
....
'" ..,
.I , , , , , , , ., ., ., ., ., ., ., .,
~ ., ., ., ., ., ., ., ., ., ., ., ., , , , ,
~

~

HP-28S

Software Power Tools

Utilities

A Product of
Solve and Integrate Corporation

A GRAPEVINE PUBLICATION

-~ -~ -.II -..;, -..;, -~ -~ -~ -.--.----~ ---' ----AV

HP-28S
Software Power Tools:

UTILITIES

A Product of

Solve and Integrate Corporation

Grapevine Publications, Inc.

P.O. Box 118

Corvallis, Oregon 97339-0118 U.S.A.

Acknowledgements

We extend our thanks once again to Hewlett-Packard for their top- ~

quality products and documentation.

c.
C.

© 1989, by Solve and Integrate Corporation. All rights reserved. No C.
portion of this book or its contents, nor any portion of the programs C
contained herein, may be reproduced in any form, printed, electronic C
or mechanical, without written permission from Solve and Integrate C

C Corporation and Grapevine Publications, Inc.

Printed in the United States of America

ISBN 0-931011-27-2

First Printing - November, 1989

Notice OfDisc1aimer: Neither the authors, nor Solve and Integrate Corporation nor Grapevine
Publications, Inc. make any express or implied warranty with regard to the keystroke procedures
and program materials herein offered, nor to their merchantability nor fitness for any particular
purpose. These keystroke procedures and program materials are made available solely on an "as
is" basis, and the entire risk as to their quality and performance is with the user. Should the
keystroke procedures and program materials prove defective, the user (and not the authors, nor
Solve and Integrate corporation, nor Grapevine Publications, Inc., nor any other party) shall bear
the entire cost of all necessary correction and all incidental or consequential damages. Grapevine
Publications, Inc. shall not be liable for any incidental or consequential damages in connection
with, or arising out of, the furnishing, use, or performance of these keystroke procedures or

program materials.

t

"
"
" ..

CONTENTS

" (]) Introduction To This Book .. 6

" What You "Gotta" Do ... 7

What You "Don't Gotta" Do .. 7

Reminders: Some HP-28S Basics ... 8

Notes On Using This Book ... 14

: ill Stack Utilities .. 20
.-,
.­,
"

Contents List 21
The Program Routines ... 22
Discussion '" 40

: m Real Number Utilities ... 44

Contents List .. 45

The Program Routines 46
Discussion .. 60

..

..
~ m Complex Number Utilities ... 68 ..
..
.. Contents List .. 69

.. The Program Routines ... 70

.. Discussion 78

..

.. ..

':. m Vector Utilities ... 90 ':.
,.. ..

Contents List .. 91 ':.

The Program Routines ... 92 (.

Discussion .. 100 ~

~

Co
m Array Utilities .. 106 Co

C.
Contents List .. 107 C
The Program Routines ... 110

Discussion .. 152

(!) Character String Utilities .. 158

Contents List .. 159

The Program Routines ... 160

Discussion .. 186

(1) List Utilities ... 192

Contents List .. 193

The Program Routines ... 194

Discussion .. 224

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

~
JI (!) Directory Utilities ... 230

Ji
;;; Contents List .. 231
;;; The Program Routines .. 232
rtiI Discussion .. 248

riI
;;;
~ ([) Output Utilities ... 254 .
~ -wi Contents List .. 255

The Program Routines .. 257

Discussion .. 280

."

.. ~ Programming Utilities•.. 284

Contents List .. 285

The Program Routines .. 288
Discussion .. 306

"" CD Index And Other Inforrnation ... 312

Utilities Index ... 312

~ All About Solve And Integrate Corporation 314
., Comments And Order Forms u u ••••••••••• 315

All About Grapevine Publications, Inc 318

Comments And Order Forms ... 319

..

..

..

..

..

Chapter 0

Introduction To This Book

,. ,.
,.
,.
,. ,.
,.
,. ,. ,. ,.
~ ,.
,.

This book is primarily a toolkit of small HP-28S program routines that ,.
can help you build bigger and better programs of your own. These are ,.
not generally useful "all by themselves" (indeed, most of these tools are ,.
fairly boring and useless when invoked "one at a time," or "manually," ,.

from the keyboard). They are meant to be combined within programs ,.
that you construct for your own purposes.

So this book is mainly a reference source of" canned software." It's not

a tutorial on programming itself (although you can learn a lot about

that subject by following the examples and discussions here).

If you want a true tutorial on the HP-28S, then you should read An
Easy Course In Using The HP-28S (see the last few pages in this book

~ ,.
'-

~
~
~
~
~
~
~

for more information on how to order this and other tutorial books). ~

6

~
C

So... C
C ,

Chapter 0: Introduction To Thi. 800le ,

,
~

What You "Gotta" Do

~

~ • You "gotta" know the basics of using and programming the HP-28S

" This book is not a primer on the HP-2SS.

" • You "gotta" key in, name, store and test some code (programs). How

much code? That depends on what you want to do with these tools.

" ...,
." ...,
'"" ~
."

• You "gotta" invest a little time. There are good reasons for the large .

number of pages you see here. It's just not realistic to expect to be

able to look up your particular programming task in the index, flip

to that page and instantly find the solution to your problem. You

need to learn to program and learn how these program tools are

meant to be used.

What You ''Don't Gotta" Do

• You "don't gotta" read everything in the book (though it would be a

good idea at least to look at the contents of each section (given on the

opening pages of that section) .

~ • You "don't gotta" key in everything in the book; you may never use

some of this stuff. Only after you decide what you want to do will

you know which routines will be helpful to get the job done.

• You "don't gotta" be limited by this book. If you're a proficient and

interested programmer, then you can modify and expand upon

these tools, inventing entirely new sets for your own use.

_ What You "Gotta"Do 7 -.4--

Reminders: Some HP-28S Basics

In case you need a refresher, here are a few reminders about the steps
needed to key in, name, edit, store and use programs on your HP-28S:

''How Do I Load A Program?"

Consider the following program:

« ~ a b « a IFI STO*
b F + ~Nut1 II The answer
is II SWAP ~STR + CLLCD
1 Drsp » »

You might key it in this way:

- LC A SPACE B « A ' LC F' STORE Iim:I
~SPACE~SPACE~SPACE)
o:rrISPACE~SWAP~ mllIgCONTRLINEXT) mDII
CDUJ:g(ENTER)

You might key it in that way - or you might not - because there are
many ways to do it.

'" c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c , , , , , ,

8 Chapter 0: Introduction To ThiB Book \I;

~

Take a look now at some ofthe details here, by studying the first few
keystrokes and what they mean:

~SPACElID_··

The@keystroke signals the beginning of a program; it will always be

the first key you press when entering a program. It also turns on the

alpha cursor (I), so that certain typing aids will help to make loading

the program easier.

For example, you don't need to type spaces in between the keystrokes

@ and ~ - it's done automatically. This saves you many keystrokes,

because spaces must be keyed in exactly as they appear in a program

listing. Notice that most menu keys (e.g. RI!D) will also automati­

cally put a space before and after the command names they type.

However, no spaces are needed around either the « or I characters,

because they are delimiters (like II , (, [, (, #, SPACE and NEWLINE),

used by the HP-28S to delimit objects. The HP-28S puts spaces around

the « simply to improve readability.

Finally, notice that case is also significant. The a and b must be

lowercase, so you press ~ before keying them in.

ReminderB: Some HP-28S BaBics 9

''How Do I Name It?"

Once you've keyed a program into the HP-28S (the example shown on
page 8) so that it's on the stack, you'll need to give it a name by which

you can call it and use it.

To give a program a name, the program must be on Levell of the stack.

Then you need to put a unique and fairly descriptive name on the stack
at Levell - thus pushing the program itself to Level 2. You must put
single quotation marks (I) around the name to prevent the HP-28S

from trying to evaluate it when you [ENTER] it.

So, for example, to name the above program FRED (assuming the

correct and complete program is now sitting at Level 1 of the stack),

press ~[STol

Keep in mind that this procedure will overwrite any object named

FRED in the current directory, so you should take care that the name
is unique!

10 Chapter 0: Introduction To Thi. Boo"

'" .,
'" ;;

~

''How Do I Change It?"

Now suppose you want to change the stored program (you've keyed it

in wrongly or you want to enhance it). How can you do this?

You could recall the program (put it on the stack), edit it (with IEDIT]) and
re-store it, or you can ~ it, which accomplishes all three of those

things at once.

Type ~~. You can now move around the program with

the cursor keys. And you can begin to edit right away, but keep in mind

that typing anything new will overwrite (replace) the current contents
unless you go into insert mode (@§), in which case what you type is

inserted. This is often handier.

For example, you could use insert mode to add a NEWLINE to the end
of the liThe answer is .. string. Todothis,press~.

The cursor is over the quotation mark. Press ~ to delete the space and

@§).NEWLlNE]toinsertthe newline (notice that, while VISITing. NEWL·

INE characters actually cause a newline break in the program line).

, Press I ENTER] now to accept the changes - or @ID1ATTN]will abort the edit

~ without changing the program. ,

~

Then recall the program (press ~~). Notice that the

NEWLINE character is now represented by a·. Notice also that this

recalled program is a copy of the FRED program; changes to this copy

won't affect the original unless you re-store it (~ISTO)).

Press [DROP] to remove the program from the stack.

'" Reminders: Some HP·28S Basics 11

a.
#/

''How Do I Use It?"

Once you've loaded your program, to use it, all you need to do is call it
by name: ~~NTffii

If the stack was empty before you started, you'll get an error (Too
Few ArgUMent S) because this particular program needs input.

The moral here is that you must always know the requirements of your
program before you run it.

In this case, the program needs two real numbers on the stack and
another real number named I Fl.

The answer is 2.

You should also notice that the name mD appears on a menu key
when you press [USER]. All things that you, the user, create are stored
in user memory and showed to you by the USER menu.

Then, when you select mD from that USER menu, this is the same
as using any other command from any other menu: in immediate­

execution mode (i.e. when you see either the 0 cursor or no cursor at

am, the name, FRED, is evaluated immediately; in alpha mode (the.
cursor and a annunciator), the name is loaded into the command line

- just as if you had typed it there. All this is exactly the way that built­
in system commands work; a named program is quite literally an

extension of your built-in catalog of commands!

12 Chapter 0: Introduction To Th;' Book

=
~

---a
"~

~
~
..i
..i
.i
.i
.i
~
~
3 -..;, -..." -~ -..,;;, -..,;;, -..,;;,
..;, --... -... -.... -... ----
....

'Where Else Can I Put It?'

For convenience, and organization, you can divide your USER menu

(user memory) into directories - named areas partitioned off from the

rest of user memory. The main directory is HOME, but you can create

other sub-directories. A typical diagram of directories might be:

~HOr1E~
aEE TEMP UTlLS

/ '" / '" aClRC aWRK OTHER STRNG

The directory you are in is the current directory. The directory contain­

ing your current directory is its parent. All directories sharing the

same parent are called sisters; all the subdirectories of a directory are

its daughters. If you were in directory UT I LS above, the parent
directory would be HOME; the sister directories, a EE and TEMP; the

daughter directories, STRNG and OTHER. SO, in this hypothetical

set-up, you could put FREDintoUT I LS byfirstmovingtoUTlLS (by

pressing (BIQ®[I)(ENTER)®TI:!Ihm[ENTER)) and then STOring FRED .

Here's why this matters: Typing the name of an object will evaluate

that object only if it can be found either in the current directory or its

parent (or grandparent or great-grandparent, etc.). If your current

directory is S TRNG in the above diagram, you could successfully eval u­

ate (run) your program, FRED, only if it were stored in STRNG,
UTILS or HONE. Ifit were anywhere else, you wouldn't be able to

'find" it. Thus, since HO,..1E is every directory's ultimate parent, an

object "living atHO,..1E" can be found and evaluated from any directory.

Reminders: Some HP-28S Basics 13

f ,

Notes On Using This Book

Before you key in anything, read these important preliminaries:

First, there are many ways to key things in on the HP·28S,and
it's just impossible to show every method. This book simply cannot
"read your mind" to know which menu or directory you're currently
using when you want to call one of these tools - so it can't give you the
most convenient set of keystrokes for your particular case.

In all programs and examples, therefore, rather than specifically tell­
ing you to press a key (e.g .• PURGE] or (OROPj) or select a menu item (e.g.
~m.), you'll see all commands in generic form (spelled out as
if you had typed them in): PURGE DROP R~C P~R, etc.

But keep in mind that, depending upon what you're doing, it might
sometimes be more convenient to use special keys or menu items than
to "type in" the commands character by character. That's up to you.

Secondly, a sample program description is shown on page 15.
This is the general format for the description of each utility.

To make things easier to find, the routines are presented alphabeti­
cally (byNAME) within their respective sections, and there's also a com­
plete index in the back, if you prefer.

14 Chapter 0: Introduction To Tid. Bo6Ic

....,

~

Title:
A phrase that briefly tells you what the routine does.

NaMe <Check sural)
The name identifying the routine, followed by an integer

to help you "proofread" the program after

you have keyed it in and named it.

« OBJECT »
The program "code" itself, as it appears

if you RCL it in STD display mode.

Summary: A brief description of the routine's purpose and logic.

Example: One or more simple examples to give you the general

idea.

Inputs: A list of acceptable types and locations of input objects.

Outputs: A list of types and locations of output objects.

Errors: A list of things that could go wrong due to machine

conditions, bad input, etc.

Notes: Other things you ought to know: Does this routine use

(and therefore require) others from this book? How and

when might you want to use it? Etc .

...., Notes On Using This Book 15
.!-

..........................
'-To help you check your accuracy when entering these program ~

tools, each routine is listed with its checksum, a test value generated ~

with the help of the CKSM routine (listed opposite, here). ~

Do This:

Question:

Answer:

Key in CKSM now (use the code listed on the opposite
page).... Then STOre it: I CKSM I STO.

Remember that the directory in which you store it (where

you're "located" when you STay will limit the memory

locations from which you can "call" it - limited only to

those locations "at" or "below" it on a directory tree.

How do you know if a utility routine is keyed in properly?

You key in the routine's name (using I marks), then use

CKSM to test it. For example, to test whether or not you
keyed in and modified FRED properly back on pages 8-
11, you do this:

'FRED' CKSM Correct Result: 252400

If you get an incorrect result, you know there's a mistake

in the routine. If so, then edit it (I FRED I .VISIT]), find

and fix your typo(s), re-store the corrected version (EN­

TER), and repeat the test.

~
~
~
~
~
~
~
~
~
~
~
<:
<:
<:
<:
<:
c
c
c
c
c
c
c ,
,

"
Important Conclusion: CKSM can and should be used after keying ~
in and storing any program in this book. It's your best protection
against typos!

16 Chapter 0: Introduction To This Book

3

~
.~

,j
.J,
~
~
~
~
~
~
~
~
~
3
3

Proofread A Named Object:

CKSM (1040278)

« 2 32 A RCLF ~ N F

S « N RCL STD HEX 64
STWS 45 SF 48 CF
~STR N ~STR + 0 1 8
PICK SIZE FOR I OVER

I DUP SUB NUM I * +
DUP F MOD SWAP F /
IP + NEXT SWAP DROP
S STOF » »

~
=:') Summary: CKSM (checksum) checks for "typos" by computing a

=:') unique integer for a named object.

=:')
=:')

~
~
~
~
~
~
~
~
~
~
~
~
~
~

Example:

Inputs:

Outputs:

Errors:

Notes:

Problem:

Solution:

Result:

Test whether you can correctly key inCKSM:

Key in and name the CKSM routine ... then
~1.se it "on itself:" I CKSM I CKSM leITER)

(if all is well) 1040278

Level 1 - a name - the name of an object.

Level 1 - an integer - the checksum.

Bad Ar9UMent Type will occur if the input is not
a name (or Undef i ned NaMe if it's undefined).

Other errors can occur if a typo in the CKSM program

causes it to actually crash before returning a checksum.

CKSM is most generally useful in the HOME directory.

~ Notes On Using This Book 17

-

A few more details to bear in mind:
~
~
(
(

• Whenever you see the object types required for inputs and outputs, (
remember that symbolic expressions may also be allowable (to be (
sure, check the documentation for each routine).

For example, a "real number" can mean either literally a real
number value or any object (such as an algebraic expression, for

example) that can be reduced to a real number with the -+NUM or
EVAL commands. A similar argument applies for complex num-

bers, etc.

Remember that the states of flag 35 (constants mode) and flag 36
(results mode) will directly affect whether an object will be reduced
to an actual value! See pages 206-207 of your Owner's Manual if
you need to refresh your memory of these modes.

• You can store any or all of these utility tools in HOME or any other
directory (and occasionally, as with CKSM, you'll read a recommen-

18

dation as to where it might be most useful).

Just bear in mind that when you invoke them, they must be in the

current directory or in a directory that is a "direct ancestor" (i.e. a

parent, grandparent, great-grandparent, etc.) of the current direc­

tory - anywhere in the direct pathway back to HOME, which is a
direct ancestor of all directories. You won't be able to find these if
they're stored in sister or daughter (or "aunt," "niece" or "cousin")

directories.

Chapter 0: Introduction To TIIu BooIe

(

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~

D

a
~ • These utility programs are collected in chapters according to sub-

-... ---

..... --

ject. For the most part, each routine is either independent or uses

others from that same chapter. However, a few routines require the

use of others from different chapters. Admittedly, this isn't neces­

sarily the most convenient when you're keying in and testing

specific routines, but it will lead to their better efficiency of execu­

tion and memory usage once they're properly stored. To make this

easier, moreover, the ordering of the chapters has been arranged so

that if you proceed through the book, keying in all the utili ties in the'

order presented, no routine will require any other from any other

chapter that you have not already keyed in.

Furthermore, the ordering of the chapters makes some attempt to

proceed logically - along the lines of increasing object complexity­

beginning with mechanical stack manipulations, then to real num­

bers, then to complex numbers, etc. Hopefully, then, even the pres­

entation of this book (as well as its contents, of course!) will help to

reinforce and remind you once again of the idea of the HP-28S as a

toolbox full of tools - to help you build even bigger and better tools!

Notes On Using This Book 19

Chapter 1

Stack Utilities

These routines provide quick and reliable ways to do certain manipu­
lations, operations and tests on the HP-28S stack.

As shown in the following list, the 19 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro­
grams are also usually presented alphabetically (by NAME), although
in some cases, certain sets of programs may be complementary or oth­
erwise so similar that they are presented together.

For a more in-depth discussion of the uses of these utilities, see page
40, immediately following these program listings.

20 Chapter 1: St_k UtilitWs

f

~

~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
C
C
C
C
C
C
C
C
C
~
~

.-a Function ~ ., ~ ..
~
~

Manipulations

~ EXCH Exchange Levels M And N 22
~
~

QSRT Perform A QuickSort Of Levels M - N 24

~ REVS Reverse The Order Of Levels 1 - 3 26

~ REVN Reverse The Order Of Levels 1 - N 27

~ ROLDN Roll Levels 1 - N Down A Given Distance 28

~ ROLLN Roll Levels 1- N Up A Given Distance 28

2
3
3 Operations

3
~ MERGE Combine Levels 1 - N With A Binary Operation 30

~ STADD Add An Object To Level N 32

~ STDIV Divide Level N By An Object 32

~ STMUL Multiply Level N By An Object 32

3 STSUB Subtract An Object From Level N 32

~ ST.OP Perform An Operation On Level N 34

~ STOST Store An Object In Level N 34
~
~
~ Tests
~
~ STET? Is Level N Equal To An Object? 36
~ STNE? Is Level N Not Equal To An Object? 36
~ STGE? Is Level N Greater Than Or Equal To An Object?36
~ STGT? Is Level N Greater Than An Object? 37
~ STLE? Is Level N Less Than Or Equal To An Object? 37
~ STLT? Is Level N Less Than An Object? 37
~
~
~

Contents 21

~------------------......
Exchange Levels M And N

EXCH (333939)

« ~NUM SWAP ~NUM IF
DUP2 > THEN SWAP END
~ A B « A ROLL B
ROLL SWAP B ROLLD A
ROLLD » »

Summary: EXCH exchanges the contents of any two given stack
Levels. The Level indices works like Level arguments
for functions such as ROLL, indicating the stack Levels
of objects before the arguments were placed on the stack,
and the resulting modified stack assumes those Levels
once again after the manipulation is complete. The Lev­
el indices may be given in either order. Any fractional
portions of the indices are rounded before use. An index
less than 1 causes no action to be taken.

Examples: STD 1 2 3 4 1 3 EXCH ~: 1 4 3 2

Inputs:

22

Level (n+2) - any object - an object to be exchanged.
Level (m+2) - any object - an object to be exchanged.
Level 2 - any object that evaluates to a real number, m
- one of the Levels to be exchanged.
Level 1- any object that evaluates to a real number, n­
the other Level to be exchanged.

Chapter 1: Staele Utililin

,
t.
t.
t.
t.
t.
t.
t.
f..
f..
f..
f..
f..
f..
f..
~
~
~
~
~
~
~
~
~
~
~
~
c
c
c
c
c
c
c
~
~

...

... Outputs: '. ,j; Errors:

~
~
,J;
~
~
~ Notes:
~ -.;, -.;, -~

' ... -... "'" -

,
, ..
,.
, ,.
La Manipulations

Levels 1 to n - the modified stack contents .

Too Few ArguMents will occur if the stack con­

tains fewer than 2 objects or if the specified object Levels

don't exist.
Bad ArguMent Type will occur if the Level-l ob­

ject does not evaluate to a real number.

None.

23

------------------.........
Perform A QuickSort Of Levels M - N

QSRT (5482233)

« ~ R L « L R + 2 /
IP PICK L R ~ X I J
« DO WHILE I PICK X
< REPEAT I 1 - III
STO END WHILE J PICK
X > REPEAT J 1 + IJI
STO END IF I J >
THEN J ROLL I ROLL
SWAP I ROLLD J ROLLD
END IF I J ~ THEN I
1 - III STO J 1 +
IJI STO END UNTIL I
J < END IF L J >
THEN J L QSRT END IF
I R > THEN R I QSRT
END » » »

Summary: QSRT sorts the specified stack levels. The objects in the

stack must be orderable (i.e., they must be either real
numbers, binary integers or strings). The resulting

stack Levels are arranged in descending order (proceed­
ing from lowest Level to highest Level).

Examples: STD 6 4 7 5 8 8 1 1 7 QSRT
Result: 1 8 4 5 6 7 8

24 Chapter 1: Stack Utilim.

t'..
~
~
~
~
~
~
c
c
c
c
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
c
c
c
c
c
c , ,

.;;, Inputs:

~
~

-. .;,;
-.
...;

-.
-"
-,

Outputs:

::: Errors:
.-I
-,
...;
-,
-" -.
-" -. --. ------
~ Notes: -----
MIl Manipulations

~
R

STD 5 4 3 2 1 1 5 QSRT
~: 1 2 3 4 5

STD 5 4 3 2 1 2 4 QSRT
~: 5 2 3 4 1

Levels 3 to (n+2) - the objects to be sorted.
Level 2 - a real number, m - the lowest stack Level to be
sorted.
Level 1-a real number, n - the highest stack Level to be

sorted.

Levels 1 to (n-m+l)-the original stack with the specified

levels sorted.

Too Few ArgUMent S will occur if the stack con­
tains fewer than 3 obj ects or fewer objects than specified
by input Levels lor 2, or if the Level-2 object is greater

than the Level-l object.
B.ad ArguMent Type willoccurifeitherthe Level­
l or Level-2 object fails to reduce to a real number, or if

any of the specified stack levels contain objects that are

unorderable.

QSRT is useful for creating lists and arrays whose ele­

ments are arranged in ascending order.

25

Reverse The Order Of Levels 1 - 3

REV3 (11552)

« SWAP ROT »

'­
t.:
t.:
~
~
~
~
~
~

Summary: REV3 reverses the order of the bottom three stack ~
Levels (1, 2, and 3). (,

Examples:

Inputs:

Outputs:

Errors:

Notes:

26

STD 1 2 3 REV3
Result: 3 2 1

Levels 1, 2 and 3 - any objects - the objects whose order
is to be reversed.

Level 3 - the previous Level-1 object.

Level 2 - the previous Level-2 object.

Levell - the previous Level-3 object.

Too Few ArgUMent S will occur if the stack con-
tains fewer than 3 objects.

REV3 is generally useful for many stack manipulation

needs in programming and in constructing larger data
objects.

Chapter 1: StGc1c Ulilitift

(,
(,
(,
(,
(,
(,
(,
(,
(,
(,
(,
(,

~
(,

~
~
~
~
(
(
(

C , , ,

Reverse The Order Of Levels 1 - N

REVN (219414)

« ~NUM ~ L « IF L 1
> THEN 1 L FOR I I
ROLL NEXT END » »

Summary: REVN reverses the order of the specified stack levels.

The Level indicator number works like the level argu­

ment for functions such as ROLL: it indicates the stack

Levels of objects before REVN 's argument was placed on

the stack, and the resulting modified stack assumes

those Levels once again after the manipulation. Any

fractional portion of the Level index is rounded before
use. A rounded Level index less than 2 causes no action.

Examples: STD 1 2 8 4 4 REVN Result: 4 8 2 1

Inputs:

Outputs:

Errors:

Levels 2 to (n+l) - any objects.

Level I-any object that evaluates to a real number-the

Level index.

Levels 1 to n - the previous objects in reversed order.

Too F el,o.l ArgUMent.. S will occur if the stack is

empty or has fewer arguments than specified in Levell.

Bad ArguMent Type will occur if the Levell object

does not evaluate to a real number.

Notes: None.

Manipulation. 27

Roll Stack Levels 1 - N Down A Given Distance ~

ROLDN (356864)

« ~NUM SWAP ~NUM ~ N
L « IF N 1 > L 1 >
AND THEN 1 N START L
ROLLD NEXT END » »

Roll Stack Levels 1 - N Up A Given Distance

ROLLN (350463)

« ~NUM SWAP ~NUM ~ N
L « IF N 1 > L 1 >
AND THEN 1 N START L
ROLL NEXT END » »

Summary: ROLDN performs ROLLD the specified number of times.

Examples:

28

ROLLN performs ROLL the specified number of times.

STD 1 2 3 4 5 6 7 8 9 0 10 4
ROLDN Result: 7 8 9 0 1 2 3 4 5 6

STD 1 2 3 4 5 6 7 8 9 0 10 4
ROLLN Result: 5 6 7 8 9 0 1 2 3 4

Chapter 1: Stacie Utililin

C
C
C
C
C
~
~
(.
(.
(.

~
(.
(.

~
~
~
~
~
~
~
~
C
C
C
C
C
C
C
C
C
C
C
~

Inputs: Levels 3 to (n+2) - any objects - the objects to be rolled
down or up.
Level 2 - any object that evaluates to a real number- the
number of Levels, n, to be rolled.
Levell-anyobject that evaluates to a real number-the
number of times to roll.

Outputs: Levels 1 to n - the rolled stack.

Errors: Too Few Argument S will occur if the stack con­
tains fewer than 3 objects or fewer objects than specified
by the Level-2 input object.
Bad Argument Type will occur if the Level-l and

Level-2 objects do not reduce to real numbers.

Notes: You can use ROLDN and ROLLN in many useful ways.
Forexample,DEPTH DUP 2 / ROLDN,orDEPTH
DUP 2 / ROLLN swaps the upper and lower halves
of the stack.

A general program for this might be SWAPN (61426):

« ~ N « N ~NUM DUP 2
/ ROLDN » »

or
« ~ N « N ~NUM DUP 2
/ ROLLN » »

SWAPN takes the argument at Levell to be the total

number of Levels to be manipulated, then divides and
swaps that much of the stack.

Manipulations 29

Combine Levels 1- N With A Binary Operation

MERGE (1189S0)

« ~NUM 1 - ~ F N « 1
N START F EVAL NEXT

(

c
c
c
c
c
c
c
c
(
(

Summary: MERGE takes a binary operation and repeatedly ap- (

Example:

Inputs:

Outputs:

Errors:

30

plies it to stack Levels 1 and 2. The effect is to combine (

all of the specified stack Levels using the given function.

STD 1 2 3 4 5 « * » 5 MERGE
~: 1213

Levels 3 to (n+2) - any objects.

Level 2 - a program or user-defined function - the pro­

cedure to be used to merge all the specified stack Levels.

Levell - any object that evaluates to a real number, n­

specifying the top Level to be combined.

Level 1-an object - the result of the repeated operation.

Too Few ArgUMent S will occur if the stack con-

tains fewer than 3 objects or if the Level-l input object

refers to a non-existent stack Level.
Bad ArgUMent Type will occur if the Level-l input

object does not evaluate to a real number, or if the Level-
2 program is incompatible with the specified argument.

Chapter 1: Staele utUUift

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

C , ,

2 ..
...... Notes: .-.
.,a
~
~
~
~
~
.i
~
3
~
3
3
3
3
3
:,)

3
3
:)
:)

3
3
3
~
:")

~
~
~
~
~ OperatioJU

~

MERGE is designed to use a binary operation - a pro­

gram that takes two objects from the stack and returns

only one. Other types of programs can be used, but the

results are unpredictable.

31

32

Add An Object To Level N

STADD (70602)

« ~ N L « L « N + »
ST.OP » »

Divide Level N By An Object

STDIV (71905)

« ~ N L « L « N / »
ST.OP » »

Multiply Level N By An Object

ST~lUL (72277)

« ~ N L « L « N * »
ST.OP » »

Subtract An Object From Level N

STSUB (72146)

« ~ N L « L « N - »
ST.OP » »

,-
10, , , , , , , , , , , , , ,
C
C
C
C
C
C
C
C
C
C
C
~
~

Chapter 1: Stack Utilitie. ~

.9
9 Summary:

• 9
~
~
~
~
~
~
~
:t Examples:
:t
:)

J
::J
J
""' Inputs:
.J

-.
~

:; Outputs:
... ,.,
: Errors:

..
""
..
~ Notes: ...
.-

.. OperatioTUI

STADD adds the given object to the specified Level.

STD I V divides the specified Level by the given object .

STMUL multiplies the specified Level by the given ob­

ject. STSUB subtracts the given object from the speci­

fied Level. The Level index assumes the Levels of ob­

jects before the arguments were placed on the stack, and

those Levels are restored again afterwards. If the Level

index has a fractional portion, it is rounded before use ..
A Level index less than 1 causes no action.

STD 1 2 3 6 3 STADD
STD 5 6 7 3 2 STDlV
STD 3 4 5 0 2 STMUL
STD 7 8 9 4 3 STSUB

Result: 7 2 3
Result: 5 2 7
&IDili: 3 0 5
&IDili: 3 8 9

Level (n+2) - any object for which the operation is

defined - the first operand.

Level 2 - any object for which the operation is defined -

the second operand.

Levell - a real number, n - the Level of the operation.

Level n - an object - the result of the operation

Too Few Argument s will occur if the stack con­

tains fewer than 3 objects or the indexed Level is empty.

B.ad Argument Type will occur if the Level-l ob­

ject does not reduce to a real number, or if the objects at

Levels 2 and (n+2) are incompatible for the operation.

None .

33

Perform An Operation On Level N

ST.OP(193463)
« ~NUM ~ T.. 1.. «
IF 1.. €I > THEN 1 ..
PICK T •. EVAL 1 ••
STOST E~~D » »

Store An Object In Level N

STOST (595892)
« ~NUM ~ N L « IF L
€I > THEN IF DEPTH L
1 - == THEN N L
ROLLD ELSE L ROLL
DROP N L ROLLD END
END » »

c­
(..,
(..,
(..,

" " " '" '" '" c.
c.
c.
c
c
c
c
c
c
c
c
C

Summary: ST. OP performs the specified operation only on the C

34

given stack Level. STOST copies the contents of Level C
2 to the given stack Level, overwriting the previous
contents. The Level index works like the level argument
for functions such as ROLL: it indicates the stack Levels
of objects before the argument was placed on the stack.

Any fractional portion of the Level index is rounded
before use. A Level index less than 1 causes no action.

STOST will not store into a non-existent stack Level
except the first empty Level.

Chapter 1: Staela UliliIiM

C
C
C
C
\C
\C
\C
~
,~

\C'
,C"
lC

• .. Examples:
.»
.. Inputs: ..
.» ..
~
~
~
:J
~
~ Outputs:

:. Errors:
3
3
3 , , ,
'.)

'.)
'.)

"

~ .,
" '., '.,
'" '1

Notes:

'" Operations

~

STD 1 2 3 « 1 + » 3 SToOP
~: 2 2 3

STD I A I I B I I C I 1 3 STOST
~:1 IBI ICI

Level (n+2) - any object - the object to be operated upon
or overwritten .
Level 2 -a program or user-defined function (forST. OP) .
- the operation to be used, or (for STOST) any object­

the object to be stored.
Level 1-any object that evaluates to a real number, n­

the Level index.

Level n - the newly-modified or newly-stored object.

Too Few Ar-gument S will occur if the stack con­
tains fewer than 2 objects or if the specified object Level

doesn't exist, or (for STOST) if it is not the lowest­

numbered empty Level.
Bad Ar-gument Type will occur if the Level-1 ob­

ject does not evaluate to a real number.

The operation used in ST 0 OP must take only one argu­
ment and return only one result, or else the stack may

be hopelessly disordered. The local names, f 0 0 and

1 •• , were chosen for ST 0 OP to reduce the chances of
conflicts when operations such as« STR~ »are ap­

plied to strings. Therefore, avoid using f 0 • and 1 0 •

as global names in your own programming. ST. OP
usesSTOST.

35

36

Is Level N Equal To An Object?

STET? (2151 95)

« ~NUM ~ N L « IF L
o > THEN L PICK N -­
~NUM ELSE 0 END » »

Is Level N Not Equal To An Object?

STNE? (213356)

« ~NUM ~ N L « IF L
o > THEN L PICK N ~
~NUM ELSE 0 END » »

Is Level N Greater Than Or EqualTh

An Object?

STGE?(212726)

« ~NUM ~ N L « IF L
o > THEN L PICK N ~
~NUM ELSE 0 END » »

Chapter 1: Stack Utilitie. ~

.. ..
• • it -.
» -. -.
"'

Is Level N Greater Than An Object?

STGT? (210262)

« +NUM + N L « IF L
o > THEN L PICK N >
+NUM ELSE 0 END » »

-. -. Is Level N Less Than Or Equal To An Object?
i
j

i
j

:i
)

)

)

)

)

)

)

) , ,
~
~
~
~ ., ., .,
.., Test.

~

STLE? (213092)

« +NUM + N L « IF L
o > THEN L PICK N ~
+NUM ELSE 0 END » »

Is Level N Less Than An Object?

STLT? (210579)

« +NUM + N L « IF L
o > THEN L PICK N <
+NUM ELSE 0 END » »

37

Summary:

Examples:

38

f STET?, STNE?, STGE?, STGT?, STLE?, and f
STL T? all compare the contents of Level N with the ~
given object. In each of these tests, if the answer to the ~
question posed is "yes," a 1 (true) is returned. Other- ~
wise, a 0 (false) is returned. ~

~
The Level index for each of these tests works like the ~
level argument for functions such as ROLL: it indicates ~
the stack Levels of objects before the test's argument ~
was placed on the stack, and the resulting modified ~
stack assumes those Levels once again before returning ~
the result of the test. If the Level index has a fractional ~
portion, it is rounded before use. Level numbers less (
than 1 will cause the test to return O. (

STD 1 2 8 2 8 STET? ~: 1 2 8 0
STD 1 2 8 1 8 STET? ~: 1 2 8 1

STD 1 2 8 2 8 STNE? &will: 1 2 8 1
STD 1 2 8 1 8 STNE? ~: 1 2 8 0

STD 1 2 8 4 8 STGE? ~: 1 2 8 0
STD 2 8 2 2 STGE? ~: 2 8 1

STD 1 2 8 10 8 STGT? ~: 1 2 8 1
STD 2 8 2 2 STGT? Result: 2 8 0

STD 1 2 8 10 8 STLE? ~: 1 2 8 10
STD 2 8 2 2 STLE? ~: 2 8 1

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
\e:
(

Chapter 1: Stack UtUUia , ,

~
~ ,.. ,..
~

~
~
r~-r·
1"­r.
• • • • • • • • '. • '. '. '. ,.
-a ,. .. '. """ 1
~

Inputs:

Outputs:

Errors:

Notes:

STD 1 2 3 4 3 STL T? &wilt: 1 2 3 1
STD 2 8 2 2 STLT? ~: 2 3 0

Level (n+2) - any object for whose type the specified test
is defined - one of the objects to be compared.
Level 2 - any object for whose type the specified test is

defined - the other object to be compared.
Levell - a real number, n, the stack Level to be tested
against the given object.

Level 1-a real number (either 1 or 0) - the result of the

test.

Too Few ArguMent S will occur if the stack con­
tains fewer than 3 objects or if the specified stack Level

does not exist.
Bad ArguMent Type will occur if the Level-lob­

ject does not reduce to a real number, or if the objects at
Levels 2 and (n+2) are incompatible arguments for the
specific test being made.
Under i ned NaMe will occur ifeither Level contains

an undefined name.

None.

39

Stack Utilities: A Discussion

The Main Idea

The stack deserves its own set of tools for several reasons: First of all,
these utilities are tools to help manipulate HP-28S data objects - and
the stack is a data object.

Secondly, the stack is the intermediate for almost everything; it is the
work area of the HP-28S. All manual calculations and most other
operations affect or occur on the stack, and decomposed objects place
their contents onto the stack for further manipulations with stack­
related commands. Therefore, new stack commands also extend your
ability to manipulate other objects.

Finally, because it's such a workhorse, the stack has been designed for
high efficiency - it's fast. Thus, programs like QSRT use it - instead
of directly accessing an array or list - to gain speed.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that
is listed in your current PATH. The easiest way to ensure that this is
the case is to place each of the programs in the HOME directory - the
ultimate parent of all other directories.

40 Chapter 1: Stack Util~

,
f!:
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
(
(
(
(
(
(
(
(
(
(

C
C
C
C
C , ,

~
-..
. ~
~
~

~

~
'~

~
.~

'~

~
'~ ,
"

" ,
" .,
" .,
'~ ..,
'''J
'''J
'''J ...,
~~

Some Observations

Tracking stack objects through long and/or complex operations can be

a real chore. Sometimes the best strategy is to take an object from the

stack, do an operation on the stack, then return the object afterward .

In these cases, local variables are better solutions for managing and

keeping track of objects, and so all of these stack utilities exceptREV3

use local variables to store their arguments so that they're out of the

way when they're not needed but easily recallable when they are .

These routines are all quite straightforward - except for QSRT , which

is rather large and logically complex. It is a classic implementation of

a recursive Quicksort: the program sorts to a point, then checks if the

complete data set has been sorted. Ifnot, it simply adjusts the indices

and then "calls itself' to sort some more. Use of recursion rather than

iteration helped to keep the routine as small as it is, though an

iterative implementation may further enhance its speed.

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input

is entered - rather than continue and generate garbage outputs. When

inputs are questionable (e.g., negative numbers for stack Levels),

these utilities act similarly to the built-in stack commands (arguments

are ignored or treated as 1, whichever makes more sense). When

errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with the u~mo command, it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

Discussion 41

How You Might Use These Utilities

These tools are extremely generic. That is, they are so basic as to be
useful in many different situations.

QSRT, being relatively large and very generally useful, is called by
several other programs in this book. Most of the rest of the routines
are small enough that, rather than have many other programs call
them, the actual program steps have been incorporated in the other
programs.

The Manipulations routines are intended to extend the built-in stack

manipulation commands of the HP-28S. EXCH is a generalization of
SWAP, allowing you to. swap any two stack levels. ROLDN and
ROLLN extend ROLLD and ROLL, respectively, providing a method
to repeat the action, thereby "scrolling" the stack in the specified direc­
tion.

Reversing stack elements can also be considered an extension ofSWAP
(which reverses the order of stack Levels 1 and 2). REVS extends this
idea to the bottom three stack Levels, and REVN reverses the bottom
n Levels.

Finally, since you can consider all stack manipulations to be ordering

the stack in some fashion, QSRT provides a method of sorting a portion
of the stack into descending order. Note that QSRT is the only one of

these manipulation routines that cares what the actual contents of the
stack is; all the others simply move objects, but QSRT requires that

the objects be orderable.

42 Chapter 1: Siad Utili"-

t':/'
(...
(...
(..
(..
(..

C­
C­
C­
C­
~
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C ,

The Operations routines, with the exception of MERGE, consider the
stack to be a collection of storage locations for which they provide
storage and storage arithmetic operations. The basic four operations
from the STORE menu (STO+, STO- , STO* and STO/) are repro­
d uced for any arbitrary Level of the stack. Simple storage to any Level
is provided bySTOST (and note that you already have the generalized
analog to RCL in the built-in PICK operation).

The Tests routines are the most straightforward: They simply extend

the idea of the tests ==, :;t, i!:, > , ~ ,and < to other Levels of the stack
besides Levels 1 and 2.

43

Chapter 2

Real Number Utilities

These routines provide quick and reliable ways to do certain manipu­
lations with real numbers.

As shown in the following list, the 9 programs are organized into four

logical groups, presented alphabetically. Within each group, the pro­

grams are also usually presented alphabetically (by NAME), although

in some cases, certain sets of programs may be complementary or oth­

erwise so similar that they may be presented together.

For a more in-depth discussion ofthe uses of these utilities, see page
60, immediately following these program listings.

44 Chapter 2: Real Number UtilUie.

c
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~
~
~
~

-..
~ ~

Function ~

~
~ Integer Arithmetic Functions

3
3 GCD Find The Greatest Common Divisor 46

3 Of Two Positive Integers

3 LCM Find The Least Common Multiple 46

3 Of Two Positive Integers
3 RMD Find The Remainder Of An Integer Division 48
3
:)

--..It Prime Number Generators
'-,
..It

..." FCTR Find The Prime Factors Of An Integer 50 - PRMS Generate A List Of The Prime Numbers 52 - Between The Specified Limits --.-
Random Number Generators -

.-
IRAND Generate A Random Integer Within Given Limits 54 .-- RRAND Generate A Random Real Number 54

- Within Given Limits

-.-

- Rounding Routines

,A
IRND Round A Real Number To The Nearest Integer 56 ,A
RRND Round A Real Number 58 ,A

, ... To The Specified Decimal Place

, ...
(A Contents 45

"'"

Find The Greatest Common Divisor
Of Two Positive Integers:

GCD (314696)

« ~ A S « A IP ASS
~NUM S IP ASS ~NUM
WHILE OVER MOD SWAP
DUP REPEAT END DROP
» »

Find The Least Common Multiple

Of Two Positive Integers:

LC~1 (123623)

« ~ A S « A IP ASS
~NUM S IP ASS ~NUM
DUP2 GCD / *' » »

Summary: GCD finds the Greatest Common Divisor of two positive

integers. LCM returns the Least Common Multiple of

two positive integers. The Greatest Common Divisor of
two integers is the largest integer by which both num­

bers can be divided evenly. The Least Common Multiple
of two integers is the smallest integer which is a mul-

46 Chapter 2: Real Number Utilitia

, , , ,
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~
~
~
~
~
~

• • • • • Examples:

• • • • • • • • • • • • • • • • • • • i
i
i
)

• :.
:.
:# ,

Inputs:

Outputs:

Errors:

Notes:

tiple of both numbers. Negative arguments are con­
verted to positive and fractional portions are truncated.

9 6 GCD
946 1462 GCD
1492 1776 GCD
8.5 -2 GCD

4 8 LCM
23 15 LCM
40 15 LCM
8.5 -2 LCM

Level 2 - a real number.
Levell - a real number.

Rwili: 3
&will: 86
&s.lili: 4
~:2

~:8
~: 345
~: 120
~:8

Level 1- an integer - the GCD or LCM of the inputs.

Too Few ArgUMents will occur if there are fewer
than 2 arguments on the stack.

Bad ArgUMent Type will occur for inputs other
than real numbers.

Undef" i ned NaMe will occur if either of the argu­
ments contains an undefined name.

BothGCD andLCM use local variables to allow their use
within algebraic objects. LCM uses GCD.

, , , Integer Arithmetic Functions 47

Find The Remainder Of An Integer Division:

R~1D (62702)

« ~ X Y « X IP Y IP
DUP2 / IP * - » »

Summary: RMD finds the remainder of an integer division.

Real numbers are allowed as inputs, but any fractional
portions of those inputs are truncated.

Examples: 19 8 RMD Result: 1
Result: 18
Result: 0
Result: -2

Inputs:

Outputs:

Errors:

48

45 16 RMD
8.8 4.5 RMD
-6 4 RMD

Level 2 - a real number - the dividend.

Levell - a real number - the divisor.

Level 1- a real number - the remainder of the division.

Too Few ArgUMent swill occur if there are fewer

than 2 arguments on the stack.

Bad ArgUMent Type will occur for inputs other

than real numbers, names and algebraic objects.

Under i ned ~~aMe will occur if an undefined name

is input and symbolic results (flag 36) mode is not set.

Chapter 2: Real Number Utilitie8

• • Notes:

• • • • • • • • • • •
~
~
~
~
~
~
:)

:l
'~

'~

'~

,--,
'~

While not strictly necessary. RMD uses local variables so

that it can be used within algebraic objects.

RMD will return an algebraic expression if either of its
inputs are symbolic and symbolic results mode is set.

For example:

I A I I B I R~1D &.s!ili:

'" Integer Arithmetic Funetiontl 49 ,

Find The Prime Factors Of An Integer:

FCTR (3387925)

« ABS IP DEPTH «
WHILE DUP 8 PICK /
DUP FP NOT REPEAT
SWAP DROP OVER ROT
ROT END DROP » ~ L D
« IF DUP 8 > THEN 2
SWAP D EVAL 8 ROT
DROP SWAP WHILE DUP
1 ~ OVER ~ IP 4 PICK
~ AND REPEAT D EVAL
2 ROT + SWAP END
SWAP DROP IF DUP 1
== THEN DROP END END
DEPTH L - 1 + ~LIST
» »

"­
"­
"­
"­
"-

" " " Co
Co
C
C
C
C
C
C
C
C
C
C
C
C
C

Summary: FCTR finds the prime factors of a given positive integer. ~
Negative arguments are converted to positive, and any ~
fractional portions are truncated. ~

~
Examples: 8 FCTR ~: (2 2 2) ~

144 FCTR Result: (2 2 2 2 3 3) ~
88 FCTR Result: (83) ~

1042 FCTR Result: (2 521) ~

~
~

SO Chapter 2: &al Nrunber UIiUIi8 ~

C

if1It .. ,.. ...
... Inputs:
~ Outputs: ••
~ .
. .- Errors: • • • .-.­
~
~
~
~
~
~
~
~
~

-.,

-.itI -.., -.;if

Notes:

18.5 FCTR
-100 FCTR

&w.ili: (2 3 3)
&w.ili: (2 2 5 5)

Levell - an integer or real number - the number to be
factored .

Levell- a list of one or more integers - the factors of the
original number.

Too Few ArguMent S will occur if there are no
arguments on the stack.

Bad ArguMent Type will occur for inputs other
than real numbers .

Under i ned NaMe will occur if an undermed name
object is used in the input.

To regenerate the factored number (i.e. perform the
inverse operation), a routine like this might be useful:

« LIST~ 2 SWAP START
'* NEXT »

. ~ Prime Number Generutonl

..-..
61

Generate A List Of Prime Numbers:
~
(

Summary:

Examples:

Inputs:

52

PR~1S (1443948)

« ASS IP SWAP ASS IP
IF DUP2 < THEN SWAP
END DUP 2 MOD NOT +
SWAP DEPTH ~ D « FOR
I 8 I ~ WHILE DUP2 <
I 4 PICK / FP AND
REPEAT 2 ROT + SWAP
END> III IFT 2 STEP
DEPTH D - 2 + ~LIST
» »

(
(
(
(
(
(
(
(

t
t
t
(
(
(
(:
(:

PRMS generates a list of all prime numbers within the (:

two given limits. Negative limits are converted to posi- (:
tive and fractional portions are truncated. The limits (:

are included in the range and may be supplied in either ~
~~ C

C 1 5 PRMS Result:' 1 8 5) C
20 10 PRMS Result:' 11 18 17 19) C
-28 50.1 PRMS C
Result:' 28 29 81 87 41 48 47)

Level 2 - a real number.

Levell - a real number.

C
~
~
~
~
~

Chapter 2: &al Numb.,. UtiU".. C

; Outputs, ..
.... Errors:

r4
~ ,...
~ Notes,

,-a
,-a ,­I-• • • • • • • • • • • • ,.
-...
-...
..... ...,

Levell - a list of 0 or more prime numbers .

Too Few Ar9UIilent S will occur ifthere are fewer

than 2 arguments on the stack.

Bad Ar9UIilent Type will occur for arguments

other than real numbers.

None.

.... Prime Number Generators 53

~

Generate A Random Integer
Within Given Limits:

I RAND (244362)

« + H L « L IP H IP
IF DUP2 > THEN SWAP
END 1 + OVER - RAND
* + IP :. :.

Generate A Random Real Number
Within Given Limits:

RRAND(182849)

« + H L « L H DUP2
IF > THEN SWAP END
OVER - RAND * + :. :.

Summary: I RAND randomly generates an integer whose value is

between two given real-valued limits. Only the integer

portions of the limits will be used, and these are included
in the range of possible results. The limits may be sup­
plied in either order.

RRAND randomly generates a real number whose value

54
Chapter 2: Real Number UlilUin

~
~ , , ,
<;;
<;;
<;;
<;;
<;; , , , , ,
C
C
C , ,
C
C
C
C
C
C
C
C
C
C
C
~
~
~
~
~

~
~
~
~
3
3 Examples:

3
3
3
3
3
~
~
~
~
~
~
~
~
3
~
3
~
~

• .~
.~

~
~, .,

Inputs:

Outputs:

Errors:

Notes:

is between two given, real-valued limits, which may be
supplied in either order. The lower limit is included in
the range of possible results; the upper limit is excluded.

STD -5 2.3 IRAND
~: -1 (or any integer from -5 to 2)

STD 8 -8 IRAND
~: -7 (or any integer from -8 to 8)

STD -5 2.3 RRAND
~: 1.44333879186 (oranyrealnumberfrom

-5 to 2.29999999999)

STD .25 10 RRAND
~: 1.62765141542 (or any real number from

.25 to 9.99999999999)

Level 2 - a real number.

Levell- a real number.

Levell - a real number - the random integer or real.

Too Few ArguMent. swill occur if there are fewer

than 2 arguments on the stack.
Bad ArguMent. Type will occur for arguments

other than real numbers .

Both I RAND and RRAND use local variables so that
they can be used within algebraic objects .

~
Random Number Generatonl 55

•

• ,
Round A Real Number To The Nearest Integer: ,

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

56

IRND (50939)

« ~ N « N .5 + FLOOR
~NUM » »

I RND returns the integer value nearest the input

value. Fractional portions of exactly 0.5 are rounded up.

1. 5 IRND
122.38 IRND
-5.5 IRND

Result: 2
Result: 122
Result: -5

Level 1 - a real number - the number to be rounded.

Levell - a real number - the integer nearest the input
value.

Too Few ArguMents will occur if there is no ar-
gument on the stack.

Bad ArgUMent Type will occur if the argument is
other than a real number.

Under i ned NaMe will occur if the argument con-
tains an undefined name object.

I RND uses local variables so that it can be used within
algebraic objects.

Chapter 2: Real Number Utilitin

, , , , , , , , , , , , , , , , ,
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~
~
c

• .. -. • • • • • • • • • • ~
~
~

• ~
~
~
~
~
~
~
~
~
~
~ -JI -..Ii -.41

~ -; ..

Bearinmind that numbers with absolute values greater

than lOll don't have fractional portions on the HP-28S,

because all twelve of the machine's available digits are

required for the integer portions of such numbers.

_ Rounding Routines 57
;

~

Round A Real Number

To The Specified Decimal Place:

RRND (108147)

« ~ X N « N IP ALOG
DUP X * .5 + FLOOR
SWAP / » »

, , , , , , , , , ,
c
C

Summary: RRND returns a real number rounded to the specified C

Examples:

Inputs:

Outputs:

58

decimal place. Decimal places to the right of the decimal
point are specified with a positive integer; those to the

left of the decimal point are specified with a negative
integer.

STD rr 7NUM 6 RRND
STD -.892664 2 RRND
STD 122.88 1 RRND
STD 1492 -2 RRND

&IDili: 8. 141598
&mit: -.89
~: 122.4
~: 1500

Level 2 - a real number, name or algebraic object - the
number to be rounded.

Level 1 - an integer, name, or algebraic object - the
value specifying the decimal places to be rounded.

Levell - a real number or algebraic object - the rounded
number.

Chapter 2: Real Number UtilUin

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
~
~
~
~
~

-.41 -.41 -JI -JI -JI

Errors:

Notes:

Too Few Ar9UMentSwilloccuriftherearefewer
than 2 arguments on the stack.
Bad Ar9UMent Type will occur for inputs other
than real numbers, names or algebraic objects.
Undef i ned NaMe will occur if an undefined name
object is used in the input and symbolic results mode
(flag 36) is not set.

RRND uses local variables so that it can be used within
algebraic objects.

RRND will return an algebraic expression if either of its
inputs are symbolic and symbolic results mode is set.
For example:

I AliBI RRND ~:

IFLOOR(ALOG(IP(B»*A
+.S)/ALOG(IP(B»I

_ Rounding Routines
41 59

~

Real Number Utilities: ADiscussion

The Main Idea

The main intention of these real number utility routines is to extend

the basic real number functions of your HP-28S in clear and useful

ways. You should be able to imagine these programs listed as
commands in the REAL menu - and use them to build other, more

sophisticated programs -just like the HP-28S' built-in real numberop­

erations. Arguments are entered similarly, and results return simi­
larly; there should be no surprises.

Where To Put These Programs

As always, to be usable, these utility programs must be in a directory

that is listed in your current PATH (i.e. in your current directory or one

of its parent directories). Of course, the easiest way to ensure this is

to put the programs in the HOM E directory - the ultimate parent of all

other directories.

60 Chapter 2: Real Number Utilit*

~

Some Observations

The algorithms behind the routines are quite straight-forward (i.e. you

should be able to follow what's going on and how they work) - except

for FCTR and PRMS:

If a number is divisible by 2 or by any odd integer between 3 and the

square-root of the number, it's not prime. Both FCTR and PRMS use

this fact and perform successive divisions of the odd integers from the

lower limit to the square-root of the upper limit.

Notice also thatFCTR creates and uses a "local subroutine:" It creates

two local variables, Land D. L is used to store the argument taken

from the stack - the number to factor. D, on the other hand, is used to

store a postfix program that FCTR itself has put on the stack. Later

on in the program, the routine is evaluated (D EVAL) at two separate

points. The alternatives would have been either to reproduce the same

program steps twice within the FCTR program, or to create a sepa­

rate, globally-named program and call it by name from within FCTR.
The first option wastes space, the second creates an otherwise useless

named object to clutter up the USER menu.

Another design point to notice is that the routines that take upper and

lower limits will do so in either order, thanks to these program steps:

IF DUP2 > THEN SWAP
END

In other words, if the Level 2 value is greater than the Levell value,

swap them (DUP2 is necessary because> consumes its arguments).

.-.- Discussion 61

~

The same thing could also have been accomplished with:

DUP2 > « SWAP » IFT
or

DUP2 MIN ROT ROT MAX

The first routine is basically a rewrite of the original routine, using the

I FT syntax (choosing IF ... THEN vs. I FT is largely a matter of per­
sonal preference). The second routine abandons conditional state­

ments entirely: performing a MIN and then a MAX on the same argu­
ments effectively puts them in proper order on the stack <DUP2 is
necessary to copy the arguments for both the MIN and MAX functions).

As you can tell, the HP-28S gives you nothing if it doesn't give you
options. IF ... THEN ... END was used in the routines in this chapter

simply because it is the easiest to read and understand - which can be
an important consideration.

Errors And Error Recovery

Consistent with the behavior of the built-in real number commands,
these programs do very little error-checking in input or output. So

when an error condition occurs, the program halts, displaying the
cause of the error (and probably a stack full of garbage).

The best way to deal with this is to be sure that UNDO is enabled before
using the routines (check .MODE@)toseeifUNDO is selected), then
use the UNDO command after the error. You will come to admire the

elegant simplicity - and life-saving ability - of an active UNDO.

62 Chapter 2: Real Number UtilUlM

t
t
t
t
t
t

How You Might Use These Utilities

Fractional Math t
t
t t The programs FCTR, GCD, LCM, PRMS and RMD are chiefly useful

t

• • • It
It
It
It
It
It
i
i

• • •
~

--~
~ ...
§I
...

"
...
t!1

unto themselves: if you need a prime number within a certain range,

use PRMS; the remainder of a division is found with RMD, etc.

However, a routine like GCD can be used to easily construct another,
very useful routine, called RDC (63757) - "ReDuCe":

« DUP2 GCD SWAP OVER
/ ROT ROT / SWAP »

Taking the real numbers on Levels 1 and 2 of the stack to be the de-
nominator and numerator of a fraction, respectively, RDC divides both
numbers by their Greatest Common Denominator (GCD) and thereby
reduces the fraction.

For example:

5 20 RDC
6 8 RDC

Result: 1 4
Result: 3 4

(5/20 reduces to 1/4)
(6/8 reduces to 3/4)

... Discussion

" i
63

This ability to easily reduce a fraction suggests further possibilities ,
such as fractional addition. FADD (71482) adds two fractions whose

numerators and denominators are on the stack, then reduces the re­
sulting sum:

« ~ ABC D « D A *
C B * + B D * RDC » »

Try adding 1/2 and 3/4: 1 2 8 4 FADD Result: 5 4 (i.e. 5/4)

Add 1/4 to this result: 1 4 FADD ~: 8 2 (i.e. 312)

Think about how FADD takes four arguments as the numerators and

denominators of two fractions in the following order:

4: < numerator1 >
8: < denominator

1
>

2: < numerator2 >
1 : < denominatorz >

And then it returns a single numerator and denominator. So, how hard

would it be to create a complete set of fractional math routines? For
example:

1 2 1 4 FSUB
1 2 1 4 FMUL
1 2 1 4 FDIV
1 2 FINV
1 2 8 SCALE

64

Result: 1 4
Result: 1 8
Result: 2 1
Result: 2 1
Result: 4 8

0/2 - 1/4 = 1/4)

(1/2 X 1/4 = 1/8)

(1/2 + 1/4 = 2/0
(this is too easy!)

(1/2 scaled to "eighths"

= 4/8)

Chapter 2: Real Number Utilitie.

• • •
Random Numbers

• Random number generators are generally useful for allowing a pro-

• • • • • • • • • • • • ~

gram to generate unpredictable results. Suppose, for example, that

you want to test a program or other tool with an unpredictable, random

set of circumstances. Or suppose that you're creating a game program

where you don't want the program to play the same way all the time.

So you want to simulate the occurrence of unpredictable events, like a.

toss of a die or the choice of a card from a deck.

TOSS (12974):

« 1 6 IRAND »

CARD (253795):

« STD 1 13 IRAND
~STR .. 1/ (

"HEARTS" "SPADES"
"DIAMONDS" "CLUBS")
1 4 IRAND GET + + »

Both TOSS and CARD use I RAND because there are whole (integer)

numbers of die faces, card suits, and cards per suit. But what if you're

~
~
~
~
~
:i
:i
~
~
~ not so constrained? What if you're inventing a game, where you need

:i to place a player randomly on a lOOxlOO-unit playing field - where

:i fractional units down to l/lOOth are allowed? TryPUTIT (93197):
~

« 0 100 RRAND 2 RRND 0
100 RRAND 2 RRAND R~C »

_ Discussion 65
~

~

100 is used for the maximum value with the assurance that it will be c,..
c"..

included within the range because RRND will round 99.995 and up to c"..
1~ c"..

Now consider the following alternative to PUT IT, called PLACE
(69151Zt). Consider why it works:

« IZt l1Zt1Zt01Zt IRAND IZt
llZtlZtlZtlZt IRAND R~C llZtlZt
/ »

c"..
c"..
c"..
c"..
c"..
c"..
c"..
c"..

And you might even test PLACE or PUT I T with the following c"..
program, PTEST (175117): c..-

« CLLCD (1Zt,1Zt) PMIN
(11Zt1Zt,11Zt1Zt) PMAX 1 llZtlZt
START PLACE PIXEL
NEXT »

c..
c..
c..
c..
c..
c..
c..
c
c
c-
c
c
c
c
C­
C­
C­
C­
C­
C-

Chapter 2: 1Ual Number UtUltift c-
c-

• • •
Rounding Notes

• You might even think that once you've set the correct display format

• (say,2 F I X, for dollars and cents), all results are properly rounded
• for you. Don't you believe it! For example, if you pay $1000/year for

• three years - in 36 identical monthly payments - how much will you
• pay in total? Common sense says, "$3000;" so does the HP-2BS display:

• I 2 FIX 1000 12 / 36" ~: 3000.00
I
I
I
I

But that's not right. In reality, each monthly payment is rounded to the

nearest penny: 2 FIX 1000 12 / 2 RRND &wili: 83.33

Now find the real total payment: 36" ~: 2999. 88 • it it Rounding is independent of the display format! You could round to two

it digits and yet have the display show you, say, one digit: 2999. 9

• • Notice also this feature: SrD 1492 - 2 RRND ~: 1500
• Digits to the left of the decimal point are rounded for negative argu­
~ ments;RRND effectively does 1492 10E-2 .. IRND 10E2 ..

~
~
~ One more thing: I RND is not the same as the I P command. I P

• truncates its argument to form an integer, while I RND rounds it (and
~ the half-integer always rounds up: - 3.5 rounds up to - 3).
~

• value

• 3 14 , .
, 3.5
, 3.75 ,
, Discussion

~
3
3
3

IRND

3
4
4

value
-3.14

-3.5

-3.75

11:.
-3
-3
-3

IRND
-3
-3
-4

67

Chapter 3

Complex Number Utilities

c..
c.­
c.­
c.-
c.­
c.­
c.­
c.-
c;..
c;..
c;..
"-

These routines provide quick and reliable ways to use alternative "'-
formats when working with complex numbers. ~.

~
As shown in the following list, there are 7 programs, generally pre- ~.
sen ted alphabetically (by NAME), although in some cases, certain sets ~
of programs may be complementary or otherwise so similar that they c;.
may be presented together. c;.

c;.
For a more in-depth discussion of the uses of these utilities, see page ~
78, immediately following these program listings. c·

c­
c
c
c
c
C­
C­
C'"
C'"
C'"
~

68 Chapter 3: Complex Number UtUUia ~

('"

t
t~
t
t
t
t R~e
t R~i
t R~a
t a

t ~e

• ~i
• ~a • • • • • • • • it

• • • i
i
~

• i
i
i
)
)
)
) ContentB

~

Function ~

Formatting Routines

Convert Two Real Numbers To I M*eA
(i *0:) I 70

Convert Two Real Numbers To I Re+ i * I M I 71
Convert Two Real Numbers To I a (M, 0:) I 72

Polar Format Function 73
Convert (Re, 1M) To I M*e A

(i*o:) I 74

Convert (Re, 1M) To I Re+i*IM I 74
Convert (Re, 1M) To I a (M, 0:) I 74

69

------------------.......
Convert Two Real Numbers To

I M*e"" (i*a) I:

R-+e (2661139)

« .:,NUM SWAP ~NUM
SWAP R~C C.:,R RCLF 36
SF IiI ROT *' leI

SWAP A ROT SWAP *'
SWAP STOF »

Summary: R':'e converts two real numbers into an expression of
the form I M*'e" (i *0:) I , where M is the magnitude
and (l is the angle of the complex vector.

Example: Problem: Key in the number 5eiO.93•

Solution: 2 F I X 5 • 93 R~e
Result: I 5*'e" (i *0. 93) I

Inputs: Level 2 - a real number - the magnitude, M.

Level 1 - a real number - the angle, a, in radians.

Outputs: Levell - an algebraic object - the complex expression.

Errors: Bad Argument Type will occur for non-real input
values.

Notes: The angle (a) is always expressed in radians.

70 Chapter 3: Complu Nrnnber l/IIIUNtI

c..
~
c..
c..
c..
c..
c..
c..
c..
c.
c.
C-
c..
c.
C­
c.
c­
c
c
c-
c
c
c
c
c
c
~C'"

C"
~
~
~
~
~
~
~
~

• • • • • • • • • • • • •

Convert Two Real Numbers To I Re+ i '* I M I :

R~ i (293698)

« ~NUM SWAP ~NUM
SWAP R~C C~R RCLF 36
SF ROT ROT Iii OVER
SIGN * SWAP ABS * +
SWAP STOF »

• Summary: R~ i converts two real numbers into an expression of

• the form I Re+ i * I M I , where Re is the real portion

• • • • • • • • :t
i
i
)
)

i
:;

Example:

Inputs:

Outputs:

Errors:

and 1m is the imaginary portion of the complex vector.

Problem: Key in the number 3+i4.

Solution: 2 FIX 3 4 R~i
Result: I 3+ i *4 I

Level 2 - a real number - the real portion, Re.
Level 1 - a real number - the imaginary portion, 1m.

Levell - an algebraic object - the complex expression.

Bad ArgUMent. Type will occur for non-real input

values.

:; Notes: None.

:;
;.
:it
:. Formatting Routine. 11

~

----------------........
Convert Two Real Numbers To I a (M, a) I :

« ~NUM SWAP ~NUM
SWAP R~C RCLF STD
IIlall ROT ~STR + STR~
SWAP STOF »

Summary: R~ a converts two real numbers to a complex expression
in the polar form I II (M, 0:) I , where M is the magni­

tude and a is the angle of the complex vector.

Example: Problem: Key in the number 5L53.130 •

Solution: 2 FIX 5 53. 13 R~a
Result: I II (5, 53. 13) I

Inputs: Level 2 - a real number - the magnitude, M.

Level 1 - a real number - the angle, a, in degrees.

Outputs: Levell - an algebraic object - the complex expression.

Errors: Bad ArgUMent Type will occur for non-real input
values.

Notes: The angle (a) is always in degrees.

72
Chapter 3: Compl_ Number Utilitie.

• • • • • • • • • • • • Summary:

• • • • • • • • • • • • i
i

• I
I
I
i
i
i

Example:

Inputs:

Outputs:

Errors:

Notes:

Polar Format Function:

a (91127)

« ~ M A « RCLF DEG M
A R~C P~R SWAP STOF
» »

a is an auxiliary function that converts two real numbers,

M and C1., where M is the magnitude and ex is the angle of
a vector (in degrees), into a rectangular complex number
of the form (Re, 1M). This function is used whenever

a complex number that has been formatted in the polar
notation I a (M, 0:) I must be evaluated to an actual

numerical value.

None needed.

Level 2 - a real number - the magnitude, M.

Levell - a real number - the angle, ex, in degrees.

Level 1 - a complex number - in rectangular format.

Bad ArgUMent Type will occur for non-real input
values.

The angle (ex) is always in degrees.

i
a Formatting Routines 73

•

74

~e (271112)

« (1,O) * ~NUM C~R
R~C RCLF 36 SF RAD
SWAP R~P C~R Iii
SWAP * I e I Sl.JAP
SWAP STOF »

A *

Convert (Re, !1\1) To I Re+i*!M I:

~i (224825)

« (1,O) * ~NUM C~R
RCLF 36 SF ROT ROT I

il OVER SIGN * SWAP
ABS * + SWAP STOF »

Convert (Re, !1\1) To I a (M, 0:) I:

~a (244542)

« (1,O) * ~NUM C~R
R~C RCLF SWAP DEG
STD R~P ~STR IIlall

SWAP + STR~ SWAP
STOF »

c.
c.
~
~
~
~
~
~
c..
c..
c..
c..
c..
c.
c.
c.
c
c
c
c
c
c
c
c
c
c·
c-
c­
c­
c-
(~

\~
~
\~

Chapter 3: Complu Number UtUUia \~

\~

• .-..
~
~
~ ..
• • • ;t
;t
)

::.
a

Summary: ~e converts a complex number from any evaluable
formattothisexponentialformat: 1 M*e'" i *0: 1 ,where
M is the magnitude of the vector in the complex plane
and ex is the directional angle, in radians.

~ i converts a complex number from any evaluable
format to a rectangular algebraic format: 1 Re+i*IIYI ' ,
where Re is the real portion and 1m is the imaginary
portion of the complex vector.
~ a converts a complex number from any evaluable
format to this polar format: 1 a (M, 0:) I , where M is

the magnitude of the vector in the complex plane and ex
is the directional angle, in degrees.

Examples: Problem: Find 4e""4 + 1 .5ei032 - in exponential format.

Solution: 2 FIX rr 4 / i * EXP 4 * RAD
(1.5,.32) P~R + ~e

Result: I 5. 38*e'" (i *e. 66) 1

Problem: Find (-1.3+iO.S) + (4.4-i2.3). Again, express
the answer in I M*e'" i *0: 1 format .

Solution: 2 FIX (-1.3,.5) 14.4- i*2. 3 1

+ ~e
Result: 1 3. 58*e'" (i * (- e. 53)) I

Problem: Find 4ebrl4 + 1.5e1o.32 - in rectangular alge­

braic format.

Solution: 2 FIX rr 4 / i * EXP 4 * RAD
(1.5,.32) P~R + ~i

Result: '4.25+i*3.3e '

Formatting Routines 75

Inputs:

Outputs:

76

Problem: Find (-1.3+iO.S) + (4.4-i2.3). Again, express
the answer in 1 Re+ i * I M 1 format.

Solution: 2 FIX (-1.3,.5) 14.4- i*2. 31
+ ~i

Result: 13.110- i*l. 810 1

Problem: Find 4e ilTi4 + 1.Se1032
- in degree polar format.

Solution: 2 FIX IT 4 / i * EXP 4 * RAD
(1.5,.32) P~R + ~D

Result: 1 D (5. 38, 37.82) 1

Problem: Find (-1.3+iO.S) + (4.4-i2.3). Again, express
the answer in 1 D (M, C() 1 format.

Solution: 2 F I X (- 1 • 3, • 5) 1 4. 4- i *2. 3 I

+ ~D
Result: 'D(3.58,-30.14)'

Level 1 - any object that can be reduced to a real or
complex number by ~NUM.

Level 1-an algebraic expression - the formatted como­
plex number expression. ~e ,~i , and ~ D generate al­

gebraic expressions with no unevaluated variables (lei

and 1 i 1 are symbolic constants). Thus these expres­

sions behave as a symbolic complex numbers.

Certain conversions involving combinations of~e, ~i
and ~ D may produce odd results because of rounding
errors.

Chapter 3: Complex Number Utilities

c.
c.
c..
c..
c.
c.
c..
c.
c..
c..
c..
c..
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C­
C­
C­
C­
C'"
C'"

Errors:

Notes:

For example, the sequence (0, 2) ~e ~ i will return

'8. 73323846264E-12+i*2' ,instead of , i*2',
because~e gives' 2*eA

(i * 1 • 57079632679)',
instead ofthe more accurate' 2*eA

(i *TT /2) , . Note

that you can regard numbers smaller than 10-10 as 0;

often, in fact, you can use RND and a proper display
mode (2 F I X or 4 SC I, etc.)to actually round to 0.

Bad ArgUMent. Type will occur if an input is not
reducible to a real or complex number.

R~P andP~R are other conversion commands that may
be useful (and more familiar) to you in working with

complex numbers. But be careful! HP-28S system com­

mands (except for P~R) expect complex numbers to be

in - or reduce to -rectangular form only. If you use any

of those system commands on complex numbers inpolar
form, you'll get incorrect results!

Formatting Routines
77

........................
Complex Number Utilities: A Discussion

The Main Idea

The main intention ofthese complex number utility routines is to offer
some convenient conversions between commonly used real and com­
plex number formats - formats that were not built into the HP-28S.
You can do any sort of calculation with complex numbers in these
formats that you can do with the built-incomplexformat«Re, IIY'I».

Where To Put These Programs

As always, to be usable, these utility programs must be in a directory
that is listed in your current PATH (i.e. in your current directory or one

of its parent directories). Of course, the easiest way to ensure this is
to put the programs in the HOM E directory - the ultimate parent of all

other directories.

78 Chapter 3: Comple:J& N"~" utUuta

c..
c..
c...
c...
c...
c...
c...
c...
c..
c..
c..
c..
c.­
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~
~
~
~
~
~

• ~
• ~
~
~
~
~
~ , , ,
~
:3

Some Observations

Symbolic vs. Numeric Calculations

The HP-28S is not just a calculator. It is also a symbolic expression

solver. For this reason, you must also consider not only how to perform

a calculation, but what form your input is in and what form you want
your output to take.

For example, it's clear what should happen when you do simple

arithmetic (say, add 1 and 2,like so: 1 2 +). You should get one real­
valued result, 3. But what if you want to add the number 5 to the
number ZA (like so: ZA 5 +)? What kind of answer do you want - a
numeric or a symbolic result?

To more fully illustrate these questions, consider some examples:

• You want to build a symbolic expression I A*8/ (A+8) I . How?

• You have two variables I A I and I 8 I , containing numbers. How

would you calculate A x 8/ (A + 8) and get a numeric result?

• You want to evaluate the expression, I A*8/ (A+8) I , for many
different values of I A I and I 8 I . What do you do?

• You want to find the numeric value of 1t+4. How?

Discussion 79

The possibilities are endless. And these are all quite common and valid
needs that you might have - and they are perfectly reasonable things
to expect your HP-28S to do. You must simply "know the recipes "

To work confidently with your HP -28S, you need to be familiar with two

of its system flags (internal status indicators which you can vary back
and forth between two opposite states). They are: Flag 35 (constants
mode) and Flag 36 (results mode).

Flag 35 (constants mode) determines what kind of result you'll get

when any of the system constants (i, e, MAXR, MINR and IT) are

evaluated.

For example, when flag 35 is set (which you do like this: 35 SF), and
youperform IlT I EVAL,you'llgetthesymbolicresult: IlT I. Onthe

other hand, when flag 35 is clear (35 CF) performing I IT I EVAL
will give you 3. 14159265359, the nearest numerical equivalent.

(e;...
r(;,...

("'"
("'"
("'"
("-
("­
,"­
,"'-
'''­
'''-1"-
,"-
"­.,,-
(C­
("­
(e
Ie
'e
Ie
'C

Flag 36 (results mode) determines whether functions will reduce 'C
name objects to their numeric contents. lC

For example, when flag 36 is set (via 36 SF), the commands I A I 1
+ give the result I A+ 1 I . Setting flag 36 effectively tells functions to
"leave all name objects alone." But when this flag is clear (36 CF),

'e
Ie
,e
Ie

functions will evaluate all name objects so as to return numeric re- rC
suIts: 2 I A I STO I A I 1 + yields 3, for instance. Thus, if le
you're working with flag 36 clear, you should remember that name
objects will function as places in which to store numbers - not as ab-

80 Chapter 3: Complex Number Utilitk.

..
• • ..
• • •• • • • • • • • • • • • ~
• ~
~
~
~
~
.~

.~

2
-.2
~

stract variables. Indeed. names that don 't contain numeric objects will
cause errors when operated on under this flag setting .

Note also that symbolic constants are simply name objects with
specially reserved names. Therefore. if flag 36 is clear. the machine

"has permission" when using functions to reduce all names to their
numeric equivalents - including the specially reserved names. In

effect. then. when you clear flag 36. you are overriding the setting of

flag 35.

The settings of these two flags is. of course. up to you. but you'll have

the most flexibility if you generally leave them both set, thus preserving

all names and constants in your results. Remember that when you

have a symbolic expression that you need to reduce to its numeric

equivalent. you can always do so easily with EVAL or ~NUM.

Errors And Error Recovery

Each of the complex number format conversion routines is designed to

cause an error when invoked with invalid arguments - rather than

generating erroneous results. However. no provisions have been made

to clean up the stack before the program halts at such an error. so

"garbage" may be left on the stack at that point. In any event. the input

argument(s) will almost certainly have been consumed and the stack

disheveled. It's probably best. therefore. to use these tools with UNDO

active, because UNDO is certainly the most convenient way to restore

the stack after an error.

Discu8sion 81

.........................
How You Might Use These Utilities

Complex Number Calculations

"" "'" "" "" "" "" "" c,..
The six conversion routines extend the HP-28S complex number com- c,..
mands by allowing you to construct complex number expressions. They c,..
always return symbolic results; they were designed to do so - to allow c,..
you to generate complex numbers in alternate, symbolic formats. t
However, just as with any other arithmetic, the results mode (flag 36) c..
does affect how these expressions are combined. Watch: c..

2 FIX 86 CF
1 2 R~i
5 58 R~a
+

(turns off symbolic results)

~: '1+i*2 1

Result: I a (5, 58) I

~: (4.1211,5.99)

That's what you'd get with symbolic results turned off(and you would

then need to use ~ i , ~e, or ~ a to put it back into a symbolic format,
if that's what you prefer). Now repeat this with symbolic results set:

86 SF
1 2 R~i
5 58 R~a
+

(turns on symbolic results)

Result: 11 +i*2 1

Result: I a (5, 58) I

Result: I 1 +i *2+ a (5, 58) I

Note that all symbolic expressions and constants are preserved-just
as you'd expect with flag 36 set. All six routines produce results that
behave this way. Then, if you want the numeric value, you use +NUM.

c..
c.
C
c:
C=
c:
C
C
C
C
C­
C
C
C
C
C
C
~
~

82 Chapter 3: Complu Number ~ ~

~

Keying In Complex Numbers

As you may know, there are several different complex number formats
in widespread use among different disciplines. This is irrelevant, of
course, if you never encounter any format other than the one you now
know and love. But in case you do meet with a different format, it's
good to be able to convert back and forth - and to combine numbers in

different formats, reducing the results to your preferred format.

• • • • • • • • • • • • The first thing to realize with the HP-28S is that it has its own formats
• and conventions. The basic complex number on the HP-28S is the
• Cartesian-coordinate (also called rectangular) form: (3, 4) , where

• the 3 is the real component and the 4 is the imaginary component. All

• the HP-2BS 's calculations assume that a complex number is in this rec-

• • •
tangularform (except those operations specifically intended to convert

from another form to this one).

• All would be well if this rectangular form were the only one anybody
• ever used, but life is never that simple. There's also a polar form often
• used in engineering and it is sometimes acceptable to the HP-28S:
• (5, 53. 13), where the 5 is the magnitude of the complex vector,
• and the 53. 13 is the angle it makes with the real axis. This angle • • •

may be measured in degrees or radians (the HP-28S will assume one

or the other according to the current angle mode).

• The problem is, there's no way to tell by looking at your calculator's
~

display in which form a complex number is being expressed. Indeed, • • experienced users often develop the habit of using one form or the

• other, converting between them only when necessary.

~
~

-~ Discussion 83

~

~------------------.........
(..

But the HP-28S makes life even easier than that. It can create and use <..
symbolic expressions (including the symbolic constants I e I and I i I) (..

as easily as numbers, thus allowing the creation of other common (..
complex number formats: I 3+ i *4 I and I 5*e" (i *0. 93) I (..

(..

These are the machine's renderings of the algebraic rectangular form, <..
R+iC, and the exponential form, MeiCl

; they will reduce to numeric <..
values if you use~NUM. Note that the HP-28S uses the mathematician's <..
i, rather than the engineer'sj, to represent --"/-:-1. Note also that the ex- c..
ponential form is valid only for a in radians. c..

c..
Unfortunately, there's yet another common complex number format- (C
the polar degree format (the engineers' favorite), which is ML a, with c.. c..
a in degrees. The problem with this is that it's not at all convenient on c..
the HP-28S, because the machine lacks the L character. However, c.
with a slightly different format, you can still present the same inform- C:
ation: I a (5, 53. 13) I. Here the 5 is the magnitude, and the C
53. 13 is the angle, a, in degrees. This is the polar degree format. c-

Of course, all three of these alternate complex number forms would be
merely interesting novelties without some convenient methods for

creating and using them on your HP-28S. So this chapter provides
three commands that exactly parallel the HP-28S's R~C Creal-to­
complex") command - corresponding to each of these three symbolic

formats:

'Re+i*IM ' ,a(M,o:)'

C­
C­
C­
C
\C
c:
C­
C­
~
~
~

R~e R~a \~

84

~
~

Chapter 3: Complex Number UtUiIf/tiII ~

~

..­..
~.
~.

~.

• • • •
• ,.
it ,.
~ ,.
~~

• ~1I

• • ~. -. -.
~

Just like R-+C, each of these commands takes its components from

stack levels 1 and 2 and leaves the resulting expression on level 1:

2 FIX 1 1 R-+i
2 .f 'IT 4 / R-+e
2 .f 45 R-+a

E&sY.lt: I 1 + i I

~: 11. 41*eA
(i*0. 79) I

~: I a (1 • 41 , 45) I

Of course, these commands are only for your convenience; you ca~

always key in these expressions directly. For example, to create the

expression I 1 + ii, you would press c:TI)(±)mJ](ENTS=lI .

Discussion 85

Math With Mixed Complex Fonnats

The real beauty of these three complex formats is that they're {unda,­

mentally equivalent. That is, they'll all reduce to the HP-28S's Carte­
sian rectangular form when you use'-"NUM (indeed, if you apply+NUM
to the expressions on page 85, you'll get (1 • €Ie, 1 • €Ie) for each one
of them - try it)! This means that you can enter complex numbers in
any of the three alternate formats, perform calculations on them, then
reduce the final result with one simple +NUM!

For example:

1 1 R'-"i
3 34 R.-,.a

+ 2 /
That's getting ugly.

2 FIX '-"NUM
That's much better.

~:

~:

~:

'1+i'
,a(3,34)'

'(1+i+ a (3,34»/2 1

~: (1. 74,1.34)

c..
c..
c..
c.. c..
c..
t
c.;
~
~
~
~
c:
~
c::
~
~
~

Yes, but what's this result in polar-degrees format? After all, if you're S
used to working in a certain format, it would be ideal to get the final ~
result in that format, too - no?

~
~
~

Result: I a (2. 2e, 37.52) I

Note that this command is not R'-" a but'-" a . Keep in mind thatR.-,.a

(along with R'-" i and R'-"e) will always combine real numbers to form
a complex expression where there was none before. This is useful
mainly for entering complex numbers. By contrast, .-,. a (and -+ i and

'-"e) will actually convert an existing complex number from any other

allowable format to the desired format.

~
~
rI
rI
~
~

86 Chapter 3: Comple:r Number uliIiIIIif,< ,.

----------------~

..
•

Thus, you have four basic complex number conversion routines: ~ i ,
~a ~e and~NUM. Thebui1t-in~NUMcommandisincluded,because , ,
after all, it too will convert any of the other formats to a certain desired
format - the HP-28S's own Cartesian rectangular format!

So, if in that last example, you really wanted to see the results in, say,
algebraic rectangular format, it wasn't necessary to use ~NUM at all:

1 1 R~i 3
2 /

34 R+a +
~: I (l+i+a (3, 34))/21
~: '1.74+i*1.341

-. Try another one: • ~.

• • •
&IDili:
~:

Result:

,a(1,45)'
'LN(a(1,45»'
'6.4eE-13+i*e.79 1

• ~ i (like any of the other conversion routines) automatically evaluates
• the expression before converting it to Re+iIm format. So any function

• • •
such as LN, that can take a complex expression as an argument, will
be evaluated by the conversion routines.

.. Notice that the result of LN(1 L 45°) has a very small real portion -

• •
small enough to be considered rounding error and replaced by O. To
do this, you could use I M to return the imaginary portion as a real

• number. Then reenter the result as the imaginary portion of a complex •• • • •• •• ••
~
~
::a

number with a real portion of 0:

IM
10 SWAP
R~i

Du,cuuion

~: I IM(6. 4eE-13+i*lO. 79) I

Result: I i *10. 79 I

81

Solving A Complex Expression

For A Complex Result

c,..
c,..
c..
c..

Sometimes you'll need to do algebra with complex numbers, fOrming (c..
complex expressions containing variables: I A+ i *8- D (1 , 45) I (c.. (c..
You cannot build such an object just by using the conversion tools; you c..
must key in the variable names by hand. Here's one method: t

~: 'A+i*8 1

~: 'A+i*8- D (1,45)'

(~
(C-;
(~
rc.:

Of course, you can always perform further operations to build a more (~

complicated expression, but only after the variables have been given (c.::
values can you get its numeric result or convert its format: cC: (c:
8 'A' STO 12 '8' STO +i ~: '7.29+i*11.29' ~

You can also use the SOLV menu to conveniently store values into the \~
variables in such an expression and then evaluate the expression (with

the IEXPR=I, ILEFT=I orl RT= I commands). For example, to evaluate the
expression, I I NV (I NV (ZA) + I NV (Z8)) I , with these values ...

ZA 1

Z8 3 2.3

do this: I INV(INV(ZA)+INV(Z8» I [SOLV) mmtmm

Then: Result: e. 75

I
~
~
crII
l~
<til

88 Chapter 3: Complex Number~ ctIII
.... \<t!

lit
lit
lit
• • • • ,. ,. .. ,.­..
• ••• -a -. --.. --..
--a
-=--:a
~
~

Then: I 2- i *3 I c::JKJ 2. 3 au I EHPR=I ~ i
~: 11.47- i*13. 58 1

Then: I ZA I PURGE I a (2, 45)'DftJ I a (11313,36) I DI:J
[EHPR=I ~a ~: I a (1.96,44.82) I

Note, however, that since the "SOLVer" capability itself does not

extend to complex numbers, you cannot generally use it directly to
solve for the values of complex variables in complex expressions.

Instead, you must use I SOL - and probably some other algebraic

rearrangement tools .

Before using I SOL, you should become comfortable with the use of the

solution mode flag (flag 34):

34 SF I AA2=9 I

34 CF 'AA2=9 1

84 SF 'AA8=9 1

84 CF 'AA8=9 1

I A I ISOL
I A I ISOL

Result: 3. 1313
Result: IS 1 *8 I

'A' ISOL Result: 2.138
I A I ISOL
~: I EXP(2*1T*i*n1/8)*2. 138 1

With flag 34 clear, the expression for the general solution in each case

is given. Arbitrary integers are represented by n 1 , n2, etc. Thus,

replacing n 1 above with any integer will yield a valid answer.

Similarly, S 1, 52, etc., represent arbitrary sign multipliers (±1), so

that replacing 5 1 above with either 1 or -1 will yield valid results.
With flag 34 set, you get the principal value as a result. This value is

what you get when you substitute 0 for all arbitrary integers and 1 for
all arbitrary signs.

Discussion 89

--------------------........
c...
c...

Chapter 4

Vector Utilities

These routines provide quick and reliable ways to do certain type and
dimension conversions and formatting of vectors.

AI?, shown in the following list, the 8 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro­
grams are also usually presented alphabetically (by NAME), although
in some cases, certain sets ofprograms may be complementary oroth­
erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

100, immediately following these program listings.

90 Chapter 4: Vector UtUitia

c....
c...
c...
c...
c...
c...
c...
c..
c...
c...
c...
c...
c...
c...
c..:
c
C
c:
c~

C
c
c
c
c
c­
C'
C'
C'
~
C""
C""
C""
~
~

..
~ Function

Dimension Conversion Routines ~2D Convert A Vector From 3-Dimensional 92 .. To 2-Dimensional .. ~8D Convert A Vector From 2-Dimensional 92 .. To 3-Dimensional

• • • Formatting Routines • '. IJK~ Convert A Vector From I I +J+K I Format 94 • ~IJK Convert A Vector To I I +J+K I Format 94 • • • Type Conversion Routines • • A~V Convert A One-Column Array To A Vector 96 • .. V-+A Convert A Vector To A One-Column Array 96 .. C-+V Convert A Complex Number To A Vector 98 .. V-+C Convert A Vector To A Complex Number 98

" " " " ~
~

• • • • ~ Contents 91

~

----------------..........

92

Convert A Vector From
3-Dimensional To 2-Dimensional:

~2D (61 9608)

« ~ A « A EVAL IF
DUP SIZE (8) ~

THEN () 1 GET END (
2) RDM IF A TYPE
DUP 6 == SWAP 7 ==
OR THEN A STO END »
»

Convert A Vector From

2-Dimensional To 3-Dimensional:

~3D (61 9788)

« ~ A « A EVAL IF
DUP SIZE (2) ~

THEN () 1 GET END (
8) RDM IF A TYPE
DUP 6 == SWAP 7 ==
OR THEN A STO END »
»

~
~

~
~
~
~~
(~
(~

(~
(c,.;
(~
(c..;
(c:
(c:
cC:
cC:
CC
(C
(c
(C',
cC
(C'
cC
cC"
(C"
(c-­
(e­
I.e­
(~

\~
Chapter4: VectorUtUi~ (~

~

= .,. ,. ,. ,. ,. -. • '. • • • • • • • • • • • • -. • a
'3
.~

-2
:a

Summary: ~2D converts a 3-element vector into a 2-element vector
(the third element is lost). ~8D converts a 2-element
vector into a 3-elementvector(the third element is given
the value of zero). If the vector is named, and the name
is used, the result vector will be stored in it.

Examples: [1 2 8 J ~2D
[1 2] ~8D

~: [1 2 J
~:[1201

Inputs: Level 1 - any object that evaluates to a 3-element'2-
element vector - the vector to be converted .

Outputs:: Level 1- if the input object was a name containing a 3-

element'2-element vector, nothing is returned, but the

resulting 2-element'3-element vector is stored in that

name. Otherwise, that resulting 2-element'3-element

vector is returned.

Errors:

Notes:

Too Few Ar9UMent 5 will occur for an empty stack.

Bad Ar9UMent Type will occur if the input object

does not reduce to a vector.

Bad Ar9UMent Val ue will occur if the input

contains an undefined name or a vector of other than 3
elements (for ~2D) or 2 elements (for ~8D).

None.

Dime1t8ion Conversion Routines 93

~------------------.......
Convert A Vector From I I +J+K I Format:

IJK~ (312258)

« EVAL RCLF STD SWAP
~STR SWAP STOF
[100]
[0 1 0]
[00 1]
~ I J K « STR~ ~NUM
» »

Convert A Vector To I I +J+K I Format:

~ I JK (658244)

« RCLF ~ T. « 36 SF
EVAL IF DUP SIZE (3
) ~ THEN () 1 GET
END ARRY~ DROP 'K' *
ROT III * ROT IJI *
ROT + + COLCT T.
STOF »

c
c
c.
c.
c.
c.
c.
c.
c.
c:
c:
c:
c:
c:
c:
c:
c.
c
c
c
c
c
c
c
c
c
C·

Summary: I JK ~ converts an algebraic expression, containing a C
linear combination of I I I , I J I and I K I ,into a vector. ~

~ I JK converts a 3-element vector into an algebraic ~
expression that is a linear combination of ' I I , I J I ~

94

and I K I. ~

Claapter4: Vector utUilia

~
~
~
~

..
• a
a
a
a
a
a

Examples: STD 'I +J+K' I JK ~ &IDill: [1 1 1]

Inputs:

Outputs:

Errors:

Notes:

STD '(8.5*I-2.25*K)*2+15*I' IJK~

~: [22 e -4. 5]

STD [1 2 1] ~IJK ~:' I+2*J+K'
STD [-8 e 1] ~IJK ~:'- (8*1)+K'

Levell - an algebraic object/vector - the vector whose
format is to be converted.

Level 1 - a vector/algebraic object - the vector in the

converted format.

Too Few ArguMent s will occur for an empty stack.
UndeT i ned NaMe will occur for I JK ~ if the argu­
ment is an expression containing an undefined name.

Inval id DiMension will occur ifan operation in
the expression would involve multiplying two vectors.
Bad ArguMent Type willoccurif(for IJK~)there

is any operation in the expression which is used on ' I ' ,
'J' or' K' andisundefinedforvectors;or(for~IJK),

if the input object does not evaluate to an array.
Bad ArguMent Va 1 ue will occur with ~ I JK if the
input has a valid SIZE but is not a 3-element vector.

I JK ~ simply evaluates the Level-l object after assign­
ing vector values to the three variables, , I ' , , J' and

, K ' . It is therefore not very sensitive to erroneous in­

puts. Expressions such as ' 1T ' , for example, are simply
evaluated and return no vector at all.

Formatting Routine. 95

Convert A One-Column Array To A Vector:

A-+V (732375)

« ~ A « A EVAL DUP
SIZE 2 GET IF 1 ~
THEN () 1 GET END
DUP SIZE 1 1 SUB RDM
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » »

Convert A Vector To A One-Column Array:

V-+A (638695)

« ~ A « A EVAL DUP
SIZE DUP IF SIZE 1 ~
THEN () 1 GET END 1
+ RDM IF A TYPE DUP
6 == SWAP 7 == OR
THEN A STO END » »

c.
c..
c..
c.
c..
c..
c..
c...
c...
c...
c...
c...
c..
c..
c..
C­
C­
c.
c
c
c-
c"
c
c
c
c
C-

Summary: A~V converts a one-column array (i.e., [[1] [2 C-

96

] [3]]) to a vector. V~A converts a vector to a one- C-
column array. If the input array/vector is stored in a
name and the name is used, the resulting vector/array
will be stored in that name.

Chapter4: Vector Utilitin

C­
~
~
~
~
~
~

II' II' Examples:

II'

• ..

Inputs:

Outputs:

Errors:

.. Notes:

• •
• ..
• •

STD CC 1]C 2]C 3]] A~V
~:C123]

STD [1 2 3] V~A
~: [[1] [2] [3]]

Level 1 - any object that evaluates to a column array/

vector - the column array/vector to be converted.

Level 1- if the input object was a name that contained
a column-array/vector, nothing is returned, but the re­

sulting column-array/vector is stored in that name.

Otherwise, that resulting vector/column-array is re­
turned.

Too Few At""9uMent S will occur if the stack is
empty.

Bad At""9uMent Type will occur if the argument
does not reduce to an array/vector.

Bad At""9uMent Va 1 ue will occur ifthe input ob­
ject is an array containing more than one column (for
A~V) or is not a vector (for V~A).

None.

:. Type Conversion Routine. 91

~

Convert A Complex Number 1b A Vector:

C-+V (283497)

« -+ A « A EVAL C~R 2
-+ARRY IF A TYPE DUP
6 == SWAP 7 == OR
THEN A STO END » »

Convert A Vector To A Complex Number:

V-+C (681991)

« -+ A « A EVAL IF
DUP SIZE (2) ~
THEN () 1 GET END
ARRY-+ DROP R7C IF A
TYPE DUP 6 == SWAP 7
== OR THEN A STO END
» »

c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c
c
c
c:
c
c
c
c
C"

Summary: C~V converts a complex number to a two-element C'
vector. If the complex number is named and the name C"
is used, the resulting vector is stored in that name -+C C"
converts a two-element vector to a complex number. If ~
the vector is named and the name is used, the resulting ~
complex number is stored in that name.

98 C1w.pter4: Veelor~

~
~
~
~
~

• • Examples:

• • • Inputs:

• • •
• Outputs: • • • • •
: Errors:

• • • • • • Notes:

• • • • • • • • a
a
-a
-:a

STO (1,2) C-+V
STO C 1 2] V-+C

&will: C 1 2]
&slili: (1, 2)

Level 1-any object that evaluates to a complex number!
2-element vector - the complex number!2-element vec­

tor to be converted.

Level 1 - if the input object was a name containing a
complex number!2-element vector, nothing is returned,

but the resulting 2-element vector!complex number is
stored in that name. Otherwise, that resulting 2-ele­
ment vector/complex number is returned.

Too Few ArguMents will occur for an empty stack.
Bad ArgUMent Type will occur if the argument

does not reduce to a complex number/vector.

Bad ArgUMent Va 1 ue will occur with V-+C if the
input vector does not have exactly 2 elements.

None.

:a Type Conversion Routines 99

::a

------------------.......... .
Vector Utilities: A Discussion

The Main Idea

<;..
<;..
<;..
<;..
<;..

"" <;..

""
The main purpose of these routines is to provide conversion utilities t
between the different vector formats available to the HP-28S. The c..
"vectors" referred to here are the mathematically defined sort, and not c...
simply the vector object type provided by the HP-28S. c...

(c,..
For example, in two dimensions, these are mathematically equivalent c..
for most operations, when used as vectors: (c,..

(1,2) (1 2 J ((1 J (2 JJ

And in three dimensions:

(128 J

((1 J (2 J (8 JJ

<c,..
(C
(C
cC
C
<C
cC
(C
eC
(C

But be careful! Not all vector-type operations work with every object <C
type. For example, although many common vector-type operations <C
will work with complex numbers (e.g. +, - , ASS, NEG, scalar multi- ~
plication), not all will (e.g. CROSS and DOT). And there are more ~

I . Ii (~
operations defined for complex numbers than for vectors (e.g. mu tip - (C'
cation of two complex numbers). (c

r....C
100 Chapter 4: Vector Utilitia (C

~

: Be warned also that the algebraic form (I I +2*J+3*K I) is a valid
t vector representation only if the symbols I I I , I J I and I K I have no

t associated values, or if those values are C 1 0 0 J, C 0 1 0 J
t and C 0 0 1 J , respectively

t
t In the former case, the algebraic expressions may be combined to form
t mathematically correct expressions (with symbolic unit vectors). In

t the latter case, evaluation of the expressions will yield correct HP-28S

t vector objects - because those values are indeed the required unit

a vectors. Any other values stored in either ' I " , J ' , or ' K ' will yield

a invalid results when evaluated.
a
• a
• •

Where To Put These Programs

• As always, to be accessible, these utilities must be in a directory that

• is listed in your current PATH. The easiest way to ensure that this is

• the case is to place each of the programs in the HOME directory - the
.. ultimate parent of all other directories
• •
it

•
• • • • •
• Discussion 101

Some Observations

Arrays Vs. Vectors

Both mathematically and as objects on the HP-28S, vectors can be "­
considered to be a type of array: In math, a vector is a one-dimensional ('"
array and may either be a row-vector or a column-vector. However, on ("­

the HP-28S, a vector object is always a column-vector, represented by ~t
numbers within single brackets ([1 2 3]). The dimension of a (c;..
vectorobject,asreturnedbytheSIZE command,is{ n),indicating (c;..
that the vector is one-dimensional and has n elements. Cc;..

(c;..
This representation of a column-vector as a vector object is simply (c
intended to make life easier for you. The alternative form of column (c
vector is [[1] [2] [3]], where the single column is (C
represented as a list of one-element rows. However, on the HP-28S, (C
this representation is an array object - not a vector object. Accordingly, cC
it is represented as a list of numbers within double brackets ([[1 2 <C
3]]), and its dimension is returned as (1 n) where n is the (C-
number of elements.

This would all be merely interesting trivia if it were not that certain

built-in HP-28S commands function only on vector objects and not on

column-vector arrays (CROSS, for example). On the other hand,

certain "array-ish" commands refuse to take vector objects as argu­
ments (e.g. TRN). For this reason,A-+V and V-+A have been included
in these utilities to allow you to easily convert between these forms.

Ce
Ce
(e
ce
Ce
(~

(~
(~

l~
l~

102 C1w.pter4: Vee'" U,"",*" l~
~

"

..
• • • • • • • • • • • • • • • • • •
• ,. ,. ,. ,.
• .. ~ ,.
~
-:a
~

Calculations ''In Place"

All of the vector utilities except ~ I JK and I JK ~ allow you the option
of providing a named object as the argument. In that case, the
resulting object will be restored in that name object as the end of the
calculation - and nothing will be returned to the stack. This feature
will work either on global or local name objects and is intended to be
analogous to the working of the storage arithmetic commands (see the

HP-28S's STORE menu).

Although similar, these utilities lack one of the major advantages of
the built-in storage math: Those built-in STORE menu commands will
perform their calculations "in-place" - on top of the contents of the
current array-thereby taking up less storage space than recalling the
contents of the named objects, combining them, then overwriting the
original named object. These utilities must use the latter method.

Errors And Error Recovery

Each ofthese tools is designed to generate an error when invalid input
is entered - rather than continue and generate garbage outputs. When

inputs are questionable (e.g., negative numbers for stack Levels),
these utilities act similarly to the built-in stack commands (arguments

are ignored or treated as 1, whichever makes more sense). When
errors do occur, the stack is usually disrupted, and since the only way
to restore it then is with the UNDO command, it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

DiBcUBBion 103

How You Might Use These Utilities

All ofthe vector utilities provide convenient means to convert between
equivalent (or nearly equivalent) forms of vectors - that's their pur­
pose. One pair of routines, however, provides conversion between a
numeric form and an algebraic form, and that algebraic form, in and
of itself, opens up new vistas for vector operations.

The algebraic (or "symbolic") form of a vector is simply a linear combi­
nation of the symbolic unit vectors i, j and k. As such, all forms of
mathematical and symbolic operations can be performed on the vector
expression.

You must be careful, however, to perform only those mathematical op­
erations that are defined for vector-type objects. The HP-28S will allow
you to perform many operations on a symbolic expression (such as
trigonometric and logarithmic functions) - operations which are in no
way defined for vectors. And the resulting object will be algebraically
correct if the names I I I , I J I and I K I are associated with real or
complex objects, but not for vector objects. This fact will manifest itself
when/if you apply I JK ~ to a symbolic expression: Bad ArgUMent
Type will be the only result.

Try some examples:

104 Chapter4: Vector UtiU~

c
c
c
c
c
c
c
c
c
Co
Co
Co
Co
C
C
C
C
C
C
C
C
C
C
C
C­
C­
C­
e­
e­
~
~
~
~
~
~
C;

.. SrD '4*I' '2*I' '3*K ' + +
: ~: '4*I+(2*I+3*K) 1 ,.
• •

COLcr
IJK~

~2D

~3D

~IJK

At (2,8) C~V ~8D
.. 2 / COLCr
... EX PAN COLCr
... IJK~ ~2D V~C ...

~IJK

~: '6*I+3*K'
~: [6 0 3 J
~: [6 0 J
~: [6 0 0 J
~: '6*I'
Result: '2*I+3*J '
~:

1 .5*(2*I+3*J)1
Result: 1 I+1. 5*J 1

Result: (1,1.5)

• Unfortunately, most of the vector-oriented commands of the HP-28S ..
• • • • • • •

will not take symbolic arguments. Thus, you cannot "cross" two
symbolic vectors using the built-in command, CROSS. You can,
however, define similar commands, such as CROS (59588), like this:

« IJK~ SWAP IJK~

SWAP CROSS ~IJK »

• This version will take either numeric or symbolic arguments and

• return a symbolic cross product vector.

a
.,a
~a You can see how tempting it might be to define a whole set of similar

-a commands to make your HP-28S a little more useful with symbolic

... expressions, no? Go ahead and do so on your own, as you wish
--:a
~
~ Discussion ,. 105

Chapter 5

Array Utilities

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
C.

These routines provide convenient, "canned" methods for building, C.
editing and using arrays in the HP-28S. C.

As shown in the following list, the 30 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro­

grams are also usually presented alphabetically (by NAME), although

in some cases, certain sets of programs may be complementary or oth-

erwise so similar that they may be presented together.

For a more in-depth discussion ofthe uses of these utilities, see page

152, immediately following these program listings.

106 Chapter 5: Array Utilitiu

C.
C.
C.
C
C
C
C
C
C
C
C
C
C
C
c
e
e
e
~
~
~
~

• ~ Function • • Building/Decomposition Routines • • • AGETC Get A Column From An Array 110

• AGETR Get A Row From An Array 110

• ARPT Create An Array By Duplicating An Object 112

• ASUB Get A Subarray From An Array 114

• ARY~C Decompose An Array Into Columns 116 .

• C~ARY Compose An Array By Columns 117

• ARY~R Decompose An Array Into Rows 119

• R~ARY Compose An Array By Rows 120

• A~L Convert An Array To A List 122

• L~A Convert A List To An Array 123 • • • Editing Routines • • ADELC Delete A Column From An Array 125 ADELR Delete A Row From An Array 125

• AEX Exchange Elements Within An Array 128 .. AEXC Exchange Columns Within An Array 130 .. AEXR Exchange Rows Within An Array 130 .. AINSC Insert A Column Into An Array 132 .. AINSR Insert A Row Into An Array 132 .. APUTA Overwrite A Sub array Onto An Array 134 .. APUTC Overwrite A Column In An Array 136
~a APUTR Overwrite A Row In An Array 138
·a AREV Reverse The Order Of The Elements 140 '. In An Array
.~

-~
~

Content. 107

~

Name Function fiw
C
c;.

ASORT Sort An Array By Element
c;.

140 c;. ASRTC Sort An Array By Column 142 c;.
ASRTR Sort An Array By Row 142 c;.

c;.
c;.

Miscellaneous Operations c;.
c;.

AI~N Convert An Array's Index List 144 c;.
To A Numeric Index C

AN~I Convert A Numeric Index 144 C
To An Array's Index List C

AOP Perform An Operation On Each Element 146 C
Of An Array C

AOPC Perform An Operation On Each Column 146 C
C Of An Array
C AOPR Perform An Operation On Each Row 147
C

Of An Array C APOS Find The Position Of A Specified 150 C
Real Element Within An Array C

C
C
C
C
C
C
C
C
~
~
~

108 Chapter 5: Array Utilitin ~
~

== ----..
------~ -. ". --. • • • • • • • • • • 'a
-~

-a
~a

-a
~~

..-~

~

Contents 109

Get A Column From An Array:

AGETC (127941)

« ~NUM ~ N « EVAL
DUP SIZE 2 2 SUB e
CON N 1 PUT * » »

Get A Row From An Array:

AGETR (660007)

« ~NUM ~ N « EVAL
DUP SIZE IF DUP SIZE
1 == THEN DROP N GET
(1 1) ~ARRY ELSE 1
1 SUB 1 SWAP + e CON
N 1 PUT SWAP * END »

c....
c:....
c...
c:....

"'" c...
c...
c....
c...
c..
c:...
c·
c·
c·
c
c
c
c
c
c
c
c
c
c
C

Summary: AGETC extracts the specified column-vector from the C­

110

given array. AGETR extracts the specified row-array C'
C from the given array or vector. If the row/column selec-

toris beyond the dimensions ofthe source array, an error
is reported. Any fractional portion of the row/column

selector is rounded.

Chapter 5: AlTay UtilUin

C
C­
C­
C-
('""
('

\'"
C

..
• ~
~
~
~ ..

Examples: STD C C 1 2 3 J C 4 5 6 J J 3 AGETC
Rwili: C 3 6 J

Inputs:

Outputs:

Errors:

Notes:

IAI « 2 ~ » AGETC
~: (assuming that array I A I is defined, you'll get
a vector - column 1 of the array I A I)

STD C[1 2 3 J[4 5 6 JJ 2 AGETR
~:C[456JJ

IBI « 2 ~ » AGETR
Result: (assuming that array I B I is defined, you'll get
an array - row 1 of I B I)

Level 2 - any object that evaluates to an array or vector.

Level 1-any object that evaluates to a real number - the
row/column index.

Level1-anarrayorvector-the row or column, respect­
ively.

Too Few Argument S will occur if the stack con­
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
don't evaluate to their required types.

Bad Argument Val ue will occur if the column
index is out of range.

None.

Building/Decomposition Routines 111

Create An Array By Duplicating An Object
C0.­
Co.­
C0.­
Co.­
c..­
c..­
c..­
c..­
c..­
c.
c.

Summary:

Examples:

112

ARPT(462793)

« ~NUM ~ A N « A
EVAL IF DUP TYPE NOT
THEN 1 ~LIST END N
CON IF A TYPE 6 ==
THEN A STO END » »

c.
C.

ARPT creates an array by repeating a single number. C.
The dimensions of the resulting array are specified

either by an integer index, a list index, or an array. The

index determines the type of array/vector object re-

turned: Integers and single element lists return vectors,

while 2-element lists specifying numbers of rows and

columns will return the corresponding arrays. An ar-

ray-type index returns an array ofthe same dimensions.

All real-number indices are rounded before use.

STD { 2 8) 0 ARPT
Result: [[0 0 0 J [0 0 0 J J

STD 5 10 ARPT
Result: [10 10 10 10 10 J

STD 1. 5 1 ARPT
Result: [1 1 J

Chapter 5: Array Utilities

C.
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
e
c
e
,~

~

II'
II'
II' • • • • • • • • • • • • • • • • • •
• .-
• • • .. -.
-.
•••• • ,
=­..,

Inputs:

Outputs:

Errors:

Notes:

Level 2 - any object that evaluates to a real number, list,
array or vector - the dimensions of the desired array.
Level 1-any object that evaluates to a real number - the
value to be repeated throughout the array being created.

Level 1- If the Level-2 object was a name containing a

valid number, list, vector or array, nothing is returned,

but the resulting array or vector is stored in that name.

Otherwise the resulting array or vector is returned.

Too Few At""9uMent S will occur if the stack con­

tains fewer than 2 objects.
Bad At""9uMent Type willoccurifeitherargument

is not of its prescribed type.
Under i ned NaMe will occur if the Level-2 object is

an undefined name.

None.

Building/Decomposition Routines 113

Get A Subarray From An Array:

ASUB (4745605)

« EVAL () + ROT
EVAL ROT EVAL () +
ROT LIST~ 1 == 1 IFT
ROT LIST~ 1 == 1 IFT
~ M C DAB « M DUP
SIZE IF DUP SIZE 1
== THEN 1 + RDM ELSE
DROP END DUP DUP IMI
STO (A B) GET DROP
(CD) GET DROP IF
C A < D B < OR THEN
[1]
2 GET END A C
B D FOR J M (
GET NEXT NEXT

FOR I
I J)
(IC-A

+11) D B-1 + IF
DUP 1 ~ THEN + ELSE
DROP END ~ARRY » »

c,...
c,...
c,...
c;...
c;...
c;...
c;...
c;...
c;...
c..
c..
Cr
Cr
Cr
C.
C.
C.
C
C
C.
C
(c
(c
(c
e-
e-

Summary: ASUB extracts a sub-array from the given array. Two Ie­Ie

114

indices are required: the upper left element of the sub-

array, and the lower right. A real number may also be
used as an index for a vector, or for a 2-dimensional
array, in which latter case, it will be taken to mean the

first column of that row in the array.

Chapter 5: Army Utilitia

(C
(C
(f!:"
(f!:"

(~

~
\~
(~

,
, Examples: , ., ., ., ., .,
., Inputs:

• • • • • •
: Outputs:

• • Errors:

• • • •
• Notes: c.
• • ~
-a
=-

STD [[1 2 3 J[4 5 6 JJ { 1 2) (
2 3) ASUB
~: [[2 3 J [5 6 J J

STD [1 2 3 4 5 J 3 4 ASUB
~: [3 4 J

Level 3 - any object that reduces to an array or vector­
the source array.
Level 2 - an object that reduces to a list or real number
- the index of the upper left corner of the sub-array.
Levell - an object that reduces to a list or real number
- the index of the lower right corner of the sub-array.

Level 1 - an array or vector - the extracted sub-array.

Too Few Ar9uMent S will occur if the stack con­
tains fewer than 3 objects.
Bad Ar9uMent Type will occur if any of the stack
objects do not evaluate to their prescribed types.

Bad Ar9uMent a 1 ue will occur if either of the
indices is out of bounds .

Of course, ASUB can be used to extract individual rows

and columns from an array, but AGETR and AGETC
are probably more convenient for those specific tasks.

-;It Building/Decomposition Routine. 115

=-

Decompose An Array Into Columns:
c,.
c,.
c,.
c,.
c,.
c,.
c,..
c,..
c,..
c,..
c..

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

116

ARY-:.C (322541)

« EVAL TRN ARRY~
LIST~ DROP ~ R C « 1
R FOR I C ~ARRY R I
- C * I + ROLLD NEXT
R » »

c,..
ARY~C decomposes the given array into its component c..
column arrays (vectors), which are left on the stack (in C.
order), along with a count of these vectors. C.

STD [[1 2] [8 4] [5 6]] ARY~C ~
Result: [1 8 5] [2 4 6] 2 C

Level 1 - any object that evaluates to an array - the ~
array to be decomposed. C

Levels 2 to (n+l) - vectors - the array's columns.

Levell - a real number, n - the number of columns.

C
C
C
c-Too Few Arguments will occur for an empty stack.

Bad Argument Type will occur if the argument ~
does not evaluate to an array (or I nva 1 i d D i men- c­
s i on will occur for a vector argument). c­
Under i ned Name will occur if the argument con- ~
tains an undefined name. ~

None.
~
~
~

Chapter 5: Array Utilitin (!"-

~

..
•

Compose An Array By Columns:

C""AR~" (4885879)

« ..:.NUM .5 + IP ..:. N «
N ..:.LIST ~ L « L 1
GET EVAL SIZE LIST..:.
IF 2 == THEN DROP
END ..:. R « () 1 N
FOR I L I GET EVAL
DUP SIZE LIST..:. 1 ==
1 IFT IF SWAP R ~
THEN
[1]
TRN END IF 1 == THEN
ARRY..:. LIST..:. DROP
ELSE TRN ARRY..:. LIST..:.
DROP * END ..:.LIST +
NEXT LIST..:. R / R 2
..:.LIST ..:.ARRY TRN » »
» »

• Summary: C..:.ARY creates an array from the given column-arrays, • • • • • • • • • •

vectors, and/or arrays - combined column-wise (sym­
bolic arguments will be evaluated). Input arrayslvec-

tors must all have the same number of rows. An integer
index must also be given to indicate how many stack

items to combined. Any fractional portion of the index
is rounded.

Building/Decomposition Routines 117

Examples: STD [1 2] [8 4] [5 6] 8 C~ARY ~
&will: [[1 8 5] [2 4 6]] C

C STD [[1 2][8 4]] DUP 2 C~ARY C
~: [[1 2 1 2] [8 4 8 4]] C ,

Inputs: Levels 2 to (n+l) - any object that reduces to an array or ,
vector - the objects to be combined. ,
Levell - any object that evaluates to a real number, n - (;
the number of objects to be combined. C.

C.
Outputs: Level 1 - an array - the newly-created array. C.

C.
Errors: Too Few Ar9ument s will occur if the stack is C.

empty or there are fewer objects on the stack than are ~
specified in Level 1. C
Bad Ar9ument Type will occur ifany of the stack C
levels don't reduce to their respective object types. C
Bad Ar9ument Val ue will occur if the (rounded) C
index value is less than 1. C
I nva 1 i d D i mens i on willoccurifthegivenarraysc
and/or vectors do not all have the same row dimension. C

C
Notes: None.C-

iC-
C­
C­
C­
~
~
~
~ 118 ChapterS: Array Utili'" ~

... ~

lI'
.".
", ..--,. ,. ,. ,. ,.
•
• ..
• • • -. -.
~
~.
:a
~ • -

Decompose An Array Into Rows:

ARY~R (371489)

« EVAL ARRY~ LIST~ 1
== 1 IFT ~ R C « 1 R
FOR I (1 C) ~ARRY
R I - C * I + ROLLO
NEXT R » »

Summary: ARY~R decomposes the given vector or array into its

component I-row arrays, left on the stack in order, along

an integer representing the total number of these rows .

Examples: STO [[1 2] [3 4]] ARY~R
~: [[1 2]] [[3 4]] 2

STO [1 2 3] ARY~R
~: [[1]] [[2]] [[3]] 3

Inputs: Levell - any object that evaluates to a vector or array .

Outputs: Levels 2 to (n+l) - the array's component rows.

Errors:

Level 1-a real number, n - the number of components.

Too Few ArgUMent S will occur if the stack is

empty or if the argument is a vector.

Bad ArgUMent Type will occur if the argument

does not evaluate to a vector or array .

Notes: None.

Building/Decomposition Routines 119

Summary:

Examples:

120

Compose An Array By Rows:

R~ARY <21 91223)

« ~NUM .5 + IP ~ N «
N ~LIST ~ L « L 1
GET EVAL SIZE 2 GET
~ C « () 1 N FOR I
L I GET EVAL DUP
SIZE IF 2 GET C ~
THEN
[1 J
TRN END ARRY~ LIST~
DROP * ~LIST + NEXT
LIST~ C / C 2 ~LIST
~ARRY » » » »

R~ARY will create an array from the given arrays (sym­
bolic arguments will be evaluated}. The component

arrays will be combined row-wise (input arrays must all
have the same number of columns). An integer index

must also be given to indicate how many stack items are
to be combined. Any fractional portion of the index is
rounded.

STD [[1 2 JJ [[3 4 JJ [[5 6 JJ 3
R~ARY

Result: [[1 2 J [3 4 J [5 6 J J

Chapter 5: Array U~

• • • • • Inputs:

•

Outputs:

Errors:

Notes:

STD CC 1 2]C 3 4]] DUP 2 R~ARY
~: C C 1 2] C 3 4] C 1 2] C 3 4]]

Levels 2 to (n+l)-any objects that reduce to arrays; the

objects to be combined.
Levell - any object that evaluates to a real number, n -

the number of objects to be combined.

Level 1- an array - the newly-composed array.

Too Few ArguMent S will occur if the stack is

empty or there are fewer objects on the stack than are

specified in Level l.

Bad ArguMent Type will occur if any of the stack

levels don't reduce to their respective object types.

I nva 1 i d D i mens i on will occur if the given arrays

do not have the same column dimension.

None.

.. .. Building/Decomposition Routines 121

•

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

122

Convert An Array To A List:

A-+L (183691)

« EVAL ARRY~ ~ D « D
LIST~ IF 2 == THEN *
END ~LIST D » »

A~L converts the given array or vector into a list of its
elements, in row-major order. A second list will also be

returned, containing the size information from the origi­
nal array so that the array can be reconstructed.

STD [[1 2 J[3 4 JJ A~L
Result: { 1 2 3 4 } { 2 2 }

STD [1 2 3 4 J A~L
Result: { 1 2 3 4 } { 4 }

Level 1-Any object that evaluates to an array or vector
- the array to be converted.

Level 2 - a list - the elements of the original array.

Levell - a list - the original dimensions of the array.

Too Few ArgUMent S will occur for an empty stack.

B.ad Argul"Ilent Type will occur if the argument

does not evaluate to an array or vector.

None.

Chapter 5: Array u~

• • • • • • • • • • • • • •
• Summary:

• • • • • • • • • • • • • • • • • •

Examples:

Inputs:

Convert A List To An Array:

L ~A (592057)

« EVAL SWAP EVAL + D
L « L SIZE D LIST+
IF 2 == THEN * END
IF ~ THEN () 1 GET
END L LIST+ DROP D
+ARRY is> is>

L +A converts the given list of numbers into an array or

vector of the elements from the list (in row-major order).
A second list must be given, containing the size informa­
tionoftheresultingarray,i.e.,(rows colUMns).

STD (1 2 3 4) (2 2) L+A
~: [[1 2 J [3 4]]

STD (1 2 3 4) (4) L+A
Result: [1 2 3 4]

Level 2 - any object that evaluates to a list of real num­
bers - the list to be converted.

Level 1 - any object that evaluates to a list - the list

containing the dimensions of the desired array.

• • •
Building/Decomposition Routines 123

Outputs:

Errors:

Notes:

124

Level 1-an array or vector, depending on the specifica­
tion - the object just converted from the input list.

Too Few ArguMent S will occur if the stack con­
tains fewer than 2 objects.

Bad ArguMent Type will occur if the arguments
do not evaluate to lists.

Bad ArguMent Value will occur if the dimensions
of the size list do not correspond to the number of ele­
ments in the element list.

None.

Chapter 5: Array UtiUlia

..
• •
".
A
A
A •• -. ". ~. -. -. -. -. -. -. -.
~ ,.

Delete A Column From An Array:

ADELe (322583)

« ~ A R « A EVAL TRN
R ADELR TRN IF A
TYPE DUP 6 == SWAP 7
== OR THEN A STO END
» »

Delete A Row From An Array:

Editing Routines

ADELR (2327790)

« ~NUM .5 + IP ~ A R
« A EVAL DUP SIZE 1
R PUT GET DROP A
EVAL ARRY~ LIST~ 1
== 1 IFT ~ N M « N R
- M * ~LIST M 1 +
ROLLD M DROPN LIST~
DROP N 1 - IF M 1 ~
THEN M 2 ~LIST END
~ARRY IF A TYPE DUP
6 == SWAP 7 == OR
THEN A STO END » » »

125

Summary: ADELe deletes the specified column from a given array.
ADELR deletes the specified row from a given array or
vector. The column/row number is rounded before use.
Ifthat rounded number is less than 1 or greater than the
number of column/rows in the array, an error will occur.

If the name of an array variable is used, the modified
array is restored in the given name.

Examples: SrD [[1 2 3] [4 5 6] [7 8 9]] 2
ADELe
~: [[1 3] [4 6] [7 9]]

'A' 5 ADELe
Result: (assuming the array' A ' is defined, it loses its
fifth column but nothing is left on the stack.)

srD 3 IDN lUi ADELe
Result: [[1 1;3] [1;3 1] [1;3 1;3]]

srD [[1 2 3][4 5 6][7 8 9]] 2
ADELR
Result: [[1 2 3] [7 8 9]]

'A' 4 ADELR
Result: (assuming the array , A ' is defined, it loses its

fourth row but nothing is left on the stack.)

srD [1 2 3] 2 ADELR
Result: [1 3]

c.
c.
c
c.
c
c
c
c
c
~.

~. ,. ,. ,.
c.
c
c
c
c
c
c
c
c
c
c
c
c
C­
c:­
I~

\~

~
~
I~

126 Chapter 5: AlTay Utililia I~

~

= Inputs: .. • • • • Outputs: • • •
• Errors: • • • • • • • • • • • • • •
• Notes: • • • • • • • • • Editin.g Routines

•

Level 2 - any object that evaluates to an array - the
array to be edited .

Level I-any object that evaluates to a real number-the
column/row number.

Level 1 - if the input array is a name, nothing is re­
turned, but the modified array is stored in that name.
Otherwise the modified array is returned.

Too Few ArgUMent s will occur if the stack con­
tains fewer than two objects.

Inval id DiMension will occur with ADELC if
the Level-2 object is a vector.

Bad ArgUMent Type will occur if the Level-2 ob-
ject does not evaluate to an array (a vector is also OK for

ADELR), or if the Level-I object does not evaluate to a
real number.

Under ined NaMe will occur if the Level-I object
contains an undefined name.

Bad ArgUMent Va 1 ue will occur with ADELR if

you try to delete the last remaining row or if the row
number is out of bounds.

ADELC uses ADELR.

127

Exchange Elements Within An Array:
c
c
c
c
c
c
c:
c:
c
c
c
c
c

Summary:

Examples:

128

REX (695868)

« ~NUM SWAP ~NUM ~ A
M N « A EVAL DUP DUP
N GET SWAP M GET ROT
N ROT PUT M ROT PUT
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » »

c
C AEX exchanges any two elements of the given vector or C

array. The indices for the two elements may be either C
integers or lists. Any fractional portions of integer indi- C
ces are rounded. If either index is beyond the valid di- C
mensions of the array, an error occurs. If the array is C
named and the name is used, the modified array will be C
restored in the given name.

STD [[1 2][:3 4]] 1 2 AEX
Result: [[2 1] [:3 4]]

C
C
C
C
~

[[1 2] [:3 4]] { 1 1) { 2 2) AEX ~
Result: [[4 2] [:3 1]] ~

I A I I X-l I { 2 Z) AEX ~
~

Result: (assuming that X andZ contain real values, the ~
array, I A I ,is modified,butnothingis left on the stack.) ~

r-
Chapter 5: Array UtUitia (!'-

~

5

=
• • ..
•
At
~.

At

•
• • • •• ••
~~

•• ·a
~a

~a

-:.a
~
~

Inputs:

Outputs:

Errors:

STD [1 2 3 J 1 3 AEX
~:[321J

Level 3 - the array or vector - any object that evaluates
to either an array or a vector .

Level 2 - any object that evaluates to a real number or

a list of two real numbers - the index of one of the

elements to be exchanged .

Levell - any object that evaluates to a real number or

a list of two real numbers - the index of the other
element to be exchanged .

Level 1- if the input array or vector is a name, nothing

is returned, but the modified array or vector is stored in

that name. Otherwise the modified array or vector is re­
turned.

Too Few Argurl,ent S will occur if the stack con­
tains fewer than three objects.

Bad ArgUMent Type will occur if the Level-2 ob­

ject doesn't evaluate to an array or vector, or if the Level­

l object doesn't evaluate to a real number or a list.

Under i ned ~~aMe will occur if the Level-3 object
contains an undefined name .

Notes: None.

Editing Routines 129

Exchange Columns Within An Array:

AEXC (411743)

« ~ A N M « A ARY~C
~LIST N M AEX LIST~
C~ARY IF A TYPE DUP
6 == SWAP 7 == OR
THEN A STO END » »

Exchange Rows Within An Array:

AEXR (414458)

« ~ A N M « A ARY~R
~LIST N M AEX LIST~
R~ARY IF A TYPE DUP
6 == SWAP 7 == OR
THEN A STO END » »

(

(

(

(

(,
(

(,
(, , ,
c ,
(:
(:

c
c
C Summary: AEXC exchanges any two columns of the given array. C

130

AEXR exchanges any two rows of the given array. The c:
indices for the two columns/rows may either be integers
or (single-element) lists. Any fractional portions ofinte­
ger indices are rounded. If either of the indices is beyond
the dimensions ofthe array, an error occurs. If the array
is named and the name is used, the modified array will
be restored in the given name.

ChGpter 5: Army Utililia

c:
c:
("

c
("

c
C'
~
~
c:

Examples: STO [[1 2] [3 4]] 1 2 AEXC
~: [[2 1] [4 3]]

Inputs:

STO [[1 2 3]] 1 3 AEXC
~: [[3 2 1]]

STO [[1 2][3 4]] 1 2 AEXR
~: [[3 4] [1 2]]

STO [1 2 3] 1 3 AEXR
&IDill: [[8 2 1]]

Level 3 - any object that evaluates to an array.
Level 2 - any object that evaluates to a real number - the
index of one of the columns/rows to be exchanged.
Level 1-any object that evaluates to a real number- the
index of the other column/row to be exchanged.

Outputs: Level 1 - if the input array is a name, nothing is re­
turned, but the modified array is stored in that name.
Otherwise the modified input array is returned.

Errors: Too Few ArgUMent S will occur if the stack con­
tains fewer than three objects.
Bad ArgUMent Type will occur if the Level-3 ob­
ject does not evaluate to an array or if the Level-1 and
Level-2 objects do not evaluate to real numbers or lists.
Undef i ned NaMe will occur if the Level-3 object
contains an undefined name.

Notes: AEXC uses ARY"*C, C"*ARY, and AEK AEXR uses
ARY"*R, R"*ARY, and AEK

Editing Routines 131

132

Insert A Column Into An Array:

A I NSC (626491)

« ~ A R V « A EVAL
TRN R V V SIZE LIST~
1 == 11FT 2 ~LIST
RDM AINSR TRN IF A
TYPE DUP 6 == SWAP 7
== OR THEN A STO END

Insert A Row Into An Array:

AINSR (2238455)

« EVAL TRN TRN SWAP
~NUM .5 + IP ~ A V R
« A EVAL ARRY~ LIST~
1 == 1 1FT ~ N M « N
R - 1 + M * ~LIST V
ARRY~ DROP M 1 +
ROLL LIST~ DROP N 1
+ IF M 1 > THEN M 2
~LIST END ~ARRY IF A
TYPE DUP 6 == SWAP 7
== OR THEN A STO END

c
c
c
c
Co
c.
c.

" c.
" " c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
C'
c
e­
e-
~
~
~
~

Chapter 5: Array Utilitia ~

~

E • • • • •
• • • • • c.
~. -. •• . ~. -.
-,a

~-­::a
:a

Summary: A I NSC inserts the given column into the given array.
A I NSR inserts the given row into the given array. If the

column/row number is less than 1 an error is generated .

A column/row index greater than the column/row-size of

the array will cause the new columnrow to be added to
the end of the array. The number of columns/rows in the

inserted array and destination array must be equal. If

the name of an array variable is used, the modified array
is restored in the given name.

Examples: eel 8] C 4 6]] 2 C 2 5] A I NSC
Result: eel 2 8] C 4 5 6]]

Inputs:

Outputs:

Errors:

STD C 1 2 8] 4 CC 4]] AINSR
Result: C 1 2 8 4]

Level 3 - any object that evaluates to an array.

Level 2 - any object that evaluates to a real number - the
column/row index .

Levell - any object that evaluates to a vector or array

- the column/row to be inserted.

Levell - if the input array was a name, nothing is re­

turned, but the modified array is stored in that name.

Otherwise the modified array is returned.

Too Few At""9uMent S will occur if the stack con­
tains fewer than two objects.

Bad At""9uMent Type will occurifthe input objects
don't evaluate to their required types.

Notes: A I NSC uses A I NSR.

Editing Routine. 133

Overwrite A Sub array Onto An Array:
<:or
<:or
<:or
<:or
<:or
<:or
~
<:or
~
~

Summary:

134

APUTA(6923463)

« EVAL SWAP EVAL ~

Ai A2 B « A2 ARRY~
LIST~ 1 == 1 IFT 2
~LIST ~ARRY DUP SIZE
{ 1 1 } SWAP LIST~
DROP R~C B { } +
LIST~ 1 == 1 IFT R~C
SWAP OVER + (1,1) -
SWAP C~R ROT C~R ROT
SWAP Ai EVAL ARRY~
LIST~ i == 1 IFT 2
~LIST ~ARRY ~ N M AS
« FOR I N M FOR J
GETI AS { I J } ROT
PUT IASI STO NEXT
NEXT DROP2 AS » DUP
SIZE LIST~ DROP IF 1
== THEN { } + RDM
ELSE DROP END IF Ai
TYPE DUP 6 -- SWAP 7
== OR THEN Ai STO
END » »

"'­c..
c..
,e.
c
c
c
c
,e
Ie
,e
IC
IC
IC
C
(C
C
Ie­
(c­

APUTA puts the given sub-array into the given array, ,C­
overwriting the contents of the array with the contents ,~
of the sub-array. An index specifies the position in the ,~

array at which the upper left corner of the sub-array will ,~

Chapter 5: Array utUuw.
\~
\~
\~

• • • • • • • • • • • • • ..
• • • ..
• ..
• ..
• • • a .-
-a
• -.-

-.a
~a

-:a
---:a

be located after the operation. This index may be a real
number if the destination array is a vector. If the des­
tination is a 2-dimensional array and the index is a real
number rather than a list, it is taken to mean the first
column of that row. The entire sub-array must fit into
the destination array or an error will occur.

Examples: STD C C 1 2 3] C 4 5 6] C 7 8 9]]
{ 2 2) CC 0 0]C 0 0]] APUTA
Result: C C 1 2 3] C 4 0 0] C 7 0 0] 1

Inputs:

Outputs

Errors:

STD C 1 2 3 4] 2 C 0 0] APUTA
~:C1004]

Level 3 - any object that evaluates to an array - the
destination array.
Level 2 - any object that evaluates to a list or real

number - the index.

Levell-an object evaluating to an array- the sub-array .

Level 1 - if the Level-3 input was a name, nothing is
returned, but the modified array is stored in that name.

Otherwise, the modified array is returned.

Too Few ArgUMent S will occur if the stack con­
tains fewer than 3 objects .

Bad ArgUMent Type will occurifany of the argu­

ments fail to reduce to their prescribed values .

Bad ArgUMent Val ue will occur if the index does
not fall within the destination array.

Notes: None.

Editing Routines 135

Overwrite A Column In An Array:

APUTC (1454002)

« • A C V « A EVAL
TRN C V EVAL ARRY.
LIST. 1 == 11FT 2
.LIST .ARRY TRN
APUTR IF DUP SIZE
DUP SIZE 1 == THEN 1
+ RDM ELSE DROP END
TRN IF A TYPE DUP 6
== SWAP 7 == OR THEN
A STO END » »

Summary: APUTC will overwrite the specified column in the des­
tination array with the given column array or vector.
The column index is rounded before use and must then

be a real number between 1 and the number of columns
in the destina tion array. The column array must contain

only 1 column and have the same number of rows as the

destination array. lfthe destination array is named and

its name is used, the resulting array will be stored in

that name. A vector is allowable as the column array,
since it is mathematically equivalent. Forexample, [1
2 3] and [[1] [2] [3]] are both valid.

136 Chapter 5: Array Utililia

• • Examples:

• ..
• a
• • ~

Inputs:

Outputs:

Errors:

Notes:

STD CC 1 2 JC 3 4 JC 5 6 JJ 2 C
o J APUTC
~: C ClIO J C 3 10 J C 5 10 J J

10 10

STD CC 1 2 3 4 JJ 3 C 10 J APUTC
Result: C C 1 2 10 4 J J

Level 3 - any object that evaluates to an array - the

destination array.

Level 2 - any object that evaluates to a real number-the

column index.

Level 1- any object that evaluates to a column array or

vector - the column vector.

Level 1- if the Level-3 input object was a name, nothing

is returned, but the modified array is stored in that

name. Otherwise, the modified array is returned.

Too Few Ar9uMent.. S will occur if the stack con­

tains fewer than 3 objects.

Bad Ar9uMent.. TYPewilloccurifanyoftheinput

objects fail to eveluate to their prescribed types.

Bad Ar9uMent.. Val ue will occur if the column
index is out of bounds or if the number of rows in the

column array does not equal the number of rows in the

destination array .

APUTC uses APUTR.

~
a

Editing Routines 137

Overwrite A Row In An Array:

APUTR (4415836)

« EVAL SWAP +NUM .5
+ IP + A V R « A
EVAL ARRY+ LIST+ 1
== 11FT + N M « N M
'* +LIST V ARRY+
LIST+ IF 2 ~ ROT 1 ~
OR R N > OR OVER M ~
OR R 1 < OR THEN
[1]
2 GET END +LIST OVER
R M '* 1 + N M '* SUB
+ SWAP 1 R 1 - M '*
SUB SWAP + LIST+
DROP (N) IF M 1 ~
THEN M + END +ARRY
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » » »

Co
C
C
C
C
C
Co
C
C
C
C.
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Summary: APUTR overwrites the specified row in the destination C

138

array with the given row array. The row index is round­

ed before use and must then specify an existing row in

the destination array. The row array must have the
same number of columns as the destination array. If the

destination array is a name, the resulting array will be

Chapter 5: Array Utili_

C
C
C
C
C
C
C
C
C

• a
a
a
a
• • • a

Examples:

Inputs:

Outputs:

Errors:

..

.. Notes: ..

stored in that name. A vector is allowed for the destina­
tion array, since it is equivalent to column array. But in
such cases, only the first representation will be returned

by APUTR, despite the input format.

STD [[1 2][3 4][5 6]]
2 [[0 0]] APUTR
Result: [[1 2] [0 0] [5 6]]

STD [1 2 3 4] 2 [[99]] APUTR
Result: [1 99 3 4]

Level 3 - any object that evaluates to an array or vector

- the destination array.
Level 2 - any object that evaluates to a real number - the
row index.
Levell - any object that evaluates to a row array.

Levell - if the Level-3 object was a name, nothing is
returned, but the modified array is stored in that name.
Otherwise, the modified array is returned.

Too Few ArgUMent S will occur if the stack con­
tains fewer than 3 objects.

Bad ArgUMent Type will occur if any of the input

objects fail to evaluate to their prescribed types.

Bad ArgUMent Value will occur if the row index

is out of bounds, if the numbers of columns in the row
array and destination array do not match, or if the row
array is given as a vector .

None .

~.~ Editing Routines 139

~

Reverse The Order Of The Elements

In An Array:

AREV (972352)

« ~ A « A E AL ARRY~
DUP LIST~ 2 == « * »
1FT ~ S N « 1 N FOR
I I ROLL NEXT S
~ARRY » IF A TYPE
DUP 6 == SWAP 7 ==
OR THEN A STO END »

Sort An Array By Element:

ASORT (1046789)

« ~ A « A E AL ARRY~
LIST~ 1 == 1 1FT ~ R
C « 1 R C * QSRT (R
) IF C 1 ~ THEN C +
END ~ARRY » IF A
TYPE DUP 6 == SWAP 7
== OR THEN A STO END
» »

c.
c.
c.
c.
c.
c.
c.
Co
Co
C.
C.
C.
C.
C.
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Summary: ARE reverses the order of the elements of the specified C
C

140

array. ASORT sorts the elements of the specified array C

Chapter 5: Array Utilitia
C
C
~

3 ,. ,. • ,.
.­.­.-• • •
• ..
• • ,. ..
• • • • a
'a
-~

·a
~a

-~
... ~
~

in row-major and ascending order. If the array is named,

and the name is used, the resulting array is restored in

that name. Since a vector is equivalent to a column

array, its format is valid also for the input array. In such

cases, only the first format will be returned by ASORT,
regardless of the input format .

Examples: STD [[1 2 J [8 4 J J AREV
Result: [[4 8 J [2 1 J J

STD [5 1 4 2 8 J ASORT
Result: [1 2 8 4 5 J

Inputs: Level 1- any object that reduces to an array or vector­

the array or vector whose elements are to be reversed or

sorted .

Outputs: Level 1 - if the input object was a name, nothing is

returned, but the modified array or vector is stored in
that name. Otherwise, an array or vector is returned­

the modified array or vector.

Errors: Too Few Obj ect S will occur if the stack is empty .

Bad ArguMent Type will occur if the argument

does not evaluate to an array or vector.

Notes: Sorting a (1121 1121) array of random integers takes

about a minute. Sorting in descending order can be ac­

complished by applying AREV after sorting. Sorting in

column major order can be accomplished by transposing

the array both before and after sorting.

Editing Routines 141

142

Sort An Array By Column:

ASRTC (2421252)

« ~NUM ~ A C « A
EVAL ARY~R ~ D « 1
CF DO 1 D 1 - START
IF DUP2 C GET SWAP C
GET SWAP > THEN SWAP
1 SF END D ROLLD
NEXT D ROLLD UNTIL 1
FC?C END D R~ARY »
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » »

Sort An Array By Row:

ASRTR (2422082)

« ~NUM ~ A C « A
EVAL ARY~C ~ D « 1
CF DO 1 D 1 - START
IF DUP2 C GET SWAP C
GET SWAP > THEN SWAP
1 SF END D ROLLD
NEXT D ROLLD UNTIL 1
FC?C END D C~ARY »
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO E~~D » »

r.;;,
(~

r.;;,
(.;;,
r.;;,
(.;;,
(~

I~

(~

(~

(~

('-
(.;;,.
Ie
(e
(e
Ie
Ie
Ie
Ie
(e
c
c
Ie
c
(C
<c
IC
IC
IC
rC"
IC'
~
~

Chapter 5: Array Utililia ~

~

• Summary: ASRTC sorts the rows of the given array in ascending
• order by the indexed column. ASRTR sorts the columns • a
a
a

Examples:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

in ascending order by the specified row. If the name of
an array is used, the resulting array is restored in that
name. The column/row index is rounded before use.

STD [[5 1 J[4 2 J[3 6 JJ 1 ASRTC
~: [[3 6 J [4 2 J [5 1 J J

STD [[5 1 J[4 2 J[3 6 JJ 1 ASRTR
Result: [[1 5 J [2 4 J [6 3 J]

Level 2 - any object that evaluates to an array - the

array to be sorted.
Level 1-any object that evaluates to a real number- the

column/row specifier.

Levell - Ifthe Level 2 object was a name containing an

array, nothing is returned to the stack, but the sorted
array is stored in that name. Otherwise it is returned.

Too Few Argument. S will occur if the stack con-

tains fewer than 2 objects, or if the Level-2 object is a
vector or row array.

Bad Ar9ument. Type will occur if the input objects
do not evaluate to their prescribed types.

Inval id Dimension will occur if the Level-2
object is a row-array or vector.

ASRTC usesARY~R andR-+-ARY. ASRTR usesARY~C

and C-+-ARY. ASRTC and ASRTR both use user flag 1

to indicate a sorted array.

143

144

Convert An Array's Index List

To A Numeric Index:

AI~N (676494)

« EVAL LIST~ 1 == 1
IFT ROT EVAL LIST~ 1
== 1 IFT 4 DUPN SWAP
4 ROLL < ROT ROT >
OR ~NUM « {) 2 GET
» IFT SWAP DROP ROT
1 - *' + ~NUM »

Convert A Numeric Index

To An Array's Index List:

AN~ I (1440106)

« ~NUM IP SWAP EVAL
LIST~ IF 2 == THEN 3
DUPN *' > ~NUM « {)
2 GET » IFT SWAP
DROP ~NUM ~ N C « N
C / CEIL COVER 1 -
*' N SWAP - 2 » ELSE
~NUM OVER < « {) 2
GET » I FT 1 E~~D
~LIST »

2

2
~

I
~
~
~
~
~

~
Chapter 5: Array Utilitin ~

~ ,.
II'
II'
II' .. ., -.. • • • • tit
tit
tit ---It
It
~
~
~
~
;e
~
;e
;e
~
~

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

A I ~N generates an integer index for the given array

size, equivalent to the given index list. AN~ I does the

converse, genera ting an index list from an integer index.

A vector's (a single-column array's) index may be either
in the form of{ row) or (row 1).

(4 4) (2 8) AI~N
(8) (2) AI~N
(2 2) 8 AN~I
(16) 8 AN~I

~: 7
~: 2
~:(2 1)
~:(8)

Level 2 - any object that reduces to a list - the dimen­
sions of the array in question.

Level 1- any object that reduces to a list (forA I ~N) or

a real number (for AN~ I) - the index to be converted to
a real number (for A I ~N) or a list (for AN~ I).

Level 1- a real number (for A I ~N) - the (row-major)

single-value index equivalent; or a list (for AN~ I) - the
row-column list index equivalent.

Too Few ArgUMent S will occur if the stack con­
tains fewer than 2 objects.

Bad ArgUMent Type will occur if either Level 2

contains an object that is not a list or if Level 1 contains

an object type other than that of the input requirement.

Bad ArgUMent Va 1 ue will occur if the specified
index is out of bounds for the specified array.

None.

;it Miscellaneous Operations 145

~

146

Perform An Operation On Each Element
Of An Array:

AOP (1361863)

« ~ A F « A EVAL
ARRY~ ~ S « S LIST~
2 == « * » IFT ~ N «
1 N START F ~NUM N
ROLL NEXT » S ~ARRY
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » » »

Perform An Operation On Each Column

Of An Array:

AOPC (718786)

« ~ A F « A ARY~C ~
N « 1 N START F ~NUM
N ROLL NEXT N C~ARY
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » » »

c,.
c..
c..
c..
c..
c:,.
c...
c...
c...
c,.
C­
c..
c.,
c.,
c.
c.
c.
c.
c.
c.
c.
~
~
C
C
b
C
C
C
C
C
C
C
C

ChapterS: Array U~ C
C

E
• ~
~
.~

:a
:.a

Perform An Operation On Each Row

Of An Array:

AOPR (722581)

« ~ A F « A ARY~R ~
N « 1 N START F ~NUM
N ROLL NEXT N R~ARY
IF A TYPE DUP 6 ==
SWAP 7 == OR THEN A
STO END » » »

Summary: AOP performs a given operation on every element of the
given array, replacing each element with the element

resulting from the operation. AOpe performs a given
operation on every column of the given array, replacing
each column array with the column array resulting from
the operation. AOPR performs a given operation on
every row of the given array, replacing each row array

with the row array resulting from the operation. If the
name of an array is used, the resulting array will be re­

stored in that name.

Examples: STD [[1 2] [8 4]] « 1 - » AOP
Result: [[0 1] [2 8]]

STD [128 4] « ~ X 'XA 2-1 1 » AOP
Result: [0 8 8 15]

Miscellaneous Operations 147

Inputs:

148

I A I I B I AOP c..
~: (assuming tha t I A I contains an array and that ~
I B I contains an operation, I A I is modified, but noth- c..
ing is left on the stack.) c..

c..
IQI « IF DUP 4 < THEN DROP 4 END» c..
AOP c..
~: All elements of the array, I Q I , with values C.
greater than 4 will be changed to 4. C.

[[1 2][3 4]] « DUP ABS / »
ROPC 2 FIX
~: [[0.82 0.45] [0.95 0.89]]

c..
c.
c.
c
C.

STD [[1 2][3 4][5 6]] « ARRY+ ~
+ Q « ROT Q » +ARRY » ROPC ~

Result: [[3 4] [5 6] [1 2]] CC

[[1 2][3 4]] « DUP ABS / »
AOPR 2 FIX
Result: [[0. 45 0. 89] [0. 60 0. 80]]

c:
c:
c.
c
C

STD [[1 2 3][4 5 6]] « DUP 1 GET ~
/ » ROPR C-
Result: [[1 2 8] [1 1. 25 1. 5]] C

C-
Level 2 - any object that evaluates to an array - the <C
array to be operated upon. <C
Level 1-any object that evaluates to a program or user- ~
defined function - the operation to be used. ~

~
Chapter 5: Array UtUitia ~

: Outputs:

• • • • Errors:

• • • • • •
• Notes: • • • • • • • • • • • •
• ..
• • • M
M

Level 1 - if the Level-2 input was a name, nothing is
re-turned, but the modified array is stored in that
name. Otherwise, the modified array is returned.

Too Few ArguMent S will occur if the stack con­
tains fewer than 2 objects.
Bad ArguMent Type will occur if either of the
arguments is not of the prescribed type, or if the opera­
tion does not produce a real number (for AOP), a vector
(for AOPC) or a row array (for AOPR).

Operations on array columns or rows that don't produce
array columns or rows (respectively) would better be
served by use of LOP (see Chapter 7):

ARY~C ~LIST C Op » LOP m
ARY~R ~LIST C op » LOP

The results form a list and thus do not need to conform
to an array structure. This list can then be transformed
into other data objects ifappropriate: LIST ~ ~ARRY

Note that this would produce a column vector as a result
(which is not necessarily what you want), and require

that the results ofC op »be numeric .

AOPC usesC~ARY andARY~C. AOPR usesR~ARY
andARY~R.

.. Miscellaneous Operations 149

c..
Find The Position Of A Specified Real Element c..

Within An Array: c..

APOS (717463)

« ~NUM 2 * 2 / ~NUM
~ N « EVAL ARRY~ ~ S
« S LIST~ 2 == « * »
IFT ~LIST N P~S IF
DUP THEN S SWAP AN~I
END » » »

c..
c..
C­
C­
C­
C­
C­
c..
~
c..
c

Summary: APOS finds the position of the first occurrence of the c.
c.
C
C

Examples:

specified real number within the given array or vector
(searching in row-major order). Iffound, the position is

returned as a list-index ({ row co 1 ulYln ».
Otherwise, e is returned.

STD [[8 4][5 6]] 5 APOS
Result: { 2 1)

STD [5 4 8 2] 4 APOS
Result: { 2)

IC
C
C
C
C
C
C
C
C

IAI IC/SQ(D)I APOS Ie
Result: { 9 14) (for example-if I A I, I C I ,and C
I D I are defined) C'

C
STD [1 4 2 8] 8 APOS Rmili: e IC

IC
I~

150 Chapter 5: AlTay Utililia I~

~

.. .­..
•
• • • • •
~
• :a
~ .,

Inputs:

Outputs:

Errors:

Notes:

Level 2 - any object that will evaluate to an array or

vector.
Level 1- any object that will reduce to a real number.

Level 1-iffound, a list - the position of the target value;

otherwise, 0 .

Too Few ArguMent S will occur if there are fewer
than 2 objects on the stack.
Bad ArguMent Type willoccurifeitherargument

does not reduce to its prescribed value .
Under i ned NaMe will occur if the Level-1 object

contains an undefined name .

APOS uses AN~ I .

Miscellaneous Operations 151

Array Utilities: A Discussion

The Main Idea

Arrays as data objects - as opposed to as mathematically defined
matrices - are rather under-represented on the HP-28S, judging from

the tools provided to manipulate them. For instance, arrays of num­

bers are usually thought of in terms of rows and/or columns of data, but

the HP-28S gives you no built-in commands with which to build or

decompose arrays in either a column-wise or row-wise fashion.

The utilities in this chapter are intended to remedy this situation:

their main emphasis to allow manipulation of arrays as data objects,

not as matrices. Thus there are utilities to insert, delete, extract and

overwrite (i.e. GET and PUT) rows and columns, exchange, sort by, or

operate on elements, rows and columns, build and decompose by row
or column, extract a subarray, etc.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory - the

ultimate parent of all other directories.

c..
c...
c..
c..
c..
c:..
c..
c.
c..
c..
c..
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
(c
~

152 Chapter 5: Array Utilitin ~

~

" If
If
If

• ~

Some Observations

Arrays vs. Vectors

Both mathematically and as objects on the HP-28S, vectors can be'

considered to be a type of array: In math, a vector is a one-dimensional

array and may either be a row-vector or a column-vector, However, on
the HP-28S, a vector object is always a column-vector, represented hy

numbers within single brackets ([1 2 3 J), The dimension of a

vector object, as returned bytheS I ZE command, is 0(n), indicating

that the vector is one-dimensional and has n elements.

This representation of a column-vector as a vector object is simply

intended to make life easier for you. The alternative form of column
vector is [[1 J [2 J [8 J J , where the single column is

represented as a list of one-element rows. However, on the HP-28S,

this representation is an array object - not a vector object. Accordingly,

it is represented as a list of numbers within double brackets ([[1 2
3 J J), and its dimension is returned as 0(1 n) where n is the

number of elements.

J;
~ This would all be merely interesting trivia if it were not that certain

:$. built-in HP-28S commands function only on vector objects and not on

). column-vector arrays (CROSS, for example). On the other hand,

; certain "array-ish" commands refuse to take vector objects as argu­
~ ments (e.g. TRN).

~
~
".. Discussion .. 153

(~

For this reason, as far as possible, the array utilities make no distinction (":"

between vectors and column arrays. And, in most cases, when the ("': -result of an array utility would be a column array, it is returned as a (:,.

vector because vectors are most convenient. It may behoove you, there- (~ -fore, simply to forget that the HP-28S's column-array format even (~ -exists, using instead the vector form, because these array utilities (:,.

allow for that.

Calculations "In Place"

(~ -

Many of the array utilities allow you the option of providing a named

object as the argument. In that case, the resulting object will be re- (:..
stored in that name object as the end of the calculation - and nothing (___ -will be returned to the stack. This feature will work either on global (:.

or local name objects and is intended to be analogous to the working of

the storage arithmetic commands (see the HP-28S's STORE menu).

Although similar, these utilities lack one of the major advantages of

the built-in storage math: Those built-in STORE menu commands will
perform their calculations "in-place" - on top of the contents of the

current array - thereby taking up less storage space than recalling the

contents of the named objects, combining them, then overwriting the

original named object. These utilities must use the latter method.
(C
cC"
l~

"C"
(~

\~
(~

(~
154 Chapter 5: Array UtilUWs (...

l~

• .. -. ,a
~ ..
--a
-:a ...
~

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input
is entered - rather than continue and generate garbage outputs. When
inputs are questionable (e.g., negative numbers for stack Levels),

these utilities act similarly to the built-in stack commands (arguments
are ignored or treated as 1, whichever makes more sense). When
errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with the UNDO command, it's wisest to keep U NDD

mode (in the MODES) menu) active whenever you these utilities.

DisclUsion 155

How You Might Use These Utilities

When you use an array simply as a convenient object in which to store
and manipulate data (rather than a mathematically significant ob­
ject), you might, for example, want to consider each row or column as

a coherent data set. In that case, it's very useful to be able to mani­
pulate each such data set as a unit.

For example, suppose you're collecting data on a population. The data

for each individual is sex (O=male, l=female), age in years, height in
inches, and weight in pounds.

First, you would enter the data in that order, as rows in the :EDAT array,

using the I+ command in the STAT menu. Then you can perform. the
following computations:

To segregate the males and females, try this: I IDAT I 1 ASRTC.
Since 0 is less than 1, the males will be first in the array (the lower
numbered rows).

Likewise, to sort by age, you could do this: I IDAT I 2 ASRTC.

To find the first female entry in the already gender-segregated data,

you could do this: I IDAT I 1 AGETC 1 APOS.

This finds the first occurrence of 1 (female) in the first column (sex).

156 Chapter 5: Array UtUitia

c..
c..
c..
c..
c..
c.
c..
c..
c.
c.
c.
c.
c.
c
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
~
c
e­
e­
~
~
~
~

&

Or, to find the median weight, you could use this short program:

I MEDW I (137916)

« 'IDAT' 4 AGETC
ASORT NI 2 / DUP2
GET ROT ROT IP GET +
2/»

To convert the height data from inches to meters, this would work:

'IDAT' DUP :3 AGETC .0254 * 3 SWAP APUTC

To add a column for marital status and insert it as the new column 2,
you could do it this way: I IDAT I 2 ROT A I NSC.

To delete an erroneous entry: I IDAT I <number> ADELR.

As you can see, these array utilities provide you with many possih­

lilites for data management within the structure of an array. You can

easily imagine and create other operations on other sorts of data.

Discussion 157

Chapter 6

Character String Utilities

c
c
c
c
c
c
c
c
c.
c.
c.
C

These routines provide convenient, "canned" methods for building! C.
decomposing, editing, and formatting character strings in the HP-28S. C.

As shown in the following list, the 21 programs are organized into three
logical groups, presented alphabetically. Within each group, the pro­

grams are also usually presented alphabetically (by NAME), although

in some cases, certain sets of programs may be complementary or oth­

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

186, immediately following these program listings.

158 Chapter 6: Character String Utilitia

'" '" '" C
C.
C.
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

• Function • ~ • BuildinglDecomposition Routines • • SIP Convert An Integer To A String 160

• SPAT Generate The LCD Pattern Of A String 161

• SRPT Form A String By Repetition Of A String 162

• STG~ Split A String Into Characters 164

• ~STG Combine A Stack Of Objects Into A String 165 • • Editing Routines

: SeUT Split A String At A Specified Character 167
I SDEL Delete A Substring 168
I SINS Insert A Substring 170

• SPUT Put A Substring 170
ISLe Convert Uppercase Letters To Lowercase 172

• sue Convert Lowercase Characters To Uppercase 173

• SREV Reverse The Characters In A String 174

• SROT Rotate The Characters In A String 175

• SRPL Replace All Occurrences Of A Substring 176

• SZAP Remove All Occurrences Of A Substring 177

• SZAPL Remove Characters From The Left End 178
: SZAPR Remove Characters From The Right End 178

• Formatting Routines • • SeTR Center A String In A Field Of Spaces 180

• SLJ Left-Justify A String In A Field Of Spaces 180

• SRJ Right-Justify A String In A Field Of Spaces 181
., SPADL Pad A String On The Left With Spaces 184
., SPADR Pad A String On The Right With Spaces 184 a .,
a Contents 159

~

Convert An Integer To A String:

SIP (89682)

« ~NUM IP ~NUM RCLF
SWAP STD ~STR SWAP
STOF »

c
c
c
(

(
(
(
(
(
(
(Summary: SIP evaluates the object at stack Levell, takes the C

Examples:

Inputs:

Outputs:

Errors:

Notes:

160

integer portion, then converts that to a string.

123.45 SIP
-15.ge2 SIP
1E-12 SIP

Level 1- a real number.

Result: II 123 II
Result; II - 15 II
Result: lIe li

Level 1- a character string - the character representa-
tion of the integer portion of the input real number.

Too Few ArgUMent S will occur if the stack con-
tains no objects.
Bad ArguMent Type will occur if the input object
does not reduce to a real number.
Under ined NaMe will occur if the input object con-
tains an undefined name.

None.

Chapter 6: Character String Utilitin

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
~

Generate The LCD Pattern Of A String:

SPAT (162168)

« ?STR LCD? SWAP DUP
1 DISP SIZE 6 * LCD?
1 ROT SUB SWAP 7LCD
»

Summary: SPAT takes a string version of the object in stack Level

1 and creates a pattern string suitable for 7LCD,
DPAT, orPRPAT. Ifthe original object string is longer

than 23 characters, the resulting pattern string will con­

tain only its first 22 characters, plus an ellipsis (III).

Example: II A II [ENTER] SPAT [ATTN]

Inputs:

Outputs:

Errors:

Notes:

Result: II"", ___ "'" _ II

II 128 II [ENTER] SPAT [ATTN]

Result: II_SI@_ -bQI IF-II I I I6- II

Level 1- the object whose character string representa­
tion is to be used to make a character pattern.

Levell - the resulting character pattern string.

Too Few Ar9Ul"llentswilloccurforanemptystack.

None.

Building/Decomposition Routi1W8
161

Form A String By Repetition Of A String:

SRPT (796841)

« ~NUM ABS IP ~NUM
IF DUP NOT THEN
DROP2 1111 ELSE SWAP
EVAL SWAP OVER SIZE
OVER * ROT ROT LN 2
LN / IP 0 SWAP START
DUP + NEXT 1 ROT SUB
END »

c..
c.
c.
c..
c.
c.
c.
c.
c.
c:
c
c.
c
c
c
C

Summary: SRPT creates a character string by concatenating cop- C

Examples:

Inputs:

Outputs:

162

ies of the given character string.

"Ha ll 12 SRPT
~: II HaHaHaHaHaHaHaHaHaHaHaHa II

117 11 7 SRPT ~: "7777777 11

IIlTlI I IT I Result: II lTlTlT II

Level 2 - any object that evaluates to a character string
- the string to be the repeat pattern.

Levell-anyobject that evaluates to areal number-the
number of repetitions.

Levell - the resulting character string.

Chapter 6: Charader String Utilitin

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C"
C"
("

C
("

::
= ,. -• ,.
• ,.
• • • • • • ,. ,. ,.
• ,. ,. ,. ,. ,. --.. •

Errors:

Notes:

Too Few ArguMents will occur if the stack con­
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
are not reducible to their prescribed types.

Under i ned Name will occur if the Level-l object is
an undefined name.

Caution should be observed when using something
other than a real number for the repeat value since its
absolute value is taken. Complex numbers and arrays

in particular will probably cause undesirable results.

Building/Decomposition Routines
163

Split A String Into Characters:

STG~ (312398)

« 7STR DEPTH 7 D « 1
OVER SIZE FOR I DUP
I DUP SUB SWAP NEXT
DROP DEPTH D - 1 + »
»

Summary: STG7 converts the input object to a string and then

breaks that down into characters, placing them in order

on the stack. The SIZE of the original string conversion

is also placed on the stack. Some string conversions may

contain NEWLINE characters at certain points.

Examples: II 123 11 STG7 Result: II 111 11211 113 II 3

Inputs: Level 1- the object whose character-string representa­

tion is to be decomposed into its component characters,

which will then be placed onto the stack.

Outputs:

Errors:

Notes:

164

Levels 2 to (n+ 1) - the n characters of the input string.

Level 1- a real number, n - the number of characters in

the input string.

Too F ew Ar'~urc1ent s will occur for an empty stack.

A STG7 -broken string can be recomposed with 7STG.

Chapter 6: Character String Utilitia

E
I: • ,. ,.
•­...­...
A -. .:.e
A
:.e
• .. -. -. ... -. -.
:--a
-=­
~

"

Combine A Stack Of Objects Into A String:

~STG (204916)

e ~NUM IP ABS ~NUM
SWAP ~STR 1 ROT 1 -
START SWAP ~STR SWAP
+ ~~EXT »

Summary: ~STG forms a composite string out of a number of items

from the stack. All stack items are converted to strings

before being added to the resultant string. The number

of items to be used is taken from stack Level 1.

The fractional portion and sign of the item count at Level

1 are ignored. No spaces are placed around stack objects

before they are added to the resulting string; if delimiter

characters are necessary, they must be placed explicitly

on the stack in their appropriate positions.

Examples: STD 1 2 8 8 ~STG Result: II 128 II

STD lie II 1 II II 1 II + II 11»11 6 ~STG
Result: II ell + »"

II A II II B II II C II I TT I ~STG

Result: II ABC II

Building/Decomposition Routines 165

Inputs:

Outputs:

Errors:

Notes:

166

l

Levels 2 to (n+l)-n objects which, after being converted "­
to strings, will be appended together. c...

"" "" ""
Level 1 - any object that evaluates to a real number, n­

the count of objects to be taken from the stack and

combined into a character string.

Level 1 - a character string - the resulting composite

string.

Too Few Ar9UMents will occur either if the stack

is empty or if the number in Levell is greater than the

number of other items on the stack.
Bad Ar9UMent Type will occur if the Level-l

object is not a real number.
Under i ned NaMe will occur if the Level-l object

contains an undefined name.

Caution should be observed when using something

other than a real number for the number of objects since

its absolute value is taken. Complex numbers and ar-

rays in particular may cause undesirable results.

Chapter 6: Character String Utilitin

'" '" '" '" " " " " <;
<;
<;
(; , , , , , , , , , , , , , , , ,
(
(
(

Split A String At A Specified Character:

SCUT(168035)

« ~NUM SWAP EVAL
SWAP DUP2 1 SWAP 1 -
SUB ROT ROT OVER
SIZE SUB »

Summary: SCUT cuts a character string into two sub-strings. The
break will occur to the left of the position specified.

Examples: II H I THERE II 3 SCUT 2 SCUT
~: IIHIII II II II THERE II

Inputs: Level 2 - any object that reduces to a character string­

the string to split.
Level 1- any object that reduces to a real number - the
position after the cut.

Outputs: Level 2 - a string - the characters to the left of the cut.

Errors:

Notes:

Editing RoutineI'

Level 1- a string - the characters to the right of the cut.

Too Few ArgUMents will occur if there are fewer

than 2 objects on the stack.
Bad ArgUMent Type will occur if the Level-2 ob­

ject does not reduce to a string or if the Level-1 object

does not reduce to a real number.

None.

167

Delete A Substring:

SDEL(266777)

« ~NUM ROT EVAL ROT
~NUM ROT ~ N M « DUP
1 N 1 - SUB SWAP M 1
+ OVER SIZE SUB + »
»

Summary: SDEL deletes a sub-string from the string in stack

Level 3. The sub-string is specified with indices to its
first and last characters (at stack Levels 2 and 1,

respectively). The indexed characters are included in

the deletion. If the sub-string's starting index is less

than 1, 1 is used. If the sub-string's ending index is

greater than the size of the source string, the size of the
source string is used. If the starting index is greater

than the ending index, no characters are deleted.

Examples: II DEL I BERATE II 1 2 SDEL
Result: II L I BERATE II

168

IITEN CHARS. II 8 14 SDEL
Result: II TEN CHA II

11128456789 11 8 6 SDEL
Result: II 12789 11

Chapter 6: Character String Utilitin

c.
Co
C.
C
Co
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
~
~
~
~
~

InputS:

Outputs:

Errors:

Notes:

Editing Routines

Level 3 - any object that evaluates to a character string
- the original string.

Level 2 -any object that evaluates to a real number-the
position of the start of the substring.

Levell-anyobject that evaluates to areal number-the
position of the end of the substring.

Levell - a character string - the modified string.

Too Few ArguMent S will occur if the stack con­
tains fewer than 3 objects.

Bad ArguMent Type will occur if the arguments
do not reduce to the specified types.

None.

169

Insert A Substring:

SINS (365327)

« EVAL ROT EVAL ROT
~NUM 1 - DUP2 SWAP
SIZE IF > THEN SLJ
SWAP + ELSE 1 + SCUT
ROT SWAP + + END »

Put A Substring:

SPUT (866206)

« EVAL ROT EVAL ROT
~NUM 1 MAX IP 1 -
~NUM DUP2 SWAP SIZE
IF > THEN OVER SIZE
- SPADR SWAP + ELSE
1 + SCUT 8 PICK SIZE
1 + OVER SIZE SUB
ROT SWAP + + END »

c..
c..
c..
c..
c..
c..
c..
c..
C­
c..
c.,
c..
c..
c..
c..
c,
C­
c:
c
c
c-
c
Ie
c­
C"
c-
C'

Summary: SINS inserts a string immediately before the indexed C'
character in the destination string. SPUT replaces :g:
(overwrites) a portion of one string with another, begin- ~

ning at the indexed position. If the index is less than 1, if:"
1 is used. If the index or resulting string exceeds the ~~

170 Chapter 6: Character Stri1IiI U~
\~
~

~

• • .. • ..
•
• • ,. ,. ,. ,. ,. .,. ,. ,. ,. ,. ,.

SIZE of the destination string, the destination string is
padded with spaces or extended.

Examples: II ABCDEFGH I JKL II 8 114411 S I ~~S
~: II AB44CDEFGH I JKL II

Inputs:

IIABCDEFGHIJKL II 3 114411 SPUT

~: II AB44EFGH I JKL II

Level 3 - any object that reduces to a character string­
the original string.
Level 2 - any object that reduces to a real number - the
character position after the insertion point or at the

start of the replacement .
Level 1- any object that reduces to a character string­
the string to be inserted or "put" into the original.

Outputs: Levell - a character string - the newly edited string.

Errors: Too Few Argl.JMentswilloccuriftherearefewer
than 3 objects on the stack.

Bad ArguMent Type will occur if the Level·2 ob­

ject cannot be reduced to a real number.
Under i ned Nal"l1e will occur if the Level-2 object
contains an undefined name.

Notes: SINS uses SCUT and SLJ. SPUT uses SCUT and
SPADR. The order of the inputs is similar to the HP-

28SPUT command. Use caution when using something
other than a real number for the index value. Complex

numbers and arrays in particular will probably cause
undesirable results.

Editing Routines 171

Convert Uppercase Letters To Lowercase: c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c.

Summary:

Example:

Inputs:

Outputs:

Errors:

Notes:

172

SLC (508688)

« EVAL
IIABCDEFGHIJKLMNOPQRSTUVWXYZII
~ S A « 1111 1 S SIZE
FOR I S I DUP SUB A
SWAP POS 32 0 IFTE
CHR + NEXT S OR » »

c..
C.

SLC converts a string's uppercase characters to lower- C.
case. Lowercase and non-alphabetic characters are un­
altered.

IIHI THEREII SLC Result: .. hit here ..

Level 1- any object that reduces to a character string­

the string to be converted.

Levell - a character string - the converted string.

Too Few Ar91.JMent S will occur for an empty stack.

Bad Ar9UMent Type will occur if the Level-1 ob-

ject does not reduce to a string.

Undef i ned NaMe will occur if the Level-1 object

contains an undefined name.

None.

Chapter 6: Character Stri1l/l Utilitia

C.
C.
C
C
C
C
C
C
C
C
C
C
C
C
C­
C­
C-
C­
~
~
~

Convert Lowercase Characters To Uppercase:

sue (550128)

« EVAL
lIabcdefghijklMnOpqrstuvwxyzll
~ S A « 1111 1 S SIZE
FOR I S I DUP SUB A
SWAP POS 95 255 IFTE
CHR + NEXT SAND » »

Summary: SUC converts all lowercase characters in the given

string to uppercase. Uppercase characters and nonal­

phabetic characters remain unaltered.

Example: II hit here II SUC Result: II H I THERE II

Inputs:

Outputs:

Errors:

Level 1-any object that evaluates to a character string

- the string to be converted to all uppercase characters.

Levell - a character string - the converted string.

Too Few At-gufI1ent s willoccurforanemptystack.

Undef i ned NaMe will occur if the Level-1 object is

an undefined name.

Bad ArguMent Type will occur if the Level-1 ob­

ject does not reduce to a string.

Notes: None.

Editing Routines 173

Reverse The Characters In A String:

SREV (200689)

« EVAL 1111 SWAP 1
OVER SIZE FOR I DUP
I DUP SUB ROT + SWAP
NEXT DROP »

Summary: SREV evaluates the Level-l object, then reverses the
order of the resulting string's characters.

Examples: STD II 12345 II SREV
IIHI THEREII SREV

~: 1154821 11
~: II EREHT I H II

Inputs: Levell- any object that evaluates to a character string.

Outputs: Levell - a character string - the reversed string.

Errors: Too Few ArguMent S will occur for an empty stack.

Notes:

174

Bad ArguMent Type will occur if the argument

does not evaluate to a character string.

None.

Chapter 6: Character String Utililift

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
,C
c
e­
c
~
~
~
~
~
~
~
,~

,. .. ,.
lie .,
• --• • • • • • ..
•

Rotate The Characters Of A String

SROT (165882)

« .NUM IP NEG .NUM
SWAP EVAL SWAP OVER
SIZE MOD 1 + SCUT
SWAP + »

Summary: SROT rotates a string by the specified number of char­

acters. A positive rotation index rotates to the right, a

negative to the left (fractional parts of the index are
truncated).

Examples: II 12345 11 1 SROT Result: 51234

Inputs: Level 2 -any object that evaluates to a character string
- the string to be rotated .

Level 1-any object that evaluates to a real number - the
characters to be rotated .

Outputs: Levell - the rotated string .

Errors: Too Few Arguments will occur if the stack con­
tains fewer than 2 objects.

Bad Argument Type will occur if the arguments
cannot be reduced to their appropriate types.

Undef i ned Name will occur if the Level-1 object
contains an undefined name.

Notes: SROT uses SCUT.

Editing Routines 175

Replace All Occurrences Of A Substring:
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

176

SRPL(1248335)

« EVAL SWAP EVAL
DEPTH ~ BAN « IF
DUP A POS THEN WHILE
DUP A POS DUP REPEAT
SCUT A SIZE 1 + OVER
SIZE SUB SWAP B +
SI.oJAP END DROP N
DEPTH START + NEXT
END » »

C
SRPL searches the object string for every occurrence of C
the pattern string, substituting the replacement string.

11123123 11 113 11 110 11 SRPL Result: 11120120 11

Level 3 - the object string.

Level 2 - the pattern string.

Levell - the replacement string.

Levell - the modified string.

Too Few Argl..Jr'lent s will occur if there are fewer

than 3 objects on the stack.

Bad ArgUMent Type will occur if the arguments

do not reduce to character strings.

SRPL uses SCUT.

Chapter 6: Character String Utilities

C
C
C
C
C
C
C
C­
C­
C
C
C
C
~
~
~
~
~
~

lit
lit
lit
lit • -­•

Remove All Occurrences Of A Substring:

SZAP (46136)

« EVAL SWAP EVAL
SWAP 1111 SRPL »

Summary: SZAP deletes all occurrences of a substring from an­
other string.

Examples: II 12345 II 113 11 SZAP
IIXYXYXYII lIylI SZAP
IIABCDEFII IIQII SZAP

Result: II 1245 II
~: IIXXX Il

Result: II ABCDEF II

Inputs:

Outputs:

Errors:

Level 2 - any object that evaluates to a character string

- the original string to be edited.

Level 1-any object that evaluates to a character string
- the substring to be deleted from the original string.

Levell - a character string - the modified string.

Too Few ArguMent S will occur if the stack con­

tains fewer than 2 objects.

Bad Argurllent Type will occur if either of the

arguments fails to reduce to a character string.

Notes: SZAP uses SRPL.

Editing Routines 177

(.. _-------------------.-
Remove Characters From The Left End:

SZAPL (379260)

« EVAL NUM CHR SWAP
EVAL SWAP ~ S «
WHILE DUP NUM CHR S
== REPEAT 2 OVER
SIZE SUB END » »

Remove Characters From The Right End:

SZAPR (507600)

« EVAL NUM CHR SWAP
EVAL SWAP ~ S «
WHILE DUP SIZE DUP2
DUP SUB S == REPEAT
1 SWAP OVER - SUB
END DROP » »

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C

Summary: SZAPL repeatedly removes the specified character C

178

from the beginning of a string until there are none
remaining. SZAPR repeatedly removes the specified
character from the end of a string until there are none
remaining. Only the first character of the pattern string

is used as a delete pattern.

Chapter 6: Character Stri1l/l UIillIHrI

C
C
C'
<C'
<C'
<C'
~
~
~
~

Examples:

Inputs:

Outputs:

Errors:

Notes:

"8" II II SZAPL ~: "8"
"5551212" "5" SZAPL ~: "1212"
"8" II II SZAPR ~: "8"
"5.0000" "0" SZAPR ~: "5."

Level 2 - any object that evaluates to a character string
- the string to be "trimmed."

Levell-any object that evaluates to a character string
- the string whose first characteris to be deleted repeat­
edly from the beginning or end of the target string.

Levell - the modified string.

Too Few Ar9UMent S will occur if the stack con­
tains fewer than 2 objects.

Bad Ar9UMent Type will occur ifeither of the ar­
guments fails to evaluate to a character string.

None.

179

180

Center A String In A Field Of Spaces:

SCTR (577644)

« +NUM SWAP +STR DUP
SIZE ROT DUP ROT - 2
/ IP +NUM IF DUP e ~
THEN .. II S~'~AP SRPT
ROT + SWAP SLJ ELSE
DROP 1 SWAP SUB END

Left-Justify A String In A Field Of Spaces:

SLJ (421808)

« +NUM ABS IP +NUM
SWAP +STR DUP SIZE
ROT SWAP IF DUP2 <
THEN DROP 1 SWAP SUB
ELSE - II II SWAP SRPT
+ END »

c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C

Chapter 6: Character Strill/l Utilitietl (I

..
• • • • • • • • • • •

Right-Justify InA Field Of Spaces:

SRJ (463907)

« ~NUM ABS IP ~NUM
SWAP ~STR DUP SIZE
ROT SWAP IF DUP2 <
THEN DROP 1 SWAP SUB
ELSE - II II SWAP SRPT
SWAP + END »

• Summary: SCTR converts the object from stack Level 2 into a

• • • • • • • • • • • • • Examples:

• • ~
a
a
a

string and centers it within a specified field of spaces.

Similarly,SLJ left-justifiesandSRJ right-justifies the

object within the field. Any fractional portion ofthe field

width value is truncated before use. If the field width is

smaller than the object, the object string is truncated to

fit within the specified field size. Ifthe field size is zero

or less, the resulting string will be empty. NEWLINE

characters are counted when determining the length of

the object. A centered object may be placed one charac-

ter to the left of center, as necessary.

STD 8 7 SCTR Result: II 8 II

STD 8 7 SL,-' Result: 118 II

STD 8 7 SR,-' Result: II 8 11

"2 Formatting Routines 181

Inputs:

Outputs:

Errors:

Notes:

182

Level 2 - the object to be centered or justified.
c..
c..

Level 1 - any object that evaluates to a real number - c..
the"field-width."

Level 1 - a character string - the object as a string
centered or justified within a field of spaces.

Too Few Arg1.JMent S will occur if the stack con-
tains fewer than 2 objects.

Bad ArguMent Type will occur if the Level-l ob-
ject does not evaluate to a real number.

Llndef i ned NaMe will occur if the Level-l object
contains an undefined name.

SCTR usesSLJ. SCTR,SLJ andSRJ all useSRPT.

Caution should be observed when using something

other than a real number for the field-width value, since

its absolute value is taken. In particular, complex num­

bers and arrays will probably cause undesirable results.

c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c..
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~

Chapter 6: Character String Utilities ~

~

=

183

Pad A String On The Left With Spaces: c.
c.
c.
c.
c..
c..
c..

SPADL(45229)

« II II SWAP SRPT SWAP
~STR + »

c..
c..

Pad A String On The Right With Spaces: c..
c..
c..
c..
c.
c.
c.

Summary:

Examples:

Inputs:

184

SPADR (58673)

« II II S\.oJAP SRPT SWAP
~STR SWAP + »

c.
c-

SPADL adds the specified number of spaces to the left C
side of a character string. SPADR adds the specified C
number of spaces to the right side. If the object to be

padded is not a string, it is converted before padding.

IIHIII 5 SPADL Result: II HIli

7 7 SPADL Result: II 7 11

IIHIII 5 SPADR Result: IIHI II

7 7 SPADR Result: 117 II

Level 2 - the object whose string equivalent is to be

padded with spaces.

Level 1 - a real number - the number of spaces to be

added as "padding."

Chapter 6: Character String Utilitia

C-
C
C
C
C
C­
C­
C­
e
e
e
~
~
~
(!'A

~

~ • .-• .-• -

Outputs:

Errors:

Notes:

Levell - the padded string.

Too Few ArguMent S will occur if the stack con­

tains fewer than 2 objects.

Bad ArguMent Type will occur if the Level-l

object is not reducible to a real number .

Undef i ned NaMe will occur if the Level-l object

contains an undefined name .

SPADL and SPADR use SRPT. Caution should be ob­

served when using something other than a real number

for the "padding number," since its absolute value is

taken. In particular, complex numbers and arrays may

cause undesirable results.

Formatting Routines 185

Character String Utilities: A Discussion

The Main Idea

t..
t..
t..
t..
t..
t..
t..
t..
c..

Character strings are the most versatile data objects provided by the c..
HP-28S; they can be converted from and to any other HP-28S data t..
object. They can contain the representations of one or many objects,

and once assembled, their contained object(s) can be sequentially

evaluated using STR~ , just like a program. And of course, strings

have the unique ability to present information to you in your own

language: words.

Such versatility and ability might suggest that a rather large collec­

tion of string-related commands is surely built into the HP-28S. Not

so - there are very few. However, with these powerful few, all of the

possibilities inherent in character strings can be realized by writing a

handful of relatively straightforward programs - and that's what this

collection of utilities is all about.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory - the

ultimate parent of all other directories.

186 Chapter 6: Character String UtilitiM

c..
t
c..
c..
c..
c..
c
c:
c
c
c·
c·
c·
c·
c
c
c
c
C'
C'
C­
~
~
~
~

i

~
• ..
•
• • :.e ..
~ .­.­..
• ~
~
-..
-::a ...
~ ,.

Some Observations

As shown in the list of contents (page 159), each of the string utilities

belongs basically to one of several different functional groups:

Building/Decomposition: building and tearing down strings from

and to characters and objects of other types - including one command

(SPAT) that gives you the ability to build a display pattern from ;l

character string (the HP-28S provides a method of capturing and

redisplaying its LCD using character strings, so manipulation of the

pattern string can allow you to build interesting displays).

Editing: These are the commands that perform actual physical modi­

fications to a string object: adding and deleting characters, splitting

and concatenating strings, inserting and overwriting characters in a

string, replacing and removing substrings, trimming excess charac­

ters, reversing and rotating a string.

Formatting: Any object type can be converted to a character string,

and because the content of a string is virtually unrestricted, you can

create representations of the objects which would otherwise be impos­

sible. Objects can be labelled, positioned within fields of spaces , special

characters can be added, extraneous characters removed, etc .

Discussion 187

Notes About Conversions

Conversions of objects to strings depends on current system modes,

among other factors. The conversion of real numbers (or compound

objects containing real numbers) to strings uses the current display

format. Thus 2 F I Xl. 2345 ~STR gives II 1 • 23 11 and then

STR~ returns 1 • 23 regardless of the current display format. In

other words, information is lost.

Other objects, like binary integers, are converted using the current

base and word size, and these forms are static regardless of how these

system states may have been altered since their conversion.

Another less obvious artifact of conversion is that large objects like

programs are converted to strings using the form they would take

during an EDIT or VISIT, including embedded NEWLINE characters.
Thus, eel] C 2]] would become lice 1]. C 2]] II ,for

example, when converted to a string in STD display mode (regardless

of the current multiline mode.)

Errors And Error Recovery

Each of these tools is designed to generate an error when invalid input

is entered - rather than continue and generate garbage outputs. When

errors do occur, the stack is usually disrupted, and since the only way

to restore it then is with the U~~DO command, it's wisest to keep UNDO

mode (in the MODES) menu) active whenever you these utilities.

188 Chapter 6: Character String Utilities

c..
c..
c..
c..
c...
c..
c..
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c , ,
c
c
c
c
c
c
c

..
= • • • .-..­,. ,. ,.
• • ,. ,.

How You Might Use These Utilities

Sometimes the best explanation is simply a set of examples. Here is

such a set (you'll notice that in some cases, it's most convenient to use

these String utilities in concert with some of the List utilities from

chapter 7):

How many E' s are in a given string? To find out, you could do this (the

LSORT routine used here is from chapter 7):

STG~ ~LIST LSORT LIST~ ~STG
DUP IIEII POS SCUT
SRE DUP IIEII POS SCUT SIZE

To convert a string to a list of character codes, try this (the LOP routine

is from chapter 7):

STG~ ~LIST « NUM » LOP

To convert 116 f t 2 3/4 in II to a real number of inches, here's

one method:

II ft II 11*12 11 SRPL II inll 1111 SRPL
II II II + II SRPL II I II S~'~AP + STR~ E AL

DiscUIlsion 189

To convert 6 • a28E28 to 116. 1028* 110 < 28) II , you could do this: ~

STD ~STR
IIEII

C.
C.
C.
C.

This could be a handy little program to have, if you wanted to name it, c..
right? c..

To convert every occurrence of~NUM in an object to EVAL try this:

~STR II • II SRPL

" ~NUM " .. EVAL II SRPL STR~.

The • you see here is the NEWLINE character. Notice that you use
spaces to bracket the match string, so that patterns like I X~NUM I

don't match.

C.
c..
c.
c.
c.
c..
c.
c
c
c
c
c
C

Notice also that all NEWLINE's (. 's) are converted to spaces first C
because ~NUM might occur next to one, in which case you would C
otherwise need to search for and replace II ~NUM II,". ~NUM ", C
" ~NUM·" and"· ~NUM·" as special cases. C

190

C
C
C
C
C
C
C
C
C

Chapter 6: Character String Utilitin C

~

~ You can break up an arbitrary string into individual "words," with a i little routine such as BREAK (717843):

.. « 11.11 II II SRPL WHILE

.. DUP II II POS REPEAT • • • • • • • • • • • • • • • • •

II II II II SRPL END
II II 34 CHR DUP +
SRPL 34 CHR SWAP
OVER + + DEPTH ~ D «
STR~ D » DEPTH SWAP
- »

Or, suppose you wanted to display a set of eight numbers in two

columns in the display. Here's a routine, DISP8 (187922), to do

that:

« 1 4 START 8 ROLL
12 SLJ 8 ROLL 11 SRJ
11.11 + NEXT + + + + +
+ + 1 DISP »

• Note that not all display formats will work here (you might also try

• replacing SLJ and SRJ with SCTR).

• • • • • ::8 -_ DisculJlJion 191

•

Chapter 7

List Utilities

These routines provide convenient, "canned" methods for building!

decomposing, editing, and operating on lists in the HP-28S.

As shown in the following list, the 19 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro­

grams are also usually presented alphabetically (by NAME), although

in some cases, certain sets of programs may be complementary or oth­

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

224, immediately following these program listings.

192 Chapter 7: Lid Utilitie.

c.
c.
c.
c.
c..
c..
c..
c..
c..
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~

~

~
Name. Function ~

Building/Decomposition Routines

A~L Convert An Array To A List 194 L~A Convert A List To An Array 195 .. LRPT Form A List By Repetition Of An Element 197
Editing Routines FLTR Filter A List With A Procedure 198 .. LeUT Split A List At A Specified Point 200 .. LDEL Delete The Specified Sublist 202 .. LEX Exchange Elements Within A List 204 .. LINS Insert An Object Into A list 206 .. LPUT Put A Sublist Into A List 206 • LREV Reverse The Order Of The Elements 209 .. LROT Rotate The Positions Of The Elements 210 .. LRPL Replace All Occurrences Of An Element 212 .. LSORT Sort A List By Element 214 • LZAP Remove All Occurrences Of An Element 216 ..

• • Miscellaneous Operations • • ENQ Add An Element To The End Of A Queue 218 • • UNQ Remove The First Element From A Queue 218

• LOP Perform An Operation On Each Element 220

• POP Remove The Last Element From A Stack 222

=- PUSH Add An Element To The Bottom Of A Stack 222

• -Contents 193 ,.

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

194

Convert An Array To A List:

A-+L (183691)

« EVAL ARRY~ ~ D « D
LIST~ IF 2 == THEN *
END ~LIST D » »

c.
c.
c
c
c.
c
c.
c.
c.
C.

A~L converts the given array or vector into a list of its C.
elements, in row-major order. A second list will also be
returned, containing the size information from the origi­
nal array so that the array can be reconstructed.

STD [[1 2][3 4]] A~L
Result: (1 2 3 4) (2 2)

STD [1 2 3 4] A~L

Result: (1 2 3 4) (4)

Levell-Any object that evaluates to an array or vector
- the array to be converted.

Level 2 - a list - the elements of the original array.
Level 1 - a list - the original dimensions of the array.

Too Few ArgUMent S will occur for an empty stack.
Bad ArgUMent Type will occur if the argument

does not evaluate to an array or vector.

None.

ChtJpter 1: Lid UtilUiM

C
C
C
C
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C'
C'
C'
C'
~

~

.. .. .­.. .-
• Summary: ,. ,.
". ,.
.,. Examples:

• -.
• Inputs. ..
~
~
~ ...

Convert A List To An Array:

L ~A (592057)

« EVAL SWAP EVAL ~ D
L « L SIZE D LIST~
IF 2 == THEN * END
IF ~ THEN () 1 GET
END L LIST~ DROP D
~ARRY » »

L ~A converts the given list of numbers into an array or
vector of the elements from the list (in row-major order).
A second list must be given, containing the size informa­
tionoftheresultingarray,i.e.,{ rows colUMns).

STD (1 2 8 4) (2 2) L~A
Result: [[1 2] [8 4]]

STD (1 2 8 4) (4) L~A
Result: [1 2 8 4]

Level 2 - any object that evaluates to a list of real num­
bers - the list to be converted .

Level 1 - any object that evaluates to a list - the list
containing the dimensions of the desired array .

~ Building/Decomposition Routines 195

==-

Outputs:

Errors:

Notes:

196

Levell - an array or vector, depending on the specifica­
tion - the object just converted from the input list.

Too Few ArguMents will occur if the stack con­
tains fewer than 2 objects.

Bad ArguMent Type will occur if the arguments
do not evaluate to lists.

Bad ArguMent Va 1 ue will occur if the dimensions
of the size list do not correspond to the number of ele-
ments in the element list.

None.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~

Chapter 7: List Utilities ~

: ..
= -' -.. ,.
• • • • • • ..
• • • • ..
• • -..

Form A List By Repetition Of An Element:

LRPT (292760)

« ~NUM .5 + FLOOR ~

E N « () IF N 1 ~
THEN 1 N START E +
NEXT END » »

Summary: LRPT creates a new list through an indexed repetition

of a given element or list. Any fractional portion of the

repetition index is rounded before use. If a list is used

as the repeated object, the resulting list is formed by

repeating all of the objects in the repeat list, in order.

Examples: STD I A I 8. 6 LRPT Result: (A A A A)
STD II H I II /3 LRPT Result: ()

Inputs:

STD (1 2 8) 2 LRPT
~:(128128)

Level 2 - any object - the object to be repeated.

Level 1 - a real number value - the repetition index.

Outputs: Levell - a list - that formed by repetition of the object .

Errors: Too Few Argument s will occur if the stack con­

tains fewer than 2 objects .

Bad Argument Type will occurifthe Level-l input

object does not evaluate to a real number .

Notes: None .

Building/Decomposition Routi1U?s 197

Filter A List With A Procedure:

FL TR (1 987293)

« ~ 1.. t •• « { } 1
1 .. EVAL SIZE IF DUP
THEN FOR i.. 1..
EVAL i .. GET IF DUP
t •. EVAL THEN 1
~LIST + ELSE DROP
END NEXT ELSE DROP2
END IF 1 •• TYPE DUP
6 == SWAP 7 == OR
THEN 1 •• STO END» »

c
c
c
c

'"' '"' '"' '"' '" '" '" '" c;.
c;.
c;.
c.

" C;

Summary: FL TR will filter all objects out of a list that fail a user- C
defined test procedure. Only those elements that pass C;

the test (Le. return a 1 rather than a ° to stack Levell) C;
will be used to form the return list. If the list is stored C;
in a name and that name is used, the resulting list will C;

C;
C

be stored in that name.

Examples: STD { 1 2 8 4 5 6 7 } « 4 < » FL TR ~
&IDili: { 1 2 8 } C

198

STD { 5 6 7 8 9 10 } « ~ X 'IFTE
(XA 2<50,1,0)' » FLTR
Result: { 5 6 7 }

C
C
C
C
C
C

Chapter 1: Lid Utilities ~

~

..
lit
lit .­..
• ..
• ..
• ..
• • • • • • • • • • • • • ";II .. ,.

STD (A 4 (1) (2,2))
« TYPE 5 == » FLTR
~:«1))

Inputs: Level 2 - any object that will evaluate to a list - the list
to be filtered.
Level 1 - either a program or a user-defined function

that takes one argument from the stack and returns
either a lor 0 to the stack - the filtering test .

Outputs: Level 1 - if a name containing a list was given as the
Level-2 argument, the resulting list will be restored in
that name. Otherwise, the filtered list is returned.

Errors: Too Few ArgUMent S will occur if the stack con­

tains fewer than 2 objects .

Bad ArguMent Type will occur ifeither the Level-
2 object is not a list or the test procedure in Levell is in­

compatible with an object in the list.
Unpredictable errors will occur if the Level-l object

is not a program or user-defined function, if the test
takes more than one object from the stack, or if the test

returns more than one object to the stack.

Notes: The local names, 1 •• , t •. and i .. were chosen to
reduce the chances of conflicts when operations such as
« STR~ »are applied to lists of strings. Therefore,
avoid using 1 •• ,t . • and i . . as global names in your

own programming.

Editing Routines 199

Split A List At A Specified Point:

Leur (165719)

« ~NUM ~ L E « L
EVAL DUP 1 E 1 - SUB
SWAP E OVER SIZE SUB
» »

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c
C.

Summary: LCUr cuts a list from stack Level 2 into two sub-lists. C

Examples:

Inputs:

Outputs:

200

The point of the break is specified by the real number in

LevelL The list will be split between the specified
element and the element to its left.

srD { 1 2 3 4 5 } 4 LCUr
Result: { 1 2 3 } { 4 5 }

Level 2 - any object that evaluates to a list - the list to
be split.

Level I-any object that evaluates to areal number-the
point, n, in the list before which the split is to be made.

Level 2 - a list - the (n-I) elements of the original list

which were to the left of the cut.
Level I- a list-the (SIZE-n+l) elements of the original

list which were to the right of the cut.

Chapter 7: Lid Utilities

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
~

.,
• • • • •

Errors:

• Notes:

• • • • • • • • • • • • • • • • • • ..
•
it
•

Editing Routines

Too Few Ar-9UMentswilloccuriftherearefewer
than 2 objects on the stack.

Bad ArgUMent Type will occur if the Level-2 ob­

ject is not a list or the Level-! object is not a real number.

None.

201

Delete The Specified Sublist:

LDEL (700391)

« ~ L N M « L EVAL
DUP 1 N ~NUM 1 -
~NUM SUB SWAP M ~NUM
1 + ~NUM OVER SIZE
SUB + IF L TYPE DUP
7 == SWAP 6 == OR
THEN L STO END » »

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
C

Summary: LDEL will delete the specified element or sub-list of C.

Examples:

202

elements from the given list. Two indices are required:

the first element to delete and the last element to delete.
All elements between and including these indexed ele-
ments are deleted. If the beginning index is less than 1,
1 is used. Likewise, if the ending index is greater than

the size of the list, the size of the list is used. If either

index is non-integer, the value is rounded. If the list is
named and the name is used, the modified list is re-

stored in the name.

STD (1 2 3 4 5 6) 1 3 LDEL
Result: (4 5 6)

(ABC D E F) 3 5 LDEL
Result: (A B F)

Chapter 1: LiBt utUitia

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
e
e
~

~

.. .­..
• ..
• • • • • • • • •
• ~
~
~
~
~

Inputs:

STD (IIHIII A 4) ILl STO ILl 3 3
LDEL L &w.ili: (IIH I II A)

STD (1 2 3 4 5 6) 4 10 LDEL
&mIt: (1 2 3)

Level 3 - any object that evaluates to a list - the list to
be edited .

Level 2 -any object that evaluates to a real number-the
index of the beginning of the sublist to be deleted .
Level 1-any object that evaluates to a real number - the
index of the end of the sub list to be deleted .

Outputs: Level 1-if the Level-3 object was a name that contained

a list, the result is stored in that name. Otherwise a list
is returned - the newly-edited list .

Errors: Too Few ArgUMent S will occur if the stack con­
tains fewer than 3 objects.

Bad ArgUMent Type will occur if the input objects
do not evaluate to their prescribed types.

Notes: None.

Editing Routines 203

Exchange Elements Within A List:

LEX (700543)

« +NUM SWAP +NUM + L
M N « L EVAL DUP DUP
N GET SWAP M GET ROT
N ROT PUT M ROT PUT
IF L TYPE DUP 6 ==
SWAP 7 == OR THEN L
STO END » »

Summary: LEX exchanges the positions of the two specified ele-
ments within the given list. If either index is non-

c..
c..
c..
c..
c..
c.
c..
c..
c..
c.
c..
c..
c.
c.
c.
c.
C.

integer, the value is rounded before use. If the name of C

Examples:

Inputs:

204

a list is used, the resulting list is restored in that name.

{ A 8 C D E F } 1 6 LEX
Result: { F 8 C D E A }

STD { 4 8 6 } ILl STO ILl 2 1
LEX L Result: { 8 4 6 }

Level 3 - any object that evaluates to a list - the list to

be edited.
Level2-anyobject that evaluates to a real number-the

index of one of the elements to be exchanged.
Level 1-any object that evaluates to a real number- the

index of the other element to be exchanged.

Chapter 7: List Utilitin

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
~
~

.. .. :: .­..
;.­,. ,. ,. ,. ,. ,. ,. ,.
• ..

Outputs:

Errors:

Notes:

':I' Editing Routines ,.

Levell - if the Level-3 object was a name containing a

list, the result is stored in that name. Otherwise, a list
is returned - the newly-edited list.

Too Few Ar9uMent S will occur if the stack con­
tains fewer than 3 objects.

Bad Ar9uMent Type will occur if the input objects

do not evaluate to their prescribed types.

Bad Ar9UMent Va 1 ue will occur if either of the

indices is out of bounds for the list.

None.

205

Insert An Object Into A list:

LINS (309935)

« ~ L N S « L N LCUT
S SWAP + + IF L TYPE
DUP 6 == SWAP 7 ==
OR THEN L STO END »

Put An Object Into A List:

LPUT (513346)

« ~ L N S « L N LCUT
S SWAP OVER SIZE 1 +
LCUT SWAP DROP + +
IF L TYPE DUP 6 ==
SWAP 7 == OR THEN L
STO END » »

c..
c..
c..
c..
c.
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Summary: L I NS inserts an object into a list at the specified Ioca- c
c
c
C

206

tion. If the inserted object is another list, all of that list's
objects will be inserted, in order, at the indexed location.
LPUT overwrites a list with the contents of another list,
starting at the indexed location. If the index has a frac- C
tional portion, it will be rounded before being used. If ~

Chapter 7: LiBt Utilitin
~
~
~

the index is less than 1, 1 will be used. If the index is
greater than the size of the list, the size of the list is used.
lfthe objects being inserted or placed would write past

the end of the destination list, the destination list is
extended. If the destination list's name is used, the re­

sulting list will be restored in that name.

Examples: STD { 1 2 8 } 2 15 LINS
Result: { 1 15 2 8 }

STD { 1 2 8 } 8 15 LINS
Result: { 1 2 8 15 }

STD { 1 2 8 } 2 { 4 56} LINS
Result: { 1 4 5 6 2 8 }

STD (1 2 8) 2 { { 15 } } LINS
Result: { 1 { 15 } 2 8 }

STD { 1 2 8 4 5 } e { ABC } LPUT
~: { ABC 4 5 }

STD { 1 2 8 4 5 } 1 { ABC } LPUT
Result: { ABC 4 5 }

STD { 1 2 8 4 5 } 8 { ABC } LPUT
~: { 1 2 ABC }

STD { 1 2 8 4 5 } 4 { ABC } LPUT
Result: { 1 2 8 ABC }

Editing Routines 207

Inputs:

Outputs:

Errors:

Notes:

208

STD { 1 2 3 4 5) 6 { ABC) LPUT
~: { 1 2 3 4 5 ABC)

Level 3 - any object that evaluates to a list - the list to

be edited.
Level 2 -any object that evaluates to a real number-the

c,.
c,.
c...
c...
c...
c...
c...

insertion/replacement point. c...
Level 1 - (for L I NS) any objects - the objects to be c...
inserted, or (forLPUT) any object that evaluates to a list c,.
- the replacement list.

Level 1- ifthe Level-3 object was the name of a list, the

result is stored in that name and nothing is returned to

the stack. Otherwise, the newly-edited list is returned.

Too Few ArguMent s: will occur if the stack con-

tains fewer than 3 objects.
Bad ArguMent Type will occur if the input objects

fail to evaluate to their prescribed types.

L I NS and LPUT both use LCUT.

Chapter 7: List Utilities

c,.
c,.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~

Reverse The Order Of The Elements:

LREV (958659)

« ~ L « L EVAL LIST~
~ N « IF N THEN 1 N
FOR I I ROLL NEXT
END N ~LIST » IF L
TYPE DUP 6 == SWAP 7
== OR THEN L STO END
» »

Summary: LREV reverses the order of the elements within a list.

Example:

Inputs:

Outputs:

Errors:

Notes:

Editing Routines

If the name of a list is specified, the resulting list is re­

stored in that name.

STD (1 2 8) LREV Result: (8 2 1)

Level 1 - any object that evaluates to a list - the list
whose elements are to be reversed.

Level I-if the input object was a name containing a list,
the result is stored in that name, and nothing is re­

turned to the stack. Otherwise, a list is returned - the
input list with its elements reversed.

Too Few Ar-guMentswilloccurforanemptystack.

None.

209

Rotate The Positions Of The Elements:

LROT(624930)

« ~ L N « L EVAL N
~NUM .5 + FLOOR NEG
~NUM OVER SIZE MOD 1
+ LeUT SWAP + IF L
TYPE DUP 6 == SWAP 7
== OR THEN L STO END

c..
Ie..
c..
c..
c..
Ie..
c,.
co·
c..
c..
c,.
c..
c
C­
c..

Summary: LROT rotates the positions of elements of a list to the C

Examples:

210

left or right by the specified number of elements. A C
positive rotation index specifies rotation to the right; a C
negative index specifies rotation to the left. If the index
has a fractional portion, it is rounded before use. If the
list is named and the name is used, the resulting list is
stored in that name.

STD (1 2 3 4 5) 1 LROT
Result: (5 1 2 3 4)

STD (1 2 3 4 5) -1 LROT
~: (2 3 4 51)

STD (1 2 3 4 5) 3 LROT
Result: (3 4 5 1 2)

Chapter 7: LUt Utilitia

C
C
C
C
C
C
C
C
C
C
C
C
C
c
e
e
~
~

= Inputs:

II
II
• • • Outputs:

• • • •
• Errors: • • • • • • Notes:

• • • • • • • • • • • • • • • •

Level 2 - any object that evaluates to a list - the list

whose elements are to be rotated.
Level 1-any object that evaluates to a real number- the

index specifying the extent and direction ofthe rotation.

Level 1- if the Level-2 input object was a name contain­
ing a list, the result is stored in that name and nothing

is returned to the stack. Otherwise, a list is returned -
the input list with its elements properly rotated.

Too Few ArguMent S will occur if the stack con­

tains fewer than 2 objects.
Bad ArguMent Type willoccurifeitherargument

does not reduce to its prescribed type.

LROT uses LeUT .

• Editing Routines 211

•

Replace All Occurrences Of An Element:
c..
c..
c..
c..
c..
c..
c.­
e,.

Summary:

Examples:

212

LRPL (98011 7)

« ~ LAB « L EVAL
IF A B SAME NOT THEN
WHILE DUP A POS DUP
REPEAT B PUT END
DROP END IF L TYPE
DUP 6 == SWAP 7 ==
OR THEN L STO END »
»

c..
c..
c
c..
c
c
c.
c

LRPL replaces every occurrence of a given object within C.
a list with a second object. If a list name is used, the C
resulting list is stored in that name.

STD (5 5 5 1 2 1 2) 5 6 LRPL
Result: (6 6 6 1 2 1 2)

STD (1 2 3 4 5) 6 7 LRPL
Result: (1 2 3 4 5)

C
C.
C
C
C
C
C
C
C

STD (ABC D E F) I C I II H I II LRPL C
Result: (A B "HI II D E F) C

C
C
C
C
C

Chapter 7: List Utilities (:'

= Inputs:

=
.. Outputs:
.. Errors: ..
• • •
• Notes: • ,.­.. ..
:..-
:..-
=­•
;e

Level 3 - any object that evaluates to a list - the list to

be edited.
Level 2 - any object - the target object to be replaced.

Levell - any object - the replacement object .

Levell - if the Level-3 object was a name containing a

list, the result is stored in that name and nothing is

returned to the stack. Otherwise, a list is returned - the

newly-edited list .

Too Few Argu,",1ent S will occur if the stack con­

tains fewer than 3 objects.
Bad ArgUMent Type will occur if the Level-3 input

object does not evaluate to a list.

None.

~ ,.
,. Editing Routines 213

•

Summary:

Examples:

Inputs:

Outputs:

214

Sort A List By Element:

LSORT(750384)

« ~ L « L EVAL LIST~
~ N « IF N 1 > THEN
1 N QSRT END N ~LIST
» IF L TYPE DUP 6 -­
SWAP 7 == OR THEN L
STO END » »

c..
c..
c..
c..
c..
c..
c..
C·
c..
c..
c..
C
C.

LSORT will sort the given list so that the elements are ~
arranged in ascending order. The elements of the list C
must be orderable (i.e., they must be either real num- C
bers, binary integers, or strings) or an error will occur. C
If a list name is used, the resulting list will be stored in C
that name. C

C
STD (8 4 0 3 2) LSORT C
Result: (0 2 3 4 8) C

C
(Z H T F Y) « ~STR » LOP LSORT C
« STR~ »LOP Result: (F H T Y Z) C

C
Levell - any object that evaluates to an orderable list C
- the list to be sorted. ~

Level 1- if the input object was a name, the result will g
be stored in that name. Otherwise a list is returned -the ~

~
Chapter 1: List UtilitiM (!!'

~

= lit .-•

newly-sorted list.

Errors: Too Few ArguMents will occur for an empty stack .
Bad ArguMent Type will occur if the input list

does not evaluate to a list or if the list is not orderable.

Notes: LSORT assumes that the elements of the list are order­
able. Af; shown in the second example (opposite), if the

elements of the list are unorderable as is, then perform
« ':"STR » LOP before the sort and « STR.:,. » LOP
after the sort to effectively sort the elements based on

their decompiled ("character-string") representations.

LOP is described on page 220.

To sort the elements of a list in descending order, use

LREV on the sorted list. To sort the evaluated values of

a list, use « ':"NU~l » LOP or « EVAL » LOP
before sorting. LSORT uses QSRT .

Editing Routines 215

Remove All Occurrences Of An Element:

LZAP (610821)

« ~ L E « L EVAL
WHILE DUP E POS DUP
REPEAT DUP LDEL END
DROP IF L TYPE DUP 6
== SWAP 7 == OR THEN
L STO END » »

Summary: LZAP deletes all occurrences of the specified object
from the given list. If the list has a name and the name
is used, the result is restored in that name.

Examples: STD { 5 5 5 1 2 1 2 } 1 LZAP
Result: { 5 5 5 2 2 }

Inputs:

Outputs:

216

{ ABC} ICI LZAP Result: { A B }

Level 2 - any object that evaluates to a list - the list to
be edited.

Level 1-any object- the target object all of whose occur­

rences are to be deleted from the list.

Level1-ifthe Level-2 input object was a name contain­
ing a list, the result is stored in that name and nothing

is returned to the stack. Otherwise, a list is returned to
the stack - the newly-edited list.

Chapter 7: List Utilities

c.
c.
c
c.
c.
c
c.
c
c
c.
c
c
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

E
lit
• • • ,. ,.
• • • • • • • • • • • ~ -

Errors:

Notes:

Too Few ArguMent S will occur if the stack con­

tains fewer than 2 objects.

Bad ArguMent T~pe if will occur if the Level-2

input object does not evaluate to a list.

LZAP uses LDEL.

Editing Routines 217

Add An Element To The End Of A Queue:

ENQ (326692)

Q N « N Q EVAL
LIST~ 1 + ~LIST IF Q
TYPE DUP 6 == SWAP 7
== OR THEN Q STO END
» »

Remove The First Element From A Queue:

UNQ (521 908)

« ~ Q « Q EVAL LIST~
SWAP ~ N « 1 - ~LIST

N IF Q TYPE DUP 6 ==
SWAP 7 == OR THEN
SWAP Q STO END » » »

c.
c.
c.
c.
c..
c..
c..
c·
c.
c..
c..
c..
c..
c..
c..
c..
c
c
c
c
c
c
c
c
C

Summary: ENQ adds a given element to the given queue. UNQ C

218

removes a given element from the given queue (a queue

is a list whose elements are accessed on a first-in-first­

out basis; the first object put into a queue will be the first

object taken out). If the queue is stored in either a local

or global name and the name is used, the resulting

queue is restored in that name.

Chapter 7: LiBt Utilities

C
C
C
C
C
C
~
~
~
~

Examples: () 1 ENQ 2 ENQ 3 ENQ
Result: (3 2 1)

Inputs:

Outputs:

Errors:

Notes:

(4 3 2 1) UNQ ~: (4 3 2) 1

Level 2 (for ENQ only) - any object that evaluates to a

list - the queue to be added to.
Levell - the object to be added to the queue (for ENQ)
or the queue to be edited (for UNQ). .

Level 1- the unqueued object (for UNQ), or (for ENQ) if

the Level-2 input object was a name, the result is stored

in that name and no object is returned to the stack. Oth­

erwise, a list is returned - the modified queue.

Level 2 (for UNQ only) - a list - the modified queue.

Too Few ArgUMent S will occur if the stack con­

tains fewer than 2 objects (forENQ), or (for UNQ) if the

stack contains no objects or the input list is empty.
Bad ArguMent Type will occur for ENQ if the

Level-2 object does not evaluate to a list.

Coordinated use of ENQ and UNQ will allow you to

maintain a named or unnamed queue. The commands

LIST -+ 1 + -+L I ST in ENQ are less efficient than

the equivalent + but provide the benefit of generating

an error if the Level-l object (I Q I) is not a list.

Miscellaneous Operations 219

Perform An Operation

On Each Element Of A List:

LOP (1497943)

« -+ 1 •• f •• « 1 ..
EVAL LIST-+ IF DUP
THEN -+ n •• « 1 n ••
START n •. ROLL f ••
EVAL NEXT n .. -+LIST
» IF 1 •. TYPE DUP 6
== SWAP 7 == OR THEN
1 .• STO END ELSE
DROP END » »

Summary: LOP performs the specified operation on each element

Examples:

of the given list. The operation must take exactly one

object from the stack and return exactly one object to the
stack, replacing the element operated on. If a list name

is used, the resulting list will be stored in that name.

STD { 1 2 3 4) « SQ » LOP
Result: { 1 4 9 16)

STD { 1 2 3 4) « -+ X IX A 2 1 » LOP
Result: { 1 4 9 16)

STD { 2 4 3 -7) 0 III STO « IX I I
A * 1 III STO+ » LOP
~:{ 2 14*X I 13*XA 2 1 1- (7*XA 3) I)

c...
t.
c...
t.
c..
c..
c..
c..
c...
c...
c...
t.
t.
t.
c..
c..
c..
c.
c.
c
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
C'

220 Chapter 7: List UtilitieB C'

~

.. ..
~ ,. ,. ,. ,.

Inputs:

STD { 5 6 7 8 9 } « IF DUP 7 ~ THEN
SQ END » LOP
~: { 25 36 49 8 9 }

Level 2 - any object that evaluates to a list - the list to
be operated upon.
Level 1 - a program or user-defined function - the
operation to be performed on each element in the li~t.

Outputs:: Levell - if the Level-2 object was a name containing a
list, the result is stored in the name and nothing is

returned to the stack. Otherwise, a list is returned -
with the newly-modified elements.

Errors:

Notes:

Too Few ArguMent s will occur if the stack con­
tains fewer than 2 objects.

Bad ArgUMent Type will occur if the Level-2 ob­
ject does not evaluate to a list or if the operation is not
valid for an element of the list.
The stack will fill with garbage if the Levell object

is not a program or user-defined function .

Various unpredictable errors can occur ifthe opera­
tion is not valid over the whole range of list elements.

The local names, 1 •• , f •• and n. • were chosen to

reduce the chances of conflicts when operations such as
« STR~ »are applied to lists of strings. Therefore,
avoidusingl •• ,f •• andn •• as global names in your
own programming.

Miscellaneous Operations 221

Remove The Last Element From A Stack:

POP (521242)

« ~ Q « Q EVAL LIST~
SWAP ~ N « 1 - ~LIST

N IF Q TYPE DUP 6 ==
SWAP 7 == OR THEN
SWAP Q STO END » » »

Add An Element To The Bottom Of A Stack:

PUSH (369591)

« ~ S N « S EVAL
LIST~ N SWAP 1 +
~LIST IF S TYPE DUP
6 == SWAP 7 == OR
THEN S STO END » »

Summary: POP removes the next element from the given stack.

222

PUSH adds the given element to the given stack (a stack

is a list whose elements are accessed on a first-in-Iast­
out basis; the first object put into a stack is the last object

taken out - as with the HP-28S' own internal stack). If
a stack name is used, the resulting stack is stored in that

name.

Chapter 7: Lid Utilitia

c..
c..
c..
c
c
c
e·
c
c
c
e
e
e
e
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

=
= lit ..
lit
• • •
• • • ,.
• • • • • • • • • • • • • .. ,. ,. ,.
•

Example:

Inputs:

Outputs:

Errors:

Notes:

STD (3 2 1) POP
STD (3 2) 1 PUSH

~: (3 2) 1
~:(3 2 1)

Level 2 (for PUSH only) - any object that evaluates to a

list - the stack to be amended .
Levell - (for POP) any object that evaluates to a list­
the stack to be edited, or (for PUSH) any object - the

object to be added to the list .

Level 2 (for POP only) - if the input object was a name,

the modified stack is stored in that name. Otherwise it

returns here .

Levell - (for POP) an object - the object just removed
("popped") from the input stack, or (for PUSH) if the

Level-2 input object was a name, the modified stack is

stored in that name. Otherwise, it returns here.

Too Few ArguMent S will occur (for POP) if the

stack is empty or if the given list is empty, or (for PUSH)
if the stack contains fewer than 2 objects.

Bad ArguMent Type will occur (for POP) if the

input object does not evaluate to a list, or (for PUSH) if

the Level-2 input object does not evaluate to a list ..

Coordinated use of POP and PUSH will allow you to

maintain a named or unnamed stack. POP is identical
toUNQ.

Miacellaneoll8 Operations 223

List Utilities: A Discussion

The Main Idea

Lists are the most general purpose data objects provided by the HP-

288. They may be any size from 0 to the limits of memory-containing

any HP-288 data objects in any combination - including other lists.

This flexibility gives you tremendous control over what you put into

lists and how you use them.

On the other hand, because lists are so generic, there are very few

commands built into the HP-288 to manipulate them. Yet with these

powerful few, many of the possibilities of lists can be realized with a

handful of programs. The tools in this section are such a handful- a

set of some of the more generally useful list operations. They're still

very generic - because only you will know the specifics ofmanipulat­

ing the actual lists you've created - but they can still help you mani­

pulate your lists regardless of how you've organized their information.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory - the

ultimate parent of all other directories.

224 Chapter 1: LiBt Utilitia

c.
c.
c.
c..
c..
c..
c..
c.
c..
c.
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~

E
• .-,. ,. ,. ,. ,. ,.
• --,. ,. ,. ,.

Some Observations

Lists have properties that make them similar to arrays (and vectors)

and characters strings. You can see this in that the first "page" of the
LIST menu is similar to that of the first page of the ARRAY menu, while

the second page of the LIST menu is similar to that of the STRING

menu. The + operation is also analogous between strings and lists, as

it appends the two objects in stack Levels 1 and 2.

The ability to GET and PUT objects from and to a list allows you to

create and maintain ordered sets of objects in the same way that arrays

do. But unlike arrays, the dynamic length (SIZE) of a list and the

ability to search a list by content - as well as by index - allows you to

create dynamic data structures, like stacks or queues, that shrink or
grow based on their current information .

You'll therefore find utilities here that exploit both these characteris­

tics of lists , and these routines are indeed very analogous to string and

array tools found elsewhere in this book .

Errors And Error Recovery

Each of the tools is designed to generate an error for invalid input,

rather than continue and possibly generate garbage outputs. When

errors do occur, the stack is almost invariably disrupted, and since the

only way to restore a disrupted stack is with the UNDO command, it's

wisest to activate UNDO mode (in the MODES menu) and leave it

active throughout your use of these utilities.

Discussion 225

How You Might Use These Utilities

One of the advantages oflists is their ability to contain different types
of objects. You can thus create different data aggregates that are
effectively new data types. And once you define such a data type, you
can then create the tools you need to operate on it.

Consider, for example, a list in which each entry contains a person's
name, birthdate and telephone number:

{ "Smith, John" (2 6 1959) 5553426)

You could easily create a list of such objects and then (not quite as
easily) create new commands to do things such as these:

1. Add an element (an entry).
2. Delete an element, given its index.
3. Display an entry, based on its index.
4. Sort the list by last name.
5. Sort the list by some other attribute.
6. Search for a name and return that element.

7. Find all of the birthdates that fall on today's date.

226

To implement each of these seven commands, here's how you

might proceed:

Chapter 1: Lial Utilitia

c
c
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
e
e
~
~
~

1. Create the new element and add it to the end of the list (with +)

or insert it somewhere among the current entries (with L I NS).

.. -,. ,. ,.
• • • ~
~
~
~ -:-.
~
~2 ...
";If
~

Note that since each element is itself a list, you must put it into
another list before adding. That is,

{ "Doe, Jane" (6 2 1960) 5559812)
{ "SMith, John" (2 6 1959) 5558426)
+

gives

{ "Doe, Jane" (6 2 1960) 5559812 "SMi th,
John II (2 6 1 959) 5558426), which is incorrect;

the information from both entries has been combined into a
single list .

However,

{{ "Doe, Janel! (6 2 1960) 5559812))
{{ II SM i t h, John II (2 6 1959) 5558426))
+

gives

{ { "Doe, Jane" (6 2 1960) 5559812)
{ "SMi th, John" (2 6 1959) 5558426)),
which is correct.

UseLDEL.

~
DiaCuBBion 227

3. Use GET to get the element and a routine something like the
following to display it: DSP (165651)

« « ~STR » LOP LIST~
DROP 11.11 + ROT 11.11 +
ROT 11.11 + ROT + + 1
DISP »

(The· characters are N EWLI N E characters and should be keyed

in as such.)

4. Fortunately, the last name is the first thing in the object. So a

procedure such as

« ~STR » LOP LSORT « STR~ » LOP

will do the job.

5. Generally, any time you want to sort the list, you'll need to
convert its objects into strings so that they can be compared (and

keep in mind that in the general case, the object to be sorted by
is not necessarily the first object in the element). You'll therefore

need a conversion routine to transform the element both before
and after the sort. To sort by birthdate (or rather, birth-month),

for example, the simplest procedure would be:

« 1 2 LEX ~STR » LOP LSORT « STR~ 1 2 LEX
» LOP

228 Chapter 7: LiBt Utilitin

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
Co
Co
Co
Co

" " c.
c.
c
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

6. What you want to do is filter the list, returning only those

elements that contain the search string. So:

« ~STR "S,..li thll POS » FL TR

The II SM i t h II is the search string - whatever name you're

searching for.

! 7. Something like this will work: ,. •

« 2 GET 1 2 SUB (2 6) == » FLTR,

where (2 6) is an example list of today's month and day .

DisCUl/.ion 229

Chapter 8

Directory Utilities

These routines provide quick and reliable ways to edit, test and tra­

verse directory structures in your HP-28S.

As shown in the following list, the 10 programs are organized into three

logical groups, presented alphabetically. Within each group, the pro­
grams are also usually presented alphabetically (by NAME), although

in some cases, certain sets of programs may be complementary or oth­

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

248, immediately following these program listings.

230 Chapter 8: Directory Utilitia

c...
c...
c...
c...
c...
c...
c...
c...
c...
c...
c...
c...
c..
c..
c..
c­
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
,~

.~

,~

Function

Editing Routines

DSORT Sort The Contents 232
Of The Current Directory

KILLD Remove A Directory And Its Contents 233 .. MOVE Move And/Or Rename An Object 235 .. STACKEM Place The Contents Of A Directory 238 .. Onto The Stack Testing Routines • • DIR? Test Whether An Object Is A Directory 240 • .. MT? Test For An Empty Name 242 .. NTYPE Find The Type Of The Named Object 243
• Traversing Routines

• • DU Move Up One Directory 244

• FIND Find A Name In The Directory Tree 245 • GOTO Go To A Directory By Using A Path List 247 • • • • • • • Contenta 231 ,.

Alphabetically Sort

The Contents Of The Current Directory:

DSORT (366834)

« VARS IF DUP SIZE
THEN « ~STR » LOP
LSORT « STR~ » LOP
ORDER ELSE DROP END
»

Summary: DSORT reorders the contents ofthe current directory so
that the USER menu is displayed in alphabetical order.

Example: DSORT

Inputs: None.

Outputs: None.

Errors: None.

Notes: DSORT usesLOP andLSORT from Chapter 7. DSORT
can take a few minutes to run if the current directory is
a large one.

232 Chapter 8: Directory UnUtie.

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

III' .­.. ,.
• .-
• .-
• • • .-.. -:--­..
. ~

-­.-.
-~
~
~
~ ,.

Remove A Directory And Its Contents:

K I LLD (1620927)

« ~ n.. « IF n ••
DIR? THEN n •• EVAL
VARS 'DIR?' FLTR IF
DUP SIZE THEN ~ d .•
« 1 d •• SIZE FOR i ..
d.. i.. GET KILLD
NEXT » ELSE DROP END
CLUSR DU END n ••
PURGE » »

Summary: K I LLD removes (purges) a directory and its contents.

If it is used on a named object, the name is purged. It
cannot be used on the HOME directory.

Example: I Q I K I LLD

Inputs: Level 1 - a directory or name - the directory to be

purged.

Outputs: None .

Errors: Too Few ArguMent S will occur for an empty stack.

Editing RoutineB

Bad ArguMent Type will occur if the input object

is not a name or directory.

233

Notes:

234

C
K I LLD uses 0 I R? • DU and FL TR (from Chapter 7). C
Caution: K I LLD provides no margin for error and can C
quickly destroy huge amounts of data! C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Chapter 8: Directory Utilitie. C
C

~
• • • • • • • • • • • • • • • • • •

Move And/Or Rename An Object:

~10VE (6293966)

« 0 ~ a .. b •• p •• «
IF b .. TYPE 5 ==
THEN b .. lOVER SIZE
1 - SUB b .. DUP SIZE
GET lb •• I STO ELSE
PATH END Ip •• I STO
PATH p •• GOTO IF
b .. DIR? b .. 1 ~LIST
{ HOME) == OR THEN
p.. b.. + I p •• I STO
a.. lb.. I STO END
DUP GOTO IF a .. DIR?
THEN DEPTH ~ d .. «
a .. STACKEM DROP P ••
GO TO b .. DUP CRDIR
EVAL DO EVAL UNTIL
DEPTH d .. == END»
ELSE a.. RCL a ..
PURGE p •• GOTO b .•
STO END GOTO » »

• Summary: MOVE will move the named object from the current

• • • • • •
Editing Routines

directory to the specified directory. The object to be

moved may be either a named object or a directory. The

235

destination may be either a directory path or name. If
the destination name or the last name in the directory
path is not a directory, the object to be moved will also be
renamed using that name.

Examples: 'PETE' , FRED' ~10VE

'PETE' { HOME JANE FRED} MOVE

Inputs: Level 2 - a name object - the name of the object to be
moved from the current directory.

Level 1-a name object or list - the destination to which

to move the Level-2 object.

Outputs: None.

Errors: Too Few Ar9UMent S will occur if the stack

contains fewer than 2 objects.
Bad Ar9UMent Type will occur if the Level-2 ob­

ject is not a name or directory.

Undef' i ned NaMe (and maybe a stackful of gar­

bage) will occur if the Level-2 name is empty, or if the

destination directory is a sub-directory of the directory

to be moved, or if any ofthe names in the destination list

except the last one are undefined.

Notes: MOVE is a sophisticated command with potentially de­

structive effect. It should therefore be used only by ex­

perienced HP-28S users. DO NOT try to move a parent

directory to one of its descendents. The remains of the
parent directory will be left on the stack with little

236 Chapter 8: Directory Unline"

" " " " " " " " " " " C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

• ..
• .. .­..
•

chance of restoring it. Having a corrupt or otherwise
incorrect destination path is perhaps the worst of all
possible errors, because the source directory will have

already been removed and placed on the stack before an
attempt is made to move to the destination. Therefore,

the best procedure is to move to the target directory and

invoke the PATH command to get the correct destina­

tion path.

MOVE uses GOTO, DIR? and STACKEM. MOVE,
GOTO, D I R? and STACKEM must be in the PATHs of

both the source and destination directories. The only

reasonable place for these four tools, therefore, is in the

HOME directory.

Editing RoutilU?s 237

Place The Contents Of A Directory
Onto The Stack

STACKEM (3152576)

« ~ n .. «IF n .. DIR?
THEN IDU I n .. EVAL
VARS IF DUP SIZE
THEN ~ 1.. « 1 1 ..
SIZE FOR i.. 1.. i..
GET STACKEM NEXT »
ELSE DROP END 11«11
n .. ~STR II CRDIR II
OVER II EVAL»II + + +
+ STR~ DU n .. PURGE
ELSE n .. RCL n .• n .•
PURGE « STO » END »
»

Summary: STACKEM places the contents of the name object onto
the stack, along with the name and any commands

necessary to recreate the object. The previous contents

of the name objectarePURGE'd as ifwithK I LLD. The

stacked information can then be restored by repeated
execution ofEVAL until all of the stacked objects have

been removed.

238 Chapter 8: Directory Utili/ie.

I' •
• -..

Examples: 1 I A I STO I A I STACKEM
~: 1 I A I « STO »

Inputs:

Outputs:

Errors:

I A I CRDIR A I B I CRDIR 8 6 I C I STO DU
DU I A I STACKE~1

~: (on the stack)

IDU I

IDU I

6
ICI

« STO »
« IBI CRDIR 18 1 EVAL »
« IAI CRDIR IAI EVAL »

Levell - a name object - the name of the object to be
stacked.

Levels 1 to n - the contents of the object, along with the
commands necessary to recreate it.

Too Few ArguMent S will occur ifthere are no ar­
guments on the stack .

Bad ArgUMent Type will occur if the Level-l
object is not a name or directory .

Notes: STACKEM uses DU and D I R?

Editing Routines 239

Test Whether An Object Is A Directory:

DIR? (365895)

« RCLF ~ D F « 31 CF
IFERR D RCL THEN 64
STWS ERRN # 12Ah ==
ELSE DROP 0 END F
STOF » »

Summary: D I R? tests the given object to see if it is a directory. It
returns 1 if the object is a directory and 0 if not.

Examples: 1 D I R?
'FRED' DIR?

Iks.llit: 0
~: 1

IF J DIR? THEN YES ELSE NO END

Result: (this example program segment will evaluate

the routine YES if the object, J, is indeed a di­

rectory; or the routine, NO if it is not.)

Inputs: Level 1 - the object to be tested.

Outputs: Levell - areal number - either 1 or 0 (true or false).

Errors: Too Few At""9uMent S will occur if the stack is

empty.

240 Chapter 8: Directory Utilities

~ Notes: .. • .. •
Ill' ..
• • •­.. .. .­..
III'-• ,. ,. ,. ,.

Testing Routines

The binary integer in the program listing is shown in

hexadecimal. It will appear differently if the current

binary mode is other than HEX. The results of 0 I R?
are intended to be compatible with other logical tests in

the HP-288 (as illustrated with the I F statement in the

examples) .

241

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

242

Test For An Empty Name:

~1T? (280133)

« RCLF SWAP 31 CF
IFERR RCL THEN 64
STWS ERRN #21Zt4h -­
ELSE DROP 10 END SWAP
STOF »

MT? tests a named object to determine whether or not

'" ~
'-'
'-'
'-'
'-'
'-'

'" '" '"' '"' c.
c.
C

it is empty. All non-name objects are considered to be C
non-empty and therefore return a 10 . C

'FRED' PURGE 'FRED' MT?
1 'PETE ' STO 'PETE' MT?

~:1

~: 10

Levell - an object - the object to be tested.

Levell - a real number - either 10 or 1 (false or true).

None.

None.

Chapter 8: Directory UtUitiu

C
C
C
C
C
C
C
C
C
C
C
C
~
~
~
~
~
~
~
~

• ..
• •
• • -

Find The Type Of The Named Object:

NTYPE (420162)

« ~ N « IF N MT?
THEN -1 ELSE IF N
DIR? THEN 11 ELSE N
RCL TYPE END END » »

Summary: NTYPE tests the named object and returns its type

(consistent with that returned by the built-in command,

TYPE, plus added type values of - 1 and 11): - 1 =
Empty; 0 = Real; 1 = Complex; 2 = String; 8 = Real

array; 4 = Complex array; 5 = List; 6 = Global name; 7
= Local name; 8 = Program; 9 = Algebraic; 10 = Binary

integer; 11 = Directory.

Example: -(5) I A I STO I A I NTYPE Result: 5

Inputs: Level 1- a name - the object whose type is to be tested.

Outputs: Level 1- an integer from -1 to 11- the type ofthe input.

Errors: Too Few ArguMent S will occur for an empty stack .

Bad Argul'llent Type will occur if the Level-1 input

object is neither a name object nor a directory object.

Notes: NTYPE uses MT? and D I R?

Testing RoUti1U!8 243

..

Move Up One Directory

(Directory Up):

DU (142235)

« PATH DUP SIZE 1 -
IF DUP THEN GET EVAL
ELSE DROP2 END »

Summary: DU moves from the current directory up to the one

immediately above it. If the current directory is already
the HOME directory, no action is taken.

Example: DU

Inputs: None.

Outputs: None.

Errors: None.

Notes: None.

244 Chapter 8: Directory UtilitieB

• • • • • • • • • • • • • • • • •
• • • •

Find A Name In The Directory Tree:

FIND (1376855)

« ? N « IF VARS DUP
N POS THEN PATH SWAP
END 'DIR?' FLTR IF
DUP SIZE THEN ? D «
1 D SIZE FOR I D I
GET DUP 1 DISP EVAL
N FIND DU NEXT »
ELSE DROP END » CLMF
»

Summary: FIND recursively traverses the directory tree - start­

ing at the current directory -looking for the given name

object. It returns the path (a list of directories) of the

directory in which the named object is found. If the

name exists in more than one directory, the path to each

occurence will be returned. If the name is not found, no

path is returned. Since it can take some time to search

all subdirectories, F I ~~D displays the name of the direc­

tory it's currently searching to show how far it has

progressed .

Example: ' FRED' FIND
Result: (HOME PETE JOE EMILY)

",

1I; .. ~ .. v.en.'.'~.R.o.u.n.ne.8 2.~ .. .

Inputs: Levell - a name object - the object being sought. " " Levels 1 to n - the paths to each of n occurences of the " Outputs:

" name. Nothing is returned if the name is not found.

" " Errors: None. " " Notes: lfthe Levell object is not a name, FIND will still search " the directory tree for a match, but of course it won't find " one. " " FIND uses D I R? , DU, and FL TR (from Chapter 7). C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
(""

~
~
~

246 Chapter 8: Directory Utilitie. ra-
t--.

Go To A Directory By Using A Path List:

GOTO(1218662)

« { HO~1E } LIST~
DROP ~ H « LIST~ IF
DUP THEN 1 FOR I I
ROLL IF DUP DIR?
OVER H == OR THEN
EVAL ELSE 1 LIST~
END -1 STEP ELSE
HOME DROP END » »

Summary: GOTO moves to the directory specified by the given
PATH list. The PATH list need not start from HOME -
just some directory in the path of the current directory.

Example: {HOME ABC } GOTO

Inputs: Level 1- a list - the PATH list of directory entries.

Outputs: None.

Errors: Too Few Argul"Ilent 5 will occur for an empty stack.

Notes:

B.ad ArgUl"Ilent tYPewilloccureitheriftheargu­

ment is not a list or it contains a non-directory element.

GO TO uses D I R?

7'raveraing RoutineB 247

Directory Utilities: A Discussion

The Main Idea

Directories are great for organizing and partitioning user memory.

Logical groups of data and programs can be created and named within

their own directory. Then moving between directories and calling rou­
tines in other directories is as easy as calling their names - as long as

they can be found in the current directory's PATH (i.e. as long as they're

somewhere between where you're "calling from" and HOME).

These directory tools enhance the usefulness of directories with their

often-needed functions. You can: MOVE to any directory; FIND any

object within the subtree of the current directory; DSORT the names
in the current directory; purge an entire directory sub-tree; move up to

the parent directory; and do some useful directory-related tests.

Where To Put These Programs

Unlike most of the other utilities in this book, the directory utilities are

almost useless unless they're placed in the HOME directory. This is

because many of them can "move you" out of the current PATH, thus

preventing you any further access to commands that exist only in that

PATH. The only directory that is always a member of all PATHs is the

HOME directory, so put these utilities in the HOME directory.

248 Chapter 8: Directory Utilities

= = • • • • • • • • • • • • • • • • • • • ,. ..
• .-..
• •
", ..

Some Observations

The HP-28S' directory structure is a fairly standard, multi-way tree.

That bears a bit of explaining: The "tree" is the overall structural
pattern, starting with a main (HOME) level, or "root node." Everypoint

of branching is called a node. At a node there might be one or more
"leaves" (items with actual evaluable data in it) and/or "branches"

(paths leading to further nodes).

In some tree structures, there are rules about how many leaves and

branches can be attached to anyone node. The good news is that a

multi-way tree (as in the HP-28S) has no limit to these numbers: you

can put as many leaves (programs or data objects) and branches (sub­

directories in any directory level (node) as you want.

Recursive programming techniques are one ofthe best ways to perform

tree traversals and access the data in the nodes and leaves. Therefore,

all of the routines that either move or remove data from node to node
do so recursively.

If you have some difficulty understanding what the previous sentence
is saying, you get the point: The routines in this chapter are probably

the most sophisticated routines in this book, and it would take far more

space than is available here to fully explain recursive programming

techniques .

However, if you want to begin to explore them, the best way is to study

how they are used here - in the programs that "call themselves:"

FIND, KILLD, and STACKEt'1. You might also look at QSRT in
Chapter 1.

Discussion 249

Some of these routines are useful mainly as keyboard commands, but

several are particularly handy in writing your own programs (and you

can get some idea of their relative usefulness by noting the frequency

with which they occur within other programs in this section): D I R? ,
DU, GOTO, MT? and NTYPE.

STACKEM was developed as a subprogram for MOVE, but you may

find it convenient as a tree "pruner" and "grafter" in your own pro­

grams - without the additional overhead oft'10VE.

Errors And Error Recovery

For the most part, these tools make every effort to cause errors before

much movement of data has occurred. But to keep the routines rela-

tively small, not all conceivable precautions have been implemented.

It is very possible to destroy a lot of information with these routines.

In most cases UNDO will not help you either, because data movement

andlordestruction has occurred outside of the stack.

'­
'­
'­
(.
(.
(.

'-

" " " " " " " c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~
~
~
~
~

250 Chapter 8: Directory Utililia ~

~

•

How You Might Use These Utilities

Tests

Unfortunately, the built-in TYPE command isn't particularly consis­

tent when dealing with directories. If you create a directory, then place

its name on the stack and invoke TYPE, you'll get 6, telling you that

the object was a name. This is "sort of' correct but not really: You can't

store into or recall from a directory as you can with a name.

Therefore, the tools in this section include some functions that allow

you to test whether or not an object is specifically a directory. D I R?
asks the question, "Is this object a directory?" NTYPE actually

extends the idea of object types to return the type of the given named

object, including type number -1 for an empty name and 11 for a

directory. MT? tests to see if the Level-l name is empty and returns

o - false - if it contains a directory.

Going And Coming Back

The information returned by the PATH command is nice to tell you

where you are within the directory tree, but you can't do anything else

with it. GO TO remedies this by allowing you to go to the directory
specified by the PATH list.

Discussion 251

Then, when you go somewhere, it's nice to know how to get back. Use
the following methods to "remember" where you've been and get back:

PATH whereto GO TO dosomething GOTO
or

PATH ~ whereiwas « whereto GOTO
dosoMething whereiwas GOTO »

wheret 0 is the PATH-list of your (temporary) destination and

dOSoMet h i ng is what you want to do while you're there. You use

PATH before GOTO to get the location of the current directory. Then,

after the task is completed, you recall this previous PATH and use

GOTO to get back there once again.

FIND And GOTO

GOTO is also useful after the F I ~~D command - to go to the directory
containing the object you just found. For example:

« PATH ~ thing
whereiwas « thing
FIND GOTO thing EVAL
whereiwas GOTO » »

The program takes the name of an object to be sought (t h i ng) and

the current directory PATH from the stack. FIND finds t h i ng in the

directory tree and GOTO goes to it. t h i ng is evaluated and GOTO
then returns to the previous directory (this assumes that FIND will
actually fmd a t h i ng and that it will find only one of them).

252 Chapter 8: Directory Utilim.

'" c...
c...
c...

'" '" '" '" '" '" Co.
c..
c..
c..
c..
c
c
c
c
c
c
c
c
c
c
c
c
C"
C"
C"
~
~
~
~
~
~

• ~
• • • --,. ,.
7

STACKEM As An Alternative To ~10VE

You can think about the MOVE utility as a mess of preparation to call

the STACKEM program. MOVE checks and corrects the inputs, then

uses STACKEM, then moves to the destination directory and repeat­

edly invokes EVAL to placed the stacked objects in the new directory.

If you're uncomfortable with this level of automation (and with your

own hard-won data and programs at stake, this is quite understand­

able), you can invoke STACKEM manually, then move to the target di­

rectory and press [EVAL] repeatedly to restore the information. If you're

unsure of yourself or the program, watching it work in this way can be

reassuring.

K I LLD Versus PURGE And CLUSR

PURGE deletes either a single object or a list of named objects from the

current directory. CLUSR deletes evey named object in the current

directory. But neitherPURGE norCLUSR will delete a non-emptydi­

rectory.

K I LLD, on the other hand, deletes a single named object from the

current directory - even if that object is a non-empty directory. Thus

K I LLD "rounds out" your ability to remove objects from memory by

allowing you to delete a directory in one fell swoop. As such, K I LLD

is a very destructive command and should be used with extreme

caution, much as you would CLUSR - only more so!

Discussion 253

Chapter 9

Output Utilities

These routines provide convenient, "canned" methods for formatting

output to the HP-28S display or printer - both with character and
graphic information.

As shown in the following list, the 20 programs are organized into five
logical groups, presented alphabetically. Within each group, the pro­

grams are also usually presented alphabetically (by NAME), although
in some cases, certain sets of programs may be complementary or oth­

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses of these utilities, see page

280, immediately following these program listings.

254 Chapter 9: Output Ulilitin

• • ~ Function

• • Display Positioning Routines

• • DCTR Center An Object In A Display Line 257

• DLJ Left-Justify An Object In A Display Line 257 • DRJ Right-Justify An Object In A Display Line 257 • DPUT Put An Object Into A Display Line, 260 • Beginning At A Specified Column • • • Display Special Effects • • DPAT Display A Graphics Pattern 262 • • DINV Invert A Display Line (To Inverse Video) 264

• DUDL Underline A Display Line 264

• • • LCD Graphics

• • LINE Draw A Line Between Two Points 266

• PLOT Draw A Line From The Current Plot Position 268 • To The Specified Position • POLYL Plot A Series Of Connected Points 270 • PSET Move To A New Point In A Plot 272 • PXDM Get The Dimensions Of A Pixel 273 a
• a
• • • ~ Contents 255

•

" ~ Function "-
"-

Printer Positioning Routines " " PRCTR Print An Object Centered 274 " PRLJ Print An Object Left-Justified 274 " PRRJ Print An Object Right-Justified 274 " PRPUT Print An Object At A Specified Column 276 " " " Printer Special Effects C
C

PRDW Print An Object Double-Wide
C

277 C
PRINV Print An Object In Inverse (White On Black) 277 C
PRUDL Print An Object Underlined 277 C
PRPAT Print A Character Pattern 279 C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

256 Chapter 9: Output Utilities C
C

E
• • • • • • • • • ,.
• ,.
.­.. ..
• • • • • Ie
Ie

• • • •
=

Center An Object In A Display Line:

DCTR (35294)

« SWAP 23 SCTR SWAP
DrSp »

Left-J ustify An Object In A Display Line:

DLJ (6109)

« Drsp »

Right-Justify An Object In A Display Line:

DRJ (30630)

« SWAP 23 SRJ SWAP
Drsp »

Summary: DCTR displays the Level-2 object, centering it on the

display line specified in Level 1. DLJ displays the

Level-2 object left-justified, starting on the display line

specified in LevelL DRJ displays the Level-2 object
right-justified on the display line specified in Level 1.

Display Positioning Routines 257

Examples:

258

If the line specified is less than 1, then line 1 is used. If Z
the line specified is greater than 4, then line 4 is used. "
The line specifier is rounded before use. Since the dis- "
play's width is an odd number of characters (23), cen-
tered objects with an even number of characters will be
spaced one character farther to the left than to the right.
If an object contains NEWLINE characters, DLJ and
DRJ will begin its display on the line specified, then con-
tinue on subsequent lines as directed by the N EWLI N E's.

"HI" 2 DCTR

8:
HI

1 :
"HIli 2 DCTR

"HI" 2 DLJ

8:
HI
1 :
"HI" 2 DLJ

"HI" 2 DRJ

8:

1 :
"HI" 2 DRJ

~:

~:

Result:

HI

Chapter 9: Output UnUtie.

" " " " " " " C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
t
t
t
C
C
~

~ ..

I: ..
= ,.
• • • • ,.
• ,. ,.
E

Inputs:

Outputs:

Errors:

Notes:

Level 2 - the object to be displayed.

Levell - a real number - the line on which that object
is to be displayed.

(Displays such as in the Examples.)

Too Few Ar9UMent S will occur if the stack con­
tains fewer then 2 objects.

Bad Ar9UMent Type will occur if the Level-l input
object is not a real number.

DCTR will fail if the object to be displayed contains a

NEWLINE character or leading or trailing spaces.

DCTRusesSCTR. DRJusesSRJ. DLJisanaliasfor
the HP-28S command, D I SP ,so as to be consistent with
the naming ofDRJ and DCTR.

Display Positioning Routines 259

Put An Object Into A Display Line,

Beginning At A Specified Column:

DPUT(647693)

« 1 MAX .5 + FLOOR
23 MIN SWAP 1 MAX .5
+ FLOOR 4 MIN ~ C R
« ~STR 1 24 C - SUB
LCD~ SWAP SPAT 137 R
1 - * C 1 - 6 * +
SWAP SPUT ~LCD » »

-
c..
c..
c..
c..
c..
c..
c..
c..
Co
Co
Co
Co
Co
C
C
C
C

Summary: DPUT displays the specified object, starting at the given C

260

line and column, without clearing the rest of that line

(unlike D I SP). If the line specified is less than 1 or

greater than 4, the object is displayed on line 1 or 4,

respectively. If the column number is less than 1, it is

treated as 1. If the specified column is greater than 23,

nothing is displayed. If the displayed object extends

beyond the end of the display or contains a NEWLINE

character, it is truncated at that point. Line and column

numbers are rounded before use.

Chapter 9: Output UnUm.

C
C
C
C
C
C
C
C
C
C
~
C
C
C
~
('
('

C

~ .. Example: S; .r.xa ~:

=
CLLCD IIHIII 1 DISP IITHEREII 1 4 DPUT

-..
.. Inputs:
". ..
.. Outputs: ..
.. Errors:

l8 -• • =- Notes:
::e ,.
• • -:-.
-:a
-:At

jHI THERE

Level 3 - the object to be displayed .

Level 2 - a real number - the line on which the object is

to be displayed .

Levell - a real number - the column at which the ob-

ject's display is to begin.

(A display such as in the Example.)

Too Few ArgUMent S will occur if the stack con-

tains fewer then 3 objects.

Bad ArgUMent Type will occur if the Level-l and

Level-2 objects are not both real numbers.

DPUT uses SPAT and SPUT.

.. Display Positioning Routines 261

•

Display A Character Pattern:

DPAT (930121)

« 1 MAX .5 + FLOOR
28 MIN 1 - 6 * SWAP
1 MAX .5 + FLOOR 4
MIN -+ C R « COVER
SIZE + 187 SWAP -
OVER SIZE + 1 SWAP
SUB LCD-+ SWAP 187 R
1 - * C + 1 + SWAP
SPUT -+LCD » »

(.,
(.,
(.,
(.,
(.,
(.,
(.,
(.,

c.
c.
c.
c.
c.
c.
c.
c
C

Summary: DPAT takes a character string from Level 3 of the stack C

Example:

262

(which is ofthe form returned by LCD-+) and displays it C
(as -+LCD) starting at the display line as given by the C
number in Level 2 and at the character column within
that line, as given by the number in Levell. If the line

number specified is less than 1, 1 is used. If the line
specified is greater than 4, 4 is used. If the column

number is less than 1, 1 is used. If the column number
is greater than 23,23 is used. Line and column numbers

are rounded before use.

94 CHR 97 CHR 1 CHR
97 CHR 94 CHR 0 CHR
+ + + + + IOM I STO
15 1 DISP OM 1 8 DPAT ReIDili:

Chapter 9: Output Utilm-

C
C
C
C
C
C
C
C
C
C
C
C
C
~
~
~

Inputs:

Outputs:

Errors::

Notes:

2:
1 :
15 1 DISP Om 1 S DPAT

Level 3 - a character string - the character pattern to be

displayed.
Level 2 - a real number - the line on which the character

is to be displayed.
Levell- a real number - the column at which the char­

acter's display is to begin.

A display such as in the Example.

Too Few Ar9ument S will occur if the stack con­

tains fewer then 3 objects.
Bad Ar9ument Type will occur if the Level-3 ob­

ject is not a character string, or if the Level-l and Level-

2 objects are not both real numbers.

DPAT uses SPUT. The typical HP-28S character is 6

columns wide, with each character in the pattern build­

ing a column. The 6th column is usually blank (charac­

ter 0) so as to leave space between adjacent characters.

D PAT is useful for building and displaying user-created

special characters (e.g. greek math symbols).

Display Special Effects 263

Invert A Display Line (To Inverse Video):

DINV (234106)

« LCD~ SWAP 1 - 3
MIN .5 + FLOOR 137 *
1 + SCUT 138 SCUT
SWAP NOT SWAP + +
~LCD »

Underline A Display Line:

DUDL (398305)

« 1 MAX .5 + FLOOR 4
MIN ~NUM LCD~ SWAP 1
- 137 * 1 + SCUT 138
SCUT SWAP 128 CHR
137 SRPT OR SWAP + +

c
c

" c

" c

" " c
c.

'" c
c
c
c
c
c
c
c
c
c
c
c
c
c
C

Summary: D I NV inverts the specified display line (black to white C
and vice versa). DUDL underlines the specified display C
line. The line specifier defaults to 1 and 4 for inputs out-

side of those limits. Fractional portions ofline specifiers
are rounded.

264 Chapter 9: Output Utilities

C
C
C
~
~
~
~
~

..
t Examples:

t
t
t
t ..
t
t
t

• ..
• • ..

Inputs:

Outputs:

Errors:

Notes:

3 DINV

1 DUDL

3:
2:
1:
1 DUDL

~:

~:

Levell - a real number - the display line to be inverted

or underlined.

(A display such as in the Example above.)

Too Few Argu",entSwilloccurforanemptystack.

Bad Argument Type will occur if the Level-l ob­
ject is not a real number.

Under i ned Name will occur if the Level-l object is

an undefined name.

D I NV uses SCUT. DUDL uses SCUT and SRPT .

.. Display Special Effects 265

•

Draw A Line Between Two Points:

LINE (1472131)

« ~NUM SWAP ~NUM ~ R
L « L PIXEL IF L R ~
THEN PXDM C~R R L -
DUP C~R 4 ROLL / ASS
SWAP 4 ROLL / ASS
MAX PPAR 4 GET /
SWAP OVER / L 1 4
ROLL START OVER +
DUP PIXEL NEXT DROP2
R PIXEL END » »

c
c..
c..
c..
'" '" '" '" c;.

'" " " c
c
c
c
c
C

Summary: LINE draws a line in the display between the two given C
points (complex number objects). The current PPAR C

Example:

266

values (PM IN, PMAX, and RES) are used. If RES is C
C greater than 1, the line is drawn to the specified resolu­

tion. If the variable PPAR does not exist, it is created
with default values.

(0,0) PMIN (3,3) PMAX 1 RES
(1,1) (2,2) CLLCD LINE Result:

Chapter 9: Output UtilimB

C
C
C
C
C
C
C
C
C
L
L
L
L
~

E
~ • ,. ,. ,. ,.

Inputs:

Outputs:

Errors:

Notes:

LCD Graphics

Level 2 - an object that reduces to a complex number­
the coordinates of the "from" point.

Levell-An object that reduces to a complex number­
the coordinates of the "to" point.

A line is drawn in the display.

Too Few ArguMent s: will occur if the stack cO.n­
tains fewer than 2 objects.

Bad ArguMent Type will occur if the input objects
do not reduce to complex numbers.

LINE does not test to see if the points it is plotting are

out of bounds for the display. LINE uses PXDM.

267

Draw A Line From The Current Plot Position

To The Specified Position:

PLOT (373667)

« ~NUM ~ N « IF
coord DUP TYPE 6 -­
THEN (0,0) DUP ROT
STO END N LINE N
'coord' STO » »

Summary: PLOT draws a line from the point established by PSET
to the specified point. The current plot position - the

value of 'coord' - is updated to be that of the

specified endpoint. If' coord' has no value, it is

given a value of (0, 0) . If the variable PPAR does not

exist, it is created with default values.

Example: ' PPAR' PURGE (1, 1) PSET
(2, :3) CLLCD PLOT Result:

J

Inputs: Level 1- an object that reduces to a complex number.

Outputs: A line is drawn in the display.

268 Chapter 9: Output Utilitie.

•

c...
c..
c..
c..
c..
c..
c..
c..
c..
c..
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

= • lit ..
lit • • • • • • • • • •

Errors:

Notes:

.. LCD Graphics

•

Too Few Ar9UMentswilloccurforanemptystack.
Bad ArguMent Type will occur if the input value
or the contents of I coord I is not a complex number.

PLOT does not test whether the points being plotted are

out of bounds for the display. PLOT uses LINE.

269

Plot A Series Of Connected Points:

POL YL (874768)

« EVAL ~ L « L 1 GET
~NUM 2 L SIZE IF DUP
TYPE 5 == THEN LIST~
2 == « * » 1FT END
FOR I L I GET ~NUM
SWAP OVER LINE NEXT
DROP » »

Summary: POL YL ("poly-line") takes a list of complex numbers or

a complex array object and plots lines between the

points it contains. The first point is taken to be the

origin, so the first line is drawn from that point. Arrays
are traversed in row-major order. If RES is greater than

1, the line is drawn to the specified resolution. If the

variable PPAR does not exist, it is created with default

values.

Examples: I PPAR I PURGE ((0,0) (1,1) (-1,1)
(0,0)) CLLCD POLYL
Result:

270 Chapter 9: Output Utilitie.

c.
c..
c..
c..

" " c..
c.

" " " c.
c
c
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
t::
t::
~
~
~
~

• -..
• • ..
• ..
• • ..
• •

Inputs:

Outputs:

Errors:

Notes:

LCD Graphics

(-10,-3) PMIN (10,3) PMAX
[(5.3,2.4) (3,2) (-8,-2.1)]
CLLCD POLYL

~:

Level 1 - any object that evaluates to a list, array or

vector - the series of point coordinates to be plotted.

A plot is generated.

Too Few Ar9UMentswilloccurforanemptystack.
Bad ArgUMent Type will occur if the input object
does not evaluate to a list, array or vector, or if one or
more of its components is not a complex number.

POL YL does not test to see if the points it is plotting are
out of bounds for the display. POL YL uses LINE .

271

Move To A New Point In A Plot:

PSET (44268)

« ~NUt1 C~R R~C
'coord' STO »

c
c.
c.
c.
'­
'­,
c
c
C

Summary: PSET establishes a point in the plotting area from C
which a subsequent line can be drawn with the PLOT C

Example:

Inputs:

Outputs:

Errors:

Notes:

272

program.

(2,2) PSET
Result: (nothing changes in the display)

Level I-a complex number; the coordinates of the point

to which to move.

None.

Too Few Argur"ent S will occur if the stack is

empty.

Bad ArguMent Type will occur if the input object

is not a complex number.

PSET creates the variable 'coord' in the current

directory, overwriting any variable of the same name.

Chapter 9: Output Utilities

C
C
C
C
C
C , ,
C
C ,
C , , ,
C
C
C
C
C
C
C
C
C

• • • • • • • • • • • • • • ~
~
~
~
~
~
:i
:a
:a
:a
:e
:e

Get The Dimensions Of A Pixel

PXD~l (156215)

« PPAR 1 2 SUB LIST~
DROP SWAP - C~R 81 /
SWAP 186 / SWAP R~C
»

Summary: PXDM determines the height and width of a display

pixel (a single dot), given the current plotting parame­
ters (i.e. the contents of the PPAR variable). The dimen­

sions are returned as a complex number. PXDM as­
sumes that the PPAR variable exists.

Examples:

Inputs:

Outputs:

STD 'PPAR ' PURGE (0,0) PIXEL PXDM
Result: (. 1 , • 1)

None.

Levell - a complex number - the dimensions of a dis­
play pixel under the current plotting parameters.

~
:i Errors: Bad Argur-leni Type will occur if I PPAR I does

not exist or does not contain a valid plotting parameter

list.
:i
:i
::i
- Notes: ...
=­
=-- LCD Graphics

None .

273

Print An Object Centered:

PRCTR (25977)

« 24 SCTR PRl DROP »

Print An Object Left-Justified

PRLJ (44143)

« DEPTH « PRl » IFT
DROP »

Print An Object Right-Justified

PRRJ (22066)

« 24 SRJ PRl DROP »

=
Co
Co

" " " " " " c.
c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C

Summary: PRCTR prints the given object, centered on the printer C

214

paper. PRLJ prints it left-justified; PRRJ prints it C
right-justified. If the object contains NEWLINE charac­
ters, PRRJ and PRLJ will begin displaying the object

on the line specified, then continue on subsequent lines
as directed by the NEWLINE's in the object.

Chapter 9: Output Utilities

C
C
C
C
C
~
~
C

..
• ~
~
~ ...

Examples: II H I II PRCTR ~: (printed on the paper):

Inputs:

Outputs:

Errors:

Notes:

II Whoop II PRLJ ~: (printed on the paper):

IIhi II PRRJ ~: (printed on the paper):

Level 1 - the object to be printed.

(print-outs such as in the examples.)

Too Few Ar9UMentswilloccurforanemptystack.
PRCTR will fail to center its output if the object con­
tains a NEWLINE character or leading or trailing spaces.

PRLJ andPRRJ will fail iftheprintbuiferis not empty
before the command is invoked (the print buffer is

emptied by CR or any printing command executed with

flag 33 clear), or if the object contains leading spaces.

PRCTR uses SCTR. PRRJ uses SRJ.

Printer Positioning Routines 275

Print An Object At A Specified Column:

PRPUT(123506)
« .. II SWAP 1 MAX
~NUM 1 - SRPT SWAP
~STR + PRl DROP »

q

c..
c..
c..
c..
c..
c..
c..
c..
c..

Summary: PRPUT prints the given object at the given printer col- c..
'" " C

Example:

Inputs:

Outputs:

Errors:

Notes:

276

umn. A column number less than 1 is treated as 1. Col­

umn numbers greater than 24 will print the object on

line number (n DIY 24), column number (n MOD 24) + 1.

IIHIII 20 PRPUT ~:

Level 2 - the object to be printed.

Levell - a real number - the printer column on which

to begin printing the object.

(A print-out such as in the Example.)

Too Few ArguMent s will occur if the stack con-

tains fewer then 2 objects.

Bad ArguMent Type will occur if the Level-1 ob-

ject is not a real number.

Undef ined NaMe if the Levell object is an unde-

fined name.

PPUT uses SRPT.

CluJpter 9: Output Utilities

" C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

.. • a
»
3
3
a

Print An Object Double-Wide:

PRDW (140624)

« 27 CHR DUP 253 CHR
+ ROT ~STR + SWAP
252 CHR + + PR1 DROP
»

Print An Object In Inverse (White On Black)

PRINV (1306107)

« RCLF ~ S « ~STR
11.11 + 33 SF WHILE
DUP 11.11 POS DUP
REPEAT SCUT 2 SCUT
SWAP DROP SWAP DO 23
SCUT SWAP SPAT NOT
PRPAT UNTIL DUP SIZE
NOT END DROP CR END
DROP2 S STOF » »

Print An Object Underlined:

PRUDL (145490)

« 27 CHR DUP 251 CHR
+ ROT ~STR + SWAP
250 CHR + + PR1 DROP
»

.a Printer Special Effects 277 ...

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

278

a

PRDW prints the given object double-wide on the printer c:.
Co

paper. PRINV prints it in inverse (white on black). "

PRUDL prints it underlined. "

II HELLO II PRD~J

~: (printed on the paper):
::";':"::':':".:::"'":,,:"

HEL-Lb····
. ".-." .: ...

"Hi there. II PRINV
Result: (printed on the paper):

":":::r ". -.::::.

:numa········· i
---;: " : ,:

IIObject ll PRUDL
Result: (printed on the paper):

Levell - the object to be printed.

(A print-out such as in the Example above.)

Too Few Ar91.JMent S willoccurfor an empty stack.

PR I NV uses SCUT, SPAT and PRPAT.

" " " <:
<:
<: , , , , ,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Chapter 9: Output Utilities ~
"­
~

= .. • .. ,. ,. ,. ..
• ,. ,. ,. ,. ,. ,. ,. ,.
•

Print A Character Pattern:

PRPAT (386107)

« DO DUP 1 166 SUB
27 CHR OVER SIZE CHR
+ SWAP + PR1 DROP 1
166 SDEL UNTIL DUP
SIZE NOT END DROP ~

Summary: PRPAT takes a character string from Levell of the
stack (of the form returned by LCD~) and prints the
corresponding character pattern.

Example: 94 CHR 97 CHR 1 CHR
97 CHR 94 CHR 0 CHR
+ + + + + 10M I STO

33 SF 15 PRLJ 33 CF OM PRPAT
Result: (printed on the paper):

Inputs: Levell - a character string - the character pattern to be
printed.

Outputs: (A print-out such as in the Example.)

Errors: Too Few ArgUMentswilloccurforanemptystack.

Notes: PRPAT uses SDEL.

Printer Special Effects 279

Output Utilities: A Discussion

The Main Idea

c:.
c:.

" " '" " " " " The HP-28S is not intended to be a general purpose computer. It is "
intended to be a very competent calculator. For that reason (as you C
have certainly noticed), very little emphasis is placed on sophisticated, C
built-in input and output capabilities. Indeed, the only way to put C
information into the machine is with your own fingers; and the only
ways to get information out of it are through the display and through

the (optional) infrared printer.

Even so, sometimes a bit of output formatting becomes important.

Displayed results of complicated or data-intensive programs may be

quite confusing - and you'll often need to refer to printouts long after
the actual calculations have been performed - so you'll certainly need

some intelligible organization and labelling for both the display and

printer. The tools in this section let you do just that.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory - the

ultimate parent of all other directories.

280 Chapter 9: Output Utilitie.

C
C
C
C
C
C
C
c:
C
C
C
C
C
C
C
C
C
C
~
~
~
~
C

• a
a ..
• • • a
• • a
~
~
~
:a

Some Observations

Most of the printer and display commands are applications of related

string commands, including the ability to make general, graphical
patterns. Underlining and inverse video (white on black printing) and
are common display/printing enhancements that are also included.

There is also a handful of plotting extensions, including a genera~

purpose line-drawing routine (L I NE) that allows you to draw a line

between any two points in the plotting window. The other routines

basically extend this idea by allowing you to plot several lines consecu­

tively.

Errors And Error Recovery

Each of the tools is designed to generate an error with invalid input,

rather than continue and potentially generate garbage outputs. When
errors do occur, the stack is almost invariably disrupted, and since the

only way to restore a disrupted stack is with the UNDO command, it's

wisest to activate UNDO mode (in the MODES menu) and leave it
active throughout your use of these utilities .

DiscUBBion 281

How You Might Use These Utilities

Connect Data Points With DRWl:

, , , , , , , , ,
Suppose that the array IDAT contains data that you've just entered ,
and sorted by the independent variable's column (you know how to do ,

this with the Array utilities from Chapter 5, right?). ,

Suppose also thatIPAR contains valid COLI data. You might then use

POL Yl to connect the points in the DRWI scatter plot, thereby

outlining a trend (if any), with the help of this short program, called
CNCTI (360196):

« 0 PREDV DROP RClI
IPAR 1 GET AGETC
RClI IPAR 2 GET
AGETC (0,1) * + V~A
SClI CllCD DRWI
POlYl »

Labelling Printouts

Suppose you have an array of data that you want to print out column
by column, with each column labelled. You might use the following

program, called PCOl (1346283):

282 Chapter 9: Output Utilities

, , ,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

« ~ A « CRON CR
IICOLUMN DATA II PRCTR
11=11 24 SRPT PRLJ CR
A EVAL SIZE LIST~
DROP ~ R C « 1 C FOR
J "ColuMn II J SIP +
PRLJ 1 R FOR I A
EVAL (I J) GET
PRRJ NEXT CR NEXT »
» »

Extending Display Graphics

Suppose you want to be able to draw certain patterns and shapes in the

display - arcs, boxes, arrows, etc. How would you go about building

your own extended set of display graphics utilities?

The first thing to do, of course, is to decide what capabilities you want,

then recognize the core routines you would need to make them work.

Just to get you started, here's a couple of possibilities (the program­

ming is left up to you):

ARCl

ARC2

DiscuBsion

Given a center of curvature, one endpoint ofthe are, and

an angle (current angular mode), ARC 1 plots the arc,

using ARC2, PXD~1 and I PPAR I as needed.

Given a center of curvature and the two endpoints of an

arc, ARC2 plots the corresponding are, using PXDt'1
and I PPAR I as needed.

283

Chapter 10

Programming Utilities

c..
c..

'" '" '" '" '" c;.
c;.
c;.
c.
C

These routines provide convenient, "canned" methods for conducting C
various object and system tests, controlling system parameters, and

for allowing dynamic program control and evaluation.

As shown in the following list, the 41 programs are organized into ten

logical groups, presented alphabetically. Within each group, the pro­

grams are also usually presented alphabetically (by NAME), although

in some cases, certain sets of programs may be complementary or oth­

erwise so similar that they may be presented together.

For a more in-depth discussion of the uses ofthese utilities, see page

306, immediately following these program listings.

284 Chapter 10: Programming Utilities

C
C
C
C
C , ,
C ,
C
C
C
C
C
C
C
C
C
C
C
C
C
C

• Function • ~ • • Evaluations Based Upon Test Values

• • CASE Evaluate The Object Corresponding To A 288

• Test Value

• ON Evaluate The Object Indexed By A Test Value 290

• • • Miscellaneous Functions • • ERRBP Generate An Error Beep 291 • MEM% Find The Percentage Of Total System Memory 292 • Still Available • • • • Test And Controls For The Beeper

• • BEEP? Is The Beeper Enabled? 293

• BPOFF Disable The Beeper 293

• BPON Enable The Beeper 293

• • • TestAnd Controls For The Printer's • Automatic Carriage Return • • CR? Is The Automatic Carriage Return Enabled? 294 • CROFF Disable The Automatic Carriage Return 294
~ CRON Enable The Automatic Carriage Return 294 a
a
a
a Content. 285

•

Function ~
c:.
c:.
C.

Tests For Angle Modes C.
C.

ANG? What Is The Angle Mode? 295 C.
DEG? Is The Angle Mode DEGrees? 295 C.
RAD? Is The Angle Mode RADians? 295 C.

C.
C.

Tests For Array Dimensionality C
C

AR1D? Is The Given Array 1-Dimensional? 296 C
AR2D? Is The Given Array 2-Dimensional? 296 C

DIM? What Is The Dimensionality 296 C
C Of The Given Array?
C
C

Tests For Binary Modes
C
C
C

BASE? What Is The Binary Mode? 298 C
BIN? Is The Binary Mode BINary? 298 C
DEC? Is The Binary Mode DECimal? 298 C
HEX? Is The Binary Mode HEXadecimal? 298 C
OCT? Is The Binary Mode OCTal? 299 C

C
C

Tests For Display Formats C
C

DIGS? How Many Digits Are Being Displayed? 300 C
ENG? Is The Display Format ENGineering? 300 C

C
C

286 Chapter 10: Programming Utilitie. C
C

~ ~ Function ~ .. FIX? Is The Display Format FIXed Point? 300 FMT? What Is The Display Format? 300 .. SCI? Is The Display Format SCientific? 300 .. STD? Is The Display Format STandarD? 301
• Tests For Object Types

• • ALGB? Is The Given Object An Algebraic Object? 302 • ARRY? Is The Given Object An Array Or Vector? 302 • BNRY? Is The Given Object A Binary Integer? 302 • CARY? Is The Given Object A Complex-Valued 302 • Array Or Vector? • CPLX? Is The Given Object A Complex Number? 302 • LIST? Is The Given Object A List? 302 • • LOCL? Is The Given Object A Local Name? 303

• NAME? Is The Given Object A Global Name? 303

• PRGM? Is The Given Object A Postflx Program? 303

• RARY? Is The Given Object A Real-Valued Array 303

• Or Vector?

• REAL? Is The Given Object A Real Number? 303

• STR? Is The Given Object A Character String? 303 • • • ~ Waits For Keystrokes

• GETK Wait For A Keystroke And Return Its Name 305 • KEYWAIT Wait For A Keystroke 305
~
~ Contents 287

a

Evaluate The Object Corresponding To

A Test Value:

CASE (322911)

« ~ I V R 0 « IF V
EVAL I POS DUP THEN
R SWAP GET EVAL ELSE
DROP 0 EVAL END » »

c.
c.
c.
c.
c.
c.
c.
c
c.
c
c
c
C

Summary: The CASE conditional allows you to evaluate one of C
several objects based on the value of the supplied object

In other words, in the case that the test object has such
and such a value, such and such object will be evaluated.
Its value lies in replacing "nested" I F statements <I F
... THEN IF ... THEN IF ...).

Examples: €I { €I 1 2 } { II REAL II II CPLX II II STR II }
II I NVAL I D II CASE Result: II REAL II

2 { €I 1 2 } { II REAL II IICPLX II "STR II }
II I NVAL I D II CASE Result: .. STR ..

5 { €I 1 2 } { IIREAL II IICPLX" IISTRII}
II INVALID" CASE Result: .. INVALID II

288 Chapter 10: Programming Utilitie.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
~
~
~
~

~ .. • •
• • • • • • • • • • • • • • • • •

Inputs:

Outputs:

Errors:

Notes:

Level 4 -any object - the object of the test.

Level 3 - a list - the choice of possible objects.

Level 2 - a list - the outcomes corresponding to the ob­

ject choices.

Levell - any object - a default object to be evaluated if

the test object does not match any of the choices.

The possible outputs dependent on which of the objec~s

are evaluated and what that evaluation yields .

Too Few ArgUMent S will occur if there are fewer

than 4 objects on the stack .

Bad ArgUMent Type will occur if the Level 2 and

3 objects do not evaluate to lists .

None.

Evaluations Based Upon Test Values 289

Evaluate The Object Indexed By A Test Value:
c.
c.
c
c
c.
c.
c.

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

290

ON (63953)

« ~ C L « L EVAL C
~NUM GET EVAL » »

C. ON provides a means of selecting an action based on the C.
value of an object, which is used directly as an index to C
a list of options. The selected option is then evaluated. C
The index value is rounded to an integer before use. The

index must select a valid option or an error will occur.

2 (IIAII IIBII IIC II) ON ~: IIBII

STD 4 1 (« SQ 1 - » « SQ 2 * 2 - »
) ON ~: 15

Level2-anyobject that evaluates to a real number-the

index.
Level 1-any object that evaluates to a list - the options.

The output is dependent on the option evaluated.

Too Few ArguMent S will occur if the stack

contains fewer than 2 objects.
Bad ArguMent Type will occur if the objects don't

evaluate to their prescribed types.
Bad ArguMent Va 1 ue will occur if the index is out

of range for the list.

Various unpredictable errors can occur based on the

evaluation of the selected list object.

Chapter 10: Programming Unlim.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

~ • .. .­..
•

Generate An Error Beep:

ERRBP (20649)

« 1400 .075 BEEP»

Summary: ERRBP generates a beep of the same pitch and duration
as the standard error beep. It can be used to signal
errors in user-created programs.

Example: ERRBP

Inputs: None.

Outputs: None.

Errors: None.

Notes: Flag 51 controls the status of the HP-28S tone generator.

If this flag is clear, a BEEP will produce a tone; if the flag
is set, no action is taken.

Miscellaneous FunetionB 291

I.

Find The Percentage Of Total System Memory

Still Available:

Summary:

Examples:

Inputs:

Outputs:

Errors:

Notes:

292

~1E~1~'~ (40031)

« MEM 32397.5 SWAP
%T 2 RRND »

MEM% returns the percent of memory free. Amaximum
available memory of32397. 5 bytes is assumed and
the result is rounded to 2 decimal places.

STD MEM% Result: 71.51

None.

Level 1 - A real number.

None.

MEM% uses RR~~D.

Chapter 10: Programming Utilities

c
c

" " " " " " " , ,
C
C
C
C
C
C
C , ,
(

(

(

(

(

(

(

< , , ,

.. • a
• • • • ~
-­~

Test And Controls For The Beeper:

BPON (7800)

« 51 CF »

BPOFF (8873)

« 51 SF »

BEEP? (9633)

« 51 FC? »

Summary: BPON and BPOFF turn the internal beeper on and off

respectively, thus enabling/disabling subsequent execu­

tions of BEEP . BEEP? tests to see whether the beeper

is enabled, returning a 1 (true) if it is and a 0 otherwise.

Examples: BPON SrD BEEP?
BPOFF SrD BEEP?

Inputs: None.

Result: 1
Result: 0

Outputs: Levell (for BEEP? only) - a real number, either a 0 or

1 - the result of the test

Errors: None.

Notes: None.

Test And Controls For The Beeper 293

Test And Controls For

The Printer's Automatic Carriage Return

CR? (7446)

« 88 FC? »

CROFF (8910)

« 88 SF »

CRON (7837)

« 88 CF »

sUmmary: CRON andCROFF enable and disable, respectively, the
printer's automa tic carriage return. CR? tests whether
itisenabled,returninga 1 (true)ifsoanda\3 otherwise.

Examples: CRON STD CR? ~: 1
CROFF STD CR? Result: \3

Inputs: None.

Outputs: Levell (for CR? only) - a real number, either a \3 or 1

- the result of the test.

Errors: None.

Notes: None.

294 Chapter 10: Programming Utilitie.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

..
• • • • • • • • • • • • • • • • Summary:

• • • • • • • • • • •

Examples:

Inputs:

Outputs:

Errors:

Notes:

Tests For Angle Modes:

ANG? (36022)

« (DEG RAD) RAD? 1
+ GET »

DEG? (8382)

« 613 Fe? »

RAD? (8568)

« 613 FS? »

These routines test the current angle mode. DEG? and
RAD? return a 1 (true) or 13 (false), indicating whether
the tested-for mode is active. ANG? returns the current
mode's name: DEG orRAD.

DEG RAD?
RAD ANG?

None.

Result: 13

Result: RAD
DEG DEG?~: 1

DEG? and RAD? return either a 1 or 13 to Level l.

ANG? returns a program object, either DEG or RAD.

None.

ANG? returns evaluable program objects. ItusesRAD?

• • • • • •
Tests And Controls For The Printer's Carriage Return. Angle Modes 295

Tests For Array Dimensionality:

ARlO? (12552)

« DIM? 1 == »

AR2D?(12577)

« DIM? 2 == »

DI~1? (91400)

« SIZE LIST? 1 == 1
1FT 2 7L1ST 1 POS 1
2 1FTE »

Summary: These routines all test the dimensions of the given array.

DIM? returns the dimension of the array: 1 or 2 (HP-

288 vector objects are considered to be one-dimensional

arrays). AR2D? returns true orfalse, based on whether

the given array is two-dimensional or not. AR 1 D? per­

forms a similar test for one-dimensional arrays.

Examples: STD [1 2 3] D I t'1? Result: 1

296 Chapter 10: Programming Utilitie.

~----------~ -----------

c
<;;
<;;
<;;
<;;
<;;
<;;
<;;
C
C
C
C
C
C
C
C
C
C ,
C ,
C
C
C
C
C
C
C
C
C
C
C
C
C ,

..
• • • • • • • • • • • • • a
a
• • •

STD [1 2 3] AR2D? ~:e

STD [1 2 3] AR1D? ~:1

STD [[1 2] [3 4]] AR2D?
~:1

STD [[1 2 3]] AR1D? Result: 1

Inputs: Levell - an array or vector object.

Outputs: Level 1 - DIM? returns either 1 or 2, AR2D? and
AR 1 D? return either €I or 1 .

Errors: Too Few Argw(]ent S will occur if the stack is
empty .

Bad ArgUMent T':1pe will occur if the input object
is not an array or vector.

Notes: None.

Test. For Array Dimensionality
297

t.
Tests For Binary Modes: Co

t.
t.

BASE? (96471) t.
t.

« (DEC BIN OCT HEX C.

) 48 FS? 2 '* 44 FS? t.
C. + 1 + GET »
C.
t.
C.

BIN? (23273) c
c

« 48 FC? 44 FS? AND C.
» C

C
C

DEC? (22724) c
c
C

« 43 FC? 44 FC? AND C
» C

C
C

HEX? (23677) c
c

48 FS? 44 FS? AND C «
C »
C
C
C
C
C

298 Chapter 10: Programming UtilitieB C
C

• • • • • • •
• Summary: •

Examples:

Inputs:

Outputs:

Errors:

Notes:

OCT? (23466)

« 43 FS? 44 FC? AND
»

These routines all return information about the current

binary integer format.
All the other tests return either a 1 (true) ora (false), de­

pending upon whether or not the tested-for mode is
active. BASE? returns the current mode's name: BIN,
DEC, HEX or OCT.

BIN BASE?
HEX BIN?
OCT OCT?

None.

Result: BIN
~:e

Result: 1

BIN?, DEC?, HEX? and OCT? all return either a

1 or e to Level 1. BASE? returns one of the following
program objects: BIN, DEC, HEX, OCT.

None.

The objects returned by BASE? are actually evalu­

atable programs.

• • •
Test. For Binary Mode. 299

300

Tests For Display Formats:

DIGS? (83403)

« 53 FS? 54 FS? 2 *
+ 55 FS? 4 * + 56
FS? 8 * + »

ENG? (23389)

« 49 FS? 50 FS? AND
»

F I X? (23493)

« 49 FS? 50 FC? AND
»

F~1T? (93483)

« { STD SCI FIX ENG
} 49 FS? 2 * 50 FS?
+ 1 + GET »

SC I? (23385)

« 49 FC? 50 FS? AND
»

u

(

(

(

(

(

(

(

(

(

(

(

(
(

(

(

c
c
c
c
c
c
c
c
c:
c:
c:

Chapter 10: Programming Utilities C

c

;
~

~ ..
.. Summary:
A ,.
A Examples:
A ..
• • Inputs:

. : Outputs:

• :.
• • ~.
" .. Errors:

~ Notes:

-­• •

SrD? (23444)

« 49 FC? 50 FC? AND
»

These tests all return information about the current
numerical display format. F I X? , SC I?, ENG? and
STD? all return either a 1 (true) or0 (false), indicating

whether the tested-for mode is active. DIGS? returns
the number of displayed digits in the current mode (0 is

returned for STD mode). FMT? returns the current
mode's name: F I X, SC I, ENG or STD .

4 FIX DIGS?
STD DIGS?
11 SCI F~1T?

8 ENG STD?

3 SCI SCI?

None .

Result: 4. 0000
Result: 0

Result: SCI

Result: 0. 00000000E0
Result: 1. 000E0

Levell-F IX? ,SCI? ,ENG? andSTD? return a real
number, either a 1 or 0 - the result of the test. DIGS?

returns a real number, between 0 and 11 - the number
of display digits. F~1T? returns a program object, either

F I X, SCI, E t·~ G, or S T D - the current display format.

None.

The evaluable objects returned byF~1T? take the number
of display digits from the stack (except for STD).

~ Tests For Display Formats 301 •

Tests For Object Types: C
C
C
c

ALGB? (13021) Co
Co

« TYPE 9 == » Co
Co

ARRY? (35513)
Co
C
C

« TYPE { 8 4) S~JAP C
POS » C

C

BNRY?(14804) C
C

« TYPE 10 == » C
C
C

CAR~"? (13436) C
C

« TYPE 4 == » C
C
C

CPLX?(13532) C
C

« TYPE 1 == » C
C

LIST? (13634)
c
C
C

« TYPE 5 == » C
C
C

302 Chapter 10: Programming Utilim. t:.
C

It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It

• • • • • • • • • ~

LOCL?(13330)

« TYPE 7 == »

NA~1E? (13172)

« TYPE 6 == »

PRG~1? (13532)

« TYPE 8 == »

RAR~"? (13653)

« TYPE 3 == »

REAL? (13170)

« TYPE 0 == »

STR? (12260)

« TYPE 2 == »

• • Summary: These routines are all tests that return true or false (1

• • • • • ~

or 0) based on whether or not the object is of the type for

which the test is being made:

Tests For Object Types 303

Examples:

\
Inputs:

Outputs:

Errors:

Notes:

304

Routine

ALGB?
ARRY?
BNRY?
CARY?
CPLX?
LIST?
LOCL?
NAME?
PRGM?
RARY?
REAL?
STR?

IIHIII STR?

Object Type Bein~ Tested For

Algebraic Object

Array or Vector

Binary Integer

Complex-Valued Array

Complex Number

List

Local Name

Global Name

Program Object

Real-Valued Array

Real Number

Character String

STD (1,O) CPLX?
« STD » REAL?

Result: 1
Result: 1
Result: °

Levell - any object

G
G
G
G
G
G
G
G
G
Co
Co
Co
C
C
C
C
C
C
C
C
C
C

Level 1-a real number, either a lor 0 - the result of the C
test.

Too Few Argur.,ent S will occur for an empty stack.

None.

Chapter 10: Programming Utilitie.

C
C
C
C
C
~
~
~
~
~
~
~
C

I
I

• , ,
! ,
!
!
! ,
.,. -...
.::
l ...
,;, ...
,;, Summary: -$
,;, ...
,;, ...
..;, ...
~ Examples: ...
,;,:. ...
..;, Inputs: ...
JiI ...
JiI

:) Outputs: ...
..;,

:.
:. Errors:

~
~ Notes:

~
)

Waits For Keystrokes:

GETK (32655)

« DO UNTIL KEY END »

KEYWAIT(53950)

« DO UNTIL KEY END
DROP »

GETK pauses program execution to get a key. Once a

key is pressed, the key name is returned and the pro­

gram continues. KEYWA I T waits for a keystroke be­

fore continuing, but does not return a value .

GETK (!)

KEYWAIT III
Result: II 9 II
Result: (wait)

None. After the routines are invoked, any keystroke

other than [ATTN] will be accepted.

Levell - (GETK only) a character string - the name of

the key pressed .

None.

Pressing [ATTN] will interrupt either routine, potentially

leaving a (I on the stack.

:; Waits For Keystrokes 305

~

Programming Utilities: A Discussion

The Main Idea

" c
c
c
c.
c.
c
c
C.

Most of these tools are in the Programming section because they are C
useless in manual calculations. For instance, how often would you C
need a program to tell you the type of object in stack Levell when you C
can look right at it and see for yourself? On the other hand, this sort

of tool is very useful within a program to give it the intelligence to
determine such conditions - what the Levell object is, or what the

current display mode is, etc.

There are also some tools here that give you new ways to control

program evaluation, control calculator states and gather user input.

Where To Put These Programs

As always, to be accessible, these utilities must be in a directory that

is listed in your current PATH. The easiest way to ensure that this is

the case is to place each of the programs in the HOME directory - the

ultimate parent of all other directories.

306 Chapter 10: Programming Utilities

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

..
3 Some Observations ,
, Perhaps here more than in any other chapter of this book the use of the

, tools is governed by your own preferences. Most of the tests and flag

~ controlling commands are very short programs, barely necessary un-

3t less you can't remember the number of the beeper control flag, or the

, type number of a character string. Their (hopefully) meaningful

, names and one-keystroke entries are timesavers. And if you design

, programs that use them heavily, you might save some memory, also. ,
~ You'll probably find that in most situations, the programs you write are

~ independent of the current calculator state. It is easy to save the cur­

:: rent state, set a new state for the duration of the program, then reset

~ the previous state before leaving. Take SIP as an example:

« ~NUM IP ~NUM RCLF
SWAP STD ~STR SWAP
STOF »

RCLF recalls the states of all the system and user flags. Then various

other modes may be safely set by the program (in this case STD), since

they will be undone afterward, by a restoration of the original flag

settings with STOF. This is how you can make any program mode

independent - so that it will work the same regardless of what modes

it encounters as it begins execution.

Note, however, that you can also write programs that work differently

with different system settings. For example, you might have a pro­

gram calculation whose accuracy varies according to the current dis­

play setting, or which gets different results in degrees or radians mode.

With that in mind, some ofthe more useful routines in this section are

Discussion 307

those that allow you to direct program control dynamically. For
example, GETK and KEYWA I T allow programs to interact with the
user, taking actions based on the identity of a single keystroke.

ON (after the HP-BASIC 0 N ... GOT O ... statement) simply evaluates

an argument and uses the integer result to select and evaluate an ob­
ject from a list. Since the objects in the list may be programs or names
of procedure objects, ON is a conditional evaluation based on an index.

The CASE command is similar, but takes an argument and compares

it with a list of values. If it matches one of the values, the returned

index is used to select an object to be evaluated from a second list. If
the argument matches none of the options, a catch-all object is

evaluated. Thus, CASE is similar to the following Pascal construct:

CASE object IN

END;

1 first condition;

2 : second condition;

3 : third condition;

OTHERWISE not 1 2 or 3;

Errors And Error--Recovery

Each of these tools is designed to generate an error with invalid input,

rather than to continue and possibly generate bad output. When er­

rors do occur, the stack is usually disrupted, and since the only way to

restore a disrupted stack is with the UNDO command, it's wisest to

activate UNDO mode (in the MODES menu) when using these utilities.

308 Chapter 10: Programming Utilities

" '-
'-

" " '-
'­
'-

" " c.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
~
~
~
~
~
~
~
c

• .a ,
~
~
~
~
~
~
~
~
~
~
~
~
2 , .,
2 ., ., ., ., ., ., , ., ., ., , ,
• • ~

How You Might Use These Utilities

GETK

Because GETK returns a string object to the stack, a program that

uses GETK can use the return value in several ways to provide condi­

tional action. First, using CASE, you could do this:

GETK { IILEFTII IIRIGHT II IIUpll II DOWN II)

{ GOLEFT GOR I GHT GOUP GODm~N) I I DLE I CASE

But consider this simpler and faster approach:

GETK II GO II S~~AP + STR~

Or, you could provide the I I DLE I option in the following way:

GETK II GO II S~'~AP + STR~ DROP IDLE

Thus, for example, if you press @, STR~ evaluates to I G09 I which

(hopefully) does not name an object and therefore the name is left on

the stack. The program continues, DROPping the name and running

the I DLE routine. Beware of possible errors though: After STR~

evaluates the named routine, DROP expects to drop something and

I DLE is evaluated regardless .

Discussion 309

l

~
Now, ifall of the called routines were designed to return a 1 to indicate '-
their completion, the following routine could be used:

GETK II GO II S~~AP +
STR+ IF 1 SAME NOT
THEN I DLE Et~D

or:

GETK II GO II S~~AP +
STR+ 1 SAME NOT
I IDLE 11FT

(As you can see, the only real difference here is the form of the I F test

being used.)

Type Testing

ON and CASE provide convenient means of branching - choosing at

"run-time" among several program options, based upon values arrived

at during the program. A common example of this is testing a pro-

gram's arguments to see what TYPE they are and processing differ­

ently based on the Object; For example:

« DUP TYPE { 0 1 2 }
{ Real COMPlex String }
IIBad Type ll CASE »

'-

'" "-

'" '" '-
'­
'-

" " C
C
C
C
C
C
C
C
C
C
C
C
C
C
(
(
(
(
I~

I~

\~

\~
310 Chapter 10: Programming Utilitie. l,~

\~

• • Here is a routine that decomposes "decomposable" objects, but does

, nothing for other types of objects. Note that there is one list element

i for every possible value returned by TYPE.

~
~ OBJ7(804254)

:!J
~
~
~
~
~
~
~ , , ,
~ ., ,
") ,
') ., ., , , ., ., ., ., ., ., ,
•
~

« DUP TYPE 1 + (« »
« C7R » « STR7 » «
ARRY7 DROP » « ARRY7
DROP » « LIST7 DROP
» « » « » « » « » «
») ON »

Or, to avoid having to provide a list element for every TYPE value, you

can use an I F test to restrict the range:

DiscuBBion

OBJ27 (983461)

« DUP TYPE IF DUP 0
> OVER 6 < AND THEN
(« C7R » « STR7 » «
ARRY7 DROP » « ARRY7
DROP » « LIST7 DROP
») ON ELSE DROP END
»

311

Utilities Index '-
(.
(.

ADELC 125-127 BNRY? 302,304 ENQ 218-219 (.
ADELR 125-127, 157 BPOFF 293 ERRBP 291

(. AEX 128-131 BPON 293 EXCH 22,42
AEXC 130-131 BREAK 191 FA DO 64 c;.
AEXR 130-131 CARD 65 FCTR 50-51,61,63

" AGETC 110-111,115,156- CARY? 302,304 FIND 245-246,249,252 c;. 157,282 CASE 288,308-310 FIX? 300-301
AGETR 110-111, 115 CNCT! 282 FLTR 198-199,229,233-

,
AINSC 132-133, 157 CPLX? 302,304 234, 245-246 ,
AINSR 132-133 CR? 294 FMT? 300 ,
AI~N 144-145 CROFF 294 GCD 46-47,63
ALGB? 302,304 CRON 294,283 GETK 305,309-310 C
ANG? 295 CROS 105 GO TO 247,235,237,250- C
AN~I 144-145, 150-151 C~ARY 117-118,130-131, 252 C AOP 146-149 142-143, 146, HEX? 298-299
AOPC 146-149 149 IJK~ 94,103-105 C
AOPR 147-149 C~V 98-99,105 IRAND 54-55, 65-66 C
APOS 150-151 DCTR 257-259 IRND 56,67 C APUTA 134-135 DEC? 298-299 KILLD 233-234,238,249,
APUTC 136-137, 157 DEG? 295 253 C
APUTR 138,136-137,139 DIGS? 300-301 KEYWAIT305 C
ARlO? 296-297 DIM? 296-297 LCM 46-47,63 C AR2D? 296-297 DINV 264-265 LCUT 200,206,208,210-

C AREV 140-141 DIR? 240,233-235,237- 211
ARPT 112 239, 241, 243, LDEL 202-203,216-217 C
ARRY? 302,304 245,247,250- LEX 204,228 C ARY~C 116,130-131,143, 251 LINE 266-267,269,271,

C 146, 149 DISP8 191 281
ARY~R 119,130-131,143, DLJ 257-259 LINS 206-208, 227 C

147, 149 DPAT 262,161,263 LIST? 302,304 C
ASORT 140-141, 157 DPUT 260-261 LOCL? 303-304

C ASRTC 142-143, 156 DRJ 257-259 LOP 220,149,189,214-
ASRTR 142-143 DSORT 232 215,221,228, C
ASUB 114-115 DSP 228 232 ~
A~L 122,194 / DU 244,233-234,238- LPUT 206-208

~ /

A~V 96-97,102 239, 245-246, LREV 209
BASE? 298-299 250 LROT 210-211 ~
BEEP? 293 DUDL 264-265 LRPL 212 ~
BIN? 298-299 ENG? 300-301 LRPT 197

~
~

312 Chapter I: Index And Other Infonnation ~
C

t

• ,
5' LSORT 214,189,215,228, RDC 63 SRPT 162,180-182,184-

~
232 REAL? 303-304 185, 264-265,

LZAP 216-217 REV3 26,41-42 276,283
~ L~A 123,195 REVN 27,42 ST.OP 34

~ MEDW 157 RMD 48-49,63 STACK EM 238,235,237-239,

:!' MEM% 292 ROLDN 28-29,42 249-250, 253
MERGE 30,43 ROLLN 28-29,42 STADD 32-33

~ MOVE 235-237,250,253 RRA~ID 54-55,65 STD? 301

~ MT? 242-243,250-251 RRND 58-59, 65-67, 292 STDIV 32-33

~
NAME? 303,304 R~ARY 120-121,130-131, STET? 36,38
NTYPE 243,250-251 142-143, 147, STGE? 36,38

~ OBJ~ 311 149 STeT? 37-38

~ OBJ2~ 311 R~e 70,84-86 STe~ 164

~ OCT? 299 R~i 71,82, 84-87 STLE? 37-38
ON 290,308,310-311 R~a 72, 82, 84-88 STLT? 37-39 ~

.: PCOL 282·283 SCI? 300-301 STMUL 32-33 PLACE 66 SCTR 180-182,191,257, STNE? 36,38
~ PLOT 268-269, 272 259, 274-275 STOST 34-35,43

" ... POLYL 270-271, 282 ... SCUT 167,170-171,175- STR? 303-304 . POP 222-223 176, 189,264- STSUB 32-33 .., ... PRCTR 274-275, 283 .: 265,277-278 SUC 173 ... PRDW 277-278 SDEL 168,279 SWAPN 29 .: PRGM? 303-304 SINS 170-171 SZAP 177 ...
.: PRINV 277-278 SIP 160,283,307 SZAPL 178-179 PRLJ 274-275,283 SLC 172 SZAPR 178-179 .: ... PRMS 52,61,63 SLJ 180,170-171,181- TOSS 65 .: ... PRPAT 279, 161,277-278 183 UNQ 218-219,223
oJ PRPUT 276 SPADL 184-185 V~A 96-97, 102,282
' ..

PRRJ 274-275, 283 SPADR 184, 170-171, 185 V~C .; 98-99,105 ... PRUDL 277-278 SPAT 161,187,260-261, 73, 75-76, 82, 84,-.; .. PSET 272,268 277-278 88
.; PTEST 66 SPUT 170-171,260-263 ~2D 92-93,105 .. PUSH SREV ~3D oJ 222-223 174,189 92-93,105 .. PUTIT 65-66 SRJ 181-183,257,274-J , PXDM 273,266-267,283 275

QSRT 24-25,40-42, 140, SROT 175 ..
.J 214-215,249 SRPL 176-177,189-191 , RAD? 295

:) RARY? 303-304 , , Utilities Index 313 ,

HP-28S Software Power Tools: Utilities

Here's a must-have collection ofHP-28S tools - program routines

to make your own programming go more quickly and smoothly!

You get ten different sets of "canned" solutions, ready for "off the

shelf' use: Utilities for the stack, real numbers, complex num­

bers, vectors, arrays, strings, lists, directories, output, and

program development.

Each routine is documented, and there's a discussion at the end of

each set, to give you some examples of how to use those utilities.

You'll find this book to be a great collection of advice, good habits

and sound programming principles. Whether you're just starting

to program or are experienced already, these all-purpose tools

belong in your HP-28S and under your fingers - don't miss them!

~ litE ~US 'fr
~~VjWE 1\.1kJ'''TJO~} IIWC,
P.o. Box 118 • Corvallis, Oregon 97339-0118 • U.S.A .• (503) 754-0583

ISBN 0-931011-27-2

1284100027

HP Part # 92220Y

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

