
HEWLElT-PACKARD

HP-IL Application Note

Firmware Design
for HP-IL Devices

1

Introduction

One of the problems you may encounter in executing an HP-IL interface design is the difficulty of
translating the state diagrams, which are the official definition of the HP-IL protocol, into correct code
for the microprocessor you are using. While the state diagrams are a very complete and concise way of
specifying the protocol, this type of representation is not generally familiar to firmware designers.
Furthermore, the HP-IL integrated circuit is fairly complex itself, and determining what parts of the
protocol are handled automatically and what parts need to be taken care of in firmware is not always
obvious. .

The purpose of this application note is to assist the firmware designer by providing a detailed template for
the HP-IL routine in the form of pseudo-code which is easy to understand and can be converted to
microprocessor-specific code with a minimum of effort. If the template is accurately reproduced in the
firmware, a correct implementation of HP-IL is virtually assured. In addition, the performance of the
interface should also be relatively good since the template makes maximum use of the automatic features
of the HP-IL integrated circuit.

To derive the full benefit of this application note, it is recommended that you have a basic familiarity with
HP-IL protocol and the operation of the HP-IL integrated circuit as described in "The Hp·IL Interface
Specification" (82166·90017) and "The HP·IL Integrated Circuit User's Manual" (82166·90016). The
small book, "The Hp·IL System: An Introductory Guide to the Hewlett-Packard Interface Loop"
(92233A), is a good place to start if you are not familiar with Hp·IL. Clearly, you will also need a detailed
understanding of your device and your particular microprocessor.

Characteristics of The HP-IL Device

The Hp·IL routine in your device will depend heavily on the features you want the device to have from
the point of view of the interface. A device which implements all possible features of Hp·IL would have
rather complex firmware and many of those features would be used only rarely or not at all. The set of
protocol features in the template described in this application note was selected to handle the needs of the
large majority of devices while maintaining clarity and compactness of the resulting code. A few hundred
bytes of microprocessor machine code are all that is required to implement the HP-IL routine template as
described in this application note.

Controller capability is not implemented by the template described here. Most designers are interested in
connecting a device to an already existing controller via HP-IL, and consequently only need the talker and
listener functions handled by this routine. The controller functions would substantially complicate the
firmware as well, and obscure the important interactions between the HP-IL chip and the microprocessor.

All of the features in the talker function are supported, including data. status, device (model number) 10,
and accessory (capability) 10. Other capabilities supported are basic service request, basic remote/local,
basic auto address, power down, parallel poll, device clear and trigger, and device-dependent commands.
The standard designation of this device as described in appendix A of "The HP-IL Interface Specifica'
tion" would be as follows: CO; Tl,2,3,4; Ll; SRI; RLI; AAI; PDl; PPl; DC2; DTl; DDI.

2

Conceptually, the device hardware consists of three parts: the device-specific parts, the microprocessor,
and the HP-IL chip with its associa~d components_ The microprocessor and its ROM contain the control
program for both the device and the HP-IL interface. In general, your device routine will treat the HP-IL
routine as a"black box", communicating with it only through a few carefully-defined flags and variables.
The internal design of the HP-iL routine is presented here in great detail, of course, so that you can
convert it to correct code for your particular microprocessor without having to do that design yourself.

Overview of The Firmware

At the highest level, the firmware program consists of little more than a simple loop as shown in Listing 1.

This is a polled approach; interrupts are not used in the microprocessor. Conversion to an interrupt­
driven scheme will be discussed briefly at the end of this note. When the power is turned on, there are two
initialization routines that are executed: one for the device-specific functions and one for the HP-IL rou­
tine. Then the program simply calls the device routine and the HP-IL routine repeatedly, checking the
power-on flag each time around the loop. When the power-on signal becomes false, the program exits the
loop and executes two shut-down routines, one for the device-specific functions and one for the HP-IL
routine. Many devices will not ne.td to sepse the state of a power-on' flag or shut down in the orderly
manner indicated here. These devices can simply eliminate the loop exit test and the two power-off
routines.

The device routine takes care of all the functions of the device except for I/O via HP-IL. 'The HP-IL
routine handles all interaction with the HP-IL integrated circuit (except power-on and power-off). The
interaction and communication between these two routines' i~ discussed in detail in the following section. ,

The subroutine structure shown here is not really necessary, provided the program flow is not modified.
For example, there might actually be only one power-on routine, coded in-line, which performs the func­
tions of both power-on routines shown here. This hierarchy and structure make the pseudo-code easier to
understand.

Listing 1: Top-level Firmware Structure

CALL device.power-on.routine

CAll hp-il.power-on.routine
DO

{ CALL device. routine

{ CALL hp-il.routine

UNTIL power-on.flag - 0
CALL hp-il.power-off.routine
CALL device.power-off.routine
END

The coding conventions used in this note will generally be similar to PASCAL without worrying about
details. Notational peculiarities will be clarified in the text. High-level language constructs which are not
easily converted to simple machine code are avoided.

3

Communication With The HP-IL Routine

This section describes in detail the flags, variables, buffers, and constants that provide the interface be­
tween the device routine and the HP-IL routine. In addition, certain capabilities are provided by small
device-specific subroutines which are conceptually part of the device routine but are called by the HP-IL
routine. Each of these elements will be discussed in the following text and table 1. The communication
provided is very complete within the constraints of the device characteristics mentioned previously. Of
course, not all of these elements will be needed by all devices.

There are three different flags which indicate critical HP-IL interface states to the device roqtine: the
listener flag, the talker flag, and the remote flag. These are set and cleared only by the HP-IL routine;
they must never be modified by the device routine. The listener and remote flags can only take on values
of one or zero, representing active or idle. The talker flag can take on several values since there are
multiple states which must be represented. Zero represents the talker idle state, one represents the talker
addressed state, two is talker active (data), and three is anyone of serial poll (status), device ID, or
accessory ID active states. The device routine may need to read these flags for various reasons. For exam­
ple, the remote flag might be used to change the interpretation of the input from data to commands, or
perhaps to disable the effects of manual controls on the device. Note that the remote flag is equivalent to
the remote state (REMS) in the HP-IL remote/local interface function, not the remote active state
(RACS).

There are two flags which allow the device routine to signal a need for attention to the HP-IL controller.
These flags are set only by the device routine. The service request flag can be set to one to indicate a need
for ser.-vice. The HP-IL routine reads the state 'of this flag so that it can set the proper bit in certain
frames on the loop. The service request flag may be reset to its normal value of zero either by the device
routine or by the HP-IL routine. The parallel poll flag operates similarly except that HP-IL protocol does
not allow it to be reset by the HP-IL routine. When a device condition occurs which requires a service
request or parallel poll response, the device routine sets the appropriate flag to one. When the condition is
satisfied, the device routine returns the flag to a zero value. A device which does not implement one or
both of these functions would simply not use the corresponding flag.

The input buffer is an array of bytes which temporarily holds the data received from HP-IL until the
device routine can process it. Likewise, the output buffer holds data that is in the process of being sent
through the HP-IL routine to the loop. Both of the buffers operate in a first-in-first-out (FIFO) fashion.
Since there are a number of ways to implement a FIFO buffer in firmware, the details of the implementa­
tion will not be specified here. You will need to determine how best to accomplish this for your particular
microprocessor. The pseudo-code in this application note will simply indicate the actions of reading or
writing these buffers, as well as checking whether or not they are empty or full. The size of the buffers will
not be specified, since this will also be very dependent on the device requirements as well as available
memory.

There are three other byte arrays which provide the HP-IL routine with the status, device ID, and acces­
sory ID of the device. The two ID arrays are constants; they are set when the firmware is compiled and
not modified by either the device routine or the HP-IL routine. The status byte array will contain either
standard HP-IL status codes or device-dependent status bits, or both, and will need to be set to the
correct values by the device routine. The HP-IL routine will not modify the status values but will simply
send them on the loop at the proper time.

4

Mnemonic

listener. flag
device routine: R
HP-IL routine: RW

talker. flag
device routine: R
HP-IL routine: RW

remote.enable.flag
device routine: N
HP-IL routine: RW .

remote. flag
device routine: R
HP-IL routine: RW

parallel.poll.flag
device routine: RW
HP-IL routine: R

service.requestflag
device routine: RW
HP-IL routine: RW

input. buffer
device routine: R
HP·IL routine: W

data.out.buffer
device routine: W
HP-IL routine: R

status-id .out. buffer
device routine: N
Hp·IL routine: RW

I
Table 1: Links to the HP-IL Routine

Description

This flag indicates whether or not the device may receive data from the loop. The
device routine may read this flag. but must not modify it. A value of zero indicates
the idle state (LIDS); a value of one indicates the active state (LACS). While in the
active state. the HP-IL routine places received data bytes in the input buffer.

This flag indicates whether or not the device may send data to the loop. The de­
vice routine may read this flag. but must not modify it. A value of zero indicates
the idle state (TIDS). one is the addressed state (TAOS). two is the active state
(TACS). and three is anyone of the serial poll (SPAS). device 10 (DIAS). or acces­
sory 10 (AlAS) states. While in the active state. the HP-IL routine will remove bytes
placed in the output buffer by the device routine and transmit them on the loop.
The other states are handled automatically without intervention from the device
routine.

This flag is used internally in the HP-IL routine and will not be needed by the de­
vice routine. A value of one indicates that the REN message has been received. A
value of zero indicates the NRE message has been received. When this flag is one.
the remote flag can change state; when this flag is zero. the remote flag is always
zero.

This flag indicates the remote control or local control state of the device. A value
of zero indicates the local state (LOCS) and a value of one indicates the remote
state (REMS). The device routine may read this flag. but must not modify it. Inter­
pretation of this flag is device-dependent. The GTL command will cause this flag to
be zero. as will a zero remote enable flag.

The device routine may set or clear this flag depending on whether it needs to
respond to a parallel poll request from the HP-IL controller. A value of zero causes
a negative response and a value of one causes a positive response. The Hp·IL
routine reads this flag. but does not modify it.

The device routine may set or clear this flag depending on whether it needs to
send a service request to the HP-IL controlier. A value of zero causes no request
and a value of one causes a request to be sent. The device routine should set this
flag to zero when the reason for requesting service is satisfied. The HP-IL routine
will set it to zero when a serial poll (status) request is received. as the interface
function state diagram specifies.

This is an array of bytes which operates in a first-in-first-out (FIFO) manner. Data
from the loop for this device is placed here by the HP-IL routine. The device rou­
tine will read this data and use it as appropriate.

This is an array of bytes which operates in a first-in-first-out (FIFO) manner. Data
from the device to be sent on the loop is placed here by the device routine. The
HP-IL routine removes this data and transmits it on the loop when in the talker
active state.

This is an array of bytes which operates in a first-in-first-out (FIFO) manner. This
buffer holds the status. device 10. and accessory 10 bytes as they are being
transmitted. The device routine does not use this buffer.

Mnemonic

device.status
device routine: RW
HP·IL routine: R

device.id
device routine: N
HP·IL routine: R

accessory. id
device routine: N
HP·IL routine: R

default. address. byte
device routine: N
Hp·IL routine: R

ddl.routine

ddt.routine

input.byte
device routine: R
HP·IL routine: RW

interrupt.byte
device routine: N
HP·IL routine: RW

output. byte
device routine: N
Hp·IL routine: RW

device.clear.routine

I
Table 1: Links to the Hp·IL Routine (continued)

Description

The status of the device may consist of coded message bytes, individual flag bits
within bytes, or both. Its length and content are device-dependent. The device rou·
tine will periodically update the status as appropriate, and the Hp·IL routine will
read and transmit this data to the loop when requested by the loop controller. Fur·
ther information can be found in the HP·IL interface specification.

This constant is set when the firmware is compiled since there is no need.to ever
modify it. It usually contains the device manufacturer code and model number in
ASCII, followed by the carriage return and line feed codes. The HP·IL routine
sends the device 10 on the loop when requested by the loop controller.

This constant is set when the firmware is compiled since there is no need to ever
modify it. It usually contains a one-byte code indicating the type of device. The
HP·IL routine sends the accessory 10 on the loop when requested by the loop
controller. Further information can be found in the Hp·IL interface specification.

This constant defines the address at which the device will respond after an AAU
message is received. The device routine will not use this value. At power·up, the
address register is loaded with the value 31 (an illegal address) and will not reo
spond. When AAU is received, the device may choose to respond to some default
address rather than remain unconfigured.

This subroutine executes the device-dependent listener commands that the device
implements. It is called by the HP·IL routine when one of this class of commands is
received and the device is in the listener active state. The subroutine may use the
input.byte variable to determine which one of the 32 commands is to be executed.

This subroutine executes the device-dependent talker commands that the device
implements. It is called by the HP·IL routine when one of this class of commands is
received and the device is in the talker addressed state. The subroutine may use
the input. byte variable to determine which one of the 32 commands is to be
executed.

This variable holds the data bits of the most recently received frame. It has a range
of values from zero to 255. It can be read by the device routine, but must not be
modified by it.

This variable holds the interrupt bits from the integrated circuit as well as the con·
trol bits from the received frame. It is only used by the HP-IL routine for decoding.

This variable holds the data bits of the most recently transmitted byte. It is only
used by the HP·IL routine to do manual error-checking in those few instances that
this is needed.

This subroutine executes the device clear or selected device clear command. It is
called by the Hp·IL routine when one of these two commands is received from the
loop.

device. trigger. routine This subroutine executes the device trigger command. It is called by the HP·IL
routine when this command is received from the loop.

5

6

Certain commands are exeCuted differently depending on the device. Therefore the device routine must
supply a subroutine for each of these commands which can be called by the HP-IL routine when that
particular command is received. Device clear and device trigger are two of these. In addition, HP-IL pro­
vides for up to 32 device-dependent listener commands (DOL) and up to 32 device-dependent talker com­
mands (DDT). The number of the particular command will be held in an input byte which can be read by
the device-dependent command subroutine, but must not be modified. The subroutines do not need to
check the listener or talker flags since this is done automatically by the HP-IL routine before the sub­
routine is called. The DOL and DDT subroutines will decode the input byte and perform the functions
defined by that command or simply return if that particular command is not implemented by the device.

The communication interface between the device routine and the HP-IL routine is summarized in Table
1. R indicates read-only, W indicates write-only, RW indicates read-write, and N indicates not used. For
example, "device routine: R" means the device routine may read the variable, but must not modify it.
"HP-IL routine: RW" means the HP-IL routine may either read or write the variable as needed. Table 1
is a complete listing of all variables used by the HP-IL routine as well as all external calls made by it.

The HP-IL Power-on And Power-off Routines
II" •

The first thing you need to take care of after power is applied is the initialization of the device and the
HP-IL chip. You will need to be sure to initialize the device status and you probably will need to do some
other things as well to get the device ready to operate. This section will describe what is needed as far as
the HP-IL chip is concerned.

Usually the jRESET line on the HP-IL chip is tied to the line of the same name on the microprocessor.
When power is applied, this line is held low for a short time and then goes high. This is fairly important
to prevent anomalous operation of the chip before the microprocessor can reset it in the program. If this
signal has a slow rise time, however, you may experience some problems. The processor may be ready to
go sooner than the HP-IL chip if the processor's threshold is somewhat lower on this line. Buffering the
jRESET line should make the rise time fast enough that both chips will be ready when the power-on
routine is executed.

The first thing the power-on routine does is set the master clear bit in the HP-IL chip just for redun­
dancy. The next thing to do is turn on the chip oscillator. It is important to give the oscillator time to
stabilize before sending or receiving any HP-IL frames, so a wait is placed in the routine at this point.
Since master clear does not disable the parallel poll response or clear the address register, it is important
to do this also before the chip begins normal operation. After the state flags and the buffers are cleared,
the master clear bit is reset and the chip is ready to go.

Listing 2 contains the HP-IL power-on routine. The symbol := is used for the assignment operator. The
registers of the HP-IL chip are indicated by RO, R1, R2, etc. Binary numbers are shown in brackets; all
other numbers are decimal. For example, the statement, "RO :- [00000001]" indicates a write to reg­
ister zero with the binary value 00000001 (bit zero is set to one). The statement, "input.byte := R2"
means to read register two of the HP-IL chip and place the value in the input.byte variable.

....

Listing 2: The HP-IL Power-on Routine

RO :- [00000001]
R7 : == [00000000]
WAIT 1
R3 : = [00000000]
R4 := [00011111]
listener. flag : "'" 0
talker. flag : == 0
remote.flag : "'" 0
remote.enable.flag : == 0
CLEAR input.buffer
CLEAR data.out.buffer
CLEAR status-id.out.buffer
RO : = [00000000]
EXIT

set master clear
turn on oscillator
wait· 1 msec for oscillator
disable parallel poll
address unconfigured
clear state fiags

clear buffers

reset master clear

7

The power-off routine, if needed, is quite simple. Master clear is set and the oscillator is turned off. Listing 3 shows this routine. If the /RESET line goes low, these same operations take place automatically. The device may also require some operations at power-off, but you will have to write these as part of the device power-off routine.

Listing 3: The HP-IL Power-off Routine

RO : = [00000001]
R7 := [00000001]
EXIT

set master clear
turn off oscillator

Overview of The HP-IL Routine
Now that the preliminaries have been taken care of, it is time to look into the routine that actually handles the HP-IL chip and the messages on the loop. Because the routine is larger than the others, it has been broken down into two levels. This section will discuss the top level, and the succeeding sections will cover the various modules on the lower level.

When the HP-IL routine is first entered, the parallel poll and service request flags are checked and the chip registers are set accordingly. Then the interrupt register is read to determine if any action is required. This level simply executes one of four lower level routines to service each of the possible interrupt causes.

Please note that the order of execution of the bit tests is important. Indeed, this is generally true of the programs in this application note. You should duplicate them as closely as possible without any change in the statement order. In order to set or clear individual bits in registers, the AND and OR functions are used. These are the usual bit-by·hit logical operations that are used by microprocessors. Also, the symbol < > is the "not equals" relational operator. The left brace { is used to set off a block in the program that is executed or skipped as a unit.

It is very important not to set the SLRDY bit in register zero unless that is really what is intended. When this register is read, the bit in the SLRDY position is the RFCR bit. To prevent any possibility of a problem, the SLRDY position is always explicitly set to zero when register zero is written, except when the intent is specifically to set SLRDY.

8

Listing 4: The Top Level of the HP·IL Routine

IF parallel.poll.flag ,.. 1
THEN A3 :- A3 OA [00100000]
ELSE A3 :- A3 AND [11011"111]

IF service.request.flag =- 1

set PPST
clear PPST

THEN AO :- (AO AND (11111011)) OA [00001000] set SSRQ, but not SLRDY
ELSE AO :- (AO AND (11110011)) clear SSRQ, SLRDY

interrupt.byte :... A 1
IF (interrupt.byte AND (00010000)) < > 0

THEN

{ CALL ifer.routine
{ EXIT

IF (interrupt.byte AND (00000100)) < > 0
THEN

{ CALL frav.routine
{ EXIT

IF (interrupt.byte AND (00000010)) < > 0
THEN ".,

{ CALL frns.routine
{ EXIT

IF (interrupt.byte AND [00000001]) < > 0
THEN

{ CALL orav.routine
{ EXIT

EXIT

The Interface Clear Routine

Since the interface clear command only affects the state of the Hp·IL routine, there is no need for the
device routine to even be aware of this bit. The routine to handle the IFCR bit is given in Listing 5.

Listing 5: The IFCR Routine

listener.flag : = 0
talker. flag : - 0
input.byte : "" A2
AO :- (RO AND (00001000)) OR [00000110]

EXIT

The Frame Available Routine

clear.<; FRA V, FRNS
clear TA, LA; set SLRDY, CLIFCR; do not
change SSRQ

Listing 6 contains the frame available (FRAV) routine. This block of code takes care of data frames while
the device is an active listener, ready frames, and commands. Rather than list the binary code for each of
the HP-IL messages, the three-letter mnemonic will be used for clarity.

Listing 6: The FRAY Routine

IF (interrupt.byte AND (10000000)) ... 0
THEN
{ IF input.buffer FULL THEN EXIT
{ input.byte : =< R2

{ WRITEBYTE FROM input.byte TO input.buffer

{ R2 : = input.byte

{ EXIT
input. byte : =- R2
IF (interrupt.byte AND (00100000)) = 0

THEN
{ IF (input.byte AND (11100000)) ... LADO

{ THEN

{ {IF input.byte "" UNL
{ { THEN

data frame?
this section handles data frames

retransmit data frame

command frame?
this section handles commands

{ { {RO := RO AND [11101011] clear LA, SLRDY
{ { {listener.flag :... 0
{ {ELSE ..

{ { {IF (input.byte AND [00011111]) = (R4 AND (00011111))

{ { { THEN address match; set LA; clear TA, SLRDY
{ { { {RO :- (RO AND (11011011)) OR [00010000J
{ { { {talker.flag : = 0

{ { { {listener. flag : = 1
{ { { {IF remote.enable.flag := 1 THEN remote. flag : = 1
{ IF (input.byte AND (11100000)) = TADO

{ THEN
{ {IF (input.byte = UNT) OR «input.byte AND [00011111]) < > (R4 AND [00011111]))
{ { THEN UNT or no match; clear TA, SLRD Y
{ { {RO := RO AND [11011011]
{ { {talker.flag : == 0
{ { ELSE address match; set TA; clear LA, SLRD Y
{ { {RO :=- (RO AND [11101011]) OR [00100000]
{ { {listener. flag : = 0
{ { {talker. flag : = 1

{ IF (input.byte ... GET) AND (listener. flag = 1) THEN CALL device.trigger.routine

9

{ IF (input. byte ,.. DCL) OR «input.byte ... SOC) AND (listener. flag == 1» THEN CALL device.clear.routine
{ IF ((input.byte AND (11100000)) = DOLO) AND (Iistener.flag == 1) THEN CALL ddLroutine
{ IF ((input.byte AND [11100000)) = DDTO) AND (talker.flag 1) THEN CALL ddt.routine

{ IF input.byte - AAU THEN R4 : == default.address.byte
{ IF «input.byte AND (11110000)) = PPEOO) AND (listener. flag == 1)
{ set PPEN, PPPOL, P2-0; don't change PPST
{ THEN R3 :- (R3 AND (00100000)) OR input.byte OR [00010000]

{ IF (input.byte - PPU) OR «input.byte ,. PPD) AND (listener. flag = 1»
{ THEN R3 :== R3 AND [11101111] clear PPST
{ IF input.byte - REN THEN remote.enable.flag : = 1
{ IF input.byte - NRE
{ THEN
{ {remote.enable.flag : == 0

{ {remote.flag:" 0

10

Listing 6: The F'RAV Routine (continued)

{ IF (input.byte - GTL) AND (Iistener.flag - 1) THEN remote. flag:'" 0
{ IF input.byte - LPD
{ THEN wait for RFC; exit if anything else
{ {DO IF (R1 AND (00010110» <> 0 THEN EXIT
{ { UNTIL (RO AND [00000100]) < > 0
{ {RO := [00000100] set SLRDY to send RFC
{ {WAIT.1 wait .1 msec to send RFC
{ {power-on.flag:'" 0
{ {EXIT
{ RO :- RO OR [00000100] set SLRDY bit for RFC
{ EXIT

IF talker. flag =- 1
THEN
{ IF input.byte == SDA
{ THEN
{ {talker.flag : == 2
{ {EXIT
{ IF input.byte == SST
{ THEN
{ {CLEAR status-id.out.buffer

this section handles ready frames

{ {WRITEALL FROM device. status TO status-id.out.buffer
{ {service.request.ffag : = 0
{ {RO := RO AND [11110011]

. { {talker. flag: = 3
{ {EXIT
{ IF input.byte =- 501

{ THEN
{ {CLEAR sta,tus-id.out.buffer
{ {WRITEALL FROM device.id TO status-id.out.buffer
{ {talker. flag : == 3
{ {EXIT
{ IF input.byte = SAl
{ THEN
{ {CLEAR status-id.out.buffer
{ {WRITEALL FROM accessory.id TO status-id.out.buffer
{ {talker. flag : == 3
{ {EXIT

IF ((input.byte AND [11100000]) = AADO) AND ((R4 AND (11100000» ,.. 0) AND (input.byte < > IAA)
THEN if not configured, set address and configured
{ flag (high order bit in AAD frame)
{ R4 : == input.byte
{ input.byte : == input.byte + 1

R2 : = input.byte
EXIT

retransmit ready frame

11

In order to be in the FRAV routine and receive a data frame, the device must already be an active
listener. If it was not, the data frame would be automatically retransmitted and would not even be noticed
by the chip. If the input buffer is full when another data frame is received, the HP-IL routine merely
exits, holding the frame until the device routine removes one or more bytes from the input buffer. Then
the data frame is placed in the input buffer. If this happens, the HP-IL handshake is temporarily stopped.

The command and ready frame processing is fairly straightforward. Unrecognized frames are simply
retransmitted. The decoding of each command and ready frame is independent. If your device does not
implement a particular frame, you can usually just leave out the statements that refer to that message
without affecting other parts of the code.

Please note that the device routine can use registers five and six on the HP-IL chip as general purpose
storage. The three high-order bits of register four must not be used, however, since they are used by the
HP-IL routine to indicate whether or not the AAD message has been received.

The Frame Received Not As Sent Routine

In those situations where this device is the source of frames, the chip automatically error-checks the
returning frame to see that it is the same as the frame which was sent. If it is not, the FRNS interrupt bit
is set so that the microprocessor can take appropriate action. In most cases, the response is to simply
terminate the transmission with the ETE message and let the loop controller handle the problem. That is
how the HP-IL routine responds here.

The FRNS routine is shown in Listing 7. The routine sends either the ETO or the ETE message to
signal the end of the transmission and sets the talker flag back to the addressed state. The correct control
bits for a ready frame are written to register one before the frame is sent.

There is one case where error-checking must be performed by the firmware. Notice that there is no pro­
vision to process the NRD message in the FRAV routine. It is simply retransmitted. When the data
frame which was held by the device sending the NRD returns, the FRNS bit will be set. The chip cannot
do the checking since the transmit register has been modified by the NRD, and so this is done by the
FRNS routine. In this situation, an error has not actually occurred and the ETO message will be sent.
Also notice that the same thing would happen if the NRD were replaced by some other undefined ready
frame. While this is not strictly according to protocol, the situation will never happen if the other devices
are obeying protocol. .

Listing 7: The FRNS Routine

input. byte : =- R2
R1 :- [10100000]
IF input.byte =- output.byte

THEN R2 : "" ETO
ELSE R2 : = ETE

talker. flag : "" 1
EXIT

set RD Y control bits

12

The Output Register Available Routine

When the device is the active talker and a data byte which was transmitted returns and error-checks
correctly, the ORAV bit is set. This indicates that the HP-IL routine should send the next byte. The
ORAV routine is shown in Listing 8. If the HP-IL chip is not the talker, the ORAV bit will always be
set. The first line of this routine takes care of that situation.

Listing 8: The ORA V Routine

IF talker. flag < 2 THEN EXIT

R1 :- [00000000] set DAB control bits
IF talker. flag ... 2

THEN data transmission
{ IF data.out.buffer EMPTY

{ THEN

{ {R 1 :... [10100000] set RD Y control bits
{ {output.byte : =- ETO
{ {talker.flag :... 1

{ ELSE READBYTE FROM data.out.buffer TO output.byte

ELSE status, device ID, or accessory ID
{ IF status-id.out.buffer EMPTY

{ THEN

{ {R1:=- [10100000] set RDY control bits
{ {output.byte : = ETO
{ {talker. flag : = 1
{ ELSE READBYTE FROM status-id.out.buffer TO output.byte

R2 : ... output.byte send the frame
EXIT

A Word About Interrupts

While the simple polled approach will be adequate for most applications, some will have a need to be
interrupt·driven. This conversion of the routine is relatively easy, but there are a several details to watch
out for.

The logic in the chip causes the ORA V bit to stay set all the time whenever the TA and CA bits are clear.
This means that unless the interrupt is masked with the interrupt-enable bits in register one, the routine
will be locked in a tight loop continually interrupting whenever the device is not the talker. In the routine
described in this note, the enable bits are all cleared since the interrupt line is not used. In an interrupt­
driven routine, these bits would be set so that whenever anyone of the interrupt bits was set, an interrupt
would be generated by having the Hp·IL chip drive the /IRQ line low. Whenever theTA bit is set, all the
enable bits are set to one. When the TA bit is not set, however, the ORA V enable bit must be cleared so
continual interrupting does not occur.

A similar situation can arise if the device is the listener and the input buffer is full. Here the routine
purposely leaves the frame in register two without reading it, which leaves the FRAV bit set. In this case,
continual interrupts will occur unless this bit is masked until the device removes some of the bytes from
the input buffer and allows the HP-IL routine to continue normal operation. Since masking the FRAV
bit will not allow the interrupt to occur again, the device routine will have to explicitly call the HP-IL
routine when it has made room in the buffer.

European Heedquarters
150, Route du Nent-O' Avril

P.O. 80x, CH-1Z17 Meyrln 2
Geneva-Switzerland

82166-90024 English

Flijj'l HEWLETT
~~ PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

©Hewlett-Packard Company 1984

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Woklngham
Berkshire AG11 3LL

Printed in U.S.A. 3/84

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

