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Reader's Guide 
This guide for interfacing peripheral devices to 
Hewlett-Packard desktop computers is designed to 
provide additional information which may be helpful 
to the user who needs to interface his peripheral 
equipment to HP desktop computers and/or program 
the resultant system for interfacing applications. 

It is not intended to be a replacement for either the 
operating and programming manuals for the desktop 
computer, or the installation and service manuals 
for the individual interface cards. The maximum 
benefit can be obtained from this guide if these in­
dividual manuals are studied first. They provide the 
user with a detailed description of the individual 
operations available from the computer, and of the 
various functions provided by each interface card. 
At the same time they assume that the user has a 
certain level of knowledge about the programming 
techniques (software) and electronics (hardware) in­
volved in interfacing applications. 

The purpose of this interfacing gUide is twofold. 
First, it is intended to provide some introductory 
hardware and software concepts which are assum­
ed by the manuals, but with which the user may not 
have previous experience. The second purpose of 
the guide is to present an alternative approach to 
explaining the operations discussed in these 
manuals. For example, while the computer 
operating manual discusses the use and the detail­
ed syntax of those programming statements 
associated with interrupt operations, the gUide ex­
pands this information by discussing how interrupts 
are implemented, and when they should and should 
not be used. The guide also presents introductory 
information on such topics as the Hewlett-Packard 
Interface Bus (HP-IB) and serial I/O which is not 
available in the manuals for these interface cards. 
In addition, since this guide is not intended to 
describe a single computer, interface card, or 
peripheral device as a stand-alone piece of equip­
ment, it can discuss the use of all three elements as 
an integrated system. 

The guide is primarily oriented around the HP 9825A 
Desktop Computer and four of its associated inter­
face cards: the 98032A, 98033A, 98034A, and 
98036A. Example programs are presented in HPL, 
the high-level programming language of the 9825A. 
However, a majority of the concepts that are 
discussed apply to interfacing in general and the 
user should find a reading of this guide helpful in 
understanding the operations of other HP desktop 
computers and interface cards. For example, the 
HP System 45 Desktop Computer uses the same set 
of interface cards, and operates in a manner similar 
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to the 9825A with the HPL statements replaced by 
their BASIC language equivalents. 

Section I of this guide presents general background 
information useful for interfacing applications. For 
the engineer not experienced in software concepts, 
information is given on computer data representa­
tions and I/O (input! output) programming. For the 
programmer not experienced in hardware concepts, 
topics such as logic levels, TTL gates, latches, and 
flip-flops are discussed. The reader with a 
background in hardware and software can proceed 
directly to Section II. 

In Section II, the discussion is centered around pro­
gramming for interfacing applications. It is not the 
purpose of this section to teach the HPL program­
m ing language or to present the detailed syntax and 
restrictions of those programming statements 
related to I/O operations. This is the purpose of the 
operating manuals. Instead, the guide tries to give 
the user an appreciation for what takes place on the 
low level when the high level programming 
statements are executed. It is the philosophy of this 
guide that if the user understands these low level 
operations, many of the observations that appear to 
be strange from the high level will lose much of 
their mystery. Also, such an understanding should 
allow the reader to make more intelligent use of the 
power available in desktop computer systems. 

Section III concentrates on the individual interface 
cards themselves. Here again, an alternative ap­
proach to the installation and service manuals for 
these cards is taken, and a register-operational 
model of these interfaces is developed. All of the 
functions proVided by these cards are described in 
terms of sequences of register operations. 

The Appendices contain a collection of useful 
tables, diagrams, and timing information, along with 
a selected bibliography of references for additional 
reading. 



Section I 
General Background 

Concepts 
A. The Task of an Interface 

(an Overview) 
In discussing interfacing peripheral devices to a desktop 
computer, the first question that naturally arises is 
"What does an interface do, and why is it necessary?" 
In order to answer this question, it is helpful to under­
stand some of the characteristics of the computer and 
of the peripheral devices which it is to control. 

A computer by itself is not a very useful device. Its 
power comes from its ability to accept inputs from an 
outside source, modify these inputs according to a 
given set of rules (as expressed by the program in the 
computer), and output the results of these computa­
tions to some external device. Some typical input 
devices are punched card readers, tape readers, 
digitizers, and digital voltmeters. Output devices would 
include printers, tape punches, plotters, and graphic 
displays. In addition, there is a seemingly endless list of 
special-purpose sensing devices (input) and control 
equipment (output) designed to perform particular 
tasks. 

Ideally, every such device that was built would conform 
to some standard that specified all the characteristics of 
its I/O (Input/Output) connection, thus making all 
such devices "plug-to-plug" compatible. Unfortunately, 
no such standard exists. As a result, four major areas 
of incompatibility arise when one attempts to connect a 
peripheral device to a computing controller. It is the 
task of the interface to provide the necessary com­
patability in these areas. 

Mechanical Compatibility: 
The simplest requirement for the interface to meet is 
that of providing mechanical compatability. This con­
sists of merely supplying the appropriate connector at 
each end of the interface, and wiring the connectors in 
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such a way that each input line at one end of the inter­
face is connected to its corresponding output line at the 
other end (see Figure 1-1). If there were no other in­
compatabilities to overcome, this pair of cross-wired 
connectors would constitute the entire interface. In 
practice, things are rarely this simple. 

Electrical Compatibility: 

A second function of an interface is to match the elec­
trical characteristics (i.e., current and voltage levels, 
sometimes called logic levels) of the computer to those 
of its peripheral. Since HP desktop computers and their 
associated interfaces are designed using compatible 
electronic logic levels (called TTL), the logic-Ievel­
matcher functional block at the computer end of the 
generalized interface shown in Figure 1-1 is not 
necessary. Fortunately, many peripheral devices also 
use TTL levels in their circuitry. A discussion of TTL 
levels is contained in section ICl, along with informa­
tion on interfacing devices that use other voltage levels. 

Data Compatibility: 

Once an interface has made the computer and its 
peripheral device mechanically and electrically compati­
ble, they are capable of exchanging messages as elec­
trical signals over wires called data lines. But just as 
two humans who do not speak the same language 
need a translator, data messages between a computer 
and its peripheral may also require some sort of format 
translation. The computer with its versatile program­
ming capability, will usually perform this function. But 
in some cases, this task is given to the interface for 
reasons of speed. The BCD and the Bit Serial inter­
faces are examples of cases where the task of data 
reformatting is assigned to the interface. More discus­
sions of this data translation process are contained in 
the sections describing these interfaces. 

Timing Compatibility: 

Humans have the remarkable ability to talk and listen 
at the same time (or at least in rapid succession) 
without losing too much of the content of the conver­
sation. Our speaking and listening rates are also well 
matched. Computers and their peripheral devices, on 
the other hand, have such a wide range of operating 
speeds that a much more orderly mechanism is re­
quired for successful transfer of data messages. Pro­
viding timing compatability (sometimes called the hand­
shake function), along with other miscellaneous control 
operations, is the fourth major task of the interface. 

This overview of the various functions of an interface 
has been very general. The sections that follow give 
more detailed information on the way in which HP in­
terfaces implement each of these functions, along with 
other background information on HP desktop computer 
architecture, data formats, and other topics related to 
interfacing. 

• 

• 

• 

• 
• II 

.­
II 
• 
III 

--

.-
! 



IJ 
I 

IUf 

I 

I~ 
I 

B. Software 
1. Data Representations in the 

Computer 

Since the primary purpose of interfacing is to exchange 
data between a computing controller and its peripheral 
devices, or between two computers, it would be helpful 
to first look at how this data is represented within the 
computer. 

The memory of any digital computing device is made 
up of a large number of storage locations called bits. 
The number of bits that make up the memory can vary 
from a few hundred in a small hand-held calculator to 
several million in large computers. Each of these bits 
(bit is an abbreviation for binary digit) can be set to and 
will maintain one of two states. Depending on the 
meaning assigned to it, the bit may represent yes or 
no, on or off, one or zero, true or false, etc. A single 
bit by itself, however, is only capable of representing 
simple two-state information. 

To store more complex information, it is necessary to 
group several bits together into a logical package. For 
example, if we wish to represent the decimal digits 0 
through 9 in the computer memory, we could collect 
bits into groups of four, and use the following encoding 
scheme. 

0123456789 
0000 0001 0010 00110100 0101 0110 0111 1000 1001 

Figure 1-2 

Since each bit can take on two states (represented here 
by the symbols 0 and 1), a group of N bits can take on 
2N states. In this example, the groups of four bits are 
capable of representing 24 = 16 states. Since there are 
only 10 decimal digits to be represented, we do not 
use 6 of the possible 16 states. To represent 
alphabetical information, we would need to have a 
representation for each of the 26 letters of the English 
alphabet. This would require groups of 5 bits each, 
since 25 = 32. To represent both decimal digits and 
English letters (36 characters total) would require 6 bits. 

In the example above, we could just as easily have 
assigned the following encoding scheme: 0=0110, 
1=1011,2=0000,3=0011,4=0101, ek. And~deed, 
many computers use an internal representation of let­
ters, numbers, and symbols which will make the task of 
performing the desired operations on these items as 
simple as possible. This will vary from computer to 
computer depending on how it will manipulate this 
data. This variety of internal representations causes no 
problem until two computers or a computer and its 
peripheral need to exchange data. Then it becomes 
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necessary that both devices use the same data 
representation, or that one of the devices is capable of 
translating between the two representations. 

A third alternative is that each device may use 
whatever internal representation is most conve-
nient, but that all data will be input or output in some 
standard representation. There are several of these so­
called standard representations that are becoming 
popular and Widely accepted, depending on the par­
ticular job. For example, if only numeric data is to be 
represented, the encoding scheme first given in our ex­
ample is widely used. This scheme is called BCD or 
Binary Coded Decimal representation. One of the most 
general and Widely-used encoding schemes for data ex­
change is known as ASCII (pronounced as'ki), which is 
an acronym for American Standard Code for Informa­
tion Interchange. The ASCII code commonly uses 8-bit 
packages and has representations for numerical digits, 
upper-case, and lower-case letters, common typewriter 
symbols (#,$, %,&,<;";=,7, etc.), and special control 
characters (carriage return, line feed, etc.). A complete 
table of the ASCII encoding scheme is found in the 
Appendix. A large number of peripheral devices made 
by HP and other manufacturers use ASCII code for 
sending and receiving alpha-numeric data. 

HP desktop computers also use 8-bit ASCII code for 
the internal representation of alpha-numeric data (call­
ed strings). These 8-bit packages are so convenient for 
data representations that they have been given the 
name byte. Indeed, it is now quite common to 
measure memory sizes in terms of these 8-bit bytes. 

Although 8-bit bytes are ideal for storage and transfer 
of alpha-numeric strings of characters, they are not 
very well suited for internal representation of numeric 
values. It is difficult to perform arithmetic operations on 
numbers that are expressed as strings of ASCII sym­
bols. 

The simplest method for storing and manipulating 
numeric values uses the so-called binary representation. 
In this method, a group of N bits is used to represent a 
number, and each position in the group has a value 
which is a power of two. For example, to represent the 
number 98 as an 8-bit binary number, we note that 
when broken into powers of two, 98 = 64 + 32 + 2 
as shown in Figure 1-3. 

bit # 
value 
Eg., 98 = 

76543210 
128 64 32 16 8 4 2 1 
01100010 

Figure 1-3 

Since any number can be expressed as a sum of 
powers of two in only one way, this binary representa­
tion yields a unique pattern for each number. In 
numbering the bits, we have called the least significant 
bit "bit zero". It is also common to find the bits 
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numbered starting from one. Most of the manuals and 
documentation for HP desktop computers number the 
bits starting with zero, since this makes the value of the 
n-th bit position equal to 2n. But being aware that two 
conventions for numbering the bits are in common 
usage could help to avoid possible confusion. 

In the example given above, the largest number that 
can be represented by the 8-bits is 255. Thus, we say 
that the range of an 8-bit binary representation is zero 
to 255 (often written as [0,255]). If we need to repre­
sent wider ranges of values, we can use larger group­
ings of bits. Indeed, all HP desktop computers (except 
the 9815) use groups of 16 bits (called words) to repre­
sent binary data inside the machine. These binary 
values are used for such things as counters, limit values 
(as in saving the size of an array), and pointers to loca­
tions within the memory. 

One limitation of the binary system described, 
however, is that only positive integers are represented. 
Negative values can be easily incorporated into the 
system if we pick one bit (usually the highest one) to 
represent the sign of the number. For example, if we 
use an 8-bit byte and let bit 7 be the sign bit, using the 
convention that 0 is plus and 1 is minus, then 
00000101 would represent a +5 while 10000101 
would represent -5. This convention is called the 
"sign/magnitude" binary representation. It is simple to 
understand, but unfortunately it causes difficulties in 
computation. This is because the hardware processor 
that does arithmetic on these numbers must have a 
subtractor as well as an adder. This makes the pro­
cessor more costly and less efficient, since it must first 
decide (from the sign bits) whether an add or subtract 
must be done. 

An alternative representation for both positive and 
negative binary values is called the "two's complement 
form". In this form, positive values have the same form 
as in the sign/magnitude representation. Negative 
numbers, however, are formed by the following 
rule: complement the number (i.e., replace all ones 
with zeros and zeros with ones) and add one (ignoring 
any carry out of the highest bit). For example, +5 is 
still represented by 00000101. Minus 5 is gotton by 
complementing (11111010) and adding one 
(11111011). Thus, in an 8-bit, 2's-complement 
representation -5 = 11111011. Notice that if we apply 
the complement-and-add-one rule to the representation 
for -, we get back the representation for +5, so that 
the rule is symmetric. The advantage of 
2's-complement notation is that only an adder is re­
quired. For example, to calculate the value of 7-5, we 
rewrite it as 7 + (-5) = 00000111 + 11111011 = 
00000010 = 2. Thus we subtracted 5 from 7 using 
only a binary adder. 
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The table below gives an example of all values that can 
be represented by a 3-bit binary number in 
2's-complement form. 

-4 -3 -2 -1 0 1 2 3 
100 101 110 111 000 001 010 011 

Figure 1-4 

In general, an N-bit, 2's-complement form can repre­
sent all integers in the range [ -2N- 1, +2N- 1-1 J. 
For the 16-bit binary values that are used internally for 
counters and pointers, this range is [ -32768, 32767 J. 
If larger ranges of integers need to be represented, 
packages of larger number of bits could be used. Notice 
that the representations of values is not independent of 
the number of bits used in the representation. For ex­
ample, in the table above, 101 represents a -3 when 
using a 3-bit, 2's-complement format; but 101 
represents a +5 in a system using 4 or more bits. 

EXAMPLES 

1. Show that in 16-bit, 2's-complement form, the 
two decimal values +5000 and -5000 are 
represented by 0001001110001000 and 
1110110001111000 respectively. 

0001001110001000 = 8 + 128 + 256 + 512 
+ 4096 = 5000. 

To find the decimal equivalent of 
111 0 11 000 1111 000, first con vert to its 
positive equivalent by complementing the bits 
(yielding 0001001110000111) and add one 
to get 0001001110001000. Since this is the 
binary form of +5000 as found above, the 
original pattern represents -5000. 

2. Show that the binary numbers below have the 
equivalent decimal representations given. 

0101011011001110 = 22222 1010100100110010 = -2222 
0011000000111001 = 12345 1100111111000111 = -12345 
1111111111111111 = -1 1111111111110110 =-10 
1000000000000001 = -32767 1000000000000000 = -32768 

Notice that when the "complement and add one" 
operation is performed on the binary eqUivalent of 
-32768, the same binary pattern is re-generated. This 
is because there is no 16-bit, 2's-complement represen­
tation for a +32768. Thus, when using the rule of con­
verting between positive and negative binary values, a 
one in the sign bit and all other bits being zeros must 
be treated as a special case. 

We still have not solved the problem of representing 
non-integer values. In the decimal system we handle 
this by the use of a decimal point. For example, 

12.75 = 1x(10) + 2x(1) + 7x(1/l0) + 5x(l! 100). 
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numbered starting from one. Most of the manuals and 
documentation for HP desktop computers number the 
bits starting with zero, since this makes the value of the 
n-th bit position equal to 2n. But being aware that two 
conventions for numbering the bits are in common 
usage could help to avoid possible confusion. 

In the example given above, the largest number that 
can be represented by the 8-bits is 255. Thus, we say 
that the range of an 8-bit binary representation is zero 
to 255 (often written as [0,255]). If we need to repre­
sent wider ranges of values, we can use larger group­
ings of bits. Indeed, all HP desktop computers (except 
the 9815) use groups of 16 bits (called words) to repre­
sent binary data inside the machine. These binary 
values are used for such things as counters, limit values 
(as in saving the size of an array), and pointers to loca­
tions within the memory. 

One limitation of the binary system described, 
however, is that only positive integers are represented. 
Negative values can be easily incorporated into the 
system if we pick one bit (usually the highest one) to 
represent the sign of the number. For example, if we 
use an 8-bit byte and let bit 7 be the sign bit, using the 
convention that 0 is plus and 1 is minus, then 
00000101 would represent a +5 while 10000101 
would represent -5. This convention is called the 
"sign/magnitude" binary representation. It is simple to 
understand, but unfortunately it causes difficulties in 
computation. This is because the hardware processor 
that does arithmetic on these numbers must have a 
subtractor as well as an adder. This makes the pro­
cessor more costly and less efficient, since it must first 
decide (from the sign bits) whether an add or subtract 
must be done. 

An alternative representation for both positive and 
negative binary values is called the "two's complement 
form". In this form, positive values have the same form 
as in the sign/magnitude representation. Negative 
numbers, however, are formed by the folloWing 
rule: complement the number (i.e., replace all ones 
with zeros and zeros with ones) and add one (ignoring 
any carry out of the highest bit). For example, +5 is 
still represented by 00000101. Minus 5 is gotton by 
complementing (11111010) and adding one 
(11111011). Thus, in an 8-bit, 2's-complement 
representation -5 = 11111011. Notice that if we apply 
the complement-and-add-one rule to the representation 
for -, we get back the representation for +5, so that 
the rule is symmetric. The advantage of 
2's-complement notation is that only an adder is re­
quired. For example, to calculate the value of 7-5, we 
rewrite it as 7 + (-5) = 00000111 + 11111011 = 

00000010 = 2. Thus we subtracted 5 from 7 using 
only a binary adder. 
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The table below gives an example of all values that can 
be represented by a 3-bit binary number in 
2's-complement form. 

-4 -3 -2 -1 0 1 2 3 
100 101 110 111 000 001 010 011 

Figure 1-4 

In general, an N-bit, 2's-complement form can repre­
sent all integers in the range [ -2N- 1, +2N- 1-1 J. 
For the 16-bit binary values that are used internally for 
counters and pointers, this range is [ -32768, 32767 J. 
If larger ranges of integers need to be represented, 
packages of larger number of bits could be used. Notice 
that the representations of values is not independent of 
the number of bits used in the representation. For ex­
ample, in the table above, 101 represents a -3 when 
using a 3-bit, 2's-complement format; but 101 
represents a +5 in a system using 4 or more bits. 

EXAMPLES 

1. Show that in 16-bit, 2's-complement form, the 
two decimal values +5000 and -5000 are 
represented by 0001001110001000 and 
1110110001111000 respectively. 

0001001110001000 = 8 + 128 + 256 + 512 
+ 4096 = 5000. 

To find the decimal equivalent of 
1110110001111000, first convert to its 
positive equivalent by complementing the bits 
(yielding 0001001110000111) and add one 
to get 0001001110001000. Since this is the 
binary form of +5000 as found above, the 
original pattern represents -5000. 

2. Show that the binary numbers below have the 
equivalent decimal representations given. 

0101011011001110 = 22222 1010100100110010 = -2222 
0011000000111001 = 12345 1100111111000111 = -12345 
1111111111111111 = -1 1111111111110110 =-10 
1000000000000001 = -32767 1000000000000000 = -32768 

Notice that when the "complement and add one" 
operation is performed on the binary equivalent of 
-32768, the same binary pattern is re-generated. This 
is because there is no 16-bit, 2's-complement represen­
tation for a +32768. Thus, when using the rule of con­
verting between positive and negative binary values, a 
one in the sign bit and all other bits being zeros must 
be treated as a special case. 

We still have not solved the problem of representing 
non-integer values. In the decimal system we handle 
this by the use of a decimal point. For example, 

12.75 = 1x(10) + 2x(1) + 7x(1/l0) + 5x(l! 100). 
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We could represent this same number in binary by the 
use of a "binary point" as 

12.75 = 1100.11 = 1x(8) + 1x(4) + Ox(2) + Ox(l) 
+ lx(1/2) + lx(1/4) . 

In each system, there are some numbers that cannot be 
exactly represented in a finite number of places. For 
example, the decimal representation of 1/3 = 
0.33333··· requires an infinite number of threes to 
represent exactly. Similarly, the binary representation 
of 1/10 = 0.0001100110011··· cannot be represented 
exactly. Since most data presented to a computer from 
the real world is in decimal form (e. g., $235. 17), con­
version to binary form for internal storage and com­
putation often results in inaccuracy due to the lack of 
an exact representation. This inaccuracy is in addition 
to any roundoff errors introduced by the subsequent 
calculations performed on that value. 

To get around this deficiency, numbers are stored 
within HP desktop computers in a decimal format. The 
structure of this format is shown below. 

16 bit words 
exponentJ l± 

4 words or 01 02 03 04 
8 bytes 05 06 07 08 

09 010 011 012 

Figure 1-5 

Each value occupies four 16-bit words (8 bytes). Each 
digit uses four bits and is in BCO format, with four 
digits packed into one 16-bit word. The sign and expo­
nent of the number are encoded into the first word of 
the representation. Bit 0 is the sign of the value 
(O=plus, 1 =minus), while bits 15-6 represent the expo­
nent using a lO-bit, 2's-complement form. (Bits 5-1 are 
not used.) All calculations are done on this so-called 
"floating point" format, and the task of converting be­
tween this representation and a string of ASCII 
characters for I/O purposes is relatively straight for-
ward. 

EXAMPLES 

1. Calculate the four 16-bit words that are the in­
ternal representation of the following decimal 
values. 

(a) 2.71828182846? 

Answer: 0000000000000000 exponent=O, sign=+ 
0010011100011000 2 7 1 8 
0010 1000000 11000 2 8 1 8 
0010100001000110 2 846 

(b) -1234.56789? 

Answer: 0000000011000001 exponent=3, sign=-
0001001000110100 1 234 
0101011001111000 5 6 7 8 
1001000000000000 900 0 
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(c) -0.00123456789? 

Answer: 1111111101000001 exponent=-3, sign=-
1 234 0001001000110100 

0101011001111000 
1001000000000000 

5 6 7 8 
9 0 0 0 

2. Input/ Output Data 
Representa tions 

We just looked at data representations within HP 
desktop computers. The table below summarizes these 
representations. 

Data Type 

Strings 
Numeric 

Numeric 

Bits Used Representation 

8-bit bytes ASCII 
16-bit words 2's-complement binary 

{internal use only} 
64-bit registers Decimal floating-point 

(user program variables) 

Figure 1-6 

For I/O purposes, these internal representations must 
be converted into a format that can be understood by 
and is dependent upon the particular peripheral with 
which the computer is to communicate. Each 
peripheral can be categorized, for purposes of data 
transfer, by two characteristics: the number of bits re­
quired for each item of data transferred, and the format 
of those data bits (ASCII, binary, BCO, etc.). A small 
number of data types are sufficient to handle most 
peripheral devices, and HP desktop computers provide 
interfaces for each of these major categories. A detailed 
description of each of these interfaces is contained in 
later sections of this gUide; and here we will merely 
look at the types of data formats that each interface 
card supports. 

3. The Four Types of HP Interfaces 

98032A Bit Parallel Interface 

Because of its great versatility, this card is the general 
-purpose interface used with most standard HP 
peripherals and many special-purpose devices supplied 
by the user. It can accommodate data items of up to 
16-bits in parallel. Assume, as an example, that this in­
terface card is being used to connect the computer to a 
printer which uses the ASCII character set. Each 
character to be sent to the printer would be encoded 
using the 8-bit ASCII representation shown in Appen­
dix A. To send an entire message such as "The value 
of pi is 3.14159." to the printer, the characters would 
be sent one at a time in serial fashion to the printer. 
But the eight bits that represent each character would 
all be sent at once in parallel. That is, all eight bits 



would be presented to the printer at once, one on each 
of eight separate data lines. When all eight data lines 
are set to the proper pattern of ones and zeros to 
represent the character being sent, the printer is told 
that the data on the lines is now valid, the printer 
senses the pattern on those lines, and prints the ASCII 
character assigned to that particular pattern. When the 
printer indicates that it has completed the character just 
given to it, the computer then changes the data lines to 
represent the next character in the message and the cy­
cle repeats. This method of data transfer is sometimes 
called "bit-parallel, character-serial transmission". 

Notice that when using the ASCII code, only 8 of the 
16 data lines are used. Other peripheral devices which 
use codes other than ASCII might use only a few or all 
16 of the data lines to represent their data. It is also 
important to note that HP desktop computers only pro­
vide ASCII representations of I/O data automatically. 
That is, when high-level I/O statements (such as read 
and write) are used in a program, they generate and 
expect to receive data coded in the ASCII representa­
tion. If any other encoding scheme is used, it is up to 
the user's program to know the representation being 
used and to convert the bit patterns received into a 
form that can be used within the computer. 

Sometimes this is a simple task. For example, if a 
peripheral device supplied data in the form of 16-bit, 
2's-complement numbers, the program would read a 
16-bit value, convert it to internal floating point 
representation (see Section IB 1), and return the 
decimal equivalent of that value which would be a 
number in the range -32768 to +32767. Another 
device, however, might send only positive values using 
16-bit binary representation. That is, it does not use the 
2's-complement form, but rather all bits represent 
positive powers of two giving the 16-bit number a 
range of 0 to 65535. Since the rdb function only reads 
numbers in 16-bit, 2's-complement form, the following 
program segment would be required to do the 
necessary conversion. 

37: rdb (4) ~ A 
38: if A<0; 65536 + A ~ A 

98033A BCD Interface 

Data representations from input devices fall into three 
major categories. These are ASCII (directly supported 
by the read statement), binary values (obtained with 
the read binary function), and all other codes, which 
must be interpreted by the user's program. Of these 
other codes, one is in such common use that a special 
interface card has been developed to take the burden 
of data translation from the user's program. This code 
is called the BCD (Binary Coded Decimal) representa­
tion. It is typically used in measurement instruments 
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such as a digital voltmeter (DVM). For example, 
assume that we have a DVM that is measuring a 
voltage level of 12.735 millivolts. The output connector 
of the DVM would supply four data lines for each digit 
in the reading (see Figure 1-7). Each of these digits 
would be encoded using the 4-bit BCD representation 
shown in Figure 1-2. In addition, a few data bits 
(typically 3 or 4) would be used to represent the range 
that the DVM is set to (i.e., volts, kilovolts, milivolts, 
etc.). 

BCD INSTRUMENT 

0001 0010 0111 0011 0101 

RANGE 

Figure 1-7 

In using the 98032A Bit Parallel Interface to take a 
reading from this instrument, we would encounter two 
major problems. Since a 5 digit reading is represented 
by more than 16 bits, the DVM would need to deliver 
a reading in the form of two 16-bit packets. Our pro­
gram would have to break up these two 16-bit patterns 
four bits at a time and convert them to digits and a 
range multiplier for the value being read, and then 
combine these digits and the multiplier to form a 
number that represented the reading that was taken. 
This would be a complex and time consuming task for 
the program. 

Instead, this task is performed by the 98033A BCD in­
terface. This card accepts in parallel from the device up 
to eight 4-bit BCD digits and a 4-bit multiplier, and 
then converts this reading into a sequence of ASCII 
characters (in our example, "12.735E-3") that can be 
directly read by the computer's ASCII read statement. 

98036A SerialljO Interface 

A new data representation problem arises in the area of 
data communications. Strictly speaking, any exchange 
of data between a computer and its peripheral devices 
could be called data communications; but this term is 
usually reserved to mean the exchange of data be­
tween two computers (or between a computer and a 
terminal) that are located at some distance from one 
another. If both machines are in the same building, 
they are usually connected by long cables. If they are 
in different buildings (or different cities) telephone lines 
might be used to make the connection. in either case, 
the cost of the connection rises rapidly with the number 
of bits that are sent in parallel. Therefore, a scheme 
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has been devised that allows the exchanged informa­
tion to be sent over a single data line. 

Using this method, not only are the characters of the 
message sent in a serial fashion, but the bit patterns for 
each character are also sent serially, one bit aftter 
another along the single data line. This requires some 
rather sophisticated timing considerations which are 
handled by the interface card. This allows the program 
to treat the interface as a simple 8-bit parallel device. 
That is, the user writes his message to the interface as 
a sequence of 8-bit (usually ASCII) bytes, just as he 
would to the 98032A card. The Serial I/O interface 
then performs the task of converting each character to 
a bit-serial stream and sending it over the data com­
munications line. For input, the interface receives a se­
quence of bits for each character, assembles them into 
a parallel 8-bit byte, and delivers this byte to the com­
puter all at once. 

More information about the particular capabilites of the 
98036A card is contained in Section IIIE 1. 

98034A HP-IB Interface 

The task of interfacing a peripheral device to the com­
puter would be greatly simplified if the four areas of in­
terfacing incompatability discussed in Section IA could 
be overcome. That is, if a standard were developed 
that completely specified the mechanical, electrical, 
data, and timing characteristics of an I/O bus, then all 
computers and peripheral devices that followed this 
standard would be "plug-to-plug" compatible. 

Such a standard has been adopted by the Institute of 
Electrical and Electronic Engineers (IEEE 488-1975). 
This standard has become so popular that dozens of 
manufacturers are providing hundreds of devices which 
conform to its specifications and can be interfaced to 
one another by simply plugging them together. There is 
no special representation which must be used for data 
messages on this bus, although the vast majority of 
IEEE-488 devices have implemented ASCII as their en­
coding scheme. 

The 98034A HP-IB (Hewlett-Packard Interface Bus) 
card interfaces HP desktop computers to the IEEE-488 
bus. A more detailed description of the HP-IB is given 
in Section IIID 1. 

4. The Data Transfer Process 

Up to now, we have been concerned with how the 
various bit patterns on the data lines are to be inter­
preted. We have talked about sending and receiving 
sequences of characters, but have not mentioned how 
this process is accomplished. 
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The main difficulty involved is one of timing. If the 
speed of the computer and its peripheral are not exact­
ly matched, the faster device will somehow have to 
slow down the pace of its I/O operations so that it will 
not get ahead of the slower device. This is accomplish­
ed through a mechanism known as "handshake". The 
detailed description of the handshake process is 
discussed in the sections on the interface cards, and 
here only the concept of the handshake will be con­
sidered. 

Handshake for the output process (Figure 1-8) proceeds 
as follows. The first of a sequence of characters to be 
transmitted is placed on the data lines. When this 
operation is complete, the interface indicates that the 
data is valid by setting a special control line. When the 
peripheral detects that this control line is set, it raises 
another line called flag to indicate to the computer that 
it is momentarily going to go busy in order to process 
that character. It then takes the information from the 
data lines and processes it. This processing may involve 
printing a character, plotting a point, or whatever other 
function the peripheral device is designed to perform. 
Some devices do not operate from single characters, 
but wait until an entire sequence of characters is receiv­
ed to perform their actions. For example, the 9866A/B 
Thermal Line Printer contains a block of read/write 
memory called a buffer, into which characters to be 
printed are placed. For this device, the processing of 
most characters consists of merely placing that 
character in the buffer. Then when it receives a line­
feed character (ASCII 10), it prints an entire line con­
tained in its buffer at one time. In any case, when the 
processing of that character is complete, the peripheral 
lowers the flag line to indicate that it is again ready. 
The computer then places the next character on the 
data lines and the entire handshake process repeats 
again. 

DATA LINES (8 OR 16) 

1/0 "This is an output"' 

COMPUTER 
CONTROL . Data IS available" 

PERIPHERAL 

FLAG' OK I got It" 

Figure 1-8. Data Output Handshake 

The sequence of events for input (Figure 1-9) is similar 
to that for output. On a separate I/O indicator line, the 
computer specifies that an input operation is to be per­
formed, and then sets the control line. This time when 
the peripheral sees control go set, since the I/O line is 
indicating input' , it knows that it is to supply the data. 
The peripheral first raises the flag line to indicate that it 
is busy, and goes to gather the requested data. This 
may involve taking a sample for a DVM, advancing a 
paper tape, digitizing an X,Y coordinate, or doing 
whatever the device was designed to do in order to 
'Throughout this guide. the terms input and output are always used with the 
computer as the point of reference. Thus. input means from the peripheral to 
the computer. 



gather data. This data is then placed on the data lines 
by the peripheral and the flag line lowered to indicate 
that the data is now ready. The computer will then 
read the data and the handshake on one input 
character is complete. If a complete reading consists of 
several characters, the computer will again set the con­
trol line when it is ready for the next character and the 
process repeats. 

DATA LINES (8 OR 16) 

1/0 "This is an inpur' 
COMPUTER PERIPHERAL 

CONTROL "Give me more da1a" . 
FLAG "OK. Da1a IS on the lines" 

Figure 1-9. Data Input Handshake 

It is important to note that in both the input and the 
output processes, the computer initiates the handshake 
procedure by setting the appropriate state of the I/O 
line and then setting control. Under no circumstances 
does the peripheral ever initiate a data transfer opera­
tion. This concept will be especially important when we 
discuss the interrupt process. Interrupts are always 
generated by the peripheral in response to a request 
from the computer, and not at the discretion of the 
peripheral device. 

Finally, it should be mentioned that the concept of a 
handshake is a very general one and not limited to the 
description given here. Other schemes are possible and 
commonly used. This particular version of a three-wire 
handshake (i/O, control, flag) is adopted by the HP 
98032A interface card and the one that should be 
understood when connecting this interface to peripheral 
devices. 

Most data and control lines on the HP interface cards 
use negative-true logic. It is easy to tell whether 
negative-true or positive-true logic is being used for a 
particular line from the schematic diagram of the inter­
face card, which is found at the back of the installation 
and service manual for that interface. If the name of 
the line (e.g., PFLG) appears with a bar drawn over 
the top of it, that line is using negative-true logic; 
otherwise it is using positive-true logic. For example, 
the 98032A interface has two general-purpose control 
lines called CTL0 and CTL 1. The state of CTL0 is set 
from the program by use of the write control statement 
(wtc) whose syntax is: 

wtc <select code>, <con trol byte>. 

The least Significant bit of the control byte is used to set 
CTL0. Since on the schematic diagram for this card, 
that line is labeled with a bar over it, it is using 
negative-true logic. Thus, the statement wtc 6,0 will set 
the CTL0 line high, and wtc 6,1 will set it low. 
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c. Hardware 
1. Logic Levels and TTL 

Implementations 

In previous sections we have used such phrases as put­
ting data on the lines, setting the control line, and mak­
ing the flag line go busy, without really saying how 
these things are electrically implemented by the inter­
face. But when it comes time to wire the interface to a 
non-standard peripheral device, it is helpful to under­
stand how the electronic circuitry of the interface card 
relates to the operational concepts we have been 
discussing. In this section we will discuss some of the 
electronic concepts necessary to understand that cir­
cuitry. 

The two main electrical concepts involved are those of 
voltage and current. For our purposes here, it may be 
helpful to explain these concepts in terms of an 
analogy with a forced air heating system found in many 
houses. In this system, after the air has been heated, a 
blower is used to create a pressure that is higher than 
the surrounding atmospheric pressure in the rest of the 
house. This blower is connected through a series of air 
ducts to the outlet registers placed throughout the 
various rooms. Because the pressure at the blower is 
higher, the heated air is forced to flow through the 
ductwork and out the registers. The pressure at any 
point in the system is always at a level somewhere be­
tween the maximum pressure procluced by the blower 
and the atmospheric pressure at the outlets, and is 
determined by how much resistance the air has en­
countered from the ductwork along its path from the 
blower to the point which we are measuring. More air 
will travel along those paths in the heating system that 
present a lower resistance to the air flow. Indeed, the 
homeowner can vary the resistance in various branches 
by opening and closing louvers at the registers, 
resulting in redistributing the airflow throughout the 
house. 

In an electrical system, the voltage at any point in the 
system can be thought of as analogous to the pressure 
in our heating network, and the current as analogous 
to the air flow. Just as the blower created air pressures 
above the normal atmospheric level, a battery or an ac­
tive power supply is used to obtain voltage levels above 
some background reference point usually referred to as 
ground level or simply a ground. By allowing current to 
flow from the power supply to ground through ap­
propriately chosen electrical resistors, we can obtain 
any desired voltage levels in this range to be used for 
whatever purposes we require. 

An example of this is shown in Figure 1-10. At the top 
of the circuit we connect a 5 volt power supply, and 
the triangle at the bottom is a common symbol used to 
represent a ground point (i.e., a voltage level of zero). 
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R1 =3K 

= output 

R2 = 6.2K 

Figure 1-10 

Current flows through the two resistors (Rl and R2) 
establishing some intermediate voltage level at the out­
put. the formula for calculating this output voltage is 
given by 

v = V- f. R2 ) 
out 10 . \ Rl + R2 

Using the values of Vin = 5 volts, Rl = 3K (resistances 
are measured in units called ohms, and K is an ab­
breviation for kilo-ohms = 1000 ohms), and R2 = 
6.2K, we obtain a value for the output voltage of ap­
proximately 3.4 volts. If we now connect the output 
point to ground through a switch, by opening and clos­
ing this switch we can change the output voltage from 
3.4V to OV. That is, when the switch is closed, the 
resistance in this path is almost zero (only the small 
resistance of the wire itself) and practically no current 
flows through the R2 path. Thus the entire 5 volts is 
dropped by R 1 leaving the voltage at the output point 
zero. 

If we now run a wire from the output point to someone 
who has a voltage measuring device like a voltmeter, 
as we open and close the switch he will see his 
voltmeter register 3.4V and OV alternately. And if we 
now agree on some meaning to be assigned to the high 
and low voltage levels, we can use this electrical circuit 
to transmit information. 

For example, the flag line of the interface card uses the 
high voltage level to indicate busy, and the low level 
to indicate ready. And rather than the mechanical 
switch, the interfaces employ electronic devices called 
gates to switch between high and low levels at electronic 
speeds. These gates will be discussed later in this 
section. 

The signaling scheme described would work just as well 
using other values for the power supply voltage, 
resistors, and output voltage. The example values 
given were chosen because they correspond to the so­
called TTL (Transistor Transistor Logic) levels that are 
in common usage in computer hardware. Prepackaged 
integrated circuits are readily available which are used 
in generating and detecting high and low voltage levels, 
and in performing certain "logic" operations on these 
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signals as will be discussed later. These chips or IC's as 
they are called, are made up of a large number of tran­
sistors and other electronic elements reduced to a very 
small size and sealed in convenient packages. It is the 
electrical properties of these transistors that dictate the 
high and low voltage levels that must be used. In 
general, it is very difficult and expensive to provide cir­
cuits that will provide and detect exact voltage levels. 
Therefore, TTL devices allow a range of voltages given 
by the table in Figure I-lOa. 

TTL High Level 
Indeterminate 
TTL Low Level 

3 volts to 5 volts 
0.7 volts to 3 volts 
o volts to 0.7 volts 

Figure I-lOa 

The exact values of the crossover voltages vary with 
the type of IC used and with the manufacturer, but are 
typically within a few tenths of a volt of the levels 
given. Output voltages in the indeterminate range may 
result in the detecting IC senSing a high or a low, and 
should be avoided when designing TTL circuits. 

Because the interface is implemented in terms of high 
and low voltage levels and the computer deals with bits 
(ones and zeros), there are two ways of assigning a 
correspondence between them. That is, we can assign 
either high=l and 10w=0, or high=O and 10w=1. Both 
methods are in common use, and the choice of one or 
the other is usually determined by other design con­
siderations within the computer. Further confusion can 
arise since these two states are also refered to as true 
or false. This is why in the previous sections when con­
cepts such as handshake were discussed, we simply 
referred to the states of the control and flag lines by 
their logical meanings of set or clear, and ready or 
busy, without worrying about whether these states were 
implemented as high or low voltage levels on the inter­
face itself. Indeed, some interface cards allow the user 
to define whether the ready state of the flag line, for 
example, will correspond to a high or low level. This 
places fewer constraints on the design of the peripheral 
being interfaced and is discussed further in the section 
on jumpers. 

Because these two conventions are in common use, 
they have been given the names positive-true logic and 
negative-true logic. The table in Figure 1-11 shows the 
meanings of these conventions. 

Positive-True Logic: 

Negative-True Logic: 

High = True = 1 
Low = False = 0 

High = False = 0 
Low = True = 1 

Figure 1-11 



Thus if the computer placed a bit that was set to a one 
on a particular data line, this line would be set high in 
a positive-true system and low in a negative-true 
system. For example, an ASCII "E" character (binary 
value 01000101) placed on the data lines would ap­
pear as LHLLLHLH if positive-true logic were being 
used, and as HLHHHLHL if negative-true logic were 
being used. 

Certain interface processes such as the handshake 
discussed in the previous section involve several lines 
changing their states in a definite time sequence. The 
exact relationship of these lines during the sequence of 
events is often shown in a graphical representation call­
ed a timing diagram. An example of a timing diagram 
for some of the lines involved in the handshake process 
for the 98032A interface is shown in Figure 1-12. 

to t1 t2 t3 t4 
I . 

PCTL H 

I 
I CLEAR 

L I I 
SET 

I+-- T----': 
I 
I BUSY 

PFLG H I I ~READY I I 
L I 

:=!)< 0 
Data 
Lines 

Figure 1-12: An Example Timing Diagram 

In this diagram, time proceeds along the horizontal axis 
from left to right, and the states (high/low) of the 
various lines of interest are shown one above the other. 
A vertical line drawn through the diagram represents 
the same instant in time for all of the lines. These time 
points may be indefinite such as to in the example 
which shows the state of the lines at some time before 
the handshake has begun; or they may be definite 
times such as tI which shows the point at which the 
data on the lines begins to change. Sometimes, the in­
terval between two time points (t1 and t2 in the ex­
ample) is fixed by some requirement of the system, 
and given a name such as T. In other cases, such as 
the interval between t2 and t3, there is no restriction 
placed on the time that may elapse between these two 
events. 

The state of the PCTL and PFLG lines in the example 
are definite (high or low) within each time interval. The 
handshake timing diagram cannot, however, show the 
data lines as being either high or low during a given in­
terval, since the state of these lines depends on the 
data that is being exchanged. In this case, the two 
parallel (high and low) lines in the diagram simply 
represents a stable state on these lines that may be 
either high or low, while the crossover represents the 
time during which data on these lines is in a state of 
transition. 

The example timing diagram for an output handshake 
process would be read as follows. At some time to 
before a data transfer has begun, the PCTL line is in its 
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normal clear state (high), the PFLG line is ready (low), 
and the data lines are stable, still containing the last 
character sent. At time t1 the interface places the new 
data on the lines. After allowing a time interval T for 
the data to become stable, the interface sets PCTL low 
at t2 to inform the peripheral that the data on the lines 
is valid. Longer cables require longer time periods, T, 
for the data lines to stabilize at their new levels. After 
an unrestricted time interval, the peripheral 
acknowledges that it has seen control go set by raising 
its PFLG line to the busy state at t3. Upon receiving 
this acknowledgment, the interface allows its PCTL line 
to return to the clear state. Finally, when the peripheral 
has completed processing the information on the data 
lines, it indicates this fact to the interface by returning 
its PFLG line to the ready state at t4. At this time, the 
PCTL and PFLG lines are back to the same state as 
they were at to and ready to repeat the entire hand­
shake cycle for the next data transfer. 

The complete handshake process also involves the 
FLG and I/O lines as discussed in the section on the 
98032A interface. This simplified example is intended 
merely to present the essential features of timing 
diagram representations. 

2. Gates, Latches, and Flip-Flops 

• 

It would be extremely difficult if not impossible to write • 
useful computer programs without the availability of 
conditionals such as the "if" statement which allow the 
program to test some condition and perform one action 
if the condition is true, and another action if it is false. 
The operations performed by an interface card also re-
quire the use of logic, or the ability to make decisions. 
The functions of the interface card could be fully 
described by a flowchart or a computer program. In-
deed, if it were not for speed reqUirements, most of the 
functions of the interface card could actually be 
replaced by a computer program. For example, the 
handshake process described in the last section could 
be performed by a program which implemented the 
flowchart shown in Figure I -l3. 

no 

no 

no 

Figure 1-13 
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Gates 

Since the interface cards are implemented through 
hardware (electronic circuits) rather than software 
(computer programs), logic elements called gates are 
used to perform the required decisions. In reality these 
gates are made up of very complex electronic networks 
composed mainly of resistors and transistors. For­
tunately, it is not necessary to understand the detailed 
workings of these circuits in order to present the opera­
tional characteristics of these logic elements. Before 
looking at how these gates are used in the construction 
of an interface, we will first describe the various types 
of gates that are available. Figure 1-14 shows four of 
the basic logic elements that are used as building blocks 
for constructing more complex logic elements and im­
plementing conditional operations. 

AND OR XOR NOT 

L H 

Figure 1-14 

HH1
B 

L H 

H L 

For the AND gate, A and B are the inputs and C is the 
output. It performs a logic AND function since C is 
high if and only if both A and B are high, otherwise, C 
is low. This information is presented below the symbol 
for the AND gate in a form called a truth table. It sim­
ply shows the state of the output line for any combina­
tion of states of the input lines. In the OR gate 
(sometimes called an inclusive OR gate), C is high if 
either A or B is high. In the 'exclusive-OR gate, C is 
high if either A or B is high, but not both. And finally 
the NOT gate, often called an inverter, outputs a high 
if the input is low, or a low if the input is high. 

Several gates of the same type can be obtained in a 
single integrated circuit package which makes the con­
struction of logic circuits such as an interface card more 
compact and less costly than if individual components 
were used. Also available are packages which combine 
AND, OR, and Xor gates with inverters on their input 
lines, their output line, or both leading to a wide vari­
ety of combinations. For example, AND gates with in­
verted outputs are available and are called NOT-AND 
or simply NAND gates. Figure 1-15 shows the symbol 
and truth table for this type of gate. 

NAND 

X L H 

L H H :u-c 

H H L 

Figure 1-15 
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Notice that the truth table is the one that would be ob­
tained by inverting the output of an AND gate. In 
general, the truth table for any logic element whose in­
put or output lines have circles drawn on them can be 
obtained from the corresponding table for the element 
without the circles, and replacing the circles with in­
verters. 

An example will serve to illustrate how these logic 
elements are used as building blocks in constructing cir­
cuits that are capable of making decisions. Let's assume 
that we have a peripheral that delivers data to the com­
puter at some time after it sees the control line (PCTL) 
go set. Normally, this operation is automatic so that as 
soon as control is set, the device reponds by issuing a 
pulse (low to high and back to low transition) on a line 
from the peripheral called READY. This READY line 
would usually be connected directly to the PFLG line 
on the interface to complete the handshake. But we 
would like to have an alternate mode of operation, 
established by the computer program, that would allow 
an operator at the device to signal the ready response 
by pressing a button. The circuit shown in Figure 1-16 
could actomplish this task, making use of the logic 
elements that we have been discussing. 

We first define a MODE line which determines the 
mode of operation: automatic when it is high, and 
operator-controlled when it is low. This line is con­
nected to one of the general purpose control bits 
(CTL0 on the 98032A card) so that it may be set by 
the program to the desired mode of operation. When 
MODE is low, the input to the AND gate at pin B is 
low so that no matter whether A is high or low, the 
output at C is low. That is, when mode is low 
(operator control) the READY pulse is blocked by the 
AND gate and C remains low. When mode is high, C 
is high only when A is also high, so that the positive 
pulse is now passed by the AND gate and appears at 
the output C. 

,..-____ .,--______ CTL0 

MODE (from mterface, 

A 

)--'..J1....",,-=,--_ P F L G 
.-"'Z-~ (to mterface) 

Figure 1-16: An Example Use of Logic Elements 

The second AND gate controls the signal from the 
operator's push button. When the switch is open, the 
pull-up resistors hold the input E high (see Figure 1-10). 
Pressing the button grounds the input E and causes it 
to go low, returning again to high when the button is 
released. (In actual use. a debounced switch should be 
used to prevent multiple pulses.) Since the input E is 



an inverted input, this switch presents a positive pulse 
to the AND gate when it is activated. Input D operates 
in the same way as input B did for the READY pulse, 
to either block or pass the signal from input E. But 
since it is an inverted input, it passes the signal when 
MODE is low and blocks it when MODE is high. Thus, 
either the READY pulse or the one provided by the 
push button will appear at C or F, while the other line 
remains low. lf these two lines are connected to the 
PFLG line through an OR gate, one and only one of 
the pulses will drive PFLG, depending on the state of 
the MODE line. 

Thus, this configuration of logic gates implements the 
function stated by: if mode is automatic, pass the 
READY pulse to the PFLG line and block the pulse 
generated by the operator; if mode is manual, pass the 
operator's pulse and block the READY signal. Again 
we see that gates are used to provide a hardware im­
plementation of a function that could be expressed by a 
logical flow diagram. 

Latches 

lf the data output lines from the computer were directly 
connected to the data input lines to the peripheral, 
then during the handshake process it would be the 
responsibility of the computer to maintain the data on 
the lines until the peripheral had acknowledged that the 
data had been accepted. Normally this would cause no 
problem since the computer is merely waiting anyway 
for that acknowledgment so that it can put the next 
data item on the lines. But if only one character is be­
ing sent, the computer could go on with the program if 
it did not have to stay in the output driver to hold the 
data on the lines. This becomes more important, even 
essential, to operating under interrupt. In the interrupt 
mode, the computer places the first character of the 
output message on the data lines, tells the interface to 
generate an interrupt when the peripheral has taken 
that character and the next one can be sent, and then 
goes on with program execution instead of waiting for 
the handshake process to complete. This would not be 
possible if the computer had to maintain the data on 
the lines. 

Therefore, one of the functions of the interface is to be 
able to hold or latch the information on the data lines 
until the peripheral has had a chance to take it, and 
thus relieve the computer of this responsibility. In the 
hardware of the interface, this is accomplished through 
an electronic device called a latch (Figure 1-17). 
Typically a latch has a number of input lines and a cor­
responding number of output lines, plus an additional 
line usually called the clock line. When the clock line is 
activated, whatever data currently is being presented 
on the input lines is held by the latch and presented on 
the output lines. Then when the clock line is deac­
tivated, this same data is maintained on the output 
lines. The way in which the clock line is activated (i.e., 
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positive pulse, negative pulse, low to high transition, 
etc.) depends on the particular type of latch being 
used, and need not concern us here. 

A 

8 08 

Inputs 
Outputs 

C 
Oc 

o 00 
ClK 

A 4·81T lATCH 

Figure 1-17 

Chips are available which provide latching for four bits 
of data on a single integrated circuit package. Thus, to 
provide latching for the 16-bit output data bus, the 
98032A interface uses four of these 4-bit latches. Four 
more are used for the 16 data input lines. These input 
latches, in a manner similar to the output operation, 
relieve the peripheral of the responsibility of maintain­
ing the data on the interface input lines until the com­
puter has had a chance to take it. 

These latches are sometimes refered to as one-character 
buffers, and should not be confused with the buffers 
described in later sections dealing with the transfer of 
interrupt buffers. These latter buffers are multi-character 
holding locations that are located in the read/write 
memory of the computer itself. 

Flip-flops 

A flip-flop is a device that is similar to a one-bit latch, 
but with more extensive control properties. There are 
many different types of flip-flops each designed to 
satisfy a different set of requirements. Figure 1-18 
shows a schematic representation for one common 
type called a D-type flip-flop. 

SET 
o o 
CLOCK Q 

CLEAR 

Figure 1-18 

When the clock line is activated, the current state of 
the D input is latched and presented at the Q output 
line. On deactivating the clock signal, Q will hold its' 
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state independently of what happens on the D input. • 
For convenience in designing logic networks using 
these flip-flops, an inverted output, Q, is also provided. 
that is, Q is always in the opposite state from that of Q. 
Two additional lines are provided to set Q to the high 
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state or to clear Q to the low state, independently from 
the clock and 0 lines. These set and clear lines are 
often used to initialize the flip-flop to the desired "wake 
up" state. 

Just as the latches were used to maintain information 
on the data lines, flip-flops are used to allow the inter­
face to "remember" information about what state it is 
currently operating in. For example, we will see later 
that the computer will send a particular message to the 
interface card to tell it that it is enabled to operate in 
the interrupt mode. The card remains in this mode un­
til it is disabled by another message from the computer. 
In the meantime, it remembers which mode it is in 
(enabled or disabled) by storing that information in one 
of these flip-flops. 

3. The Use of Jumpers 
In the last section we saw that flip-flops could be used 
to change various modes of operation on the interface 
by programmable signals from the computer. For ex­
ample, the interrupt-enable flip-flop could be turned on 
and off by the computer at will. Other modes of opera­
tion are a property of the system itself and do not 
change during the running of a program. It would be 
more convenient if these modes could be set one time 
on the card itself, and then the program would not 
have to be concerned with them. 

As an example of this, consider the handshake diagram 
from Section ICI. The meaning assigned to the PFLG 
line from the peripheral is high = busy and low = 
ready. We might want to interface a device, however, 
whose handshake line used the opposite sense; that is, 
high = ready and low = busy. The 98032A card pro­
vides for such an inverted sense by installing a jumper 
(i.e., a wire connecting two terminal points in the cir­
cuit) on the interface itself. Figure 1-19 shows how the 
use of this jumper accomplishes the desired inversion 
of the PFLG signal. 

Figure 1-19 

The properties of the exclusive-OR gate used were 
given in Section IC2. Its output, C, is high if either A 
or B is high but not both. If the jumper is not installed, 
the resistive divider holds the B input high. Looking at 
the truth table for an exclusive-OR gate, we see that in 
this case if A is high, C is low; and if A is low, C is 
high. Thus, the signal presented at the A input appears 
inverted at the C output. If we now put in the jumper, 
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the B input is connected to ground (low) and the state 
of C is always the same as the state of A. As a result, 
the signal seen at C is either the same as A or the 
complement of A depending on whether the jumper is 
in or out. 

It should be noted that in the particular example used, 
(i. e., the PFLG line on the 98032A card), this line has 
already gone through a separate inverter gate before 
arriving at the A input line in our diagram. As a result, 
the PFLG line itself is inverted when the jumper is in­
stalled, and not inverted when the jumper is out. 

Other jumpers may be used in an entirely different way 
from the example just given. For instance, we will see 
later that the data latches on the 98032A interface are 
divided into two groups of eight. In the so-called bytes 
mode, these two groups of latches can be clocked 
separately, while in the words (16-bit) mode, they are 
clocked together at one time. The jumper which selects 
the word mode simply connects the two clock signals 
for these latches together. 

Finally, we should mention that the use of jumpers 
provides a means of making these connections in a 
manner that is most economical of space on the inter­
face card. On other cards where room is available, 
miniature slide switches may be used to achieve the 
same result. Also, switches are used instead of 
jumpers where the user might want to change the 
mode of operation based on the particular application. 
In any case, these switches and jumpers are used to 
select modes that will not be required to change during 
the running of a particular program. 

The installation and service manuals for each interface 
card go into more detail on the switches and jumpers 
provided by each card, and their intended uses. The 
purpose of this section is merely to give the reader 
some idea of how a jumper or switch can be used to 
perform the functions described in those manuals. 
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Programming 
1. A Register Operational Model 

of an Interface 

An interface is a complex electronic circuit that pro­
vides mechanical, electrical, data format, and timing 
compatability between a computer and the peripheral 
device to which it is connected. From a programmer's 
pOint of view, however, the primary task of interfacing 
is to provide a means of exchanging data between the 
computer and the peripheral. Thus, a well-designed in­
terface should isolate the programmer from the details 
of the electronics and timing, and appear as a simple 
"black box" whose I/O characteristics can be presented 
in a simple model and described by a set of operational 
rules. 

In Section III, we will look at the various interfaces 
prOVided for HP desktop computers from a hardware 
point of view and cover some of the special 
characteristics of each of them. In this section, it will be 
sufficient to model the interface as a set of four 
registers through which all the capabilities of the card 
can be accessed. These four registers are given in 
Figure 11-1. 

Register Input Output 

R4 Primary Data In Primary Data Out 
R5 Status In Control Out 
R6 Secondary Data In Secondary Data Out 
R7 Secondary Status Secondary Control 

Figure II-I 

The names of the four registers (R4,R5,R6, and R7) 
are simply names given to four address locations in the 
computer memory map, and should not be confused 
with the r-registers which are program variables provid­
ed by the high-level HPL language. These registers 
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should be thought of as residing on the interface card 
itself. 

The computer sees these interface registers as 16-bit, 
binary registers, and always sends and receives 16-bit 
binary words when addressing them. If a particular in­
terface utilizes less than the full 16-bits (for example, 
when exchanging 8-bit ASCII data bytes) the upper 
(more significant) bits are received as zeros. On output 
to these registers, if fewer than 16 bits are utilized by 
the interface, it ignores the upper bits. Thus, these bits 
may be ones or zeros and are sometimes called "don't 
care" bits. 

All of the interface cards use the R4 register for data 
I/O operations, and the R5 register for status and con­
trol information. The names given in the table above 
for the R6 and R7 registers are only general indicators 
of the functions of these registers. Their exact inter­
pretation varies with each card and is described in 
more detail in the sections on the individual interfaces. 

In order to give specific examples of the use of these 
I/O registers, we will use the meanings given to them 
by the 98032A Bit Parallel Interface, sometimes called 
the GPIO (General Purpose Input Output) Interface. It 
defines these registers as follows. 

Register Input Output 

R4 Data In Data Out 
R5 Status In Control Out 
R6 (see text) (see text) 
R7 Not Used Trigger 

Figure 11-2 

The GPIO uses the R6 register in a special way when 
operating in the optional "byte mode" as described in 
the section on that card. For our purposes here, the R4 
register is the one through which all data is transmitted 
and received. We will give examples below of how 
these registers are used to do simple input! output 
operations. 



2. Select Codes 

As mentioned earlier, a set of I/O registers R4-R7 exist 
on each interface card. When more than one card is 
connected to the computer and, for example, an R4-in 
operation is performed, we need a mechanism for 
determining which interface should respond. This is ac­
complished by means of a 4-bit register in the com­
puter called the Peripheral Address (or simply PAl 
register. This PA register holds a binary number in the 
range of 0 to 15, thus allowing for up to 16 interfaces 
to be addressed. Each interface has an externally­
settable select code switch which can also be set to any 
value between zero and 15. (Select codes 0 and 1, 
however, are for internal interfaces and should not be 
set as a select code for an interface card.) Whenever 
an operation to one of the interface registers is per­
formed, the computer presents the current contents of 
the PA register to all of the interface cards 
simultaneously. Only that card whose select code 
matches the PA register will respond to the operation. 

When an HPL I/O statement such as "wrt 6, A, B, C" 
or "rds(6) ...... A" is executed, the I/O ROM automatical­
ly puts the binary value of the select code parameter 
(in this case, 0110 = 6) in the PA register before ad­
dressing the required interface registers. 

3. Direct Register Access 

All interface card operations are carried out by sequences 
of operations to and from the interface registers. The 
more common tasks (reading and writing data, checking 
status and setting control bits, etc.) have been proVided at 
the HPL programming level by simple statements and 
functions such as wrt, red, rds, wtc, etc. These high-level 
mnemonics isolate the programmer from the details of 
the register sequences required to perform each task. 

In the event that the programmer should wish to per­
form some sequence of operations other than those 
provided by the HPL language, additional mnemonics 
have been provided that give the HPL program direct 
access to the interface registers. 

These are the write-interface-register and the read­
interface-register mnemonics, whose syntax is given 
below. 

wti <register number>, <output> 
rdi ( <register number> ) 

The write-interface statement outputs a 16-bit, 
2's-complement representation of the value speCified by 
the <output> parameter to the register speCified. The 
read-interface function inputs a 16-bit 2's-complement 
binary value from the specified register and returns its 
decimal equivalent for the value of the function. 
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The register number given should be in the range of 4 
to 7. If not, the value given is mapped into that range. 
Thus, rdi(8) would read the R4 register, rdi(9) the R5 
register, and so on. Since the program needs some 
way of specifying which interface (select code) should 
respond to wti and rdi, register number zero is treated 
specially and addresses the PA register. For example, 
executing a "wti 0,6" statement would place a 6 in the 
PA register. This setting of the PA register will remain 
active for all future wti and rdi operations until RESET 
is pressed or a new PA is set up using another wti 
statement to register zero. 

In the following section, we will see how this direct 
register addressing works by reducing familiar opera­
tions such as writing data and reading status to their 
equivalent register sequences. 

Before doing this, there are two additional lines to the 
interface required to complete the functional description 
of the card. These may be considered as I-bit, read­
only registers called status (STS) and flag (FLG). 

The status bit (not to be confused with the status 
register, R5 to be discussed later) is a single bit in­
dicator that the interface and the peripheral connected 
to it is operational. For example, if a peripheral device 
has a line coming from it that indicates power on, it 
could be connected to the STS line. Then the program 
could quickly determine whether the device is turned 
on or off. Or as another example, a printer might have 
the STS line connected to its out-of-paper indicator (if 
it has one) to indicate to the program that it is no 
longer operational when the paper runs out. 

The flag line is a momentary ready/busy indicator used 
to keep the computer from getting ahead of the 
peripheral. The use of this line is covered in more 
detail in Section IIIB2 on "handshake". For our pur­
poses here, it is sufficient to know that on the flag line, 
a one indicates ready and a zero indicates busy. For 
example, if the computer had a sequence of ASCII 
characters to send to a slow printer, it would send one 
character (which makes the flag line go busy) and then 
wait for the flag line to go ready again before sending 
the next character. (This interface flag indicator should 
not be confused with the programming flags used in 
writing HPL programs.) 

These FLG and STS lines may be tested from the HPL 
program by using the following functions. 

iof <select code> 
ios <select code> 

These functions return a one or a zero indicating the 
current state of the FLG or the STS line. Notice that 
unlike wti and rdi, the select code is given as a 
parameter in the iof and ios functions. 
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4. Binary I/O Operations 

We are now in a position to look at the sequence of 
events that takes place between the computer and the 
interface card when simple I/O operations are carried 
out. In particular, we will simulate the actions of the 
"wtb" and the "rdb" statements through the use of the 
direct interface access mnemonics explained in the last 
section. 

When the I/O ROMs perform these operations, there is 
a considerable amount of checking and internal "book­
keeping" that goes on to insure that systems conflicts 
are avoided. Here we will only be concerned with the 
basic communication between the computer and the in­
terface. We will also look at this communication from 
the point of view of the register operational model of 
the interface as described earlier. In the sections on the 
interface cards themselves we will look at more detail 
about what actually takes place on the card. 

The following HPL program simulates the actions that 
take place when the statement "wtb 6, 27" is executed 
to send the binary value 27 to a device on select code 
6. 

1: wti 0,6 
2: if ios(6)=0; gto "card down" 
3: if iof(6)=0; imp 0 
4: wti 4,27 
5: wti 7,0 

In the first line, the select code of the device (i.e., 6) is 
placed in the PA register for the subsequent wti 
statements. Next, the status bit is tested to make sure 
that the device is operational. If it is not, we branch to 
the "card down" routine, which in the I/O ROM would 
issue an error GS. If the device is operational, we then 
loop until the flag line indicates ready. The data to be 
sent is then placed in the R4 output register. This 
merely places the data in the output latches on the in­
terface but no output operation to the device has taken 
place yet. In the last line, the output to the R7 register 
actually triggers the data transfer to the device. (Note 
that the actual data to the R 7 register, a zero in this ex­
ample, does not matter. Only the R7 out operation 
itself is sensed by the interface as the trigger com­
mand.) If more data were to be sent to the same 
device, we would repeat lines 2, 3, 4 and 5 for each 
data item. It is important that each time through this 
loop we wait for the flag to indicate ready. If the flag is 
indicating busy, the last data item is still in the output 
latches and has not yet been taken by the device. If we 
were to execute line 4 in this state, the new data would 
overwrite the old data in the latches and the old data 
item would be lost. 

We can also use the direct register operations to 
simulate the input process. The following HPL program 
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performs the same operations as when the function 
"rdb(6)-+A" is executed to read a binary value from the 
device on select code 6 and assign it to the variable A. 

1: wti 0,6 
2: if ios(6)=0; gto "card down" 
3: if iof(6)=0; imp 0 
4: rdi(4) -+ A 
5: wti 7,0 
6: if iof(6)=0; imp 0 
7: rdi(4) -+ A 

The first three lines of this routine are the same as in 
the previous simulation of the "wtb" statement, and 
serve the same purpose. The R4 in operation in line 4 
merely tells the interface that an input operation is to 
be performed. When the trigger (R7 out) is done in line 
5, the card goes busy and demands a data item from 
the peripheral device. line 6 waits for the interface to 
latch the data from the peripheral. and line 7 takes the 
data from the interface and places its decimal represen­
tation in the variable A. If more data items were to be 
input, lines 5 through 7 would be repeated. Notice that 
the interface has only one trigger (R 7 out) register, 
which is used for triggering both input and output 
operations. The function to be performed is determined 
by whether the last data operation between the com­
puter and the interface was an input or an output. This 
is why the "dummy" input operation in line 4 is re­
quired. 

Normally, the user would not get involved with the 
specific sequence of events that take place when a sim­
ple wtb or rdb operation is performed. These se­
quences were presented here merely as an example of 
the use of the interface registers. Other examples will 
be presented later that require the use of the wti and 
rdi instructions to accomplish certain tasks. Also, 
understanding this register model of the interface will 
be helpful in describing the events that take place dur­
ing interrupt operations in Section I1B3. 

5. Formatted I/O Operations 

Strictly speaking, all simple data input! output opera­
tions could be performed with only the use of the write 
binary (wtb) and the read binary (rdb) instructions. For 
example, if we wanted to output the value of pi 
(3.1415926536) to a printer, we could calculate each 
of the digits and send its ASCII code to the printer one 
at a time with the wtb statement, taking care to output 
the ASCII code for a decimal point at the proper place 
in the sequence. In practice. however. it is much easier 
to simply specify the value that we wish printed and let 
the I/O ROM perform the task of breaking it up into 
the proper sequence of ASCII characters. As a result, 
most simple data I/O is done using the read (red) and 
write (wrt) statements. 



These statements are even more powerful since they 
work in conjunction with the format (fmt) statement. 
This formatting capability allows the program to specify 
the exact form into which data should be put for output 
operations, and the sequence of characters that is ex­
pected from an input operation. The use of the read, 
write, and format capabilities is discussed with several 
examples in the operating manual for the General I/O 
ROM. 

Since most simple data I/O is done using the read and 
write statements, the question arises of when the 
rdb/wtb instructions should be used in writing a pro­
gram. In the examples that follow, it is assumed that 
the reader is familiar with the material presented in 
Chapters 2 and 3 of the General I/O Programming 
manual. If not, it would be helpful to read those sec­
tions before continuing here. 

Example: Non-ASCII Characters 

The write statement accepts two kinds of parameters, 
strings and numerics. A string is a sequence of ASCII 
characters enclosed in quotes, such as "The value of pi 
is ". A numeric parameter simply specifies a constant 
or a programming variable whose value is to be con­
verted to a sequence of ASCII characters to be sent. 
The table of ASCII codes (see Appendix), however, 
also provides what are called control characters. Some 
of these were designed specifically for controlling print­
ing devices, such as carriage return, line feed, vertical 
tab, form feed, etc. Others are used in special applica­
tions such as block transfers (start of text, end of text, 
etc.) and data communications (enquire, acknowledge, 
synchronize, etc.). Since the keyboard has no keys that 
correspond to these characters, the wtb statement is 
used to send them. For example we might have a 
printer that uses paper that is perforated into pages. 
After sending some lines of output, we want the printer 
to skip to the top of the next page. In the ASCII 
character set, this instruction, called form feed, has a 
value of 20. Thus, the statement "wtb 6,20" would 
send an ASCII form feed character to the printer on 
select code 6. It is important to note that this operation 
sends only a single ASCII character whose binary value 
is equivalent to a decimal 20, and we would see the 
printer skip to the top of the next page (assuming that 
the printer has this capability). Whereas if we had 
issued the statement "wrt 6,20", the ASCII characters 
for a printing 2 (decimal code 50) and a printing 0 
(decimal code 48) would have been sent, along with 
some number of spaces, a carriage return, and a line 
feed as specified by the format statement, and we 
would have seen the actual value of "20" printed. 

Example: Supression of CR/LF 

Another distinction between the wrt and wtb statements 
is that the wtb statement outputs only the characters 
specified, while the wrt statement generates character 
sequences specified by the format statement, often giv­
ing unexpected results. For example, the HP2640A is 
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a teletype-like terminal that has a CRT (video display), 
and can be put into inverse video (dark characters on a 
light background). To put the 2640 into this inverse 
video mode, an escape character (decimal 27 ASCII 
code) followed by the ASCII characters "&d8" must be 
sent. Using the wtb statement, this could be done by 
executing the statement "wtb 6, 27, "&d8" ". If instead 
we had executed 

wtb 6,27; wrt 6, "&d8" 

we would successfully put the 2640 into inverse video, 
but the automatic CR/LF generated by the wrt state­
ment would have moved the cursor on the CRT to the 
start of the next line. In addition, there might be a for­
mat statement in effect that we aren't aware of that 
would give even stranger and unexpected results. 

Example: Greater than 7 -bit data 

Although a large number of input/output devices use 
ASCII code as their I/O language, many do not. Data 
sent via the wrt statement is sent as 7 -bit ASCII 
characters, and data received via the red statement is 
stripped to 7 bits and interpreted as ASCII characters. 
If a non-ASCII code is required, or if data in binary 
form having more than 7 bits is required, the rdb/wtb 
instructions may be used. 

Example: Debugging Tools 

Finally, the rdb/wtb instructions are often valuable in 
debugging programs. For example, suppose we have a 
device that sends us a numeric value 12.345 and we 
execute the statement "red 3,A". When we execute 
this statement, we notice that the run light on the 9825 
stays on and the reading does not complete. We don't 
know whether we are not getting any data at all or if 
something else is wrong, perhaps a hardware failure. 
So we execute a series of "rdb(3)" instructions and 
note the results. 

rdb number: 
value returned: 
ASCII: 

1 234 5 6 7 8 9 
49 50 46 51 52 53 13 10 busy 
1 2 3 4 5 CR LF 

This tells us that the device is indeed sending what we 
expected to see and there is no hardware problem. So 
we look over the program and find that earlier we had 
executed the statement "fmt f16.4, f7 .2" for use with a 
previous wrt statement, and that format is still in effect. 
Since the read statement is using this format, it is 
waiting for 16 characters to complete the first numeric 
value and the peripheral is only going to send 8. We 
fix the problem by changing the input operation to 

fmt; red 3, A 

which returns to free-field format before doing the read 
operation. Now the read completes and we get the ex­
pected value. Many times this same technique of using 
rdb instructions to look at the incoming data stream 
one character at a time will reveal that the input se­
quence is something other than what is expected, and 
the red and fmt statements must be adjusted according­
ly. 
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6. The Status and Control Registers 

The primary purpose of the interface is to allow data to 
be exchanged between the computer and the 
peripheral device to which it is connected. HP's 98000 
series interface cards are extremely versatile, however, 
and most of them are programmable. This means that 
they have various optional capabilities that can be set 
and changed by control instructions from the computer. 
Refering to the register model of the interface, this pro­
gramming is done by outputting specific bit patterns to 
the R5 register. Some of the interfaces use other 
registers for extended control bits and these are de­
scribed in the sections covering the specific interface 
cards. 
The R5-out control register is usually addressed from 
the HPL programming language using the write-control 
statement (wtc). For example, the statement wtc 6,9 
would output the binary equivalent (00001001) of a 
decimal 9 to the R5 register of the interface set to 
select code 6, causing bits 0 and 3 of that register to be 
set. The effect of setting those bits is determined by 
which type of interface is involved, and the meaning of 
each of the control bits is described in the section on 
the individual interfaces. 

Besides'the wtc statement. two other statements pro­
vided by the Extended I/O ROM also address the 
RS-out register. These are the wti statements 
explained later. These three ways of addressing the 
RS-out register are explained in Section lIes. 

The interface cards can also return information to the 
computer telling which optional programming features 
are currently selected. This information, called the 
status byte, is gotten from the interface through an 
RS-in operation. This status byte consists of 8 bits 
whose meanings are determined by the particular inter­
face card that is being addressed. These bit assignments 
are explained in detail in the sections on the individual 
cards. 

At the HPL level, this status byte is obtained by using 
the read-status (rds) function. For example, the func­
tion rds(6) would perform an R5-in operation on the 
interface set to select code 6 and return, for the value 
of the function. the decimal equivalent of the binary bit 
pattem that it received. 

This status byte should not be confused with the single 
status bit described earlier. That status bit is merely a 
I-bit, qUickly testable indicator of whether or not the 
card is functionally operational; whereas the status byte 
contains up to eight bits of information about the cur­
rent programming configuration of the card. Since the 
instruction to test the status bit (ios) is contained only in 
the Extended I/O ROM, a provision was made so that 
a user having only the General I/O ROM could test 
this bit, although somewhat less conveniently. 

21 

Whenever a rds function is performed, the 8 bits of 
status are returned plus an artificial 9th bit that 
represents the single status bit. 

bit number: 

the decimal equivalent of this value is 
returned for the rds function 

I 

7 6 543 2 1 0 
1:::;:t1t::::===;:==::::1 

8 bits from the status byte (R5-in) 

single status bit indicator 

Thus a functionally operational interface should return 
a value for the rds function greater than 256 (= 28 = 
status bit set). If the value of the status byte is read 
using the rdi function directly from the R5-in register, 
only the 8 bits of that register are returned. 

B. Interrupt I/O 
Programming 

1. The Uses of Interrupt 

A computer which has the ability to operate under in­
terrupt provides the user with additional programming 
features that fall into two main categories. One of these 
is the optimization of data transfer operations in which 
the speed of the computer can be more closely 
matched to the speed of the peripheral device. The 
other is the ability to have a particular segment of the 
program in the computer executed at a time deter­
mined by the external device. The first of these abilities 
will be discussed here, while the second will be covered 
in Section IIB5. 

In Figure II-3, peripheral devices have been classified 
as slow, medium, and fast depending on the rate at 
which they are capable of transferring data. 

Speed: Slow Devices Medium-speed Devices Fast Devices 

Examples: Paper Tape Thermal Printers High·speed 
Readers DVM's 

Card Readers Medium·speed DVM's Magnetic Tapes 
Teletypes AID Converters 
Plotters Discs 
Digitizers 

Transfer Rates: Below 1000 1000 to 10000 Above 10000 
characters per characters per characters per 
second second second 

Without Interrupt: wait read/write ----

With Interrupt: interrupt read/write fast read/write 
DMA 

Figure 11-3 

Although some devices clearly fall into one category or 
another, this division should not be considered rigid; 



and the transfer rates in the table are intended to pro­
vide rough boundaries. In general, the way in which 
the device is being used in a particular application, 
rather than its maximum transfer rate, will determine 
the category to which it belongs in that application. For 
example, the 98668 Thermal Line Printer can accept 
characters at a rate of about 100,000 per second until 
a line-feed is received. It then requires 250ms (1/4 of a 
second) to print that line and be ready to accept further 
characters. Other devices, like digitizers, are totally time 
random. That is, the rate at which data is available 
may depend on an operator pressing the sample button 
on the digitizer. 

In a computer without interrupt capability, data transfer 
is done via the normal read and write operations. 
These operations will have their own "natural" (i. e. , 
computer imposed) speed limitations depending on 
such things as how much data is to be transfered, the 
type of data (numeric, strings, binary), and how much 
formatting has to be done on the data. Depending on 
these factors, the natural read/write speed of the 9825 
can be anywhere between 1000 characters per second 
to well over 10000 characters per second. 

If the speed of the peripheral device is slower than this 
natural read/write speed of the computer, the I/O 
ROM will simply wait after it has transfered one 
character until the device indicates that it is again ready 
before it sends or receives the next character. If, on the 
other hand, the peripheral's speed is faster than the 
natural read/write speed of the computer, the 
peripheral device itself will have to wait between each 
character until the computer is ready for the next 
transfer operation. If the peripheral cannot wait (i.e., 
slow down to the computer's natural read/write speed) 
then the data simply cannot be transfered between the 
computer and the device. 

This situation can be greatly improved if the computer 
can support transfer mechanisms other than the normal 
read/write operations. For slow devices, we would like 
to have the ability to transfer one character to or from 
the peripheral device, and then be able to "go away" 
and perform other useful work while we are waiting for 
the device to come ready for the next character. For 
fast devices, we would like to be able to separate the 
formatting process from the actual transfer process, and 
thus increase the natural speed of the transfer process 
alone. For example, if we wanted to take 100 readings 

from a high-speed digital voltmeter using a program­
med loop and normal read statements, each reading 
would have to be formatted, put into internal floating­
point representation, and stored in the specified pro­
gramming variable before we could be ready for the 
next reading. It is this "overhead" that determines the 
natural speed of the read operation. If, however, we 
had a means of merely collecting the "raw data" (the 
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exact sequence of bytes or words that came in from the 
DVM) and could then go back at a later time and do 
the formatting and conversion into internal numeric 
representation, this simple data gathering process could 
procede at a much higher rate. 

The 9825 provides an interrupt mechanism for han­
dling slow devices, as well as fast read/write and DMA 
for handling fast devices. The use of these capabilities 
is discussed in the folloWing sections. 

2. Data Transfers with Slow Devices 

When an I/O operation is done with a very slow 
device using the normal read/write operations, the 
computer spends a considerable amount of time merely 
waiting for the device to become ready for the next 
character transfer. Having interrupt capability gives the 
9825 the ability to do other useful work while it is 
waiting on the device. In order to show just how this is 
accomplished, we will look at an example of doing out­
put to a slow printer both with a normal write state­
ment, and then using the interrupt structure of the 
computer . To make even more evident what is hap­
pening, we will not use the automatic mechanism pro­
vided by the transfer (tfr) statement, but will simulate its 
operation using the direct-register access capability 
discussed in Section IIA3. 

Assume that we have a slow printing device that 
operates at 30 characters per second. and that we wish 
to send to it an 80 character string to be printed. If we 
were to do this with the simple write statement, " wrt 
6, A$ ", it would take approximately 2.67 seconds for 
the write statement to complete. During this time, we 
could have executed hundreds of program lines and 
accomplished a considerable amount of useful work. 

In Section IIA4 we looked at how the wti statement 
could be used to simulate the operation of the wtb 
statement in sending a single character to an output 
device. It was mentioned that if several characters were 
to be sent. it would be necessary to wait for the flag 
line on the interface to indicate ready before sending 
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each character. If we wanted to do other useful work 
while waiting for the flag line to come ready, and we 
did not have interrupt available, we could simulate the 
interrupt process by the following scheme. We first pro­
vide a subroutine that will output A$ one character at a 
time each time it is called. 

"send": if I > len (A$); ret 
wtb 6, A$[I,Il 
1+ 1 -- I; ret 

The value of the pointer into the string, I, is initially set 
to 1. Each time the routine is called, the character in 
the string that is pointed to by I is sent, and the 
pointer, I, is incremented for the next time the routine 
is called. Also, if all characters in A$ have been sent 
(i.e., I is greater than the length of the string) the 
routine simply returns without sending any more data. 
If we now edited the lines in the rest of the program, 
so that each one ended with the statements 

if iof(6) = 1; gsb "send" 

we would have simulated an interrupt capability. That 
is, at the end of each line of the rest of the program, 
the flag line for select code 6 is tested; and if it has 
come ready, we execute a subroutine call to the "send" 
routine to output one more character. Although this 
would work, it is not a very attractive solution. What 
we would much prefer is not to have to test the flag 
line, but rather to have the interface inform the com­
puter when the flag line again indicated ready. We 
would also rather have the branch to the subroutine be 
automatic; that is, we would like to tell the computer 
once where to go when the flag line indicated ready, 
rather than at the end of each line. The on-interrupt 
(oni) and enable-interrupt (eir) statements do just that. 
The following program would accomplish the same task 
as in the previous example. 

10: 1 -- 1 

11: oni 6, "send" 
12: eir 6 

87: "send": wtb 6, A$[I,I] 
88: 1 + 1 -- I; if 1 ~ len(A$); eir 6 
89: iret 

The "oni" statement in line 11 essentially says "if an in­
terrupt should come in from select code 6, branch to 
the routine labeled "send" ". Notice that this operation 
is entirely local to the program and involves no com­
munication with the interface card. It is the "eir" state­
ment in line 12 that informs the interface about what is 
happening. This statement may be read as "any time 
your flag line indicates ready, generate an interrupt re­
quest." 

From this point, the sequence of events would be as 
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follows. Most probably, at the time line 12 is executed 
the interface is ready, since we have not yet done 
anything to cause it to go busy. Therefore, as soon as 
the "eir" statement is executed, the card will generate 
an interrupt. This will cause the program to branch to 
the "send" routine which outputs the first character of 
A$, which also makes the card go busy. It is important 
to note that each time an "eir" statement is executed, it 
enables the interface for one interrupt. When this inter­
rupt occurs, the I/O ROM automatically disables the 
card for further interrupts, thus preventing it from trying 
to interrupt again until its first interrupt has been serv­
iced. Since we want another interrupt after the current 
character is finished processing by the peripheral, line 
88 reenables the card for interrupts. The interrupt 
return statement in line 89 causes the program to 
branch back to the line it would have executed next if 
the interrupt had not occured. 

The rest of the program (lines 13 through 86) con­
tinues to execute while the peripheral is busy process­
ing the current character. At some point in time, it will 
finish that processing and indicate (via the flag line) that 
it is ready for more data. Since we have again enabled 
the card to interrupt on that condition, it will generate 
an interrupt to the computer. This time, however, the 
computer will probably be in the middle of executing 
some line from the main program. If it were to im­
mediately branch to the "send" routine, the operations 
performed there would use the internal "scratch-pad" 
registers and make it impossible to finish the interrupted 
line correctly. So instead, the I/O ROM merely makes 
a note of the fact that an interrupt from select code 6 
has occured, disables the interface so that it does not 
keep trying to interrupt, and then allows the current 
program line to complete its execution. When the end 
of the line is reached and the scratch-pad registers are 
free, it then causes a branch to the service routine in­
dicated by the "oni" statement. This sequence con­
tinues until the "send" routine outputs the last character 
in A$, at which time line 88 detects that there is no 
more data to send and as a result does not execute the 
"eir" statement. As before, line 89 returns control to 
the main program. But this time when the flag line 
again indicates ready, the interface has not been re­
enabled and does not generate an interrupt, since the 
data transfer process is completed. 

Although this program is much simpler than the 
previous method described, it still requires the users 
program to handle each character, keeping track of the 
pointer to the next character to be sent and enabling 
the interrupts at the proper time. It should be possible 
to make this process still more automatic and 
transparent to the user. This further transparency is 
provided by the transfer (tfr) statement. 

The printer we have been considering in our example is 
classified as a slow device because it requires about 33 



millseconds of wait time between characters. If this 
printer had some read/write memory built into it, it 
could then accept characters at a much faster rate, place 
them in that memory (called a data buffer), and then 
fetch them from the buffer and print them in the order 
that they were received. For short bursts of data, this 
slow printer with a built-in buffer would appear to be a 
medium speed device. Although the printer would not 
print the characters any faster, it can accept an entire 
line of data very quickly, and then process it out of its 
storage buffer at its normal printing speed. The figure 
below shows a schematic representation of this process. 

Computer "Medium-speed" Printer 

internal wtb .. 
data 

.. Buffer- ... Slow Printer 

Figure 11-4 

If a slow printer does not have its own built-in buffer, it 
can still be made to look like a medium-speed device 
by allowing it to use some of the computer's memory 
as its data buffer. 

Computer wtb 

~ internal ~ Buffer Slow 
data printer 

, I 

• 
Computer memory 

Figure 11-5 

Using this scheme, the data to be output would be writ­
ten to the buffer, just as though this buffer memory 
were contained in the peripheral itself. The transfer 
statement" is then used to send the data in the buffer 
to the device at the printer's own speed using the inter­
rupt capability. This transfer process is entirely 
automatic and handled totally by the I/O ROM. The 
program to accomplish this is given below. " 

10: bUf "out", 1 00, 1 
11: wtb "out", A$ 
12: tfr "out", 6 

Line 10 says that we want to set up a buffer to be 
referenced by the name "out", and that it should be 
large enough to hold up to 100 characters. The last 
parameter in the "buf" statement specifies the buffer 
type which is discussed in the next section. This buffer 
statement· is Similar to the dimension (dim) statement 
since it allocates memory for a buffer in the same way 
the dimension statement allocates memory for strings 
and numeric arrays. Once the buffer is established, line 
11 simply outputs to the buffer as though it were a 
peripheral, using the name of the buffer in place of the 

• See the 9825A Extended I/O ROM manual for a complete description of the 
syntax for the "buf" and "lfr" statements. 
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select code parameter. Since this data has simply been 
moved to the buffer and not yet sent to the peripheral, 
this operation happens very quickly and does not de-
pend on the speed of the peripheral device. In this ex- • 
ample, we place the contents of A$ into the buffer. In 
general, we could use the write (wrt) statement in con­
junction with a format statement to output string and 
numeric data to the buffer. The data in the buffer is not 
in the internal representation of the computer, but 
represents the exact character sequence that would 
have been sent to the peripheral if a buffer were not 
being used. 

Now that the data is in the buffer, we merely have to 
start the process that transfers it to the printer under in­
terrupt. Line 12 specifies that the data in the buffer 
called "out" should be transfered to the device on 
select code 6. From here, the process is automatic, and 
handled entirely by the I/O ROM. Thus, the users pro­
gram is free from having to set up for interupts, 
manage the data pointers, and terminate the process 
when all the data is sent. 

The execution of the transfer statement itself is com­
plete as soon as the first character has been sent. This 
means that the rest of the program can continue ex­
ecuting, even though there is still more data in the buf­
fer to be transfered. Each time the peripheral device 
comes ready for the next character, the running pro-
gram is momentarily interrupted and another character a 
is sent by the I/O ROM without the need for further ., 
program statements. Also, since this transfer of the 
next character can be done by the ROM without using 
the scratch-pad registers, it can be done when the in-
terrupt occurs and does not have to wait until the cur-
rent program line is completed. When the last character 
has been sent, the ROM automatically disables the in-
terface from further interrupts. As a result, the entire 
burden on the user program is simply to set up the buf-
fer, write to it as though it were a peripheral, and in-
itiate the transfer process. 

3. Further Data Transfer Examples 
We have seen how a buffer and the transfer statement 
can be used to output data to a slow device using inter­
rupt. This same buffer transfer mechanism can be used 
to input data from a slow device. Before looking at 
how this would be done automatically using the 
transfer statement, it would be instructive to first write a 
program to accomplish the same task using a user­
programmed service routine which will show all of the 
steps involved. 

10: ani 3, "input" A 
11: wti 0,3 • 
12: rdi 4 -+ Z; wti 7,0 
13: eir 3 
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92: "input": rdi 4 -+ C 
93: A$&char(C) -+ A$ 
94: if C#1 0; wti 7,0; eir 3 
95: iret 

Comparing this program to the analogous one for the 
output case in Section IIB2, we see that the main dif­
ference is in the method of transfering the individual 
characters. In the output "send" routine, each character 
was sent using a simple wtb statement. In this program, 
however, we cannot use the rdb statement to input 
each character, but have to resort to the use of the 
direct register access statements. The reason for this 
will become clear if we refer back to the individual 
register sequences that make up the wtb and rdb 
operations (pages 20 and 21) These sequences are 
summarized in the following diagram. 

wtb 

walt for ready 

output dta 
and trigger 

Figure 11-6 

rdb 

no 

aemand data 
and trigger 

walt for 
ready 

take data 

In the output example, when the device came ready 
for the next character it set the flag line to indicate 
ready which caused the interface to generate an inter­
rupt. The I/O ROM then caused a branch to the 
"send" routine which did the wtb operation. Since at 
this time the flag line was indicating ready, the wtb 
statement did not have to wait and immediately per­
formed the output of the next character. 

Looking at the diagram for the rdb function, however, 
we see that it must first demand the data, wait for the 
data to come ready, and then take in the data. If we 
had tried to use the same program as in the "send" ex­
ample, merely replacing the wtb with an rdb, the 
following would have happened. The first eir statement 
would have caused an immediate branch to the service 
routine, since nothing had caused the device to go 
busy. The rdb in the service routine would have 
demanded the next character and then waited for it to 
come ready. Thus, we would loose any advantage of 
being able to avoid the wait time through the use of in­
terrupts. 

What we would like to do is to demand the next 
character and then go away and do other useful work 
during the time we would normally be waiting for the 
character to come ready. This is what the program 
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given above accomplishes. Line 10 sets up for a branch 
to the "input" service routine whenever an interrupt oc­
curs from select code 3. Line 11 sets up select code 3 
as the interface to receive the wti and rdi operations 
that will follow. In line 12, we are telling the interface 
to demand the next character from the device. Since 
we do not know whether the last operation to the card 
was an input or an output operation, we first execute 
an R4 in so that the wti 7,0 will trigger an input opera­
tion. The data received from this R4 in operation is 
whatever was left on the data lines from the last input 
from the card, and does not represent useful informa­
tion. Having triggered the input, the interface has now 
gone busy and we enable it to interrupt when it again 
comes ready. In the meantime, the program in lines 14 
through 91 continues execution. The location of the eir 
statement in thp- sequence is very important. It cannot 
be executed until we have made the interface go busy; 
otherwise an immediate branch to the service routine 
would occur. 

When the device indicates that the next character is 
ready, the interface generates an interrupt to the com­
puter; and at the end of the current program line, the 
I/O ROM causes a branch to the "input" service 
routine. This routine can now complete the last phase 
of the rdb operation which is to take the new character 
from the interface using an R4 in operation. In this ex­
ample, we are expecting an ASCII message from the 
peripheral device which will be terminated by a line 
-feed (LF = decimal 10) character. Thus, the input 
routine next converts the byte received into an ASCII 
character and concatenates it onto the string A$, which 
would have initially been set to a null string. In line 94, 
we test the byte just received to see if it was a LF. If 
not, we have not yet received the entire message and 
so we trigger another input operation (i.e., demand 
another character) which again makes the device go 
busy, and then enable the interface for another inter­
rupt. Notice that this time the "dummy' rdi 4 is not re­
quired, since we know that the last R4 operation to the 
card was an input. If the character received had been 
the LF terminator, the program would not have trig­
gered another data input operation and would not 
have enabled the card to interrupt again. In either case, 
the iret statement causes the program to branch back to 
where it came from in the main program. 

Again this example was given to show the steps that 
are performed when data is input using interrupt. In 
practice, there is no need for the user's program to 
handle each character as it comes in, since the transfer 
statement provided by the I/O ROM makes the entire 
process automatic. The following program would ac­
complish the same task. 

10: buf "in", 100, 1 
11: tfr3,"in",100,10 

92: red "in", A$ 



Line 10 says that we want to set up a buffer to be 
referenced by the name "in", and that it should be 
large enough to hold up to 100 characters. (The buffer­
type parameter, 1, will be discussed in the next sec­
tion.) Line 11 specifies that data should be transfered 
from select code 3 to the "in" buffer until 100 
characters or a line-feed (decimal value 10) is received. 
From this point, the entire process is automatically 
handled by the I/O ROM, and the program from line 
12 is free to continue execution while the buffer is be­
ing filled. Once the transfer into the buffer is com­
pleted, line 92 reads the data out of the buffer and into 
the string A$ where it can be used by the rest of the 
program. Notice that this read statement is the same as 
would be used to read from the peripheral directly 
( red 3, A$ ) with the select code replaced by the 
name of the buffer. But since all of the data is in the 
buffer, this read statement completes very quickly and 
the execution time does not depend on the slow speed 
of the peripheral. 

The only question remaining is, how do I know when 
the transfer is complete so that I can execute the read 
statement? This can be accomplished in one of two 
ways. The first makes use of the read-status operation 
which is normally used to read the status byte of an in­
terface card. When the read status function is applied 
to a buffer (in this case, rds("in") ) the value returned is 
equal to the number of characters currently in the buf­
fer, or it is a minus one if the buffer is busy with a 
transfer operation. Thus the program could periodically 
test the status of the buffer and when it is no longer a 
-1, it knows that the transfer is complete. 

The second, and usually more convenient method, 
makes use of the "oni" capability. This is demonstrated 
in the following program. 

9: oni 3, "tfr done" 
10: buf"in",100,1 
11: tfr3, "in", 100, 10 

92: "tfr done": red "in", A$ 
93: 

. (lines to process A$) 

94: if (test condition); tfr 3, "in", 1 00, 10 
95: iret 

In this program, we use the oni statement to set up for 
a branch to a service routine called "tfr done". This is 
similar to the oni branch to the "input" routine in the 
previous example except that instead of branching to 
the service routine each time the next character is 
ready, the branch to the "tfr done" routine takes place 
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only when the entire input operation specified by the 
transfer statement is complete. In other words, using 
the "eir" statement, the service routine is called when 
the interface indicates ready; using the "tfr", the service 
routine is called when the transfer is complete. Thus, 
the "oni" statement does not always cause a branch to 
the service routine when an interrupt occurs, since the 
I/O ROM automatically handles the interrupts 
associated with the transfer process. 

4. Data Transfers with Fast Devices 
In the last two sections we saw how the use of the in­
terrupt structure could allow a program to do other 
useful work while waiting for a slow peripheral device 
to come ready to send or receive the next character of 
a data message. The problems encountered in dealing 
with very fast devices are of an entirely different 
nature, and will be discussed in this section. 

Fast peripheral devices may be classified into two 
categories: those that are capable of operating at less 
than their maximum speeds, and those that are not. 
The former class of devices are sometimes called asyn­
chronous or non-periodic devices, and can deliver data 
on request from the computer. The latter class of 
devices are called synchronous or periodic devices, 
since their data transfer rate is synchronized to some 
external timing mechanism over which the computer 
has no control. An example of such a device would be 
a magnetic tape reader. To operate properly, the tape 
must move by the reading head at a constant velocity, 
and the device is not capable of starting and stopping 
within a block of recorded data at the command of the 
computer. 

Whether a device is classified as medium-speed or 
high-speed may also depend not on the device itself, 
but on the application. For example, we might have a 
digital voltmeter (DVM) that is capable of taking 
readings at the rate of 5000 readings per second. This 
DVM is not synchronized to any external clock, but 
simply delivers a reading each time the computer asks 
for one. The fastest way to read and process data from 
this device would be to use a simple read statement! In­
terrupt would be of no use, since its primary intent is to 
avoid the wait time associated with slow devices. But 
this device is sufficiently fast that the computer spends 
little or no time waiting for it to come ready. But what 
if, on the other hand, we are trying to take 
measurements of a fast event (for example, measuring 
camera shutter speeds or rate constants of chemical 
reactions) whose duration is only a fraction of a 
second? What if the situation requires that many 
readings be taken in a very short period of time, and 
this transfer rate is faster than the natural speed of the 
read statement? 
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The read statement is required to perform several func­
tions which include gathering the raw data (the byte or 
word sequence exactly as it comes from the device), 
doing any specified conversions and formatting, putting 
the data into the internal machine representation, and 
locating the destination variable for final storage. All of 
these are time-consuming operations and contribute to 
determining the "natural input speed" of the read 
statements. If only the raw data could be gathered and 
the processing put off until a later time, the actual data 
collecting process could proceed at a much faster rate. 
This is the principle behind the fast read/write and the 
direct memory access (DMA) modes of operation. 

Input and output using these modes of operation is 
very similar to I/O using interrupt buffers as described 
in previous sections. For output, the data is first placed 
in the buffer using the wrt or wtb statements; the tfr 
statement then initiates the output of the data in the 
buffer to the device. For input, the tfr statement is used 
to gather the raw data into the buffer, and then normal 
red and rdb operations are used to read the data from 
the buffer. The transfer process is automatic and handl­
ed entirely by the I/O ROM. A third parameter in the 
"buf" statement which sets up the original buffer tells 
the I/O ROM which method of transfer is to be used. 
The table below gives the five buffer types and their 
meanings. 

Buffer Types Words Bytes 

Interrupt Type 0 Type 1 

Fast Read/Write Type 2 Type 3 

DMA Type 4 ---

Figure 11-7 

In the examples used in the previous sections, we 
always specified a type 1 buffer. This informed the I/O 
ROM that we were transfering 8-bit bytes (ASCII 
characters) and that each byte was to be sent or re­
ceived using interrupt. Thus, by simply specifying a 
single type value in the buffer statement, the I/O ROM 
knows which of the three modes of transfer to use 
when a transfer statement is executed, and whether the 
data should be sent and received 8 bits at a time 
(bytes) or 16 bits at a time (words). All three modes 
are identical with respect to the way they are used in 
the program. The only distinction is the method that 
the I/O ROM will use when transfering data between 
the buffer and the peripheral device. 

We have already seen how this transfer is accom­
plished in the case of an interrupt buffer, since we 
wrote programs to simulate the transfer statement using 
interrupt. The fast read transfer operates as follows. In­
itially it is just like an interrupt transfer. A buffer is set 
up (specifying type 2 or 3) and a transfer statement is 
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executed. As before, the I/O ROM demands the first 
data item from the device and enables the interface to 
interrupt when it is ready. The rest of the program then 
continues while waiting for the interrupt. Up to this 
point there is no difference between an interrupt 
transfer and a fast read. But once the first data item is 
ready, the I/O ROM stays in a tight loop of machine 
language code and gathers the subsequent data items 
as fast as it can. The processor stays in this tight loop 
until the transfer is completed. During this time, no 
lines of high-level (HPL) program are being executed, 
and no other interrupts from other interfaces will be 
acknowledged. In essence, the computer has dedicated 
itself to the data transfer process to obtain maximum 
speed. Once the transfer operation is complete, the 
computer resumes normal operation. If the program 
had executed an "oni" statement for this select code, a 
branch to the specified service routine will be per­
formed when the end of the current line of the pro­
gram is reached. As in the case of an interrupt transfer, 
this informs the program that the transfer is complete 
and allows it to read the information out of the buffer 
and process it. 

For extremely high-speed requirements, the 98032A 
16-Bit Parallel Interface offers an even faster transfer 
mode known as DMA, or direct memory access. This 
mode always transfers 16-bit data items. As a result, 
there is no buffer type 5 (DMA/Byte buffer). A 
DMA/Word buffer (type 4) is used in the same way as 
interrupt and fast read/write buffers. During the actual 
transfer process, however, each time the device is 
ready for the next data item the interface interrupts on 
a special DMA Request line. The next item is 
transfered into or out of the buffer by the processor 
itself, and not even the I/O ROM is involved in this 
process. The fact that the processor itself handles the 
data transfer is the source of the speed of the DMA 
operation. Some lack of versatility, however, is the 
price paid for this speed. The processor can only sup­
port 16-bit transfers, and only buffers of a known size 
can be used. As a result, when filling a DMA buffer 
from a device the program cannot specify a terminating 
character. The processor must be told exactly how 
many words to transfer. 

5. User Programmed Service 

Routines 
The tasks that a computer performs in which interrupts 
may be useful fall into two major categories: data 
transfers and everything else. The task of sending or 
receiving data is usually a well-defined process that can 
be specified by a small number of parameters; namely, 
how much data there is, where it is located, and the 
type of transfer to be performed (i. e., interrupt, fast 
read/write, or DMA). 



If the interrupt is for a purpose other than simple data 
transfer, the scope of the tasks to be performed is so 
large and varied that it would be extremely difficult to 
provide pre-programmed (i.e., ROM) service routines 
to handle even a small portion of these tasks. As a 
result, provisions were made to allow the user to write 
the service routines required, using the same high-level 
language in which the rest of the program is written. 
Thus the service routines can perform any operations 
and execute any statements that can be done in the 
background (non service routine) segments of the pro­
gram. 

Most of the interface cards only have one interrupting 
condition, and that is when the flag line indicates that 
the peripheral device is ready for another operation. 
Since this flag line is usually used in conjunction with 
data input and output, the associated user-written ser­
vice routines are then used to specify what action is to 
be taken when a data transfer operation has com­
pleted. An example of this type of service routine was 
given in Section IIB3. 

As a further example, consider a computer with a 
digitizer and a plotter attached. Each time a point is 
entered through the digitizer, we would like this point 
to be plotted, thus giving a hardcopy record of the 
points that were entered. In the meantime (i.e., while 
the program is waiting for the next point to be digitized) 
we would like the program to be performing some kind 
of analysis on the points that have been entered. The 
follOWing program is an example of how that task could 
be performed using interrupt and a user-written service 
routine. 

4: dim X[500], Y[500] 
5: buf"dig",14,1 
6: ani 4, "new point" 
7: 0- N 
8: tfr 4, "dig" 

85: "new point": red "dig", X, Y 
86: tfr 4, "dig"; pit X,Y 
87: X - X[N+1-N]; Y - Y[N] 
88: iret 

In this program we dimension the X and Y arrays to 
hold up to 500 pairs of X, Y coordinates. A buffer 
called "dig" is set up to be 14 characters long and to be 
a type 1 (interrupt, byte) buffer. Having speCified the 
location of our service routine as "new point" and in­
itialized a counter, N, to zero, we then start a transfer 
operation from the digitizer (SC=4) to the buffer. Since 
we know that the digitizer always delivers its readings 
as a 14-character ASCII sequence (±XX.XX,±YY.YY 
LF) it is not necessary to specify any terminating condi­
tions in the tfr statement. When an input buffer fills, 
this will also serve to terminate the transfer. 
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Each time a new point is digitized, the buffer transfer 
completes and a branch to the service routine is made. 
In this case, the service routine reads the X and Y 
values out of the buffer and immediately starts another 
transfer operation in order to be ready to receive the 
next point as quickly as possible. Before leaving the 
service routine, the values just read are placed in the 
next available position in the X and Y arrays as in­
dicated by the pointer N. lines 9 through 84 of the 
program would contain statements to perform the 
desired analysis of the digitized pOints, using the value 
of N to determine how many values in the X and Y ar­
rays represented valid data. 

Some applications may require the use of interrupt and 
a user-written service routine that has nothing to do 
with data input! output. For example, the computer 
might be connected to a remote temperature sensing 
device in a chemical processing operation. Normally, 
the computer is performing routine control functions 
throughout the rest of the system. But if the 
temperature in a critical location becomes too high, the 
sensing device would like to interrupt and have the 
computer make the necessary adjustments. Assume 
that the senSing device has an output line that is in one 
state when the temperature is normal, and goes to the 
other state when the temperature exceeds the normal 
operating range. This line could be connected to the 
flag line of the interface and the logic level jumper set 
to indicate busy in the normal range, and ready outside 
of this range. The following program would then be 
used. 

10: ani 2, "too hot" 
11: eir2 

93: "too hot": 
(program to adjust the temperature) 

98: iret 

In the previous examples, the branch to the service 
routine was caused by the completion of a tfr state­
ment. In this case, the statement in line 11 specifies 
that interrupt should be enabled on select code 2 (the 
temperature sensor). Initially the temperature is within 
range and the flag line on the interface indicates "busy" 
or a zero. If the temperature goes out of range, we 
have wired the interface and sensor in such a way that 
the flag line will indicate "ready" or a one. This will 
cause the interface to interrupt the processor. The I/O 
ROM will detect this interrupt and cause a branch to 
the "too hot" service routine. 

In the previous examples of data transfer operations, 
we did not use the enable-interrupt statement, since the 
transfer statement automatically enables and disables 
interrupts from the interface at the proper times in the 
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data transfer sequence. Normally, a program would 
use either a "tfr" or an "eir" statement for a given 
select code, but not both. (For an exception, see Sec­
tion IllES.) 

It is important to notice that it is the computer and not 
the peripheral device that initiates an interrupt process. 
The program must first establish a service routine, and 
then enable the interface to interrupt. When the actual 
interrupt is generated, it is merely signaling the comple­
tion of the process that was started by the computer. In 
the case of data transfer, the interrupt indicates that the 
last item sent or received is completed, and that the 
device is ready for another one. In the case of service 
routines which are accessed through the "eir" state­
ment, the interrupt indicates that the condition which 
was specified as an interrupting condition has occured. 
Unless the computer has initiated the entire interrupt 
process, it will have no idea what to do when the inter­
rupt is received. Thus, one should never think in terms 
of a peripheral device issuing an interrupt independent­
ly of the program which is controling that device. 

6. Interrupt Priorities 

Up until now, we have discussed interrupts from one 
interface at a time. When more than one interface is 
operating under interrupt, it is possible that two or 
more of these interfaces might generate interrupts at 
the same time. In this case a system of priorities must 
be established that will determine the order in which 
the service routines are performed. 

Before discussing the rules that determine these 
priorities, it is important to have a clear picture of the 
various operations that use interrupt, and the parts of 
the system that handle each of these operations. 

Figure 11-8 

As mentioned in the last section, the peripheral device 
does not itself generate any interrupts to the computer. 
It merely indicates to the interface card on the 
peripheral-flag (PFLG) line that it is ready for more 
data or that a condition wired into the PFLG line is 
true. It is up to the interface to translate this signal into 
an interrupt if it has been enabled to do so by the pro­
gram using an "eir" or a "tfr" statement. Let us follow 
the sequence of events that occur in each of the four 
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possible cases: eir, interrupt buffer, fast read/write 
buffer, and DMA buffer. 

If a service routine has been set up (using the "oni" 
statement) and an "eir" statement is executed, this 
enables the interface to generate an interrupt request 
whenever the PFLG line indicates true. The processor 
is normally executing machine language (also called 
assembly language) instructions which are carrying out 
the operations specified by the lines of the user's HPL 
program. When this interrupt is received, the processor 
suspends execution of the machine code sequence it 
was in, and branches to another block of machine code 
in the I/O ROM called the ROM service routine. This 
ROM service routine must decide whether or not a 
transfer is in progress with the interface that generated 
the interrupt. In this case it is not, so the ROM merely 
logs in the fact that the interrupt occured and allows 
the processor to resume execution of the code it was 
working on before the interrupt came in. It also disables 
the interface so that it will not continue interrupting, 
since the interrupt has been noted and logged in. 
When the end of the current line of the user's program 
is reached, the I/O ROM is again given control by the 
processor. At this time it detects that the interrupt has 
been logged in, and so it forces a branch to the user's 
service routine. Notice that all that took place at the 
time of the interrupt was the log-in procedure, and that 
this happened immediately. The branch to the user's 
service routine happened later, and was the result of 
that select code having logged an interrupt and the end 
of the current program line being reached. 

When a transfer statement is executed using an inter­
rupt buffer (type 0 or 1) the I/O ROM starts the first 
data item transfer and enables the interface to interrupt 
when the PFLG line again indicates ready. The pro­
cessor is then allowed to continue execution of the pro­
gram. Each time the device becomes ready, the inter­
face generates another interrupt to the processor. The 
processor branches to the ROM's machine language 
service routine which detects that a transfer is in prog­
ress, and sends or requests the next data item. When 
the transfer is complete, the I/O ROM looks to see if 
an "oni" statement has been executed for this select 
code. If it has, the ROM logs in an end-of-line branch 
request, just as in the previous "eir" case; and at the 
end of the current line of the user's program, a branch 
to the user's service routine is forced. 

A fast read/write transfer operates in the same way, 
except that after the interrupt on the first data item, the 
ROM does not return control to the processor but 
keeps control until the entire buffer is transferred. Dur­
ing this time, the processor is not executing any of the 
user's program and is not acknowledging any other in­
terrupt requests from other interface cards. The 
machine is essentially dedicated to the transfer process. 
When the transfer is complete, a request to branch to 



the user's service routine is logged in if an "oni" state­
ment was executed previously, and control is returned 
to the processor. 

In the final case of a DMA transfer, the situation is 
somewhat different. When the transfer statement is ex­
ecuted, the I/O ROM first requests that the processor 
grant it use of the DMA resource. Since there is only 
one DMA channel, if it is already in use, the I/O ROM 
must wait until it is free. When the DMA channel is 
granted, the I/O ROM informs the processor which in­
terface will now use it, what area of memory is to be 
used, whether an input or output operation is to be 
performed, and how many words are to be transfered. 
The ROM then enables the interface for a DMA 
transfer and returns control to the processor. Now each 
time the peripheral device comes ready, the interface 
does not generate an interrupt but reponds on a special 
DMA request line (DMAR). This line causes the pro­
cessor to send or receive one more word of data using 
the area of memory previously specified by the I/O 
ROM. These data transfers are handled entirely by the 
processor and the I/O ROM is not involved. When the 
transfer is complete, the processor informs the interface 
card of this fact, and the interface then generates a 
normal interrupt. This time the ROM service routine is 
called giving it a chance to log in an end-of-Iine branch 
request if an "oni" statement has been executed for this 
select code. 

Thus, there are two kinds of interrupts: a true inter­
rupt generated by the interface to the processor and 
serviced by the 1/ 0 ROM, and a pseudo-interrupt 
generated by the I/O ROM at the end of a program 
line to force a branch to the user's service routine. We 
often speak of "generating an interrupt to the user's 
service routine", although in reality this is not a true in­
terrupt but merely a program branch. This distinction is 
important since the two types of interrupt are complete­
ly independent of each other in the matter of interrupt 
priorities. 

We will first look at the priorities for the true (interface 
generated) interrupts. This type of interrupt is also 
called hardware interrupt. These interrupts are assigned 
two levels of priority according to the select code of the 
interface that generates them. Select codes 0 through 7 
are assigned a low level priority, and select codes 8 
through 15 are given a high level priority. These levels 
are also called 1 (low) and 2 (high). We can also think 
of the processor as operating on a given level at any 
time. If it is executing machine code to carry out lines 
of the user's program, we say that it is operating at 
level zero. When a low level interrupt comes in and the 
I/O ROM is in a machine-language service routine 
(i.e., transfering data or logging in an end-of-line 
branch request) the computer is operating at level 1. If 
the I/O ROM is in a machine-language service routine 
for a high-level interface, the computer is operating at 
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level 2. Thus, each interface has a priority level (1 or 
2) depending on its select code, and the computer is in 
a certain state (0, 1, or 2) depending on whether it is 
executing the user's program lines or an I/O ROM ser­
vice routine. We can now state the rule for hardware 
interrupts as follows: A hardware interrupt request will 
be granted by the processor if the level of the interrupt 
is greater than the current state of the computer. If the 
interrupt level is less than or equal to the current state, 
the interrupt will not be granted until the state becomes 
less than the interrupt level. Stated in other words, a 
low level interrupt has priority over the user's program, 
but not over a high level or another low level service 
routine. A high level interrupt has priority over 
everything except another high level service routine. 

Completely independent of this priority scheme for 
hardware interrupts, there is a set of priorities for 
branches to user service-routines, or software inter­
rupts. This scheme was designed to parallel the priority 
scheme used for hardware interrupts. Again we can 
define a low level (level 1) end-of-Iine branch request 
as one whose destination is a user service routine for 
select codes 2 through 7. (Note that select codes 0 and 
1 are for internal devices and cannot have user service 
routines.) A high level (level 2) branch is associated 
with select codes 8 through 15. We can also define the 
program state as 0 (not in a user written service 
routine), 1 (executing lines in a low level user service 
routine) or 2 (in a high level user service routine). At 
the end of each line of the program, if an end-of-Iine 
branch is logged in whose level is higher than the cur­
rent program state, a branch to that service routine will 
be performed. Otherwise, program line branching will 
continue normally. If at the end of a program line, two 
or more branches are logged in on the same level, and 
that level is higher than the current program state, the 
one corresponding to the higher select code will have 
its user service routine executed first. 

As an example, assume that the program is executing a 
user service routine for select code 3. During one line 
of this routine, select code 9 logs in for end-of-Iine 
service, followed by select code 12. When the end of 
the current line is reached, control will be given to the 
service routine for select code 12. Notice that even 
though 9 logged in before 12, both branches were 
pending by the time the end of the line was reached 
and the one with the higher select code got service 
first. Thus two branch requests logged in during the 
same line of the program are considered to have come 
in simultaneously. When the "iret" statement for service 
routine 12 is encountered, the program drops from 
state 2 back to state 1. Since a level 2 branch for select 
code 9 is still pending, it will get service next. 

Now. let's say that while service routine 9 is executing .. 
an end-of-Iine branch is logged in for select code 6. 
When service routine 9 executes its "iret" statement, 
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the program state again drops from 2 to 1. We still 
have to finish the service routine for 3 and do the ser­
vice routine for 6. Even though 6 is a higher select 
code than 3, we will finish the service routine for 3 
before branching to the service routine for 6. This is 
because 6 has a level 1 priority and the program is in 
state 1 (or higher) until service routine 3 executes its 
"iret" statement. 

During all of this processing of user written service 
routines, if true (hardware) interrupts had occured they 
would have been serviced by ROM service routines 
according to the set of hardware priorities, in­
dependently of what user level service routines were in 
progress. That is, all lines of the user's program 
(background job, low level and high level user service 
routines) are the same as far as determining the pro­
cessor state is concerned. Alternatively, we may say 
that hardware interrupts have priority over all levels of 
software interrupt. 

c. Special Programming 
Topics 

1. Formatting the Internal Printer 

and Display 
Normally, all output to the 9825's internal strip printer 
is done using the print (prt) statement, and the internal 
32-character LED display is accessed through the 
display (dsp) statement. While these two statements are 
sufficient for most applications, they provide minimal 
flexibility in formatting the output data. 

For this reason, provision was made in the General 
I/O ROM for writing to the internal printer and display 
as though they were external devices using the stan­
dard write (wrt) statement. This also allows reference to 
a format statement for complete format control of the 
output data. 

Physically, both devices are on select code zero and 
are distinguished by whether the data is output through 
the R4 or the R6 interface register. (For more details, 
see Appendices). For user convenience, the I/O ROM 
allows them to be addressed as select code 0 for the 
display and select code 16 for the printer. Thus a 
statement "wrt 0, .... " would send the data to the 
display and a statement "wrt 16 ..... " would send 
data to the printer. In reality. there is no select code 16: 
but when the I/O ROM sees this select code. it under­
stands that the data is to be sent to the strip printer. 

Because data for the internal printer and display is buf­
fered inside the 9825, they do not always behave in 
the same way one would expect external peripherals to 
behave. In particular, this unexpected behavior occurs 
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whenever a line to be printed or displayed is built up in 
pieces. For example, assume that a calendar date is 
entered as 6.16 and I want to print it as "June 16". If I 
were sending it to a peripheral printer I could use the 
program: (where X = 6.16, the date) 

10: int(X)-+M; 100frac(X)-+D 
11: if M=1; wtb 6, "January" ;gto 23 
12: if M=2; wtb 6, "February"; gto 23 

22: IF M=12; wtb 6, "December" 
23: wrt 6, D 

One of the wtb statements in lines 11 through 22 is ex­
ecuted, based on the value of the month, M. But since 
the wtb statement does not automatically issue a 
CR/LF, the entire line is not printed until the wrt state­
ment on line 23 is executed. Then the date "June 16" 
is printed. If the printer were a typewriter-like device 
(e.g., the 9871 Printer) the user would see the month 
name printed when the wtb statement was executed, 
and the day number printed when line 23 was en­
countered. If the printer were a line-printing device 
(e.g., the 9866 Printer) which accepts and buffers 
characters received until a line-feed is received, and 
then prints the entire line at once, no output would be 
seen until line 23 is executed. 

If in this same program the select code were changed 
from 6 to 16 (the internal strip printer), only the "16" 
would be printed and the "June" would not be! Even 
more mysterious, if I executed the statement" wtb 16, 
"HELLO" " from a program, nothing appears on the 
strip printer. And if I execute the same statement from 
the keyboard, the message "HELLO" appears not on 
the printer but on the display! 

All of these results are easily understood if we look at 
how data is sent to the internal printer and display. 
Part of the 9825's memory is set aside as a buffer for 
both the printer and the display. A dsp statement puts 
the data into this buffer and then sends it to the 
display, while a prt statement puts the data in the same 
buffer and then sends it to the printer. In the same 
manner, a wrt or wtb to select codes 0 or 16 also puts 
the data in this buffer and only when a LF character is 
sent is this data routed to the printer or the display, 
depending on whether the select code was 0 or 16. 
Each time a wrt or wtb statement is executed, it does 
not know whether the data in the buffer is "current" 
data, or merely something left over from a previous prt 
or dsp statement; so it starts at the beginning of the 
buffer. Thus, in the first example, the wrt statement in 
line 23 destroys the previous information (i.e., "June") 
that was in the buffer, and only the 16 is printed. In 
the second example, the wtb 16, "HELLO" never 
generated a LF and so the buffer was never sent to the 



printer. This is also the case when the same statement 
was executed from the keyboard. This same buffer, 
however, is also used to display calculated results, and 
is automatically displayed after each line is executed 
from the keyboard. For example, if I type in "2+2" and 
press the execute key, the result of 4 is placed in this 
buffer and then displayed. Thus, when I executed the 
wtb 16, "HELLO", there was no LF to cause it to be 
sent to the printer, but the data was still in the buffer 
and automatically displayed after the statement execu­
tion. 

The practical result of this, then, is that each line to be 
displayed or printed on the internal devices must be 
generated entirely by a single wrt or wtb statement. 
And if the wtb statement is used, a LF character 
(decimal value 10) must be included. In the above ex­
ample, using the statement 

wtb 16, "HELLO", 10 

would have produced the expected result. 

2. Interface ID and Card Types 

Each of the HP 98030 series of interface cards has 
unique characteristics suited for the needs which they 
were designed to satisfy. As a result, even though they 
can all be described by the same register model as 
presented in an earlier section, the specific use of these 
registers and the order in which they are addressed will 
differ from one card to the next. For example, when 
data is read into a buffer under interrupt, the exact se­
quence of R-register operations will differ slightly 
depending upon whether the data is coming through a 
98032 GPIO card or a 98034 HP-IB card. For this 
reason, the input driver (i.e., ROM instructions for 
reading from the interface) must be able to distinguish 
among the various interface types. 

In order to do this, two bits of the status byte (R5-in) 
have been assigned as identifier or ID bits. These are 
bits 5 and 4 of the status byte and have the following 
meaning. 

Card ID Bits 
Type 5 4 Interface Card Type 

0 0 0 None (no interface on this select code) 
1 0 1 Serial I/O Interface (98036) 
2 1 0 Gen Purpose Card (98032,98033,98035) 
3' 1 1 HP-IB Interface (98034) 

Figure 11-9 

As the table shows, most interface cards are type 2 and 
all use the same protocol or register access sequence. 
The HP-IB interface is different and requires a special 
protocol that allows it to perform the wide variety of 
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bus functions. Although the Serial I/O card is func­
tionally the same as the type 2 cards, giving it a unique 
interface 10 type allows it to be distinguished from the 
others. This makes it possible for the Systems Program­
ming ROM to "find" the Serial I/O card during the 
power-on operation and consequently to "wake up" 
with a remote keyboard on that interface enabled. (The 
Systems Programming ROM Operating Manual 
discusses remote keyboard operation.) 

If the 10 bits are both zero, this identifies a so-called 
empty slot; that is, there is no interface set to the 
specified select code. This means that all properly­
operating interface cards of the 98030 series will never 
return a value of zero for the status byte since at least 
one bit of the status byte is always a one. 

3. Using Strings as Buffers 

As explained in the 9825 Extended I/O ROM manual, 
strings may be used as buffers. This feature was provid­
ed primarily to allow buffers to be filled from an exter­
nal device, recorded on tape or disc, and then reload­
ed at some later time for processing. This procedure is 
used when the data gathering must be done as quickly 
as possible, and the processing can be done at a later 
time. 

Since the string variable and the buffer share the same 
data area, this also offers the user two means of ac­
cessing the data; one through the normal buffer opera­
tions (red, wrt, and tfr) , and another through the string 
manipulation operations. These two methods of access 
are, however, entirely independent of one another, 
and confusion can result unless the user understands 
the operations of each mode of access. 

To use a specific example, we will execute the dimen­
sion statement" dim A$[100] ". Figure 11-10 shows the 
internal representation of this string in the data value 
area of the memory, which consists of two parts. The 
string data area itself is a block of 50 words (one word 
= 16 bits, or two bytes), each of which can store two 
characters of the string. In addition, the dimension 
statement sets aside a "string organization data" area 
consisting of four' words. This organization area 
includes the number of words used by the string 
(SIZE), the dimensioned length of the string (OLEN), 
and the current length (CLEN) or the number of 
characters actually being used at any given time. In our 
example, SIZE = 54 words, OLEN = 100 characters, 
and CLEN = 0 since we have not yet assigned any 
characters to the string. 

• These ID bits are contained in the R5-in register which is not the register 
through which Hp·1B status bytes are received. As a result. the user will not see 
the lD bits for the HP-1B card when the rds function is executed. See the 
description of the HP-1B card for more details. 

*For string arrays this area is greater than four words. Only simple (i.e., one­
dimensional) strings, however, can be used as buffers. 

I 
I 
of-

I 
I 

I 

I 
I 

I 
I 
-' 

I 
I 

I 



I 

I~ 
I 
I 
I 
I 
I 
I 
I 
I~ 

I 
I 
I 
I 
I 
I 

I,.. 
I 
I 

If we now execute the statement" buf "data", A$, 1 ", 
we are specifying that we want to set up a buffer to be 
referenced by the name "data", that it is to use the 
same memory location as the string A$, and that it is 
to be a byte/interrupt buffer. (See the 9825 Extended 
I/O ROM manual for buffer types.) 

To use this area as a buffer also requires an area for 
organization data to contain such information as the 
buffer type, fill and empty pointers, current buffer size, 
etc. This area could be placed in another part of the 
memory; but then if the string/buffer were recorded 
and reloaded at a later time, this information would be 
lost. Therefore, when the "buf" statement is executed, 
8 words (16 bytes) are taken off the end of the string 
data area and converted into an area for buffer organ­
ization data (see Figure II-lO). Now when this string/ 
buffer is recorded, this buffer organization data is 
recorded with it. To prevent normal string operations 
from overwriting this buffer data area, the original 
dimensioned length (OLEN) is shortened by 16 
characters when the buf statement is executed. The 
current length (CLEN) is also set to the new dimen­
sioned length to allow the user to look at the entire 
buffer. 

Before ··but"· statement After "but"· statement 

STRING 
ORGANIZATION 

DATA 

Ch 1 Ch 2 

Ch 3 Ch 4 

Ch 99 Ch 100 

A 

#WORDS ~ 54 
DLEN ~ 100 
CLEN ~ 0 

STRING 
ORGANIZATION 

DATA 

Ch 1 Ch 2 

Ch 3 Ch 4 

Ch 83 Ch 84 

BUFFER 
ORGANIZATION 

DATA 

B 

Figure 11-10 

#WORDS ~ 54 
DLEN ~ 84 
CLEN ~ 84 

It is important to realize that no string operations will 
modify the counters and pointers in the buffer organiza­
tion area and, after the original setup via the "buf" 
statement is complete, no buffer operations will modify 
any of the string organization area again. These are 
two entirely independent sets of operations! 

Some examples will serve to clarify this point. Assume 
that we have an empty buffer which is also a string, 
and that the current length of that string is also zero. 
We now execute and complete a transfer statement 
from a peripheral device that places 10 characters in 
the buffer. We can verify this by reading the status of 
the buffer which returns a value of 10. But if we ask 
for the current length of the string, it is still zero. If we 
now execute the statement" "ABCD" -A$ ", we will 
find that the length of the string is now 4, and the 
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status of the buffer is still 10. And we have also re­
placed the first four characters that came in from the 
peripheral device by the characters "ABCD". 

Being able to access the same data area as a string or 
as a buffer provides considerable power for 
manipulating data. And confusion can be avoided by 
keeping in mind the structure of the string/buffer as 
shown in the figure, along with the fact that the two 
sets of operations are independent. 

The structure of a string buffer must also be kept in 
mind when recording buffers to the cassette. Take, for 
example, the following program segment which 
transfers data into a string/ buffer and records the 
buffer on the cartridge for later processing. 

10: dim A$[1016] 
11: buf "data", A$, 1 
12: ani 3, "done" 
13: tfr 3, "data" 

57: "done": ref 7, A$; iret 

Since the string, A$, was recorded as a buffer, it must 
be reloaded as a buffer. That is, a string must be 
dimensioned the same size as in the recording program 
(1016 in this example) and declared a buffer of the 
same type before an attempt is made to reload the buf­
fer ( ldf 7, A$ ). Because of the structure of the string 
and the buffer pointer areas, any other method of at­
tempting to reload the string/buffer will result in an er­
ror. 

4. Buffer Use Outside of the I/O 
Process 

Although the intended use of buffers is primarily for 
transfers to and from peripheral devices, they may also 
be used for non-I/O programming operations that 
would otherwise be more difficult or impossible. 

As one example, consider that I have a list of people's 
names to be sorted alphabetically, and that these 
names are contained in a string array N$[100,40], 
allOwing for 100 names of up to 40 characters each. 
The usual sorting algorithm uses a string comparison 
operation such as 

if N$ [J] < N$ [I] : . 

This "less than" comparison is done on a character-by­
character basis using the ASCII value of each 
character. Thus, O'shey would come before Obermann 
in the sorted list, and a name like deLoach would be 
sorted to the end of the list since in the ASCII set, 
lower case letters have higher values than upper case let-



ters. We would like to do a sort based on an ordering 
of the ASCII character set of our own choosing. The 
sort routine could be modified to do the character-by­
character comparison itself, along with a table of the 
preferred character ordering, but this would result in a 
lengthy and slow-running program. The following pro­
gram using buffers and the conversion table capability 
(see 9825 Extended I/O ROM manual) would ac­
complish the same task much more simply. 

10: buf "name", 42, 1 

25: for I = 1 to 100 
26: ctb1 A$; wrt "name", N$[I]; ctbl 
27: red "name", N$[I] 
28: next I 
29: gsb "sort" 
30: for I = 1 to 100 
31: wrt "name", N$[I] 
32: ctbl A$; red "name", N$[I]; ctbl 
33: next I 

In this program a buffer called "name" is set up as a 
byte-type buffer that is 42 characters long. Note that 
we could also have used a type 3 buffer (a fast 
read/write byte buffer) since we have no intention of 
ever transferring the buffer in an I/O process to a 
peripheral. Since each name can be up to 40 
characters long, we make the buffer size 42 to allow for 
the CR/LF that will be generated automatically by the 
wrt statement. 

Now, for each name in the array, N$, we turn on a 
conversion table, A$, that has previously been set up 
to contain the ASCII character set in the proper order 
for our particular sorting job. We then write this name 
into the buffer, thus mapping each character into some 
other character as determined by the conversion table. 
Finally, we turn off the conversion table and read the 
contents of the buffer back into its original location in 
the string array. This is done for each name in the ar­
ray N$. If we were to go in and look at any of the 
names in N$ at this point, we would probably not 
recognize them since each character has been 
transformed into some other character. But these new 
characters now have the proper values for correct sort­
ing. After returning from the simple sort routine, we 
repeat the same process in reverse to unscramble the 
names back to their proper readable form. 

It is interesting to note that a similar scheme could be 
used for scrambling and unscrambling messages in 
order to generate cryptographic ciphers. 

Another useful application of buffers is as a simulator of 
a peripheral device. For example, assume that I have a 
computer service that sends me financial data which 
might look like "Loan amount of $25,000 at 8.5% in-
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terest". From this message I would like to extract the 
amount and the interest rate. But I am not sure just 
what format statement to use to extract those two 
values from the entire message. I could try a format 
statement and keep calling up the time-share service 
until I get it right. Or I could simply write the known 
form of the message to a buffer, and then read it back 
using read and format statements until I had the correct 
format statement. Thus, the buffer can simulate input 
from a peripheral device for the purpose of program 
development without actually having to have the 
device connected. I simply pre-load the buffer (using 
the wrt statement) with the information the peripheral 
would actually send during the read operation. 

Other uses of buffers for general programming are 
limited only by the imagination of the user. 

5. The Use of the Control Register 

In the sections dealing with the interface cards 
themselves, we will see that the R5 OUT control 
register is used to access the programmable capabilities 
contained on those cards. For example, the control 
register of the 98032A Interface is used (see Section 
IIIBl) to reset the card, turn on and off the interrupt, 
DMA, and auto-handshake options, and to set and 
clear the two user-defined control bits. The HPL 
language provides three statements for output to this 
control register; namely, the write control (wtc), the 
enable interrupt (eir), and the write interface (wti) 
statements. Each of these statements has slightly dif­
ferent operational characteristics which will be discussed 
in this section. These characteristics are summarized in 
the table below. 

STATEMENT 

wtc 

eir 

wti 

ROM 

General 110 
Extended 110 
Extended I/O 

MASKED IMMEDIATE SAVED 

yes 
no 
no 

yes 
no 
yes 

no 
yes 
no 

The write-control statement is the only means of ac­
cessing the R5 OUT control register on the interface 
without the Extended I/O ROM. Because this register 
is used to enable such functions as interrupt and DMA, 
a user having only the General I/O ROM could, using 
this statement, aCcidentally turn on one of these 
capabilities and not have the necessary tools (contained 
in the Extended I/O ROM) for handling the actions 
that would be initiated. For this reason, the byte 
specified in the wtc statement to go to the control 
register is masked so that bits 7, 6, and 4 (which access 
these extended capabilities) are set to zeros. The main 
use of the wtc statement is to reset an individual inter­
face card to its power-on state, and to set and clear the 
user-defined control bits in non-interrupt types of ap­
plications. 
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When the Extended I/O ROM is present, the program 
may take advantage of the interrupt capability of the in­
terface cards. In this case, the enable interrupt (eir) 
statement is used to allow the card to interrupt when it 
finishes the last operation and again comes ready. For 
example, if we were to do something to make the in­
terface go busy, and then execute the statement" eir 
6 ", the interface on select code 6 would interrupt 
(and be sent to the user's service routine by the I/O 
ROM) when the operation was completed and the card 
came ready. Since we did not specify the control byte, 
the default value of 128 was used, which set only the 
interrupt enable bit (see Figure IlIA). If we also wanted 
bit 0 set (CTL0), we would have used instead 
" eir 6, 129 ". 

When data buffers are being transferred using the tfr 
statement, the eir statement is not normally used. That 
is, the I/O ROM automatically takes care of setting and 
clearing the interrupt-enable bit at the appropriate times 
during the transfer process. To show the difference be­
tween wtc and eir, let's consider an example where 
data is to be read from a peripheral using an interrupt 
transfer, and where CTL0 is used to set the peripheral 
device into some desired state. That is, if CTL0 is set 
the device will operate one way, and if it is clear it will 
perform in another manner. Suppose then that we ex­
ecute the statement "wtc 6,1" to set CTL0, which is 
the mode we want the device to be in for this particular 
application. If we now execute the tfr statement, the 
I/O ROM will send a 128 to the control register to 
enable interrupt, and as a result the CTL0 bit will be 
cleared causing the device to switch to the other mode 
of operation, which is not the one we require for this 
task. How then do we do the transfer operation 
without losing the setting of the CTL0 bit? 

The eir statement provides the solution. If we had used 
the statement "eir 6,1" to set the CTL0 bit, two things 
would have happened. The control byte (1 in this case) 
would have gone to the R5 OUT control register, just 
as with the wtc statement, and CTL0 would be set. But 
in addition, a copy of this control byte would be saved 
by the I/O ROM. Then, any time the I/O ROM need­
ed to change the state of the interrupt bits, it would 
automatically retain the state of the lower four bits from 
the saved value of the last eir statement to that select 
code. Thus, the setting of CTL0 would remain un­
changed during the entire transfer process. 

It is important to note that while the eir statement is 
primarily used to enable interrupts, here is a case 
where it is not. The "eir 6,1" statement merely set 
CTL0 in such a way that it would be retained by the 
I/O ROM, and did not actually enable the card for in­
terrupt. 

Another difference between the wtc and the eir 
statements involves the time when the control byte is 
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sent to the interface. With the wtc statement, the byte 
is sent immediately. This is also true for the eir state­
ment if the interface is not busy. If a transfer operation 
has begun and not yet completed, and an eir statement 
is executed, the control byte will be saved by the I/O 
ROM but not sent to the interface. On completion of 
the transfer, when the interrupt bit is cleared, this new 
eir byte will be used. For example, consider the follow­
ing program segment. 

15: eir 6,1 
16: tfr 6, "buffer" 
17: eir 6,0 

In this case, CTL0 would be set and the transfer opera­
tion started. Since the transfer is still in progress during 
line 17, the new control byte (zero) is saved but not 
sent. As soon as the transfer is completed, CTL0 is 
cleared when the I/O ROM puts out the control byte to 
disable the interrupt bit. 

The wti statement allows the program direct access to 
the R5 OUT control register. Its action is immediate, all 
bits are accessable, and a copy is not saved by the I/O 
ROM. As a result it should be used with extreme cau­
tion since it is capable of upsetting the fine timing se­
quences that go on during interrupt and transfer opera­
tions. This capability is primarily used by the input/out­
put drivers in the I/O ROM and would rarely be used 
by an HPL level program. 
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A. Interfacing and the 
Computer I/O Bus 

In Section II, we discussed the various methods of pro­
gramming for I/O operations, and treated the inter­
faces themselves as "black boxes" which could be 
described by the register model (R4, R5, R6, and R7). 
All input and output operations were described in terms 
of sequences of reads and writes between the computer 
and the interface registers; and indeed this register 
model is sufficient for writing interfacing programs. In 
the following sections, we will go into more detail about 
the actual structure of the interface cards and how this 
register model is implemented. This information will be 
helpful in actually connecting peripheral devices to the 
interface cards and configuring I/O systems. 

Each of the interfaces has its own installation and ser­
vice manual which contains detailed information about 
the circuits used, the lines available, and the general 
operational characteristics of the card. It is not the in­
tent of this guide to duplicate the information contained 
in those manuals, but rather to describe and give ex­
amples of the intended use of the various capabilities 
that exist on each card so that the user may under-
stand and make maximum use of these capabilities. This 
information should be helpful in deciding which inter­
face card to use in a particular application, and to 
recognize which control features of that interface are 
best suited to serve the needs of that application. 

Of the four interfaces described in the folloWing sec­
tions, the 98032A 16-Bit Parallel Interface is the most 
versatile and general purpose. This is the card used to 
interface many of the current HP peripherals available 
for the desktop computers such as printers, plotters, 
tape punches and readers, card readers, and flexible 
disc drives. It is also the interface that is used most 
often when the user wants to connect his own special­
purpose or customized peripheral into the system. The 
versatility of this card allows it to support a wide range 
of special requirements in interfacing to such devices. 

Many instruments and measuring devices present their 
data in a special format called BCD or binary-coded­
decimal. This format is frequently found in digital 
voltmeters, multimeters, and other measuring in­
struments. The 98033A BCD Interface was specifically 
designed to accept inputs from these devices and to 
convert those inputs into a format that can be read by 
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the computer. Whenever a device with BCD outputs is 
used, this card will usually prove to be the easiest one 
to interface with. 

The task of interfacing a peripheral device to the com­
puter would be greatly Simplified if the use of data and 
control lines, logic levels, connector configurations, and 
operating protocol were standardized. If a group of 
computing controllers and peripheral devices were to 
adopt this standard, then these devices would be "plug 
to plug" compatible; and the job of interfacing them to 
one another would be reduced to simply plugging them 
together. The HP-IB (Hewlett-Packard Interface Bus) 
provides this kind of compatability. The structure and 
the format of the HP-IB has become so popular that 
the Institute of Electrical and Electronic Engineers has 
adopted it as a standard (IEEE 488-1975) and today 
dozens of manufacturers provide hundreds of devices 
which are compatible with that standard. The 98034A 
HP-IB card is also available to allow HP desktop com­
puters to participate on this standardized bus. The sec­
tion of this guide covering that interface goes into more 
detail concerning the intent and the use of the HP-IB. 

A fourth broad area of interfacing deals with data com­
munications. This area is used primarily for information 
exchange between computers over long distances, 
although many applications are found for peripheral 
communications (e.g., remote terminals connected to a 
central computer) and locai computer networks. The 
special requirements of this type of interfacing are 
discussed in the section on the 98036A card which 
provides HP desktop computers with an access link in­
to the area of data communications. 

Before describing each of these four types of interfaces 
in detail, we will first look at that portion of these cards 
which is common to all of them - namely, the edge of 
the card that connects to the computer I/O backplane. 
We saw in Section II how high-level HPL statements 
such as wtb, wrt, red, and tfr are translated by the I/O 
ROM into sequences of read and write operations with 
the interface registers. A special segment of the com­
puter's processor called the I/O processor is responsible 
for converting the machine language instructions which 
address these registers into a set of electrical signals 
which will cause the interface to perform the desired 
operation. These signals are made available to the in­
terfaces at a connector called the computer backplane 
or simply the I/O bus. It is called a bus because many 
interfaces can be connected to it in parallel and all of 



them use the same bus over which to communicate 
their signals. All of the interfaces are connected to this 
bus in a "wire-and" configuration and passively allow 
the line to float high. The one interface that is currently 
selected to put its information on this line allows it to 
remain high if it requires it to be high, or pulls it to 
ground if it requires it to be low. Thus, to the I/O pro­
cessor, it appears as though only the selected interface 
is connected to the bus at the time information is re­
quested from that card. 

The mechanism by which one card on the bus is 
selected to present its information to the 1/ 0 processor 
is called the select code method. Each interface is 
assigned a select code in the range 0-lS. Internal 
devices (keyboard, display, printer, tape cartridge) have 
their select codes preset or "hard wired". External inter­
faces have their select codes set by an externally ac­
cessible rotary switch on the card itself. When the I/O 
processor wishes to communicate with a given inter­
face, it takes the select code parameter from the pro­
gram's HPL statement (e.g., wrt 6, ... ) and converts 
it to a 4-bit binary equivalent (in this example, 0110) 
which it presents on the four peripheral address lines 
(PAO through PA3) to the interface. Only that card 
whose select code switch matches the bit pattern being 
presented on the peripheral address lines will respond. 

But what is the nature of this response? This question 
is answered by looking at the remainder of the lines 
used for communication between the I/O processor 
and the interface. 

The first immediate response is to set the state of the 
status (STS) and the flag (FLG) lines. The status line is 
a 1-bit indicator that tells the I/O processor whether 
the selected interface (and possibly the peripheral 
device connected to it) is operational or not. The flag 
line indicates whether the interface is busy processing 
the last task given to it by the I/O processor, or is 
ready for another operation. (See Section IlIB2.) If the 
status and flag lines are both low', the I/O processor 
may proceed with the next operation. 

As we discussed in Section II, all operations with the 
card are accomplished by writing to or reading from the 
8 interface registers. The I/O processor has 16 data 
lines (DI00 through DI01S) available for this purpose. 
We will see later that some interface cards use all 16 of 
these lines while others may use only 8. Indeed, some 
interfaces may use different numbers of these lines for 
different registers. For example, the 98032A Bit­
Parallel Interface uses all 16 lines for data transfer 
(R4IN and R40UT), but only 8 for taking its control 
byte (RSOUT) and presenting its status byte {RSIN).·· 

Since the same set of data lines are used to exchange 
information between the I/O processor and all eight in­
terface registers, some means is necessary to inform the 

38 

interface which register is being addressed (R4, RS, R6, 
or R7) and whether the required operation is IN or 
OUT. This is accomplished by the IC1 and IC2 lines 
which indicate the register number, and the DOUT line 
which indicates the direction. The table below gives the 
states of the IC1 and IC2 lines used to address the four 
register numbers. 

ICI IC2 Reg# 

H H R4 
L H RS 
H L R6 
L L R7 

Figure III-I 

The DOUT line is high for input (interface to I/O pro­
cessor) and low for output. When the I/O processor 
requests an input from an interface register, the card 
uses the FLG line to indicate when the information on 
the data lines is valid (high = busy, low = ready). The 
I/O processor also needs a means of telling the inter­
face that information on the DIO lines is valid when it 
is conducting an output operation to the interface 
registers. It does this by momentarily pulsing the I/O 
Strobe (lOSB) line low. On this signal, the interface 
routes the information on the DIO lines to the proper 
register and latches it. 

These lines then provide the basic operations of the in­
terface: selecting a specific card, checking that it is 
operational and ready, and exchanging information 
between the I/O processor and the interface registers. 
The remaining lines on the I/O bus are used for im­
plementing special functions. 

The first of these special functions is the ability to in­
itialize the cards. When power is turned on or the 
RESET key is pressed, an initialization line (lNIT) is 
momentarily pulsed low. This tells all of the interfaces 
connected to the I/O bus to reset their latches and flip­
flops to some standard initial state. (This signal is also 
made available on the peripheral side of some inter­
faces so that the attached device is also given a chance 
to re-initialize.) 

Three other lines are used to provide interrupt capabili­
ty. If an interface has been enabled to interrupt on a 
certain condition and that condition occurs, the card 
responds by pulling and holding low either the IRL or 
the IRH line. If its select code is 0-7, it will request a 
low level interrupt on the IRL line; if it is 8-1S, it will 

'Since all lines on the I/O bus use negative·true logic, High = 0 = False and 
Low = 1 = True. 
"Throughout this gUide, the terms in and out are used with respect to the 
computer and not the interface or peripheral. 
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request a high level interrupt on the IRH line. In either 
case, if that level of interrupt is not already in use (see 
Section IIB6) , the I/O processor will poll the interfaces 
to determine which one requested the interrupt. It does 
this by setting the interrupt line (INT) low. During this 
interrupt poll, the PA0 line is used to indicate whether 
the I/O processor is polling the low level interrupts or 
the high level interrupts. During a low level poll, each 
interface responds on the DIO line that corresponds to 
its select code (select code 7 on DI07, etc.) setting it 
high if it was not requesting interrupt and low if it was. 
The I/O processor thus determines which of the cards 
was requesting service. If two or more cards on the 
same level are requesting service at the same time, the 
one with the higher select code will be granted the in­
terrupt first. During a high level poll, each card 
responds on the DIO line that corresponds to its select 
code minus eight (select code 15 on DI07, etc.). 

Finally, a special line (DMAR) is used for the interface 
card to request a DMA cycle if it has been enabled to 
do so by the I/O ROM (see Section IIB6). 

The remaining three lines are for providing electrical 
power to the card. These are the +5 volt supply, a 
ground line, and a shield line. All of the interfaces get 
their power from the computer's main power supply. 
The capacity of this power supply was designed to ac­
commodate the computer itself plus the number of in­
terfaces that can be plugged directly into it. As a result, 
the power supply line on the I/O bus should not be 
used to provide power for any external devices. Doing 
so could result in erratic operation or even damage to 
the computer's power supply circuitry. The logic 
ground line is meant to provide a zero volt reference 
point from which other voltages are measured. This 
logic ground is brought out on the peripheral side of 
the card and should be connected to the logic ground 
line of the attached device so that all signals are 
measured from a common reference point. The shield 
line is provided in order to ground the metal casing 
used in the cable connecting the interface to the 
peripheral, and thus to reduce the amount of radio fre­
quency interference (RFI) emitted. The shield line is 
connected to the logic ground inside the computer and 
should not be connected to the ground or any other 
line on the peripheral. Otherwise, ground loops will be 
created leading to erratic operation. 

Up to now, we have discussed the operation of the in­
terface cards from the computer's I/O bus, and the 
description given is common to all of the interface 
cards. When information is exchanged with the inter­
face registers on the cards, the resulting action at the 
peripheral side of the card depends on which interface 
is being used. Indeed, it is the difference in re­
quirements at the peripheral side that necessitates hav­
ing the various types of interface cards. What these dif­
fering requirements are and how they are implemented 
is the topic of the following sections. 
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B. The 98032A Bit-Parallel 
Interface 

1. General Operational 

Characteristics 
The 98032A Interface is the most versatile, 
general purpose card and is used most often to 
connect the computer to those devices which do not 
conform to some standard format and protocol such as 
BCD or HP-IB. 

It can output data to a peripheral using up to 16 bits at 
a time in parallel, and it can input data from the same 
or a different peripheral over an independent set of 16 
parallel input lines. These input and output lines can be 
further partitioned into two sets of 8-bits each for 
handling special applications. The card can be con­
figured to accept a wide variety of signals from the 
peripheral and indicate when input data is ready or 
output data has been accepted. These and other 
capabilities will be discussed in the following pages. 

There is no restriction on the interpretation to be 
placed on the data being sent or received. If the card is 
being used, for example, to interface to an A/D 
(analog to digital) converter, the bits received would 
probably be interpreted as a binary number whose 
value is proportional to the voltage being measured. 
When interfacing to a printer, the bits would represent 
some alphanumeric character to be printed using some 
code that the printer can recognize such as ASCII. Or if 
the data were being input from a card reader, it would 
simply represent a pattern of ones and zeros corres­
ponding to the presence or absence of punched holes 
or pencil marks at specific locations on that card. It 
would then be up to the program in the computer to 
translate these patterns into meaningful information, 
based on the design of the card being read. As far as 
the interface is concerned, each data item is merely a 
set of 16 bits to be sent or received; and any meaning 
to be placed on that data is based entirely on an agree­
ment between the computer and the peripheral as to 
how they will interpret it. 

In Section III-A we developed a register operational 
model that was general to all of the interfaces. The 
table below gives the specific use of each of these 
registers by the 98032A Interface. 

IN OUT 

R4 Data Input Data Output 
R5 Status Byte In Control Byte Out 
R6 High Byte Data In High Byte Data Out 
R7 (Not Used) Input/Output Trigger 

Figure III-3 



The R4 register is the one through which data is nor­
mally sent and received. In Section III we saw pro­
gramming examples of how this register is used to ex­
change data between the computer and the peripheral 
device. These examples were based on the register 
model of the interface. Later in this section when we 
discuss the handshake process, we will see what actual­
ly takes place on the card when these registers are ac­
cessed. The R6 registers are used on the 98032A 
when it is operating in the optional "byte mode" and 
will also be discussed later. 

The R7 input register is not used by this interface, and 
if an "rdi 7" operation is performed, the result will 
always be a zero. The R7 out register is used to trigger 
either an input or an output operation. The actual byte 
output to the R7 register does not matter. It is the act 
of writing to this register itself that causes the read or 
write operation to be triggered. This register is also 
covered in the following section on the handshake pro­
cess. 

The R5 register is always used as a communication link 
between the computer and the interface itself. The 
98032A has certain modes of operation that are pro­
grammable by the computer. The I/O processor can 
make the card go in and out of these modes by output­
ting specific bit patterns called the control byte to the 
R5 register. The bit assignments for the control byte on 
the 98032A are given in Figure lIlA. 

7 6 5 4 3 2 1 0 

INT DMA RESET AHS X X CTLl CTL0 

INT: 
DMA: 
RESET: 
AHS: 
X: 

CTLl,0: 

Interrupt Enable on FLG=Ready 
Direct Memory Access Enable 
Reset the Card to Its Power-on State 
Auto Handshake Enable 
These bits are not used and may be a 1 or 
aO 
General User-definable Control Bits 

Figure III-4. The 98032A Control Register 

When bit 7 of the control byte is set ( =1 ), the inter­
face is enabled to request an interrupt to the I/O pro­
cessor whenever the FLG line on the card indicates 
ready. We have already discussed in Section III how 
the I/O processor uses this interrupt request to carry 
out data transfer operations with buffers and other in­
terrupt activities. 

Setting the DMA enable (bit 6) programs the card to 
request a DMA access each time the FLG line comes 
ready. Thus we see that the interface will do one of 
three things when the FLG line comes ready. If bits 6 
and 7 of the control register are both zero, the card will 
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merely indicate the ready condition on the FLG line 
but perform no other action. If bit 7 is set, the card will 
request an interrupt. Or if bit 6 is set, it will request that 
another word of data be sent or received via the DMA 
channel. If both bits 6 and 7 are set, the DMA request 
will override the interrupt request until the DMA 
transfer is complete (i.e., the count of words to be 
transfered has been satisfied). When this happens, the 
card will automatically disable DMA, and the next time 
the FLG line comes ready, a normal interrupt request 
will be generated. INT remains enabled until disabled 
by the I/O processor, while DMA automatically 
disables itself when the DMA transfer is complete. 
Since the DMA transfer is a complex operation and is 
handled automatically by the I/O ROM, the user's pro­
gram would rarely set or clear the DMA enable bit. 

The RESET bit (bit 5) is used to return the card to its 
power-on or "wake-up" state. On the 98032A, this 
causes the PCTL handshake line to return to high 
(control not set), and the programmable conditions of 
INT, DMA, and AHS to be cleared or disabled. A low 
pulse is also generated on a peripheral reset line 
(PRESET) so that the attached peripheral device also 
can receive an indication that a reset operation has 
been performed. The action taken on this signal is 
determined by the peripheral itself. For example, the 
9866A/B Thermal Line Printer clears out its built-in 
data buffer when it sees this signal. This reset action 
can also be initiated by the INIT line from the I/O pro­
cessor, which is done whenever the RESET key on the 
9825A is pressed. While the use of the INIT line resets 
all interface cards connected to the I/O bus, the 
RESET bit of the control byte is used to selectively 
reset only one interface card. It should also be noted 
that the RESET bit of the control byte overrides any 
other bits (INT, DMA, AHS) that may be set in that 
control byte. 

Bit 4 of the control byte is used to set a special mode 
of operation called the "auto handshake" mode. In this 
mode, the use of the R7 OUT trigger operation (see 
examples in Section IIA4) is not required. For data out­
put, as soon as the data is placed in the R4 OUT 
register, it is automatically triggered. For data input, 
when the current data item is read from the interface 
data latches (R4 IN), this automatically triggers a de­
mand for the next data item from the peripheral. 
Again, this mode of operation is used primarily by the 
I/O drivers in the I/O ROM and is not something with 
which the user normally need be concerned. 

Finally, the control byte proVides two general-purpose 
control bits called CTL1 and CTL0. These lines are 
made available at the peripheral side of the interface 
card and may be used for whatever purpose and 
meaning the user may wish to assign to them. For ex­
ample, the user may have designed an input device 
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which can either deliver a data item whenever the pro­
gram requests one, or when an operator at the device 
presses a GO button. If the device were designed to 
switch between these two modes of operation based on 
the state of a control signal externally supplied to that 
device, one of the two control lines (CTLI or CTL0) 
could be connected to the external control line on the 
peripheral so that the mode of operation could be 
selected by the computer program. Other examples of 
the use of these control lines will appear later in this 
gUide. 

There are three ways that this control byte may be set 
from the user's program. The first is through the use of 
the write-control statement. For example, the statement 
" wtc 6,32 " would cause the interface set to select 
code 6 to be reset. The statement "wtc 6,2" would 
cause CTLI to be set and CTL0 to be cleared. The 
control byte (second parameter in the wtc statement) is 
the decimal eqUivalent of the desired bit pattern to be 
sent to the R5 register. Since the wtc statement is pro­
vided by the General I/O ROM, the program could get 
in trouble if it aCcidentally enabled INT, DMA, or AHS 
and did not have the Extended I/O ROM to handle 
these capabilities. For this reason, the wtc statement 
automatically masks out (sets to zero) bits 7, 6, and 4 
of the specified bit pattern before it is sent to the R5 
control register. 

The second method of addressing the R5 control 
register is through the wti (write to interface register) 
statement. Using this statement, all bits of the R5 OUT 
register are available for setting or clearing. Of course 
the user must make sure that his program is set up to 
handle the special modes of operation that may be 
turned on by using this statement. Again, these are 
normally handled by the transfer statement and the 
user would not usually be required to use this method 
of access to the R5 register. 

The third way of addressing the R5 out register is by 
means of the eir statement. The use of the eir state­
ment instead of the wtc statement is discussed in Sec­
tion lIC5. 

The interface is also capable of delivering information 
back to the I/O processor concerning the states that it 
is currently in. This is known as status information and 
is read by the processor through an R5 IN operation. 
For most interface cards this status information is con­
tained in eight bits and is usually called the status byte. 
This should not be confused with the status line (STS) 
which is a one-bit indicator of whether or not the inter­
face card and its associated peripheral are operational. 
The information contained in the status byte is informa­
tion about the current state of the interface card itself, 
and not about the peripheral device (except for STll 
and STI0 as explained later). 
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The status byte is obtained by the program through the 
use of the read-status function, rds«select code». 
This function takes as its parameter the select code of 
the desired interface and returns a value which is the 
decimal equivalent of the status byte. Since the func­
tion for testing the I-bit status line (STS) is contained in 
the Extended I/O ROM, this bit is added to the status 
byte as a ninth bit (see Section lIA6). 

The table below gives the meanings assigned to the bits 
in the status byte by the 98032A Interface. 

7 6 5 4 3 2 1 0 

INT DMA 1 0 liD 10D STll STI0 

INT: 
DMA: 
liD: 
10D: 
STll,0: 

Interrupt Enabled Indicator 
DMA Enabled Indicator 
Invert Input Data Jumper Installed 
Invert Output Data Jumper Installed 
General User-definable Status Bits 

Figure III-5. The 98032A Status Register 

Bits 7 and 6 of the interface control register (R5 OUT) 
are used for enabling and disabling interrupt and DMA. 
The corresponding bits of the status byte are indicators 
of whether these modes are currently enabled or not; a 
one indicating enabled and a zero indicating disabled. 

Bit 5 is always a 1 and bit 4 is always a 0 for the 
98032A card. These are the interface identification bits 
as explained in Section IIC2. They allow the I/O pro­
cessor to identify the type of interface with which it is 
communicating so it will know what protocol (sequence 
of register operations) to use, since this protocol is dif­
ferent for the various card types. The examples given 
in Section II all assumed a 98032A class (type 2) of in­
terface. 

The 98032A Interface uses negative-true logic on its 
data input and output lines. This means that it 
associates the +5 volt level with a logic value of zero, 
and the ground level with a logic value of one. If the 
particular peripheral attached uses the opposite sense 
of these logic levels (positive-true logic) then the data 
needs to be inverted (zeros changed to ones and ones 
changed to zeros) before the data is used. If this is 
necessary for either the input data or for the output 
data, or both, there is a provision on the 98032A Inter­
face to install jumper wires that will indicate this fact. 
The presence (1) or absence (0) of these jumpers is in-. 
dicated by bits 3 and 2 of the status byte. It is up to the 
computer to read these bits and perform the data inver­
sions if necessary. Normally, this is handled 
automatically by the I/O ROM (see Section IIIB4). 

The last two bits of the 98032A Interface are general 
purpose status bits called STll and STI0. They may be 



connected to any output lines from the peripheral device 

to monitor any signals that the user finds convenient in 

his particular application. For example, a paper tape 

punch might have a line coming out that indicates 

when the amount of paper tape left is running low. 

This line could be connected to one of the general­

purpose status bits, and then monitored periodically 

by the program in the computer to warn the operator 

when the tape is running low. 

It is important to note that the contents of the input in­

terface registers are not related to that of the output in­

terface registers. They serve different functions and are 

not like memory locations. In general, the bits read 

from the status register (R5 IN) are not related to any 

bits in the control register (R5 OUT). The INT and 

DMA bits were assigned corresponding bit locations for 

convenience. In particular, setting a control bit such as 

CTl1 does not affect the state of STll, since they are 

usually connected to two different lines on the 

peripheral and serve different purposes. If he wishes, 

however, the user can make such an association by 

physically connecting the STll line to the CTl1 line so 

that the status bit can indicate whether the control line 

is currently set high or low. 

2. The Handshake Process 

In Section IC 1 we discussed the handshake process 

from a user's point of view, giving only enough detail 

to be able to explain the concept of a handshake. In 

this section, we will look at that process from a 

designer's point of view giving the additional informa­

tion required to be able to actually connect a peripheral 

device to the 98032A Interface. 

Figure IlI-7 shows the complete timing diagrams for 

both the output and the input handshake operations. In 

addition to the data lines, four other lines are involved 

in the handshake process. The meanings and uses of 

these lines is given in Figure IlI-6. 

Name of Line: I/O FLG PCTL PFLG 

Driven by: Computer Interface Computer Peripheral 

High State: Input Busy Clear Busy 

Low State: Output Ready Set Ready 

Figure 111-6 

42 

The I/ 0 line is used by the computer to tell a 

peripheral device whether an input or an output opera­

tion is in progress. For an input only (e.g., paper tape 

reader) or an output only (e.g., printer) deVice, this 

line would not be used. The I/O bus flag line (FlG) is 

used by the computer to test whether or not the inter­

face is ready for the next operation. The peripheral 

control line (PCTl) is used to tell the peripheral that 

the information on the data lines is valid for an output 

operation, or to request the next data item on an input 

operation. The peripheral flag line (PFlG) is the 

ready/busy indicator from the peripheral itself. 

to t1 t2 t3 :4 
I I CLEAR 

PCTL H I I 
L I I SET 

I I I BUSY I_T~ 

PFLG H I I !--- READY I I 
L I 

:=tx I 0 
I 

Data 
I 

Lines 
I 

Figure 1-12 REPEATED 

The reader may wonder why it is necessary to have 

separate FlG and PFlG lines. In order to see the 

reason for this, let's look again at the Simplified timing 

diagram, Figure 1-12. Here, only the PCTl and PFlG 

lines are shown in addition to the data lines. For the 

moment, let's assume that the interface merely con­

nects the computer's FlG line directly to the 

peripheral's PlFG line, and consider a typical output 

sequence. After the data is placed on the lines, control 

is set (PCTl is set at time t2) to tell the device that it 

can take the data. At some later time, t3, the 

peripheral acknowledges that it has seen control go set 

by making PFlG go busy, and it begins to read and 

process the data on the lines. Since there is no restric­

tion on the length of this time interval (t2 to t3), it is 

quite possible that during that interval the computer 

could be ready to output the next character. It would 

test the FlG line (which here is the same as PFlG) , 

see that it is indicating ready, and place the next 

character on the data lines. Since the peripheral had 

not yet taken the last character, it would be lost. In 

other words, the computer testing the FlG line only 

sees a ready or a busy state. It cannot tell whether the 

PlFG line is indicating ready because it has completed 

the processing of the data, or because it simply hasn't 

gotten around to making it indicate busy yet. To avoid 

these timing problems, the FlG and the PFlG lines 

are separated. As soon as control goes set, the inter­

face itself makes the FlG line go busy without any 

response required from the peripheral. The FlG line 

remains busy until the PFlG line has gone from ready 

to busy and back to ready again. 

We are now ready to follow the complete sequence of 

events shown in the timing diagram for the output 

operation in Figure IlI-6. As we do, we will also relate 

these events to the register operations that are being 
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performed by the output drivers in the I/O ROM (see 
Section IIA4). 

Output Operation 
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(To Calculator) 
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Jumper A (High Byte Clock) are Installed (Data Input Lines must be stable) 

Figure I1I-7 Full Mode Timing Diagram 

(Jumper 6 Omitted) 
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The output drivers first wait for the FLG line to indicate 
ready, giving the last operation with the peripheral time 
to complete. When FLG is ready, the data is placed on 
the lines (R4 OUT operation). Since this is an output 
operation, the interface sets the I/O line low, to tell the 
peripheral that an output is about to take place. The 
I/O ROM then issues the R7 OUT trigger, which 
causes the interface to set the PCTL line, after delaying 
long enough to allow the signals on the data lines to 
settle out. At the same time, it makes the computer's 
FLG line go busy so that it will not try to initiate 
another operation before this one is completed. At 
some later time, the peripheral detects that PCTL is set 
and that I/O is indicating output. It sets its PFLG line 
to busy, takes the data, and begins to process it. This 
tells the interface that it can now return the PCTL line 
back to the clear state, since the peripheral has seen 
the data and begun its processing. Finally, when the 
peripheral has completed processing the data, it returns 
its PFLG line to the ready state. The interface sees this 
and allows the computer's FLG line to also go back to 
the ready state and the entire handshake process is 
complete. 

An input operation proceeds in a similar manner. The 
I/O ROM again waits for the FLG line to indicate 
ready before initiating any action. When the FLG line is 
ready, the ROM does an R4 IN operation to set the 
I/O line to the input state. It then does an R7 OUT 
operation to demand a data item. This causes the inter­
face to set the FLG line busy, and to set PCTL to tell 
the peripheral that a data item is being requested. Nor­
mally the peripheral would indicate busy on the PFLG 
line, put the next item on the data lines, and then 
return PLFG to ready. This will cause PCTL to return 
to the clear state, and allow FLG to indicate ready. 
Meanwhile, the I/O ROM has been waiting to see FLG 
indicate ready. When it does, the ROM does an R4 IN 
operation to take the information from the data lines 
and returns the value read to the program. 

Because the type of ready (PFLG) signal varies from 
one peripheral device to another, the 98032A allows 
for a variety of such signals. By setting jumpers on the 
interface card, the user may specify that the informa­
tion on the input data lines be clocked on the ready-to­
busy transition, on the busy-to-ready transition, or 
whenever the R4 IN operation is executed by the I/O 
ROM, independent of the state of the PFLG line. 
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3. Word and Byte Modes of Operation 

The data lines of the 98032A Interface are divided into 
16 input lines and 16 output lines. Each of these sets 
of 16 lines may be further subdivided into groups of 
eight for use in special applications. In this section we 
will look at some of the intended uses of this byte 
mode of operation. 

In all of our previous examples of data exchange using 
the 98032A Interface, we were operating in the words 
mode in which we used the R4 OUT operation to 
place 16-bit data on the output latches, and the R4 IN 
operation to read 16-bit data from the input latches. If, 
however, jumpers B or F (see 98032A Installation and 
Service Manual) are not in place, the input or output 
latches may be operated in the bytes mode, in which 
the upper 8 bits and the lower 8 bits of the 16 data 
lines may be separately addressed by the computer. In 
this case, the R4 register is now used to access only the 
lower byte, while the upper byte is accessed through 
the R6 register. For example, if the 16 input lines con­
tained the 16-bit pattern 0011010101001001, then ex­
ecuting a rdi(4) would give a 73 (binary 01001001) 
while a rdi(6) would return the value 13568 (binary 
0011010100000000). Notice that the high byte is still 
positioned in bits 8-15 of a 16-bit binary pattern. When 
either the high byte or the low byte is read, the other 
byte is replaced with eight zeros. To convert the result 
of the R6 IN operation to the true decimal representa­
tion of that byte, this result must be divided by 256 ( = 

28) or shifted right eight places using the bit manipula­
tion functions. 

This capability to separately address the high and low 
bytes is used by the I/O ROMs in implementing drivers 
for certain peripherals. For example, the 9862A Plotter 
requires sequences of 12-bit instructions to raise and 
lower its pen and to move to a new location. Figure 
III-8 shows the format of these plotter control instruc­
tions. This protocol is presented merely as an example 
of the use of the bytes mode on the 98032A card, and 
the reader need not follow the details of the meanings 
for the individual bits. 

15 14 13 12 11 10 9 8 7 654 3 2 1 0 

4-bit not X,Y-position 
control used (0,9999) 

bit 15: format of data bytes (bits 7-0) is BCD (0) or 
binary (1). 

bit 14: sync bit, set to 1 for the first of a four-word 
move instruction, and for pen up/down in-

bit 13: 

bit 12: 

struction. 
pen up (0) or down (1) specifier when bit 12 
=1. 
instruction type bit, move (0) or pen up/down 
(1). 

Figure III-8 
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Raising and lowering the pen is done by sending a con­
trol word with bits 12 and 14 set and bit 13 indicating 
pen up or down. To move the pen to a new location, 
a four word sequence is required. Since each of the X 
and Y coordinates is in the range 0 to 9999, two bytes 
are required to specify each of them. These are sent in 
four instructions containing X high byte, X low byte, Y 
high byte, and Y low byte. Since the upper bits contain 
control information and the lower byte has coordinate 
information for pen moves, the plotter drivers take ad­
vantage of the ability to separately address the high 
and low bytes of the data register. 

If the user required this same capability from an HPL 
level program, the following program segments could 
be used. In both examples, the variables Hand L con­
tain the high byte and low byte data respectively. To 
output data in the bytes mode, we would use the 
following statements. 

10: 
11 : 
12: 
13: 
14: 

wti 0,3 
jump iof3 
wti 6, shf(H,-8) 
wti 4, L 
wti 7,0 

Set up for select code 3 
Wait for ready 
Latch high byte data 
Latch low byte data 
Trigger output operation 

Notice that the high byte data is shifted left 8 bits 
before being sent to the R6 OUT register. Also, lines 
13 and 14 could be replaced by the statement "wtb 3, 
L" since this does the R4 OUT, R7 OUT sequence. 

Input operations in the bytes mode is similar. 

10: wti 0,3 
11: jmp iof 3 
12: rdi 4.-+ Z; wti 7,0 
13: jump iof 3 
14: rdi 4 -+ L 
15: shf (rdi6,8) -+ H 

Set up for select code 3 
Wait for ready 
Demand next data item 
Wait for ready 
Get low byte data 
Get high byte data 

This program segment shows the entire sequence of 
events used to read data in the bytes mode. Lines 
11-14 can in practice be replaced by a simple " 
rdb(3)-+L " function. After this operation is complete, 
the high-byte data may then be taken in using the R6 
IN operation. 
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From these examples we see that the 98032A was 
designed to allow the computer to seperately address 
the upper and lower bytes of the input and output data 
latches. It should be noted, however, that the interface 
card is still exchanging 16-bit data with the peripheral 
device. From the fact that the 98032A has a byte 
mode of operation, it is often mistakenly inferred that a 
single 98032A can directly interface two 8-bit devices. 
Although this is possible, it does require that the user 
provide some external hardware to properly control the 
handshake operations. 

As an example, let's assume that we wish to interface 
an 8-bit paper tape reader and an 8-bit paper tape 
punch to the desktop computer using a single 98032A 
card. Notice that in this case, we do not require the 
use of the bytes mode since one device is an output 
only device and the other is an input only device. If we 
merely connected the PCTL line to the control lines for 
each device and the ready/busy lines from each device 
to the PFLG line, these devices would not operate in­
dependently. For example, each time we try to take a 
reading from the tape reader, the PCTL line would go 
set to demand the reading. But the punch would also 
see this signal and respond by reading whatever hap­
pened to be in the output latches and punching this in­
formation on the tape. In addition, if the punch com­
pleted its operation before the tape reader, it would in­
dicate ready on the flag line. Depending on the levels 
used (positive or negative true logic) the interface could 
interpret this transition on the PFLG line to mean that 
the tape reader had finished its operation; and it would 
take a reading from the input data lines which might 
not yet be valid. 

In order to prevent this, an external circuit similar to 
the one shown in Figure 1II-9 could be used. 

PCTL Lr jO--....n...-':;--- PCTL (to PUNCH) 

)O--...J1....-=---PCTL Ito READER) 

I/O line --__ ------, 
(Iow~oulput) 

'---j-----+-.n...=- P F LG (I r om READ E R) 

PFLG ...1l.. 

I-----....n...=- PFLG Ilrom PUNCH) 

Figure III-9 



This uses the I/O line on the 98032A to gate the flag 
and control signals to only the device being addressed. 
For example, when the I/O line is low (output opera­
tion), only the punch sees the control pulse, while the 
PCTL line to the reader remains high throughout the 
entire operation. Also, no matter what transitions take 
place on the PFLG line from the reader, only the tran­
sitions generated by the punch are passed on to the 
PFLG line on the 98032A. 

If the user wanted to use a similar circuit to allow two 
8-bit input devices or two 8-bit output devices to be in­
terfaced with one 98032A card, the I/O line shown in 
Figure II1-9 would instead be connected to the CTL0 
line. The program could then select one of the two 
devices by executing either a "wtc 3,0" or a "wtc 3, I" 
(3 is the select code of the interface card) to set the 
CTL0 line high or low respectively to cause the PCTL 
and PFLG lines to be gated to one or the other of the 
two devices. Of course this application would require 
the use of the byte mode, with one device using the 
high byte data lines and the other using the low byte 
data lines. 

Because of the external circuitry required and the add­
ed complexity needed in the program to select the 
device and shift data to and from the high byte, it is 
normally more convenient to simply use two 98032A 
cards to interface the two devices. Only in the case of 
extreme cost sensitivity or I/O slot limitations would 
such a scheme be practical. 

4. Data Inversion and the Transfer 

Process 
The 98032A Interface can accommodate either positive 
true or negative true logic on the input and output data 
lines. The I/O backplane of the desktop computer itself 
uses negative true logic and no modification is required 
for a peripheral device which also uses negative true 
logic. For a device which uses positive true logic, the 
sense of the data lines must be inverted before the data 
is interpreted by the program (for input) or sent to the 
device (for output). Because of the complexity of the 
98032A card and the limited space available, the inter­
face does not have room for the hardware to perform 
this inversion directly. It merely contains the provision 
for two jumpers (1 and 2) to indicate to the computer 
that the input and/or the output data must be inverted. 
The actual inversion is done by the drivers in the I/O 
ROM by complementing the data; that is, changing the 
ones to zeros and the zeros to ones before an output 
operation or after an input operation. These I/O 
drivers know that this operation is to be performed by 
checking bits 2 and 3 of the status byte (see Figure 
II1-5) from the 98032A card to see if either or both of 
the inversion jumpers are installed on the interface. 
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For the normal data operations (red, wrt, rdb, wtb, 
list#) and for transfers using interrupt buffers (types 0 
and 1) this inversion process is handled automatically 
by the I/O ROM and the operation is totally 
transparent to the user. This is not the case for fast 
read/write (FRW, types 2 and 3) and DMA (type 4) 
buffer transfers. In the case of the FRW transfer, this 
inversion is not done in order to obtain maximum I/O 
rates. In the case of DMA transfers, the hardware pro­
cessor and not the I/O ROM handles the DMA 
transfer; and this processor only operates with negative 
true logic. Thus, in these special cases, any required 
data inversions must be done by the HPL program 
itself. It should also be remembered that in the case of 
a FRW input buffer transfer where a terminating 
character can be specified, this character will also be in­
verted. 

C. The 98033A BCD 
Interface 

1. BCD Instruments 
In the last section, we discussed using the 98032A In­
terface to connect peripheral devices whose outputs 
were in the form of binary data (up to 16 bits wide), or 
sequences of ASCII characters. There is a class of 
devices, however, known as BCD instruments for 
which the 98032A is not a satisfactory interface for 
connecting them to the computer. To see why this is 
so, we need to look at some of the characteristics of 
these BCD devices. 

Devices which fall into the BCD class are typically 
measuring instruments such as digital voltmeters and 
multimeters, scanners, frequency counters, gain-phase 
meters, digital panel meters, and so forth. These in­
struments usually display the readings they take to be 
read by an operator, typically showing from three to 
eight digits depending on the precision of the measur­
ing device itself. They also indicate other information 
about that reading. For example, a digital multimeter 
(DMM) may also indicate the function being read 
(voltage, current, resistance), the range being measured 
(100 volts, 10 milliamps, 1 kilohms) and have an 
overload or out-of-range indicator. All of this informa­
tion is useful to the operator taking down the readings. 

In these instruments, each digit of the reading drives 
one digit in the display. The value of this digit is sent 
over four wires in a code called binary coded decimal 
or BCD. This format is also known as 8-4-2-1 code, 
since these are the values or weights given to each of 

•• • 
II 

• 
• • 
(I 

II 

•• 
II 



I 

I. 
I 
I 
I 
I 
I 
I 
I 
I" 
I 
I 
I 
I 
I 
I 

I .. 
I 
I 

the four lines. The encoding of the ten decimal digits is 
shown in Figure II1-1O. 

(8) (4) (2) (1) DIGIT 
0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 

Figure 111-10 

These BCD lines are then sent to decoder circuits 
which convert them into seven-segment or dot-matrix 
patterns for driving the individual display digits. 

With the advent of controlling computers, it became 
desirable to make it possible for the computer to direct­
ly read these measurements, collecting large numbers 
of readings for processing and analysis. At the time this 
was done, hardware circuits for converting these 
readings into a form the computer could understand 
were very costly. As a result, most designers merely 
made all of the data lines available to the computer 
dire"ctly with no attempt at conversion, and left it for 
the versatility of the computer program to sort out the 
meaning of the various lines. Output lines are also 
brought out to indicate the sign of the reading (plus or 
minus), a power-of-ten multiplier or exponent digit for 
accommodating the various ranges, an overload in­
dicator, and a set of lines to indicate the mode of 
operation for multi-function instruments. Thus, an in­
strument which supplies six or eight digits of precision 
can have forty or more distinct lines on its output con­
nector just to represent the reading, in addition to any 
control lines used. 

If an interface such as the 98032A were used to con­
nect such a BCD device to the computer, either two or 
three cards would have to be used in parallel, or a 
multiplexing scheme would have to used. In addition, 
the computer would then have to sort out of all these 
bits, read the ones that represented digits, signs, expo­
nent, function codes, etc. Instead, the 98033A BCD 
Interface was designed to accept all of these parallel 
bits, and translate them into a sequence of ASCII 
characters which represent the reading being taken. 
That is, the 98033A translates the data from a 43-bit 
parallel reading to a 16-byte, ASCII serial representa­
tion. 

2. 98033A BCD Formats 
Figure III-II shows the input lines that are available on 
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the 98033A Interface. 

1 bit Mantissa sign Sm 

4 bit Mantissa digit 1 Dl 
4 bit Mantissa digit 2 D2 
4 bit Mantissa digit 3 D3 
4 bit Mantissa digit 4 D4 
4 bit Mantissa digit 5 D5 
4 bit Mantissa digit 6 D6 
4 bit Mantissa digit 7 D7 
4 bit Mantissa digit 8 D8 

1 bit Exponent sign Se 

4 bit Exponent digit De 

1 bit Overload indicator Ov 

4 bit Function code Fc 

Figure 111-11 

The number of lines available is usually more than suf­
ficient to handle most BCD instruments. If a device is 
connected that has fewer than eight digits, the unused 
digits may be connected to the +5 volt reference (for 
negative true logic) or to ground (for positive true logic) 
so that they will always be read as zeros. 

When a reading is taken using the 98033A Interface, 
the card converts the data on the input lines into a se­
quence of 16 ASCII characters in the format shown in 
Figure II1-12. 

Character 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
ASCII ± X X X X X X X X E ± X Ov X LF 
Data used. Sm D 1 D2 D3 D4 D5 D6 D7 D8 Se De Ov Fc 

Figure 111-12 

The one-bit mantissa and exponent signs are converted 
to ASCII characters for plus or minus, and the 4-bit 
BCD digits are converted into the ASCII characters for 
the corresponding digits. Notice that the card itself pro­
vides the ASCII characters for the exponent notation 
(E), the comma to separate the reading from the 
overflow indicator and the function code, and a final 
line feed character (LF) to terminate the reading. 

The characters indicated by an X in the ASCII 
representation of the format shown in Figure II1-12 nor­
mally correspond to digits connected from the instru­
ment to the BCD input lines. If it is desired, however, 
they may be used for other purposes. Notice that in 
Figure II1-1O, only ten of the sixteen possible binary 
patterns are used to represent the ten decimal digits. 
Figure II1-13 shows the ASCII characters that have 
been assigned to the other six binary patterns. 



(8) (4) (2) (I) ASCII 
1 0 1 0 LF line feed 
1 0 1 1 + plus sign 
1 1 0 0 , comma 
1 1 0 1 - minus sign 
1 1 1 0 E exponent 
1 1 1 1 decimal point 

Figure III-13 

Any character marked X in Figure III-12 may be made 
to correspond to any of these ASCII characters by con­
necting its four BCD lines high or low to give the re­
quired pattern. For example, if we had a BCD instru­
ment that has an implied decimal point to the right of 
the first digit, this would be indicated on the in­
strument's display panel, but this information is not part 
of the reading itself (unless the instrument adjusts the 
exponent to account for this). If the instrument uses 
negative true logic, we would connect all four lines of 
02 to ground, giving it the binary pattern for a decimal 
point. Then we would connect digit 1 to 01, digit 2 to 
03, digit 3 to 04, and so on. Now when the computer 
reads the ASCII sequence from the 98033A card, it 
will see a decimal point between the first and second 
digits of the reading. The large number of input lines 
provided, combined with the ability to redefine any 
digit to one of the ASCII characters in Figure III-13 
gives the 98033A a wide degree of flexibility for 
reading instruments with diverse formats. 

The 98033A provides input lines for BCD instruments 
having up to eight digits in their readings, to accom­
modate high-precision instruments. Most BCD in­
struments will typically only have three or four digits. 
For added versatility, the 98033A provides an optional 
format (selected by a switch on the card) to allow two 
BCD instruments, or a single dual-output instrument, 
to be connected to the computer using only one inter­
face card. In this format, the input lines are converted 
to the 16-character ASCII sequence shown in Figure 
III-14. 

Character: I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
ASCII: ± X X X X ± X X X X X E Ov X LF 
Data used: Sm D4 D2 D6 D8 Se Fe D I D5 D3 D7 Ov De 

Figure III-14 

In the optional format, pairs of readings are taken from 
two separate sources. This would be particularly useful 
in, for example, testing electrical circuits where voltage 
and current readings need to be taken simultaneously. 
If two separate interfaces were used, the time delay 
between the execution of the two read statements in 
the computer program would make it difficult to take 
simultaneous readings. 
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3. The 98033A Interface Registers 
Operationally, the 98033A BCD card is very similar to 
the 98032A Bit Parallel Interface. In fact, they are both jJ. 
type 2 cards (see Section IIC2) and the I/O drivers in ~ 
the computer make no distinction between them. 
Figure III-IS shows the register assignments for the 
98033A Interface. 

IN OUT 

R4 Data Input (not used) 
RS Status Byte In Control Byte Out 
R6 (not used) (not used) 
R7 (not used) Trigger 

Figure III-15 

Since the BCD interface is for input only, it does not 
respond to any output operations. All data is input 
through the R4 IN register, using R7 OUT as a trigger 
in the same way as described for the 98032A operating 
in the words mode. Because all data from the BCD 
card is 8-bit ASCII, the upper eight bits of the 16-bit 
word received are always zeros. 

Figure III-16 shows the bit assignments in the RS OUT 
control register, accessed by a write-control (wtc) or 
enable-interrupt (eir) statement. 

7 6 

INT X 

INT: 
RESET: 

5 4 3 2 1 0 

RESET X X X X X 

Interrupt Enable on FLG = Ready 
Reset Card to Its Power-on State 

Figure III-16 

The reset and interrupt enable bits operate in an iden­
tical manner to those operations on the 98032A card. 
The other bits are not used and may be sent as ones or 
zeros. 

Similarly, only the interface identification bits (4 and 5) 
and an interrupt-enabled indicator are significant in the 
R5 IN status byte {accessed by the read-status func­
tion) , as shown in Figure III-17. 

INT: Interrupt enabled indicator 
1,0: Interface Identification Bits (type 2) 
X: Don't care 

Figure III-17 

The remaining bits are not assigned meanings and will 
always return zeros. As with the 98032A Interface, 
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when the read status function is executed, the current 
state of the I-bit status line (STS) is also included in 
the result returned as an artificial bit 8 (see Section 
IIA6). 

4. The 98033A Handshake Process 
The handshake process for the 98033A BCD card is 
very similar to that described for the 98032A Bit 
Parallel Interface. It sets a control line to tell the BCD 
instrument to take a reading, and waits to see a 
response from the device on the peripheral flag line 
before converting the data on the input lines into the 
sequence of ASCII characters to send to the computer. 
That is, the computer will do 16 data byte demands 
from the interface before the card will set control to re­
quest another reading from the BCD device. 

Figure III-18 shows the normal sequence of events that 
takes place during this handshake operation. 

Clear 
CTL 

Set 
I 

Busy I 

DFLG I Ready 
I 

t1 t2 t3 

Figure III-1S 

When the interface (in response to a request from the 
computer) requires the next reading, it will set the con­
trolline low to indicate to the BCD device that it 
should take another reading (tI). At some later time 
(t2), the device will indicate that it has seen this data 
request by setting its flag line (DFLG) busy, and pro­
ceed to take the reading. When the data on the input 
lines is valid, the device will then (t3) indicate this fact 
by setting the DFLG line back to the ready state. This 
causes the interface to return its control line back to the 
clear state and begin translating the reading for sending 
to the computer. Since this process requires enough 
time for the computer to input 16 bytes of data, the 
BCD device must maintain the data on the input lines 
from the time it indicates ready (t3) until the next time 
the control line goes set. That is, the device can only 
change the data on the input lines during the set state 
of the CTL line. 

Some BCD devices are designed in such a way that 
they are armed for the next reading by the control line 
going set, but will not actually take the reading until it 
goes clear again. In order to accommodate these 
devices, the 98033A Interface provides an optional 
control mode (option 2) in which the CTL line will 
return to the clear state when the DFLG line goes from 
ready to busy (t2 in Figure III-18). The data is still 
read by the interface when the DFLG line returns to 
the ready state (t3). A switch on the 98033A card 
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allows the user to select the normal mode (option 1) or 
this special mode (option 2) of operation for the CTL 
line. In addition, both the CTL and the DFLG lines can 
have their senses (high or low) inverted by other 
switches on the interface card to accommodate 
positive-true or negative-true logic levels. 

In Section I1IC2 we discussed the optional data format 
which allows the 98033A to connect two BCD in­
struments using one interface card. As a result, two 
sets of control and flag lines are proVided. CTLA and 
DFLGA are used to handshake with one BCD device, 
while CTLB and DFLGB are used for the other one. If 
only one device is being interfaced using the 98033A, 
CTLA and DFLGA are connected to this device in the 
normal manner (discussed below), and CTLB must be 
connected directly to DFLGB. 

When two BCD devices are being used with one inter­
face, both control lines (CTLA and CTLB) go set at the 
same time. Following this, CTLA returns to the clear 
state based on DFLGA alone, according to which op­
tion (CTLA-1 or CTLA-2) has been set in the con­
figuration switches for channel A. Channel B operates 
in the option mode for which it has been set, in­
dependently from channel A. In any case, not until 
both channels have indicated ready on their respective 
DFLG lines will the interface begin to translate the 
reading and send the result to the computer. Readings 
are always taken from both channels Simultaneously, 
and not until both devices have indicated ready. In this 
sense, the two BCD instruments are not treated as two 
independent devices. When only one BCD instrument 
is being interfaced, connecting CTLB to DFLGB makes 
channel B appear to be immediately ready, and the 
reading rate is determined by channel A alone. 

5. Connecting BCD Devices to the 
98033A 

Finally, the question arises as to which lines on the 
BCD instrument should the control and the flag lines 
be connected. This question does not have a simple 
answer since BCD instruments made by different 
manufacturers (and often different instruments made by 
the same manufacturer) give various names to their 
control and flag lines. Most BCD devices made by 
Hewlett-Packard call the control line an "External Trig­
ger", and the flag response line a "Print Command". 
Other common names for the control line are Trigger, 
External Encode, and Sample. The line to be con­
nected to the flag line might be called Print, Print 
Enable, Ready, or Data Flag. 

Often, the only way to tell which lines of the BCD in­
strument should be connected to the flag and control 
lines is to read the description of these lines in the 
operating manual for that instrument. For example, the 



following descriptions are taken from the reference 
manual for the HP 3480A/B Digital Voltmeter. 

External Trigger - LOW for >50 microseconds initiates 
a measurement period. LOW state 
must be preceded by HIGH state 
for >50 microseconds. 

Print Command - Goes HIGH at beginning of 
measurement period and LOW to 
indicate completion of measure­
ment. HIGH to LOW transition con­
stitutes a command to print. 

Here, the external trigger line is identified with the con­
trol function by the key words "initiates a 
measurement". In addition, the fact that the low state 
of this line initiates the measurement indicates that this 
line has the same sense as the CTL line on the 
98033A (low state is control set), and that the invert 
CTLA option should be left off. The statement that the 
print command line on the 3480A/B indicates comple­
tion of a measurement says that this is the line which 
responds in the way required by the DFLG line on the 
98033A. Its logic sense is also correct without setting 
DFLG inversion. 

D. The 98034A HP-IB 
Interface 

1. An Introduction to the HP-IB 
In Section II we said that the purpose of an interface is 
to provide mechanical, electrical, data, and timing 
compatability between a peripheral device and the 
computer which controls that device. If a standard ex­
isted which specified all of these characteristics, then 
two devices which conformed to that standard would 
be "plug-to-plug" compatible. We would merely plug 
their connectors into one another and they would be 
ready to communicate. A major step in this direction 
was taken in 1975 when the Institute of Electrical and 
Electronics Engineers adopted the IEEE-488-1975 stan­
dard which specifies many of these characteristics for a 
general purpose interfacing bus, sometimes called the 
GPIB. The HP Interface Bus, or HP-IB, is Hewlett­
Packard's implementation of the IEEE-488 standard. 

The major advantage of this standard is that it allows 
devices to be designed by various manufacturers which 
are immediately compatible with any other IEEE-488 
device, requiring no interfacing operation on the part of 
the end user. 
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Data messages are sent from one device to another on 
the bus in an 8-bit parallel, byte serial manner. The 
standard does not specify how these data messages are 
to be encoded, although most devices that operate on 
the HP-IB use standard ASCII codes. In general, data 
messages most commonly consist of a sequence of 
ASCII characters, usually terminated by a line-feed 
character (LF). Thus, the only device-dependent infor­
mation necessary for the user to know is the particular 
sequence of ASCII characters that cause the device to 
carry out each of the functions which it was designed 
to perform (see Section IIID3). 

The HP-IB definition also allows several devices to be 
interconnected on the same bus. In the following sec­
tions, we will look at the structure of the HP-IB, the 
method of transferring data messages over the bus, 
several extended control features provided, and finally 
at some specific characteristics of the 98034A Interface. 
It is this interface which provides HP desktop com­
puters with the necessary electronics to meet the 
specifications of the IEEE-488 standard and to be plug­
to-plug compatible with all other such devices. 

2. The Structure of the HP-IB 
Physically, the bus itself is merely a set of sixteen wires 
(along with a few assorted ground wires and an elec­
trical shield) to which all devices on that bus are con­
nected (see Figure III-19). Eight of these wires serve to 
carry the data messages back and forth over the bus. To 
maintain order, only one device at a time can place in­
formation on these data lines, and that device is known 
as the active talker. Any or all of the other devices on 
the bus may sense the information on these data lines 
and act on that information. Such a device is known as 
an active listener. By the nature of the actions which 
they perform, some devices may be only talkers (e.g., 
a paper tape reader) or only listeners (e.g., a printer). 
Other devices such as a digital voltmeter can be either 
a talker or a listener. It is made a listener so that it can 
be programmed for the correct voltage range and told 
when to take a reading. It is then made a talker so that 
it can put the results of that reading on the data bus. 

Thus there is a need for one device on the bus to set 
up talkers and listeners at the proper time, issue in­
structions to the other devices on the bus, and in 
general to make sure that all traffic on the bus proceeds 
in an orderly fashion. This device is called the active 
controller. Although any device can be designed with 
controller capability, usually it is a calculator or com­
puter with its flexible capability that is assigned this 
task. 

Finally, there is one and only one special device on the 
bus known as the system controller. This capability is 
established by the hardware of the device itself (usually 
by the setting of a slide switch or a jumper) so that 
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when power is turned on or the bus is reset, the device 
set to be the system controller will also assume the role 
of the active controller. At any time, the current active 
controller may pass control to any other device on the 
bus that is capable of performing the functions of a 
controller. (All devices are not required to have this 
capability.) The role of system controller, however, 
stays with the device which is physically set for that 
function and cannot be passed off. At any time when 
the system controller determines that something has 
gone wrong with the normal bus operations, it can 
reset the bus and get back active control. 

Device A 
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listen, and 
control 
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calculator) 
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Able to talk 
and listen 
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HP-IB Signal Lines 

Figure III-19 

Figure III-19 shows the meanings given to the other 
eight lines that make up the HP-IB. Three of these 
lines are designated as the "handshake" lines and are 
used to control the timing of data byte exchanges so 
that the talker does not get ahead of the listener(s). 
The three handshake lines are: 

DAV - Data Valid 
NRFD - Not Ready for Data 
NDAC - Not Data Accepted 

Using these lines, a typical data exchange would pro­
ceed as follows. All devices currently designated as ac­
tive listeners would indicate (via the NRFD line) when 
they are ready for data. A device not ready would pull 
this line low (ground), while a device that is ready 
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would let the line float high. Since a low overrides a 
passive high (see Section IC1), this line will stay low 
until all active listeners are ready for data. When the 
talker senses this, it places the next data byte on the 
data lines and then pulls DA V low. This tells the 
listeners that the information on the data lines is valid 
and that they may read it. Each listener (at its own 
speed) then takes the data and lets the NDAC line go 
high. Again, only when all listeners have let NDAC go 
high will the talker sense situation of data accepted. It 
can then remove DAV (let it go high) and start the en­
tire sequence over again for the next byte of data. A 
more detailed description of the handshake process is 
given in several of the HP-IB references (see 
Bibliography). It is not necessary for the user to under­
stand the details of the handshake in order to operate 
the HP-IB. 

The five remaining lines are called control or bus 
management lines. Their meanings are: 

ATN - Attention 
IFC - Interface Clear 
REN - Remote Enable 
EOI - End or Identify 
SRQ - Service Request 

Each of these lines will be discussed in one or more of 
the following sections. 

Before leaving this overview of the HP-IB and discuss­
ing the operation of the bus, some of the limitations of 
the HP-IB should be considered. The first limitation is 
that a maximum of 15 devices may be connected 
together by one HP-IB. This limitation arises from elec­
trical specifications for the line driver and receiver cir­
cuits, and how much current they can provide or sink. 
Another limitation is that the total cable length connect­
ing all of the instruments on one bus cannot exceed 20 
meters in length. Voltage levels on the various lines do 
not change instantaneously, but require a certain 
amount of time proportional to the length of the cable. 
A limit is placed on the cable length to insure that the 
bus will operate properly at its rated maximum speed. 
In general, then, the HP-IB is intended to provide a 
simple means of interconnecting local instrumentation 
clusters. Other means of interfacing (such as serial I/O 
to be discussed later) are better suited to long distance 
communications. 

3. Addressing the Bus Devices 
The primary use of the HP-IB is for the transfer of data 
messages from one device to another on the bus. 
While the HP-IB does provide a wide variety of ex­
tended control features (such as serial and parallel pol­
ling, service requesting, etc. which are discussed in the 
next section), many instruments can be fully operated 
through simple data transfers alone. For example, send­
ing the ASCII character string "F2R3" to the HP 



3490A Digital Multimeter would cause it to be pro­
grammed into function 2(AC Volts) and range 3 (100 
Volts) Another simple ASCII message, "M3E". would 

tell it to go into mode 3 (single sample with output) 
and to execute a reading. The result of this reading 
would also be sent back to the listening device as a 
stream of ASCII characters representing the value read. 
Thus, a great many HP-IB devices can be programmed 
and operated by merely knowing how to send and 
receive data messages on the bus, and the list of 
messages that a particular device on the bus can re­
spond to. Since these "command" messages are not 
specified by the IEEE-488 standard, the operating 
manual for each device should be consulted to find the 
list of commands to which it will respond. 
How then are messages sent and received over the 
HP-IB using the 9825A? In order to isolate the user 
from the required bus protocol (i. e., setting up the 
talker and listener, sequencing the handshake lines, 
etc.) the I/O ROM and the interface take care of these 
tasks, leaving the user only the requirement of specify­
ing what the data message should be and which device 
on the bus is to receive it. For this purpose, the same 
write statement used to send data to a printer or other 
output device can be used. If we wished to send a 
message to a printer on select code 6, we would simply 
execute the statement wrt 6, "Hello". The process is 
slightly complicated, however, by the fact that each 
HP-IB can have several devices attached to it. If a par­
ticular HP-IB interface were set to select code 7, execu­
tion of the statement wrt 7, "F2R3" to program the 

3490A Multimeter would be ambiguous, since the I/O 
ROM would not know which device on the bus should 
receive the message. Thus, to completely specify a 
destination for such a message, it is necessary to give 
not only the select code of the HP-IB interface, but 
also some way of indicating one of the many devices 
on that bus. For this purpose, each device is assigned 
an address or a device number. This device number 
can be in the range 0 to 30 and each device on the 
bus must have a different address in this range. A 
uni que device on the bus may now be specified by giving 
both its select code and device number. For example, if 
the 3490A in the previous example were set to device 
number 23, the statement wrt 723, "F2R3" would 
specify that the data message "F2R3" should be sent to 
device number 23 on the HP-IB set to select code 7. 
Since the normal select code range is [0,16], the I/O 
ROM would interpret this three-digit select code as 
specifying a device on the HP-IB, and automatically 
use the proper HP-IB protocol. This protocol would 
consist of setting up the computer as the talker, the in­
strument set to device number 23 as the listener, and 
then sending the data message. 

Both the addressing information and the data message 
are sent over the same set of eight data lines. In order 
to distingUish one from the other, one of the bus con­
trol lines called the attention (A TN) line is used. When 
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this A TN line is false, the 8-bit pattern on the lines is 
interpreted as a character (usually ASCII) in the data 
message. When the A TN line is true, the pattern on 
the data lines is interpreted as control or addressing in­
formation. In this mode, only seven of the eight data 
lines are used. Depending on the setting of bits 5 and 
6, the character sent in the ATN true mode will fall into 
one of four classes, shown in Fiqure III-20. 

Bit #: 7 6 5 4 3 2 1 0 
Bus Command X 0 0 C C C C C 
Listen Address X OIL L L L L 
Talk Address: X lOT T T T T 
Secondary Address: XII S S S S S 

(X="don't care", lor 0) 

Figure III-20 

If the class bits (5 and 6) are both zeros, the remaining 
five bits (4-0) are used to encode various bus com­
mands which are discussed in a later section. When 
they are 01, the following five bits spedfy one of the 
31 possible listen addresses; and when they are 10, bits 
4-0 specify one of the 31 possible talk addresses. 
These addresses are in the range [0,30]. Address 31 
(bits 4-0 all set to ones) is not a legal device address, 
but is interpreted as an unlisten (0111111) or an untalk 
(1011111) command to cancel any currently addressed 
talker or listeners. 

Returning to our previous example, execution of the 
statement wrt 723, "F2R3" would cause the sequence 
of message bytes shown in Figure I1I-21 to be sent over 
the bus. 

ATN Data Lines ASCII Meaning 

T 00111111 ? Unlisten any previous 
listeners 

T 01010101 U Computer (device 21) 
is a talker 

T 00110111 7 Device 23 is a listener 
F 01000110 F First data byte 
F 00110010 2 Second data byte 
F 01010010 R Third data byte 
F 00110011 3 Fourth data byte 
F 00001101 CR Carriage return 
F 00001010 LF Line feed 

Figure III-21 

Notice that the computer (which is also the controller in 
this case, since it is doing the bus addressing) has a 
device number, 21, just like any other device on the 
bus. With the A TN line true, it sends out its own talk 
address, an unlisten to unaddress any listeners from 
previous operations, and sets up device 23 as the 
listener for the data message that will follow. Notice 
that the controller did not have to send an "untalk" 
command. Since there can be only one talker address-
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ed at a time, the bus standard requires that a device 
addressed to talk must become unaddressed as a talker 
as soon as any other device is designated as a talker. 
Also, the bytes on the data lines appear as normal 
ASCII characters. They are given their special address­
ing interpretations shown in Figure III-20 only because 
the ATN line is true while they are being sent. Once 
the addressing is complete, the controller sets the A TN 
line false (data mode) and begins to output the ASCII 
data message. The listening device (3490A) receives 
this message and decodes it to set the specified func­
tion and range. Notice that while all characters sent in 
the ATN true mode have meanings specified by the 
bus standard, those sent in the ATN false (data) mode 
are defined by the device itself as to what action they 
will cause. In this case, the 3490A has been designed 
to interpret these data bytes as programming informa­
tion for setting its function and range. Finally, most 
HP-IB devices send and recognize CR/LF (or some 
times just LF) as marking the end of a data message. 
Some devices, however, may choose other end-of­
message delimiters and the user should consult the in­
dividual operating manuals for these devices. 

When it is time for the 3490A to deliver the voltage 
reading it has taken, the sequence shown in Figure 
III-22 is generated. 

ATN Data Lines ASCII Meaning 

T 00111111 ? Un listen 
T 00110101 5 Computer is a listener 
T 01010111 W Device 23 is a talker 
F (ASCII characters for voltage reading) 
F 00001101 CR Carriage Return 
F 00001010 LF Line Feed 

Figure 111-22 

To take the reading, the computer (controller) sends 
out the unlisten, listen address 21, and talk address 23 
in the ATN true mode. It then sets ATN false (data 
mode) and this time waits for the talker (3490A) to 
place the data bytes on the data lines. Notice that even 
though the 3490A is the talker in this case, it is the 
computer acting as the controller which sets up the 
talker and listener and then gives the 3490A "permis­
sion to start talking" by setting the ATN line false. The 
controller is always responsible for determining the se­
quence of events on the bus! 

From the computer, this input operation would have 
been initiated by the execution of the statement red 
723, A ; this would specify that a numeric reading 
should be taken from device 23 on the HP-IB set to 
select code 7, and the result stored in the program 
variable A. 

There is a common misconception when using the HP­
IB that a device on the bus has a talk address which is 
different from its listen address. For example, when ad-
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dressing the 3490A in this example, an ASCII "7" was 
used for the listen address, and an ASCII "W" for the 
talk address. In looking at the 5-bit pattern (10111 = 

decimal 23) that forms its actual device number, it is 
the same for both. It is merely the difference in the talk 
(10) or listen (01) bits that gives rise to a different 
ASCII representation for each. The fact that the device 
has only one address is more evident in the high-level 
specification for its address, 723, used in both the red 
and wrt statements. 

From Figure II1-20 we see that the class bits (5 and 6) 
can also be both ones. In this case, the remaining five 
bits (4-0) are interpreted as a secondary command or 
extended address. The device receiving this secondary 
command is the one whose primary (talk/listen) ad­
dress immediately preceded it, and the device is free to 
choose how it will interpret this additional addressing 
information. This information will be found in the in­
dividual operating manuals for those HP-IB devices 
which use secondary addresses. To send a secondary 
address (assuming that the 9825A is the active con­
troller) the user simply appends two more digits in the 
range 0 to 31 to the normal select code and device 
number. For example, the statement wrt 72305, 
<data> would cause the I/O ROM to issue a listen ad­
dress of 23 (00110111) followed by a secondary ad­
dress of 5 (01100101) to the HP-IB on select code 7 
during the addressing portion of the output sequence. 

4. Data Operations on the HP-IB 

In the last section, we discussed the use of normal read 
and write statements to send and receive data 
messages over the HP-IB. If the instrument that is be­
ing addressed is a slow one, and the program can do 
other useful work while the data exchange is taking 
place, the buffer transfer methods discussed in Section 
IIB1 can also be used with an HP-IB device. For exam­
ple, assume that the 9825A is connected to a digital 
voltmeter (DVM) on the HP-IB with a device number 
of 5, and that each reading consists of a string of 16 
ASCII characters. The following program segment 

0: buf "DVM", 1600, 1 
1: oni 7, "Read" 
2: tfr 705, "DVM" 

would set up a buffer called "DVM" large enough to 
hold 100 readings. The transfer statement in line 2 
would automatically start reading data bytes into the 
buffer until it is filled. Setting up device 5 as the talker, 
the computer as the listener, and servicing the inter­
rupts as each byte comes ready are all handled by the 
I/O ROM while the remainder of the program con-



tinues executing. When the buffer has filled, a branch 
to the user's service routine labeled "Read" will take 
place, where the program can read the data out of the 
buffer and process it. It should be carefully noted, 
however, that during this transfer process the main pro­
gram should not attempt to do any I/O operations to 
the HP-IB on select code 7. Even though the 9825A is 
capable of doing other programming tasks while the 
buffer transfer is taking place, the HP-IB itself can only 
handle one data exchange at a time. For example, if 
during the data transfer the main program were to ex­
ecute a "wrt 723, ... " statement, the computer would 
be addressed as a talker, thereby un addressing the 
DVM (device 5) as a talker, and the 100 readings 
would never be completed. 

In all of the previous examples we have assumed that 
the 9825A was the active controller on the HP-IB, and • 
treated devices on that bus like any other peripheral 
device by merely appending the device number to the 
select code. We also assumed that the devices we were 
addressing as the controller would properly respond by 
taking the data we sent when we addressed them as 
listeners, and would not place their own data on the 
bus until we addressed them to talk. In short, we 
assumed that as the controller we were running the 
show! 

The 9825A is also capable of acting as a non­
controller; that is, just like any other talker/listener on 
the bus. Two new questions arise when the 9825A is 
connected to the HP-IB in this non-controller mode. 
How does the computer know when it should talk and 
listen? And how does it read from and write to the bus 
without the automatic setting of talkers and listeners 
which would be illegal when it is not the controller? 

Two solutions are provided to the first problem. The 
first way is to check the status byte from the 98034A 
interface itself, obtained as the result of the read -status 
function; e.g., rds(7). Figure I1I-23 shows the meanings 
assigned to the various bits in this status byte. 

Bit No 7 6 5 4 3 2 1 0 
Name SRQ ACT TLK LST SAC SPL EOR 

Figure I1I-23 

Bit 5 is set ( = 1 ) when the computer is addressed as a 
talker, and bit 4 is set when it is addressed as a 
listener. (The meanings of the other bits will be dis­
cussed in a later section.) Thus the program can peri­
odically read the status byte and test the appropriate 
bils to see if it has been addressed to talk or listen. 

A more convenient method makes use of the interrupt 
capability so that the program does not have to 
periodically sample and test the status byte. While the 
other interface cards have only one interrupting condi-
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tion (flag line indicating ready) the HP-IB interface can 
be set to interrupt on any combination of eight condi­
tions specified in an interrupt-enable mask (see Figure 
I1I-23). In this mask, bits 4 and 5 being set to one also 
correspond to interrupt on the conditions addressed-to­
listen and addressed-to-talk respectively. Thus, the pro­
gram can enable the interface to interrupt and have the 
I/O ROM branch to a user-written service routine 
whenever the computer is addressed as a talker or a 
listener. As an example, assume that the 9825A is on 
an HP-IB as a non-controller, and is also interfaced to 
a DVM using a 98033A BCD Interface (Figure III-24). 

---~ 
Other HP-IB 

DeVices 

Figure I1I-24 

Normally the 9825A is running a local computation 
program (background job). But when the controller 
asks for a reading (i.e., makes the 9825A a talker) the 
9825A is to take a reading from the DVM and place 
the resuit on the HP-IB. Also, the DVM is operating as 
a two-channel device (see Section IIIC2) and the con­
troller can tell the 9825A whether it wants a reading 
from channel 1 or channel 2 by addressing it as a 
listener and sending it the ASCII character "I" or "2". 
The following program in the 9825A would accomplish 
this task. 

0: ani 7, "Service" 
1: eir7,48 

. (background job) 

54: "Service": 
55: if bit (5, rds(7))=1; gto "Talk" 
56: "Listen": red 731, C 
57: iret 
58: "Talk": red 2, A, 8 
59: if C=1; wrt 731,A; iret 
60: if C=2; wrt 731,8; iret 
61: wrt 731, "Error", C; iret 

Line 0 specifies that if an interrupt occurs on select 
code 7, the program should branch to the routine 
labeled "Service". Line 1 then enables the HP-IB inter­
face to interrupt on either being addressed to talk or 
listen. The interrupt enable mask, decimal 48, cor­
responds to a binary pattern of 00110000 (i.e., 16+32) 
which sets bits 4 and 5. The main program in lines 2 
through 53 then proceeds with its execution. 

When the 9825A is addressed as either a talker or a 
listener by the controller, the program branches to the 
service routine at line 54. Since the interrupt enable 
mask specified either of two conditions (talker or 
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listener}, line 55 then tests the status byte to determine 
which condition caused the branch to the service 
routine. If the 9825A was addressed as a listener, the 
program merely reads and saves in C the new channel 
number, and then returns to continue with the 
background job. If it was addressed as a talker, it goes 
out to the DVM on select code 2 and takes readings 
from channels 1 and 2 into the variables A and B. 
Then depending on the value of C, one of the two 
readings is output to the bus. 

The other important point to notice in this program is 
that all input from and output to the bus used 31 for 
the device number. This is the standard procedure 
when the computer is not the controller on that bus. 
Since 31 is not a legal device number (see Section 
IIID3), when the I/O ROM detects this specification, it 
merely inputs or outputs data on the bus without at­
tempting to do any automatic addressing. 

5. Extended HP-IB Control Features 
In the previous sections, we have discussed exchanging 
data messages on the HP-IB. To this extent, devices 
on the HP-IB only differ from devices connected to the 
computer by other interfaces, in that more than one 
device may be connected to the computer using a 
single 98034A Interface card. The real power of the 
HP-IB comes from its implementation of extended con­
trol features. If a measuring instrument is connected to 
the computer using, for example, the 98032A General­
Purpose 16-Bit Interface, any remote control of that in­
strument's extended functions (such as resetting it to its 
power-on state, disabling its front panel controls, or 
detecting when it requires service) is most probably 
done by setting external control lines high or low. Each 
instrument's capabilities and method of controlling 
these functions will be different, and a good deal of 
skill and knowledge of interfacing is required to proper­
ly control these functions using the lines available on 
the interface chosen. With the HP-IB, on the other 
hand, many of these functions have been standardized 
and all instruments that provide for these extended 
control features have them accessed by the controller in 
the same way. It is the nature and use of these extend­
ed control features that make up the topic of this sec­
tion. 

In general, the types of operations that can be remotely 
controlled or programmed for a device on the HP-IB 
fall into two categories: those that are specific to that 
device, and those that are general to all devices. For 
example, the setting of the type of measurement to be 
taken (e.g., voltage, current, resistance, etc.) and the 
range (100 volts. 10K Ohms, etc.) make sense for a 
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digital multimeter on the bus, but have no meaning for 
a printer or a frequency counter. Thus, function and 
range setting would be an example of a device­
dependent control operation. To make this type of 
control as general as possible, data messages are used 
and each device is free to interpret these data messages 
as it chooses. We saw in a previous example how the 
3490A interpreted the data message "F2R3" as a com­
mand to switch to the 100 Volts AC range. Each 
device on the bus has some set of operations that can 
be programmed through these data messages, a list of 
which is found in the operating manuals for that 
specific device. 

In this section, we will look at the other category of 
device control messages which are common to all 
devices on the bus. For example, if we wish to reset a 
device on the bus, the IEEE-488 standard defines a 
message called device-clear which is recognized by all 
devices on the bus. It should be noted that the stan­
dard does not require all devices to implement the 
device clear operation; but for those that do implement 
it, it is always accessed in the same way using the 
device-clear message. Also, using the same example, 
the standard does not define what exactly is to be 
cleared or reset. This is left up to the individual device. 
Some devices on receiving this message may reset 
everything to the power-on state, while others may only 
clear selected conditions. In any case, the controller 
does not require any device-dependent information in 
order to issue the device-clear message. The remainder 
of this section will discuss these device-independent 
messages that can be sent, and the general types of 
action that will take place if the device implements a 
response to that message. 

When we refer to these as device-independent 
messages, we simply mean that all devices on the bus 
will recognize that a particular message (for example, 
device clear) is being sent, regardless of how it chooses 
to respond to it. These command messages are encoded 
on the data lines as 7-bit ASCII characters, and are 
distinguished from normal data characters by the setting 
of the attention (ATN) line. That is, when the ATN line 
is false, bytes on the data lines are interpreted as sim­
ple data characters. But when the A TN line is true, the 
data lines become the carriers of command informa­
tion. The set of 128 ASCII characters that can be placed 
on the data lines during this ATN-true mode are 
divided into four classes as shown in Figure III-20 and 
Appendix A. We have already seen how three of 
these classes are used to generate talk addresses, listen 
addresses, and secondary addresses. The fourth class, 
bus commands, is the one used to encode these 
device-independent control messages. 

In addition to data and command messages, there are 
five other bus messages that, because of their impor­
tance and timing conSiderations, have hardware lines 
dedicated to them. These are shown in Figure III-19. 



We have already seen how the attention line is used to 
distinguish between simple data and command infor­
mation of the eight data lines. The meanings of the four 
remaining lines are explained next. 

Interface Clear 

(IFC): Only the hardwired system controller can issue 
the IFC message. By pulling the IFC line low, all bus 
activity is unconditionally terminated, the system con­
troller regains (if it has been passed to another device) 
the status of active controller, and any current talker 
and listeners become unaddressed. Normally, this 
message is only used to abort an unwanted operation, 
or to allow the system controller to regain control of a 
bus where something has gone wrong. It overrides any 
other activity that is currently taking place on the bus. 

Remote Enable 

(REN): This line is used to allow instruments on the 
bus to be programmed remotely by another device on 
the bus, usually (but not necessarily) the active con­
troller. Its use is discussed in more detail later in this 
section. 

End or Identify 

(EO I): Normally, data messages sent over the HP-IB 
are sent using the standard ASCII code, and are ter­
minated by the ASCII linefeed character (IF = decimal 
10). A device (e.g., a disc) may wish to send blocks of 
information in 8-bit bytes which represent general 
binary patterns; and no specific 8-bit pattern can be 
designated as a terminating character since it could oc­
cur anywhere in the data stream. In this case, the EOI 
line is used to mark the end of the data message. 
When the listeners detect that the EOI line is set, they 
recognize that the byte on the data lines is the last one 
of the data message. 

The EOI line is also used during an identity (parallel 
poll) sequence to be discussed later. 

Service Request 

(SRQ): The active controller is always in charge of 
the order of events on the HP-IB. If a device on the 
bus has some information of which the controller 
should be aware, it can use the service request line to 
ask for the controller's attention. For example, a printer 
might request service to inform the controller that it is 
out of paper. Or a digitizer might assert service request 
to tell the controller that its sample button was pressed 
by the operator and a reading is ready to be taken. 
This represents a request (NOT a demand) and it is up 
to the controller when and how it will service that 
device. However, the device will continue to assert 
SRQ until it has been satisfied. Exactly what will satisfy 
a service request depends on each individual device 
and will be contained in the operating manual for that 
device. 
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Figure IIl-25 shows the device-independent control 
messages that can be sent, and the mnemonics used by 
the 9825A Extended I/O ROM to generate these 
messages. The two columns in Figure IIl-25 show the 
results of these statements when they are sent to the 
entire bus (select code only specified) or to a particular 
device on the bus (select code and device number 
specified) . 

When the clear statement (clr) is executed, all devices 
on the bus execute their clear operation in response to 
the device clear (DCl) message. If a device number is 
specified (e.g., clr 711), then that device is addressed 
as a listener and it alone responds to the selective 
device clear (SOC) message. Each device on the bus 
may choose how it will respond to the selective (SOC) 
or universal (DCl) clear instruction. If the computer is 
set to be the system controller, it may also execute the 
clear interface (cli) statement which causes the IFC line 
to be pulsed low issuing the interface clear message 
discussed above. 

In some applications it is desirable to have two or more 
instruments start their operations at the same time. For 
example, we might like to apply a step voltage function 
to a circuit under test and measure the transient 
response at some node in that circuit. A signal 
generator would be programmed to apply the voltage 
step and a digital voltmeter would be programmed to 
take the voltage measurements. In order to start both 

instruments off at the same time, the trigger statement 
would be executed which would issue a group-execute­
trigger (GET) message over the bus. 

Many bus instruments such as digital voltmeters can 
have their various functions and ranges selected either 
locally by manually setting their front panel controls, or 
remotely by programming messages from a controller. 
In order to program such an instrument via the bus, 
the remote enable (REN) line must be set. When the 
REN line is set, addressing the device as a listener 
makes it capable of receiving programming instructions 
from the bus. When the 98034A Interface powers up 
(or following the IFC message) the REN line is 
automatically set. It may be cleared using the local (lcl) 
statement. If the lcl statement is executed specifying 
both a select code and a device number (e.g., lcl 715), 
the REN line is not cleared, but the specified device is 
addressed as a listener and that one device receives a 
go-to-local (GTl) message. The instrument responds to 
the GTl message by switching control from the bus to 
the front panel manual controls, allowing an operator 
to set its programming controls. In many instruments, 
the operator can switch from remote operation to local 
operation by pressing a return-to-local button on the in­
strument. If the program controlling the instrument 
wishes to prevent manual operation by an unauthorized 
operator, it can execute the local lockout (110) state­
ment. This issues a local lockout (llO) message on the 
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bus that makes the return-to-local buttons on the bus 
instruments inoperative. In this state, the only way to 
transfer control to manual operation on a particular in­
strument is through the GTL bus message. Using com­
binations of these remote/local messages, a controller 
can set up any combination it chooses of instruments 
operating remotely or locally as determined by the par­
ticular application. 

We have already seen how the read status function 
(rds) is used to obtain a status byte from the 98034A 
Interface. This status byte contains information such as 
the current addressing state (talker, listener, controller, 
etc.) of the card. Each instrument on the bus can also 
have a status byte which contains useful information 
about that device itself. The meaning of the information 
in this status byte is determined by each device and 
found in the operating manual for that device. In order 
to obtain this device status byte, the same read status 
function used to get the status byte of the interface is 
executed, but a select code and the device number is 
given. For example, the function rds(713) would return 
the status byte from device 13 on the HP-IB set to 
select code 7. On the HP-IB, reading this status byte is 
referred to as a serial poll operation. The device is ad­
dressed as a talker, a special control message called 
serial poll enable (SPE) is issued, and the bus is placed 
in the data (ATN false) mode. Because of the SPE 
message, the device addressed as a talker knows not to 
put normal data on the lines, but rather its serial poll 
(status) byte. The controller reads this byte, and then 
issues a serial poll disable (SPO) message to cancel the 
SPE message. All of the bits in this status byte are 
defined by the device itself to encode any information it 
chooses, with the exception of bit 6. If this bit is set, it 
identifies that device as being one which is currently 
asserting a service request. Thus, when the controller 
recognizes that some device on the bus is requesting 
service (by the SRQ line being set) it can serially poll 
each device to find out which one (or it may be more 
than one) requires service. 

When several devices on the bus are capable of re­
questing service, the controller does not have to poll 
each device serially to determine which one it is. 
Another operation called a parallel poll is capable of 
polling up to eight devices at one time. Each device is 
assigned one of the eight data lines on which to re­
spond when a parallel poll is conducted. When the con­
troller senses SRQ, it conducts a parallel poll by setting 
both ATN and EOI true at the same time. (Note: In 
the data mode the EOI line has the meaning of end-of­
message. In the ATN true mode, it has the meaning of 
identify, in the sense of a parallel poll.) All devices cur­
rently requesting service will then respond on their 
assigned data line. And by checking the bits in this poll 
byte, the controller can immediately determine which 
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devices require service, without serially polling each 
one. If the device requesting service has more than one 
possible reason for asserting SRQ, the controller may 
also conduct a serial poll on that one device; and its 
status byte could contain more detailed information 
about why SRQ was asserted. 

Most devices that are designed to respond to the 
parallel poll operation determine which data bit to re­
spond on and what logic sense (high or low) to use by 
switches or jumpers set on the instrument itself. Some 
devices, however, allow the controller to program them 
for this information. This is done using the parallel poll 
configure statement (pole) which addresses the device 
as a listener, sends the parallel poll configure (PPC) 
bus message, followed by a parallel poll enable (PPE) 
byte as specified in the pole statement. The bits of this 
byte are 0110SPPP, where PPP is the binary 
equivalent of the data line on which the device should 
respond (0 through 7) and S is a 1 or a 0 on that line. 
A device that has been programmed for its parallel poll 
response may be disabled for parallel poll response by 
executing the parallel poll unconfigure (polu) state­
ment. This sends the parallel poll disable (PPO = 

01110000) message to that device which cancels any 
previous PPE message. If the polu statement is ex­
ecuted using a select code only, with no device 
number, a universal parallel poll unconfigure (PPU) 
message is sent. This deactivates all devices on the bus 
whose parallel poll response can be remotely pro­
grammed. 

If the 9825A is not the active controller on the bus, it 
too may wish to set a service request (SRQ) to get the 
controller's attention. This is done using the request 
service (rqs) statement. This statement has two 
parameters which specify the select code of the HP-IB, 
and the serial poll response byte, with bit 6 determining 
whether the SRQ line should be set. For example, ex­
ecuting the statement rqs 7,37 would set a decimal 37 
(binary 00100101) as the serial poll response byte. This 
byte is stored on the 98034A Interface to be delivered 
any time the controller conducts a serial poll. The state­
ment rqs 7,67 would set a decimal 67 (binary 
01000011) as the serial poll response byte, and set the 
SRQ line, since bit 6 is set. 

Finally, the pass control statement (pct) specifying a 
select code and a device number will cause that device 
to be addressed as a talker and the take control (TCT) 
message to be sent. This will result in active control 
passing from the computer to the specified deVice, 
which will then have responsibility for sequencing bus 
activity. By addressing the device as a talker (which 
automatically unaddresses any previous talker), this 
protocol guarantees that only one device will respond 
to the take control message and that there will be only 
one active controller on the bus at any time. 



EXTENDED BUS CONTROL MESSAGES 

9825A Statement 

clr clear 
eli clear interface 

trg trigger 
rem remote 
lei local 
110 local lockout 

rds read status 

pol parallel poll 
pole poll configure 
polu poll unconfigure 
rqs request service 
pct pass control 

<sc> only 

DCl 
IFC 

GET 
HEN on 
HEN off 
LLO 

98034A 
status byte 

parallel poll 
(error) 
PPU 
SHQ 

(error) 

<SCXDN> 

SDC 
(error) 

<l> + GET 
HEN + <l> 
<l> + GTl 

(error) 

serial poll 

(error) 
<L> + PPC + PPE 
<L> + PPC + PPD 

(error) 
<T> + TCT 

<L> = specified device addressed as a listener 
<T> = specified device addressed as a talker 

Figure IIl-25 

6. Using the 98034A Interface 
Most of the HP-IB operations discussed in the 
preceding sections are implemented automatically by 
the I/O ROM and by a microprocessor contained on 
the 98034A Interface card itself. Since these operations 

First Status Byte: 

7 6 5 

Bit 0: Is 1 when error detected. 

4 

Bit 2: Is 1 when Device Clear received. 

Second Status Byte: 

7 6 5 4 

0 
(MSB) 

Third Status Byte: 

7 6 5 4 

EOI REN SRQ ATN 

are well defined by the IEEE-488-1975 standard, and 
have been made transparent by the high-level program­
ming language, it is less important that a user of the 
HP-IB understand the detailed workings of the interface 
card. 

There are, however, a few operational characteristics of 
the 98034A which the user should understand in order 
to properly program the interface for such activities as 
interrupt operation, acting as a non-controller, using 
the EOI capability, and so on. These characteristics will 
be discussed in this section. 

Because of the increased complexity of the 98034A In­
terface, four status bytes are required to contain all of 
the information about the card which might be of in­
terest to the computer controlling that interface. Figure 
III-26 shows the meanings assigned to the various bits 
in these four status bytes. The information which is 
most often used is collected in the fourth of these status 
bytes, and is the one returned as the result of executing 
the read status function. The other three status bytes 
contain less-frequently used information, and can be 
obtained from the read-status operation by specifying 
additional return variables (see 9825A Extended I/O 
ROM Operating Manual). 
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Figure 111-26 (cont'd) 

Bit 7: Is 1 when the SRQ signal line is true. 

Bit 6: Is 1 when the calculator is the active controller. 

Bit 5: Is 1 when the calculator is the active talker. 

Bit 4: Is 1 when the calculator is an active listener. 

Bit 3: Is 1 when the calculator is the active system 

controller. 

Bit 2: Is always 1. 

Bit 1: Is 1 when a serial poll is in process. 

Bit 0: Is 1 when the EOI (end of record) line is true. 

In the first status byte, the error bit (bit 0) is set 
whenever an illegal operation on the bus is attempted. 
This would include attempting to talk or listen when the 
card has not been addressed to do so, or attempting to 
specify bus addressing information when the 98034A is 
not the active controller on the bus. Normally, these 
operations are handled automatically by the I/O ROM 
and the user need not be concerned with this error in­
dicator. 

If the 98034A is not the controller on the bus, and the 
controller sends a device clear message, bit 2 of the 
first status byte will be set to indicate that this condition 
occurred. Both the error and the device clear bits will 
remain set until the status is read, at which time they 
will automatically clear to be ready for the next oc­
curence of these conditions. 

The second status byte contains the bus address (in the 
range 0 to 30) that has been set on the 98034A card, 
in bits 4 through O. This information is normally used 
by the I/O ROM when it needs to issue its own talk or 
listen address as part of the automatic addressing se­
quence associated with read and write statements. It is 
available to the user, however, if he should wish to 
check the address that the interface card has been set 
to. 

The third status byte simply contains a direct mapping 
of the five bus control lines and the three handshake 
lines (Figure III-19). Again, this information is required 
by the automatic bus drivers in the I/O ROM and does 
not normally represent information that is directly 
useful to the user's program. 

The information which is most useful to the user's pro­
gram is contained in the fourth status byte, which is the 
one returned as the result of the read-status operation 
when the select code of the HP-IB card itself is 
specified . 

Bit 7 of this byte is an indicator that a service request is 
currently active. Notice that bit 5 of the third status byte 
also deals with the service request line (SRQ). It is a 
one whenever the SRQ Line Itself is set, and becomes 
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a zero whenever the SRQ line is cleared. The service 
request bit in the fourth status byte, however, is only 
set if SRQ is set and the 98034A card is the active 
controller. Thus it indicates that this is a request which 
the 9825A, as active controller, is being asked to ser­
vice. 

Bits 6 through 3 indicate which combination of the four 
possible bus roles (talker, listener, active controller, and 
system controller) is currently true for the 98034A 
card. Bit 1 indicates that a serial poll operation is being 
conducted on the 98034A card by the active controller 
on the bus. 

Bit 0 is set whenver a data character is received by the 
98034A (as a listener) with the EOI line set. While the 
EOI indicator (bit 7 of the third status byte) is a direct 
indicator of the state of the EOI line, the EOR bit (bit 0 
of the fourth status byte) is set only when data is 
received with EOI true, and is cleared when the status 
byte is read by the computer. 

Unlike the other interface cards whose only interrupting 
condition is the ready state of the flag line (see Section 
IIIB 1), the 98034A can interrupt on eight distinct con­
ditions. The most common of these is an interrupt for a 
service request (SRQ) from another device on the bus, 
and is the condition set if no interrupt enable mask is 
specified in the enable-interrupt (eir) statement. (See 
Section IIB5). 

Bit 7 Logical 1 enables Interrupt on SRQ 

Bit 6 Logical 1 enables Interrupt on active controller 

8115 Logical 1 enables Interrupt on active talker 

81t 4 Logical 1 enables Interrupt on active listener 

81t 3 Logical 1 enables Interrupt on Input register full 

81t 2 Logical 1 enables Interrupt on output register empty 

Bit 1 Logical 1 enables Interrupt when error detected deVice clear or selective deVice 

clear received (when nOI active controller) or EOI received 

81t 0 Enable EOI to clear status line (STS) 

Figure 111-27 

Figure III-27 shows the eight conditions which can be 
specified in the interrupt enable mask. Bits 6, 5, and 4 
indicate that an interrupt should be generated 
whenever the 98034A card is made the active con­
troller (i.e., a take control message is sent from the cur­
rent active controller), addressed as a talker, or ad­
dressed as a listener. The interrupt for one of these con­
ditions will be generated by the 98034A as a result of 
two possible circumstances. Either the interrupt enable 
bit is set and the corresponding condition becomes 
true, or the interrupt bit is enabled and that condition is 
already true (that is, the condition is true at the time 
the interrupt enable mask is sent to the 98034A). 
Thus, for example, the fact that the talker-enable bit is 
set and the card is addressed as a talker will not 



generate an interrupt. Only when the controller actually 
addresses the card as a talker will the interrupt be 
generated. As a result, it is not necessary to continually 
enable and disable the interface for interrupts on these 
conditions. If the "interrupt on addressed to talk" bit is 
set, an interrupt will be generated each time the 
98034A receives its talk address from the controller. 
These three bits remain set until the user's program 
clears them with another interrupt enable mask contain­
ing a zero in these positions (or when the interface is 
reset from the computer). 

Bit 1 of the interrupt enable mask allows an interrupt to 
occur if the device-clear or error bits (status byte one) 
are set. The remaining interrupt conditions (bits 3, 2, 
and 0) are used by the I/O ROM during buffer transfer 
operations. Their correct use is highly dependent on 
timing and protocol considerations; and as such, they 
do not represent interrupting conditions which can be 
useful to a high-level program. 

Figure III-28 shows the register assignments used by 
the 98034A Interface card. 

IN OUT 

R4 Data Input Data Output 
R5 Status Request Interrupt Mask 
R6 Status Bytes & Bus Commands 

Interrupt Data 
R7 Poll Request Bus Control Lines 

& Poll Response 

Figure III-28 

Most HP-IB operations use complex sequences of these 
register operations, which are handled automatically by 
the I/O ROM in response to high-level statements 
discussed in Section IIID5. As a result, in most cases it 
is neither practical nor desirable for the user's program 
to attempt to carry out HP-IB operations by using the 
rdi/wti statements to directly access these registers. 

The one exception to this is in the use of EO!. We 
have seen (Section III 05) that the EOI line is used to 
indicate the end of a data message when binary data is 
being sent over the bus. Normally, when ASCII data is 
being sent, a special character such as LF (line feed) is 
used to terminate the message. If EOI must be used, 
buffer transfers will recognize this condition as a ter­
mination of the input transfer operation. The 9825A 
does not, however, send EOI automatically with any 
data messages. If the user's program wishes to set EO!, 
this can be done using an R7 OUT operation. In fact, 
all five of the bus control lines can be set or cleared us­
ing the bit mapping shown in Figure III-29. 

Bit: 
R7 OUT 

7 
1 

6543210 
o 0 EOI IFC ATN REN SRQ 

Figure III-29 
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When the upper three bits of the R7 OUT register are 
100, the lower five bits directly address the bus control 
lines. In each position, a 1 will set and a 0 will clear 
the corresponding line. For example, to send 100 bytes 
of data using EOI with the last byte, the following pro­
gram could be used. 

16: for I = 1 to 99 
17: wtb 713, A[I] 
18: next I 
19: jmp iof(7) 
20: wtiO,7;wti7,144 
21: wtb 713, A[100] 

Before sending the last byte, the program addresses 
select code 7 (wti 0,7) and outputs a 144 (binary 
10010000) to the R7 register to set EO!. Then the last 
byte is sent with EOI set. Remember that all five bus 
lines are set or cleared by this operation. Thus, for ex­
ample, if we wanted to set EOI and leave REN set 
(assuming that it was set before this operation) we 
would have used a 146 (binary 10010010) instead of 
the 144. 

lt should also be kept in mind that not every device on 
the bus is allowed to set the bus control lines. Figure 
III-30 shows the role that a device must currently have 
to set each of these lines. 

EOI Talker 
IFC System Controller 
A TN Active Controller 
REN System Controller 
SRQ Non-controller 

Figure III-30 

Finally, Figure III-31 shows the responses of the 
98034A when it receives the various bus control 
messages. 

ATN -

IFC -

REN -

EOI-

SRQ -

-

As a non-controller, the 98034A gives 
its attention to the controller and will 
not respond (flag indicates busy) to the 
computer during ATN true. 

Clears all registers and indicators to 
the power-on state except for the 
interrupt-enable mask and the serial 
poll response byte. 

No response 

Terminates data input transfer to a 
buffer. Does not terminate simple read 
statement. 

Sets the service request bit (bit 7 of 
fourth status byte) and interrupts if bit 
7 of interrupt mask is set. _ -

• ",. 
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• 
DCl, SCD - Sets bit 2 of first status oyte and inter­

rupts if bit 1 of interrupt mask is set. 

GTl, llO -

GET -

Serial poll -

No response 

No response 

98034A delivers the currently set serial 
poll response byte without computer 
intervention. 

Parallel poll - 98034A responds to a parallel poll 
using the line and sense set by the 
switches on the card. 

PPU, PPC - Parallel poll response is switch settable 
and not programmable by the con­
troller. No response. 

TCT - 98034A assumes active control of the 
HP-IB. 

Figure III-31 

E. The 98036A Serial I/O 

• Interface 

• 

1. An Introduction to Serial I/O 
In the previous sections we have discussed interfacing 
peripheral devices to the computer in various formats 
including 16-bit parallel (98032A), BCD (98033A), 
and the HP-IB instrumentation bus (98034A). In all of 
these cases, the cards are used to interface local 
peripherals and instrumentation clusters which are 
physically located near the computer itself. Some ap­
plications, h9wever, may require the use of peripheral 
devices which are located at considerable distances 
from the computer. 

Historically, this need arose when the size and speed of 
computers made it practical for them to do multitask­
ing; that is, being shared by several users at the same 
time. To do this, each user required his own port into 
the computer, called a terminal, through which he 
could enter programs and data and get back printed 
results. This so-called time-sharing made it possible for 
each user to access a central computer from a terminal 
located in his own office or work space. The standard 
methods of interfacing, however, were not practical in 
this case since the cost of running cables containing 
many wires over these distances would quickly become 
prohibitive. A method of interfacing was needed that 
would require the fewest number of wires to connect 
the terminal to the computer. 
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The solution to this problem was found in a new 
method of data transmission called serial I/O. In this 
method, all data is sent and received over a single pair 
of wires in a bit-serial manner; that is, a word or byte 
of data is transmitted on a single wire, and received on 
a second wire, one bit at a time. We will see later that 
in some cases, more than two wires are used to 
achieve special features. But in all these cases, the 
transmission of data one bit after the other is a 
characteristic of serial interfacing. 

This method of connecting terminals to a computer 
soon led to connecting one computer to another so 
that they could exchange programs and data. And it 
became possible to connect terminals and computers 
located in different buildings, cities, and even countries 
by making use of the already existing telephone lines. 
But because telephone lines were not designed to 
transmit digital (i. e., discrete voltage level) signals, a 
device that would translate the digital signals produced 
by a serial interface into analog (i.e., modulated audio 
tones) signals that could be carried over telephone lines 
was required. Such a device is known as a data set or 
a modem (modulator-demodulator). Figure III-32 
shows how a pair of such modems would be used to 
connect a computer to a remote terminal or to another 
computer. 

COMPUTeR I rdlQlta oataj. ~ 
~----' DIRECT SERIAL 110 LINK ~ ------, 

COMPUTER ~ftGJ MD~ 
digital data \.... analog data digital data 

TELEPHONE SERIAL 110 LINK 

Figure III-32 

Although the interfacing of remote devices is the 
primary use of serial I/O, it is by no means restricted to 
this use. Many peripheral devices such as keyboards 
and printers are available which use a serial com­
munications link to the computer, even though they 
may be physically located very near that computer. 
Because of the large number of manufacturers making 
modems and data terminal equipment, a need for 
some standard for compatability was recognized leading 
to the RS-232-C standard for serial interfacing in the 
late 1960's. Since this was the most common standard 
available prior to the IEEE-488-1975 (see Sectin IIID1), 
many manufacturers of peripheral devices designed 
them with serial interfaces to take advantage of this 
compatability. 



2. Data Transmission Using Serial 

I/O 
In this section, we will discuss in detail the method by 
which data is transmitted over a serial communications 
link, and introduce some of the terminology associated 
with serial I/O. The concepts involved are not difficult, 
but unless they are understood a great deal of confu­
sion can result. 

As with the other methods of interfacing, information is 
most commonly transmitted over the data line using 
two voltage levels to represent the two possible states 
of a binary digit or bit (1 or 0). We will see later that 
another convention called current loop is sometimes 
used in which current levels, rather than voltage levels, 
are used to represent this information. Figure III-33 
shows the voltage levels for these two states, and the 
meanings assigned to each. 

State: LOW HIGH 
Voltage range: -3 to -25V +3 to +25V 
Binary state: logic 1 logic 0 
Level name: mark space 

Figure III-33 

When data is not being transmitted, the line is held in 
the low state. Unlike the other methods of interfacing, 
the serial protocol does not use any type of handshake 
process. When the transmitting device has a byte of in­
formation ready to send, it merely puts the information 
on the data line, expecting the receiving device to be 
ready to take it. If the first bit of the data byte sent hap­
pens to be a logical 1 (low state), the receiver could 
not distinguish this bit from the quiet line, which is also 
a low state. Therefore, each byte of data is preceeded 
by a start bit, which is defined to be in the high state. 
This transition from the low state (idle line) to the high 
state (start bit) lets the receiver know that a byte of data 
is being transmitted. As an example, lets look at how 
the transmitter would encode the ASCII character "E" 
to be sent over the data line. Figure III-34 shows the 
state changes that take place on the data line to send 
the ASCII "E". The transmitting device first pulls the 
data line high (start bit) to tell the receiver that a data 
byte is coming. It holds the line high for an amount of 
time agreed upon between the transmitter and the 
receiver, called a bit time. Following the start bit, the 
bits of the data byte itself are placed on the data line. 
The least significant bit (bit 0) is sent first, and each bit 
is held on the line by the transmitter for one bit time. 
When the receiver senses the leading edge of the start 
bit, it waits for one half of a bit time in order to syn­
chronize itself as closely as possible to the center of that 
start bit. Then, each bit time interval after that, it 
samples the state of the data line and reads a logic 1 or 
O. These time intervals at which the receiver samples 
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the data line are marked by ticks in Figure III-34. After 
the last (most significant) data bit has been sent, the 
transmitter may also send a parity bit (marked P in 
Figure III-34) which will be discussed later. 

ASCII "E" = 69 (decimal) = 105 (octal) = 01000101 (binary) 

Figure III-34 

From this diagram, we see that the successful transmis­
sion of a data byte is highly dependent on precision 
timing. If the receiver is sampling the data line at a rate 
significantly faster or slower than the transmitter is set­
ting that line, it is possible that the receiver will either 
miss a bit, or sample the same bit twice, resulting in er­
roneous data being received. 

After the last data bit has been sent, the transmitter 
then allows the line to stay in the idle (low) state for 
some set minimum time interval before sending the 
next start bit to begin the next character transmission. 
This idle time is sometimes called a stop bit, although it 
does not actually represent a bit of real data. It merely 
allows the receiver time to process the data byte just 
received before the next one comes along. For some 
devices, one bit time may not be enough to process the 
previous character and be ready for the next one. In 
this case, the transmitter and receiver may agree that 
the transmitter will wait in the idle state for 1.5 or 2 bit 
times before sending the next start bit. 

In the example used in Figure III-34, we sent the 
character "E" using an 8-bit ASCII code. That is, eight 
of the bits sent represented the actual data. If we in­
clude the start bit, a parity bit, and one stop bit, we see 
that 11 bit times are actually required to send an 8-bit 
byte of data. As an example, lets assume that the 
overall transmission rate we are using is 10 characters 
per second. This data rate is very common among 
printing terminals such as the popular Teletype ASR 
Model 33. Figure III-35 shows the timing characteristics 

• t;. 
• • • • • • • t). 
• • • • for this example case. 

Character length = 8 bit II 
Bits/ character = 8 + Start + Parity + Stop = 11 
Data Rate = 10 characters/second ~ 
Bit rate = (10 char/sec) (II bits/char) = 110 .. 
bits/sec 
Bit time = 1/110 bits/sec = 0.009091 sec = 9.1 ~ 

~ms_ec ___ ---I .. , .. 

Figure III-35 ., ~ 

Thus we see that at 110 bits per second, each bit is .. 
held on the data line for approximately 9.1 

mllli,emnd,. II 
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This bit rate of 110 bits per second is sometimes 
refered to as a baud rate and we often speak of the 
data channel running at 110 baud. Strictly speaking, a 
binary data channel (i.e., one using low and high 
voltage levels) should only be described by the term bit 
rate, the word baud being reserved to characterize the 
data transmission rate of the analog signals sent be­
tween modems. Because of bit compression schemes 
used in some modems, the bit rate and the baud rate 
may not always have the same value. For our pur­
poses, we will treat modems as transparent devices that 
convert digital information to analog and back to digital 
for long distance communication; and as such, we will 
only be concerned with bit rates. 

The field of data communications and serial I/O prob­
ably has more terms associated with it than any other 
method of interfacing. It is probably also the area in 
which the terms are most commonly misunderstood 
and misused. In order to avoid some of this confusion, 
we will spend the remainder of this section discussing 
some of those terms and concepts that will be useful to 
understand when using the 98036A Serial I/O Inter­
face. 

Returning to Figure II1-34 we see that although the bits 
within the data byte must be sent at precise intervals, 
there is no restriction on the time between characters 
except that the required stop time be allowed. Indeed, 
it is this lack of a time restriction that makes the start bit 
necessary, so that the receiver will recognize the next 
character. This mode of transmission is called bit­
synchronous, character-asynchronous or more com­
monly, simply asynchronous transmission. As we saw, 
it requires 11 bit times to transmit 8 bits of actual data. 

The extra start and stop bits can be eliminated if a 
group of data bytes is transmitted as a single block, 
with start and stop indicators only at the beginning and 
end of the entire block. This means that as soon as one 
data byte is sent, the next one must be transmitted im­
mediately with its first bit occuring at the next bit time 
interval. (This method of transmission is called syn­
chronous communication.) Although this eliminates the 
intermediate start and stop bits, it also places a heavier 
burden on the transmitter and the receiver. Their inter­
nal clocks which determine when each bit time interval 
is to be marked must be precisely synchronized so that 
they do not drift out of phase with one another. Also, 
if the transmitter does not have the next data character 
ready to send when the next bit time occurs, it must fill 
in with some pre-defined sync character so that the 
transmitter and the receiver do not loose their syn­
chronization. In general, protocols for synchronous 
data transmission can become quite complex. Since 
HP desktop computers are intended to be both stand­
alone computing devices and instrumentation con­
trollers which can also go on line to another computer 
when required, and not intended to act as a terminal 
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emulator as their primary function, only asynchronous 
data communciations is supported on these machines. 
Since most large computers and timeshare services 
support asynchronous terminals, this mode of opera­
tion is satisfactory for most applications. 

Up until now we have talked about serial transmission 
as through it took place over a single wire. Obviously, 
a common signal ground is also required so that both 
the transmitter and the receiver can measure the 
voltage levels on the data line with respect to the same 
reference point. Thus the simplest form of serial com­
munication requires two wires for the data transmis­
sion. 

If communication over the data line is always in one 
direction, the data channel is said to be operating in 
the "simplex" mode. For example, an RS-232-C 
printer would only receive information, while a device 
such as a tape reader would only transmit data. A ter­
minal, however, may both send and receive data since 
it has both a keyboard (data transmitter) and a printer 
or a CRT (data receiver). In Section II1D2 we saw that 
the HP-IB allows bidirectional communications over a 
set of data lines. That is, the same set of data lines is 
used for sending information from device A to device 
B, and for sending information from device B to device 
A. A special HP-IB protocol (i.e., addreSSing talkers 
and listeners) is used to control the traffic on this set of 
data lines. 

Since communication in one direction over an RS-232-
C link uses only one wire, such protocols can be avoid­
ed by allocating separate transmit and receive data 
lines, with a common signal ground line used for 
reference. Figure III-36 shows a schematic representa­
tion of such an RS-232-C data link. 

DATA 
COMMUNICATIONS Transmitted Data DATA 

DEVICE 
TERMINAL Received Data 

(Computer or 
DEVICE 

Modem) Signal Ground 

Figure 111-36 

Typically, the devices represented in Figure III-36 will 
be a computer (or a modem for remote communica­
tions) and a terminal. But this same diagram can also 
represent a link between any two RS-232-C devices. 
For this reason, the two devices are often referred to 
by the more general terms Data Communications 
Equipment (DCE) and Data Terminal EqUipment 
(DTE). Also, the terms transmitted data and received 
data are defined relative to the terminal (DTE device). 

An output-only device operating in the simplex mode 
would only implement the transmit and ground lines, 
not using the received data line. An input-only device 
would implement the received data and ground lines. If 



a device can both transmit and receive data, it would 
implement all three lines. Such a device is said to be 
operating in the "duplex" mode. 

When two devices are directly connected over an RS-
232-C link, they normally operate in what is called a 
full-duplex mode. This means that data may be 
transmitted and received simultaneously. Information 
may be carried from the DTE to the DCE on the 
transmitted data line at the same time that information 
is being sent from the DCE to the DTE on the received 
data line. 

If these devices are connected over telephone lines us­
ing a pair a modems, only one data path (the phone 
line) interconnects the two modems. In this case, full 
duplex operation is still possible since many modems 
are capable of multiplexing the two signals representing 
the transmitted and the received data. As the transmis­
sion speed (baud rate) increases, however, the amount 
of information being sent by both transmitters 
simultaneously eventaully exceeds the capacity of the 
telephone line. Thus, when using high-speed modems, 
a special protocol is used called half-duplex in which 
only one device at a time is allowed to transmit data to 
its modem for sending over the telephone line. 

Figure III-37 shows a schematic representation of all 
three of these modes of operation. Notice that while 
the computer is playing the part of a modem in the 
simplex and full-duplex modes, in the half-duplex 
mode it is operating as a terminal, as is shown by the 
labeling of the transmitted and received data lines. 

(not connected) 

Transmitted Data 
RECEIVE-ONLY 

COMPUTER ReceIVed Data .. DEVICE 

Signal Ground (Printer) 

SIMPLEX MODE 

~ Transmitted Data 

COMPUTER 
Received Data 

TERMINAL 
Signal Ground 

FULL-DUPLEX MODE 

Transmllled Data 
I 

Received Data I TERMINAL 
I .. 

MODEM: 
Slgn;)1 Ground 

ill 
c I 

I I"" I Transmitted Datd 

Received Data 
COMPUTER 

MODEM 
Signal Ground 

HALF-DUPLEX MODE 

Figure III-37 
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So far, we have been using the terms half-duplex and 
full-duplex to describe the characteristics of the com­
munications line itself. These terms are also applied to 
classify terminal types with similar, but not quite iden­
tical meanings. To clarify this, lets look at the 
characteristics of a terminal in operation. 

Figure III-38 shows a schematic representation for a 
half-duplex terminal. It consists of a keyboard for enter­
ing information to be sent to the computer, an output 
device such as a printer or a CRT for displaying infor­
mation sent back by the computer, and some electronic 
hardware for selecting the transmit or the receive mode 
of operation on the half-duplex data line. 

r-------------i 
: l PRINTER.r- I/O It-tl-----I 
I t SICLICCTOR 

I I KEYBOARD ~ 
I ~---~ I 

COMPUTER I 
L _____ ~~I!::.A~ ____ J 

Figure III-38 

Information typed in on the keyboard is sent to the 
computer, and its responses are sent to the terminal's 
printer. Since it is very difficult to type on the keyboard 
without some visual feedback as to which keys have 
been pressed, the half-duplex terminal will also send its 
keystrokes to the printer as indicated by the arrow in 
the figure. Thus the printer shows a record of both the 
input from the keyboard as well as the output from the 
computer. 

If, due to electrical noise on the data line, a bit is 
dropped (i.e., a transmitted 1 or 0 is received as a 0 or 
1) the computer will not receive the same message as 
sent by the terminal. But since the information on the 
printer was generated by the keyboard, the message 
looks correct even though the computer responds with 
an error indicating that it did not understand the 
message received. This problem can be alleviated by 
operating the terminal in the full-duplex mode, and 
taking advantage of a capability offered by many 
timeshare computers called echo-back or simply echo. 
Figure III-39 shows how a terminal would operate in this 
mode. 

received 

data 
1'0 I COMPUTICR 

r-----~~ ~I-~~~-~ 
transmitted 

data 
ECHO 

Figure III-39 

The keyboard on the terminal does not directly drive 
the printer. Instead, as each key is pressed, it is 
transmitted to the computer which receives it for pro­
cessing, and also echoed back to the terminal to be 
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output on the printer. In this mode, the operator at the 
terminal still gets visual feedback of what has been 
typed. But the characters printed are those received by 
the computer and echoed back. Now if there is a 
transmission error, the operator sees the incorrect 
character on the printer and can send a backspace 
character and retype the correct character. 

Some terminals operate in only the half-duplex or the 
full-duplex mode, while others will operate in either 
mode, usually selectable by a switch on the terminal 
itself. If a terminal is operating in the half-duplex mode 
with a computer which echoes characters back, each 
keystroke will be printed twice - once from the 
keyboard and once from the echo back. Thus typing 
the message "HELLO" would result in the printer 
shOWing "HHEELLLLOO". On the other hand, if a 
full-duplex terminal is communicating with a computer 
that has no echoback capability (or has this feature 
turned off), neither the computer nor the keyboard is 
driving the printer during the typing of messages at the 
terminal, and the operator is "running blind". This 
close association between half and full duplex operation 
of a terminal, and having echo turned on or off, can 
lead to confusion unless this association is understood. 
When a selectable terminal is run in the half-duplex 
mode, the keyboard drives the printer and echo should 
be suppressed on the computer. In the full-duplex 
mode, the keyboard does not drive the printer and the 
echoback feature of the computer should be on. If the 
particular computer being used cannot have its echo 
turned on or off, this will dictate the mode of operation 
of the terminal. 

3. Control Lines and the RS-232-C 
Standard 

Until now we have been concerned only with data 
transmission over serial I/O lines. This method pro­
vides a simple means of communication over a 
minimum number of wires, but does not allow for 
much flexibility. As data communications equipment 
became more sophisticated, the need for more control 
arose. For example, if a data terminal device offered 
the ability to perform more complex tasks (e.g., save a 
block of received data on a magnetic tape unit), it 
might require more than the provided stop-bit time be­
tween characters to perform these operations. With the 
advent of telephone communications and modem 
equipment, other new needs arose such as the ability 
to detect when a computer was trying to dial up a 
modem, and when it had dropped the line (i.e., hung 
up) at the end of the communication. 
In an attempt to prevent total confusion in this area 
with every manufacturer implementing these control 
features in whatever manner they chose, resulting in 
lack of compatability between serial I/O devices, the 
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Electronic Industries Association (EIA) tried to define a 
standard to guide designers of serial I/O equipment. 
After several proposals and earlier standards, the EIA 
RS-232-C standard was adopted in 1969 and is used 
today by a large number of manufacturers of data com­
munications equipment. 

Even though the RS-232-C standard is the most 
popular one in use today, several other standards exist 
which allow for more capabilities in certain areas of ap­
plication. Some of these are very close to the RS-232-
C in their definitions. And the user setting up a serial 
I/O system should be careful to recognize equipment 
which claims to be RS-232-C compatible but may have 
"slight" differences. In any given application, these dif­
ferences mayor may not be enough to prevent com­
patability with a true RS-232-C device. 

Data communications devices which are RS-232-C 
compatible use a standard EIA 25-pin connector, 
shown in Figure III AD. The computer or modem (DCE) 
cable terminates with a female connector, and terminal 
devices (DTE) use a male connector. Although this 
polarity is the common one, some devices will be 
found which use the opposite type of connector. The 
problems that this can cause will be discussed in Sec­
tion IIIE6. 

Figure 111-40 

Figure III-44 shows the various data and control lines 
that have been assigned to each of the connector pins 
by the RS-232-C standard. The arrows are used to 
show the direction of each line. That is, an arrow to 
the right signifies that the signal described is generated 
by the DCE device and received by the DTE; while an 
arrow to the left signifies a signal from the DTE to the 
DCE. Notice that the terms transmitted and received 
data (pins 2 and 3) are named relative to the data ter­
minal device. In the follOWing paragraphs, we will 
describe each of these lines; not in the order of their 
pin assignments, but collected into logical groups ac­
cording to their functions. 

Protective Ground (Pin 1) 
This line is connected to the chassis ground of the 
device which is usually connected to the external 



ground of the power supply for safety reasons. 

Transmitted Data (pin 2) 
Received Data (pin 3) 
Signal or Logic Ground (pin 7) 

These three lines are used to obtain full-duplex data 
exchange and have already been discussed in Section 
I1IE2. 

Request to Send (pin 4) 
Clear to Send (pin 5) 
Data Set Ready (pin 6) 
Data Terminal Ready (pin 20) 

These four lines perform status indication functions 
between the modem and the terminal, and indicate 
various go/no-go conditions. The Data Set Ready 
(DSR) and Data Terminal Ready (DTR) lines are 
similar to the PSTS line on the 98032A card (see Sec­
tion IlIA). When they are on (high voltage level), they 
indicate that the device is operational. For example, 
the data set (modem) might turn off DSR if it were 
switched into the test or dial mode, or if it lost the car­
rier signal on the telephone lines. Similarly, the ter­
minal would turn off DTR if it were switched from the 
on-line to the local mode of operation. 

The Request to Send (RTS) and Clear to Send (CTS) 
lines perform different functions depending on the 
mode of operation. In the half-duplex mode, they are 
used to control the channel direction, or direction of 
communication flow on the data line. 

Normally these lines are used by data communications 
equipment manufacturers to implement the various 
serial I/O protocols, and are not of concern in simple 
data exchanges between RS-232-C devices. The user 
should be aware, however, that some modems and ter­
minals will not operate properly unless certain of these 
lines are set to the on state. We will discuss this further 
in Section I1IE4 when we see how the 98036A card 
sets and clears these lines. 

Ring Indicator (pin 22) 
Carrier Detect (pin 8) 
Signal Quality Detector (pin 21) 
Data Signal Rate Selector (pin 23) 

These four lines are used when the terminal is 
operating with a modem using telephone communica­
tions. The Ring Indicator indicates that the telephone 
ringing signal is being received on the communication 
channel. The Carrier Detect indicates that the acoustic 
signal or tone that is modulated to carry the data infor­
mation is being received. Loss of this carrier indicates 
that the communication channel is no longer establish-

, ed. Some modems can detect from the waveform of 
the carrier signal when there is a high probability of an 
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error in the received data. This condition is indicated 
by the state of the Signal Quality Detect line. The Data 
Signal Rate Selector line is used by some modems with 
dual rate capability to switch between two data signal­
ing rates. 

When connecting RS-232-C devices to HP desktop 
computers using the 98036A Interface, these lines 
would not normally be used, although, they are made 
available for setting and testing by the interface. 

Transmitter Clock (pin 15) 
Receiver Clock (pin 17) 
Transmitter Clock (terminal source) (pin 24) 

Normally, each device has its own internal clock signal 
used to send and receive data bit patterns at the correct 
bit-time intervals. If a device does not have its own 
clock, or if it wishes to use the other device's clock for 
special data rates or synchronization purposes, these 
lines are used to transmit those clock pulses. 

Secondary Transmitted Data (pin 14) 
Secondary Received Data (pin 16) 
Secondary Request to Send (pin 19) 
Secondary Clear to Send (pin 13) 
Secondary Carrier Detect (pin 12) 

These lines are assigned by the RS-232-C standard in 
order to allow for a second data communications chan­
nel. The 98036A does not support this secondary 
channel, although two of the control lines assigned for 
this channel (Secondary Request to Send and Secon­
dary Carrier Detect) are made available to the com­
puter and can be used for whatever purpose the user 
finds convenient. This assumes, of course, that the 
device being interfaced to does not use these lines for 
their assigned meanings. 

As we will see in Section I1IE4, some of these lines are 
implemented by the 98036A Interface while others are 
not. For example, the transmitter and receiver clocks 
(pins 15 and 17) can be externally controlled on the 
98036A, while the terminal source transmitter clock 
(pin 24) is not implemented. Also some of the second­
ary channel lines are provided since they are 
sometimes used in implementing half-duplex protocols. 

4. The 98036A Serial I/O Interface 
In Section I1IE1 we showed how a serial communica­
tions link is used to connect a computer to a remote 
terminal. Using the 98036A Interface card, HP desktop " 
computers can participate in this communications link, 
acting as a substitute for either the computer, the ter-
minal, or both. In the last case, the serial I/O link is 
used to allow two desktop computers to be connected 
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together for program and data exchange. Figure III-41 
shows a schematic representation of these three 
methods of interfacing. 

I DESKTOP ~f------~~ 
COMPUTER ~"l--.. 

98036A (Standard) 

DESKTOP hf-------l.-----l DESKTOP I 
COMPUTER 'J h COMPUTE~ 

98036/\ (Std ) \... 98036A (OPtion 001 ) 

Figure III-41 

The desktop computer can be anyone that uses the 
98036A Interface, and we will be using the 9825A as a 
representative example. Depending on whether the 
9825A is playing the part of the computer or that of 
the terminal, the RS-232-C pin assignments will be 
slightly different. For example, as a terminal, the 
98036A card should transmit its data on pin 2 and 
receive on pin 3 (see Figure III-44). But the 98036A 
card on the computer end of this link will receive data 
on pin 2 and transmit on pin 3. (Remember that the 
terms transmit and receive are named relative to the 
terminaL) Therefore, two versions of the 98036A Inter­
face are required. The standard version makes the 
9825A look like a computer or a modem, and is used 
to connect it to a terminal device. The option 1 version 
makes the 9825A look like a terminal and allows it to 
be connected to a computer or a modem. When we 
say that the 9825A looks like a modem or a terminal 
we mean only the way in which it handles the data ' 
communications channel. Additional software (i.e., a 
program in the 9825A) is required to allow it to 
emulate the actual operation of a modem or a ter­
minal. The only function of the interface card is to send 
and receive information over the data line, and to 
make the various RS-232-C control lines available for 
setting and testing. Any higher capability such as ter­
minal emulation must be handled by a running pro­
gram in the 9825A. 

Figure III-42 shows the meanings that have been given 
to the interface registers on the 98036A in order to ac­
cess the various data and control lines. 

IN OUT 

R4 Data In' Data Out" 
R5 Status In Control Out 
R6 Extended Status Extended Control 
R7 (not used) Trigger 

·These registers are also used for special ~tatus and control information. 

Figure III-42 
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Data input and output with the 98036A is handled in 
the same way as described for the 98032A Interface. 
That is, data bytes are sent and received through the 
R4 registers, and the R7 OUT register is used as a trig­
ger. The same drivers presented in Section IIA4 are 
used to exchange data with the 98036A Interface. Us­
ing these drivers, the card is operated in the half­
duplex mode only. Data may be sent or received, but 
not both at the same time. We will see later how the 
interrupt structure of the 9825A can be used to allow 
full-duplex operation. 

Data exchange with the 98036A card is done as 
through it were an 8-bit parallel interface. An entire 
byte of data is sent to the card via the R4 OUT 
register. When the R7 OUT trigger is issued, the inter­
face automatically breaks it down into a sequence of 
serial bits and supplies the required start and stop bits 
(plus a parity bit if parity is being used). It also takes 
care of the necessary timing requirements. 

Most of the complex protocol for exchanging data over 
the RS-232-C channel is handled by a large-scale in­
tegrated circuit (Intel 8251) called a USART (Universal 
Synchronous/ Asynchronous Receiver and Transmit­
ter). This USART is the heart of the 98036A and im­
plements most of the data, timing, and control re­
quirements specified by the RS-232-C standard. The 
remaining electronics of the 98036A provide an inter­
face between this USART and the I/O backplane of 
the desktop computer. It should be mentioned that 
even though the USART is capable of supporting syn­
chronous communications on the data channel, a com­
plex driver would also be required in the desktop com­
puter to implement one of the byte-oriented syn­
chronous protocols (e.g., BISYNC), since these pro­
tocols are not provided by the USART itself. As a 
result, only the asynchronous mode of operation is 
supported on the 9825A using the 98036A Interface. 

The status (R5 IN) and control (R5 OUT) registers on 
the 98036A are used for setting and testing various 
modes of operation of the interface card itself. Figure 
III-43 shows the aSSignments that have been made for 
the bits in these registers. 

R5 OUT Register 

R5 IN Register 

Peripheral 
Status I 

R5 Registers 

Interface Interlace 
to)!, 101 

Figure III-43 



Most of these bits are used for operating the card in the 
interrupt mode, and will be discussed in the next sec­
tion on interrupt programming. The remaining bits will 
be discussed here. 

Bits 4 and 5 of the status (R5 IN) byte contain the in­
terface type identification bits (see Section IIC2). Bit 5 
of the control hyte (R5 OUT) is set to a 1 to cause the 
98036A to return to its power-on state. The USART 
itself on the 98036A card makes use of two full bytes 
of control information, and provides one byte of its 
own status information. Since there are not enough bits 
in the R5 registers to contain all of this information, the 
98036A card u;tilizes a multiplexing scheme to gain ac­
cess to these USART registers. This scheme works in 
the following manner. If bit 0 of the control byte (R5 
OUT) is set to a zero, the R4 registers have their nor­
mal meanings of data in and data out. If, on the other 
hand, this bit is set to a one, the R4 registers are now 
used to access the USART status, mode, and control 
bytes. Because of this mode of access, these USART 
registers have been given the names R4C, R4D, and 
R4E. Figure III-43 shows the meanings given to the 
various bits in these registers. 

R4 Registers 

R4C Mode Word 

R4D USART Control Word 

Always 0 

R4E USART Status Word 

EnaOleData 
Transmit!", 

Tra~sm'lte' Rece"er Transmitter 
Er'1Ply qedCly Ready 

Figure 111-43 (cont'd) 

Before discussing the meanings of these bits, lets look 
at how each of them is accessed. The USART Status 
Byte (R4E) would be obtained by setting bit 0 of the in­
terface control register (R5 OUT) to a one. A normal 
data input operation is then performed. Since this con­
trol bit is set to a one, this tells the interface to place 
the USART status byte in the input (R4 IN) register, 
rather than a normal data byte. When this sequence is 
finished, the card should be returned to the data mode 
by setting bit 0 of the control byte (R5 OUT) back to a 
zero. Thus, the sequence 

wtc 11,1; rdb(11) ~ A; wtc 11,0 

would result in reading the USART status byte (R4E) 
and placing its decimal equivalent in the variable A. In 
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a similar manner, the sequence 

wtc 11,1; wtb 11,X; wtc 11,0 

would output the contents of the variable X to the 
USART control byte (R4D). The USART also uses a 
mode word (R4C) which is accessed through the 
following sequence. 

stc 11, 1; wtb 11,64, A, B; wtc 11,0 

The 98036A (set to select code 11) is set to the control 
mode and a decimal 64 (binary 01000000) is sent to 
the USART control byte (R4D) as in the example 
above. This sets bit 6 of the R4D register, which is a 
reset for the USART. In addition to its other reset func­
tions, it also places the USART in the mode where the 
next two bytes output are sent to the R4C and the 
R4D registers respectively. In the example above, the 
value of A would be sent to R4C and B to R4D. Of 
course, bit 6 of the binary representation of B should 
not be a 1 or the USART will again be reset, nullifying 
the output to R4C and R4D. 

The R-232-C standard specifies certain characteristics 
of the data line such as the voltage levels used, the 
start/ stop protocol, etc. Other characteristics of the 
data transmission are left more flexible by the standard. 
These include the following: the bit rate (bits per 
second) at which the data is transmitted; the number of 
bits per character; the type of parity (even, odd, or 
none) to be used; and the number of stop bits. These 
characteristics can be chosen to suit the given applica­
tion, so long as the sender and the receiver both agree 
on the particular set of characteristics to be used. 
Unless all four of these characteristics are the same for 
each end of the channel, the data transmitted will not 
be properly interpreted by the receiver. For example, if 
the transmitter is sending data at 300 bits per second 
(bps) and the receiver is operating at 600 bps, the data 
pattern 10010··· transmitted will be received as 
1100001100··· since the receiver is sampling the data 
line twice as fast as the transmitter is setting it. When 
the receiver displays the characters. it thinks it has 
received, they will appear totally unintelligible. Such 
received data is usually refered to as "garbage". 

The 98036A allows for a wide range of flexibility in 
each of these four categories. The data rate may be set 
to all of the more common values in the range 75 to 
9600 bps. The character length may be set to 5, 6, 7, 
or 8 bits per character. Most ASCII devices will use 7 
or 8 bits per character, with the 5 and 6 options only 
used by special devices that use more limited character 
sets. the number of stop bits may be set for 1, 1.5, or 
2. As mentioned before, these are not actual bits but 
rather the minimum time that the data line must be 
held in the quite (low) state before the next start bit can 
be sent. 

Because of the nature of serial I/O transmission, data 
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on the line is very susceptable to "dropping bits"; that 
is, having a bit sent as a 0 or a 1 being received as a 1 
or a O. In order to detect when this happens, a scheme 
called parity checking is often used. The transmitter will 
supply an extra bit to be sent with each character that 
is not part of the data itself. This parity bit is set in such 
a way that the total number of bits set to a one (both 
data and parity) is always even or always odd. Each 
character that the receiver gets is checked to make sure 
that the received data has the proper parity. For exam­
ple, Figure 111-34 shows the bit pattern used for sending 
an ASCII "E" character. Since there are an odd 
number of l's (three) in the ASCII representation of an 
"E", and the parity bit is a zero, this particular example 
is using odd parity. If even parity were being used, the 
parity bit would be set to a one to bring the total 
number of l's to an even number (four). 

It is important to note that if parity is not being used, 
the parity bit is not even transmitted. This can lead to 
some confusion because of the way other methods of 
interfacing handle parity. For example, when 7 -bit 
ASCII data is being sent over an 8-bit parallel interface 
(such as the HP-IB), the eighth bit is not being used for 
the 7 -bit ASCII characters and is sometimes used to 
send a parity bit along with each data character. If pari­
ty is not being used, the eighth data line is still there 
and is usually always set to a zero. This sometimes 
leads to the conclusion that in serial I/O, if parity is not 
being used, the parity bit is always set to a zero. But in 
actuality, if parity is not used, the parity bit is not even 
sent. 

When connecting a 98036A card to another serial I/O 
device, the user must know the values for each of the 
four characteristics, bit rate, bits per character, parity 
and stop bits, and set the 98036A to match them. This 
information is usually contained in the operating 
manual for that device, or from a timeshare service if 
the user is going to go on line to a timeshare com­
puter. As an example of the difficulty that can arise, 
such a manual or a timeshare service might specify 
"8-bit data, even parity". After some trial-and-error 
evaluation, it becomes clear that the device is actually 
using 7 data bits plus parity, and in their specification 
they are considering the parity bit to be part of the 
data. Being aware of this lack of consistent terminology 
can sometimes save much time in determining the 
operating characteristics of a serial I/O data line. 

All of these options for data line characteristics can be 
set on the 98036A card by the use of SWitches, (see 
Appendix). In addition, the character length, number 
of stop bits, and parity can be set through the R4C 
Mode Word, overriding the switch settings on the card. 

The mode word also allows the the setting of a value 
called the bit rate factor. In Section IIIE2 we discused 
how both the transmitter and the receiver must 
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measure time intervals called bit times to determine 
when to set or sample the data line for the next bit. 
The more precisely these bit time intervals can be 
measured, the less likely it is that the time intervals of 
the transmitter and receiver will drift with respect to 
one another and cause an incorrect data exchange. 
Normally, an internal clock on the 98036A card is set 
to run at 64 times the bit rate being used. By dividing 
the bit time interval into 64 parts, the exact center of a 
bit on the data line (Figure 111-34) can be more precise­
ly located. At bit rates greater than 2400 bps, however, 
the internal clock cannot run this fast. As a result, at 
4800 and 9600 bps the bit time intervals are divided 
into 16 parts instead of 64, dropping the demands on 
the internal clock back into a range in which it can 
operate. This bit time interval divider and its associated 
restrictions are in the USART itself. 

The R4D control byte is used to control various func­
tions on the USART itself. We have already discussed 
how bit 6 is used to reset the USART and to address 
the R4C mode word. When the 98036A is reset (either 
by pressing the reset key on the 9825A or by setting bit 
5 of the interface control register, R5 OUT), a default 
value of 5 is set for R4D. This sets bits 0 and 2 which 
enable the USART for data transmission and reception. 
Normally, these bits are always left on and any output 
to the R4D register should include these bits. 

Two other bits, 1 and 5, are used to set or clear the 
two most commonly used RS-232-C control lines. 
These are Clear to Send and Data Set Ready when the 
98036A is acting as a computer or modem interface; 
or Request to Send an Data Terminal Ready when the 
98036A is acting as a terminal interface (option 001). 
As we mentioned in Section IIIE3, many terminals or 
modems will not operate unless they see one or both 
of these lines set. 

When the data channel is operating in the half-duplex 
mode, the computer and the terminal follow an agreed 
upon set of rules that determine when each of them 
will transmit on the data line. If the computer is cur­
rently transmitting a large block of information, the ter­
minal cannot transmit. If it would like to get the com­
puter's attention (for example, to abort the data 
transfer) it would follow some agreed upon protocol for 
interrupting the transmission and turning around the 
communications link. In fuJI-duplex operation, this is 
accomplished by sending what is caJled a break 
character. Strictly speaking, this is not a character in 
the sense of a transmitted data character. It merely 
holds the data line high for a period of time that is 
longer than one complete character time, typically 
about 200 miJliseconds. The receiver of the transmitting 
device detects this, and can act on it as it chooses. 
Most timeshare computers are set up to abort the cur­
rent I/O sequence and return control to the terminal 
when a break character is detected. We will discuss the 



98036A's response to receiving a break character. The 
break character is sent by setting bit 3 of the R4D 
register. This holds the transmitted data line high until 
this bit is again cleared to a zero. For example, the se­
quence 

wtc 11,1; wtb 11,47; wait 200; wtb 11,39; wtc 
11,0 

would set bit 3 of R4D and then clear it after a 200 
millisecond wait period. During both the setting and 
clearing of the break bit, bits 5, 2, 1, and 0 are 
specified (47 decimal = 00101111 binary) in the logic 
1 state so that the transmitter and receiver remain 
enabled, and the two control lines (bits 1 and 5) re­
main set. 

We will see that three of the bits in the USART Status 
Byte (R4E) are used as error indicators. Bit 4 of the 
R4D register is used to clear all three of these error in­
dicators. 

The R4E register returns a status byte from the USART 
itself containing information about various situations 
that can occur there. Bit 7 is used to monitor either the 
Request to Send line (standard card) or the Data Set 
Ready line (option 001 card). Normally these lines are 
only used when implementing special protocols. 

Three of the bits in R4E indicate the status of the input 
(bit 1) and output (bits 2 and 0) buffers on the USART. 
During normal program operation, these indicators are 
of no interest. They are useful, however, in either 
debugging a program or in making sure that the data 
channel is properly set up. For example, if a terminal is 
connected to a 9825A using the 98036A, and data 
cannot be input from the terminal, checking bit 2 will 
tell whether data is being received and improperly 
handled by the program, or not being received at all. 
This bit is set when a character is received by the 
USART and cleared when the computer takes that 
character. 

The remaining three bits of the R4E register (5, 4, and 
3) indicate a framing error, and overrun error, and a 
parity error respectively. Taken indiVidually, these three 
errors have simple meanings. A framing error indicates 
that at the time the receiver was expecting to see the 
stop bits (low level), the data line was actually high. 
This could be caused by having the wrong bit rate set. 
For example, if the transmitter were sending at 300bps 
and the receiver was set to 600bps, the receiver would 
finish sampling for the data bits (doubly reading most of 
them!) when the transmitter was only about half finish­
ed sending. The receiver would then look for the stop 
bit (or bits) in the data region of the character transmis­
sion. If the data line went high during this time, the 
framing error indicator would be set. 
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It is interesting to notice that the data being transmitted 
during the time that the receiver is looking for the stop 
bits could, by change, be 1 bits (low level) and appear 
to the receiver to be correct stop bits. Thus, an incor­
rect character could be received without the framing er­
ror indicator being set. The probability of this situation 
(aCcidental matching of data bits with stop bits) 
decreases rapidly with the number of characters receiv­
ed. That is, if several characters can be received 
without the framing error being set, it is very unlikely 
that the bit rate selector is improperly set. With one or 
two characters, it is difficult to be sure. 

It should also be mentioned that once an error in­
dicator is set, it can only be cleared by a reset opera­
tion; i.e., a card reset, a USART reset, or the specific 
error flags reset in bit 4 of R4D. For example, receiving 
a character without a framing error will not clear the 
framing error bit if it was set by a previous character 
that was improperly received. Otherwise, if the last 
character received were incorrect but accidentally 
matched the expected stop bits with data bits, the 
entire string would appear to have been properly 
received. 
The overrun error indicator is set whenever a data 
character has been received, but was not taken by the 
computer before the next one came along. This error 
indicates that one or more data characters have been 
lost. The situation can be corrected for future transmis­
sions by either slowing down the data rate, or by using 
a faster programming method to take the data as it 
comes in. 

The parity error indicator is set when the 98036A is 
enabled to check parity on received data, and the ex­
pected parity bit is not correct. 

Although the meanings of the three error conditions 
are straightforward, when combinations are considered, 
the meaning can sometimes be confusing. Examples of 
this are apparent from the transmission of the ASCII 
"E" shown in Figure III-34. Assume that the transmitter 
is sending the pattern as shown, but that the receiver is 
set for no parity. After reading the last data bit, since 
no parity bit is expected the receiver will expect the 
stop bit to immediately follow. Since the line is high at 
this time (transmitter is sending a parity bit of 0), a 
framing error is detected. Thus, even though the prob­
lem is caused by the fact that the transmitter is set for 
parity and the receiver is not, it is a framing error that 
is indicated by the error bits in the USART status word. 
This points up the necessity of knowing the data 
transmission characteristics of the device being interfac­
ed over the serial I/O channel. If these characteristics 
are now known, it can sometimes be a tricky bit of 
detective work to analyze the errors indicated and 
isolate the true cause of the problem. 
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When connecting an unknown terminal using the 
98036A card, it is unwise to try running a complex ap­
plications program until simple read binary and write 
binary operations from the keyboard can be made to 
work. Otherwise, the user may waste considerable time 
trying to debug a correct program when the actual 
cause of the problem is that one or more of these data 
transmission characteristics is improperly set for that 
device. 

various bits in the R6 register. The specific bits that can 
be set (R6 OUT) or tested (R6 IN) depend on whether 
the 98036A is acting as a computer or modem (stan­
dard card) or as a terminal (option 001). These 
registers are accessed from the 9825A using the read 
interface (rdi) and write interface (wti) statements 
described in Section IIA3. Although these control lines 
are usually used for special applications only, they may 
control lines required by some devices in simple ap­
plications. Some terminals will not transmit data unless 
the Carrier Detect line (bit 0 of R6 OUT) is set, along 
with Data Set Ready and Clear to Send. Again, suc­
cessful operation demands that the user know the re­
quirements of the device being interfaced. 

Finally, when the bit rate has been properly set so that 
a framing error does not normally occur, the presence 
of a framing error indicates the reception of the break 
character. Since the line is held high for 200 
milliseconds during a break, even at the slowest bit 
rate, the line will be high for longer than one character 
time and cause the expected stop bits to be missed. 
Depending on the number of bits per character set and 
the type of parity being used, the parity error may also 
be set during the reception of a break character. 

The remainder of the RS-232-C control lines are only 
used for special applications, and are accessed through 

Figure III-44 shows the RS-232-C pin aSSignments im­
plemented by the 98036A Interface, along with the 
names and directions of these lines. On the left is 
shown the pin connector numbers on the standard 
98036A card, and the interface registers used to access 
each of them. On the right is shown the same informa­
tion for the Option 001 98036A card. 

98036A as RS-
98036A as 232-C 

DCE Device STD +--+ PIN # NAME OPT 1 DTE Device 

n.a. 1 +--+ 1 Protective Ground 1 n.a. 
read 3 +- 2 Transmitted Data 2 write 
write 2 -+ 3 Received Data 3 read 

R4E, bit 7 6 +- 4 Request to Send 4 R4D, bit 5 
R4D, bit 5 4 -+ 5 Clear to Send 5 (note 1) 
R4D, bit 1 17 -+ 6 Data Set Ready 6 R4E, bit 7 

n.a. 7 +--+ 7 Logic Ground 7 n.a. 
R6 OUT, bit 0 16 -+ 8 Carrier Detect 8 R6 IN, bit 0 

n.a. - 9 (Reserved for test) - n.a. 
n.a. - 10 (Reserved for test) - n.a. 
n.a. - +- 11 Data Rate Select (U.K.) 11 R6 OUT, bit 2 

(note 2) 
R6 OUT, bit 1 13 -+ 12 Second Carrier Detect 12 R6 IN, bit 2 

n.a. - -+ 13 Second CTS - n.a. 
n.a. - +- 14 Second TXD - n.a. 
n.a. - -+ 15 Transmitter Clock 15 (note 3) 
n.a. - -+ 16 Second RXD - n.a. 
n.a. - -+ 17 Receiver Clock 14 (note 3) 
n.a. - 18 - - n.a. 

R6 IN, bit 0 8 +- 19 Second RTS 16 R6 OUT, bit 0 
(notes 1,4) 5 +- 20 Data Terminal Ready 17 R4D, bit 1 

R6 OUT, bit 2 11 -+ 21 Signal Quality Detect - n.a. 
R6 OUT, bit 3 10 -+ 22 Ring Indicator 9 R6 IN, bit 1 

R6 IN, bit 1 9 +- 23 Data Rate Select 13 R6 OUT, bit 1 
n.a. - +- 24 Transmit clock (term) - n.a. 
n.a. - 25 - 10 n.a. 

note 1: this line cannot be read 
note 2: this line unassigned by 

RS-232-C 
note 3:switch selectable on 98036A 

Figure III-44 note 4: can be set high by switch on 
98036A 
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5.Programming with the 98036A 
Interface 

For half-duplex operation, the 98036A is programmed 
in the same manner as the 98032A Bit-Parallel Inter­
face. Output is done using the write (wrt), write binary 
(wtb) or list statements; and input is done with read 
(red) or read binary (rdb) operations. 

In the full-duplex mode, the 98036A is capable of 
sending and receiving data simultaneously. But since 
the I/O structure of the computer only allows for one 
flag line (ready/busy flag) a difficulty arises. Assume for 
example that we ask for a byte of received data and 
send a byte of transmitted data. When the flag line 
again indicates ready, does it mean that the output 
character has been sent or that the input character has 
been received, or both? If both output and input try to 
use the same flag line, at the same time, ambiguities 
arise. 

To get around this in the full-duplex mode, we 
dedicate the flag line to one of the two operations (in­
put or output) and use the interrupt structure of the 
computer for the other. For example, we could tell the 
interface card that the flag line is to be used for output 
data and the interrupt for input data. Now each time 
the output buffer is ready to take another character this 
fact will be indicated by the flag line going set. And 
each time a character is received, an interrupt will be 
generated by the interface, but the flag line will be left 
alone. Bits 1 and 2 of the interface control register (R5 
OUT) are used to indicate whether the input or the 
output operation should use interrupt. The other 
operation will use the normal flag handshake 
mechanism. In normal applications, both bits would 
never be set. Also, the most common practice is to 
operate the receiver under interrupt. This is because 
the desktop computer is generating the output data; but 
it never knows when to expect received data, and must 
always be ready for it. 

The following program gives an example of a simple 
program to output information to a computer con­
nected to a 9825A via a 98036A Interface, and to 
print any information sent to the 9825A by the com­
puter. The printing is done on a 9866A Printer set to 
select code 6, and the 98036A card is on select code 
11. 

0: dim A$[100], 8$[200] 
1: buf"lnput", 100, 1 
2: oni 11, "Print" 
3: eir11,4 
4: tfr 11, "lnput",0,10 

37: wrt 11,8$ 
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63: "Print": red" Input",A$ 
64: tfr 11,"lnput",0,10 
65: wrt 6,A$ 
66: iret 

This program sets up a buffer called "Input" and starts 
an input transfer to this buffer from the 98036A card. 
Data will be received into this buffer until a line feed 
(LF = decimal 10) character is received (see Section 
IIB3 on transfer operations). When the transfer is com­
plete, the program will branch to the routine labeled 
"Print", which reads the data out of the "Input" buffer 
into the string A$, and sends this information to the 
printer in line 65. Another transfer statement is ex­
ecuted to be ready for the next line of incoming data, 
and line 66 causes a return from the interrupt service 
routine back to the main program (lines 5 through 62. 
In the meantime, this main program is free to execute 
output statements to the 98036A card as exemplified 
by line 37 in the program. 

Notice that in line 3, the statement eir 11,4 was used 
to set bit 2 of the 98036A control register (R5 OUT). 
this informed the interface that it was to use the inter­
rupt structure for the receiver, and the normal flag 
handshake for the transmitter. Since the lower four bits 
of this register are preserved whenever the I/O ROM 
needs to set or clear the main interrupt-enable bit (see 
Section IIIE4), the 98036A remains in this mode 
throughout the entire program. If line 3 had not been 
executed, the receiver would have responded on the 
normal flag line rather than generating an interrupt, 
and the transfer would never have completed. 

A potential problem exists with the "Print" service 
routine in this example program segment. When one 
line of data (terminated by a LF character) is received, 
the buffer transfer is complete and a branch to the serv­
ice routine is made by the I/O ROM. The time to com­
plete this branch and execute the read statement in line 
63 is about 5 to 10 milliseconds, depending on the 
number of characters in the buffer. At data rates above 
600 bits per second, it is possible that another character 
would be received before the next transfer statement 
(line 64) could be executed, causing that character to 
be missed. For this reason, a special buffer-read (bred) 
statement is provided by the Systems Programming 
ROM (98224A) which substantially reduces the time 
period during which the input buffer is not active. (For 
more information, see the Systems Programming 
Manual.) This programming tool makes it possible to 
operate the 98036A in the high-speed, full-duplex 
mode. 

With a suitable HPL program, it is possible for the 
9825A to emulate an RS-232-C terminal. Such a pro­
gram would cause the 9825A to mimic many of the 
operations of a terminal such as transmitting informa-
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tion entered through the keyboard to the computer and 
printing information received from the computer. It 
should be remembered, however, that HP desktop 
computers are designed to be stand-alone computa­
tional and controlling devices, and not primarily as ter­
minal replacements. Also, it is not necessary to provide 
(via a high level program) a complete terminal 
emulator in order to exchange data with another com­
puter over an RS-232-C communications link. Within 
an applications program, data may be exchanged with 
a remote computer using read, write, and transfer 
statements without any operator intervention (other 
then establishing the communications link if a modem 
is involved). 

6. RS-232-C vs. Current Loop 

Operation 

In the previous sections we have discussed two 
methods of interfacing for which standards exist that 
specify certain electrical, mechanical, and functional 
parameters. Most manufacturers of devices which are 
compatible with the IEEE-488-1975 (HP-IB) standard 
adhere closely to its definitions. And as a result most of 
these devices are plug-to-plug compatible. Unfortunate­
ly, this is not always true of devices that claim to be 
RS-232-C compatible. In particular, the fact that a 
serial I/O device uses an EIA 25-pin connector does 
not automatically make it an RS-232-C device. 

Even when a device is RS-232-C compatible, variations 
from the expected configurations may still exist. We 
mentioned earlier that the common convention used 
for connectors is that the data terminal equipment 
(DTE) will use the male connector while the data com­
munications equipment (DCE) will use the female con­
nector. Indeed, the 98036A Interface is available in 
two configurations (see Figure II1-4l) so that the 
desktop computer can play the part of either the DCE 
or the DTE. As an example of the difficulties that can 
arise, consider a terminal device (DTE) which ter­
minates in a female 25-pin connector. Since the 
desktop computer is to act as a modem (DCE) in this 
system, the standard 98036A card will be used. Bui 
since both devices have female connectors, they cannot 
be plugged together. In this case we will have to obtain 
a special female-to-female adaptor in order to make the 
connection. But the fact that this adaptor is necessary 
at all should alert the user to the possibility that all of 
the pin assignments for the terminal's connector may 
not be as expected. In particular, the transmitted data 
line (pin 2) and the received data line (pin 3) often 
need to be interchanged on one of the connectors or 
cross-wired in the adaptor. 

In general, when two RS-232-C devices are connected 
and do not appear to operate properly, there are two 
areas which should be thoroughly checked out before 
suspecting either a programming error or a hardware 
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malfunction. The first is to insure that all of the pin 
assignments in both devices are as expected. For the 
98036A Interface these pin assignments are found in 
Figure II1-44 , while the aSSignments for the device be­
ing connected should be contained in the operating 
manual for that device. If these pin assignments are all 
correct, the user should then check to see if any con­
trollines (Clear to Send, Data Set Ready, Carrier 
Detect, etc.) required by the device being interfaced are 
not set. The 98036A is capable of setting any of these 
control lines; but is is the responsibility of the user to 
determine which lines his particular device requires and 
include the instructions for setting them within his pro­
gram. For the 98036A card itself, these requirements 
are as follows. The standard 98036A (acting as a DCE 
device) requires the Data Terminal Ready (DTE, pin 
20) signal to be true before it will transmit. Most ter­
minals will automatically set this line when they are 
switched into the remote or on-line configuration. The 
option 001 98036A (acting as a DTE device) requires 
the Clear to Send (CTS, pin 5) signal to be true for 
proper operation. If the DCE device being interfaced 
cannot supply this signal, it may be set on the 98036A 
card itself (see 98036A Installation and Service 
Manual). 

The problem of connecting serial I/O devices is further 
complicated by the fact that a second data transmission 
convention known as "current loop" exists. As the 
name implies, this method of transmission uses the 
presence or absence of a current flow in the data line 
to represent the two logic states (lor 0) rather than 
two different voltage levels as specified by the RS-232-
C standard. It should be noted that a device operating 
in the current loop mode is not an RS-232-C device, 
even though it uses many of the same conventions 
such as start and stop bits, parity, etc., of the RS-232-
C data format. 

Historically, the first serial I/O devices operated in this 
current loop mode. With the advent of the RS-232-C 
standard, most manufacturers of serial I/O devices 
switched over to the use of voltage levels on the data 
lines. Even so, many current loop devices are still 
available. One reason for this is that while the practical 
operating distance for a direct (not using modems) RS-
232-C data link is about 50 feet (15 meters), much 
longer distances are obtainable in the current loop 
mode. 

Figure II1-45 shows the three basic elements that make 
up a current loop. The element labeled source is an ac­
tive current supply. Typically, there is one and only 
one active source in any current loop, with all other 
elements acting passively. 

SOURCE 

Figure III-45 



In the quiet (no data transmission) state, this source 
maintains a continuous current flow through the loop. 
When data is presented to the transmitter at the data in 
line, the modulator converts this digital information 
(ones and zeros) into a matching sequence of current­
on and current-off states by either allowing the current 
in the loop to flow, or blocking it. Since the same cur­
rent pulses flowing through the modulator also flow 
through the detector, the detector can sense these cur­
rent onloff states and translate them back into digital 
information in a form (usually voltage levels) that can 
be recognized by the receiving device. The order in 
which each of these devices appear in the loop is not 
important. 

In simplex operation, the source and modulator are 
located in the transmitting device, while the detector is 
located in the receiving device. For full-duplex opera­
tion, each device contains a transmitter (source plus 
modulator) and a receiver (detector). The transmitter of 
each device is connected to the receiver of the other 
device, thus creating two complete, independent cur­
rent loops. 

Most data terminals that operate in the current loop 
mode are passive devices; that is, they have a 
modulator and a detector, but not a current source. 
They depend instead on the DCE device to provide the 
current source. The 98036A card, when operating in 
the current loop mode, is capable of supplying the re­
quired current (20ma). Figure III-46 shows how such a 
passive terminal should be connected to a 98036A for 
half-duplex current loop operation. 

transmitted data 
DO ++-+--1 DET r-t-....:.:.::.:.:.::c.c.::.:..:c=--, 

.J:---'--+-O ground T-I TERMINAL I L ________ J 

9S036A 

Figure III-46 

Several points should be noted about this connection. 
It is necessary to jumper (connect together) the R- and 
the T + leads at the terminal in order to complete the 
loop. Also, in half-duplex current loop mode the 
ground lead from the 98036A is not connected. If the 
terminal also has an active current source, Figure III-46 
could be modified for full-duplex operation by discon­
necting the R-IT + jumper and reconnecting R- to 
ground and T + to the terminal's current source. 

In the half-duplex arrangement shown, there are ac­
tually five elements in the loop: a source, two 
modulators, and two detectors. Only one modulator at 
a time is allowed to modify the current flow (i.e., en­
code information to be sent around the loop), which is 
why this is a half-duplex arrangement. Both detectors, 
however, can be active at the same time. This also 
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means that since the terminal's detector receives the in­
formation sent by the terminal's modulator, no special 
circuitry is required to get the effect of an echo-back 
(see Section IIIE2). 

In the figures above we have labeled the current loop 
connections as T+, T-, R+, and R-. Various 
manufacturers may use different designations to label 
these connections, such as TS, T6, T7, and T8. The 
exact labeling for a given device can be obtained from 
the operating manual for that device. Figure III-47 
shows three typical receiver (detector) circuits and may 
be helpful in recognizing the R+ IR- connections from 
the schematic diagrams in the operating manual for the 
terminal being connected. 

R+J \' 
R- II L 

REED RELAY INPUT TRANSISTOR 

Figure III-47 

R+~ 

R-~ 
OPTO·ISOLATOR 

Up to now we have discussed current-loop operation in 
terms of presence or absence of current in the loop, 
without saying anything about the amount of current 
flowing. Most current sources for use in current loop 
operation provide either 20 milliamps (ma) or 60 mao 
The 98036A Interface card can supply (acting as a 
source) 20ma. Its receiver is capable of sinking (acting 
as a detector) either 20m a or 60ma with no modifica­
tions or switch settings required on the card to select 
20ma or 60ma operation. 

The current source in the 98036A operates from a 12 
volt power supply, and the detector in the 98036A re­
quires 6 volts to operate properly. This means that the 
other passive elements in the loop (terminal modulator 
and detectors) must not drop the voltage of the current 
passing through them more than 6 volts. Converting 
this voltage drop to the equivalent resistance at 20ma 
we have 

R = V II = (6 v) I (20ma) = 300 Ohms. 

Thus, when the combined resistance of the external 
elements in the loop exceeds 300 Ohms, the detector 
in the 98036A will no longer be able to reliably 
distinguish logical ones from zeros. This external 
resistance is made up not only of the elements in the 
loop, but also of the wire in the loop itself. And since 
the resistance of a wire is proportional to its length, this 
limit on external resistance is what ultimately deter­
mines the maximum operating distance of the serial 
I/O link in the current loop mode. 
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• Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Octal 

0 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

HEX ASCII 

00 NULL 
01 SOH 
02 STX 
03 ETX 
04 EOT 
05 ENQ 
06 ACK 
07 BELL 
08 BS 
09 HT 
OA LF 
OB VT 
OC FF 
OD CR 
OE SO 
OF SI 
10 DLE 
11 DC1 
12 DC2 
13 DC3 
14 DC4 
15 NAK 
16 SYNC 
17 ETB 
18 CAN 
19 EM 
1A SUB 
1B ESC 
1C FS 
1D GS 
IE RS 
IF US 

APPENDIX A 
ASCII CHARACTER SET 

HP-IB* Decimal Octal 

32 40 
GTL 33 41 

34 42 
35 43 

SDC 36 44 
PPC 37 45 

38 46 
39 47 

GET 40 50 
TCT 41 51 

42 52 
43 53 
44 54 
45 55 
46 56 
47 57 
48 60 

LLO 49 61 
50 62 
51 63 

DCL 52 64 
PPU 53 65 

54 66 
55 67 

SPE 56 70 
SPD 57 71 

58 72 
59 73 
60 74 
61 75 
62 76 
63 77 

HEX 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

ASCII HP-IB* 

space LO** 
! Ll 
" L2 
# L3 
$ L4 
% L5 
& L6 , L7 
( L8 
) L9 
* LlO 
+ Ll1 
, Ll2 
- Ll3 

Ll4 
/ Ll5 
0 Ll6 
1 Ll7 
2 Ll8 
3 Ll9 
4 L20 
5 L21 
6 L22 
7 L23 
8 L24 
9 L25 

L26 
, L27 
< L28 
= L29 
> L30 
? UNL 

I 
I 

* These are the meanings assigned to the ASCII characters on the HP-IB when the ATN line is true (see Section IIID5). 
** Usten address codes. L<n> = listen address for device number <n>. 
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I 
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Decimal Octal HEX ASCII 

64 100 40 @ 
65 101 41 A 
66 102 42 B 
67 103 43 C 
68 104 44 0 
69 105 45 E 
70 106 46 F 
71 107 47 G 
72 110 48 H 
73 111 49 I 
74 112 4A J 
75 113 4B K 
76 114 4C L 
77 115 40 M 
78 116 4E N 
79 117 4F 0 
80 120 50 P 
81 121 51 Q 
82 122 52 R 
83 123 53 S 
84 124 54 T 
85 125 55 U 
86 126 56 V 
87 127 57 W 
88 130 58 X 
89 131 59 Y 
90 132 5A Z 
91 133 5B [ 
92 134 5C \ 
93 135 50 ] 
94 136 5E II 

95 137 5F -

ASCII CHARACTER SET 
(continued) 

HP-IB Decimal Octal 

TO* 96 140 
TI 97 141 
T2 98 142 
T3 99 143 
T4 100 144 
T5 101 145 
T6 102 146 
T7 103 147 
T8 104 150 
T9 105 151 

TIO 106 152 
TIl 107 153 
TI2 108 154 
TI3 109 155 
TI4 110 156 
TI5 111 157 
TI6 112 160 
TI7 113 161 
TI8 114 162 
TI9 115 163 
T20 116 164 
T21 117 165 
T22 118 166 
T23 119 167 
T24 120 170 
T25 121 171 
T26 122 172 
T27 123 173 
T28 124 174 
T29 125 175 
T30 126 176 
UNT 127 177 

* Talk address codes. T <n> = talk address for device <n>. 
** Secondary command group. Meanings are device dependent. 
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HEX ASCII 

60 
, 

61 a 
62 b 
63 c 
64 d 
65 e 
66 f 
67 g 
68 h 
69 i 
6A j 
6B k 
6C I 
60 m 
6E n 
6F 0 

70 p 
71 q 
72 r 
73 s 
74 t 
75 u 
76 v 
77 w 
78 x 
79 y 
7A z 
7B { 
7C I 
70 } 
7E = 
7F DEL 

HP-IB 

SO** 
Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
SlO 
Sl1 
S12 
S13 
S14 
S15 
S16 
S17 
S18 
S19 
S20 
S21 
S22 
S23 
S24 
S25 
S26 
S27 
S28 
S29 
S30 
S31 

I 

Ltl 
I 
I 
I 
I 
I 
I 

I 

tUl 
-' 

I 
I 
.~ 

I , 
I 

I 
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II 

R4 

RS 

R6 

R7 

APPENDIX B 
98032A REGISTER MAP 

IN OUT 

DATA IN DATA OUT 

STATUS CONTROL 

HIGH BYTE DATA HIGH BYTE DATA 

(not used) TRIGGER 

R4-IN: Read 16 bits (lower 8 bits if jumper B is not installed) of data from the input data latches. 

Sets 1/ 0 line to input. 

R4-0UT: Write 16 bits (lower 8 bits if jumper F is not installed) of data to the output data latches. 
Sets I/O line to output. 

RS-IN: Read 98032A card status byte (Section IIIB 1). 

I 7 6 S 4 3 2 1 0 

~~ ~1 __ ~_T __ -L ___ D_MA __ ~ ____ 1 ____ ~ ___ 0 __ ~~ __ II_D __ -L ___ IO_D __ ~ ___ S_T_I1 __ ~ ___ S_T_10~1 

I 

-
I 
I 
I 
I 

-. 
I 
I 

RS-OUT: Write 98032A card control byte (Section I1IB2). 

7 

INT 

R6-IN: 

6 S 4 3 2 1 

DMA RESET AH CTLl 

Read 16 bits (upper 8 bits if jumper B is not installed) of data from the input data latches. 

Does not affect I/O line. 

R6-0UT: Write 16 bits (upper 8 bits if jumper F is not installed) of data to the output data latches. 
Does not affect 1/ 0 line. 

R7-0UT: Sets PCTL to initiate an input/output handshake, depending on the state of the 

I/O line from the last R4 access. 
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98032A JUMPER OPTIONS 

Jumper Function (when installed) 

1 Indicates input data lines are positive-true. 
2 Indicates output data lines are positive-true. 
3 Inverts PCTL to high=set, low=clear. 
4 Inverts PFLG to high=ready, low=busy. 
5 Inverts PSTS to high=not OK, 10w=OK. 
6 Set for pulse-mode handshake. 
7 Required for DMA transfers. 

H Clock high input byte when PFLG goes from ready to busy. 
• Clock high input byte when PFLG goes from busy to ready. 

Clock high input byte on R6-IN operation. 
B Select words (16 bit) input mode. 

{~ 
Clock low input byte on R4-IN operation . Clock low input byte when PFLG goes from busy to ready. 
Clock low input byte when PFLG goes from ready to busy. 

F Select words (16 bit) output mode. 

'Select only one of these three. 
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I R4-IN: 

IRS-IN: 

C APPENDIX 
98033A REGISTE RMAP 

IN OUT 

R4 DATA IN (not used) 

R5 STATUS CONTROL 

R6 (not used) (not used) 

R7 (not used) TRIGGER 

Read one 8-bit ASCII character from the 98033A BCD-to-A SCII translator. 
Read 98033A card status byte (Section IIIC3). 

7 6 5 4 3 

INT 1 0 I 
2 1 0 

0 I 0 I 0 I I 
I 

R5-0UT: Write 98033A card control byte (Section IIIC3). 

7 6 5 4 3 2 1 0 

INT RESET I - I - I - I - I 
R7-0UT: An output to R7 (actual value output is a "don't care") caus I 

Ie 
es the 98033A to place the next ASCII character in the 

I 
I 
I 
I 
I 
I 

I. 
I 
I 

fter 16 characters have been so placed, the next R7-0UT 
nd CTLB to start a data handshake with the BCD device) 
·ster. 

sequence representing the reading into the R4-IN register. A 
causes a new reading to be taken (Le., the card sets CTLA a 
and places the first character of that reading in the R4-IN regI 
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98033A SWITCH CONFIGURATIONS 

Switch set to 
"ON",will: 

Invert DFLGA >-~ Invert SGN2 

Invert DFLGB "'~ Invert SGNI 

Select CTLA - 2 . ~~ Invert OVLD 

Select CTLB- 2 .. ~ S2 Invert Data 

Invert CTLA ~~ 

Invert CTLB N~ 

Select Optional Format -~ 
oz~ 

98033A HANDSHAKE DIAGRAM 

CTLA-l MODE (Select CTLA-2 switch off). 

-CTLA 

DFLGA 

CTLA-2 MODE (Select CTLA-2 switch on). 

CTLA 

DFLGA 

.. ~ 
~~ 

N~ 

;~ 

S3 

CLEAR 

SET 

BUSY 

READY 

CLEAR 

SET 

BUSY 

READY 

At time "t" the data on the BCD input lines is valid and the BCD-to-ASCII translation process begins. 
CTLB and DFLGB operate in a similar manner. 
See Section IIIC4. 
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APPENDIXD 
98034A REGISTER MAP 

IN 

R4 DATA IN 

RS STATUS 

R6 STATUS/DATA 

R7 PARALLEL POLL 

R4-IN: Initiates a data byte input sequence. 
R4-0UT: Transfers one byte of data to the bus. 
RS-IN: Initiates a status read sequence. 

OUT 

DATA OUT 

CONTROL 

COMMANDS 

DIRECT BUS CONTROL 

RS-OUT: Outputs a control byte to enable the 98034A for various interrupt conditions (Section IIID6). 

7 6 S 4 3 2 1 

SRQ ACT TLK LST IRF ORE OTHER 

R6-IN: Completes a data byte input sequence. Clears ATN. 
Delivers 98034A status bytes. 
Completes a parallel poll input sequence. 

R6-0UT: Sets the A TN line true and outputs a byte of command or addressing information. R7 -IN: Initiates a parallel poll byte request. 
R7-0UT: Direct* bus control (Section IIID6). 

7 6 S 4 3 2 

1 EOI IFC ATN 

Service Request control and serial-poll response byte (Section IIIDS). 

7 6 S 4 3 2 

SRQ x x x x 

1 

REN 

1 

x I X = user definable. 

EOI 

SRQ 

x 

I * After executing this R7-0UT instruction, the 98034A will clear the STS line if an illegal operation (e.g., specifying ATN if the 98034A is not active controller) is indicated. 

I 
I 
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98034A OPERATIONAL SEQUENCES 

GENERAL 
Any operation with the 98034A should be preceded by testing the flag (FLG) line and waiting for it to indicate 

ready. Otherwise, erroneous operation can result. 

After a sequence of operations, the status (STS) line should be tested. It will be cleared if an illegal operation 

was specified, otherwise it will remain set. 

CONTROLLER TALKER ADDRESSING (TAD) 

This sequence addresses the 98034A as a talker, and one or more bus devices as listeners. When used in 

other operational sequences, it will be abbreviated as TAD. 

1. R6-0UT Send unlisten (63) command. 

2. R6-0UT Send 98034A talk address. 

3. R6-0UT Send device listen address. 

4. R6-0UT Send device secondary address if specified. 

5. Repeat 3 and 4 for any multiple listeners. 

CONTROLLER LISTENER ADDRESSING (LAD) 

1. R6-0UT Send unlisten (63) command. 

2. R6-0UT Send 98034A listen address. 

3. R6-0UT Send device talk address. 

4. R6-0UT Send device secondary address if specified. 

5. R6-0UT Send device listen address for multiple listener. 

6. R6-0UT Send device secondary address if specified. 

7. Repeat 5 and 6 for any other multiple listeners. 

DATA OUTPUT 
1. TAD 
2. R4-0UT 
3. 

Address the bus. 
Send the first data byte. 
Repeat 2 for each data byte. 

DATA OUTPUT USING EOI 
1. TAD Address the bus. 

2. R4-0UT Send the first data byte. 

3. Repeat 2 for each data byte. 

4. R7-0UT Send a 144 to R7 to set EOI with REN false, 

or 146 to set EOI with REN true. 

5. R4-0UT Send the last data byte. The 98034A will 

automatically clear EOI after the handshake 

is completed. 

DATA INPUT 
1. LAD 
2. R4-IN 
3. R6-IN 
4. 

Address the bus. 
Start acceptor handshake (set NRFD false). 

Take in the received data byte. 
Repeat 2 and 3 for each data byte. 

By setting bit 0 of R5-0UT, the 98034A is enabled to clear STS if EOI is set. In this case the STS line would be 

tested after step 3. 
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• 
READ STATUS 
1. R5-IN:Initiate status read sequence. In the byte received, bits 4 and 5 are ones, indicating an HP-IB card type 

(Section IIC2). No other bits are meaningful. 
2. R6-IN:Get status byte 1. 

I 0 0 0 0 0 DCl 0 ERROR 

3. R6-IN:Get status byte 2. 

1 1 A5 A4 A3 A2 Al 

4. R6-IN:Get status byte 3. 

EOI REN SRQ ATN IFC NDAC NRFD DAV 

5. R6-IN:Get status byte 4. 

SRQ ACT TLK lST SAC 1 SPl EOR 

The 98034A is not monitoring the bus during this sequence. Thus, if the 98034A is not the controller, this sequence 
must be completed within 100 microseconds to satisfy IEEE-488 timing specifications. 

This sequence also resets the status (STS) line if it had been cleared by a previous illegal operation. 

SERIAL POLL 
1. LAD 
2. R6-0UT 
3. R4-IN 
4. R6-IN 
5. R6-0UT 
6. R6-IN 

PARALLEL POLL 
1. R7-0UT 
2. R7-IN 
3. R6-IN 
4. R7-0UT 

PASSING CONTROL 
1. R6-0UT 
2. R6-0UT 
3. R6-0UT 
4. R6-IN 

Address the bus. 
Send SPE (24) command. 
Initiate a data input handshake. 
Take in the serial poll byte. 
Send SPD (25) command. 
Optional dummy operation to clear ATN. 

Send 148 to R7 to set ATN and EO!. 
Initiate parallel poll byte request. 
Take in the paralel poll byte. 
Send 128 (or 130 if REN should be set) to R7 
to clear A TN and EO!. 

Send unlisten (63) command. 
Send device talk address. 
Send TCT (9) command. 
Clear A TN line to complete transfer of control. 
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R4 

R5 

R6 

R7 

R4C Mode Word 

BIT 7 I BIT 6 

Number ~f Stop Bits 
00 ~ not valid 
01 ~ 1 bit 
1 0 ~ 1 5 bits 
1 t ~ 2 bits 

APPENDIX E 
98036A REGISTER MAP 

IN OUT 

DATAIN,R4E DATA OUT, R4C, R4D 

STATUS CONTROL 

LINE STATUS LINE CONTROL 

(not used) TRIGGER 

BIT 5 BIT 4 BIT 3 I BIT 2 BIT 1 I BIT 0 

Characier Length Bit Rate Fdctor 
Parity Type Parity Enable 00 ~ 5 co.is 00 ~ not used 
o ~ Odd o ~ Disable 01 ~ 6 bits 01 ~ 1 X bit rate clock 
1 ~ Even t ~ Enable 10 ~ 7 bits 10 ~ 1 16 X bit rate clock 

11 ~ 8 bits 11 ~ 164 X bit rate clock 

R4D USART Control Word 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

Clear To Send Data Set Ready 
Pin 5 (Standard) Reset Status Pin 6 (Standard) 

Always 0 USART 
Bits of USART 

Send Break En2ble Data 
Data Terminal Enable Data 

Reset Request To Character Receiver TransrTlltter 
Send Pin 4 Status Word Ready Pin 20 

(Option 001) (Option 001) 

R4E USART Status Word 

BfT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

Request To Send 
Pin 4 (Standard) 

Framing Overrun Parity Transmitter Receiver Transmitter 
Data Set Ready Always 0 
Pin 6 

Error Error Error Empty Ready Ready 

(Option 001) 

RS OUT Register 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

Interrupt Interrupt 
R4 Control 

Interface Programmed Control 2 Control 1 
0= Data IN, 

Interrupt Interface Receiver Transmitted OUT 
Enable Reset Control Control 1 = Control. 

Status 

RS IN Register 

BIT 8 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT it 

Interface 
Control Control 

Peripheral Interrupt ~ 
Interface Interface 

~ pf Status 2 Status 1 
Status 1 I D it I D. 1 Receiver Transmitter 

Enable Status 
Mode Mode 
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R6 OUT Register (standard cable) 

BIT 7 BIT 6 BIT 5 BIT 4 

Half Full 
-- -- -- Speed Control 

(Interface) 

I R6 IN Register (standard cable) 
BIT 7 BIT 6 BIT 5 BIT 4 

Always 1 Always 1 Always 1 Always 1 

BIT 3 

Ring 
Indicator 
Pin 22 

BIT 3 

Always 1 

R6 OUT Register (option 001 cable) 

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 

HalflFul1 
Speed Control 

R6 IN Register (option 001 cable) 
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 

• Always 1 Always 1 Always 1 Always 1 Always 1 

• 
85 

BIT 2 BIT 1 BIT 0 

Signal 
Secondary 

Quality Line Signal 
Detect 

Line Signal 
Detect Pin 8 

Pin 21 
Detect Pin 12 

BIT 2 BIT 1 BIT 0 

Data Signal 
Secondary 
Request 

Always 0 Rate Select To Send 
Pin 23 Pin 19 

BIT 2 BIT 1 BIT 0 

Data Signal Data Signal 
Secondary 

Rate Select Rate Select Request 

(UK) Pin 11 Pin 23 To Send 
Pin 19 

BIT 2 BIT 1 BIT 0 

Secondary Ring 
Line Signal Line Signal Indicator 
Detect Pin 8 

Detect Pin 12 Pin 22 



KEYBOARD /DISPLAY /PRINTER REGISTERS 

When the peripheral address is set to zero, the keyboard, display, and printer are addressed (Section IIC1). In this case, 
the I/O registers have the following meanings. 

IN OUT 

R4 KEYBOARD KEYCODE DISPLAY DATA 

R5 STATUS CONTROL 

R6 (not used) PRINTER DATA 

R7 (not used) CHARACTER SET SELECT 

R4-IN: Returns an 8-bit keycode from the keyboard (bits 0-6) plus bit 7 indicating 1 = shift, 0 = no shift. 
R4-0UT: Output one character to the rightmost position of the 32-character shift buffer for the display. Bit 7 indicates 

cursor on (= 1) or off (= 0) for this character. 
R5-IN: bit 0: Always 1. 

bit 1: Printer out-of-paper (= 1) indicator. 
bit 2: Printer busy (= 1) or ready (= 0) indicator. 

R5-0UT: bit 0: Dump printer buffer to strip printer. 
bit 1: Dump display buffer to single line display. 
bit 2: Trigger beeper. 
bit 3: Set busy Ught off. 
bit 4: Set busy Ught on. 
bit 5: Select insert cursor for display. 
bit 6: Select replace cursor for display. 

R6-0UT: Output one character to the rightmost position of the 16-character shift buffer for the printer. 
R7 -OUT: bit 0: 0 = Select standard character set. 

1 = Select alternate character set (if available). 
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APPENDIXF 
BIBLIOGRAPHY 

• HP 9825A Calculator General I/O Programming (HP#09825-90024) 
• HP 9825A Calculator Extended I/O Programming (HP#09825-90025) 
• Calculator Users Guide and Dictionary, Charles J. Sippi (Champaign, Illinois: Matrix Publishers, Inc.). A survey of 

calculator and desktop computer products, plus a glossary of hundreds of commonly used computer terms and 
concepts. 

HP-IB 

• IEEE Standard Digital Interface for Programmable Instrumentation. IEEEE Std. 488-1975. (institute of Electrical 
and Electronics Engineers, Inc., 345 E 47th St., New York, N.Y., 10017, USA). This is the complete and formalized 
description of the HP-IB, intended for use by an engineer designing a bus compatible instrument. It is not a good 
starting point for learning about the bus. 

• Condensed Description of the Hewlett-Packard Interface Bus (HP#59401-90030). A reference gUide to the HP-IB 
extracting the operational aspects from the IEEEE Std. 488-1975. 

• HP-IB Improving Measurements in Engineering and Manufacturing (HP#59300-90005). Operating characteristics 
for nineteen popular HP-IB instruments, alonq with sample 9825 proqrams for each instrument. 

SERIAL I/O 

• Guidebook to Data Communications (HP#5955-1715). An extensive survey of terms, concepts, and equipment 
used in data communications. 
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