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Reader’s Guide

This guide for interfacing peripheral devices to
Hewlett-Packard desktop computers is designed to
provide additional information which may be helpful
to the user who needs to interface his peripheral
equipment to HP desktop computers and/or program
the resultant system for interfacing applications.

It is not intended to be a replacement for either the
operating and programming manuals for the desktop
computer, or the installation and service manuals
for the individual interface cards. The maximum
benefit can be obtained from this guide if these in-
dividual manuals are studied first. They provide the
user with a detailed description of the individual
operations available from the computer, and of the
various functions provided by each interface card.
At the same time they assume that the user has a
certain level of knowledge about the programming
techniques (software) and electronics (hardware) in-
volved in interfacing applications.

The purpose of this interfacing guide is twofold.
First, it is intended to provide some introductory
hardware and software concepts which are assum-
ed by the manuals, but with which the user may not
have previous experience. The second purpose of
the guide is to present an alternative approach to
explaining the operations discussed in these
manuals. For example, while the computer
operating manual discusses the use and the detail-
ed syntax of those programming statements
associated with interrupt operations, the guide ex-
pands this information by discussing how interrupts
are implemented, and when they should and should
not be used. The guide also presents introductory
information on such topics as the Hewlett-Packard
Interface Bus (HP-IB) and serial I/O which is not
available in the manuals for these interface cards.
In addition, since this guide is not intended to
describe a single computer, interface card, or
peripheral device as a stand-alone piece of equip-
ment, it can discuss the use of all three elements as
an integrated system.

The guide is primarily oriented around the HP 9825A
Desktop Computer and four of its associated inter-
face cards: the 98032A, 98033A, 98034A, and
98036A. Example programs are presented in HPL,
the high-level programming language of the 9825A.
However, a majority of the concepts that are
discussed apply to interfacing in general and the
user should find a reading of this guide helpful in
understanding the operations of other HP desktop
computers and interface cards. For example, the

HP System 45 Desktop Computer uses the same set
of interface cards, and operates in a manner similar

to the 9825A with the HPL statements replaced by
their BASIC language equivalents.

Section [ of this guide presents general background
information useful for interfacing applications. For
the engineer not experienced in software concepts,
information is given on computer data representa-
tions and I/O (input/output) programming. For the
programmer not experienced in hardware concepts,
topics such as logic levels, TTL gates, latches, and
flip-flops are discussed. The reader with a
background in hardware and software can proceed
directly to Section II.

In Section 1I, the discussion is centered around pro-
gramming for interfacing applications. It is not the
purpose of this section to teach the HPL program-
ming language or to present the detailed syntax and
restrictions of those programming statements

related to 1/0O operations. This is the purpose of the
operating manuals. Instead, the guide tries to give
the user an appreciation for what takes place on the
low level when the high level programming
statements are executed. It is the philosophy of this
guide that if the user understands these low level
operations, many of the observations that appear to
be strange from the high level will lose much of
their mystery. Also, such an understanding should
allow the reader to make more intelligent use of the
power available in desktop computer systems.

Section IIl concentrates on the individual interface
cards themselves. Here again, an alternative ap-
proach to the installation and service manuals for
these cards is taken, and a register-operational
model of these interfaces is developed. All of the
functions provided by these cards are described in
terms of sequences of register operations.

The Appendices contain a collection of useful
tables, diagrams, and timing information, along with
a selected bibliography of references for additional
reading.




Section I
General Background

Concepts

A.The Task of an Interface
(an Overview)

In discussing interfacing peripheral devices to a desktop
computer, the first question that naturally arises is
“What does an interface do, and why is it necessary?”
In order to answer this question, it is helpful to under-
stand some of the characteristics of the computer and
of the peripheral devices which it is to control.

A computer by itself is not a very useful device. Its
power comes from its ability to accept inputs from an
outside source, modify these inputs according to a
given set of rules (as expressed by the program in the
computer}, and output the results of these computa-
tions to some external device. Some typical input
devices are punched card readers, tape readers,
digitizers, and digital voltmeters. Output devices would
include printers, tape punches, plotters, and graphic
displays. In addition, there is a seemingly endless list of
special-purpose sensing devices (input) and control
equipment (output) designed to perform particular
tasks.

Ideally, every such device that was built would conform
to some standard that specified all the characteristics of
its I/O (Input/Output) connection, thus making all
such devices “plug-to-plug” compatible. Unfortunately,
no such standard exists. As a result, four major areas
of incompatibility arise when one attempts to connect a
peripheral device to a computing controller. It is the
task of the interface to provide the necessary com-
patability in these areas.

Mechanical Compatibility:

The simplest requirement for the interface to meet is
that of providing mechanical compatability. This con-
sists of merely supplying the appropriate connector at

each end of the interface, and wiring the connectors in
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Figure I-1

such a way that each input line at one end of the inter-
face is connected to its corresponding output line at the
other end (see Figure I-1). If there were no other in-
compatabilities to overcome, this pair of cross-wired
connectors would constitute the entire interface. In
practice, things are rarely this simple.

Electrical Compatibility:

A second function of an interface is to match the elec-
trical characteristics (i.e., current and voltage levels,
sometimes called logic levels) of the computer to those
of its peripheral. Since HP desktop computers and their
associated interfaces are designed using compatible
electronic logic levels (called TTL), the logic-level-
matcher functional block at the computer end of the
generalized interface shown in Figure I-1 is not
necessary. Fortunately, many peripheral devices also
use TTL levels in their circuitry. A discussion of TTL
levels is contained in section IC1, along with informa-
tion on interfacing devices that use other voltage levels.

Data Compatibility:

Once an interface has made the computer and its
peripheral device mechanically and electrically compati-
ble, they are capable of exchanging messages as elec-
trical signals over wires called data lines. But just as
two humans who do not speak the same language
need a translator, data messages between a computer
and its peripheral may also require some sort of format
translation. The computer with its versatile program-
ming capability, will usually perform this function. But
in some cases, this task is given to the interface for
reasons of speed. The BCD and the Bit Serial inter-
faces are examples of cases where the task of data
reformatting is assigned to the interface. More discus-
sions of this data translation process are contained in
the sections describing these interfaces.

Timing Compatibility:

Humans have the remarkable ability to talk and listen
at the same time (or at least in rapid succession)
without losing too much of the content of the conver-
sation. Our speaking and listening rates are also well
matched. Computers and their peripheral devices, on
the other hand, have such a wide range of operating
speeds that a much more orderly mechanism is re-
quired for successful transfer of data messages. Pro-
viding timing compatability (sometimes called the hand-
shake function), along with other miscellaneous control
operations, is the fourth major task of the interface.

This overview of the various functions of an interface
has been very general. The sections that follow give
more detailed information on the way in which HP in-
terfaces implement each of these functions, along with
other background information on HP desktop computer
architecture, data formats, and other topics related to
interfacing.
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B. Software

1. Data Representations in the
Computer

Since the primary purpose of interfacing is to exchange
data between a computing controller and its peripheral
devices, or between two computers, it would be helpful
to first look at how this data is represented within the
computer.

The memory of any digital computing device is made
up of a large number of storage locations called bits.
The number of bits that make up the memory can vary
from a few hundred in a small hand-held calculator to
several million in large computers. Each of these bits
(bit is an abbreviation for binary digit) can be set to and
will maintain one of two states. Depending on the
meaning assigned to it, the bit may represent yes or
no, on or off, one or zero, true or false, etc. A single
bit by itself, however, is only capable of representing
simple two-state information.

To store more complex information, it is necessary to
group several bits together into a logical package. For
example, if we wish to represent the decimal digits O
through 9 in the computer memory, we could collect
bits into groups of four, and use the following encoding
scheme.

0 1 2 3 4 5 6 7 8 9
0000 0001 0010 00110100 0101 0110 0111 1000 1001

Figure 1-2

Since each bit can take on two states (represented here
by the symbols 0 and 1), a group of N bits can take on
2N states. In this example, the groups of four bits are
capable of representing 24 = 16 states. Since there are
only 10 decimal digits to be represented, we do not
use 6 of the possible 16 states. To represent
alphabetical information, we would need to have a
representation for each of the 26 letters of the English
alphabet. This would require groups of 5 bits each,
since 25 = 32. To represent both decimal digits and
English letters (36 characters total) would require 6 bits.

In the example above, we could just as easily have
assigned the following encoding scheme: 0=0110,
1=1011, 2=0000, 3=0011, 4=0101, etc. And indeed,
many computers use an internal representation of let-
ters, numbers, and symbols which will make the task of
performing the desired operations on these items as
simple as possible. This will vary from computer to
computer depending on how it will manipulate this
data. This variety of internal representations causes no
problem until two computers or a computer and its
peripheral need to exchange data. Then it becomes

necessary that both devices use the same data
representation, or that one of the devices is capable of
translating between the two representations.

A third alternative is that each device may use
whatever internal representation is most conve-

nient, but that all data will be input or output in some
standard representation. There are several of these so-
called standard representations that are becoming
popular and widely accepted, depending on the par-
ticular job. For example, if only numeric data is to be
represented, the encoding scheme first given in our ex-
ample is widely used. This scheme is called BCD or
Binary Coded Decimal representation. One of the most
general and widely-used encoding schemes for data ex-
change is known as ASCII {pronounced as’ki), which is
an acronym for American Standard Code for Informa-
tion Interchange. The ASCII code commonly uses 8-bit
packages and has representations for numerical digits,
upper-case, and lower-case letters, common typewriter
symbols (#,$,% ,&,<#=,?, etc.}, and special control
characters (carriage return, line feed, etc.). A complete
table of the ASCII encoding scheme is found in the
Appendix. A large number of peripheral devices made
by HP and other manufacturers use ASCII code for
sending and receiving alpha-numeric data.

HP desktop computers also use 8-bit ASCII code for
the internal representation of alpha-numeric data (call-
ed strings). These 8-bit packages are so convenient for
data representations that they have been given the
name byte. Indeed, it is now quite common to
measure memory sizes in terms of these 8-bit bytes.

Although 8-bit bytes are ideal for storage and transfer
of alpha-numeric strings of characters, they are not
very well suited for internal representation of numeric
values. It is difficult to perform arithmetic operations on
numbers that are expressed as strings of ASCII sym-
bols.

The simplest method for storing and manipulating
numeric values uses the so-called binary representation.
In this method, a group of N bits is used to represent a
number, and each position in the group has a value
which is a power of two. For example, to represent the
number 98 as an 8-bit binary number, we note that
when broken into powers of two, 98 = 64 + 32 + 2

as shown in Figure I-3.

bit # 7 6 543210

value 128643216 8 4 2 1

Eg.,98= 0 1 1 0 0010
Figure 1-3

Since any number can be expressed as a sum of
powers of two in only one way, this binary representa-
tion yields a unique pattern for each number. In
numbering the bits, we have called the least significant
bit “bit zero”. It is also common to find the bits




numbered starting from one. Most of the manuals and
documentation for HP desktop computers number the
bits starting with zero, since this makes the value of the
n-th bit position equal to 2Nn. But being aware that two
conventions for numbering the bits are in common
usage could help to avoid possible confusion.

In the example given above, the largest number that
can be represented by the 8-bits is 255. Thus, we say
that the range of an 8-bit binary representation is zero
to 255 (often written as [0,255]). If we need to repre-
sent wider ranges of values, we can use larger group-
ings of bits. Indeed, all HP desktop computers (except
the 9815) use groups of 16 bits (called words) to repre-
sent binary data inside the machine. These binary
values are used for such things as counters, limit values
(as in saving the size of an array), and pointers to loca-
tions within the memory.

One limitation of the binary system described,
however, is that only positive integers are represented.
Negative values can be easily incorporated into the
system if we pick one bit (usually the highest one) to
represent the sign of the number. For example, if we
use an 8-bit byte and let bit 7 be the sign bit, using the
convention that O is plus and 1 is minus, then
00000101 would represent a +5 while 10000101
would represent —5. This convention is called the
“sign/magnitude” binary representation. It is simple to
understand, but unfortunately it causes difficulties in
computation. This is because the hardware processor
that does arithmetic on these numbers must have a
subtractor as well as an adder. This makes the pro-
cessor more costly and less efficient, since it must first
decide (from the sign bits) whether an add or subtract
must be done.

An alternative representation for both positive and
negative binary values is called the “two’s complement
form”. In this form, positive values have the same form
as in the sign/magnitude representation. Negative
numbers, however, are formed by the following

rule: complement the number (i.e., replace all ones
with zeros and zeros with ones) and add one {ignoring
any carry out of the highest bit). For example, +5 is
still represented by 00000101. Minus 5 is gotton by
complementing (11111010) and adding one
(11111011). Thus, in an 8-bit, 2’s-complement
representation —5 = 11111011. Notice that if we apply
the complement-and-add-one rule to the representation
for —, we get back the representation for +5, so that
the rule is symmetric. The advantage of
2’s-complement notation is that only an adder is re-
quired. For example, to calculate the value of 7-5, we
rewrite it as 7 + (=5) = 00000111 + 11111011 =
00000010 = 2. Thus we subtracted 5 from 7 using
only a binary adder.

The table below gives an example of all values that can
be represented by a 3-bit binary number in
2’s-complement form.

-4 -3 -2 -1 0 1 2 3
100 101 110 111 000 001 010 011

Figure 1-4

In general, an N-bit, 2's-complement form can repre-
sent all integers in the range [ -2N-1 4+2N-1-17.
For the 16-bit binary values that are used internally for
counters and pointers, this range is [ —32768, 32767 ].
If larger ranges of integers need to be represented,
packages of larger number of bits could be used. Notice
that the representations of values is not independent of
the number of bits used in the representation. For ex-
ample, in the table above, 101 represents a ~3 when
using a 3-bit, 2’s-complement format; but 101
represents a +5 in a system using 4 or more bits.

EXAMPLES

1. Show that in 16-bit, 2’s-complement form, the
two decimal values +5000 and —5000 are
represented by 0001001110001000 and
1110110001111000 respectively.

0001001110001000 = 8 + 128 + 256 + 512
+ 4096 = 5000.

To find the decimal equivalent of
1110110001111000, first convert to its
positive equivalent by complementing the bits
(vielding 0001001110000111) and add one
to get 0001001110001000. Since this is the
binary form of +5000 as found above, the
original pattern represents —5000.

2. Show that the binary numbers below have the
equivalent decimal representations given.

0101011011001110 = 22222
0011000000111001 = 12345
1111111111111111 = -1
1000000000000001 = —32767

1010100100110010 = —2222

1111111111110110 = -10

Notice that when the “complement and add one”
operation is performed on the binary equivalent of
—32768, the same binary pattern is re-generated. This
is because there is no 16-bit, 2’s-complement represen-
tation for a +32768. Thus, when using the rule of con-
verting between positive and negative binary values, a
one in the sign bit and all other bits being zeros must
be treated as a special case.

We still have not solved the problem of representing
non-integer values. In the decimal system we handle
this by the use of a decimal point. For example,

12.75 = 1x(10} + 2x(1) + 7x(1/10) + 5x(1/ 100).

1100111111000111 = —-12345

1000000000000000 = —32768

®




numbered starting from one. Most of the manuals and
documentation for HP desktop computers number the
bits starting with zero, since this makes the value of the
n-th bit position equal to 2N. But being aware that two
conventions for numbering the bits are in common
usage could help to avoid possible confusion.

In the example given above, the largest number that
can be represented by the 8-bits is 255. Thus, we say
that the range of an 8-bit binary representation is zero
to 255 (often written as [0,255]). If we need to repre-
sent wider ranges of values, we can use larger group-
ings of bits. Indeed, all HP desktop computers (except
the 9815) use groups of 16 bits (called words) to repre-
sent binary data inside the machine. These binary
values are used for such things as counters, limit values
(as in saving the size of an array), and pointers to loca-
tions within the memory.

One limitation of the binary system described,
however, is that only positive integers are represented.
Negative values can be easily incorporated into the
system if we pick one bit (usually the highest one) to
represent the sign of the number. For example, if we
use an 8-bit byte and let bit 7 be the sign bit, using the
convention that 0 is plus and 1 is minus, then
00000101 would represent a +5 while 10000101
would represent —5. This convention is called the
“sign/magnitude” binary representation. It is simple to
understand, but unfortunately it causes difficulties in
computation. This is because the hardware processor
that does arithmetic on these numbers must have a
subtractor as well as an adder. This makes the pro-
cessor more costly and less efficient, since it must first
decide (from the sign bits) whether an add or subtract
must be done.

An alternative representation for both positive and
negative binary values is called the “two’s complement
form”. In this form, positive values have the same form
as in the sign/magnitude representation. Negative
numbers, however, are formed by the following

rule: complement the number (i.e., replace all ones
with zeros and zeros with ones) and add one (ignoring
any carry out of the highest bit}. For example, +5 is
still represented by 00000101. Minus 5 is gotton by
complementing (11111010) and adding one
(11111011). Thus, in an 8-bit, 2’s-complement
representation —5 = 11111011. Notice that if we apply
the complement-and-add-one rule to the representation
for —, we get back the representation for +5, so that
the rule is symmetric. The advantage of
2’s-complement notation is that only an adder is re-
quired. For example, to calculate the value of 7-5, we
rewrite it as 7 + (—=5) = 00000111 + 11111011 =
00000010 = 2. Thus we subtracted 5 from 7 using
only a binary adder.

The table below gives an example of all values that can
be represented by a 3-bit binary number in
2’s-complement form.

-4 -3 -2 -1 0 1 2 3
100 101 110 111 000 001 010 011

Figure 1-4

In general, an N-bit, 2’s-complement form can repre-
sent all integers in the range [ -2N=1 4oN-1-71].
For the 16-bit binary values that are used internally for
counters and pointers, this range is [ —32768, 32767 ].
If larger ranges of integers need to be represented,
packages of larger number of bits could be used. Notice
that the representations of values is not independent of
the number of bits used in the representation. For ex-
ample, in the table above, 101 represents a —3 when
using a 3-bit, 2’s-complement format; but 101
represents a +5 in a system using 4 or more bits.

EXAMPLES

1. Show that in 16-bit, 2’s-complement form, the
two decimal values +5000 and —5000 are
represented by 0001001110001000 and
1110110001111000 respectively.

0001001110001000 = 8 + 128 + 256 + 512
+ 4096 = 5000.

To find the decimal equivalent of
1110110001111000, first convert to its
positive equivalent by complementing the bits
(vielding 0001001110000111) and add one
to get 0001001110001000. Since this is the
binary form of +5000 as found above, the
original pattern represents —5000.

2. Show that the binary numbers below have the
equivalent decimal representations given.

0101011011001110 = 22222
0011000000111001 = 12345 1100111111000111 = —12345
1111111111111111 = -1 1111111111110110 = -10

1000000000000001 = —32767  1000000000000000 = —32768

1010100100110010 = —-2222

Notice that when the “complement and add one”
operation is performed on the binary equivalent of
—32768, the same binary pattern is re-generated. This
is because there is no 16-bit, 2’s-complement represen-
tation for a +32768. Thus, when using the rule of con-
verting between positive and negative binary values, a
one in the sign bit and all other bits being zeros must
be treated as a special case.

__’mm_____i___-_____

We still have not solved the problem of representing
non-integer values. In the decimal system we handle
this by the use of a decimal point. For example,

12.75 = 1x(10} + 2x(1) + 7x(1/10) + 5x(1/ 100).
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We could represent this same number in binary by the
use of a “binary point” as

12.75 = 1100.11 = 1x(8) + 1x(4) + Ox(2) + Ox(1)
+ 1x(1/2) + 1x(1/4) .

In each system, there are some numbers that cannot be
exactly represented in a finite number of places. For
example, the decimal representation of 1/3 =
0.33333--- requires an infinite number of threes to
represent exactly. Similarly, the binary representation
of 1/10 = 0.0001100110011--- cannot be represented
exactly. Since most data presented to a computer from
the real world is in decimal form (e.g., $235.17), con-
version to binary form for internal storage and com-
putation often results in inaccuracy due to the lack of
an exact representation. This inaccuracy is in addition
to any roundoff errors introduced by the subsequent
calculations performed on that value.

To get around this deficiency, numbers are stored
within HP desktop computers in a decimal format. The
structure of this format is shown below.

16 bit words
exponent] Ii
4 words or D1{D2| D3| D4
8 bytes D5 D6 | D7| D8
D9 |D10|D11| D12
Figure I-5

Each value occupies four 16-bit words (8 bytes). Each
digit uses four bits and is in BCD format, with four
digits packed into one 16-bit word. The sign and expo-
nent of the number are encoded into the first word of
the representation. Bit O is the sign of the value
(O=plus, 1=minus), while bits 15-6 represent the expo-
nent using a 10-bit, 2’s-complement form. (Bits 5-1 are
not used.} All calculations are done on this so-called
“floating point” format, and the task of converting be-
tween this representation and a string of ASCII
characters for 1/0 purposes is relatively straight for-
ward.

EXAMPLES

1. Calculate the four 16-bit words that are the in-
ternal representation of the following decimal
values.

(a) 2.71828182846?

Answer:  0000000000000000 exponent=0, sign=+
0010011100011000 2718
0010100000011000 2818
0010100001000110 2846

—1234.56789?

Answer:  0000000011000001 exponent=3, sign=—
0001001000110100 1234
0101011001111000 5678
1001000000000000 9000

(c) —0.00123456789?

Answer: 1111111101000001 exponent=—3, sign=—
0001001000110100 1234
0101011001111000 5678
1001000000000000 3000

2. Input/ Output Data
Representations
We just looked at data representations within HP

desktop computers. The table below summarizes these
representations.

Data Type Bits Used Representation
Strings 8-bit bytes ASCII
Numeric 16-bit words  {2’s-complement binary
(internal use only)
Numeric 64-bit registers| Decimal floating-point
(user program variables)

Figure 1-6

For I/O purposes, these internal representations must
be converted into a format that can be understood by
and is dependent upon the particular peripheral with
which the computer is to communicate. Each
peripheral can be categorized, for purposes of data
transfer, by two characteristics: the number of bits re-
quired for each item of data transferred, and the format
of those data bits (ASCII, binary, BCD, etc.). A small
number of data types are sufficient to handle most
peripheral devices, and HP desktop computers provide
interfaces for each of these major categories. A detailed
description of each of these interfaces is contained in
later sections of this guide; and here we will merely
look at the types of data formats that each interface
card supports.

3.The Four Types of HP Interfaces
98032A Bit Parallel Interface

Because of its great versatility, this card is the general
-purpose interface used with most standard HP
peripherals and many special-purpose devices supplied
by the user. It can accommodate data items of up to
16-bits in parallel. Assume, as an example, that this in-
terface card is being used to connect the computer to a
printer which uses the ASCII character set. Each
character to be sent to the printer would be encoded
using the 8-bit ASCII representation shown in Appen-
dix A. To send an entire message such as “The value
of piis 3.14159.” to the printer, the characters would
be sent one at a time in serial fashion to the printer.
But the eight bits that represent each character would
all be sent at once in parallel. That is, all eight bits




would be presented to the printer at once, one on each
of eight separate data lines. When all eight data lines
are set to the proper pattern of ones and zeros to
represent the character being sent, the printer is told
that the data on the lines is now valid, the printer
senses the pattern on those lines, and prints the ASCII
character assigned to that particular pattern. When the
printer indicates that it has completed the character just
given to it, the computer then changes the data lines to
represent the next character in the message and the cy-
cle repeats. This method of data transfer is sometimes
called “bit-parallel, character-serial transmission”.

Notice that when using the ASCII code, only 8 of the
16 data lines are used. Other peripheral devices which
use codes other than ASCII might use only a few or all

16 of the data lines to represent their data. It is also
important to note that HP desktop computers only pro-
vide ASCII representations of I/O data automatically.
That is, when high-level 1/0O statements (such as read
and write) are used in a program, they generate and
expect to receive data coded in the ASCII representa-
tion. If any other encoding scheme is used, it is up to
the user’s program to know the representation being
used and to convert the bit patterns received into a
form that can be used within the computer.

Sometimes this is a simple task. For example, if a
peripheral device supplied data in the form of 16-bit,
2's-complement numbers, the program would read a
16-bit value, convert it to internal floating point
representation (see Section IB1), and return the
decimal equivalent of that value which would be a
number in the range —32768 to +32767. Another
device, however, might send only positive values using
16-bit binary representation. That is, it does not use the
2’s-complement form, but rather all bits represent
positive powers of two giving the 16-bit number a
range of 0 to 65535. Since the rdb function only reads
numbers in 16-bit, 2’s-complement form, the following
program segment would be required to do the
necessary conversion.

37:rdb (4) - A
38 if A<@; 65536 + A— A

98033A BCD Interface

Data representations from input devices fall into three
major categories. These are ASCII (directly supported
by the read statement), binary values (obtained with
the read binary function), and all other codes, which
must be interpreted by the user’s program. Of these
other codes, one is in such common use that a special
interface card has been developed to take the burden
of data translation from the user’s program. This code
is called the BCD (Binary Coded Decimal) representa-
tion. It is typically used in measurement instruments

such as a digital voltmeter (DVM). For example,
assume that we have a DVM that is measuring a
voltage level of 12.735 millivolts. The output connector
of the DVM would supply four data lines for each digit
in the reading (see Figure 1-7). Each of these digits
would be encoded using the 4-bit BCD representation
shown in Figure I-2. In addition, a few data bits
(typically 3 or 4) would be used to represent the range
that the DVM is set to (i.e., volts, kilovolts, milivolts,
etc.).

BCD INSTRUMENT

e Tz =
=], —i| =
0001 0010 +  ON 0011 0101 T
RANGE
Figure 1-7

In using the 98032A Bit Parallel Interface to take a
reading from this instrument, we would encounter two
major problems. Since a 5 digit reading is represented
by more than 16 bits, the DVM would need to deliver
a reading in the form of two 16-bit packets. Our pro-
gram would have to break up these two 16-bit patterns
four bits at a time and convert them to digits and a
range multiplier for the value being read, and then
combine these digits and the multiplier to form a
number that represented the reading that was taken.
This would be a complex and time consuming task for
the program.

Instead, this task is performed by the 98033A BCD In-
terface. This card accepts in parallel from the device up
to eight 4-bit BCD digits and a 4-bit multiplier, and
then converts this reading into a sequence of ASCII
characters (in our example, “12.735E—3") that can be
directly read by the computer’s ASCII read statement.

98036A Serial 1/0 Interface

A new data representation problem arises in the area of
data communications. Strictly speaking, any exchange
of data between a computer and its peripheral devices
could be called data communications; but this term is
usually reserved to mean the exchange of data be-
tween two computers (or between a computer and a
terminal) that are located at some distance from one
another. If both machines are in the same building,
they are usually connected by long cables. If they are
in different buildings (or different cities) telephone lines
might be used to make the connection. In either case,
the cost of the connection rises rapidly with the number
of bits that are sent in parallel. Therefore, a scheme
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has been devised that allows the exchanged informa-
tion to be sent over a single data line.

Using this method, not only are the characters of the
message sent in a serial fashion, but the bit patterns for
each character are also sent serially, one bit aftter
another along the single data line. This requires some
rather sophisticated timing considerations which are
handled by the interface card. This allows the program
to treat the interface as a simple 8-bit parallel device.
That is, the user writes his message to the interface as
a sequence of 8-bit (usually ASCII) bytes, just as he
would to the 98032A card. The Serial 1/0 interface
then performs the task of converting each character to
a bit-serial stream and sending it over the data com-
munications line. For input, the interface receives a se-
quence of bits for each character, assembles them into
a parallel 8-bit byte, and delivers this byte to the com-
puter all at once.

More information about the particular capabilites of the
98036A card is contained in Section IIIE1.

98034A HP-IB Interface

The task of interfacing a peripheral device to the com-
puter would be greatly simplified if the four areas of in-
terfacing incompatability discussed in Section IA could
be overcome. That is, if a standard were developed
that completely specified the mechanical, electrical,
data, and timing characteristics of an [/O bus, then all
computers and peripheral devices that followed this
standard would be “plug-to-plug” compatible.

Such a standard has been adopted by the Institute of
Electrical and Electronic Engineers (IEEE 488-1975).
This standard has become so popular that dozens of
manufacturers are providing hundreds of devices which
conform to its specifications and can be interfaced to
one another by simply plugging them together. There is
no special representation which must be used for data
messages on this bus, although the vast majority of
IEEE-488 devices have implemented ASCII as their en-
coding scheme.

The 98034A HP-IB (Hewlett-Packard Interface Bus)
card interfaces HP desktop computers to the IEEE-488

bus. A more detailed description of the HP-IB is given
in Section IIID1.

4. The Data Transfer Process

Up to now, we have been concerned with how the
various bit patterns on the data lines are to be inter-
preted. We have talked about sending and receiving
sequences of characters, but have not mentioned how
this process is accomplished.

The main difficulty involved is one of timing. If the
speed of the computer and its peripheral are not exact-
ly matched, the faster device will somehow have to
slow down the pace of its [/O operations so that it will
not get ahead of the slower device. This is accomplish-
ed through a mechanism known as “handshake”. The
detailed description of the handshake process is
discussed in the sections on the interface cards, and
here only the concept of the handshake will be con-
sidered.

Handshake for the output process (Figure 1-8) proceeds
as follows. The first of a sequence of characters to be
transmitted is placed on the data lines. When this
operation is complete, the interface indicates that the
data is valid by setting a special control line. When the
peripheral detects that this control line is set, it raises
another line called flag to indicate to the computer that
it is momentarily going to go busy in order to process
that character. It then takes the information from the
data lines and processes it. This processing may involve
printing a character, plotting a point, or whatever other
function the peripheral device is designed to perform.
Some devices do not operate from single characters,
but wait until an entire sequence of characters is receiv-
ed to perform their actions. For example, the 9866A/B
Thermal Line Printer contains a block of read/write
memory called a buffer, into which characters to be
printed are placed. For this device, the processing of
most characters consists of merely placing that
character in the buffer. Then when it receives a line-
feed character (ASCII 10), it prints an entire line con-
tained in its buffer at one time. In any case, when the
processing of that character is complete, the peripheral
lowers the flag line to indicate that it is again ready.
The computer then places the next character on the
data lines and the entire handshake process repeats
again.

PN
DATA LINES (8 OR 16) A
1/0 *'This is an output"'

COMPUTER PERIPHERAL

CONTROL "‘Data is available™

FLAG “OK. | got it"”

Figure I-8. Data Output Handshake

The sequence of events for input (Figure 1-9) is similar
to that for output. On a separate 1/0 indicator line, the
computer specifies that an input operation is to be per-
formed, and then sets the control line. This time when
the peripheral sees control go set, since the 1/0 line is
indicating input”, it knows that it is to supply the data.
The peripheral first raises the flag line to indicate that it
is busy, and goes to gather the requested data. This
may involve taking a sample for a DVM, advancing a
paper tape, digitizing an X,Y coordinate, or doing
whatever the device was designed to do in order to

.

Throughout this guide, the terms input and output are always used with the
computer as the point of reference. Thus, input means from the peripheral to
the computer.



gather data. This data is then placed on the data lines
by the peripheral and the flag line lowered to indicate
that the data is now ready. The computer will then
read the data and the handshake on one input
character is complete. If a complete reading consists of
several characters, the computer will again set the con-
trol line when it is ready for the next character and the
process repeats.

[ DATA LINES (8 OR 16)

/O "' This is an input™”
CONTROL ""Give me more data™ J

COMPUTER PERIPHERAL

FLAG "OK. Data is con the lines”

"

Figure I-9. Data Input Handshake

It is important to note that in both the input and the
output processes, the computer initiates the handshake
procedure by setting the appropriate state of the /0
line and then setting:control. Under no circumstances
does the peripheral ever initiate a data transfer opera-
tion. This concept will be especially important when we
discuss the interrupt process. Interrupts are always
generated by the peripheral in response to a request
from the computer, and not at the discretion of the
peripheral device.

Finally, it should be mentioned that the concept of a
handshake is a very general one and not limited to the
description given here. Other schemes are possible and
commonly used. This particular version of a three-wire
handshake (1/0, control, flag) is adopted by the HP
98032A interface card and the one that should be
understood when connecting this interface to peripheral
devices.

Most data and control lines on the HP interface cards
use negative-true logic. It is easy to tell whether
negative-true or positive-true logic is being used for a
particular line from the schematic diagram of the inter-
face card, which is found at the back of the installation
and service manual for that interface. If the name of
the line (e.g., PFLG) appears with a bar drawn over
the top of it, that line is using negative-true logic;
otherwise it is using positive-true logic. For example,
the 98032A interface has two general-purpose control
lines called CTL@ and CTL1. The state of CTL@ is set
from the program by use of the write control statement
(wtc) whose syntax is:

wtc <select code>, <control byte>.

The least significant bit of the control byte is used to set
CTL@. Since on the schematic diagram for this card,
that line is labeled with a bar over it, it is using
negative-true logic. Thus, the statement wtc 6,0 will set
the CTL@ line high, and wtc 6,1 will set it low.
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C. Hardware
1. Logic Levels and TTL

Implementations

In previous sections we have used such phrases as put-
ting data on the lines, setting the control line, and mak-
ing the flag line go busy, without really saying how
these things are electrically implemented by the inter-
face. But when it comes time to wire the interface to a
non-standard peripheral device, it is helpful to under-
stand how the electronic circuitry of the interface card
relates to the operational concepts we have been
discussing. In this section we will discuss some of the
electronic concepts necessary to understand that cir-
cuitry.

The two main electrical concepts involved are those of
voltage and current. For our purposes here, it may be
helpful to explain these concepts in terms of an
analogy with a forced air heating system found in many
houses. In this system, after the air has been heated, a
blower is used to create a pressure that is higher than
the surrounding atmospheric pressure in the rest of the
house. This blower is connected through a series of air
ducts to the outlet registers placed throughout the
various rooms. Because the pressure at the blower is
higher, the heated air is forced to flow through the
ductwork and out the registers. The pressure at any
point in the system is always at a level somewhere be-
tween the maximum pressure produced by the blower
and the atmospheric pressure at the outlets, and is
determined by how much resistance the air has en-
countered from the ductwork along its path from the
blower to the point which we are measuring. More air
will travel along those paths in the heating system that
present a lower resistance to the air flow. Indeed, the
homeowner can vary the resistance in various branches
by opening and closing louvers at the registers,
resulting in redistributing the airflow throughout the
house.

In an electrical system, the voltage at any point in the
system can be thought of as analogous to the pressure
in our heating network, and the current as analogous
to the air flow. Just as the blower created air pressures
above the normal atmospheric level, a battery or an ac-
tive power supply is used to obtain voltage levels above
some background reference point usually referred to as
ground level or simply a ground. By allowing current to
flow from the power supply to ground through ap-
propriately chosen electrical resistors, we can obtain
any desired voltage levels in this range to be used for .
whatever purposes we require.

An example of this is shown in Figure [-10. At the top
of the circuit we connect a 5 volt power supply, and

the triangle at the bottom is a common symbol used to
represent a ground point (i.e., a voltage level of zero).
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Figure 1-10

Current flows through the two resistors (R1 and R2)
establishing some intermediate voltage level at the out-
put. the formula for calculating this output voltage is

given by
R2
V = V L [ ———
out = ¥in (Rl + R2 >

Using the values of Vi = 5 volts, R1 = 3K (resistances
are measured in units called ohms, and K is an ab-
breviation for kilo-chms = 1000 ohms), and R2 =
6.2K, we obtain a value for the output voltage of ap-
proximately 3.4 volts. If we now connect the output
point to ground through a switch, by opening and clos-
ing this switch we can change the output voltage from
3.4V to OV. That is, when the switch is closed, the
resistance in this path is almost zero (only the small
resistance of the wire itself) and practically no current
flows through the R2 path. Thus the entire 5 volts is
dropped by R1 leaving the voltage at the output point
zero.

If we now run a wire from the output point to someone
who has a voltage measuring device like a voltmeter,
as we open and close the switch he will see his
voltmeter register 3.4V and OV alternately. And if we
now agree on some meaning to be assigned to the high
and low voltage levels, we can use this electrical circuit
to transmit information.

For example, the flag line of the interface card uses the
high voltage level to indicate busy, and the low level
to indicate ready. And rather than the mechanical

switch, the interfaces employ electronic devices called
gates to switch between high and low levels at electronic
speeds. These gates will be discussed later in this

section.

The signaling scheme described would work just as well
using other values for the power supply voltage,
resistors, and output voltage. The example values
given were chosen because they correspond to the so-
called TTL (Transistor Transistor Logic) levels that are
in common usage in computer hardware. Prepackaged
integrated circuits are readily available which are used
in generating and detecting high and low voltage levels,
and in performing certain “logic” operations on these
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signals as will be discussed later. These chips or IC’s as
they are called, are made up of a large number of tran-
sistors and other electronic elements reduced to a very
small size and sealed in convenient packages. It is the
electrical properties of these transistors that dictate the
high and low voltage levels that must be used. In
general, it is very difficult and expensive to provide cir-
cuits that will provide and detect exact voltage levels.
Therefore, TTL devices allow a range of voltages given
by the table in Figure I-10a.

3 volts to 5 volts
0.7 volts to 3 volts
0 volts to 0.7 volts

TTL High Level
Indeterminate
TTL Low Level

Figure 1-10a

The exact values of the crossover voltages vary with
the type of IC used and with the manufacturer, but are
typically within a few tenths of a volt of the levels
given. Output voltages in the indeterminate range may
result in the detecting IC sensing a high or a low, and
should be avoided when designing TTL circuits.

Because the interface is implemented in terms of high
and low voltage leveis and the computer deals with bits
(ones and zeros), there are two ways of assigning a
correspondence between them. That is, we can assign
either high=1 and low=0, or high=0 and low=1. Both
methods are in common use, and the choice of one or
the other is usually determined by other design con-
siderations within the computer. Further confusion can
arise since these two states are also refered to as true
or false. This is why in the previous sections when con-
cepts such as handshake were discussed, we simply
referred to the states of the control and flag lines by

their logical meanings of set or clear, and ready or

busy, without worrying about whether these states were
implemented as high or low voltage levels on the inter-
face itself. Indeed, some interface cards allow the user
to define whether the ready state of the flag line, for
example, will correspond to a high or low level. This
places fewer constraints on the design of the peripheral
being interfaced and is discussed further in the section
on jumpers.

Because these two conventions are in common use,
they have been given the names positive-true logic and
negative-true logic. The table in Figure I-11 shows the
meanings of these conventions.

High = True = 1
Low = False = 0
High = False = 0
Low =True =1

Positive-True Logic:

Negative-True Logic:

Figure I-11




Thus if the computer placed a bit that was set to a one
on a particular data line, this line would be set high in
a positive-true system and low in a negative-true
system. For example, an ASCIl “E” character (binary
value 01000101) placed on the data lines would ap-
pear as LHLLLHLH if positive-true logic were being
used, and as HLHHHLHL if negative-true logic were
being used.

Certain interface processes such as the handshake
discussed in the previous section involve several lines
changing their states in a definite time sequence. The
exact relationship of these lines during the sequence of
events is often shown in a graphical representation call-
ed a timing diagram. An example of a timing diagram
for some of the lines involved in the handshake process
for the 98032A interface is shown in Figure 1-12.

to 1 2 t3 14
L 1 H
pcTL H 17 L__,—:— CLEAR
Lol \ b . SET
j—— T——» v
PFLG H 1§ h |———' BUS
) '} ]
L : READY
]
1 1
] J

Data
tines

%

Figure I-12: An Example Timing Diagram

In this diagram, time proceeds along the horizontal axis
from left to right, and the states (high/low) of the
various lines of interest are shown one above the other.
A vertical line drawn through the diagram represents
the same instant in time for all of the lines. These time
points may be indefinite such as tg in the example
which shows the state of the lines at some time before
the handshake has begun; or they may be definite
times such as t] which shows the point at which the
data on the lines begins to change. Sometimes, the in-
terval between two time points (t] and t2 in the ex-
ample) is fixed by some requirement of the system,
and given a name such as T. In other cases, such as
the interval between t2 and t3, there is no restriction
placed on the time that may elapse between these two
events.

The state of the PCTL and PFLG lines in the example
are definite (high or low) within each time interval. The
handshake timing diagram cannot, however, show the
data lines as being either high or low during a given in-
terval, since the state of these lines depends on the
data that is being exchanged. In this case, the two
parallel (high and low) lines in the diagram simply
represents a stable state on these lines that may be
either high or low, while the crossover represents the
time during which data on these lines is in a state of
transition.

The example timing diagram for an output handshake
process would be read as follows. At some time tQ
before a data transfer has begun, the PCTL line is in its
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normal clear state (high), the PFLG line is ready (low),
and the data lines are stable, still containing the last
character sent. At time t1 the interface places the new
data on the lines. After allowing a time interval T for
the data to become stable, the interface sets PCTL low
at t2 to inform the peripheral that the data on the lines
is valid. Longer cables require longer time periods, T,
for the data lines to stabilize at their new levels. After
an unrestricted time interval, the peripheral
acknowledges that it has seen control go set by raising
its PFLG line to the busy state at t3. Upon receiving
this acknowledgment, the interface allows its PCTL line
to return to the clear state. Finally, when the peripheral
has completed processing the information on the data
lines, it indicates this fact to the interface by returning
its PFLG line to the ready state at t4. At this time, the
PCTL and PFLG lines are back to the same state as
they were at t( and ready to repeat the entire hand-
shake cycle for the next data transfer.

The complete handshake process also involves the
FLG and 1/0 lines as discussed in the section on the
98032A interface. This simplified example is intended
merely to present the essential features of timing
diagram representations.

2. Gates, Latches, and Flip-Flops

It would be extremely difficult if not impossible to write
useful computer programs without the availability of
conditionals such as the “if” statement which allow the
program to test some condition and perform one action
if the condition is true, and another action if it is false.
The operations performed by an interface card also re-
quire the use of logic, or the ability to make decisions.
The functions of the interface card could be fully
described by a flowchart or a computer program. In-
deed, if it were not for speed requirements, most of the
functions of the interface card could actually be
replaced by a computer program. For example, the
handshake process described in the last section could
be performed by a program which implemented the
flowchart shown in Figure 1-13.

Handshake

clear PCTL

Figure 1-13
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Gates

Since the interface cards are implemented through
hardware (electronic circuits) rather than software
{computer programs), logic elements called gates are
used to perform the required decisions. In reality these
gates are made up of very complex electronic networks
composed mainly of resistors and transistors. For-
tunately, it is not necessary to understand the detailed
workings of these circuits in order to present the opera-
tional characteristics of these logic elements. Before
looking at how these gates are used in the construction
of an interface, we will first describe the various types
of gates that are available. Figure I-14 shows four of
the basic logic elements that are used as building blocks
for constructing more complex logic elements and im-
plementing conditional operations.

AND OR XOR NOT
A A A i
N N8| Ltk Nl w ale
L L]L L L]H L L|H Ll H
H L H H H]H H H L H] L
Figure 1-14

For the AND gate, A and B are the inputs and C is the
output. It performs a logic AND function since C is
high if and only if both A and B are high, otherwise, C
is low. This information is presented below the symbol
for the AND gate in a form called a truth table. It sim-
ply shows the state of the output line for any combina-
tion of states of the input lines. In the OR gate
{sometimes called an inclusive OR gate), C is high if
either A or B is high. In the exclusive-OR gate, C is
high if either A or B is high, but not both. And finally
the NOT gate, often called an inverter, outputs a high
if the input is low, or a low if the input is high.

Several gates of the same type can be obtained in a
single integrated circuit package which makes the con-
struction of logic circuits such as an interface card more
compact and less costly than if individual components
were used. Also available are packages which combine
AND, OR, and Xor gates with inverters on their input
lines, their output line, or both leading to a wide vari-
ety of combinations. For example, AND gates with in-
verted outputs are available and are called NOT-AND
or simply NAND gates. Figure I-15 shows the symbol
and truth table for this type of gate.

NAND

A — c A L
[Spuu— L H

Figure 1-15
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Notice that the truth table is the one that would be ob-
tained by inverting the output of an AND gate. In
general, the truth table for any logic element whose in-
put or output lines have circles drawn on them can be
obtained from the corresponding table for the element
without the circles, and replacing the circles with in-
verters.

An example will serve to illustrate how these logic
elements are used as building blocks in constructing cir-
cuits that are capable of making decisions. Let’s assume
that we have a peripheral that delivers data to the com-
puter at some time after it sees the control line (PCTL)
go set. Normally, this operation is automatic so that as
soon as control is set, the device reponds by issuing a
pulse (low to high and back to low transition) on a line
from the peripheral called READY. This READY line
would usually be connected directly to the PFLG line
on the interface to complete the handshake. But we
would like to have an alternate mode of operation,
established by the computer program, that would allow
an operator at the device to signal the ready response
by pressing a button. The circuit shown in Figure 1-16
could accomplish this task, making use of the logic
elements that we have been discussing.

We first define a MODE line which determines the
mode of operation: automatic when it is high, and
operator-controlled when it is low. This line is con-
nected to one of the general purpose control bits
(CTL@ on the 98032A card) so that it may be set by
the program to the desired mode of operation. When
MODE is low, the input to the AND gate at pin B is
low so that no matter whether A is high or low, the
output at C is low. That is, when mode is low
(operator control) the READY pulse is blocked by the
AND gate and C remains low. When mode is high, C
is high only when A is also high, so that the positive
pulse is now passed by the AND gate and appears at
the output C.

CTL®

MODE (from interface:

A
READY ——J-L
(from device)

PFLG
(to interface)

Figure I-16: An Example Use of Logic Elements

The second AND gate controls the signal from the
operator’s push button. When the switch is open, the
pull-up resistors hold the input E high (see Figure [-10}.
Pressing the button grounds the input E and causes it
to go low, returning again to high when the button is
released. (In actual use. a debounced switch should be
used to prevent multiple pulses.) Since the input E is



an inverted input, this switch presents a positive pulse
to the AND gate when it is activated. Input D operates
in the same way as input B did for the READY pulse,
to either block or pass the signal from input E. But
since it is an inverted input, it passes the signal when
MODE is low and blocks it when MODE is high. Thus,
either the READY pulse or the one provided by the
push button will appear at C or F, while the other line
remains low. If these two lines are connected to the
PFLG line through an OR gate, one and only one of
the pulses will drive PFLG, depending on the state of
the MODE line.

Thus, this configuration of logic gates implements the
function stated by: if mode is automatic, pass the
READY pulse to the PFLG line and block the pulse
generated by the operator; if mode is manual, pass the
operator’s pulse and block the READY signal. Again
we see that gates are used to provide a hardware im-
plementation of a function that could be expressed by a
logical flow diagram.

Latches

If the data output lines from the computer were directly
connected to the data input lines to the peripheral,
then during the handshake process it would be the
responsibility of the computer to maintain the data on
the lines until the peripheral had acknowledged that the
data had been accepted. Normally this would cause no
problem since the computer is merely waiting anyway
for that acknowledgment so that it can put the next
data item on the lines. But if only one character is be-
ing sent, the computer could go on with the program if
it did not have to stay in the output driver to hold the
data on the lines. This becomes more important, even
essential, to operating under interrupt. In the interrupt
mode, the computer places the first character of the
output message on the data lines, tells the interface to
generate an interrupt when the peripheral has taken
that character and the next one can be sent, and then
goes on with program execution instead of waiting for
the handshake process to complete. This would not be
possible if the computer had to maintain the data on
the lines.

Therefore, one of the functions of the interface is to be
able to hold or latch the information on the data lines
until the peripheral has had a chance to take it, and
thus relieve the computer of this responsibility. In the
hardware of the interface, this is accomplished through
an electronic device called a latch (Figure 1-17).
Typically a latch has a number of input lines and a cor-
responding number of output lines, plus an additional
line usually called the clock line. When the clock line is
activated, whatever data currently is being presented
on the input lines is held by the latch and presented on
the output lines. Then when the clock line is deac-
tivated, this same data is maintained on the output

lines. The way in which the clock line is activated (i.e.,
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positive pulse, negative pulse, low to high transition,
etc.) depends on the particular type of latch being
used, and need not concern us here.

— A QA
—8 QB
Inputs - Outputs
—_—1C Qc
Q
—]D b -
b CLK
A 4-BIT LATCH
Figure 1-17

Chips are available which provide latching for four bits
of data on a single integrated circuit package. Thus, to
provide latching for the 16-bit output data bus, the
98032A interface uses four of these 4-bit latches. Four
more are used for the 16 data input lines. These input
latches, in a manner similar to the output operation,
relieve the peripheral of the responsibility of maintain-
ing the data on the interface input lines until the com-
puter has had a chance to take it.

These latches are sometimes refered to as one-character
buffers, and should not be confused with the buffers
described in later sections dealing with the transfer of
interrupt buffers. These latter buffers are multi-character
holding locations that are located in the read/write
memory of the computer itself.

Flip-flops

A flip-flop is a device that is similar to a one-bit latch,
but with more extensive control properties. There are
many different types of flip-flops each designed to
satisfy a different set of requirements. Figure I-18
shows a schematic representation for one common
type called a D-type flip-flop.

SET

CLOCK QFr—
CLEAR

Figure 1-18

When the clock line is activated, the current state of
the D input is latched and presented at the Q output
line. On deactivating the clock signal, Q will hold its -
state independently of what happens on the D input.
For convenience in designing logic networks using
these flip-flops, an inverted output, Q, is also provided.
that is, Q is always in the opposite state from that of Q.
Two additional lines are provided to set Q to the high
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state or to clear Q to the low state, independently from
the clock and D lines. These set and clear lines are
often used to initialize the flip-flop to the desired “wake
up” state.

Just as the latches were used to maintain information
on the data lines, flip-flops are used to allow the inter-
face to “remember” information about what state it is
currently operating in. For example, we will see later
that the computer will send a particular message to the
interface card to tell it that it is enabled to operate in
the interrupt mode. The card remains in this mode un-
til it is disabled by another message from the computer.
In the meantime, it remembers which mode it is in
{(enabled or disabled) by storing that information in one
of these flip-flops.

3. The Use of Jumpers

In the last section we saw that flip-flops could be used
to change various modes of operation on the interface
by programmable signals from the computer. For ex-
ample, the interrupt-enable flip-flop could be turned on
and off by the computer at will. Other modes of opera-
tion are a property of the system itself and do not
change during the running of a program. It would be
more convenient if these modes could be set one time
on the card itself, and then the program would not
have to be concerned with them.

As an example of this, consider the handshake diagram
from Section IC1. The meaning assigned to the PFLG
line from the peripheral is high = busy and low =
ready. We might want to interface a device, however,
whose handshake line used the opposite sense; that is,
high = ready and low = busy. The 98032A card pro-
vides for such an inverted sense by installing a jumper
(i.e., a wire connecting two terminal points in the cir-
cuit) on the interface itself. Figure I-19 shows how the

use of this jumper accomplishes the desired inversion
of the PFLG signal.

A

+5V B
jumper wg_

Figure 1-19

The properties of the exclusive-OR gate used were
given in Section IC2. lts output, C, is high if either A
or B is high but not both. If the jumper is not installed,
the resistive divider holds the B input high. Looking at
the truth table for an exclusive-OR gate, we see that in
this case if A is high, C is low; and if A is low, C is
high. Thus, the signal presented at the A input appears
inverted at the C output. If we now put in the jumper,
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the B input is connected to ground (low) and the state
of C is always the same as the state of A. As a result,
the signal seen at C is either the same as A or the
complement of A depending on whether the jumper is
in or out.

It should be noted that in the particular example used,
(i.e., the PFLG line on the 98032A card), this line has
already gone through a separate inverter gate before
arriving at the A input line in our diagram. As a result,
the PFLG line itself is inverted when the jumper is in-
stalled, and not inverted when the jumper is out.

Other jumpers may be used in an entirely different way
from the example just given. For instance, we will see
later that the data latches on the 98032A interface are
divided into two groups of eight. In the so-called bytes
mode, these two groups of latches can be clocked
separately, while in the words (16-bit) mode, they are
clocked together at one time. The jumper which selects
the word mode simply connects the two clock signals
for these latches together.

Finally, we should mention that the use of jumpers
provides a means of making these connections in a
manner that is most economical of space on the inter-
face card. On other cards where room is available,
miniature slide switches may be used to achieve the
same result. Also, switches are used instead of
jumpers where the user might want to change the
mode of operation based on the particular application.
In any case, these switches and jumpers are used to
select modes that will not be required to change during
the running of a particular program.

The installation and service manuals for each interface
card go into more detail on the switches and jumpers
provided by each card, and their intended uses. The
purpose of this section is merely to give the reader
some idea of how a jumper or switch can be used to
perform the functions described in those manuals.
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Section II

9 Programming for Interface

Operations

A. Standard I/0
Programming

1. A Register Operational Model
of an Interface

An interface is a complex electronic circuit that pro-
vides mechanical, electrical, data format, and timing
compatability between a computer and the peripheral
device to which it is connected. From a programmer’s
point of view, however, the primary task of interfacing
is to provide a means of exchanging data between the
computer and the peripheral. Thus, a well-designed in-
terface should isolate the programmer from the details
of the electronics and timing, and appear as a simple
“black box” whose I/O characteristics can be presented
in a simple model and described by a set of operational
rules.

In Section I, we will look at the various interfaces
provided for HP desktop computers from a hardware
point of view and cover some of the special
characteristics of each of them. In this section, it will be
sufficient to model the interface as a set of four
registers through which all the capabilities of the card
can be accessed. These four registers are given in
Figure II-1.

Register Input Output

R4 |Primary Data In Primary Data Out

R5 Status In Control Out

R6 Secondary Data In | Secondary Data Out

R7 Secondary Status Secondary Control
Figure II-1

The names of the four registers (R4,R5,R6, and R7)
are simply names given to four address locations in the
computer memory map, and should not be confused
with the r-registers which are program variables provid-
ed by the high-level HPL language. These registers
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should be thought of as residing on the interface card
itself.

The computer sees these interface registers as 16-bit,
binary registers, and always sends and receives 16-bit
binary words when addressing them. If a particular in-
terface utilizes less than the full 16-bits (for example,
when exchanging 8-bit ASCII data bytes) the upper
(more significant) bits are received as zeros. On output
to these registers, if fewer than 16 bits are utilized by
the interface, it ignores the upper bits. Thus, these bits
may be ones or zeros and are sometimes called “don’t
care” bits.

All of the interface cards use the R4 register for data
I/O operations, and the R5 register for status and con-
trol information. The names given in the table above
for the R6 and R7 registers are only general indicators
of the functions of these registers. Their exact inter-
pretation varies with each card and is described in
more detail in the sections on the individual interfaces.

In order to give specific examples of the use of these
I/0 registers, we will use the meanings given to them
by the 98032A Bit Parallel Interface, sometimes called
the GPIO (General Purpose Input Output) Interface. It
defines these registers as follows.

Redgister Input Output
R4 Data In Data Out
R5 Status In | Control Out
R6 (see text) | (see text)
R7 Not Used | Trigger

Figure 11-2

The GPIO uses the R6 register in a special way when
operating in the optional “byte mode” as described in
the section on that card. For our purposes here, the R4
register is the one through which all data is transmitted
and received. We will give examples below of how
these registers are used to do simple input/output
operations.




2. Select Codes

As mentioned earlier, a set of 1/0 registers R4-R7 exist
on each interface card. When more than one card is
connected to the computer and, for example, an R4-in
operation is performed, we need a mechanism for
determining which interface should respond. This is ac-
complished by means of a 4-bit register in the com-
puter called the Peripheral Address (or simply PA)
register. This PA register holds a binary number in the
range of 0 to 15, thus allowing for up to 16 interfaces
to be addressed. Each interface has an externally-
settable select code switch which can also be set to any
value between zero and 15. (Select codes 0 and 1,
however, are for internal interfaces and should not be
set as a select code for an interface card.) Whenever
an operation to one of the interface registers is per-
formed, the computer presents the current contents of
the PA register to all of the interface cards
simultaneously. Only that card whose select code
matches the PA register will respond to the operation.

When an HPL 1/0 statement such as “wrt 6, A, B, C”
or “rds(6) —A” is executed, the [/O ROM automatical-
ly puts the binary value of the select code parameter
(in this case, 0110 = 6) in the PA register before ad-
dressing the required interface registers.

3. Direct Register Access

All interface card operations are carried out by sequences
of operations to and from the interface registers. The
more common tasks (reading and writing data, checking
status and setting control bits, etc.) have been provided at
the HPL programming level by simple statements and
functions such as wrt, red, rds, wtc, etc. These high-level
mnemonics isolate the programmer from the details of
the register sequences required to perform each task.

In the event that the programmer should wish to per-
form some sequence of operations other than those
provided by the HPL language, additional mnemonics
have been provided that give the HPL program direct
access to the interface registers.

These are the write-interface-register and the read-
interface-register mnemonics, whose syntax is given
below.

wti <register number>, <output>
rdi ( <register number> )

The write-interface statement outputs a 16-bit,
2’s-complement representation of the value specified by
the <output> parameter to the register specified. The
read-interface function inputs a 16-bit 2’s-complement
binary value from the specified register and returns its
decimal equivalent for the value of the function.
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The register number given should be in the range of 4
to 7. If not, the value given is mapped into that range.
Thus, rdi(8) would read the R4 register, rdi(9) the R5
register, and so on. Since the program needs some
way of specifying which interface (select code) should
respond to wti and rdi, register number zero is treated
specially and addresses the PA register. For example,
executing a “wti 0,6” statement would place a 6 in the
PA register. This setting of the PA register will remain
active for all future wti and rdi operations until RESET
is pressed or a new PA is set up using another wti
statement to register zero.

Q

In the following section, we will see how this direct
register addressing works by reducing familiar opera-
tions such as writing data and reading status to their
equivalent register sequences.

Before doing this, there are two additional lines to the
interface required to complete the functional description
of the card. These may be considered as 1-bit, read-
only registers called status (STS) and flag (FLG).

The status bit {not to be confused with the status
register, R5 to be discussed later) is a single bit in-
dicator that the interface and the peripheral connected
to it is operational. For example, if a peripheral device
has a line coming from it that indicates power on, it
could be connected to the STS line. Then the program
could quickly determine whether the device is turned
on or off. Or as another example, a printer might have
the STS line connected to its out-of-paper indicator (if
it has one) to indicate to the program that it is no
longer operational when the paper runs out.

@

The flag line is a momentary ready/busy indicator used
to keep the computer from getting ahead of the
peripheral. The use of this line is covered in more
detail in Section IlIB2 on “handshake”. For our pur-
poses here, it is sufficient to know that on the flag line,
a one indicates ready and a zero indicates busy. For
example, if the computer had a sequence of ASCII
characters to send to a slow printer, it would send one
character (which makes the flag line go busy) and then
wait for the flag line to go ready again before sending
the next character. (This interface flag indicator should
not be confused with the programming flags used in
writing HPL programs.)

These FLG and STS lines may be tested from the HPL
program by using the following functions.

iof <select code>
ios <select code>

-
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These functions return a one or a zero indicating the
current state of the FLG or the STS line. Notice that
unlike wti and rdi, the select code is given as a
parameter in the iof and ios functions.
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4. Binary I/O Operations

We are now in a position to look at the sequence of
events that takes place between the computer and the
interface card when simple 1/O operations are carried
out. In particular, we will simulate the actions of the
“wtb” and the “rdb” statements through the use of the
direct interface access mnemonics explained in the last
section.

When the I/O ROMs perform these operations, there is
a considerable amount of checking and internal “book-
keeping” that goes on to insure that systems conflicts
are avoided. Here we will only be concerned with the
basic communication between the computer and the in-
terface. We will also look at this communication from
the point of view of the register operational model of
the interface as described earlier. In the sections on the
interface cards themselves we will look at more detail
about what actually takes place on the card.

The following HPL program simulates the actions that
take place when the statement “wtb 6, 27" is executed

to send the binary value 27 to a device on select code
6.

wti 0,6

if ios(6)=0; gto “‘card down"’
if iof(6)=0; jmp @

wti 4,27

wti 7,0

AR S

In the first line, the select code of the device (i.e., 6) is
placed in the PA register for the subsequent wti
statements. Next, the status bit is tested to make sure
that the device is operational. If it is not, we branch to
the “card down” routine, which in the I/0O ROM would
issue an error G8. If the device is operational, we then
loop until the flag line indicates ready. The data to be
sent is then placed in the R4 output register. This
merely places the data in the output latches on the in-
terface but no output operation to the device has taken
place yet. In the last line, the output to the R7 register
actually triggers the data transfer to the device. (Note
that the actual data to the R7 register, a zero in this ex-
ample, does not matter. Only the R7 out operation
itself is sensed by the interface as the trigger com-
mand.) If more data were to be sent to the same
device, we would repeat lines 2, 3, 4 and 5 for each
data item. It is important that each time through this
loop we wait for the flag to indicate ready. If the flag is
indicating busy, the last data item is still in the output
latches and has not yet been taken by the device. If we
were to execute line 4 in this state, the new data would
overwrite the old data in the latches and the old data
item would be lost.

We can also use the direct register operations to
simulate the input process. The following HPL program
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performs the same operations as when the function
“rdb(6)—>A” is executed to read a binary value from the
device on select code 6 and assign it to the variable A.

1. wti 0,6

2. if ios(6)=0; gto “‘card down”
3. if iof(6)=0; jmp O

4: rdi(4)—~ A

5 wti7,0

6. if iof(6)=0; imp 0

7 rdi(4) = A

The first three lines of this routine are the same as in
the previous simulation of the “wtb” statement, and
serve the same purpose. The R4 in operation in line 4
merely tells the interface that an input operation is to
be performed. When the trigger (R7 out) is done in line
5, the card goes busy and demands a data item from
the peripheral device. Line 6 waits for the interface to
latch the data from the peripheral, and line 7 takes the

data from the interface and places its decimal represen-
tation in the variable A. If more data items were to be
input, lines 5 through 7 would be repeated. Notice that
the interface has only one trigger (R7 out) register,
which is used for triggering both input and output
operations. The function to be performed is determined
by whether the last data operation between the com-
puter and the interface was an input or an output. This
is why the “dummy” input operation in line 4 is re-
quired.

Normally, the user would not get involved with the
specific sequence of events that take place when a sim-
ple wtb or rdb operation is performed. These se-
quences were presented here merely as an example of
the use of the interface registers. Other examples will
be presented later that require-the use of the wti and
rdi instructions to accomplish certain tasks. Also,
understanding this register model of the interface will
be helpful in describing the events that take place dur-
ing interrupt operations in Section 11B3.

5. Formatted I/O Operations

Strictly speaking, all simple data input/output opera-
tions could be performed with only the use of the write
binary (wtb) and the read binary (rdb) instructions. For
example, if we wanted to output the value of pi
(3.1415926536) to a printer, we could calculate each
of the digits and send its ASCII code to the printer one
at a time with the wtb statement, taking care to output
the ASCII code for a decimal point at the proper place
in the sequence. In practice. however, it is much easier

to simply specify the value that we wish printed and let

the 1/O ROM perform the task of breaking it up into
the proper sequence of ASCII characters. As a result,
most simple data /O is done using the read (red) and
write (wrt) statements.




These statements are even more powerful since they
work in conjunction with the format (fmt) statement.
This formatting capability allows the program to specify
the exact form into which data should be put for output
operations, and the sequence of characters that is ex-
pected from an input operation. The use of the read,
write, and format capabilities is discussed with several

examples in the operating manual for the General 1/0
ROM.

Since most simple data 1/O is done using the read and
write statements, the question arises of when the
rdb/wtb instructions should be used in writing a pro-
gram. In the examples that follow, it is assumed that
the reader is familiar with the material presented in
Chapters 2 and 3 of the General 1/0 Programming
manual. If not, it would be helpful to read those sec-
tions before continuing here.

Example: Non-ASCIl Characters

The write statement accepts two kinds of parameters,
strings and numerics. A string is a sequence of ASCII
characters enclosed in quotes, such as “The value of pi
is ”. A numeric parameter simply specifies a constant
or a programming variable whose value is to be con-
verted to a sequence of ASCII characters to be sent.
The table of ASCII codes (see Appendix), however,
also provides what are called control characters. Some
of these were designed specifically for controlling print-
ing devices, such as carriage return, line feed, vertical
tab, form feed, etc. Others are used in special applica-
tions such as block transfers (start of text, end of text,
etc.) and data communications (enquire, acknowledge,
synchronize, etc.). Since the keyboard has no keys that
correspond to these characters, the wtb statement is
used to send them. For example we might have a
printer that uses paper that is perforated into pages.
After sending some lines of output, we want the printer
to skip to the top of the next page. In the ASCII
character set, this instruction, called form feed, has a
value of 20. Thus, the statement “wtb 6,20” would
send an ASCII form feed character to the printer on
select code 6. It is important to note that this operation
sends only a single ASCII character whose binary value
is equivalent to a decimal 20, and we would see the
printer skip to the top of the next page (assuming that
the printer has this capability). Whereas if we had
issued the statement “wrt 6,20”, the ASCII characters
for a printing 2 (decimal code 50) and a printing O
(decimal code 48) would have been sent, along with
some number of spaces, a carriage return, and a line
feed as specified by the format statement, and we
would have seen the actual value of “20” printed.

Supression of CR/LF

Another distinction between the wrt and wtb statements
is that the wtb statement outputs only the characters
specified, while the wrt statement generates character
sequences specified by the format statement, often giv-
ing unexpected results. For example, the HP2640A is

Example:
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a teletype-like terminal that has a CRT (video display),
and can be put into inverse video (dark characters on a
light background). To put the 2640 into this inverse
video mode, an escape character (decimal 27 ASCII
code) followed by the ASCII characters “&dB” must be
sent. Using the wtb statement, this could be done by
executing the statement “wtb 6, 27, “&dB” ”. If instead
we had executed

wtb 6,27; wrt 6, “&dB”

we would successfully put the 2640 into inverse video,
but the automatic CR/LF generated by the wrt state-
ment would have moved the cursor on the CRT to the
start of the next line. In addition, there might be a for-
mat statement in effect that we aren’t aware of that
would give even stranger and unexpected results.

Example: Greater than 7-bit data

Although a large number of input/output devices use
ASCII code as their [/O language, many do not. Data
sent via the wrt statement is sent as 7-bit ASCII
characters, and data received via the red statement is
stripped to 7 bits and interpreted as ASCII characters.
If a non-ASCII code is required, or if data in binary
form having more than 7 bits is required, the rdb/wtb
instructions may be used.

Example: Debugging Tools

Finally, the rdb/wtb instructions are often valuable in
debugging programs. For example, suppose we have a
device that sends us a numeric value 12.345 and we
execute the statement “red 3,A”. When we execute
this statement, we notice that the run light on the 9825
stays on and the reading does not complete. We don't
know whether we are not getting any data at all or if
something else is wrong, perhaps a hardware failure.
So we execute a series of “rdb(3)” instructions and
note the results.

rdb number: 1 2 3 4 5 6 7 8 9

value returned: 49 50 46 51 52 53 13 10 busy

ASCIIL: 1 2 3 4 5CRLF

This tells us that the device is indeed sending what we
expected to see and there is no hardware problem. So
we look over the program and find that earlier we had
executed the statement “fmt £16.4, {7.2” for use with a
previous wrt statement, and that format is still in effect.
Since the read statement is using this format, it is
waiting for 16 characters to complete the first numeric
value and the peripheral is only going to send 8. We
fix the problem by changing the input operation to

fmt; red 3, A

which returns to free-field format before doing the read
operation. Now the read completes and we get the ex-
pected value. Many times this same technique of using
rdb instructions to look at the incoming data stream
one character at a time will reveal that the input se-
quence is something other than what is expected, and
the red and fmt statements must be adjusted according-

ly.
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6.The Status and Control Registers

The primary purpose of the interface is to allow data to
be exchanged between the computer and the
peripheral device to which it is connected. HP’s 98000
series interface cards are extremely versatile, however,
and most of them are programmable. This means that
they have various optional capabilities that can be set
and changed by control instructions from the computer.
Refering to the register model of the interface, this pro-
gramming is done by outputting specific bit patterns to
the R5 register. Some of the interfaces use other
registers for extended control bits and these are de-
scribed in the sections covering the specific interface
cards.

The R5-out control register is usually addressed from
the HPL programming language using the write-control
statement (wtc). For example, the statement wtc 6,9
would output the binary equivalent (00001001) of a
decimal 9 to the Rb5 register of the interface set to
select code 6, causing bits 0 and 3 of that register to be
set. The effect of setting those bits is determined by
which type of interface is involved, and the meaning of
each of the control bits is described in the section on
the individual interfaces.

Besides the wtc statement. two other statements pro-
vided by the Extended 17O ROM also address the
R5-out register. These are the wti statements
explained later. These three ways of addressing the
R5-out register are explained in Section I1C5.

The interface cards can also return information to the
computer telling which optional programming features
are currently selected. This information, called the
status byte, is gotten from the interface through an
R5-in operation. This status byte consists of 8 bits
whose meanings are determined by the particular inter-
face card that is being addressed. These bit assignments
are explained in detail in the sections on the individual
cards.

At the HPL level, this status byte is obtained by using
the read-status (rds) function. For example, the func-
tion rds(6) would perform an R5-in operation on the
interface set to select code 6 and return, for the value

of the function. the decimal equivalent of the binary bit
pattem that it received.

This status byte should not be confused with the single
status bit described earlier. That status bit is merely a
1-bit, quickly testable indicator of whether or not the
card is functionally operational; whereas the status byte
contains up to eight bits of information about the cur-
rent programming configuration of the card. Since the
instruction to test the status bit (ios) is contained only in
the Extended I/O ROM, a provision was made so that
a user having only the General [/O ROM could test
this bit, although somewhat less conveniently.

Whenever a rds function is performed, the 8 bits of
status are returned plus an artificial 9th bit that
represents the single status bit.

the decimal equivalent of this value is
returned for the rds function

|
76 543 2 10

bit number: | 8

1
8 bits from the status byte (R5-in)
single status bit indicator

Thus a functionally operational interface should return
a value for the rds function greater than 256 (= 28 =
status bit set). If the value of the status byte is read
using the rdi function directly from the R5-in register,
only the 8 bits of that register are returned.

B. Interrupt I/O
Programming
1. The Uses of Interrupt

A computer which has the ability to operate under in-
terrupt provides the user with additional programming
features that fall into two main categories. One of these
is the optimization of data transfer operations in which
the speed of the computer can be more closely
matched to the speed of the peripheral device. The
other is the ability to have a particular segment of the
program in the computer executed at a time deter-
mined by the external device. The first of these abilities
will be discussed here, while the second will be covered
in Section IIB5.

In Figure 1I-3, peripheral devices have been classified
as slow, medium, and fast depending on the rate at
which they are capable of transferring data.

Speed: Slow Devices | Medium-speed Devices] Fast Devices
Examples: Paper Tape Thermal Printers High-speed
Readers DVM's
Card Readers |Medium-speed DVM’s Magnetic Tapes
Teletypes A/D Converters
Plotters Discs
Digitizers

Transfer Rates:  |Below 1000 1000 to 10000

characters per |[characters per

Above 10000

characters per

second second second
Without Interrupt: Jwait read/ write ————
With Interrupt:  [interrupt read/write fast read/write
DMA
Figure I1-3

Although some devices clearly fall into one category or
another, this division should not be considered rigid;




and the transfer rates in the table are intended to pro-
vide rough boundaries. In general, the way in which
the device is being used in a particular application,
rather than its maximum transfer rate, will determine
the category to which it belongs in that application. For
example, the 9866B Thermal Line Printer can accept
characters at a rate of about 100,000 per second until
a line-feed is received. It then requires 250ms (/4 of a
second) to print that line and be ready to accept further
characters. Other devices, like digitizers, are totally time
random. That is, the rate at which data is available
may depend on an operator pressing the sample button
on the digitizer.

In a computer without interrupt capability, data transfer
is done via the normal read and write operations.
These operations will have their own “natural” (i.e.,
computer imposed) speed limitations depending on
such things as how much data is to be transfered, the
type of data (numeric, strings, binary), and how much
formatting has to be done on the data. Depending on
these factors, the natural read/write speed of the 9825
can be anywhere between 1000 characters per second
to well over 10000 characters per second.

If the speed of the peripheral device is slower than this
natural read/write speed of the computer, the /0
ROM will simply wait after it has transfered one
character until the device indicates that it is again ready
before it sends or receives the next character. If, on the
other hand, the peripheral’s speed is faster than the
natural read/write speed of the computer, the
peripheral device itself will have to wait between each
character until the computer is ready for the next
transfer operation. If the peripheral cannot wait (i.e.,
slow down to the computer’s natural read/write speed)
then the data simply cannot be transfered between the
computer and the device.

This situation can be greatly improved if the computer
can support transfer mechanisms other than the normal
read/write operations. For slow devices, we would like
to have the ability to transfer one character to or from
the peripheral device, and then be able to “go away”
and perform other useful work while we are waiting for
the device to come ready for the next character. For
fast devices, we would like to be able to separate the
formatting process from the actual transfer process, and
thus increase the natural speed of the transfer process
alone. For example, if we wanted to take 100 readings
from a high-speed digital voltmeter using a program-
med loop and normal read statements, each reading
would have to be formatted, put into internal floating-
point representation, and stored in the specified pro-
gramming variable before we could be ready for the
next reading. It is this “overhead” that determines the
natural speed of the read operation. If, however, we
had a means of merely collecting the “raw data” (the
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exact sequence of bytes or words that came in from the
DVM) and could then go back at a later time and do
the formatting and conversion into internal numeric
representation, this simple data gathering process could
procede at a much higher rate.

The 9825 provides an interrupt mechanism for han-
dling slow devices, as well as fast read/write and DMA
for handling fast devices. The use of these capabilities
is discussed in the following sections.

2. Data Transfers with Slow Devices

When an 1/0O operation is done with a very slow
device using the normal read/write operations, the
computer spends a considerable amount of time merely
waiting for the device to become ready for the next
character transfer. Having interrupt capability gives the
9825 the ability to do other useful work while it is
waiting on the device. In order to show just how this is
accomplished, we will look at an example of doing out-
put to a slow printer both with a normal write state-
ment, and then using the interrupt structure of the
computer. To make even more evident what is hap-
pening, we will not use the automatic mechanism pro-
vided by the transfer (tfr) statement, but will simulate its
operation using the direct-register access capability
discussed in Section 1IA3.

Assume that we have a slow printing device that
operates at 30 characters per second, and that we wish

to send to it an 80 character string to be printed. If we
were to do this with the simple write statement, * wrt
6, A% 7, it would take approximately 2.67 seconds for
the write statement to complete. During this time, we
could have executed hundreds of program lines and
accomplished a considerable amount of useful work.

In Section 11A4 we looked at how the wti statement
could be used to simulate the operation of the wtb
statement in sending a single character to an output
device. It was mentioned that if several characters were
to be sent, it would be necessary to wait for the flag

line on the interface to indicate ready before sending
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each character. If we wanted to do other useful work
while waiting for the flag line to come ready, and we
did not have interrupt available, we could simulate the
interrupt process by the following scheme. We first pro-
vide a subroutine that will output A$ one character at a
time each time it is called.

“send”: if I > len(A$); ret
wtb 6, A$[1,1]
[+1—=1 ret

The value of the pointer into the string, 1, is initially set
to 1. Each time the routine is called, the character in
the string that is pointed to by I is sent, and the
pointer, 1, is incremented for the next time the routine
is called. Also, if all characters in A$ have been sent
(i.e., I is greater than the length of the string) the
routine simply returns without sending any more data.
If we now edited the lines in the rest of the program,
so that each one ended with the statements

if iof(6) = 1; gsb “send”

we would have simulated an interrupt capability. That
is, at the end of each line of the rest of the program,
the flag line for select code 6 is tested; and if it has
come ready, we execute a subroutine call to the “send”
routine to output one more character. Although this
would work, it is not a very attractive solution. What
we would much prefer is not to have to test the flag
line, but rather to have the interface inform the com-
puter when the flag line again indicated ready. We
would also rather have the branch to the subroutine be
automatic; that is, we would like to tell the computer
once where to go when the flag line indicated ready,
rather than at the end of each line. The on-interrupt
(oni) and enable-interrupt (eir) statements do just that.
The following program would accomplish the same task
as in the previous example.

10 1 —>1

11: oni 6, “'send”

12: eir6

87 ‘“send”: witb 6, A${l.I]

88: |+ 1 —>1;if I < len(A$); eir 6
89: iret

The “oni” statement in line 11 essentially says “if an in-
terrupt should come in from select code 6, branch to
the routine labeled “send” ”. Notice that this operation
is entirely local to the program and involves no com-
munication with the interface card. It is the “eir” state-
ment in line 12 that informs the interface about what is
happening. This statement may be read as “any time
your flag line indicates ready, generate an interrupt re-
quest.”

From this point, the sequence of events would be as
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follows. Most probably, at the time line 12 is executed
the interface is ready, since we have not yet done
anything to cause it to go busy. Therefore, as soon as
the “eir” statement is executed, the card will generate
an interrupt. This will cause the program to branch to
the “send” routine which outputs the first character of
A$, which also makes the card go busy. It is important
to note that each time an “eir” statement is executed, it
enables the interface for one interrupt. When this inter-
rupt occurs, the I/O ROM automatically disables the
card for further interrupts, thus preventing it from trying
to interrupt again until its first interrupt has been serv-
iced. Since we want another interrupt after the current
character is finished processing by the peripheral, line
88 reenables the card for interrupts. The interrupt
return statement in line 89 causes the program to
branch back to the line it would have executed next if
the interrupt had not occured.

The rest of the program (lines 13 through 86) con-
tinues to execute while the peripheral is busy process-
ing the current character. At some point in time, it will
finish that processing and indicate (via the flag line) that
it is ready for more data. Since we have again enabled
the card to interrupt on that condition, it will generate
an interrupt to the computer. This time, however, the
computer will probably be in the middle of executing
some line from the main program. If it were to im-
mediately branch to the “send” routine, the operations
performed there would use the internal “scratch-pad”
registers and make it impossible to finish the interrupted
line correctly. So instead, the /O ROM merely makes
a note of the fact that an interrupt from select code 6
has occured, disables the interface so that it does not
keep trying to interrupt, and then allows the current
program line to complete its execution. When the end
of the line is reached and the scratch-pad registers are
free, it then causes a branch to the service routine in-
dicated by the “oni” statement. This sequence con-
tinues until the “send” routine outputs the last character
in A$, at which time line 88 detects that there is no
more data to send and as a result does not execute the
“eir” statement. As before, line 89 returns control to
the main program. But this time when the flag line
again indicates ready, the interface has not been re-
enabled and does not generate an interrupt, since the
data transfer process is completed.

Although this program is much simpler than the
previous method described, it still requires the users
program to handle each character, keeping track of the
pointer to the next character to be sent and enabling
the interrupts at the proper time. It should be possible
to make this process still more automatic and
transparent to the user. This further transparency is
provided by the transfer (tfr) statement.

The printer we have been considering in our example is
classified as a slow device because it requires about 33




miliseconds of wait time between characters. If this
printer had some read / write memory built into it, it
could then accept characters at a much faster rate, place
them in that memory (called a data buffer), and then
fetch them from the buffer and print them in the order
that they were received. For short bursts of data, this
slow printer with a built-in buffer would appear to be a
medium speed device. Although the printer would not
print the characters any faster, it can accept an entire
line of data very quickly, and then process it out of its
storage buffer at its normal printing speed. The figure
below shows a schematic representation of this process.

Computer " ““Medium-speed’’ Printer
internal w >
data Buffer 4= Slow Printer
Figure 11-4

If a slow printer does not have its own built-in buffer, it
can still be made to look like a medium-speed device
by allowing it to use some of the computer’s memory
as its data bulffer.

Computer |wtb tfr
internal Buffer = S_Iow
data printer

¥
Computer memory
Figure II-5

Using this scheme, the data to be output would be writ-
ten to the buffer, just as though this buffer memory
were contained in the peripheral itself. The transfer
statement” is then used to send the data in the buffer
to the device at the printer’'s own speed using the inter-
rupt capability. This transfer process is entirely
automatic and handled totally by the [/O ROM. The
program to accomplish this is given below.*

10:  buf “‘out”’, 100, 1
11: witb “out”, A$
12:  tfr “out’’, 6

Line 10 says that we want to set up a buffer to be
referenced by the name “out”, and that it should be
large enough to hold up to 100 characters. The last
parameter in the “buf” statement specifies the buffer
type which is discussed in the next section. This buffer
statement”* is similar to the dimension (dim) statement
since it allocates memory for a buffer in the same way
the dimension statement allocates memory for strings
and numeric arrays. Once the buffer is established, line
11 simply outputs to the buffer as though it were a
peripheral, using the name of the buffer in place of the

*See the 9825A Extended I/0 ROM manual for a complete description of the
syntax for the “buf” and “tfr” statements.
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select code parameter. Since this data has simply been
moved to the buffer and not yet sent to the peripheral,
this operation happens very quickly and does not de-
pend on the speed of the peripheral device. In this ex-
ample, we place the contents of A$ into the buffer. In
general, we could use the write (wrt) statement in con-
junction with a format statement to output string and
numeric data to the buffer. The data in the buffer is not
in the internal representation of the computer, but
represents the exact character sequence that would
have been sent to the peripheral if a buffer were not
being used.

Now that the data is in the buffer, we merely have to
start the process that transfers it to the printer under in-
terrupt. Line 12 specifies that the data in the buffer
called “out” should be transfered to the device on
select code 6. From here, the process is automatic, and
handled entirely by the [/O ROM. Thus, the users pro-
gram is free from having to set up for interupts,
manage the data pointers, and terminate the process
when all the data is sent.

The execution of the transfer statement itself is com-
plete as soon as the first character has been sent. This
means that the rest of the program can continue ex-
ecuting, even though there is still more data in the buf-
fer to be transfered. Each time the peripheral device
comes ready for the next character, the running pro-
gram is momentarily interrupted and another character
is sent by the /O ROM without the need for further
program statements. Also, since this transfer of the
next character can be done by the ROM without using
the scratch-pad registers, it can be done when the in-
terrupt occurs and does not have to wait until the cur-
rent program line is completed. When the last character
has been sent, the ROM automatically disables the in-
terface from further interrupts. As a result, the entire
burden on the user program is simply to set up the buf-
fer, write to it as though it were a peripheral, and in-
itiate the transfer process.

3. Further Data Transfer Examples

We have seen how a buffer and the transfer statement
can be used to output data to a slow device using inter-
rupt. This same buffer transfer mechanism can be used
to input data from a slow device. Before looking at
how this would be done automatically using the
transfer statement, it would be instructive to first write a
program to accomplish the same task using a user-
programmed service routine which will show all of the
steps involved.

10: oni 3, “input”
11: wti 0,3

12: rdid4d—= Z; wti 7,0
13. eir3
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92: “input’: rdi4—>C
93: A$&char(C) >~ A$

94: if C#10; wti 7,0; eir 3
95. iret

Comparing this program to the analogous one for the
output case in Section [IB2, we see that the main dif-
ference is in the method of transfering the individual
characters. In the output “send” routine, each character
was sent using a simple wtb statement. In this program,
however, we cannot use the rdb statement to input
each character, but have to resort to the use of the
direct register access statements. The reason for this
will become clear if we refer back to the individual
register sequences that make up the wtb and rdb
operations (pages 20 and 21). These sequences are
summarized in the following diagram.

wtb
‘ demand data
= wait for ready and trigger
wait for
yes ready
R4 out output dla
R7 out and trigger take data

Figure 11-6

In the output example, when the device came ready
for the next character it set the flag line to indicate
ready which caused the interface to generate an inter-
rupt. The [/O ROM then caused a branch to the
“send” routine which did the wtb operation. Since at
this time the flag line was indicating ready, the wtb
statement did not have to wait and immediately per-
formed the output of the next character.

Looking at the diagram for the rdb function, however,
we see that it must first demand the data, wait for the
data to come ready, and then take in the data. If we
had tried to use the same program as in the “send” ex-
ample, merely replacing the wtb with an rdb, the
following would have happened. The first eir statement
would have caused an immediate branch to the service
routine, since nothing had caused the device to go
busy. The rdb in the service routine would have
demanded the next character and then waited for it to
come ready. Thus, we would loose any advantage of
being able to avoid the wait time through the use of in-
terrupts.

What we would like to do is to demand the next
character and then go away and do other useful work
during the time we would normally be waiting for the
character to come ready. This is what the program

given above accomplishes. Line 10 sets up for a branch
to the “input” service routine whenever an interrupt oc-
curs from select code 3. Line 11 sets up select code 3
as the interface to receive the wti and rdi operations
that will follow. In line 12, we are telling the interface
to demand the next character from the device. Since
we do not know whether the last operation to the card
was an input or an output operation, we first execute
an R4 in so that the wti 7,0 will trigger an input opera-
tion. The data received from this R4 in operation is
whatever was left on the data lines from the last input
from the card, and does not represent useful informa-
tion. Having triggered the input, the interface has now
gone busy and we enable it to interrupt when it again
comes ready. In the meantime, the program in lines 14
through 91 continues execution. The location of the eir
statement in the sequence is very important. It cannot
be executed until we have made the interface go busy;
otherwise an immediate branch to the service routine
would occur.

When the device indicates that the next character is
ready, the interface generates an interrupt to the com-
puter; and at the end of the current program line, the
[/O ROM causes a branch to the “input” service
routine. This routine can now complete the last phase
of the rdb operation which is to take the new character
from the interface using an R4 in operation. In this ex-
ample, we are expecting an ASCII message from the
peripheral device which will be terminated by a line
-feed (LF = decimal 10) character. Thus, the input
routine next converts the byte received into an ASCII
character and concatenates it onto the string A$, which
would have initially been set to a null string. In line 94,
we test the byte just received to see if it was a LF. If
not, we have not yet received the entire message and
so we trigger another input operation (i.e., demand
another character) which again makes the device go
busy, and then enable the interface for another inter-
rupt. Notice that this time the “dummy’ rdi 4 is not re-
quired, since we know that the last R4 operation to the
card was an input. If the character received had been
the LF terminator, the program would not have trig-
gered another data input operation and would not
have enabled the card to interrupt again. In either case,
the iret statement causes the program to branch back to
where it came from in the main program.

Again this example was given to show the steps that
are performed when data is input using interrupt. In
practice, there is no need for the user’s program to
handle each character as it comes in, since the transfer
statement provided by the I/O ROM makes the entire
process automatic. The following program would ac-
complish the same task.

10:  buf “in"’, 100, 1
11: tfr 3, “in”’, 100, 10

92: red “in”, A$




Line 10 says that we want to set up a buffer to be
referenced by the name “in”, and that it should be
large enough to hold up to 100 characters. (The buffer-
type parameter, 1, will be discussed in the next sec-
tion.} Line 11 specifies that data should be transfered
from select code 3 to the “in” buffer until 100
characters or a line-feed (decimal value 10) is received.
From this point, the entire process is automatically
handled by the /0O ROM, and the program from line
12 is free to continue execution while the buffer is be-
ing filled. Once the transfer into the buffer is com-
pleted, line 92 reads the data out of the buffer and into
the string A$ where it can be used by the rest of the
program. Notice that this read statement is the same as
would be used to read from the peripheral directly

( red 3, A% ) with the select code replaced by the
name of the buffer. But since all of the data is in the
buffer, this read statement completes very quickly and
the execution time does not depend on the slow speed
of the peripheral.

The only question remaining is, how do | know when
the transfer is complete so that | can execute the read
statement? This can be accomplished in one of two
ways. The first makes use of the read-status operation
which is normally used to read the status byte of an in-
terface card. When the read status function is applied
to a buffer (in this case, rds(*in”) ) the value returned is
equal to the number of characters currently in the buf-
fer, or it is a minus one if the buffer is busy with a
transfer operation. Thus the program could periodically
test the status of the buffer and when it is no longer a
—1, it knows that the transfer is complete.

The second, and usually more convenient method,
makes use of the “oni” capability. This is demonstrated
in the following program.

9. oni 3, ‘“‘tfr done”
10: buf ““in”’, 100, 1
11: tfr 3, “in’’, 100, 10

“tfr done’”:

92: red “in"’, A$
93:
: (lines to process A$)
94: if'(test condition); tfr 3, *‘in’’, 100, 10
95. iret

In this program, we use the oni statement to set up for
a branch to a service routine called “tfr done”. This is
similar to the oni branch to the “input” routine in the
previous example except that instead of branching to
the service routine each time the next character is
ready, the branch to the “tfr done” routine takes place

26

only when the entire input operation specified by the
transfer statement is complete. In other words, using
the “eir” statement, the service routine is called when
the interface indicates ready; using the “tfr”, the service
routine is called when the transfer is complete. Thus,
the “oni” statement does not always cause a branch to
the service routine when an interrupt occurs, since the
I/0 ROM automatically handles the interrupts
associated with the transfer process.

4.Data Transfers with Fast Devices

In the last two sections we saw how the use of the in-
terrupt structure could allow a program to do other
useful work while waiting for a slow peripheral device
to come ready to send or receive the next character of
a data message. The problems encountered in dealing
with very fast devices are of an entirely different
nature, and will be discussed in this section.

Fast peripheral devices may be classified into two
categories:  those that are capable of operating at less
than their maximum speeds, and those that are not.
The former class of devices are sometimes called asyn-
chronous or non-periodic devices, and can deliver data
on request from the computer. The latter class of
devices are called synchronous or periodic devices,
since their data transfer rate is synchronized to some
external timing mechanism over which the computer
has no control. An example of such a device would be
a magnetic tape reader. To operate properly, the tape
must move by the reading head at a constant velocity,
and the device is not capable of starting and stopping
within a block of recorded data at the command of the
computer.

Whether a device is classified as medium-speed or
high-speed may also depend not on the device itself,
but on the application. For example, we might have a
digital voltmeter (DVM) that is capable of taking
readings at the rate of 5000 readings per second. This
DVM is not synchronized to any external clock, but
simply delivers a reading each time the computer asks
for one. The fastest way to read and process data from
this device would be to use a simple read statement! In-
terrupt would be of no use, since its primary intent is to
avoid the wait time associated with slow devices. But
this device is sufficiently fast that the computer spends
litle or no time waiting for it to come ready. But what

if, on the other hand, we are trying to take
measurements of a fast event (for example, measuring
camera shutter speeds or rate constants of chemical
reactions) whose duration is only a fraction of a
second? What if the situation requires that many
readings be taken in a very short period of time, and
this transfer rate is faster than the natural speed of the
read statement?
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The read statement is required to perform several func-
tions which include gathering the raw data (the byte or
word sequence exactly as it comes from the device),
doing any specified conversions and formatting, putting
the data into the internal machine representation, and
locating the destination variable for final storage. All of
these are time-consuming operations and contribute to
determining the “natural input speed” of the read
statements. If only the raw data could be gathered and
the processing put off until a later time, the actual data
collecting process could proceed at a much faster rate.
This is the principle behind the fast read/write and the
direct memory access (DMA) modes of operation.

Input and output using these modes of operation is
very similar to I/O using interrupt buffers as described
in previous sections. For output, the data is first placed
in the buffer using the wrt or wtb statements; the tfr
statement then initiates the output of the data in the
buffer to the device. For input, the tfr statement is used
to gather the raw data into the buffer, and then normal
red and rdb operations are used to read the data from
the buffer. The transfer process is automatic and handl-
ed entirely by the I/0 ROM. A third parameter in the
“buf” statement which sets up the original buffer tells
the /O ROM which method of transfer is to be used.
The table below gives the five buffer types and their
meanings.

Buffer Types Words Bytes
Interrupt Type O Type 1
Fast Read/Write Type 2 Type 3
DMA Type 4 -

Figure 11-7

In the examples used in the previous sections, we
always specified a type 1 buffer. This informed the 1/O
ROM that we were transfering 8-bit bytes (ASCII
characters) and that each byte was to be sent or re-
ceived using interrupt. Thus, by simply specifying a
single type value in the buffer statement, the [/O ROM
knows which of the three modes of transfer to use
when a transfer statement is executed, and whether the
data should be sent and received 8 bits at a time
(bytes) or 16 bits at a time (words). All three modes
are identical with respect to the way they are used in
the program. The only distinction is the method that
the /O ROM will use when transfering data between
the buffer and the peripheral device.

We have already seen how this transfer is accom-
plished in the case of an interrupt buffer, since we
wrote programs to simulate the transfer statement using
interrupt. The fast read transfer operates as follows. In-
itially it is just like an interrupt transfer. A buffer is set
up (specifying type 2 or 3) and a transfer statement is

executed. As before, the [/O ROM demands the first
data item from the device and enables the interface to
interrupt when it is ready. The rest of the program then
continues while waiting for the interrupt. Up to this
point there is no difference between an interrupt
transfer and a fast read. But once the first data item is
ready, the [/O ROM stays in a tight loop of machine
language code and gathers the subsequent data items
as fast as it can. The processor stays in this tight loop
until the transfer is completed. During this time, no
lines of high-level (HPL) program are being executed,
and no other interrupts from other interfaces will be
acknowledged. In essence, the computer has dedicated
itself to the data transfer process to obtain maximum
speed. Once the transfer operation is complete, the
computer resumes normal operation. If the program
had executed an “oni” statement for this select code, a
branch to the specified service routine will be per-
formed when the end of the current line of the pro-
gram is reached. As in the case of an interrupt transfer,
this informs the program that the transfer is complete
and allows it to read the information out of the buffer
and process it.

For extremely high-speed requirements, the 98032A
16-Bit Parallel Interface offers an even faster transfer
mode known as DMA, or direct memory access. This
mode always transfers 16-bit data items. As a result,
there is no buffer type 5 (DMA/Byte buffer). A
DMA/Word buffer (type 4) is used in the same way as
interrupt and fast read/write buffers. During the actual
transfer process, however, each time the device is
ready for the next data item the interface interrupts on
a special DMA Request line. The next item is
transfered into or out of the buffer by the processor
itself, and not even the I/0O ROM is involved in this
process. The fact that the processor itself handles the
data transfer is the source of the speed of the DMA
operation. Some lack of versatility, however, is the
price paid for this speed. The processor can only sup-
port 16-bit transfers, and only buffers of a known size
can be used. As a result, when filling a DMA buffer
from a device the program cannot specify a terminating
character. The processor must be told exactly how
many words to transfer.

5. User Programmed Service
Routines

The tasks that a computer performs in which interrupts
may be useful fall into two major categories: data
transfers and everything else. The task of sending or
receiving data is usually a well-defined process that can
be specified by a small number of parameters; namely,
how much data there is, where it is located, and the
type of transfer to be performed (i.e., interrupt, fast
read/write, or DMA).




If the interrupt is for a purpose other than simple data
transfer, the scope of the tasks to be performed is so
large and varied that it would be extremely difficult to
provide pre-programmed (i.e., ROM) service routines
to handle even a small portion of these tasks. As a
result, provisions were made to allow the user to write
the service routines required, using the same high-level
language in which the rest of the program is written.
Thus the service routines can perform any operations
and execute any statements that can be done in the
background (non service routine) segments of the pro-
gram.

Most of the interface cards only have one interrupting
condition, and that is when the flag line indicates that
the peripheral device is ready for another operation.
Since this flag line is usually used in conjunction with
data input and output, the associated user-written ser-
vice routines are then used to specify what action is to
be taken when a data transfer operation has com-
pleted. An example of this type of service routine was
given in Section 1IB3.

As a further example, consider a computer with a
digitizer and a plotter attached. Each time a point is
entered through the digitizer, we would like this point
to be plotted, thus giving a hardcopy record of the
points that were entered. In the meantime (i.e., while
the program is waiting for the next point to be digitized)
we would like the program to be performing some kind
of analysis on the points that have been entered. The
following program is an example of how that task could
be performed using interrupt and a user-written service
routine.

4. dim X[500], Y[500]
5. buf “dig”, 14,1
6: oni 4, ‘‘new point”
7. @— N
8. tfr 4, “dig”
85 “new point”: red “'dig’, X, Y
86: tfr 4, dig’”’; plt XY
87: X = X[N+1—=N]J; Y = Y[N]
88: iret

In this program we dimension the X and Y arrays to
hold up to 500 pairs of X,Y coordinates. A buffer
called “dig” is set up to be 14 characters long and to be
a type 1 (interrupt, byte) buffer. Having specified the
location of our service routine as “new point” and in-
itialized a counter, N, to zero, we then start a transfer
operation from the digitizer (SC=4) to the buffer. Since
we know that the digitizer always delivers its readings
as a 14-character ASCII sequence (xXX XX +YY.YY
LF) it is not necessary to specify any terminating condi-
tions in the tfr statement. When an input buffer fills,
this will also serve to terminate the transfer.
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Each time a new point is digitized, the buffer transfer
completes and a branch to the service routine is made.
In this case, the service routine reads the X and Y
values out of the buffer and immediately starts another
transfer operation in order to be ready to receive the
next point as quickly as possible. Before leaving the
service routine, the values just read are placed in the
next available position in the X and Y arrays as in-
dicated by the pointer N. Lines 9 through 84 of the
program would contain statements to perform the
desired analysis of the digitized points, using the value
of N to determine how many values in the X and Y ar-
rays represented valid data.

Some applications may require the use of interrupt and
a user-written service routine that has nothing to do
with data input/output. For example, the computer
might be connected to a remote temperature sensing
device in a chemical processing operation. Normally,
the computer is performing routine control functions
throughout the rest of the system. But if the
temperature in a critical location becomes too high, the
sensing device would like to interrupt and have the
computer make the necessary adjustments. Assume
that the sensing device has an output line that is in one
state when the temperature is normal, and goes to the
other state when the temperature exceeds the normal
operating range. This line could be connected to the
flag line of the interface and the logic level jumper set
to indicate busy in the normal range, and ready outside
of this range. The following program would then be
used.

10: oni 2, “'too hot”
11:. eir2
93: “.too hot’’:
(program to adjust the temperature)
98: iret

In the previous examples, the branch to the service
routine was caused by the completion of a tfr state-
ment. In this case, the statement in line 11 specifies
that interrupt should be enabled on select code 2 (the
temperature sensor). Initially the temperature is within
range and the flag line on the interface indicates “busy”
or a zero. If the temperature goes out of range, we
have wired the interface and sensor in such a way that
the flag line will indicate “ready” or a one. This will
cause the interface to interrupt the processor. The 1/0
ROM will detect this interrupt and cause a branch to
the “too hot” service routine.

In the previous examples of data transfer operations,

we did not use the enable-interrupt statement, since the

transfer statement automatically enables and disables
interrupts from the interface at the proper times in the
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data transfer sequence. Normally, a program would
use either a “tfr” or an “eir” statement for a given

select code, but not both. (For an exception, see Sec-
tion IIIE5.)

It is important to notice that it is the computer and not
the peripheral device that initiates an interrupt process.
The program must first establish a service routine, and
then enable the interface to interrupt. When the actual
interrupt is generated, it is merely signaling the comple-
tion of the process that was started by the computer. In
the case of data transfer, the interrupt indicates that the
last item sent or received is completed, and that the
device is ready for another one. In the case of service
routines which are accessed through the “eir” state-
ment, the interrupt indicates that the condition which
was specified as an interrupting condition has occured.
Unless the computer has initiated the entire interrupt
process, it will have no idea what to do when the inter-
rupt is received. Thus, one should never think in terms
of a peripheral device issuing an interrupt independent-
ly of the program which is controling that device.

6. Interrupt Priorities

Up until now, we have discussed interrupts from one
interface at a time. When more than one interface is
operating under interrupt, it is possible that two or
more of these interfaces might generate interrupts at
the same time. In this case a system of priorities must
be established that will determine the order in which
the service routines are performed.

Before discussing the rules that determine these
priorities, it is important to have a clear picture of the
various operations that use interrupt, and the parts of
the system that handle each of these operations.

Peripheral | PFLG

Device

Interface
Card

Processor

ROM Branch

110 ROM

Service Routine Branch

HPL
Program

Figure 11-8

As mentioned in the last section, the peripheral device
does not itself generate any interrupts to the computer.
It merely indicates to the interface card on the
peripheral-flag (PFLG) line that it is ready for more
data or that a condition wired into the PFLG line is
true. It is up to the interface to translate this signal into
an interrupt if it has been enabled to do so by the pro-
gram using an “eir” or a “tfr” statement. Let us follow
the sequence of events that occur in each of the four
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possible cases: eir, interrupt buffer, fast read/write
buffer, and DMA buffer.

If a service routine has been set up (using the “oni”
statement) and an “eir’ statement is executed, this
enables the interface to generate an interrupt request
whenever the PFLG line indicates true. The processor
is normally executing machine language (also called
assembly language) instructions which are carrying out
the operations specified by the lines of the user’'s HPL
program. When this interrupt is received, the processor
suspends execution of the machine code sequence it
was in, and branches to another block of machine code
in the [/O ROM called the ROM service routine. This
ROM service routine must decide whether or not a
transfer is in progress with the interface that generated
the interrupt. In this case it is not, so the ROM merely
logs in the fact that the interrupt occured and allows
the processor to resume execution of the code it was
working on before the interrupt came in. It also disables
the interface so that it will not continue interrupting,

since the interrupt has been noted and logged in.
When the end of the current line of the user’s program
is reached, the [/O ROM is again given control by the
processor. At this time it detects that the interrupt has
been logged in, and so it forces a branch to the user’s
service routine. Notice that all that took place at the
time of the interrupt was the log-in procedure, and that
this happened immediately. The branch to the user’s
service routine happened later, and was the result of
that select code having logged an interrupt and the end
of the current program line being reached.

When a transfer statement is executed using an inter-
rupt buffer (type O or 1) the [/O ROM starts the first
data item transfer and enables the interface to interrupt
when the PFLG line again indicates ready. The pro-
cessor is then allowed to continue execution of the pro-
gram. Each time the device becomes ready, the inter-
face generates another interrupt to the processor. The
processor branches to the ROM’s machine language
service routine which detects that a transfer is in prog-
ress, and sends or requests the next data item. When
the transfer is complete, the 1/0O ROM loocks to see if
an “oni” statement has been executed for this select
code. If it has, the ROM logs in an end-of-line branch
request, just as in the previous “eir” case; and at the
end of the current line of the user’s program, a branch
to the user’s service routine is forced.

A fast read/write transfer operates in the same way,
except that after the interrupt on the first data item, the
ROM does not return control to the processor but
keeps control until the entire buffer is transferred. Dur-
ing this time, the processor is not executing any of the
user’s program and is not acknowledging any other in-
terrupt requests from other interface cards. The
machine is essentially dedicated to the transfer process.
When the transfer is complete, a request to branch to



the user’s service routine is logged in if an “oni” state-
ment was executed previously, and control is returned
to the processor.

In the final case of a DMA transfer, the situation is
somewhat different. When the transfer statement is ex-
ecuted, the [/O ROM first requests that the processor
grant it use of the DMA resource. Since there is only
one DMA channel, if it is already in use, the I/O ROM
must wait until it is free. When the DMA channel is
granted, the [/O ROM informs the processor which in-
terface will now use it, what area of memory is to be
used, whether an input or output operation is to be
performed, and how many words are to be transfered.
The ROM then enables the interface for a DMA
transfer and returns control to the processor. Now each
time the peripheral device comes ready, the interface
does not generate an interrupt but reponds on a special
DMA request line (DMAR). This line causes the pro-
cessor to send or receive one more word of data using
the area of memory previously specified by the [/O
ROM. These data transfers are handled entirely by the
processor and the 1/0O ROM is not involved. When the
transfer is complete, the processor informs the interface
card of this fact, and the interface then generates a
normal interrupt. This time the ROM service routine is
called giving it a chance to log in an end-of-line branch
request if an “oni” statement has been executed for this
select code.

Thus, there are two kinds of interrupts: a true inter-
rupt generated by the interface to the processor and
serviced by the [/ O ROM, and a pseudo-interrupt
generated by the [/O ROM at the end of a program
line to force a branch to the user’s service routine. We
often speak of “generating an interrupt to the user’s
service routine”, although in reality this is not a true in-
terrupt but merely a program branch. This distinction is
important since the two types of interrupt are complete-
ly independent of each other in the matter of interrupt
priorities.

We will first look at the priorities for the true (interface
generated) interrupts. This type of interrupt is also
called hardware interrupt. These interrupts are assigned
two levels of priority according to the select code of the
interface that generates them. Select codes 0 through 7
are assigned a low level priority, and select codes 8
through 15 are given a high level priority. These levels
are also called 1 (low) and 2 (high). We can also think
of the processor as operating on a given level at any
time. If it is executing machine code to carry out lines
of the user’s program, we say that it is operating at
level zero. When a low level interrupt comes in and the
I/0O ROM is in a machine-language service routine
(i.e., transfering data or logging in an end-of-line
branch request) the computer is operating at level 1. If
the I/O ROM is in a machine-language service routine
for a high-level interface, the computer is operating at
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level 2. Thus, each interface has a priority level (1 or
2) depending on its select code, and the computer is in
a certain state (0, 1, or 2) depending on whether it is
executing the user’s program lines or an 1/O ROM ser-
vice routine. We can now state the rule for hardware
interrupts as follows: A hardware interrupt request will
be granted by the processor if the level of the interrupt
is greater than the current state of the computer. If the
interrupt level is less than or equal to the current state,
the interrupt will not be granted until the state becomes
less than the interrupt level. Stated in other words, a
low level interrupt has priority over the user’s program,
but not over a high level or another low level service
routine. A high level interrupt has priority over
everything except another high level service routine.

Completely independent of this priority scheme for
hardware interrupts, there is a set of priorities for
branches to user service-routines, or software inter-
rupts. This scheme was designed to parallel the priority
scheme used for hardware interrupts. Again we can
define a low level (level 1) end-of-line branch request
as one whose destination is a user service routine for
select codes 2 through 7. (Note that select codes 0 and
1 are for internal devices and cannot have user service
routines.) A high level (level 2) branch is associated
with select codes 8 through 15. We can also define the
program state as 0 (not in a user written service
routine), 1 (executing lines in a low level user service
routine) or 2 {in a high level user service routine). At
the end of each line of the program, if an end-of-line
branch is logged in whose level is higher than the cur-
rent program state, a branch to that service routine will
be performed. Otherwise, program line branching will
continue normally. If at the end of a program line, two
or more branches are logged in on the same level, and
that level is higher than the current program state, the
one corresponding to the higher select code will have
its user service routine executed first.

As an example, assume that the program is executing a
user service routine for select code 3. During one line
of this routine, select code 9 logs in for end-of-line
service, followed by select code 12. When the end of
the current line is reached, control will be given to the
service routine for select code 12. Notice that even
though 9 logged in before 12, both branches were
pending by the time the end of the line was reached
and the one with the higher select code got service
first. Thus two branch requests logged in during the
same line of the program are considered to have come
in simultaneously. When the “iret” statement for service
routine 12 is encountered, the program drops from
state 2 back to state 1. Since a level 2 branch for select
code 9 is still pending, it will get service next.

Now, let's say that while service routine 9 is executing, |
an end-of-line branch is logged in for select code 6.
When service routine 9 executes its “iret” statement,
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the program state again drops from 2 to 1. We still
have to finish the service routine for 3 and do the ser-
vice routine for 6. Even though 6 is a higher select
code than 3, we will finish the service routine for 3
before branching to the service routine for 6. This is
because 6 has a level 1 priority and the program is in
state 1 (or higher) until service routine 3 executes its
“iret” statement.

During all of this processing of user written service
routines, if true (hardware) interrupts had occured they
would have been serviced by ROM service routines
according to the set of hardware priorities, in-
dependently of what user level service routines were in
progress. That is, all lines of the user’s program
(background job, low level and high level user service
routines) are the same as far as determining the pro-
cessor state is concerned. Alternatively, we may say
that hardware interrupts have priority over all levels of
software interrupt.

C. Special Programming
Topics
1. Formatting the Internal Printer
and Display

Normally, all output to the 9825’s internal strip printer
is done using the print (prt) statement, and the internal
32-character LED display is accessed through the
display (dsp) statement. While these two statements are
sufficient for most applications, they provide minimal
flexibility in formatting the output data.

For this reason, provision was made in the General
I/0 ROM for writing to the internal printer and display
as though they were external devices using the stan-
dard write (wrt) statement. This also allows reference to
a format statement for complete format control of the
output data.

Physically, both devices are on select code zero and
are distinguished by whether the data is output through
the R4 or the R6 interface register. (For more details,
see Appendices). For user convenience, the |/ O ROM
allows them to be addressed as select code O for the
display and select code 16 for the printer. Thus a
statement ‘‘wrt O, . . . . " would send the data to the
display and a statement “wrt 16, .. . .” would send
data to the printer. In reality, there is no select code 16;
but when the |/ O ROM sees this select code, it under-
stands that the data is to be sent to the strip printer.

Because data for the internal printer and display is buf-
fered inside the 9825, they do not always behave in
the same way one would expect external peripherals to
behave. In particular, this unexpected behavior occurs
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whenever a line to be printed or displayed is built up in
pieces. For example, assume that a calendar date is
entered as 6.16 and | want to print it as “June 16”. If 1
were sending it to a peripheral printer I could use the

program: (where X = 6.16, the date)
10:  int(X)>M, 100frac(X)—=D
11: if M=1; wtb 6, “‘January’’;gto 23
12: if M=2;, wib 6, ‘February’’; gto 23
22: IF M=12; wib 6, “December”
23. wrt6, D

One of the wtb statements in lines 11 through 22 is ex-
ecuted, based on the value of the month, M. But since
the wtb statement does not automatically issue a
CR/LF, the entire line is not printed until the wrt state-
ment on line 23 is executed. Then the date “June 16”
is printed. If the printer were a typewriter-like device
(e.g., the 9871 Printer) the user would see the month
name printed when the wtb statement was executed,
and the day number printed when line 23 was en-
countered. If the printer were a line-printing device
(e.g., the 9866 Printer) which accepts and buffers
characters received until a line-feed is received, and
then prints the entire line at once, no output would be
seen until line 23 is executed.

If in this same program the select code were changed
from 6 to 16 (the internal strip printer), only the “16”
would be printed and the “June” would not be! Even
more mysterious, if | executed the statement *“ wtb 16,
“HELLO” ” from a program, nothing appears on the
strip printer. And if [ execute the same statement from
the keyboard, the message “HELLO” appears not on
the printer but on the display!

All of these results are easily understood if we look at
how data is sent to the internal printer and display.
Part of the 9825’s memory is set aside as a buffer for
both the printer and the display. A dsp statement puts
the data into this buffer and then sends it to the
display, while a prt statement puts the data in the same
buffer and then sends it to the printer. In the same
manner, a wrt or wtb to select codes 0 or 16 also puts
the data in this buffer and only when a LF character is
sent is this data routed to the printer or the display,
depending on whether the select code was 0 or 16.
Each time a wrt or witb statement is executed, it does
not know whether the data in the buffer is “current”
data, or merely something left over from a previous prt
or dsp statement; so it starts at the beginning of the
buffer. Thus, in the first example, the wrt statement in
line 23 destroys the previous information (i.e., “June”)
that was in the buffer, and only the 16 is printed. In
the second example, the wtb 16, “HELLO” never
generated a LF and so the buffer was never sent to the




printer. This is also the case when the same statement
was executed from the keyboard. This same buffer,
however, is also used to display calculated results, and
is automatically displayed after each line is executed
from the keyboard. For example, if [ type in “2+2” and
press the execute key, the result of 4 is placed in this
buffer and then displayed. Thus, when I executed the
wtb 16, “HELLO”, there was no LF to cause it to be
sent to the printer, but the data was still in the buffer
and automatically displayed after the statement execu-
tion.

The practical result of this, then, is that each line to be
displayed or printed on the internal devices must be
generated entirely by a single wrt or wtb statement.
And if the wtb statement is used, a LF character
(decimal value 10) must be included. In the above ex-
ample, using the statement

wtb 16, “HELLO”, 10

would have produced the expected result.

2. Interface ID and Card Types

Each of the HP 98030 series of interface cards has
unique characteristics suited for the needs which they
were designed to satisfy. As a result, even though they
can all be described by the same register model as
presented in an earlier section, the specific use of these
registers and the order in which they are addressed will
differ from one card to the next. For example, when
data is read into a buffer under interrupt, the exact se-
quence of R-register operations will differ slightly
depending upon whether the data is coming through a
98032 GPIO card or a 98034 HP-IB card. For this
reason, the input driver (i.e., ROM instructions for
reading from the interface) must be able to distinguish
among the various interface types.

In order to do this, two bits of the status byte (R5-in)
have been assigned as identifier or ID bits. These are
bits 5 and 4 of the status byte and have the following
meaning.

Iard ID Bits

Type 5 4 Interface Card Type
0 0 None(no interface on this select code)
1 0 1 Serial 1/0 Interface (98036)
2 1 0 GenPurposeCard(98032,98033,98035)
3 1 1 HP-IB Interface (98034)

Figure 11-9

As the table shows, most interface cards are type 2 and
all use the same protocol or register access sequence.
The HP-IB interface is different and requires a special
protocol that allows it to perform the wide variety of

bus functions. Although the Serial 1/0 card is func-
tionally the same as the type 2 cards, giving it a unique
interface ID type allows it to be distinguished from the
others. This makes it possible for the Systems Program-
ming ROM to “find” the Serial [/O card during the
power-on operation and consequently to “wake up”
with a remote keyboard on that interface enabled. (The
Systems Programming ROM Operating Manual
discusses remote keyboard operation.)

If the ID bits are both zero, this identifies a so-called
empty slot; that is, there is no interface set to the
specified select code. This means that all properly-
operating interface cards of the 98030 series will never
return a value of zero for the status byte since at least
one bit of the status byte is always a one.

3. Using Strings as Buffers

As explained in the 9825 Extended /O ROM manual,
strings may be used as buffers. This feature was provid-
ed primarily to allow buffers to be filled from an exter-
nal device, recorded on tape or disc, and then reload-
ed at some later time for processing. This procedure is
used when the data gathering must be done as quickly
as possible, and the processing can be done at a later
time.

Since the string variable and the buffer share the same
data area, this also offers the user two means of ac-
cessing the data; one through the normal buffer opera-
tions (red, wrt, and tfr), and another through the string
manipulation operations. These two methods of access
are, however, entirely independent of one another,
and confusion can result unless the user understands
the operations of each mode of access.

To use a specific example, we will execute the dimen-
sion statement “ dim A$[100] . Figure 1I-10 shows the
internal representation of this string in the data value
area of the memory, which consists of two parts. The
string data area itself is a block of 50 words (one word
= 16 bits, or two bytes), each of which can store two
characters of the string. In addition, the dimension
statement sets aside a “string organization data” area
consisting of four* words. This organization area
includes the number of words used by the string
(SIZE), the dimensioned length of the string (DLEN),
and the current length (CLEN) or the number of
characters actually being used at any given time. In our
example, SIZE = 54 words, DLEN = 100 characters,
and CLEN = 0 since we have not yet assigned any
characters to the string.

*These ID bits are contained in the R5-in register which is not the register
through which HP-IB status bytes are received. As a result, the user will not see
the ID bits for the HP-IB card when the rds function is executed. See the
description of the HP-IB card for more details.

*For string arrays this area is greater than four words. Only simple (i.e., one-
dimensional} strings. however, can be used as buffers.
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If we now execute the statement “ buf “data”, A$, 17,
we are specifying that we want to set up a buffer to be
referenced by the name “data”, that it is to use the
same memory location as the string A$, and that it is
to be a byte/interrupt buffer. (See the 9825 Extended
1/0O ROM manual for buffer types.)

To use this area as a buffer also requires an area for
organization data to contain such information as the
buffer type, fill and empty pointers, current buffer size,
etc. This area could be placed in another part of the
memory; but then if the string/buffer were recorded
and reloaded at a later time, this information would be
lost. Therefore, when the “buf” statement is executed,
8 words (16 bytes) are taken off the end of the string
data area and converted into an area for buffer organ-
ization data (see Figure II-10). Now when this string/
buffer is recorded, this buffer organization data is
recorded with it. To prevent normal string operations
from overwriting this buffer data area, the original
dimensioned length (DLEN) is shortened by 16
characters when the buf statement is executed. The
current length (CLEN) is also set to the new dimen-

sioned length to allow the user to look at the entire
buffer.

Before “buf” statement After "buf” statement
ORGSATr\Tl'zNAGHON #WORDS — 54 ORGSATr\Tl'z,\‘AGHON #WORDS = 54
DLEN = 100 DLEN = 84
DATA CLEN = 0 DATA CLEN = 84
Ch 1 Ch 2 Ch 1 ch2
Ch3 | Ch4 Ch3 [Cha4
Ch83 | Chs4
BUFFER
ORGANIZATION
cho9 {chioo DATA
A B

Figure 11-10

It is important to realize that no string operations will
modify the counters and pointers in the buffer organiza-
tion area and, after the original setup via the “buf”
statement is complete, no buffer operations will modify
any of the string organization area again. These are
two entirely independent sets of operations!

Some examples will serve to clarify this point. Assume
that we have an empty buffer which is also a string,
and that the current length of that string is also zero.
We now execute and complete a transfer statement
from a peripheral device that places 10 characters in
the buffer. We can verify this by reading the status of
the buffer which returns a value of 10. But if we ask
for the current length of the string, it is still zero. If we
now execute the statement “ “ABCD” —>A$ 7, we will
find that the length of the string is now 4, and the
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status of the buffer is still 10. And we have also re-
placed the first four characters that came in from the
peripheral device by the characters “ABCD”.

Being able to access the same data area as a string or
as a buffer provides considerable power for
manipulating data. And confusion can be avoided by
keeping in mind the structure of the string/buffer as
shown in the figure, along with the fact that the two
sets of operations are independent.

The structure of a string buffer must also be kept in
mind when recording buffers to the cassette. Take, for
example, the following program segment which
transfers data into a string/ buffer and records the
buffer on the cartridge for later processing.

10:  dim A$[1016]
11. buf ““data’’, A, 1

12: oni 3, “‘done’”’
13:  tfr 3, “data”
57: “done”: rcf 7, A$; iret

Since the string, A$, was recorded as a buffer, it must
be reloaded as a buffer. That is, a string must be
dimensioned the same size as in the recording program
(1016 in this example) and declared a buffer of the
same type before an attempt is made to reload the buf-
fer (1df 7, A% ). Because of the structure of the string
and the buffer pointer areas, any other method of at-
tempting to reload the string/buffer will result in an er-
ror.

4. Buffer Use Outside of the I/O
Process

Although the intended use of buffers is primarily for
transfers to and from peripheral devices, they may also
be used for non-1/O programming operations that
would otherwise be more difficult or impossible.

As one example, consider that [ have a list of people’s
names to be sorted alphabetically, and that these
names are contained in a string array N$[100,40],
allowing for 100 names of up to 40 characters each.
The usual sorting algorithm uses a string comparison
operation such as

if NS [J]<N$[I]:...

This “less than” comparison is done on a character-by-
character basis using the ASCII value of each
character. Thus, O’shey would come before Obermann
in the sorted list, and a name like del.oach would be
sorted to the end of the list since in the ASCII set,
lower case letters have higher values than upper case let-




ters. We would like to do a sort based on an ordering
of the ASCII character set of our own choosing. The
sort routine could be modified to do the character-by-
character comparison itself, along with a table of the
preferred character ordering, but this would result in a
lengthy and slow-running program. The following pro-
gram using buffers and the conversion table capability
(see 9825 Extended I/O ROM manual) would ac-
complish the same task much more simply.

10:  buf “‘name’, 42, 1

25: forl=11to 100

26: ctb1 A$; wrt “‘name”’, N$[I]; ctbl
27: red “‘name’’, N§[I]

28: next |

29: gsb *‘sort”

30: forl=110100

31:  wrt “name’”’, N$[i]

32: ctbl A$; red “‘name’’, N$[I]; ctbl
33: nextl

In this program a buffer called “name” is set up as a
byte-type buffer that is 42 characters long. Note that
we could also have used a type 3 buffer (a fast
read/write byte buffer) since we have no intention of
ever transferring the buffer in an 1/O process to a
peripheral. Since each name can be up to 40
characters long, we make the buffer size 42 to allow for
the CR/LF that will be generated automatically by the
wrt statement.

Now, for each name in the array, N$, we turn on a
conversion table, A$, that has previously been set up
to contain the ASCII character set in the proper order
for our particular sorting job. We then write this name
into the buffer, thus mapping each character into some
other character as determined by the conversion table.
Finally, we turn off the conversion table and read the
contents of the buffer back into its original location in
the string array. This is done for each name in the ar-
ray N$. If we were to go in and look at any of the
names in N$ at this point, we would probably not
recognize them since each character has been
transformed into some other character. But these new
characters now have the proper values for correct sort-
ing. After returning from the simple sort routine, we
repeat the same process in reverse to unscramble the
names back to their proper readable form.

It is interesting to note that a similar scheme could be
used for scrambling and unscrambling messages in
order to generate cryptographic ciphers.

Another useful application of buffers is as a simulator of
a peripheral device. For example, assume that | have a
computer service that sends me financial data which
might look like “Loan amount of $25,000 at 8.5% in-

terest”. From this message | would like to extract the
amount and the interest rate. But | am not sure just
what format statement to use to extract those two
values from the entire message. I could try a format
statement and keep calling up the time-share service
until I get it right. Or I could simply write the known
form of the message to a buffer, and then read it back

using read and format statements until I had the correct
format statement. Thus, the buffer can simulate input
from a peripheral device. for the purpose of program
development without actually having to have the
device connected. [ simply pre-load the buffer (using
the wrt statement) with the information the peripheral
would actually send during the read operation.

Other uses of buffers for general programming are
limited only by the imagination of the user.

5. The Use of the Control Register

In the sections dealing with the interface cards
themselves, we will see that the R5 OUT control
register is used to access the programmable capabilities
contained on those cards. For example, the control
register of the 98032A Interface is used (see Section
[IIB1) to reset the card, turn on and off the interrupt,
DMA, and auto-handshake options, and to set and
clear the two user-defined control bits. The HPL
language provides three statements for output to this
control register; namely, the write control (wtc), the
enable interrupt (eir), and the write interface (wti)
statements. Each of these statements has slightly dif-
ferent operational characteristics which will be. discussed
in this section. These characteristics are summarized in
the table below.

STATEMENT ROM MASKED IMMEDIATE SAVED
wic General 1/0 ves yes
eir Extended 1/0 no no yes
wii Extended [/0O no yes

The write-control statement is the only means of ac-
cessing the R5 OUT control register on the interface
without the Extended I/O ROM. Because this register
is used to enable such functions as interrupt and DMA,
a user having only the General I/0O ROM could, using
this statement, accidentally turn on one of these
capabilities and not have the necessary tools (contained
in the Extended [/O ROM) for handling the actions
that would be initiated. For this reason, the byte
specified in the wtc statement to go to the control
register is masked so that bits 7, 6, and 4 (which access
these extended capabilities) are set to zeros. The main
use of the wtc statement is to reset an individual inter-
face card to its power-on state, and to set and clear the
user-defined control bits in non-interrupt types of ap-
plications.
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When the Extended /O ROM is present, the program
may take advantage of the interrupt capability of the in-
terface cards. In this case, the enable interrupt (eir)
statement is used to allow the card to interrupt when it
finishes the last operation and again comes ready. For
example, if we were to do something to make the in-
terface go busy, and then execute the statement “ eir
6 7, the interface on select code 6 would interrupt
(and be sent to the user’s service routine by the I/0O
ROM) when the operation was completed and the card
came ready. Since we did not specify the control byte,
the default value of 128 was used, which set only the
interrupt enable bit (see Figure IlI-4). If we also wanted
bit @ set (CTLQ), we would have used instead

“eir 6, 129 7.

When data buffers are being transferred using the tfr
statement, the eir statement is not normally used. That
is, the I/O ROM automatically takes care of setting and
clearing the interrupt-enable bit at the appropriate times
during the transfer process. To show the difference be-
tween wtc and eir, let’s consider an example where
data is to be read from a peripheral using an interrupt
transfer, and where CTL@ is used to set the peripheral
device into some desired state. That is, if CTLQ is set
the device will operate one way, and if it is clear it will
perform in another manner. Suppose then that we ex-
ecute the statement “wtc 6,1” to set CTL@, which is
the mode we want the device to be in for this particular
application. If we now execute the tfr statement, the
[/O ROM will send a 128 to the control register to
enable interrupt, and as a result the CTL@ bit will be
cleared causing the device to switch to the other mode
of operation, which is not the one we require for this
task. How then do we do the transfer operation
without losing the setting of the CTL@ bit?

The eir statement provides the solution. If we had used
the statement “eir 6,1” to set the CTL@ bit, two things
would have happened. The control byte (1 in this case)
would have gone to the R5 OUT control register, just
as with the wtc statement, and CTLQ would be set. But
in addition, a copy of this control byte would be saved
by the [/O ROM. Then, any time the [/O ROM need-
ed to change the state of the interrupt bits, it would
automatically retain the state of the lower four bits from
the saved value of the last eir statement to that select
code. Thus, the setting of CTL® would remain un-
changed during the entire transfer process.

It is important to note that while the eir statement is
primarily used to enable interrupts, here is a case
where it is not. The “eir 6,1” statement merely set
CTL@ in such a way that it would be retained by the
[/0 ROM, and did not actually enable the card for in-
terrupt.

Another difference between the wtc and the eir
statements involves the time when the control byte is
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sent to the interface. With the wtc statement, the byte
is sent immediately. This is also true for the eir state-
ment if the interface is not busy. If a transfer operation
has begun and not yet completed, and an eir statement
is executed, the control byte will be saved by the I/0O
ROM but not sent to the interface. On completion of
the transfer, when the interrupt bit is cleared, this new
eir byte will be used. For example, consider the follow-
ing program segment.

15: eir 6,1
16: tfir 6, “‘buffer”
17: eir 6.0

In this case, CTL@ would be set and the transfer opera-
tion started. Since the transfer is still in progress during
line 17, the new control byte (zero) is saved but not
sent. As soon as the transfer is completed, CTL is
cleared when the 1/0 ROM puts out the control byte to
disable the interrupt bit.

The wti statement allows the program direct access to
the R5 OUT control register. Its action is immediate, all
bits are accessable, and a copy is not saved by the I/0
ROM. As a result it should be used with extreme cau-
tion since it is capable of upsetting the fine timing se-
quences that go on during interrupt and transfer opera-
tions. This capability is primarily used by the input/out-
put drivers in the I/O ROM and would rarely be used
by an HPL level program.
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Section I I I

9 HP Interface Cards

A. Interfacing and the
Computer 1/0 Bus

In Section II, we discussed the various methods of pro-
gramming for /O operations, and treated the inter-
faces themselves as “black boxes” which could be
described by the register model (R4, R5, R6, and R7).
All input and output operations were described in terms
of sequences of reads and writes between the computer
and the interface registers; and indeed this register
model is sufficient for writing interfacing programs. In
the following sections, we will go into more detail about
the actual structure of the interface cards and how this
register model is implemented. This information will be
helpful in actually connecting peripheral devices to the
interface cards and configuring [/O systems.

Each of the interfaces has its own installation and ser-
vice manual which contains detailed information about
the circuits used, the lines available, and the general
operational characteristics of the card. It is not the in-
tent of this guide to duplicate the information contained
in those manuals, but rather to describe and give ex-
amples of the intended use of the various capabilities
that exist on each card so that the user may under-

stand and make maximum use of these capabilities. This
information should be helpful in deciding which inter-
face card to use in a particular application, and to
recognize which control features of that interface are
best suited to serve the needs of that application.

Of the four interfaces described in the following sec-
tions, the 98032A 16-Bit Parallel Interface is the most
versatile and general purpose. This is the card used to
interface many of the current HP peripherals available
for the desktop computers such as printers, plotters,
tape punches and readers, card readers, and flexible
disc drives. It is also the interface that is used most
often when the user wants to connect his own special-
purpose or customized peripheral into the system. The
versatility of this card allows it to support a wide range
of special requirements in interfacing to such devices.

Many instruments and measuring devices present their
data in a special format called BCD or binary-coded-
decimal. This format is frequently found in digital
voltmeters, multimeters, and other measuring in-
struments. The 98033A BCD Interface was specifically
designed to accept inputs from these devices and to
convert those inputs into a format that can be read by
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the computer. Whenever a device with BCD outputs is
used, this card will usually prove to be the easiest one
to interface with.

The task of interfacing a peripheral device to the com-
puter would be greatly simplified if the use of data and
control lines, logic levels, connector configurations, and
operating protocol were standardized. If a group of
computing controllers and peripheral devices were to
adopt this standard, then these devices would be “plug
to plug” compatible; and the job of interfacing them to
one another would be reduced to simply plugging them
together. The HP-IB (Hewlett-Packard Interface Bus)
provides this kind of compatability. The structure and
the format of the HP-IB has become so popular that
the Institute of Electrical and Electronic Engineers has
adopted it as a standard (IEEE 488-1975) and today
dozens of manufacturers provide hundreds of devices
which are compatible with that standard. The 98034A
HP-IB card is also available to allow HP desktop com-
puters to participate on this standardized bus. The sec-
tion of this guide covering that interface goes into more
detail concerning the intent and the use of the HP-IB.

A fourth broad area of interfacing deals with data com-
munications. This area is used primarily for information
exchange between computers over long distances,
although many applications are found for peripheral
communications (e.g., remote terminals connected to a
central computer) and locai computer networks. The
special requirements of this type of interfacing are
discussed in the section on the 98036A card which
provides HP desktop computers with an access link in-
to the area of data communications.

Before describing each of these four types of interfaces
in detail, we will first look at that portion of these cards
which is common to all of them — namely, the edge of
the card that connects to the computer 1/0O backplane.
We saw in Section II how high-level HPL statements
such as wtb, wrt, red, and tfr are translated by the [/O
ROM into sequences of read and write operations with
the interface registers. A special segment of the com-
puter’s processor called the 1/O processor is responsible
for converting the machine language instructions which
address these registers into a set of electrical signals
which will cause the interface to perform the desired
operation. These signals are made available to the in-
terfaces at a connector called the computer backplane
or simply the [/O bus. It is called a bus because many
interfaces can be connected to it in parallel and all of




them use the same bus over which to communicate
their signals. All of the interfaces are connected to this
bus in a “wire-and” configuration and passively allow
the line to float high. The one interface that is currently
selected to put its information on this line allows it to
remain high if it requires it to be high, or pulls it to
ground if it requires it to be low. Thus, to the I/O pro-
cessor, it appears as though only the selected interface
is connected to the bus at the time information is re-
quested from that card.

The mechanism by which one card on the bus is
selected to present its information to the I/0O processor
is called the select code method. Each interface is
assigned a select code in the range 0-15. Internal
devices (keyboard, display, printer, tape cartridge) have
their select codes preset or “hard wired”. External inter-
faces have their select codes set by an externally ac-
cessible rotary switch on the card itself. When the 1/0
processor wishes to communicate with a given inter-
face, it takes the select code parameter from the pro-
gram’s HPL statement (e.g., wrt 6, . . .) and converts
it to a 4-bit binary equivalent (in this example, 0110)
which it presents on the four peripheral address lines
(PAOQ through PA3) to the interface. Only that card
whose select code switch matches the bit pattern being
presented on the peripheral address lines will respond.

But what is the nature of this response? This question
is answered by looking at the remainder of the lines
used for communication between the /O processor
and the interface.

The first immediate response is to set the state of the
status (STS) and the flag (FLG) lines. The status line is
a 1-bit indicator that tells the I/O processor whether
the selected interface {and possibly the peripheral
device connected to it) is operational or not. The flag
line indicates whether the interface is busy processing
the last task given to it by the I/O processor, or is
ready for another operation. (See Section IlIB2.) If the
status and flag lines are both low*, the I/O processor
may proceed with the next operation.

As we discussed in Section I, all operations with the
card are accomplished by writing to or reading from the
8 interface registers. The /0O processor has 16 data
lines (DIO@ through DIO15) available for this purpose.
We will see later that some interface cards use all 16 of
these lines while others may use only 8. Indeed, some
interfaces may use different numbers of these lines for
different registers. For example, the 98032A Bit-
Parallel Interface uses all 16 lines for data transfer
(R4IN and R4OUT), but only 8 for taking its control
byte (R50OUT) and presenting its status byte (R5IN).**

Since the same set of data lines are used to exchange
information between the [/O processor and all eight in-
terface registers, some means is necessary to inform the
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interface which register is being addressed (R4, R5, R6,
or R7) and whether the required operation is IN or
OUT. This is accomplished by the IC1 and IC2 lines
which indicate the register number, and the DOUT line
which indicates the direction. The table below gives the
states of the IC1 and ICZ2 lines used to address the four
register numbers.

IC1 IC2 Reg#
H H R4
L H R5
H L R6
L L R7

Figure I1I-1

The DOUT line is high for input (interface to I/O pro-
cessor) and low for output. When the /O processor
requests an input from an interface register, the card
uses the FLG line to indicate when the information on
the data lines is valid (high = busy, low = ready). The
[/0 processor also needs a means of telling the inter-
face that information on the DIO lines is valid when it
is conducting an output operation to the interface
registers. It does this by momentarily pulsing the 1/0
Strobe (IOSB) line low. On this signal, the interface
routes the information on the DIO lines to the proper
register and latches it.

These lines then provide the basic operations of the in-
terface: selecting a specific card, checking that it is
operational and ready, and exchanging information
between the 1/O processor and the interface registers.
The remaining lines on the 1/0 bus are used for im-
plementing special functions.

The first of these special functions is the ability to in-
itialize the cards. When power is turned on or the
RESET key is pressed, an initialization line (INIT) is
momentarily pulsed low. This tells all of the interfaces
connected to the 1/0O bus to reset their latches and flip-
flops to some standard initial state. {This signal is also
made available on the peripheral side of some inter-
faces so that the attached device is also given a chance
to re-initialize.)

Three other lines are used to provide interrupt capabili-
ty. If an interface has been enabled to interrupt on a
certain condition and that condition occurs, the card
responds by pulling and holding low either the IRL or
the IRH line. If its select code is 0-7, it will request a
low level interrupt on the IRL line; if it is 8-15, it will

*Since all lines on the 1/0 bus use negative-true logic, High = 0 = False and
Low = 1 = True.

* *Throughout this guide, the terms in and out are used with respect to the
computer and not the interface or peripheral.
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request a high level interrupt on the IRH line. In either
case, if that level of interrupt is not already in use (see
Section 1IB6), the 1/0 processor will poll the interfaces
to determine which one requested the interrupt. It does
this by setting the interrupt line (INT) low. During this
interrupt poll, the PA@ line is used to indicate whether
the 1/0 processor is polling the low level interrupts or
the high level interrupts. During a low level poll, each
interface responds on the DIO line that corresponds to
its select code (select code 7 on DIO7, etc.) setting it
high if it was not requesting interrupt and low if it was.
The 1/0 processor thus determines which of the cards
was requesting service. If two or more cards on the
same level are requesting service at the same time, the
one with the higher select code will be granted the in-
terrupt first. During a high level poll, each card
responds on the DIO line that corresponds to its select
code minus eight (select code 15 on DIO7, etc.).

Finally, a special line (DMAR) is used for the interface
card to request a DMA cycle if it has been enabled to
do so by the I/O ROM (see Section IIB6).

The remaining three lines are for providing electrical
power to the card. These are the +5 volt supply, a
ground line, and a shield line. All of the interfaces get
their power from the computer’s main power supply.
The capacity of this power supply was designed to ac-
commodate the computer itself plus the number of in-
terfaces that can be plugged directly into it. As a result,
the power supply line on the 1/0 bus should not be
used to provide power for any external devices. Doing
so could result in erratic operation or even damage to
the computer’s power supply circuitry. The logic
ground line is meant to provide a zero volt reference
point from which other voltages are measured. This
logic ground is brought out on the peripheral side of
the card and should be connected to the logic ground
line of the attached device so that all signals are
measured from a common reference point. The shield
line is provided in order to ground the metal casing
used in the cable connecting the interface to the
peripheral, and thus to reduce the amount of radio fre-
quency interference (RFI) emitted. The shield line is
connected to the logic ground inside the computer and
should not be connected to the ground or any other
line on the peripheral. Otherwise, ground loops will be
created leading to erratic operation.

Up to now, we have discussed the operation of the in-
terface cards from the computer’s /0O bus, and the
description given is common to all of the interface
cards. When information is exchanged with the inter-
face registers on the cards, the resulting action at the
peripheral side of the card depends on which interface
is being used. Indeed, it is the difference in re-
quirements at the peripheral side that necessitates hav-
ing the various types of interface cards. What these dif-
fering requirements are and how they are implemented
is the topic of the following sections.

B. The 98032A Bit-Parallel
Interface

1. General Operational
Characteristics

The 98032A Interface is the most versatile,
general purpose card and is used most often to
connect the computer to those devices which do not

conform to some standard format and protocol such as
BCD or HP-IB.

It can output data to a peripheral using up to 16 bits at
a time in parallel, and it can input data from the same
or a different peripheral over an independent set of 16
parallel input lines. These input and output lines can be
further partitioned into two sets of 8-bits each for
handling special applications. The card can be con-
figured to accept a wide variety of signals from the
peripheral and indicate when input data is ready or
output data has been accepted. These and other
capabilities will be discussed in the following pages.

There is no restriction on the interpretation to be
placed on the data being sent or received. If the card is
being used, for example, to interface to an A/D
(analog to digital) converter, the bits received would
probably be interpreted as a binary number whose
value is proportional to the voltage being measured.
When interfacing to a printer, the bits would represent
some alphanumeric character to be printed using some
code that the printer can recognize such as ASCII. Or if
the data were being input from a card reader, it would
simply represent a pattern of ones and zeros corres-
ponding to the presence or absence of punched holes
or pencil marks at specific locations on that card. It
would then be up to the program in the computer to
translate these patterns into meaningful information,
based on the design of the card being read. As far as
the interface is concerned, each data item is merely a
set of 16 bits to be sent or received; and any meaning
to be placed on that data is based entirely on an agree-
ment between the computer and the peripheral as to
how they will interpret it.

In Section IlI-A we developed a register operational
model that was general to all of the interfaces. The
table below gives the specific use of each of these
registers by the 98032A Interface.

IN ouT

R4 Data Input Data Output

R5 Status Byte In Control Byte Out

R6 High Byte Data In High Byte Data Out
R7 (Not Used) Input/Output Trigger

Figure I11-3




The R4 register is the one through which data is nor-
mally sent and received. In Section Il we saw pro-
gramming examples of how this register is used to ex-
change data between the computer and the peripheral
device. These examples were based on the register
model of the interface. Later in this section when we
discuss the handshake process, we will see what actual-
ly takes place on the card when these registers are ac-
cessed. The R6 registers are used on the 98032A
when it is operating in the optional “byte mode” and
will also be discussed later.

The R7 input register is not used by this interface, and
if an “rdi 7" operation is performed, the result will
always be a zero. The R7 out register is used to trigger
either an input or an output operation. The actual byte
output to the R7 register does not matter. It is the act
of writing to this register itself that causes the read or
write operation to be triggered. This register is also
covered in the following section on the handshake pro-
cess.

The R5 register is always used as a communication link
between the computer and the interface itself. The
98032A has certain modes of operation that are pro-
grammable by the computer. The I/O processor can
make the card go in and out of these modes by output-
ting specific bit patterns called the control byte to the
R5 register. The bit assignments for the control byte on
the 98032A are given in Figure 11I-4.

7 6 5 4 3] 2 1 ¢
INT | DMA | RESET | AHS | X | X | CTL1 | CTLO
INT: Interrupt Enable on FLG=Ready
DMA: Direct Memory Access Enable

RESET: Reset the Card to lts Power-on State

AHS: Auto Handshake Enable

X: These bits are not used and may be a 1 or
a0

CTL1,0: General User-definable Control Bits

Figure IlI-4. The 98032A Control Register

When bit 7 of the control byte is set ( =1 ), the inter-
face is enabled to request an interrupt to the 1/O pro-
cessor whenever the FLG line on the card indicates
ready. We have already discussed in Section Ill how
the I/0O processor uses this interrupt request to carry
out data transfer operations with buffers and other in-
terrupt activities.

Setting the DMA enable (bit 6) programs the card to
request a DMA access each time the FLG line comes
ready. Thus we see that the interface will do one of
three things when the FLG line comes ready. If bits 6
and 7 of the control register are both zero, the card will

merely indicate the ready condition on the FLG line
but perform no other action. If bit 7 is set, the card will
request an interrupt. Or if bit 6 is set, it will request that
another word of data be sent or received via the DMA
channel. If both bits 6 and 7 are set, the DMA request
will override the interrupt request until the DMA
transfer is complete (i.e., the count of words to be
transfered has been satisfied). When this happens, the
card will automatically disable DMA, and the next time
the FLG line comes ready, a normal interrupt request
will be generated. INT remains enabled until disabled
by the /0 processor, while DMA automatically
disables itself when the DMA transfer is complete.
Since the DMA transfer is a complex operation and is
handled automatically by the [/O ROM, the user’s pro-
gram would rarely set or clear the DMA enable bit.

The RESET bit (bit 5) is used to return the card to its
power-on or “wake-up” state. On the 98032A, this
causes the PCTL handshake line to return to high
(control not set}, and the programmable conditions of
INT, DMA, and AHS to be cleared or disabled. A low
pulse is also generated on a peripheral reset line
(PRESET) so that the attached peripheral device also
can receive an indication that a reset operation has
been performed. The action taken on this signal is
determined by the peripheral itself. For example, the
9866A/B Thermal Line Printer clears out its built-in
data buffer when it sees this signal. This reset action
can also be initiated by the INIT line from the 1/O pro-
cessor, which is done whenever the RESET key on the
9825A is pressed. While the use of the INIT line resets
all interface cards connected to the 1/0O bus, the
RESET bit of the control byte is used to selectively
reset only one interface card. It should also be noted
that the RESET bit of the control byte overrides any
other bits (INT, DMA, AHS) that may be set in that
control byte.

Bit 4 of the control byte is used to set a special mode
of operation called the “auto handshake” mode. In this
mode, the use of the R7 OUT trigger operation (see
examples in Section 1I1A4) is not required. For data out-
put, as soon as the data is placed in the R4 OUT
register, it is automatically triggered. For data input,
when the current data item is read from the interface
data latches (R4 IN), this automatically triggers a de-
mand for the next data item from the peripheral.
Again, this mode of operation is used primarily by the
/0 drivers in the I/0 ROM and is not something with
which the user normally need be concerned.

Finally, the control byte provides two general-purpose
control bits called CTL1 and CTL@. These lines are
made available at the peripheral side of the interface
card and may be used for whatever purpose and
meaning the user may wish to assign to them. For ex-
ample, the user may have designed an input device
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which can either deliver a data item whenever the pro-
gram requests one, or when an operator at the device
presses a GO button. If the device were designed to
switch between these two modes of operation based on
the state of a control signal externally supplied to that
device, one of the two control lines (CTL1 or CTL@)
could be connected to the external control line on the
peripheral so that the mode of operation could be
selected by the computer program. Other examples of
the use of these control lines will appear later in this
guide.

There are three ways that this control byte may be set
from the user’s program. The first is through the use of
the write-control statement. For example, the statement
" wtc 6,32 7 would cause the interface set to select
code 6 to be reset. The statement “wtc 6,2” would
cause CTL1 to be set and CTL@ to be cleared. The
control byte (second parameter in the wtc statement) is
the decimal equivalent of the desired bit pattern to be
sent to the R5 register. Since the wtc statement is pro-
vided by the General I/O ROM, the program could get
in trouble if it accidentally enabled INT, DMA, or AHS
and did not have the Extended 1/0 ROM to handle
these capabilities. For this reason, the wtc statement
automatically masks out (sets to zero) bits 7, 6, and 4
of the specified bit pattern before it is sent to the R5
control register.

The second method of addressing the R5 control
register is through the wti (write to interface register)
statement. Using this statement, all bits of the R5 QUT
register are available for setting or clearing. Of course
the user must make sure that his program is set up to
handle the special modes of operation that may be
turned on by using this statement. Again, these are
normally handled by the transfer statement and the
user would not usually be required to use this method
of access to the R5 register.

The third way of addressing the R5 out register is by
means of the eir statement. The use of the eir state-
ment instead of the wtc statement is discussed in Sec-
tion lIC5.

The interface is also capable of delivering information
back to the /O processor concerning the states that it
is currently in. This is known as status information and
is read by the processor through an R5 IN operation.
For most interface cards this status information is con-
tained in eight bits and is usually called the status byte.
This should not be confused with the status line (STS)
which is a one-bit indicator of whether or not the inter-
face card and its associated peripheral are operational.
The information contained in the status byte is informa-
tion about the current state of the interface card itself,
and not about the peripheral device (except for STI1
and STI@ as explained later).

The status byte is obtained by the program through the
use of the read-status function, rds(<select code>).
This function takes as its parameter the select code of
the desired interface and returns a value which is the
decimal equivalent of the status byte. Since the func-
tion for testing the 1-bit status line (STS) is contained in
the Extended 1/O ROM, this bit is added to the status
byte as a ninth bit (see Section I1A6).

The table below gives the meanings assigned to the bits
in the status byte by the 98032A Interface.

7 6 5 4 3] 2 1 ]
INT | DMA 1 @ [ID}IOD | STI1 | STIP
INT: Interrupt Enabled Indicator
DMA: DMA Enabled Indicator
[ID: Invert Input Data Jumper Installed
IOD: Invert Output Data Jumper Installed
STI1,@:  General User-definable Status Bits

Figure III-5. The 98032A Status Register

Bits 7 and 6 of the interface control register (R5 OUT)
are used for enabling and disabling interrupt and DMA .
The corresponding bits of the status byte are indicators
of whether these modes are currently enabled or not; a
one indicating enabled and a zero indicating disabled.

Bit 5 is always a 1 and bit 4 is always a @ for the
98032A card. These are the interface identification bits
as explained in Section IIC2. They allow the 1/0 pro-
cessor to identify the type of interface with which it is
communicating so it will know what protocol (sequence
of register operations) to use, since this protocol is dif-
ferent for the various card types. The examples given
in Section Il all assumed a 98032A class (type 2) of in-
terface.

The 98032A Interface uses negative-true logic on its
data input and output lines. This means that it
associates the +5 volt level with a logic value of zero,
and the ground level with a logic value of one. If the
particular peripheral attached uses the opposite sense
of these logic levels (positive-true logic) then the data
needs to be inverted (zeros changed to ones and ones
changed to zeros) before the data is used. If this is
necessary for either the input data or for the output
data, or both, there is a provision on the 98032A Inter-
face to install jumper wires that will indicate this fact.
The presence (1) or absence (0) of these jumpers is in-.
dicated by bits 3 and 2 of the status byte. It is up to the
computer to read these bits and perform the data inver-
sions if necessary. Normally, this is handled
automatically by the [/O ROM (see Section 11IB4}.

The last two bits of the 98032A Interface are general
purpose status bits called STI1 and STI. They may be




connected to any output lines from the peripheral device
to monitor any signals that the user finds convenient in
his particular application. For example, a paper tape
punch might have a line coming out that indicates
when the amount of paper tape left is running low.
This line could be connected to one of the general-
purpose status bits, and then monitored periodically

by the program in the computer to warn the operator
when the tape is running low.

It is important to note that the contents of the input in-
terface registers are not related to that of the output in-
terface registers. They serve different functions and are
not like memory locations. In general, the bits read
from the status register (R5 IN) are not related to any
bits in the control register (R5 OUT). The INT and
DMA bits were assigned corresponding bit locations for
convenience. In particular, setting a control bit such as
CTL1 does not affect the state of STI1, since they are
usually connected to two different lines on the
peripheral and serve different purposes. If he wishes,
however, the user can make such an association by
physically connecting the STI1 line to the CTL1 line so
that the status bit can indicate whether the control line

is currently set high or low.

2. The Handshake Process

In Section IC1 we discussed the handshake process
from a user’s point of view, giving only enough detail
to be able to explain the concept of a handshake. In
this section, we will look at that process from a
designer’s point of view giving the additional informa-
tion required to be able to actually connect a peripheral
device to the 98032A Interface.

Figure IlI-7 shows the complete timing diagrams for
both the output and the input handshake operations. In
addition to the data lines, four other lines are involved
in the handshake process. The meanings and uses of
these lines is given in Figure 1lI-6.

Name of Line: 1/0 FLG PCTL PFLG

Driven by: Computer | Interface | Computer Peripheral

High State: Input Busy Clear Busy

Low State: Output Ready Set Ready
Figure 111-6

The 1/0 line is used by the computer to tell a
peripheral device whether an input or an output opera-
tion is in progress. For an input only (e.g., paper tape
reader) or an output only {e.g., printer) device, this
line would not be used. The [/O bus flag line (FLG) is
used by the computer to test whether or not the inter-
face is ready for the next operation. The peripheral
control line (PCTL) is used to tell the peripheral that
the information on the data lines is valid for an output
operation, or to request the next data item on an input
operation. The peripheral flag line (PFLG) is the
ready/busy indicator from the peripheral itself.

to ! 2 13 14
P! ! : CLEAR
pere MY 1 I '
Lo : . SET
]
: je—— T——" BUSY
PFLG H 1 ] l
1 L READY
L 11 ]
H ) L 0
' ] ]
Data ! ! \ 1
L
Lines ' ]

Figure 1-12 REPEATED

The reader may wonder why it is necessary to have
separate FLG and PFLG lines. In order to see the
reason for this, let’s look again at the simplified timing
diagram, Figure [-12. Here, only the PCTL and PFLG
lines are shown in addition to the data lines. For the
moment, let’s assume that the interface merely con-
nects the computer’s FLG line directly to the
peripheral’s PLFG line, and consider a typical output
sequence. After the data is placed on the lines, control
is set (PCTL is set at time t2) to tell the device that it
can take the data. At some later time, t3, the
peripheral acknowledges that it has seen control go set
by making PFLG go busy, and it begins to read and
process the data on the lines. Since there is no restric-
tion on the length of this time interval (t2 to t3), it is
quite possible that during that interval the computer
could be ready to output the next character. It would
test the FLG line (which here is the same as PFLG),
see that it is indicating ready, and place the next
character on the data lines. Since the peripheral had
not yet taken the last character, it would be lost. In
other words, the computer testing the FLG line only
sees a ready or a busy state. It cannot tell whether the
PLEG line is indicating ready because it has completed
the processing of the data, or because it simply hasn’t
gotten around to making it indicate busy yet. To avoid
these timing problems, the FLG and the PFLG lines
are separated. As soon as control goes set, the inter-
face itself makes the FLG line go busy without any
response required from the peripheral. The FLG line
remains busy until the PFLG line has gone from ready
to busy and back to ready again.

We are now ready to follow the complete sequence of
events shown in the timing diagram for the output
operation in Figure IlI-6. As we do, we will also relate
these events to the register operations that are being
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performed by the output drivers in the [/O ROM (see
Section 11A4).
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The output drivers first wait for the FLG line to indicate
ready, giving the last operation with the peripheral time
to complete. When FLG is ready, the data is placed on
the lines (R4 OUT operation). Since this is an output
operation, the interface sets the I/O line low, to tell the
peripheral that an output is about to take place. The
1/0 ROM then issues the R7 OUT trigger, which
causes the interface to set the PCTL line, after delaying
long enough to allow the signals on the data lines to
settle out. At the same time, it makes the computer’s
FLG line go busy so that it will not try to initiate
another operation before this one is completed. At
some later time, the peripheral detects that PCTL is set
and that I/0O is indicating output. It sets its PFLG line
to busy, takes the data, and begins to process it. This
tells the interface that it can now return the PCTL line
back to the clear state, since the peripheral has seen
the data and begun its processing. Finally, when the
peripheral has completed processing the data, it returns
its PFLG line to the ready state. The interface sees this
and allows the computer’s FLG line to also go back to
the ready state and the entire handshake process is
complete.

An input operation proceeds in a similar manner. The
1/0 ROM again waits for the FLG line to indicate
ready before initiating any action. When the FLG line is
ready, the ROM does an R4 IN operation to set the
1/0 line to the input state. It then does an R7 OUT
operation to demand a data item. This causes the inter-
face to set the FLG line busy, and to set PCTL to tell
the peripheral that a data item is being requested. Nor-
mally the peripheral would indicate busy on the PFLG
line, put the next item on the data lines, and then
return PLFG to ready. This will cause PCTL to return
to the clear state, and allow FLG to indicate ready.
Meanwhile, the [/O ROM has been waiting to see FLG
indicate ready. When it does, the ROM does an R4 IN
operation to take the information from the data lines
and returns the value read to the program.

Because the type of ready (PFLG) signal varies from
one peripheral device to another, the 98032A allows
for a variety of such signals. By setting jumpers on the
interface card, the user may specify that the informa-
tion on the input data lines be clocked on the ready-to-
busy transition, on the busy-to-ready transition, or
whenever the R4 IN operation is executed by the 1/0
ROM, independent of the state of the PFLG line.

3.Word and Byte Modes of Operation

The data lines of the 98032A Interface are divided into
16 input lines and 16 output lines. Each of these sets
of 16 lines may be further subdivided into groups of
eight for use in special applications. In this section we
will look at some of the intended uses of this byte
mode of operation.

In all of our previous examples of data exchange using
the 98032A Interface, we were operating in the words
mode in which we used the R4 OUT operation to
place 16-bit data on the output latches, and the R4 IN
operation to read 16-bit data from the input latches. If,
however, jumpers B or F (see 98032A Installation and
Service Manual) are not in place, the input or output
latches may be operated in the bytes mode, in which
the upper 8 bits and the lower 8 bits of the 16 data
lines may be separately addressed by the computer. In
this case, the R4 register is now used to access only the
lower byte, while the upper byte is accessed through
the R6 register. For example, if the 16 input lines con-
tained the 16-bit pattern 0011010101001001, then ex-
ecuting a rdi(4) would give a 73 (binary 01001001)
while a rdi(6) would return the value 13568 (binary
0011010100000000). Notice that the high byte is still
positioned in bits 8-15 of a 16-bit binary pattern. When
either the high byte or the low byte is read, the other
byte is replaced with eight zeros. To convert the result
of the R6 IN operation to the true decimal representa-
tion of that byte, this result must be divided by 256 ( =
28) or shifted right eight places using the bit manipula-
tion functions.

This capability to separately address the high and low
bytes is used by the I/O ROMs in implementing drivers
for certain peripherals. For example, the 9862A Plotter
requires sequences of 12-bit instructions to raise and
lower its pen and to move to a new location. Figure
[II-8 shows the format of these plotter control instruc-
tions. This protocol is presented merely as an example
of the use of the bytes mode on the 98032A card, and
the reader need not follow the details of the meanings
for the individual bits.

1514 1312111 1098176543210
4-bit not X,Y-position
control used (0,9999)
bit 15: format of data bytes (bits 7-0) is BCD (0) or

binary (1).

bit 14: sync bit, set to 1 for the first of a four-word
move instruction, and for pen up/down in-
struction.

bit 13: pen up (0) or down (1) specifier when bit 12
= 1.

bit 12: instruction type bit, move (0} or pen up/down

(1).
Figure 11I-8
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Raising and lowering the pen is done by sending a con-
trol word with bits 12 and 14 set and bit 13 indicating
pen up or down. To move the pen to a new location,
a four word sequence is required. Since each of the X
and Y coordinates is in the range 0 to 9999, two bytes
are required to specify each of them. These are sent in
four instructions containing X high byte, X low byte, Y
high byte, and Y low byte. Since the upper bits contain
control information and the lower byte has coordinate
information for pen moves, the plotter drivers take ad-
vantage of the ability to separately address the high
and low bytes of the data register.

If the user required this same capability from an HPL
level program, the following program segments could
be used. In both examples, the variables H and L con-
tain the high byte and low byte data respectively. To
output data in the bytes mode, we would use the
following statements.

10: wti 0,3 Set up for select code 3
11:  jump iof3 Wait for ready

12: wti 6, shf(H,—8) Latch high byte data
13: wti4, L Latch low byte data

14: wti 7,0 Trigger output operation

Notice that the high byte data is shifted left 8 bits
before being sent to the R6 OUT register. Also, lines
13 and 14 could be replaced by the statement “wtb 3,
L” since this does the R4 OUT, R7 QUT sequence.

Input operations in the bytes mode is similar.

10: wti 0,3 Set up for select code 3
11: jmpiof 3 Wait for ready

12 rdi4~ Z; wti 7,0 Demand next data item
13: jump iof 3 Wait for ready

14: rdi4 — | Get low byte data

15: shf (rdi6,8) > H Get high byte data

This program segment shows the entire sequence of
events used to read data in the bytes mode. Lines
11-14 can in practice be replaced by a simple “
rdb(3)—L ” function. After this operation is complete,
the high-byte data may then be taken in using the R6
IN operation.
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From these examples we see that the 98032A was
designed to allow the computer to seperately address
the upper and lower bytes of the input and output data
latches. It should be noted, however, that the interface
card is still exchanging 16-bit data with the peripheral
device. From the fact that the 98032A has a byte
mode of operation, it is often mistakenly inferred that a
single 98032A can directly interface two 8-bit devices.
Although this is possible, it does require that the user
provide some external hardware to properly control the
handshake operations.

As an example, let's assume that we wish to interface
an 8-bit paper tape reader and an 8-bit paper tape
punch to the desktop computer using a single 98032A
card. Notice that in this case, we do not require the
use of the bytes mode since one device is an output
only device and the other is an input only device. If we
merely connected the PCTL line to the control lines for
each device and the ready/busy lines from each device
to the PFLG line, these devices would not operate in-
dependently. For example, each time we try to take a
reading from the tape reader, the PCTL line would go
set to demand the reading. But the punch would also
see this signal and respond by reading whatever hap-
pened to be in the output latches and punching this in-
formation on the tape. In addition, if the punch com-
pleted its operation before the tape reader, it would in-
dicate ready on the flag line. Depending on the levels
used (positive or negative true logic) the interface could
interpret this transition on the PFLG line to mean that
the tape reader had finished its operation; and it would
take a reading from the input data lines which might

not yet be valid.

In order to prevent this, an external circuit similar to
the one shown in Figure lII-9 could be used.

PCTL
’fD»——r PCTL (10 PUNGH)
PCTL (to READER)
110 line
(low=output)

T PFLG (from READER)
PFLG

PFLG (from PUNCH)

vy

Figure I11-9




This uses the 1/0 line on the 98032A to gate the flag
and control signals to only the device being addressed.
For example, when the I/0 line is low (output opera-
tion), only the punch sees the control pulse, while the
PCTL line to the reader remains high throughout the
entire operation. Also, no matter what transitions take
place on the PFLG line from the reader, only the tran-
sitions generated by the punch are passed on to the
PFLG line on the 98032A.

If the user wanted to use a similar circuit to allow two
8-bit input devices or two 8-bit output devices to be in-
terfaced with one 98032A card, the [/O line shown in
Figure II[-9 would instead be connected to the CTL@
line. The program could then select one of the two
devices by executing either a “wtc 3,0” or a “wtc 3,17
(3 is the select code of the interface card) to set the
CTL@ line high or low respectively to cause the PCTL
and PFLG lines to be gated to one or the other of the
two devices. Of course this application would require
the use of the byte mode, with one device using the
high byte data lines and the other using the low byte
data lines.

Because of the external circuitry required and the add-
ed complexity needed in the program to select the
device and shift data to and from the high byte, it is
normally more convenient to simply use two 98032A
cards to interface the two devices. Only in the case of
extreme cost sensitivity or [/O slot limitations would
such a scheme be practical.

4. Data Inversion and the Transfer
Process

The 98032A Interface can accommodate either positive
true or negative true logic on the input and output data
lines. The 1/0 backplane of the desktop computer itself
uses negative true logic and no modification is required
for a peripheral device which also uses negative true
logic. For a device which uses positive true logic, the
sense of the data lines must be inverted before the data
is interpreted by the program (for input) or sent to the
device (for output). Because of the complexity of the
98032A card and the limited space available, the inter-
face does not have room for the hardware to perform
this inversion directly. It merely contains the provision
for two jumpers (1 and 2) to indicate to the computer
that the input and/or the output data must be inverted.
The actual inversion is done by the drivers in the I/O
ROM by complementing the data; that is, changing the
ones to zeros and the zeros to ones before an output
operation or after an input operation. These /0
drivers know that this operation is to be performed by
checking bits 2 and 3 of the status byte (see Figure
III-5) from the 98032A card to see if either or both of
the inversion jumpers are installed on the interface.
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For the normal data operations (red, wrt, rdb, wtb,
list#) and for transfers using interrupt buffers (types O
and 1) this inversion process is handled automatically
by the [/O ROM and the operation is totally
transparent to the user. This is not the case for fast
read/write (FRW, types 2 and 3) and DMA (type 4)
buffer transfers. In the case of the FRW transfer, this
inversion is not done in order to obtain maximum [/O
rates. In the case of DMA transfers, the hardware pro-
cessor and not the [/O ROM handles the DMA
transfer; and this processor only operates with negative
true logic. Thus, in these special cases, any required
data inversions must be done by the HPL program
itself. It should also be remembered that in the case of
a FRW input buffer transfer where a terminating
character can be specified, this character will also be in-
verted.

C. The 98033A BCD
Interface
1. BCD Instruments

In the last section, we discussed using the 98032A In-
terface to connect peripheral devices whose outputs
were in the form of binary data (up to 16 bits wide), or
sequences of ASCII characters. There is a class of
devices, however, known as BCD instruments for
which the 98032A is not a satisfactory interface for
connecting them to the computer. To see why this is
so, we need to look at some of the characteristics of
these BCD devices.

Devices which fall into the BCD class are typically
measuring instruments such as digital voltmeters and
multimeters, scanners, frequency counters, gain-phase
meters, digital panel meters, and so forth. These in-
struments usually display the readings they take to be
read by an operator, typically showing from three to
eight digits depending on the precision of the measur-
ing device itself. They also indicate other information
about that reading. For example, a digital multimeter
(DMM) may also indicate the function being read
(voltage, current, resistance), the range being measured
(100 volts, 10 milliamps, 1 kilohms) and have an
overload or out-of-range indicator. All of this informa-
tion is useful to the operator taking down the readings.

In these instruments, each digit of the reading drives
one digit in the display. The value of this digit is sent
over four wires in a code called binary coded decimal
or BCD. This format is also known as 8-4-2-1 code,
since these are the values or weights given to each of
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the four lines. The encoding of the ten decimal digits is
shown in Figure III-10.

@ @ @ @ DIGIT
60 0 0 o0 0
0 0 o0 1 1
0 O 1 0 2
0 o0 1 1 3
0 1 0 o0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 O 1 9

Figure I11-10

These BCD lines are then sent to decoder circuits
which convert them into seven-segment or dot-matrix
patterns for driving the individual display digits.

With the advent of controlling computers, it became
desirable to make it possible for the computer to direct-
ly read these measurements, collecting large numbers
of readings for processing and analysis. At the time this
was done, hardware circuits for converting these
readings into a form the computer could understand
were very costly. As a result, most designers merely
made all of the data lines available to the computer
directly with no attempt at conversion, and left it for
the versatility of the computer program to sort out the
meaning of the various lines. Output lines are also
brought out to indicate the sign of the reading (plus or
minus), a power-of-ten multiplier or exponent digit for
accommodating the various ranges, an overload in-
dicator, and a set of lines to indicate the mode of
operation for multi-function instruments. Thus, an in-
strument which supplies six or eight digits of precision
can have forty or more distinct lines on its output con-
nector just to represent the reading, in addition to any
control lines used.

If an interface such as the 98032A were used to con-
nect such a BCD device to the computer, either two or
three cards would have to be used in parallel, or a
multiplexing scheme would have to used. In addition,
the computer would then have to sort out of all these
bits, read the ones that represented digits, signs, expo-
nent, function codes, etc. Instead, the 98033A BCD
Interface was designed to accept all of these parallel
bits, and translate them into a sequence of ASCII
characters which represent the reading being taken.
That is, the 98033A translates the data from a 43-bit
parallel reading to a 16-byte, ASCII serial representa-
tion.

2. 98033A BCD Formats

Figure llI-11 shows the input lines that are available on
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the 98033A Interface.

1 bit Mantissa sign Sm
4 bit Mantissa digit 1 D1
4 bit Mantissa digit 2 D2
4 bit Mantissa digit 3 D3
4 bit Mantissa digit 4 D4
4 bit Mantissa digit 5 D5
4 bit Mantissa digit 6 D6
4 bit Mantissa digit 7 D7
4 bit Mantissa digit 8 D8
1 bit Exponent sign Se
4 bit Exponent digit De
1 bit Overload indicator ~ Owv
4 bit Function code Fc

Figure III-11

The number of lines available is usually more than suf-
ficient to handle most BCD instruments. If a device is
connected that has fewer than eight digits, the unused
digits may be connected to the +5 volt reference (for
negative true logic) or to ground (for positive true logic)
so that they will always be read as zeros.

When a reading is taken using the 98033A Interface,
the card converts the data on the input lines into a se-

quence of 16 ASCII characters in the format shown in
Figure 1I-12.

Character: 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
ASCIL: + X X X X X X X X E + X . Ov X LF
Data used: Sm D1 D2 D3 D4 D5 D6 D7 D8 Se De Ov Fc

Figure I11-12

The one-bit mantissa and exponent signs are converted
to ASCII characters for plus or minus, and the 4-bit
BCD digits are converted into the ASCII characters for
the corresponding digits. Notice that the card itself pro-
vides the ASCII characters for the exponent notation
(E), the comma to separate the reading from the
overflow indicator and the function code, and a final
line feed character (LF) to terminate the reading.

The characters indicated by an X in the ASCII
representation of the format shown in Figure 1ll-12 nor-
mally correspond to digits connected from the instru-
ment to the BCD input lines. If it is desired, however,
they may be used for other purposes. Notice that in
Figure IlI-10, only ten of the sixteen possible binary
patterns are used to represent the ten decimal digits.
Figure III-13 shows the ASCII characters that have
been assigned to the other six binary patterns.




8 @ @2 (O ASCII

1 0 1 0 LF line feed

1 0 1 1 + plus sign

1 1 0 0 , comma

1 1 0 1 - minus sign

1 1 1 0 E exponent

1 1 1 1 decimal point

Figure 111-13

Any character marked X in Figure llI-12 may be made
to correspond to any of these ASCII characters by con-
necting its four BCD lines high or low to give the re-
quired pattern. For example, if we had a BCD instru-
ment that has an implied decimal point to the right of
the first digit, this would be indicated on the in-
strument’s display panel, but this information is not part
of the reading itself (unless the instrument adjusts the
exponent to account for this). If the instrument uses
negative true logic, we would connect all four lines of

D2 to ground, giving it the binary pattern for a decimal
point. Then we would connect digit 1 to D1, digit 2 to
D3, digit 3 to D4, and so on. Now when the computer
reads the ASCII sequence from the 98033A card, it
will see a decimal point between the first and second
digits of the reading. The large number of input lines
provided, combined with the ability to redefine any
digit to one of the ASCII characters in Figure 11I-13
gives the 98033A a wide degree of flexibility for
reading instruments with diverse formats.

The 98033A provides input lines for BCD instruments
having up to eight digits in their readings, to accom-
modate high-precision instruments. Most BCD in-
struments will typically only have three or four digits.
For added versatility, the 98033A provides an optional
format (selected by a switch on the card) to allow two
BCD instruments, or a single dual-output instrument,
to be connected to the computer using only one inter-
face card. In this format, the input lines are converted
to the 16-character ASCII sequence shown in Figure
11I-14.

Character: 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
ASCIL: + X X X X + X X X X X E Ov X LF
Data used: Sm D4 D2 D6 D8 Se Fc D1 D5 D3 D7 Ov De

Figure 111-14

In the optional format, pairs of readings are taken from
two separate sources. This would be particularly useful
in, for example, testing electrical circuits where voltage
and current readings need to be taken simultaneously.
If two separate interfaces were used, the time delay
between the execution of the two read statements in
the computer program would make it difficult to take
simultaneous readings.

3. The 98033A Interface Registers

Operationally, the 98033A BCD card is very similar to
the 98032A Bit Parallel Interface. In fact, they are both
type 2 cards (see Section 1IC2) and the [/0O drivers in
the computer make no distinction between them.

Figure IlI-15 shows the register assignments for the
98033A Interface.

IN ouT

R4 Data Input (not used)

R5 | Status Byte In| Control Byte Out
R6 (not used) (not used)

R7 {not used) Trigger

Figure I1I-15

Since the BCD interface is for input only, it does not
respond to any output operations. All data is input
through the R4 IN register, using R7 OUT as a trigger
in the same way as described for the 98032A operating
in the words mode. Because all data from the BCD
card is 8-bit ASCII, the upper eight bits of the 16-bit
word received are always zeros.

Figure I1I-16 shows the bit assignments in the R5 OUT
control register, accessed by a write-control (wtc) or
enable-interrupt (eir) statement.

7161 5 1413121110
INT|] X |RESET | X | X | X |X |X

INT: Interrupt Enable on FLG = Ready
RESET: Reset Card to Its Power-on State

Figure I11-16

The reset and interrupt enable bits operate in an iden-
tical manner to those operations on the 98032A card.
The other bits are not used and may be sent as ones or
zeros.

Similarly, only the interface identification bits (4 and 5)
and an interrupt-enabled indicator are significant in the
R5 IN status byte (accessed by the read-status func-
tion), as shown in Figure IlI-17.

716 |5 | 413f21}]11}0
INT{X | 1 ] O XX |X]|X

INT: Interrupt enabled indicator
1,0: Interface Identification Bits (type 2)
X: Don’t care

Figure I11-17

The remaining bits are not assigned meanings and will
always return zeros. As with the 98032A Interface,
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when the read status function is executed, the current
state of the 1-bit status line (STS) is also included in
the result returned as an artificial bit 8 (see Section
IIA6).

4. The 98033A Handshake Process

The handshake process for the 98033A BCD card is
very similar to that described for the 98032A Bit
Parallel Interface. It sets a control line to tell the BCD
instrument to take a reading, and waits to see a
response from the device on the peripheral flag line
before converting the data on the input lines into the
sequence of ASCII characters to send to the computer.
That is, the computer will do 16 data byte demands
from the interface before the card will set control to re-
quest another reading from the BCD device.

Figure IlI-18 shows the normal sequence of events that
takes place during this handshake operation.

Clear

o e L
Bus 1

DFLG Y

Ready

1 2 13

Figure 11I-18

When the interface (in response to a request from the
computer) requires the next reading, it will set the con-
trol line low to indicate to the BCD device that it

should take another reading (t1). At some later time
(t2), the device will indicate that it has seen this data
request by setting its flag line (DFLG) busy, and pro-
ceed to take the reading. When the data on the input
lines is valid, the device will then (t3) indicate this fact
by setting the DFLG line back to the ready state. This
causes the interface to return its control line back to the
clear state and begin translating the reading for sending
to the computer. Since this process requires enough
time for the computer to input 16 bytes of data, the
BCD device must maintain the data on the input lines
from the time it indicates ready (t3) until the next time
the control line goes set. That is, the device can only
change the data on the input lines during the set state
of the CTL line.

Some BCD devices are designed in such a way that
they are armed for the next reading by the control line
going set, but will not actually take the reading until it

- goes clear again. In order to accommodate these

devices, the 98033A Interface provides an optional
control mode (option 2) in which the CTL line will
return to the clear state when the DFLG line goes from
ready to busy (t2 in Figure IlI-18). The data is still
read by the interface when the DFLG line returns to
the ready state (t3). A switch on the 98033A card

49

allows the user to select the normal mode (option 1) or
this special mode (option 2) of operation for the CTL
line. In addition, both the CTL and the DFLG lines can
have their senses (high or low) inverted by other
switches on the interface card to accommodate
positive-true or negative-true logic levels.

In Section IIIC2 we discussed the optional data format
which allows the 98033A to connect two BCD in-
struments using one interface card. As a result, two
sets of control and flag lines are provided. CTLA and
DFLGA are used to handshake with one BCD device,
while CTLB and DFLGB are used for the other one. If
only one device is being interfaced using the 98033A,
CTLA and DFLGA are connected to this device in the
normal manner (discussed below), and CTLB must be
connected directly to DFLGB.

When two BCD devices are being used with one inter-
face, both control lines (CTLA and CTLB) go set at the
same time. Following this, CTLA returns to the clear
state based on DFLGA alone, according to which op-
tion (CTLA-1 or CTLA-2) has been set in the con-
figuration switches for channel A. Channel B operates
in the option mode for which it has been set, in-
dependently from channel A. In any case, not until
both channels have indicated ready on their respective
DFLG lines will the interface begin to translate the
reading and send the result to the computer. Readings
are always taken from both channels simultaneously,
and not until both devices have indicated ready. In this
sense, the two BCD instruments are not treated as two
independent devices. When only one BCD instrument
is being interfaced, connecting CTLB to DFLGB makes
channel B appear to be immediately ready, and the
reading rate is determined by channel A alone.

5. Connecting BCD Devices to the
98033A

Finally, the question arises as to which lines on the
BCD instrument should the control and the flag lines
be connected. This question does not have a simple
answer since BCD instruments made by different
manufacturers (and often different instruments made by
the same manufacturer) give various names to their
control and flag lines. Most BCD devices made by
Hewlett-Packard call the control line an “External Trig-
ger”, and the flag response line a “Print Command”.
Other common names for the control line are Trigger,
External Encode, and Sample. The line to be con-
nected to the flag line might be called Print, Print
Enable, Ready, or Data Flag.

Often, the only way to tell which lines of the BCD in-
strument should be connected to the flag and control
lines is to read the description of these lines in the
operating manual for that instrument. For example, the




following descriptions are taken from the reference
manual for the HP 3480A/B Digital Voltmeter.

External Trigger — LOW for >50 microseconds initiates
a measurement period. LOW state
must be preceded by HIGH state
for >50 microseconds.

Print Command — Goes HIGH at beginning of
measurement period and LOW to
indicate completion of measure-
ment. HIGH to LOW transition con-
stitutes a command to print.

Here, the external trigger line is identified with the con-
trol function by the key words “initiates a
measurement”’. In addition, the fact that the low state
of this line initiates the measurement indicates that this
line has the same sense as the CTL line on the
98033A (low state is control set), and that the invert
CTLA option should be left off. The statement that the
print command line on the 3480A/B indicates comple-
tion of a measurement says that this is the line which
responds in the way required by the DFLG line on the
98033A. lts logic sense is also correct without setting
DFLG inversion.

D. The 98034A HP-IB

Interface
1. An Introduction to the HP-IB

In Section Il we said that the purpose of an interface is
to provide mechanical, electrical, data, and timing
compatability between a peripheral device and the
computer which controls that device. If a standard ex-
isted which specified all of these characteristics, then
two devices which conformed to that standard would
be “plug-to-plug” compatible. We would merely plug
their connectors into one another and they would be
ready to communicate. A major step in this direction
was taken in 1975 when the Institute of Electrical and
Electronics Engineers adopted the IEEE-488-1975 stan-
dard which specifies many of these characteristics for a
general purpose interfacing bus, sometimes called the
GPIB. The HP Interface Bus, or HP-IB, is Hewlett-
Packard’s implementation of the IEEE-488 standard.

The major advantage of this standard is that it allows
devices to be designed by various manufacturers which
are immediately compatible with any other IEEE-488
device, requiring no interfacing operation on the part of
the end user.
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Data messages are sent from one device to another on
the bus in an 8-bit parallel, byte serial manner. The
standard does not specify how these data messages are
to be encoded, although most devices that operate on
the HP-IB use standard ASCII codes. In general, data
messages most commonly consist of a sequence of
ASCII characters, usually terminated by a line-feed
character (LF). Thus, the only device-dependent infor-
mation necessary for the user to know is the particular
sequence of ASCII characters that cause the device to
carry out each of the functions which it was designed
to perform (see Section IID3).

The HP-IB definition also allows several devices to be
interconnected on the same bus. In the following sec-
tions, we will look at the structure of the HP-IB, the
method of transferring data messages over the bus,
several extended control features provided, and finally
at some specific characteristics of the 98034A Interface.
It is this interface which provides HP desktop com-
puters with the necessary electronics to meet the
specifications of the IEEE-488 standard and to be plug-
to-plug compatible with all other such devices.

2. The Structure of the HP-IB

Phuysically, the bus itself is merely a set of sixteen wires
(along with a few assorted ground wires and an elec-
trical shield) to which all devices on that bus are con-
nected (see Figure IlI-19). Eight of these wires serve to
carry the data messages back and forth over the bus. To
maintain order, only one device at a time can place in-
formation on these data lines, and that device is known
as the active talker. Any or all of the other devices on
the bus may sense the information on these data lines
and act on that information. Such a device is known as
an active listener. By the nature of the actions which
they perform, some devices may be only talkers {e.g.,
a paper tape reader) or only listeners (e.g., a printer).
Other devices such as a digital voltmeter can be either
a talker or a listener. It is made a listener so that it can
be programmed for the correct voltage range and told
when to take a reading. It is then made a talker so that
it can put the results of that reading on the data bus.

Thus there is a need for one device on the bus to set
up talkers and listeners at the proper time, issue in-
structions to the other devices on the bus, and in
general to make sure that all traffic on the bus proceeds
in an orderly fashion. This device is called the active
controller. Although any device can be designed with
controller capability, usually it is a calculator or com-
puter with its flexible capability that is assigned this
task.

Finally, there is one and only one special device on the
bus known as the system controller. This capability is
established by the hardware of the device itself (usually
by the setting of a slide switch or a jumper) so that
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when power is turned on or the bus is reset, the device
set to be the system controller will also assume the role
of the active controller. At any time, the current active
controller may pass control to any other device on the
bus that is capable of performing the functions of a
controller. (All devices are not required to have this
capability.) The role of system controller, however,

stays with the device which is physically set for that
function and cannot be passed off. At any time when
the system controller determines that something has
gone wrong with the normal bus operations, it can
reset the bus and get back active control.

Device A Data Bus
}——q (8 Lines)
Able to talk, (
listen, and )
control
(e.g.
calculator)
Device B < Data Byte
—+ Transter
Able 1o taik H Control
and listen
(e.g.,
multimeter)
General
Interface
Device C < Management
Only able to
listen
(e.g., signal
generator)
DeviceD [—
Only able to
talk
(e.g., counter)
_‘} DIO 1.8
DAV
NRFD
NDAC
IFC
ATN
SRQ
REN
=e]]

HP- IB Signal Lines

Figure I11-19

Figure IlI-19 shows the meanings given to the other
eight lines that make up the HP-IB. Three of these
lines are designated as the “handshake” lines and are
used to control the timing of data byte exchanges so
that the talker does not get ahead of the listener(s).
The three handshake lines are:

DAV — Data Valid
NRFD — Not Ready for Data
NDAC — Not Data Accepted

Using these lines, a typical data exchange would pro-
ceed as follows. All devices currently designated as ac-
tive listeners would indicate (via the NRFD line) when
they are ready for data. A device not ready would pull
this line low (ground), while a device that is ready

would let the line float high. Since a low overrides a
passive high (see Section IC1), this line will stay low
until all active listeners are ready for data. When the
talker senses this, it places the next data byte on the
data lines and then pulls DAV low. This tells the
listeners that the information on the data lines is valid
and that they may read it. Each listener (at its own
speed) then takes the data and lets the NDAC line go
high. Again, only when all listeners have let NDAC go
high will the talker sense situation of data accepted. It
can then remove DAV (let it go high) and start the en-
tire sequence over again for the next byte of data. A
more detailed description of the handshake process is
given in several of the HP-IB references (see
Bibliography). It is not necessary for the user to under-

stand the details of the handshake in order to operate
the HP-IB.

The five remaining lines are called control or bus
management lines. Their meanings are:

ATN — Attention

IFC — Interface Clear

REN — Remote Enable
EOI — End or ldentify

SRQ — Service Request

Each of these lines will be discussed in one or more of
the following sections.

Before leaving this overview of the HP-IB and discuss-
ing the operation of the bus, some of the limitations of
the HP-IB should be considered. The first limitation is
that a maximum of 15 devices may be connected
together by one HP-IB. This limitation arises from elec-
trical specifications for the line driver and receiver cir-
cuits, and how much current they can provide or sink.
Another limitation is that the total cable length connect-
ing all of the instruments on one bus cannot exceed 20
meters in length. Voltage levels on the various lines do
not change instantaneously, but require a certain
amount of time proportional to the length of the cable.
A limit is placed on the cable length to insure that the
bus will operate properly at its rated maximum speed.
In general, then, the HP-IB is intended to provide a
simple means of interconnecting local instrumentation
clusters. Other means of interfacing (such as serial I/0
to be discussed later) are better suited to long distance
communications.

3. Addressing the Bus Devices

The primary use of the HP-IB is for the transfer of data
messages from one device to another on the bus.
While the HP-IB does provide a wide variety of ex-
tended control features (such as serial and parallel pol-
ling, service requesting, etc. which are discussed in the
next section), many instruments can be fully operated
through simple data transfers alone. For example, send-
ing the ASCII character string “F2R3" to the HP



3490A Digital Multimeter would cause it to be pro-
grammed into function 2(AC Volts) and range 3 (100
Volts). Another simple ASCII message, *“M3E"". would

tell it to go into mode 3 (single sample with output)
and to execute a reading. The result of this reading
would also be sent back to the listening device as a
stream of ASCII characters representing the value read.
Thus, a great many HP-IB devices can be programmed
and operated by merely knowing how to send and
receive data messages on the bus, and the list of
messages that a particular device on the bus can re-
spond to. Since these “‘command’’ messages are not
specified by the IEEE-488 standard, the operating
manual for each device should be consulted to find the
list of commands to which it will respond.

How then are messages sent and received over the
HP-IB using the 9825A? In order to isolate the user
from the required bus protocol (i.e., setting up the
talker and listener, sequencing the handshake lines,
etc.) the [/O ROM and the interface take care of these
tasks, leaving the user only the requirement of specify-
ing what the data message should be and which device
on the bus is to receive it. For this purpose, the same
write statement used to send data to a printer or other
output device can be used. If we wished to send a
message to a printer on select code 6, we would simply
execute the statement wrt 6, “Hello”. The process is
slightly complicated, however, by the fact that each
HP-IB can have several devices attached to it. If a par-
ticular HP-IB interface were set to select code 7, execu-
tion of the statement wrt 7, “F2R3” to program the
3490A Multimeter would be ambiguous, since the 1/0
ROM would not know which device on the bus should
receive the message. Thus, to completely specify a
destination for such a message, it is necessary to give
not only the select code of the HP-IB interface, but
also some way of indicating one of the many devices
on that bus. For this purpose, each device is assigned
an address or a device number. This device number
can be in the range O to 30 and each device on the
bus must have a different address in this range. A
unique device on the bus may now be specified by giving
both its select code and device number. For example, if
the 3490A in the previous example were set to device
number 23, the statement wrt 723, “F2R3” would
specify that the data message “F2R3” should be sent to
device number 23 on the HP-IB set to select code 7.
Since the normal select code range is [0,16], the [/O
ROM would interpret this three-digit select code as
specifying a device on the HP-IB, and automatically
use the proper HP-IB protocol. This protocol would
consist of setting up the computer as the talker, the in-
strument set to device number 23 as the listener, and
then sending the data message.

Both the addressing information and the data message
are sent over the same set of eight data lines. In order
to distinguish one from the other, one of the bus con-
trol lines called the attention (ATN) line is used. When
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this ATN line is false, the 8-bit pattern on the lines is
interpreted as a character (usually ASCII) in the data
message. When the ATN line is true, the pattern on
the data lines is interpreted as control or addressing in-
formation. In this mode, only seven of the eight data
lines are used. Depending on the setting of bits 5 and
6, the character sent in the ATN true mode will fall into
one of four classes, shown in Figure III-20.

Bit #: 76543210
Bus Command X00cCcccccc
Listen Address X01LLLLL
Talk Address: X10TTTTT
Secondary Address: X 1 1SS SSS
(X="don’tcare’’, 1 or 0)

Figure 111-20

If the class bits (5 and 6) are both zeros, the remaining
five bits (4-0) are used to encode various bus com-
mands which are discussed in a later section. When
they are 01, the following five bits specify one of the

31 possible listen addresses; and when they are 10, bits
4-0 specify one of the 31 possible talk addresses.

These addresses are in the range [0,30]. Address 31

(bits 4-0 all set to ones) is not a legal device address,
but is interpreted as an unlisten {0111111) or an untalk
(1011111) command to cancel any currently addressed
talker or listeners.

Returning to our previous example, execution of the
statement wrt 723, “F2R3” would cause the sequence
of message bytes shown in Figure IlI-21 to be sent over
the bus.

ATN Data Lines ASCII Meaning

T 00111111 ? Unlisten any previous
listeners

T 01010101 U Computer (device 21)
is a talker

T 00110111 7 Device 23 is a listener

F 01000110 F  First data byte

F 00110010 2 Second data byte

F 01010010 R Third data byte

F 00110011 3 Fourth data byte

F 00001101 CR Carriage return

F 00001010 LF Line feed

Figure I1I-21

Notice that the computer (which is also the controller in
this case, since it is doing the bus addressing) has a
device number, 21, just like any other device on the
bus. With the ATN line true, it sends out its own talk
address, an unlisten to unaddress any listeners from
previous operations, and sets up device 23 as the
listener for the data message that will follow. Notice
that the controller did not have to send an “untalk”
command. Since there can be only one talker address-
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ed at a time, the bus standard requires that a device
addressed to talk must become unaddressed as a talker
as soon as any other device is designated as a talker.
Also, the bytes on the data lines appear as normal
ASCII characters. They are given their special address-
ing interpretations shown in Figure IlI-20 only because
the ATN line is true while they are being sent. Once
the addressing is complete, the controller sets the ATN
line false (data mode) and begins to output the ASCII
data message. The listening device (3490A) receives
this message and decodes it to set the specified func-
tion and range. Notice that while all characters sent in
the ATN true mode have meanings specified by the

bus standard, those sent in the ATN false (data) mode
are defined by the device itself as to what action they
will cause. In this case, the 3490A has been designed
to interpret these data bytes as programming informa-
tion for setting its function and range. Finally, most
HP-IB devices send and recognize CR/LF (or some
times just LF) as marking the end of a data message.
Some devices, however, may choose other end-of-
message delimiters and the user should consult the in-
dividual operating manuals for these devices.

When it is time for the 3490A to deliver the voltage
reading it has taken, the sequence shown in Figure
lI-22 is generated.

ATN Data Lines ASCII Meaning
00111111 ? Unlisten
00110101 5 Computer is a listener
01010111 W Device 23 is a talker

{(ASCII characters for voltage reading)
00001101 CR Carriage Return
00001010 LF  Line Feed

Mmoo

Figure 111-22

To take the reading, the computer {controller) sends
out the unlisten, listen address 21, and talk address 23
in the ATN true mode. It then sets ATN false (data
mode) and this time waits for the talker (3490A) to
place the data bytes on the data lines. Notice that even
though the 3490A is the talker in this case, it is the
computer acting as the controller which sets up the
talker and listener and then gives the 3490A “‘permis-
sion to start talking” by setting the ATN line false. The
controller is always responsible for determining the se-
quence of events on the bus!

From the computer, this input operation would have
been initiated by the execution of the statement red
723, A ; this would specify that a numeric reading
should be taken from device 23 on the HP-IB set to
select code 7, and the result stored in the program
variable A.

There is a common misconception when using the HP-
IB that a device on the bus has a talk address which is
different from its listen address. For example, when ad-

dressing the 3490A in this example, an ASCII “7” was
used for the listen address, and an ASCII “W” for the
talk address. In looking at the 5-bit pattern (10111 =
decimal 23) that forms its actual device number, it is
the same for both. It is merely the difference in the talk
(10) or listen (01) bits that gives rise to a different
ASCII representation for each. The fact that the device
has only one address is more evident in the high-level
specification for its address, 723, used in both the red
and wrt statements.

From Figure IlI-20 we see that the class bits (5 and 6)
can also be both ones. In this case, the remaining five
bits (4-0) are interpreted as a secondary command or
extended address. The device receiving this secondary
command is the one whose primary (talk/listen) ad-
dress immediately preceded it, and the device is free to
choose how it will interpret this additional addressing
information. This information will be found in the in-
dividual operating manuals for those HP-IB devices
which use secondary addresses. To send a secondary
address (assuming that the 9825A is the active con-
troller) the user simply appends two more digits in the
range 0 to 31 to the normal select code and device
number. For example, the statement wrt 72305,
<data> would cause the I/O ROM to issue a listen ad-
dress of 23 (00110111) followed by a secondary ad-
dress of 5 (01100101) to the HP-IB on select code 7
during the addressing portion of the output sequence.

4. Data Operations on the HP-IB

In the last section, we discussed the use of normal read
and write statements to send and receive data
messages over the HP-IB. If the instrument that is be-
ing addressed is a slow one, and the program can do
other useful work while the data exchange is taking
place, the buffer transfer methods discussed in Section
IIB1 can also be used with an HP-IB device. For exam-
ple, assume that the 9825A is connected to a digital
voltmeter (DVM) on the HP-IB with a device number
of 5, and that each reading consists of a string of 16
ASCII characters. The following program segment

0: buf “DVM", 1600, 1
1: oni 7, ““Read”
2. tfr 705, “DVM”"

would set up a buffer called “DVM” large enough to
hold 100 readings. The transfer statement in line 2
would automatically start reading data bytes into the
buffer until it is filled. Setting up device 5 as the talker,
the computer as the listener, and servicing the inter-
rupts as each byte comes ready are all handled by the
[/0 ROM while the remainder of the program con-



tinues executing. When the buffer has filled, a branch
to the user’s service routine labeled “Read” will take
place, where the program can read the data out of the
buffer and process it. It should be carefully noted,
however, that during this transfer process the main pro-
gram should not attempt to do any 1/O operations to
the HP-IB on select code 7. Even though the 9825A is
capable of doing other programming tasks while the
buffer transfer is taking place, the HP-IB itself can only
handle one data exchange at a time. For example, if
during the data transfer the main program were to ex-
ecute a “wrt 723, . . .” statement, the computer would
be addressed as a talker, thereby unaddressing the
DVM (device 5) as a talker, and the 100 readings
would never be completed.

In all of the previous examples we have assumed that
the 9825A was the active controller on the HP-IB, and ,
treated devices on that bus like any other peripheral
device by merely appending the device number to the
select code. We also assumed that the devices we were
addressing as the controller would properly respond by
taking the data we sent when we addressed them as
listeners, and would not place their own data on the
bus until we addressed them to talk. In short, we
assumed that as the controller we were running the
show!

The 9825A is also capable of acting as a non-
controller; that is, just like any other talker/listener on
the bus. Two new questions arise when the 9825A is
connected to the HP-IB in this non-controller mode.
How does the computer know when it should talk and
listen? And how does it read from and write to the bus
without the automatic setting of talkers and listeners
which would be illegal when it is not the controller?

Two solutions are provided to the first problem. The
first way is to check the status byte from the 98034A
interface itself, obtained as the result of the read-status
function; e.g., rds(7). Figure llI-23 shows the meanings
assigned to the various bits in this status byte.

Bit No. 7 6 5 4 3 2 1 0
Name: SRQ ACT TLK LST SAC 1 SPL EOR

Figure 111-23

Bit 5 is set ( =1 ) when the computer is addressed as a
talker, and bit 4 is set when it is addressed as a
listener. (The meanings of the other bits will be dis-
cussed in a later section.) Thus the program can peri-
odically read the status byte and test the appropriate

bits to see if it has been addressed to talk or listen.

A more convenient method makes use of the interrupt
capability so that the program does not have to

periodically sample and test the status byte. While the
other interface cards have only one interrupting condi-
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tion (flag line indicating ready) the HP-IB interface can
be set to interrupt on any combination of eight condi-
tions specified in an interrupt-enable mask (see Figure
111-23). In this mask, bits 4 and 5 being set to one also
correspond to interrupt on the conditions addressed-to-
listen and addressed-to-talk respectively. Thus, the pro-
gram can enable the interface to interrupt and have the
17O ROM branch to a user-written service routine
whenever the computer is addressed as a talker or a
listener. As an example, assume that the 9825A is on

an HP-IB as a non-controller, and is also interfaced to
a DVM using a 98033A BCD Interface (Figure 1l1-24).

BCD Card\.'l’&/'*p'g Card l \‘omer HP-IB
(5C=2) (SC=7) Devices

CONTROLLER

DVM 9825A

Figure 111-24

Normally the 9825A is running a local computation
program (background job). But when the controller
asks for a reading (i.e., makes the 9825A a talker) the
9825A is to take a reading from the DVM and place
the resuit on the HP-IB. Also, the DVM is operating as
a two-channel device (see Section llIC2) and the con-
troller can tell the 9825A whether it wants a reading
from channel 1 or channel 2 by addressing it as a
listener and sending it the ASCII character “1” or “2”.
The following program in the 9825A would accomplish
this task.

0: oni 7, “Service”
1: eir7, 48

: {background job)

54. ‘“'Service’’:

55: if bit (5, rds(7))=1, gto "‘Talk"
56: ‘‘Listen’’: red 731, C

57 iret

58: ‘“Talk’’: red 2, A, B

59: if C=1; wrt 731,A; iret

60: if C=2; wrt 731,B; iret

61: wrt 731, “Error’’, C; iret

Line O specifies that if an interrupt occurs on select
code 7, the program should branch to the routine
labeled “Service”. Line 1 then enables the HP-IB inter-
face to interrupt on either being addressed to talk or
listen. The interrupt enable mask, decimal 48, cor-
responds to a binary pattern of 00110000 (i.e., 16+32)
which sets bits 4 and 5. The main program in lines 2
through 53 then proceeds with its execution.

When the 9825A is addressed as either a talker or a
listener by the controller, the program branches to the
service routine at line 54. Since the interrupt enable
mask specified either of two conditions (talker or
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listener), line 55 then tests the status byte to determine
which condition caused the branch to the service
routine. If the 9825A was addressed as a listener, the
program merely reads and saves in C the new channel
number, and then returns to continue with the
background job. If it was addressed as a talker, it goes
out to the DVM on select code 2 and takes readings
from channels 1 and 2 into the variables A and B.
Then depending on the value of C, one of the two
readings is output to the bus.

The other important point to notice in this program is
that all input from and output to the bus used 31 for
the device number. This is the standard procedure
when the computer is not the controller on that bus.
Since 31 is not a legal device number (see Section
HID3), when the /O ROM detects this specification, it
merely inputs or outputs data on the bus without at-
tempting to do any automatic addressing.

5. Extended HP-IB Control Features

In the previous sections, we have discussed exchanging
data messages on the HP-IB. To this extent, devices
on the HP-IB only differ from devices connected to the
computer by other interfaces, in that more than one
device may be connected to the computer using a
single 98034A Interface card. The real power of the
HP-IB comes from its implementation of extended con-
trol features. If a measuring instrument is connected to
the computer using, for example, the 98032A General-
Purpose 16-Bit Interface, any remote control of that in-
strument’s extended functions (such as resetting it to its
power-on state, disabling its front panel controls, or
detecting when it requires service) is most probably
done by setting external control lines high or low. Each
instrument’s capabilities and method of controlling
these functions will be different, and a good deal of
skill and knowledge of interfacing is required to proper-
ly control these functions using the lines available on
the interface chosen. With the HP-IB, on the other
hand, many of these functions have been standardized
and all instruments that provide for these extended
control features have them accessed by the controller in
the same way. It is the nature and use of these extend-
ed control features that make up the topic of this sec-
tion.

In general, the types of operations that can be remotely
controlled or programmed for a device on the HP-IB
fall into two categories: those that are specific to that
device, and those that are general to all devices. For
example, the setting of the type of measurement to be
taken (e.g., voltage, current, resistance, etc.) and the
range (100 volts, 10K Ohms, etc.) make sense for a

digital multimeter on the bus, but have no meaning for
a printer or a frequency counter. Thus, function and
range setting would be an example of a device-
dependent control operation. To make this type of
control as general as possible, data messages are used
and each device is free to interpret these data messages
as it chooses. We saw in a previous example how the
3490A interpreted the data message “F2R3” as a com-
mand to switch to the 100 Volts AC range. Each
device on the bus has some set of operations that can
be programmed through these data messages, a list of
which is found in the operating manuals for that
specific device.

In this section, we will look at the other category of
device control messages which are common to all
devices on the bus. For example, if we wish to reset a
device on the bus, the IEEE-488 standard defines a
message called device-clear which is recognized by all
devices on the bus. It should be noted that the stan-
dard does not require all devices to implement the
device clear operation; but for those that do implement
it, it is always accessed in the same way using the
device-clear message. Also, using the same example,
the standard does not define what exactly is to be
cleared or reset. This is left up to the individual device.
Some devices on receiving this message may reset
everything to the power-on state, while others may only
clear selected conditions. In any case, the controller
does not require any device-dependent information in
order to issue the device-clear message. The remainder
of this section will discuss these device-independent
messages that can be sent, and the general types of
action that will take place if the device implements a
response to that message.

When we refer to these as device-independent
messages, we simply mean that all devices on the bus
will recognize that a particular message (for example,
device clear) is being sent, regardless of how it chooses
to respond to it. These command messages are encoded
on the data lines as 7-bit ASCII characters, and are
distinguished from normal data characters by the setting
of the attention (ATN) line. That is, when the ATN line
is false, bytes on the data lines are interpreted as sim-
ple data characters. But when the ATN line is true, the
data lines become the carriers of command informa-
tion. The set of 128 ASCII characters that can be placed
on the data lines during this ATN-true mode are

divided into four classes as shown in Figure 11I-20 and
Appendix A. We have already seen how three of

these classes are used to generate talk addresses, listen
addresses, and secondary addresses. The fourth class,
bus commands, is the one used to encode these
device-independent control messages.

In addition to data and command messages, there are
five other bus messages that, because of their impor-
tance and timing considerations, have hardware lines
dedicated to them. These are shown in Figure llI-19.




We have already seen how the attention line is used to
distinguish between simple data and command infor-
mation of the eight data lines. The meanings of the four
remaining lines are explained next.

Interface Clear

(IFC): Only the hardwired system controller can issue
the IFC message. By pulling the IFC line low, all bus
activity is unconditionally terminated, the system con-
troller regains (if it has been passed to another device)
the status of active controller, and any current talker
and listeners become unaddressed. Normally, this
message is only used to abort an unwanted operation,
or to allow the system controller to regain control of a
bus where something has gone wrong. It overrides any
other activity that is currently taking place on the bus.

Remote Enable

(REN): This line is used to allow instruments on the
bus to be programmed remotely by another device on
the bus, usually (but not necessarily) the active con-
troller. Its use is discussed in more detail later in this
section.

End or Identify

(EOI}: Normally, data messages sent over the HP-IB
are sent using the standard ASCII code, and are ter-
minated by the ASCII linefeed character (LF = decimal
10). A device (e.g., a disc) may wish to send blocks of
information in 8-bit bytes which represent general
binary patterns; and no specific 8-bit pattern can be
designated as a terminating character since it could oc-
cur anywhere in the data stream. In this case, the EOI
line is used to mark the end of the data message.
When the listeners detect that the EOI line is set, they
recognize that the byte on the data lines is the last one
of the data message.

The EOI line is also used during an identity (parallel
poll) sequence to be discussed later.

Service Request

(SRQ): The active controller is always in charge of
the order of events on the HP-IB. If a device on the
bus has some information of which the controller
should be aware, it can use the service request line to
ask for the controller’s attention. For example, a printer
might request service to inform the controller that it is
out of paper. Or a digitizer might assert service request
to tell the controller that its sample button was pressed
by the operator and a reading is ready to be taken.

This represents a request (NOT a demand) and it is up
to the controller when and how it will service that
device. However, the device will continue to assert
SRQ until it has been satisfied. Exactly what will satisfy
a service request depends on each individual device
and will be contained in the operating manual for that
device.
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Figure IlI-25 shows the device-independent control
messages that can be sent, and the mnemonics used by
the 9825A Extended [/O ROM to generate these
messages. The two columns in Figure I1I-25 show the
results of these statements when they are sent to the
entire bus (select code only specified) or to a particular
device on the bus (select code and device number
specified).

When the clear statement (clr) is executed, all devices
on the bus execute their clear operation in response to
the device clear (DCL) message. If a device number is
specified (e.g., clr 711), then that device is addressed
as a listener and it alone responds to the selective
device clear (SDC) message. Each device on the bus
may choose how it will respond to the selective (SDC)
or universal (DCL) clear instruction. If the computer is
set to be the system controller, it may also execute the
clear interface (cli) statement which causes the IFC line
to be pulsed low issuing the interface clear message
discussed above.

In some applications it is desirable to have two or more
instruments start their operations at the same time. For
example, we might like to apply a step voltage function
to a circuit under test and measure the transient
response at some node in that circuit. A signal
generator would be programmed to apply the voltage
step and a digital voltmeter would be programmed to
take the voltage measurements. In order to start both

instruments off at the same time, the trigger statement
would be executed which would issue a group-execute-
trigger (GET) message over the bus.

Many bus instruments such as digital voltmeters can
have their various functions and ranges selected either
locally by manually setting their front panel controls, or
remotely by programming messages from a controller.
In order to program such an instrument via the bus,
the remote enable (REN) line must be set. When the
REN line is set, addressing the device as a listener
makes it capable of receiving programming instructions
from the bus. When the 98034A Interface powers up
(or following the IFC message) the REN line is
automatically set. It may be cleared using the local (lcl)
statement. If the Icl statement is executed specifying
both a select code and a device number (e.g., Icl 715},
the REN line is not cleared, but the specified device is
addressed as a listener and that one device receives a
go-to-local (GTL) message. The instrument responds to
the GTL message by switching control from the bus to
the front panel manual controls, allowing an operator
to set its programming controls. In many instruments,
the operator can switch from remote operation to local
operation by pressing a return-to-local button on the in-
strument. If the program controlling the instrument
wishes to prevent manual operation by an unauthorized
operator, it can execute the local lockout (llo) state-
ment. This issues a local lockout (LLO) message on the
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bus that makes the return-to-local buttons on the bus
instruments inoperative. In this state, the only way to
transfer control to manual operation on a particular in-
strument is through the GTL bus message. Using com-
binations of these remote/local messages, a controller
can set up any combination it chooses of instruments
operating remotely or locally as determined by the par-
ticular application.

We have already seen how the read status function
(rds) is used to obtain a status byte from the 98034A
Interface. This status byte contains information such as
the current addressing state (talker, listener, controller,
etc.) of the card. Each instrument on the bus can also
have a status byte which contains useful information
about that device itself. The meaning of the information
in this status byte is determined by each device and
found in the operating manual for that device. In order
to obtain this device status byte, the same read status
function used to get the status byte of the interface is
executed, but a select code and the device number is
given. For example, the function rds(713) would return
the status byte from device 13 on the HP-IB set to
select code 7. On the HP-IB, reading this status byte is
referred to as a serial poll operation. The device is ad-
dressed as a talker, a special control message called
serial poll enable (SPE) is issued, and the bus is placed
in the data (ATN false) mode. Because of the SPE
message, the device addressed as a talker knows not to
put normal data on the lines, but rather its serial poll
{status) byte. The controller reads this byte, and then
issues a serial poll disable (SPD) message to cancel the
SPE message. All of the bits in this status byte are
defined by the device itself to encode any information it
chooses, with the exception of bit 6. If this bit is set, it
identifies that device as being one which is currently
asserting a service request. Thus, when the controller
recognizes that some device on the bus is requesting
service (by the SRQ line being set) it can serially poll
each device to find out which one {or it may be more
than one) requires service.

When several devices on the bus are capable of re-
questing service, the controller does not have to poll
each device serially to determine which one it is.
Another operation called a parallel poll is capable of
polling up to eight devices at one time. Each device is
assigned one of the eight data lines on which to re-
spond when a parallel poll is conducted. When the con-
troller senses SRQ, it conducts a parallel poll by setting
both ATN and EOI true at the same time. (Note: In
the data mode the EOI line has the meaning of end-of-
message. In the ATN true mode, it has the meaning of
identify, in the sense of a parallel poll.) All devices cur-
rently requesting service will then respond on their
assigned data line. And by checking the bits in this poll
byte, the controller can immediately determine which
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devices require service, without serially polling each
one. If the device requesting service has more than one
possible reason for asserting SRQ, the controller may
also conduct a serial poll on that one device; and its
status byte could contain more detailed information
about why SRQ was asserted.

Most devices that are designed to respond to the
parallel poll operation determine which data bit to re-
spond on and what logic sense (high or low) to use by
switches or jumpers set on the instrument itself. Some
devices, however, allow the controller to program them
for this information. This is done using the parallel poll
configure statement (polc) which addresses the device
as a listener, sends the parallel poll configure (PPC)
bus message, followed by a parallel poll enable (PPE)
byte as specified in the polc statement. The bits of this
byte are 0110SPPP, where PPP is the binary
equivalent of the data line on which the device should
respond (0 through 7) and Sis a 1 or a O on that line.
A device that has been programmed for its parallel poll
response may be disabled for parallel poll response by
executing the parallel poll unconfigure (polu) state-
ment. This sends the parallel poll disable (PPD =
01110000) message to that device which cancels any
previous PPE message. If the polu statement is ex-
ecuted using a select code only, with no device
number, a universal parallel poll unconfigure (PPU)
message is sent. This deactivates all devices on the bus
whose parallel poll response can be remotely pro-
grammed.

If the 9825A is not the active controller on the bus, it
too may wish to set a service request (SRQ) to get the
controller’s attention. This is done using the request
service (rqs) statement. This statement has two
parameters which specify the select code of the HP-IB,
and the serial poll response byte, with bit 6 determining
whether the SRQ line should be set. For example, ex-
ecuting the statement rqs 7,37 would set a decimal 37
(binary 00100101) as the serial poll response byte. This
byte is stored on the 98034A Interface to be delivered
any time the controller conducts a serial poll. The state-
ment rgs 7,67 would set a decimal 67 {binary
01000011) as the serial poll response byte, and set the
SRQ line, since bit 6 is set.

Finally, the pass control statement (pct) specifying a
select code and a device number will cause that device
to be addressed as a talker and the take control (TCT)
message to be sent. This will result in active control
passing from the computer to the specified device,
which will then have responsibility for sequencing bus
activity. By addressing the device as a talker (which
automatically unaddresses any previous talker), this
protocol guarantees that only one device will respond
to the take control message and that there will be only
one active controller on the bus at any time.




EXTENDED BUS CONTROL MESSAGES

9825A Statement <SC> only <SC><DN>
clr clear DCL SDC
cli clear interface IFC (error)
trg trigger GET <L> + GET
rem remote REN on REN + <L>
lcl local REN off <L>+ GTL
lio local lockout LLO (error)
rds read status 98034A serial poll

status byte

pol parallel poll parallel poll
pole poll configure (error)
polu poll unconfigure PPU
Qs request service SRQ
pct pass control (error)

(error}
<L> + PPC + PPE
<L> + PPC + PPD
(error)
<T>+ TCT

<L> = specified device addressed as a listener
<T> = specified device addressed as a talker

Figure 11I-25

6. Using the 98034A Interface

Most of the HP-IB operations discussed in the
preceding sections are implemented automatically by
the I/O ROM and by a microprocessor contained on
the 98034A Interface card itself. Since these operations

are well defined by the IEEE-488-1975 standard, and
have been made transparent by the high-level program-
ming language, it is less important that a user of the
HP-IB understand the detailed workings of the interface
card.

There are, however, a few operational characteristics of
the 98034A which the user should understand in order
to properly program the interface for such activities as
interrupt operation, acting as a non-controller, using
the EOI capability, and so on. These characteristics will
be discussed in this section.

Because of the increased complexity of the 98034A In-
terface, four status bytes are required to contain all of
the information about the card which might be of in-
terest to the computer controlling that interface. Figure
I1I-26 shows the meanings assigned to the various bits
in these four status bytes. The information which is
most often used is collected in the fourth of these status
bytes, and is the one returned as the result of executing
the read status function. The other three status bytes
contain less-frequently used information, and can be
obtained from the read-status operation by specifying
additional return variables (see 9825A Extended 1/0
ROM Operating Manual).

First Status Byte:
Z 6 5 3 2 1 g
Device
Error
p g g g A S
Bit 0: Is 1 when error detected.
Bit 2: Is 1 when Device Clear received.
Second Status Byte:
7 6 5 4 3 2 1 0
| | | |
1 1 0 HP-IB Address ———
(MsB) | l l | «sB)
Third Status Byte:
7 6 5 4 3 2 1 0
EOI REN SRQ ATN IFC NDAC NRFD DAV
Logical 1 indicates corresponding signal line is true.
Fourth Status Byte:
7 6 5 4 3 2 1 0
Service | Controller{ Talker Listener | System Serial End
. . . Controller 1 Poll of
Request Active Active Active Set Set Record
Figure I11-26
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Figure I11-26 (cont’d)

Bit 7: Is 1 when the SRQ signal line is true.

Bit 6: Is 1 when the calculator is the active controller.

Bit 5: Is 1 when the calculator is the active talker.

Bit 4. Is 1 when the calculator is an active listener.

Bit 3: Is 1 when the calculator is the active system
controller.

Bit2: Isalways 1.

Bit 1: Is 1 when a sernal poll is in process.

Bit 0: Is 1 when the EOJ (end of record) line is true.

In the first status byte, the error bit (bit 0) is set
whenever an illegal operation on the bus is attempted.
This would include attempting to talk or listen when the
card has not been addressed to do so, or attempting to
specify bus addressing information when the 98034A is
not the active controller on the bus. Normally, these
operations are handled automatically by the /O ROM
and the user need not be concerned with this error in-
dicator.

If the 98034A is not the controller on the bus, and the
controller sends a device clear message, bit 2 of the
first status byte will be set to indicate that this condition
occurred. Both the error and the device clear bits will
remain set until the status is read, at which time they
will automatically clear to be ready for the next oc-
curence of these conditions.

The second status byte contains the bus address (in the
range O to 30) that has been set on the 98034A card,
in bits 4 through 0. This information is normally used
by the /O ROM when it needs to issue its own talk or
listen address as part of the automatic addressing se-
quence associated with read and write statements. It is
available to the user, however, if he should wish to
check the address that the interface card has been set
to.

The third status byte simply contains a direct mapping
of the five bus control lines and the three handshake
lines (Figure [lI-19). Again, this information is required
by the automatic bus drivers in the I/O ROM and does
not normally represent information that is directly
useful to the user’s program.

The information which is most useful to the user’s pro-
gram is contained in the fourth status byte, which is the
one returned as the result of the read-status operation
when the select code of the HP-IB card itself is
specified.

Bit 7 of this byte is an indicator that a service request is
currently active. Notice that bit 5 of the third status byte
also deals with the service request line (SRQ). It is a
one whenever the SRQ Line itself is set, and becomes

a zero whenever the SRQ line is cleared. The service
request bit in the fourth status byte, however, is only
set if SRQ is set and the 98034A card is the active
controller. Thus it indicates that this is a request which
the 9825A, as active controller, is being asked to ser-
vice.

Bits 6 through 3 indicate which combination of the four
possible bus roles (talker, listener, active controller, and
system controller) is currently true for the 98034A
card. Bit 1 indicates that a serial poll operation is being
conducted on the 98034A card by the active controller
on the bus.

Bit O is set whenver a data character is received by the
98034A (as a listener) with the EOI line set. While the
EOI indicator (bit 7 of the third status byte) is a direct
indicator of the state of the EOI line, the EOR bit (bit O
of the fourth status byte) is set only when data is
received with EOI true, and is cleared when the status
byte is read by the computer.

Unlike the other interface cards whose only interrupting
condition is the ready state of the flag line (see Section
lIB1), the 98034 A can interrupt on eight distinct con-
ditions. The most common of these is an interrupt for a
service request (SRQ) from another device on the bus,
and is the condition set if no interrupt enable mask is
specified in the enable-interrupt (eir) statement. (See
Section 1IB5).

7 6 5 4 3 2 1 0

Service | Controller| Talker Listener Input Output Other Enable
Register | Register | Interrupt
Request | Actve Active Active Full Empty |Conditions| EO!

Bt 7 Logical 1 enables interrupt on SRQ

Bit 6 Logical 1 enables interrupt on active controller

Bt 5. Logical 1 enables interrupt on active talker

Bt4 Logical 1 enables interrupt on active listener

Bit 3 Logical 1 enables mnterrupt oninput register full

Bit2 Logical 1 enables interrupt on output register empty

Bit 1 Logical 1 enables interrupt when error detected. device clear or selective device
clear:received (when not active controlier). or EQI received

Bit0 Enable EOI to clear status line (STS)

Figure HI-27

Figure 1lI-27 shows the eight conditions which can be
specified in the interrupt enable mask. Bits 6, 5, and 4
indicate that an interrupt should be generated
whenever the 98034A card is made the active con-
troller (i.e., a take control message is sent from the cur-
rent active controller), addressed as a talker, or ad-
dressed as a listener. The interrupt for one of these con-
ditions will be generated by the 98034A as a result of
two possible circumstances. Either the interrupt enable
bit is set and the corresponding condition becomes
true, or the interrupt bit is enabled and that condition is
already true (that is, the condition is true at the time
the interrupt enable mask is sent to the 98034A).
Thus, for example, the fact that the talker-enable bit is
set and the card is addressed as a talker will not




generate an interrupt. Only when the controller actually
addresses the card as a talker will the interrupt be
generated. As a result, it is not necessary to continually
enable and disable the interface for interrupts on these
conditions. If the “interrupt on addressed to talk” bit is
set, an interrupt will be generated each time the
98034A receives its talk address from the controller.
These three bits remain set until the user’s program
clears them with another interrupt enable mask contain-
ing a zero in these positions (or when the interface is
reset from the computer).

Bit 1 of the interrupt enable mask allows an interrupt to
occur if the device-clear or error bits (status byte one)
are set. The remaining interrupt conditions (bits 3, 2,
and 0) are used by the [/O ROM during buffer transfer
operations. Their correct use is highly dependent on
timing and protocol considerations; and as such, they
do not represent interrupting conditions which can be
useful to a high-level program.

Figure 1lI-28 shows the register assignments used by
the 98034A Interface card.

IN ouT

R4 Data Input Data Output
R5 Status Request Interrupt Mask
R6 Status Bytes & Bus Commands
Interrupt Data
R7 Poll Request Bus Control Lines

& Poll Response

Figure 111-28

Most HP-IB operations use complex sequences of these
register operations, which are handled automatically by
the I/O ROM in response to high-level statements
discussed in Section [IID5. As a result, in most cases it
is neither practical nor desirable for the user’s program
to attempt to carry out HP-IB operations by using the
rdi/wti statements to directly access these registers.

The one exception to this is in the use of EOL. We
have seen {Section IID5) that the EOI line is used to
indicate the end of a data message when binary data is
being sent over the bus. Normally, when ASCII data is
being sent, a special character such as LF (line feed) is
used to terminate the message. If EOI must be used,
buffer transfers will recognize this condition as a ter-
mination of the input transfer operation. The 9825A
does not, however, send EOI automatically with any
data messages. If the user’s program wishes to set EOI,
this can be done using an R7 OUT operation. In fact,
all five of the bus control lines can be set or cleared us-
ing the bit mapping shown in Figure 1II-29.

When the upper three bits of the R7 OUT register are

100, the lower five bits directly address the bus control

lines. In each position, a 1 will set and a 0 will clear

the corresponding line. For example, to send 100 bytes

of data using EOI with the last byte, the following pro- u
gram could be used.

16: forl=1to 99
17: wtb 713, All]

18 next |

19:  jmp iof(7)

20:  wti 0,7; wti 7,144
21, wtb 713, A{100]

Before sending the last byte, the program addresses
select code 7 (wti 0,7) and outputs a 144 (binary
10010000) to the R7 register to set EOl. Then the last
byte is sent with EOI set. Remember that all five bus
lines are set or cleared by this operation. Thus, for ex-
ample, if we wanted to set EOI and leave REN set
(assuming that it was set before this operation) we
would have used a 146 (binary 10010010) instead of
the 144.

It should also be kept in mind that not every device on
the bus is allowed to set the bus control lines. Figure
[11-30 shows the role that a device must currently have
to set each of these lines.

EOI  Talker

IFC  System Controller
ATN  Active Controller

REN  System Controller
SRQ Non-controller

e

Figure 111-30

Finally, Figure 11I-31 shows the responses of the
98034A when it receives the various bus control
messages.

Bit: 7 6 5 4 3 2 1 0
R7 OUT 1 0 0 EOI IFC ATN REN SRQ

Figure 111-29

ATN — As a non-controller, the 98034A gives
its attention to the controller and will
not respond (flag indicates busy) to the
computer during ATN true.

IFC — Clears all registers and indicators to
the power-on state except for the
interrupt-enable mask and the serial
poll response byte.

REN — No response

EOI — Terminates data input transfer to a
buffer. Does not terminate simple read
statement.

6

SRQ — Sets the service request bit (bit 7 of

fourth status byte) and interrupts if bit

7 of interrupt mask is set. _ea |
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DCL, SCD —  Sets bit 2 of first status byte and inter- )
rupts if bit 1 of interrupt mask is set.

GTL, LLO — No response

GET — No response

Serial poll —  98034A delivers the currently set serial
poll response byte without computer
intervention.

Parallel poll — 98034A responds to a parallel poll
using the line and sense set by the
switches on the card.

PPU, PPC — Parallel poll response is switch settable
and not programmable by the con-
troller. No response.

TCT — 98034A assumes active control of the

HP-IB.

Figure 111-31

E. The 98036A Serial 1/0
Interface
1. An Introduction to Serial 1/0

In the previous sections we have discussed interfacing
peripheral devices to the computer in various formats
including 16-bit parallel (98032A), BCD (98033A),
and the HP-IB instrumentation bus (98034A). In all of
these cases, the cards are used to interface local
peripherals and instrumentation clusters which are
physically located near the computer itself. Some ap-
plications, however, may require the use of peripheral
devices which are located at considerable distances
from the computer.

Historically, this need arose when the size and speed of
computers made it practical for them to do multitask-
ing; that is, being shared by several users at the same
time. To do this, each user required his own port into
the computer, called a terminal, through which he
could enter programs and data and get back printed
results. This so-called time-sharing made it possible for
each user to access a central computer from a terminal
located in his own office or work space. The standard
methods of interfacing, however, were not practical in
this case since the cost of running cables containing
many wires over these distances would quickly become
prohibitive. A method of interfacing was needed that
would require the fewest number of wires to connect
the terminal to the computer.

The solution to this problem was found in a new
method of data transmission called serial [/O. In this
method, all data is sent and received over a single pair
of wires in a bit-serial manner; that is, a word or byte
of data is transmitted on a single wire, and received on
a second wire, one bit at a time. We will see later that
in some cases, more than two wires are used to
achieve special features. But in all these cases, the
transmission of data one bit after the other is a
characteristic of serial interfacing.

This method of connecting terminals to a computer
soon led to connecting one computer to another so
that they could exchange programs and data. And it
became possible to connect terminals and computers
located in different buildings, cities, and even countries
by making use of the already existing telephone lines.
But because telephone lines were not designed to
transmit digital (i.e., discrete voltage level) signals, a
device that would translate the digital signals produced
by a serial interface into analog (i.e., modulated audio
tones) signals that could be carried over telephone lines
was required. Such a device is known as a data set or
a modem (modulator-demodulator). Figure I1I-32
shows how a pair of such modems would be used to
connect a computer to a remote terminal or to another
computer.

digita- gata
COMPUTER
' DIRECT SERIAL /O LINK
COMPUTER lT—IJODEM itl ] MODEM TERMINAL
digital data analog data

digital data

TELEPHONE SERIAL /0 LINK

Figure 111-32

Although the interfacing of remote devices is the
primary use of serial I/0, it is by no means restricted to
this use. Many peripheral devices such as keyboards
and printers are available which use a serial com-
munications link to the computer, even though they
may be physically located very near that computer.
Because of the large number of manufacturers making
modems and data terminal equipment, a need for
some standard for compatability was recognized leading
to the RS-232-C standard for serial interfacing in the
late 1960’s. Since this was the most common standard
available prior to the IEEE-488-1975 (see Sectin IID1),
many manufacturers of peripheral devices designed
them with serial interfaces to take advantage of this
compatability .




2. Data Transmission Using Serial
I/0

In this section, we will discuss in detail the method by
which data is transmitted over a serial communications
link, and introduce some of the terminology associated
with serial I/O. The concepts involved are not difficult,
but unless they are understood a great deal of confu-
sion can result.

As with the other methods of interfacing, information is
most commonly transmitted over the data line using
two voltage levels to represent the two possible states
of a binary digit or bit (1 or 0). We will see later that
another convention called current loop is sometimes
used in which current levels, rather than voltage levels,
are used to represent this information. Figure 1II-33
shows the voltage levels for these two states, and the
meanings assigned to each.

State: LOW HIGH
Voltage range: —3 to —25V +3 to +25V
Binary state: logic 1 logic O
Level name: mark space

Figure 111-33

When data is not being transmitted, the line is held in
the low state. Unlike the other methods of interfacing,
the serial protocol does not use any type of handshake
process. When the transmitting device has a byte of in-
formation ready to send, it merely puts the information
on the data line, expecting the receiving device to be
ready to take it. If the first bit of the data byte sent hap-
pens to be a logical 1 (low state), the receiver could
not distinguish this bit from the quiet line, which is also
a low state. Therefore, each byte of data is preceeded
by a start bit, which is defined to be in the high state.
This transition from the low state (idle line) to the high
state (start bit) lets the receiver know that a byte of data
is being transmitted. As an example, lets look at how
the transmitter would encode the ASCII character “E”
to be sent over the data line. Figure IlI-34 shows the
state changes that take place on the data line to send
the ASCII “E”. The transmitting device first pulls the
data line high (start bit) to tell the receiver that a data
byte is coming. It holds the line high for an amount of
time agreed upon between the transmitter and the
receiver, called a bit time. Following the start bit, the
bits of the data byte itself are placed on the data line.
The least significant bit (bit 0) is sent first, and each bit
is held on the line by the transmitter for one bit time.
When the receiver senses the leading edge of the start
bit, it waits for one half of a bit time in order to syn-
chronize itself as closely as possible to the center of that
start bit. Then, each bit time interval after that, it
samples the state of the data line and reads a logic 1 or
0. These time intervals at which the receiver samples
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the data line are marked by ticks in Figure IlI-34. After
the last (most significant) data bit has been sent, the
transmitter may also send a parity bit (marked P in
Figure 11I-34) which will be discussed later.

ASCII “E" = 69 (decimal) = 105 (octal) = 01000101 (binary}

I Ls

ST 0O 1 0 0 0 1+ 0 PSTP ST ---

o
1 bit time

Figure 111-34

From this diagram, we see that the successful transmis-
sion of a data byte is highly dependent on precision
timing. If the receiver is sampling the data line at a rate
significantly faster or slower than the transmitter is set-
ting that line, it is possible that the receiver will either
miss a bit, or sample the same bit twice, resulting in er-
roneous data being received.

After the last data bit has been sent, the transmitter
then allows the line to stay in the idle (low) state for
some set minimum time interval before sending the
next start bit to begin the next character transmission.
This idle time is sometimes called a stop bit, although it
does not actually represent a bit of real data. It merely
allows the receiver time to process the data byte just
received before the next one comes along. For some
devices, one bit time may not be enough to process the
previous character and be ready for the next one. In
this case, the transmitter and receiver may agree that
the transmitter will wait in the idle state for 1.5 or 2 bit
times before sending the next start bit.

In the example used in Figure 1lI-34, we sent the
character “E” using an 8-bit ASCII code. That is, eight
of the bits sent represented the actual data. If we in-
clude the start bit, a parity bit, and one stop bit, we see
that 11 bit times are actually required to send an 8-bit
byte of data. As an example, lets assume that the
overall transmission rate we are using is 10 characters
per second. This data rate is very common among
printing terminals such as the popular Teletype ASR
Model 33. Figure I1I-35 shows the timing characteristics
for this example case.

Character length = 8 bit

Bits/character = 8 + Start + Parity + Stop = 11
Data Rate = 10 characters/second

Bit rate = (10 char/sec)(ll bits/char) = 110
bits/sec

Bit time = 1/110 bits/sec = 0.009091 sec = 9.1
msec

Figure I1I-35

Thus we see that at 110 bits per second, each bit is
held on the data line for approximately 9.1
milliseconds.



This bit rate of 110 bits per second is sometimes
refered to as a baud rate and we often speak of the
data channel running at 110 baud. Strictly speaking, a
binary data channel (i.e., one using low and high
voltage levels) should only be described by the term bit
rate, the word baud being reserved to characterize the
data transmission rate of the analog signals sent be-
tween modems. Because of bit compression schemes
used in some modems, the bit rate and the baud rate
may not always have the same value. For our pur-
poses, we will treat modems as transparent devices that
convert digital information to analog and back to digital
for long distance communication; and as such, we will
only be concerned with bit rates.

The field of data communications and serial 1/0 prob-
ably has more terms associated with it than any other
method of interfacing. It is probably also the area in
which the terms are most commonly misunderstood
and misused. In order to avoid some of this confusion,
we will spend the remainder of this section discussing
some of those terms and concepts that will be useful to
understand when using the 98036A Serial /0 Inter-
face.

Returning to Figure III-34 we see that although the bits
within the data byte must be sent at precise intervals,
there is no restriction on the time between characters
except that the required stop time be allowed. Indeed,
it is this lack of a time restriction that makes the start bit
necessary, so that the receiver will recognize the next
character. This mode of transmission is called bit-
synchronous, character-asynchronous or more com-
monly, simply asynchronous transmission. As we saw,
it requires 11 bit times to transmit 8 bits of actual data.

The extra start and stop bits can be eliminated if a
group of data bytes is transmitted as a single block,
with start and stop indicators only at the beginning and
end of the entire block. This means that as soon as one
data byte is sent, the next one must be transmitted im-
mediately with its first bit occuring at the next bit time
interval. (This method of transmission is called syn-
chronous communication.) Although this eliminates the
intermediate start and stop bits, it also places a heavier
burden on the transmitter and the receiver. Their inter-
nal clocks which determine when each bit time interval
is to be marked must be precisely synchronized so that
they do not drift out of phase with one another. Also,
if the transmitter does not have the next data character
ready to send when the next bit time occurs, it must fill
in with some pre-defined sync character so that the
transmitter and the receiver do not loose their syn-
chronization. In general, protocols for synchronous
data transmission can become quite complex. Since
HP desktop computers are intended to be both stand-
alone computing devices and instrumentation con-
trollers which can also go on line to another computer
when required, and not intended to act as a terminal

emulator as their primary function, only asynchronous
data communciations is supported on these machines.
Since most large computers and timeshare services
support asynchronous terminals, this mode of opera-
tion is satisfactory for most applications.

Up until now we have talked about serial transmission
as through it took place over a single wire. Obviously,
a common signal ground is also required so that both
the transmitter and the receiver can measure the
voltage levels on the data line with respect to the same
reference point. Thus the simplest form of serial com-
munication requires two wires for the data transmis-
sion.

If communication over the data line is always in one
direction, the data channel is said to be operating in
the “simplex” mode. For example, an RS-232-C
printer would only receive information, while a device
such as a tape reader would only transmit data. A ter-
minal, however, may both send and receive data since
it has both a keyboard (data transmitter) and a printer
or a CRT (data receiver). In Section IIID2 we saw that
the HP-IB allows bidirectional communications over a
set of data lines. That is, the same set of data lines is
used for sending information from device A to device
B, and for sending information from device B to device
A. A special HP-IB protocol (i.e., addressing talkers
and listeners) is used to control the traffic on this set of
data lines.

Since communication in one direction over an RS-232-
C link uses only one wire, such protocols can be avoid-
ed by allocating separate transmit and receive data
lines, with a common signal ground line used for
reference. Figure III-36 shows a schematic representa-
tion of such an RS-232-C data link.

DATA
COMMUNICATIONS
DEVICE

Transmitted Data DATA

TERMINAL
DEVICE

Received Data

(Computer or

Modem) Signal Ground

Figure I1I-36

Typically, the devices represented in Figure I1I-36 will
be a computer (or a modem for remote communica-
tions) and a terminal. But this same diagram can also
represent a link between any two RS-232-C devices.
For thjs reason, the two devices are often referred to
by the more general terms Data Communications
Equipment (DCE) and Data Terminal Equipment
(DTE). Also, the terms transmitted data and received
data are defined relative to the terminal (DTE device).

An output-only device operating in the simplex mode
would only implement the transmit and ground lines,
not using the received data line. An input-only device
would implement the received data and ground lines. If




a device can both transmit and receive data, it would
implement all three lines. Such a device is said to be
operating in the “duplex” mode.

When two devices are directly connected over an RS-
232-C link, they normally operate in what is called a
full-duplex mode. This means that data may be
transmitted and received simultaneously. Information
may be carried from the DTE to the DCE on the
transmitted data line at the same time that information
is being sent from the DCE to the DTE on the received
data line.

If these devices are connected over telephone lines us-
ing a pair a modems, only one data path (the phone
line) interconnects the two modems. In this case, full
duplex operation is still possible since many modems
are capable of multiplexing the two signals representing
the transmitted and the received data. As the transmis-
sion speed (baud rate) increases, however, the amount
of information being sent by both transmitters
simultaneously eventaully exceeds the capacity of the
telephone line. Thus, when using high-speed modems,
a special protocol is used called half-duplex in which
only one device at a time is allowed to transmit data to
its modem for sending over the telephone line.

Figure II[-37 shows a schematic representation of all
three of these modes of operation. Notice that while
the computer is playing the part of a modem in the
simplex and full-duplex modes, in the half-duplex
mode it is operating as a terminal, as is shown by the
labeling of the transmitted and received data lines.

(not connected)

—
Transmitted Data RECEIVE-ONLY

DEVICE
(Printer)

COMPUTER Received Data

Signal Ground

]
SIMPLEX MODE
Transmitted Data
R
COMPUTER ecewved Data TERMINAL
Signal Ground
FULL-DUPLEX MODE
1 Transmitled Data
H Received Data o TERMINAL

Signai Ground

Telephone
line

Transmitted Data
Received Data

COMPUTER

Signal Ground

HALF-DUPLEX MODE

Figure 111-37

So far, we have been using the terms half-duplex and
full-duplex to describe the characteristics of the com-
munications line itself. These terms are also applied to
classify terminal types with similar, but not quite iden-
tical meanings. To clarify this, lets look at the
characteristics of a terminal in operation.

Figure IlI-38 shows a schematic representation for a
half-duplex terminal. It consists of a keyboard for enter-
ing information to be sent to the computer, an output
device such as a printer or a CRT for displaying infor-
mation sent back by the computer, and some electronic
hardware for selecting the transmit or the receive mode
of operation on the half-duplex data line.

r 1
! PRINTER |
| o) t
| SELECTOR t
| | xeveoaro |
| |
[

TERMINAL 1

COMPUTER

Figure 111-38

Information typed in on the keyboard is sent to the
computer, and its responses are sent to the terminal’s
printer. Since it is very difficult to type on the keyboard
without some visual feedback as to which keys have
been pressed, the half-duplex terminal will also send its
keystrokes to the printer as indicated by the arrow in
the figure. Thus the printer shows a record of both the
input from the keyboard as well as the output from the
computer.

If, due to electrical noise on the data line, a bit is
dropped (i.e., a transmitted 1 or O is received as a 0 or
1) the computer will not receive the same message as
sent by the terminal. But since the information on the
printer was generated by the keyboard, the message
looks correct even though the computer responds with
an error indicating that it did not understand the
message received. This problem can be alleviated by
operating the terminal in the full-duplex mode, and
taking advantage of a capability offered by many
timeshare computers called echo-back or simply echo.
Figure III-39 shows how a terminal would operate in this
mode.

received
data

;) COMPUTER

transmitted
data

Figure 111-39

The keyboard on the terminal does not directly drive
the printer. Instead, as each key is pressed, it is
transmitted to the computer which receives it for pro-
cessing, and also echoed back to the terminal to be

o
-
-
"
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output on the printer. In this mode, the operator at the
terminal still gets visual feedback of what has been
typed. But the characters printed are those received by
the computer and echoed back. Now if there is a
transmission error, the operator sees the incorrect
character on the printer and can send a backspace
character and retype the correct character.

Some terminals operate in only the half-duplex or the
full-duplex mode, while others will operate in either
mode, usually selectable by a switch on the terminal
itself. If a terminal is operating in the half-duplex mode
with a computer which echoes characters back, each
keystroke will be printed twice — once from the
keyboard and once from the echo back. Thus typing
the message “HELLO” would result in the printer
showing “HHEELLLLOQO”. On the other hand, if a
full-duplex terminal is communicating with a computer
that has no echoback capability (or has this feature
turned off), neither the computer nor the keyboard is
driving the printer during the typing of messages at the
terminal, and the operator is “running blind”. This
close association between half and full duplex operation
of a terminal, and having echo turned on or off, can
lead to confusion unless this association is understood.
When a selectable terminal is run in the half-duplex
mode, the keyboard drives the printer and echo should
be suppressed on the computer. In the full-duplex
mode, the keyboard does not drive the printer and the
echoback feature of the computer should be on. If the
particular computer being used cannot have its echo
turned on or off, this will dictate the mode of operation
of the terminal.

3.Control Lines and the RS-232-C
Standard

Until now we have been concerned only with data
transmission over serial 1/O lines. This method pro-
vides a simple means of communication over a
minimum number of wires, but does not allow for
much flexibility. As data communications equipment
became more sophisticated, the need for more control
arose. For example, if a data terminal device offered
the ability to perform more complex tasks (e.g., save a
block of received data on a magnetic tape unit}, it
might require more than the provided stop-bit time be-
tween characters to perform these operations. With the
advent of telephone communications and modem
equipment, other new needs arose such as the ability
to detect when a computer was trying to dial up a
modem, and when it had dropped the line (i.e., hung
up) at the end of the communication.

In an attempt to prevent total confusion in this area
with every manufacturer implementing these control
features in whatever manner they chose, resulting in
lack of compatability between serial I/0O devices, the

Electronic Industries Association (EIA) tried to define a
standard to guide designers of serial I/O equipment.
After several proposals and earlier standards, the EIA
RS-232-C standard was adopted in 1969 and is used
today by a large number of manufacturers of data com-
munications equipment.

Even though the RS-232-C standard is the most
popular one in use today, several other standards exist
which allow for more capabilities in certain areas of ap-
plication. Some of these are very close to the RS-232-
C in their definitions. And the user setting up a serial
[/0 system should be careful to recognize equipment
which claims to be RS-232-C compatible but may have
“slight” differences. In any given application, these dif-
ferences may or may not be enough to prevent com-
patability with a true RS-232-C device.

Data communications devices which are RS-232-C
compatible use a standard EIA 25-pin connector,
shown in Figure Ill-40. The computer or modem (DCE)
cable terminates with a female connector, and terminal
devices (DTE) use a male connector. Although this
polarity is the common one, some devices will be
found which use the opposite type of connector. The
problems that this can cause will be discussed in Sec-
tion IIIE6.

Figure 111-40

Figure IlI-44 shows the various data and control lines
that have been assigned to each of the connector pins
by the RS-232-C standard. The arrows are used to
show the direction of each line. That is, an arrow to
the right signifies that the signal described is generated
by the DCE device and received by the DTE; while an
arrow to the left signifies a signal from the DTE to the
DCE. Notice that the terms transmitted and received
data (pins 2 and 3) are named relative to the data ter-
minal device. In the following paragraphs, we will
describe each of these lines; not in the order of their
pin assignments, but collected into logical groups ac-
cording to their functions.

Protective Ground (Pin 1)
This line is connected to the chassis ground of the
device which is usually connected to the external




ground of the power supply for safety reasons.

Transmitted Data (pin 2)
Received Data (pin 3)
Signal or Logic Ground (pin 7)

These three lines are used to obtain full-duplex data

exchange and have already been discussed in Section
IIE2.

Request to Send (pin 4)
Clear to Send {pin 5)

Data Set Ready (pin 6)

Data Terminal Ready (pin 20)

These four lines perform status indication functions
between the modem and the terminal, and indicate
various go/no-go conditions. The Data Set Ready
(DSR) and Data Terminal Ready (DTR) lines are
similar to the PSTS line on the 98032A card (see Sec-
tion IlIA). When they are on (high voltage level}, they
indicate that the device is operational. For example,
the data set (modem) might turn off DSR if it were
switched into the test or dial mode, or if it lost the car-
rier signal on the telephone lines. Similarly, the ter-
minal would turn off DTR if it were switched from the
on-line to the local mode of operation.

The Request to Send (RTS) and Clear to Send (CTS)
lines perform different functions depending on the
mode of operation. In the half-duplex mode, they are
used to control the channel direction, or direction of
communication flow on the data line.

Normally these lines are used by data communications
equipment manufacturers to implement the various
serial /0O protocols, and are not of concern in simple
data exchanges between RS-232-C devices. The user
should be aware, however, that some modems and ter-
minals will not operate properly unless certain of these
lines are set to the on state. We will discuss this further
in Section IIIE4 when we see how the 98036A card
sets and clears these lines.

Ring Indicator (pin 22)

Carrier Detect {pin 8)

Signal Quality Detector (pin 21)
Data Signal Rate Selector (pin 23)

These four lines are used when the terminal is
operating with a modem using telephone communica-
tions. The Ring Indicator indicates that the telephone
ringing signal is being received on the communication
channel. The Carrier Detect indicates that the acoustic
signal or tone that is modulated to carry the data infor-
mation is being received. Loss of this carrier indicates
that the communication channel is no longer establish-
. ed. Some modems can detect from the waveform of
the carrier signal when there is a high probability of an
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error in the received data. This condition is indicated
by the state of the Signal Quality Detect line. The Data
Signal Rate Selector line is used by some modems with
dual rate capability to switch between two data signal-
ing rates.

When connecting RS-232-C devices to HP desktop
computers using the 98036A Interface, these lines
would not normally be used, although, they are made
available for setting and testing by the interface.

Transmitter Clock (pin 15)
Receiver Clock (pin 17)
Transmitter Clock (terminal source) (pin 24)

Normally, each device has its own internal clock signal
used to send and receive data bit patterns at the correct
bit-time intervals. If a device does not have its own
clock, or if it wishes to use the other device’s clock for
special data rates or synchronization purposes, these
lines are used to transmit those clock pulses.

Secondary Transmitted Data (pin 14)
Secondary Received Data (pin 16)
Secondary Request to Send (pin 19)
Secondary Clear to Send (pin 13)
Secondary Carrier Detect (pin 12)

These lines are assigned by the RS-232-C standard in
order to allow for a second data communications chan-
nel. The 98036A does not support this secondary
channel, although two of the control lines assigned for
this channel (Secondary Request to Send and Secon-
dary Carrier Detect) are made available to the com-
puter and can be used for whatever purpose the user
finds convenient. This assumes, of course, that the
device being interfaced to does not use these lines for
their assigned meanings.

As we will see in Section IlIE4, some of these lines are
implemented by the 98036A Interface while others are
not. For example, the transmitter and receiver clocks
(pins 15 and 17) can be externally controlled on the
98036A, while the terminal source transmitter clock
(pin 24) is not implemented. Also some of the second-
ary channel lines are provided since they are
sometimes used in implementing half-duplex protocols.

4.The 98036A Serial 1/0O Interface

In Section IIIE1 we showed how a serial communica-
tions link is used to connect a computer to a remote
terminal. Using the 98036A Interface card, HP desktop
computers can participate in this communications link,
acting as a substitute for either the computer, the ter-
minal, or both. In the last case, the serial /O link is
used to allow two desktop computers to be connected
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together for program and data exchange. Figure IlI-41
shows a schematic representation of these three
methods of interfacing.

DESKTOP
COMPUTER o]

98036A (Standard)

~——] DESKTOP
COMPUTER MODEM N MODEM
[coveores f— [rooevp—e] i

98036A (Oplion 00T)

DESKTOP DESKTOP
COMPUTER 3 ( COMPUTER

98036A (Std) 98036A (Option 001

e

Figure 111-41

The desktop computer can be any one that uses the
98036A Interface, and we will be using the 9825A as a
representative example. Depending on whether the
9825A is playing the part of the computer or that of
the terminal, the RS-232-C pin assignments will be
slightly different. For example, as a terminal, the
98036A card should transmit its data on pin 2 and
receive on pin 3 (see Figure I1I-44). But the 98036A
card on the computer end of this link will receive data
on pin 2 and transmit on pin 3. (Remember that the
terms transmit and receive are named relative to the
terminal.) Therefore, two versions of the 98036A Inter-
face are required. The standard version makes the
9825A look like a computer or a modem, and is used
to connect it to a terminal device. The option 1 version
makes the 9825A look like a terminal and allows it to
be connected to a computer or a modem. When we
say that the 9825A looks like a modem or a terminal,
we mean only the way in which it handles the data
communications channel. Additional software (i.e., a
program in the 9825A) is required to allow it to
emulate the actual operation of a modem or a ter-
minal. The only function of the interface card is to send
and receive information over the data line, and to
make the various RS-232-C control lines available for
setting and testing. Any higher capability such as ter-
minal emulation must be handled by a running pro-
gram in the 9825A.

Figure 11I-42 shows the meanings that have been given
to the interface registers on the 98036A in order to ac-
cess the various data and control lines.

IN OuT
R4 [Data In* Data Out*
R5 {Status In Control Out
R6 |Extended Status | Extended Control
R7] (not used) Trigger

*These registers are also used for special status and control information.

Figure 111-42

Data input and output with the 98036A is handled in
the same way as described for the 98032A Interface.
That is, data bytes are sent and received through the
R4 registers, and the R7 OUT register is used as a trig-
ger. The same drivers presented in Section [IA4 are
used to exchange data with the 98036A Interface. Us-
ing these drivers, the card is operated in the half-
duplex mode only. Data may be sent or received, but
not both at the same time. We will see later how the
interrupt structure of the 9825A can be used to allow
full-duplex operation.

Data exchange with the 98036A card is done as
through it were an 8-bit paralle] interface. An entire
byte of data is sent to the card via the R4 OUT
register. When the R7 OUT trigger is issued, the inter-
face automatically breaks it down into a sequence of
serial bits and supplies the required start and stop bits
(plus a parity bit if parity is being used). It also takes
care of the necessary timing requirements.

Most of the complex protocol for exchanging data over
the RS-232-C channel is handled by a large-scale in-
tegrated circuit (Intel 8251) called a USART (Universal
Synchronous/Asynchronous Receiver and Transmit-
ter). This USART is the heart of the 98036A and im-
plements most of the data, timing, and control re-
quirements specified by the RS-232-C standard. The
remaining electronics of the 98036A provide an inter-
face between this USART and the I/0 backplane of
the desktop computer. It should be mentioned that
even though the USART is capable of supporting syn-
chronous communications on the data channel, a com-
plex driver would also be required in the desktop com-
puter to implement one of the byte-oriented syn-
chronous protocols (e.g., BISYNC), since these pro-
tocols are not provided by the USART itself. As a
result, only the asynchronous mode of operation is
supported on the 9825A using the 98036A Interface.

The status (R5 IN) and control (R5 OUT) registers on
the 98036A are used for setting and testing various
modes of operation of the interface card itself. Figure
[11-43 shows the assignments that have been made for
the bits in these registers.

R5 Registers
R5 OUT Register

BIT 7 BIT 6 BIT 5 BIT 2 BIT 4

Programmed
Intertace

Enable Reset

R5 IN Register

BIT 8 BIT 7 BIT 6 BIT 5 8IT 4 BIT 3 8IT 2 8T 1 BIT ¢

Intertace
Peripheral | |0,

i g Intertace
Status 1 Enable Status og

Interface Status 2
o1 # Fo | Recover

Figure 111-43



Most of these bits are used for operating the card in the
interrupt mode, and will be discussed in the next sec-
tion on interrupt programming. The remaining bits will
be discussed here.

Bits 4 and 5 of the status (R5 IN) byte contain the in-
terface type identification bits {see Section [IC2). Bit 5
of the control byte (R5 OUT) is set to a 1 to cause the
98036A to return to its power-on state. The USART
itself on the 98036A card makes use of two full bytes
of control information, and provides one byte of its
own status information. Since there are not enough bits
in the R5 registers to contain all of this information, the
98036A card u;tilizes a multiplexing scheme to gain ac-
cess to these USART registers. This scheme works in
the following manner. If bit O of the control byte (RS
OUT) is set to a zero, the R4 registers have their nor-
mal meanings of data in and data out. If, on the other
hand, this bit is set to a one, the R4 registers are now
used to access the USART status, mode, and control
bytes. Because of this mode of access, these USART
registers have been given the names R4C, R4D, and
RAE. Figure I1I-43 shows the meanings given to the
various bits in these registers.

R4 Registers

R4C Mode Word

Bz | aTs BIT S BIT 4 svs | B2 811 | eTo
t
Number o* Stop Bils Craracter Lengih 1 Fate Factor
00 = not valig Panty Type | Panty Eravle 00 - Suits = ot user
01- bt 0= 0dd 0 = Disable 01 = G biis - % bit ate clock
10 = 1 5bis 1 = Even 1 = Erave 10 = 7bis rate clack
11200 1= 8o clock

R4D USART Control Word

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 81T 2 BIT 1 BITo
Clear Ta Send Data Set Ready
Pin 5 (Standard)| Resef Status Pin 6 (Standard)

USART —_ Send Break Enabie Data
i Tecmir Enaple Data
Reset Foquesi To | Bits of USART | Eravie 0252 | Dare Termnal

(Op’:wn 001)
R4E USART Status Word

BT 7 81T 6 BT 5 Bit 4 BIT 3 8T 2 BT 81T 0

Always 0
" haracter | Recerv

Reagy Pn2g | Transmi tter

o)
Dta St Ready | Aiways 0 Framing Overrun Pacty Transmi ter Recewer Transm ter
oo Error o Error

(Option 001}

Figure 111-43 (cont’d)

Before discussing the meanings of these bits, lets look
at how each of them is accessed. The USART Status
Byte (R4E) would be obtained by setting bit O of the in-
terface control register (R5 OUT) to a one. A normal
data input operation is then performed. Since this con-
trol bit is set to a one, this tells the interface to place
the USART status byte in the input (R4 IN) register,
rather than a normal data byte. When this sequence is
finished, the card should be returned to the data mode
by setting bit O of the control byte (RS OUT) back to a
zero. Thus, the sequence

wtc 11,1: rdb(11) = A; wic 11,0

would result in reading the USART status byte (R4E)
and placing its decimal equivalent in the variable A. In

a similar manner, the sequence
wte 11,1; wtb 11,X; wic 11,0

would output the contents of the variable X to the
USART control byte (R4D). The USART also uses a
mode word (R4C) which is accessed through the
following sequence.

stc 11,1; wtb 11,64,A,B; wtc 11,0

The 98036A (set to select code 11} is set to the control
mode and a decimal 64 (binary 01000000) is sent to
the USART control byte (R4D) as in the example
above. This sets bit 6 of the R4D register, which is a
reset for the USART. In addition to its other reset func-
tions, it also places the USART in the mode where the
next two bytes output are sent to the R4C and the
R4D registers respectively. In the example above, the
value of A would be sent to R4C and B to R4D. Of
course, bit 6 of the binary representation of B should
not be a 1 or the USART will again be reset, nullifying
the output to R4C and R4D.

The R-232-C standard specifies certain characteristics
of the data line such as the voltage levels used, the
start/stop protocol, etc. Other characteristics of the
data transmission are left more flexible by the standard.
These include the following: the bit rate (bits per
second) at which the data is transmitted; the number of
bits per character; the type of parity (even, odd, or
none) to be used; and the number of stop bits. These
characteristics can be chosen to suit the given applica-
tion, so long as the sender and the receiver both agree
on the particular set of characteristics to be used.
Unless all four of these characteristics are the same for
each end of the channel, the data transmitted will not
be properly interpreted by the receiver. For example, if
the transmitter is sending data at 300 bits per second
(bps) and the receiver is operating at 600 bps, the data
pattern 10010--- transmitted will be received as
1100001100--- since the receiver is sampling the data
line twice as fast as the transmitter is setting it. When
the receiver displays the characters it thinks it has
received, they will appear totally unintelligible. Such
received data is usually refered to as “garbage”.

The 98036A allows for a wide range of flexibility in
each of these four categories. The data rate may be set
to all of the more common values in the range 75 to
9600 bps. The character length may be set to b, 6, 7,
or 8 bits per character. Most ASCII devices will use 7
or 8 bits per character, with the 5 and 6 options only
used by special devices that use more limited character
sets. the number of stop bits may be set for 1, 1.5, or
2 As mentioned before, these are not actual bits but
rather the minimum time that the data line must be

held in the quite (low) state before the next start bit can

be sent.

Because of the nature of serial I/O transmission, data
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on the line is very susceptable to “dropping bits”; that
is, having a bit sent as a 0 or a 1 being received as a 1
or a 0. In order to detect when this happens, a scheme
called parity checking is often used. The transmitter will
supply an extra bit to be sent with each character that
is not part of the data itself. This parity bit is set in such
a way that the total number of bits set to a one (both
data and parity) is always even or always odd. Each
character that the receiver gets is checked to make sure
that the received data has the proper parity. For exam-
ple, Figure IlI-34 shows the bit pattern used for sending
an ASCII “E” character. Since there are an odd
number of 1’s (three) in the ASCII representation of an
“E”, and the parity bit is a zero, this particular example
is using odd parity. If even parity were being used, the
parity bit would be set to a one to bring the total
number of 1’s to an even number (four).

It is important to note that if parity is not being used,
the parity bit is not even transmitted. This can lead to
some confusion because of the way other methods of
interfacing handle parity. For example, when 7-bit
ASCII data is being sent over an 8-bit parallel interface
{such as the HP-IB), the eighth bit is not being used for
the 7-bit ASCII characters and is sometimes used to
send a parity bit along with each data character. If pari-
ty is not being used, the eighth data line is still there
and is usually always set to a zero. This sometimes
leads to the conclusion that in serial 1/0, if parity is not
being used, the parity bit is always set to a zero. But in
actuality, if parity is not used, the parity bit is not even
sent.

When connecting a 98036A card to another serial I/0
device, the user must know the values for each of the
four characteristics, bit rate, bits per character, parity
and stop bits, and set the 98036A to match them. This
information is usually contained in the operating
manual for that device, or from a timeshare service if
the user is going to go on line to a timeshare com-
puter. As an example of the difficulty that can arise,
such a manual or a timeshare service might specify
“8-bit data, even parity”. After some trial-and-error
evaluation, it becomes clear that the device is actually
using 7 data bits plus parity, and in their specification
they are considering the parity bit to be part of the
data. Being aware of this lack of consistent terminology
can sometimes save much time in determining the
operating characteristics of a serial I/0O data line.

All of these options for data line characteristics can be
set on the 98036A card by the use of switches, (see
Appendix). In addition, the character length, number
of stop bits, and parity can be set through the R4C
Mode Word, overriding the switch settings on the card.

The mode word also allows the the setting of a value
called the bit rate factor. In Section IIIE2 we discused
how both the transmitter and the receiver must
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measure time intervals called bit times to determine
when to set or sample the data line for the next bit.
The more precisely these bit time intervals can be
measured, the less likely it is that the time intervals of
the transmitter and receiver will drift with respect to
one another and cause an incorrect data exchange.
Normally, an internal clock on the 98036A card is set
to run at 64 times the bit rate being used. By dividing
the bit time interval into 64 parts, the exact center of a
bit on the data line (Figure IlI-34) can be more precise-
ly located. At bit rates greater than 2400 bps, however,
the internal clock cannot run this fast. As a result, at
4800 and 9600 bps the bit time intervals are divided
into 16 parts instead of 64, dropping the demands on
the internal clock back into a range in which it can
operate. This bit time interval divider and its associated
restrictions are in the USART itself.

The R4D control byte is used to control various func-
tions on the USART itself. We have already discussed
how bit 6 is used to reset the USART and to address
the R4C mode word. When the 98036A is reset (either
by pressing the reset key on the 9825A or by setting bit
5 of the interface control register, R5 QUT), a default
value of 5 is set for R4D. This sets bits 0 and 2 which
enable the USART for data transmission and reception.
Normally, these bits are always left on and any output
to the R4D register should include these bits.

Two other bits, 1 and 5, are used to set or clear the
two most commonly used RS-232-C control lines.
These are Clear to Send and Data Set Ready when the
98036A is acting as a computer or modem interface;
or Request to Send an Data Terminal Ready when the
98036A is acting as a terminal interface (option 001).
As we mentioned in Section IlIE3, many terminals or
modems will not operate unless they see one or both
of these lines set.

When the data channel is operating in the half-duplex
mode, the computer and the terminal follow an agreed
upon set of rules that determine when each of them
will transmit on the data line. If the computer is cur-
rently transmitting a large block of information, the ter-
minal cannot transmit. If it would like to get the com-
puter’s attention (for example, to abort the data
transfer) it would follow some agreed upon protocol for
interrupting the transmission and turning around the
communications link. In full-duplex operation, this is
accomplished by sending what is called a break
character. Strictly speaking, this is not a character in
the sense of a transmitted data character. It merely
holds the data line high for a period of time that is
longer than one complete character time, typically
about 200 milliseconds. The receiver of the transmitting
device detects this, and can act on it as it chooses.
Most timeshare computers are set up to abort the cur-
rent I/O sequence and return control to the terminal
when a break character is detected. We will discuss the




98036A’s response to receiving a break character. The
break character is sent by setting bit 3 of the R4D
register. This holds the transmitted data line high until
this bit is again cleared to a zero. For example, the se-
quence

wte 11,1; wtb 11,47; wait 200; wtb 11,39; wtc
11,0

would set bit 3 of R4D and then clear it after a 200
millisecond wait period. During both the setting and
clearing of the break bit, bits 5, 2, 1, and 0 are
specified (47 decimal = 00101111 binary) in the logic
1 state so that the transmitter and receiver remain
enabled, and the two control lines (bits 1 and 5) re-
main set.

We will see that three of the bits in the USART Status
Byte (R4E) are used as error indicators. Bit 4 of the
R4D register is used to clear all three of these error in-
dicators.

The R4E register returns a status byte from the USART
itself containing information about various situations
that can occur there. Bit 7 is used to monitor either the
Request to Send line (standard card) or the Data Set
Ready line (option 001 card). Normally these lines are
only used when implementing special protocols.

Three of the bits in R4E indicate the status of the input
(bit 1) and output (bits 2 and 0) buffers on the USART.
During normal program operation, these indicators are
of no interest. They are useful, however, in either
debugging a program or in making sure that the data
channel is properly set up. For example, if a terminal is
connected to a 9825A using the 98036A, and data
cannot be input from the terminal, checking bit 2 will
tell whether data is being received and improperly
handled by the program, or not being received at all.
This bit is set when a character is received by the
USART and cleared when the computer takes that
character.

The remaining three bits of the R4E register (5, 4, and
3) indicate a framing error, and overrun error, and a
parity error respectively. Taken individually, these three
errors have simple meanings. A framing error indicates
that at the time the receiver was expecting to see the
stop bits (low level), the data line was actually high.
This could be caused by having the wrong bit rate set.
For example, if the transmitter were sending at 300bps
and the receiver was set to 600bps, the receiver would
finish sampling for the data bits (doubly reading most of
them!) when the transmitter was only about half finish-
ed sending. The receiver would then look for the stop
bit (or bits) in the data region of the character transmis-
sion. If the data line went high during this time, the
framing error indicator would be set.
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It is interesting to notice that the data being transmitted
during the time that the receiver is looking for the stop
bits could, by change, be 1 bits (low level) and appear
to the receiver to be correct stop bits. Thus, an incor-
rect character could be received without the framing er-
ror indicator being set. The probability of this situation
{accidental matching of data bits with stop bits)
decreases rapidly with the number of characters receiv-
ed. That is, if several characters can be received
without the framing error being set, it is very unlikely
that the bit rate selector is improperly set. With one or
two characters, it is difficult to be sure.

v

It should also be mentioned that once an error in-
dicator is set, it can only be cleared by a reset opera-
tion; i.e., a card reset, a USART reset, or the specific
error flags reset in bit 4 of R4D. For example, receiving
a character without a framing error will not clear the
framing error bit if it was set by a previous character
that was improperly received. Otherwise, if the last
character received were incorrect but accidentally
matched the expected stop bits with data bits, the
entire string would appear to have been properly
received.

The overrun error indicator is set whenever a data
character has been received, but was not taken by the
computer before the next one came along. This error
indicates that one or more data characters have been
lost. The situation can be corrected for future transmis-
sions by either slowing down the data rate, or by using
a faster programming method to take the data as it
comes in.

v

The parity error indicator is set when the 98036A is
enabled to check parity on received data, and the ex-
pected parity bit is not correct.

Although the meanings of the three error conditions
are straightforward, when combinations are considered,
the meaning can sometimes be confusing. Examples of
this are apparent from the transmission of the ASCII
“E” shown in Figure Il-34. Assume that the transmitter
is sending the pattern as shown, but that the receiver is
set for no parity. After reading the last data bit, since
no parity bit is expected the receiver will expect the
stop bit to immediately follow. Since the line is high at
this time {transmitter is sending a parity bit of 0), a
framing error is detected. Thus, even though the prob-
lem is caused by the fact that the transmitter is set for
parity and the receiver is not, it is a framing error that
is indicated by the error bits in the USART status word.
This points up the necessity of knowing the data
transmission characteristics of the device being interfac-
ed over the serial /O channel. If these characteristics
are now known, it can sometimes be a tricky bit of
detective work to analyze the errors indicated and
isolate the true cause of the problem.

¢
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When connecting an unknown terminal using the
98036A card, it is unwise to try running a complex ap-
plications program until simple read binary and write
binary operations from the keyboard can be made to
work. Otherwise, the user may waste considerable time
trying to debug a correct program when the actual
cause of the problem is that one or more of these data
transmission characteristics is improperly set for that
device.

Finally, when the bit rate has been properly set so that
a framing error does not normally occur, the presence
of a framing error indicates the reception of the break
character. Since the line is held high for 200
milliseconds during a break, even at the slowest bit
rate, the line will be high for longer than one character
time and cause the expected stop bits to be missed.
Depending on the number of bits per character set and
the type of parity being used, the parity error may also
be set during the reception of a break character.

The remainder of the RS-232-C control lines are only
used for special applications, and are accessed through

various bits in the R6 register. The specific bits that can
be set (R6 OUT) or tested (R6 IN) depend on whether
the 98036A is acting as a computer or modem (stan-
dard card) or as a terminal {option 001). These
registers are accessed from the 9825A using the read
interface {rdi) and write interface (wti) statements
described in Section [IA3. Although these control lines
are usually used for special applications only, they may
control lines required by some devices in simple ap-
plications. Some terminals will not transmit data unless
the Carrier Detect line (bit 0 of R6 OUT) is set, along
with Data Set Ready and Clear to Send. Again, suc-
cessful operation demands that the user know the re-
quirements of the device being interfaced.

Figure Il[-44 shows the RS-232-C pin assignments im-
plemented by the 98036A Interface, along with the
names and directions of these lines. On the left is
shown the pin connector numbers on the standard
98036A card, and the interface registers used to access
each of them. On the right is shown the same informa-
tion for the Option 001 98036A card.

98036A as 5‘352'_C 98036A as
DCE Device | STD j{<— | PIN # NAME OPT 1 | DTE Device
n.a. 1 -« 1 Protective Ground 1 n.a.
read 3 - 2 Transmitted Data 2 write
write 2 - 3 Received Data 3 read
R4E, bit 7 6 - 4 Request to Send 4 R4D, bit 5
R4D, bit 5 4 - 5 Clear to Send 5 (note 1)
R4D, bit 1 17 - 6 Data Set Ready 6 R4E, bit 7
n.a. 7 - 7 Logic Ground 7 n.a.
R6 OUT, bit@ | 16 - 8 Carrier Detect 8 R6 IN, bit @
n.a. — 9 (Reserved for test) — n.a.
n.a. — 10 (Reserved for test) — n.a.
n.a. — - 11 Data Rate Select (U.K.) 11 R6 OUT, bit 2
(note 2)
R6 OUT, bit 1 { 13 - 12 Second Carrier Detect 12 R6 IN, bit 2
n.a. — - 13 Second CTS — n.a.
n.a. — - 14 Second TXD — n.a.
n.a. — - 15 Transmitter Clock 15 (note 3)
n.a. — - 16 Second RXD — n.a.
n.a. — - 17 Receiver Clock 14 (note 3)
n.a. — 18 — — n.a.
R6 IN, bit @ 8 « 19 Second RTS 16 R6 OUT, bit @
(notes 1,4) 5 - 20 Data Terminal Ready 17 R4D, bit 1
R6 OUT, bit 2 | 11 - 21 Signal Quality Detect — n.a.
R6 OUT, bit3 | 10 - 22 Ring Indicator 9 R6 IN, bit 1
R6 IN, bit 1 9 -« 23 Data Rate Select 13 R6 OUT, bit 1
n.a. — « 24 Transmit clock (term) — n.a.
n.a. — 25 — 10 n.a.
note 1:this line cannot be read
note 2:this line unassigned by
RS-232-C
note 3:switch selectable on 98036A
Figure III-44 note 4:can be set high by switch on
98036A




5.Programming with the 98036A
Interface

For half-duplex operation, the 98036A is programmed
in the same manner as the 98032A Bit-Parallel Inter-
face. Output is done using the write (wrt), write binary
(wtb) or list statements; and input is done with read
(red) or read binary (rdb) operations.

In the full-duplex mode, the 98036A is capable of
sending and receiving data simultaneously. But since
the [/O structure of the computer only allows for one
flag line (ready/busy flag) a difficulty arises. Assume for
example that we ask for a byte of received data and
send a byte of transmitted data. When the flag line
again indicates ready, does it mean that the output
character has been sent or that the input character has
been received, or both? If both output and input try to
use the same flag line, at the same time, ambiguities
arise.

To get around this in the full-duplex mode, we
dedicate the flag line to one of the two operations (in-
put or output) and use the interrupt structure of the
computer for the other. For example, we could tell the
interface card that the flag line is to be used for output
data and the interrupt for input data. Now each time
the output buffer is ready to take another character this
fact will be indicated by the flag line going set. And
each time a character is received, an interrupt will be
generated by the interface, but the flag line will be left
alone. Bits 1 and 2 of the interface control register (R5
QUT) are used to indicate whether the input or the
output operation should use interrupt. The other
operation will use the normal flag handshake
mechanism. In normal applications, both bits would
never be set. Also, the most common practice is to
operate the receiver under interrupt. This is because
the desktop computer is generating the output data; but
it never knows when to expect received data, and must
always be ready for it.

The following program gives an example of a simple
program to output information to a computer con-
nected to a 9825A via a 98036A Interface, and to
print any information sent to the 9825A by the com-
puter. The printing is done on a 9866A Printer set to
select code 6, and the 98036A card is on select code
11.

0: dim A$[100], B$[200]

1. buf “Input’’, 100, 1

2: oni1t, “Print”

3: eir114

4: tfr 11, “Input”,0,10
37:

wr.t 11,B$
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63:  “Print’’: red “Input” A$
64: tfr 11,"Input’’,0,10

65 wrt 6,A%

66: iret

This program sets up a buffer called “Input” and starts
an input transfer to this buffer from the 98036A card.
Data will be received into this buffer until a line feed
(LF = decimal 10) character is received (see Section
IIB3 on transfer operations). When the transfer is com-
plete, the program will branch to the routine labeled
“Print”, which reads the data out of the “Input” buffer
into the string A$, and sends this information to the
printer in line 65. Another transfer statement is ex-
ecuted to be ready for the next line of incoming data,
and line 66 causes a return from the interrupt service
routine back to the main program (lines 5 through 62.
In the meantime, this main program is free to execute
output statements to the 98036A card as exemplified
by line 37 in the program.

Notice that in line 3, the statement eir 11,4 was used
to set bit 2 of the 98036A control register (R5 OUT).
this informed the interface that it was to use the inter-
rupt structure for the receiver, and the normal flag
handshake for the transmitter. Since the lower four bits
of this register are preserved whenever the 1/0 ROM
needs to set or clear the main interrupt-enable bit (see
Section IIIE4), the 98036A remains in this mode
throughout the entire program. If line 3 had not been
executed, the receiver would have responded on the
normal flag line rather than generating an interrupt,
and the transfer would never have completed.

A potential problem exists with the “Print” service
routine in this example program segment. When one
line of data {terminated by a LF character) is received,
the buffer transfer is complete and a branch to the serv-
ice routine is made by the [/O ROM. The time to com-
plete this branch and execute the read statement in line
63 is about 5 to 10 milliseconds, depending on the
number of characters in the buffer. At data rates above
600 bits per second, it is possible that another character
would be received before the next transfer statement
(line 64) could be executed, causing that character to
be missed. For this reason, a special buffer-read (bred)
statement is provided by the Systems Programming
ROM (98224 A) which substantially reduces the time
period during which the input buffer is not active. (For
more information, see the Systems Programming
Manual.) This programming tool makes it possible to
operate the 98036A in the high-speed, full-duplex
mode.

With a suitable HPL program, it is possible for the
9825A to emulate an RS-232-C terminal. Such a pro-
gram would cause the 9825A to mimic many of the
operations of a terminal such as transmitting informa-
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tion entered through the keyboard to the computer and
printing information received from the computer. It
should be remembered, however, that HP desktop
computers are designed to be stand-alone computa-
tional and controlling devices, and not primarily as ter-
minal replacements. Also, it is not necessary to provide
(via a high level program) a complete terminal
emulator in order to exchange data with another com-
puter over an RS-232-C communications link. Within
an applications program, data may be exchanged with
a remote computer using read, write, and transfer
statements without any operator intervention (other
then establishing the communications link if a modem
is involved).

6.RS-232-C vs. Current Loop
Operation

In the previous sections we have discussed two
methods of interfacing for which standards exist that
specify certain electrical, mechanical, and functional
parameters. Most manufacturers of devices which are
compatible with the IEEE-488-1975 (HP-IB) standard
adhere closely to its definitions. And as a result most of
these devices are plug-to-plug compatible. Unfortunate-
ly, this is not always true of devices that claim to be
RS-232-C compatible. In particular, the fact that a
serial I/0 device uses an EIA 25-pin connector does
not automaticaily make it an RS-232-C device.

Even when a device is RS-232-C compatible, variations
from the expected configurations may still exist. We
mentioned earlier that the common convention used
for connectors is that the data terminal equipment
(DTE) will use the male connector while the data com-
munications equipment (DCE) will use the female con-
nector. Indeed, the 98036A Interface is available in
two configurations (see Figure IlI-41) so that the
desktop computer can play the part of either the DCE
or the DTE. As an example of the difficulties that can
arise, consider a terminal device (DTE) which ter-
minates in a female 25-pin connector. Since the
desktop computer is to act as a modem (DCE) in this
system, the standard 98036A card will be used. Bui
since both devices have female connectors, they cannot
be plugged together. In this case we will have to obtain
a special female-to-female adaptor in order to make the
connection. But the fact that this adaptor is necessary
at all should alert the user to the possibility that all of
the pin assignments for the terminal’s connector may
not be as expected. In particular, the transmitted data
line (pin 2) and the received data line (pin 3) often
need to be interchanged on one of the connectors or
cross-wired in the adaptor.

In general, when two RS-232-C devices are connected
and do not appear to operate properly, there are two
areas which should be thoroughly checked out before
suspecting either a programming error or a hardware

malfunction. The first is to insure that all of the pin
assignments in both devices are as expected. For the
98036A Interface these pin assignments are found in
Figure [lI-44, while the assignments for the device be-
ing connected should be contained in the operating
manual for that device. If these pin assignments are all
correct, the user should then check to see if any con-
trol lines (Clear to Send, Data Set Ready, Carrier
Detect, etc.) required by the device being interfaced are
not set. The 98036A is capable of setting any of these
control lines; but is is the responsibility of the user to
determine which lines his particular device requires and
include the instructions for setting them within his pro-
gram. For the 98036A card itself, these requirements
are as follows. The standard 98036A (acting as a DCE
device) requires the Data Terminal Ready (DTE, pin
20) signal to be true before it will transmit. Most ter-
minals will automatically set this line when they are
switched into the remote or on-line configuration. The
option 001 98036A (acting as a DTE device) requires
the Clear to Send (CTS, pin 5) signal to be true for
proper operation. If the DCE device being interfaced
cannot supply this signal, it may be set on the 98036A
card itself (see 98036A Installation and Service
Manual).

The problem of connecting serial [/O devices is further
complicated by the fact that a second data transmission
convention known as “current loop” exists. As the
name implies, this method of transmission uses the
presence or absence of a current flow in the data line
to represent the two logic states (1 or 0) rather than
two different voltage levels as specified by the RS-232-
C standard. It should be noted that a device operating
in the current loop mode is not an RS-232-C device,
even though it uses many of the same conventions
such as start and stop bits, parity, etc., of the RS-232-
C data format.

Historically, the first serial I/O devices operated in this
current loop mode. With the advent of the RS-232-C
standard, most manufacturers of serial I/O devices
switched over to the use of voltage levels on the data
lines. Even so, many current loop devices are still
available. One reason for this is that while the practical
operating distance for a direct (not using modems) RS-
232-C data link is about 50 feet (15 meters), much
longer distances are obtainable in the current loop
mode.

Figure I1I-45 shows the three basic elements that make
up a current loop. The element labeled source is an ac-
tive current supply. Typically, there is one and only
one active source in any current loop, with all other
elements acting passively.

Figure 111-45




In the quiet (no data transmission) state, this source
maintains a continuous current flow through the loop.
When data is presented to the transmitter at the data in
line, the modulator converts this digital information
(ones and zeros) into a matching sequence of current-
on and current-off states by either allowing the current
in the loop to flow, or blocking it. Since the same cur-
rent pulses flowing through the modulator also flow
through the detector, the detector can sense these cur-
rent on/off states and translate them back into digital
information in a form (usually voltage levels) that can
be recognized by the receiving device. The order in
which each of these devices appear in the loop is not
important.

In simplex operation, the source and modulator are
located in the transmitting device, while the detector is
located in the receiving device. For full-duplex opera-
tion, each device contains a transmitter (source plus
modulator) and a receiver (detector). The transmitter of
each device is connected to the receiver of the other
device, thus creating two complete, independent cur-
rent loops.

Most data terminals that operate in the current loop
mode are passive devices; that is, they have a
modulator and a detector, but not a current source.
They depend instead on the DCE device to provide the
current source. The 98036A card, when operating in
the current loop mode, is capable of supplying the re-
quired current (20ma). Figure IlI-46 shows how such a
passive terminal should be connected to a 98036A for
half-duplex current loop operation.

SOURCE Jl’:l
DI

| MOD
o —

DO+ DET
LI__F

v

recewved data

transmitted data

ground

98036A

Figure 111-46

Several points should be noted about this connection.
It is necessary to jumper (connect together) the R— and
the T+ leads at the terminal in order to complete the
loop. Also, in half-duplex current loop mode the
ground lead from the 98036A is not connected. If the
terminal also has an active current source, Figure IlI-46
could be modified for full-duplex operation by discon-
necting the R—/T+ jumper and reconnecting R— to
ground and T+ to the terminal’s current source.

In the half-duplex arrangement shown, there are ac-
tually five elements in the loop: a source, two
modulators, and two detectors. Only one modulator at
a time is allowed to modify the current flow (i.e., en-
code information to be sent around the loop), which is
why this is a half-duplex arrangement. Both detectors,
however, can be active at the same time. This also
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means that since the terminal’s detector receives the in-
formation sent by the terminal’s modulator, no special
circuitry is required to get the effect of an echo-back
(see Section IIIE2).

In the figures above we have labeled the current loop
connections as T+, T—, R+, and R—. Various
manufacturers may use different designations to label
these connections, such as T5, T6, T7, and T8. The
exact labeling for a given device can be obtained from
the operating manual for that device. Figure 111-47
shows three typical receiver (detector) circuits and may
be helpful in recognizing the R+/R— connections from
the schematic diagrams in the operating manual for the
terminal being connected.

R- R-

INPUT TRANSISTOR OPTO-ISOLATOR

e

REED RELAY

Figure 111-47

Up to now we have discussed current-loop operation in
terms of presence or absence of current in the loop,
without saying anything about the amount of current
flowing. Most current sources for use in current loop
operation provide either 20 milliamps (ma) or 60 ma.
The 98036A Interface card can supply (acting as a
source) 20ma. lts receiver is capable of sinking (acting
as a detector) either 20ma or 60ma with no modifica-
tions or switch settings required on the card to select
20ma or 60ma operation.

The current source in the 98036A operates from a 12
volt power supply, and the detector in the 98036A re-
quires 6 volts to operate properly. This means that the
other passive elements in the loop (terminal modulator
and detectors) must not drop the voltage of the current
passing through them more than 6 volts. Converting
this voltage drop to the equivalent resistance at 20ma
we have

R =V/I = (6 v)/(20ma) = 300 Ohms.

Thus, when the combined resistance of the external
elements in the loop exceeds 300 Ohms, the detector
in the 98036A will no longer be able to reliably
distinguish logical ones from zeros. This external
resistance is made up not only of the elements in the
loop, but also of the wire in the loop itself. And since
the resistance of a wire is proportional to its length, this
limit on external resistance is what ultimately deter-
mines the maximum operating distance of the serial
I/0 link in the current loop mode.
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APPENDIX A
ASCII CHARACTER SET
Decimal | Octal HEX ASCII HP-IB* Decimal Octal HEX

0 0 00 NULL 32 40 20

1 1 01 SOH GTL 33 41 21 ! L1

2 2 02 STX 34 42 22 ” L2

3 3 03 ETX 35 43 23 # L3

4 4 04 EOT SDC 36 44 24 $ L4

5 5 05 ENQ PPC 37 45 25 % L5

6 6 06 ACK 38 46 26 & L6

7 7 07 BELL 39 47 27 ’ L7

8 10 08 BS GET 40 50 28 ( L8

9 11 09 HT TCT 41 51 29 ) L9
10 12 0A LF 42 52 2A * L10
11 13 0B VT 43 53 2B + L11
12 14 0C FF 44 54 2C , L12
13 15 OD CR 45 55 2D - L13
14 16 OE SO 46 56 2E . L14
15 17 OF SI 47 57 2F / L15
16 20 10 DLE 48 60 30 0 L16
17 21 11 DC1 LLO 49 61 31 1 L17
18 22 12 DC2 50 62 32 2 L18
19 23 13 DC3 51 63 33 3 L19
20 24 14 DC4 DCL 52 64 34 4 L20
21 25 15 NAK PPU 53 65 35 5 L21
22 26 16 SYNC 54 66 36 6 L22
23 27 17 ETB 55 67 37 7 L23
24 30 18 CAN SPE 56 70 38 8 L24
25 31 19 EM SPD 57 71 39 9 L25
26 32 1A SUB 58 72 3A : L26
27 33 1B ESC 59 73 3B ; L27
28 34 1C FS 60 74 3C < L28
29 35 1D GS 61 75 3D = L29
30 36 1E RS 62 76 3E > L30
31 37 1F us 63 77 3F ? UNL

*

*k

@
@

These are the meanings assigned to the ASCII characters on the HP-IB when the ATN line is true (see Section IIID5).
Listen address codes. L<n> = listen address for device number <n>.
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HP-IB b

ASCII CHARACTER SET
(continued)
Decimal Octal HEX ASCII HP-IB Decimal Octal HEX ASCII

64 100 40 @ TO* 96 140 60 ‘ SO
65 101 41 A T1 97 141 61 a S1
66 102 42 B T2 98 142 62 b S2
67 103 43 C T3 99 143 63 c S3
68 104 44 D T4 100 144 64 d S4
69 105 45 E T5 101 145 65 e S5
70 106 46 F T6 102 146 66 f S6
71 107 47 G T7 103 147 67 g S7
72 110 48 H T8 104 150 68 h S8
73 111 49 I T9 105 151 69 i 59
74 112 4A J T10 106 152 6A j S10
75 113 4B K T11 107 153 6B k S11
76 114 4C L T12 108 154 6C 1 S12
77 115 4D M T13 109 155 6D m S13
78 116 4E N T14 110 156 6E n S14
79 117 4F O T15 111 157 6F o S15
80 120 50 P T16 112 160 70 p S16
81 121 51 Q T17 113 161 71 q S17
82 122 52 R T18 114 162 72 r S18
83 123 53 S T19 115 163 73 S S19
84 124 54 T T20 116 164 74 t S20
85 125 55 U T21 117 165 75 u 521
86 126 56 \Y) T22 118 166 76 v 522
87 127 57 W T23 119 167 77 w 523
88 130 58 X T24 120 170 78 X 524
89 131 59 Y T25 121 171 79 y 525
90 132 5A z T26 122 172 7A z S26
91 133 5B [ T27 123 173 7B { 527
92 134 5C \ T28 124 174 7C | 528
93 135 5D ] T29 125 175 7D } 529
94 136 5E A T30 126 176 7E ~ S30
95 137 5F — UNT 127 177 7F DEL S31

*

* %k

Talk address codes. T<n> = talk address for device <n>.
Secondary command group. Meanings are device dependent.
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APPENDIX B

98032A REGISTER MAP
IN ouT
R4 DATAIN DATA OUT
R5 STATUS CONTROL
R6 HIGH BYTE DATA HIGH BYTE DATA
R7 | (not used) TRIGGER

R4-IN:  Read 16 bits (lower 8 bits if jumper B is not installed) of data from the input data latches.
Sets1/0 line to input.

R4-OUT: Write 16 bits (lower 8 bits if jumper F is not installed) of data to the output data latches.
Sets [/ O line to output.

R5-IN:  Read 98032A card status byte (Section IIIB1).

7 6 5 4 3 2 1 ]
INT DMA 1 @ 1D 10D STI1 STI@
R5-OUT: Write 98032A card control byte (Section lIIB2).
7 6 5 4 3 2 1 1)
INT DMA RESET AH — — CTL1 CTL@

R6-IN:  Read 16 bits (upper 8 bits if jumper B is not installed) of data from the input data latches.

Does not affect [/ O line.

R6-OUT: Write 16 bits (upper 8 bits if jumper F is not installed) of data to the output data latches.
Does not affect 1 /O line.

R7-OUT: Sets PCTL to initiate an input/ output handshake, depending on the state of the
1/ 0 line from the last R4 access.
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98032A JUMPER OPTIONS

Jumper Function (when installed) Reference
1 Indicates input data lines are positive-true. 11IB4
2 Indicates output data lines are positive-true. 111B4
3 Inverts PCTL to high=set, low=clear.
4 Inverts PFLG to high=ready, low=busy.
5 Inverts PSTS to high=not OK, low=0K.
6 Set for pulse-mode handshake.
7 Required for DMA transfers.
8 Clock high input byte when PFLG goes from ready to busy. B2
* { 9 Clock high input byte when PFLG goes from busy to ready. 1IB2
A Clock high input byte on R6-IN operation. [IIB2
B Select words (16 bit) input mode. I1IB3
C Clock low input byte on R4-IN operation [IIB2
L. 1D Clock low input byte when PFLG goes from busy to ready. 11B2
E Clock low input byte when PFLG goes from ready to busy. B2
F Select words (16 bit) output mode. IIIB3

*Select only one of these three.
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R4-IN:

7

APPENDIX C
98033A REGISTER MAP
' IN OUT
R4 DATA IN (not used)
R5 STATUS CONTROL
R6 (not used) (not used)
R7 (not used) TRIGGER

Read one 8-bit ASCII character from the 98033A BCD-t0-ASCII translator.
R5-IN:  Read 98033A card status byte (Section IIIC3).

6 5 4 3 2 1 9
INT g 1 ) 9 p ) p
R5-OUT: Write 98033A card control byte (Section IIIC3).
7 6 5 4 3 2 1 9
INT — RESET — — — — —

R7-OUT: An output to R7 (actual value output is a “don’t care”’) causes the 98033A to place the next ASCII character in the
sequence representing the reading into the R4-IN register. After 16 characters have been so placed, the next R7-OUT

Causes a new reading to be taken (i.e., the card sets CTLA and CTLB to start a data handshake with the BCD device)
and places the first character of that reading in the R4-IN register.
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98033A SWITCH CONFIGURATIONS

“Swiflch set to

ON", will :
Invert DFLGA o~ -] Invert SGN2
Invert DFLGB o[ =] Invert  SGN1
Select CTLA-2 » w (-] Invert OVLD
Select CTLB- 2 ~[(mm] | 52 Invert Data
Invert CTLA ~[ -]
Invert CTLB [ mm]
Select Optional Format L))

98033A HANDSHAKE DIAGRAM

CTLA-1 MODE (Select CTLA-2 switch off).

CTLA —m— ————— CLEAR
SET
BUSY
DFLGA I T )%

CTLA-2 MODE (Select CTLA-2 switch on).

CTLA CLEAR
SET
BUSY

DFLGA —————  READY

At time “t” the data on the BCD input lines is valid and the BCD-to-ASCII translation process begins.

CTLB and DFLGB operate in a similar manner.
See Section 1IIC4.
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R4-IN:

98034A REGISTER MAP
IN ouT
R4 DATA IN DATA OUT
R5 STATUS CONTROL
R6 STATUS/DATA COMMANDS
R7 PARALLEL POLL DIRECT BUS CONTROL

APPENDIX D

Initiates a data byte input sequence.

R4-OUT: Transfers one byte of data to the bus.

R5-IN:

7

6

5

Initiates a status read sequence.
R5-OUT: Outputs a control byte to enable the 98034A for various interrupt conditions (Section IIID6).

4 3 2 1 0
SRQ ACT TLK LST IRF ORE OTHER EOI
R6-IN:  Completes a data byte input sequence. Clears ATN.
Delivers 98034A status bytes.
Completes a parallel poll input sequence.
R6-OUT: Sets the ATN line true and outputs a byte of command or addressing information.
R7-IN:  Initiates a parallel poll byte request.
R7-OUT: Direct* bus control {Section IIID6).
7 6 5 4 3 2 1 )
1 @ ) EOI IFC ATN REN SRQ
I Service Request control and serial-poll response byte (Section IID5).
I 7 6 5 4 3 2 1 ]
@ SRQ X X X X X X
I X = user definable.
I *After executing this R7-OUT instruction, the 98034A will clear the STS line if an illegal operation (e.g., specifying ATN
if the 98034A is not active controller) is indicated.
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other operational sequences, it will be abbreviated as TAD.
1. R6-OUT Send unlisten (63) command.

2. R6-OUT Send 98034A talk address.

3. R6-OUT Send device listen address.

4. R6-OUT Send device secondary address if specified.
5. Repeat 3 and 4 for any multiple listeners.

CONTROLLER LISTENER ADDRESSING (LAD)
1. R6-OUT Send unlisten (63) command.

98034A OPERATIONAL SEQUENCES -
GENERAL
Any operation with the 98034A should be preceded by testing the flag (FLG) line and waiting for it to indicate v
ready. Otherwise, erroneous operation can result.
After a sequence of operations, the status (STS) line should be tested. It will be cleared if an illegal operation
was specified, otherwise it will remain set.
CONTROLLER TALKER ADDRESSING (TAD)
This sequence addresses the 98034A as a talker, and one or more bus devices as listeners. When used in
R6-OUT Send device talk address.
R6-OUT Send device secondary address if specified.

2. R6-OUT Send 98034A listen address.
3.
4.
5. R6-OUT Send device listen address for multiple listener.
6. R6-OUT Send device secondary address if specified.
7. Repeat 5 and 6 for any other multiple listeners.
DATA OUTPUT _
1. TAD Address the bus.
2. R4-OUT Send the first data byte.
3. Repeat 2 for each data byte. ” )l

DATA OUTPUT USING EOI
1. TAD Address the bus.
2. R4-OUT Send the first data byte. _
3. Repeat 2 for each data byte.
4. R7-OUT Send a 144 to R7 to set EOI with REN false,
or 146 to set EOI with REN true. j
5. R4-OUT Send the last data byte. The 98034A will
automatically clear EOI after the handshake
is completed.

DATA INPUT
1. LAD Address the bus.
2. R4-IN Start acceptor handshake (set NRFD false).
3. R6-IN Take in the received data byte.
4. Repeat 2 and 3 for each data byte.

By setting bit § of R5-OUT, the 98034A is enabled to clear STS if EOl is set. In this case the STS line would be
tested after step 3.

w
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READ STATUS
1. R5-IN:Initiate status read sequence. In the byte received, bits 4 and 5 are ones, indicating an HP-IB card type

(Section IIC2). No other bits are meaningful.

2. R6-IN:Get status byte 1.

g g 9 9 g DCL ) ERROR
3. R6-IN:Get status byte 2.
1 1 ] A A, As A, A,
4. R6-IN:Get status byte 3.
EQI REN SRQ ATN IFC NDAC NRFD DAV
5. R6-IN:Get status byte 4.
SRQ ACT TLK LST SAC 1 SPL EOR

The 98034A is not monitoring the bus during this sequence. Thus, if the 98034A is not the controller, this sequence

must be completed within 100 microseconds to satisfy IEEE-488 timing specifications.

This sequence also resets the status (STS) line if it had been cleared by a previous illegal operation.

SERIAL POLL

1. LAD Address the bus.

2. R6-OUT Send SPE (24) command.

3. R4-IN Initiate a data input handshake.

4. R6-IN Take in the serial poll byte.

5. R6-OUT Send SPD (25) command.

6. R6-IN Optional dummy operation to clear ATN.
PARALLEL POLL

1. R7-OUT Send 148 to R7 to set ATN and EOL

2. R7-IN Initiate parallel poll byte request.

3. R6-IN Take in the paralel poll byte.

4. R7-0UT Send 128 (or 130 if REN should be set) to R7

to clear ATN and EOL

PASSING CONTROL

1. R6-OUT Send unlisten (63) command.

2. R6-OUT Send device talk address.

3. R6-OUT Send TCT (9) command.

4. R6-IN Clear ATN line to complete transfer of control.
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APPENDIX E

IN ouT
R4 DATA IN, R4E DATA OUT, R4C, R4D
R5 STATUS CONTROL
R6 LINE STATUS LINE CONTROL
R7 (not used) TRIGGER
R4C Mode Word
BIT 7 I BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO
! 1
Number of Stop Bits Character Length Bit Rate Factor
00 = notvalid Parity Type Parity Enable 00 =5uils 00 = not used
01 = 1bit 0 = Odd 0 = Disable 01 = 6 bits 01 = 1 X bit rate clock
10 = 1.5 bits 1 = Even 1 = Enable 10 = 7 bits 10 = 1/16 X bit rate clock
11 :2b\]ts 11 = 8 bits 11 = 1/64 X bit rate clock
1 A1
R4D USART Control Word
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT O
g‘eaf TSO Send Data Set Ready
in 5 (Standard)| Reget Status Pin 6 (Standard)
Always 0 LRJSART Request To Bits of USART Send Break Ena.b\e Data | para Terminal Enable Data
eset Send Pin 4 Status Word Character Receiver Ready Pin 20 Transmitter
(Option 001) (Option 001)
R4E USART Status Word
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT O
Request To Send
Pin 4 (Standard)
Data Set Ready Always 0 Framing Overrun Parity Transmitter Receiver Lransmmer
Pin 6 Error Error Error Empty Ready eady
(Option 001)
R5 OUT Register
BIT 7 BIT & 8IT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT O
R4 Control
t
Interface Programmed géi;:g?z géi;:éﬂ 0 = Data IN/
Interrupt Interface Receiver Transmitted our
Enable Reset Control Control 1 = Control/
. Status
R5 IN Register
BIT 8 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITE
Interface Control Control
Peripheral Interrupt g Interface Interface g }Z Status 2 Status 1
Status 1 1D g 1.0.1 Receiver Transmitter
Enable Status
Mode Mode




|
|
o
_
X
.
N

R6 OUT Register (standard cable)

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0O
Half/Full Ring g?g‘at‘ Secondary Line Sianal
E— —_— _— Speed Control Indicator DLt ! ty Line Signal Detect%m 8
(Interface) Pin 22 etec Detect Pin 12
Pin 21
R6 IN Register (standard cable)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO
Data Signal giczr;csitary
Always 1 Always 1 Always 1 Always 1 Always 1 Always 0 Rate Select Tquend
Pin 23 Pin 19
R6 OUT Register (option 001 cable)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO
Secondary
Data Signal Data Signal
_ galf/FuII _ Rate Select Rate Select _Fr%eCéuesdt
peed Control (UK)Pin11 | Pin23 o
R6 IN Register (option 001 cable)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BITO
Secondary Ring Line S |
Always 1 Always 1 Always 1 Always 1 Always 1 Line Signal Indicator Dlnte tl%naB
Detect Pin 12 Pin 22 etectFin
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KEYBOARD /DISPLAY /PRINTER REGISTERS

When the peripheral address is set to zero, the keyboard, display, and printer are addressed (Section IIC1). In this case,
thel/O registers have the following meanings.

€

IN ouT
R4 KEYBOARD KEYCODE DISPLAY DATA
R5 STATUS CONTROL
R6 {(not used) PRINTER DATA
R7 (not used) CHARACTER SET SELECT

R4-IN:  Returns an 8-bit keycode from the keyboard (bits @-6) plus bit 7 indicating 1 = shift, § = no shift.
R4-OUT: Output one character to the rightmost position of the 32-character shift buffer for the display. Bit 7 indicates

cursor on (=1) or off (= @) for this character.
R5-IN:  bit @: Always 1.

bit 1: Printer out-of-paper (= 1) indicator.

bit 2: Printer busy (= 1) or ready (= @) indicator.
R5-OUT: bit #: Dump printer buffer to strip printer.

bit 1: Dump display buffer to single line display.

bit 2: Trigger beeper.

bit 3: Set busy light off.

bit 4: Set busy light on.

bit 5: Select insert cursor for display.

bit 6: Select replace cursor for display.
R6-OUT: Output one character to the rightmost position of the 16-character shift buffer for the printer.
R7-OUT: bit @: @ = Select standard character set.

1 = Select alternate character set (if available).

€ €
- BE BE B OB O EE OBE OEBE W By BE O Br BE OBE W W W EN W

86



APPENDIX F
BIBLIOGRAPHY

HP 9825A Calculator General 1/ O Programming (HP#09825-90024)

HP 9825A Calculator Extended 1/ O Programming (HP#09825-90025)

Calculator Users Guide and Dictionary, Charles J. Sippl {Champaign, lllinois: Matrix Publishers, Inc.). A survey of
calculator and desktop computer products, plus a glossary of hundreds of commonly used computer terms and
concepts.

HP-IB

I
:
|

IEEE Standard Digital Interface for Programmable Instrumentation. IEEEE Std. 488-1975. (Institute of Electrical
and Electronics Engineers, Inc., 345 E 47th St., New York, N.Y., 10017, USA). This is the complete and formalized
description of the HP-IB, intended for use by an engineer designing a bus compatible instrument. It is not a good
starting point for learning about the bus.

Condensed Description of the Hewlett-Packard Interface Bus (HP#59401-90030). A reference guide to the HP-IB
extracting the operational aspects from the IEEEE Std. 488-1975.

HP-IB Improving Measurements in Engineering and Manufacturing (HP#59300-90005). Operating characteristics
for nineteen popular HP-IB instruments, along with sample 9825 programs for each instrument.

SERIAL1/0O

Guidebook to Data Communications (HP#5955-1715). An extensive survey of terms, concepts, and equipment
used in data communications.
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t Subject Index d
Q a DataBuffer .. ... ... ... ... .. ... ... ... .. 23
Data Communications .. ... .................... 18
! Data Inversion .. ... . ... ... ....... ... ..... 46
Active Control ... 57 Data Set . ... 61
Active Controller . . ... ..o, 50,55 Data Signal Rate Selector . ... . .................. 66
! Adaptor, Serial Interface ... 73 DAV —DataValid .....................o..l 52
AHS ...................................... 40 DCE _ Data Communications
AND gate ... ... 13 Equipment .. ... . ... .. ... .. ... 63,65
! ASCIL ..o 50,55,57 DCL Device Clear . ... . 56,60
Asynchronous transmission ... ................ 63,67 Device Number . ..o 52
ATN attentionline . .. .................. 51,52,56,60 DELAG . o 49
“Auto handshake” mode ....................... 40 Display ... .o 31
! DMA —Direct Memory Access ............... 27,40
DMA Transfer .......... ... ... .. ... ... ..... 29
b DMAR — DMA Request Line . ............... 29,39
. “Dontcare”bits. . ... ............. . ... ... ..... 17
DOUT Line ........ ... .. . i 38
s gackplane .................................... 37 DSR Data Set Ready . . .. ... 65,73
aud Rate......... ... ... .. . i 62 ) )
BCD 5, 8,46 DTE Data Terminal Equipment ............ 24,65,73
BCD Interface . ............... ... .0 ... 8,37,46 DTR Data Terminal Ready ..................... 65
‘ Binary 5 Duplex ...t 64
| Y ..
Bits . 5
Bit Parallel Interface .......................... 7,37
- Bit Rate .. .vvoooeoeee e 62,68 e
BitRate Factor ..............o i 69
! Q Bit Serial Interface .. ......... i 8,37 EChO oo oo 64
) Bit Time. . ..o oo e e e 62 eir enable interrupt .. .......... ... 23,35’72
Break Character ............... ... .. ........ 70,71 Emulator, terminal . .. .....o.ooroe 72
! bred bufferread .............. ... . L 72 Endof Line Branch . . . oo oo 30
| Buffer ... ... 15,32,33 EOI End or Identify. .. .............. 55,56,59,60
| Burst Read . ........ . . 27 170 ) S 59
Buffer Statement .. .......oootiiii 24
Buffer Transfer. ........... ..o ., 53
Buffer Types .........c.oviiiiiiiieiiaannnn 27
Byte . 5
Byte Mode ... ..oooiiiii 44
FastRead . - 27
Fast Read/Write Transfer . .................. .. 29
C FLGflagline ........................... 18,38,42
Flipflop ... ... 14
Card Types ..., 32 Floating Point Format .......................... 7
Carrier Detect............ ..ot 66,73 FIE oo 20
Clock ... 66 format .. ... 20
Control Byte ... ... 40,68 Framing Error ....... ... ... .. ...l 70
Control Character .............ooovvvioiiii... 20 Full DUpleX . .o v ooeeeeeeeai 63,64,72,74
Control Register ................ .. ... ..... 21,34
Controller .......... ... ... . 50
Complement ........... .. ... ... .. i 6
CTLG, CTLY ... ... e 40 g
CTScleartosend .......ccovvvvvenvi . 66,73
Q CUITENE ot e e e e e e e 10 Gates - v 12
=~ Current Loop -+« vt v i 73,74 GET Group Executed Trigger .. .............. 56,60
GPIB . e
Ground . ... o
GTL Go to Local
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Half Duplex ......... ... ... ... ........ 63,64,72,74
Handshake ........................ 9,12,42,49,51
Hardware ............ ... . ... . . . . . 12
Hardware Interrupt ............................ 30
HP-IB ... 50
HP-IB Interface . .. . ...................... 9,37,50
HP-IB Limitations . . ................... . .. .. 51
i
IC1,1C210ines . ... ... ... .. ................... 38
IDbits ... .. 32
IEEE 488-1975 ... .. ... .. ... ... ... .. ... 9,37,50
IFC line, interface clear . . . ... ......... .. 51,55,56,60
INIT initialization .. .......................... 38,40
INTline ... ... ... .. . .. .. ... ... .......... 39
Interface ......... ... ... . . . ... . . ... ... 32
Interface Registers . .. ... ... ... ... ... ... .. ... 17,18
Interrupt ... ... . 21,22,40,53
InterruptBuffer . ........ .. ... ... ... . ... ... 24,29
Interrupt Priorities . . . ........ ... .. .. ... .. .. . 29,30
Inversion ........ ... .. .. . . ... . ... 46
Inverter ...... ... ... . .. .. ... . ... . 13
[VO, I/Obus ....... ... ... ... ... ... ... ..., 37
I/O Backplane ........................ . ... ... 37
I/OLine .. ... . . . . . . 42
IOSB, /O Strobe Line ...................... ... 38
IRHline ... .. ... . .. ... . ... ... .......... 38
IRLline ... ... ... . . . . . . . . . . . 38
}
Jumper ... 15
Latch . o, 14
Listen Address ..........o v, 53
Listener ..o 50
LLO local lockout -....................... .. 56,61
Logic Ground - oo 39
Modem .......................... 61,62,63,66,67
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NAND Gate
NDAC not data accepted . ......................
Negative True Logic

Non-Controller Mode
NOT gate
NRFD not ready for data

Oni on interrupt
OR gate
OverrunError. ... ... ... ... .. ... ... ...,

PA@ line

Parity Bit .......... ... ... . ..... ... ... .....
Parity Error
PCTL
Peripheral Address Register
PFLG
Positive True Logic.......................

PowerSupply ................... ... ... ... ...
PPC parallel poll configure
PPD parallel poll disable
PPE parallel poll enable
PPU parallel poll unconfigure
PRESET . ... .
Printer

rdb

read
read binary
read interface .. . ....... .. ... .. ... ...
received data

RingIndicator .......... ... ... ... ... ... ...
RS$-232-C standard
RTS request to send
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S

SDC selective deviceclear ... .. ......... ... 56,60
Secondary Address .. ... ... ... ... ... ... .. ... 53
Secondary Channel ... .. .. ... ... .. ... ... .. .. .. 66
Secondary Command ... .. ... ... ... ... ... .. 53
Select Code .. .. ........................18,3852
“Select Code 16” . .. .. ... ... ... ... ... ....... 31
Serial 1/0 Interface ... ... .............. 8,37,61
Serial Poll . ... ... .. . ... ... ... ... ... 56,61
Service Routine ... ... ... . ... ... .. 27,29
ShieldLine . ... ... .. ... .. .................. 39
Signal Quality Detect .......................... 66
“Sign/Magnitude” binary .. .. ... ... ... ... ... 5
Simplex ... ... 63,74
Software .. ... ... ... ... .. ... ... 12
Software Interrupt ............................ 30
SPD Serial Poll Disable ......................... 56
SPE Serial Poll Enable . ........................ 56
SRQ Service Request . ................. 52,57,58,60
Start Bit ... 62
Statusbus ........... ... .. .. 20
Status bit ... ... 23
Statusbyte ... ............. 23,34,43,54,57 58,68,70
STIB,STIL ... ... . . . . 43
Stop bit ... 62,68
Stringsasbuffers ........... ... ... ... ... ... 34
Strip Printer .. ......... ... ... ... ... ... ... ... .. 33
STSline ....... ... ... . ... ... ......... 20,40,43
Synchronous Transmission . .................. 63,67
System Controller ....................... ... 51,56
Talk Address . .............. 54
Talker ... ... . 51
TCT Take Control ......... ... ... ... .. .... 58 61
Terminal ........... ... ........ .. 61,64,66,67,73
Terminal Emulator . ........ ... .. ............. 72
Timing Diagram . .............................. 14
Transfer Rate ............ ... ... .. ............. 23
Transfer Statement ......... ... ................ 26
Transmitted Data . ............................. 65
TTL 13
Two’s complement. ........... ... ... ... ... .... 8
USART — Universal Synchronous/

Asynchronous Receiver and Transmitter . . ......... 67

91

Voltage . ....... ... .. .. . 12
Words ..o 7
WordMode . ......... ... ... .. .. ... .. 45
Write ... 22
Write Binary ............. ... ... .. ... . ..., 22
Write-interface . . ........ . . 20
wib 21
witcwrite control . ... 35
wti write interface .. .......... ... .. ... .. .. ..... 35
XORgate ...........o i, 13




1L L L fmuw L JEMF.IWILULULLI@#LL

'la.rr\ .
T<

HEWLETT w PACKARD

I..l

&
\



Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.



