

..
\lI'

•
\7 ..
V' ..
II>

...
'"

...
v

AN EASY COURSE
IN PROGRAMMING

THE HP-llC AND HP-15C

by Ted Wadman and Chris Coffin
Illustrated by Robert Bloch

Additional editing by Gregg Kleiner and Soraya Simons

Grapevine Publications, Inc.
P.O. Box 118

Corvallis, Oregon 97339-0118

We extend our thanks to Hewlett-Packard Company
for producing such top-quality products and
documen ta tion.

© COPYRIGHT 1984, by Grapevine Publications, Inc.
All rights reserved. No portion of this book or its
contents may be reproduced in any form without
written permission from the publisher.

Printed in the United States of America

ISBN 0-931011-02-7

Disclaimer: The material in this book is supplied
without representation of any kind. Grapevine
Publications, Inc. assumes no responsibility and
shall have no liability, consequential or otherwise,
arising from the use of any material in this book.

•

... because you want to learn about your HP-llC or
HP-15C.

And you're in luck! You have found the best and
quickest way to learn about your calculator. This
course will take you on what may be the most
incredible learning experience of your life(!)

This course is self-explanatory. Just follow
the directions as you work through it. If you
already know the material in some places, you'll be
told to skip ahead. And it doesn1t matter how long
you take to learn each concept. so just sit back,
relax, and learn at your own pace.

Well now The best place to start is probably at
the very beginning of the story.... ------->

How to Picture It

• • 1-----___; .

1--------1 .0
STACK 1--__ -1 q

f-------- T 1--___ ___; B
f-------- Z 1__---___; 7
I- - - - - - -. Y 1__---___; "

I I X 5
/, I~~I--------; "I

(!~lSPLAY V~ i ~,
I-----""""i I
1...-___ 0

LSTX - r~tster DATA-registers

A PICTURE OF YOUR CALCULATOR'S MEMORY

As you may have guessed, your calculator has some
memory of its own, where it can store numbers or
program instructions. But how does that memory work?
And what does it look like?

Actually, it's just a tangle of wires and circuits,
but that's not a very useful way to visualize it.
The above picture is a better way.

Each of those boxes represents a "register" in your
calculator. A register is simply a place where a
number can be stored for later use. Every register
has a name, and you will be learning these register
names and how to use them.

5

(If you already know all about this picture,
and you don't need an introduction to each of
these registers, then turn to page 12.)

DATA REGISTERS

" ." Take a look at this block of registers. These
registers are called data registers (or data storage
registers). "Data" is simply another word for
"numbers," so a data register is a place in your
calculator where you can store a number (only one
number at a time).

Data registers are "named" with numbers, starting at
o and going up. You will use these "number names"
to refer to the registers in the calculator. But
notice that instead of using the names 10 through 19
where you would expect them, HP chose to use .0
through .9. That's OK; it's simply another way to
number them. Just keep in mind that the register
named .0 can sometimes be called register 10;
register .1 can sometimes be called register 11; etc.

As you know, a data register can hold one number at
a time. And when you store a number in a data register,
you replace the number that was there before.

6

The HP-HC has a maximum of 20 data registers
(0 to .9).

The HP-15C can have a maximum of 66 data registers
(0 to .9 and 20 to 65).

But that says nothing about the number of data
registers you have in your calculator right now.
That number will vary. You can (sometimes
unknowingly) change the amount of data registers. In
fact, right now {even as you read this!}, you may
not have all of the 20 data registers 0 through .9
available for storing data.

Keep this in mind, but don't worry about the details
right now. By the end of this course you'll know all
about adjusting the amount of data registers.

So, read on

---------~.

//
7

I - reg i st.er

THE STACK

STACK
______ T

z
y

,,'J-------,...,', X
, 1 , ,

1-:(//-1 ----~V

DISPLAY

LSTX - reglster

•
• •

1--___ -1.0
I------I

q

I------I B
1-------i 7

I------I b
1--___ -1 5
I------I~
1--___ -1 3
1--___ -1 2
1------1 1
'--___ ~O
DATA-r-eslster.s

N ext, take a look at the stack registers. The stack
is simply a set of data registers that work together
automatically when you are doing arithmetic and
calcula tions.

Since these registers are just data registers, each
of them can hold only one number each. But because
they are linked together to form a "stack," their
names are different from normal data registers:
X, Y, Z, T, and LASTX.

Because they are used for arithmetic, these stack
registers are the "workhorses"--the most frequently
used registers--in your HP-llC or HP-15C.

8

STACK
________ T

Z --------
-------- y

I I

" / X I I I I
I I I I

I-.(/f-I -----IV
DISPLAY

lSTX-re.gister

THE DISPLAY

• • 1--------1 .
1--___ ---1 .3
1--___ -;.2
1--___ ---1 • f

I---------l • °
1-------1

q
1--___ --1 8
1--___ ----l 7

I-------I b
1--___ ----l S

I---------l~
1--___ ----l 3
1--___ --1 2

'--___ ---'0

DATA-regist-ers

Now notice the display. The display is the window
of your calculator. It's what you look through to
"see into" the machine. It's shown here positioned
over the X -register. The display is AL WAYS
positioned over the X-register (the bottom register
of the stack).

REMEMBER! WHEN YOU LOOK AT THE NUMBER IN
THE DISPLAY, YOU ARE LOOKING AT THE NUMBER
IN THE X-REGISTER, ALWAYS!

9

So why think of two separate things (the display and
the X-register) if the display is always positioned
over the X -register? The display is always showing
the number in the X-register, so they're really the
same thing, right?

The display is really a separate "window." Sometimes
it's partly shut; that is, it doesn't always show
you the entirety of the number in the X-register.
Instead, it may show you a rounded version of that
number. In fact, the display will show you only as
many decimal places as you tell it to (and you'll
soon learn how to adjust this). But remember, it's
only the display that is doing any rounding. The
number in the X-register is never rounded; it's
always a complete, lO-digit number.

10

STACK
1- _______ T

1-------- Z
r------.,Y , , X

" J-----~''_I , , , ,
I J I I

f-(,''!-i -----4V
DISPLAY

1- regt s-ter

THE I -REG ISTER

• •
•

1------1.2
1------1.1
1--___ -1.0
1------1'1
1--___ -1 8
1--___ --1 7

1------1 "
1--___ -1 5
I-------I~
1--___ --1 3
1--___ --1 2
1-------1'
L..-___ ~O

DATA-resisters

Finally, look at the picture of your calculator's
I-register. It's really just another data register,
but it's named with the letter "1," because, like the
stack registers, the I-register has a special
purpose. The number in the I-register can mean more
to your calculator than "just another pretty number."

This special meaning of the I-register will be
discussed in gory detail in a later section, so
again, just keep it in mind for right now.

u

POP QUIZ

(Pop Quizzes appear periodically on pertinent pages
to keep you primed!)

1. Wha t's a data register?

2. How many data registers are named with numbers?

3. What kind of register is the T-register?
The I -register?

4. What is the display?

12

POP ANS1VERS

1. A data register is a place to hold data
(numbers). One data register can hold one
number at a time (page 6).

2. The amount of numbered data registers can vary,
depending on how you have adjusted your calculator.
The HP-llC has a maximum of 20; the HP-15C can have
up to 66 (page 7).

3. The T-register is one of the stack-registers (the
"Top" one). The I-register is a special register set
aside for certain kinds of operations. Both of these
are data registers (page 8).

4. The display is the window you look through to see
the X-register. Sometimes this window may be partly
"shut," thus rounding the number that you see, but
the rounding happens ONLY in the display--not in the
X-register (pages 9-10).

Did you make it through your first quiz without
problems? It's important to have a good mental
picture of the "insides" of your calculator, so if
you need to go back to page 5 and give it another
pass, do so now--before you go on.

13

Numbers and Functions

KEYING IN NUMBERS

Now that you know how to visualize the "insides" of
your calculator, the next step is to put numbers
into it.

First, turn it on: the IDNl key is nestled in the
lower left hand corner of the keyboard (it's also
the "off" key).

If you have an HP-15C and a little 'C' appears in
your display, press the keys IilICFJ [BJ (the m
key is also the 151 key).

Now, to get a number into your calculator, you just
"key it in." The number you key in will be stored in
the X-register (and it will show in the display,
right?).

You don't have to press any other keys.

Try this: Store the n um ber 1.234567890 in the
X-register.

Solution: Press !II [J 121 131 [lJ 151 1m 17I [BJ IDI 1m

That's all. You're done!

15

ADJUSTING THE NUMBER OF DECIMAL PLACES

Take another look at the display:

r _______ T

r------- Z

I-------..,y
/ 1.2345b78Cf0 X

/
/ , ;' ,

/ / ; /

(ti3Lt5b78CfO[//
DISPLAY

As you already know, the display is like a window
over the X-register. And as you may have noticed,
whenever you key in a number, this window slides open
so you can see exactly what you're keying into the
X-register.

Bu t you usually don't need to see every decimal place
of every calculated result; and sure enough, as soon
as you perform any operation on that number, the
window "closes" partly, to show you only a certain
number of digits.

16

Try this: Set the display to show you only four
decimal places of the number 1.234567890.

Sol u tion: Press If] /FIXl 4
(/FIXl is the gold printing on the 7 key)

T ------
______ Z

Y
)-------'-~.:-J X

DISPLAY

The window "closes down" so that the number in the
display becomes 1.2346, but the number in the
X -register remains 1.234567890.

The last digit is rounded up to 6 in the display.

BUT REMEMBER! The display is doing this rounding.
The number in the X-register is NOT rounded, and
any calculation will use ALL 10 digits of this
number. That's the way it is with HP calculators.
They use and store 1O-digit numbers--ALWAYS.

The important thing here is that you learn how to
change the display setting any time you wish. So ...

17

Try this: Adjust the display to show you 2 decimal
places.

Sol u tion: [f] m 2

N ow this: Set the display to show 9 decimal places.

Solution: [f] m 9

Get the idea? Good. Now, set the display to
whatever is comfortable for you; and remember, to
properly compare your answers with ours, you should
set your display to the same number of digits as you
see in the printed answer, OK?

18

BEYOND THE X-REGISTER

Try this: Key in 100 to the X -register.

Solution: Press [I [Q] [Q]. That's all.

Once you have a number in the X-register, there are
three things you can do with that number:

1. Store it in another register.

2. Use it to perform some calculation.

3. Erase it.

The first of these options is to store that number 100
somewhere else. (If you already know about the STO
and ReL keys, turn to page 22.)

19

STORING NUMBERS

Try, for example: Put that 100 into register 2.

Solution: IS.TQl 2

Notice what this IS.TQl (STOre) key does: the number
being stored is AL WAYS the one that appears in the
X -register.

Also, the IS.TQl process is a copying process, not a
transferring process. That 100 is now in register
2, but it's still in the X-register as well (you
still see 100 in the display).

So to store into a numbered register, all you do is
press IS.TQl and then name the register: IS.TQl 1,
IS.TQl .3, etc., and as long as the register you name
is actually there, the number will be stored.

The same is true for the I-register. If you want to
store a copy of that 100 (which is still in the
X-register) in to the I -register, just press lSTQl 1II.
Try it.

20

RECALLING NUMBERS

Now that you know how to move numbers from the
X-register to other registers, try moving numbers
from those other registers back to the X-register.
To do this, you use the fBCD (ReCaLl) key.

This key recalls a number--from any register you
name--back to the X -register.

Key a 5 into the X-register.

Try this: Recall that 100 from register 2 back to
the X-register.

Sol u tion: lRCIJ 2

lRCIJ makes copies of numbers--just like J:STfil
does. After you press lRCIJ 2, there's a 100 in
both register 2 and the X-register.

J:STfil and fBCD allow you to move numbers from one
register to another--play "musical registers," one
might say. For example, if you want to move a number
from register 2 to register 0, you press fBCD 2,
lSTI1l O.

21

Here's that list again. Once you get a number into
the X-register (either by recalling it or keying it
in), you can:

1. Store it in another register.

2. Use it in some calculation.

3. Erase it.

At this point, you know all about the first item in
this list. The second item--performing
calculations--is essentially the meat of this
course. For an introduction, take a look at one of
the simpler calculations you can perform on a number
as it sits unsuspectingly in the X-register.

Try this: Change that 100 in the X-register to -100.

Solution: !C.llSI (do NOT use the El key). !C.llSI is
the "CHange Sign" key, and it always operates on the
number in the X-register.

Press !C.llSI again. What happens?

This is just one example to show how most of the
other calculation keys work. They usually operate
on the n um ber in the X -register (and sometimes other
registers, too).

22

FUNCTIONS

A function is simply any operation that the
calculator performs (except for social functions,
which it does not perform). A myriad of functions
--printed in gold, white, and blue--is available
to you on your keyboard. Here are some examples:

Try this: Find 103 .77

Solution: 3.77 lID!] (Answer: 5888.437)

The Iill!J function does just what its name
implies--it raises 10 to the power of the value in
the X -register. You key in 3.77, press 1ill!J, and
the calculator raises 10 to the 3.77th power and
places the answer in the X -register.

23

Try this: Find the natural logarithm (LN) of
5888.437.

Solution: [iJ fIN]

(If you got this solution with no problems, confused
looks, or wrinkled forehead, you may want to skip
the text on prefix keys and turn to page 27.)

24

PREFIX KEYS

There are two prefix keys on your calculator--the
gold III key and the blue [g] key. Notice that
almost every key has a white function printed on its
face, a gold function printed above it, and a blue
function printed below it.

If you want to use a gold function, you must first
press the gold III key. Once you press the gold III
key (and RELEASE it), all the keys take on their
gold meanings. When you wanted to use the FIX
function, you first pressed III to change the l7l
key to the m key, right? The same is true for
the [g] key. If you want to use a blue function,
you must first press the blue [g] key.

25

Notice that when you press lil, a little g comes on
in the display, indicating that all the keys have
taken their blue meanings. Then, if you press 1Il,
the g is replaced by an f in the display (and the
keys then have their gold meanings).

On your calculator, the LN function always computes
the natural log of the number in the X-register.
So in the problem on page 24, since 5888.437 was
already in the X-register (from the previous solution),
all you had to do was find and use the LN function.
You discovered that it was a blue function and thus
required the blue lil prefix key. By pressing lil
m, you obtained the LN (natural log) of
5888.437. The answer: 8.681 (if your display is
set to FIX 3).

26

SOME OTHER GOOD THINGS TO KNOW

Try this: Key 10,000,000 into the X-register, using
only two keystrokes.

Solution: lEEXJ 7

The lEEXJ key means Enter EXponent. Your display
will show "1 07" when you finish the above
solution. But that's the same number as 10,000,000,
as you may already know. To prove this, just press
IENTER! or [f] m 2 to tell the calculator that
you've finished keying in that number. It's
10,000,000 all right. (Notice that 10,000,000 has 7
zeros--no coincidence).

Expressing numbers in powers of 10 is called
"scientific notation." You can set your display to
use scientific notation with the ISCII

function. For example, press!ll [SCI] 2. The
calcula tor display will now use scientific notation,
with 2 decimal places. (Press!ll m 2 to get back
to decimal notation.)

27

As another example, if you want to key in 50,000, you
can either press I5l [OJ [OJ [OJ [OJ or you can press
I5l lEEXl 11l. By using the lEEXl function, you're
expressing a number in powers of 10 (five times ten
to the fourth power). On your calculator, scientific
nota tion can save keystrokes and program lines, as
you'll find out later.

Notice this also: As the 10,000,000 demonstrated,
you don't have to press ill before you press lEEXl.
If you don't press a number before you press lEEXl,
the calculator assumes you meant to press a ill.

28

There are some other convenient assumptions your
calculator makes about the numbers you give it, and
it's time to talk about some of them. (If you're
not interested in trigonometry--SIN, COS, TAN,
etc.--you may want to turn to page 32.)

Question: According to your calculator, what is the
sine of 2?

Answer: Well, that depends. What do you mean by 2?
Is that 2 degrees, 2 radians, or 2 grads? How do
you tell the calculator what you mean?

The calculator has three trigonometric modes.
Degrees mode is set by pressing Ii] IDEG1; radians
mode is set by pressing Ii] IRADI; and grads mode is
set by pressing Ii] Iillml. The little words, "RAD"
or "GRAD" will come up in the display when the
calculator is set to each mode, respectively. Press
each of these keys to see the effect it has on the
display.

29

When the calculator has been set to RAD mode, it
will assume that the number in the X-register is in
radians. In DEG mode, it assumes degrees, and in
GRAD mode, it assumes grads. There are (2 x PI)
radians in a circle, or 360 degrees, or 400 grads.
(The grads system seems like a logical one, but
these authors have never seen it used.)

Now that you know about these three modes,
ask that question again ...

Question: What is the sine of 2 degrees?

Answer: (0.035)

Make sure your calculator is in degrees mode (If RAD
or GRAD appears in your display, press !il WEJ).
Then, to find the SINe of 2 degrees, press 2 lSINl.

30

Try this: Find the sine of 2 radians.

Solution: [iJIRADI 2 ISINI (Answer: 0.909)

So remember, whenever you use any of the
trigonometric functions, make sure you and
your cal cuI a tor are both in the same mode; if you
mean degrees, be sure your calculator is set to
degrees mode!

31

ANOTHER POP QUIZ

Again, be sure of the answers to these before you go
on. (The answers are on the next page, as usual.)

1. Which two keys allow you to move numbers from
one register to another?

2. Which stack register is always in vol ved with
this storing and recalling?

3. Do these functions "copy" or "transfer" numbers?

4. How do you change the sign of a number (from
positive to negative or vice versa)? In which
register must this number be in order to do this?

5. What is a prefix key, and how does it work?

6. How many prefix keys are on your calculator?
Which ones are they?

32

MORE POP ANSWERS

1. The two keys are fS'J.'nl and ~ (pages 20-21).

2. These functions always use the X-register.

3. They copy numbers.

4. Use the lClISl key. The number you want to
change must be in the X-register (see page 22).

5. A prefix key is a key you must press (and
release) before selecting the alternate (blue
and gold) functions on any key (pages 25-26).

6. There are 2 prefix keys: the gold [i] and the
blue [iJ.

33

So, what do you know by now?

A. You know how to picture the insides of your
calcula tor.

B. You know how to put numbers into it.

C. You know that once a number is in the
X-register, you can:

1. STOre it.
2. Perform functions and calculations with it.
3. Erase, or Clear it.

But you haven't really seen too many of those
functions and calculations yet (nor how to ~lear
numbers out of the calculator). You know how to set
the display to a certain number of digits, and you
know a few other things, but much more is yet to
come.

To know your HP calculator is to love it, and the
first step toward REALLY knowing it is learning
about the stack, that handy little hub of number­
crunching that hums quietly beneath the display.
This is where all that arithmetic is done.

Ah yes ...

34

7 I-------t"
1--- 2- ----./

\

You've Got to Know Your Stack

Whenever you do arithmetic on your HP calculator,
you are using that set of five registers (named X,
Y, Z, T, and LSTX) known as the stack. It's
important that you understand how the stack works,
because it is the heart of your HP machine.

I

z--

1.--__ ----11 LST X

The LSTX-register is a rather unique member of the
stack. It is important, but while you are learning
the details of the X -, Y -, Z-, and T-registers, you
can slip the LSTX-register into the far corners of
your brain--to be retrieved later. So from here
on, when you think about "the stack," just think
about the X-, Y-, Z-, and T-registers. The
LASTX -register is out of the picture--for now.

36

THE STACK

fo-------- T "'" _______ Z
-------- Y
L..-.. __ ----IX

The stack is designed to help you solve arithmetic
problems. It's that simple.

Try this: Solve the problem

Sol u tion: 24.27 IENTERI 3.86 !Xl

Answer: 93.68

24.27
x 3.86

You could probably come up with the above solution
with little or no difficulty. When you first started
playing with your HP calculator, you probably had the
general idea that the 01' 2 I±l 2 §] no longer
applies (i.e. there's no §] key on an HP
calcula tor).

37

But do you know WHY the stack is the better way? And
do you know what's happening in the stack? What
happens when you press IEN'I'ERl? Do you know
what "stack-lift" is? Do you know when "stack-lift"
is enabled? ... disabled?

If you answered yes to all of the above questions,
turn to page 58. If you do so, however, you will
miss an absolutely stunning explanation (complete
with subtle, semi-hilarious illustrations) about
all of the above. The choice is yours

2

38

T ?c T ?b T ?b T 7b - -- - -- - -- - _.- - -
?c Z ?b Z - ?Q.- Z ?o. Z ?b - -- - -- - -- - - - --
?b Y 10. Y 2L!.2.7 Y '2~.27 Y ?o.. - -- --- - -- - -- - - - --
?'l X 24.17 X 2!J.27 X 3.9b X Q3.6S

L,. 2';.27 .J 4IENTERI-' Y 3.8b -.J' l ~[XI
l'

The above "stack-diagram" is a handy visual tool to
demonstrate what's happening in the stack. The ?'s
mean, "some number is there, but no one cares what
it is." This is to remind you that there can be
other numbers in the stack in addition to the ones
you're working with, but they will never interfere.
This means you don't have to clear all the stack
registers every time you start a new problem! And
that saves both time and sore fingertips.

Now, there are four things to notice in the above
diagram, and these four things represent the entire
workings of the stack:

39

T
Z
y
X

1. When you turn on your machine and key 24.27 in to
the X-register, the values in the stack are bumped
up one notch. The value that was in the T-register
(or Top-register) is gone. It has been bumped com­
pletely out of the stack and will never ret urn (unless
you key it back into the X-register, of course).
When all the values in the stack are bumped up one
notch like this, the process is called a "stack-lift."

2. When you press IENTERI, you cause another
stack-lift. The values in the X-, Y-, and Z-registers
are each bumped up one register. Notice, however,
that the values in the X- and Y-registers are now the
same; the X-register was copied into the Y-register.

3. Next, when you key in 3.86 AFTER pressing
IENIERI, no stack-lift occurs. The 3.86 is simply
written over the value that was previously in the
X-register. Stack-lift is said to have been left
"disabled" by the !ENTERl function.

4. Finally, when you press 00, the values in the
X-, and Y-registers are multiplied, the answer is
left in the X-register, and the other values (in
the Z-, and T-registers) each drop one notch.
Notice that the value in the T-register doesn't
change.

40

There you have it! The workings of the stack in
four easy steps. So, are you ready to write your
first program?

Well, not really. First, you'd better get a little
more practice with the stack. (Of course, if you're
quite comfortable with the stack and ALL of its
features, try page 58.)

41

!ENTER]
On page 40, Step 3 points out that !ENTER!

leaves stack-lift disabled; that is, when you key in
the 3.86, it replaces the number that was in the
X-register, instead of "bumping" it up.

Take a closer look at these phrases:

1. Stack-lift is enabled.
2. Stack-lift is disabled.

The calculator's normal state is with stack-lift
ENabled. That is, most of the time, when you key
in a number (or recall one from a register), a
stack-lift occurs.

But after the !ENTER! function, stack-lift is left
DISabled. When you key in a number after !ENTER!,

the stack doesn't lift.

42

Armed with this knowledge, try another problem.

Try this: (87 + (29/5)) X 14.77

Solution: 87 IENTERI 29 IENTERI 5 I±l ill 14.77 lXl

Answer: 1370.66

Look at this solution in the stack. Notice how the
87 stays up in the stack until it is used.

Stadt-lif~ Stca.<k-lift No "l;,d(,-/i ft.

?c / ?b - - --- -----
?b ?a. ----- ;;: -----
?~ <a 7. 00 - - --- -----
~7 87.00

?~ ?~ ?Cl 10. ----- - -- ----- - --_ .87 . OQ. 87.00 ? ... ?o. - -- ----- - --__ Z'l.oq 2'Loe _S"GQ.O_ ?o-- -- - --
1<1.00 1;.90 't2. 0

IENTERI-S I)5 ~\ > I±) 1"1 > I±) l'

?o. 1'0. - -- - --
?Cl 10. - -- - --

CJ2.8e ? ... - - - -- -
1'-1.77 1370.

J~.77 -'", >00 1-
43

Here's another way to solve that problem:

29 tENTERt 5 [±] 87 l±l 14.77 00

Try to fill in the stack diagrams for the above
solution.

?c. :----- - - - --
?b r----- - - - --
?Q. r--:""-- -----

2.q
1'4 ER~I) 5 l'

83 --.J' I) 87---1'1) !±J_-.J1'"\) ILt.773"

REMEMBER! tENTERI does two things (in this order):

1. It causes a stack-lift.
2. It disables stack-lift.

44

leLXI

If you make a mistake while keying in a number, and
that mistake is now sitting in the X-register (i.e.
you see it in the display), you can replace that
incorrect number in the X-register with the correct
number (without disturbing the rest of the stack) by
using the function CLX (Clear X).

Suppose, for example, you're working out the problem:

4.7 -J (7.55) 'J. - 4(2.9)(1.63)

2{2.9)

One set of keystrokes that will work for this
problem is:

4.7 IENTERI 7.55 Iil [X!J 4: IENTERI 2.9 00 1.63
00 El lZ!l El 2 IENTERI 2.9 !Xl r±l

But suppose that while you are going through these
keystrokes, your friend asks you what telephone
number to dial in case of an emergency, because the
backyard is on fire. So, right before you press that
last 00, you realize that you have keyed in 911 and
not 2.9. How can you correct this error?

Answer: Press Jcr;XJ.

45

Here's what the stack looks like as you go through
the keystrokes:

The CLX function (CLear X) does two things (in this
order):

1. It simply replaces the n um ber in the X -register
with a zero;

2. It DISABLES stack-lift, so that the next number
you key in will simply replace the zero in the
X-register, without disturbing the rest of the stack.

46

THE E3 (BACK-ARROW) FUNCTION

The ~ (back-arrow) function is another function
you can use to correct errors. This key will remove
one digit at a time from a number if it is currently
being keyed into the display.

Take one common example: Suppose you are casually
keying in some number while remembering the piano
concerto you performed last week with the New York
Philharmonic, and you hit a few wrong digits. You
can correct this simply by stopping. Then, before
you press any other keys, press the ~ key, and you
will see the number in the display being reduced one
digit at a time with each keystroke.

When there is only one digit of your "partly-built"
number left in the display, or if you're not
currently keying in any number, then pressing the
~ key is exactly like pressing Ii]~. You'll
get a zero in the X-register, and you'll DISable
stack-lift.

Don't worry--you'll get comfortable with these details
after some practice.

47

IN SUMMARY:

The main thing to remember about the stack is that
ENTER and CLX are the only two commonly used stack
operations that leave the stack DISabled. Most
other operations will leave the stack ENabled. This
may seem complicated, but it's really quite simple,
once you have practiced it a little bit. It's like
driving a car: you'll soon find that you're not
consciously remembering what the stack is doing
(bumping numbers to and fro), but that you know how
it works nevertheless!

48

OTHER STACK OPERATIONS

There are three other functions that you can use to
move numbers within the stack. These functions are
IXoYl, llill, and lRIJ. Simply by knowing their names,
can you tell what these functions do?

Try this: Set up your stack like this:

Sol u tion: 4 IENTERI 3 IENTERI 2 IENTERI 1

?c '1", ?b - _.- - - - _.- - - I- -'- - -__ 1,2 __ 10. ?o. ----- 1-----
'10. _ ~·20 __ I- ~ . .Q~ -- _.- - -

Lf Lf·OO :>

I- ~ • .2~ _ T
1- 3 . .9Q_z
,... ~·2Q _ Y

J X

?Q. --:...--_ ~ . .QO __
_ ~:.9Q. _

3.00
L.j ~ YIENTERI---1' \ ~3 :t 4 IENTER\---1' J

'?Q. - ~~Q.- ,.. Lf • .,9Q. _ T
I- -'- - -
I- ~.Q~ - _ 2.20 - - ~ . .Q~ - z
I- ~.o~ _ _ ~ . .2Q. _ .. .a. . ..QQ. _ y

" :l. 2.00 I X

2. ---1 IENTER ..-1'1 4_ 1 ~ I l'

Now try this: Without keying in any numbers, reverse
the order of these values in the stack.

Sol u tion: IXoYI 11m flill IX<>yl

49

Here's what the stack does as you work through
tha t solution:

As you can see, the 1m] (Roll Down) function rolls
all the values in the stack down one register, and
the value in the X-register is sent up to the
T-register. The other function, 1mI (Roll Up), does
just the opposite. You can see where these names
"Roll Down" and "Roll Up" come from.

The function Ixoyl (X exchange Y) does just what its
name implies, too. I t exchanges the con ten ts of the
X-and Y -registers.

50

MORE STACK PROBLEMS

Now, to become totally comfortable with the stack
and its functions, you have to practice a little and
look at a few stack diagrams. So relax, take your
time, and you'll find that solving problems is no
problem at all!

Try this: 9 + j(12 X 3.3)1.'1 - 75

Solution: 18.87

?b ?c. --:...-- --"---'?c. ?<:L ----- --:...--
'4 _ 1:4.00 - . "-- -Il. ii:oo- -

?Q ?
I- -"- - - - :...'"-

?~ .?4_ 1---_.
?c. 14.00

~ -?d - - - - -
3.~

I) 12-~"'4 IENTERI--.3 1) 3.3 l'

?c. ?c. ?c. ?c. - -"- - - -:...-- - -'. - - - -'- - -?c. ?<:L ?c. '4 - ." .. - - -.:..-- - -"- - - - -'- - -'?.l _ ~<l..:"'2_ ?c:l _I]~~-
~/ - 3Q:-"O - - hi" .ii<f 1.'1 75

1'1 ~ I. Lj ~l ~ ~.--Jl ~75 1

?c. ?c. 1'c. ?, - -'- _. - - '- - - ----- --:..--?c. '?c. - -"- -- ----- ?J. - -"- - - ?c. --:...--1<4 ?d. _ ~.~1.. _ 1d.
~I - "Zn-: ... c.- - -:.... -- - iQ:-B7 -<\.97 q

51

T
Z
Y
x

Try this:

(12~ + 2704/3)

Sol u tion: 52.04

"? -' '? c. ?c. '1 ...
~ -'.!!' - - I- -'- - -
• ?c "?b r- -1-;' - - :=-&.:=
... -.;- - - I- -_- - - !- --.-.. - - IhU.OO . ! b ret r ."

... - 'i~ - - I- -1'2 - - I- iiili. 00 - :tfoii -
4 12 _.....J1' ~~ ---1'~2.70'i-.:J"

'?<l 70. - 7,,- 1"
I~';.OO ''iii. 00 '! ... -~:. -

'l.~'i .00 ~70'i.OO - -- - --':!"'I..:..0O "! .. - -- IO'"lS.l? O'i.CO O\. :'3

~NTERIJ' ~3 ~4B :1" ;;'Efl

?" '1 .. _ 1."_ T
-1-.... - -"'fa..- _ 1"_ z.

JOlts. ~, 1~~.33 ,?" Y - - - :5£:0-3 l.o.oa. X

3 tl)[!j----31)1I1 1'-

52

How about this? 0.17 x ((9.770 x 105) + (6.89 x 10"'))

Solution: 177,803.00

53

DATA REGISTERS AND THE STACK

Now take a look at how you can use numbers stored in
data registers for arithmetic problems. For example,
store a 5 in register 1 and a 4 in register 2 (5 ISm 1;
4 ISm 2). As you know, the STO and ReL functions
will leave stack-lift enabled.

Try this: Add the number in register 1 to the
number in register 2 and keep the result in the
X -register.

Sol u tion: lRCIJ 1 !mill 2 EE

The stack looks like this:

? ~

? 3
'i.oo 2.
5.00 I

'? 0

!>",'t4 -re,i)te~

54

Now this: Multiply the number in register 1 by the
number in register 2, but this time let the
resul tend up only in register 1. In other
words, use ' 'register arithmetic."

Solution: !Rill 2 IS'Ml !Xl 1

· ? • ·
~.oo 2
5.00 I

q,OO Ix 1 0

J, DATA'resi~Ws

IlliJ 2
~ · ·

? 3

~
't.oo l.
5.00 I

't.00 Ix ? 0

J,
12!2l00 I

J,
•

1 • •
".00 2

, ,} 2.0.00 I
'1.00 Ix,.

? 0 .

"Register arithmetic" is convenient for performing
arithmetic and storing results at the same time.
It really comes in handy when you're writing
efficien t programs. as you'll soon find out.

55

THE LSTX REGISTER

Finally, here is a quick look at that mysterious LSTX
register.

The LSTX register is really just another data
register. But what sets it apart is that the number
in this register is always changing (au toma tically)
as you do arithmetic on your calculator.

Whenever the number in the X-register is altered in
any arithmetic operation (like + or -:-), the last X
value is stored in the LSTX register. You can
recall this value by pressing IiIILSTXI.

In general, functions that simply move numbers
around (like X<>Y and STO) don't save the last X
value. But most functions that alter the number in
the X-register will save the unaltered version in
LSTX.

LSTX is a register you may not use much, but once in
a while you may find it handy for correcting errors
you make in your stack arithmetic.

To recall to the X-register the value currently saved
in LSTX, you would simply press IiIILStXl. It's
tha t simple.

56

Mutt's

57

QUIZ

1. To double the number in the X-register. you can use
the keystrokes IENTERI 2 !Xl (three keystrokes). Can
you accomplish the same thing with only two
keystrokes?

2. (Part 1) Without using the lENtE:.RJ key, configure
the stack as such:

I." T - - - - -__ 3~ __ z
2..2. y ----.
"'1.7 X

then, (Part 2) without keying in any numbers, compute:
(3.5 - 2.2)2 + 4.7

1.6

3. Which set of keystrokes will clear the stack
(store zeros in all the stack registers X, Y. Z, and T)?

a. [i] ~ [i] ~ [i] ~ [i] ~

b. [i] ~ 0 [i] ~ 0 [i] ~ 0 [i] ~ 0

c. fCtXl IENTERI IENTERI IENTER!

d. 0 lim [Xl !Xl [Xl

4. True or False? rRCIJ 1 IENTERI rRCIJ 2 !±l
gi ves exactly the same result and leaves the stack
set up exactly the same as rRCIJ 1 rRCIJ 2 !±l.

58

ANSWERS

1. Yes, IENTERI I±l.

2. To set the stack up in part 1 (wi thou t pressing
IENTImi). 1.6 IXoYl IX<>YI 3.5 Ii] IEml 2.2 Ii] IDmJ 4.7 is one
possibility. The trick here is that the execution of
almost any function leaves stack-lift enabled.
Thus, when you do something like Ii] rnm or Ilillllm,
the calculator assumes you've finished keying in
the previous number, and stack-lift is enabled.

For the second part, you can use the keystrokes 1mJ
EI Ii] ~ 1iI rmJ I±l 1X:Q-::xJ f±l = 3.9938.

3. Both c and d are correct. Selections a and b
very effectively clear the X-register. There's a
rare chance that selection d can cause an error if
the n um bers in the stack are huge.

4. True. Pressing fENTERl would be a waste of time
and extreme effort in this case. Draw the stack
diagrams if this isn't clear to you.

59

The Naked Program

Imagine that you've just finished a physics
experiment and you have a list of fifty
temperatures. But because your lab is ill-equipped,
you had only Fahrenheit thermometers to use, so you
measured all of those temperatures in degrees
Fahrenheit. Now you need to convert them to more
acceptable units--degrees Celsius.

The formula to do this conversion is:

5 X «degrees F) - 32)

9

= (degrees C)

Try this: Figure out the keystrokes you need to
convert 97 degrees Fahrenheit to degrees Celsius.

Solution: 97 IENTERI 32 B 5 00 9 ~

And now do the same conversion for 85 degrees
Fahrenhei t.

Sol u tion: 85 IENTERI 32 B 5 00 9 ~

61

Well, running through these keystrokes fifty times
(once for every temperature you took in your
experiment) is going to be no fun at all. You're
going to be repeating the same seven steps over and
over for each temperature, and this will probably
become a real drag.

But wouldn't it be nice if you could write a program
so that all you had to key in was the Fahrenheit
temperature, and then by pressing ONE other key, you
could get the answer in Celsius? That is, wouldn't
it be nice if you could write a program to solve this
equation?

5 X ((INPUT) - 32)

9

(OUTPUT)

Good news

You have already written that program!

62

You didn't know you were already programming,
did you? The keystroke sequence you developed as a
solution to this equation is indeed a program.

Right now, the program is recorded in your mind
(and a few pages back). When you work through the
sequence of keystrokes to convert a Fahrenheit
temperature to Celsius, you must first call up the
program stored in your mind, and with the help of
your fingers, work through it, step-by-step,
starting with IENTERI and ending with I±l.

BUT THERE IS A BETTER WAY.

Why clutter YOUR mind with the numerous keystrokes
required to solve common mathematical problems? Why
not simply store those keystrokes in the continuous
memory of your HP calculator?!? Afterall, that "C"
in HP-llC and HP-15C stands for "Continuous Memory,"
so why not discover the beauty of the "C"?

o

63

Try this: Key in a program that you can use to
solve the equation:

5 X ({INPUT) - 32)
= (OUTPUT)

9

Before you can find the solution to this, you need
to take a look at the program memory of your
calculator. This memory is where you can store
keystroke sequences (i.e. programs) for repeated use.

The program memory of the HP-llC is slightly
different from that of the HP-15C, so there are two
separate sections on this subject. If you have an
HP-llC, you will want to read the upcoming section,
but if you have an HP-15C, please turn to page 71.

64

PROGRAM MEMORY IN THE HP-llC

Program memory in the HP-llC is easy to understand.

First, you have 63 lines of memory to be used only
for programming (a "line" is a step in a keystroke
sequence, such as lENTERl, lS'rnl 1, I±l, etc.).

Then, once you have used those 63 lines, if you need
more lines, the calculator starts automatically to
convert data registers to "blank" program lines--as
you need them! Each data register will be converted
into 7 lines of program memory.

The first register to be converted is register .9,
the second is .8, etc. If you multiply the twenty
a vaila ble registers by seven lines and add those
first "free" sixty-three lines, you will find that
the longest program that will fit in your calculator
is 203 lines.

65

It's important to remember that your calculator
automatically converts storage registers to program
memory, because once a register is converted, it is
no longer available for storing a number.

For example, if you have a program consisting of more
than 63 lines stored in your calculator, and you try
to store a number in register .9, you will get an
ERROR 3 message in your display. Storage register .9
no longer exists! It will come back only when you
clear program memory or reduce the length of the
program to 63 lines or less. OK?

Now, you may be wondering how many keystrokes can fit
in one program line. Well ... that depends.
Generally, a single operation will use one program
line. Therefore, I±l would be a program line, but
III IFIXl 9 would use just one line, also.

66

PROGRAM MODE

Now, how do you store program steps? How do you
record those keystroke sequences for repeated use?

Well, when you turn on your calculator, it is in "Run
mode." You can put your machine into "Program mode"
by pressing IilIP/RI (Program/Run). Try it.

Just as the IQNl key is used both for turning the
calculator on and turning it off, the IP/RI key is
what you use to switch back and forth between
Program mode and Run mode.

Now you should see the little word PRGM (the program
annunciator) appear in the lower right-hand corner of
the display. This program annunciator tells you that
your calculator is in Program mode.

Look at the display while your calculator is in
Program mode. You see a number at the left (this is
called the line number), followed by a dash and
per haps more numbers.

67

The first thing you need to do is clear the program
memory of your calculator. Press [i] CLEAR IPRGMI.

Did you find the CLEAR iPRGMi key? Don't let that
bracket notation fool you.

This:

,------- CI.EAR ---------,

PRGtvl REG PREFIX

means this:

CLEAR CLEAR C.LE.A~ CLEAR

I. PRGM REG PREFIX

When you press [i] CLEAR IPRGMI--with your
calculator in program mode--this clears away any
programs that you had stored there previously.

68

Now that you have cleared program memory, this
picture describes the memory of your calculator:

PR()('RAlY1

M£MORY
("~ Lines)

69

,q
,8
7
E:­.

,
,
,
,

. S

.l.f
3
2.
I
o

q
8
7

&
5
't
3
2-
I

o

Each DATA-resi~te..- can be

c.onverted. into 7 I ines of
prog ram memor~.

THE IMEMI FUNCTION

The HP-llC has a function called IMEMI (MEMory) that
gives you a description of the status of its
memory. Press!il IMEMI and HOLD DOWN the ~IM~EM~I

key. As long as you hold down this key, the
calcula tor will display a message like "p-63 r-.9."

This means you have 63 lines available for
programming (p), and the highest data storage
register (r) available is register .9 (register 19).
So you have 20 data registers (0 through .9) and 63
blank program lines. Your calculator's program
memory is a "clean slate," which makes sense, because
you just pressed a key to clear away (erase) all
programs.

Now zip on ahead to page 82 (unless, of course,
you'd like to derive additional enjoyment from
learning about the program memory of the HP-15C).

70

PROGRAM MEMORY OF THE HP-15C

Similar to us humans, the HP-15C is endowed with a
certain amount of memory. The HP-15C can store
lots of numbers and programming information and if
you clearly understand how it is storing this
information, you can make the best use of this
powerful little machine.

The human memory is very complex, and fortunately,
in using it we don't have to know how it works (or
doesn't work). But the HP-15C is a little pickier.
If you find your calculator freq uen tly flashing
ERROR 3, ERROR 4 or ERROR 10 at you, then you need
to have a clearer picture of how it uses its memory.

71

(

So. how much memory does your HP-15C have? That's
an easy question to answer--the HP-15C has 66
registers of memory--but that answer doesn't tell
you much. does it? This picture may help:

• MovQble boundQrj

The "topJl of Dat:
mernor!j.

1--___ -\"5
1------\ "'tot
t ::::==:::::1 ": 3

-... :

'-- "'\

• • •
2.1
41
2..0
.'1
·s
.i

." .S

.Lt

.~

.2
•
• •

• - . j:=::::::::::'---1 •
I------i "1 1--__ ---;3
I------i 2.
I------i I '--___10

72

Back on page 5, you saw a picture of your
calcula tor's data registers, and you learned that
the number of data registers in your calculator
could vary. In fact, YOU CONTROL THE NUMBER
OF DATA REGISTERS IN YOUR CALCULATOR.

Basically, you set the number of data registers and
then use the remainder of memory for storing things,
like programs, matrices, an imaginary stack, etc.
That's all there is to it. By setting the number of
da ta registers, you are moving a boundary that
separates "data register memory" from "memory used
to store other things:'

If you decide to use all of the calculator's memory
for data registers and you move the boundary to the
top of register 65, then you will have 66 data
registers (0 through 65). But if you do this, you
will have no memory to store programs. So, when you
try to key in a program, or key in a matrix, or
perform any other operation that makes use of
"memory used to store other things," your calculator
will scream: ERROR 10, and you will pro ba bly blush
(ever so slightly).

73

Similarly, if you move the boundary down to the top
of register 6, as shown in this picture, and then
try to store a number in register 12 or 15, you will
generate another error (ERROR 3), accompanied
undoubtedly by more blushing.

o

Every register that is located above the data
register boundary can hold seven lines of program
memory. The lowest you can move the boundary to is
the top of register 1. If you did this, the only
data registers you would have available would be
registers 0 and 1. But you would have 64 registers
of "memory used to store other things." Now, 64 times

(7 is 448. That means that if you didn't have

(

anything else stored in memory, you could fit 448
program lines into your calculator.

(Could this be rivaling the memory we humans
possess ... ?)

74

PROGRAM MODE

Now, how do you actually store program steps? How do
you record those keystroke sequences for repeated use?

Well, when you turn on your calculator, it is in "Run
mode." You can put your machine in to ' 'Program mode"
by pressing lilIP!R! (Program/Run). Try it.

Just as the [QN1 key is used both for turning the
calculator on and off, the ~ key is what you use
to switch back and forth between Program mode and
Run mode.

Now you should see the little word PRGM (the program
annunciator) appear in the lower right-hand corner
of the display. This program annunciator tells you
that your calculator is now in Program mode.

Look at the display while your calculator is in
PROGRAM mode. You see a number at the left (this is
called the line number), followed by a dash and
perhaps more numbers.

The first thing you need to do is clear your memory
(that is, clear the program memory of the
calculator). This is necessary because the
discussion on the following pages assumes that your
calculator's memory has been cleared.

75

Press III CLEAR IPRGMI.

Did you find the CLEAR IPRGMI key? Don't let that
bracket notation fool you.

This:

rl-------------CL~R--------------_,I

1 PRGM REG PREFIX

means this:

CLEAR CLEAR CLEAR CL£AR

E PRGM REG PREFIX

When you press III CLEAR IPRGMI with your calculator
in PROGRAM mode, any programs that you had previously
keyed in are cleared away. Now get back into RUN
mode by pressing fill!2!!l. The little program
annunciator disappears and the number in the
X -register comes into the display. Finish clearing
your calculator's memory by pressing
III IMATRIXI 0 fil ~ 8

(Later on, you'll learn what that does.)

76

MOVING THE DATA REGISTER BOUNDARY

With your memory clear, you can freely move that
boundary between data registers and "memory for other
things."

Try this: Set your calculator so that the highest
numbered data register is register 65.

Solution: 65 [l] IlllMl lilll

(If you know all about the IlllMl lilll function, and
the llEIJ IlllMl lilll function, then flip on over to
page 82.)

The IlllMl (dimension) lilll function is what you use
to move that boundary between "data register memory"
and "memory used to store other things."

When you press [l] wmJ lilll, the cal cui a tor moves
tha t boundary to (the top of) the register specified
in the X -register. The calculator wouldn't do this,
however, if in doing so it would destroy any
information currently stored in the "memory used to
store other things." That memory is given top
priority by the machine.

77

f ,

But since you have just cleared the entire memory,
the calculator knows you have nothing in there to
lose, so by pressing 65 III [imIJ lilll. you have
moved that boundary to the absolute top of your
calculator's memory. You have provided the maximum
number of data registers. Pretty slick, eh?

To prove this. put your calculator in to program mode
Oil !PjRI) and try to key in a program line (e.g.,
press [SIN] or ~). The calculator will show
ERROR 4. This means that you have no room allocated
to store programs. Clear the ERROR message by
pressing any key. and then get out of program mode
(lil ~).

Now suppose you want to try to store a number in
register 65 or register 50 just to prove to yourself
that they exist (do you doubt?). But you can't just
key in 3.1416 !S'mJ 65 (try it)! The calculator will
take that as 3.1416 !S'mJ 6, and then the 5 will go
into the X-register as the first digit of a new
number. There are new and different procedures for
using registers 20-65.

So for the moment, just take for granted that those
registers do indeed exist. You'll learn how to use
them in the section starting on page 144.

78

Try this: Set your calculator so that the highest
numbered data register is register .4.

Sol u tion: 14 II! IlillIl Iill]

Remember back on page 6, we said that register .4
was the same as register 14, that register .7 was the
same as register 17, etc.? When you key in 14 II!
IlillIl Iill], the calculator moves the boundary to
the top of register 14 (which is called register .4).
Your memory looks like this:

memor~ ,,-sed to
store progro.m,;
Clncl other thl~

~
The ~ top 1/ of .Lt

.3

.2
• 1 DATA memoT"~

"- --
1--___ -;2
1--___ -;1
'--___J 0

79

Now, try to store a number in register .9. Press
3.1416 lS'rnl .9. The calculator displays ERROR 3,
and you blush--slightly. That means data register .9
(register 19) does not exist. The highest numbered
data register is 14 (.4). Again, clear the ERROR
message by pressing any key. Now try lS'rnl .4. It
works. But try lS'rnl .5. You get ERROR 3, and more
blushing. It's obvious where the boundary is, right?

Try this: Set your calculator so that the highest
numbered data register is register .9.

Solution: 19 III !DIMl Jill]

80

THE IMEMI FUNCTION

The HP-15C has a handy function called IMEMI (MEMory)
that gives you a description of the status of your
memory. Press liJlMEMI and HOLD DOWN THE IMEMI

KEY. As long as you hold the IMEMI key down, the
calculator will display a message such as "19 46 0-0."

The first number tells you the location of the
boundary between "data register memory" and "memory
used to store other things." The second number tells
you how many registers of that "memory used to store
other things" are empty. And the last two digits
give you information about how much of that "memory
for storing other things" is being used to store
program lines. Isn't that thoughtful?

Another way to find out where the data register
boundary is located is by pressing IReLI !lmIl
Jilll. If you do that now, the number 19 should
come into the display. Try it!

81

THE PROBLEM AT HAND

Where were we? .. Oh yes, temperature conversions.

The side trip you took through the details of program
memory should have left you with an empty program
memory and 20 data registers (0 -- .9).

Now that you know you have enough memory to do some
programming, it's time to look at the solution to
that temperature conversion problem.

Here are the keystrokes to create a program to solve
the equation:

5 x ((INPUT) - 32)
= (OUTPUT).

9

Solution: lilIP/RI 32 El 5 fX) 9 r±l lilIP/RI

(If this is too easy for all of you calculator
wizards, go ahead to page 85.)

82

When you're going through those keystrokes. the num­
bers that come up in the display may not make much
sense. They are called "key codes" and are described
in detail later on (page 91), so don't worry about
them right now.

Here's a brief description of what's happening as you
press the keystrokes of that last solution:

The keystrokes [g] !!,IRI switch your calculator from
RUN mode to PROGRAM mode.

If you have been following along up to this
page, your display will show "000-" with the program
annunciator (PRGM) showing in the lower right hand
corner of the display. "000-" means that the program
"pointer" is on line 000 of program memory. This
program pointer is simply a little counting device
that tells the calculator what line of a program it
should look at (or perform) next.

83

As you key in the program (32 EJ 5 !Xl 9 !±l) you
will see the line number change. The program
pointer is moving!

(If you should make a mistake, just press !Il CLEAR
IPRGMI and start again by keying in 32.)

After you press !±l the display will show "007- 10"
indica Hng that there are 7 lines to this program.

Finally, get out of PROGRAM mode by pressing li]IP/RI .

. . ,
: ' . '. . .
;' - '. ':

, - ' .

84

RUNNING THE PROGRAM (lm)

When you switched back to run mode, the program
pointer was positioned to the last line in the
program. You are going to run this program now, but
first you need to move to the top of the program.
Press Ii]lIITNl to move the pointer up to line 000.

Now try a temperature conversion.

--

Try this: Convert 212 degrees Fahrenheit to degrees
Celsius.

Solution: 212 IRISI (Answer: 100)

Try this: Con vert the following Fahrenheit
temperatures to Celsius temperatures:

32, 70, 85, lOO

Solution: 32 ~
70 IRlsl
85 IRlsl
lOO~

85

,
\.

Now think back and compare the manual solution for
these temperature conversions to the same solution
recorded as a program. You will pro ba bly smile
smugly, and the tiny muscles in your fingers will be
eternally grateful.

On page 61, you converted 97 degrees Fahrenheit to
Celsius by keying in 97, pressing IENTERI, then
working through the keystrokes:

32 El 5 !Xl 9 [±]

Now you have a program to do the above keystrokes;
so to convert 97 degrees Fahrenheit, you would press
97 IRlsl.

86

Question: The first two steps of the recorded program
are 32; that is, the program puts the number 32 into
the X-register. But if you've just keyed in 97 before
starting to run the program, why doesn't that 32
write over the 977 Or why doesn't it continue to
form one number: 97327 Normally, if you want to
key in two numbers in a row, you have to tell your
cal cuI a tor to save the first one; to do this, you
press IENTERI, as in the manual solution above.
So why don't you have to press 97 IENTERIIR/SI 7

Answer: Because the IRISI function--like most
functions--ENables stack lift, so that the next
number keyed in will automatically bump the pre­
vious number up to the Y -register, safe and sound.
Smart machine, no?

Voila! You have a program in memory and you can use
it to convert the 50 temperatures from that physics
experiment. This allows you to whip through all
the calculations of this experiment in a matter of
minutes. And this gives you more time to indulge in
other, more pleasant aspects of life (such as the
consumption of cold beer on hot days, or the
continued reading of this literary classic).

87

MOVING AROUND IN PROGRAM MEMORY

You'll probably begin to notice how often you are
thinking a bou t the program pointer: Where is it?
What's it doing? (Will it be home by dark?), etc.

Well, your calculator is always "pointing" to a line
in program memory. To find out which line it's
pointing to, you simply have to put the calculator
into program mode and look at the display. (The line
number is the number on the far left of the display.)

Before you ran your temperatures program for the
first time, you had to move the calculator's program
pointer to the top of the program, by pressing [iJ
!lITNl in RUN mode. This demonstrates two things that
are always true:

1. If you run a program by pressing IRlsl the
calculator starts at the line it's pointing to and
works downward, executing each line in the program.

2. Pressing [iJ !lITNl in RUN mode will move the
program pointer to line 000.

88

Question: Now that you've run the program, where is
the program pointer?

Answer: At the top of the program (line 000).

When your calculator reaches the end of a program, it
jumps to line 000 and stops. This allows you to
run your program over and over, each time keying in
a new input and pressing IRISI.

But notice that there are several other ways to move
the program pointer around:

The !S.STl (Single STep) function moves the po in ter
ahead one line. The !BSTJ (Back STep) function
moves the pointer backwards one line.

And if you want to move to line "nnn" of your program
(where "nnn" is some 3-digit line number--002, 156,
etc.). you can key in !Gm ~ "nnn" (if you have
an HP-15C) or !Gm lJ "nnn" (if you have an HP-llC).

89

Try this: Put your calculator into program mode and
move to line 005.

Solution:

[iJIP!RllGTOJ !CllSl 005 (for HP-15C owners)

[iJIP!RllGTOJ [J 005 (for HP-llC owners)

(In the next section, you'll learn why this function
is different for each of the two calculatorsJ

Try this: Move backwards one line, to line 004.

Solution: [iJ WSTI

90

KEY CODES

When you switch into program mode and look at the
lines of a program, the display shows merely a series
of numbers (called key codes, as you may recall).
Now, to relieve the suspense, look at what those
num bers mean:

As you already know, the number at the left in the
display is the program line number. That is,
everything to the left of the hyphen is the line
number.

Everything to the right of the hyphen is a coded
description of the keys you pressed to make up that
program line--plain and simple.

Most of the keys are described by two digits which
indicate their row (counted from the top of the
keyboard down) and column position on the keyboard
(counted from left to right). For example, the
keycode for the lIdHSJ key is 16 (row 1, column 6),
the Ix<>yl key is described by 34, etc.

But the number keys (IDJ through 1m) are described
by only one digit--the digit that they represent.
For example, the keycode for f5l is 5, ~ is 6,
etc. This isn't so bad, is it?

91

Question: What is the keycode for the [EEXJ key?

Answer: 26

Question: What is the keycode for the !Xl key?

Answer: 20 (row 2, column 10--called column 0)

Question: How would the program line lS'MJ 5 be
represen ted in the display?

Answer: nnn- 44 5 (nnn is the line number)

Do you feel somewhat comfortable with keycodes? If
not, don't worry; you'll get used to them.

, ,
, - ' - , -

92

REVIEW

Once again, it's time to distill things down to
essen tials:

In this chapter you've learned a little about
program memory in your calculator.

You've learned that keying in a program to solve
some problem is almost identical to using manual
keystrokes to solve that same problem.

You've learned the difference between RUN mode and
PROGRAM mode; what the PRGM annunciator means in
the display; and how to move around in a program by
using the tsm'l, Jm'l'l, and fGTOl functions.

Try this quiz just to check yourself to see how much
. you've absorbed.

93

QUICK QUIZ

1. What's the difference between RUN mode and
PROGRAM mode? Can you tell which mode your
calculator is switched to by looking at the display?

2. What keys do you press to clear all the
programs from program memory?

3. What do the numbers mean that come into the
display when you press li]IMEMI?

4. If the program pointer is pointing to line 005
in a program, and you press IRISI (in Run mode), the
program will begin to run at line .

If you press li] IlITNl ~. the program will begin
to run at line_, _~

94

QUICK ANSWERS

1. In RUN mode, functions will be executed
immediately when you press the keys. In PROGRAM
mode, functions are stored as lines of a program (to
be executed when the program is run). If the
calculator is in PROGRAM mode, the little PRGM
annunciator will appear in the display.

2. til ~ (to switch to Program mode)
If] CLEAR IPRGMI (to clear all programs)

3. On the HP-llC: The number following "p" is the
amount of empty program lines in the first 63 lines;
the number following "r" is the highest numbered data
register available for storage.

On the HP-15C: The leftmost number is the highest
numbered data register available for data storage;
the center number is the number of empty registers
in the "memory for other things;" and the rightmost
(hyphenated) digits tell you how much of the "memory
for other things" currently contains program lines.

4. Line 005; line 000.

95

Nubs

96

/

/

/

/

Decisionmaking and Branching

DECISIONMAKING AND BRANCHING

Up to this point, you've seen only what we call Ita
naked program" (a program that is always run from
top to bottom, with no frills, made up mainly of
arithmetic functions). Now it's time to look at
some of the niceties that your calculator is
equipped with--some functions that you can use to
create fairly elaborate programs.

98

Try this: Crea te and run a program that uses the
display to count by ones, starting at 1. It should
first display 1 for a moment, then 2, 3, 4, etc., up
to 25. Then, if flag 1 is set and the value in
register 0 is greater than the value in register 3,
the program should finish with PI in the X-register
(rounded to 3 decimal places); otherwise, it should
finish with 0 in the X-register.

Solution: The solution to this appears on page 140.
If, without looking at the solution, you can write a
program that does all this, then GTO page 138 and
continue on from there. If not, then you should
probably continue here and read about labels.

99

LABELS !LBL!

Labels are used in programs as markers. They can
mark the top of a program, or they can mark important
"landing points" for jumping within a program. You
can tell the calculator to move its program pointer
to a label either with direct {i.e. manual}
keystrokes or with "jumping" instructions that you
ha ve recorded as program lines.

The HP-llC is equipped with the labels 0 through 9
and labels A, B, C, D, and E. The HP-15C has all the
labels that the HP-llC has, plus the labels .0
through .9. (This is why you must use I.GTQ] !ami
"nnn" if you want to move the pointer of your HP-15C
to line "nnn." As you can see now, if you pressed
I.GTQ] lJ "n," your HP-15C would understand the
instruction to be a program line which would say, in
effect, "go to LBL 'n'.")

On either machine, labels A, B, C, D, and E are named
differently because they can be "called" {that is,
you can run a program with them} conveniently from
the keys on the keyboard.

100

As an example of using a label, put your calculator
into program mode, and with line 000 showing in the
display, press 11l JI:J3Il [Ii. Assuming that the
temperature conversion program from the last chapter
is still in tact, this puts label A at the top of
that program. (If you've changed the program, you
can key it in again after first clearing your
program memory. See page 82.)

The program now looks like this:

(In this book, we list programs in words and
symbols--rather than keycodes--so it's easier to see
what each line means. Of course, your calculator
will show you only keycodes.)

001 LBL A
002 3
003 2
004
005 5
006 X
007 9
008 • ...

101

The program line "LBL A" was inserted at the top of
the program. The rest of the program was pushed
down one line and renumbered. Your temperature
conversions program is now marked by LBL A at the
top.

Now take the calculator out of program mode:
fi] IP/RI.

Try this: Con vert 150 degrees Fahrenheit to degrees
Celsius.

Sol u tion: 150 III IAl

Because you put LBL A at the top of the temperature
con version program, pressing the IAl key now tells the
calculator to run that program, beginning at that
label.

102

IGTOI, IGSBI, and IETNI

Well, now you know how to "call" a letter-
label from the keyboard. But what about the other
labels? How else can you tell your calculator to
find a certain label and to start running a program
at that point?

The lGTQJ (' 'Go TO' ') and IGSBI (' 'Go SuB' ') functions
are both used for branching to a LBL (Label) in a
program. When the machine encounters either of
these functions in a program, it is being told
something very specific.

lG'MI is used for branching to a LBL when you have
no intention of coming back. GTO is a command that
the calculator understands as "go to another part of
this program and forget where you came from--just
continue from there."

1GSBl, on the other hand, is used for branching to
subroutines. In other words, it is used for "taking
a side trip" to a LBL when you have every intention
of coming back. GSB is a command that the calculator
understands as: "Remember this spot and go to
another part of this program; continue from there
until you come to a RTN (ReTurN) statement; then come
right back and continue from here."

103

That RTN statement is very important! The calculator
plays by certain rules when it encounters a RTN in a
program, and it does one of two things:

1. If the program pointer has branched off onto a
"side trip"--because it encountered a GSB statement-­
then you might say that the GSB is "waiting" for the
pointer to return from its "side trip." If this is
the case--if a GSB statement is indeed "waiting"-­
then the RTN means: ' 'Ret urn to the sta temen t
following the waiting GSB."

2. If there's no waiting GSB, then the RTN sta temen t
means "STOP!"

OK? Try a few problems to clear up the fog -------->

104

Try this: Key in a program that makes your
calculator count in the display. It should start
by displaying 1 for a moment, then 2, 3, 4, etc. (a
foolish application, to be sure, but it demonstrates
some finer points).

Solution: 001 LBL B
002 0
003 LBL 4
004 1
005 +
006 PSE
007 GTO 4

Did you key in this program and run it without
looking at the solution? If so, you are now eligible
to graduate to page 108. Otherwise ... ----->

105

(

PROGRAM LOOPS

Look at this last solution.

Lines 003 through 007 make up a "program loop." The
LBL 4 sta temen t is the top of the loop, and G TO 4 is
the bottom.

The body of the loop (lines 004, 005, and 006)
is a procedure that merely adds 1 to the con ten ts of
the X-register and momentarily displays it (line 006
is the PauSE function).

Notice how the program puts a 0 in to the X -register
at step 002--before it begins to go around the loop.

Finally, when the program pointer gets to the line
GTO 4, the calculator looks for LBL 4 and then
"jumps" to it. Thus the program will continuously go
around the loop (adding 1 to the value in the
X-register and displaying the result) un til it is
stopped--when you press IR/si. Make sense?

106

The keystrokes for this program are:

KEYSTROKES DISPLAY

lil ~ 111 IPRGMI 000-
111 mJ !Bl 001- 42,21, 12
0 002- 0
111 mJ 4 003- 42,21, 4
1 004- 1
[±] 005- 40
111 rPSEJ 006- 42 31
lG'MI 4 007- 22 4

lil~ (Normal numerical display)

Now, run this program by pressing [f] !Bl (why do you
press these keys? See page 102 for a reminder). The
program works! (If your calculator isn't counting,
then repeat the above keystrokes.)

To stop the program, just press m.

107

Try this: Using three GSB sta temen ts, write a
program that co un ts--in the display--from one to
three.

Solution: 001 LBL B
002 0
003 GSB 4
004 GSB 4
005 GSB 4
006 R/S
007 LBL 4
008 1
009 +
010 PSE
011 RTN

(If you knew the easy way to do this--by editing the
existing program--then try page 112.)

108

EDITING A PROGRAM

As you may have noticed, this program differs only
slightly from the one you keyed in on the previous
page. To change the previous program to this one,
all you need to do is insert 4 lines (three GSB 4's
and a RIS) after line 002, and then change the last
line in the program from GTO 4 to RTN. Here's how
you would do this:

Switch into PROGRAM mode (lil ~). Now, if you
have an HP-llC, press IGTOI [J 002 (but if you have
an HP-15C, press IGTOI ram 002). This moves the
program pointer to line 002 of the program. Press
!1lliBl 4 three times; then press IRlsl (you'll end up
at line 006). This inserts the necessary lines after
line 002.

109

N ow you have to change the last line in the
program from GTO 4 to RTN. First, move to the top
of the program (if you have an HP-llC, press [G'ml

[J 000; if you have an HP-15C, press [G'ml [CHSl 000).

From the top of the program you can move to the last
line in the program by pressing [i] 1BS'l'l. In other
words, if you're at the top of the program, you can
"wrap around" to the bottom (the end) by
Back-STepping.

Once you're at the last line of the program (line
11), you can delete the GTO 4 statement by pressing
the backarrow [;:;3 key. Finally, press [i] 1RTNl.
Now you have the new program! Press !SST] to move
up to line 000 of this program.

110

If you want to, you can ISSTl (single-step) through
your entire program to verify that you have it
correct. This is what you should see:

KEYSTROKES DISPLAY EXPLANATION

fSS'I'l 001- 42,21,12 001 LBL B
fSS'I'l 002- 0 002 0
fSS'I'l 003- 32 4 003 GSB 4
fSS'I'l 004- 32 4 004 GSB 4
fSS'I'l 005- 32 4 005 GSB 4
fSS'I'l 006- 31 006 RIS
fSS'I'l 007- 42,21, 4 007 LBL 4
fSS'I'l 008- 1 008 1
fSS'I'l 009- 40 009 +
fSS'I'l 010- 42 31 010 PSE
ISSTl 011- 4332 011 RTN

Now get out of program mode (IilIP/RI) and press
[f] 1Bl. Again, it works! You've taught your
calculator to count to three (Whoopee)!

Can you see how GSB is working? The GSB 4 at line
003 sends the program pointer to LBL 4, where 1 is
added to the X-register. and the result is
displayed. The RTN at line 011 sends the program
pointer back to the line immediately following that
GSB 4 (Le. back to line 004).

111

This line (line 004) is another GSB 4 statement,
which sends the program pointer back to LBL 4. The
value in the X-register is incremented, displayed,
and the RTN statement sends the program pointer back
to the line immediately following the "waiting" GSB 4
(Le. back to line 005).

Again, (line 005) is another GSB 4 statement, and
this time, when the program pointer RTNs to the
statement immediately following line 005, it finds a
R/S statement, which causes the program to STOP.

Question: What would happen if you used a RTN at
line 006 instead of a R/S?

Answer: The program would run exactly the same.
Unless there is a "waiting" GSB for the pointer to
return to (and in this case there wouldn't be), the
RTN statement means STOP.

112

After you run the program, if you put your
calculator into PROGRAM mode by pressing IilIP/ RI,
you would see that the program pointer is waiting at
line 007 of the program. The program was stopped
by the R/S at line 006.

As you may have guessed, the program lines between
LBL 4 and RTN form a subroutine. The program is
counting to three by simply "taking a side trip"-­
three times--to a subroutine that causes the
calcula tor to add 1 to the X -register and then
display the result. This gives the effect of
counting to three.

113

CONDITIONAL TESTING

All right, now you know how to make your
calculator count to three. But how could you make
that program decide to stop at ANY number you choose?
Surely you don't want to use 10 or 20 or 100
consecutive GSB statements, do you? No, not really (for
one thing, the sheer monotony of keying in all the GSB's
would put you to sleep).

Look back for a minute at that first counting
program--the one that simply keeps counting until
you press ~ or turn the machine off (or the
ba t tery runs low):

001 LBL B
002 0
003 LBL 4
004 1
005 +
006 PSE
007 GTO 4

114

Try this: Modify the counting program so that it
counts from 1 to 10 and stops.

Solution: 001 LBL B
002 9
003 ENTER
004 0
005 LBL 4
006 1
007 +
008 PSE
009 X~Y
010 GTO 04

(If you see how this program works, go to page 123.)

To breeze through the above problem, you have to be
comfortable with:

A. Moving around in program memory and editing a
program.

B. Conditional statements.

First, we'll look at the conditional line in this
program (line 009); then we'll look at the specific key­
strokes you can use to change a program that counts
"forever" into a program that counts from 1 to 10.

115

CONDITION AL TESTS

The HP-llC has 8 different statements that are
tests (plus one flag test that we will discuss
la ter). These 8 tests appear as gold and blue
functions on the four keys in the right-hand column
of keys.

The HP-15C has 12 such tests available (plus one flag
test that we will discuss later). There are only two
conditional tests on the keyboard: XE;Y and X=O.

But there is a function called TEST, which allows you
to choose any of the other 10 tests by number (TEST 0
through TEST 9)--similar to the way you choose
registers for STO and RCL.

On the back of the HP-15C, there is a table that
shows TEST 0 through TEST 9. TEST 1, for example, is
X>O, and TEST 8 is X<Y.

But just what IS a conditional test, anyway? ----->

116

THE "DO IF TRUE" RULE

By using a conditional test in a program, you are
posing a TRUE or FALSE question to your calculator.

If the answer to that question is FALSE, the
calculator will skip the program line immediately
following that test. If the answer to that
conditional test is TRUE, the calculator WILL perform
the statement immediately following that test. This
is known as the "DO IF TRUE" rule.

The "DO IF TRUE" rule is about all you need to know
to use conditional statements in a program.

In the program that counts to 10, line 009 is
009 X~ Y. This statement is understood to
be a true or false question: "True or False? The
val ue in the X -register is less than or equal to the
value in the Y -register."

If the answer is true, that is, if the number in X
is less than or equal to the number in Y, then the
calcula tor will execute the G TO 04 sta temen tat
line 010, which sends it to LBL 04 to continue
looping. But if the answer is false (if the number
in X is greater than the number in Y), then the
calcula tor skips line 010 and goes right to line
011, which ends the program.

117

(If you understand this program now, go to page 123.)

001 LBL B
002 9
003 ENTER
004 0
005 LBL 4
006 1
007 +
008 PSE
009 X~Y
OlD GTO 04

Once this program is in your calculator, you can
execute the program by pressing [f] [BJ (when the
calculator is in RUN mode).

The calculator will begin to run the program at LBL B.
Then Lines 002 through 004 set up the stack like
this:

f-_l ___ T
? Z 1------q V 1-----o X

118

Line 005 begins the counting loop (LBL 4). On the
first time through this loop, lines 006 and 007 add
1 to the X-register, and line 008 momentarily
displays the X -register. Then the stack looks like
this:

? T
1------

" Z 1--"':---q '(
1------

I X

Line 009 asks the True-or False question: "Is the
number in the X-register less than or equal to the
number in the Y -register?" Since it is, the program
continues with GTO 04. On the second time through
the loop, 1 will be added to the X-register, and at
line 008 (PSE) the stack will look like this:

? T
1--"':---

? Z
1--"':---

q Y 1------2. x

119

The program will continue to add one to the
X -register, displaying the result, and testing the
X-value against the Y-value until it reaches the
tenth time through the loop, When it passes LEL 4
for the tenth time, the stack looks like this:

The X-register is incremented (1 is added), so the
stack looks like this:

'? T 1------
? Z

I- - -'- --q y
1------

10 X

Now, in line 009, when the calculator is asked the
question "TRUE or FALSE? X is less than or equal to
Y," the answer is FALSE. Thus, line 010 is skipped
and the program ends.

120

MORE EDITING

Let's look at how you would change this program,

001 LBL B
002 0
003 LBL 4
004 1
005 +
006 PSE
007 GTO 4

in to this program:

001 LBL B
002 9
003 ENTER
004 0
005 LBL 4
006 1
007 +
008 PSE
009 X~Y
010 GTO 04

(If you can already handle this, go to page 123.)

121

To change the first program into the second program,
you must make the following two changes:

1. Y ou have to insert the conditional sta temen t
"X~Y" after line 006 in the program.

2. You have to insert the two lines "9" and "ENTER"
after the first line of the program.

Assuming you ha venIt yet made any changes to the
original counting program, here are the steps you
will use to modify this program. Switch into program
mode Gil !m) and move to line 006 of the
program (On the HP-llC use IGTOIIJ 006 and on the
HP-15C use lGTOl [OISj 006.). Insert the conditional
test "x'::::; Y" by pressing the appropriate prefix key
(!IJ on the HP-llC, [gj on the HP-15C) and then IX ~yl.

Now, move to line 001 of the program by pressing ISSTi

twice, and then press the keys lHl IENTER!.

Are you getting the hang of program editing?

Swi tch out of program mode ([gj IP/R!) and press
I1l lBl. The calculator should count to 10 and stop.
Whoopee!

122

FLAGS

Flags are handy tools to use in programming. A
flag is a kind of ind.icator that has only two
possible values: Set or Clear (up or down, yes or
no, etc.). So a flag is a good way for the
calculator to make (and remember) yes-or-no decisions
within programs.

There are three functions that deal with flags on
your calculator: fSE (Set Flag), ~ (Clear Flag),
and rF1l. If you want to set flag 0 on your
calculator, you press I:SE O. If you want to clear
flag 0, press ~ O.

The !F'll function asks the calculator a true or
false question similar to a conditional test: "TRUE
or FALSE? Flag so-and -so is set." You would
specify the flag by number: !F'll 0, rF1l 1, etc.

123

The HP-llC has two flags: 0 and 1.

The HP-15C has 10 flags (flags 0 through 9), but
flags 8 and 9 have a special meaning to the
calculator. If you set flag 9 (1SFl 9), the display
will blink; and if you set flag 8 you put your
calculator into "Complex mode" indicated by the
little 'c' in the display (the Complex mode is
discussed in Appendix 3). To stop the blinking
display or to take your calculator out of Complex
mode, press !CEl 9 or !CEl 8, respectively.

To keep things brief and clear (that is, short and
simple), we will use only flag 0 in this section.
Remem ber: to set flag 0, press ISFl O. To clear
flag 0, press !CEl O.

124

Question: What does the following modification do
to your "count to ten" program? What does the
program do if you set flag 0 before you run it?

001 LBL B
002 9
003 ENTER
004 0
005 LBL 4
006 1
007 +
008 F? 0
009 1
010 F? 0
011 +
012 PSE
013 X~Y

014 GTO 04

Answer: If you set flag 0 before you run the
program. it will count to 10 by twos.
Otherwise. there will be no change.

125

Did you answer the question? Can you make the
modifications to the program and run it first with
flag 0 clear, then with flag 0 set? If you can, go
to page 128.

To make the modifications, you need to add four
lines (F? 0; 1; F? 0; +) after line 7. ONLY IF FLAG
o IS SET will these 4 lines add an additional 1 to
the value in the X-register each time through the
loop.

To add those lines, switch into program mode ([ij
!P/R!), and move the program pointer to line 007
(on the HP-llC, press IrITDl [J 007; on the HP-15C,
press IGTOI !CHSJ 007). Then press:

[ijlF1l0
1
[ijlF1l0
[±]

[ij IP/RI (to switch out of program mode)

126

Now clear flag 0 (lQ'l 0), and run the program
(lI] IBJ). The calculator will simply count to ten
by ones, as usual.

But try setting flag 0 before you run the program:

[i]!SFJ0
IIlIBJ

The calculator counts to ten by twos (it's getting
smarter)! Do you see why it's doing this? Pretend
you are the program pointer, and see how those flags
control whether you perform (new) steps 009 and 011.

127

(

IISGI AND rDSE1

By now, you know all a bou t labels and how to "call"
them; you know w ha t su brou tines are; and you know how
to use conditional tests. All of these different
topics are somehow in vol ved in making the program
pointer jump around or skip to other lines. Now here
are two other functions that also belong in that
category.

The two functions are ISG ("Increment and Skip if
Greater than") and DSE ("Decrement and Skip if Equal
to or less than' ').

You would use these two functions to control program
loops. They act like conditional statements, because
under some conditions in a program, the calculator
will skip the line immediately following either of
these functions. It is this characteristic that
allows you to limit the number of times a program
loop is executed (as you did in the program that
coun ts to 10).

128

THE CONTROL NUMBER

To help count these program loops, the ISG and DSE
functions both use a number that you have stored in a
register. This number is called the control number.
On the HP-HC, you will always store this control
number in the I-register. On the HP-15C, you may
store this control number in any register.

So what does a control number look like? What is
the calculator expecting?

Well, this is a control n urn ber:

1.01001

Try this: Assuming this control number is stored in
the I-register, write a program that uses ISG (or
ISG I on the HP-15C) to co un t in the display from
1 to 10 (by ones).

Sol u tion: 001 LBL C
002 RCL I
003 INT
004 PSE
005 ISG (On the HP-15C use W Ill)
006 GT() C

(If you understand control numbers and the above
program, go to page 138.)

129

A control number actually represents three numbers
to the calculator. If we call these three numbers
nnnnn, xxx, and yy, then the calculator is looking
at the control number like this:

nnnnn.xxxyy

Your calculator is concerned only with five digits on
ei ther side of the decimal place.

The number nnnnn is the current counter value, xxx
is the counter test value, and yy is the increment
or decrement value. For example, in the control
number 1.01001, nnnnn is 1 (00001 = 1), xxx is 10
(010 = 10), and yy is 1. Look at this picture:

1.QlQill
--/11\

nnnnn=1 xxx = 10 yy=1

130

But what does this mean? What happens when the
calculator executes the function ISG?

This is what happens:

1. The calculator adds the number "yy" to the
number "nnnnn" and the result becomes the new
"nnnnn." This is called "incrementing."

2. The calculator tests to see if "nnnnn" is
GREATER than "xxx," and if it IS greater, the
calculator skips the line immediately following the
ISG sta temen t.

Do you see where the name "Increment and Skip if
Greater than" comes from? If not, reread the above
two steps.

131

Assuming that this control number, 1.01001, is stored
in the I-register, it's easy to write a program that
counts (in the display) from 1 to 10. All you need
is a loop that recalls the number in the I-register,
then pauses to display the integer portion of that
number (INT), and performs an ISG on the control
number in the I-register--to test whether the loop
should be repeated or exited.

Got all that? Not quite? Well, walk through it
slowly and see how it works.

First, here are the keystrokes to key in the solution
program--once you have switched to PRGM mode (Iil ~):

KEYSTROKES

III iERGMl
III IIJill ~
lBUJ II!
liltmTJ
IllIESEJ
IllW
mol ~

(to clear program memory)

(recalls the number in the I-register)
(takes the integer portion)
(pauses a moment to display the count)
(Ill W II! if you have an HP-15C)

132

And the display shows the following, if you single
step through the program using fSSTl.

DISPLAY

001- 42, 21, 13
002- 45 25
003- 43 44
004- 42 31
005- 42 6 (or "005- 42, 6, 25" for the HP-15C)
006- 22 13

Now switch out of program mode, key in 1.01001, store
it in the I-register (press !Sm [IJ). and run the
program (by pressing [f] 1Cl). It works!

133

001 LBL C
002 RCL 1
003 INT
004 PSE
005 ISG (I)
006 GTO C

This whole program is one loop. The first time
through the loop, line 002 digs 1.01001 out of the
I-register, line 003 takes the integer portion of
that number, which is 1, and line 004 pauses to
display the 1 in the X-register. At line 005 (ISG
on the HP-HC or ISG 1 on the HP-15C), the
calculator increments the nnnnn portion of the
control number by the yy portion, making nnnnn equal
to 2. It then tests to see if nnnnn (2) is greater
than xxx (10), and (since 2 isn't greater than 10) it
does NOT skip line 006. Remember, the name is
"Incremen t and SKIP if GREATER than," so this time it
doesn't skip line 006 (GTO C); thus, the loop starts
over again from LBL C.

The second time through the loop, the control number
in the I-register starts as 2.01001. The third
time through the loop, this number starts as
3.01001, etc.

134

On the tenth time through the loop, the control
number starts as 10.01001. This number is recalled
to the X -register and the integer portion is
momentarily displayed. Finally. at line 005 the
calculator increments the control number, making it
11.01001, and tests to see if nnnnn (11) is greater
than xxx (10). Since 11 is usually greater than 10,
the calculator skips line 006, which stops the
program.

So, if you press ImlJ III after running the program,
you'll see that the final number in there is
11.01001. (Be sure to store 1.01001 in the
I-register before you run the program.)

Question: What happens if you store the number
2.01002 in the I-register before you run this
program?

Answer: The program will count from 2 to 10, by twos.

The yy portion of this number is 02 (this is the
increment value); the upper limit (xxx) is 010; and
the beginning number (nnnnn) is 2.

135

Question: What n umber would you store in the
I-register to make this program count from 0 to 500
by 50's?

Answer: .50050 (Try it.)

Do you see what's happening?

Question: How will this program count if you store
the number 5.012 in the I-register before you run
"t? 1 .

Answer: It will count from 5 to 12 by ONES.

If the yy portion of the control n um ber is 00, the
calculator assumes you meant 01. The most common
increment value is 1, so if there's nothing as the
last two digits of the control number, the
calculator increments by 1 (you can't increment by
zero, right?).

136

Those are the basics of ISG. The other function, DSE
(Decrement and Skip if Equal to or less than), works
in a similar fashion--doing what its name implies.

You've been exposed to a lot of programming features
in this chapter. You may not feel absolutely
comfortable with the material up to now, but you'll
get some practice in the upcoming sections. Now try
this quiz for practice, review, and peace of mind. ---->

137

QUIZ

1. What are three things you can do with the 1<-1

(back-arrow) key?

2. How would the program on page 108 work
diff eren tIy if you deleted lines 005 and 006?

3. You have the measurements for the radii of 70
diff eren t circles, and you need to find the areas
of these circles. Write a "naked program" that will
help you do this. Use the formula: AREA = PI x R2.

4. Create and run a program that uses the display
to count by ones, starting at 1. It should first
display 1 for a moment, then 2, 3, 4, etc. up to 25,
and then, if flag 1 is set and the value in register
o is greater than the value in register 3, it will
finish with PI in the X-register (rounded to 3
decimal places); otherwise, it will finish with 0 in
the X -register.

138

ANSWERS

1. (a) Clear one digit at a time from the display
(when you are in the middle of keying in a number)'

(b) Clear the X -register--just as with [i] ICLXI

(i.e. when you aren't currently keying in a number).
(c) Delete a program line (when in program mode).

2. There would be no difference.

3. 001 x~

002 n-
003 x

To use this program, you would simply key in a
radius, press IRlsl, and the result will be the area
of that circle. W ri ting little programs like this
can save you plenty of time on repetitive tasks.

139

4. This is also the solution to the "Try this" on
page 99. This program tests your understanding of
the different features that you studied in this
chapter.

001 LBL D
002 2
003 4
004 ENTER
005 0
006 LBL 1
007 1
008 +
009 PSE
010 X<:': Y
011 GTO 1
012 RCL 3
013 RCL 0
014 CF 0
015 X>Y (on the HP-15C press Ii] ITESTI 7)
016 SF 0
017 0
018 F? 0
019 GTO 2
020 GTO 3
021 LBL 2
022 F? 1
023 11'

024 LBL 3

140

(Remember, there are several different ways to write
any program. The method here isn't as important as
the results.)

Lines 001 through 011 of this program simply count
from 1 to 25, the same as the counting programs that
you saw in this chapter.

Lines 012 through 024 test to see if the following
two conditions are true:

1. The value in register 0 is greater than the
value in register 3.

2. Flag 1 is set.

If both of these conditions are true, then the
calcula tor puts the PI in to the X-register. But if
either one of these conditions is not true, the
calculator leaves a zero in the X-register.

Go through the last 12 lines in the program a couple
times until you see how it works. Test the
program by storing a 5 in register 0 (5 ISTOI 0) and
a 1 in register 3 (1 [S'1'Q] 3). Then set flag 1 (1SEl 1)
and run the program (!IJ tnl). Try running
it with flag 1 clear (lCE 1). Try other
combinations of values in registers 0 and 3 to see
the effect they have on the final display.

Do you see how useful labels, flags and conditional
tests can be in helping you create complex programs?

141

Mofrs

142

Indirect Addressing

INDIRECT ADDRESSING

Now that you know something a bou t program loops and
labels, it's time to look at another nifty programming
tool (ah, the wonders of modern technology)!

When you finish this chapter you will know the basics
of indirect addressing. You will finally find out
why your calculator has a special I-register, and you
will know when to press the [l] key and when to press
the [ill] key. (Basically, you'll know a whole lot.)

WHAT IT IS

Indirect addressing is a tool that can save you lots
of time and program memory if you learn to use it
properly.

There is more than one way to skin a cat. Likewise,
there is always more than one way to write a
program. It's possible to use 100 lines of program
memory to write a program one way and then turn
around and write a program that does exactly the
same thing using just 10 lines.

144

If someone asked you to store a 5 in register 0, you
would press the keys 5 ISTOI O. But there is
another way to do this (as always). It's possible
to store a 5 in register 0 by pressing the keys 0
lSTQI lll; 5 ISTOI fill].

Hmmm ... , what's going on here?

Try this: Store PI in registers 0, 1, and 2 without
touching the lID, IIi, or I2l keys.

Solution:

HP-llC

lWl ISTOI III
IIlIttl
ISTOI fill]
IrsGI

lSTQIfill]
IrsGI

lSTQIfill]

HP-15C

lWl ISTOI III
[g]~

ISTOI fill]
IrSGI III
ISTOI fill]
IrsGI III
ISTol fill]

(If you understand this solution, go on to page 148.)

145

Whenever you store a number in a register, you are
addressing that register. For example, when you
store anum ber in register 4, you first key in the
number, then you press IS'mJ 4. By pressing the 4
key you are telling the calculator which register
you want to store into. That is, you are
addressing register 4. This type of addressing is
called "direct addressing/'

But this chapter is all about indirect addressing.
If you're going to store a number in register 4 using
indirect addressing, you need to have a 4 in the
I-register; you then key in the number and press
IS'mJ [ill]. By pressing the [ill] key you are
telling the calculator "look in the I-register for
the name of the register in which to store." This is
indirect addressing.

146

Watch what happens in registers X, I, 0, 1, and 2 as
you key in the solution to the last problem:

ICLXI lSTO\OO ~ (IIJ)
J, 63 1 t

? I

O.olx I 0.0 II ? 0 I 3.14i I x II. 0 11
~ w

fill ISTOI lillJ EE2 ~ ,j, ? I
13.1'; Ix I 0.0 II ? 0 13.1'1 Ix 11.0 II

4- ..J,.

ISfol@l

~2
It SGj (111)

.1- -!t
? I

13.1'; Ix I 0.0 II 3.1~ 0 13.1L; I 12.0 I
• •
•

And notice when y()U press ISTOI 1illJ, the calculator
looks in the I-register to obtain the name of the
register in which to store.

Now clear the X-register (1<--1); then press
[ffiJJ 1illJ.

Question: Where did that PI come from?

Answer: Register 2..

There is a 2 in the I-register, so pressing IReLI

IillJ recalls the number from register 2, which is
PI.

147

~l ? \

3.1"1 0

~2 3.1'-1 I
3.14 0

~2 3. II.{ I
3.1'1 0

Try this: Write a program (15 lines or less) that
stores the numbers 50 through 59 in registers 5
through 14, respectively.

Solution: 001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

LBL A
5

o
1
4
STO I
5
o
LBL 6
STO (i)
1
+
ISG (ISG I on the HP-15C)
GTO 6

(If you understand this program, turn to page 152.)

148

Lines 002 through 009 set up the X- and I-registers
like this:

0...-.;;:,5...;...0 ,-,,' 0-",-0.;:;...0 ----,I X L.......::5~. O::....:I:....:.Lj_~ll

Lines 010 through 015 make up a loop starting with
LBL 6.

The first time through this loop, at line 011, the
calculator will look at the I-register to find the
name of the register in which to store 50 (from the
X-register). In the I-register, the calculator
finds the number 5.014. But for the address, the
calculator looks only at the digits to the left of
the decimal point. Thus, this first time through
the loop (at line 011), the calculator stores a 50
in register 5. The rest of the loop adds 1 to the
50 in the X-register, increments and tests the
I-register (remember how ISG works?), and then goes
back to LBL 6.

149

The second time through the loop, the X-and
I -registers look like this:

L-::::::5..!..!\ .:...::::O:..::.O~O ----II X t..-....:<O::::...::...::O::...:..I Lf...!--.....JI I

This time, at line 011, when the calculator looks
in the I-register for an address, it will find
the number 6.014, so it stores 51 in register 6.
Then it adds 1 to the X-register, increments the
I-register and tests to see if 7 is greater than 14.
Since it isn't, it goes back to LBL 6.

(If you need to review ISG, hold your place here and
flip back to page 128 for a quick refresher.)

The calculator will continue around the loop,
storing appropriate numbers in appropriate
registers, un til the 10th time through the loop.

150

At the beginning of the 10th time through, the X­
and I -registers look like this:

5Q.OOO I X ,lot. OIL! II

The calculator finds 14 {from the 14.014 in the
I-register} as the address of the register in which
to store that 59 (at line 011). Lines 012 and 013
add 1 to the X-register. Line 014 increments the
I-register (making it 15.014) and tests to see if 15
is greater than 14. Since it IS greater, and since
the name of the function at line 014 is Increment and
SKIP IF GREATER THAN, it WILL skip line 015. That
ends the program (whew)!

151

Try this: Write a program that recalls all those
numbers that the previous program stored (in
registers 5 through 14) and momentarily displays
them in reverse order (i.e. the number in register 14
first).

Solution: 001
002
003
004
005
006
007
008
009
010
011
012
013

LBL B
1
4

o
o
4
STO I
LBL 0
RCL (i)
PSE
DSE (DSE I on the HP-15C)
GTO 0

(If you're getting the hang of indirect addressing,
and you don't need additional explanation of this
program, go to page 156.)

152

Lines 002 through 007 store the control number
14.004 in the I-register (remember control numbers?
--page 129). Notice that, as before, this number is
used both for loop control (with the DSE function)
and as an indirect address (with the RCL (i)
function). This will frequently be the case. That
is, it's common to use the integer portion of the
loop control number as a register address.

Lines 009 through 013 make up a loop starting with
LBL O.

The first time through this loop, at line OlD, the
calcula tor will look at the I-register to find the
name of the register from which to recall. In the
I-register, the calculator finds the number 14.004.
So the calculator recalls the value from register
14. Line 012 decrements the value in the
I-register by 1, making it 13.004. It then tests
to see if 13 is equal to or less than 4 (see page
131 if you're questioning why). Since this is NOT the
case, the calculator DOES NOT skip the line
immediately following the DSE. Thus, it starts the
loop again.

(If all this looping is causing you any slight
dizziness, don't worry--this is normal and it will
clear up as you go along.)

153

(

On the second pass, the I-register looks like this:

13. OO~ I I

This time, when the calculator looks in the
I-register for an address at line 010, it will find
the number 13.004; so it recalls the number in
register 13. Then it decrements the I-register and
tests to see if 12 is equal to or less than 4.
Since it isn't, it goes back to LBL O.

The calculator will con tin ue around the loop,
recalling numbers from appropriate registers, until
the 10th time through the loop.

At the beginning of the 10th time through,
the I -register looks like this:

s.OOy II

This time the calculator recalls the number in
register 5 (line 010), displays it for a moment
(line 011); and at line 012 it decrements the
I-register making it 4.004. Since 4 is equal to or
less than 4, line 013 is skipped, and this ends the
program.

154

(Now, if you have an. HP-HC, just go to the top of
the next page.)

REG ISTERS 20-65 ON THE HP-15C

On the HP-15C, any data register above register .9
can only be addressed indirectly. So, for example,
to store the number 87.2 into register 35, you would
use these keystrokes: 35 rsm III 87.2 rsm l.ill],
assuming the top of the data memory has been set
somewhere above register 35 (35 III IDml l.ill]).

Because indirect addressing is mainly a programming
tool, and because these registers (20-65) can only be
addressed indirectly, you will find that you will
rarely use these registers except with programmed
instructions.

As an exercise in using these registers in a program,
you might want to rewrite the program on page 148 so
that it stores the numbers 50 through 59 in
registers 15 through 24.

155

INDIRECTL Y ADDRESSING LABELS

Once you understand that you can use the I-register
to specify the address of a register, it's good to
know that you can indirectly address some other
things in your calculator. On the HP-llC and
HP-15C, you can indirectly address labels in
programs. Also, on the HP-15C (only), you can
indirectly address flags.

As you know, you should refer to the capital "I"
whenever you want to ALTER the con ten ts of the
I-register itself. But whenever you want only to

{ EXAMINE these contents--to obtain the address of
another register--you should use the lower-case (i)
notation.

Well, just as you are getting that straight, the
rules are going to change on you. Itt urns out that
the above rules apply when you are indirectly
addressing REGISTERS, but not for other indirect
opera tions. So remember: the only time you will use
the [ill] key is when you are indirectly addressing a
register. You don't use this key to indirectly
address a label. If you want to go to a label whose
address is in the I -register, you press I!ITQ] [II.

You use the !II key, not the [ill] key. We'll show
you an example of indirect addressing of labels in
the program development chapter that follows.

156

At this point, take a breather and look back at how
far you've come:

You know all about the keyboard, the stack, the
display and the data registers, and how to use STO
and RCL.

You know how to use the stack for arithmetic and how
to use ENTER, CLX and LSTX.

You know about program memory and how to edit a
program.

157

You know how to use labels and GTO and GSB to tell
the program pointer how to "jump" around to different
points in a program.

You know how conditional tests work and how to use
flags, ISG and DSE to form program loops or make
decisions.

You know how to use indirect storage and recall with
the data registers.

You know that you would probably like some more
practice and review of all this--to clear up the fog
that may be lingering.

Very well. Step right this way.... ---------->

158

Mottz

159

/ /

, ,

:. ~ , -' ,
"

-,

, -

Program Development

-,
- "

. I,'

PROGRAM DEVELOPMENT

Now you are about to embark on the subject that (as
the title indicates) is the purpose of this book.
This chapter will walk you through the
development of three programs. They are fairly
simple applications, but each one demonstrates
certain methods of programming on the HP-llC and
HP-15C.

CHECKBOOK BALANCING

This first program is mainly an exercise
to get you warmed up. It is a fairly common
application--balancing a checkbook--and you will
probably find that the program does not really do
much to help with that task. But the idea of
designing and writing the program is important.

161

Checkbook balancing is something most of us
ha ve experienced (or at least the ATTEMPT is
familiar).

Try this: There are three major steps to balancing
your checkbook. Write down these three steps.

Solution:

1. Find the balance from the last time you balanced
your checkbook (and hope this wasn't too many
mon ths ago).

2. Add all the deposits and interest since that
time. Keep a running balance of the result of
each addition.

3. Subtract all checks and charges. Keep a running
balance of the result of each subtraction.

162

After you perform the above three steps, your
checkbook will be balanced. Basically, what you've
done here is defined the process by which you balance
your checkbook, in terms that are easy to understand.

You could hand this three-step list to your friends,
and they could follow it with little or no problem.

So in a sense, your checkbook-balancing program is
complete. You understand the problem, and with
these three steps, you've developed a process to
handle the problem.

So what's the big deal? (Read on ----->)

I . i 1.\' j I \

i i \'

-/ ---------~----I
/ 1/

!

163

Question: What would happen if you were to explain
a recipe to a small child (4 to 6 years old) in the
following manner?

"Get a cup of flour, 1/3 cup shortening, 1/2
teaspoon salt, and a tablespoon of sugar. Then cut
the shortening into a mixture of the flour, salt,
and sugar, until the chunks are about the size of
peas. Next, add a couple tablespoons of cold water
and blend with a fork (not too much). Shape the
dough into a ball, and roll it out. That's it!
Pie crust!"

Answer: The child would be dumbfounded.

Nevertheless, this is the way we all think. As we
develop and gain experience in life, many of the
details of day-to-day tasks become automatic; they
require no conscious thought. Driving a car is a
good example of such details becoming automatic.

But it takes patience and effort to explain even a
"simple" process to a small child, or to someone who
is unfamiliar with the basic details of that process.
So we actually have to slow down our thinking process
and analyze each step.

164

If you were explaining our pie crust recipe to a
small child, the first step of the recipe would
probably translate from "get a cup of flour" to
something like this:

"Now listen, here is a one-cup measure (note the
visual aid). Go over to the flour can and scoop
out one cup of flour. You'll need to use this knife
to level off the top, so you have exactly one cup of
flour."

So you see, it takes more words to explain a process
to a small child because a child's thinking process
is less complex than ours.

Well, to complete the analogy, the "thinking
process" of a calculator is far, far less complex
than ours. In order to program the HP-llC or HP-15C
to do a task, you III ust first list the steps by
which you would handle the task yourself, then expand
each of those steps into several, much simpler
tasks. In other words, you have to translate your
complex thinking process into simple terms that the
calcula tor can understand.

165

Try this: Rewrite the three checkbook-balancing
steps in terms that are closer to the way your
calculator "thinks."

Solution:

1. Store initial balance in a numbered register.

2. Wait for an input of either a check, charge,
deposi t, or interest.

3. If the input is a check or charge, subtract it
from the balance.

4. If the input is a deposit or interest, add it to
the balance.

5. Display the new balance.

6. Go back to step 2.

Your solution may vary considerably from ours. This
is where you start to develop your own programming
style. Everyone will approach a solution in a
slightly different manner. Try to follow our
solutions the first time through these programs;
then feel free to experiment with your own
solutions.

166

You can see that what were three general steps have
evolved into six detailed steps. And each of these
six steps carries a simpler concept than each of the
original three. And each of these six steps "sounds
closer" to the language of your calculator.

Try this: Equipped with the previous six steps,
develop a program to balance your checkbook.

Solution: 001 LBL B
002 STO 05
003 RIS
004 LBL C
005 CHS
006 LBL D
007 STO + 5
008 RCL 5
009 RIS

(If this makes sense to you, head to page 174.)

If you're even slightly confused, that's good. A
completely unexplained list of calculator code
should indeed be confusing.

What follows is an explanation of the thought
process you might use to proceed from the six steps
on page 166 to the 9 lines of code above.

167

{

First, don't expect to start at the top of the
list. Of course, the order of the steps will reflect
the order in which things will eventually be done in
the completed program. But that doesn't mean you're
going to start DEVELOPING the program at step 1.

The first thing to do is search through the list
for the steps that are most significant to the
program. Basically, what you're looking for are the
steps that look like they will take the most work.
You will develop these steps first and then design
the rest of the program around them.

168

In our list of six steps. steps 3 and 4 are the only
steps that will require some type of calculation
and some type of decisionmaking:

3. If the input is a check or charge. subtract it
from the balance.

4. If the input is a deposit or interest, add it to
the balance.

Looking at steps 3 and 4. you can see that your
calculator has to treat an input in one of two
ways, depending on whether it is a check or a
deposit. Now it boils down to this: one way or
another, you are going to have to tell the
calculator whether you are keying in a check or a
deposi t amount.

169

There are many ways to tell this to your
calculator. One of the easiest ways (we think) is to
have one key to press for a check (or other charge)
and another key for a deposit (or other credit).

So, when the program is complete, we want to be able
to key in an amount, press [f] 1Idl, and let the
calcula tor treat that amount like a check (that is,
it would subtract that amount from our balance).
Likewise, we want to be able to key in an amount,
press the IDJ key, and let the calculator treat that
amount like a deposit.

The only difference between the way a check is
trea ted and the way a deposit is treated is that a
check is subtracted from the balance, while a
deposi t is added to the balance. Other than that,
the program should treat a check the same as a
deposit.

170

Now look at a little arithmetic. Probably
everyone remembers that adding the negative of a
number is just like subtracting that number.
That is,

A - B = A + (-B)

So, when we press the [CJ key, if the calculator
just puts a negative sign on the amount we've keyed
in, then treats it like a deposit--thus ADDING this
(negative) number to the balance--that should do
the trick!

With all this in mind, we can sketch out a routine
to handle steps 3 and 4 of our list:

LBL C
CHS
LBL D
RCL BALANCE
+
STO NEW BALANCE

Of course, there are no "RCL BALANCE" or "STO NEW
BALANCE" functions on your calculator. We
haven't yet designated a storage register for keeping
the balance. But by using this terminology, we can
organize our thoughts in a language that is close
to what the calculator uses but that we can still
understand, too.

171

These six lines will just a bou t take care of
steps 3 and 4 of our list. Now we are going to put
those steps on the back burner for awhile, and look
a t the others instead.

Try this: Transla te--in to the language of your
calculator--steps 1 and 2 ("store initial balance
in a numbered register" and "wait for an input").

Sol u tion: LBL B
STO 5
RIS

We have chosen the IBl key to indicate "initial
balance," and we have chosen register 5 to store
that balance. So with this little routine in your
program memory, you can key in the initial balance
of your checking account, press I1J 1Bl, and the
calculator will copy the number in the X-register
in to register 5.

172

Try this: Put steps 1, 2, 3, and 4 together, and
rewrite steps 3 and 4, now that you know where the
balance is stored (register 5).

Solution: LBL B LBL B
STO 5 STO 5
R/S R/S
LBL C or LBL C
CHS CHS
LBL D LBL D
RCL 5 STO + 5
+
STO 5

Either of the above routines will take care of steps
1 through 4. The routine on the left will even take
care of steps 5 and 6. But the routine on the right
will not do step 5 of our list unless we add RCL 5
at the end. Even then, the routine on the right will be
the shorter of the two, so let's look closely at
how it works:

001 LBL B
002 STO 5
003 R/S
004 LBL C
005 CHS
006 LBL D
007 STO + 5
008 RCL 5

173

First, key this program into your calculator. Starting
in RUN mode, here are the keystrokes:

KEYSTROKES DISPLAY

Igl !PjRl
~~ L_ n __ ._-.:.I

lIJ CLEAR lPRG.\Il 000-
[f] !LELJ lB1 001- 42,21, 12
lST.QJ 5 002- 44 5
~~ 003- 31
lLBLI [CJ 004- 42,21, 13
lCHSJ 005- 16
ILBLI [D] 006- 42,21, 14
lSTOJ [±] 5 007- 44,40, 5
[RCLJ 5 008- 45 5
[g] [!l/~ RUN mode display

174

N ow the program is ready to use. It is designed so
that when we want to balance our checkbook, all we
have to do is key in the balance from the last time
we balanced it, and press [f] IBl (for Balance).

We then key in the amounts of any checks we have
written or deposits we have made and press [f] ICI
(for Checks) or [f] !Dl (for Deposits). Simple!

Try this: The last time you balanced your checkbook
your balance was 1422.56. Since then, you have
written 3 checks (27.22, 96.00, and 445.75); you also
deposited your weekly paycheck (1242.32) and a
di vidends check from an in vestmen t you made several
years ago (377.85). Using the checkbook balancing
program you just keyed in, find the current balance
of your checkbook.

Solution: 2473.76

(If you need no more explanation of this program, go
to page 177. But if you're in the slightest doubt.. .. ---»

175

f

First, you need to key in the most recent balance of
1422.56 and press 11J!BJ. The calculator will
flash "running" at you for a split second, and then
it will stop with 1422.56 in the display. This
balance is now stored in register 5.

Then you simply key in 27.22 I1J [J for the first
check. The calculator will subtract 27.22 from the
balance in register 5 and display the new balance.
Then you have to key in the next two check amounts,
pressing I1J [J after each one.

Finally you key in the deposits, one at a time,
pressing I1J !Dl after each one. Each deposit will
be added to the balance in register 5 and the new
balance will be displayed. The final result is
2473.76. (Let's hope you have a checking account
that earns interest!)

176

As you'll recall, our program looks like this:

001 LBL B
002 STO 5
003 RIS
004 LBL C
005 CHS
006 LBL D
007 STO + 5
008 RCL 5

Is there anything we can add to this program to make
it better? Hmmm ... let's see

How about this? Since we're always dealing in
dollars and cents when we run this program, let's
make the program set the display to show only two
decimal places (FIX 2).

177

Try this: Insert a line in the program so that when
you key in the initial balance, the program will set
the display to show only two decimal places.

Solution:

001 LBL B
002 STO 5
003 FIX 2
004 Ris
005 LBL C
006 CHS
007 LBL D
008 STO + 5
009 RCL 5

The line FIX 2 is inserted right after line 002 in
the program. (If you had any difficulty inserting
this line, turn to page 109 for a review of program
editing. Then come back and continue from here.)

178

So the checkbook balancing program is complete. You
may want to take a break now, make yourself a
soothing cup of tea, and use this new program to
balance your checkbook.

You'll probably find, when using this program, that
it's just about as easy (or even easier) to balance
your checkbook by using the stack to do the
arithmetic. But developing this program was a good
exercise, don't you think?

179

Nnt~s

180

FEET, INCHES, AND SIXTEENTHS

"For our next number," we will develop a program to
convert feet, inches, and sixteenths of inches into
feet and decimal fractions of feet, and vice versa.
For example, 1 foot and 6 3/16 inches will be converted
to 1.515625 feet; and 1.515625 feet will be
converted to 1 foot 6 3/16 inches.

The calculations involved in this program will be
relatively simple. But the main emphasis of this
program will be the format of the input and output.
To put it bluntly, we have to develop a convenient
way to input feet, inches, and sixteenths of inches!

Now, it would be best if we could key in one number
to represent all three units (feet, inches,
sixteenths). To do that, we need to develop a format
to represent three different things with one number

181

Try this: Convert 3 hours, 26 minutes, and 14
seconds in to hours and decimal fractions of
hours.

Solution: 3.2614 fil 8illJ (displays 3.43722)

So 3 hours, 26 minutes, and 14 seconds is equal to
3.43722 hours.

The point here is that for certain functions on your
calcula tor, one n um ber can represent diff eren t
things. The 8illJ (convert to Hours) function looks
at the number in the X-register and sees the digits
as representing Hours, Minutes, and Seconds, in the
form HH.MMSS.

The HH means "number of hours," the MM means "number
of minutes," and the SS means "number of seconds."
So 03.2614 means 3 hours, 26 minutes, and 14 seconds.
There are only two places reserved for minutes,
because the number of minutes will never exceed 60
(that's an hour), and fractions of minutes are
expressed in seconds. (However, there are actually
more than two places reserved for seconds. If you
want to key in 1 minute, 57 3/4 seconds, you would
key in .015775, because 3/4 = 0.75. The fraction
of a second is keyed in after the whole seconds.)

182

Well, why not take this format (that HP has
developed) for representing hours, minutes, and
seconds--with one number--and adapt it to fit our
feet, inches, and sixteenths problem? (Aha!)

183

Try this: Express 4 feet, 8 and 9/16 inches in a

format similar to the HH.MMSS format.

Solution: 4.0809 (FF.IISS)

(At this point, we are, of course, feeling enormously
pleased with ourselves for such cleverness.)

This is the input format that we'll use in our
conversion program. We will key in feet, inches,
and sixteenths of inches, using the form FF.IISS!

Here FF means "number of feet," II means "number of
inches," and SS means "number of sixteenths." Two
places are reserved for the inches and the
sixteen ths. This makes good sense because there
will be, at most, 11 and 15/16 inches (.1115) in any
fraction of a foot.

184

Try this: Sketch down the general steps required to
convert an input of the form FF.IISS (feet, inches,
sixteenths), to feet and a decimal fraction of a foot
(we'll represent feet and decimal fraction by the
normal numerical FF.ffffff ...).

Solution:

1. Get the input of the form FF.IISS

2. Take the integer portion (FF) and save it. This
is the number of whole feet (it won't change in the
final answer). Also, save the fractional portion (.IISS).

3. Multiply this fractional portion by 100 to get (II.SS).

4. The integer portion of (II.SS) represents the
number of whole inches, and the fractional portion
represents the number of sixteenths. Separate these
two portions.

185

5. Divide the fractional part by 1.92 (.SS/1.92).

6. Divide the number of inches by 12 (to get II/12),
and add up all the parts.

7. The result will be the sum: FF + II/12 + SS/192.

What we're shooting for in the solution is this:

First, we want to save the FF part of the input
because this is the number of whole feet, and we
don't need to change this in the final answer.

Next, we need to find the number of inches (II) and
divide this by 12 (there are 12 inches in a foot).
Then we have to find the number of sixteenths and
divide it by 192 (12 x 16), since there are 192
sixteenths-of-an-inch in one foot.

186

Try this: Sketch down the steps required to take an
input of feet and decimal fraction of a foot
(FF.ffff) and convert it to feet, inches, and
sixteenths (FF.IISS).

Solution:

1. Get an input of FF.ffff.

2. Save the integer portion, FF.

3. Multiply the fractional portion by 12 and save
the integer portion of the result, II.

4. Multiply the remaining fraction by 16, SS.
(Let's leave fractions of sixteenths just like
fractions of seconds.)

5. Save the result in the X-register in the form
FF.IISS (FF + II/lOO + SS/lO,OOO).

187

Let's run an arbitrary number through these steps to
see if they work. Try, for example, 14.9 feet.

Step 2 says to save the integer portion. The
integer portion of 14.9 is 14. So, save 14.

Step 3 says to multiply the fractional portion by 12
to get the inches (12 X .9 = 10.8). Again, we save
the integer portion.

So far we have 14 feet, 10 inches, and 8 tenths of
an inch. To con vert the 8 tenths of an inch in to
whole sixteenths, multiply the .8 by 16. This gives
12.80, so the final result is 14 feet, 10 and
12.80/16 inches.

Our general idea seems to be working!

188

From the way things are working out, it looks like
we are going to develop two independent routines.
One of these routines will take an input of the form
FF.IISS and return feet and decimal fractions of feet
(FF.ffff). The other program will take an input in
the form FF.ffff and return FF.IISS. These two
routines will be a matched pair of functions much
like the I->HI (convert to hours) and !->H.MSI

(convert to Hours Minutes and Seconds) functions.

If we combine our lists and put them under labels A
and B, they might look like this:

189

1. LBL A (input: FF.IISS).

2. Save the integer portion of the input: FF.

3. Multiply the fractional portion by 100, to get II.SS.

4. Save the integer portion: II.

5. Divide the fractional portion by 1.92, to get SS/192.

6. Divide the inches by 12, to get II/12.

7. Result = FF + II/12 + SS/192.

8. END of LBL A (output: FF.ffff).

9. LBL B (input: FF.ffff)

10. Save the whole feet: FF.

11. Multiply the fractional portion by 12, to get II.

12. Multiply the remaining fraction by 16, to get SS.

13. Result = FF + II/100 + SS/lO,OOO.

14. END of LBL B (out pu t: FF.IISS).

190

Try this: At this point, you should be able to take
the list of sixteen steps from the previous page and
convert them to HP-ll or HP-15 program lines. Give
it a try and see if you can come up with a workable
solution. It's possible to do all the calculations
using only the stack registers.

Solution:

001 LBL A 012
002 INT 013 9
003 LSTX 014 2
004 FRAC 015 • ..
005 EEX 016 X<>Y
006 2 017 1
007 x 018 2
008 INT 019 +
009 LSTX 020 +
010 FRAC 021 +
011 1 022 RTN

191

023 LBL B 034 6
024 INT 035 x
025 LSTX 036 EEX
026 FRAC 037 2
027 1 038 • ...
028 2 039 +
029 x 040 EEX
030 INT 041 2
031 LSTX 042 ..;-

032 FRAC 043 +
033 1 044 RTN

If you have no problems keying in the above program,
and you're sure you understand how it has been developed
then cruise on ahead to page 199. Otherwise... ----->

192

Let's take a quick (exciting) look at how each step
in the list on page 190 transforms into this final listing
of program code.

1. LBL A (input FF.IISS):

001 LBL A

The first step translates directly over. When you
press III !AJ to execute the complete program, the
calculator will assume that an input in the form of
FF.IISS is sitting in the X-register.

2. Save the integer portion of the input:

002 INT

The IINTI function saves, in the X-register, the
integer portion of the input, which is FF. The
original input, FF.IISS, is saved in the LASTX
register.

193

3. Multiply the fractional portion by 100:

003 LSTX
004 FRAC
005 EEX

006 2
007 x

Before we multiply the fractional portion by 100, we
ha ve to get the fractional portion in to the
X-register. The original input is in the LSTX­
register (Do you remember why? See page 56). Line
003 recalls the original input; line 004 takes the
fractional portion of it; lines 005, 006, and 007
multiply the fractional portion by two.

4. Save the integer portion of this result:

008 INT

This saves II in the X -register (and II.SS in the
LASTX -register).

194

5. Divide the fractional portion of I1.SS by 1.92:

009 LSTX
010 FRAC
011
012

1

013 9
014 2
015 . ..

Dividing .SS by 1.92 gives the same result as
dividing SS by 192. Right? Now the stack would
look like this:

? T --------
FF Z :--------
II Y

~-------
SS + IQ2. X

6. Divide the inches by 12:

016
017

X<>Y
1

018
019

2

The inches (in the Y -register) are brought into the
X-register and d.i vided by 12. The stack looks like
this:

195

7. Result (FF.ffff ...) = FF + II/12 + SS/192:

020 +
021 +

The final result ends up in the X-register.

8. END of LBL A:

022 RTN (the output is FF.ffff)

9. LBL B (input: FF.ffff):

023 LBL B

This is the beginning of the routine that converts
an input of feet and decimal fraction to feet,
inches, and sixteenths. The input of FF.ffff is
assumed to be in the X-register.

10. Save the whole feet:

024 INT

The whole feet are saved in the X-register (and the
original input is saved in LASTX).

196

11. Multiply the fractional portion by 12:

025 LSTX
026 FRAC
027 1

028 2
029 x
030 INT

This brings the original in pu t back in to the
X-register and multiplies the fractional portion
(.ffff) by 12. The last statement (INT) saves the
integer portion in the X-register.

12. Multiply the remaining fraction by 16:

031 LSTX
032 FRAC
033 1

034 6
035 x

The result of multiplying .ffff by 12 is in the
LASTX-register, so we need to call it up and get the
fractional portion. Then we multiply it by 16. Now
all the numbers have been calculated. From here,
it's just a matter of moving each part into its
proper decimal place in the output. The stack looks
like this:

? T 1--------
Ff: Z 1--------
II Y 1--------
5S X

197

13. Result = FF + II/I00 + SS/10,OOO:

036 EEX
037 2
038 -:-
039 +

040 EEX
041 2
042
043 +

In this final segment program we first rearrange the
above equation to this: Result = FF + (II + SS/100)/100.

In this form the equation is easier to translate into
program code. With SS in the X-register, all the
program does is divide by 100 (Remember EEX from
page 271), add that result to II (in the Y-register),
divide again by 100, and add that to FF.

14. END of LBL B: 044 RTN (output: FF.IISS)

198

Try this: Con vert 4 feet, 11 and 5/16 inches to
feet and decimal fraction.

Solution: Assuming you have the program keyed in
(from pages 191-192), you key in 4.1105 !1l 00. The
answer is 4.9427 feet.

Try this: Convert 7.0729 feet to feet, inches, and
sixteen ths.

Solution: Key in 7.0729 !1l [B] to get 7.0014

The conversion routine is complete!

Do you see how much work you can make the calculator
do for you?

Are you starting to get the knack of manipulating
numbers through program steps?

Just to make sure, here's one more good practice
exam pIe. ----->

199

GRAPHING AN EQUATION

The final program we will develop is a program
to evaluate a table of X- and Y-values for an
eq ua tion that you program in to the machine. How does
that sound? (It really isn't very difficult.)

Most of us have done this before in an old algebra
class (long, long ago, in a galaxy far, far away ...).
Back in algebra, they called it "graphing" an
eq ua tion or ' 'plot ting" an eq ua tion. We might start,
for example, with some equation like Y = X2 + 5X.

Now remember, these Y's and X's don't have anything
to do with the X- and Y-registers in the stack. We
could easily rewrite this eq ua tion as: B = A 2 + 5A,
or (OUTPUT) = (INPUT?'+ 5(INPUT).

But, because it's common to talk about equations
graphed on the X and Y axis, we'll use the original
Y = X2 + 5X. So to keep our thoughts clear, whenever
we mean the X-register, we'll write "the X-register."
Otherwise, X means the variable number X in the
equation, OK?

200

Anyway, to plot the equation Y = X2 + 5X, we would
start at, say, zero and plug in a bunch of values
for X--to see what Y-value each X gives.

We would generate a. table that looks like this:

For X ~ugl to Y el\l.la!s

0 0
t C;

~ 14
3 2't

-1 -4-
-2 -6
-3 -6
-4- -4

-5 (/)

-6 6
-7 14

-8 24

201

Then we could take these pairs and plot them on a
graph with the X-value plotted horizontally and the
Y -value plotted vertically:

y

(-t,2 (). Zit)

(I,.)

202

The program we develop will generate the X,Y pairs,
so that we can plot the graph of any equation we
program in to our HP-11C or HP-15C.

Try this: Write a routine to do the equation:

Y = 4X 3
- 12X + 5

or
OUTPUT = 4 x (INPUT)3 - 12 x (INPUT) + 5.

Solution: 001
002
003
004
005
006
007
008
009
010
011
012
013
014

LBL 0
STO 5
3
yx

4
x

RCL 5
1
2
x

5
+
RTN

(If translating an equation into a program has you
flustered, then take a break and go back to pages
64-93. It will refresh your memory; then you can
come back and start again at the top of this page.)

203

Try this: Use the above routine to create a table
of X,Y pairs for the equation Y = 4X3- 12X + 5.
Start with X = 0 and run the program. The result
is Y. Then increase the X-value by 0.25 each time,
up to 2. You will generate 9 pairs of X and Y.

Solution:

For X eg ual to Yegyals
0 5.0000
0.25 2.0625
0.50 -0.5000
0.75 -2.3125
1.00 -3.0000
1.25 -2.1875
1.50 0.5000
1.75 5.4375
2.00 13.0000

Got it? (Partly?)

204

All it amounts to is this: To get the first
Y -value (after you've keyed in the program), key in
o ~ 0, and your calculator will return 5.0000 (if
you're set to FIX 4). So the first X,Y pair is 0,5.
An X-value of zero gives a Y-value of 5. Plain
and simple.

To get the next Y -value, key in .25 IGSBI 0, and
your calculator will ret urn 2.0625. Keep going
un til you have nine X, Y pairs.

Try this: Write out, step by step, what you just
did on the last page, as if you were explaining the
process to a friend.

Solution: "Well, let's see "

205

1. "1 read the problem and saw that I was supposed
to use the LBL 0 routine to generate a table of X,Y
pairs. I was to begin at X=O, end at X=2, and
increase by 0.25 each time. So I was told the name
of the program with which to evaluate the Y-values,
the beginning X -val ue, the ending X-value, and the
increment.

2. "1 started at the beginning X -val ue.

3. "1 ran this current X-value through the LBL 0
routine to get Y.

4. "1 wrote down the X,Y pair.

5. "1 added the increment (0.25) to x.

6. "1 checked to see if this new curren t X-value was
greater than 2 (the ending X-value). If it wasn't,
I repeated steps 3 through 6. If it was, I stopped,
and I smiled."

206

Question: What are the six steps that a program
would perform to do what you did on page 206 (one
page back)?

Answer:

1. The calculator needs to know the name of the
function (LEL 0) with which to generate X,Y pairs.
It also needs to know the beginning X-value (0),
the ending X-value (2), and the increment value,
(0.25). The calculator should store all this.

2. start at the beginning X-value.

3. Run this current X-value through the named
program (LEL 0) to get Y.

4. Display the current X,Y pair.

5. Add the increment to the current X-value to
get a new current X-value.

6. Check to see if this new current X-value is
greater than the ending X-value. If it isn't,
repea t steps 3 through 6. If it is, stop.

207

See w ha t we're getting at? These six steps are
near ly the same as those on the page 206.

The general steps that YOU take to complete a
process are quite similar to the steps a program has
to take to complete the same process.

Now it's just a matter of expanding these general
steps in to ca1cula tor program lines.

Let's agree to store the required data as
follows:

I-register--Name of the function to plot

register I--Beginning X-value

register 2--Ending X -val ue

register 3--Increment value

208

Now let's look at step 1 in our list of six steps.

1. "The calculator needs to know the name of the
function (LBL 0) with which to generate X,Y pairs,
the beginning X-value (0), the ending X-value (2),
and the increment value (0.25). The calculator
should store all this."

Question: How can we handle this step in a program?

Answer: There are many ways to do this. The final
goal to every approach is to get the four values
into the four registers (the name of a numeric label
into the I-register, the beginning X-value into
register 01, the ending X-value into register 02, and
the increment into register 03.

The way we're going to approach it is this: These
four values will be keyed into the stack (X,Y,Z,
and T) right before we run our plotting program.

209

So the first part of the program is going to assume
tha t the T-register contains the function name; the
Z-register contains the beginning X-value; the
Y-register contains the ending X-value; and the
X-register contains the increment, OK?

With this assumption, we can sketch out a routine
tha t could handle step 1 of the 6 step list:

LBL A
STO 3 (stores the increment in register 3)
Rt
STO I (stores--in I--the name of the function to plot)
Rt
STO 1 (stores the beginning X-value in register 1)
Rt
STO 2 (stores the end X-value in register 2)

210

Now, look at step 2:

2. "Start at the beginning X-value."

This step merely reminds us that, on the first time
through, the beginning X-value will be the current
X-value. The current X-value will always be
maintained in register 1.

211

Try this: Expand the next step for your calculator.

3. "Run this current X-value through the named
program (LBL 0) to get Y."

Solution:

LBL 1
ReL 1 (recalls the current X-value to the X-register)
GSB I (branches to the LBL named in the I -register)

(No sweat? Then head to page 214.)

Look at it this way: When you were generating the
table of X,Y pairs manually, you established a
current X-value in the X-register, and then you
ran the program under LBL o. Well, the program you
write to generate these X,Y pairs is going to have to
go through the same process.

212

So the line "RCL 1" brings the current X -val ue in to
the X -register.

The line' 'GSB l' f says ''look at the program name in
register I and GSB (Go SuB) that program." This is
another form of indirect addressing. You are
indirectly addressing a label.

Notice that the keystrokes are [g] lGSB] 1Il, NOT
[g] iGS.6l [ill]. For some reason, HP chose to use
the rn key for indirectly addressing LBL's. In
fact, as long as you remember that the [ill] key is
used only for the indirect addressing of REGISTERS,
you'll get along fine.

Finally, notice that we put the LBL 1 at the top.
Step 6 mentions going back to step 3, so we need a
marker (LBL 1) to tell the pointer where to "jump."

213

Try this: Expand step 4 ("Display the current X,Y pair").

Solution:

RCL 1
RIS

This will cause the program execution to stop with
the current X-value in the display (and the
X-register, of course) and the current Y-value in the
Y-register. You'll need to write down each X,Y pair
so you can plot the eq ua tion. So just write down X,
press lXQY] and write down Y.

To get the next X,Y pair, start the program running
again by pressing IR7~.

Now expand the next step:

5. "Add the increment to the current X-value to get
a new current X-value."

Solution:

RCL 3 (increment)
RCL 1 (current X-value)

+
STO 1 (new X-value)

214

Finally, write the program lines for this step:

6. "Check to see if this new current X-value is
greater than the ending X-value. If it isn't,
repeat steps 3 through 6. If it is, stop."

Solution:

RCL 2
RCL 1
X~Y

GTO 1
RTN

Now put it all together(!)

001 LBL A
002 STO 3 (stores the increment in register 3)
003 Rt
004 STO I (stores--in I--the name of the function)
005 Rt
006 STO 1 (stores the beginning X-value in register 1)
007 Rt
008 STO 2 (stores the end X-value in register 2)
009 LBL 1 (beginning of loop)
010 RCL 1 (recalls the current X-value)
011 GSB I (branches to the LBL named in the I-register)

215

012 RCL 1
013 R/S
014 RCL 3 (increment)
015 RCL 1 (current X-value)
016 +
017 STO 1 (new X-value)
018 RCL 2
019 RCL 1
020 X~Y
021 GTO 1 (end of loop)
022 RTN

Key this program into your machine, but DON'T ERASE
the program that is there under LBL O. Make sure
your calculator is in RUN mode and press IiJllITNl.
Then put it into PROGRAM mode (1iJ1!Z~), and the
display will show 000- . Now, as you key in
the above program steps, the other program steps
will be pushed farther down into program memory.

216

Before you can use this plotting program, you
have to do two things:

1. You need to key in a program under some numeric
LBL other than LBL 1. This program will represent
the function you want to plot.

2. You need to set the stack up like this:

F14nct [0,", NaMe --------
Be.sin X --------
End X --------
Increment

Try this: You have two programs in your calculator-­
the plotting program and the program under LBL 0
that gives Y values for the equation: Y = 4X3 - 12X + 5
when you input X.

Now generate a table of X,Y pairs for this equation
beginning at -2.2, ending at 0.4, and increasing by
0.2 each time.

Sol u tion: 0 lEN1'.ERl 2.2 lCHBJ lEN.1'Jml .4 tENTER! .2
1Il tAl. The calculator will stop with the first
X-value in the X-register and the first Y-value in
the Y-register. Write down the first X-value, press
IX<>YI, and write down the first Y -value. Then
press IRlsi to compute the next X,Y pair etc.

217

For X equal to Yequals

-2.2 -11.1920
-2.0 -3.0000
-1.8 3.2720
-1.6 7.8160
-1.4 10.8240
-1.2 12.4880
-1.0 13.0000
-0.8 12.5520
-0.6 11.3360
-0.4 9.5440
-0.2 7.3680

0.0 5.0000
0.2 2.6320
0.4 0.4560

It's easy!

218

This is what programming is all about. You must
think carefully just once--when you write the program-­
and then you can make your calculator do all of the
boring, repetitive work for you--over and over!

But remember! You have to SPEND some time first in
order to SAVE time later. So keep practicing--with
these programs or with others of your own choosing.

And for other helpful ideas for getting the most out
of your calculator, you might want to read through
the appendices that follow. But as of now, you have
graduated from the Easy Course.

CONGRATULATIONS!

Appendices

APPENDIX 1

Using The Manuals

In this course, we gave you some visualization
tools (ways to picture your calculator's insides)
and a fundamental knowledge of how your calculator
works. How much you retain will depend upon your
calculating needs and how much you practice with
your calculator.

Also, once you have this basic know ledge of the operation
of your calculator, it is much easier to work with the
man uals that came with your calculator and with other
HP books. So at this point, the manuals are good
sources to use in expanding your knowledge of the
works of your machine. You will find them to be
excellent books for this kind of continued reference.

To use the manuals effectively for reference, you
need to learn how to use the indexing in the back of
those manuals. There is a "Function Summary and Index"
or "Function Key Index," in case you need to know more
about using a particular function on your calculator;
and there is a "Subject Index," where you can look up
more general information about a particular subject.

221

In order to look up something quickly, you have to
know enough about your calculator to have in mind a
word or two that you can refer to as a possible
lead. But it's a little bit like the old dictionary
dilemma: "How do you look up the spelling of a word
in a dictionary if you don't know how to spell it?"

Well, the best way to familiarize yourself with your
manual and its index is to skim through the
entire book, working examples here and there; also,
skim through the indexes. After all, let's face it:
Reading the whole manual thoroughly would take the
better part of a long time. And few people need to
know EVERYTHING about their calculator. Some people
may use the hyperbolic functions on their calculator
every day, and some people may never use them. The
same goes for statistical functions, etc. It's all
up to you and how you use your calculator.

This course has given you the basic vocabulary you
need to look up those subjects you want to study more
thoroughly. Hopefully, with this vocabulary, you can
now ask yourself questions such as these:

222

"Do I really know the effect that the l%J FUNCTION
has on the STACK? It's not acting as I think it
should, so maybe I should look it up in the FUNCTION
INDEX to learn the details."

or

"Is something weird happening in the DISPLAY? Maybe
I'll find the answer by looking up DISPLAY in the
Subject Index."

or

, 'Do I really know all the details of INDIRECT
ADDRESSING ?"

or

"Do I need to review STORING NUMBERS?"

If you can ask yourself questions like these
whenever you have a problem, you'll be able to find
solutions by using your manuals for reference.

And occasionally, you may even see an ERROR message
in the display. If you do, and if you have no idea
why, just remember the last function you executed (or
put your calculator into program mode to see the
program line that caused the ERROR), and then look up
the ERROR number in Appendix A of your manual.

223

Appendix 2

'I rigonometry and Vectors with C:>RJ and i=>~

The names of the functions, 8>RJ ("convert to
Rectangular coordinates") and EiEl ("convert to Polar
coordina tes"), may not fully reveal the usefulness of
these functions. Anyone who solves trigonometry
problems or works with vectors {in science and
engineering} should be using these functions
regularly.

The easiest way to describe what these functions do
is to look at a right triangle placed on an X,Y plane:

y

.S

b

o x

224

The names of these functions (I->RI and Bill) come
from the fact that there are two ways of describing
the location of point S.

U sing rectangular coordinates, you would say "from
the origin (point 0) move the distance 'a' in the X
direction, then move the distance 'b' in the Y
direction to get to point S."

Using polar coordinates, you would say "from the
origin (point 0) move the distance '1' at an angle B
from the X-axis to get to point S."

So the names come from describing points in two­
dimensional (X,Y) space. To describe a point, you
can either specify an X-distance and a Y-distance, or
you can specify one distance and an angle. OK?

But describing points is not the most exciting
thing in the world. Few people can make a living by
describing points, no matter how many different ways
they can describe them.

225

So it's important to notice that we are not just
describing a point. We are describing a right
triangle and also a vector.

To describe a right triangle, you need only specify
the length of the legs (like 'a' and 'b') or you can
specify the length of the hypo ten use ('1') and one
internal angle ('B'). Either way, you would
completely describe the triangle.

To describe a vector, you can either specify its X
and Y components or you can specify its magnitude
and direction on an X, Y plane.

Try this: Calculate the length of the hypotenuse of
this triangle and the angle B (in degrees).

Solution: 9 rENTER] 5 [g] E->PI

226

The length of the hypo ten use is now in the
X-register (10.30) and the angle B is in the
Y -register (assuming your calculator is in degrees
mode, press /x<>y/ to see 60.95 degrees).

Press /x<>y! to get the angle back into the
Y -register. Now convert back to a rectangular
description by pressing [f] !->RI. Now 5 is back in
the X -register and 9 is in the Y -register!

It's easy to convert back and forth from the "polar
description" of a right triangle to its "rectangular
description." Just remember that, when converting to
the "polar description," the orientation of the
right triangle will determine which angle is
computed. If, in the above problem, you put a 5 into
the Y-register and a 9 into the X-register, the
hypotenuse will still be the same, but the
calculator will return the complementary angle.

227

Sol ve this: Farmer Smith has a mule named El um that
has a consist en t walking pace of exactly 1.4
meters/second. The other day Farmer Smith timed
Elum crossing one of his rectangular fields
diagonally and it took Elum 26 minutes. Farmer
Smi th knows from windrowing hay in this field that
it is three times as long as it is wide.

If Farmer Smith wants to fence in that rectangular
field for pasture, how many meters of fencing
ma terial should he buy?

Solution: 1 IENTERI 3 Ii] I->P! /X<>yl

1.4 IENTERI 26 [Xl 60 [Xl

!il /->RI !±I 2 [Xl

Answer: 5,525.13 meters

Here's how we did this:

228

Rec:1:'''~\€ i" '3 t'"nes M \0"3 o.sit is wid.e

SUMMING VECTORS

Try this: What is the resultant of summing these
vectors?

y

Solution: 19 IENTERI 4.6 iIl ~
[STQ] 0 Ix<>yl [STQ] 1

Answer:

26 IENTER! 12.2 [f] ~

[STQ] (±] 0 iXs:> yl lSIQJ (±] 1

IRCLl 1 IRCLl 0 [iJ !->P!

16.78 @ 24.08deg

To sum vectors, you first need to break them into
their X and Y components. This is done using the
r=>""R] function. Then, you simply sum the X compo­
nents, then the Y components, to get the X and Y
components of the resultant vector. Finally, you
can convert back to a magnitude and angle using
the E>-E function. This is what we did here.

229

Here's a program you can use to sum vectors. With
this program in your machine, simply key in the angle
of the first vector, press IENTERI, key in the
magnitude of the first vector, IENTERI, key in the
angle of the second vector, tEN'tERI, key in the
magnitude of the second vector, and press fil 00.
The resultant vector's magnitude ends up in the X­
register and the angle ends up in the Y -register.

001 LBL A
002 ->R
003 X<>Y
004 Rt
005 Rt
006 ->R
007 Rt
008 +
009 R~

010 +
011 Rt
012 ->p

To solve the previous problem--using this
program --the keystrokes would be:

19 IENTERI 4.6 IENTERI 26 IENTERI 12.2 If] 00

The answer is the same, with the magnitude appearing
in the X -register and the angle in the Y -register.

230

FLAGS

Appendix 3

(Features of the HP-15C)

The HP-15C has 10 flags you can use in your
programming (flags 0 through 9). As you know, a flag
is like an indicator switch you can turn on or off, or you
can simply check its status without changing it. By
set ting a flag (using lSEl), you are swi tching it on,
and by clearing a flag (using 1ITl), you are switching
it off. This feature is useful for making decisions
in programming (if you are having trouble using flags,
you may want to review pages 123-127 in this book).

All of the flags except flag 9 will stay in the
positions to which you set them until you change
those positions (or a program changes them).

One more thing: Flags 8 and 9 have special meanings
to the calculator. Flag 8 turns on a little 'c' in
the display to indicate tha t the calculator is in
Complex mode (which is discussed in the following
section). Therefore, if you have Flag 8 set (so the
'c' is showing in the display) you should clear it
(unless, of course, you're working with complex
numbers).

231

Flag 9 causes the display to blink, which is
fun--and can be useful--in programs. Remember,
however, that this flag is cleared whenever you turn
off your calculator or press ls:-=l.

Try this: As an exercise in using flags, write a
program that checks each flag (0 through 9) and
generates a number in the X-register that indicates
which flags are set. For example, if flags 1, 2,
and 4 are set (and the rest are clear), the program
will generate the number 124. If flags 5 and 0 are
set, the program will generate the number 50. If no
flags are set, the program will generate: -1.

Solution: We have two program listings. They both
use the same logic, but the second listing uses
indirect addressing of flags--to shorten the routine .

. /
./
./

232

Addressing the flags DIRECTLY:

001 LBL A 030 F? 8
002 FIX 0 031 8
003 0 032 F? 8
004 F? 1 033 GSB 9
005 1 034 F? 9
006 F? 2 035 9
007 2 036 F? 9
008 F? 2 037 GSB 9
009 GSB 9 038 F? 0
010 F? 3 039 GTO 0
011 3 040 1
012 F? 3 041 CHS
013 GSB 9 042 X<>Y
014 F? 4 043 X=O
015 4 044 X<>Y
016 F? 4 045 R/S
017 GSB 9 046 LBL 0
018 F? 5 047 1
019 5 048 0
020 F? 5 049 X

021 GSB 9 050 R/S
022 F? 6 051 LBL 9
023 6 052 X<>Y
024 F? 6 053 1
025 GSB 9 054 0
026 F? 7 055 X

027 7 056 +
028 F? 7 057 RTN
029 GSB 9

233

Or, addressing the flags INDIRECTLY:

001 LBL B 020 1
002 1 021 CHS
003 022 X<>Y
004 0 023 X=O
005 0 024 X<>Y
006 9 025 R/S
007 STO I 026 LBL 0
008 FIX 0 027 1
009 0 028 0
010 LBL 1 029 x
011 F? I 030 R/S
012 RCL I 031 LBL 9
013 INT 032 X<>Y
014 F? I 033 1
015 GSB 9 034 0
016 ISG I 035 x
017 GTO 1 036 +
018 F? 0 037 RTN
019 GTO 0

The indirect addressing occurs in the loop starting
at line 010 and ending at line 017. This loop takes
the place of lines 004 through 037 in the first
listing. Do you see how useful this indirect
addressing can be?

234

COMPLEX MODE

When you set flag 8, a little 'C' comes on in the
display. This 'C' indicates that your calculator is
in Complex mode. There are two functions that
AUTOMATICALLY set flag 8, thereby putting the machine
in to Complex mode. These two functions are
I1l IIJ and I1l IRe<>Iml.

We can't take the pages needed to describe complex
mathematics; the full details of Complex mode on the
HP-15C are described very well in the HP manual. But
we would like to show you a couple things you need to
know a bou t Complex mode.

First, the only time flag 8 should be set is when you
are working with complex numbers. Some functions,
such as I->RI and i >PI, work completely differently in
Complex mode. So, be sure the little 'C' is on
ONLY when you want it on.

When the calculator is set to Complex mode, it uses
some of that "memory used to store other things" to
set up an imaginary stack (see pages 71-74 if you don't
remember what this memory is):

235

Try this:
4 + i7

+ 9 + i8

Solution: rID §F] 8

Answer:

4 IENTER! 7 [II 1Il
9 !ENTER! 8 [II 1Il

EEl

13 + i15

Here's what happens in the real and imaginary stacks
when you go through these keystrokes.

0.0
0.0

mrn rnrn mrn~
9 --2'1) IE.NT€RI 8 JL) ill IIJ--.:t

W· W· T
- -!. L Z
? ? Y
I~ 15 X

£B-3

236

To see the con ten ts of the imaginary X -register, you
can either exchange the con ten ts of the real and
imaginary X-registers (by pressing [f] llfe<>Iml), or
you can temporarily bring a copy of the contents of the
imaginary X -register into the display (by pressing
[i] [illJ).

The important function to understand is [i] [11.
Whenever you press [i] 1Il, the con ten ts of the real
X- and Y-registers are combined to form a complex
number. These are the details of pressing [f] 1Il:

1. The contents of the imaginary Z- and T-registers
move down one notch.

2. The con tents of the real X-register moves into
the imaginary Y-register (writing over what was
previously stored there).

3. The contents of the real Y -, Z-, and T-registers
move down one notch.

237

Try this: Registers 0 through 3 contain the numbers
a, b, c, and d respectively. What are the keystrokes
to solve the problem:

a + ib
+ c + id

Sol u tion: !llilJ 0 !llilJ 1 III (I]

!llilJ 2 !llilJ 3 III (I]

I±l

Can you fill in these stack diagrams?

Re 1:N\

m'" m·d. 1. ?e

!c ~
Q. 0.0

l!ttL! 0 J I ~IRC.L11

f{'~ ;: ?t ?~
Q. 0.0
b 0.0

_:1' l) moo

238

I->RI and I->PI in Complex mode

Just a word to the wise here:

Be aware that the E?El and ~ functions use the
imaginary X-register in Complex mode as they would use
the Y-register in real (non-Complex mode). This is handy
for converting complex numbers from "polar" or "phasor"
notation to "a + ib" (rectangular) notation, and vice versa.

The "out of Complex mode" operations of these
functions are covered in Appendix 2 (page 224).

ISOLVEI and I1ZJ

The ISOLVEI and 1m (integrate) functions are two
useful functions that we haven't covered in this book-­
and for good reason:

The manual's descriptions of these functions are
excellent, provided you have a strong fundamental
knowlege of your calculator. In other words, if you
know how the stack works, and how to write a program
to evaluate an equation (as you did in the chapter
"The Naked Program"), then you'll have no problems in
learning to use ISOLVEl and 1m.

239

MATRICES ON THE HP-15C

This book is not going to cover matrices to
any significant extent. But again, the vocabulary
and foundation you have gained from this course will
aid you in working through the "Calculating With
Matrices" section in your manual. The manual's
approach is excellent, but go slowly! The computing
power of this machine is awesome, and we mortals have
to take a little time to grasp it.

To get you started, here is a short summary of the
calcula tor's storage of matrices:

Your calculator stores matrices in the "memory used
to store other things" that we discussed on page 73.
Each element of a matrix is stored in a separate
register. So one three-by-three matrix will use 9
registers of memory; one five-by-five matrix will use
25 registers.

To store these elements, you have to tell the
calculator to reserve space for them. This is called
"dimensioning" a matrix. But remember this: The
HP-15C won't let you dimension a matrix if that would
req uire destruction of a program already stored in
the "memory for other things."

240

Likewise, if you have a matrix stored in that memory,
and you then try to key in a program which would
req uire some of that used memory, the calculator
wouldn't let you do it (you would see an ERROR
message).

With these ideas in mind, you can start studying your
manual; observe how programs, matrices, the complex
stack, and the ISOLVEI and integrate functions
compete for the memory in your calculator.

Also, notice the different powerful matrix operations
(III IMATRIXI 0 through III IMATRIXI 9). Notice that
these operations are printed in the table on the back
of your calculator as reminders.

241

(

Appendix 4

Fun Facts to Know and Tell

rr:;:ru an d IH]

Just the names of the functions !Wtl (Linear
Regression) and ~ (linear estimate and
correlation coefficient) may not give you much of a
clue about how to use them.

In fact, like ~ and ~, the!Wtl and ~
functions are seldom used to their full extent. So
we're going to rattle off a list of things that you
can do with these two functions and then show you
some examples of how to use them

1. If you know two points on a line, you can get
the equation for a line in the form: y = Ax + B,
where A is the slope and B is the y-intercept.

2. You can linearly interpolate and extrapolate
around two or more points on a graph (or two or more
values in a table).

242

3. You can solve for the slope and y-intercept of a
straight line that is the "best fit" through any
two or more data points. This is very handy in any
kind of experimental environment (such as physics,
chemistry, or biology labs) where you are collecting
data and then trying to fit that data to a straight
line.

So, if you ever find yourself trying to solve
something on a piece of graph paper by drawing a
straight line through two or more points, chances are
you should try one of these functions.

Of course, to use either of them, you have to know a
li t tle bit a bou t the statistics registers in your
calculator, and you have to know how to key in an X,Y
pair for statistical calculations.

Your calculator uses six of the n um bered data
registers (registers 2 through 7) for these and
other statistical functions.

243

If you want to do anything with statistics on your
calculator, the main function you need to know about
is the !Z±J function. When you press fIE, this is
what happens:

1. The number in register 2 is incremented by 1.

2. The number in the X-register is added to the
n um ber in register 3.

3. The number in the Y-register is added to the
number in register 5.

4. The square of the number in the X-register is
added to the number in register 4.

5. The square of the n um ber in the Y -register is
added to the number in register 5.

6. The numbers in the X- and Y-registers are
multiplied together and the result is added to the
number in register 7.

7. The number in the X-register is stored in the
LSTX -register.

8. The number in register 2 is stored in the
X -register.

9. Stack-lift is left disabled.

244

Whew! That's a lot of operations for just one flick
of the finger, right?

Well, to help you remember, items 1 through 6 in the
above list are summarized in a table on the back of
your calculator. Items 7 through 9 are also useful
things to know, but don't WORRY about any of these,
because the calculator takes care of them
AUTOMATICALL Yl

There are really only two things that you need to
think a bou t, and they are:

1. Whenever you start a problem that uses the 12+1

function, you need to clear registers 2 through 7.
Do this by pressing If] CLEAR 1lTI. (This also
clears the stack.)

2. To enter a statistical X,Y data point, you just
key in the Y -value, press IENTERI to put it into the
Y-register, key the X-value in (to the X-register),
and press 1m. The number then appearing in the
X-register tells you how many X,Y points you have
keyed in.

245

Try this: A line goes through the po in ts (4. 17) and
(7.32). What is the slope/intercept equation for
this line.

Solution: Y = 5X - 3

Here are the keystrokes:

[f] CLEAR [}:]
17 IENTERI 4 IZ±l
32 IENTERI 7 ~
[f][kE]

(clears the sta tistical registers)
(accumulates 1st point)
(accumulates 2nd point)

The Y-intercept (-3.00) is now in the X-register. and
the slope (5.00) is in the Y -register.

246

Try this: At a certain temperature, and under a
pressure of 230 I bs. per square inch, the specific
volume of superheated steam is 2.9276 cubic feet per
I b. At that same temperature, but at a pressure of
240 lb per square inch, the specific volume is 2.8024
cubic feet per lb.

At that same temperature, what is the specific volume
of superheated steam at a pressure of 234 lbs. per
sq uare inch?

Solution: Using linear interpolation, the specific
volume is 2.8775 lb per square inch.

This is a typical linear interpolation problem. You
are given the "X,Y" coordinates of two points on a
line. Then you are given the "X" coordinate of one
other point on that line and asked to solve for its
, 'Y" coordinate.

The math is fairly simple to grind out, but it's
easier to use the If.rl function on your calculator.

The two points you are given in the above problem are
(230,2.9276) and (240, 2.8024). You are asked to
find the ' 'Y' I value at X = 234, right?

247

Here are the keystrokes:

!IJ m 4
!IJ CLEAR ~
2.9276 IENTERI 230 1Z+l
2.8024 IENTERI 240 12+1

234 [g]

(so you can check your inputs)
(to clear the I: -registers)
(accumulate 1st point)
(accum ula te 2nd point)
(ask for "Y" at a given "X")

That's all there is to it! The answer is in the X-register.

Try this: After a rigorous chemistry experiment, you
are faced with a distribution of data that looks like
this:

y

(~0,l1)
(i)

C9 (20, 12)

0(12,7)

x

248

Wha t is the slope of the line tha t represents the
, 'best linear fit" of this data?

Sol u tion: [I] CLEAR ~

Answer:

26 fENJ'ERl 48 12+1

17 IENTERi 30 ~
12 IENTERl 20 Illil
7 IENTERi 12 iZ±l
[I] cr:El IX<> Yl

0.5214

249

Mean and Standard Deviation

Two other functions that use the statistical
registers are !Xl (mean) and [§] (standard
deviation). These functions are easy to use, once you
know how to accum ula te values in the statistical
registers (using 12+1).

Notice, in the table on the back of your calculator,
that both these functions return results for
accumulated X-values (into the X-register) AND
accumulated Y-values (into the Y-register). Again,
remember to press !ll CLEAR ~ before starting to
accum ula te statistical values.

I->H.MSI and I->HI

We mentioned these functions, briefly, on page 182.
They are used to con vert from Hours and decimal
fractions of hours to Hours, Minutes, and Seconds
(i.e., 4.23 hours = 4 hours, 13 minutes, and 48
seconds) and vice versa.

But we didn't mention this:

Hours and Degrees (for measuring angles) use the
same base as Hours Minutes and Seconds! You can use
Sill..MSJ and 8>]l] to convert from degrees, minutes,
and seconds to degrees and decimal fractions of
degrees!

250

We hope you enjoyed this book; we certainly
enjoyed writing it. In a very real sense, we were
just trying to have a con versa tion with you, because
we have found that this simple, one-to-one
conversational approach is really very helpful when a
person is trying to learn something easily (and
retain it well, too).

Unfortunately, some people feel that programming
and other technical subjects cannot be taught without
using technical jargon. It seems that, after
having become comfortable with some "tech-lingo"
themselves, these people forget that only computers
can truly communicate in computer language.

W ell, we TRIED to use plain English here, but if it
wasn't as plain in certain spots as it might have
been, or if we missed some plottographical errors (or
numerical boo-boos), please let us know, so we can
keep improving this book. Of course, we would enjoy
hearing any other comments you may have about this
book, too. Whether your remarks are complimentary or
otherwise, we always appreciate it when readers take
a moment to let us know how we did. Also, we
encourage your suggestions for future books. A
handwritten postcard will certainly be sufficient--
and we always read all our mail!

Thanks for the conversation. Good luck!

ALSO AVAILABLE FROM

THE PRESS AT GRAPEVINE PUBLICATIONS

--"An Easy Course in Programming the HP-41"

So good that HP uses it to train its own personnel!
For beginners or more experienced users; friendly,
easy-to-follow lessons on one of the best
programma ble calculators ever made. Applies to all
three models: 41C/CV /CX.

--" An Easy Course in Using the HP-12C
and Other HP Financial Calculators"

Also being used by Hewlett-Packard as a training
manual for HP employees, this book leads readers to a
complete understanding of concepts and methods for
financial computations on the HP-12C. Learn all the
How's and Why's behind interest, loans, mortgages,
investments, uneven cash-flow situations, etc.

--Custom man uscri pt edi ting/ pu bUshing

--Custom consulting/programming for small computers

--Custom tutorials and 1-day seminars on HP
calculators and computers

Grapevine Publications, Inc.
P.O. Box 118

Corvallis, Oregon 97339-0118 USA
Tel. (503) 754-0583

TABLE OF CONTENTS

Whodunit 0
Why Are You Here? 3
A Picture of Your Calculator's Memory 5

Data Registers 6
The Stack 8
The Display 9
The I -Register 11
Pop Quiz 12
Pop Answers 13

Numbers and Functions 14
Adjusting the N um ber of Decimal Places 16
Beyond the X-Register 19
Storing N um bers 20
Recalling N um bers 21
Functions 23
Prefix Keys 25
Another Pop Quiz 32
More Pop Answers 33

You've Got to Know Your Stack 35
IENTERI 42
~ 45
The ~ (Back-Arrow) Function 47
The Other Stack Operations 49
More Stack Problems 51
Da ta Registers and the Stack 54
The LSTX Register 56
Quiz 58
Answers 59

The Naked Program
Program Memory in the HP-11C

Program Mode
The IMEMI Function

Program Memory in the HP-15C
Program Mode
Moving the Data Register Boundary
The IMEMI Function

The Problem at Hand
Running the Program
Moving Around in Program Memory
Keycodes
Review
Quick Quiz
Quick Answers

Decisionmaking and Branching
La bels lIJill
[GIQ), IGSBI and [lITNJ

Program Loops
Edi ting a Program
Condi tional Testing
The "Do If True" Rule
More Editing
Flags
!ISGl and IDSEJ
The Control Number
Quiz
Answers

Indirect Addressing
Indirectly Addressing Labels

60
65
67
70
71
75
77
81
82
85
88
91
93
94
95
97
100
103
106
109
114
117
121
123
128
129
138
139
143
156

Program Development
Checkbook Balancing
Feet, Inches, and Sixteenths
Graphing an Equation

Commencemen t
Appendix 1: Using the Manuals
Appendix 2: Trigonometry and Vectors

with I->RI and l->PI

Appendix 3: Features of the HP-15C
Flags
Complex Mode
~ and I->Pl in Complex Mode
ISOL VEl and [ill
Matrices

Appendix 4: Fun Facts to Know and Tell
rr:;x] and IHJ
Mean and Standard Deviation
1->aMSI and !->HI

Editorial
Also A vail a ble from the Press at

Grapevine Publications

160
161
181
200
219
221

224
231
231
235
239
239
240
242
242
250
250
251

252

ri;oM THE l'J;£6.S ~
~~E\ft~ J\I&UC~O~,INC ..

This book will help you understand and feel comfortable
using your HP-ll Cor HP-lSC calculator. Its unique, conver­
sational style makes learning to program ENJOYABLE, not
intimidating. The authors, both former Hewlett-Packard
support enigneers, realize that a relaxed, jargon-free format
is the best way to present a technical subject. And if a touch
of humor and some delightful illustrations are added, then
learning to program your HP calculator becomes both easy
and fun!

"AN EASY COURSE IN PROGRAMMING THE
HP-llC AND HP-lSC" is the easiest and fastest way to
master your calculator. Filled with examples, review ques­
tions, explanations and fun quizzes, this self-paced book lets
you work along at your own rate, learning all the how's and
why's of programming. Discover this amazing learning
approach, and you'll soon find yourself ENJOYING your
calculator!

ISBN 0-93IOII-02-7

(

(
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

