%o
ot
%%
%ot
%oih

Hewlett-Packard --

%
%
%
%
%
%
%
%
%
%

Corvallis, Oregon

ToeToTose o oo o e oo e Te T T T T T oo o S T T T T T T T oo e T T To T

HP-71 HP-IL Module

Internal Design Specification

VOLUME

I

Portable Computer Division

%
%
%
%
%
%
%

Detailed Design and Entry Point Description %

%
%

A A RS N A S AR AR AN AR R A

%t
%ot
%%
%%
%o

TolotoTetoTetotets
TetoTototote foto e

oth
Yot
%t
%ot
%%

%otb
Yolb
%t
%t
%

%ot
Tolb

Yoo %ot
%o
%

YA
AN AYAA

Fototototototolo
FotoletototoTolh

%o
oo

%ot
%%
%ot

%
%l
%o

pyA
%o
%ot

%%
%ot
Yot

%%
%ol

TotoToto ot
Totototote e

%eloTotototo ol
Tototetotete e
%ot
%otb
%
%ot
%t

YA pAA
Yolo Toto Tolb
%o % ot
b %k %ot

Wototeto

Tototototolo

%ot

pAA

Yoo

%ot

%
TotaTetototototo
Yoo To6 %677

Hlolh
AN

January 1984

HP Part No. 82401-90023

pAA
%
%o
%ot
%ot
Wototetototetetot
HetaTeth e 1o 7e67e

Tototototols
%ot
%olb
%ot

Hototototote

Copyright (c) Hewlett-Packard Company 1984

HP-71 HP-IL Module IDS - Volume I

FHHH NOTICE (¥%%%

Hewlett-Packard Company makes no express or implied warranty with
regard to the documentation and program material offered or to the
fitness of such material for any particular purpose. The
documentation and program material is made available solely on an
"as 1is" Dbasis, and the entire risk as to its quality and
performance is with the user. Should the documentation and program
material prove defective, the user (and not Hewlett-Packard Company
or any other party) shall bear the entire cost of all necessary
correction and all incidental or consequential damages.
Hewlett-Packard Company shall not be liable for any incidental or
consequential damages in connection with or arising out of the
furnishing, use, or performance of the documentation and program
material.

HP-71 HP-IL Module IDS - Volume I

Table of Contents

1 HOW TO USE THIS DOCUMENT

2 INTERNAL DESIGN NOTES
2.1 System EAM usage

2.1.1 ON INTR address . .
2.1.2 DISPLAY IS assignment .
2.1.3 PRINTER IS assignment .
2.1.4 Last mailbox address
2.1.% HP-IL loop status . . .
2.1.6 Display device status . .
2.1.7 ENTER terminating character .
2.2 1/0 buffer usage . . .
2.2.1 HP-IL save buffer .
2.2.2 ASSIGN IO buffer
2.2.3 HP-IL Statement Executlon Buffer
2.3 Decoding a device specifier . .
2.3.1 How file and device speCLflers are tokenlzed
2.3.2 Reserved device word table
2.4 HP-IL ROM and Mailbox interface .
2.4.1 How frame timeouts are lmplemented
2.4.2 Interpreting data when in remote mode .
2.5 Houw interrupts are implemented
2.5.1 Disabling 1nterrupts .
2.6 HP-71 Requesting Service in Dev1ce Mode .
2.7 Implementing Multiple Loops . .
2.7.1 Status Information Allocatlon .
2.8 How to find out the capacity of a mass memory dev1ce
3 EXTENDED COMMAND SYNTAX
3.1 Loop Number Specifier . .
3.2 Syntax Identifier Deflnltlons .
3.3 ASSIGN #
3.4 CAT .
3.5 CAT$.
3.6 CLEAR . . .
3.7 CONTROL OFF .
3.8 CONTROL ON
3.9 CopY . .
3.10 CREATE .
3.11 DEVADDR
3.12 DEVAID . .
3.13 DISPLAY IS .
3.14 ENABLE INTIR
3.15 ENTER . .
3.16 INITIALIZE .
3.17 LOCAL
3.18 LOCAL LOCKOUT

iii

| NNNN[\)NI\)T})T\)T\)NNNI\)NN

’\)Nl\)l\')l\)f\)l\)f\)
el el el el ol

wwwwwwwwwc‘owwwwwwww
COOOITITTJOOODTNOPA PR WNR

| [I R R I TR |

U
OO0 SOOI TITTODDDIITNAD WN -

i

[T T A |

HP-71 HP-IL Module IDS - Volume I

.18 OUTPUT .

.20 PACK .

.21 PACKDIR . . .
.22 PASS CONTROL .
.23 PRINTER IS .

.24 PRIVATE
.25 PURGE .
26 READDDC .
.27 READINTR .
.28 REMOTE .
.29 RENAME .
.30 REQUEST

.31 RESET HPIL .
.32 RESTORE IO .

.33 SECURE .
.34 SEND .

.35 SPOLL .
.36 STANDBY
.37 STATUS .
.38 TRIGGER

WWWWWWLWWWLWWWLWwWWWwWwWLwWwWwwwWww

.39 UNSECURE .

4 EXAMPLES OF HP-IL OPERATIONS

4.1 How the HP-71 powers up the loop

4 How the loop is addressed . . .

4.3 How the HP-71 searchs for a Dev1ce ID .

4.4 Houw the HP-71 searchs for an Accessory ID . .

4.5 How the HP-71 reads a device’s status (serial poll]
4.6 Hou to move files between computers . .

5 1/0 PROCESSOR FIRMWARE SPECIFICATION
5.1 Basic Description . .
5.2 1/0 Processor Conflguratlon .

5.2.1 HP-IL Capabilities

.2. Mailbox Description .

2.

f\)f\)f\.)l\)

2
5.
5.
5.
5.2.2.
ower On Sequence .
.1

rv

.1

.2

.3

(&4}

Powering Up the Loop
e
Pouer On Service Request

&)
S
-D&-DU)(.J'U

oot

.4.4 Loop Service Request
Terminating Data Transfers
Frame Timeouts

Error Handling .

Manual and Scope Modes
Mailbox Messages From HP-71 .

AN olot,
O W0~ ;m

iv

.2.1 HP-71 Lou Handshake Nlbble
2 HP-71 High Handshake Nibble .
.2.3 1/0 CPU Low Handshake Nibble .
4 1/0 CPU High Handshake Nibble .

ice Request on the HP-71 Bus

Data Available Service Request
Interrupt Service Request .

! mmmmmmmt{mmmmmmmm

0101(.'“01

[T S A R |

ot

[

|
= |
WP OCOOOWMWONIDIDOOT P BN

HP-71 HP-IL Module IDS - Volume 1

5.9.

5.9.

5.9.

O~V OO NnaNNoanaauia POV QANDATTCRNOTA IO gTo 01Ol =

Ve

w

0

O W W WWOWWOWOOOOWPOOOWY

(’J-D-P—D-D:D(A)(A)U)K)MHHHHHHHHHHD—'HHHHH
[y
s

O W WO WO

O W OOoo o

WWYOWEO©OOOOOOo

No Parameter Class

Nop . . .

Read Address Table
Request 1/0 Processor Status
End Of Message

Clear SRQ .

Set SRQ .

Send Error Message
Enter Auto End Mode .
Go Into Manual Mode .
.10 Go Into Auto Mode

OO0~ WM

11 Update System Controller Blt .

.12 Reset CURRENT Address

.13 Read CURRENT Address . .

.14 Increment CURRENT Address .
Read My HP-IL Loop Address .
.16 Take/Give Loop Control .
rame Class . e e e

Send Frame .
1ngle Nibble Parameter Class .

.1 Address/Unaddress me as TL
.2 Power Down Loop .

ddress Class . . .

.1 Address P,S as Talker .

.2

.3

.4

n

...s

Address P S as Listener .
Find Nth Device of Type M .
Auto Address the Loop .
onversation Class .

1 Start Data Transfer .

2 Start Status Poll .

3 Start Device ID .

4 Start Accessory ID

5 Pass Control

6 Set Frame Timeout .

7 Set Frame Count .
l1tibyte Parameter Class .

.1 Set SOT Response

2 Set Terminator Mode .

3 Set Terminator Character
4 Set Number of IDY Timeouts
5 Set IDY Timeout .

6 Clear Data Buffers . .
7 Set IDY SRQ Poll Timeout
8 Setup Interrupt Mask

.9 Read Interrupt Cause

.10 Read DDC Frame .

.12 Power Up the Loop . . .
.13 Enable/Disable IDY Poll
Diagnostic Class

mmmmmo&mmm@m@@gmmmmmmm

7.1 Read RAM

.11 Update Terminate on SRQ Mode .

L T O e T R e e e e e R R e R e R R |

[T e e e e e e e e e e e e e R e A B I B |
WWWWMNDMNDMNDMDODMNODMNODMNODMPDMNDNODMPRODMNODMOMNOD MO NN N R R 2 2 12 2 R R 2 2 b b 2 2 D e 2 2

mmmmmmwmmmmmmmmmmmmmmmmmmgmmmmmmmmmmmmmmmwmmmmmmmmm
PPRPOOOOOOUOOONNoOTEPEPPRPWOLWWWONNRERPEPOOOCEO OO0 ~IT~TIT~TODOoOOONNOTOdsPWWOWW

HP-71 HP-IL

5.

5.

5.
5.
5.

6 HP-IL
6.

(o)l o) Ne) e e)Be) e le) el Mo Mol el Mol o) Be)]

10

11

12
13
14

1

OO0~ O wh

11
.12
.13
.14
.15
.16
.17

.9.

[N N6,]

o

[/ e le) el

Module IDS - Volume I

5.9.7.2 Urite RAM .

5.9.7.3 Self Test .
8 Data Class

Mailbox Messages from the I/O processor

.10.1 Frame Class .
.10.2 Device Address Class .
.10.3 Status and Error Class .

0.3.1 Current 1/0 Processor Status .
0.3.2 Nop
5.10.3.3 IEC Recelved .
0.3.4 EOT Received . . .
0.3.5 Data Transfer Halted .

.10.4 Terminating Conditions Met .
.10.5 Diagnostics Class

5.10.5.1 Self Test Results
5.10.5.2 RAM Value

.10.6 Data Class .

1/0 Processor as a Dev1ce

.11.1 HP-IL Frames and 1/0 Prooessor s Response

Additional Capabilities
HP-1L Capability Subsets .
Mailbox Messages Opcodes .

POLL INTERFACES
Overvieuw

.1.1 Output and Input of data

1.2 Files on a mass memory device .

.1.3 Parse and Decompile . ..

.1.4 Initialization and addre551ng the 1oop

PCAT - CAT execution poll handler .
pCAT$ - CAT$ function poll handler
pCLDST - Cold start poll handler

pCONFG - Configuration poll handler .

pCOPYR - COPY execution poll handler .
PCREAT - Create a file in a mass memory dev1ce
PDEVCp - Parse an HPIL device specifier .
pDIDST - Store device specifier information .

pDSWUNK - Deep Sleep Wakeup poll handler
PENTER - Enter data from HPIL

pEXCPT - Exception poll handler

pFILDC - Decompile an HPIL device spe01f1er
PFINDF - Find a file in an HPIL device .

pFPROT - Secure a file or make a file private

pFSPCp - Parse a file specifier

PFSPCx - Find a file from the file spe01f1er .

vi

5.11.1.1 Univeral Command Group Frames

5.11.1.2 Addressed Command Group Frames . .
5.11.1.3 Listener/Talker/Secondary Command Group
5.11.1.4 READY Frames .

5.11.1.5 IDY Frames .

5.11.1.6 DOE Frames .

mmmmmmmmmmq}m@mmmmmm@@

[D S T T D D R AR R B |

P PLEPLPPLPPLELPLWQWOWWWWLWWWWWWWWWWWWWWW
ONWWMNFROPEONJIINITOHDOTNOOTNHPDPLELWWWNMNDN L

| Y S I A | []

[
OCOOONITTJOONOTALPWWWNNN

HP-71 HP-IL Module IDS - Volume I

.18
.19
.20
21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31

[o) e e Me Me) le) Ne) o) el le) Be Be) Be. Mo ;]

7 HP-I
7.2

7.3

7.4

7.5

7.6

L

~

S IR IS I I TR R [(K R N B B I I I

NN NN

2.
.3.
.3.
.4,

Mass memory routines . .
BLDCAT - Build CAT text from dlrectory entry

DT OOV NN MRNANCTOToTMMOoT,M

~NoO LW

O©ONNOOH WM

U,
= O

~

[N
W N

[S
o RO N

.17

CHEMAS
DSPCAT
ENDTAP
FINDFL
FORMAT
GDIRST
GETDIR
INITFL

LSTENT ,NXKTENT - Move to dlrecrory entry
MOVEFL - Move a file betuween two devices .

NEWFIL
READR#
SEEKA
SEEKRD
TSTAT

URITE# - Urite to a specified record.
evice searching routilnes .

CHKAIO
CHKASN
DEVPAR
FXQPIL
GADDR

GADRRM
GADRST

[

pIMKQGT - IMAGE execution poll handler 6-10
pKYDF - Key definition poll handler 6-10
pPMNLP - Mainloop poll handler 6-11
PPRICL - Print class poll handler 6-11
PPRTIS - PRINT device poll handler 6-12
pPWROF - Power-off poll handler 6-12
PPURGE - Purge a file in a mass memory devxce . . b6-13
pROCBF - Read a record from a mass memory device . 6-13
PRDNBF - Urite current, read next record 6-14
PRNAME - Rename a file in a mass memory device . . 6-15
PSREQ - Service request poll handler 6-15
PVER$ - Version code poll handler b6-16
PURCBF - Urite a record to a mass memory deV1oe . b6-16
PZERPG - Zero program information poll handler . . 6-17
ROM UTILITY ROUTINES
Overvieuw . . . 7-
How to call a Utlllty routlne . e
1 JUMPER routine . 7-
Data Input and Output routlnes . . 7=
1 PRASCI - Character outputting routlne . . .7
.3.2 PREND - Closing part of the PRASCI routine. . 7-
3 REDCHR - Character inputting routines. . 7-
Display routines . R
1 BDISPJ - Character orlented dlsplay routlne . 7-
7

Check for mass memory type device.
Display a CAT text string. .

Loop clean up after mass menm actlon
Find file on mass storage device.
Format medium in the specified drive.
Locate the start, length of directory
Get the Nth entry in a tape directory
Initialize a file .

))
T I T T N T T N N S T g S gy W S

Create a file on mass memory device.
Read specified record from mass menm
Seek a record.

Seek for a record, then read 1t
Check the tape drlve S status.

Check if a strlng 1s an ASSIGN UORD
Check an HPIL device assignment.
Parse a device specifier.

Get the file name from program memory 7-26
Find the address of a device on loop. 7-26
Get HPIL address from program memory. 7-27
Get address from string on math stack 7-28

AP PWONRFRPPOCODTODOT L WNERRFRPOOSEOOODODOTTANN -

ICIRC IR RS I RN q-q-q-q~ﬁ-4-q-q RSN RS RN RS RN

vii

HP-71 HP-IL

7.7

7.8

7.9

NNNNAN NN NN NN

NN NN~

SIS IRK RN I I T T [N K RS IR IR T IR IR I (R I R TR I I I IO IR

Module IDS - Volume I

6.
6.
6
6
6
6
6
6
6
6
6
6
6
6
L
7
7
7
7
7
7
7
7
C
8
8
.8.
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
P

.15 GIYPST
.16 PROCDUY
.17 PROCLT
.18 PROCST
.19 ROMIYP
.20 SAVEIT

CHKSET -
LISTEN -
MIYL -
RESTOR -
RESTRT -
START
UTLEND -
YIML -

O

‘.OG)\]O)U"I—DQOF\J)—‘E DO ~NONH WM

.10 GETHSS
.11 GEIMBX
.12 GETX
.13 GFIYPE
.14 GLOOP#
.15 PRMSGA
.16 PUTARL
.17 PUIC
.18 PUTD
.18 PUTDX
.20 PUTE

.22 PUTX

8 GETDID - Fetch the device ID . .
9 GETDVU - Get device word off the math stack .
.10 GETID - Get the device ID for a device.

.11 GETILPs - Get loop number, check status.

.12 GETPIL - Extract file name & device ID, acc I
.13 GHEXBT, GIYPRM - Get hex value from 1 byte.
.14 GIYPE - Get the accessory 1D of a device.

Get device type (acc ID)
Process device word.
Process literal.

from stack.

Process a string dev1ce spe01f1er .
Check if a string is a reserved word
Save device descriptor entry.

Check 1if this‘Mallbox has

.21 SETUP - Build a recall string in C[6:0].
oop addressing routines

been reset

Address a device as listener.

Address me as talker, one
Reactive all devices.
Restart all HPIL devices.

listener.

Set up entry conditions for the loop
Unaddress talker & listener, clean up

Address a talker, me as 1

unicating with I/0 CPU routlnes .
CHKSTS - Check Mailbox status, error etc
DDL,DDT- Send a device dependent command
FNDMBX - Find an HPIL Mailbox.
FRAMEE - HPIL frame encode. . .
FRAME+,FRAME- - Returns type of HPIL message
GET, GETNE

istener.

- Get a message from Mailbox.

GETD - Get data. .
GETDev - Check if the HPIL module is a dev1ce
GETERR,GETST - Get Mailbox error/status.

Get 2 handshake nibbles

from Mailbox

Set DO to the HPIL Mailbox address

Fast data input routine.
Get frame type from RAM.

Get loop # from RAM (if one present]

Print message from C-reg.
Put data from A[U] to Ma

1150x

Put a command (4 nibs) to Mailbox.
Put a single data byte to the loop.

Put multiple data bytes
Put long message (6 nibs

.21 PUTEN - Send message to Mailbox,

to Mailbox.
) to Mailbox
ignore error

- Send 3 bytes of data from C[5:0]

viii

.23 READIT - Read data bytes from the loop.
.24 SENDIT - Send data from B{UW]. . .
.25 SETLP - Setup loop rumber for FNDMBX routlne
.26 UWRITIT - Output data to loop from RAM.

arse and decompile routines e e .

| S e Y N N N A e M D R R R A N R R R R A |

i ﬁ AR R R R R R R R ﬁ i R I s e I R I e I I R e R e I R I R I I B B R I I I
DDA ANANANANTOTITITANINDEERRAELELELILLELELERNWOLOWWWWWWWWWWWMNMN
DORNPOCSCOOIAINVNIANTNEOORNNRPOEOINOINPEREPNRRPOOOODdINTNERLOONPL, DO

HP-71 HP-IL

NN NN NN

Module IDS -

© O WYoO OO
C e s e e e e e

OO WM

DVCSPp
FRASPd
FRASPD
LOOP#d
Loop#p
NAMEp

PRNTSA
PRNTSp

VYolume 1

i

Device spec parse
Decompile a frame specifier.
Frame spec parse for HPIL frames.
Decompile optional loop number.
Parse optional loop specifier.
Parse a name or device word.
PRINTER IS decompile routine.
PRINTER IS parse routine.

ix

7-64
7-65
7-65
7-66
7-67
7-67
7-68
7-69

HP-71 HP-IL Module IDS - Volume I
Hou to Use This Document

e e —————————————————
|

| HOW TO USE THIS DOCUMENT

|

gy g g gy gy g g S

__________________ +

CHAPTER 1 |

b o ——

.................. +

This document describes the software design of the HP-IL module for
the HP-71. The HP-IL module is an optional plug-in for the HP-71
which adds 1/0 capability to the HP-71. The hardware of the HP-IL
module includes an HP-71 ROM and an 1/0 processor. The HP-71 CPU
communicates with the I/0 processor through a mailbox. The 1/0
processor controls the HP-IL loop to perform the HP-IL operations.

When we use the term "HP-IL module", we mean the HP-71 ROM and the
I/0 processor. When we use the term "HP-IL ROM", we mean only the
HP-71 ROM.

The role of the I/0 processor is to take commands from the HP-71
and send the necessary messages on the HP-IL loop. The role of the
HP-IL ROM 1is to provide additional keywords to the HP-71 for 1/0
operations. It also extends some of the keywords in the HP-71 to
allow access to devices on the HP-IL loop.

The purpose of this document is to provide information to those

users who want to access the routines in the HP-IL ROM. If an
assembly language application is being written, all of the utility
routines in the HP-IL ROM are accessible to the user. The

utilities may be useful for adding keywords to the HP-71 or
speeding up an application.

The second chapter provides some design notes of the HP-IL ROM.
This chapter describes 1in detail the implementation of certain
features in the HP-IL Module. The information includes:

System RAM usage

1/0 buffer usage

How interrupts are implemented

How multiple loops are implemented
How frame timeouts are implemented

The third chapter gives the loop specifier syntax for HP-IL
keywords. At the present time, wunless special hardware is
provided, there is no way to plug another HP-IL mailbox into the
HP-71. However, the firmware of the HP-IL module is capable of
handling up to three mailboxes, each mailbox 1is treated as a
separate loop. UWhenever a device is specified, an optional loop
specifier is also allowed, which specifies which loop the device is
in. However, the syntax of the optional loop specifier was not
published in the mamual of the HP-IL module. The intention is to

1-1

HP-71 HP-IL Module IDS - Volume I
How to Use This Document

publish the 1loop specifier syntax with the future product which
allows the user to plug in an additional HP-IL loop (such as a Port
Extender).

The fourth chapter has some examples of what frames the HP-71
actually sends out to perform some basic HP-IL operations, such as
pouering up the loop, auto addressing the loop or searching for a
device. This information may be useful to those people who want to
implement an HP-IL interface in their device. They may want to
know what frames to expect from the HP-71 for some simple
operations.

The fifth chapter describes the 1lowest level utilities. It
describes hou to send messages to and receive messages from the 1/0
processor. All HP-IL commands and data transfers go through a
mailbox to the 1/0 processor. If a poll handler or utility routine
can not be found which implements a required special function,
messages can be sent directly to the HP-IL mailbox. At this level,
the user has control of the loop at a frame by frame level.

The sixth chapter describes all the polls answered by this module.
The HP-IL ROM is a soft configured ROM, which means the routines in
this module do not have a fixed address. The simplest way to
access a routine in this module is by issuing a poll which the
HP-IL module will answer. A poll can be issued without knowing the
address at which the HP-IL module is configured. Please refer to
the HP-71 IDS for more information about houw to use polls.

The final chapter describes all of the utility routines in this
module. There are many utility routines which can not be accessed
through polling. These routines may be accessed by a direct call.
As wuwe mentioned earlier, the HP-IL ROM does not have a fixed
address. To directly call a utility routine, first find the
starting address of the HP-IL ROM in the configuration tables.
Then add to the starting address, the offset of the utility routine
into the HP-IL ROM and the jump to this address. To simply calling
routines in the HP-IL ROM directly, we have provided a routine,
JUMPER, in this chapter which will search the configuration tables
for the address of the HP-IL ROM. Therefore, calling a utility
routine in the HP-IL ROM 1is simplified to executing a GOSBVL to
JUMPER and providing the offset of the utility routine from the
start of the HP-IL ROM. The offset of each routine can be found in
this chapter, along with the description of each routine.

1-2

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

B e = = ——— — —— — ——— —————————————
I

| INTERNAL DESIGN NOTES

I

o e ——————

+ ——— 4
2
>
S
tm
0
N

The purpose of this chapter is to describe the implementation
details for some of the features of the HP-IL ROM. These include
system RAM and I/0 buffer usage, standard display and print device
assignments, interrupts, multiple loop capability and loop
integrity maintenance.

2.1 System RAM usage

The following locations in system RAM are used by the HP-IL ROM:

ONINTR : Address of the ON INTR statement
IS-DSP : Display device assignment

IS-PRT : Print device assignment

MBOX~ : HP-IL mailbox address

LOOPST : HP-IL loop status

DSPSET : Display device set up

TERCHR : Terminating character for ENTER

2.1.1 ON INTR address

Symbol : ONINTR

Location : #2F68D

Length : 5 nibbles

Contents : Holds the address of last executed ON INTR statement

This address is set by the ON INIR statement. The address points
to the ON INTR statement, not the interrupt service routine,

This address is cleared when RUN is executed. The ONINTR address
is associated only with the current program. If a CALL statement
is erecuted, the current value of the ONINTR location is saved and
then the ONINIR location 1is cleared, before execution of the
subprogram begins. The ONINTR address of the calling program is
restored when an ENDSUB or END is executed.

2-1

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.1.2 DISPLAY IS assignment

Symbol . IS-DSP
Location : #2F78D
Length : 7 nibbles

Contents : Current standard display device assignment
Assigmment encoding:

Nibs from
base adr: Usage:

2-0: If device address knoun, address, loop # here
If LOOP, nibs 1-0=0, nib 2 is loop #
If NULL, F0O

If not known/not assigned/I0 buffer, FFF
If assigned, not HP-IL, Fgx, ®RX<>FF

3: If unassigned/not HP-IL, F
If I0 buffer with one entry, 4
If address specified, 0
If type specified, loop # + 1 (nib 3: 1,2,3)
If this assignment has been "OFF"ed, bit 3 is 1

6-4: If type, nib 6: sequence #, nibs 5-4: Acc id
If address, 6-4: address, loop #
If 10 buffer, 6-4: 10 buffer #
If unassigned (NOT "OFF"ed), FFF
If not HP-IL and nib 3=F, not defined

If an I0 buffer is used for the display assignment, it is
holds the assignment as shown belouw:

B e ittt +
| Device ID/vol Lbl | search type | loop # | sequence # |
o e +

nibs: 16 1 1 1

(high memory) (low memory)

At cold start, if the HP-IL module is not present, the value of
1S-DSP is set to FFFFFFF.

The 1initial value of IS-DISP at cold start with the HP-IL ROM
present depends on whether a display device is found in loop 1. If
no display device (with accessory ID 3X) is found the value will be
set to O3F1FFF. If a display device 1is found, the value will be
set to the address of the first display device in the 1loop.
WUhenever the HP-IL ROM detects it was just added to the HP-71, the
initial value of the display device assigmment will be set to this

2-2

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

default value.

Anytime a loop broken condition is detected while trying to send
characters to the display device, bit 3 of nibble 3 will be set to
1 and nibbles 2-0 are set to FFF. This setting will cause the
HP-IL ROM to stop sending data to the display device. UWhen a
RESTORE I0 is executed or the HP-71 is turned OFF and ON again, the
HP-IL ROM will search for a display device. If the assigned
display device is found, nibbles 2-0 will be set to the address of
the device and bit 3 of nibble 3 will be cleared.

If the ATIN key is pressed while displaying, it will cause bit 0 of
DSPSET (location #2F7B1) to be cleared and characters will no
longer be sent to the display device. This bit will be set again
when the HP-71 goes through the main 1loop trying to display the
prompt character. At this time, the HP-IL ROM will try to restore
the display device.

2.1.3 PRINTER IS assignment

Symbol : IS-PRT

Location : #2F734

Length : 7 nibbles

Contents : Current print device assigmment

Assignment encoding:

Nib from
base adr: Usage:
2-0: If device address known, address, loop # here
If LOOP, nibs 1-0=0, nib 2 is loop #
If NULL, F0O

If not known/not assigned/IO buffer, FFF
If assigned, not HP-IL, Fyx, BRXFF

3: If unassigned/not HP-IL, F
If I0 buffer with one entry, 4
If address specified, 0
If type specified, loop # + 1 (nib 3: 1,2,3)
If this assignment has been "OFF"ed, bit 3 is 1

6-4: If type, nib 6: sequence #, nibs 5-4: Acc id
If address, 6-4: address, loop #
If 10 buffer, 6-4: IO buffer #
If unassigned (NOT "OFF"ed), FFF
If not HP-IL and nib 3=F, not defined

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

If an IO buffer is used for the printer assignment, the
assignment is saved in the following way:

o e e e —————————————————_— +
| Device ID/vol Lbl | search type | loop # | sequence # |
e e e ————————————————_—— +
nibs: 16 1 1 1
{high memory) (low memory)

If the HP-IL module 1is not present at cold start, the IS-PRT
location is initialized to FFFFFEF.

The 1initial value of IS-PRT at cold start with the HP-IL ROM
present, depends on whether a printer device is found in 1loop 1.
If no printer device (with accessory ID 2X) is found the value will
be set to 02F1FFF. If a printer device is found, the value will be
set to the address of the first printer device in loop 1. Uhenever
the HP-IL ROM detects it has just been added to the HP-71, the
printer assignment will be set to this default value.

Everytime a PRINT statement is erecuted, the loop is searched for
the printer device, as specified by the current assignment.

2.1.4 last mailbox address

Symbol : MBOX"

Location : #2F749

Length : 3 nibs

Contents : Mailbox address of last accessed mailbox

In executing many of the HP-IL keywords, the first step is to find
the address of the mailbox in the configuration tables. This can
be easily accomplished by calling the routine FNDMBX. FNDMBX saves
the address of the mailbox in the system RAM location MBOX". This
eliminates the need to save the mailbox address in a CPU register
during execution of a statement. The routine GETMBX will load the
mailbox address into DO.

The mailbox address 1is 5 nibbles 1long. However the most
significant nibble will always be a 2. This is because the mailbox
is a Memory- mapped I/0 type device and so it will always be
configured in the address range 20000-2C000. The least significant
nibble will always be a 0, since the memory size of a device is
alway a multiple of 16 nibbles. Since the wvalue of the top and
bottom nibbles are always known, RAM 1is allocated for the middle
three nibbles only. The routine GETMBX will supply the top and
bottom nibbles of the mailbox address.

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.1.5 HP-IL loop status

Symbol : LOOPST

Location : #2F7AC

Length : 1 nibble

Contents : Holds the status of the HP-IL loop

Bit # Meaning

3 Set by OFF I0 command
Cleared by RESTORE 10 command
2 When set indicates the last mailbox accessed is in

device mode. The routine START will set or clear
this bit everytime it is called.

1-0 Cleared by the routine START everytime it is called.
These two bits are not used at the present time.

This nibble is initialized to zero at cold start or when the
HP-IL ROM is first added to the HP-71.

2.1.6 Display device status

Symbol : DSPSET

Location : #2F7B1

Length : 1 nibble

Contents : Indicates the type of device to which the display is
assigned and the current status.

Bit # Meaning

3 Set when the display device has been set up to receive
data. The routine START clears this bit everytime it
is called.

2 Set if the display device is a HP82163A Video
Interface.

1 Set if the display device is a printer.

0 Set means the display device is OK.

Clear if the ATIN key has been hit or the loop dies
while displaying. Mainloop sets this bit again.

Bits 2 and 1 are used to indicate whether the display device is a
HP82163A or a printer. If both bits are set, this indicates the
display is neither a HP82163A nor a printer type device. In other
words, the accessory ID is not 30 hex or 2X hex. This nibble is
initialized to 7 at cold start and when the HP-IL ROM is first
added to the HP-71.

2-5

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

2.1.7 ENTER terminating character

Symbol : TERCHR

Location : #2F97D

Length : 2 nibbles

Contents : Defines the terminating character for ENTER statement

This character 1is initialized to the line-feed character (0A) by
the HP-IL ROM at cold start or when the module 1is added to the
HP-71.

The HP-IL ROM does not provide any keywords for the user to change
the terminating character. PEEK$ and POKE can be used to change it
if required by the application.

2.2 1/0 buffer usage
Several I/0 buffers are used by the HP-IL ROM for various purposes:

bPILSV - HP-IL save buffer, a indication of the ROMs presence.
bPILAI - Contains ASSIGN I0 names.
bSTMXQ - HP-IL statement execution buffer

2.2.1 HP-IL save buffer

Symbol : bPILSV
1/0 buffer number : #80F

This buffer is created by the HP-IL ROM at cold start or when the
ROM is first added to the HP-71. No information is stored in the
HP-IL save buffer.

Everytime the HP-71 wakes up from deep sleep it will issue the deep
sleep wake up poll. During this poll the HP-IL ROM will check to
see if this buffer exists. If the buffer is not found, the HP-IL
ROM will assume the 1/0 processor has not been initialized. The
HP-IL ROM will create this I/0 buffer and execute an initialization
sequence which includes the following:

1. Initialize all the mailboxes found.
*Set IDY timeout to 50 milliseconds.
¥Set up the accessory ID and the device ID.
2. Initialize DISPLAY IS and PRINTER IS assigrments.
*Urite O3F1FFF to IS-DSP which indicates the display device

2-6

HP-71 HP-IL Module IDS - Volume 1
Internal Design Notes

is unassigned but defaults to the 1st device in loop 1
with an accessory ID of 3X.
*Urite O2F1FFF to IS-PRT which indicates the print device
is unassigned but defaults to the 1st device in loop 1
with an accessory ID of 2X.
3. Set ENTER terminating character to line feed character (0A).

2.2.2 ASSIGN IO buffer

Symbol: bPILAI
1/0 buffer number: #810

This 1/0 buffer is created by the ASSIGN I0 statement. Its length
is always 122 nibbles (30 entries * 4 + 2 nibs of 00). The ASSIGN
I0 statement can have up to 30 assign words. Each assign word
takes 2 bytes in the ASSIGN I0 buffer. The two bytes are the two
characters of the assign word. If an assign word has only one
character, the second character is zero filled.

2.2.3 HP-IL Statement Execution Buffer

Symbol: bSTMXQ
I1/0 buffer rnumber: #811

This 1/0 buffer is allocated by the HP-IL ROM whenever data is
received remotely as a device. Uhen the HP-71 is a device and in
remote mode, any data received will be interpreted as BASIC
commands. The data received is put into this buffer by the HP-IL
ROM for subsequent execution by the HP-71.

2.3 Decoding a device specifier

The method used to find a device on the loop, .is dependent upon hou
the device is specified. The algorithm for decoding a device
specifier is given belou:

IF <dev spec> starts with a "."
THEN <dev spec> is a volume label
IF <dev spec> starts with a "%" sign
THEN <dev spec> is an accessory ID
IF <dev spec> starts with a "*" sign
THEN <dev spec> is "*"
IF <dev spec> starts with a numeric character
THEN <dev spec> is a HP-IL address

2-7

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

IF <dev spec> is one of the ASSIGN words

THEN get the HP-IL address from the ASSIGN I0 buffer.
IF <dev spec> is one of the reserved words

THEN get the accessory ID from the reserved word table.
IF <dev spec> is "NULL" or "LOOP"

THEN <dev spec> has no address

ELSE <dev spec> is a Device ID.

2.3.1 How file and device specifiers are tokenized

File spec. tokenization:

1) <string expression>
2} or <tLITRL> [<file name>] <tCOLON> <device specifier»
3) or <tLITRL> [<file name>] <tSEMIC> <volume label>

Device spec. tokenization:

<gtring expression>
or <tCOLON> <HP-IL address>
or <tCOLON> <tLITRL> <device word> [<tSEMIC> <loop number>]
or <tCOLON> <t%> <num expr> [<tSEMIC> <loop number>]
or <tCOLON> <tLITRL> <assign word>
or <tCOLON> <tLITRL> <device ID> [<tSEMIC> <loop number>]
or <tCOLON> <t*>

SO0 P W

2.3.2 Reserved device word table

The table entry structure 1is:

1 nibble: length of name minus 1, in nibbles (n-1)
n nibbles: name (Bytes in order!)
2 nibbles: accessory ID

The table consists of entries terminated by length nibble of 0.
The table is listed below:

NIBHEX 7 Length of "TAPE"

NIBASC \TAPE\ TAPE:TYPE=10

NIBHEX 01

NIBHEX D Length of "MASSMEM"

NIBASC \MASSMEM\ MASSMEM:TYPE=1F (MASS MEM. CLASS)
NIBHEX F1

NIBHEX D Length of "PRINTER"

NIBASC \PRINTER\ PRINTER:TYPE=2F (PRINTER CLASS)

2-8

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

NIBHEX F2
NIBHEX D Length of “DISPLAY"
NIBASC \DISPLAY\ DISPLAY:TYPE=3F (DISPLAY CLASS)
NIBHEX F3
NIBHEX 7 Length of "GPIO"
NIBASC \GPIO\ GPIO:TYPE=40
NIBHEX 04
NIBHEX 9 Length of "MODEM"
NIBASC \MODEM\ MODEM: TYPE=41
NIBHEX 14
NIBHEX 9 Length of "RS232"
NIBASC \RS232\ RS232:TYPE=42
NIBHEX 24
NIBHEX 7 Length of "HPIB"
NIBASC \HPIB\ HPIB:TYPE=43
NIBHEX 34
NIBHEX D Length of "INTRFCE"
NIBASC \INTRFCE\ INTRFCE: TYPE=4F
NIBHEX F4
NIBHEX D Length of “INSTRMT"
NIBASC \INSTRMT\ INSTRMI : TYPE=5F (INSTRMI CLASS)
NIBHEX F5
NIBHEX D Length of “GRAPHIC"
NIBASC \GRAPHIC\ GRAPHIC:TYPE=6F (GRAPHIC I1/0)
NIBHEX F6

END OF TABLE INDICATOR...NULL
NIBHEX 0

2.4 HP-1L ROM.and Mailbox interface

The HP-IL module has a ROM containing an HP-71 LEX file and an 1/0
processor. The function of the ROM is to extend the BASIC language
to include I/0 capability on HP-IL. The HP-IL ROM talks to the I1/0
processor through a mailbox. It is just like a person would use
the mailbox for their mail. If the HP-IL ROM wants to send
something out, it will put the information in the mailbox and set a
flag. If the I/0 processor has a message for the HP-IL ROM, it
will put it in the mailbox and set a different flag.

The implementation of the feature set of the module if shared by
the HP-IL ROM and the 1/0 processor. The HP-IL ROM is responsible
for moving data Dbetween the HP-71’s memory (such as variables and
files) and the mailbox. The I/0 processor is responsible for
moving data between the mailbox and the loop.

The HP-IL ROM and the 1/0 processor work together on things other
than transferring data too. These include setting up frame

2-9

HP-71 HP-1L Module IDS - Volume 1
Internal Design Notes

timeouts, interpreting remote data and generating interrupts to the
HP-71. The following section describes how these features are
implemented.

2.4.1 Hou frame timeouts are implemented
The STANDBY statement takes two parameters:

1. Timeout period: defines how long the HP-71 waits for each
HP-1L message to travel around the loop, back to the HP-71.
2. Verify interval: defines how often the HP-71 tests the loop’s
continuity by sending an HP-IL Identify message. The
the Identify message travels around the loop quickly.

The 1/0 processor stores and uses the frame timeout values. These
two parameters are not directly sent to the I/0 processor. The
HP-IL ROM converts the STANDBY parameters into three timeout
parameters used by the I/0 processor:

1. Frame timeout: Specifies how long to wait for the frame to
timeout before sending out an IDY frame.

2. IDY timeout: Specifies the maximum time to wait for the IDY
to return before setting the loop broken error.

3. Number of IDYs: Specifies the maximum number of frame time-
outs to allow, before setting the frame timed out error.

The HP-IL ROM always sets the IDY timeout to 50 milliseconds. The
STANDBY statement causes the Number of IDYs to be set to the
CEIL(the timeout period/the verify interval) and sets the frame
timeout to the verify interval. If only the timeout period is
specified, it will be used to set the frame timeout and the number
of IDY’s is set to 1.

The HP-IL ROM initializes the frame timeout to 2 seconds and the
number of IDY’s to 30. This means if the loop is broken it will be
detected within 2 seconds. If the loop is complete, a message sent
has to return in 60 seconds. Uhen a STANDBY OFF is exrecuted, these
default values are used. UWhen STANDBY ON is executed, the frame
timeout will be set to infinity. This means the loop will never
been tested with an IDY message and the HP-IL module will wait
forever for a message to return.

WUhen the HP-IL ROM begins erecution of a statement, it first clears
the 1/0 processor error code by reading the error and ignoring it.
From that point on, when the HP-IL ROM wants to send a message to
the mailbox, it first checks the status of the mailbox by looking
at the error bit. If the mailbox reports an error has happened,
the HP-IL ROM will error out. If the mailbox is ready to receive a
message, the HP-IL ROM will write the message to the mailbox. If

2-10

HP-71 HP-IL Module IDS - Volume 1
Internal Design Notes

necessary the I/0 processor will send message(s) to the loop and
wait for them to return. If a message takes too long to return,
the I/0 processor will start to send out IDY’s to test the loop.
Uhen the message finally returns, the 1/0 processor will error
check it. If the message does not return 1in time or a transmit
error has been detected, the I/0 processor will set the error bit
in the mailbox. The HP-IL ROM will know an error has happened on
the last transmission when it trys to send the next message.

2.4.2 Interpreting data when in remote mode

The HP-71 can operate as a device in the loop. There are several
ways to cause the HP-71 to give up control of the loop:

1. Execute a CONTROL OFF.

2. Execute a PASS CONTROL.

3. Send the HP-71 an IFC message. UWhenever an IFC is
received which the HP-71 did not source, the HP-71 will
give up control. Controller status is cleared. If the
HP-71 is already a device, the HP-71 just executes the
the IFC command (untalks and unlistens itself).

A controller can send BASIC commands to the HP-71 when it 1is a
device. The controller has to put the HP-71 in remote mode to
cause the HP-71 to interpret the ASCII data it receives as a BASIC
statement. The implementation is described below:

1. When the I/0 processor has data available, it will generate a
service request line on the HP-71 processor bus. This is the
same service request as would be generated by the timer.

2. The HP-71 will check first to see if the service request is
generated by the timer. If it is not, then the HP-71 will
issue the service request poll to give LEX files a chance
to process the service request.

3. When the HP-IL ROM receives this poll, it will check if the
service request is generated by the I/0 processor. If it is,
the handshake byte of the mailbox 1s read to see if the
SRQ bit is set., If there are multiple mailboxes found in the
configuration table, the HP-IL ROM will look for the first
mailbox which has the service request bit set.

4. After finding a mailbox with the service request bit set, the
HP-IL ROM will read its status and instruct the I1/0 processor
to clear the service request bit in the mailbox.

5. The status of a mailbox will indicate the reason it is
requesting service. There are two reasons the 1/0 processor °
may want to request service:

a. An interrupt has occurred
b. Data is available from the loop (only as a device).

2-11

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

If the reason for requesting service is interrupt occurred,
the HP-IL ROM will set the system flag called Exception flag
(S12) and return. Subsequently, the Exception flag will
cause the HP-71 to issue the exception poll, and the
interrupt will be serviced in the exception poll handler.

If the reason for requesting service is data available, the
HP-IL ROM will implement the following checks:

a. If the HP-71 is not in remote mode, then the poll handler
is completed. In this case the data will be held by the
1/0 processor and service will be requested until the data
has been read by the HP-71 (usually by an ENTER statement).

b. If the HP-71 is in remote mode, the HP-IL ROM will then
check if the HP-71 is idle. Idle means the HP-71 is not
running a program, not in the CALC mode, and not executing
an INPUT statement. If the HP-71 is not idle, the poll
handler will return immediately as in the previous case.

If conditions match on any of the above 2 cases then the
poll handler will return without doing anything, the HP-71
will Keep issuing the service request poll until there is
no longer a service request on the HP-71 processor bus.

If the HP-71 is 1in remote mode and it is idle, the HP-IL ROM will
first clear the key buffer and then put a single key code in the
key buffer. The key code put into the key buffer is "FF'. It is a
key code the HP-71 won’t recognize. Whenever the HP-71 finds an
unrecognized key code in its key buffer, it will issue the KYDF
(key def) poll to see if any LEX file knows how to interpret it.
The HP-IL ROM checks the key code when the KYDF poll is issued. If
the "funny" key code is "FF", then the HP-IL ROM knows it has data
available in remote mode. The HP-IL ROM finds the mailbox which
has data available, then creates an 1/0 buffer, reads the data from
the mailbox and puts it into the I/0 buffer. Uhen this 1is done,
the HP-IL ROM will set the input buffer pointer to the I/0 buffer
and return. The HP-71 will treat the ASCII characters in the input
buffer as if they were typed in from the keyboard by the user. The
ASCII string will be parsed and executed.

2.5 How interrupts are implemented

A user program can use the interrupt capability of the HP-IL
module through the following keywords provided by the HP-IL ROM:

1. ON INTR GOTO/GOSUB <line number>
This statement identifies and enables a branch to the

2-12

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

interrupt service routine.

2. ENABLE INTR <interrupt mask>
This statement defines what events the program wants to
enable for interrupts.

3. OFF INIR
This statement clears the address of the interrupt service
routine defined by the ON INTIR statement. The effect is to
cause an interrupt to become pending if it ever happens. This
is a way to temporarily disable interrupts. The interrupt
can be reactivated by the ON INTR statement.

4, READINTR .
This function can be used to find out what the caused the
interrupt.

Execution of the ON INTR statement simply writes the address of the
ON INTR statement to a reserved location in system RAM. In this
way, the HP-IL ROM can tell whether a GOIO or a GOSUB should be
executed when a branch to the interrupt service routine occurs.

The ENABLE INIR will send the interrupt mask to the I/0 processor,
since the 1/0 processor keeps track of the interrupt events. Tuo
bytes are used by the I/0 processor to monitor the interrupt
events:

a. Interrupt mask byte

This is the byte set by the HP-IL ROM to indicate to the I/0

processor which of the 8 events are enabled to generate an

interrupt. This byte will be cleared by the HP-IL ROM auto-

matically in the following cases:

1. Immediately before the end-of-line branch is taken to the
interrupt service routine.

2. At the end of program execution or whenever an EDIT is
executed.

b. Interrupt cause byte
There are total of 8 events that can cause interrupts. The
8 bits of this byte are a record of each of the 8 events.
An event is recorded, regardless of whether or not that
particular event is enabled to generate an interrupt.

Every time an interrupt event occurs, the corresponding bit in the
interrupt cause byte 1is set to 1. The 1/0 processor will compare
the interrupt cause byte and the interrupt mask byte. If any of
the bits matched, the I/0 processor will request service on the
HP-71 processor bus. Everytime the HP-71 wakes up from light sleep
or at the end of each statement execution, it will check for a
service request on the HP-71 bus. If there 1s a request, the HP-71
will check if it 1is the timer. If it is, the request will be

2-13

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

handled by the HP-71. Otherwise, the HP-71 will issue the service
request poll to give external LEX files a chance to service the
request.

WUhen the HP-IL ROM receives this poll, it will check if the service
request is generated by an I/0 processor. If so, the handshake
byte of the mailbox is read to see if the service request bit is
set. If there is more than one mailbox found in the configuration
table, the HP-IL ROM will look for the first mailbox which has the
SRQ bit set. After finding a mailbox with the service request bit
set, the HP-IL ROM will read its status.

The status of a mailbox will indicate the reason for the service
request. There are two reasons the mailbox will request service:
a. An interrupt has occurred
b. Data is available from the loop (only as a device).

If the reason for requesting service 1s interrupt occurred, the
HP-IL ROM will set the system flag called Exception flag (S12) and
return. Subsequently, the Exception flag will cause the HP-71 to
issue the exception poll. The interrupt branch is implemented in
the exception poll handler.

The exception poll handler will implement the following:

1. Read the mailbox status to see if it has a pending interrupt.
If more than one mailbox exists, the first mailbox with a
pending interrupt will be serviced.

2. Check if the ON INTR address is non-zero. If it is zero, the
Exception flag (S12) is set and the poll handler returns.

3. Check if the HP-71 is running a program. If is not, the
Exception flag is set and the poll handler returns.

4, Check if statement which has just been executed is at the end
of a line. If not, the Exception flag is set and the poll
handler returns.

If the Exception flag is set, the HP-71 will continue to issue the
exception poll when it finishes executing the next statement or
when it next wakes up from light sleep.

When all the above conditions are met, the HP-IL ROM will clear the
interrupt mask and cause program execution to branch to the
interrupt service routine.

The purpose of automatically clearing the interrupt mask is to
prevent re-entering the interrupt service routine when already in
the routine. The user program should reactivate the interrupt at
the end of the service routine. If the last statement of the

2-14

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

interrupt service routine is a RETURN, be sure to put the ENABLE
INTR in the same line as the RETURN. Otherwise, if there 1is an
interrupt pending, doing an ENABLE INIR will cause an end-of-line
branch to take place before the RETURN is executed.

However, the Iinterrupt cause byte will still function as usual,
meaning it will still keep recording any interrupt events that
occur. The interrupt cause byte will be cleared only when read by
the READINTR function. Therefore, it is very important for the
interrupt service routine to read the interrupt cause byte. If the
interrupt cause byte is never read, it will not be zeroed. Then
when interrupts are enabled at the end of the Interrupt service
routine, it will cause the interrupt branch to happen instantly.
Everytime the interrupt mask is set, the 1/0 processor will compare
the neu mask and the interrupt cause byte. If there is a match in
any of the bits, the I/0 processor will generate an interrupt right
away. So if the interrupt cause byte is not cleared, false
interrupts will be generated.

2.5.1 Disabling interrupts

There are two ways to disable interrupts:

1. OFF INTR
This statement clears the address set up by the ON INTR
statement. It has no effect on the interrupt mask or cause
byte. An interrupt becomes pending if it happens after an
OFF INTR. Everytime an ON INTR is executed, a check is made
for any pending interrupts. If there are pending interrupts
an end-of-1line branch will take place.

2. ENABLE INTR 0 (clears the interrupt mask)
Zeroing the interrupt mask will prevent interrupt branching.
Zeroing the mask byte will guarantee that no bits will be set
when the mask byte is anded with the cause byte. So, the
1/0 processor will never generate a service request due to
an interrupt.

2.6 HP-71 Requesting Service in Device Mode

The HP-71 can share control of the loop with other controllers. As
a device, the HP-71 has the capability to get the attention of the
active controller by requesting service., The REQUEST statement is
a BASIC keyword which can cause the HP-71 to request service on the
loop.

2-15

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

The REQUEST statement takes an integer parameter in the range 0 to
255. The parameter is the value of status which is returned to the
controller whenever the HP-71 1is polled for its status. The
parameter is sent to the 1/0 processor uwhere it is saved in a byte
reserved for the current status, Everytime the I/0 processor is
polled for status, this byte is sent out automatically.

The status byte is initialized to zero at power on and will remain
zero unless the 1/0 processor receives a new status byte from the
HP-71 processor. UWhen the 1/0 processor receives a new status byte
from the HP-71 processor, it will do two things:

1. Save the new status byte in RAM.

2. If the I/0 processor is in device mode, the loop service
request status will be updated as the new status byte
indicates. This process is described belou:

If the bit 6 of the status byte is set, it means service
request is set on the loop. The service request bit is set

on any IDY, DAB or END frames which pass by the HP-71. Also if
the loop is in EAR mode (Enable Asynchronous Requests), the 1/0
processor will start sourcing IDY frames. EAR mode enables a
device’s ability to source IDYs when it needs service. This
way the controller does not have to constantly send frame to
monitor service requests.

If the bit 6 of the status byte is zero, the IO processor will
stop requesting service on the loop. If the I/0 processor
was not requesting service, no change is made.

If the I/0 processor is controller, service will never be
requested on the loop.

4 RESET HPIL will cause the status byte to be set to 0. Bit 7
indicates to the controller how to interpret the status byte. If
bit 7 1is set, it means bits 5-0 should be interpreted as system
status. If the bit 7 1is zero, it means bits 5-0 should be
interpreted as device dependent status. Refer to the HP-IL
Interface Specification document for the details on status
responses.

2.7 Implementing Multiple Loops

The HP-71 only needs one HP-IL ROM which can communicate with more
than one mailbox plugged into the HP-71. There can be more than
one HP-IL ROM plugged into the HP-71, but only the f{irst one will
be accessed.

2-16

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

The interface between HP-71 processor and the 1/0 processor is
through a mailbox. The mailbox is soft configurable in the HP-71
address space. This means the mailbox must be configured for the
HP-71 processor to communicate with it. The HP-71 processor system
is reconfigured uwhenever it is possible a change in the system
plug-ins could have occurred, such as when turning on or uhen a
module pulled interrupt occurs. A configuration table will be
generated as the result of the configuration. From the
configuration table, it is possible to find out how many mailboxes
are configured and at what address they reside.

It is quite easy for the HP-IL ROM to handle more than one mailbox.
If a device specifier does not specify the loop number, the HP-IL
ROM will search the configuration table to find the address of the
first mailbox in the table. The order the mailboxes appear in the
configuration table is consistent with the order of the ports in
which the loop reside. The port on the back of the HP-71 is port
0, and will always be the first mailbox in the configuration table.
If a loop number has been specified, the HP-IL ROM searchs for the
Nth mailbox’s address in the configuration table.

2.7.1 Status Information Allocation

Certain status and assignments are saved by the HP-IL module. The
following lists specify who saves the information, either the HP-IL
ROM or the 1/0 processor,

The HP-IL ROM saves the global information (true for all loops):

PRINTER IS and DISPLAY IS assignments.
ASSIGN I0 assigrments.

OFF 10 (it affects all the mailboxes).
Terminating character for ENTER.

Flags -21, -22, -23, -24.

NP WP

Each 1/0 processor saves the following information:

1. Controller or device status.

2. Interrupt mask and interrupt cause byte.

3. Last received DDT or DDL frame.

4. Its own status, such as talker active or listener active.

5. Manual mode status. This status will be checked by the
HP-IL ROM everytime it trys to talk to a mailbox. If the
mailbox is in manual mode, the HP-IL ROM may generate an
error and will send no messages to the I/0 processor.

5. Frame Timeout settings.

6. Device ID and Accessory ID.

7. Loop address table.

2-17

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

(Ending AES address, ending AEP address, ending AAD address)
8. Whether or not the mailbox has been initialized.
9. Loop pouwered up status.

2.8 How to fimd out the capacity of a mass memory device

The HP-1L ROM is able to control one type of mass memory device.
Only a device with accessory Li of 10 hex #ill be recognized by
the HP-IL ROM. The HP-71 assumes a device of this Accessory ID
uses the HP82161A digital cassette drive protocol.

In order to control a mass memory device larger than the HP82161A
the HP-IL ROM assumes certain extensions will be implemented by
these future products. The following extensions are described
below. '

The HP82161A protocol has been extended by the addition of the
following DDCs:

DDT6: Send physical attributes -

When SDA is received after a DDT6, the device should send 12

bytes that represent the 6 words of the LIF extension field.

The LIF extension field consists of the following information:
Words 12 and 13 contain the number of tracks per surface,
with the most significant word being word 12. UWords 14 and
15 contain the number of surfaces per medium, and words 16
and 17 containing the number of sectors per track.

The first byte sent should be the most significant byte of

word 12 and the last byte the least significant byte of word

17. All the above numbers are in binary.

DDT7: Send maximum address -
WUhen SDA is received after a DDI7, the device should send 2
bytes that represent the record number (in binary) of the last
(highest) physical record. The most significant byte is to be
sent first.

DDL11 (11 is decimal): Verify records -
After a DDL11 is received, the next two bytes are to be
interpreted as the number of records to verify (verify means
read and verify checksum is correct and record can be found).
The first byte received is most significant 8 bits of the
number of records. Verification starts at the next record (set
previously by SEEK) and continues until all records are
verified or an error is detected or end of medium is reached.
Device status will reflect the results of the verify (all OK
or checksum error or record not found)

2-18

HP-71 HP-IL Module IDS - Volume I
Internal Design Notes

One clarification on the DDL4 (SEEK) command:

The two bytes of data following a SEEK command are to be
interpreted as a logical record number (where the device appears
to the controller to be organized as an array of records numbered
from 0 to MaxRec).

The HP-71 uses the extended HP82161A protocol only during medium
initialization.

The HP-71 uses DDT6 to determine the information to be written |
into the LIF extension field. If the device responds to the |
subsequent SDA with an ETO, the HP-71 assumes the device is a |
(non-extended protocol) HP82161A which has LIF extension field: |
00 00 00 02 00 00 00 01 00 00 01 00 (hex). These indicate that |
the digital cassette has 2 tracks per surface, 1 surface/medium, !
and 100 (hex) sectors/track. }

|

\

The HP-71 uses DDT7 to determine the size of the device (for
checking requested directory size for valid range). If the
number of directory entries requested by the user is greater than
the number of records that would be left in the data portion of
the medium then an error is generated.

The HP-71 does not use the DDL11 (Verify) command.

2-19

HP-71 HP-IL Module IDS - Volume I
HF-IL Module Commands

e e e e e e e e = ————— - —

t
| EXTENDED COMMAND SYNTAX
I

e e ————————

+ ———
2
>
3
m
j= o]
w

There is a hidden feature 1in the HP-IL module that has not been
mentioned in the user mamual of the module. That is the ability to
handle multiple loops. At the time the manual was written, there
was no hardware available to allow the user to plug in additional
loops. So the user’s manual did not include loop numbers in the
syntax of the keywords. The purpose of this chapter is to furnish
that information.

3.1 Loop Number Specifier

The HP-IL ROM firmware is capable of handling up to three HP-IL
mailboges. It can treat each HP-IL mailbox as a different loop
wvhich plugs in to the HP-71. So when you specify a device, you can
also specify which loop the device is in.

The optional loop number can be 1, 2, or 3. If the loop number is
not specified, the default is loop 1. The HP-IL module plugged
into the back of the HP-71 is always loop 1. The 2nd and 3rd loops
are determined by the order they are configured by the HP-71.

Generally, the way to specify the optional loop number is to append
a colon and a loop number to the device specifier. For example,

PRINTER IS PRINTER:2

assigns the standard print device to the first printer in the
second loop.

OUTPUT %16(2):3 ; "abcde"

outputs the string to the second device in the third loop that has
the accessory ID of 16.

ENTER LOOP:2 ; A$
reads in data from the second loop.
There are two other cases. In some statements, such as CONTROL ON,

no parameter is required. You only have to specify the loop number
as a numeric expression in this type of statements.

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

CONTROL ON 2
sets the controller role in the second loop.

The other case is in a statement such as ENABLE INTR, where a
parameter 1is required but not the parameter 1is not a device
specifier. In this case, specify the loop number as the first
parameter and separate it from the other parameter by a semicolon.

ENABLE INTR 2 ; 64

sets the interrupt mask to 64 in the second loop.

General rules of specifying the optional loop number:

1. If the statement requires a device specifier, append a colon
followed by a numeric expression to the device specifier.

2. If the statement takes no parameter, simply specify the loop
number by a numeric expression.

3. If the statement takes a parameter but not a device specifier,
insert the loop number as the first parameter and follow it
by a semicolon.

3.2 Syntax Identifier Definitions

This section describes the identifier words used under the SYNTAX
section of the following keyword descriptions. The identifier
words are listed here 1in alphabetical order along with their
definitions:

<accessory ID> ::= 0} 1] | 255

*%
<assign word> ::= " [:] <alpha> [<alpha> | <digit>] "
<device> ::= { <HP-IL address> | <device word> | <device type> |

<assign word> | <device ID> }
<device ID> ::= <ID string> [(<sequence number>)]

<device specifier> ::= { : <device> [: <loop number>] |
<volume label> [: <loop number>] }

<device type> ::= % <accessory ID> [(<sequence number>)]

3-2

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

<device word> ::= { MASSMEM | PRINTER | DISPLAY | INTRFCE |
INSTRMT | GRAPHIC | TAPE | TV }
[(<sequence number>)]

"

<file name> ::= <alpha> [.... [<alpha> | «digit>]]

{10 characters maximum)

<file number> ::= <digit> [<«digit> [«digit>]]

<file type> ::= SDATA | DATA | TEXT

<file specifier> ::= <file name> [<device specifier>]

<HP-1L address> ::= <primary address > [. <secondary address>]
<loop number> ::=11] 2 | 3

<primary address> ::= 0 | 1| | 30

<secondary address> ::= 1| 2| | 31

<sequence rumber> :: = 1 f 2] 1 16

<volume label> ::= <alpha> [.... [<alpha> | <«digit>] ...]

(6 characters maximum)

** The quotes around the assign word are not required, but are
recommended to prevent any ambiguities in specifying a device

3.3 ASSIGN #

ASSIGN # <channel number> TO <file specifier>
EXAMPLE STATEMENTS

ASSIGN # 1 TO NOTES:MASSMEM:L

3-3

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

CAT [<file name>] <device specifier>

EXAMPLE STATEMENTS

CAT :TAPE(3):L
CAT .VOLUM1:L

CAT$(<file number> , <device specifier>)

EXAMPLE STATEMENTS

F$=CAT$ (1," : TAPE:3")
CAT$ (F,".DATA:1")

CLEAR <device specifier>
CLEAR [LOOP [: <loop number>]]

EXAMPLE STATEMENTS

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

IF X(2) THEN CLEAR LOOP:L
CLEAR ":DISPLAY:2"

3.7 CONTROL OFF

CONTROL OFF [<loop number>]

EXAMPLE STATEMENTS

IF NOT C THEN CONTROL OFF L

3.8 CONTROL ON

CONTROL ON [<loop number>]

EXAMPLE STATEMENTS

COPY [{ <file specifier> | <device specifier> |
LOOP [: <loop number>] }]

TO { <«file specifier> | <device specifier> |
LOOP [: <loop mumber>] }]

3-5

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

COPY { <file specifier> | <device specifier> |
LOOP [: <loop number>] }]
[TO { <file specifier> | <device specifier> |
LOOP [: <loop number>] }]

EXAMPLE STATEMENTS

COPY START:TAPE(2):3

COPY TO BACKUPFILE.DATA1l:L
COPY OLDFILE:CA:L TO NEUFILE
COPY TO :MASSMEM:L

3.10 CREATE

CREATE <file type> <file specifier> , <filesize> [,<record length>]

EXAMPLE STATEMENIS

CREATE TEXT FILE6:1:L,500
CREATE DATA A$,10,50

3.11 DEVADDR

DEVADDR (<device specifier>)
EXAMPLE STATEMENTS

A=DEVADDR("PR(2):L") @ PRINTER IS A

3-6

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

B=DEVADDR("%16:3") @ COPY FILE1 TO :B
C=DEVADDR(D$)

3.12 DEVAID

DEVAID (<device specifier>)

EXAMPLE STATEMENTS

T=DEVAID("HP82164A:3")

3.13 DISPLAY IS

DISPLAY IS <device specifier>
DISPLAY IS LOOP [: <loop number>]

EXAMPLE STATEMENTS

DISPLAY IS 1.02:L
DISPLAY IS %48(2):L

3.14 ENABLE INIR

ENABLE INTR [<loop number> ;] <interrupt mask byte>

3-7

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

EXAMPLE STATEMENTS

ENABLE INTR L ; L+I*2"N
IF E THEN ENABLE INTIR 1;8 @ ENABLE INIR 2;8

ENTER <device specifier> [USING {<string exp> | <line numb>}]

[; <variable> [, <variable> ...]]
ENTER LOOP [:<loop rumb>] [USING {<string exp> | <line numb>}]
[; «variable> [, <variable> ...]]

EXAMPLE STATEMENTS

ENTER "HP82:2"; N,a$

ENTER %64:L USING "80A" ; X$,Y$
ENTER 3:L USING " ,B" ; A
ENTER LOOP:L ; B1$

3.16 INITIALIZE

INITIALIZE [<volume label>] <device spec> [, <directory size>]

EXAMPLE STATEMENTS

INITIALIZE A$,35
INITIALIZE DATA:TAPE:L,55

3-8

HP-71 HP-IL Module IDS - Volume 1
HP-IL Module Commands

3.17 LOCAL

LOCAL <device specifier>
LOCAL [LOOP [: <loop number>]]

EXAMPLE STATEMENTS

IF NOT R THEN LOCAL "T2:2"
LOCAL HP71(2):L

3.18 LOCAL LOCKOUT

LOCAL LOCKOUT [<loop number>]

EXAMPLE STATEMENIS

IF NOT O THEN LOCAL LOCKOUT L

3.19 OUTPUT

OUTPUT { <device specifier> | LOOP [: <loop number>] }
[USING { <string> | <line number>]
[;expression [{ , | ; } <expression>]] [;]

EXAMPLE STATEMENTS

3-9

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

OUTPUT DISPLAY:2;A$

3.20 PACK

PACK <device specifier>

EXAMPLE STATEMENTS

IF V THEN PACK TAPE(2):3
PACK %16:L

3.21 PACKDIR
PACKDIR <device specifier>
EXAMPLE STATEMENTS

PACKDIR :TAPE(3):L
PACKDIR A$

3.22 PASS CONTROL

PASS CONTROL { <device specifier> | LOOP [: <loop number>] }

3-10

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

EXAMPLE STATEMENTS

PASS CONTROL %1:L
PASS CONTIROL 3:2

3.23 PRINTER IS

PRINTER 1S <device specifier>
PRINTER IS LOOP [: <loop number>]

EXAMPLE STATEMENTS

PRINTER IS "PR(2):2"
PRINTER IS %32:L

3.24 PRIVATE
PRIVATE <file specifier»
EXAMPLE STATEMENTS

PRIVATE TEST:TAPE:L
PRIVATE "FILE1.TAPE1:3"

3.25 PURGE

3-11

HP-71 HP-IL Module IDS - Volume I
HP-I1IL Module Commands

PURGE <file specifier>

EXAMPLE STATEMENTS

PURGE BACKUP:TAPE(2):L
IF F$=A$ THEN PURGE A$

3.26 READDDC

READDDC [(<loop number>)]

EXAMPLE STATEMENTS

X = READDDC(L)
IF BIT(READINTR,0) THEN A=READDDC(L)

3.27 READINTR
READINTR [(<loop number>)]
EXAMPLE STATEMENTS

I=READINTR(L)

|
|
|
|
3-12

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

REMOTE <device specifier>
REMOTE [LOOP [: <loop number>]]

EXAMPLE STATEMENTS

IF R THEN REMOTE "%66(2):3"
REMOTE LOOP:L

3.29 RENAME

RENAME <o0ld file specifier> TO <new file specifier>

EXAMPLE STATEMENTS

RENAME "FILE1027:TAPE:L" TO "FILE1028"
RENAME "POINTIS" TC "DATA:1.02:3"

3.30 REQUEST

REQUEST [<loop number> ;] <numeric expr>

EXAMPLE STATEMENTS

3-13

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

REQUEST L ;

)

224

3.31 RESET HPIL
RESET HPIL [<loop number>]
EXAMPLE STATEMENTS

IF LEN(A$)>L THEN RESET HPIL L
RESET HPIL 3

3.32 RESTORE 10
RESTORE 10 [<loop number>]
EXAMPLE STATEMENTS

IF A$=R$ THEN RESTORE I0 2

3.33 SECURE

SECURE <file specifier>

EXAMPLE STATEMENTS

3-14

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

SECURE VER1:TAPE(2):L
SECURE "TEST:3:2"

SEND [<loop mumber> ;] [[CMD expression [, expression] ...]
[DATA expression [, expression] ...]

EXAMPLE STATEMENTS

SEND 2; CMD A$ LISTEN 4 SAD 14,18 DATA X$

3.35 SPOLL
SPOLL (<device specifier>)
EXAMPLE STATEMENTS

A= SPOLL("3:1")

IF SPOLL("MASSMEM(1):2") = 220 THEN 100

3.36 STANDBY

SYNTAX

3-15

HP-71 HP-IL Module IDS - Volume I
HP-IL Module Commands

STANDBY [<loop number> :] OFF
STANDBY [<loop number> ;] ON

3
STANDBY [<loop number> ;] <numeric expr> [, <numeric expr>]

EXAMPLE STATEMENTS

STANDBY 2;0N
STANDBY A;OFF
STANDBY L ; F,I

3.37 STATUS

STATUS [(<loop number>)]

EXAMPLE STATEMENTS

X= STATUS(2)
IF BIT(STATUS(L),5) THEN GOTO 100

3.38 TRIGGER

TRIGGER <device specifier>
TRIGGER [LOOP [: <loop number>]]

EXAMPLE STATEMENTS

IF T THEN TRIGGER 1:2
TRIGGER LOOP:2

3-16

HP-71 HP-IL Module IDS - Volume I
HP-I1L Module Commands

3.39 UNSECURE

SYNTAX

UNSECURE <file specifier>

EXAMPLE STATEMENTS

UNSECURE DATA:%16:L
UNSECURE FILE1:HP82161A:L

3-17

HP-71 HP-IL Module IDS - Volume I

Examples of HP-IL Operations

P e e = = = ——————————————

I
| EXAMPLES OF HP-IL OPERATIONS

o e e e et e = o =~ —————— — —————————

__________________ +

CHAPTER 4 |

+——

__________________ +

The purpose of this chapter is to describe at a frame level the
messages the HP-71 sends out. The details of some basic operations
are given, such as powering up the loop, addressing the loop and
searching for a device.

This chapter also describes how to copy a file from or to another
computer through HP-IB or RS232.

4.1 How the HP-71 powers up the loop

NOP, NOP, / IFC, IFC, REC
AAU, RFC, [AES, AEP,] AADn
[TADn, REC, SDI ... / TADn, REC, SAI]

[TADn, RFC, SAI]

The HP-71 will use either a NOP or IFC command frame to power up
the loop. The NOP/IFC will be sent out at a rate of 50
milliseconds per frame until one returns. Up to 50 NOP or IFC
frames will be sent out on the loop. If none return, the loop will
be considered broken.

The power on sequence is always followed by the auto addressing
sequence (unless flag -24 is set).

If there is a display device assigned, the search for the display
device will follow auto addressing. The sequence used to search
for the display device depends on how the display device wuas
assigned. The display device may be searched for by either device
ID or accessory ID. If the display device is the default value, it
will be searched for by accessory ID.

After the display device 1is found, the HP-71 will read its
accessory 1D again, to determine what type of display it is.

The loop power up will be performed at the following times:

1. Everytime the HP-71 wakes up from deep sleep (turn on), and
there is a display device assigned. The NOP Message is used
to pouwer up the loop in this case.

2. When CONTROL ON or RESTORE IO is executed. The IFC Message

HP-71 HP-IL Module IDS - Volume I
Examples of HP-IL Operations

is used to power up the loop in this case.

3. Everytime the HP-71 needs to use the loop and the loop has
been broken or has been powered off. The NOP Message is
used to power up the loop in this case.

If there is no display device assigned, the HP-71 will not try to
power up the loop when it wakes up from deep sleep. It will try to
power up the 1loop only when it needs to use the 1loop. The HP-IL
module tracks of when the loop has been powered down or the loop
has been broken, and will automatically power up the 1loop before
any other frames are sent.

Uith flag -21 set, the HP-71 will not power down the loop when it
is turned off. Therefore, it will not try to power up the loop
wvhen it is turned ON again, since the loop has never been pouered
down.

4.2 Houw the loop is addressed

AAU, RFC, [AES, AEP sequence,] AADn

The extended addressing sequence (AES, AEP) will only be sent out
when flag -22 is set.

The HP-71 will auto address the loop at the following times:

1. After pouwering up the loop (refer to previous section about
the power up conditions).

2. The loop has been unconfigured by with an AAU message
(sent out by the SEND command).

If flag -24 is set, the HP-71 will not send out the auto addressing

sequence, except when a RESTORE I0, CONTROL ON or ASSIGN IO
statement 1s executed.

4.3 How the HP-71 searchs for a Device ID

TADn, REC, SDI,....... [NRD]

This sequence is repeated until the Device ID the HP-71 is
searching for is found or all of the devices have been
polled. The HP-71 will read up to 8 characters of the Device
ID. An NRD frame will be sent after 8 characters have been

4-2

HP-71 HP-IL Module IDS - Volume 1
Examples of HP-IL Operations

received.

4.4 How the HP-71 searchs for an Accessory ID

TADn, RFC, SAI

This sequence is repeated until the Accessory ID the HP-71
is searching for is found or all of the devices have been
polled.

4.5 How the HP-71 reads a device’s status (serial poll)

TADn, RFC, SST

This sequence may be preceded by the sequence of searching for a
device, either by the device ID or accessory ID.

4.6 Hou to move files between computers

The COPY statement in the HP-IL ROM can be used to transfer files
between:

1. HP-71 <=> Digital Cassette Drive

2. HP-71 <=»> HP-71

3. Digital Cassette Drive <=> Digital Cassette Drive

4. HP-71 <=> Other computers

The HP-71 has the capability to transfer files to and from non-
mass storage type devices (i.e. accessory ID is not 10 hex). This
can be very useful for transferring file between the HP-71 and
other computers. The computer may communicate with the HP-71
through a RS232 or HP-IB interface to HP-IL.

When the HP-71 sends a file to the Digital Cassette Drive, it knous
how to find an empty space in the tape and position the tape to the
right sector, all the details. But when HP-71 sends a file to a
device other than a cassette drive, it does not knouw the commands
which need to be sent to control the device. Rather than only
allow file transfers to and from the cassette, the HP-71 will send
out a file header followed by the contents of the file. The file
header is sent first so the receiving device know the file nanme,

4-3

HP-71 HP-IL Module IDS - Volume I
Examples of HP-IL Operations

file type and file size and can allocate space for the file.
a computer wants to send a file to HP-71, the HP-71 expects to

receive the file in this same format.

The HP-71 has chosen to use the directory entry of the HP’s Logical
Interchange Format (LIF) as the file header format.

is stored in the cassette drive directory.

The 32 bytes of the file header are as following:

Byte # Meaning

0-9 File name (1-10 ASCII chars, trailing blanks)
10-11 File type

12-15 Starting address

16-19 Length of file

20-25 Time of creation (12 BCD digits)

26-27 Volume number

28-31 Implementation

File name - Characters are limited to digits (0-9) and upper case
letters (A-Z). The first character must be a letter.

File type - HP71’s file types in hex are:
01 - TEXT file

00
EO
EO
E2
E2
E2
E2

Do
FO
04
08
oC
14

SDATA file (same as HP-41 data file)
DATA file

BINARY file

LEX file

KEY file

BASIC file (tokenized BASIC file)

Starting address - Always send 00 00 00 00.

Length of the file * These 4 bytes are a 32 bit unsigned integer.
This number shows the file length in number of

sectors.

A sector is 256 bytes. The sectors usually

are not the exact data length of the file. The data
length is defined differently by file type (see
Implementation below). But the file will be sent
in blocks of 256 bytes.

Time of creation - 12 BCD digits of the form YYMMDDHHMMSS.

Volume number - Always send 80 01.

Implementation

Meaning

4-4

When

The same entry

HP-71 HP-IL Module IDS - Volume I
Examples of HP-IL Operations

00 01

EO DO

EO FO

E2 04,
E2 08,
E2 0C,
E2 14

Always send 00 00 00 00,

Byte 28-29 - 16 bit unsigned integer shouws the
data length in # of registers.
(byte 28 is the lower 8 bits)

Byte 30 - If non-zero, the file is secured.

Byte 31 - Unused.

Byte 28-29 - 16 bit unsigned integer shouws the
data length in # of logical records.
(byte 28 is the lower 8 bits)

Byte 30-31 - 16 bit unsigned integer shows the
logical record length in bytes.
(byte 30 is the lower 8 bits)

Byte 28-30 - 20 bit unsigned integer shows the
data length in # of nibbles.
(byte 28 is lower 8 bits, 29 next,
byte 30 is the high 4 bits)

Byte 31 - Unused.

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

e e e e e = e+ ——— ——————

|
I I/0 PROCESSOR FIRMUARE SPECIFICATION

=
o

o e ————————

This chapter contains the firmware specification for the I/0
processor.

5.1 Basic Description

The- 1/6 processor fs & CMOS chip: designed to be an interface
between the HP-71 CPU and the HP-1L loop. Packaged with a 16K byte
HP-71 ROM, it provides the interface to HP-IL for the HP-71
computer,

The 1/0 processor provides the low level interface to the loop. It
takes care of the "simpler" tasks of sending and receiving frames,
maintaining Talker, Listener and Controller status and error
checking frames.

5.2 1/0 Processor Configuration

The 1/0 processor is configured as follous:

CPU with cycle time of 1lu sec

RAM - 272 bytes

ROM - 4096 bytes

HP-IL interface - highest priority interrupt
HP-71 BUS interface

HP-71 BUS Mailbox - 1low priority interrupt
TIMER - middle priority interrupt

5.2.1 HP-IL Capabilities

The 1/0 processor is a slave to the HP-71 CPU. Communication
between the two CPUs is through a mailbox of 8 bytes. The mailbox
is soft configured in the HP-71 address space. See the HP-71
IDS for more information on the configuration address of the
mailbox. Following is a summary of all the functions the 1/0

5-1

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

processor implements:
As a CONTROLLER:

Send out a frame
Address devices to be talkers and listeners (including
the 1/0 processor)
Auto Address the loop (w/wo extended addressing)
Poll a device for:
Status
Accessory 1D
Device ID
Pass control to another loop device
Find the Nth device of accessory ID (or class) M
Setup frame timeouts and IDY timeouts
Start data transfers
Setup terminating conditions for ending a data transfer
(Transfers always terminate on an EOT):
Terminate after a certain number of frames
Terminate on an END frame
Terminate on a 1 character match
Terminate on loop service request
Enable an IDY poll to monitor service request

As a DEVICE (Noncontroller):

Send data to and receive data from the loop
Setup Accessory ID response

Setup Status Poll response

Setup Device ID response

Request Service on the loop

Receive control from active controller

Additional Commands:

Request service on certain interrupt conditions
Read Status

Read Error Message

Perform diagnostics tests on itself

Set Manual Mode for low level loop control

Set the 1/0 processor into Scope Mode

Set and clear system controller status

5.2.2 Mailbox Description

The mailbox between the HP-71 CPU and the I/0 processor consists of
8 bytes of 1/0 area. Some of the nibbles may be written to by the
I/0 processor, some of them may be written to by the HP-71. All of
the nibbles are readable by both processors. The mailbox is

5-2

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

assigned an address in the HP-71 address space by the configuration
routines. Routines exist in the HP-IL ROM to find the address of a
particular mailbox. The mailbox configuration is shown below:

MAILBOX CONFIGURATION (HP-71 SIDE)
BASE
ADDRESS
OFFSET CONTROLLED BY NIBBLE DESCRIPTION

0 HP-71 Low nibble of msg from HP-71

1 HP-71 Low-mid nibble of msg from HP-71

2 HP-71 Mid-low nibble of msg from HP-71

3 HP-71 Mid-high nibble of msg from HP-71

4 HP-71 High-mid nibble of msg from HP-71

5 HP-71 High nibble of msg from HP-71

6 HP-71 Low handshake nibble from HP-71

7 HP-71 & 1/0 CPU High handshake nibble for message
from HP-71 to 1/0 processor

8 I1/0 CPU & HP-71 Low handshake nibble for message
from HP-71 to 1/0 processor

9 1/0 processor High handshake nibble from I1/0 CPU

A 1/0 processor Lou nibble of msg from 1/0 CPU

B 1/0 processor Low-mid nibble of msg from 1/0 CPU

C 1/0 processor Mid-1low nibble of msg from I/0 CPU

D 1/0 processor Mid-high nibble of msg from 1/0 CPU

E 1/0 processor High-mid nibble of msg from 1/0 CPU

F 1/0 processor High nibble of message from 1/0 CPU

Messages are passed through the mailbox in the following way: After
the three message bytes are placed in the mailbox, the sender sets
his message available bit. UWhen the receiver reads a specific byte
of the message, the sender’s message avallable bit 1s zeroed
automatically by harduare. Before modifying any of the mailbox
bytes the sender must simply check his message available bit. If
it is clear, then the previous message has been accepted and it is
clear to write out the next message.

Two NRD (Not Ready for Data) bits are provided in the mailbox. One
is maintained by the HP-71, the other by the I/0 processor. This
bit indicates to the sender that the receiver’s buffer is full and
no data messages should be sent. NRD only halts data messages and
has no effect on other messages. This is the only bit in the HP-71
handshake nibble to which the I/0 CPU can write. Also, this is the
only bit in the handshake nibble from the I/0 processor to which
the HP-71 can write,

5-3

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.2.2.1 HP-71 Low Handshake Nibble

BIT NO DESCRIPTION
3 Three Data Bytes
2 Single Data Byte
1 (Not used)
0 (Not used)

This bit is set by the HP-71 when 3
data bytes are in the mailbox. This
bit is valid only when the HP-71
Message Available bit is set.

This bit is set when there is one
data byte message in the mailbox.
This bit is valid only when the
HP-71 Message Available bit is set.
The single data byte is in the low
byte of the mailbox.

5.2.2.2 HP-71 High Handshake Nibble

BIT NO. DESCRIPTION
3 I/0 CPU Reset Bit
2 Mailbox Configured
1 1/0 CPU NRD (Not

Ready for Data)

HP-71 may reset the I/0 processor by
writing a ’1’ to this bit. After the
1/0 CPU is reset (whether by the
HP-71 or power on), this bit remains
set until the HP-71 clears it.

This bit is controlled totally by
hardware. It is set when the HP-71
mailbox 1s configured, and cleared
when it is unconfigured.

This bit indicates the 1/0 CPU is not
ready to receive data. There is not
enough room in buffer to accept more
data. It 1s cleared when the I/0 CPU
is ready to receive more data. This
bit is controlled by the 1/0 CPU.

5-4

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

0 HP-71 Message
Available

This bit is set by the HP-71 when it
sends a message. It is cleared when
the 1/0 CPU reads the low byte of the
message. When this bit is set, the
bits in the low handshake nibble
indicate whether or not this message
is data. The HP-71 should verify
this bit is clear before writing the
next message to the mailbox.

5.2.2.3 1/0 CPU Low Handshake Nibble

BIT NO. DESCRIPTION

3 ** I/0 CPU SRQ on

HP-71 Bus
2 Sleep Flag

(I/0 CPU or

HP-71 CPU)
1 HP-71 NRD

0 *** 1/0 CPU Message
Available

This bit is set by the I/0 CPU to
indicate it requires service. It
will be set: (1) if a SRQ is present
when the IDY poll is enabled or

when the loop is in EAR mode, (2)
when an enabled interrupt condition
was met, (3) when there is data
available in device mode (repeatedly
set until data is read), (4) after a
power on reset. This bit is cleared
when the HP-71 reads status with the
clear SRQ option.

Controlled totally by hardware, its
meaning is different on each side

of the mailbox. Looking from the
I1/0 CPU side, this bit is clear when
the HP-71 is awake and set otheruise.
From the HP-71 side, this bit is
clear when the 1/0 CPU is awake and
set otherwise. This bit provides
information only, and has no effect
on the execution of any commands.

This bit is set by the HP-71 when it
is not ready to receive data. It is
also used to exit Scope Mode,

1/0 CPU sets this bit to send a
message to the HP-71., It is cleared
when the HP-71 reads the high nibble
of the message. If the Three Data
Bytes bit in the high handshake

5-5

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

nibble is set, the message is 3 data
bytes. Otheruise the message can be
decoded by its opcode.

**% 1/0 CPU may request service on the HP-71 bus by setting this

bit.

**¥ GSetting this bit generates a service request on the HP-71 bus.

5.2.2.4 1/0 CPU High Handshake Nibble

BIT NO. DESCRIPTION
3 Three Data Bytes
2 Manual Mode
1 SRQ received from
loop.
0 Error Occurred

5.3 Power On Sequence

Set whenever there are three data
bytes in the mailbox from the I1/0
CPU. This bit is valid only when the
1/0 CPU Message Available bit is set.

This bit is set to indicate the 1/0
CPU in Manual Mode or Scope Mode. It
is clear otheruise.

This bit is valid only when the 1/0
CPU 1s an active controller. It is
set when a service request is detect-
ed on the loop and cleared when no
SRQ is pending on the loop. As a
device, this bit is always clear.

When set, this bit indicates an error
has occurred. The bit is updated on
every message to the HP-71, but is
set immediately if a fatal error
occurs. It is cleared when the HP-71
reads the error code,

At initial power on or whenever the I/0 CPU is reset a self test is
executed which includes a RAM test and a ROM test. If either of

these tests fail, the error bit is set in the mailbox and the error
code is set to the self test failed error code. (The mailbox test

5-6

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

is only performed when the self test command is executed.)

The 1/0 CPU does not try to power up the loop at initial power on.
The loop is not powered up until the HP-71 sends a command which
uses the loop.

Defaults set at power on are:

HP-IL Status is active controller, not talker or listener
Loop Address is 31 at power on

Loop Address is 21 after an AAU

Status Response is 1 byte of value 0
Device 1D Response has a length of 0
Accessory ID Response has a length of 0
Frame Timeout value is 2 seconds

IDY timeout is 255 milliseconds

Number of IDY timeouts is 30

IDY Poll timeout is 255 milliseconds

A1l special polls and modes are disabled

5.3.1 Powering Up the Loop

The I/0 CPU automatically keeps track of the state of the loop
(whether it is powered up or not). There is not a status bit to
indicate to the master processor whether or not the loop is powered
up. The intent is to let the I/0 CPU keep track of the state of
the loop.

Anytime a command is received which requires loop action, the 1/0
CPU first verifies the loop has been powered up. If not, it pouers
up the loop with a NOP frame. It can be verified the loop is
powered up by sending the POWER UP THE LOOP command. If the I/0
processor’s internal status says the loop is already powered up, no
loop action is taken and a status message is sent to the HP-71.
Otheruwise the I/0 CPU powers up the loop with a NOP frame and then
sends status to the HP-71. If the loop can not be powered up, the
current command is aborted (no status message is sent to the HP-71)
and the error bit will be set in the mailbox.

If it is desirable to power up the loop with another command frame
(such as an I1FC) the TAKE CONTROL command can be used. It allous
the master processor to specify the data bits of the command frame
used to power up the loop.

The routine used to power up the loop will send out up to 50
command frames. The time between sourcing the command frames is
set by the IDY timeout value. If none of the command frames are
received on the loop, then the loop is considered broken, and the
error bit will be set in the mailbox. If a command frame is
received, then the RFC frame is sent out and the power up sequence

5-7

HP-71 HP-IL Module IDS - Volume 1
1/0 Processor Firmware Specification

is completed.

5.4 Service Request on the HP-71 Bus

The I/0 CPU has the capability to request service on the HP-71 bus.
A bit in the mailbox is used exclusively for this purpose. The I/0
CPU will request service on the HP-71 bus for various reasons and
they are described in the following sections. Once the service
request bit has been set in the mailbox, it will not be cleared by
the I/0 CPU until the HP-71 acknowledges it has seen the service
request. This is done by reading the I/0 CPU status with the clear
service request option selected. For most cases the reason for the
service request can be determined by reading 1/0 CPU status or
reading the handshake nibbles from the I/0 processor.

5.4.1 Power On Service Request

Uhenever the I/0 CPU executes a power on reset sequence, the SRQ
bit will be set in the mailbox. This is to let the HP-71 knouw it
has been reset and accessory ID and device 1D values need to be
setup.

5.4.2 Data Available Service Request

When the I/0 CPU is in device mode and has data available in the
input buffer, it will request service on the HP-71 bus. The
service request bit will be set everytime through the main idle
loop, so it will appear to the HP-71 to be set continuously, until
the data in the input buffer has been read.

To determine if the service request is due to data available, read
the 1/0 CPU status and check to see if the Data Available status
bit set.

5.4.3 Interrupt Service Request

When an enabled interrupt condition has been met, the 1/0 CPU will
request service on the HP-71 bus. However service will only be
requested once due to an interrupt. Thus if an interrupt condition
is met, but the Interrupt Occurred status bit is already set, the
I1/0 CPU will not request service on the HP-71 bus.

To determine if the service request is due to an interrupt
occurring, read the 1/0 CPU’s status and check to see if the

5-8

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmuware Specification

Interrupt Occurred status bit is set.

5.4.4 Loop Service Request

When the 1/0 CPU is controller and a loop service request is
detected, the I/0 CPU may request service on the HP-71 bus for two
specific cases. The first case 1s if the loop was in EAR mode when
the service request was received. The second case is if the IDY
Service Request poll was enabled, and when sending out an IDY, a
service request was detected. For all other cases, when a loop
service request is received, the 1/0 CPU will not request service
from the HP-71.

A service request due to the loop service request, can be
determined by looking at the handshake nibble from the I1/0 CPU to
see if the Loop SRQ bit is set.

5.5 Terminating Data Transfers

Uhen data transfers are terminated various messages may be sent to
the HP-71 to indicate the transfer has completed. The message is
dependent upon current HP-IL status and why the transfer was
halted. The following table lists the message sent for the various
cases:

5-9

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

| Message sent
| by 1/0 CPU
Cause of Termination |
|

Required HP-IL Status to HP-71

EOT frame received Listener OR EOT Received

| |
l |
| Controller Standby | Message
| |
Frame Count Exceeded | Active Controller | None
| AND Listener |
| I
| Active Controller AND| Conversation
| Not Listener | Halted
l | Message
| |
Terminating Character | Listener | Terminator
was Matched | | Character
| | Matched
| |
Terminate on END frame| Listener | Terminator
condition met | | Character
I | Matched
I I
Terminate on SRQ frame| Active Controller | Conversation
| | Halted
| | Message
| |
Send NRD Frame | Listener or | Conversation
| Controller Standby | Halted
| | Message

5.6 Frame Timeouts

WUhen it is a controller, the I/0 CPU will keep track of how long it
takes a frame which is sent out on the loop to return and will
generate an error if it takes too long. The 1/0 CPU can be setup
to send out IDY frames to verify the loop is complete while waiting
for a frame to return.

There are 3 parameters which affect the amount of time the 1/0 CPU

waits for a frame to return and the number of IDY frames which will
be sent out. These parameters are described belou:

5-10

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

FRAME TIMEOUT VALUE - is the amount of time to wait for a
frame to return before sending out an
IDY frame and is also the time to wait
between IDY frames.

NUMBER OF IDY TIMEOUTS - is the maximum number of IDYs plus
one, to be sent out to verify the
loop is complete when a frame takes
longer than the frame timeout value
to return,

IDY TIMEOUT VALUE - is the amount of time to wait for the IDY
to return when it is sent out to verify
the loop is still complete.

Uhen a frame is sent out on the loop, the 1/0 CPU starts a timer
loaded with the FRAME TIMEOUT VALUE. If the timer expires and the
frame has not been received then an IDY frame 1s sent out to
quickly check if the loop is complete. The length of time to wait
for the IDY to return is the IDY TIMEOUT value. If the IDY does
not return within this time period, the loop broken error is set
and the command is aborted.

If the IDY is received, the I/0 CPU again waits the frame timeout
value for the frame to come in. The I1/0 CPU will repeat the
timeout, send IDY sequence until the NUMBER OF IDY TIMEOUTS has
been met. (Note: There will be NUMBER OF IDY TIMEOUTS frame
timeout periods, but the number of IDY frames sent out will be one
less than the value in the NUMBER OF IDY TIMEOUTS byte.) After the
final FRAME TIMEOUT period has expired, the error frame timed out
will be set and the current operation will be aborted.

Uhen the I/0 CPU is active listener or in controller standby mode,
a frame timeout is not monitored. It is assumed the talker on the
loop, will terminate the data transfer properly.

5.7 Error Handling

There are basically three types of errors that the I/0 processor
may detect:

- Data transfer errors, when sourcing data
Fatal errors, eg. CMD frame not received as sent
Nonfatal errors, eg. Device didn’t respond to status poll

5

11

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

Each of these errors are handled in a slightly different uay.
However they all result in the error code being set to the
appropriate number as soon as the error is detected.

If a data transfer error is detected when the 1/0 CPU is talker, an
ETE will be sent out as soon as possible. The error bit and the
NRD bit will be set in the mailbox, to let the HP-71 knouw the
transfer was halted. The NRD bit will remain set until status or
error message 1is read.

If a fatal error occurs, the current processing on the command is
aborted, the error flag is set in the mailbox and the HP-71 will
return to the main idle loop.

On a nonfatal error, the error code will be setup immediately. The
error bit in the mailbox will be set on the next message to the
HP-71.

5.8 Manual and Scope Modes

Beside "auto" mode, the I/0 CPU may be set into a MANUAL Mode. In
MANUAL Mode the HP-71 has complete control of the loop. All frames
received are sent directly to HP-71, and only frames from the HP-71
are sourced on the loop. The I/0 CPU does not maintain any loop
status. The 1/0 CPU will execute all commands from the HP-71 which
do not involve knowing loop status. (All commands with first
nibble opcode of 2 through opcode of C are not executable in Manual
Mode.) Manual Mode is terminated when the Go Into Auto Mode command
is received.

Manual mode has a retransmission option which puts the 1/0 CPU into
a tight Scope Loop. In this mode the I/0 CPU will send all frames
received to the HP-71 and also retransmit frames on the loop. No
other commands from the HP-71 are processed, no loop status is
maintained. The I/0 CPU is an "invisible" device on the loop. The
auto retransmit feature of HP-IL section will be used as long as
possible. If the HP-71 can read the messages quickly enough, then
frames will be automatically retransmitted. However if a message
blocks the mailbox, no frames will be automatically retransmitted,
to avoid losing frames. To exit Scope mode, set the HP-71 NRD bit
in the mailbox.

The manual mode bit is set in the mailbox whenever the 1/0 CPU is

in Manual or Scope mode. Scope mode may be entered when in Manual
mode. However, exiting Scope Mode will exit Marnual Mode also.

5-12

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9 Mailbox Messages From HP-71

The mailbox commands from the HP-71 are divided into classes and
are described in this section. The opcodes are listed with the low
nibble being the leftmost nibble and the high nibble the rightmost
nibble.

5.9.1 No Parameter Class

5.9.1.1 Nop

OPCODE; XXXX XXXX XXXX XXXX 0000 0000

HP-1IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command is merely a handshake message, it
does not modify status or send any frames.

5.9.1.2 Read Address Table

OPCODE: XXXX XXKX XXXX XXXX 0001 0000

HP-I1L FRAMES SENT: none

MAILBOX RESPONSE: Three data bytes
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: The table read by this command is an address
table which contains the range of addresses of

devices on the loop. The table is created after the auto
address command is executed. The I1/0 CPU sends back 3
data bytes. The low byte is the ending AAD address, the
middle byte is the ending AEP address and the high
byte is the ending AES address. If there are no devices
with a particular type of address then the ending address
returned will be zero. All addresses in the address
table are zeroed at power on.

5-13

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.1.3 Request 1/0 Processor Status

OPCODE: KXXX XXXX XXXC XXXX 0010 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Status message, 1/0 CPU SRQ bit in the
mailbox is cleared if C bit is set

POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to read twelve
bits of the 1/0 CPU status as well as the

current error number. (The bits are described under
mailbox messages from the I/0 CPU in the status class.)
If the C bit is set in the message from the HP-71, the
mailbox status bit which requests service from the
HP-71 is cleared. This command returns exactly the
same information as SEND ERROR message command.

5.9.1.4 End Of Message

OPCODE: XXXX XXXX XXXX XXXX 0011 0000

HP-IL FRAMES SENT: ETO
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: Active Talker

DESCRIPTION: If the I/0 CPU is currently active talker
an ETO frame is sent out on the loop.

5.9.1.5 Clear SRQ

OPCODE: XXXX XXXX XXXX XXXX 0100 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: Device mode

DESCRIPTION: This message will cause the 1/0 CPU to halt

requesting service on DOE and IDY frames as
a device.

5-14

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.1.6 Set SRQ

OPCODE: XXXX XXXX XXXX XXXX 0101 0000

HP-IL FRAMES SENT: none
MATLBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: Device mode

DESCRIPTION: As a device, the I/0 CPU will now request
service on DOE frames and IDY frames. (This
command is ignored as a controller.)

5.9.1.7 Send Error Message

OPCODE: XXXX XX¥XX XXXX XXXX 0110 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Status message sent, error bit cleared
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: Returns a status message with the current error
number. (See 1/0 CPU messages, status class.)
The error number is cleared after the message is sent and
the error bit in the mailbox is cleared before the
message 1s sent.

5.9.1.8 Enter Auto End Mode

OPCODE: XXXX XXXX XXXX XXXX 0111 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets auto end mode, so that on the next output
data transfer the last data byte sent is an
END frame. To source an END frame, the HP-71 may set
this mode, send the data to go out, and then send a non-
data command, such as NOP. The buffer will be emptied
before the NOP command is executed, with the last data
byte sent as an END frame.

5-15

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.1.9 Go Into Manual Mode

OPCODE: XXXX XXXX XXXR XXXX 1000 0000

HP-1L FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets the I/0 CPU into Manual Mode. The only
frames sourced on the loop are those sent

directly from the HP-71 and any frame received on the
loop is sent directly to the HP-71 for processing. If
the R bit is set in this command the retransmission
option is selected and the I/0 CPU will enter a tight
Scope loop. Entering Manual Mode or Scope mode will
cause all talker and listener status to be cleared.
For more information about Manual and Scope modes,
please refer to the section "Marual and Scope Modes".

5.9.1.10 Go Into Auto Mode

OPCODE: XXXX XKXX XXXX XXXX 1001 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Exit manual mode, restores controller or device
status.

5.9.1.11 Update System Controller Bit

OPCODE: XXXX XXXX SXXX XXXX 1010 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets System Controller bit equal to the S bit
in the command.

5-16

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.1.12 Reset CURRENT Address

OPCODE: XXXX XXXX XXXX XXXX 1011 0000

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Resets CURRENT Address to start of address
table. CURRENT Address is zeroed at power on.
It is set to the address of the first loop device when
the command "Auto Address the Loop" is executed. It is
modified in the command "Find Nth Device of Type M" and
"Increment CURRENT Address”. It may be used in the

"Address P,S as Listener” and "Address P,S as Talker"
commands.

5.9.1.13 Read CURRENT Address

OPCODE: XXXX XXXX XXXX XXXX 1100 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Address message sent.
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: Sends the CURRENT Address to the HP-71.

5.9.1.14 Increment CURRENT Address

OPCODE: XXXX XXXX KXXX XXXX 1101 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Address message sent (or an error)
POSSIBLE ERRORS: I1legal CURRENT Device Address
REQUIRED STATUS: none

DESCRIPTION: Increment CURRENT Address to the address of the
next device on the loop. If the end of the

address table has been reached, then an error is sent to
the HP-71 and the CURRENT Address is reset to the address
of the first device on the loop. If the end of table was
not reached, then the CURRENT Address is incremented and
sent to the HP-71. If the address table is not valid,
then an Illegal CURRENT Address Error is sent to the
HP-71.

5-17

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.9.1.15 Read My HP-IL Loop Address

OPCODE: XXXX XXXX XXXX XXXX 1110 0000

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Address message
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: 1/0 CPU’s current HP-IL loop address is sent
to the HP-71.

5.9.1.16 Take/Give Loop Control

OPCODE: DDDD DDDD XXLC XXXX 1111 0000

HP-IL FRAMES SENT: CMD (D),RFC (if L option selected)
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to set or clear

controller status. If the C bit is clear

the all controller status is cleared, terminate on

END frame and terminate on character match modes

are enabled and the command is completed. If the

C bit is set then the I/0 CPU will set active

controller status and then check the L bit. If the

L bit is set, the I/0 CPU will try to pouer up the

loop with a command frame. The data bits of the

command frame sent out on the loop are specified

in the lower byte (D bits) of the command from

the HP-71. The command frame will be sent

up to 50 times before declaring the loop dead. The

time between sourcing the command frames is the

IDY timeout value. The loop will not be auto

addressed. Setting controller status clears

all terminator modes (terminate on SRQ, terminate on

character match and terminate on END frame).

5.9.2 Frame Class

5.9.2.1 Send Frame

OPCODE: XXXX XXXX DDDD DDDD RCCC 0001

5-18

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

HP-IL FRAMES SENT: Frame sent from HP-71

MAILBOX RESPONSE: Frame received if R bit is set
POSSIBLE ERRORS: Illegal State

REQUIRED STATUS: Dependent upon frame

DESCRIPTION: Using this command the HP-71 may source frames
, on the loop. The D bits are the data bits, C
bits are the control bits. The R bit indicates that the
HP-71 wants to see the frame received in response to
sourcing this frame. The R bit is valid only when
the 1/0 CPU is controller.

If the I/0 CPU is currently in Manual Mode, then any
frame is legal. The R bit is ignored, since manual mode
mode implies that all frames received go to the HP-71.

If the I/0 CPU is not controller, then only a limited
number of frames may be sent. They are:

DOEs if Active Talker.

EOTs if Active Talker.

NRDs if Listener.

1DYs 1if Asynchronous Requests are enabled.

If the I/0 CPU is controller then almost any frame is
valid. The following frames require a certain status:

DOEs require Active Talker status.
EOTs require Active Talker status.
NRDs require Listener or Controller Standby Status.

As controller, if the R bit is set, then the frame is
sent out and the first frame received is sent back to
the HP-71. 1In this case, the current timeout setting
will be used. If a timeout is detected, the error bit
in the mailbox is set. If the R bit is clear and the

frame is a command frame then an RFC is automatically
sent after the command.

5.9.3 Single Nibble Parameter Class
5.9.3.1 Address/Unaddress me as TL

OPCODE: XXXX XXXX XTLX XXEN 0000 0010

HP-IL FRAMES SENT: UNT,RFC (if address me as talker)

5-19

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

MAILBOX RESPONSE: none
POSSIBLE ERRORS: Illegal State
REQUIRED STATUS: Controller

DESCRIPTION: This command allows the HP-71 to set or clear T
(talker) or L (listener) status of the I/0 CPU.
If the N bit is set then it is an unaddress command,
otherwise it is an address me as T or L command. If the
command is an address me as talker, then an UNT and RFC
frame are sent out on the loop.

5.9.3.2 Pouwer Douwn Loop

OPCODE: XXXX XXXX XXXX XXXX 0000 0011

HP-IL FRAMES SENT: [NOP,RFC (power up loop)] LPD,RFC
MAILBOX RESPONSE: clears Loop Powered Up bit

POSSIBLE ERRORS: Illegal State

REQUIRED STATUS: Controller

DESCRIPTION: If the loop is already powered down, this
command is ignored. If the loop is in EAR mode
the LPD (Loop Power Down) frame and RFC are sent. Other-
wise this command first powers up the loop by sending
out NOP command frame, followed by an RFC. Then a LPD
and RFC are sent.

5.9.4 Address Class

5.9.4.1 Address P,S as Talker

OPCODE: XXXX XXXX PPPP SSSP XXSS 0100

HP-IL FRAMES SENT: TAD P,RFC [SAD S-1, RFC]

MAILBOX RESPONSE: none

POSSIBLE ERRORS: Illegal CURRENT Device Address or Status
REQUIRED STATUS: Controller

DESCRIPTION: Addresses a device on the loop as talker. The
P bits specify the primary address, the S bits
specify the secondary address+1. If the address passed is
not zero in the primary or secondary parts then TAD P and
RFC are sent (and if secondary address is not zero, then
a SAD S-1 and RFC are sent out.) If the address passed
is primary address zero and secondary address zero, then

5-20

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

the CURRENT Address device is addressed as a talker. If
the address table is not setup then an Illegal CURRENT
Address Error will result. This command does not modify
the CURRENT address.

5.9.4.2 Address P,S as Listener

OPCODE: XXXX XXXX PPPP SSSP XXSS 0101

HP-IL FRAMES SENT: LAD P,RFC [SAD S-1, RFC]

MAILBOX RESPONSE: none

POSSIBLE ERRORS: I1llegal CURRENT Device Address or State
REQUIRED STATUS: Controller '

DESCRIPTION: Addresses a device on the loop as listener.

The P bits specify the primary address, S bits
specify the secondary address+1. If the address sent is
not zero in the primary and secondary parts then LAD P,
RFC are sent (and if secondary address is not zero, then
a SAD S-1 and RFC are sent out.) If the address passed
is primary address zero and secondary address zero, then
the CURRENT Address device is addressed as a listener.
If the address table is not setup then an Illegal CURRENT
address error will result. This command does not modify
the CURRENT address.

5.9.4.3 Find Nth Device of Type M

OPCODE: XXXX XXXX MMM MMM NNNN 0110

HP-IL FRAMES SENT: UNL,RFC, {TAD,RFC, [SAD,RFC,] SAI}
[UNT, REC]
MAILBOX RESPONSE: Device Address or Error
POSSIBLE ERRORS: No Such Device, Illegal Status, Illegal
CURRENT Address
REQUIRED STATUS: Controller

DESCRIPTION: This command finds the Nth device of a specific
accessory ID on the loop. M specifies a class
(top nibble) and a particular device within a class
(bottom nibble). If the bottom nibble is F (hex) then
the search is for matching class only.

All devices on loop are polled until a device of given
class (or class and device) is found. 1If this is the Nth
device of this type then the device address is sent to
the HP-71 and the device is left addressed as a talker.
If the device type or number is not found then a No Such
Device Error message is returned to the HP-71 and an UNT,

5-21

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

RFC sequence is sent out.

This command uses the CURRENT Address to keep track of
which device is currently talker. If the device is found
then the CURRENT Address will contain the address of that
device, otherwise CURRENT Address will be reset to the
address of the first device on the loop.

5.9.4.4 Auto Address the Loop

OPCODE: XXXX XXXX XXXX XXXX XXXS 0111

HP-IL FRAMES SENT: AAU,RFC, [AES,AEP sequence,] AAD
MAILBOX RESPONSE: Address of last device on the loop
POSSIBLE ERRORS: Invalid status

REQUIRED STATUS: Controller

DESCRIPTION: This command auto addresses the loop. If the
S bit is clear then extended addressing and

simple addressing are used. If S bit is set then only
simple addressing is used. Addressing always begins
with secondary address of 0, primary address of 1. The
1/0 CPU’s loop address is set to primary address of 0
with no secondary address. The first frames sent out are
an AAU, RFC to unaddress all devices.

For an auto extended addressing sequence, an AES 0

is first sent. If the frame returns unchanged then

there are not extended addressed type devices and

simple addressing sequence is sent out. Otherwise it

is followed by an AEP 1. If the last AES frame received
had an address of 31 then the sequence is repeated
starting with AES 0, followed by an AEP (next primary
address). This is repeated until an AES is received that
has an address less than 31.

For an automatic addressing sequence an AAD (next primary
address) is sent out.

If at any time during the addressing sequence a primary
address of 31 is received, addressing is halted at that
point and the last address is sent to the HP-71.

The address table is set up during execution of this
command. The ending AES address, AEP address and

AAD address are saved in the table. If there were

no devices of a particular type, then the ending
address is zero. After the loop has been addressed,
the CURRENT Address is set to the address of the first
device on the loop. The address of the last device on

5-22

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

the loop is sent to the HP-71.

5.9.5 Conversation Class

In this class of commands, the HP-71 may start a data transfer with
one of the five SOT (start of transmission) RDY frames, set the
frame timeout value or set the frame count as a device. The first
4 commands which all start data transfers have a 20 bit field in
which a frame count may be specified. This allows the HP-71 to set
up a conversation of X number of frames. After X frames go by the
1/0 CPU will stop the transfer with a NRD sequence. If the count
sent is FFFFF (hex), this is termed infinity and means don’t count.
This is useful if the transfer should be terminated by some other
terminating conditions such as character match or EOT. If the
frame count is set to 00000, then the transfer is halted after 1
data byte.

If the SOT frame returns to the I/0 CPU unchanged, then a Device
Not Ready Error message is sent to the HP-71. 1If an EOT is
received, then an EOT received message is sent to the HP-71.

5.9.5.1 Start Data Transfer

OPCODE: CCCC cCccce CCCC cccc CCCC 1000

HP-IL FRAMES SENT: Sha

MAILBOX RESPONSE: none

POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SDA with frame count of C.

5.9.5.2 Start Status Poll

OPCODE: CCcc ccce CCcCcC ccce CCCC 1001

HP-IL FRAMES SENT: SST

MAILBOX RESPONSE: none

POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SST with frame count of C.

5.9.5.3 Start Device ID

OPCODE: CCCC CCCC CCccC cccc ccce 1010

5-23

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

HP-1L FRAMES SENT: SDI
MAILBOX RESPONSE: none
POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SDI with count of C.

5.9.5.4 Start Accessory ID

OPCODE: CCCC CcCcC CCcCc cccc ccce 1011

HP-IL FRAMES SENT: SAI

MAILBOX RESPONSE: none

POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller

DESCRIPTION: Sends out an SAI with count of C.

5.9.5.5 Pass Control

OPCODE: XXXX XXXX XXXX XXXX XXXX 1100

HP-IL FRAMES SENT: TCT

MAILBOX RESPONSE: NOP or Device Not Ready Error
POSSIBLE ERRORS: Device Not Ready, Illegal Status
REQUIRED STATUS: Controller and not Talker

DESCRIPTION: Sends out a TCT frame to the active talker

on the loop. If control is accepted by the
device, then a NOP message is sent to the HP-71 to signal
control was successfully passed. If the TCT frame uas
returned then a Device Not Ready Error message is sent
to the HP-71. If control was successfully passed, then
terminate on character match mode and terminate on END
frame mode are automatically set.

5.9.5.6 Set Frame Timeout

OPCODE: 0 A R L1IT TTTT TTTT 1101

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets up the frame timeout to T milliseconds.
This is the amount of time to wait for a frame

5-24

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

to return before sending out an IDY. The pouwer on
default value is 2 seconds. If the frame timeout value
is set to all zeros, the timeout is infinite, the I/0 CPU
will wait forever for a frame to return and no IDYs will
be sent out.

When controller, the 1/0 CPU will automatically verify
the loop is complete if a frame takes a "long time" to
return. For more information on this refer to the
section on frame timeouts.

5.9.5.7 Set Frame Count

OPCODE: CCCC CCCC CCCC CCccC CcCC 1110

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command sets up the frame count. UWhen in
device mode the frame count is the number of

bytes to send to the HP-71 from the input buffer. Data
received as a listener in device mode, stays in the
input buffer until the frame count is set to a non zero
value. A frame count of all zeros means send none
of the bytes from the input buffer. A frame count of all
F’s means send all the data from the buffer to the HP-71.

As a controller this frame count is used to specify the
number of bytes which should go by in controller standby
node before the data transfer is halted. For example the
frame count may be set to 5, then if a SDA frame is sent,
the data transfer will be halted after 5 bytes. If the
frame count is set to all F’s then no frame count will

be maintained. If the frame count is set to all 0’s, the
data transfer will be halted after 1 byte.

.6 Multibyte Parameter Class

5.9.6.1 Set SOT Response

OPCODE: NNNN XSAI RRRR RRRR 0011 1111

HP-IL FRAMES SENT: none

5-25

HP-71 HP-IL Module IDS - Volume I
I/0 Processor Firmware Specification

MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets up the response to a SAI, SST and SDI poll

5.9.6.2

as a device. The value to set is in R bits.
The type of poll response being setup is specified in the
SAI bits:

SAI Set Response Byte of:
100 Status
010 Accessory ID

001 Device ID

N bits specify which byte of the response to set (0-15).
Byte 0 is the length of each response. Byte 1 is the 1st
byte sent out, byte 2 is second byte, etc. RAM has been
set aside in the 1/0 processor for 1 byte of accessory
ID, 2 bytes of status and 8 bytes of device ID.

If the first byte of the Status response is being set,
then the 1/0 CPU’s loop SRQ bit is updated. If bit 6 of
this byte is set, then the I/0 CPU will start requesting
service on the loop. If bit 6 of this byte is clear,
then the 1/0 CPU will stop requesting service on the
loop.

At pouwer on all lengths and values of the responses are
zeroed. The only exception to this is the status length
which is set to 1.

Set Terminator Mode

OPCODE: XXXX XXXX SEOT 0000 0100 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: 1/0 CPU may be setup to terminate input on an

END frame and/or a character match. Using this
command these modes may be set or cleared. (An END frame
is a DATA frame with an extra bit set to indicate this is
the last byte of a data block.)

The bits which set or clear the modes are:

Bit S: If set then this command is updating the

5-26

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

terminate on END frame mode. Uhen clear
this command is updating terminate on
character mode. This means that bit S
is used to determine whether bit E or
bit T is meaningful.

Bit E: Set if terminate on END frame mode is to
be set. clear if terminate on END frame
mode is to be cleared. Valid only when
bit S is set.

Bit T: Set if terminate on character mode is to
be set, clear if terminate on character
mode is to be cleared. Valid only when
S bit is clear.

Terminate on END frame and terminate on character match
can be enabled simultaneously during a data transfer.

5.9.6.3 Set Terminator Character

OPCODE: XXXX XXXX CCCC CCCC 0101 1111

HP-1L FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets character, C, which is the character to
match when in terminate on a character mode.
This character is not used unless .terminate on character
match mode 1s enabled. At power on this character is
set to a line feed (0A hex).

5.9.6.4 Set Number of IDY Timeouts

OPCODE: XXXX XXXX NNNN NNNN 0110 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: This command sets the number of IDY frames-1

sent out to verify the loop is complete.
Uhen a frame times out on the loop an IDY is

5-27

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

sent out to verify the loop is complete, If the IDY
returns, the 1/0 CPU again waits for the frame timeout
period. UWhen it expires, another IDY is sent out. This
command allows the HP-71 to set the number of timeout
cycles. Setting this value to 2 means there will be two
frame timeout periods and 1 IDY will be sent out on the
loop. The power on default value is 29.

5.9.6.5 Set IDY Timeout

OPCODE: XXXX XXXX TTTT TTTT 0111 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets up the IDY timeout value in milliseconds.
This is the amount of time to wait for an IDY
frame to return when sourced as controller. It is also
the time between sourcing command frames when powering
up the loop. This timeout is initialized to 255
milliseconds at power on.

5.9.6.6 Clear Data Buffers

OPCODE: XXXX XXXX XXXX XXXX 1000 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Zeros data buffer counts and resets pointers
to start of buffers.

5.9.6.7 Set IDY SRGQ Poll Timeout

OPCODE: XXXX XXXX TTTIT TTTT 1001 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Sets the time between sourcing IDYs when the

IDY poll is enabled. Default value is 255
milliseconds. The IDY poll is active only while the

5-28

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

1/0 processor 1is controller.

5.9.6.8 Setup Interrupt Mask

OPCODE: XXXX XXXX MM MMM 1010 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: Updates Interrupt Mask Byte. If the interrupt
mask 1s being set to a non zero value, then the
SRQ bit in the Interrupt Cause byte is cleared. This is
to avoid duplicate interrupts due to one SRQ. Exgecuting
this command clears the Interrupt Occurred status bit.

5.9.6.9 Read Interrupt Cause

OPCODE: XXXX XXXX XXXX XXXX 1011 1111

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: Returns the value of the interrupt cause byte.
This byte i1s cleared after it is sent to the
HP-71.

5.9.6.10 Read DDC Frame

OPCODE: XXXK XXXX XXXX XXXX 1100 1111

HP-I1L FRAMES SENT: none

MAILBOX RESPONSE: Contents of RAM location message

POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: Allows the HP-71 to read the last DDC frame
received. The DDC register is cleared after

the contents are sent.

5.9.6.11 Update Terminate on SRQ Mode

OPCODE: X¥XX XXXX 000M 0000 1101 1111

5-29

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: If M bit is set, set terminate on loop SRQ

mode, otherwise clears terminate on loop SRQ.

This mode is active only when the I/0 CPU is controller.

If the I/0 CPU is listener or in controller standby mode,

it will stop the data transfer with an NRD sequence

when a SRQ is detected. When the I/0 CPU is a talker,

it will stop sending data when SRQ is detected and will

set the NRD bit in the mailbox and send the conversation

halted message to the HP-71.

5.9.6.12 Power Up the Loop

OPCODE: XXXX XXXX XXXX XXXX 1110 1111

HP-IL FRAMES SENT: NOP (50 times, until one returns), RFC
MAILBOX RESPONSE: Status Message

POSSIBLE ERRORS: Loop Not Complete

REQUIRED STATUS: none

DESCRIPTION: If controller and the loop is not powered up,

this command will power up the loop. The
loop is powered up by sending NOP frames (up to 50),
until one returns. The RFC frame is then sent. The
time between sourcing command frames is the IDY
timeout value. If the loop has been successfully
pouered up, the I/0 CPU will send its current status
to the HP-71. If the loop is broken, the error bit
will be set in the mailbox.

5.9.6.13 Enable/Disable IDY Poll

OPCODE: XXXX XXXX XXXM XXXX 1111 1111

HP-IL FRAMES SENT: none
MAILBOX RESPONSE: none
POSSIBLE ERRORS: none
REQUIRED STATUS: none

DESCRIPTION: If M bit is set, IDY poll is enabled, other-
wise it is disabled. This poll is executed
only when the I/0 CPU is controller. An IDY will be sent
every X msecs, if the 1/0 CPU is idle. The value of
X may be set with the SET IDY SRQ POLL TIMEOUT command.
This allous the loop to be monitored for SRQ without

5-30

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

having to send frames or put the loop in EAR mode.

If the IDY returns with the service request bit set,

the I/0 CPU will flag this in the mailbox by setting

the Loop Service Request bit and by requesting service

on the HP-71 bus. The IDY Poll will be automatically
disabled at this point. If no service request is pending
then polling will continue until it is disabled by the
HP-71. If the loop is not yet powered up and the poll
enabled, the poll is automatically disabled.

5.8.7 Diagnostic Class

5.9.7.1 Read RAM

OPCODE: AAAA AAAA RXXP XXXX 0000 1111

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to read a byte
of the I/0 CPU RAM. The RAM page from which
to read is specified by the RP bits in the command and
the address i1s in the A4 bits. The value read is returned
to the HP-71. This command is useful for development.

5.9.7.2 UWrite RAM

OPCODE: AAAA AAAA BBBB BBBB 0001 1111

HP-IL FRAMES SENT: none

MAILBOX RESPONSE: Contents of RAM location message
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: This command allows the HP-71 to write to a RAM
location on page 0 (low 256 bytes). The address
is specified in the A bits and the value to write out is
specified in the B bits. After the byte is written it is
read by the I/0 CPU and the contents are sent to the
HP-71. This command is useful for development.

5.9.7.3 Self Test

OPCODE: XXXX XXXX XXXX XXXX 0010 1111

5-31

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

HP-I11L FRAMES SENT: none

MAILBOX RESPONSE: Two test messages & self test results msg
POSSIBLE ERRORS: none

REQUIRED STATUS: none

DESCRIPTION: This command tells the 1/0 CPU to execute a
self test. The following two test messages are
sent to the HP-71:

1/0
high mid low handshake CPU NRD
0101 0101 1010 1010 0101 0101 1010 1XX1 0
1010 1010 0101 0101 1010 1010 0101 1XX1 1

Then a RAM and ROM self test is performed and the results
of the test are sent to the HP-71. See the Diagnostics
class of messages from the 1/0 processor.

5.9.8 Data Class

Data from the HP-71 which is to be put in the output buffer
passed as either a triple data byte or a single data byte. One of
the two bits in the HP-71 handshake byte is set to indicate what
type of transfer it is. If it is a triple data transfer then all
three bytes in the mailbox contain a byte of data, with the low
byte being the first. If it is a single byte of data, then the
data byte is in the low byte of the mailbox.

5.10 Mailbox Messages from the I/0 processor

The messages sent from the 1/0 CPU to the HP-71 are in
response to a command the HP-71 has sent or a frame received on
the loop. The opcode is in the Mid-low nibble of the message. The
opcodes are shown in the messages following, with the low nibble of
the mailbox on the left and the high nibble on the right.

5.10.1 Frame Class

OPCODE: DDDD DDDD 1CCC XXXX XXXX XXXX
STIMULUS: Manual or scope mode and frame received

Single data frame and listener
HP-71 command: send frame and send me frame

5-32

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

received in response

DESCRIPTION: Frame Class is a means for the I/0 CPU to
send a frame received on the loop to the
HP-71. The C bits are the control bits and the D bits
are the data bits of the frame.

5.10.2 Device Address Class

OPCODE: SSSP PPPP 01SS XXXX XXXX XXXX

STIMULUS: HP-71 command:
Auto Address the Loop
Find the Nth Device of Type M
Increment or Read Current Device Address
Read my HP-IL Loop Address

DESCRIPTION: Device class is a means for the 1/0 CPU to
send a device address to the HP-71. The P
bits contain the primary address, the secondary address
+ 1 1s in the S bits. A4 secondary address of zero
indicates there is no secondary address.

5.10.3 Status and Error Class
5.10.3.1 Current I/0 Processor Status

OPCODE: STLC BPUI 0001 KRXV ~ NNNN NNNN

STIMULUS: HP-71 command:
Send Status
Read error number

DESCRIPTION: This message is a means to let the HP-71 know
the current HP-IL status and current error
code (if any). The twelve bits of status are:

Controller Standby Mode

Set if IDY Poll is enabled or loop is in EAR mode

Set if Address Table is not valid

Interrupt Pending (set when an enabled interrupt has
occurred, cleared everytime interrupt mask byte
is set)

— o™

S System Controller
T Talker Active

5-33

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

Qe

< B O OR

Listener
Active Controller

Locked Out Mode

Remote Mode

Data in Output Buffer

Data Available in input buffer

The error codes sent in N bits are:

OO0 P WML O

5.10.3.2 Nop

OPCODE:

No error detected

No such device (HP-71 request to find a device)
Device not ready (HP-71 request to start a transfer)
Loop is not complete (IDY doesn’t return)

Frame Lost (hardware detected)

Input to Output Overrun on HP-IL harduware

Frame sent out is not the same as frame received
Incorrect frame received, protocol violation

Frame Lost (software buffer overrun)

Illegal Status for command (e.g. not controller)
Partial Frame received

Frame Timed Out on the Loop

Illegal CURRENT Device Address or Loop is Unaddressed
Self Test Failure (set only at power on reset)

0000 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: Pass control command successfully executed

DESCRIPTION: This is a handshake message only. It is sent

to the HP-71 to indicate control has been
passed successfully.

5.10.3.3 IFC Received

OPCODE:

0001 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: none

DESCRIPTION: This message is not currently used.

5.10.3.4 EOT Received

OPCODE:

001E 0000 0000 XXXX XXXX XXXX

5-34

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

REQUIRED STATUS: Controller and a data transfer was
terminated with an EOT,

DESCRIPTION: This message is sent to the HP-71 only when
the I/0 processor is controller of the loop,
a data transfer was started and the transfer
was not halted by count or a terminating character
match. The E bit is set if an ETE frame was received
and clear if an ETO frame was received,

5.10.3.5 Data Transfer Halted

OPCODE: 0100 0000 0000 XXXX XXXX XXXX
REQUIRED STATUS: Controller and data transfer was stopped
due to terminate on SRQ mode or an HP-71
command to Send a NRD frame or Frame count
was met and the 1/0 CPU was not listener.
DESCRIPTION: Status message to indicate the data transfer
was halted due to Send NRD frame command or

terminate on SRQ and SRQ received or frame count met
when controller and not listener.

5.10.4 Terminating Conditions Met

OPCODE: 0101 0000 0000 XXXX XXXX XXXX

REQUIRED STATUS: Terminate on END frame or terminate on
character match mode must be set and
matched when active listener.

DESCRIPTION: Message to indicate the terminating conditions

were matched as listener for either END frame
or character match.

5.10.5 Diagnostics Class
5.10.5.1 Self Test Results
OPCODE: ORAG 0000 0010 XXXX XXXX XXXX

STIMULUS: HP-71 command to execute self test.

5-35

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

DESCRIPTION: This message reports the results of self test
command. It is sent in response to a self
test command from the HP-71. The ROM and RAM test
results are indicated by the R and A bits respectively.
If the bit is set then the test was successful.

5.10.5.2 RAM Value

OPCODE: MM MMM 0011 XXXX XXXX XXXX

STIMULUS: HP-71 command received:
Read or Urite Memory command received or
Read DDC or Read Interrupt Cause byte
received.

DESCRIPTION: This message returns the value of a RAM
location to the HP-71 in M bits.

5.10.6 Data Class

Data from the I/0 CPU will come in one of 2 flavors. A single data
byte will be sent back with the opcode from the FRAME CLASS. Data
may also be sent as a triple data message. This message is
indicated by the Three Data Bytes bit set in the I/0 CPU handshake
byte of the mailbox. The first byte is in the low byte of the
mailbox, the second byte is in the middle byte and the third byte
is in the highest addressed byte of the mailbox. The message
should be read from low byte to high byte. Uhen the highest nibble
of the message is read by the HP-71, the 1/0 CPU’s message
available will automatically be cleared.

5.11 I/0 Processor as a Device

In device mode, the I/0 processor retransmits frames on the loop
and keeps track of the current HP-IL status. The I/0 processor may
be setup to request service on the HP-71 processor bus whenever
certain states become true by setting the interrupt mask byte.

When the HP-71 processor executes the SREQ? instruction, the
second least significant bit will be set if the I/0 processor is
requesting service.

The bits in the interrupt mask are described belouw:

Bit Number Description
7 IFC received which HP-71 didn’t source
6 MLA received

5-36

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

TCT received

MTA and SDA received

Service Request on the Loop (controller)
DCL or SDC Received

GET Received

DDC Received

Sk NWHPO;m

An interrupt cause byte is kept by the I/0 CPU. UWhenever one of
above conditions is met, the corresponding bit is set in the
interrupt cause byte. This byte may be read and is cleared
automatically after it is read.

WUhenever the interrupt mask byte is setup an AND of the mask byte
and the cause byte is executed. If the result is not zero, the I/0
processor will request service on the HP-71 bus by setting a bit in
the mailbox. Otherwise service request will not be set until an
interrupt condition is matched. A single service request is
generated even though multiple interrupts may occur before the
interrupt cause byte is read.

A bit in status, Interrupt Pending, indicates that an enabled
interrupt has occurred. This bit is cleared whenever the interrupt
mask byte is set.

This method of handling interrupts guarantees that no interrupts
which may occur while in the interrupt processing routine will be
lost, since the cause bits will continue to accumulate even after
the interrupt routine has been entered.

It is desirable for all interrupt events to accumulate except
service request. If the interrupt routine is entered due to a
service request, when the interrupt register is read, the SRQ
occurred status bit is cleared. UWhen more frames are sent out on
the loop to satisfy the SRQ, it may cause the SRQ bit in the
interrupt register to be set. If the interrupt routine exits and
enables the SRG interrupt, another interrupt will be generated due
to the original service request. To avoid this problem, everytime
the interrupt mask is set to a non zero value, the bit in the
interrupt cause byte which indicates that a SRQ was received is
cleared.

5.11.1 HP-IL Frames and I/0 Processor’s Response
The following lists show all the currently defined HP-IL frames,

the value of the data bits in HEX and the response of the I1/0
processor to each frame.

5-37

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.1

NOP

LLO

DCL

PPU

EAR

IFC

REN

NRE

AAU

LPD

(10)

(11)

(14)

Univeral Command Group Frames

Nop Frame. No Response.

Local Lockout Frame. If in remote enabled state,
the Local Lockout status bit
is set.

Device Clear Frame. Clears input and output buffers.

All data received from the loop
and not read by the HP-71 will be lost. All data sent
from the HP-71 to the I/0 CPU which has not been sent
out on the loop will be lost. If the DCL interrupt is
enabled, the I/0 processor will request service on the
HP-71 bus. The DCL bit will be set in the interrupt
cause register.

Parallel Poll Unconfigure. Disables the 1/0 CPU’s
response to a parallel
poll.

Enable Asynchronous Request. 1/0 CPU enters asyn-

chronous request mode.
If at anytime this mode is enabled and the 1/0 CPU
is requesting service from the loop, an IDY with
service request will be sent out.

Interface Clear. Listener, Talker and Controller
status are cleared.

Remote Enable. Remote Enabled status is set.
Not Remote Enable. Remote Mode, Local Lockout and
Remote Enable status bits are

cleared.

Auto Address Unconfigure. I/0 CPU’s loop address is
set to 21 (decimal).

Loop Power Douwn. No Response

5-38

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.2
NUL (00)
GITL (01)
SDC (04)
PPD (05)
GET (06)
EIN (OF)
PPE (8X)
DDL

DDT

Addressed Command Group Frames

Null Frame. No Response

Go To Local. Remote Mode status i1s cleared if active
listener.

Selected Device Clear. If active listener, response is
the same as for a DCL frame.

Parallel Poll Disable. If active listener, the I/0
CPU’s response to a parallel
poll is disabled.

Group Execute Trigger. If active listener and GET

interrupt is enabled then the
I1/0 CPU will request service on the HP-71 bus. The GET
bit is set in the interrupt cause register.

Enable Listener NRDs. If active listener, sets
internal status, listener NRDs
are enabled.

Parallel Poll Enabled. If active listener, the I1/0

CPU’s parallel poll response is
setup and enabled according to the ¥ bits in the PPE
frame.

{AX-BX) Device Dependent Listener. If active listener the

frame will be saved in
the last DDC frame register. If active listener and
DDC interrupts are enabled, the I/0 CPU will request
service on the HP-71 bus. The DDC bit is set in the
interrupt cause register.

(CX-DX) Device Dependent Talker. If addressed talker the

frame will be saved in the
last DDC frame register. If addressed talker and DDC
interrupts are enabled, the 1/0 CPU will request
service on the HP-71 bus. The DDC bit is set in the
interrupt cause register.

5-39

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmuware Specification

5.11.1.3 Listener/Talker/Secondary Command Group

LAD (2X-3X) Listener Address Frame. If this is my listen
address then talker status

is cleared and active listener status is set.

If the 1/0 CPU has a secondary address and this
address matches its primary address, then an
internal flag is set to indicate my primary listen
address was just received.

If the listener active interrupt is enabled, the I/0
CPU will request service on the HP-71 bus and the
LA bit in the interrupt cause register is set.

UNL (3F) Unlisten Frame. Clears listener status.

TAD (4X-5X) Talk Address Frame. If this address is my talk
address, then listener status
is cleared and active talker status is set,
I1f this address is not my talk address then clear
all talker status.

If the I/0 CPU has a secondary address and the
address on the TAD frame matches its primary
address, then an internal flag is set to indicate
my primary talker address was just received.

UNT (5F) Untalk Frame. Clears all talker status.

SAD (6X-7X) Secondary Address Group. If the I/0 CPU doen’t have
a secondary address this
frame is ignored. If this address matches the I/0 CPU’s
secondary address and it’s primary listener or talker
address was just received, then listener/talker status
is set. If this address does not match the I1/0 CPU’s
secondary address and my primary talk address was just
received, then talker status is cleared.

5-40

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.4
RFC (00)
ETO (40)
ETE (41)
NRD (42)
ShA (60)
SST (61)
SDI (62)
SAI (63)
TCT (64)

READY Frames

Ready For Command. Retransmit frame after previous
command has been executed.

End of Transmission OK. I/0 CPU sources this frame

when active talker to
terminate a data stream. It 1s only sent when
instructed by the HP-71.

End of Transmission Error. 1/0 CPU sources this frame

when talker immediately
after it detects an data error. A data error occurs
when a data frame received does not match the data
frame sent out by the I1/0 CPU.

Not Ready For Data. If active talker and this frame
is received, the NRD frame is

retransmitted and when the data byte sourced is

received an EOT (End of Transmission) is sent out.

Send Data Frame. If addressed talker, active talker

status is set. Any data in the
output buffer will be sent out. If talker active
interrupt is enabled, service will be requested on
the HP-71 bus and the TA bit is set in the interrupt
cause register.

Send Status. If addressed talker, current status is
sent out., Up to 2 bytes of status may
be sent. Default at power on is 1 byte of value 0.

Send Device ID. If addressed talker, current Device ID

is sent out. At power on, the 1/0
CPU’s Device ID is length 0. The HP-71 sets the Device
ID to ASCII string "HP-71" followed by a carriage
return and line feed whenever it detects an I1/0 CPU
reset,

Send Accessory ID. If addressed talker, the current

accessory ID is sent out. The I/0
CPU does not have a accessory ID at power on. The
HP-71 sets the accessory ID to 3 whenever it detects an
1/0 processor reset.

Take Control Frame. If addressed talker, then control

of the loop is assumed. The 1/0
CPU will immediately power up the loop by sending out

5-41

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

a NOP frame sequence followed by a RFC in response to
to a TCT frame. If the controller interrupt is enabled,
the 1/0 processor will request service on the HP-71
bus. The CA bit is set in the interrupt cause register.

* AAD (8X-9X) Auto Address Frame. If the I1/0 CPU is already auto

addressed then this frame is
ignored. If the address on the frame is 31 then the
frame is ignored. If not auto addressed and the
address is less than 31 then the I/0 CPU takes the
address on the frame for its oun address, increments
the frame address by 1 and passes it on to the next
device.

*¥ AEP (AX-BX) Auto Extended Primary Address. If the I/0 CPU is
already addressed or

has not just received an auto extended secondary
address then this frame is ignored. If this frame has
an address of 31 then it is ignored. If the 1/0 CPU
has just been assigned an auto extended secondary
address and is waiting for a primary address then
it takes this address for its primary address and
passes the frame unmodified on to the next device.

* AES {(CX-DX) Auto Extended Secondary Address. If the address on
this frame is 31

of if the I/0 CPU is already auto address configured,
this frame is ignored. Otherwise, 1/0 CPU saves this
address as its secondary address, increments the frame
address and sends it on to the next device. Addressing
will not be completed until the I/0 CPU receives a
primary address.

¥ To determine whether or not the I/0 CPU has been assigned an
address, the byte at address 35 hex (ADR-RMI-S) can be read
and bit 4 (LOOP-UNADDRESS) can be tested. If it is 0 the I/0
processor has a valid address, if it is 1 the I/0 CPU is not
auto addressed.

5.11.1.5 IDY Frames

IDY (XX) Identify Frame. If the I/0 CPU is requesting service
on the loop the SRQ bit is set before
the IDY is retransmitted.

ISR (XX) Identify Frame with Service Request. No Response.

5-42

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.11.1.6 DOE Frames

DAB (¥X) Data Frame.

DSR (XX) Data Frame with Service Request.
END (XX) End Frame.

ESR (XX) End frame with Service Request.

5.12

All of the frames in this class are processed alike.

If the I/0 CPU is not talker or listener, the frame is
simply retransmitted. If the I/0 CPU is active talker,
the frame is error checked and the next data frame is
send out. If the I/0 CPU is listener the frame is put
in the input buffer and retransmitted. If the I1/0 CPU
is requesting service on the loop, the service request
bit is set in the frame before it is retransmitted.

Additional Capabilities

By using the commands to Read and Urite to the I/0 CPU RAM and
ROM, some additional capabilities can be realized. These are
the described below:

I)

Reallocation of RAM between the input and output buffers.
There are 131 bytes of RAM available for buffer

space. The default allocation is 66 bytes for the
output buffer and 65 bytes for the input buffer. The
buffers are adjacent in memory, so that by updating
pointers, sizes and the dividing address betuween the

2 buffers, the sizes may be easily changed. At power on
the input buffer is positioned in memory from address

7D hex to address BD hex and the output buffer extends
from address BE hex to FF hex.

A recommended procedure would be:
(1) Verify that both the input and output buffers

are empty. This can be accomplished by reading

5-43

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

(6)

status. Both status bits, Data Available and
Data in Output Buffer should be zero.

Update input buffer size and space bytes. This
is the only tricky part to modifying the buffer
sizes. It must be done in such a way that the
input buffer count appears to be negative. If not
the 1/0 processor will detect data in the input

buffer and will begin sending it to the HP-71. Count

is calculated by subtracting the buffer space from
the buffer size. During the transition, it must

be guaranteed that the buffer space is greater than
the buffer size. Therefore follow the following
logic:

IF current input buffer size > new input buffer
size

THEN DO
Urite new input buffer size (@74 hex)
Urite new input buffer space (@78 hex)
END
ELSE DO
Urite new input buffer space (@78 hex)
Urite new input buffer size (@74 hex)
END

Set both input buffer pointers to start of input
buffer. The input pointer is in RAM at address 76
hex and the output pointer is in RAM at address 77
hex. They should be set to 7D hex.

Urite to the address (@79 hex) which holds the
dividing address between the input buffer and the
output buffer. It should be set to the value 7D
hex plus the input buffer size.

Urite to output buffer size byte (@75 hex). Update
it to the new output buffer size.

Set output buffer pointers (input pointer is at @74
hex, output pointer is at @7B hex). They need to
be set to point anywhere in the new output buffer
area, such as the last byte in the buffer at @FF
hex.

I1) Modify the point at which the I/0 CPU NRD bit is
cleared in the mailbox. Currently the I/0 CPU NRD bit
is cleared whenever there are 3 bytes available in

5-44

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmuware Specification

I1T)

5.13

the output buffer. The value of 3 is kept in a byte

of RAM called NRD-INTR-VALUE. By writing to this byte,
the point at which the NRD bit is cleared in the mailbox
is changed. This byte is at hex address 3E.

This may be useful in an application which wants an
interrupt on NRD bit clearing. If the value in the
NRD-INTR-VALUE is set to 50, then NRD will be cleared

only when the I/0 CPU has 50 bytes available in the buf-
fer. So a fast master processor would only be interrupted
when the I/0 CPU has a larger amount of space available.

Use different timer prescales. Under some conditions

it may be desirable to modify the timeout period
substantially. This can be accomplished easily by
changing the prescale rate in the timer status register

at @18 hex. The prescale value is initialized 2 places,
The first is at cold start and the second is in talker.

So as long as the I/0 CPU is not active talker, the
prescale can be modified simply by a write RAM instruction
to lengthen or shorten timeouts significantly.

HP-IL Capability Subsets

The following are the list of HP-IL capablities that the I/0 CPU
implements as specified in the HP-IL Interface Specification:

C1,2,3,4,5,6,7 Basic controller capability, System Controller

Capability, SRQ Detect Capability, Control
Passing and Receiving Capability, Parallel
Poll Capability, Asynchronous SRG Capability

T1,2,3,4,6 Data Capability, Status Capability, Accessory

ID Capability, Device ID Capability, Extended
Talker Address Capability

L1,3,4 Basic Listener Capability, Extended Addressing
Capability, Halt Data Transfer Capability

SR2 Full SRQ Capability

RL2 Basic Remote Local Capability with Lockout

AALl,2 Basic Auto Addressing Capability, Extended
Addressing Capability

PDO No Power Down Capability

PP1 Basic Parallel Poll Capability

DC2 Complete Device Clear Capability

DT1 Complete Device Trigger Capability

DD1 Complete Device Dependent Capability

5-45

HP-71 HP-IL Module IDS - Volume I
1/0 Processor Firmware Specification

5.14 Mailbox Messages Opcodes

The following two tables show the opcodes of the commands from the
HP-71 and the opcodes of the messages from the [/0 processor.

OPCODE TABLE FOR COMMANDS FROM HP-71

High Byte Class or Command

0X No Parameter Class

00 NOP

01 READ ADDRESS TABLE

02 REQUEST HP-IL STATUS

03 END OF MESSAGE

04 CLEAR SRQ

05 SET SRQ

06 SEND ERROR MESSAGE

07 ENTER AUTO END MODE

08 GO INTO MANUAL MODE

09 GO INTO AUTO MODE

0A UPDATE SYSTEM CONTROLLER BIT
0B RESET CURRENT ADDRESS

0cC READ CURRENT ADDRESS

0D INCREMENT CURRENT ADDRESS
0E READ MY HP-IL LOOP ADDRESS
OF TAKE/GIVE LOOP CONTROL

1X Frame Class
2X-3X Single Nibble Parameter Class
2X ADDRESS/UNADDRESS ME AS TL
3X POWER DOUN THE LOOP
4X-7X Address Class

4X ADDRESS P,S AS TALKER

5X ADDRESS P,S AS LISTENER
6X FIND STATUS OF DEVICE

7X AUTO ADDRESS THE LOOP
8X-EX Conversation Class

8% START CONVERSATION

9X START STATUS POLL

AX START DEVICE ID

BX START ACCESSORY ID

CX PASS CONTROL

DX SET TIMEOUT VALUE

EX FIND Nth DEVICE OF TYPE M

5-46

HP-71 HP-IL Module IDS - Volume 1
1/0 Processor Firmuware Specification

FO-F2 Diagnostics Message Class

FO READ MEMORY

F1 WRITE MEMORY

F2 SELF TEST

F3-FF Multibyte Parameter Class

3 SET SOT RESPONSE

F4 SET TERMINATOR MODE

F5 SET TERMINATOR CHARACTER

6 SET NUMBER OF IDY TIMEOUTS

F7 SET IDY TIMEOUT TO M MILLISECS
F8 CLEAR DATA BUFFERS

F9 SET IDY POLL TIMEOUT VALUE

ra SETUP INTERRUPT MASK

FB READ INTERRUPT CAUSE

FC READ DDC FRAME

FD UPDATE TERMINATE ON LOOP SRQ MODE
FE POWER UP THE LOOP

FF ENABLE/DISABLE IDY POLL

(opcode in handshake byte) Data Class

OPCODE TABLE FOR MESSAGES FROM I/0 PROCESSOR

Middle Byte

(Low Nibble) MESSAGE CLASS
1XXX Frame Class
000X Status and Error Class
01XX Device Address Class
001X Diagnostics Class

(opcode in handshake byte) Triple Data Class

5-47

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

e e e
|

| HP-IL POLL INTERFACES

I

o e — — ——_—_——_—_—_————_—_———— - — ——

+ ——— 4
2
>
N
tr]
2]
fe))

6.1 Overvieu

The HP-IL ROM extends many of the file-related keywords in the
HP-71 to allow access to HP-IL devices. This is implemented by
answering polls which the HP-71 mainframes sends out. (Please
refer to the mainframe IDS for details on the polling process.)

The HP-IL ROM answers 30 polls to perform various tasks on HP-IL.
These poll handlers will implement a predefined function no matter
who issues the poll. So an assembly language program can issue a
poll and use the poll handlers in the HP-IL ROM for 1/0 on HP-IL.

Among these 30 poll handlers, uwe estimate only half of them are
useful to an applications programmer as general 1/0 functions. A
list of these poll handlers is in the following section. The rest
are needed to complete the I/0 functions of the HP-71. This
chapter includes a list of all the polls the HP-IL ROM handles,
along with a description of the poll handler.

6.1.1 Output and Input of data

PPRICL - Print class poll handler
Sets up a device for receiving data and returns the
address of a handler which will actually output the
data.

PPRTIS - PRINT device poll handler
Sets up the PRINT device {defined by PRINTER IS) for
receiving data and returns the address of a routine
which will do the printing.

PENTER - Input data from the loop.
Given a device address, this poll handler will enter
data from the device and save the data on the stack.

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.1.2 Files on a mass memory device

6.

6.

1.

1.

pCAT$ - Returns the catalog information of a file.

PCREAT - Creates a file in a mass memory device.

pCOPYx - Transfers a file to or from an HP-IL device.

PFINDF - Search for a file in a given mass memory device.
pPFSPCx - Search for a file by a given file specifier.

PPURGE - Purge a file from a mass memory device.

PRDCBF - Read a record of the file into an I/0 buffer.

PRDNBF - Urite current record out and read in next record.
PRNAME - Rename a file in a mass memory device.

pFPROT - Secure or make private a file in mass memory device.

PURCBF - Write the I/0 buffer out to the record in a file.

3 Parse and Decompile

pDEVCp - Parse an HP-IL device specifier.
pFILDC - Decompile an HP-IL device specifier.

pFSPCp - Parse a file specifier.

4 Initialization and addressing the loop

pCLDST - Initialize standard output devices.
PDSUNK - Wakeup if HP-IL Mailbox requesting service.

pPURCEF - Power douwn the loop.

6-2

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.2 pCAT - CAT execution poll handler

Poll Name: ©pCAT - CAT execution poll handler
Name of Handler: hCAT
Type: POLL (poll #06)

Purpose:
Execute the CAT statement for an HPIL mass memory device

6.3 pCAT$ - CAT$ function poll handler

Poll Name: pCAT$ - CAT$ function poll handler
Name of Handler: hCAT$
Type: POLL (poll #07)

Purpose:
Execute the CAT$ function for a HPIL mass memory device.

6.4 pCLDST - Cold start poll handler

Poll Name: pCLDST
Name of Handler: PILCST
Type: FPOLL (poll #FF)

Purpose:
1. Create the HPIL save buffer (bPILSV). The existence of this
buffer indicates the HPIL module already initialized.
2. Initialize all the mailboxges found.
*Set IDY time out to 50 msecs.
*Set up accessory ID and device ID.

6-3

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

3. Initialize DISPLAY IS and PRINTER IS devices.

*Yrite O3F1FFF to IS-DSP. This says the display device is
unassigned but defaults to the 1lst device in the loop with
an accessory ID of 3X.

*Write O2F1FFF to IS-PRT. This says the print device is
unassigned but defaults to the 1st device in the loop with
an accessory ID of 2X%.

4. Set ENTER terminating character to Line-Feed character(04).

6.5 pCONFG - Configuration poll handler

Poll Name: pCONFG - Configuration poll
Name of Handler: PILCNF
Type: FPOLL (poll #FB)

Purpose:
1. Search for the HPIL save buffer (bPILSV), do the following
if the buffer not found:
*¥Create the HPIL save buffer. The existence of this buffer
indicates the HPIL module already initialized.
*Initialize standard output device to DISPLAY IS DISPLAY,
PRINTER IS PRINTER.
*Set terminate character to line-feed for ENTER.
Search for the DISPLAY and PRINTER device.
Reclaim the ASSIGN I0 buffer and device specifier buffer.
. If there is a display device assigned, write the display
routine address to system RAM.

S wMn

6.6 pCOPYx - COPY execution poll handler

Poll Name: pCOPYx - COPY exgecution poll
Name of Handler: hCOPYx
Type: POLL (poll #08)

Purpose:
Handler for the execution of COPY statement.

6-4

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.7 pCREAT - Create a file in a mass memory device

Poll Name: pCREAT - Create a file in a mass memory device
Name of Handler: hCREAT
Type: POLL (poll #09)

Purpose:
Create a new file in a HPIL mass memory device.

6.8 pDEVCp - Parse an HPIL device specifier

Poll Name: pDEVCp - Device parse poll handler.
Name of Handler: DEVSPp
Type: POLL (poll #01)

Purpose:
Parse an HP-IL device specifier.

6.9 pDIDST - Store device specifier information

Poll Name: pDIDST - Store device épecifier information
Name of Handler: hDIDST

Type: POLL (poll #0A)

Purpose:

Store device specifier information to a given RAM location.
Save this information when the device is found.

6-5

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.10

6.

Type:

The specifier information is saved, so if the loop is
reconfigured, a search for the device can be repeated.

pDSUNK - Deep Sleep Wakeup poll handler

Poll Name: pDSWNK - Deep Sleep Wakeup -- no key down

Name of Handler: PILUNK

Type:

FPOLL (poll #FE)

Purpose:

11

The HP-IL module is capable of requesting service on the
HP-71 bus. But HP-IL is not the only device which can
request service on the HP-71 bus. The Timer or the
keyboard may request service too.

Any time the HP-71 detects a service request and it is not
because a key is down, it will issue this Poll to give
other LEX files, like the HP-IL ROM, a chance to respond to
it’s service request.

The purpose of this poll handler is to cause the HP-71 to
wake up from deep sleep. The only thing this handler will
do is set the ATIN key hit flag to 1. This will cause

the HP-71 to wakeup from deep sleep. After the HP-71 wakes
up, it will discover that there is a service request pending.
It will then issue the Service Request poll. The HP-IL

ROM will actually process the service request during the
Service Request poll.

pPENTER - Enter data from HPIL

Poll Name: pENTER - Enter data from HPIL

Name of Handler: hENTER

POLL (poll #12)

Purpose:

6-6

HP-71 HP-IL Module IDS - Volume 1
HP-IL Poll Interfaces

To read data from HP-IL and put it on the math stack.

6.12 pEXCPT - Exception poll handler

Poll Name: pEXCPT - Exception poll handler.
Name of Handler: hEXCPT
Type: FPOLL (poll #F8)

Purpose:
Perform ON INTR end-of-line branch. The interrupt mask is
setup by the ENABLE INTR statement. UWhen an interrupt event
occurs, the HPIL module will request service from the HP-71.
The HP-71 will in turn issue the service request poll.
Uhen the HPIL module responds to the service request poll,
it only sets the "Exception" flag (S12) and then returns to
the mainframe immediately. At the end of each statement
egecution, the mainframe will check the "Exception" flag.
If it is set, the mainframe will issue the Exception poll.
This poll handler will verify the interrupt condition again
and take the end-of-line branch if possible. If the branch
can’t be taken, this handler will set the "Exception"
flag again and return. Setting the Exception flag on return
will cause the HP-71 to issue another Exception poll at the
end of next statement execution.

The following conditions will cause the end-of-line branch
to become pending (it can not be taken immediately):

1. No ON INIR been executed or OFF INTR been executed.
2. HP-71 is not running a progran.
3. The last statement executed is not at the end of a line.

6.13 pFILDC - Decompile an HPIL device specifier

Poll Name: pFILDC - Decompile an HPIL device spec

Name of Handler: PILDC

6-7

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces
Type: POLL (poll #02)
Purpose:

Decompile an HPIL device spec stored as literal

Input streanm:
¥

or <t¥%> <num expr> [(<num expr>)]

Or <num expr>

or <tLITRL> <literal data> [(<num expr>)]
or <tSEMIC> <volume label>

Output text:

*

or :%<num expr> [(<num expr>)]

Or :<num expr>

or :<literal data> [(<num expr>)]
or .<volume label>

6.14 pFINDF - Find a file in an HPIL device

Poll Name: pFINDF - Find a file in an HPIL device
Name of Handler: hFINDF
Type: POLL (poll #17)

Purpose:
Find a specified file in a given mass memory device.

6.15 pFPROT - Secure a file or make a file private

Poll Name: ©pFPROT - File protect handler
Name of Handler: hFPROT

Type: POLL (poll #0B)

Purpose:

Execute the SECURE/PRIVATE statement for a file in an HPIL
device.

6-8

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.16 pFSPCp - Parse a file specifier

Poll Name: pFSPCp - File spec parse
Name of Handler: FILSPp
Type: POLL (poll #04)

Purpose:
Parse a file specifier that contains HPIL device specifier.

File specifier syntax:
Input stream:
<string expression>
or [<file name>] : <device specifier>
or [<file name>] . <volume label>
Token output:
<string expression>
or <tLITRL> [<file name>] <tCOLON> <device specifier>
or <tLITRL> [<file name>] <tSEMIC> <volume label>

6.17 pFSPCx - Find a file from the file specifier

Poll Name: ©pFSPCx - File spec execute
Name of Handler: FILSPx
Type: POLL {poll #05)

Purpose:
Find the file from the file specifier.

6-9

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.18

6.

Type:

pIMKQT - IMAGE execution poll handler

Poll Name: pIMXQT - IMAGE execution starts

Name of Handler: ENTUSG

Type:

FPOLL (poll #1D)

Purpose:

19

Handle the poll to do formatted input for ENTER USING.

This poll is issued by the execution of USING. This is

the hook for a LEX file to use the IMAGE parse routine

in the mainframe to do formatted input or output.

The execution of ENTER will jump back into the USING routine
in the mainframe to parse the IMAGE, if the statement is
ENTER USING. The USING routine will parse the IMAGE string
first then issue this poll to see if any LEX file

wants to continue from that point.

The HPIL ROM always answers this poll and checks if the
statement executing it is ENTER. If it is, the HPIL ROM
will take over from that point.

This handler does not return to the poller via a "RIN",

it does a direct jump back to "USGrst” in the USING code.

PKYDF - Key definition poll handler

Poll Name: pKYDF - Key definition poll

Name of Handler: hKYDF

FPOLL (poll #1B)

Purpose:

Catch the key definition poll to execute a BASIC command
received from the Loop.

Uhen a key is pressed on the keyboard, the HP-71 saves the
keycode in the key buffer first, then processes the key code
when it is idle. UWhen it processes the key code, it issues
this poll first to see if any LEX file wants to define the
key code.

This is the hook used by HPIL to execute a BASIC command.

6-10

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

When the HPIL module receives data in remote mode, it will
wipe out the key buffer and put a single key code into the
key buffer. This key code won’t be recognized by the HP-71.
Moments later when the HPIL module responds to the key def
poll, it will read the ASCII string into an I/0 buffer and
set the key buffer pointer to point to the 1/0 buffer.

This will cause the BASIC command from the loop to be
parsed and executed.

6.20 pMNLP - Mainloop poll handler

Poll Name: pMNLP - Mainloop

Name of Handler: PILMLP

Type: POLL (poll #FA)

Purpose:
Restore the display device if it was turned off by hitting
the ATIN key once while displaying.
This poll is issued by the Mainloop every time it is ready to
display the cursor character. The display device could be
turned off several ways, e.g. by aborting out of an I1/0
operation by hitting the ATIN key.
The purpose of this handler is to restore the display device
if it is offed by the ATIN key. The user doesn’t have to

do a RESTORE IO to restore the display device once it is
turned off by the ATIN key.

6.21 pPRICL - Print class poll handler

Poll Name: pPRICL - Print class poll handler
Name of Handler: hPRTCL

Type: POLL (poll #0E)

Purpose:

This is the poll handler that can be used to output data

6~-11

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

to a device other than the standard output device.

This poll handler will set the device up for receiving

data and return an address of a routine which will actually
do output the data (the routine name is "PRASCI").

6.22 pPRTIS - PRINT device poll handler

Poll Name: pPRTIS - PRINT device poll handler
Name of Handler: PRTIS
Type: POLL (poll #0OF)
Purpose:
Sets up PRINT device for receiving data and returns the

address of the routine which will actually do the printing.
The PRINT device is defined by the PRINTER IS statement.

6.23 PpPWURCF - Power-off poll handler

Poll Name: pPUROF- Power-off poll handler
Name of Handler: PILPOF
Type: FPOLL (poll #FC)

Purpose:
1. Sets device codes (DISPLAY, PRINTER) to power off
values to allow restart on next usage.
2. Sends power-down message to all HPIL modules if the
HPIL module is not in manual or device mode and flag

-21 is clear.

6-12

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.24 pPURGE - Purge a file in a mass memory device

Poll Name: pPURGE - Purge a file in a mass memory device
Name of Handler: hPURGE
Type: POLL (poll #10)

Purpose:
Purge a file in a mass memory device. If the file
is opened to the File Information Buffer (FIB),
the file start field in the FIB is zeroed. The poller
should call the routine "PUGFIB" in mainframe to purge
the FIB entry.

6.25 PRDCBF - Read a record from a mass memory device

Poll Name: ©pRDCBF - Read current record from mass memory
Name of Handler: hRDCBF
Type: FPOLL (poll #18)

Purpose:
Read a record (256 bytes) from a mass memory device
into an 1/0 buffer.

This routine is designed to work with a file on a

mass memory device. The file has to be opened to the
File Information Buffer (FIB) first. This can be done
by the ASSIGN # statement. The FIB will contain informa-
tion about the file such as the current file pointer and
the file size. For a file on a mass memory device, there
is an 1/0 buffer associated with the file (also done

by the ASSIGN # statement).

This poll handler can be used to read on a given record
number from a file into the associated I/0 buffer.

The record this poll handler will read is the record
pointed to by the current file pointer in the FIB.

The FIB also contains the I/0 buffer number associated
with this file.

6-13

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.26

(Refer to HP-71 IDS for details about the FIB)
When this routine is exitted, the file access nibble

in the FIB is zeroed, and the current file pointer is
not changed.

DRDNBF - Urite current, read next record

Poll Name: pRDNBF - Write current record and read next record.

Name of Handler: hRDNBF

Type:

FPOLL (poll #19)

Purpose:

When writing or reading from a file 1/0 buffer and the end
of the 1/0 buffer is reached, execute this poll. It will
write the I/0 buffer out to the file if necessary and read
in the next record of the file into the I/0 buffer.

This routine is designed to work with a file on a

mass memory device. The file has to be opened to the

File Information Buffer (FIB) first. This can be done

by the ASSIGN # statement. The FIB will contaln information
about the file such as the current file pointer and

the file size. For a file on a mass memory device, there

is an 1/0 buffer associated with the file (also done

by the ASSIGN # statement).

When opening a file, the first record (256 bytes) of the
file is read into the associated I/0 buffer. All accesses
to the file are directly written to or read from the I/0
buffer. When accesses reach the end of the I1/0 buffer, the
next record will be read into the I/0 buffer. If the data
in the current 1/0 buffer has been altered, it will be
written back to the file before the next record is

read in.

To use this poll, the poller only needs to pass the FIB
entry address of the file. This routine will check if

it needs to write the I/0 buffer back out to the file first,
and then read in the next record.

6-14

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.27 PRNAME - Rename a file in a mass memory device

Poll Name: pRNAME - Rename
Name of Handler: hRENAM
Type: POLL (poll #11)

Purpose:
Rename a file in an HP-IL mass memory device.

6.28 DPSREQ - Service request poll handler

Poll Name: pSREQ - Service Request poll handler

Name of Handler: PILSRQ
Type: FPOLL (poll #F9)

Purpose:
The HPIL module is capable of requesting service from
the HP-71., But the Timer and Card Reader may also request
service. When the HP-71 detects a service request
and it is not by the Timer or Card Reader, it will issue
this poll to give the plug-in module a chance to service
the request. This is how the HP-71 gets control from the
mainframe.

The HPIL module will request service in two cases:
1. An interrupt event occurs and it matches the interrupt
mask set up by the ENABLE INTR statement.

In this case, the service request poll handler will only
set the "Exception" flag (S12) and return. The End-of-

Line branch will be carried out by the Exception poll
handler.

2. Recelving data from the loop while the HPIL module is
a device in the loop.

In this case, the service request poll handler will

6-15

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

6.

2

9

only generate a "funny" key code in the key buffer,
that subsequently will cause the keyboard routine

to issue the "KYDF" (key define) poll. Execution of the
BASIC command will be carried out in the KYDF poll
handler.

PVER$ - Version code poll handler

Poll Name: pVER$ - Version code poll handler

Name of Handler: hVER$

Type:

6.30

FPOLL (poll #00)

Purpose:

To show the presence of the HPIL module and add the
revision code to the VER$ function.

PURCBF - UWrite a record to a mass memory device

Poll Name: pWRCBF - Urite I/0 buffer to current record

Name of Handler: hWRCBF

Type:

FPOLL (poll #14A)

Purpose:

According to the FIB, write the file 1/0 buffer to where
it came from in a mass memory device. Buffer contents,
current position and record address in FIB are not
changed by this operation.

This routine is designed to work with a file in a

mass memory device. The file has to be opened to the

File Information Buffer (FIB) first. This can be done

by the ASSIGN # statement. The FIB will contain information
about the file such as the current file pointer and

the file size. For a file in a mass memory device, there

is be an 1/0 buffer associated with the file (also done

by the ASSIGN # statement).

6-16

HP-71 HP-IL Module IDS - Volume I
HP-IL Poll Interfaces

To use this poll, the poller only needs to pass the FIB
entry address of the file. This routine will find the
1/0 buffer and write it back to the proper place in the
file. The difference between this poll handler and the
"pRDNBF" 1s that this routine will not automatically
read in the next record to the I/0 buffer.

On exitting this routine the file access nib in the FIB

is set to zero and the 1/0 buffer contents and the file
pointer in the FIB are not changed.

6.31 pZERPG - Zero program information poll handler

Poll Name: pZERPG - Zero program poll
Name of Handler: hZERPG
Type: POLL (poll #F7)

Purpose:
Zero interrupt mask.

This poll is issued when zero program information due to
an END, ENDALL, EDIT, Program Edit.

6-17

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

P e e e e e e e e

I
| HP-IL ROM UTILITY ROUTINES
|

o - ——— —— — —

=
s

7.1 Overvieu

This chapter describes the utility routines in the HP-IL ROM. The
second section describes the JUMPER routine, which is used to
access the utility routines. The following sections describe
utility routines which are contained in the HP-IL ROM which may be
useful to other applications.

Please note that ONLY those routines described in this chapter are
guaranteed to reside at the entry addresses given. These are the
only supported entry points in the HP-IL ROM. There are many more
utility routines in the HP-IL ROM which are not described in this
section. These utility routines may not reside at the same
location in the HP-IL ROM from one version of code to the next.
Therefore to insure any code developed will be compatible with all
future releases of the HP-IL ROM, access only those entry points
described in this chapter.

7.2 How to call a utility routine

Since the HP-IL ROM is a soft addressable ROM, 1its actual address
is defined at configuration time. Therefore, a utility routine in
the HP-IL ROM can not be called by a direct GOSBVL. To access a
routine in the HP-IL ROM, first determine the starting address of
the HP-IL ROM from the configuration tables. Then add the offset
of the routine to be called to the starting address, to get the
actual address of the routine in HP-IL ROM.

The following JUMPER routine is designed to make this whole process
easier. This routine will search the configuration tables to
determine the address of the HP-IL ROM. It adds the offset of the
routine to the actual address of the HP-IL ROM and then jumps to
this address.

The JUMPER routine can be included with any LEX files or ROMs which

want to access utilities in the HP-IL ROM. The source code for the
routine is given belou.

7-1

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.2.1 JUMPER routine

g o o g ol oo ool S o ool B B o oo o o ool B SR oS ol o

Name: JUMPER - Jump to a routine in HPIL ROM
Category: ADDCAL

Purpose:
By giving the offset of a routine entry in the HPIL
ROM, this routine will find the absolute start
address of the HPIL ROM and do an indirect jump to
specified routine,

Entry:
RSTK points to the 5-nibble offset from the start of
the LEX file to the desired entry point.

Exit:
LEX file found:
Jumps to desired routine with all CPU registers pre-
served, including carry and mode (DEC/HEX), with the
exception of SB ("Sticky Bit")
Execution will return to after the 5 nibbles offset.

LEX file not found:
Jumps directly to MFERR with error "XWORD Not Found"

Calls: I/0END

Inclusive: SNAPBF[44:0]
Stk 1lvls: 2 (I/OFND)

NOTE: 1) Stk 1lvls are used only within this routine and do
not apply to the destination routine (ie the use
is only a transient usage within this routine, and
nothing remains on RSTK when this routine jumps to
the target routine except whatever was on the RSTK
on entry to this routine)

2) The proper way to set up the RSTK as needed for
the entry conditions to this routine:
. {Assembly code preceding the call}
GOSUBL =JUMPER
CON(5) ({target addr})-({target LEX table addr})

7-2

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

*%

x . {Continue with assembly code here}

*%

*%

FRHHFHHHFEHR R R REHHH I E IR HH IR X R RHH SRR R XK HHHH K
*%

snapbf EQU #2F7FQ Snap buffer entry address
exword EQU #0023 Xword Not Found error number
i/ofnd EQU #118BA I1/0FEND routine entry address
bserr EQU #0339%A BSERR routine entry address
lexpil EQU #FF HPIL ROM LEX ID

*

*

=JUMPER

*
* Save D1, C[ul, A[u], B[A], P, carry, and mode in SNAPBF

* (Total size of SNAPBF is 16+16+5+5+5, or 47 nibbles. This

* routine uses 45 of those nibbles)
*

RSTK=C

CD1EX

D1=(5) =SNAPBF

DAT1=C A Write D1 @ SNAPBF

D1=(2) (=SNAPBF)+5

C=RSTK

DAT1=C U Urite C[W] @ SNAPBF + 5

D1=(4) (=SNAPBF)+21

DAT1=4 U Urite A[U] @ SNAPBF + 21

D1=(2) (=SNAPBF)+37

C=B A

CPEX 5 Save P @ SNAPBF + 42

= 6

C=0 |

GONC JUMPOS C[6]="0" means carry clear

C=C-1 P C{6]#"0" means carry set
JUMPOS P-= 7

C=0 P

C=C-1 P C(7]="9" means decimal mode

DAT1=C 8 Urite B[A],P,Carry,mode@SNAPBF+37

SETHEX Force HEX mode for I/0FND

*

* Now A(W],B[A],C{U],P and D1 are available for use
*

p= 0
LC(3) =bLEX Find the LEX buffer
GOSBVL =1/0FND

GONC JUMPS0 Not there!! {Error)

*

* Found the LEX buffer...Dl points to it
*

* Search the LEX buffer for the HPIL ROM LEX ID

7-3

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

JUMP10

*

c(2)

o o = = |

(
C
0
A

> D> w

+1

C=DAT1
72C=0
GOYES . JUMP90
?B#C B
GOYES JUMP20

lve o))

LEXPIL

C[B] = HPIL ROM LEX ID
B[B] = HPIL ROM LEX ID
A[B] = 1

End of LEX buffer?
Yes...exit
Right ID?
No...try next one

* LEX ID number matches...check if the token # is in the range

*

CSR
CSR
74<C
GOYES
CSR
CSR
C=C-A
GONC JUMP30
D1=D1+ 11
GONC JUMP10

UMP20

ool =i ~ ST o o B -2 o)

LC(4)
GOVING =BSERR

=eXWORD

C[3:0] is now the token range
Too small?
Yes...keep looking

If no carry, token # is in range
In range...process offset

Not in range...goto next LEX entry
Go always

"XWORD Not Found"
Do NOT return to caller if error

the requested LEX table

Point to address of main table
Read the address of table into C
Put address of table into B[A]

* Now get offset from main table start from the RSTK pointer

*

*

C=RSTK
D1=C
D1=D1+ 5
CD1EX
RSTK=C
C=DAT1 A
C=C+B A
RSTK=C

Get address of offset...
...into D1
Skip the offset field

Put return address back on RSTK
Read offset from main table
Add address of main table

Push desired address onto RSTK

¥ Now restore the registers and jump to the routine

*

Di=(5) (=SNAPBF)+21 Position to A[U] value save area

7-4

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

4=DAT1 U Restore A[U]
D1=D1+ 16 Position to carry/mode/B[A] save
C=DAT1 8
B=C A Restore B[A]
P= 7 Check mode
C=C+1 P If carry, hex mode
GOC JUMP50
SETDEC No carry = DEC mode
JUMP50 = 6
2C#0 P
GOYES JUMP60 Set carry if C[7]#0
JUMP60 P=C 5 Restore P from C[5]
D1=(4) (=SNAPBF)+5 Position back to C[W] save area
C=DAT1 U Restore C[W]
D1=(2) =SNAPBF Position to D1 save area
RSTK=C (Temporarily save C[A] on RSTK)
C=DAT1 A
D1=C Restore D1
C=RSTK (Restore C[A] from RSTK)
RTN Jump to the routine
END

7.3 Data Input and Output routines

PRASCI - Character outputting routine.
PREND - Closing part of the PRASCI routine.

REDCHR - Character inputting routine.

7.3.1 PRASCI - Character outputting routine.
Name: PRASCI - Send ASCII characters to the loop
Entry Address: 107F Hex

Purpose:
Send the ASCII characters to the loop (already set up)

Entry:
MBOX” pointe to the desired mailbox
A{A] contains the length of the string in bytes
D[A] is the start address of the string

Exit:

7-5

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

If loop error, jumps to ERRORX
P=0
D1 positioned following last character sent

Calls: GETMBX,URITIT, TSAVDO, TRESDO , <ERRORX >

Inclusive: A[A],C,D1,P,FUNCDO,ST[8,3:0]

Stk 1lvls: 3 (pushed DO;WRITIT) (pushed DO;TRESDO)

7.3.2 PREND - Closing part of the PRASCI routine.
Name: PREND - Clean up the loop after PRINT/OUTPUT
Entry Address: 10B7 Hex

Purpose:
Clean up the loop after a PRINT/OUTPUT sequence

Entry:
Device(s) are addressed as listener(s)
MBOX"™ points to the mailbox used
Exit:
DO points to the mailbox used
Carry clear (P may be non-zero)

Calls: D1=SR0, SAVEIT,UTLEND

Inclusive: A,B,C,D,R2,R3,D0,D1,P,ST[3:0]

Stk 1lvls: 4 (UTLEND) (SAVEIT)

7.3.3 REDCHR - Character inputting routines.

Name: REDCHR - Read characters from the loop

Name: RED-LF - Read characters from the loop until <Lf>
Name: SKP-LF - Read & discard characters from the loop
Name: REDCOO - Read characters from the loop until <Lf>
Name: RDST01 - Read characters from the loop to stack

Entry Address: REDCHR - 22F7 Hex
RED-LF - 22E4 Hex

7-6

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

SKP-LF - 22DD Hex
REDCOO - 22E7 Hex
RDSTO1 - 2301 Hex

Purpose:
Read data from the loop onto the stack

Entry:
REDCHR, REDCO0, RED-LF,SKP-LF only:
The 7 nibble device specifier is stored on the bottom
(highest address) of the math stack.
RDSTO01 only:
R1[6:0] is the 7-nibble device specifier

{411 entries)

D1 points to current top of math stack. Data read will
be stored on top of stack (last character placed at
lowest address)

Available memory on stack will be checked.

S5 (BytCnt):
1:Read a specified number of characters
A[A] is the number of characters to read
0:Terminate by END frame or terminating char match
A[B] is the terminating character

S6 (Trash):
1:Ignore the data which is read
0:5ave the data which is read on the stack

S7 (ChrTrp):
1:Detect a special character in incoming data
B[B] is the character to be detected
If B[3:2]=00, ignore the character;
otherwise replace the character with B[3:2]
0:No special character processing

If system flag -23 is set:
Terminate by ETO, terminating character is ignored

If 85 (BytCnt}=0, S6 (Trash)=0, and S-R0-3[0]>2 (the
destination is a string), then R3[A] is the maximum
number of chars to read before interrupting the
conversation with an NRD. R3[S] must not be "F".

If S5 (BytCnt)=1 or S6 (Trash)=1, then flag -23 has

no effect other than to terminate on an ETC instead
of the terminator character.

7-7

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

If { S-R0-3[0]<=2 (not string dest) and S5 (BytCnt)=0 }
or { in device mode (not controller) },
then flag -23 has no effect (it is ignored).

Exit:
HEX mode.
XM=0,
Carry clear:
D1 points to the last character read
Number of chars read=(FORSTK)-D1
S4 (Memerr)=0
Carry set:
S4 (Memerr)=1: Insufficient memory (Need to load eMEM)
S4 (Memerr)=0: P,C[0] is the error code

Calls: FSTK-7,SFLAG?, STGART, CHKSTK , GETDev , CLMODE , CS=TYP,
PUTC, SETTRM, PUTEFC, YTML, PUTE, GETX, FRAME- , CLMDUT

Uses:
Inclusive: A,B[l5:14,B],C,D[15:13,5:0],Rl,R2,DO,Dl,P,ST[7:0]

Stk lvls: 4 (START)

NOTE: B[B] is modified only if an error has occurred

7.4 Display routines

BDISPJ - Character-oriented display routine
7.4.1 BDISPJ - Character-oriented display routine

Nanme: BDISPJ - HPIL Character-oriented display routine
Entry Address: 3637 Hex

Purpose:
Routine to display characters on HPIL devices

Entry:

A[B] is a data byte
HEX mode

7-8

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:

A[B] is the data byte from entry
Display status bits restored
HEX mode, carry clear

Calls:

Exclusive:
Inclusive;

Stk 1lvls:

NOTE:

CHKASN , SETLP, FNDMBX , START , GTYPE , MIYL, FINDA,
GETMBX,URITIT,SENDIT,SENDI+, PUTD, PUTX, END,
MOVCUR,MOVCU+, D0=CUR, DO@CUR, Clear?, SendBf,
BLANKC,LCleft,DSPCL?

a[15:2],B[u],c[u],D[A], DO,D1,P, (ST)
a[15:2],B[u],C[u],D[15:13],D[5:0],D0,D1,P, (ST)

4 (START)

Does not alter A[B], returns (DSPSTA+3) in STatus bits

7.5 Mass

BLDCAT
CHKMAS
DSPCAT
ENDTAP
FINDFL
FORMAT

GDIRST

GETDIR

INITFL

LSTENT,

MOVEFL

NXTENT

NEUFIL

memory routines

- Build catalog entry given directory entry.
- Check if a device is a mass memory device.
- Display a CAT test string.

- Clean up the loop after mass memory action.
- Find file on mass memory device.

- Format medium in the specified drive.

- Locate the start of directory and get its length
on a mass memory device.

- Get the Nth entry in a tape directory.

- Initialize a file in a mass memory device.
NXTENT - Move to the last/next directory entry.
- Move a file between two devices.

- Move to next directory entry.

- Create a file on mass memory device.

7-9

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

READR# - Read a specified record from a mass memory device,
SEEKA - Seek to a record.

SEEKRD - Seek for a record, then read it.

TSTAT - Check the tape drive’s status.

WRITE# - Write to a specified record.

7.5.1 BLDCAT - Build CAT text from directory entry.

Name: BLDCAT - Build CAT text, given directory entry
Entry Address: 6395 Hex
Purpose:
Build the CAT[$] string on the [MATH] stack, using the
directory entry in SCRTCH[63:0]

Entry:
SCRICH contains the directory entry for the file

Erit:
Carry clear, CAT text on stack, AVMEME at CAT text

Calls: D1@AVE, TSAVDO , BLANKC, SUAPO 1, GT2BYT , FTYPF#, HTODX,
WRTASC, GETBYT, GT2BY0,A-MULT , TRESDO
Exclusive: A[W],B{U],C[u],D[S],RO0,D1,P
Inclusive: A[U],B[U],C[u],D[S],R0,D1,P,FUNCDO

Stk 1lvls: 3 (FTYPF#)

7.5.2 CHKMAS - Check for mass memory type device.

Name: CHKMAS - Check if D[X] is mass storage device
Entry Address: 42F1 Hex

Purpose:
Check if a device (at D[X]) is mass storage

7-10

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:
D[X] is device address
DO points to the mailbox
Exit:
Carry clear:
Device is mass storage (Acc ID=#10), P=0
Carry set:
Not mass storage OR loop error
(P, C[0] are error code - if P= =ePIL, C[0]=eDTYPE,
than C[1] is device class, A[B] is full Acc ID)
Calls: GTYPE
Exclusive: clyl,p
Inclusive: A[A],C[W],P,ST([3:0]

Stk 1lvls: 3 (GIYPE)

7.5.3 DSPCAT - Display a CAT text string.

Name: DSPCAT - Display a CAT text string from @ D1
Entry Address: 6606 Hex

Purpose:
Send 40 bytes (starting at D1) to the display

Entry:
D1 @ start of data

Exit:
P=0
Calls: DO=FRO,SWAP01,CKINF-, SEND20 , CURSFL,CRLEND
Inclusive: A-D,R0,D0,D1,all FUNCxx except FUNCRO,STMTRO,P
Stk 1lvls: 5 (CURSFL)
7.5.4 ENDTAP - Loop clean up after mass mem action.

Name: ENDTAP - Clean up the loop after mass mem action

7-11

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry Address: 456E Hex

Purpose:
Check status of a drive, rewind it, and unaddress all
talkers and listeners

Entry:
D[X] is device address
DO points to the mailbox

Exit:
Carry clear:
P=0, all OK
Carry set:
Error...P, C[0] are error code
Calls: TSTAT ,MIYL,DDL, <UTLEND>
Exclusive: C[W],P,ST[3:0]
Inclusive: C[W],P,ST[3:0]

Stk 1lvls: 3 (TSTAT)

7.5.5 FINDFL - Find file on mass storage device.

Name: FINDFL - Set up loop, get a directory entry
Name: FINDF+ - Set up loop, get directory entry (MS)
Name: FINDFx - Find a file on a mass storage device

Entry Address: FINDFL - 4734 Hex
FINDF+ - 473B Hex
FINDFx - 47C7 Hex

Purpose:
Find file on external device (for FINDF+ and FINDFx,
the device must be a mass storage device)

Entry:
FINDFL,FINDF+:
First 8 characters in A[U], last 2 in R0O[3:0]
D[A] is device address (set up by FILSPX poll handler)
FINDFx:
D{X] is mass storage device address
DO points to the mailbox
First 8 chars of name in RO, last 2 in R1[3:0]

7-12

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:
Carry clear:
File directory entry in =SCRTCH[32]
A[A] is starting record (A[4]=0)
C[A] is number of records (C[4]=0)
D1 points to file type
B[3:0] is directory pointer for file (B[3:1] is
record number, B[0] is entry within record)
Carry set:
P=0: Names don’t match (same conditions as carry clear)
P#0: Error (P, C[0] are error code)

Calls: START, CHKBIT , CHKMAe , YTML, D1=SCR, READSU , hCPY5s,
FINDFX --> GETDR! NXTEN+,CSRC5,CSLC5,GETDIR, GETZER

Exclusive: A B,C, D1,P, ST[5]
Inclusive: A,B,C,D[15:5],D1,P,SCRICH[63:0],ST[5:0]

Stk 1lvls: 5 (GEIDR!)

7.5.6 FORMAT - Format medium in the specified drive.

Name: FORMAT - Format medium in specified drive
Entry address: 4326 Hex

Purpose:
Format medium in specified drive (initialize it)

Entry:
RO contains vol label ([11:0]), # of entries ([15:12])
Drive address is in D[X]
D{X](lower five bits) = device’s primary address
D(X](middle five bits) = device’s secondary adrs(0 if none)
D[X](top 2 bits) = Loop # (0 is loop #1)
DO points to the mailbox

Exit:
Carry clear:
P=0, drive is rewinding (successful formatting)
Carry set:
Error (P, C[0] are error code)

Calls: DDL, DDT, READI3,URITIT, PRMSGA, CLLOOP, CLEARN,
MTYL,YTML, TSTAT, SEEKA, PUTALR, PUTDX , PUTD, PUTE,
GETD, ChkEOT, Dd1Urt,D1=SCR, F- >SCR, PUTDIR,
CSLC4,CSLC5,CSRCS ,ASLC4 , ASRC4 , YMDHMS , <ENDTAP >

7-13

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Uses:
Exclusive: A,B,C,D,R0, R2,D1,P
Inclusive: 4,B,C,D,R0,R1,R2,D1,P,SCRICH[63:0],5T[8:0]

Stk 1lvls: 4 (CLEARR)

7.5.7 GDIRST - Locate the start, length of directory

Name: GDIRST - Get directory start and information
Entry Address: 48D8 Hex
Purpose:

Locate the start of directory (and length) on mass mem
and return both to the caller

/

Entry:
D[X] contains the drive address
DO points to the mailbox

Exit:
Carry clear:
B{W] contains:
Directory start pointer in [3:0], [15:12]
Start of data area in [7:4]
Zero in [11:8]
D{W] contains:
Drive address in [A] (No change)
Number of directory records in [8:5]
Address of LAST data record + 1 [12:8]
Zero in [15:13]
Carry set:
Error (P, C[0] are error code)

Calls: SEEKA, DdtRd, READSC, D1=SCR, GETALR, ASLC9, ASRC4,
GETZER, (GDIRSM) ,ASRC9, CSRC8, ASRC3, ASLC3, CSLC4
Exclusive: A,B,C,D[15:5],D1,P
Inclusive: A,B,C,D[15:5],D1,P,SCRTCH[63:0],ST[3:0]

Stk 1lvls: 3 (SEEKA) (GDIRSB)

7-14

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.5.8 GETDIR - Get the Nth entry in a tape directory.

Name: GEIDI! - Get first directory entry from drive
Name: GETDIR - Get the next directory entry from drive
Name: GETDR" - Get the next directory entry @ B(3:0]
Name: GETDR# - Get the next directory entry @ A[3:0]
Name: GETDR+ - Get the next directory entry @ A[S]
Entry Address: GETDR! - 486C Hex

GETDR" - 4873 Hex

GETDR+ - 488E Hex

GETDIR - 48B5 Hex

GETDR# - 4875 Hex

Purpose:

GETDR!: Get the first entry in an LIF directory
GETDR": Get the B[3:0]th entry in an LIF directory
GETDR#: Get the A[3:0]th entry in an LIF directory
GETDR+: Get the A[S] entry in the current record
GETDIR: Get the next entry in an LIF directory

Entry:

Exit

D{X] is the drive address

D0 points to the mailbox

GETDIR: Drive is addressed as talker, me as listener
GETDR": B[3:0] is the directory entry #

GETDR#: A[3:0] is the directory entry #

GETDR+: A[S] is the directory offset nibble in record

Carry clear:

Directory entry in =SCRTCH([32]

AlU] is first 8 chars of filename

D1 points past first 8 chars of filename
Carry set:

Error (P, C[0] are error code)

Calls: GDIRST, SEEKA, DDT ,MTYL, PUTD, YTML , TSTATA , READSC,

Exclusive: A
Inclusive: A

Stk lvls: GETIDR! :
Stk 1lvls: GETDR" :

D1=SCR
b
,D[15:5] P SCRICH[63:0],ST[4:0]

GDIRST)
SEEKA) (TSTATA)

4
3

Stk 1lvls: GETDR#: 3 (SEEKA) (TSTATA)
3

Stk lvls: GETDR+:

TSTATA)

7-15

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Stk lvls: GEIDIR: 3 (TSTATA)

7.5.9 INITFL - Initialize a file

Name: INITFL - Initialize a file on external device
Entry Addressf 69739 Hex

Purpose:
Initialize an external file after creation

Entry:
R1[S] = Create code of the file
Tape is positioned at the start of the file data area
R2[A] is # of sectors in the file

Exit:
Carry clear:
The file will be filled with zeros or all FF’s
Create code = 2 - filled with zeros
Otherwise - filled with all FF’s
Carry set:
Error...P, C[0] are error code

Calls: SENDIT
Uses:
Exclusive: A[uW],C{u],D1, FUNCR1[15:0],P

Inclusive: A{W],C[w],D1,ST(3:0],FUNCR1[15:0],P

Stk 1lvls: 2 (SENDIT)

7.5.10 LSTENT ,NXTENT - Move to directory entry.
Name: NXTENT - Move to next directory entry
Name; LSTENT - Move to previous directory entry

Entry Address: NXTENT - 4AB3 Hex
LSTENT - 4ACS Hex

Purpose:
Increment/decrement to next/last directory entry

Entry:
C[3:0] is the current entry

7-16

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:
C[3:0] is next/last entry
P=0
Carry set if crossed record boundary, else clear

Calls: None

Inclusive: C[3:0],P

Stk 1lvls: 0

7.5.11 MOVEFL - Move a file between two devices

Name: MOVEFL - Move a file between two HPIL devices

Entry Address: 4606 Hex

Purpose:
Move a block of "records" from one HPIL device to
another

Entry:
R1[A] = device addr of destination device (from FILSPx)
R2[A] = device addr of source device (from FILSPx)
R3[A] = record address of destination if mass mem
B{A] = record address of source if mass menm
R3[9:5] = number of records to copy

Exit:
P#0!

Carry clear: 0K
Carry set: error (P, C[0] are error code)

Calls: CSLC5,D1=AVE,CSRC10,C5LC10, START , GETDev, SEEKA,

CHKBIT, DdtRd, READSU, D1@AVS, CSRC5, MTYL, DDL,ASRC10,
URITIT,hCPY5s,ASRC5, YTML

Exclusive: A[u],c[u],D[A],R3[14:10],R4,D0,D1,P,ST[4:0]
Inclusive: A[uW],C[u],D{u],R3([14:10],R4,D0,D1,P ST[8],ST[4:0]
Stk 1lvls: 3 (SEEKA) (hCPY5s)
Detail:

COUNT# is R3[14:10] - # of records this transfer

7-17

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

COUNTD is R4[9:5] - # of records already finished
COUNTR is R4[14:10] - # of records remaining
COUNT 1is R3[9:5] - # of records to move (total)

7.5.12 NEUWFIL - Create a file on mass memory device.

Name: NEWFIL - create a file on mass memory device

Entry Address: NEWFIL - 4AFA Hex
NEWFI+ - 4ADE Hex

Purpose:
Create a new file on a medium, given a pointer to the
file data and all info needed to create the directory
entry. If NEWUFIL is called by CREATE, the file will be
initialized according to its create code.

Entry:

ST[=sOVERU]=1 if overurite existing file, 0 if error on
existing file

D[X] is device address (D[B]=0 if LOOP)

RO is first 8 chars of name

R4[15:12] is last 2 chars of name

R1[5:0] is new file size in bytes

R1[9:6] is new file type

R1[14:10] is new file data start (RAM address)
(If zero, don’t copy any file...check CCode)

R1[15] = 0 if called by COPY with device spec,
"F* if called by COPY with LOOP or non-mass storage

device (D[B]#0 means non-mass storage device)

create code if called by CREATE

R2[7:0] is data for implementation bytes ([B] is first
byte of implementation field...byte 28)

(R2[B] is FIRST byte of implementation info)

NEWFIL:
DO points to the mailbox

Exit:
Carry clear:

P=0, R3 is file information (B[W] internally):
[3:0]: Current directory pointer (of no value)
[7:4]: Pointer to start of data area for file
[11:8]: Pointer to old directory location (if found)
[15:12]: Pointer to new directory location of file

R1 is unchanged from entry conditions
(If R1[S]="F" and R1[B]#"00" then R1[5:2] has been
incremented, R1[B]=0)

The file has been created on the mass storage medium

7-18

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Carry set:
Error (P,C[0] are error code)

Calls: START,CHKBIT, GDIRST, SEEKA, DdtRd , READSC, GT2BYT,
NXTENT, PT2BYT , YMDHMS ,MTYL, <ENDTAP>, I /OFND, PURFIB,
FIYPF#,CHKSEC,CHKSIZ, PUGFIB,NEUF80 ,NEUF84 ,NEWF90,
NEUWF.0,GEIMBX,D1=SCR, F->SCR
CSRC3;4;5;8;9;12,A5RC4,CSLC3;4;5;8; 12

NEWF80 -->v ASRC4;8,CSRC2;3;12,CSLC3, YMDHMS, PT2BYT, Dd1Pur,
SEEKA ,MTYL,DDL, PUTD, PUTC, D1=SCR

NEWF84 -->v PT2BYT,CSLC2;6,MIYL,GI2BYT,CSRC13

PUTDR# -->v SEEKA,MTYL

NEUF90 -->v Dd1Pwr,DDL,PUTD

PUTDIR ---> DDL,D1=SCR, <NEUF.3>

NEUF.0 -->v CSRC4;10,SEEKA,MIYL,DDL, <INITFL>
NEUF.3 ---> WRITIT,GETST,PUTC, <TSTAT>

Exclusive:

A ,RO,R2,R3,R4,D0,D1,P
Inclusive: A

D,RO
D,R0,R2,R3,R4,D0,D1,P,SCRICH([63:0],ST(8,4:0]

Stk 1lvls: 5 (PUGFIB) (Only if deleting FIB entry:file existed)
Stk 1lvls: 4 (GDIRST) (NEUF80;YMDHMS)

Detail:
Consolidates into one pass through the directory the
following actions for mass storage:
1. Find the file on the medium (if present)
2. Find a space on the medium sufficient to hold
the file, giving preference to the place
it was before (if found in 1.)
. Purge the old directory entry, if not using
same entry for new file
. Urite the new directory entry
. Copy the file to the data area of the medium

W

g1

7.5.13 READR# - Read specified record from mass mem

Name: READR# - Read a record from mass mem into RAM
Entry Address: 4594 Hex

Purpose:
Read a specific record number

7-19

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:
D1 points to the destination buffer
A[3:0] contains the record number
D[X] contains the drive address
DO points to the mailbox

Exit:
Carry clear: OK (P=0)
Carry set: Error (P, C[0] are error code)

Calls: TSTAT,SEEKA,DAdtRd, DDT, READSU, <TSTATA>
Uses.......
Exclusive: clul, P

Inclusive: A{W],C{W],D1,P,ST[3:0]
Stk 1lvls: 3 (TSTAT)

Note: This routine will always read the device status first
and ignore any device error that is reported initially

7.5.14 SEEKA - Seek a record.

Name: SEEKA - Seek a record (record # in A[3:0])
Name: SEEKB - Seek record (drive=listener,me=talker)

Entry Address: SEEKA - 42C7 Hex
SEEKB - 42CE Hex

Purpose:
Seek to the specified record
Entry:
SEEKA: Desired record # is in A[3:0]
SEEKB: Desired record # is in A[3:0], drive is talker,

I am listener
Drive address in D[X]
DO points to the mailbox

Exit:
Carry clear:
Drive is talker, I am listener, P=0
Carry set:
Error (P,C[0] are error code)

Calls: MTYL,DDL, PUTD, <TSTAT>

7-20

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exclusive: C[W],P
Inclusive: C[W],P,ST[3:0]

Stk lvls: 2 (MIYL) <TSTAT>

7.5.15 SEEKRD - Seek for a record, then read it.

Name: SEEKRD - Seek to a record, then read it
Entry Address: 636D Hex

Purpose:
Seek a record on the mass memory device and read it

Entry:
C[3:1] is the record # desired
DO points to the mailbox
D[X] is the device address
Exit:
Carry clear:
P=0, record has been read into buffer 0 of device
Carry set: Error (P=error #)
Error (P,C[0] are the error code)
Calls: TSTAT , SEEKA , DDT, TSTATA
Exclusive: A(a],C[uU],P
Inclusive: A[A],C[U],P

Stk 1vls: 3 (TSTAT) (SEEKA) (TSTATA)

7.5.16 TSTAT - Check the tape drive’s status.

Name: TSTAT,TSTATA - Check the drive status

Entry Address: TSTAT - 4293 Hex
TSTATA - 42%A Hex

Purpose:
Check status of mass storage device

Entry:

7-21

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

D[X] contains the address of the drive
DO points to the mailbox

Exit:
Carry clear:
Drive is addressed as a talker
Status in C[B]
Carry set:
Error (P, C[0] are error code)

Calls: YTML,PUTE,GEID (YIML only for TSTAT)
Exclusive: C[U],P
Inclusive: C[W],P,ST[3:0]

Stk 1lvls: 2 (YTML;PUIC) (GEID;GET)

7.5.17 URITE# - Urite to a specified record.

Name: WRITE# - UWrite to a specific record
Entry Address: 45D4 Hex

Purpose:
Urite to a specific record on a mass mem device

Entry:
D1 points to the input buffer
A{3:0] contains the record number to be written
D[X] contains the drive address
DO points to the mailbox

Exrit:
Carry clear if OK (P=0)
Carry set if error (P, C[0] are error code)

Calls: TSTAT,SEEKA,MIYL,Dd1Urt,DDL,URITIT
Uses.......
Exclusive: A[A], P

Inclusive: A[A],C(W],D1,P,ST[8],ST[3:0]
Stk lvls: 3 (TSTAT)

Note: This routine always reads the device status first and
ignores any initial device error.

7-22

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6 Device

CHKAIOD
CHKASN
DEVPAR
FXAQPIL
GADDR

GADRRM
GADRST
GETDID
GETDVUY
GETID

GETLPs
GETPIL
GHEXBT
GTYPE

GTYPST
PROCDU
PROCLT
PROCST
ROMIYP
SAVEIT

SETUP

searching routines

Check if a string is an ASSIGN WORD.

Check a HPIL standard output device assignment,
Decodes parsed device specifier, returns address.
Get file name from program memory.

Given a device specifier, finds address of the device.
Get HPIL address from program memory.

Get address from stack.

Fetch the device ID from a statement.

Get device word off the math stack.

Get the device ID from a device.

Get loop specifier, check mailbox status.

Get and evaluate an HPIL file specifier.

Get hex value of 1 byte.

Get the accessory 1D of a device.

Get device type from stack.

Process device word.

Process a device specifier from a literal.

Process a device specifier from a string expression.
Check if the string is a RESERVED WORD.

Save standard output device descriptor entry.

Build standard output device descriptor string.

7-23

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.1 CHKAIO - Check if a string is an ASSIGN WORD.

Name: CHKAIO - Check if device is an ASSIGN WORD
Entry Address: 411B Hex
Purpose:
Check if a string is an ASSIGN WORD (if so, return
its value)
Entry:
B contains a string (B[B] is the first character, any
unused characters are #00)
Exit:
P=0
Carry set if buffer not found or not an ASSIGN WORD
Carry clear if found...address in C[X]

Calls: CSLC5,ASRCS, 1/0FND
Exclusive: A[U],C[U],P
Inclusive: A[W],C[u],P

Stk lvls: 1 (I/OFND) (CSLC5) (ASRC5)

7.6.2 CHKASN - Check an HPIL device assigmment.

Name: CHKASN - Check if an HPIL assignment is active
Entry Address: 3CEC Hex

Purpose:
Check if the assignment is none, HPIL, or "other"
(If "OFF"ed, returns as if no assignment)

Entry:
C[6:0] is the assignment table value

Exit:
Carry set if not assigned/not HPIL/"OFF"ed/LOOP/NULL
Carry clear if assigned...B[U],C[X] set up for START
If C[8]<>0, this is a FIND (Address unknoun)

7-24

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Calls: 1/0FND

Exclusive: B[uU],C[U],P
Inclusive: B[U],C[U],P

Stk 1lvls: 2 (pushed D1;I/0FND)

7.6.3 DEVPAR - Parse a device specifier.

Name: DEVPAR - Parse a device specifier on the stack
Name: DEVPR$ - Parse a string device spec on stack

Entry Address: DEVPAR - 1C85 Hex
DEVPR$ - 1CCB Hex

Purpose:
Decode a device parameter (for functions which accept
one parameter, either string or numeric, for device
specifier)

Entry:
P=0
DEVPAR:
D1 points to the parameter on stack
DEVPR$:
D1 points to string header (String is reversed)
ST(s8TK)=1

Exit:
FUNCDO contains the calling routine’s D0 value
Carry clear: OK...D[X] is address (0 if not found)
D1 set up for 1 numeric parameter return
Carry set: Error...P, C[0] set up for ERRORX
Calls: TSAVDO,POPIN,GADRRM,REVPOP,<DEVPR$>
DEVPR$: TSAVD1,GETDIX, TRESD1
_Inclusive: A,B,C,D,R0-R3,D1,P,FUNCDO,FUNCD1,MLFFLG,ST(7,4:0]

Stk 1vis: 3 {GETIDIX - two levels saved in RO)

7-25

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.4 FXQPIL - Get the file name from program memory.

Name: FXQPIL - Get a file name from memory (file spec)
Entry Address: 73E4 Hex

Purpose:
Fetch a filename from program memory

Entry:
Exit conditions from GETSIR
(ST[sSTK]=0: literal in memory, =1:string on stack)
(P=0)

Exit:
D0/D1 set to first non-character item
Carry clear {(filename found):
RO[W] is the first 8 chars, A[3:0] the last 2
(Both are blank-filled)
Carry set (no filename found):
A RO are zeroed

Calls: FXQPnm, FXQPn+
Uses.......
Exclusive: a[u], c(ul,Rro, P

Inclusive: A[U],B[uW],C[W],R0,D0,D1,P
Stk 1lvls: 3 (FXQPrm)
Algorithm:
Check if literal and no file name; if so, return zero
Get the first 8 chars; put in RO; if reached end, set

A[3:0]=\ \, return
Get last 2 chars; put in A[3:0]; return

7.6.5 GADDR - Find the address of a device on loop.

Name: GADDR - Get the address of a device from loop
Entry Address: 0994 Hex

Purpose:
Get device address, given search information for the

7-26

HP-71 HP-1L Module IDS - Volume I
HP-IL Utility Routines

device

Entry:
DO points to the HPIL mailbox
D[B] is the search type (#1F,3F,65F,7F,9F)
#1F: (Device type) -B[B] 1is accessory ID

#3F: (Device ID) -B[W] is device ID
#5F: (Volume label)-B[UW] is the label
#7F: (Null) -B[W] is "don’t care"
#9F: (LOOP) -B[W] is "don’t care"

D[2] is the sequence number
D[3] is the loop number
D[5]=0 (for search type at exit)

Exit:
Carry clear:
HPIL handshake in ST[3:0]
Device address, (mailbox #)¥*1024 in D[X]
D[S] is search type (l=device type, 2=device 1D,
3=volume label,4=NULL,5=LOOP)
D[3] is sequence number (was in D[2] at entry)
Carry set: P, C[S] are error code

Calls: PUTGE+ ,UNLPUT, PUTC+ , GETERR, GETID, PUTGF- ,UNT,
TSTAT, SEEKA, DDT, TSTATA, READRG, ASRC4 , MTYL , DDL

Exclusive: A[A],C[U],D[15:14],D0[5:0],P
Inclusive: A[U],C[W],D[15:13],D[5:0],P,ST[3:0]
(If volume label, blankfills B[U],uses B[15:12])

Stk 1lvls: 3 (GETID)(TSTAT) (SEEKA)

7.6.6 GADRRM - Get HPIL address from program memory.
Name: GADRRM - Get HPIL address from program memory
Name: GADRR+ - Get HPIL address from stack value

Entry Address: GADRRM - 4040 Hex
GADRR+ - 404F Hex

Purpose:
Get an HPIL address from program memory

Entry:

ST(sSTK)=0: DO points to the expression in program mem
ST(sSTK)=1: A[U] contains a floating number

7-27

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:
Carry clear: C[X] is the HPIL address, P=0
Carry set: Error (P is error #)

Calls: EXPEX+,RESTST,AVM+16, GHEXB+

P
RO,R1,R2,R3,R4,D0,D1,P, FUNCxx

Exclusive: A,B,C,D,
Inclusive: A,B,C,D,

Stk 1lvls; 5 (EXPEX+)

7.6.7 GADRST - Get address from string on math stack.

Name: GADRST - Get address from stack
Entry Address: 70F9 Hex

Purpose:
Similar to GIYPST, except that the first 2 digits
after the decimal point, if any, are used as the
secondary address

Entry:
D1 @ first character
D[A] @ end of spec

Exit:

Carry clear:
C[X] is address
D1 @ first unused character
Skips trailing digits
P=0

Carry set:
P, C[0] are error code

Calls: NXTCHR, BAKCHR, RANGEN, DTOH, CSRC2

Exclusive: A,B,C, P
Inclusive: A,B,C,D1,P

’

Stk 1lvls: 1 (NXTCHR) (BAKCHR) (RANGEN) (DTOH) (CSRC2)

Algorithm:

Read a number from the stack until non-digit OR full;

7-28

HP-71 HP-IL Module IDS - Volume I
HP-1L Utility Routines

Check if "."...if not, return
Get another number from the stack (2 digits)
Combine the two numbers as one address, return

7.6.8 GEIDID - Fetch the device ID

Name: GETDID - Get device ID (specifier)
Name: GETDIX - Get device ID (String espr on stack)

Entry Address: GETDID - 6E19 Hex
GETIDIX - 6E37 Hex

Purpose:
GEIDID fetches a device ID, given DO pointing to the
ID in program memory

Entry:
DO points to the ID in program memory
Exit:
Carry clear: Address/type in D[X], device type/ID in B
If D[X]=0, then device id = "" OR *
P=0

FUNCDO contains the DO value after evaluating ID
Carry set: error, P=error number

Calls: GETSTR, PROCLT ,NXTCHR, BAKCHR, Procst , TSAVDO , START

Inclusive: A-D,RO-R4,D0,D1,P,STMID1(3:0],STMIR1,FUNCxx,ST[11:0]

Stk 1lvls: GETIDID: 6 (GETSTR)
Stk 1lvls: GETDIX: 4 (PROCST)

7.6.9 GETDVW - Get device word off the math stack

Name: GETDVU - Get device word
Entry Address: 71C8 Hex

Purpose:
Get a device word, given a pointer to the word

Entry:

7-29

HP-71 HP-IL Module IDS - Volume I
HP-1L Utility Routines

ST(=sSTK)=0:
DO points to first letter of device word in memory
ST (=sSTK)=1:
D1 points to first letter of device word on stack
D[A] points to the end of the specifier

Exit:
Carry clear:
Device word in B[W], zero-filled, first letter in B[B]
P=0, carry clear if no error
DO/D1 @ next character
Carry set:
Error (P, C{0] are error code)

Calls: NXTCHR, BAKCHR , UCRANG, RANGEN
Uses.......
Exclusive: BluW], P

Inclusive: A[A],B[W],C[A],DO,D1,P (sSTK=0: DO; sSTK=1: D1)

Stk lvls: 2 (UCRANG)

7.6.10 GETID - Get the device ID for a device.

Name: GETID - Read 8 bytes data into A after YTMLL
Name: READRG - Read 8 bytes data into the A register
Name: GETID+ - Read 8 bytes data into A after YIML

Entry Address: GETID - 68A3 Hex
READRG - 68%A Hex
GETID+ - 688F Hex

Purpose:
Read up to 8 bytes of data from a device and put it
into A[U] (GETID and GETID+ strip Cr and trailing
characters)

Entry:
D[X] is address of the device
DO @ mailbox

READRG: Conversation is already set up
Exit:
Carry clear:

Up to 8 bytes in A[U], rumber of bytes in D[S]
P=0

7-30

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Carry set:
Error (other than device not ready)
P,C[0]= Error #

Calls: YTML(GETID+) ,YTMLL(GETID) , PUTE, GETX, FRAME-

Exclusive: a[U],C{u],D[S],D[13],P
Inclusive: A[uW],C[w],D[S],D[13],P

Stk 1lvls: 2 (YTMLL)(YTML) (READRG uses only 1 level)

7.6.11 GETLPs - Get loop number, check status.

Name: GETLPs - Get (optional) loop #, check status
Entry Address: 1DAA Hex

Purpose:
Check if a loop number was passed to a function; if
so, get that mailbox, else get first mailbox.
Check the status of the mailbox (reset?, etc)

Entry:
P=0
D1 points to the top of the stack
C[S] is the parameter count (0 or 1)
If C[S]=1, there is a numeric value on top of the stack

Exit:

Carry clear:
P=0
DO points to the mailbox
Mailbox status in C[X]
D1 at (new) top of stack (loop number is popped off)
FUNCDO contains the caller’s DO

Carry set:
Error (P, C[0] are the error code)

Calls: TSAVDO,POPIN, GHEXB+, <FNDCHK>

Inclusive: A,B,C,D,R0,D0,D1,P,FUNCDO,ST[3:0]

Stk lvls: 2 (TSAVDO) (GHEXB+) (<FNDCHK>)

7-31

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.12 GETPIL - Extract file name & device ID, acc ID

Name: GETPIL - Evaluate an HPIL file specifier
Name: GETPI+ - Get an HPIL file specifier from stack

Entry Address: GETPIL - 6EA0 Hex
GETPI+ - 6EAS Hex

Purpose:
This routine extracts the file name and the device
and returns with the device type/device ID in B{U],
address/type in D[X]

Entry:
DO points to the file specifier in program memory

Exit:
ST(sDevOK) set if device spec was ok, else clear
Carry clear:
Filename in RO, R4[15:12]
Device type in B[X]/B[U], address in D[X]
If address = X00, then this is a ¥ or a ""
AVMEME collapsed back to starting point
Carry set:
Error (P,C[0] are error code)

Calls: GETSTR, FXQPIL, NXTCHR, PROCLT , PROCST , ASRC4 , D1=AVS,
D1@AVE, CSRC12, GETDI 5, ASLC12
Uses.......
Inclusive: A-D,R0-R4,D0,D1,P,STMID1[3:0],STMIR1,ST (sDevOK]),

FUNCxx
Stk 1lvls: 6 (GETSIR)

7.6.13 GHEXBT, GIYPRM - Get hex value from 1 byte.

Name: GTYPRM - Get one-byte hex value from literal
Name: GIYPR+ - Clear status bits 11:0, GIYPRM

Name: GHEXBT - Pop number off stack, get hex byte value
Name: GHEXB+ - Use A[U] as value, convert to hex byte

Entry Address: GIYPRM - 4003 Hex
GTYPR+ - 4001 Hex

7-32

HP-71 HP-IL Module IDS - Volume 1
HP-IL Utility Routines

GHEXBT - 4012 Hex
GHEXB+ - 4016 Hex

Purpose:
Given DO pointing to a numeric expression in program
memory, return the HEX value of the expression

Entry:
ST (sSTK)
ST (sSTK)

0: DO points to the expression
1: A[U] contains a floating number

(1]

Exit:
If carry clear, B[B] is the HEX type, B[4:2]=0,P=0,
C[B]=(DevTyp), C[XS]=0
If carry set, error (P=type)

Calls: EXPEX+,RESTST,AVM+16, FLTDH
Uses.......
Exclusive: A,B,C, P
Inclusive: A,B,C,D,R0,R1,R2,R3,R4,D0,D1,P, FUNCrx

Stk 1lvls: 5 (EXPEX+)

7.6.14 GIYPE - Get the accessory ID of a device.

Nanme: GTYPE - Get the device type (Acc id) from loop
Entry aAddress: 0C94 Hex

Purpose:
Get the accessory 1d of a device (address in D[X])

Entry:
DO points to the HPIL mailbox
D[¥] contains the address of the device to be checked

Exit:
Carry clear:
P=0
Device type in A[B] (if 2 byte response, A[3:2] is
first byte received, A[B] is second)
If device does not respond to Acc ID, A[A]=0
Carry set: error (P, C[0] are error code)

Calls: YTML, PUTE, PUTGF

7-33

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exclusive: A[A],C[u],P
Inclusive: A[A],C[U],P,ST([3:0]

Stk 1lvls: 2 (YIML)(PUTGF)

7.6.15 GIYPST - Get device type (acc ID) from stack.

Name: GIYPST - Get type from stack
Entry Address: 7088 Hex

Purpose:
Given a pointer to the start of the type, return the
mumeric value of the type

Entry:
D1 @ first digit of type
D[A] @ end of specifier
Exit:
Carry clear:
Type in B(X], D1 @ first unused item
C[X]=(=DevTyp)
P=0
Carry set:
error (P, C[0] are error code)

Calls: NXTCHR, BAKCHR, DTOH, RANGEN
Exclusive: a[u],B[U],C[U], P
Inclusive: A[U],B[U],C[W],D1,P

Stk lvls: 1 (NXTCHR) (BAKCHR) (DTOH) (RANGEN)

7.6.16 PROCDUW - Process device word.

Name: PROCDU - Process device word
Entry Address: 7215 Hex
Purpose:

Given a device word in B[U], figure out what it is
(ASSIGN WORD, RESERVED WORD, NULL, LOOP, DEVICE ID)

7-34

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:
B{U] contains the device word

Exit:
P=0
Carry set if sequence number is permissable after this
Carry clear if sequence number is not permissable

Calls: CHKAIO,ROMIYP, (PRDUsD)
Uses.......
Exclusive: clul,p

Inclusive: A[A],B[B],C[U],P
Stk lvls: 2 (CHKAIO)(ROMIYP)

Detail:
Try in following order: ASSIGN WORD, RESERVED WORD,
NULL,LOOP, (other=DEVICE 1D)

7.6.17 PROCLT - Process literal.

Name: PROCLT - Process literal device spec
Entry Address: 7263 Hex

Purpose:
Given a pointer to a device spec in memory, process it!

Entry:
DO @ device spec

Exit:

Carry clear:
P=0
Device type/device id in B[X]/B[W]
IF device type="*", ¥ or "" THEN C[X]=0
ELSEIF address THEN C[X] is address+loop¥*1024
ELSEIF LOOP then C[X] is "9F"+1loop*4096
ELSEIF NULL then C[B] is "7F"
ELSEIF volume label THEN C[X] is "5F"+loop*4036
ELSEIF device type THEN C[X] is "3F"+loop*4096
ELSEIF device ID THEN C{X] is "1F"+1loop*4086

Carry set:
Error (P, C[0] are error code)

Calls: NXTCHR, BAKCHR , GETDVW , PROCDU , SAVEAC , EXPEX+
GHEXBT , GADRR+ , RESTST, SAVE2C , RESTD1, REST2C

7-35

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exclusive: A,B,C, R1,R2, Do, P
Inclusive: A,B,C,D,R0,R1,R2,R3,R4,D0,D1,P,STMID1[3:0],STMIR1,
FUNCxx, all RAM available to FCNS

Stk 1lvls: 4 (EXPEX+ {saves a level on GOSUB stack first})

7.6.18 PROCST - Process a string device specifier

[4
Name: PROCST - Process string device specifier

Entry Address: 6F50 Hex

Purpose:
Process a device specifier from a string expression

Entry:
ST (sSTK) =1
RO[W], R4[15:12] are filename
D1 points to next item of string
D[A] is the end of the string
HEXMODE

Exit:

Carry set if error (P,C[0] are error number)

Carry clear:
P=0
Device type/device id in B{X]/B[U]
IF device type="*" ¥ or "" THEN C[X]=0
ELSEIF address, THEN C[X] is address+loop*1024
ELSEIF LOOP, THEN C[X] is "9F"+loop*4096
ELSEIF NULL, THEN C[B] is "7F"
ELSEIF volume label THEN C[X] is "5F"+1oop*4096
ELSEIF device type THEN C[X] is "3F"+loop*4096
ELSEIF device id THEN C[X] is "1F"+loop*4096

Calls: NXTCHR, BAKCHR, UCRANG, GETDVW, PROCDU , GTYPST , GADRST
Exclusive: a[u],B[U],C[uU],R1,R2, P
Inclusive: A(U],B[W],C[U],R1,R2,D1,P

Stk lvls: 3 (GETDVU)

7-36

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.6.13 ROMIYP - Check if a string is a reserved word.

Name: ROMIYP - Check if device is a RESERVED WORD
Entry Address: 4167 Hex
Purpose:

Check if the string in B[U] is a RESERVED WORD; if so,

return the value that corresponds to that word

Entry:
B contains the string (B[B] is the first character)

Exit:
P=0
Carry clear: B[B] is the device type; B[XS]=0
Carry set: not found

Calls: None

Stk lvls: 1 (Internal call)(internal push)

7.6.20 SAVEIT - Save device descriptor entry.

Name: SAVEIT - Save device info at (D1) (7 nibbles)
Entry Address: 3E4B Hex

Purpose:
Save device descripter entry @ D1

Entry:
D1 @ destination entry
B,C are exit conditions of SETUP

Exit:
Carry clear, P=0 (Error exits directly)
Calls: CSRC3;4;5,C8LC4;9,1/0ALL,1/0FSC,1/0DAL

Exclusive: A,B,C,D,R2,R3,D0,D1,P

7-37

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Inclusive: A,B,C,D,R2,R3,D0,D1,P
Stk 1lvls: 3 (I/OALL)(I/ODAL)

Algorithm:

Check if entry will fit in 7 nibbles:
If will not fit, goto SAVEI1

SAVEIO:Read old entry; write new entry
If old entry used buffer, deallocate the buffer
RINCC

SAVEI1:Create a buffer for the entry
Urite the entry
Build the info for the 7 nibble field
Goto SAVEIQ

7.6.21 SETUP - Build a recall string in C[6:0].

Name: SETUP - Given info from START, set up C[6:0]
Entry Address: 3DC8 Hex

Purpose:
Build a recall string in C{6:0] (carry set if buffer
required to store this)

Entry:
D is the info returned from START
D[X] is address, (loop #) * 1024
D[S] is type (0=address, l=device type, 2=device ID,
3=volume label, 4=NULL, 5=LOOP)
D[3] is sequence # for types 1 and 2
B is as returned from START

Exit:
C[6:0] is the information to put into an IS-xxx entry
P=0
C[S]=0 if entry will fit in IS-rrx, else C[S]#0

Calls: CSLC5,CSRC4,CSLC3

Inclusive: C[U],P

Stk lvlis: 1 (CSLC5) (CSRC4) (CSLC3)

7-38

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.7 Loop addressing routines

CHKSET - Check if a Mailbox has been reset and initialize it.
LISTEN - Address a device as listener.

MIYL - Address me as talker, one listener.

RESTOR - Clears offed status of standard output devices.
RESTET - Set to research addresses of standard output devices,
START - Set up entry conditions for the loop.

UTLEND - Unaddress talker & listener, clean up.

YTML Address a talker, me as listener.

7.7.1 CHKSET - Check if this Mailbox has been reset.

Name: CHESET - Check if this mailbox has been reset
Name: CHEST+ - Set up this mailbox after reset

Entry Address: CHKSET - 31DE Hex
CHKST+ - 31F5 Hex

Purpose:
Check 1f this mailbox has been reset...if so, set up
device ID and accessory 1D

Entry:
DO @ mailbox
Exit:
D0 pointing to mailbow
Carry clear:
411 OK (If mailbox had been reset, it has been set up)
Carry set:
Error...P, C[0] are error code
Calls: PUTC, PUTE
Uses.......

Exclusive: A[u],C[u],P

7-39

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Inclusive: A[W],C[u],P
Stk 1lvls: 1 (PUTC) (PUTE)
Detail:
Check if RESET bit is set...if not, return, carry clear
Set IDY timeout = 50 mS

Set Accessory 1D = (mSETAI)
Set Device ID = (vDEVID}&Cr&Lf

7.7.2 LISTEN - Address a device as listener.

Name: LISTEN - Address D[X] as listener
Name: ULYL - Unaddress listeners, address D[X] as Listener

Entry Address: LISTEN - OCF1 Hex
ULYL - OCEA Hex

Purpose:
Unaddress all listeners, address D[X] as listener

Entry:
Desired listener address in D{X]
D0 points to mailbox
Exit:
Carry clear: OK, P=0
Carry set; error (P=error #)

Calls: PUTC

Inclusive: C[W],P,ST[3:0]

Stk lvls: 1 (PUTC)

7.7.3 MIYL - Address me as talker, one listener.
Nanme: MIYL - Unaddress listeners, me talk, D[X] listen
Name: MIYLL- Address me as talker, D[X] as listener

Entry Address: MIYL - 0D18 Hex
MIYLL - OD1F Hex

Purpose:

7-40

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines
Address me as talker, D[X] as listener
Entry:
D(X] is the address of the device to be listener
D0 points to mailbox
Exit:
Carry clear: OK, P=0
Carry set: error (P=error code)

Calls: UNLPUT, LISTEN, <PUTC>

Uses.......
Inclusive: C[U],P,ST[3:0]

Stk 1lvis: 1 (UNLPUT) (LISTEN)

7.7.4 RESTOR - Reactive all devices.

Name: RESTOR - Clear "OFFED" bits in IS table entries
Entry Address: 3EF1 Hex

Purpose:
Reactivate all devices (clear their OFFED bits)

Entry:
Nothing

Exit:
Carry clear

Calls: Nothing

Uses.......
Inclusive: C[XS],D0

Stk 1lvls: 1 (Internal GOSUB)

NOTE: Does not alter P!

7.7.5 RESTRT - Restart all HPIL devices.

Name: RESTRT - Restart all HPIL devices (readdress)

7-41

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines
Entry Address: 308D Hex
Purpose:
Restart all device addresses in the HPIL systenm

{set to search for address at next access)

Entry:
P=0, HEXMODE

Exit:
P=0
Carry clear
Calls: RESTRs, CSRC5,CSLC5, FIBOFF
Exclusive: Clw],Do,P
Inclusive: A[W],C[W],DO,P

Stk 1lvls: 2 (FIBOFF)

7.7.6 START - Set up entry conditions for the loop.

Nanme: START - Set up entry conditions for the loop
Name: START+ - Set up loop information (loop # in C[S])
Name: START- - Set up loop (loop # in C[S], sReadd=1)

Entry Address: START - 087D Hex
START+ - 0883 Hex
START- - 0886 Hex

Purpose:
Set up the loop, given the device specifier

Entry:
D[3:0] contains the device address (if known).
If the address is not knouwn, D[B]=#1F/3F/SF/7F/9F
#1F: (DevTyp) B[X] is the accessory ID
#3F: (DevID) B[W] is the device ID
#5F: (Vollbl) B[W] is the volume label
#7F: (Null) B[U] is "don’t care"
#9F: (Loop) B[W] is "don’t care"
D[2] is the sequence number for #1F and #3F
If D[X] is an address, bits 8 and 9 are the mailbox #
If D[X] is not an address, D[3] is the mailbox #

Exit:
Carry clear:

7-42

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Device address in D{X] (+mallbox*1024)
D[(S] is 0 if address given, 1 if device type,
2 if device ID, 3 if volume label, 4 if NULL,
5 if LOOP
Sets DO to the HPIL mailbox
ST(sReadd) set if loop was readdressed, else clear
Carry set:
Error (P, C[0] are error code)

Calls: SETLP, ENDCH- , GETDev , PUTGF- , PUTE , GETERR, GETST,
SFLAG?, RESTRT , GETMBX , SUAPO1, 1 /OFND
Uses.......
Exclugive: clu],pl15],

DO,P,ST[4]
Inclusive: A[W],C[W],D[15:13]1,D[5:0],D0,P,ST[4:0]

’

Stk lvls: 3 {(RESTRT) (FNDCH-)<GADDR>

Algorithm:
START: Derive loop # from D(X] (into C[S]) (SETLP)
STAET+:Set flag (sReadd) to not force readdressing
START-:Find mailbox, check for reset, OFFED (ENDCH-)
Check if controller...if so, goto STARTn
Check if NULL, LOOP, or zero (if not, error)
goto START3
(Controller)
STARTn:
If force readdressing (sReadd=1)
then send IFC to power up the loop
else send power up the loop message (NOP frame)
STARTS:Check if error pouwering up the loop (GETERR)
START! :Get Diamond status bits
If sReadd=1 then goto START?2
If loop 1is unconfigured [sUNCNF)
then
If (supress readdress)=1 then goto START2
Set all internal addresses=unknown (RESTIRT)
Set DO to mailbox address (GETMBX)
goto START3
(Readdressing the loop)
STARTZ:
Set all internal addresses=unknown {RESTRT)
1f (extended address flag=0) or
(an ASSIGNIO is active)
then readdress the loop, primary only
else readdress the loop, extended addresses
Send readdress message, get result {PUTGF-)
1f address not returned by Diamond then error
(Check the device specifier)

7-43

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

START3:1f not (find device)
then return (all OK)
else goto GADDR (Get device address)

7.7.7 UTLEND - Unaddress talker & listener, clean up.

Name: UTLEND - Unaddress talkers&listeners, clean up
Name: ENDEN - Clean up the loop, preserve C[W] in RO

Entry Address: UTLEND - 0861 Hex
ENDFN - 0855 Hex

Purpose:
Clean up after accessing a loop

Entry:
MBOX~ points to the mailbox used by this routine

Exit:
Carry clear:
DO at last mailbox used before call
ENDST: Jumps to NXTSTM
ENDFN: Restores value of ClU] (saved at entry)
UTLEND: First unaddress talkers/listeners, then END
Carry set:
Error (P, C[0] are error code)

Calls: END:GETMBX
ENDST : END
UTLEND:UNT,UNLPUT
ENDEN:UTLEND
Inclusive: C[W],D0,P,ST[3:0]
Stk 1lvls: END: 0 <GETMBX>
Stk 1lvls: ENDST: 1 (END)

Stk 1lvls: UTLEND: 1 (UNT) (UNLPUT)<END>
Stk lvls: ENDFN: 2 (UTLEND)

7.7.8 YIML - Address a talker, me as listener.

Name: YIML - "You" (D[X]) talk, "me" listen

Entry Address: 0D30 Hex

7-44

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Purp

Entr

Exit

Call

ose:

Address D[X] as talker, me as listener

¥y

DO points to mailbox
D[X] contains the address of the device to be talker

Carry clear: P=0
Carry set: Error # in P

S

ooooooo

UNLPUT, PUIC, <PUTC=D>»

Inclusive: C[W],P,ST[3:0]

Stk

7.8

lvils:

1 {(UNLPUT) (PUTC)

Communicating with I/0 CPU routines

CHKSTS

DDL, DDT-

FNDMBX
FRAMEE
FRAME+
GET
GETD
GEIDev
GETERR,

GETHSS

GETMBX

GETX

1

Check Mailbox status and clear error mailbox bit.
Send a device dependent command to loop.

Find an HPIL Mailbox in configuration table.
HPIL frame encode from ASCII to 11 bit value.
Evaluate an HPIL MB message, return message type.
Get a message from Mailbox.

Get data.

Check if the HPIL module is in device mode.

GETST - Get error/status from I/0 CPU,

Get 2 handshake nibbles from a Mailbox.
Get Mailbox status
Get the HPIL Mailbox address from RAM, put it in DO.

Fast data input routine.

7-45

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

GFTYPE - Get frame type from RAM.

GLOOP# - Get loop # from RAM (if one present).

PRMSGA - Print message contained in C-reg to loop.
PUTARL - Put message in A register to loop.

PUTC - Put a command (4 nibs) to the Mailbox.

PUTD - Put a single data byte to the loop.

PUTDX - Put multiple data bytes to Mailbox filling with zeros.
PUTE - Put an extended message (6 nibs) to Mailbox.
PUTEN - Send message to Mailbox, ignore error bit.
PUTX - Send 3 bytes of data to the loop.

READIT - Read data bytes from the loop.

SENDIT - Send 1 or 2 character sequence to the loop.
SETLP - Determine loop number for FNDMBX routine.
WRITIT - Output data to loop from RAM.

7.8.1 CHKSTS - Check Mailbox status, error, etc.

Name: CHKSTS - Check Diamond status, errors, etc
Name: FNDCHK - Find a mailboxr, CHKSIS
Name: ENDCH- - Check OFFED, Find a mailbox, CHKSTS
Entry address: CHKSTS = 0C24 Hex

FNDCHK = 0C1B Hex

FNDCH- = 0C10 Hex

Purpose:
Check that the status is OK for messages (ie NOT in
manual mode), clear the error bit in Diamond, set/clear
bit for device/controller

Entry:
FNDCH-:C[S] is mailbox desired
FNDCHK:C[S] is mailbox desired
CHKSTS:DO points to mailbox

7-46

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:
Carry clear:
P=0, C[X] is Diamond status
CHKSTS: DO unchanged
FNDCH-,FNDCHK: DO points to mailbox
Carry set: error (P, C[0] are the error #)

Calls: GETH52, CHKSET, GETERR, GETST , GETMBX

Uses:
Exclusive: Cc(X],P

Inclusive: A[U],C[W],P,ST[3:0], bit(Device) of LOOPST

3

Stk lvls: 2 (GETST) (GETERR) (CHKSET) (pushed status;GETMBX)

7.8.2 DDL,DDT- Send a device dependent command.

Name: DDT - Send a Device Dependent Command
Nane: DDL - Send a Device Dependent Command
Entry address: DDT = 6BCY Hex

DDL = 6BBA Hex

Purpose:
Send a DDL/DDT as determined by P (these routines are
only good for DDL/DDT 0-15)

Entry:
P contains the DDL/DDT number desired
Loop is set up
DO @ mailbox

Exit:

Same as PUTE
Calls: None
Uses:

Inclusive: C[W],ST[3:0],P

Stk lvls: 0

7.8.3 ENDMBX - Find an HPIL Mailbox.

Name; FNDMBX - Find an HPIL mailbox (C[S] is #)

7-47

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Name: FNDMB- - Find mailbox, clear disp bits, chk OFF
Name: FNDMBD - Find an HPIL mailbox, clear disp bits
Name: FNDMB+ - Find an HPIL mailbox (D[A] is spec)
Entry address: FNDMBX = 3C75 Hex

FNDMB- = 3C40 Hex

FNDMBD = 3C5F Hex

FNDMB+ = 3C3C Hex

Purpose:
Search the configuration tables to find a HPIL mailbox
(C[S] is the number of the mailbox minus 1 - if C[S]
is 2 then find the 3rd mailbox!)

Entry:
FNDMBX , FNDMB- , FNDMBD:
C[S] is the mailbox number -1
FNDMB+:
D[A] is the device spec

Exit:
Carry clear: DO points to the mailbox, (MBOX") is set
to the mailbox
Carry set: Mailbox and/or configuration buffer not
found (P is the error number)
Calls: CNFFND (FNDMB+ also calls SETLP)
Uses:

Exclusive: C[UW],DO0,P
Inclusive: C[W],DO,P

Stk lvls: 1 (CNFFND) (SETLP)

7.8.4 FRAMEE - HPIL frame encode.

Name: FRAMEE - Encode an HPIL frame from its mnemonic
Entry address: 6BD8 Hex

Purpose:
HPIL frame encode (given the ASCII for the frame and a
value, produce the appropriate 11-bit frame)

Entry:
C[S] is length of ASCII character string
C[S] = String length in nibbles - 1
C[13:0] is the ASCII character string
The string is right justified.

7-48

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines
1f set P to C[S], C[P:0] is the character string.
A[B] is the value included with the frame (if none, 0)
Exit:
P=0
Carry clear: C[X] is the frame value
B[B] is the mask value for the frame
C[8] is WP length of name
Carry set: Error...not found

Calls: None

Uses:
Inclusive: B[W],C[W],P

Stk 1lvls: 1 (Internal push)

7.8.5 FRAME+ FRAME- - Returns type of HPIL message.

Name: FRAME+ - Evaluate an HPIL message, return type
Name: FRAME- - Evaluate a message, return type (not 3data)
Entry address: FRAME+ = 07C2 Hex

FRAME- = 07D0 Hex

Purpose:
Parses a frame

Entry:
C[6:0] contains the input frame from GET
ST[2:0] contains the HPIL handshake nibble

FRAME+: C[S] 1s the status nibble from DIAMOND

Exit:
Frame type in P: MNEMONIC:
0: ACKNOULEDGE (pACK)
1: CURRENT PIL STATE (pSTATE)
2: DIAGNOSTIC (TEST RESULTS) (pDIAGR)
3: DIAGNOSTIC (LOCATION CONTENTS) (pDIAGL)
4: ADDRESS (pADDR)
5: IFC RECEIVED (NOT SYS CONTROLLER) (pIFC)
6: ETO RECEIVED (pEOT)
7: CONVERSATION HALTED (COUNT, NOT L) (pHALTID)
8: TERMINATOR MATCH (pTERM)
9: ETE REVEIVED (pETE)
10: UNRECOGNIZED TYPE (pUTYPE)

7-49

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

11: DATA/END FRAME (pDATA)
12: COMMAND RECEIVED (pCMD)
13: READY FRAME (pRDY)
14: IDY FRAME (pIDY)
15: THREE BYTE DATA TRANSFER (p3DATA)
If illegal frame or error, sets carry; else clears it
Calls: None
Uses:

Inclusive: C[S],P (C[S] only for FRAME+)

Stk lvls: 0

7.8.6 GET,GETNE - Get a message from Mailbox.

Name: GET - Get a message from Diamond
Name: GETNE - Get a message without checking error bit

67E6 Hex
67D0 Hex

Entry address: GET
GEINE

Purpose:
Utility to read the mailbox message

Entry:
DO points to the HPIL maillbox

Exit;
Carry clear:
Contents of mailbox in C[7:0]
Handshake nibble in ST[3:0]
Status nibble in C[S]
Carry set:
Error (P=error number)

Calls: None

Uses:
Inclusive: C[W],ST(3:0] (P only if error)

Stk 1lvls: 0

7-50

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.8.7 GETD - Get data.

Name: GETD - Get data message

Name: GETEND - Get EOT message

Entry address: GETD = 6850 Hex
GETEND = 687A Hex

Purpose:
Read a data/EOT message from Diamond

Entry:
Expecting data/EOT from the mailbox
DO points to the mailbox

Exit:
Carry clear:
Frame in C[X]
Frame type in C[S]
Carry set:
GETD: Not a data frame/aborted/error bit set
GETEND: Not an EOT frame/aborted/error bit set

Calls: GET,FRAME+
Uses:
Exclusive: C

Inclusive: C,ST[3:0] (P only if error}

Stk 1lvls: 1 (GET) (FRAME+)

7.8.8 GEIDev - Check if the HPIL module is a device.

Name: GETDev - Get device status bit from LOOPST
Entry address: OBF0 Hex
Purpose:

Indicate whether the last call to CHKSTS found Diamond

in device or controller mode

Entry:
None

Exit:
LOOPST in ST[3:0]

7-51

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines
Carry set if device, clear if controller
Calls: None

Uses:
Inclusive; ST[3:0]

Stk 1lvls: 1 {internal push)

7.8.9 GETERR,GEIST - Get Mailbox error/status.

Name: GETST - Get status from Diamond
Name: GETERR - Get error message from Diamond
Name: GETST- - Read status message from mailbox with-

out checking the error bit

Entry address: GETST
GETERR
GETST-

681C Hex
6826 Hex
6833 Hex

wonon

Purpose:
Get status/error message from Diamond

Entry:
DO points to the HPIL mailbox

Exit:
Carry clear: PIL status in C[X], error # in C[3]
P=0
Carry set: Error (# in P,C[0])
Calls: PUTC+N, GEINE, FRAME+
Uses:
Exclusive: C[U], P
Inclusive: C[UW],sST([3:0],P

Stk 1lvls: 1 (PUTC+N) (GEINE) (FRAME+)

7.8.10 GETHSS - Get 2 handshake nibbles from Mailbox.

Name: GETHSS - Get 2 handshake nibbles from Diamond

Entry address: 31CF Hex

7-52

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Purpose:
Read the two handshake nibbles from Diamond to HP-71
and put into ST[7:0]

Entry:
DO points to HPIL mailbox

Exit:
The two handshake nibbles from Diamond are in ST[7:0]
Carry clear

Calls: None

Uses:
Inclusive: ST[7:0]

Stk lvls: 0

7.8.11 GETMBX - Set DO to the HPIL Mallbox address

Name: GETMBX - Get address of mailbox (last FNDMBX)
Entry address: 3BF7 Hex

Purpose:
Get the HPIL mailbox address from RAM and put it in DO

Entry:
Nothing

Exit:
c{A], DO-->Mailbox
Carry clear

Calls: None

Uses:
Inclusive: C[A],DO

Stk lvls: O
NOTE: Does not alter P!

7.8.12 GETX - Fast data input routine.

Name: GETX - Fast DATA input routine

7-53

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry address: 6745 Hex

Purpose:
Fast data input routine...read DATA bytes as quickly
as possible

Entry:
DO points to the mailbox
Conversation is set up and started

Exit:
If carry clear:
P=0: C[B] is a data byte
P=2: C[5:0] is three byte quantity; C[B] is first!
If carry set:
P=0: C[6:0] is message, C[S] is status*2
P#0: Aborted (P= =eABORT)
Calls: None
Uses:

Inclusive: C[W],P,ST(3:0]

Stk lvls: 0

7.8.13 GFTYPE - Get frame type from RAM.

Name: GFIYPE - Get frame type from RAM
Entry address: 2E2B Hex
Purpose:
This routine return the mnemonic of a message in a statement.

This routine is used by the SEND statement.

Entry:
DO points to string of chars (<=7)

Exit:
A contains the string (A[S] is UP value)
Carry SET if error
Calls: CONVUC, RANGEA
Uses:
Exclusive: a[u],C[u],P,DO
Inclusive: A[W],C[uW],P,DO

Stk 1lvls: 2 (CONVUC)

7-54

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.8.14 GLOOP# - Get loop # from RAM (if one present).

Name: GLOOP# - Get loop # from RAM (if one present)

Entry Address: ZDEF Hex

Purpose:

Get 1loop number from memory
Entry:

DO points to next token
Exit:

P=0

DO points to next item on line
C[8] is 1loop # [0-2]
Carry set if no loop # given

Calls: GTYPRM

Inclusive: A,B,C,D,R0,R1,R2,R3,R4,D0,D1,P,ST[11:0], FUNCxx

Stk lvls: 6 (GTYPRM)

7.8.15 PRMSGA - Print message from C-reg.

Name: PRMSGA - Output message from C [(uses A)
Entry Address: (D4E Hex

Purpose:
Output message from C (ASCII) (use A[WU] to store it)

Entry:
C[U] has an ASCII string, C[B] is the first character
Message is terminated by a #00 character
DO points to mailbox

Exit:
Carry clear: OK, P=0
Carry set: error (P,C[0] are error code)

Calls: PUTD

7-55

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Inclusive: A[U],C[W],ST[3:0]
Stk 1lvls: 1 (PUTD)
Algorithm:

PRMSGA: Copy ClW] to a[W]
PRMSG1:shift A[U] right twice (next char in A[B] nouw)

output the character in C[B] (PUTD)
if next character (A[B]) <> #00 then goto PRMSG1
return

7.8.16 PUTARL - Put data from A[U] to Mailbox.

Name: PUTARL - Put data from A[U] (Right to left)
Name: PUTALR - Put data from A[W] (Left to right)

Entry Address: PUTARL - OEBA Hex
PUTALR - OED2 Hex

Purpose:
Output data from A{U] to the HPIL loop

Entry:
DO points to mailbox
I am talker on loop
P is a count of bytes to be output from A[U]
PUTARL outputs bytes starting with A[B]
PUTALR outputs bytes starting with A[15:14]

Exit:
Carry clear: P=0, all OK
Carry set: error (P, C[0] are error code)
Calls: PUTD
Exclusive: A[U],C[A],P
Inclusive: A[W],C[UW],P,ST[3:0]

Stk 1lvls: 1 (PUTD)

7-56

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.8.17 PUTC - Put a command (4 nibs) to Mailbox.
Name: PUTC+ - Put a command (1 byte) to the mallbox
Name: PUTC - Put a command (2 bytes) to the mailbox

Entry Address: PUIC - 6BB1 Hex
PUTC+ - 6BAD Hex

Purpose:
Put a command {1 or 2 bytes) to the mailbox

Entry:
DO points to the HPIL mailbox
PUTC+: C[B] contains the command to send (1 byte)
PUTC: C[3:0] contains the command to send (2 bytes)

Exit:

Same as PUTE
Calls: None
Uses.......

Inclusive: C[W],ST[3:0],P

Stk 1lvls: 0

7.8.18 PUTD - Put a single data byte to the loop.

Name: PUTD - Put a single data byte on the loop
Entry Address: 6B43 Hex

Purpose:
Send a single data byte on the loop (Check NRD first)

Entry:
C[B] contains the data byte
DO points to the HPIL mailbox
Exit:
Handshake nibble in ST{3:0]
Carry set if error, clear if OK

Calls: None

7-57

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Inclusive: C[W],ST[3:0]

Stk lvls: 0

7.8.13 PUIDX - Put multiple data bytes to Mailbox.

Name: PUTDX - Output multiple data bytes (P is count)
Entry Address: OEEA Hex

Purpose:
Output data to the loop: first the contents of C[B],
then P-1 zero bytes

Entry:
DO points to mailbox
I am talker
P contains the total number of bytes to send

Exit:

P=0

Carry set if error (P is error #)
Calls: PUTD
Uses.......

Exclusive: C[A],P
Inclusive: C[U],P,ST[3:0]

Stk 1lvls: 1 (PUTD)

7.8.20 PUTE - Put long message (6 nibs) to Mailbox.
Name: PUTE - Put extended message (6 nibbles)
Name: PUTEX - Put extended message (6 nibs + 2 hs)

Entry Address: PUTE - 6B55 Hex
PUTEX - 6B5D Hex

Purpose:
PUTE:Put extended mailbox message (given full 6 nibs)
PUTEX:Put a full message, INCLUDING HANDSHAKE!!!!

Entry:

7-58

HP-71 HF-IL Module IDS - Volume I
HP-IL Utility Routines

PUTE: C[5:0] is message
PUTEX: C[7:0] is message
D0 points to the mailbox
Exit:
Carry clear: OK (P=0 for PUTX)
Carry set: error (P=error #)
Calls: None

Uses.......
Inclusive: C,ST[3:0] (PUTE sets P=0)

Stk 1lvls: 0

7.8.21 PUTEN - Send message to Mailbox, ignore error.

Name: PUTEN - Put message in C[5:0], don’t check error
Name: PUICN - Put message in C[3:0], don’t check error
Name: PUTC+N - Put message in C[B], don’t check error

Entry Address: PUTEN - 6B86 Hex
PUTCN - 6B81 Hex
PUTC+N - 6B7D Hex

Purpose:
Put a message without checking for the Diamond error
bit (ctherwise same as PUTE)

Entry:
DO points to the HPIL mailbox

PUTEN: Message in C[5:0]
PUTCN: Message in C[3:0]
PUTC+N: Message in C[B]

Exit:
Carry clear:
Handshake nibble in ST[3:0]

Carry set:
P=error #
Calls: None
Uses.,......

Exclusive: C[U]
Inclusive: C[U],ST[3:0]

7-59

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Stk 1lvls: 0

7.8.22 PUTX - Send 3 bytes of data from C[5:0]

Name: PUTX - Send 3 bytes of data from C[5:0] to loop
Entry Address: 6A97 Hex

Purpose:
Output three bytes from C[5:0] to PIL

Entry:
C[5:0] is the three data bytes (C[B] is first byte)
DO: HPIL mailbox
Exit:
Carry clear: done
Carry set: error (P is error #)

Calls: None

Inclusive: C[W],ST[3:0]

Stk lvls: 0

7.8.23 READIT - Read data bytes from the loop.

Name: READIT,READSU - Read into RAM from loop

Entry Address: READIT - 66DE Hex
READSU - 66D2 Hex

Purpose:
Read data, given a buffer to put it into, and a count
of how many bytes to enter

Entry:
DO points to mailbox
D1 points to the input buffer
A[A] is the number of bytes to read
A[5] is the converstion type for Diamond

READSU: C[5:0] is start message and count

7-60

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

READIT: the conversation 1s started

Exit:
Carry clear: D1 points past the last character
A[A] is zero
Carry set: Error...A[A] is the number of bytes left
in the buffer
If P= =ePIL, C[6:0], [S] is status msg
from Diamond ([S] has been doubled)
Else C[W] is undefined

Calls: PUTE, GETX, FRAME-
Uses.......
Exclusive: A[5:0],C[u],D1,P
Inclusive: A[5:0],C{W],D1,P,ST(3:0]

Stk 1lvls: 1 (FRAME-) (GETX) (PUTE)

Algorithm:
READSC:Save conversation descriptor in A[5:0]
READS+:Start the conversation (PUTE)
READIT:If no more data to read (A{A]=0) then RINCC
Get a message from Diamond (GETX)
If not data, check the message: (FRAME-)

If EOT or terminator match, GOTO READS+
else error
(data)
1f P#0 then uwrite out 3 data bytes
else write out 1 byte
Increment D1 past data just uritten
GOTO READIT

7.8.24 SENDIT - Send data from B[U].
Name: SENDIT - Send a 1 or 2 char sequence from B[U]
Name: SENDI+ - Find mailbox, send a sequence of chars

Entry Address: SENDIT - 6A24 Hex
SENDI+ - 6A1E Hex

Purpose:
Send a sequence of 1 or 2 characters (in B[7:0])
Number of characters to send in A[A]

Entry:

7-61

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

A[A]=count of characters
B[7:0]=sequence (B[B]=first char, B[3:2]=second char,
B{5:4]=first char, B[7:6]=second char)
DO points to mailbox
ST(=LoopOK) set if abort on 1 ATIN, else clear
Exit:
Carry set if Attn or error, else clear
If carry set and P=0, then ATIN key hit ONCE
Calls: PUTX,PUTD,CK=ATN (SENDI+ also calls GETMBX)
Exclusive: A[A],C[U]
Inclusive: A[A],C[U],ST([3:0]
Stk 1lvls: 1 (PUTX) (PUTD) (CK=ATN) (GETMBX)
NOTE: This routine can be speeded up SLIGHTLY...see WRITIT
documentation)

7.8.25 SETLP - Setup loop number for FNDMBX routine.

Name: SETLP - Set up C[S] for FNDMBX from D[A] info
Entry Address: 3C12 Hex
Purpose:

Given D[A] set up for device search, return the loop #

minus one in C[S]

Entry:
D[a] is device info (see START documentation)

Exit:
Carry clear
P=0
Mailbox # in C[S]

Calls: None

Inclusive: C[A],C[S],P

Stk 1lvls: 0

7-62

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.8.26 UWRITIT - Output data to loop from RAM.

Name: WRITIT - Urite data from RAM to the mailbox
Entry Address: 68AF Hex

Purpose:
Output data to the Diamond, given a buffer of data in
RAM and a pointer (D1) to the buffer

Entry:
DO: Diamond mailbox
D1: Data buffer start
A[A]: Number of bytes of data to send from at D1
Loop is addressed, set up for this transfer
ST(=LoopOK) set if should abort on one ATIN, else clear

Exit:
Carry clear:
Transfer complete, D1 points past end of buffer,
A[A]="000FF", P unchanged from entry
Carry set: Error - P is the error number, A[aA] is the
nunber of data bytes not sent {(may be low by up to 3)
(If Attn key hit ONCE, then carry set, P=0)

Calls: PUTX, PUTD, CK=ATN
Exclusive: A[A],C[W],D1
Inclusive: A[A],C[U],D1,ST[3:0]
Stk 1lvls: 1 (PUTX)(PUTD) (CK=ATN)
NOTE: this routine can be SLIGHTLY speeded up by calling

PUTY one statement later (after the CPEX 15)...at the
cost of setting P=0 unconditionally

7.9 Parse and decompile routines

DVCSPp - Device specifier parse routine.
-
FRASPd - Decompile a frame specifier.

7-63

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

FRASPp - Frame spec parse for HPIL frame descriptors.
LOOP#d - Decompile optional loop number.

LOOP#p - Parse optional loop specifier.

NAMEp - Parse a name or device word.

PRNTSA - PRINTER IS decompile routine.

PRNTSp - PRINTER IS parse routine.

7.9.1 DVCSPp - Device spec parse

Name: DVCSPp - Parse a device specifier (: optional)
Entry Address: 79BA Hex

Purpose:
Device spec parse...string expr, * and [:] OK

Entry:
D1 points to the ASCII character string
D0 points to the location where the tokens go
D[A] is the end of available memory
P=0

Exit:
DO positioned past last token output by this routine
D1 positioned past last character accepted
Carry clear
P=0
Exits through ERRORP if error

Calls: EOLCK , RESPTR, OUTBYT, CKSTR, BLANK,, DVSPp, DVLBp
Inclusive: A,B,C,D[15:5] 6R0-R3,D0,D1,P,ST(11,10,8,7,3:0],
FUNCDO , PRMCNT [0]

Stk 1lvls: 5 (CKSTR)(DVSPp)

7-64

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

-

7.9.2 FRASPd - Decompile a frame specifier.

Name: FRASPd - Decompile a frame spec
Entry Address: 7D5E Hex

Purpose:
Frame spec decompile routine

Entry:
DO points to the output buffer
D1 points to the input buffer (tokens)
D[A] is the end of available memory
4[B] is the next token (at D1)
P=0

Exit:
A[B] is next token
Carry clear if frame spec found, set if not found
D0,D1 updated to current position

Calls: ?A=CLN,OQUT1TK,RANGEA,Outblk
Uses.......

Exclusive: A,C, D1

Inclusive: A,C,D0,D1

Stk 1vls: 2 (OUT1TK)(Outblk)

7.9.3 FRASPp - Frame spec parse for HPIL frames.

Name: FRASPp - Parse an HPIL frame specifier
Entry Address: 7769 Hex

Purpose:
Frame spec parse for HPIL frame descriptors

Entry:
A[B] is next character (at D1)
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory
P=0

7-65

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Exit:

A[B] is next item (at D1)

If carry set, not valid input (DO,Dl1 restored)

If carry clear, output <tCOLON><text string>.
ST(StrOK) 1is set if string OK next, clear if not
ST(EolOK) is set if EOL is OK next, else clear
ST(ExprOK) is set if expression makes sense next

DO positioned past last token output by this routine

D1 positioned past last character accepted

P=0

Calls: UCRANG, OUTBYT , FRAMEE , OUINBS, <BLANK>

Inclusive: A,B,C,RO,R1,P

Stk 1lvls: 2 (UCRANG) (OUTBYT) (FRAMEE) (OUINBS)

7.9.4 LOOP#d - Decompile optional loop number.

Name: LOOP#d - Decompile an optional loop #
Entry Address: 7D3F Hex

Purpose:
Decompile a loop number, if any. If none present, exit
with carry set (Leaves next token in A[B])

Entry:
D1 points to the (optional) loop #
D0 points to the output buffer
D[a] is the end of available memory
A[B] is the next token (at D1)

Exit: '

D0,D1 positioned after the loop #, if found
A[B] is the next token

Carry set if no loop #, clear if loop # found

Calls: EXPDC+, OUT2IC
Uses.......
Exclusive: A, C, D1
Inclusive: A,B,C,R0,R1,R2,D0,D1,P,ST[0,3,8,10,11]

Stk 1lvls: 5 (EXPDC+)

7-66

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

7.9.5 Loop#p - Parse optional loop specifier.

Name: LOOP#p - Parse an optional HPIL loop specifier
Entry Address: 773C Hex

Purpose:
Parse an optional loop number...if one present, output
the tokens for it

Exit:
A[B] is next char, D1 points at next character
If <loop #> found, compiled code generated

Entry:
D1 points to the ASCII character string
D0 points to the location where the tokens go
D[A] is the end of available memory
P=0

Exit:
A[B] is next character (at D1)
D0 positioned past last token output by this routine
D1 positioned past last character accepted
P=0
Carry clear

Calls: SvVDOD1,0UTBYT,CKNUM, OUT1TK,RSDOD1, BLANK
Uses.......
Inclusive: A,B,C,D[lS:S],RO-R3,DO,Dl,P,ST[11,7,3:0],FUNCDO,
PRMCNT [0]

Stk lvls: 5 {CKNUM)

7.9.6 NAMEp - Parse a name or device word.
Name: NAMEpb - Skip leading blanks, parse device word
Name: NAMEp - Parse a device word (C[S] is # chars)

Entry Address: 7A2D Hex

Purpose:
Parse a device word: <letter > {<letter> | «digit >} *n

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Entry:
C[S] is max number of characters to accept
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory

Exit:
First character not used in A[B] (char @ D1)
Carry set if length exceeded or first char is a digit
A[S]=0 if no chars, #F if characters
DO positioned past last character output by this routine
D1 positioned past last character accepted
P=0

Calls: BLANK, CATC++,0UT1TK

Inclusive: A[S,B],C[S,B],P,D0,D1,ST[2:1]

Stk lvls: 3 (CATC++)

7.9.7 PRNTSd - PRINTER IS decompile routine.

Name: PRNTSd - PRINTER IS decompile routine
Name: PACKd - PACK decompile (device spec,OUTELA)

Entry Address: PRNTSd - 7BD3 Hex
PACKd - 7BDF Hex

Purpose:
Decompile the PRINTER IS/PACK statements

Entry:
D1 points to tokenized device spec
DO points to output buffer
D[A] is end of available memory, P=0
Exit:
Exits through OUTELA
Carry clear, P=0

Calls: OUT3TC, ?A=CLN, PILDC, ?A=CMA, OUTCMA , EXPRDC
Exclusive: A, C
Inclusive: A,B,C,R0,R1,R2,D0,D1,P,ST[0,3,8,10,11]

Stk lvls: 6 (PILDC)

7-68

HP-71 HP-IL Module IDS - Volume I
HP-IL Utility Routines

Detail:
Decompiles 1 or more device specs (separated by
commas)

7.9.8 PRNTSp - PRINTER IS parse routine.

Name: PRNTSp - Parse the PRINTER IS statement
Entry Address: 74FD Hex

Purpose:
Parse the PRINTER IS (and DISPLAY IS) statement

Entry:
D1 points to the ASCII character string
DO points to the location where the tokens go
D[A] is the end of available memory
P=0

Exit:
DO positioned past the last token output by this routine
D1 positioned past the last character accepted
P=0
Exits through ERRORP if error
Calls: NTOKEN, <DVCPy*>
Inclusive: A,B,C,D[15:5],R0,R1,R2,D0,D1,P,ST[11,10,8,7,3:0],
FUNCDO , PRMCNT [0]

Stk 1vls: 5 (DVCPy¥)

7-69

HP-71 HP-IL Module IDS - Volume I

Version 79.10.13 of RUNIT’s INDEX progran

Index-

HP-71 HPIL Module IDS

B
BDISPJ, 7-8
BLDCAT, 7-10
bPILAI, 2-7
bPILSV, 2-6
bSTMXQ, 2-7

C
Cassette

Extended protocol, 2-18, 2-19
Non-extended protocol, 2-19

CHKAIC, 7-24
CHKASN, 7-24
CHKMAS, 7-10
CHKSET, 7-39
CHKST+, 7-39
CHKSTS, 7-46

DDL, 7-47
DDT, 7-47
Device specifiers, 2-7
decoding algorithm, 2-7
tokenization, 2-8
Device words reserved, 2-8
DEVPAR, 7-25
DEVPR$, 7-25
DISPLAY IS, 2-2
DSPCAT, 7-11
DSPSET, 2-5
DVCsPp, 7-64

, 2-5

E

ENABLE INTR, 2-13

ENDEN, 7-44

ENDTAP, 7-11

ENTER, 2-6

Error
Loop Broken, 5-10
Self Test Failed, 5-6

Exception flag, 2-14

INDEX

Index-1

INDEX HP-71 HPIL Module IDS

File
format, 4-3
transfers, 4-3
File specifiers tokenization, 2-8
FINDF+, 7-12
FINDFL, 7-12
FINDFx, 7-12
Flags
-21,
-22,
-24,
FNDCH-,
FNDCHK,
FNDMB+
FNDMB-,
FNDMBD,
FNDMBX,
FORMAT,
FRAME+
FRAME-,
FRAMEE,
FRASP,
FRASPD,
FXQPIL,

| R Y R B |

[}
NOOORBBRARRERARPNNN

I I e e I B e B I e I R
NNV OOWW~IIIO D

i

G

GADDR, 7-26
GADRR+, 7-27
GADRRM, 7-27
GADRST, 7-28
GDIRST, 7-14
GET, 7-50
GETD, 7-51
GETDev, 7-51
GETDI, 7-15
GETDI#, 7-15
GETDID, 7-29
GETDIR, 7-15
GETDIX, 7-29
GETDR", 7-15
GETDR+, 7-15
GETDVU, 7-29
GETEND, 7-51
GETERR, 7-52
GETHSS, 7-52
GETID, 7-30

Index-2

HP-71 HPIL Module IDS INDEX

GETID+, 7-30
GETLPs, 7-31
GETMBX, 7-53
GEINE, 7-50

GETPI+, 7-32
GETPIL, 7-32
GETST, 7-52

GETSI-, 7-52
GETX, 7-53

GETYPE, 7-54
GHEXB+, 7-32
GHEXBT, 7-32
GLOOP#, 7-55
GIYPE, 7-33

GTYPR+, 7-32
GTYPRM, 7-32
GIYPST, 7-34

HP821614A
Extended protocol, 2-18, 2-19
Non-extended protocol, 2-19

1/0 buffer
bPILAI, 2-7
bPILSV, 2-6
bSIMXQ, 2-7
IS-DSP, 2-2
IS-PRT, 2-3

usage, 2-

1/0 CPU
addressing the loop, 5-22
data transfers, 5-23
Error Handling, 5-11
error number, 5-15, 5-33
frame timeouts, 5-10
interrupts, 5-36
loop power up, 5-30
Manual mode, 5-12
messages from HP-71, 5-13
messages to HP-71, 5-32
power on defaults, 5-6
powering down loop, 5-20
Scope mode, 5-12
Self test, 5-31
send frame message, 5-18
Service Request on HP-71 bus, 5-8

Index-3

INDEX

status, 5-14, 5-33

Terminating Data Transfers, 5-9

INITFL, 7-16

Interrupt implementation, 2-12
Interrupts disabling, 2-15
IS-DSP, 2-2

IS-PRT, 2-3

J

JUMPER routine, 7-2

L

LIF Implementation, 4-4
LISTEN, 7-40
Loop
addressing, 5-22
power up, 4-1, 5-7, 5-30
LOOP#d, 7-66
LOOP#p, 7-67
LOOPST, 2-5
LSTENT, 7-16

Mailbox
Address, 2-4
Configuration, 2-16
Description, 5-2

MBOX", 2-4

MOVEFL, 7-17

MIYL, 7-40

MIYLL, 7-40

Multiple Loops, 2-16, 3-1

N

NAMEp, 7-67
NAMEpb, 7-67
NEUFI+, 7-18
NEUFIL, 7-18
NXTENT, 7-16

Index-4

HP-71 HPIL Module IDS

HP-71 HPIL Module IDS INDEX

0

OFF INTR, 2-15
OFF 10, 2-5

ON INTR, 2-13
ONINTR, 2-1

P

PACKd, 7-68
pCAT, 6-3
DCATS, 6-
pCLDST,
DCONFG,
pCOPYxX,
DCREAT,
pDEVCp,
pDIDST,
DDSUNK,
PENTER,
PEXCPT,
pFILDC,
PFINDF,
DFPROT,
pFSPCp, 6-
pFSPCx, 6-
DIMAQT, 6-
DKYDF, 6-10
PMNLP, 6-11
Poll Handler KYDF, 2-12
Poll Handlers
addressing Loop, 6-2
initializing Loop, 6-2
inputting/outputting Data, 6-1
mass memory, 6-2
parse/decompile, 6-2
PPRICL, 6-11
PPRTIS, 6-12
DPURGE, 6-13
pPUROF, 6-12
PRASCI, 7-5
pRDCBF, 6-13
PRDNBF, 6-14
PREND, 7-6
PRINTER IS, 2-3
PRMSGA, 7-55
DRNAME, 6-15
PRNTSd, 7-68
PRNTSp, 7-69

| | | 1 W

P OOOO~NIXIHIIIONOVLL W

N

0

Index-5

INDEX

PROCDU, 7-34
PROCLT, 7-35
Procst, 7-36
PSREQ, 6-15

PUTALR, 7-56
PUTARL, 7-56
PUTC, 7-57

PUTC+, 7-57
PUTC+N, 7-59
PUTCN, 7-59
PUTD, 7-57

PUTDX, 7-58
PUTE, 7-58

PUTEN, 7-59
PUTEX, 7-58
PUTX, 7-60

PVER$, 6-16
PURCBF, 6-16
PZERPG, 6-17

RAM usage, 2
DSPSET, 2
IS-DSP, 2-
IS-PRT, 2
LOOPST, 2

MBOX™, 2-

ONINTR, 2-1
TERCHR, 2-6

RDSTO1, 7-6
READIT, 7-60
READR¥, 7-19
READRG, 7-30
READSU, 7-60
RED-LF, 7-6
REDC00, 7-6
REDCHR, 7-6

b

Remote commands, 2-11

REQUEST, 2-15
RESTOR, 7-41

RESTORE 10, 2-5

RESTRT, 7-41
ROMTYP, 7-37
S
SAVEIT, 7-37
SEEKA, 7-20
SEEKB, 7-20

Index-6

HP-71 HPIL Module IDS

HP-71 HPIL Module IDS INDEX

SEEKRD, 7-21

SENDI+, 7-61

SENDIT, 7-61

Service Request, 2-15
SETLP, 7-62

SETUP, 7-38

SKP-LF, 7-6

STANDBY, 2-10

START, 7-42

START+, 7-42

START-, 7-42

Syntax multiple loops, 3-1

T

TERCHR, 2-6
Timeouts, 2-10
TSTAT, 7-21
TSTATA, 7-21

8}

ULYL, 7-40
Utility routines
data Input/Output, 7-5
device searching, 7-23
display, 7-8
I/0 CPU communication, 7-45
loop addressing routines, 7-39
mass memory, 7-9
parse and decompile, 7-63
UTLEND, 7-44

U

URITE#, 7-22
URITIT, 7-63

YTML, 7-44

Index-7

INDEX HP-71 HPIL Module IDS

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	i
	ii
	Table of Contents
	iii
	iv
	v
	vi
	vii
	viii
	ix

	Chapter 1 - How to Use This Document
	1-1
	1-2

	Chapter 2 - Internal Design Notes
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19

	Chapter 3 - Extended Command Syntax
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17

	Chapter 4 - Examples of HP-IL Operations
	4-1
	4-2
	4-3
	4-4
	4-5

	Chapter 5 - I/O Processor Firmware Specification
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47

	Chapter 6 - HP-IL Poll Interfaces
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17

	Chapter 7 - HP-IL ROM Utility Routines
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69

	Index
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7

