| HEWLETT-PACKARD 9830A CALCULATOR
9880A/B MASS MEMORY

OPERATING MANUAL

HEWLETT-PACKARD 9880A /B MASS MEMORY

9880A/B MASS MEMORY

HEWLETT—PACKARD CALCULATOR PRODUCTS DIVISION
P.0O. Box 301, Lowveland, Colorado 80537, Tel. (303) 667-5000

(For World-wide Sales and Service Offices see rear of manual.)

Copyright by Hewlett—Packard Company 1973

PREFACE

The desire for speed and accuracy in calculations prompted scientists and
engineers to develop high-speed, sophisticated programmable calculators, like
the -hp- Model 9830A. The problem of limited storage space, however, has
always been frustrating. A calculator with the capability of manipulating large
amounts of information, accurately and quickly, when there is no equally fast
and accurate method of permanently storing this information, is analogous to a
powerful navy in a land-locked country.

Your mass memory system represents a revolutionary solution to this problem
in the programmable calculator industry. Use of the mass memory system helps
fulfill the Model 30's potential, providing you with the kind of storage
unavailable in any self-contained calculator today.

A vast amount of information can be stored and accessed on each platter used
with the mass memory system. In fact, the information contained on one
platter would require a tape cassette over 1% miles long or a stack of data
processing cards over 17 feet high! More than three hundred thousand 12-digit
items can fit onto one platter. Combine this storage capacity with access time
on the order of milliseconds, and you can begin to appreciate the power at
your fingertips with the mass memory system.

This book is organized so that it can be used in either of two ways:

A logical arrangement of topics lets you read it straight through, if
desired.

Major topics are self-contained, wherever possible, so it is not necessary
to read an entire chapter to extract one idea.

Your mass memory system can be used easily for storing many entire programs.
The system is most powerful, however, when used to store and access large
quantities of data. Over half of this manual describes data accessing procedures.
An understanding of the structure of mass memory files is indispensable for
efficient use of the files you create. For this reason, Appendix A should be
read over briefly to acquaint you with data file structure before you read
Chapter 3, which describes particular methods of storing and retrieving data.

TABLE OF CONTENTS

i i c H A PT E R S it e e et e et e

CHAPTER 1: GENERAL INFORMATION

INTRODUCTORY DESCRIPTION 11
9830A Calculator 1-2
11273B Interface Kit 1-2
11305A Controller 1-2
12869 A Cartridge 1-2
9867A/B Mass Memory Drive 1-3

EQUIPMENT SUPPLIED . . , 1-4

ADDITIONAL EQUIPMENT . . 1-6

MULTIPLE DRIVE/CALCULATOR SYSTEIVIS 1-6

INSTALLATION AND TURN-ON PROCEDURES 1-6
Installing the Plug-In ROM Block 1-7
Turn-On 1-7
Turn-Off 1-9
Unit Select and Data Protect Switches .19
Initializing New Platters 1-10
Loading and Verifying Bootstraps 1-12
System Test Instructions . (1413

MAINTENANCE REQUIREMENTS 1-17

CHAPTER 2: PROGRAM FILE OPERATIONS

PROGRAM COMMANDS 2-3
SAVE Command) . 2-3
CATALOG Command . . . 25
GET Command ‘ , , 26
CHAIN Command . . ‘ 29
PROTECT Command . . ‘ 2-11
KILL Command . . . 2-12
SAVE KEY Command , . 2-13

GET KEY Command . oo : . . 213

iv

o o <+ o <o CHAPTERS

CHAPTER 3: DATA FILE OPERATIONS

FUNDAMENTAL DATA COMMANDS
OPEN Command
CATALOG Command
PROTECT Command
KILL Command
FILES Statement
ASSIGN Statement

SERIAL FILE ACCESS
Serial PRINT# Statement
Serial READ# Statement
Repositioning the Pointer
|F END# Statement
TYP Function

RANDOM FILE ACCESS
Random PRINT# Statement
Random READ# Statement
|F END# Statement
TYP Function

CHAPTER 4: SUPPLEMENTARY COMMANDS

MATRIX OPERATIONS
MAT PRINT# Statement
MAT READ# Statement
MULTIPLE PLATTERS
UNIT Command
PLATTER-DUPLICATE Procedure
MISCELLANEOUS COMMANDS
DCOPY Command
DFDUMP Command
DFLOAD Command
DREN Command
DGET Command
DBYTE Command
DEXP Command

CHAPTER 5: APPLICATIONS

EXAMPLE #1 — DATA BASE PROGRAM
EXAMPLE #2 — RAINFALL PROGRAM

3-3
3-3
3-4
3-4
3-5
3-6
3-7
39

39

3-12
3-13
3-16
3-17
3-21
3-21
3-23
3-24
3-26

4-1
4-1
4.2
4-4
45
4-6
4-7
4-7
4-8

4-10

4-11

4-11

4-12

412

5-1
5-6

—p—a—a— APPENDICES —o—e—e—o—o—

APPENDIX A: MASS MEMORY STRUCTURE

DATA FILE STRUCTURE A-1
Serial File Access & . A-2
Random File Access (A-3
Serial vs. Random File Access . . A-3
End of Record (EOR) Markers , .) A-3
End of File (EOF) Markers , A-8
EOR and EQOF Conditions : . A-10

PLATTER STRUCTURE , , . , A-11

APPENDIX B: STORAGE REQUIREMENTS

PROGRAM SIZE , . . B-1
DATA STORAGE . ; . . ; B-1

APPENDIX C: INCREASING AVAILABLE MEMORY

DAVTP COMMAND L : . C-1
REPACK PROCEDURE . . C-2
APPENDIX D: ACCESS TIME AND BOOTSTRAPS & D-1
APPENDIX E: SUMMARY OF MASS MEMORY SYNTAXES - E1
INDEX , , & see back of manual
ERROR MESSAGES N . g inside back cover

A i o~ | ABLES —o—e—e—eo—o—o—o-

Table 1-1. Equipment Supplied , 1-4
Table A-1. Serial vs. Random File Access , , A-3
Table A-2. EOR and EOF Markers ,) A-10
Table A-3. EOR and EOF Conditions = A-10

Table B-1. Data Storage Space . , . _ B-1

Vi

Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-1. Possible Configurations

1-2. 9867A Mass Memory Drive

1-3. 9867B Mass Memory Drive with 13215A Power Supply
1-4. 11305A Controller

1-5. 11273B Interface Kit

1-6. 12869A Cartridge

1-7. 11304A Cart

Figure 4-1. A Five-Record File

Figure

A-1. A Physical Record

Figure A-2. A Logical Record e

Figure A-3. A Logical Record Can Be Any Length in Serial File Access Mode
Figure A-4. “"MOM"” L.

Figure A-b., LEOR Marker Placed after Last Data ltem

Figure A-6. LEOR Marker Is Moved
Figure A-7. Insufficient Space on One Physical Record

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

A-8. Reposition the Pointer

A-9. Read Data in First Logical Record

A-10. Read Data in Rest of the File

A-11, "DAD” o

A-12, LEOR Marker Placed after Last Data Item
A-13. Printing Another Logical Record

A-14. Data in the Second Record Is Read

A-15, Data in the First Record Is Read

A-16. Data Is Printed in the First and Second Records
A-17. Data in the Second Record Is Read

A-18. Mass Memory System Platter

A-19. Storing and Retrieving Data

D-1. Transfer of Programs (GET or CHAIN Command)
D-2. Data Element Transfer Time

D-3. Matrix Element Transfer Time

<+ <o <+ <o <o < FIGURES - <o <o <+ o <o <o

1-1
1-5
1-5
15
1-5
1-5
1-b
49
A-1
A-2
A-2
A4
A-4
A4
A-b
A-b
A-b
A-6
A-6
A-7
A-7
A-8
A-8
A9
A-9
A-11
A-12
D-2
D-2
D-3

Chapter 1
GENERAL INFORMATION

~e——o INTRODUCTORY DESCRIPTION

The -hp- 9880A/B Mass Memory System offers the advantages of a very large tape
cassette. The amount of available starage space is 2.4 million data bytes (1.2 million
words) per platter. In addition, short data access time makes the system extremely
functional and easy to use. The average access time is less than 50 milliseconds. With
optional applications pacs, the mass memory system is even more powerful; data and

program control is increased.

9830A

Calculator
and

Printer

11305A
," Controller
/ !
!
// i
Ir-————-\[// /
lj_ I /
T T T ':/ /
__J
,_,-"-—' l /
- e e - = d /
/
/
/
/
_____ - ’
,
1/
’; \/
A
- |
—— |
L e e e -

Figure 1-1. Possible Configurations

9867A/B
Mass Memory Drive

The mass memory system can consist of a variable number of components, depending on
your needs. Possible configurations are shown above (Figure 1-1). Each component is

discussed briefly below.

1-1

INTRODUCTORY DESCRIPTION —

(Continued)

9830A CALCULATOR —=— .

The system is designed to accommodate up to four 9830A Calculators. Only one
calculator, however, can access the mass memory at any one instant. A 9866A Printer, or
any other printer, is required for each system.

11273B INTERFACE KIT —= - , S —

The 11273B Interface Kit consists of a Mass Memory ROM, an interface cable, and a
system tape cassette. The ROM contains some of the system commands needed to
operate the mass memory drive. When the ROM block is plugged in, it uses 300 words of
user read/write memory. The interface cable connects the calculator to the controller.

Finally, the mass memory system tape cassette contains programs to test the mass
memory system, initialize new platters and duplicate the information contained on one
platter to another platter. The system tape cassette also contains the system’s
‘bootstraps’. These are the remainder of the system commands and statements needed to
operate the mass memory. They are loaded onto each mass memory platter during the
initialization process. Once the bootstraps are loaded onto a platter, the bootstrap
commands and statements are automatically transferred into the 300 word area
mentioned above when needed (i.e., when a program or a user requires them).

One interface kit is required for each calculator connected to the controller.

11305A CONTROLLER —=— — S S—

The controller interfaces the calculator(s) and the mass memory drive(s). It serves as a
junction box for connecting one or more calculators and one or more mass memory
drives. The 9868A 1/0 Expander cannot be used for this purpose; the 11305A Controller
must be connected directly to the calculator(s). Of course, the 9868A 1/O Expander can
still be used to connect peripheral equipment to a calculator, whether that calculator is
part of the mass memory system or disconnected from it.

12869A CARTRIDGE —-——————————————

A removable platter in its container is called a ‘cartridge’. The platter is the heart of the
system. As mentioned earlier, up to four platters at a time can be included in one
system, each one of which has a storage capacity of 2.4 million bytes. Cartridges can be
interchanged, of course, for an even greater storage capacity per system. Each platter
must be initialized before using it for the first time. For this initialization procedure,
refer to “Initializing New Platters’’, page 1-10.

——— 9867A/B MASS MEMORY DRIVE

The 9867A Mass Memory Drive holds and operates one cartridge; the 9867B Mass
Memory Drive holds and operates two platters. One of the two platters is permanently
installed in the mass memory drive and the other (the cartridge) is removable. Several
configurations are possible since you can incorporate up to four platters per system (e.g.,
two 9867B's, one 9867B and two 9867A’s, four 98G67A's).

In order to operate the mass memory system, all drives connected to your
controller must be switched ON. If you don’t plan to access a drive, the
LOAD switch may be set to its UNLOAD or OFF position, but power

must still be on.

EQUIPMENT SUPPLIED —>—=

The following equipment is supplied with the 9880A or 9880BT Mass Memory and is
necessary to operate the system:

Table 1-1. Equipment Supplied

Description Quantity -hp- Part Number
Controller 1 11305A
Mass Memory Drive T 1 9867A or 9867B
Interface Kit consists of:
Mass Memory ROM 1 11273-67920
System Tape Cassette 1 11273-60002
Interface Cable Assembly 1 _—
Operating Manual 1 09830-90008
Training Cassette 1 09830-90020
Quick Reference Card 2 09830-90021
Data Base Routines FAC 1 09830-76501
Cartridge 1 12869A
Cart 1 (Optional) 11304A
Fuse, 1.5 amp 3 2110-0043
Fuse, .75 amp 3 2110-0033
Power Cable 1 8120-1378
or
8120-1689

T The 9867A drive is supplied with the 9830A system, while the 98678 drive and a separate -hp- 13215A Power
Supply are supplied with the 9880B system. Of course, additional drives can be purchased for use with either system.

Figure 1-2. 9867A Mass Memory Drive

Figure 1-4. 11305A Controller

\._
@iy

Figure 1-6. 12869A Cartridge

"
Figure 1-7. 11304A Cart

1-5

1-6

o< ADDITIONAL EQUIPMENT & <o <o

You can use string and matrix commands for greater flexibility in the mass memory
system. The matrix commands require the installation of an 11270 Matrix Operations
ROM to the calculator and the string commands require an 11274 String Variables ROM.

Of course, all other Model 30 ROMs are compatible with your mass memory and can be
plugged into the calculator in any but the top ROM slot when the Mass Memory ROM
block is installed.

Once again, a 9866A Printer, or other printer, is required for operation of this system.

—~#—=— MULTIPLE DRIVE/CALCULATOR SYSTEMS —>—=

For purposes of instruction, it is assumed that you are working with one platter and one
calculator. Specific information for operating more than one platter at a time is available

in “MULTIPLE PLATTERS", page 4-4.

If more than one calculator is connected to the controller, an interface kit is required for
each of them.

The calculator that is currently accessing a platter has control priority over any other
calculator that attempts to access any platter in the system. The second calculator
automatically accesses the platter it specifies when a delay of a half second or more
occurs in the first calculator's access operation. Any platter can be accessed by any
calculator connected to the controller, but two or more calculators cannot access the
same or different platters simultaneously.

There are certain protection features built into the mass memory system and discussed in
the following chapters. If these protection features are not used, one user can access,
modify or even erase the information on another user’s platter.

—+— INSTALLATION AND TURN-ON PROCEDURES —o—

An -hp- service representative will install and inspect the mass memory system for you
initially; local sales and service offices are listed at the back of this manual.

— : —— CAUTION — —

SERIOUS DAMAGE CAN RESULT IF THE 9867A/B MASS MEMORY
DRIVE IS MOVED ABRUPTLY. DESPITE ITS SIZE, THE MASS
MEMORY DRIVE IS AN EXTREMELY DELICATE INSTRUMENT AND
MUST BE HANDLED CAREFULLY AT ALL TIMES.

—= INSTALLING THE PLUG—IN ROM BLOCK

The complete procedure to install a plug-in ROM block is in the Operating and
Programming Manual for the 9830A Calculator. Following are some reminders; please
note the changes from the standard procedure:

Switch the calculator OFF before installing or removing a ROM.

@ The Mass Memory ROM must be installed in the fop ROM slot behind the ROM
door on the left side of the calculator.

The label on the ROM should be right-side-up and facing the ROM door when the

ROM is properly installed.

@ Ensure that the ROM is properly mated to the connector at the back of the slot
before switching the calculator ON.

NOTE

Use of the calculator with the plug-in ROM, but without the loaded
bootstraps, may result in apparently illogical error messages. DISP and
PRINT statements, for example, cannot be executed. For this reason,

remove the MassMemory

ROM whenever the interface assembly is

disconnected from the rear of the calculator or the mass memory drive’s

power switch is turned OFF,

o TURN—ON

Following is a list of indicators which are part of the 9867A or 9867B Mass Memory
Drive. When lit, they indicate the conditions shown below. Parenthetical numbers refer to

the specific drive model.
DRIVE FAULT —

DATA PROTECT (9867A) —

L/D PROTECT (9867B) —

U/D PROTECT (9867B) —

DOOR UNLOCKED —

DRIVE READY —

UNIT SELECT INDICATOR —
(9867A)

Malfunction in hardware or a read-write head
movement operation was not completed within
850 milliseconds.

Data protect switch is in the ON position. When
lit, the cartridge is protected against any write
operations.

L/D protect switch is in the ON position. When
lit, the lower, fixed platter is protected against
any write operations,

U/D protect switch is in the ON position. When
lit, the upper, removable cartridge is protected
against any write operations.

LOAD switch is in the OFF or UNLOAD position
and the drive spindle is stopped.

Drive spindle motor has reached 2400 RPM, the
air filtration system has been purged of unclean
air, and the read-write heads are in a loaded
position over the platter. Stays lit during mass
memory operations,

Indicates the unit number of the platter assigned
to the mass memory drive.

1-7

—&— INSTALLATION AND TURN-ON PROCEDURES =

(Continued)

The procedure shown below must be followed to turn your mass memory system on. It
is to be followed only after your -hp- service representative connects the mass memory
components. This procedure is also performed, initially, by the service representative who
installs your system.

@ Once the Mass Memory ROM is installed in the calculator, switch the calculator
and printing device ON.

® Set the mass memory drive LOAD switch to the OFF or UNLOAD position and
press the POWER switch of the drive ON (its ‘in" or ‘up’ position). All drives
connected to your controller must be switched on in this manner before the
system can be operated.

@ Wait until the light marked DOOR UNLOCKED is turned on. This will take
approximately b seconds.® Then turn the LOAD switch of the drive(s) to the ON
or LOAD position.

® The DOOR UNLOCKED indicator will go off. Wait until the light marked DRIVE
READY is turned on. This will take approximately 25 seconds. Then switch the
controller on by pressing the LINE button of the controller ON. Be sure the
intake fan at the back of the controller is not blocked. Air must circulate freely.
The controller must be the last component to be switched on. ++

@ Set the LOAD switch to the UNLOAD or OFF position on each drive which you
don’t plan to access.

CAUTION

IF, AT ANY TIME DURING MASS MEMORY OPERATION, YOU HAVE
REASON TO BELIEVE THE DRIVE IS NOT WORKING PROPERLY,
TURN THE LOAD SWITCH OF THE DRIVE TO THE OFF OR
UNLOAD POSITION FIRST. WHEN THE LIGHT MARKED DOOR
UNLOCKED IS ON, TURN OFF ALL OF THE COMPONENTS AND
CALL YOUR LOCAL -hp- SALES AND SERVICE OFFICE. DO NOT
ATTEMPT TO RETRIEVE DATA STORED ON A CARTRIDGE BY
USING IT IN ANOTHER DRIVE. DAMAGE MAY RESULT TO THE
SECOND DRIVE.

T This procedure assumes a removable cartridge is in your mass memory drive. (A 98678 also must have a cartridge
inserted at all times for system operation.) If your cartridge is not in the drive, wait until the DOOR UNLOCKED light
is on, then open the frant door of the drive by pulling out and down from the upper edge of the front door. Install
the cartridge carefully, with the -hp- label right side up and facing you, Do not farce the cartridge into the drive, as
this may damage the read-write floating heads. Close the front door of the drive.

i
{T The controiler should never be turned on while a 9830 program is running.

----- : < TURN—OFF

To turn off the mass memory system, reverse the steps in the above procedure.

CAUTION

WHEN TURNING THE MASS MEMORY SYSTEM OFF, TURN THE
LOAD SWITCH TO THE OFF OR UNLOAD POSITION AND WAIT FOR
THE DOOR UNLOCKED INDICATOR TO LIGHT BEFORE PRESSING
THE DRIVE POWER SWITCH OFF. PROPER HEAD UNLOADING IS
GUARANTEED ONLY IF THE LOAD SWITCH IS OPERATED WITH
POWER ON. HEAD OR PLATTER DAMAGE MAY OCCUR UNLESS
THIS PROCEDURE IS FOLLOWED IN THE CORRECT ORDER.

—o— UNIT SELECT AND DATA PROTECT SWITCHES

In the 9867A Mass Memory Drive, the unit select switch and the data protect switch are
located beneath the cartridge inside the front door. The unit select switch for the 98678
drive is internal and is set by the -hp- representative who initializes your system. The
numbers O or 2 are assigned to the upper cartridge, while 1 or 3 designate the
corresponding lower platter.

There are two data protect switches for the 9867B; one is for the upper, removable
cartridge and the other is for the lower platter. Both of these switches are located
beneath the cartridge inside the front door. In the ON position, the data protect switch
prevents write operations (PRINT#, MAT PRINT#, SAVE, OPEN, KILL and PRQ) on the
the specified platter.

1-9

1-10

INITIALIZING NEW PLATTERS —=

INSTALLATION AND TURN-ON PROCEDURES —

{Continued)

Initialization defines the tracks on the platter so that they may be referenced by the
system. The system tape cassette contains bootstraps which will be loaded on each platter
(one for a 9867 A and two for a 9867B) of your mass memory system initially by an -hp-
service representative. Each new platter (fixed or removable) must be initialized in this
manner before it can be used with your system. The initialization takes about one hour
per platter. Subsequent loading of the bootstraps on each new platter is accomplished
according to the following procedure. Please note that, once the cassette is loaded onto a
platter, it remains there. This procedure does not have to be repeated each time the mass
memory system is turned on,

Once the Mass Memory ROM is installed in the calculator, switch the calculator
and printing device ON.

Set the mass memory drive LOAD switch to the OFF or UNLOAD position and
press the POWER switch of the drive ON (its ‘in’ or ‘up’ position).

Wait until the light marked DOOR UNLOCKED is turned on. This will take
approximately 5 seconds.

Open the front door of the drive by pulling out and down from the upper edge
of the front door.

Install the cartridge carefully, with the HP label right side up and facing you. Do
not force the cartridge into the drive.

Close the front door of the drive.

Press the LOAD switch of the drive to the ON or LOAD position.

The DOOR UNLOCKED indicator will go off. Wait until the light marked DRIVE
READY is turned on. This will take approximately 25 seconds. Then switch the
controller on by presssing the LINE button of the controller ON.

- CAUTION

IF, AT ANY TIME DURING MASS MEMORY OPERATION, YOU HAVE
REASON TO BELIEVE THE DRIVE IS NOT WORKING PROPERLY,
TURN THE LOAD SWITCH OF THE DRIVE TO THE OFF OR
UNLOAD POSITION FIRST. WHEN THE LIGHT MARKED DOOR
UNLOCKED IS ON, TURN OFF ALL OF THE COMPONENTS AND
CALL YOUR LOCAL -hp- SALES AND SERVICE OFFICE. DO NOT
ATTEMPT TO RETRIEVE DATA STORED ON A CARTRIDGE BY
USING IT IN ANOTHER DRIVE. DAMAGE MAY RESULT TO THE
SECOND DRIVE.

The initialization procedure is accomplished in two phases. Once all components of the
mass memory system are switched on, follow the procedure below to load the mass
memory system tape cassette bootstraps onto your platter.

1.

Insert the mass memory system tape cassette in the tape transport of the
calculator and close the transport door.

Key in and execute: LOAD BIN 60.

When the cassette file has been loaded into the calculator memory and control
returns to the calculator, key in and execute the word, INITIALIZE.

1-11

From this point on, your calculator printer will instruct you. The first message printed is:

4. The button next to the LINE button on the controller, marked CONTROLLER
MODE, should be switched to INITIALIZE (its ‘in" position).

5. Key in and execute: CONT from the keyboard.

The next message printed is:

6. Input and execute the unit number of the platter you wish initialized.
{Remember: On the 9867B drive, the upper, removable cartridge is number O or
2, while the lower, fixed platter is correspondingly 1 or 3.)

The next message printed is:

CHUMBER = H.

where ‘N’ is the unit number you specified.
7. If correct, key in and execute: 1. (A O executed from the keyboard will return

you to the point at which you switched the INITIALIZE button ON. Continue
this procedure from step #5.)

The next message printed is:

I IALIEAT IOW EHREE L WILL TekE HEEROGIHHTELY 2 MIFUTES,

B [P | k.

NOTE

If an ERRORT occurs any time during execution of the initialization
procedure, re-execute the instructions from step #1 and follow the
procedure again. If the same error message is displayed again, call your
local -hp- sales and service office for help.

After phase 1 is completed, the next message printed is:

8. Set the CONTROLLER MODE button to NORMAL (its ‘out’ position).
9. Key in and execute: CONT from the keyboard.

T ERROR 900 Defective track in system area {tracks 0-7, 404, 405) of platter, or 7 or more defective tracks in user area.
ERROR 901 Transfer of information between calculator and platter is not operating normally.
ERROR 902 Bootstraps are not verified correctly.

1-12

INSTALLATION AND TURN-ON PROCEDURES

{Continued)

The next message printed is:

THY

At this point, a track-by-track verification routine is executed. This second phase is
automatic, while the display flashes:

[

The next message printed is:

When phase 2 is completed, a list of defective tracks on your platter is printed. If there
are no defective tracks, NONE is printed. The next message printed is:

If another platter is to be initialized, key in and execute the word, INITIALIZE. Follow
the previous procedure from step #4. Pressing CONT EXECUTE initializes the calculator.
Control is returned.

LOADING AND VERIFYING BOOTSTRAPS ———

Once a platter has been initialized, bootstraps can be loaded onto it or verified at any
time, without erasing information already on the platter. An ERROR 902 message may
be avoided by loading the bootstraps again before verifying that they were loaded
correctly.

To load the bootstraps on an initialized platter, perform the following procedure:

Key in and execute: LOAD BIN 2, with the mass memory system tape cassette in
your calculator tape transport.

When control returns, key in and execute: UNIT N (where N is the unit number
of the platter you wish to load). This step can be ignored if your platter is
designated as unit 0.

Key in the word, BOOT, and execute it.

The tape cassette begins loading information onto the platter. After about three minutes,
control returns to the calculator. At this point, the bootstraps are loaded onto your
platter.

To verify that the bootstraps were loaded correctly, perform the following procedure:

@ [Key in and execute: LOAD BIN 3, with the mass memory system tape cassette in
your calculator tape transport.

@ When control returns, key in and execute: UNIT N (where N is the unit number
of the platter you wish to verify}. This step can be ignored if your platter is
designated as a unit 0.

® Key in the word, VERIFY, and execute it.

The tape cassette begins verifying information on your platter. After about three minutes,
control returns to the calculator and the tape is rewound automatically. Verification of
your bootstraps has been accomplished.

. i y. < SYSTEM TEST INSTRUCTIONS

To test the operation of your mass memory system, be sure the Mass Memory ROM is
inserted in the top ROM slot of the calculator. Also, insert the ROMs you plan to use
with the mass memory system (i.e., String Variables ROM, Matrix Operations ROM, or
both — other ROMs can also be inserted). These ROMs can be inserted in any ROM slot
except the top one, reserved for the Mass Memory ROM.

Make sure the mass memory system components are connected properly and switched
ON. An initialized cartridge must be in the drive unit. If a 9867B drive is to be tested, its
fixed platter must be initialized also.

Insert the mass memory system tape cassette in the tape transport of the calculator and
close the transport door. Press SCRATCH A EXECUTE.

For an explanation of the system test, before it is executed, press LOAD EXECUTE.
After control returns to the calculator, press RUN EXECUTE. As the test is run, files are
created and take up available user space on your platter. The calculator prints the
information on the next page and begins running the test automatically.

1-13

1-14

~o— INSTALLATION AND TURN-ON PROCEDURES —=-

(Continued)

THLE |

CORM RRRELECSY DCUHREEY V00 HAVE USED I

THE EsBERCISER USRS THE FULLOMIMG MRE:

OFTTOMAL MITH FATREIX ROM
T .
M T

L A e L A

To run the test without an explanation, key in and execute: LOAD 70. When control
returns to the calculator, press RUN EXECUTE. Regardless of whether an explanation is
printed, the first question displayed on the calculator is:

[

Key in the unit number (0-3) you will be working with and press EXECUTE.

The next question displayed is:

IT a String Variables ROM is inserted in your calculator, key in 1 and press EXECUTE. If
you don't have a String Variables ROM, key in 0 and press EXECUTE.

The next guestion displayed is:

IT a Matrix Operations ROM is inserted in your calculator, key in 1 and press EXECUTE.
If you don’t have a Matrix Operations ROM, key in 0 and press EXECUTE.

The final question displayed is:

[

Key in the number of times you want the test run. (To test the system completely one
time, press 1.) Press EXECUTE.

At this point, the test is run. With both the String Variables ROM and the Matrix
Operations ROM installed, one test takes approximately 9 minutes; the test takes
approximately 15 minutes to run twice. After each test, a printed message informs you
how many times the test has run. Multiples of five tests, however, are indicated by the
following message:

TESTLHG

When all tests are completed, the following message is printed and displayed:

TESTIHG COHFLETED

The tape cassette is rewound automatically at the conclusion of these tests.

1-15

1-16

~ INSTALLATION AND TURN-ON PROCEDURES ——

(Continued)

During the course of the tests, the following displays occur with the frequency shown
below:

MESSAGE FREQUENCY

[} e

Combination repeated
4 times

Combination repeated
4 times

[

Combination repeated
4 times

oe]

—_—

The messages displayed differ, according to the ROMs installed in the calculator.
Obviously, the displays which mention MATRIX or MATRICES are only seen if the
Matrix Operations ROM is installed, while displays which mention STRING or STRINGS
require the String Variables ROM. In addition, the message, END OF FILE FOUND ON
FILE 4, is displayed only when a Matrix Operations ROM is installed and the String
Variables ROM is not.

Once the test is begun, do not rewind or remove the tape cassette. The last section of the
test, using Special Function keys, is only run once, no matter how many times you
specify the rest of the test should be executed. Consequently, removing the tape cassette
before it is automatically rewound by-passes this section of the test and results in an
error message.

~+—o—o— MAINTENANCE REQUIREMENTS & o —o—

As mentioned before, the mass memory system — especially the mass memory drive — is
extremely delicate. If it is unintentionally bumped, damage may result. Even the most
elaborate protection plans are not foolproof. For this reason, data back-up systems are
strongly advised.

Make duplicate platters or tape cassette recordings of all your important files. When
working with data that is updated regularly (e.g., payroll accounting), use a ‘leap-frog’
technique of updating this data, if possible. That is, record every other data transaction
on alternate platters so that, if a hardware malfunction does occur, you are never more
than one time-period out of date.

The importance of a clean environment in which to operate the mass memory system
cannot be overemphasized. The platter rotates at high speed and the read-write heads of
the drive actually fly over the surfaces of the platter, never contacting it. The flying
altitude is only two microns over the platter surface — only 1/30th the diameter of a
human hair — so it is important to keep dust particles and other contaminants that can
impede head movement out of the system.

The read-write heads must be cleaned and the air filter changed «/ least every 60 days to
ensure proper operation of the system. For this reason, purchase of a service contract
with the mass memory system is highly recommended. Besides cleaning the heads and
replacing air filters, your -hp- service representative checks head alignment to ensure
compatibility of cartridges recorded in other systems and in your own system.

Finally, due to wear and tear, small anomalies occur on the surface of each platter. These
platters should be overhauled after every six months of normal use. Call your local -hp-
sales and service office for the name of the organization in your area that can perform
this service.

After a period of months, weeks, or even days, it will become apparent that the information on
your platter(s} is more valuable to you than is the entire mass memory system. Needless tc
say, with proper care of the system and regular check-ups, you will never have to worry about
losing your valuable data.

-_— CAUTION :

IF, AT ANY TIME DURING MASS MEMORY OPERATION, YOU HAVE
REASON TO BELIEVE THE DRIVE IS NOT WORKING PROPERLY,
TURN THE LOAD SWITCH OF THE DRIVE TO THE OFF OR
UNLOAD POSITION FIRST. WHEN THE LIGHT MARKED DOOR
UNLOCKED IS ON, TURN OFF ALL OF THE COMPONENTS AND
CALL YOUR LOCAL -hp- SALES AND SERVICE OFFICE. DO NOT
ATTEMPT TO RETRIEVE DATA STORED ON A CARTRIDGE BY
USING IT IN ANOTHER DRIVE. DAMAGE MAY RESULT TO THE
SECOND DRIVE.

1-17

1-18

Chapter 2
PROGRAM FILE OPERATIONS

Mass Memory files can be used to hold data (data files), programs {program files), or
Special Function keys (key files). This chapter discusses program and key files and the
commands which are used to manipulate them, For purposes of instruction, it is assumed
that you are working with one platter and one calculator. Specific information for
operating more than one platter at a time is available in “MULTIPLE PLATTERS”, page

4.4,

The conventions shown below appear in the BASIC syntaxes.

brackets [] — items enciosed within brackets are optional.
coloring — coljored items must appear as shown.

All programming statements must be preceded by a line number. Optional line number
parameters indicate that the statement can be executed from the keyboard.

Following is an example using the complex version of the SAVE command, which is
discussed in detail on page 2-3. Once you understand this syntax, you should have no
trouble with any of the syntaxes in this manual.

Syntax:
[line number] SAVE ““file name’ [,1st line number [2nd line number]]
Consider the syntax, step by step, from left to right.

1. The ‘line number’ parameter is optional. |f included, the command can be
executed from a program; without a line number, this command can be executed
only from the keyboard.

2. The word, SAVE, in brown, is necessary to identify the command.

3. The ‘file name’ parameter is needed to specify the file that will record the
program. Note that the quotation marks, in brown, enclosing the file name are
necessary.

4. The “1st line number’ parameter is optional. If it is specified, however, a comma
is needed to separate the file name from the 1st line number.

5. The ‘2nd line number’ parameter is also optional; for it to be specified, the 1st
line number must also be specified; if both are specified, a comma is required to
separate the two items.

Since the brackets are nested in this command, for the most deeply nested item to be
specified, all other items must also be specified. 1f, however, the brackets had appeared
as:

then this dependency between items would not exist; that is, the information within the
second bracket could be specified without having the other bracketed information
specified.

2-1

The syntax requirements for each command, statement and function are shown
individually throughout this manual and are shown all together in Appendix E of this
manual.

The terminology used in the following pages is shown below to help you understand the
syntax of mass memory system statements.

file name — the name used to define a specific file. This name can contain up
to six characters, with the following restrictions:

® no quotation marks (') in the name
o no commas (,) in the name
® no blanks {i.e., spaces) in the name

@ a_single asterisk (*) should not be used
because that single character- has -special
significance (see page 3-6).

Unless otherwise specified, the file name may he a string variable.

1st line number — the number that references the position of a statement in the
program designated, This number must be an integer; no variable
or expression is allowed.

2nd line number — the number that references the position of a statement in the
program designated. This number can appear only if the 1st line
number parameter is designated. The 2nd line number must be an
integer; no variable or expression is allowed.

protection code — the combination of the characters used to protect a file. This code
can contain up to six characters, but no quotation marks {*) are
allowed in the code.

Unless otherwise specified, the protection code may be a string
variable.

When a parameter can consist of a string variable, two syntaxes are shown for the
statement. Note that the second syntax, which includes a string variable in place of a
given parameter, omits the quotation marks surrounding that parameter. The string
variable syntax is valid only when the String Variables ROM is installed in the calculator.
String variables, which may be used in the protection code, can consist of up to six
characters including blanks and commas between characters; for use in the file name,
however, blanks, commas and quotation marks cannot be used. Null and blank strings are
not allowed.

There are eight commands which are used most often when working with program files.

SAVE PROTECT
GET KILL
CATALOG CHAIN
SAVE KEY GET KEY

The PROTECT and CATALOG commands can be executed only from the keyboard. All
of the other commands (above) can be executed either from the keyboard or from a
program.

s> PROGRAM COMMANDS —o—=

The commands described on the following pages are used to store and retrieve programs,
kill and protect program files, catalog those files, and store and retrieve Special Function
keys.

SAVE COMMAND

The SAVE command stores an entire program or part of it onto a specified file. This
command parallels the STORE command of the Model 30 tape cassette instructions.

Syntax:

[line number] SAVE “file name” [,1st line number [,2nd line number]]
[line number] SAVE file name [,1st line number [,2nd line number]]

Examples:

With a program in the calculator’s memory, you need only execute the SAVE command
and the program will be stored on the platter. The specified program file takes up only
the space needed for the program.

The file name must be unique. If you attempt to save a program using a name that has
heen used before for a data, program, or key file already on the platter, the SAVE
command is rejected and ERROR 97 is displayed.

NOTE
All file names that begin with the characters, HP, and are followed by any
combination of the characters, +, —, /, * (e.g., HP++/—, HP*+— — etc.)

should not be used. These names are used and subsequently erased by
certain system programs. Aside from the restrictions mentioned on page
2-2, these are the only file names not allowed when operating the mass
memory system.

The optional line number parameters enable you to store part of your program rather
than all of it. With one line number specified, the SAVE command stores only the lines
after and including the specified line. With both parameters, the lines between and
including the specified lines are stored onto the platter. Of course, the whole program is
still present in the calculator, whether all or only a portion of it is saved on the platter.

Key in the following program.

2-3

PROGRAM COMMANDS

(Continued)

You can store this program on a file named, COUNT, for example, by executing this
command from the keyboard:

In the following program, a squaring program is tacked on to the original program, now
stored in the file, COUNT.

Lines 10 through 100 print ten consecutive numbers from the first number entered. Lines
110 through 170 print ten consecutive numbers and their squares, from the second
number entered.

Once this program has been keyed into the calculator, you can save it in its entirety on a
file named, MASTER, for example, by executing this command from the keyboard:

You can also store the second half of the program on a file named, SOQUARE, for
example, by executing this command from the keyboard:

Finally, to store the first half of this program on a file named, FIRST, for example,
execute the following command from the keyboard.

In this way, you now have three programs stored under different file names. Once a
program is stored on a platter, it can be loaded back into the calculator by means of a
GET cemmand, discussed later.

After a program is stored in the mass memory system, it still remains in the calculator
memory. When modifications must be made to the program, you can store the new,
modified program in the mass memory. This is done by executing the SAVE command
and using a different file name parameter. In order to store the new program in a file of
the sarme name, the original file must first be erased. This is accomplished by means of
the KILL command, discussed on page 2-12.

-~ CATALOG COMMAND

The CATALOG command lists every file on the platter with which you are working. The
listing alsc shows information about each file,

Syntax:

CAT

Obviously, a listing of the contents of a given platter will vary with the contents
themselves. Consider the sample catalog listing below,

i - revision# of bootstraps . [k T

Notice that the column labelled NAME in the catalog listing above includes the file
names, COUNT, MASTER, SQUARE, and FIRST. The P’'s under the label TYPE signify
that these files are program files. The letters D and K (for data and key files) may appear
in this column. They are discussed later in this chapter (page 2-13) and in Chapter 3
(page 3-4).

The labels, TRACK and RECORD, designate the location of the particular file on your
platter.T Since the order in which the files were created may differ, these numbers vary
from system to system and from platter to platter.

Notice also for the program files listed, that the current length, in words, is specified.
The file COUNT uses only 22 words of memory on the platter. ABSOLUTE LENGTH(R)
indicates the number of physical records which were reserved for these programs. The
mass memory system determines how much memory, in records, is required to store a
program and rounds that number to the next higher whole record. In the case of the file,
COUNT, since the number of words required is less than 256 (i.e., less than one physical
record}, the number of records marked, rounded to the next higher whole integer, is 1.

The CATALOG command is a keyboard operation only; it cannot be executed from a
program. Use the CATALOG command at any time to list the contents of your platter.

T See Appendix A, page A-11, for a complete description of platter structure,

~&—o—o—< PROGRAM COMMANDS &<

(Continued)

GET COMMAND —=

The GET command loads a program from the platter to the calculator; the values of all
variables not defined in a COM statement are undefined.} The GET command can also
renumber the statements of the program and run it without further instructions. This
command parallels the LOAD command of the Model 30 tape cassette instructions.
Syntax:

[line number] GET ““file name” [,1st line number [,2nd line number]]

[line number] GET file name [,1st line number [,2nd line number]]

Examples:

Whenever the GET command is executed, all program lines in the specified file are loaded
into memory. All program lines“previously in the calculator memory are erased unless the
1st line number is specified.

[f the 1st line number is specified, the loaded program lines are renumbered with the
beginning line number corresponding to the specified 1st line number. Program lines
previously in memory, with line numbers lower than the 1st line number, are retained; all
other lines previously in memory are erased.

In the calculator mode {after the program is loaded into memaory):

@ If the 2nd line number is not specified, the calculator halts.
® |f the 2nd line number is specified, program execution begins at this line number.

T When programs are loaded into calculator memory from the platter by means of a GET command, any string
variables currently in memory are lost, including those strings defined in a COM statement. (Numeric variables defined
in a COM statement are, of course, retained.) Thus, if GET must be executed, then those strings which must be saved
should first be stored on a separate file, so that they can be loaded back inta memory afterwords. A CHAIN command
{described below) retains string variables defined in a COM statement.

In the programming mode (in this case, specifically after the GET command is executed
during program execution):

® |f the 2nd line numher is not specified, program execution is ‘restarted’ either
with:
— the program line immediately following the GET command in the original
program, or with

— the first line of the loaded program; that is, if there were no lines after the
GET command in the original program, or if the lines were destroyed by the
GET command.

@ |If the 2nd line number is specified, program execution is ‘restarted’ with this line
number.

Suppose the program shown below was stored on your platter under the file named,
MASTER.

G ETRR PG

WL

The following command, executed from the keyboard, loads the program which is in file,
MASTER into the calculator.

The program can be altered once in the calculator, but the information on the platter
remains unchanged.

The syntax below, in addition to loading the program into the calculator, renumbers the
statements starting with line number 200.

~—p—o—<e— PROGRAM COMMANDS —

(Continued)

A listing of the calculator memory at this point is shown below.

fn - ML LT 2T

As you can see, the program originally loaded has not been erased; the second program,
beginning on line 200, has been loaded after it. Had the second program been
renumbered from line 30, only lines 10 and 20 of the original program would have
remained; all line numbers from 30 on would have been either printed over or erased.

The GET command can also be used to begin program execution immediately.

By executing the command above, the program is renumbered from line number 200
again, and executed beginning at line 107. Since line 107 does not exist in this particular
program, execution begins at the first available line number greater than 107 — in this
case, line 110. The GET command with both optional parameters is useful for applying
certain initial criteria to various applications.

e CHAIN COMMAND
The CHAIN command is identical to the GET command discussed previously, except that
current values of variables are not erased. This command parallels the LINK command of
the Model 30 tape cassette instructions.
Syntax:

[tline number] CHAIN “file name” [, 1st line number [,2nd line number]]

[line number] CHAIN file name [, 1st line number [,2nd line number]]

Examples:

The CHAIN command is most often used in a program to link a program previously
stored on the platter.

The following three programs stored in files, BEGIN, MIDDLE and END, respectively,
illustrate several ways in which the CHAIN command can be used.

“BEGIN" (First Program Segment)

“MIDDLE" (Second Program Segment)

s

2-9

2-10

~e—o—o—o PROGRAM COMMANDS -

(Continued}

“END" (Third Program Segment)

In the above program segments, the values of variable J are retained when chaining from
program to program. In this way, selected portions of the last two program segments are
run. These programs are run by executing the GET command.

Tl b L8

Be careful when renumbering a program with a CHAIN or GET command in it. It is
possible that, when renumbering a program either from the keyboard or from another
program, either of the line number parameters will fall outside the range of the
calculator’s line numbers (i.e., less than 1 or greater than 9999). This causes ERROR 4.

2-11

< PROTECT COMMAND

The PROTECT command prevents erasure of your program files without the proper
protection code, by assigning a certain code to the specified file.

Syntax:

-

PRO “file name’’, “'protection code”
Example:

e ey (A | o

A protected file is not ‘secure’ in the Model 30 sense of the word. The program stored
on a protected file can be loaded into calculator memory, modified, listed and executed
without specifying the file's protection code.

NOTE

You can still load a program file which is protected and list or run it. The
protection code is only to prevent accidental erasure of the file; it does
not ‘secure’ a file.

In order to secure a program in a file, key the program into the calculator, key in and
execute SEC, and then store it on the platter with a SAVE command. The file that
contains this secure program can be protected at this point with a PROTECT coramand.
Now the program can be loaded into the calculator memory and executed, but it cannot
be listed or modified. It can only be erased if you know its protection code.

Make sure the protection code you specify is not obvious, in order to avoid unauthorized
erasure of your protected file. Keep a record of your protection codes so that you can't
forget them. A protected program file cannot be erased without its correct protection
code. T

A program file must first be created, before it can be protected. Use a separate
PROTECT command, after executing the SAVE command, to protect a specific file with
a protection code. The PROTECT command is a keyboard operation only; it cannot be
executed from a program.

It the protection code for a file is lost or forgotten, that file cannot be erased. Under these circumstances, you may
want to have the -hp- factory ‘unprotect’ the file, {Contact an -hp- office for a cost estimate.)

2-12

~e—o—o—o— PROGRAM COMMANDS —o-

(Continued}

KILL COMMAND -=

The KILL command erases the named file from the platter and releases the space it
occupied for further storage.

Syntax:
[line number] KILL *file name’ [, ’protection code’’]
[line number] KILL file name [protection code]

Examples:

Use the KILL command to erase files and the information contained in them, A
protected file cannot be killed unless the protection code is included in the syntax.
Attempting to kill a protected file with an invalid protection code results in ERROR 92.
{Incidentally, this error message occurs if you include a protection code in the KILL
command where none is necessary.} This makes it almost impossible for an unauthorized
person to erase your program.

On occasion, you may wish to modify a program which had been stored previously on
the mass memory system. To use the original file name for the updated program, follow
this procedure:

1. Load the original program from the platter into the calculator with a GET
command,

2. Modify the program in the calculator, as required, using the calculator edit keys
and the END OF LINE key. (At this point a listing of the program is strongly
recommended.)

3. Execute a KILL command from the keyboard to erase the outdated file from the
mass memory system. The new program is still in the calculator memory; KILL
commands do not affect it.

4. Now execute a SAVE command, specifying the original file name, to store the
modified program.

The modified version of your original program is now stored on the mass memaory
system, as well as in the calculator memory.

If more than one calculator is connected to your mass memory system, there is a
possibility that someone will be using the file you are trying to kill. In this case, your
KILL command is temporarily held until the other user is finished. (A delay of one half
second or more is sufficient.) When your calculator regains control, the file is killed.

= SAVE KEY COMMAND
The SAVE KEY command stores Special Function key definitions on a specified file.
This command parallels the STORE KEY command of the Model 30 tape cassette
instructions.
Syntax:

[line number] SAVE KEY “file name”

[line number] SAVE KEY file name

Examples:

The information on all 20 Special Function keys is stored on the file at the same time.
Since only key definitions and programs stored in keys are saved with this command, you
need two files to save a program which uses Special Function keys: one to save the
mainline program and one to save the Special Function key definitions.

A catalog listing of a platter in which Special Function key definitions are stored is
indicated by the letter, K, in the column labelled TYPE.

< GET KEY COMMAND

The GET KEY command loads Special Function key definitions from a specified file of
the platter to the calculator Special Function keys. This command parallels the LOAD
KEY command of the Model 30 tape cassette instructions.
Syntax:

[line number] GET KEY “file name”

[line number] GET KEY file name

Examples:

When GET KEY has been executed, the original information is returned to the Special
Function keys. All of the Special Function keys can then perform the same operations
they previously did before you saved them on the file.

In addition, when GET KEY is executed from the keyboard, previously defined variable values are

saved, similar to the CHAIN command. ¥ When executed from a program, however, GET KEY
initializes all variables, similar to the GET command.

']" When programs are reproduced into calculator memory from the platter by a means of a CHAIN command, all
variahles currently in memory are saved. If GET KEY is used to reproduce the program, however, any string variables
currently in memory are lost, including those strings defined in a COM statement, {Numeric variables defined in a COM
staterment are, of course, retained.) Thus, it GET KEY must be executed, then those strings which must be saved
should first be stored on a separate file, so that they can be loaded back into memary afterwards.

2-13

2-14

NOTES

Chapter 3
DATA FILE OPERATIONS

While Chapter 2 of this manual discusses mass memory program and key files, this
chapter describes the commands, statements and functions which are useful when
working with data files. Again, for purposes of instruction, it is assumed that you are
working with one platter and one calculator. Specific information for operating more
than one platter at a time is available in “MULTIPLE PLATTERS”, page 4-4.

A thorough understanding of data file structure is necessary before you can use the mass
memory system efficiently. For this reason, refer to Appendices A and B of this manual
to clarify the concepts presented in this chapter. Appendix A, especially, should be read
in conjunction with this chapter on data file operations.

The conventions shown below appear in the BASIC syntaxes.
brackets [] — items enclosed within brackets are optional.

coloring — colored items must appear as shown.

All programming statements must be preceded by a line number. Optional line number
parameters indicate that the statement can be executed from the keyboard.

The syntax requirements for each command, statement and function are shown
individually throughout this manual and are shown all together in Appendix E of this
manual.

The terminology used in the following pages is shown below to help you understand the
syntax of mass memory system statements.

file name — the name used to define a specific file. This name can contain
up to six characters, with the following restrictions:

no quotation marks (') in the name

®
@ no commas (,) in the name

@ no blanks (i.e., spaces) in the name

® a single asterisk (*) should not be used

because that ™ character Thas special
significance (see page "3-6).
Unless otherwise specified, the file name may be a string
variable.

number of records — the total number of records in a file. This parameter can be an
expression, as well as an integer. Single— and multiple—line
functions are not allowed.

protection code — the combination of characters used to protect a file. This code
can contain up to six characters, but no quotation marks (“) are
allowed in the code.

Unless otherwise specified, the protection code may be a string
variable,

3-1

3-2

file number — the number delegated to a file by a FILES statement. This
number can be any integer (constant, variable or expression)
from 1 through 10. A non-integer’s rounded value is
automatically used. Single— and multiple—iine functions are not
allowed.

return variable — the variable in an ASSIGN statement used to determine a file's
status. This parameter can be a simple variable or an array
variable, as defined in the Model 30 Operating and Programming
Manual.

list — the characters designated in a PRINT# or READ# statement.
This parameter can consist of alphanumeric variables or string
variables. Numeric constants and expressions are also allowed in
PRINT# statements. Single— and multiple—line functions are not
allowed.

record number — the number which represents the location of a record in a
specific file. This number can be any integer (constant, variable
or expression) which does not exceed the number of records in
the associated file. Single— and multiple—line functions are not
allowed.

line number — the number that references the position of a statement in the
program designated. This number must be an integer; no variable
or expression is allowed,

When a parameter can consist of a string variable, two syntaxes are shown for the
statement. Note that the second syntax, which includes a string variable in place of a
given parameter, omits the quotation marks surrounding that parameter. The string
variable syntax is valid only when the String Variables ROM is installed in the calculator.
String variables, which may be used in the protection code, can consist of up to six
characters including blanks and commas between characters; for use in the file name,
however, blanks, commas and quotation marks cannot be used.

There are six fundamental statements and commands used most often when working with
data files.

OPEN FILES KILL
CATALOG ASSIGN PROTECT

The following statements and function are used when reading and printing data.

PRINT# READ#
IF END# TYP

These are discussed as they apply to serial file access and then again as they apply to
random file access. Some of these commands (CATALOG, PROTECT, KILL} are
discussed in “PROGRAM COMMANDS”, page 2-3, since they apply to both data and
program files. If you have already read Chapter 2, you may want to review these
commands briefly, as they work almost identically for program files and data files.

PROTECT and CATALOG can be executed only from the keyboard, while |F END# can
be executed only from a program. All of the other commands, statements, and functions
(above) can be executed either from the keyboard or from a program. Please pay
particular attention to the syntaxes described in the following pages: the (#) character
must often be included in mass memory statements and commands to differentiate them
from the BASIC language described in the Model 30 Operating and Programming Manual.

—o—<o— FUNDAMENTAL DATA COMMANDS —&—<—

The statements and commands described on the following pages are used to create,
destroy and access data files.

=— OPEN COMMAND
The OPEN command creates a data file with a specified number of physical records,
assigns it a name, and places a logical end of file (LEOF) marker in the first word of
each record in the file.T

Syntax:

[line number] OPEN ‘“file name™, number of records

[line number}] OFPEN file name, number of records

Examples:

Before data can be printed onto a data file, that file must first be opened and its size
specified.

Each data file must be assigned a unigue name. If you attempt to open a data file using a
name which has been used before for a data, program or key file already on the platter, the
OPEN command is rejected and ERROR 97 is displayed.

NOTE —

All file names that begin with the characters, HP, and are followed by any
combination of the characters, +, —, /, * (e.g., HP++/—, HP*+— —, etc.)
should not be used. These names are used and subsequently erased by
certain system programs. Aside from the restrictions mentioned on page
3-1, these are the only file names not allowed when operating the mass
memory system.

The size of a file may vary_from a minimum of one physical record (256 words) to a
maximum. of 4752 records. i

The first statement in the sample programs used to store data (included in this chapter),
is generally an OPEN command. The OPEN command is included only to remind you
that data files must be opened before data can be printed on them. Often, it is most
convenient to execute the OPEN command from the keyboard, rather than from a
program, since an error message results when you run the same program twice. (The
program attempts to create a previously opened data file.)

Once a file has been opened (i.e., created) and space has been reserved for it, you can use
that file thereafter. It can be erased only with a KILL command, which is discussed later
in this chapter {page 3-5).

:f See Appendix A for a discussion of file structure, end of record (EOR) and end of file (EOF) markers.

1 See Appendix B for a detailed discussion on how to estimate file size.

3-3

~e—a—<— FUNDAMENTAL DATA COMMANDS —o—<—o—

{Continued)

CATALOG COMMAND —

The CATALOG command lists every file on the platter with which you are working. The
listing also shows information about each file.

Syntax:

CAT

Obviously, a listing of the contents of a given platter will vary. Consider the sample
catalog listing below,

In this sample listing, the column labelled NAME includes the name of each of the files
currently on a platter. The D's under the label TYPE, signify that these files are data
files. The letters P and K, which may appear in this column, are discussed in Chapter 2
(pages 2-5 and 2-13). TRACK and RECORD designate the location of the particular file
on your platter.t Since the order in which the files were opened may differ, these
numbers vary from system to system and from platter to platter. The column labelled
ABSOLUTE LENGTH(R}, shows the number of physical records you specified for the
file. CURRENT LENGTH (W) is not applicable to data files: it is discussed in “CATALOG
Command”, page 2-5).

The CATALOG command is a keyboard operation only; it cannot be executed from a
program. Use the CATALOG command at any time to list the contents of your platter.

PROTECT COMMAND -—&—

The PROTECT command prevents erasure of, or access to, your data files without the
proper protection code, by assigning a certain code to the specified file.

Syntax:

PRQO “*file name”, "“protection code”

T See Appendix A, page A-11, for a complete description of platter structure.

Example:

Make sure the protection code you specify is not obvious, in order to avoid unauthorized
access to your protected files. Keep a record of your protection codes so that you can't
forget them. A protected data file cannot be accessed or_erased withoul its _correct

_pratection code,

A data file must first be opened, before it can be protected. Use a separate PROTECT
command after executing the OPEN command, to protect a specific file with a protection

code. The PROTECT command is a keyboard operation_only; it cannot be executed from.

a_program.

=- KILL COMMAND

The KILL command erases the named file from the platter and releases the space it
occupied for further storage.

Syntax:
[line number] KILL “file name” [,“protection code”]

[line number] KILL file name [protection code]

Examples:

Use the KILL command to erase files and the data contained in them. A protected file
cannot be killed unless the protection code is included in the syntax. Attempting to kill a
protected file with an invalid protection code results in ERROR 92. (Incidentally, this
error message occurs if you include a protection code in the KILL command where none
is necessary.) This makes it almost impossible far an unauthorized person to access or
erase your data.

If more than one calculator is connected to your mass memory system, there is a
possibility that someone will be using the file you are trying to Kkill. In this case, your
KILL command is temporarily held until the other user is finished. (A delay of one half
second is sufficient.) When your calculator regains control, the file is killed.

g N .
 If the protection code for a file is lost or forgotten, that file cannot be erased. Under these circumstances, you may
want to have the -hp- factory ‘unprotect’ the file. (Contact an -hp- office for a cost estimate.)

3-5

~o—o—o FUNDAMENTAL DATA COMMANDS

{Continued)

FILES STATEMENT -
The FILES statement declares which data files _are to be used. If a file specified in the
FILES statement has not been previously opened, an error message is displayed upon

execution of the FILES statement.

Syntax:

*

[line number] FILES file name or * [file name or *] i...]

Examples:

Up to ten file names can be listed in the FILES statement syntax. These files, however,
cannot be protected files. Notice also that you cannot use quotation marks around each
file name. String_variables cannot be used as file names.

Single asterisks (*) can also be used in place of file names. They allow you to:

e reference protected files
@ use strings for file names

® reserve space for future files

When_ using. asterisks, file assignment is completed by means of the ASSIGN statement.
(See next section, page 3-7.)

A new FILES statement obsoletes the previous FILES statement, so you can include as
many of these statements as you need in a given program. Executing a.GET or. CHAIN
command does not destroy the last FILES statement. A new FILES statement.also resets
all pointers.t o

The files listed in the FILES statement syntax are assigned numbers in the order in which
they appear. For example, in the following statement, GEORGE is file #1, DATA is file
#2 etc.

The file numbers are convenient labels by which you can reference specific files in a
program or from the keyboard. Their use is apparent in the discussion of subsequent
statements. File assignments can be erased at the end of a program for greater data
security by executing FILES *.

1 A pointer keeps track of the data item currently being accessed. Its use is discussed in detail later in this chapter
“SERIAL FILE ACCESS' {page 3-9) and in Appendix A.

= ASSIGN STATEMENT

ASSIGN statements work in conjunction with a previous FILES statement. ASSIGN
allows you to:

assign a file name to a certain file position

®

determine the status of a given file

@

use a string variable for a file name

@

declare a protected file
Syntax:

[line number] ASSIGN “file name”’, file number, return variable [,’’protection
code’’]

[line number] ASSIGN file name, file number, return variable [,protection code]

Examples:

In the syntax above, the file number determines the position the file name is to take
with reference to the previous FILES statement. Since a FILES statement can contain up
to 10 file names or asterisks, the file number must be a positive integer from 1 through
10. Consider the following program segment.

In this example, the asterisk in the FILES statement (in the file #2 position) is assigned
the file name, CARD. Of course, the data file, CARD must have been opened before the
FILES statement can be executed. Additional ASSIGN statements can be placed later in
the same program for the purpose of reassigning a different file name to any file position.
An ASSIGN statement sets the pointer of the specified file to the first item of the first
physical record.

You can use a return variable to determine the status of the file. Any variable can be
used.

In the previous example, K is the return variable. Its value is determined during the
ASSIGN execution and can be used any time in the program. The value of the return
variable indicates certain conditions, as listed in the table below. The return variable must
be checked to avoid later unrecoverable errors.

Return Variable | Meaning
0 file is available
3 file does not exist
4 file number is out of range (i.e., it refers to a

FILES statement position that does not exist)

3-7

——a—o FUNDAMENTAL DATA COMMANDS —+——=

(Continued)

Example A

To see how this can be useful, refer to the following ‘OPEN FILES' program.

In this example, line 70 instructs the calculator to branch to line 100 if the file name
vou enter does not exist, and open the file. Without this |F statement, ERROR 97
occurs when you attempt to create a file which has been previously opened. Use of the
return variable (in this case, X} avoids that error message.

Although a string variable name cannot be included in a FILES statement, per se, you
can use a string variable file name by referencing any file position with a string variable
in the ASSIGN statement. This is done in the previous program by the FILES and
ASSIGN statements. Notice also that the ASSIGN statement (line 60) does not need to
directly follow the FILES statement (line 30).

Finally, the ASSIGN statement can be used to allow a protected data file to be accessed.
For example, consider the following program segment.

l
§
|
|
!
]

In this example, obviously the file MIMI had been previously protected with the
protection code “SISTER"”. MIMI is assigned the second position in the FILES statement.
The protection code of a protected file must be included in order to access it. Omitting
the protection code results in ERROR 92 in this case.

Line 300 re—assigns the fourth position of the FILES statement (MARK)} to the
unprotected file named SUB. All references to file number 4 from this point (line 300)
on in the program refer to file SUB, not file MARK. File number 4 will refer to SUB
unless a subsequent ASSIGN statement changes it {or another FILES statement is
executed), as line 300 changed the original FILES assignment.

o—a— SERIAL FILE ACCESS —o o oo

= B
e e

For each data file declared, a file pointer keeps track of the data item currently being
accessed. The pointer moves through the file as you store or retrieve data items. Data is
printed or read consecutively from the position of the pointer, which is set at the
beginning of the file when a FILES or ASSIGN statement for that file is executed.

Different syntaxes of the following serial file access statements are required for random
file access (data printed or read in specific records of a file). They are discussed in
“RANDOM FILE ACCESS"”, page 3-21.

< SERIAL PRINT# STATEMENT
The serial PRINT# statement prints data in the form of variables, numbers, or strings of
characters. Data is printed serially on the specified file after the last item previously read
or printed, or at the beginning of the file.

Syntax:

[line number] PRINT# file number; list [, END]

[line number] PRINT# file number; END

Examples:

In general, the length of the data list is limited by the length of the BASIC statement (80
characters), or by the size of the file.}

When a PRINT# statement is executed, a logical end of record (LEOR) marker is placed
after the last data item specified. When a data list is included in the PRINT# statement,
the optional parameter, END, is used to print a logical end of file (LEOF) marker at the
end of the data list. This LEOF marker replaces the LEOR marker which is placed at the
end of each data list automatically when a serial PRINT# statement is executed.

T See Appendix B, "STORAGE REQUIREMENTS".

3-10

S e

o

~o—a—a—o—o— SERIAL FILE ACCESS —&—=

(Continued)

Following is an example using the PRINT# statement to record five students’ identifica-
tion numbers and test grades.

Notice that no ASSIGN statement is used, since neither file is protected. Use this
program to print the following identification numbers on the file, 1.D. and the
corresponding grades on the file, GRADES.

1.D. # | Grade
25009 91
54362 88
11243 99.5
64597 62
74532 89

In the above program, two separate files are used: one for the students’ identification
numbers and one for their grades. The information can be combined into one file in the
following manner.

Line 60 prints the names and test scores of the students on the file, SCORES. The data
items (1.D. numbers and grades) are printed alternately. Line 80 places an LEOF marker
when the five sets of data elements are input.

This LEOF marker can be printed over, but data on the other side of it cannot be read.
In attempting to execute a serial READ# statement (see next section, page 3-12), an end
of file condition is established as a result of encountering this LEQF marker. If a
PRINT# statement that includes the optional END parameter, but no list of data
elements, is executed at the beginning of a file, an LEOF marker is placed there. Data
remaining in the file cannot be read in a serial manner.

In terms of serial READ# statements, therefore, the data beyond the point at which the
LEOF marker is placed, is effectively erased. Some of this data may be accessed,
however, by moving the pointer to the beginning of a subsequent record beyond the
LEOF marker (see *‘Repositioning the Pointer’”’, page 3—13) or in a random manner (see
"“"RANDOM FILE ACCESS", page 3—21).

A String Variables ROM enables you to enter students’ names, rather than |.D. numbers,
The 1.D. variable, X, is replaced by a string variable and the program prints string names
as data on the file. Using the data shown below,

Name Grade
Al Jackson 91
Jayne Lamfers 88
Mark Levy 99.5
Brian Smith 62
Pat Stohrer 89

key in and run the following program after installing a String Variables ROM in your
calculator.

3-11

3-12

s SERIAL FILE ACCESS —o—o—o—a—a—

{Continued)

et e et i

SERIAL READ# STATEMENT ~=

The serial READ# statement reads numbers and strings into variables serially from the
specified file, starting after the last item printed or read. Substrings are not allowed.

Syntax:
[line number] READ# file number; list

Examples:

Before you can work with data which has been stored in a file, you must first read the
data into the calculator. Remember that you are not erasing the data stered in the platter
by reading it; data is merely copied into the variables specified. (This data can be
updated and re-stored into the original file — without using a KILL. command - or into a
new file.)

Recall the program on page 3-10, used to print data on the files, |1.D. and GRADES. To
read the data from these files back into the calculator and print the information on the
calculator printer, use the following program.

In this program, the FILES statement serves two purposes; it references the file number
parameters in the READ# statements (lines 40 and 50) and it resets the pointers to the
beginning of both files before the READ# statements are executed.

Upon execution of this program, ERROR 99 IN LINE 40 is displayed because you
attempt to read data after an LEOR marker is detected. This automatically causes the
READ# statement to attempt to get data from the next physical record. At this point, it
encounters an LEQF marker in the first word, which was placed there when the file was
opened. It is actually detection of the LEOF marker which triggers ERROR 99 in this
case.

Data printed on the file, CLASS (see the program on page 3-11) can also be read back
into the calculator. Use the following program to print this data on the calculator printer.

Notice that the READ# statement must specify the types of data (data elements or string
variables) in the order in which they were originally stored in the file. Line 60 reads a
string variable and then a data point. This program can run only when the order of the
data on file, CLASS is known.

The variables into which you read data items do not necessarily have to be the same
variabtes from which you printed the data items on the file. Although the variable name
changes (from N$ and Z, when stored, to P$ and Y, when retrieved), the order in which
the two data types are accessed is the same.

[f the FOR...NEXT loop is set for D = 1 to 6, the READ# statement encounters the
LEQOF marker previously placed by the PRINT# 1; END statement. This marker replaced
the LEOR marker at the end of the five sets of data items. Encountering the LEOF
marker establishes an end of file condition which is discussed later in this section {“IF
END# Statement”, page 3-16).

= REPOSITIONING THE POINTER

As mentioned earlier, a pointer is maintained by the mass memory system. The printer
specifies where data storage or data retrieval begins. The pointer is automatically
positioned at the beginning of the first physical record in a file after execution of a
FILES statement or an ASSIGN statement. It is positioned at the next available storage
location in the physical record after execution of a PRINT# statement. Finally, it is
positioned at the next stored data item location of a physical record after execution of a
READ# statement. The pointer is left unchanged in each file before execution of a serial
PRINT# or READ# statement.

It is often necessary to position the pointer to the beginning of a specific physical record
in a file before executing a serial READ# statement. The following variation of the
READ# statement is used for this purpose.

Syntax:

[line number] READ# file number, record number

Examples:

3-13

3-14

—p————a— SERIAL FILE ACCESS —&o—o——o—%—

{Continued)

When a record number is specified and the list of variables is not included in the serial
READ# statement, no data is read. Instead, the pointer is repositioned to the beginning
of the record specified. A serial PRINT# or READ# statement can be executed after the
pointer has been repositioned, to access the beginning of the specified physical record,
rather than the beginning of only the first record of the file.

To see how this works, first use the following program to store consecutive numbers
beginning from the eleventh record of a 15-record file named DATA15.

The FILES statement (line 20) sets the pointer to the beginning of the first record in the
file. The pointer is simply repositioned to the beginning of the eleventh record of
DATA15 by executing line 40.

After printing onto physical records 11-15 of DATA15, which takes about 25 seconds,
ERROR 99 is displayed. This indicates that a physical end of file {PEQF} marker is
encountered and no additional data can be printed in the file.

The following program is now used to read the data from the beginning of record 14.

The FILES statement (line 10) automatically sets the pointer to the beginning of the first
record. The pointer is simply repositioned to the beginning of the fourteenth record in
DATA15 by executing line 20. The serial READ# statement begins reading data from
that point on.

3-15

Since each full precision number uses four words of memory, 64 numbers can be printed
onto a 2b6—word physical record.t On the file DATA15S, the following numbers are
stored on these corresponding records.

Record # Numbers
1-10 none
11 1-64

12 65-128

13 129-192

14 193-256

15 i 2b7-320

The previous program reads the data on records 14 and 15 {i.e., numbers 193-320) and
lists this information, eight numbers per row. The printout of this program is shown
below,

ERROR 99 is displayed at this point, indicating a PEQF marker is detected and there is
no more data to be read. This error message can be avoided by using the IF END#
statement, discussed in the next section.

T See Appandix B far a detailed discussion on how to estimate file size,

3-16

~¢———o—o— SERIAL FILE ACCESS ~o—o—o—o—o

(Continued)

IF END# STATEMENT -

The IF END# statement sets up a condition in the program. If a PEOF marker is encountered
during execution of a serial PRINT# or READ# statement, or if an LEOF marker is encountered
during executicn of a serial READ# statement, the program branches to the line number
specified in the previous IF END# statement, thus avoiding an ERROR. This makes it possible
to use a file whose exact contents are unknown,

Syntax:
line number |F END# file number THEN fine number

Examples:

i

i
T
id

The IF END# statement is programmable only; it cannot be executed from the keyboard.

In the previous pragram (page 3-14), ERROR 99 is displayed after the completion of the
program, telling you that a PEOF marker is encountered and no more data can be read.
This error message can be avoided by including an IF END# statement in the program.

Upon detecting an end of file condition, the program branches to the line number
specified in the IF END# statement.t This condition remains in effect until another LF
END# statement, with a different line number parameter for the same file, is executed.
All previous |IF END# conditions are cancelled when a FILES statement isexecuted,
while an ASSIGN statement cancels the |F END# condition only for the individual file
specified in the ASSIGN statement.

Consider the previous program (page 3-14) modified to include an IF END# statement.

In this program, when all the data is read, the pointer comes to a PEOF marker. The |F
END# statement (line 30) sets up a condition whereby the program branches to line 70
when the READ# statement (line 40} encounters the PEOF marker. At this point, lines
70 and 80 are executed, informing you that the PEOF marker is the next item in the
file.

T If the line number to which the |F END#¥ statement refers dees not exist, ERROR 44 is displayed. This error refers
to a PRINTH or READ? statement, not the IF ENDF staternent, because it is actually the PRINT# or READF which
precipitates the error. |F ENDZ simply establishes a condition. .

Notice that the IF END# statement is executed only once before entering the
READ#/PRINT loop. Since |F END# establishes the exit procedure for this loop, it has
to be executed before entering the loop, but should not be included in the loop.
Repeated, unnecessary execution of |IF END# should be avoided because of the
additional time needed to execute this statement.

NOTE

An IF END# statement sets up a condition to detect an EQF marker. If
you attempt to access a non-existent or invalid record without a
previously executed IF END# statement, ERROR 99 is displayed. If a file
has not been assigned into an * position which is referenced, or no FILES
statement is given, executing the |F END# statement results in ERROR
94.

= TYP FUNCTION

The TYP function is used to identify the type of the next item in a specified file.

Syntax:
TYP file number

TYP (—file number)

Examples:

In some cases, the type of data item next on the file may be unknown. Use the TYP
function to find out what that data item is. The TYP function returns a number code
which can then be used for various purposes. The number codes and their meanings are
listed below.

— Next item is a full precision number
— Next item is a character string

— Next item is an end of file marker
Next item is an end of record marker

— Next item is a split precision number

ook WwWN -
l

— Next item is an integer precision number

Although serial PRINT# and READ# statements can detect end of file (PEOF and
LEOF) markers when an IF END# condition is established, there is no way to detect end
of record (LEOR or PEOR) markers using the |[F END# statement.

The optional minus sign in the TYP syntax provides the only means to check for end of
record markers in serial file access mode. Use the minus sign before the file number
parameter for this most general case. If a value of 4 is returned, the next item in a record
is an LEOR or PEOR marker.

3-17

3-18

<« SERIAL FILE ACCESS —=—o

(Continued)

Execute the program shown below to store different types of data on the first record of
the 5—record file, NU?

Example B

The following '‘DATA CHECK' program checks the type of the next data item before
reading the item.

The GOTO...OF statement {line 40) branches the program to one of six line numbers,
depending on the value of TYP (—1). Notice that this statement must be executed before
each READ# statement, to determine what type of data item is next on the record. The
printout of this program is as follows:

If the pointer is set to another record of NU? in line 30 {(e.g., READ#1,4}), when this
program is run, TYP (—1} returns a value of 3, indicating an LEQF marker is
encountered. This marker was placed in the first word of each record automatically when
the file was opened. The LEOF marker disappears only when data is stored in the record.

Example C

To illustrate the principles involved in serial file access, consider the ‘ADD DATA’
program shown below.

THOR FILES

L R D e)

(BRI s Al Y

The remarks beginning on lines 10, 70, 180 and 220 explain the separate parts of this
program. If the file you want already contains data, and if you want to add your new
data to the file, lines 260 and 270 reposition the pointer to the end of the old data. The
IF END# statement (line 210} provides an exit procedure for the program. The program
branches to line 280 when it encounters an LEQOR, PEOR or PEOF marker which was
previously placed in the file, or when it encounters the LEOF marker placed by line 200
when all data is effectively erased. In either case, line 280 is eventually executed.

3-19

3-20

~—<o—<>—o—<— SERIAL FILE ACCESS oo

(Continued}

Example D

The ‘STATISTICS’ program shown below reads data in an existing file and calculates the
number of items read, the mean, standard deviation, largest and smallest values of the
data. Line 180 reads the data, element by element, until the end of record or end of file
condition, set up by line 130, is met.

~#—o~—o~—a> RANDOM FILE ACCESS - oo

Data stored in a random manner is stored into specified physical records within a file.
Variations of the previously discussed PRINT# and READ# statement syntaxes are used
to access data in particular records. As in serial file access, a pointer keeps track of the
data item currently being accessed. Unlike serial file access, however, in random file
access, a specific record number within a file must be specified in each PRINT# and
READ# statement. Consequently, the pointer is positioned at the beginning of the
specified record before printing or reading operations occur. Data is printed or read
consecutively from the beginning of the physical record.

== RANDOM PRINT# STATEMENT

The random PRINT# statement prints data in the form of variables, numbers or strings
of characters from the beginning of a specified physical record. A variation of this syntax
can also be used to erase the contents of an individual record.
Syntax:

[line number] PRINT# file number, record number: list [, END]

[line number] PRINT# file number, record number [:END]

Examples:

The parameters in this syntax are similar to the serial PRINT# statement parameters in
usage and restrictions. The pointer is positioned at the beginning of the specified record
before the PRINT# statement is executed.

The program below prints consecutive numbers onto each odd—numbered physical record
of a 10—record file named, TEN.

In line 50, the record number parameter is specified by the variable, R. Line 70
increments this variable by 2 so that only odd—numbered records are accessed.

3-21

3-22

~e—e—o—s— RANDOM FILE ACCESS —=

{Continued}

By printing in specific records of the file TEN, previous data in those records is erased
and replaced by the new data. An LEOR marker is automatically placed at the end of
each data list (i.e., the one data item, A) in each odd—numbered record.

File TEN now contains the following information.

Record # Data
1 1
2 _
3 2
4 _
5 3
6 —
7 4
8 _
9 5

10 —

When no list is specified in a PRINT# statement, the following syntax erases the contents
of a particular record.

[Vine number] PRINT# file number, record number

This syntax actually places an LEOR marker at the beginning of the specified record,
making the data contained in the physical record inaccessible to any READ# statement.
When an LEQR marker is detected, a random READ# statement (see next section)
encounters an end of record condition; a serial READ# statement skips over the entire
record and attempts to access data in the next record. Of course, a subsequent PRINT#
statement writes over the LEOR marker.

The following program erases every third record of file, TEN, which was opened and
accessed in the previous program.

The information which is now left in the file is shown below.

Record # Data

1 _
2 _
3 2
4 —
5 3
6 —
7 —
8 —
9 5

10 —

An LEOF marker is stored by executing a statement with the following syntax.
[line number] PRINT# file number, record number; END

This places an LEOF marker in the first word of a specified record in the same way that
an LEOF marker is placed automatically when the file is originally opened. If a random
READ# or a serial READ# statement attempts to access a record with an LEQOF marker
at the beginning of that record, an end of file condition is established.

By including a list of variables before the END parameter, an LEOF marker is stored
after the data within the physical record specified, in place of the LEOR marker usually
written by the mass memory system. |f the serial or random READ# list is greater than
the PRINT# list which stored the data, the LEOF marker is detected, establishing an end
of file condition.

RANDOM READ# STATEMENT
The random READ+# statement reads numbers and strings into variables from a specified record in
a file, starting from the beginning of that record. Substrings are not . allowed. A variation of this
syntax can be used to repaosition the pointer (see page 3-13).

Syntax:

[line number] READ# file number, record number [:list]

Examples:

As in the case of serial READ# statements, the variables into which you read data items
do not necessarily have to be the same variables from which you printed the data items
an the record.

3-23

3-24

—&——e—o—<— RANDOM FILE ACCESS —o—o—o—o—
(Continued)
The data item list is omitted only when you are repositioning the pointer as discussed on

page 3-13. The pointer is positioned at the beginning of the specified record before the
READ# statement is executed.

The following program reads the data printed in the bth and 9th records of the file,
TEN.

This data was originally printed onto odd—numbered records of file TEN (page 3-21).
The data on records 1 and 7 was erased. The program above reads the data from records
5 and 9 and then prints it on the calculator printer. If the calculator is programmed to
read data from each record, ERROR 99 is displayed, indicating that an LEOR marker is
detected at the beginning of record 1.

The printout from this program is shown below.

IF END# STATEMENT —=

The IF END# statement sets up a condition in the program. If any end of record marker or end
of file marker is encountered during the execution of a randem READ# statement, or a PEOR
or PEOF marker is encountered during the execution of a random PRINT# statement, the
program branches to the line number specified in the previous IF END# statement, thus
avoiding an ERROR.

Syntax:
line number |F END# file number THEN line number

Examples:

The |F END# statement is programmable only; it cannot be executed from the keyboard.
As mentioned earlier in serial file access, the IF END# statement sets up a condition
under which a PRINT# or READ# statement branches to the specified finet when an
end of file marker is encountered. In random file access, however, the IF END#
condition can be used to check for either an EOF marker or an EOR marker. If, for
example, a random READ# data list includes more data items than were printed by the
previous PRINT# statement, the end of record condition is detected.

F If the line number 10)NhiCh the IF END3Z statement refers does not exist, ERROR 44 s displayed. This error refers
1t a PRINTH or READ statement, not the IF ENDF statement, because it is actuaily the PRINT# or READ which
precipitates the error. |IF ENDZ simply establishes a condition,

3-25

Consider the following program.

This program prints four data items onto each record of the file, POWER. When variable
A is incremented to a value greater than 10 — the number of records in the file — the
condition set up by the IF END# statement in line 40 is met. The program branches to
line 80 when the PEOF marker is encountered in this case. In this way, ERROR 99 is
avoided.

Similarly, the IF END# statement can be used to avoid an error message when reading
data from a file, as shown below.

3-26

~&—o—o—=- RANDOM FILE ACCESS —&——o———

{Continued}

IF END# can also be used to branch to a specified program line when there is a
possibility of printing more data onto a physical record than it can hold. In this case, IF
END# sets up an exit procedure for the PRINT# statement when it encounters a PEOR

marker.

NOTE — .

An IF END# statement sets up a condition to detect an EOF or an EOR
marker. |f you attempt to access a non-existent or invalid record without
a previously executed IF END# statement, ERROR 99 is displayed. If a
file has not been assigned into an * position which is referenced, or no
FILES statement is given, executing the |F END# statement results in
ERROR 94.

TYP FUNCTION

The TYP function is used to identify the type of the next item in a specified file.

Syntax:
TYP file number
TYP {—file number)

Examples:

In some cases, the type of data item next on the file may be unknown. Use the TYP
function to find out what that data item is. As discussed earlier in serial file access, the
TYP function returns a number code which can then be used for various purposes. The
number codes and their meanings are listed below.

— Next item is a full precision number
— Next item is a character string

— Next item is an end of file marker
Next item is an end of record marker

— Next item is a split precision number

QO WN =
I

— Next item is an integer precision number

The TYP function provides an alternate method of determining whether an EQR or EOF
marker will be encountered during a random PRINT# or random READ# operation.
While an |F END# statement sets up a condition to check for either of these markers,
TYP can identify the specific marker encountered. This information can be used in a
GOTO...OF statement to branch to different parts of the program depending on the value
returned for the function. As mentioned earlier, the minus sign must be used before the
file number parameter to detect an EOR marker.

See “TYP Function’ {page 3-17) for an example of TYP function use.

3-27

3-28

Chapter 4
SUPPLEMENTARY COMMANDS

This chapter discusses matrix operations, the use of more than one platter in a system,
and various other commands for increased control of your mass memory.

oo~ MATRIX OPERATIONS

In order to work with matrices and your mass memory system, you need an 11270
Matrix Operations ROM installed in your calculator. Then, with the MAT READ# and
MAT PRINT# commands, you can print or read entire matrices onto a data file. As with
the statements and commands discussed in Chapter 3, particular attention should be paid
to matrix command syntaxes. The ‘#' character is included in the matrix commands to
differentiate them from the BASIC matrix commands described in the Matrix ROM
Operating Manual.

—— MAT PRINT# STATEMENT

The MAT PRINT# statement prints an entire matrix onto a specified record or file.

Syntax:

T# file number [record number] : list of matrix variables

[line number]

Examples:

Matrices can only be printed on data files: the size of the matrix you want to store is
limited by the number of records you specify when opening that file. For example, a
one—record file, which contains 256 words, can hold up to 64 full precision numbers.
This means that an 8 by 8 matrix is the largest matrix of full precision numbers that file
{or one record of any other file) can hold. Of course, by printing a matrix serially (i.e.,
not specifying a particular record), the matrix size is not limited to 256 words. In this
case it is limited by the number of records in the file multiplied by 256 words per
record.

oo MATRIX OPERATIONS —o—o—o—o—o—

[Continued)

The following example prints a 4 by 4 matrix serially into the file, MATRIX.

o o '::t' i

IFTE LM 5

The elements of a matrix are printed consecutively in row—column order from the
beginning of the file or record specified. With the record number parameter omitted, the
matrix is printed onto the file from the position of the pointer. By including this
optional parameter, the matrix is printed onto a single specified record.

If the matrix is too large for the file or record specified, an EOR or EOF marker is
encountered and ERROR 99 is displayed. Of course, an |F END# statement can be used
to detect the EOR or EOF condition and avoid this error message.

MAT READ# STATEMENT —
The MAT READZ# statement reads the matrix from a specified record or file,
Syntax:

[line number] MAT READ# file number [,record number]: list of matrix variables

Examples:

To read the matrix created in the previous section and print it on the calculator printer,
use the following program.

Line 30 reads the matrix from MATRIX into the calculator, using the mass memory
MAT READ# statement. Line 40 then prints the entire matrix, using the Matrix ROM
MAT PRINT statement. Notice that although matrix variable A was used to define the
original matrix, any variable can be used to read it back again (in this case, variable B is
used). This matrix must be dimensioned, as in line 10. The printout from this program is
shown below.

iy 43 43 4

The matrix can be read in any format less than or equal to the original size. In the
program below, a 4 by 4 matrix is read as an 8 by 2 matrix by dimensioning the matrix
variable B in that manner.

The printout follows.

In the above printout, data element (2,1) is 13. This is because the data elements of the
original matrix were printed on the file point by point; they were not stored in unique
random locations.

4-3

4-4

~————— MATRIX OPERATIONS —o—o—o—o-—o—
(Continued)
If you run a program in which a matrix was dimensioned larger than the original matrix,

ERROR 99 is displayed. This error message can be avoided, however, by using an {F
END# statement to detect the end of record condition.

An implicit REDIM statement can be included in the MAT READ# statement. To read
the data in this matrix in a 3 by 4 format, use this program.

Notice that the DIM statement (line 10) dimensions a matrix that is at least as large as
that specified by the implicit REDIM statement in line 30. The printout of this program
is as follows.

~i—p———a— MULTIPLE PLATTERS ——o—o—ao—a

As vou know, a mass memory system can contain from one to four platters. You must
specify which platter you want to address, since only one platter can be accessed at a
time. Once this has been specified, the platter is controlled with the commands and
statements previously discussed. All control, program and data commands apply to the
platter designated.

The 98678 Mass Memory Drive, which contains two platters, must be set to one of the
dual positions:

0 and 1 or 2and 3
The 9867A Mass Memory Drive can be switched to any of the four positions, provided

that no other unit is switched to the same position. See page 1-9 for instructions on
setting the unit select switch.

— : <— UNIT COMMAND
The UNIT command specifies the platter to be used for subsequent commands.
Syntax:

[line number] UNIT unit number

Examples:

Once the UNIT command is executed, all subsequent statements and commands reference
the platter specified until a new UNIT command, SCRATCH A, or LOAD BIN is
executed or the calculator is switched OFF. Under these conditions, a previous FILES
statement is also destroyed. When the calculator is first switched ON, or after SCRATCH
A or LOAD BIN is executed, UNIT O is automatically specified.

Assume that you have the following program stored in a program file named, PRINTO.

To transfer this program from the file, PRINTO on platter O to a file {call it PRINT2) on
platter 2, execute the following steps from the keyboard:

Notice that platter O does not have to be specified originally, since it is automatically
specified when your calculator is turned ON.

Now assume you have three data items stored on the fifth record of the file, GIVE on
platter 2. To copy this data from that file to the sixth record of a new file named,
TAKE on platter 3, execute the following program:

Notice that a new FILES statement (line 60) must be executed so that subsequent
statements refer to the correct (new) file.

4-5

4-6

—om——c~ MULTIPLE PLATTERS —o——o—o—o——o—

{Continued)

The UNIT command obsoletes all previous FILES statements. If the UNIT command
references an unconnected platter, no error occurs, but subsequent commands result in
error messages.

PLATTER-DUPLICATE PROCEDURE -—<—

All of the information contained on one platter can be copied to another platter? by
performing the PLATTER-DUPLICATE procedure.

It should be emphasized that all of the information contained on the first platter —
including data, programs, EOR and EOF markers, and unused space — are duplicated on
the second platter, erasing everything on the latter platter.

The second platter, as well as the first, must be initialized before the
PLATTER-DUPLICATE procedure is performed.

Insert the mass memory system tape cassette in the calculator and execute:
LOAD BIN 1
After the display returns, perform this procedure:

1. Key in PLATTER-DUPLICATE and press EXECUTE.
The display will show:

(

2. Key in (but don’t execute) the unit number of the original platter.
The display will then show:

[

3. Key in (but don’t execute) the number of the second platter.
The display will show:

4. Carefully verify that you keyed in the correct numbers for N and M. If so, press
EXECUTE. If the numbers are nof correct, press STOP, CLEAR, and begin the
procedure again from step 1.

The platter is duplicated automatically at this point. Duplication takes about 3 minutes.
ERROR 903, if displayed, indicates duplication is not allowed. See footnote.

T In general, if the second, or ‘destination® platier contains defective tracks, the DUPLICATE-PLATTER procedure is
not performed. Defective tracks on the first, or ‘source’ platter do not affect the procedure. I the defective tracks on
the destination platter happen to coincide with those on the source platter, the procedure can be execuied, also.

~o——o-—o~ MISCELLANEOUS COMMANDS ~&—o—o

The following commands provide greater flexibility for controlling your mass memory
system.

DCOPY DFDUMP
DFLOAD DREN
DGET DBYTE
DEXP

A string variable must be used in the DBYTE and DEXP commands; strings are not
permitted in-any.of the other commands listed above.

=— DCOPY COMMAND

The DCOPY command duplicates the contents of one data file onto another. These two
data files can be located on separate platters.

Syntax:

Y “1st file name” [,unit number]

[line number] SO
O “2nd file name”’ [,unit number]

Examples:

The optional unit number parameters need not be used if both the first file and the
second are located on the same platter. In any event, DCOPY does not change the unit
number reference that existed previously in the calculator memory.

The DCOPY command can be used to duplicate data onto a file as long as that file is
large enough to accommodate it. This command copies data only, not available space.
For example, a five-record file can be copied into a two-record file provided that no
more than two of the source file's five records are filled with data.

ERROR 96 results if the second file is smaller than the current size of the first file.

The second file must be opened before executing the DCOPY command. Also, both files
must either have identical protection codes, or none at all. Remember that only a data
file can be copied with the DCOPY command; a program or key file cannot.

4-8

—~o—o—o~ MISCELLANEOUS COMMANDS -<o—o—a—

{Continued)

DFDUMP COMMAND —=

The DFDUMP (data file dump) command stores a specified data file, presently on the
platter, onto the calculator internal cassette(s).

Syntax:
DFDUMP “file name”

Example:

The DFDUMP command stores a platter data file of any size onto one or more tape
cassettes. The data file can be protected or unprotected; no protection code parameter is
required.

Each cassette can hold up to a 150—record file; larger files are stored on more than one
tape cassette according to the procedure explained below.

The DFDUMP command is executed from the keyboard only, because caiculator memory
is erased when this command is executed.

If the file you wish to store is larger than 150 records, more than one tape cassette is
necessary. Insert the first tape cassette in the tape transport, close the transport door and
press REWIND. When the tape is on clear-leader, key in and execute the DFDUMP
command from the keyboard, specifying the file you wish to store on the cassettes. The
first 150 records of the file are stored, one by one, onto the first tape cassette. When the
storing is completed, the tape cassette is rewound to clear-leader automatically and the
following message is displayedt:

Remove the first cassette and mark it so that the order of cassettes remains the same
when you want to load the information on another mass memory file. Insert the next
cassette in the tape transport, close the transport door and press REWIND. When the
tape is on clear-leader, press EXECUTE to continue storing the file, from record number
151. Follow this procedure until the entire file is stored on your cassettes. The last
cassette required is rewound and the display shows:

T If the file to be stored is less than 150 records, the same procedure must be followed. No message is displayed, but
calculator contrel returns after the tape is completely rewound.

The following facts should be remembered when using the DFDUMP command.

® The calculator memory is erased when DFDUMP is executed, so execute this
command only from the keyboard.

@ The information (e.g., BOF control markers, data) currently on the cassette(s} in
the space required for storage is replaced by the data stored from the platter.

The tape cassette{s) must be positioned on clear-leader before DFDUMP is
executed.

@ Only consecutive, non-empty records and the first empty record of a file is stored
by the DFDUMP command. See below.

@ Once the data from the platter has been stored on the cassette(s), it cannot be
randomly accessed from the cassette(s): it can be loaded only onto another mass
memory platter with the DFLLOAD command, discussed in the next section.

If every physical record in a file contains data, the entire file is stored onto the
cassette(s) with the DFDUMP command. If, however, only some of the records of a file
contain data, every consecutive data record, up to and including the first empty one in
which an LEOF marker is placed, is stored on the cassette(s).

Record #1 Record #2 Record #3 Record #4 Record #5
T T
AlB|C D| ES$ £ c X|Y|Z$
F E

Figure 4—1. A Five—Record File

Consider the b-record file above. Records 1, 2 and 5 contain data, but records 3 and 4
are empty. When the DFDUMP command is executed, records 1 and 2 are stored, one at
a time. Then the mass memory system encounters the LEOF marker which was placed in
the first word of the third record when the file was opened. This first empty record
{record 3) is also stored on the cassette.

NOTE

Every consecutive data record, up to and including the first empty one, is
stored on the cassette(s), regardless of whether the last record that
contains data includes an EOR or an EOF marker.

In the sample file above, the data in record 5 is not stored on the cassette because at
least one empty record {in this case, two) separates the non-empty data records. The
LEOF marker in record 3 signals the mass memory system to store the entire empty
record and immediately rewind the tape cassette. The DFDUMP command is completed
at that point,

In the case of a completely empty file, the first record of the file is stored, since it is the
first empty record and contains an LEQF marker in its first word.

4-9

4-10

—~p=—g—o~ MISCELLANEOUS COMMANDS —<—o—o

{Continued)

DFLOAD COMMAND o

The DFLOAD (data file load) command loads the data from the calculator internal tape
cassette(s) 1o a specific file on the platter.

Syntax:

DFLOAD "file name™

The DFLOAD command loads the data which is on one or more tape cassettes onto a
platter data file. |f the data on the cassette{s}) is protected (i.e., originally stored from a
protected data file), DFLOAD loads it onto a protected data file as long as its protection
code matches the original file's code; the data on an unprotected cassette (i.e., originally
stored from an unprotected data file) can be loaded only onto an unprotected data file.

Like DFDUMP, the DFLOAD command is executed from the keyboard only, because
calcutator memory is erased when this command is executed.

If more than one cassette is to be loaded onto a platter data file {i.e., if more than 150
records are required), insert the first tape cassette in the tape transport, close the
transport door and press REWIND. When the tape is on clear-leader, key in and execute
the DFLOAD command from the keyhoard, specifying the file in which you wish to
store the cassettes’ data. The first 150 records are loaded, one by one. When the loading
is completed, the tape cassette is rewound to clear-leader automatically and the following
message is displayedi:

;

Remove the first cassette and insert the next cassette in the tape transport. Close the
transport door and press REWIND. When the tape is on clear-leader, press EXECUTE to
continue loading the file, from record 151. Follow this procedure until the entire file is
loaded from your cassettes. The last cassette is rewound and the display shows:

1. B - . . B R
T It the file to be loaded is less than 150 records, the same procedure must be followed. No message is displayed, but
calculator control returns after the tape is completely rewound.

<— DREN COMMAND
The DREN (rename) command allows you to change the name of any file.
Syntax:

[tine number] DREN “old file name” TO “new file name” [,*’protection code”]

Examples:

The DREN command renames your file. The contents of the file remain the same. A
protection code, if present, must be specified. This protection code is transferred to the
new file name automatically. The old file name no longer exists on the platter.

- ; -—==- DGET COMMAND

The DGET command loads the source (non-compiled) program specified into the
calculator and checks it for syntax errors.

Syntax:

[line number] DGET “file name’ [0]

Examples:

A source program is a series of statements which are printed sequentially onto a data file
as a series of string variables, one BASIC statement per string. After the last statement
(string), an LEOF marker should be written by executing a PRINT#...END statement to
separate old data from the new, source program. Using DGET, you can load these
statements into the calculator and perform BASIC syntax checks at the same time. The
program is executed immediately unless the optional parameter, O, is included in the
syntax. In this case, the program is loaded into_calculator_memory, but not executed.

The DGET command provides a means to use programs actually written by other
programs (see Example G, page 4-14).

4-11

4-12

s

~¢—o——o MISCELLANEOUS COMMANDS —o—o——o—

{Continued)

DBYTE COMMAND —=

The DBYTE command converts the value of a specified variable to its binary equivalent
character. This binary character is then stored as a single character in the specified string.

Syntax:
{line number] DBYTE variable, string name

Examples:

ot]
i
i i
i

Obviously, the variable must be the decimal equivalent of an ASCII character. For
example, if you set Y equal to 34, A$ will contain the quotation character (*) when you
execute the following syntax:

Only simple variables (no expressions) and simple strings {no subscripts) are allowed.

Example E

The ‘CHARACTER’ program below generates the Mode! 9866A Printer characters
associated with their decimal codes, from 1 to 126. The numbers less than 33 and greater
than 95 are not needed for 9866A printer operation. For the characters and functions
these codes represent on the 9861A Typewriter and the 38 ASR Teleprinter, see Table
F-2 of the Model 30 Operating and Programming Manual.

DEXP COMMAND —

The DEXP command converts the value of the specified variable into a 4-digit character
string with leading zeros.

Syntax:

[line number] DEXP variable, string name

4-13

Examples:

The DEXP command can be used, for example, to generate line numbers for BASIC
statements. If you set X equal to 10, AS$ will contain the 4-digit character string, 0010
by executing the following command.

Example F

Shown below is a ‘CHECK-WRITING' program that prints amounts (in dollars and cents)
with leading asterisks. This is useful when writing checks. This program converts a dollar
value (less than $10,000, but not negative) to a string with leading asterisks.

4-14

~o—t—o— MISCELLANEOUS COMMANDS oo

{Continued)
Example G
The program on the facing page illustrates one way in which the DREN, DGET, DBYTE

and DEXP commands can be used. This program generates the ’‘source’ program,
overprinted on the listing in solid black. The new source program is used to rename an

existing data file.

The FILES statement in line 40 is referenced by ASSIGN statements in lines 50, 120 and
160. Line 190 sets the variable, Z, to 34. The subsequent DBYTE command (line 200)
stores the equivalent printer character () in D$. Variable L is set to 10, 20 and 30 as
the program progresses. These values are used by the DEXP command {lines 220, 330
and 400) to create 4-digit character strings which form line numbers in the source
program,

Lines 150 to 420 actually generate and store the 3-line source program on the data file,
//{//. The DGET command (line 430} loads and runs this source program.

Assume this program was run to change the name of a data file from DARK to LIGHT.
The calculator memory, which now contains the source program, is listed below.

The first statement in the source program uses the DREN command to change the file
name. Although the DREN command cannot include string variables for the file name
parameters, these names are generated using the string variable, C$, which is printed, as

data, onto the data file, /////.

4-15

P

B R Ty

PR LR TH IS,

CHHOTHER FE

FILES GRMHOT BE

4-16

Chapter 5
APPLICATIONS

This chapter consists of two applications to give you an idea of the large amounts of data
that can be manipulated quickly and easily, using the mass memory.

o EXAMPLE 1-DATA BASE PROGRAM ——o o

This is called a ‘data base’ program because, by using it, data can be organized, stored
and modified on a data file of the mass memory. In the particular variation shown on the
following pages, the program stores employees’ names and the number of hours they
worked during the five weekdays.

This program is stored on seven Special Function keys {FO through F6). Each of the key
functions is discussed separately. A String Variables ROM is required to run this program.

The program segment loaded on SF key O, shown above, initializes the two string
variables which are used later in this and other program segments. It opens a data file of
200 records, if the file name input has not been previously opened. Finally, it displays
the word, READY, when finished.

To run this program segment, press RUN {but don’t execute it) and the Special Function
key 0. {The RUN key must be pressed before SF key 0 to initialize variables, but RUN
should not be executed for subsequent SF keys.)

The program segment loaded on SF key 1, shown above, allows you to enter up to 200
employees’ names on the data file specified in the previous program segment. To run this
and all subsequent program segments, simply press the desired SF key.

5-1

5-2

EXAMPLE 1-DATA BASE PROGRAM

(Continued)

The program segment loaded on SF key 2, shown above, allows you to enter the number
of hours each employee worked in five days.

THURS F 6

B e e e L

The program segment loaded on SF key 3, shown above, prints a table of the employees
and their hours worked, on the printer.

ET B R B E

T2 T

T TR TS T

The program segment loaded on SF key 4, shown above, prints a table of the employees
and the fofal number of hours worked per employee and per day.

The program segment loaded on SF key 5, shown above, allows you to add new
employees and their hours worked to the existing file. Of course, SF keys 3 and 4 can be
pressed anytime to give you an updated table of employees and their hours.

5-3

~»—<—~ EXAMPLE 1-DATA BASE PROGRAM ——o—o—

{Continued)

The program segment loaded on SF key 6, shown above, allows you to delete specific
employees from the file. Of course, SF keys 3 and 4 can be pressed anytime to give you
an updated table of employees and their hours.

This data base program can be easily modified for your particular needs. The number of
employees listed, for example, is limited only by the size of the file used to store the
data. Inventory, payroll, or any other application that requires a large amount of data to
be added, changed or deleted, can be incorporated in this sort of program.

Shown below are the tables generated by SF keys 3 and 4. The data stored on the file,
MUSIC, respresents the number of hours worked by nine cashiers at a large musical

instrument store.

BT

5-5

oo~ EXAMPLE 2-RAINFALL PROGRAM —o—o—a-

The program shown below illustrates how data can be sorted and listed according to
specific criteria. In particular, this program allows you to average the amount of rainfall
that fell during a certain month in a particular area for up to 64 years. A String Variables
ROM and a Matrix Operations ROM are required to run this program.

(A A o A e

I}

1-} .
HMEVETRER Ik

The program is run when one or more data files, of 12 records apiece (one for each
month of each year), contain data. Since the 12 records can each hold 64 data elementst
each file can contain 64 years of data. The number of years of data required can be
changed as needed. For example, if only 10 years of data are stored on your data files,
change the variable A, in line 20, from 64 characters to 10. Line 350 must be changed,
in that case, as follows:

If you attempt to read more data than is physically present in the data file you are
accessing, line 330 sets up a condition to branch to line 530 when the MAT READ#
statement (line 340} encounters an end of record marker.

The program asks you to input the number of files you wish to access and, one by one,
their names. Once you specify the number of years over which you want to take
averages, the program counts back from the last data entry. In this way, averages can be
taken over a short or long period of time. The number of months you are interested in
must be input. After this, execute 1 for January, 2 for February, etc. Notice that any
combination of months, up to 12, can be accessed to obtain the mean and standard
deviation, month by month.

A sample printout for 12 months rainfall over a 35-year period in Lafayette, Colorado is
shown below.

L

T See Appendix B for a detailed discussion on how to estimate file size.

APPENDIX A
MASS MEMORY STRUCTURE

The mass memory system is organized around user—defined areas of memory, called files,
on the platter. Each platter can contain up to 768 files, depending on the size of each
file. Files can be used to hold data (data files), programs (program files), or Special
Function keys (key files).

As the user, you create these files, name them and — for data files — specify their size.
Special versions of BASIC programming statements enable you to store (i.e., print)
information on and retrieve (i.e., read) information from your mass memory files,

Each file contains one or more physical records. A record is the smallest addressable unit
on the platter and contains 256 words of memory. Each record is actually a collection of
one or more individual data items.

Although you must specify the size, in records, of a data file when you create it, the size
of a program or key file is automatically determined: it is the number of records required
to store the program. A file cannot be greater than 4752 records without exceeding the
available storage space of the platter.

Do not confuse the terminology associated with the Model 30 calculator internal cassette
system with that of the mass memory system. The calculator cassette system refers to a
group of data items as a ‘file’. Actually, in the mass memory terminology, it is a ‘record’,
while the group of cassette files marked the same comprise what is equivalent to a mass
memory ‘file’,

~#—<o—a—<— DATA FILE STRUCTURE oo —o—

As the user, you determine which method of data access best suits your needs; this
decision is often based on the amount of available mass memory storage and the time
required for your operations. An understanding of data file structure is therefore essential
to make the best use of your system.

When working with data files, it is important to understand the difference between
physical records and logical records. A physical record contains a fixed amount of storage
space. (See Figure A-1.) In the mass memory system, a physical record is 256 16-bit
words. (Eight bits equal one byte and two bytes equal one word.) A record is the
smallest unit of data which can be accessed directly (i.e., randomly) by the system.

" 256 Words Fixed
Storage Capacity

Figure A-1. A Physical Record

A-1

A-2

~e—o—o—<— DATA FILE STRUCTURE —<o—<o——eo—

(Cantinued)

A logical record is a collection of items handled {i.e., stored or retrieved) at one time.
(See Figure A-2.) This collection of items is specified by one or more READ# or
PRINT# ‘lists’ of data elements, which define the logical records of the system. You
must deal with this list, or logical record, as a unit.

Variable Length ———————#{ X Y$ Z

A|B|C| D$

Figure A-2. A Lodgical Record

NOTE

Because the number of items which may appear on one BASIC line is
limited, more than one READ# or PRINT# statement may be required to
handle all the data of one logical group. In this case, the combined
READ# or PRINT# lists define the logical record. {See footnote on page

A-7.)

A logical record contains as many data items as necessary in a particular application to
make up the working unit of data. For this reason, logical and physical records may or
may not be related. A logical record can use a fraction of one physical record or a
substantial number of physical records.

SERIAL FILE ACCESS —=

When working with data in the serial file access mode, you can define logical records to
be any length. There is no correspondence between logical and physical records.t (See
Figure A-3.)

T
1
| Short Logical Record
|
1

Long L.ogical Record

I A 2

}.— FIXED LENGTH PHYSICAL RECORD
T
|
|
|

Figure A-3. A Logical Record Can Be Any Length in Serial File Access Mode

Logical records are stored next to each other, without any identifiable marker
separations. All or part of the information stored originally can be retrieved in one
READ# statement. The list of data elements read comprise a logical record, but this list
does not have to be identical to the list originally printed on the file. In other words,
logical records are defined as you print or read them. In order to retrieve all of the
information stored, however, your READ# statement data list must matchy{ the
PRINT# statement data lists stored previously.

The beginning of a physical record is the only point where direct access is possible.
Storage space is utilized with maximum efficiency when serial PRINT# statements are
used, since logical records are packed solidly and no space is left unused between them.

T The only point of 1:1 correspondence between physical and logical records is at the beginning of the file, where the
beginning of the first logical record coincides with the beginning of the first physical record.

+'§“Theso data lists must have identical elements as far as size, type and order are concerned. The names you assign to
these elements can still vary.

. _ — RANDOM FILE ACCESS

When working with data in the random file access mode, you must specify which record
within a file you want to access. There is a 1:1 correspondence between logical and
physical records. In this case, while any logical record can be (and generally is) shorter
than a physical record, a logical record can never be longer than a physical record (256
words).

Since the beginning of a logical record coincides with the beginning of a physical record,
short logical records do not utilize storage space effectively. Only the space required for
storage is used; the rest of the space in the physical record is not used.

Of course, the advantage of using random file access is that every logical record is
directly accessible, in any order.

<~ SERIAL VS. RANDOM FILE ACCESS

As mentioned before, you decide on which method of data accessing to use for your
particular needs. This decision is usually not made easily, because of the inherent
advantages and disadvantages of both methods. More efficient storage space utilization
must be sacrificed for a shorter access time, and vice versa. Once your decision has been
made, it is difficult to change later; so make vour decision carefully.

The following table summarizes the advantages and disadvantages of accessing data from a
file serially and randomly.

Table A-1. Serial vs. Random File Access

Feature ; Serial File Access Random File Access
Storage GOOD-Data is packed VARIES-Poorer for short
Efficiency solidly logical records
Access Time VARIES-Longer for GOOD-Directly to any

higher-numbered record

records
Logical Record Any length that ‘ Less than or equal to
Length fits into a file ? physical record length

<+ END OF RECORD (EOR) MARKERS

There are two types of end of record (EOR) markers: logical end of record (LECR) and
physical end of record (PEOR). These coincide with logical and physical records
respectively. The LEOR marker indicates the end of data in a physical record, while the
PEOR marker indicates the physical end of the record itself. An LEQR marker is actually
stored in one word of each mass memory record, but PEOR markers are system-
generated; they do not take up space on records. For purposes of discussion, they are
called ‘markers’ although, technically, they are system—detected conditions.

~o——o>—<o— DATA FILE STRUCTURE —o—o—o——o—
(Continued)

LEOR markers are placed in certain positions and stored in the system in two ways.

After execution of every PRINT# statement, an LEOR marker is placed automatically

after the last item in the PRINT# data item list. If a serial PRINT# statement instructs

the system to print data over an existing PEQR marker, the system generates an LEOR

marker internally near the end of the physical record in which it encountered the PEOR
marker,

Figure A-4 is a representation of a three—record file, MOM. When the file is opened and

a FILES statement is executed, the pointer is positioned at the beginning of the first
physical record,

Record #1 Record #2 Record #3

IomT
mom®@
TomT

Tpoinmr

Figure A-4. "MOM”

When a serial PRINT# statement is executed, an LEOR marker is placed immediately
after the last data item.

Record #1 Record #2 Record #3

Iom™
nOmo
Jom™o

A | B| C$

nomr

Tpuinter

Figure A-5. LEOR Marker Placed after Last Data 1tem

Executing another serial PRINT# statement stores the new data list from the pointer
position, moving the LEOR marker to the end of the last current data item.

ToOmT
TomT™

p
E
Record #1 2 Record #2 Record #3

A|B c$ D |---| Z

nmomr

2
I'pointer

Figure A-6. LEOR Marker Is Moved

If the remaining space in a physical record is inadequate for a data element in a
subsequent PRINT# list, an LEOR marker is placed internally as close to the PEOR
marker in record 1 as possible (i.e., after the last data element that fits in the record).
The remainder of the data list is stored on the next physical record.

P P P
E E E
Record #1 g Record #2 g Record #3 g
C L
A B|CS|DI|--- z]al5| |B1]|C1|5
R R
Tpointer

Figure A-7. Insufficient Space on One Physical Record

BT #Limlamte oy

Use a READ# statement to reposition the pointer to the beginning of the first physical
record. (This can also be accomplished by executing a FILES statement.)

Record #1

nomm
Dom®o
Domm

Record #2 Record #3

A|B|C$S|DI--~ z |A1 B1 | C1

Domr

romr

Tpow’nter

Figure A-8. Reposition the Pointer

Then use another serial READ# statement to retrieve the data in the first logical record.

P P P
E E E
Record #1 g Record #2 g Record #3 g
L T
A B|CS|D|--- z|a15 [B1]|C1[E
R R
Tpmnler

Figure A-9. Read Data in First Logical Record

A-6

e DATA FILE STRUCTURE —&—o—o—o—

(Continued)

Another serial READ# statement retrieves data from the position of the pointer.

nom™
mom™

Record #1 Record #2 Record #3

nom™

A|B|C$|DI-- 2 A B1 | C1

omr

nomr

Tpointer

Figure A-10. Read Data in Rest of the File

Notice that when the LEOR marker in the first physical record is encountered, the
system automatically skips over the marker and continues to read the data stored in the
second physical record. |f the READ# data item list includes more variables than there
are data items stored, when the second LEOR marker is encountered, the system
attempts to read the data (in this case, X1) in the next physical record {record 3). There
is no data in the third physical record, so an error message is returned.

All of the data in this file can be retrieved as one logical record, even though it was
stored as three logical records. After repositioning the pointer to the beginning of the
file, execute a serial READ# statement that includes all of the data items in the list. That
is

An LEOR marker is also placed as a result of a random PRINT# statement. Figure A-11
is a representation of another three—record file, DAD, Once again, when the FILES

statement is executed, the pointer is positioned at the beginning of the first record in the
file.

DO m
TomT
nmomTo

Record #1 Record #2 Record #3

Tpoimer

Figure A-11. “DAD”

As in the serial mode, when a random PRINT# statement is executed, the LEOR marker
is placed immediately after the last data item.

Record #1 Record #2 Record #3

nomw
IomT
JIomu

momr

Tpoimer

Figure A-12. LEOR Marker Placed after Last Data Item

g
Py

Executing another random PRINT# statement stores the new data list from the beginning
of the physical record specified.

P p P

£ E E

Record #1 g Record #2 0 Record #3 0

R R
L L
A|B|C|g—unseo—= D|---| Z|E
R R

Tpoimer

Figure A-13. Printing Another Logical Record

The space between the end of the first physical record and the LEOR marker in that
record is unused.t

Of course, this second data list could have been stored in the third {or any) record,
instead of the second record, as shown. Random PRINT# statements are used to store
data in specified records and can he executed in any order. An LEOR marker is placed
after the last item in each data list unless the data exactly fills the physical record. In
this case, although an LEOR marker is not stored, the system acts as if it were.

T In general, this space can be used by executing a combination of serial and random PRINT# statements. Use the first
random PRINTH# statement to store data from the beginning of a specific record. A serial PRINT# statement stores
data items over the LEOR marker placed after the random PRINT# data item list,

For example, consider a logical record that contains six full precision items, each of which is a 12—digit number
containing ten decimal places. Since only four of these numbers fit completely into a BASIC iine, two PRINTH
statements must be executed. In this example, the first PRINT# stores four items in the fifth record of a file and the
second PRINT# stores the last two items immediately after the first four.

. - L
Multiple READ# statements can be used in the same manner for longer logical records.

A-7

A-8

~o—a—o—a DATA FILE STRUCTURE oo
(Continued)

To read the data in any given record, execute a random READ# statement, specifying
the particular record.

p p P
E E E
Record #1 g Record #2 g Record #3 g
L L
A|B|Cl|§ D|---| 215
R R
tpointer

Figure A-14. Data in the Second Record Is Read

Notice that the pointer does not have to be repositioned before the random READ#
statement is executed; the pointer is moved to the beginning of the specified record
before reading occurs. Similarly, to read the data in the first record, execute a random
READ# statement, specifying record number 1. The pointer moves to the beginning of
the first record before the data is read.

P p P
E E E
Record #1 g Record #2 g Record #3 g
L L
Al|BJ|cC|§ D|---| 2|5
R R
Tpointcr

Figure A-15. Data in the First Record Is Read

EEDRRAD ELsdabale

Once data has been stored, randomly or serially, it can be retrieved by either a random
or a serial READ# statement. Remember that when an LEOR or PEOR marker is
encountered by a serial READ# statement, the system attempts to read the next data
item in the following physical record. When an LEOR or PEOR marker is encountered by
a random READ# statement, however, an end of record condition is detected. This
results in an error message (or in program branching to another line of the program when
an IF END# statement is previously executed — see “IF END# Statement”, page 3-24).

END OF FILE (EOF) MARKERS —=

There are two types of end of file (EOF) markers: logical end of file (LEOF) and
physical end of file (PEOF). The LEOF marker is actually stored on the mass memory
files, while the PEOF marker is system—generated and indicates the end of space
allocated to the file.

During execution of an OPEN command, LEOF markers are placed in the first word of
every physical record of the file. These markers disappear, however, as soon as data is
stored on the records. LEQF markers are also placed when a PRINT# statement, which
includes the optional parameter, END, is executed.

When END is part of the PRINT# statement, the LEOR marker previously and
automatically placed at the end of the specified logical record is replaced by an LEOF
marker.

In Figure A-16, two of a file's three records contain data and the third record is empty.
An LEOF marker is placed in the first word of each record when the file is opened.
After data is stored in the first two records, however, the LEOF markers in these records
are either moved or disappear, while the third record LEOF marker remains.

P P P
E E E
Record #1 ° Record #2 ° Record #3 2
T I L
AlB| cCl§ X|v|z|f £
F R F
Tpoimer

Figure A-16. Data Is Printed in the First and Second Records

Notice that by executing line 30 (above), an LEOF marker is placed after the last data
item in record #1. As mentioned previously, the pointer is positioned at the LEOR
marker in the second record after the data in the second record is read. (See Figure
A-17.)

Iomw®
IJomT
mOmTu

Record #1 Record #2 Record #3

A|lB]|C

Mo mr
>
<
N

Do mr

momr

Tpointer

Figure A-17. Data in the Second Record Is Read

If a serial READ# statement is executed at this point, the system encounters the LEOR
marker and automatically moves to the beginning of the next physical record to attempt
to read another data item. Here, encountering an LEQF marker establishes an end of file
condition. Once again, this results in an error message (or causes the program to branch
to another line of the program when an IF END# statement is previously executed — see
“IF END# Statement”, page 3-16).

Similarly, if a random READ# statement is executed from the beginning of the third
record, the system encounters the LEQF marker, establishing an end of file condition
(see “IF END# Statement”, page 3-24).

The end of file condition is detected most often when executing a READ# statement,
but it is also detected when an PRINT# statement attempts to store data beyond the
actual physical end of space allocated to the file.

A-10

~¢—<e—<—<— DATA FILE STRUCTURE —o—o—o—<—

(Continued)

A summary of end of file and end of record markers is shown in the table below.

Marker

Table A-2, EOR and EOF Markers

Where Placed

When and How
Established

PEOR

LEOR

PEOF

LEOF

EOR AND EOF CONDITIONS —=—

At the end of each
physical record in
a file

At the end of every

data item list

At the end of each
physical file

a. In the first word of
every physical record

b. At the end of a data
item list under certain
conditions (see next

column)

Automatically, when
a file is opened

Automatically, after

each PRINT# statement,
unless the optional

END parameter is included

Automatically, when a
file is opened

a. Automatically, when a
file is opened

b. By executing a
PRINT# statement
including the optional
END parameter

End of record and end of file conditions are established and can be detected according to
the following detection table. Note that EOR and EOF conditions are never established
when any PRINT# statement encounters logical EOR or logical EOF markers; these
markers are simply printed over,

Table A-3. EOR and EQOF Conditions

L L P P
E E E E
0 O O 0
R F R F
Serial PRINT# *
Serial READ# * *
Random PRINT# * *
Random READ# * * * *

A-11

~®—&—s—<—o— PLATTER STRUCTURE —=— oo

The platter used in the mass memory system is an aluminum alloy disc, slightly larger
than a standard long—playing phonograph record (14" diameter). Bonded onto both sides
of the platter is a ferromagnetic iron oxide which has magnetic characteristics similar to
magnetic tape. Two wide—temperature—range read—write heads in the mass memory drive
are used to store and retrieve information on either side of the platter {see Figure A-19).

Data is stored on a platter in concentric tracks. Each platter has 406 tracks (203 on each
side of the platter). These tracks are numbered from 0 to 405. The upper surface of the
platter contains tracks O through 202; the lower surface contains tracks 203 through 405.
Tracks 0—7 and 404—405 comprise the ‘system area’ and are reserved for system use; the
remaining tracks comprise the ‘user area’ of the platter.

The platter is also subdivided into 12 pie—shaped physical records on each surface of the
platter, numbered from 0 to 11. A physical record is 256 words. A CATALOG command
specifies the exact location of a given record by listing its track number and record
number under the headings, TRACK and RECORD.

12 records X (406 total tracks — 10 system tracks) = 4752 available records/platter

4752 records/platter X 256 words/record = 1.2 million available words/platter

Physical Record
256 Words

12 Records/Track
406 Tracks

4,752 Records

Figure A-18. Mass Memory System Platter

—o— PLATTER STRUCTURE

(Continued)

Upper Surface

- ™~
PLATTER ™~
y; AN
Read-Write Head 0O —+ LI
! -

3
7

Read-Write Head 1

Lower Surface

Figure A-19. Storing and Retrieving Data

APPENDIX B
STORAGE REQUIREMENTS

The efficacity of your mass memory system can be improved if you accurately estimate
the size of the files needed to store information. To this end, this appendix will help you
estimate the space required to store programs and data.

PROGRAM SIZE

As mentioned in the “SAVE Command” discussion (page 2-3), the mass memory system
opens a program file large enough to accommodate the program in the calculator
memory. If the number of words the program uses is not a multiple of 256 (it rarely is),
the mass memory system rounds the number of physical records reserved in the file to
the next whole number. While a program of 255 words requires one physical record, a
program of 257 words requires two physical records.

e

<— DATA STORAGE —=

The following table lists the number of words of memory required to store full, split and
integer precision data elements and string variables. Strings and numbers can be mixed
within a physical record, as long as each item fits within the bounds of the record.

Table B-1. Data Storage Space

Type of Data # of Words/Data Item

Max. # of Data Items/

Physical Record
(256 Words)

full precision 4 64

split precision 2 128

integer precision 27 128

string variable see below see below
NOTE

The type of data retrieved, determined by READ# and MAT READ#
statements, can differ from the type of data stored, determined by
PRINT# and MAT PRINT# statements. Data stored with full precision
accuracy, for example, can be retrieved will full, split or integer precision.
An error message is displayed if you attempt to convert a full or split
precision number greater than [32,767| to an integer precision number.

1 . -
T The mass memory system reserves two words of memory for integer precision accuracy, rather than one waord, as

reserved in the Model 30 calculator system.

B-1

~o—p——o—ae—o— DATA STORAGE —o—=

{Continued)

The space required to store a string variable is calculated in this manner:

@ Divide the number of characters in the string by 2.

Round the result to the next whole number,.
Add 1 to that result.

@

The maximum number of strings that can be stored in a physical record is 128 1— or
2—character strings. Conversely, since a string can contain up to 2bb characters, a
physical record can contain one 255—character {maximum length) string {129 words) plus
one 2b2—character string (127 words). Eight 62—character strings also fill a physical
record completely.

APPENDIX C
INCREASING AVAILABLE MEMORY

—&—<—<o—<>—- DAVTP COMMAND ——=—o—o—o—

The system area of each platter contains an ‘availability table’. This table keeps a record
of all the unused space on the platter. Whenever a file has to be created, by either an
OPEN or a SAVE command, the system searches the availability table to find a space
large enough for this new file. After the file is created, the space it requires is removed
from the table. Similarly, when a file is killed, the space used by the file is returned to
this table. As a result of creating and killing files over a period of time, the availability
table contains a list of available spaces. This list is not necessarily in size or location
order, nor are adjacent blocks of unused space combined to make larger spaces. For this
reason, ERROR 95 (available storage space exceeded) may result when a SAVE or OPEN
command is attempted although the catalog listing indicates that there is enough total
storage space left for the new file.

The DAVTP command (data availability table pack) restructures the availability table by
location and combines any adjacent spaces into larger spaces.

Syntax:

DAVTP

DAVTP takes up to three minutes to execute. Calculator memory, however, is erased
when this command is executed. Executing DAVTP resets the system to unit 0. This
command can be used as often as desired to reorganize the availability table.

At some point the available space may be fragmented in so many small areas all over the
platter that no further files of any reasonable size can be created; the DAVTP has no
effect when this happens. The REPACK procedure {(see next page) can be used to
combine the remaining spaces.

C-1

C-2

REPACK PROCEDURE —o—<—=

The files on a platter can be moved together by performing the REPACK procedure,
described below. The unused space on the platter is consolidated into one large space,
which can then be used for storing additional files.

" 1)
Insert the mass memaory system tape cassette in the calculator and execute:

LOAD BIN 80

After the display returns, key in and execute: UNIT N (where N is the unit number of
the platter you wish to repack). This step can be ignored if your platter is designated as
unit 0.

Key in the word, REPACK, and execute it.

The REPACK procedure is performed in 10 minutes or less. Do not rewind the tape or
remove the tape cassette from the calculator until control returns, because the REPACK
procedure uses three cassette files which are automatically loaded and executed during
the course of the procedure.

If a cassette or transport error {(ERROR b8 or 59) occurs while the REPACK procedure
is being performed, the information contained on your platter remains intact. Although
the availability table and catalog listings may not reflect current file /ocations at this
point, data and program file contents are still unaltered. Check positioning of the tape
cassette and make sure the tape transport door is closed securely. Then simply perform
the procedure from the beginning. If this error occurs again, perform the procedure once
more from the beginning, substituting LOAD BIN 83 for the first step.

APPENDIX D
ACCESS TIME AND BOOTSTRAPS

The time needed to transfer programs or data between your calculator and the mass
memory drive varies with the length of the program or with the amount of data. The
following graphs (Figures D—1 through D—3) show approximate times required for
transfer of information.

Figure D—1 shows the time required to transfer a program from a platter to a calculator
in your mass memory system. Programs are transferred at a rate of about 1,000 16—bit
words per second. The transfer of a program from a calculator to a platter, using the
SAVE command, requires 10% to 25% more time.

Figure D—2 shows the typical time required to transfer one full precision number. This
time is based on the number of data items transferred with one command. The transfer
time per item decreases as the number of data items in one PRINT# or READ#
statement increases. It takes less time to execute:

LEED

than it does to execute:

While the time needed to execute the first example (above) is 75 milliseconds, the second
example takes 250 milliseconds. This is because overhead time associated with each
PRINT# statement is constant. |f this time is spread over more data items, the transfer
time per item is proportionally less.

Figure D—3 shows the time needed to transfer matrices. The transfer time per item is
very long when the array size is less than 5. In those cases, it is faster to use a normal
PRINT# or READ# statement. For example, MAT PRINT# 1; A, where A is a one
element array, takes 180 milliseconds to execute. Notice that these curves are essentially
horizontal for 40 or more elements per statement. Therefore, there is almost no time to
be gained by transferring more than 40 elements per statement.

The statements, command and function stored in the mass memaory are:

PRINT# UNIT
READ# TYP

Other statements and commands are stored in the bootstraps on the piatter and must be
transferred into the calculator each time they are executed. For this reason, they take
more time to execute than the above commands.

D-1

D-2

3
TIME

€ SECONDS >

2

| 22@ LT 3220
FROGRBM LENGTH
<WORDS >

Figure D—1. Transfer of Programs (GET or CHAIN Command)

sA

4
TIME 4|
{MILLL-
SECIONDS >

2

2 28 3a

NO. OF DRTA |TEMS/STRTEMENT

Figure D—2. Data Element Transfer Time

A

3Jar

T I ME

<MLLl -

SECONDS >
22T

MAT PRINT#

MAT READ#

1a 22 33 Hia j=Y 54

NO. OF DATA ITEMS/STATEMENT

Figure D—3. Matrix Element Transfer Time

APPENDIX E
SUMMARY OF MASS MEMORY SYNTAXES

ASSIGN ““file namet”’, file number, return variable [,“protection codet"]
Assigns a file name to a position in the previous FILES statement.
CAT
Lists information about every file on the platter.

CHAIN “file namet’" [1st line number [,2nd line number]]
Loads a program from the platter to the calculator, retaining current values of
variables.

DAVTP
Restructures availability table.

DBYTE variable, string name
Converts value of specified variable to its binary equivalent character.

DCOPY ““1st file name” [,unit number] TO **2nd file name’ [unit number]

Duplicates contents of one data file into another.

DEXP variable, string name
Converts value of specified variable into a 4—digit character string with leading zeros.

DFDUMP “file name"”
Stores specified data file presently on the platter to the calculator internal cassette(s).

DFLOAD “’file name”
Loads data presently on calculator internal cassette(s) to a specific file on the platter.

DGET ‘file name” [0]
Loads source (non—compiled) program into the calculator and checks for syntax
errors.

DREN “old file name” TQO ““new file name” ['“protection code”]

Changes the name of any file.

FILES file name or * [file name or #] [...]

Declares which files are to be used.

GET ‘“file namet” [1st line number [2nd line number]]

Loads a program from the platter to the calculator.

GET KEY “file namet'”

Loads Special Function key definitions from a specified file of the platter to the
calculator Special Function keys.

E-2

IF END# file number THEN line number
Sets up an exit procedure which branches the program to a specific line number when
an end of file or end of record condition is encountered.

KILL “file namet " [“protection code?’]
Erases the named file from the platter.

MAT PRINT# file number [record number] : list of matrix variables

Prints an entire matrix onto a specified record or file.

MAT READ# file number [record number] : list of matrix variables

Reads a matrix from a specified record or file.

OPEN "file namef’’, number of records
Creates a data file with a specified number of physical records and assigns it a name.
{Random) PRINT# file number, record number; list [END]
PRINT# file number, record number [:END]
Prints data on a file from the beginning of a specified physical record.
(Serial) PRINT# file number; list [END]
PRINT# file number; END ,
Prints data on a file after the last item previously read or printed or at the beginning
of the file.
PRO '“file name”’, “protection code”

Assigns a protection code to a specific file,

(Random) READ# file number, record number [list]
Reads data from a specified record in a file,

{Serial) READ# file number: list

Reads data from a specified file, starting after the last item printed or read.

SAVE “file name?’ [,1st line number [,2nd line number]]

Stores an entire program or parts of it onto a specified file of the platter.

SAVE KEY “file namet’”

Prints Special Function key definitions onto a specified file of the platter.

TYP file number or TYP (—file number)
Identifies the type of the next item in a specified file.

UNIT unit number

Specifies the platter to be used for the subsequent commands.

I This parameter can be a string variable. When a string variable is used, the quotation marks {"') surrounding it must
he removed.

ABSOLUTE LENGTH(R)
access
random file

serial file
time
“add data” program
air filter

ASCH character codes
ASSIGN statement
asterisk (%)
availability table

BASIC syntaxes
bootstraps

calculator (9830A}

cart, optional {11304A)

cartridge, removable (12869A)
also, see platter

cassette

storage

training

also, see system tape cassette
CATALOG {CAT) command
CHAIN command
“character” program
“check-writing”" program
cleaning the system
COM statement
components

configurations

requirements
controller {11305A)

MODE switch .
CURRENT LENGTH{W)
“data base” program
“data check” program
DATA PROTECT indicatar
DATA PROTECT switch
DAVTP command
DBYTE command

DCOPY command
destination platter

INDEX

25

3-21 — 3-27, A3
. 39 —3-20, A2, A3

1-1, A3, D-1
319

117

412

37, 38

22,31, 36, 3-7

. G

2-1, 31, E-1

12,17, 1-10, 1-12, 113, D-1

...
N
NN
NI e

117,48 — 410

14

. 26, 34, A-11
. 29
.4-12
-4-13
17

2-6

1-5

1-1

1-4

1 2 1 4 1-5
111

2-5

5-1 — 55
.3-18
1-7
.18

. C1

.412 4-14, 4-15

- 4-7
. 4-6 (footnote}

DEXP command
DFDUMP command
DFLOAD command
DGET command

DOOR UNLOCKED :ndlcator

DREN command .
DRIVE FAULT mdlcator

ey
— e m—

. 412,414, 415

4.8, 49
) .4-10
411, 414, 415
17 = 1410, 117
. 4-11, 4-14, 4-15

. N Y
drive, mass memory (9867A/B) 1-3, 1-7, 44
maintenance . 117
malfunction . 1-8, 1-10, 1-17
DRIVE READY mdlcator 1-7,1-8, 1-10
duplicate platter 117, 4-8
end of file (EOF) condition . 318, 3-23,
42, A9, A-10
end of record (EOR) condition 3-22, 3-34,
4-2,4-4, A-B, A-10
end of file {EQF} marker 3-13, 317,
3-26, 4-2, A-8, A-10
end of record (EOR) marker 3-17, 3-26,
4-2 5-7, A-3, A-10
equipment list . . 1-4 — 16
ERROR messages (90- 99) inside back cover
ERROR 4 . 2-10
ERROR 44 3- 16 {footnote) 3 24 (footnote)
ERROR 58 . C-2
ERROR 59 ; A
ERROR 92 .212 3-5, 3-8
ERROR 94 3-17, 3-26
ERROR 95 . CAa
ERROR 96 N
ERROR 97 114 2-3, 3-3, 38
ERROR 99 . 3-12, 3114 — 317,
3-24 7326 42 44
ERROR 900 1-11 {(footnote)
ERROR 901 . 1-11 {footnote)
ERROR 902 . 1-11 {footnote), 1-12
ERROR 903 4-6
examples, program
“add data" . 319
“character” L 4-12
“check-writing” .4-13
“data base" b-1 —b5b
“data check” .3-18
“open files” .. 38
“rainfall” 5-6, b-7
“source’’ 414, 4-15
“statistics”’ . .3-20
exerciser, mass memory 1-13 — 1-16

file, mass memory . A L/D PROTECT indicator . . . R RV
creating] 2-3, A1 line number 2- ‘I 3 1,413 — 4-15
data 2-1, 3-1, 4-7, A1 list e 32 A2 A7 (footnote), A-10
duplicating L. 47 LOAD switch . 1-3, 1-8 — 1-10, 1-17
erasing . . 2-12, 3b logical end of file (LEOF) marker 3-3, 3-9 — 3-13,
key . 2-1, 25, 2-13, A-1 3-16, 3-17,3-19, 3-23, 4-9, A-8 — A-10
location . A-11 logical end of record (LEOR) marker 3-9, 3-13,
names not allowed . 2-3, 3-3 3-17, 3-19, 3-22, 3-24, A-3 - 10
program .21, 24, 212, A1
size . . 3-3, 4-1, A-1, A-11
storing on tape . 117, 48 — 4-10 m
FILES statement 3-6, 45, 4-6, A4
full-precision data 3-17, 3-26, 4-1, B-1 maintenance . . . B R
mass memary {9880A/B)
maintenance . . N R V)
ROM (11273} .12141617110113
syntaxes E1
GET command 26 system test 1-13, 1-14
GET KEY command .2-13 mass memory controiler {1 1305A} 1-2, 14
GOTO...OF statement 3-18, 3-27 mass memory drive {(9867A/8) L. .. 13,17
also, see drive, mass memory {9867A/B)
mass memory Tfiles, see files, mass memory
MAT PRINT# statement . . , 441
MAT READ# statement 4.2, 5.7
heads, read-write floating . .17, matrix
1-8 (footnote), 1-9, 1- 17 A 11 dimensioning and redimensioning 4-3, 4-4
operations ., . -
ROM (11270) 16113115116 4-1, 56
n multiple platters 1-6, 4-4
I/O Expander (9868A) L. 12
IF END# statement 3-16, 3-17,
4-2, 4-4, A-8, A-9
increasing available memory . CA1 a
initializing platters . 1-10
_mmal tl..ll‘n*()n 1-6, 1-7 OPEN command 33
installation " s .
mass memaory system 1-6 open files” program 38
plug-in ROM block B 1Y
cartridge - 1-8 (footnote), 1-10
integer-precision data 3-17, 3-26, B-1
interface cable assembly 1-2, 1-4, 1-7 . :
_ d physical end of file (PEQF) marker 3-14 — 3-17,
interface kit {11273B) . 12,14 — 16 319, 325 A8, A-10
physical end of record (PEOR) marker 3-1 7, 3-19,
3-26, A-3, A8, A-10
platter . . . e e e A
availahle storage space e e e e 12
contents 2-b, 34
duplicating e e . 117, 48
KILL command . 212,35 initializing0 00 0110
maintenance 117
multiple 1-6, 4-4

L

specifying 1-9, 1-11, 4-4, 4-5
structure L. A1
system area . 1-11 (footnote) A-11
user area 1-11 (footnote), 1-13, A-11
PLATTER-DUPLICATE procedure 46
pointer 3-6, 3-7, 3-9, 3-13 — 3-15, 3-21, A-4 — A9
repositioning 3-13 — 3-1h, 3-21, Ab — A9
power supply (13215A) . 1-4 (footnote), 1-b

POWER switch -7 — 1-10
preface 0
printer (9866A) . 1-2,1-6, 412
PRINT# statement

random321, AB, A7, A9

serial 39 A4
protection

capability . 16, 1-7, 2-11, 2-12, 34, 35

code s e ... 22,21, 212,31,34,3b
PROTECT {PRQ) command . 2-11, 34, 35

quick reference card e e 1-4

quotation marks {"') 2 2 3-1

“rainfall” program

read-write floating heads
1-9, 1-17, A-11

READ# statement

random 3-23, A-7 (footnote}, A-8
serial312, Ab, A6, A8

5-6, 5-7
‘I 7 ‘I -8 (footnote),

record . 2-b, 34, A-1, A-11
erasing . 3-11, 319, 3-22
location .25, 34, A-11
logical . A2, A3, AL, AT
physical . 321, 3-26,

A17A3A67A9A11 B-1, B-2
size 25, 3 4, 4-1, A-1, A-11

REPACK procedure P O)

return variable 37

ROM;
mass memory (11273) 1-2, 1-4,

1-6, 1-7, 1-10, 1-13
matrix operations {11270) 1-6, 1-13,
1-15, 1-16, 4-1, 5-6
others . 16, 1-13
string variables (1 1274) 1-6, 1-13,

1-15, 1-16, 2-2, 3-2, 311 51 56

o m; SR f/_’ '-R‘Z::--— i < /-»T___,:‘::; St (o S
; S :

£el i Hae

SAVE command 23
SAVE KEY command213
secure programs21
service contract . N

. 4-6 (footnote)
. 411, 4-14, 4-15
1-16, 2-3, 2-13
3-17, 3-26, B-1

source platter
SOUrce program
special function keys
split-precision data

“statistics” program3-20
storage capacities, 11,12, A11
storage requirements Ba

2-2, 32 38 3-11, 4-7, B2
16,113,115,

string variables
ROM (11274} .
1-16, 2-2, 3-2, 3-11, 5-1, 5-6

syntaxes E1

brackets 2-1, 341

coloring 2-1, 341
system tape cassette 1-2, 1-4,

11011211311646C2

table of contents i
teleprinter (38 ASR) .,
test, mass memory system 1-13, 1-14
tracks 2-6, 3-4, 4-6 (footnote), A-11
training cassette 14
turn-off procedure 189
turn-on procedure . 16 - 1-8
TYP function . 317, 3-26, 3-27
TYPE e 2-5, 34
typewriter (9861A) Y« V4
U/D PROTECT indicator 17
UNIT ecommand e 4-5 — 4-7
UNIT SELECT mdlcator S Y
UNIT SELECT switch 19
UNLOAD (LOAD) switch -3, 1-8 — 1-10

UNITED STATES

ALABAMA

8290 Whitesburg Dr., S.E.
P.D. Box 4207

Hunstville 35802

Tel: (205) 831-4551

TWX: 810-726-2204

ARIZONA

2336 E. Magnolia St.
Phaanix 85034

Tel: {502) 244-1361
TWX: 810-951-1230

2424 East Aragen Rd.
Tucson 85706
Tel: (602) 889-4661

CALIFORNIA

1430 East Orangethorpe Ave
Fullerton 92631

Tel: (714) 870-1000

TWX: 910-592-1288

393% Lankershim Boulevard
Nerth Hollywood 91604
Tel: (213} 877-1282

TWX: 810-499-2170

6515 Arizona Place
Los Angeles 90045
Tel: (213) 776-7500
TWX: 910-328-6148

1101 Embarcadero Road
Palo Atte 94303

Tel: (415) 327-6500
TwX: 910-373-1280

2220 Watt Ave.

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

9506 Aero Drive
P.0. Box 23333
San Diego 92123
Tei: {714) 279-3200
TWX: 910-335-2000

COLORADO

5600 South Ulster Parkway
Englewoarl 80110

Tel: {303) 771-3455

TWX: 910.935.0705

CONNECTICUY
12 Lunar Drive
New Haven 0B525
Tel: (203) 389-6551
TWX: 710-465-2029

FLORIDA

PD. Box 24210

2806 W, Dakland Park Blvd.
F%. Lauderdale 33307

Tel: {305) 731-2020

TWX: 510-955-4099

P.0. Box 13910

6177 Lake Ellenor Dr.
Qrlando, 32808

Tel: {305) B59-280Q
TWX: 810-250-0113

GEORGIA

P.0. Box 28234

450 Interstate Morth
Atlanta 30328

Tel: (404) 436-6181
TWX: B10-766-4B50

HAWAN

2875 So. King Street
Honolulu 96814

Tel: (B08) 955-4455

ILLINOIS

5500 Howard Street
Skokle 60076

Tel: (312) 677.0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indfanapelis 46205
Tel: (317) 546-4881
TWX: 810-341-3263

IOWA

1502 Broadway

lowa City 52240

Tel: (319) 338-9466
Night: (319) 338-9467

LOUISIANA

P. 0. Box 840

3239 Williams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

CANADA

ALBERTA

Hewlett-Packard (Canada) Lid.
11748 Kingsway Ave.
Edmanton TSG 0X5

Tel: (403) 452-3670

TwX: 610-831-2431

Hewlett-Packard (Canada) L.
815-42 Avenue S.E.

Calgary T2G 171

Tel: (403} 262-4279

BRITISH COLUMEIA
Hewlett-Packard (Canada) Ltd.
837 E. Cordova Street
Vancouver Y64 3R2

Tel: (604) 254-053]

TWX. 610-922-5058

ELECTRONIC
SALES & SERVICE OFFICES

MARYLAND

6707 Whitestone Road
Baltimere 21207

Tel: {301) 944-5400
TWX: 710-862-9157

20010 Century Blvd.
Germantawn 20767
Tel: {31) 428-0700

P.D. Box 1648

2 Choke Cherry Road
Rockyille 20850
Tel: (301} 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave,
lexington 02173
Tel: (617) 861-B960
TWX: 710-326-6504

MICHIGAN

23855 Research Drive
Farmington 48024
Tel: {313) 476-6400
TWX: 810-242-2900

MINNESOTA

2459 University Avenue
§t. Paul 55114

Tel: (512) 645-8461
TWX: 910-563-3734

MISSOURI

11131 Colorado Ave.
Kansas City 64137
Tel: (818} 763-8000
TWX: 810-771-20R7

148 Weldon Parkway
Maryland Heights 63043
Tel: {314) 567.1455
TWX: 510-764-0830

*NEVADA
Las Vegas
Tel: (702) 382-5777

NEW JERSEY
W. 120 Century Rd.
Paramus 07652
Tel: (201) 285-5000

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuguerque B7108

Tel: (305) 265-3713

TWX: 510-989-1665

156 Wyatt Drive
Las Cruces 83001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

6 Automation Lane
Computer Park
Albany 12205

Tel: (518) 458.1550
TWX: 710-441-8270

1219 Campville Road
Endlcott 13760

Tel: (607} 754-0050
TWX. 510-252-08%0

New York Clty

Manhattan, Bronx

Contact Paramus, N Office
Tel: (201) 265-5000
Brooklyn, Queens, Richmond
Contact Woodbury, NY Office
Tel: (516) 921-0300

82 Washington Street
Poughkeepsia 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11757

Tel: (316) 921-0300
TWX: 510-221-2168

NORTH CAROLINA

SOUTH CAROLINA
6341-0 N. Trenhalm Road
Columbia 29260

Tel: (B03) 782-6493

OHIO

16500 Sprague Road
Cleveland 44130
Tel: (216) 243-7300
Night: 243-7305
TWX: 810-423-9431

330 Progress Rd.
Dayton 45449

Tel: (513) 859-8202
TWX: 810-459-1925

6665 Busch Bivd.
Columbus 43229
Tel: (514) B46-1300

OKLAHOMA

P.0. Box 32008
Oklahama City 73132
Tel: (405} 721-0200
TWX: 910-820-6862

OREGON

17890 SW Boones Ferry Road
Tuatatin 97062

Tel; (503 620-3350

TWX: 910-467-8714

PENNSYLVANIA
111 Zeta Drive
Fittshurgh 15238
Tel: (412) 782.0400
Night: 782-0401
TWX: 710-795-3124

1021 8th Avenue

King of Prussia industrial Park
King of Prussia 15406

Tel: (215) 265-7000

TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02614
Tel: (401) 434-5535
TWX: 710-381-7573

YEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214} 231-6101
TWX: 910-867-4723
P.0. Box 27408
6300 Westpark Drive
Suite 100

Houster 77027

Tel: (213} 781-6000
TWX: 910-881-2645

231 Bllly Mitchell Road
San Antonlo 78226
Tel: (512} 4344171
TWX: 910-871-1170

2890 South Maln Street
Salt Lake City 84115

Tel: (801) 487-0715

TWX: 910-925-5681
VIRGINIA

P.0. Box 9852

2814 Hungary Springs Road
Richmone 23228

Tel: (804) 285-3431

TWX: 710-956-0157

WASHINGTON
Bellefield Office Pk,
1203 - 114th 3E
Bellevue 93004

Tel: {206) 454-3971
TWX: 810-443-2446
*WEST VIRGINIA
Charlsstan

Tel: (304] 3451640
WISCONSIN

9431 W. Beloit Road
Suite 117
Milwaukes 53227
Tel: (414) 541-0550

FOR L.S. AREAS NOT
LISTED:

Contact the reglonai offlce near-
est you: Atlanta, Georgia...
North Holiywood, Callfornia. ..
Paramus, New Jersey . . . Skokie,

MANITOBA

TWX: 710-890-4951 P.0. Box 5188 *TENNE3SEE IMinpls. Their complete ad-
1923 North Main Street Memphis dresses are [fsted above,
High Puint 27262 Tel: (901) 274-7472 *Service Only
Tef: (919) 885-8101
TWX: 510-926-1516
NOVA SCOTIA ONTARIO QUEBEC

Hewlett-Packard ‘Canada) Ltd.
513 Century St.

&t. James

Winnipeg R3H oL

Tei: {204) 786-7581

TWX: 610-671-3531

Hewlett-Packard (Canada) Ltd.
2745 Dutch Village Rd

Halifax B3 467

Tel; (902} 455-0511

THX: 610-271-4482

Hewlett-Packard (Canada) Lid.
1785 Woodward Dr.

Dttawa K2C OP9

Tel: (613) 2256530

TWX: 610-562-8968

Hewlett-Packard (Canada) Lid.
6877 Goreway Drive
Mississauga L4V 119

Tel: (416) 678-9430

TWX: 610-492-4246

CENTRAL AND

ARGENTINA
Hewlett-Packard Argentina
3ACet

Lavalle 1171 -3°

Buenos Aires

Tel: 35-0436, 35-0627, 35-0341
Telex: 012-100%

Cable: HEWPACK ARG

BOLIVIA

Stambuk & Mark (Solivia) LTDA,
Av. Mariscal, Santa Cruz 1342
La Paz

Tel: 40626, 53163, 52421
Telex: 3560014

Cable: BUKMAR

BRAZIL

Hewlett-Packarg Do Brasil
1.E.C. Ltda.

Rua Frei Caneca 1119
01307-Sa0 Paulo-SP

Tel: 288-7111, 287-5858
Telex: 309151/2/3

Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
I.E.C. Ltda.

Praca Dom Fellciang, 78
90000-Porta Alegre-RS

Rio Grande do Sul {RS) Brasil
Tel: 25-8470

Cable: HEWPACK Parto Alegre

SOUTH AMERICA

Hewlett-Packard Do Brasil
LEC. Lida,

Rua da Matriz, 28

20000-Rio de Janeiro-GB

Tel: 266-2643

Telex: 210079 HEWPACK

Cable: HEWPACK Rio de laneirg

CHILE

Hector Calcagni y Cia, Lida.
Casilfa 16.475

Santiagn

Tel: 423 96

Cable: CALCAGN| Santiago

COLOMBIA
Instrumentacion

Henrik A. Langebaek & Kier S A_

Carrera 7 No. 4B-59
Apartado Aéreo 6287
Bogata, 1 D.E.

Tel: 45-78-06, 45-55-46
Cable: AARIS Bogota
Telex: 44400INSTCO

COSTA RICA

Lic. Alfredo Gallegos Gurdidn
Apartado 10159

San José

Tei: 21-86-13

Cable: GALGUR San José

ECUADOR

Laboratorios de Radio-Ingenieria
Calle Guayaquil 1246

Post Office Box 3198

Quito

Tel: 212-496; 219-185

Cable: HORVATH Quita

EL SALVADOR

Efectronic Associates
Apartado Postal 1682

Centro Comercial Gigante

San Salvador, El Salvador C.A.
Paseo Escalon 4649-4° Pisu
Tel: 23-44-60, 23-32.37
Cable: ELECAS

GUATEMALA

IPESA

Avenida La Refgrma 3-48,
Zona 9

Guatemala

Tel: 63627, 64736

Telex: 4192 TELTRO GU

MEXICO

Hewlett-Packard Mexicana,
S.A deCV,

Torres Adalid No. 21, 11" Piso
Col. del Yalle

Mexico 12, D.F.

Tel: 543-42-32

Telex: 017-74.507

NICARAGUA

Roberto Terdn G.
Apartado Postal 689
Edificio Terdn

Managua

Tel: 3451, 3452

Cahle: ROTERAN Managua

PANAMA

Electréinica Balboa, S.A.

P.0. Box 4929

Ave. Manuel Espinosa No. 13-50
Bldg. Allna

Panama City

Tel: 220833

Telex: 3481103, Curunda,
Canal Zone

Cable: ELECTRON Panama Clty

PARAGUAY

Z. . Melamed SR.L

Division: Aparatos ¥ Equipos
Medicos

Division: Aparatas y Equipos
Scientificos y de
Investigacion

P.0. Box 676

Chile, 482, Edificio Victoria

Asuntien

Tel: 4-506¢, 4-6272

Cable: RAMEL

PERU

Compafiia Electro Médica S.A.
Ave. Enrigre Canaual 312
san |sidro

Casilla 1030

Lima

Tel: 22-3900

Cable: ELMED Lima

PUERTQ RICO

San Juan Electronics, Inc,
P.0. Box 5167

Ponce de Leon 154

Pda. 3-PTA de Tierra

San Juan 00906

Tel: (809) 725.3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

Hewlett-Packard (Canada) Ltd
275 Hymus Boulevard

Painte Claire HIR 1G7

Tel: (518} 561-6520

TWX: 610-422-3022

Telex: 05-B21521 HPCL

Hewlett-Packard (Canada) Lid.
2376 Galvani Street

Ste-Foy GIN 4G4

Tel: (418) 688-B710

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Pachard (Can-
ada) Ltd. in Mississauga

URUGUAY

Pablg Ferrandp S.A,
Comerclal e Industrial
Avenida Italla 2877
Casilla de Corree 370
Montevideo

Tel: 40-3102

Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard de Venezuela
C.A

Apartade 50933

Edificio Segre

Tercera Transversal

Los Ruices Norte
Caracas 107

Tel: 35-00-11

Telex: 21146 HEWPACK
Cabie: HEWPACK Caracas

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard
Inter-Americas

3200 Hittview Ave.

Pala Alte, Callfernia 94304
Tel: (415) 4931501

TwX: 910-373-1267

Cable: HEWPACK Palo Alto
Telex: 034-B300, 034-8493

€ 4/74

EUROPE

AUSTRIA

Hewlett-Packard Ges.mb.H
Harcelska 5273

PO Box 7

A.1205 Vienna

Tel: (0222 33 66 06 to 09
Cable: HEWPAKX Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
§ V.

Auvenue de Col-vert, 1,
iGroenkra2piaan;

B-1170 Brusseis

Tel: (02) 72 22 40

Cable; PALOBEN Brussels
Telex: 23 434 pafoben bry

DENMARK
Hewlelt-Packard ASS
Datavej 38

DK-3460 Birkerad
Tel- 101} 81 66 40
Cable: HEWPACK AS
Telex: 166 40 hp as

Hew!lell-Packard A/S
Tarvet 9

DK-8600 Silkebarg
Tel: (06) 82-71-66
ex: 165 40 hp as
Cable: HEWPADK AS

FINLAND

Hewlett-Packard Oy
Bulevardi 25

P.0. Box 12185

SF-00120 Helsinki 12

Tel: (30} 13730

Cable; HEWPACKOY Helsinki
Telex: 12-15363 hel

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Boite Postale No. 6
F-81401 Orsay

Hewielt-Packard France
Agenee fegional

4 Quai des Etroits
F-53321 Lyon Gedex 1
Tel: (781 42 63 45
Cable: HEWPACK Lyon
Telex: 31617
Hewlett-Packard France
Zone Aéronautique
Auenue Clement Ader
F-31770 Colomiers

Tel: (61) 86 81 55
Telex: 51957
Hewlett-Packard France
Agence Régionale
Boulevard Ferato-Gamarra
Boite Postale No. 11
F-13100 Luynes

Tel: (47) 24 00 66
Telex: 41770

Hewlett-Packard France
Agency Régianale

63, Avenue de Rochester
F-35000 Rennes

Tel: (99; 36 33 21
Telex: 74912 F

Hewlett.-Packard France
Agence Régionale

74, Allée de la Rabertsay
F-57000 Strashourg

Tel. {88) 35 23 20421
Telex: 89141

Cable: HEWPACK STRBG

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Bernerstrasse 117

Postfach 560 140

D-6000 Frankfurt 56

Tel: (0611) 50 04-1

Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 fra

Hewlett-Packard GmbH
Vertriebsbiirg Bablingen
Herrenbergerstrasse 110
0-7030 Bihlingen, Wirttembe:g
Tel: {07031) 68 72 87

Cable; HEPAK B&blingen

Telex: 72 65 739 bbn

Hewlett-Packard GmbH
Vertriebsbiiro Disseldorf
Wggelsanger Weg 38
0-4000 Diisseldorf

Tel: (0211} 63 80 31/38
Telex: 85786 533 hpdd d
Hewlett-Packard GmbH
Wertriebsbiira Hamburg
wendenstr, 23

D-2000 Hamburg 1

Tel: {040) 24 13 93
Gahte: HEWPACKSA Hamburg
Telex: 21 63 032 hphh d

Rewlett-Packard GmbH
Vertriebsbiira Hannover
Mellendorfer Strasse 3
D-3000 Hannaver-Kieeteid
Tel: i0511) 55 06 26

Hewlett-Packard GmbH
Vertriebsbure Nuremberg
Hersbruckerstrasse 42
D-8500 Nuremberg

Tel: (0911) 57 10 68
Te'ex: 823 B&O

Hewlett-Packard GmbH
Vertriebsbiiro Miinchen
Unterhachinger Strasse 28
ISAR Center

D-8012 Ottobrunn

Tel: (083) 601.20 61/7
Telex: 52 49 85

Cable: HEWPACKSA Miichen

{West Berlin)

Hewlett-Packard GmbH
vertriebshiira Berlin
Witmersdorfer Strasse 113/114
D-1000 Berlin W. 12

GREECE

Kostas Karayannis

18, Ermeu Street

GR-Athens 126

Tel: 8080337, 8080359,
8080429, 8018653

Cable: RAKAR Athens

Telex: 21 59 62 ckar gr

Hewlett-Packard .4,

Mediterranean & Middte East

Dperations

35 ®olokotroni Street

Platia Kefai'arion

Gr-Kifissia-Athens

Tel: 8080337, 8080358,
8080429, 8018633

[RELAND
Hewlett-Packard Lid.
224 Bath Road
GB-Slough, SL1 4 DS, Bucks
Tel: Slough (0753} 33341
Cable: HEWPIE Slaugh
Telex: 848412
Hewlett-Packard Ltd.
The Graftons

Stamford New Road
Altrincham, Cheshire
Tel: (061) 928.9021
Telex: 668068

ITALY

Hewlett-Packard Italiana S.p.A.
Via Amerigo Vespucei 2
1-20124 Milan

Tel: {71 6251 (10 lings)

Cable: HEWPACKIT Milan
Telex: 32048

Hewlett-Packard Itallana S.p.A.
Vicalo Pastori, 3

1-35100 Padova

Tel: (49) 66 40 62

Telex: 32046 via Milan
Hewlett-Packard Italiana SPA

Via Medaglie d'0ro, 2
1-56100 Pisa

Hewlett-Packard Italiana S.p.A.
Via Calli, 24

1-10129 Turin

Tel: (11} 53 82 B4

Telex: 32046 via Milan

LUXEMBURG
Hewlett-Packard Benelux
SANN.

Avenue. de Cel-Vert, 1,
iGroenkraaglaan}

8-1170 Brussels

Tel: (03702} 72 22 40
Cable: PALOBEN Brussels
Telex: 22 434

NETHERLANDS
Hewlett-Packard Benelux/N.V,
Weerdestein 117

2.0. Box 7825
NL-Amsterdam, 1011

Tel: 5411522

Cabie: PALDBEN Amsterdam
Telex: 13 216 hepa nl

NORWAY
Hewlett-Packard Norge A/5
kesveiea 13

Box 148

H-1344 Haslum

Tel: (02) 52 83 60

Telex: 16621 hpnas n

PORTUGAL
Telectra-Empresa Técnica de

Equipamentes Eléctricos S.arl.

Rua Rodrlgo da Fonseca 103
P.0. Box 2531

P-Lishon 1

Tel: {19) 88 60 72

Cable: TELECTRA Lisbon
Telex: 1598

SPAIN

Hewlett-Packard Espafola, $.A
Jerez No &

E-Madrid 16

Tel: 458 26 00

Hewlell-Packard Espaiioia, S.A.

Milanesado 21.23
E-Barceiona 17

Tel: {3} 203 62 00
Telex: 52603 hpbe e

Hewlett-Packard Espanofa 5.A.
Av Raman ¥ Cajal, 1

Edificio Sevilla |, planta ©9
E-Seville

SWEDEN

Hewlett-Packard Sverige AB

Enighetsvdgen 1.3

Fack

$-161 20 Hromma 20

Tel: (0B) 730 D550

Cable: MEASUREMENTS
Stockholm

Telex: 10721

Hewlett-Packard Sverige AB
Hagakersgatan 5C

5-431 41 Miindal

Tet: 10315 27 62 00/01
Telex: Via Bramma

SWITZERLAND

Hewlett Packard (Schweiz) AG
Ziircherstrasse 20

P.0. Box 64

CH-8852 Schtieren Zurith
Tel: (01] 98 18 21724

Cable: HPAG CH

Telex: 53933 hpag ch
Hewlett-Packard (Schweiz) AG
§, Chemin Louis-Pictet
CH-1214 Vernier—Geneva
Tel: (022] 41 4950

Catile: HEWPACKSA Geneva
Tefex: 27 333 hpsa ch

TURKEY

Telekom Englneering Bureau
Saglik Sak No. 15/1
Ayaspasa-Beyoglu

P.0. Box 437 Beyoghu
TR-Istanbut

UNITED KINGDOM
Hewlett-Packard Lid.

224 Bath Road

GB-Slaugh, SL1 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 848413

Hewlett-Packarg Ltd
"The Graftons'
Stamford New Road
GB-Altrincham, Cheshire
Tel: {061) 928-9021
Telex: 668068

Hewlett-Packard, Lid.

c/a Makro

South Service Whnlesale Centre
Amber Way

Halesowen Industrial Estate
GB-Wores.

Tel: Birmingham 7860

Hewlett-Packard Ltd's registered
address for V.AT, purposes
only:

70, Finsbury Pavement

tondon, ECZA1SX

Registered No: $90597

SOCIALIST COUNTRIES
PLEASE CONTACLT:
Hewlett-Packard Ges.m.b.H.
Handelskai 52/3

PO, Box 7

A-1205 Vienna

Ph; (0222} 33 66 OB to 09
Cable: HEWPACK Yienna
Tefex: 75823 hewpak a

ALL OTHER EURQPEAN

COUNTRIES CONTACT:

Hewlett-Packard §.A.

Rue du Bois-¢u-Lan 7

P.0. Bax 85

CH-1217 Meyrin 2 Geneva
Switzerland

Tei: (022} 41 54 00

Cable: HEWPACKSA Geneva

Tel: {17 907 78 25 ety " Telex: 23515 hpe Tel: 49 40 40 Telex: 2 24 86
e Tel: (030} 3137048 Tel: {050) 500022 .

Cable: HEWPACK Orsay Telex: 18 34 05 hpbin d Cable: TELEMATION [stanbul
Telex: 6DG4S
AFRICA, ASIA, AUSTRALIA
ANGOLA CYPRUS Biye Star Lid. JAPAN MOZAMBIQUE SINGAPORE UGANDA
Telectra-Empresa Tecnica Kypronles Biue Star House, Tokogawa-Hewlett-Packard Ltd. AN, Goncalves, Lla. Mechanical & Cembustion Uganda Tele-Electric Co., Lid

de Equipamentos Electricos 19 Gregorios & Xenopoulos Rgad 34 Ring Raad Ohashi Bul\d{ng 162, Av. D, Luis Engineering Company Ple., P.0. Bax 444%

SARL P.0. Box 1152 Lajpat Nagar 1-59-1 Yayogi P.O. Box 107 Ltd. Kampala
Rua de Barbosa, Rodrigues, CY-Nicasla New Delhi 110 024 Shibuya-ku, Tekyo Leurenco Margues 10/12, Jalan Kilang Tel: 57279

421, 03° Tel: 45628/29 Tel: 62 32 76 Tel: 03-370-2281/82 Tel: 27081, 27114 Red Hill Industrial Estate Cable: COMCO Kampala
P.0. Box 6487 Cable: KYPRONICS PANDEHIS Telex: 2463 Telex: 232-2024YHP Telex: 6-203 Negan Mo Singapore, 3
Luanda ETHIOPIA Cable: BLUESTAR Cable: YHPMARKET TQK 23-723 Cable: NEGON Tel: 647151 (7 lines) glETN-‘?MT ding 1

: L : B §i ore eninsular Trading Inc.
Cable: TELECTRA Luznda African Salespawer & Agency Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd NEW ZEALAND Cable: MECOMS Singanor .0. Box H-3 g
AUSTRALIA Private Lid., Co. Blue Star House Nisei Ibaragi Bldg Hewlett-Packard (N.2.) Ld. Hewlett-Packard Far East 216 Hien-Vuong
Hewlett- Packard Australia P. 0. Box 71B 11/11A Magarath Road 2-2-8 l_(asu_ga 94-98 Dixon Street Area Office Saigon
Pty. Ltd ., 58,459 Cunningham St Bangalere 560 025 Ibaragi-Shi P.0. Box 9442 Tel: 20908, 93398
31-51 Joseph Street Addis Abaha Tel: 58668 saka Courtenay Place, Cable: PENTRA, SAIGON 242
Victoria, 2130 Tel: 12285 Telex: 430 Tel: {0726) 23-1641 wellingtan
Tel: 89 6351 Cable: ASACO Addisababa Gable: BLUESTAR Telex: 5332.385 YHP 03AKA Tel: 59-559 Tel: 633022 ZAMBIA)
Cable: HEWPARD: Melbourne HONG KONG Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd. Iei‘elx iﬂfﬁpw weltinet Cable: HEWPACK 5INGAPORE E.UJ.me;;ngfzamma] Ltd.
Telex: 31 024 schmid: & Lo. Hong Kongt L. LLUTAL Nakamo Building . Gatle CH Wellington SOUTH AFRICA T o
' 4 F.0. Box 297 arojini Devi Rea No. 24 Kamisasazima-cho Hewlett-Packard (N.Z.) Ltd Hewlett Packard South Africa .
Hc:::[:_;é“ad Austra Connalight Centre Secunderabad 500 003 Nakamura-ku, Nagoya City Pakuranga Professianal Centre (Fty.), Ltd. _?:R‘“T‘;%ggg""“' Alrica
31 Bridge Street 39th Floor Ie 7 ESLE}EF;OTS%IB3 fel: (052} 571-5171 26} Pakuranga Highway Hewlelt-Pachard House Cable: ARJAYTEE, Lusaka
Pymble, Connaught Road, Centeal Tolen: 489 fokagawa-Hewlett-Packard Ltg, DO% 31082 Uanfine Stieet, Wendywoad,
New South Wales, 2073 Hong Kang Bk Nitto Bldg. Pakuranga Sandton, Transvaal 2001 MEDITERRANEAN AND
Tel. 499 6566 Tel: 240168, 232735 Blue Star, Ltd. 2.8.2 Shinohara-Kita Tel: 569-651 Tel: 407641 (five lines) MIDDLE EAST COUNTRIES
Telex: 21561 Letec. HxiIES 23/24 Second Line Beach Kohoku-ku Bable: HEWPACK, Auckland Hewiett Packard Sauth Africa NOT SHOWN PLEASE
Cable: HEWPARD Sydney Cable: SCHMIDTCO Hong Kong padras 600 001 Yokohama 222 NIGERIA Ity Lt CONTACT:
. INDIA Tel: 23954 Tel: 045-432-1504 ctroni f wstle Hi

Hewlett-Packard Australia X The Electronics Instrumenta- Breecastle House Hewlett-Packard $.A.

Ply. L1d 8lue Star Ltd. . Telex: 382-3204 YHP YOK tions Lio, (TEIL) Bree Street Meditarranean and Middle

&7 Ghurchill Road
Frospect 5082

Seuth Australia

Tel: 44 8151

Cable: HEWPARD Adelaide

Hewlett-Packard Australia
Pty Ltd.

Casahlanca Buildings

195 Adclaide Terrace

Perth, W.A. 6000

Tel: 25-6800

Cabile: HEWPARD Perth

Hewlett-Packard Australia
Py, Lid.
10 Woolley Street
F.0. Box 191
Dlckson A.C.T. 2602
Tel: 49.3194
Catle: HEWPARD Carberra ACT

Hewleit-Packard Austoalia
Pty. Ltd.

2nd Floor, 4% Gregary Terrace
Brisbane, Queensland, 4000
Tel: 29 1544

CEYLON

Unjted Electricals Lid.
P.O. Box BR1

60. Park St

Calembo 2

Tel: 26698

Cable: HOTPOIRT Colombo

Hasturi Buildings
Jamshedii Tata Rd.
Bombay 400 020
Tel: 28 50 21
Telex. 3751

Cable: BLUEFROST

Blue Star Lid

Sahas

11472 ¥Ir Savarkar Marg
Prabhadevi

Bgmbay 400 025

Tel: 45 78 87

Telex: 4093

Cable: FROSTELUE

Blue Star Lid.
8and Box House
Prabhadevi
Bombay 400 025
Tel: 45 73 0L
Teiex: 3751
Cahle: BLUESTAR

Blue Star Lid.
L4440 Civil Lines
Kampur 208 001
Tel: 6 88 82
Cable: BLUESTAR

Blue Star, Ltd

7 Hare Street
PO Hox 508
Calcutta 700 COL
Tel- 23-0131
Telex: 655
Cable: BLUESTAR

Blug Star, L.
Mathraj Mansians
Znd Floor Bistupur
lamshedpur 831 001
Tel: 38 04

Cable: BLUESTAR
Telex: 240

INDONESIA

Bah Bolon Trading Coy. N.V.
Djalah Merdeka 29
Bandung

Tel: 4915; 51560

Cable: [LMU

Telex: 08-809

IRAN

Muiti Carp International Ltd.
Avwenue Soraya 130

P.C. Box 1212

!R-Teheran

Tei: 83 10 35.39

Canle; MULTICORP Tehran
Telex: 2893 MCITH

ISRAEL

Electronics & Engineering
Blv. of Motorola Israel Lid.

17 Aminadav Street

Tel-Aviv

Tel: 36941 (3 lines}

Cable BASTEL Tel-Ax

Telex: 33569

Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg.

Rm. 603 3,

2:.Chome

1ZUKIT-GHO,

Mite, 310

Tel- 0292-25-7470

KENYA
Henya Kinetics

KOREA

Amerizan Tradirg Company
Korea,

I.P.0. Box 1103

Dae kyung Bldg . 8th Floar

107 Sejong-Re,

Changro-Ku, Seoul

Tel: {4 1i 73.8924-7

Cable: AMTRACO Seou!

LEBANON

Constantin E. Maeridis

P.0. Box 7213

RL-Beirut

Tei: 220846

Cabie: ELECTRONUCLEAR Eeirut

MALAYSIA
MECOMB Mal

Petaling Jaya, Selangor
Cable: MECCMB Kuala Lumour

144 fgege Motor Rd., Mushin
P.0. Box 6645

Lagos

Cable: THETEIL Lagos

The Electronics Instrumenta-
tions Lid. (TEIL}

16th Floor Cocoa House

P.M.B. 5502

Ihagan

Tel: 22325

Cable: THETEIL tbadan

PAKISTAN

Mushko & Company, tid.
Oosman Chambers
Abduitah Harpon Rpad
Karachf 3

Tel: §11027, 512927

Gable: COOPERATOR Karach]

Mushka & Company, Ltd
38B, Satelite Town
Rawalpindi
Tel 924
sle: FEMUS

PHILIPPINES

Elactrgmes, Inc

Gth Floor, Amalgamated
Jevelopment Corp. Bldg

Aya'a Avenue, Makati, Rizal

C.C.P.C. Box 1028

Makati, Rizal

Tel: 86-18-87, 87-76-77,
87-85-88, 87.18.45, 83.01-71,
83.81.12, 83.82.12

Caile: ELEMEX Manila

Cape Town

Tet: 2.6941,/2/3

Cable: HEWPACK Cape Town
Telex: 0006 CT

Hewlett Packard Sauth Africa
(Pty.), Lid.

641 Ridge Road, Durban

P.0, Box 99

Qverpart, Natal

Tel: 8-6102

Telex: 567954

Cable: HEWPACK

TAIWAN

Hewlett Packard Taiwan
38 Chung Shiao West Road
Sec. 1

Overseas Insurance
Corp. Bldg. 7th Floor
Taipel

Tei: 389180,1,2, 375121,
Ext. 740745

Teiex: TP824 HEWPACK
Cable: HEWPACK Taipei

THAILAND

Suris

Bangkok

Te’- 37936, 31300, 31307,
37540

Gatle: UNIMESA Bangkok

East Qperations

35, Kolokatroni Street—
Platia Kefallariqu
CR-Kifissia—Rthens
Cable; HEWPACKSA Athens
Telex: 21-6588

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett-Packard

Export Trade Company
3200 Hillview Ave.

Palo Alto, Califarnia 34304
el: {415} 493-1501

TWX: 910-373-1267

Cahle: HEWPACK Palo Afto
Telex: 034-8300, 034-8493

E 4/74

ERROR MESSAGES

Message Meaning

ERROR 90 Mass Memory power OFF
Controller power OFF
Mass Memory drive fault or drive not ready
Specified UNIT does not exist
Check word or address error
Hardware write protect {(write not permitted)}

ERROR 91 File name or protection code greater than six
characters
File name or protection code of zero length

ERROR 92 Protected file accessed in FILES statement
Incorrect protection code
Protection code is not given for protected file
Protection code is given for an unprotected file
File already protected

ERROR 93 Syntax not valid

ERROR 94 File not found
File number reference not valid
Record number reference not valid
Unit number not valid
File not assigned

ERROR 95 Available storage space exceeded
Awvailability table full
Directory full

ERROR 96 File size not valid
Null program

ERROR 97 File already exists

ERROR 98 Improper file type
Improper precision data type
Numeric overflow on data type conversion

ERROR 99 End of file marker reached
End of record marker reached

K2

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

