, specifying 
the particu lar record. 

Record # 1 

P 
E 
o 
R 

Record # 2 

t po inter 

P 
E 
o 
R 

Figure A-14. Data in the Second Record Is Read 

Record # 3 

P 
E 
o 
R 

Notice that the pointer does not have to be repositioned before the random R EAD# 
statement is executed; the pointer is moved to the beginning of the specified record 
before reading occurs. Similarly, to read the data in the first record, execute a random 
READ# statement, specifying record number 1. The pointer moves to the beginning of 
the first record before the data is read. 

Record # 1 

t poi mer 

P 
E 
o 
R 

Record # 2 

P 
E 
o 
R 

Figure A-15. Data in the First Record Is Read 

60 READ # \ , I ;A,B, C 

Record # 3 

P 
E 
o 
R 

Once data has been stored, randomly or serially, it can be retrieved by either a random 
or a serial READ# statement. Remember that when an LEOR or PEOR marker is 
encountered by a serial READ# statement, the system attempts to read the next data 
item in the follow ing physical record. When an LEOR or PEOR marker is encountered by 
a random READ# statement, however, an end of record condition is detected. This 
results in an error message (or in program branching to another line of the program when 
an IF END# statement is previously executed - see "IF END# Statement", page 3-24). 

END OF FILE (EOF) MARKERS ~.-----------------

There are two types of end of file (EOF) markers: logical end of file (LEOF) and 
physical end of file (PEOF). The LEOF marker is actually stored on the mass memory 
files, while the PEOF marker is system- generated and indicates the end of space 
allocated to the file. 

During execution of an OPEN command, LEOF markers are placed in the first word of 
every physical record of the file. These markers disappear, however, as soon as data is 
stored on the records. LEO F markers are also placed when a PR I NT# statement, which 
includes the optional parameter, END, is executed. 

When END is part of the PRINT# statement, the LEOR marker previously and 
automatically placed at the end of the specified logical record is replaced by an LEOF 
marker. 



In Figure A-16, two of a file's three records contain data and the third record is empty. 
An LEO F marker is placed in the first word of each record when the file is opened. 
After data is stored in the first two records, however, the LEOF markers in these records 
are either moved or disappear, while the third record LEOF marker remains. 

Record # 1 

P 
E 
o 
R 

Record # 2 

tpoi nter 

P 
E 
o 
R 

I ~ I 
Record # 3 

Figure A·16. Data Is Printed in the First and Second Records 

10 UF'[j ·1 ":::: IH·ltfi" , :;: 
?O F' I L.~: ::: :,:,UtjH\' 
30 PPINT 81,1 IA,B,e,E ND 
40 PRINT 81,2 ; X,Y, Z 

P 
E 
o 
F 

Notice that by executing line 30 (above), an LEOF marker is placed after the last data 
item in record #1. As mentioned previously, the pointer is posi tioned at the LEOR 
marker in the second record after the data in the second record is read. (See Figure 
A·17.) 

p p P 
E E E 

Record # 1 0 Record # 2 0 Record # 3 0 
R R F 

I X I y I z I ~I I ~ I 
tpojllter 

Figure A·17. Data in the Second Record Is Read 

~) U F I L .. E: :,: :.;, U 1111'1' 
60 RE: AD #1,2;X ,Y ,Z 

If a serial READ# statement is executed at this point, the system encounters t he LEOR 
marker and automatically moves to the beginning of the next physical record to attempt 
to read another data item. Here, encountering an LEOF marker establishes an end of file 
condition. Once aga in, t his results in an error message (or causes the program to branch 
to another line of the program when an IF END# statement is previously executed - see 
" I F END# Statement ", page 3-16). 

Similarly, if a random READ# statement is executed from the beginning of the third 
reco rd , the system encou nters the LEOF marker, estab lish ing an end of file condition 
(see "IF END# Statement", page 3·24). 

The end of file condition is detected most often when executing a READ# statement, 
but it is also detected w hen an PR INT# statement attempts to sto re data beyond the 
actual physical end of space allocated to the file. 

A-9 



A-I0 

.,. • .. .. DATA FILE STRUCTURE •• $v ..-

(Continued) 

A summary of end of file and end of record markers is shown in the tab le below. 

Marker 

PEOR 

LEOR 

PEOF 

LEOF 

Table A·2. EOR and EOF Markers 

Where Placed 

At the end of each 
physical record in 
a file 

At the end of every 
data item list 

A t the end of each 
physica l file 

a. I n the first word of 
every physical record 

b. At the end of a data 
item list under certain 
conditions (see next 
column) 

When and How 
Established 

Automat ically, when 
a file is opened 

Auto matically, after 
each PR I NT# statement, 
unless th e optional 
EN D parameter is included 

Automatically, when a 
file is opened 

a. Automatically, when a 
file is opened 

b. By executing a 
PRINT# statement 
including the optional 
END parameter 

EOR AND EOF CONDITIONS .... - ------------------

End of record and end of file conditions are est ab lished and can be detected according to 
the following detection table. Note that EOR and EOF conditions are never established 
when any PRINT# statement encounters logical EOR or logica l EOF markers; these 
markers are simply printed over. 

Table A·3. EOR and EOF Conditions 

Serial PRINT# 

Serial READ# 

Random PRINT# 

Random READ# 

L 
E 
o 
R 

* 

L 
E 
o 
F 

* 

* 

P 
E 
o 
R 

* 

* 

P 
E 
o 
F 

* 

* 
* 

* 



PLATTER STRUCTURE 4 .. • ~ -so--

The platter used in the mass memory system is an aluminum alloy disc, slightly larger 
than a standard long-playing phonograph record (14" diameter). Bonded onto both sides 
of th e platter is a ferromagnetic iron oxide which has magnetic characteristics similar to 
magnetic tape. Two wide- temperature- range read- write heads in the mass memory drive 
are used to store and retrieve information on either side of the platter (see Figure A·19). 

Data is stored on a platter in concentric tracks. Each pla tter has 406 tracks (203 on each 
side of the platter). These tracks are numbered from 0 to 405. The upper surface of the 
platte r contains tracks 0 through 202; the lower surface contains tracks 203 through 405. 
Tracks 0 - 7 and 404-405 comprise the 'system area' and are reserved for system use; the 
remaining tracks comprise the 'user area' of the platter. 

The platter is also subdivided into 12 pie- shaped physical records on each surface of the 
platter, numbered from 0 to 11. A physical record is 256 words. A CATA LOG command 
speci fies the exacl location of a given record by listing its track number and record 
number under t he headings, TRACK and RECORD. 

12 records X (406 total tracks - 10 system tracks) = 4752 available records/platter 

4752 records/ platter X 256 words/record "" 1.2 million available words/ platter 

,r- - ': 
I \ 

/ , 
/ 8 

......... -- _1-

14" 

"-

Physica l Record 
256 Words 

'-- 10 

9 

Figure A·1B. Mass Memory System Platter 

12 Records/Trac k 

4 ,7 52 Records 

A-II 



A-12 

4 ~ • ~ .. PLATTER STRUCTURE • • • • • 
(Continued) 

Lower Surfa ce 

Figure A-19. Storing and Retrieving Data 



APPENDIX B 
STORAGE REQUIREMENTS 

The efficacity of your mass memory system can be improved if you accurately estimate 
the size of the files needed to store information, To this end, this appendix will help you 
estimate the space required to store programs and data, 

• • • • • • PROGRAM SIZE • .. • • • 

As mentioned in the "SAVE Command" discussion (page 2-3), the mass memory system 
opens a program file large enough to accommodate the program in the calculator 
memory, If the number of words the program uses is not a multipl e of 256 (it rarely is), 
the mass memory system rounds the number of physical records reserved in the file to 
the next whole number. While a program of 255 words requires one physical record, a 
program of 257 words requires two physical records, 

-$ e $ $ • ¢- DATA STORAGE • • $ .. &$ <$P 

The following table lists the number of words of memory required to store full, split and 
integer precision data elements and string variables, Strings and numbers can be mi xed 
within a physical record, as long as each item fits within the bounds of the record, 

Type of Data 

full precision 
split precision 
integer precision 
string variable 

Table B-1, Data Storage Space 

# of Words/Data Item 

4 
2 
2t 

see below 

Max, # of Data Items/ 
Physical Record 

(256 Words) 

64 
128 
128 

see below 

-----------------------NOTE-----------------------

The type of data retrieved, determined by READ# and MAT READ# 
statements, can differ from the type of data stored, determined by 
PRINT# and MAT PRINT# statements, Data stored with full precision 
accuracy, for example, can be retrieved will full, split or integer precision, 
An error message is displayed if you attempt to convert a full or split 
precision number greater than 132,767 1 to an integer precision number, 

t T he mass memory system reserves two words of memory for intege r precisio n accu racy, rat her than o ne wo rd, as 
rese rved in the Model 30 calcu lato r syst em. 

B-1 



DATA STORAGE 
(Continued) 

The space required to store a string variable is calculated in this manner: 

<> Divide the number of characters in the string by 2. 

" Round the result to the next whole number. 

o Add 1 to that resu It. 

The maximum number of strings that can be stored in a physical record is 128 1- or 
2- character strings. Conversely, since a string can contain up to 255 characters, a 
physical record can contain one 255-character (maximum length) string (129 words) plus 
one 252-character string (127 words). Eight 62-character strings also fill a physical 
record completely. 

B-2 



APPENDIX C 
INCREASING AVAILABLE MEMORY 

~ ... '* ~ >8 DAVTP COMMAND -<S> 4' $ ... ..... 

The system area of each platter contains an 'avail ab ility table'. Thi s table keeps a record 
of all the unused space on the platter. Whe never a file has to be created, by either an 
OPEN or a SAVE command , the system searches the availability tab le to find a space 
large enough fo r this new file. After the fil e is created , the space it requires is removed 
from the tab le. Similarly, when a file is ki lled , the space used by the file is returned to 
this table . As a result of creating and kill ing file s ove r a period of t ime, the availability 
tab le contains a list of available spaces. This li st is not necessarily in size or location 
order, nor are adjacent blocks of unused space combined to make larger spaces. For 'th is 
reaso n, ERROR 95 (ava ilable storage space exceeded) may result when a SAVE or OPEN 
command is attempted although the cata log li sting indicat es that there is enough total 
storage space left for t he new file. 

The DAVTP command (data ava ilability table pack) restructu res the availability table by 
location and combines any adjacent spaces into larger spaces. 

Syntax: 

DAVTP 

DAVTP takes up to three minutes to execute . Ca lculator memory, however, is erased 
when this com mand is executed. Executing DAVTP resets the system to unit O. This 
command ca n be used as often as desired to reorganize the availa bil ity table. 

At some point the available space may be fragmented in so many sma ll areas a ll over the 
platter that no further files of any reasonable size can be created; the DAVTP has no 
effect when t his happens. The REPACK proced ure (see next page) can be used to 
combine the re maining spaces. 

C-l 



C-2 

• ~ • -- REPACK PROCEDURE 4!/0 • ~ ¢o $ 

The files on a platter can be moved together by performing the REPACK procedure, 
described below. The unused space on the platter is consolidated into one large space, 
which can then be used for storing additional files. 

t\ n 
Insert the mass memo ry system tape cassette in the calcu lator and execute: 

LOAD BIN 80 

After the display returns, key in and execute: UNIT N (where N is the unit number of 
the platter you wish to repack) . This step can be ignored if your platter is designated as 
unit O. 

Key in the word, REPACK, and execute it. 

The REPACK procedure is performed in 10 minutes or less. Do not rewind the tape or 
remove the tape cassette from the calculator until control returns, because the REPACK 
procedure uses three cassette files which are automatically loaded and executed during 
the course of the procedure. 

If a cassette or t ransport error (ERROR 58 or 59) occurs while the REPACK procedure 
is being performed, the information contained on your platter remains intact. Although 
the availability table and catalog listings may not reflect current fi le locations at this 
point, data and program file contents are still unaltered . Check positioning of the tape 
cassette and make sure the tape transport door is closed securely. Then simply perform 
the procedure from the beginning. If this error occurs again, perform the procedure once 
more from the beginning, substituting LOAD BIN 83 for the first step. 



APPENDIX D 
ACCESS TIME AND BOOTSTRAPS 

The time needed to transfer programs or data between your calculator and the mass 
memory drive varies with the length of the program or with the amount of data. The 
following graphs (Figures 0-1 through 0-3) show approximate times required for 
transfer of information. 

Figure 0 - 1 shows the time required to transfer a program from a platter to a calculator 
in your mass memory system. Programs are transferred at a rate of about 1,000 16- bit 
words per second. The transfer of a program from a calculator to a platter, using the 
SAVE command, requires 10% to 25% more time. 

Figure 0 - 2 shows the typical time required to transfer one full precIsion number. This 
time is based on the number of data items transferred with one command. The transfer 
time per item decreases as the number of data items in one PRINT# or REAO# 
statement increases. It takes less time to execute: 

than it does to execute: 

1~:1 :::1 FOP 1::;;1 T'U :) 
110 F'F:ltH ~f1; A[ I] 
1 ;~o tll': ::T I 

While the time needed to execute the first example (above) is 75 milliseconds, the second 
example takes 250 milliseconds. This is because overhead time associated with each 
PRINT# statement is constant. If this time is spread over more data items, the transfer 
time per item is proportionally less. 

Figure 0-3 shows the time needed to transfer matrices. The transfer time per item is 
very long when the array size is less than 5. I n those cases, it is faster to use a normal 
PRINT# or REAO# statement. For example , MAT PRINT# 1; A, where A is a one 
element array, takes 180 milliseconds to execute. Notice that these curves are essentially 
horizontal for 40 or more elements per statement. Therefore, there is almost no time to 
be gained by transferring more than 40 elements per statement. 

The statements, command and function stored in the mass memory are: 

PRINT# 
REAO# 

UNIT 
TYP 

Other statements and commands are stored in the bootstraps on the platter and must be 
transferred into the calculator each time they are executed. For this reason , they take 
more time to execute than the above commands. 

D-l 



D-2 

, 
TIME 
(SECONDS> 

• 

11ii!I1lI1ZI 

PROGRRM LENGTH 
( HORDS> 

Figure 0-1. Transfer of Programs (GET or CHAIN Command) 

TIME 
(MILLI­

SECCNDS ) 

". 

3. 

•• 

,. 

,. •• 3 • 

NO . OF DATA ITEMS/STATEMENT 

Figure 0-2. Oata Element Transfer Time 



D-3 

MAT PRINT# 

MAT READ# 

I" '''' "''' ... " 6" 

NO . OF DATA ITEMS/ STATEMENT 

Figure D-3. Matrix Element Transfer Time 



E-l 

APPENDIX E 
SUMMARY OF MASS MEMORY SYNTAXES 

ASSIGN " file namet", file number, return variable l," protection codet" ] 

Assigns a file name to a position in the previous FILES statement. 

CAT 

Lists in formation about every file on the platter. 

CHA IN " file namet " [1 st line number l,2nd line number ]] 

Loads a program from the platter to the calculator, retaining current values of 
variables. 

OAVTP 

Restructures availability table. 

DSYTE variable, string name 

Converts value of specified variable to its binary equivalent character. 

DCO PY " 1st file name'.' [,unit number] TO "2nd file name" [,unit number] 

Duplicates contents of one data file into another. 

OEXP variable, string name 

Converts value of specified variable into a 4-digit character string with leading zeros. 

OFDUMP " file name" 

Stores specified data file presently on the platter to the calculator internal cassette(s). 

OF LOA D "f ile name" 

Loads data presently on calculator internal cassette(s) to a specific file on the platter. 

DG ET "file name" [0] 

Loads source (non - compiled) program into the calculator and checks for syntax 
errors . 

OREN "old file name" TO " new fil e name" [, " protection code" ] 

Changes the name of any file. 

FILES file nam e or * [,file name or * ] [, .. .] 

Decla res which fil es are to be used. 

GE T "file namet" [1st line numbe r [,2nd line number] ] 

Loads a program from the platter to the calculator. 

GET KEY "file namet" 

Loads Special Function key definitions from a specified file of the platter to the 
calculator Special Function keys. 



I F EN D# file number T HEN line number 

Sets up an exit procedure which branches the program to a specific line number when 
an end of file or end of record condition is encountered. 

KI LL " file namei" " L " protection codet" ] 

Erases the named file from the platter. 

MAT PRINT# file number [,record number] ; list of matrix variables 

Prints an entire matrix onto a specified record or file. 

MAT READ# file number Lrecord number] ; list of matrix variables 

Reads a matrix from a specified record or file. 

OPEN "file namet", number of records 

Creates a data file with a specified number of physical records and assigns it a name. 

(Random) PR INT# file number, record number ; list [, END] 
PRINT# file number, record number [ ;END] 

Prints data on a file from the beginning of a specified physical record. 

(Serial) PRIN T# file number; list [, END] 
PR INT# file number; END 

Prints data on a file after the last item previously read or printed or at the beginning 
of the file. 

PR O " file name" , " protection code" 

Assigns a protection code to a specific file. 

(Random) READ# file number, record number [;list] 

Reads data from a specified record in a file. 

(Serial) READ# file number ; list 

Reads data from a specified file, starting after the last item printed or read. 

SAVE "file namet" [,1st line number [,2nd line number]] 

Stores an entire program or parts of it onto a specified file of the platter. 

SAV E KEY "file namet" 

Prints Special Function key definitions onto a specified file of the platter. 

TYP file number or TYP (- file number) 

Identifies the type of the next item in a specified file. 

UN IT unit number 

Specifies the platter to be used for the subsequent commands. 

t Thi s parameter can be a string variable. When a s tring variable is used, th e quo tation marks (") surrounding it must 
be removed. 

E-2 



NOTES - 4 ., $ • • ... .. 



INDEX 

• ABSOLUTE LENGTH(R) 
access 

random file 
serial file 
time 

3-21 - 3-27, A-3 
3-9 - 3-20, A-2, A-3 

"add data" program 
air filter 
ASC II character codes 
ASSIGN statement 
asterisk (*) 

availability table 

II 

1-1, A-3, D-l 
.3-19 
· 1-17 
.4-12 

3-7,3-8 
.2-2, 3-1, 3-6, 3-7 

.. C-l 

BASIC syntaxes 
bootstraps 

2-1,3-1, E-l 
1-2,17,1-10,1-12,1 -13, D-l .. 

calculator (9830A) 
cart, optional (11304A) 
cartridge, removable (12869A) 

also, see platter 
cassette 

storage 
training 
also, see system tape cas~ette 

CAT A LOG (CAT) command 
CHAIN command 
"character" program 
"check-writing" program 
cleaning the system 
COM statement 
components 

configurat ions 
requirements 

controller (11305A) 
MODE switch 

CURRENT LENGTH(W) 

II 
"data base" program 
"data check" program 
DATA PROTECT indicator 
DATA PROTECT switch 
DA VTP command 
OSYTE command 
DCOPY command 
destination platter 

1-2, 1-6 
1-4, 1-5 

1-2 

1-17,4-8 - 4-10 
1-4 

2-5, 3-4, A-II 
· 29 
.4-12 
.4-13 
· 1-17 

2-6 
1-5 
1-1 
1-4 

1-2, 1-4, 1-5 
· 1-11 

2-5 

5-1 - 5-5 
.3-18 

1-7 
1-9 
C-l 

4-12,4-14,4-15 
· 4-7 

. 4-6 (footnote) 

o EXP command 
OF DUMP command 
DFLOAD command 
DGET command 
DOOR UNLOCKED indicator 
OREN command 
DRIVE FAULT indicator 
drive, mass memory (9867A/B) 

maintenance 
malfunction 

DRIVE READY indicator 

duplicate platter 

• end of file (EOF) condition 
4-2, A-9, A -l0 

end of record (EOR) condition 
4-2,4-4, A-S, A-l0 

end of file (EOF) marker 
3-26, 4-2, A-8, A-l0 

end of record (EO RJ marker 
4-2,5-7, A-3, A-l0 

equipment list 
ERROR messages (90-99) 

ERROR 4 

4-12,4-14,4-15 
. 4-8,4-9 

.4-10 
4-11,4-14,4-15 
1-7 - 1-10, 1-t7 
4-11,4-14,4-15 

1-7 
1-3, 1-7,4-4 
... t-17 

1-8,1-10,1-17 
1-7, 1·8, t -10 

1-17.4-6 

3-16, 3-23, 

3-13,3-17, 

3-17, 3·26, 

t -4 - 1-6 
inside back cover 

.2-10 
ERROR 44 
ERROR 58 
ERROR 59 
ERROR 92 
ERROR 94 
ERROR 95 
ERROR 96 
ERROR 97 
ERROR 99 

3-16 (footnote), 3-24 (footnote) 
. C-2 

C-2 
2-12, 3-5, 3 -8 

3-17,3-26 
. . .. C-l 

4-7 
1-14,2-3,3-3,3-8 
3-12,3-14 - 3-17, 

3-24 - 3-26, 4-2, 4-4 
ERROR 900 
ERROR 901 
ERROR 902 
ERROR 903 

examples, program 
"add data" 
"character" 
"check -writi ng" 
"data base" 
"data check" 
"open files" 
"rainfall" 
"source" 
"stat i sti cs" 

exerCiser, mass memory 

1-11 (footnote) 
1-11 (footnote) 

1-11 (footnote), 1-12 
4-6 

.3-19 

.4-12 

.4-13 
5-1 - 5-5 

.3-1S 
3-8 

5-6, 5·7 
4-14,4-15 

.3-20 
1-13 - 1-16 



file, mass memory 
creati ng 
data 
duplicating 
erasing 
key . . 
location 
names not allowed 
program 
size . 
storing on tape 

FILES statement 
full -prec ision data 

GET command . . . 
GET KEY command 
G OTO ... 0 F statement 

• 

a 

• heads, read-write floating . . 

. A-l 
2-3, A-l 

2-1,3-1,4-7, A-l 
.... 4-7 

2-12,3-5 
2-1,2-5,2-13, A-l 
. . . . . A -ll 

2-3,3-3 
2-1,2-4,2-12, A-l 
3-3,4-1, A-l, A-ll 

1-17,4-8 - 4-10 
3-6, 4-5, 4-6, A-4 

3-17,3-26,4-1, B-1 

2-6 
.2-13 

3-18, 3-27 

1-7, 
1-8 (footnote), 1-9, 1-17, A -ll 

1/0 Expander (9868A) 
IF EN D# statement . 

a 
4-2, 4-4, A-8, A-9 

increasing available memory 
initializing platters 
initial turn-on 
installation 

mass memory system 
plug-in ROM block 
cartridge . . . . . 

integer-precis ion data 
interface cable assembly 
interface kit (11273B) . 

• KILL command 

. . . 1-2 
3-16,3-17, 

. . C-l 

. . 1-10 
1-6, 1-7 

1-6 
1-7 

1-8 (footnote), 1-10 
3-17,3-26, B-1 

1-2,1 -4,1 -7 
.1-2,1-4 - 1-6 

2-12,3-5 

• LID PROTECT indicator . . . . . . . . . 1-7 
l ine number 2-1,3-1,4-13 - 4-15 
list . 3-2, A-2, A-7 (footnote), A-l0 
LOAD switch ..... 1-3,1-8 - 1-10, 1-17 
logical end of file (LEOF) marker 3-3,3-9 - 3-13, 

3-16,3-17,3-19,3-23,4-9, A-8 - A-l0 
logical end of record (LEOR) marker 3-9,3-13, 

3-17,3-19,3-22,3-24, A -3 - 10 

• maintenance . . . . . 
mass memory (9880AlB) 

maintenance 

. 1-17 

. 1-17 
ROM (11273) 1-2,1-4,1 -6,1-7,1 -10,1 -13 
syntaxes . . . . . . . E-l 
system test . 

mass memory controller (11305A) 
mass memory drive (9867A1B) 

1-13,1-14 
1-2, 1-4 
1-3, 1-7 

also, see drive, mass memory (9867AiB) 
mass memory files, see files, mass memory 
MAT PRINT#statement . 4-1 
MAT READ# statement 4-2,5-7 
matrix 

dimensioning and redimensioning 4-3,4-4 
4-1 operations 

ROM (11270) 
multiple platters 

1-6,1-13,1-15,1-16,4-1,5-6 
. . . . . 1-6,4-4 

OPEN command 
"open files" program 

a 

II 

3-3 
3-8 

physical end of file (PEOF) marker 3-14 - 3-17, 
3-19,3-25, A-8, A-lO 

physical end of record (PEOR) marker 3-17,3-19, 
3-26, A-3, A -8, A-lO 

platter 
availab le storage space 
contents 
duplicating 
initializing 
maintenance 
multiple 

A-ll 
1-2 

2-5, 3-4 
1-17,4-6 
. . 1-10 
. . 1-17 
1-6, 4-4 



specifying 1-9,1 -11,4-4,4-5 
structure . A-l1 
system area . 1-11 (footnote), A-l1 
user area . 1·11 (footnote), 1-13, A -ll 

PLATTER-DUPLICATE procedure ..... 4-6 
pointer 3-6,3-7,3-9,3-13 - 3-15, 3-21, A -4 - A-9 

repositioning 3-13 - 3-15, 3·21, A-5 - A-9 
power supply (13215A) 1-4 (footnote), 1·5 
POWER switch . 1-7 - 1-10 
preface 
printer (9866A) 
PR I NT# statement 

random 
serial 

pro tection 

. " . i 
1-2,1-6,4-12 

.3-21, A-6, A-7, A-9 
3·9, A-4 

capability 
code 

PROTECT (PRO) 

. 1-6,1-7,2-11,2-12,3-4,3-5 

.2-2,2-11,2-12,3-1,3-4,3-5 
command .. 2-11,3-4,3-5 

quick reference card 
quotation marks (") 

II 

.. 
"rainfall" program 
read-write floating heads 

1-9,1·17, A -ll 
R EAD# statement 

. . 1-4 
2-2,3-1 

. . . 5-6,5-7 
.1 -7,1-8 (footnote), 

random 3-23, A -7 (footnotel, A-8 
ser ial .3-12, A-5, A-6, A.lJ 

record . 2-5, 3-4, A-l, A-ll 
erasing .3-11,3-19,3-22 
location 2-5,3-4, A-ll 
logical A ·2, A-3, A-5, A -7 
physical . . 3-21, 3-26, 

A-l - A-3, A-6 - A-9, A -ll, B-1, B-2 
size. . . . . 2·5,3-4,4-1, A-l, A-ll 

REPACK procedure C·2 
return variable . . 3-7 
ROMs 

mass memory (11273) 
1·~ 1-7,1-10,1 -13 

matrix ~perations (11270) 
1-15,1-16,4-1,5-6 

others . 
str ing variables (11274) 

1-15,1 -16,2-2,3-2,3-11,5-1,5-6 

1-2, 1-4, 

1-6, 1·13, 

. 1-6,1 -13 
1-6, 1-13, 

SAVE command 
SAVE KEY command 
secure programs 

• . 2-3 
.2·13 
. 2-11 

service contract . 1-17 
source platter . 4-6 (footnote) 
source program 4-11, 4-14, 4-15 
speCial function keys 1-16,2-3,2-13 
split-precision data 3-17, 3-26, 8-1 
"statistics" program . . . .3-20 
storage capacities i, 1-1, 1-2, A-l1 
storage requ irements . . 8-1 
string variables 2-2,3-2,3-8,3-11,4-7, B-2 

ROM (11274) . 1-6,1-13,1-15, 
1-16,2-2,3-2,3-11,5-1,5-6 

syntaxes 
brackets 
color ing 

system tape cassette 
1-10,1-12,1·13,1-16,4-6, C-2 

E-l 
2-1, 3-1 
2-1, 3-1 
1-2, 1-4, 

table of contents 
teleprinter (38 ASR) 

• · . . III 

· .4-12 
test, mass memory system 1-13, 1-14 
tracks 2-5,3-4,4-6 (footnote), A-ll 
training cassette 1-4 
turn-off procedure . 1-9 
turn -on procedure 
TYP fu nction 
TYPE 
typewriter (9861A) 

• U/ D PROTECT indicator 
UNIT command 
UNIT SELECT indicator 
UNIT SELECT switch 
UNLOAD (LOAD) switch 

1-6 - 1-8 
3-17, 3-26, 3-27 

2-5, 3-4 
· .4-12 

· . 1-7 
4-5 - 4-7 

· . 1-7 
. . . 1-9 

1-3,1·8 - 1-10 



UNITED STATES 
llLAItAMA 
8290 Whil ntJ~' 1 Or., S. ( . 
P.O. h. 4~7 
HUll.lIl. 35802-
Te l. (20S I ""'59\ 
TWX: 110·126 ·22M 

ARIZONA 
2116 E. Mll nolll SI. 
...... . 11 '50]4 Ie" (602) 244·1361 
TWX, 910·9~1·133!' 

2424 En! ArliOn Rd. 
I","n 85706 
lei , 1602 ) 889 ·4661 

CALI FORN IA 
1430 En l Or,n,eth orpt Av. 
f~UI 'I," 92631 
Trl , (11.) 870·1000 
IWX , 911).592·1283 

3939 Lu~'rshlm Bou l ••• , ~ N"'. HolI)'"lfod 91601 
hI, (Ill) , 17·1282 
IWX , 911).499·2170 

651~ A,ll0n. plX t 
lo, ""Celf! 90045 
'el , (21l) 116·75CO 
I WX , 911).l2t-6 148 

110 1 E""'" nd"o ROl d 
' . Ie An. 94l0l 't" I.IS) 311·'500 
TWX, 9'0·31)·1210 

2UO Will AYI. 
S.UIIOLtllt' tst2S 
h l, (916) 411·1463 
TWX, 9)0·)67·209 2 

9606 Atrg Otl.t 
P.O. Bo . 23333 
$11 Oitl' g2123 
Itb (11 4) 219·3200 
TWX, 910·]]5·2000 

COLORAOO 
s.600 Soul" Ulster P"kw.~ 
hllt . co. 80110 
Trl: (3031 771-3455 
rw~ , 910·9~S·010~ 

CANADA 
ALBERTA 
Nt wlett·Pacb,d IC,nloCll) 110. 
!INS Mini S ... " Ave. 
t~m .. 'on l SC OX$ 
ftb (40)) 4»·)670 
IWX, 610·8)1·243 1 

ttt .. lell ·Poct.lfll (C.n"") l td. 
91>42 Avenue S. ( . 
C.I,,,, T2(; II I 
Ttl: (403) 2(;2"279 

CONNECTICUT 
12 u.~af (!r i ve 
.... Ha.u0652S 
To h (203) 1&9-(;551 
TWX, 1J O ·~6~';ro2'!l 

FLO RIDA 
1'0. !Io. 24 210 
1806 W, O.kl.nd Pork Bl vd 
n LOU _,", I. 33307 
rei, (305) HI-2020 
TWX, 510·'S5·4()'3~ 

P.O. Bor 11910 
sIn L, ke Eli enor 0, 
Orl l ndo. 32809 
ToI, (3051 '59·2900 
TWX, 810 ·'~·OllJ 

GEORG IA 
P.O. 80. 21234 
4.\.0 Inl ... t, l. No,th 
AII",I, 30128 
Tel, (404) 436-6181 
TWX , 811).766·4890 

IiAWAII 
2815 So. ~i"g STr .. ' 
H ... I. 'U 'lfl814 
Tel, (808) 9~5·4455 

ILLINOIS 
~5CO ...... ,.d Strett 
UotJI6OD16 
Tel, (ll!) &11·0100 
TWX, 9 11).22]·J613 

INOI ANA 
1139 Mum ... O,lve 
Ind lll""o lis 46205 
l ei, (1I7) S46-489! 
TWl, '10·)41-l26) 

IOWA 
1!lO2 Bro' ."' 7 
I • • , City S2240 
Te l, (J I9) J3S·9466 
Nil"l: 1319) lJ8 ·9~67 

LOU IS IANA 
P. O. 80l UO 
3239 WIII I, m. Boul . vard 
K. n.er 700& ~ 
Tt l: (504) 12J.6201 
TWX, 810·955·5524 

BRITI SH CO LUMBIA 
1k .. lel1·P,,",u.n IC ,narla) tid 
837 E. Cor"",, " SI • .,.I 
V .......... , VliA 3M2 
r.l, 16(4) ts4-05JI 
IWX, 6 10-922·5059 

ELECTRONIC 

SALES & SERVICE OFFICES 

MAR YLAND 
6701 W'ittsl 0~. IIOI~ 
.. UImo .. 21:MI1 
Tel, {lOl l gu·~oa 
TWX, 110·&62·9157 

20010 C""'.'1 BIOII. 
Ger,...., t' •• 20161 
Tel, (11 1 428 ·0700 

P.O. 80' 1648 
2 Choke the", ftO I~ 
.o~hlll . 20850 
re i, (301) 941·6370 
TWX, 710·828·9684 

MASSACHUSETTS 
32 11"1>,,. 11 Ave. 
le.ln.,," 02173 
Te l: 1611) 86 1·8960 
TW~ 710·3 26·6904 

MICHIGAN 
23855 ft totllch e,i •• 
fuminJtIl 48024 
lei, (l1 3) 176·611)0 
lWX, 111).242·2900 

MINNESOTA 
2459 IInln,si l, a.e nu, 
SI. P .. I S5114 
ltl, (612) 645·9.f&1 
TWX, 9 10· 56J· )7~ 

MISSOURI 
11131 Cofofldo AK. 
KP5U Cit,- UIJ7 
Tef, (lI S) 7iJ.lOOO 
"'x, 9 10·111·21187 

118 Wel~ on I'II."IY 
MIIJI_ M lIM. 63043 
rtl, (314) 567-1455 
TWX, 910-764 ·0830 

· NEVAOA 
LII V' I II 
7." (702) 382·57?7 

NEW JERSEY 
W. 120 Centur, R~. 
P'lImu. 07652 
T. L (201) 265·5000 
TWX, 110·990·4951 

MANITOBA 
lIe" letl·P,~ '"d ·C~nld' ) ltd 
51l Cenlu.y 51. 
51. limn 
WinnipeC UH Il. 
le i, (204) 786·7511 
TWlI , 610.fo71- )UI 

N[W U D u eo 
P.O. Be • • 366 
51111010 C 
6!oOi LOtI'III I Bc~lev"d N.l . 
., .. ,....".1 .7108 
reI. (5005) 265-3713 
TYU,9 10·98901665 

I~ Wy.1I O,iv, 
LI, Crl,lCti 88001 
r , l, (505) 5t6·Z48S 
IWX, 910·gn·05~ 

NEW YORK 
6 Aulom,tlon L, ne 
Compull, Puk 
" blny 12205 
"" (518) 458·15~ 
TWX , 110-411·1210 

1219 C,m,. lIIt A g l ~ 
EUlel lt 13160 
leI, (601) 7!>l·00s!) 
TWX , 510·252·0&90 

/Ie. Y.r. City 
"'~nhlll,". B'GrI> 
Con l • • 1 Pi."' muS. Nl otlitt 
Tt" (?O n U5·~ 
a 'oo. I,n, Qunns, RI.hmollfl 
Conllel WlMld~"." NY OIfiee 
T.I, (S16) 921·0300 

U W.uhl~llon Siru t 
P ....... ""'II 12601 
Tel, ttl 41 4S4-73JO 
IWl, 510.243.(1(112 

)9 $.ocln,,, O,In 
_ottotll .. usn 
Ttl, om (73-9500 
TWX, SI0·25].5981 

5&SI Ent Molloy !tOld 
$"an n \3211 
Tel , (315) 4~ ·241S 

rwx: 110-541·0412 

1 C ron"~Y I Par. We.t 
W.odbu" IlH7 
le i : (5 IS) 921-0300 
TWX, 510·221 ·2161 

NORTH CA ROLINA 
P.O. 80l SIU 
1923 Nor H, Mll n St'eel 
Nl,h P. I. t 27262 
Tel, (en ) 885·8101 
TWX , 510·926·1516 

NOVA SCOT IA 
Nrw ltll· PI. h rd IClflln, ) lid 
171S O~I~h Vlllo,l Rd 
1I.lIfu 83l 4Cl 
Ttl, liOl) 45H'51l 
TWX: 610·211.U82 

CENTRAL AND SOUTH AMERICA 
ARG ENTI NA 
H ... leU· PlC kard ~rl . nll ", 
SAC.e .1 
l~"ll e UlI · 3' 
IUtnn Air" 
Tt l: 35·0436. 35·0627. 35·0341 
hie" 012·1009 
CiltIle , II EWP~CK ARC 

IIOLIVIA 
S l l mb~. 'Milk (hll.il) LTDA. 
Iw. Marlse,l. S, nt, e,w lJ.42 
La 1'" 
Tel, 4061"6. 53)63, 52421 
TtIU , 3S6oo14 
en", BUKMAR 

BRAZIL 
H, .. t" I·" ~ k .. O 00 9, .. il 
I. E.C. Lido . 
Rn fit. C,ntCi 11 19 
01307·Sao Pnl,·SP 
l ei, 2"·71 11 , 281·5858 
lelt. , 309151121) 
C.~It, HEWPIoCH SIoo PlUlo 

Ht .. len·PlCklfd 0.. 9,,,il 
I.E.C. ltd' . 
Puu Oom fellcilno. 78 
9000Q.ho1 • .lie.,..R"$ 
RiO C.nnde do $011 (R"$) arll" 
Ttl, 25·1410 
Cable, HEWPACH Porto AI 'I" 

~e .. lett·PilCk"d Do B,.,iI 
I.[.C. ltd l 
~ U I O. M.lri" 29 
20000· . 10 de l,n' iro·GB 
Tel, 266 ·2&43 
T. I .. , 21OC79 HEWPACM 
C,b l., HEWPAC~ Rio d. la .. i,o 

CHI LE 
~~clo' C, lc, , "i ~ Ci, . Udl 
Cuill' 16.H5 
Sanll,.. 
Tek .23 96 
Cable, CAlCAGN I SoInll.1O 

CO Lo ",aIA 
I ns,. ~me"luiloo 

lIu.ik A. lollllollaok 8 Hi •• S.A 
CIII.ra 7 1m. 48-59 
Ap.Irb do Ai," 62117 
1It,lt.I , I o.L 
Tab 45·78.(16. 45·55-41> 
Cabla: AARIS Bopll 
rain , 44«OIMSTCO 

COSTA RICA 
lie. Al I,e&> C-o lle,os G~,djlin 
lp,rt~o IC!~g 

S .. .lt16 
Tel , ft·l6·n 
Cabl l , OOGU R SIn lolf 

ECU ADO R 
l l *"lorio. ae RIOIO · ln,tnleri. 
C, lIe GU' Y'Qull 1246 
PO,I OUiee So, 3199 
o.ullo 
T. I, 212·496: 219·18S 
C,bl t: ~~ATH Quito 

EL SALVADOR 
Elec lronic ~ noe)ltn 
Apul,do 1'0.1, 1 1612 
Cenl'O Co"",,.ei,) Gll ln,e 
SIn Salndl!. (I SoI I,loCIg, C.I. 
P,..o [.nlen 4&49 .. " Pbo 
rt " 23·44·60. 73·32·31 
C~ble , ( LE C~S 

GUATE"' ALA 
,~" 
Avonid. La R. for"l' 3-43. 
Z...,.9 
"ultlrlll~ 
T.I: &1621 . 641lS 
Ttl .. , 4 192 TEllRO CU 

MEX ICO 
_ ltlt·Px hrd MU lc'u. 
S.A. de C.V. 
To<'" M I IHI NO. 21, II ' PilO 
Col. del Vi lit 
Muict 12, O.F. 
T.I , s..1-42. 32 
HI.., 011·"·501 

NICARAGUA 
Robtr lo Tor' n G 
AP" lldo ~ost' l SM 
Edlfic lo T.,.In 
Mlnl,n 
Tt l, 34~ 1, 3 4~2 
CAb lt , ROTEU M Ml n' l u, 

PANAMA 
El.ctr6ni~c hl~o., S.A 
1'.0. BOI .929 
A.e. Mlnvtl E.pl no., ~ o. ll·!>O 
Bid, . All "" 
' UIlQ ell! 
Tt I, 2308)3 
T.I,,, ]481 IOJ, Cu rund., 
CI",I ZQ"e 
Cllble , (l(CTAON P .... m. City 

PARAGUAY 
1. J. ",.I.mld 5.R.t. 
Oh1510n, Ap.I"los ) Eouipo. 

Medicos 
OM,lon, """"0' r hu,,,,,, 

Sc lentiflco, Y d' 

P.~~;~tJmlon 
Chi I •. 481. Ecl lticio Vic ..... i. 
A ... t llft 

"" ' .'Ofj~. 4-8212 
CI~lt , RAMEL 

SOUTH CAROLINA 
69U-O N. T"'n~Q'm lIe>acI 
ClI 'I'II~ja 2!J26(1 
Tel, (1101) 7a2-64~1 

OH IO 
16500 Sp rlgue Rood 
CI ... elan~ 44130 
ToI, (2151 243·7300 
Niil1l, 243·1305 
rwx , 810-423·9431 

330 P'Oire u Rd 
D","" 45449 
Tel, 151 3) 859·8202 
TWX , 810·459 ·1925 

6M5 Bu,d, 9lvd . 
Columbu. 43229 
Tel, (614) 846·1300 

OKLAHOMA 
P.O. Box 32003 
O.laIIlIrII Cil, 13132 
Tek 1 40~) 721·0200 
TWX , 910·SJoO·6-1162 

OREGON 
17890 SW Boo~ .. Fe", Ro,d 
lII 1Mla 97062 
Tol, 15( 3) 620-3350 
TWX, 9111-4&7·&111 

I"ENNl>Y LVANIA 
III U l o IIrlwe 
I';tt ... rp 152)8 
ltl, (1 121 782·0400 
N;gI1t, 182-04U1 
TWX, l UH9S·3( 24 

1021 Ith AK""t 
~!nl 0' P,uull Indu.trll l Plr k 
Kin. If p, . .. il 19406 
r.l, (21 5) 26>7000 
TWX, 510·660-2610 

RHODE ISLAND 
813 WII.,m," A.e. 
Ea.1 I· ... Hltn.1 01914 
le I, (401) 434·5535 
TWX, 71 0·381-1513 

"TENNE3SEE 
Mom,"i. 
Tt l, (901) 274·7472 

ONTAR IO 
Ht", letl ·P><klrd (Clnldl) Ud. 
1785 Woodward IIr. 
1111,... H2C Org 
Tol, (6IJ) 225.fo5J(l 
TWlt 610·562-!968 

Htwlett-l'lck.rd IC""~d') LId . 
6811 G.oItwlY Drive 
Miu is",,,p l4Y IL9 
Tt l, (416) 61J-943O 
TWX, 610-492·'246 

PERU 
Comp.~ i . El ect ro M~Oi" SA 
Ave. En ri qu , C, ",u .1 312 
S, n I, id ra 
Cu ill' 1030 
lim , 
Te ), 22·3900 
C,bl e, ElMED lima 

PUERTO RICO 
SoIn JU ln £Iecrronin. Inc 
P.O. Bo, 5167 
Ponce Ce t . on 154 
Pda. ] ·PTA C. 1 ier" 
SIR J1I<I n 00'306 
It" (BOg) 725·33-41. 121·3342 
CaII lt, SA1RON ICS SIn JUln 
ltle. , SATRON 3450 332 

1"£XA$ 
1".0. Ho i 1270 
201 E. o\I'lj>II.~ Rd . 
Rieh"du~ l~a.a 
Ttl : (2 14) 21 1.e IOI 
TW_, 910·&S7·H 73 
P.O. So. 114()9 
6]00 .fllpl,k Drlv! 
S.lte 100 
H~~.'~n 1/021 
1.10 (1ll) 781-6000 
t wx , 9 10·Ul· 264~ 

231 Blll r Ml l thell Rood 
S,n "lonl0 78226 
,e l: (512,434.4171 
TWX, 910 ·871·1170 

UTAH 
2890 Sgulb Mlln St,ut 
5~ 11 lI_e Cltr S4115 
Ter, (101) .87·0715 
TWX , 910·925·5681 
VIRG INIA 
P.O. 1kI. US<! 
2~14 IIvn,." S~r(nll ROl<! 
~ Ieh noon_ 23228 
l tl· (801) 2&5·3431 
TWX , 110·956·0a7 

WASHIHQTO N 
Bo llt lilld Outet Pk . 
UO)· 114th $E 
.. If .... 91004 
Tt l, IZ061 . ,4·l911 
TWl : 910·44}·2446 

"W1!:ST VI RG IN IA 
Cll."t. ltOII 
Ttl; (304) J4S·I~ 

WI SCONSIN 
9411 W. Btlol l ~cld 
~I!t 11 7 
Mllwa!' . u 53127 
Tel , (414) 541 ·0550 

FO R U.S. AR EAS NOT 
LISTED: 
Cont,C! I~ ! ,!.Ionlillfic ' nil' · ... ~cu , All l nli. ~Igrll' . 
Nort " HolI~wood. CI· lfg .ol, 
PI"mu s, New Jersey .. SkOOl •. 
Ill inois. ' ~ llr .grr'~ l tlt .,. 
drenn I re Il sltd lbov. 
' Servlce On ly 

QUEllLEC 
HewltlH.n.,d (Ca"ld, ) ltG . 
21S 111mU$ 8o~lrv. rd 
"'i. ~. t lli" HSR IGJ 
Itb ISl8) 56 1·6520 
IV/X. 610-4 22· 3022 
Ttlu: 0>U1S21 IIPCL 

He"lfll ·Pa~ ~lr d ((.nod.) lid. 
2316 C,Iwani SI'HI 
SIt·fly "II 4~4 
Ttl, 11181688·8110 

FOR CA NA OIA N AREAS NOT 
LISTED: 
COM,C! lIe .. len·pxk" d «In . 
101) LtO . in Minin"I ' 

URUGUAY 
P,b lo r.rrln~O S . ~ 
Comlrc lll e In dY ' l rll1 
A"nIOI 11I 11a 2877 
Cni ll l ~. Corr l O 370 
MG " ttvldto 
TI I, 40 ·3102 
C.bl" RAO IUM Monlt.ld le 

VENEZUELA 
~ .. I.I1·P,c ~ .. d at Vtnuvr l, 
0.' 
AP'f l,d D ~J3 
EC ltlc)o Se,,, 
Ttree" 1Ilnl,erlll 
l O. Ruie .. Nort. 
cantil 107 
Tel, 3$.00-11 
It lt' · 21146 NEW'A(Il 
C.~It, NEWPAC~ Corx .. 

FOR AREAS NOT LlSn:O, 

CONTACT: 
NlwleU·packatcl 
Inlt' · .... erltn 
n oo H,II,I . .. A ... 
' "1 • • no, C,IIIOI ni . 9'304 
Ttl, (41$) 49J.l~01 
fWl , 91 0-313 ·1267 
CUlt , IIEWPACK P.lo AllO 
f tl .. , 034-8100, 034-1493 

( 4/74 



EU ROPE 
AUSTRIA 
H . ~lt l t-Plc " ,d C .. , m , ~ , ~ 
H I'.~ I I I ),' ~2 1 3 
P,O. Bo~ 7 
A·1105 ~1 1 " n. 
hi , {022 21 Jl 66 ()6 to 09 
C, DI " !lEW''\)( Vilnn. 
T,ltl: 15923 ht·~·p. k • 

BUGIUM 
Hewl' I~ ·P.(k.,d B'.llul 
S A / N Y, 
~vtnu' U Col-Yert, I. 
(Gro.n~ IU'!I"'1 
! .\l10 e"mtll 
TIl, 1(2) n 22 40 
CIDI" PAtQ BEN 8'U1S.I, 
Te lu: 23 49/, polollen Dr" 

DENMARK 
HI'~:' II · P IC kHd AlS 
Di li vi l !! 
O~ ·3 450 BI'~tr.' 
hi· lO ll 816640 
Clble, H(WP~C~ ~$ 
T,I" , 16640 hp II 

1Ie-.. tl ll ·PItU.d AlS 
TG," , 9 
Ok<36oo Sllk, bo' R 
TI" (06J SHH6 
1,' .. , US (0 np .. 
tiDI . : IIEWPACK AS 

fiNLAND 
H.", lltt·P'< k. ,d ()y 
Bure,ordi 26 
P.O. Bo. lZU5 
SI·00120 H. llin ki 12 
1, 1. (901 13730 
CID I.: HEWPAC KOY H. I, io" 
TI le.: 12· ]5363 her 

FRAHer 
H,wl,u·" , Io;.,d r:ane. 
QUII' ''' d. !AI"ftl bO,u' 
e.,I. Po. IIII No. B 
'·91401 Om, 
1,1 (I: 9Cl It 25 
tlDle· H[WPACK 0, .. , 
'er •• · 6OC'S 

H. wl. It·Pac kard r"n~1 
A ~c n •• hllonl l 
~ Qu . i du We lt s 
F-69nl Ly~n Ct dU 1 
r e i, aa:, 42 63 45 
C. ble , ~[WPACK L, on 
r ei .. , 31617 

He wlttl ·l';JC kud fllnte 
1001 U ,ollluliQue 
A •• nue Clement Adol 
r·31770 CDlo .. ;tn 
reI, (61) 86 81 55 
rrl .. , 5]951 

H.", loll·p. t kerd f"nr:< 
A,Ontt R"io~le 
Bo"lo\".,d F".to·G.ma", 
80ito Po, t, le No . ]1 
f-13100 Luynll 
lei , (47) 24 00 66 
Te le,,41 170 

H . ... I.tt ·P.d lld Franc e 
~;: er>C j R"io. , I, 
63. Avenv, da Roc hnt. r 
f.) SOCO ReoMI 
T.I, (99; 36 II 21 
T.I .. , 74912 r 
Htwl.U·P"klord fllnce 
AIil.nr:e Rtaion,l. 
14. Allk de II Robelluu 
r-&7OOO SIr U IlUfl 
ltl, (M) 35 21 20/21 
Tel .. , an41 
C~b lc , H[W PACK STReG 

GERMAN FEDERA L 
REPUBLI C 
H. , .. lelt ·Patka rd GmOH 
V, rtri eO .. , nt rl le fr anklu rt 
BHnO"I ,.". Jll 
Po. tI. th 560 140 
0-6000 FI.nkf,,! ~5 
Tel; «(611) 50 04·1 
ClIl le , H(WPACKSA rrl~klurt 
hie" 41 32 49 fll 

AFRICA, ASIA, AUSTRALIA 
AN GO LA 
ri ll Cl II·E mple n Te, nl'J 
d~ EQu l~l m ' nlo , EI. elr ico. 
SARL 

Rua do B"boU. Rod'i",e •. 
42·1 .0 ' " 

PO. 80' 6481 
Lu .. h 
Clbl' , Tn[ CUA Lu.nd. 

AUSTRALIA 
H.-.MU· Paeilald Aus!r,li. 
PlY. lId. 
11·~1 Jos~~h SHUI 
YI~I III. , 3110 
rtl:U535 ! 
CIOI " H(W~ARO h: o l ~O"'ne 
l t lt. : 31 024 

Ht" I ~ lt · Pk k .. d ~·J.t" : iJ 
Ply , ltd 

31 Bridg. S tr~ol 

"m ~I • . 
Ht· .. Sou th W.I .. , 20/3 
lei, 449 6SE6 
lei .. 21561 
ClOle , U(WPARO Srdn. j· 

H,-,,;,",p,c~lIa A~"rali~ 
PlY ltd. 

97 C~ur(hlll Ro.d 
" OS ' HI ~032 
S~ulh .lu~I"'i, 
Ttl: ~4 8151 
C.blt, H[WPAR O ~~ . l lia. 

1 1 ~ 'h l ~t l 'Pl: k .r d Au.I" li . 
Pty llG 

Cnl ~ l l n ", H u il ~ i n~ , 

:% 4d, " id~ r O" 'cI 
h"_, \\, , ~, 600<1 
Itl: 1~·6800 
C.blt ~(""'PARO P erl~ 

H ... lell·P,c k.,d A.",a · .. 
PI, . Ud. 

10 WoolI.y Sllttt 
PO eo,19l 
OJcuon A.C.l . :1601 
1. 1· 49·"94 
Cltlt· H(W P.lRD C'"l>err. ACT 

H . ... I. tt-P.t kard .. ~.I'.li l 
Ply. lt ~. 
2, d f lo ol . 49 Grego ry T,,,, ," 
Br ITbi "C, Qu te nSIJ" d. 4000 
It" '9 15401 

C[yL DN 
U" lt . d [ leWI" I, ltd 
p,O , SQ . 68 1 
n. p", $1 
Collm h 2 
Tel : N696 
C'O't HOTPOI NT Colombo 

CYPRUS 
Kypfo n l ~1 
19 G" , orios 5 Xe"opo, IOI Ro. d 
P_O. Box 1152 
CY· NI.,,,I. 

~:~)t~~~%:2JN I CS P~NO(II IS 
ETHIOPIA 
A1,iU,R S. IISII'O"''' & A,ency 

Privalo lid., CO. 
P. D. SOlI 718 
Y /S9 Cu.nl",n.m ~I . 
U~ )s UIII. 
Tok 122a~ 
C. bl" ASACO AdG Iub.-b. 

HONG KON G 
S,hmidl & CO , IHong ~on l) Ltd 
P. O. 90< 297 
Conn" li gh! Ce ntre 
~9 th f loo r 
Con"," ~h t ROld. Cent .. 1 
Ho n, KO~' 
T. I, 240168. 232735 
Tel " , HX4 766 
C.bl" SCH MIOTCQ Henl Kon. 

I"DIA 
BI •• 51., Ltd 
M .. 1Ul i Bulldln., 
J.mohed,1 T"~ Rd. 
RO"'U, 400 010 
Ttl, 29 !;!) 21 
Te·u. 37 ~1 
C.b! ~, BllJEFR OSI 

81uo Star Ltd 
'.' ~.o 
11 417 VI, S.,,,,,, M!r~ 
rrJb~. d.vl 

80mb, 400 025 
r. l, 45 78 81 
r~lu, 40'13 
C,bl~, ~MST8lU[ 

BI~ Slar ltG. 
Sand SOlI House 
P,"~lIadt.i 

Romh1 ¢OO 025 
T.I, 4~ 13 01 
T.I .. , 375 1 
C 'b l~, 8lUE5TAR 

nlue St., lUI. 
14"0 CI.1i Lin!! 
~ .",p. r 20S 001 
Te l, G S8 82 
C. bl" BlU[SIAR 
g", e SII( , ltd 
I Kif. S!,u t 
p. O. 80' ~ 
C. I,utt. 100 COl 
r.l- 2) ·0131 
r. :u, ~~~ 
C.b'. , BlUES TAR 

H . ... l e ll -PJ' ~ . 'd C "' b~ 
Verlrieb,b uro Bob ll"B en 
H e rr en b"~e" t .. ,,. ,10 
J -I 030 80bli n, " . \\,Urtt! mt., ~ 
Tel , (0 7031) 66 72 ~7 
C.b l. , IIEPAK 9~11.,"n 
rei .. , 7Z 65 7J9 bbo 

HewleU -p. : b.d GmbH 
Ve.lri.b.biiro Dii~sek!or f 

Yer.ls,m,., We, 3S 
[HOOO Dii ... ldorl 
Te l, (ani) 63 80 31/Je 
hi .. , ~"6 533 I'rJI<Id d 
Ilurl.tt-I'o~hrd embH 
V. rlrleb,bUro H~mb url 

Wend onstr . 23 
0· 2000 H.mb""l 1 
Tol, (040) 24 1l 93 
C. bl . , HEWPACK SA I I~mbul ~ 
hie', 21 63 032 hp~h d 

Hn'l ett·Packu d Gmb H 
ve rtri . b, buro H' "" O" r 
M.II.ntorlor S!ruSf ! 
a ·3OCO H."" ... r·K I" !t l~ 
reL l0511) 5S 06 N 

Ht,. ltlt·p" k.rd GmbH 
Yertrieb"' .,o Nu"mberl 
Henbn,deulrnse 42 
0-8500 NU,tllth'l 
Tel, (O'l H J 57 )0 66 
Te'"" 623 860 

Hewlo ti- P't ~"d GmIlH 
Vertlieb.bulo Milnc~.n 
U n t",~ .. ~ inur Slr3.n 28 
ISA R Cen l .. 
0-8012 Oltobru"" 
T. I, 1089) 601· 30 61/1 
h i .. , 52 4935 
C,b le , HEw rACKSA ,," lic ~ o n 

tWu l Bo rll . ) 
He,.ltU·p.cb rd GmbH 
Ye.trieb ,bijro a •• lln 
Wilmorstoder SIr,u. 113/U 4 
0·1000 Bfr lill W. 12 
Tol, (030) 3131046 
1.lex, 18 34 OS ~pI> l ~ d 

Blue St., ltd 
Bl ue St" Ho"" , 
34 Rin£ ROId 
l ' ip.1 N.£" 
No .. Oolkl 110 024 
Tt l, 62 J2 76 
re i .. , 2463 
C.ble, BW[STAA 

Blue Sill , ltd. 
BI". SI" Hou,. 
11/11A Ma.2.lI lh Road 
BImI.Jo r~ 560 025 
To1, 5~ 
rol .. , 430 
Cl ble, BLUISTU 

Blue SI. r. Lt d. 
1-1·117 /1 
Saro jini O.,i Ro . d 
Se,und."b. d 500 003 
T. k 7 6391, 77391 
CJb~ ~ , BlUEFROST 
T~ l e ., 459 

81"' StJ r. 1I~ 
23 ' 24 s..c. nd Lrne BUC h 
""4.1< 6COOOI 
rol, 23954 
r.· • ., 379 
C. ble, BLUESTAR 

Blu. Star. tld. 
N.l~'.; Mon.ionl 
2nd floor Bi.bpu' 
J. m.h.d pur 811 ()OI 
T<I , 38 04 
C.b le, 8lU[ST U 
Te l" , 2~ O 

INDONESIA 
Ba h Bolon T" din~ COY . N.V 
O : . I . ~ Meld . k. 29 
8."4Unr 
Te l, 4915, 5[560 
C, ble , ILMU 
Ttl .. , OB·8M 

,~. 

Multi Corp InI~rnltron,1 lid. 
A,er."" Soray, l:ro 
P_O_ BOl 1212 
{R_T ohor.n 
T~I, 831035·39 
C.~I. , MlIll lCO RP fthlln 
1. 1." ,~9J ,," CI TN 

IS RAEL 
EI, ct,o" i" & £"J in ll ,ln l: 

Oil', of Moto'OI. IIf,1I 1 lid 
17 Aml ni d .. St" . ! 
Tel -A.i. 
Tel: 36941 (3 linn: 
CJblo BASTH T,H,i. 
r~I~ ' , lH6' 

GRE ECE 
~o " " K.1ra yanni. 
l ~ , £r"",u Si lf et 
CR ,Alh .. s 126 
To I, 80~ OJ~ 7 , 8080359 , 

80304 29. 8018693 
Cable , ~~KAR At~""' 
Tol .. , 21 59 ~2 rk.r Ir 

H~ .. I~tt-P.c kaord S.A. 
Medite".rn:~n '" I.'iddl. U~I 
Op~ralion ' 
35 Kelo ~olr~ni Sireet 
Platil K.f3:·nion 
C'· Kifi .. i. - ~U .. n. 
Tel , 80B0137. aOB03~8. 

8080429, 8018693 

IRELA ND 
He" lett ·Paok3fd LId 
224 B, lh Ro. d 
GB ·SloUl h, Sl1 4 OS, Bu , k~ 
T. " SlouQ h 10753) 3J3H 
Clbl t , HEWPIE SloUih 
le i .. , 8~a 41 : 

" t wleU·P;JCknd lid. 
The <;ra l\on, 
Stlmlor<! Now R~ 
Allr incl"II' , &,,">11 .. 
Tor. tOO l ) g28·g021 
T. I.I, 668068 

ITAU 
He'"lott -htbrd IIl liul S.p.A. 
Vi. Ameri,o V"pucci 2 
1·2C124 MlI •• 
Tel : «, 6251 (10 li nH) 
C.ble: ~EWPACK IT MlI ~n 
Trle x, ):>046 

Howl, lt-packard Ito ll • • " S.p.A, 
Vi'o lo p.,to ri . 3 
1·)5 100 Pod, .. 
lei , (49) 66 40 62 
Telt ., 32046 ,il Mil in 

H. wletl-PJcbrd 11.li.no SPA 
Vrl Medallie d'O,o, 2 
] ·56100 Pisa 
ToI· to!;!)) 500022 

J APAN 
YO~Oi . .... -H .wtllt-P .. k",d ltd 
Ohu hi Building 
1·~9-1 Yoyogi 
Shl b"Y3- ko, Tokyo 
T.I, 03 ·J]0·2 2S tl92 
Tolt . , ?12 ·2024YH P 
C.ble, lllPNAItMH TOK 73·1]4 

loI.oC.w.·H ..... I.tt·PlCu ld liG. 
Nisei Ibl'iIli Bid , . 
2·2·8 'Inug. 
IUrari-Shi 
Ollkl 
III, 10126 ) 23-1641 
1.101, 5332·385 YIIP OSAKA 

Yo ko, . ... ,Howl olt·P. cklid lid . 
Nlk.mo Bu il dinR 
No . 24 K.mi , .. .,im l-C ~ " 
lI. kamull-ku, Haley, Cit y 
rei , 1052: 571·5171 

lo kol,w. -Hew leU-P,eklid ltd 
mlto Bld\l. 
2·4 ·2 ShinonJu·Klt. 
Koho ~"·k" 
U kw"u 222 
ToJ, 045--43.2-1504 
1tlu , 382-3264 YHP YOK 

Yokorlw.·He,.letl ·PICbrd Ltd . 
Chuo Bid .. 
Rm. 603 1. 
2·tl>om. 
11lIMI·C HO. 
MI!o, JlC 
T~I' 02n-2S - /~/0 

KENYA 
Keny. Ki r. , lic . 
P,O, Bo. 18311 
N. irobi, Keny. 
rot, 57726 
C. blo, PRorON 

II;OAEA 
Am.ri~ln r'a~irl Complny 

Kore •. 
I. P.O. 80. HOl 
D .. Ky.n, Dldl . 8!~ Fiool 
101 S.j01i-Rc . 
Chonlro·K •. Soo"1 
!~L ;4 Ii ..... ' l3 ,gQ24·' 
Cl~I', ~M1R4CO SfGul 

LEBAN ON 
CO"' taoti, L M. c,i dio 
P.O. 50, 7< 13 
RlBoi rul 
t , l, 220M. 
C.bl" ElEC T~ONUCleAR Soi,u! 

MALAYSI A 
M£CO~: S MI I.y.il Lt~ 
2 ~'O" i 11/ 6A 
S«tion l3 
:>etali"1 JIY_. So llnlol 
c..b:.- IdECO'~B K~.I. tU"'J~r 

~1" l et!· P;KH rd Itoli , .. S,p, A. 
Vi i CO lli , 24 
HOl29 h rln 
Tol, III ) 5J 82 64 
T.:ex, 3"1046 vi. Mil ln 

LUX EMB URG 
H~"I"t·P't k.'d a •• el" . 
S A .~.V. 
A,enut de Col -y.rt, : . 
(Grotn~ll3ll un) 
B·1l10 B, . sstls 
leI, (OJ / 02) n 22 40 
Clbl. , PALOBEN Br", .. I. 
Te:rl ' 2~ ~9q 

NUH£RLANDS 
Hhl~ t1·Po<kJrd S. ne:u ' / N.V . 
W~e 'd ~s t ~ i n 117 
?,O, Bo, /S2S 
Nl ·Am,l .. d. m, 1011 
Tel,5H1522 
CJ OI ~, PALOBE N Am,t. rMm 
Tt le" 13 216 ~ o p, nl 

NORWAY 
Ht"'I~U· P.c k 'n:I No',. A/ S 
tilS. t,U 13 
So. 149 
~·I 144 Nn lum 
Teh (02) 53 83 60 
Ttln, 16&21 h~n .. n 

POfi:TUGAL 
TelHlfI·Empresa Tknic. de 
E~ulpl men!o . Elk t, i,o. S .• . r.1. 
R"-I Rod rllo d. ~on'«. 103 
~. O . Bo. 253 1 
P·ll iUn I 
Tel, (19 ) 68 60 72 
C,ble, TELECTRA li.l><ln 
1, le" 159B 

S PAIN 
Hewl.U·~fCkJfd E ","~ol •. S.A 
ltltl NO e 
(.M.'rl' 16 
It" 4S8 26 ao 
Ttl .. , 23515 lojrt 

MO ZA MBIQUE 
~, N, Gonc alves , Lt •. 
162 , Av , 0, Lui, 
P.O. So. 101 
tn"nco M.rq.u 
rlh 21091, 21114 
lelu, 6·203 N. , on Iot o 
Cable , NEGON 

"EW ZEALAND 
Ht ... lelt·P:ockl,d (N_I.) ltd 
94·96 Oi' on S1r ~. 1 
P.O. Bo. 94 43 
CouI I ~~'Y PI3t~. 
WI II\.,lon 
Ttl' 59·5~9 
Telu: 3898 
Cabll: Ht'I\' PAC~ WOllin ( lon 

Hewlet1 ·p. ""d I '~,Z . ) Ltd 
1'~'uI.n~ ' Prol." io", 1 Cenl le 
25! P . 'ur ," ~. Kighway 
[10, 51092 
P I ~urJIII~ 
Tel, 56g.s51 
C'ble, HEWPACK . Aoc kl.nd 

NIGERIA 
TM EIKt.onic. In.lrumenll ­

ttons Ltd. (T f lll 
14~ A,lele Molo. Rd_. :.tu.hin 
P.O. Bol 6645 
l acu 
Clble, lHEl Ell Lago. 

1M Electronics 1.,.trumen!J · 
1100. Ltd, (TEll) 

16tn Floor Coco, ~ou," 
P. M,B, 5402 
Ib,a~ n 

TH 22325 
Ca O I ~, THEHll I ~.d," 

PAKISTAN 
Mush~o l Compiiny. lid 
QO IINn Cl\.lmb ... 
ADdUn, h Haroon R""d 
llalnnl3 
l ei , 511021. 5 12921 
C'~l e COOPERATO~ ~ .. r:ochl 

Mu.n~o t C:rrplny. L~~ 
38B. S~I ~ ili l ~ Town 
U ,.. lpi nd i 
lel:,:?Zt. 
: 1 ~1t: rE MU S RH"lp ,ce i 

PHILIP PINES 
[ I!C IIOII"." Inc 
6 t~ f IOO', ~'T'a : ~''-'''Ied 

Ot , el' rme 't CO'P _ Bldi 
AYJ'I ~vtn" e . M . ~ .'i, Hi,.1 
C.C .P.C. So , IOn 
Maklll, Riul 
hi ' 86·18·81, 81 -76 -11. 

81·86·88.81.18.45,28-91.71. 
83-Bl.]2. 83-82·)2 

C'~I.· HEMEX Mlril. 

Hewlett.Packar d Espa~o i', S_A 
Mil.MUd« 21 ·23 
E· Urc,lonal; 
h i, (3) 203 62 00 
h ie" 52503 hp~ . e 

H~ "I. tt·Pao k.'d £S pi nola S_A 
A, ~,mon ~ Cli .l , 1 
[dUlclo Se.iIIl I, QI' nt~ 09 
[ ·uoI IiI 

SWEO£" 
HlvrleU·P"bld S.erlre AS 
E~ilhetsvl,u 1·3 
'a~ k 
:>- )61 20 B, omm. 20 
Tel: (011) 730 O!o50 
C~b l !, MEASUREM ENTS 

SIDO. no lm 
Telex, 10721 

H.wlet1 ·Pltkl ,d Svtri i e AB 
Hl i ak! 'UJ lan 9C 
S· 431 41 M~lndl l 
Tt l: 1031) 21 S8 00/01 
T~ t~ . , VI~ Bromml 

S WITZERLAND 
HCIOlf l t P.co.,d (Sc~"Oil) AG 
ZOfchffSlune ~O 
P.O. Box 64 
CH-3952 SchlLel~n a rit h 
T~I, 101)98 18 21/24 
C~ble, HPAG CH 
Ttl" , 53933 h~a. ~ ~ 

H""ett' Plt ~"d :S. h',,~il) AG 
9, C h e~in lou is·P icte t 
C ~ · 1214 ~~ rnj e l-"nt .. 
T, I, (Oni 41 ~9~O 
CJb l ~, ~(WPAC~S A G, n, vJ 
Te l. l , 27 333 hpn ch 

TURKU 
Tel ,kem ( n,I.,""", Bur .. u 
~,lI k So ~ Ho. ] 5/1 
A)'Ulllu ·BlYOllu 
P.O. aex 437 Styo,!u 
IR·htrit' 
Tel , 49 40 40 
C~bl. , Tn t MAJlOH Ist ..... ul 

S IN GAPORE 
M~c h ~n l ta l & Combu,lion 

tnl ln u ,i n, Co mp . ny pte _, 
ltd. 

IG/ 12. 1.lln Killnl 
Red HIli 1 .~u st rl. 1 E.lat. 
$1"'11111'. 3 
Ttl: 647 15 1 17 II .... ) 
C'b!e, MECOMB SJn"pore 

lIewllll·Plt klld r .. hsl 
Arta OUitl 
P.O. 80>. a7 
ll,~~nd,. Po,t OIIi<e 
SI.,1'*13 
reI< 633022 
C~b l !, HEWPACK SI NWIPORE 

SO UTH AFRICA 
Hawl.l! Pac ' lTd So uth ~!ri" 

(PlY.), Lt6 
H e., l ~ tt 'Pl ckard Hou,. 
D,whn ~ SIIUI, Wendywood, 
S.n ~lon , T,an; ,UI 2001 
ret, 407641 (filii! line.: 

Hew;elt PacUld South Af ric~ 
(PlY.), Ltd . 

B. tH"Ue Ho~,. 
B' •• Sh.et 
b p. To • • 
Tel, 2.694Jnn 
C.bl, · HEWf'ACK CI~' To,.n 
ret .. , 0006 C1 

MO,.l t tl Pilck"d South Alrie o 
IPly,). l Id. 

6'1 Rid!; , Ro.d , Ou rb.n 
1' .0, Box 99 
O.t/~ o rl, Nl tl l 
Tel: 88 ·6102 
Tt l .. , 56795 4 
Cl bl" H[W PAC K 
TA IWAN 
Ht .. telt PKklld h i,.,n 
39 Chune S~!IO WOOl Ro.d 
~~. I 
Ovtfitls lr.sulllICe 
Corp. Bldl. 7th f lool 
111" ) 
Ttl , :J.8~]60, 1 ,2. 375121 . 
[ ' 1. ~40·749 
Te: .. : TP824 H(II'PACK 
C. b:e , HE WPACK h ip. i 

TH AILAND 
IJN I :.! ES ~ Co" Ltd 
C ~"~'oin ft B uil~i nl: 
56 Su ,I ;;onl.e Ro><l 
~ In ,~ck 
Tt" 31956. 31300. lllH. 
3154~ 

C.ole: llN I M(S~ e.nc ~.~ 

UNIT ED KINGDOM 
Hewlott-P ICk"d ltd. 
224 8. th ROl d 
G9- Sloulh, Sl1 " OS, Buc ks 
Tel, Sloulh 10753) 33341 
C.bl l, HEW~ IE Sloul h 
Ttl .. , 848Ul 
Ho,"le tl ,P,c ~ lId ltd 
" lbe G .. Uons"' 
SlImford N, ,. RO'd 
GB·,u tr lIlr!ILU' , Chtshi.t 
Te j, (061) 928·9021 
To ln , 66-1(16.8 

Ho", I'U·P,otbn:l, l id. 
(/0 M .... o 
SO"I~ Serv;ce Wholeilio Conll. 
Amt>el Way 
Hol .,owt n Industrill Estlle 
GB -Wo res. 
Tel , Sirm insham 7860 

H ewl e t!·Pa~ kard Ltd' s , f l i.t. red 
, ddreS! 101 V.A, T. purpos .. 
only 
70. ~I n ~ur~ ~Ivl mlnl 
lindon, [C2A]SX 
Re, il tered No , ~iO$97 

SOC IALIST COU"T'UES 
PLEASE CONTACT; 
Htwl elt ,P~c ~3Id C.uII _b.H. 
HenrSolskloi 52/3 
P.O. Bo ' 7 
A·110~ Vllnn. 
Ph, 10222) 33 ~6 OS 10 09 
C,ble, HEWPA CI( ~llnn. 
T.I .. , 75923 h.,.pa k I 

ALL OTHER EUROPEA" 
COUNTRI ES CONTACT, 
He",l t U, P, ck.rd S.A 
Ru . du Bol s·d u·Lln 7 
P_O . Box 85 
CH ·I 217 M,y/in 2 Ct nlfl 

S .. -il:erllnd 
hi , (0221 41 54 00 
CJble , H[ ..... PACKSA Genhl 
r t l ... , 2 24 86 

UGANDA 
U ta .d~ Te le·Electrlc Co " Lid 
P,O. Bo. 4449 
K' Olpa 11 
To! ,51219 
C.bl ,: COI~CO Ml mpll l 

VIETNAM 
Pen;nSll I.f T,.dln , Int . 
P.O. SOl H·' 
216 Kltn.vllOnc 
So),D. 
Ttl, 20·~05. 93398 
C'bl" PU TRA . SAICON 242 

ZAMB IA 
~ . j, Tilbu" I Zlm~il) L!d. 
P.O, 60 . 2792 
I.u" 
l.mb ll. Cent" l AITI" 
1. 1, 73 711 3 
Cob! . , ARJAYT EE, l un ' . 

MEDI TERRANEA" A"D 
MI DDLE EAST CDU" TRI[S 
NOT S HOWN PLEASE 
CON TACT: 

H.wlell·P« h ' d S.A. 
Medi l,,,.nun 1M Mlddl. 
h . 1 DPeril rou 
J~, Kol~~tl oni StlU!­
Ple1i1 Mo!all"i>o~ 
GR·Mi!in ll_Alhln, 
C.bl" ~EWPACKSA Al hI! nl 
1. 1e<, 21 ·6588 

OTHER AREAS NOT 
LISTED, CO"TACT: 
Hew l . t!·Plo~lfd 
El port Ir l de CDme l n, 
3200 Ml lll'le,. Av o. 
P, 'o Alto . Cll llor.11 94304 
rei, :4151 493·1501 
IWX, 910-313· ]267 
Clble , H[WPACII P.lo ,uto 
le le' , 034·8300, 034·8493 

f. 4/74 





ERROR MESSAGES 

Message 

ERROR 90 ________ _ 

ERROR 91 _________ __ 

ERROR 92 ________ _ 

ERROR 93 _______________ __ 

ERROR 94 ________ _ 

ERROR 95 ________ _ 

ER ROR 96 ________ _ 

ERROR 97 ________ _ 

ER ROR 98 _________ _ 

ERROR 99 ________ __ 

Meaning 

Mass Memory power OF F 
Controller power OFF 
Mass Memory drive fault or drive not ready 

Specified UN IT does not exist 

9heck w9rd or address error. 
Hardware write protect (write not permitted) 

File name or protection code greater than SIX 

characters 
File name or protection code of zero length 

Protected file accessed in FILES statement 

I ncorrect protection code 

Protection code is not given for protected file 

Protection code is given for an unprotected file 

File already protected 

Syntax not valid 

File not found 

File number reference not valid 
Record number reference not valid 
Unit number not valid 

File not assigned 

Available storage space exceeded 

Availability table full 
Directory full 

File size not valid 
Null program 

File already exists 

Improper file type 

Improper precision data type 

Numeric overflow on data type conversion 

End of file marker reached 

End of record marker reached 



PART NO. 08830-_ 
MICROFICHE NO. 08830-1/9008 

l[h~ 

PRINTEO IN U.S.A. 
AUGUST 3, 1875 



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


